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Abstract

Antimicrobial peptides (AMPs) are naturally-occurring peptide antibiotics. The way
they work has inspired a vigorous search for optimized peptide antibiotics for fighting
resistant bacteria. Cationic AMPs cleverly utilize their electrostatic interactions with the
bacterial membrane to selectively attack bacteria.

Here, we first present a physical model of membrane selectivity of these peptides. For
this, we use model membranes: phospholipid bilayers, possibly carrying a certain frac-
tion of anionic lipids. The simultaneous presence of several competing effects (e.g., lipid
demixing and peptide-peptide interactions), however, poses a serious challenge to theoret-
ical analysis. We first examine critically various models of peptide-membrane interactions
and map out one, which incorporates adequately these competing effects as well as the
geometry of various regions in membranes, occupied by bound peptides, anionic lipids
within the interaction range of each peptide, and those outside this range. This leads to
a systematically-improved model for peptide selectivity. Using the model, we relate the
peptide’s intrinsic (Ceep-independent) selectivity to an apparent, Cee-dependent one, and
clarify the relative roles of peptide parameters and cell densities in determining their selec-
tivity. A natural consequence of this relationship is that the selectivity is more sensitive to
peptide parameters at low cell densities; as a result, the optimal peptide charge, at which
the selectivity is maximized, increases with the cell density such that this notion becomes
less meaningful at high cell densities. It also enables us to map out intrinsic selectivity from
apparent (Co-dependent) one or biologically-relevant one from “conveniently-measured”
selectivity. This effort will benefit our endeavour in optimizing the peptide parameters for
their enhanced selectivity in a physiological environment.

We extend our effort to examine peptide adsorption on the outer membrane (OM) of
Gram-negative bacteria (e.g., Escherichia coli). In particular, we focus our effort on de-
veloping a model for the interaction between AMPs and the wild-type lipopolysaccharide
(LPS) layer in a biologically relevant medium, containing monovalent and divalent salt ions
like Mg?*. This requires a non-trivial generalization of an earlier coarse-grained model, in
which the effects of oligosaccharide and O-antigen chains are ignored. In our model, these
effects are captured by modelling the LPS layer as forming a polymer brush on top of its
anionic phosphate groups. Using this model, we examine how the presence of oligosac-
charide and O-antigen chains modifies the binding of antimicrobials to the LPS layer.
Our results demonstrate that the presence of the saccharide brush reduces the number of
hydrophobically-bound peptides to the polymer-grafted interface of LPS, compared to the
deep-rough LPS layer that lacks the polymer brush. Our LPS brush model predicts ~ 30%
reduction of peptide adsorption, which is consistent with recent experimental measure-
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ments. This can be attributed to the steric hindrance of the brush or the excluded-volume
interaction of the saccharide chains with peptides. At a low cell density limit, we also note
that the total number of peptides trapped within the brush is very small, compared to
the number of bound peptides on the LPS interface. This implies that the hydrophobic
binding of peptides is insensitive to brush lengths. This, however, does not exclude the
possibility of kinetic slowing-down of the binding.
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3.1

Various models are described and compared for describing the perturbation
of bacterial membranes by antimicrobial peptides. Through this compar-
ison, our model for peptide selectivity is systematically improved upon a
recent model [6]. In the bulk, the peptide resembles random coils but as-
sumes a compact structure on the membrane surface. Charged lipid bilayers
mimicking bacterial (cytoplasmic) membranes are shown on the left. Pep-
tides can reside in the proximate of the membrane through electrostatic
interactions (binding mode ‘S’) or be hydrophobically associated with the
membrane (binding mode ‘I’). On the membrane surface, each peptide with
the surrounding lipids is viewed as forming a ‘Wigner-Seitz Cell’ (WSC). It
induces lipid segregation and mainly interacts with those in its neighbour,
denoted as zone 1; its influence on charged lipids in zone 2 (the region in a
WSC outside zone 1) is insignificant. Different models are compared: mod-
els 1-3; model 2 (model 3) is further classified into 2a-2c (3a-3d). In model
1, peptide and lipid charges in zone 1 are smeared out over the area of zone
1. This overestimates the electrostatic binding of peptides. To remedy this,
in models 2 and 3, peptide area is preserved; if b (2b and 3b) and ¢ (2c and
3c) include the repulsion between bound peptides and WSCs, respectively,
model 3d takes into account the interaction between zone 1 and zone 2 (or
lipids in zone 2) within the same WSC in addition to WSC interactions. In
both models 1 and 2, the effect of finite areas is ignored, since the bound-
aries between zones 1 and 2 as well as the boundary between adjacent WSCs
are taken to infinity. In contrast, in model 3, electrostatic interactions are
calculated based on the original geometry of different regions. Furthermore,
the Poisson-Boltzmann approach is used in models 1 and 2, whereas the
(renormalized) Debye-Hiickel approach is employed in model 3 [7, 8]. In
model 3, the non-trivial geometry of various regions (e.g., the L1 region,
i.e., the annular region in zone 1 occupied by lipids, as well as zone 2, a cir-
cular area with a “hole” at the centre) poses a serious barrier to electrostatic
calculations. . . . ... oL
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3.2

3.3

Various models are described and compared for describing the perturbation
of host-cell membranes by antimicrobial peptides. Through this comparison,
our model for peptide selectivity is systematically improved upon a recent
model [6]. In the bulk, the peptide resembles random coils but assumes
a compact structure on the membrane surface. Host-cell membranes (the
outer layers) are often modelled as electrically neutral lipid bilayers. In the
earlier model [0], denoted as model 1, the fraction of anionic lipids was set
to & = 0.05; the peptide charge in a WSC was smeared out over the WSC.
In models 2 and 3, @ = 0 and the peptide charge is restricted to the area
occupied by the peptide. If the area occupied by the peptide and the WSC
are boundary-less in model 2, their geometry is explicitly taken into account
in model 3. Similarly to model 2b for the bacterial membrane, model 2b
for the host cell membrane takes into account the repulsion between bound
peptides. . . . . L

Models and interaction pairs captured in each model. All models include the
self energy of a peptide (“Self P”), the interactions between a peptide and the
surrounding lipids in zone 1 (“P-L1”), those among charged lipids in zone 1
(“L1-L1"), and those among charged lipids in zone 2 (“L2-L2"). In the bulk,
the self energy of a peptide is constant but becomes variable near a dielectric
medium (or upon conformational change on the membrane surface); it has
to be taken into account. Only model 3 includes the interactions between
zone 1 and zone 2 (“Z1-Z2"), which can be decomposed into P-L.2 and L1-
L2 interactions. Because of the neutralization of the peptide charge by the
surrounding negatively-charged lipids in zone 1, this interaction turns out
to be insignificant. The repulsion between peptides is taken into account in
2b and 3b. The repulsion between different WSCs is fully captured in 2c
and 3c (the middle panel). In our analysis of interaction pairs, especially
in model 3, we decompose each WSC into three regions, as illustrated on
the right: the outer and inner rings as well as a disk occupied by a peptide.
In this model, the pair interactions between different regions are explicitly
taken into account, without simplifying their geometry. . . . . . . . . ..
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3.4 Various models and cell density-dependence of MICs. We have chosen the

same parameters as used for the earlier model [6], referred to as model 1
in this work: e = —14kgT, @ = 0.3, P/L}; = 0.02, and Q = 6. Model 1
underestimates MICs, as reflected in the MIC graph, since it overestimates
the attraction between peptides and charged lipids. Model 2 is improved
upon model 1 but suffers from similar but reduced drawbacks. Model 3, more
realistic than the others, predicts much larger MIC values. The difference
between models 2 and 3 is well pronounced, because of the importance of
how to calculate electrostatic interactions between peptides and lipids. In
contrast, the difference between the variations of the same model (e.g., 3a,
3b, 3c, ...) is less significant. It is thus crucial to preserve the geometry of
the three regions, occupied by a peptide, lipids in zone 1, and lipids in zone 2,
as assumed in model 3 (see Fig. 3.3). Adding the repulsion between bound
peptides tends to increase MICs, as it reduces peptide binding. However
the interaction between neighbouring WSCs does not necessarily reduces
peptide binding, since it also contains the attraction between a peptide in
a WSC and lipids in different WSCs. The interaction between Z1 and Z2
slightly reduces peptide binding, increasing MICs a little. In all cases, MICs
increase with the cell density; for a larger cell density, a larger amount of
peptides is required in order for P/L to reach P/L*. In all curves, the surface

area of host and bacterial cells is chosen to be 1.2 x 109A2, i.e., the area of
a typical bacterial cell surface, e.g., that of Escherichia coli [6]. It is worth
noting that the general physical picture is not limited by this choice, since
any change in cell surface areas can be made equivalent to the change in cell
densities [6]. . . . . .
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3.5

3.6

Different models and cell density-dependence of MHCs. We have chosen the
same parameters as used for the earlier model [6], referred to as model 1
in this work: ey = —14kgT, @ = 0.3, P/L{; = 0.01, and Q = 6. , model
1 underestimates MHCs, as reflected in the MICs graph Fig. 3.4, since it
overestimates the attraction between peptides and charged lipids. Model 2
is improved upon model 1 but suffers from similar but reduced drawbacks.
Model 3, more realistic than the others, predicts much larger MHC values.
The MHC graph can be understood in parallel with the MICs graph in
Fig. 3.4; the difference between models 2 and 3 is less pronounced, because of
much reduced electrostatic interactions between peptides and lipids. Adding
the repulsion between bound peptides tends to increase MHCs, as it reduces
peptide binding. In all cases, MHCs increase with the cell density; for a
larger cell density, a larger amount of peptides is required in order for P/L
to reach P/L*. In all curves, the surface area of host and bacterial cells is

chosen to be 1.2 x 109A2, i.e., the area of a typical bacterial cell surface,
e.g., that of Escherichia coli [0]. It is worth noting that the general physical
picture is not limited by this choice, since any change in cell surface areas
can be made equivalent to the change in cell densities [6]. . . . . ... ..

Various models and cell density-dependence of MHC/MIC. Here, model
3d; is used with varying parameter values except for fixed () = 5, which
is a more realistic choice for melittin [0]; two different values are cho-
sen for P/Lj = 0.02,0.03 and @ = 0.2,0.3. The graphs shows the ratio:
MHC/MIC, a quantitative measure of peptide selectivity. While in all cases
MHC/MIC decreases with increasing cell density, the values of MHC/MIC
vary greatly between different models. This observation is well aligned with
the model dependence of MIC and MHC values shown in Fig. 3.4 and Fig. 3.5
(i.e. also consistent with the results in Fig. 3.13). The variation of MICs
or MHCs is large between different models but not as much between sub-
models. Peptide selectivity is appreciably smaller in models 1 and 2 than in
model 3. This implies that it is essential to capture correctly the geometry
of various regions, occupied by a peptide, lipids in its vicinity, and lipids
outside (i.e., in zone 2). In all curves, the surface area of host and bacterial
cells is chosen to be 1.2 x 109A2, i.e., the area of a typical bacterial cell
surface, e.g., that of Escherichia coli [0]. It is worth noting that the general
physical picture is not limited by this choice, since any change in cell surface
areas can be made equivalent to the change in cell densities [6]. . . . . . .
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3.7

3.8

3.9

This figure illustrates the cell-density dependence of Cp, either MICs or
MHCs. Here peptides are represented by filled (free) or unfilled circles
(bound) and bilayer membranes by two concentric circles. What is shown
in (i) is the single-cell limit at C}, = C;; or at P/L = P/L*. For the case in
(ii), an extra amount of peptides is needed; to remain at P/L*, the required
number of peptides is equal to P/L* X Acn/V, where V is the volume of
the system. The progression from (i)-(iii) shows how this reasoning can be
extended to the non-zero cell-density case. When applied to bacteria, this
figure implies that MIC(Ceen) = A;—Z“(P/L)*Cceu + (MIC)y, where a, is the
area of each lipid and (MIC)g is MIC in the low-cell density limit: Ceep — 0.
The slope of this relation, i.e, A(;—;“(P/L)*, is the total amount of bound
peptides at P/L = P/L*; (MIC), is set by the interaction of peptides with
membranes among others. This suggests that MHCs become less sensitive

to peptide parameters and models used as C increases; so is the ratio
MHC/MIC or peptide selectivity. . . . . . . . ... ... ... ... ....

This figure shows hydrophobic peptide binding (P/L) to bacterial mem-
branes, as a function of peptide charge Q). As @ increases, initially P/L
for bacterial cell membranes increases because of enhanced electrostatic in-
teractions between peptides and anionic lipids. For a large value of @,
however, bound peptides start to repel each other more effectively; also for
the charged bacterial membrane, the competition between the two bind-
ing modes is swayed toward S mode as () increases. This is responsible
for the non-monotonic behaviour of P/L against (), consistent with earlier
results [9]. . . L

This figure shows hydrophobic peptide binding (P/L) to host-cell mem-
branes, as a function of peptide charge (). In contrast to bacterial membrane
in Fig 3.8, peptide binding becomes diminished monotonically for host cell
membranes, as () increases, except for model 1; in models 2 and 3, a larger-
() value simply means enhanced peptide-peptide repulsion, as expected. On
the contrary, model 1 shows an opposite trend. The enhanced repulsion be-
tween peptides is counterbalanced by mistakenly-enhanced binding affinity
of peptides. This can be understood in parallel with the finding that model
1 overestimates peptide binding, as shown in Fig. 3.5. As a result, model
1 does not appear to serve as an adequate model for the ()-dependence of
peptide binding. . . . .. ...
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3.10

3.11

3.12

The figure shows peptide selectivity vs. peptide charge (). The selectivity is
quantified by the ratio: MHC/MIC. The larger this ratio is, the more selec-
tive the peptide is; in a wider range of peptide density, the peptide ruptures
bacterial membranes without perturbing appreciably host-cell membranes.
This selectivity graph shows that the selectivity is maximized at a certain
value of @), i.e., an optimal charge denoted as Qoptimal. This graph also shows
how the optimal charge varies with peptide and membrane parameters. For
instance, the optimal charge is larger for stronger hydrophobicity. It also
shows that the selectivity becomes smaller and flatter as the cell density
increases; it looses the sensitivity of peptide selectivity to peptide parame-
ters including (). This is well aligned with the finding that the selectivity
becomes a constant of order 1 as the cell density increases (see Fig. 3.6).
Indeed, our full analysis in this figure or its variations suggest how peptide
parameters might be optimized for enhanced selectivity in a biologically rel-
evant medium. The non-monotonic dependence of peptide selectivity can be
understood by examining the () dependence of MICs and MHCs in Fig. 3.11
and Fig. 3.12, respectively. In fact, the () dependence of peptide selectivity
is a combined feature of MIC and MHC results. . . . . ... .. ... ...

The figure shows peptide MICs vs. peptide charge ). The non-monotonic
dependence of peptide selectivity in Fig. 3.10 can be understood by examin-
ing the @ dependence of MICs and MHCs in Fig. 3.12. The graph suggests
that MICs vary non-monotonically with @), reaching its minimum around
@ = Qoptimar- This is more pronounced for smaller cell densities. For suffi-
ciently large cell densities, MICs become less sensitive to ); also the location
of MIC minimum shifts to a larger valueof Q. . . . .. .. .. ... ...

The figure shows peptide MHCs vs. peptide charge ). The non-monotonic
dependence of peptide selectivity in Fig. 3.10 can be understood by exam-
ining the @ dependence of MICs (see Fig. 3.11) and MHCs. In contrast to
MICs, MHCs vary monotonically with ¢). Similarly to what the MIC curves
in Fig. 3.11 suggest, they become almost flat for large cell densities. The @
dependence of peptide selectivity in (A) is a combined feature of MIC and
MHC results in (B) and (C). . . ... ... .
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3.13 This table summarizes the free energy of a WSC, A Fyysc, obtained at P/L =

4.1

4.2

P/L*, with reference to the no-peptide case and the corresponding effective
binding energy W* for typical charged (A) and neutral membranes (B),
mimicking bacterial and host cell membranes, respectively. The effective
binding energy W* is a Langmuir-model equivalent of AFywgsc: with this
choice, a Langmuir model produces the same amount of bound peptides
as our models do. In the table on the right, the rows are arranged in the
decreasing order of W*. Note that W* is more directly related to MICs or
MHCs than AFwsc; it measures the binding affinity of peptides for their
binding membranes in the same way as assumed in a Langmuir model. In
(A), the variance of AFygsc or W* between different models (e.g., models 1
and 2) is significant; within model 2 or 3, however, they do not vary much
between the sub-models, i.e, variations of the same model (e.g., 2a and 2b).
A similar trend is observed for the host cell membrane in (B); the main
difference is that the variance between models 2 and 3 is less pronounced in

(B). « o oo e

AMP adsorption onto the LPS brush of the outer membrane (OM). Pep-
tides can be adsorbed onto the LPS brush by three mechanisms; primary,
secondary and ternary adsorption. Primarily peptides bind to the charged
LPS inner core and Lipid A (purple oval shape), while hydrophobically
inserted into hydrophobic region of the OM. In ternary adsorption, some
fraction of peptides are trapped within the brush thickness, due to weak
brush-peptide attractive interaction. Secondary binding occurs at the outer
edge of the brush, as a result of van der Waals attraction. This mode is
only important for long cylindrical proteins [10] whereas in the case of small
AMPs, secondary adsorption is negligible. Note that in primary adsorption,
the alpha-helical peptide is considered as a rod with length L, and radius
rp, and the peptide is assumed to adopt a spherical structure with a radius
R, in secondary and ternary adsorption. The purple oval shape represents
charged saccharide groups of the inner oligosaccharide and lipid A, and green
2+ (1+4) circles describe small fons. . . . . . . ..o Lo

Peptide’s primary adsorption N, on the LPS surface reduces the grafting
density. Hydrophobic binding of the peptide expands the membrane area
by A, [L1]. Let N, be the number of peptides in this adsorption. The total
lateral expansion is A, N,. This results in a lower osmotic pressure II of the
brush. The size of a monosaccharide group d remains constant. . . . . . .
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4.3

4.4

4.5

4.6

4.7

Physical structure of single LPS molecule. The inner core oligosaccharide
and lipid A comprise the negatively-charged LPS grafted plane (purple oval)
with cross sectional area Ay pg, and the rest parts of the LPS (i.e. outer core,
O-antigen chain and terminal saccharides) constitute a polymer brush chain
(light and dark yellow hexagons). The total number of monosaccharides of
the brush chain, Ng,., each with diameter d, determines the total length
dNg,.. Here n, is the repeat number of O-antigen’s sugar groups. . . . . . .

Schematic view of different conformations of surface-grafted polymers. At
a low grafting density, the Flory radius of the polymer is smaller than the
distance between neighbouring grafted polymers, D. The grafted polymer
resembles an isolated non-interacting mushroom. In a brush regime or at a
high grafting density (D is very smaller than the Flory radius of the chain
Rp), excluded-volume interactions between grafted polymers tend to stretch
out each chain to an equilibrium height Hy. . . . . . . . . .. .. ... ..

Schematic representation of a confined brush chain in a cylinder of area
ALPS + 5A<Np) and helght H(). ........................

Representation of blob scaling in the Alexander de Gennes model for a
polymer brush. FEvery blob has a correlation length of &, consisting of ¢
monomers. Balancing the stretching free energy and excluded volume inter-
actions leads to an equilibrium height Hy. (a) Original blob scaling model
in a semidilute regime, where chain statistics inside the blob follows the
Flory exponent in a good solvent: v = 3/5. (b) Applications of the blob
scaling model in a concentrated polymer regime, where monomers behave
as a random walk (v = 1/2) inside each blob. . . . . . . .. ... ... ...

Equilibrium height Hy vs. the brush grafting density at different polymer
regimes in a good solvent. Polymers in the mushroom regime act as non-
interaction isolated chains and their thickness is independent of grafting
density (Hyp = Rp). Brushes in moderately or highly dense regimes, poly-
mers stretch out of the grafting plane and their Hy scale monotonically
as the grafting density: Hy ~ oy® and Hy ~ 0J° in the semidilute and
concentrated regime, respectively. The figure is redrawn from Ref. [12] by
permission from Dr. Losego . . . . . . . . . . ... ... ... ...
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4.8

4.9

4.10

Theoretical model to calculate the lateral electrostatic free energy: the LPS
lattice model decorated with Na*, Mg?*, and peptides. On the left, we re-
arrange charges on the reconstructed lattice, due to hydrophobically-bound
peptides, which add @ sites, into an energy-minimizing distribution in which
the charges alternate in sign. We then use as a reference a perfect lattice
shown in (i), where equal numbers of positive and negative charges are al-
ternatively arranged. Then we remove some of the charges until the perfect
lattice becomes the initial one and calculate the resulting free energy cost.

[lustration is taken from Ref [13] by permission of Royal Society of Chemistry.107

Adsorption isotherm of peptides and Mg®" in primary and ternary bind-
ing modes (i.e. graph (a) and (b) respectively). (a); and (a); shows the
calculated peptide and Mg®™ surface coverage on the LPS surface, due to
hydrophobic and electrostatic interactions, respectively, while (b) represents
the peptide volume fraction within the brush as a function of total avail-
able peptide concentrations in the bulk [AMP]. Our results show how the
presence of uncharged saccharide chains on top of the LPS surface reduces
the amount of hydrophobically-bound peptides on the grafted interface in
(a);. On the other hand, changing divalent cation concentration [Mg?"]
would alter both primary and ternary adsorption. Higher Mg®"™ concen-
tration leads to lower peptide adsorption. Curves are obtained for fixed
cell density C; = 10° cells/mL, salt concentration [Na'*]= 100 mM, brush-
peptide attraction e,y = —0.05, and brush chain length with repeating unit
of O-antigen n,=15. . . . . . . . . . L

Adsorption isotherm of peptides and Mg*" in primary and ternary bind-
ing modes (i.e. graph (a) and (b) respectively). (a); and (a); shows the
peptide and Mg** surface coverage on the LPS surface, due to hydrophobic
and electrostatic interactions, respectively, while (b) presents the peptide
volume fraction within the brush as a function of the total available pep-
tide concentration in the bulk [AMP]. We note how introducing uncharged
saccharide chains on top of the LPS surface would reduce the amount of
hydrophobically-bound peptides on the grafted interface in (a);. Altering
the weak brush-peptide attraction would change both primary and ternary
adsorption. Larger attraction energy e,y leads to higher peptide adsorp-
tion both within the brush and on the surface. Curves are obtained for
fixed cell density C; = 10° cells/mL, salt concentration [Na't]= 100 mM,
divalent cation concentration [Mg®t] = 1 mM, and brush chain length with
repeating unit of O-antigen n,=15. . . . . . . . . .. ... ...
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4.11 Adsorption isotherm of peptides and Mg®" in primary and ternary binding

Al

B.1

B.2

modes (i.e. graph (a) and (b) respectively). (a); and (a); shows peptide and
Mg** surface coverage on the LPS surface, due to hydrophobic and elec-
trostatic interactions, respectively, while (b) demonstrates peptide surface
density (number over surface area) within the brush as a function of total
available peptide concentrations in the bulk [AMP]. The results in this figure
show how the presence of uncharged saccharide chains on top of the LPS
surface would reduce the amount of hydrophobically-bound peptides on the
grafted interface in (a);. Altering the brush length by increasing the repeat
unit of O-antigen n, would increase peptide adsorption within the brush by
providing more binding sites. However, primary adsorption is independent
of brush thickness, due to very low adsorption within the brush comparing
to the adsorbed peptides on LPS surface (N, << N,). Curves are obtained
for fixed cell density C; = 10° cells/mL, salt concentration [Na't]= 100 mM,
divalent cation concentration [Mg®*] = 1 mM, and brush-peptide attraction

(A) The free energy of a disk-like peptide a distance h above the dielec-
tric interface can be calculated by considering the double-layer interaction
energy between the real disk-like peptide and its image-charge disk with
uniform peptide’s surface charge density of o,. This picture is equivalent
to approximating A, = Z:%:i ~ 1. (B) This figure represents the poten-
tial distribution of a charged thin plate and two parallel plates with same
surface charge density, separated by distance 2k, in an electrolyte solution.

The surface potentials ¢ (left) and ¢gouP'e (right) are also introduced.

Mapping a thick dielectric plate (left), occupying z < 0 and carrying charges
on the surface at z = 0, onto a thin layer of charges at z = 0 (right). Here,
subscripts w and ¢ stands for water and lipid, respectively. Let n be a unit
normal vector pointing along the z axis. The electric boundary conditions for
the thick and thin cases are n-(ege, 1 —€pesEg) = 0 and 2¢pe,, E = o(1+A,),
respectively [14]. The two are indeed equivalent in the limit ¢, — 0.

The numerical solution for the PB equation is compared with our simplified
potential in Eq. B.10 and the DH result. It is clear that Eq. B.10 is a good
approximation for the PB equation. In contrast, the DH approach breaks
down. . . ..
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Chapter 1

Introduction

1.1 Motivation and Goals

The excessive use of conventional antibiotics has raised a serious problem known as antibi-
otic resistance of bacteria. This has inspired extensive research to design and develop new
therapeutic compounds as alternatives for conventional antibiotics. During the last couple
of decades, naturally-occurring antibiotics, i.e., antimicrobial peptides (AMPs) have been
used as templates for developing new therapeutic agents [15, 16, 17, 18].

AMPs or host defence peptides are part of innate immune system of multicellular
organism. Their biostructural features have allowed them to kill a wide range of pathogenic
microbes, over billions of years. Nevertheless, they have not induced bacterial resistance

easily [19, 20, 21]. During the 1980s, pioneering scientists discovered that these simple
amphipathic peptides could rapidly kill almost every species of bacteria [22, 23, 24], many
species of fungi [25, 26], and even tumour cells [27, 28], while inactivating viruses [29, 30].

Nevertheless, their design principles are relatively simple. Indeed, much effort has led to
the discovery of a tremendous range of different naturally occurring antimicrobial peptides
in plants and mammals, such as plant thionins [31], amphibian magainins [32] from skin
of the frog, insect cecropins [33] and protegrins [34] from mammalian leukocytes.

The important feature of a “good” AMP as an anti-infective agent is to discriminate
between host and pathogen cells. This “quality” of AMPs is often measured by their
cell selectivity [35]. It is believed that AMPs exhibit cell selectivity, since they are non-
hemolytic at densities well above their required minimum concentration for inhibitory
activity against bacteria [306, 35, 37]. In earlier studies [38, 10], this was mainly attributed



to the electrostatic attraction among mainly cationic AMPs and negatively-charged bac-
terial cells. For some reasons, the peptide-synthesis strategies in developing re-engineered
peptides for pharmacological purposes, based on our knowledge of host defence biological
AMPs, have not been not successful to date. For instance, in-vitro experiments do not
replicate the complex in-vivo environment [39, 2]. Most of the antimicrobial peptides dis-
covered in nature (i.e. like magainin) demonstrate high cell selectivity in vitro assays, yet,
they exhibit poor therapeutic index when evaluated in the setting of an infected mam-
mal [2]. As a result, a small number of peptides have been evaluated to date for clinical
potential, compared to antibiotic development programs [1(], and even many of them with
very promising future, such as antimicrobial peptide pexiganan (i.e. a 22-amino-acid mem-
brane disruptor analog of the Xenopus peptide magainin) received disapproval from U.S.
Food and Drug Administration (FDA) [11].

In search for a comprehensive picture of AMP’s cell selectivity and its complex physi-
ological factors, during the last decades, much effort has been devoted to the biophysical
analysis and quantitative assessments of peptide-membrane binding procedures [5, 12, 43,

, 45, 46], in addition to the biochemical structure and identifications [47, 48]. Despite the
diversity of AMPs, experiments by X-ray diffraction, Nuclear Magnetic Resonance (NMR)
and circular dichroism (CD) spectroscopies revealed the mutual molecular basis for the cell
selectivity; including electrostatic net charge, hydrophobicity per residue, helicity, charac-
teristics of the bilayer membrane and etc. ( [38] and references therein). Along this line,
systematic thermodynamic examinations on peptide interaction with membrane-mimetic
models (i.e. bilayer vesicles) by Seelig and his research group [13, 15, 19, 50, 51], provided
a quantitive foundation for binding energy and the individual steps involved in peptide-
membrane binding process. Moreover, Hoawng and colleagues explored many-body effects
of the membrane-associated peptides (i.e. non-electrostatic peptide-peptide interaction on
the membrane) and developed detailed insights into the peptide-induced elastic deforma-
tion of the membrane for a diverse range of lipid composition [12, 11, 52, 53, 54, 55]. In fact,
this non-electrostatic cooperative activity of peptides on the membrane is concentration
dependant. As a result of this, AMPs rupture target membranes in an “all-or-none” [50]
manner [5, 55, 57]. In general, the molar ratio of adsorbed peptides to lipids needs to reach
a certain value, known as the threshold concentration (P/L"), in order for AMPs to start
their disruptive activities.

Despite the aforementioned achievements in understanding AMP’s cell selectivity and
in identifying its controlling parameters, the implication of cell-density in the selectivity is
not well understood. As pointed out by Matsuzaki [35], there is a long-standing confusion
in cell selectivity measurements; since it was often measured with different values of host
and bacterial cell densities, i.e. (6 to 10)x10® cells/mL and (1 to 6)x10° colony-forming



units/mL, respectively, which leads to overestimation of the selectivity index, as correctly
referred to as an “experimental illusion” [35]. As a result, we need guiding principles
to discriminate between intrinsic peptide properties and the external factors such as cell
concentration and environmental influences (i.e., noncompetitive or competitive condition).
Recent theoretical and experimental studies [0, 1] show a monotonic correlation between se-
lectivity and cell density with a plateau region for relatively small cell densities, commonly
referred to as a low-cell-density (or single-cell density) limit. This monotonic relationship
could be explained by mapping it onto the well-known binding isotherm of Langmuir model
(i.e.see supplementary information of [0]) and reducing the complex sets of involved phys-
iochemical parameters into two general quantities: an effective binding energy per peptide
(w*) and the threshold concentration (P/L"). In principle, This relation will give us a
quantitative sense of the low cell-density limit, in which peptide selectivity is sensitive to
the intrinsic properties of peptides (i.e. through the quantity w*), as well as the role of cell
density in determining the selectivity through the threshold bound-peptide-to-lipid ratio
P/L".

My thesis work is devoted to examining to what extent the selectivity is cell-density
dependent. To this end, we present a coarse-grained model of cationic AMP cell selectivity,
especially one that shows how cell densities (Ceep) and microscopic peptide-lipid parameters
are intertwined in the selectivity. The simultaneous presence of several competing effects
(e.g., lipid demixing and peptide-peptide interactions), however, poses a serious challenge
to theoretical analysis. In an effort to map out an accurate model of cell selectivity, we
compare various models. Our first coarse-grained model is improved upon the selectivity
model of [0], especially by calculating electrostatic interactions more accurately and in-
corporating the geometry of different regions that are engaged in the interaction range of
each peptide, and those outside this range. We further examine the physical origin of the
non-monotonic behaviour of the cell selectivity by peptide net charge (), and its relation to
the target cell density. Overall, the general picture drawn from this effort is that peptide
cell selectivity remains sensitive to peptide parameters (e.g., charge and hydrophobicity)
at the low-cell density limit but becomes insensitive beyond this limit. This means that
the coarse-grained model enables us to map out intrinsic selectivity from apparent (Ceep-
dependent) one or biologically-relevant one from “conveniently-measured” selectivity. This
effort will benefit our endeavour in optimizing the peptide parameters for their enhanced
selectivity in a physiological environment.

We extend our effort to examine peptide adsorption onto the outer membrane (OM)
of Gram-negative bacteria, focusing on the interaction between AMPs and the wild-type
lipopolysaccharide (LPS) layer in a biologically relevant medium (i.e. containing mono-
valent and divalent salt ions like Mg?"). The physical coarse-grained models of peptide-



ions-LPS were introduced recently [13, 58, 59], but they did not capture the effect of
oligosaccharide and O-antigen chains of the wild-type LPS molecules. Here, we present a
coarse-grained model for AMPs binding onto the LPS layer, in which oligosaccharide and
O-antigen chains are viewed as forming a polymer brush. This brush is the first perme-
ability barrier AMPs should go though [60, 61, 62]. Our model quantitatively explains
the protective role of the LPS brush and demonstrates how the core oligosaccharide and
O-antigen part of wild-type LPS reduces the number of adsorbed membrane-lytic peptides
in physical terms.

1.2 Biological Cell Membrane

The biological cell is the fundamental unit of all living organisms [63] and its first ap-
pearance on Earth dated back at least 3.5 billion years ago [(4]. It consists of diverse
macromolecules such as proteins and nucleic acids that is enclosed within a membrane;
these molecules are responsible for complex biological tasks inside the cell’s dynamic envi-
ronment [63]. Advanced cells (i.e. those of multicellular, such as plants and animals) come
with different size and shape, depending on their functionality; for instance, nerve cells
are elongated rods with many branched structures at each end, whereas the mammalian
red blood cells adopt a flexible biconcave shape. Most cells are visible under the micro-
scope and have a length scale between 1 and 100 micrometers [1, 63]. Depending on the
existence of a membrane-bound nucleus inside a cell, they are categorized into two main
groups, called eukaryotic and prokaryotic cells [1, 63]. Prokaryotes include bacteria and
archaea and are characterized by the lack of a nucleus to encapsulate their DNA. They
are simpler and smaller than eukaryotic cells (i.e. cells in plants, animals, and fungi), and
emerged as the first form of life on the Earth [1].

In spite of the immense variety of shapes, sizes and their complex functions, cells
exhibit very common constructional substructure, such as membranes. The biomembrane
separates all aqueous environments of different composition from each other and selectively
controls the passage of molecules and ions inward and outward the cell [65]. In part, it
consists of lipid molecules, assembled into a two-dimensional fluid layer (i.e. they can not
resist a shear stress in a microscopic view) with thickness 4-5 nm [1]. There are isolated
integral proteins embedded inside the phospholipid layer and are used for communication
and transportation of the chemical compounds.

The plasma membranes, owing to their constitutional lipids, are sensitive to tempera-
ture, stress, and chemical potential; they are considered as thermodynamic systems. For
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Figure 1.1:  Phospholipid molecule structure. (A) shows a phospholipid molecule, con-
sisting of nonpolar double hydrocarbon chains and polar headgroup. (B) commonly found
headgroups of phospholipid molecules in cell membranes (this is redraw from Ref. [1] by
permission of Cambridge University Press).

instance, the fluidity of the plasma membrane depends on its composition and tempera-
ture; at freezing point, the lipid layer undergoes a phase transition and transforms into a
rigid structure, known as a gel [65], and the presence of 40% cholesterol molecules in the
membrane’s composition would increase the stiffness of the lipid layer by approximately
two times [, 65]. It is worth noting that position of the lipid molecules is not fixed and
they diffuse horizontally along the surface of the membrane, and also vertically between
inner and outer leaflets of the lipid bilayer [1, 65].

1.2.1 Lipid bilayer

Lipids are amphipathic molecules. They consists of a hydrophilic headgroup and hydropho-
bic chain region. Phospholipids are the typical lipids found in the plasma membranes.
Their nonpolar chains consist of two fatty acids linked to a glycerol, which is connected to
the polar headgroup via a phosphate PO,. Biomembrane phospholipids possess a range of



hydrocarbon chain lengths (i.e. 15-18 carbon atoms and = 0.1nm per CH4 group on the
chain) and different headgroup compositions [1]. Lipid headgroups are different in their
net charge, size, and polarity. Some of the commonly found lipid headgroups in cellular
membranes are choline, ethanolamine, glycerol and serine.

In aqueous solutions, lipids self-assembled into closed-shielding structures, depending
on their concentration. Amphiphilic lipids aggregates into bilayers, micelles and inverted
micelles in the aqueous environments and shield their hydrocarbon region from the solution
to reduce the unfavourable contact energy [1, 65]. However, the formation of the lipid clus-
ter lowers their freedom in a system, and hence decreases the overall entropy. Thus, there
is a competition between energy, which favours the aggregation, and entropy that favours
the distribution of lipids throughout the solution. This leads to a threshold concentration
value, called the critical micelle concentration (CMC) [1]. In fact, whether the energy or
entropy of the amphipathic dominates the free energy depends to the lipid density. At low
lipid densities, the entropy per particle dominates and the solution (monomeric) phase is
favoured, while at high density, self-assembling energy favours the condensed phase [1, (6].

The lipid chemical nature and its molecular geometry determine the aggregated struc-
ture in aqueous solutions. Depending on the ratio of headgroup size to chain cross section
area, the spatial region occupied by a lipid in a spherical or cylindrical micelle could be
imagined to look like an ice-cream cone or a wedge-shaped slice of pizza [I, 66]. While,
single-chain hydrocarbon chains tend to form micelles, dual-chain phospholipids with mod-
erate headgroup size prefer bilayers; lipids with small headgroup would form inverted mi-
celles.

Earlier experimental investigations of the cell membranes revealed their lipid-bilayer
structure. Gorter and Grendel [07] in 1925 extracted lipids from red blood cells of different
sources such as man, dog, exc., and used Langmuir film balance to measure surface area.
They found that surface area of the lipids’ monofilms was within error exactly two times of
the surface area of their source cells, measured by microscopic images, which led them to
proposed the lipid double-layer construction with headgroups outwards. This experiment
and later structure observations by Danielli and Davson [08] (1935) provided the first
evidences of lipid-bilayer composition in the cell membranes.

1.2.2 Red Blood Cell Membrane

The plasma membrane of red blood cells (RBCs) is more chemically heterogeneous than a
pure phospholipid bilayer, and in addition to membrane-embedded proteins, they contains



Figure 1.2: Geometry of phospholipid molecules. Lipid self-assembled structure in aqueous
solution depends on its molecular shape. (a) Cylindrical lipids form bilayer, (b) single
fatty acids look like cone and aggregate into micelles, and (c) small headgroup-to-chain
area tends to build inverted micelles. Orange shade regions indicate hydrophobic regions.

~40 mol% cholesterol, which adds stiffness and higher compressibility to the cell mem-
brane [, 65]. Cholesterols belong to the one of major eukaryotic lipid molecules, sterols
(prokaryotes have essentially none), and their pure concentrations do not form lipid bilay-
ers. X-ray diffraction experiments show the 50% to 60% maximum solubility of sterols in
phospholipids [69].1t is evident that the presence of cholesterol in the plasma membranes
increases their resistance both to compression and to bending [70] via condensing acyl chain
packing. However, the change in compression modulus (K4 ) as a function of the cholesterol
fraction is not at all linear [71]. The compression modulus, K, of RBC membranes are
about two times larger than pure phospholipid bilayers [1, 71, 70].

In contrast to the evenly distributed cholesterols within the two leaflets of the same
RBC membrane, phospholipid composition is different across the bilayer and leads to a
small surface electrostatic potential (~0.8 mv) [I]. This voltage difference is reflected in
the distribution of the charged lipids in the inner and outer layer of the membrane. While
the outer monolayer mostly is composed of zwitterionic phosphatidylcholine (PC) and
sphingomyelin, phosphatidylethanolamine (PE) and negatively-charged phosphatidylserine
(PS) form the inner layer. This membrane asymmetry is critical for the cell integrity and
its transportation function [1, 65].

In the laboratory, studies of mechanically-simple cells like RBCs and bacterial cells
are often carried out with model membranes such as liposomes or artificial vesicles, which
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Figure 1.3:  The area compression modulus, K, of SOPPC bilayers as a function of
cholesterol composition. This plot of results is reused from Ref. [I] by permission of
Cambridge University Press.

are structurally similar to the biological counterpart. The micron-meter model vesicles
are manufactured from lipids and other molecules, allowing their shape to be determined
systematically as a function of size and composition. For instance, small unilamellar lipo-
some vesicle (SUV, with one lipid bilayer) and the large unilamellar vesicle (LUV) help one
understand many physical aspects of the biological membrane, itself, such as compression,
binding adsorption, cell membrane lysis, etc. [1, 65].

1.2.3 Bacterial Cell Membrane

In spite of the simplicity of the bacterial cells, they are well-developed species, carrying
distinctive biological mechanisms and cellular structures. These micrometer-long organ-
isms belong to the simplest and smallest form of life, prokaryotes, and discern themselves
from eukaryotes by lacking a nucleus inside their cell [1]. Despite the absence of a nucleus
in bacterial cells, their complex structure of the cell envelope distinguishes them from the
eukaryotes. The majority of eukaryotic cells such as animal cells (i.e. algae and plants
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Figure 1.4: schematic view of bacterial cell membranes. (a) illustrates the molecular struc-
ture of a LPS molecule, consisting of several parts, called Lipid A (blue), inner (yellow)
and outer (green) oligosaccharide and O-antigen (dark pink). Wild-type LPS includes the
whole molecular parts, although mutant LPS Ra and Re lack O-antigen and outer oligosac-
charide, receptively. (b). demonstrates the cell envelope structure in Gram-negative and
Gram-positive bacterial cells. Outer membrane in the Gram-negative bacterial cell consists
of an asymmetric bilayer of LPS layer in outer leaflet and phospholipids in inner leaflet.

share most of the characteristics of the bacterial cell envelope) contain only a phospholipid
membrane to shield their interior cell from the outside, while bacterial cell envelope is a
multilayered protection structure and plays a crucial role in the cell survival. The enve-
lope is composed of four major parts; outer membrane (depending on bacterial type, this
part might be missing from the envelope cell), the cell wall, the periplasm space and the
cytoplasmic membrane [1, 63].

Depending on the bacterial type, i.e., Gram-negative or Gram-positive, the cell envelope
possesses different structure and properties [, 63]. Employing the long-standing Gram-
stain methodology, bacterial cells exhibit different responses to certain dyes, as a result
of their different exterior cell envelope. While Gram-positive’s envelope includes a thick



and mechanically strong peptidoglycan cell wall, Gram-negative’s cell wall is thin and
is sandwiched between the outer membrane (OM) and the inner cytoplasmic membrane.
However, the cell wall of the both bacterial types has the same responsibility and provides
unity and solidarity to the cell. In addition to acting as a filtering mechanism, the main
function of the cell wall is to control the internal pressure with respect to the outside
environment of the cell by preventing over-expansion when water and other substances
enter the cell [1, 63].

The OM of Gram-negative bacteria is a highly asymmetric bilayer membrane and serves
as a transition barrier to prevent entry of noxious compounds and at the same time allow
influx of the nutrient molecules [72]. The outer leaflet of the OM is mainly composed
of lipopolysaccharide (LPS), but the inner layer includes mostly phospholipids such as
phosphoethanolamine (PE) and phosphatidylglycerol (PG). The LPS layer is a good barrier
to harmful foreign molecules such as antibiotics and lysozyme and contains a negative
surface charge on the cell membrane to stabilize the overall membrane structure. It acts as
an endotoxin [73]. Recent works showed that LPS is secreted by bacterial outer membranes
as part of their normal physiological activities and their presence inside the animal’s blood
evokes strong immune responses [74].

1.3 Antimicrobial Peptides

The immune system of all living organisms, from humans to plants to insects replies on
small (< 10 kDa) host-defence molecules, called antimicrobial peptides (AMPs). These
antimicrobial agents are naturally occurring antibiotics and hold a great promise in the
development of new antimicrobial treatments for two specific reasons; first, they able to
kill a diverse range of pathogenic threats such as Gram-negative and Gram-positive bac-
teria [22, 23, 24], enveloped viruses [29, 30], fungi [25, 20]; even a few peptides have also
been found to be cytotoxic to tumour cells [27, 28]. Second, their anciently-selected antimi-
crobial mechanism would not easily induce resistance. In fact, the conventional antibiotic
drugs kill pathogenic bacteria mainly by causing enzymatic or genetic interferences to the
pathogens. A a result of their prolonged exposure, these microorganisms can evolve to
resist the antimicrobial attack via structural evolution [75]. However, AMPs’ mechanism
of action is very different and mainly involves membrane disruption. It is evolutionally
harder to undertake membrane repairing within the action periods of minutes [75].

AMPs have a similar structure to proteins, but they are shorter in size or contain less
amino acid sequences (between 15 to 50 amino acids) [2, 16]. These peptides often carry two
or more positively charged amino acids like arginine, lysine and histidine (later is charged in
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Figure 1.5: Representation of the secondary structures of antimicrobial peptides, induced
by hydrophobic interface of the bilayer lipid. It includes (a) a-helix, (b) S-sheet, and (c)
af structure with both a-helices and [-sheet.

acidic environments, only) and include a large number of hydrophobic residuals (generally
> 50%). Many of these peptides are unstructured (random coil) in solution, while folding
up into their secondary structure (a-helix, f-strand or af-structure) upon partitioning
onto the biological membranes [2, 16]. Fig. 1.5 shows different secondary structures of
AMPs upon binding onto the membrane. These secondary structures are amphipathic
arrangements, stabilized by hydrogen bonding, where the hydrophilic residues are aligned
along one side and the hydrophobic residues are aligned along the opposite side. In fact,
the membrane lipid bilayer induces the secondary structures and divides the peptide into
two sides of hydrophobic and hydrophilic parts. These amphiphilic structures and their
ability to associate with membranes is the most important and common characteristic of
most AMPs [16]. Their membrane permeabilization is not the sole mechanism. Many of
AMPs do not permeabilize membranes; they pass though the plasma membrane, bind to the
intracellular targets inside the cell and interfere with the cell function or its survival [2, 16].

It is believed that AMPs selectively target the pathogens and discriminate between the
host and invaded microbial cell [35, 36, 37]. One of the most important features of AMPs is
their ability to recognize the target cell in the crowd of host cells via the existing difference
in lipid compositions of the host and target cells. While primary investigations of the cell
selectivity [10, 3] suggested electrostatic interactions play the prominent role in attraction
between mainly cationic AMPs and negatively-charged bacterial membranes, the recent
biophysical studies [55, 57] have changed this simple view and described a multifactorial
complex system that a combination of several different effects in the peptide-membrane
system determines the cell selectivity and the killing process, simultaneously. In section 1.4,
we explore a comprehensive review on this matter.
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Figure 1.6: The number of antimicrobial peptides, categorized by source, from (a) a range
of kingdom and (b) selected animal families. Data is extracted from the Antimicrobial
Peptide Database analyzed in February 2010, by total AMP number of 1528. This figure

is redrawn from Ref. [2] by permission of CAB International.

Because of the global problem of antibiotic resistance, much effort led to isolation and
characterization of hundreds of new AMPs, which demands efficient data managements and
classifications. In general, natural AMPs can be classified into many different categories
like, source organism, amino acid sequence, characteristics, biological activities (i.e. for
instance, Fig. 1.6 demonstrates the peptide classification based on their source organisms);
however the important peptide category for our analytical work here, is peptide-binding
targets. Widely, AMPs are divided into two major groups; membrane-targeting and non-
membrane-targeting peptides [2]. In the following sections, we focused on literature reviews
of membrane-lysis AMPs and explain the biophysical analysis of their cell selectivity and
rupturing mechanism.

1.4 Cell Selectivity

Long-standing experiments point to the cell-discrimination ability of AMPs: they selec-
tively kill pathogenic microorganisms without being significantly toxic to the host cells.
This idea comes from the observation that peptides are nonhemolytic at concentrations
well above their minimal inhibitory concentrations (MICs) against different pathogens [19,

, 49, 51, 76, 77, 78]. For example, a peptide concentration range of 2-50 puM of mag-
ainin 2 (part of immune system of the African clawed frog Xenopus laevis) could inhibit
bacterial growth, while the concentration at which it causes 50% hemolysis in human red
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Figure 1.7:  The membrane-induced a-helical peptide binds to host and bacterial cell
membrane via its affinities, or correspondingly by binding energies, wy and wg, recep-
tively. Outer leaflet of host cell membranes include zwitterionic lipids and ~ 40% choles-
terols, while the plasma membrane of a bacterial cell mainly consists of mixed anionic and
zwitterionic lipids. This illustration, with some modifications, is adopted form Ref. [3].

blood cell (MHC) is about 1000 pM [32, 79]. This behaviour is apparently caused by the
difference in lipid composition of membranes of the two target cells; as the experiments on
liposomes [13, 50, 80] show higher peptide binding affinity for bilayers that mimic bacterial
than the host cell membranes (see the schematic representation of the peptide binding to
the membrane in Fig. 1.7). In principle, the mainly-cationic peptides tend to bind more
strongly to the negatively-charged bacterial cells than electrically neutral RBCs.

On the other hand, peptide binding to the target membrane is not the sole factor in
cell selectivity. The initiation of the peptide rupturing activity on the membrane plays
a crucial role in the selectivity process, as a whole. This idea comes from the fact that
peptides do not necessarily act on the membrane as an individual, but as cooperative
agents [0, 10, 55, 57]. Indeed, AMPs permeabilize the target membrane in an ”all-or-
none” [H6] mechanism, which is described by a minimum molar ratio of adsorbed peptides
to the membrane lipids that are required for peptides to start their disruptive activities,
called threshold concentration (P/L") [55]. As shown by the cartoon in Fig. 1.8, as long
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Figure 1.8:  Schematic view of “all-or-none” killing mechanism of AMPs. Threshold
concentration (P/L") is a minimum molar ratio of hydrophobically bound peptides to lipid
that are needed to rupture the membrane. AMPs are believed to be selective, since P/L"
can be easily reached for bacteria but not for the host cell.

as the adsorbed surface density of the peptides on a membrane is less than threshold
concentration, they do not harm the cell. Experiments show that this threshold density is
easily reached for bacterial membranes, but not for host cells membranes.

In laboratories, selectivity is often quantified by the ratio of MHC (minimum hemolytic
concentration) to MIC (minimum inhibitory concentration), which is known as the ”ther-
apeutic index” of a peptide [35]. One can relate measured MIC (or MHC) to their cor-
responding threshold concentrations on the host and bacterial cells of P/L}; and P/Lg,
respectively, by thermodynamic binding isotherm; the amount of adsorbed peptides on the
target membrane reaches the threshold concentration P/L" (given total number of lipids
is constant), if the peptide density in solution (bulk) is equal to MIC (or MHC).

In addition to aforementioned intrinsic parameters (i.e. binding energy and threshold
concentration and their tangled relationship), AMPs cell selectivity is dependent on the
environment conditions, in which the selectivity is measured. Indeed, both the minimum
inhibitory and hemolytic concentration of bacterial growth and RBC (i.e. MIC and MHC,
respectively) are dependent on the target cell concentration, due to the density dependence
of existing threshold concentration and peptide’s ”all-or-none” action. Recent theoreti-
cal [0] and experimental [1] results demonstrate the cell-density-dependence of AMP’s cell
selectivity. For instance, Fig. 1.9 shows the association of fluorescently labeled analogues
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Figure 1.9: Experimental results of AMP DNS-PMAP23, exhibiting its binding isotherms
for different bacterial and red blood cell concentrations. MBC at 99.9% killing the bacterial
cells and MHC at 50% hemolytic activity are shown by blue crossed signs, for different
cell densities. These plots of results are reused from Ref. [1] by permission from American
Chemical Society

of the peptide cathelicidin of PMAP-2315 (DNS-PMAP23) with the membranes of E-coli
and red blood cells. It is evident by the results that values of MBC (minimum bacterici-
dal concentration) at 99.9% bacterial cell killing and MHC at 50% hemolysis activity are
dependent on the total target cell density.

Thus we conclude that selectivity is not an intrinsic property of peptides (even for a
given membrane), but is is influenced by external parameters such as cell density and the
way it is obtained. For instance, MHCs and MICs can be measured for a homogeneous
solution of each type of cells or for a mixture of both types of the cells (bacterial and
host cell). These two approaches usually produce different or even strikingly different
selectivity [1, 6]. In chapter 3, we will examine the extrinsic properties of the cell selectivity
in detail.

In the remaining section, we would review different steps of peptide binding process,
as well as their associated free energies. Then in order to explain thermodynamics of
molecular binding to lipid bilayers (as our target membranes), we will introduce a simple
binding isotherm, known as Langmuir model. After that, the influence of lipid composition
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Figure 1.10: AMPs adsorb on the membrane via different process and different energy.
Upon approach to the membrane, a-helical peptides change their conformational struc-
ture from random coil to an amphiphilic helix (i.e. blue and yellow represents hydrophilic
and hydrophobic side, respectively.) and bind by electrostatics and hydrophobic inser-
tion. Insertion would cause the bilayer thickness to decrease and the overall membrane
area increase, which lead surface tension. The bound peptides induce lipid demixing and
migration of the anionic lipids towards the charged peptide. This illustration, with some
modifications, is adopted form Ref. [3].

in determining threshold concentration and lipid dehydration effect will be explored.

1.4.1 Binding Energy

Membrane-active AMPs binds to lipid vesicles very fast; it usually occurs within a range
of milliseconds to minutes [15]. Depending on the chemical nature of membrane lipids
and peptide characteristics, the binding affinity towards target membranes is different,
though we could generalize it into the five main incidents [15], namely, (i) electrostatics,
(ii) peptide-induced lipid demixing, (iii) membrane-induced conformational change, (iv)
hydrophobic insertion into the lipid membrane, and (v) peptide-induced membrane thin-
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ning effect. In contrast to previously held views, electrostatic energy is not the sole driven
factor in peptide adsorption (i.e. AMPs exhibit a considerable affinity toward uncharged
bilayers [13, 45]). This indicates that the total interaction between all four effects would
determine binding energy and therefore the cell selectivity of AMPs.

Electrostatics: AMPs mainly carrying 2-9 net positive charges in physiological en-
vironments [2], while the surface of bacterial membranes are composed of anionic lipid
headgroups (i.e. bacterial plasma and outer membranes include ~ 30% and ~ 90% neg-
ative charges due to PG and LPS [I]). This leads to a strong long-range attractive in-
teraction between peptides and membranes. On the other hand, repulsive electrostatic
energy also plays an essential role in both charged and uncharged membranes (e.g. RBCs).
Same-charge bound peptides develop a repulsive electrostatic potential and hinder fur-
ther adsorption of the peptides on the membrane. We have provided detailed analytical
examinations of the electrostatic binding energy of AMPs in chapters 3 and 4.

Lipid demixing: A lipid bilayer, immersed in a salt solution, is considered as a two-
dimensional lipid matrix, which consists of a mixture of zwitterionic (e.g. PC) and anionic
(e.g.PG) lipids that can move freely in the lateral direction or slowly between the two
leaflets (called flip-flop motion) and responds to peptide binding [1, (65]. As positively-
charged peptides bind onto a lipid vesicle containing anionic lipids, anionic lipids tend to
be accumulated around the bound peptides and neutralize peptide’s charge locally [9, 81],
as commonly referred to as lipid demixing. While demixing is energetically favourable to
peptide binding process, the entropic cost of lipid displacement leads to a war-and-tug
behaviour; free energy minimization of the whole system determines the extent of lipid
demixing.

Conformational change: Lipid membranes act as catalysts for peptide folding into a
secondary structure and via interaction of AMPs with lipid surface. The in-buffer random
coil peptide transforms into the a-helical or S-sheet structure by hydrogen bonding on the
membrane surface. For example, the peptides melittin, magainin and cecropins, which are
isolated from the extracellular fluids of insects, frogs and mammals, respectively, adopt
a-helix upon associating with lipid membranes; protegrin-1 (PG-1) present in porcine
leukocytes (i.e. part of the pigs innate immune system) forms (-sheet. Thermodynamic
energy analysis by spectral deconvolution of the CD spectrum of the bound peptide in
combination with isothermal titration calorimetry (ITC) has shown that amphiphilic a-
helix formation is an exothermic process and yields helix enthalpy of ~ —0.7 kcal/mol
and a free energy gneix = —0.2 kcal/mol per peptide residue (i.e. for details see [13, 45,

| and references therein). A systematic comparative study of native magainin 2 with
a diastereomeric analog with four D-amino acids (D substitution interrupts the a-helix)
suggests 60 fold less binding affinity for magainin analogous with no a-helix formation
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ability [82].

Hydrophobic insertion: In addition to membrane-facilitated helix formation, the
second main driving force for membrane binding is the insertion of the nonpolar amino acid
side chains into the lipid bilayer [15, 83]. The amphiphilic helix peptide, at first, adsorbs on
the membrane in a parallel orientation and pushes the lipid headgroups to accommodates
its hydrophobic side inside the lipid acyl regions, while its hydrophilic part faces upright
and in contact with the polar solution and surrounding anionic lipid headgroups. Fig. 1.10
exhibits the two modes of peptide adsorption (in a parallel orientation) on the membrane,
electrostatic and hydrophobically-inserted adsorption. From the available studies [13, 415,

], it can be concluded that amphipathic peptides bind to lipid vesicles with a distinctly
exothermic reaction that shows the involvement of a non-classical hydrophobic effect (i.e.
since the classical view consider hydrophobic energy as an entropy-driven effect). Depends
on the type of peptide, the range of typical hydrophobic energy gain is of the order of 5-20
keal /mol [45, 43, 51].

Membrane thinning effect AMPs create membrane tension via adsorption. Hy-
drophobically inserted peptides push headgroups aside, whereas it compresses the beneath
acyl chains together (half-sided embedding). This event leads to membrane expansion and
the resulting thinning effect of the membrane thickness. Series of peptide-adsorption stud-
ies by Huang and colleagues [12, 11, 52 53 54, 55] exhibited lower bilayer thickness, upon
scattered adsorbed peptides on the membrane, before starting their lysis activity (no sign of
vesicle dye leakage). In fact, the membrane area expansion, caused by peptides adsorption,
has been observed by vesicle aspiration at constant vesicle volume, while no permeation
through the membrane occurred [I1]. Assuming the hydrocarbon chain volume remains
constant, we could relate the thinning effect to the peptide-induced membrane expansion
area by —Ah/h = AA/A, where the fractional bilayer thickness decreases linearly with
increasing membrane area. On the other hand, the fractional increase of the monolayer
are due to peptide binding and is equal to AA/A = (A,/a;) P/L, where a, is the cross
sectional area of the lipid and A, is the expanded area caused by single peptide binding.
Experimentally [12, 11, 52, 53, 51], there have been provided substantial evidence between
the decreasing bilayer thickness and the linear increase in P/L at sufficiently large number
of the bound peptides, but lower than threshold concentrations (i.e. read subsection 1.4.2
for more details on thinning effect and its relation to the threshold concentration).

Adsorption Isotherm: Langmuir Model

In order to analyze thermodynamics of molecular binding of peptides to the membrane, we
could take advantage of equilibrium partitioning behaviour between two phases, which, in
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Figure 1.11:  (a) Representation of equilibrium partition behaviour and (b) binding
isotherm (Eq. 1.1) in the Langmuir model. Adsorbate (A) adsorbs on an independent
binding site (S) on the surface and create a new state of surface-adsorbate (SA). Binding
affinity K,qs determines the rate of adsorbate binding on the surface, depending on its
available concentration in the solution, [A].

our case of peptide bindings, the two modes refer to the solution and membrane surface, and
commonly it is addressed as the adsorption isotherm [$4]. In binding isotherm, we balance
the chemical potentials of peptides in the solution and membrane (us = fi,), and the
results determine the number of adsorbed peptides on the membrane, based on peptide’s
concentration in the solution at equilibrium condition and constant temperature. Both
experiments and theory exhibit that peptide adsorption follows Langmuir-type model [1, (].

The most straightforward treatment of peptide adsorption is Langmuir model, named
after Irving Langmuir, an American chemist who won the 1932 Nobel Prize in Chemistry
for his work in surface sciences [34]. Langmuir model describes the equilibrium between
the energetic tendency of the particles to stick to the surfaces and the entropic tendency
of the particles to gain translational freedom by floating into the bulk solution. In this
model, the surface is assumed as distinct and independent binding sites, in a way that all
molecules bind on the sites with an equal binding affinity (K,q). The general expression
of Langmuir binding isotherm is given by [34]

SA [A] - Kags
PO AT ads 1.1
S 1+ [A]Kags (1.1)

where SA/S is the ratio of adsorbate numbers on the surface to the total number of binding
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sites, and [A] is the adsorbate concentration in solution. Fig. 1.11 shows the chemical
reaction between adsorbate (A) and surface (S) via the binding affinity K,qs, which the
later is exponentially proportional to the binding energy w by

K45 o< exp (I{;—I;) (1.2)

On the other hand, thermodynamics of peptide-membrane interaction is a wide field,
which depends on many interconnected factors and most importantly is a many-body
effect [57]. In principle, we are not able to explain thermodynamic properties of peptide
binding to lipid bilayers by the simple Langmuir model, since peptide adsorption is a
cooperative process and it is engaged with complex long-range electrostatic interactions,
as well as the peptide-induced local-to-global tension transfer [57]. This leads to the fact
that the binding affinity (or binding energy) is a function of the number of adsorbed
peptides and it is not a constant, as it is assumed by the simple Langmuir model. For this
reason, we need a full detailed energy analysis and correspondingly, a coarse-grained model
to accurately capture the cooperative behaviour of peptide binding on the membrane. Such
a model is introduced in chapter 3 and 4.

1.4.2 Threshold Concentration

Vesicle dye leakage, induced by AMPs binding, demonstrates an “all-or-none” mechanism
for the permeabilization activity of AMPs. There are no detectable changes in the perme-
ability of the bilayer when peptides are bound on the interface |11, 85]; only when the bound
peptide density exceeds a specific threshold value, called threshold concentration (lethal
number of peptide-to-lipid ratio P/Lx), the pore formation occurs [78, 83, 86, 87, 88].
In fact, OCD and NMR experiments show when bound peptide concentration reaches
P/ Lx, the parallel-oriented peptides change their state into an aggregated transmembrane
pores [0, 16, 55] (i.e. a mechanism needed for lysis-membrane activity) and results in death
of the cell (i.e. or in case of liposomes, it leads to the vesicle dye leakage).

One might ask why is there a concentration threshold and what is the driving force to
change the parallel-inserted peptides on the hydrophobic-water interface to the perpendicular-
aggregated pore formation mode? Huang and colleagues proposed a sophisticated two-state
model [10] (i.e. similar to the partition behaviour of binding isotherm but here, peptides
bind on the state (1) interface and state (2) inside the transmembrane pore, which need
to be balanced, thermodynamically) to study the essential physics involved in this pro-
cess. They revealed that the peptide-concentration-dependency of the elastic energy of
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Figure 1.12: (a) Schematic representation of AMP on (a) surface and (b) pore state. At
threshold concentration (P/L"), the energy difference of a peptide bind on the surface from
the solution (€) plus its associated membrane lateral tension (0*) would be equal to the

peptide pore binding energy (e,) and the associated pore lateral tension (f¢*), explained
by Eq. 1.3.

the membrane thinning effect is the key factor in rising “all-or-none” mechanism. If we
want to explain it in terms of free energy, it means that the required energy for cationic
peptides to gather inside the transmembrane pores, while they enduring the unfavourable
repulsive electrostatics and the edge line tension, is pretty large enough that, at the first
adsorption steps, AMPs prefer to bind on the interface and be scattered on the membrane.
However, interface-binding mode is associated with unfavourable membrane tension (i.e.
thinning effect and lateral area expansion). The peptide-induced tension at fairly high sur-
face coverage, but below the threshold concentration (ie. as observed by X-ray diffraction
of bilayer profiles and OCD ~ 1/200 < P/L < P/L") [5, 46, 57], is a function of the num-
ber of bound peptides and it idecreases the total peptide binding affinity. As a result of
this, the interface-binding state gradually becomes undesired, due to the high free energy
cost and at the very moment that peptide free energy reaches the pore formation state (at
peptide coverages above P/L"), they start to form a pore. Simply put, as it is shown by
the cartoon in Fig. 1.12, one can drive the below energy equality [16], at P/L = P/L"

—€es+0"A, = —€, + 07 BA,, (1.3)

where energy changes of the interface-binding and pore states are €, and ¢, respectively,
and ¢* is the membrane tension at threshold concentration. The peptide-lipid parameter
A, is the expanded area per bound peptide, which is introduced at 1.4.1. Here, constant 3
is introduced to show a difference tension between the two states. The peptide-induced ex-
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Figure 1.13:  (a) There is a correlation between threshold concentration (P/L") and
thinning effect, 1/(A2/AL). Pure PC bilayer is taken as the reference (central point)
for AMPs melittin and alamethicin. Thinning effect and the corresponding threshold
concentration changes by adding PE or LysoPC to the pure PC bilayers. This plot of
results is reused from Ref. [5] by permission of Biophysics Journal

pansion area at the interface-binding mode is not necessarily the same as in the pore state.
It is worth noting that AMPs adsorption and pore formation are equilibrium thermody-
namic processes and at the adsorbed-peptide densities above the threshold concentration,
peptides are partitioned between both interface and pore states.

Lipid Dependency

Considering the fact of energy origin of the threshold concentration, It makes sense that
P/L" depends on chemical characteristics of peptide-membrane system and varies by the
given AMP and lipid composition of the membrane. The extensive behaviour studies
of four different peptides, alamethicin [11, 16, 53, 89, 90], magainin [52, 87, 91, 92, 93],
protegrin [92; 94, 93, 95], and melittin [11, 16, 89, 93, 96, 97], in interaction with a wide
variety of lipid bilayers determined the range of threshold concentration to be 1/190 <
P/L* < 1/30 for lipid bilayers. The maximum threshold concentration can be found for
the LPS layer of Gram-negative bacteria, which equals to P/L* ~ 1/10 [93].
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The mentioned examination of the peptide’s behaviour responding to the different lipid
composition, by Huang group, led to a fact that there is a correlation between the lipid
spontaneous curvature and the peptide threshold concentration. For a given peptide,
they were systematically adding phosphatidylethanolamine (PE) and lysophosphocholine
(lysoPC) to phosphocholine (PC) bilayers to observe the changes on P/L". Experiments
exhibited that the negative curvature lipids like PE increase and positive curvature lipids
like lysoPC decrease the threshold concentration (i.e. [5] and references therein). This be-
haviour is hard to be explained by the type of peptide’s mechanism of action or the nature
of the pore they create since the conduct of PE inhabitation and lysoPC facilitation in
pore formation or vesicle leakage has the same trend for different types of pore-forming
AMPs. For instance, melittin is believed to form toroidal pores, while alamethicin creates
barrel-stave pore, yet, both peptides in their interaction with lipid bilayers containing PE
and LysoPC, shows an increase and decrease, respectively, in their P/L* [5, 46]. Thus,
we could conclude that this behaviour of the peptide-lipid system is related to a universal
feature of the peptide adsorption, such as membrane thinning effect. The analytical asses
between the thinning effect and threshold concentration by [5] (Fig. 1.13) showed that
there is, in fact, a correlation between the two and we could conclude that changing the
spontaneous curvature of the lipid would indeed affect the degree of membrane thinning,
which in turn influences the threshold concentration for pore formation (P/L").

Dehydration Effect

The spontaneous curvature dependence of lipids and their relation to membrane thinning
effect can be interpreted via expansion area per peptide (A,). This is because adding
PE or lysoPC has a strong impact on the membrane thinning, regardless of the type of
peptide. In [5], the membrane thinning effect is directly measured by the value of A,
for each peptide in each lipid composition, and it shows how the value of A, correlates
with the value of P/L" for different pore-forming peptides of melittin and alamethicin.
The larger expansion area per peptide, the larger membrane tension (equivalently smaller
bilayer thickness), which leads to smaller threshold concentration and therefore a stronger
peptide activity. A schematic view of the relation between lipid curvature and peptide-
induced expansion area (Ap) is exhibited in Fig. 1.14. It is interesting to mention that lipid
curvature does not seem to affect membrane stiffness, as the area compressibility modulus
(Ka) has been shown to be almost the same for a large number of unsaturated-chain lipids
and is equal to ~ 240 pN/nm [51].

How does the expansion area per peptide (A, ) varies by the lipid spontaneous curvature
and it is not constant as the peptide physical area (X,) is? The dehydration effect of lipid
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Figure 1.14: Lipid spontaneous curvature and its dependency to the threshold concen-
tration (P/L"). While physical area of the a-helical peptide (X,) is constant, the peptide-
induced membrane expansion area (Ap) is varying by the lipid composition. Introducing
some ratio of lipid (a) DOPE and (c) LysoPC to the pure (b) DOPC bilayer would lead to
the negative and positive curvature, receptively, and change the expansion area per peptide
and the resulting threshold concentration.

headgroups can answer the following question. At first sight, A, seems to represent the
cross sectional area of the bound peptide at the interface; If that were the case, A, should be
a constant. However, Fig, 1.13 from Ref. [5] shows a strong correlation between threshold
concentration and expansion area. As a result, we could justify the changing-value of A,
by we assuming some water molecules are released from lipid headgroups, upon peptide
adsorption on the interface, called dehydration effect [5]. Depending on the ability of the
peptide to induce dehydration in the lipid headgroup region (every peptide has a different
affinity towards water molecules) and the cross sectional area difference between headgroup
and lipid a,, the peptide could accommodate better within the headgroup region, which
affects the thinning effect in a different degree. For instance, Fig. 1.14 simply demonstrates
how introducing smaller headgroup lipid such as PE would give more room to peptide to
be placed within the headgroup region, and therefore this makes the membrane thinning
effect less pronounced and increases the threshold concentration P/L".
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1.5 Membrane-rupturing Mechanism of AMPs

The exact mechanisms by which AMPs disrupt lipid bilayers and cell membranes are not
completely understood, yet, and this subject has been investigated extensively over the last
couple of decades. What is known today is that membrane-targeting AMPs perturb the in-
tegrity of the membrane by two major mechanisms; carpet model and pore formation [16].
In the carpet model, peptides are only active at high surface coverage (P/L > P/L") and
form a ”carpet” on the membrane surface. They act like a detergent, which leads to the
collapse of membrane integrity and the development of scattered micelles [16]. On the
other hand, the most studied AMPs like bee venom toxin melittin, frog peptide magainin,
cecropin P1 from pigs, etc. create transmembrane pores. This is supported by a con-
siderable number of experiments and the fact that they cause leakage of fluorescent dyes
from lipid vesicles [76, 77, 79, 98, 99]. AMPs induce transmembrane pores by two widely
accepted models; barrel-stave and toroidal pore [16].

Toroidal pore: Melittin, magainin, protegrin, and perhaps most cationic antimicrobial
peptides form toroidal pores [16]. In this kind of pore, peptides are inserted perpendicularly
into the membrane and cause a continuous bend of bilayer leaflets towards outward, in such
a way that the pore lumen is partly lined by peptides and partly by lipid head groups [18].
The orientation of peptides-lipids inside a toroidal pore is such that the polar (hydrophilic)
side of the peptide faces the bilayer and lipid headgroups. Toroidal pores are highly curved
structures that are stabilized due to the presence of peptides in the pore. Pores usually
contain 4 to 7 peptides [90].

Barrel-stave pore: Some unique peptides like a-helix alamethicin form barrel-stave
pore [16]. Despite toroidal, in barrel-stave pore peptides align perpendicular to the mem-
brane and associate to form a bundle (much like a barrel of peptides), which is oriented
parallel to the phospholipid tails. This transmembrane pore is lined by peptides only and,
unlike the toroidal pores, the hydrophilic regions of the peptides form the pore’s edge.
Barrel-stave pores are smaller than toroidal pores. The number of peptides in the pores is
estimated to be 3 to 11, depending on the bilayer lipid composition [18].

1.5.1 Thermodynamics of Pore

In order to understand how AMPs induce pore formation and stabilize it, need a biophysical
analysis of peptide-lipid parameters and its involved free energies. Starting with a simple
case of pure bilayers, without the engagement of peptides, pore formation has been studied
experimentally and theoretically for a long time [100, , , ]. In a pure bilayer,
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Figure 1.15:  The relation of an unstable simple pore energy (Epoe) with respect to
the pore radius (Rpore). Parameter AE shows energy barrier to the growth of the pore
(Rpore = 00) and is determined by Eq. 1.4. This illustration is reused from Ref. [3].

pores start by tension; applying external pressure leads to the expansion of the bilayer,
and in case of large enough tension, pores start to form. Pore formation is a complex
dynamic process, and the physical behaviour of transition between lateral expansion and
pore formation has not been understood well, yet [10, |. Although once the pore is
established, its essential mechanics governed by the competition between line tension of
the pore edge and lateral tension [10, , 101],

Epore = 2T Rpore A — WRgorem (1.4)
where A and o represent line tension and surface tension, receptively, and Rpqe is the
radius of the pore. The first term expresses the energy cost of creating an edge rim of the
pore, while the second term opposes the edge line tension and is the driving force to keep
the pore open by lateral membrane tension. As it is illustrated on Fig. 1.15, this kind of
pore is unstable; pores with a radius smaller than maximum RJ5% tends to close and the
ones with larger radius than maximum would indefinitely expand the pore. As a result of
the spontaneous nature in noninduced-peptide pores, we assume that the engagement of
AMPs inside their transmembrane pores would promote stabilization.

Huang and colleagues provided rigorous experimental parameters in case of the two
kinds of pores to examine how peptides (i.e. melittin and alamethicin) interact with
membranes in toroidal and barrel-stave pores [5, 16]. For instance, they have found that
value of § (i.e. introduced in Eq. 1.3), which represents the effect of membrane thinning
in the two states of peptide binding (i) interfacially on the surface or (ii) inside the pore,
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is positive in case of alamethicin that forms barrel-stave pore, and is negative for the case
of toroidal pore formation by melittin. This implies that alamethicin inside a barrel-stave
pore causes thinning the bilayer (of course less than thinning effect on the interfacial state,
because the creation of pore, itself, is the proof), whereas melittin peptides inside a toroidal
pore induce thickening. For a more detailed discussion, refer to Ref. [5, 10].

1.6 Organization of The Thesis

In this section, we would briefly present a summary and the general goals that have been
achieved by each chapter.

At first chapter, we begin the script by a short and general ”Motivation and Goals” of
this thesis to point towards the subject of antimicrobial peptides as the novel therapeutic
agents and argue that how the lack of rigorous biophysical analysis of the AMPs cell se-
lectivity causes not-yet-successful peptide-synthesis strategies in developing re-engineered
peptides for pharmacological purposes, and then discuss our efforts in this thesis for devel-
oping semi-analytical models of peptide cell-dependency-selectivity and identifying intrin-
sic and extrinsic parameters. After that, the whole chapter provides a literature review
on biological cell membranes and AMPs; especially the known biophysics behind the cell
selectivity of AMPs to date.

In the second chapter, I have discussed the fundamental physics theories, which have
been used as the basis for our coarse-grained models. It starts with the electrostatics in
biological environments and drives the well-known Poisson-Boltzmann equation and the
corresponding Debye-Hiickel (DH) limit at a low electrostatic surface potential. Then,
provides DH electric potential of a surface charged plane and a sphere as two widely-used
examples in biological problems.

Chapter three is dedicated to cell-density-dependence of the AMPs’ cell selectivity and
explores a different range of coarse-grained models, electrostatically, to pursuit the most
accurate binding energy for peptide adsorption on the lipid membranes (i.e. which mimics
bacterial and mammalian cell membranes), and its relation to the target cell concentration.
Furthermore, results have been mapped into a simple Langmuir-type model to reduce the
system complexity and provide a clear role of the target cell density at the quantitive
measurement, of the cell selectivity, therapeutic index. In the end, the latest developed
model is used to investigate the peptide’s optimal charge for the cell selectivity and its
relation to the available bacterial and host cell density.

Chapter four has studied the protection function of lipopolysaccharide (LPS) layer in
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the outer membrane of Gram-negative bacterial cells. In this chapter, we have provided
a comprehensive LPS model, which takes into account several critical physical factors of
peptide-LPS system (e.g. polymer-grafted chains, competitive effect of divalent cations,
long-ranged peptide-peptide electrostatic interactions beyond the mean field theory, mem-
brane expansion, and exc.), simultaneously, and develop a realistic coarse-grained model
of wild-type LPS layer. In particular, we analyze how brush-like core oligosaccharide and
O-antigen of LPS layer affect peptide adsorption and lead to lower membrane-rupture
peptides on the OM.

In the last chapter, we delivered a conclusion of our efforts in this thesis and the
potential application of the cell-density-dependent selectivity model in the current drug
delivery products. Also, we proposed a future work for further development of the subject.
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Chapter 2

Fundamental Physics

2.1 Electrostatics in Biological Environments

Biomembranes and protein macromolecules often carry net electric charges in the biological
environments, while their aqueous solution contains small mobile ions, such as Na'*, Cl17!,
Mg?* (i.e. electrolyte solution). For this reason, electrostatic interactions mostly play
an important role in biological problems. Explicitly considering biomembranes, we learned
that some phospholipids like PGs are negatively charged in physiological condition and heir
combination with zwitterionic lipids, leading to an overall negative surface charge density
of the bilayer membranes. Although lipids diffuse laterally within the leaflets, their charges
can be regarded as fixed and contained to the plane of the membrane. On the other hand,
small ions are mobile inside the solution and might be concentrated around the bilayer or
diffuse away from it, depending on the electric charges and statistics.

In order to calculate the accurate binding energy of cationic AMPs to the bacterial and
host cell membranes, we need to understand the effect of mobile counterions in a biological
environments and how they affect free energy of the system. Poisson-Boltzmann (PB)
equation is our tool to explain such a distribution of the electric potential in the salty
solutions and determine how to the relate distribution of the mobile ions to the electric
potential, and therefore calculate electrostatic interactions. In the following subsections,
we will derive the PB equation and its linearized version, known as Debye-Hiickel (DH)
limit.

29



2.1.1 Poisson-Boltzmann Theory

For the first time, PB theory proposed independently by Louis George Gouy and David
Leonard Chapman in 1910 and 1913, respectively [104]. In a Gouy-Chapman model, a
charged object inside an electrolyte solution creates a layer of counterions around the
object, which called double layer. The thickness of this diffusive layer is more than a
single molecular layer and depends on the effects of entropy, which is a tendency of the
mobile ions to scatter into the total volume of the solution, and electric energy between
mobile-counterions and fixed charges of the object. Note that Gouy-Chapman PB equation
is a mean-field approach that ignores the local electrostatic fluctuations and assumes the
surface of a fixed planar object.

The distribution of both counterions and coions at a given position can be estimated by
Boltzmann function and is proportional to the Boltzmann factor by the electric potential
energy evaluated at that position (i.e. V(r) = ¢jp(r)).

= —qj(r)
¢i(r) = ¢ exp <kB—T)’ (2.1)

where ¢; = eZ; is the charge value of the ion j by Z; valency, and e is the elementary
charge unit ~ 1.6 x 107° C. Here, the electrostatic potential ¢ represents an average over
local fluctuations and is a mean filed potential. The Boltzmann distribution of ions in the
electric potential is normalized to the reference point of ¢ = 0, where it is far away from
the charged fixed object and is called bulk solution. This distribution of mobile ions in
bulk is constant and is equal to ¢®

On the other hand, charge density of ions (pa,) is related to the electric potential by
the well-known Poisson equation

c0e:V2p(r) = —pagy = — Z qic(r), (2.2)

where the combination of Boltzmann ion distribution (Eq. 2.1) with Poisson equation
(Eq. 2.2) yields PB equation of Gouy-Chapman model

c06: V2p(r qucJ exp ( Z:J;OYE )> (2.3)

The €y and ¢, are the electric permittivity of vacuum and the dielectric constant, re-
spectively and ), is the summation of the total charges at position r. In case of (1:1)
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electrolyte like NaCL and having unit charge valency Z¢ = —1, Zn. = +1 with charge
distributions ¢, = ¢} = ¢, the PB equation of Eq. 2.3 will be simplified to

96220 (ewm _ ot)

V2(r) =

= k*sinh 2.4
() i), (2.4)

where ¢(r) = %(;) is the reduced electrostatic potential and k = y/2e2c> /ege,kpT is the
inverse of Debye length (A). Debye length defines the screening distance, at which shields

the fixed charged object from ’seeing’ the mobile ions beyond it.

2.1.2 Debye-Hiickel Limit

The Poisson-Boltzmann relation (Eq. 2.4) is a nonlinear second-order differential equation,
which is hard to compute, analytically, and it is commonly solved, numerically. However,
we could simplify the PB equation to a linear approximation, called Debye-Hiickel (DH)
limit, when the electrostatic potential is small. For small potentials ¥ (r) << 1, we could
use Taylor series expansion and obtain sinhz ~ [(1 + z) — (1 — z)]/2 = z. Then DH
equation for monovalent salt concentration (i.e. (1:1) electrolyte) is expressed by

VZ(r) = K% (x). (2.5)

Many biomembrane problems involve charged interfaces inside (1:1) electrolyte. There-
fore, we are interested to see how electrostatic potential alters near a plane with surface
charge density o by the perpendicular distance from the interface z. If we solve DH equa-
tion for a uniformly charged plane in a salt solution (1:1) with respect to the appropriate
boundary conditions, the electrostatic potential near the charged surface is [34]

_ dmoly

Y(2) = —— exp(=rz), (2.6)

where we have introduced Bjerrum length as ¢g = €*/(4mepe,kgT). Eq. 2.6 shows that the
electrostatic potential from the plane decreases as x increases. This is due to the fact that
k is proportional to the square-root of salt concentration v/c* (see Eq. 2.4). At a distance
equal to the Debye length A = 1/k, the potential v is decreased by a factor of 1/e.

In case of electrostatic potential ¢)(r) as a function of the radial distance from a charged
sphere with net charge () and radius a inside a salt solution, Eq. 2.5 can be solved with
respect to the appropriate boundary conditions to give potential as

Qlg

W(r) = m exp —k(r — a). (2.7)

31



Eq. 2.7 holds for a large spherical particle having a uniform surface charge ), and even
for small ions (e.g. sodium or chloride) that has a single charge. For small ions, we regard
them as point charges and assume a = 0. Therefore the electrostatic potential of small
ions become

W(r) = % exp (—kr). (2.8)

As a result of screening effect of the salt ions (k), the electrostatic potential decays expo-
nentially in both Eq. 2.7 and Eq. 2.8, compared to the long-ranged Coulomb potential.

2.2 Hydrophobic Free Energy

Water molecules as the solvent of the biological environment play a crucial role in the
behaviour of biological molecules and their mechanism. FEvery HyO molecule tends to
build and break H-bonds with its neighbouring molecules, constantly, due to its partial
electrostatic charges. Placement of a non-polar solute inside the water affects the water
structure as a result of the lack of forming H-bond between water molecules and the non-
polar solute. For this reason, water molecules tend to have lower configuration around
a non-polar (hydrophobic) solute, which drives the hydrophobic free energy cost in the
biological system.

The water hydrogen bond is a weak bond; about a twentieth of the strength of the
O-H covalent bond. However, it is strong enough to be maintained during thermal fluctu-
ations. The H-bond comes from the polar characteristics of the water molecules with par-
tial electrostatic-negative charge at oxygen atom and partial electrostatic-positive charge
around its hydrogen atoms.

In order to calculate the free energy cost of a hydrophobic solute inside the water, we
need to compute the entropy difference. In a pure solution, a single water molecule could
pose 6 different positions and form H-bonds. However, introducing a hydrophobic solute
reduces 3 of the total available water configurations. Therefore the entropy difference is

AS =kg[ln3 —In6] = —kgIn 2, (2.9)

where kg is the Boltzmann constant. This change in entropy leads to a change in free
energy for the water solution, AF,,. If n water molecules are disrupted by a non-polar
molecule, then the hydrophobic free energy cost to the water is

AF, =nkgT1n2. (2.10)
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Chapter 3

Toward building a physical model for
membrane selectivity of antimicrobial
peptides: making a quantitative
sense of the selectivity

3.1 Introduction

Antimicrobial peptides (AMPs) are wide-spectrum antibiotics and kill rapidly a wide range
of microbes via various mechanisms (e.g., membrane rupture or intracellular killing) [5, 16,
, 38, 57, , 106]. Optimized AMPs have been considered as next-generation antibiotics.
Of particular interest are membrane-perturbing AMPs, since they do not easily induce
antimicrobial resistance. They rupture bacterial or model membranes in an ‘all-or-none’
manner [5, 56, 57]: only above some peptide concentration in the bulk, they rupture their
binding membranes. This concentration is known as a minimum-inhibitory or minimum-
hemolytic concentration (denoted as MIC or MHC) for bacterial and host-cell membranes,
respectively [30, 37]. Good peptides are those for which MHC is much larger than MIC. As
a result, there is a considerable range of peptide concentrations at which peptides rupture
bacterial membranes only, while leaving host-cell membranes intact; they are ‘selective.’

The dependence of peptide activity on peptide concentrations suggests that cell con-
centrations are also involved. At a higher cell concentration, a larger amount of peptides
is required. In other words, both MICs and MHCs are cell-concentration dependent; so is
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the cell selectivity of peptides. The relationship between peptide selectivity and cell con-
centrations has been discussed [1, 0, 35, 39]. In particular, a theoretical model for peptide
selectivity proposed recently shows this relationship in a quantitative manner.

Peptide selectivity is often quantified by the ratio: MHC/MIC, which is known as the
‘therapeutic index’ of a peptide [35, 36, 37]. Because of the cell concentration dependence
of peptide selectivity, the selectivity is not a purely intrinsic property of peptides for a
given membrane. It is influenced by external parameters such as cell density and the way
it is obtained [0]. For instance, MHCs and MICs can be measured for a homogeneous
solution of each type of cells or for a mixture of both types of cells. These two approaches
usually produce different or even strikingly different selectivity [0].

Along this line, it is worth noting that the parameter space presenting both intrinsic
and extrinsic properties is impossibly too large to explore experimentally. Of practical
importance is a physical model of peptide selectivity that relates the intrinsic peptide-lipid
parameters to apparent (cell-density-dependent) selectivity in a systematic way. Such a
model will reduce the parameter space by offering the physical principles underlying the
relationship between cell density and selectivity; it allows one to determine systematically
peptide selectivity at biologically-relevant cell densities based on measured selectivity at
conveniently-chosen cell densities, typically higher for host cells [1, 35, 39]. Further consid-
erations in this direction will clarify peptide-parameter requirements for optimized peptide
selectivity in a physiological environment (e.g., salinity, a heterogeneous mixture of host-
cell and bacterial membranes) (see Refs. [1, 39] for recent efforts). Indeed, typical in vitro
experiments have failed to recapitulate the cellular environment [39]. Can we nevertheless
make sense of these experiments?

Here, we present a physical model for cell selectivity of cationic AMPs, especially one
that shows the interplay between cell densities and peptide-lipid parameters in determining
the selectivity. A number of more phenomenological models (see the SI of Ref [0] and
Refs. [4, 39]) rely on the knowledge of peptide binding. As evidenced later, in our approach,
peptide binding is quantified in terms of more microscopic parameters such as peptide
charge and the fraction of charged lipids in a membrane.

In this work, each bound peptide is modelled as a circular disk as in Refs. [0, 9]; its
amphiphilic nature is mimicked by assigning both a hydrophobic-interaction energy and
an electric charge. Each bound peptide not only interacts with the surrounding lipids and
other peptides but also induces lipid demixing; hydrophobically-bound peptides perturb the
surrounding lipids mechanically as well. The simultaneous presence of several competing
interactions/effects (e.g., lipid demixing and peptide-peptide interactions) poses a serious
challenge to theoretical considerations. In a Langmuir-type binding model of molecular
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binding [31], the energetics of binding is not influenced by the presence of other bound
molecules. This is no longer the case for peptide binding we consider here. On the surface
of a membrane, peptides compete for anionic lipids and/or interact with each other though
electrostatic interactions. These interactions should be considered as non-local effects. In
addition, the membrane deformation free energy induced by peptide binding is also nonlocal
for a parameter range of biological interest [107].

For a number of reasons explained above, earlier theoretical approaches rely on approx-
imation schemes for calculating the electrostatic interactions among various pairs (e.g.,
peptide-lipid and peptide-peptide) [6, 65, 108]. A common practice is to smear out peptide
and lipid charges over some region occupied by the peptide and the surrounding lipids and
to ignore the “edge” or “boundary” effects. Here we note that this leads to an overes-
timation of peptide binding, resulting in an exaggeration of MICs and MHCs. Crudely
speaking, MICs and MHCs are exponentially sensitive to binding energy. Overestimating
binding energy can introduce a gross error in selectivity.

Here, we carefully analyze several coarse-grained models and map out an accurate
one. Using the resulting model, we clarify how cell densities and peptide parameters are
intertwined in determining peptide selectivity, which is measured by the ratio MHC/MIC.
To the contrary of earlier expectations (see Ref. [1, 35, 39] and those therein for relevant
discussion), the selectivity is not simply intrinsic to the biophysical properties of peptides
but also reflects cell densities. While this is qualitatively consistent with recent theoretical
studies [0], our study suggests how peptide-membrane systems will have to be properly
modelled. Indeed, it suggests that it is essential to incorporate the geometry of various
regions, occupied by bound peptides, anionic lipids within the interaction range of each
peptide, and those outside this range.

Furthermore our results show that peptide selectivity (MHC/MIC) is a non-monotonic
function of peptide charge ). As a result, the selectivity can be maximized at a special value
of @, referred to as an “optimal charge.” This finding refines earlier considerations based
on the fraction of hydrophobically-bound peptides (often denoted a P/L), which varies
non-monotonically as a function of @ for a charged membrane at a single cell limit [J].
Importantly, we note that the optimal charge varies with other peptide parameters and
cell density. This offers a more complete picture of the notion of an optimal charge explored
earlier [9, |. Furthermore, we map out a Langmuir-type model for examining the cell-
density dependence of peptide selectivity.

This chapter is organized as follows. We present our theoretical model of a peptide-
membrane system and derive the free energy of the model system in Sec. 3.2. Our results
for peptide selectivity are presented in Sec. 3.3
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3.2 Models and Free energy

3.2.1 Models

We first introduce a few models of peptide-membrane interactions, including the one used
recently [0], refereed to as “model 1,” as illustrated in Fig. 3.1 and Fig. 3.2. In particular, we
make much effort to refine model 1 [6], especially by calculating electrostatic interactions
more accurately. Our results will show how crucial this effort is. In all cases, bound
peptides are modelled as circular disks. In the bulk, however, peptides resembles random
coils; while we model them primarily as random coils, we also use the had-disk model as
for bound peptides for comparison purposes. The former is labelled as “(i)” and the letter
as “(ii),” as indicated in Fig. 3.1.

We first focus on the charged-membrane case, as illustrated in Fig. 3.1; as detailed be-
low, the neutral-membrane system in Fig. 3.2 is a special case of the charged one in Fig. 3.1.
Peptides can reside in the proximate of the membrane through electrostatic interactions or
be hydrophobically associated with it. Following Ref. [(], these binding modes are referred
to as ‘S’ (surface-adsorbed by electrostatic interactions) and ‘I’ (hydrophobically-inserted
in a parallel orientation at the lipid head-tail interface), respectively.

Each peptide together with the surrounding lipids defines a Wigner-Seitz Cell (WSC);
in Fig. 3.1 and Fig. 3.2, two WSCs are shown. Each bound peptide induces lipid segregation
and mainly interacts with those in its neighbour, denoted as zone 1; its influence on charged
lipids in zone 2 is insignificant. On average, each peptide experiences radially symmetrical
interactions with other peptides on the membrane surface [9, 81]. Let r be the radial
distance from a bound peptide in a direction parallel with the membrane surface and
Rwsc the radius of each WSC; the area of each WSC is given by Awsc = mR4qc. In
a numerically-oriented approach, these interactions can be taken into account through
an electric boundary condition at r = Rwsc: the electric field in the radial direction
on the membrane surface vanishes at r = Rwsc [9, 81]. In our approach, we improve
systematically upon the one developed in Ref. [0] and employ an analytically-tractable
model. In our approach, the notion of WSCs is merely used as a conceptual framework
for considering various interaction pairs as detailed below. Similarly to earlier studies [(],
here we focus on symmetric binding of AMPs between the inner and outer layers. In this
case, the area of each WSC is given by Awsc = (1 + 014,) /(01 + 0s) [0] and can be taken
to be the same for both modes I and S; similarly, the area of zone 1 is assumed to be the
same for both modes (see the relevant discussion below Eq. 3.5). !

1Strictly speaking, Awsc should be chosen such that at its boundary the electric field in the radial

36



b. P-P repulsion c. WSC-WSC d. Z1-L2 interaction

mode S----=«----- mode | ----~ (+ WSC-WSC repulsion)
2 220 P2 e
o S e eeEmmets +
NUNWVIIVUVEQSS 1L e
2Rysc — ‘—* 2Rwsc
,’/ ',-—-*»\\ \\‘ ,’/ /”'"\\ \\‘ P: peptide
b . i i . L L1: lipids in zone 1
Lo e Lo s (21)
‘90952000 9% 2090 . - \\_»_,»'l_"j"_.m A N l," L2: lipids in zone 2
\:_ A ///,’ \‘i; 4 //(,’ \\ //,’ \\ ’/, \\ /,’ (22)
model 1 model 2a model 3a
(self P, P-L1, L1-L1 & L2-L2) (self P, P-L1, L1-L1 & L2-L2) (“improved” model 2a)

Figure 3.1: Various models are described and compared for describing the perturbation
of bacterial membranes by antimicrobial peptides. Through this comparison, our model
for peptide selectivity is systematically improved upon a recent model [(]. In the bulk, the
peptide resembles random coils but assumes a compact structure on the membrane surface.
Charged lipid bilayers mimicking bacterial (cytoplasmic) membranes are shown on the left.
Peptides can reside in the proximate of the membrane through electrostatic interactions
(binding mode ‘S’) or be hydrophobically associated with the membrane (binding mode ‘T’).
On the membrane surface, each peptide with the surrounding lipids is viewed as forming
a ‘Wigner-Seitz Cell” (WSC). It induces lipid segregation and mainly interacts with those
in its neighbour, denoted as zone 1; its influence on charged lipids in zone 2 (the region in
a WSC outside zone 1) is insignificant. Different models are compared: models 1-3; model
2 (model 3) is further classified into 2a-2¢ (3a-3d). In model 1, peptide and lipid charges
in zone 1 are smeared out over the area of zone 1. This overestimates the electrostatic
binding of peptides. To remedy this, in models 2 and 3, peptide area is preserved; if b
(2b and 3b) and ¢ (2c and 3c) include the repulsion between bound peptides and WSCs,
respectively, model 3d takes into account the interaction between zone 1 and zone 2 (or
lipids in zone 2) within the same WSC in addition to WSC interactions. In both models
1 and 2, the effect of finite areas is ignored, since the boundaries between zones 1 and
2 as well as the boundary between adjacent WSCs are taken to infinity. In contrast, in
model 3, electrostatic interactions are calculated based on the original geometry of different
regions. Furthermore, the Poisson-Boltzmann approach is used in models 1 and 2, whereas
the (renormalized) Debye-Hiickel approach is employed in model 3 [7, &]. In model 3, the
non-trivial geometry of various regions (e.g., the L1 region, i.e., the annular region in zone
1 occupied by lipids, as well as zone 2, a circular area with a “hole” at the centre) poses a
serious barrier to electrostatic calculations.
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Figure 3.2: Various models are described and compared for describing the perturbation
of host-cell membranes by antimicrobial peptides. Through this comparison, our model
for peptide selectivity is systematically improved upon a recent model [6]. In the bulk,
the peptide resembles random coils but assumes a compact structure on the membrane
surface. Host-cell membranes (the outer layers) are often modelled as electrically neutral
lipid bilayers. In the earlier model [(], denoted as model 1, the fraction of anionic lipids
was set to @ = 0.05; the peptide charge in a WSC was smeared out over the WSC. In
models 2 and 3, @ = 0 and the peptide charge is restricted to the area occupied by the
peptide. If the area occupied by the peptide and the WSC are boundary-less in model 2,
their geometry is explicitly taken into account in model 3. Similarly to model 2b for the
bacterial membrane, model 2b for the host cell membrane takes into account the repulsion
between bound peptides.

All models include the self energy of a peptide (“self P”), the interactions between a
peptide and the surrounding lipids in zone 1 (“P-L1”), those among charged lipids in zone
1 (“L1-L17), and those among charged lipids in zone 2 (“L2-L2”). In the bulk, the self
energy is constant but becomes variable near a dielectric medium; it has to be taken into
account. In model 1, the charges in zone 1, both peptide and lipid charges, are smeared
out. As a result, the region occupied by one species, either a bound peptide or charged
lipids, is permeable to the other. While this is reasonable for mode S (see this mode in
Fig. 3.1) but will introduce a big error for mode I. Models 2 and 3 are improved upon this,
as lipids are excluded from the region occupied by a peptide in mode I.

The main difference between models 2 and 3 is that only the latter preserves the ge-
ometry of each zone; in model 2, the edge (boundary) effect is ignored. Practically, this

direction on the surface vanishes. While this is obvious for one type of binding [108], it is not entirely
clear if this boundary condition is satisfied when Awgsc is chosen to be the same for two different binding
modes. In our semi-analytic approach, WSCs are merely used to visualize electrostatic-interaction pairs.
The aforementioned boundary condition is not used explicitly. Instead we take into account directly the
interaction between WSCs. See subsec. 3.2.1 and also Ref. [6].
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Figure 3.3: Models and interaction pairs captured in each model. All models include the
self energy of a peptide (“Self P”), the interactions between a peptide and the surrounding
lipids in zone 1 (“P-L1”), those among charged lipids in zone 1 (“L1-L1”), and those
among charged lipids in zone 2 (“L2-127). In the bulk, the self energy of a peptide is
constant but becomes variable near a dielectric medium (or upon conformational change
on the membrane surface); it has to be taken into account. Only model 3 includes the
interactions between zone 1 and zone 2 (“Z1-72”), which can be decomposed into P-L.2 and
L1-L2 interactions. Because of the neutralization of the peptide charge by the surrounding
negatively-charged lipids in zone 1, this interaction turns out to be insignificant. The
repulsion between peptides is taken into account in 2b and 3b. The repulsion between
different WSCs is fully captured in 2c and 3c (the middle panel). In our analysis of
interaction pairs, especially in model 3, we decompose each WSC into three regions, as
illustrated on the right: the outer and inner rings as well as a disk occupied by a peptide.
In this model, the pair interactions between different regions are explicitly taken into
account, without simplifying their geometry.

amounts to taking the boundary of each zone to infinity as illustrated in Fig. 3.1 and in
Fig. 3.2. “Models 2b” and “3b” include peptide-peptide (P-P) repulsions; “2¢” and “3c¢”
capture WSC-WSC repulsions; “3d” includes the interaction between zone 1 and zone
2 (“Z1-L27) in addition to WSC-WSC repulsions. Because of the neutralization of the
peptide charge by the surrounding negatively-charged lipids in zone 1, the last interac-
tion is expected to be insignificant, which can be checked a posteriori. In our analysis of
interaction pairs, especially in model 3, we decompose each WSC into three regions, as
illustrated on the right in Fig. 3.3: the outer and inner rings as well as a disk occupied
by a peptide. In this model, the pair interactions between different regions are explicitly
taken into account, without simplifying their geometry. Finally, each submodel (e.g., 3d)
can be further classified into two: 3d; for a random coli and 3dj; for a disk, depending on
how free peptides are modelled as discussed earlier (see the middle panel in Fig. 3.1).

The membrane-perturbing activity of AMPs (prior to pore formation or membrane
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rupture) is often quantified by a single parameter P/L, defined as the molar ratio of
peptides in the “membrane-perturbing mode” to lipids (excluding possible free lipids in

the solution) [5, 37, 46, 57, 96] (peptides in this mode are hydrophobically associated with a
parallel orientation). Beyond a threshold value P/L", they can create pores in their binding
membrane [5, 37, 46, 57, 96] or disrupt the membrane in a ‘carpet’-like manner [18, 37].

The corresponding total concentration of peptides, whether free or bound, is known as an
MIC (for bacterial cells) or MHC (for host cells) [5, 37, 46, 57].

Indeed, P/L" is influenced by various factors: lipid composition (e.g., charged vs. neu-
tral), lipid headgroup area, peptide charge and size, and other known and unknown bio-
logical details [5, 37, 46, 53, 57, 96]. Here, we do not attempt to calculate P/L" from first
principles but use commonly-accepted values; we also employ a phenomenoligcal model for
estimating it with a varying peptide charge. Indeed, the value of P/L" depends on both
peptide and membrane parameters, and this dependence has not been well understood
theoretically. Nevertheless, this quantity is relatively well characterized for the peptide
melittin (see for instance Refs. [5, 46, 57]): P/L* =~ 0.02 = P/Lj for bacterial membranes
and P/L* ~ 0.01 = P/Lj; for host cell membranes. We will use the representative P/L*
values for this peptide. As more accurate measurements of P/L* become available, their
values can be used in our theory.

Below, we first derive a general free-energy approach to a peptide-membrane system,
which holds possibly for a large class of pore-forming cationic AMPs, and apply it to melit-
tin as a representative peptide. Note that free energy and energy are given in units of the
thermal energy kgT and planar charge densities in units of the elementary charge e.

3.2.2 Free energy calculations

We first construct the free energy of each WSC, denoted as Fysc. It can be expressed in
terms of a few quantities: the planar density of anionic lipids in zone 1 and 2, denoted
as 01 and oy, respectively; L; and Ls are the corresponding number of anionic lipids; the
fractions of anionic lipids, a; and aq, are related to oy and oy as o = —oyap (i = 1,2),
where a, is the lipid headgroup area. In the absence of bound peptide, «; tends to a
constant value denoted as &.

Let Fy (01, 02) be the electrostatic free energy of each WSC. Throughout this paper, free
energy and energy are expressed in units of the thermal energy kg7 (equivalently we set
kgT = 1), unless otherwise indicated; here and below, kg is the Boltzmann constant and
T the temperature. The free energy of each WSC, excluding the membrane-deformation
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energy, can be written as

Fwse = Fa(o1,02) + ey
+Lijoglnag + (1 —ag)In (1 —ay)] 4+ Lo [aglnas + (1 — az) In (1 — az)]3.1)

Possibly except for the first term on the right hand side of Eq. 3.1, i.e., Fy(01,02), other
terms can readily be understood. The second term describes the free energy gain for
hydrophobic insertion. The delta function is to ensure that this term survives for mode
I but vanishes for mode S. The last two terms account for the entropic penalty for lipid
rearrangements induced by peptide binding.

In the Appendices, we present detailed steps leading to the computation of Fy (o, 03).
As illustrated in Fig. 3.1 and Fig. 3.2, we employ three models for peptide binding: models
1, 2, and 3; within each model, a few variations are considered (e.g., 3a(i), 3b(ii), 3c,...),
as discussed earlier. Below, we outline the essence of these calculations.

First, note that Fij (o, 09) can be decomposed into several terms as

Fa(o1,00) = Fo,+ Fp_11+ F11 + Fio + Fri_z2 + Fwsc—wscr. (3.2)

The first term F}, is the self energy of each bound peptide; the second term Fp_p,
represents the interaction between a bound peptide and the surrounding lipids in the
interaction zone, i.e., zone 1; the third Fy1; and fourth terms Fys are the interaction free
energy of lipids in zone 1 and 2, respectively; the fifth one arrises from the interaction
between zone 1 and zone 2 within the same WSC; Fywsc_wsc describes the interaction
between different WSCs.

For the host-cell membrane mimicking lipid bilayer in Fig. 3.2, & =~ 0; it is set to zero
in this work. As a result, binding mode S becomes irrelevant; also the distinction between
zones 1 and 2 disappears, and each WSC consists of one zone. As a result, Eq. 3.2 reduces
to

Fa(op) = Fy + Fwsc-wscr- (3.3)
In our electrostatic considerations, it proves useful to introduce the two important
lengths: the Bjerrum length /g and the screening length x=! [66, 34]. The former is given
by
o2
lg=——— 3.4
B dreoe kg T’ (34)

where e is the elementary charge, ¢y the permittivity of free space, and ¢, the relative
permittivity or the dielectric constant of the solvent. The screening length =1 is related
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to the total density of ions (assumed to be monovalent), denoted as ng, via
Kk* = dmlgng. (3.5)

Beyond 7!, the electrostatic interaction is exponentially suppressed in magnitude. A
related quantity is the two-dimensional screening length or the Gouy-Chapman length,
given by A\ = ay/2nflga. This naturally sets the boundary of zone 1: its area A; =
7 (R, + A)?, taken to be the same for both binding modes [6].

peptide self energy

First, assume that a bound peptide is viewed as a uniformly-charged circular plate of area
A, with a planar charge density o, = /A, in units of e; throughout this work, such
symbols as o, o, and o, denote planar charge densities in units of e. To obtain the
peptide free energy, consider a charged dielectric plate (with the charges on the z-y plane)
occupying the space z < 0. Let o be the planar charge density of the plate. The plate free
energy Fplate Per area can be obtained from the Poisson-Boltzmann approach [110]:

thick K 5
Fplate = U\IJO — % |:COSh < 9 ) — 1:| y (36)
where Wk is the surface potential of the (thick) plate given by
; 2ml
Wihick — 9 ginh~! ( T B") . (3.7)
K

With an appropriate choice of o, Eq. 3.6 can be used as the self free energy of a bound
peptide Fé\/lo‘l in model 1: Fé\/lo'l = ApFplate(0 = 0p). It can also be used to estimate the
peptide-lipid interaction in model 1, lipid-lipid interaction in model 2 (see Eq. 3.16 and
Eq. 3.17), and the membrane reference free energy in all models.

More realistically, if we take into account the size of peptide charges by leaving some
gap, h, between peptide charges and the dielectric interface, the electrostatic free energy
of a bound peptide becomes

A 1 —2kh
F%;\/[O'Z(h) — P In +6Xp< "i)

mlph 1+ exp (—QI{h\/ cosh \Ilgoubk‘)
A \Ijthin

+—pH {1 — 4/ cosh Wdouble _ yydouble ginpy ( 0 > } , (3.8)
7T€B 2
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where Wge"M* = sinh™' [2sinh ($ W) /tanh (kh)] is the surface potential of two like-
charged parallel thin plates a distance 2h apart and W™ = 2sinh™' (7fgo,/k) is the
corresponding quantity for an isolated thin-layer plate.

Fig. A.1 in Appendix A shows a simple representation of how the free energy of a disk-
like peptide with a constant surface charge density o, above the dielectric interface can be
transformed into a double-layer interaction free energy of two like-charged plates, separated
by 2h. A central quantity in this connection is the dielectric discontinuity parameter

€¢

A= ZZ _T_ . (= 1 for €, > ¢) (3.9)

(see Ref. [?] and relevant references therein), where the subscripts ‘w’ and ‘¢’ refer to water
and lipids, respectively. The free energy in Eq. 3.8 is used for model 2.

In model 3, the peptide self energy can be obtained from the DH approach to two
charged disks a distance h apart. It can be expressed in an integral form as

Ry, rRp 27 le " [ra—ry|? e—f{\/m
Féwo'g(h) = QWEBJE/ / TngdTldTg/ do |- + A,

o Jo 0 2\/|rg — 1|2 VIre — 112 + 4h2

(3.10)

where r; and ry are the position vectors on the membrane surface and 6 is the angle

between the two vectors: |ry —r1|> = 1 + 72 — 27175 cos f. The first term in Eq. 3.10 is the

self energy of the peptide in the absence of image charges and the second one represents

the mutual interaction between the peptide charges on a disk and the corresponding image
charges with a surface charge density A.op.

)

Unlike Eq. 3.8, which ignores boundary effects, since it is based on boundary-less plates,
Eq. 3.10 is obtained for a finite-circular object. Also it is worth mentioning that the gap
size h introduced here has insignificant effects on other free energy terms, since it has a
minimal impact on the distance between two charges on the surface. This feature will be
ignored in our consideration below.

Fp_11: peptide-lipid interaction in zone 1
A hydrophobically-bound peptide, i.e., one in mode I, pushes the surrounding lipids away

from it. The area occupied by lipids in zone 1 can thus be approximated as a charged
surface with a hole of radius R, (i.e., peptide radius) at the centre. If we ignore the
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“outer-boundary effect,” as assumed in model 2, the peptide-lipid interaction free energy
can be obtained as

drlpoy ()
Yo2 o~ 7o, R2 | Wo(0) — tanh Wo(0) + — i
o fty | Yol0) ol0) K/ cosh Wy(0)
Ji(kRp)
k/k2 + K2 cosh Uy (0)

—87T2€Bc71(1)0pR12)/ dk (3.11)
0

where Wy(0) = Wo(r = 0) is the surface potential (with o = oy()) at the centre of the hole
given by
4rmlpo

Wo(0) ~ sinh™* { (3.12)

—47T£BUR/ ap L) }
0

Vk? + K2
and oy(y) is the surface charge density of anionic lipids in zone 1. Throughout this paper,

Ji(x) is the Bessel function of the first kind and order 1. The results in Eq. 3.11 and
Eq. 3.12 are approximations derived in Appendix B.

K

In contrast, for mode S, the interaction energy is the work required to bring QQ charges
on an infinitely thick dielectric plate of surface charge density o;. We thus have

oml
FY%% ) = 2Qsinh ! (@) . (3.13)

Recall that Wih™ = 2sinh™" (21fp0/x) (see Eq. 3.7). The free energy F'%3 g in Eq. 3.13
is just @ times U§"*(o = oy(s)) with oy(s) = aus/ae; recall aq is the area occupied by each
lipid.

In model 3, the geometry of zone 1 is preserved. Because of the technical difficulty in
solving the Poisson-Boltzmann (PB) equation with this geometry, we employ a “renormal-
ized” Debye-Hiickel (DH) approach [7, &, 66, 111] for the computation of the lipid-peptide
interaction. The resulting approach is better than what it might indicate. The non-linearity
in the interaction between a peptide and lipid charges is taken into account by classify-
ing peptides into two subclasses: “free” and “bound.” Because of neutralization of lipid
charges by peptide charges, the residual interaction between the membrane-bound-peptide
system and ions will be insignificant. In this model, the area occupied with lipids in zone
1 can be viewed as a circular ring with an outer radius R, and an inner radius R,. As a
result, the interaction free energy can be obtained by considering the interaction a bound
peptide feels from the DH surface potential of the circular ring around the peptide:

Ry Jy (kR,)
kVE? + K2
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See Appendix A for the derivation.

On the other hand, for mode S, the peptide’s and lipid’s charges are assumed to be
smeared out over zone 1 with a net planar charge density oo = Q/A; — ay(s) /ag; here and
below, A; is the area of zone 1. In this case, it is natural to consider the lipid-peptide and
lipid-lipid interactions in zone 1 simultaneously. We thus find

o o o R2J3(kRy)
R + i = 47t (e — o) | ah—2LE 3y

where op,4,) = Q/A; is the surface charge density of a peptide when the charge is smeared
out over A;. The second term in the right side of the Eq. 3.15 needs to be subtracted from
the first term, i.e., the total free energy of the smeared-out charges in zone 1, since the
peptide free energy is already captured by F}, in Eq. 3.8.

Lipid-lipid interaction in each zone: F1;(Fys)

The lipid-lipid interaction in each zone can readily be obtained if the zone is treated as a
boundary-less thick plate with a surface charge density oy(;) or oy(;) as in model 2. Eq. 3.6
(or Eq. A.1 in Appendix A) suggests that

Y5 = (Awse — Apon) Foiate (01()) (3.16)
FLl}g(()z)Z = (AWSC - Al) fplate (02(1)) . (317)

Recall here that Awsc = mR%qc is the area of each WSC. The presence of the delta
function in Eq. 3.16 is to ensure that lipids are excluded from the hydrophobically-bound
central peptide. Also recall that Fjate is given in Eq 3.6.

In model 3, recall that we use the renormalized DH approach; using this, we first
calculate the surface potential of a ring that represents zone 2 for both modes and zone 1
for mode I; recall the free energy of anionic lipids in zone 1 for mode S, Fﬁvll‘(’s?;, is already
presented in Eq. 3.15. This leads to

> dk
FMoS = dn?lgo? / ——— [RyJi(kRy) — RpJi(kR,)]? 3.18
L1(I) BY1(1) o k\/m[ 1 1( 1) P 1( p)] ( )

and
> dk
FMO:3 — 47T2€ 0_2 ) / o
L2(4) BY2(4) 0 Lk /—/{524—/12

where ¢ = S or I.

[RwscJi (kRwsc) — RiJi(kRy)]?, (3.19)
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Interactions between Wigner-Seitz Cells or between peptides:
Fwsc-wsc or Fp_pr

The interaction between bound peptides or WSCs can be included. In sub-model b, i.e.,
2b or 3b, we only take into account the interaction between bound peptides: P — P’
The resulting interaction free energy Fp_p/ can be obtained by considering the interaction

between a circular disk of radius [, and an infinite plate with a hole of radius Rwsc.
(o1tos—1/Ace)@

1+o1Ap—Awsc/Acen)’

respectively, where A o is the total surface area of a cell: Ay = Ag and A.ep = Ap are the

cell membrane area of bacteria and host cells, respectively. In model 2, an approximated
PB approach (Appendix B) is used; in model 3, a renormalized DH approach is employed
without simplifying the geometry of the hole and the rest. This consideration leads to

Their corresponding surface charge densities are o, = QQ/A, and o, = (

o, R 4lpo,y
FMo2b PR g (0) — tanh W) (0) 4 ——at—
PP 2 ol0) ol0) K/ cosh U (0)
> dk k k
— 470500, Rwsc Ry / Ji(kBy) Ji(kBwsc) (3.20)
o ky/k? + K2 cosh W} (0)
and
FYs® = 252050,0, R2 [1 ~ Hiwse / kol(kRp)Jl(kRWSC)} . (321
k Ry 0 kvVk? + k2
In Eq. 3.20 and below,
o [4Artgoy < Ji(kRwsc)
\116(0) = \I[,O<T = O) = sinh L |: - L 47T€B0-p’RWSC ; dkﬁ (322)

is the potential at the hole center due to the rest (i.e., the plate with a hole) with the
surface charge density ops (essentially identical to the potential in Eq. 3.12 with o = o).
(Details steps of calculations leading to the approximate PB surface potential with hole
Upp_nole and ¥ (0) are explained in Appendix B.)

In a refined sub-model ¢, we include all relevant interaction pairs between WSCs:
peptide-lipids’ and lipid-peptides’ as well as peptide-peptide’. As explained in Fig. 3.3,
the total interaction of a single WSC with the rest WSC’ can be de-composed into three
distinct contributions: P — P/, P — (L1 + L2)', and (L1 + L2) — P".

Fwsc-wscr = Fp_pr + Fp_(L1412) + FlLi412)-pr- (3.23)
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For this consideration, we essentially extend the method used for sub-model b, but using
different surface charge densities, and consider the interaction between a charged circular
disk representing a single WSC we focus on and the rest.

As a result, we arrive at

R2 dmlgo ’

pMoz o TOWSCTWSC [\ () — tanh W' (0) + BOWSC
W2 s . 4(0) 00)+ —

J%(kagc)

(3.24)

— A7 lgowsc owso R2 / dk
BOWSCTWSETWSE f T b /R% + K2 cosh W5 (0)

J2(kRwsc)
kVE2 + K2

where W((0) is given in Eq. 3.22. Here owsc and owser correspond to the central-disk
WSC and the rest, respectively, and are given by

Q — a/ar(Awsc — Apdr;)
Awsc
” _ (01405 — 1/Acen)Q — &/ae[1 — (Awsc — Apdyi) /Acen]
WsC'@ 1+ 01Ap — Awsc/Acen

1 o
F\lz\v/lgg—wsc'(i) = (27T2€BUWSCUWSC’R%VS(3> {E —2/0 dk ] . (3.25)

Owsc(i)

. (3.26)

Interaction between zone 1 and zone 2: 71 — 72

The interaction between zone 1 and 2 in the same WSC can be decomposed into two parts
F21%5 = Fpo1o + Fiy1a. (3.27)

The regions occupied by the peptide, lipids in zone 1 (L1), and lipids in zone 2 (L2) can
be considered as concentric circular rings of appropriate inner and outer radii; for the
peptide, the inner radius is zero; the inner and outer radii of L1 (L2) are R, and R,
(R and Rwsc), respectively. The DH approach to these objects leads to the following
interaction free energy

Rle(kRp)
kv k2 4+ K2

& 87T2€B01(1)0'2(I)
Fra_ = dk———————== |R1J1(kR,) — RpJ1(kRp)| |R JiI(kER — RiJi(ERy)|.
o = [ kSO Ry () = R ()] [Rsc (FRwsc) 11(< 1))]
3.29

Fp_LQ(I) = 87T2£BO'pO'2(I) / dk} [RWSC Jl (k’Rwsc) - R1 Jl(le)] y (328)
0
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As discussed earlier (see Eq. 3.15), for mode S, the peptide and lipid charges are taken
to be uniformly smeared out. The resulting planar charge density is oney = Q/A1— 0 (s)/as.
With this difference, we arrive at

Ry J1(kRy)

F, _ = 812 lR0 et O / dk RwscJ1 (kR — R Ji(ERy)] (3.30
(P+L1)—L2(S) BOnet02(S) . k\/m [ WSC 1( WSC) 1 1( 1)]( )

Other free energies

Finally, the hydrophobic association of a peptide occurs at the expense of membrane de-
formations. Around or above P/L*, the membrane deformation energy (per unit area) can
be simplified as K (07A,)?, where Ky is the area stretch modulus [57, 97]. In principle,
a more complete form of deformation free energy can be used. In practice, the above-
referenced harmonic free energy can be used for a wide range of deformations (see Ref. [59)]
for relevant discussions).

Because of the dielectric property and thickness of membrane bilayers, the two layers
(inner and outer) can be viewed as electrostatically decoupled [0]; also for simplicity, we
assume symmetric peptide binding between the two layers. We can then consider each
layer separately.

3.2.3 Free energy minimization

Let o5 and o7 be the planar density of peptides in mode S and I, respectively; the latter
is related to P/L as ojay = P/L. Including all the relevant terms obtained earlier, we
construct the total free energy of our peptide-membrane system per area:

1
Eotal = UIFWS(j(I) + Ustsc(s) -+ §KA<O'IAP)2 —+ o1 1H(O‘1Ap> -+ s 1H<O'SAP>

o1+ 0s kgT NireeUp
max - 1 1 - Nreel Vo - Nree
+(0' 01 US) n ( O max > * NcellAcell |: f B ( v f

—Jrefy (331)

where Fyscqy (Fwscs)) is Fwsc for the binding mode I (S), given in Eq. 3.1.

The first three terms on the right hand side are introduced earlier in subsec. 3.2.2. The
fourth-sixth terms in Eq. 3.31 describe the entropy of mixing within a two-dimensional
lattice-gas model, where op.x = 1/A, is the maximum surface coverage of peptides (see
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for instance Ref. [31]). The seventh term is the entropic free energy of free peptides. Here,
Neen is the total number of target cells (either host cells or bacteria), A. the area of each
target cell, V' the total volume of the entire system, v, the volume of a peptide in the bulk,
and Npee the total number of free peptides; Ny = Np (Ny) for bacterial (host) cells and
Acen = Ap (Ap) for bacterial (host) cell surface area.

As in a typical experimental setting, in our consideration, the total number of peptides
N, is held fixed. As a result, the number of free peptides decreases upon peptide binding
and is given by Ngee = N — NeenAcen(oy + 0g).

Finally, the reference free energy per area JF. describes the corresponding system
without bound peptides and is given by

1 1 N
Fref:fplate(00> + — [O_élnc_t—i‘ (1 —&)ln(l — O_é)] + —- |:Np]n( pvp) _Np‘| .

ay NeenAcen Vv
(3.32)
This free energy is contributed by three distinct effects: the charging free energy of a
membrane without bound peptides (recall oy = —a/ay), the lipid entropy of mixing, and

the entropy of peptides (all free). The charging free energy of a semi-infinite plate per area
Folate 1s defined in Eq. 3.6 or Eq. A.1 presented in Appendix A.

The total free energy in Eq. 3.31 is to be minimized with respect to oy, os, o1 and o,
for given values of N,/V, Neai/V and a. Note that the fraction of charged lipids in zone
1 and 2 (eoy = —eay/a; and eoy = —easy/ay) are not independent of each other but are
related via the number conservation of charged lipids in each WSC:

/ la(z,y) — aldzdy = 0, (3.33)
Awsc

where (x,y) is the position on the z-y plane, i.e., on the membrane surface [(].

3.3 Results

3.3.1 Free energy analysis: MICs, MHCs, and peptide selectivity

We have analyzed Eq. 3.31 for both charged and neutral membranes, mimicking bacterial
and host cells, respectively. Here we use “charged” and “bacterial membranes” (“neutral”
and “host cell membranes”) interchangeably and plotted our results for MIC, MHC, and
MHC/MIC in Fig. 3.4, Fig. 3.5 and Fig. 3.6, respectively.
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Figure 3.4: Various models and cell density-dependence of MICs. We have chosen the
same parameters as used for the earlier model [0], referred to as model 1 in this work:
er = —14kgT, & = 0.3, P/Ly = 0.02, and @ = 6. Model 1 underestimates MICs, as
reflected in the MIC graph, since it overestimates the attraction between peptides and
charged lipids. Model 2 is improved upon model 1 but suffers from similar but reduced
drawbacks. Model 3, more realistic than the others, predicts much larger MIC values. The
difference between models 2 and 3 is well pronounced, because of the importance of how to
calculate electrostatic interactions between peptides and lipids. In contrast, the difference
between the variations of the same model (e.g., 3a, 3b, 3c, ...) is less significant. It is
thus crucial to preserve the geometry of the three regions, occupied by a peptide, lipids in
zone 1, and lipids in zone 2, as assumed in model 3 (see Fig. 3.3). Adding the repulsion
between bound peptides tends to increase MICs, as it reduces peptide binding. However
the interaction between neighbouring WSCs does not necessarily reduces peptide binding,
since it also contains the attraction between a peptide in a WSC and lipids in different
WSCs. The interaction between Z1 and Z2 slightly reduces peptide binding, increasing
MICs a little. In all cases, MICs increase with the cell density; for a larger cell density, a
larger amount of peptides is required in order for P/L to reach P/L*. In all curves, the
surface area of host and bacterial cells is chosen to be 1.2 x 109A2, i.e.; the area of a typical
bacterial cell surface, e.g., that of Escherichia coli [0]. Tt is worth noting that the general
physical picture is not limited by this choice, since any change in cell surface areas can be
made equivalent to the change in cell densities [0].

20



10 O LA YIS v IR g v T ot o e Yoo He LILY o LI Vo TrE Qe fo Opervans Openeees o

3 peptide in solution:
—O— i: random coil
<O i : disk
10°
—_ O— =2 sub-model extra term included
S 101 O— =~ s /=~ b p-p'
3
N
O 1
T model  AFygscqy (kgT)  W*y (kgT)
=3 ; models: —0—3/ —0—2/ —O—1 v 3by =335 -0.875
10 O 33, -3.40 -1.02
—/— 3b; -7.22 -4.80
2 —0— 3a -7.24 -4.87
10 —— 2b, -7.91 -5.48
—0— 23 -7.93 -5.57
10-3 —O—1 -20.60 -16.70
O
T T T T T T T T T T T T T T T T T
10° 10" 10' 10° 10° 107 10° 10" 10"

cell density (Cy) (cells/mL)

Figure 3.5: Different models and cell density-dependence of MHCs. We have chosen the
same parameters as used for the earlier model [0], referred to as model 1 in this work:
er = —14kgT, @ = 0.3, P/L;; = 0.01, and @ = 6. , model 1 underestimates MHCs,
as reflected in the MICs graph Fig. 3.4, since it overestimates the attraction between
peptides and charged lipids. Model 2 is improved upon model 1 but suffers from similar
but reduced drawbacks. Model 3, more realistic than the others, predicts much larger MHC
values. The MHC graph can be understood in parallel with the MICs graph in Fig. 3.4; the
difference between models 2 and 3 is less pronounced, because of much reduced electrostatic
interactions between peptides and lipids. Adding the repulsion between bound peptides
tends to increase MHCs, as it reduces peptide binding. In all cases, MHCs increase with
the cell density; for a larger cell density, a larger amount of peptides is required in order for
P/L toreach P/L*. In all curves, the surface area of host and bacterial cells is chosen to be

1.2x 109A2, i.e., the area of a typical bacterial cell surface, e.g., that of Escherichia coli [0].
It is worth noting that the general physical picture is not limited by this choice, since any
change in cell surface areas can be made equivalent to the change in cell densities [0].
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Figure 3.6: Various models and cell density-dependence of MHC/MIC. Here, model 3d; is
used with varying parameter values except for fixed () = 5, which is a more realistic choice
for melittin [0]; two different values are chosen for P/Lj; = 0.02,0.03 and & = 0.2,0.3. The
graphs shows the ratio: MHC/MIC, a quantitative measure of peptide selectivity. While
in all cases MHC/MIC decreases with increasing cell density, the values of MHC/MIC
vary greatly between different models. This observation is well aligned with the model
dependence of MIC and MHC values shown in Fig. 3.4 and Fig. 3.5 (i.e. also consistent
with the results in Fig. 3.13). The variation of MICs or MHCs is large between different
models but not as much between sub-models. Peptide selectivity is appreciably smaller in
models 1 and 2 than in model 3. This implies that it is essential to capture correctly the
geometry of various regions, occupied by a peptide, lipids in its vicinity, and lipids outside
(i.e., in zone 2). In all curves, the surface area of host and bacterial cells is chosen to be
1.2 x 109A2, i.e., the area of a typical bacterial cell surface, e.g., that of Escherichia coli [0].
It is worth noting that the general physical picture is not limited by this choice, since any
change in cell surface areas can be made equivalent to the change in cell densities [0].

o2



We have chose the parameter as follows. The area of cell membranes A, = 1.2 X 10°A°
coincides with the area of a typical bacterial cell surface, e.g., that of Escherichia coli (E.
coli) [0]. It is worth noting that this choice will not limit the significance of our results,
since changing cell surface areas can be made equivalent to changing cell densities [(]; one
can simply rescale the cell-density axis as in Fig. 3.6 to mimic the effect of changing Acey.
We have also used various combinations of other parameters (e.g., @, €1, &, and P/L*)
as indicated in the legends of graphs. In Fig. 3.4 and Fig. 3.5, for comparison purposes,
we have chosen the same parameters used for model 1, which are essentially identical to
those adopted in Ref. [0], e = —14kgT,a = 0.3, P/L} = 0.02, P/L}; = 0.01, and @ = 6.
In Fig. 3.6, model 3d; is used with varying parameter values except for fixed () = 5,
which is a more realistic choice for melittin [0] than @ = 6. Also two different choices
are used for P/L{ and a: P/L{ = 0.02,0.03 and & = 0.2,0.3. It is worth noting that
there is a general consensus on P/L* = 0.01 for pure DOPC bilayers (mimicking host-
cell membranes) [5, 55, 112]. Throughout this work, we use this fixed value for host cell
membranes.

MICs and MHCs can be obtained by analyzing Eq. 3.31. We first obtain P/L = oya,
while varying C, and choose the value of C, for which P/L is equal to P/L*. This special
Cy or simply C} is either MIC or MHC. Fig. 3.6 shows various models and cell density-
dependence of MICs (Fig. 3.4) and MHCs (Fig. 3.5). Model 1 underestimates MICs, as
reflected in the corresponding curves, since it overestimates the attraction between peptides
and charged lipids. Model 2 is improved upon model 1 but suffers from similar but reduced
drawbacks (see Fig. 3.1). Model 3, more realistic than the others, predicts much larger
MIC values.

Fig. 3.7 illustrates the cell-density dependence of C}, i.e., the bulk peptide concentration
corresponding to P/L*: either MICs or MHCs. Here peptides are represented by filled
or unfilled circles; if filled ones are free in the bulk, unfilled ones are bound to bilayer
membranes described by two concentric circles. What is shown in (i) is the single-cell limit
at C, = C} or at P/L = P/L*. For the case in (ii), an extra amount of peptides is needed;
to remain at P/L*, the required number of peptides is equal to P/L* X Acen/V, where V
is the volume of the entire system. The progression from (i)-(iii) shows how this reasoning
can be extended to the non-zero cell-density case. When applied to bacteria, this figure
implies that

MIC(Ceen) =

Acell P :
T Cce MIC 5 3.34
” ( L) n+ (MIC)o (3.34)

where ay is the area of each lipid and (MIC)g is MIC in the low-cell density limit: Ce; — 0.
As evidenced later, this is consistent with the one based on a Langmuir model (see Eq. 3.37).
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Figure 3.7:  This figure illustrates the cell-density dependence of Cj, either MICs or
MHCs. Here peptides are represented by filled (free) or unfilled circles (bound) and bilayer
membranes by two concentric circles. What is shown in (i) is the single-cell limit at
C,=Cjorat P/L = P/L*. For the case in (ii), an extra amount of peptides is needed; to
remain at P/L*, the required number of peptides is equal to P/L* x Acen/V, where V is
the volume of the system. The progression from (i)-(iii) shows how this reasoning can be
extended to the non-zero cell-density case. When applied to bacteria, this figure implies
that MIC(Ceen) = AaC—Z“(P/L)*CceH + (MIC)y, where a, is the area of each lipid and (MIC)g
is MIC in the low-cell density limit: C.oy — 0. The slope of this relation, i.e, A;—Z“(P/ Ly*,
is the total amount of bound peptides at P/L = P/L*; (MIC), is set by the interaction of
peptides with membranes among others. This suggests that MHCs become less sensitive
to peptide parameters and models used as Ceq increases; so is the ratio MHC/MIC or
peptide selectivity.

While we primarily model free peptides as random coils, for comparison purposes,
we have also considered them as circular disks as for bound peptides; if the former is
represented by the subscript ‘i’ as in ‘3d;,” the latter by the subscript ‘ii” as in ‘3dj;.

The difference between sub-sub-models, e.g., ‘3d;” and ‘3d;;’, is appreciable. We, how-
ever, interpret this as nonessential, in the sense that it reflects single-peptide properties. In
principle, it can absorbed into ¢r, the free energy gain for hydrophobic insertion in Eq. 3.1.
Furthermore, the disk model is not close to the structure of peptides in the bulk. We thus
favour the random coil model over the disk model. Except for MICs and MHCs graph in
Fig. 3.4 and Fig. 3.5, we use model 3d; as our primary model in Fig. 3.6.

The MHC graph in Fig. 3.5 can be understood in parallel with the MIC graph. Similarly
to what was observed with MICs, the difference between the variations of the same model
(e.g., 3a, 3b, 3c, ..) is less significant compared to the variation between different models.
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Figure 3.8: This figure shows hydrophobic peptide binding (P/L) to bacterial membranes,
as a function of peptide charge Q). As @ increases, initially P/L for bacterial cell membranes
increases because of enhanced electrostatic interactions between peptides and anionic lipids.
For a large value of (), however, bound peptides start to repel each other more effectively;
also for the charged bacterial membrane, the competition between the two binding modes is
swayed toward S mode as () increases. This is responsible for the non-monotonic behaviour
of P/L against (), consistent with earlier results [9].

This points to the importance of preserving the geometry of the three regions, occupied
by a peptide, lipids in zone 1, and lipids in zone 2, as assumed in model 3 (see Fig. 3.3).

Consistent with our common intuition, both MIC and MHC graphs suggest that adding
the repulsion between WSCs or bound peptides tends to increase MICs or MHCs, as it
reduces peptide binding.

An important feature of the graphs in Fig. 3.4 and Fig. 3.5 is that MICs and MHCs
increase with the cell density; for a larger cell density, a larger amount of peptides is
required in order for P/L to reach P/L*. Indeed, this is correlated with the observation
that membrane disruption occurs for P/L > P/L*, as illustrated in Fig. 3.7 and detailed
below.
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Figure 3.9: This figure shows hydrophobic peptide binding (P/L) to host-cell membranes,
as a function of peptide charge (). In contrast to bacterial membrane in Fig 3.8, peptide
binding becomes diminished monotonically for host cell membranes, as ) increases, except
for model 1; in models 2 and 3, a larger-() value simply means enhanced peptide-peptide
repulsion, as expected. On the contrary, model 1 shows an opposite trend. The enhanced
repulsion between peptides is counterbalanced by mistakenly-enhanced binding affinity of
peptides. This can be understood in parallel with the finding that model 1 overestimates
peptide binding, as shown in Fig. 3.5. As a result, model 1 does not appear to serve as an
adequate model for the @)-dependence of peptide binding.

The graph in Fig. 3.6 shows the ratio: MHC/MIC, a quantitative measure of peptide
selectivity. (As noted above, here and below, model 3d; is exclusively used.) While in
all cases MHC/MIC decreases with increasing cell density, the values of MHC/MIC vary
greatly between different models. This observation is well aligned with the model de-
pendence of MHC and MIC values shown in Fig. 3.4 and Fig. 3.5. In summary, peptide
selectivity is underestimated in models 1 and 2.

The slope of this relation, i.e, Aac—;“(P/ L)*, is the total amount of bound peptides at
P/L = P/L* (Acen is the total surface area of a cell). On the other hand, the “y”-intercept,
(MIC)y, is set by the peptide and membrane parameters. The relation in Eq. 3.34 suggests
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that MICs become less sensitive to peptide parameters as C.q increases; so are MHCs and
the ratio MHC/MIC or peptide selectivity. This is well aligned with the general trend
seen in the results for MHC/MIC in Fig. 3.6. Indeed, the selectivity approaches a constant
of order one, largely independent of peptide-membrane parameters, as the cell density
increases.

The figures in Fig. 3.8 and Fig. 3.9 show hydrophobic peptide binding (P/L) to bacterial
and host-cell membranes, as a function of peptide charge ). As @ increases, initially
P/ L for bacterial cell membranes increases because of enhanced electrostatic interactions
between peptides and anionic lipids. As () increases further, however, bound peptides start
to repel each other more effectively, diminishing peptide binding; also for the charged case,
the competition between the two binding modes is swayed toward S mode as () increases.
This is responsible for the non-monotonic behaviour of P/L against @), consistent with
earlier results [J]. Except for this common feature, the shape of the curves in the figure
differs between models. Also it is worth noting that it depends on parameter choices
as reflected in Fig. 3.10. For instance, the value of @) at which (P/L)g is maximized is
model-dependent.

In contrast, peptide binding becomes diminished monotonically for host cell membranes,
as () increases, except for model 1; except for model 1, a larger-() value simply means
enhanced peptide-peptide repulsion, as expected. On the contrary, model 1 shows an
opposite trend. The enhanced repulsion between peptides is mistakenly counterbalanced
by enhanced binding affinity of peptides. This can be understood in parallel with the
finding that model 1 overestimates peptide binding, as shown in Fig. 3.5: By stretching
the peptide area over an entire WSC (see Fig. 3.2), model 1 overestimates peptide binding,
more so for large ). This enhancement outweighs the peptide-peptide repulsion on the
membrane surface, making AF}, more favourable for peptide binding. This is responsible
for the reversed trend seen in model 1. As a result, model 1 does not appear to serve as
an adequate model for Q)-dependence of peptide binding.

Peptide charge is known to be a key parameter in determining peptide activity and
selectivity [9, 30, |. To further probe its significance, we have examined the @) depen-
dence of MHCs, MICs, and MHC/MIC. Along this line, it is worth mentioning that () can
be adjusted independently of other peptide parameters [109, |. This justifies our con-
sideration here. At present, however, the dependence of P/L* on @ is elusive. The value
of P/L* is known to depend on the types of lipids and peptides as well as on membrane
thinning or thickening induced by peptide binding [37, 46]. Its dependence on @ for a given
peptide type has not been systematically examined. Here we employ two approaches. The
simplest one may amount to assuming that P/L* is insensitive to (). This is equivalent
to assuming that the difference in energy between hydrophobic-binding and pore forming
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Figure 3.10: The figure shows peptide selectivity vs. peptide charge ). The selectivity
is quantified by the ratio: MHC/MIC. The larger this ratio is, the more selective the
peptide is; in a wider range of peptide density, the peptide ruptures bacterial membranes
without perturbing appreciably host-cell membranes. This selectivity graph shows that
the selectivity is maximized at a certain value of (), i.e., an optimal charge denoted as
Qoptimal- This graph also shows how the optimal charge varies with peptide and membrane
parameters. For instance, the optimal charge is larger for stronger hydrophobicity. It
also shows that the selectivity becomes smaller and flatter as the cell density increases; it
looses the sensitivity of peptide selectivity to peptide parameters including (). This is well
aligned with the finding that the selectivity becomes a constant of order 1 as the cell density
increases (see Fig. 3.6). Indeed, our full analysis in this figure or its variations suggest how
peptide parameters might be optimized for enhanced selectivity in a biologically relevant
medium. The non-monotonic dependence of peptide selectivity can be understood by
examining the () dependence of MICs and MHCs in Fig. 3.11 and Fig. 3.12, respectively.
In fact, the ) dependence of peptide selectivity is a combined feature of MIC and MHC
results.
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Figure 3.11: The figure shows peptide MICs vs. peptide charge ). The non-monotonic
dependence of peptide selectivity in Fig. 3.10 can be understood by examining the @
dependence of MICs and MHCs in Fig. 3.12. The graph suggests that MICs vary non-
monotonically with ), reaching its minimum around ¢ = Qoptimai- This is more pronounced
for smaller cell densities. For sufficiently large cell densities, MICs become less sensitive to
@; also the location of MIC minimum shifts to a larger value of Q).

states is essentially determined by non-electrostatic effects such as membrane curvature
energy around a pore [114].

In a seemingly-elaborated effort, we will attempt to capture the possible ()-dependence
of P/L* by including the repulsion between pore forming peptides in our analysis.

When P/L* is assumed to be independent of (), MICs and MHCs can be obtained by
changing @) in the ()-dependent terms in Eq. 3.31. The graph in Fig. 3.10 shows peptide
selectivity vs. peptide charge Q). The selectivity is quantified by the ratio: MHC/MIC.
The larger this ratio is, the more selective the peptide is [35, 36, 37]; in a wider range
of peptide density, the peptide ruptures bacterial membranes without perturbing host-cell
membranes appreciably. This graph shows that there exists an optimal value of peptide
charge at which the selectivity reaches its maximum. Similar conclusions were drawn earlier
but they were not conclusive since they were based on the dependence of P/L on @ at a
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Figure 3.12: The figure shows peptide MHCs vs. peptide charge (). The non-monotonic
dependence of peptide selectivity in Fig. 3.10 can be understood by examining the () depen-
dence of MICs (see Fig. 3.11) and MHCs. In contrast to MICs, MHCs vary monotonically
with (). Similarly to what the MIC curves in Fig. 3.11 suggest, they become almost flat for
large cell densities. The @) dependence of peptide selectivity in (A) is a combined feature
of MIC and MHC results in (B) and (C).

single-cell limit.

To understand the physical origin of the non-monotonic dependence of peptide selectiv-
ity on @ in Fig. 3.10, we have examined the () dependence of MICs and MICs in Fig. 3.11
and Fig. 3.12, respectively. The MIC graph suggests that MICs vary non-monotonically
with @, reaching its minimum for a certain value of @) (> 4), referred to as an optimal
charge, Qoptimal. This is more pronounced for smaller cell densities, e.g., the bottom two
curves. For sufficiently large cell densities, MICs become less sensitive to @); also the
location of MIC minimum shifts to a larger value of ). This is correlated with the ear-
lier observation that MICs become more insensitive to peptide parameters or models for
large cell densities (see the illustration in Fig. 3.7, Eq. 3.34, and Fig. 3.4). On the other
hand, MHCs vary monotonically and become almost flat for large cell densities. The Q)
dependence of peptide selectivity in Fig. 3.10 is a combined feature of MIC and MHC
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results.

Furthermore, the graph of selectivity in Fig. 3.10 suggests that the optimal charge
Qoptimal Varies with peptide-membrane parameters. In particular, Qoptimal is larger when
the hydrophobic binding is stronger, i.e., for a more negative value of ;. For stronger
hydrophobicity, the repulsion between WSCs can be more effectively counterbalanced by
the hydrophobic free energy gain for peptide binding. This explains the dependence of
the optimal charge on ;. The graph also shows that the selectivity becomes smaller and
flatter as the cell density increases; it looses the sensitivity of peptide selectivity to peptide
parameters including ). This finding is well aligned with the finding that the selectivity
becomes a constant of order 1 as the cell density increases [0].

It is tempting to include the possible @) dependence of P/L* in our consideration of
peptide selectivity. Beyond an earlier theoretical approach to peptide pores [115], however,
the energetics of pore formation has remained poorly understood. In the theoretical ap-
proach [115], the excess free energy associated with pore formation, AFj o, is obtained for
various choices of (); it is measured with respect to a reference state in which pore-forming
peptides are infinitely diluted (see Ref. [115] for the detail). Similarly, AFysc in this work
is defined with respect to a no-peptide state without a pore (see Eq. 3.32). Pore formation
by peptides is, however, governed by the free energy difference per peptide between the
following two states or binding modes: hydrophobic-adsorption and pore formation [16].
This will essentially determine P/L*.

Nevertheless, if we assume that the () dependence of P/L* arises mainly from the @
dependence of AF, ., we can examine how P/L* will vary with (). To proceed further,
note that one can extract the relation from Ref. [117]

AFpore ~ (1.4 +0.6Q)) kgT — constant. (3.35)

Here, a negative free energy is introduced to make a reference energy correction. The
resulting free energy difference between the two states per peptide can be conveniently
written as |AFwsc(Q)| — |AFpore(Q)]. Note that AFsc is separated from the other term;
the constant term in Eq. 3.35 is to be adjusted to make this consistent with the known
values of P/L* as described below.

Following Ref. [1(], we relate this free energy to P/L* as
(5)* _ |ARusc(Q)] — [AFne(Q)]
KA (A%/ag) (1-75) ’

L
where [ is a phenomenological parameter describing the thinning or thickening of mem-
branes induced by peptide binding [16]. The values of 5 were estimated for different

(3.36)
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(A) Bacterial membrane (B) Host Cell membrane

[ Model | W's (ksT) (&i=-14ksT) | [ Model | W (ksT) (1=-14ksT) |
Q=6 Q=5 Q=6 Q=5
3di -8.22 -14.09 3bj; -0.875 -3.50
3di -12.03 -16.60 3bi -4.80 -6.72
|_vosel | wiGn) a=-18) [ Vodl | Wi(laD) (6=-18ken) |
3di -18.35 -20.38 3b; -8.80 -10.76
All models (Q =6, g =-14kgT) All models (Q =6, g =-14kgT)
[l s (0 | W) [ ode oo (D | Wi () |
model 3bj -13.84 -5.73 model 3b; -3.35 -0.875
model 3a; -14.35 -7.48 model 3aj -3.40 -1.02
model 3dii -14.23 -8.22 model 3b; -7.22 -4.80
model 3c;i -14.35 -8.38 model 3a; -7.24 -4.87
model 3b; -17.71 -9.60 model 2b; =791 -5.48
model 33a; -18.21 -11.35 model 23a; -7.93 -5.57
model 3d; -18.07 -12.03 model 1 -20.60 -16.70
model 3c¢; -18.21 -12.23
model 2b; -17.98 -14.43
model 2a; -18.40 -15.60
model 2¢; -17.85 -16.68
model 1 -22.60 -19.90

Figure 3.13:  This table summarizes the free energy of a WSC, AFywsc, obtained at
P/L = P/L*, with reference to the no-peptide case and the corresponding effective binding
energy W* for typical charged (A) and neutral membranes (B), mimicking bacterial and
host cell membranes, respectively. The effective binding energy W* is a Langmuir-model
equivalent of AFygc: with this choice, a Langmuir model produces the same amount of
bound peptides as our models do. In the table on the right, the rows are arranged in the
decreasing order of W*. Note that W* is more directly related to MICs or MHCs than
AFwsc; it measures the binding affinity of peptides for their binding membranes in the
same way as assumed in a Langmuir model. In (A), the variance of AFygc or W* between
different models (e.g., models 1 and 2) is significant; within model 2 or 3, however, they
do not vary much between the sub-models, i.e, variations of the same model (e.g., 2a and
2b). A similar trend is observed for the host cell membrane in (B); the main difference is
that the variance between models 2 and 3 is less pronounced in (B).
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pore-forming peptides with various lipid compositions [5, 16]: § = —0.95 for host cell
membranes and § = —1.5 for bacterial cell membranes. We adjust the value of ‘constant’
in Eq. 3.35 so that Eq. 3.36 leads to the expected value of P/L* ~ 0.02 = (P/L*)g for host
cell membranes and P/L* ~ 0.01 = (P/L*)y for bacterial membranes, when @ =5 (as for
melittin) is used: constant = 15.99kgT or 9.14kgT for bacterial or host cell membranes,
respectively.

The results obtained for Cep = 6 x 103 by varying P/L* according to Eq. 3.36 are
represented by the grey curves in Fig. 3.10. Similarly to the previous results plotted in
Fig. 3.10, the grey curve also suggests the existence of an optimal charge, even though it
is not as pronounced. A related point is that the non-monotonicity shown by the earlier
results for MICs in Fig. 3.11, i.e., the curves represented by various colours, disappears for
the grey curve. We believe that this is an artifact arising from the way the pore energy
is corrected for the reference state in Eq. 3.35. Indeed, the constant term in Eq. 3.35
should depend on @ and oy (the planar charge density on the membrane). The term
AFwsc(Q) in Eq. 3.36 does not fully account for this, since it is measured with reference
to an infinitely-diluted state on the surface without a pore. Imagine a peptide undergoing
a transition from the membrane surface to a pore. The corresponding free energy change
should replace the terms in the numerator in Eq. 3.36. A more systematic analysis of pore
energetics and its relationship with P/L* would be needed for a more complete picture of
how the selectivity varies with (). It is worth noting that this analysis will be complicated
by membrane thinning or thickening induced by peptide binding [5, 16].

3.3.2 Mapping to a Langmuir binding model

The free energy approach presented in Subsec. 3.2.2 has offered a detailed picture of how
peptide activity and selectivity depends on cell densities as presented in Subsec. 3.3.1. To
further exploit our approach, here we map out a simple, effective Langmuir-type model
from it. In this consideration, we essentially follow up on recent studies (see Ref. [(] and the
Supporting Information). Let C, = N,,/V be the total concentration of peptides whether
free or bound and C} be the value of C), corresponding to P/L*: C} is either an MIC or
MHC. Let W be the binding energy of a peptide. All the subtle features of peptide binding
(e.g., lipid demixing and an optimal charge) are subsumed into W. Of interest to us is
the value of W at the cell density C}, = C}, denoted as W*. Using this model, we offer
an intuitively-obvious picture of the cell-density dependence of peptide selectivity. (It is
worth noting that the cell-density dependence will not alter W or W*.)

Let C.q be the density of target cells, either host cells or bacterial cells; Ay the
surface of each cell. Earlier, it was shown that C}; (either MIC or MHC), the bulk peptide
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concentration required for the surface coverage P/L*, is given by [0]

Acai (P’ 1 2 (D) e
=l (—) Ceen + o1 A (B - %) ke (3.37)

The relation in Eq. 3.37 shows how C;j varies with Cee for a given W*: C; is insensitive to
Ceen for Cion = 0 but it is approximately proportional to Cee for a sufficiently large Ciey.

The value of W* can be extracted by fitting our date obtained from Eq. 3.31 to Eq. 3.37;
the ‘y’ intercept of this relation will determine W*. Several representative values of W are
displayed in the table in Fig. 3.13. The strength of peptide binding is different between
different models; it is strongest in model 1 and weakest in model 3. Our most complete
model 3d; produces Wp; = —16.60 kg7 and Wj; = —6.72 kg1 for e = —14 kgT and @ = 5;
W§ = —20.38 kgT' and W}y = —10.76 kg1 for e = —18 kgT" and ) = 5.

Eq. 3.37 suggests that the low cell density can be “defined” as the range of C. below
CY; a special value of Cy at which the two terms on the right hand side of Eq. 3.37 are

C

balanced. Model 3d; leads to

6.46 x 10°(cells/mL) for W = —16.60 kgT

00~ Ap 1 W /ksT N 1.18 x 10"(cells/mL) for W = —6.72 kgT (3.38)
T Aanvy, 1— 42 (2 1.47 x 104(cells/mL)  for W = —20.38ksT
2.08 x 108(cells/mL)  for Wy = —10.76 kgT

This relation will give us a quantitative sense of the low cell-density limit, in which peptide
selectivity is sensitive to the biophysical (i.e., intrinsic) properties of peptides.

A further effort along the line of what we did will clarify how peptide parameters might
be optimized for enhanced selectivity in a biologically relevant medium. It can be extended
to other peptides, once their biophysical parameters are characterized.

3.4 Conclusions

In conclusion, we have mapped out a physical model for peptide activity and selectivity.
To this end, we have systematically analyzed several models and singled out one, which
describes accurately the electrostatic binding of peptides to a membrane, whether charged
or neutral. To this end, we have kept the geometry of disk-like peptides, zone 1 and 2. Our
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results suggest that it is crucial to capture correctly this geometry. Earlier approaches that
simplify this geometry can lead to uncontrolled errors in the calculation of MICs, MHCs,
and the ratio MHC/MIC.

Using the resulting model (i.e., model 3d;), we have examined how peptide activity and
selectivity depend on cell concentrations Cg. Both MICs and MHCs increase with Clep
such that the ratio MHC/MIC decreases and approaches a constant of order 1 (see the
results in Fig. 3.4, Fig. 3.5, Fig. 3.6 and the illustration in Fig. 3.7). While a similar con-
clusion was drawn recently [0], it is based on a model that suffers from the aforementioned
drawback. A general picture from this work is that peptide selectivity remains sensitive to
peptide parameters (e.g., charge and hydrophobicity) at the low-cell density limit, defined
in the sense of Eq. 3.3.2, but becomes less sensitive outside this limit. As a result, the
optimal peptide charge, at which the selectivity is maximized, is cell-density-dependent: it
increases and eventually becomes irrelevant as the cell density increases. This means that
optimization of peptide selectivity should reflect the biological setting of infected sites as
it determines the number of cells and peptides, Neen and IV, respectively.

It is worth noting that neither N nor NV, is constant in time in a biological setting.
In particular, how N changes with time is a key factor in determining the bactericidal
activity of the peptide LL37 [I 16]. While not all features of model membranes apply to liv-
ing cells, the cell density dependence of peptide activity and selectivity remains applicable
for a given value of N, at least approximately. It will be desirable to mimic the biologi-
cal setting in theoretical considerations beyond the recent effort, i.e., the (meanfield-like)
kinetic reaction approach in Ref. [116]. We leave this for future work.

To further clarify the cell-density dependence of peptide activity and selectivity, we have
also introduced an effective Langmuir model (subsec. 3.3.2). In this model, a Langmuir
binding energy W* is extracted from our full analysis at P/L = P/L* (see the table
in Fig. 3.13). This model enables us to estimate systematically peptide selectivity as a
function of Ciey. The value of W* can be measured experimentally by fitting data to
Eq. 3.37 for a conveniently-chosen cell density. Eq. 3.37 or Eq. 3.34 can then be used to
examine peptide activity and selectivity as a function of Ceqy.

In conclusion, a combined effort between experiments and theoretical modelling (physi-
cal understanding of peptide activity and selectivity, as described in this work), will benefit
our endeavour in searching for potent peptide antibiotics. Indeed, bacteria have developed
strategies to counteract the action of AMPs, for instance, by reducing the surface charge
density on their membrane [16]. How will this influence peptide selectivity and how should
the peptide parameters be adjusted to restore the selectivity? The use of predictive models
together with available data (e.g., those for P/L*) will be useful for identifying the peptide
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parameters for their enhanced activity under different conditions (e.g., diminished surface
charge density and different salinity).

3.5 MATLAB Scripts

%» Initional Input

clc

clear all

global Q b A al alph kapain Par_Shape AreaEx Cp Ct apef 1b
AsI AsS m SM vp V KA e Rs Rp Ensm ApI ApS Ohshima =z
RandomCoil attraction_z zs E_insertion deltaFp...
Bessel_phiOO_Rp Bessel_phiOO_Rs Rpp AppIl lambda
Bessel _F_DH_RING Bessel _F_DH_DISK Bessel_Fp_DH_Mem
Bessel _E_DH_RING Zone_inter pep_pep wsc_wsc Mo

% General Variable

Eps = 8.85e-12; hVacume permitivity (coloum~2/Jm)
T = 300; shTempreture (kelvin)

Kb = 1.38%1e-23; %Boltzmann Constant (J/kelvin)

Dw = 80; %Water dielectric constant

NA = 6.023*%x1e+23; hAvagadro's number

V = 1e27; %Total volume in (A~3)

e = 1.6e-19; hElectron Charge

1b = e"2%x1e+10/ (4*pi*Eps*DwxKb*T) ; %Bejurium Length (A)
kapain = 0.1; hInverse of Debye Length in (1/A)
C_0 = kapain~2/(8*pixlb); ’Salt Concentration of 0.1(mol/L)
V = 1e27; %Total volume in (A~3)

D = 200%10; %Diameter of Large vesicles

%D= 200nm *10 to get angstrom
V_vesicle = 4/3%pix(D/2)"3;%Volume of a large Unilamilar
%LUV D=Diameters= 100nm - 5microm
KA = 0.578; LKbT /A2
N_cell = 2; %Number of target cell's species
% (1=bacteria, 2=Host_ND)
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Par_Shape = 1;%25/(4*pi); ’%Shape parameter for circular

%disk of model peptides

E_insertion = -14; 7% (KbT) JHydrophobic energy
%(-8.9Kcal/mol * 1.688 =KbT)
AreaEx = 0; %Area Exclusian on for value=1
hand off for value=0
Ensm = 0; % canonical or grand canonical
Ohshima = 1; %» Ohshima Free energy calculation
z = 3; % Gap of peptide and membrane (A)
zs = 2.5;
RandomCoil = O0; % Randomcoil or thin peptide disk
hfor bulk energy calculation (Fp)
b = 4.1; % Amino acid size
% (bonding length in extended case)
attraction_z = O0; % Attraction energy btw.lipid-
peptide
pep_pep = O0; % peptide repulsion on=1 or off=0
Zone_inter = 1; % Z1-Z2 interaction on=1 or off=0
wsc_wsc = 1; % WSC-WSC interaction on=1 or off=0
Mo = 3; % model 2 (PB) or model 3 (DH)
Sho=1; % host cell modell=0 or model2(3)=1
%Melittin
ApI = 400; % physical area of peptide (I) A~2
ApS = 400; % physical area of peptide (S) A~2
SM_1 = 1/400; %» number of sites per area 1/A°2
Q_1=5; % peptide's charge unit
vp_1l = 3373; % volume of peptide in bulk A~3
hHost Cell NO Lipid Demixing
Ch_ND = [1e-3, 6el, 6e2, 2e3, 6e3, 2e4, 6e4, 6e5, 6e6,
6e7, 6e8, 6e9 6el0 6ell, 6el2, 6e13]; 7 density (cells/mL)

%Ch_ND = [1e-3, 6el, 6e2, 2e3, 6e3, 2e4, 6ed, 6e5, 6e6,

L_Ch_

%6e7 ,4.5e8, 9e8, 1.5e9, 3.6e9, 7.2e9, 1.44e10,...
%2.88e10 ,6el1l, 6el12, 6el13]; % Pure Vesicle/mL
ND = length(Ch_ND);
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Ahost_ND = 12e-12%1e20; %Surface area (m~2%1e20 = A~2)

hAhost _ND = pix*8e6; % vesicle diameter D= 200 nm
alh_ND = 74; %64.7; % lipid area A~2
alphh_ND = 0.05;

Vh_ND = 80%x1e-15%x1e-3%1e30; % Volume of RBC is 80-100

% femtoliter ,converted to A~3

%Bacterial Cell

Cb = [1e-3, 6el, 6e2, 2e3, 6e3, 2e4, 6ed, 6e5,2e6,...
6e6, 6e7, 6e8, 6e9]; Jdensity(cells/mL)

L_Cb = length(Cb);

Ab = 2x6e-12%1e20;%2*6e-12%x1e20; pix*8e6;

%Surface area (twice of E-coli) (m~2*1e20 = A~2)

alb = 71;%67.3;%71; %65 % lipid area
alphb = 0.3; % charged lipid percentage
Vb = 1*x1e-18%1e30; % Volume of E-coli is 0.7-1

% Micrometer "3, converted A~3

hhhhhhhhhhhh Host Cell (No Lipid Demixing) Wh%%%hh%hh%hhh%%%Nb%

%» nt=1 Ch_ND = 1e-3 (cells/mL) Single target

c_micHO_ND = [1 5 10 40 70 90 100 300 600 800 1e3 1.2e3
1.3e3 1.5e3 1.8e3 1le4d];

LHO_ND = length(c_micHO_ND);

% nt=2 Ch_ND

= 6el
c_micH1_ND =[

3.79094e-3 9.82101e-3 2.05505e-2

4 .5557e-2 6.25669e-2 9.73273e-2 0.1205

0.143712 0.1617 0.203657 0.279167

0.372308 0.485207 0.620045 0.964523 1.17878...
1.4242 1.70321 2.37187 2.76657 3.20495

3.6 6 7 8 10 20 40 60 80 90 95 110 130 140 150];
LH1_ND = length(c_micH1_ND);

% nt=3 Ch_ND = 6e2
c_micH2_ND =[1.2e-5 1.2498e-5 1.35e-5 1.4e-5 1.5e-5
1.899e-5 2.34e-5 3.3e-5 3.5e-5 3.6e-5 3.7e-5...
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.8e-5 4e-5 be-5 8.876e-5 le-4 1.53e-04
.55e-4 3.788e-4 6e-4 9.9101e-4 3.79094e-3...
.82101e-3 2.05505e-2 4.5557e-2 6.25669e-2...
.73273e-2 0.1205 0.143712 0.1617 0.203657...
.279167 0.372308 0.485207 0.620045
.964523 1.17878 1.4242 1.70321 2.37187
.76657 3.20495 3.6 6 7 8 10 20 40 60

80 90 95 110 130 140 150 160];
LH2_ND = length(c_micH2_ND);

N OO O O+ W

% nt=4 Ch_ND = 2e3
c_micH3_ND_1=[6e-9 5e-8 9.467e-8 9.896e-8 1.398e-7

1.894e-7 2.3e-7 3.7e-7 6.764e-7 9.598e-7
.2e-6 1.8e-6 2.1e-6 2.897e¢-6 3.2e-6
.198e-6 6.789e-6 9.854e-6 1.2498e-5
.525e-5 3.3e-5 3.4e-5 3.5e-5 4.119e-5
.22e-5 be-5 7e-5 8.876e-5 1le-4 1.53e-04
.788e-4 6e-4 9.9101e-4 3.79094e-3 9.82101e-3...
.05505e-2 4.5557e-2 6.25669e-2 9.73273e-2
.1205 0.143712 0.1617 0.203657 0.279167
.372308 0.485207 0.620045 0.964523 1.17878...
L4242 1.70321 2.37187 2.76657 3.20495

3.6 6 7 8 10 20];

LH3_ND_1 = length(c_micH3_ND_1);

,F O ON WD - N R

% nt=5 Ch_ND = 6e3
c_micH3_ND_2=[9.467e-8 9.896e-8 1.398e-7 1.894e-7 2.3e-7...
.7Te-7 6.764e-7 9.598e-7 2.598e-6 2.789e-6...
.198e-6 5.89e-6 6.789e-6 9.854e-6 1.2498e-5...
.525e-5 3.4e-5 3.5e-5 4.119e-5 5e-5 6e-5
.6e-5 7e-5 8.876e-5 le-4 1.8e-04 3.788e-4...
6e-4 9.9101e-4 3.79094e-3 9.82101e-3
2.05505e-2 4.5557e-2 6.25669e-2 9.73273e-2
0.1205 0.143712 0.1617 0.203657 0.279167
0.372308 0.485207 0.620045 0.964523];
LH3_ND_2 = length(c_micH3_ND_2);

o R S V)

% nt=6 Ch_ND = 2e4
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c_micH4_ND_1=[2.3e-7 3.7e-7 6.764e-7 1.2e-6 3.5e-6...
.8e-6 8.79e-6 1.2498e-5 1.897e-5 2.8e-5...
.96e-5 3.29e-5 3.5e-5 3.8e-5 be-5 1e-4
.24e-4 1.4e-4 1.6e-4 1.8e-4 2e-4 2.3e-4
.45e-04 2.7e-4 3.07e-4 3.1e-4 3.2e-4
.3e-4 3.5e-4 3.788e-4 3.89e-4 4.2e-4
.4e-4 4.7e-4 4.8e-4 5.1e-4 5.178e-4
.5e-4 5.7e-4 9.82101e-3 2.05505e-2
.5557e-2 6.25669e-2 9.73273e-2 0.143712...
.203657 0.279167 0.372308 0.485207
.620045 0.964523 1.17878 1.4242 1.70321...
.37187 2.76657 3.20495 3.6 6 7 8 10 20

30 40 60 70 100];
LH4_ND_1 = length(c_micH4_ND_1);

N OO+ O dWNDEFENO

% nt=7 Ch_ND = 6e4

c_micH4_ND_2=[2.3e-7 3.7e-7 6.764e-7 1.2e-6 1.2498e-5

.897e-5 2.8e-5 2.96e-5 3.29e-5 3.5e-5

.9e-5 be-5 8.876e-5 1le-4 1.2e-4 1.4e-4

.6e-4 1.7e-4 1.8e-4 2e-4 3.07e-4 3.2e-4

.3e-4 3.5e-4 3.788e-4 3.89e-4 4.2e-4

.27e-04 4.4e-4 4.7e-4 4.8e-4 5.1e-4

.178e-4 5.5e-4 5.7e-4 9.82101e-3

.05505e-2 4.5557e-2 6.25669e-2

.73273e-2 0.1205 0.143712 0.1617 0.203657...

.279167 0.372308 0.485207 0.620045

.964523 1.17878 1.4242 1.70321 2.37187...
2.76657 3.20495 3.6 6 7 8 10 20 30 40 60 70];

LH4_ND_2 = length(c_micH4_ND_2);

O O ON LD WE b -

% nt=8 Ch_ND = 6eb

c_micH5_ND=[1.5e-3 2.5e-3 2.8e-3 2.9e-3 2.99e-3 6e-3
7.5e-3 9.82101e-3 2.05505e-2 4.5557e-2
6.25669e-2 9.73273e-2 0.143712 0.203657
0.279167 0.372308 0.485207 0.620045
0.964523 1.17878 1.4242 1.70321 2.37187...
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2.76657 3.20495 3.6 6 7 8 10 20 40 60 80
90 95 110 130 140 150 160];
LH5_ND = length(c_micH5_ND) ;

% nt=9 Ch_ND = 6e6
c_micH6_ND=[0.01 0.014 0.017 0.023 0.026 0.0276
0.0346 0.0467 0.0578 0.0768 0.1 0.3 0.7...
0.9 134579 10 15 20 40 60 80 90
95 110 130 140 150 160];
LH6_ND = length(c_micH6_ND);

% nt=10 Ch_ND = 6e7
c_micH7_ND=[0.01 0.014 0.0162 0.0165 0.017 0.026 0.03...

0.04 0.05 0.07 0.1 0.13 0.17 0.2 0.26 0.27...

0.275 0.2755 0.277 0.279 0.289 0.32 0.35
0.4 0.7 0.9 1 3457 9 10 15 20 30 40
50 60 70 80 90 100 200 300 400 500 600
700 800 900 1000 2000 3000];
LH7_ND = length(c_micH7_ND);

% nt=11 Ch_ND = 6e8

c_micH8_ND=[0.143712 0.16 0.1619 0.1624 0.17
0.18 0.25 0.372308 0.485207 0.620045
0.964523 1.17878 1.4242 1.70321 2.3718
2.75 2.83925 2.899 3.20495 3.6 4 5 7.734...
7.789 8 9 10 20 30 40 50 60 70 80 90 100 ...
200 300 400 500 600 700 800 900 1000 2000];

LH8_ND = length(c_micH8_ND);

% nt=12 Ch_ND = 6e9

c_micH9_ND=[2.9 3.7 3.8 4 5 7 9 10 12 15 20 27.5 28
30 30.169997 31 32 35 37 40 43 50 54 76
80 90 100 200 300 400 500 600 700 800
900 1000 2000 3000];
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LH9_ND = length(c_micH9_ND) ;

bl bl h bt hthhhhhhh Bacteria %hk%hhthhhthhhthhhhhhhhhhhh
hhhhhhh nt=1 Cb=1e-3 (cells/mL) Single target
c_micB0=[3e-3 6e-3 9e-3 2e-2 4e-2 6e-2 Te-2
8e-2 2e-1 4e-1 8e-1 2 5 9 20 40];
LBO = length(c_micBO0);

hhhhhhh nt=2 Cb=6el
c_micB1=[2.05505e-2 4.5557e-2 6.25669e-2
9.73273e-2 0.143712 0.203657 0.279167
0.372308 0.485207 0.620045 1.17878 1.4242...
1.70321 2.01826 2.37187 2.76657 3.20495
3.6 6 7 8 10 20 30 40 50 60 80 90 100 150 200];
LBl = length(c_micB1);

%hhhh%% nt=3 Cb=6e2

c_micB2=[3.79094e-3 9.82101e-3 2.05505e-2 4.5557e-2
6.25669e-2 9.73273e-2 0.143712 0.203657
0.279167 0.372308 0.485207 0.620045
0.964523 1.17878 1.4242 1.70321 2.01826 3.6...
6 7 8 10 20 30 40 50 60 80 90 100 150 200 250];

LB2 = length(c_micB2);

%hhhhh?h nt=4 Cb=2e3;

c_micB3_1=[0.372308 0.485207 0.620045 0.779055
0.964523 1.17878 1.4242 1.70321 2.01826
2.37187 2.76657 3.20495 3.6 6 7 8 10 20
30 40 50 60 80 90 100 150];

LB3_1 = length(c_micB3_1);

hh%hh%hhlh nt=5 Cb=6e3;

c_micB3_2=[0.372308 0.485207 0.620045 0.779055
0.964523 1.17878 1.4242 1.70321 2.01826
2.37187 2.76657 3.20495 3.6 6 7 8 10 20
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30 40 50 60 80 90 100];
LB3_2 = length(c_micB3_2);

%hhhhhnl nt=6 Cb=2ed;

c_micB4_1=[0.372308 0.485207 0.620045 0.779055 0.964523...
1.17878 1.4242 1.70321 2.01826 2.37187
2.76657 3.20495 3.6 6 7 8 10 20 30 40 50
60 80 90 100];

LB4_1 = length(c_micB4_1);

%hhhhhhh nt=7 Cb=6e4;

c_micB4_2=[0.372308 0.485207 0.620045 0.779055
0.964523 1.17878 1.4242 1.70321 2.01826
2.37187 2.76657 3.20495 3.6 6 7 8 10 20 30
40 50 60 80 90 100];

LB4_2 = length(c_micB4_2);

%%h%%hh%h% nt=8 Cb=6e5;
c_micB5=[4.68e-4 4.8e-4 5e-4 6e-4 7.53e-4 8.5e-4 9.9101e-4

1.3e-3 1.5e-3 2e-3 3e-3 3.79e-3 9.82101e-3
2.05505e-2 4.5557e-2 6.25669e-2 0.1 0.12 0.1208...
0.143712 0.15 0.16 0.1623 0.17 0.203657
0.2 0.7 0.8 0.964523 1.3];

LB5 = length(c_micB5);

hhhhhh%h nt=9 Cb=6e6

c_micB6=[0.279167 0.372308 0.485207 0.620045 0.779055...
0.964523 1.17878 1.4242 1.70321 2.01826 2.37187...
2.76657 3.20495 3.68961 4.22322 4.80845 5.44803...
6.14471 6.90127 7.72052 8.60531 9.55852 10.583...
15.4534 20 30 40 50 60 70 80 90 100 1;

LB6 = length(c_micB6);

%hhh%khh nt=10 Cb=6e7
%Non-Comp, Comp Ch=Cb
c_micB7=[1.9156e-4 1.9189e-4 1.9237e-4 1.987e-4 2.498e-4...
3.12e-4 3.768e-4 4.56e-4 5.876e-4 6.2e-4 2e-3
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3e-3 5e-3 7e-3 8e-3 1e-2 1.5e-2 2e-2 2.5e-2
3.1e-2 3.298e-2 3.3783e-02 3.396e-2 3.59e-2
4.55e-2 5.3e-2 5.9e-2 6e-2 7e-2 9.7e¢-2 0.1 0.12
0.143712 0.1543 0.203657 0.2056 0.279167 0.372308

0.485207 0.620045 0.779055 0.964523 1.17878 1.4242

1.70321 2.01826 2.37187 2.76657 3.20495 3.68961
4.22322 4.80845 5.44803 6.14471 6.90127 7.72052
8.60531 9.55852 10.583];

LB7 = length(c_micB7);

hhhhh%h%h nt=11 Cb=6e8

c_micB8=[2e-2 3e-2 3.5e-2 4e-2 5.2e-2 6.1e-2 7.239e-2
9.7e-2 0.143712 0.15234 0.213657 0.3198 0.3375

.3395 0.35868 0.3789669 0.4575 0.48 0.55 0.598

.620045 0.65 0.779055 0.964523 1.17878 1.4242

.70321 2.01826 2.37187 2.76657 3.20495 3.68961

.22322 4.80845 5.44803 6.1 6.9 7.72052 8.60531
9.55852 10.583 15.4534 20 30 40 50 60 70 80 90
100 120 130 160 200 250 300 500];

LB8 = length(c_micB8);

>~ O O

hhhhhh’ nt=12 Cb=6e9
c_micB9 = [ 7.5 8 8.5 9 9.5 10 10 13 15 18 20 25 30];
LB9 = length(c_micB9);

Dot Tl o ot Tolo o to toToTofo T toTo To fo o To To To fo o To 1o To To o T 1o To To o T T 16 To o o 1o 1o To o o %o %o T o o o
%Bacteria (e_H =-14)

x0B0 = [7e-8 9e-8 0.5 0.3]; % nt=1 Cb = 1e-3
x0B1 = [7e-8 9e-8 0.5 0.3]; % nt=2 Cb = 6el
x0B2 = [2e-6 6e-7 0.5 0.3]; % nt=3 Cb = 6e2
x0B3_1 = [1le-6 1e-8 0.5 0.3]; % nt=4 Cb = 2e3
x0B3_2 = [1le-4 6e-4 0.3 0.3]; % nt=5 Cb = 6e3
x0B4_1 = [2e-10 6e-10 0.5 0.3]; % nt=6 Cb = 2e4
x0B4_2 = [1e-9 1e-8 0.5 0.3]; % nt=7 Cb = 6e4
%x0B5 = [le-5 1le-5 0.4 0.4]; % nt=8 Cb = 6eb
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%x0B5 = [2e-4 4e-4 0.5 0.5];
%x0B5 = [5e-7 6e-8 0.5 0.5];
%x0B5 = [2e-11 1e-12 0.3 0.2];
%x0B5 = [1le-4 1e-5 0.3 0.3];
x0B5 = [5e-6 1le-7 0.3 0.3];
%x0B5 = [be-3 1e-3 0.7 0.7];
x0B6 = [Te-7 8e-7 0.5 0.3];
x0B7 = [7e-8 9e-8 0.5 0.3];
%x0B8 = [2e-13 4e-13 0.1 0.2];
x0B8 = [5e-5 1le-6 0.3 0.1];
%x0B8 = [1e-9 1le-10 0.3 0.1];
x0B9 = [7e-8 9e-8 0.5 0.3];

% %Host Cell NO Lipid Demixing

xOHO_ND = [6e-5 3.9e-4];
%xOHO_ND = [l1le-6 1e-8];
%x0HO_ND = [le-8 1e-10];
%xOH1_ND = [1le-10 1e-197;
xOH1_ND = [le-7 1e-8];
%xOH2_ND = [1le-10 1e-18];
xOH2_ND = [le-7 1e-8];
%xOH3_ND_1 = [5e-9 8e-12];
xOH3_ND_1 = [le-6 1le-9];
%x0H3_ND_2 = [5e-9 8e-12];
xOH3_ND_2 = [le-6 1e-18];
%x0H4_ND_1 = [1le-7 1e-10];
xOH4_ND_1 = [le-6 1e-9];
%x0H4_ND_2 = [le-7 1e-10];
%x0H4_ND_2 = [le-6 1e-9];
x0H4_ND_2 = [le-4 1e-18];
%»xOH5_ND = [5e-9 8e-12];
%x0OH5_ND = [le-6 1e-9];
xOH5_ND = [1.2e-4 1e-30];
%xOH5_ND = [8e-6 1e-9];
%xO0OH5_ND [8e-6 1e-9];
%xOH6_ND = [le-6 4.7e-9];
xOH6_ND = [le-6 1e-9];
%xOH7_ND = [le-6 1e-9];

% MO.3.d

% Mo.2c
% nt=9 Cb = 6e6
% nt=10 Cb = 6e7
% nt=11 Cb = 6e8
% nt=11 Cb = 6e8
% nt=12 Cb = 6e9
% nt=1 Ch = 1e-3 (cells/mL)
% alph=0
% nt=2 Ch = 6el
% nt=3 Ch = 6e2
% nt=4 Ch = 6e3
% nt=5 Ch = 6e3
% nt=6 Ch = 6e4
% nt=7 Ch = 6e4
% nt=8 Ch = 6e5 Ah = 17Ah
%alph=0.05
%alph=0
%nt = 8 Ab = Ah
% nt=9 Ch = 6e6 le-4 4.7e-9
% nt=10 Ch = 6e7
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xOH7_ND = [1e-9 1le-11]; % nt=10 Ch = 6e7
xOH8_ND = [9e-5 1e-9]; % nt=11 Ch = 6e8 Q=6,5
%xOH8_ND = [1e-7];

%xOH8_ND = [7e-6 2e-9]; % nt=11 Ch = 6e8 Q=4
%»xO0OH8_ND = [9e-9 9e-12];

xOH9_ND = [9e-9 9e-12]; % nt=12 Ch = 6e9

Tt T ToToTo T ToToToToToTo 1o 1o %o To To 1o To To 16 To To 1o %o To To 1o %o o To 1o 1o o To 1o 1o o To To 1o %o To To 16 %o o To 16 %o o To 7o %o o o o

hMatrix for various Bacterial target cell's concentration
c_micB={c_micBO,c_micBl, c_micB2, c¢c_micB3_1, c_micB3_2,
c_micB4_1,c_micB4_2,c_micB5, c_micB6, c_micB7,

c_micB8, c_micB9}; %Peptide's concentrations
LpB=[LBO, LB1, LB2, LB3_1, LB3_2, LB4_1, LB4_2,LB5,
LB6, LB7, LB8, LB9]; %Peptide's density # elements

x0B=[x0B0; x0B1; x0B2; xO0OB3_1; x0B3_2; x0B4_1; x0B4_2;
x0B5; xO0B6; xO0B7; x0B8; x0B9]; %Initional inputs

hMatrix for various Host No Lipid Demixing concentration
c_micH_ND={c_micHO_ND ,c_micH1_ND,c_micH2_ND,
c_micH3_ND_1, ¢c_micH3_ND_2,c_micH4_ND_1,
c_micH4_ND_2, c_micH5_ND, c_micH6_ND,
c_micH7_ND, c_micH8_ND, c_micH9_ND};
LpH_ND=[LHO_ND, LH1_ND, LH2_ND, LH3_ND_1, LH3_ND_2,
LH4_ND_1, LH4_ND_2, LH5_ND, LH6_ND, LH7_ND,
LH8_ND, LH9_ND];
xOH_ND=[xOHO_ND; =xOH1_ND; xOH2_ND; xOH3_ND_1;
xOH3_ND_2; xOH4_ND_1; xOH4_ND_2; xOH5_ND;
xOH6_ND; xOH7_ND; xOH8_ND; xOH9_ND];

Tl ToToTo o ToTo 1o %o %o To 1o 1o foTo To 1o o To To 1o o To To 16 %o To To 1o 1o fo To 1o 1o o To To 1o o To To 1o o o To 16 %o o To 1o To o o o

h———mmmmmmmm Options for minimization function ---
optionsB=optimset ('Display','iter-detailed’,
'"Algorithm', 'interior-point',

'"InitTrustRegionRadius',0.5,
'"InitBarrierParam' ,0.1 ,
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'"FunValCheck', 'off','TolCon ', 1e-8,...

'MaxFunEvals' ,7e3 , 'MaxIter',1e8,...
'"TolX',1e-20, 'TolFun' ,1le-15,
'Hessian', 'bfgs');

%» NO Demixing (Host cell)
optionsHND=optimset ('MaxFunEvals', 5e3, 'MaxIter', .
1e8, 'TolX', 1le-12, 'TolFun' , 1le-12);

options_Lipid = optimset('Display','iter-detailed’,...
"Algorithm', 'interior-point',...
'"InitTrustRegionRadius',1e-3, ...
'"InitBarrierParam',1e-3 ,
"FunValCheck', 'off','TolCon ',...
le-6, 'MaxFunEvals' ,5e3 ,
'MaxIter',1e8,'TolX',1e-15,...
'"TolFun',le-6, 'Hessian', 'bfgs',...
'GradObj','off', 'GradConstr', 'off')

)

Dot ToTo 1o ToTo 16 %oTo To 1o 1o fo To 1o 1o fo To 1o 1o o To To 1o o To To 76 1o Jo To 16 To o To 1o 1o o To 1o 1o o To 1o 1o o To To 1o Fo o To 7o %o o o 7o o
% Defining general variables

C = {Cb, Ch_ND}; 7%Cell density cells/mL
al = [alb alh_ND];

alph = [alphb alphh_NDIJ;

A = [Ab Ahost_ND];

V_cell = [Vb, Vh_ND];

Q_p= Q_1;

vp_p = vp_l;

apef_p = apef_1;

SM_p = SM_1;

c_mic = {c_micB, c_micH_ND};

x0 = {x0B,xOH_ND};

Lp = {LpB, LpH_ND};

options = [optionsB, optionsHND];
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%Defining variables for final output of results

TP_LI = cell(L_Cb,N_cell);

TP_LS cell(L_Cb,N_cell);

Tsigmal = cell(L_Cb,N_cell);
TsigmaS = cell(L_Cb,N_cell);
TalphlI = cell(L_Cb,N_cell);
TalphlS = cell(L_Cb,N_cell);

MIC_MHC zeros (L_Cb,N_cell+1);
MIC_MHCC = zeros(L_Cb, N_cell+1);
Selectivity = zeros(L_Cb, 4);

ToToloToTo oo oo To oo loToToToToTo %o %o %ol holoToToToTo To To To To To To To To To To 1o 1o 1o To 1o To 1o 1o %o %o %o %o %o o

hMinimization & Plotting Surface Coverage

%“Bacteria or Host cell?
for m =1 %1:N_cell

X0t x0{1,m};
c_t C{1,m};
Lt = length(c_t);
Lpt = Lp{l,m};
c_pt = c_mic{1l,m};
Tresholdt = Treshold(m) ;
K = vp*xexp(-w(m)/(KbxT));

rp = sqrt (ApI/pi);

lambda = al(m)/(2*pi*lb*alph(m));
AsI = pix(rp+lambda) "2;

AsS = AsI;

Rp=sqrt (ApI/pi);
Rs=sqrt (AsI/pi);
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hpeptide's self-energy difference
deltaFp= delFp(Q,ApI); ’%delFp(Q,ApI);

I Bessel Integral
Bessel_phiOO_Rp=...
integral (@(k) besselj(1l,k.*Rp)./sqrt(k. 2+kapain~2),0,
inf) ;
ifm==1
Bessel_phiOO_Rs=...
integral (@(k) besselj(1l,k.*Rs)./sqrt(k. 2+kapain~2),0,
inf) ;
Bessel _F_DH_RING=...
integral (@(k) (Rs.*besselj(l,k.*Rs)-Rp.*xbesselj(1l,k.*Rp
)) ...
.72./(k.*sqrt (k. "2+kapain~2)), 0,inf);
Bessel _F_DH_DISK=...
integral (@(k)besselj(1,k.*Rs)."2./...
(k.*sqrt (k. 2+kapain~2)), 0,inf);
Bessel _E_DH_RING=integral (@(k)
((Rs.*besselj(1l,k.*Rs)-Rp*besselj(1,k.*Rp)) .*Rp...
.xbesselj(1,k.*Rp))./(k.*sqrt (k. 2+kapain~2)), 0,inf);
Bessel _Fp_DH_Mem=...
integral (@(k)besselj(1,k.*Rp)."2./...
(k.*xsqrt (k. 2+kapain~2)), 0,inf);
end

% Cell density?
for nt =8%1:Lt
Ct = c_t(nt)*1e-24; %cell concentration (cells/A

~3)
c_p = c_pt{l,nt}; sPeptide's density
L = length(c_p); % # of peptide's density
X0 = X0t(nt,:); hInitial guess
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P_LI = zeros(L+1,2);
P_LS = zeros(L+1,2);
sigmal = zeros(L+1,2);
sigmaS = zeros(L+1,2);
alphl1_I = zeros(L+1,2);
alphl1_S = zeros(L+1,2);

Energy = zeros(L+1,4);

%Peptide Concentration in Bulk?
for n = 1%:L
c_p(n) = be-2 ;
Cp = c_p(n)*(1le-6)*NA*x(1e-27);
% bulk peptide concentration (molecules/A~3)

%% Different Solver for minimizations and root finding

% Azadeh Model-NO Lipid Demixing for Host cell

if

== 2 && Sho==
Max = [SM,SM];
Min = [0,0];

[x, fval, exitflagl=fmincon(@(x)Lipid(x),...
X0,[1,01,01,0],Min,Max, 'constraintcom_Lipid"'...
,options_Lipid);

SSL =[Lipid(x), Lipid(x+0.00001),Lipid(x-0.0001)]
x0 = x

%» Shokoofeh Model-NO Lipid Demixing for Host cell

elseif

m ==2 && Sho==

[x, fval, exitflag]l=...

fminsearch (@(x) competeE(x) ,X0,options (3));

SSL =[competeE(x), competeE(x+0.0001),competeE(x
-0.0001)1
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xequ = [x(1),x(2)];
Aws = (l+xequ(l)*apef(m))/xequ(l);
Rws = sqrt (Aws/pi);

[delFWSI] = WSC_ISND(xequ(1l), xequ(2))
end

[x, fval, exitflag] = fmincon(@(x)competeE(x),...
X0,[1,01,01,01,[0;0;0;0],[SM(m) ;SM(m) ;1;1]1, ...
'constraintcom',options(1l));

gH =[competeE(x), competeE(x+0.00001),competeE(x-0.0001)]

xequ = [x(1),x(2),x(3),x(4)];
Aws = (1+xequ(1)*apef(m))/(xequ(1l) + xequ(2));
Rws = sqrt(Aws/pi);

if Mo ==

[delFWSI,delFWSS] =

WSC_IS_DH(xequ (1), xequ(2), xequ(3), xequ(4))
elseif Mo ==

[delFWSI,delFWSS] = ...

WSC_IS(xequ(l), xequ(2), xequ(3), xequ(4))
end

%hhhCollecting Minimized values of x(1), x(2), x(3), x(4) for n
hSurface Coverage for Insertion mode (I)

sigmaI(1,2) = c_t(nt);

sigmal(n+1,1) = c_p(n);

sigmal(n+1,2) = x(1);

P_LI(1,2) = c_t(nt);
P_LI(n+1,1) c_p(n);
P_LI(n+1,2) x(1)*al(m);

hSurface Coverage for Binding mode (S)
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sigmaS(1,2) = c_t(nt);
sigmaS(n+1,1) = c_p(n);
sigmaS(n+1,2) = x(2);

P_LS(1,2) = c_t(nt);
P_LS(n+1,1) = c_p(n);
P_LS(n+1,2) x(2)*al(m);

if m "= 2
alph1_I(1,2) = c_t(nt);
alphl_I(n+1,1) = c_p(n);
alph1_I(n+1,2) x(3);

alph1_S(1,2) = c_t(nt);
alph1_S(n+1,1) c_p(n);
alphl_S(n+1,2) x(4);

end

Energy(1,1) = c_t(nt);

Energy (n+1,1) = c_p(n);

Energy(n+1,2) = delFWSI;
hEnergy (n+1,3)= delFWSS;
Energy(n+1,4) = Rws;

Dol ToTo 1o %o ToTo 1o %o To To 1o %o hoTo 1o 1ol To 1o 1o o To To 1o Fo To To 1o 1o o To 1o %o o To 1o 1o o To 1o 1o o To To 16 %o o To 76 %o o

end

% Saving final outputs for various target cell's density

TP_LI{nt,m} = P_LI;

TP_LS{nt,m} = P_LS;

TsigmaI{nt,m} = sigmal;

TsigmaS{nt,m} = sigma$S;

if m "= 3
Talph1I{nt,m}
TalphiS{nt,m}

alphl_T;
alphl_S;

end
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if m == 1
FileNameI = sprintf('%s_%d.%s','P_LIB',nt, 'txt');

elseif m == 2

FileNamelI = sprintf('%s_%d.%s','P_LIH_ND',nt, 'txt');
end
dlmwrite (FileNameI, P_LI, 'delimiter', '\t' , 'precision', 10)

%Plotting surface coverage

if m == 1
TitleName =
'\fontsize{16}Bacterial Surface coverage Vs. Peptide
Concentration';
AxisName = {'P/LB', 'Fractional Peptide Occupancy'};

elseif m == 2
TitleName = '\fontsize{16}HostCell Surface coverage Vs.
Peptide Concentration, No Lipid Demixing';
AxisName = {'P/LH', 'phi_H'};
end
if AreaEx == 1
linestyle = '—--"';
elseif AreaEx == 0
linestyle = '-';
end

figure (3+g)

ColorSet = varycolor (Lt);

semilogx(c_p ,P_LI(2:end,2),linestyle,'LineWidth',1.2,'Color',
ColorSet (1,:))

title({TitleNamel}) ;

ylabel (AxisName{1l,g}, 'fontsize',18, 'fontweight','b');

xlabel ('c_{p}(\muM) ', 'fontsize',20, 'fontweight','b');

hold on
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for

end

P_LI

i= 2:3

figure (10)

ColorSet = varycolor (Lt);

plot (Energy(2:end,4) ,Energy(2:end,i),linestyle,'LineWidth
',1.2,"'Color',ColorSet(1,:))

title({'\fontsize{18}WSC Free energy Vs. distance'});

ylabel ('deltaF_{WSC} (KbT)','fontsize',18,'fontweight','b'
)

xlabel ('R_{WSC} (A)','fontsize',18, 'fontweight','b');

hold on

o 1o Tl To 1o %ol To 1o 1o o To To 1o hoTo To 16 %o To To 76 1o Jo To 1o 1o o To To 1o o To To 76 %o To To 76 %o o To 7o %o o To 1o 1o %o o

end
end
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Chapter 4

Protection role of LPS brush:
How core oligosaccharide and
O-antigen reduce adsorbed
membrane-rupture peptides

4.1 Introduction

Bacteria are conventionally divided into two major groups: gram-positive and gram-
negative. While gram-positive bacteria contain only plasma membrane mostly composed of
phospholipids, gram-negative bacteria are enclosed with an additional membrane, called the
outer membrane (OM). The OM is highly asymmetric in composition: while lipopolysac-
charide (LPS) is a main component of the outer layer, phospholipids are localized to the
inner one. LPS is a complex macromolecule that includes three main structural compo-
nents: Lipid A, the core oligosaccharide, and the O-antigen. Lipid A consists of a phos-
phorylated diglucosamine group and 4-7 acyl chains that are anchored to the hydrophobic
region of the inner phospholipid layer and construct the OM bilayer. Lipid A is covalently
bonded to the core oligosaccharide chain of 8-12 sugars. The inner core is highly anionic
in nature due to the very phosphorylated oligosaccharide region, while the outer core is
hydrophilic. O-antigen or O-polysaccharide chains form the furthermost part of the LPS
that encounter the extracellular environment. It consists of several types of sugar units
that are repeated in an approximate length around 2-11 nm [117] (i.e., corresponding to
8-14 O-antigen repeats) and acts as a hydrophilic-coating surface.
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Several studies highlight the prominent role of the OM, especially the LPS layer in
reducing the susceptibility of Gram-negative bacteria to antimicrobials [16, 18, |.The
interaction of cationic antimicrobial peptides with these highly negatively-charged macro-
molecules (i.e. in a physiological condition, LPS carries 4-6 negative unit charges) can
inhibit the peptide’s entry into the inner plasma membrane and therefore prevent the
toxicity of antimicrobial agents [119]. Furthermore, the presence of the physiological con-
centration of divalent cations (Mg?*™ and Ca?") improves the integrity of the LPS layer
against antimicrobials by bridging the neighbouring anionic phosphate groups in the inner
core [62, |. Indeed, these divalent counterions induce a negative lateral pressure in the
plane of the phosphate groups and enhance the molecular packing order of LPS, stabilizing
the LPS layer [59, 62, 72, 121].

In contrast to the aforementioned OM-stabilizing factors, the protective role of un-
charged saccharide chains in the LPS layer has not been well understood. For simplicity,
it is a common practice to use mutant LPS in experimental studies of AMP-bacteria
interactions. But any variation in their molecular structures can cause a noticeable dif-
ference in these interactions, which in turn alter the peptide-induced permeability of the
LPS layer [62, ]. The mutant LPSs are different from those of wild types in their
molecular structure, such as the length and complexity of their hydrophilic polysaccharide
region. Rough LPS (Ra chemotype) does not have the O-antigen and deep rough LPS, Rd
chemotype, lacks both O-antigen and the outer polysaccharide core region. However, the
wild-type LPS contains O-antigen and entire core region. Experiments with hydrophobic
antibiotics [123, | and AMPs such as magainin [123, | show that rough and deep
rough mutants have lower antimicrobial resistance compared to the wild type.

While experiments clearly indicate that wild-type LPS is more resistant to antimicro-
bials compared to the mutant ones, its physical picture is entirely lacking. In fact, these
uncharged hydrophilic saccharide chains, elongated on top of the charged phosphorylated
headgroups, act like an end-grafted polymer brush onto the LPS inner core and protect
the OM from peptide’s inclusion as well as from their adsorption to the inner (plasma)
membrane. In other words, the brush element of the LPS layer provides extra protection
for Gram-negative bacteria by reducing the number of adsorbed AMPs onto the LPS in-
ner core and lowering their membrane-lysis activity [62, ]. In this work, we present a
course-grained model to capture the effect of the LPS brush and offer a quantitive basis
for the protective role of outer oligosaccharide and O-antigen chains.

For this purpose, we extend recently developed AMP-LPS models [13, 58, 59], where
the authors provide detailed computations of the interactions on LPS headgroup, to a
theoretical consideration of the wild-type LPS. Using the resulting model, we will carry
out a quantitative study of peptide adsorption to the outer layer of the bacterial OM.
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Recent publications [13, 58, 59] established a series of coarse-grained models, which ex-
plain the complex electrostatic interactions in the LPS-peptide-ion system, along with the
hydrophobic-inclusion of AMPs into the membrane. In fact, these models include the long-
range coulomb interactions among adsorbed peptides and divalent ions, which compete to
electrostatically bind to the anionic LPS headgroups (i.e. this is technically challenging
and cannot be addressed by a simple Langmuir-type binding model). While the aforemen-
tioned coarse-grained model [59] reflects the conventional biophysical experiments with
deep-rough-LPS bilayers, for a more realistic picture of AMP-bacteria interactions, it is
necessary to consider wild-type LPS and to take into account the physical influence of the
outer core oligosaccharide and O-antigen sugar groups in our analysis.

Our results demonstrate that the presence of LPS brush reduces the number of hy-
drophobically bound peptides, compared to the deep-rough LPS which lacks a saccharide
brush. This effect is mainly due to the steric barrier of the brush and polymer excluded-
volume effect, which imposes unfavourable free energy to the hydrophobically-bound pep-
tides on LPS interface. In fact, the hydrophobically-inserted peptide on the LPS surface
needs more free energy to succeed brush-induced osmotic pressure and creates a volume
inside of this dense polysaccharide environment.

4.2 Theoretical Approach

In order to derive the free energy of our LPS brush system, we first extend the deep rough
LPS model [59], in which AMPs adsorb to the anionic phosphate group of LPS molecules
and at the same time hydrophobically inserted inside the acyl chain region, to a wild-type
LPS with polymer brush on top of its inner oligosaccharide. In this work, we represent the
effect of the LPS brush as a free energy barrier to the peptide’s adsorption by estimating
the free energy cost of including peptides within the brush regime.

To this end, we introduce two modes for peptide adsorption (Fig. 4.1), known as pri-
mary and ternary [120, | adsorption. The total number of adsorbed peptides on LPS
brush is set by two processes; (i) N, peptides bind to the anionic LPS inner core (i.e.
latterly, it is referred by LPS surface), in primary adsorption, and (ii) N,p peptides be-
come captive within the brush, in ternary adsorption. It is worth mentioning that the
secondary adsorption mechanism, in which proteins bind to the outer edge of the brush
(outside the brush domain) due to van der Waals attraction to the surface, is very weak in
the case of our small AMPs; we will confine our considerations to the primary and ternary
adsorption. The theoretical analysis of Halperin et al. [10] on protein adsorption into the
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Figure 4.1: ~ AMP adsorption onto the LPS brush of the outer membrane (OM). Pep-
tides can be adsorbed onto the LPS brush by three mechanisms; primary, secondary and
ternary adsorption. Primarily peptides bind to the charged LPS inner core and Lipid A
(purple oval shape), while hydrophobically inserted into hydrophobic region of the OM.
In ternary adsorption, some fraction of peptides are trapped within the brush thickness,
due to weak brush-peptide attractive interaction. Secondary binding occurs at the outer
edge of the brush, as a result of van der Waals attraction. This mode is only important
for long cylindrical proteins [10] whereas in the case of small AMPs, secondary adsorption
is negligible. Note that in primary adsorption, the alpha-helical peptide is considered as a
rod with length L, and radius r,, and the peptide is assumed to adopt a spherical structure
with a radius R, in secondary and ternary adsorption. The purple oval shape represents
charged saccharide groups of the inner oligosaccharide and lipid A, and green 2+ (1+)
circles describe small ions.
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brush demonstrates that the secondary adsorption is expected to play a role only for long
cylindrical proteins.

At first glance, one might assume that ternary adsorption is insignificant compared to
primary adsorption, in which peptides gain a large electrostatic and hydrophobic energy.
However, the protein-brush experiments [1258, 129] and theoretical works [126, 130] point to
the non-negligible effects of ternary adsorption, especially for long and bulky brush chains,
in partitioning proteins between two coexisting phases.

Furthermore, our coarse-grained model takes into account the membrane-stabilizing ef-
fect of cationic agents and their competing role in occupying available electrostatic-binding
sites on the LPS surface. The highly negatively-negatived charged LPS surface, due to the
presence of anionic phosphate group of the inner core, makes it very unstable. On the other
hand, the physiological counterion concentration plays an important role in stabilizing and
maintaining the LPS layer by neutralizing the surface charge and producing a non-uniform
charge distribution (i.e., a heterogeneous surface charge reduces the membrane lateral
pressure, thus tightening the LPS) [13, 58, 59]. Our LPS brush model captures this effect
through the partitioning of cations between the bulk and the LPS surface. Key quantities
are Ny and N; defined as the number of surface-adsorbed Mg®™ and Na™, respectively.

Hence, the total thermodynamic free energy of our multi-variable LPS-ion-peptide sys-
tem, consisting of the four parameters, Ny, Ny, N, and Npp is minimized, simultaneously,
with respect to these parameters for their given chemical potentials in the solution, further
away from LPS layer. In the end, the resulting equilibrium surface coverages would be
compared with those for deep-rough LPS [59], which lacks an LPS brush.

It is natural to define the general free energy of our LPS brush system as
2
Frpsvrush = Fori(N1, Na, Np) + Fier(Np; Np) — (N + NpB)uffee - ZNi piree,(4.1)
i=1

where subscripts i = 1, ¢ = 2, and ‘p’ represent monovalent, divalent cations, and peptides,
respectively, and u™® is their chemical potentials in bulk. In a dilute solution, where
the interaction between charges is negligible, the chemical potentials depend on the bulk
concentrations of ions C; and peptides Cp:

,ugee = In [yp (Cp — CyN, — C’thB)] (4.2)
free 4 3
W = In (gmﬂi X C’i). (4.3)
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Figure 4.2:  Peptide’s primary adsorption N, on the LPS surface reduces the grafting
density. Hydrophobic binding of the peptide expands the membrane area by A, [11]. Let
N, be the number of peptides in this adsorption. The total lateral expansion is A,N,.
This results in a lower osmotic pressure II of the brush. The size of a monosaccharide
group d remains constant.

where 1}, is the random-coil volume of each peptide in the electrolyte solution, C; is the
number density of total cells in our system, and r; is the effective (hydrated) radius of
cations. Note that the chemical potential of peptides is not constant (i.e. see Eq. 4.2) and
it would change with the number of adsorbed peptides on the LPS surface N, or within
the brush Nyp. In fact, the total number of available peptides inside our LPS-peptide-
ion system is conserved; this will allow us to examine the possible competition between
adsorbed peptides in different modes and to measure the influence of the ternary adsorption
on the primary adsorption.

It is worth mentioning that we treat small cations Mg?* and Na™ as point-like objects
that do not feel the brush pressure in zeroth-order approximation and therefore, the ternary
free energy (Fie) is a function of adsorbed peptides within the brush and on the LPS
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surface. But it does not depend on the small ions (N; and Ny). In Eq. 4.1, we construct
the primary and ternary adsorption energies, which are the consequence of many different
interactions and thus can be decomposed into several sub-component free energies:

Fpri = Fel(Nla NQ, Np) + 81Np + Edef(Np)
+Np Flf)rrlllsh(H7LP7TP7Np) +Fpn(N17N27NP> (44)

ent

and

Fier = Ny Foian (IL, B, Ny) + Foi (Np, Np), (4.5)

ent

where II, Ly, 7, and R, are brush osmotic pressure, rod-peptide radius, rod-peptide length,
and the radius of the hard-sphere peptide, respectively. Also, F, is the electrostatic interac-
tion free energy between charged ions, peptides and the LPS surface, ¢; is the hydrophobic
energy gain per membrane-inserted peptide, Fqe¢ is the energy cost for peptide-induced
membrane deformation, and Fi,; represents the configuration entropy associated with ion-
s/peptides distributions on the LPS surface (primary adsorption) and within the brush
(ternary adsorption).

The term Fj,yqn is the free energy cost for including a single peptide into the LPS brush.
A surface-grafted polymer brush of PEG or wild-type LPS in contact with proteins (or
peptides) may be considered as non-interacting with inclusions [131]. Such a brush tends
to resist protein adsorption on the grafting plane (underlying surface) through its steric
hindrance [132] (i.e., experiments on surface grafted PEG [133, 131] and Ra chemotype
of LPS [135] in interacting with proteins and melittin, respectively, provided evidence of
protein adsorption resistance). Peptides within the brush effectively experience excluded-
volume interaction with the segments of the brush. This effect can be captured by the
brush osmotic pressure II and the size of rod-peptide (L, and r,) and hard-sphere peptide
(Rp) in primary and ternary adsorption, respectively. It is interesting to note that the
brush free energy is dependent on the degree of primary adsorption via the number of
bound peptides on the LPS surface (i.e., the brush free energy is a function of N,). As
shown in Fig. 4.2, for primary adsorption, peptides are hydrophobically associated with
the bilayer acyl chains and cause lateral expansion [l 1, 97]. As a result, the area per
grafted polymer increases, lowering the brush monomer concentration and diminishing the
excluded-volume interaction between peptides and brush segments.

In addition, the effects of LPS brush are different between the two adsorption modes
(primary and ternary). In Fig. 4.1, while peptides bound to the LPS surface, i.e., in
primary adsorption, are described as alpha-helical (overall cylindrical), peptides adsorbed
in the LPS brush, i.e., in ternary adsorption, are viewed as a hard-share peptide (i.e. more
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realistic picture is that peptides adopt conformational properties combined both features
of rigid hard-sphere and random coil, while adsorbed within the brush thickness). Also,
peptides on the LPS surface tend to experience fewer contacts with the brush segments,
due to both less available surface area per peptide (half of the peptide’s surface is inserted
into the hydrophobic region) and lower monomer density of brush chains near the grafted
plane [120]. These structural difference of peptides and the brush in primary and ternary
mode lead to different brush free energy between the two peptide adsorption modes. The
free energy of a brush and its interaction with AMPs are detailed in Subsec. 4.3.1

Besides the interaction between peptides and a brush, other contributions (i.e., elec-
trostatic, hydrophobic, and membrane-deformation) in Eq. 4.4 are known in the litera-
ture [13, 58, 59]. For instance, F, describes the complex electrostatic relations between
ions, peptides and backbone anions on the LPS surface. This can be decomposed into four
major interactions: the self-energy of a peptide which varies near the water-hydrophobic
interface, ion-pairing, repulsion arising from a net charge on the surface, and the lateral
correlation among surface charges (lipid charges, ions, and peptides). The last one re-
flects non-uniform charge distributions on the surface and takes into account long-ranged
Coulomb interactions of the heterogeneously-charged lattice sites (i.e., see section 4.27 for
more information).

The quantity ¢7 is the hydrophobic free energy of a peptide at the interface between lipid
headgroups and tails. A reasonable choice is e & —10kgT (as for magainin 2) [13, 59] in this
work. In fact, once a peptide binds to the LPS surface, it forms an alpha-helical structure
with two distinguished sides of water soluble and non-soluble parts. The hydrophobic side
would insert inside the bilayer to avoid contacts with the solution and therefore minimize
the free energy of the system (see [15, 51, 59] for more information).

The term FEq is the deformation free energy cost of the LPS surface, induced by peptide
insertion into the hydrophobic region. As a peptide is accommodated within the bilayer
acyl chains, it distorts molecular packing order and stretches the membrane area.

All the free energy components and their relationships are detailed in section 4.3.

4.3 Free Energy Components

4.3.1 Polymer Brush Free Energy, Fi ush

In our model (Fig. 4.3), the physical characteristics of outer core oligosaccharide and O-
antigen of every single LPS molecule are taken into account by viewing them as forming
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Figure 4.3: Physical structure of single LPS molecule. The inner core oligosaccharide and
lipid A comprise the negatively-charged LPS grafted plane (purple oval) with cross sectional
area Appg, and the rest parts of the LPS (i.e. outer core, O-antigen chain and terminal
saccharides) constitute a polymer brush chain (light and dark yellow hexagons). The total
number of monosaccharides of the brush chain, N,., each with diameter d, determines the
total length dNg,.. Here n, is the repeat number of O-antigen’s sugar groups.

a grafted polymer brush (i.e. one end attached to the LPS headgroup); the size of each
monosaccharide, d = 0.85 nm [136] and its polymerization degree Ng,. = 4n, + 8 + 4 (n,
is the repeat number of the saccharide group in O-antigen). The core oligosaccharide part
mainly has 3-8 backbone units with a few short side chains, while O-antigen consists of a
repeating unit of a short oligosaccharide or single carbohydrate (1-4 repeated units) with 4
terminal sugars at the end [117]. The chain length of each LPS molecule varies by the O-
antigen repeat unit. Ref. [117] suggests that the repeat unit distribution is mostly between
8-15.

Considering what is described above, we view the outer core and O-antigen forming a
densely grafted polymer brush because of their high grafting density, o,. Polymer brushes
have been studied in the literature; relevant parameters are grafting density (number of
chains per grafted area), polymer length and monomer volume fraction ¢. It is shown that
uncharged flexible chains attached to the surface by one end, create a compact structure of
mushroom in low grafting concentration, i.e., when Flory radius of the random-coil chain
of a good-solvent solution is smaller than the polymer grafting distance Ry < D (i.e. see
Fig. 4.4). However in higher grafting density, chains tend to overlap with one another
and the excluded-volume interactions between neighbouring chains increases. As a result,
polymers assume a stretched configuration from the grafted surface, forming a polymer
brush with a layer thickness H [137]. The equilibrium height of the polymer brush Hy,
at which stretching energy and excluded-volume interaction are balanced, depends on the
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Figure 4.4: Schematic view of different conformations of surface-grafted polymers. At
a low grafting density, the Flory radius of the polymer is smaller than the distance be-
tween neighbouring grafted polymers, D. The grafted polymer resembles an isolated non-
interacting mushroom. In a brush regime or at a high grafting density (D is very smaller
than the Flory radius of the chain Rp), excluded-volume interactions between grafted
polymers tend to stretch out each chain to an equilibrium height H,.

grafting density o, and the number of brush monomers Ny, [135].

Fig. 4.2 exhibits that hydrophobic binding of peptides on the LPS surface induces
membrane expansion, laterally by AA = A N, (i.e. Huang and colleagues [1 1] determined
that the lateral expansion per peptide is equal to or smaller than the physical size of a
peptide. In the case of magainin II, A, < 2.2 x 0.6 nm?. If we assume that the total
area of the LPS layer is A = Npps Arps, then we could distribute the total expansion AA,
evenly, between all the LPS molecules, obtain the area expansion per LPS chain §A, and
construct a new LPS cross sectional area of Appg + dA, which depends on the number
of hydrophobically-inserted peptides. As a result, the dimensionless fractional grafting
density of the LPS brush would be peptide-dependent

d2
N.) =
Ug( P) ALPS + 5A(Np)7

(4.6)

where A = A,N,/Nrps and Nyps is the total number of LPS molecules.

In order to find the brush free energy and the corresponding osmotic pressure II, we
need to compute our monosaccharide volume fraction of the LPS brush. For this purpose,
we assume that saccharide chains are confined into a cylinder of cross-sectional area of
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Figure 4.5:  Schematic representation of a confined brush chain in a cylinder of area
Arps + 0A(N,) and height Hy.

Arps + 0A(N,) and height Hy (see Fig. 4.5). Then, volume fraction is

d3 NS&C

o) = [Avps + 0A(N,)| Ho(Ny)’

(4.7)

where the denominator defines the volume of a cylindrically-confined chain in Fig. 4.5 and
H, is the equilibrium height. Later (see Eg. 4.10), we explore its dependence to the brush
grafting density o,. As a result, Hy is a function of number of adsorbed peptides on the
LPS surface N,; the same trend of grafting density.

Towards constructing the LPS brush free energy, we need to obtain the equilibrium
height, Hy and the osmotic pressure II of our system. These parameters of polymer brushes
have been investigated, numerously in theory and experiments, since 1980 [137, ) ,

, 111]). One of the simple models to explain the brush behaviour and its characteristic
height and pressure is to use Alexander de Gennes scale model. The details of this will be
presented below.

LPS Brush and Alexander de Gennes Blob Model
Scaling theory reduces the complexity of the polymer-solution problem, noticeably, and

at the same time presents a simple physical picture. Therefore, we simply follow the
Alexander de Gennes [137] model for a polymer brush and assume that the conformation
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Figure 4.6: Representation of blob scaling in the Alexander de Gennes model for a polymer
brush. Every blob has a correlation length of £, consisting of ¢ monomers. Balancing the
stretching free energy and excluded volume interactions leads to an equilibrium height Hy.
(a) Original blob scaling model in a semidilute regime, where chain statistics inside the
blob follows the Flory exponent in a good solvent: v = 3/5. (b) Applications of the blob
scaling model in a concentrated polymer regime, where monomers behave as a random
walk (v = 1/2) inside each blob.

of polymer chains is linearly aligned, leading to densely-packed correlation blobs of size &,
where the monomer concentration profile is a step-like function and all chains are uniformly
extended.

In a semidilute regime, one expects polymer chains to highly overlap with one another;
within some region, often referred to as a blob, chain statistics will not be influenced by
the neighbouring chains, i.e., each polymer can claim its territory. In fact the possibility of
other chain’s monomer to sneak inside the blob is small. As a result of this, the conforma-
tional structure of monomers inside this blob is governed by £ & d g” (i.e. on length scales
of the blob size £, the chain statistics equals the statistics of chains in a dilute solution),
where g shows the number of monomers per blob and v is the Flory exponent (in three
dimensions). Here g is adjusted by the requirement that the interaction within each blob
is comparable to kgT'.

At first, the Alexander de Gennes [137] blob model was introduced for a semidilute brush
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regime in a good solvent, where Flory exponent is ¥ = 3/5 and the blob correlation length
scales to monomer as £ = d ¢3/°. However, during the last decade, experimental, computer
simulation and modification to mean-field theory [112, , , | have demonstrated
the potential use of Alexander blob model in different solvent quality and also different
polymer concentration. For example, Merlitz et al. transferred the idea of correlation
blobs to the brush in f-solvent and obtained a reasonable prediction for the nanoparticle
inclusion free energy [115]; Halperin et al. [110] described collapsed blobs, &, in terms of
Alexander model, in a poor solvent condition.

In the case of our bulky and dense saccharides of LPS brush, the polymer concentration
is large (i.e. if we assume constant grafting density o, ~ d?/Apps = 0.44) and the brush
is thus in a concentrated regime. We would then use the Alexander De Gennes model and
define the correlation blob & ~ d ¢'/? in a melt polymer solution. Inside each blob, every
chain behaves as a random walk for which the universal Flory exponent is v = 1/2 [34].
(In fact, a polymer chain is less swollen in a concentrated solution. In 1949, P. J. Flory
won the 1974 Nobel Prize in Chemistry for predicting that a polymer melt, despite its
apparent complexity, would act like a #-solvent for any individual polymer chain inside it,
due to excluded-volume screening. A given polymer molecule ‘sees’ only a sea of identical
monomers, and cannot tell whether those monomers come from within its own chain or
from neighbouring chains. Therefore, every chain monomer has no particular preference
to swell or shrink as if the polymer were in a #-solvent.)

Zooming into one blob, the dimensionless volume fraction of monomers inside the blob
is ¢ = gd®/&* [146]. If we consider the number of monosaccharides of LPS brush in each
blob is g = (£/d)?, therefore the general relation between correlation length and volume
fraction in a dense (close to a melt) concentration would be

Erdyt, (4.8)

On the other hand, the Alexander model is required to set the free energy interaction
within each blob to kgT', which leads to the free energy density, or osmotic pressure

(¢) s 3,5

S e RS (49)
where the osmotic pressure of the brush is set by the excluded volume interactions between
polymers. The experimental measurements of pressure [144, | point to a scaling power
relation between the osmotic pressure and monomer volume fraction ¢(o,), which itself
depends on the brush grafting density. It has been shown that the dependence of osmotic
pressure on the monomer volume fraction scales differently in various concentrations of
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Figure 4.7:  Equilibrium height Hy vs. the brush grafting density at different polymer
regimes in a good solvent. Polymers in the mushroom regime act as non-interaction isolated
chains and their thickness is independent of grafting density (Hy = Rp). Brushes in
moderately or highly dense regimes, polymers stretch out of the grafting plane and their
Hy scale monotonically as the grafting density: Hy ~ op® and Hy ~ 0 in the semidilute
and concentrated regime, respectively. The figure is redrawn from Ref. [12] by permission
from Dr. Losego

the polymer brush. For example in a semidilute regime, the osmotic pressure scales as
II x ¢4, while in the concentrated solutions we have II o ¢, due to higher excluded-
volume interaction and finite extensibility of the brush [138, , , , ]. This
picture is consistent with the universal behaviour of the blob model and its relation to the
osmotic pressure at different brush concentration.

In fact, modifying the classical mean-field theory and including the higher order of
excluded volume in the dense regime compares favourably with the Alexander blob model;
one could obtain the correct scaling law dependence between osmotic pressure Il and the
monomer volume fraction ¢ by defining an appropriate correlational length in a dense
regime.

In the Alexander brush model, polymer chains are assumed uniformly stretched and
their equilibrium end-to-end distance is equal to the brush thickness Hy. Theoretical
studies of brush [137, 112] calculate brush equilibrium height by balancing excluded-volume
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interactions and chain-elastic force. It is shown that polymer chains tend to get stretched-
out away from the grafted plane due to excluded volume interactions between monomers,
while their Gaussian elastic energy prefers the chains to collapse. Therefore H, depends
on grafting density and also the quality of solvent [1358, 145]. Tt is evident by experimental
measurements [138] that increasing the grafting density o, (i.e. packing polymer chains into
the smaller area would intensify excluded-volume interactions) leads to a larger equilibrium
height, which can be scaled by

Hy =~ Loy, (4.10)

where 0 < a < 1.3 is the exponential scale factor and L is the maximum length of the chain
(i.e. in case of LPS brush, we use @ = 0.6 and L = d Ng,.). Moh and Losego [13%] provided
detailed experimental studies for scaling trends of the equilibrium height Hy in " moderately
dense” and "high-density” grafting densities, using different solvent condition. In good
solvent, their analysis of polymethyl methacrylate (PMMA) brushes demonstrate different
scaling factor @ = 1/3 and @ = 3/5 for moderate (0.05 < o, < 0.4) and high grafting
densities (0.4 < o, < 0.7). For very dense polymer brush, the scale exponent increases to
a = 0.8 — 1.3, when grafting density is very large o, > 0.7. These experimental results of
Moh and Losego are well consistent with the theoretical works of Lai and Halperin [112]
in dense brush regime. They have shown that in the dense grafting region average brush
height asymptotically approaches L as a linear function of the grafting density (Hgy ~ aé).

In addition, a close look at Merlitz et. al. [I15] molecular dynamic simulation and
their computation of forces acting on nanoparticles inside polymer brushes demonstrated
that how temperature enhancement in 6-solvent condition, where higher order of chain
interactions becomes important, equilibrium thickness of brush H, extends farther and
introduces larger exponent factor a« = 0.51 — 0.6. They also applied a Flory-Huggins
mean-field model to their simulation results to confirm how higher-order contributions to
the osmotic pressure lead to their observation.

Alexander blob model & lack of finite extensibility

One might ask if the scaling power law predicted by the classical Gaussian free energy
of a flexible polymer brush works well in the dense (concentrated) regime? Alexander
de Gennes scaling model was obtained based on the assumption that equilibrium height
(Hg) of polymer brush is a balance of Gaussian elastic free energy and binary excluded
volume interaction. As a result, the concern is that for denser polymer brushes, (i) we
must allow for interactions of higher order and (ii) the lack of finite length extensibility of
Gaussian elastic free energy (i.e. in high grafting density, one expect that the brush height
approaches the upper length limit, Hyax = d Ngac)-
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In order to solve this problem, Shim et. al. [119] formulated an analytical self-consistent
Field (SCF) theory of this regime, where the binary free energy density, ~ ¢* was replaced
by full Flory-Huggins excluded volume interaction (1 — ¢)log (1 — ¢) and a denominator
is introduced to the Gaussian quadratic elastic term to limit the extensibility. Inspired
by Shim et. al. [119] study, Lai and Halperin [142] suggested a properly modified version
of the Alexander analysis, which proved to be useful in the discussion of dense brushes.
The recent detailed experimental analysis of polymer brushes in the moderately-dense
and dense regime by Moh et. al. [138] have confirmed the scaling law behaviour of the
modified Alexander blob model in highly grafted chain densities, where near full extension
Hy/Hpyax > 0.7, there is a linear scaling behaviour between brush thickness and the grafting
density, Hy =~ o,.

According to the mentioned theoretical and experimental results, we could conclude
that Alexander scaling blob model works well for all brush regime, as long as we introduce
the correct correlational length scale for the system.

Peptide’s Inclusion Energy Cost into the Brush

It is well accepted by molecular dynamics [150, 151] and theoretical works [126, 152] of
self-consistent field (SCF) theory, scaling arguments and mean-filed model, that the excess
free energy required to include a nanoparticle (biological macromolecule) into an athermal
polymer solution (i.e. a solution that intramolecular interactions other than steric may
be neglected) is scaled to the peptide’s excluded volume (AF o R?). However, recent
theoretical studies [153, , | assumes to naturally split the excess free energy into the
volume and surface terms, where the required work to create a cavity of volume V}, and
the enforced tension on the peptide’s surface are separated, and given by

A-Fbrush ~ H(QS)VL + ’}/(QS)AP? (41]‘)

where V;, and A, (i.e. not be mistaken by the peptide-induced expansion of the membrane
A,) are volume and area of the peptide. Recent publication of Gu et. al. [156] showed
that; while for small nanoparticles, whose size is smaller than correlational blob size £, the
excess free energy scales only to volume (AF Rf,), in case of large size nanoparticles
and high polymer concentrations, the free energy of particle inclusion is expected to be
approximated by the sum of both effects of volume and surface tension.

v(¢) describes surface tension at the contact. Calculations of potential between pair
nanoparticles near a planar wall and plane-induced surface tension [117, , 154]) revealed
the importance of the surface tension due to polymer solution surrounding a nanoparticle.
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In fact, the immersion of a nanoparticle inside a bath of non-adsorbing polymers reduces the
number of configurations available to polymer chains and entropically induce a depletion

layer around the particle [115, 117, 157]. Surface tension is given by [153, 154]
. ¢ or(¢/
v =)t + [ 1) 7 s (4.12)
0
where I is the “reduced adsorption” [153, 151] and measure the reduction in the number

of chain segments near the surface. In fact, it can be identified to the change in monomer
density, h(z), near the depleted surface

I = /Oo h(z)dz, (4.13)

where in low-limit density, the reduced adsorption is independent of density and becomes
rid = 2R, /+/m for ideal polymers (i.e. R, is gyration radius). However for our dense-brush
system, ideal reduced-adsorption 4 does not accurately compute the surface tension.
On the scaling theory grounds, Louis et. al. [153] identifies blob size £(z) to —I'(z) and
obtains [147, 153, 154]

Y(p) ~ TIP2, (4.14)

While theoretical and experimental analysis of the interaction between the nanoparticle
and the polymer-grafted surfaces in physiological environments emphasize the crucial role
of steric effects for non-interacting brush polymer (athermal condition), there are evidence
of weak attraction energy between adsorbed protein within the brush and its surrounding
chain segments for a short range (mostly at contact). The theoretical works of protein
partitioning behaviour in polymer-coated surfaces, based on observations of experimental
studies with polyethylene glycol (PEG) and polyethylene oxide (PEO) brush, predicts the
existence of a short-ranged attraction between polymer-protein segments (i.e. [120] and
references in there).

Therefore for a comprehensive picture of the binding process of peptides to the brush-
bearing surfaces, the inclusion of both repulsive excluded-volume and weak attractive in-
teractions are necessary. The available information regarding polymer-protein attraction is
limited; however, it is believed that the interaction’s strength increases by protein/peptide
size and analysis of experimental results predict the range of €., = —(0.01 — 0.1)kgT per
in-contact-monomer with protein’s surface area [126, 158]. Following ref. [126], the overall
weak attraction energy for a peptide inside the brush obtains by the number of monomer-
peptide contacts times the attractive energy per contact & €.t Neont- In Alexander scaling
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model, Nt can be computed by the number of blobs that are in contacts with the surface
area of the peptide (A,/¢?) multiplies to the monomers inside of these blobs, which con-
tribute to monomer-peptide contacts (¢” = £/d). Therefore, we define the weak attractive
interaction between a peptide and the surrounding brush chains as

Ap €att —~ Ap €att

Epep—brush = 5 d ~ a2 ¢7 (415)

where we used & ~ d¢ 1.

Takes all the free energy contributions of excluded-volume, surface tension and weak
peptide-brush interactions together, the total free energy cost for including one peptide
within the LPS brush in primary and ternary adsorption are

pri ¢3 rod ¢2 rod ¢ rod
AFbrush - 6 E Vp + ﬁ Ap + ﬁAp €att | 5 (416)
and
t K h ¢2 h (b h
Abyan = 5 Vo' + 5 Ap™ + 5 AP €anes (4.17)

Here, § demonstrates the difference of brush free energy per peptide in different modes
and V,, and A, are the volume and surface area of the adsorbed peptides, respectively. Note
that peptide’s volume and surface area are different in primary and ternary adsorption;
AMPs adopt spherical structure with an approximate radius R, ~ 0.8 nm within the
brush (i.e. for simplicity, we consider a hard sphere peptide with no contribution to the
osmotic pressure of the brush) and undergo a secondary structure on the LPS surface and
transfer to the alpha-helix. The alpha-helical peptide on the LPS surface is assumed as a
cylindrical structure with surface area & 2w, Ly, + 2772 and volume = 7r2L;,. We chose
fixed 7, = 0.6 nm and L, = 2.2 nm for calculations [13, 58, 59]. . While volume and surface
area of a coil-peptide within the brush of LPS can be assumed as a hard sphere (i.e. for
simplicity, we consider a hard sphere peptide with no contribution to the osmotic pressure
of the brush) with radius R, ~ 0.8 nm, an alpha-helical peptide on the LPS surface has
cylindrical surface area ~ 2mr, L, + 2772 and volume ~ mr3L,. We chose fixed r, = 0.6
nm and L, = 2.2 nm for our calculations [13, 58, 59].

4.3.2 Ternary Adsorption Entropy, "'

ent

In contrast to primary adsorption, where peptides bind to a 2D planar surface and the
associated entropy computes by the number of peptides’ arrangements on the surface lat-
tice, ternary adsorption takes place within a layer of finite thickness Hy and the relevant
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mixing entropy shall be expressed by volume fraction of the peptide within the brush
_ VpSth pB
Ho(N,) [A+ AA(N,)]

Pp(Np) (4.18)

, where total volume depends on the number of primary adsorption N, through the hy-
drophobic binding and peptide-induced lateral expansion of the membrane AA = A, N,,.

Remember that equilibrium height relates to N, via peptide-dependent grafting density
og(Np).

As a result mixing entropy of peptides and water molecules within the brush environ-
ment is given by

Fter B ¢p

ent

Ho(N,) [A+ AAN,)] ~ Vi

Ingy, + (1 — ¢p) In (1 — ¢p) (4.19)

4.3.3 Electrostatic Free Energy, F

The many-body electrostatic energy calculations of bound cations and AMPs on the LPS
surface, as well as the peptide-induced deformation of the membrane are all acquired
through the binding-site construction. Following ref. [13, 58, 59], we assume the LPS
surface as a 2D square lattice with total Ny available electrostatic binding sites (i.e. discrete
binding sites are necessary for electrostatic calculations in heterogeneous surface charge),
which is four times larger than total number of LPS molecules (i.e. considering LPS Re,
each LPS molecule carries four negative charges). Every anionic LPS unit charge is smeared
out on the area of each binding site, known as a3. A bound ion or peptide occupies the
surface lattice sites depending on their charge valency. For instance, Na'* and Mg**
pairs with one and two sites, respectively, whereas a peptide carrying net () unit charges
occupies () numbers of the backbone sites.

Moreover, all electrostatically-bound peptides on LPS surface are assumed to be in-
serted inside the acyl chain region, initially in a parallel orientation (i.e. for lower surface
coverage than the threshold concentration P/L*), and gain hydrophobic free energy, &;
(i.e. for instance, cationic antimicrobial peptide magainin 2 obtains e &~ —10kg7’). This
peptide-LPS hydrophobic association expands the original area of LPS surface [5, 16, 59]
and perturb the lattice construction by adding a2 area to the unperturbed membrane (i.e.
experimental parameter of the expansion area per bound peptide A, is translated into the
number of extended lattice sites. Note that this expansion is comparable to a lengthwise
surface area of the peptide). As a result, the total lattice sites changes upon binding of
peptides and would be equal to Ny = Ny + QN,.
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In our approach, the electrostatic free energy is a combination of several different in-
teractions between charged particles on the surface. Following theoretical scheme of [13,

, 9], heterogeneous charge distributions, resulting from the bound ions, peptides and
anionic charges on the LPS surface, could be expressed as a linear superposition of its
energy components

F61<N17N2aNp) :Fself+FMF+Fpair+Eat- (420)

First term is the self-energy difference of cations and peptides on the LPS surface with
respect to their free energy in the bulk. Second term estimates discrete ion-paring process
and the third free energy calculates mean field (MF) effect. The last term considers the
lateral correlation between charged units on the surface beyond the MF calculation. It is
responsible for non-uniform charge distribution on the surface. As a result of highly anionic
charged surface of LPS and the existence of monovalent/divalent ions (Na'*, Mg*") in
addition to cationic peptides, the equilibrium configuration of charged particles is not
homogenous and therefore we must calculate free energy of a non-uniform charged surface;
M g*"-anion pairing (transverse interaction) both enhances divalent binding at a given
site, and importantly invert the charge sign at the site (i.e. an overall-cationic M g*T-anion
pair surrounded by possibly unpaired anionic LPS charges). The lateral or many-body
interactions in the mean-field (MF) limit (continuum charge distribution) does not give
an accurate electrostatic free energy of the system. It needs a correction, called lateral
correlation [13, 58, 59].

Electrostatics: Self-energy Difference

The LPS surface is a borderline between low-dielectric medium of hydrophobic region
(€01 = 2) and the high-dielectric water zone (e, = 80). This water-oil interface acts as a
dielectric discontinuity interface and hinders free ions and peptides from binding on the
LPS surface. Literature [, , | shows that inner and outer layers of a lipid bilayer
could be assumed de-coupled, electrically, in the limit of eyrd/e,y >> 1, where € is the
medium dielectric constant and d is the bilayer thickness. In this picture, a charged particle
feels a strong repulsion (almost twice its own free energy) as it reaches the discontinue-
dielectric interface due to surface charge polarization. We could capture this effect, using
image charge method, using planar dielectric discontinuity constant [3, , ]
€w — €oil

A= —F=~1. (4.21)

€w + €oil
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It is worth mentioning that our dielectric discontinuity constant is smaller by one unit
from the corresponding constant in Refs. [13, 58, 59] (A = A — 1). Based on the above
reasoning, we could express self energy difference of bound ions (Fys_jon) and peptides
(Fyerf—p) on the dielectric-discontinued surface of the LPS with respect to their bulk free
energies by

Fear = Fielf—ion + Fself—p7

where )
Z2€B Ae K
Feelt—ion = Nil— ~ 4.22
it ; 2 |: (Si + 1+ /'i?“i:| ( )
Qgg Ae MQ — M1 KR
For—p=N,— | — + A, : 4.23
f-p P9 (5p+ a? +1—|—/£7“1 (4.23)

The Bjerrum length is /g = €2 /4meeokpT, where €, = €, is relative dielectric of the
solution, €, the permittivity of free space and e the electronic unit charge. The symbol
k? = dnlp[2n; + (22 + 2)n3] [9, 162] stands for screening length in (1:1) and (2:1) salts
in the solution, which the electrostatic interactions are exponentially screened beyond this
length. The subscript “i” represents monovalent and divalent cations, where Z; is the
charge valency of Na't and Mg** with bulk-hydrated radius r = 3.4 Aand r, = 4.3 A,
respectively. The parameter ) shows net charge of the AMP in physiological condition (e.g.
magainin 2 [59] has @ = 4; the peptide which we used its parameters for our calculations).
The gab distance between ion/peptide charge and the dielectric interface as 6, = 6, = 3
Aand §, = 2.5 A. Here M,, is given by [13, 58, 59]

+av/2 +a/2 o /22 442
M, (k,a) :/ dx/ dy————. (4.24)

—av/2 a/2 z? +y2

First term in both relations of Eq. 4.22 and E. 4.23 estimates the required free energy to
bring a cationic ion and the charged-segments of a peptide to the surface, respectively (it
includes the image charge effect through A.), while the last term obtains the polarization
effect; an electrostatic energy gain of a charged particle, as a result of charge shielding
by the surrounding free ions in the electrolyte solution. Since peptide is consisted of
() separate charges, we would have an extra contribution from the interaction between
different charges on the same peptide. Second term in Eq. 4.23 calculates the difference in
repulsion electrostatic energy among charged segments on the same peptide with reference
to the bulk. Note that the over-counting electrostatic energy within each site of a is
subtracted by M;. (i.e. for detailed calculations refer to the Appendix of Ref. [13])
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Electrostatics: Mean Field Energy

If we ignore the heterogeneous charge distribution on the LPS surface resulting from ion-
s/peptides binding in equilibrium condition, its electrostatic free energy could be expressed
by smearing-out the net surface charge on the the total lattice sites (homogenous charge
distribution). However, the self-energy of each site should be subtracted off to avoid over-
counting (self energy is calculated by Eq. 4.22 and Eq. 4.23). This subtraction could be
achieved by using integral relation M, which gives the summation over one square lattice
site. As a result, the mean field energy would be

lg(Ac+1) |:(7T My Mg — M)

2 (
Roa ———) (No— Ny —2N,—QN,)?— .

Frn —
MF k9

QN (N1+2N24+QN,) |

(4.25)

Even though Eq. 4.25 corrects double counting in self-energy through the subtraction
of second term (M), it needs another correction for considering the connectivity of @
charges on the same peptide, which leads to an overestimation by overlap occupation
between peptides and ions. For this reason, we have omitted the overlapped peptide-
peptide and ion-peptide interactions through the third term. In general, this subtracted-off
overlapped interactions in the third term of Fyr is a summation of both peptide-peptide
%(QNPV and ion-peptide %QNP(J\G +2N5,) repulsions. The latter repulsive energy
is an average between two modelling considerations; whether we smear out peptide or ions
on the lattice sites. In addition, the image charge effect due to the water-lipid interface is
captured by A..

Electrostatics: Ion-pair Interaction

The transverse interaction between cations and anionic charges of LPS surface, called ion-
pair interaction, can readily be computed by

2 7 Q
Fpair = _EB(Ae + 1) (Z ngl + Np5_)7 (426)
i=1 ! p

where 0 shows distance between paired opposite charges and subscripts "i=17, "7i=2",
and "p” refer to Na™, Mg?", and peptide, respectively. In Eq. 4.26, first term is cation-
anion pair interaction and the second term is peptide-anion free energy, where peptide is
polyvalent (Q) and each cationic residue is naturally assumed to be paired with one anionic
charge of LPS surface. Note that these transverse interactions between ion(or peptide)
and anionic charges are absent in Eq. 4.25. In fact mean-field transverse interactions are
omitted in Fyr by M; term to the obtain more accurate form of it by Fpa;,.
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Figure 4.8: Theoretical model to calculate the lateral electrostatic free energy: the LPS
lattice model decorated with Na™, Mg?", and peptides. On the left, we rearrange charges
on the reconstructed lattice, due to hydrophobically-bound peptides, which add @) sites,
into an energy-minimizing distribution in which the charges alternate in sign. We then use
as a reference a perfect lattice shown in (i), where equal numbers of positive and negative
charges are alternatively arranged. Then we remove some of the charges until the perfect
lattice becomes the initial one and calculate the resulting free energy cost. Illustration is
taken from Ref [13] by permission of Royal Society of Chemistry.

Electrostatics: Lateral Correlation Beyond Mean-feild

As it was mentioned before, physiological concentration of divalent cations in the solution
affects AMP bindings and leads to charge inhomogeneity on the LPS surface. Cation
M ¢** binds to the backbone anions via transverse interaction and the paired bond inverts
charge sign at the given site, while bound peptide and Na'* neutralize their local sites,
and un-paired anionic backbone charges left some negative. As a result of this, the LPS
surface charge distribution becomes non-uniform and therefore averaged approach in the
mean-field energy calculations would not provide an accurate electrostatic lateral energy
between charged particles on the surface.

In order to address this problem and achieve the lateral interaction beyond the mean-
field level, we follow Refs. [13, 58, 59] and calculate free energy of a non-uniformly charged
surface in equilibrium condition. In Fig. 4.8 we first, construct a perfect (homogenous)
alternate-charge lattice sites on the LPS surface with positive and negative charges N, =
Nyand N_ = No— N, —Ny—QN,, respectively and then approximate the lateral correlation
free energy (beyond mean-field) by computing the energy cost of removing M = Ny —
Ny — N_ charges, until the perfect lattice becomes non-uniform (the expected equilibrium
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energy-minimized distribution)

- N 2 (N, N, N,N_
EaterNO ~ TOEalt - Mzalt + ﬁ <70 - N+) (70 - N—)Ealt =2 }rv Ealt- (427)
0 0

Yae expresses electrostatic energy between one lattice site and the total rest of sites on
an alternate-charged lattice and is given by [13, 58]

—kay/i2+52
,L (& ..
Eault = _€B A + E E SR \/mk(laj)v (428>

21]1

where k(i, j) defines as

. 4 ifj=0o0ri=j
k(i 7) = { 8 otherwise ' (4.29)
In Eq. 4.27, first term is the free energy of a perfect alternate-charged lattice sites,
second term calculates energy of removing M charges, and the third one correct our over-
omitted interactions by the second term. In fact, — M3, subtracts electrostatic energy
between every removed charges and the rest of charges on a perfect alternate-charged
lattice (no holes from already removed charges), while minimized charged configuration
on the surface is not perfect and the subtracted term over-omitted interactions existed
between the removed charges, themselves. Therefore, third term is introduced to correct
this over-omitted energy (i.e. refer to the Appendix of Ref. [13] for more details).

It is worth noting that the over-omitted correction in Fj.ie, is beyond the mean-field
level and its mean-field contribution is considered in Fyp (see Eq. 4.25). As a matter of
fact, the M removed charges are both positively and negatively charged (repulsion and
attraction interactions) and therefore lateral over-omitted correction needs to be divided
into two general forms: same-charge and opposite-charge correction. Since, the same-
charged correction, is already included in our mean-field energy, Fyr, we only take into
account opposite-charge correction in Eq. 4.27. On the other word, lateral correlation be-
tween surface-charge pairs (i.e. pairs between backbone anionic sites and cationic peptides,
Mg*" and Na'") in the mean field level are calculated by the net surface charge density
(or construction of a homogenous same-charge lattice sites), whereas opposite-charge lat-
eral free energy of an alternate-charged lattice is estimated here by Fl..,. The lateral
correlation is insignificant and can be ignored, if Ny << Ny/2.
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4.3.4 Deformation Energy, Fq.

It is known that peptide hydrophobic energy gain on LPS surface comes with a free en-
ergy cost of LPS deformation; as a peptide binds hydrophobically to the LPS surface, it
perturbs acyl chain packing order by pushing headgroups farther away and accommodates
itself inside the hydrophobic region in a parallel orientation with the surface. [5, 16, 59]
shows that this peptide-induced LPS perturbation is comparable to the one in phospho-
lipid bilayers. Lipid bilayer experiments and theoretical [5, 16, 93] works explain how this
membrane deformation is local, in case of small bound peptides N, << 1, and be trans-
formed into a many-body effect by increasing the peptide surface coverage. In fact, Huang
group [5, 16, 55] beautifully relates this peptide-induced deformation to their cooperative
membrane-rupture activity and the threshold peptide coverage (known as peptide-to-lipid
threshold ratio P/L*); every hydrophobically-associated peptide with membrane surface
would distort the membrane, locally, however the growth number in bound peptides in-
creases local deformations, until they overlap and creates macroscopic area expansion of
the bilayer (i.e. in case of our LPS model, the expansion is Qa?), which leads to mem-
brane rupture. Indeed, the cooperative nature of peptide-induced area expansion of the
membrane is responsible for the minimum required concentration of AMPs to start their
pore-forming activity.

Assuming LPS bilayer and consider the bilayer coupling, in which the inner-layer resist
stretching of the outer one, we could express a quantitive simple form for peptide-induced
deformation energy on LPS surface. Consider that both inner and outer layer have similar
elastic properties (i.e. accumulated into an experimentally-given quantity, known as area
compression modulus Ky ), then the stress caused by peptide insertion would be equally
shared between the two layers. For a symmetric peptide binding on a LPS bilayer, energy
associated with membrane deformation is given by [0, 59]

2 2

Eaer = %KA%, (4.30)

where QN is the number of extra sites due to peptide-induced membrane expansion. It

is known that expansion area per peptide, Qa2 is in general not the physical cross section of

the peptide [10]. In fact, binding of a peptide would change the water-headgroup associated

molecules on the membrane interface due to peptide condensation on the surface. It is
usually called dehydration effect [5].
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4.3.5 Primary Adsorption Entropy, F..

The LPS surface is considered as discrete binding sites and the configurational entropy of
charged ligands (peptide, Na'* and Mg¢*") on the surface can be readily obtained by the
conventional mixing entropy [0, 81]; however, multivalent peptides on the LPS surface,
assumed as charged rods, compete for their binding sites not only through electrostatic
peptide-peptide repulsions but also through their area exclusion, which is a result of their
multisite-binding characteristics. Indeed, theoretical studies show the significance of mul-
tivalent binding and the consequence area exclusion in decreasing the apparent binding
affinity of nonionic objects [$1, |. For simplicity, we do not consider area exclusion
between small ions (Na't and Mg*T).

Area exclusion effect arises from short stretch of free sites (< ) that can not accom-
modate a charged-rod peptide of length Q (in unit of site length ag). [163] explains how the
shape of a surface ligand affects area exclusion effect and as a result the ultimate ligand
coverage on the surface. For example, the effect is more pronounced for triangle or long
rectangle than square or circle proteins and therefore rectangle-shaped proteins have lower
saturated surface coverage than circle-shaped ones. It’s important to note that in the
low-concentration regime of adsorbed peptides (approximately surface coverage less than
0.1 [163]), area exclusion is not important and multisite-bound peptides have access to a
large number of available binding sites on LPS surface.

As a result, the total entropy of bound ligands on LPS layer in primary adsorption
mode is

2
Fg‘;:ZNiln(T)_FNpln( ~p)+(N0—N1—N2—QNp)ln(1— L 2+ P)
i=1 No No Ny

1-Q - QN, N, QN,
+—(N0—QNp)ln(1— ~p)—Np(6EX+1)——Oln(1— f’)

Q Ny Q Ny
No€rx
+ 0%Fx (4.31)
Q1 — N,/ No)
where (2 is the number of sites every peptide occupies on the LPS surface and eg, = (4124;//%)2

defines shape parameter in the scaled theory. As explained in deformation energy section
(4.3.4), the area per peptide on LPS surface is not necessarily equal to its physical surface
area and could be smaller due to dehydration effect [5, 16]. In this work, we consider
adsorbed surface area of peptide equal to its assigned valency and therefore the number of
occupied sites by one peptide 2 = Q.
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In Eq. 4.31, the first four terms are related to the number of ways in which N, sites are
occupied by (Ny + N») ions and N, peptides, and the last three ones express area exclu-
sion effect of multisite-bound peptides given by Chatelier et al [163] adsorption isotherm
analysis, using scaled particle theory and hard disk virial expansion.

4.4 Results & Discussion

4.4.1 Primary and Ternary Adsorption Isotherm

In order to investigate how the saccharide brush of the wild-type LPS might change pep-
tide adsorption, we minimized the LPS brush free energy of Eq. 4.1 with respect to four
parameters Ni,No, N, and N,g and calculated binding isotherms of peptides within the
brush and on the LPS surface. The results are demonstrated in Fig. 4.9, Fig. 4.10, and
Fig. 4.11, where (a); and (a); shows the primary adsorption isotherm of peptides and diva-
lent cations, respectively, and (b) expresses the secondary adsorption isotherm of peptides
within the brush.

Our calculations show that the peptide adsorption (i.e. coverage on the surface or
within the brush volume) enhances monotonically by increasing the available peptides in
bulk (i.e. peptide concentration in solution [AMP]). However, divalent cation coverage on
the surface 2M g /N, decreases by the increase of [AMP]. This is evident by experimental
observations [79, , ] and previous theoretical modelling [13, 58, 59]. The binding
competition between cationic Mg¢*" and peptides to electrostatically be adsorbed on the
anionic LPS surface, causes lower M ¢g**-binding as peptide concentration increases. In fact,
the presence of LPS-perturbing agents such as ethylenediaminetetraacetic acid (EDTA) and
cationic AMPs would take away available LPS binding sites from M g¢**.

In addition, comparison between LPS and LPS brush model (i.e. previous [59] and
current coarse-grained modelling) helps to understand the physical influence of saccharide
brush in the LPS layer of the bacterial OM. In Fig. 4.9, Fig. 4.10, and Fig. 4.11 (a); exhibits
how surface coverage of peptides that hydrophobically and electrostatically are bound on
the LPS surface QN,/Ny, reduces as a result of grafted saccharide chains on the LPS
surface. The reduced amount of adsorption between two models of LPS brush and LPS
i.e. solid and dashed lines respectively, is ~ 30%. It is consistent with recent experimental
measurements of the reduced surface coverage of peptide ColN on LPS Rd in comparison
with the Ra chemo type [62]. Moreover, ternary adsorption in Fig. 4.9, Fig. 4.10, and
Fig. 4.11 (b) demonstrates very low peptide adsorption within the brush. It is natural
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Figure 4.9: Adsorption isotherm of peptides and Mg®" in primary and ternary binding
modes (i.e. graph (a) and (b) respectively). (a); and (a); shows the calculated peptide
and Mg?" surface coverage on the LPS surface, due to hydrophobic and electrostatic in-
teractions, respectively, while (b) represents the peptide volume fraction within the brush
as a function of total available peptide concentrations in the bulk [AMP]. Our results
show how the presence of uncharged saccharide chains on top of the LPS surface reduces
the amount of hydrophobically-bound peptides on the grafted interface in (a);. On the
other hand, changing divalent cation concentration [Mg®*] would alter both primary and
ternary adsorption. Higher Mg?t concentration leads to lower peptide adsorption. Curves
are obtained for fixed cell density C; = 10° cells/mL, salt concentration [Na'']= 100
mM, brush-peptide attraction €,y = —0.05, and brush chain length with repeating unit of
O-antigen n,=15.
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to have small volume fraction of peptides ¢, within bulky saccharide chains, due to the
unfavourable brush osmotic pressure and surface tension, especially at low cell-density
limit.

Divalent cationic concentration [Mg**]

The relation between divalent cation concentration in the bulk [M¢*T] and peptide adsorp-
tion is investigated in Fig. 4.9. We observe that the growth in M ¢?* concentration would
reduce the number of peptides in both primary and ternary adsorption (i.e. please see
(a); and (b)). As [Mg*"] increases, the occupancy of AMPs on the LPS surface decrease.
At larger [Mg**], more peptide concentration in bulk is required to displace divalent ions
from the LPS layer.

As we are expecting that the change in [Mg¢*"] influences peptide primary adsorption
on the surface due to their electrostatic competition, why does divalent concentration
affect the adsorbed peptides within the brush in ternary adsorption in Fig. 4.9 (b) (i.e.
remember that our brush free energy does not influence small ions)? The answer is hidden
in hydrophobic-dependent grafting density o4(N,). The lower peptide adsorption on the
LPS surface N, (primary adsorption) by increasing the [Mg?*] leads to larger grafting
density and therefore higher osmotic pressure of the brush, which hinders the ternary
adsorption of peptides within the brush.

Brush-peptide attraction e,

In order to observe how the weak brush-peptide attraction plays a role in our brush free
energy and the resulting peptide adsorption, we have changed the brush-peptide attraction
in Fig. 4.10. The parameter €, varies between —0.01 kg7’ to —0.1 kg1 per in-contact-
monomer interaction with the peptide’s surface area (i.e. depending on the protein, €,y
changes. Halperin et. al. [120, | shows that it is mostly varies between —0.01 to —0.1
kgT for a small number of proteins in contacts with PEG). Fig. 4.10 shows that both
the peptide surface coverage and volume fraction within the brush in primary and ternary
adsorption increases very gradually by enhancing brush-peptide attraction. Halperin et al
in his theoretical adsorption model of proteins to the brush-bearing surface [120] shows
that it is important to include this weak brush-peptide attraction, especially in case of
long brush chains. However, it seems that this attractive energy does not play a significant
role in our LPS-peptide-ion system, where the hydrophobic-electrostatic-bound peptides
on the LPS interface is highly favourable and peptides tends to primarily be adsorbed on
the surface.
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Figure 4.10: Adsorption isotherm of peptides and Mg®" in primary and ternary binding
modes (i.e. graph (a) and (b) respectively). (a); and (a); shows the peptide and Mg*"
surface coverage on the LPS surface, due to hydrophobic and electrostatic interactions,
respectively, while (b) presents the peptide volume fraction within the brush as a function
of the total available peptide concentration in the bulk [AMP]. We note how introduc-
ing uncharged saccharide chains on top of the LPS surface would reduce the amount of
hydrophobically-bound peptides on the grafted interface in (a);. Altering the weak brush-
peptide attraction would change both primary and ternary adsorption. Larger attraction
energy €, leads to higher peptide adsorption both within the brush and on the surface.
Curves are obtained for fixed cell density C; = 10° cells/mL, salt concentration [Na'*]= 100
mM, divalent cation concentration [Mg®*] = 1 mM, and brush chain length with repeating
unit of O-antigen n,=15.
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Brush length: O-antigen repeat unit n,

Brush-length dependency of the free energy cost of including a nano-particle into a brush
thickness was examined by coarse-grained simulation of Gu et. al. [I56]. They measured
free energy of the nanoparticle bindings in different polymer lengths and demonstrates that
the free energy is independent of the number of the chain’s monomer and hence thickness
of the grafted polymers. This result is consistent with theory; self-consistent field (SCF)
calculations of the polymer-protein system also shows that the number of chain’s monomers
factors out of the free energy [150].

On the other hand, the polymer thickness is important when we analyze protein adsorp-
tion to the brush. In case of the peptide ternary adsorption within the brush, the mixing
entropy takes place in 3D volume with thickness of equilibrium height Hy and therefore
peptide adsorption depends on the number of chain’s monomers (i.e. note that volume
fraction of peptides V,, Nyg/(Hp- A) remains constant by the brush length). As a result, we
investigated brush-length dependency of our peptide adsorption isotherm in Fig. 4.11. Re-
sults in (b) shows that the number density of adsorbed peptides within the brush (N,g/A)
increases noticeably, by increasing the number of repeat unit of O-antigen (n,) of LPS
molecule (i.e. higher height provides larger number of available sites for peptides to bind
within the brush).

Fig. 4.11 (b) shows that the peptide adsorption within the brush (ternary mode) mono-
tonically increases, as we increase the brush length. This enhancement of the peptides
ternary adsorption by the brush thickness (Hy), is relatively large, as expected, and the
surface density N,p/A changes an order of magnitude by increasing O-antigen repeat unit
n, from 15 to 50. In contrast, the peptide (Mg*") primary adsorption on the LPS surface
remains constant, as the total number of chains’ monomers increases. One might think
that in a canonical ensemble i.e. if the total number of available peptides in bulk V C,,
remains fixed, we would have lower bound peptides on the LPS (primary) surface as the
number of adsorbed peptides within the brush (ternary) increases by the brush length.
However, it is not the case here; since the total number of peptides trapped within the
brush is very small in comparison to the bound peptides on the surface, and therefore does
not affect primarily adsorption.

4.5 Conclusion

Here, the role of uncharged polysaccharide chains of LPS layer of the bacterial OM in
their interaction with AMPs was investigated. We extended a recently developed peptide-
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Figure 4.11:  Adsorption isotherm of peptides and Mg?* in primary and ternary binding
modes (i.e. graph (a) and (b) respectively). (a); and (a); shows peptide and Mg** surface
coverage on the LPS surface, due to hydrophobic and electrostatic interactions, respectively,
while (b) demonstrates peptide surface density (number over surface area) within the brush
as a function of total available peptide concentrations in the bulk [AMP]. The results in
this figure show how the presence of uncharged saccharide chains on top of the LPS surface
would reduce the amount of hydrophobically-bound peptides on the grafted interface in
(a);. Altering the brush length by increasing the repeat unit of O-antigen n, would increase
peptide adsorption within the brush by providing more binding sites. However, primary
adsorption is independent of brush thickness, due to very low adsorption within the brush
comparing to the adsorbed peptides on LPS surface (N,p << N,). Curves are obtained for
fixed cell density Cy = 10° cells/mL, salt concentration [Na'*]= 100 mM, divalent cation
concentration [Mg2+] = 1 mM, and brush-peptide attraction e,y = —0.05.
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ion-LPS model [59], where the authors provided detailed computations of the peptide
interactions with charged headgroups of the Ra LPS chemotype, to a theoretical consider-
ation of the wild-type LPS. We derived free energy of our LPS brush model by a non-trivial
generalization of an earlier coarse-grained model [59], and captured the physical effects of
oligosaccharide and O-antigen chains by modelling the LPS layer as forming a polymer
brush on top of its anionic phosphate groups.

To this end, we introduced two modes for peptide adsorption (Fig. 4.1), known as
primary and ternary [120, | adsorption. The total number of adsorbed peptides on LPS
brush was set by two processes; (i) N, peptides bind to the anionic LPS inner core (i.e.
referred by LPS surface), in primary adsorption, and (ii) N,g peptides become captive
within the brush, in ternary adsorption. The chemical potentials of primary and ternary
adsorption of peptides and ions were balanced with their corresponding chemical potentials
in the bulk, while the total number of available peptides are constants (i.e. canonical
ensemble).

Our results demonstrate that the presence of LPS brush reduces the number of hy-
drophobically bound peptides on surface, compared to the deep-rough LPS which lacks a
saccharide brush. The reduced amount of adsorption between two models of LPS brush
and LPS is ~ 30%, which is consistent with experimental measurements of the surface
coverage of peptide ColN on LPS Rd and Ra chemo types [62]. This effect is mainly due
to the steric barrier of the brush and polymer excluded-volume effect, which imposes un-
favourable free energy to the hydrophobically-bound peptides on LPS interface. In fact,
the hydrophobically-inserted peptide on the LPS surface needs more free energy to succeed
brush-induced osmotic pressure and creates a volume inside of this dense polysaccharide
environment. we also note that the total number of peptides trapped within the brush is
very small, compared to the number of bound peptides on the LPS interface. This implies
that the hydrophobic binding of peptides is insensitive to brush lengths. This, however,
does not exclude the possibility of kinetic slowing-down of the binding.

In order to provide more realistic picture of the interaction between AMPs and wild-
type LPS, one might use the current work but assuming the trapped peptides within the
brush as a random coil, which contributes to the brush osmotic pressure by their volume
fraction ¢, i.e. here, we presented the ternary adsorbed peptides as a small spherical
structure. The result of a random coil peptide within the brush is that the excess free
energy of the peptide AF}n would depend on the total adsorbed peptides within the
brush N,p (i.e. in our current model, the inclusion free energy of peptide is independent
of N,p). This excess free energy per peptide can be obtained by AFiuen & (¢ + ¢p)* — ¢,
where numerical prefactors are omitted.
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4.6 Mathematica Script

4.6.1 Minimization of The LPS Brush Free Energy

Clear [” Global ‘x"]
Clear [xp, xpB]

€ Variables %)
NA = 6.023 10°23; (¥ Avogadro’s number )

V= 10"(+24); (*Total volume 1L to nm”3x)

conv = NA 10°(—6) 10" (—24); (¥ convert microMolar to molecules/nm”3x)
convMg = 0.602 10°(—3); (xconver miliMolar to molecules/nm"3x)

convCt = 10" (—21); (¢ cells /mL to cells/nm"3x)

1B =0.7; (*Bjerrum Length (nm)sx)

aLPS = 1.66; (¢¥cross sectional area of LPS (nm)"2x)

a0 = 0.644; (xSite length (nm)x)

a = 0.64;
Q = 4; (xPeptide’s charge numberx)

KA = 240/4.414; («LPS is 120 pN/nm and also 1kbT = 4.114 pN/nmx)

nlmol = 0.1; (¥ Salt concentration in Molar unitx*)

nl = nlmol 0.602; (xSalt concentration in molecule/nm”3x)

dell = 0.3; (*Gap between ion and lipid interface (nm)x)

del2 = 0.25; (#*Gap between divalent ion and lipid interface (nm)sx)
delp = 0.4; (¥Gap between peptide and lipid interface (nm)sx)

rl = 0.34; (*hydrated radius monovalent (nm)sx)

r2 = 0.43; («hydrated radius divalent (nm)x)

vl = 4/3%Pix(rl)"3; (xfree ion volume (nm)"3x)

v2 = 4/3%Pix(r2)" 3; (¢ free ion volume (nm)”3x)

esp = 25/4/Pi; (xShape parameter for excluded volume entropy *)

H = —-10; (¥ Hydrophobic energy magainin 2 x)

Ab =26 10°(—12) 10718; (xArea of Negative—gram bacteria nm”2x)
(% Peptide s Properties: magainin 2 %)

Npp = 23; (¥number of amino acids )
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dp = 0.35; (+diameter of amino acids (nm)x)
vpp = 4/3%Pix(dp/2)"3; (*volume of every monomer amino acids (nm”3)x)
Q= 4; (xpeptide chargex)

vpHIx = Pi 0.672 2.2; (¥ cylinder volume alpha helical magainin(nm”3)x)
ApHlIx = 2 Pi 0.6 2.2 + 2 Pi 0.6°2; (% cylinder area alpha helical magainin
vp = 2.5; (¢*volume of free peptide coil (nm)"3x)

Rff = dp Npp“(1/2); (¥ Flory radius inside dense regime (nm)sx)

vpCoil = (4/3) Pi (Rff/2)"3; (¥volume of magainin coil inside brushx)
ApCoil = 4 Pi (Rff/2)"2; (¢area of magainin coil inside brushx)

(x #)
(*Which results do we want?

1— varying [Mg]?

2— varying Brush—pep attraction?

3— varying area per chain?

4— varying LPS chain’s length?

5— varying cell density?

The one we examine should be equal to 1 and the rest zero x)

Mg = 0;

BpAtt = 0;
area = 0;
chain = 1;
cell = 0;

(% Free Parametersx)
(# depending on the examining parameter, we comment below :
for example, if we examining the chain, nr =15 should be commented x)

n2 = 1 convMg; (* Mg2+ concentration in molecule/nm”3x)
EpepB = —0.05; (*Pep—Brush weak attraction (kbT)x)

S = 4; (¥number of sites every single brush chain occupiesx)
nr=15; («repeat unit of O-antigen in wild LPSx)

Rp = CubeRoot[(3/4/Pi) vp]; (xradius of sphere—peptide within brushx)
npmol=1000 10" (—6); (xpeptide concentration in Molarx)
np=npmol 0.602; (xpeptide concentration in molecule/nm”3x)
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Ct =1 10"11 convCt; (¥number of total cells in mLx)

(x Constants Depends on n2 %)
kp[n2_] =

Sqrt[4 Pi 1B (2 nl + (2°2 + 2) n2) |; (xinverse Debye length (nm)x)
Dell [n2_] =

2 (1/40 + kp[n2] 40)/(2/40 +

kp[n2] 40); (¥ Dielectric discontinuity *)

(* Brush Properties %)
vpSph [Rp_] = (4/3) Pi Rp"3; (xvolume of sphere—magainin within brushx)
ApSph[Rp_-] = 4 Pi Rp"2; (xarea of sphere—magainin within brushx)

alpha = 0.6; (xexponent scale, relation btw. hight and grafting densityx)

db = 0.85; (xdiameter of every monosaccharide unit (nm)sx)

vb = db " 3;(*monomer volume fraction nm”3x)

Nb[nr_| =4 nr + 8 + 4; (*monomer number units of lipopolysaccharide x)
Ach[S_, xp-] =S a"2 (1 + Q xp); (xarea per brush chainx)

sigmaB[S_, xp_-] = db"2/Ach[S, xp]; (xGrafting density )

HO[S_., nr_, xp_] = Nb[nr| db sigmaB[S, xp|~ alpha; (xequilibrium height )
phiBO[S_, xp_] = sigmaB[S, xp| (1 — alpha);

(*dimensionless brush monomer volume fraction x)
phipB[S_, nr_, Rp_, xp_, xpB_] =

(vpSph[Rp] xpB)/(HO[S, nr, xp] a"2 (1 +Q xp));
(#*dimensionless peptide volume fraction within brushx)
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6 )

(*Free energy components per number of sites (energy/NO)x)

Ml[n2_] =
Nlntegrate |
Exp[—kp[n2] Sqrt[x"2 + y"2]]/Sqrt[x"2 + y 2], {x, —a/2,
a/2}7 {Y7 _a/2’ a/Z}];
Mp[n2_] =
Nlntegrate |
Exp[—kp[n2] Sqrt[x"2 + y 2]]/Sqrt[x"2 + y 2], {x, Q a /2,
Q a/2}? {Y7 _a/2> a/2}];

Fmean|[n2_, x1_, x2_,
xp- | = —1B Dell[n2] (Mp[n2] — Ml[n2])/
2 Qxp (x1 +2x2+Qxp)/(1 +Qxp)/a’2 +
IB Dell [n2] (
Pi/kp[n2] — M1[n2]/2) (1 — x1 — 2 x2 — Q xp)~"2/(a"2 (1 +Q xp));

Entro[n2_, x1_, x2_, xp_

| =
x1 Log[x1/(1 + Q xp)/(nl v1)] 4+ x2 Log[x2/(1 + Q xp)/(n2 v2)] +
xp Log[Q xp/(1 + Qxp)] + (1 +Q xp — xI — x2 — Q xp) Log]
I —(x1 +x2+Qxp)/(1 +Qxp)] + (1 —Q)/
Q (1 +Qxp—Qxp) Log[l —Qxp/(1 +Qxp)] — xp (esp + 1) —

1/Q (1 + Q xp) Log|
1 —Qxp/(1 +Qxp)] + ((1 +Q xp)/Q) esp/(1 —Q xp/(1 +Q xp));

Fbulk[n2_, x1_, x2_, xp_ | =
x1 1B (Dell[n2] — 1)/2/dell 4+ x1 1B kp[n2]/(1 + kp[n2] rl)/2 +
x2 2°2 1B (Dell[n2] — 1)/2/del2 +
x2 2°2 1B kp[n2]/(1 + kp[n2] r2)/2 +
xp Q 1B (Dell[n2] — 1) (1/delp + (Mp[n2] — Ml[n2])/a"2)/2 +
xp Q 1B kp[n2]/(1 + kp[n2] rl)/2;
sum[n2_] =
Sum[1/2 (=1)"(i + j —
1) Exp[—kp[n2] a Sqrt[i"2 + j"2]]/(a Sqrt[i"2 + j 2] ) 8, {i,
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L, 10}7 {Ja 0, 1}] B
Sum[1/2 (—1)"(i — 1) Exp[-kp[n2] a i]/(a 1) 4, {i, 1, 10}] —
Sum([1/2 (—1)"(i + 1 —
1) Exp[—kp[n2] a Sqrt[2] i]/(a Sqrt[2] i) 4, {i, 1, 10}];
Flateral [n2_, x1_, x2_,
xp-] = —1B Dell|
n2] 2 x2 (1 +Q xp — x1 — x2 —-Qxp)/(1 +Q xp) sum[n2];

Ftrans[n2_, x1_, x2_, xp_] = —I1B Dell[n2] x1/dell —
IB Dell[n2] 2 x2/del2 — 1B Dell[n2] Q xp/delp;

( Brush Energyx)

FBrushS|[S_, EpepB._,
xp-| = (xp /2) (phiBO[S, xp] 3/vb vpHIlx +
phiBO[S, xp|"2/vb"(2/3) ApHIx +
phiBO[S, xp]|/vb"(2/3) ApHIlx EpepB);

FBrush [S_, EpepB_, xpB_, xp_-, Rp_.] =
xpB (phiBO[S, xp]|~“3/vb vpSph[Rp]| +
phiBO[S, xp]/vb"(2/3) ApSph|[Rp] EpepB +
phiBO[S, xp|“2/vb"(2/3) ApSph[Rp]);

EntB[S_, nr_, Rp_, xpB_, xp_] =
xpB Log[phipB[S, nr, Rp, xp, xpB]] + (HO[S, nr, xp] a2 (1 +Q xp) -
vpSph [Rp] xpB) Log[l — phipB[S, nr, Rp, xp, xpB]];

EntFreeP1 [np_, xp_, Ct_| =
1/(Ct V) (((np V. a"2)/Ab — Ct V xp) Log]|
vp (np — (Ab/a"2) Ct xp)] — ((np V a"2)/Ab — Ct V xp));

EntFreeP [np_, xp_, xpB_, Ct_] =
1/(Ct V) (((np Va"2)/Ab — Ct V (xp + xpB)) Log|
vp (np — (Ab/a"2) Ct (xp + xpB))] — ((np V a"2)/Ab —
Ct V (xp + xpB)));
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Total Free Energy

(x
(x LPS %)

Ftotall [np_, n2_, x1_, x2_, xp_, Ct_]
Entro[n2, x1, x2, xp | + Fmean[n2, x1, x2, xp | +
Flateral [n2, x1, x2, xp| + Ftrans[n2, x1, x2, xp] +
Fbulk [n2, x1, x2, xp] + H xp + a"2 KA (Q xp)"2/2 +

EntFreeP1 [np, xp, Ct];

(¢————LPS + Brush————— )

Ftotal2[S_, nr_, EpepB_, np_, n2_, x1_, x2_, xp_, xpB_, Rp_, Ct_]
Entro[n2, x1, x2, xp | + Fmean[n2, x1, x2, xp | +
Flateral [n2, x1, x2, xp| + Ftrans[n2, x1, x2, xp] +
Fbulk [n2, x1, x2, xp] + Hxp + a"2 KA (Q xp)"2/2 +
FBrushS [S, EpepB, xp] + FBrush [S, EpepB, xpB, xp, Rp] +
EntB [S, nr, Rp, xpB, xp] + EntFreeP [np, xp, xpB, Ct];

((=======Save minimized parameters in a table
Adsorption vs. Cp (Smart model)x)

If[Mg = 1,
LPS = Table[{np/conv,
sol = FindMinimum [{ Ftotall [np, n2, x1, x2, xp, Ct],
xl < 18&& 2 x2 < 18&&Qxp <1}, {{x1, 0.2}, {x2, 0.1}, {xp,

0.001}}];
Qxp /. sol[[2]], 2 x2 /. sol[[2]]},

{np, 0.001 conv, 10 conv,
0.1 conv}, {n2, {1 convMg, 5 convMg, 10 convMg}}];

Adsorption vs. Cp (Brush model)
(f——————— Changing n2[Mg2+]*)

LPSbrush =
Table[ {np/conv |,
sol = FindMinimum [{ Ftotal2 [S, nr, EpepB, np, n2, x1, x2, xp, xpB,
Rp, Ct],
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x1 < 1 & 2 x2 < 1&&Q xp < 1 &
phipB (S, nr, Rp, xp, xpB] < 1}, {{xI, 0.2}, {x2, 0.1}, {xp,
0.001), {xpB, 0.0000001}}];

Q xp /. sol[[2]], phipB[S, nr, Rp, xp, xpB] /. sol[[2]],

2 x2 /. sol[[2]] }, {np, 0.001 conv, 10 conv,

0.1 conv}, {n2, {1 convMg, 5 convMg, 10 convMg}}];

( plot ———x)
plotl = ListPlot [{Labeled [LPS[[;; , 1, 2]], "NoB Mg=ImM"],
Labeled [LPS[[;; , 2, 2]], "NoB [Mg]=5mM"],
Labeled [LPS[[;; , 3, 2]], ”"NoB [Mg]=10mM" ]
, Labeled [LPSbrush [[;; , 1, 2]], 7[Mg]=InM"],
Labeled [LPSbrush [[;; , 2, 2]], ”[Mg]=5uM"],
Labeled [LPSbrush [[;; , 3, 2]], 7 [Mg]=10aM"]},
AxesLabel — {7 [AMP] microM”, "QNp/N0” }];
plot2 = LlstPlot[{Labeled[LPS[[;; , 1, 3]], "NoB Mg=1"],
Labeled [LPS[[;; 3]], "NoB Mg=5"],
Labeled[LPS[[,7 : 3, 3]], "NoB Mg=10"],
Labeled [LPSbrush [[;; , 1, 4]], "Mg=1"],
Labeled [LPSbrush [[;; , 2, 4]], "Mg=5"],
Labeled [LPSbrush [[;; , 3, 4]], "Mg=10"]},
AxesLabel — {” [AMP] microM” 72Mg2+/N0” } ;
plot3 = ListPlot [{ Labeled [LPSbrush [[;; , 1, 3]], "Mg=1"],
Labeled [LPSbrush [[;; , 2, 3]], "Mg=57"],
Labeled [LPSbrush [[;; , 3, 3]], "Mg=10"]}

AxesLabel —> {”[AMP]microM” , "vpNpB/(HO0.A)” }];
]

(% fixed [Mg]=1mM *)
If[Mg = 0,
LPSImM =
Table [{np/conv ,
sol = FindMinimum [{ Ftotall [np, n2, x1, x2, xp, Ct],
xl < 1 & 2 x2 < 18&Qxp <1}, {{x1, 0.2}, {x2, 0.1}, {xp,
0.001}}];
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Qxp /. sol[[2]], 2 x2 /. sol[[2]]},
{np, 100 conv, 350 conv, 5 conv }]|;

(k—————— Changing EpepB(brush—pep att.)x)
If [BpAtt — 1,
LPSbrush =
Table[ {np/conv |,
sol = FindMinimum [{ Ftotal2 [S, nr, EpepB, np, n2, x1, x2, xp, xpB,
Rp, Ct],
xl < 1&& 2 x2 < 1&&Q xp < 1 &&
phipB[S, nr, Rp, xp, xpB|] < 1}, {{x1, 0.2}, {x2, 0.1}, {xp,
0.001}, {xpB, 0.00001}}];
Q xp /. sol[[2]], phipB[S, nr, Rp, xp, xpB] /. sol[[2]],
2 x2 /. sol[[2]] }, {np, 0.001 conv, 10 conv,
0.1 conv}, {EpepB, {—-0.01, —0.05, —0.1}}];

(*— Plot %)

plotl = ListPlot [{ Labeled [LPSImM|[[;; , 2]], ”"No Brush”],
Labeled [LPSbrush [[;; , 1, 2]], "pep—B=-0.01"],
Labeled [LPSbrush [[;; , 2, 2]], "pep—B=-0.05"],
Labeled [LPSbrush [[;; , 3, 2]], "pep-B=-0.1"]},
AxesLabel — {” [AMP] microM” , "QNp/N0” }];

plot2 = ListPlot [{ Labeled [LPSImM[[;; , 3]], "No Brush”],
Labeled [LPSbrush [[;; , 1, 4]], "pep-B=-0.01"],
Labeled [LPSbrush [[;; , 2, 4]], "pep—B=-0.05"],
Labeled [LPSbrush [[;; , 3, 4]], "epp—B=-0.1"]},
AxesLabel — {” [AMP]microM”, ”2Mg2+/N0” }];

plot3 = ListPlot [{ Labeled [LPSbrush [[;; , 1, 3]], "pep—B=-0.01"],
Labeled [LPSbrush [[;; , 2, 3]], "pep—B=-0.05"],
Labeled [LPSbrush [[;; , 3, 3]], "pep—B=-0.1"]},

AxesLabel —> {7 [AMP] microM” , "vpNpB/(H0.A)” }];
]

(x Changing S(area)x)
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If [area = 1,
LPSbrush =
Table[ {np/conv |,
sol = FindMinimum [{ Ftotal2 [S, nr, EpepB, np, n2, x1, x2, xp, xpB,
Rp, Ct],
xl < 1&& 2 x2 < 1&&Q xp < 1 &&
phipB[S, nr, Rp, xp, xpB| < 1}, {{x1, 0.2}, {x2, 0.1}, {xp,
0.001}, {xpB, 0.00001}}];
Q xp /. sol[[2]], phipB[S, nr, Rp, xp, xpB] /. sol[[2]],
2 x2 /. sol[[2]] }, {np, 0.001 conv, 10 conv,
0.1 conv}, {S, {4, 7, 10}}];

( plot %)
plotl = ListPlot [{Labeled [LPSImM[[;; , 2]], ”"No Brush”],
Labeled [LPSbrush [[;; , 1, 2]], "5=47],
Labeled [LPSbrush [[;; , 2, 2]], "S=77"],
Labeled [LPSbrush [[;; , 3, 2]], "S=10"]},
AxesLabel — {7 [AMP] microM” , "QNp/N0” }];
plot2 = ListPlot [{ Labeled [LPSImM [[;; , 3]], ”"No Brush”],
Labeled [LPSbrush [[;; , 1, 4]], "S=4"],
Labeled [LPSbrush [[;; , 2, 4]], "S=7"],
Labeled [LPSbrush [[;; , 3, 4]], 7S=10"]},
AxesLabel —> {” [AMP] microM” , ”2Mg2+/N0” }|;
plot3 = ListPlot [{ Labeled [LPSbrush [[;; , 1, 3]], "S=4"],
Labeled [LPSbrush [[;; , 2, 3]], "S=7"],
Labeled [LPSbrush [[;; , 3, 3]], "S=10"]},

AxesLabel —> {”[AMP]microM” , "vpNpB/(H0.A)” }];

(f—————— Changing nr(chain length)x)
If [chain = 1
LPSbrush =
Table[ {np/conv |,
sol = FindMinimum [{ Ftotal2 [S, nr, EpepB, np, n2, x1, x2, xp, xpB,
Rp, Ct],

Y
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x1 < 1 & 2 x2 < 1&&Q xp < 1 &
phipB (S, nr, Rp, xp, xpB] < 1}, {{xI, 0.2}, {x2, 0.1}, {xp,
0.001}, {xpB, 0.01}}]:

Qxp /. sol[[2]], =xpB/ (a"2 (1 +Q xp)) /. sol[[2]],

2 x2 /. sol[[2]] }, {np, 100 conv, 350 conv,

5 conv}, {nr, {15, 1000, 10000, 100000}}];

(k—————— plot %)
plotl = ListPlot [{Labeled [LPSImM|[[;; , 2]], ”"No Brush”],
Labeled [LPSbrush [[;; , 1, 2]], "N=15"],
Labeled [LPSbrush [[;; , 2, 2]], "N=507],
Labeled [LPSbrush [[;; , 3, 2]], "N=1000"],
Labeled [LPSbrush [[;; , 4, 2]], "N=10000"]},

AxesLabel —> {”[AMP]microM” , "QNp/N0” }];

plot2 = ListPlot [{ Labeled [LPSImM|[[;; , 3]], "No Brush”],
Labeled [LPSbrush [[;; , 1, 4]], "N=157],
Labeled [LPSbrush [[;; , 2, 4]], "N=507],
Labeled [LPSbrush [[;; , 3, 4]], "N=1000"],
Labeled [LPSbrush [[;; , 4, 4]], "N=10000"]},

AxesLabel —> {” [AMP]microM”, ”2Mg2+/N0" }];

plot3 = ListPlot [{LPSbrush [[;; , 1, 3]], LPSbrush[[;; , 2, 3]],
LPSbrush [[;; , 3, 3]], LPSbrush[[;; , 4, 3]]},
AxesLabel — {” [AMP]microM” , "vpNpB/(H0.A)"},
PlotLegends —> {"N=15", "N=50”", "N=1000", "N=10000"}];

(k——————— Changing cell density )
I[f[cell = 1,
LPSbrush =
Table| {nr ,
sol = FindMinimum [{ Ftotal2 [S, nr, EpepB, np, n2, x1, x2, xp, xpB,
Rp, Ct],

xl < 1 && 2 x2 < 1&&Q xp < 1 &&
phipB[S, nr, Rp, xp, xpB] < 1}, {{x1, 0.2}, {x2, 0.1}, {xp,
0.001}, {xpB, 0.0001}}];
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Q xp /. sol[[2]], phipB[S, nr, Rp, xp, xpB] /. sol[[2]],
2 x2 /. sol[[2]] }, {nr, 10 , 100000,

1000}, {Ct, {10"5 convCt, 10°8 convCt, 10°11 convCt,
10713 convCt } }];

(k—————— plot %)
plotl = ListPlot [{ Labeled [LPSbrush [[;; , 1, 2]], "cell=5"]
Labeled [LPSbrush [[;; , 2, 2]], "N=87],
Labeled [LPSbrush [[;; , 3, 2]], "N=11"]
Labeled [LPSbrush [[;; , 4, 2]], "N=13"]},
AxesLabel —> {"N”, "QNp/N0” }];
plot2 = ListPlot [{ Labeled [LPSbrush [[;; , 1, 4]], "cell=5"]
Labeled [LPSbrush [[;; , 2, 4]], "N=8"],
Labeled [LPSbrush [[;; , 3, 4]], "N=11"]
Labeled [LPSbrush [[;; , 4, 4]], "N=13"]},
AxesLabel — {"N”, 72Mg2+/N0” };
plot3 = ListPlot [{LPSbrush[[;; , 1, 3]], LPSbrush[[;; , 2, 3]],
LPSbrush [[;; , 3, 3]], LPSbrush[[;; , 4, 3]]},

AxesLabel —> {"N”, ”vpNpB/(H0.A)"},
PlotLegends —> {” cell =57, "N=8", "N=117, "N=13"}];
]

€ Exporting data as a table format

Export [" LPSBrush_chain_HighDensityl11”, LPSbrush, ”Table”];
Export [" LPS_chainHighDensity11”, LPSImM, ”Table”];

plotl
plot2
plot3
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Chapter 5

Conclusion & Proposal

This thesis dedicated to the biophysical investigation of the interactions between AMPs
and different lipid membranes (e.g. neutral, charged and polymer-grafted) in relevant
physiological conditions of cell density and divalent cationic concentrations. In particular,
we proposed two finely-tuned coarse-gained models, which one described the cell-density-
dependent selectivity of the peptides in their interactions with lipid bilayers of mixed
PE/PG and pure PC, and the second model examined the physical influence of polymer-
grafted chains of the oligosaccharide/O-antigen of a wild-type LPS in the peptide adsorp-
tion process. The general conclusions of our peptide-lipid and peptide-LPS-brush models
are presented in section 5.1 and a proposal for future work is explained in section 5.2.

5.1 Conclusion

In chapter 1.4, we presented a physical model of the cell selectivity of AMPs, accounting
for simultaneous theoretical challenges of several competing effects; such as lipid demixing
and peptide-peptide interactions. To this end, we have systematically analyzed several
models and singled out one, which described accurately the electrostatic binding of pep-
tides to a membrane, whether charged or neutral. This critical examination of various
models of peptide-membrane interactions, which incorporated adequately mentioned com-
peting effects as well as the geometry of various regions in membranes, occupied by bound
peptides, anionic lipids within the interaction range of each peptide, and those outside
this range, leads to a systematically-improved model for peptide selectivity. Using this im-
proved model, we related peptide’s intrinsic (Ceep-independent) selectivity to an apparent,

129



Ceen-dependent one, and clarified the relative roles of peptide parameters and cell densities
in determining their selectivity.

A general picture from this work is that peptide selectivity remains sensitive to peptide
parameters (e.g., charge and hydrophobicity) at the low-cell density limit, but becomes
less sensitive outside this limit. As a result, the optimal peptide charge, at which the
selectivity is maximized, is cell-density-dependent: it increases and eventually becomes
irrelevant as the cell density increases. This means that optimization of peptide selectivity
should reflect the biological setting of infected sites as it determines the number of cells
and peptides, Neop and N, respectively. In general, this coarse-grained model of AMPs
selectivity enables us to map out intrinsic selectivity from apparent (Ccell-dependent)
one or biologically-relevant one from ”conveniently-measured” selectivity. This effort will
benefit our endeavour in optimizing the peptide parameters for their enhanced selectivity
in a physiological environment.

Furthermore, in chapter 4 we examined peptide adsorption on the outer membrane
(OM) of Gram-negative bacteria and in particular, the interaction between AMPs and a
wild-type lipopolysaccharide (LPS) layer in a biologically relevant medium (i.e. contain-
ing monovalent and divalent salt ions like Mg®T). The physical coarse-grained models of
peptide-ions-LPS had been introduced, recently [13, 58, 59], though the physical effect of
oligosaccharide and O-antigen chains of the wild-type LPS molecules was not examined.
To this end, we introduced two modes for peptide adsorption (Fig. 4.1), known as primary
and ternary [120, | adsorption. The total number of adsorbed peptides on LPS brush
was set by two processes; (i) N, peptides bind to the anionic LPS inner core (i.e. referred
by LPS surface), in primary adsorption, and (ii) Npp peptides become captive within the
brush, in ternary adsorption. The chemical potentials of primary and ternary adsorption of
peptides and ions were balanced with their corresponding chemical potentials in the bulk,
while the total number of available peptides kept constants (i.e. canonical ensemble).

Our model quantitatively assessed the protection role of saccharide brush in an LPS
layer and demonstrates how core oligosaccharide and O-antigen part of wild-type LPS
reduced the number of adsorbed membrane-lytic peptides. Our results demonstrate that
the presence of the saccharide brush reduces the number of hydrophobically-bound peptides
to the polymer-grafted interface of LPS, compared to the deep-rough LPS layer that lacks
the polymer brush. Our LPS brush model predicts ~ 30% reduction of peptide adsorption,
which is consistent with recent experimental measurements. This can be attributed to the
steric hindrance of the brush or the excluded-volume interaction of the saccharide chains
with peptides. At a low cell density limit, we also note that the total number of peptides
trapped within the brush is very small, compared to the number of bound peptides on the
LPS interface. This implies that the hydrophobic binding of peptides is insensitive to the
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brush length. This, however, does not exclude the possibility of kinetic slowing-down of
the binding.

In conclusion, a combined effort between experiments and theoretical modelling will
benefit our endeavour in searching for potent peptide antibiotics. Indeed, bacteria have
developed strategies to counteract the action of AMPs, for instance, by reducing the surface
charge density on their membrane [16]. How will this influence peptide selectivity and how
should the peptide parameters be adjusted to restore the selectivity? The use of predictive
models together with available data (e.g., those for P/L* and Cc) will be useful for
identifying the peptide parameters for their enhanced activity under different conditions
(e.g., diminished surface charge density and different salinity).

Our coarse-grained modelling of the thermodynamic equilibrium condition of the peptide-
membrane system could reproduce experimental data for a broad set of target cell densities
and predict thermodynamic properties of the system by using the given structural param-
eters (e.g. P/L* and A,). In particular, this predictive model has a practical application
in peptide-based antibacterial products, e.g. hydrogel, soap and capsule, for fine-tuning of
the employed antibiotic concentration [166]. Besides, compared with molecular dynamic
(MD), a semi-analytical coarse-grained model provides increased computational efficiency
at sufficient levels of accuracy. It is infeasible to simulate more than a few hundreds
of cells by MD, while a wide range of target cell density can be captured easily by our
semi-analytical model.

5.2 Proposal

In chapter 1.4, despite of our successful mapped-out Langmuir model for AMP cell-density-
dependent selectivity, which perfectly explained the monotonic correlation between selec-
tivity and cell density (i.e. with a plateau region for relatively small cell densities) and
reduced the complex sets of involved physiochemical parameters into two general quantities
of effective binding energy per peptide W* and threshold concentration P/L*, It will be
desirable to mimic the biological setting in theoretical considerations beyond the recent
effort.

Experiments with live E. coli cells indicate the importance of another factor in our
Langmuir model of cell-density-dependent selectivity of AMPs: the trapping of peptides in
dead cells [116]. Unlike lipid vesicle membranes, cellular components (e.g., chromosomes)
can attract cationic peptides. As a result, the density of peptides can be much larger inside
a cell than outside. In our approach, this can be mimicked by adjusting the slope of a curve
representing Eq. 3.37 or Eq. 3.34. The modification can be as
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Acen (P\" .
C*(Cren) = { az“ (f) +Ntrap] Cean + C2(0). (5.1)

Also the ‘y’ intercept, i.e., C7(0), is either MIC or MHC in the single-cell limit; it is
related to W* as indicated by Eq. 3.37: C3(0) = - - %% J(1— 2227y W /keT Fq. 5.1
can serve as a fitting model for MIC or MHC data. For instance, the values of Ny, and
W* can be extracted. It can then be used to estimate peptide selectivity in a biologically
relevant range of Cq, once the selectivity is measured at conveniently chosen cell densities.
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Appendix A

Calculations of
Electrostatic Free Energy (F))

Note that in the Appendix free energy and energy are given in units of kg7’; 0 and o, are
planar charge densities in units of the elementary charge e.

A.1 Peptide self-energy: I,

The first term in Eq. 3.2, F,, is the self-energy of peptides with respect to their state in the
bulk. In the bulk, it is constant but changes near a dielectric medium (e.g., membranes); it
becomes variable when the peptide undergoes conformational changes from random coils
to compact disks (cylinders or « helices more realistically). On the surface of a binding
membrane, the peptide can be modelled as a uniformly charged circular disk or plate of
charge Q and area A, (=~ 400A for melittin [5]). The peptide-membrane system is immersed
in a salt solution characterized by the inverse screening length x = 4nfgngy, where ng is the
total density of salt ions assumed to be monovalent. Also recall that e,xd/e;, > 1, where
€, and ¢, are the dielectric constants of water and lipids, respectively. This means that the
two layers of a lipid membrane are electrically decoupled (see Ref. [2, | and references
therein). One can view the membrane a dielectric plate occupying the space z < 0 with
membrane charges distributed at z = 0.

To proceed further, note that the free energy of a uniformly charged plate per area
with a surface charge density o occupying the space z < 0 can be obtained from the
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Figure A.1: (A) The free energy of a disk-like peptide a distance h above the dielectric

interface can be calculated by considering the double-layer interaction energy between

the real disk-like peptide and its image-charge disk with uniform peptide’s surface charge

density of op,. This picture is equivalent to approximating A, = =% ~ 1. (B) This
. . . . . Ew Ee

figure represents the potential distribution of a charged thin plate and two parallel plates

with same surface charge density, separated by distance 2h, in an electrolyte solution. The

surface potentials ¢ (left) and ¢35 (right) are also introduced.

Poisson-Boltzmann (PB) approach [65, 110]:

LB

_ {thick
Foate(0) = oW _ % [cosh ( > ) - 1} , (A1)

where Wihick = 25inh™! (270l /k) is the surface potential at z = 0 (the charges are dis-
tributed on the plate surface at z = 0).

If o =0, = Q/A, is used, Eq. A.1 can be interpreted as the self free energy of a peptide
on the membrane surface, as in model 1 [0]: F, = Ap,Fpiate(0p). It can also be used to
estimate the electrostatic interaction between a bound peptide and the surrounding lipids
in zone 1 in model 1 as well as lipid-lipid interactions in zone 1 or 2 in both models 1 and
2 (see Eq. A.10 and Eq. A.11) as well as the membrane reference free energy in all models.
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In the consideration above, the charges on a bound peptide are treated as surface
charges at the interface between headgroups and tails. More realistically, because of finite
ionic sizes, peptide charges can be assumed to be distributed some distance (h) from the
membrane surface, as shown in Fig. A.1. The effect of dielectric discontinuity on F}, can
be mimicked by introducing peptide’s image charges: a continuum image-charge disk with
the charge density A.o,, where A, = (€, — €)/(€y + €¢) controls the effects of image

charges [%, |. Here note that A, ~ 1. Together with the image charges, the peptide
charges form a double layer: two similarly-charged parallel plates a distance 2h apart (see
Fig. A.1). The interaction free energy between such double layers is known [172]. For small
h, F,(z) is well represented by
F$‘°'2(3>(h) _ A, In ( 1 + exp(—2kh) ))
mlgh 1 + exp(—2kh/cosh Wgeuble

A \Ijthin
+ W;: {1 — 1/ cosh Wdouble _ \Ifgouble sinh ( ; ) } , (A.2)

thin
\I’O

where Wgeube(h) = sinh™" |2sinh ( =2 > / tanh(ﬁh)] is the surface potential of two like-

charged parallel plates with the same surface charge density o, a distance 2h apart from
each other and Wi = 2sinh ™! (7o, /k) is the corresponding quantity for an isolated thin
layer. Fig. A.1(B) represents a schematic potential distribution for the single-plate and
double-plate cases. Note that Eq. A.2 is an approximate relationship for small separations
and works well for distances kh < 0.6 [172]. We use Eq. A.2 for both models 2 and 3.

A.2 Fp_;1: peptide-lipid interaction in zone 1

How a bound peptide interacts with the surrounding lipids in zone 1 depends on the binding
mode. For mode I, zone 1 can be approximated as a charged surface with a hole of radius
R, (i.e., peptide radius) at the centre. If we ignore the outer-boundary effect, as assumed
in model 2, the interaction free energy can be obtained as

Ry
F;M_Oﬁ(l) = /0 2mrdr [Gp - UpB_hole (T’a 0= ‘71(1))}

471'0’1(1)613
= 7o, R% | Uy(0) — tanh Wy (0) +
pfty | Hol0) o(0) K/ cosh Wy (0)
o JE(kR
—8W2€Bal(1)apR§/ dk (k) , (A.3)
0 k+/k? + K2 cosh ¥ (0)
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where WUpp_ple is an approximate Poisson-Boltzmann surface potential of an infinite charged
plane at z = 0 with a hole of radius R, at the centre derived in Eq. B.10, ¥((0) =
Upp_hole(r = 0) is the surface potential at the centre of the hole (recall that the membrane
charges are at z = 0), 011y is the surface charge density of anionic lipids in zone 1 with a
hydrophobically-bound peptide, and J;(z) is the Bessel function of the first kind. Detailed
steps leading to this are presented in Appendix B, where it is shown that

4roly
Upp_hole(T, 2 =0) = W4(0) — tanh ¥y(0) + —————r
PB-hole( ) o(0) o(0) K/ cosh Wy(0)
—rotgR [ ap—ZoEDNKER) (A.4)

0 k2 + k2 cosh U(0)

Note that the effect of dielectric discontinuities is approximately taken into account.

For mode S, the interaction energy is the work required to bring ) charges toward an
infinitely thick dielectric plate of surface charge density o). Hence we have;

Fllaw_orﬁ(S) = Q- Upg (2 =0, oyg)) - (A.5)

Note here that the Poisson-Boltzmann surface potential of an infinite plane is Vpg(z =
0,0) = 2sinh™! (270fg/k) and the surface charge density of anionic lipids in mode S is

01(s8) = —Oéls/ae-

In model 3, the boundary of zone 1 is kept finite. As a result, zone 1 can be viewed
as a circular ring with an outer radius R; and an inner radius Rp. This geometry poses
a main barrier to theoretical calculations. In this model, we use the linearized PB or
Debye-Hiickel approach within the two state model of peptide binding: free or bound.
Since the strong peptide-lipid interaction (giving rises to the non-linearity of electrostatic
interactions as reflected in the PB equation) is taken into account this way, this approach
is more reliable than it may sound; since the membrane charges are much neutralized by
peptide charges, the residual interaction between the membrane and ions will be relatively
weak. The resulting approach is a renormalized DH approach. We thus calculate the
peptide-lipid interaction by estimating the electrostatic energy that a bound peptide feels
from the DH surface potential of the circular ring:

Ry
Fgﬁjﬁ(l) = /0 2mrdr [Up * UDH—ring (T, o1, Rp, Rl)]

R,Ji(kR,)

k\/m [lel(kR1> - RpJ1<kRP)] ) (A6)

= 87r20p01(1)€]3/ dk
0
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where J; (z) is the first-order Bessel function of the first kind and the DH surface potential
of a ring with inner and outer radii 7, and 74y is given by [173]

o Jo(k
UDH-Ring (T T, T'in, Tout) = 470 (R dk o(kr)

. —\/m [outJ1 (kTout) — TinJ1 (k7in)] - (A.7)

On the other hand, the peptide’s and lipid’s charges in mode S are assumed to be
smeared out over zone 1. The free energy of zone 1, including peptide-lipid and lipid-lipid
interactions, can be obtained by using the DH surface potential of a disk with a radius R;
and the net surface charge density of onet = Q/A; — ay(s)/ae:

Fomid = Fpliies) + i)

1 [
= 5/ 277 dr [Onet * UpH_disk (T, Tnets B1) — Op(ay) - YpH_disk (T Op(ay), Bi1)]
0
R{J}(kRy)
kVE? + K2

where Ypp_qisk (7, 0, R) is the DH surface potential of a disk with a radius R and a surface
charge density o, given by [173]

= (0t — Ob(ay)) 4705 /0 dk (A.8)

\IIDH—diSk(r7 g, R) = 47T0'€BR/ dk JO(kr)Jl (kR) . (Ag)

Note that the second term containing opa,) = @/A; in Eq. A8 (i.e., the surface charge
density of a peptide when its charge is smeared out over A;) is introduced to avoid the
double counting of the peptide self energy, since it is already included in Eq. A.2. While

the lipid-lipid interaction for mode S in model 3, Fﬁv{‘()sgs, is naturally included as part of
FMo3 in Eq. A.8, this interaction is considered separately below for model 2 and mode I

in model 3.

A.3 Lipid-lipid Interaction in each zone: Fy;(F1»)

Here we present steps leading to the free energy of each zone: zone 1 or 2. In model 2, we
ignore the boundary effect by treating each zone as a boundary-less plate. The electrostatic
free energy per area for both modes I and S is identical to that of the semi-infinite plate
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(Eq. A.1), described in section A.1, with the surface charge densities o1(;) and oy(;) for zone
1 and zone 2, respectively, where ¢ = S or I represents the mode.

F’Illvlh()l)2 = (AWSC - Ap51i> fplate (Ul(z)) (AlO)

F5% = (Awse — A1) Foate (02(7)) - (A.11)
The plate free energy per area Fpate is given in Eq. A.1. The presence of the delta function
is obvious: for mode S, lipids are excluded from the central peptide.

In model 3, the geometry of each zone is preserved. To make this analytically-tractable,
we use the DH approach and calculate the surface potential of a ring in both modes of (I)
and (S), except for FM?S% that is presented in Eq. A.8.

Mo.3 f 71m
FLIOI-) = /R (27T’f‘d’f‘) / \IIDH—Ring (7", Rp, Rl, 0'1(1)/> dal(l)’
p 0

o dk
2 2 2
A7 0'1(1)613/0 m [lel(le) — Rpjl(/{?Rp)] <A12)

and

N Rwsc O2(4)
FL2(()§ = / (27T7’d7’) /0 \IJDH—ring (7“, Rl, Rws, O'Q(i)/) dO’g(i)/

R1
0 dk
= Ax’02.¢ / S —
O o kVEZ K2

The DH surface potential of a ring, Wpy_ying, is presented in Eq. A.6.

[RwscJi(kRwsc) — RiJy(kRy)]® (A.13)

A.4 Interactions between bound peptides or
Wigner-Seitz Cells: Fp_pr and Fiyysc_wscr

Bound peptides (P — P’) or WSCs (WSC — WSC’) interact with each other, where the
unprimed and primed symbols refer to different peptides or WSCs. Their mutual repulsion
can be included systematically.

In numerically-oriented Wigner-Seitz cell approaches, a standard procedure to capture
the repulsion between WSCs on the membrane surface is through the boundary condition:

%—f B = 0, i.e., the normal component of the electric field (i.e., a component of the
r=Rwsc
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field normal to the WSC boundary in the plane of the membrane surface) vanishes on the
WSC boundary [9, 81]. Below, we describe analytically-tractable models.

In sub-model b, i.e., model 2b and model 3b, we only take into account the interaction
between bound peptides, P — P’. This interaction can be obtained by dividing the mem-
brane into a disk of radius R,, and the rest, i.e., the plate with a hole of radius Rz,,, with the

1 — — (U +o 71/Ace )Q
surface charge density o, = @Q/A, and o, = Thor APS_ Tovse /o)

the prime is used for the ‘rest’ and A is the surface area of bacteria or host cells.

respectively; recall that

Let Upp_pole be the surface potential created by the rest somewhere in the hole (obtained
in Eq. B.10 and also shown in Eq. A.4). Using the approximate PB approach detailed in
Appendix B, we arrive at

1 [
Ff;\/l_op%b = 5/ 27rdr [op - UpB—hole (T, 0prs Rwsc)]
0
T, R | , Ao, ly
= ——= |V (0) —tanh ¥, (0) + ——————
2 ol0) ol0) k+/cosh W (0)

(A.14)

Rwsc /°° dk  Ji(kR,)Ji(kRwsc)
o kv/k?+ k2 cosh U} (0)

Here and below, r is the distance from the centre of the hole measured in the direction
parallel with the membrane surface and

dmoy o
M — 47T0_p’€BRWSC dk Jl (kRWSC)

K 0 VE? 4+ K2

is the potential at the hole center due to the rest (i.e., the plate with a hole) with the
surface charge density o,y (see Appendix B).

U)(0) = Upp_pole(r = 0) = sinh™* { } (A.15)

Similarly, let Wpg_pole(7, 0, R) be the DH surface potential of a charged plane with a
hole of radius R evaluated somewhere in the hole [173]:

1 00
\I/DH—hole(r, g, R) = 477'0'4]3 |:— — R/ dk (A16)
0

K

Jo(k'r)Jl(k'R)}
We then find

1 [P
F}l}/[_oPSIb = 5 /0 2mrdr [Up . \IJDHfhole (7”, Op/s Rwsc)]

1 2R > Ji(kRy)Ji(ER
= (27r20p0p’€BRI2)) {__ Wsc/ dk 1(kRy)Ji (kRwsc)
0 kVE? + K2

K R,

} . (A7)
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Note that this is relevant for a thick dielectric medium, for which the image-charge effect is
taken into account through the combination 1+ (e, —€;)/ (€, +€¢) = 2 (see Ref. [1 73] for the
corresponding expression for a thin plate). Asshown in Fig. B.1, the dielectric discontinuity
on the surface of an infinitely thick layer can be mimicked in a thin layer sheet by changing
the surface charge density from o to o(1+A,) [14]. As aresult, the corresponding boundary
condition will evolve from ege, By — €gegBs = o into 2€pe, F = o(1 + A.). Refer to Eq. B.4
in appendix B for further details.

In a refined sub-model ¢, we include all relevant interaction pairs: peptide-lipids’ and
lipid-peptides’ as well as peptide-peptide’. As explained in Fig. 3.3, the total interaction of
a single WSC with the rest, i.e., WSC’, can be decomposed into three distinct contributions:
P—-P,P—(L1+L2), and (L1 + L2) —P".

Fwsc-wscr = Fp_pr + Fp_(Li412) + Flri412)—p'- (A.18)

For this consideration, we essentially extend the method used for sub-model b, and consider
the membrane as being made of a disk of radius Rwsc and the rest, i.e., a thick plate with
a hole of the same radius. First introduce the surface change density of a WSC we focus
on and that of others, denoted as owsc(:) and owscr(;), respectively:

Q — a/a(Awsc — Apdni)
Awsc

e (o1 +0s—1/A)Q — a/ar[1 — (Awsc — Apdni) /Acen] (A.20)
WEC) 1+ 014, — Awsc/Acen '

Note that owgcr(;) is a quantity averaged over both modes, while Twsc) refers to either
mode S or mode I. This difference is reflected in these two quantities.

For model 2c, this leads to

owsc() = : (A.19)

1 [Bwsc
F\IZ\V/IggiWSC’(i) ~ 5/0 2mrdr [UWSC(i) . \I]PB—hole (7", 0WSC’(i)? Rwsc>]

dmlgowscr (i)

x4/ cosh U (0)
J?(kRwsc)

k+/k? + K2 cosh W) (0)

2
Towsca) fwsc

Wi (0) — tanh Wy (0) +

(A.21)

_SWEBO-WSC'(Z') / dk
0

where W (0) is the PB surface potential of a charged plate with a hole in the center, i.e., at
r = 0and z = 0 (i.e., the potential in Eq. A.15 with 0 = owscr() (see Eq. B.12). Similarly,
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for model 3c, we find

1 [Bwsc
FsiSwsog = —/0 2rdr [owsc() * Ypa-nole (7 owscr (i), Rwsc) ]

2

Jf(kRWSC)}
— | (A.22
kvVk2 + K2 ( )

Note here that Ypy_nole (7‘, TWSC! (3) RWSC) is a special case of Upy_pele (7, 0, R) in Eq. A.16.

1 o0
= 2w lgowsc(i)owsc (i) Rivsc {E - 2/ dk
0

A.5 Interaction between zone 1 and zone 2: 71 — 72

Next, we include the interaction between zone 1 and 2 in the same WSC as for model 3d.
One may argue that this is a relatively small contribution, since the peptide charge in zone
1 is more or less neutralized by the surrounding lipids; recall that this is how zone 1 is
defined. Nevertheless, for completeness, we consider this interaction.

First, note that it can be decomposed into two parts
F1%% = Fpo1o + Fui 1o (A.23)

Based on the DH surface potential of a ring (see Eq. A.7 with a surface charge density
0 = 03(;), an inner radius 7y, = Ry, and an outer radius 7oy = Rwsc), we obtain

R,
Fp_roq) = / 2mrdr [op - UpH_ring (02(1), 7, R1, Rwsc) ]
0

~ R (KR,
= 81 / dk—2——2% [RywscJi (kR — R J1(ER 24
™ o) | Y [Rwsc i (kRwsc) — RiJi(kRy)|(A.24)

R1
FL17L2(I) = / 2mrdr [01(1) : \IJDHfring (02(1),7“, leRwsc)]
Rp

& Ry Ji(kRy) — Ry J1(kR)))
= 8nilgoyno / dk[ D P2 IR Ji(ER — RyJ
BT | P [RwscJ1(kRwsc) 111 (k&R29)

As discussed earlier (see Eq. A.8), for mode S, the peptide and lipid charges are taken
to be uniformly smeared out. The resulting planar charge density is opey = Q/A1— 0 (s)/as.
With this difference, we arrive at

Ry
F(P+L1)7L2(S) = /0 2rdr [Unet : \DDHfring (02(8),?", Ry, RWSC)]
Ry Ji(kRy)
kVE? + K2
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A.6 Peptide free energy in the bulk

Peptide binding is not solely determined by the interaction energy between peptides and
their binding membrane. Their reference state in the bulk should be taken into account
in our consideration. In this approach, free peptides in the bulk are assumed to be un-
structured charge-carrying chains or simply polyelectrolytes (PEs); each chain consists of
N monomeric units (amino acids) of length b each and carries a total charge Q). The free
energy of a PE, Fpg, is known [175]. Tt can be expressed in terms of the end-to-end distance
of the chain, R, as

Fpr (A.27)

2 2
LI st @, (), SR
2 Nb? 2 R Nb3k
If the conformational entropy term, i.e., the first term on the right hand side in Eq. A.27,
tends to decrease R, the last term, describing the repulsion between charges on the
chain [174], opposes this. On the other hand, the second term arising from the attractive
interactions between a charge on the chain and the surrounding counterions is independent

of R [0].

In equilibrium, Fpg is minimized with respect to R. Here we choose PE parameters
as for cationic peptide melittin: N = 26 and b = 4.1A [176]. Note that our choice of b is
somewhat larger than the distance between two backbone monomers or the size of each
amino acid. This choice is to reflect that the fact that cationic charges are mostly on
the side chains and their actual spacing is larger than the distance along the backbone.
The corresponding equilibrium free energy Feou(Req) has to be used as the reference free

energy [0].
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Appendix B

Approximated Poisson-Boltzmann
potential of an infinite charged plane
with a circular hole

Lo
Ew E: Ew f
B | = e X E P
-~ = - - - I D 7 s X
o 0= _ _ - -
= - Ez& - ~ '0'('I+As):_ -
e o ) N
: £, El

Figure B.1: Mapping a thick dielectric plate (left), occupying z < 0 and carrying charges
on the surface at z = 0, onto a thin layer of charges at z = 0 (right). Here, subscripts w and
¢ stands for water and lipid, respectively. Let n be a unit normal vector pointing along the 2
axis. The electric boundary conditions for the thick and thin cases are n-(ege,, Eq —ege Ea) =
o and 2epe, B = o(1 + A,), respectively [14]. The two are indeed equivalent in the limit
e — 0.

Here we consider the Poisson-Boltzmann (PB) equation in cylindrical coordinates for
an infinite charged plane with an “imaginary” circular hole of radius R at its center. The
plane can be viewed as being made of a circular disk of radius R at the centre and the rest;
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we focus on the rest. Let r be the radial distance on the plane from the hole center and z
the normal distance from the plane. The PB equation reads

10 0 0? 2 .
[;5 (’"E) + @] U(r,z) = k“sinh ¥(r, z) (B.1)

This is to be solved subject to the boundary conditions:

U(r,z) = 0, z—00 (B.2)

ov

il = B.

5z |, 0, "<R (B.3)
-2 0V

— = 1+ A B.4
4'/T€B az 0 0( + 6)’ r> Ra ( )

where A, = (e, — €1)/(€w + €¢), as defined in Eq. 3.9.

Note that the effect of dielectric discontinuities at the lipid-water interface is approx-
imately captured in the boundary condition B.4. This is motivated by the following ob-
servation: if e,rxd/e, > 1 is satisfied for a dielectric plate of thickness d, as in our case
(d ~ 40 and dielectric constant ¢, = 2), one may simplify the electric potential by taking
the limits ¢, = 0 or d — oo [3, ]. Recall that subscripts w and ¢ refer to water and
lipid, respectively.

Indeed, Fig. B.1 illustrates how one can map a thick dielectric plate, occupying z < 0
and carrying charges on its surface at z = 0, onto a thin layer of charges at z = 0. Let o
be the planar charge density in units of e, which is the same for the two cases. Let E; be
the electric field right above the charged surface at z = 0 and E, the electric field below
above; let n be a unit normal vector pointing along the z axis. The mapping completes
if the electric boundary condition for the thick plate n - (epe,, By — epesEy) = o is replaced
by 2¢pe, E = o(1 + A,) for the thin layer [I1]; for the latter, E; = —E,. As long as the
semi-half space z > 0 concerns us, the two are indeed equivalent in the limit ¢, — 0.

Furthermore, it was shown [172] that that one can linearize the PB equation with
respect to the deviation of the electric potential from the potential at the origin for small
r?

U(r,z) = ¥o(0) + AV, (B.5)

where Wy(0) = Wy(r = 0) is the surface potential at the center of the hole. As a result, the
right hand side of Eq. B.1 can be approximated as

RHS = x? [sinh ¥((0) cosh AW + sinh AW cosh ¥ (0)] . (B.6)

161



— PB
----- approximated PB
—— DH

surface potential (kgT/e)

0 10 20 30 40 50
radial distance from the hole center (A)

Figure B.2: The numerical solution for the PB equation is compared with our simplified
potential in Eq. B.10 and the DH result. It is clear that Eq. B.10 is a good approximation
for the PB equation. In contrast, the DH approach breaks down.

For a small deviation, sinh AV ~ AWV and cosh AV ~ 1. Eq. B.6 can then be simplified as
Eq. B.6 ~ x? cosh U(0) [tanh W(0) + AY]. (B.7)

Using this, we rewrite Eq. B.1 as

E% (r%) + %] [tanh W((0) + AU(r, 2)] ~ x* cosh U(0) [tanh ¥ (0) + AT] (B.8)

Eq. B.8 is only deceptively complex but can readily be solved. This is the DH equa-
tion for the potential [tanh ¥y(0) + AV¥] with modified Debye screening length kpeyw =

ky/cosh ¥y (0). Following Ref. [173], we arrive at

Aol exp (—/{z\ /cosh \IID(O)>
K/ cosh Wy(0)

> Jo(kr)J1(kR)

[tanh W (0) + A¥(r, 2)] =

(B.9)

—ArolgR dk
U VK2 + k2 cosh U (0)
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where Jy and J; are Bessel functions of the first kind.

As a result, the approximated Poisson-Boltzmann surface potential of a plate with a
hole (cf. Eq. B.5) becomes

4roly
UpB_thole(r, 2 =0) = WYu(0) —tanh Vy(0) + —————
PB-—ole( ) o(0) o(0) K/ cosh Wy (0)
& JQ(kT’)Jl(kR)

—4nolgR dk

. B.10
0 k2 + k2 cosh U (0) ( )

The surface potential at the hole center has yet to be determined. By setting » = 0, once
can establish the relation:

471'0'6]3 o J1<]€R>
tanh Wy (0) = —4nolgR dk . B.11
o(0) K+/cosh Wy (0) P k2 + k2 cosh U(0) ( )
For small W,(0), this can be simplified as
. _ 47TO'£B e Jl(kR) :|
Wy(0) = sinh ™! —4dmol R/ dk——=1 . B.12
0(0) E L R e (512

To test our approximation, we have compared in Fig. B.2 our approximated PB poten-
tial in Eq. B.10 with the corresponding numerical PB solution as well as the DH approxi-
mation. The approximated PB is in good agreement with the PB solution but it deviates
from the DH solution.
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