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Abstract 
 
Autophagy is a degradative process that is used to eliminate intracellular organelles and 

protein aggregates.  Further, a selective form of autophagy, termed mitophagy, is used to 

specifically degrade mitochondria.  Autophagy/mitophagy is important for eliminating 

damaged/dysfunctional mitochondria to limit ROS levels and apoptosis, and is also 

required during erythrocyte and myoblast differentiation.  Moreover, recent studies have 

demonstrated that mitophagy is required to initiate mitochondrial biogenesis during 

myogenic differentiation.  Previous work in our lab has demonstrated that autophagy-

deficient myoblasts fail to differentiate, have increased mitochondrial dysfunction, and 

have elevated levels of apoptotic signaling.  Therefore, the purpose of this thesis was to 

determine the role of autophagy- and mitophagy-related proteins during myogenic 

differentiation.  Chapter 2 demonstrated that canonical mitophagy is disrupted in ATG7-

deficient cells, but that mitochondria can still be degraded using an alternative mitophagy 

pathway.  However, we also determined that mitochondrial damage was increased in 

ATG7-deficient cells, suggesting that targeted degradation of damaged mitochondria 

specifically is impaired in ATG7-deficient cells.  Moreover, we found that increasing the 

expression of the mitophagy receptor protein BNIP3 was able to partially recover 

myogenesis in ATG7-deficient cells.  Chapter 3 then explored the requirement for the 

mitophagy-related proteins BNIP3L/NIX and BNIP3 during myogenic differentiation, 

and found that a deficiency in either of these proteins was disruptive to myogenesis.  

Further, we demonstrated that bnip3-/- cells showed elevated levels of mitochondria-

mediated apoptotic signaling, suggesting impairment in the elimination of dysfunctional 

mitochondria.  Moreover, bnip3-/- cells had increased autophagy-related protein 
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expression.  Interestingly, we found that overexpression of ATG7 or treatment with the 

autophagy inducer rapamycin can disrupt myogenic differentiation in C2C12 myoblasts, 

suggesting that elevated autophagy might inhibit myogenesis.  Additionally, Chapter 2 

and Chapter 3 demonstrated that mitochondrial signaling and mitochondrial protein 

expression is reduced in both shAtg7 and bnip3-/- cells, suggesting impairment in 

mitochondrial remodelling during differentiation.  Therefore, Chapter 4 examined 

whether upregulating mitochondrial biogenesis can compensate for a potential reduction 

in autophagy/mitophagy during differentiation.  Interestingly, we found that treating 

ATG7- and BNIP3-deficient cells with SNP, a mitochondrial biogenesis inducer, caused 

increased mitochondrial biogenesis- and mitochondria-related protein expression, as well 

as an increase in differentiation and myotube formation.  Overall, this thesis 

demonstrated that autophagy and mitophagy are important during myogenic 

differentiation, and that these processes must be tightly regulated in order to ensure that 

cell death is limited and differentiation can progress properly.   
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Skeletal muscles allow the body to move, and because of this important function, they 

possess a highly organized structure (Sandri, 2010) and possess complex and tightly 

regulated intracellular signaling mechanisms  (Yin et al., 2013).  Mature skeletal muscle 

is made up of multinucleated myofibers, which contain the contractile proteins necessary 

for muscle contraction (Sandri, 2010).  Muscle also contains a sophisticated network of 

mitochondria to meet its demanding metabolic requirements (Sin et al., 2016).  In 

addition to these features, muscle is also more resistant to stress and is highly responsive 

and adaptable to intracellular changes (Quadrilatero et al., 2011; Ceafalan et al., 2014).  

Although it is considered to be a post-mitotic tissue (Wang & Walsh, 1996), skeletal 

muscle has the ability to regenerate (Ceafalan et al., 2014) due to a specialized population 

of satellite cells (SCs) (Dumont et al., 2015).  SCs are undifferentiated muscle stem cells 

that can support muscle regeneration throughout adulthood and in response to damage 

(Dumont et al., 2015; Bentzinger et al., 2012; Shi & Garry, 2006).   

Skeletal muscle development during embryogenesis 

Skeletal muscle development begins during embryogenesis, following the separation of 

the mesoderm germ layer to form the paraxial mesoderm, which subsequently forms the 

somite (Bentzinger et al., 2012).  The somite is then divided into dorsal and ventral 

portions, with the dorsal portion forming the dermomyotome, a structure from which 

most skeletal muscle is derived (Shi & Garry, 2006).   Cells of the dermomyotome 

express the transcription factors paired box 3 (PAX3), paired box 7 (PAX7), and 

myogenic factor 5 (MYF5), and a portion of these cells will migrate and delaminate to 

form an additional structure known as the myotome.  Cells of the myotome show strong 

expression of the transcription factor MYOD and will terminally differentiate to form 
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skeletal muscle.  However, a subset of the PAX3/PAX7-expressing cells of the 

dermomyotome, migrate to the myotome but remain in an undifferentiated state.  It is 

believed that this undifferentiated population of cells gives rise to adult muscle satellite 

cells (SCs) (Bentzinger et al., 2012; Shi & Garry, 2006).   

 

SCs and the surrounding niche 

SCs represent less than ten percent of the myonuclei found in adult skeletal muscle, and 

are positioned between the sarcolemma of the myofiber and the surrounding basal lamina 

(Dumont et al., 2015).   SCs are generally maintained in a quiescent, non-proliferative Go 

phase (Cheung & Rando, 2013).  However, SCs can re-enter the cell cycle to proliferate 

and subsequently differentiate and fuse to regenerate muscle fibers in response to damage 

(Dumont et al., 2015), as well as self-renew to maintain the stem cell population (Yin et 

al., 2013).    The instructions that govern whether SCs are in a quiescent or activated state 

come from the surrounding microenvironment known as the SC niche.  The SC niche 

consists of the surrounding cells and extracellular structures, which sense cellular 

changes and send signals to the SCs to promote quiescence or activation (Thomas et al., 

2015), depending on the circumstances.   

As described above, adult SCs are specified during embryonic myogenesis, and 

maintain high levels of PAX7 expression (Dumont et al., 2015).    Over a decade ago, 

Seale et al (2000) showed that pax7 is expressed in the undifferentiated SC-derived 

myoblasts, and that pax7 expression decreases as cells differentiate (Seale et al., 2000), 

suggesting that PAX7 is a reliable marker of the SC/myoblast population (Yin et al., 
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2013).  Moreover, studies using PAX7-deficient (pax7-/-) mice demonstrated that PAX7 

is required for the establishment of SCs in adult skeletal muscle (Seale et al., 2000).   

More recent studies have sought to determine if the role of PAX7 in SC regulation is 

limited to the initial specification of SCs, or if PAX7 is necessary for SC function during 

adulthood.  One particular study showed that muscle regeneration was not impaired in a 

tamoxifen-inducible, SC-specific, PAX7 knockdown mouse model (Lepper et al., 2009).   

However, another study challenged these findings, and demonstrated that PAX7 is 

necessary for SC maintenance and muscle regeneration (von Maltzahn et al., 2013).  

Additionally, although PAX7 expression is needed in undifferentiated SCs, muscle 

formation and regeneration is dependent on the commitment of SCs to the myogenic 

lineage and their subsequent differentiation, processes that are dependent on the 

expression and functions of a group of myogenic regulatory factors  (Yin et al., 2013).   

 

Myogenic regulatory factors 

Muscle differentiation during embryonic muscle development and from adult SCs (Braun 

& Gautel, 2011) is orchestrated by a group of myogenic regulatory factors (MRFs), 

which includes MYOD, MYF5, MYOG, and MRF4.  These basic helix-loop-helix 

(bHLH) proteins heterodimerize with E proteins and specifically bind E-box DNA 

sequences to regulate target gene expression (Sabourin & Rudnicki, 2000).  Interestingly, 

these MRFs are recognized as being sufficient to induce myogenic differentiation even in 

non-muscle progenitors (Bentzinger et al., 2012).    
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MYOD and MYF5 are considered to be the MRFs responsible for the 

commitment of cells to the myogenic lineage.  Although these proteins mediate unique 

transcriptional requirements, they share some overlapping functions, allowing them to 

sometimes compensate for one another (Sabourin & Rudnicki, 2000).  Early work had 

shown that MYOD-deficient mice were able to form skeletal muscle, and that loss of 

MYOD was associated with a compensatory increase in myf5 expression (Rudnicki et al., 

1992).  Additionally, skeletal muscle formation was not disrupted in MYF5-deficient 

mice (Braun et al., 1992); however, mice lacking both MYF5 and MYOD failed to 

generate skeletal muscle, suggesting that although these transcription factors show some 

redundancy, each one plays a role in supporting proper myogenic determination and 

differentiation (Rudnicki et al., 1993; Sabourin & Rudnicki, 2000).  MYF5 and MYOD 

are both expressed in committed myoblasts; however, MYF5 is detected earlier in SCs 

(Sincennes et al., 2016), with its expression being transcriptionally activated by PAX7 

(McKinnell et al., 2008).  When SCs undergo asymmetric cell divisions to generate an 

undifferentiated SC as well as a committed myoblast, MYF5 expression is induced in the 

committed myoblast but not in the uncommitted stem cell (Sincennes et al., 2016).  

Subsequently, MYOD is expressed in the committed myoblast, and forces the cell to 

undergo further myogenic differentiation.  This is accomplished through the MYOD-

dependent transcriptional regulation of numerous muscle-specific genes, including 

myogenin (Myog) (Fujimaki et al., 2013).  

Although myoblast commitment is dependent on MYF5/MYOD, MYOG and 

MRF4 are the important downstream mediators of terminal differentiation in skeletal 

muscle (Sabourin & Rudnicki, 2000), with MRF4 also having a potential role in 
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myogenic determination (Braun & Gautel, 2011).  Early work had shown that the 

specification of myoblasts does occur in MYOG-deficient mice; however, the formation 

of muscle fibers is severely impaired.  This work suggested that MYOG is a necessary 

downstream mediator of myogenesis, and that its role is distinct from those of MYF5 and 

MYOD (Rawls et al., 1995).  Additionally, more recent studies have shown that MYOG 

is not essential for muscle differentiation in the adult mouse or in vitro, suggesting a 

possible compensatory action of the other MRFs.  However, although MRFs have 

overlapping functions and can compensate for one another, each factor is likely to 

regulate some unique skeletal muscle-specific genes (Meadows et al., 2008).   

 

The C2C12 myoblast cell line 

In order to study myogenic differentiation in vitro, studies will often use the C2C12 

myoblast cell line (Tannu et al., 2004).  C2C12 myoblasts were isolated from the thigh 

muscles of CH3 mice after the muscles had sustained a crush injury.  These myoblasts 

have a 24-hour generation time and fuse upon reaching confluency to form 

multinucleated myofibers (Yaffe & Saxel, 1977).  Additionally, there is a coordinated 

upregulation of myogenic proteins such as MYOG and MYOSIN (MYH) observed 

during differentiation in C2C12 cells (Andres & Walsh, 1996), which demonstrates that 

C2C12 myoblasts can serve as a powerful in vitro system for studying skeletal muscle 

differentiation.   
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The role of apoptotic proteins in muscle differentiation 

Apoptosis is a form of programmed cell death that allows for the efficient removal of 

unwanted cells and plays an important role in normal development (Elmore, 2007).  

Moreover, apoptosis can also be induced to eliminate cells that become damaged or 

stressed, which can result in unplanned or undesirable cell death/loss (Saikumar et al., 

1999; Kroemer et al., 2007).  Apoptotic cell death can be induced extrinsically through 

the binding of ligands with cell membrane-associated death receptors, and can also be 

induced intrinsically as a result of DNA damage or mitochondrial outer membrane 

permeabilization (MOMP) (Marino et al., 2014).  MOMP, which is largely dependent on 

the activity of BH3-only proteins, induces apoptosis by allowing pro-apoptotic factors 

such as cytochrome c (CYCS), endonuclease G (ENDOG), and apoptosis-inducing factor 

(AIFM1) to be released from the mitochondria.  The release of these pro-apoptotic factors 

into the cytosol can then initiate apoptotic cell death through caspase-dependent or 

caspase-independent mechanisms (Marino et al., 2014; Quadrilatero et al., 2011).  When 

CYCS is released into the cytosol, it can form a complex with apoptotic peptidase 

activating factor 1 (APAF1), a protein that has a caspase-recruitment domain (CARD).  

After this complex forms, pro-CASPASE 9 is recruited, becomes activated, and can then 

cleave and activate other caspases such as CASPASE 3 (CASP3) (Zou et al., 1999; 

Wang, 2001).  Interestingly, CASP3 activation is known to occur during myogenic 

differentiation (Fernando et al., 2002); however, CASPASE 9 (CASP9) is not normally 

activated or needed to activate CASP3 during myogenesis (Bloemberg & Quadrilatero, 

2014).  Moreover, previous work in our lab revealed that CASPASE 2 (CASP2) is 

required for myogenic differentiation.  Interestingly, CASP3 activity is reduced CASP2-
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deficient cells, suggesting that CASP2 likely promotes CASP3 activation during 

differentiation (Boonstra et al., 2018).  

Interestingly, cellular features associated with apoptosis are also observed in cells 

undergoing differentiation, suggesting that proteins involved in the former process might 

also mediate the latter (Fernando & Megeney, 2007).  Chromatin modifications, such as 

DNA strand breaks, are induced by apoptotic proteins and have been shown to occur 

during skeletal muscle differentiation (Larsen et al., 2010).  Additionally, chromatin 

organization and remodelling is important in promoting the expression of muscle-specific 

genes such as Myog during differentiation, and can also limit the expression of genes that 

may inhibit this process, such as Pax7 (de la Serna et al., 2005; Palacios et al., 2010; 

Sincennes et al., 2016).   

CASP3 is a proteolytic enzyme most often recognized for its role in promoting 

apoptotic cell death  (Fernando et al., 2002; Fernando & Megeney, 2007).  However, 

CASP3 is also required to induce cellular differentiation, a function that is independent of 

its apoptotic role (Fernando et al., 2002).  Using C2C12 myoblasts, Fernando et al (2002) 

showed that inhibiting CASP3 activity causes a delay in cell cycle exit and cell 

differentiation.  Moreover, overexpression of activated CASP3 is sufficient to promote 

premature myoblast differentiation, even under growth-promoting conditions in vitro 

(Fernando et al., 2002).    Interestingly, CASP3 activity is required to initiate DNA strand 

breaks during myoblast differentiation (Larsen et al., 2010), and it accomplishes this by 

indirectly activating caspase-activated DNase (CAD).  Further, CASP3/CAD-mediated 

DNA strand breaks were shown to occur in the promoter region of p21, and are necessary 
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for promoting p21 expression to induce cell cycle arrest and cell differentiation (Larsen et 

al., 2010).     

PAX7 expression is characteristic of undifferentiated SCs (Seale et al., 2000), and 

its expression must be reduced to allow for proper SC differentiation.  Interestingly, 

studies have demonstrated that CASP3 plays an important role in mediating PAX7 

protein degradation by cleaving PAX7 to produce non-functional protein fragments.     

Additionally, treatment with a CASP3 activator results in increased SC differentiation 

and a concurrent decrease in the number of PAX7-expressing cells in isolated myofibers 

(Dick et al., 2015).  The temporal regulation of CASP3 activity is therefore critical for 

proper muscle differentiation.  

 

Autophagy in skeletal muscle maintenance and differentiation 

Autophagy is a process that allows for the degradation of cellular organelles and proteins 

(Kondo et al., 2005).  The autophagic process can be initiated by numerous factors 

(Kondo et al., 2005) and begins with the formation of an isolation membrane known as a 

phagophore (Marino et al., 2014).  Once the phagophore forms, it extends to form a 

double-membraned autophagosome surrounding elements of cytoplasm, such as 

organelles, that are to be degraded (Mizushima, 2007).  Autophagosome formation and 

expansion is reliant on two ubiquitin-like conjugation systems (Tsujimoto & Shimizu, 

2005), which both involve the E1-like activating enzyme ATG7.  In the first reaction, 

ATG7 activates ATG12 so that it can be covalently linked to ATG5.  Subsequently, the 

ATG12-ATG5 complex, along with ATG16L, associates with the expanding membrane.  



	 10	

In the second reaction, which also utilizes ATG7, the microtubule-associated protein 1 

light chain 3 (MAP1LC3/LC3) protein is conjugated to phosphatidylethanolamine (PE) to 

form LC3B-II, and is then incorporated into the developing autophagosome membranes 

(Glick et al., 2010).  Interestingly, LC3 plays an important role in determining which 

cytoplasmic components will be sequestered within the autophagosome.  For example, 

LC3 has been shown to interact directly with the mitochondrial protein BNIP3 to mediate 

the degradation of old or damaged mitochondria (mitophagy) (Hamacher-Brady & Brady, 

2016).  Additionally, LC3 interacts with the scaffold protein SQSTM1 to degrade 

ubiquitinated protein aggregates (Scherz-Shouval & Elazar, 2011; Glick et al., 2010).  

After the autophagosome forms, it fuses with a lysosome so that the cytoplasmic 

components within the autophagosome can be degraded by lysosomal enzymes (Glick et 

al., 2010).  
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Figure 1.  Overview of autophagy/mitophagy.  1)  Formation of isolation membrane (phagophore).  2)  The 
phagophore extends to form an autophagosome surrounding organelles or protein aggregates that are to be 
degraded.  In this figure, a mitochondrion (red) is being targeted for degradation (mitophagy).  3)  The 
autophagosome fuses with a lysosome to allow its cargo to be degraded by lysosomal enzymes.  (Marino et 
al., 2014; Triolo & Hood, 2019).   
 

Although this is the most commonly described or accepted mechanism of 

autophagy-mediated degradation, an alternative or non-canonical autophagy/mitophagy 

pathway has also been described (Grose & Klionsky, 2016).  Approximately ten years 

ago, Nishida et al (2009) discovered that autophagosome formation was not disrupted in 

ATG7- or ATG5-deficient mouse cells (Nishida et al., 2009).  Interestingly, LC3 

lipidation does not occur and is not required for alternative autophagy; however, proteins 

that play an important role in canonical autophagy, such as ULK1 and BECN1, are also 

necessary for alternative autophagy  (Nishida et al., 2009; Hirota et al., 2015; Shimizu et 

al., 2014; Honda et al., 2014).   During alternative autophagy, it is hypothesized that 

1	

2	

3	
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autophagosomes are generated through the fusion of isolation membranes with trans-

Golgi-derived vesicles (Nishida et al., 2009).  Moreover, although it is not needed for 

canonical autophagy, RAB9, a GTPase that mediates intracellular trafficking (Kucera et 

al., 2016), is required to execute alternative autophagy (Nishida et al., 2009; Wang et al., 

2016;).  Interestingly, studies using mouse embryonic fibroblasts (MEFs) and HeLa cells 

have suggested that RAB9-dependent/alternative autophagy, rather than canonical 

autophagy, is the main pathway used to degrade mitochondria in response to treatment 

with cellular stressors (Hirota et al., 2015).  Further, alternative autophagy/mitophagy can 

be used to degrade mitochondria during erythrocyte differentiation (Nishida et al., 2009; 

Honda et al., 2014; Shimizu et al., 2014), and has recently been shown to limit ROS 

levels and apoptosis in erythroleukemia cells (Wang et al., 2016).  

Autophagy allows cells to effectively remove damaged organelles, which could 

otherwise be detrimental to cell survival.  Moreover, it can also be used as a method for 

recycling cellular materials to provide cells with energy during starvation (Fan et al., 

2015; Kondo et al., 2005).  To further complicate matters, although autophagy can 

promote cell survival by inhibiting apoptosis, autophagy can also induce cell death 

(Marino et al., 2014; Liu & Levine, 2015).  Additionally, autophagy has also been shown 

to play an important role in stem cell maintenance and differentiation in numerous 

contexts (Phadwal et al., 2013).   

Several years ago, Garcia-Prat et al (2016) demonstrated that autophagic signaling 

is highly active in quiescent SCs, with a suspected function being to remove proteins and 

organelles to allow SCs to remain in a quiescent state, while also preventing senescence 

(Garcia-Prat et al., 2016).  The maintenance of stem cell quiescence and the prevention of 
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cellular senescence, are necessary requirements for preserving the regenerative capacity 

of adult skeletal muscle (Garcia-Prat et al., 2016).  The decline in muscle regenerative 

capacity associated with aging is thought to occur because of a reduction in autophagic 

signaling (Sousa-Victor et al., 2014; Garcia-Prat et al., 2016).  In support of this 

hypothesis, autophagosome formation and clearance have been shown to be disrupted in 

aged SCs; however, protein and organelle clearance can be effectively restored with 

autophagy-inducing rapamycin treatment (Garcia-Prat et al., 2016). Interestingly, an 

autophagy-deficient mouse model (Atg7-/-), which uses PAX7-driven Cre recombinase 

expression to abolish Atg7 expression specifically in SCs, was shown to phenocopy the 

aged wild-type model.  More specifically, the number of SCs was significantly reduced in 

Atg7-/- mice, and transplanting Atg7-/- SCs to damaged wild-type muscle confirmed that 

these cells were less effective at regenerating muscle (Garcia-Prat et al., 2016).  

Due to the observed accumulation of mitochondria in ATG7-deficient SCs and 

aged SCs, the authors speculated that reduced mitophagy and a resultant increase in 

reactive oxygen species (ROS) might account for the above-mentioned regeneration 

defects associated with aged SCs.   Therefore, they used Trolox to inhibit ROS, which 

prevented the ROS-induced expression of the senescence-promoting gene p16/INK4a.  In 

addition, they found that Trolox treatment improved the functionality of aged SCs, and 

prevented Atg7-/- SCs from becoming senescent (Garcia-Prat et al., 2016).  These findings 

highlight autophagy’s role in limiting ROS to support cellular homeostasis in SCs 

(Scherz-Shouval & Elazar, 2011).   

In addition to its role in SC maintenance (Garcia-Prat et al., 2016), autophagy is 

needed to provide sufficient energy for SC activation (Tang & Rando, 2014), and is also 
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needed to promote myoblast differentiation (McMillan & Quadrilatero, 2014).  C2C12 

myoblasts show increased autophagy when induced to differentiate, and differentiation is 

impaired in ATG7 knockdown cells or cells treated with the autophagy inhibitor, 3MA 

(McMillan & Quadrilatero, 2014).  Moreover, autophagy has been shown to assist with 

the necessary cellular remodelling associated with cell differentiation in other tissues 

(Phadwal et al., 2013), so it is not surprising that C2C12 myoblasts are dependent on 

autophagy to execute proper myogenic differentiation and myotube generation 

(McMillan & Quadrilatero, 2014; Sin et al., 2016).   

As mentioned previously, skeletal muscle is a long-lived tissue that is quite 

resistant to cellular stressors (McMillan & Quadrilatero, 2011).  With its multi-nucleated 

structure, it is uncommon for an entire muscle cell to die, and muscle longevity is highly 

reliant on apoptosis inhibitors (Quadrilatero et al., 2011).  Therefore, it is not surprising 

that the maintenance of this tissue is largely dependent on autophagic signaling (Masiero 

et al., 2009), which can suppress apoptosis in some contexts (Marino et al., 2014).  

Interestingly, previous work in our lab has demonstrated that CASP3 activation and 

apoptotic signaling are elevated in ATG7-deficient C2C12 myoblasts and in cells treated 

with 3MA (McMillan & Quadrilatero, 2014; McMillan, 2015).  Moreover, numerous 

animal studies have also shown that autophagy-deficiency is associated with increased 

apoptotic signaling in skeletal muscle (Pare et al., 2017; Masiero et al., 2009; Chrisam et 

al., 2015; Grumati et al., 2011).  Therefore, autophagy is a necessary process for 

supporting cellular homeostasis and differentiation.   
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Mitophagy 

Mitophagy is a selective form of autophagy that specifically eliminates mitochondria 

(Melser et al., 2013).  Interestingly, there are numerous proteins that have been shown to 

regulate and/or induce mitophagy through unique mechanisms (Hamacher-Brady & 

Brady, 2016).  Some examples of these mitophagy-related proteins include PINK1, 

PRKN, BNIP3, and BNIP3L/NIX, among others (Hamacher-Brady & Brady, 2016).  

PINK1/PRKN-mediated mitophagy allows for the efficient removal of depolarized 

mitochondria (Hamacher-Brady & Brady, 2016).  When mitochondria are healthy and 

polarized, the PINK1 kinase is imported into the mitochondria, cleaved, and subsequently 

degraded (Jin et al., 2010).  However, when mitochondria are depolarized, PINK1 is not 

imported into the mitochondria and accumulates at the outer mitochondrial membrane 

(OMM), which causes the E3 ubiquitin ligase PRKN to be activated and recruited to the 

mitochondria (Matsuda et al., 2010; Kondapalli et al., 2012).  PRKN then ubiquitylates 

proteins on the OMM, and recruits autophagy receptors such as SQSTM1 to the 

mitochondria (Narendra et al., 2010).  Although some reports suggest that SQSTM1 is 

required for PRKN-mediated mitophagy (Geisler et al., 2010), others suggest that 

SQSTM1 mediates the sequestration of mitochondria but is not needed for mitophagy 

(Narendra et al., 2010).  

Mitophagy can also occur in a PINK1/PRKN-independent manner using other 

mitophagy receptor proteins, such as BNIP3 and BNIP3L (Hamacher-Brady & Brady, 

2016). BNIP3 and BNIP3L are functionally related transmembrane proteins, which can 

localize to the mitochondria.  At the mitochondria, BNIP3 and BNIP3L can induce both 

cell death and autophagy (Ney, 2015).  Moreover, BNIP3 and BNIP3L possess an LC3-
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interacting region (LIR), which allows them to interact directly with LC3 to facilitate 

autophagic degradation of mitochondria (Hanna et al., 2012; Rogov et al., 2017). Further, 

LC3 has been shown to interact with additional proteins and lipids such as FUNDC1 and 

Cardiolipin, respectively, in order to promote mitophagy in some contexts (Wu et al., 

2014; Chu et al., 2013).   

 

Mitophagy protects against unwanted cell death 

A healthy and functional mitochondrial population is crucial for providing cells with 

energy and also for limiting unwanted cell death (Kubli & Gustafsson, 2012; Gomes & 

Scorrano, 2013).  Damaged mitochondria can release pro-apoptotic factors to initiate cell 

death processes (Marino et al., 2014; Quadrilatero et al., 2011), and this is why it is 

important for cells to eliminate damaged mitochondria (Ding & Yin, 2012).  Therefore, in 

order to limit cell death, damaged mitochondria are degraded by mitophagy (Kubli & 

Gustafsson, 2012). In support of this, PINK1/PRKN-mediated mitophagy has been 

shown to prevent apoptosis induced by mitochondrial dysfunction (Wu et al., 2015), and 

BNIP3 can eliminate damaged mitochondria to reduce CYCS release capacity (Zhu et al., 

2013).  Therefore, mitophagy is necessary for ensuring that cells survive and remain 

functional.   

 

Mitophagy is important for myogenic differentiation 

Mitophagy is an important process during cell differentiation.  For example, mitophagy is 

needed to eliminate the mitochondrial population found in reticulocytes so that they can 
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differentiate to form erythrocytes (Novak et al., 2010; Sandoval et al., 2008).  

Interestingly, BNIP3L has been identified as a critical mediator of mitochondrial 

clearance during erythrocyte differentiation (Sandoval et al., 2008) and can also 

effectively restore mitophagy in PRKN-deficient models (Koentjoro et al., 2017). 

Moreover, a recent study has suggested that mitophagy is needed to initiate mitochondrial 

remodelling during myotube formation (Sin et al., 2016).  The myoblast population is 

more glycolytic and requires fewer mitochondria, while the larger population of 

mitochondria found in differentiated myotubes is better suited for oxidative 

phosphorylation (OXPHOS), and can better support the energy requirements of this 

metabolically active tissue (Sin et al., 2016; Wagatsuma & Sakuma, 2013).  Interestingly, 

BNIP3L, along with the small GTPase RHEB, has been shown to promote mitophagy 

during increased OXPHOS activity in order to renew the mitochondrial population to 

maintain a high level of energy production (Melser et al., 2013).   

As mentioned previously, autophagy is required for proper differentiation of 

C2C12 myoblasts (McMillan & Quadrilatero, 2014), and work conducted by Sin et al 

(2016) has expanded on this finding to demonstrate the importance of mitophagy for 

regulating the cellular remodelling and mitochondrial changes necessary to support the 

transition from myoblast to myotube (Sin et al., 2016).   In C2C12 myoblasts induced to 

differentiate, mitochondrial fragmentation is observed at early time-points and is 

accompanied by an increase in levels of DNM1L/DRP1, which is a mitochondrial fission 

protein, and there is also increased autophagosome formation (Sin et al., 2016).  As 

differentiation progresses, there is an increase in mitochondrial biogenesis as well as 

increased expression of the fusion protein OPA1 (Sin et al., 2016).  The transition from 
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increased fission to increased biogenesis and fusion is reliant on autophagy, and myotube 

formation and mitochondrial network remodelling fails to occur if autophagy is disrupted 

(Sin et al., 2016).  Interestingly, it has also been suggested that peroxisome proliferator-

activated receptor gamma co-activator 1-alpha (PPARGC1A/PGC-1α), a critical 

regulator of mitochondrial biogenesis (Palikaras et al., 2015), limits 

mitophagy/mitochondrial degradation during myogenic differentiation to instead promote 

mitochondrial biogenesis (Baldelli et al., 2014).  Thus, it is likely that the opposing 

processes of mitochondrial degradation (mitophagy) and biogenesis must be tightly 

regulated during myogenic differentiation.   

Interestingly, the importance of PINK1 and PRKN in muscle development and 

function has been demonstrated in studies using Drosophila as a model organism (Greene 

et al., 2003; Clark et al., 2006).  Notably, Drosophila PRKN mutants demonstrate muscle 

abnormalities and functional impairments, which are suspected to result from 

mitochondrial dysfunction and increased apoptotic signaling (Greene et al., 2003).  

Moreover, a similar phenotype is observed in PINK1 mutants (Clark et al., 2006), and can 

be effectively rescued by overexpression of PRKN (Park et al., 2006).  Interestingly; 

however, overexpression of PINK1 cannot rescue the impairments associated with 

PRKN-deficiency (Park et al., 2006).  Similarly, overexpression of BNIP3 can ameliorate 

the muscle abnormalities characteristic of PINK1 Drosophila mutants (Zhang et al., 

2016).   

 



	 19	

Mitochondrial Biogenesis 

Although it is important for cells to eliminate damaged or unnecessary mitochondria to 

maintain cellular homeostasis and during differentiation (Drake et al., 2017; Naik et al., 

2018), it is equally important for cells to rebuild and maintain a functional mitochondrial 

network to support metabolic needs (Xu et al., 2013; Wanet et al., 2015).  Mitochondrial 

biogenesis is a process by which new and/or more extensive mitochondrial networks are 

generated and involves the division, fusion, and growth of pre-existing mitochondria 

(Jornayvaz & Shulman, 2010; Ploumi et al., 2017).  Mitochondrial function and integrity 

is dependent on the coordination of numerous regulatory proteins to ensure that proteins 

encoded by both the nuclear and mitochondrial genome are correctly synthesized and 

incorporated into the mitochondria (Jornayvaz & Shulman, 2010; Friedman & Nunnari, 

2014). PPARGC1A is a transcriptional co-activator, and is considered to be a master 

regulator of mitochondrial biogenesis and function (Palikaras et al., 2015).  Therefore, in 

order to ensure that mitochondrial homeostasis is maintained, PPARGC1A coordinates 

the expression and activity of numerous biogenesis-promoting proteins.  First, 

PPARGC1A promotes the expression of genes encoding nuclear respiratory factor-1 

(NRF-1) and NRF- 2 (Wu et al., 1999), which are transcription factors required for the 

expression of numerous nuclear and mitochondria-encoded proteins required for 

mitochondrial function (Wagatsuma & Sakuma, 2013).   Additionally, PPARGC1A binds 

to NRF-1 to enhance expression of the gene encoding mitochondrial transcription factor 

A (TFAM), a protein that regulates the replication and transcription of mitochondrial 

DNA (Wu et al., 1999).  Interestingly, work done by Wu et al (1999) demonstrated that 

overexpression of PPARGC1A in C2C12 myoblasts caused increases in mitochondrial 
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protein expression and mitochondrial number without impacting myogenic differentiation 

(Wu et al., 1999).  

 

Mitochondrial Biogenesis during cell differentiation 

Stem cells or undifferentiated cells are generally more reliant on glycolysis to fulfill their 

energy requirements, while increased OXPHOS activity is more characteristic of 

differentiated cells (Wanet et al., 2015; Naik et al., 2018).  This aligns with studies 

demonstrating that myoblasts are more glycolytic, but display a shift toward OXPHOS-

based metabolism as they differentiate to form myotubes (Sin et al., 2016; Wagatsuma & 

Sakuma, 2013).  In support of this, differentiated myotubes also contain more 

mitochondria than undifferentiated myoblasts, and also show increased expression of 

OXPHOS complex proteins, which demonstrates that the mitochondrial population 

associated with myotubes differs from the mitochondrial population found in myoblasts.  

Moreover, myogenesis and muscle regeneration is associated with an increase in the 

expression of the major mediators of mitochondrial biogenesis such as PPARGC1A, 

NRF-1, and TFAM (Remels et al., 2010; Wagatsuma et al., 2011; Wagatsuma & Sakuma, 

2013).  

Thus, given the mitochondrial changes that must occur when cells differentiate, it 

is important to consider that mitochondrial biogenesis and remodelling might influence 

the likelihood or the ability of a cell to differentiate (Wanet et al., 2015; Xu et al., 2013).  

In agreement with this, previous studies have shown that inhibiting mitochondrial 

function in undifferentiated proliferating cells prevents the cells from differentiating 

(Mandal et al., 2011).  Moreover, treating cells with the mitochondrial biogenesis inducer 
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S-NitrosoAcetylPenicillamine (SNAP) has been shown to enhance hepatocyte and 

cardiomyocyte differentiation (Sharma et al., 2009; Kanno et al., 2004), while 

overexpression of PPARGC1A can promote adipocyte differentiation (Huang et al., 

2011). Further, previous work in our lab demonstrated that C2C12 myoblasts treated with 

mitochondrial biogenesis inducers are more resistant to cell death (Dam et al., 2013).  

Therefore, it is possible that mitochondrial biogenesis might also protect against and/or 

limit apoptotic signaling during myogenic differentiation.  

 

Drosophila as a model organism to study skeletal muscle  

Drosophila melanogaster, or the fruit fly, is a useful model organism because it is easy to 

maintain and has a short life cycle.  Additionally, there are many genetic tools and fly 

lines readily available that allow for gene knockdown, overexpression experiments, and 

fluorescent labelling by simply performing genetic crosses (Orfanos, 2008).   

Adult muscle progenitors (AMPs) are undifferentiated muscle progenitor cells, 

which differentiate to form adult muscle in Drosophila (Dobi et al., 2015).  AMPs are 

specified during embryogenesis, when three types of mesoderm-derived myoblasts are 

specified: muscle founder cells (FCs), fusion-competent myoblasts (FCMs), in addition to 

the above-mentioned AMPs.  The FCs and FCMs differentiate first to form both 

embryonic and larval muscles, while the AMPs remain in an undifferentiated state 

throughout larval development and differentiate following metamorphosis to generate the 

adult muscles (Dobi et al., 2015). Although the assumption was that all AMPs 

differentiate during adult muscle formation, without reserving a population of 
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undifferentiated satellite cells (Piccirillo et al., 2014), a recent study has suggested that 

adult Drosophila muscle does contain a population of satellite-like cells capable of 

proliferating and regenerating damaged muscle (Chaturvedi et al., 2017). Therefore, 

muscle differentiation can be studied at numerous stages of development, and in response 

to damage or disease.   

Although it is not the most commonly used model organism for in vivo skeletal 

muscle research, Drosophila muscle is both functionally and structurally similar to 

mammalian muscle (Piccirillo et al., 2014).  Moreover, the signaling pathways that 

govern cellular behaviour in mammals are highly conserved in Drosophila, suggesting 

that Drosophila can serve as an ideal in vivo system for studying skeletal muscle 

(Piccirillo et al., 2014; Gunage et al., 2017).  Moreover, numerous aging-associated 

changes in mammalian skeletal muscle are also observed in Drosophila, such as 

structural changes and decreased functional capacity, as well as changes in autophagic 

signaling (Demontis et al., 2013). Additionally, work done in Drosophila muscle has 

provided an in vivo system to complement in vitro studies highlighting the importance of 

mitophagy-related proteins in maintaining both mitochondrial and whole muscle integrity 

(Zhang et al., 2016).  Moreover, the recent development of a Drosophila line carrying the 

mt-Keima fluorescent mitophagy reporter has provided a powerful in vivo system to 

study mitophagy mechanisms in muscle (Lee et al., 2018; Cornelissen et al., 2018).  

Thus, the fruit fly can be an excellent model organism for studying skeletal muscle 

maintenance and differentiation.  
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Overall Purpose & Objectives 

Autophagy and mitophagy promote myogenic differentiation and support the rebuilding 

of the mitochondrial network during differentiation (McMillan & Quadrilatero, 2014; Sin 

et al., 2016).  However, studies thus far have utilized models deficient in autophagy-

specific proteins, such as ATG5 and ATG7 (McMillan & Quadrilatero, 2014; Sin et al., 

2016), and have not addressed the requirement for any specific mitophagy-related 

proteins during differentiation.  Moreover, previous work in our lab has demonstrated 

that autophagy-deficient myoblasts contain dysfunctional mitochondria and have elevated 

apoptotic signaling (McMillan, 2015; McMillan & Quadrilatero, 2014). The retention of 

dysfunctional mitochondria in autophagy-deficient myoblasts would suggest that they are 

also mitophagy-deficient; however, the requirement for mitophagy specifically during 

differentiation has not been thoroughly investigated. Therefore, the purpose of this thesis 

was to investigate the roles of autophagy and mitophagy proteins during myogenic 

differentiation.  Further, we wanted to determine if mitophagy is blocked in ATG7-

deficient cells, and if this might account for the differentiation impairments observed in 

ATG7-deficient cells.  Moreover, although there have been numerous mitophagy-related 

proteins and mechanisms identified (Hamacher-Brady & Brady, 2016), the necessity for 

these proteins/pathways has not been investigated during myogenic differentiation.   

 Therefore, the first study (Chapter 2) examined if mitophagy is disrupted in 

autophagy-deficient myoblasts to determine if proteins involved in regulating autophagy 

are also necessary for mitophagy.  Additionally, we overexpressed mitophagy-related 

proteins in ATG7-deficient cells in an attempt to enhance mitophagy and improve 

differentiation. The second study (Chapter 3) investigated the requirement for specific 
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mitophagy receptors during myogenic differentiation and mitochondrial remodelling.  

Overall, the goal of these studies was to evaluate if mitophagy and mitochondrial 

degradation occur in cells deficient in ATG7, or the mitophagy receptor proteins BNIP3 

and BNIP3L/NIX, and determine if these mitophagy-related proteins are required for 

proper myogenesis.  Finally, the third study (Chapter 4) investigated whether myogenic 

differentiation can be recovered in myoblasts deficient in autophagy/mitophagy-related 

proteins by enhancing mitochondrial biogenesis.  Mitochondrial biogenesis is known to 

accompany myogenesis and is thought to play an important role in regulating cell 

differentiation (Duguez et al., 2002; Wagatsuma & Sakuma, 2013).  Moreover, it has 

been suggested that mitophagy is a pre-requisite for mitochondrial biogenesis during 

myogenic differentiation (Sin et al., 2016).  Thus, by enhancing mitochondrial 

biogenesis, our goal was to ameliorate some of the downstream effects of insufficient 

mitophagy levels in order to enhance myotube formation, reduce cell death and promote 

the rebuilding of the mitochondrial network.  

Therefore, the experiments comprising this thesis attempted to enhance our 

understanding of how autophagy and mitophagy mediate myogenic differentiation.  In 

summary, the overall objectives of this thesis were: 

1) To determine if mitophagy is impaired in ATG7-deficient cells and if 

enhancing mitophagy can improve myogenic differentiation in ATG7-deficient 

cells. 

2) To determine if the mitophagy-related proteins BNIP3 and BNIP3L are 

required for myogenesis and mitochondrial network generation. 
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3) To determine if enhancing mitochondrial biogenesis can compensate for 

autophagy- or mitophagy-deficiency with respect to myogenic differentiation. 
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Chapter 2:  Examination of mitophagy and mitophagy-related 
protein expression in ATG7-deficient cells during myogenic 

differentiation 
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Project Rationale and Objectives 

Autophagy is required for myogenic differentiation, and previous work in our lab has 

demonstrated that autophagy-deficient myoblasts fail to differentiate properly and show 

increased apoptotic signaling (McMillan & Quadrilatero, 2014).   Sin et al (2016) 

suggested that it is a deficiency in mitophagy specifically that disrupts myogenic 

differentiation in autophagy-deficient cells by preventing the clearance of old 

mitochondria to initiate mitochondrial biogenesis and remodelling during myotube 

formation (Sin et al., 2016).  Further, we have demonstrated that ATG7-deficient 

myoblasts show increased oxidative stress and mitochondrial dysfunction (McMillan 

2015; Baechler et al., 2019). Moreover, studies examining ATG7-deficient muscles have 

shown that they accumulate dysfunctional and abnormal mitochondria (Masiero et al., 

2009; Garcia-Prat et al., 2016).  However, it is unclear if mitophagy is completely 

blocked in autophagy-deficient cells and if they show an increase in the total number of 

mitochondria relative to controls.  Therefore the focus of our initial experiments was to 

determine if mitophagy increases when C2C12 myoblasts are induced to differentiate, 

and if there is a complete absence of mitophagy in ATG7-deficient cells.  We next 

focused on measuring proteins associated with mitochondria and mitochondrial 

biogenesis to determine if mitochondrial remodelling is impaired during myogenic 

differentiation in shAtg7 cells.   

 Interestingly, although ATG7-deficient erythrocytes show some disruption in 

mitochondrial degradation (Zhang et al., 2009), this effect is much more severe in 

BNIP3L-deficient cells (Ney, 2015), suggesting that mitophagy receptor proteins may be 

more important than general autophagy-related proteins for mitochondrial degradation 
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during development.  Previous reports have suggested that inhibition of autophagy 

disrupts mitophagy in muscle cells (Sin et al., 2016), so we wondered if overexpressing a 

mitophagy-related protein in ATG7-deficient cells could augment mitophagy levels, 

reduce cell death, and rescue myogenic differentiation.   

Therefore, the main objectives for Chapter 2 were: 

1) To determine if mitochondrial degradation is completely blocked in ATG7-deficient 

myoblasts/myotubes. 

2) To determine if overexpression of a mitophagy-related protein is sufficient to reduce 

cell death and improve differentiation in ATG7-deficient cells.   

 

We hypothesized that mitophagy would be reduced but not completely blocked in ATG7-

deficient cells.  Moreover, we speculated that overexpression of mitophagy-related 

proteins would enhance mitophagy in shAtg7 cells and reduce cell death by eliminating 

dysfunctional mitochondria.  Further, we hypothesized that enhancing mitophagy would 

not rescue myogenic differentiation in shAtg7 cells because insufficient mitochondrial 

degradation is likely not the sole cause of myogenic impairment.   
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green fluorescent protein; LC3B: microtubule-associated protein 1 light chain 3 beta; 

MYH: myosin; MYOG: myogenin; BNIP3L/NIX: BCL2/adenovirus E1B interacting 

protein 3-like; OPA1: mitochondrial dynamin like GTPase; PPARGC1A: peroxisome 

proliferative activated receptor, gamma, coactivator 1 alpha; p-H2AFX: phosphorylated 

H2A histone family, member X; PINK1: PTEN induced putative kinase 1; RAB9: RAB9, 

member RAS oncogene family; RFP: red fluorescent protein; ROS: reactive oxygen 

species; SCR: scramble shRNA ; shAtg7: short hairpin RNA against ATG7; SLC25A4: 

solute carrier family 25 (mitochondrial carrier, adenine nucleotide translocator); SOD2: 

manganese superoxide dismutase; VDAC1: voltage-dependent anion channel 1 

 

Introduction 

Cell differentiation is associated with numerous intracellular signaling changes and 

remodelling events, and it has been suggested that a cell must eliminate its “old” parts to 

make room for “new” parts to better support its changing structure and metabolic 

requirements (Mizushima & Komatsu, 2011).  Autophagy is a degradative process used 

to eliminate protein aggregates as well as whole organelles, and requires the coordination 

of numerous autophagy-related (ATG) proteins, including ATG7 (Kondo et al., 2005; 

Glick et al., 2010).  When autophagy is initiated, a double-membraned autophagosome 

forms surrounding the organelles/proteins that are to be degraded.  Subsequently, the 

autophagosome delivers its contents to a lysosome for degradation (Kondo et al., 2005; 

Mizushima & Komatsu, 2011).  Autophagic degradation can be quite selective and one 

form of autophagy, called mitophagy, is used to specifically degrade mitochondria 
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(Melser et al., 2013).  Numerous mitophagy-related proteins have been identified and 

their necessity is often context dependent, meaning that certain proteins act to eliminate 

depolarized or dysfunctional mitochondria, while others might eliminate mitochondria for 

developmental purposes (Hamacher-Brady & Brady, 2016).  For example, the 

mitophagy-related proteins PINK1 and PRKN support the degradation of 

damaged/depolarized mitochondria (Durcan & Fon, 2015), while the mitophagy receptor 

BNIP3L serves to remove unnecessary mitochondria during cell differentiation (Sandoval 

et al., 2008; Schweers et al., 2007).   

 Autophagy and mitophagy have been shown to play important roles during 

myogenic differentiation (McMillan & Quadrilatero, 2014; Sin et al., 2016).  Previous 

work in our lab has demonstrated that autophagy-deficient myoblasts fail to differentiate 

properly (McMillan & Quadrilatero, 2014).  Moreover, Sin et al (2016) suggested that 

blocking autophagy by treating C2C12 myoblasts with bafilomycin A1 (BAF) disrupts 

the degradation of old mitochondria during myogenic differentiation, which prevents 

cells from rebuilding the new mitochondrial network required for myotube formation 

(Sin et al., 2016).  

Further, autophagy/mitophagy is also required to limit unwanted cell death by 

removing damaged mitochondria that could otherwise release pro-apoptotic factors into 

the cytosol to trigger cell death processes (Kubli & Gustafsson, 2012; Marino et al., 

2014; Quadrilatero et al., 2011).   Interestingly, knocking down ATG7 in C2C12 

myoblasts causes an increase in mitochondrial dysfunction and apoptotic signaling 

(McMillan, 2015; Baechler et al., 2019; McMillan & Quadrilatero, 2014).  However, 

studies have shown that mitophagy is more disrupted during erythrocyte differentiation in 
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BNIP3L-deficient cells than in ATG7-deficient cells (Zhang et al., 2009; Ney, 2015), 

suggesting that mitophagy receptor proteins might play a more crucial role than general 

autophagy proteins in executing mitophagy during cell differentiation.  Further, studies 

have also suggested that “alternative mitophagy,” which occurs in an ATG7-independent 

manner and requires the RAB9 GTPase, can degrade mitochondria during differentiation 

and limit apoptosis (Nishida et al., 2009; Honda et al., 2014; Shimizu et al., 2014; Wang 

et al., 2016; Hirota et al., 2015).  Moreover, additional mechanisms of autophagy-

independent mitochondrial degradation have also been described (Hammerling et al., 

2017; Oliveira et al., 2015).   

Overexpression of mitophagy-related proteins is sufficient to induce mitophagy 

(Quinsay et al., 2010), limit mitochondrial CYCS release capacity and apoptosis (Zhu et 

al., 2013) and can improve mitochondrial abnormalities in muscle in vivo (Zhang et al., 

2016).  Therefore, the purpose of this study was to determine if mitophagy occurs in 

ATG7-deficient (shAtg7) myoblasts during differentiation, and if overexpression of 

mitophagy-related proteins can enhance mitophagy to reduce cell death and restore 

myogenic differentiation in ATG7-deficient cells.   

 

Results 

Autophagy/mitophagy increases during myogenic differentiation 
	
Autophagy is known to play an important role during cell differentiation in numerous 

contexts (Phadwal et al., 2013), and previous work in our lab has shown that autophagy 

increases when C2C12 myoblasts are induced to differentiate (McMillan & Quadrilatero, 

2014).  In agreement with this, we found that levels of SQSTM1 decrease when 
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myoblasts are induced to differentiate (Figure 1A, B).  Moreover, treating cells with 

chloroquine (CQ) to inhibit autophagosome-lysosome fusion (Phadwal et al., 2013), 

confirmed that the decrease in SQSTM1 results from increased autophagy-mediated 

degradation.  Similarly, we found that LC3B-II levels, indicative of autophagosome 

formation (Mizushima, 2007), showed a mild increase during differentiation that was 

preserved with CQ (Figure 1A, C).   

 Next, we wanted to specifically examine if mitophagy increases during 

differentiation.  Therefore, C2C12 myoblasts were transfected with a tandem p-mito-

mRFP-EGFP fluorescent mitophagy reporter (Kim et al., 2013).  This reporter shows 

overlapping expression of RFP and GFP when targeted to mitochondria, but when 

mitochondria are targeted for degradation by autophagosomes/lysosomes, the GFP is 

degraded resulting in the appearance of RFP-only mitochondria (Kim et al., 2013; 

Hamacher-Brady & Brady, 2016).  As shown in Figure 1D and Figure 1F, proliferating 

(D0) cells are positive for both RFP and GFP (yellow), suggesting that mitophagy is low 

or not occurring.  Interestingly, when cells are induced to differentiate (D1), the number 

of cells displaying RFP-only mitochondria increases significantly (Figure 1E, F), 

suggesting that mitophagy increases during myogenic differentiation.   
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Figure 1.  Autophagy and mitophagy increase during myogenic differentiation.  Representative 
immunoblots (A) and quantitative analysis (B-C) of SQSTM1 and LC3B-II in CTRL (Vehicle) and 
chloroquine (CQ) treated myoblasts during differentiation. Also shown are representative ACT, GAPDH, 
and ponceau stained loading control blots/membranes. Representative images of proliferating (D) and 
differentiating (E) myoblasts transfected with p-mito-RFP-GFP.  Scale bar=10 µm. Quantitative analysis 
(F) of the percentage of cells displaying RFP-only mitochondria (indicative of mitophagy). *p<0.05 
compared to D0 (within group). †p<0.05 between groups. 
 
Mitochondrial remodelling is impaired in autophagy-deficient cells 
	
Work conducted by Sin et al (2016) has shown that inhibiting autophagy in C2C12 

myoblasts prevents the cells from differentiating and they speculated that differentiation 

was impaired due to the requirement for mitophagy to allow mitochondrial remodelling 

to occur (Sin et al., 2016).  Therefore, in order to further validate this interpretation, we 

differentiated ATG7-deficient (shAtg7) and control (SCR) C2C12 myoblasts and 
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(Figure 2A, B) was lower in shAtg7 relative to SCR cells.  Moreover, Sin et al (2016) 

demonstrated that the fission and fusion proteins DNM1L and OPA1 increase during 

differentiation.  In agreement with these findings, we showed that DNM1L (Figure 2A, 

C) and OPA1 (Figure 2A, D) expression increased in SCR cells during differentiation, 

but that the expression level of these proteins was lower in shAtg7 cells.  Additionally, at 

early time-points (D1, D2) we found that shAtg7 cells had elevated expression of SOD2 

relative to SCR cells (Figure 2A, E), which could indicate that mitochondria are not being 

degraded in the autophagy-deficient cell and that higher SOD2 levels result from the 

retention of mitochondria.  However, given that SOD2 is a mitochondrial antioxidant 

(Bresciani et al., 2015; Candas & Li, 2014), the higher level of expression could suggest 

an increase in mitochondrial oxidative stress in shAtg7 cells.  Other mitochondrial 

markers such as VDAC1 (Figure 2A, F), SLC25A4 (Figure 2A, G), and CYCS (Figure 

2A, H), were lower in shAtg7 cells relative to SCR cells.  This supports that 

mitochondrial biogenesis and/or remodelling is reduced in ATG7-deficient cells.  

 Given that others have speculated that mitophagy is needed to trigger 

mitochondrial remodelling during differentiation (Sin et al., 2016), we measured 

autophagy/mitophagy-related protein expression in both SCR and shAtg7 cells during 

differentiation (Figure 2I, 2J-L).  Interestingly, we found that BECN1 (Figure 2I, J), 

BNIP3 (Figure 2I, K), and BNIP3L/NIX (Figure 2I, L) expression was generally lower in 

shAtg7 cells relative to SCR cells, which could suggest that autophagy/mitophagy 

induction is reduced in shAtg7 cells. 
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Figure 2.  Mitochondrial and autophagy-related protein expression is reduced in shAtg7 cells .  
Representative immunoblots (A) and quantitative analysis (B-H) of PPARGC1A, DNM1L, OPA1, SOD2, 
VDAC1, SLC25A4, and CYCS in shAtg7 and SCR cells during differentiation.  Also shown is a 
representative GAPDH loading control blot.  Representative immunoblots (I) and quantitative analysis (J-
M) of BECN1, BNIP3, BNIP3L, and BCL2 in shAtg7 and SCR cells during differentiation.  Also shown is 
a representative GAPDH loading control blot. *p<0.05 compared to D0 (within group). †p<0.05 between 
groups at the same time point. 
 

 Mitochondrial damage is associated with increased oxidative stress and apoptotic 

signalling (Kubli & Gustafsson, 2012), and our previous work has shown that shAtg7 

cells display more mitochondrial dysfunction which likely contributes to the increase in 

apoptotic signaling observed in these cells (McMillan, 2015; Baechler et al., 2019; 

McMillan & Quadrilatero, 2014).    Moreover, subcellular fractionation revealed that 

CYCS and AIFM1 levels were higher in cytosolic-enriched fractions in shAtg7 cells 

relatives to SCRs cells (Figure 3A-B).  This suggests that mitochondrial integrity is 

compromised resulting in the release of CYCS and AIFM1 into the cytosol.  

PPARGC1A 

DNM1L 

OPA1 

VDAC1 

SLC25A4 

CYCS 

GAPDH 

90 kDa 

78 kDa 

100 kDa 

32 kDa 

33 kDa 

14 kDa 

37 kDa 

SCR shAtg7 

D0     D1   D2    D3     D4    D0    D1    D2   D3    D4 

SOD2 25 kDa 

D0    D1  D2   D3   D4   D5   D0  D1  D2  D3    D4  D5 

GAPDH 

BECN1 

BNIP3 

BNIP3L 

BCL2 

30 kDa 

26 kDa 

37 kDa 

60 kDa 

38 kDa 

SCR shAtg7 

A	A	
C	B	 D	

F	E	 G	

H	I	 J	 K	

M	L	



	 36	

Additionally, we found that CASP3 activity was significantly elevated in shAtg7 cells at 

D3 of differentiation (Figure 3C), which could result from the mitochondrial release of 

CYCS (Wang, 2001).  Moreover, we were also able to partially restore myogenic 

differentiation in shAtg7 cells by treating the cells with an adenovirus expressing 

dominant negative CASP9 (ad-DNCASP9).  We observed increased MYOG and MYH 

expression in ad-DNCASP9-treated cells relative to ad-GFP-treated cells (Figure 3D-E), 

which supports previous interpretations that excessive CASP9 activity limits myogenic 

differentiation in shAtg7 cells (McMillan, 2015).   

 

Figure 3.  Mitochondrial release of pro-apoptotic factors and CASP3 activation in shAtg7 and SCR 
cells during differentiation.  Representative immunoblots (A) and quantitative analysis (B) of cytosolic 
CYCS and AIFM1 in SCR and shAtg7 cells during differentiation. Also shown is a representative ponceau 
stained membrane.  Quantitative analysis (C) of CASP3 activity in shAtg7 and SCR cells during 
differentiation.  Representative immunoblots (D) and quantitative analysis (E) of MYOG and MYH in 
shAtg7 cells treated with ad-GFP (control) or an adenovirus expressing dominant-negative CASP9 (ad-
DNCASP9) during differentiation. Also shown are representative GAPDH and ponceau control 
blots/membranes.*p<0.05 compared to D0 (within group). †p<0.05 between groups at the same time point. 
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Overexpression of some autophagy/mitophagy-related proteins fails to restore 
myogenic differentiation in ATG7-deficient cells 
	
Given that the differentiation impairment observed in autophagy-deficient cells is thought 

to result from a disruption in mitophagy (Sin et al., 2016), we hypothesized that 

overexpressing an autophagy/mitophagy-related protein might increase mitophagy levels 

and therefore improve myogenic differentiation in shAtg7 cells.  Initial experiments 

involved co-transfecting C2C12 myoblasts with p-mito-mRFP-EGFP and adenoviruses 

expressing autophagy/mitophagy-related proteins (Ad-PRKN, Ad-BECN1, Ad-BNIP3), 

and proliferating cells were observed using microscopy (Figure 4A-D).  As shown in 

Figure 4A-C, RFP-only mitochondria were less readily observed in proliferating C2C12 

myoblasts (Figure 4A, E) or cells expressing Ad-PRKN (Figure 4B, E) and Ad-BECN1 

(Figure 4C, E).  RFP-only mitochondria were; however, observed in C2C12 cells 

expressing Ad-BNIP3 (Figure 4D, E), suggesting that overexpression of BNIP3 might 

induce mitophagy in C2C12 myoblasts.  Next, we treated shAtg7 cells with Ad-GFP 

(control), Ad-PRKN, Ad-BECN1, or Ad-BNIP3, and measured MYOG and p-H2AFX 

levels to determine if there was any recovery of myogenic differentiation and/or decrease 

in DNA fragmentation in response to mitophagy-related protein expression.  

Interestingly, there was no significant change in MYOG or p-H2AFX in cells treated with 

Ad-PRKN (Figure 4F, I-J) or Ad-BECN1 (Figure 4G, K-L) relative to controls; however, 

cells treated with Ad-BNIP3 (Figure 4H, M-N) showed a significant increase in MYOG 

relative to controls (Figure 4M), and reduced p-H2AFX at D2 (Figure 4N).  Further, 

immunostaining for MYH (Figure 5A-F) revealed an increase in the appearance of 

MYH+ myotubes at D5 (Figure 5C, F) as well as a significantly higher fusion index 

(Figure 5G) in shAtg7 cells overexpressing BNIP3 relative to shAtg7 cells expressing 
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GFP (controls).    Moreover, quantitative analysis revealed that although the number of 

cells decreased in both groups by D5, there was significantly less decline in the groups 

treated with Ad-BNIP3 (Figure 5H).  Although this might indicate that the 

overexpression of BNIP3 prevents or delays cell death, there was no significant 

difference in CASP3 activity levels in Ad-BNIP3-treated cells relative to the controls 

(Figure 5I), suggesting that some cell death occurs in a CASP-independent manner.   

 

Figure 4.  Overexpression of autophagy/mitophagy-related proteins in C2C12 myoblasts and shAtg7 
cells.  Representative images of proliferating C2C12 cells (A) and C2C12 myoblasts expressing Ad-PRKN 
(B), Ad-BECN1 (C), and Ad-BNIP3 (D).  Cells were transfected with p-mito-RFP-GFP, and the 
appearance of RFP-only mitochondria is indicative of mitophagy.  Scale bar=10 µm. Quantification of the 
percentage of cells containing RFP-only mitochondria (E).  Representative immunoblots (F) and 
quantitative analysis (I-J) of MYOG and p-H2AFX in shAtg7 cells treated with Ad-GFP (controls) or Ad-
PRKN.  Representative immunoblots (G) and quantitative analysis (K-L) of MYOG and p-H2AFX in 
shAtg7 cells treated with Ad-GFP or Ad-BECN1.  Representative immunoblots (H) and quantitative 
analysis (M-N) of MYOG and p-H2AFX in shAtg7 cells treated with Ad-GFP or Ad-BNIP3.  †p<0.05 
between groups at the same time point. 
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Figure 5.  Overexpression of BNIP3 can partially rescue myogenic differentiation in shAtg7 cells by 
reducing cell loss.  Representative images of shAtg7 cells treated with Ad-GFP (A-C) or Ad-BNIP3 (D-F) 
throughout differentiation.  Anti-MYH (red) was used to visualize myotube formation, and nuclei are 
labelled with DAPI.  Scale bar=10 µm.  Quantitative analysis of fusion index (G), cell number (H), and 
CASP3 activity (I) in Ad-GFP- and Ad-BNIP3-treated shAtg7 cells during differentiation. †p<0.05 between 
groups at the same time point.  *p<0.05 compared to D0 (within group). 
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early during differentiation in SCR cells (Figure 6A-D, 6I-L), but not in shAtg7 cells 

(Figure 6E-H, L).  shAtg7 cells also maintained strong, cytosolic GFP expression, 

demonstrating that LC3 lipidation and autophagosome formation is impaired in shAtg7 

cells (Figure 6E-H).  Interestingly, however, RFP-only mitochondria were observed in 

both SCR (Figure 7A-C) and shAtg7 cells (Figure 7D-F) transfected with p-mito-mRFP-

EGFP, suggesting that mitochondria are delivered to lysosomes for degradation in shAtg7 

cells.    

 

Figure 6.  LC3-mediated mitophagy does not occur in differentiating shAtg7 cells.  Representative 
images (A-K) and quantitative analysis (L) of co-localization (yellow) of LC3  (green) and mitochondria 
(red) in Ad-GFP-LC3 and DsRed-Mito co-transfected SCR and shAtg7 cells during differentiation. Zoomed 
in and split channel images of SCR cells at D1 (I-K) demonstrate co-localized mitochondria and LC3 
puncta (yellow, arrows).  Scale bar=10 µm. †p<0.05 between groups at the same time point.  *p<0.05 
compared to D0 (within group). 
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Figure 7.  Mitochondrial degradation occurs in both SCR and shAtg7 cells during differentiation.  
Representative images of SCR (A-C) and shAtg7 cells (D-F) transfected with p-mito-RFP-GFP.  RFP-only 
mitochondria are observed during differentiation in both groups.  Scale bar=10 µm. 
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Interestingly, BFA treatment did not prevent C2C12 myoblasts from differentiating and 

forming numerous MYH-positive myotubes (Figure 8I), suggesting that alternative 

autophagy is not required for myogenic differentiation in healthy C2C12 cells, but that it 

might be a compensatory mechanism induced to promote survival in shAtg7 cells.      

 

Figure 8.  shAtg7 cells might utilize alternative mitophagy to degrade mitochondria and limit cell 
death.  Representative images (A-B) and quantitative analysis (C) of the percentage of cells containing 
RFP-only mitochondria for vehicle- and BFA-treated shAtg7 cells transfected with p-mito-RFP-GFP.  Cells 
are shown at D1 of differentiation.  Scale bar=10 µm.  Representative images (D-E) of myotubes (MYH+) 
in vehicle- and BFA-treated shAtg7 cells.  Scale bar=20 µm.  Quantitative analysis (F) of the average 
number of cells per field and CASP3 activity (G) in vehicle- and BFA-treated shAtg7 cells.  †p<0.05 
between groups at the same time point.  Representative images (H-I) of myotube formation in both vehicle- 
and BFA-treated C2C12 myoblasts.  Scale bar=20 µm.   
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Discussion 

The purpose of this study was to determine if mitophagy occurs in ATG7-deficient 

myoblasts, and if enhancing mitophagy would reduce cell death and improve myogenic 

differentiation.  It has been suggested that mitophagy increases during myogenic 

differentiation (Sin et al., 2016), and in this study we used a tandem RFP-GFP mitophagy 

reporter to support this interpretation (Figure 1).   This reporter allows us to confirm that 

mitochondria are delivered to lysosomes for degradation (Kim et al., 2013; Hamacher-

Brady & Brady, 2016) when C2C12 myoblasts are induced to differentiate. 

Sin et al (2016) suggested that mitophagy occurs during myogenic differentiation 

to remove the mitochondria associated with undifferentiated myoblasts to allow 

mitochondrial biogenesis and remodelling to occur to build the mitochondrial network 

needed to support a differentiated myotube (Sin et al., 2016).  Moreover, they 

demonstrated that mitochondrial remodelling is impaired in autophagy-deficient cells 

(Sin et al., 2016).  Consistent with these observations, we found that shAtg7 cells had 

reduced levels of PPARGC1A, DNM1L, and OPA1, proteins required for mitochondrial 

biogenesis, fission, and fusion (Sin et al., 2016), relative to SCR cells (Figure 2A-D).  

Moreover, expression of the mitochondrial proteins VDAC1, SLC25A4, and CYCS was 

also lower in shAtg7 cells, which suggests that mitochondrial content is reduced in 

differentiated shAtg7 cells (Figure 2A, F-H).  Taken together, these results indicate that 

the rebuilding of the mitochondrial network is impaired in shAtg7 cells, likely due to a 

failure to induce mitochondrial biogenesis.   

Given that mitophagy is considered a pre-requisite for mitochondrial biogenesis 

during differentiation (Sin et al., 2016), and based on our results indicating that 
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mitochondrial biogenesis is impaired in shAtg7 cells, we next measured the expression of 

some autophagy- and mitophagy-related proteins.  Interestingly, we found that BECN1, 

BNIP3, and BNIP3L/NIX levels were generally lower in shAtg7 cells (Figure 2I, J-L), 

which could suggest that autophagy/mitophagy is reduced.  BECN1 is an important 

regulator of autophagy and also plays a role in canonical and alternative mitophagy, 

while BNIP3 and BNIP3L have been shown to mediate mitophagy in numerous contexts 

(Choubey et al., 2014; Hirota et al., 2015; Hamacher-Brady & Brady, 2016); therefore, 

insufficient levels of these proteins could prevent mitochondria from being effectively 

targeted and degraded.  Moreover, SOD2 levels were higher in shAtg7 cells at early time-

points during differentiation (Figure 2A, E), which could suggest an increased level of 

oxidative stress and be indicative of impairment in mitochondrial degradation (Bresciani 

et al., 2015; Sebori et al., 2018).   

Additionally, expression of the anti-apoptotic protein BCL2 (Levine et al., 2008) 

was significantly lower in shAtg7 cells at all time-points throughout differentiation 

(Figure 2I, 2M), and previous work done in our lab has demonstrated that apoptotic 

signaling is elevated in shAtg7 cells (McMillan & Quadrilatero, 2014; McMillan, 2015). 

Increased apoptotic signaling can result from mitochondrial damage, and in support of 

this, subcellular fractionation revealed that cytosolic levels of CYCS and AIFM1 were 

elevated in shAtg7 cells relative to SCR cells (Figure 3A-B). CYCS and AIFM1 are 

mitochondrial proteins that can be released into the cytosol if mitochondrial integrity is 

disrupted, and can initiate CASP9 activation and CASP-dependent cell death as well as 

CASP-independent forms of cell death (Wang, 2001).  Previous work in our lab has 

demonstrated that CASP9 activity is elevated in shAtg7 cells and that myogenesis is 
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partially restored when cells are treated with a CASP9 inhibitor (McMillan, 2015).  In 

support of this, we found that treating shAtg7 cells with ad-DNCASP9 improved 

myogenic differentiation (Figure 3D-E), which suggests that mitochondria-mediated 

apoptotic signaling contributes to the differentiation impairments observed in shAtg7 

cells.  Interestingly, we saw differences in CASP3 activity in shAtg7 cells relative to SCR 

cells (Figure 3C); however, levels were not higher in shAtg7 cells at all time-points 

during differentiation. Therefore, we suspect that shAtg7 cells are eliminated using both 

CASP-dependent and CASP-independent cell death mechanisms, which could result from 

an accumulation of leaky/dysfunctional mitochondria (Kubli & Gustafsson, 2012). Thus, 

further investigation of both CASP-dependent and CASP-independent cell death in 

shAtg7 cells is warranted.    

Mitophagy eliminates damaged/dysfunctional mitochondria that might otherwise 

induce intracellular cell death signaling; therefore, it is not surprising that the expression 

of mitophagy-related proteins can protect against apoptosis by inducing mitophagy (Zhu 

et al., 2013).  Thus, we attempted to induce mitophagy in C2C12 myoblasts using 

adenoviruses expressing the autophagy/mitophagy-related proteins PRKN, BECN1, and 

BNIP3.  Mitophagy was then assessed using the p-mito-RFP-GFP mitophagy reporter.  

This reporter labels mitochondria with overlapping RFP and GFP expression; however, if 

mitochondria are targeted to lysosomes, the GFP expression is lost first and the 

mitochondria will be labeled with RFP only (Kim et al., 2013; Hamacher-Brady & Brady, 

2016) (Figure 4A-D).  Using this reporter, RFP-only mitochondria (indicative of 

mitophagy) were rarely observed in proliferating myoblasts, but could easily be detected 

in C2C12 cells overexpressing BNIP3 (Figure 4A-E).  Previous reports have shown that 
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BNIP3 can induce both autophagy and mitophagy (Bellot et al., 2009; Hanna et al., 2012; 

Zhang et al., 2016), as well as restore mitophagy in BNIP3L-deficient erythrocytes 

(Zhang et al., 2012), thus it is not surprising that we saw mitophagy occurring in BNIP3-

overexpressing cells.  However, given that the p-mito-RFP-GFP reporter provides a more 

qualitative measure of mitophagy, it is difficult to be certain that mitochondrial 

degradation occurred more frequently in BNIP3-overexpressing cells than in BECN1- or 

PRKN-overexpressing cells.  Interestingly, although we have tried several antibodies, we 

have never detected endogenous PRKN expression in C2C12 myoblasts in our lab, 

although we can detect it in other cell types and in cells treated with Ad-PRKN (see 

Figure 4F; Bloemberg, 2017), which conflicts with previous reports (Peker et al., 2018; 

Baldelli et al., 2014).  This could indicate that the antibodies are not appropriate for 

mouse cells, or it could mean that PRKN is not expressed in C2C12 cells and would not 

serve a mitophagy-related purpose.  Other studies have shown that PRKN is expressed at 

very low levels or not at all in some cell types, and have often employed systems to 

overexpress PRKN to study mitophagy (Hirota et al., 2015; Narendra et al., 2008).  

Further, most studies have used mitochondrial stressors/depolarizing agents to study 

PINK1/PRKN-mediated mitophagy (Narendra et al., 2008; Hirota et al., 2015); however, 

endogenous PRKN has not been detected in our lab in response to treating C2C12 

myoblasts with mitochondrial stressors (Bloemberg, 2017).  However, in order to 

determine if overexpression of PRKN (using Ad-PRKN) can promote mitophagy in 

C2C12 myoblasts, it might be necessary to treat cells with a mitochondrial stressor or 

depolarizing agent.   Additionally, we also failed to rescue myogenic differentiation by 

overexpressing BECN1 in shAtg7 cells.  Thus, although BECN1 plays an important role 
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in mediating autophagy and mitophagy (Liang et al., 1999; Choubey et al., 2014; Hirota 

et al., 2015), its overexpression might cause a more broad effect and be less mitophagy-

specific.  Further, BECN1 overexpression has been shown to have negative consequences 

with respect to cell survival in some contexts (Zhu et al., 2018).   

Interestingly, the assumption has been that BNIP3-mediated mitophagy requires 

the direct interaction between mitochondria-targeted BNIP3 and LC3 on the 

autophagosome (Hanna et al., 2012; Zhu et al., 2013; Shi et al., 2014).  Therefore, given 

that we did not observe the formation of LC3 puncta in shAtg7 cells during 

differentiation, suggesting that LC3+ autophagosomes do not form in the absence of 

ATG7 (Figure 6), it is unlikely that overexpression of BNIP3 in shAtg7 cells is enhancing 

mitophagy through a direct interaction with LC3.  However, if there is some LC3 

lipidation/autophagosome formation occurring in shAtg7 cells, then one could speculate 

that having more BNIP3 available to interact with that small number of autophagosomes 

could cause a slight increase in mitochondrial degradation.  Further, studies investigating 

mitophagy during erythrocyte differentiation have determined that the functionally 

similar protein BNIP3L contains a short sequence called a minimal essential region 

(MER), which does not interact with LC3 but is required for mitochondrial clearance 

(Zhang et al., 2012).  The same authors also demonstrated that BNIP3 contains the same 

MER sequence as BNIP3L, and can compensate for BNIP3L to degrade mitochondria 

during erythrocyte differentiation (Zhang et al., 2012).  Thus, they and others have 

suggested that this developmentally induced mitophagy might use an alternative 

autophagy pathway that is independent of LC3 (Zhang et al., 2012; Nishida et al., 2009).  

Given that BNIP3 is functionally similar to BNIP3L and also contains this MER 
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sequence (Zhang et al., 2012), this would suggest that BNIP3 may be able to promote 

LC3-independent mitophagy in shAtg7 cells to prevent the accumulation of unnecessary 

or damaged mitochondria that might otherwise disrupt differentiation and trigger cell 

death (Zhang et al., 2012; Zhu et al., 2013).  Moreover, recent work has suggested that 

BNIP3 can promote LC3-independent, endosome-mediated mitochondrial degradation in 

autophagy-deficient cells (Hammerling et al., 2017).   Therefore, the partial recovery of 

myogenic differentiation observed in shAtg7 cells overexpressing BNIP3 (Figure 4H, 

4M, Figure 5A-G), but not in those overexpressing BECN1 (Figure 4G, K) or PRKN 

(Figure 4F, I) could result from BNIP3-induced mitochondrial clearance, which is 

necessary for myogenic differentiation (Sin et al., 2016).  Interestingly, muscle-specific 

overexpression of BNIP3 can also effectively rescue the myogenic abnormalities 

observed in Drosophila PINK1 mutants (Zhang et al., 2016).    

 In addition to its established role in limiting cell death by eliminating 

dysfunctional mitochondria (Zhu et al., 2013), BNIP3 can also inhibit cell death in a 

mitophagy-independent manner (Burton et al., 2009; Burton et al., 2013).  Studies have 

shown that BNIP3 can transcriptionally repress the expression of the genes encoding 

apoptosis inducing factor (AIFM1) and death receptor-5 (DR5) to inhibit apoptosis 

(Burton et al., 2009; Burton et al., 2013), and potentially limit other forms of cell death 

(Artus et al., 2010; Baritaud et al., 2012).  As shown in Figure 5I, we did not detect a 

significant change in CASP3 activity in Ad-BNIP3-treated cells relative to Ad-GFP-

transfected cells (controls), suggesting that overexpression of BNIP3 did not cause a 

reduction in CASP-mediated apoptotic signaling.  However, we did detect a significant 

reduction in p-H2AFX in BNIP3-overexpressing cells relative to controls at D2, although 
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p-H2AFX levels increased in BNIP3-overexpressing cells by D5 (Figure 4H, 4N).  Cell 

loss/death generally increases after D3 of differentiation in the shAtg7 cells, and elevated 

p-H2AFX levels are associated with apoptotic cell death (Rogakou et al., 2000) as well as 

alternate forms of cell death like necroptosis/necrosis (Artus et al., 2010; Baritaud et al., 

2012).  This would suggest that overexpression of BNIP3 might delay cell death in 

shAtg7 cells, but that it does not provide long-term protection against cell death.  

Therefore, it would be interesting to determine if BNIP3 suppresses apoptotic and/or non-

apoptotic cell death in shAtg7 cells by transcriptionally inhibiting the expression of genes 

such as AIFM1.  

 Although the co-localization of LC3+ puncta (autophagosomes) and mitochondria 

was rarely observed in shAtg7 cells during differentiation (Figure 6), transfecting shAtg7 

cells and SCR cells with the p-mito-RFP-GFP mitophagy reporter revealed the presence 

of RFP-only mitochondria in both groups, which suggests that mitochondrial degradation 

does occur in shAtg7 cells during differentiation (Figure 7).   This result was surprising; 

however, consultation with the literature revealed that others have observed LC3-

independent autophagy/mitophagy in ATG7-deficient cells (Nishida et al., 2009; Hirota 

et al., 2015; Wang et al., 2016).    Nishida et al (2009) had discovered that 

autophagosomes can form in the absence of ATG5 and ATG7, and that they are likely 

derived from the Golgi apparatus (Nishida et al., 2009).  They also demonstrated that this 

alternative/non-canonical autophagy pathway does not involve LC3 lipidation, and 

requires the intracellular trafficking protein RAB9 (Nishida et al., 2009).  Moreover, this 

group also suggested that mitophagy occurring during erythrocyte differentiation might 

actually utilize this alternative autophagy pathway, an interpretation that has gained 
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support through additional studies (Nishida et al., 2009; Honda et al., 2014).  

Additionally, others have shown that mitophagy induced by starvation or hypoxia 

requires RAB9, but is not affected by knocking down ATG7 or LC3 (Hirota et al., 2015).   

Thus these results, in agreement with previous reports (Nishida et al., 2009; Hirota et al., 

2015), demonstrate that LC3 lipidation might not be the best or most accurate measure of 

autophagy, and that additional methods such as electron microscopy, should be 

considered to detect both canonical and alternative autophagy/mitophagy.  Further, a 

more recent study has demonstrated that RAB5/RAB7-positive endosomes can deliver 

mitochondria directly to lysosomes for degradation (Hammerling et al., 2017).   

 In order to determine if the mitochondrial degradation observed in shAtg7 cells 

(Figure 7) is dependent on the alternative mitophagy pathway, we treated shAtg7 cells 

with the alternative autophagy inhibitor brefeldin A (BFA) (Nishida et al., 2009; Wang et 

al., 2016), and found that mitochondrial degradation was effectively blocked by BFA 

treatment (Figure 8A-C).  Additionally, we found that myogenic differentiation and cell 

loss was more severe in shAtg7 cells treated with BFA relative to vehicle-treated cells 

(Figure 8D-F), which is consistent with reports that alternative mitophagy is needed to 

suppress cell death in autophagy-deficient cells (Wang et al., 2016).  Moreover, CASP3 

activation was actually lower in BFA-treated cells relative to controls (Figure 8G), which 

suggests that the increased cell loss observed in BFA-treated shAtg7 cells may result 

from CASP-independent cell death (Gudipaty et al., 2018; Tait et al., 2014).  However, it 

is also possible that CASP3 levels were lower because the least healthy cells have already 

been eliminated and CASP3 activity is being measured in the surviving/healthiest cells.  

Interestingly, we saw no impairment in myogenic differentiation in C2C12 myoblasts 
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treated with BFA (Figure 8H-I), which suggests that alternative autophagy/mitophagy 

might limit cell loss in shAtg7 cells, but might not be required for proper myogenesis in 

healthy C2C12 myoblasts.  Interestingly, Wang et al (2016) found that although ATG7-

deficient leukemia cells fail to differentiate properly, they are also resistant to apoptosis 

because alternative mitophagy can effectively degrade mitochondria and regulate 

intracellular ROS levels  (Wang et al., 2016).  This supports previous work in our lab 

demonstrating that shAtg7 cells fail to differentiate (McMillan & Quadrilatero, 2014).  

Moreover, we also demonstrated that mitochondrial degradation does occur in shAtg7 

cells and could be providing some protection against cell death (Figure 8).  However, 

although we suspect that alternative mitophagy can help to limit apoptosis in shAtg7 

cells, our previous work has shown that these cells retain dysfunctional mitochondria and 

show elevated ROS levels and apoptotic signaling (McMillan, 2015; Baechler et al., 

2019; McMillan & Quadrilatero, 2014).  Moreover, the cytosolic release of CYCS and 

AIFM1 (Figure 3A-B) suggests that leaky/damaged mitochondria are not being 

efficiently eliminated in shAtg7 cells.  Therefore, alternative mechanisms of 

mitochondrial degradation might not be sufficient to compensate for impairment in 

canonical/ATG7-dependent autophagy/mitophagy during myogenic differentiation.  

Further, blocking the alternative mitophagy pathway in healthy C2C12 myoblasts during 

differentiation did not inhibit myogenesis (Figure 8H-I), suggesting that alternative 

autophagy/mitophagy is likely not as important as canonical/ATG7-dependent mitophagy 

during myogenic differentiation.     

Given our evidence that the elimination of dysfunctional mitochondria is 

compromised in shAtg7 cells, it is important to consider that the numerous mechanisms in 
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place to degrade mitochondria might differ in how they identify and target mitochondria 

for degradation.  In other words, autophagy/mitophagy-mediated mitochondrial 

degradation might be more important for eliminating damaged mitochondria, while 

endosomal-mediated mitochondrial degradation, which can occur more rapidly 

(Hammerling et al., 2017) might be less likely to distinguish between healthy and 

dysfunctional mitochondria.  Moreover, the p-mito-RFP-GFP mitophagy reporter used 

for this study relied on a tandem RFP-GFP construct that localizes to the mitochondria 

(Kim et al., 2013), thus it is possible that the RFP and GFP proteins could have been 

degraded in an autophagy-independent manner.   

 

Conclusion 

Overall, these experiments have demonstrated that autophagy and mitophagy are 

important for myogenic differentiation.  We also found that mitochondrial remodelling 

and biogenesis were impaired in shAtg7 cells, which could result from insufficient 

mitophagy.  Interestingly, we found that LC3-dependent autophagy/mitophagy does not 

occur in shAtg7 cells, but that mitochondrial degradation can occur in an LC3-

independent manner.  However, we also suspect that the specific targeting of damaged or 

dysfunctional mitochondria is impaired in shAtg7 cells, given that shAtg7 cells have 

increased mitochondrial damage and dysfunction relative to SCR cells. Therefore, we 

speculate that canonical autophagy/mitophagy is critical to limit apoptotic signaling and 

cell death during myogenic differentiation, although additional studies are required to 

determine how mitochondrial targeting and degradation is regulated during myogenesis.   
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Materials and Methods 

Cell culture, chemical treatments 
	
Culturing conditions have been described previously (McMillan & Quadrilatero, 2014).  

Briefly, low pass C2C12 myoblasts (A.T.C.C.) were plated in polystyrene cell culture 

dishes in growth media (GM) composed of low- glucose Dulbecco’s modified Eagle’s 

medium (DMEM), 10% FBS, and 1% penicillin/streptomycin (P/S), and were maintained 

at 37 °C in 5% CO2.  GM was changed every 24-48 hours.  When cells were ready to 

differentiate (80-90% confluent), D0 cells were collected and GM was exchanged for 

differentiation media (DM) consisting of low-glucose DMEM, 2% horse serum, and 

1%P/S in the remaining wells. DM was replaced each day until cells were collected at the 

appropriate time-points (D1, D2, etc.).   For collections, cells were trypsinized (0.25% 

trypsin with 0.2g/l EDTA), centrifuged (1000g for 5 min), and stored at -80°C. 

ATG7 knockdown and SCR cell lines were generated previously in our lab 

(Bloemberg, 2017) by growing C2C12s in 12-well plates and transfecting them with 

vectors encoding an shRNA against ATG7 (Origene TG504956), or a SCRble control 

sequence (Origene TR30013).  For transfections, vector DNA and Lipofectamine 2000 

was diluted in Opti-MEM and the mixture was added to cells for a 6 hour incubation.  24 

hours post-transfection, cells were transferred to 100 mm plates and grown in GM 

containing puromycin (2 µg/mL) and stable clones were selected.  Immunoblotting was 

then used to evaluate ATG7 levels in selected clones.   

Brefeldin A (BFA) (B677240; Toronto Research Chemicals) treatments were 

performed as described previously to inhibit alternative mitophagy (0.1 µg/mL; Wang et 

al., 2016).  BFA was diluted in DM and replaced each day during differentiation.   
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Fluorescent mitophagy reporters/microscopy 
	

Cells were grown on glass coverslips coated with Cultrex BME (Trevigen, 3432-

010-01) in 12-well plates and transfected with pDsRed2-Mito vector (generously 

provided by Dr. Douglas Green, St Jude’s Children’s Research Hospital, Memphis, TN) 

or p-mito-RFP-GFP vector (kindly provided by Dr. Andreas Till; Kim et al., 2013) upon 

reaching 60-70% confluence. jetPRIME Transfection Reagent (Polyplus-transfection, 

114-07) was used for all transfections according to the manufacturer’s instructions.  For 

co-localization analysis, GFP-LC3 adenovirus (ad-GFP-LC3; kindly provided by Dr. 

Gökhan S. Hotamisligil, Harvard School of Public Health, Boston, MA) was added to 

wells containing cells transfected with pDsRed2-Mito for overnight incubation.  The next 

day, cells were washed and imaged (D0) or induced to differentiate.  For imaging, 

coverslips were mounted on glass slides using Prolong Gold Antifade Reagent 

(ThermoFisher Scientific, P36930) and imaged on a Zeiss LSM 800 (Carl Zeiss).  To 

assess mitophagy, we counted the number of co-localization events (overlapping GFP-

LC3 punta and pDsRed2-Mito-labelled mitochondria). Chloroquine (CQ;10 µm) was 

added to each well one day prior to imaging to assist with counting co-localization 

events.  For p-mito-RFP-GFP qualitative experiments, we observed the change from 

GFP+RFP+ mitochondria to RFP+-only mitochondria as being indicative of mitophagy.    

 
Adenoviruses, amplification, and tittering 
	
The following adenoviruses were used for this study: Ad-PRKN, Ad-BNIP3, Ad-BECN1 

(kindly provided by Dr. Abhinav Diwan), Ad-GFP, Ad-LC3-GFP (Yang et al., 2010; 

kindly provided by Dr. Gökhan S. Hotamisligil), and ad-DNCASP9 (generously provided 

by Dr. Paul Dent).  Adenoviruses were amplified using the ViraPower Adenoviral 
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Expression System protocol (Life Technologies).  Briefly, HEK293 cells were plated in 

growth media and viral lysate was added to each plate of confluent cells.  The cells were 

then placed at 37°C (CO2 incubator) until 80-90% of the cells had rounded up and were 

starting to detach from the plate.  At this point, the cells and media were collected using a 

serological pipette and placed in a 15 mL falcon tube.  The tube was then placed at -80°C 

for 30 minutes, then thawed in a 37°C waterbath for 15 minutes.  This freeze/thaw cycle 

was repeated for a total of 3 times.   The cell lysate was then centrifuged at 3000 rpm for 

15 minutes at room temperature.  Subsequently, the pelleted debris was discarded and the 

supernatant (crude virus) was transferred to cryotubes and stored at -80°C.   

Viral titers were determined using the Adeno-X Rapid Titer Procedure (Clontech 

Laboratories, Inc.). HEK293 cells were grown on coverslips coated with Cultrex BME 

(Trevigen) in 12-well plates.  Using growth media as a diluent, we prepared 10-fold serial 

dilutions of adenovirus stocks and added them to the appropriate wells.  Cells were 

incubated at 37°C (5% CO2) for 48 hours.  Following incubation, cells were rinsed and 

fixed in 1 mL cold 100% methanol at -20 °C for 10 minutes.  After fixation, cells were 

rinsed with PBS containing 1% BSA, then incubated with mouse anti-Hexon antibody 

(Santa Cruz Biotechnology) for 1 hour at 37°C on a shaker.  Cells were then rinsed and 

incubated for 1 hour with goat anti-mouse Alexa Fluor 488-conjugated secondary 

antibody (Thermo Fisher Scientific).  Cells were subsequently washed in PBS and 

mounted on glass slides using Prolong Gold Antifade Reagent (ThermoFisher Scientific, 

P36930) and imaged on a Zeiss LSM 800 (Carl Zeiss).  Six to ten fields containing 5-50 

green (Hexon+) cells were counted, and used to calculate infectious units/ml.    For all 

experiments, C2C12 myoblasts were treated with adenoviruses (overnight incubation) at 
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a multiplicity of infection (MOI) of 100 (for Ad-GFP, Ad-PRKN, Ad-BECN1, and Ad-

BNIP3) or 60 (for ad-DNCASP9 and Ad-GFP experiments), and viruses were removed 

before differentiation was induced.   

 
Immunoblotting 
	
Western blotting was performed as described previously (McMillan & Quadrilatero, 

2011; McMillan & Quadrilatero, 2014). Cells were sonicated in ice-cold lysis buffer (LB) 

[20mM Hepes, 10mM NaCl, 1.5mM MgCl, 1mM DTT, 20% glycerol and 0.1% Triton 

X-100 (pH7.4)] containing protease inhibitor cocktail.  Protein concentrations were 

determined using the BCA method and equal protein amounts were loaded and separated 

on 12% SDS- PAGE gels.  Proteins were then transferred onto PVDF membranes (Bio-

Rad), and blocked in 5% milk in TBS-T for 1 hour at room temperature. Membranes 

were incubated overnight at 4°C in primary antibodies against: SQSTM1 (PM045;   

 MBL), BNIP3, ACT (B7931, A2066; Sigma-Aldrich), SOD2 (ADI-SOD-110; Enzo Life 

Sciences), GAPDH, BNIP3L, DNM1L, LC3B, ATG7, BECN1 (2118, 12396, 8570, 

2775, 8558, 3738; Cell Signaling), MYOG, MYH, (F5D, MF20; Developmental Studies 

Hybridoma Bank), AIFM1, BCL2, SLC25A4, CYCS, PPARGC1A, VDAC1, p-H2AFX, 

OPA1, PRKN (sc-13116, sc-7382, sc-9299, sc-13156, sc-13067, sc-390996, sc-101696, 

sc-393296, sc-32282; Santa Cruz Biotechnology).  Primary antibodies were removed and 

membranes were washed in TBS-T then incubated for 1 hour at room temperature with 

the appropriate horseradish peroxidase-conjugated secondary antibodies (Santa Cruz 

Biotechnology). TBS-T washes were then repeated and bands were visualized using the 

Clarity Western ECL substrate (Bio-Rad) and the ChemiGenius 2 Bio-Imaging System 

(Syngene). 
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Immunofluorescence and microscopy 
	
Immunofluorescent staining of cells was performed as described previously (McMillan & 

Quadrilatero, 2014).  Cells were grown and differentiated on glass coverslips coated with 

Cultrex BME (Trevigen). Cells were then fixed with ice-cold methanol, and washed with 

PBS. Cells were permeablized with 0.5% Triton X-100 for 10 minutes and washed in 

PBS. Cells were then blocked in 10% goat serum (Sigma–Aldrich) in PBS for 30 

minutes, followed by incubation with anti-MYH primary antibody (MF20; DSHB) in 

fresh blocking solution for 1 hour.  PBS washes were then repeated.  Next, coverslips 

were incubated for 1 hour in the appropriate fluorochrome-conjugated secondary 

antibody diluted in blocking solution.  Subsequently, PBS washes were repeated, cells 

were stained with DAPI nuclear stain (Life Technologies; D3571) for 5 minutes, and then 

washed with PBS.  Coverslips were placed on slides and Prolong Gold Antifade Reagent 

was used for mounting.  Slides were imaged the following day using an Axio Observer 

Z1 microscope equipped with an AxioCam HRm camera and AxioVision software (Carl 

Zeiss).  Fusion index was calculated as the percentage of nuclei present in multinucleated 

(two or more nuclei) cells relative to total nuclei, and cell number was determined by 

counting the number of nuclei per field.   

 
CASP assays 
	
CASP3 and CASP9 assays were performed as described previously (McMillan et al., 

2015; Baechler et al., 2019).  Cells were sonicated in lysis buffer without protease 

inhibitors, and CASP3 and CASP9 activity was determined using the fluorogenic 

substrates Ac-DEVD-AFC and Ac-LEHD-AFC (AAT Bioquest, 13401; Tocris 

Bioscience, 1575), respectively.   Fluorescence was measured using a Synergy H1 
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microplate reader (BioTek) in duplicate.  CASP activity was normalized to total protein 

content determined using the BCA protein concentration assay. 

 
Statistics 
	
Statistical analysis was performed using GraphPad PRISM. A one-way ANOVA was 

used to assess the effect of differentiation within groups, with Bonferroni’s multiple 

comparison test to compare differences from D0.  Differences between time-matched 

SCR and shAtg7 cells, and treatment versus control groups were assessed using a 

Students T-test. For all experiments p<0.05 was considered statistically significant.  For 

all immunoblotting and CASP activity assays, n = 3 or more.  For fluorescent reporter 

and microscopy experiments, n = 15-30 cells.    
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Project Rationale and Objectives 

Autophagy and mitophagy are considered to be necessary processes during myogenic 

differentiation (McMillan & Quadrilatero, 2014; Sin et al., 2016).  In support of this, 

deficiencies in the autophagy-related proteins ATG7 and ATG5 and the mitophagy-

related protein PRKN, have been shown to disrupt myogenesis and muscle quality 

(McMillan & Quadrilatero, 2014; Sin et al., 2016; Peker et al., 2018).  Interestingly; 

however, our lab has not been able to detect PRKN expression in C2C12 cells 

(Bloemberg, 2017; Chapter 2- Figure 4).  Therefore, we wondered if the expression of 

other mitophagy-related proteins might be more critical for degrading mitochondria 

during differentiation in C2C12 myocytes.  Interestingly, previous work in our lab 

demonstrated that expression of the mitophagy receptor protein BNIP3 increases during 

myogenic differentiation (McMillan & Quadrilatero, 2014), which prompted us to 

explore if BNIP3 plays a role in regulating mitophagy during myogenesis.  Moreover, in 

Chapter 2 we found that BNIP3 was able to partially rescue myogenic differentiation in 

ATG7-deficient cells.  Further, the closely-related mitophagy receptor BNIP3L/NIX is 

known to play an important role in regulating mitophagy during erythrocyte 

differentiation (Sandoval et al., 2008; Schweers et al., 2007), thus, we also wanted to 

evaluate if it is required to support myogenic differentiation.   

Therefore, the major objectives for Chapter 3 were: 

1) To determine if the mitophagy-related proteins BNIP3 and BNIP3L are required for 

myogenic differentiation. 

2) To determine if autophagy and mitophagy are altered in BNIP3-deficient cells. 
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We hypothesized that myogenic differentiation would be disrupted in myoblasts deficient 

in BNIP3L or BNIP3 because we suspected that one or both of these proteins would be 

involved in mediating mitophagy during differentiation.  Further, we predicted that 

mitophagy would be impaired in BNIP3-deficient cells, resulting in the accumulation of 

mitochondria, and that this would cause an increase in autophagic signaling in an attempt 

to degrade the accumulated mitochondria.   

 

Abbreviations 

ATG5: autophagy related 5; ATG7: autophagy related 7; BCL2: B cell 

leukemia/lymphoma 2; BECN1: beclin 1; BNIP3: BCL2/adenovirus E1B interacting 

protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CASP: 

caspase; CASP3: caspase 3; CASP9: caspase 9; CYCS: cytochrome c; DNM1L: dynamin 

1-like; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent 

protein; LC3B: microtubule-associated protein 1 light chain 3 beta; SOD2: manganese 

superoxide dismutase; MTOR: mechanistic target of rapamycin kinase; MYH: MYH; 

MYOG: MYOG; OPA1: mitochondrial dynamin like GTPase; PPARGC1A: peroxisome 

proliferative activated receptor, gamma, coactivator 1 alpha; p-H2AFX: phosphorylated 

H2A histone family, member X; PINK1: PTEN induced putative kinase 1; RFP: red 

fluorescent protein; ROS: reactive oxygen species; SLC25A4: solute carrier family 25 

(mitochondrial carrier, adenine nucleotide translocator); ULK1/ATG1: unc-51 like kinase 

1; VDAC1: voltage-dependent anion channel 1 
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Introduction 

Skeletal muscle differentiation and remodelling have been shown to rely heavily on a 

degradative process known as autophagy (McMillan & Quadrilatero, 2014; Fortini et al., 

2016).  When autophagy is initiated, cytoplasmic elements such as organelles are taken 

up by a double-membraned structure called an autophagosome.  The autophagosome then 

delivers these cytoplasmic elements to a lysosome so that they can be degraded (Kondo et 

al., 2005).  Autophagy can be quite a selective process, and one type of autophagy called 

mitophagy involves the specific targeting and degradation of mitochondria (Naik et al., 

2018).   Previous work has demonstrated that mitophagy is necessary during myogenic 

differentiation, and it is suggested to protect against mitochondria-mediated apoptosis 

(Sin et al., 2016; Baechler et al., 2019).  Moreover, mitophagy degrades the myoblast 

mitochondrial population so that new mitochondria can be generated to fulfil the 

metabolic requirements associated with myotube formation and maintenance (Sin et al., 

2016).  Numerous mitophagy-related proteins and mitophagy pathways have been 

identified, and their induction and requirement are often context dependent (Hamacher-

Brady & Brady, 2016).  For example, PINK1 and PRKN are thought to be required for 

eliminating depolarized mitochondria (Hamacher-Brady & Brady, 2016), while the 

mitophagy receptor BNIP3L/NIX is essential for removing unnecessary but otherwise 

healthy mitochondria as part of a developmental differentiation program (Hamacher-

Brady & Brady, 2016; Ney, 2015).   

We among others have previously shown that autophagy-deficient myoblasts fail 

to differentiate properly (McMillan & Quadrilatero, 2014; Sin et al., 2016).  Moreover, 

autophagy-deficient myoblasts contain more dysfunctional/damaged mitochondria and 
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elevated levels of ROS, and fail to sufficiently induce mitochondrial biogenesis during 

differentiation (McMillan, 2015; Baechler et al., 2019; Sin et al., 2016; Chapter 2).  

Further, the accumulation of dysfunctional/damaged mitochondria can disrupt 

differentiation by triggering cell death signaling events and apoptosis (Kubli & 

Gustafsson, 2012), and also contributes to cell senescence (Garcia-Prat et al., 2016).  

Thus, mitophagy plays a critical role in both myoblast/myotube survival and myogenic 

differentiation. 

Although it is well established that autophagy-related proteins are required for 

myogenic differentiation, the role of mitophagy-related proteins in regulating myogenesis 

remains elusive.  Although some studies have suggested that the PINK1/PRKN pathway 

is important in muscle (Peker et al., 2018; Yang et al., 2006), we have not been able to 

detect endogenous PRKN in C2C12 myoblasts (Bloemberg, 2017; Chapter 2 – Figure 4).  

Moreover, recent in vivo studies have suggested that PINK1 and PRKN are not needed 

for basal mitophagy (McWilliams et al., 2018; Lee et al., 2018), while others suggest a 

need for PINK1/PRKN-mediated mitophagy during aging (Cornelissen et al., 2018).  

Interestingly, previous work in our lab has demonstrated that expression of the 

mitophagy-related protein BNIP3 increases during myogenic differentiation (McMillan & 

Quadrilatero, 2014), and some have suggested that BNIP3 might be involved in 

mediating mitophagy during myogenesis (Baldelli et al., 2014).   

 BNIP3 and BNIP3L are structurally and functionally similar single-pass 

transmembrane proteins that are primarily found at the outer mitochondrial membrane 

(Ney, 2015).  Both proteins contain a BCL2-homology 3 (BH3) domain, and a 

transmembrane domain that is crucial for inducing cell death (Ney, 2015).  Similar to 
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other BH3-only proteins, BNIP3 and BNIP3L can induce apoptosis by interacting with 

BCL2 family proteins to encourage pro-apoptotic activity while also inhibiting those with 

anti-apoptotic functions (Marino et al., 2014). Further, by binding to BCL2 proteins, 

BNIP3 and BNIP3L can liberate BECN1, which would otherwise be inhibited by BCL2, 

to promote autophagy (Marino et al., 2014; Hamacher-Brady & Brady, 2016).  However, 

although these proteins can promote autophagy, they are not necessarily required for 

proper induction and execution of autophagy.   Interestingly, BNIP3-deficient tumour 

cells are more reliant on autophagy for survival than wild-type cells (Chourasia et al., 

2015).   

In addition to their potential to induce autophagy, BNIP3 and BNIP3L have been 

identified as important regulators of mitophagy (Hamacher-Brady & Brady, 2016). 

BNIP3L is required for eliminating mitochondria during erythrocyte differentiation 

(Sandoval et al., 2008; Zhang et al., 2012), and mitochondrial localization of BNIP3 

increases during myogenic differentiation, suggesting that BNIP3 might be involved in 

differentiation-associated mitophagy (Baldelli et al., 2014).  Additionally, BNIP3-

deficient mammary tumours and lymphocytes show signs of impaired mitophagy, such as 

elevated ROS levels and the accumulation of dysfunctional mitochondria (Chourasia et 

al., 2015; O’Sullivan et al., 2015).  Thus these proteins can regulate mitophagy as part of 

a developmental program, to support mitochondrial homeostasis and also to protect 

against mitochondria-related cellular stress (Hamacher-Brady & Brady, 2016; Sandoval 

et al., 2008; Kubli & Gustafsson, 2012).  Further, BNIP3L and BNIP3 are thought to 

regulate mitochondrial turnover, and can mediate the removal of polarized and healthy 

mitochondria in addition to supporting the degradation of damaged mitochondria (Zhu et 
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al., 2013; Hamacher-Brady & Brady, 2016).  Interestingly, both proteins contain an LC3-

interacting region (LIR), which allows them to interact with autophagosome-associated 

LC3 directly to promote mitophagy (Novak et al., 2010; Hanna et al., 2012).  

Thus, given that BNIP3 and BNIP3L have been described as important regulators 

of mitophagy in numerous contexts, it is possible that these proteins might play a 

mitophagy-related role during myogenic differentiation.  Therefore, the purpose of this 

study was to determine if BNIP3 and/or BNIP3L are required for proper myogenic 

differentiation, and if a deficiency in one of these proteins results in 

autophagic/mitophagic impairments.   

 

Results 

BNIP3L/NIX and BNIP3 are required for proper myogenic differentiation 

Based on previous reports supporting the importance of mitophagy during myogenic 

differentiation (Sin et al., 2016; Chapter 2), it is reasonable to speculate that mitophagy-

related proteins are required to support myogenesis.  Therefore, for this study we reduced 

the expression of the mitophagy receptors BNIP3L and BNIP3 (Ney, 2015) to determine 

if myogenic differentiation is disrupted.  First, C2C12 myoblasts were transfected with 

siRNA targeting transcripts encoding BNIP3L or a non-targeting (Scr) siRNA, and 

differentiated for five days.  BNIP3L expression was significantly reduced in the BNIP3L 

siRNA cells analyzed at D1 and D3 of differentiation relative to Scr siRNA cells; 

however, BNIP3L expression was almost restored by D5 (Figure 1A, B).  Interestingly, 

BNIP3L siRNA cells displayed significantly higher levels of BNIP3 expression at time-
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points when BNIP3L expression was reduced (Figure 1A, C).  Moreover, MYH 

expression was reduced in BNIP3L siRNA cells compared to Scr cells (Figure 1A, D), 

suggesting impairment in myogenic differentiation.  Further, p-H2AFX levels were lower 

in BNIP3L siRNA cells at D1 (Figure 1A, E), which could suggest that BNIP3L-deficient 

cells are more resistant to DNA fragmentation, but could also account for some 

alterations/impairments in differentiation, given that DNA strand breaks occur during 

normal myogenic differentiation (Larsen et al., 2010).   

 

Figure 1.  siRNA-mediated knockdown of BNIP3L impairs myogenic differentiation.  Representative 
immunoblots (A) and quantitative analysis (B-E) of BNIP3L, BNIP3, MYH, and p-H2AFX in BNIP3L 
siRNA and Scr siRNA myoblasts during differentiation.  Also shown is a representative ACT loading 
control blot.  †p<0.05 between groups at the same time point. 
 

Given the transient nature of the siRNA-mediated knockdown approach, a stable 

BNIP3-deficient (bnip3-/-) C2C12 myoblast cell line, which was previously generated in 

our lab (Bloemberg, 2017), was used for subsequent experiments.  As shown in Figure 2, 
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immunoblotting revealed no visible BNIP3 expression in bnip3-/- cells throughout 

differentiation (Figure 2A), although some background signal was detected at D0 (Figure 

2B).  Interestingly, we found that MYH (Figure 2A, C) and MYOG (Figure 2A, D) 

expression was significantly lower in bnip3-/- cells relative to Scram cells, demonstrating 

impaired myogenesis in cells lacking BNIP3.  Further, CASP9 (Figure 2E) and CASP3 

(Figure 2F) activity was elevated at D1, which was followed by higher p-H2AFX levels 

at D2 in bnip3-/- cells (Figure 2A, G).  This suggests that cell death signaling is elevated 

during early differentiation time-points in BNIP3-deficient cells.    

 

Figure 2.  BNIP3 is required for myogenic differentiation.  Representative immunoblots (A) and 
quantitative analysis (B-D, G) of BNIP3, MYH, MYOG, and p-H2AFX in bnip3-/- and Scram myoblasts 
during differentiation.  Also shown is a representative ACT loading control blot.  Quantitative analysis of 
(E) CASP9 and (F) CASP3 activity in bnip3-/- and Scram cells during differentiation.  *p<0.05 compared to 
D0 (within group). †p<0.05 between groups. 
 
Mitochondrial protein expression is altered in bnip3-/- cells 

Mitophagy is said to be required for allowing mitochondrial remodelling to occur during 

differentiation (Sin et al., 2016), and BNIP3 has been shown to promote mitophagy 

(Zhang et al., 2016; Shi et al., 2014), thus we speculated that bnip3-/- cells might fail to 

BNIP3 

MYH 

MYOG 

p-H2AFX 

ACT 

Scram bnip3-/- 

 D0   D1  D2   D3   D4  D5    D0  D1   D2   D3    D4   D5 

42 kDa 

30 kDa 

35 kDa 

220 kDa 

15 kDa 

A	

B	 C	

D	 E	 F	 G	



	 68	

generate the mitochondrial network associated with myotubes.  Interestingly we found 

that SOD2 expression was significantly elevated in bnip3-/- cells at early time-points 

during differentiation (Figure 3A, H), which could suggest that mitochondria are 

accumulating or that there is an increase in oxidative stress levels.  Moreover, and similar 

to what we observed in shAtg7 cells (Chapter 2), the level of mitochondrial signaling- 

and mitochondria-related protein expression was generally lower in bnip3-/- relative to 

Scram cells (Figure 3A-G); however, the effect was not as severe as in shAtg7 cells 

(Chapter 2).  This suggests that mitochondrial content and mitochondria-related signaling 

events are altered in bnip3-/- cells.   

 

Figure 3.  Mitochondrial network-related signaling and content is altered in bnip3-/- cells.  
Representative immunoblots (A) and quantitative analysis (B-H) of PPARGC1A, DNM1L, OPA1, 
VDAC1, SLC25A4, CYCS, and SOD2 in bnip3-/- and Scram myoblasts during differentiation.  Also shown 
is a representative ACT loading control blot.  *p<0.05 compared to D0 (within group). †p<0.05 between 
groups. 
 
Mitochondrial degradation occurs in bnip3-/- cells 

Next, we wanted to determine if mitophagy occurs in Scram and bnip3-/- cells during 

differentiation.  Cells were transfected with DsRed-Mito and Ad-GFP-LC3 to visualize 

the co-localization of mitochondria (DsRed-labelled) and autophagosomes (GFP-LC3 

puncta) during differentiation.  As shown in Figure 4A-C, co-localization events occurred 
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in both Scram and bnip3-/- cells, and surprisingly, there were significantly more co-

localization events at D0.5 in bnip3-/- cells relative to Scram cells (Figure 4C).  Similarly, 

when cells were transfected with p-mito-mRFP-EGFP, RFP-only mitochondria were 

detected in both groups (Figure 4D-E), which indicates that mitochondria have been 

targeted to lysosomes.  Thus, these findings suggest that mitochondrial degradation can 

and does occur in bnip3-/- myoblasts; however, given that there was elevated SOD2 levels 

(Figure 3H) and CASP9 activity (Figure 2E), it is likely that the targeting of specific, 

damaged/dysfunctional mitochondria is impaired in bnip3-/- cells.   

 

Figure 4.  Mitochondrial degradation occurs in bnip3-/- cells during differentiation.  Representative 
images (A-B) and quantitative analysis (C) of co-localization (yellow) of LC3 (green) and mitochondria 
(red) in Ad-GFP-LC3 and DsRed-Mito co-transfected Scram and bnip3-/- cells at D1 of differentiation. 
Representative images (D-E) of Scram and bnip3-/- cells transfected with p-mito-RFP-GFP.  RFP-only 
mitochondria represent mitochondria that have been delivered to a lysosome.  Scale bar=10 µm.  *p<0.05 
compared to D0 (within group). †p<0.05 between groups. 
 
 

Scram-D1	 bnip3-/--D1	

Scram-D1	 bnip3-/--D1	

B	A	

D	 E	

C	



	 70	

Increased expression of autophagy-related proteins can disrupt myogenesis 

Based on our findings that mitochondrial degradation does occur in bnip3-/- cells (Figure 

4), we speculated that other mitophagy-related proteins might compensate for the absence 

of BNIP3.  In support of this hypothesis, bnip3-/- cells had higher levels of BNIP3L 

expression relative to Scram cells during differentiation (Figure 5A, B).  This is 

consistent with other studies that have shown that BNIP3L expression increases in 

BNIP3-deficient cells (Shi et al., 2014; Chourasia et al., 2015).   

BNIP3-deficient tumours and neurons have been reported to be more reliant on 

autophagy and show increased autophagy levels (Chourasia et al., 2015; Shi et al., 2014).  

Therefore, we measured autophagy-related protein expression in Scram and bnip3-/- cells 

during differentiation.  Interestingly, we found that ATG7 (Figure 5A, C) and BECN1 

(Figure 5A, D) expression was generally higher in bnip3-/- cells in comparison to the 

Scram cells.  Moreover, the ratio of LC3B-II/LC3B-I was significantly elevated in bnip3-

/- cells at most time-points (Figure 5A, E), suggesting an increased level of 

autophagosome formation and/or accumulation in bnip3-/- cells.  This demonstrates that 

BNIP3-deficient cells show elevated expression of autophagy proteins and activation. 
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Figure 5.  Autophagy/mitophagy-related protein expression is elevated in BNIP3-deficient cells.  
Representative immunoblots (A) and quantitative analysis (B-E) of BNIP3L, ATG7, BECN1, and the 
LC3B-II:LC3B-I ratio in bnip3-/- and Scram myoblasts during differentiation.  Also shown is a 
representative ACT loading control blot.  *p<0.05 compared to D0 (within group). †p<0.05 between 
groups. 
 

Given that autophagy-related protein expression was higher in bnip3-/- cells, we 
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(Figure 6D, F).  Similarly, MYH (Figure 6G, H) and MYOG (Figure 6G, I) levels were 

lower in rapamycin-treated cells, suggesting that differentiation can be impaired in 

response to augmented autophagic signaling.   

 

Figure 6.  Autophagy-related protein expression can impact myogenic differentiation in C2C12 
myoblasts.  Representative immunoblots (A) and quantitative analysis (B-C) of MYH and MYOG in Ad-
BECN1- and Ad-GFP-treated cells during differentiation. Representative immunoblots (D) and quantitative 
analysis (E-F) of MYH and MYOG in Ad-ATG7 and Ad-GFP-treated cells during myogenesis.  
Representative immunoblots (G) and quantitative analysis (H-I) of MYH and MYOG in rapamycin- and 
vehicle-treated myoblasts during differentiation.  Also shown are representative GAPDH loading control 
blots.  *p<0.05 compared to D0 (within group). †p<0.05 between groups. 
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Interestingly, we found that CASP3 activity was elevated in Ad-ATG7 cells at D1, 

although not significant, but was actually lower than in control cells by D2 (Figure 7C).  

CASP3 activity was similar among groups at later time-points (Figure 7C), and there 

were no major differences in CASP9 activation throughout differentiation (Figure 7D).   

 Next we examined cells overexpressing BECN1 and found that p-H2AFX levels 

were lower than in control cells during differentiation (Figure 7E, F).  Additionally, 

CASP3 activity was significantly lower in Ad-BECN1-treated cells at D1 (Figure 7G); 

however, CASP3 activity was similar between groups at later time-points and there were 

no significant differences in CASP9 activity levels (Figure 7H).   

Interestingly, and similar to Ad-ATG7-treated cells, p-H2AFX was higher in 

rapamycin-treated cells at D5 (Figure 7I, J).  However, CASP3 (Figure 7K) and CASP9 

activity (Figure 7L) was significantly lower in cells treated with rapamycin at days 2-4 of 

differentiation, suggesting that rapamycin treatment might suppress CASP activation.   
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Figure 7.  Enhanced expression of autophagy-related proteins influences CASP activation during 
differentiation.  Quantitative analysis (A) and representative immunoblot (B) of p-H2AFX in Ad-ATG7- 
and Ad-GFP-treated myoblasts during myogenic differentiation.  Quantitative analysis of (C) CASP3 and 
(D) CASP9 activity in Ad-ATG7- and Ad-GFP-treated cells during myogenesis. Quantitative analysis (E) 
and representative immunoblot (F) of p-H2AFX in myoblasts treated with Ad-BECN1 and Ad-GFP.  
Quantitative analysis of (G) CASP3 and (H) CASP9 activity in Ad-BECN1- and Ad-GFP-treated cells 
during myogenesis.   Quantitative analysis (I) and representative immunoblot (J) of p-H2AFX in 
rapamycin- and vehicle-treated myoblasts during differentiation.  Quantitative analysis of (K) CASP3 and 
(L) CASP9 activity in differentiating rapamycin- and vehicle-treated cells.  Also shown are representative 
GAPDH loading control blots.  *p<0.05 compared to D0 (within group). †p<0.05 between groups. 
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temperatures above 25°C and provides maximum overexpression levels at 29°C.    For all 

experiments, flies were grown at 18 °C until pupal stages, and then shifted to the 

indicated temperatures, which allowed us to examine the effect of augmenting autophagy 

during adult muscle development (Figure 8).  Flies expressing UAS-GFP (controls) and 

those expressing UAS-ATG1 hatched out of their pupal cases properly (eclosed) when 

shifted to 25°C.  However, when pupae were shifted to 27°C, some flies expressing UAS-

ATG1 failed to eclose properly and died.  Interestingly, flies that were shifted to 27°C 

during larval stages of development all failed to emerge from their pupal cases.  

Moreover, when pupae were shifted to 29°C, which would have allowed for maximal 

overexpression of ATG1, all pupae expressing UAS-ATG1 failed to eclose and died 

(Figure 8A).  Further, flies overexpressing ATG1 that were grown at 25°C displayed 

wing posture changes (Figure 8B-F) that differed from flies expressing GFP (controls).  

More specifically, ATG1-overexpressing flies had either a “wings up” or “wings out” 

phenotype, which was not or rarely detected in GFP-expressing flies.   Similar 

phenotypes have been reported in flies deficient in PINK1, which are known to have 

muscle abnormalities (Clark et al., 2006; Park et al., 2006; Zhang et al., 2016; Shiba-

Fukushima et al., 2014).  Taken together, these results suggest that expression levels of 

autophagy-related proteins must be tightly controlled to allow for proper development 

and cell survival.   
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Figure 8.  Overexpression of the autophagy-related protein ATG1/ULK1 in Drosophila muscle 
progenitors disrupts adult fly development.  Quantitative analysis (A) of the percentage of adult flies 
that eclose properly (emerge from their pupal case) when UAS-GFP (control) or UAS-ATG1 is 
overexpressed specifically in muscle (Mef2-GAL4>).  Flies were grown at 18°C until they reached pupal 
stages (UAS-constructs suppressed) and were then shifted to 25°C, 27°C (mild overexpression), or 29°C 
(maximum overexpression level) until adulthood.   Quantitative analysis (B) of the percentage of flies 
overexpressing GFP or ATG1 in muscle with abnormal “wings up” or “wings out” wing postures.  
Representative images (C, E) of wing postures observed in control (Mef2-GAL4>GFP) flies, and the 
“wings up” (D) and “wings out” (F) postures observed in flies overexpressing ATG1.  †p<0.05 between 
groups at the same time point.   
 

Discussion 

During myogenic differentiation, mitophagy is necessary to promote mitochondrial 

biogenesis and myotube formation, and also to limit unwanted cell death (Sin et al., 2016; 

Fortini et al., 2016; Baechler et al., 2019).  Studies have suggested that the protein PRKN 

protects against muscle atrophy and is essential for mitophagy and mitochondrial 

turnover (Peker et al., 2018); however, we have been unable to detect endogenous PRKN 
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expression in C2C12 myoblasts in our lab (Bloemberg, 2017; Chapter 2 – Figure 4).  

Therefore, we turned our attention to the mitophagy receptor proteins BNIP3L and 

BNIP3, which have been shown to mediate the removal of damaged as well as healthy 

mitochondria, and could therefore play an important role in regulating mitophagy during 

differentiation (Hamacher-Brady & Brady, 2016; Zhu et al., 2013; Ney, 2015).  

Moreover, previous work has suggested that BNIP3 might regulate mitophagy during 

myogenic differentiation (Baldelli et al., 2014). Using siRNA- or CRISPR/Cas9-mediated 

approaches, we generated cells deficient in BNIP3L and BNIP3.  Interestingly, we found 

that myogenic differentiation was disrupted in both BNIP3L- and BNIP3-deficient cells 

(Figure 1 and Figure 2); however, we found that mitochondria were degraded in bnip3-/- 

cells induced to differentiate (Figure 4), suggesting that the differentiation impairment 

does not result from a complete deficiency in mitochondrial degradation.   Interestingly, 

several studies have demonstrated that mitochondria can be degraded in an autophagy- 

and LC3-independent manner (Hammerling et al., 2017; Honda et al., 2014; Rakovic et 

al., 2018; Oliveira et al., 2015).  Moreover, studies have demonstrated that BNIP3 can 

promote both LC3-dependent mitophagy, as well as endosome-mediated mitochondrial 

degradation (Hanna et al., 2012; Hammerling et al., 2017).  Thus, given that mitophagy 

as well as endosome-mediated mitochondrial degradation might normally be involved in 

degrading mitochondria during myogenesis, a deficiency in BNIP3 could compromise 

one or both of these pathways.  In support of this, we found that SOD2 levels and 

mitochondria-related apoptotic signaling were elevated in bnip3-/- cells (Figure 3A, H; 

Figure 2E), suggesting a possible impairment in the elimination of 

damaged/dysfunctional mitochondria in bnip3-/- cells.  Therefore, although gross 
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mitochondrial degradation occurs in bnip3-/- cells, it is possible that BNIP3 might be 

needed to identify and eliminate specific mitochondria that are damaged/dysfunctional.  

Further, we measured mitochondria-related proteins in bnip3-/- cells and found that 

mitochondrial biogenesis-related and mitochondrial protein levels were reduced in bnip3-

/- cells, suggesting impairment in mitochondrial biogenesis (Figure 3).  Interestingly, 

BNIP3-deficient tumour cells have been shown to be more reliant on glycolysis to 

support energetic demands (Chourasia et al., 2015), similar to undifferentiated myoblasts 

(Sin et al., 2016), and forced expression of BNIP3 in BNIP3-deficient tumours promotes 

a switch to oxidative metabolism (Chourasia et al., 2015).    Thus, it seems reasonable to 

speculate that BNIP3 might be required to support mitochondrial remodelling and the 

transition from myoblast to myotube.  Moreover, BNIP3 might also mediate the selective 

degradation of dysfunctional mitochondria to limit stress and cell death signaling during 

myogenic differentiation.               

Although bnip3-/- cells showed signs of apoptotic signaling during early stages of 

differentiation, such as elevated CASP activity (Figure 2E, F) and increased DNA 

fragmentation (Figure 2A, G), the cells did not die.  Additionally, p-H2AFX levels have 

been shown to increase at D1 as a result of the CASP3-mediated DNA strand breaks that 

must occur during myogenic differentiation (Larsen et al., 2010); however, significantly 

higher p-H2AFX levels were detected at D2 in bnip3-/- cells, a point at which levels 

should have decreased during differentiation (Larsen et al., 2010).  Thus, it is likely that 

bnip3-/- cells have more DNA fragmentation than Scram cells, which could indicate an 

increase in cell death signaling.  Interestingly, p-H2AFX levels were actually much lower 

in BNIP3L-deficient cells than in Scr cells at D1, a time-point at which BNIP3 was 
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significantly higher in BNIP3L-deficient cells (Figure 1A, C, E).  BNIP3L can induce 

both apoptotic and non-apoptotic events which could result in increased p-H2AFX levels 

(Baines, 2010; Zhang & Ney, 2009; Ney, 2015; Diwan et al., 2009), thus it seems 

reasonable to speculate that BNIP3L might be indirectly required for initiating DNA 

strand breaks during myogenic differentiation, and could provide one possible 

explanation for why differentiation is impaired in BNIP3L-deficient myoblasts (Figure 

1A, 1D).  Moreover, the elevated and persistent p-H2AFX expression in bnip3-/- cells 

could result from inappropriately high levels of BNIP3L expression (Figure 5A-B), 

which could promote cell death signaling and disrupt myogenesis.  Further, previous 

work has demonstrated that reduced BNIP3 expression is associated with a compensatory 

upregulation of BNIP3L expression; however, although BNIP3 and BNIP3L have similar 

structures and functions, they cannot fully compensate for one another (Chourasia et al., 

2015; Shi et al., 2014), suggesting that BNIP3L and BNIP3 likely have some independent 

and unique intracellular roles.  Moreover, studies have suggested that BNIP3 and 

BNIP3L might antagonize/limit the expression of one another (Bellot et al., 2009).  

Therefore, it is not surprising that we saw increased BNIP3L in bnip3-/- cells and elevated 

BNIP3 in BNIP3L-deficient cells. Further, given that BNIP3 and BNIP3L may have 

independent functions in myoblasts/myotubes, inappropriate or altered levels of either of 

these proteins could impact cell death signaling and differentiation.   

Interestingly, studies have shown that cells can recover from the stress-induced 

induction of apoptosis and have named this process “anastasis” which means “rising to 

life” (Tang et al., 2012).  Thus, CASP3 activation and DNA fragmentation do not 

necessarily result in apoptotic cell death; however, the cells that arrest apoptosis and 
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survive acquire permanent damage and genetic alterations (Tang et al., 2012).  Therefore, 

bnip3-/- myoblasts might recover and survive following high levels of CASP activation, 

but the resulting cellular changes might limit their ability to differentiate.  Moreover, a 

more recent study suggested that anastasis is not associated with changes in autophagic 

signaling (Sun et al., 2017).  Interestingly, we found that autophagy-related protein 

expression was elevated in bnip3-/- cells relative to controls (Figure 5).  This is not that 

surprising given that previous studies have shown that BNIP3-deficient cells upregulate 

autophagy as a survival mechanism (Chourasia et al., 2015; Shi et al., 2014).  Moreover, 

we speculate that the increased induction of autophagy might occur in bnip3-/- cells to 

compensate for a deficiency in the removal of dysfunctional mitochondria.  Increased 

expression of autophagy-related proteins as well as increased formation of 

autophagosomes, could enhance mitophagy and cell survival but it could also contribute 

to cell death (Liu & Levine, 2015; Gudipaty et al., 2018; Marino et al., 2014).  

Interestingly, autophagic cell death has been shown to occur during the development and 

remodelling of some tissues (Denton et al., 2009) but its role in myogenic differentiation 

has yet to be determined.  Previous work in our lab has demonstrated that autophagy is 

needed to limit CASP activation during myogenesis (McMillan & Quadrilatero, 2014); 

however, inappropriately high levels of autophagy could also trigger cell death (Liu & 

Levine, 2015; Scott et al., 2007).  One form of autophagy-mediated cell death termed 

autosis can be induced by starvation or treatment with a BECN1 peptide derivative (Liu 

et al., 2013; Liu & Levine, 2015). Interestingly, autotic cell death does not involve CASP 

activation and is associated with increased cell-substrate adherence (Liu et al., 2013; Liu 

& Levine, 2015).    This is intriguing because although bnip3-/- cells had elevated CASP 
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activity at D1, levels were generally lower at later time-points during differentiation and 

the cells had elevated autophagy-related protein expression and did not die (Figure 2 and 

Figure 5).  Further, when we overexpressed ATG7 and BECN1, or treated C2C12 

myoblasts with rapamycin, CASP activity was generally reduced, cells remained 

adherent, and myogenic differentiation was impaired in ATG7- and rapamycin-treated 

cells (Figure 6 and Figure 7).  These results could indicate that autophagy is elevated in 

bnip3-/- cells and that this level of autophagy, which could be similar to our 

overexpression models, is triggering autotic cell death.  Therefore, although the cells 

remained undifferentiated but adhered to plates, they might be incapable of 

differentiating because autophagy levels are too high.  Interestingly, overexpression of 

BECN1 in C2C12 myoblasts did not impair myogenic differentiation, and actually 

seemed to enhance it.  We speculate that the reduction in CASP3 activity at D1 in 

BECN1-treated cells (Figure 7G) might have limited apoptotic cell death allowing there 

to be more cells available to fuse to form myotubes.  Moreover, our work using 

Drosophila demonstrated that overexpression of the autophagy-related protein 

ATG1/ULK1 in muscle is lethal and prevents flies from eclosing properly or emerging 

from their pupal cases (Figure 8A).  Similar phenotypes have been reported in flies with 

reduced MTOR signaling and is attributed to muscle weakness (Hatfield et al., 2015) thus 

it is possible that myogenic differentiation is impaired due to a failure in the necessary 

upregulation of MTOR signaling.  Moreover, overactivation of autophagy can promote 

CASP activation and cell death (Mohseni et al., 2009; Cormier et al., 2012; Scott et al., 

2007); therefore, it is possible that overexpression of ATG1/ULK1 is inducing some form 

of cell death which prevents muscle from forming/differentiating properly.  Further, we 
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found that muscle-specific overexpression of ATG1 resulted in wing posture 

abnormalities (Figure 8B-F), similar to those which have been reported for flies deficient 

in mitophagy-related proteins (Zhang et al., 2016; Shiba-Fukushima et al., 2014), 

demonstrating that the controlled regulation of autophagy/mitophagy-related protein 

expression in muscle is critical for normal development.   

 

Conclusion 

Overall this work demonstrates that mitophagy-related proteins are required 

during myogenic differentiation.  Based on our results, we speculate that BNIP3 and 

BNIP3L might play multiple mitochondria-related as well as mitochondria-independent 

roles during myogenesis, and that BNIP3 and BNIP3L levels must be regulated 

appropriately.   Interestingly, we determined that a deficiency in BNIP3 results in 

inappropriately high levels of other autophagy/mitophagy-related proteins, which might 

be a compensatory mechanism used to degrade dysfunctional/damaged mitochondria that 

would otherwise accumulate in bnip3-/- cells.  Moreover, we suggest that overactivation 

of autophagy can impact cell death signaling in addition to disrupting myogenesis.  

Therefore, this work highlights the importance of maintaining a proper balance of 

mitophagy/autophagy-related protein expression to maintain cellular homeostasis during 

development and myogenic differentiation.   
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Materials and Methods 

Cell culture and transfections 

Culturing conditions have been described previously (McMillan & Quadrilatero, 2014).  

Low pass C2C12 myoblasts (A.T.C.C.) were plated in polystyrene cell culture dishes or 

on Cultrex BME-coated coverslips in growth media (GM) composed of low-glucose 

Dulbecco’s modified Eagle’s medium (DMEM), 10% FBS, and 1% 

penicillin/streptomycin, and incubated at 37◦C in 5% CO2. Media was replaced every 24-

48 hours. Cells were induced to differentiate when they reached 80-90% confluency, by 

replacing GM with differentiation media (DM) comprised of low-glucose DMEM, 2% 

horse serum, and 1%P/S. Cells were collected at day 0 (D0) prior to switching GM to 

DM, and collected at the appropriate time-points (D1, D2, etc.).  Cells were trypsinized 

(0.25% trypsin with 0.2g/l EDTA), centrifuged (1000g for 5 min), and stored at -80°C.  

For rapamycin treatments, rapamycin (1 µM) or vehicle was added to DM and replaced 

each day during differentiation.   

Stable BNIP3 knockout and Scram cell lines were previously generated in our lab 

(Bloemberg, 2017).  Briefly, C2C12 myoblasts were grown in 12-well plates and 

transfected with vectors encoding a BNIP3 CRISPR sequence, or a CRISPR control 

sequence (Origene).  For each transfection, vector DNA and Lipofectamine 2000 were 

diluted in Opti-MEM and the mixture was added to cells and incubated for 6 hours.  24 

hours after transfection, cells were transferred to 100 mm plates and grown in GM with 

puromycin (2 µg/mL) to allow for stable clone selection.  Immunoblotting was then used 

to evaluate BNIP3 levels in selected clones. 
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Transient knockdown of BNIP3L was achieved using the jetPRIME siRNA 

transfection reagent protocol (Polyplus-transfection).  Briefly, C2C12 myoblasts were 

transfected with BNIP3L siRNA (sc-37454) or Control siRNA-A (sc-37007) (Santa Cruz 

Biotechnology) diluted in jetPRIME buffer along with jetPRIME Transfection Reagent 

(Polyplus-transfection, 114-07), at 60% confluence.  Cells were incubated in media 

containing siRNA overnight and until they were 80-90% confluent.  GM was then 

replaced with DM and cells were collected at the appropriate time-points.  

Immunoblotting was used to validate BNIP3L knockdown.   

 

Adenoviruses and amplification 

The following adenoviruses were used for this study: Ad-BECN1 (kindly provided by Dr. 

Abhinav Diwan), Ad-ATG7, Ad-GFP, and Ad-LC3-GFP (Yang et al., 2010).  

Adenoviruses were amplified in HEK293 cells using the ViraPower Adenoviral 

Expression System protocol (Life technologies).  Cells were grown in 100 mm plates and 

viral lysate was added to the growth media once the cells had reached confluence.  Cells 

were harvested once 80-90% of the cells had rounded up and were starting to detach from 

the plate.  Cells and media were collected using a serological pipette and placed in a 15 

mL falcon tube.  The tube was placed at -80°C for 30 minutes, then thawed in a 37°C 

waterbath for 15 minutes.  This freeze/thaw cycle was performed a total of 3 times.   The 

cell lysate was then centrifuged at 3000 rpm for 15 minutes at room temperature.  The 

supernatant (crude virus) was transferred to cryotubes and stored at -80°C.  Viral titers 

were determined using the Adeno-X Rapid Titer Procedure (Clontech Laboratories, Inc.).  

Briefly, HEK293 cells were seeded in 12-well plates on coverslips coated with Cultrex 
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BME (Trevigen, 3432-010-01), 10-fold serial dilutions of adenovirus stocks were 

prepared and the appropriate viral dilutions were added to each well.  Cells were 

incubated at 37°C (5% CO2) for 48 hours.  Following incubation, media was aspirated 

and cells were fixed in 1 mL cold 100% methanol at -20°C for 10 minutes.  After 

fixation, cells were rinsed with PBS + 1% BSA.  Cells were then incubated with mouse 

anti-Hexon antibody (Santa Cruz Biotechnology) for 1 hour at 37°C on a shaker.  Cells 

were then rinsed and Alexa Fluor 488-conjugated secondary antibody (Thermo Fisher 

Scientific) was added for a 1 hour incubation.  Cells were then washed in PBS and 

mounted on glass slides using Prolong Gold Antifade Reagent (Thermo Fisher Scientific, 

P36930) and imaged on a Zeiss LSM 800 (Carl Zeiss).  Six to ten fields containing 5-50 

were counted for green (Hexon+) cells, and used to calculate infectious units/ml.    For all 

overexpression experiments, C2C12 cells were treated with adenoviruses (overnight 

incubation) at a multiplicity of infection (MOI) of 100.   

 

Fluorescent mitophagy reporters/microscopy 

To investigate mitophagy during differentiation, cells were grown on glass 

coverslips coated with Cultrex BME (Trevigen).  Cells were transfected with pDsRed2-

Mito vector (generously provided by Dr. Douglas Green, St Jude’s Children’s Research 

Hospital, Memphis, TN) or p-mito-RFP-GFP vector (provided by Dr. Andreas Till; Kim 

et al., 2013) upon reaching 60-70% confluence.  Transfections were performed using 

jetPRIME Transfection Reagent (Polyplus-transfection) according to the manufacturer’s 

instructions.  Additionally, GFP-LC3 adenovirus (ad-GFP-LC3; kindly provided by Dr. 

Gökhan S. Hotamisligil, Harvard School of Public Health, Boston, MA) was added to 
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each well containing cells transfected with pDsRed2-Mito for overnight incubation.  The 

next day, cells were washed and imaged (D0) or induced to differentiate.  For imaging at 

the appropriate time-points (D0, D1, etc.), coverslips were removed from plates, washed 

and mounted on glass slides using Prolong Gold Antifade Reagent (ThermoFisher 

Scientific) and imaged on a Zeiss LSM 800 (Carl Zeiss).  To assess mitophagy, we 

counted the number of times we saw co-localization of GFP-LC3 punta with pDsRed2-

Mito (co-localization events).  To assist with counting co-localization events, 10 µm 

chloroquine (CQ) was added to each well one day prior to imaging.  For p-mito-RFP-

GFP experiments, the appearance of RFP-only mitochondria indicated that mitophagy 

was happening in transfected cells.   

Immunoblotting  

Western blotting was performed as described previously (McMillan & Quadrilatero, 

2011; McMillan & Quadrilatero, 2014). Briefly, cells were lysed in ice-cold lysis buffer 

(LB) [20mM Hepes, 10mM NaCl, 1.5mM MgCl, 1mM DTT, 20% glycerol and 0.1% 

Triton X-100 (pH7.4)] containing a protease inhibitor cocktail (Roche Applied Sciences).  

Equal amounts of protein were loaded and separated on 12% SDS- PAGE gels, 

transferred onto PVDF membranes (Bio-Rad), and blocked in 5% milk in TBS-T for 1 

hour at room temperature. Membranes were incubated overnight at 4 ̊C in primary 

antibodies against: BNIP3, ACTIN (B7931, A2066; Sigma-Aldrich), SOD2 (ADI-SOD-

110; Enzo Life Sciences), GAPDH, BNIP3L, DNM1L, LC3B, ATG7, BECN1 (2118, 

12396, 8570, 2775, 8558, 3738; Cell Signaling), MYOG, MYH (F5D, MF20; 

Developmental Studies Hybridoma Bank), CYCS, PPARGC1A, SLC25A4, VDAC1, p-

H2AFX, OPA1 (sc-13156, sc-13067, sc-9299, sc-390996, sc-101696, sc-393296; Santa 
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Cruz Biotechnology).  Membranes were then washed in TBS-T, and incubated for 1 hour 

at room temperature with the appropriate horseradish peroxidase-conjugated secondary 

antibodies (Santa Cruz Biotechnology). TBS-T washes were repeated and bands were 

visualized using the Clarity Western ECL substrate (Bio-Rad) and the ChemiGenius 2 

Bio-Imaging System (Syngene). 

 

CASP activity assays 

CASP3 and CASP9 assays were performed as described previously (McMillan et al., 

2015; Baechler et al., 2019).  Briefly, cells were sonicated in lysis buffer (LB) without 

added protease inhibitors, and CASP3 and CASP9 activity was determined using the 

fluorogenic substrates Ac-DEVD-AFC and Ac-LEHD-AFC (AAT Bioquest, 13401; 

Tocris Bioscience, 1575), respectively.   Fluorescence was measured at the appropriate 

wavelength using a Synergy H1 microplate reader (BioTek) in duplicate.  CASP activity 

measures were normalized to total protein content determined using the BCA protein 

concentration assay.   

Fly stocks  

All stocks were maintained on standard Drosophila medium at 25°C under a 12 h 

light/dark cycle, unless otherwise indicated.  The following stocks were used for 

experiments: tubGal80ts;; Mef2-Gal4+UAS-GFP (Dr. Frank Schnorrer), UAS-Atg16A; 

UAS-Atg16B (Dr. Bruce H. Reed).  For all experiments, crosses were set up at 18°C and 

shifted to the appropriate temperatures (25°C-29°C) at larval/pupal stages.   
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GAL4/UAS System 

The GAL4/UAS system is a method that allows for inducible expression of a sequence of 

interest in a tissue and temporal specific manner.  Briefly, the sequence encoding the 

GAL4 protein is placed under the control of a tissue-specific promoter, and when 

expressed, it will bind to an Upstream Activating Sequence (UAS) to induce gene 

expression.  A sequence of interest encoding a protein of interest or an RNAi sequence 

can be placed under the control of a UAS sequence, allowing for protein 

expression/knockdown wherever the GAL4 protein is produced.  The Gal80ts system can 

also be combined with this to allow for temperature-dependent regulation of the GAL4 

protein.  Therefore, when flies are grown at 18°C, Gal80 prevents GAL4 from binding to 

the UAS sequence and gene expression is suppressed.  Conversely, if flies are grown at 

29°C, Gal80 is inactivated, allowing GAL4 to bind to its UAS sequence to induce target 

gene expression (Elliott & Brand, 2008).  For all experiments, a muscle-specific GAL4 

driver (tubGal80ts;;Mef2-Gal4+UAS-GFP) was used to allow for temperature regulated 

expression.    

 

Statistics 

Differences between time-matched groups were assessed using a Students T-test.  For all 

experiments p<0.05 was considered statistically significant.  A two-way ANOVA was 

used to assess temperature-matched group differences for Drosophila experiments, with 

Bonferroni’s multiple comparisons test.  A one-way ANOVA was used to assess the 

effect of differentiation within groups, with Bonferroni’s multiple comparison test to 

compare differences from D0.  For all immunoblotting and CASP activity assays, n = 3 
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or more.  For fluorescent reporter analysis, n = 15-30 cells.  For Drosophila development 

and wing posture analysis, at least 50 flies were counted for each group.   
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Chapter 4: Induced mitochondrial biogenesis to improve 
myogenic differentiation in autophagy/mitophagy-deficient 

cells 
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Project Rationale and Objectives 

In order for cells to differentiate and survive, mechanisms must be in place to ensure that 

they are equipped with the necessary metabolic machinery.  During myogenic 

differentiation, the undifferentiated myoblast, which primarily uses glycolysis, generates 

a new mitochondrial network better suited to support a shift to using oxidative 

phosphorylation (OXPHOS) to generate energy (Sin et al., 2016).  The generation of the 

mitochondrial network and maintenance of mitochondrial homeostasis requires the 

coordination of autophagy/mitophagy-mediated mitochondrial degradation as well as 

mitochondrial biogenesis to generate new mitochondria (Palikaras et al., 2015).  Studies 

have suggested that autophagy/mitophagy is required to initiate mitochondrial biogenesis 

during myogenic differentiation, and that an impairment in mitophagy prevents 

mitochondrial biogenesis and differentiation from occurring (Sin et al., 2016; Baechler et 

al., 2019).  Further, mitochondrial function and biogenesis have been shown to play an 

important role in regulating differentiation in numerous cell types (Rochard et al., 2000; 

Seyer et al., 2006; Sharma et al., 2009; Kanno et al., 2004).  In Chapter 2 and Chapter 3 

we demonstrated that ATG7- and BNIP3-deficient cells show impairments in the up-

regulation of mitochondrial and mitochondrial biogenesis-related proteins during 

differentiation.  Interestingly, previous work in our lab has shown that mitochondrial 

respiration is also reduced in shAtg7 and bnip3-/- cells relative to SCR/Scram cells 

(Bloemberg, 2017).  Therefore, it is likely that shAtg7 and bnip3-/- cells may not 

differentiate, at least in part, because they cannot fulfill the energetic requirements to 

form myotubes, and that this may be a direct or indirect consequence of alterations in 

autophagy/mitophagy.   Moreover, we speculate that the increased cell death associated 
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with ATG7-deficiency (McMillan & Quadrilatero, 2014; McMillan, 2015; Baechler et 

al., 2019) might be partially attributed to failure to re-establish a mitochondrial network.  

Additionally, we considered that if shAtg7 or bnip3-/- cells are less efficient at eliminating 

damaged or dysfunctional mitochondria, then it might be possible to improve cellular 

function and homeostasis by simply increasing the number of healthy mitochondria 

(through mitochondrial biogenesis) in order to outnumber or compensate for 

dysfunctional mitochondria.  Therefore, the major objectives of this project were: 

1) To identify chemical treatments that will induce mitochondrial biogenesis in shAtg7 

cells.    

2) To determine if increased mitochondrial biogenesis can effectively restore myogenic 

differentiation in shAtg7 and bnip3-/- cells. 

3) To determine if mitochondrial function improves in shAtg7 and bnip3-/- cells following 

treatment with an inducer of mitochondrial biogenesis.   

We hypothesized that treating ATG7- and BNIP3-deficient cells with 

mitochondrial biogenesis inducers would enhance mitochondrial biogenesis.  Moreover, 

we speculated that increased mitochondrial biogenesis would reduce cell death signaling 

in shAtg7 cells, allowing more cells to differentiate and fuse.  We also hypothesized that 

mitochondrial health and function would improve in the shAtg7 and bnip3-/- cells that 

were treated with a mitochondrial biogenesis inducer.   
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Abbreviations 

AICAR: 5-Aminoimidazole-4-carboxamide-ribonucleoside; ATG7: autophagy related 7; 

BNIP3: BCL2/adenovirus E1B interacting protein 3; CI: complex I; CII: complex II; 

CASP: caspase; CASP3: caspase 3; CoCl2: cobalt chloride; CYCS/cyto c: cytochrome c; 

GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; 

MYH: myosin; MYOG: myogenin; OXPHOS: oxidative phosphorylation; PPARGC1A: 

peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; RFP: red 

fluorescent protein; SIRT1: sirtuin 1; SNP: sodium nitroprusside;  TFAM: transcription 

factor A, mitochondrial; VDAC1: voltage-dependent anion channel 1 

 

Introduction 

Mitochondria are important cellular organelles that are often described as being the 

“powerhouse” of the cell because of their important role in generating cellular energy 

(Ploumi et al., 2017).  Moreover, in addition to their metabolic role, mitochondria also 

support cellular homeostasis and function by influencing apoptotic signaling events 

(Wagatsuma & Sakuma, 2013), and act as important regulators of cell differentiation 

(Barbieri et al., 2011).   

Numerous morphological, intracellular signaling, gene/protein expression, and 

metabolic changes occur when stem or progenitor cells differentiate (Wanet et al., 2015; 

Barbieri et al., 2011; Mizushima & Komatsu, 2011).   Some cell types, such as 

undifferentiated myoblasts, are heavily reliant on glycolysis to generate energy, but show 

increased reliance on oxidative phosphorylation (OXPHOS) to fulfill their energy 
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requirements during/following differentiation (Wanet et al., 2015; Sin et al., 2016; 

Wagatsuma & Sakuma, 2013).    Thus, for proper differentiation to occur, cells must be 

able to effectively generate an extensive mitochondrial network using a process known as 

mitochondrial biogenesis (Sin et al., 2016).  Mitochondrial biogenesis involves the 

division, fusion, and growth of pre-existing mitochondria (Jornayvaz & Shulman, 2010; 

Ploumi et al., 2017), and is dependent on the peroxisome proliferator-activated receptor 

gamma co-activator 1 (PPARGC1A) family of proteins, nuclear respiratory factor (NRF) 

proteins, as well as mitochondrial transcription factor A (TFAM) (Wu et al., 1999).   

 Skeletal muscle is a metabolically active tissue and serves as an excellent 

model for studying mitochondrial biogenesis (Sin et al., 2016; Duguez et al., 2002).  

During skeletal muscle regeneration and in response to exercise, markers of 

mitochondrial biogenesis increase significantly, suggesting that biogenesis plays an 

important role in the muscle recovery process (Duguez et al., 2002; Wagatsuma et al., 

2011; Ju et al., 2016).  Further, studies using C2C12 myoblasts have determined that 

undifferentiated myoblasts have a less extensive mitochondrial population consisting of 

single, distinct mitochondria and are more glycolytic, while differentiated myotubes have 

a more complex mitochondrial network suited to OXPHOS-based metabolism (Barbieri 

et al., 2011; Sin et al., 2016; Wagatsuma & Sakuma, 2013). Sin et al (2016) hypothesized 

that mitochondrial remodelling is necessary during myogenic differentiation and that 

myoblasts must eliminate their old mitochondria so that the new mitochondrial network 

can be built (Sin et al., 2016).  Cells employ a process called autophagy to degrade 

protein aggregates and organelles, and this process involves sequestering cytoplasmic 

elements within a double-membrane structure known as an autophagosome, which then 
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fuses with a lysosome to allow the contents to be degraded and/or re-used (Kondo et al., 

2005).  Autophagy is crucial for myogenic differentiation (McMillan & Quadrilatero, 

2014), and a specific type of autophagy, which is used to degrade mitochondria 

(mitophagy), is necessary to regulate apoptotic signaling and to eliminate mitochondria 

so that remodelling can occur during differentiation (Baechler et al., 2019; Sin et al., 

2016).  Moreover, failure to effectively degrade old mitochondria is thought to account 

for the differentiation impairments observed in autophagy-deficient myoblasts (Sin et al., 

2016).   

It is believed that mitophagy is necessary to trigger the induction of mitochondrial 

biogenesis and to fulfill the increased energy demands during differentiation (Sin et al., 

2016; Wagatsuma & Sakuma, 2013).  Thus, insufficient autophagy/mitophagy levels 

could cause energy-deficiency and prevent cells from generating the mitochondrial 

network necessary to support differentiation.  Further, studies have shown that inhibiting 

mitochondrial function can block myogenic differentiation by preventing the necessary 

up-regulation of MYOG and downregulation of MYC (Rochard et al., 2000; Seyer et al., 

2006), while treatment with mitochondrial biogenesis inducers has been shown to 

promote differentiation in some cell types (Sharma et al., 2009; Kanno et al., 2004).   

Therefore, it is evident that mitochondrial homeostasis is critical during differentiation.   

We have previously demonstrated that cell lines deficient in the 

autophagy/mitophagy-related proteins ATG7 and BNIP3 fail to undergo proper myogenic 

differentiation and have reduced levels of mitochondrial and mitochondrial biogenesis-

related protein expression (See Chapter 2 and Chapter 3).  Therefore, the purpose of this 
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study was to determine if treating shAtg7 and bnip3-/- cells with mitochondrial biogenesis-

inducers could effectively rescue myogenic differentiation.   

	

Results 

SNP treatment can increase mitochondrial biogenesis 

In order to determine if mitochondrial biogenesis can be used to rescue myogenic 

differentiation in autophagy-deficient cells, we first performed a chemical screen to 

identify compounds that might increase mitochondrial biogenesis (Figure 1 and Figure 2).  

Differentiating shAtg7 cells were treated with leucine (Figure 1A-E), caffeine (Figure 1F-

J), AICAR (Figure 2A-E), or SNP (Figure 2F-J), all of which have previously been 

shown to increase PPARGC1A levels and/or mitochondrial biogenesis (Liang et al., 

2014; Schnuck et al., 2018; Wang et al., 2015).  Following treatments, immunoblot 

analysis was performed to measure mitochondrial proteins (CYCS), markers of 

mitochondrial biogenesis (PPARGC1A, TFAM), as well as MYOG to determine if there 

were improvements in myogenic differentiation.  There were no significant changes 

observed in cells treated with leucine (Figure 1A-E) or caffeine (Figure 1F-J), and 

MYOG and CYCS expression decreased in cells treated with AICAR (Figure 2A-E), 

suggesting that myogenic differentiation is further reduced in response to AICAR 

treatment in shAtg7 cells.  Interestingly; however, shAtg7 cells treated with SNP showed 

dramatic improvements in differentiation- and mitochondria-related protein expression, 

indicated by increased levels of MYOG, TFAM, PPARGC1A, and CYCS (Figure 2F-J).   
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Figure 1.   Leucine and caffeine treatment does not enhance mitochondrial biogenesis or myogenesis 
in shAtg7 cells.  Representative immunoblots (A) and quantitative analysis (B-E) of CYCS, PPARGC1A, 
TFAM and MYOG in shAtg7 cells treated with leucine (or vehicle) during differentiation.  Representative 
immunoblots (F) and quantitative analysis (G-J) of CYCS, PPARGC1A, TFAM and MYOG in caffeine- or 
vehicle-treated shAtg7 cells during differentiation.  Also shown are representative GAPDH loading control 
blots.  *p<0.05 compared to D0 (within group). †p<0.05 between groups at the same time point. 
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Figure 2.  The effect of AICAR and SNP treatment on mitochondrial biogenesis- and myogenesis-
related protein expression in shAtg7 cells. 
Representative immunoblots (A) and quantitative analysis (B-E) of CYCS, PPARGC1A, TFAM and 
MYOG in shAtg7 cells treated with AICAR or vehicle during differentiation.  Representative immunoblots 
(F) and quantitative analysis (G-J) of CYCS, PPARGC1A, TFAM and MYOG in shAtg7 cells treated with 
SNP (or vehicle) during differentiation.  Also shown are representative GAPDH loading control blots.  
*p<0.05 compared to D0 (within group). †p<0.05 between groups at the same time point. 
 
 
SNP treatment enhances mitochondrial network rebuilding in both shAtg7 and bnip3-/- 

cells 

Based on the results of our initial screen (Figure 1 and Figure 2), SNP was selected for 

further experiments to determine if it could enhance mitochondrial biogenesis and 

improve myogenic differentiation in shAtg7 as well as bnip3-/- cells.  Moreover, 

consultation with the literature suggested that high doses of SNP are toxic to C2C12 

myoblasts (Lee et al., 2005); therefore, the dosage was reduced from 30 µm to 15 µm for 

subsequent experiments.  Interestingly, the lower dose of SNP (15 µm) produced a 

similar effect and shAtg7 cells showed increased PPARGC1A levels after D2.  Moreover, 

CYCS 14 kDa 

PPARGC1A	 90 kDa 

TFAM 26 kDa 

MYOG 35 kDa 

D0        D2         D4         D0         D2        D4 

GAPDH 37 kDa 

  Vehicle AICAR (30 µM)  

CYCS 

PPARGC1A	

TFAM 

MYOG 

GAPDH 

D0          D2         D4         D0         D2        D4 

14 kDa 

90 kDa 

26 kDa 

35 kDa 

37 kDa 

  Vehicle   SNP (30 µM)  
A	

B	 C	

D	 E	

F	

G	 H	

I	 J	



	 99	

PPARGC1A levels were significantly higher in SNP-treated shAtg7 cells at D4 and D5 

(Figure 3A, B), and TFAM expression was also elevated (Figure 3A, C).  Additionally, 

SNP-treated cells had significantly higher CYCS levels than vehicle-treated cells 

throughout differentiation (Figure 3A, D), and VDAC1 was significantly elevated at D4 

and D5 in SNP-treated cells relative to controls (Figure 3A, E).  This demonstrates that 

mitochondrial biogenesis and mitochondrial content increased in SNP-treated cells.  

Similar results were observed in bnip3-/- cells treated with SNP.  As shown in Figure 3F-

J, SNP-treated cells showed increases in PPARGC1A, TFAM, CYCS, and VDAC1, with 

all showing significantly elevated levels relative to vehicle-treated cells at D5.   

 

Figure 3.  SNP causes increased mitochondrial biogenesis- and mitochondria-related protein 
expression in shAtg7 cells and bnip3-/- cells.  Representative immunoblots (A) and quantitative analysis 
(B-E) of PPARGC1A, TFAM, CYCS, and VDAC1 in shAtg7 cells treated with SNP (or vehicle) during 
differentiation.  Representative immunoblots (F) and quantitative analysis (G-J) of PPARGC1A, TFAM, 
CYCS, and VDAC1 in bnip3-/- cells treated with SNP or vehicle during myogenic differentiation.  Also 
shown are representative GAPDH loading control blots.    *p<0.05 compared to D0 (within group). †p<0.05 
between groups at the same time point. 
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SNP treatment can partially recover myogenic differentiation in shAtg7 cells 

Given the improvements we observed with respect to mitochondrial biogenesis and 

mitochondrial protein content in shAtg7 cells treated with SNP (Figure 3A-E), we next 

wanted to evaluate myogenic differentiation. First, shAtg7 cells treated with either 

vehicle or SNP, were grown and differentiated on glass coverslips for 4 days, and 

immunofluorescent staining was performed to visualize myotube formation and measure 

the fusion and differentiation index.  As shown in Figure 4A, MYH-positive cells were 

rarely observed in vehicle-treated shAtg7 cells resulting in a low differentiation index 

(Figure 4C) and the complete absence of fusion events (Figure 4D).  In contrast, shAtg7 

cells treated with SNP displayed a striking increase in MYH-positive myotubes (Figure 

4B), and a significant increase in both the differentiation index (Figure 4C) and fusion 

index (Figure 4D) relative to the vehicle-treated cells.  Similar to the improvements 

observed previously (Figure 2F, 2J), treatment with a lower concentration of SNP was 

sufficient to cause a significant increase in MYOG expression (Figure 4E-F).    
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Figure 4.  SNP treatment partially restores myogenic differentiation in shAtg7 cells.  Representative 
images of shAtg7 cells treated with vehicle (A) or SNP (B) at D4 of differentiation.  Anti-MYH (green) was 
used to visualize myotube formation, and nuclei are labelled with DAPI.  Scale bar=20 µm.  Quantitative 
analysis of differentiation index (C) and fusion index (D) in vehicle- and SNP-treated shAtg7 cells.  
Representative immunoblots (E) and quantitative analysis (F) of MYOG in shAtg7 cells treated with 
vehicle or SNP during differentiation.  Quantitative analysis of CASP3 (G) and CASP9 (H) activity during 
myogenic differentiation.  *p<0.05 compared to D0 (within group). †p<0.05 between groups at the same 
time point. 
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caused a significant increase in both MYH (Figure 5E, F) and MYOG (Figure 5E, G) 

expression, further supporting that SNP treatment enhances myogenesis in bnip3-/- cells.   

 

Figure 5.  SNP treatment improves myogenic differentiation in bnip3-/- cells.  Representative images of 
bnip3-/- cells treated with vehicle (A) or SNP (B) at D4 of differentiation.  Anti-MYH (green) was used to 
visualize myotube formation, and nuclei are labelled with DAPI.  Scale bar=20 µm.  Quantitative analysis 
of the differentiation index (C) and fusion index (D) in vehicle- and SNP-treated cells.  Representative 
immunoblots (E) and quantitative analysis (F-G) of MYH and MYOG in bnip3-/- cells treated with vehicle 
or SNP during differentiation.  *p<0.05 compared to D0 (within group). †p<0.05 between groups at the 
same time point. 
	

CASP activation is not reduced in SNP-treated cells 

It is known that autophagy-deficiency is associated with increased CASP activation 
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CASP9 activity throughout differentiation (Figure 4H).  Therefore, the enhanced 

myogenic differentiation observed in response to SNP treatment does not result from a 

decrease in CASP activity.  Further, given that CASP3 activation occurs and is required 

during myogenic differentiation (Fernando et al., 2002), it is possible that the elevated 

CASP activation in SNP-treated cells could accompany the enhanced differentiation in 

these cells.  	

	

SNP treatment improves oxidative capacity but does not improve mitochondrial 

integrity 

Previous studies have shown that increased oxidative capacity can accompany an 

increase in mitochondrial biogenesis (Vaughan et al., 2013; Barbieri et al., 2011), and 

previous work in our lab has determined that oxygen consumption is reduced in shAtg7 

and bnip3-/- cells relative to SCR/Scram cells (Bloemberg, 2017).  Therefore, we used the 

OROBOROS O2k to determine the maximal oxygen consumption rate in shAtg7 and 

bnip3-/- myotubes (D4) treated with vehicle or SNP.  Maximal ADP-stimulated 

respiration was determined by first adding complex I substrates, followed by the addition 

of a complex II substrate.  As shown in Figure 6, SNP-treated shAtg7 cells showed a 

slight increase in respiration following the addition of succinate; however, this was not 

statistically significant (Figure 6A).  Interestingly, bnip3-/- cells treated with SNP did 

show a statistically significant increase in complex I/II-supported respiration relative to 

controls (Figure 6B).  After measuring complex I- and complex II-supported respiration, 

cytochrome c was added to each chamber to evaluate mitochondrial membrane integrity 

(Garcia-Roche et al., 2018).  Interestingly, the addition of cytochrome c caused increased 
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oxygen consumption in SNP-treated shAtg7 cells (Figure 6A) and this effect was even 

more pronounced in SNP-treated bnip3-/- cells relative to the vehicle-treated controls 

(Figure 6B).  Therefore, it is likely that the overall structural integrity of the mitochondria 

does not improve in shAtg7 and bnip3-/- cells in response to SNP treatment.  To further 

support this interpretation, we used flow cytometry to measure calcein fluorescence in the 

presence of CoCl2 (Figure 6C-D).  The calcein AM/CoCl2 assay is used to evaluate 

mitochondrial permeability transition pore (mPTP) formation (Dam et al., 2013).  The 

calcein AM dye accumulates in mitochondria, which are impermeable to cobalt chloride 

(CoCl2).  Therefore, if mitochondria are leaky/permeable then CoCl2 is able to enter the 

mitochondria and quench the calcein fluorescence signal (Dam et al., 2013).  Thus, a 

decrease in calcein fluorescence is associated with increased mPTP formation.  Although 

we saw elevated calcein fluorescence in SNP-treated shAtg7 and bnip3-/- cells relative to 

controls in the absence of CoCl2 (Figure 6C-D), the addition of CoCl2 caused calcein 

fluorescence levels to drop to similar levels in both SNP and vehicle-treated shAtg7 cells 

(Figure 6C).  Similarly, CoCl2 caused a reduction in calcein fluorescence in bnip3-/- cells; 

however, the SNP-treated cells did maintain a higher level of calcein fluorescence 

relative to controls (Figure 6D).  Thus, although enhancing mitochondrial biogenesis 

could have increased mitochondrial content, it is likely that the clearance of 

damaged/dysfunctional mitochondria is still impaired in SNP-treated shAtg7 and bnip3-/- 

cells.   
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Figure 6.  SNP treatment increases mitochondrial respiration in shAtg7 and bnip3-/- cells, but does not 
improve mitochondrial health.   
(A) Maximal oxygen consumption with complex I substrates, complex I/II substrates, and cytochrome c in 
SNP- and vehicle-treated shAtg7 cells.  (B) Maximal oxygen consumption with complex I substrates, 
complex I/II substrates, and cytochrome c (Cyto c) in bnip3-/- cells treated with SNP or vehicle.  
Quantitative analysis of calcein fluorescence in the presence/absence of CoCl2 as a measure of mPTP 
formation in shAtg7 cells (C) and bnip3-/- cells (D), where a decrease in calcein fluorescence is indicative of 
increased mPTP formation.  *p<0.05 compared to D0 (within group). †p<0.05 between groups at the same 
time point. 
	

Discussion 

The results demonstrate that treating ATG7- and BNIP3-deficient cells with SNP, an 

inducer of mitochondrial biogenesis (Wang et al., 2015), can partially restore myogenic 

differentiation.  shAtg7 cells were initially treated with leucine, AICAR, caffeine, and 
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related protein expression in SNP-treated cells (Figure 1 and Figure 2).  Further, we 

demonstrated that SNP partially restores myogenic protein expression, myotube 

formation and fusion in shAtg7 cells (Figure 4) and bnip3-/- cells (Figure 5).  Moreover, 

this was accompanied by increased expression of mitochondrial biogenesis-promoting 

proteins PPARGC1A and TFAM, increases in mitochondrial proteins CYCS and VDAC1 

(Figure 3), as well as enhanced mitochondrial respiration (Figure 6A, B).   Based on these 

results, we speculate that increased mitochondrial biogenesis induced by SNP treatment 

might facilitate myogenic differentiation.   

 Mitochondrial biogenesis and mitophagy, two opposing processes, are both 

required and important in regulating cell differentiation (Palikaras et al., 2015; Naik et 

al., 2018; Wanet et al., 2015).  As myoblasts differentiate, they require additional energy 

to initiate and power through the differentiation process, and must build a mitochondrial 

network that is better suited to support the OXPHOS-based metabolism associated with 

differentiated myotubes (Wagatsuma & Sakuma, 2013; Sin et al., 2016).  Interestingly, 

work done by Tang and Rando (2014) suggested that autophagy is induced when muscle 

satellite cells (SCs) switch from being quiescent to being activated, and that autophagy 

helps to generate the metabolic substrates needed to produce energy during this transition 

(Tang & Rando, 2014).  Further, they found that SIRT1 regulates this induction of 

autophagy during SC activation, and that SC activation can be partially rescued in 

autophagy-deficient cells by providing cells with exogenous pyruvate to support the 

increased energy requirements (Tang & Rando, 2014).  It would therefore be interesting 

to explore if supplying exogenous energy sources can also rescue the muscle regeneration 

and differentiation impairments observed in ATG7-deficient cells (Garcia-Prat et al., 
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2016; McMillan & Quadrilatero, 2014).   Therefore, given that a deficiency in 

macroautophagy could prevent shAtg7 cells from generating sufficient energy and 

metabolic substrates to support cell differentiation, this likely contributes to the 

impairment in myogenesis observed in shAtg7 cells.  Interestingly, although SIRT1 is 

required for muscle satellite cell activation and can promote myogenic differentiation 

(Tang & Rando, 2014; Zhou et al., 2015), some studies report that it inhibits myogenesis 

(Fulco et al., 2008; Pardo & Boriek, 2011). Moreover, SIRT1 has been shown to regulate 

autophagy and more specifically mitophagy (Tang & Rando, 2014; Jang et al., 2012; Di 

Sante et al., 2015; Tang, 2016), processes required/induced during myogenesis 

(McMillan & Quadrilatero; 2014; Sin et al., 2016; Fortini et al., 2016).  To further 

complicate things, SIRT1 is an NAD-dependent histone deacetylase that can deacetylate 

PPARGC1A to increase its activity, which can therefore promote mitochondrial 

biogenesis (Tang, 2016; Gerhart-Hines et al., 2007; Cameron et al., 2016).  Thus, SIRT1 

can mediate both mitochondrial degradation as well as mitochondrial biogenesis, 

opposing processes that are critical and must be tightly regulated during myogenic 

differentiation (Tang, 2016; Sin et al., 2016; Wagatsuma & Sakuma, 2013).  

Interestingly, SNP treatment has not only been shown to increase PPARGC1A levels, but 

it can also increase SIRT1 expression and activity which could lead to enhanced 

PPARGC1A activity and mitochondrial biogenesis (Wang et al., 2015; Engel & 

Mahlknecht, 2008).   Although we found that PPARGC1A and its downstream target 

TFAM (Wu et al., 1999) were upregulated in shAtg7 and bnip3-/- cells in response to SNP 

treatment (Figure 3), we did not measure SIRT1 levels or activity.  Thus, given that 

SIRT1 plays numerous roles in regulating myogenic differentiation, future experiments 
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should address whether SIRT1 expression/activity is impaired in shAtg7 and bnip3-/- 

myoblasts, and if the improvement in myogenic differentiation observed in shAtg7 and 

bnip3-/- cells in response to SNP treatment is caused by a restoration of SIRT1 

levels/activity.  

 Given that we observed an increase in mitochondrial biogenesis markers in SNP 

treated cells (Figure 3) along with improvements in myogenic differentiation (Figure 4 

and Figure 5), it is interesting to hypothesize that mitochondrial biogenesis is required for 

and/or promotes myogenic differentiation.  Therefore, in order to determine if the rescue 

we obtained in response to SNP treatment is mediated by the SNP-dependent up-

regulation of PPARGC1A and/or TFAM, rescue experiments should be repeated using 

constructs to overexpress PPARGC1A and TFAM in shAtg7 cells and bnip3-/- cells.  If 

we are able to obtain a similar recovery in myogenic differentiation by overexpressing 

PPARGC1A and TFAM, then this would further support our interpretation that 

mitochondrial biogenesis is both necessary and sufficient to promote myogenic 

differentiation in shAtg7 cells and bnip3-/- cells.   

  Although we were able to improve myogenic differentiation and mitochondria-

related protein expression in both shAtg7 and bnip3-/- cells, the respirometry data 

(cytochrome c addition) and flow cytometry data (calcein) indicates that the overall 

mitochondrial health in the SNP-treated cells is compromised (Figure 6).  Given our 

previous findings that mitochondrial degradation does occur in ATG7-deficient cells 

(Chapter 2) and bnip3-/- cells (Chapter 3) it seems reasonable to speculate that it might be 

an impairment in the specific targeting of damaged/dysfunctional mitochondria rather 

than bulk/non-selective mitochondrial degradation that disrupts myogenesis.  In support 
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of this, we demonstrated that shAtg7 cells release pro-apoptotic factors into the cytosol 

(Chapter 2) and have previously shown an increase in mitochondria-mediated apoptotic 

signaling in shAtg7 cells (McMillan, 2015; Baechler et al., 2019).  Similarly, 

mitochondria-mediated apoptotic signaling is also elevated in bnip3-/- cells (Chapter 3), 

suggesting that dysfunctional mitochondria persist in shAtg7 and bnip3-/- cells.  

Moreover, our previous work has demonstrated that myogenic differentiation can be 

partially restored in shAtg7 cells by inhibiting mitochondrial-mediated CASP activity 

(McMillan, 2015; Baechler et al., 2019), which demonstrates that mitochondrial 

dysfunction and the associated cell death signaling can inhibit myogenesis.  Thus, given 

that mitochondrial integrity was still compromised in shAtg7 and bnip3-/- cells following 

treatment with a mitochondrial biogenesis inducer (Figure 6), it is likely that these cells 

are unable to identify and eliminate damaged mitochondria specifically. Although 

additional experiments are needed to determine why mitochondrial dysfunction persists 

in SNP-treated cells, we have identified several possible contributing factors that might 

be disrupting mitochondrial homeostasis.  First, we observed a significant increase in 

PPARGC1A expression in SNP-treated cells, which is expected to promote 

mitochondrial biogenesis (Palikaras et al., 2015) as well as an increase mitochondrial 

respiration (Wu et al., 1999).  However, others have reported that one role of 

PPARGC1A during myogenic differentiation is to limit mitophagy (Baldelli et al., 2014).  

Therefore, if we are causing PPARGC1A levels to rise above a certain threshold, then it 

is possible that we are further reducing mitochondrial clearance in cells that already have 

a decreased ability to eliminate damaged/dysfunctional mitochondria.  Moreover, given 

that mitophagy is required during myogenic differentiation (Sin et al., 2016), inhibiting 
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mitophagy by augmenting PPARGC1A expression could also have negative impacts on 

differentiation.  Thus, it would be beneficial to repeat these experiments using the p-mito-

mRFP-EGFP fluorescent mitophagy reporter to determine if mitochondrial degradation is 

reduced or impaired following SNP treatment.  

 Our previous work has shown that apoptotic signaling is elevated in both ATG7- 

and BNIP3-deficient cells during differentiation, and is likely to account for some of the 

observed impairments in myogenesis (Chapter 2; Chapter 3; Baechler et al., 2019; 

McMillan & Quadrilatero, 2014).  Moreover, in Chapter 2 we showed that there is 

increased mitochondrial release of pro-apoptotic factors in shAtg7 cells, which is likely to 

contribute to CASP activation and cell death.  Further, we determined that mitochondrial 

membrane integrity does not improve in cells treated with SNP so it is not surprising that 

CASP activation was not lower in SNP-treated cells (Figure 4G-H). Interestingly, 

previous work in our lab has demonstrated that increasing mitochondrial biogenesis 

protects against CASP-dependent and CASP-independent cell death (Dam et al., 2013).  

However, in that study, cells were treated with mitochondrial biogenesis inducers prior to 

being treated with apoptotic stressors (Dam et al., 2013).  This differs from the current 

study in that we attempted to enhance mitochondrial biogenesis in cells that were already 

stressed and unhealthy due to autophagy/mitophagy impairments.  This suggests that 

although mitochondrial biogenesis can offer protection against pro-apoptotic stimuli 

(Dam et al., 2013), it might not be sufficient to limit cell death or apoptotic signaling in 

cells that are already unhealthy or dysfunctional.  Further, studies have shown that SNP 

treatment can cause an increase in CASP activation and apoptosis in C2C12 myoblasts 

(Lee et al., 2005).  Although we did see a higher level of CASP activity in SNP-treated 
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shAtg7 cells relative to controls (Figure 4G, H), we speculate that the lower CASP 

activity in the controls might have occurred because they are already dead or employing 

CASP-independent cell death mechanisms.  Additionally, the elevated CASP activation 

in SNP-treated cells might occur because the cells contain a greater number of 

mitochondria than controls, and these mitochondria are leaky and releasing pro-apoptotic 

factors into the cytosol resulting in a greater induction of CASP activation.  Further, 

studies have shown that high doses of SNP are associated with mitochondrial damage and 

mitochondria-mediated cell death signaling (Liu et al., 2016).  Although we employed a 

low dose treatment, it is possible that the continuous treatment used might have had a 

negative impact on mitochondrial quality. Therefore, it would be interesting to try using a 

more intermittent SNP treatment protocol to see if we can enhance mitochondrial 

biogenesis and survival, while also limiting the potential for mitochondrial damage and 

cell death.   

 

Conclusion 

Overall these experiments have demonstrated that the impairments in myogenesis 

observed in shAtg7 and bnip3-/- cells can be partially overcome by treating cells with 

SNP.  Further investigation is required to determine the mechanism by which SNP 

treatment restores myogenic differentiation; however, due to the increased mitochondrial-

related protein expression we observed in SNP treated cells, and our knowledge of how 

important mitochondrial biogenesis is for promoting cell differentiation (Wagatsuma & 

Sakuma, 2013; Sin et al., 2016), we speculate that SNP treatment can partially restore 

myogenic differentiation by enhancing mitochondrial biogenesis.  
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Materials and Methods 

Cell culture  

Culturing conditions have been described previously (McMillan & Quadrilatero, 2014).  

Briefly, low pass C2C12 myoblasts (A.T.C.C.) were plated in polystyrene cell culture 

dishes or on Cultrex BME-coated coverslips in growth media (GM) composed of low-

glucose Dulbecco’s modified Eagle’s medium (DMEM), 10% FBS, and 1% 

penicillin/streptomycin (P/S), and incubated at 37 °C in 5% CO2.  Media was replaced 

every 24-48 hours. To induce differentiation, GM was replaced with differentiation 

media (DM) comprised of low-glucose DMEM, 2% horse serum, and 1% P/S, when cells 

were 80-90% confluent. Cells were collected at day 0 (D0) prior to switching from GM to 

DM, and collected at appropriate time-points after switching to DM (D1, D2, etc.).  Cells 

were trypsinized (0.25% trypsin with 0.2g/l EDTA), centrifuged (1000g for 5 min), and 

stored at -80°C.  

shAtg7 and bnip3-/- cell lines were generated previously in our lab (Bloemberg, 

2017).  Briefly, C2C12 cells were grown in 12-well plates and transfected with vectors 

encoding an shRNA against Atg7 (Origene TG504956) or a bnip3 CRISPR sequence 

(Origene).  For each transfection, vector DNA and Lipofectamine 2000 were diluted in 

Opti-MEM and the mixture was added to cells and incubated for 6 hours.  24 hours after 

transfection, cells were transferred to 100 mm plates and grown in GM with puromycin 

(2 µg/mL) to allow for stable clone selection.  Immunoblotting was then used to evaluate 

ATG7 and BNIP3 protein levels in selected clones.   
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Chemical treatments 

Chemicals/reagents were dissolved in autoclaved H2O and fresh solutions were made 

each day.  Chemical solutions were diluted in DM to achieve the appropriate treatment 

concentrations and were added each day throughout differentiation.  The following 

chemicals were used: 5-Aminoimidazole-4-carboxamide-ribonucleoside/AICAR (30 µM; 

Toronto Research Chemicals), sodium nitroprusside dihydrate/SNP (15 µM and 30 µM; 

Sigma–Aldrich), leucine (0.5 mM; Sigma-Aldrich), caffeine (100 µM; Sigma–Aldrich).   

 

Immunoblotting 

Immunoblotting was performed as described previously (McMillan & Quadrilatero, 

2011; McMillan & Quadrilatero, 2014). Briefly, cells were lysed in ice-cold lysis buffer 

(LB) [20mM Hepes, 10mM NaCl, 1.5mM MgCl, 1mM DTT, 20% glycerol and 0.1% 

Triton X-100 (pH7.4)] containing a protease (Roche Applied Sciences) inhibitor cocktail 

(Roche Applied Sciences).  Equal amounts of protein were loaded and separated on 12% 

SDS- PAGE gels, transferred onto PVDF membranes (Bio-Rad), and blocked in 5% milk 

in TBS-T for 1 hour at room temperature. Membranes were incubated overnight at 4°C in 

primary antibodies against: GAPDH (2118; Cell Signaling), MYOG, MYH, (F5D, MF20; 

Developmental Studies Hybridoma Bank), CYCS, PPARGC1A, TFAM, VDAC1 (sc-

13156, sc-13067, sc-166965, sc-390996;Santa Cruz Biotechnology).  Membranes were 

then washed in TBS-T, and incubated for 1 hour at room temperature with the 

appropriate horseradish peroxidase-conjugated secondary antibodies (Santa Cruz 

Biotechnology). TBS-T washes were repeated and bands were visualized using the 

Clarity Western ECL substrate (Bio-Rad) and the ChemiGenius 2 Bio-Imaging System 
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(Syngene). 

Caspase assays 

CASP3 and CASP9 assays were performed as described previously (McMillan et al., 

2015; Baechler et al., 2019).  Cells were sonicated in lysis buffer without protease 

inhibitors.  CASP3 and CASP9 activity were determined using the fluorogenic substrates 

Ac-DEVD-AFC and Ac-LEHD-AFC, respectively (AAT Bioquest, 13401; Tocris 

Bioscience, 1575), and fluorescence was measured at the appropriate wavelength using a 

Synergy H1 microplate reader (BioTek) in duplicate.  CASP activity measures were 

normalized to total protein content which was determined using the BCA method.   

Immunofluorescence and microscopy 

Immunofluorescent staining of cells was performed as described previously (McMillan & 

Quadrilatero, 2014).  Cells were grown on glass coverslips in culture dishes and the 

coverslips were removed from the dishes at D4. Coverslips were transferred to a new dish 

and washed with PBS (3x 5 min washes). Cells were fixed with 4% formaldehyde in PBS 

for 10 minutes at room temperature, and PBS washes were repeated. Cells were 

permeablized with 0.5% Triton X-100 for 10 minutes and washed in PBS. Blocking to 

reduce non-specific binding involved incubating coverslips in 10% goat serum (Sigma–

Aldrich) in PBS for 30 minutes.  After blocking, coverslips were incubated with anti-

MYH primary antibody (MF20; DSHB) at the appropriate dilution in fresh blocking 

solution for 1 hour.  PBS washes were then repeated.  Next, the coverslips were incubated 

for 1 hour in the appropriate fluorochrome-conjugated secondary antibody diluted in 

blocking solution.  Subsequently, PBS washes were repeated, cells were stained with 

DAPI nuclear stain (Life Technologies; D3571) for 5 minutes, and then washed with 
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PBS.  Coverslips were placed on slides and Prolong Gold Antifade Reagent was used for 

mounting.  Slides were imaged the following day using an Axio Observer Z1 microscope 

equipped with an AxioCam HRm camera and AxioVision software (Carl Zeiss).  Fusion 

index was calculated as the percentage of nuclei in multinucleated cells (two or more 

nuclei) relative to total nuclei, and differentiation index was determined by counting the 

percentage of MYH-positive cells relative to the total number of cells per field.   

  

Respirometry 

High-resolution respirometry was performed using the OROBOROS O2k and 

measurements of oxidative capacity were performed using previously developed 

protocols (Bloemberg, 2017; Bradley et al., 2017).  Briefly, 1.0x106 cells/group were 

collected and centrifuged at 100g, permeabilized in digitonin/sucrose buffer (PBS with 

250 mM sucrose, 80 mM KCl, and 50 µg/mL digitonin) for 3 min at room temperature, 

then centrifuged again at 200g.  The digitonin/sucrose buffer was aspirated and cells were 

re-suspended in mitochondrial respiration buffer (Mir05: 0.5 mM EGTA, 3 mM MgCL2-

6H2O, 60 mM lactobionic acid, 20 mM taurine, 10 mM KH2PO4, 20 mM HEPES, 110 

mM sucrose, 1 g/L fatty acid-free BSA).  The re-suspended cells were then added to the 

O2K chambers and respiration was performed at 37°C under oxygenated conditions (one 

chamber was used for control cells and one chamber was used for SNP-treated cells).  

Subsequently, the following complex I substrates were added to each chamber: glutamate 

(10 mM), pyruvate (5 mM), and malate (2 mM).  ADP-stimulated respiration was then 

determined by adding increasing concentrations of ADP to the chambers, up to a 

maximum concentration of 1 mM.  In order to determine maximal complex-II supported 
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respiration, succinate was added to each chamber (10 mM).  After reaching maximal 

respiration, cytochrome c (10 µM) was added to each chamber to evaluate mitochondrial 

membrane integrity (Bloemberg, 2017).  Cytochrome c is released into the cytosol if the 

mitochondrial outer membrane is damaged or leaky, and this is shown by increased 

oxygen consumption following the addition of cytochrome c (Garcia-Roche et al., 2018).   

	

Flow cytometry 

Calcein AM/CoCl2 was used to assess mitochondrial permeability transition pore (mPTP) 

formation, which can result in the release of pro-apoptotic factors from the mitochondria.  

Calcein AM is a fluorescent dye that will accumulate in mitochondria and can be 

quenched by CoCl2.  Mitochondria are impermeable to CoCl2 but if mPTP formation 

occurs, CoCl2 can enter the mitochondria and quench calcein fluorescence.  Therefore, a 

decrease in calcein fluorescence is indicative of mPTP formation (Dam et al., 2013).  

Cells were collected and incubated with 1 µM calcein AM (Enzo Life Sciences, ALX-

610-026) only or with 1 mM CoCl2 dissolved in HBSS for 15 min at 37°C.  Following 

incubation, cells were washed by centrifugation, and resuspended in 500 µl HBSS.  All 

analyses were performed using a BD FACSCalibur flow cytometer equipped with Cell 

Quest Pro software (BD Bioscience). 

 

Statistics 

Statistical analysis was performed using GraphPad PRISM. A one-way ANOVA was 

used to assess the effect of differentiation within groups, with Bonferroni’s multiple 

comparison test to compare differences from D0. Differences between time-matched 
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treated and control groups were assessed using a Students T-test.  For all experiments, n 

= 3 or more independent trials.   
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Chapter 2 Summary 

The major goals/hypotheses of Chapter 2 were: 
1) To determine if mitophagy is completely blocked in ATG7-deficient 
myoblasts/myotubes.  We hypothesized that mitophagy would be reduced but not absent 
in shAtg7 cells. 
 
2) To determine if overexpression of a mitophagy-related protein is sufficient to reduce 
cell death and improve differentiation in ATG7-deficient cells.  We predicted that 
overexpression of mitophagy-related proteins would enhance mitophagy in shAtg7 cells 
to reduce cell death but that it would not fully restore myogenic differentiation.  
 
Major findings: 

• Mitophagy increases during C2C12 myogenic differentiation, which was 
validated using several fluorescence-based mitophagy reporters and confocal 
microscopy. 

• Mitochondrial biogenesis, fission, and fusion proteins were reduced in shAtg7 
cells, and the expression of mitochondrial proteins was also lower in shAtg7 cells, 
suggesting that mitochondria-related signaling and content is reduced in shAtg7 
cells. 

• Mitochondrial release of AIFM1 and CYCS was elevated in shAtg7 cells, 
suggesting that shAtg7 cells contain more leaky/damaged mitochondria, which 
can contribute to elevated mitochondria-mediated apoptotic signaling.   

• LC3-dependent mitophagy is almost absent in shAtg7 cells as demonstrated by 
DsRed-Mito/LC3-GFP co-localization.  

• LC3-independent/alternative mechanisms of mitochondrial degradation occur in 
shAtg7 cells, as demonstrated using a p-mito-mRFP-EGFP fluorescent mitophagy 
reporter. 

• Treating shAtg7 cells with an alternative mitophagy inhibitor, BFA, reduces 
mitochondrial degradation in shAtg7 cells and exacerbates myogenic 
differentiation and myogenesis impairments in shAtg7 cells. 

• Alternative mitophagy is not required for myogenic differentiation in healthy 
C2C12 myoblasts. 

• Overexpression of BNIP3 in shAtg7 cells can delay cell loss/death, resulting in a 
partial recovery of myotube formation. 

• Overexpression of PRKN and BECN1 in shAtg7 cells does not improve myogenic 
differentiation. 
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Chapter 3 Summary 

The major objectives for Chapter 3 were: 
1) To determine if the mitophagy-related proteins BNIP3 and BNIP3L/NIX are required 
for myogenic differentiation.  We predicted that myogenic differentiation would be 
impaired in BNIP3L- and BNIP3-deficient myoblasts.   
 
2) To determine if autophagy and mitophagy are altered in BNIP3-deficient cells.  We 
hypothesized that mitophagy would be disrupted in BNIP3-deficient cells and that this 
would cause an increase in (macro)autophagy in an attempt to degrade accumulating 
mitochondria.   
 
Major findings: 

• Myogenic differentiation is impaired in myoblasts deficient in BNIP3L or BNIP3.  
• There is a compensatory increase in the expression of BNIP3L in BNIP3-deficient 

cells, and conversely a compensatory increase in the expression of BNIP3 in 
BNIP3L-deficient cells. 

• Mitophagy does occur in bnip3-/- cells during differentiation as demonstrated by 
DsRed-Mito/LC3-GFP co-localization as well as the p-mito-mRFP-EGFP 
mitophagy reporter.  However, we suspect that there is impairment in the specific 
targeting and degradation of dysfunctional mitochondria in bnip3-/- cells, which 
results in increased CASP9 and CASP3 activity.   

• Mitochondrial signaling- and mitochondria-related protein expression was 
generally lower in bnip3-/- cells relative to Scrams.   

• Autophagy-related protein expression is elevated in bnip3-/- cells. 
• Overexpression of ATG7 or treatment with the autophagy inducer rapamycin 

disrupts myogenesis, as demonstrated by reduced levels of MYOG and MYH 
expression.   

• Overexpression of autophagy-related proteins or rapamycin treatment generally 
caused a reduction in CASP activation during differentiation.   
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Chapter 4 Summary 

The main objectives for Chapter 4 were: 
1) To determine if increased mitochondrial biogenesis can restore myogenic 
differentiation in shAtg7 cells and bnip3-/- cells.  We had hypothesized that enhancing 
mitochondrial biogenesis might reduce cell death, given that previous work in our lab has 
shown that increasing mitochondrial biogenesis can protect against cell death (Dam et al., 
2013), which could then result in increased myotube formation.   
 
2) To determine if mitochondrial function improves in shAtg7 and bnip3-/- cells following 
treatment with an inducer of mitochondrial biogenesis.  We had predicted that 
mitochondrial function and health would improve in shAtg7 cells and bnip3-/- cells treated 
with mitochondrial biogenesis inducers.   
 
Major findings: 

• SNP treatment increased mitochondrial biogenesis- and mitochondria-related 
protein expression in shAtg7 and bnip3-/- cells. 

• SNP treatment enhances differentiation and myotube formation in shAtg7 and 
bnip3-/- cells. 

• SNP treatment resulted in a small increase in mitochondrial respiration in shAtg7 
cells. 

• SNP treatment significantly enhanced mitochondrial respiration in bnip3-/- cells. 
• SNP treatment did not improve mitochondrial integrity in shAtg7 and bnip3-/- 

cells.   
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Mitophagy plays a role in supporting myogenic differentiation 

We among others have shown that mitophagy is required during myogenic 

differentiation, with its role being to limit/control apoptotic signaling and to support 

mitochondrial biogenesis and remodelling (Sin et al., 2016; Baechler et al., 2019; Chapter 

2; Chapter 3).  Interestingly, Sin et al (2016) had used immunoblotting/immunostaining 

to show that there is a decrease in the level of the mitochondrial protein TOMM70A 

during early myogenic differentiation.  Moreover, they also reported increased SQSTM1 

levels in mitochondrial fractions, to suggest that mitochondrial targeting and degradation 

increases during early differentiation (Sin et al., 2016).   In support of this interpretation, 

we have shown that LC3-puncta (autophagosomes) and mitochondria co-localize during 

differentiation (Baechler et al., 2019; Chapter 2; Chapter 3).  Moreover, this thesis was 

the first study that used a p-mito-mRFP-EGFP fluorescent mitophagy reporter (Kim et 

al., 2013) to demonstrate that mitophagy increases when C2C12 myoblasts are induced to 

differentiate (Chapter 2 - Figure 1).  Further, this reporter shows that mitochondria are 

not only targeted for degradation, but that they are also successfully delivered to 

lysosomes (Kim et al., 2013).  Although we had assumed that co-localization of 

autophagosomes and mitochondria is indicative of mitophagy, the LC3-GFP and DsRed-

Mito method does not allow us to specifically determine if the autophagosomes and 

lysosomes ever fuse or if the mitochondria are degraded.  Therefore, we have provided 

sufficient evidence to support that mitophagy increases during myogenic differentiation, 

as it does during differentiation in other cell types (Sandoval et al., 2008; Ney, 2015).  

Thus, it is likely that the induction of mitophagy plays a role in mediating myogenic 

differentiation and myotube formation.   
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Although we have demonstrated that mitophagy occurs during myogenesis, we 

among others have used cells deficient in autophagy-related proteins, such as ATG7, to 

investigate the requirement for mitophagy during differentiation.  Given that LC3 

lipidation is disrupted in these cells (Chapter 2 - Figure 6), we had assumed that 

autophagosomes do not form and thus that mitophagy cannot occur.  However, previous 

work has determined that mitophagy and mitochondrial degradation can occur using 

alternative pathways that do not require LC3 (Nishida et al., 2009; Hirota et al., 2015; 

Wang et al., 2016; Hammerling et al., 2017; Oliveira et al., 2015).  In support of this, 

when we examined shAtg7 cells expressing the tandem p-mito-mRFP-EGFP mitophagy 

reporter we found that mitochondrial degradation was happening in shAtg7 cells during 

myogenic differentiation (Chapter 2 - Figure 7).  This result was somewhat surprising 

because our previous work has indicated that mitochondrial membrane potential is lower 

and mitochondrial membrane permeability is higher in shAtg7 cells, which is indicative 

of mitochondrial dysfunction (McMillan, 2015; Baechler et al., 2019).  Additionally, 

mitochondria-mediated apoptotic signaling is elevated in shAtg7 cells (McMillan, 2015; 

Baechler et al., 2019).  In support of this, we demonstrated that there were increased 

cytosolic levels of CYCS and AIFM1 in shAtg7 cells (Chapter 2 - Figure 3), which would 

occur as a result of mitochondrial damage and could induce CASP-dependent and CASP-

independent cell death signaling (Wang, 2001). This is in agreement with previous work 

in our lab which showed that CASP9 and CASP3 activity is elevated in shAtg7 cells, and 

is indicative of mitochondria-mediated CASP activation (McMillan, 2015).  Moreover, 

shAtg7 cells had higher levels of the mitochondrial antioxidant SOD2 (Bresciani, 2015; 

Candas & Li, 2014), which could indicate that there is increased mitochondrial oxidative 
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stress in shAtg7 cells.  In agreement with this interpretation, previous studies in our lab 

have shown that shAtg7 myoblasts have elevated levels of mitochondrial 4-HNE 

(McMillan, 2015; Baechler et al., 2019), which is a known marker of oxidative stress 

(Uchida, 2003; Xiao et al., 2017).  Further, our previous work has demonstrated that 

reducing mitochondria-mediated apoptotic signaling through CASP9 inhibition can 

partially rescue myogenic differentiation in shAtg7 cells (McMillan, 2015; Baechler et 

al., 2019).  Therefore, these results would suggest that the specific degradation of 

damaged or dysfunctional mitochondria is somewhat impaired in shAtg7 cells and that 

this impairment disrupts proper myogenesis.  Therefore, although mitochondria can be 

degraded in shAtg7 cells, it is possible that alternative mitophagy or other forms of 

mitochondrial degradation are not sufficient to selectively degrade damaged 

mitochondria during myogenic differentiation.  Studies using erythroleukemia cells have 

shown that ATG7-deficient cells use alternative mitophagy to limit ROS and apoptosis; 

however, cell differentiation is still impaired (Wang et al., 2016).  This is similar to our 

work in that shAtg7 myoblasts fail to differentiate; however, in contrast to the work of 

Wang et al (2016), we have found that apoptotic signaling and ROS levels are elevated in 

shAtg7 cells (Chapter 2 - Figure 3; McMillan, 2015; Baechler et al., 2019; McMillan & 

Quadrilatero, 2014).  Interestingly, it has been suggested that alternative/LC3-

independent mitophagy is used to eliminate mitochondria during erythrocyte 

differentiation (Nishida et al., 2009; Honda et al., 2014).  However, one major difference 

between erythrocyte differentiation and the differentiation of myoblasts is that 

mitochondria are eliminated and not replaced in erythrocytes.  In contrast, mitophagy 

during myogenic differentiation is accompanied by mitochondrial biogenesis and the 
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formation of a new mitochondrial network (Sin et al., 2016).  Therefore, it is possible that 

alternative mitophagy might effectively degrade mitochondria but that canonical 

autophagy/mitophagy is required to trigger mitochondrial biogenesis.  In support of this 

hypothesis, we demonstrated that mitochondrial degradation occurs in shAtg7 cells 

during myogenic differentiation (Chapter 2; Figure 7), but that mitochondrial biogenesis 

is impaired (Chapter 2 - Figure 2).   Therefore, future work is needed to address the 

differences among canonical and non-canonical mitophagy as well as other forms of 

mitochondrial degradation to determine if any of the proteins that are specific to 

mediating canonical mitophagy are also involved in promoting mitochondrial biogenesis 

during myogenic differentiation.  Identifying differences among the different pathways 

that mediate mitochondrial degradation could help to determine why one pathway is 

dominant or crucial in certain contexts, such as during myogenesis.  Another important 

consideration is that specific mitophagy pathways may be more/less important for 

degrading damaged mitochondria.  Thus, if alternative mitophagy is used to degrade 

mitochondria during erythrocyte differentiation (Nishida et al., 2009; Honda et al., 2014), 

then this would be an example of developmentally programmed mitochondrial removal 

and might not require that mitochondria be damaged/dysfunction.  Our previous work 

and the results of this thesis have demonstrated that shAtg7 cells have more damaged 

mitochondria and elevated ROS levels, suggesting that the mitophagy-mediated removal 

of dysfunctional mitochondria is compromised (Chapter 2; McMillan, 2015; Baechler et 

al., 2019).  Thus, although we observed mitochondria being degraded in shAtg7 cells, 

these events may represent the removal of non-damaged mitochondria for the purpose of 

mitochondrial remodelling and differentiation, and might not distinguish between 
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damaged and healthy mitochondria.  Therefore, it is possible that the LC3-

independent/alternative mitophagy occurring in shAtg7 cells might not be specific to 

degrading damaged mitochondria, which could then accumulate and outnumber the 

population of healthy mitochondria, and thus explain the increased apoptotic signaling 

that is characteristic of shAtg7 cells during differentiation (McMillan & Quadrilatero, 

2014; McMillan, 2015; Baechler et al., 2019).  Further, basal levels of mitochondrial 

degradation might be low in undifferentiated myoblasts, while the stress associated with 

differentiation could result in increased mitochondrial damage and the need to eliminate 

dysfunctional mitochondria.  If this is the case, then shAtg7 cells might fail to 

differentiate and die (McMillan & Quadrilater, 2014) because they cannot identify and 

eliminate damaged mitochondria specifically using alternative (autophagy-independent) 

mechanisms to degrade mitochondria.  In Chapter 2, we demonstrated that healthy 

C2C12 myoblasts do not require alternative mitophagy to generate myotubes (Chapter 2 - 

Figure 8), suggesting that alternative mitophagy is likely not the dominant pathway for 

eliminating mitochondria during myogenesis.  Thus, it is possible that alternative 

mitophagy serves as a compensatory mechanism to degrade mitochondria in autophagy-

deficient cells only, but that it may not be specific to the removal of damaged 

mitochondria, or sufficient to support the required mitophagy and mitochondrial 

remodelling during myogenic differentiation.  Therefore, future experiments might 

involve treating shAtg7 cells with chemicals known to cause mitochondrial damage to 

evaluate if damage-induced mitochondrial degradation occurs via the alternate mitophagy 

pathway in shAtg7 cells.   
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Additionally, we used the p-mito-mRFP-EGFP mitophagy reporter as a 

qualitative measure of mitochondrial degradation.  Although it would have been ideal to 

quantify the number of mitophagy/mitochondrial degradation events in shAtg7 cells in 

comparison to SCR cells to determine if overall mitochondrial degradation was reduced 

in shAtg7 cells, the transient nature of the fluorescent reporter made it difficult to 

quantify events.  Further, as cells fused, the strength of the fluorescent signal seemed to 

diminish.  Therefore, it would be useful to generate a stable p-mito-mRFP-EGFP reporter 

cell line for future microscopy experiments and mitophagy-related measures; however, 

this would have been challenging to do in our shAtg7 cell lines.  Further, although this 

method could provide a measure of gross mitochondrial degradation, it does not allow us 

to determine if mitochondrial degradation is selective/specific or if the mitochondria 

being degraded are damaged/dysfunctional.   Therefore, it could be that although 

mitochondrial degradation does occur in shAtg7 cells, it could happen less 

frequently/rapidly than in SCR cells, and more importantly, it is possible that there is less 

specificity and targeting of damaged/dysfunctional mitochondria in shAtg7 cells. 

In an attempt to compensate for a deficiency in autophagy/mitophagy and recover 

myogenic differentiation in shAtg7 cells, we overexpressed the autophagy/mitophagy-

related proteins BECN1, PRKN, and BNIP3 (Chapter 2 - Figure 4).  Moreover, we had 

speculated that overexpressing these proteins might enhance mitophagy in shAtg7 cells, 

which could limit cell death in addition to promoting differentiation.  Interestingly, we 

found that BECN1 and PRKN did not improve myogenic differentiation in shAtg7 cells 

(Chapter 2 - Figure 4), while BNIP3 seemed to improve myogenesis by delaying cell 

death (Chapter 2 - Figure 4; Figure 5), which supports a role for BNIP3 and mitophagy in 
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regulating differentiation and cell death.  We suspect that PRKN might not have 

recovered myogenic differentiation for the following reasons: 1) we have never detected 

PRKN expression in C2C12 myoblasts (Bloemberg, 2017; Chapter 2 - Figure 4), which 

might indicate that it has no mitophagy-related role in C2C12 cells; 2) PRKN is generally 

associated with canonical/LC3-dependent mitophagy, which does not occur in shAtg7 

cells (Chapter 2 - Figure 6); and 3) there may not have been sufficient PINK1 levels or 

activity to activate PRKN and trigger PINK1/PRKN-mediated mitophagy.  PINK1 is 

required to activate PRKN E3 ligase activity and recruit PRKN to damaged mitochondria 

(Kane et al., 2014; Gladkova et al., 2018; Pickles et al., 2018).  Thus, although we 

overexpressed PRKN in an attempt to increase PINK1/PRKN-mediated mitophagy, 

PRKN might have remained in an inactive form.  Therefore it might be necessary to also 

increase PINK1 levels or activity in order to activate PRKN activity and/or identify 

mitochondria to be degraded.  The failure to recover myogenesis by overexpressing 

BECN1 may have resulted because: 1) canonical autophagy/mitophagy cannot be 

upregulated because the ATG7-deficiency would disrupt LC3 lipidation; 2) too much 

BECN1 can have negative consequences with respect to cell health/survival (Zhu et al., 

2018).  For example, overexpression of BECN1 in sarcoma cells causes an increase in 

CASP9 and CASP3 activation, resulting in increased cell death (Zhu et al., 2018).  

Therefore, given that CASP9 and CASP3 activity is elevated in shAtg7 cells (McMillan, 

2015; Baechler et al., 2019), elevated levels of BECN1 could further augment apoptotic 

signaling.  We did; however, achieve a partial recovery of myogenic differentiation by 

overexpressing BNIP3 in shAtg7 cells.  Overexpression of BNIP3 delayed cell loss/death 

in shAtg7 cells, so there were more cells available to fuse and form myotubes (Chapter 2 
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- Figure 5).  Moreover, overexpression of BNIP3 caused a reduction in p-H2AFX levels 

in shAtg7 cells at D2 of differentiation (Chapter 2 - Figure 4).  Although we did not see a 

significant reduction in CASP3 activity in shAtg7 cells overexpressing BNIP3 (Chapter 2 

- Figure 5I), the elevated cytosolic CYCS and AIFM1 levels in shAtg7 cells (Chapter 2 - 

Figure 3) would suggest that shAtg7 cells are more susceptible to both CASP-dependent 

and CASP-independent cell death (Wang, 2001). Therefore, we speculate that the 

reduction in cell death may have occurred because BNIP3 can limit cell death signaling 

by eliminating damaged mitochondria (Zhu et al., 2013), and can mediate LC3-

independent mitophagy and mitochondrial degradation (Zhang et al., 2012; Hammerling 

et al., 2017).  Interestingly, we had found that overexpression of BNIP3 was able to 

induce mitochondrial degradation in proliferating C2C12 myoblasts (Chapter 2 - Figure 

4D).  Additionally, BNIP3 has been shown to transcriptionally repress several death-

promoting proteins, and thus it is possible that BNIP3 can reduce cell death in a 

mitophagy-independent manner (Burton et al., 2009; Burton et al., 2013).  Future work 

should therefore address the localization of BNIP3 when it is overexpressed to determine 

if it is localized to the nucleus or mitochondria, which might assist with understanding its 

ability to partially rescue and restore myogenic differentiation in shAtg7 cells.   

To further support our results demonstrating that impairment in the degradation of 

dysfunctional or damaged mitochondria inhibits myogenic differentiation, we generated 

cells deficient in the mitophagy receptor proteins BNIP3L and BNIP3 (Chapter 3).  

Moreover, this was the first study to knockdown/knockout these mitophagy-related 

proteins in C2C12 myoblasts to investigate their roles during myogenic differentiation, as 

previous work has relied upon using cells deficient in general autophagy-related proteins 
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such as SQSTM1 and ATG5 (Sin et al., 2016).  Interestingly, we found that myogenic 

differentiation was impaired in both BNIP3L-deficient (Chapter 3 - Figure 1) and BNIP3-

deficient cells (Chapter 3 - Figure 2).   Moreover, and similar to shAtg7 cells, we found 

that bnip3-/- cells had elevated CASP9 and CASP3 activity as well as increased p-H2AFX 

levels (Chapter 3 - Figure 2E-G), suggesting that mitochondria-mediated apoptotic 

signaling is elevated in bnip3-/- cells.  Further, bnip3-/- cells had higher levels of SOD2 

expression early during differentiation, which could suggest an increase in oxidative 

stress or mitochondrial accumulation.  Thus, the combination of elevated mitochondria-

mediated apoptotic signaling and increased expression of a marker of mitochondrial 

oxidative stress would suggest that bnip3-/- cells contain more dysfunctional/damaged 

mitochondria.  Although this is similar to what we have observed in shAtg7 cells, one 

major difference is that LC3-dependent autophagy/mitophagy occurs during myogenic 

differentiation in bnip3-/- cells (Chapter 3 - Figure 4A-C), but does not occur in shAtg7 

cells (Chapter 2 – Figure 6).  However, the DsRed-Mito and GFP-LC3 method can only 

demonstrate that mitochondria co-localize with autophagosomes and does not allow us to 

determine if mitochondria are ever delivered to and degraded by the lysosome.  

Therefore, we also used the p-mito-mRFP-EGFP reporter to show that mitochondrial 

degradation does occur in bnip3-/- cells during differentiation (Chapter 3 - Figure 4).  

Interestingly, previous studies have suggested that BNIP3 can mediate both LC3-

dependent and LC3-independent mitochondrial degradation (Hanna et al., 2012; Zhang et 

al., 2012; Hammerling et al., 2017).  Moreover, recent work has shown that BNIP3 can 

promote endosome-mediated mitochondrial degradation, in addition to its established role 

in promoting mitophagy (Hammerling et al., 2017).    Thus, if BNIP3 is involved in 
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regulating multiple pathways involved in regulating mitochondrial degradation, then 

several mechanisms of mitochondrial removal could be compromised in bnip3-/- cells.  

Further, if one of these pathways, such as mitophagy-mediated degradation, is 

compromised, then there could be a compensatory upregulation or need for an alternate 

pathway to degrade mitochondria, like in the shAtg7 cells.  Moreover, given that 

endosome-mediated mitochondrial degradation might occur more rapidly than 

autophagosome-mediated mitophagy (Hammerling et al., 2017), it seems reasonable to 

speculate that this mechanism for mitochondrial elimination might be less specific to 

targeting and removing damaged/ dysfunctional mitochondria, and instead might increase 

the overall elimination of mitochondria (both healthy and unhealthy).  If this is the case, 

then an increase in gross/non-specific mitochondrial removal in BNIP3-deficient cells 

could result in a higher ratio of unhealthy to healthy mitochondria, which would then 

cause elevated mitochondria-mediated cell death signaling (Chapter 3 - Figure 2E-F).  

Interestingly, we found that BNIP3L expression was elevated in bnip3-/- cells (Chapter 3 - 

Figure 5A-B), which has been reported in other BNIP3-deficient cell lines (Chourasia et 

al., 2015; Shi et al., 2014).  Therefore, it is possible that BNIP3L expression was 

upregulated to compensate for a deficiency in BNIP3 to eliminate mitochondria; 

however, as others have reported, it is likely that elevated BNIP3L expression cannot 

fully compensate for having insufficient levels of BNIP3.  Taken together, these results 

demonstrate that ATG7, BNIP3, and BNIP3L are required during myogenic 

differentiation.  Moreover, the mitochondrial dysfunction and mitochondria-mediated 

apoptotic signaling observed in shAtg7 and bnip3-/- cells suggests that damaged 
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mitochondria are not being eliminated, which likely contributes to the observed 

impairment in myogenesis observed in these cell lines.   

 

Inappropriate levels of autophagy can disrupt myogenic differentiation 

Previous work in our lab and the work of others, has established an important role for 

autophagy in supporting satellite cell quiescence, activation, as well as myogenic 

differentiation.   Interestingly, these studies have all shown that autophagy is necessary 

and that insufficient levels of autophagy have a negative impact on some element of cell 

maintenance and/or differentiation (Garcia-Prat et al., 2016; Tang & Rando, 2014; 

McMillan & Quadrilatero, 2014; Fortini et al., 2016).  However, in this thesis, we 

examined the potential impact of having too much autophagy, given that that there was 

elevated autophagy in bnip3-/- cells (Chapter 3 - Figure 5), and found that overexpression 

of some autophagy-related proteins can have negative consequences with respect to 

myogenic differentiation (Chapter 3 - Figure 6).  This is in agreement with mouse studies 

that have shown that overactivation of autophagy can be damaging to muscle (Chrisam et 

al., 2015).    In support of these interpretations, we found that overexpression of 

ATG1/ULK1 in muscle progenitors in Drosophila was disruptive to development and 

resulted in abnormal wing postures (Chapter 3 - Figure 8).  Interestingly, similar 

phenotypes have been reported in flies that are deficient in PINK1, and these muscle 

abnormalities are associated with mitochondrial dysfunction and apoptosis (Clark et al., 

2006; Park et al., 2006).  Our results have demonstrated that myogenesis is impaired and 

mitochondrial dysfunction is elevated in BNIP3-deficient cells, and that autophagy-

related protein expression is higher in bnip3-/- cells relative to Scram cells.  Therefore, it 
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is interesting to speculate that PINK1-deficient flies might also upregulate 

macroautophagy in an attempt to eliminate damaged mitochondria, and that this might 

contribute to the reported muscle dysfunction.   

One interesting finding was that CASP activity was generally lower in cells 

overexpressing autophagy-related proteins (Chapter 3 - Figure 7).  Our lab has previously 

shown that CASP activation and apoptotic signaling is elevated in autophagy-deficient 

cells, suggesting that autophagy may be required to limit CASP activity (McMillan & 

Quadrilatero, 2014).  Therefore, it is possible that overexpression of autophagy-related 

proteins or treatment with an autophagy inducer can suppress CASP activation.  A similar 

effect has been reported in animal studies demonstrating that enhancing autophagy 

suppresses CASP activation in skeletal muscle (Li et al., 2018).  Although this effect 

could be beneficial for preventing cell death, it is known that CASP3 activation is 

required during myogenic differentiation (Fernando et al., 2002).  Therefore, if the timing 

or level of CASP3 activation is altered due to elevated expression of autophagy-related 

proteins, then this could prevent cells from differentiating properly.   

 Interestingly, studies have shown that autophagy can actually promote both 

CASP-dependent and CASP-independent cell death (Scott et al., 2007; Liu & Levine, 

2015). Moreover, as mentioned in Chapter 3, a form of autophagy-mediated cell death 

termed “autosis” has recently been described (Liu et al., 2013).  Interestingly, autotic cell 

death is not associated with CASP activation and often results in increased cell adhesion 

(Liu et al., 2013; Liu & Levine, 2015).  This could potentially explain why we do not 

observe an increase in CASP activity in cells overexpressing autophagy-related proteins.  

Additionally, we found that although differentiation was impaired in cells overexpressing 
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ATG7 and in cells treated with rapamycin, the cells were not eliminated.  Moreover, a 

similar phenotype was observed in bnip3-/- cells, which also showed elevated expression 

of autophagy-related proteins (Chapter 3 - Figure 5). Therefore, it is important to 

consider that autophagy levels must be tightly regulated during myogenic differentiation, 

given that insufficient levels disrupt differentiation and induce cell death, while similar 

consequences can result from having too much autophagy.   

 

Autophagy is required to limit apoptosis 

The requirement for autophagy during myogenesis in C2C12s has been supported 

by animal studies and studies using primary myoblasts (Garcia-Prat et al., 2016; Fortini et 

al., 2016).  Our previous studies and the experiments comprising this thesis would 

suggest that differentiation is impaired in autophagy/mitophagy-deficient cells due to 

increased cell death signaling (Chapter 2; Chapter 3; McMillan & Quadrilatero, 2014; 

Baechler et al., 2019) and insufficient mitochondrial biogenesis (Chapter 2; Chapter 3; 

Sin et al., 2016; Baechler et al., 2019).  Previous work in our lab has demonstrated that 

stable knockdown of ATG7 in C2C12 myoblasts or treatment with the autophagy 

inhibitor 3MA, causes increased apoptosis and cell death during differentiation 

(McMillan & Quadrilatero, 2014).  Interestingly, studies using autophagy-deficient SCs 

in vivo or primary myoblasts have reported higher p-H2AFX levels in ATG7-deficient 

cells, and suggest that autophagy-deficiency results in senescence (Garcia-Prat et al., 

2016); however, they did not evaluate apoptotic signaling. Moreover, Garcia-Prat et al 

(2016) had suggested that autophagy is required to protect against cell senescence, and 

that cell senescence results from dysfunctional mitochondria and elevated ROS levels 
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(Garcia-Prat et al, 2016).  We have also demonstrated that ATG7-deficient cells display 

mitochondrial dysfunction and have elevated ROS levels; however, we did not measure 

markers of senescence and instead found that these factors resulted in the induction of 

apoptosis (McMillan, 2015; Baechler et al., 2019). Interestingly, we have not been able to 

detect the major regulator and marker of cell senescence, p16 (Sousa-Victor et al., 2014) 

in C2C12 myoblasts in our lab.  Thus, it is also possible that there are differences 

between our studies and those mentioned previously because we are using C2C12 

myoblasts, which differ from SCs (Cornelison, 2008).  Further, others have shown that 

p16 is not expressed in C2C12 myoblasts (Pajcini et al., 2010).  Therefore, an inability to 

become senescent could potentially contribute to the increased cell death that we observe 

in ATG7-deficient C2C12 myoblasts (Munoz-Espin et al., 2011; McMillan & 

Quadrilatero, 2014; Baechler et al., 2019), which differs from the increased senescence 

reported in autophagy-deficient SCs (Garcia-Prat et al., 2016).  Similar to our work, Sin 

et al (2016) reported that autophagy-deficient cells fail to differentiate and regenerate the 

mitochondrial network; however, they did not report increased apoptosis (Sin et al., 

2016).  Interestingly; however, they did not perform multiple measures of apoptosis and 

strictly relied on measuring activated CASP3 protein levels (Sin et al., 2016).  In contrast, 

we have shown that there is increased CASP-dependent and CASP-independent cell 

death signaling in shAtg7 cells by measuring ANXA5-propidium iodide staining, DNA 

fragmentation, cytosolic AIFM1 and CYCS, apoptotic nuclei, p-H2AFX levels, the 

BAX:BCL2 ratio, and CASP3 and CASP9 activity (McMillan & Quadrilatero, 2014; 

McMillan, 2015; Baechler et al., 2019; Chapter 2).  Additionally, we have demonstrated 

that differentiation can be partially recovered by treating shAtg7 cells with a chemical 
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inhibitor of CASP3 and CASP9, or a dominant-negative CASP9 (ad-DNCASP9), which 

further supports that elevated mitochondria-mediated apoptotic signaling disrupts 

myogenic differentiation in shAtg7 cells (McMillan, 2015; Baechler et al., 2019).  

Moreover, in vivo animal studies (Pare et al., 2017; Masiero et al., 2009) have supported 

our results demonstrating that cell death signaling is elevated in ATG7-deficient muscle.  

More specifically, Pare et al (2017) had demonstrated that there is increased 

mitochondrial release of AIFM1 and CYCS in muscle-specific, ATG7 knockdown mice 

(Pare et al., 2017), while increased CYCS release has also been reported in miR-378 KO 

mice, which also show impaired autophagy (Li et al., 2018).  This is similar to what we 

observed in shAtg7 cells and would contribute to increased apoptotic signaling.  

Additionally, Li et al (2018) demonstrated that CASP9 activity is elevated in miR-378 

KO mice, and that overexpression of miR-378 can enhance autophagy and also reduce 

CASP9 activation and apoptosis (Li et al., 2018).  Further, other studies have shown 

increased DNA fragmentation and apoptotic nuclei in autophagy-deficient mouse models 

(Masiero et al., 2009; Chrisam et al., 2015; Grumati et al., 2011), which can be 

suppressed through restoration of autophagy levels (Chrisam et al., 2015; Castagnaro et 

al., 2016). Moreover, we also observed increased apoptotic signaling in bnip3-/- cells 

(Chapter 3 - Figure 2), similar to shAtg7 cells, which suggests that the controlled 

regulation of autophagy/mitophagy, in addition to the elimination of dysfunctional/leaky 

mitochondria, is crucial to limit cell death signaling during myogenic differentiation.   
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Mitochondrial biogenesis is necessary during myogenic differentiation 

One of the initial goals of this thesis was to address our hypothesis that mitophagy is 

disrupted in ATG7-deficient cells, and then attempt to rescue myogenesis and reduce 

apoptotic signaling by correcting the mitophagy deficiency.  Thus, we overexpressed the 

autophagy/mitophagy-related proteins BECN1, PRKN, and BNIP3 in shAtg7 cells and 

observed no myogenic improvements in cells expressing BECN1 and PRKN, while 

overexpression of BNIP3 caused a partial rescue due to a delay in cell loss (Chapter 2- 

Figure 4/5).  Interestingly, we found that LC3-dependent mitophagy does not occur in 

shAtg7 cells (Chapter 2 - Figure 6); however, we also determined that mitochondria are 

degraded in shAtg7 myoblasts (Chapter 2; Figure 7).  Therefore, we wondered if our 

attempts to rescue shAtg7 cells by enhancing mitophagy were unsuccessful because we 

were trying to enhance overall mitophagy/autophagy levels in cells that can already 

degrade mitochondria.    Additionally, given that ATG7 plays a critical role in regulating 

autophagy, it is unlikely that overexpression of another mitophagy-related protein can 

fully compensate for having insufficient levels of ATG7.  Given that shAtg7 cells have 

more mitochondrial damage and show elevated mitochondria-mediated apoptotic 

signaling (Chapter 2 - Figure 3; McMillan, 2015; Baechler et al., 2019), the best approach 

would be to enhance the degradation of damaged mitochondria specifically.   Although 

BECN1 is involved in regulating canonical and alternative autophagy/mitophagy (Hirota 

et al., 2015), a role for BECN1 in the specific targeting and elimination of damaged 

mitochondria has not been identified.  Therefore, BECN1 overexpression is unlikely to 

correct a defect in the identification and degradation of dysfunctional mitochondria 

specifically.  In contrast, PRKN is known to identify and remove damaged mitochondria; 
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however, given our inability to detect endogenous PRKN expression in C2C12 myoblasts 

(Chapter 2 - Figure 4F; Bloemberg, 2017), we speculate that PRKN is not involved in 

regulating damage-induced mitophagy in C2C12 myoblasts.  BNIP3 expression increases 

during myogenic differentiation (Chapter 2 – Figure 2K; Chapter 3- Figure 2B) and could 

therefore be an important regulator of mitophagy during differentiation. BNIP3 has been 

shown to limit the accumulation of damaged mitochondria (Zhu et al., 2013; Glick et al, 

2012; Hamacher-Brady & Brady, 2016), and can facilitate mitochondrial degradation in 

both an LC3-dependent and LC3-independent manner (Hanna et al., 2012; Hammerling 

et al., 2017).  Therefore, we suspect that the reduced cell loss observed in shAtg7 cells 

overexpressing BNIP3 (Chapter 2; Figure 5) resulted because BNIP3 could have 

promoted the degradation of dysfunctional mitochondria to reduce cell death, and could 

have accomplished this without requiring LC3.   

Our results suggest that an accumulation of damaged mitochondria results in 

increased cell death signaling in shAtg7 and bnip3-/- cells, and likely contributes to the 

impairment in myogenic differentiation observed in these cell lines.  Moreover, Sin et al 

(2016) had suggested that mitophagy is needed during myogenesis to eliminate old 

mitochondria and to initiate mitochondrial biogenesis to generate a new mitochondrial 

network.  Further, a recent study demonstrated that overexpression of PRKN in skeletal 

muscle can promote mitochondrial biogenesis and function and reduce apoptosis (Leduc-

Gaudet et al., 2019), which suggests that mitophagy-related proteins are not only required 

for mitochondrial removal but that they also regulate overall mitochondrial health and 

homeostasis.  In support of this, we found that the expression of the mitochondrial 

biogenesis-promoting protein PPARGC1A was lower in both shAtg7 and bnip3-/- cells.  
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Moreover, shAtg7 and bnip3-/- cells had depressed levels of the mitochondrial proteins 

VDAC1, CYCS, and SLC25A4 relative to SCR/Scram cells, suggesting that the 

rebuilding of the mitochondrial network does not occur in shAtg7 and bnip3-/- cells.  

Therefore, this compliments the work performed by Sin et al (2016) in that it 

demonstrates the importance of autophagy/mitophagy-related proteins in eliminating 

mitochondria to trigger/promote mitochondrial biogenesis during myogenic 

differentiation.   

Given that mitochondrial biogenesis was impaired in both shAtg7 and bnip3-/- 

cells, we hypothesized that the cells might be failing to thrive and differentiate due to 

failure to generate a sufficient mitochondrial network.  Mitochondria play multiple roles 

including: responding to changes in cellular energy requirements, generating energy, 

regulating Ca2+ signaling, and regulating apoptosis (Hood et al., 2019; Xu et al., 2013; 

Jacobson & Duchen, 2004; Wagatsuma & Sakuma, 2013).  Thus, it is not surprising that 

an inability to rebuild and maintain a functional mitochondrial network would be 

detrimental to cell function and survival.  Therefore, we speculated that enhancing 

mitochondrial biogenesis could improve myogenic differentiation in shAtg7 and bnip3-/- 

cells (Chapter 4).  In order to test this, we treated shAtg7 and bnip3-/- cells with SNP, a 

nitric oxide (NO) donor that has previously been reported to enhance mitochondrial 

biogenesis (Wang et al., 2015), and found that enhancing mitochondrial biogenesis 

improved myogenic differentiation in shAtg7 and bnip3-/- cells.  More specifically, we 

observed increased expression of the mitochondrial biogenesis-related proteins 

PPARGC1A and TFAM, increased mitochondrial protein levels, as well as increased 

myotube formation and myogenic protein expression in cells treated with SNP (Chapter 4 
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- Figure 3-5).   Thus, SNP treatment promoted mitochondrial biogenesis in shAtg7 and 

bnip3-/- cells, which likely allowed the cells to generate a sufficient mitochondrial 

network to support myogenesis.  In support of this, mitochondrial respiration also 

increased in cells treated with SNP (Chapter 4 - Figure 6). However, the addition of 

cytochrome c to evaluate mitochondrial membrane integrity, combined with the flow 

cytometry data (Chapter 4 - Figure 6), indicated that mitochondrial health is still 

compromised in SNP-treated cells.  We speculate that this occurred because although 

SNP treatment would cause shAtg7 and bnip3-/- cells to generate new and healthy 

mitochondria, the treatment would not have corrected the reduced elimination of 

damaged mitochondria in shAtg7 and bnip3-/- cells.  Therefore, SNP-treated shAtg7 and 

bnip3-/- cells would have an increased number of healthy mitochondria but would also be 

retaining a large population of dysfunctional mitochondria.  Thus, a better approach 

might be to rescue shAtg7 cells by enhancing the degradation of damaged mitochondria 

in addition to enhancing mitochondrial biogenesis.  This could potentially be 

accomplished by overexpressing BNIP3 in shAtg7 cells and then treating the cells with 

SNP throughout differentiation, and this might result in an additive improvement in 

myogenic differentiation and mitochondrial homeostasis in shAtg7 cells.   

 SNP is a drug that is commonly used to treat hypertension (Cobb & Thornton, 

2018), which makes it an attractive candidate for in vivo muscle regeneration studies. 

Moreover, SNP was used as an NO donor in an earlier muscle differentiation study, 

which found that SNP treatment promoted myoblast fusion (Lee et al., 1994).  Although 

these authors did not investigate mitochondrial remodelling or function, it would be 

interesting to investigate if the increased fusion is influenced by an increase in 
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mitochondrial content.  Further, if SNP has the potential to enhance muscle 

differentiation/regeneration, then it would be interesting to use an in vivo model to test if 

short-term SNP treatment can improve muscle recovery following an injury.   

 Given that any chemical treatment could have non-specific or off-target effects, it 

would be important for future experiments to determine if the elevated expression of the 

mitochondrial biogenesis-related proteins PPARGC1A and TFAM in SNP-treated cells is 

contributing to myogenesis.  In other words, we should determine if PPARGC1A and/or 

TFAM can recover myogenic differentiation in shAtg7 and bnip3-/- cells, as SNP 

treatment did.  Therefore, shAtg7 and bnip3-/- cells should be transfected with constructs 

to overexpress PPARGC1A and TFAM to determine if there is an improvement in 

myogenesis.  These experiments would allow us to evaluate if mitochondrial biogenesis 

is causing myogenic differentiation to occur, or if mitochondrial biogenesis happens 

because the cells are already differentiating. Moreover, this would further support our 

interpretation that SNP treatment is enhancing mitochondrial biogenesis to restore 

myogenic differentiation.   

 

Limitations 

For these experiments we used knockdown/knockout cell lines and found that 

bnip3-/- cells had higher levels of BNIP3L, a compensatory effect that has been reported 

in other cell types (Chourasia et al., 2015; Shi et al., 2014).  Although BNIP3L is 

structurally and functionally similar to BNIP3 and is a known regulator of mitophagy 

(Zhang et al., 2012; Hamacher-Brady & Brady, 2016; Ney, 2015), the differentiation 

impairments observed in bnip3-/- cells, despite having elevated BNIP3L levels, would 
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suggest that BNIP3L cannot compensate for a lack of BNIP3 with respect to eliminating 

damaged mitochondria. Thus, it is important to consider that any compensatory 

upregulations in autophagy/mitophagy-related proteins would have impacted our ability 

to generate a truly mitophagy-deficient cell line.   However, the myogenic and 

mitochondrial impairments that we observed in bnip3-/- cells despite them having elevated 

expression of other mitophagy/autophagy-related proteins, further demonstrates the 

importance of BNIP3 specifically in supporting myogenic differentiation. Moreover, the 

stable knockout/knockdown of any protein is likely to have some off-target effects or 

compensatory changes in the expression of other proteins, which could impact 

myogenesis and cell survival.  However, we have demonstrated similar effects with 

respect to impaired myogenesis and cell death signaling in ATG7-, BNIP3-, and 

BNIP3L-deficient cells, each generated using a different knockout/knockout approach, 

which is in agreement with studies using chemical inhibitors of autophagy (McMillan & 

Quadrilatero, 2014; Sin et al., 2016).  Therefore, we suggest that the reported effects 

likely result from insufficient levels of autophagy and impairment in the elimination of 

damaged mitochondria, rather than from off-target or autophagy/mitophagy-independent 

effects.   

 

Summary and Conclusions 

The purpose of this thesis was to evaluate the importance of autophagy/mitophagy-

related proteins during myogenic differentiation.  The results comprising this thesis 

demonstrated that knocking down the autophagy-related protein ATG7 or the mitophagy 

receptor proteins BNIP3 and BNIP3L disrupted myogenic differentiation.  Further, 
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mitochondria-mediated apoptotic signaling was elevated in both shAtg7 and bnip3-/- cells, 

which suggests impairment in the elimination of damaged/dysfunctional mitochondria.  

Interestingly, we found that mitochondrial degradation does occur in both shAtg7 and 

bnip3-/- cells; however, we speculate that it is the specific removal of damaged 

mitochondria that is compromised in shAtg7 and bnip3-/- cells.  Moreover, we found that 

mitochondrial biogenesis was reduced in both shAtg7 and bnip3-/- cells, and that treating 

cells with an inducer of mitochondrial biogenesis can partially recover myogenic 

differentiation.  However, mitochondrial integrity was still compromised in shAtg7 and 

bnip3-/- cells even though mitochondrial content increased, which further suggests that 

damaged mitochondria are not properly eliminated in shAtg7 and bnip3-/- cells.  Further, 

we found that elevated levels of autophagy-related proteins can suppress apoptotic 

signaling.  Moreover, we found that elevated autophagy levels can be just as damaging as 

insufficient levels during myogenesis, which emphasizes the need for careful and 

controlled regulation of autophagy/mitophagy during differentiation.   
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