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Statement of Contributions 

Parts of this thesis have been adapted from previous works I authored/co-authored.  The method 

described in [1] is used to compare differences in observation space variables between Hidden Markov 

Models (HMMs) models of two different movement trajectories.  Additionally, the divisive clustering 

algorithm described in [2] is used to cluster similar time series datasets to detect movement strategies. 

In order to create the software to test the proposed framework, we customized several publicly 

available software packages.  The software package that was modified for training HMM’s was the 

JaHMM (Java HMM) package [3].  Several modifications were made to this package to support more 

efficient HMM training, HMM based trajectory reconstruction, and to support various HMM based 

clustering algorithms.  We used the Matlab-based Gaussian Process Dynamical Models (GPDM) code 

provided by J.M. Wang [4] as a starting point for the GPDM training algorithms described within the 

thesis.  Several modifications were made to these scripts to support training acyclic motion trajectories 

of various lengths and to determine the dimensionality of the latent space based on model reconstruction 

error.   

There are two main comparison algorithms that we compare our approach against.  Joint Component 

Vector [5] and Kinematic Joint Synergies [6].   Both of these approaches were implemented after the 

original works and coded using Matlab.   

To validate the proposed framework in this thesis, two different motion capture datasets were used 

for analysis.  These datasets were collected for prior work by Jack P. Callaghan and Tyson Beach at 

the University of Waterloo’s Kinesiology Department.  The first dataset consisted of participants 

performing a known predetermined lifting strategy - squat or stoop [7].  The second dataset was 

collected as part of an experiment for examining the influence of unilateral ankle immobilization on 

lower back loading and injury potential during lifting [8]. Both of these datasets were collected using 

an optoelectronic motion capture system (Optotrak Certus, NDI, Waterloo, Canada) and consisted of 

the positions and orientations of the various joints.  Standard inverse kinematics computations were 

used to convert the Cartesian coordinates into Cardan joint angles for the ankles, knees, hips, and 

lumbar spine (Visual3D™ Software, C-Motion Inc.).  
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Abstract 

 The human body has many biomechanical degrees of freedom and thus multiple movement 

strategies can be employed to execute any given task.  Automated identification and classification of 

these movement strategies have potential applications in various fields including sports performance 

research, rehabilitation, and injury prevention.  For example, in the field of rehabilitation, the choice of 

movement strategy can impact joint loading patterns and risk of injury.  The problem of identifying 

movement strategies is related to the problem of classifying variations in the observed motions.  When 

differences between two movement trajectories performing the same task are large, they are considered 

to be different movement strategies.  Conversely, when the differences between observed movements 

are small, they are considered to be variations of the same movement strategy.  In the simplest scenario 

a movement strategy can represent a cluster of similar movement trajectories, but in more complicated 

scenarios differences in movements could also lie on a continuum.  The goal of this thesis is to develop 

a computational framework to automatically recognize different movement strategies for performing a 

task and to identify what makes each strategy different. 

 The proposed framework utilizes Gaussian Process Dynamical Models (GPDM) to convert human 

motion trajectories from their original high dimensional representation to a trajectory in a lower 

dimensional space (i.e. the latent space).  The dimensionality of the latent space is determined by 

iteratively increasing the dimensionality until the reduction in reconstruction error between iterations 

becomes small.  Then, the lower dimensional trajectories are clustered using a Hidden Markov Model 

(HMM) clustering algorithm to identify movement strategies in an unsupervised manner.  Next, we 

introduce an HMM-based technique for detecting differences in signals between two HMM models.  

This technique is used to compare latent space variables between the low-dimensional trajectory models 

as well as differences in degrees-of-freedom (DoF) between the corresponding high-dimensional 

(original) trajectory models.  Then, through correlating latent variable and DoF differences movement 

synergies are discovered.   

To validate the proposed framework, it was tested on 3 different datasets – a synthetic dataset, a real 

labeled motion capture dataset, and an unlabeled motion capture dataset.  The proposed framework 

achieved higher classification accuracy against competing algorithms (Joint Component Vector and 

Kinematic Synergies) where labels were known apriori.  Additionally, the proposed algorithm showed 

that it was able to discover strategies that were not known apriori and how the strategies differed. 
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Chapter 1 

Introduction 

Given the redundancy of the human body at both the joint and muscle levels, multiple movement 

strategies can be employed to execute a given task.  Movement strategy differences can be exhibited 

both through different muscle recruitment patterns and different kinematic trajectories.  This flexibility 

is advantageous because it allows individuals to adapt to varying environments, execute a wide variety 

of tasks, and compensate for personal morphological (e.g. body size and shape) or functional (e.g. joint 

range-of-motion, strength, fatigue, etc.) movement constraints.  However, inter- and intra-individual 

variations in movement strategies pose significant challenges for human motion analysis and make it 

difficult to objectively identify and classify movement strategies.    

The automated identification and classification of movement strategies have many potential 

applications including sports performance research, rehabilitation, and injury prevention. In sports 

performance research, there may be interest in applications that attempt to determine the skill level an 

athlete has attained through performing certain exercises and regimens [9] [10] [11].  In rehabilitation 

applications, there is interest in determining whether specific intervention strategies are suitable for all 

types of patients and whether patients with different classes of movement variation are impacted in 

different ways [12] [13].  Lastly, for injury prevention applications, there may be interest in identifying 

ergonomically incorrect strategies and taking preventative measures to correct those strategies [5] [14].  

A variety of artificial intelligence techniques have been proposed for quantitative analysis of 

movement variation [15].  At present, there are few quantitative methods capable of objectively 

identifying and grouping inter- and intra-personal movement strategies, especially for complex whole-

body tasks that are performed variably between individuals and over time.  Most current algorithms 

abstract and condition multivariate time-series data and treat movement variability as noise. This 

represents a significant loss of information, as it has been argued convincingly that movement 

variability is an important observed feature of human performance that should not be treated as noise 

[15].  Many existing approaches also result in a loss of temporal information during a feature extraction 

step and require apriori knowledge of (expected) movement behaviors and underlying data structures.  

A desirable attribute of a motion analysis framework would be the ability to handle arbitrary movement 

while accounting for movement progression and motion variability. 

Another desirable attribute would be the capability to generate exemplar motions that represent the 

average within a category or identify the best-fit motion from existing data for a specific category of 
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movement for visual motion comparison.  Visual comparison of motions may not be sufficient for 

understanding how or why the movements are different.  Therefore, it would be ideal if the framework 

could automatically identify key features that differentiate the motions.  Finally, human motion 

analyses often incorporate a variety of signals, so it would be desirable if the algorithm could operate 

on any kind of temporal signal (e.g. Cartesian trajectories, joint angle trajectories, or electromyographic 

signals).  In this thesis, we propose a motion analysis framework to achieve all of the aforementioned 

desired qualities.   In particular our focus is on movement strategy differences exhibited through 

variations in kinematic trajectories and we show that the proposed approach can be applied to both joint 

angle data and Cartesian data by simply providing different input data to the algorithm.    

1.1 Contributions 

There are three main contributions of this thesis: 

Development of an Unsupervised Approach for Movement Strategy Detection 

     In order to recognize unique movement strategies, an algorithm for unsupervised clustering of 

multivariate time series trajectories is developed.  High dimensional time series trajectories 

representing human movements are converted to a lower dimensional (latent) space using Gaussian 

Process Dynamical Models (GPDM).  The dimensionality of the latent space is determined iteratively 

by using the reconstruction error.  In order to achieve improved clustering speed and performance over 

clustering observation trajectories directly, we propose clustering latent space trajectories, as they 

theoretically encapsulate only the critical information needed for representing the motion.  This 

clustering is done using a Hidden Markov Model (HMM) based approach. 

Correlation of Variance in Low Dimensional Latent Space with High Dimensional Joint Space 

     The variations in the low dimensional space are then correlated back to the high dimensional space 

using a novel HMM-based approach.  An automated method is used to quantitively compare the 

strategy movement models extracted from the nodes of the motion tree.  This method is used to detect 

differences in the latent space variables between the low-dimensional trajectory models and to detect 

differences in the variables (joints or Degrees-of-Freedom) between the corresponding high-

dimensional (original) trajectory models.  Then differences in movement synergies are discovered by 

correlating latent space variable variations with DoF variations. 
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Comparison of Various Approaches for Strategy Identification and Analysis 

The utility and accuracy of the proposed motion analysis framework is validated on three different 

datasets, which demonstrates the ability of the proposed framework to detect movement strategies from 

full body movement data.  First, validation on a synthetic dataset shows that the proposed framework 

performs well under scenarios where movements have high variation and minimal difference in 

movement strategy.  A second dataset consisting of known squat and stoop lifting strategies shows that 

our framework can correctly identify known strategies.  Finally, validation on a dataset with unknown 

strategies demonstrates that the proposed algorithm accurately detects strategies and sub-strategies 

without any apriori knowledge of the movement type to be analyzed despite the complex nature of the 

movement and a limited size dataset.  The proposed framework is compared against existing strategies 

in the literature that have been developed to solve the problem of movement strategy identification and 

analysis.  These methods include a feature-based clustering approach (Joint Vector Component), 

kinematic synergy approach using matrix factorization, and an HMM-based clustering approach. 

1.2 Thesis Organization 

This thesis is organized as follows.  Chapter 2 discusses related work in the field of human movement 

analysis.  This chapter starts by reviewing feature-based approaches before describing how HMMs, 

dynamic modeling, neural networks, and kinematic synergies can be used for human motion analysis.  

Chapter 3 provides background theory on HMMs and GPDMs for human motion modeling.  

Additionally, we provide an overview of comparison algorithms (Joint Component Vector and 

Kinematic Synergies) from the literature, which are compared with our proposed approach in the 

validation chapter (Chapter 5).    Next the proposed GPDM-HMM hybrid framework for analyzing 

human motions is explained in Chapter 4.  This includes details of the proposed HMM based divisive 

clustering algorithm for grouping similar time series trajectories, as well as augmentations to the basic 

GPDM algorithm for learning latent space trajectories with appropriate number of latent variables.  

Chapter 5 validates the utility and accuracy of the proposed framework with three different datasets: a 

synthetic dataset, a real dataset where the main motion strategies are known a priori, and a dataset 

where the number of strategies is not known beforehand.  Conclusions and directions for future work 

are provided in Chapter 6. 
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Chapter 2 

Related Work 

The use of artificial intelligence techniques to categorize and analyze human motions has been 

gaining popularity in the fields of robotics, machine learning, and computer vision [16] [17].  In 

robotics, there is a focus on learning a variety of motion primitives for the purposes of motion 

recognition and generation [18] [19] [20].  Many computer vision based works focus on the extraction 

and classification of motions from video [21] [22].  Due to the increase in popularity of various motion 

capture technologies [23], there has been a growing interest in the use of artificial intelligence 

techniques to improve motion analysis in the fields of biomechanics and kinesiology [24].  In these 

fields there is a need to understand why movement variations occur for similar motions or tasks.  For 

example, various artificial intelligence techniques have been applied to gait analysis to understand why 

gait variations occur [25] [26] [27].   

In some applications, class labels may be known beforehand and it is desirable to recognize when 

new participants exhibit behaviors from a pre-specified set of motion classes.  Typically, supervised 

learning algorithms are used in these scenarios, whereby motions or feature sets are labeled, and a 

classifier is trained to recognize motions that are similar to those in the labeled datasets. Once a 

classifier has been trained to recognize a particular motion, the underlying statistics of the feature sets 

or models can be analyzed to understand the differences between the motions.  In prior work, a variety 

of techniques such as Neural networks [28] [29], Support Vector Machines [9] [30] [31], HMM [32] 

[33], and Decision Trees [34] have been used for this purpose.   

Given our interest in detecting motion classifications from unlabeled data, we will focus our 

discussion of the related works on unsupervised learning algorithms.  For this purpose, methods that 

can classify temporal data [35] [36] in an unsupervised manner are of interest.   Some algorithms that 

can be used for classifying human motions include discriminative / feature-based approaches [37], 

HMM based approaches, dynamic modeling approaches [38], neural networks, and kinematic synergy 

approaches [6]. 

2.1 Discriminative / Feature-Based Approaches 

 A number of prior works have classified human motions with discriminative clustering.  In these 

approaches, the temporal motion data is abstracted to a set of features which are then used to cluster 

the motions with an algorithm such as k-means clustering.  This approach has been used extensively to 
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classify gait patterns [39] [40] [41] [42] [43].  For example, in the work by Toro et al, the k-means 

clustering algorithm was used to detect classes of gait patterns for children with cerebral palsy [39].  In 

order to determine K (the number of strategies) various numbers of clusters were used to classify the 

data until the results met three criteria for stable clusters: (i) Normal children should be in their own 

cluster,  (ii) Kinematic displacement should be different between clusters, and (iii) Standard deviations 

should be low within clusters.  

 In a slightly different approach, O’Malley used fuzzy c-means clustering to classify the gait data of 

children with cerebral palsy using two features: cadence and stride length [12]. Their datasets included 

pre- and postoperative test data and the clusters were used to indicate how a patient’s gait improved 

when the patient moved from one cluster to another (before and after surgery).  The disadvantage of 

discriminative based approaches such as these is that the features that are used are very specific to a 

singular motion type and often cannot be extended to other motions. 

Park et al proposed a more general approach to discriminative clustering by defining a generic 

feature set that accounted for the contribution of each joint to a motion [5].  They proposed abstracting 

human motion to a feature vector called the Joint Component Vector (JCV) that contained the 

normalized contributions of each DoF to perform a goal-oriented task (in the Cartesian domain).  They 

used k-means clustering to cluster the JCV vectors, where the number of clusters was determined either 

based on prior knowledge or by using the Multi-Dimensional Scaling algorithm [44].  They tested their 

algorithms on two different lifting data sets with > 80% accuracy for a labeled dataset.   Menceur et al 

[45] extended this approach by proposing an agglomerative clustering-based approach (using 

dendograms) to identify motion clusters. 

Dynamic Time Warping (DTW) has also been used in human motion analysis, due to DTW’s 

ability to compare temporal data of varying lengths.  Kulbacki et al proposed an unsupervised learning 

algorithm for learning motion models [46].  In their approach, motion primitives were represented as 

spline curves (abstracted to spline parameters) and motion models were represented as distributions of 

the spline parameters.  DTW was used to find the measure of discrepancy between two motion 

sequences, where their DTW metric accounted for Euclidean distance between data points as well as 

the square of the difference of the estimated derivatives.  They used the DTW distance metric to perform 

agglomerative clustering to categorize motions.  Gueguin et al took a similar approach with DTW 

distance to perform agglomerative clustering [47].  In their application, they were trying to cluster time-

series data from cardiac-implantable devices. To reduce the dimensionality of the data, they used 

Multiple Correspondence Analysis (MCA) and fuzzy coding.  They found the first three axes of the 
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MCA contained more than 90% of the total variance linked to the functional state of their patients.  The 

results of their experiment showed the discovery of three clusters, where intra-cluster participants 

showed similar patterns of activity and ventilation.   

In the work by Nakamura et al, the group attempted to translate the numerical differences between 

skilled movement and unskilled movement for athletes into human readable text [48].  They proposed 

breaking up a full motion into sub-motions or primitives, where they proposed that correlation of sub-

motions for skilled and unskilled athletes may indicate differences in skill level.  Similarity between all 

sub-motions was calculated using a new proposed metric named Angular Metrics for Shape Similarity 

(AMSS) and a DBSCAN [49] algorithm for clustering the motions.  The motions were labeled after 

clustering in order to identify the content’s sub-motion clusters as skilled/unskilled motions.  In order 

to generate human understandable text from the numeric data representing the skills, Bayesian 

Networks were used.  Here the states of motions had corresponding sentence templates that were used 

to construct the description.  

2.2 HMM Based Approaches 

An advantage of using HMM over discriminative or feature-based approaches is that they are able 

to capture the temporal progression of a time series dataset by modeling the temporal evolution of a 

hidden state variable as a stochastic first order process [50].  This has made them a good candidate for 

human motion analysis in prior works.   

In the work by Kulic et al, the effect of a several week training process on the motions of a marathon 

runner was analyzed [10].  In this work, motions were modeled with HMMs and an incremental 

agglomerative clustering algorithm (stored in a tree format) was used to classify the motions - after the 

training period, new sub-nodes within the motion tree were identified.  This indicated that their method 

was capable of determining when the quality of motions was changing.   

Vlasko et al. [51] proposed clustering the states within an HMM to understand the similarity of 

motions.  HMM's were used to estimate the topology of repetitive lifting data for patients who 

underwent treatment for lower back pain given three labeled categories of lifting motions: a control 

group, pre-treatment patients, and post-treatment patients [51].  The number of states was determined 

by initializing with a high number of states and removing states until the “knee” was reached for the 

probability that the models generated the data.  The states that were above the “knee” were then used 

to model possible structures for the lifting motion.  Note that the “knee” is the point at which increasing 

the number of states results in marginal increase in probability that the model generated the observation 
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sequence.  Initialization for each of the states was done by performing k-means clustering on the motion 

vectors and pruning of states was done to find the minimal representation of the model.  State transitions 

and various features for each state were then compared in detail to understand the lifting dynamics of 

the individual groups.  

In addition to the above-mentioned works that pertain specifically to the applications of HMM for 

motion clustering, there is considerable prior work in the field of HMM clustering of multivariate time 

series data.  For example, Li et al proposed HMM clustering focused on the automated selection model 

sizes and number of clusters (based on the BIC criterion) [52].  In each iteration of the algorithm, a 

seed was selected based on the lowest probability of belonging to a cluster and then sequences were 

redistributed with highest likelihood.  They used a pseudo-hierarchical divisive technique, modeling 

the training set first with a single HMM and then adding more components so as to split the set into 

progressively smaller groups.  

Butler et al compared different versions of HMM-based Divisive and Agglomerative algorithms for 

clustering acoustic data [53].  In our work, we have proposed several improvements over his algorithms 

such as the use of the KL distance for agglomerative clustering in comparison to his “average link 

method.”  Their proposed divisive algorithm is seed based, where the poorest fit cluster is split by 

choosing a seed item at random from this cluster to form a new cluster. This approach leads to a 

“fracturing” of the clusters that is undesirable, whereas in our approach we use subtractive and c-means 

clustering with iterative training to avoid this problem. 

2.3 Dynamic Modeling Approaches 

Dynamic modeling serves as an alternative to the discriminative or stochastic models discussed so 

far. Dynamic models can be divided into two main categories - linear dynamical systems (LDS) and 

nonlinear dynamical systems.  As human motions are inherently nonlinear, we focus on nonlinear 

approaches. 

Schaal et al introduced dynamic motion primitives (DMP), an approach that models the attractor 

behavior (behavior that shows progress towards some goal state) of nonlinear dynamical systems [4].  

This was accomplished by parameterizing the dynamic model with a set of linear differential equations 

with the use of a learnable autonomous forcing term.  The work then analyzed DMPs from a biological 

point of view and found parallels between the expected dynamics and the learned dynamics. 

Wang et al developed an alternative approach to modeling the dynamics of a system called Gaussian 

Process Dynamical Model [4].  Their approach is based on the work of Lawrence et al on the concept 
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of Gaussian Process Latent Variable Model (GPLVM) [54].  GPLVM uses Gaussian Processes (GP) 

for dimensionality reduction by finding a non-linear function that maps low-dimensional latent space 

vectors to a high-dimensional observation space.  While GPLVM can be used on any kind of time series 

multivariate data, GPDMs introduce constraints between successive data points that capture the 

dynamics of the system.  Wang et al tested their GPDM approach on motion capture data of various 

participants walking and performing golf swings. They found that their latent space representation of 

the movements was able to capture the dynamics of the movement and was able to generate smooth 

motions when trying to generate missing frames of data for the walking dataset.  In our work, we will 

be using GPDM to model human motions because of their ability to reduce the dimensionality to a 

latent space, where the latent variables can characterize the motions.  

In the work by Hong et al, the authors used GPDMs to process a gait trajectory for a rehabilitation 

robot that assisted with walking and ensured no collision occurred between the ground and foot during 

the swing phase [55].  The robot assistance to modify the trajectory was activated when the participant’s 

trajectory strayed too far from the reference trajectory.  Their simulation results showed that their 

approach recognized instances where collisions would occur and reduced the 15% collision rate down 

to 0% in simulation.  While Hong et al’s work focused mainly on deviation from a predefined trajectory, 

our work focuses on granular differences between joints that will help us better describe motion 

variability. 

In [38], Fan et al conducted literature review that compared various approaches based on GP for 

modeling and analyzing gait.  These included a comparison of variants of GPLVM, GDPM and a newly 

proposed Joint Gait-Pose Manifold (JGPM).  The Joint Gait-Pose Manifold is an approach specific to 

gait analysis where the manifold is assumed to be toroidal in structure due to the cyclic nature of 

walking.  Their results showed that LL-GPDM (a version of GDPM where motion trajectories are 

forced into a cylindrical manifold) and the JGPM approach outperformed the other approaches in 

extrapolation, filtering, and recognition test scenarios.  While Fan et al’s work showed that constraining 

the manifold worked well when the motion type is known apriori, in our models we do not utilize any 

of these approaches to allow our method to handle arbitrary (both cyclic and non-cyclic) motion that is 

not specified to the algorithm apriori. 

2.4 Neural Network Approaches 

 Neural networks more have also been used for the purposes of time series classification and 

analysis.  One common approach involving neural networks involves taking features computed from 
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time series data and then training neural networks (in a supervised manner) to learn how to classify 

motions into categories known apriori [28] [56] [57].  There are also other neural network architectures 

that can predict the future based on a time series input [58] [59] [60].  In this section we will not focus 

on these approaches as our focus is on the ability to analyze and compare motions and these approaches 

do not provide an easy way to compare trained models.  Alternatively, there exists a class of techniques 

that involve learning metrics using neural networks for comparing time series datasets [61] [62].  Such 

an approach can quantitatively allow us to compare movements.  Additional there are also approaches 

use self-organizing maps (SOM) to produce an output that can visualize movement trajectory variability 

[63] [64] [65].   

 In the work done by Coskun et al, the authors generate a similarity metric for comparing human 

motions using a novel neural network architecture [62].  Their architecture includes a novel metric 

learning objective based on a triplet architecture and also uses attentive recurrent neural network.   A 

triplet architecture consists of same three feed forward networks (with shared parameters), that encodes 

the pair of distances between 3 inputs x, 𝑥+, and 𝑥−, where the objective is to correctly classify which 

of 𝑥+ and 𝑥− is of the same class as x.  The attentive recurrent neural network allows processing of 

time series datasets of variable lengths to a fixed size of embedding.   They compared their architecture 

against various time warping techniques as well as various configurations of their architecture.  Their 

results showed that the metric they learned was able to more accurately capture the contextual 

information about the motions and was able to achieve similarity results up to 20% better than 

competing metrics. 

 Self-organizing maps differ from traditional neural networks as they use competitive learning as 

opposed to error-based learning and typically produce two-dimensional discretized representation of 

the time series data set.  Lamb et al proposed to use SOM to classify the movement patterns of 

participants taking different kinds of basketball shots from various distances [63].  They visualized the 

output of the SOM using a U-matrix (a grid that shows the average distance between nodes weight 

vector and that of its neighbors).  Using this approach, the authors were able to show groupings in the 

various shooting conditions that were unexpected.  In a different approach involving clustering, Wu et 

al proposed the use of hierarchical clustering to index and retrieve human motion data [64].  By utilizing 

SOM and the Smith–Waterman algorithm for measuring temporal similarity, a distance matrix is 

created for the motions.  The distances are used in an agglomerative clustering algorithm to create a 

tree where the root of the tree consists of a single cluster containing all observations while the leaves 

correspond to individual observations.  In another approach, Perl proposed the use of Dynamically 
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Controlled Networks (a special type of SOM that is able to recognize patterns as members of pattern 

clusters) for unsupervised learning of motions [65].  Once the network has been trained with motion 

input values, the data effects the distribution of the neurons and therefore the cluster of neurons can be 

used to determine the cluster of motions.  In most of the SOM based approaches, if motions need to be 

compared, the motion trajectories need to be pre-processed so that the motion sequences are of equal 

duration. 

2.5 Motion Synergies 

 In addition to categorizing movement variations, it is also important to understand how the 

movements are different.  In the field of kinematics, the theory of motion synergies provides a way to 

describe how motions differ.  The roots of this approach can be traced back to Jackson Hughling’s work 

[66], however in modern literature the theory is most commonly associated with N.A. Bernstein [67].  

The theory of motion synergy assumes that the central nervous system does not control individual 

muscles but unites them in groups and controls them in unison.  Therefore, the number of control 

variables is not necessarily the number of muscles involved in the movement but is a reduced number 

of variables depending on the synergy (usually called muscle modes or M-modes).  When there are 

differences in motions, the theory is that the control signal to the synergy changes which leads to 

coordinated changes in the muscle movements.  Note that because groups of muscles can span multiple 

joints, it is possible to conceptualize that motion synergies could be mapped to the coordination of 

multiple joints (or Degrees-of-Freedom) and their contribution to a movement.   

Earlier studies of movement synergies [68] [69] proposed using principal component analysis (PCA) 

and cluster analysis to detect movement synergies.  These techniques typically first apply PCA to 

EMG’s of muscles during a movement task (for example movement of elbow where the joint position 

is fixed).  This would reduce the movement down to a few factors.  The PCA results from different 

participants then undergo clustering analysis where groups of similar PCA results are interpreted as 

distinct muscle synergies.   

More recent studies use techniques like Non-Negative Matrix Factorization (NNMF) to determine 

movement synergies.   For example in the work by Coscia et al [70], the authors use this technique to 

study how participants compensate for the effect of gravity in rehabilitation exercises by providing arm-

weight support (WS), which results in a reduction in activation of upper limb muscles.   They used 

EMG data collected from upper limb muscles and discovered muscle synergies with the use of NNMF.  
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Because NNMF requires initial conditions to be specified which can impact the resulting synergies, 

NNMF was repeated 50 times from a random initial condition.  Out of the 50 runs, the movement 

synergies that explained the most variance were chosen as the variation of choice.  Using this approach 

the authors were able to organize the arm reaching movements and study the effects of WS in stroke 

survivors and how they could benefit from upper limb rehabilitation. 

Steele et al [71] compare five common algorithms for identifying muscle synergies.  These include 

NNMF, PCA, Fast Independent Component Analysis (fICA), a combination PCA and fICA (PCAICA), 

and probabilistic ICA.   Each of these approaches produces estimated synergies as a function of muscle 

activations but each approach has different underlying assumptions about the model (for example some 

approaches maximize variance, while others aim to reduce the minimum sum of squared error between 

estimated and original muscle activations, whereas other approaches allow for estimates of noise in the 

model).   Their results found that these techniques in general performed well as long as the impact of 

biomechanical and task constraints were minor in comparison.  In a study where movements were 

analyzed with various degrees of variability, it was found that NNMF consistently outperformed other 

techniques in terms of capturing the movement decomposition, while PCA was consistently the worst.      

Additionally, Lambert-Shirzad et al [6] apply the concept of muscle synergies (which take EMG time 

series data as an input) and apply them to joint angle data.  The term for this type of synergy is called 

kinematic joint synergy.   Lambert-Shirzad applied various factorization algorithms like PCA, ICA and 

NNMF on joint angle data and found that ICA and NNMF perform well, while PCA performed poorly 

when reconstructing the original motions.   They used these techniques to analyze the impact stroke 

has on human movements that have no physical constraints.  Through their analysis they found that for 

stroke survivors, motor synergies were preserved in the less-affected arm but were altered in stroke-

affected arm through merging and fractionation of healthy synergies.    

2.6 Comparison 

Looking at the competing approaches that was covered in the related works, we find that at a high 

level that the approaches have the following shortcomings: 

- Discriminative/Feature Based: Accuracy relies on correct set of features and often relies on 

abstracting a time series dataset to features which results in loss of temporal information. 

- HMM Based Modeling: Hard clustering of HMM models fail to capture how movements can 

be categorized in more than one way. 



 

 12 

- Dynamic Modeling: When movements are modeled in a latent space, it can be challenging to 

interpret the physical meaning of the latent variables. 

- Neural Networks: Specific kinds of neural networks can aid in comparing and grouping 

movements, but these networks are often limited in the type of quantitative data that can be 

extracted for the purpose of analysis. 

- Kinematic Synergies: Limitations like movements constraints can impact the quality of results. 

Our proposed framework will attempt deal with the shortcomings that are faced by some of the above 

algorithms.  Though we use some of these techniques (HMMs and dynamic modeling) in the proposed 

framework, we show how they can be used in together to overcome their individual shortcomings.     
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Chapter 3 

Background 

3.1 Overview 

 In this chapter we provide the background theory required for understanding our proposed approach 

(to be introduced in Chapter 4).  We review Hidden Markov Models (HMM) and Gaussian Process 

Dynamical Models (GPDM), as both of these algorithms are used in the proposed approach to model 

human motions.  Both of these algorithms allow us to train generative models for human motions and 

provide mechanisms by which we can compare the models to get insights into differences between 

human motions. 

3.2 Hidden Markov Models 

3.2.1 Introduction 

Hidden Markov Models (HMM) are a stochastic method of characterizing signals to model a 

discrete-state dynamical system 

 

Figure 3.1 – Example of a Markov Model 

HMMs model the temporal evolution of a hidden state variable as a stochastic first order process.  

At each time step, observations are drawn from an observation function, which is dependent on the 

current value of the hidden state variable.  Every HMM λ is composed of three main parameters:  
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      λ = (π, A, B)                                                                      (3.1) 

π is the initial probability vector, A is the transition matrix and B is the probability distribution function.  

The initial probability vector is used to describe the probability of the initial state of an HMM sequence, 

π =  [π1, π2, … π𝑁],      0 ≤ π𝑖  ≤ 1,          ∑ π𝑖 = 1𝑁
𝑗=1                                    (3.2) 

N is the total number of states of the system and πi is the probability that the HMM will begin in Si. 

Elements of the transition matrix A are defined as: 

𝑎𝑖𝑗 = 𝑃{𝑞𝑡 = 𝑆𝑗|𝑞𝑡−1 = 𝑆𝑖},      𝑎𝑖𝑗  ≥ 0 ,      ∑ 𝑎𝑖𝑗 = 1𝑁
𝑗=1                                     (3.3) 

aij is the probability that the model will transition to state Sj at time t given that the model was previously 

at state Si at time t-1.  Depending on the structure of the transition probabilities, an HMM model can 

fall into one of several categories.  Some typical categories are shown in the figure below: 

 

Figure 3.2 – Example of HMM Model Types [50] 

The observation probability distribution B is defined on a per state basis, 

𝑏𝑖(𝑌̅) = 𝑃𝑖(𝑌̅)                                                                    (3.4) 

Where Pi is a probability distribution for state i, which is dependent on the observation sequence 𝑌̅.  

Depending on the nature of the system being modeled, the observation probability distribution function 

can be configured to be one of the following: discrete probabilities, univariate Gaussian distributions, 

Gaussian mixture distributions, and multivariate Gaussian distributions.  
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3.2.2 Modeling Human Motions 

 

Figure 3.3 – Left-to-Right HMM and its Parameters 

For the purposes of our work, we will be studying human movements that are acyclic and have no 

redundant states (i.e. are motion primitives).  These will include tasks like lifting or reaching 

movements.   Under these assumptions we can conclude that our HMM models will be limited to being 

left-to-right HMM models.  This means the following: 

π0 = 1,      [ π2,… π𝑁] = [0,… , 0]                                               (3.5) 

The transition matrix will only have non-zero values for elements on the diagonal and the diagonal 

adjacent elements to the right, 

𝐴 =  

[
 
 
 
 
𝑎11 𝑎12 0   0     0
0 𝑎22 𝑎23  0      0   

0
0
0

0
0
0

𝑎33 𝑎34 0
0 … …
0 … 𝑎𝑁𝑁 ]

 
 
 
 

                                                 (3.6) 

For the observation probability distribution B we choose to use multivariate Gaussian distributions as 

this will allow us to capture variance information between states and how variables correlate to one 

another,  

𝑏𝑖(𝑌̅) =  𝒩𝐾(𝜇𝑖 , 𝑈𝑖)                                                            (3.7) 

bi is the observation probability function of state Si, 𝑌̅ is the observation vector generated by state Si, 

and 𝒩K is a K-dimensional Gaussian consisting of the mean vector μi and the covariance matrix Ui. 

 An important property that can be derived from the transition matrix for a left-to-right HMM is the 

state duration di, the length of time a HMM will stay in state i before transitioning to another state. This 

is estimated as: 

di = 1 / (1 – aii)                                                                     (3.8) 
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The unit for state duration is in time steps.  The above relation intuitively makes sense as the larger a ii 

is, the larger the probability that we will remain in Si.  Typically, the state transition probability for the 

last state in a left-to-right model is 1, because once an HMM enters this state it remains in this state. 

3.2.3 Training 

 To train an HMM model there are two kinds of parameters to consider, ones that need to be set 

before training can begin and then the parameters that need to be learned.  The number of states and 

dimensionality of the observation sequences are specified beforehand.   Parameters , A, and B are 

learned during the training process and these parameters need to be initialized to appropriate values 

before learning.  The Baum-Welch algorithm [36] is then used to train A and B from the data.  These 

parameters will be discussed in more detail below. 

Number of States 

 In order to train any HMM model, the number of states needs to be specified.  Leave-One-Out 

Cross validation can be used to estimate the number of states: 

 

Figure 3.4 – Pseudo-Code for Leave-One-Out Cross Validation 

  Running the above algorithm to generate a probability for each value for the number of states 

should result in the figure with a curve similar to the one shown in Figure 3.5. 

Total Likelihood [Maximum Number of States – Minimum Number of States] = 0; 

Observation Sequence Set = List of All Observation Sequences 

For X = Minimum Number of States to Maximum Number of States 

     For Y = 1 to Number of Observation Sequences 

         Modified Observation Sequence Set = Observation Sequence Set with Observation Y excluded 

         Train HMM with Modified Observation Sequence Set 

         Calculate Likelihood of HMM generating Observation Sequence Y 

         Total Likelihood [X] = Total Likelihood[X] + Likelihood 

     End 

     Total Likelihood [X] = Total Likelihood [X] / Length(Observation Sequence Set) 

End 

Use Total Likelihood to calculate ideal number of states based on either: 

   - first inflection point (Chosen for minimizing training time) 

   - slope = 0 (Chosen for ideal number of states) 
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Figure 3.5 – Leave-One-Out Cross Validation to Determine Number of States 

From the results of the cross-validation, it is possible to estimate the optimal number of states needed.  

Ideally, we would like the number of states to be in the middle of the flat region to allow for maximum 

stability, but usually the more states an HMM has the more computationally expensive it is to train the 

model.  Thus, often a point that is on the plateau but closer to the first inflection point is selected.   

Initial Values 

 Another important consideration for training an HMM model λ is to initialize the variables of π, A, 

B to good estimates.  This will reduce training time and it also helps prevent the training algorithm 

from falling into a local minima.    

 For a left-to-right model the initialization for π is given in Equation 3.5.  For the transition matrix 

A, we choose an initial condition that assumes all states have equal state duration to ensure that the 

movement variation is well distributed among the states.  Hence all the elements in the diagonal and 

diagonal-adjacent are 0.5 and all other elements are set to 0. 

 For setting the initial values for the probability observation distributions, we used the actual 

observation sequence data.  Assuming states of equal duration the observation sequence was split into 

N equal chunks (representing each state) and the means / variances were computed for each of those 

chunks.  These means and variances were then used to define the initial values of mean vector μi and 

the covariance matrix Ui for each state i. 

Baum-Welch Training Algorithm 

 The Baum-Welch algorithm [36] is an expectation-maximization algorithm that is used to 

iteratively train the model parameters to maximize the likelihood that the model generates the 

observation sequence.  The Baum-Welch is composed of the forward algorithm, the backward 

algorithm, and probability calculations in order to re-estimate parameters for the model.   One iteration 

of the Baum-Welch algorithm is shown in Figure 3.6. 
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Figure 3.6 – One Iteration of the Baum-Welch Algorithm 

 With each iteration of the Baum-Welch algorithm the model estimation is expected to improve and 

this is measured by an increase in the probability that the model  generated the Observation sequence 

Y, 

𝑃(𝑌|𝜆) =  ∑ 𝛼𝑇(𝑖)𝑁
𝑖=1                                                                (3.9) 

 Iterations of the Baum-Welch typically continue until a maximum number of iterations has 

reached or the incremental increase in probability between iterations is below some threshold, 

𝑃(𝑌|𝜆)𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑃(𝑌|𝜆)𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                    (3.10) 

 

1. Calculate the forward variable  using the forward algorithm: 

( is the probability of the partial observation sequence 𝑌1, 𝑌2, … 𝑌𝑡 (until time t), given that the 

state 𝑆𝑖  at time t, given the model ) 

𝑇(𝑖) = 𝑃(𝑌1𝑌2   𝑌𝑇 , 𝑞𝑇 = 𝑆𝑖| ) 
2. Calculate the backward variable  using the backward algorithm: 

( is the probability of the partial observation sequence from time step t+1 to the end, given the 

state 𝑆𝑖  at time t and the model ) 

𝑡
(𝑖) = 𝑃(𝑌𝑡+1𝑌𝑡+2   𝑌𝑇 , 𝑞𝑡 = 𝑆𝑖| ) 

3. Calculate the probability of being in state 𝑆𝑖  at time t+1, given the model and the observation 

sequence: 

𝜉𝑡(𝑖, 𝑗) =  
𝑇(𝑖) 𝑖𝑗𝑗(𝑌𝑡+1) 𝑡+1(𝑗)

𝑃(𝑌|)
 

4. Calculate the probability of being in 𝑆𝑖  at time t, given the observation sequence of the model: 

𝛾𝑡(𝑖) =  ∑𝜉𝑡(𝑖, 𝑗)

𝑁

𝑗=1

 

5. Calculate the expected number of transitions: 

∑𝛾𝑡(𝑖)

𝑇−1

𝑡=1

= 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑆𝑖  

∑𝜉𝑡(𝑖, 𝑗)

𝑇−1

𝑡=1

= 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑆𝑖  𝑡𝑜 𝑆𝑗 

6. Calculate the Re-estimated Model Parameters: 
𝜋𝑖̅ = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑆𝑖  𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑡 = 1) =  𝛾𝑡(𝑖) 

𝑎𝑖𝑗̅̅ ̅̅ =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑆𝑖  𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑆𝑗   

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒  𝑆𝑖
= 

∑ 𝜉𝑡(𝑖, 𝑗)
𝑇−1
𝑡=1

∑ 𝛾𝑡(𝑖)
𝑇−1
𝑡=1

 

𝑏𝑖(𝑘)̅̅ ̅̅ ̅̅ ̅ =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑖𝑛𝑔 𝑠𝑦𝑚𝑏𝑜𝑙 𝑣𝑘  

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗
=  

∑ 𝛾𝑡(𝑗)
𝑇
𝑡=1 (𝑠𝑡 𝑌𝑡=𝑣𝑘)

∑ 𝛾𝑡(𝑗)
𝑇
𝑡=1
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3.2.4 Generating an Observation Trajectory 

 There are two main ways to generate an observation trajectory with HMM models.  One way is to 

generate a random sequence by sampling the observation distributions in each state.  The second 

approach is to generate a sequence deterministically by using the expected value from each observation 

distribution.  In our work, we use the deterministic approach as we are more interested in the mean 

trajectory.  A description of the algorithm is provided below:    

 

Figure 3.7 - Algorithm for Generating Trajectories from HMMs 

  The deterministic approach uses the transition matrix elements to estimate a state duration value 

(Equation 3.8).  For that many time steps, the algorithm adds the mean observation of the current state 

to the observation sequence.  This process is repeated until we reach the last state.  

3.2.5 Comparing HMM Models 

  To compute the level of dissimilarity between any two HMM models, the Kullback Leibler (KL) 

distance is used [50].  This distance measure takes into account the movement progression as well as 

the variability of the motion and can be calculated as follows: 

𝐷(𝜆1, 𝜆2) =  
1

𝑇
 [ 𝑙𝑜𝑔 𝑃(𝑌(2)|𝜆1) −  𝑙𝑜𝑔 𝑃(𝑌(2)|𝜆2) ]                             (3.11) 

where Y(2) is an observation sequence generated from  λ2, P(Y|λ) is the probability that an observation 

sequence Y was generated by the model λ, and T is the length of the observation sequence.  An efficient 

algorithm for computing P(Y|λ) is the forward algorithm [50]. 

 The KL distance is non-symmetric [50], i.e. it only considers an observation sequence created from 

one model.  To obtain a symmetric measure we calculate the symmetric distance Ds using the following 

relationship: 

𝐷𝑠(𝜆1, 𝜆2) =  
𝐷(𝜆1,𝜆2)+ 𝐷(𝜆2,𝜆1)

2
                                                                  (3.12) 

Create a blank observation sequence OBS 

For ( current_state = 1 to (Number of States -1)  ) 

            state_duration = (1 / (1 – A(current_state,current_state) ) 

            state_duration = round(state_duration) 

            while ( state_duration >  0 ) 

       state_duration  = state_duration   -  1 

                    Add an observation with mean of current_state to OBS 

            End 

End 

current_state = Number of States 

Add an observation with mean of current_state to OB 

Return OBS 
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3.3 Gaussian Process Dynamical Models 

 This section will provide the relevant background for Gaussian Process Dynamical Models 

(GPDM).  GPDMs can be used to convert high dimensional observation sequences to a lower 

dimensional representation in the latent space.  

3.3.1 Introduction 

 The GPDM model consists of two main parts: (i) the process or state which describes the lower-

dimensional dynamics and (ii) the observation or measurement which is related to the latent space via 

a non-linear mapping.   The content in this section is adapted from [4].  

 Assume that we have some human motion trajectory (or Observation Sequence) yt , which consists 

of a sequence of D-dimensional vector-valued states with time t, and a corresponding latent space 

representation xt, which consists of  d-dimensional latent coordinates at time t. 

Y=[y1, …yt,…,yN]T                                                                           (3.13) 

X=[x1, …xt,…,xN]T                                                                           (3.14) 

 Since the goal is to model human trajectories which are generated by a biomechanical system, a 

suitable way to represent the second-order Markov dynamics (1) and latent variable mapping (2) would 

be:  

𝑦𝑡 = g(𝑥𝑡; 𝐁) + 𝒏𝑦,𝑡                                                                 (3.15) 

𝑥𝑡 = f(𝑥𝑡−1,𝑥𝑡−2; 𝐀) + 𝒏𝑥,𝑡                                     (3.16) 

The functions f and g are mappings parameterized by weights A=[a1, a2, …]T and B=[b1, b2, …]T and 

are linear combinations of nonlinear basis functions 𝛷𝑖and 𝜓𝑗 

𝑓(𝑥; 𝑨) = ∑ 𝑎𝑖𝛷𝑖(𝑥)𝑖                                                                 (3.17) 

𝑔(𝑥; 𝑩) = ∑ 𝑏𝑗𝜓𝑗(𝑥)𝑗                                                                 (3.18) 

Assuming an isotropic Gaussian prior on ai and bj and assuming the nx,t and ny,t are zero-mean isotropic 

white Gaussian noise processes, we get: 

𝑝(𝑿|𝛼̅) =  
𝑝(𝑥1)

√(2𝜋(𝑁−1)𝑑|𝑲𝑋|𝑑)
𝑒𝑥𝑝 (−

1

2
𝑡𝑟(𝑲𝑋

−1𝑿2:𝑁𝑿2:𝑁
𝑇 ))                                  (3.19) 

𝑝(𝒀|𝑿, 𝛽̅,𝑾) =  
|𝑾|𝑁

√(2𝜋𝑁𝐷|𝑲𝑌|𝐷)
𝑒𝑥𝑝 (−

1

2
𝑡𝑟(𝑲𝑌

−1𝒀𝑾2𝒀𝑇))                                 (3.20) 

Where 𝛼̅ = {𝛼1, . . . 𝛼6} and 𝛽̅ = {𝛽1, 𝛽2} are hyper parameters (described further below).  W includes 

D scale hyper parameters (W  diag(w1, …, wD) that account for the overall scale GPs in each data 

dimension – since each data dimension can differ in variability over time. KX, and KY are kernel 
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functions.    Here we use RBF kernels.  Because this is a second order system, the kernel matrix KX 

depends on the current and previous latent space coordinates 

𝑘𝑋([𝑥𝑡 , 𝑥𝑡−1], [𝑥𝜏 , 𝑥𝜏−1]) =  

𝛼1 exp (−
𝛼2

2
‖𝑥𝑡 − 𝑥𝜏‖

2 −
𝛼3

2
‖𝑥𝑡−1 − 𝑥𝜏−1‖

2) + 𝛼4𝑥𝑡
𝑇𝑥𝜏 + 𝛼5𝑥𝑡−1

𝑇 𝑥𝜏−1 + 𝛼6
−1𝛿𝑡,𝜏       (3.21) 

and Ky is as follows 

𝑘𝑌(𝑥, 𝑥′) = 𝑒𝑥𝑝 (−
𝛽1

2
‖𝑥 − 𝑥′‖2) + 𝛽2

−1𝛿𝑥,𝑥′                                      (3.22) 

In the kernal functions above:  

- 𝛼1 controls the output scale of the RBF 

-  𝛼2, 𝛼3 represent the inverse width of the RBF terms 

- 𝛼4, 𝛼5 controls the output scale of the linear terms 

- 𝛼6 represents the inverse variance of the process noise 

- 𝛽1represent the width of the RBF  

- 𝛽2 is the inverse of the variance of the isotropic noise 

3.3.2 Training 

Given a set of observations Y, 

𝑌 = {𝑦1,… , 𝑦𝑁}                                                                (3.23) 

 The Maximum-A-Posteriori (MAP) algorithm is used to estimate the latent trajectories and hyper-

parameters.   In this approach the goal of the learning algorithm is to minimize the joint negative log-

posterior of the unknowns that is given by: 

𝐿 = 𝐿𝑌 + 𝐿𝑋 + ∑ 𝑙𝑛𝛽𝑗 + 
1

2𝜅2 𝑡𝑟(𝑾2)𝑗 + ∑ 𝑙𝑛𝛼𝑗𝑗                                     (3.24) 

Where 

  𝐿𝑌 =
𝐷

2
𝑙𝑛|𝑲𝑌| +

1

2
𝑡𝑟(𝑲𝑌

−1𝒀𝑾2𝒀𝑇) − 𝑁𝑙𝑛|𝑾|                                       (3.25) 

𝐿𝑋 =
𝑑

2
𝑙𝑛|𝑲𝑋| +

1

2
𝑡𝑟(𝑲𝑋

−1𝑿2:𝑁𝑿2:𝑁
𝑇 ) + 

1

2
𝑥1

𝑇𝑥1                                      (3.26) 

3.3.3  Generating an Observation Trajectory 

 In order to generate latent trajectories from the model, fair samples of entire trajectories are drawn 

using a Markov chain Monte Carlo Sampler.  The Markov chain is initialized with a sequence consisting 

of the expected value, and then is generated from 𝑥𝑡−1
(∗)

by simulating the dynamical process one frame 

at a time. 
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𝑥𝑡
∗~𝑁 (𝜇𝑋 (𝑥𝑡−1

(∗)
) , 𝜎𝑋

2 (𝑋𝑡−1
(∗)

) 𝐼)                                             (3.27) 

𝜇𝑋(𝑥) = 𝑿2:𝑁
𝑇 𝑲𝑋

−1𝒌𝑋(𝑥)                                                    (3.28) 

𝜎𝑋
2(𝑥) =  𝑘𝑋(𝑥, 𝑥) − 𝒌𝑋(𝑥)𝑇𝑲𝑋

−1𝒌𝑋(𝑥)                                        (3.29) 

Here the ith entry in the vector kx(x) is  kx(x,xi), and xi is the ith training vector. At each step of mean 

prediction, we set the latent position to be the mean latent position conditioned on the previous state. 

 In order to reconstruct a trajectory in the original high dimensional domain we use the following 

relationships: 

𝜇𝑌(𝑥) = 𝒀𝑇𝑲𝑌
−1𝒌𝑌(𝑥)                                                      (3.30) 

𝜎𝑌
2(𝑥) =  𝑘𝑌(𝑥, 𝑥) − 𝒌𝑌(𝑥)𝑇𝑲𝑌

−1𝒌𝑌(𝑥)                                        (3.31) 

 

3.4 Comparison Algorithms 

 Our proposed approach focuses on understanding differences between motions and furthermore 

explaining how groups of joints (or degrees-of-freedom) move in coordination.  To evaluate the 

effectiveness of our approach we compare our proposed approach against two approaches that have 

similar goals:  Joint Component Vector (JCV) [5] and Kinematic Joint Synergies [6].   In this section 

we will introduce these comparison algorithms. 

3.4.1 JCV Algorithm 

3.4.1.1 Algorithm Overview 

 The Joint Contribution Vector (JCV) was introduced by Park et al [5] as a quantitative index for 

representing motion in terms of the individual contributions of each DOF to the achievement of a task 

goal.  Given a set of motion data, each motion is abstracted to a JCV vector and then K-means clustering 

is used to cluster these vectors to determine strategies.  Figure 3.8 describes the JCV algorithm. 
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Figure 3.8 – JCV Algorithm 

3.4.1.2 Joint Component Vector 

 To compute the JCV vector for a specific motion we begin with a trajectory θ(t) described as 

   Y(t) = [y1(t) … yj(t) … yJ(t)]T (3.32) 

Where j = 1, 2, … J is an index for the jth DOF and t represents the time on the interval [0, T].  The 

contribution of the ith DOF to the motion trajectory can be calculated by comparing the full motion Y(t) 

with a similar motion Y i(t) where the effect of ith DOF is eliminated.  Since the end-effector trajectory 

in the task space can be directly related to the achievement of a task goal, the relative contributions of 

the ith DOF can be analyzed by the difference in the task space when that DOF is eliminated (held at its 

initial value).  Therefore Y i(t) is defined such that Y i
j(t) = Y j(t) if j≠i and Y i

j(t) =  Y j(0) if j=i for all t.   

To calculate the sum of the contributions of the individual DOFs, the following relationships are used:                                                               

𝐶𝑥
𝑖 = ∫ (𝑥(𝑡) − 𝑥𝑖(𝑡)) 𝑑𝑡,

𝑇

𝑡=0

 (3.33) 

  𝐶𝑦
𝑖 = ∫ (𝑦(𝑡) − 𝑦𝑖(𝑡)) 𝑑𝑡,

𝑇

𝑡=0

 (3.34) 

𝐶𝑧
𝑖 = ∫ (𝑧(𝑡) − 𝑧𝑖(𝑡)) 𝑑𝑡,

𝑇

𝑡=0

 (3.35) 

 

These individual contributions of each DOF are then normalized using the total contributions of all the 

joints for the motion such that we get the normalized x, y, z contribution (or Percent Contribution): 

1. For each motion described by the trajectory Y(t) do the following: 

a. For each DOF j in the motion where  Y(t) = [y1(t) … yj(t) … yJ(t)]T do the following: 

i. Set yj(t) = yj(0) for the interval [0,T], where T is at the end of the trajectory 

ii. Using a kinematic model of the participant compute the end effector Cartesian 

coordinates for each time step using the modified vector Y(t), and calculate the 

Contribution (C) and Percent Contribution (PC) of DOF j on the end effector 

Cartesian coordinates. 

b. Aggregate the JCV vectors for motion i into the final JCV vector 

2. Perform K-means Clustering on the JCV Vector 

a. If the number of motions are known a-priori use this for K 

b. If the number of motions are not known a-priori use Multi-Dimensional Scaling (MDS) to 

visually determine the number of clusters and then use this for K 
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𝑃𝐶𝑥
𝑖 = 100

𝐶𝑥
𝑖

∑ |𝐶𝑥
𝑗
|

𝐽
𝑗=1

 
(3.36) 

𝑃𝐶𝑦
𝑖 = 100 

𝐶𝑦
𝑖

∑ |𝐶𝑦
𝑗|𝐽

𝑗=1

 
(3.37) 

𝑃𝐶𝑧
𝑖 = 100 

𝐶𝑧
𝑖

∑ |𝐶𝑧
𝑗
|

𝐽
𝑗=1

 
(3.38) 

Three J-element vectors are formed using the 3 PC values for each DOF, such that 

𝐽𝐶𝑉𝑥 = [𝑃𝐶𝑥
𝑖 …𝑃𝐶𝑥

𝑗]    (3.39) 

𝐽𝐶𝑉𝑦 = [𝑃𝐶𝑦
𝑖 …𝑃𝐶𝑦

𝑗] (3.40) 

𝐽𝐶𝑉𝑧 = [𝑃𝐶𝑧
𝑖 … 𝑃𝐶𝑧

𝑗]                                                                       (3.41) 

 

Then in the final step the JCV vector can be created by combining the three j-element vectors, such 

that: 

 JCV = [JCVx   JCVy   JCVz]                                                                  (3.42) 

 The JCV vector is computed for each motion and then K-means clustering is used to determine the 

motion strategy.  As mentioned previously, if the number of motion strategies is known a-priori then 

k-means clustering can be used to classify motions that belong to one of the known categories.  If the 

number of clusters is not known, then multidimensional scaling can be used to visualize the data and 

manually specify the number of clusters.  Once the number of clusters is specified, the k-means 

algorithm is used to classify the motion sequences into strategies.    

3.4.1.3 Analyzing Joint Contributions 

 The PC values that are used to create the JCV vectors can also be used for visually representing 

which DOF is contributing the most for a specific type of motion.  By creating box-plots using the PC 

values across all motion sequences for a specific joint, it is possible to look at the mean and spread of 

the range of PC values.  This information could then also be potentially used to analyze the differences 

between various motions to discern which joint is most important in a specific motion strategy.  The 

difference for a specific joint between two strategies could be calculated by taking the absolute of the 

delta between mean PC values for the same joint across two strategies.  
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3.4.1.4 Algorithm properties 

 One of the key things to consider when using this algorithm is the definition of the model.  The 

way the model is used results in various restrictions and requirements: 

1. Anthropometric data of participants must be collected so that accurate models can be created 

2. A different model must be created for each type of data-set if special assumptions such as motion 

symmetry are used to simplify the model 

3. The models must be open-link kinematic structures, which may not be suitable for all motion 

types 

4. Joint angle data is a requirement for this algorithm as the end effector coordinates are calculated 

using forward kinematics and joint angles.  A second key consideration is the determination of 

the number of clusters.  Park et al [5] use two approaches to create clusters: 

o The number of strategies are known a-priori, this number is set as the ‘K’ in K-means 

o The number of strategies are determined visually using Multi-Dimensional Scaling 

Both of these approaches are non-ideal and it means the process of detecting the number of strategies 

cannot be fully automated using these approaches. 

3.4.2 Kinematic Joint Synergy Detection 

3.4.2.1 Algorithm overview 

 The theory of motion synergies assumes that the central nervous system does not control individual 

muscles but unites them in groups to control them in a synergy.  Therefore, the number of control 

variables is not necessarily equal to the number of muscles involved in the movement but is a reduced 

number of variables depending on the synergy.   The concept of kinematic joint synergy is an extension 

of muscle synergy theory that assumes that groups of joints (or degrees-of-freedom) can have the same 

kind of coordinated movements [67]. 

 One of the most common ways to detect synergies from a time series dataset is to use matrix 

factorization.  Matrix Factorization is the process of taking a t by m matrix R and finding two smaller 

matrices P (size t by n) and Q (size n by m) such that their product approximates R.   

𝑅 = 𝑃 × 𝑄 + 𝐸                                                               (3.43) 

Here P is known as the feature matrix (containing the latent feature), Q is known as the weights matrix, 

and E is the unexplained variation.   In this process adjusting n allows for more accuracy when 
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reconstructing the original matrix.  Non-negative matrix factorization is a further specialization of 

matrix factorization technique that requires that weights have non-negative values (i.e.  0).  This 

constraint makes the optimization problem convex and ensures that the outcomes are a true global 

minima. 

 In the use case of synergy detection, the matrix R will contain time-series data representing the 

human movement, where m is the number of motion effectors (muscle EMG’s or joint angles) and t is 

the number of time steps.  The matrix Q is the synergy matrix consisting of n synergy vectors (with 

dimensions of 1 by m).   The matrix P is the activation matrix, which contains information about the 

degree of activation for each synergy group over each time step.  The figure below provides an overview 

of the gradient descent algorithm that is used to determine P and Q values for a given value of n (fixed 

number of synergies): 

 

Figure 3.9 – Gradient Descent Algorithm for NNMF 

1. P and Q are initialized with small random numbers 

2. For each step until max number of iterations: 

a. For each row and column in R 

i. If R[row][column] > 0: 

1. Compute the predicted element 

𝑟̂𝑖𝑗 =  𝑝𝑖
𝑇𝑞𝑗 = ∑ 𝑝𝑖𝑛𝑞𝑛𝑗

𝑛

𝑛=1

 

2. Compute the squared error for each pair 

𝑒𝑖𝑗
2 = (𝑟𝑖𝑗 − 𝑟̂𝑖𝑗)

2 = (𝑟𝑖𝑗 − ∑ 𝑝𝑖𝑛𝑞𝑛𝑗)
2

𝑛

𝑛=1

 

3. Compute gradient by taking the differential of the error 

𝜕

𝜕𝑝𝑖𝑛
𝑒𝑖𝑗

2 = −2(𝑟𝑖𝑗 − 𝑟̂𝑖𝑗)(𝑞𝑛𝑗) = −2𝑒𝑖𝑗𝑞𝑛𝑗 

𝜕

𝜕𝑞𝑖𝑛
𝑒𝑖𝑗

2 = −2(𝑟𝑖𝑗 − 𝑟̂𝑖𝑗)(𝑝𝑖𝑛) = −2𝑒𝑖𝑗𝑞𝑖𝑛 

4. Update P and Q at a rate proportional to the learning rate  

 𝑝′
𝑖𝑛 = 𝑝𝑖𝑛 + 

𝜕

𝜕𝑝𝑖𝑛
𝑒𝑖𝑗

2 = 𝑝𝑖𝑛 + 2𝑒𝑖𝑗𝑞𝑛𝑗 

𝑞′𝑛𝑗 = 𝑞𝑛𝑗 + 
𝜕

𝜕𝑞𝑛𝑗
𝑒𝑖𝑗

2 = 𝑝𝑖𝑛 + 2𝑒𝑖𝑗𝑝𝑖𝑛 

ii. Compute total error 

𝐸 = ∑ (𝑟𝑖𝑗 − ∑ 𝑝𝑖𝑛𝑞𝑛𝑗)
2

𝑛

𝑛=1(𝑝𝑖,𝑞𝑗,𝑟𝑖𝑗)

 

iii. If error is less than error threshold, then break 

b. Return matrices P and Q 
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 The number of synergies m are determined in an iterative manner using a metric called Variance 

Accounted For (VAF) to ensure that the appropriate amount of variance is captured by the synergies: 

𝑉𝐴𝐹 = 100 × (1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
)                                                         (3.44) 

Where SSE is the sum of the squared residuals and SST is the sum of the squared EMG or joint data. 

This requirement is that a global VAF (across the entire data set) of 90% be achieved and that iteratively 

increasing the amount of synergies results in less than 5% increase in the global VAF (i.e. diminishing 

returns).  Additionally, there is a local VAF requirement that each EMG or joint VAF must exceed 50% 

to ensure that any one time series data set is modeled relatively well. 

 Once the Synergy matrix Q has been discovered, then the next step is to discover groups of 

movement synergies (i.e. movement strategies) using clustering algorithms.  Subtractive clustering is 

used to discover the number of strategy clusters and then k-means is used to do the actual clustering.  

The result is a set of synergy clusters in synergy vector space.    

 In order to classify new data points, the NNMF algorithm needs to be re-run with the new data 

points and then clustering has to happen again.  This means there may be no guarantee that the newly 

generated clusters will be the same as the previous ones.  Initialization of cluster centers can help 

mitigate this issue as long as the new data points have a similar distribution to the old data points. 

3.4.2.2 Analyzing Kinematic Motion Synergies 

 Kinematic motion synergies are typically analyzed by plotting the synergy vectors and the 

activation vectors as bar graphs comparing them against each other.   In particular, the dominant 

synergies are of interest as they show how a movement pattern utilized muscles or joints to accomplish 

the same task in a different way.   

3.4.2.3 Implementation Considerations 

  In order to use the NNMF algorithm described in this section, some pre-processing was done on 

the dataset.  Ideally for NNMF an equal number of time series data points should be defined for all the 

EMG and/or joint dataset sequences.  In order to accomplish this, the following was done: 

1. Input data (joint angle or Cartesian data) was normalized between 0 to 1 across the entire dataset. 

2. One HMM model with each observation sequence that had 10 states was trained (number of 

states determined through the algorithm presented in chapter 3) 
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3. Then the mean vectors for each state were extracted and concatenated together to create a mean 

matrix that had mean values across all the states.  Here the state will correspond to the timestep 

t. 
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Chapter 4 

Proposed Framework 

4.1 Purpose and Overview 

 The purpose of our framework is to analyze human movement data and determine the variations 

(or movement strategies) that participants use to perform tasks.  Additionally, the framework aims to 

provide insights that explain differences between the movement strategies and a way to describe those 

strategies with low-dimensional strategy descriptor parameters (the latent space variables).  The 

strategy descriptors will be related back to variations in the joints to assist with interpretation.   This 

proposed framework utilizes GPDM and HMM based algorithms.  Figure 4.1 provides a high-level 

overview of the framework. 

The following sections will describe the framework in more detail.  The input is a high dimensional 

time series dataset.  The trajectories are first converted to latent space trajectories with GPDM.  Next, 

we use the GPDM-HMM Divisive clustering algorithm to cluster the trajectories, by converting the 

latent space trajectories into HMM models, performing HMM divisive clustering, and then generating 

a new latent space for the sub-clusters.  The result of repeating this divisive clustering process on the 

sub-clusters is a motion tree that organizes the movements into a hierarchy.  In addition to the motion 

hierarchy, the latent variables for the subspace at each node allow us to determine if there are 

relationships that exist between sub-motions that may be continuous or discrete in nature.  Once the 

motion tree is constructed, the next steps focus on analyzing the movement models to extract 

information about the movement strategies, to determine the differences between the movement 

strategies and mapping those changes to the latent variables. 
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Figure 4.1 – Overview of Proposed Framework 

4.2 Input: High Dimensional Time Series Dataset 

The input is a dataset consisting of high dimensional observation trajectories for performing a 

specific task.  This input data can theoretically be any kind of time series data including but not limited 

to cartesian coordinate data, joint angle data, or EMG data.  For illustrating how the proposed approach 

works, we will focus on cartesian or joint angle data.  One observation trajectory will typically consist 
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of one exemplar movement performed by a participant.  The entire dataset will then consist of multiple 

observation trajectories captured for multiple participants performing some prescribed acyclic task.  

 In the case of cartesian data, the observation sequence data will consist of a multivariate time-

series dataset for the x-y-z coordinates of each motion capture maker.  Note that groups of time series 

data for a specific marker (like for x, y, and z for the left knee) will be referred to as joint positions.   

Alternatively, we can also consider using joint angle data for analysis.  Joint angle data is typically 

generated by converting the cartesian coordinate data to joint angle space by using inverse kinematics.   

In the case of joint angle data, groups of angles like -- can also be referred to as joint positions. 

4.3 Latent Space Trajectories with GPDM 

The GPDM training algorithm takes the high dimensional trajectories and converts them to a lower 

dimensional space (i.e. the latent space) where the dynamics of the motions are preserved.  The 

algorithm as defined by Jack et al [4], requires the dimensionality d of the latent space to be specified 

as an input to the GPDM algorithm.  We propose automating the selection of the latent space 

dimensionality through an iterative process. 

The iterations start from a value of d=2 and incrementally increase by 1 in each iteration.  During 

each iteration, the observation trajectories are re-generated from the GPDM model and the 

reconstruction error is computed for each observation sequence.  If the rate of change in the average 

reconstruction error falls below a pre-specified threshold, then the algorithm terminates.  The 

dimensionality of the last iteration is considered the optimal value. 

4.4 Clustering Latent Space Trajectories 

4.4.1 Overview 

The latent variable trajectories are inputs to the next stage: the GPDM-HMM Clustering algorithm.   

The goal of the algorithm is two-fold: 

(i) Group similar observation trajectories so that it is possible to identify movement strategies. 

(ii) Determine if there are any latent parameters that can help define relationships between 

movements in a continuous or discrete domain.   

 The result of the clustering algorithm is a tree (see Figure 4.2), where the root node of the tree 

contains all observation trajectories.   The root node then splits into 2 or more nodes, where each node 

contains similar observation trajectories and is considered a “motion strategy.”   As one proceeds further 
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down the tree towards the leaf nodes, more specialized sub-strategies will be observed until reaching 

the leaf nodes, which consist of individual observation trajectories. 

 

Figure 4.2 – Example Clustering Results and Analysis 

Each node in the tree has the following: 

a) A latent space that was trained using only the trajectories in that node 

b) Low dimensional latent space HMM models: 

i) One model that is trained with all latent space trajectories in that node 

ii) One model for each latent space trajectory 

c) High dimensional latent space HMM models: 

i) One model that is trained with all original observation trajectories in that node 

ii) One model for each original observation trajectory 

By using data in the parent node and sub-strategy information from the child-nodes, we do a correlation 

analysis between impact sub-strategies have on DoF and on the latent variables.  This provides us with 

a means to understand how changes in latent variables map to changes in DoF. 

 The process for generating the motion tree is shown visually as the orange box in Figure 4.1.  The 

pseudo-code for this is presented in Figure 4.3. 
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Figure 4.3 – GPDM-HMM Divisive Clustering Algorithm Overview 

4.4.2 HMM Divisive Clustering Algorithm 

 The proposed divisive clustering algorithm [2] starts with one general model λG at the root, trained 

using all observation sequences.  This general model is then divided into strategy-specific models 

through hierarchical clustering of the observation sequences in the likelihood space.  The algorithm 

iteratively improves upon each cluster model by using the highest likelihood to re-allocate sequences 

to the best cluster and to retrain the model.  The result is a motion tree in which non-leaf nodes represent 

strategy clusters and HMM models at each node can be compared to determine the differences between 

motion strategies.  A general overview of the algorithm is provided in Figure 4.4. 

 

1. Initialize one HMM λG 

2. Train a general HMM model λG with all N observation sequences using Baum-Welch 

3. Compute: p = [P(Y1 | λG) , P(Y2 | λG) , … , P(YN | λG) ] 

4. Cluster p to create membership matrix M: 

a. Use subtractive clustering to determine optimum number of clusters C in p 

b. Initialize the C-means clustering algorithm use results from the subtractive clustering algorithm 

c. Use C-means clustering to determine the membership matrix M of size N x C 

d. Train models λcluster i for  0 < i < C with those Yi that have the greatest membership in cluster i. 

5. While there are no new Yi that have be introduced into any cluster i 

a. For i = 1 to C compute: 

q = [P(Y1 | λcluster i) , P(Y2 | λcluster i) , … , P(YN | λcluster i) ] 

b. Reallocate sequences to λcluster i, for which they have the highest probability  

6. Calculate the distance matrix D for cluster models  

7. merge threshold = minimum distance in D * merge factor 

8. While no distance in D < merge threshold 

a. Merge two clusters if the distance between the clusters is below the merge threshold 

b. Re-train cluster models 

c. Recalculate the distance matrix D for cluster models  

Figure 4.4 – Proposed iterative divisive clustering algorithm 

 

1. Model the latent trajectories for the incoming node Nparent with one HMM λG 

2. Use the HMM divisive clustering algorithm to cluster the latent trajectories into n sub-strategies.  The 

result of this process is 

a. Sub-strategy grouping of trajectories in the parent node’s latent space 

b. Generating child nodes N0 … Nn, each with a subset of observation trajectories 

3. For each child node {N0 … Nn} 

a. Train a GPDM model using only the trajectories in the child node 

b. The result is latent space trajectories in the child node’s latent space  

4. The trajectories in the child node latent spaces can then be again divisively clustered using HMM 

divisive clustering. 
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 Determining the number of clusters for any dataset is perhaps of the most challenging aspect of 

clustering data accurately [37].  We use subtractive clustering to predict the optimal number of clusters 

as proposed in [72] in addition to determining the location of the cluster centers (as shown in step 2-a).  

Subtractive clustering initiates by assuming that each data point can be a cluster center and the measure 

of potential for each cluster point xi is defined as: 

𝐏𝐢 = ∑ 𝒆−𝜶||𝒙𝒊−𝒙𝒋||
𝟐

𝒏

𝒋=𝟎
     and     𝜶 =  

𝟒

𝒓𝒂
𝟐                                                       (4.1) 

Where ra defines the effective radius of the surrounding neighborhood and n is the number of points.  

Once the potentials are computed for all the points then 𝒙𝟏
∗  is selected as the point with the highest 

potential 𝑷𝟏
∗ .   Then the potential at each point is revised by subtracting the potential of the first point 

from all the other points.    The revised potential 𝑷𝒊
∗for each point  𝒙𝒊

∗ is calculated as: 

𝑷𝒊 = 𝑷𝒊 − 𝑷𝒌
∗𝒆−𝜷||𝒙𝒊−𝒙𝒌||𝟐     and       𝜷 = 

𝟒

𝒓𝒃
𝟐                                        (4.2)   

Where k = 1, for the first cluster, and rb defines the radius that will have measurable reductions in the 

potential.  rb is chosen to be somewhat larger than ra so that the cluster centers are not too closely spaced.  

Once the potentials have been revised a new candidate cluster center is selected and the process 

continues until all possible clusters have been identified and the following condition on potentials is 

met: 

𝑷𝑘
∗ <  𝜀𝑷1

∗                                                                         (4.3)   

Determining a value of  can be challenging so we use the methodology proposed by Chiu [72] that 

allows for more accurate selection of cluster centers by providing a trade-off between having sufficient 

potential and the centers being sufficiently far from existing cluster centers. 

  Using the number of clusters detected by the subtractive clustering algorithm to initialize the C-

means algorithm [73], we use the C-means to perform accurate clustering of the motion sequences.  

This algorithm is very similar to the K-means algorithm where the difference is that the membership 

matrix U in K-means is binary while in C-Means the membership U is continuous between 0 and 1: 

∑ 𝑢𝑖𝑗 = 1𝑐
𝑖    ⩝ 𝑗 = 1,… . , 𝑛                                                        (4.4) 

where uij is the membership value for the ith cluster and jth observation sequence number with c clusters.  

Next the cluster centers are calculated using: 

𝑐𝑖 = 
∑ 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

                                                                    (4.5) 

Where ci is the cluster center and xj is the jth data point and m is the weighting exponent that is used to 

set fuzziness of the membership matrix.  A value of 1 creates hard clusters and as m→∞ tends to defocus 
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the membership towards the fuzziest state.  We set m=1 to form hard clusters.  The membership matrix 

is updated with the following relationship: 

𝑢𝑖𝑗 =
1

∑ (
||𝑥𝑘−𝑣𝑖||

||𝑥𝑘−𝑣𝑗||
)

2/(𝑚−1)
𝑐
𝑘=1

                                                           (4.6) 

In the next step the cost function is evaluated: 

𝐽𝑚(𝑈, 𝑣) = ∑ ∑ (𝑢𝑖𝑘)𝑚||𝑥𝑘 − 𝑣𝑖||𝐴
2𝑐

𝑖=1
𝑁
𝑘=1                                                (4.7) 

Where vi is the center of cluster i.  If the cost function is above a certain threshold, then we continue 

with another iteration of the clustering be evaluating the equations again.  

 Once the c-means algorithm has defined the clusters, the clusters are iteratively improved by 

calculating the likelihood that each sequence was generated by one of the strategies.  Sequences with 

the highest likelihood of belonging to a cluster will be re-allocated to that model and the model will be 

re-trained.  This process continues until no more relocation of sequences is required or the maximum 

number of iterations has been reached.   

4.4.3 Latent Spaces for Sub-Clusters 

 Once divisive clustering of the motions is completed, a set of a sub-strategies (or child nodes) for 

all motions (parent node) has been identified.  Recall that the parent node consists of trajectories in a 

latent space generated by training a GPDM model with all motions.  Therefore, the latent variables (in 

the parent node latent space) can help determine relationships between the all the sequences.  If we 

want to analyze the sub-strategies of motions at the child node level, it is possible that latent variables 

that were important for distinguishing motions at the parent node level aren’t necessarily relevant at the 

child node level.  Therefore, we propose that a new latent space be learned for each of the child nodes 

based on the observation trajectories associated with the child node.   This approach provides a couple 

of key benefits: 

1. The GPDM algorithm training for latent spaces at higher levels of the tree can be more generic.  

Hence, when the GPDM algorithm is being trained with observation trajectories with large 

number of time samples, they can be sub-sampled and additionally we can reduce the number 

of iterations needed for training.  For nodes at levels of the tree where there are fewer observation 

sequences, we can reduce the sub-sampling and increase the number of iterations for training.   

2. By learning a latent space for each node, it is possible to train GPDM models that have lower 

reconstruction error in comparison to only learning one global GPDM model that has been 

trained on all the observation sequences. 
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3. It is possible to identify latent space variables that are pertinent to only the trajectories in each 

node, without being impacted by other trajectories that are outside of the node.   

4.4.4 Parameter Considerations 

 An important consideration is the selection of the parameters for the subtractive clustering 

algorithm.  To tune these parameters we used a synthetic dataset of three gaussian distributions (100 

samples per distribution).  For the dataset we varied the mean of the gaussian distributions and the 

distance between the means while leaving the variance constant between the distributions.  Since the 

mean values were known apriori we could use them to tune the subtraction clustering parameters to 

obtain the correct values.  Additionally, we accounted for scenarios where gaussian distributions 

overlapped within a pre-specified margin of error (such that it looked like one distribution) and under 

those scenarios we would assume it was one cluster.  This algorithm was only tuned once for the 

experiments described in this thesis. 

 For our experiments we used 15 states for the models, determined through a leave-one-out-cross 

validation process.  For details please refer to Section 3.2 (background on HMM). 

 It was discovered through experimentation that setting a high covariance limit, i.e. limiting the 

covariance values of the HMM models, during the training process yielded clustering of higher 

accuracy.  Please see Section 5.2.1 for details. 

4.5 Correlating Latent Variables to Changes in Observation Sequences for 

GPDM 

 To correlate the variance in the latent variables with the variance of the signals in the high 

dimensional observation trajectories, we use the Pearson correlation coefficient,  

𝐶𝑜𝑟𝑟𝑒𝑙(𝑋, 𝑌) =  
∑(𝑥−𝑥̅)(𝑦−𝑦̅)

√∑(𝑥−𝑥̅)2 ∑(𝑦−𝑦̅)2
                                                     (4.8) 

Where X and Y are the two variables being correlated.  𝑥̅ and 𝑦 are the average values of all data points 

in X and Y.   

4.6 Motion Analysis using HMM Models   

4.6.1 Overview 

 In this section we present our proposed techniques to compare HMM models to determine the 

differences between them.  All of these approaches are an extension of the Kulback-Liebler distance 
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introduced in Chapter 3.  We introduce the excluded-DoF and excluded-joint analysis for determining 

what DoF or joints are different between two different HMM models.  Then these techniques are 

extended to correlate changes in the latent space variables to changes in the joint trajectories. 

4.6.2 Excluded DoF Analysis: DoF Comparison of HMM Models 

To compare the difference in a DOF between two motion models λ1 and λ2, the information regarding 

that DOF is removed from the mean vectors μ and covariance matrices U in the observation distribution 

function B.  Then the distance between λ1 and λ2 is computed with the DOF excluded. This is repeated 

for all the DOFs in λ1 and λ2.  When comparing these distances, the excluded DOF that results in the 

smallest distance is the DOF that separates the two motions the most. Let us now formalize the 

procedure.   

Given a set of T trained models denoted as: 

λ = { λ1, λ2, λ3, … λT }                                                                  (4.9) 

For each model we have training observation sequences (i.e. recorded data) for F number of DOFs: 

Y = { y 1, y2, y3, … yF }                                                        (4.10)   

Then each model λ i is a function of O such that:   

λ i (yi) = λ i ({yi1 , yi2 , yi3  , … yiF })                                               (4.11) 

Next the DOF e is excluded from the model such that λi becomes the model λ i,e with excluded DoF e: 

λ i,e (yie) = λ i ({yi1, yi2, … yi,(e-1), yi,(e+1) … yiF })                                     (4.12) 

Note that the DOF information is excluded by removing the eth element in all μ vectors and removing 

the eth rows and columns from all U matrices that constitute B for the model λi. 

Now we can calculate the distance vector DE comparing excluded DOF models for λi and λj as: 

𝐷𝐸(𝜆𝑖 , 𝜆𝑗) =  (

𝐷𝑠(𝜆𝑖1, 𝜆𝑗1)

𝐷𝑠(𝜆𝑖2, 𝜆𝑗2)
…

𝐷𝑠(𝜆𝑖𝐹 , 𝜆𝑗𝐹)

) =  (

𝑑𝑖𝑗1

𝑑𝑖𝑗2

𝑑𝑖𝑗𝐹

)                                                (4.13)  

The next step is to order the values in the vector DE(λ1,λ2) by magnitude, where the smallest distance 

number corresponds to the DOF that most impacts the difference between the two motions and the 

largest distance number is associated with the DOF that least impacts the difference. 

4.6.3 Excluded Joint Analysis: Multi-DoF (Joint) Comparison of HMM Models 

The method in the previous sub-section analyzes the similarity of individual DOFs between 

motions, but we may also be interested in analyzing motions at the joint level for those joints which are 
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multi DOF, such as the hip or shoulder.  In this case the procedure is modified to exclude sets of 3 DOF.  

We define a joint as a set of 3 DOF (consisting of either x, y, z in Cartesian coordinates or θ, φ, ψ in 

Cardan joint angles).   

Equation 4.12 is modified such that when a set s is excluded (where 0 ≤ s ≤ 𝐹 3⁄  - 1) from the 

motion λi it becomes the excluded set model λ i,s: 

λ i,s (yi,(s*3+1) yi,(s*3+2) yi,(s*3+2)) 

    = λ i ({y i1, y i2, … y i,(s*3), y i,(s*3+4) … y iF })                                        (4.14) 

Then equation DE vector in Equation 4.13 is modified to account for computation of F/3 distance 

calculations instead of F distance calculations: 

𝐷𝐸(𝜆𝑖 , 𝜆𝑗) =  

(

 

𝐷𝑠(𝜆𝑖1, 𝜆𝑗1)

𝐷𝑠(𝜆𝑖2, 𝜆𝑗2)
…

𝐷𝑠(𝜆𝑖(
𝐹

3
)
, 𝜆

𝑗(
𝐹

3
)
)
)

 = (

𝑑𝑖𝑗1

𝑑𝑖𝑗2

𝑑
𝑖𝑗(

𝐹

3
)

)                                           (4.15)  

4.6.4 Correlating Changes in Latent Variables to Changes in Joints 

 While using the Pearson correlation coefficient is useful to determine how a latent variable impacts 

the observation trajectory, this can become cumbersome if the dimensionality D of the observation 

sequence is high.  We propose further reducing the dimensionality of D by using logical grouping of 

scalar trajectories.  For example, the x, y, z coordinates for a motion capture marker may be associated 

with a single joint position and so we may be interested in the impact on the joint position as opposed 

to the individual scalar components of the position of that joint.    

 This simplification can be done by using the “Excluded-DoF” or “Excluded-Joint” analysis.  First, 

we train an HMM model for each high dimensional observation trajectory and then do excluded-joint 

analysis between each pair of observation trajectories.  Next, we train an HMM model for each low 

dimensional (or latent space) trajectory and then do Excluded-Variable analysis (note that in this 

context we replace be Excluded-DoF with Excluded-Variable since the concept of DoF maps to latent 

variable in DoF space).  With these two datasets generated, a correlation analysis is done between them 

to determine the relationship between latent space variables and joints. 

4.7 Visualization Strategies 

 In the case where there is interest in analyzing the impact of 2 (or max 3) latent space variables and 

motion strategies, a visualization technique can be used to analyze the strategy detection results.  With 

the label information generated from the HMM clustering results, we can classify all the data points 
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(and trajectories) in the latent space.  Then using an algorithm like decision trees or support vector 

machines (for linear separation or data), it is possible to illustrate the boundaries between trajectories 

in the latent space.  Coupled with added figures that represent specific poses at the extremes of the 

latent space or at the boundaries, it is possible to automatically create visualizations of the detected 

strategies.  The diagrams can be easily created by reconstructing specific states in the latent space 

trajectory into the high dimensional space and then generating a figure depicting that state (or pose) 

using an assumed kinematic model.  



 

 40 

Chapter 5 

Experiments and Validation 

5.1 Synthetic Dataset 

5.1.1 Experiment Setup 

 In order to fist test the proposed framework with known labels and class distributions, a synthetic 

dataset was generated where the motion strategies and noise could be systematically varied.  The 

synthetic dataset was created by simulating a two-link arm following a predefined trajectory from 

position A to B to C, as shown in the figure below.   

 

Figure 5.1 – Configurations of two-link mechanism 
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  The two-link mechanism initially moves from position A to position B, where it encounters a 

singularity (trajectory from A to B consists of only one strategy).  At point B, the two-link mechanism 

adopts one of two “strategies”, elbow up or elbow down, to go to position C.   The variation in strategy 

of the two-link mechanism exists only in the joint angle trajectory while the Cartesian trajectory is 

identical for both strategies. 

 In order to test the algorithms under various conditions, two control parameters that can change the 

characteristics of the trajectory were introduced: distance d and variation v.  Distance d is illustrated in 

figure 2 and controls the extension of the two-link mechanism at its end position C.  By varying d we 

control how different the joint trajectories are for each strategy (where d=1 yields identical strategies 

and decrementing d yields increasingly different strategies).    The second parameter v is used to control 

the variability of the positional parameters: start position, end position, link lengths, and angle at which 

the singularity is reached.  v controls the standard deviation of a Gaussian distribution offset which is 

applied to each positional parameter. The synthetic dataset consists of 100 trajectories (50 elbow-up 

and 50 elbow-down) for various combinations of d and v.   Plots of the variations can be seen in 

Appendix A. 

5.1.2 Proposed Framework Results 

  In order to test the accuracy of the proposed framework, the values of d and v were varied and for 

each configuration the accuracy was measured.  In order test the robustness of the algorithm K-fold 

cross validation (where K=5) was used and the resulting accuracy results were averaged across the folds 

to produce the Table 5.1. 

From the results is it possible to see that the proposed framework works very well in scenarios where 

the movement strategies are significantly different (d > 0.75), regardless of the variation or noise in the 

strategy.  For scenarios where the movement strategies are similar and the variation is high, the 

algorithm loses some accuracy but still achieves greater than 95% accuracy. 

To analyze how the GPDM algorithm can be used to convert the joint angle trajectories to the latent 

space, 2 trajectories (d=0.99 and d=0.5) for each of the two strategies were used for training the GPDM.  

By analyzing the reconstruction error, the algorithm determined that a latent space dimensionality of 2 

would be sufficient for the model to capture variations about the movements.  Figure 5.2 shows the 

latent space trajectories of the data that was used to train the GPDM.  
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Table 5.1 – Proposed Algorithm Results on Synthetic Dataset 

 

  Distance d 

 
 0.99 0.95 0.90 0.75 0.50 

V
a
r
ia

ti
o
n

 v
 

0.01 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

0.05 

 

 C1 C2 

C1 49 1 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

0.10 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

0.15 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 49 1 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

0.20 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

0.25 

 

 C1 C2 

C1 48 2 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

0.30 

 

 C1 C2 

C1 50 0 

C2 4 46 
 

 

 C1 C2 

C1 50 0 

C2 1 49 
 

 

 C1 C2 

C1 49 1 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
 

 

 C1 C2 

C1 50 0 

C2 0 50 
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The movements start at position A and progress to Position B with overlapping trajectories.  This is 

expected since the strategies for the two motions were generated to be the same for the first half of the 

motion.  Once at Position B, Strategy 1 progresses up and to the right, whereas Strategy 2 progresses 

to the left.  We can infer that the x latent variable is related to the elbow up vs elbow down strategy 

(where anything to the left of position B (i.e. x > 0.6) is elbow up and anything to the right is elbow 

down).  In this case it is challenging to determine what the y latent space variable represents.  To 

simplify the problem, the common leg of the trajectory (position A to position B) was removed and the 

GPDM algorithm was used again to generate the latent space trajectory.  The results are shown in 

Figure 5.3. 

 

 

 - Strategy 1 

 - Strategy 2 

d=0.5 

d=0.5 

d=0.99 

d=0.99 

Position A 

Position B 

Figure 5.2 - Synthetic Dataset Latent Space Trajectory with Full Motion 
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With this result, we find that the x latent space variable represents the degree a strategy is elbow-up or 

elbow-down with the transition happening around x = 0.  Additionally, the y latent space coordinate 

could potentially represent progression of the trajectory in the Cartesian domain.  

 The results seem to indicate that interpreting the latent variables may be easier for simpler motion 

primitives.  To analyze the results further, Pearson correlation analysis was used to determine the 

strength of the relationship between the latent variables x and y and the DoF θ and Φ.  The results for 

this are shown in the table below. 

Table 5.2 – Correlation of Latent Variables to DoF for Synesthetic Dataset 

  DoF 

  θ Φ 

Latent 

Variable 

x 0.97 0.05 

y 0.95 0.11 

 

 Correlation analysis shows that there is strong linear correlation between latent variables x and y 

and the angle θ. The correlation x and y to the angle Φ is relatively weak on the other hand is expected 

because there exists a non-linear relationship between the strategy and Φ.    

 

 - Strategy 1 

 - Strategy 2 

d=0.5 d=0.5 d=0.99 d=0.99 

Position B 

Figure 5.3 – Synthetic Dataset Latent Space Trajectory with Half Motion 
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5.1.3 JCV Results  

 In order to apply the JCV approach it is necessary to develop an open-chain kinematic model for 

the human movements being studied.  For the synthetic dataset this is straightforward since we defined 

a 2-link mechanism to generate the synthetic data.  Using the model and the joint angle trajectories as 

input, we used the JCV algorithm to detect movement strategies.  K-fold cross validation was used to 

validate the robustness of the algorithm (where K=5).  Table 5.3 shows the results and has been color 

coded to indicate 100% accuracy (green) and <100% accuracy (red).  C1 and C2 are the two clusters 

that were detected for two sub-strategies of elbow up and elbow and elbow down. 

Table 5.3 – JCV Results on Synthetic Dataset 

  

The results show that the algorithm performs best for cases where the motion variation is low and 

can handle slightly larger variations as long as the difference in strategies is significant.   This result is 

somewhat expected, because while the joint contribution approach accounts for movement progressions 
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through aggregating joint contributions over time, the comparison of the overall JCV metric between 

two motions loses this information. 

Since Park et al [5] suggested the use of MDS for visually detecting clusters, we created MDS 

visualizations to see the impact of increasing variation on the data set.  Specifically, we take the JCV 

vector and use MDS to reduce the vector to two dimensions so that we can plot it.  We illustrate the 

case of d=0.75 in which the strategies are fairly different and create this MDS plot for 

v={0.05,0.10,0.15,0.20}.  The result is shown below where the red/blue points designate the two 

strategies: 

    

(a) v=0.05 (b) v=0.10 (c) v=0.15 (d) v=0.20 

Figure 5.4 – MDS Plots for JCV Clusters for d = 0.75 and v = {0.05,0.10,0.15,0.20} 

 

We can see that as soon as the points representing the two clusters start overlapping, the JCV 

clustering algorithm fails to classify the two strategies accurately (v >= 0.1).  This shows that the JCV 

algorithm does not perform well for the cases where there are distinct strategies and large variation. 

5.1.4 Kinematic Synergy Results  

 For the kinematic joint synergy approach, the VAF metric was used to determine the ideal number 

of synergies for the dataset.  For the synthetic dataset this was discovered to be 2 synergies.  Figure 

5.5 shows how the reconstruction error does not improve beyond 2 synergies. 
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Figure 5.5 – Detecting the Ideal Number of Synergies for Synthetic Dataset 

Since we chose to represent the trajectories with 2 synergies and the trajectories consist of 2 joints, 

there are a total of 2 [1x2] synergy vectors.  To determine the usefulness of the synergy vector, the 

synergy vector values for both joints were plotted for a subset of the trajectories (we use one example 

from each value of d and from each strategy) – see figure below.  It can be seen here that one synergy 

variable impacts the choice of strategy whereas the other one seems to impact the degree to which the 

strategy is elbow or elbow down (i.e. correlates with the variable d). 

 

Figure 5.6 – Plotting Synergy Vectors for Synthetic Dataset 

An alternative way to plot this for each motion is to use multi-dimensional scaling (MDS), where 

each data point is a concatenation of the synergy vectors for all joints for that motion.  While this is not 

Decreasing value of d, decreasing strategy difference 

Strategy 1 

Strategy 2 



 

 48 

necessary for the synthetic data case given the low dimensionality of the original trajectory, it will be 

useful to visualize high dimensional trajectories with this approach.  The figure below shows this for 

the synthetic dataset for all low noise configurations. 

 

Figure 5.7 – MDS plot of Joint Synergies for Synthetic Dataset 

  In order to use the matrix factorization approach for classification purposes, any test motions need 

to be added as an input to the matrix factorization approach to re-generate synergy vectors.  As a result, 

the resulting data points and cluster positions may change.  In order to keep track of which strategy is 

associated with which cluster, we maintain a list of trajectories that are in each cluster and use that to 

map the clusters between experiments.  K-fold cross validation was used to validate the robustness of 

the algorithm (where K=5).  The results of the classification across the various experiment 

configurations are shown in Table 5.4.  The classification results show that the algorithm performs 

very well in low noise scenarios and in scenarios where the differences in motions is high.  For high 

noise scenarios it does not have high accuracy. 
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Table 5.4 – Kinematic Synergy Results on Synthetic Dataset 

 

5.2 Discussion   

 Comparing the accuracy of three approaches (JCV, Kinematic Synergy, and Proposed approach), 

the proposed approach works when the data is noisy and when the goal is to detect slight differences in 

motion strategies.   The next best algorithm is the kinematic strategy approach, with JCV coming in 

last.   

 This accuracy of the proposed approach comes at a cost of computational complexity in training 

time.  As mentioned previously the proposed approach transforms the original observation sequence 

into different models and uses algorithms that are computationally complex.  The GPDM training 

approach we use is the same one used by [4] which has a computational complexity of O(N3) for the 

matrix inversions that are done, where N is the number data points [54].  Additionally, HMM training 

has a computational complexity of O(TNQQmax), where T is the length of motion, N is the number of 

states, Q is the number of transition parameters and Qmax is the maximum HMM node-out degree [74].  
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As such both GPDM and HMM algorithms do not generally scale well as the dimensionality of the 

input data and the size of the input data increases.  Note that even though the synthetic data is relatively 

simple (motions consist of 2 DoF, with 60 time samples, and with 100 samples per noise/distance 

configuration), the proposed approach still takes longer to compute.  The figure below shows the 

training performance of the three algorithms on a 2.2 Ghz, Intel Core i5 Processor: 

 

Figure 5.8 - Algorithm Training Time on Synthetic Dataset 

The other performance factor to consider is the classification time once the models have been trained.  

Recognition of motions for JCV is in the sub-second range while the proposed approach is on the order 

of seconds. On the other hand, the classification time for the kinematic synergy approach is roughly the 

same as the training time as the entire dataset needs to undergo NNMF again. 

5.2.1 Proposed Approach Investigations: Impact of Covariance Limit 

 In this section we will provide some details on how we improved the results of the proposed 

approach by changing the minimum value that we allow the covariance values to be set to when training 

HMM models as part of the divisive clustering algorithm.  This minimum covariance value will be 

referred to as the covariance limit.  There are several reasons for why setting a covariance limit may be 

important.  One reason is that by setting a large value for the covariance limit, the model is prevented 

from over-specializing and provides a more generalized model.  Another reason is that if all the models 

have the same covariance values (i.e. if it is high enough), then the covariance of the models do not 

contribute as much to the distances between models.   

 To study the impact of the covariance limit, the synthetic dataset for the case where d=0.5 and 

v=0.1 will be used (i.e. movement strategies are fairly different with some amount of variance).  For 

this dataset one HMM model will be trained with all the sequences and then the probabilities that the 
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model generates the sequences (i.e. the first step of the HMM based divisive clustering) are plotted.  

The analysis is repeated for various covariance limits (10, 1, 0.1, 0.01, 0.001).  The figure below was 

generated showing the distributions of the probabilities for the elbow up strategy (S1, blue) and elbow 

down strategy (S2, red). 

   

(a)  Covariance Limit = 10 (b)  Covariance Limit = 1 

 

(c)  Covariance Limit = 0.1 

  

(d)  Covariance Limit = 0.01     _      (e)  Covariance Limit = 0.001 

 

Figure 5.9 – Impact on Probability Distribution on Motion A-B-C 

 As the covariance limit increases, we see that distributions become more and more separable (less 

overlap between the distributions).  This is likely because the covariance adds some amount of noise 

to the distance measurements.  One interesting thing to note in the above figure is the range of bin 

values as the covariance limit changes – though the distributions become more separable the absolute 

values between the means of the distributions become lower.  The larger distances are a result of the 

lower covariance values contributing to larger distances between more dissimilar movements. 

 In our particular case, we are more interested in separability of movement strategies so based on 

these results we use a covariance limit of 10 in our subsequent experiments.  This value is larger than 

the covariances we will expect to observe due to the normalization that we do to the dataset on the 

range of -1 to 1. 
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5.3 Labeled Dataset (Squat-Stoop) 

5.3.1 Experiment Setup 

The second dataset consists of real human movement in which the participants perform a known 

predetermined lifting strategy (squat or stoop).  A total of 10 participants performed 9.3 and/or 24.7 kg 

floor-to-waist lifts between 2-5 times.  A total of 47 trials were included in the tests performed here (27 

squat and 19 stoop lifts) [40].  Cartesian coordinates of various lower body segments (feet, shanks, 

thighs, trunk, pelvis) were collected for the motions using the Optotrak motion capture system.  

Standard inverse kinematics computations were used to convert the Cartesian coordinates into Cardan 

joint angles for the ankles, knees, hips, and lumbar spine (Visual3D™, C-Motion Inc.).   

 

Figure 5.10 - Illustration of Stoop and Squat Lifts 

 

5.3.2 Proposed Framework Results 

 For the Squat-Stoop dataset the data was input into the GPDM algorithm and through the iterative 

process determined that a dimensionality of 3 is optimal, where the first 2 latent dimensions capture 

most of the variability (41%, 33% ) and the third one captures 15% of the variability.    

To test the utility of the proposed approach, we tested its classification accuracy on both joint angle 

data and Cartesian coordinate data for the same set of motions.  Additionally, we also compared how 

the algorithm would perform with or without the low dimensionality reduction (i.e. with or without 

GPDM).   The proposed approach was tested in all scenarios using K-fold cross validation (where K=5).  

Results are presented in the table below. 

 

Stoop Lift Squat Lift 
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Table 5.5 – Results of Proposed Framework on Squat/Stoop Dataset 

 

 Dataset Type 

Joint Angles Cartesian Coordinates 

Algorithm 

Variation 

HMM 

Divisive 

Clustering  

(without 

GPDM) 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 
 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 
 

HMM 

Divisive 

Clustering  

(with 

GPDM) 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 
 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 

  

 

  We find that the algorithm achieved 100% accuracy in all scenarios.  The main difference between 

the GPDM and non-GPDM approach is the computational performance (shown in figure below).  The 

initial dimensionality reduction by the GDPM helps reduce the time it takes to perform the HMM based 

divisive clustering since the trajectories are now in a lower dimensional space.    

 

 

Figure 5.11 - Performance Comparison of Proposed Approach Variations 

  Note that in addition to detecting the squat stoop and stoop strategies, the proposed approach was 

able to further detect sub-strategies for squat indicating a narrow-leg and a wide-leg lift.  The motion 

tree for this is shown in the figure below: 
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Figure 5.12 – Motion Tree for Squat/Stoop Dataset 

 

 For further in-depth analysis we will first focus on the first two latency dimensions.  The latent 

trajectories generated by the GDPM algorithm are shown below in addition to key poses of interest at 

various points in the latent space.    

 

 

 -Squat    - Stoop 

Stoop Lift 

Squat Lift – Wide Leg Strategy 

Figure 5.13 – Squat-Stoop Dataset Latent Space Trajectory (x vs y) 

Squat Lift 

Ω
 



 

 55 

 The x latent space variable appears to relate to the temporal state of the lift motions.  The right side 

represents states where the pelvis is closer to the ground whereas the left-side represents a standing 

state.  For the squat lifts, the lifts start with the pelvis close to the ground and progress to a standing 

state, where as for the stoop lifts the pelvis remains close to a standing posture and the back does most 

of the movement.  In the latent space trajectories, the squat and stoop trajectories intersect at the final 

states, due to similar poses.   

 In order to understand the impact on the joints for these strategies and sub-strategies we use the 

proposed joint analysis.  The results are shown in the figures below: 

     
                               (a) Squat vs Stoop Comparison                              (b) Squat Sub-Strategy Comparisons 

Figure 5.14 – Squat-Stoop Included DoF Comparison 

 

For the Squat-Stoop DoF comparison we can see that the graph is almost symmetric about the 

pelvis/spine.  This is expected because on average squat and stoop motions are symmetric.  Recall that 

the joint with the largest distance in the included-joint analysis is the joint that is most different between 

the motions.  In this case we find that the knee is the most different between the squat and stoop motions.  

We know visually from the figure above that knee barely moves in the stoop lift and is the most actively 

used joint in the squat move.  

For the Squat Sub-Strategy DoF comparison, it appears as if the main difference between the 

motions is happening at the shank and the thighs where overall it seems the differences are symmetric.  

In this case we find that the hip is the most different between the motions.  Note that the relative 

difference between the distance of hips in this graph (8-12) is much lower than the distance for the 

squat-stoop motions (30-35). This indicates that while there is a difference between the sub-strategies 

it is not as great as the difference between the squat stoop motions.   

 We next examine the correlation between the latent space variables and the variations in cartesian 

angle trajectories (Figure 5.15).  This analysis shows that there is strong correlation (>89%) between 

the latent variable dim-1 and shank/thigh z-axis movement and as well as shank y-axis movement.  All 
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of these are expected differences between the squat and stoop lift motions.  The latent variable dim-2 

seems to relate to the strategy of widening the legs during the lifts. The larger the dim-2 value the closer 

the knees are to each other during the lift. This is confirmed by the fact that foot/shank x-axis movement 

correlate well (>82%) with the dim-2.   

 Note that the underlying assumption in the Pearson correlation coefficient is that the relationship 

is linear.  While this may not necessarily be true for human motion data in general, for the data being 

analyzed in this thesis, the results were informative.  In particular, in our analysis we found that some 

latent variables had correlation values above ~0.8 with some of the joint trajectories indicating fairly 

strong linear correlation (note that a correlation value of 1 means 100% linear correlation, a value of -

1 means there is 100% negative correlation, and value of 0 means that there is no correlation at all). 

 

 

Figure 5.15 - Correlating Latent Space Variables with DoF 

 To analyze the 3rd latent variable, Figure 5.16 was generated, where the horizontal axis is the latent 

variable dim-1 and the vertical axis is the latent variable dim-3.  The figure shows that most of the stoop 

motions have an upward trajectory.  On the contrary some squat motions follow a parabolic trajectory 

where they first go down before going up.  The correlation analysis shows that the x-axis of the foot 

also undergoes a similar trajectory pattern.  To confirm this, we plotted the x-axis trajectories for the 

right foot for all the motions (see Figure 5.17).   In particular it looks like some participants take on 

two kinds of movement strategies with their feet, one is where the move their feet and leave them there 

and the second one where they move the feet and then move them back close to the original position.  
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Note that because the foot placement strategy seems to on average relate to the squat/stoop strategies 

these were not detected as separate motion strategies in the motion tree.   

 

Figure 5.16 - Squat-Stoop Dataset Latent Space Trajectory (dim-1 vs dim-3) 

 

 

Figure 5.17 - Right Foot X-Axis Trajectories for Squat-Stoop Motions 

 
 In addition to being able to be able to detect different strategies and differences that exist between 

them, the proposed approach can also generate exemplar motions for visualization purposes.  Below 

 - Squat  - Stoop 
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are reconstructed examples of average squat and stoop motions and also two variations of squat stoop 

motions that were generated by the GPDM algorithm. 

 
 

Squat Lift                              Stoop Lift 

  

Figure 5.18 – Examples of Squat and Stop Lift Motions 

 
 

Wide Squat Narrow Squat 

  

 
 

  

Figure 5.19 –Examples of Wide Squat and Narrow Squat 
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5.3.3 JCV Results 

5.3.3.1 Model 

 In the original paper by Park et al [5], when the JCV algorithm was introduced the authors tested 

their algorithm on a squat/stoop data set.  In their approach they use a 5-link kinematic structure to 

represent the motion as shown below:  

 

Figure 5.20 – Park et al’s Model for Squat/Stoop Analysis 

 

 This modeling approach assumes that the motion is symmetrical, which is not necessarily true for 

natural lifting motions.  The algorithm also assumes that there is no significant movement outside of 

the saggital plane and thus would fail to identify the strategies which rely on leg widening as shown in 

figure 26.  An alternative to this approach would be to use a 3D kinematic model as Park et al used in 

their study 2.  An issue with this approach is that it requires that one of the participant’s foot remains 

stationary and that the other foot does not contribute to the motion (i.e. exert any force on the ground).  

Whether we use the 2D model or the 3D model, one of the requirements of the model is that it should 

be an open kinematic chain.  Again, an open kinematic chain may not be representative of real motions. 

 To test the JCV algorithm, we used a 3D model of the participant utilizing a 6-link kinematic 

structure representing the lower body.  For the end-effector we used the trunk spine Cartesian 

coordinates.  For the model we assumed that one foot always remained stationary and thus the joint 

angles for the leg with the non-stationary foot did not contribute to the JCV vector.  These assumptions 

can be made considering the symmetrical nature of the squat/stoop lift in this particular dataset. 
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5.3.3.2 Motion Analysis 

 Recall that the JCV vector contains the contributions of individual DOFs to changes in the end-

effector position.  To test the algorithm’s versatility, we decided to test the JCV clustering under two 

varying conditions: 

- Check to see if JCV clustering is sensitive to analyzing the contributions of individual DOF vs. 

contributions of joints (sets of 3 DOF) 

- Check to see if JCV clustering is sensitive to whether we consider the contributions in just the X-

Y coordinates of the end effector vs. the X-Y-Z coordinates of the end effector.   

The results of testing the algorithm under these conditions are shown in the table below: 

 

Table 5.6 – Results of JCV Algorithm on Squat/Stoop Dataset 
 

 Contribution to End-Effector Coordinates 

X & Y X, Y, & Z 

Contribution 

of Angles 

DOF 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 

  

 

 C1 C2 

Squat 0 27 

Stoop 19 0 
 

Joint 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 

  

 

 C1 C2 

Squat 0 27 

Stoop 19 0 

  

 

As we can see the clustering algorithm achieves 100% accuracy in all cases tested.   These results are 

much better than those presented in Park et al’s work.  We believe that difference in performance could 

be due to several reasons: 

- In Park et al’s work the full body model was used.  It is possible that the movement of the upper 

body limbs (arms) introduced additional noise into the JCV vector. 

- In Park et al’s work a 2D 5-link kinematic structure used.  It is possible that the additional error 

was introduced as a result of converting a 3D motion to a 2D plane. 

To analyze the joint differences, we also generated some box plots of the PC vectors (similar to the 

approach in Park et al’s paper) which are shown below: 
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(a) Squat PCx (b) Squat PCy (c) Squat PCz 

   

(d) Stoop PCx (e) Stoop PCy (f) Stoop PCz 

Figure 5.21 – Percent Contribution Analysis for Squat/Stoop Motions 

 

 This style of box plots was used by Park to demonstrate the contributions of the DOF in the motions.  

Trying to analyze the PC range and distribution seems to lead to results which don’t appear to be 

consistent with the expected results.  For example, in the squat motions we can see that the knee has 

more contribution in the x-direction (horizontal) than stoop, but this same trend does not hold for the 

y-direction (vertical).  In contrast the DoF analysis of the proposed approach seems to be more intuitive 

and appears to yield more accurate results.  One possible reason why the results in figure 21 may not 

match up with expectations is because the results may be sensitive to the selection of the end-effector 

(where we chose the spine as the end-effector and Park et al chose the hand as the end-effector).   

5.3.4 Kinematic Synergy Results  

 For the kinematic joint synergy approach, the VAF metric was used to determine the ideal number 

of synergies for the dataset.  For the squat-stoop dataset this was discovered to be 2 synergies.   

 The results of running classification analysis using k-fold validation on the kinematic synergy 

algorithm is presented in the table below.  Note that this algorithm was tested on joint angle trajectory 



 

 62 

data as well as Cartesian trajectory data to determine its versatility.  As the dataset is separable between 

squat and stoop motions, we find that the algorithm achieved 100% accuracy regardless of the dataset. 

Table 5.7 – Results of Kinematic Synergy Detection on Squat/Stoop Dataset 

 

Dataset Type 

Joint Angles Cartesian Coordinates 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 
 

 

 C1 C2 

Squat 0 27 

Stoop 19 0 
 

 

 The MDS plot below shows how well the Squat and Stoop clusters are separated.  Each data point 

in this plot had a feature that was a concatenation of all the synergy vector values for all DoFs for the 

participant.  Dimension 0 and Dimension 1 here may not have any physically meaningful interpretation. 

 

Figure 5.22 – MDS plot of Joint Synergies for Synthetic Dataset 

 To investigate and understand the benefits of the kinematic synergy approach, we investigate how 

the synergies impact the DoF for the motions.  The figure below shows the distributions of synergies 1 

and 2 across all participants for squat and stoop motions. 
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(a) Squat Motion Synergy 1 Distribution  

 

(b) Squat Motion Synergy 2 Distribution 

 

(c) Stoop Motion Synergy 1 Distribution 

 

(d) Stoop Motion Synergy 1 Distribution 

Figure 5.23 – Synergy Distributions Per DoF 

Synergy 1 has particularly high values for the knees with low variance for squat motions.  This makes 

sense since squat motions would require more movement of the knees.   The knees in the stoop motions 

have high variance, which may indicate that participants don’t use their knees the same way for stoop 

motions.  Lastly, one of the hip joint angles have low synergy 1 values for both squat and stoop, 

indicating that the particular hip joint angle does not vary much during the movement.   Synergy 2 does 

not seem as easily interpretable, but we know from the VAF calculations that it is needed for achieving 

low reconstruction error. 
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5.3.5 Discussion 

  For this particular dataset, all of the comparison algorithms were able to successfully classify Squat 

and Stoop motions.  The proposed approach was able to discover additional sub-strategies that are 

difficult to discover with the JCV and kinematic synergy approach.  These sub-strategies are the wide 

squat and narrow squat sub-strategies and also a sub-strategy related to foot placement.   

 The latent space visualization helps provide a simplified representation of what the state space for 

the movements look like and enables visualizing the clustering results.  Doing this kind of analysis with 

kinematic synergies is challenging because of the number of synergy vectors and DoF that have be 

analyzed for this particular dataset.  Additionally, because all the models in the proposed approach are 

generative it is possible to generate exemplar motions for any sub-strategies that are discovered.    

  Finally, the cost of the proposed approach is computational and time complexity (see figure below).  

This is particularly impacted by the fact that the dimensionality of the squat stoop dataset is larger (21 

DoF) than our synthetic data set (2 DoF).    

 

Figure 5.24 - Algorithm Training Time on Squat-Stoop Dataset 

5.3.6 Proposed Approach Investigations: Impact of Number of Latent Parameters 

 The dimensionality of the latent space can impact the performance of the clustering algorithm in 

several ways.  Some of the performance criteria that will be discussed in this section are reconstruction 

error, computational performance (speed) and the clustering quality.  

 To better understand the relationship between speed, reconstruction error and latent space 

dimensionality we did an experiment where we trained a GPDM with all motions from the squat-stoop 

dataset while sweeping the latent space dimensionality.  For each dimension we recorded the 

reconstruction error and the training time.  The result of this is shown in the Figure 5.25. 
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Figure 5.25 – Reconstruction Errors and GPDM Training Time vs  

Latent Space Dimensionality for Squat/Stoop Dataset 

 

As expected, the reconstruction error becomes marginally better after the first few latent dimensions as 

the first few latent dimensions are able to capture most of the information regarding the variability of 

the movement.  Additionally, the time for training the GPDM model increases for each additional latent 

dimension, where the increase in time is less for each additional latent dimension.  This makes sense, 

given that each additional latent dimension doesn’t contain as much information about the movement 

and the GPDM model parameters starts stabilizing around similar values. 

 Since the GPDM is used to generate latent trajectories to cluster in the HMM divisive clustering 

algorithm, it was important that we understand the impact of the latent space dimensionality on 

clustering results as well.  To measure cluster coherency we use a Euclidean distance based metric to 

measure the sum of the distances from points on the cluster center trajectory to the observation 

trajectories.   The average of distances for all the observation sequences is used to measure cluster 

coherency.  As we increase the latent space trajectory we found that the average cluster distance 

increased, as shown in Figure 5.26.  This indicates that even though reconstruction error reduces with 

increasing latent space dimensionality it also introduces some noise as well.  So there is a trade-off 

between reconstruction accuracy and generating coherent clusters for detection purposes.  
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Avg Cluster Distance = 10.1 

 

Avg Cluster Distance = 11.3 

 

Avg Cluster Distance = 12.2 

(a) Latent Dimensionality = 3 (a) Latent Dimensionality = 4 (a) Latent Dimensionality = 5 

 

Avg Cluster Distance = 14.9 

 

Avg Cluster Distance = 15.2  

(a) Latent Dimensionality = 6 (a) Latent Dimensionality = 7  

Figure 5.26 – Impact of Latent Space Dimensionality on Clustering Results 
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5.4 Targeted Lifting Motion Dataset 

5.4.1 Experiment Setup 

The final dataset consists of lifting data where the lift pick-up and drop-off locations are specified 

but the number of strategies is not known a priori.    The lifts in the dataset are not symmetric and it is 

unknown whether participants will be moving one foot or both feet for the duration of the lift.   

 

 

 

  This dataset was collected in a previous experiment examining the influence of unilateral ankle 

immobilization on low-back loading and injury potential during lifting [8].  Using an optoelectronic 

motion capture system, the positions and orientations of the feet, shanks, thighs, pelvis, and trunk of 10 

male participants were captured while they performed lifting tasks.  This dataset consisted of 24 DoF 

Cartesian time series vectors.  Standard inverse kinematics computations were used to convert the 

positions into Cardan joint angles for the ankles, knees, hips, and lumbar spine.  The joint angles formed 

a 21 DoF joint-angle model. 

 With and without their right ankle immobilized, participants lifted two masses (light = 3.7 kg; heavy 

= 12.7 kg) from three different origins (positions 1, 2, and 3) to three different destinations (4, 5, and 

6) (Figure 5.27).  Three repetitions of each task were performed.  Ankle immobilization was achieved 

through the use of a brace designed to restrict ankle motion in all three anatomical planes.  

 We chose to use the 1-to-4, 1-to-6, 3-to-4, and 3-to-6 sequence types for testing the algorithms.  This 

dataset includes a total of 120 observation sequences per sequence type, where there are 30 motions for 

each of the ‘Heavy & Brace’, ‘Heavy & No Brace’, ‘Light & Brace’, and ‘Light & No Brace’ lifting 

motions.  Since each participant produced 3 cycles of each type of motion, there are a total of 12 motions 

for each participant.  

Lift origins (1,2,3) and destinations (4,5,6) are labeled Figure 5.27 - Experiment Setup 
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5.4.2 Proposed Framework Results 

 By running the targeted lifting dataset through our proposed framework, the motion tree was 

generated by using the specified sequences (shown below): 

 

Figure 5.28 – Motion Tree for Targeted Lifting Motions Dataset (All Trajectories) 

The highest node of the tree consisted of a latent space of 3 parameters and split into 4 strategies.   The 

4 main strategies corresponded to the 4 main movement sequences (1-to-4, 1-to-6, 3-to-4, and 3-to-6).  

Since these labels are known apriori, we can validate their accuracy through the use of K-Fold cross 

validation.  The table below shows the average result for joint angle data as well as cartesian coordinates 

with K=5. 

Table 5.8 – Results of Proposed Framework on Targeted Lifting Motion Dataset 

 

Dataset Type 

Joint Angle  Cartesian Coordinates 
 

 1to4 1to6 3to4 3to6 

1to4 118 0 2 0 

1to6 0 120 0 0 
3to4 0 0 120 0 

3to6 0 3 0 117 
 

 

 1to4 1to6 3to4 3to6 

1to4 109 2 5 4 

1to6 0 111 1 8 
3to4 10 2 107 1 

3to6 0 3 2 115 
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 Classification results had higher accuracy for the joint angle dataset in comparison to the cartesian 

coordinates.  Part of this loss in accuracy can probably be attributed to the fact that cartesian trajectories 

can be impacted by participant heights.  Figure 5.29 shows the latent space trajectories for joint angles 

and cartesian coordinates that were clustered above.  Comparing Figure 5.29 (a) and (b) we can see 

that the trajectories in the joint angle latent space form tighter clusters in comparison to the cartesian 

counterparts.   

 Focusing on Figure 5.29 (a), it can be seen that dimension 1 captures information about the vertical 

displacement of the movement, where a value of 2 indicates the beginning of the motion and the value 

of -1 indicates the end of the motion.  Dimension 2 captures the horizontal movement of the lift, where 

the positions from left-to-right in  Figure 5.27 are numbered 4, 1, 3, and 6.  Since the end effector paths 

do intersect each other for certain motion sequences (i.e. 1-to-6 intersects 3-to-4), we see those 

corresponding intersections happening in the latent space as well.  In general, dimensions 1 and 2 

capture positional information.  Dimension 3 on the other hand is latent parameter that seems to vary 

for all motions and thus probably contains information that is participant-specific.   Due to the high 

number of sequences (480 in total), we will focus on one of the motion subsets to understand 

participant-specific variations in more detail. 

 
(a) Joint Angle Latent Space: Dim 1 vs 2 

 
(b) Cartesian Latent Space: Dim 1 vs 2 

 

                
 

Figure 5.29 – Latent Space Trajectories for All Movements 

Pos: 1 

Pos: 3 

Pos: 6 

Pos: 4 
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 In the following, we focus on analyzing only one of the 4 movement sequences in further detail.  

We arbitrarily chose movement sequence 1-to-4 to do this analysis.   

 

Figure 5.30 –Motion Tree for Targeted Lifting Motions Dataset (Only 1-to-4 Trajectories) 

When the motion tree was created the children nodes of the node 1-to-4 were participant specific nodes.  

While both joint angle and Cartesian coordinate trajectories show this trend, the distance between 

participant trajectories is not consistent between the two, indicating that the choice of coordinate space 

may impact the trends that can be extracted from the data.  For our following analysis we will focus on 

using joint angle trajectories to highlight the utility of our proposed approach.  The latent space 

trajectories for this are shown in the figure below.      

 
(a) Joint Angle Latent Space: Dim 1 vs 2 

 
(b) Joint Angle Latent Space: Dim 1 vs 2 vs 3 

 

Figure 5.31 - Latent Space Trajectories for Movements 1-to-4 
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 We can see from Figure 5.31 that the movement sequences form clusters that are participant 

specific, where similar participant trajectories get clustered together.  Next, we will show how each 

latent variable (or dimension) impacts the movements.   

 

Dimension 1 

 

 Dimension 1 appears to map to movement progression.  All movements have variation along this 

dimension, starting at a value of {-2, -1} and then progressing to a value of 1.   Note that for the parent 

node we observed that dimension 1 was related to vertical displacement, which appears to be the case 

for the child node (or sub-cluster) as well.    The starting point correlates to a starting lift position, i.e. 

the more negative the dim 1 value is the more the participant’s pelvis is lower in their initial state.  

 

Dimension 2 

 

 For dimension 2, we see that the various participants start off from a large range of values (roughly 

-2 to 2), but as the movement progresses the values seem to converge to a smaller range around 0.   The 

figure below shows the initial lifting states from different participants (as viewed from above).  These 

movements have a constant dim1 value, but a varying dim2 value.  At a value of dim2 = -2, we find 

that lifting motion starts in a fairly symmetrical position with both knees equidistant from the body 

center.  As the value of dim2 increases, the initial starting state of the lift changes such that left knee is 

closer to the body center (hence more weight on the left knee).  Since the movement 1-to-4 requires the 

participant to rotate to lift the box, dimension 2 influences how much the participant rotates their lower 

body (vs upper body) initially to perform the lift. 

 

 
 

Dim2 = -2 

 
 

Dim2 = 0 

 

Dim2 = 2 

Figure 5.32 – Movements for Varying Values of Dimension 2 

To understand the impact of dim-2, we used the proposed DoF analysis methodology to determine 

which joints were most impacted by this dimension.  We selected participants that were at extreme 

values of dim2 (i.e. near -2 and +2) to compare.  The resulting DoF comparison (shown below) shows 

that the hips are the most impacted by the dim-2, which aligns with our observations of the hips twisting 
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as the value of dim-2 changes.   Additionally, we see that the knee and ankle joints progressively get 

less impacted as they are closer to the ground. 

 

Figure 5.33 – Included DoF Comparison For Extreme Dim-2 Participants 

 

For further validation, we did a correlation analysis of the latent variable dim-2 against the 

cartesian joint angles.  Here we found that right hip and left hip had larger correlation values for the x 

direction (right being positive correlation because the right hip moves forward, while the left hip has 

negative correlation because it moves in a backward direction on the x-axis).  We find in general that 

the left-side joints have slightly higher correlation values than the right-side joints and this may be a 

result of the fact that the left leg under goes more movement whereas the right leg does not move as 

much. 

 

Figure 5.34 - Correlating Latent Space Variables with DoF for Dim-2 

Dimension 3 

 Dimension 3 is a latent variable where the temporal variability within a participant’s trajectory is 

small in the direction of dimension 3 for most participants (i.e. it is a latent variable that remains fairly 
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constant across the duration of the movement) (see Figure 5.35 (a)).  Figure 5.35 (b) shows 3 different 

participants that have varying values of Dim 3.  We can infer that this dimension correlates with the 

differences between Squat/Stoop motions.  Moving from Participant 5 to Participant 1 to Participant 7, 

the value of Dim 3 decreases, and movements go from being stooping to squatting. 

 
           (a) Joint Angle Latent Space: Dim 2 vs 3                       (b) Movements with Varying Dim 3 

Figure 5.35 – Impact of Dim 3 on Movement Variability 

 

To further validate that dim-3 impacts the squat-stoop strategy of the movement, we did a DoF 

analysis comparing movements that were at the extreme values of dim-3.   The figure below shows the 

results of this analysis and we found that the results are similar to the results shown in Figure 5.14 from 

our Squat-Stoop study where the strategies were known apriori. 

 

Figure 5.36 – Included DoF Comparison For Extreme Dim-3 Participants 

 

Additionally we did a correlation analysis (Figure 5.37) using the latent variables and the cartesian 

coordinates of the movement trajectories to see if the results would be comparable to what we had 
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observed in Figure 5.15.   We found that the results were similar, where there is strong correlation 

(>80%) between the latent variable dim-1 and shank/thigh z-axis movement and as well as shank y-

axis movement. 

 

 

Figure 5.37 - Correlating Latent Space Variables with DoF for Dim-3 

 

Impact of Bracing on Movements 

 

     Given an interpretation of the latent dimensions, Figure 5.38 shows that it is possible to see what 

impact bracing and/or increasing the weight has on the participants.  Figure 5.38 illustrates the latent 

space trajectories for those participants who changed their strategy from squat to stoop when the bracing 

constraints were changed.  In particular it appears that when participants go from having no brace to 

having a brace, they will go from squatting to stooping to lift the weight.  This trend is observable with 

participant 4 regardless of the weight, but for participant 6 the weight has an impact on this change in 

strategy (for only heavy weight scenarios stooping strategy is adopted). 
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                                      (a) Participant 4                                       (b) Participant 6 

 

• Heavy, Brace   • Heavy, No Brace   • Light, Brace   • Light, No Brace    

Figure 5.38 – Impact of Weight and Bracing on Movements – Latent Space Trajectories 

5.4.3 JCV Results 

 Because of the nature of the lifting motions in this dataset, there is no guarantee that both feet will 

be planted on the ground during the lift.  The JCV approach relies on defining a close-chain kinematic 

model of the movement with which the joint contributions can be calculated.   For this particular dataset 

this is not feasible. 

5.4.4 Kinematic Synergy Results 

 For the kinematic joint synergy approach, the VAF metric was used to determine the ideal number 

of synergies for the dataset.  For the squat-stoop dataset this was discovered to be 3 synergies.   

 The results of running classification analysis using k-fold validation on the kinematic synergy 

algorithm are presented in Table 5.9.  Note that this algorithm was tested on joint angle trajectory data 

as well as Cartesian trajectory data to determine its versatility.  

Table 5.9 – Results of Kinematic Synergy Detection on Targeted Reaching Motion Dataset 

 

Dataset Type 

Joint Angle  Cartesian Coordinates 
 

 1to4 1to6 3to4 3to6 

1to4 108 0 9 3 

1to6 0 102 0 18 

3to4 11 0 99 0 

3to6 2 7 0 111 
 

 

 1to4 1to6 3to4 3to6 

1to4 96 5 10 4 

1to6 8 83 7 22 

3to4 19 10 73 18 

3to6 3 12 2 103 
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(a) Joint Angle Data 

 
(b) Cartesian Coordinates 

Figure 5.39 – Kinematic Synergy Detection MDS Plots for All Movements 

For this particular dataset, the kinematic synergy approach performs better with joint angle data than 

with Cartesian data.  Looking at the MDS plots for both cases (Figure 5.39), we can see that the data 

is more easily separable in the joint angle data case, with some overlap between 1-to-4 / 3-to-4 and 1-

to-6 / 3-to-6.   

 

   
(a) Synergy 0 (b) Synergy 1 (c) Synergy 2 

 

Figure 5.40 – Synergy Plots for Kinematic Synergy Detection 

 The synergy plots (Figure 5.40) for this dataset show an almost equal amount of variation across 

all joints (with the exception of one of the hip angles) making it challenging to extract any useful 

information from the synergy values themselves.   Additionally, upon examining any of the sequence 

types, we expect to find clusters of movements grouped by participants (since this is what the proposed 

approach discovered).  Instead when we look at the MDS plots of the synergies, we find that it isn’t 

possible to distinguish by participants (see Figure 5.41). 
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(a) 1-to-4 

 
(b) 1-to-6 

 
(c) 3-to-4 

 
(d) 3-to-6 

Figure 5.41 – Kinematic Synergy Detection MDS Plots By Movement Sequence Type 

 Note that Figure 5.41 was generated using a global synergy space trained on all motions.  In our 

proposed approach we found that if we generated a new latent space for sub-strategies, the accuracy of 

our models was better in comparison to a global latent space.  To investigate whether this might also 

hold true for synergy spaces we generated the synergy space for sequence 1-to-4 trained with only those 

sequences.  Figure 5.42 shows a comparison of global synergy space and the local synergy space. 
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(a) Local synergy space (b) Global synergy space 

Figure 5.42 – Comparison of Local and Global Synergy Space for Movement Sequence 1-to-4 

 We find that even with a local synergy space, the kinematic synergy approach isn’t able group 

participant-specific movements together like the proposed approach.   

5.4.5 Discussion   

Comparing the results from the proposed approach and the comparison approach of the kinematic 

synergy detection, we find that the purposed approach and the comparison approach were both able to 

detect the high-level movement sequences (1-to-4, 1-to-6, 3-to-4, 3-to-6).  The difference was that the 

proposed approach was able to do so with higher accuracy.  Going beyond simply identifying the 

labeled parameters, the proposed approach was able to further identify similarities between participant 

movements and how they related to each other with the use of latent parameters.  The comparison 

algorithm on the other hand was unable to identify any of those same trends at the participant level.  

This seems to indicate that, while the kinematic synergy approach is good for analyzing macro changes 

in motion, when it comes to analyzing more subtle differences in motions it may not perform as well. 

From a runtime performance aspect, the kinematic synergy approach outperforms the proposed 

approach by almost a magnitude (see Figure 5.43).  The final dataset studied here is far larger than the 

previous 2 datasets (synthetic dataset and squat/stoop dataset), and so we can see as the amount of data 

increases the proposed algorithm doesn’t perform as well as its competitor.  The performance gains of 

the competing algorithms come at the cost of the accuracy that previously described. 
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Figure 5.43 - Algorithm Training Time for Targeted Lifting Motion Dataset 

5.4.6 Proposed Approach Investigations: Learning Individual Latent Spaces for Sub-

Clusters  

In the proposed approach, as the divisive clustering algorithm generates a tree of motions, it 

generates a latent space for each tree node (child cluster of motions) where further divisive clustering 

is done in the tree node’s latent space.  An alternative to this approach is to do all the clustering in the 

latent space that is learned by training with all the observation sequences, i.e. the global latent space or 

the very first latent space we learn for the root node of our divisive clustering tree.  In this section we 

show why the proposed approach is better than the alternative approach of using the global latent space.   

In order to analyze this further we compared the average reconstruction error of generating all the 

sequences in cluster 1to6 (from Figure 5.28) using both approaches.  The result of this comparison is 

shown in the following figure: 

 

Figure 5.44 – Reconstruction Error for Global vs Local Latent Space 
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We find that a localized latent space is able to achieve lower reconstruction errors for the same 

number of latent space parameters.  This indicates that the optimization process used to create a global 

latent space for all sequences results in loss of information when it comes to recreating the original 

training motions.  By learning a latent space for sub-clusters (like we do in our approach), motion 

models at various levels of tree can learn a latent space that is relevant for grouping the motions at that 

level in the tree and as we proceed lower down the tree our models retain more of the details pertaining 

to the motion.  The targeted reaching movement dataset may not illustrate the full strength of this 

approach, since all of the motions are similar lifting motions.  In scenarios where the movements vary 

a lot (for example kicks vs punches), higher level latent space would have latent parameters that are 

relevant for comparing kicks vs punches, where lower level latent space parameters would be relevant 

for just comparing different kinds of kicks or different kinds of punches.  
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

 In this work we propose a novel framework for detecting human motion strategies using Gaussian 

Process Dynamical Models (GPDM) and Hidden Markov Models (HMM).  GPDMs were used to 

convert human motion trajectories from high dimensional representations to low dimensional 

trajectories.  The low dimensional trajectories are then used to train HMMs and do hierarchical 

clustering of HMMs to generate clusters of time series datasets organized in a motion tree.  The 

resulting nodes (or clusters) in the motion tree were compared to understand the differences between 

the clusters, including understanding how variations in GPDM latent variables could translate to 

variations in the original high dimensional space.  The result is an unsupervised algorithm that allows 

us to automatically determine what movement strategies were adopted to perform the specified task 

and understanding how those strategies differed. To verify the validity of our approach, we tested the 

algorithm and two competitive algorithms (Joint Contribution Vector and Kinematic Joint Strategy 

Detection) in three different datasets. 

 The first experiment consisted of a synthetic data set where controlled the motion variation as well 

as the degree of difference between two strategies.   We found that our approach was the most accurate 

as noise in the dataset was artificially increased, followed by the Kinematic Joint Strategy approach 

and the JCV algorithm.  Additionally, we were able to show that for a simplified version of the synthetic 

trajectory, the proposed approach allowed us to use latent variables to determine the degree of 

difference between movement strategy between two motions.  However, the proposed approach was 

the slowest as the computational complexity with training GPDMs and HMMs is higher than the 

computations involved in the competitive approaches.   

 The second experiment used real data consisting of squat lifts and stoop lifts where the two main 

strategies were known a-priori.  We found that all algorithms were able to detect the main strategies 

accurately, but the divisive algorithm was the most accurate at identifying the sub-strategies that were 

unknown.  The performance results of the algorithm were the same as before, where the proposed 

approach was the slowest of the three algorithms being compared.  We were able to show that by using 

the low dimensional representations generated by GPDM we were able to speed up the clustering 

algorithm in comparison to an approach that only used HMMs trained with high dimensional 

trajectories.   



 

 82 

 In the third experiment we had 4 different movements (1-to-4, 1-to-6, 3-to-4, 3-to6) where the 

strategies within each movement were unknown a-priori and so the algorithms needed to automatically 

determine the strategies.  In this experiment the JCV algorithm could not be used because of algorithm 

limitations that require an open loop kinematic structure, so only the kinematic joint strategy approach 

and the proposed approach were compared.  We found that the kinematic strategy approach was able 

to identify high level movements but was unable to find any strategies within the movement types.  In 

comparison the proposed approach was able to find strategies and we were able to use the latent space 

variables to help us understand differences between the strategies.   Additionally, we were able to 

determine the impact of known variables (like weight or ankle brace) on the movement strategy that 

was adopted by the participant. 

Out of the three approaches that were compared, the proposed approach does the best job of creating 

a simplified visualization of the dataset where the latent parameters translate to physically relatable 

traits.  This became especially apparent for high dimensionally datasets where the low dimensional 

representations in the latent space help visualize the time series clusters.  Correlating the latent variables 

to high dimensional variables also helped us to discover insights as to what made the movement 

strategies different.  The proposed approach was not as fast as competitive algorithms due to its 

computational complexity.   

6.2 Future Work 

There are several areas of improvement that the proposed framework could benefit from with further 

investigation: runtime performance, clustering flexibility, and further testing. 

From a runtime performance aspect, the proposed approach was not as fast as comparison 

approaches.  One suggestion to improve performance would be to investigate if it is possible to 

dynamically change the amount of subsampling done on trajectories and to dynamically reduce the 

number of states for HMMs.  The root node of the tree could use more sparsely subsampled trajectories 

and HMM models with low number of states to reduce the amount of computations, while lower nodes 

in the tree would increasingly use more states or more samples from the trajectories.  The rationale is 

that models closer to the root node represent generalized models and thus details are not as important 

but as we progress further down the tree details become more important.   Determining the exact number 

of samples or states could be done based on optimizing reconstruction errors at each level of the tree. 

 The proposed approach at its core assumes hard cluster boundaries in order to generate the motion 

tree.  This means that once a movement is assigned to a cluster, from there on it is assumed that the 
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movement is of the strategy associated with the cluster.  Any sub-clusters that are generated from there 

on are only assumed to be sub-strategies of the parent and will only consist of motions in the parent 

cluster.   In theory, movements could adopt various degrees of different strategies (this is something 

that the kinematic strategy approach assumes).  In our proposed approach we tried to overcome this 

limitation of hard clusters by allowing latent space analysis of all motions of sibling clusters.  But this 

approach may not be as flexible as an approach that uses fuzzy clustering to determine the strength of 

membership that one movement may have to a cluster.  Hard clustering allows us to reduce 

computational complexity and allows analysis of movements to be easier by ignoring movements 

assumed to be no longer relevant to a strategy.  Fuzzy clustering could potentially allow more 

expressive representation of what strategies describe a movement at the cost of computational 

complexity and would require additional methodologies to help with determine which cluster 

memberships are important. 

Additionally, it would be interesting to validate the proposed approach on more datasets.  In this 

work, we explored the use of motion capture data for movements that are relatively similar as we were 

interested in detecting subtle differences in human movements.  It would be interesting to extend studies 

to movements that are very different and analyze the results in terms of tree structure and how latent 

space variables describe differences between very different movements.  Additionally, it would be 

interesting to test the proposed approach on other kinds of signals, like EMGs to determine if there is 

sensitivity to the data signal domain.   While we did show in our synthetic dataset that the proposed 

approach has some resiliency to noise it would be interesting to see how it fares against signal 

characteristics in different domains. 
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