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Abstract 

The sofiening mechanism taking place during hot r o h g  of steels duence both the 

mechanicai properties of the finai product and the steel £iow stress during deformation The 

knowledge of the materiai's constitutive behavior is an essential requirement for the design and 

control of rollhg processes. Steel rnanufàcturers are looicing for more acwate models being 

able to p rdc t  the material defomtion resistance, micro-structural evolution of steel, and roll 

forces in order to produce strips with a more consistent output gauge and mechanicai 

properties. In this regard; the ocavrence of dynamic recrystaUization during sûip roihg of 

HSLA steels and its effêcts on the flow stress, roll forces, and final properties are of 

importance. The occurrence of dynamic recrystallization during hot strip rolling still remains 

controversial. 

In this research , the experimental techniques were used to simulate the whole rolling 

process to study the occurrence of dyriamic recrystabation. Axisymmetric compression tests 

were used to study the kinetics of static recrystalhtion. Torsion simulations were performed 

to venfy the ocairrence of dynamic recrystallization An industrial miil log was analyzed which 

further CO-ed the occurrence of the dynamic recrystaüization and torsion test resuks. 

In spite of drawbacks in t e m  of ease of development, adaptability, acwacy and 

speed, empiricai stress-strain relationships and traditional roU force equations, dong with look- 

up tables, are being commoniy used. In this research, a Neural Network sirnulator code, based 

on the gradient descent Ieaniing de, was developed. This code was used to predict the steel 

and aluminwn flow stresses at high temperatures and main rates, experimental rollhg forces 

durlig cold and hot r o h g  of duminurn strips, and roiiing forces during indusrrial strip rolling 

of a high Nb HSLA steel. The mode1 predictions were compared to those of the statistical 

models and existing on-üne industrial models. The approach based on Neural Networks is 

show to be superior in terms of accwacy, speed, and ease ofdwelopment. 

Principal Component Analysis was used as a data pre-processor to remedy data 

deficiencies when there is an excessive linear correlation between input variables of a database. 



This analysis was integrated to the Neural Network simulator code in order to decouple 

linearly correlateci input data The code was applied to an industriai hot rolling database to 

develop a mode1 to predict the acairrence and the effects of dynamic recrystallization on the 

rohg forces. This mode1 not only predicts the occurrence of dynamic renystalliBtion, but 

also predicts the extent of the resuiting soflening. The results also proved the beneficial eEécts 

of the integration of Principal Component Anaiysis with Neural Nehiork modehg. 
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1. Introduction 

Development and thermo-mechanical processing of high-strength low-doy (HSLA) 

steels have been the biggest milestones of the steel industry in the last two decades. With the 

addition of a srnall amount of carbide-former alloying elements and control of temperature and 

deformation during processing, the yieid stress of a plain carbon steel can be increased £tom 

350 MPa to 550 MPa with an improvement in toughness. This increased strength per unit 

weight, has maintained the status of steel as the material of choice for cars, home appliances, 

o6road vehicles, bridges, pipelines, etc. There are two signifiant featores of themo- 

mechanical processimg which have contnbuted the rnost to the success of HSLA steels. First, 

the beneficiai increase in strength does not hami toughness or weldability. Second, the 

technology of producing these aeels is inexpensive because the alloying elements are only 

needed in very srnail concentrations and asmciated improvements in mechanical properties 

precludes the need for fiirther heat treatment. 

The HSLA steels gain their strength and toughness fiom refined ferrite grains and fine 

&O-nitride precipitates. Grain refinement is achieved through different mechamsms of 

repeated static recrystallization, possible dynamic or metadynamic recrystaIlizations, or 

transformation to smaller femte grains 6om pancaked austenite gains. Another source of the 

strength of HSLA steels exnanates fiom fine precipitates. A large number of scientific research 

has been conduded to investigate the mechanisms and kiietics of both recrystallization and 

precipitation and their interactions. This knowledge is vitalIy important for two reasons. First, 

the optimal design of drafi scheduie in order to benefit the most 6om both precipitation and 



Chapter 1. Introduction 

recrystaflization requires a clear and quantitative understanding of these processes and their 

cornplex interactions. Second, the occurrence and kinetics of precipitation and recrystalktion 

during the processing of HSLA steels affects the steel's flow strength. An acairate prediction 

of steel hot flow stress during r o h g  is crucially important for roll gap set-up and finish 

product gauge dorrni ty .  Gauge consistency is one of the main characteristics of the high 

quality steel strips. Inconsistency in gauge or mechanical properties is detrimental to 

downstrearn processing and stamping of steel strips. Automobile manufkcturers and stamphg 

shops are continudy demanhg tighter tolerances. 

In spite of the vital importance of the possible sofiening during HSLA strip rolhg, the 

very nature of the ocairrence or nonsccurrence of dynamic recrystaUization in this process is 

under question. Experimental verification of this question is notoriously d.iflidt, if not 

impossible, with existing equipment. A valid experiment would require multi-stage 

deformations foliowed by quenching at a rate of 2000 C per second. However, there are 

indirect techniques for the study of dynamic recrystakition. Flow strw-strain ames  are 

cornmonly used to study work-hardening or soflening. A major problem with this kind of 

mechanical testing resdt is again experimental iimitations. Given these facts, no quantitative 

model has been developed yet which is able to predict the conditions under which dynamic 

recrystailization is taking place. More irnportantly, a model is required to predict the arnount 

of this sofiening, if any, under ditferent processimg conditions. 

This research work was pady devoted to the physical simulation of the entire r o b g  

process to shed more light on the dynamic recrystallization issue. hisymmetric compression 

tests were used to study the kinetics of static reaystallization. Torsion sindations were 

performed to v e m  the occurrence of dynamic recrystallization 

Recent advancements in instrumentation, data acquisition, and data management 

systems have enabled steel mills to collect a large amount of process data. This has created a 

whole new perspective for rolling process anaiysis and for the shtdy of the metdurgical 

phenornena-taking place during hot rolling. MiIl log data of the Dofasco Inc. hot strip mül was 
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analyse. in detail to ver@ the occurrence of dynamic recxystaffization during high niobium 

HSLA strip rohg. The results of this analysis have been compareci with laboratory 

simulations. 

Traditionally, hear and non-linear regression analyses and other statistical techniques 

have been the only avaiiable tools for process modehg appiications. However, the 

appiicability and performance of these techniques are very mudi dependent on the availabiiïty 

of the appropriate mathematical equations which c m  descrii sufficiently the process input- 

output relationship. The general f o m  of these equations are usuaiiy derived fiorn a physical 

understanding of the process* then optimal coefficients and exponents are found through 

regression. Therefore, for the more cornplex multi-variate processes, where there is no form of 

mathematical equations capable of descn'bing the whole procas* regresson analysis faces 

major shortcomings. Unless a capable modeiiing tool is available, the collecteci process data 

cannot be utilised to any si@cant level. 

D u ~ g  the Iast decade, a new modelling technique has been evolved. This heuristic 

technique is cded Artificial Neural Networks (ANN). It was developed with inspirations fiom 

the human nervous system and cognition. A Neurai Network Ieams fiom experiential 

knowledge and once it has leamed, it can predict the output of the process without assurning or 

making any d e s .  This technique extracts the possible trends in the data, linear or non-linear, 

without resorting to any preconceived form of mathematical equations. This is exactly how a 

human brain leam and fùnctions. The brah does enomous amount of data processing, most 

ofthe tirne without even one simple arithmetic operation. 

There is no u n i v e d y  accepted definition of Artifid Neural Networks. However, 

common to aii Neurai Networks is a network of simple processors7 the neurons, each of them 

having multiple inputs (fiom outside or fkom other neurom) and a single output, that is read 

out or can be connecteci to other neuronsl. There is a weight (a numerical vahe) associated 

with each of the connections. Each neuron does quite simple aridunetic operatiom. It adds ali 

the products of the output signais of the p e ~ o u s  neurons and the correspondhg comection 
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weights. Then it compares this value with a threshold value and appiies a non-linear activation 

fiuiction to the result and sends out one output to the next neuron or output node. This simple 

neuron, similar in ninctionality to the biological ones, is not able to do much by itself. 

However, a network of these neurons, organised in layers, is able to perform quite demanding 

classification and modebg tasks. 

Al1 Neural Networks have some sort of training nile whereby the weights of 

co~ections are adjusted on the bais of data. In other words, N d  Networks fint learn their 

knowledge 6om examples (in the same way that a child aquires howledge) then they 

generalise beyond the training data. Once sufficient numben of data are presented, Neural 

Networks l e m  the linear and non-linear trends in the data. Hence, a Neural Network can be 

looked on as a non-linear procedure that maps inputs of the process to outputs. In other 

words, Neural Networks are universal fiinction approximators. 

Various types of Neural Networks &Ber by the way these neurons are cornecteci 

(contiguration) and by the leamhg procedure by which the weights are adapted. The most 

popular and by far the most capable Neural Network is the feed-forward network with back- 

propagation leamhg. The mathematical basis of this kind of network and its applications to 

the flow stress modelling and roil force predictions are presented in this thesis. 

Neural Network paradigm has been applied succesfly to many demanding problem 

in the fields of engineering and science. However, it is somewhat new to materid science and 

processhg. One of the main focuses of this research work was to explore the ways that Neural 

Networks can be utiliseci as a modelling too1 for rnaterial scientists and steel mill enginers. A 

Neural Network simulator code was developed and used to mode1 the r o b g  forces during hot 

strip rolling of an HSLA steel and was found to outperform the existing on-line model. 

A problem associateci with most industriai process databases is the co-linearity between 

the process inputs. These colinearities, if are not taken into account, can cause model 

instability and vagueness. For statistical modelling of data with colinearities biased regession 
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techniques have been developed. However, for the Neural Network modelling of the data with 

colinearities, the author proposes pre-processing of the data through transformation into the 

principal component space. Principal Component Analysïs is a muitivanate d y s i s  technique 

that detects the linear correlations between input variables of a process and decouples them 

through an orthogonai transormation. Upon this transfomaiion, the original variables are 

transfomed into principai wmponents which are inherently heariy independent of each other. 

Principal Component Analysis was integrated into the Neural Network sirnuiator code as a 

data pre-processor. The case studies demonstrateci the increased accuracy of the rnodels 

developed based not on the original variables, but based on the principal componaits. 



2. Literature Review 

The final properties and rolling quality of HSLA steels are markediy id luend  by the 

nature of metallurgicai processes taang place during and aAer deformation In this chapter, a 

review of metallurgical concepts relevant to hot deformation of steels will be presented. Then, 

applications of these rnetauurgical events in thermo-mechanical processimg of steels will be 

dimssed. Finallyy modehg of hot roiling processes and important models being used are 

given. 

2.1 Hot Deformation Metailurgy of Steels 

In this section the principles of events ocairring in the process of hot deformation of 

steels wiU be reviewed, in chronological order,. A schernatic of these microstmcturai changesy 

i.e., dynarnic recovery and recrystallization (during defonnation) and static recovery and 

recrystallization (&er deformation) has ben presented in Figure 2-1 and will be reviewed in 

the foilowing sections. 

2.1.1 Metallurgical Phenomena During Hot Deformation 

2.1.1.1 Work Hardening 

The increased dislocation density associateci with the bulk defomtion of a matenal is 

responsiile for work hardening; that is, dislocabo~~~ thernselves are obstacles to dislocation 

motion. Depending on the degree of interaction experienced between moving dislouitions, 

dislocations can be either soft or hard obstacles. 
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Figure 2-1 Schematic of microstructural changes possible during hot defonnation2 



Chapter 2. Literature Review 8 

Studies of FCC single crystais show that at low temperatures (T < 0.5 Tm) the rate of 

work hardening is divided into stages I, II md III, as depicted in Figure 2-2. In the fint stage 

of work hardening, the density of dislocations is still not high enough to create a considerable 

number of dislocation intersections. In this region, termed easy glide region, dislocations 

interact only through their long range mess fields and diey usually move on parailel slip planes. 

III 

Figure 2-2 Shear stress-strain curve for a single crystai demonstrating different work 

hardening stages. ' 

In stage II, dislocation intersections produce hard obstacles, manifesteci by the high 

work hardening rate. With increasing strain, the flow of material involves multiple slip and the 

intersection of dislocations moving in intersechg slip planes mates immobile jogs. 

Excessive accumulation of dislocations lads to the stage Iiï of work hardening, where 

the rate of work hardening decreases in a parabolic m e r  due the superposition of an 

accumulation and r m g e m e n t  (annihilation) of dislocations, refmed to as dynamic 

recovery4. Stage III is observai to be associateci with the occurrence of cross-slips. 

Accordhg to Seegers and his co-workerss screw dislocations held up during stage II cross slip 

ont0 other slip systems. In this case, dislocations can by-pass dislocation motion obstacks 
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(such as inclusions or grain boundaries). Hence slip distance increases, with a consequent 

decrease in the rate of work hardening. In some *ws, screw dislocations may be attracted by 

opposite sign dislocations and be annihilated. These facts explain the lower parabolic work 

hardening rate at stage III. 

At high temperatures (Tz0.5 Tm), work hardening in pure single crystals or poly-s 

is usually said to start in stage III. Stage I and II become less and l e s  pronounceci as the 

temperature is uicreased and can be entirely absent6. 

2.1.1.2 Dynamic Recovery 

In generai, recovery implies those changes which do not involve the sweeping of the 

deformeci material by migrating high angle grain boundaries. Thus d u ~ g  recovery, each 

crystal retains its basic identity and boundaries, although the density and distribution of 

dislocations within it are changed7. 

Dynamic recovery involves the rearrangement of dislocations and consîsts of two 

processes. Dislocations of opposite signs annihilate each other or rearrange to form ceiis of 

relatively low dislocation density enclosed by boundaries of relatively high dislocation density. 

At high temperatures (applicable to hot rolling processes), the mechanisms responsible for 

dynamic recovery are the cross slip and c h b  of dislocations8. As the transition from stage II 

to Ili ocain, dislocations become entangied and a ceiiuiar structure is aansformed into sub- 

grains* 

In met& of hi& stacking fault energy, such as aluminium, where dislocations cannot 

easily dissociate, cross slip is faciltated. In these materiais as well as BCC transition metals 

such as iron, and most HCP metais Wre zirconium, dynamic recovery takes place rapidly and a 

steady state of stress is reached, which results nom the bafance of work hardening and 

recovery. This steady state is characterised by a sub-grain s k e  which depends oniy on the 

strain rate and temperatureg*'". A schematic of the tme stress-strain m e  of a material 

undergoing dynarnic recovery is illustrated in Figure 2-3. This steady state behaviour is 
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produced by the continuous reanangement of sub-boundaries, the annihiIation of old 

boundaries and generation of new boundaries (refered to as repolygonidon). 

Increasing strain rate 
Decreasins temperature 

The steady state flow of a givenhaterial undergohg dynamic recovery is a hction of 

strain rate and temperature with the generai fonn of 

The form of this equation is similar to the equation for the steady state creep fiow rate. 

Also, the steady state microstructure closely resembles that of a material defomed during 

creep; i.e., grains elongate in the primary strain direction and con- in the other directions. 

As such, recovery has been cunsidered to be analogous to creep. 
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2.1.1.3 Dynamic RecrystaiIïzation 

Recrystalliration is the collective term applied to those stages in which the crystai 

orientation is aitered through the passage of high angle grain ùoundaries through the material. 

During recrystabition, new grains are nucleated and diai grow at the expense of other 

deformed grains. 

In FCC metas of low and medium stacking f d t  energy (e-g. Cu, Ni and y-iron), slow 

dynamic recovery pennits the dislocation deosity to increase to an appreciable level- When a 

critical density is exceeded, new grains are nucleated. The recognition of dynamic 

recrystallization is based on the existence of peaks on the stress-strain auve, before a steady 

state is reached, as depicted in Figure 2-4. A transition Eom cyciic to single peak is observed 

as the strain rate is increased or the temperature is decreased. Multiple peaks are obsened 

during sequential grain refhement and coarsenirig, and single p& during grain refinernent 

with no coarsenin& as is cornmon in high nrain rate hot deformation processes. 

The nucleation of dynamic recrystalli;tation is commonly said to begin at a criticai 

strah, (~--û1~p where a is a constant between 0.8 to 0.85 and $ is the strain at peak stress), 

which corresponds to a critical dislocation density1l. Once the critical density (which depends 

on strain rate, t empeme and composition) is reached, dynamic recrystaikation is initiated by 

the bulging ofpreexisting grain boundaries at low strain rates. At higher strain rates, dynamic 

recrystailization is initiated by the growth of the high angle c d  boundaries formed by 

dislocation ac~urnulation'~. The driving force for the growth of the nuclei is the dinerence in 

dislocation density in front of and behind the boundary. However, the mechanism of nucleation 

differs for single peak and multiple peak behaviour. In the single peak case (grain retinement), 

nucleation ocairs essentiaiiy dong existing grain boundaries and referred to as necklace 

structure". The growth of each grain is aopped by the conment deformation When aü the 

grain boundary sites are exheusted, M e r  new g*illis are nucleated within the original grain at 

the interfkce of the recrystaiijzed and unrecrystallized grains. Progress of dynamic 

recrystallization is schematically illustrateci in Figure 2-5. In the indusûial hot r o b g  processes 



Chapter 2. Literature Review 

L 
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fb i  

Strain 

Figure 2-4 Characteristic shapes of tnte stress-stmin curves demonstrating the 

occurrence of dynamic reerystallization, a) Multiple peak; b) Single peak". 
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Figure 2-5. Schematic illustration of the progress of the dynamic recxystallization when 

the recrystallizeü grain size is much finer than the original grain sizeu. 
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the strain rates are relatively hi& such that oniy single peak dynamic recrystalluation is kely 

to ocw, ifany. 

In a given materiai, the characteristics of dynamic r w t i o n  depend on three 

parameters: initiai grain sire, Da temperature, T, and strain rate, É. The initial grain size 

&kts the critid strain, s, the peak saain, ~p and the kinetics of dynamic recrystabation 

The finer the initial grain size, the lower are the critical and peak strains. This is because 

dislocations accumulate more rapidy and the higher specifïc gFin boundary a m  (per unit 

volume) lads to fmer recrystalfization kinetics". Peak stress is also found to be dependent on 

the initiai grain s k ,  however, the steady state stress and final grain size are independent of the 

initial grain ~ize'~. 

The effeds of temperature and strain rate are commonly describeci using the Zener- 

HoIomon parameter: 

where Qdd is the activation energy of deformation and R is the universai gas constant and T is 

absolute temperature. The critical and peak strains, E. and E, are found to be dependent on 2. 

Resuits obtained for copper, stainless steel and y-iron have show that the peak strain is related 

to the initial grain size and Z as follows": 

EP = A ZP (2-3) 

where A and p are constants. Softening due to dynamic reciystallizatio~ &, generaUy 

foiiows an Avrami type dependence on strain and saain rate as foIlows": 
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where Pdp, a and n are constants, E k the strain, and E, is a fiuiction of strain rate, temperame 

and grain ske, a s  given by equations (2.2) and (2.3). As a consequence, the dynamic 

recryçtallization kinetics is alx, a hction of Zener-HoIlornon parameter. Findy, the steady 

state grain six, D, and steady state stress, are fond to be dependent ody on 2, as given 

below16: 

D, = A' zm (2-5) 

where A', A", m and q are constants. 

2.1.2 Metallurgical Phenornena After Hot Defonnation 

In industrial hot deformation processes, usually the strain rates are so high that there is 

not enough tirne for complete dynamic softening of the work hardened material. Hence, 

concurent static recovery, accompanied by either static or possibly metadynamic 

reciystallization, is taklig place &er deformation. 

2.1.2.1 Static Recovery 

Static recovery is dehed as a soflening procesç in wlUch the decrase in density and 

change in the distnion of the dislocations afler hot deformation or during annealing are the 

operating mechanisms. These changes do not involve the sweeping of the deformed matenal 

by migrating high angle bomdaries". The mechanism o p e h g  in the low temperature range 

involves vacancy motion; those operating in the intermediate temperature range involve 

dislocation motion without CM; and those in the high temperature range (>0.5Ta involve 

dislocation motion with c h b  and cross slip. It is found that if the dislocations have a low 

mobility at the temperature of d e f o d o n ,  they appear as a M y  random array in the 

defomed metal. However, ifthe dislocations are able to cross slip (hi& stacking fàult energy), 

they imrnediately begin to condense into tangles so that the metai contains regions of high and 
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low dislocation density, as shown in Figure 2-6". The regions of low dislocation density are 

d e d  cells or nib-grains. It has been shown that in high stacking f d t  energy rnaterials, the 

dislocation network can lower its enew by fornimg tangles rather than by random distriiution 

Mer defodon,  the dislocation tangies isolate ceiiular regions of relatively low dislocation 

den& as shown in Figure 2-6. These cells are slightly misonented with respect to each other 

(a few degrees) and are in a size range in the order of 0.1-1 pm. Upon annealing after cold 

working or after hot deformation, diskation tangla condense into sharp boundaries and the 

dislocation density within the ceiis decreases. 

Optical micro. of cold-worked Al - 100 x 

TEM pictures 
from one grain - 20,000x 

Figure 2 6  Schematic repmsentation of grain stmcture and sub-grain structure in 

a~urninurn'~. 

2.1.2.2 Static Recrystallization 

Autenite does not undergo dynamic recovery to the same degree as other metds. 

This abiiity to have extensive work hardening, without softenlig by recovery may lead to 

dynamic recrystallization at higher strains and lower temperatures However, it is much more 

common in hot rollhg for the material to be deformed only in the work hardening regimelg, Le. 

the saain per pass is not large enough ( u d y  les  than 0.5) to initiate dynamic 
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recxystalüzatioa As such, there is a high driving force for static soflening to take place 

between r o h g  passes and during coohg d e r  the finai p a s  pnor to transformation. Both 

-tic recuvery and recrystallization have been observeci in austenite, aithough the extent of the 

former is rather limited. ïhere is a general consensus that the maximum mount of softenlig 

duMg holding tirne attnbutable to reçovery is approxirnately 20?/0'0. 

Static recrystallization is u d y  descri'bed as takllig place in two stages: nucleation of 

new grains, and the growth of these grains at the expense of deformed ones. Some features of 

static recrystauization are: 

a) A minimum amount of deformation (critical strain) is necessary before -tic 

recrystaUization can take place. 

b) nie lower the degree of deformation, the higher the temperature required to initiate static 

recrystallization. 

c) The final grain size depends upon the degree of deformation and to a lesser extent upon the 

annealing t emperature. 

d) The larger the original grain size, the slower the rate of recrystallLation. 

The nucleation of new grains takes place preferentaiiy where the local deformation is 

the highest, i.e. on grain boundaries, deformation bands and Uiclusions. The process of 

nucleation is t h e d y  aaivated and requires an incubation time before nuclei become 

detectable. Three diierent mechanisms of nucleation have beai proposai for static 

reaydbtion2'  : 

a) subgrdn growth orpolygonizatio~c The nuclei are formed by a process of c d  or subgrain 

growth. In an area of high deformation, the dislocations rearrange themselves by 

polygonLation into d i s .  As the ceils grow, more dislocations accumulate into the d s  

and evenhially high angle boundaries are formed. 

b) subgrain cc~Zexence: A nucleus is formed by the rotation of a subgrain, so that the misfit 

with its neighbour is decreased, following by disappearance of their cornmon boundary. A 

subgraUi structure pnor to nucleation is demonstrated in Figure 2-7-a. By some rotation, 
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subgrain A with B and subgrain C with D malesce (Figure 2-7-b), followed by 

coalescence of subgrain B with C (Figure 2-7-c). Once a few of these nibgrains coalesce 

together? they fom a nucleus with high angle boundaries? as depicted in Figure 2-7-d. 

c) siran inducedgrain bamrkqy migration: nie boundaq separahg two grains rnarked by 

different sub-grain sizes bows out and away fiom the grain with the coarser substruchire 

into that with the fher sub-grains. This leads to the creaîïon of a strain fiee area. This 

mechanism has been found to ocair without the need for a fkite incubation period. 

Figure 2-7 Nudeation of new grains by the coaiescence of subgrainsL7. 

2.1.2.4 Growth of New Grains 

Once a high angle boundary is fomed, it is capable of movhg into the defomed 

materiai. The migration rate of such boundaries is quite sensitive to the presence of impurities, 

the structure of the grains into which they are rnigrating, and the orientation relationship 

between the growing grains and defomed matrices. Attempts at understanding the e f f ~  of 

irnpurities are based on the postulate that dissolveci irnpurities retard a moving grain boundary 

by the elastic attraction of impurity atoms towards the grain boundary. The moving grain 
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boundary z s t  U i  the impurities dong, or break away if the concentration of impuities is 

smaii enough or the drivtig force or temperature high enough". 

2. LX5 Metadparnie R e a y s t a l l i o n  

Metadynamic recrystdhtion can be dehed as static growth of grain nuclei fomed 

durlig deformation It is vev important to differentiate between static and metadynamic 

recrystallizaton, as the rate of the latter one is much m e r  and the type of recrystalliration has 

important wnsequences on the final properties of steel. Once dynamic recrystalluation is 

initiated during deformation, the dynamically recrystallized nuclei continue to grow, even &er 

straining is intempted. This mechanism was fint idenfied by Petkovic et al." and was termed 

metadynamic recrystalhtion. Three distinct softening processes take place d e r  dynamic 

recrystahation; static recovery, metadynamic recrystalhtion and static recrystallization. The 

merence between static and metadynamic recrystaliization is in the nucleation mechanism of 

the new grains. Unlike static recrystallization, metadynamic rec~ystallization does not requûe 

an incubation tirne for grain nucleation, as dynamidy recrystallized nudei already exist. 

2.1 J Role of Alloying Elements in Recrystallization 

AUoying elements in solid-solution fom or as h e  carbonitride precipitates retard al1 

sofiening mechanisrns, partiailady recrystaihtion. The extent of sofiening retardation 

depends on the temperature and the element type. Grain boundary mobility has been show to 

be quite sensitive to the presence of small concentrations of irnpurities. The speed of migration 

is drastidy reduced by the impurities which segregate' to the grah boundaries. This 

mechanism has been used effeaively in controiied roiüng of steel to retard recrystUUation and 

hinder grain growth after recrystaihtion by alloying elements like titaniuni, molybdenum, 

vanadium and niobium. If recrystallization is retard4 and the strain is accumulateci and 

maintaineci after hot rolling and during the cooiing through the transformation. it would 

produce fina ferrite grain &es, resuiting in a higher room temperature strength and toughness. 

This is the basis for conventionai controlied rolling. In C-Mn steels, due to very Eist 

recrysiabtion kinetics and a narrow range between the no-recrystalliration temperature and 

&, oniy iimited controiieci r o b g  is possble. 
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2.1.3.1 AUoying Elernents in Solution 

A quantitative treatment of the interaction between grain boundaries and solute atoms 

was given by Lucke and ~eret?  At high concentrations or low temperatures, the impurities 

are dragged dong by the grain boundaries and the boundas, speed is controlled by the difbion 

of the irnpuities behind the boundaries. At low concentrations or hi& temperatures, the 

boundary breaks away fiom its aûnosphere and moves fister. 

2.1.3.2 AUoying Elements in Precipitate Fonn 

The existence of the solute-drag effect of rnicrodoying elements on rec~ystallization 

retardation has been generally acknowledged. However, it has been shown that the most 

important effêct of microdoying elements is the formation of fine carbonitrides, which in tum, 

retard reaystallization much more than solutes. As such, the carbonitride precipitation, its 

kinetics and interaction with recrystdlization are of extreme importance for plate and strip 

r o h g  schedule design and a great deal of research has been foaised on this issue. 

Recrystaiiization can be retarded by precipitates via the pinning of grain boundaries or 

pinning of individual dislocations. For grain boundary pinning to OCCUT, the distribution of the 

precipitates mua satisQ two criteria: 

a) The partide size and spachg m u t  be below appropriate criticai d u e s .  

b) A suffident volume hction of precipitates is necessary to maintain the spacing below the 

criticai valueZ). 

In practice, this means that a fine dispersion of precipitates delays the omet of 

recrystallization by pinning the boundaries and dislocations and by resûaining grain growth. 

The precipitates encountered in austenite can be separated into three types: 

a) Precipitates which are not dissolved during reheating. 

b) Precipitates formed dynamically d u ~ g  deformation (dynamic precipitation). 

c) S train-induced precipitates formed d e r  defonnation 
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Undissolved precipitates have Iittle effect on recrystallization, as they are too coarse. 

However, both dynamic and strain Liduced precipitates *ui be responsible for the 

recrystauization retardaîion The rate of dynamic precipitation in Nb steek is generally one 

order of magnitude faster than strain induced precipitation24. The interaction between 

precipitation and recrystallization can be followed by cumparing the recrystallization start time 

with precipitation start tirne using a recrystauization-precipitation-tirne-tempe (RPTT) 

diagram, as  depicted in Figure 2-8. When precipitation takes place before the staxt of 

recrystallization, the nucleation and growth of reaystallized grains are severely irnpeded. 

However, once precipitation starts d e r  the end of reclystauiZ;ition, recrystallization is 

udected. The temperature at which precipitation retards static recrystauization is referred to 

as the "no-recrystalhtion temperature", or T, . The no-recrystallization temperature depends 

on the nature and amount of aiioying elements as weli as prior defomtion and heat treatment 

hiaory. Amongst microalloying elements, Nb has the most profound effect in retarding 

recrystalli7iition and this accounts for its seledon as the most cornmon microalioying element 

in hot rolling. It has been reported that the addition of 0.03 Nb l a d s  to approhtely an order 

of magnitude retardation in time for 5û% sofkening at temperatures above 900 
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Figure 2-8 Cornparison of a FIT diagram for a Nb and a V steel with a RTï diagram 

for plain carbon and Nb and V modifieci steels? 
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2.2 Thermo-Mechanical Processing of Steeis 

For most commercial products in the steel industry, their extemal shapes are the result 

of hotdefomtion, nich as hot-rohg, while the necessary mechanical properties are obtained 

by aiioying elements and heat treatment after deformation. However, metaUurgical changes 

caused by hot deformation may result in additional beneficial effects on the mechaniai 

properties of steels, and sometimes can eliminate heat treatment after deformation. 

Therrno-mechanical procesjing is a technique to combine shaping and heat treating of steel. 

Controlied roihg is a typicd example of thermo-mechanical processing in which austenite is 

conditioned to produce a fine fenite grain size. 

2.2.1 Controlled-rolling of C-Mn steels 

M e r  1945, it became clear that notch ductility and yield strength can both be improved 

by a grain rehement? Among other techniques for grain rehement, European rnills utilisai 

controiied low temperature hot-rollhg in order to refine a grallis and inaease toughness. The 

foilowing features were generally applied in this controlled r o h g  process: 

a) Interrupting the hot-rolling operation when the slab had been reduced to the prescriied 

thicknw, e.g., 1.65 t h e s  the final thickness. 

b) Recornrnencing hot-worhg when the slab has reached a prescnied temperature and 

finishing at temperatures in the amtenite (y) range, above the k3 but lower than the 

conventionai finishing temperatures, e.g. down to 800°C. 

The low temperature finish r o h g  praaise rehes the y grains, hence, the transfomeci 

a grains. A considerable additional grain refinement can be achieved by rolling in the non- 

reaystallized y region, where deformation bands increase the nucleation sites for a grains. 

However, the temperature range for non-recxystauized austenite in C-Mn steels is relatively 

narrow, and this mechanism for grain refinement cannot be effeaively utilised, due to the risk 

of getting into the two-phase region deformation. 
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2.2.2 Controlled-Rolling of NbTreated Steels 

2.2.2.1 Conventional Controlled Rolling 

In 1958. the f h t  Nb-treated steel plates were produd. By a small addition of Nb, 

(up to 0.06%) the strength was increased by 1 0 k g ~ d  (100 MPa) but the no-recrystaiiization 

temperature was rais4 by 40°C. However, by n o d ç t i g ,  the tende strength was decreased 

to the original level but the yield strength and no-recrystallization temperature were improved 

by 50-80 MPa and 25-70 OC, respectively, compared with normalid niobium fiee steels. h 

order to minimise detenoration in notch toughness, the following rneasures were reported: 

a) An increase in Mn content 

b) Lower reheating temperatures of the slabs dom to the 1200°C or les 

c) Lower finish rolling temperature and an increase in total percentage reduction at Iow 

temperatures. It was also observed that low-temperature finish rolling was more effective 

in Nb-bearing steels than in C-Mn steels. 

The lower the hot-defomtion temperature, the heavier the draught and the finer the 

starting grain size during hot-working in the recrystallization temperature range, the finer the 

recrystallized y grains. The smaller y grains wiii lead to the smaiier a grains after 

transformation. These are the reasons for the improvement in toughness by low temperature 

finish-rolling of C-Mn steels, low temperature slab reheating and low temperature roughing in 

niobium treated steels. 

Further research on precipitation hardening of niobium and vanadium aeels conduaed 

in the19601s led to the conclusion that the remarkable strengthening by niobium or vanadium 

additions was caused by precipitation of fine planar Nb(C,N) or VN, coherent with the a 

rnatxi.~.~~ These carbides and nitrides are in solution in y grains at the reheating temperatures of 

the slab. The solubility of niobium in austenite is s m &  so excessive amount of niobium, e.g. 

above 0.05% is ineffective in sîrengthening of the a mat& since it cannot be in solution in the 

austenite. The solubrlity of vanadium nitride and vanadium carbide in a and y is higher than the 

solubility of niobium &O-nitride. So the strength of vanadium cuntaining steels can increase 
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with larger arnounts of vanadium, Le. it does not show the pronouncd saturation effkct as 

niobium does. 

Another hdamental resdt was the effkct of precipitation on recrystabation 

reta.dation2'. The addition of niobium retards recrysiakation of the y grains during hot- 

rolling. The addition of niobium raises the critical temperature for y recrysbllization by about 

100°C. This is mainiy due to fine niobium carbo-nitrides which have been in solution at 

reheating temperatures and re-precipitated during hot d e f ~ d o n ~ ~ .  Precipitation of 

carbo-nitrides is accderated by hot deformation. Recrystallization of austenite in steels 

containing 0.02-0.05% of niobium can start afler one or a few reductions at temperatures 

betwem IO50 to 1100 OC, but it takes more than 100 seconds to complete the recrystallization 

at these temperatures. A similar but weaker effect was also observed for vanadium treated 

steels. This will be disaissed in more detail later, as  it is one of the fundamentai metalIur@caI 

phenornena which can be exploited for remarkable improvement of mechanid properties of 

niobium treated steels. 

Kubota et al." reported that improvements in notch ductility and a grain refkement 

were progressive with increasing total reduction below 950-900°C, where y recry-tion 

could not start during intervals between reductions. 

Addition of manganese to niobium treated steeIs UaensiGes controiIed-rolling at 

non-recrystakation temperatures in the y region, as it decreases the k3 temperature. In this 

way the temperature range for straining the y grains without recrystauization is increased. This 

is < d a r  to the effect of increasing the no-reaystallization temperature by the addition of 

niobium. 

Deformation of y grallis in the non-reaystaUization temperature range elongates these 

grains in the rolling direction and creates deformation bands and annealing twins. The a grains 

nucleate in these defonnation bands as well as at prior austenite grain boundaries, giving an 
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increased d a c e  area for the austenite-fenite transformationw. This is the reason for the a 

grain refmement in niobium treated steels finish-roiied with heavy reductions below 900°C. 

In sunmmy, the role of conventional controlled-rolling using niobium treated aeels is 

to retard recrysbuization by the help of &nitride precipitates, then impose higher 

reductions in the non-recrystalfitation austenite region to produce pancaked gTains pnor to 

transformation. 

2.2.2.2 Dynamic RerrystallUation Controîied Roiiing 

In rod and bar roliing, using hi& strain rates (100-10 S.'), short interpass times 

(between few tens of miiliseconds to few hundreds of milliseconds) and large strains per pass 

(0.4-0.6) dynamic reaystallization has been found to do. It has been proposed that under 

appropriate conditions dynamic recrystallization also occurs during strip rolling of niobium 

HSLA steels3'. The occurrence of dynamic recrystallization during simulated strip r o h g  of 

HSLA steeis has ben cited by several other a~thors?~ The results of an analysis of the 

events during strip r o h g  also indicated that dynamic recrystahition is happening during 

roiiing of Nb steelJ4. Dynamic recrystaiikation affects roiiing loads and is reporte- to 

produce considerably her femte grains (-3p) than those fenite grains trdorined fkom 

pancakeci austenite ( - 7 j ~ n ) ~ ' ~ ?  However, there are concerns regarding the validity and 

applicabiiity of the results obtained in ail of the above studies to the real di practice, prknarily 

due to the low main rates employed in the experiments. 

Conventional controiied r o h g  relies on static r-on in the early stages of 

finish r o h g  to refïne austenite and pancaking of the austenite in the last stages to enhance 

femte grain nucleation during transformation. In contrast, dywnic reclystallization favoun 

higher redutions in the fkst few stands to ex& the aitical strain for the onset of dynamic 

recrystaiiization. Dynarnic recrystallization controiled rolhg leads to greater fenite grain 

rehemem tbrough austenite grain refinement." Another advantage of the initiation of 

dynamic recrystallization during rollhg is a marked reduction in roll forces and toques, which 
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in him translates to savings in energy consumption and less roU Wear. Also, the gauge 

accuracy wiU be enhancexi due to the lower reductions required in the last stands. The only 

justification that the author found in the literanire regarding the better grain refinement through 

dyriamic reaystallitation is the higher nucleation rate and formafion of "necklace structure" 

during defomiation3'. High density of grain nucleation &&y incorporated into the ma* 

expedite~ the pst dynamic recrystallization compared to static recrystallization, as no 

incubation tirne is required. 

2.2.2.3 Effects of Recrystaliization Type on Grain Size 

Many different authon have attempted to develop models predicting grain sires 

produced by static, dyiamic and rnetadynamic recrystaUization for metent rnaterials. An 

excelient compilation of these models has been done by EIodgsonM. The general obsewation, 

comrnon in ali  these models, is that staticaiiy reaystallited grain size is a fùnction of the initial 

grain size, temperature, and arnount of strain, while dynamically and metadynamically 

recrystalIized grain sizes are ody a h d o n  of Zener-HoUomon parameter, i.e. temperature 

and strain rate, in an inverse power law form. This inâicates that increasing strain rate and 

decreasing rohg temperature lead to more grain refinement provided dynarnic and 

metadynamic recrystahtion are in place. Another comrnon understanding is that rohg 

sheddes wiîh dynarnic and metadynamic recrystauization produce finer final grain skes 

compared to schedules with only static re~rystallization This idea is appealing to the steel 

rnanufacturers to achieve further grain refinement. 

2.2.2.4 Controversies Regarding the Type of Revystallhtion in Strip Rolling 

The occurrence of dynarnic reaystallization by strain accumulation during industnal 

hot stnp rohg schedules has ken que~tioned~~. It has been argueci that the kinetics of static 

reqstallization approaches those of dynamic recrystaUization as the strain increases. In 

addition, interpass times are generally much greater than deformation times. Hence, softening 

of the material during strip roiiing may be due to enhanced static recrystallization. 

This controversy, in spite of its pracîical importance in terms of finai mechanical 

properties and miiI set-up, stül remains. The physid proof of the possibiiity of dynamic 
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recrystaiüzation during stnp r o h g  is notoriously difIicult, since t rquires extremely fast 

quenching of the steel after deformation to fieeze the stxucture and look for dynamically 

created grain nuclei. Most of the mill engineers do not believe in the possibility of dynamic 

recxystallization in any kind of steel during strip r o h g  schedules. This belief has been 

reinforceci by the fact that the possibility of dynamic reclystalluation has not been taken into 

account in the conventional strip mil1 set-up and in cuntrol modules developed by General 

Electric and Westinghouse. In these control modules, which are in use in North Arnerica, it is 

assumeci that the steel repeatedly goes through oniy work hardening during deformation and 

static sofiening during interpass times. This assumption may lead to erroneous roll force 

prediction ifthe steel actuaily softens in one or more stands instead of hardening. 

2.3 Modeilhg of Hot Rolling Processes 

The past two decades have seen a marked increase in the ability to control and optimise the 

f i a l  properties and dimensional accuracy of roiled products. These hprovements have been 

brought about partly through the application of improved predictive models of rolling forces 

and microstructural events that take place during and afker rolling. These models enable r d  

engineers to reduce expensive mil1 trials, study the effécts and interactions of dBerent variables, 

irnprove rolling schedules, and control the process. Amongst the more important models are: 

temperature, hot flow stress, roil force, and ndcrostmchual evolution models. This thesis is 

concemed with the material flow stress and roll force prediction models, and to lesser extent 

with microstructural evolution models. 

2.3.1 Modelling Methodologies in Hot Rolling 

Similar to other industrial process modelling methodologies, there are four types of modelsN: 

a) Phenomenological: These models d e s c n i  actual physical processes in the fom 

of a mathematical equations denved fiom the basic p~ciples of the process. 

b) Empiricd: These are characteriseci by the statistical analysis of process data to 

provide relationships between the process variables and the parameters of interest. 

Regression analysis has ben the moa comrnonly appüed technique, however, there 
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are increasing number of sophisticated methods adable  for constnicting models 

of this type. 

c) Semkmpiricsl: This combines certain features of the two methods above, i-e., the 

general fom of the mode1 equation is representative of the physis of the process 

with some coe6cients and exponents found through regression. 

d) Heuristic: These include the nile-based models, expert systems, and diagnostic 

models which are now galiing widespread applications within the steel industry? 

These models do not contain mathematid representation ofa physicd pro- but 

can still predict process parameters of interest and the process outcorne, based on 

previous expenence. 

There are few examples of phenomenological models beiig used in hot rnills, due to the 

complexity of the process and the lack of tme phenomenological models for even some of the 

simpler microstructural changes ocamhg during rollingN. Historically, there has been 

widespread application of empirical and semi-empifid models, bas& on simple statistical 

regressions of large data sets of plant meanirements. The accuracy of these models depends 

on the availability of a general form of mathematical equation which can fit the data well. Data 

is unialiy nonlinear and inter-related which limits the applicability and accuracy of regression 

rnodels. It is expected that the next decade WU see extensive use of both the semi-empincal 

and heuristic models within the steel industry? 

2.3.2 Hot Flow Stress Models 

A nunber of studies has been wnducted over the past two decades to develop 

constitutive relations to descn'be the hot flow stress of stee1s as a function of signifiant 
deformation process variables: strain, strain rate and t e r n p e r a t ~ r e ? ~ ~ * ~ ' ~ ~ ~ ~ ~  From the results 
of isothemial weep tests, it is f d  that the relationship between stress and sirain rate varies 

amrding to the stress levels. At low stress levels the power relation E = A, a ' , and at high 

stress levels the exponential relation E = A, exp(nPks) appears to fit the data weii. 

However, it has also been show that the hyperboiic sine relation Z = A(sinhao )" is able to 
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represent the whole range of stresses ~atisfactoril~~~. The parameten 4 AI, A2, n, nt, nt' and a 
are materiai constants. SeUars and ~ e g a r t ~  expanded on these equations to include the effeas 
oftemperature, resuiting in an Arrhenius type equation 

Ê = A(sinha6)" exp - (3 

, h o  the Eq. (2.7) reailts in Incorporating the Zener-Holiomon parameter, Z = 6 exp - 

where Q is the activation energy. The values of A, Q, and n are show to be fiinctions of the 

strain level? The value of a has been studied by Sakai et al." for plain carbon steels and 

show to be a funaion of the carbon content. For low carbon contents and HSLA steels, the a 

value of 0.012 has ben used by other~~'~' as weli as in the present work Wang and ~enard~'  
ernployed a power relationship and normalized strains to mode1 the hot strength of a Nb-V 
steel. The activation energy was caiculated using peak stresses and the constants of the power 

law at dierent strain Ievels were stored in a data bank. 

The Arrhenius type equations are normaliy used to characterize steady state flow stress 

data. However, they do not explicitly incorporate the soflening effects of dynamic 
recrystallization. When dynamic recrystaUization o m ,  the &op in flow stress may be 

estimated by an Awami equation4z47: 

where O, is the saniration stress, d, is the steady-state £îow stress after dynamic 

recrystallization, a, k, m are constants and E,, is the strain at the peak stress. Incorporation of a 

softening tem in the case of highly ahyed HSLA steels is not aiways necessary when the flow 
stress does not exhibit steady state behavior? 
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shida4' conducted a mdy of the hot strerigth of a broad range of carbon steels and 

provided equations to predict the flow stresses as a fùnction of strain, strain rate, temperahrre 

and the carbon content. mur th^ and L,enardSo analyzed industrial data, obtained during the 

finish r o h g  of 8000 slabs in a seven-stand hot ship mill as well as that of 150 laboratory 

r o h g  tests. They compared the measured and predided roll forces obtained by using Shida's 
equations in conjunction with Orowan's models' and Ford & Aiscander's rnodel.'* In the best 
case, i.e. Shida's Oow stress equations with Orowan's roii force model, the mean of the 

ciifference of the measured and predicted data was 15.9% with a standard deviation of 9.68. 

They dso concluded that Shida's equations are not directly applicable for HSLA steels but may 
be used with an appropriate expression for the equivaient carbon content. 

The effeçt of constitutive modehg on the predictive capabilities of a one-dimemional 

model of hot strip r o h g  was examinai by Nadkami et al." Three diffèrent approaches were 

compared. In the first, the flow stress at different strains, strain rates and temperatures were 

stored in a multi-dimensional data bank and retrieved as needed; in another an ernpirical 

relation for the £iow stress was used and in the third, average values in the p a s  were employed. 

The muIti-dimensional data bank was thought to be the most naturai technique, as it etuninate. 

the need for modeling the behavior ofthe metal. 

Artificial Neural Networks have also been used to model the flow stress of steels at 

high temperatures. t soi" used the MARS (Multiple Adaptive Regression Spline) algorithm to 

predict fiow stresses in a plate rolling mill, with a 5.3% accuracy, surpassing those of 

conventional models. Hwu et al." used a backpropagation neural net to predict satisfactorily 
the flow stresses of an extra-low carbon steel in the austenite, femte and dual-phase regions, 
within a *2% accuracy. Rao and prasadS6 us& a commercial Neural Network package, 

NWorkss7, to model the flow stress of a low carbon steel. A mean abdute percentage error 

of 3 .O 1% was reportecl. 

2.4 Scope of the Thesis 

The howledge of the matend's constitutive behavior is an essential requirement for 

the design and analysis of deformation processes. In spite of d e r i n g  some drawbacks in terms 

of awacy ,  ease of developmenî, adaptability, and speed empirical stress-strain relationships 
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and constitutive equations describ'ig rnaterial behaviour during defomtion are king widely 

used. In the other hand, complex metallurgicai events during hot rolling of HSLA steels affed 

the material flow stress, which in tum ;iffècts the rolling forces. Hence, cuntrol algonthms of 

hot strip miiis are required to integrate the material deformation resistance model 

rnicrostnichual evolution modei, and roll force prediction mode! into a module. nie main 

requirements for on-line control models include: high accunicy, short computational tirne and 

adaptability to incorporate new data. The m e n t  procedure for the study and modeling of the 

rnatend behavior and microstructurd evolution is mainly based on conventional statistical 

techniques. The appiicability and acairacy of these techniques are limited and highly dependent 

on the availability of a mathematical relationship which can describe and fit the data well. 

Manufacturing of higher value added products mch as HSLA strip mils is gaining 

more importance for the North Amencan steel hdustry. The standards for the unifomllty of 

the mechanical properties and consistency of output gauge are much tighter for these products. 

However, the metailurpjd events taking place in these grades involve complex and 

quantitatively not-weU-undentood events of strain accumulation, dynarnic and metadynamic 

recrystaiiktion, precipitation of carbonitride forrners, and complex interaction of precipitates 

with softening processes. The existing knowledge of these cornplex metallurgid events 

during hot r o h g  of HSLA steels are iirnited and there is no predictive mode! directly 

applicable to the industrial rolling processes to take into account the effkcts of these 

metailurgical events on the rolling forces and final mechanicd properties of the rolled products. 

The industrial and academic research in this field is quite active, however, far fiom completion 

and fiIfilling the needs of the industry. Hence, the steel industries are looking for irnmediate 

alternative modelling soIutions to address their current needs. 

in reply to the above need for applicable and auwate microstructurai and roll force 

modek this thesis is concenied with the applications of a class of heuristic modelling 

techniques, d e d  Artificiai Neural Networks, to hot strip mill processes. The major roiiing 

mill process automation and control development fÙms are actively working on utilising this 

technique, however, the r d t i n g  knowledge remains m d y  proprietary. Recentiy, Siemens of 
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G e m y ,  with more than half of the global market share in m i n i d  process automation 

development, announcd that aiI of the next generation miii control algorithm developed by 

Siemens will be based on Neurai ~ e ~ o r k s ?  

Neural Network modelling technique and its mathematid basis, dong with its 

applications in different areas of material science and processing are de~cn'bed in detaü in 

Chapter 4. Applications of this technique to: fiow stress prediction, roll force prediction, and 

detection of dynarnic recrystallization during hot strip roiiing of HSLA steels are @en in 

Chapters 6 and 7. Principal Component AnaIysis is used as a data pre-processor for Neurai 

Network sirnulator code, in order to decouple the linearly comelated input variables. This 

technique is explainecl in Chapter 3 and the reailts of its application is presented in Chapter 7. 



3. Principal Component Analysis 

Principal Component Analysis is one of the moa commonly used mdtivariate statistid 

analysis techniques. When the variation of a dependent vanable is a fùnction of more than one 

independent variable, then the problem is multivariate. Most real engineering and scientific 

problems and analyses are multivariate. The complexity of this kind of problem arises nom 

both the multi-dimensionality, and the possible interactions of the independent variables which 

afFect the dependent variable. Principal Component Analysis can be used to both reduce the 

dhensionaiity of the problem and remedy problems associated with the linear correlations 

between original variables. 

The objective of the analysis is to take p variables Xi, X2, X3, ... Xp and h d  

combinations of these variables to produce new variables Zi, Z2, Z3, . . . Zp that are uncorrelated. 

The lack of wnelation is a usefiil property because it means that these new variables are 

meaniring different 'diiensions' in the data These new variables are called Principal 

Components and are ordered so that Z1 represents the largest amount of variation , 2 2  

represents the m n d  largest and so on. That is var(&) 2 var(Zt) ;? var(&) 2 . . . ..hrar(Z,), 

where var(2J denotes the variance of& in the data set. 

When performing a Principal Cornponent Analysis there is always the hope that the 

variances of moa of the new cornponents will be so low as to be negligible. This wiU happen if 

there are significant linear correlations in the original variabIes. In that case the variation in the 

data set can be adequately desMM by the first few principal Components. 
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To avoid confusion with the regression analysis, it should be stressed that, in regression 

adysis we are looking for a line or d c e  of closest fit to a systern of points in space which 

indicates the best prediction of dependent variables. In Principal Component Analysis, the 

primary interest is in detecting any possible lin= association between the independent 

variables. In short, the regression line indicates the best prediction of a dependent Vanable and 

the printipai component line indicates the best linear association between independent variables 

3.1 An Introduction to the Theory of Principal Component Analysis 

Principal Component Analysis is a variabledirected multivariate technique which can 

be used for identifjing possible linear relationships between several quantitative variabless9. At 

one extreme, these variables may be completely independent of each other, while at the other 

extreme there may be a linear relationship between two or more apparently independent input 

variables (conditions). In the range between these two extremes, we can have Werent degrees 

of correlation between variables. In two-dimensional space with just two variables, we shply 

look at the correlation between them by plotting the data on a two-dimensional graph. 

However, once we want to analyse data that is dependent upon more than two input variables, 

looking at their interdependency becornes more complicated. In this case? the "Principal 

Component Analysisl' technique could be utilisai, provided there is a considerable correlation 

between the variables. This technique aims to transfomi n-number of observeci variables with 

possibly some degree of interdependency, to a new set of n-unconelated variables, anangeci in 

decreasing order of variability. These new uncorrelate- variables are called "Principal 

Components" and are linear combinations of the originai variables, with coefficients equal to 

the eigenvectors of the correlation or standardiseci covariance rnatrix The principal 

cornponents are orthogonal to each other and are derived in decreashg order of variability, 

such that the £irst component accounts for as much as possible of the variation in the original 

data and the second component represents the second largest variance. In geometnc temis, the 

rn-dimensional aib-space of an n-dimensional space spanned by the first m principal 
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components gives the best possible fit to the data points, as rnea~u~ed by the sum of the 

squared perpendicular distances fiom each data point to the nib-space. 

The usual objective of the P ~ c i p a l  Component Analysis is to detemine whether the 

k t  few principal components account for most of the variation in the original data Ifthey do, 

the problem can be studied in a lower dimensional space without losing much of the variation 

of the data. This is done by ignoring the variation in the direction of the last principal 

components. In other words, if some of the ori@ variables are highly correlated, then they 

are effectively saying the same thing and there rnay be nearly linear constraints on the variables. 

In practice, it is not dways easy to give meaningfid labels to the principal components, 

but they can stiU be used effectvely to reduce the dirnensiohality of later analysis. Indeed, 

Principal Component Anaiysis (PCA) makes use of the interdependency between the onguial 

variables and transfomis hem to a srnder set of unconelated variables. It is therefore worth 

mentioning that, if the original vanables are nearly uncorrelated, then there is aimost no point in 

canying out a PCA In this case the PCA wili simply h d  new components which are close to 

the original variables, but arranged in decreasing order of variance. In short, the two main 

objectives of PCA are: 

1) Reduction of the dimensionality of the problem in order to facilitate M e r  

analysis and modelling of the data. 

2) Orthogonal transformation of linearly correlated variables to uncorrelateci 

principal components. 

An important feature of Principal Component AnaIysis is exploited in conjunction with 

regression anaiysis. in multiple regression, one of the major difEcuities with the u d  least 

square estimators is the problem of multi-coiünearity, which ocaus when there are near- 

constant hear fùnctions of two or more of the vhab1es60. if muiti-~~Ilinearitit~~ exist, the 

variances of some of the estimated regression coefficients can becorne very large, leading to 

unstable and ofien misleadhg estimates of the regression equation Various biased regression 

techniques such as "ridge regression" have been developed to overcorne this problem, but an 
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alternative approach is to regress, not on the originai variables, but on the first few important 

principal components6'. This technique is known as ''PPrinpaI Cornponent Regression". 

Existence of strong mdti-coliinearities poses similar problerns to the development and 

training of Artificial Neural Neh~ork models. Once a dependent variable is to be modelled as 

some fundon of two or more independent variables, and these independent variables are some 

constant hear fhction of each other, then, the network 1ea-g algorithm m o t  properly 

leam the input-output relationship. This is becatlse the network is not &mg presented with the 

data providing some information about the variation of the output with each individual and 

independent variable. 

Part of this research is to investigate the beneficial effects of performing Principal 

Cornponent Analysis prior to neural network trainllig in order to avoid nehuork confusion due 

to the collinearities in input variables. The results are presented in Section 7.4.4. A detded 

discussion, geometric interpretation, and important characteristics of Principal Component 

Anaiysis have been presented in the author's Master of Applied Science t h e ~ i s ~ ~ .  The 

cdailation of Principal Components is briefly descnied in the foilowing section 

3.2 Calculation of Principal Components 

Given a data set with p numeric variables and n observations, p principal components 

can be computed. Each principal component is a hear combination of the original variables, 

with coefficients equal to the eigenvecton of the correlation or covariance matrix. The fh t  

principal wmponent is the linear combination of the variables XI, X2, X3,. . . Xp. i.e., 

2, =a, ,X,  +a,, X, +--+a,,X, (si) 

such that Zl varies as much as possible for the individuals, subject to the condition that 
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The constraût is actualiy a standardisation scheme and is introduced to avoid an increase in the 

variance of Zl by shply increasing any one ofthe aij values. The second principal componenf 

Z2 = a I l X ,  +aZ2X2 +---3(12pXp, (3-3) 

is nich that the variance of Z2 is as much as possible, subject to the constraint that 
2 2 2 a*, +a, +--+a2, = 1, (3-4) 

and also the condition that ZI and Zz are uncorrelated. The rest of the principal components 

are derived in the same rnanner. 

The coefficients al 1, . . . . al, are actuaIiy the elements of the fïrst eigenvector of the 

covariance rnatrix of original variables, ai, standardised to the nim of the squared of one (a21 + 

a* + . . . .+ a* = 1). The coefficients a*,, aa, . . . . a$ are the elements of the second eigenvector, 

a*, and so on. Hence, a principal component andysis basically involves caladation of the 

eigenvdues and eigenvectors of the covariance matrix and a simple matrix multiplication. 

To form the covariance ma* the arithmetic mean of each variable, Le. 

- - - 
X , , X2 , . . . , X , is computed. B a d  on these, the covariance rnatrix is formed. The general 

fom of the covariance mat* A, is 

where variances and CO-variances are: 
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and SQ on- 

This rnatrk is aiways symmetnc, because cov(X,, X,) = COV(X,, x, ) and = on To 
compute eigenvalues, we form the characteristic equation for the covariance matrix A 

det I A - X ~ = O  (3-8) 

Having matrix 4 the solution of the above equation lads to p (number of variables) distinct 

solutions which are the eigenvalues. Expanding the above determinant yields a polynomial in 

A. The roots of this polynomiai are the solutions for the eigenvaiues. A wide variety of 

methods are available to estimate the roots of the polynomials63, however, for symmetric 

matrices, there are better approaches with no need to fom the polynomial and find its roots. 

For example, the Jacobi ~ e t h o d ~  transfomis a symmetnc matrix to a diagonal matrix by 

eliminating off-diagonal ternis in a systematic fahion. This method consist of a sequence of 

orthogonal similarity transfonnations. Each transformation is a plane rotation designed to 

annihilate one of the offdiagonal matrix elements. Successive tsmsfonnations undo previously 

set zeros, but the off-diagonal elements nevertheless get s d e r  and smaller, until the matrix is 

diagonal to the desired precision Elements of the final diagonal matrix are the eigenvaiues. 

Assuming that the eigenvalues are ordered as hi 2 L2 . . . 2 i, O, then & corresponds 

to the ith principai component, 

Zi =ai$, +a& +---+aipXp, (3-9) 

and demonstrates the variance of G. The constants a,, , a, ,. . .,aip are the elements of the 

correspondiig standardised eigenvectors. Substituthg the eigenvalues into the fiindamentai 

eigenvaiue equation, Ax = hx, we fmd p distinct eigenvectors, correspondhg to p eigenvalues. 
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A iinear dgebra t h ~ r e r n ~ ~  indicates that if the non-zero eigenvectors ai,az, ...,a. 

correspond to different eigenvaiues ÂI,XZ, ....,Ab then these eigenvecton are lineariy 

independent. This is another reason why principal components are not iineariy correked. The 

combination of these eigenvectors fom the p by p square matrix of eigenvectors denoted by H. 

Having this matrix and the mean of each variable, and recahg that principal components are a 

iinear combination of the original variables with coefficients equal to the eigenvectors of the 

covariance ma* we c m  compute the principal components for each individuai obsewation: 

Inversely, if we want to calculate the onguial variables X = XI, X2,. . ., & for a given 

set of principal components, Z = Z*,Z2, . . ., & of an obwvation, we invert the above equation 

and we get: 

z = ~ ( x - X )  

or 

H-I 2 = X - (3-12) 

Since the eigenvector matrix E is orthogonal (eigenvector matrix of a real symmetric 

ma* i.e. covariance matrDr, is orthogonal), then its inverse and transpose are eqt& so that: 
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Here it is worthwhile to mention an important characteristic of any matrix A, c d e d  the 

trace of A The trace of A is the sum of the eigenvalues of A which can be proved to be equal 

to the sum of the diagonal elernents of ma& A This is another way to denve the fiuidamentai 

fàct that the sum of the variances of the original data is equal to sum of the variances of the 

principal components (Eigenvaiues of covariance rnatrix are variances of principal 

components). Of course this is expected due to the orthogonal nature of the transformation 

fkom the original co-ordinates to the principai components space. 



4. Artificial Neural Networks 

A new and robun modeliing method using ArtiûciaI Neural Networks is evolving. 

Neurai networks have been proven to be universal fùnciion approximators if a SuffiCient 

number of processing units are employed.6s This method is applicable in many areas of 

behavioural science and has produced prornising results Ui the areas of: data analysis, 

modehg, signal processin& weather and £inanciai forecasting, process automation, robotics, 

and many others. Weii-trained Neural Network models provide fasf accurate and consistent 

results. The technique has b e n  weli deve~o~e&~*~'  and extensively used in many areas of 

science and engineering, however, it is somewhat new to the materials science and processing 

field. 

4.1 Introduction 

Neural Networks provide a new approach to data arid process modehg. They belong 

to the heuristic class of modelling techniques, that is, these models do not contain a 

mathematical representation of the physical process, but stiil predict an outcome of a process 

based on previous stperience. A neural net c m  be lookeû at as a non-hear procedure that 

maps an input vector to an output vector. However, howledge of the process, in contrast to 

phenomenological and statistical methods, is not captured within a mathematid expression, 

but stored within a mat& of connection weights between the process inputs and outputs. 

These weights, determineci randomly at fht ,  are continuously modified so that the predictions 

fit the experimental data more accurately. The iterative process of modifying the weights is 
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called training. Upon completion of the training, there exists one weight matrix which gives the 

minimum emor between actual output data set and the network predictioos. 

In the following section, the backpropagation neural network paradigm wiii be 

explained in detail and an algorithm and flow chart wiIi be provided to develop and train a 

n e d  net mode1 of this kind. 

4.2 Feed Fowa rd Back-Pro pagation Neural Networks 

The multi-layered feedfonvard perceptron using the back-propagation leaming 

algorithm is central to much work on modelling and classification by neural networks. This 

technique has been evolved Eom Rosenblatt's simple perceptron mode16'. The 

backpropagation mode1 is the predominant supe~sed-training aigorithm. Supe~sed  learning 

implies that a good set of data or panem associations is used for training of the network 

Inputsutput pairs are presented to the network, and weights are adjusted to minimise the error 

between network output and actual value. The laiowledge that a neural network possesses is 

stored in these weights. 

4.2.1 Neuron's Function 

The artincial neurons, calleci nodes or Processing Elements (PE), have been modelled 

by some inspiration fiom biologicai neurons. The neurons are the basic processon in a neuml 

network; still, they perfom quite simple aridimetic operations. Each node receives several 

inputs over the connections to previous layer's nodes, d e d  synapses. There is a weight (a 

numenc value, fùnctionaiiy similar to the coefficients in a regession model) associated with 

each connection. Each input is a product of a previous layer node output and the weight of the 

co~ecting synapse. The activation of the neuron (output) is computed by applyhg an 

activation finction (refer to section 4.2.3) to the sum of these products. McCuiioch and pitts6' 

proposed the fkst model of a neuron as a binas, threshold unit. A simple generaiisation of this 

model has the fonn of 
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= g(Z w p ,  - Pi 1. 
i 

The vaiue Q is caiied the sirrie or acfivafion of unit i. The non-linear fiuiction g o  is caiIed the 

acfivatr'onfimction or &wz.!$erfLrncton. In this modei, the neuron cornputes a weighted sum 

of its inputs fkom d neurons of the previous layer and compares this value to a certain 

threshold value &-), then, appiies the activation h c t i o n  to the remit to produce the neuron 

output. An abstract mode1 of the neuron is s h o w  in Figure 4-1. 

Figure 4-1. Diagram of an abstract neuron (PE) modei 

4.2.2 Network Architecture 

S u p e ~ s e d  neural networks generdy consist of a large nmber of proceshg nodes 

(neurons) organised in input, hidden and output Iayers. The input layer receives the signals (the 
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input values in the given data set) and the output layer provides the final outputs (network 

predictions) to the environment. The hidden layer, with no outside connections, increases the 

hctionality of the network in hancüing lineady inseparable data sets and enhances the fùnction 

approximation and classification capability of the network. nie number of the nodes in the 

input and output layer is dictate- by the problem. However, the optimum number of hidden 

layers and number of nodes in each hidden layer depends on the complexity of the problem and 

nurnber of input and output variables. For non-hear hction approximation, genedy one 

hidden layer of nodes nifnces. There are a few methods available to aid network designen in 

deciding the optimum number of hidden nodes, however, there are no rigid d e s  for deciding 

the optimum nwnber of hidden nodes for any given problem. The two more common 

techniques are node pnining and dynamic node allocation'0.7' In node pruning, we start with 

a large number of nodes and train the network. Then, the number of nodes is progressively 

reduced and each time the pedonnance of the network is compare. to the performance of the 

network with the previous number of nodes. This procedure is continueci until the accwacy of 

network predictions staits to detenorate. The optimum number ofnodes is then reached. The 

same result can be obtained through dynarnic node ailocation, that is, to start with a srnail 

number of nodes and progressively increase the number of nodes and monitor the performance. 

Mer aniving at optimum nurnber of nodes, the accwacy of predictions d not increase with 

an increase in the number of nodes. 

The term, feedforward, identifies the direction of information propagation. In the 

multi-layered perceptron the ody direction pemitied is nom input towards the output. The 

terni, backpropagation, d e s c r i i  the leaming algorithm in which the weights are modifieci by 

cornpaxhg the network output with the a d  output and minimishg the m r .  A fuiiy 

connecteci three-layer network of this kind is Uustrated in Figure 4-2. The output units are 

denoted by 4 hidden uniis by 5, and the input terminas by Q .  Notational conventions are 

shown in the figure and at the end of this chapter. 
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Input layer Hidden lâyer Output layer 

Figure 4-2 A three layer feedforward network, showing notations used for nodes and 
weights. 



Chapter 4. Artificid Neural Networks 

4.2.3 Activation Functions 

Activation bctions map the possibly Uifinite dornain of the PE's output to a p r e  

specined range, usually (0J) or (-1,l). Important requirernents for these iùnctions are that 

they be non-linear, differentiable, monotonie and bounded. The moa popular activation 

fbnctions are the Iogirt ic sigmoiciir1 and hvperbofic mgent (lrmh) fùnctions, shown in Figure 

4-3. The non-linear mapping capability of neural nets exnanates from the non-linear nature of 

these bctions. Both of them introduce a non-hearity in the network dynamics by bounding 

the output values within a fixed range. 

4.2.4 Data 

N d  networks, sMar to naturai brains, cannot operate d e s s  they are provided with 

expenentiai knowledge or data Feed-forward back-propagation networks reqwe a sufficient 

nurnber of pattern pain (iiput-outputs) for training purposes. Both inputs and outputs could 

be multidimensionai, blliary or continuous valued. Training pairs are usually normalised to 

values between (-0.9 to 0.9) or (0.1 to 0.9), depending on the type of activation bct ion  king 

used. 
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Figure 4-3 Sigmoid activation funcîions, a) logistic sigrnoid and b) tanh. 

4.2.5 The Learning Paradigm 

Mer a tentative decision about the topology of the network (number of layers and 

nodes), the network should be trained to h d  the optimum weights. The aigorithm to train 

networks without a hidden layer was developed long ago6', however, these kinds of networks 

had iimited capabilities. Although the greater power of multi-layer networks was realised then, 

it was not until the 1980's that the first algorithms to teach multi-layered networks were 

developed. m3i74 The dgonthm ~nsists of the fonvard propagation of data and an error 
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caldation, then an error minimisation scheme based on the gradient descent method. These 

seps are explaineci in the foiiowing sub-sections. 

4.2.6 Feedforward Propagation of Data and Error Calculation 

We fint consider a tbree-layer network such as that iilustrated in Figure 4-2. We labei 

difEerent input patterns by a superscript p, so input k is set t o c  when pattern p is being 

presented. In this phase of training, an input is presented and propagated through the network, 

generating a set of values as network outputs, 0:. The required steps are shown below. 

Given pattern p ( c ,  } , a set of input-output pairs in the training data, the hidden unit 

j receives a net input of 

hy = 
k 

(4-2) 

and applies the activation fiuiction to this value, minus the threshold, to produce the node 

output or activation Vj 

Equation (4.3) can be rewritten as 

To omit thresholds corn the anaiyîical descriptions, we may consider an imaginary input b, 

fixed to 50 = -1, and c h w e  connections strengths wjo= ej, then: 

Now this output fiom the hidden layer wiU be propagated to the output layer nodes. Output 

unit i thus receives 
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and the final output nom the output nodes will be 

Note here that the output is an explicit fundion of the inputs and weights of the connections. 

Now the training task is to find the weight vecton for the input-to-hidden layer and hidden-to- 

output layer to minunise the emr W e e n  the network calculated output, 01, and the desired 

value (training data output), 6. 

4.2.7 Cost Function 

In order to systernatically optimise the weights, we should utilise a cost fùnction as a 

measure of total error and to minimise it in an appropnate way. A very cornrnon cost 

function is the sqzïared error cos hction. The best solution for network weights can be 

attained when the sum of the errors for all the given patterns and across ail outputs is 

minimised. Then, we may use the foilowing form of the squared enor cos hction: 

This cost fitnction is the most cornmonly used and is based on the squared diReraice between 

computed, O:, and desired output values, C r ,  of aii output nodes across ali pattern in the 

data set. The smaller the value of the E, the better are the weights. When E is zero, the 

mapping fiom input to output is perfixt for the given pattern Substituting Equation (4.7) into 

(4.8) gives: 
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4.2.8 Gradient Descent Learning 

&en this error measure E[wI7 we can minunise the cost iùnction by mo-g the weights 

through 'sliding downhill' on the surfâce it defines in w-space. The Gradient Descent 

algorithm siggests changing each weight, w7 by an arnount Aw, proportional to the gradient of 

E at the present location The 'downhül sliding' and gradient descent algorithm are 

demonstrated in Figure 4.4. 

First, let us consider applying this algorithm to the hidden layer-twutput layer 

weights, W,. For these connections, the gradient descent rule gives 

The parameter q is a positive constant controlling the leamhg rate. Substituthg for E fkom 

Equation (4.9) and using the chah nile, we obtain: 

Ifwe define 

6' = g'(h:)[t;: - Or] 

then our fibai fom of the weight correction for hidden layer to output node conneetion would 

be: 
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Error Surface Graph 

Weight W 4 4 Bias B 

Figure 4-4 An e m r  surface and downhili sliding through gradient descent aJgorithm? 
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This equaîion is commonly referred to as the d l .  d e ,  the &ne d e  or LMS (least mean 

square) d e .  

We notice f?om Equation (4.12) that the change in weights is a fùnction of the net error 

between desireci and network output, and the derivative of the activation hction g o .  W~ a 

sigmoid fonn for g(h). this derivative, g '(h) = 1 - 2, is largest when 1 is smaii (notice that 

the output of a sigmoid fùnction is always less than 1). Thus the changes are made most 

strongly on connections feedng to units with s d  l's, those which are in doubt about their 

output. This is a reason why sigmoid fiinctions are the preferred form of activation fitnctions. 

For the input-to-hidden Iayer weight corrections, we m u t  differentiate the cost 

fùnction, Equation (4.9), with respect to the w&. Using the chain de, we obtain 

then the final form of the weight comection for input to hidden layer connections becomes: 

Equations (4.13) and (4.16)' which are the weight update niles, are written as the sum of d 

pattern p, however, they are usually used incrementaily: a pattern p is presented at the input 

and then ai i  weights are updated before the next pattern is considered. The incrementai update 
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d e  decreases the cost fiinction at each step and lets successive steps adapt to the local 

gradient. In this case Equations (4.13) and (4.16) can be rewritten as 

The above analysis demonstrates that with repeated presentation of training data points 

to the network and updating the weights based on the &lm rule, we *ui minimise the error 

between network predictions and the desired outputs after a dcient  number of data 

presentations (iterations). 

4.2.9 Local Minima 

The gradient descent algorithm is guaranteed to find a l d  minimum. In many 

practical problems, this local minimum is the global minimum as weli. However, there is a 

poss&ility that the network will get trapped at a iocal minimum and stop l e d g  without 

finding the global minimum. This means that there is another set of weights which c m  provide 

a better fit to the data. If this local minimum provides results with acceptable error Iwels, then 

this local minimum is close enough to the global one. 

To minimise the risk of getting trapped in a local minimum, the choie of initial randorn 

weights is importantq If they are tw large, the sigmoids wiii sahirate f?om the beginnuig, and 

the system will become stuck in a local minunun near the starting point. A sensible strategy is 

to choose random weights so that the magnitude of the typicai net input hi to input i is l e s  

than-but not too much l e s  than-unity. This can be achieved by taking the weights wg to be of 

the order of (1  1 Jk;) where ki is the nwnber ofj7s which feed foward to i. 

Another practicd m e m e  to increase the chance of finding the global minima is to 

initialise the initial weights and thresholds to different random values. In this way, the starting 
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point on the enor hU (refer to Figure 4-4) wiU change. Hence, the probability of sliding d o m  

to the global minimum without fâiling hto a local one wiu increase. 

4.2.10 Generalisation and Overfitting 

D u ~ g  leaming, the outputs of a supe~sed  neural network attempt to 

approximate the target values, given the input-output pairs in the training set. This ability 

is useful in itself, but the purpose of using a neural net or any other mode1 is to 

approximate target values, given inputs that are not in the t d g  set. This feature is 
called generalzufion. There are two conditions that are typically necessary, although not 

always sufficient, for satisfactory generalization. The first condition is that the function 

relating the inputs to correct outputs be smooth. In other words, a small change in the 

inputs should produce a relatively small change in the outputs. For continuous inputs and 

targets, smoothness of the function implies continuity and restrictions on the first 

derivative over the input space. 

The second necessaq condition for good generalization is that the training cases 

be a sufficiently large and representative subset, that is, a "sample" in statistical 

tenninology, of the set of al1 cases that is needed to be generalized to, Le. the 

"population". The importance of this condition is related to the fact that there are two 

different types of generalization: interpolation and extrapolation. Interpolation applies to 

data points that are surrounded by nearby training data points. Cases that are outside the 

range of the training data require extrapolation. Cases inside large "holes" in the training 

data may also effectively require extrapolation. Interpolation cm oflen be done reliably, 

but extrapolation is notoriously unreliable. Hence it is important to have sufficient training 

data to avoid the need for extrapolation. 

Newal Networks are proven to be universal hction approximators6'. They are 

actually able to appcoxhnate any arbitrary hction to any degree of accuracy requUed for a 
given "sample". However, it should be bom in mind that a good fit to a "sample" abset does 

not necwarüy constitute a good fit to the whole "population". Indeed, the increased accuracy 

with the increased number of iterations or excessive number of processing nodes wili harm the 

generaiisation of the mode1 to the unseen data in the population. Hence, in addition to carefirl 

consideration for sampiing of the data, measures should be taken to avoid "overfifrYng" while 
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An operational definition of overfitting is that the out-of-sample emor starts to 

increase with training tirne &er having gone through a minimum, The overfitting to a 'sample' 
data by neural networks is anafogous to f ihg  an excessiveIy large order polynomial to this 
sample set. This polynomid wiU fit the sample data weU, however, it it not provide accurate 

and diable predictions for unseen data in the population. 

A simple way of detecting overfitting is to use the split-sample techigue, Le. spIitting 

data into training and testing data The mean difference of the network predictions and desired 
outputs of the unseen test data starts to increase once the increased number of terations begins 
to cause overfitting. ui the case of large databases with abundant data points, split-sample 
validation can be readily and reliably used. However, with limiteci size of adable data, the 

cross-validation technique is advisable, since t allows al1 of the data to be used for training, yet 

providing a rrasonable generalisation In a more elaborate version of this technique, cded 
leave-one-out cross-validation, the network is trained with ody one data point left out. The 
training cycle is repeated as many times as the number of data points. The optimum 

generalisation is achieved once the sum of the emon (prediction Meraice for the left out 

point) of al1 training cycles is minimum. 

Therefore, in assessing the performance q d t y  of a neural network, the most 

important factor is to examine whether the network can succesfÙUy generak what it has 

learned fkom the training data to the unseen test data. 

4.3 Back-Propagation Encoding Algo rithm 

The simplest back-propagation algorithm minimises the squared error cost h c t i o n  

(delta or LMS d e )  in a thrdayered, fidiy comected, feedforward topology, simiiar to the 

one show in Figure 4-2. A stepby-step procedure for encoding the algorithm usîng 

incrementd updaîes (one pattern p at a tirne) is presented below. 

4.31 PreProcessing of the Da ta 

AU the input and output values in the dataset first have to be normaiised into the range 

[-0.9 to 0.91, to avoid premture sahiraton of the sigmoid fiinction. Similar to a Iinear 
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where X is the onguial due, Y, is the n o d s e d  value, Y, and Y, are 0.1 and 0.9 

respectkely, and X, and L are the minimum and maximum values of the data. Mer 

training, the inverse operation should be pe~omed to CeCover the orighal data: 

4.3.2 Network Generation and Initialisation 

a) Define vector variables to represent the activations of input, hidden and output layer nodes. 

b) Define vector variables to represent thresholds of hidden and output nodes. 

c) Dehe a 2-dimensional matrix variable to represent connection weights, fiom input-to- 

hidden layer and 60rn hidden-tmutput layer. 

d) Assign random values in the range [4.9 - 0.91 to al1 weights and thresholds. 

4 3 3  Forward Propagation of Data and Error CaIcuIation 

a) Randody, take one pattern (c , c) nom the training dataset and apply the input vectorg 

to input nodes. 

b) Propagate the input signals fonvard through the network to calculate new activations of 

each hidden node, ?y7 using Equation (4.3) 

where 

is the logistic sigmoid threshold f'wiction, with the steepness parameter P, ofien set to 0.5. 
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c) Propagate the activations of hidden nodes, c?, to caldate the new activations of output 

nodes, Or, using a version of Equation (4.7): 

where Ti is the ment  threshold value of output node i. 

d) Compute the error between computed output value, O/, and daired output value, 51, 
through Equaiion (4.1 2): 

The derivative of the logistic sigmoid fiindon with steepness factor of 1/2 is: 

g'(h1 = Wg(1- g) = g(l - g) (4-25) 

Thus Equation (4.12) can be used in the convenient form of 

= g(1 -g)[cr -or] = o'(1- O;)[<; -or] (4-26) 

e) Compute the error of each hidden node output relative to each output node error, using 

Equation (4.1 5): 

43.4 Weight and Threshold Adjustments 

a) Adjust the hidden-to-output connections weights, accurding to the delfa d e  &en in 

Equation (4.17): 
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b) Adjust the output node thresholds according to gradient descent scheme: 

Ar; = qs,? 

c) Modify input-to-hidden connections weights according to the Equation (4.18): 

d) Adjust the output node thresholds according to gradient descent scheme: 

A@; = rp37 (4-31) 

Notice that the Ieaniing rate, q, is chosen to be the sarne for both hidden and output layers, 

howwer, it doesn't necesdy need to be. 

4.3.5 Iterative Learning 

With the random sefection of initial weights and thresholds, it is obvious that in the fh t  

iterations, there is a large error, $, in the network predictions. However, afler repeating steps 

listed in the Sections 4.3 -4 and 4.3.5 for new random patterns the error value will be reduced 

until desired accuracy is achieved without sacfificing the network generalisation. 

43.6 Overtitting and Generalisation 

Wtth continued iterative leamhg the network prediction error on trainhg data 

decreases. However, excesive l e d g  will cause the network to leam not only the r d  trend 

of the data, but also the noise which is a h o n  always present in practicai datasets. Once the 

network starts rnapping the noise as weU, the sum of the emr on the test data will start 

increasing, an indication of excessive training or overfitting. To avoid overfitting, the network 
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performance &er each learning cycle should be tested on the test data and leamhg should be 

terrninated once the error starts to increase. 

The r d  procedure consists of a one-shot forward propagation of any given pattern. 

Once the finai weights and thresholds are determined, the input of the data pair is plugged into 

the input nodes, and the output is computed through Equations (4.3) and (4.22). 

The above-mentioned encoding algorithm has been s d s e d  in the form of the flow chart of 

Figure 40. 

4.4 Cornparison of Neural Net ModeIs with Statislical Models 

There is a considerable overlap between the fields of neural nehvorks and statistics 
sincc both are concemed with data analysis. Most neural nets that a n  learn to generalise £tom 
noisy data are fùnctionally similar to statistical methods. 

For example, the feedfonvard nets with no hidden layer are basically generalised linear 
models and feedfomard nets with one or more hidden layers are similar to non-hear 
regression models. However, the fhdarnental difEerence in their mechania is that the success 

of statisticai methods is very much dependent on availability of an underlying mathematicai 
equation while neural nets do not require a prion' knowledge of fùnctional relationships 
between the independent and dependent parameten 

There are a large number of studies comparing the neural network models and their statisticai 
c~unter~arts~'*~~. Most aich studies involve one or two data sets and no general conclusions 
can be drawn. However, there are some more involved comparative studies of these two 

techniques, disaissing the important issues of data distribution and sampling, over-training and 
under-training, noise effects, and generdisation80. It is concluded that n d  networks are 
becomhg increasingly popular as modem modehg and process automaiion tools because of 
their higher accuracy, versatility and speed. 
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Figure 4-5 Flow chart of a simple backpropagation Ieaming algorithm 
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4.5 Applications in Materiais Science and Processing 

Amficial Neural Networks oui be looked at as a modeilhg and classification tool. 

Hence, it can replace regession b a s a  models of any kind. However, the advantages of the 

technique are more pronounced once the procea is highly multiaimensional and there is no 
form of known mathematical equation for representation of the input-output relationship. 

Some of these successfiil applications are listed below: 

Hwu et al." used a backpropagaton neural net to predia satisfactorily the fiow stresses of 
an extra-low carbon steel in the austenite, femte and dual-phase regions, within a %2% 

Rao and prasads2 used a commercial 
flow stress of a low &n steel. 

reported. 

Neural Network package, NWorkss3, to mode1 the 

A mean absolute percentage error of 3.01% was 

 soi" used a special c l w  of Neural Networks, called MARS (Multiple Adaptive 
Regession Sphe), to predict flow stresses in a plate rollhg mil, with a 5.3% accuracy, 

surpassing those of conventional statisticd models. 

schmitter8' used Neural Networks to analyse compter images of polished steel in order 
to automate grain size detemiination and classification of iron carbides. 

Yun and  han^*^ reported s u c d  application of feedforward backpropagation 

networks to dynamic prediction of a BOF process in Pohang Iron and Steel Company. 

Siemens Energy and Automation is actively involved with design and irnplementation of 

Neural Network based cuntroiiers for r o b g  mill gauge and width control, prediction of 

amount of laterai spread in Bat rolling, prediction of strip thickness profile, and automatic 
strip classification by relation to deformaiion resi~tance.~',~~ They applied these rnodels to 

the Westfden miiI in Gemiany and reported that large improvements in accuracy have 

been achieved through the application of Neural Networks in combination with 
algorithmic models in the control of this hot strip r d .  
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g) Wu et ala9 modelled the behaviow of concrete in the state of plane stress under monotonie 
biaxial loading and under compressive uniaxial cyclic loading with backpropagation neural 

nétworks. 

h) Armand et al.'' used neural networks to develop inverse dynamic mode1 of a GMA 
welding process and s u c d y  controlled the weld width using this model. 

4.6 Summary 

Arlificial Neural Networks are a new class of heuristic modehg methods. One of the 

main advantages of this approach is that there is no need to make any a prion' assumptions 

about material behaviour or the physics of the process, even though more sophisticated neural 

network modehg schemes may take advantage of existing knowledge of the process in the 

network design. 

Although the multi-layered neural network models cannot guarantee a global minimum 

solution for any given problem, it is a reasonable assumption that the resuIting model will 

approximate al1 of the laws of mechanics which the actual material or process must obey, if the 

neural n e ~ o r k  is trained using a "comprehensive" database with an appropnate representation 

scheme. 

Another vemtility of the technique is its ability to continuously update through a 

training session that includes new experirnental or process data. WeU-trained Nairal Network 

models provide fàst, accurate and consistent results. It is superior to ali other techniques in 

terms of speed of mathematical manipulation. The trained network wili produce an output for 

any given input by one-step propagation of the inputs through the processhg nodes to the 

output nodes. This operation can be perfionned in milliseconds, making the technique 

favourable for on-line control applications. 



Chapter 4. Artifcial Neural Nehvorks 

There are some drawbacks to this technique. The network does not represent the 

knowledge Li the hnililiar form of symbolic equation-based modeis. Thus, reasoning about 

materia or process behaviour and desired changes wouid not be as intuitive as they are in 

regression methods. Network training relies on a cccomprehensive" database of the given 

problem However, the criteria to judge what constitutes the comprehenskeness of the data is 

not well defhed and obvious. 

4.7 Nomenclature 

output of output node 1 for pattem p 

output of hidden node j for pattern p 

connection weights fiom the hidden units to the output units 

activation fiction (sigmoid) 

sum ofthe inputs to the node j for pattem p 

output layer index 

hidden layer index 

input layer index 
number of input patterns or data 
conneaion weights fi-om the inputs to the hidden units 

momenhun parameter 
leamhg rate 

pattem or observation number 

(5,c } input-output pattem pair 

% threshold of hidden nodes 

ri threshold of output nodes 



5. Experimental Equipment and Techniques 

The experimental work reportai in dus thesis was performed to simulate thermo- 

mechanical processing of high niobium grade HSLA steels during hot strip rolling. The main 

objectives were to ver@ the possiiility of the 0cCwTenc-e of dynamic recrystaihîion during 

strip rolling and to investigate the effects of process parameters on the sofiening mechanisrns 

acting during this process. There are a number of testing techniques for the purpose of 

physicai simulation of hot rohg processes. An understanding of the advantages and 

limitations of these testing techniques and selection of the ~ g h t  test method for any given task 

is cniciai. 

5.1 Physical Simulation Techniques of Thermo-Mechanical Processing 

Physical simulation based on Iaboratory tests is the most cornmon and in many cases 

the only reiiabie method to study the process of hot rolluig, particularly during the development 

of new alioy grades. The usual testing methods are torsion testing, plane strai. and 

axisymmetric compression Torsion is the teshg technique that is most widely used for the 

determination of the characteristics of flow n w e s  and for carrying out r o h g  simulations. 

This is because torsion based testing ailows large strains without tool-specimen fiction 

problems. W~th regard to kinetics of recrystallization and precipitation, the axisymmetric 

compression test lus turneci out to be the most popular, even though the rolling of flat products 

involves plane stmin deformation Advantages and disadvantages of the diffkrent testing 

techniques are discussed in detd by Lenard et al.'' 
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The principal limitation of physical simulation arises fiom the faa that laboratoiy 

testing methods are unable to reproduce the successive, rapid, and large deformations that 

o c w  in industrial rohgg2. For example, while strain rates during hot strip rolling can exceed 

100 s-' and rod d strain tates can reach lûûû s-', most laboratory torsion machines are 

operated at 20 s-' or less. This l a d s  to discrepancies in the deforniion times of one to two 

orders of magnitude. Plane snain compression machines and cam plastometers can be 

operated at 100 s" or higher, but they are not weli suitai to carrying out seven or more 

successive deformations required for the modehg of the entire sûip robg  process. 

Attempts have been made to apply the principles of the "Similarity Law" to extrapolate 

f?om laboratory expehentai results with lower strain rates to values that wodd be attained in 

the industriai r d  practid3. The proposed scheme is to scale down the interpass times to 

compensate for the Iowa strain rates of experimental equipment. The similarity law is 

applicable only when there is no mechanism change between the mode1 and the prototype. 

However, it is expected that changes in the strain rates w3i inûuence the restoration 

mechanisrns (dynamic versus static), thus making the applicability of the similarity law 

debatable. The advancements in test equiprnent remaui the most prornising way of overcorning 

the suain rate Limitation for rohg simulations. 

A review of dinerent test techniques for physical simulation of thermo-mechanical 

processes, including their advantages and limitationst is given in the next sub-sections. Then 

the prinnples of the Similhty Law to comperwte for low strain rates of laboratory tests7 used 

during the torsion simulations, are described. 

5.1.1 Plane Strain Compression 

Rolling of flat products involves plane strain deformation. Hence, plane strain 

compression is the first prospedve test method for hot rolling simulation. ~ o r d ~  devised a 

plane strain compression test (iu~own as the Ford Test) in which only part of the specimen 

defom and the rigid rnetal outude the plastic zone prevents the spread of deformation in one 

direction. The results of his experiments were quite consistent with the data 60m cold r o h g  
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mills. The mosi comprehensive work on plane strain compression testing at e l e d  

temperatures, however, has been canied out by SeUars and co-w0rkers9s. 

Ushg cam plastometers, large strains and strain rates of up to 140 s-' are attai~ble for 

one or two stages of compression, however, for simulation of the whole rolling process 

multistage wmpression of seven or so hits are required- The pressure expaienced by the tools 

in plane strain compression teshg is shown to vary with the w/h ratio (tool width over 

specimen thickness) both theoretidy and experimentaliy. This variation arises fiom the fàct 

that Werent amounts of redundant work are involved in the defomtion at Merent w/h 

ratios. Figure 5.1 demonstrates this variation. Approximate solutions based on slip ihe field 

theory are avaiiable for rigid plastic materials to account for the redundant work done in metd 

working operatiom. Another drawback to be rnentioned is the non-UNform deformaiion dong 

slip zones (different 50m crystallographic slip planes) as depicted in Figure 5-2. 

Friction between the tools and the specimen increases the pressure required to produce 

yielding in the specimen. This eEect has been dealt with analyticaiiy and approximate solutions 

have been obtained which have been experirnentaily verified for lower coefficients of fiction 

and low strains.% From a practical point of view, due to the larger specimens involved in this 

method, heating, deformation and quenching ofthem are more diffidt than specirnens of other 

t ethniques. 
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4- Ex;eriment:d 

Figure S1 Variation of tool pressure with hhv ratio in 

plane strnin compression testin g? 
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Figure 5-2 The development of the plastic zone in the indentation of mild steel? 

5.1.2 Axisymmetric Compression 

As mentioned above, for the sîudy of kinetics of precipitaîion and recrystaUization, this 

method has tumed out to be the most popular one beuwse the experirnental equipment is less 

expensive and the procedure is faster than plane strain testing. 'in work done by Sellan and 

coworker?, there was good agreement W e e n  the flow curves obtained by plane strain and 

axisymmetric compression, as depicteci in Figure S3. 

~ o r d ~  has dso compared the results of plane strain compression testing with uniaxial 

compression testing. The stress-strain awes obtained by the two methods diverge 

progressively beyond a strain of 0.2 as shown in Figure M. 
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AXISYMMETRI C COMPRESSION 
PLANE STRAIN COMPRESSION 

Figure 53 Stress-strain cuives for l a d  obtained from axisymmetric compression tests at 

constant strain rate.% 
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Figure 5-4 Cornparison of stress-strain Cumes of a miid steel in arisymrnetric 

compression and plane strain compression tests? 

Higher stresses in axisymmetric compression are attniuted to higher fiictional forces and the 

different manner of anisotropy development in this method. This anisotropy is caused by 

barrehg due to hi& Wctional forces at the specimen-tool interfàce. Friction inmeases 

progressively with strain and is considered as a Iuniting parameter when large deformations are 

being studied. 
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5.1.3 Torsion 

Large successive strains and relatively hi& main rates (20 S-') with the aid of simple 

equipment have made this test method popular for the simulation of hot rollhg processes. 

Although it is relaîively straightforward to convert test results fiom one mode of deformation 

to another using the von Mises eEective stress and effective çtrain, specific problems &se 

when torsion tests are famed out on solid bars. Because of the saain gradient present in solid 

torsion bars, the strain at the peak stress, deterrnined in torsion, has been shown to be about 

1.3 times higher than the more accurate values deterrnined in tension or compression96. S a  

an even more serious problem is the overestimation of torsion-bas& recrystaiiization critical 

strain, 6% up to a fictor of 3 too hi& cornpared to those measured by other techniquesg9. To 

cl* this problem, one should consider the ciifkrent ways of deriving stress-& cwves 

fkom the torquetwist data determined in the torsion testing of solid bars. In the most 

fiequently used method, developed by Fields and ~ackofen'~, the shear strain in the surface 

layer is given by: 

where 9 is the angle of twist, and R and L are the radius and gauge length of the specirnen, 

respectively. When the von Mises convention is applied, effective strain is obtained as: 

The surface shear stress TR is dedu& fkorn the measured torque or moment M through the 

relatiomhip: 

where m and n are, respectively, the twist rate sensitivity of the torque and the nomialised 

torque hardening rate of the material. Again, the effèctive stress, G ,  in the SUTfàce layer can be 

found fiom TR with the aid of the von Mises assumption, leading to: 
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For the materials obeyuig simple work hardening 1- the m and n values are constant 

and the Equation (5-4) yields exact solutions. However, it is only an approximation when 

applied to materials being deformed at elevated temperatUres, under which conditions the work 

hardening rate n is itself deformation rate dependent and m is dependent on main Some 

worklO' has k e n  done to deveiop exact methods for the caldation of ZR, but unfortunately 

they require more involved analysis, as well as the use of several samples of increasing diameter 

for each d t i o n  to be investigated, and so are considerably les convenient to use. In this 

work, formulations developed by Fields and Backofen were used to convert the torque-twist 

data to stress-strain relationship. 

The approximations involved in the application of Equation (5-4) to hi& temperature 

flow lead to an overestimation of q, and an even larger overestimation in the detennination of 

%.* This arises because the peak strain is attained at fîrst in the outemost layer of a torsion 

bar and n becornes zen, at this layer, foliowed by sofiening (n < O) while the irmer layen are 

stU experiencing work hardening at dEerent rates. The moment developed in the torsion bar 

is of course the sum of the moments developed in different layers, however, when some of 

these are decreasing while some are increasing, the behaviour of a partiailar layer can be 

masked by the influence of the others. Thus, when the outer shell attains the peak stress and 

begins to soften, the bar as a whole continues to show hardening. As a resulf the peak in the 

overd bar is attained later than the real instant associated with the T- in the outemost shell, 

leading to an overestimation of E, and G. 

This averaging error can be mostly eliminated by using tubular torsion specimens, if 

enough care is taken to avoid bucküng at high strains. However, even with tubula. specimens 

there remain difEerences between the flow w e s  of torsion testing and those determLled by 

other techniques. This discrepancy is attniutable to ciifferences in textures developed at large 

strallis by deformation dong dEerent strain paths. In plane strain and axisymmetric 

compression testing rnethods, the material directions associated with the axes of syrnmetry of 
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the sample remah fixed. In torsion, by contrast, the materid direction at the d a c e  graduaiiy 

changes f?om Iongitudinaf to transverse102. Thus, even if the m e n t  value of shear stress 

would be the same for dEerent testing methods, the associated maaoscopic fiow stress is 

slightiy different. Another source of discrepancy is the slight difference in work hardening rate 

ofthe material in torsion testing compared to others in which it is lower. 

5.2 Strain Rate Corrections 

The repetition of industrial sVain rates is not possible by the existing simulation 

equipment. Hence, the effects of slower strain rates on metaiiurgicd events during hot r o h g  

shouid be taken into accuunt and proper corrections should be made on test procedures. 

Several workers 103.104,105 have attempted to determine çaalli rate corrections to the p a s  stmin 

and interpass tirnes when simulating high strain rate miii processing, using relatively low strak 

rate laboratory torsion tests. The principles of these comections are based on the variation of 

the kinetics of recrystallkation with strain rate. In order for direct application of laboratory test 

results to miU practice, the similarity of the soflening that ocairs in the lab and in the milI, 

should be rnaintained. 

5.2.1 Corrections for Strain Rate d u h g  Static Recrystallization 

There are reports indicating the slight effkct of strain rate on the kinetics of static 
106.107 reaystallization in C-Mn steels , however, most of the other works108*109*110 have 

confirmed the resuits of ~ellars"' denoting the independence of static reaystiiuuation kinetics 

fiom strain rate and a strong dependence on the stmin, initial grain size, and tempture. This 

kinetics in ternis of tune for 50% sofiening for C-Mn steels has been formulated as: 
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and the tirne t for X percent softening can be dculated from: 

where n depends on steel composition 

However, it has been shown that strain at the peak stress, E, is increasing 

systernatically with the Zener-Hollomon parameter"'. Under isotherrnal test conditions, strain 

to the peak stress is a fiinction of strain rate as foliows: 
1/2 a ep = Ad, Z 

where A is a material constant and n varies h m  0.125 to 0.175 with no apparent systematic 

trend with the composition of the steel. The mean value of 0.15 has been used by other 
authoislo3~'" . Zener-Holiornon parameter, 2, is aven as: 

Z = E exp - (29 
The peak in flow stress ocairs der some low fhction of recrystallization has taken 

place so the strain to the peak stress, E, is always greater than G, the critical strain for dynamic 

recrystaUization. It has been suggestedtl* that %= q, is a reasonable approximation for most 

of the steels, where a is a constant around 0.85. Since the peak occurs at the different levels of 

strain for different strain rates, the pass main for the first few passes (prior to the initiation of 

dynamic recrystaflization) needs to be adjusteci so that the peak wiU be reached at the same 

point in the deforniaton process. Ms can be readily done by combining Equations (5-7) and 

(5-8). If and I , denote laboratory test strain and strain rate respective1y and and i , 

represent mil1 strain and strain rate, then the corrected lab strain can be caicuiated as: 
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Having adjusted the strain per pass, the interpass t h e  must also be adjusted in order 

for the stni ldy of the sofiening beîween passes to be maintained. Considering the kuietics of 

static r-îion characterised by the t h e  for 50% softening (Eqtdon 5-5), the 

correded interpass tirne for the laboratory test cm be caidaîed: 

By combining Equations (5-9) and (5-IO), the interpass tirne correction can be calculateci 

diiectiy £tom the strain rates: 

where tl and & are laboratory and mill interpas times, respectively. 

5.2.2 Corrections for Strain Rate During Post-Dynamic Recrystallization 

The soffening kinetics after deformations beyond peak strain, i.e. after ocairrence of 

dynamic recrystauization, are considerably accelerated. This is due to the large number of new 

grain nuclei formed during the onset of dywnic recrystallization. Since the nature of the grain 

nucleation dEers fiom that under static recrystallization, and its kinetics are marked by the 

characteristics of dynamic recrystailkzttion, the static sofiening after dynamic recrystaUization 

has been d e d  Metadynamic ReclySta11i7ation. The rate of metadynamic recrystauization is 

highly sensitive to the strain rate, depends to a lesser degree on temperature and depends very 

little on strain'"".'. This Wers fiom the usuai dependencies reporteci for static 

recrysdhtion, Le. strong dependence on strain and temperature, and Me on strain rate. The 

metadynamicaiiy recq&dhA gain size is aiso highly dependent on strain rate and to a laser 

degree on the temperature. The higher the strain rate, the finer the grain size. This is also in 
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contrast with equivalent expressions for static reaystallization, which indicate no dependence 

of the grain size on strain rate. Accepting the above fhcts, it is important to apply strain rate 

corrections to experimental interpass tirnes when attempting to simulate high sîrain rate rolling 

processes using iow strain rate iaboratory tests- If the unwrrected d interpass times are 

employai in the low strain rate tests, considerably less interpass softening wili take place than 

those expenenced in the dl. 

The corrections for strain rate during the passes after the initiation of dynamic 

reaystallization only Uiclude interpass time conections, i.e. p a s  seain no longer needs to be 

modified. To apply these corrections, the knowledge of the kinetics of metadynamic 

recrystaUization is required. Several authors 104,105.107 have reported more or less s idar  fonn of 

dependence of these kinetics on strain rate and temperature for difEerent steels.  ouc cou les^^^ 
studied a Mo steel and assumed that rnetadynamic recrystallization starts at the end of the 

recovery stage and finishes at 90% softening. She developed the following expression for the 

t h e  for 50% recrystaUization: 

123(kJ / mole) f 13 
t ,, (s) = 6.66 x 1 r6 6 -0-61i" exp( 

RT 

Ifit is verSed that the same kinetics are applied for dBerent percents of çofiening, then 

this relationship can be readily utilised to determine experimentai interpas times to yield 

equivalent softening expenenced in the d. Under isothermal test conditions, the relationship 

between test and rniii interpass times is: 
0.61 

(513) 

A successfid application of above corrections to the simulation of rod rohg has been 

reported by Maccagno and  ona as'? 
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5.23 Implications o f  Strain Rate Corrections on Precipitation 

Using Equation (5-13) for corrections required for interpass times when using 

laboratory strain rates one order of &tude lower than miil strain rates, r d t s  in interpass 

tirnes four times longer than d interpass tirnes If the laboratory strain rates are two orders of 

magnitude lower, then interpass tirnes wiIi be increased 16 times. Longer deformation tirnes 

due to the lower strain rates and longer interpass times lead to much longer times for 

nucleation and growth of carbonitride precipitates. Significant strain-induced and dynamic 

precipitation can effectively stop recrystauization fiom taking place. This impiies that the 

interaction between precipitation and recrystailization should be carefiiily taken into account. 

This interaction is cornplex, however, it is interesthg to note that the dependaice of kinetics of 

recrystallization and precipitation on nrain rate is simüar. Dutta and ~ellars"* modelled the 

tirne for 0.05% strain-inducd precipitation in a high Nb steel as: 

-1 1 4 s  to.os = A [Nb] s- Z . exp (270(W/rnole)) RT ( B ) T~ (1 n K.)' 

where A and B are matenal constants, [Nb] is niobium concentration in steel and K. is 

supersaturation ratio, defined as the ratio of element concentration in solution to the 

equilibrium concentration. Considering the exponent of the saalli rate in Equation (5-12) and 

exponent of Zener-Holiomon parameter in Equation (5- 14) this similarity is evident. 

Considering the definite interactions of precipitation and recrystalIization, the possible 

effects of the above interpass t h e  u>mctions on the occucfence of precipitation and its 

interactions with recrystallization has yet to be studied. 
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5.3 Compression Testing 

5.3.1 Materials 

Two Nb-microalloyed steels studied in the present work were received as 30 mm thick 

pieces, sectioned from transfer bars. The chernicd compositions of these steels, cded steel 

number 1 and 2, are shown in Table I I .  

Table 5-1 Chernical composition (wt%) of steels number 1 and 2. 

5.3.2 Specimen Preparation 

Compression s p d e n s  with a 12 mm gauge length and 8 mm diameter wae 

machined fiom the steel suppiied. To enhance lubrication, a groove of 0.07 mm depth was 

machined in the top and bottom of the samples. The samples were annealed to remove prior 

texture and cooled in air. They were subsequently solution treated for 20 minutes at 1250 OC in 

an oxygen-fiee environment (to dissolve the existing precipitates into the m h )  and 

quenched. In order to control and monitor the tempeme, k-type them0~0up1es were 

embedded in the middle of the specirnens. A high temperature glass lubricant (Deltaglaze 19) 

was applied to the samples' machinecl gooves. 
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5.33 Testing System 

The specimens were tested using a computer controiled servohydrautic testing system 

(Iwtron Mode1 133 1). This machine enables the experimenter to specify the desired wave 

fom (Le. cross-head speed, constant or vaqhg strain rates, intemptions and delay times, 

strain at each stage and find strain) off-line. The generated waveform is used to comrnand the 

ram movement through an M o n  8500 control console. The tests were performed inside a 

split f'urnace, in between hot rams, made of INCONEL 718. Details of the testing system are 

given by Karagiozis and ~enard."' 

5*3.4 Data Acquisition and Control System 

The computer interfice to the W o n  machine was maintaineci through a GPIB 

(General hirpose Interface Board) made by National Instruments. Load and displacement 

analogue signals fiom compression tests were dig i t id  by an ATD (analogue to digitai 

converter) embedded in this board. True stress and tme strains were calculated by a post- 

processing program, takhg into account machine and rams hot stifhess and interfàcial fiction. 

The temperatures of the spechens and rams were recorde- through a DAS-8 interface board. 

A universai analogue input expansion board (EXP-16) was used for cold junction 

compensation. 

5.3.5 Experimen tal Procedure 

In the fht part, the effect of the pre-test thennd treatment on the metal's nibsequent 

behaviour was examinai using steel nurnber 1. In order to determine the high temperature 

characteristics of the metal, compression tests to a strain of 1.2 were conducted at a broad 

range of strain rates and temperatureS. In the second, the response of steel nwnber 2 to multi- 

stage, constant strain rate, isothermal compression was examined. The eff- of 2 and 20- 

seconds holding tirnes at different saain levels on the static recrystallkdon and the retardation 

of dynamic recrystaüization by precipitation were investigated. 
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5.4 Torsion Testing 

5.4.1 Material and Specimen Preparation 

The materiai used was steel number 1, sectioned fkom a transfer bar and machineci to 

torsion samples of 25.4 mm (1 ") gauge length and 12.7 mm (0.5") diameter. The chernical 

composition is given k Table 5-1. 

5.4.2 Experimental Equipment 

The experiments were cmied out using the MTS torsion simuiation of Dofasm Inc. A 

detailed description of the equipment is given elsewhere116. The maximum constant surface 

strain rate is 22 s-' (for this size of speciinen), and continuous cooling capabiity of up to 40 O C  

per second is attauiable with this machine. Aii tests were perfiormed in hi& punty argon to 

minimise oxidation. 

5.4.3 Experimental Procedure 

Specimens were sdution treated for 10 minutes at 1200°C prior to the tests and m l e d  

to the test temperature. Three-stand roughuig with pass strains of 0.5 and interpass times of 25 

seconds was p e r f o d  on al1 of the specimens prior to the fhishing twists. It is expected that 

this roughing schedde would mate the same grain size as the slab grain size entering the 

finishing rnill, with the same potentid for precipitation. Stress-strain wves were detennined 

fiom the torquetwist data, using the Fields and Backofen methodl? During finis& 

dierent cooiing rates were used to meet the targeted F7 (miii exit) temperature. in 1 

eqeriments, the F7 temperature was set to 91&10 OC, which is the targeted exit temperature 

during r o h g  of this grade. The finish mU entry temperature (FI) was varied between 1 lO0C 

to 950 OC, typicai of the strip head and tail entry temperatures AU expehnts were canied 

out under continuous woling conditions, simuiaatig the conditions in the d. Post- 

defomtion coohg rate was set to 10 "Us for ail tests. The acperimentai ma& used is 

shown in Table 5-2. 
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Test Nwnber I 

1 Test Number 2 

1 Test Nwnber 3 1 
1 FI Temp:1100 OC 1 Ferrite Grnio Si: 4.36 pm 1 1 

Table 5-2 Experimental Matrix used for Tonion Simulations 
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1 Test Number 4 

Fl Temp: 950 OC Ferrite Grain S k  4.13 pm 
D 

i 

Stand No. R1 R3 F1 F2 F3 F4 FS F6 F7 

Strain 0.5 0.5 0.5 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

SSain Rate 10 10 10 10 18 20 20 20 20 20 

25 25 25 2 2 2 2 2 2 2 

Test Number 5 

Table 5-2 Expetimental Matrix us& for Torsion Simulations (Continued) 
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Three types of strip r o h g  simulations were perfomed: 

a) Average sdieduie (identicai strains, strah rates, interpas times and cooling rates for ail 

finishing passes) with a low strain rate of 2 S-', as other researchery s worl~"',"~ (tests 1 and 

2). Using an average scheduie eiiminates the need for taking Uito account the effkcts of 

p a s  strain and pas to pass svain rate variations. 

b) Average schedule with the strah rate of 20 f1 (tests 3 and 4). 

c) Torsion simulations of hot strip roiiing with a schedule typical of d practice (tests 5 and 

6). 

Stress-strain m e s ,  obtained in continuously cooled tests, were correcteci for a 

standardiseci temperature of 950 OC. For this purpose, the effect of temperature on flow stress 

was investigated for temperatures between 900 to 1100 OC. These temperature-nonnaliseci 

stress-saalli cuves were plotted and analyseci to examine the true materiai sofiening during 

roiüng, independent of the effect of the temperature on the flow stress. 

Fede grain sizes were estirnated using the linear intercept method, with samples of 

micro-graphs taken at 0.25 mm fiom the specimen sufilce. 



6. Physical Simulation of Hot Strip Rolling 

One of the main purposes of the present research was to investigate the possibility and 

consequences of the occurrence of dynamic recrystallization during strip roihg of niobium 

treated HSLA steels through physical simulations. Compression testing was used to study the 

effects of pre-test t h e d  treatment on the recrystaUization and precipitation kinetics of these 

steels. Also, intmpted compression tests were conducteci to investigate the effects of 

ditferent holding times on softenkg mechanisms, retardation of recrystaiiization, and f u d  grain 

size. Torsion tests were Camed out to determine softening mechanisms which ocair durktg the 

strip rohg of niobium steels. Mi11 data was analysecl and cornpared with labontory resuits. 

This chapter presents the r d t s  of compression tests, torsion simulations and mill log d y s i s .  

These r d t s  complement and c o h  each other, and lead to the conclusion that dynarnic 

recrystallization does a d y  occur in strip rohg,  even though concrete physical evidence is 

not yet available. 

6.1 Compression Testing 

6.1.1 Pre-test Reheat Treatment 

In the present study, two different methods of pretest thermal treatment were 

investigated. Each method has its own implications on the resdts of hot deforniaton 

simulation and its applicability to industrial practice. In the first method, the specimens are 

solution treated, quenched, then reheated to the test temperature. In the second method the 

specirnens are solution treated and cooled in the fumace to the test temperature. The methods 
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yield different initial austenite grain sizes pnor to the test, sime quenched specimens go 

through transformation grain refinement The austenite to fenite grain ratio in niobium- 

microalloyed steels is reported to be about two to one119p120. In the present work the average 

pnor-amtenite grain size of steel nurnber 2 (refer to Table 5.1) afkr solution treatment and 

quenching was found to be 33.4 pm and after &onnafion to ferrite, the grain size reduced 

to 13.2 p n  These grains, after reheating to the test temperature and retransfodon to 

austenite, wiil not grow in size considerably untii the temperature rises to the grain coarsening 

temperature of the material (about 1100 O C  for niobium steels). This will translafe to higher 

yield stresses but lower strain to the peak stresses, E, as the strain to the peak stress is directly 

proportional to the square of grain sk."' The differences in the flow m e s  of steel number 1 

once different pre-test reheat treatments were employed are show in Figure 6-1. The test 

temperature was 900 OC and the svain rate was 0.5 âl. The solution treated and quenched 

specimen shows almost twice the strength than that of the fumace cooled specimen It also 

can be noticed that the high niobium steel does not dynamicdy recxyst;iuize at this range of 

temperature and strain rate. 

The larger onginai grains result in larger staticaiiy recrystallized grains. sellad2' 

surnmarised the data of several authors and developed a set of equations that relate the 

recrystallized grain size to the initial grain size and strain for C-Mn steels: 

and for niobium treated steels: 

where D and D' are constants (about 0.9 for niobium steels) and d,, is the initial grain size. 

Mishra et al. '* developed smilar equations for C-Mn and titanium steels. According to these 

equations, the recrystaikd grain size is a fiction of the initiai grain size. 
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Tmated and Coole 
to the Test Temperature 

/ Solution Trumd, Quanckd and', 
, Rehsated to the Test Tsmpstltum) 

Solution Trramd and Cooled 1 
to the Test Tarnpsntxm 

Figure 6-1 The effects of petest  thermal treatment on the niobium sted flow 

characteristia at 900 OC and the strain rate of 0.5 s-'. 
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However, when large multipass reductions are involvd, the effect of the initial grain size of the 

austenite on the final grain sbe becornes negligible. For exampk, a niobium treated austenite 

with initiai grain skies of 300 and 150 pm, upon recxystallization fier a strain of 0.3, yields 

grain sizes of 92 and 58 pm, (ratio of 1.58) respectively. The same initial grain k s  der 

seva passes of strains of 0.3, produce final grain &es of 10.12 pm and 9.71 pm respectively 

(a ratio of 1.04). The work of Cuddy et al.'" also revds thai, as a r d t  of repeated 

reqstaflization, the initially dissllnilar grain sizes rapidly converge to nearfy the same final 

grain si. 

The effect of initial grain size on the no-recrystallization temperature has also been 

studied by severai authors. It has been reported that for a given concentration of miroalloying 

elements in solution, the initial grain size prior to multipass defomtion has no e f f i  on the 

no-recrystallization temperahire124. Yue and  ona as'^ also reported the independence of &3 

and T, f?om the initial grain size of austenîte when these temperatures are detennined during 

muitipass defomtion. 

Another implication of pre-test reheat treatment on the experhental results is the 

Merent potentials for precipitation of microalloying elements. This is due to the dinerences in 

the tirne spent at high temperatures and the daerent pattern of distn'bution of available 

elements for precipitation. 

6.1.2 Single Stage Compression Tests 

A series of singie stage compression tests at different test temperatures (800 to 

1030 O C )  and strain rates (0.001 to 12 â') was conducte. to snidy the hi& temperature 

deformation behaviour of a niobium steel (steel nurnber 2). The solution treated and quenched 

amples were held at the test temperature for seven minutes pnor to compression. The average 

grain size afler seven minutes at a fimace temperature of 1100 O C  and 950 O C  wee found to 

be 16 prn and 9.3 pm respectivety. Specimens were subsequently i sothedy cornpressed to 

the strain of 1.2. 
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The results of these tests were used to determine the peak strain and the dynamic 

reaystallization or the strain hardening regions at different combinations of strain rates and 

temperatureS. The test r d t s  at 800 O C  indicated that the onset of dynarnic r-on 

occurs at very low strains (around 0.05). This is due to the fact thaî precipitation of Nb(C,N) 

is very slow at this temperature and almost aii of niobium is in solution hmeasing the test 

temperature to the range between 900 OC to 1Oûû OC r d t s  in an increase in the peak strain 

(nom 0.1 to OS) and a significant retardation of dynamic recrystallization by Nb(C,N) 

precipitation As expected, aU test results indicate that an increase in strain rate results in an 

increase in strain to the peak stress, e,,. Thus, it can be inferrd that in industrial rohg 

praaices with the sDain rates of more than 20 S-', the required strain for the onset of dynamic 

recrystakation wouid be weiî above 0.5. However, the peak strain is dependent on 

defonnaton histocy and especiaiiy on the extent of carbo-nitride precipitation. 

6.1.3 Interrupted Compression tests 

htermpted compression tests were used to study the effects of 2 and 20 seconds 

holding times (representative of strip and plate roiiing interpass times) at different strain levels 

on the softening mechanisms, retardation of recrystaihtion and f h l  grain s k s  of the steel 

n u b e r  2. 

Mer solution treatment, quenching, and reheating to the test temperature, the 

specimens were isothemially compressed at a constant çtrain rate of 0.1 S-1 to a total strain of 

1.2. Samples of £iow awes at both temperatures are presented in Fipre 6-2. Fractionai 

softening, amrding to the o f f !  method, was esfirruted Born the interrupted tests. The final 

average grain skes &er compression dong with sample temperature, strah of intemption, 

ffactionai sofiening, and holding tirnes are listeci in Table 6-1. It cm be noticed that the final 

grain sikm are much srnalier than those reported by other worken. 126,127 This is due to the fiict 

that solution treatment, quenching and reheating to the test temperature, cauçe specimens to go 

through transformation grain rehement. 
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AU tests conducted at 1030 OC indicate that dynarnic recrystahtion occurs at a peak 

strain of around 0.4. However, at the testing temperature of950°C, the flow stress levels off 

&er the strain of 0.6, thus indicating dynamic recoveiy, but no dynamic r e a y ~ t i o n .  

Lowering the temperature to 9ûû°C at the strain rate of 0.5 s-l in a simüar steei, results in 

continuous work-hatdening in the range of the applied strain, as depicteci in Figure 6-1. 

When the interruption was made before the peak in the stress was reached, a soflening 

ratio of 0.13 creatirtg a grain size of 3.85 pm, was attained. A sofiening ratio less than 20% is 

only atûibutable to static recovery, and does not involve the nucleation of new grains. 128,129 

However, once the same 20-second interruption was applied after the peak strain, i.e. d e r  the 

onset of dynamic recrystallitation, there was a considerable arnount of static renystallization 

(54%, 55%) and a siight improvement in grain refhement. This is an important obsewation, 

confhnhg the results of Sakai et indicating larger softening a e r  the onset of dyiamic 

recrystaIlization whidi results in b e r  grains. In all the tests at the temperahw of 950 OC or the 

interruption of 2 seconds, no measurabIe static recrystaiiization was observecl. This is 

confirmecl by other work~"~*'~  and lads to the conclusion that under industrial strip r o h g  

schedula with the interpass times below 2 seconds, and strains of less than 0.5, there is not 

enough driving force for any appreciable static recrystaiiization and the metal wiU experience 

some strain accumulation. 
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Figure 6 2  The effects of test temperature and holding time on the recrystallizstion of 

steel number 2: a, b) At the test temperature of 950 O C  or holding time of two seconds 

there is no possibility of static recrystaiiization. c) At the test temperature of 1030 O C ,  if 

interruption is made before the peak strain, stili there is hardly any recxystallization. d) 

An appreciable recrystalluation is observed only at high test temperature and holding 

times of 20 seconds, pmvided intemption is made after the peak strain, L e  onset of 

dynarnic recrystalluation. 
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Test Strain of Holding Fractional Grain / ~ernperature Intemption 1 Tii 1 SoNning 1 Size (W I 

1 A026 - 1 -  - 1 5.31 

1031 2 5  20 0.13 1 3.85 
4 

1027 -45 20 0.54 1 3.78 

.85 1 20 0.55 3.79 

- - - , 2.98 

-25 20 0.06 2.68 

-65 20 0.02 2-41 

1.1 20 0.05 2.85 

- - - 4.6 

Table 6-1 Fractionai softening and average prior-austenite grain sizes at different test 

conditions. 
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In the presence of solutes such as niobium, molybdenum and titanium, and in the absence of 

static recrystallization (relatively low temperatures and signifiant amount of strain-induced 

precipitation) the strali accumulation ocairs, which may lead to dynamic recrystallization This 

has been confirme. by Samuel and co-workersl3' who plotted the flow m e s  of a niobium 

steel at a constant 'standardised' temperature. This was done by taking into account the effect 

of temperature on the mean flow stress of steel during a multistage torsion test. The 

temperature corrected flow cuves indicate that d e r  a peak strain of about unity, dynamic 

recrystauization ocairs and the stress level decreases. 

The tact that there is no reayst;iUitation at 950°C in niobium steels at srnall interpass 

times, versus considerable softening in C-Mn steels, indicates the role of niobium carbo-nitride 

precipitation in reaystallization retardation. Around 95U°C, the kinetics of Nb(C,N) 

precipitation is the fastest, and once the process of precipitation starts prior to the onset of 

reaystallization, it retards or stops the reaystaUization until ali the niobium is precipitatedl". 

The seven-minute temperature stab'isation time used during the tests provide enough tirne for 

the start of static precipitation at this temperature, since niobium starts to precipitate under no- 

load condition af€er 100 seconds of incubation tirne. During m g ,  the kinetics of 

precipitation increases by as much as two orden of magnitude, which resdts in higher volume 

fiaction of pre~ipitates.'~ Another interesting indication o f  precipitation during the snaining 

and holding time is the change in the dope offlow aimes, showing higher work-hardening and 

strength of the material foiiowing the interruption. 

In comparing the flow cuwes at the two temperatures, it can be readily observed that 

Iowering the temperature fkom 1030°C to 950°C results in a s i p h n t  ciifference in the peak 

stress and strain Ievels. However, the most important observation is the behaviour after the 

peak strain has been reached. There was hardly any static or dynamic recrystallization at 

950°C at holding times of 2 seconds. Only at higher temperatures and holding times of  20 

seconds, some static and dynamic recrystallization was observed. 
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6.2 Torsion Tests 

Torsion testing is the only possible physid nmulation technique, if the whole roihg 

sequence of a hot strip mill is to be studied. The other techniques are limited to strains of near 

unity, due to excessive inteficial fiiction between the test specimen and compression platens. 

Torsion testing has been used extensively to characterise the flow of material and study the 

metaliurgicai events that take place during defoimation. Howwer, most of these tests have 

been done at strain rates of 2 s-' and below, which is far fiom redistic when compareci to the 

srrain rates in roliing d s .  Hence, the r d t s  and conclusion have been looked at with caution. 

A set of torsion tests with more reaiistic strain rates (up to 20 S-') was designed to 

sunulate finish r o h g  of a Nb-Ti steel to examine the type of recry~~aüization ocaimng. The 

experirnental procedure, test parameters, and test setup have been desaibed in Chapter 5. The 

torque-twist data was translated to bue stress-strain awes by using Backofen fomulations, 

explainecl in Chapter 5. 

6.2.1 Average Schedule Experirnents 

Aftec reheating the specimens to 1200 O C  for 10 minutes, they were subjected to a 

three-stage roughing sequence folIowed by cooling to the test temperature, at a cooling rate 

simiiar to the mill coolhg rates. Foiiowing this conditioning procedure, the specimens were 

subjected to a seven-stage twist according to the average schedule given in Table 5.2. To 

maximise the s i m i l a  and applicability of the test results to the r d  rolling practice, d tests 

were cmducted under continuous cooling conditions, with a cooling rate similar to the coohg 

rate in the strip mill. This was done because isothed tests produce quite dinerent potentials 

for precipitation and recrystaUUation, which are not indicative of real mill conditions. Hence, 

the test temperature was dinerent at each twist. 

The true stress-& m e  of Test 1 is shown in Figure 63. The graph shows work- 

hardening throughout the test, however, part of the increase in flow stress is due to the 

decreasing temperature, not metallurgical changes in the material. in order to examine the 
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metallurgical hardening or sofiening in the materiai, the stress-& avves should be corrected 

to a standardised temperature, by excluding the effect of temperature on the flow stress. 

1 
Strain 

Figure 6 3  Uncorrected true stress-strain curve of  Test 1. 
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Temperature Standardisation: 

A series of i s o t h d  continuous torsion tests was cmïed out between 900 and 

1050°C at a strah rate of 10 S-'. ï he  mean flow mess (MFS) of the materid was determined 

by int-g the stress-strain w e s  up to the strain of 0.8. A plot of the MFS venus the 

inverse of the temperature is given in Figure 6-4. 

Figure 6-4 Mean flow stress variation with the inverse of the temperature. 
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Mean flow stress variation with the inverse of the temperature was modeiled as: 

1 O00 
MFS = -166.6 +DI.&7-) 

This is in good agreement with a previous report for a similar matenal*. Equation (6.3) was 

used to standardise the stress-strain airves of aii tests to an arbitrary temperature of 950°C. A 

spreadsheet program was used to get the flow stress values of each test and calailate the 

expected flow stress ifthe test had been done at 950 OC. 

The temperature-normaiised stress-suaui m e  of Test 1 is plotted in Figure 6-5. 

Now, the flow stress variation 50m twist to twist can be amibuteci solely to the metallurgical 

sofiening or hardening. It can be clearly observeci that there is a strain accumulation in the Erst 

two twists, then the flow stress drops in the third, fourth, and fifth twists, and rises again in the 

sixth and seventh twists. The maximum flow strength variation Li the seven twists follows the 

same pattern as a fiow a w e  which exhibits dynarnic recrystallization In each individuai twist, 

the flow a w e  does not exhibit a peak or flattening of the w e .  However, the level of strain 

reaches the criticai magnitude for the creation of dynamicaiiy nucleated grains, i.e., the 

accumdated strain at the tirne of second unloading is somewhere between the criticai strain, %, 

and the strain at the peak stress, q,. This fact is supported by the results of doublahit 

compression testing, Lidicating that the strain to the peak stress at the temperature of 1030 O C  

is les  than 0 . 5 ' ~ ~ .  Moreover, static recrystallization kinetics is too slow to aIiow this level of 

&enhg to happen at these temperatures and interpass times. For example, fiactional 

softenlig of a 0.027% Nb HSLA steel at 1000°C der ttnee seconds of unloading is less than 

50%'. At temperatures of 950°C and lower, static recrystaüizanon is essentiaiiy arrested in Nb 

steels7. It d d  be argued that the nature of the soflening in interstands 3 to 6 is not classic 

static recrystallization, but it is accelerated by nucleation during deformation. 
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Figure 6-5. Temperature normalised true stress-strain curves of Test 1, standardised to 

the temperature of 950 OC. 
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Another faa to be noted is the over-estimation of E. and E, by the torsion testhg 

method. This is due to the saain variation fiom the centre to the surfkce of the torsion 

m e n s  subjected to a twist. The level of strain in the outer layer reaches the shain to the 

peak stress while the inner layers still experience work hardening, due to lower strain levels. 

Hence, if the results of torsion simulations indicate the onset of dynamic r e q d l b t i o n  under 

a given strain, then the onset of dynamic recrystaUization under real r o h g  conditions is very 

iikely. 

Comparing the results of Tests 1 and 2, it is also observeci that the level of flow stress 

is higher at F7 in Test 2 (1 80 ma) compared to test 1 (1 60 MPa), while the F7 temperature is 

the same for both tests. This difference in flow strength shodd be amibuted to the effects of 

different softening and precipitation kinetics active in the previous stands. In Test 2, with F1 

temperature of950 O C  (compared to FI temperature of 1 100°C in Test l), there exist a higher 

retained strain and higher precipitation potential. 

6.2.2 Average Schedule with Higher Strain Rates 

The main concern about the results of other torsion simulation studies regarding 

dynamic recrystallization occurrence anses £iom the low Nain rates employed (rnainly up to 2 

S-')'". Tests 3 and 4 were designed identical to tests 1 and 2, only the strain rate was increased 

to 20 s". The same temperature correction (Equation 6.3) was applied to the r d t s  of these 

tests which are plotted in Figure a. As expected, the level of the fIow stress is increased by 

about 10 to 20%. There is signifiant sofiening after the second twist. Sofiening after pass 2 

hcreased with an increase in the strain rate, compared to the test 1. This observation m e r  

indicates thai softening d e r  pass 2 is not due to static recrystallization. Strain rate sensitivity 

of sofiening is characteristic of metadynamic rec~ystallization'~. 
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Figure 6o Stress-strain curves of Test 3, nomaiised to the test 

temperature of 950 O C .  
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Sbain Rate Corrections: 

A series of isothennal constant strain rate tests was conducteci to evaluate the &ects of 

strain rate on the flow stress level of austenite. Mean flow stress of each test was cailailated by 

integrating the stress-strain ames over the strain paîh. Straui rate was varid between O. 1 to 

20 s". A log-log plot of the flow stress versus süain rate is given in Figure 6-7. The results 

indicate that flow stress varies acponedally with the strain rate. The dope of the best hear fit 

was cdcuiated to be 0.08 and was used to correct the flow stresses to a standard strain rate of 

50 s-'. This value is les than Shida's mode1 prediction for low &n steels, which is 0.12'". 

0.1 1 10 1 O0 
Strain Rate 

Figure 6-7 Mean flow stress variation of steel number 1 with the sbPin rate nt the 

temperature of 1000 O C .  
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6.2.3 Finish MiII Schedule 

In tests 5 and 6, strains and interpass times were matched to srpical mill values (refer to 

Table 5.2). Strain rates up to the third twist were aiso typid of mil1 values. Afier the third 

twist, the strain rate was kept constant at 20 s", the m;ucimum possible snain rate available 

with Dofasco's torsion simuiator. The temperature-nodsed stress-strah a w e  of test 5 k 

@en in Figure 64. Compared to the previous tests, the increased strain in the fïrst three 

stands increased the potentiai for the initiation of dynamic recrystallization. Higher interpass 

tirnes of3.6 and 2.4 seconds, however, provided more t h e  for interstand softening and reduce 

the strain accumulation required for dynamic recrystallization. Temperahue-co~ected stress- 

strain m e s  of test 5 show a peak at twist one, followed by a slight deaease in the strength in 

the following twists. 

Test 6 was intended to simulate rolling conditions of strip tail-end which is u d y  

rokd at lower temperature of 950 O C .  The true stress-strain m e s  of this simulation is given 

in Figure 6-9. Due to lower temperatures (FI temperature of 950 "C)compared to test 5, it 

appears that there is a strain accumulation in stand one and there is a marked increase in the 

flow stress in stand two compared to stand one. In this test, the peak stress is reached at stand 

two and remains constant for the remaining twists. 

6.2.4 Dynamic Recrystallization: 

Considering the simulation resuits of tests one to six, the flow stress ames do not 

round off or decrease in any single twist in any of these tests. This indicates that classical 

dynamic reaystallization, Le. fiow stress flattening during defomtion is not t a h g  place. This 

is contrary to the hot strip mill simulations performed by some authors, in which dynamic 

recrystaihtion has been shown to ocair in the fkishing standsw7. These authors, however, 

used large strains (up to 0.6) in the first two stands, very low strain rates, and longer delay 

times between roughing and finishing stands. This khd of rolling schedule is applicable in less 

common roiiing d s  with oniy five finishg stands. Due to the lower nurnber of stands, the 

strain per p a s  has to be higher, especidy for thin gauges. Higher Nains and lower strain rates 

promote the initiation of dynamic recrystaüization. 
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Strain 

Figure 6-8 Temperature normaliseci true stresîstrain curves of test 5 

(typical of strip head-end condition). 
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Strain 

Figure 6-9 Temperature nonnalized true stress-strain cuwes of test 6 

(simulating stnp tail-end condition). 
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It has been shown that strain to the peak (cornmody d e d  peak strain), E, increases 

systematidy with the Zener-HoNomon parameter"': 

where 

Z = Eexp - (3 
A is a material constant and n varies fiom 0.125 to 0.175 with no apparent systematic trend 

with the steel composition'*. Since the p a k  in flow stress occurs &er some low hction of 

recrystaUization, the peak strain is always greater than the criticai strain for dynamic 

recrystallization ( G ) ' ~ ~ .  High strain rates employed in the mill cause the critical strain for 

dynamic recrystallization to increase. The effect of strain rate on the peak strain and the 

relationship between peak strain and cntical strain at higher strain rates is stiü unclear. 

As was seen in tests 1 and 3, however, there is an unexpected sofiening after twist two. 

The time between passes is not large enough for the completion of static recrystajlization This 

is evident fiom the results of two-stage compression tests given in section 6.1.3. The sofiening 

after the second twist in tests one and three may therefore be attn'buted to metadynarnic 

recrystaüization. This means that softening after deformation has been amlerated by the 

aristing grain nucleation sites fomed during deformation. 
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6.3 Mill Data Analysis 

D o h ' s  Hot Strip Mill data was analysed in order to detect softenhg mechanians 

and their effect on roll force predictions. It was of partiailar interest to iwestigate possile 

dynamic recrystallization during strip r o h g  of high niobium steels and its &ect on roil force 

prediction The on-line finishg miil set-up module uses a simplifiecl Alexander and ~ord'" 

force model. Bar to bar feedback is used to tunaup the model. Both Alexander and Ford 

model (existing roll force model in Dofasco's hot strip d), and Sims' roll force foda t i ons  

are used to backcalculate the material mean flow stress variation 60m stand to stand using 

measured rolling forces at the d. The caldateci mean flow stress values were standardid 

to exclude the effkcts of varying temperature and strain rate fiom stand to stand. 

Roll Force Model: 

An acairate roll force prediction is required for the roU gap sehip in order to get 

minimum variation in the head-end strip thickness. As discussed in Chapter 2, it is possible to 

sirnpliQ most rolling load models to: 

where: 

P = r o h g  load (N) 

K, = mean yield strength through the roll bite (N/m2) 

W = strip width (m) 

L, = arc of contact (m) 

QP = geometric term. 

The diierence in the various force equations lies in the calcuiation of the geomeûic term, Qp. 

Other factors that affect the rolling force, nich as strip tension and fiction in the roll bite, are 

compensateci for by this tem. An accurate roi force prediction is dependent on an acairate 

prediction of the mean yield strength. 
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The average yield stress in the roU bite is a fùnction of the chernical composition of the 

material, strip temperature, çbain rate, work hardening or sofiening during rolling, and 

interpass tirnes. The on-line model calculates yield strength with an equation of the form: 

where K. is the average yield strength norrnalised for the base temperature of 950°C and a 

strain rate of 50 s-'. This value, which is updated by a bar to bar feedback system, is stored by 

steel grade, finish rnîli gauge, stand and draught. 

This yield strength mode1 was onginally developed for plain C-Mn steels. The model 

assumes that there is no strain accumulation between stands and fidi static recrystaUization 

occurs in each interpass time. While this is the case for C-Mn steels at high temperatures and 

large interpass times, it may not be the case for rnicroalloyed steels. The results of a recent 

studp indicate that fiactional sofiening of a low niobium steel (0.027% Nb) is les than 4% 

during three seconds of interpass t h e  at a temperature of 1 0  OC. The results also indicate 

that the assumptions included in the existing yield strength prediction models disregard strain 

accumulation foiiowed by possible dynamicaiiy nucleated recrystallization. The resuiting error 

in yield strength prediction is absorbed by stand to stand feedback tem, only if this soflening is 

consistently happening for ail the slabs. 

In the f h t  part of this analysis, mill data for 80 slabs of the test steel (steel number 1) 

was analysed. Sims' roll force rnode~'~~ was used to back-caladate the steel's flow stress at 

different stands. Equation (6.3) was applied to standardise the flow stresses in seven stands, 

which experience a continuous decrease in temperature, to an arbitmy standard temperature of 

950°C. For most of the slabs (more than 80%), the average temperaturenormaüsed flow 

stress of this grade of material shows some strain accumulation in the two stands then 

softening in the second interpass tirne, foilowed by a decrease in ffow stress in the third stand. 

The flow stress variation of six slabs rolled consecutively is plotted in Figure 6-10. 
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Figure 6-10 Mean flow stresses of six slabs mUed consecutively with an 

identical roiiing schedule. 
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The amount of softening in the second interpass tirne cannot be solely attributed to 

static recrystallization, since the hctional softening for even lower Nb steels (c0.03) at this 

temperature (lûûû°C) and interpass time (2.5 seconds) is about 30%36. This drop in 00w 

stress in the third stand implies that the softening rate has been acoelerated through another 

mechanism, metadynamic reaystallization. Mer complete softening in the second interpass 

tirne, the material starts another cycle of strain accumulation until the critical strain for the 

onset of dynamic recrystallization is reached again. This kind of behaviour was not srpected. 

However, this trend is not observed for aii of the slabs. in some siabs, the mean flow stress 

increases monotonically fiom stand to stand. The effects of different process parameters on 

changing the sofiening regime are yet to be investigated. 

To confirm the occurrence of accelerated interpass softening, the plot of the roU forces 

are superimpose- on the plot of £low stresses in Figure Hl. According to the Finishing 

Setup Module o f D o f w Y s  hot strip miil control program, the force level should be decreasing 

monotonically 60m p a s  to pas, similar to the strain variation. However, a hump is observed 

in the roll force variation, that coincides precisely with the hump in the £low stress. This 

observation was unexpected and led to the conclusion that the flow stress in the third stand 

should have been affeded by unpredicted metadynamic recrystallization during the second 

interpass tirne. 

The knowledge that metadynamic soflening is ocamhg in some occasions and does 

not occur in other occasions cannot benefit steel d i s ,  wiless this knowledge is modeiled with 

some acceptable degree of accuracy. Liear and noniinear regression models were used to 

classify the conditions under which the soflening in the third stand is taking place. It is 

ercpected that for a given steel grade and roughg conditions, this soflening is a fùnction of 

stmin, stnun rate and temperature in the first three stands (iiterpass t h e  for a ked stand to 

stand distance is a fùnction of strain and strain rate). AU of these variables were used to 

develop a mode1 to predict softening in the third stand. 
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Figure 611 Coincidence of the hump in the roiiing foms and drop in the 

predicted flow stress. 

0 - 1 1 1 1 I 
I I I 
I I 1 L I 1 I 

1 2 3 4 5 6 7 8 O 
Stand Number 



Chapter 6. Physical Simulation of Hot Strip Rolling 111 

Aiso, different cornbitions of these variables dong with Zener-Hoiiomon parameter were 

used as regresson. The author and Dofasco's engineers attempted to develop regression 

models to predia the occurrence and extent ofthis softening. However, none of the regression 

modeis provided any acceptable solution. Hence, it was decided that more advanced modeilhg 

techniques, Le. Principal Component Anaiysis and M c i a l  Neurai Networks are to be 

investigated for this purpose. The resuits of these anaiyses are reportai in the Chapter 7. The 

results proved to be quite saoisfàctory and demonstrate the great potential of these techniques 

in the matend science and processing applications, or generally in any data modehg and 

classincation tasks. 



7. Neural Network Modelling 

A back-propagation Neural Network simdator program, based on the gradient descent 

leaming algorithm was developed. This program was employed to develop Neural Network 

models for: 

a) Prediction of hot flow stresses of an aluminium alloy and an HSLA steel 

b) Prediaion of rohg forces during aluminium cold and hot rolling 

C) Prediction of rolling forces in industriai hot strïp rohg of a hi& niobium HSLA steel 

d) Prediction of the occurrence and extent of dynamic recrystallization in HSLA strip rohg 

d u ~ g  using a strip mil1 log. 

Neural Networks, alike statidcal methods and the human brain, d e r  âom 

colinearities in the training database. Principal Cornponent Andysis was integrated into the 

N d  Network training procedure to decouple the iineariy correlated data. This technique 

was used to transfonn Iinearly correlated Qta to non-correlated principal components. Then, 

Neural Networks were trained on principal components and the r d t s  were back-transformed 

into original variables. 

This chapter is devoted to the development and resuits of N d  Network modelling, 

performance cornparison of Neural Network based models with statisticai models, and the 

r d t s  of integration of Principal Component Anaiysis to Neural Network Iearning algorithm. 
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7.1 Flow Stress Predictions 

Knowledge of the material's constitutive behaviour is an essentiai requirement for the 

design and d y s i s  of defoxmation processes. In spite of suffering some drawbacks in ternis of 

ease of development, adaptability, accuracy, and speed, empirical stress-& relationships and 

constmitive equations descriibing material behaviour during defionnation are king widely used. 

In the present study, back-propagation neural networks are used to mode1 and predict the flow 

stress of an aluminium ailoy and a microalloyed steel in a range of temperatures, strains, and 

strain rates. A neural network training code, based on the gradient descent algorithm, is 

developed and used to train the flow stress prediction networks. The pe~ormance of this 

technique is cumpared to those of the statistid models. The approach based on neural 

networks is s h o w  to be superior in its predictive capability, adaptability and speed to that 

using non-linear regression models. 

7.1.1 Flow Stress Modelling of Hot Steel 

The resuits of this investigation are presented in two parts: Statistical Method and 

Neural Network Method. The purpose of both is to develop models to predict the flow stress 

as a fùnction of strain, strain rate and temperature. The results obtained are compareci to the 

experirnental values. 

7.1.1.1 EXPERlMENTAL DATA 

The data used in this investigation were produced by Tajima and ~enard"~. The experirnents 

involveci the isotherd, constant tnie strain rate compression of qlindrical samples, made of a 

Nb-V steel, the chemical composition of which is given in Table 7-1. The test equipment 

consisted of a closal-loop controiied servohydraulic testing system, an attached resistance 

h a c e  and a cornputer-based data acquisition and control systern 

Table 7-1 The chemical composition of the material (wt%) 
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Samples, 10 mm in diameter and 15 mm in length, were machineci with recesses of 0.1 

mm depth at each end to retain the glas lubricant. Type-K thermocouples, embedded in each 

sample at midheight, were used for temperature measurements. AU çamples were anneaied and 

solution treated prior to reheating to the test temperature. The test resuits used in this work 

are those of single-stage compression at temperatures of 875, 900, and 950 OC. The 

expimental m a .  givhg the details of the process parameters, is presented in Table 7-2. 

Table 7-2 Experimentai matrix used in steel hot fiow strength tests. 

7.1.1.2 Statisticai Method 

As disaissed in Chapter 2, the type of the constitutive relation that cm adequately 

describe hot flow stresses of steels, depends on the stress level. The power relation is 

applicable below 110 MPa, while the exponential relation is valid for higher magnitudes. The 

stresses in hot deformations vary over a wide range, hence, it is expected that the hyperbolic 

sine rate equation will lead to the best rd ts l" .  Rao et dl4' verified the beîter fit of the 

hyperbolic sine relationship when compared to the power and exponential relationships for a 

0.34 % carbon steel. The procedure for determination of the dues of A, n and Q in Eq. (2.7) 

as suggested by Rao leads to 

For a given temperature and strain, the plot of In($ versus ~n[sinh(ao)] gives the strain rate 

sensitivity parameter, n. Plots for the preswit steel at a strain level of 0.3 and three different 
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temperatures are given in Figure 7-1. The iines are nearly parallei, indicaihg that the strain 

rate skt iv i ty  is not strongly inauencd by the temperature. The activation energy at a given 

strain level is obtained by rearranging Eq. (7.1) and diierentiating with respect to (lm, giving 

O 0.5 1 1.5 2 

In[sinh(aa)] 

Figure 7-1 Plot for determination of strain rate sensitivity parameter, n. 

The dope of a plot of ln[sinh(aa)] versus (ln) for a given strain and â3Ferent stmin 

rates should be equal, as another condition for applicability of the hyperbolic sine rate equation 
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and indicating that Q is also not a strong fùnction of  the temperature. A plot at the strain b e l  

of 0.3 is given in Figure 7-2, leading to activation energy values in the range of 330 kJ/mole. 

Figure 7-2 Plot for ealeulation of activation energy, Q. 

The naîural logaithm of Eq. (2.8) lads to 

ln@!) = ln(A) + n ln[sinh(aa)] 
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A linear plot of ln(Z) vernis ln[sinh(acr)] at a given strain level for the whole range of strain 

rates and temperatures indicates the general applicability of the rate equation, as shown in 

Figure 7-3. The value of In(A) and the strain rate sensitivity parameter can be obtained fiom 

these plots. This n value ciiffers slightiy from one obtained through Eq. (7.1), as shown in 

Table 7-3. The value o f n  appears to follow an inverse power relationship with straiB, but the 

variations of In(A) and the activation energy with strain are neariy iinear for the present m d .  

The dues of n, Q, and h(A) for selected strain levels (0.1, 0.2, 0.3, ..., 0.9) obtained ftom 

Figure 7-1 to Figure 7-3 are &en in Table 7-3. Rao et al."' reported an inverse power 

relationship with çtrain for aü three parameters. 

The values listed in Table 7-3 were used to predict the flow stresses at given 

temperatures and çtrain rates. The predictions were compared with experimental values at 

875 OC in Fipre 7-4, dso showing the results obtained using the neural networks, to be 

disaisseci in detail in the next d o n .  A mean merence of 2.99%, defined as 

100 x (&wirnen&tZ value-predicted value)/(iqerintental volue), with a standard deviation of 

0.68 was obtained. This level of accuracy is higher than the 3.35%, obtained on a low carbon 

steel by Rao et al"'. This resuit was achieved by using an average n value. The n values found 

direaly from Eqs. (7.1) and (7.3) produced mean differences of above 3.5%. Rao et dl4' used 

n values obtained fkom Equation (7.3) as it provided the minimum deviation for th& hia. 
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Strain: 
00.1 40.2' 

i 

Figure 7-3 Zener-HoUomon plot for general validity test and ealculation of the strength 

parameter, ln(A). 
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Table 7-3 The experirnentaiiy evsluated values for n, In(A) and activation energy 

at différent strain levels. 

7.1.1.3 Neural Network Modelling of Steel Fiow Stress 

A fiilly connected feedfioxward backpropagation network was designed to mode1 the 

flow stress variation with strain, strain rate and temperature. From each compression test data, 

9 data points were picked at equd strain intervals of 0.1, beginning at a strain of 0.1. 

Condition B2 of Table 7-2 was set aside for network generalisation test and the rest of the 

data were used in trainhg of the network. Al1 input and output values were normalised into 

the range [O. 1 to 0.91 to avoid premature saturation of the sigrnoid funaion. The n o d s i n g  

scheme was described in Chapter 4. 

Learning rates between 0.5 to 0.9 were attempted. The higher the leaming rate, the 

faster the l&g, however, too high Iearning rates may lead to oscillations in the network 

output error. One way to increase the leaming rate without Ieading to oscillations is to rnodi@ 

the gradient descent aigorithm to include a momeritum term which takes into account the 

effkcts of past weight changes on the current direction of weight modification. Equation. 

(4.1 7) then changes to 
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-h- Neural Network 

True Strain 

Figure 7-4 Cornparison of the n e u d  network predictions and statisticd mode1 

predictions with the esperimental fïow stresses at the temperature of 875 OC. 
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where t indexes the iteration number and o: the momenhun parameter, is a constant d y  

between 0.5 to 0.9. The les-g rate of 0.7, with a momentum pararneter of 0.9, provided the 

West convergence. The logistic sigmoid fùnction with a constant steepness &or of 0.5 was 

chosen as the activation fùnction. Both one-hidden layer and two-hidden layer networks were 

examineci to investigate the effkcts of the extra hidden layers. The error rneasure for nmork 

@orniance evaluaîion was considered to be the average percent difference of neîwork 

predictions and experimentai values, as it was with the statisticai model. It was found that the 

two-hidden layer topology had no advantage over the one-hidden layer for the equal number of 

total processing nodes in this particular application. Dynamic node generation scheme was 

used in order to find the optimum number of nodes. An increase in the number of hidden 

nodes up to 16 increased the accuracy. However, fùrther increase in the number of hidden 

nodes had no considerable benefit- 

The plot in Figure 7-4 shows a cornparison of the predicted and experimental flow 

stresses at the temperature of 875 O C .  It is found that the predided Qow w e s  follow the 

experimental flow awes very closely. The average percent difference between the predictions 

and experimentd points for ail temperatures and strain rates, was calculated to be 2.17% with a 

standard deviation of 0.48, compared to the average difference of 2.99% and standard 

deviation of 0.68 obtained through statidical analysis. The accuracy of Neural Network 

predidons is about 2% higher than the Statistical method. 

Generalisation Test 

During learning, the outputs of a supervised neural network attempt to 

approxllnate the target values, given the inputs in the training set. This ability is usefbl in 

itself; but the purpose of using a neural net or any other model is to approximate target 

values given inputs that are not in the training set. This feature is called generalization, 

which has been discussed in detail in Section 4.2.10. 

In the present work condition B2 was set aside to be used for testing the 

generalization ability of the network. The network predictions for this condition (900 O C  
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and 0.1 S-l) are compared to the expenmental values in Figure 7-5. The average 

difEerence between network predictions and experimental values for this unseen data was 

found to be 3.3%. 

1 1 +Neural Network 1 

0.2 0.4 0.6 0.8 

True Strain 
Figure 7-5 Cornparison of the neural network predictions, statisticd mode1 predictions, 

and the experimental flow stresses of the B2 test condition. 
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7.1.2 Flow Stress Modelling of Hot Aluminium 

A r t i f i d  Neural Network based models were developed to predict the hot flow 

stresses ofan aluminim alloy. 

7.1.2.1 Experimentai Procedure and Data 

Compression test samples of the Al 1 100-Hl4 doy  (Si=l, Zn4 .1 ,  Cut0.05, Mn4.05 

and rernainder aluminium) were machinecl corn aluminium plates with the longmidina1 

direction paralel to the rohg direction. The samples were s i 4  to 20 mm in diameter and 30 

mm in heighî. Boron nitride was used as a lubricant to minimise inteficial fiction Recesses 

of 0.1-0.2 mm depth were machineci at each end to retain the lubricant. A type-K 

thermocouple was embedded centrally in each specirnen. The compression tests were Camed 

out on a servohydraulic compter controlled constant strain rate lnstron machine, as d e s c n i  

in section 5.3. The test conditions and their designations are presented in Table 7-4. The 

temperature was set to 400, 450, and 500 O C  and the strain rate ranged nom 0.97 to 1 1.53 1'. 

Table 7-4 Experirnental mat& used to develop a database of aluminum hot flow 

stresses at different temperature and strain rates. 

Temperature0 - Strain Rate Q 

7.1.2.2 Flow Stress Prediction Results 

A firlly comected feedfocward backpropagation network was designeci to predict 

duminium flow stresses at different temperatures and strain rates. The purpose of modehg 

was to develop an effective representation of matenal behaviour at hi& temperatures. 
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From each set of compression test data, 15 data points were picked in qua1 & 

intervals of 0.05. Conditions B2 and B4 were set aside as network generalisation test data and 

the rest of the data was used in training of the network. AU input and output values were 

normaliseci into the range [0.1 to 0.91, to avoid prernature saturation of the sigmoid hcbon. 

The leaming rates and momenhun rates were varieci between 0.5 to 0.9. The leaming rate of 

0.9, with a momentum rate of 0.7, resulted in the f m  convergence. The logistic sigmoid 

h d o n  with constant aeepness factor of 0.5 was chosen as the activation fiindon Both one 

hidden layer and two hidden layer networks were examinai to investigate the effects ofextra 

hidden layers. It was found that the two hidden layer topology had no advantage over one 

hidden layer for equal numbers of total processing nodes. Increasing the number of hidden 

nodes up to eight nodes ùicreased the acairacy. However, a m e r  increase in the number of 

hidden nodes had no considerable benefit. To avoid overfitting and enhance mode1 

generalisation abiity, it is desued to use the minimum possible number of processing nodes. 

Therefore, an eight-node network was concluded to be the optimum network topology. 

The plots in Figure 7-6 show the cornparison of the experimental values of flow stress 

with those predicted by the Neural Network at the strain rate of 5-04 s". It is clearly observai 

that the predicted flow culves foilow experhental flow curves very closely. The average 

percent difference was calculated to be less than 1.9%. A similar acuiracy was found with 

other sü-ain rates as weil. This clearly indicates that the network was able to acairately leam 

the training data set. 

The main quality indicator of a neurai network however, is its generalisation ab'i1ity7 

Le., its ability to acairately predict the output for a given unseen test data. The network 

predictions for unseen B4 condition is plotted dong with B4 experirnental d u e s  in Figure 7- 

7. The average percent difference was found to be 2.83%. 
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Figure 7-6 Experimental stress-drain curves of an aiuminum d o y  at high t e m p e m m  

and performance of a Neural Network modeL 
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Figure 7-7 Performance of a Neural Network mode1 on prediction of stress-strain curve 

of an unseen test data. 
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7.2 Experimental Roliing Force Predictions 

Neural Network models were developed and tested to predict the robg forces during 

hot rolhg and cold r o h g  of an aluminium aüoy. 

7.2.1 Aluminium Hot Rolling Force Prediction 

7.2.1.1 Experimental procedure 

Strips of a 3000 aluminium alloy were nit dong the rohg  direction and sized to 

6.12-6.16mm thickness, 50-52 mm width and 3 10 mm length. A type-K (chromelahunel) 

thennocouple was ernbedded to a depth of 15 mm in each strip's tail end. Rohg experiments 

were carried out on a two-high experimental mil1 with the roll diameters of 250 mm. Two 

industrial hot& guns were used to heat the roUs to approximately 90 O C .  The roll forces were 

measured by two load cells located under the bearing blocks of the lower roll. Two torque 

transducers were mounted on the roll spindles to measure the roii torque applied to both upper 

and lower rolls. The rolling speed was measured by a digtal shaft encoder, installed in the top 

drive spi..de. In order to measure the fonvard slip, two photo-sensors were instaiied at the 

miIl exit a known distance apari. The signais of these sensors are used by a clock to measures 

the time elapsed for strip to tnivel between these senson. The strip exit velocity was then 

calailated. Rolling reductions were set to 15% and 35% . The rolling speed was varkd f?om 

20 rpm to 160 rpm, giving d a c e  velocities of 0.26 to 2.1 mis, the higher value of which is 

close to industrial operating speeds. 

Four Werent lubricants (refend to as natural A, natural B. semi-synthetic A and 

semi-synthetic B) with different emulsion concentrations were used in the hot r o h g  tests. In 

the case of the naturai oüs, the emulsion ratios @y volume) were 1% and 3%, and for semi- 

synthetic oil emulsion ratios were 1% and 1%. Lubncant A is designed for low fihion 

applications and lubricant B for higher fiction conditions. Both lubricants are based on 

syntheb'c esters. The viscosities of these lubncants at 40 O C  and 100 OC are givm in the Table 7-5. 
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Table 7-5. Specifieations of lubricants used during aiuminum hot roiiing 

7.2.1.2 Aluminium Hot Rolling Force Prediction Results 

A dataset of the force variation during the aluminium hot rolling process was 

developed as explained in the previous section. In the fim step of Neural Network modehg 

the eEects of the lubricant type was excluded, and a network was train& to predid roll forces 

for each lubricant. The model inputs were: reduction, roil speed, sîrip temperature, and 

emuision concentration. The network was trained using al 22 data points and after final 

training the force variation was satisfactorily rnodelled. The xnmimurn percent ciifference 

between model predictions and experimental values was found to be 7.5% with an average 

percent ciifference of 2.5%. This level of accuracy is quite satisfactory for this application and 

dataset. This error value is smaller than errors that normdy arise due to experimental 

variations and the accuracy of instrumentation. 

After successfùi development of a force model for a given lubricant, the lubricant type 

was aiso incorporateci into the force prediction model. The experimental rnatrix hcluded 66 

data sets, of which 59 were used for network training. The rest was set aside to test 

performance of the trained neuml network. A configuration of one hidden Iayer with 8 nodes, 

five inputs and one output node, with a learning rate of 0.7 and momentum rate of 0.7 was 

found to provide optimum accuracy. After 10,000 iterations, the network converged to a 

solution and fùrther iterations had an insignifiant effect on error reduction The relative error 

values of the force model for both the training set and the test set are show in Figure 7-8. 

The trained network predicted the roii force for 66% of the conditions within 5% relative error 
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band, 95% within 100/o error band , and only three of the conditions were predicted with errors 

up to a maximum of 13%. The network also generaiised well on the test data with mors l es  

than 1Ph. The network roll force predictions for the 15% and 35% reductions have been 

plotted dong with the acperimental values in Figure 7-9. 

7.2.1.3 Roii Toque Prediction 

A network similar to the one used for roll force predidons was trained to predid roll 

torques. The experimental matrk, training set and test set were also the same as the previous 

model. The training data and predictions on the test data afker 15,000 iterations are shown in 

Figure 7-10. 

The relative errors of most of the training data are within error band except two 

points. The network aiso predicted weii on the test data with errors les than lO??. The 

network predictions for the 15% and 35% reductions have been plotted dong with the 

experirnental values in Figure 7-1 1. 
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Figure 7-8 Percent difference of roll force predictions of a Neural Network mode1 fmm 

uperirnental roii force values during duminum hot rolling. 
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Figure 7-9 Neural Network roll force predictions and experimental values for two 

different reductions during hot roiiing of aiuminum strips. 
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Figure 7-10 Percent difference of roU torque predictions of a Neud  Network model 

from experimental roii torque values duriiig duminum hot rollhg. 
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Figure 7-11 Neural Nehvork roU torque predictions and experimend values for two 

different reductions dunng hot rolling of aluminum ships. 
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7.2.2 Aluminium Cold Rolling Force Prediction 

The 25 mm wide and 1 mm thick strips of All100-H14 aluminium were roiied in the 

d descn'bed in Section 7.2.1. The rollmg speeds used were 20,60, 100, 140, and 180 RPU 

The reductions were aimed at 10, 20, 30, 40, and 50 percent. Mineral Seal 0% with no 

additive and with 1, 3, 5, and 7 percent Eaury1 alcohol was used as lubricant. The average 

value of roll forces and roll ?orques for these 125 tests were coilected. The first objective of 

the N d  Network modelling was tu develop a predictive mode1 to estimate the roli force and 

toque for any rohg conditions within the experimental domain used in these tests. The 

mode1 inputs were rolling speed, reduction and percent of Lauryi dcohol additive in the 

lubncant. Every other ten data point (all together 13 for this data set) was set aside for 

network generalisaiion test and the rest of the data was used to train the network A one 

hidden layer network with 12 processing nodes, a leaniing rate of0.5, and a momentun rate of 

0.7 provided the most accurate solution. Upon the convergence of the network to a solution 

with a minimum error, the network was tested through its prediction of roU forces for the 13 

unseen test data RoU force network predictions on these test data and the a d  experimental 

values are compared in Figure 7-12. The results, in spite of an average percent Merence of 

8%, can be ensiderd çatisfactory, and more accurate than conventional roil force models. 

The average percent merence is in the same range as experimental erroa with the existing 

equipment . 

The main advantage of the neural network rnodeiiing compareci to the classical roll 

force models is that it does not require any explicit knowiedge of the mefiCient of fiction. 

Other modeis require the value of fiction coefficient, which is a hction ofaimost aU process 

parameters, Le. roihg speed, reduction, temperature, roll material and d a c e  roughness, strip 

matenal and sudace roughness, and type of lubricant. Furthemore, there is no direct way for 

the measurement of coefficient of fiction in an industrial setting. That is why in the control 

algorithm of industrial strip mills, the coefficient of fiction and aii the rowmateriai interfàce 

variables are lumped into a single factor called the "geometric term". The geometric term is 

back-calculatecl f?om measured roil forces d e r  each pass and saved in a database. The 

geometnc term is us& in roll force prediction of new slabs for Mal roll gap setup purposes. 
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The value of geometnc tenn for Werent f&ly of grades and different gauge f â d i e s  is 

stored in a lookup table. This table is updated d e r  each pas. 

Outlier Detection 

In aU experimental or even industrial databases there is a possibility for the existence of 

outlier data points. The inclusion of outliers in a database is deleterious to the accuracy and 

generalisation of any model developed based on this kind of databases. Hence, it is impo-t 

to employ proper techniques to detect the outliers and exclude them ftom fiuther dysis .  

N d  Network rnodelling is stül in eariy stages of development and author is not aware of any 

systematic approach to deai with this issue. However, there are some intuitive ways of 

detecting outliers in simple applications with ody a few variables. For example, considering 

the pdormance of the roll force mode1 of aluminium strips depicted on Figure 7-12, it is 

observed that the network prediction on test number 8 is significantly worse than the rest of the 

test points. This muid be due to the deficiency of the network in learning the roll force 

variation trend. However, it is also possible that this data point is a d y  an outlier. To 

investigate this possibility, this data point dong with its neighbouring points were plotted in a 

roll force versus reduction graph for the sarne kind of lubricant and diierent rolling speeds, as 

depicted in Figure 7-13. It is clearly observed that the data for test number 8, denoted as 

outlier in Figure 7-13, is not in h e  with the rest, due to excessive experirnental errors. Mer 

excluding this data point fiom rnodelling process, the average percent difrence of the model 

predictions fiom experirnental values dropped to 6.7%. 
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Figure 7-12 Neural Network model performance in predicting d i n g  forces d u ~ g  

experimental cold roihg of aluminum strips. 
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Figure 7-13 Investigation of the state of the test number 8 and visual observation of its 

deviation from the generai trend of the rest of  the data 
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Inverse Modeiiing : 

In the modehg of industriai processes, the usual objective is to find the dependence of 

the process outputs on a given set of process inputs. However, in many applications we need 

to find out the conditions (process inputs) under which a desired process output can be 

obtained. For example, it couid be of interest to use roll force models and try to find out for a 

given set ofprocess conditions (roll speed and lubricant type) how we may set the roll force 

value in order to achieve a desired reduction. This is d e d  static inverse rnodelling. Inverse 

models are usefid in the process control applications. A common technique to dewlop 

feedback control algorithm of industrial processes is to integrate the variable of "time" into 

these models and develop dynamic inverse models. 

Since Neural Netwotks do not rely on any closed form equations, lookup tables, or any 

physd understanding of the process, it appears that it is quite easy to convert Nairal 

Network models to hction as an inverse model. As an example, the database of aluminium 

cold rohg was used here to develop a model that predicts the reduction for any given set of 

roil speed, lubricant type, and measured roll force. The same network topology and leamhg 

parameters that were used for the force model, are used for reduction prediction model. The 

performance of the network on the 13 unseen test points is demonstrated in Figure 7-14. The 

average percent Merence of the predictions fiom experimentai values was calculateci to be 

7.6% (without removing the test number 8, which was an outlier). 
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Figure 7-14 Neural Network mode1 performance in predicting the reduction for given 

roll speed, lubrieant and rolling force 
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7.3 Hot Stnp Mill RoU Force Prediction 

7.3.1 Industrial Importance and Applications 

One of the main q d t y  indicaton of steel strips, especially those which requke 

stamping d o  cornplex shapes, is the gauge unifomijty and consistency throughout the mil. 

The acwacy is achieved through an aawate roll gap sehip, which is a direct hction of the 

predicted rolling forces at each stand. Furthemore, a large error in the roU force prediction 

and consequentiy wrong roU gap setup lads to the occurrence of cobbles (Mure of strip to 

pass through aJi stands). Even in the modem strip mills there is about W a  percent yield loss 

due to occasional cobbles. This haIf a percent yield loss for a t y p i d  strip mil1 urn sum to 

couple of million doUars of loss in production each year. 

A main foas of this research was to utilise Neural Networks for hot strip d roll force 

predictions in an industriai setting. In this section, the results of the application of this 

technique to the hot strip mill of Dotasco Inc. will be presented. The redts dernonstrated 

superior performance of N d  Networks which are readily applicable to industrial practice. 

7.3.2 Process Data base 

A database of 831 coils of a hi& niobium HSLA steel (steel number 1, in Table 5.1) 

was extracted fiom a seven-stand hot strip mill. The data for each coi1 included material 

chernical composition, entry temperature to finisher, and for each stand: roll diameter and 

speed, strip entry and exit thickness, entry and exit width, piedicted temperature, Imper 

tensions, predicted force and actual measured force. Based on these data, the strain, strain 

rate, and I/h ratio (the ratio of projected length of arc of contact to the average stnp thickness 

through the stand) for each stand were calcdated. This database included three different types 

of rnea~u~ed and predicted roU forces: measured head-end, measured steady-state, and 

predicted head-end. Measured head-end force is the force measured d e r  two seconds of 

rolling. Predicted head-end force is the prediction of the existing on-line r d  force mode1 for 

the first two seconds of rolling (before control action for roll gap correction takes place) based 
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on the predicted values for pass strains, strain rates, and temperatures for any given rolling 

scheduie. This value at each stand is used to setup the roii gap at that stand. Steady-state roll 

force is the measured rolling force after 10 seconds of rolling. Tris is enough tirne for the f d -  

badc controller to adjust the roll gaps and reach steady-state rohg.  This value is used to 

update hardness factors in the comesponding lookup tables. 

There were three reasons for this choice of material. F i  this grade of high niobium 

strip is arnongst the newly developed grades which are çaining a good portion of high strength 

strip market and they are not as well-understood as other grades. Second, there are 

speculations regarding the occurrence of dynamic recrystaIli7ation during rollhg of these 

grades. Third, this grade is considerd as a bad-behaved and difncult-to-roll grade due to the 

cornplex metallurgical events taking place during its hot rolling. 

The coefficients and exponents of empirical roll force models being used by steel rnills 

are usually stored in lookup tables specific to a grade and a gauge f This is because the 

acumcy of the predictions wiU be enhancecl if the range of variation of input variables is 

smaller. For example, the strips are divided into output çauge families of : l es  than 2.7 mm, 

between 2.7 and 4.5 mm, between 4.5 to 7.2 mm, and above 7.2 mm. However, it is v q  

desirable to have more g e n e d  models applicable to wider variety of grades and output gauges. 

The main reason for this is not the difficuities associated with rnanaging a large number of 

lookup tables. The bigger drawback of breaking products into a larger nmber of grade or 

gauge fiimilies is that, Xa grade is not rolled for a while, then due to the continuous changes in 

the miu conditions over the time the saved model and its coefficients for this grade will not be 

able to provide accurate predictions. By the time that models' coefficients are adapted to new 

conditions there would be some off-gauge rolling or the possibility ofcobble. Taking this into 

account, it was desired to develop Neural Network models that are able to predict r o h g  

forces for a wider range of products. This would reduce the accuracy ofthe model. However, 

it would keep the model uptudate all the time. Hence, two series of models were developed. 

F i  a general model king able to predict roll forces for ai l  output gauges, and the second 

series which was specific to the sarne output gauge farnilies that Dofasco Inc. uses. 
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7.3.3 Network Architecture 

The first step in the modehg ofa large industriai process is to decide or d y s e  which 

input variables or groups of variables have a significant e f f i  on the process outputs. There 

are a number ofstatistical techniques that can be used for this purpose. The sirnplest one is the 

anaiysis of linear correlations beîween each possible input and the process output. However, 

most of these techniques are able to venS, ody linear dependencies. 

A quite interesthg feature of Neural Network models is their capability to give strong 

indications regarding the significance of the variation of each process output with any given 

process input. This feature is overlooked in the literature, however, it is of si@cmt 

importance for r d  industrial modeiiing where the number of possible input variables eady 

be over ten or twenty. A simple procedure for the detection of important variables is as 

folom. A network is developed which includes aIf of the possibly important variables. All of 

the avdable data points are normalised and used for training. The network is trained for a 

large number of epochs for a number of leaming rates and momentum parameters. The 

number of processing nodes is kept as small as possible. Then the weight rnatrix of the 

network with the Iowest final error is analysed. The sum of the weights of the cornedons of 

any given input variable and the hidden layer is normalised to the [O-1001 range. This 

n o d s e d  sum vdue is an indication of the covariance of the network output with any given 

input variable. They are analogous to the normalised eiçenvalues of the covariance mat& 

This technique or other statistical methods cm identfi important variables, however, 

they cannot replace the need for some physicd understandimg of the process for the optimal 

selection of input variables. For example, in the case of roll force modehg, it is d y  

undentood that the roll diameter, input thickness, and output thickness have some effècts on 

the roihg forces. However, through some understanding of the process, we may group these 

variables tu one single variable, reducing the number of input variables, yet developing a more 
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acairate model. This variable, also used in other models, is the Uh ratio, the ratio of projected 

arc of contact to the average of the input and output thickness. 

B a d  on the above technique and conside~g the e>risting roll force models, a number 

of different input variables were tried. The results of the analysis indicated that the most 

acanate roll force model is developed once the foilowing input variables were used: sûain, 

strain rate, temperature, looper tension, and Uh ratio. 

Based on previous expenence with aluminium rolling force models, it was decideci not 

to try two-hidden layer networks. They did not produce any better results for the same number 

of processing nodes (CPU time). The dynamic node generation technique was ernployed to 

decide the optimum number of the processing nodes. The renilts indicated that 24 processing 

nodes are able to capture the variation of the data adequately. 

The early aopping method was used to decide about the nurnber of epochs (iterations) 

for the best results. Every other ten data point was set aside for testing and early stoppiig 

purpose. This method stops the iterations once the average error in the nenvork predictions on 

the test data starts to increase with the number of iterations. 

Both logistic sigmoid and hyperbolic tangent hnctions were tried. The results were 

identical. The scheme explained in Chapter 4 was used for data normalising. 

7.3.4 Final Roll Force Mode1 

An individual backpropagation Neural Network mode1 was developed and trained to 

learn and predict the rolling force at each of the seven stands. Upon completion of training, the 

performance of these networks was tested on the testing data. For coddentiality reasons, no 

numerical data regardhg the performance of the existing online model and Neural Network 

model is provided here. However, to appreciate the signincant improvement in the prediction 

accuracy by using Neural Networks, the predicted force values for unseen slabs are plotted 
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with the measured values in Figure 7-15. For better visualisation, the sarne values for 50 slabs 

are plotted in the Figure 7-16. 

This level of accuracy is quite satisfactoiy. The model easily outperfoms the existing 

online roll force model. The improvement in the roll force prediction will translate to a rnarked 

reduction in the strip head-end off-gage reduction. The mode1 can readily replace the Set-up 

Module for rol gap set-up purposes. For a better appreciation of the mode1 peifonnance, the 

average percent ciiffierence of the Neural Network model predictions from measured values are 

comparai to those of the existing roll force model for al1 seven stands in Figure 7-17. This 

level of accuracy is stiii irnproved M e r  once the data is broken down to the Dofasco Inc. 

gauge families and individual models were developed for each family. This was expeded, siince 

the variation of some of the input variables, i.e. strain, main rate, and Ilh ratio are redud .  

The a m a c y  of the roii force predictions in experimental cold and hot rohg  of 

aluminium strips is not as close to the accuracy achieved here. The obvious reason is the 

sigiuficantly lower level of noise in the database of indusuial rolling. 
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1. SET-UP MODEL ERROR NEURAL NETWORK ERRORI 
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Figure 7-17 Percent differences of measured roll force values fmm roll force predictions by Neural Network mode1 

and online roll force mode1 (Actual values are not shown due to the confidentiality) 
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The superior perîionnance of this mode1 demonstrates the great potential of Neural 

Network modelling for the roil force prediction applications and many 0 t h  industrial 

processes. Moreover, N d  Networks provide a nunber ofother advantages. These indude: 

ease of developrnent, adaptation and maintenance, r d 1  speeâ, and ease of integration to the 

control algorithms. These benefits are briefly explained here. 

Once the technique is undentood and a Neural Network simulator code is dweloped, 

the processes of model development, training, testing, and information recall are quite routine. 

With the fùture development of commercial codes, it can be argued that the ease of model 

development d be one of the main advantages of Neural Network modeiling technique. 

Another very important characteristic of each modehg technique is model 

maintenance and adaptability. Neural Network rnodels rely neither on lookup tables nor do 

they need any tuning, hence are easiIy maintainable. Mode1 adaptation to the new process 

conditions and new experiential knowledge is done through retraining. However, this 

retraining is quite fàst as the network initiakition is not randorn any more. Once new &ta are 

added to the database, the network is retrained with the initial weights and thresholds equal to 

those of previous trained network. The training is of-line and can be done as often as needed. 

However, retraining takes some tirne depending on the site of the network and database. 

The N d  Network recall process is quite fast. Recall involves a one-shot non- 

iterative process of propagating input values through the network to output nodes. This 

feahie renden the technique suitable for online control applications. A m y  most of the 

industriai research in the Neurai Network field is concentrated in control applications. 

7.4 Dynamic Recrysbllization Modelling 

7.4.1 Background 

The possibility and ocmence of dynamic recrystallization during hot r o h g  of HSLA 

strips stiü rem& controversid. Torsion simulations presented in Chapter 6 revealed some 
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softening d e r  the second interpass time which could be attrr'buted to dynamic reclystallization. 

M .  log analysis also confirmeci the results of torsion sirndations in more than 8û?h of the 

slabs. However, there was no softening or there was some work hardening in the rest of the 

slabs. Independent attempts were made by the author and Dofasco's researchers to model the 

occurrence and the quantitative amount of this soflening, using linear and non-linear regmion 

techniques. However, none of the different foms of the regression models resulted in an R- 

squared value above 0.5. Hence, it was decided to employ Neural Networks to tackle this 

modeilhg task The Neural Network technique managed to model this softening with 

satisfàctory accuracy. The fact that Neural Network was able to perform this task indicates 

that there is a definite trend and physical basis for this çofiening and it is not a random 

ocaurence. Neural Networks cannot leam anything from a random processOCeSS The accuracy of 

the results were fivther improved by integration of Principal Component Analysis to Neural 

Network modelling. 

7.4.2 Mill Log Analysis and Modeiling 

Mill Iogs of 380 slabs of steel number 1 with an output gauge range of les then 2.7 mm were 

analysed. The purpose of the shidy was to determine the occurrence of unaccounted softenlig 

during strip rolling. The average sofiening of al1 six interstand intervals for ali 380 slabs were 

caladated and plotted in Figure 7-18. This trend, repeated in other gauge families, clearly 

demonstrates a signifiant softening in the second interpass tirne. 

This sofiening is automatidy accounted for in the Finishing Set-up Module @SU, control 

module for roll force caldations and roll gap setup), because the hardness modifien are saved 

for each gauge range and stand. However, in the lookup table used by the FSU module there is 

only one average hardness modifier value stored for each grade and stand. If the variation of 

the softening amount is srnall, this scheme could be dciently versatile. However, it is not so 

and this interpass sofiening is not occurring consistentiy. This fact has been shown in Figure 

7-19. The average value of this sofkening saved in the lookup table is about 5%, however, 

there are softening in the range of -1û?? to 20%. 
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2 3 4 5 6 

STAND NUMBER 

Figure 7-18 Average interpass hardening during finish rolling of steel number 1 
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2 3 4 5 6 7 
Stand Number 

Figure 7-19 hconsistent interpass softening in the second interpass tirne. 
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This much variation has to be modeiled and accounted for during mil1 set-up, 

otherwise there would be consequentiai erron in the roll force prediction 

In the fkst stage of Neural Network modeiüng, the strain, strain rate, and temperature 

at the fint two stands were chosen as network inputs. The interpass times in the fint and 

second passes are linear combinations of the strains and strain rates in the nrSt two stands, so 

they were not included in the inputs. A network with these six inputs and 16 proceshg nodes 

was trained to learn the variation of this interpass softening. The predictions of this network 

have been plotted dong with the r d  softening in Figure 7-20. Carefid consideration of this 

plot reveals that the Neural Network model follows the general trend of the data weil. 

However, the average absolute diftérence between the model predicùons and the real values 

was calailated to be 3.40 MPa. The arnount of this softening was variai fiom -10 MPa (i.e. 

hardening) to 20 MPa in this database. The arrows in the plot point to the worst predictions. 

In the next stage, the processing conditions in the third pass (strain, strain rate, and 

temperature) were included in the inputs of the model. After training of the network with the 

same number of  the processing nodes as the pervious network, the average absolute ciifference 

of the model predictions and real suftening was reduced to 2.73 MPa This improvement was 

an indication of  the e f f i s  of processing condition in the third p a s  on the interpass çoftening. 

The network predictions are plotted with real soflening in the Figure 7-21. 
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7.4.3 Analysis of the Correlation Between Input Variables 

As disaissed in Chapters 3 and 4, the linear colinearities of input variables in any given 

database mate vagueness and instability in any model developed based on this kind of 

natahase. In the modelling of the dylÿimic recrystallization it is expected that there is some 

degree of linear correlation between input variables. To ver* this, the correlation matrk of 

input variables was calculated. This matrix is demonstrated in the Figure 7-22. Looking at 

this mat& there are some strong linear correlations between some of the input variables. A 

systemaîîc way of looking at these correlations is to caicuiate norrnalised eigenvalues of this 

matrix. If the relative magnitude of eigenvalues are about the same, it means that the variation 

of these inputs are independent of each other. However, if some of the eigenvaiues are much 

smder than the rest, it means that there are some correlations. The eigenvaiues of the 

correlation maaix of input variables are given in the Table 7-6. These normalisecl eigenvdues 

add up to 9, the number of variables. 

Table 7-6 Eigenvdues of the correlation matrix of the original variables 

It is observed that the first eigenvalue is one order of magnitude larger than the fifth 

eigenvalue and nvo orders of magnitude larger than eighth eigenvdue. This means we can 

expect some model performance irnprovement if these correlated inputs are decoupleci through 

transfomation into the p ~ c i p a l  component space. 
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Figure 7-22 Correiation matrix of the original data (nine variables) 

Rate 2 
0.513 

7.4.4 Principal Cornponent Analysis pre-processing 

A cornputer code was developed to read in the origuial database of a process, fom the 

correlation ma* calculate eigenvaiues and eigenvecton of the correlation matmg and 

transform the origural data Yito principai components. The detds of this development is 

explained in Chapter 3. This d e  was integrated into the Neural Network simulator code as a 

pre-processing module and was applied to the above database for dynamic recrystallization 

modelhg . 

2 
0.566 

3 
0.402 

Rate 3 
0.314 

3 
0.172 
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Considering tint the eigenvalues of the correlation rnatrbc of original variables are the 

variances of  principal cornponents, then the mm of the variations exhibited by the last three 

principal components is only 0.26% of the total variation of data (sum of the last three 

eigenvalues divided by nine). This is better undersiood if we look at the standardiseci 

covariance matrk of principal components. The code was used to form this matrix which is 

@en in the Table 7-7 . 

Table 7-7 Standardized covariance rnatrix (correlation matrir) of the nine principal 

components correspondiiig to nine input variables. 

The diagonal elements in this rnatrix are variances of p ~ c i p a l  components. The first 

diagonal element is the variance of the fint principal component, the second element is the 

variance of the second principal component and so on These variances which are the 

eigenvalues of the correlation rnatrix of the original variables, are ordered in descendhg order. 

If there are strong correlations between the origuial variables, then the variation of the last 

principal components are srndi. If so, the 1st principal components can be ignored without 

loosing much of the variation of the data In this way, the problem can be anaiysed in a lower 

dimensional space. Moreover, the principal components do not have any linear correlations 

with each other. This is evident fiom the covariance rnatrix of principal component, in which 
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ail of the off-diagonal elements are zero (Theoretically off-diagonal elements are zero, 

however, here they have very small values due to machine round-off mon). 

7.4.5 Integration of Principal Component Analysis and Neural Networks 

Based on the values of the nine principal components above, correspondhg to the nhe 

original input vaciables, the 1s t  three principal components were ignored and ody the first six 

principal components were used in the anaiysis. A six-input Neural Network mode1 was 

developed and trained based not on the original variables, but on these six principal 

components. Upon completion of the training, the Neural Nehirork leamed the variation of the 

sofiening based on the nrst six principal cornponents. The r d 1  phase (caldation of mode1 

output for any given input) changed to a two-step procedure. Fihi, the principal components 

conesponding to the input variables of the data point under consideration were calculateci. 

Then these principal cornponents were propagated through the network to determine the 

network prediction 

The average absolute difference between network predictions and the measured 

softening for a l i  the 130 unseen test data points was calailated to be 2.17 MPa This means a 

36% performance improvement compared to a six-nodded network with process conditions in 

the first two stands, and a 20?! irnprovement compared to the nine-nodded network using 

original variables. The predictions of this network is plotted dong with the meawed interpass 

softening in the Figure 7-23. 
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This improvement in the performance compared to the nine-nodded n ~ o r k  is solely 

attriiuted to the decouphg of the input variables. Another added benefit of this kind of data 

pre-pr&g prior to the Neural Network modelling is savings in CPU the.  Principal 

Component Analysis is a non-iterative procedure, which takes a minimal cornputhg tirne 

compared to the iterative network training produre. Principal Component Analysis pre- 

processing, through a reduction of the number of input nodes, reduces the network size and 

training time significantly. Of course this is only possible once there are considerable linear 

correlations between input variables, which is the case for most of the industrial processes such 

as mdti-stand roliing, machining, and weldiig. 

7.5 Cornparison of Neural Net Models with Statistical Models 

The r d t s  disaissed in this chapter provide another case-specific comparative shidy of 

the Neural Network techniques venus statistical methods. The Neural Network based mode1 

of steel hot fiow stress prediction outperforms the statistical method in terms of both accuraGy 

(mean difference of 2.17% versus 2.99%) and comistency (standard deviation of 0.48 versus 

0.68). Another advantage of Neural Network modelhg is ease of development, maintenance 

and r d .  In hyperbolic sine fiinction modelling the individual values of n, Q and h(A) at 

each strain level should be stored and retrieved from a data bank. Handiing of such data banks, 

in the cases of multidirnensional processes becornes cumbersome and requires some 

computationd time to search and interpolate. However, the recd mechanism of 

backpropagation neîworks is very fast since ail that is n v  is a one-step fonuard 

propagation of inputs through the layers. This recall speed, dong with its accuracy, renden the 

technique promising for on-line control applications. Another major advantage of neural 

network models is theu easy adaptability to new data. Upon presentation of a new data point, 

the network has to be ûained again-to leam this new pattern. However, the convergence to an 

acceptable solution is achieved with minimal iterations, as the previous weight ma& is used to 

initialise the network. 
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There are also some drawbacks to this technique. The network does not represent the 

knowledge Ui the Euniüar fom of equation-based models. Thus, reasoning about the materiai 

or process behaviour and desired changes would not be as intuitive as they are in the regression 

methds. Moreover, network training relies on a comprehensive database of the &en 

problea However, the criteria to judge what constitutes the comprehensiveness of the data is 

neither weU defined nor obvious. 



8. Conclusions 

A number of conclusions may be deduced fiom the results of physical simulations, 

rnili data analysis, applications of Neural Networks, and Principal Component Analysis. 

These conclusions are iisted under the above headings and are presented in the following 

sections. 

8.1 Compression Testing 

1. The type of pre-test solution treatment of compression sarnples prior to reheating to 

the test temperature has a significant effect on both microstructure and mechanical 

behaviour of HSLA steel specimens. When specimens are solution treated, quenched, 

then reheated to the test temperature, it results in finer grains and much higher super- 

saturation and potential for the Nb(C,N) precipitation upon reheating compared to the 

specimens which are solution treated and cooled to the test temperature. 

2. The above increased potential for precipitation also affects the recrystalli7rition kinetics 

substantiaily. The recrystallization kinetics results produceci fiom the tests with 

different pre-test solution treatrnents should not be mked together. 

3. Interpass times experienced in hot stnp rolling of HSLA steels are not long enough for 

complete static recrystallization. In the absence of full static recrystallization, the 

pas-to-pass strain is accumulated and can reach the critical strain for the initiation of 

dynamic recrystallization. 
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8.2 Torsion Testhg 

Kinetics of static recrystallization during interpass times of HSLA strip roihg is not 

fast enough to relax the strain during the first passes, even in a seven stand mili which 

has lower strain per pass compared to the six or five stand milIs. Strain accumulation 

l ads  to the nucleation of new strain-fiee grains during deformation. During interpass 

times after the nucleation of new grains, kinetics of recrystallization is accelerated 

drastically. This accelerated recrystallization is due to the surpassing of the grain 

nucleation phase of the recrystallitation process. 

The accelerated soflening afker dynamic formation of new grains relaxes al1 

accumulated strain and soflens the matenal. This complete relaxation translates to 

lower flow stresses in the intermediate stands of the hot strip mill. If this softening is 

not taken into account, erroneous roll force predictions will result. 

Once appropnate corrections have been incorporated, torsion based physicai 

simulations of hot rolling processes are able to simulate the real process quite closely. 

8.3 MU Data Analysis 

A portion of the errors in roll force predictions in the industrial rolling of HSLA steels is 

due to the wccounted accelerated sofiening (metadynamic recrystalli7iition) in the 

intermediate stands. The e>cisting method of storing material Bow stress characteristics in 

terms of one single value of hardness factor for each grade at each stand is not appropriate 

for HSLA strips. 

The amount of this softening is between 20 MPa and - 1 0 MPa (hardening). So far, there is 

no mathemûcal mode1 able to predict the amount of this soflening based on process input 

variables. 

The existing stnp r o h g  conditions of hi$ Nb HSLA steels lie in the border of the domain 

of processing conditions that initiate dynamic recrystallization. If the change âom one 

softening mechanism to another is not properly modelled and included in the control 

algorithm, then there would be a consequential unaccounted variation in the material flow 
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stress which wiil cause roll gap setup problerns. This adds to the importance of such a 

model and srplains why these grades are called %ad-behaved" grades. 

8.4 Artincial Neural Network Applications 

Artifid Neural Networks have evolved as powerfiil modeIlimg techniques. They 

outperform statisticd models of steel flow stress variation at high temperatUres. Neural 

Networks are equaiiy applicable to aluminium and other matenals, as they do not rely on 

any mathematical equation derived fiorn the matenal's physics. 

Neural Network based models for roli force predictions during strip rolling of HSLA steels 

have a signïficant advantage in ternis of prediction accuracy over the existhg roll force 

models used in the industry. Their hcreased accuracy can be utilised in order to minimise 

the head-end off-gauge probIems, reduce the ocanence of cobbles, and inaease gauge 

consistency of the roiied strips. 

The most advantageous applications of Neural Networks are in the modehg of those 

processes where there is no mathematical equation available to describe the input-output 

relationships. This is the case with the niodeiiing of the ainount of sofiening in the 

intemediate stands of hot strip rolling of HSLA steels. Tliere is no other model a d a b l e  

able to predict the amount of this sofieninç. However, Neural Networks are able to do so 

with an acceptabIe accufacy. 

Neural Network modelling is a potential candidate for the adaptive control of mdti-variate 

industriai processes. It is expected that in the next miIlenniuni, Neural Network based 

control algonthms will be the dominant choice for the control systems of the industrial 

processes in general and the rohg  processes in specific. 

8.5 Integration of Principal Component Analysis to Neural Nehvorks 

1. N d  Network training algonthms, similar to statistical rnodels, are poorly behaved when 

iinear correlations acist between input variables. Principal Component Analysis is an 

effective and reliable muiti-variat e st at istical technique w liicli can transform lineady 

correlated input variables to uncorrelated principal coinponents space. P ~ c i p a l  

Component Analysis was integrated into the Neural Network training algorithm as a data 
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pre-processor. Decouplhg of the data using Principal Component Analysis increases the 

prediction aca>racy of Neural Network based models significantly, for a minimal 

computationd cost. 
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