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Abstract 

  

This thesis presents analytical models to study the vibration characteristics of cable-

harnessed beam structures motivated by space structure applications. The distributed parameter 

models proposed in this work considers into account the effect of coupling between various 

coordinates of vibration such as the bending in the out of plane, in-plane direction, axial and the 

torsion coordinates. The mathematical models are presented for structures with straight cable 

wrapping pattern at an offset distance, periodic and non-periodic wrapping pattern. Numerous 

theoretical simulations are performed to highlight the importance of having a coupled vibration 

model and the analytical models are validated with experiments.  

Chapter 2.1 presents a distributed parameter model to study the vibrations of beam with 

straight cable pattern at an offset distance. The structure is modelled using Euler-Bernoulli and 

Timoshenko beam theories. The presented model studies the effects of coupling between various 

coordinates of vibrations. Strain and kinetic energy expressions are developed using linear 

displacement field assumptions and Green-Lagrange strain tensor. The governing coupled partial 

differential equations for the cable-harnessed beam that includes the effects of the cable pre-

tension are found using Hamilton’s principle. The effects of the offset position of the cable, pre-

tension and radius are studied on the natural frequencies of the system. The natural frequencies 

from the coupled Euler Bernoulli, Timoshenko and decoupled analytical models are found and 

compared to the results of the Finite Element Analysis.  

      In Chapter 2.2, a mathematical model to study the coupled vibrations in cable-harnessed beam 

with periodic wrapping pattern is presented. The structure is modeled using Euler-Bernoulli and 

Timoshenko beam theories. The fundamental element of the wrapping pattern consists of diagonal 

cable section along with lumped mass section at the end of each element. An equivalent fully 

coupled continuum model is presented with goal of obtaining constant coefficient partial 

differential equations. Sensitivity analysis by the varying the cable radius, number of fundamental 

elements on the natural frequencies is also performed. The concept of transition frequency in 

Timoshenko beam theory is also studied for cable-harnessed structures. The effect of cable radius 

on the transition frequency is presented. Natural frequencies and mode shapes for both the spectra 

are presented for simply supported boundary condition and the results are compared to the bare 
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beam to show the effect of cabling on the behavior of the structure for both the spectra of 

Timoshenko beam theory.  

Chapter 2.3, presents an analytical model to study the coupled vibrations of cable-

harnessed structures with non-periodic wrapping pattern. The exact coupled partial differential 

equations of the structure are developed using Euler-Bernoulli (EB) theory. The analytical model 

assumes each fundamental element of the structure has different displacement, which means the 

structure is discretized at the interface of two different fundamental elements by applying  the 

continuity conditions along with the cantilever boundary condition and the model is solved for 

natural frequencies, mode shapes and frequency response functions. In non-periodic wrapping, the 

wrapping angle changes for each fundamental element. The coupled exact model developed in 

Chapter 2.3 is an improvement of the model presented for the periodic wrapping patterns and is 

compared to the decoupled model for non-periodic wrapping patterns.  

                   In Chapter 3.1, the experimental study and model validations for the coupled dynamics 

of a cable-harnessed beam structure are presented. The system under consideration for the 

experiment consists of multiple pre-tensioned cables attached along the length of the host beam 

structure positioned at an offset distance from the beam centerline. Analytical model presented by 

the coupled partial differential equations (PDEs) for various coordinates of vibrations are found 

and the frequency response functions (FRFs) obtained for both Euler-Bernoulli and Timoshenko-

based models are compared to those from the experiments for validation.                 

                   In Chapters 3.2 and 3.3, experiments are performed on the cabled beam structures with 

periodic and non-periodic wrapping patterns and the frequency response functions obtained from 

coupled and decoupled models are compared to the experimental frequency response functions. 

The experimental mode shape animation plots of the torsion dominant and in-plane dominant 

modes are also presented to identify the type of modes associated with the sharp peaks observed 

in the out-of-plane bending frequency response functions. 
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𝜅 Shear Correction Factor 

𝐸𝑏 Young’s Modulus of the beam 

𝐺𝑏 Shear Modulus of the beam 

𝐴𝑏 Area of cross section of the beam 

𝐴𝑐 Area of cross section of the cable 

𝐸𝑐 Young’s modulus of the cable 

𝑏1 − 𝑏9 Strain energy coefficients of Euler Bernoulli model 

𝑐1 − 𝑐15 Strain energy coefficients of Timoshenko model 

𝑘1 − 𝑘6 Kinetic energy coefficients 

𝜔 Natural Frequency 

𝜔𝑓 Driving frequency 

𝑥𝑠 Sensing location 

𝑥𝑎 Actuation location 

(𝜀𝑥𝑥)𝑏 Direct strain in the beam in the x direction 

(𝜀𝑥𝑥)𝑐 Direct strain in the cable in the x-direction 

(𝛾𝑥𝑦)𝑏 Shear strain in the beam in the xy plane 

(𝛾𝑥𝑧)𝑏 Shear strain in the beam in the xz plane 

𝜌𝑏 Density of the beam  

𝜌𝑐 Density of the cable 

𝑙 Length of the beam 

𝑏 Width of the beam 



xx 

 

ℎ Depth of the beam 

𝑇 Pre-tension of the cable 

𝑟𝑐 Radius of the cable  

𝑦𝑐 y coordinate of the cable where the strains are evaluated  

𝑧𝑐 z coordinate of the cable where the strains are evaluated 

𝐴𝑐 Area of cross-section of the cable (𝐴𝑐= 𝜋𝑟𝑐
2), circular cross-section 

𝐴𝑏 Area of cross-section of the beam 

𝜇 Cable wrapping angle for structure with periodic wrapping pattern 

𝑐𝑘𝑖 Strain energy coefficients for Euler Bernoulli-based model of 𝑖𝑡ℎ 

fundamental element in non-periodic wrapping pattern. 𝑘 and 𝑖 are the 

indices. 

𝑘1𝑖 − 𝑘4𝑖 Kinetic energy coefficients of 𝑖𝑡ℎ fundamental element in non-periodic 

wrapping pattern. 𝑖 is the index 

𝑢𝑖(𝑥, 𝑡) Axial displacement of 𝑖𝑡ℎ fundamental element in non-periodic 

wrapping pattern 

𝑣𝑖(𝑥, 𝑡) In plane bending displacement of 𝑖𝑡ℎ fundamental element in non-

periodic wrapping pattern 

𝑤𝑖(𝑥, 𝑡) Out of plane bending displacement of 𝑖𝑡ℎ fundamental element in non-

periodic wrapping pattern 

𝜃𝑖(𝑥, 𝑡) Torsional displacement of 𝑖𝑡ℎ fundamental element in non-periodic 

wrapping pattern 

𝜓𝑖  Cable wrapping angle 𝑖𝑡ℎ fundamental element in non-periodic 

wrapping pattern 
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Chapter 1: Introduction 
 

1.1  Literature Review 
               

1.1.1 Motivation 
 

Large space structures are often too large for dynamic ground testing as a whole. Therefore, 

a common approach to model validations for these structures entails ground testing the individual 

components prior to their launch. One major component for these structures include electronic 

cords and power cables that have been commonly ignored the effect of cabling in modeling these 

structures. These cables have shown to weigh up to 20% of the mass of the host structure [1]. This 

number will increase significantly with the use of composite materials in aerospace applications. 

Therefore, obtaining a dynamic model that accurately accounts for the mass, stiffness and damping 

effects of these cables is of paramount importance and has received a lot of attention in the past 

few years [2–11]. As an example, the satellite structures of National Aerospace and Space 

Administration (NASA) are shown in Figs. (1.1) and (1.2). The structures are harnessed with 

significant amount of cabling which will affect the dynamic characteristics of the host structure. 

The arrangement of cables can be in a straight or in a periodic or non-periodic manner and the 

cables come in various sizes. The U. S Air force Research Laboratory (AFRL), Space Vehicles 

Directorate group were the first to perform significant study in this area. Fig. (1.3) shows the setup 

of the space structure on the vibration shaker to perform vibration testing. Spak [12] points out 

that the space structures are usually tested prior to harnessing them with cables.  

Therefore, in the experimental testing, the effects of cabling are not usually seen. Depending on 

the amount of cabling on the structure, there will be significant shift in the peaks of the frequency 

response function of the structure. The structures usually exhibit large amplitude motions near the 

resonant regions. Hence, there is a need to develop good theoretical models that can predict the 

effect of cabling on the dynamics of host structure to accurately have an information regarding the 

natural frequencies of the structure. In the initial stage of research in this area, the effect of cabling 

is investigated using finite element models. Finite element analysis is a numerical technique, which 

often involves discretizing the structures into large number of elements to obtain good results. As 

the structure gets complicated, it becomes difficult to obtain physical insight into the problem 
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using FEA models. In case of cable-harnessed structures, there is an important need to obtain 

physical insight as to how the cabling affects the natural frequencies of a structure and what 

parameters or effects play an important role. This is better possible by developing analytical or 

distributed parameter models. In the research performed by the U.S Air force research group, 

experimental and theoretical studies are performed on scaled down structures where the host 

structure is modelled using beam theories (Fig. (1.4)). Deeper analysis on scaled down structures 

will help us physically understand how the dynamic characteristics are affected by cabling and the 

models on small-scale structures can later be extended to understand the behavior of larger scale 

structures.  In their studies, cables are attached to the beam and plate host structures. In addition, 

in space structures, the beam and plate structures are the major load carrying members. The 

theoretical models developed are for beam structures due to their theoretical simplicity when 

compared to plates. More details regarding the U.S Air force and other research groups in the area 

of cabled structures are discussed in the following subsections of this chapter. 

 

Fig. 1. 1  Cable Harness in NASA satellite structure, Image Courtesy: NASA ICESat Website [13]. 
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Fig. 1. 2  Cable Harness in NASA satellite structure. Image Courtesy: NASA ICESat Website [13]. 

 

 

 

Fig. 1. 3 Setup of NASA Satellite structure on shaker for vibration testing, Image Courtesy: NASA LADEE 

Website [14]. 

 

1.1.2 Research by U.S Air force Group in Cable-Harnessed Structures 

 

As a general overview regarding analytical methods, the mathematical model of vibration 

of physical structure such as a beam or cable is usually obtained using force or energy methods. 

As the structure gets complicated, it is difficult to account for all the moments or forces in a 



 

4 

 

structure using force method and in that case, energy methods are preferred. For a distributed 

parameter structure, the strain and kinetic energy of the structure are computed and the Lagrangian 

of the system is found out. The final equations of motion are obtained by taking the variation of 

the time integral of the Lagrangian. This is referred to as the Hamilton’s principle. The equation 

is shown in Eq. (1.1).     

 

Fig. 1. 4 Cable Harnesses in beam and plate structures by the U.S Air force research laboratory group. 

Image Courtesy: (a) NASA ICESat; (b) Babuska et al, JSR, 2010 [2]; (c) Coombs et al, JSR, 2011 [1]. 

𝛿∫ (𝑇 − 𝑈)
𝑡2

𝑡1

𝑑𝑡 = 0 
(1.1) 

𝑇 and 𝑈 in Eq. (1.1) stand for kinetic and strain energy of the system respectively. Once the 

governing partial differential equations are obtained, the vibration characteristics of the structure 

such as the natural frequencies, mode shapes and the frequency response functions are found out 

using analytical methods. These analyses give an overall picture of the dynamic response of the 

structure. Previous research in the area of vibrations of cable-harnessed structures by the U.S Air 

force research group includes ad hoc techniques that mathematically model these cables as lumped 

masses attached to the host structure ignoring their stiffness and damping properties [15]. To 

overcome deficiencies in the earlier models, [1] considers the effect of distributed mass, stiffness 

and damping effects of cables where added cables are modeled as a beam structure attached to a 

host specimen. Ref. [1] models the cables using shear-beam theory. Shear beam theory 

incorporates the effect of shear deformation, which is ignored in the Euler-Bernoulli model. The 

dynamics of cabled beam is studied using analytical methods. The paper reports bending modes 

related to the host structure and the cable. It is reported that at higher vibration modes, the cables 

start to vibrate and induce dissipative effect in the cable-harnessed system. This apparent damping 

is usually more significant in the higher modes. The shear beam model (for cable) predicts this 
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apparent damping effect better than the case where the cable is modelled using Euler-Bernoulli 

beam model. Goodding et al [3] developed methods to attach the cable to the host structures with 

the help of tie-down structures and performed vibration testing on cabled beam to capture the 

bending modes for the free-free boundary condition. Comparison of experimental data of bare 

beam and cabled beam showed significant change. The paper considers two different systems, one 

is cabled beam with cable at the center line and the other with serpentine configuration. The 

experimental study between the two different systems concludes that the frequency response 

functions of the two systems are similar and serpentine configuration shows greater damping for 

the higher modes. The cabled beam is modeled using beam theory. The paper also developed Finite 

element models to study the bending vibrations and the natural frequencies of cabled beam 

dynamic model match well with that of FEA. The bending frequency response functions obtained 

from the FEA are validated using experiments. The paper reports that at lower modes of bending 

vibrations, mass effects dominate and at higher modes, the damping effects are dominant. Babuska 

et al [2] models the host structure and cable using Euler-Bernoulli beam theory. They develop 

distributed parameter model for transverse vibrations of cable and beam. It is also shown in their 

work that the stiffness effects are dominant in the lower vibration modes, whereas, the damping 

effects dominate the higher modes of vibrations. Kauffmann et al [5] developed novel damping 

model using shear beam theory assumptions. In the lower modes of vibration, the damping ratio 

almost remains constant and in the higher modes when we see significant shear vibrations, the 

damping ratio linearly increases with mode number and the model proposed in the paper matches 

well with the experiment. Remedia et al [7] investigated the effect of cabling on the vibration of 

cable harnessed honey comb panel. The theory model proposed is simulated using Craig-Bampton 

stochastic method and provided better result than the full scale monte carlo simulation and the 

model proposed in the paper is also computationally efficient than the monte carlo simulation. 

Goodding et al [16] models cable and host structure using beam theory, developed methods to 

estimate geometric properties of the cable such as the effective area, modulus etc. Goodding et al 

also developed linear finite element models (FEM) to model the bending vibrations of cable-

harnessed beams and validated the FEM model with the help of experiments. Ref. [17] develop a 

theoretical model for a cable-loaded panel. The host structure considered is a plate and cables are 

attached to it. The paper develops finite element model to predict the vibration characteristics of 

the cable loaded panel and the finite element model is validated with experiments. Other papers 
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on cable or string attached to beam (not related to space structure applications) are: Ref. [18] 

models the vibrations of two beams elastically connected together using an elastic foundation using 

Euler-Bernoulli theory. Exact solutions of natural frequency are presented for simply supported 

boundary conditions. Ref.[19] extended their previous work by performing analysis of beam and 

string system connected by elastic layers. It was observed that variation of tension in the string 

significantly changed the bending natural frequency of the structure for simply supported boundary 

conditions.  Other papers of interest in the related area include tensioned string attached to beam 

near boundaries and the string and beam have different coordinate of out of plane vibrations. The 

papers [20–24] report non-linear behavior in the structure although the papers lack experimental 

analysis or validation. 

 

1.1.3 Other Structural Application of Vibration Analysis of Cables 

 

 

Fig. 1. 5 Applications of cables in power lines. Courtesy: McClure et al, Computers and Structures, 2003 

[25] 
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Fig. 1. 6 Marine applications of cables. Courtesy: Huang et al, Appl Sci, 1999 [26] 

 

 

 

Fig. 1. 7 Applications of cables in bridge structures. Courtesy: Fujino et al, Appl Sci, 2017 [27] 

Apart from space structures, cables also have important structural applications in the areas 

of (but not limited to) power lines and marine applications. In power lines [25] (Fig. (1.5)) stranded 

cables are used frequently, where several wires are twisted to form a single cable. Ref. [25] models 

the dynamic response of power transmission cables when subjected to shock loads. The stranded 

cables considered in [25] comprise of aluminum and galvanized steel. Ref. [28] develops 

mathematical models to determine the bending stiffness of stranded cables which have application 

in power and signal transmission. In marine cables [29] two layers are present. Armor layer is the 

outer, which provides the mechanical strength, and the inner layer contains optical fibers and 

conducting wires [29]. Ref. [26] (Fig. (1.6)) states that the marine cables usually cannot withstand 
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compressive load and operate in tension-slack condition which results in non-linear behavior. In 

space structure applications, the power cables are attached to the host structures using zip-ties and 

the cable resonances are usually observed in the higher modes and the presence of cabling 

significantly effects the dynamics of the host structure [2].  

Some of the other areas of applications of cables are in the area of cable-stayed bridges 

where bridge structures are supported by cables. It is observed that there will be nonlinear effects 

in cable-stayed bridges and the references are explained in this paragraph. Dallasta et al [30] 

analyzed bending vibrations of beams pre-stressed by internal cables which are attached to the 

beam at the boundaries. The beam considered is a thin walled beam pre-stressed by a parabolic 

cable. It was found that the increase in cable force increased the frequency and the change in the 

frequency is more significant for higher frequency modes. Fujino et al [27] (Fig. (1.7)) modeled 

the non-linear vibrations of cable-stayed beam. The structure investigated has similarity to the 

cable-stayed bridges. The tension effect of cables is considered and the beam structure is assumed 

to vibrate in the in plane and out of plane direction. The cable is also assumed to vibrate in the 

horizontal direction and it was observed that auto-parametric resonance exists in the structure and 

this phenomenon is validated experimentally. Gatulli et al [31] built on the work of Fujino et al 

and assumed the beam and cable vibrate separately in one direction. Gatulli et al investigated 

additional non-linear resonances such as 2 to 1 resonance, internal resonance condition and found 

the existence of period doubling bifurcation condition. Other related references on nonlinear 

vibrations of cable-stayed vibrations can be found in Refs. [32–36]. Liu et al [32] modeled the 

vibrations of deck-cable system. The deck-cable system is coupled (separate displacement 

assumptions of deck and cable which are coupled) and the dynamic model is analyzed for a single 

cable attached to deck and the results are validated using three-dimensional finite element method. 

The system has pure cable modes, pure deck modes and coupled cable-deck modes and the 

presented analytical model is able to accurately predict the coupled cable-deck modes. Kang et al 

[33] modeled the nonlinear vibrations of cable-deck system. The degrees of freedom considered 

are the in plane and out of plane bending vibrations of cable and out of plane bending vibrations 

of deck. The paper reports observation of parametric resonances that 1:1 ratio condition between 

the out of plane and in-plane bending modes will cause large displacements in the structure. Lepidi 

et al [34] models quadratic non-linearity in the coupled cable-bridge system. The system is 

modelled using discrete lumped masses. The degrees of freedom considered are the in plane and 
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out of plane bending vibration for the cable and the out of plane and torsion vibration for the 

bridge. When the bending and torsional vibrations of the bridge are subjected to forced excitation, 

it is found to cause out of plane bending vibrations in the cable through parametric resonance. In 

Ref. [35], the system considered is a beam with string attached to beam at boundaries and the paper 

investigates nonlinear and chaotic motion. The case of 1 to 2 resonance between the string and 

beam is investigated. The equations of motion are solved using the method of multiple scales. It is 

observed the excitation amplitudes play an important role on the vibrations of the structure.  

 

1.1.4 Research by Other Research Groups in Cable-Harnessed Structures 

 

 

Fig. 1. 8 Cable harnessed structure experimental setup by Inman research group. Courtesy: Spak, PhD 

thesis, 2014, Virginia Tech [12] 

Apart from the U. S Air force, the research performed by other groups in the area of cable-

harnessed structures are, Spak et. al Refs. [12,28,37–43] (Fig. (1.8)) modeled the spaceflight cables 

using the shear and Timoshenko beam theories and developed theoretical models to determine 

various effective properties of non-homogenous space flight cables such as density and Young’s 

modulus.  

 

 

 

 

 

 

Fig. 1. 9 Cable harnessed structure to validate the spectral element method by Inman research group. 

Courtesy: Choi et al, JSV 2014 [44]  

 

 



 

10 

 

The initial phase of Spak et al work studies the frequency response of strings and space 

flight cables.  In Ref. [37], the main focus is on the bending vibrations of the cable. The theoretical 

FRF is plotted using the effective properties determined and is compared with the experimental 

FRF and the theory showed good match with the experiment. Using the predicted properties, the 

frequency response characteristics of bending vibrations cable harnessed structures are found out 

using analytical methods and the predicted frequency response functions are validated using 

experiments. In Ref. [39,40] Spak et al developed damping models to quantify the damping 

induced by cabling. The paper concludes that the Timoshenko beam predicts damping and 

frequencies better than Euler-Bernoulli beam due to rotary inertia and shear deformation effect. 

Ref. [42] developed distributed transfer function method (DTFM) to predict the damping and other 

modal parameters in cabled structure and the DTFM model takes into account the cable attachment 

points and it was found that the DTFM predicts the frequencies and damping better than the 

distributed mass model. The experimental investigations in Ref. [45] study the bending vibration 

characteristics of cables (modeled as beams). Spak et al report that as the tension in the string, 

cables vary, the structure’s frequency response shifts slightly, and no major effect of tension is 

seen. The paper validated the cable models for bending modes that are developed using beam 

theory (model solved using DTFM approach) with the experiments. Extensive experimental 

investigations in [12] focus on cabled beams and reports the existence of cable-beam interaction 

modes and coupled bending-torsion modes. Spak et al report that when host structure is harnessed 

with thick space flight cables, the presence of interaction and torsional modes is seen 

experimentally. The analytical model by Ref. [12] neglects the effect of bending torsional coupling 

in the cabled structure. Ref. [12] compares the analytical model’s bending frequency response 

function with that of experimental frequency response function. 

Choi et. al [44,46–48] (Fig. (1.9)) model both the bending vibrations of cable and beam 

structures using Timoshenko beam theory (TBT). The cable is attached to the beam using tie down 

structures. The cable-harnessed structure is modeled as a double-beam problem using Timoshenko 

beam theory. The displacements of host structure and the cable are different. The problem is solved 

using spectral element method where the displacement functions are defined using standard 

exponential form. Impact test experiments are performed on the practical structures and the results 

show good agreement with the theory for the free-free boundary condition tested. The bending 

vibration coordinates are modeled in these papers and the motion of the structure in other directions 
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and the coupling effects are neglected. The frequency response functions for the bending mode 

obtained using the Spectral Element Method (SEM) are compared with the Finite Element Method 

(FEM). Authors [44] conclude that Spectral Element Method uses significantly lower number of 

elements when compared to the FEM method. Huang et al [49,50] extends this spectral element 

approach developed by Choi et al [44] to study the bending vibration characteristics of a 

cantilevered cable-harnessed beam with a tip mass at the free end. The mathematical model [49,50] 

also accounts for damping in the structure, apart from extensively studying of tip mass. Huang et 

al attaches cable to the beam at discrete locations and develops solutions using Cheybyshev 

spectral element method to study the bending vibrations in cable-harnessed structure. In this 

method, Cheybyshev polynomials are used as basis function while finding the natural frequency 

and the paper reports that more accurate results can be obtained using fewer elements when 

compared to the other Spectral element methods published in literature. 

 

 

 

 

Fig. 1. 10 Periodic wrapped cable-harnessed structure. Courtesy: Martin et al, AIAA 2016 [51] 

 

 

Fig. 1. 11 Experimental setup of periodically wrapped cable-harnessed structure. Courtesy: Martin et al, 

AIAA 2016 [52] 

 

 

 

Fig. 1. 12 Non-periodic wrapped cable-harnessed structure. Martin et al, AIAA 2018 [53] 

 

Martin et al [51–60] (Figs. (1.10) to (1.12)) developed analytical models along with their 

experimental validations for cable-harnessed beam structures with periodic and non-periodic cable 

patterns. In their work, cables are modeled using both bar and string element assumptions to 

develop low order, high-fidelity distributed parameter models for bending vibrations of the cable-
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harnessed beam structures of periodic patterns. The main goal of Martin et al work is to predict 

the stiffening and mass effects induced by cabling on the beam structures using decoupled bending 

vibration model. Ref. [51,52] models the decoupled vibrations of cable harnessed structures with 

periodic wrapping pattern. The mathematical model takes into account the pre-tension effects of 

adding cable along with the pre-compressive effect induced in the host structure. The model could 

predict that by adding cable to host structure there is significant amount of stiffening effect. 

Numerous simulations are presented by varying parameters such as the number of fundamental 

elements of wrapping pattern, cable radius and the modulus of the cable to show case the 

importance of having a mathematical model to predict the stiffening effect. The theory model is 

validated experimentally in Ref. [52] and the theory shows good agreement with the experiment. 

Refs. [54–57] are some of the early modeling attempts by Martin et al to study the stiffening 

effects. The pre-tension effects are neglected in those papers and the cable is modeled using bar 

model. These models are later built upon and improved in Refs. [51,52]. In Ref. [60], Martin et al 

solved a stepped beam which periodic elements using Lindstedt-Poincare theory for the decoupled 

bending vibrations. The coefficients for the stepped beam are variable and the frequencies and 

mode shapes are calculated using perturbation theory. The theory developed in Ref. [60] is applied 

to cable harnessed structures with non-periodic wrapping pattern in Ref.[53] by Martin et al. In 

non-periodic wrapping pattern, the cable has different wrapping angle in each fundamental 

element. Martin et al modelled the decoupled bending vibrations. In case of zigzag wrapping 

pattern with inclined side sections, the coefficients of partial differential equations become 

dependent on the spatial coordinate. The spatially variable partial different equations (PDEs) are 

solved using Lindstedt-Poincare approach and the results are experimentally validated. Partial 

Differential Equations (PDEs) that account for cables’ mass, stiffness and tension properties on 

the system’s dynamics are developed. In all the developed models in [51,52,54–57], the out-of-

plane bending is of primary interest. The method used employs the homogenization technique for 

truss structures in [61,62,71,72,63–70] to obtain the PDE’s using a linear displacement field 

through the strain and kinetic energy expressions of a fundamental repeated elements. The 

asymmetric wrapping pattern in Fig. (1.10) could potentially create mode-coupling effect as the 

intensity of cabling on the host structure is increased. The coupling induced between various 

coordinates of vibrations due to the addition of the cables is entirely neglected in their modeling.  
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1.1.5 Effect of Coupling between Vibration Coordinates in Other Structures. 
 

 

 

Fig. 1. 13 Coupling due to geometry of C cross-section beam. Courtesy: Bishop et al [73]  

In the area of cable-harnessed structures, the effect of coupling between various 

coordinates of motion is not studied before. The other areas/structures in which the mode coupling 

effects between various coordinates are observed are explained in this section. Dokumaci [74] 

investigated the coupled bending-torsion vibrations in beams with single-axis symmetry where the 

shear center and the centroid do not coincide. In this case, because of offset distance between the 

shear center and the centroid, we see mass coupling between the bending and torsion coordinates. 

The paper by Dokumaci presents exact results for free-free and clamped-free boundary conditions. 

Bishop et al [73] (Fig. (1.13)) extended Dokumaci’s theory to incorporate the effect of warping in 

beams with single axis of symmetry and it was observed that the warping effect becomes 

significant in beams with open channel cross-sections. The example of a beam structure with single 

axis symmetry that undergoes coupled-bending torsion vibration is shown in Fig. (1.13) [73].  

Banerjee [20,22,23,75] improved Bishop et al work by solving the governing equations of motion 

using dynamic stiffness method to obtain frequencies from beam with single-axis symmetry. The 

cases investigated by Banerjee et al also includes the effect of external axial load. The dynamic 

stiffness proposed in Banerjee et al research resulted in lower computation time and higher 

accuracy for calculating the natural frequencies. Burlon et al [21] extended the works of Bishop et 

al and Banerjee et al to include the effect of in-span masses and springs in beams with mono-

symmetric cross section and analyzed the coupled bending torsional vibrations.  
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Fig. 1. 14 Material coupling in composite structures. Courtesy: Mei et al, Composite and Structures, 2005 

[76]. 

Lee et al [77,78] analyzed fully coupled vibrations of thin walled composite beams with I 

section and beams with mono symmetric cross section using Euler-Bernoulli theory. The natural 

frequencies by Lee et al are found by finite element method by developing the mass and stiffness 

matrices and solving for eigen-value problem. The variation in frequencies is analyzed for various 

parameters such as the fiber orientation, boundary conditions. Vo et al [79] analyzed coupled 

vibrations of thin walled beams with doubly symmetric cross-sections. The natural frequencies are 

obtained using Finite Element method. The cases analyzed consists of symmetric and asymmetric 

stacking sequence of the laminates. Vo et al [80] modeled the coupled bending torsion of 

composite thin walled beams using shear-deformable theory and is able to predict the buckling 

loads on the structure through the external axial load-frequency analysis. Vo et al [81,82] 

developed fully coupled vibration model of thin walled composite beams. The coordinates 

considered include bending in both the directions, axial, twist and both the rotations of cross-

section. Vo et al also predicted the loads at which the structure would buckle using the fully 

coupled model. So far, we have seen coupling between coordinates in beams with mono-symmetric 

cross section where coupling is because of offset distance between shear center and the centroid.  

   

Fig. 1. 15 Coupled Bending-torsion vibrations in piezoelectric composite structure. Courtesy: Xie et al, 

MSSP, 2018 [83].  
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Fig. 1. 16 Coupled bending-torsion vibrations in beams with eccentric tip mass boundary conditions. 

Courtesy: Al-Solihat et al, 2018 [84] 

In Ref. [85], Dennis et al analyzed coupled bending-torsion in tapered beam with C cross 

section using Galerkin’s approach. The papers described so far lack experimental validation. 

Dennis et al experimentally validated their mathematical model. Normally, in beams with 

symmetric solid cross-section we do not expect coupling between various coordinates. In Ref. [86] 

models coupled bending-torsional vibrations in beams with solid rectangular cross-section. The 

coupled vibrations are because of externally applied torques. The coupled partial differential 

equations are solved using Green’s method and the natural frequencies obtained using proposed  

method matched with the results obtained from the methods presented in the literature. In Ref. [87] 

Aldraihem et al studied the coupled bending and torsional vibrations of laminated beams. In the 

paper, it is mentioned that coupling in the beam structures occurs due to four main cases: due to 

geometry of the structure, offset mass, stiffness related terms and external loading. Orthotropic 

PZT layers are attached and the coupled bending-torsion vibrations in the laminated beam with 

offset mass are actively controlled using the PZT layers. Stoykov et al [88] studied the coupled 

bending and torsional vibrations in a beam with external load. The load creates coupling between 

the bending, torsion coordinates, and the paper develops new p-version elements and performs the 

vibration analyses using finite element method. Bhadbhade et al [89] studies coupled bending 

torsion vibrations in beam gyroscopes where the base of the cantilever beam is assumed to rotate. 

The structure is excited using a PZT actuator. Due to rotation, the coupling between the bending 

and torsion terms occurs due to the gyroscopic terms. The paper concludes that as the angular 
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velocity of the base rotation is increased, the coupling between the bending and torsion mode gets 

stronger. Eslimy-Isfahani et al [90]  extended the work by Banerjee et al [20] to incorporate the 

effect of damping to study the coupled bending-torsional vibrations of an aerofoil structure. The 

coupled term because of damping is also included in the model. In addition, the forced response 

of the structure under deterministic and random excitation is also studied in the paper. The mean 

square values of the bending, torsional displacements along the length of the structure are 

presented for different damping ratios, and the response amplitude is found to decrease for higher 

damping ratios for both the bending and torsion coordinates. Lenci et al [91] studied the effect of 

nonlinear coupling between the bending and axial coordinates in the case where the structure is 

axially restrained. The model neglects damping and investigated into the parameter, which causes 

hardening and softening behavior backbone curves in the structure. Yang et al [92] models 6 degree 

of freedom coupled vibrations in rotating Timoshenko beam. The coupling between coordinates is 

created by the gyroscopic and centrifugal effects induced due to rotation of one end of the structure. 

The effect of coupling caused by damping is ignored in the work. The phase differences in the 

motion of different coordinates caused by coupling is investigated in the work. In Ref. [84]  Al-

Solihat et al (Fig. 1.16) developed a model to study the coupled bending-torsion vibrations in a 

rotating Timoshenko beam. An off-axis tip mass is attached to the structure. The main contribution 

in the work is to include and study the effects of tip mass and damping. The coupling term between 

the bending and torsion mode induced by the damping is also included in the work. Consideration 

of internal damping in the structure yielded in considerable reduction in the simulation time. 

Shakya et al [93] studied the flutter characteristics in composite aerofoil with bending-torsion 

modes coupled. The structure is subjected to aerodynamic loading. Parametric studies are 

conducted by changing the ply orientation angle in balanced and unbalance laminates. It is shown 

that the critical flutter speed can be increased by 100 % in the case of blades with asymmetric skin 

and off-axis fiber angles. Ref. [83] (Fig. 1.15) models the bending torsion vibrations in 

piezoelectric composite structure. The aim of the paper is study, the effect of mode coupling on 

energy harvesting capabilities of a structure. It is concluded that the coupling improved the multi-

mode energy harvesting capabilities of the piezoelectric structure and the results are 

experimentally validated. The model ignores the effect of damping. In the recent past, researchers 

working in the areas of energy harvesting have investigated into effect of coupling between 

bending and torsion coordinates on the power output of piezoelectric structures, some of them are 
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[94–98].  Hwang et al [99] investigated the coupling between bending-twist and bending-axial 

modes in laminated composite structures. The main contribution of the paper lies in investigating 

the effect of damping on mode coupling. When the fiber orientation angle is at 30 degrees, the 

damping predicted from the coupled model is dominant for the first three flexural modes. When 

the fiber orientation angle is at 90 degrees, the damping from the non-coupled model is dominant 

and when the fiber orientation is 0 degrees, the damping from the torsion coordinate is maximum. 

Lee et al [100] proposed a spectral element method to find the coupled bending-shear-torsion 

vibration characteristics of axially loaded composite Timoshenko beams. The model also includes 

the effect of damping. The observation from the paper is that the spectral element elements gives 

results with higher accuracy, converge with that of finite element method, and could accurately 

capture the damping effects. Chortis et al [101] modeled the coupled vibrations in composite 

blades, which exhibit coupled behavior. The focus of this work is to investigate the effect of 

coupled damping terms. The model is solved using finite element method. The paper concludes 

that the inclusion of coupled damping terms significantly improved the damping ratios prediction 

of the blade and this is demonstrated by comparing the damping ratios obtained from theory and 

experiment. The references described in this paragraph highlight the importance of having a 

coupled vibration model to study vibrations of structures where it is expected that coupling 

significantly affects the dynamics of the system. In the current research, the host structures 

considered are symmetric and isotropic materials are considered. Normally, such structures do not 

exhibit mode coupling. After the addition of cabling, the coupling effect between various 

coordinates will come into picture. For Fig. (1.10), as the cabling increases, the stiffness due to 

diagonal section members also increase and the coupling effect is in cable-harnessed structures 

will occur due to the stiffness terms. Due to this, the natural frequency prediction by the decoupled 

models will not be accurate and the coupling effect needs to be incorporated into the existing 

mathematical models. The advantage of having coupled model for cable-harnessed beams is it 

helps in accurately predicting the natural frequency peaks of the cabled structure when compared 

to the decoupled model assumptions. 
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1.1.6 Transition Frequency in Timoshenko Beams 

 

It is observed in existing literature that for Timoshenko beam theory there exists a cut-off 

or transition frequency and the frequency spectra of Timoshenko beams is divided into two parts. 

The natural frequencies below the cut off frequency belong to the first spectrum where the bending 

dominant modes are seen and in the natural frequencies above the cut off frequency, both bending 

dominant and shear dominant modes are seen. Papers [76,102,111–117,103–110], explain the 

concept of transition frequency in Timoshenko beam theory. Ref. [102] explains that the concept 

of transition frequency and the second spectrum occurs only in beams with simply-supported 

boundary condition and concluded that other boundary conditions such as fixed-fixed, free-free 

and fixed-free etc. does not exhibit the second spectrum. Abbas et al used finite element procedure 

where higher order element is used. Bhashyam et al [104] used linear element for finite element 

simulations and observed that the second spectrum exists for boundary conditions other than the 

simply supported boundary conditions. Levinson et al [105] argues that there is no specific second 

spectrum of frequencies using Timoshenko beam theory and presented frequencies for simply 

supported boundary conditions using analytical method. Stephen et al [106,107] explained through 

his study that the concept of transition frequency is also seen in guided-guided and guided-hinged 

boundary conditions apart from hinged-hinged boundary conditions. Stephen et al concluded that 

the concept of second spectrum in Timoshenko beam theory is not practical and can be disregarded. 

Bhaskar [108] pointed out that the Timoshenko beam theory gives an additional branch of 

frequencies which correspond to thickness-shear modes and explained that these modes have 

practical significance and challenged the conclusion in the Stephen et al papers. Oliveto [111] 

examined the vibrations of axially loaded Timoshenko beams and reported that Timoshenko 

second spectrum frequencies are observed in the first few structural modes. In-depth analysis for 

mode shape behavior in Timoshenko beam with simply supported ends is presented by Cazzini et 

al [109]. The paper [109] concludes that for simply supported boundary condition, the wave 

numbers corresponding to the mode shapes are decoupled and the first part and second part of the 

spectrum produces similar mode shapes for both bending and rotation of cross-section coordinates. 

As per the mathematical expressions presented for the mode shapes by Cazzini et al, at the 

transition frequency, the structure has pure-shear vibration mode and this divides the frequency 

spectra into two parts. In the first spectra, we see bending dominant modes and in the second 
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spectra, we see both bending dominant and shear dominant modes. More mathematical explanation 

is provided in Chapter. 2. Li [112] analyzed the bending vibrations of functionally graded beams 

using Timoshenko beam theory for simply supported boundary condition and reported that the 

second spectra of Timoshenko beam exists in functionally graded beams. Cazzini et al (Ref.[103]) 

also studied the concept of transition frequency in beams with fixed-fixed and cantilever boundary 

conditions. Cazzini et al concluded that for boundary conditions other than simply supported 

boundary condition, the transition frequency is not a part of spectrum. However, by the 

mathematical nature of the mode shape parameters he divided the behavior of frequencies of 

Timoshenko beam theory into two spectra and their study concludes that the two spectra exist for 

all boundary conditions with the thickness shear modes having important practical significance 

especially when the length to thickness ratio of the structure is very small. Ref. [76] studied the 

concept of transition frequency in cantilevered composite Timoshenko beams. The composite 

structure considered in [76] has material coupling between the bending, rotation of cross section 

and the torsion modes and the study by Mei (Fig. (1.14) concluded that the presence of material 

coupling has no influence on the cut off or transition frequency. The major contributions of each 

chapter of this thesis is explained in the further paragraphs. 

1.1.7 Key Gaps in the Literature 
 

 

 

 

 

Fig. 1. 17 Coupled bending torsion motion in piezoelectric beam. Courtesy: Shan et al, Appl Sci, 2017 [95]. 

In the literature, pertaining to the vibrations of cable-harnessed structures published so far, 

the effect of coupling between various coordinates of vibrations such as the axial, out of plane 

bending, in-plane bending and torsion is neglected. The analytical models published in the 

literature only include the vibrations of structure in the out of plane bending direction. An example 

from the literature of a beam structure undergoing coupled vibration can be seen in Fig. (1.17). 

The work published in [95] studies the bending-torsional coupling in a piezoelectric beam with 

eccentric tip mass which creates eccentricity the centroid and the shear center. The work done by 

U.S Air force, Inman research group addressed a gap in literature by studying the distributed mass, 
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stiffness and damping effects of cabling. Martin et al [51–53,58] from University of Waterloo 

developed lower order distributed parameter models with the goal of obtaining deeper physical 

insight into the mass and stiffening effects of cabling on the host structure. In Martin et al’s work 

[51–53,58], although the model published gave good match with the experimental results. It 

remains to be investigated, the accuracy of Martin et al’s model when the cabling becomes more 

significant on the host structure and could make the existing model inaccurate in predicting the 

natural frequencies. In this thesis, the effect of coupling between various coordinates is 

investigated and compared to Martin et al decoupled model [51–53,58] natural frequencies and 

frequency response functions for structures with more significant cabling.  

 

1.2 Objectives and Scope 
 

         The objective of this thesis is to develop analytical models to study the coupled coordinate 

vibrations in cable-harnessed structures. The theoretical model is to be validated with experiments. 

Three different systems are investigated. The first one is the beam with straight cable attached at 

an offset position, beam with periodic cable wrapping pattern and with non-periodic cable 

wrapping pattern.  A main object of the mathematical model is to extend the studies in [51,52,54–

57] to investigate the effects of coupling induced in the system due to presence of the cables on 

the host structure. The system with straight cable at an offset position represents the first attempt 

on the coupled vibrations analysis for cable-harnessed beams. It is a simpler pattern geometry for 

the cable and the current work is compared to the previously published work by Martin et al 

[51,52,54–57] . The straight cable work extends the assumptions of the model that is previously 

used to study uni-dimensional vibrations in the out-of-plane bending direction to account for the 

coupling between various coordinates of vibrations such as in-plane bending, out-of-plane 

bending, torsion and the axial modes. Both Euler Bernoulli (EB) and Timoshenko beam theories 

(TBT) are used. The effects of several cable parameters such as the cable offset position, radius 

and pre-tension on the system’s coupled dynamics are investigated. The results are compared to a 

decoupled model to indicate the importance of including the coupling effects into the system’s 

dynamics. Then the experimental validation of the analytical models developed in [118] for the 

coupled vibrations of these cable-harnessed structures is performed.   
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In case of straight cable, the wavelength is infinite, the continuum model has constant 

coefficients, and the dynamic behavior observed is for the exact system. For the structure with 

periodic pattern, each fundamental element has a diagonal element and lumped mass at the end of 

each fundamental element. In diagonal wrapping pattern, the wavelength is finite and the coupled 

strain and kinetic energies have variable coefficients and it becomes difficult to solve the exact 

system of coupled partial differential equations by discretizing the structure at the end of each 

fundamental element particularly when there are larger number of fundamental elements or when 

the wavelength of each fundamental element is smaller. Therefore, a constant coefficient coupled 

PDE model is presented to study the vibrations of cable-harnessed beam with diagonal wrapping 

pattern. The coupled natural frequencies of the cases: cable-harnessed beam with straight cable at 

an offset and the periodic wrapping pattern are also compared to give insight into the advantage of 

having periodic wrapping pattern to reduce the impact of mass and stiffening effects of cabling on 

the host structure. Sensitivity analysis is presented where the coupled and decoupled models are 

compared against different values of cable radius and the number of fundamental elements. Then 

the results obtained from the fully coupled homogenized analytical models (using both Euler-

Bernoulli (EB) and Timoshenko beam theories (TBT)) for diagonal wrapping pattern are validated 

experimentally. In addition, the concept of transition frequency is not studied before for the cable-

harnessed structures. For the cable-harnessed structure with diagonal wrapping pattern, the 

coordinates of motion such as the axial, bending, rotation of cross section and the torsion modes 

are coupled to each other because of the presence of cabling. For simply supported boundary 

conditions, a thick cable harnessed beam structure is considered. The findings of the mode shape 

behavior corresponding to both the first and second frequency spectra along with the transition or 

cut-off frequency are presented and compared to that of bare beam with simply supported boundary 

conditions.  Cable-wrapped structures in general have applications in space structures where cables 

can be harnessed in any pattern or configuration around the host structure, which is the motivation 

behind the work performed in thesis in studying the coupled dynamics behind the cabled structure. 

Other areas where cable-wrapped structures can have practical applications include: by wrapping 

cables made of piezoelectric materials around the beam, energy can be harvested from the 

vibrations of the cabled structure. Cable wrapping can be used to stiffen the structure, as a result, 

the overall critical buckling load of the structure can be increased. Cable wrapped structures can 
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have applications in vibration control where by actively controlling the tension of the cable, the 

desired natural frequency or dynamic characteristics from the structure can be achieved. 

For structure with non-periodic cable wrapping pattern, the effect of coupling in cable-

harnessed structures with non-periodic wrapping patterns is studied. The coordinates of vibration 

considered are bending in the out of plane, in plane direction, axial and the torsion coordinates. 

The exact coupled partial differential equations (PDEs) are presented. The wrapping pattern 

considered is diagonal. Since the structures under study have multiple fundamental elements and 

the wrapping pattern is non-periodic (each fundamental element has a different wrapping angle), 

the equivalent continuum model as in Ref. [119] for periodic wrapping pattern can no longer be 

derived. Each fundamental element is assumed to have different displacements and continuity 

conditions are applied at each interface (discretizing the structure at each interface of two 

fundamental elements) to setup the eigen-value problem and to solve for the natural frequencies 

and mode shapes of the structure. Due to the diagonal section, some of the coefficients in the exact 

set of PDEs are spatially variable. Constant coeffcient model is developed. The results obtained 

from the coupled theoretical model from both periodic and non-periodic structures will be 

validated using experiments and compared to the decoupled assumptions of Martin et al. The 

samples under investigation in this thesis have more significant cabling wrapped around the host 

structure and lesser fundamental elements when compared to Martin et al’s work. [51–53,58]. 

The following are the journal and conference paper manuscripts that have been prepared from this 

thesis. 

 

[J.1] Yerrapragada, K., and Salehian, A., 2019, “Analytical Study of Coupling Effects for 

Vibrations of Cable-Harnessed Beam Structures,” Journal of Vibration and Acoustics, 

141(3), p.031001. 

 [J.2] Yerrapragada, K., and Salehian, A., “Coupled Dynamics of Cable-Harnessed Structures: 

Experimental Validation,” Accepted with Revisions, Journal of Vibration and Acoustics 

(VIB 18 1553). 

[J.3] Yerrapragada, K., and Salehian, A., “Coupled Vibrations in Periodic Cable-Harnessed 

Structures: Theory and Experimental Validation,” To be Submitted.  

[J.4]  Yerrapragada, K., Martin, B., Morris, K., and Salehian, A., 2019, “Theoretical and   

Experimental Study of Vibrations of Cable-Harnessed Structures with Non-Periodic 
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Wrapping Pattern: Coupling Effects,” To be Submitted 

[C.1] Yerrapragada, K., and Salehian, A., 2017, “Coupled Axial, In Plane and Out of Plane 

Bending Vibrations of Cable Harnessed Space Structures,” International Conference on 

Applied Mathematics, Modeling and Computational Science, Springer, pp. 249–257. 

[C.2] Yerrapragada, K., and Salehian, A., 2018, “Coupled Bending, Torsion and Axial Vibrations 

of a Cable-Harnessed Beam With Periodic Wrapping Pattern,” IDETC Conference, ASME, 

pp. 1–8. 
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Chapter 2: Mathematical Modeling and Theoretical Analysis of 

Coupled Vibrations of Cable-Harnessed Structures 
 

This chapter presents several mathematical models to study the coupled vibration 

characteristics of different systems of cable-harnessed structures such as the structure with straight 

cable positioned at an offset distance, structure with periodic cable wrapping pattern and structure 

with non-periodic cable wrapping pattern.  

In Section 2.1, the structure with straight cable at an offset distance is considered. The 

system’s configuration, the developed exact mathematical model for the fully coupled cable-

harnessed beam and the procedure to find out the natural frequencies are presented. The natural 

frequencies for the decoupled and coupled vibration models are compared to the finite element 

results for several boundary conditions such as the fixed-fixed, cantilever and simply supported. 

Finally, the results for the sensitivity analysis to study the effects of several cable parameters such 

as cable’s geometry, pre-tension and offset position on the natural frequencies are presented. The 

relation between the system’s coupling and the energy transfer between various coordinates of 

vibrations are also studied.  

In Section 2.2, theoretical studies are performed for the structure with periodic cable 

wrapping pattern. An equivalent coupled continuum model is presented and the coupled natural 

frequencies are first compared to the decoupled model assumptions from Ref. [51,52] for various 

system configurations. Sensitivity analysis on the natural frequencies are performed by varying 

the number of fundamental elements of wrapping pattern and the cable radius. For a given 

structure, the dynamic behavior of the straight case and periodic pattern are compared to present 

the advantage of periodic wrapping pattern.  

In Section 2.3, the coupled analytical model for the non-periodic wrapping cable pattern is 

developed by discretizing the structure after each fundamental element and applying continuity 

conditions, which will result in a complicated mathematical model. The theoretical results obtained 

are compared to the decoupled model of non-periodic structure by Ref. [53] for three different 

non-periodic wrapping patterns. 
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2.1 Coupled Vibrations of Straight Cable Harness at Offset Distance 
 

2.1.1 Mathematical Model 
 

This section presents the mathematical modeling and underlying assumptions for the 

structure in this study. The structure considered is a beam system with a cable attached along the 

side of the beam as shown in Fig. (2.1). The coordinate axes are also shown in the Fig. (2.1 a) and 

Fig. (2.1 b) for Timoshenko and Euler-Bernoulli theories respectively. The cable is positioned at 

an offset distance along the y-axis. 

To develop the continuum model of the cable-harnessed structure, the following 

assumptions apply: 

1) The host structure is assumed to be a beam and it is modeled using Euler-Bernoulli and 

Timoshenko beam theories. 

2) The cable stays in contact with the beam during vibrations along its length. This is because 

the electronic cords and power cables are secured in place using cable ties that prevents them from 

being detached from the host structure during vibrations.    

3) The cable is in pre-tension at the equilibrium position and will remain in tension during the 

vibrations. The tension value is assumed to be constant during vibrations.  

4) The pre-tension in the cable results in the pre-compression in the beam [51]. 

 

The fundamental difference between the Euler-Bernoulli and Timoshenko beam models is 

that the Timoshenko model takes into account the effect of shear deformation and rotary inertia, 

which the Euler-Bernoulli ignores. In Euler-Bernoulli, it is assumed that the neutral remains 

perpendicular to the cross-section after the structure bends. In Timoshenko, the effect of rotation 

of cross-section is taken into consideration. This can be clearly seen in Figs. (2.1 a) and (2.1 b). 

The stress component assumes uniform shear stress across the cross-section which is not practical 

and therefore a shear correction factor is used in the Timoshenko theory to correction this 

assumption [120]. The shear correction factor depends on the cross-section of the structure and 

accurately takes into account the shear stress across the cross-section. The effect of damping in the 

structure is neglected in this work. 
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(a) 

 

(b) 

Fig. 2. 1  Representation of the cable harness beam along with the coordinate axes for (a) Timoshenko 

theory (b) Euler-Bernoulli theory. 

The following sections pertain to the vibration analysis of the cable-harnessed beam shown 

in Fig. (2.1) using a distributed parameter model. The previous work by the authors on the 

analytical model for the periodically wrapped beam, [51], excludes the coupling effects between 

various coordinates of vibrations, i.e., bending, axial and torsion. The following steps outline the 

procedure for an exact fully coupled continuum model development for the system shown in Fig. 

(2.1) using Euler-Bernoulli and Timoshenko beam theories. The first step in finding an equivalent 

continuum model is to establish the displacement field relationship and stress-strain components. 

The linearized three-dimensional displacement fields using Euler-Bernoulli (EB) and Timoshenko 

beam theories are as follows [88,121–123]. 
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Euler-Bernoulli beam model Timoshenko beam model  

 

 

(2.1) 

𝑋(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑦
𝜕𝑣(𝑥, 𝑡)

𝜕𝑥

− 𝑧
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
 

𝑋(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑦𝜑(𝑥, 𝑡)

+ 𝑧𝜓(𝑥, 𝑡) 

𝑌(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑧𝜃(𝑥, 𝑡) 𝑌(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣(𝑥, 𝑡) − 𝑧𝜃(𝑥, 𝑡) 

𝑍(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑦𝜃(𝑥, 𝑡) 𝑍(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤(𝑥, 𝑡) + 𝑦𝜃(𝑥, 𝑡) 

where 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡), 𝑤(𝑥, 𝑡), 𝜃(𝑥, 𝑡), 𝜑(𝑥, 𝑡), 𝜓(𝑥, 𝑡) are the motions in the axial, in-plane bending, 

out-of-plane bending, torsion, rotation of cross-section about z and y-axes respectively. 

𝑋(𝑥, 𝑦, 𝑧, 𝑡), 𝑌(𝑥, 𝑦, 𝑧, 𝑡) and 𝑍(𝑥, 𝑦, 𝑧, 𝑡) are the total displacement of the structure along the 𝑥, 𝑦 and 

𝑧 axes respectively after considering all the coordinates. The next step is to find the stress-strain 

expressions using the displacement field. Eq. (2.2) gives the relationship between the stress and 

strain for an isotropic material.  

{
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(2.2) 

where [𝐷] is the elasticity matrix, and 𝐸 and 𝐺 are the Young’s and the Shear Moduli respectively. 

Eq. (2.3) gives the relationship between the stress and strain for an isotropic material after 

neglecting the effect of Poisson’s ratio [124]. 

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥, 𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦, 𝜏𝑧𝑥 = 𝐺𝛾𝑧𝑥 (2.3) 

This structure is modelled using beam theory, therefore, the strain components in the 𝑦 and 

𝑧 directions, (𝜀𝑦𝑦 and 𝜀𝑧𝑧), and the shear strain on the 𝑦𝑧 plane, (𝛾𝑦𝑧), can be neglected (Ref. 

[121]). The expressions for the Green-Lagrange strain tensor for Euler-Bernoulli model are shown 

in Eq. (2.4 b)-(2.6 b) [88,121] and for Timoshenko model are shown in Eq. (2.4 a)-(2.6 a). The 
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displacement field (Eq. (2.1)) is substituted into the Green-Lagrange strain tensor expressions to 

obtain the final expressions for the strain tensor in Eqs. (2.4 a) – (2.6 a) and Eqs. (2.4 b) – (2.6 b).  
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(2.4 b) 
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𝜕𝑦
 

 

 

= −√𝜅𝜑 + √𝜅
𝜕𝑣

𝜕𝑥
− 𝑧

𝜕𝜃

𝜕𝑥
 

(2.5 a) 

= −𝑧
𝜕𝜃

𝜕𝑥
 

(2.5 b) 

𝛾𝑧𝑥 =
𝜕𝑍

𝜕𝑥
+
𝜕𝑋

𝜕𝑧
+
𝜕𝑋

𝜕𝑧

𝜕𝑋

𝜕𝑥
+
𝜕𝑌

𝜕𝑧

𝜕𝑌

𝜕𝑥
+
𝜕𝑍

𝜕𝑧

𝜕𝑍

𝜕𝑥
 

 

 

= √𝜅𝜓 + √𝜅
𝜕𝑤

𝜕𝑥
+ 𝑦

𝜕𝜃

𝜕𝑥
 

(2.6 a) 

= 𝑦
𝜕𝜃

𝜕𝑥
 

(2.6 b) 

where 𝜀𝑥𝑥 is the direct strain in the 𝑥 direction. 𝛾𝑥𝑦 and 𝛾𝑧𝑥 are the shear strains in the 𝑥𝑦 and the 

𝑦𝑧 plane respectively. Here, 𝜅 is the shear correction factor and can be found as  
5+5𝜈

6+5𝜈
, [88], where, 

𝜈 is the Poisson’s ratio. The effect of Poisson’s ratio on the direct strains of the host structure is 

neglected. The total strain energy of the unit can be found using the strain energy for each of the 

beam and cable as,  
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𝑈 = 
1

2
[∭{𝜀}𝑏

𝑇{𝜎}𝑏 𝑑𝑉 +∭{𝜀}𝑐
𝑇{𝜎}𝑐 𝑑𝑉] 

(2.7) 

where  {𝜀}𝑏 and {𝜀}𝑐 are the strain components of the beam and cable respectively. {𝜎}𝑏 =

[𝐷]𝑏{𝜀}𝑏 and  {𝜎}𝑐 = [𝐷]𝑐{𝜀}𝑐. After neglecting 𝜀𝑦𝑦 , 𝜀𝑧𝑧, 𝛾𝑦𝑧 in Eq. (2.2) due to using a beam 

theory, the stresses in the beam are found using {𝜎𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑧𝑥}𝑏
𝑇
=

{𝐸𝑏(𝜀𝑥𝑥)𝑏, 𝐺𝑏(𝛾𝑥𝑦)𝑏 , 𝐺𝑏(𝛾𝑧𝑥)𝑏}
𝑇
. The cable is assumed to undergo strain in the 𝑥 direction only, 

therefore, (𝜎𝑥𝑥)𝑐 = 𝐸𝑐(𝜀𝑥𝑥)𝑐. Also, the shear modulus effects in the cable are assumed negligible. 

Additionally, the strains components for the beam and cable include the strain experienced during 

the vibrations as well as the cable pretension that also induces a pre-compression in the beam. 

Therefore, the expressions for the direct strains induced in the cable and beam after the 

incorporating the effect of pre-tension in the cable and pre-compression in the beam are as 

(𝜀𝑥𝑥)𝑐 = 𝑇 𝐸𝑐𝐴𝑐⁄ + 𝜀𝑥𝑥 and (𝜀𝑥𝑥)𝑏 = −𝑇 𝐸𝑏𝐴𝑏⁄ + 𝜀𝑥𝑥. The negative sign in the equation for 

(𝜀𝑥𝑥)𝑏 is due to the pre-compression induced in the beam upon the cable pre-tension. The final 

energy expressions for the kinetic and strain of the cable-harnessed beam for a Timoshenko beam 

theory are as follows.  

𝑈𝑠𝑦𝑠𝑡𝑒𝑚 =
1

2
[∭𝐸𝑏(𝜀𝑥𝑥)𝑏

2 +𝐺𝑏(𝛾𝑥𝑦)𝑏
2 + 𝐺𝑏(𝛾𝑧𝑥)𝑏

2 𝑑𝑉] +
1

2
[∭𝐸𝑐(𝜀𝑥𝑥)𝑐

2 𝑑𝑉] 

=
1

2
∫ [𝑐1(𝑢

′)2 + 𝑐2(𝑣
′)2 + 𝑐3(𝑤

′)2 + 𝑐4(𝜃
′)2 + 𝑐5(𝜑

′)2 + 𝑐6(𝜓
′)2 + 𝑐7(𝜑)

2 +
𝑙

0

2𝑐8(𝑢
′)(𝜑′) + 2𝑐9(𝑢

′)(𝜓′) + 2𝑐10(𝜑
′)(𝜓′) + 2𝑐11(𝑣

′)(𝜑) + 2𝑐12(𝑣
′)(𝜃′) + 2𝑐13(𝑤

′)(𝜃′) +

𝑐14(𝜓)
2 + 2𝑐15(𝑤

′)(𝜓)] 𝑑𝑥  

(2.8) 

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 =
1

2
[∭𝜌𝑏{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇} 𝑑𝑉 +∭𝜌𝑐{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇} 𝑑𝑉] 

=
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
+ 𝑘5(𝜑̇)

2 + 𝑘6(𝜓̇)
2
] 

𝑙

0

𝑑𝑥 

 

(2.9) 

 

The constants used in the kinetic and strain energy expressions for the Timoshenko model 

are presented in Eq. (A.1) in the Appendix A. The terms 𝑐1, 𝑐2, 𝑐3 and 𝑐4 represent the strain 

energies in the axial, in-plane bending, out of plane bending and torsion modes respectively. 𝑐5, 𝑐7 

and 𝑐6, 𝑐14 represent the coefficients related to the two rotations of cross-sections. The remaining 

strain energy coefficients are due to coupling terms, which in case of Timoshenko model depend 
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on the geometry and material properties of the host structure and the radius, pre-tension and 

position coordinates of the center of the cable. 

The energy expressions for Euler-Bernoulli model can be found by neglecting shear 

deformation and rotary inertia effects. Assuming negligible initial twist, and zero wrapping angle 

of the cable, the strain and kinetic energy expressions of the system using this theory are found as 

Ref. [51], 

𝑈 =
1

2
∫ [𝑏1(𝑢

′)2 + 𝑏2(𝑣
′′)2 + 𝑏3(𝑤

′′)2 + 𝑏4(𝜃
′)2 + 2𝑏5(𝑣

′′)(𝑤′′) + 2𝑏6(𝑢
′)(𝑣′′)

𝑙

0

+ 2𝑏7(𝑢
′)(𝑤′′) + 2𝑏8(𝑤

′)(𝜃′) + 2𝑏9(𝑣
′)(𝜃′)] 𝑑𝑥 

 

(2.10) 

𝑇 =
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
] 

𝑙

0

𝑑𝑥 
(2.11) 

where superscript ( )′denotes partial derivative with respect to spatial coordinate 𝑥(
𝜕

𝜕𝑥
) and 

superscript ( )̇ denotes partial derivative with respect to time 𝑡(
𝜕

𝜕𝑡
). The constants of the above 

strain and kinetic energy expressions for Euler-Bernoulli model are presented in Eq. (A.2) in the 

Appendix A. Here, 𝑏1 to 𝑏4 represent the coupling coefficients in the axial, in-plane bending, out-

of-plane bending and torsion modes respectively. The remaining coefficients (𝑏5 to 𝑏9) represent 

the coupling coefficients. The coupling coefficients in case of Euler-Bernoulli model depends on 

the parameters like cable radius, cable pre-tension, young’s modulus of the cable and the position 

coordinates of the center of the cable along the y and z axis. Neglecting dissipative forces, 

assuming free vibrations and no external loads acting on the system, equations of motion for the 

cable harnessed structure for the two beam theories may be found using Hamilton’s Principle (Eq. 

(1.1)).  

The coupled equations of motion for the six coordinates of vibrations for the Timoshenko beam 

model are found as,  

−𝑘1𝑢̈ + 𝑐1𝑢
′′ + 𝑐8𝜑

′′ + 𝑐9𝜓
′′ = 0 (2.12 a) 

−𝑘2𝑣̈ + 𝑐2𝑣
′′ + 𝑐12𝜃

′′ + 𝑐11𝜑
′ = 0 (2.12 b) 

−𝑘3𝑤̈ + 𝑐3𝑤
′′ + 𝑐13𝜃

′′ + 𝑐15𝜓
′ = 0 (2.12 c) 

−𝑘4𝜃̈ + 𝑐4𝜃
′′ + 𝑐12𝑣

′′ + 𝑐13𝑤
′′ = 0 (2.12 d) 

−𝑘5𝜑̈ + 𝑐5𝜑
′′ − 𝑐7𝜑 + 𝑐8𝑢

′′ − 𝑐11𝑣
′ + 𝑐10𝜓

′′ = 0 (2.12 e) 

−𝑘6𝜓̈ + 𝑐6𝜓
′′ − 𝑐14𝜓 + 𝑐9𝑢

′′ − 𝑐15𝑤
′ + 𝑐10𝜑

′′ = 0 (2.12 f) 
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The six coupled partial differential equations obtained after applying Hamilton’s principle 

are presented in Eqs. (2.12 a) - (2.12 f) will require six boundary conditions at each end. The 

boundary conditions (also obtained from Hamilton’s principle) for each of the fixed, simply 

supported and free ends are as follows. The boundary conditions for the fixed, free and simply 

supported ends are shown in Eqs. (2.13), (2.14) and (2.15) respectively. 

𝑢 = 𝑣 = 𝑤 = 𝜃 = 𝜑 =  𝜓 = 0|𝑥=0 𝑜𝑟 𝑙 (2.13) 

  

𝑐1𝑢
′ + 𝑐8𝜑

′ + 𝑐9𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐2𝑣
′ + 𝑐11𝜑 + 𝑐12𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐3𝑤
′ + 𝑐4𝜃

′ + 𝑐15𝜓= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐4𝜃
′ + 𝑐12𝑣

′ + 𝑐13𝑤
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐5𝜑
′ + 𝑐8𝑢

′ + 𝑐10𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐10𝜑
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

   

(2.14) 

 
𝑢 = 𝑣 = 𝑤 = 𝜃= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐5𝜑
′ + 𝑐8𝑢

′ + 𝑐10𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐10𝜑
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 (2.15) 

 

A simpler version of Eqs. (2.12 a) - (2.12 f) can be found using assumptions for Euler-

Bernoulli beam model in which the shear and rotary inertia effects are excluded. The equations for 

the Euler-Bernoulli are derived from the displacement field and strain tensor similar to the 

Timoshenko beam theory. In Euler-Bernoulli, beam theory, Eqs. (2.12 e) and (2.12 f) which 

correspond to the rotations of cross-sections are not present. The governing equations for Euler 

Bernoulli beam model are presented in Eqs. (2.16 a)- (2.16 d). 

−𝑘1𝑢̈ + 𝑏1𝑢
′′ + 𝑏6𝑣

′′′ + 𝑏7𝑤
′′′ = 0 (2.16 a) 

−𝑘2𝑣̈ − 𝑏2𝑣
′′′′ − 𝑏6𝑢

′′′ − 𝑏5𝑤
′′′′ + 𝑏9𝜃

′′ = 0 (2.16 b) 

−𝑘3𝑤̈ − 𝑏3𝑤
′′′′ − 𝑏7𝑢

′′′ − 𝑏5𝑣
′′′′ + 𝑏8𝜃

′′ = 0 (2.16 c) 

−𝑘4𝜃̈ + 𝑏4𝜃
′′ + 𝑏9𝑣

′′ + 𝑏8𝑤
′′ = 0 (2.16 d) 

The associated boundary conditions for the Eqs. (2.16 a) - (2.16 d) for the fixed, free and simply 

supported ends are shown in Eqs. (2.17), (2.18) and (2.19) respectively. 
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𝑢 = 𝑣 = 𝑤 = 𝜃 = 𝑣′ = 𝑤′= 0|𝑥=0 𝑜𝑟 𝑙 (2.17) 

𝑏1𝑢
′ + 𝑏6𝑣

′′ + 𝑏7𝑤
′′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤

′′ + 𝑏6𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′′ + 𝑏5𝑤

′′′ + 𝑏6𝑢
′′ − 𝑏9𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤
′′ + 𝑏5𝑣

′′ + 𝑏7𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤
′′′ + 𝑏5𝑣

′′′ + 𝑏7𝑢
′′ − 𝑏8𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏4𝜃
′ + 𝑏8𝑤

′ + 𝑏9𝑣
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

(2.18) 

𝑢 = 𝑣 = 𝑤 = 𝜃 = 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤

′′ + 𝑏6𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤
′′ + 𝑏5𝑣

′′ + 𝑏7𝑢
′= 0|𝑥=0 𝑜𝑟 𝑙 

     

(2.19) 

Eqs. (2.12 a)- (2.12 f) and (2.16 a) - (2.16 d) are coupled through stiffness terms. All the 

coordinates of motion are coupled because of the pre-tension in the cable, Young’s modulus and 

radius of the cable. In mathematical terms, the first derivative of displacement represents the slope, 

second derivative represents moment, third derivative represents shear and the fourth derivative 

represents the intensity of load. Mathematically, Eqs. (2.16 b) and (2.16 c) corresponding to the in 

plane and out-of-plane bending coordinates. The axial and torsion coordinates are coupled to these 

modes because of equivalent shear terms (third derivative of displacement and second derivative 

of angle). The torsion mode Eq. (2.16 d) is coupled to the in-plane and out-of-bending modes 

because of equivalent moment terms. The axial mode Eq. (2.16 a) is coupled to the bending 

coordinates because of equivalent shear terms. Eqs. (2.16 b) and (2.16 c) show that the coupling 

term related to the in plane and out of plane bending is fourth derivative, which physically 

corresponds to load. In Timoshenko model, Eqs. (2.12 a)-(2.12 f), the coupling coefficients in 

addition to depending on the cable parameters like position coordinates along y and z axis, cable 

radius and cable pre tension, also depends on the geometry of the host structure. In a Timoshenko 

beam, apart from the cable coupling, the rotation of cross section are geometrically coupled to the 

bending coordinates. In Eq. (2.12 a), the axial mode is coupled to the rotations of cross-sections 

through the cable parameters. In Eq. (2.12 b), the in-plane bending mode is coupled to the torsion 

mode through the cable parameters and to the rotation of cross-section about z axis because of 

geometry of the beam (𝑐11). Similarly, in Eq. (2.12 c) the out of plane bending mode is coupled to 

the torsion mode through cable parameters and to the rotation of cross-section through the 

geometric term. In Eq. (2.12 d), the torsion mode is coupled to the bending terms through the cable 
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parameters. Similarly, in Eqs. (2.12 e) and (2.12 f), the rotations of cross-section about z and y-

axis are coupled to other coordinates through the cable parameters and beam geometry terms. In 

Timoshenko beam, we can also observe that unlike Euler-Bernoulli, we do not see presence of in-

plane bending terms 𝑣 in the out of plane bending mode equation 𝑤 (Eq. (2.12 c)) and vice-versa 

(Eq. (2.12 b)). The two bending terms here are coupled through the rotations of cross-section 

related terms (Eqs. (2.12 e) and (2.12 f)). After obtaining the governing equations, the next step is 

to obtain the natural frequencies and mode shapes. In the following steps, the solution procedure 

for coupled partial differential equations, the Timoshenko model is shown in Eqs. (2.12 a)- (2.12 

f). The same procedure is applicable for the Euler-Bernoulli model, which are shown in Eqs. (2.16 

a) - (2.16 d). The general form of the solution for the coupled PDE’s are shown in Eqs. (2.12 a)- 

(2.12 f) are as follows,  

{
 
 

 
 
𝑢
𝑣
𝑤
𝜃
𝜑
𝜓}
 
 

 
 

=

{
 
 

 
 
𝑈
𝑉
𝑊
Θ
Φ
Ψ}
 
 

 
 

𝑒𝛼𝑥𝑒𝑖𝜔𝑡 

 

(2.20) 

where 𝑈, 𝑉,𝑊, Θ,Φ and Ψ are modal vectors. The temporal solution of the PDEs is assumed to be 

harmonic (represented by the complex exponential 𝑒𝑖𝜔𝑡), and the spatial solution is assumed to be 

of the form 𝑒𝛼𝑥, where 𝜔 is the frequency and 𝛼 is the mode shape parameter. Substituting Eq. 

(2.20) in Eqs. (2.12 a)- (2.12 f), we obtain six simultaneous algebraic equations, which are 

converted into matrix form as follows,  

[𝐴]6 𝑋 6

{
 
 

 
 
𝑈
𝑉
𝑊
Θ
Φ
Ψ}
 
 

 
 

6 𝑋 1

= {0}6 𝑋 1 

 

(2.21) 

where [A] is given by:  

[
 
 
 
 
 
 
𝑐1𝛼

2 + 𝑘1𝜔
2 0 0 0 𝑐8𝛼

2 𝑐9𝛼
2

0 𝑐2𝛼
2 + 𝑘2𝜔

2 0 𝑐12𝛼
2 𝑐11𝛼 0

0 0 𝑐3𝛼
2 + 𝑘3𝜔

2 𝑐13𝛼
2 0 𝑐15𝛼

0 𝑐12𝛼
2 𝑐13𝛼

2 𝑐4𝛼
2 + 𝑘4𝜔

2 0 0

𝑐8𝛼
2 −𝑐11𝛼 0 0 𝑐5𝛼

2 − 𝑐7 + 𝑘5𝜔
2 𝑐10𝛼

2

𝑐9𝛼
2 0 −𝑐15𝛼 0 𝑐10𝛼

2 𝑐6𝛼
2 + 𝑘6𝜔

2 − 𝑐14]
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For non-trivial solution,|𝐴(𝛼, 𝜔)| should be zero. This results in a polynomial that relates the mode 

shape parameters 𝛼 and frequency 𝜔. Solving the above polynomial results in 12 roots for 𝛼 in 

terms of 𝜔. The next step is to find the spatial solutions. We know from Eq. (2.21) that 

𝐴61𝑈 + 𝐴62𝑉 + 𝐴63𝑊+𝐴64Θ+ 𝐴65Φ+ 𝐴66Ψ = 0 (2.22) 

where 𝐴6𝑖 (𝑖 → 1 𝑡𝑜 6) represent the elements of the sixth row of matrix [A] (any arbitrary row 

can be used to develop the linear dependency condition. In this case, sixth row is selected). For the 

linear dependency between 𝑈, 𝑉,𝑊, Θ,Φ and Ψ to be satisfied, the spatial solutions for different 

coordinates of motion should be as follows.  

𝑈𝑛 = |(−1)
6+1𝑀61| 𝑉𝑛 = |(−1)

6+2𝑀62| 𝑊𝑛 = |(−1)
6+3𝑀63| (2.23) 

Θ𝑛 = |(−1)
6+4𝑀64| Φ𝑛 = |(−1)

6+5𝑀65| Ψ𝑛 = |(−1)
6+6𝑀66| 

where 𝑀6𝑖 (𝑖 → 1 𝑡𝑜 6) represent the minors of the elements 𝐴6𝑖 for 𝑖 → 1 to 6 of matrix [A]. The 

determinant of the co-factor elements presented in Eq. (2.23) gives us the final spatial solution for 

each coordinates of vibration. Since we have 12 roots for 𝛼, subscript 𝑛 is from 1 to 12. After 

obtaining 𝛼 in terms of 𝜔 and obtaining the spatial solutions, the general solution of the coupled 

PDEs is expanded as follows. 

{
 
 

 
 
𝑢(𝑥, 𝑡)
𝑣 (𝑥, 𝑡)
𝑤 (𝑥, 𝑡)
𝜃 (𝑥, 𝑡)
𝜑 (𝑥, 𝑡)
 𝜓(𝑥, 𝑡)}

 
 

 
 

= ∑𝑑𝑛

12

𝑛=1

{
 
 

 
 
𝑈𝑛(𝛼 = 𝛼𝑛)
𝑉𝑛(𝛼 = 𝛼𝑛)
𝑊𝑛(𝛼 = 𝛼𝑛)
Θ𝑛(𝛼 = 𝛼𝑛)
Φ𝑛(𝛼 = 𝛼𝑛)
Ψ𝑛(𝛼 = 𝛼𝑛)}

 
 

 
 

𝑒𝛼𝑛𝑥𝑒𝑖𝜔𝑡 

 

 

(2.24) 

Here, 𝑑𝑛is a solution constant for 𝑛 → 1 to 12. The total of 12 boundary conditions are then used 

to find the frequencies using the algebraic equations below.  

[𝐿(𝜔)]12 𝑋 12 {𝑑}12 𝑋 1 =
{0}12 𝑋 1 (2.25) 

The non-trivial solution results in |𝐿(𝜔)| = 0, from which the natural frequencies are found. As 

the system is fully coupled, the entries of matrices [𝐴(𝛼, 𝜔)]6 𝑋 6 and [𝐿(𝜔)]12 𝑋 12 are very 

complicated. The characteristic equation obtained by evaluating the determinant of [𝐴(𝛼, 𝜔)] is 

found using a computational software. Similarly, the transcendental frequency equation from 

[𝐿(𝜔)] is also found using computational software. The roots of the transcendental frequency 

equation are found graphically by plotting the |𝐿(𝜔)| with respect to the frequency to find the 

natural frequencies of the system. For the experimental validation, the structure is subjected to 

harmonic base excitation in the out-of-plane bending direction and the description is shown in Fig. 

(2.2). The equations of motion (2.12 a) to (2.12 f) and (2.16 a) to (2.16 d) are modified after 
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including the effect of base excitation as Eq. (2.26) and Eq. (2.29) respectively. Also, 𝑤𝑏(𝑡) is the 

base excitation (equivalent forcing term) provided to the cantilevered structure in the out of plane 

bending direction which appears on the right hand side of Eq. (2.26 c) and Eq. (2.29 c) in the 

equation related to the out of plane bending dominant motion. 

 

Fig. 2. 2  Schematic of the cable-harnessed beam subjected to harmonic base excitation and the coordinate 

axes. 

For the Euler-Bernoulli model, the equations are as follows: (Eqs. (2.26 a) to (2.26 d)). 

−𝑘1𝑢̈ + 𝑏1𝑢
′′ + 𝑏6𝑣

′′′ + 𝑏7𝑤′′′𝑟𝑒𝑙 = 0 (2.26 a) 

−𝑘2𝑣̈ − 𝑏2𝑣
′′′′ − 𝑏6𝑢

′′′ − 𝑏5𝑤′′′′𝑟𝑒𝑙 + 𝑏9𝜃
′′ = 0 (2.26 b) 

−𝑘3𝑤̈𝑟𝑒𝑙 − 𝑏3𝑤′′′′𝑟𝑒𝑙 − 𝑏7𝑢
′′′ − 𝑏5𝑣

′′′′ + 𝑏8𝜃
′′ = 𝑘3𝑤̈𝑏 (2.26 c) 

−𝑘4𝜃̈ + 𝑏4𝜃
′′ + 𝑏9𝑣

′′ + 𝑏8𝑤
′′
𝑟𝑒𝑙 = 0 (2.26 d) 

The boundary conditions associated with the fixed and free ends are shown in Eqs. (2.27) and 

(2.28). 

Fixed end 

𝑢 = 𝑣 = 𝑤𝑟𝑒𝑙 = 𝜃 = 𝑣
′ = 𝑤𝑟𝑒𝑙

′= 0|𝑥=0  (2.27) 

Free end. 

𝑏1𝑢
′ + 𝑏6𝑣

′′ + 𝑏7𝑤
′′
𝑟𝑒𝑙= 0|𝑥=𝑙  

𝑏2𝑣
′′ + 𝑏5𝑤

′′
𝑟𝑒𝑙 + 𝑏6𝑢

′= 0|𝑥=𝑙  

𝑏2𝑣
′′′ + 𝑏5𝑤′′′𝑟𝑒𝑙 + 𝑏6𝑢

′′ − 𝑏9𝜃
′= 0|𝑥=𝑙 

𝑏3𝑤
′′
𝑟𝑒𝑙 + 𝑏5𝑣

′′ + 𝑏7𝑢
′= 0|𝑥= 𝑙 

𝑏3𝑤′′′𝑟𝑒𝑙 + 𝑏5𝑣
′′′ + 𝑏7𝑢

′′ − 𝑏8𝜃
′= 0|𝑥=𝑙 

𝑏4𝜃
′ + 𝑏8𝑤

′
𝑟𝑒𝑙 + 𝑏9𝑣

′= 0|𝑥=𝑙 

 

 

(2.28) 
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Therefore, 𝑤𝑟𝑒𝑙 is the relative out of plane bending motion of any point on the structure 

with respect to the base. Similarly, the governing partial differential equations of motion along 

with the boundary conditions for the Timoshenko model can be found as, [118].  

−𝑘1𝑢̈ + 𝑐1𝑢
′′ + 𝑐8𝜑

′′ + 𝑐9𝜓
′′ = 0 (2.29 a) 

−𝑘2𝑣̈ + 𝑐2𝑣
′′ + 𝑐12𝜃

′′ + 𝑐11𝜑
′ = 0 (2.29 b) 

−𝑘3𝑤̈𝑟𝑒𝑙 + 𝑐3𝑤′′𝑟𝑒𝑙 + 𝑐13𝜃
′′ + 𝑐15𝜓

′ = 𝑘3𝑤̈𝑏 (2.29 c) 

−𝑘4𝜃̈ + 𝑐4𝜃
′′ + 𝑐12𝑣

′′ + 𝑐13𝑤′′𝑟𝑒𝑙 = 0 (2.29 d) 

−𝑘5𝜑̈ + 𝑐5𝜑
′′ − 𝑐7𝜑 + 𝑐8𝑢

′′ − 𝑐11𝑣
′ + 𝑐10𝜓

′′ = 0 (2.29 e) 

−𝑘6𝜓̈ + 𝑐6𝜓
′′ − 𝑐14𝜓 + 𝑐9𝑢

′′ − 𝑐15𝑤′𝑟𝑒𝑙 + 𝑐10𝜑
′′ = 0 (2.29 f) 

The boundary conditions for the fixed and free ends are, 

Fixed end 

𝑢 = 𝑣 = 𝑤𝑟𝑒𝑙 = 𝜃 = 𝜑 =  𝜓 = 0|𝑥=0  (2.30) 

Free end 

𝑐1𝑢
′ + 𝑐8𝜑

′ + 𝑐9𝜓
′= 0|𝑥=𝑙 

𝑐2𝑣
′ + 𝑐11𝜑 + 𝑐12𝜃

′= 0|𝑥=𝑙 

𝑐3𝑤′𝑟𝑒𝑙 + 𝑐4𝜃
′ + 𝑐15𝜓= 0|𝑥=𝑙 

𝑐4𝜃
′ + 𝑐12𝑣

′ + 𝑐13𝑤′𝑟𝑒𝑙= 0|𝑥=𝑙 

𝑐5𝜑
′ + 𝑐8𝑢

′ + 𝑐10𝜓
′= 0|𝑥=𝑙 

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐10𝜑
′= 0|𝑥=𝑙 

 

 (2.31) 

Next, the frequency response functions, for the out-of-plane bending, for experimental validations 

is shown in Eq. (2.32).  

𝑊(𝜔𝑓) = |
1

𝜔𝑓
2 +∑

𝑘3.𝑊𝑖,𝑟𝑒𝑙(𝑥 = 𝑥𝑠). ∫ 𝑊𝑖,𝑟𝑒𝑙(𝑥) 𝑑𝑥
𝑙

𝑥=0

𝜔𝑖
2 − 𝜔𝑓

2

∞

𝑖=1

| 
 

(2.32) 

 

Here, 𝑥𝑠 is the sensing location, 𝜔𝑓 is the excitation frequency and 𝜔𝑖 is the natural frequency 

associated with the 𝑖𝑡ℎ mode. Also, 𝑊𝑖,𝑟𝑒𝑙(𝑥 = 𝑥𝑠) is the relative mass normalized mode shape 

value of the 𝑖𝑡ℎ mode at the sensing location for the out of plane bending. 

To better understand, the mathematics behind the coupling effects, a further simplified 

model is built for the cable-harnessed beam in which only the coupling is assumed to be between 

the in plane and out-of-plane bending modes. The simulations for the simplified model are 

presented in the section 2.1.2 after the simulation of the fully coupled model for obtaining in-depth 
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insight into the problem. Refs.[125,126] developed closed form expressions for natural frequencies 

of repeated truss structures and beams with initial loads. Following the same approach, closed form 

expressions for natural frequencies are obtained for the system in the following study for simply 

supported boundary conditions. The strain and kinetic energy for the simplified model are shown 

below. 

𝑈 =
1

2
∫ [𝑏2(𝑣

′′)2 + 𝑏3(𝑤
′′)2 + 2𝑏5(𝑣

′′)(𝑤′′)] 
𝑙

0

𝑑𝑥 
(2.33) 

𝑇 =
1

2
∫ [𝑘2(𝑣̇)

2 + 𝑘3(𝑤̇)
2] 

𝑙

0

𝑑𝑥 
(2.34) 

The strain and kinetic energies include decoupled energies in the in plane and out of plane 

bending directions. The coupling energy between the in plane and out of plane bending is also 

included. The coupling is due to offset position of the cable and the coupling coefficient 𝑏5 

vanishes if the cable is placed along the centerline. If the cable is along the centerline only the 

decoupled coefficients 𝑏2, 𝑏3, 𝑘2 and 𝑘3 remain. 

The reduced order Euler-Bernoulli model for the cable-harnessed beam that includes the 

bending modes only can be written as follows (reduced from Equations. (2.16 a)- (2.16 d)): 

−𝑘2𝑣̈ − 𝑏2𝑣
′′′′ − 𝑏5𝑤

′′′′ = 0 (2.35a) 

−𝑘3𝑤̈ − 𝑏3𝑤
′′′′ − 𝑏5𝑣

′′′′ = 0 (2.35b) 

 

 

Simply supported boundary condition is considered as an example, therefore,  

𝑣 = 𝑤 = 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤

′′= 0|𝑥=0 𝑜𝑟 𝑙  

𝑏3𝑤
′′ + 𝑏5𝑣

′′= 0|𝑥=0 𝑜𝑟 𝑙  

 

(2.36) 

The last two expressions of Eq. (2.36) correspond to the equivalent bending moment in the in-

plane and out-of-plane directions. 

Using the assumed form of solution for the bending of a simply supported beam, we get, 

𝑣(𝑥, 𝑡) = 𝑉 sin(
𝑛𝜋𝑥

𝑙
) 𝑒𝑖𝜔𝑡 

𝑤(𝑥, 𝑡) = 𝑊 sin(
𝑛𝜋𝑥

𝑙
) 𝑒𝑖𝜔𝑡 

 

(2.37) 

After substituting the general solution in the coupled PDEs (Equations (2.35 a) and (2.35 b)) and 

converting the simultaneous algebraic equations into the matrix form, we obtain the following 

equation. 
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[
 
 
 −
𝑏2𝑛

4𝜋4

𝑙4
+ 𝑘2𝜔

2 −
𝑏5𝑛

4𝜋4

𝑙4

−
𝑏5𝑛

4𝜋4

𝑙4
−
𝑏3𝑛

4𝜋4

𝑙4
+ 𝑘3𝜔

2
]
 
 
 

{
𝑉
𝑊
} = {

0
0
} 

 

(2.38) 

For the system to have a non-trivial solution, the determinant of the matrix in Eq. (2.38) should 

vanish.  

𝑏2𝑏3𝑛
8𝜋8

𝑙8
−
𝑏5
2𝑛8𝜋8

𝑙8
+ (−

𝑏3𝑘2𝑛
4𝜋4

𝑙4
−
𝑏2𝑘3𝑛

4𝜋4

𝑙4
)𝜔2 + 𝑘2𝑘3𝜔

4 = 0 
(2.39) 

Solving Eq. (2.39) for 𝜔 we obtain the expressions for the natural frequencies as follows, 

𝜔1 =
√
𝑏3𝑘2𝑛

4

𝑙4
+
𝑏2𝑘3𝑛

4

𝑙4
−
√(𝑏3𝑘2)

2𝑛8 − 2𝑏2𝑏3𝑘2𝑘3𝑛
8 + 4(𝑏5)

2𝑘2𝑘3𝑛
8 + (𝑏2𝑘3)

2𝑛8

𝑙4

2𝑘2𝑘3
𝜋2 

  

 

 

 

(2.40) 

𝜔2 =
√
𝑏3𝑘2𝑛

4

𝑙4
+
𝑏2𝑘3𝑛

4

𝑙4
+
√(𝑏3𝑘2)

2𝑛8 − 2𝑏2𝑏3𝑘2𝑘3𝑛
8 + 4(𝑏5)

2𝑘2𝑘3𝑛
8 + (𝑏2𝑘3)

2𝑛8

𝑙4

2𝑘2𝑘3
𝜋2 

 

For a given value of 𝑛 one of them corresponds to the out of plane bending dominant mode and 

the other corresponds to the in-plane dominant mode. As a result, the two natural frequencies 

obtained from Eq. (2.40) correspond to the same wavenumber. In Section 2.1.2, further 

explanations for the simplest case are provided through numerical simulations after the simulations 

for the fully coupled cases. Eq. (2.40) can help in obtaining deeper physical insight into the 

problem by providing us information how the frequency changes when a parameter is varied. 

Using analytical solutions as presented in Eq. (2.40) helps us understand the physical behavior that 

takes place in the system when the offset position of the cable is changed and the simplified 

coupled partial differential equations along with the results help us explain the phenomenon of 

coupling better. 

2.1.2 Results and Discussion of numerical simulations 
 

Presented in this section are the natural frequencies and mode shapes for the cable-

harnessed beam structure shown in Fig. (2.1) using the analytical models developed in the previous 

section. The results are compared to the decoupled Euler Bernoulli model presented in Ref. [51] 

for the system parameters shown in Table. (2.1). Further, the presented results help better 
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understand the dynamics behind the coupling and its effects. In addition, sensitivity analysis such 

as the effects of the offset position, radius and pre-tension of the cable on the natural frequencies 

are further presented and discussed using the coupled Euler Bernoulli theory.  

The position coordinates of the center of the cable in the y and z directions are given by 

the expressions, 𝑦𝑐 =
𝑏

2
− 𝑟𝑐; 𝑧𝑐 =

ℎ

2
+ 𝑟𝑐. For the system parameters shown in Table. (2.1), the 

values (𝑦𝑐, 𝑧𝑐) are equal to (0.0043,0.00145) 𝑚. The root of transcendental equation |𝐿( 𝜔)| =

0  is used to obtain the natural frequencies of the system for the parameters shown in Table. (2.1) 

for the coupled system. Results of both Euler-Bernoulli and Timoshenko models are presented for 

parameters in Table. (2.1). Fixed-fixed, cantilever and simply supported boundary conditions are 

considered.  

 

Fig. 2. 3 Finite Element Analysis discretization along with the nodal displacements. 

To validate the analytical results, a finite element analysis is performed. The system is 

discretized by assuming each displacement function to be a third order polynomial in 𝑥 (where 𝑥 

is the length of the beam, 1D beam element) [51,127] in Eq. (2.41). The discretization and the 

nodal displacement are shown in Fig. (2.3).  

𝑢(𝑥, 𝑡) = 𝑔11(𝑡) + 𝑔21(𝑡)𝑥 + 𝑔31(𝑡)𝑥
2 + 𝑔41(𝑡)𝑥

3 

𝑣(𝑥, 𝑡) = 𝑔12(𝑡) + 𝑔22(𝑡)𝑥 + 𝑔32(𝑡)𝑥
2 + 𝑔42(𝑡)𝑥

3 

𝑤(𝑥, 𝑡) = 𝑔13(𝑡) + 𝑔23(𝑡)𝑥 + 𝑔33(𝑡)𝑥
2 + 𝑔43(𝑡)𝑥

3 

𝜃(𝑥, 𝑡) = 𝑔14(𝑡) + 𝑔24(𝑡)𝑥 + 𝑔34(𝑡)𝑥
2 + 𝑔44(𝑡)𝑥

3 

𝜑(𝑥, 𝑡) = 𝑔15(𝑡) + 𝑔25(𝑡)𝑥 + 𝑔35(𝑡)𝑥
2 + 𝑔45(𝑡)𝑥

3 

𝜓(𝑥, 𝑡) = 𝑔16(𝑡) + 𝑔26(𝑡)𝑥 + 𝑔36(𝑡)𝑥
2 + 𝑔46(𝑡)𝑥

3 

 

 

(2.41) 

              The degrees of freedom considered for each node are the displacements and the 

derivatives which are 𝑢,𝑣, 𝑤, 𝜃, 𝜑, 𝜓 and 
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑤

𝜕𝑥
,
𝜕𝜃

𝜕𝑥
,
𝜕𝜑

𝜕𝑥
,
𝜕𝜓

𝜕𝑥
. Using the cubic interpolation 

polynomials, the displacements of the element are found out using standard procedures in vibration 
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text books [120]. Using the element displacements, mass and stiffness matrices of the element are 

constructed from the strain and kinetic energy expressions using the Timoshenko model, Eqs. 

(2.8)-(2.9) for the cable-harnessed structure using numerical computation software. In this case, 

since the strain energy and kinetic energy expressions have the effect of cable, the entries in the 

mass and stiffness matrices have the effect of cable incorporated. The mass matrix is consistent, it 

is constructed by taking into account the shape functions. The structure was meshed into 200 

elements. The total number of nodes in the system are 201 for all the boundary conditions 

considered. Each node has 12 degrees of freedom which includes the displacement corresponding 

to the axial, in-plane bending, out of plane bending, torsion and the two rotations of cross-section 

and their respective derivatives. Once the elemental mass and stiffness matrices are constructed, 

they are assembled and respective boundary conditions are applied. The eigenvalue problem gives 

us the natural frequencies and the mode shapes. The mesh size is varied to check that the natural 

frequency result has converged. The finite element method over-predicts the natural frequencies 

when compared to the analytical model due to the Rayleigh Ritz criterion. The purpose of finite 

element analysis adopted in this chapter is to use another method to obtain the natural frequencies 

from the strain and kinetic energy continuum model. This will help in crosschecking the 

frequencies obtained using analytical procedure. Ultimately, the analytical models developed in 

this thesis will be validated against the experiments. The natural frequency errors for each of the 

models in comparison with the FEA results are presented in the Tables. (2.2)-(2.4). To identify the 

coordinate of vibration associated with each frequency, the mode shapes are found and plotted in 

Figs. (2.4)-(2.6). The mass normalization condition for the coupled Timoshenko beam model can 

found by following the procedure outlined in [128].  

∫ (𝑘1𝑈𝑛(𝑥)𝑈𝑛(𝑥) + 𝑘2𝑉𝑛(𝑥)𝑉𝑛(𝑥) + 𝑘3𝑊𝑛(𝑥)𝑊𝑛(𝑥) + 𝑘4𝜃𝑛(𝑥)𝜃𝑛(𝑥) + 𝑘5𝜑𝑛(𝑥)𝜑𝑛(𝑥) +
𝑙

0

𝑘6𝜓𝑛(𝑥)𝜓𝑛(𝑥))𝑑𝑥 = 1  

 

(2.42) 

Eq. (2.42) shows the mass normalization condition for a coupled Timoshenko model, the same 

condition can be easily obtained for an Euler-Bernoulli beam model and is shown in Eq. (2.43). 

∫ (𝑘1𝑈𝑛(𝑥)𝑈𝑛(𝑥) + 𝑘2𝑉𝑛(𝑥)𝑉𝑛(𝑥) + 𝑘3𝑊𝑛(𝑥)𝑊𝑛(𝑥) + 𝑘4𝜃𝑛(𝑥)𝜃𝑛(𝑥))𝑑𝑥 = 1
𝑙

0

 
(2.43) 
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Table 2. 1 Material and geometrical properties of the cable harnessed beam structure. 

System parameters  Value 

Beam length  (𝑙) 0.25 m 

Beam width  (𝑏) 0.01 m 

Beam height (ℎ) 0.0015 m 

Beam density (𝜌𝑏) 2,700 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  

Beam Shear modulus (𝐺𝑏) 26 GPa  

Beam Poisson’s ratio (𝜈) 0.34 

Cable tension (𝑇) 25 N 

Cable radius (𝑟𝑐) 0.0007 m 

Cable density (𝜌𝑐) 1,400 Kg/m3 

Cable modulus of elasticity (𝐸𝑐) 150 GPa 

 

               As an example, the first few mass-normalized mode shapes for the coupled theory using 

Euler-Bernoulli assumptions for several boundary conditions are shown in Figs. (2.4)-(2.6). For 

the mode shape analysis, the mass-normalized mode shapes obtained from the coupled Euler 

Bernoulli model are presented. The results in Fig. (2.4) for fixed-fixed boundary condition indicate 

that for the 1st, 2nd and 4th modes, the out-of-plane bending is the dominant mode. The 3rd mode is 

predominantly an in-plane bending mode, and the 5th mode is the torsional mode. The first 

predominantly axial mode is also shown in this figure, which corresponds to the 22nd mode. To 

further confirm, the findings of this figure on the dominance of each coordinate of vibrations at a 

given frequency, a strain energy analysis is performed to find the contribution of each coordinate 

for the modes shown. Therefore, after obtaining the solution to the coupled PDEs, the strain energy 

for each of the coordinates is calculated at each frequency. 
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Mode 1 (189.39 Hz) 

 

Mode 2 (521.87 Hz) 

 
Mode 3 (964.32 Hz) 

 

Mode 4 (1023.7 Hz) 

 
Mode 5 (1650.8 Hz) 

 

Mode 22 (10890 Hz) 

 
Fig. 2. 4 Vibrations mode shapes for fixed-fixed boundary conditions using coupled EB theory for fixed-

fixed boundary conditions using coupled EB theory for Out of plane bending dominant (Modes 1, 2 and 

4), In plane bending dominant (Mode 3), Torsion dominant (Mode 5) and Axial dominant (Mode 22). 
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Mode 1 (29.79 Hz) 

 

Mode 2 (151.53 Hz) 

   

Mode 3 (186.53 Hz) 

 

Mode 4 (522.35 Hz) 

 

  Mode 5 (825.38 Hz) 

 

Mode 16 (5447.9 Hz) 

 

Fig. 2. 5 Vibrations mode shapes for cantilever boundary conditions using coupled EB theory for 

Out of plane bending dominant (Modes 1, 3 and 4), In plane bending dominant (Mode 2), Torsion 

dominant (Mode 5) and Axial dominant (Mode 16). 
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Mode 1 (86.38 Hz) 

 

Mode 2 (334.06 Hz) 

 

Mode 3 (436.40 Hz) 

 

Mode 4 (755.34 Hz) 

 

Mode 5 (1336.58 Hz) 

 

Mode 6 (1650.44 Hz) 

 

Mode 23 (10797.1 Hz) 

 

 

 

Fig. 2. 6 Vibrations mode shapes for simply supported boundary conditions using coupled EB theory 

for Out of plane bending dominant (Modes 1, 2 and 5), In plane bending dominant (Mode 3), Torsion 

dominant (Mode 6) and Axial dominant (Mode 23). 
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(a) 

 
(b) 

 
(c) 

Fig. 2. 7 Percentage for the strain energy contribution of each modal coordinate with respect to mode 

number denotes axial; denotes in plane bending;  denotes out of plane bending;  denotes 

torsion. 
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Table 2. 2 Natural Frequencies for coupled and decoupled models for fixed-fixed boundary conditions (Hz) 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-Ber. 

Coupled 

Timoshenko 

FEA Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshnko 

1 227.36 OP 189.39 189.23 189.75 16.53 -0.16 -0.22 

2 626.73 OP 521.87 521.55 522.68 16.60 -0.13 -0.18 

3 990.1 IP 964.32 949.51 952.35 3.81 1.20 -0.28 

4 1228.6 OP 1023.7 1020.98 1023.63 16.68 0.00 -0.21 

5 1650.8 T 1650.8 1650.44 1652.8 -0.12 -0.12 -0.14 

6 2031 OP 1691.8 1685.45 1689.91 16.79 0.09 -0.21 

7 3034 OP 2527.4 2513.06 2520.45 16.92 0.22 -0.24 

8 2729.3 IP 2657.9 2567.17 2576.83 5.58 2.97 -0.35 

9 3301.7 T 3301.7 3302.47 3305.59 -0.11 -0.11 -0.09 

10 4237.6 OP 3528.5 3504.59 3513.78 17.08 0.34 -0.21 

22 10889 A 10890 10886.2 10900.1 -0.10 -0.09 -0.12 

*OP, IP, T and A refer to the out-of-plane bending, in-plane bending, torsional and axial modes respectively. 

Table 2. 3 Natural Frequencies for coupled and decoupled models for cantilever boundary conditions 

(Hz) 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-Ber. 

Coupled 

Timoshenko 

FEA Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshenko 

1 35.72 OP 29.79 29.63 29.76 16.67 0.07 -0.37 

2 155.58 IP 151.53 151.32 151.47 2.63 0.03 -0.09 

3 223.91 OP 186.53 186.37 186.65 16.63 -0.05 -0.12 

4 626.86 OP 522.35 521.71 522.38 16.66 -0.00 -0.10 

5 825.42 T 825.38 825.69 825.91 -0.05 -0.06 -0.02 

6 975.07 IP 949.52 938.53 939.92 3.60 0.98 -0.14 

7 1228.5 OP 1023.7 1021.46 1022.75 16.74 0.07 -0.10 

8 2031 OP 1691.8 1687.04 1688.65 16.85 0.15 -0.07 

9 2476.3 T 2476.5 2476.45 2477.73 -0.05 -0.04 -0.05 

10 2729.8 IP 2527.4 2516.24 2518.81 7.72 0.31 -0.09 

16 5444.5 A 5447.9 5446.28 5449.63 -0.09 -0.03 -0.06 

*OP, IP, T and A refer to the out-of-plane bending, in-plane bending, torsional and axial modes respectively. 
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Table 2. 4  Natural Frequencies for coupled and decoupled models for simply supported boundary 

conditions (Hz) 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-Ber. 

Coupled 

Timoshenko 

FEA Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshe

nko 

1 100.29 OP 86.38 86.34 86.32 13.93 0.06 0.01 

2 401.18 OP 334.06 334.06 334.03 16.73 0.00 0.00 

3 436.76 IP 436.40 434.65 434.98 0.40 0.32 -0.07 

4 902.67 OP 755.34 754.07 754.17 16.45 0.13 -0.01 

5 1604.75 OP 1336.58 1333.56 1333.87 16.88 0.16 -0.01 

6 1650.84 T 1650.44 1650.44 1652.8 -0.11 -0.14 -0.14 

7 1747.06 IP 1701.37 1675.90 1677.3 3.99 1.37 -0.08 

8 2507.42 OP 2091.3 2083.34 2084.66 16.86 0.26 -0.05 

9 3610.69 OP 3008.03 2992.11 2992.51 17.12 0.42 -0.01 

10 3301.69 T 3302.47 3302.47 3305.59 -0.11 -0.09 -0.09 

23 10889.0 A 10797.1 10766.8 10783.9 0.96 0.12 -0.15 

*OP, IP, T and A refer to the out-of-plane bending, in-plane bending, torsional and axial modes respectively. 

Finally, the percentages for the energy contributions of each of the coordinates of 

vibrations for each mode are plotted in Fig. (2.7 a). These values indicate the dominance of each 

coordinate for a given mode, and further confirm the findings of Fig. (2.4). The same explanation 

can be extended to cantilever and simply supported boundary conditions.  It should be noted that 

the main assumption behind a decoupled model is that the stiffness values associated with the 

coordinates of vibrations not included in the analysis are infinitely large, and as a result those 

coordinates may be neglected. This leads to an overestimation of the frequencies using a decoupled 

model. Once the effects of these coordinates are included in the coupled analysis, the stiffness 

values associated with the previously ignored coordinates now become finite that result in a more 

reasonable natural frequency estimation and improved accuracy. The results shown in Tables. 

(2.2)-(2.4) further indicate the overestimation of the frequencies for the decoupled model as well 

as the improved accuracy for the coupled model that is particularly more important for the higher 

modes. In another words, the coupled model allows for the distribution of strain energy between 

coordinates of vibrations that is ignored in a decoupled analysis. As the coupled model is more 

accurate, from a practical perspective this coupling effect can be utilized by positioning the cables 

at an offset position to reduce the stiffening effect by cabling on the host structure in the out of 
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plane bending modes. In addition, it is very important to accurately predict the out of plane bending 

natural frequency peak of the beam structure, which is better possible by the coupled model. 

The mode shape results in Fig. (2.5) pertain to the cantilever boundary conditions. For this 

boundary condition, it is shown that the out-of-plane bending is dominant in the first, third and the 

fourth modes; whereas, the in-plane bending is dominant at the second mode. Also, the torsional 

mode is dominant at the fifth frequency, and the higher mode shown corresponds to the first axial 

mode. For the simply supported boundary condition, Fig. (2.6), the out-of-plane bending is 

dominant in the first, second, fourth and the fifth modes. In-plane bending is dominant in the third 

mode. Torsion is dominant in the sixth mode, and the mode 16 shown relates to the axial dominant 

mode. In the modes 5, 22 of Fig. (2.4), modes 5, 16 of Fig. (2.5) and modes 5, 23 of Fig. (2.6) 

respectively, due to the effect of coupling, coordinates of motion related to the in-plane bending, 

out-of-plane bending and the torsion exhibit different behavior when compared to the decoupled 

theory. The equation for the displacement of each coordinate of motion is given by Eq. (2.24). 

Mathematically speaking, the mode shape expression for each coordinate of motion includes the 

effect of all wave numbers (𝛼1 − 𝛼12). For example, in mode 5 of Fig. (2.4), consider the out of 

plane bending curve 𝑊(𝑥), mode 5 is a torsion dominant mode. So, the mode shape parameters 𝛼 

related to torsion also contribute significantly to the out of plane bending response. As a result, we 

see distinct behavior in the mode shape of out of plane bending for mode 5 of Fig. (2.4) when 

compared to the decoupled model. The same explanation related to the dominance of the mode 

shape parameter 𝛼 can be extended to other modes for all the boundary conditions wherever 

distinct behavior is seen. 

The natural frequencies found using the decoupled and coupled models are presented and 

compared to the FEA results in Tables. (2.2)-(2.4). Comparing the errors in the natural frequency 

estimations for each of these methods clearly indicates the advantage of the coupled analysis over 

the decoupled. In particular, significant improvement in the accuracy can be observed for the out-

of-plane bending dominant modes. It is shown that the decoupled model tends to overestimate the 

frequencies compared to the coupled model due to overestimating the overall stiffness of the 

system. This is because the decoupled model only allows for the out of plane bending, hence, it 

ignores the flexibility of the system in other directions and their vibrations. In addition, it can be 

seen that the Timoshenko model predicts the frequencies better when compared to the Euler 
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Bernoulli. This is particularly noticeable for the higher in-plane bending modes due to the length 

to thickness ratio in that direction and the shear effects becoming more important.   

Finally, to obtain more insight into the coupling effects, a sensitivity analysis is performed 

by varying several parameters such as radius of the cable, the offset position, and the tension in 

the cable. For simplicity, these analyses are performed using the coupled EB analytical model as 

the shear effects become important for structures with larger length to thickness ratios. Fig. (2.8) 

shows, the effects of cable radius on natural frequencies for each mode while keeping other system 

parameters constant. As the cable radius increases, the frequencies pertaining to the modes for 

which out of plane bending is dominant increase, while the frequencies for the dominantly 

torsional modes decrease. This is because the as the radius of the cable increases, the strain energy 

increases at a faster rate than the kinetic energy for the out of plane bending dominant mode and 

its frequency increases; however, the kinetic energy increases at a faster rate than the strain energy 

for the torsion dominant modes as the cable radius becomes larger, that results in smaller torsional 

frequencies.  
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(a) 

 

(b) 

 

                                                                            (c) 

Fig. 2. 8  Effects of cable radius on the coupled natural frequencies. Solid lines denote Out of plane 

dominant modes; Dash dot lines denote In plane bending dominant; Dashed line denote Torsion 

dominant.  

In Fig. (2.9), the errors between the natural frequencies of coupled and decoupled EB 

models compared to the FEA are plotted against the cable radius for different boundary conditions. 

As expected, when the cable radius increases, the coupling between different coordinates of 

vibrations gets stronger. 
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(a) 

 

(b) 

 

 (c)  

Fig. 2. 9  Error comparisons for natural frequencies between the coupled and decoupled models and the 

FEA.  denotes error between decoupled analytical and FEA and  error between coupled 

analytical and FEA. 
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It is shown that the error for the decoupled model with respect to the FEA becomes 

significantly larger when compared to the coupled model due to ignoring the coupling effects that 

are particularly important for larger cable radius values due to greater coupling. 

 

                                                                                    (a) 

 

(b) 

 

(c) 

Fig. 2. 10 Effect of cable offset position on the coupled natural frequencies. Solid lines denote Out of 

plane dominant modes; Dash dot lines denote In plane bending dominant; Dashed line denote Torsion 

dominant. 
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The results for several cable-offset positions are presented in Fig. (2.10). The natural 

frequency results shown in this figure further indicate the strain energy transfer between the in 

plane and out of plane bending modes as the system coupling increases. As the cable is placed 

further from the center, the coupling effects are more pronounced that result in an energy transfer 

between the in plane and out of plane bending modes subsequently causing the smaller frequencies 

for the out-of-plane bending dominant modes and larger frequencies for the in-plane modes. In 

addition, the frequency patterns show a symmetric behavior for offset positions on either side of 

the beam as expected.     

𝜔1 = 87.05 𝐻𝑧 

 

(a) 

𝜔2 = 439.59 𝐻𝑧 

 

(b) 

Fig. 2. 11 Mode shapes corresponding to n=1 for the system with coupled bending at 0.0043 m cable 

offset position  
 

          The analysis of the natural frequencies of the simplest coupling case from Eq. (2.40) is 

presented in Fig. (2.12 a). The system parameters are assumed the same as Table. (2.1). The value 

of 𝑛 is taken to be one. For 𝑛 = 1, we get two frequencies from Eq. (2.40). The next step is to plot 

the mode shapes. 
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                                      (a) 

 

(b) 

Fig. 2. 12 Strain energy and natural frequency with respect to cable offset position.  denotes out 

of plane bending dominant mode.  denotes in plane bending dominant mode. 

The spatial solutions can be obtained by satisfying the linear dependency criterion for the 

following equation. 

 (−
𝑏2𝑛

4𝜋4

𝑙4
+ 𝑘2𝜔

2 ) 𝑉 + (−
𝑏5𝑛

4𝜋4

𝑙4
)𝑊 = 0 (2.44) 

Therefore, the coupled mode shapes for 𝑛 = 1 of the system are as follows. 

𝑉(𝑥) = 𝑏𝑚 (
𝑏5𝜋

4

𝑙4
) sin(

𝜋𝑥

𝑙
) 𝑊(𝑥) = 𝑏𝑚 (−

𝑏2𝜋
4

𝑙4
+ 𝑘2𝜔

2 ) sin(
𝜋𝑥

𝑙
) 

(2.45) 

The mode shape constant 𝑏𝑚 can be found out by using the following mass normalization criterion. 

∫ (𝑘2𝑉𝑛(𝑥)𝑉𝑛(𝑥) + 𝑘3𝑊𝑛(𝑥)𝑊𝑛(𝑥))𝑑𝑥 = 1
𝑙

0

 
(2.46) 

The coupled mode shapes corresponding to the lower and higher natural frequency roots 

of Eq. (2.40) are plotted in Fig. 2.11 (a) and 2.11 (b) respectively.  In Fig. 2.11 (a), the mode shapes 

corresponding to the out of plane bending and in plane bending are out of phase with each other. 

The magnitudes for the mass normalized mode shapes shown in this figure indicates that the lower 



 

55 

 

root corresponds to the out-of-plane bending dominant mode, and the other corresponds to the in-

plane bending. Fig. (2.12) shows the variations for the strain energy and the fundamental natural 

frequency for these two bending modes as the cable offset changes. Zero offset in the plot denotes 

the system is decoupled at that point and at zero offset, the solutions pertaining to the decoupled 

system are presented. It is shown that as the offset distance increases, both the frequency and strain 

energy corresponding to the out-of-plane bending dominant mode drop while they both increase 

for the in-plane bending mode. This indicates an energy transfer between the two modes as the 

coupling increases due to the offset position.   

Another interesting aspect to study is the effect of the cable tension on the natural 

frequencies. For this purpose both rectangular and I-beam cross-sections are further considered in 

this paper. Fig. (2.13) shows the natural frequency variations for the first in-plane and out-of-plane 

bending and torsional modes with respect to the cable pre-tension for the system parameters shown 

in Table. (2.1). From this figure, it can be understood that the pre-tension has negligible effect on 

the system’s natural frequencies. This is because of the relatively large bending stiffness that 

makes it less susceptible to the effects of tension. Therefore, to better study this effect, the system  

 

Fig. 2. 13 Effect of cable pre-tension on the natural frequencies for first in-plane bending, out-of-plane 

bending and torsional mode using the system parameters of Table (2.1).  denotes out of plane 

bending dominant mode.  denotes torsion dominant mode.  denotes in plane bending 

dominant mode. 

 

parameters in Table. (2.5) are additionally considered for a rectangular cross section. The position 

coordinates of the center of the cable (𝑦𝑐 , 𝑧𝑐) are equal to (0.0098,0.00095) 𝑚.   From Fig. (2.14), 

we can see that as the cable pre-tension increases, the fundamental natural frequency for the out-

of-plane bending drops to zero as the system undergoes buckling. As expected, the buckling load 



 

56 

 

for the fixed-fixed boundary condition is the largest, then the simply supported, and finally the 

cantilever beam has the smallest critical loading. The strain energy distribution (bar graph) for 

beams with system parameters from Tables. (2.1) and (2.5) for fixed-fixed boundary condition for 

the first mode (which corresponds to the out of plane bending dominant mode) are shown in Figs. 

(2.15 a) and (2.15 b) respectively. In Fig. (2.15 a), the strain energy contributions from the axial, 

in-plane bending, out of plane bending and torsion coordinates are 5.08 %, 15.43 %, 79.48 % and 

0.008 % respectively. In Fig. (2.15 b), the strain energy contributions in the axial, in-plane bending, 

out-of-plane bending and torsion coordinates are 0.005 %, 0.023 %, 71.75 % and 28.21 % 

respectively. As explained earlier for Fig. (2.7 a), in Fig. (2.15 a), the out of plane and in plane 

bending coordinates are strongly coupled to each other (for beam with parameters from Table. 

(2.1)). In Fig. (2.15 b), the out of plane bending coordinate is strongly coupled to the torsion mode 

when compared to axial and in-plane bending as a beam with lower young’s modulus and wider 

geometry is more flexible in the torsional direction. By increasing the value for the cable pre-

tension, the system’s coupling gets stronger that results in strain energy transfer between the out 

of plane bending mode and other coordinates of motion as shown in Fig. (2.14). As similarly 

observed for the offset case study, for the modes associated with the same wave number, the mode 

with lower natural frequency transfers energy into the modes with the higher frequency. In this 

case, there is noticeable increase in the frequency for the torsion dominant mode when compared 

to the in plane due to the nature of the coupling between these three modes.  

Table 2. 5  Material and geometrical properties for the tension case study, rectangular cross-section beam. 

 System parameters  Value 

Beam length  0.25 m 

Beam width  0.02 m 

Beam height 0.0015 m 

Beam density 1,300 Kg/m3 

Beam modulus of elasticity 2.2 GPa 

Beam shear modulus 0.785 GPa 

Beam Poisson’s ratio  0.4 

Cable radius  0.0002 m 

Cable density 1,200 Kg/m3 

Cable modulus of elasticity 2 GPa  
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                                          (a)                                                

                                                  

                                        (b)                                 

                                                  

           (c) 

Fig. 2. 14 Effect of cable pre-tension on the natural frequencies for first in-plane bending, out-of-plane 

bending and torsional mode using the system parameters of Table. (2.5).  denotes out of plane 

bending dominant mode.  denotes torsion dominant mode.  denotes in plane bending 

dominant mode. 
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Table 2. 6 Material and geometrical properties for the tension case study, I-cross section beam 

System parameters  Value 

Beam length  0.25 m 

Beam density 1,300 Kg/m3 

Beam modulus of elasticity 1 GPa 

Beam shear modulus 0.35 GPa 

Beam Poisson’s ratio  0.4 

Cable radius  0.0002 m 

Cable density 1,200 Kg/m3 

Cable modulus of elasticity 1.1 GPa 

 

 

(a) 

 

(b) 

Fig. 2. 15 Bar graph of strain energy contributions for mode 1 for beam with parameters from a) Table 

(2.1); b) Table (2.5) for fixed-fixed boundary condition. 

To further, study the impact of tension on the natural frequencies, an I-beam cross-section shown 

in Figure. (2.16) (Front View) with the numerical parameters presented in Table. (2.6) is also 

considered. The position coordinates of the center of the cable in this case are (𝑦𝑐, 𝑧𝑐) =

(0.0048,0.0052) 𝑚. 
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Fig. 2. 16 I-beam cross section and dimensions 

                                                

                                 (a) 

                              

      (b) 

          

           (c) 

Fig. 2. 17 Effect of cable pre-tension on the natural frequencies of first in plane bending, out-of-plane 

bending and torsional mode using the system parameters of Table (2.6) for an I-cross section beam. 

 denotes out of plane bending dominant mode.  denotes torsion dominant mode.  

denotes in plane bending dominant mode. 
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This geometry was chosen due to its smaller torsional stiffness. As shown in Figure (2.17 

a), the fundamental mode for the fixed-fixed boundary condition corresponds to the torsional 

dominant mode. In Figures (2.17 b) and (2.17 c), for cantilever and simply supported boundary 

conditions, the fundamental mode corresponds to the in plane bending dominant mode. As 

expected for the I cross-section, the in-plane bending has much smaller critical loading compared 

to the out-of plane bending due to the smaller moment of inertia in that direction. Therefore, the 

in-plane bending is shown to be more prone to buckling in Figures (2.17 b) and (2.17 c). Also, the 

critical loading for the simply supported is shown to be larger than the cantilever beam as expected. 

For fixed-fixed boundary condition, because the torsion mode is the fundamental one, the I section 

beam experiences torsional buckling. For cantilver and simply supported boundary conditions, the 

system experiences buckling in the in-plane direction. 

Finally, to clearly show the effect of coupling, a case study where forced excitation is 

applied to the structure in the out of plane bending direction and the resulting frequency response 

functions for the coupled Euler-Bernoulli analytical, coupled Timoshenko model, FEA and 

decoupled Euler Bernoulli model are presented in Fig. (2.18). 

The numerical parameters used are from Table. (2.1). The frequency response function for 

the coupled analytical model is calucated from Eq. (2.46).  

𝑊(𝜔) =∑
𝑊(𝑥 = 𝑥𝑠).𝑊(𝑥 = 𝑥𝑎)

𝜔𝑖
2 −𝜔𝑓

2

∞

𝑖=1

 
 

(2.46) 

where 𝑊(𝑥 = 𝑥𝑠) represents the mass-normalized coupled out-of-plane bending displacement at 

the sensing location and  𝑊(𝑥 = 𝑥𝑎) represents the mass-normalized coupled out-of-plane 

bending displacement at the actuation location.  𝜔𝑓 is the forcing frequency. 𝜔𝑖 is the natural 

frequency corresponding to the mode 𝑖. The natural frequencies for fixed-fixed, cantilever and 

simply supported boundary conditions are presented in Tables. (2.2)- (2.4) respectively. The mass 

nornalized coupled mode shapes are calculated and presented in Figs. (2.4)- (2.6) for fixed-fixed, 

cantilever and simply supported boundary conditions respectively. 

Here, 𝑥𝑠 = 0.2276 𝑚 & 𝑥𝑎 = 0.0498 𝑚, 𝑥𝑠 = 0.25 𝑚 & 𝑥𝑎 = 0.0952 𝑚, 𝑥𝑠 = 0.199 𝑚 

& 𝑥𝑎 = 0.136 𝑚  are the sensing and actutation locations respectively for fixed-fixed, cantilever, 

simply supported boundary condition respectively. Similarly, the frequency response functions for 

the decoupled and FEA models are calculated and plotted in Fig. (2.18). The significant peaks in 

the plots correspond to the out of plane bending direction and the first sharp peak corresponds to  
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(a) 

           

(b) 

 

(c) 

Fig. 2. 18 Frequency response functions for a) Fixed-fixed b) Cantilever c) Simply Supported boundary 

conditions.  denotes cabled beam analytical (Euler Bernoulli coupled)  denotes cabled beam 

analytical (Timoshenko coupled) denotes FEA (coupled) Cabled beam analytical (decoupled). 
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the in-plane bending dominant mode and the second sharp peak corresponds to the torsional 

dominant mode. In Fig. (2.18 a), for the fixed-fixed boundary condition, for the in-plane bending 

dominant mode, it can be seen that the coupled Timoshenko beam model predicts the frequency 

better than the coupled Euler bernoulli beam model. As we can clearly observe from Fig. (2.18), 

the frequency response function of both coupled Euler-Bernoulli and coupled Timoshenko models 

match very well with that of FEA when compared to the decoupled model. Therefore, the coupled 

model provides a better picture of the dynamics when compared to a decoupled model. 

 

2.2 Coupled Vibrations in Structure with Periodic Wrapping Pattern 
 

2.2.1 Mathematical Model 

 

The cable-harnessed structure with periodic wrapping pattern is shown in Fig. (2.19 a) with 

the different coordinates of motion such as the axial, in plane bending, out of plane bending, torsion 

and both the rotations of cross-sections about y and z-axes. The cable is wrapped around the beam 

in a diagonal manner. The fundamental element of the wrapping pattern is shown in Fig. (2.19 b). 

Each fundamental element of the wrapping pattern consists of a diagonal section of the cable and 

the cable wrapping at the end of each fundamental element act as lumped masses.  

 

(a) 

 

(b) 

Fig. 2. 19 (a) Representation of the cable harnessed structure with periodic wrapping pattern along with 

the coordinates of motion. (b) Fundamental element of wrapping pattern.  
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In case of straight cable in Section. (2.1), the model developed is exact and in case of periodic 

pattern it is difficult to develop exact model due to diagonal section and also multiple fundamental 

elements. An equivalent continuum model is presented to study the vibrations of structures with 

periodic pattern. The total strain and kinetic energies of the cable-harnessed structure for 

Timoshenko model are shown in Eqs. (2.47) and (2.48). 

𝑈𝑠𝑦𝑠𝑡𝑒𝑚 =
1

2
[∭𝐸𝑏(−𝑇 cos 𝜇 𝐸𝑏𝐴𝑏⁄ + 𝜀𝑥𝑥)

2 +𝐺𝑏(𝛾𝑥𝑦)𝑏
2 + 𝐺𝑏(𝛾𝑧𝑥)𝑏

2 𝑑𝐴 𝑑𝑥]

+
1

2
[∭𝐸𝑐(𝑇 𝐸𝑐𝐴𝑐⁄ + 𝜀𝑥𝑥cos

2𝜇 + 𝛾𝑥𝑦 cos 𝜇 sin 𝜇)
2 𝑑𝐴 

𝑑𝑥

cos 𝜇
  ] 

=
1

2
∫ [𝑐1(𝑢

′)2 + 𝑐2(𝑣
′)2 + 𝑐3(𝑤

′)2 + 𝑐4(𝜃
′)2 + 𝑐5(𝜑

′)2 + 𝑐6(𝜓
′)2 + 𝑐7(𝜑)

2 +
𝑙

0

2𝑐8(𝑢
′)(𝜑′) + 2𝑐9(𝑢

′)(𝜓′) + 2𝑐10(𝜑
′)(𝜓′) + 2𝑐11(𝑣

′)(𝜑) + 2𝑐12(𝜑)(𝜃
′) + 2𝑐13(𝑣

′)(𝜃′) +

2𝑐14(𝑤
′)(𝜃′) + 2𝑐15(𝑢′)(𝜑) + 2𝑐16(𝜓

′)(𝜑) + 2𝑐17(𝑢′)(𝑣′) + 2𝑐18(𝑢′)(𝜃′) +

2𝑐19(𝑣
′)(𝜑′) + 2𝑐20(θ

′)(𝜑′) + 2𝑐21(𝑣
′)(𝜑′) + 2𝑐22(𝜓

′)(𝜃′) + 𝑐23(𝜓)
2 + 2𝑐24(𝜓)(𝑤′)] 𝑑𝑥  

 

 

(2.47) 

𝑇𝑠𝑦𝑠𝑡𝑒𝑚 =
1

2
[∭𝜌𝑏{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇} 𝑑𝐴 𝑑𝑥 +∭𝜌𝑐{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇}  𝑑𝐴 

𝑑𝑥

cos𝜇
 ]  

=
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
+ 𝑘5(𝜑̇)

2 + 𝑘6(𝜓̇)
2
] 

𝑙

0
𝑑𝑥  

 

(2.48) 

where 𝜀𝑥𝑥 is the direct strain in the 𝑥 direction. 𝛾𝑥𝑦 and 𝛾𝑧𝑥 are the shear strains in the 𝑥𝑦 and the 

𝑦𝑧 plane respectively. The constants used in the kinetic and strain energy expressions Eq. (2.47) 

and Eq. (2.48) are shown in Eq. (B.1) of Appendix B. 𝐿 is the length of each fundamental element 

of the periodic pattern. where superscript ( )′ denotes partial derivative with respect to spatial 

coordinate 𝑥(
𝜕

𝜕𝑥
) and superscript ( )̇ denotes partial derivative with respect to time 𝑡(

𝜕

𝜕𝑡
).   The 

strain and kinetic energy coefficients depend on the material and geometric properties of the cable 

and the beam.  

               Similarly, the strain and kinetic energy expressions for the cable harnessed beam with 

diagonal wrapping pattern for the Euler-Bernoulli model [51] are shown in Eqs. (2.49) and (2.50). 

𝑈 =
1

2
∫ [𝑏1(𝑢

′)2 + 𝑏2(𝑣
′′)2 + 𝑏3(𝑤

′′)2 + 𝑏4(𝜃
′)2 + 2𝑏5(𝑤

′′)(𝑣′′) + 2𝑏6(𝑢
′)(𝜃′) +

𝑙

0

2𝑏7(𝑣
′′)(𝜃′) + 2𝑏8(𝑤

′′)(𝜃′) + 2𝑏9(𝑢
′)(𝑣′′) + 2𝑏10(𝑢

′)(𝑤′′) + 2𝑏11(𝑤
′)(𝜃′) +

2𝑏12(𝑣
′)(𝜃′) + 2𝑏13(𝑣

′)(𝑤′′)] 𝑑𝑥  

 

(2.49) 

𝑇 =
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
] 

𝑙

0
𝑑𝑥  (2.50) 
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The constants of the above strain and kinetic energy expressions for the Euler-Bernoulli strain 

and kinetic energy are shown in Eq. (B.2) of Appendix B. 

Let 𝜂𝑦𝑧 be the local coordinate system of a single fundamental element (Fig. (2.19 b)). Then 

position of the cable where the strains are evaluated can be defined as (𝑦𝑐, 𝑧𝑐) = (𝜂 tan 𝜇 −
𝑏

2
,
ℎ

2
). 

The wrapping angle 𝜇 can be defined as tan−1(
𝑏

𝐿
). The advantage of periodicity of wrapping 

pattern can be taken and the equivalent continuum model including the effect of lumped masses at 

the end of each fundamental element can be obtained using the homogenization method [51]. The 

strain and kinetic energy per unit length of the fundamental element are calculated and are assumed 

the same through the length of the fundamental element. Since the wrapping pattern is periodic, 

the homogenized strain and kinetic energy is assumed the same across all the other fundamental 

elements. After applying the Hamilton’s principle,𝛿 ∫ (𝑇 − 𝑈)
𝑡2

𝑡1
𝑑𝑡 = 0, the governing equations 

for the Timoshenko and Euler-Bernoulli model after including the effect of harmonic base 

excitation are shown in Eqs. (2.51) and (2.53). The boundary conditions for the fixed and free ends 

are shown in Eqs. (2.52, 2.55) and (2.54, 2.56) respectively. 

Timoshenko model 

−𝑘1𝑢̈ + 𝑐1𝑢
′′ + 𝑐8𝜑

′′ + 𝑐9𝜓
′′ + 𝑐15𝜑

′ + 𝑐17𝑣
′′ + 𝑐18𝜃

′′ = 0 (2.51 a) 

−𝑘2𝑣̈ + 𝑐2𝑣
′′ + 𝑐13𝜃

′′ + 𝑐19𝜑
′′ + 𝑐21𝜓

′′ + 𝑐11𝜑
′ + 𝑐17𝑢

′′ = 0 (2.51 b) 

−𝑘3𝑤̈𝑟𝑒𝑙 + 𝑐3𝑤𝑟𝑒𝑙
′′ + 𝑐14𝜃

′′ + 𝑐16𝜃
′ + 𝑐24𝜓

′ = 𝑘3𝑤̈𝑏 (2.51 c) 

−𝑘4𝜃̈ + 𝑐4𝜃
′′ + 𝑐13𝑣

′′ + 𝑐14𝑤𝑟𝑒𝑙
′′ + 𝑐12𝜑

′ − 𝑐16𝑤𝑟𝑒𝑙
′ + 𝑐18𝑢

′′ + 𝑐22𝜓
′′ + 𝑐20𝜑

′′ = 0 (2.51 d) 

−𝑘5𝜑̈ + 𝑐5𝜑
′′ − 𝑐7𝜑 + 𝑐8𝑢

′′ − 𝑐11𝑣
′ + 𝑐10𝜓

′′ − 𝑐12𝜃
′ − 𝑐15𝑢

′ − 𝑐16𝜓
′ + 𝑐19𝑣

′′ + 𝑐20𝜃
′′ = 0 (2.51 e) 

−𝑘6𝜓̈ + 𝑐6𝜓
′′ − 𝑐23𝜓 + 𝑐9𝑢

′′ − 𝑐24𝑤𝑟𝑒𝑙
′ + 𝑐10𝜑

′′ + 𝑐21𝑣
′′ + 𝑐22𝜃

′′ + 𝑐16𝜑
′ = 0 (2.51 f) 

Fixed end 

𝑢 = 𝑣 = 𝑤𝑟𝑒𝑙 = 𝜃 = 𝜑 =  𝜓 = 0|𝑥=0 𝑜𝑟 𝑙 (2.52) 

Free end 

𝑐1𝑢
′ + 𝑐8𝜑

′ + 𝑐9𝜓
′ + 𝑐15𝜑 + 𝑐17𝑣

′ + 𝑐18𝜃
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐2𝑣
′ + 𝑐11𝜑 + 𝑐13𝜃

′ + 𝑐17𝑢
′ + 𝑐19𝜑

′ + 𝑐21𝜓
′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐3𝑤𝑟𝑒𝑙
′ + 𝑐14𝜃

′ + 𝑐16𝜃 + 𝑐24𝜓= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐4𝜃
′ + 𝑐12𝜑 + 𝑐13𝑣

′ + 𝑐14𝑤𝑟𝑒𝑙
′ + 𝑐18𝑢

′ + 𝑐20𝜑
′ + 𝑐22𝜓

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐5𝜑
′ + 𝑐8𝑢

′ + 𝑐10𝜓
′ + 𝑐19𝑣

′ + 𝑐20𝜃
′= 0|𝑥=0 𝑜𝑟 𝑙  

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐10𝜑
′ + 𝑐16𝜑 + 𝑐21𝑣

′ + 𝑐22𝜃
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

 

 

(2.53) 
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Euler-Bernoulli model 

−𝑘1𝑢̈ + 𝑏1𝑢
′′ + 𝑏9𝑣

′′′ + 𝑏10𝑤𝑟𝑒𝑙
′′′ + 𝑏6𝜃

′′ = 0 (2.54 a) 

−𝑘2𝑣̈ − 𝑏2𝑣
′′′′ − 𝑏9𝑢

′′′ − 𝑏5𝑤𝑟𝑒𝑙
′′′′ + 𝑏13𝑤𝑟𝑒𝑙

′′′ − 𝑏7𝜃
′′′ + 𝑏12𝜃

′′ = 0 (2.54 b) 

−𝑘3𝑤̈𝑟𝑒𝑙 − 𝑏3𝑤𝑟𝑒𝑙
′′′′ − 𝑏10𝑢

′′′ − 𝑏5𝑣
′′′′ − 𝑏13𝑣

′′′ − 𝑏8𝜃
′′′ + 𝑏11𝜃

′′ = 𝑘3𝑤̈𝑏 (2.54 c) 

−𝑘4𝜃̈ + 𝑏4𝜃
′′ + 𝑏6𝑢

′′ + 𝑏7𝑣
′′′ + 𝑏12𝑣

′′ + 𝑏8𝑤𝑟𝑒𝑙
′′′ + 𝑏11𝑤𝑟𝑒𝑙

′′ = 0 (2.54 d) 

 Fixed end 

𝑢 = 𝑣 = 𝑤𝑟𝑒𝑙 = 𝜃 = 𝑣
′ = 𝑤𝑟𝑒𝑙

′ = 0|𝑥=0 𝑜𝑟 𝑙 (2.55) 

Free end  

𝑏1𝑢
′ + 𝑏6𝜃′ + 𝑏9𝑣

′′ + 𝑏10𝑤𝑟𝑒𝑙
′′ = 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′ + 𝑏5𝑤𝑟𝑒𝑙

′′ + 𝑏6𝑢
′ + 𝑏7𝜃

′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏2𝑣
′′′ + 𝑏5𝑤𝑟𝑒𝑙

′′′ + 𝑏9𝑢
′′ + 𝑏7𝜃

′′ − 𝑏12𝜃
′ − 𝑏13𝑤𝑟𝑒𝑙

′′ = 0|𝑥=0 𝑜𝑟 𝑙 

𝑏3𝑤𝑟𝑒𝑙
′′ + 𝑏5𝑣

′′+𝑏8𝜃
′+𝑏10𝑢

′+𝑏13𝑣
′= 0|𝑥=0 𝑜𝑟 𝑙  

𝑏3𝑤𝑟𝑒𝑙
′′′ + 𝑏5𝑣

′′′ + 𝑏10𝑢
′′ + 𝑏8𝜃

′′ − 𝑏11𝜃
′ + 𝑏13𝑣

′′= 0|𝑥=0 𝑜𝑟 𝑙 

𝑏4𝜃
′ + 𝑏6𝑢

′ + 𝑏7𝑣
′′ + 𝑏8𝑤𝑟𝑒𝑙

′′ + 𝑏11𝑤𝑟𝑒𝑙
′ + 𝑏12𝑣

′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

(2.56) 

where 𝑤𝑏(𝑡) is the base displacement in the out of plane direction. 𝑤𝑟𝑒𝑙 (𝑥, 𝑡) is the relative 

out of plane bending displacement of the structure with respect to the base excitation. In 

Timoshenko model Eq. (2.51), coefficients 𝑐12, 𝑐13 and 𝑐15 to 𝑐22 and for the Euler-Bernoulli 

model, in Eq. (2.54) coefficients 𝑏6 to 𝑏8 are the additional coupling terms that are not seen in the 

case of straight cable pattern. Therefore, the mathematical model in this paper covers a more 

general case when the wrapping angle is non-zero. In Eq. (2.51 a), the axial coordinate is coupled 

to the two rotations of cross-section, in-plane bending and the torsion mode. In Eq. (2.51 b), the 

in-plane bending mode is coupled to the two rotations of cross-section, axial and the torsion mode. 

In Eq. (2.51 c), the out of plane bending is coupled to the rotation of cross-section about y-axis 

and the torsion mode. In Eq. (2.51 d), the torsion mode is coupled with the all the coordinates. In 

Eq. (2.51 e), the rotation of cross-section about z-axis is coupled with all the coordinates except 

the out of plane bending. In Eq. (2.51 f), the rotation of cross-section about y-axis is coupled to all 

the other coordinates. In Eq. (2.54 a), the axial mode is coupled to all the other coordinates. 

Similarly, in Eqs. (2.54 b), (2.54 c) and (2.54 d), the in-plane, out-of-plane and torsion modes are 

coupled to all the other coordinates.  The coupled partial differential equations, Eqs. (2.51) and 

(2.54) are second order in time and the temporal solution of the PDEs can be assumed harmonic. 

In the first step, the unforced coupled system is solved for the natural frequencies and mode shapes. 

The solution procedures for obtaining the natural frequencies, mode shapes for the PDEs of the 
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type Eqs. (2.51) and (2.54) are shown in the previous works [118,129,130] and are presented in 

Section. 2.1 of this chapter. 

2.2.2 Numerical Simulations and Analysis 

 

In the Section. 2.2.2, theoretical case studies related to the periodic wrapping pattern are 

performed. Firstly, the frequency response functions obtained from the coupled EB and TBT 

models are compared with the frequency response function obtained from the EB decoupled model 

for three different samples. Then, the sensitivity analysis is performed by varying parameters such 

as the cable radius and the number of fundamental elements of the wrapping pattern and the 

frequencies of the periodically wrapped structure are compared with the frequencies of straight 

cable to highlight the change in dynamic behavior between the two patterns.  

Table 2. 7 System parameters for the samples 1, 2 and 3. 

System parameters  Sample 1 Values  Sample 2 Values Sample 3 Values 

Beam length (𝑙) 250 mm 260 mm 252 mm 

Beam width (𝑏) 10 mm 11 mm 9.5 mm 

Beam thickness (𝑡) 1.5 mm 0.975 mm 1.20 mm 

Beam density (𝜌𝑏) 2,700 Kg/m3 2,768 Kg/m3 2,768 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  68.9 GPa  68.9 GPa  

Beam Shear modulus (𝐺𝑏) 26 GPa  25.7 GPa  25.7 GPa  

Pre-tension of the cables (𝑇) 25 N 40 N 20 N 

Cable radius (𝑟𝑐) 0.7 mm 0.21 mm 0.21 mm 

Cable density (𝜌𝑐) 1,400 Kg/m3 1,400 Kg/m3 1,400 Kg/m3 

Cable modulus of elasticity (𝐸𝑐) 150 GPa 128.04 GPa 128.04 GPa 

Number of fundamental elements 8 10 9 

Number of Cables 1 5 10 

Sensing location 250 mm 53 𝑚𝑚 250 mm 

 

 

Fig. 2. 20 Representation of the top view cable harnessed structure with periodic wrapping pattern along 

with the dimensions. (a) Sample 1 (b) Sample 2 (c) Sample 3.  
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(a) 

 
(b) 

 
(c) 

Fig. 2. 21 Comparison of theoretical frequency response functions for coupled (EB and TBT) and 

decoupled models for (a) Sample 1 (b) Sample 2 (c) Sample 3. Cabled Analytical 

(Decoupled)  Cabled Analytical (coupled EB) Cabled Analytical (coupled 

Timoshenko). 
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The layout and dimensions of wrapping pattern of the three different periodic designs studied are 

presented in Fig. (2.20). In Fig. (2.21), the frequency response functions (FRF) of the fully coupled Euler-

Bernoulli, Timoshenko models are compared to the frequency response function of the Martin et al [51,52] 

decoupled model for the samples 1,2 and 3 whose parameters are presented in Table. (2.7). The boundary 

condition assumed is cantilever as shown in Fig. (2.19) and the structure is subjected to harmonic base 

excitation. It is assumed that the cable will have same strain values as the top fiber of the beam. The sensing 

locations for the simulations are at 𝑥 = 250, 53 and 250 𝑚𝑚 for samples 1, 2 and 3 respectively. 

Physically, out of the three samples, sample 1 has the highest length to thickness ratio followed by samples 

3 and 2. Sample 1 has the largest cable radius of 0.7 mm, sample 3 has 10 cables with each cable having a 

radius of 0.21 mm and sample 2 has 5 cables each having a diameter of 0.21 mm. From Figs. (2.21 a), (2.21 

b) and (2.21 c), it can be seen that the out of plane bending peaks from the decoupled model over-predict 

the frequencies when compared to the corresponding peaks from the fully coupled EB and TBT models for 

all the samples. Since, the structure is excited in the out of plane bending direction, the significant peaks in 

coupled FRF correspond to the out-of-plane bending dominant mode and certain sharp peaks which 

correspond to the torsion and in-plane bending mode can also be noticed. The natural frequencies from the 

coupled and decoupled models are tabulated and shown in Tables. (2.8), (2.9) and (2.10) along with the 

percentage difference in the frequencies between the coupled and decoupled models. In sample 1, where 

the cable radius is the largest, we see greater difference between the coupled and decoupled model. When 

the cable radius is large, the strain energy is highly over-predicted by the decoupled model when compared 

to the coupled model for the out of plane bending modes. At larger values of cable radius, the coupling 

coefficients also increase in magnitude. This increase in coupling effect means that the structure is more 

flexible in multiple directions, which the decoupled model ignores. In decoupled model, the structure is 

assumed flexible in one direction and rigid in the other directions, so, the decoupled FRF curve does not 

predict the modes in the other coordinates of motion. Therefore, in the coupled model the strain energy is 

re-distributed amongst different coordinates from the out of plane direction because of this the frequencies 

are lower for coupled model. Later on, in this Section. 2.2.2, the simulation result of the variation of natural 

frequency with respect to the cable radius is presented. For the modes analyzed for the three samples, from 

Table. (2.8) we see two in-plane bending modes and one torsion mode in addition to the five out of plane 

bending modes for the fully coupled models for sample 1. Similarly, for samples 2 and 3, we see two in-

plane bending dominant modes and one torsion dominant mode (Tables. (2.9) and (2.10)). In the higher 

modes in the FRF plot (Fig. (2.21)), the coupling effect can be significantly seen. The Timoshenko model 

also under predicts the frequencies when compared to the Euler-Bernoulli model. This is because, in 

Timoshenko model we consider two more additional coordinates namely the rotations of cross-section 
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therefore the coupled Timoshenko model allows more flexibility for the structure when compared to the 

coupled Euler-Bernoulli model.  

Table 2. 8 Coupled and Decoupled Natural Frequencies for sample 1. 

Mode 

No 

Decoupled 

EB 

[Hz] 

Coupled EB 

[Hz] 

Coupled 

TBT 

[Hz] 

% Decoupled 

EB and 

Coupled EB 

% Decoupled 

EB and 

Coupled TBT 

1 31.29 22.40 (OP) 22.27 (OP) 28.41 28.82 

2 - 135.71 (IP) 135.53 (IP) - - 

3 196.13 140.43(OP) 139.55 (OP) 28.39 28.84 

4 549.23 393.19(OP) 390.6 (OP) 28.41 28.88 

5 1076.21 770.45(OP) 764.93 (OP) 28.41 28.92 

6 - 850.52(IP) 842.40 (IP) - - 

7 - 852.17 (T) 851.78 (T) - - 

8 1779.02 1253.58(OP) 1263.62 (OP) 28.41 28.97 

*OP, IP and T stand for Out of plane bending, In-plane bending and Torsion dominant modes respectively 

 

Table 2. 9 Coupled and Decoupled Natural Frequencies for sample 2. 

Mode 

No 

Decoupled 

EB [Hz] 

Coupled 

EB  

[Hz] 

 

Coupled 

TBT  

[Hz] 

 

% Decoupled 

EB and 

Coupled EB 

% Decoupled 

EB and 

Coupled TBT 

1 14.16  12.66 (OP) 12.61 10.59 % 10.94 % 

2 88.81  79.25 (OP) 79.03 10.76 % 11.01 % 

3 - 133.74 (IP) 133.54 - - 

4 248.7  222.28 (OP) 221.26 10.62 % 11.03 % 

5 487.32  435.59 (OP) 433.49 10.67 % 11.04 % 

6 - 497.93 (T) 497.52 - - 

7 805.56  720.02 (OP) 716.40 10.61 % 11.06 % 

8 - 838.12 (IP) 829.69  - - 
*OP, IP and T stand for Out of plane bending, In-plane bending and Torsion dominant modes respectively 

 

Table 2. 10 Coupled and Decoupled Natural Frequencies for sample 3. 

Mode 

No 

Decoupled 

EB [Hz] 

Coupled EB  

[Hz] 

 

Coupled 

TBT  

[Hz] 

 

% Decoupled 

EB and 

Coupled EB 

% Decoupled 

EB and 

Coupled TBT 

1 20.76  17.63 (OP) 17.49 15.07 % 15.75 % 

2 130.13  110.56 (OP) 109.62 15.03 % 15.76 % 

3 - 126 (IP) 125.85 - - 

4 364.41  309.55 (OP) 306.86 15.05 % 15.79 % 

5 714.06  606.53 (OP) 601.07 15.05 % 15.82 % 

6 - 705.97 (T) 705.22 - - 

7 - 789.70 (IP) 783.02 - - 
*OP, IP and T stand for Out of plane bending, In-plane bending and Torsion dominant modes respectively 
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                                     Table 2. 11 System parameters for the sensitivity analysis 

System parameters  Values 

Beam length (𝑙) 250 mm 

Beam width (𝑏) 10 mm 

Beam thickness (𝑡) 1.5 mm 

Beam density (𝜌𝑏) 2,700 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  

Beam Shear modulus (𝐺𝑏) 26 GPa  

Pre-tension of the cables (𝑇) 25 N 

Cable radius (𝑟𝑐) 0.7 mm (variable) 

Cable density (𝜌𝑐) 1,400 Kg/m3 

Cable modulus of elasticity (𝐸𝑐) 150 GPa 

Number of Cables 9 (variable) 

 

In Figs. (2.22) and (2.23), the effect of parameters like cable radius and number of 

fundamental elements on the natural frequency are presented. Fig. (2.22) presents the variation of 

natural frequency of the structure with respect to the number of fundamental elements of wrapping 

pattern along the x-axis. The parameters used for this simulation are from Table. (2.11). The 

natural frequencies of the out of plane bending dominant, in-plane bending dominant and the 

torsion dominant are plotted in Figs. (2.22 a), (2.22 b) and (2.22 c) respectively. Frequencies 

obtained from the coupled model presented in this paper and Martin et al [51] model are plotted 

on the same figure. For the results pertaining to the coupled curve, coupled Euler-Bernoulli is used, 

as the structure considered in the simulation is slender and the effect of rotation of cross-section 

degree of freedom will be minimal. In Fig. (2.22 a), when the number of fundamental elements are 

lower, there is large difference between the coupled and the decoupled models and as the number 

of fundamental elements increase, the coupling effect reduces and we see the gap between the 

coupled and decoupled getting smaller. The coupling in the structure is maximum when the 

wrapping angle is smaller and as the wrapping becomes tighter, the coupling decreases. More 

analysis related to this is presented in Table. (2.13) and the discussion related to this will be 

touched upon at that point. From Fig. (2.22 b), it can be observed that the coupling in the in plane 

bending dominant modes is lesser than the out-of-plane bending mode. From Fig. (2.22 c), the 

torsion dominant mode increases until 20 elements and starts decreasing when the number of 

elements increase beyond 25. This suggests that the strain energy is re-distributed from the out-of-

plane bending into the torsional mode until when the number of fundamental elements are 25. This  



 

71 

 

 
(a) 

 
                                                                               (b) 

 
(c) 

Fig. 2. 22 Effect of variation in number of fundamental elements vs the fundamental natural frequency 

of a) Out of plane dominant mode b) In-plane bending dominant mode c) Torsion dominant mode. 

 Present work (Coupled)   Martin et al [51]. 
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(a) 

 
(b) 

 
                                                                                (c) 

Fig. 2. 23 Effect of variation in cable radius vs the fundamental natural frequency of a) Out of plane 

dominant mode b) In-plane bending dominant mode c) Torsion dominant mode.  Present 

work (Coupled);   Martin et al [51]. 

 

is because of the coupling effect between various coordinates. The stiffening effects dominate the 

response of the structure when the number of fundamental elements are less than 20 because of 

smaller wrapping angle and the mass effects start becoming more significant when the number of 

fundamental elements of wrapping start increasing beyond 25 elements. 
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Table 2. 12 System parameters for the sensitivity analysis in Table. 2.13 

System parameters  Values 

Beam length (𝑙) 250 mm 

Beam width (𝑏) 10 mm 

Beam thickness (𝑡) 1.2 mm 

Beam density (𝜌𝑏) 2,768 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  

Beam Shear modulus (𝐺𝑏) 25.7 GPa  

Pre-tension of the cables (𝑇) 25 N 

Cable radius (𝑟𝑐) 0.21 mm 

Cable density (𝜌𝑐) 1,400 Kg/m3 

Cable modulus of elasticity (𝐸𝑐) 128.04 GPa 

Number of Cables 9 

 

 

Table 2. 13 Sensitivity analysis for multiple frequencies with respect to the straight and periodic pattern 

cases 

Mode 

No 

Bare 

Beam 

[Hz] 

Straight 

Cable 

No 

offset 

[Hz] 

Straight 

Cable at 

offset 

[Hz] 

n=5 

[Hz] 

n=9 

[Hz] 

n=15 

[Hz] 

n=20 

[Hz] 

n=30 

[Hz] 

n=50 

[Hz] 

1 15.47 18.4 17.39 18.1 17.6 16.82 16.18 15.24 14.30 

2 96.96 115.2 109.76 113.5 110.7 105.28 101.22 95.92 88.71 

3 128.93 125.67 147.20 (IP) 135.8 133.7 130.07 127.37 122.70 116.43 

4 271.54 322.6 307.48 317 309.2 295.07 284.25 267.53 248.44 

5 532.09 632.3 602.87 621.2 606.2 578.20 556.88 524.09 486.77 

6 702.16 683.88 660.50 (T) 678.6 681.8 688.02 690.57 689.07 658.42 

7 808.09 787.64 923.25 (IP) 850.7 838.1 815.82 798 769 729.64 

8 879.57 1045.3 996.94 1027.5 1001.9 956.04 920.23 866.31 804.52 
*OP, IP and T stand for Out of plane bending, In-plane bending and Torsion dominant modes respectively 

Fig. (2.23 a), (2.23 b) and (2.23 c) represents the variation of the first out-of-plane, in-plane 

and torsion dominant modes with respect to the cable radius respectively. In Fig. (2.23 a) and Fig. 

(2.23 b), the natural frequencies increase as the cable radius increases for the out-of-plane and in-

plane dominant modes as the strain energy increases at a faster rate when compared to kinetic 

energy. The natural frequency of the coupled curve increases at a slower rate when compared to 

the decoupled curve. As the radius of the cable radius increases, the coupling coefficients, which 

depend on the area of cross-section, also become stronger. Stronger coupling means the structure 

is flexible in multiple directions, which the decoupled model does not take into account, and as a 

result the decoupled model over predicts the frequencies at larger values of cable radius for 

bending dominant modes. In Fig. (2.23 c), the frequency associated with the torsion dominant 
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mode decreases as the cable radius increases. The torsional kinetic energy increases at a faster rate 

when compared to the strain energy in the torsional direction. 

In Table. (2.13), the natural frequencies associated with the case where the cable is 

positioned at the centerline (no offset) [118] , case where the cable is at an offset position [118], 

bare beam  and cases where the number of fundamental elements are varied are compared to each 

other. The parameters used for this simulation are from Table. (2.13). In Table. (2.13), the 

frequencies presented in the third row correspond to the first in-plane bending mode. The 

frequencies presented in the sixth row correspond to the first torsion dominant mode and the 

frequencies presented in the seventh row correspond to the second in plane bending dominant 

mode. To analyze further, the case with straight cable at offset shows more coupling than the case 

of periodic wrapping pattern. This can be noticed when we look at the coupled natural frequencies 

of the two different systems under comparison with their respective decoupled counterparts. For 

out-of-plane bending modes, in case of straight cable with offset case, the percentage difference 

between the coupled and the decoupled model in Martin et al [51] for the first three modes are 

19.56%,19% and 18.97% and the difference between the coupled and decoupled models for the 

structure with five diagonal elements for the first three modes are 14.29%, 14.26% and 14.51%. 

As the coupling effect in case of periodic pattern is lower, the coupled out of plane bending 

dominant frequencies did not drop as much as the straight cable case and therefore we see more 

stiffening effect in case of structure with periodic wrapping pattern until when the number of 

fundamental elements are equal to 9. The case where straight cable is positioned at the centerline 

(no offset case) shows lesser coupling and more stiffening effect (by also comparing with the 

frequencies from bare beam) when compared to the case where the cable is positioned at an offset 

distance. When the number of fundamental elements of wrapping pattern are increased beyond 9 

elements, the natural frequency of the periodic wrapped structure decreases and approaches the 

bare beam. As the number of fundamental elements of wrapping pattern increase, the natural 

frequencies drop in periodic structure as more mass is added to the structure and also when the 

more fundamental elements of wrapping pattern are increased, the wrapping angle also increases. 

As the wrapping angle is increased, the stiffening effect reduces, and therefore we see a drop in 

the natural frequencies as the number of fundamental elements are increased. Therefore, to 

minimize the effect of stiffening and mass effects of cabling on the host structure, it is better to 

wrap the cable around the host structure in periodic pattern. From the case study presented in 
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Table. (2.13), if number of fundamental elements are around 30 we see minimal effect of mass and 

stiffening effects of cabling on the host structure. The optimal number of fundamental elements 

depends on the parameter under study and from the mathematical models presented in this section, 

coupled analytical models give better picture of the dynamics of the system when compared to the 

decoupled model.  

Another interesting aspect to study in the cable-harnessed beam with periodic wrapping 

pattern is the concept of cut off or transition frequency in Timoshenko beam theory. The relevant 

literature regarding this is described in Chapter 1. In Timoshenko beams with simply supported 

boundary conditions [109], we see a mode with pure-shear mode vibrations which is referred to as 

cut off or transition frequency an interesting concept which has received considerable attention in 

the recent past. For frequencies below this transition frequency, we see bending mode vibrations 

and for frequencies above the transition frequency, we see both shear dominant mode and also 

some modes with bending dominant vibrations. This concept may be of practical interest in 

structures where the transition frequency and shear dominant modes start to appear in the lower 

modes of vibration. For a simple beam, this aspect has been studied thoroughly through various 

papers for simply supported boundary condition and it is concluded there that the transition 

frequency is a part of frequency spectrum for simply supported boundary conditions. For other 

boundary conditions, it is not part of the frequency spectrum. However, we still see the appearance 

of shear dominant modes in the structure for all the boundary conditions. For a simple Timoshenko 

beam, the modes that are coupled are the bending and the rotation of cross-section modes. The 

governing partial differential equations for Timoshenko bare beam can obtained from Ref. [120]. 

The mathematical form of the mode shape parameter 𝛼𝑖 is shown in Eqs. (2.57)- (2.59) as follows: 

                         Table 2. 14 System parameters for transition frequency case study 

System parameters  Values 

Beam length (𝑙) 200 mm 

Beam width (𝑏) 11 mm 

Beam thickness (𝑡) 10 mm 

Beam density (𝜌𝑏) 2,768 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  

Beam Shear modulus (𝐺𝑏) 25.7 GPa  

Pre-tension of the cables (𝑇) 25 N 

Cable radius (𝑟𝑐) 3 mm 

Cable density (𝜌𝑐) 1,400 Kg/m3 

Cable modulus of elasticity (𝐸𝑐) 128.04 GPa 

Number of fundamental elements 10 
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{

𝛼1
𝛼2
𝛼3
𝛼4

} = {

+𝑎
−𝑎
+𝑖𝑏
−𝑖𝑏

} 

 

(2.57) 

{

𝛼1
𝛼2
𝛼3
𝛼4

} = {

0
0
+𝑖𝑏
−𝑖𝑏

} 

 

(2.58) 

{

𝛼1
𝛼2
𝛼3
𝛼4

} = {

+𝑖𝑎
−𝑖𝑎
+𝑖𝑏
−𝑖𝑏

} 

 

(2.59) 

                         

Fig. 2. 24 Variation of normalized transition frequency of cabled beam with respect to the radius of the 

cable.  Bare beam     Cabled beam. 

Eq. (2.57)-(2.59) shows the mode shape parameters for frequencies below the cut off frequencies, 

at the transition frequency and above the transition frequencies. The form of couple of 𝛼𝑖′𝑠 changes 

from real to zero to imaginary. In the literature, for a given structure the transition frequency was 

constant and even in composite structures with coupling between multiple coordinates, this 

frequency was found to be unaffected [76]. In this Chapter, the effect of wrapping a cable around 

the host structure in a periodic manner on the transition frequency and mode shapes is investigated 

for simply supported boundary condition. For this analysis, the continuum model for the 

Timoshenko beam theory applies here. This study is the first in the area of cable-harnessed 

structures. Initially, a case study is investigated where the effect of cable radius is studied on the 

transition frequency. In Fig. (2.24), the radius of the cable is varied along the x-axis and the 

normalized frequency is plotted along the y-axis. The system parameters for this study are shown 



 

77 

 

in Table. (2.15). The transition frequency of the cabled beam is normalized with respect to the 

transition frequency of bare to clearly obtain an idea of the behavior of cabled beam with respect 

to the bare beam. The transition frequency of bare beam is independent of cable radius and will 

remain constant [109]. In Fig. (2.24), the transition frequency of the cabled beam is plotted using 

coupled vibration model (Eq. (2.51 a) to Eq. (2.51 f)). As it can be seen in Fig. (2.24), the transition 

frequency of cabled beam decreases with increase in cable radius. This shows that at the transition 

frequency, the kinetic energy effects of cabling will be more dominant than the strain energy, 

which is why the frequency decreases. 

 

                                    (a) 

 

(b) 

 

(c) (d) 

 

(e)  
                                      (f)  

 

(g) 

 

 

Fig. 2. 25 Mode shapes for (a)-(c) frequencies in first spectrum; (d) transition frequency; (e)-(g) 

frequencies in the second spectrum. 
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Table 2. 15 Natural Frequencies for bare and cabled beam for both first and second spectra using TBT 

Mode No Bare beam Cabled beam 

First Spectra [Hz]   

1a 563.09 660.88 (OP) 

2a 2224.98 2348.01 (OP) 

3a 4910.40 5190.35 (OP) 

4a  5990.59 

5a 8506.83 8785.35 (OP) 

6a  11861.26 

7a  12372.76 

8a 12891.39 13368.92 (OP) 

Transition Frequency [kHz]   

 156.70 117.13 

Second Spectra [kHz]   

1b  117.62  

2b 157.36 118.02 (SD) 

3b  118.88 

4b 159.29 120.63 (SD) 

5b  123.12 

6b  124.26 

7b 162.33 124.84 (SD) 

8b  128.64 

9b  129.41 

10b  130.31 

11b 166.63 130.62 (SD) 

12b  135.37 

13b  136.35 

14b 171.72 137.17 (SD) 
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For the bare beam model, the mode shapes are plotted in Fig. (2.25). The mode shapes are 

explained in detail in the published literature for the simply supported boundary condition [109].  

While solving the partial differential equations for a bare beam, it is assumed that the mode shapes 

for simply supported are sinusoidal. We see a pure shear vibration mode in Fig. (2.25 d). Figs. 2.25 

(a)-(c) are the mode shapes in the first spectrum which are bending dominant modes. Figs. 2.25 

(e)–(g) are shear dominant modes and some bending dominant modes in between the shear 

dominant modes. The natural frequencies corresponding to the bare beam and cabled beam for 

both spectra are shown in Table. (2.15). 

In a similar way, the natural frequencies for the cabled beam are calculated using the theory 

proposed in this Chapter 2. For the cabled beam simulations of Table. (2.15), the coordinates 

considered are the axial, out of plane bending, torsion and the rotation of cross section. The 

governing equations of motion along with the simply supported boundary conditions are shown in 

Eqs. (2.60) and (2.61).    

−𝑘1𝑢̈ + 𝑐1𝑢
′′ + 𝑐9𝜓

′′ + 𝑐18𝜃
′′ = 0 (2.60 a) 

−𝑘3𝑤̈ + 𝑐3𝑤
′′ + 𝑐14𝜃

′′ + 𝑐16𝜃
′ + 𝑐24𝜓

′ = 0 (2.60 b) 

−𝑘4𝜃̈ + 𝑐4𝜃
′′ + 𝑐14𝑤

′′ − 𝑐16𝑤
′ + 𝑐18𝑢

′′ + 𝑐22𝜓
′′ = 0 (2.60 c) 

−𝑘6𝜓̈ + 𝑐6𝜓
′′ − 𝑐23𝜓 + 𝑐9𝑢

′′ − 𝑐24𝑤
′ + 𝑐22𝜃

′′ = 0 (2.60 d) 

 

𝑢= 0|𝑥=0 𝑜𝑟 𝑙 

𝑤= 0|𝑥=0 𝑜𝑟 𝑙 

𝜃= 0|𝑥=0 𝑜𝑟 𝑙 

𝑐6𝜓
′ + 𝑐9𝑢

′ + 𝑐22𝜃
′= 0|𝑥=0 𝑜𝑟 𝑙 

 

 

 

 

 

(2.61) 
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(a) 

 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

 Fig. 2. 26 Mode shapes for (a)-(c) frequencies in first spectrum; (d) transition frequency; (e)-(g) 

frequencies in the second spectrum. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 2. 27 The nature of mode shape parameters of out of plane dominant modes in spectra 1 and shear 

dominant modes in spectra 2. Im [𝛼1], Im [𝛼3], Im [𝛼5], Re [𝛼7]  Im [𝛼2], Im [𝛼4], 

Im [𝛼6], Im [𝛼7]  Re [𝛼8]    Im [𝛼8]. 

 

The natural frequencies are tabulated in the third column of Table. (2.15) and the mode 

shapes of the cabled beam for both the spectra are presented in Fig. (2.26). The focus of Table. 

(2.15) is to compare the frequencies of bending and shear dominant mode for both the spectra with 

that of bare beam. In the first spectra for bending dominant mode, we see stiffening effect as 

predicted in the all the results presented earlier in this Chapter 2. For the transition frequency, we 

see that the frequency has decreased after the addition of cable. It can also seen in Fig. (2.24) that 

the transition frequency for the cabled beam is less than that of bare beam. From this, it can be 

analyzed that the addition of cable will push the shear modes into the lower modes for cabled beam 

when compared to bare beam.  In the second spectrum frequencies shown in Table. (2.15), the 

shear dominant modes frequencies are lower than that of bare beam. The slenderness ratio of the 

structure considered for this simulation is 20. Practically, when the slenderness ratio decreases 

further, we see the transition frequency appearing in the lower modes and have significant role on 

the overall dynamics of the structure. This concept may be used for reducing the bending vibrations 
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of thick structures by adding cables to bare beam structure to increase the vibrations of structure 

in the thickness shear direction. 

Coming to the nature of mode shapes in Fig. (2.26), for the transition frequency in Fig. 

(2.26 d), we see pure shear vibration mode for the simply supported boundary condition for the 

cable-harnessed structure as well. The nature of the mode shape parameter (𝛼𝑖) for bare beam is 

explained in Eqs. (2.57) to (2.59). Similarly, the mode shape parameters for cabled beam are 

plotted in Fig. (2.27). In Fig. (2.27), on the x-axis OP stands for Out of Plane bending dominant 

mode and SD stands for shear dominant mode. In Figs. (2.27 a) to (2.27 c), the mode shape 

parameter is imaginary for both the spectra and the transition frequency. In Fig. (2.27 d), the pair 

of mode shape parameters are real for the out of plane bending dominant modes in the first spectra. 

At the transition frequency, they approach to zero and in the second spectra, the pair of mode shape 

parameters turn imaginary. In the second spectra, only the 𝛼𝑖 associated with the shear dominant 

modes are presented. For the shear dominant modes, for bare beam in simply supported boundary 

conditions we see symmetric solutions of the mode shape [109] that is the profile of the shapes for 

both the spectra a similar (symmetric behavior). For example, we observe that the shapes of the 

first, second bending dominant (Fig. (2.25 a) and Fig. (2.25 b)) and shear dominant modes (Fig. 

(2.25 e) and Fig. (2.25 f)) are similar although the magnitudes are different due to dominance of 

each direction in each spectrum.  For the cable-harnessed structure, we see complicated shape of 

the first, second shear dominant modes and the bending coordinate also shows complicated shapes 

different from the shapes for bare beam for the second spectra. From the boundary conditions in 

Eq. (2.61), we can observe that the modal shape for cable-harnessed structure will not be as simple 

as that of bare beam even for simply supported boundary conditions. For a bare beam, the mode 

shape is simply a sinusoidal function. In case of cable-harnessed structure, when there is coupling, 

the mode shapes from axial and torsion coordinate, contribute to the bending and rotation of cross 

section displacements. All 𝛼𝑖’s contribute to the response of all the coordinates. As a result, we 

see complicated mode shapes for the second spectra where we see lesser bending vibrations and 

more shear vibrations. This suggests that the symmetry of having similar shapes in both spectrum 

for bare beam is broken in case of cable-harnessed structure with periodic wrapping pattern for a 

simply supported condition due to effect of coupling between various coordinates of vibration.  
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2.3 Coupled Vibrations in Structure with Non-Periodic Wrapping Pattern 
 

This section presents the coupled vibrations of cable-harnessed structures with non-periodic 

wrapping pattern. In Section. 2.3.1, exact set of coupled PDEs for the non-periodic wrapped 

structure are presented. The solution procedure to solve the system of PDEs by applying boundary 

and continuity conditions to find the natural frequencies is presented. In Section. 2.3.1, theoretical 

studies are performed. The frequency response functions of decoupled and coupled models are 

analyzed. The findings obtained of this Section will be submitted to [131].   

 

2.3.1 Mathematical Model 
 

 

The cable-harnessed structure with non-periodic wrapping pattern along with the coordinates 

of motion is shown in Fig. (2.28). In case of periodic wrapping pattern, all the fundamental 

elements had same wrapping angle and equivalent continuum is developed. Unlike in the case of 

Periodic wrapping pattern [119,124], here the wrapping angle is different across each fundamental 

element and represents a more complicated case of study than compared to the periodic wrapping 

pattern. To analyze non-periodic wrapping structures, it is important to discretize the structure into 

multiple sub-substructures (at the end of each fundamental element) and assume the displacement 

function is continuous by applying continuity conditions.  The coordinates of motion considered 

are Axial 𝑢(𝑥, 𝑡), In plane bending 𝑣(𝑥, 𝑡), Out of plane bending 𝑤(𝑥, 𝑡) and Torsion 𝜃(𝑥, 𝑡). The 

cable is assumed to wrapped in a diagonal manner and there is a lumped mass section at the end 

of each fundamental element.  
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(a) 

 

(b) 

Fig. 2. 28 Representation of non-periodically wrapped cable harnessed structure pattern along with the 

coordinates of motion. 

 Each fundamental element of wrapping is assumed to have different displacement. The 

fundamental element along with the local coordinates is described in Fig. 2.28(b). where 

𝑢𝑖(𝑥, 𝑡), 𝑣𝑖(𝑥, 𝑡), 𝑤𝑖(𝑥, 𝑡) and 𝜃𝑖(𝑥, 𝑡) in the Fig. 2.28(b) are the displacements in the axial, in-

plane bending, out of plane bending and the torsion coordinates of the 𝑖𝑡ℎ fundamental element. 

In this Section. 2.3, the procedure to obtain the governing exact partial differential equations using 

energy methods is described. Then the mathematical steps to set up the eigen value problem and 

obtaining the natural frequency from the partial differential equations are derived. The assumptions 

made in the continuum model development are as follows: 

The strain and kinetic energy of the cable-harnessed structure for Euler-Bernoulli model are shown 

in Eqs. (2.62) and (2.63). 
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𝑈𝑖 =
1

2
[∭𝐸𝑏(−𝑇 cos𝜓𝑖 𝐸𝑏𝐴𝑏⁄ + 𝜀𝑥𝑥)

2 +𝐺𝑏(𝛾𝑥𝑦)𝑏
2 + 𝐺𝑏(𝛾𝑧𝑥)𝑏

2 𝑑𝐴 𝑑𝑥]

+
1

2
[∭𝐸𝑐(𝑇 𝐸𝑐𝐴𝑐⁄ + 𝜀𝑥𝑥cos

2𝜓𝑖 + 𝛾𝑥𝑦 cos𝜓𝑖 sin𝜓𝑖)
2 𝑑𝐴 

𝑑𝑥

cos𝜓𝑖
  ] 

 

 

 

(2.62) =
1

2
∫ [𝑐1𝑖(𝑢𝑖

′)2 + 𝑐2𝑖(𝑣𝑖
′′)2 + 𝑐3𝑖(𝑤𝑖

′′)2 + 𝑐4𝑖(𝜃𝑖
′)2 + 2𝑐5𝑖(𝑤𝑖

′′)(𝑣𝑖
′′) + 2𝑐6𝑖(𝑢𝑖

′)(𝜃𝑖
′)

𝑙𝑖

0

+ 2𝑐7𝑖(𝑣𝑖
′′)(𝜃𝑖

′) + 2𝑐8𝑖(𝑤𝑖
′′)(𝜃𝑖

′) + 2𝑐9𝑖(𝑢𝑖
′)(𝑣𝑖

′′) + 2𝑐10𝑖(𝑢𝑖
′)(𝑤𝑖

′′) + 2𝑐11𝑖(𝑤𝑖
′)(𝜃𝑖

′)

+ 2𝑐12𝑖(𝑣𝑖
′)(𝜃𝑖

′) + 2𝑐13𝑖(𝑣𝑖
′)(𝑤𝑖

′′)] 𝑑𝑥 

𝑇𝑖 =
1

2
[∭𝜌𝑏{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇} 𝑑𝐴 𝑑𝑥 +∭𝜌𝑐{𝑋̇, 𝑌̇, 𝑍̇}

𝑇
{𝑋̇, 𝑌̇, 𝑍̇}  𝑑𝐴 

𝑑𝑥

cos𝜓𝑖
 ] 

 

(2.63) 

=
1

2
∫ [𝑘1𝑖(𝑢̇𝑖)

2 + 𝑘2𝑖(𝑣̇𝑖)
2 + 𝑘3𝑖(𝑤̇𝑖)

2 + 𝑘4𝑖(𝜃̇𝑖)
2
]  𝑑𝑥

𝑙𝑖

0

 

where superscript ( )′denotes partial derivative with respect to spatial coordinate 𝑥(
𝜕

𝜕𝑥
) and 

superscript ( )̇ denotes partial derivative with respect to time 𝑡(
𝜕

𝜕𝑡
). where 𝑙𝑖 is the length of the 𝑖𝑡ℎ 

fundamental element. where 𝜓𝑖 is the wrapping angle of the 𝑖𝑡ℎ fundamental element and given 

by tan−1(
𝑏

𝑙𝑖
). The coefficients of Eqs. (2.62) and (2.63) are presented in Eq. (D.1). Once the strain 

and kinetic energy expressions are obtained, Hamilton’s principle is applied: 𝛿 ∫ (𝑇 − 𝑈)
𝑡2

𝑡1
𝑑𝑡 = 0 

to obtain the fully coupled partial differential equations of equations along with the boundary 

conditions.  This paper does not consider the damping induced by the cabling and the focus is on 

the mass and stiffness effects of cables. Although the structure is subjected to harmonic base 

excitation, the free vibration charecteristics of the system such as the natural frequency and the 

mode shapes remain unaffected. The following mathematical steps show the procedure to calculate 

the natural frequency and mode shapes from the unforced system. At the end of Section. 2.3.1, the 

partial differential equations are shown for the structure subjected to base excitation along with 

the formula to find the frequency response function. The exact coupled set of governing equations 

of motion obtained after applying the extended Hamilton’s principle for the non-periodically 

wrapped structure are shown in Eqs. (2.64 a)-(2.64 d). 
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𝑘̂1𝑖𝑢̈𝑖 − 𝑐̂1𝑖𝑢𝑖
′′ − 𝑐̂6𝑖𝜃𝑖

′′ − 𝑐̂10𝑖𝑤𝑖
′′′ − (𝑐̂9𝑖(𝑥)𝑣𝑖

′′)′ = 0 (2.64 a) 

𝑘̂2𝑖𝑣̈𝑖 + (𝑐̂2𝑖(𝑥)𝑣𝑖
′′)′′+(𝑐̂5𝑖(𝑥)𝑤𝑖

′′)′′+(𝑐̂7𝑖(𝑥)𝜃𝑖
′′)′+(𝑐̂9𝑖(𝑥)𝑢𝑖

′′)′ − 𝑐̂12𝑖𝜃𝑖
′′ − 𝑐̂13𝑖𝑤𝑖

′′′ = 0 (2.64 b) 

𝑘̂3𝑖𝑤̈𝑖 + 𝑐̂3𝑖𝑤𝑖
′′′′ + 𝑐̂8𝑖𝜃𝑖

′′′ + 𝑐̂10𝑖𝑢𝑖
′′′ − (𝑐̂11𝑖(𝑥)𝜃𝑖

′)′ + (𝑐̂5𝑖(𝑥)𝑣𝑖
′′)′′ + 𝑐̂10𝑖𝑢𝑖

′′′ + 𝑐̂13𝑖𝑣𝑖
′′′

= 0 

(2.64 c) 

𝑘̂4𝑖(𝑥)𝜃̈𝑖 − (𝑐̂4𝑖(𝑥)𝜃𝑖
′)′ − 𝑐̂6𝑖𝑢𝑖

′′ − 𝑐̂8𝑖𝑤𝑖
′′′ − (𝑐̂11𝑖(𝑥)𝑤𝑖

′)′ − (𝑐̂7𝑖(𝑥)𝑣𝑖
′′)′ − 𝑐̂12𝑖𝑣𝑖

′′ = 0 (2.64 d) 

        In Eq. (2.64), we can observe that the coefficients 𝑐2𝑖̂,  𝑐4𝑖̂,  𝑐5𝑖̂,  𝑐7𝑖̂,  𝑐9𝑖̂ and 𝑐11𝑖̂  are spatially 

variable. This would make solving the Eq. (2.64) complicated with the spatially varying PDEs. 

The coefficients that are variable are averaged in Eq. (2.65) over the length of the fundamental 

element to develop constant coefficient coupled PDEs. The constant coefficient coupled PDEs can 

be solved using the standard procedure adopted in the previous works by the authors [118,130].  

The y and z coordinates of the cross-section of the cable in terms of local coordinate 𝜂 are 

(𝑦𝑐, 𝑧𝑐) = (𝜂 tan𝜓𝑖 −
𝑏

2
,
ℎ

2
). 

𝑐2𝑖 =
∫ 𝑐2𝑖̂(𝜂) 𝑑𝜂
𝑙𝑖
0

∫ 𝑑𝜂
𝑙𝑖
0

 𝑐4𝑖 =
∫ 𝑐4𝑖̂(𝜂) 𝑑𝜂
𝑙𝑖
0

∫ 𝑑𝜂
𝑙𝑖
0

 𝑐5𝑖 =
∫ 𝑐5𝑖̂(𝜂) 𝑑𝜂
𝑙𝑖
0

∫ 𝑑𝜂
𝑙𝑖
0

 

 

 

 

(2.65) 

𝑐7𝑖 =
∫ 𝑐7𝑖̂(𝜂) 𝑑𝜂
𝑙𝑖
0

∫ 𝑑𝜂
𝑙𝑖
0

 𝑐9𝑖 =
∫ 𝑐9𝑖̂(𝜂) 𝑑𝜂
𝑙𝑖
0

∫ 𝑑𝜂
𝑙𝑖
0

 𝑐11𝑖 =
∫ 𝑐11𝑖̂ (𝜂) 𝑑𝜂
𝑙𝑖
0

∫ 𝑑𝜂
𝑙𝑖
0

 

The form of the constant coefficient PDEs for each fundamental element of the structure are as 

follows. 

𝑘1𝑖𝑢̈𝑖 − 𝑐1𝑖𝑢𝑖
′′ − 𝑐6𝑖𝜃𝑖

′′ − 𝑐10𝑖𝑤𝑖
′′′ − 𝑐9𝑖𝑣𝑖

′′′ = 0 (2.66 a) 

𝑘2𝑖𝑣̈𝑖 + 𝑐2𝑖𝑣𝑖
′′′′+𝑐5𝑖𝑤𝑖

′′′′+𝑐7𝑖𝜃𝑖
′′′+𝑐9𝑖𝑢𝑖

′′′ − 𝑐12𝑖𝜃𝑖
′′ − 𝑐13𝑖𝑤𝑖

′′′ = 0 (2.66 b) 

𝑘3𝑖𝑤̈𝑖 + 𝑐3𝑖𝑤𝑖
′′′′ + 𝑐8𝑖𝜃𝑖

′′′ + 𝑐10𝑖𝑢𝑖
′′′ − 𝑐11𝑖𝜃𝑖

′′ + 𝑐5𝑖𝑣𝑖
′′′′ + 𝑐13𝑖𝑣𝑖

′′′ = 0 (2.66 c) 

𝑘4𝑖𝜃̈𝑖 − 𝑐4𝑖𝜃𝑖
′′ − 𝑐6𝑖𝑢𝑖

′′ − 𝑐8𝑖𝑤𝑖
′′′ − 𝑐11𝑖𝑤𝑖

′′ − 𝑐7𝑖𝑣𝑖
′′′ − 𝑐12𝑖𝑣𝑖

′′ = 0 (2.66 d) 

From the form Eqs. (2.66 a) - (2.66 d), in each equation we can see that each coordinate is 

coupled to all the other coordinates. For example, in Eq. (2.66 a), the axial is coupled to all other 

coordinates such as the in plane bending, out of plane bending and the torsion mode. In Eq. (2.66 

a), the axial coordinate is coupled to other coordinates through equivalent shear terms. In Eq. (2.66 

b), the in-plane bending is coupled to the out of plane bending through the fourth derivative and 

shear (cable tension related) term, to the torsion through the second (tension related term) and third 

derivative term, to the axial coordinate through equivalent shear term. In Eq. (2.66 c), the out of 

plane bending is coupled to in-plane bending term through fourth derivate term and tension related 

shear term, to the axial coordinate through shear related term and to the torsion coordinate through 
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the third derivative term and tension related second derivative term. In Eq. (2.66 d), the torsion 

coordinate is coupled to the axial coordinate through moment related term, to the out of plane 

bending coordinate through shear and moment related terms, to the in plane bending coordinate 

through shear and moment related terms.  

    The PDEs in Eq. (2.66 a)-(2.66 d) have constant coefficients and the general form of the 

PDE solution is assumed as shown in Eq. (2.67). 

{

𝑢𝑖(𝑥, 𝑡)
𝑣𝑖(𝑥, 𝑡)
𝑤𝑖(𝑥, 𝑡)
𝜃𝑖(𝑥, 𝑡)

} = {

𝑈𝑖
𝑉𝑖
𝑊𝑖
𝛩𝑖

}𝑒𝛼𝑖𝑥𝑒𝑗𝜔𝑡 

 

(2.67) 

where 𝛼𝑖 is the mode shape parameter. 𝜔 is the natural frequency.  𝑗 = √−1. Substituting the 

general form of solution Eq. (2.67) into Eq. (2.66) we obtain, 

−𝑘1𝑖𝑈𝑖𝜔
2 − 𝑐1𝑖𝑈𝑖𝛼𝑖

2 − 𝑐6𝑖𝛩𝑖𝛼𝑖
2 − 𝑐10𝑖𝑊𝑖𝛼𝑖

3 − 𝑐9𝑖𝑉𝑖𝛼𝑖
3 = 0 (2.68 a) 

−𝑘2𝑖𝑉𝑖𝜔
2 + 𝑐2𝑖𝑉𝑖𝛼𝑖

4 + 𝑐5𝑖𝑊𝑖𝛼𝑖
4 + 𝑐7𝑖𝛩𝑖𝛼𝑖

3+𝑐9𝑖𝑈𝑖𝛼𝑖
3 − 𝑐12𝑖𝛩𝑖𝛼𝑖

2 − 𝑐13𝑖𝑊𝑖𝛼𝑖
3 = 0 (2.68 b) 

−𝑘3𝑖𝑊𝑖𝜔
2 + 𝑐3𝑖𝑊𝑖𝛼𝑖

4 + 𝑐8𝑖𝛩𝑖𝛼𝑖
3 + 𝑐10𝑖𝑈𝑖𝛼𝑖

3 − 𝑐11𝑖𝛩𝑖𝛼𝑖
2 + 𝑐5𝑖𝑉𝑖𝛼𝑖

4 + 𝑐13𝑖𝑉𝑖𝛼𝑖
3 = 0 (2.68 c) 

−𝑘4𝑖𝛩𝑖𝜔
2 − 𝑐4𝑖𝛩𝑖𝛼𝑖

2 − 𝑐6𝑖𝑈𝑖𝛼𝑖
2 − 𝑐8𝑖𝑊𝑖𝛼𝑖

3 − 𝑐11𝑖𝑊𝑖𝛼𝑖
2 − 𝑐7𝑖𝑉𝑖𝛼𝑖

3 − 𝑐12𝑖𝑉𝑖𝛼𝑖
2 = 0 (2.68 d) 

The boundary conditions at the fixed end are as follows: ( 𝑥 = 0). (Eq. (2.69)) 

 𝑈1(0) = 𝛩1(0) = 𝑊1(0) = 𝑊1′(0) = 𝑉1(0) = 𝑉1′(0) = 0 (2.69) 

 

The boundary conditions at the free end are as follows: (𝑥 = 𝑙). (Eq. (2.70)) 

𝑐1𝑖𝑈𝑛
′ + 𝑐6𝑖𝛩𝑛

′ + 𝑐10𝑛𝑊𝑛
′′ + 𝑐9𝑛𝑉𝑛

′′ +𝑚1𝜔
2𝑈𝑛 = 0  

 

 

 

(2.70) 

𝑐2𝑛𝑉𝑛
′′ + 𝑐5𝑛𝑊𝑛

′′ + 𝑐7𝑛𝛩𝑛
′ + 𝑐9𝑛𝑈𝑛

′ = 0 

𝑐2𝑛𝑉𝑛
′′′ + 𝑐5𝑛𝑊𝑛

′′′ + 𝑐7𝑛𝛩𝑛
′′ + 𝑐9𝑛𝑈𝑛

′′ − 𝑐13𝑛W𝑛
′′ − 𝑐12𝑛𝛩𝑛

′ +𝑚1𝜔
2𝑉𝑛 = 0 

𝑐3𝑛𝑊𝑛
′′+𝑐8𝑛𝛩𝑛

′+𝑐10𝑛𝑈𝑛
′ + 𝑐5𝑛𝑉𝑛

′′ + 𝑐13𝑛𝑉𝑛
′ = 0 

𝑐3𝑛𝑊𝑛
′′′+𝑐8𝑛𝛩𝑛

′′+𝑐10𝑛𝑈𝑛
′′ + 𝑐5𝑛𝑉𝑛

′′′ + 𝑐13𝑛𝑉𝑛
′′ − 𝑐11𝑛𝛩𝑛

′ +𝑚1𝜔
2𝑊𝑛 = 0 

𝑐4𝑛𝛩𝑛
′ + 𝑐6𝑛𝑈𝑛

′ + 𝑐8𝑛𝑊𝑛
′′ + 𝑐12𝑛𝑉𝑛

′ + 𝑐7𝑛𝑉𝑛
′′ + 𝑐11𝑛𝑊𝑛

′ +𝑚2𝜔
2𝛩𝑛 = 0 

At the interface of the two fundamental elements, the displacement, slope, moment and 

shear functions should be continuous. The continuity conditions for all the coordinates of motion 

at the interface are as follows (𝑥 = 𝑥𝑖): (Eq. (2.71)). 𝑚1 is associated with the lumped mass at the 

end of each fundamental element in the bending in the in plane and out of plane direction and axial 

direction. 𝑚2 is the lumped mass associated with the torsional direction. 
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i. 𝑈𝑖 = 𝑈(𝑖+1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2.71) 

𝑐1𝑖𝑈𝑖
′ + 𝑐6𝑖𝛩𝑖

′ + 𝑐10𝑖𝑊𝑖
′′ + 𝑐9𝑖𝑉𝑖

′′ = 𝑐1(𝑖+1)𝑈(𝑖+1)
′ + 𝑐6(𝑖+1)𝛩(𝑖+1)

′ + 𝑐10(𝑖+1)𝑊(𝑖+1)
′′ +

𝑐9(𝑖+1)𝑉(𝑖+1)
′′ −𝑚1𝜔

2𝑈(𝑖+1)  

ii. 𝑉𝑖 = 𝑉(𝑖+1) 

𝑉𝑖
′ = 𝑉(𝑖+1)

′  

𝑐2𝑖𝑉𝑖
′′ + 𝑐5𝑖𝑊𝑖

′′ + 𝑐7𝑖𝛩𝑖
′ + 𝑐9𝑖𝑈𝑖

′

= 𝑐2(𝑖+1)𝑉(𝑖+1)
′′ + 𝑐5(𝑖+1)𝑊(𝑖+1)

′′ + 𝑐7(𝑖+1)𝛩(𝑖+1)
′ + 𝑐9(𝑖+1)𝑈(𝑖+1)

′  

𝑐2𝑖𝑉𝑖
′′′ + 𝑐5𝑖𝑊𝑖

′′′ + 𝑐7𝑖𝛩𝑖
′′ + 𝑐9𝑖𝑈𝑖

′′ − 𝑐13𝑖W𝑖
′′ − 𝑐12𝑖𝛩𝑖

′ = 𝑐2𝑖𝑉(𝑖+1)
′′′ + 𝑐5𝑖𝑊(𝑖+1)

′′′ + 𝑐7𝑖𝛩(𝑖+1)
′′ +

𝑐9𝑖𝑈(𝑖+1)
′′ − 𝑐13𝑖W(𝑖+1)

′′ − 𝑐12𝑖𝛩(𝑖+1)
′ −𝑚1𝜔

2𝑉(𝑖+1)  

iii. 𝑊𝑖 = 𝑊(𝑖+1) 

𝑊𝑖
′ = 𝑊(𝑖+1)

′  

𝑐3𝑖𝑊𝑖
′′+𝑐8𝑖𝛩𝑖

′+𝑐10𝑖𝑈𝑖
′ + 𝑐5𝑖𝑉𝑖

′′ + 𝑐13𝑖𝑉𝑖
′

= 𝑐3(𝑖+1)𝑊(𝑖+1)
′′ +𝑐8(𝑖+1)𝛩(𝑖+1)

′ +𝑐10(𝑖+1)𝑈(𝑖+1)
′ + 𝑐5(𝑖+1)𝑉(𝑖+1)

′′ + 𝑐13(𝑖+1)𝑉(𝑖+1)
′ 

𝑐3𝑖𝑊𝑖
′′′+𝑐8𝑖𝛩𝑖

′′+𝑐10𝑖𝑈𝑖
′′ + 𝑐5𝑖𝑉𝑖

′′′ + 𝑐13𝑖𝑉𝑖
′′ − 𝑐11𝑖𝛩𝑖

′ =

𝑐3(𝑖+1)𝑊(𝑖+1)
′′′ +𝑐8(𝑖+1)𝛩(𝑖+1)

′′ +𝑐10(𝑖+1)𝑈(𝑖+1)
′′ + 𝑐5(𝑖+1)𝑉(𝑖+1)

′′′ + 𝑐13(𝑖+1)𝑉(𝑖+1)
′′ −

𝑐11(𝑖+1)𝛩(𝑖+1)
′ −𝑚1𝜔

2𝑊(𝑖+1)  

iv. 𝛩𝑖 = 𝛩(𝑖+1) 

𝑐4𝑖𝛩𝑖
′ + 𝑐6𝑖𝑈𝑖

′ + 𝑐8𝑖𝑊𝑖
′′ + 𝑐12𝑖𝑉𝑖

′ + 𝑐7𝑖𝑉𝑖
′′ + 𝑐11𝑖𝑊𝑖

′ = 𝑐4(𝑖+1)𝛩(𝑖+1)
′ + 𝑐6(𝑖+1)𝑈(𝑖+1)

′ +

𝑐8(𝑖+1)𝑊(𝑖+1)
′′ + 𝑐12(𝑖+1)𝑉(𝑖+1)

′ + 𝑐7(𝑖+1)𝑉(𝑖+1)
′′ + 𝑐11(𝑖+1)𝑊(𝑖+1)

′ −𝑚2𝜔
2𝛩(𝑖+1)  

 

The expressions for the lumped masses are: 𝑚1 = 𝜌
𝑐
𝐴𝑐 [4ℎ̅ + 2𝑏̅] and 𝑚2 = 𝜌𝑐𝐴𝑐 (4𝑏̅

2ℎ̅ +
4ℎ̅3

3
+

2𝑏̅3

3
+ 2𝑏̅ℎ̅2). For continuity conditions, In Eqs. (2.71 i) and (2.71 iv), the axial and torsional, 

displacement and slope are assumed to be continuous. In Eqs. (2.71 ii) and (2.71 iii), the in plane 

and out of plane bending, displacement, slope, moment and shear are assumed to be continuous. 

where 𝑚1 and 𝑚2 in Eqs. (2.70) and (2.71) are the lumped mass parameters due to cable section 

at the end of each fundamental elements. Converting Eqs. (2.68 a)-(2.68 d) into matrix form we 

obtain Eq. (2.72). 
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[𝐴𝑖]4𝑋4 {

𝑈𝑖
𝑉𝑖
𝑊𝑖
𝛩𝑖

}

4 𝑋 1

= {0}4 𝑋 1 

 

(2.72) 

 where [𝐴𝑖] is given by:   

[
 
 
 
 
−𝑐1𝑖𝛼𝑖

2 − 𝑘1𝑖𝜔
2 −𝑐9𝑖𝛼𝑖

3 −𝑐10𝑖𝛼𝑖
3 −𝑐6𝑖𝛼𝑖

2

𝑐9𝑖𝛼𝑖
3 𝑐2𝑖𝛼𝑖

4 − 𝑘2𝑖𝜔
2 𝑐5𝑖𝛼𝑖

4 − 𝑐13𝑖𝛼𝑖
3 𝑐7𝑖𝛼𝑖

3 − 𝑐12𝑖𝛼𝑖
2

𝑐10𝑖𝛼𝑖
3 𝑐5𝑖𝛼𝑖

4 + 𝑐13𝑖𝛼𝑖
3 𝑐3𝑖𝛼

4 − 𝑘3𝑖𝜔
2 𝑐8𝑖𝛼𝑖

3 − 𝑐11𝑖𝛼𝑖
2

−𝑐6𝑖𝛼𝑖
2 −𝑐7𝑖𝛼𝑖

3 − 𝑐12𝑖𝛼𝑖
2 −𝑐8𝑖𝛼𝑖

3 − 𝑐11𝑖𝛼𝑖
2 −𝑐4𝑖𝛼𝑖

2 − 𝑘4𝑖𝜔
2]
 
 
 
 

 

 

By setting|𝐴𝑖(𝛼𝑖, 𝜔)| = 0, we obtain non-trivial solution to Eq. (2.72). The determinant 

gives a 12th degree polynomial in terms of mode shape parameter 𝛼𝑖 and frequency 𝜔. Solving the 

above polynomial, we get 12 roots for 𝛼𝑖 in terms of 𝜔. In the next step to find the spatial solutions 

𝑈𝑖, 𝑉𝑖,𝑊𝑖 and 𝛩𝑖, we write from Eq. (2.72). 

𝑎41𝑖𝑈𝑖 + 𝑎42𝑖𝑉𝑖 + 𝑎43𝑖𝑊𝑖 + 𝑎44𝑖𝛩𝑖 = 0 (2.73) 

where 𝑎4𝑤𝑖 for 𝑤 → 1 to 4 represent the elements of the fourth row of matrix [𝐴𝑖] (any row can 

be selected at this step). The spatial solutions should be as follows to satisfy the condition in Eq. 

(2.73). 

 

𝑈𝑘𝑖 = |(−1)
4+1𝑀41𝑖| 𝑉𝑘𝑖 = |(−1)

4+2𝑀42𝑖| 𝑊𝑘𝑖 = |(−1)
4+3𝑀43𝑖| (2.74) 

Θ𝑘𝑖 = |(−1)
4+4𝑀44𝑖|   

where 𝑀4𝑤𝑖 (𝑤 → 1 𝑡𝑜 4) represent the minors of the elements 𝑎4𝑤𝑖 for 𝑖 → 1 𝑡𝑜 4 of matrix [𝐴𝑖]. 

The determinant of the co-factor elements presented in Equation. (2.74) gives us the final spatial 

solution for each coordinates of vibration. The general form of the spatial solution of the PDEs 

can be expanded to be of the following form. 

{

𝑢𝑖(𝑥, 𝑡)
𝑣𝑖(𝑥, 𝑡)
𝑤𝑖(𝑥, 𝑡)
𝜃𝑖(𝑥, 𝑡)

} = ∑𝑑𝑘𝑖

12

𝑘=1

{

𝑈𝑘𝑖(𝛼 = 𝛼𝑘𝑖)
𝑉𝑘𝑖(𝛼 = 𝛼𝑘𝑖)
𝑊𝑘𝑖(𝛼 = 𝛼𝑘𝑖)
Θ𝑘𝑖(𝛼 = 𝛼𝑘𝑖)

} 𝑒𝛼𝑘𝑖𝑥𝑒𝑖𝜔𝑡 

 

(2.75) 

 

The next step is to setup the eigen-value problem and find the natural frequencies. Karami 

et al [132] and Ansari et al [133]  in papers related to vibrations of zigzag structure for energy 

harvesting purposes used matrix method for applying continuity and boundary conditions to set up 

the eigen-value problem for the zigzag structure. The matrix method has advantages in that it 

results smaller determinant values when compared to traditional methods. This is advantageous 
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for solving systems where different coordinates of motion are coupled to each other. Similar 

procedure is used in this paper to set up eigen-value problem from the coupled set of PDEs. 

Substitute Eq. (2.75) into the continuity conditions Eq. (2.71) and convert into matrix form, we 

obtain, 

[𝑀]𝑖{𝑑1(𝑖) 𝑑2(𝑖)⋯⋯𝑑11(𝑖) 𝑑12(𝑖)}𝑇 = [𝑁]𝑖+1{𝑑1(𝑖+1) 𝑑2(𝑖+1)⋯⋯𝑑11(𝑖+1) 𝑑12(𝑖+1)}𝑇 (2.76) 

 

Repeating Eq. (2.76) type analysis for all the segments, we obtain 

{𝑑1(𝑛) 𝑑2(𝑛)⋯𝑑11(𝑛) 𝑑12(𝑛)}𝑇 = [𝑁]𝑛
−1[𝑀]𝑛−1{𝑑1(1) 𝑑2(1)⋯𝑑11(1) 𝑑12(1)}𝑇   (2.77) 

 

Combining all the matrices we get the following form 

[
[𝑀]0

[𝑀]𝑙[𝑁]𝑛
−1[𝑀]𝑛−1…… .

] {𝑑1(1) 𝑑2(1)⋯𝑑11(1) 𝑑12(1)}𝑇 = {0}12 𝑋 1 
 

(2.78) 

 

[𝑀]0 and [𝑀]𝑙 are the matrices obtained from the boundary conditions; [𝑀]𝑖 and [𝑁]𝑖 for 𝑖 ≠ 0 or 

𝑙 are the matrices obtained from the continuity conditions. Setting the determinant of the 12X12 

matrix in Eq. (2.78) to zero would lead us to the frequency equation, the roots of which can be 

found numerically and would lead to the natural frequency of the structure. The form of the 

constant coefficient PDEs after including the effect of base excitation are shown in Eq. (2.79). 

𝑘1𝑖𝑢̈𝑖 − 𝑐1𝑖𝑢𝑖
′′ − 𝑐6𝑖𝜃𝑖

′′ − 𝑐10𝑖𝑤𝑖,𝑟𝑒𝑙
′′′ − 𝑐9𝑖𝑣𝑖

′′′ = 0 (2.79 a) 

𝑘2𝑖𝑣̈𝑖 + 𝑐2𝑖𝑣𝑖
′′′′+𝑐5𝑖𝑤𝑖,𝑟𝑒𝑙

′′′′ +𝑐7𝑖𝜃𝑖
′′′+𝑐9𝑖𝑢𝑖

′′′ − 𝑐12𝑖𝜃𝑖
′′ − 𝑐13𝑖𝑤𝑖,𝑟𝑒𝑙

′′′ = 0 (2.79 b) 

𝑘3𝑖𝑤̈𝑖,𝑟𝑒𝑙 + 𝑐3𝑖𝑤𝑖,𝑟𝑒𝑙
′′′′ + 𝑐8𝑖𝜃𝑖

′′′ + 𝑐10𝑖𝑢𝑖
′′′ − 𝑐11𝑖𝜃𝑖

′′ + 𝑐5𝑖𝑣𝑖
′′′′ + 𝑐10𝑖𝑢𝑖

′′′ + 𝑐13𝑖𝑣𝑖
′′′

= −(𝑘3𝑖 +∑𝑚1𝛿(𝑥 − 𝑥𝑖

𝑛−1

𝑖=1

) + 𝑚1𝛿(𝑥 − 𝑙)) 𝑤̈𝑏 

(2.79 c) 

𝑘4𝑖𝜃̈𝑖 − 𝑐4𝑖𝜃𝑖
′′ − 𝑐6𝑖𝑢𝑖

′′ − 𝑐8𝑖𝑤𝑖,𝑟𝑒𝑙
′′′ − 𝑐11𝑖𝑤𝑖,𝑟𝑒𝑙

′′ − 𝑐7𝑖𝑣𝑖
′′′ − 𝑐12𝑖𝑣𝑖

′′ = 0 (2.79 d) 

where 𝑤𝑏 is the base excitation and  𝑤𝑖,𝑟𝑒𝑙 is the relative displacement of the structure in the out 

of plane bending direction with respect the base. The boundary and the continuity conditions can 

be modified accordingly. The mass normalization condition for the fully coupled non-periodic 

cable-harnessed structure is as follows: (Eq. (2.80)). 

∑(∫ (𝑘1𝑖𝑈𝑔𝑖
2 + 𝑘2𝑖𝑉𝑔𝑖

2 + 𝑘3𝑖𝑊𝑔𝑖
2 + 𝑘4𝑖𝛩𝑔𝑖

2 )𝑑𝑥
𝑙

0

)

𝑛

𝑖=1

+∑𝑚1(𝑈𝑔𝑖
2 (𝑥𝑖) + 𝑉𝑔𝑖

2 (𝑥𝑖) +𝑊𝑔𝑖
2 (𝑥𝑖) +

𝑚2
𝑚1
𝛩𝑔𝑖
2 (𝑥𝑖))

𝑛−1

𝑖=1

+𝑚1(𝑈𝑔𝑛
2 (𝑥𝑛)

+ 𝑉𝑔𝑛
2 (𝑥𝑛) +𝑊𝑔𝑛

2 (𝑥𝑛) +
𝑚2
𝑚1
𝛩𝑔𝑛
2 (𝑥𝑛)) = 1 

 

 

 

(2.80) 
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𝑥𝑖 in Eqs. (2.79) and (2.80) is the location of 𝑖𝑡ℎ lumped mass. where 𝑈𝑔𝑖, 𝑉𝑔𝑖,𝑊𝑔𝑖 and 𝛩𝑔𝑖 denotes 

the axial, in plane bending, out of plane bending and torsion mode shapes respectively 

corresponding to the 𝑔𝑡ℎ mode and 𝑖𝑡ℎ fundamental element. The formula for the frequency 

response function after incorporating the effect of base excitation is shown in Eq. (2.81). 

𝑊(𝜔𝑓) = |
1

𝜔𝑓
2 +∑

𝑘3𝑖.𝑊𝑔,𝑟𝑒𝑙(𝑥 = 𝑥𝑠). 𝑄

𝜔𝑔
2 − 𝜔𝑓

2

∞

𝑔=1

| 

 

 
(2.81) 

𝑄 =∑(∫ (𝑊𝑔𝑖)𝑑𝑥
𝑙

0

) +∑𝑚1𝑊𝑔𝑖(𝑥𝑖)

𝑛−1

𝑖=1

+𝑚1𝑊𝑔𝑛(𝑥𝑛)

𝑛

𝑖=1

 

 

(2.82) 

 

where 𝑘3𝑖 is the kinetic energy coefficient in the out-of-plane bending direction. 𝑥𝑠 is the sensing 

location. 𝜔𝑓 is the forcing frequency. 𝜔𝑔 is the natural frequency associated with the 𝑔𝑡ℎ mode. 

𝑊𝑔,𝑟𝑒𝑙(𝑥 = 𝑥𝑠) is the relative mass-normalized mode shape value of the 𝑔𝑡ℎ mode at the sensing 

location, 𝑥 = 𝑥𝑠 ,with respect to the base motion in the out-of-plane bending direction. where 𝑄 is 

defined in Eq. (2.82). 

 

2.3.2 Numerical Results 

 

In Section. 2.3.2, the theoretical frequency response functions obtained from coupled and 

decoupled [53] models are compared for the three samples analyzed. The top view of wrapping 

pattern for the three samples considered are shown in Figs. (2.29 a) - (2.29 c). In Fig. (2.29), the 

solid line represents the diagonal section and the dotted line represents the lumped mass section. 

Clear isometric view of the structure can be seen in Fig. (2.28).  
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(a) 

 
(b) 

 
(c) 

Fig. 2. 29 Top view representation of (a) Sample 1; (b) Sample 2; (c) Sample 3 

 

Table 2. 16 System parameters for the samples 1, 2 and 3. 
System parameters  Sample 1 Values Sample 2 Values Sample 3 Values 

Beam length (𝑙) 250 mm 250 mm 250 mm 

Beam width (𝑏) 10 mm 13.1 mm 10 mm 

Beam thickness (𝑡) 0.782 mm 0.782 mm 1 mm 

Beam density (𝜌𝑏) 2,768 Kg/m3 2,768 Kg/m3 2,768 Kg/m3 

Beam modulus of elasticity (𝐸𝑏) 68.9 GPa  68.9 GPa  68.9 GPa  

Beam Shear modulus (𝐺𝑏) 25.7 GPa  25.7 GPa  25.7 GPa  

Pre-tension of the cables (𝑇) 14 N 14 N 15 N 

Cable radius (𝑟𝑐) 0.00021 m 0.00021 m 0.00021 m 

Cable density (𝜌𝑐) 1,400 Kg/m3 1,400 Kg/ m3 1,400 Kg/ m3 

Cable modulus of elasticity (𝐸𝑐) 128.04 GPa 128.04 GPa 128.04 GPa 

Number of Cables 9 8 7 

Number of fundamental elements 4 4 4 

Sensing Location (𝑥𝑠) 23.8 cm 24.8 cm 24 cm 
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(a) 

 
(b) 

 
(c) 

Fig. 2. 30 Frequency response functions of coupled and decoupled models for (a) Sample 1; (b) Sample 

2; (c) Sample 3. Cabled Analytical (Decoupled)  Cabled Analytical 

(Coupled). 
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Table 2. 17 Coupled and Decoupled Natural Frequencies for Sample 1 
Mode 

No 

Coupled EB 

[Hz] 

Decoupled EB 

[Hz] 

% Coupled 

EB and 

Decoupled 

1 10.78 (OP) 16.65 35.22 % 

2 78.45 (OP) 104.18 24.69 % 

3 140.29 (IP) - - 

4 218.85 (OP) 291.93 25.03 % 

5 429.9 (OP) 570.06 24.58 % 

6 447.07 (T) - - 

7 706.47 (OP) 946.33 25.34 % 

8 878.21 (IP) - - 
*OP stands for out of plane bending, IP stands for in plane bending and T stands for Torsion dominant modes 

 

Table 2. 18 Coupled and Decoupled Natural Frequencies for Sample 2 
Mode 

No 

Coupled EB 

[Hz] 

Decoupled EB 

[Hz] 

% Coupled 

EB and 

Decoupled 

1 10.27 (OP) 14.92 31.13 % 

2 74.62 (OP) 93.32 20.04 % 

3 179.65 (IP) - - 

4 208.32 (OP) 260.69 20.09 % 

5 335.52 (T) - - 

6 406.96 (OP) 511.52 20.44 % 

7 674.98 (OP) 843.36 19.96 % 

8 1007.98 (OP) 1256.05 19.75 % 

9 1045.29 (T) - - 

10 1120.34 (IP) - - 
*OP stands for out of plane bending, IP stands for in plane bending and T stands for Torsion dominant modes 

                           

Table 2. 19 Coupled and Decoupled Natural Frequencies for Sample 3 
Mode 

No 

Coupled EB 

[Hz] 

Decoupled 

EB 

[Hz] 

% Coupled 

EB and 

Decoupled 

1 13.03 (OP) 17.81 26.83 % 

2 94.85 (OP) 112 15.31 % 

3 136.03 (IP) - - 

4 264.60 (OP) 313.83 15.68 % 

5 520.55 (OP) 611.54 14.87 % 

6 574.60 (T) - - 

7 857.4 (OP) 1013.67 15.51 % 
*OP stands for out of plane bending, IP stands for in plane bending and T stands for Torsion dominant modes 

 

In Fig. (2.29 a), alternate elements have the same wrapping angle as we go from the element 

from the clamp to the tip, in Fig. (2.29  b), the wrapping angle increases as we go from one element 

to the other starting from the clamp and in Fig. (2.29 c), semi-periodic wrapping pattern is 

considered. Using the procedure derived in Section. 2.3.1, the natural frequencies and mode shapes 
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are calculated for cantilever boundary condition as shown in Fig. (2.28). The structure is subjected 

to harmonic base excitation and the frequency response function are plotted in Fig. (2.30) for all 

the three samples. The strain values of the cable are assumed the same as the top fiber of the host 

structure. The frequency response fucntion of the decoupled curve is plotted using the assumptions 

of Martin et al [53] for pure out of plane bending coordinate. The frequency response function for 

the coupled model proposed in this paper considering the effect of coupling between the out of 

plane, in-plane bending, torsion and the axial coordinates is plotted in the same Fig. (2.30). The 

significant peaks denote the frequencies corresponding to the out of plane bending coordinate and 

the sharp peaks denote the torsional and in-plane coordinates. For clarity, the frequencies are listed 

in Tables. (2.18)-(2.20) for the samples 1, 2 and 3 respectively. The dominance of each mode is 

decided by looking at the mode shapes. The mode shapes corresponding to the torsion and the in-

plane bending dominant modes for the samples 1 and 2 are shown in the Chapter 3. Since for the 

structures considered, the axial dominant mode is associated with very high frequency, that 

particular mode will not be in the range considered for finding the frequency response functions. 

From Fig. (2.30), in all the samples considered, the decoupled model consistently over-predicted 

the natural frequency. The decoupled model assumes the structure only vibrates in the out-of-plane 

direction and assumes the stiffness of other coordinates to be infinity. The coupled model takes 

into account the flexiblity of multiple coordinates, as a result the coupled model assumes the out-

of-plane bending coordinates is less stiffer than the decoupled model. As a result, the coupled 

model gives lower frequency for the out of plane bending when compared to the decoupled model. 

Samples 1 and 2 have lower length to thickness ratio when compared to sample 3. The effect of 

coupling will be more prominent in samples 1 and 2 due to greater effect of stiffness related terms 

and the coupling in the structure in turn comes from the stiffness terms. From the percentage 

difference between coupled and decoupled in Tables. (2.17)-(2.19) we can see that the sample 3 

has the least coupling effect. Sample 1 has the largest number of cables, therefore we expect that 

sample 1 has maximum coupling effect amongst samples 1 and 2. In terms of wrapping pattern, 

samples 1 and 2 have largest sections near the clamp. The fundamental element with largest length 

will have the least wrapping angle. Sections with least amount of wrapping angle contribute more 

to stiffness effect. Since the largest elements are located near the clamp for samples 1 and 2, this 

line of thought has also some contribution to the argument that samples 1 and 2 exhibit more 

coupling when compared to sample 3 which has the smallest element is located near the clamp. In 
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addition to the out of plane bending modes, all the samples also have sharp peaks in the frequency 

range of interest. Sample 1 has two in-plane and one torsion dominant mode. Sample 2 two in-

plane bending and torsion dominant modes. Sample 3 has one in-plane bending and torsion 

dominant mode. The frequencies are tabulated in Tables. (2.18)-(2.20) for samples 1,2 and 3 

respectively.  

 

2.4 Conclusions of the Chapter 
 

In Chapter 2, analytical models are presented to study the free vibrations characteristics of 

cable-harnessed beam structures motivated by space applications with straight cable pattern, 

periodic pattern and non-periodic pattern. A distributed parameter model that accounts for the 

effect of coupling in cable-harnessed structures is developed. Kinetic and strain energy derivations 

are found using the Green-Lagrange strain field and Hamilton’s principle is used to obtain both 

partial differential equations for the system. The natural frequencies of the decoupled vibration 

model adopted in the literature were compared against the coupled vibration model used in this 

paper. The coupling effects between various coordinates of vibrations due to the presence of the 

cable are studied for all systems. The results demonstrate the importance of using a coupled 

vibration model to accurately predict the vibration behavior of the cable-harnessed structure.  For 

straight pattern, several cable parameters are studied for their effects on the system’s frequencies, 

coupling and the energy transfer between the modes. It is observed that at larger cable radius, and 

if the cable is placed at an offset position, the coupling effect is greater and the coupled analytical 

model predicts the natural frequencies better than the decoupled model.  

For periodic pattern, theoretical simulations were presented to compare the frequency response 

function of Euler-Bernoulli and Timoshenko fully coupled models and the decoupled Euler-

Bernoulli model in the literature. Sensitivity analysis were performed by varying the number of 

fundamental elements of wrapping pattern and the cable radius. It was seen that the coupling effect 

was maximum for lower fundamental elements and larger cable radii. The natural frequencies 

obtained from the straight cable case (cable positioned at an offset distance from the centerline) 

are also compared to the periodic wrapping pattern for a given host structure and cable parameters 

and it was found that the cable effects on the host structure are minimized when the cable is 

wrapped in a periodic manner particularly when the number of fundamental elements are larger as 
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opposed to the case when the cable is positioned at an offset distance. In the concept of transition 

frequency for cable-harnessed structure, we have seen that for larger cable radius, the transition 

frequency decreases. It is also observed for simply supported boundary condition that the 

symmetrical behavior of mode shapes in both spectra is broken due to effect of coupling between 

various coordinates. 

For non-periodic pattern, the structure was modelled by assuming that each fundamental 

element has different displacement. The system of coupled partial differential equations were 

solved using analytical method. Displacement, slope, moment and shear continuity conditions 

were applied at the interface of two fundamental elements to obtain the coupled natural frequencies 

and mode shapes. Analyses were performed on three different samples with different non-periodic 

wrapping patterns. The theoretical results suggested that it is important to incorporate the coupling 

effects in the mathematical model, which the recently published literature on cable-harnessed 

structures with non-periodic wrapping patterns has ignored.  
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Chapter 3: Experimental Validation of Coupled Vibrations of 

Cable-Harnessed Structures 
 

                  In the Chapter 3 experimental validation of the mathematical models developed in 

Chapter 2 for the cases of beam structure with straight cable pattern at offset distance, periodic and 

non-periodic wrapping patterns are performed. In Section. 3.1, the coupled vibration model in 

Section. 2.1 for straight cable pattern at offset distance is experimentally validated. The sample is 

subjected to harmonic base excitation using a vibration shaker to obtain the experimental 

frequency response function. The experimental frequency response function is compared to the 

coupled Euler-Bernoulli, Timoshenko and the decoupled Euler-Bernoulli models. In plane impact 

tests are performed to confirm the presence of in plane bending dominant modes. In Chapters 3.2 

and 3.3, the experimental validation for the models related to the periodic and non-periodic 

wrapping patterns are performed respectively by using shaker and impact tests. Experimental mode 

shape deflection snapshots are also presented to confirm the modes related to the in plane bending 

and torsion coordinates. 

 

3.1 Experimental Validation of Straight Cable Pattern with Offset Distance 
 

In Fig. (3.1), the experimental setup for the cable harnessed system under the base excitations 

is shown. The system consists of 10 pre-tensioned cables attached to the host structure as shown 

at an offset distance in a straight pattern. The host structure is a beam made of Aluminum 6061 

alloy and the cable is an 80-pound strength Power Pro Super 8 Slick fishing line. The material and 

geometrical properties are presented in Table. (3.1). This research is built on Martin et al work in 

AIAA Journal [52] where they have developed lower order decoupled distributed parameter 

models. In this research, coupled mathematical models are developed. In the current thesis, the 

amount of cabling in the experiments is more significant than Martin et al work and as observed 

in Chapter 2, this will lead to increase in the mode coupling effects. For the experimental testing, 

exactly same type of cable [52] is used to perform experiments in this thesis. The material and 

geometrical properties for the cable can be found in [52,53].  In terms of beam host structure 

dimensions, the lengths are similar to the ones used by Martin et al and other researchers with 

slight variation in width and thickness. Extremely thick substrates are difficult to clamp in 
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cantilever boundary condition so relatively slender substrates are used to perform experiments.  

The length of the host substrates have been selected in such a way that the beam structure does not 

create dynamic moments on the shaker particularly when there are large displacements of the host 

structure near the resonance. Since this work compares coupled model with the decoupled model, 

for selecting cable pre-tension values guidance is taken from the experimental analysis papers of 

the decoupled model [52,53,58]. Before conducting experiments, it has been physically checked 

that there is no permanent deformation in the structure after attaching pre-tensioned cables and it 

has been ensured that the pre-tension is large enough that the cables do not rattle. 

A 2075E TMS electrodynamic shaker and a 2050E09 TMS power amplifier both by modal 

shop are used to provide the excitations. To control the acceleration profile for the shaker base 

excitations, a PCB accelerometer 352A24 and an LMS SCM 05 SCADAS data acquisition unit 

are used. This data acquisition system is also used to obtain the frequency response functions. A 

Polytec OFV-5000 laser vibrometer controller and an OFV-505 sensor head are used for vibration 

measurements. The structure is mounted on the shaker as shown in Fig. (3.1 a) and is subjected to 

the sine sweep base excitations in the out-of-plane bending direction (z-axis) from 5 to 500 Hz 

using the LMS Sine Control Module. The frequency response functions are measured in the out-

of-plane bending direction as well. In order to make sure that the added tape to attach the cables 

to the beam has not resulted in any noticeable dynamic effects, the experimental frequency 

response functions for the substrate beam without any cables both before and after adding the tape 

are measured and shown in Fig. (3.2). It has to be noted that there is no cabling in the structure in 

Fig. (3.2) and the purpose of Fig. (3.2) is just to observe the effect of tape on the natural frequencies 

of the structure. The FRFs comparison for the two systems clearly indicates that the added tape 

has no noticeable effect on the substrate’s dynamics. It is, therefore, expected that the tape used 

for attaching the cables in Fig. (3.1) will have no measurable dynamic impact on the natural 

frequencies of the cable-harnessed system in the future experimental analysis. 
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(a) 

 

(b) 

   

Fig. 3. 1 Base excitation experimental setup for the cantilevered cable harnessed beam, (a) beam structure, 

accelerometer and shaker, (b) laser vibrometer controller, sensor head, power amplifier, and LMS data 

acquisition system. 
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Table 3. 1 Material and geometrical properties of the cable harnessed beam structure. 

System parameters Value 

Beam length  0.25 m 

Beam width  0.01243 m 

Beam thickness 0.00144 m 

Beam density 2,768 Kg/m3 

Beam modulus of elasticity 68.9 GPa  

Beam Shear modulus 25.7 GPa  

Pre-tension of the cables  17.22 N 

Cable radius (per cable) 0.00021 m 

Cable density 1400 Kg/m3 

Cable modulus of elasticity 128.04 GPa 

Number of Cables 10 

 

Next step involves obtaining the experimental frequency response functions for the cable-

harnessed beam structure with pre-tensioned cables. Modular weights are used to apply the cable 

pre-tension while the unit is fabricated. The cables are attached at an offset distance along the y-

axis as shown in Fig. (3.1 a). The total pre-tension applied is 17.22 N for the 10 cables attached. 

The base excitations for the cable-harnessed beam to obtain the FRFs are performed at two 

different sensing locations, 95 mm and 248 mm. In Fig. (3.3), an overall picture of the theoretical 

and experimental frequency response functions are presented. The experimental and theory FRFs 

of the bare beam match very well. As a sanity check, the experimental frequency response function 

for the substrate beam with the added tape (no cable) is compared to the analytical results for the 

substrate beam with no tape or cable. The good match between the two shown in Fig. (3.3) further 

proves that the added tape has no noticeable effect on the substrate beam’s dynamics and, 

therefore, it can be ignored in the rest of the analysis for the cable harnessed beam structure as 

well. The Fig. (3.3) also presents the results of the cabled analytical (coupled EB and decoupled 

models) and cabled experimental. From the plot, it can be observed that addition of cables to the 

host structure causes stiffening effect in the system and it also observed experimentally by shift in 

the natural frequency peaks going from bare beam to cabled beam. Once it is observed that the 

cabling induces stiffening effect, the next step is to compare coupled and decoupled models to the 

experiment. Further analysis of coupled and decoupled models to the cabled experimental is 

presented in Figs. (3.5) and (3.6). Shown in Fig. (3.4) is the cross-sectional area of the n cables 

bundled together; here n=10. The total cross-sectional area of the n cables can be found using Eq. 

(3.1). This area is equivalent to that of a circle with √𝑛. 𝑟𝑐 radius as shown in Fig. (3.4). Using this 
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diagram, it can be easily understood how yc and zc coordinates of the point of attachment of the 

cable to the beam are found. This is the point where the strain value for the cables is evaluated. It 

is assumed that the cables remain attached to the top surface of the beam at all times and, therefore, 

will have the same strain values as the beam top fiber. It is also assumed that the entire bundle of 

cables experiences the same strain values. This assumption includes further corrections to Martin 

et al. [51] where the strain was previously evaluated at the center of the cable using the beam strain 

distribution function. 

𝐴 = 𝑛. 𝜋𝑟𝑐
2 = 𝜋(√𝑛. 𝑟𝑐)

2                                                     (3.1) 

 

Fig. 3. 2 Experimental frequency response functions from shaker tests for substrate beam + tape and no 

cables and substrate beam without tape at xs=95 mm sensing location. Bare beam experimental 

(Uncabled).  Bare beam + Tape experimental (Uncabled).  
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Fig. 3. 3 Comparison between the frequency response functions at xs=95 mm sensing location;  

Martin et al ;  Cabled Experimental; Cabled Analytical (Coupled EB);  Bare beam 

Experimental; Bare beam analytical; 

 

 
Fig. 3. 4 Schematic of beam width view and cable offset position. 

 

               The frequency response functions obtained from the experiments are compared to the 

theoretical results for each of the Euler Bernoulli and Timoshenko coupled models presented in 

this Chapter as well as the previously decoupled Euler Bernoulli model, [51]. The results for the 

two sensing locations are shown in Figures. (3.5) and (3.6). As clearly demonstrated in these 

figures, significant improvement is observed for the proposed coupled model in comparison to the 

previous decoupled model particularly for the higher modes. In addition, in the frequency range 

shown, apart from the three significant peaks corresponding to the out-of-plane bending dominant 
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modes, there exists a small peak at around 147.1 Hz. This peak corresponds to the in-plane bending 

that is well predicted by the coupled modeling approach while the decoupled system is only 

capable of predicting the out-of-plane bending modes. 

 
Fig. 3. 5 Comparison of the cable harnessed frequency response functions from shaker experiment, 

decoupled and coupled analytical models for xs=95 mm. Cabled Analytical (Decoupled EB) 

 Cabled Experimental  Cabled Analytical (Coupled EB)  Cabled Analytical 

(Coupled Timoshenko) 

 
 

Fig. 3. 6 Comparison of the cable harnessed frequency response functions from shaker experiment, 

decoupled and coupled analytical models for xs=248 mm. Cabled Analytical (Decoupled EB) 

 Cabled Experimental  Cabled Analytical (Coupled EB)  Cabled Analytical 

(Coupled Timoshenko). 

     The mode coupling occurs because of the addition of the cable through stiffness terms. The 

intensity of coupling depends on the various cable parameters such as the number of cables, offset 

position etc. For a bare rectangular aluminum beam, as the cross-section is symmetric, all the 

coordinates of vibration are decoupled. In general, for certain uncabled structures, mode coupling 
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depends on geometry, boundary condition and material properties etc. For example, the difference 

between coupled and uncoupled models largely depends on the values of parameters causing 

coupling such as the fiber orientation angle in case of composite structure. To better observe the 

details of the FRFs comparisons, the zoom-in plots around each mode are shown in Figs. (3.7) and 

(3.8) for both sensing locations. The reason for overestimating the natural frequencies by the 

previous decoupled model, [51], is due to ignoring the compliance in the other coordinates of 

vibrations as also discussed by Yerrapragada et al [118]. Since in the decoupled model only the 

out-of-plane bending coordinate is considered, this implies that the structure is assumed to be rigid 

in all the other directions of motion preventing it from vibrating in those directions. This 

overestimation of the overall stiffness of the structure results in the frequencies to be overestimated 

as well. Therefore, introducing the other coordinates of vibrations in the model is a more realistic 

assumption that results in a more accurate representation of the system’s overall stiffness and 

natural frequencies compared to their experimental values. Additionally, the coupled model 

accounts for the energy transfer between various coordinates of vibrations that ultimately results 

in lowering the out-of-plane bending frequency estimations compared to the decoupled system, 

[118]. The magnitude of peaks near the resonance are different for experiment and theory as the 

effect of damping is neglected in this thesis. The main goal of the thesis is to present fully coupled 

mathematical model that can accurately find the natural frequencies of the cabled structure. 

Incorporating damping related mode coupling terms into the mathematical model can be taken up 

as a future work as is outlined in Chapter 4. Also shown in the experimental FRFs for the out-of-

plane measurement is a small peak at 147.1 Hz. This mode pertains to the in-plane bending 

coordinate, which is difficult to observe in the out-of-plane direction of measurement. To further 

investigate this mode, the in-plane bending tests are also performed for the two sets of actuation 

and sensing locations shown in Fig. (3.9) and the FRFs are presented in Fig. (3.10). Subscripts ‘a’ 

and ‘s’ denote the actuation and sensing in Fig. (3.9) respectively. An impact hammer model 

number PCB 086C01 with a metal tip is used for this test. Both the impact excitation and sensing 

are made in the in-plane direction shown. A total number of 5 averages are taken for the impact 

test for which the coherence plots are also presented in Figure. (3.11). The very dominant peak 

shown at about 147 Hz frequency for both these FRF plots further indicates of this mode 

corresponding to an in-plane bending mode.  
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                              (a)                                                                

 

 
                                                                           (b) 
 

 
(c) 

 
 Fig. 3. 7 Zoom in plots for frequency response functions for shaker experiment, coupled and decoupled 

models of xs=95 mm for a) Mode 1 b) Modes 2 and 3 and c) Mode 4. Cabled Analytical 

(Decoupled EB)  Cabled Experimental  Cabled Analytical (Coupled EB)  

Cabled Analytical (Coupled Timoshenko). 
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(a) 

 
(b) 

 

 
(c) 

Fig. 3. 8 Zoom in plots for frequency response functions for shaker experiment, coupled and decoupled 

models of xs=248 mm for a) Mode 1 b) Modes 2 and 3 and c) Mode 4. . Cabled Analytical 

(Decoupled EB)  Cabled Experimental  Cabled Analytical (Coupled EB)  

Cabled Analytical (Coupled Timoshenko). 

Also, shown in these plots are the small peaks at about 22 Hz and 133 Hz, both corresponding to 

the out-of-plane bending modes that are not as obvious due to being in the other direction. Both 

experimental and their corresponding theoretical frequency values for all the modes are tabulated 

and shown in Table. (3.2) for comparison. Also, the sharp peak at around 178 Hz in the FRFs from 

the model corresponds to the coupled model estimation for the in-plane bending frequency. To 
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further prove this, the theoretical mode shapes are also plotted at this frequency and shown in 

Figure. (3.12).  

 

Fig. 3. 9 Sensing and actuation locations for the two in-plane impact hammer tests. 

 

a) 

 

b) 

Fig. 3. 10 Frequency response functions for in-plane impact tests. a) impact test for (xa1, xs1) = (55, 95) 

mm, b) impact test for (xa2, xs2) = (31, 248) mm. 
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(a) 

 
(b) 

 
Fig. 3. 11 Coherence plots for the in-plane impact hammer tests. (a) (xa1, xs1) = (55, 95) mm, (b) (xa2, 

xs2) = (31, 248) mm. 

 

Fig. 3. 12 First in plane bending dominant mode shape from the coupled analytical model. 𝑈, 𝑉,𝑊, 𝜃 denote 

the axial, in-plane bending, out-of-plane bending and torsional mode shapes at the first in-plane dominant 

mode respectively. 
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From the mass normalized values for each of these coordinates’ mode shapes at this 

frequency, it can be observed that this mode is clearly an in-plane dominant mode. The mode shape 

also indicates the first in-plane bending mode. The error values shown in Table. (3.2) further 

indicate the improvement made for using the coupled model when compared to the previous 

decoupled model. Also, the Euler-Bernoulli and Timoshenko results line up perfectly showing that 

for the system parameters considered in this case study, there is no need for including the 

Timoshenko beam assumptions to obtain better accuracy. The testing performed at two different 

locations yielded same natural frequencies. In addition, the cables were removed and re-attached 

to the host structure and tested again. Similar natural frequencies are obtained and are presented 

in Table. (3.3). This suggests the repeatability of the tests is very good after re-wrapping of the 

host structure with cables. The percentage difference in the out of plane bending modes is less than 

1 %. For the testing of future samples on periodic and non-periodic wrapping pattern, repeatability 

test results are not included. 

Table 3. 2 Natural frequencies for analytical and experimental models for cabled harnessed beam. 

Mode Decoupled 

Euler-Ber. 

Coupled 

Euler-

Ber. 

Coupled 

Timoshenko 

Experiment Error % 

Decoupled 

Error % 

Coupled 

Euler-Ber. 

Error % 

Coupled 

Timoshenko 

1 23.88 20.65 20.65 22.35 (OP) 6.84 % -7.60 % -7.60 % 

2 149.70 129.56 129.53 133.2 (OP) 12.38 % -2.73 % -2.75 % 

3 - 179.42 178.99 147.1 (IP) - 21.97 % 21.67 % 

4 419.23 362.85 362.65 345.6 (OP) 21.30 % 4.99 % 4.93 % 

*OP and IP refer to the out of plane and in plane bending modes respectively. 

 

Table 3. 3 Natural frequencies for two different experiment sets for cabled harnessed beam. 

Mode Experiment 1 [Hz] Experiment 2 [Hz] % Difference 

1 22.35 (OP) 22.30 (OP) 0.22 % 

2 133.2 (OP) 134.30 (OP) 0.82 % 

3 147.1 (IP) 145.25 (IP) 1.25 % 

4 345.6 (OP) 345.80 (OP) 0.057 % 

*OP and IP refer to the out of plane and in plane bending modes respectively. 
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Table 3. 4 Effect of product of inertia terms on the natural frequencies. 

Mode Coupled 

Timoshenko 

[Hz] 

Coupled 

Timoshenko  

(including product 

of inertia terms) 

[Hz] 

% 

Difference 

1 20.65 20.65 (OP) 0 % 

2 129.53 129.53 (OP) 0 % 

3 178.99 178.98 (IP) 0.005 % 

4 362.65 362.66 (OP) 0.002 % 

*OP and IP refer to the out of plane and in plane bending modes respectively. 

 

In addition the following provides justification of ignoring the product of inertia terms in 

the kinetic energy expression in Eq. (2.9). To obtain more insight, the kinetic energy after including 

the terms related to the product of inertia between various coordinates are shown below in Eq. 

(3.2). 

𝑇 =
1

2
∫ [𝑘1(𝑢̇)

2 + 𝑘2(𝑣̇)
2 + 𝑘3(𝑤̇)

2 + 𝑘4(𝜃̇)
2
+ 𝑘5(𝜑̇)

2 + 𝑘6(𝜓̇)
2
+ 2𝜌𝑐𝐴𝑐𝑦(𝑢̇)(𝜑̇)

𝑙

0

+ 2𝜌𝑐𝐴𝑐𝑧(𝑢̇)(𝜓̇) − 2𝜌𝑐𝐴𝑐𝑦𝑧(𝜓̇)(𝜑̇) − 2𝜌𝑐𝐴𝑐𝑧(𝑣̇)(𝜃̇) + 2𝜌𝑐𝐴𝑐𝑦(𝑤̇)(𝜃̇)] 𝑑𝑥 

 

(3.2) 

 

After incorporating the above additional terms in the governing partial differential equations and 

the resulting frequencies from the model that contains the effect of these additional terms is 

compared to the model which neglects these terms. The system parameters are used are the same 

as the experimental sample. The natural frequency comparison is shown in Table (3.4). From the 

Table (3.4) it is clear that the product of inertia terms in the kinetic energy do not play a role on 

the natural frequencies associated with the cable-harnessed structure and can be ignored in the 

analysis of future samples. 
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3.2 Experimental Validation of Periodic Wrapping Pattern 

 

 
(a) 

 
(b) 

Fig. 3. 13 Experimental setup of the cable harnessed structure (a) Sample 2 (b) Sample 3. 

The experimental setup is shown in Fig. (3.13). Two samples for host structure are 

considered and multiple pre-tensioned cables are wrapped in a diagonal manner around the 

structure. One end of the cable is attached to the host structure through a small hole at the tip of 

the cantilever. The cable pre-tension is applied using modular weights while the structure is being 

wrapped. Two of the three samples for periodic pattern presented in Chapter 2.2 are experimentally 

validated namely the samples 2 and 3. The system parameters for the host structure and cables for 

samples 2 and 3 are shown in the third and fourth columns of Table. (2.7) respectively. In the first 

sample, the cable system parameters are chosen on the similar lines as theoretical paper on periodic 

wrapping pattern by Martin et al [51]. The purpose of sample 1 is to first theoretically demonstrate 

the differences in the peaks between the coupled model proposed in thesis for periodic wrapping 
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pattern and the decoupled one published by Martin et al. The system parameters for the cable for 

the next two samples are chosen on the similar lines as experimental paper [52] as the same cable 

is used to perform experiments. In this thesis, more cables when compared to [52] are used as the 

effective increase in the cable wrapping area to showcase the increase in the mode coupling effect. 

The cable considered is an 80 pound strength Power pro Super 8 Slick fishing line whose material 

properties are as [52,130]. The equipment used to perform experiments is the same as described in 

Section 3.1. In the first set of tests, the structures are subjected to harmonic base excitation in the 

out of plane bending direction and the experimental frequency response function (FRF) is recorded 

at a given sensing location in the out of plane bending direction using the laser vibrometer. To help 

identify the type of coordinate associated with the sharp peaks in the experimental FRF, mode 

shape animation studies are performed by sensing at multiple locations. To animate the torsion 

mode experimentally, the structure is discretized into three columns, with two columns at each 

edge and one along the centerline. At each column, the sensing is performed at every 1 cm. 

Similarly, to animate the in-plane bending modes, the structure is excited in the in-plane bending 

direction using a PCB 086C01 impact hammer with a metal tip and is sensed in the in-plane 

bending direction using laser vibrometer at multiple sensing locations. 

 

Fig. 3. 14 Comparison of experimental frequency response function with theoretical frequency response 

function for Sample 2. Cabled Analytical (Decoupled EB)   Cabled Experimental 

Cabled Analytical (Coupled EB)  Cabled Analytical (Coupled Timoshenko) 

The frequency response function comparison results for sample 2 are presented in Fig. 

(3.14). The coupled analytical frequency function (both Euler-Bernoulli and Timoshenko theory) 

match well with that of the experimental frequency function when compared to the decoupled 
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model. The frequency response function from bending decoupled model of Martin et al [52] is also 

shown in Fig. (3.14). Previous work by the authors in Ref. [130] includes further correction to 

Martin et al assumptions and the strain values the cable experiences are assumed the same as the 

strain values of the top fiber of the beam and the assumptions are used in this paper. The significant 

peaks denote the modes associated with the out-of-plane bending coordinate. The experimental 

natural frequencies associated with the first two in-plane bending dominant modes and the torsion 

dominant mode are 118, 752 and 573.7 Hz respectively. The FRF obtained from the test where the 

actuation is performed using an impact hammer in the in-plane direction and the sensing also 

performed in the in-plane direction is presented in Fig. (3.20 a). The plot in Fig. (3.20 a) clearly 

gives the frequencies associated with the in plane bending dominant mode. The natural frequencies 

obtained from both theoretical models and experiment for this sample along with the error 

percentage with respect to the experimental natural frequencies are presented in Table. (3.5). To 

confirm the experimental frequencies associated with the in-plane bending and torsion dominant 

mode, the deflection shapes are plotted in Fig. (3.15). Fig. (3.15 a) shows the first in plane bending 

dominant shape and Fig. (3.15 b) shows the second in plane bending dominant peak. Fig. (3.7 c) 

shows the first torsion dominant mode shape. In Fig. (3.15 c) we can clearly see that the 

displacement of points at the two opposite edges in the same row are out of phase, which clearly 

confirms that it is a torsion dominant mode. As explained earlier in the first paragraph of Section. 

3.2, these shapes are obtained by sensing at multiple locations. The corresponding theoretical mode 

shapes from the coupled EB model for the two in-plane dominant modes and the torsion dominant 

mode are plotted in Figs. (3.16 a), (3.16 b) and (3.16 c) respectively. 
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(a) 

 
                                                                                    (b) 

 

 
 

(c) 

 

Fig. 3. 15 Experimental snapshot mode shapes for (a) first in-plane dominant (b) second in-plane 

dominant (c) first torsion dominant modes for sample 2. 
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(a) 

 
(b) 

 
(c) 

Fig. 3. 16 Theoretical mode shapes for (a) First in-plane bending dominant; (b) Second in-plane 

bending dominant; (c) First torsion dominant for sample 2 
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Fig. 3. 17 Comparison of experimental frequency response function with theoretical frequency response 

function for Sample 3. Cabled Analytical (Decoupled EB)   Cabled Experimental 

Cabled Analytical (Coupled EB)  Cabled Analytical (Coupled Timoshenko) 

 

The theoretical natural frequencies associated with the first, second in-plane modes and the 

first torsional mode are 133.74, 838.12 and 497.93 Hz respectively. Overall, the coupled model 

proposed for periodic wrapping pattern shows significant improvement with good match with the 

experimental FRF when compared to the decoupled model presented in the existing literature. As 

explained earlier, the coupled model accounts for the stiffness of the structure in all the coordinates 

whereas the decoupled considers the stiffness only in one direction as a result over predicts the 

stiffness by more than the coupled model. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 3. 18 Experimental snapshot mode shapes for (a) first in-plane dominant (b) second in-plane 

dominant (c) first torsion dominant modes for sample 3. 
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(a) 

 
(b) 

 
(c) 

 

Fig. 3. 19 Theoretical mode shapes for (a) First in-plane bending dominant; (b) Second in-plane bending 

dominant; (c) First torsion dominant for sample 3. 
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Table 3. 5 Comparison of Theoretical Natural Frequencies with Experiment for Sample 2. 

Mode 

No 

Experim-

ent 

[Hz] 

Coupled 

EB  

[Hz] 

 

Coupled 

TBT  

[Hz] 

Decoup

-led EB 

[Hz] 

Error % 

Coupled 

EB  

Error % 

Coupled 

TBT  

Error % 

Decoupled 

EB  

1 13.20 (OP) 12.66 (OP) 12.61 14.16  -4.09 % 4.46 % 7.27 % 

2 81.1 (OP) 79.25 (OP) 79.03 88.81  -2.28 % 2.55 % 9.50 % 

3 118 (IP) 133.74 (IP) 133.54 - 13.33 % 13.16 % - 

4 224.50 (OP) 222.28 (OP) 221.26 248.7  -0.98 % 1.44 % 10.77 % 

5 438 (OP) 435.59 (OP) 433.49 487.32  -0.55 % 1.02 % 11.26 % 

6 573.70 (T) 497.93 (T) 497.52 - -13.20 % 13.27 % - 

7 718.60 (OP) 720.02 (OP) 716.40 805.56  0.197 % 0.30 % 12.10 % 
8 752 (IP) 838.12 (IP) 829.69  - 11.45 % 10.33 % - 

*OP, IP and T stand for Out of plane bending, In-plane bending and Torsion dominant modes respectively. EB stands for Euler-

Bernoulli. TBT stands for Timoshenko theory and errors are computed with respect to the experiment 

 

 

 

 

 

 

 

 

 

 

Table 3. 6  Comparison of Theoretical Natural Frequencies with Experiment for Sample 3. 

Mode 

No 

Experim-

ent 

[Hz] 

Coupled 

EB  

[Hz] 

Coupled 

TBT  

[Hz] 

Decoup

-led EB 

[Hz] 

Error % 

Coupled 

EB  

Error % 

Coupled 

TBT  

Error % 

Decoupled 

EB  

1 15.60 (OP) 17.63 (OP) 17.49 20.76  13.01 % 12.11 % 33.07 % 

2 99.6 (OP) 110.56 (OP) 109.62 130.13  11.00 % 10.06 % 30.65 % 

3 96 (IP) 126 (IP) 125.85 - 31.25 % 31.09 % - 

4 280.2 (OP) 309.55 (OP) 306.86 364.41  10.47 % 9.51 % 30.05 % 

5 548.6 (OP) 606.53 (OP) 601.07 714.06  10.55 % 9.56 % 30.16 % 

6 764.5 (T) 705.97 (T) 705.22 - -7.65 % 7.75 % - 

7 580 (IP) 789.70 (IP) 783.02 - 36.15 % 35 % - 
*OP, IP and T stand for Out of plane bending, In-plane bending and Torsion dominant modes respectively. EB stands for Euler-

Bernoulli. TBT stands for Timoshenko theory and errors are computed with respect to the experiment 
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(a) 

 
   (b) 

 

Fig. 3. 20  Frequency response function obtained from in-plane impact test (a) Sample 2 (b) Sample 3. 

Similarly, in the FRF comparison for sample 3 in Fig. (3.17), the coupled model shows 

significant improvement when compared to the decoupled model from the existing literature. The 

case of sample 3 considered has more coupling when compared to sample 2 due to larger number 

of cables considered. The significant peaks again represent the out of plane bending modes. The 

natural frequency results from the theory and experiment along with the error percentages are 

tabulated in Table. (3.6). Fig. (3.20 b) shows the FRF for the in-plane actuation-sensing case to 

clearly identify the natural frequencies associated with the in plane bending dominant modes. To 

further confirm, the type of each mode, experimental deflection shapes for sample 3 are presented 

in Fig. (3.18). The first two in-plane bending dominant mode shapes are presented in Figs. (3.18 
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a) and (3.18 b) and the first torsion dominant mode shape is presented in Fig. (3.18 c). The 

corresponding theoretical mode shapes for the first two in plane bending dominant modes are 

presented in Figs. (3.19 a) and (3.19 b) and the torsion dominant mode is presented in Fig. (3.19 

c). Similar to experimental sample 2, from the overall analysis of the FRF plots in Fig. (3.17), the 

coupled EB and TBT models give better matches when compared to the decoupled model. For 

both samples 2 and 3, the in plane bending dominant mode gives higher errors when compared to 

the other coordinates of motion. The theory over-predicts the natural frequencies for the in-plane 

bending dominant modes.  

 

Table 3. 7 Natural Frequencies after updating the width parameter 

Mode 

No 

Experiment 

[Hz] 

Coupled EB 

Analytical [Hz] 

(Parameter 

Updating) 

Error % 

Coupled EB 

and 

Experiment 

1 13.20 (OP) 12.73 (OP) -3.56 % 

2 81.1 (OP) 79.83 (OP) -1.59 % 

3 118 (IP) 127.94 (IP) 8.42 % 

4 224.50 (OP) 223.45 (OP) -0.46 % 

5 438 (OP) 437.99 (OP) 0 % 

6 573.70 (T) 519.95 (T) -9.36 % 

7 718.60 (OP) 723.99 (OP) 0.75 % 
8 752 (IP) 801.82 (IP) 6.62 % 

 

For sample 2, the width parameter is updated from 11 mm to 10.5 mm. The new natural frequencies 

are presented in Table. (3.10), the error percentages have improved when compared to Table. (3.7). 

The in-plane bending and torsional dominant errors are now lower.  

The natural frequencies for sample 3, are presented in Table. (3.6). As the cabling becomes 

more significant for sample 3, the out of plane bending mode is slightly over-predicted when 

compared to sample 2. The coupled model proposed in this thesis shows improvement over the 

model published by Martin et al [52,54] for periodic pattern. As the cabling becomes more 

significant, the shear effects due to cable also increases which is ignored in the current coupled 

model. As a future work, the model may be improved incorporating the shearing effect at the top 

of the cross-section of the cable as its value is minimum at the top of the cable.  Due to this, the 

natural frequency prediction will be lower and may provide better match with the experiment. This 

can be investigated by interested readers as a future work. Also, the natural frequencies for the in 

plane bending dominant mode from the theoretical model are on the higher side. To obtain more 
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insight, the experimental in plane bending dominant natural frequencies of the bare beam for 

sample 3 are found. The FRF in the in plane bending direction for the experimental data of bare 

beam is shown in Fig. (3.21). The results are tabulated in Table. (3.8) and are compared with the 

bare beam analytical frequencies along with the error percentages. The error for the in-plane 

bending modes between the bare beam theory and experimental is higher. This is because the 

analytical model treats the fixed end as rigid (infinite stiffness). In reality, the fixed end has some 

finite stiffness, which becomes more important while modeling the in-plane bending modes for 

thicker substrates. When larger number of cables are added to host structure (in case of sample 3 

they are 10 cables when compared to 5 cables in sample 2). The error that existed in the bare beam 

will also increase due to increase in effective thickness of the structure to be clamped. In addition 

to this, for larger number of cables, the diagonal section of the cables are not in proper contact 

with the host structure when it vibrates in the in-plane direction. For clarity, the system 

configuration is shown in Fig. (3.22). When the cable does not stay in contact, both the inertia and 

stiffening effect due to cabling will be lower when compared to the situation where the cable is 

perfectly in contact. Mathematically, this case can be modelled by assuming distinct in-plane 

displacements for the host structure and the cable for the system in Fig. (3.22). Practically, in the 

in-plane bending direction, the compressive axial force acting on the host structure due to pre-

tension in the cable will be dominant. Because of this compressive effect, the resulting frequencies 

will be lower than the bare beam. The equation to study this effect is shown in Eq. (3.2).   

 

 

Table 3. 8 Comparison of theoretical and experimental in plane bending dominant natural frequencies for 

bare beam of Sample 3. 

Mode 

No 

Analytical 

Frequencies 

[Hz] 

Experiment 

[Hz] 

Error (%) 

Analytical and 

experiment 

1 120.55 (IP) 103.6 (IP) 16.36 

2 755.55 (IP) 619.20 (IP) 22.02 

 

(𝜌𝑏𝐴𝑏 +
𝜌
𝑐
𝐴𝑐

𝐿
 [4ℎ̅ + 2𝑏̅])𝑣̈ + 𝐸𝑏𝐼𝑧𝑧𝑣

′′′′ + 𝑃𝑇𝑣
′′ = 0 

(3.2) 

where  𝑃𝑇  is the compressive force acting on the host structure due to pre-tension of the cable. 

The kinetic energy mass term also contains the cable lumped masses. The lumped masses stay in 

contact with the host structure. The mathematical form of Eq. (3.2) is a standard equation in 
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vibration text books [120] when a structure is subjected to compressive axial load and can be easily 

solved for natural frequency by applying boundary conditions. 

 

Fig. 3. 21  Frequency response function of in-plane bending vibration of bare beam of sample 3 

 

Fig. 3. 22 Top isometric view of the cable-harnessed structure undergoing in plane bending vibration 

Eq. (3.2) is valid only when the cable is not properly attached to the host structure, which 

happens only in the in-plane bending direction when the structure has larger number of cables as 

in sample 3. By using the system parameters of sample 3, the natural frequencies of the first two 

in-plane bending dominant modes are 114.05 Hz and 739.59 Hz. The errors w.r.t cabled 

experimental are 18.80 % and 27.5 %. The errors are still on the higher side. For further 

explanation, these errors are when the clamped end is assumed perfectly rigid. As seen in Table. 

(3.8) for the bare beam of sample 3, the error for the first two modes are in the range of 16.26 and 
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22.02 %. Large part of resulting error after solving Eq. (3.2) can be related to error propagating 

into the cabled structure from bare beam structure. 

 In addition, the Timoshenko coupled model curve shows some more improvement over 

coupled Euler-Bernoulli model as the Timoshenko model allows for additional degrees of freedom 

(rotation of cross-section coordinates). To conclude from the theory and experimental 

observations, in order to accurately study the dynamic behavior of cable-harnessed structure with 

periodic wrapping pattern, coupled vibration model is a better choice when compared to the 

decoupled vibration model. 

3.3 Experimental Validation of Non-Periodic Wrapping Pattern 
 

       The non-periodic samples along with experimental setup are shown in Figs. (3.23 a) and (3.23 

b). The top view of the wrapping is clearly described in Figs. (3.24 a) and (3.24 b) respectively. 

 

 

(a) 

 

(b) 

Fig. 3. 23 Experimental setup of a) Sample 1 b) Sample 2 for non-periodic wrapping pattern 
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            The numerical parameters of the samples are shown in Table. (2.16). The structures are 

fixed at one end (cantilever boundary condition). Both the samples have four fundamental 

elements. The wrapping pattern of samples 1 and 2 are described in Chapter 2.3. Multiple pre-

tensioned cables are wrapped around the host structure. After the structure is wrapped and clamped 

tightly at one end, super glue is applied at discrete locations to make sure the cables stay in contact 

with the structure while the structure vibrates. The cable is an 80 lb. strength Power Pro fishing 

line. The substrates are made of Al 6061 alloys. The material and geometrical properties of the 

host structure and the cable are presented in Table. (2.16) for samples 1 and 2.  

 

Fig. 3. 24 FRF comparison between the coupled, decoupled analytical models and the experiment for 

sample 1. Cabled Analytical (Decoupled)  Cabled Experimental  Cabled 

Analytical (Coupled). 

 
(a) 

  
(b) 

Fig. 3. 25 Comparison of experimental and theoretical out of plane bending mode shapes for (a) Mode 

4 (b) Mode 5. Experimental  Centerline  Analytical. 
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(a)   

(b) 

Fig. 3. 26 Theoretical plots for curvature for (a) Mode 4 (b) Mode 5 for sample 1 

 

 

Table 3. 9 Coupled and Decoupled Natural Frequencies for Sample 1 

Mode 

No 

Experiment 

[Hz] 

Coupled 

EB 

[Hz] 

Decoupled 

EB 

[Hz] 

% Coupled 

EB and 

Experiment 

% Decoupled 

EB and 

Experiment 

1 13.2 10.78 (OP) 16.65 18.33 % 26.13 % 

2 78.6 78.45 (OP) 104.18 0.19 % 32.54 % 

3 121 (IP) 140.29 (IP) - 15.94 % - 

4 215.7 218.85 (OP) 291.93 1.46 % 35.34 % 

5 384.8 429.9 (OP) 570.06 11.72 % 48.14 % 

6 459.5 (T) 447.07 (T) - 2.70 % - 

7 709.1 706.47 (OP) 946.33 0.37 % 33.45 % 

8 752.8 (IP) 878.21 (IP) - 16.65 % - 
*OP stands for out of plane bending, IP stands for in plane bending and T stands for Torsion dominant modes 
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(a) 

 
(b) 

 
(c) 

Fig. 3. 27 Coupled theoretical mode shapes (a) First in plane bending dominant (b) First torsion 

dominant (c) Second in-plane bending dominant for sample 1 
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(a) 

 

(b) 

 
(c)  

                                                                                           

(d) 

Fig. 3. 28 Experimental snapshot mode shapes for (a) First torsion dominant mode (b) First in-plane 

bending dominant mode (c) Second in-plane bending dominant mode (d) FRF obtained from impact 

testing for sample 1 

In Fig. (3.24), the FRF comparison between the coupled, decoupled models and experiment 

are presented for sample 1. The schematic of the wrapping pattern for the sample can be seen in 

Fig. (2.29 a). The coupled model shows significant improvement over decoupled model for all 

modes and overall the coupled curve matches well with the experiment. In Fig. (3.24), the coupled 

theory over-predicts the fourth bending mode. To analyze further, the theoretical and experimental 

mode shapes are compared for out of plane bending dominant modes 4 and 5 and the plots are 

shown in Figs. (3.25 a) and (3.25 b). To animate the experimental mode shapes in the out of plane 

bending direction, the centerline has been selected and the sensing is done every 0.5 cm starting 

from the clamp. The node locations of the out of plane bending dominant modes 4 and 5 of theory 

and experiment are close to each other. To obtain more insight into the mismatch into one of the 
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out of plane bending dominant mode 4, the theoretical curvature (
𝜕2𝑤

𝜕𝑥2
) is plotted for the modes 4 

(mismatched mode) and modes 5 (mode with good match). The coupled mode shape 𝑊(𝑥) is 

selected for plotting the curvature. The structure under consideration (sample 1) has four 

fundamental elements of wrapping pattern. The length of the elements in the order starting from 

the clamp are 𝑥 = 7.5 cm, 5 cm, 7.5 cm and 5 cm.  From Fig. (3.25 a), for the fourth out of plane 

bending dominant mode, the second and the third peak locations of the curvature line up with the 

interface location of the two fundamental elements and the first interface location is fairly closer 

to the first node of the curvature. The structure has lumped mass section at the interface of two 

different fundamental elements. The bending stiffness is proportional to the curvature. In Fig. (3.25 

a), the close proximity of two peaks of the curvature to the lumped mass locations would mean 

that the stiffening effect for the fourth mode will be practically lower and mass effect will be 

higher. Therefore, it is expected that the practically measured natural frequency for this mode will 

be lower and the theory over-predicted the frequency for this mode more than the other out of 

plane bending modes. This can be also observed in Table. (3.9), where the frequencies of the 

coupled theory proposed in the paper and the experiment are compared to each other. In Fig. (3.25 

b), for the fifth bending dominant mode, the three interface locations are away from the peak 

locations of the curvature and therefore we do not see the type of behavior seen in the fourth out 

of plane bending dominant mode. Some more explanation regarding this is provided while 

discussing Table. (3.12) later in this section. To identify the modes in the other direction for both 

theory and experiment, mode shape analysis is performed. The theoretical mode shapes for the 

first in plane bending dominant, first torsion dominant and the second in-plane bending dominant 

mode shapes are plotted in Figs. (3.27 a) - (3.27 c) respectively. The experimental first torsion 

dominant, first and second in-plane bending dominant modes are plotted in Figs. (3.28 a) - (3.28 

c) respectively. Practically speaking, the in plane bending dominant mode is weakly coupled to 

the out of plane bending mode, we do not clearly see the sharp peaks associated with the in plane 

bending dominant mode in the experimental curve of Fig. (3.24). To accurately identify the 

frequencies associated with the in plane bending dominant mode, in-plane impact tests are 

performed and in Fig. (3.28 d), the FRF for the case where the structure is excited in the in plane 

bending direction is presented and the significant peaks in Fig. (3.28 d) correspond to the in plane 

bending dominant modes. The error percentages of the coupled and decoupled model with respect 

to the experiment are presented in Table. (3.9). As explained in Chapter 2.3, the decoupled model 
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proposed in [53] over-predicts the natural frequencies when compared to the coupled model and 

gives large errors. The out of plane bending modes from the coupled model match well with the 

experiment when compared to Martin et al model [53] . In Table (3.9), the in-plane bending 

dominant modes are over predicted by the coupled theory and show larger errors when compared 

to other coordinates. This means that the theory assumes larger stiffness in that direction than the 

practical stiffness of the structure in the in-plane direction.  

 

Fig. 3. 29 FRF comparison between the coupled, decoupled analytical models and the experiment for 

sample 2. Cabled Analytical (Decoupled)  Cabled Experimental  Cabled 

Analytical (Coupled). 

In Ref. [119] (Chapter 3.2), for the sample 3 tested for periodic wrapping pattern, the errors 

for the in plane bending dominant are on the higher side. In this Section 3.3, the number of cables 

in samples 1 and 2 are of similar range in sample 3 of Ref. [119] but the substrates used have 

higher slenderness ratio (
𝑙

ℎ
). Large part of the error in the in-plane bending mode for cabled beam 

in Ref. [119] for sample 3 is attributed to the error existing in bare beam due to clamping in the in-

plane direction. Since the substrates used in this paper are thinner than sample 3 of Ref. [119], we 

could observe that the structures are now better clamped than the thicker substrate in Ref.[119]. 

For the testing of structures, traditional type clamp for cantilever beam testing is used. The 

structure is constrained in the thickness (z direction) and from the discussions from Section 3.2, 
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for thicker substrates, the fixed end will have some finite stiffness in the in-plane direction which 

gives lower frequencies than the theory can predict. For the thinner samples, this issue should not 

be as significant as thinner structures can be better clamped. This is also one of the reason why the 

overall in-plane errors are lower in this non-periodic wrapping pattern when compared to sample 

3 of periodic wrapping pattern. In addition, glue is applied to the samples 1 and 2 in this paper at 

discrete cable locations. This is more practical representation of cable-harnessed structure where 

the cables are attached at discrete locations to the host structure in the research by U.S Air force 

[16,44,45]. The assumptions in the theoretical model are now more realistic.   

 

Fig. 3. 30 Experimental testing of preliminary sample 

 

Table 3. 10 System parameters for the sample for preliminary testing 

System parameters  Value 

Beam length  270 mm 

Beam width  11 mm 

Beam thickness 0.975 mm 

Beam density 2,768 Kg/m3 

Beam modulus of elasticity 68.9 GPa  

Beam Shear modulus 25.7 GPa  

Pre-tension of the cables  20 N 

Cable radius  0.00021 m 

Cable density 1,400 Kg/m3 

Cable modulus of elasticity 128.04 GPa 

Number of Cables 5 

Sensing Location 𝑥 = 𝑙 tip sensing 

Number of fundamental elements 3 (non-periodic) 
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Fig. 3. 31 Top view of the preliminary sample 

 

Fig. 3. 32 Comparison of in plane impact FRFs for experiment of cabled beam of preliminary sample 

with and without glue.  cabled beam without glue cabled beam with glue 

To obtain more insight into the in plane bending dominant modes, the experimental setup 

of preliminary sample is presented in Fig. (3.30). It consists of three non-periodic elements and 

the wrapping angle increases after each section. The system parameters are presented in Table. 

(3.10) and the top view of the wrapping pattern is shown in Fig. (3.31). The purpose of this analysis 

is to find out the effect of adding glue at discrete locations to the natural frequencies of the in plane 

bending dominant mode. The result is presented in Fig. (3.32). It can be seen that there is not much 

change for the first in-plane bending dominant mode and the frequency is slightly reduced for the 

second in-plane bending dominant mode. For the in plane bending dominant modes in non-

periodic wrapping pattern, the cable is in better contact with the host structure when compared to 

the periodic wrapping pattern case [119]. When the cable is in better contact with the host structure, 

the inertia effect due to cabling increases along with the stiffening effect. Since the bending 

stiffness of the cables considered in this paper is negligible, the plane in which the host structure 
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vibrates is parallel to the plane in which the pre-tensioned cable is attached for in plane bending 

vibrations. In this case, overall, the pre-compressive effect on the host structure due to cabling 

dominates the stiffening effect due to cabling in the in-plane bending direction; because of this, 

we do not practically see significant stiffening effect in the in-plane bending direction. To 

conclude, the reason for over-prediction of the in plane bending dominant modes is because of 

combination of three reasons. First, the clamping issue, which in this paper is not as high as Ref.  

[119] due to using thinner substrates. Second, the dominance of pre-compressive effect of on host 

structure over the pre-tension effect of cable in the in-plane bending direction. Third, in this non-

periodic wrapping pattern experiments, additional inertia effect due to better contact of cables with 

the host structure. The same reason can also be extended to the next sample for in-plane bending 

explanation.     

Fig. (3.29) shows the comparison of the frequency response functions between the coupled, 

decoupled model [53] and the experiment for sample 2, the schematic of wrapping pattern for this 

sample is shown in Fig. (2.29 b). The significant peaks denote the out of plane dominant modes 

and the sharp peaks denote the modes in the in plane and the torsional direction. Similar to sample 

1, the decoupled model over-predicts the natural frequencies. The coupled model shows good 

agreement with the experimental curve when compared to the decoupled model. In the frequency 

range tested, the structure has 6 out of plane bending, 2 in-plane bending and 2 torsion dominant 

modes. For the out of plane bending modes, the match between coupled theory and experiment is 

good for all the modes when compared to the decoupled theory. For the fourth out of plane bending 

dominant mode, the theory slightly under-predicts the natural frequency and for the sixth out of 

plane bending dominant mode, the theory slightly over-predicts the natural frequency. Similar to 

sample 1, the mode shapes corresponding to the 4th,5th and the 6th out of plane bending dominant 

modes are simulated using experiments and compared to theory in Figs. (3.33 a)-(3.33 c).  

 

 

 

 

 

 

 



 

135 

 

 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 3. 33 Comparison of experimental and theoretical out of plane bending mode shapes for (a) Mode 

4 (b) Mode 5 (c) Mode 6 for sample 2. Experimental  Centerline  

Analytical. 
 

The curvature plots are presented for the same modes are presented in Figs. (3.34 a)-(3.34 

c). For the sixth out of plane bending mode similar to the fourth mode of sample 1, the theory over-

predicts the natural frequency. From Fig. (3.34 c), first interface location of the structure is near 

the second node of the curvature plot. The next two interface locations are near the peaks of the 

curvature plot. For the modes, that have interface locations near the peak of curvature particularly 

near the tip of the cantilever, practically we see less stiffening effect but in this case the first 

interface location is near the node of the curvature, this should add some stiffening effect into the 

system. Overall, the measured frequency for the sixth bending mode is slightly lower than the 

frequency predicted by the coupled model. In Fig. (3.34 a), the curvature plot for the fourth out of 

plane bending dominant mode, the interface locations of the structure are near the node locations 

of the curvature. This means, practically at the fourth mode for this sample, the stiffness measured 
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from the experiment is more than the stiffness predicted by the coupled theory when compared to 

all the other out of plane bending modes. In the work on periodic wrapping pattern [119] (Chapter 

2.2 and 3.2), the experimental samples considered there has larger number of fundamental 

elements (9 and 10 for the two samples). It was observed there that all the out of plane bending 

modes has consistent error for all the out of plane bending modes in case of periodic wrapping 

pattern. Based on the observations from this Section 3.3, in structures with lower number of non-

periodic elements, the error percentage between the theory and experiment is not consistent for 

certain modes depending on the  

 

 

(a) 

 

(b) 

 

(c) 

Fig. 3. 34 Theoretical plots for curvature for (a) Mode 4 (b) Mode 5 (c) Mode 6 for sample 2 
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(a) 

 
(b) 

 

(c) 
 

(d) 
Fig. 3. 35 Coupled theoretical mode shapes (a) First in plane bending dominant (b) First torsion dominant 

(c) Second torsion dominant (d) Second in-plane bending dominant for sample 2 
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(a) 
 

(b) 

 

(c) 
 

(d) 

 

(e) 

 

Fig. 3. 36 Experimental snapshot mode shapes for (a) First torsion dominant mode; (b) Second torsion 

dominant mode; (c) First in-plane bending dominant mode; (d) Second in-plane bending dominant mode; 

(e) FRF obtained from impact testing for sample 2 
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locations of curvature peak and node with respect to the interface location between two different 

fundamental elements. To minimize the cabling stiffening effects in a certain mode, the interface 

locations and number of fundamental elements on non-periodic pattern can be carefully selected 

based on estimate on the curvature peak and node location and the structure can be wrapped 

accordingly. The theoretical mode shapes for the two torsion and in plane bending dominant are 

presented in Figs. (3.35 a) - (3.35 d) for sample 2. The corresponding experimental mode shapes 

are presented in Figs. (3.36 a) - (3.36 d) and the FRF from the in-plane bending is presented in Fig. 

(3.36 e) to accurately find the natural frequencies associated with the in plane bending dominant 

modes. The host structure in the sample 2 is wider than the first sample; hence, sample 2 is more 

flexible in torsional direction as we see two torsion dominant modes in the frequency range of 

interest tested (Table. (3.11)). Similar to sample 1, the natural frequencies associated with the in 

plane bending dominant mode are higher than the experiment.  

Table 3. 11 Coupled and Decoupled Natural Frequencies for Sample 2 
Mode 

No 

Experiment 

[Hz] 

Coupled EB 

[Hz] 

Decoupled 

EB 

[Hz] 

% Coupled 

EB and 

Experiment 

% Decoupled 

EB and 

Experiment 

1 13.7 10.27 (OP) 14.92 25.03 % 8.90 % 

2 76.9 74.62 (OP) 93.32 2.96 % 21.35 % 

3 151.5 (IP) 179.65 (IP) - 18.58 % - 

4 213.4 208.32 (OP) 260.69 2.38 % 22.16 % 

5 363.2 (T) 335.52 (T) - 7.62 % - 

6 438.9 406.96 (OP) 511.52 7.27 % 16.54 % 

7 679 674.98 (OP) 843.36 0.59 % 24.20 % 

8 965.7 1007.98 (OP) 1256.05 4.37 % 30.06 % 

9 1137.2 (T) 1045.29 (T) - 8.08 % - 

10 952 (IP) 1120.34 (IP) - 17.68 % - 
*OP stands for out of plane bending, IP stands for in plane bending and T stands for Torsion dominant modes 

 

In Table. (3.12), the ratio of the natural frequencies between the two successive modes are 

presented, for example 
Mode 2

Mode 1
, 
Mode 3

Mode 2
 etc. for different models such as the bare beam, coupled 

cabled harnessed model for samples 1 and 2, experiment for samples 1 and 2 and also the 

frequencies from the periodic wrapping pattern [119] (Chapter 2.2). For a bare beam model, the 

frequency ratio between the successive modes for a cantilever beam can be calculated using the 

standard formulae [120]. The ratios are shown in the first row of Table. (3.12). The frequency 

ratios for the coupled model of samples 1 and 2 of non-periodic are presented in the rows 2 and 4 

of Table. (3.12) and the frequency ratios of the coupled model of sample 1 of periodic wrapping 
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pattern are presented in the row 6. The frequency ratios for the experiment are presented in rows 

3, 5 and 7. From the Table. (3.12), we can see that the frequency ratios of the coupled models for 

cable-harnessed structure follow similar trend to that of standard models particularly the ratios of 

Modes 3, 4 and 5 where there was some mismatch in Mode 4 for both the samples in Figs. (3.24) 

and (3.29). For the experiment related to the periodic wrapping pattern, the trend of the frequency 

ratios is similar to the coupled theory and the bare beam especially in the columns 4 and 5. 

However, for the experiment data of non-periodic wrapping pattern, the ratios 
Mode 4

Mode 3
, 
Mode 5

Mode 4
 are 

follow a different trend than the expected and this is more noticeable for sample 1. This is an 

interesting phenomena observed practically in the structures with non-periodic wrapping pattern 

structures with larger number of cables and lesser number of fundamental elements when 

compared to the parameters used in Martin et al paper [53].  

 

Table 3. 12 Ratio of the natural frequencies for different models 

 
𝜔𝑂𝑃 (

Mode 2

Mode 1
) 𝜔𝑂𝑃 (

Mode 3

Mode 2
) 𝜔𝑂𝑃 (

Mode 4

Mode 3
) 𝜔𝑂𝑃 (

Mode 5

Mode 4
) 𝜔𝑂𝑃 (

Mode 6

Mode 5
) 

Bare beam 6.26 2.8 1.95 1.65 1.49 

Coupled 

(Sample 1) 

7.27 2.78 1.96 1.63 - 

Experiment 

(Sample 1) 

5.95 2.74 1.78 1.84 - 

Coupled 

(Sample 2) 

7.26 2.79 1.95 1.65 1.49 

Experiment 

(Sample 2) 

5.61 2.77 2.05 1.54 1.42 

Coupled 

(Periodic 

[119]) 

6.25 2.80 1.95 1.64 - 

Experiment 

(Periodic[119]) 

6.14 2.76 1.95 1.64 - 

 

In non-periodic structures, the fundamental elements have different wavelength as opposed to 

the periodic wrapping pattern where each fundamental element has the same wavelength. 

Therefore, in non-periodic structures, because of variable wavelengths, we see different mode 

spacing ratios when compared to the periodic structure and this effect will be more noticeable if 

the nodes of the curvature overlap with the interface of two fundamental elements as observed in 

sample 1. This concept may be built upon to wrap the cables in a non-periodic manner to minimize 

the stiffening effect across some modes of interest. Overall, the coupled model proposed in this 
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paper for the cable-harnessed structures with non-periodic wrapping pattern gives good match with 

the experiment when compared to the existing models in the literature. For non-periodic wrapping 

pattern, the host structure and cables considered have similar dimensions for all the three samples 

with the difference being in wrapping pattern. The first two samples are validated to demonstrate 

the accuracy of theoretical model. Once the model is validated, a third sample, which has semi-

periodic wrapping pattern, is also theoretically investigated in Section 2.2.   

3.4 Conclusions of the Chapter 
               

           In this chapter, experimental validations for the mathematical models presented in Chapter 

2 are performed. For straight cable pattern, the system tested consisted of a bundle of pre-tensioned 

cables attached along the length of the host structure at an offset position. Base excitations are 

provided to the structure in the out-of-plane bending direction to obtain the FRFs. The frequency 

response functions for both the coupled and decoupled analytical models are then compared to the 

experimental values. The results for the coupled model are shown to be in good agreement with 

the experimental results when compared to the decoupled vibration model clearly indicating the 

need for including the coupling effects between various coordinates of vibrations in the model. For 

the periodic and non-periodic wrapping pattern, experiments were performed on two samples and 

the FRFs obtained from the coupled EB and TBT models give better match with the experimental 

FRF when compared to the decoupled EB FRF. Mode shape animation snapshots of the in-plane 

bending and torsion dominant modes are presented to accurately identify the type of vibration 

associated with each mode. To conclude the objective that the coupled mathematical models 

presented in the thesis show significant improvement in the natural frequency results when 

compared to the model published in the literature by Martin et al with respect to the experimental 

frequencies is achieved.  
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Chapter 4 

Conclusion and Future Work 
 

4.1 Conclusions 
 

This thesis investigated the phenomenon of coupling between different coordinates of 

vibrations in cable-harnessed structures. The effect of coupling is ignored in the published 

literature in this field. The main goal of thesis is to perform the coupled vibration analysis using 

analytical methods. The distributed parameter analytical models presented in this thesis are 

validated through experiments. The governing partial differential equations of motion are derived 

through energy methods by applying Hamilton’s principle. The coupled results are compared to 

the decoupled results to highlight the importance of modeling the coupling effect. In Chapter 2a, 

the coupled partial differential equations for the cable-harnessed structure are developed using 

both Euler-Bernoulli and Timoshenko beam theories. The system consists of a straight cable 

positioned at an offset distance along the width axis on a beam. The theoretical studies pointed 

that the natural frequencies from the coupled model are lower than the decoupled model due to the 

structure being more complaint after the coupling effects were considered. Sensitivity analyses 

were performed by finding the effect of varying the offset position and radius of the cable on the 

natural frequencies. It is found that the coupling effects are maximum when the offset distance 

increases. Increased strain energy transfer from the out of plane bending mode to the in-plane 

bending mode is also observed as the offset distance is increased. In Chapter 2b, cable-harnessed 

structure with periodic wrapping pattern is studied. The coupled partial differential equations are 

derived using Euler-Bernoulli and Timoshenko models. The coupled equivalent continuum model 

is presented to model the complicated periodic structure. The coupled model gives lower 

frequencies when compared to the decoupled models published in the literature for the periodic 

structure. It is observed in this chapter that for larger number of periodic elements, the frequency 

of the cabled structure from the coupled model will be smaller and approaches bare beam thereby 

minimizing the effect of cabling on the host structure. This is an advantage over the structure with 

straight cable pattern at an offset distance. In straight cable with offset position, the structure still 

has a larger stiffening effect when compared to bare beam. The concept of transition frequency is 

also investigated in this chapter for cable-harnessed structure with periodic wrapping pattern. In 
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the published literature, the transition frequency is mainly studied for bare Timoshenko beams for 

simply supported boundary conditions. In this chapter, for cable-harnessed structure it is observed 

that the transition frequency decreases as the radius of the cable increases. Pure shear vibration 

mode is seen for cable-harnessed structure with simply supported boundary conditions. For the 

mode shapes in the second spectrum, the profile of shapes corresponding to the shear dominant 

modes are not identical to the first spectrum which is the case in bare beam with simply supported 

boundary condition. This concept of transition frequency in cabled structures may have application 

in vibration control. For a cabled structure, the transition frequency and shear dominant modes 

start to appear in lower modes of vibration when compared to that of bare beam. The modal 

participation factor contribution for a structure is usually more from the lower vibration modes 

when compared to the higher modes. Presence of transition frequency mode and the shear 

dominant modes in the lower vibration modes of cabled beam will ensure that the structure has 

lesser amplitude vibrations in the out of plane bending direction when compared to the bare beam 

counterpart. In chapter 2c, coupled vibrations for structures with non-periodic wrapping pattern 

are analyzed. The structure has different wrapping angles for each fundamental element, which 

makes it difficult to obtain an equivalent continuum model like periodic wrapping structure. The 

structure is discretized at the interface of each fundamental element by applying interface 

continuity conditions along with the boundary conditions resulting in a complicated model. 

Structures with three different wrapping patterns are investigated for the theoretical studies for 

cantilever boundary condition. It is observed that for some vibration modes, the decoupled model 

published by Martin et al significantly over predicts the natural frequencies.  

In Chapter 3, experimental investigations are performed for the structure with straight 

cable, periodic and non-periodic wrapping patterns. In Chapter 3a, straight cable along the offset 

is attached to the host structure. Practically, the structure is excited in the out of plane direction 

using a shaker and the presence of sharp in plane bending dominant mode peak is confirmed by 

performing the impact test in the in plane bending direction. The theoretical frequency response 

functions from the coupled model match well with the experimental frequency response function 

when compared to that of decoupled Martin et al model thereby showing the importance of having 

a coupled model for structure with straight cable pattern placed at an offset distance from the 

centerline. In Chapter 3b, for the periodic wrapping pattern structure, in addition to the shaker base 

excitation test in the out plane bending direction, mode shape animations are also performed to 



 

144 

 

practically confirm the in-plane bending and the torsion dominant modes. In Chapter 3c, for the 

non-periodic wrapping pattern structure experimental results are presented. Similar to periodic 

wrapping pattern, animation plots are presented for the in plane and torsion dominant modes to 

confirm the respective modes in those directions. To conclude, in this thesis, the importance of 

having a mathematical model to study the coupling effects in cable-harnessed structures is shown. 

The results of mathematical models proposed in this thesis matched very well with the experiments 

for all the designs investigated when compared to the existing decoupled models published in the 

literature for the three different systems investigated such as the cabled harnessed structure with 

straight pattern at offset, periodic and non-periodic patterns. 

4.2 Future Work 
 

For future work, the research may be extended in the following directions:  

1) The analytical model investigated in this thesis can be built upon by including the effect of 

damping and the coupling it creates between various coordinates of vibrations.  

Mathematically, the Rayleigh dissipation function for the cabled structure needs to be found 

out for the cabled structure by considering the coupling effects. After Rayleigh dissipation 

function is included in the Hamilton’s principle, the final distributed parameter model will 

contain damping related terms. Through numerical and experimental investigations, interested 

readers can further explore the effect of coordinate coupling created by damping related terms 

and their effect on the peaks of the frequency response function. 

2) It is seen in this thesis, at larger values of cable diameter the coordinate coupling effects 

become important. The space flight cables are very thick and have significant bending stiffness. 

The effect of coupling, in beams harnessed with thick space flight cables can be investigated 

by developing a coupled analytical model by incorporating the bending stiffness of cables and 

comparing the results with the existing models by Spak et al or Choi et al and the experimental 

data. 

3) Another aspect ignored in the literature is to investigate any potential non-linear phenomena 

in the cable-harnessed structure. For thicker cables, if the attachment points of cable to the host 

structures are at the boundaries, then significant cable resonance could be seen which may 

induce non-linear phenomena in the structure like multi-period oscillations, quasi-periodic or 

chaotic behavior. This can be initially investigated experimentally and depending on the 
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behavior of the structure in the experiments, the nonlinear effects can be incorporated in the 

mathematical model at least for the out of plane bending vibrations to accurately model any 

potential non-linear effects observed from the experiment. 

4) Space structures are made of lightweight composite materials. Another aspect to investigate 

would be cable-harnessed composite structures subjected to thermal loading. Thermal loading 

will also affect the dynamic characteristics of the structure, which will be interesting aspect to 

investigate in the field of cable-harnessed structures.  
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Appendix A 

Strain and Kinetic Energy Coefficients for Straight Cable at Offset Pattern 

𝑐1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 𝑐12 = −𝑧𝑐𝑇  

 

 

 

 

 

 

 

 

(A.1) 

𝑐2 = 𝜅𝐴𝑏𝐺𝑏 𝑐13 = 𝑦𝑐𝑇 

𝑐3 = 𝜅𝐴𝑏𝐺𝑏 𝑐14 = 𝜅𝐴𝑏𝐺𝑏 

𝑐4 = 𝐺𝑏𝐽 + 𝑇(𝑦𝑐
2 + 𝑧𝑐

2) −
𝑇𝐽

𝐴𝑏
 

𝑐15 = 𝜅𝐴𝑏𝐺𝑏 

𝑐5 = 𝐸𝑐𝐴𝑐𝑦𝑐
2 + 𝑇𝑦𝑐

2 + 𝐸𝑏𝐼𝑧𝑧 −
𝑇𝐼𝑧𝑧
𝐴𝑏

 
𝑘1 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐6 = 𝐸𝑐𝐴𝑐𝑧𝑐
2 + 𝑇𝑧𝑐

2 + 𝐸𝑏𝐼𝑦𝑦 −
𝑇𝐼𝑦𝑦

𝐴𝑏
 

𝑘2 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐7 = 𝜅𝐴𝑏𝐺𝑏 𝑘3 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑐8 = −𝐸𝑐𝐴𝑐𝑦𝑐 − 𝑇𝑦𝑐 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 + 𝜌𝑐𝐴𝑐  (𝑦𝑐
2 + 𝑧𝑐

2) 

𝑐9 = 𝐸𝑐𝐴𝑐𝑧𝑐 + 𝑇𝑧𝑐 𝑘5 = 𝜌𝑏𝐼𝑧𝑧 + 𝜌𝑐𝐴𝑐  (𝑦𝑐
2) 

𝑐10 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑦𝑐𝑧𝑐) 𝑘6 = 𝜌𝑏𝐼𝑦𝑦 + 𝜌𝑐𝐴𝑐  (𝑧𝑐
2) 

𝑐11 = −𝜅𝐴𝑏𝐺𝑏  

 

𝑏1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 𝑏8 = 𝑇𝑦𝑐  

 

 

 

 

 

(A.2) 

𝑏2 = 𝐸𝑏𝐼𝑧𝑧 + 𝐸𝑐𝐴𝑐𝑦𝑐
2 + 𝑇𝑦𝑐

2 −
𝑇𝐼𝑧𝑧
𝐴𝑏

 
 

𝑏9 = −𝑇𝑧𝑐 

𝑏3 = 𝐸𝑏𝐼𝑦𝑦 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 + 𝑇𝑧𝑐

2 −
𝑇𝐼𝑦𝑦

𝐴𝑏
 

𝑘1 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏4 = 𝐺𝑏𝐽 + 𝑇(𝑦𝑐
2 + 𝑧𝑐

2) −
𝑇𝐽

𝐴𝑏
 

𝑘2 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏5 = 𝐸𝑐𝐴𝑐𝑦𝑐𝑧𝑐 + 𝑇𝑦𝑐𝑧𝑐 𝑘3 = 𝜌𝑏𝐴𝑏 + 𝜌𝑐𝐴𝑐 

𝑏6 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑦𝑐) 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 + 𝜌𝑐𝐴𝑐  (𝑦𝑐
2 + 𝑧𝑐

2) 

𝑏7 = (𝐸𝑐𝐴𝑐 + 𝑇)(−𝑧𝑐)  

 

where, 𝑦𝑐 and 𝑧𝑐 are the position coordinates of the cable. 𝐼𝑧𝑧 and 𝐼𝑦𝑦 are the area moment of 

inertias of the beam about z-axis and y-axis respectively, 𝐽 is the torsion constant of the beam, 

𝐼𝑥𝑥 = 𝐼𝑦𝑦 + 𝐼𝑧𝑧 is the polar moment of inertia of the beam. Other parameters are defined in the 

nomenclature table. Eq. (A.1) represents the coefficients for Timoshenko theory and Eq. (A.2) 

represents the coefficients for Euler-Bernoulli theory. 
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Appendix B 

Strain and Kinetic Energy Coefficients for Periodic Cable Wrapping Pattern 

𝑐1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 cos
3 𝜇 𝑐15 = −(𝐸𝑐𝐴𝑐 sin 𝜇 cos

2 𝜇 + 𝑇 sin 𝜇)  

 

 

 

 

 

 

 

 

(B.1) 

𝑐2 = 𝜅𝐴𝑏𝐺𝑏 + 𝐸𝑐𝐴𝑐 cos 𝜇 sin
2 𝜇 𝑐16 = −(𝐸𝑐𝐴𝑐 sin𝜇 cos

2 𝜇 + 𝑇 sin𝜇)(𝑧𝑐) 

𝑐3 = 𝜅𝐴𝑏𝐺𝑏 𝑐22 = −(𝐸𝑐𝐴𝑐 cos
2 𝜇 sin𝜇)(𝑧𝑐

2) 

𝑐4 = 𝐺𝑏𝐽 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 cos 𝜇 sin2 𝜇 + 𝑇(𝑦𝑐

2

+ 𝑧𝑐
2) cos 𝜇 −

𝑇𝐽 cos𝜇

𝐴𝑏
 

𝑐23 =  𝜅𝐴𝑏𝐺𝑏 

𝑐5 = 𝐸𝑏𝐼𝑧𝑧 + 𝐸𝑐𝐴𝑐𝑦𝑐
2 cos3 𝜇 + 𝑇 cos𝜇 𝑦𝑐

2

−
𝑇𝐼𝑧𝑧 cos 𝜇

𝐴𝑏
 

𝑐24 =  𝜅𝐴𝑏𝐺𝑏 

𝑐6 = 𝐸𝑏𝐼𝑦𝑦 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 cos3 𝜇 + 𝑇 cos 𝜇 𝑧𝑐

2

−
𝑇𝐼𝑦𝑦 cos 𝜇

𝐴𝑏
 

𝑘1 = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos 𝜇

+
𝜌𝑐𝐴𝑐
𝐿
 [4ℎ̅ + 2𝑏̅] 

𝑐7 = 𝜅𝐴𝑏𝐺𝑏 + 𝐸𝑐𝐴𝑐 cos 𝜇 sin
2 𝜇 

𝑘2 = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos 𝜇

+
𝜌𝑐𝐴𝑐
𝐿
 [4ℎ̅ + 2𝑏̅] 

𝑐8 = (𝐸𝑐𝐴𝑐 cos
3 𝜇 + 𝑇 cos 𝜇)(𝑦𝑐) 𝑘2 = 𝜌𝑏𝐴𝑏 +

𝜌𝑐𝐴𝑐
cos 𝜇

+
𝜌𝑐𝐴𝑐
𝐿
 [4ℎ̅ + 2𝑏̅] 

𝑐9 = (𝐸𝑐𝐴𝑐 cos
3 𝜇 + 𝑇 cos𝜇)(𝑧𝑐) 𝑘4 = 𝜌𝑏𝐼𝑥𝑥 +

𝜌𝑐𝐴𝑐
cos𝜇

(𝑦𝑐
2 + 𝑧𝑐

2 )

+
𝜌𝑐𝐴𝑐
𝐿
(4𝑏̅2ℎ̅ +

4ℎ̅3

3
+
2𝑏̅3

3

+ 2𝑏̅ℎ̅2) 

𝑐10 = (𝐸𝑐𝐴𝑐 cos
3 𝜇 + 𝑇 cos 𝜇)(𝑦𝑐𝑧𝑐) 𝑘5 = 𝜌𝑏𝐼𝑧𝑧 +

𝜌𝑐𝐴𝑐
cos 𝜇

(𝑦𝑐
2)

+
𝜌𝑐𝐴𝑐
𝐿
(4𝑏̅2ℎ̅ +

2𝑏̅3

3
) 

𝑐11 = −𝜅𝐴𝑏𝐺𝑏 − 𝐸𝑐𝐴𝑐 cos 𝜇 sin
2 𝜇 

𝑘6 = 𝜌𝑏𝐼𝑦𝑦 +
𝜌𝑐𝐴𝑐
cos 𝜇

(𝑧𝑐
2)

+
𝜌𝑐𝐴𝑐
𝐿
(
4ℎ̅3

3
+ 2𝑏̅ℎ̅2) 

𝑐12 = 𝐸𝑐𝐴𝑐𝑧𝑐 cos 𝜇 sin
2 𝜇 𝑐14 = 𝑇 cos 𝜇 𝑦𝑐 

𝑐13 = −(𝐸𝑐𝐴𝑐 cos𝜇 sin
2 𝜇 + 𝑇 cos𝜇)(𝑧𝑐)  
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𝑏1 = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 cos
3 𝜇  

 

 

 

 

 

 

 

 

 

 

 

(B.2) 

𝑏2 = 𝐸𝑏𝐼𝑧𝑧 + 𝐸𝑐𝐴𝑐𝑦𝑐
2 cos3 𝜇 + 𝑇𝑦𝑐

2 cos 𝜇 −
𝑇𝐼𝑧𝑧 cos 𝜇

𝐴𝑏
 

𝑏3 = 𝐸𝑏𝐼𝑦𝑦 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 cos3 𝜇 + 𝑇𝑧𝑐

2 cos𝜇 −
𝑇𝐼𝑦𝑦 cos 𝜇

𝐴𝑏
 

𝑏4 = 𝐺𝑏𝐽 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 cos 𝜇 sin2 𝜇 + 𝑇(𝑦𝑐

2 + 𝑧𝑐
2) cos𝜇 −

𝑇𝐽 cos 𝜇

𝐴𝑏
 

𝑏5 = (𝐸𝑐𝐴𝑐 cos
3 𝜇 + 𝑇 cos 𝜇)(𝑦𝑐𝑧𝑐) 

𝑏6 = −𝐸𝑐𝐴𝑐𝑧𝑐 sin 𝜇 cos
2 𝜇 

𝑏7 = 𝐸𝑐𝐴𝑐𝑧𝑐𝑦𝑐 sin 𝜇 cos
2 𝜇 

𝑏8 = 𝐸𝑐𝐴𝑐𝑧𝑐
2 sin 𝜇 cos2 𝜇 

𝑏9 = −(𝐸𝑐𝐴𝑐 cos
3 𝜇 + 𝑇 cos𝜇)(𝑦𝑐) 

𝑏10 = −(𝐸𝑐𝐴𝑐 cos
3 𝜇 + 𝑇 cos 𝜇)(𝑧𝑐) 

𝑏11 = 𝑇 cos𝜇 𝑦𝑐 

𝑏12 = −𝑇 cos 𝜇 𝑧𝑐 

𝑏13 =  𝑇 sin𝜇 𝑧𝑐 

𝑘1 = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos 𝜇

+
𝜌𝑐𝐴𝑐
𝐿
 [4ℎ̅ + 2𝑏̅] 

𝑘2 = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos 𝜇

+
𝜌𝑐𝐴𝑐
𝐿
 [4ℎ̅ + 2𝑏̅] 

𝑘3 = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos 𝜇

+
𝜌𝑐𝐴𝑐
𝐿
 [4ℎ̅ + 2𝑏̅] 

𝑘4 = 𝜌𝑏𝐼𝑥𝑥 +
𝜌𝑐𝐴𝑐
cos𝜇

(𝑦𝑐
2 + 𝑧𝑐

2 ) +
𝜌𝑐𝐴𝑐
𝐿
(4𝑏̅2ℎ̅ +

4ℎ̅3

3
+
2𝑏̅3

3
+ 2𝑏̅ℎ̅2) 

 

Eq. (B.1) represents the coefficients for Timoshenko theory and Eq. (B.2) represents the 

coefficients for Euler-Bernoulli theory. 𝜇 is the wrapping angle. 
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Appendix C 

Additional mode shapes for bare beam and cabled beam using Timoshenko beam theory 

for both Spectra  
 

                                    (a) 
 

(b) 

 

(c) 

  

(d) 

 

(e) 
                                     (f)  

Fig. C. 1 Additional Mode shapes for (a)-(b) frequencies in first spectrum; (c)-(f) frequencies in the 

second spectrum for bare beam. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Fig. C. 2  Additional Mode shapes for (a)-(e) frequencies in first spectrum; (f)-(h) frequencies in the 

second spectrum for cabled beam with periodic wrapping pattern. 
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(i) 

 

(j) 

 

(k) 

 

(l) 

 

(m) 

 

Fig. C. 3 Additional Mode shapes for (i)-(m) frequencies in the second spectrum for cabled beam with 

periodic wrapping pattern. 
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Appendix D 

Strain and Kinetic Energy Coefficients for Non-Periodic Cable Wrapping Pattern 
 

𝑐1𝑖̂ = 𝐸𝑏𝐴𝑏 + 𝐸𝑐𝐴𝑐 cos
3𝜓𝑖  

 

 

 

 

 

 

 

 

(D.1) 

𝑐2𝑖̂ = 𝐸𝑏𝐼𝑧𝑧 + 𝐸𝑐𝐴𝑐𝑦𝑐
2 cos3𝜓𝑖 + 𝑇𝑦𝑐

2 cos𝜓𝑖 −
𝑇𝐼𝑧𝑧 cos𝜓𝑖

𝐴𝑏
 

𝑐3𝑖̂ = 𝐸𝑏𝐼𝑦𝑦 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 cos3𝜓𝑖 + 𝑇𝑧𝑐

2 cos𝜓𝑖 −
𝑇𝐼𝑦𝑦 cos𝜓𝑖

𝐴𝑏
 

𝑐4𝑖̂ = 𝐺𝑏𝐽 + 𝐸𝑐𝐴𝑐𝑧𝑐
2 cos𝜓𝑖 sin

2𝜓𝑖 + 𝑇(𝑦𝑐
2 + 𝑧𝑐

2) cos𝜓𝑖 −
𝑇𝐽 cos𝜓𝑖
𝐴𝑏

 

𝑐5𝑖̂ = (𝐸𝑐𝐴𝑐 cos
3𝜓𝑖 + 𝑇 cos𝜓𝑖)(𝑦𝑐𝑧𝑐) 

𝑐6𝑖̂ = −𝐸𝑐𝐴𝑐𝑧𝑐 sin𝜓𝑖 cos
2𝜓𝑖 

𝑐7𝑖̂ = 𝐸𝑐𝐴𝑐𝑧𝑐𝑦𝑐 sin𝜓𝑖 cos
2𝜓𝑖 

𝑐8𝑖̂ = 𝐸𝑐𝐴𝑐𝑧𝑐
2 sin𝜓𝑖 cos

2𝜓𝑖 

𝑐9𝑖̂ = −(𝐸𝑐𝐴𝑐 cos
3𝜓𝑖 + 𝑇 cos𝜓𝑖)(𝑦𝑐) 

𝑐10𝑖̂ = −(𝐸𝑐𝐴𝑐 cos
3𝜓𝑖 + 𝑇 cos𝜓𝑖)(𝑧𝑐) 

𝑐11𝑖̂ = 𝑇 cos𝜓𝑖 𝑦𝑐 

𝑐12𝑖̂ = −𝑇 cos𝜓𝑖 𝑧𝑐 

𝑐13𝑖̂ =  𝑇 sin𝜓𝑖 𝑧𝑐 

𝑘1𝑖̂ = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos𝜓𝑖

 

𝑘2𝑖̂ = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos𝜓𝑖

 

𝑘3𝑖̂ = 𝜌𝑏𝐴𝑏 +
𝜌𝑐𝐴𝑐
cos𝜓𝑖

 

𝑘4𝑖̂ = 𝜌𝑏𝐼𝑥𝑥 +
𝜌𝑐𝐴𝑐
cos𝜓𝑖

(𝑦𝑐
2 + 𝑧𝑐

2 ) 

 

𝑖 represents the index of the fundamental element. 𝜓𝑖 is the wrapping angle of the 𝑖𝑡ℎ fundamental element. 


