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Abstract

This study expands the environmental sustainability paradigm of reverse supply chains. The 

study examines the notion of closed-loop supply chains and suggests the use of the term in 

academia and business is too limited from a sustainability perspective. Three case examples in 

automotive remanufacturing were chosen to represent a global, multi-tier industry with 

documented circular economy strategies. A simple conceptual framework is developed that 

bridges different concepts of “loops” at whole product, component and material levels, and 

which is then used to show that closed-loop supply chains that focus on OEM activities appear to 

overlook alternative models of reverse supply chain loops. The study considers how these 

alternative loops contribute to environmental sustainability by looking at market dynamics and 

relations between business actors in supply chains in automotive remanufacturing. Alternative 

loops may contribute to product displacement activities in the market and thus provide positive 

environmental and resource results. The narrow focus on “closed loops” in supply-chain research 

and industry simplifies potential benefits and weaknesses, and overlooks the contribution of 
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“open loops” in supply chains, which enable business innovation and can improve sustainability 

outcomes in product and material supply chains. This article fills a void in supply chain 

management research and argues for a more adaptive management approach to reverse supply 

chains for end-of-life products.

 

Keywords: closed-loop supply chains; sustainable supply chain management; industrial ecology; 

circular economy; remanufacturing; recycling

1 Introduction

Remanufacturing is an important industry that is receiving new attention in circular economy 

discussions (USEPA, 2016). In the largest remanufacturing nation, the USA, remanufacturing 

was valued at USD 43 billion in 2011 (USITC, 2012). Remanufacturing prolongs use of returned 

used components – so called “cores” – that undergo a manufacturing-like process of 

disassembly, cleaning, part replacement, assembly and testing including quality controls to 

provide a “good as new” product (APRA Europe, 2014; Lund, 1984) that sometimes exceeds the 

original conditions (USITC, 2012). Without remanufacturing, a new product would be necessary 

to fulfill the need. Although reuse is usually assumed to reduce environmental impacts (Lund, 

1984), Cooper and Gutowski (2017) argue the sustainability of reuse activities depends on 

whether second use capitalizes on technological developments that reduce energy consumption 

during the use phase. Similarly, remanufacturing of automotive components leading to an 

extension of life of the product (e.g., the automobile) may not necessarily reduce overall energy 

consumption, for example, when a used vehicle emits more greenhouse gas over its extended 

lifetime than that of a new vehicle. 
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Previous research (Kalverkamp et al., 2017; Kalverkamp and Raabe, 2017) discovered 

that independent remanufacturers, especially those not tied to an original equipment 

manufacturer (OEM), will sometimes manage reverse supply chains (SCs) in a manner that is 

different than regularly suggested by literature or in innovative ways that increase longevity of 

the remanufactured components in ways not considered by OEMs. Prior research emphasis on 

OEMs as necessary for the success of closed-loop supply chains (CLSCs), and the general 

assumption that CLSCs, de facto, “are sustainable” (EMF, 2013) was put into question when 

interviewees identified situations that differed from the CLSC-concept in terms of market 

practices and product innovation. 

This article aims to uncover this “missing link”. First, we review knowledge from two 

fields: supply chain management (SCM) and industrial ecology (IE), to look at the idea of 

“loops”. This is the first contribution of this study: the term “loops” has been widely used across 

both fields, though there appears to be a lack in the common understanding, leading to 

misconceptions of the environmental sustainability of material loops. We further explore these 

ideas using three cases of reverse supply chains in the automotive industry. In our results, we 

question the assumption that “closed loops” at the single firm level are the sole form of reverse 

supply-chains in an environmentally sustainable circular economy. Our results question whether 

the greater managerial advantage of OEMs over independent actors in CLSCs leads to better 

environmental outcomes. To reduce net environmental impacts, we conclude that it is most 

important: a) to displace primary production of raw materials; and, b) to innovate at the product 

level to improve performance and longevity. Both open loops and closed loops can achieve these 

objectives, therefore, we advocate for a more differentiated view on loops in supply chains.



ACCEPTED MANUSCRIPT

4

2 Background

Closing the loop can occur at global, national, regional and local levels. Reverse supply chains 

can operate at the same scales as do production and distribution in forward supply chains. Hence, 

the question whether a loop is closed can hardly be answered a priori (Lyons 2007). Moreover, a 

company’s motivation to close the loop may rely on business considerations rather than on 

resource sustainability (Stindt et al., 2016). For example, a company may utilize reverse logistics 

to establish entrance barriers to competitors that make use of the company’s used products (Esty 

and Porter, 1998; Stindt et al., 2016). Therefore, such CLSCs may not actually reduce the 

environmental impact. However, a reverse SC system where a third party takes advantage of 

waste streams from forward SCs or from leakage from an OEM CLSC may achieve beneficial 

reuse, remanufacture or recycle. The complexity of closing loops from the product end-of-life or 

end-of-use can be seen from a life cycle management perspective. Reuse, recycling and recovery 

can be seen as a continuum of “cascade use”, which entails implications for the management of 

according systems of SC loops (Kalverkamp et al., 2017).

Drawing from the literature in SCM and IE, supply-chain activities can be mapped at 

three levels: product, component and material (Figure 1). This framework served as a basis for 

our case selection (section 3 and 4). Our mapping considers the context of circular economy and 

environmental objectives. The product/component/material hierarchy emphasizes increasing 

value-added and economic utility, consistent with cradle-to-cradle (McDonough and Braungart, 

2002) and eco-efficiency thinking (Young et al., 2001). It also aligns with the popular “circular 

economy system diagram” from the Ellen MacArthur Foundation that illustrates possibilities for 

enhanced flows of goods and services, covering both “technical and biological materials” (EMF, 

n.d.). 
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Figure 1: Framework for this research mapping actors involved in supply chains that close loops across 
the hierarchy from materials to components to products. Industrial ecology loops (in green) focus on 
physical cycles; whereas supply chain management loops (in blue) consider who are the business actors; 
the role of rather independent actors in reverse supply chains and their sustainability contribution 
remains unclear (research gap outlined in sec. 2.1; dashed grey box).

As can be seen in Figure 1, whereas industrial ecology emphasizes physical life-cycle 

loops, supply chain management focuses on business actors in production loops. Industrial 

ecology considers different scales, for example in life cycle assessment, at the product level and 

often focusing on material recycling loops in particular, with more recent attention to component 

remanufacturing (see for example the review by Cooper and Gutowski, 2017). For automotive 

systems, in supply chain management one focus is component remanufacturing SCs. Looking at 

the circular economy discussion, we find that the language of “closed-loops” is often favored 

(see for example Ellen MacArthur Foundation). In the sense of a state-of-the-art overview, the 

following sections elaborate on concepts of loops from the separate perspectives of supply chain 

management (SCM) (section 2.1) and industrial ecology (section 2.2). Thereby, these two 



ACCEPTED MANUSCRIPT

6

sections also clarify the research gap as indicated in Figure 1 (grey dashed box on the right of the 

circle, i.e. the reverse part of the supply chain). We then draw lessons from these different 

perspectives (section 2.3). 

2.1 Sustainable supply chain and closed-loop supply chain management

In production systems the flow of materials or products is perceived as forward oriented: towards 

the end-customer. However, loops in the SC are often presented as “reverse”, including feedback 

of information, include physical loops return products from the customers back to the OEMs, for 

warranty, repair, waste disposal, and recycling (Guide et al., 2003; Östlin et al., 2008). Reverse 

supply-chains are a key area of study for supply-chain sustainability. Sustainable supply chain 

management (SSCM) incorporates the “triple bottom line” into traditional SCM, although 

different approaches exist (Seuring and Müller, 2008). The CLSC approach complements SSCM 

by looking at reverse supply-chains (Brandenburg et al., 2014; Seuring, 2013). 

A CLSC is commonly defined as “the design, control, and operation of a system to 

maximize value creation over the entire life cycle of a product with dynamic recovery of value 

from different types and volumes of returns over time” (Guide and van Wassenhove, 2009: 10). 

This perspective excludes, for example, secondary markets for retail goods, which could be 

considered in a “wider definition of closed-loop supply chain management” (Guide and van 

Wassenhove, 2009). 

In general, CLSCs consider loops that go back to the same company, usually in an OEM-

dominated SC network. Yet CLSCs are complex systems, which rely on reverse supply-chain 

operations with numbers of independent actors, which could be wholesalers, retailers, 

distributors or final customers. Therefore, the ability of one single actor to actually “control” the 

whole CLSC is limited (Guide and van Wassenhove, 2009). The term CLSC is further used to 
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describe loops where third parties take advantage of returned or disposed products or 

components (Majumder and Groenevelt, 2001). Especially in remanufacturing SCs, independent 

remanufacturers take advantage of either OEM forward SCs or leakage from OEM CLSCs (Kim 

et al., 2010), for example, due to limitations in the product acquisition management (Abbey et 

al., 2015) or due to independent remanufacturers intercepting cores (Ferrer and Swaminathan, 

2006; Saavedra et al., 2013). In some cases independent remanufacturers are contracted by 

OEMs to perform remanufacturing of components that the OEMs have retrieved and which 

remain OEM property throughout the remanufacturing process (Lind et al., 2014; Lund, 1984).

To reduce management efforts in CLSCs, leasing and renting business models have been 

developed to work without a transfer of ownership, and incentive-based approaches such as 

deposits to encourage the reversal of transfer of ownership. Such approaches and product service 

systems are commonly suggested in circular economy discussions (e.g. EMF, 2013). From a 

business model perspective, Agrawal et al. (2012) ask whether leasing is greener than selling and 

conclude that the assessment depends on the product’s durability and its impact during the use 

phase. Furthermore, the size of secondary markets and product’s utility value can influence the 

environmental impact of remanufacturing (Yalabik et al., 2014). 

The complexity of CLSCs leads to optimization challenges, usually with a focus on the 

SC owner. This includes the optimization of return flows (Dutta et al., 2016; Kumar et al., 2017) 

and general improvements of network and production planning (Gaur et al., 2017; Polotski et al., 

2017). Although some studies address competition in reverse channels (Ferguson and Toktay, 

2006; Ferrer and Swaminathan, 2006; Majumder and Groenevelt, 2001), for example, 

competition between reverse channels to serve the OEM (Liu et al., 2017; Taleizadeh et al., 
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2018) or regarding pricing of new versus (independently) remanufactured components (Abbey et 

al., 2015). 

In our review, we did not identify CLSC studies focusing on independent competitors 

who operate as primary actors in reverse supply chains (part of the research gap as indicated in 

Figure 1). Typically, researchers aim to understand how OEMs can best manage competition by 

independent actors (e.g., through pricing, acquisition strategies, and business models). In more 

empirical studies, independent actors do come to the fore, though research has not necessarily 

focussed on their potential competition to the OEM but on their contribution to remanufacturing 

(e.g. Saavedra et al., 2013), independent actors in reverse SCs may be an important driver for 

OEMs to establish CLSCs for business reasons (Stindt et al., 2016). When the OEM does not 

consider closed-loop activities, independent actors operate in what Prahinski and Kocabasoglu 

(2006) referred to as “open-loop systems” in reverse SCs, whereas others have framed such 

independent activities outside OEM control as “business lost to unorganized sectors” 

(Bhattacharya et al., 2018). 

CLSCs provide simultaneous opportunities for economic and environmental benefits 

(Difrancesco and Huchzermeier, 2015; Guide and van Wassenhove, 2009). Nonetheless, CLSC 

models focus mostly on financial optimization, which questions the common assumption that 

CLSCs are sustainable “by definition” (Quariguasi Frota Neto et al., 2010). Although a recent 

study on CLSC profitability merging the remanufacturing SC with the manufacturing of new SC 

to produce a “hybrid component” may provide ground for more environmental sustainability 

(Bhattacharya et al., 2018). Research has further considered factors such as energy use (Bazan et 

al., 2017) and LCA data into the CLSC model (Quariguasi Frota Neto et al., 2010; Sahebjamnia 

et al., 2018). 
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The term CLSC covers a wide range of different supply chain designs aiming at product 

(and component) recovery usually with the intention of value recovery. However, OEMs may 

further use CLSCs to corner markets hence to limit and control potential competition by 

independent remanufacturers (Ferguson and Toktay, 2006; Kalverkamp and Raabe, 2017; 

Lebreton, 2007). The latter provides an example where the primary purpose of CLSCs is the 

preservation of the market value of new products and not the value recovery from used products. 

Such practice may be relevant for OEMs, protecting their business interest, though not for 

independent remanufacturers depending on the supply of cores. This is one reason why the term 

CLSC in combination with the assumption of sustainability may be misleading as suggested by 

the research gap indicated in Figure 1. Alternative and complementing terminology may help to 

better distinguish between SC types and their contribution to sustainability. With the “open-loop 

system” (Prahinski and Kocabasoglu, 2006) in mind, the remainder of this section explores 

additional perceptions of loops and how they relate to SCM preparing for the examination of 

loops and their environmental sustainability potential in practice. 

2.2 Loops in industrial ecology 

In industrial ecology and life cycle assessment (LCA), material-loops are seen in physical terms; 

although recent critical-thinking in LCA research has incorporated more on market dynamics 

(Nilsson-Lindén et al., 2014). Several concepts from LCA relate to loops in SCs: inherent 

properties, functional recycling and displacement. 

A significant literature has focused on environmental benefits of recycling; however, the 

same principles are relevant to remanufacturing. The international standards on LCA methods 

explicitly consider closed and open material loops (ISO 14044 2006; ISO 14049 2000) and refer 

to the notion of “inherent properties of materials” to distinguish modelled recycling modes. ISO 



ACCEPTED MANUSCRIPT

10

defines situations where inherent properties are preserved as closed-looped recycling. Where 

inherent properties of materials are not maintained, the recycling is classified as open-loop. The 

idea of inherent properties translates to the idea of quality or value provided by materials 

(Dubreuil et al., 2010). However, the ISO definitions are not particularly clear and their 

interpretation continues to cause confusion regarding the costs and benefits of material recycling 

(see for example the comments of Geyer et al., 2016). A more useful concept is “functional 

recycling” (Graedel et al., 2011), which builds upon the idea of inherent properties introduced in 

the ISO standards. Functional recycling occurs when materials are recycled in a manner that 

retains their engineering characteristics and material properties. Notably, the overall levels of 

functional recycling of industrial materials is disappointing, with few material commodities 

exceeding a rate of 30% (Graedel et al., 2011). 

Related to functional recycling is the idea of “displacement”, which refers to substitution 

of primary material by secondary material. Displacement is necessary for environmental and 

resource benefits to incur (Atherton, 2007; Dubreuil et al., 2010; Geyer et al., 2016; Weidema, 

2017). Geyer et al. (2016) make three observations:

1. That environmental benefits are possible only if recycled material displaces primary 

material production, 

2. That multiple recycling in a closed material loop is not, per se, environmentally 

beneficial, 

3. That the distinction between closed- and open-loop material recycling is not helpful to 

environmental objectives.

We extend this thinking to suggest that displacement is just as important to other circular 

economy strategies like reuse of products, components and materials, and life-extension 
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approaches like remanufacturing and repair. Importantly, factors that determine displacement are 

both physical and economic, and market dynamics in supply-chains are important and complex 

(Geyer et al., 2016; Weidema, 2017). Depending on market dynamics, negative environmental 

consequences might even arise as a market consequence of improved recycling or reuse 

activities: the “circular economy rebound” effect (Zink and Geyer, 2017) results whereby the full 

positive effects associated with recycling and reuse are not realized because there are increased 

levels of consumption and production.

2.3 Openness in supply chain loops

Our review of CLSCs shows product and material flows leaving CLSCs to independent 

third parties are understudied. There is little in the literature on the environmental sustainability 

of reverse logistics, other than for closed-loop supply chains. Because of the preference for 

closed production loops managed by OEMs who control product knowledge and market access, 

in CLSC research, the potential of SCs that close physical loops yet maintain business openness 

has been overlooked. Nonetheless, we observe that this activity in the market dynamics of 

automotive components that are reused, remanufactured, or sent for material recycling or 

recovery. 

Based on our previous research (Kalverkamp et al., 2017; Kalverkamp and Raabe, 2017), 

SCs characterized by open ownership is driven by small independent remanufacturers that 

usually do not have contract-relationships with OEMs. However, these independent actors 

achieve process and product innovations that present potential for environmental benefits. They 

find their own core supplies and they innovate at the component-level, for example to increase 

product longevity (see case II; Kalverkamp et al., 2017; Kalverkamp and Raabe, 2017). 

Although previous research on independent remanufacturers exists, and in some areas these 
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actors have substantial market shares, these firms are often relatively small, and occupy niches 

such as in automotive electronics or transmission remanufacturing (Weiland, 2012). 

The limited focus of supply-chain research and industry on “closed loops” may be 

simplified due to degrees of freedom and willingness to participate and innovate in CLSCs. The 

understanding of loops in SCs and the potential contributions of independent actors to the 

circularity in the automobile industry drives this research. Thus: we hypothesise that 

independent business actors who control reverse supply-chains can achieve positive 

environmental outcomes through business and technology innovation. 

Thus, we are interested whether different concepts of loops in SCs make a difference, and 

if so, whom their main actors are, and eventually, whether such SCs provide additional 

opportunities for innovation and sustainable outcomes. Our study looks at market dynamics and 

relations especially between independent business actors. We seek to understand how SCs of 

independent remanufacturers and other independent actors may contribute to product 

displacement activities in the market to provide positive environmental and resource results.

3 Methodology

We employed an explorative, mixed-methods research approach with elements of grounded 

theory to examine loops in SCs. Three exemplary cases are used to examine the gap at each of 

the three levels of product, component, and material (see Figure 1). Each case is based on a site 

visit and focal interviews with representatives of the corresponding business. The case at the 

product level is an exception because in automotive remanufacturing, the core is usually a 

component and not the entire product (specific characteristics are explained in the respective 

sections). 
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For this study, the cases were selected so that each represents one level of the outlined 

product-component-material hierarchy (see Figure 1). The empirical data for the first case 

derives from a novel interview and side visit conducted in 2015. The interview data for the 

remaining two cases derives from previous studies covering a total of 39 interviews with experts 

and practitioners, side visits at remanufacturing companies, auto dismantlers/recyclers, and core 

brokers, to study SC practices in automotive remanufacturing more comprehensively 

(Kalverkamp, 2018; Kalverkamp et al., 2017; Kalverkamp and Raabe, 2017). Interviewees were 

usually involved in the management and operations of the supply chain of cores. Open-ended 

questions covered several themes such as the market for used parts, i.e. cores, and spare part 

availability, stakeholder influence (such as by direct and indirect competitors in remanufacturing 

and dismantling), and impacts of digitalisation, amongst others. For the previous studies, these 

interview data were coded and clustered. Both raw data and processed data were consulted again 

for this study to deduct findings about the design of component loops in automotive 

remanufacturing. In total, this resulted in five case-specific interviews and three side visits for 

the basis of the cases; the entire interview data provides valuable background and contextual 

information on the cases. Interviewees and company names are anonymous. 

To test our hypothesis, we focused on three research questions when looking at the cases. 

These questions address the research gap identified in section 2 regarding the perspective on 

loops, the role of independent actors in reverse supply chains and the environmental 

sustainability potential of “alternative loops”: 

1. What manifestations of reverse supply-chain “loops” in SCs can be identified at product, 

component and material levels? 
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2. What related differences emerge regarding SCs separate from OEM control, changing 

market context and innovation when comparing more independent SCs to “typical” 

CLSCs?

3. Are “loops” controlled by independent actors favourable from an environmental 

perspective? 

In each of our three cases we employed a conceptual environmental assessment based on the 

framework provided by Cooper and Gutowski (2017) to illustrate the potential resource and 

environmental impacts across the life cycle. Although this is not a life cycle assessment, the 

results provide an approximate assessment of the environmental impact across the life cycle of 

the product or material. Reuse comprises both the impacts caused by processing and by re-using 

an item for an additional time; this assessment further considers whether products are powered 

(e.g. passenger cars) or unpowered (e.g. clothes) (Cooper and Gutowski, 2017). For this study, 

this differentiation needs to be carefully evaluated because also unpowered spare parts facilitate 

the life extension of the powered product, i.e. the passenger car. 

Our cases look at remanufacturing in the modern automotive sector. This industry is 

global, relies on structured multi-tier forward supply-chains run by strong OEM companies, and 

has developed effective end-of-life management systems including recycling. The automotive 

industry today is particularly high-profile in circular economy strategies (see for example 

USEPA 2016), partly because the sector already achieves high levels of end-of-life product 

recovery, there is significant remanufacturing of automotive components conducted by OEMs, 

contracted and independent remanufacturers, and the majority of original materials are efficiently 

recycled. Sustainability considerations in this domain mostly focus on closed-loop supply chains 

at the levels of products and components (c.f. section 2.1). At the material level, both closed- or 
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open-loops are discussed though mostly with respect to the environmental assessment and 

regarding rebounds, for example, due to market dynamics (c.f. section 2.2; considerations not 

further discussed here are the feasibility of recycling technologies and environmental 

regulations). With reference to Figure 1, the three cases cover SCs dominated by independent 

business actors and draw attention to both physical flows and business actors, and to the 

interaction of market and supply-chain complexities. By taking this perspective, the cases expand 

the scope of environmental sustainability in reverse supply chains in the automotive domain. 

4 Results: examples of loops in automotive remanufacturing 

4.1 CASE 1 - Reuse of products: product life extension through vehicle 

conversion

This case highlights the unpredictability of globally intertwined SCs and their environmental 

impacts by looking at a used-vehicle export from Japan to Chile. In large automotive markets in 

developed countries, numerous used vehicles are recycled or reused in local or export markets. 

Japan, in contrast to the US, Canada and the EU, does not have a culture that supports significant 

second-use within the country (Zaun and Singer, 2004). Japan is estimated to export 

approximately 1 million cars per year (Kumar and Yamaoka, 2007), and most of these vehicles 

are approx. only 6-7 years old (some only 4 years according to local sources) hence having 

considerable useful life remaining. With a transfer of ownership, vehicle reuse regularly occurs 

in forward SCs, also from CLSCs based on leasing vehicles are often resold (Lacourbe, 2016). In 

either case, the transfer of ownership may result in exporting into a different region, which 

involves different legal obligations and different repair and recycling infrastructure. 
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In 2015, the top 10 countries importing right-hand drive used-vehicles from Japan 

included the “left-hand drive” countries United Arab Emirates and Chile (JEVIC, 2015). We 

investigated the case of Chile in more detail to understand the fate of those right-hand drive 

vehicles. The northern city of Iquique hosts the free trade zone ZOFRI – Zona Franca de Iquique 

(ZOFRI, 2017). Low trade costs at ZOFRI, combined with a general demand for low-cost private 

transport in the region (including Peru, Bolivia and Paraguay), foster the demand for used-

vehicle imports. In the port’s direct vicinity, we located small “cambio volante” workshops 

where mechanics convert vehicles from right-hand drive to left-hand drive. Figure 2 shows two 

steps of the conversion process. This situation may raise concerns, such as safety of converted 

vehicles. Notably Japanese exporters provide conversion kits or full conversion services 

conducted in Japan before export (e.g., www.japan-partner.com/LHD-conversion.php), which 

indicates some formality in the conversion process. 

Figure 2: (a) Converted cabin of a former right-hand drive; (b) converted dashboard before receiving 

new PVC coating (pictures taken by the authors).

Vehicle reuse has potential for resource and value preservation. The combination of 

materials in the final product, together with invested labor, time and energy mark the value 
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preservation potential of reused vehicles (Östlin et al., 2009). An extended product lifetime may 

displace the production of new products. However, there are limits to the displacement potential 

and vehicle reuse may cause net negative effects on the environment, as it extends the life of 

outdated technology. 

Our assessment of the environmental burden considers average lifetimes and mileage of 

the vehicle as well as the burdens of production and recycling. If the vehicle has not yet reached 

the average mileage where the environmental burden of an extended usage is greater than the 

production and use of a new vehicle, ten years according to Skelton and Allwood (2013), reuse 

should lower the environmental burden due to the displacement of virgin production. For the 

Japanese car, this optimal length would likely require a second use. However, LCA studies on 

life-extensions of vehicles regularly conclude that there is no clear indicator for when the 

environmental impact of production and usage of a new vehicle is lower than an extended usage 

(e.g., Kagawa et al., 2011; Spielmann and Althaus, 2007), as this depends on different 

technological development (e.g. fuel efficiency), availability of recycling technologies, and user 

behavior. For products with a high rate of innovation, despite the burden of material and 

manufacturing, it may be desirable to have a shorter turnover that does not delay upgrading to 

cleaner technologies (Allwood et al., 2012).

Reuse of younger vehicles is reasonable from an environmental and an economic 

perspective. The export of vehicles may provide additional life cycles, displacing older vehicles 

in the importing countries with newer technology. However, the contribution by exports to a 

lower environmental burden is limited due to potentially growing vehicle fleets in countries 

receiving used vehicles (Davis and Kahn, 2010) and to a lack of recycling infrastructure 

(Hagelüken, 2007). In the case of vehicle exports from Japan to Chile, the “cambio volante” SC 



ACCEPTED MANUSCRIPT

18

provides the opportunity to reach the ideal lifetime. Figure 3 depicts a conceptual environmental 

assessment for the Chilean case and shows how life extension could improve the environmental 

footprint. However, excessive supply and poor recycling infrastructure in Chile limit the 

environmental benefit. 

Figure 3: Environmental assessment of the vehicle reuse in the Chilean “cambio volante” case (adopted 
from Cooper and Gutowski, 2017). The difference between the dashed and the solid orange lines indicate 
the additional environmental burden due to transportation and conversion; the distance between the 
orange and the blue line above T2.1 indicates the net reduction of environmental burden due to 
displacement. Blue: time or energy inputs of new product; orange: time or energy input during reuse; 
E0/new = initial/new vehicle environmental burden; Ereuse = reuse in Chile; Egain = net reduction of 
environmental burden; Tx = use phase/s; T1 = vehicle lifetime in Japan; T2.1 = vehicle reuse lifetime in 
Chile (ideal); T2.2 = lifetime in Chile exceeding the ideal; Tideal = T1+T2.1 (e.g., ten years).
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4.2 CASE 2 - Remanufacturing of components: automotive parts

This case addresses reuse at the component level of a vehicle, which extends the lifetime of the 

entire vehicle including other still usable parts (Quantis, 2013). Reuse of automotive components 

is widely practiced in the industry. Vehicle dismantlers remove and sell components for direct 

reuse “as is”. In some countries, collision shops repair vehicles with reused parts. In North 

America, “interchange systems” facilitate reuse by supporting repair shops with databases that 

identifying interchangeable auto parts (Kalverkamp, 2018). 

In contrast to direct reuse, automotive remanufacturing focusses on mechanical, 

mechatronic and electronic components, estimated in the US with a market size of USD 7.1 

billion in 2011 (USITC, 2012), which is more than double the corresponding market in the EU 

(Weiland, 2012). Notably, remanufacturing can improve original component design (e.g., ERN, 

2015; USITC, 2012 for automotive components, or Cooper and Gutowski, 2017 more generally).

Direct reuse and remanufacturing loops can be established at dismantling facilities or by 

remanufacturers who establish reverse logistics in order to circulate cores (Östlin et al., 2008). 

Even OEMs require supply from independent SC actors because the number of returns and the 

yield from their immediate CLSCs is usually insufficient for the targeted outputs (Saavedra et al., 

2013). 

Our case examines an independent remanufacturer who takes advantage of cores supplied 

through dismantling SCs to support its CLSC. The market for electronics and mechatronics 

remanufacturing is rapidly growing and currently independent remanufacturers seem to dominate 

the market. Figure 4 shows the loops for the case as an excerpt from Figure 1. Authorized repair 

shops are supposed to return exchanged electronic control units to the OEM, although the OEM 

does not remanufacture these components. The OEM uses component exchange as a control 
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mechanism to prevent reuse or remanufacturing. In addition, we learned from our set of 

interviews that OEMs are usually not interested in improving product design through 

remanufacturing, for example in the case of contracted remanufacturing. 

Market dynamics created by customers seeking alternatives to high-priced OEM spare 

parts together with SC loops initiated in the aftermarket set the stage for innovation by 

independent market actors. The green arrows in Figure 4 highlight transfers of ownership to the 

independent remanufacturer who is central to the loop. The studied independent automotive 

remanufacturer regularly remanufactures on a “same part” basis, essentially running its own 

CLSC, which means that each customer’s faulty component returns to the same customer. Such 

one-on-one exchange is often necessary because OEMs program mechatronic and electronic 

components to be used in one particular vehicle only. The remanufacturer provides other 

components on an exchange basis, and some of these components need reprogramming by an 

OEM-authorized dealership after installation. Thus, the remanufacturer combines supply from 

the open-loop system with the exchange system which corresponds to the typical CLSC.

The remanufacturer also exploits weaknesses in OEM components, which the 

remanufacturer addresses with improved designs. For example, in the case of a regularly 

malfunctioning throttle body, the remanufacturer replaced a potentiometer that is used as a 

position sensor in the throttle body with a Hall-effect sensor. The remanufacturer claims that this 

change increases the longevity of the throttle body due to less wear and tear. Other such 

examples were presented and also the case that an OEM wasn’t interested in implementing such 

longevity improvements through contracted remanufacturing. 
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Figure 4: A component remanufacturer establishes a closed-loop supply chain from the original supply 
chain hence enables an alternative closed-loop (green loop). Sometimes reverse logistics are used to 
prevent loops from being closed at the product or component level (red and blue loops).

This remanufacturing case shows once again that the potential for resource and value 

preservation is not limited to CLSCs controlled by OEMs. A life extension through 

remanufacturing is not necessarily environmental friendly per se, nor is it generally better than 

recycling. This was illustrated for remanufacturing an old diesel engine compared to a new 

engine complying with higher emission standards (Zhang and Chen 2015), and in line with 

Cooper and Gutowski’s (2017) general findings on reuse and remanufacturing. The example of 

remanufactured diesel engines highlights the case-by-case analysis that is needed, and for 

vehicles that the full assessment of production and use phases (and reuse and recycling phases) is 

important. For the remanufactured throttle body, our analysis suggests a more sustainable life 

extension. This phenomenon has the distinct potential to displace new vehicles sales and virgin 

raw material production.
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Based on this logic, Figure 5 depicts the environmental impact for the presented case of 

the mechatronic vehicle component that is improved through remanufacturing. Although limited 

to specific types of components this case highlights the potential of remanufacturing by 

independent actors to increase longevity through innovation. At some point, however, it may be 

better from an environmental perspective to replace the entire vehicle due to technology 

improvements that lower the environmental impact substantially.

Figure 5: Environmental assessment of automotive component remanufacturing with improvements on 
the longevity of the component (adopted from Cooper and Gutowski, 2017). The customer has three 
replacements options for maintenance: direct reuse, remanufactured, or new component, each with 
different lifespans T2.x, namely T2.reuse; T2.reman; T2.newComp. Direct reuse leads to the lowest additional 
environmental impact, though a direct-reuse component is more likely to fail earlier than a 
remanufactured or new component. Therefore, a replacement of the entire vehicle may happen earlier 
than in other scenarios (orange and dashed grey lines). The remanufactured component starts with a 
higher environmental impact than a direct reuse due to additional material and energy inputs, though the 
remanufactured component has a better longevity and therefore displaces the vehicle replacement further 
into the future (green lines) than a new component (blue lines).
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4.3 CASE 3 - Recycling of material: Copper and the competition between reuse 

and recycling

This case looks at how SCs for component reuse and material recycling intersect (see Figure 1), 

using the case of copper recycling from alternators. Business practices and legal requirements 

foster different recycling routes in different regions (see case 1). Car producers in the EU are 

responsible to provide take-back infrastructure for end-of-life vehicles and vehicle recycling 

must reach defined quotas (EU, 2000). Raw material prices are an important driver for the 

recycling of vehicles. Usually, dismantlers received higher prices for a component that is sold 

through a broker for reuse than for scrap for recycling. However, if there are high raw material 

prices or high costs for remanufacturing, prices for both cores and scrap metals may reach 

similar levels. 

Alternators are car components with a high content of copper, a metal that reaches high 

yields in recycling (Graedel et al., 2011). Between December 2010 and July/August 2011 copper 

prices reached an all-time high. As shown in Figure 6 the daily spot price for primary copper 

spiked above USD 10,000 per metric ton (LME, n.d.), resulting in direct price competition 

between the core and its copper value. However, according to recycling experts, the prices for 

secondary copper depend also on the individual recycler. 
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Figure 6: Monthly copper price in USD per metric ton (2003 - June 2017), black line shows virgin metal 
price, grey line is 80% and represents lower end of a price range for good quality copper scrap. The red 
circles indicate the estimated price offered for the copper content in sorted alternators (copper price data 
from the IMF: www.imf.org/en/data; scrap price 2011 from interview and 2017 from 
http://www.computerplatinen.de and http://www.schrottankauf-bitterfelderstr23.de).

During the peak of primary copper prices, remanufacturers experienced pressures from 

competing buyers. Based on expert knowledge, we estimate that an average alternator weighs 5.5 

kg and contains 0.7 kg of copper. In 2011, when the copper prices were at their peak, a ton of 

sorted alternator scrap reached approx. EUR 800 (or USD 1100), approx. EUR 4.4 per alternator 

core. From a bin of alternators, which are not further separated by make or model, one alternator 

core is worth EUR 4.5-5.00. Prices for alternators vary, though an unsorted mix of alternators 

has much less value for a remanufacturer than for a material recycler. Therefore, when the prices 

for cores and for scrap metal reached similar price levels, dismantlers may have sold to 

customers that have lower requirements regarding the degree of component separation, and 

therefore lower cost to the dismantler. 

Despite some uncertainties in the data, such prices for used alternators would have 

challenged core brokers. Nevertheless, according to the interviewee, dismantlers and other 

potential suppliers had difficulties to collect the necessary amounts of alternator scrap. The 

interviewee did not see a longer influence of the copper price on the company’s business with 
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dismantlers as core suppliers. The reason for this low impact may be rooted in the relatively 

short period the copper price remained above 9,000 USD per ton. Nevertheless, the interviewee 

mentioned that buyer competition due to both raw material prices and a different estimation of 

the residual value does influence the sales decisions of the dismantlers. Besides material 

recyclers and remanufacturers, buyers that are interested in cores that can be sold as “repairable” 

parts (e.g. to developing regions) further influence the buyer’s competition hence add to the 

market dynamics. 

The case of alternators indicates that the potential for resource and value preservation 

does not necessarily correlate with the environmental effects of according “loops”. In this case, 

the perspective changes from the product and component level to the material level, which 

affects the perspective on the environmental assessment. 

On the one hand, CLSCs provide good opportunities to generate necessary amounts of 

used products that can then be reused or recycled. On the other hand, once vehicles reach a 

recycling SC, the actors are typically independent and therefore decide individually whether the 

recycling route will be an open- or closed cycle. Figure 7 depicts the environmental assessment 

at the level of material recycling for the situation where a decision for recycling would be a 

decision against remanufacturing. Although any decision at the material level may displace 

primary production of materials, if the material-containing component is remanufactured, the 

displacement effect may be much greater than with recycling due to the displaced production of 

a new component and the additionally displaced material from the product whose lifetime is 

extended. Again, the assessment at this level depends on the effects on the whole product and 

hence is case-dependent. Therefore, the independent decision making at this point may be better 

than the attempt to define and enforce particular recycling (or remanufacturing) routes. 
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Figure 7: Environmental assessment of material recycling which increases the longevity of the material 
though remanufacturing would displace the environmental impact of material recycling (adopted from 
Cooper and Gutowski, 2017). Most outputs from automotive recycling enter open material cycles; e.g., 
functionally recycled copper from alternators is most likely used in many different products hence may 
contribute to very different displacement effects based on the newly produced product. The colored 
arrows depict the material perspective; the greyish lines in the background depict the reuse and 
remanufacturing perspective. Ex = different “re”-options: Erecycling = energy input for alternator/copper 
recycling; Eremanuf. = energy input for alternator remanufacturing. Tx.Cu = lifetime of copper in a 
product/component; T2.reman = lifetime of the remanufactured alternator incorporating the copper.

5 Discussion

This study asked whether “closed-loops” are essential for a sustainable circular economy and 

whether a more distinct consideration of independent actors in the context of loops in SCs is 

reasonable. Specifically, we hypothesised that independent business actors who control reverse 

supply-chains can achieve positive environmental outcomes through business and technology 

innovation. In answer to our first question on the manifestations of “loops” in SCs, we found in 

all three cases that an independent remanufacturer can establish its own reverse SC loops. In 

these cases, products do not return towards the OEM but instead toward the independent 

remanufacturer who maintains control in a more open production loop. In literature, also reverse 

SCs of independent actors are considered under the term CLSC, although many studies have an 
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explicit or implicit focus on the OEM as the central actor serving as the reference point for 

improvements and management decisions in the context of loops. Furthermore, the CLSC in the 

stricter sense implicitly focusses on the OEM as the central actor as it covers “design, control, 

and operation of a system … over the entire life cycle …” (Guide and van Wassenhove, 2009: 

10). In contrast, an independent remanufacturer is not involved in the initial design of the 

product lifecycle hence can hardly establish a CLSC in this strict sense. 

Following the observations made, and in answer to our second research question on the 

market context and innovation in independent SCs, independent and OEM-controlled reverse 

SCs often co-exist and may complement each other. For example, when OEMs compete with 

independent actors through remanufacturing or solely to maintain control over resources, or 

when cores are supplied stemming from the SC for vehicle dismantling. In the latter case, market 

dynamics affect the dismantling decision and sales of cores much more than in a leasing- or 

deposit-based reverse SC. However, some independent remanufacturers may rely on innovations 

in their former deposit-based reverse SCs to overcome barriers created by OEM-dominated 

CLSCs (Kalverkamp and Raabe, 2017). These differences may make it reasonable to have a 

complementing terminology differentiating SC types that close loops though with different 

characteristics of the actors and motivations involved.

Figure 8 presents the three cases using the “cascade use” framework (Kalverkamp et al., 

2017) and illustrates that independent actors and corresponding supply chains provide more 

opportunities for business and innovation to advance reuse (and recycling). Results show that 

these SCs of independent actors have the potential to displace primary production and thereby to 

reduce environmental impacts. This challenges the established assumption that CLSCs, per se, 

are the preferred model for SC sustainability. This finding is in line with current research in the 
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industrial ecology community on recycling (Zink and Geyer, 2017). We emphasize that a case-

by-case analysis is needed, as asserted previously (Agrawal et al., 2012) and requires both 

physical and market factors in the assessment (Yalabik et al., 2014). In fact, the literature 

suggests that environmental rebounds might occur resulting in unproductive looping (Skene, 

2017; Zink and Geyer, 2017). 

Figure 8: Open- and closed -loop supply chains and the complexity at the end-of-life of products or 
components (adopted from Kalverkamp et al., 2017).

In terms of the environmental impacts, and related to our third research question on 

“loops” controlled by independent actors, we suggest that SC models extending the perspective 

on CLSCs provide significant opportunity for business innovations and technological 

improvements, which in turn can provide lower environmental impacts. Due to the managerial 

oversight provided with CLSCs, including fewer intermediary actors and more direct supply 

routes compared to OLSCs, the CLSC model has perceived sustainability advantages—and is 

widely advocated (Difrancesco and Huchzermeier, 2015; EMF, 2013; Guide and van 

Wassenhove, 2009). However, independent remanufacturers, compared to OEMs, seem to have a 
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stronger motivation to improve remanufactured components and structure innovative market 

relationships. The focus on CLSCs ideally driven by OEMs because of their product knowledge 

and SC power is actually irrelevant to sustainability.

Some independent actors take advantage of forward SCs and leakage from traditional 

CLSCs to seize control of close loops that reduce environmental impacts. However, especially 

the motivation for product innovation during remanufacturing at the component level seems to 

relate negatively to the OEM-dependency of the involved actors. In addition, the corresponding 

SCs can result in better sustainability outcomes than an OEM-driven CLSC (especially if the 

CLSC is meant to corner markets). Therefore, we argue for a complementing terminology to 

distinguish different types of reverse SCs: the open-loop supply chain. This differentiation does 

not cover the environmental benefit of the SC though it allows distinguishing which of the SC 

types provides greater environmental gains.

An open-loop supply chain (OLSC) arises where the original company loses business 

control of its components after sale, yet the component is still “looped” back to an independent 

remanufacturer for resale. OLSCs look like CLSCs except that the business involvement of main 

actors remains open to the market. Third parties are integral to OLSCs and have more discretion 

to participate than actors in CLSCs. Open-loops allow independent actors to innovate and to 

adopt alternative reuse and recycling strategies; the production (remanufacturing) is open to 

independent actors taking advantage of such open-loops. Thus, we propose that an OLSC is a 

“system that maximizes value creation over the entire life cycle of a product including 

(re-)design, where the control and operation of the system, particularly reverse logistics and the 

remanufacturing process, is conducted by a diversity of business actors other than the OEM”. By 

drawing the concept of an OLSC, this studies contributes to theory and the discussion in 
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researcher on supply chain sustainability. Furthermore, the theoretical concept of an OLSC can 

help to develop more adaptive managerial approaches that respond to market forces, thus 

extending the established emphasis on OEMs in CLSCs.

Our results contribute to literature and to the understanding of environmental 

considerations in closed-loop concepts. Hence, they have implications for policy. From a policy 

perspective, the assumption of CLSCs being sustainable per se may lead to an underestimation 

of the contributions of actors supporting OLSCs. Policy makers should consider the role of 

(smaller) “independent” firms and carefully evaluate alternatives to mechanisms that favor 

OEMs or OEM-related actors. For example, policy makers should be cautious about taxes or 

subsidies that would benefit closed production loops because these overlook the equivalent 

sustainability potential of open-loop systems and may hinder significant market opportunities. 

Legislation should be designed to facilitate sustainability contributions regardless of particular 

business models. For example, legislation that facilitates reused parts in accident repairs may 

help the environment more than vehicle recycling quotas (such as in the EU) which aim to 

prevent material leakage though are difficult to enforce. 

This study contributes to the industry perspective since it entails managerial implications. 

The results may motivate companies to investigate the contributions of independent third parties 

to the overall SC. Concern that OEMs might limit participation of independent remanufacturers 

(Esty and Porter, 1998; Stindt et al., 2016) reinforces competitive behavior (Ferguson and 

Toktay, 2006), where biased business objectives may constrain sustainability benefits 

(Quariguasi Frota Neto et al., 2010). Using OLSCs, OEMs might identify ways to benefit from 

product improvements and open innovations. Well-designed and competitive licenses for reuse 

or remanufacturing of OEM products and components in third markets may develop a long-term 
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demand without the necessity to establish entire sales networks. Intellectual property rights 

already limit some reuse and remanufacturing, and OEMs should consider “open intellectual 

property” approaches that support broader sustainability objectives. Such considerations need 

further research and investigation to understand how businesses can balance impacts on 

themselves as well as environmental impacts. More proximately applicable are solutions such as 

the interchange systems for vehicle parts, as used in North America, that contribute to the 

efficiency of OLSCs to better match supply and demand between dismantlers and 

remanufacturers (Kalverkamp, 2018). Other industries and regions should look to and benefit 

from such solutions. Similarly, best practices from different industries may help to increase the 

efficiency of OLSCs and provide further study grounds as well. 

The main limitation of this study is that product reuse itself is limited in practice; 

therefore, the body of knowledge is restricted and thus demands careful examination be 

generalizations can be mace. The cases examined are each limited to their own scope, and 

together may not be sufficiently representative for the general arguments made. We modestly 

suggest that the industrial ecology community is essential in supporting a “paradigm shift” to 

accept open loops. The SCM research community is in a better position to advance and 

implement OLSCs in ways that are sensible to business. We encourage research in sustainable 

and closed-loop SCM, in related product lifecycle management, in LCA on OLSCs hence with a 

focus on independent actors.

The study’s contributions indicate future research directions. From a theoretical 

perspective, the industrial ecology and supply chain management communities may cooperate 

and exchange ideas. With regard to markets and policy, further research potential lies in the 

complexity of interdependencies between legislation and market dynamics with the particular 
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focus on the circular economy. Finally, not only industry but also research may benefit from a 

better understanding of how particular actors can benefit from more efficient activities through 

OLSCs. 

6 Concluding Remarks

We identified commonalities and differences in the idea of “closed-loops” between SCM and 

industrial ecology, to address our research objective. To explore the emphasis on CLSCs in SCM 

literature, we analysed three cases wherein independent actors control both physical flows and 

contribute to environmental sustainability by displacing primary production through product or 

component remanufacturing; sometimes accompanied by innovation at the component level. The 

cases demonstrated that market dynamics and innovations of independent actors create loops 

outside the immediate OEM control.

The cases have shown that “open-loop supply chains”, which are open to a diversity of 

business actors, may have certain market advantages and can provide sustainable outcomes. 

However, independent third parties involved in OLSCs may not be considered in CLSCs due to 

the system boundaries. Considering these third parties by extending the managerial perspective 

of CLSCs may further reduce the negative environmental impact of closed-loops. The motivation 

for innovation by independent actors indicates that sustainability improvements may require 

OLSCs facilitating the transfer of ownership outside of OEM-controlled CLSCs. While 

acknowledging the managerial potential of the CLSC, SCM should treat the OLSC and the 

CLSC equally when it comes to sustainability assessments.



ACCEPTED MANUSCRIPT

33

Acknowledgements

MK was financially supported by the German Federal Ministry of Education and 

Research (BMBF) in the Globaler Wandel research scheme (Grant no. 01LN1310A). Both 

authors were supported by the German Academic Exchange Service (DAAD) with funds from 

the Federal Ministry of Education and Research (BMBF). Except for supporting the research 

purpose, the funding sources had no involvement in any decision regarding this particular study 

(e.g. design, data collection, publication, etc.).

References

Abbey, J.D., Blackburn, J.D., Guide, V.D.R., 2015. Optimal pricing for new and remanufactured 

products. Journal of Operations Management 36, 130–146.

Agrawal, V.V., Ferguson, M., Toktay, L.B., Thomas, V.M., 2012. Is Leasing Greener Than 

Selling? Management Science 58, 523–533.

Allwood, J.M., Cullen, J.M., Carruth, M.A., 2012. Sustainable materials. With both eyes open ; 

[future buildings, vehicles, products and equipment - made efficiently and made with less 

new material]. UIT Cambridge, Cambridge.

APRA Europe, 2014. Automotive Parts Remanufacturing. Information about common 

definitions / wordings for the complete Remanufacturing Industry. 

https://cdn.ymaws.com/apra.org/resource/resmgr/European/Reman_Flyer_Web_2.pdf. 

Accessed December 18, 2018.

Atherton, J., 2007. Declaration by the Metals Industry on Recycling Principles. Int J Life Cycle 

Assessment 12, 59–60.

Bazan, E., Jaber, M.Y., Zanoni, S., 2017. Carbon emissions and energy effects on a two-level 

manufacturer-retailer closed-loop supply chain model with remanufacturing subject to 



ACCEPTED MANUSCRIPT

34

different coordination mechanisms. International Journal of Production Economics 183, 394–

408.

Bhattacharya, R., Kaur, A., Amit, R.K., 2018. Price optimization of multi-stage remanufacturing 

in a closed loop supply chain. Journal of Cleaner Production 186, 943–962.

Brandenburg, M., Govindan, K., Sarkis, J., Seuring, S., 2014. Quantitative models for 

sustainable supply chain management. Developments and directions. European Journal of 

Operational Research 233, 299–312.

Cooper, D.R., Gutowski, T.G., 2017. The Environmental Impacts of Reuse. A Review. Journal 

of Industrial Ecology 21, 38–56.

Davis, L.W., Kahn, M.E., 2010. International Trade in Used Vehicles. The Environmental 

Consequences of NAFTA. American Economic Journal: Economic Policy 2, 58–82.

Difrancesco, R.M., Huchzermeier, A., 2015. Closed-loop supply chains. A guide to theory and 

practice. International Journal of Logistics Research and Applications 19, 443–464.

Dubreuil, A., Young, S.B., Atherton, J., Gloria, T.P., 2010. Metals recycling maps and allocation 

procedures in life cycle assessment. Int J Life Cycle Assessment 15, 621–634.

Dutta, P., Das, D., Schultmann, F., Fröhling, M., 2016. Design and planning of a closed-loop 

supply chain with three way recovery and buy-back offer. Journal of Cleaner Production 135, 

604–619.

EMF, n.d. Circular Economy System Diagram. Ellen MacArthur Foundation. 

https://www.ellenmacarthurfoundation.org/circular-economy/interactive-diagram. Accessed 

December 5, 2017.

EMF, 2013. Towards the Circular Economy. Economic and business rationale for an accelerated 

transition. Ellen MacArthur Foundation. 



ACCEPTED MANUSCRIPT

35

https://www.ellenmacarthurfoundation.org/assets/downloads/publications/Ellen-MacArthur-

Foundation-Towards-the-Circular-Economy-vol.1.pdf.

ERN, 2015. Borg Automotive – Steering racks. https://www.remanufacturing.eu/case-study-

tool.php. Accessed December 19, 2018.

Esty, D.C., Porter, M.E., 1998. Industrial Ecology and Competitiveness. Journal of Industrial 

Ecology 2, 35–43.

EU, 2000. DIRECTIVE 2000/53/EC OF THE EUROPEAN PARLIAMENT AND OF THE 

COUNCIL of 18 September 2000 on end-of life vehicles. Official Journal of the European 

Communities 43, 34–42.

Ferguson, M.E., Toktay, L.B., 2006. The Effect of Competition on Recovery Strategies. 

Production and Operations Management 15, 351–368.

Ferrer, G., Swaminathan, J.M., 2006. Managing New and Remanufactured Products. 

Management Science 52, 15–26.

Gaur, J., Amini, M., Rao, A.K., 2017. Closed-loop supply chain configuration for new and 

reconditioned products. An integrated optimization model. Omega 66, 212–223.

Geyer, R., Kuczenski, B., Zink, T., Henderson, A., 2016. Common Misconceptions about 

Recycling. Journal of Industrial Ecology 20, 1010–1017.

Graedel, T.E., Allwood, J., Birat, J.-P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F., 

Sonnemann, G., 2011. What Do We Know About Metal Recycling Rates? Journal of 

Industrial Ecology 15, 355–366.

Guide, D.R., Harrison, T.P., van Wassenhove, L.N., 2003. The Challenge of Closed-Loop 

Supply Chains. Interfaces 33, 3–6.



ACCEPTED MANUSCRIPT

36

Guide, D.R., van Wassenhove, L.N., 2009. The Evolution of Closed-Loop Supply Chain 

Research. OR FORUM. Operations Research 57, 10–18.

Hagelüken, C., 2007. The Challenge of open cycles. Barriers to a closed loop economy 

demonstrated for consumer electronics and cars, in: Hilty, L.M. (Ed.), Recovery of materials 

and energy for resource efficiency. R'07 world congress, Switzerland, Davos, September 3 to 

5, 2007. Empa, Davos.

JEVIC, 2015. Export Statistics of Used Passenger Vehicle for 2015 (Top 10 Destinations). 

http://jevic.com/import-and-export/importing-exporting-from-japan/statistics/index.html. 

Accessed December 19, 2018.

Kagawa, S., Nansai, K., Kondo, Y., Hubacek, K., Suh, S., Minx, J., Kudoh, Y., Tasaki, T., 

Nakamura, S., 2011. Role of motor vehicle lifetime extension in climate change policy. 

Environmental science & technology 45, 1184–1191.

Kalverkamp, M., 2018. Hidden potentials in open-loop supply chains for remanufacturing. Int 

Jrnl Logistics Management.

Kalverkamp, M., Pehlken, A., Wuest, T., 2017. Cascade Use and the Management of Product 

Lifecycles. Sustainability 9, 1540.

Kalverkamp, M., Raabe, T., 2017. Automotive Remanufacturing in the Circular Economy in 

Europe. Marketing System Challenges. Journal of Macromarketing 38, 112–130.

Kim, H.-J., McMillan, C., Keoleian, G.A., Skerlos, S.J., 2010. Greenhouse Gas Emissions 

Payback for Lightweighted Vehicles Using Aluminum and High-Strength Steel. Journal of 

Industrial Ecology 14, 929–946.

Kumar, A., Chinnam, R.B., Murat, A., 2017. Hazard rate models for core return modeling in auto 

parts remanufacturing. International Journal of Production Economics 183, 354–361.



ACCEPTED MANUSCRIPT

37

Kumar, S., Yamaoka, T., 2007. System dynamics study of the Japanese automotive industry 

closed loop supply chain. Journal of Manufacturing Technology Management 18, 115–138.

Lacourbe, P., 2016. Durable goods leasing in the presence of exporting used products to an 

international secondary market. European Journal of Operational Research 250, 448–456.

Lebreton, B., 2007. Strategic Closed-Loop Supply Chain Management. Springer, Berlin, 

Heidelberg.

Lind, S., Olsson, D., Sundin, E., 2014. Exploring inter-organizational relationships in automotive 

component remanufacturing. J Reman 4, 1–14.

Liu, L., Wang, Z., Xu, L., Hong, X., Govindan, K., 2017. Collection effort and reverse channel 

choices in a closed-loop supply chain. Journal of Cleaner Production 144, 492–500.

LME, n.d. LME Copper. Price Graph. 01.11.2010 - 31.10.2011, Cash Buyer. 

https://www.lme.com/Metals/Non-ferrous/Copper#tabIndex=2. Accessed December 19, 

2018.

Lund, R.T., 1984. Remanufacturing: The Experience of the United States and Implications for 

Developing Countries. World Bank Technical Paper 31, Washington D.C.

Majumder, P., Groenevelt, H., 2001. Competition in Remanufacturing. Production and 

Operations Management 10, 125–141.

McDonough, W.J., Braungart, M., 2002. Cradle to cradle. Remaking the way we make things, 1. 

ed. North Point Press, New York, NY.

Nilsson-Lindén, H., Baumann, H., Rosén, M., Diedrich, A., 2014. Organizing life cycle 

management in practice. Challenges of a multinational manufacturing corporation. Int J Life 

Cycle Assessment 10, 46.



ACCEPTED MANUSCRIPT

38

Östlin, J., Sundin, E., Björkman, M., 2008. Importance of closed-loop supply chain relationships 

for product remanufacturing. International Journal of Production Economics 115, 336–348.

Östlin, J., Sundin, E., Björkman, M., 2009. Product life-cycle implications for remanufacturing 

strategies. Journal of Cleaner Production 17, 999–1009.

Polotski, V., Kenne, J.-P., Gharbi, A., 2017. Production and setup policy optimization for hybrid 

manufacturing–remanufacturing systems. International Journal of Production Economics 183, 

322–333.

Prahinski, C., Kocabasoglu, C., 2006. Empirical research opportunities in reverse supply chains. 

Omega 34, 519–532.

Quantis, 2013. Environmental and Socioeconomic Life Cycle Assessment of the Quebec Auto 

Parts Recycling Sector. Final Translated Report.

Quariguasi Frota Neto, J., Walther, G., Bloemhof, J., van Nunen, J.A.E.E., Spengler, T., 2010. 

From closed-loop to sustainable supply chains. The WEEE case. International Journal of 

Production Research 48, 4463–4481.

Saavedra, Y.M.B., Barquet, A.P.B., Rozenfeld, H., Forcellini, F.A., Ometto, A.R., 2013. 

Remanufacturing in Brazil. Case studies on the automotive sector. Journal of Cleaner 

Production 53, 267–276.

Sahebjamnia, N., Fathollahi-Fard, A.M., Hajiaghaei-Keshteli, M., 2018. Sustainable tire closed-

loop supply chain network design. Hybrid metaheuristic algorithms for large-scale networks. 

Journal of Cleaner Production 196, 273–296.

Seuring, S., 2013. A review of modeling approaches for sustainable supply chain management. 

Decision Support Systems 54, 1513–1520.



ACCEPTED MANUSCRIPT

39

Seuring, S., Müller, M., 2008. From a literature review to a conceptual framework for 

sustainable supply chain management. Journal of Cleaner Production 16, 1699–1710.

Skelton, A.C.H., Allwood, J.M., 2013. Product life trade-offs. What if products fail early? 

Environmental science & technology 47, 1719–1728.

Skene, K.R., 2017. Circles, spirals, pyramids and cubes. Why the circular economy cannot work. 

Sustain Sci 51, 271.

Spielmann, M., Althaus, H.-J., 2007. Can a prolonged use of a passenger car reduce 

environmental burdens? Life Cycle analysis of Swiss passenger cars. Journal of Cleaner 

Production 15, 1122–1134.

Stindt, D., Quariguasi Frota Neto, J., Nuss, C., Dirr, M., Jakowczyk, M., Gibson, A., Tuma, A., 

2016. On the Attractiveness of Product Recovery. The Forces that Shape Reverse Markets. 

Journal of Industrial Ecology.

Taleizadeh, A.A., Moshtagh, M.S., Moon, I., 2018. Pricing, product quality, and collection 

optimization in a decentralized closed-loop supply chain with different channel structures. 

Game theoretical approach. Journal of Cleaner Production 189, 406–431.

USEPA (Ed.), 2016. U.S.-hosted Workshop on the Use of Life Cycle Concepts in Supply Chain 

Management to Achieve Resource Efficiency. March 22-23, 2016, Arlington, Virginia. 

Workshop Summary Proceedings.

USITC, 2012. Remanufactured Goods: An Overview of the U.S. and Global Industries, Markets, 

and Trade. Investigation No. 332-525. USITC Publication 4356, Washington, DC.

Weidema, B., 2017. Circular responsibility. 2.-0 LCA consultants. https://lca-

net.com/blog/circular-responsibility/. Accessed September 6, 2017.



ACCEPTED MANUSCRIPT

40

Weiland, F.J., 2012. European automotive remanufacturing. Where is it heading?, in: Weiland, 

F.J. (Ed.), European Automotive Remanufacturing. Technical Trends & Market 

Development. FJW Consulting, Cologne, pp. 129–164.

Yalabik, B., Chhajed, D., Petruzzi, N.C., 2014. Product and sales contract design in 

remanufacturing. International Journal of Production Economics 154, 299–312.

Young, S.B., Brady, K., Fava, J., Saur, K., 2001. Eco-Efficiency and Materials. Foundation 

Paper by Five Winds International. ICME, Ottawa, Ont.

Zaun, T., Singer, J., 2004. How Japan's Second-Hand Cars Make Their Way to Third World. 

Sophisticated Market Handles Big Used-Vehicle Surplus; Way Station in Dubai. The Wall 

Street Journal.

Zink, T., Geyer, R., 2017. Circular Economy Rebound. Journal of Industrial Ecology 21, 593–

602.

ZOFRI, 2017. Tax and Customs Duties. Zona Franca de Iquique. https://www.zofri.cl/en-

us/Inversiones/Pages/VentajasCompetitivas.aspx#/. Accessed March 16, 2018.


