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Abstract

This thesis situates itself at the intersection of biomedical modelling and predictive
simulation to synthesize healthy human sit-to-stand movement. While the importance of
sit-to-stand to physical and social well-being is known, the reasons for why and how people
come to perform sit-to-stand the way we do is largely unknown. This thesis establishes the
determinants of sit-to-stand in healthy people so that future researchers may investigate
the effects of compromised health on sit-to-stand and then explore means of intervening to
preserve and restore this motion. Previous researchers have predicted how a person rises
from seated. However aspects of their models, most commonly contact and muscle models,
are biomechanically inconsistent and restrict their application. These researchers also have

not validated their prediction results.

To address these limitations and further the study of sit-to-stand prediction, the un-
derlying themes of this thesis are in biomechanical modelling, predictive simulation, and
validation. The goal of predicting sit-to-stand inspired the creation of three new mod-
els: a model of biomechanics, a model of motion, and performance criteria as a model of
preference. First, the human is represented as three rigid links in the sagittal plane. As
buttocks are kinetically important to sit-to-stand, a new constitutive model of buttocks is
made from experimental force-deformation data. Ten muscles responsible for flexion and
extension of the hips, knees, and ankles are defined in the model. Second, candidate sit-to-
stand trajectories are described geometrically by a set of Bézier curves, for the first time.
Third, with the assumption that healthy people naturally prioritize mechanical efficiency,
disinclination to a motion is described as a cost function of joint torques, muscle stresses,
and physical infeasibility including slipping and falling.

This new dynamic optimization routine allows for motions of gradually increasing com-
plexity, by adding control points to the Bézier curves, while the model’s performance is
improving. By comparing the predictive simulation results to normative sit-to-stand as

described in the literature, for the first time, it is possible to say that the use of these mod-
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els and optimal control strategy together has produced motions characteristic of healthy
sit-to-stand. This work bridges the gap between predictive simulation results and experi-
mental human results and in doing so establishes a benchmark in sit-to-stand prediction.
In predicting healthy sit-to-stand, it makes a necessary step toward predicting pathological
sit-to-stand, and then to predicting the results of intervention to inform medical design and

planning.
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Introduction

The goal of this thesis is to predict healthy sit-to-stand. Sit-to-stand (STS) is the everyday
motion used to change from a seated position to a standing one. It is so prevalent in daily

life that community-dwelling adults perform in excess of 40 STSs, on average, per day [1].

STS has a direct impact on quality of life and, as an aspect of functional mobility [2], is
required to perform actions of daily living [3]. However, it may not be until STS becomes
physically or cognitively challenging that the significance of this motion is recognized. Re-
gardless of the reason for reduced ability, perhaps due to the effects of injury, illness, or
aging, difficulty performing STS is common, especially in an aged population. It was re-
ported in the Rotterdam Study that 30% of men and 45% of women aged 55 years and older
experience moderate to severe disability in rising [4]. This is particularly concerning be-
cause difficulty performing STS negatively impacts health and well-being and is associated
with decreased mobility, decreased balance, increased fall-risk, increased immobility-related
disease, and increased institutionalization [5-7].

STS is an important skill to be able to perform. It is worthwhile to be proactive
about maintaining STS for as long as possible and to work to develop or re-establish
this skill if it is absent. In terms of promoting STS, physical therapy, assistive devices,

and/or arthroplasty may be indicated. While it is possible to perform clinical studies to

1



examine how these interventions affect STS, it may prove more economical and, in a patient
population, compassionate to perform preliminary testing in simulation. This motivation
speaks to a long-established goal of simulation in biomechanics: to be implemented as a

tool fundamental to the design of implants, surgeries, and rehabilitation programs [8-10)].

Accurately anticipating how a patient will respond to physical therapy, surgery, an
assistive device or other changes to their environment remains a “holy grail” of biome-
chanical simulation [11,12]. When a natural phenomenon such as motion adaptation to an
intervention can be predicted through modelling and simulation, it is conceivable to test
and tune interventions “in silico”. However, before predicting motion with an interven-
tion it is prudent to first predict the motion without. In a similar vein, before predicting
pathological motion it is sensible to predict the motion without pathology. Thus, the goal
of predicting healthy STS became the first and central focus of this thesis.

1.1 The problem, the challenge, and the approach

The future of medical intervention design and planning lies in the gap between simulation
and experimentation. A big-picture goal of predictive biomechanical simulation is to aug-
ment the subjective implicit models used by design and medical professionals with objec-
tive models based in physics and physiology. Together, the information from these models
should give the professional a more complete understanding of design and/or treatment
options and position them to make decisions for better patient outcomes. The most signif-
icant barrier to this goal, at this time, is the lack of validation of model-based results [11].
This is the gap that needs to be filled: the unknown disparity between simulation results
and potential human results. In a simulation aiming to predict the effect of intervention
on pathological STS, it should be foundational to validate that healthy STS is predicted
when models of pathology and intervention are removed. However, as will be elaborated in

Chapter 2, there are not validated models of healthy STS prediction. The lack of validated



predictions of healthy STS is impeding progress toward predicting pathological STS and

the goal of predicting outcomes of interventions.

Predicting healthy STS and validating the results requires the development of new
perspectives and new descriptions of human motions and human models and their inte-
gration with existing research. Each of these areas — validation, motion prediction, and
biomechanical modelling — bear key challenges in STS prediction research. One of the
challenges is that result validation is practically impossible because the STS motion does
not enjoy a commonly-accepted normative description (i.e. a description establishing the
norm of this motion). In gait research, for example, it is the seminal works of Murray [13]
and Winter [14] that are cited as the normative biomechanics against which observed gaits
are measured. In contrast, the definition of STS in a given study depends greatly on the
aim of the study [7], and often differs substantially from one study to the next. In fact,
as of 2016, the published biomechanics literature contains at least 9 ways of defining each
the beginning and end of STS [15]. The absence of a universal standard impedes commu-
nication of ideas and sharing of STS information within the biomechanics community and
makes it difficult to objectively discuss what is and what is not healthy STS. This thesis
addresses this challenge in two ways: first, by collecting STS data and updating an existing
normative description of STS, and second, by comparing STS predictions to descriptions

of STS from the literature.

The next challenge is that motor skill acquisition, including STS learning and adapta-
tion, remains a mysterious phenomenon. Although there are theories of motor learning,
the most popular being Adams’ closed-loop theory and Schmidt’s schema theory, they rely
on the foundation of a pre-existing movement pattern [16]. The process by which novel
skills are naturally learned (i.e. how the pre-existing movement pattern has come to be) is
not explained in its entirety [16,17] and therefore it is a consequential challenge to describe
such a mechanism in silico. Because optimal control can be used for hypothesis testing,

it is a valuable tool in motion prediction where so much is unknown. A last challenge is



that the mechanical component of this research is based in the complex and dynamic hu-
man system. The overarching goal of biomechanical modelling and simulation is to create
more accurate representations of the human body applicable for analysis of the variables
of interest. This means simplifying the human system to abstractions of its nature. It
includes measuring behaviours and parameters of interest when reasonable, and inferring
what remains. Modelling for STS is particularly challenging because it is a demanding task
characterized by large ranges of motions and large tissue deformations. It is because of the
challenges of this project that the research in this thesis is motivated by physiology and
medicine, propelled by optimization, and centred in modelling and simulation of multibody

biomechanical systems.

With the goal of predicting healthy STS, this thesis focuses on the opportunities at the
intersection of biomechanical modelling and predictive simulation. Specifically, the foci
are: building validated models for STS prediction, developing STS prediction routines,
and comparing resulting motions to normative STS. The biomechanical modelling work
completed as part of this thesis spans multiple disciplines. First, a set of Bézier curves,
which seem well suited to predictive biomechanical simulations, were used to geometrically
model human motions. Next, a rigid, three-link sagittal plane model was constructed for
representing the skeletal system, as is seen elsewhere in STS prediction research. Then,
a constitutive force-deformation relationship, determined from experiment, was developed
for modelling the buttocks-chair contact. Last, optimization was used to refine the geome-
try of the musculoskeletal system for consistency with previous studies of human anatomy
and physiology. This thesis also includes modelling in the optimal control problem for
predicting STS. The STS prediction routine designed in this thesis is based on iteration
and optimality, and is purely predictive. With the assumption that healthy people nat-
urally prioritize mechanical efficiency, disinclination to a motion is described as a cost
function of joint torques, muscle stresses, and physical infeasibility including slipping and

falling. Comparing results from these models in the optimal control routines to healthy



STS throughout this thesis makes the differences between simulation and experimenta-
tion known. Analysis and synthesis of data from clinical, kinematic, and kinetic studies
formed the basis of understanding of healthy STS. Further insights were gained from ex-
periment and used to update the definitions of normative STS. This research in modelling,
predictive simulation, and validation endeavours for harmony with the nature of human
movement and, as such, the models and predictions made within this thesis are powerful

for application to healthy STS and scalable for future research.

1.2 Contributions

The primary aim of this thesis is to synthesize a healthy STS motion pattern. In achieving
this goal, significant contributions to the fields of biomechanical modelling and predictive
simulation of STS are made in four main areas: validating STS predictions, modelling the
biomechanics of STS, geometric modelling of the musculoskeletal system, and proposing
a dynamic optimization routine for STS prediction. Gains are made in STS prediction
validation, first in the exercise of comparing predicted motions to normative STS data in
the literature for the first time, thereby establishing a benchmark for future work in STS
prediction, and second in updating definitions and timing of STS events for the purpose of
describing healthy STS. Advancements are also made in biomechanical modelling for STS;
these are elaborated next. First, this thesis describes the most comprehensive planar model
of a female human in STS prediction. For the first time, the buttocks model used in this STS
prediction work was characterized by measured STS force-deformation buttocks behaviour.
Also, the implications of fixing the feet to the ground in STS prediction was acknowledged
by describing disinclination to a motion as a cost function of physical infeasibility including
slipping and falling, for the first time. Contributions are also made to musculoskeletal
modelling: first in the extension of the patellar pulley model proposed by Brand et al. [18]

to greater ranges of motion and greater dimensionality, and second in the creation of a



validated model of musculoskeletal geometry for the deLeva [19] female anthropometric
data set. The final contribution is in proposing a dynamic optimization routine for STS
prediction. Implementation of the new models and new optimal control strategy together
in this thesis produces gross motion patterns characteristic of healthy STS when compared

with normative data from the literature.

1.3 Applications

Portions of research accomplished in this thesis are directly applicable in many fields. For
example, the updated description of STS, presented in Chapter 4, is immediately relevant
to clinicians or researchers interested in the STS motion. Also, the validation results of
the STS predictions in this thesis should be used when discussing work in STS prediction.
Outside of validation, the biomechanical models built as part of this thesis are a benefit
to researchers interested in modelling a female subject, modelling the primary flexors and
extensors of the lower extremities, and/or modelling buttocks vertical force-deformation

behaviour, for example.

As a whole, the research accomplished in this thesis is intimately applicable to further
studies in healthy STS prediction. Given a hypothetical scenario, for example, selecting
the seat height of a replacement chair, a biomechanist (or physiotherapist, or patient,
etc.) may want to know, “Will the chosen seat height affect chair rise strategy?” This
question could be explored through motion prediction, as in Chapter 3. There are many
parameters of the human and chair models constructed in this thesis that may be modified
to investigate their influence on predicted STS. Hypotheses do not necessarily need to be
in regards to motion outcomes, either. Theories of why people choose (consciously or not)
given motion patterns can also be explored through motion prediction [20] and this thesis

has established an amenable infrastructure for this flavour of research.



A natural progression of this thesis work will be in adjusting the models to alter the
health of the subject and predict the effects of these changes on STS. As mentioned previ-
ously in this Chapter, the ability to perform STS can be compromised for many reasons.
Commonly cited pathologies are: arthritis [1,21-24], low-back pain [25], obesity [26], paral-
ysis [27, 28], Parkinson’s disease [29-32], and stroke [7,33-39]. An aspect of arthritis, for
example, may be incorporated in the model by increasing joint stiffness so that the STS
predicted may be more representative of that of a patient. Alternatively, or possibly con-
currently, the model of preference may be adjusted, for an arthritic population, to prioritize
motions that reduce joint loading.Should the model of motion prediction be generally ap-
plicable to motion adaptation, which is hypothesized, it will be possible to use these models

when investigating the progression of or pathology.

Once progression of pathology may be predicted, it should also be possible to predict
how motion patterns may adapt in response to a therapeutic intervention. Available and
anticipated interventions supporting STS take a variety of forms from general strength
training [24, 36] to targeted physical therapy [10, 32,38, 39], from grab bars [40] to non-
powered orthoses [41] to joint replacements [42,43], functional electrical stimulation [28,44—
47]) mechanical lifts [48,49], or powered orthoses [50-52]. STS prediction will be influential
in the design and planning of these interventions both for general clinical populations and
for patient specific cases. As opposed to the previous example of chair selection, consider
instead an orthopaedic surgeon considering a new surgical technique for a patient with a
unique presentation. Motion prediction could provide the surgeon with information about
how different prospective treatment plans will affect the patient’s mobility outcomes in the
short and long term, prior to intervention. This is the future of this thesis work, accurately
anticipating how a patient will respond to physical therapy, surgery, an assistive device or

changes to their environment.



1.4 Thesis Structure

This thesis includes six body chapters, described in this Section. The first chapter is this
Introduction. Next is Chapter 2, a Literature Review. These are followed by Chapters 3,
4, and 5 which focus on the design of the biomechanical model and STS optimal control

problem. The last chapter, Chapter 6, is the Conclusion.

Chapter 2 has a strong focus on synthesis. First, clinical, kinematic, and kinetic de-
scriptions of STS are investigated, forming an aggregate description of STS that is referred
to throughout the remainder of this thesis. Next, context is provided for the few bodies
of work focusing on predicting healthy STS. Then, the key areas of research of this thesis,

biomechanical modelling, predictive simulation, and validation, are identified.

In Chapter 3, a motion pattern imitating STS is synthesized and compared to normative
descriptions of healthy STS. First, the human is represented as three rigid links in the
sagittal plane. Second, candidate STS trajectories are described geometrically by a set
of Bézier curves. Third, disinclination to a motion is described as a cost function of joint
torques, with the assumption that healthy people naturally prioritize mechanical efficiency.
Using these torque-driven models and optimal control strategy together produces gross

motion patterns characteristic of healthy STS.

In Chapter 4, a constitutive model of the buttocks is defined from experimentally col-
lected data. This visco-hyperelastic buttocks model is included in the biomechanical model
and replaces the simple linear spring-damper model used in Chapter 3. Beyond support-
ing construction of the buttocks model, results of the experiment indicate that healthy
young adults complete STS significantly faster than has been reported in the literature

and, consequently, modifications to the normative description of STS are proposed.

In Chapter 5, a model of musculoskeletal geometry is constructed for the primary STS
muscles in the deLeva [19] female anthropometric data set. These muscles are added

to the biomechanical model of Chapter 4, although muscle dynamics are not included.



Maintaining the assumption that healthy people naturally prioritize mechanical efficiency,
disinclination to a motion is described as a cost function of joint torques and muscle
stresses. Using these new models and the new optimal control strategy together produces

gross motion patterns and normative events characteristic of healthy STS.

Chapter 6 concludes this thesis. It summarizes the research achieved and recommends

prospective research supported and motivated by this work.



Literature Review

This Chapter is a review of the existing literature in experimental biomechanics, modelling,
and predictive simulation relevant to sit-to-stand (STS). Biomechanical systems modelling
is an active research area. There were, for example, more than 20 presenters at the 2017
Symposium on Computer Simulation in Biomechanics [53]. Some biomechanists work in the
area of predictive simulation, however works specific to STS are few and works focusing
on understanding healthy STS are rare. Therefore, many of the ideas discussed in this
Chapter are being presented in the context of STS for the first time as it was necessary
to make connections to more developed areas of research to provide sufficient context to
this thesis. And, as biomechanical modelling and simulation is a diverse field, research
from a variety of disciplines including physical therapy, orthopaedics, rheology, nonlinear

dynamics, and control theory are examined.

The two main goals of this Literature Review are: (1) to provide detail on the theories
and existing research that have inspired the work in the remainder of this thesis, and (2)
to provide context for the motivation of this thesis in terms of filling gaps in the literature
and advancing knowledge in these areas. Specifically, the gaps that will be addressed are
the lack of female models in the STS prediction research (when it is females who report

the most difficulty in STS), the lack of validation in STS prediction research, the lack of
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suitable buttocks models for STS prediction, and deficiencies of existing musculoskeletal

models for this application.

There are five sections to this Literature Review. Section 2.1 describes the STS motion
through three lenses: clinical, kinematic, and kinetic. The definition of STS developed in
this Section is referenced as the standard of healthy STS motion throughout this thesis.
Section 2.2 provides a brief review of biomechanical modelling. In this Section, the major
challenges in adapting biomechanical models popular in gait analysis, for example, to STS
are discussed as well as models and modelling strategies that will be used to build the
rigid-link model of Chapter 3, the buttocks model of Chapter 4, and the musculoskeletal
model of Chapter 5. Section 2.3 reviews motion prediction work in biomechanics, and
identifies preferred control strategies and popular performance criteria. It motivates the
descriptions of the optimal control problems in Chapter 3 and Chapter 5. Section 2.4 is a
detailed review of the state-of-science of STS prediction. In Section 2.5, the findings of this
Literature Review are synthesized and key areas of research, in modelling and validation,

to advance STS prediction are identified.

2.1 Biomechanical descriptions of sit-to-stand

The nature of biomechanical analyses of STS can be classified as either descriptive or
normative. Descriptive analyses present observed phenomena: body kinematics, reaction
forces, or electromyography (EMG) of STS. There are studies comparing the ST'S motions
or EMG activity between young subjects and elderly subjects [54], between subjects with
different chairs [55], and when altering STS strategies including foot placement [55, 56]
and hip flexion [57]. Alternatively, normative studies present data defining STS. These
normative studies are the important minority in the literature that make it possible to

objectively discuss what is and what is not STS. There is not one published resource that
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portrays all aspects of STS together, but the works presented in this section provide a

comprehensive understanding of normative ST'S.

Typically, when researchers speak of STS they are referring to a chair rise using a
momentum-transfer strategy. In the momentum-transfer strategy, there is a period of
instability when the buttocks leave the chair during which the centre of mass is not over
the base of support. Therefore, this strategy requires sufficient momentum to transfer
the centre of mass over the feet. There are, however, other legitimate strategies of STS
including the stabilization strategy and the combined strategy [6]. In the stabilization
strategy, a person repositions their centre of mass over their feet before standing. This
repositioning may be by means of moving their buttocks forward and/or their feet backward
and/or bending at the hips. In the combined strategy, a person repositions the body to
shorten, but not eliminate, the distance between the centre of mass and feet. An individual
at a given stage of life typically has a preferred strategy, and will adapt their STS technique
to account for physical, neurological, or environmental changes [6]. The studies describing

normative STS focus on the momentum-transfer strategy.

Physical therapists have studied STS kinematics to develop standard movement pat-
terns. The work of Nuzik, et al. is particularly useful as it provides mean and standard
deviations of 7 identifying angles at 5% intervals of STS [58], as in Figures 2.1 and 2.2. In
a clinical setting, these kinematic patterns may be compared with an individuals STS to

determine if the motion is typical or pathological and to set goals for treatment.

Researchers have also divided STS into phases. These divisions have been made both
for therapeutic [10] and for scientific [27] purposes. Event markers divide the phases of
STS. The clinically relevant events of STS as described by Schenkman et al. are given
in Table 2.1, while the events of STS as described by Kralj et al. are given in Equations
2.1 through 2.6, where F'x is the force in the anterior and posterior directions, Fy is the
vertical force, and My is the moment about an axis perpendicular to the sagittal plane

measured from one force plate, as in Figure 2.3. These events have also been presented in

12



100 [

a1
o

[ERN
o
o
—
~~
O
SN—

angles of inclination (deg)
3 o

150

—

(d)
100

50 : : : : '
0 20 40 60 80 100
percent of sit-to-stand
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Figure 2.2: Sit-to-stand angles between body segments, measured in the experiments of

Nuzik et al. [58].

time, as in Figure 2.4. While there is harmony between the descriptions of the phases and
events of STS between authors, their definitions are not one-to-one. The greatest similarity
between descriptions is in the flexion momentum phase described by Schenkman, which
Kralj has divided into two phases: initiation (eventy to event;) and seat unloading (event;
to eventy). The Schenkman and Kralj descriptions of the phases of STS, with one being
based in kinematics and the other predominantly based in kinetics, makes it possible to be

quite objective when evaluating STS from motion capture and force platform data.
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Table 2.1: Clinically relevant phases of sit-to-stand, reported by Schenkman et al. [10].

Phase | Name Starting event | Description
I Flexion End of quiet | Forward momentum is generated in the
momentum sitting upper body while the lower body remains
relatively stationary.
II Momentum Seat-off The momentum of the upper body is
transfer transferred to the whole body, which
moves anteriorly and upward.
111 Extension Maximum The joints extend and the whole body
ankle moves upward.
dorsiflexion
v Stabilization | End of hip Movements of rising end and quiet
extension standing is achieved.

15




initiation,

seat-off,

standing on,

eventy :

event; :

events :

events :

eventy :

events :

dF dF
—X1'>25% (—X>
dt dt peak—to—peak
or
dM dM
2 > 2.5% ( Z>
dt dt peak—to—peak
dF dF
— Y >10% (_Y)
dt t peak—to—peak

Fxy = maximum

aFy
dt

= minimum

gknee = eknee standing +2°

Fy = (100% =+ 1%) bodyweight

16

(2.1)

(2.2)

(2.3)

(2.5)

(2.6)



. o

BACHREST

[ ]
]
! I 1
l
[ ]
! REFLECTIVE BOOY
HIP MARKERS (LEFT SIDE ]
b ___ e AND
- "K"'-' GOMIOME TERS{RIGHT SIDE)
MULTI - COMTACT
SEAT SWITCH AND J
STYROFOAM BLOCKS ‘
¢/ Force
! PLATE
r
=

Figure 2.3: Schematic of experimental set-up by Kralj et al. [27].

standing on, 5 |

4t

experimental data

event

data extent
seat-off, 2

initiation, O

0 2 4 6
time (s)

Figure 2.4: Sit-to-stand event timings, showing means, standard deviations, and extents,

measured in the experiments of Kralj et al. [27].
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In conclusion, healthy STS is a specific motion pattern with defined kinematic and
kinetic events in time. The works presented in this section, when combined, provide a

comprehensive understanding of what is and what is not STS.

2.2 Biomechanical modelling for sit-to-stand

Biomechanical modelling, in the sense of this work, is a simplification of the body to a
mathematical model in an attempt to represent biomechanical phenomena. There exists
a wide variety of biomechanical models in the literature constructed using a range of
modelling approaches. Determining which of these models are appropriate and useful in
modelling STS is vital to this thesis, as the validity of any assessment based on the model

is only as good as the model itself.

The simplest STS models are linked segment models. Linked segment modelling is the
well-established science of reducing the human body to mechanically described segments
and joints. A schematic of a linked segment model may look like Figure 2.5. In this
representation, segments are assumed rigid and each segment is represented as a rigid body
with centre of mass and moment of inertia about a known point [59]. Anthropometrics of
a linked segment model may be derived from established datasets, [19,60-62] or by means
of direct measurement. In all, the length, mass, centre of mass location and mass moment

of inertia ought to be determined for each segment for a kinetic analysis.

One such analysis, commonly performed, is an inverse dynamic analysis of experimen-
tally observed motion. In an inverse dynamics analysis of STS, kinematics and external
forces were input to the linked-segment model to calculate net joint reaction forces and
moments [29], as in Figure 2.6. Analyses of experimental STS have gone an additional step
to estimate muscle forces [63]. Further analysis could include estimation of bone on bone

forces or muscle activation, muscle excitation and/or neural commands. However, these
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Figure 2.5: A planar link-segment model of a human body with HAT (head-arms-torso),
thigh, leg, and foot segments.

further analyses require advanced biomechanical modelling for a more thorough description

of the phenomenon.

There is not a single “complete” biomechanical model of the human capable of describ-
ing all human motions. When the answers to multi-faceted biomechanical questions are
sought, it is the nature of this field, including this thesis, that multiple models (and pa-
rameters from different populations) are combined to develop “Frankenstein models” [65].

However, when models are combined to answer a novel question, it is important to consider
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Figure 2.6: The dynamics of human motion, adapted from Buchanan et al. [64].

the usefulness and validity not only of the component models, but also of their inclusion

in the Frankenstein model, and if these carry over to the new context of the research.

Measurement and modelling of humans for biomechanical analyses has been an impor-

tant aspect of biomechanics since its founding. With respect to context, a majority of
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biomechanical models were developed based on measurements from men for the purpose
of gait analysis. There are three glaring differences, in terms of biomechanical modelling,
between a walking male and a female standing from seated. These differences and their
consequences will be explored in the remainder of this Section. The first difference is that
males and females have different physical geometry. The second difference is the presence
of contact between the buttocks and environment during STS, which does not occur when
walking. The third difference is in the range of motions made in these activities, where the

range of STS joint angles is much greater than those produced during walking.

With respect to differences in physical geometry between men and women, the majority
of influential and well-recognized biomechanical datasets are based on data from males
without consideration of a female counterpart. There are exceptions to this [19,62,66,67]
and from these we can be sure that the geometry of males and females are different. Still,
we are in a position where there aren’t “complete” models of men and there are fewer

“partially complete” models of women.

Contact modelling is an active research area within and beyond the biomechanics com-
munity. Some biomechanical contacts can be considered rigid in terms of healthy gross
motions, but for others it is important that the forces causing or caused by deformations
at the continuum level not be ignored [68]. Researchers interested in human gait have
made considerable efforts in the creation of foot-ground contact models [69, 70]. The STS
equivalent of foot-ground contact would be buttocks-chair contact; however, there are very
few biomechanical contact models of buttocks. Magnetic Resonance Imaging (MRI) studies
have shown finite strains, with deformations on the order of centimeters, in the buttock in
quiet sitting [71]. However, existing buttocks models were built for design and analysis of
chairs, either in vehicles [72,73] or for patient support systems (e.g. wheelchairs) [71]. Both
of these applications are interested in buttocks contact with minimal changes in deforma-

tion. The alternate to these models is to look to constitutive models of excised, porcine,
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fat [74] and muscle [75] tissues, which may behave similarly to human tissues, and which

were built with larger ranges of deformation considered.

Another important difference in the geometry of STS from walking is the range of
motion (RoM) of the joints of the lower extremity. Table 2.2 shows that the RoM of the
joints in gait represent only a small portion of their healthy RoM. With a majority of
research focused on gait, it is no surprise that a majority of experiments have investigated
muscle properties only within the gait RoM and that muscle models, built for gait, were

designed for this smaller RoM.

Table 2.2: Joint ranges of motion.

Joint | Natural [76] Walking [77, 78]
Hip | 120° flexion to 30° extension 32° flexion to 12° extension
Knee | 135° flexion to 10° extension 73° flexion to 0° extension
Ankle | 20° dorsiflexion to 50° plantarflexion | 10° dorsiflexion to 20° plantarflexion

These differences in geometry become very important when muscles are included in a
biomechanical model to describe a musculoskeletal system. In a musculoskeletal model
there must be, at the very least, knowledge of muscle moment arms across the joints to
determine the moments and motion produced for a given muscle force. To relate muscle
activations (a) and forces produced (F™), the lengths of musculotendenous units (I"™)

must be known over time, as in Equation 2.7 [64],
F™ = f(a, 1™, 1m Fa 15, 1%, ag) (2.7)

where FZ' is the maximum isometric muscle force, [7} is the optimal muscle length, [% is
the tendon slack length, and ag is the pennation angle at optimal length. If bone on bone
forces are desired, the lines of action of muscle forces are necessary. These aspects of muscle
geometry are most often determined experimentally and described using a musculoskeletal

model.
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Models of musculoskeletal geometry most commonly describe a muscle path using a
set of coordinate points specifying proximal and distal attachment points to the skeleton
and possibly intermediate via-points or wrap points, allowing musculoskeletal geometry
to be calculated analytically. In this discussion, a via point is a point a muscle is always
constrained to pass through while a wrap point is a point the muscle is constrained to
pass through when the joint(s) the muscle spans are within a specified range [79]. One
such dataset specifying these points is from White et al. [80]. This model is designed for
use in gait analysis. It includes one fixed via point for each of the iliopsoas, gastrocnemii,
tibialis anterior, and tibialis posterior while recommending alternate path modelling for the
quadriceps. A second data set from Carhart [81] is designed for use over larger ranges of
joint angles and includes more via and wrap points to capture the geometry of anatomical

constraints in the muscle path.

With the advantages of musculoskeletal geometry datasets, there are also shortcomings.
The first concern is that both the White and Carhart models generate non-physiological
(negative) moment arms for some muscles within a healthy range of joint angles [82]. This
moment arm inaccuracy happens for two reasons, first because a muscle’s path may cross to
the other side of the joint, and second because a modelled muscle will sometimes bend back
over itself across a joint. The second concern is that when describing muscles using fixed
points including wrap points, there are physiologically unrealistic changes in lengths when
the wrap point goes from active to inactive [82]. Both scenarios can lead to inaccuracies
in muscle force or muscle activation calculations which may confound ideas of the effort of
a motion or comparison with experimental EMG.

The biomechanical system supporting motion is complex, but the model of this system
for use in predicting STS should be only as complex as necessary. While the question of
which human systems to model and to what granularity has been explored extensively in

gait, the same cannot be said for STS research. It will be a necessary challenge of this
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thesis to build an appropriate biomechanical model for STS prediction, with awareness

that any phenomena predicted using this model can be only as good as the model itself.

2.3 Motion prediction in biomechanics

A human motion prediction problem is an optimal control problem in the sense that op-
timal control theory is the study of how dynamic systems may be controlled to optimize
performance. While optimal control was founded in the 1950s, the first applications of
optimal control in biomechanics were published around 20 years later with the works of
Chow and Jacobson [83], Ghosh and Boykin [84], and Hatze [85], who controlled the dy-
namics of their respective two- or three-link human models to predict gait, a “kip” on a
gymnastics bar, and a kick. Since this time, optimal control has been used by a small

subset of biomechanists to predict human motion.

In any hypothetical scenario, motion prediction requires a biomechanical model, con-
trols to influence the behaviour of the model, and a performance criterion to optimize.
Biomechanical modelling was the focus of the previous section; therefore, the remainder of

this section will focus on controls and performance criteria.

2.3.1 Controls

The controls of a motion prediction problem describe the behaviour of the control variables,
and therefore the human model. Figure 2.6 relates the nervous, muscular, and skeletal
systems and shows the congruency between internal and external forces and human motion.
The dynamic equations of motion relate forces to the corresponding motions. Because of
these interrelationships, any of the variables along an arrow in Figure 2.6 is a candidate for
a control. Popular choices for musculoskeletal simulation controls are joint torques, muscle

forces, and muscle excitations [86] (related to muscle activations).
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The choice of controls also has bearing on the form of the optimal control problem.
Historically, most researchers in biomechanics have chosen to express controls as an ex-
plicit function of time, such that the optimal control problem is framed using a dynamic
optimization method (in biomechanics terms) or as a control parameterization method [87]
(in control theory terms). Expressing the controls as an explicit function of time makes
the control open-loop. The alternative to expressing the controls in terms of time is to
express them as functions of model variables, in which case the control is closed-loop.
Both optimal control approaches, as well as hybrid combinations of the two, are widely
accepted in the field of biomechanics. Open-loop control is generally a simpler formulation;
however, closed-loop control is able to respond to real-time perturbations of the model or

environment.

Once the controls formulation is chosen, the choice of solution method influences how
those controls are described in the optimal control problem. There are three main classes
of numerical methods for solving optimal control problems: dynamic programming, direct
methods, and indirect methods [88]. For the first 20 years of human motion prediction,
researchers almost exclusively used dynamic programming approaches. In dynamic pro-
gramming the period of motion is divided into intervals, discretizing controls and states so
that the problem is solved in stages [89,90]. In the 1990s, direct solution methods, start-
ing with direct single shooting, became the popular approach. In direct single shooting,
control variables are parameterized, and may be included as constraints, to convert the
optimal control problem to an optimization problem [91,92] and solved approximately us-
ing traditional optimization techniques. In the 2000s, direct collocation approaches gained
popularity in the biomechanics community [93-95]. In direct collocation, states are also
parameterized, and/or included as constraints, in a large-scale nonlinear programming
problem. And in the last decade, multiple shooting methods, where the interval of in-
terest is divided into sub-intervals and then solved approximately, have appeared in the

research [96]. Most recently, there has been an emergence of indirect solution methods in
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biomechanical motion prediction, used to investigate the role of continual neural control

in execution of motions [97,98].

2.3.2 Performance criteria

The performance criteria (or cost function) of a motion prediction problem describe the
preferences of the human model. There are times when the primary performance criterion
of a motion is self-evident, for example, when studying how to jump as high as possible,
how to run as fast as possible, or how to lift a full cup of hot coffee as smoothly as possible.
However, appropriate performance criteria are elusive for many activities of daily living
and determining these criteria remains an open challenge of biomechanics [86]. For these
motions, a performance criterion should be based on the foundational theory that people
move in ways that are optimal. For example, Crowninshield and Brand hypothesized that
natural motions minimize some unknown function (U) of muscle (M), ligament (L), and

articular surface contact (C') forces over all time,

m l c
TLM TLL 7’LC

U=AM>"(KMFM)" + AR (kFER)" + A9 (KCFF) (2.8)

i=1 i=1 i=1

where k are constants, n are exponents, and A are weighting factors [99].

Performance criteria that have been successfully implemented, however, are typically
less complex than Equation 2.8 and most often consider that every-day motions are per-
formed in ways that are most energy-efficient [99, 100]. Looking to Figure 2.6, energy-

efficiency or its inverse, effort (E), can be estimated at different levels of the model. At

the joint torque level, effort may look like
J
Etorque = Z CiME (29)

=1

where j are the joints, M are the moments, and ¢ are weighting factors [101]. At the muscle

level it may be represented as

Eforce = Z AF,L? (210)
=1
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where F' are the forces produced by the muscles [102]. Or,

m E 2
Estress - Z (PCSA1> (211)

=1

where PC'SA are the physiological cross-sectional areas of the muscles [102]. Or, looking

to the neural level,

Faraxi

m E 2
Eactivation - Z (212)
=1

where Fjyax is the maximum isometric muscle force [103] and the term

is closely
MAX

related to the muscle activation, a, in Equation 2.7.

As has been a theme of this Section, the choice of performance criteria is largely de-
pendent on the form of the model and hypotheses of how motions originate naturally. It
is reasonable, although not necessary, that a performance criterion is naturally motivated.
It is both reasonable and necessary that any prediction is considered in the context of

assumptions made when specifying performance criteria.

2.4 Previous work in sit-to-stand prediction

Researchers have been studying STS prediction for over 25 years. Initially, time histories
of excitation-type signals to lower extremity muscles were optimized. These signals were
modelled by linearly interpolated nodes in time, and motions were determined by mini-
mization of functions of muscle stresses and peak forces [104] or movement time [105]. The
effects of varying muscle strength [105] and seat height [24] were sought. The interest in
predictive STS was later control-oriented, and triple inverted pendulum [106] and trajec-
tory tracking [51,107,108] problems were investigated. Most recently, research motivations
in this area have swung back toward a biomechanical focus. In one vein of research, motions
were again predicted using dynamic optimization, but bilateral joint angle profiles [109]
were modelled as controls. In another vein, STS was predicted in the presence of external

assistance [110].
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STS prediction studies can also be divided by research focus. In the control-oriented
work, the focus is most often the validity of a specific controller to what is typically cast
as an idealized inverted triple pendulum problem [106, 108] with little or no attention to
biological constraints or motivations. Some of these studies focus on intervention and are
motivated to describe the human body as a simple plant to include in the controller of an
intelligent exoskeleton [51] or functional electrical stimulation (FES) therapy system [107].
The remaining works aim to answer foundational questions of human nature: why and how
humans move the way we do. This Section provides a comprehensive overview of these

remaining works, the first four of which happen to be theses, in chronological order.

2.4.1 Garner, 1992

The first (Master of Science in Engineering) thesis on the topic of predictive simulation
of STS was written by Brian A. Garner [104]. A significant portion of the thesis work
is published as a research article in the Journal of Biomechanical Engineering [92]. The
thesis is entitled “A dynamic musculoskeletal computer model for rising from a squatting or
sitting position.” As can be deduced from the title, both squat-to-stand and sit-to-stand
motions are investigated in this work. One of Garner’s key conclusions is “how” these
motions are executed are inherently different and the presence of the chair is the source of
this difference. Focusing on STS, Garner’s objectives were to determine a biomechanical

model and performance criteria appropriate for predicting this motion in silico.

Garner’s biomechanical model, seen in Figure 2.7, is comprised of three rigid-link seg-
ments, three ideal revolute joints, and eight Hill-type muscles including tendon, moving
exclusively in the sagittal plane. The seat-chair interface is modelled as a point-on-point

exponential spring and linear damper with a simple friction model.

Neutral excitations to each muscle over the duration of motion were modelled using

linearly interpolated nodes, evenly distributed as a proportion of motion, whose value
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Figure 2.7: Garner’s planar, three-segment, eight musculotendinous unit human model

[104].

represents the proportion of the maximum allowable force of the muscle. These nodes as

well as the duration of the STS task are the model controls.

Through comparison of experimental EMG and patterns of muscle force resulting from
four different performance criteria, Garner concludes that greatest similarity between model
and experiment is achieved when muscle stresses are minimized while sitting, and peak force
rates developed by the muscles are minimized after seat-off as in Equation 2.13, where s

are seconds to maintain dimension.

tseatfoff 8
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This two-part performance criterion predicted what was considered sufficient agreement

with experimental kinematics.

2.4.2 Daigle, 1994

Kristen E. Daigle, Garner’s colleague at the University of Texas at Austin, wrote the
(Master of Arts) thesis, “The effect of muscle strength on the coordination of rising from
a chair in minimum time: predictions of an optimal control model” [105]. Daigle focused
on understanding the effects of muscle strength on STS. This work is particularly relevant
to understanding the difficulties in performing ST'S encountered by patients whose muscle

strength is compromised.

The biomechanical model used in this work is built on the model from Garner. It
has a total of eighteen musculotendinous units. There is an added foot segment (so that
the toes instead are hinged to the floor), and further compliance is included in the model
of the seat-chair interface. Rather than the two-part performance criterion specified by
Garner, whose resulting sagittal plane motion Daigle considers dissimilar to experimental
kinematics, Daigle used the unambiguous minimum motion time as the objective. Muscle
force over the duration of motion is modelled using nodes, as in Garner, and altered strength
simulations are run with muscles varying between 50 and 200% of the accepted strength

value.

Through simulation, it was determined that uniarticular muscles are the primary power
producers in STS. In fact, the only biarticular muscle classified as a major contributor was
the biarticular hamstrings. The two muscle groups found to be most influential in successful
execution of STS are the uniarticular hip extensors and the vasti, with weaker models even

more reliant on the vasti.
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2.4.3 Domire, 2004

Ten years later, the (PhD in Kinesiology) thesis, “A biomechanical analysis of maximum
vertical jumps and sit-to-stand” was written by Zachary J. Domire [24]. A portion of this
work was also presented at the International Society of Biomechanics 20" Congress [111].
This thesis is an anthology containing four papers building to a final paper investigating
the effects of strength training on STS. Domire, like Daigle, recognized the importance of
muscular strength in achieving STS and saw strength training as a means of maintaining
or regaining this skill. As evaluating a strength training program experimentally is both
time-consuming and expensive, the overarching goal of this work was to develop a model

and simulation protocol to be used as a precursor to experimental testing.

An intermediary goal of this thesis was to evaluate the influence of chair height on
STS performance. For this purpose, Domire built a sagittal plane biomechanical model
with three segments, three ideal revolute joints, and eight muscles with rigid series elastic
elements and rigid tendons. The chair model and performance criterion used are those
designed by Garner. The controls are node values defining the time histories of neural
excitations to each Hill-type muscle model and the movement duration, constrained to be
less than or equal to two seconds. It was demonstrated that as chair height is reduced,
muscles take on configurations with reduced moment arms and/or unfavourable lengths,

and STS becomes increasingly difficult.

Next, the effect of strength training on STS was investigated. A minimum time per-
formance criterion was used for these simulations. STS was predicted with all muscles (1)
having the accepted maximum isometric force, (2) with this force increased by 25% for all
muscles, and (3) with the increase applied to specific groups of muscles only. The best
performing model was the one where maximum isometric force was increased for all mus-
cles. Domire suggests that this model not only stood up faster, but changes in maximum

joint velocities and maximum horizontal momentum indicate that the motion was easiest
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to control. Domire compared his results with experiments and noted general agreement in
vertical reaction forces. In conclusion, Domire recommended a balanced strength-training

program to improve STS.

2.4.4 Ozsoy, 2014

The most recent (PhD in Engineering) thesis on the topic of STS prediction was written by
Burak Ozsoy [109]. It is entitled, “Three dimensional sit-to-stand motion prediction.” A
significant portion of the thesis work is published in the proceedings of the American Society
of Mechanical Engineers 2014 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference [52]. It is the only one of these
theses with a three-dimensional biomechanical model. The intention of this work is to
describe a generic STS simulation method. The scenarios explored include STS for healthy

young adults, and healthy elderly.

The models used by Ozsoy are modifications of the digital human model [112]. The STS
motion is broken into five phases and for each, the joint angles are modelled as a quartic
B-spline whose knots parametrize the controls. That is, this is an inverse dynamics model
without muscles. Ozsoy implements a multi-objective cost function, minimizing both joint
torques squared and differences in reaction forces between sides of the body to determine
knot locations. A number of constraints, including joint range of motion and maximum
joint torques, are enforced in simulations. Many of these appear exactly or in an equivalent
form from previous theses. Elderly models were made by decreasing both joint range of

motion and maximum allowable joint torques significantly.

A comparison was made between STS predicted for a healthy model and that seen
in experiment. Peak angular velocities, peak angles, and peak chair reaction forces were
determined to be similar to those measured experimentally. The order of magnitude and
the temporal order of peak joint torques matched the literature. It was noted that the

horizontal centre of mass excursion was significantly greater than was seen in experiment,
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and Ozsoy notes that this is reasonable as the model has no perception of fall-risk. By
this comparison, the model and simulation method were considered validated for a healthy

population.

2.4.5 Mombaur and Ho Hoang, 2017

The final work discussed in this Section is that of Mombaur and Ho Hoang. In their article
“How to best support sit to stand transfers of geriatric patients,” Mombaur and Ho Hoang
explore an exciting frontier of predictive STS research, where assisted STS (i.e. STS in
the presence of an assistive device) is predicted [110]. This work does not address the
question of why people perform STS the way they do so much as apply criteria found from
studies of other movements to STS. In its endeavour to discover how changing a person’s
environment influences STS, it is relevant to the long-term goal of this PhD research of

using predictive simulation of STS in assistive device design.

Relative to previously mentioned researchers, Mombaur and Ho Hoang constructed the
most complex rigid link model, with eight links actuating in the sagittal plane. Targeting
a patient population, they had the forethought to consider both male and female models
and (like Ozsoy) to use anthropometrics representative of geriatric (elderly) people. Other
aspects of their biomechanical model are more simple than previous studies, however. For
example, Mombaur and Ho Hoang excluded muscles in this model and described seat-chair
contact simply as a unilateral contact constraint. Instead, they paid attention to modelling

three styles of robotic mobility aids as external forces applied to the patient.

Like Garner, Mombaur and Ho Hoang cast the STS prediction problem as a two-phase
optimal control problem. In this formulation, the joint torques of the model and supporting
forces of the assistive device are both optimized from sitting to standing to minimize a
multi-objective cost function of joint torques, mechanical work, angular velocity of the
head, and smoothness of external force profiles. The STS motion resulting from this

prediction describes how a patient might interact with an assistive device of the given
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form. By comparing the forces predicted between the device and patient to the physical
capacities of a patient, this work may be used to objectively inform the design and selection

of mobility aids.

This research would be more in line with the topic of this thesis if the aids were con-
strained such that they could contribute no force, because then we would see how the
modelled geriatric patient responds in absence of an assistive device. However, as was
stated by Mombaur and Ho Hoang, there was not experimental data available from a
compatible patient population to use for validation, so perhaps the results of a prediction
without aids would be less meaningful. Nevertheless, the work of this article is a glimpse at
what should be the next steps when a pathological motion can be predicted — to predict
that motion with an intervention in order to inform intervention design and selection. For
the advancements made in predictive simulation of STS with an intervention, this paper

is inspirational and a motivator of this thesis work.

2.4.6 Summary

In the five main works of predictive STS presented, there exist themes in why and how
predictive simulation of STS is performed. The “why” is often two-fold: first, to better
understand when and how humans move the way we do and, subsequently to apply this
knowledge to better preserve or restore STS for those facing a loss of mobility. The specific
“how” varies according to the research decisions made by each researcher. Table 2.3 and

Table 2.4 summarize the key differences between the principal works in STS prediction.

It is interesting to observe the similarities and differences in research choices made
when designing the biomechanical models. For example, all models in the five main works
of STS prediction move in the sagittal plane exclusively except for Ozsoy’s model, which
may make it superior for studying pathological STS. Also, all models include HAT, thigh,
and leg segments. The Daigle model also includes a foot, while the Ozsoy model emphasizes

the pelvis as being separate from the HAT, and the Mombaur and Ho Hoang model divides
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Table 2.3: Biomechanical characteristics of five sit-to-stand models.

Work Garner Daigle Domire Ozsoy Mombaur
Dimensions 2 2 2 3 2
Anthro- Male Male Male Male Male and
pometrics female
Segments HAT HAT HAT HAT Head
Thigh Thigh Thigh Pelvis Upper trunk
Leg Leg Leg Thighs Lower trunk
Foot Legs Pelvis
Upper arm
Forearm
Thigh
Leg
Muscles 8 18 8 0 0
Tendons Flexible Flexible Rigid N/A N/A
Seat-chair Exponential | Exponential | Exponential | Kinematic Unilateral
contact spring spring spring constraint contact
model Linear Linear Linear constraint
damper damper damper
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Table 2.4: Motion prediction characteristics of five sit-to-stand models.

Work Garner Daigle Domire Ozsoy Mombaur
Solution Dynamic Dynamic Dynamic Dynamic Direct
method optimization | optimization | optimization | optimization | multiple
shooting
Controls Muscle Muscle Muscle Joint angles | Joint
excitations forces excitations torques
External
forces
Performance || Muscle Time Time Joint Joint
measure stresses torques torques
Peak muscle Left-right Work
force rates symmetry Head
velocity
Constraints Muscle Muscle Muscle Joint angles | Joint
limits limits limits Joint angles,
STS torques velocities,
duration forces,
torques
External
forces

the HAT into six segments. In these cases it is practically impossible to comment on the
effects of these modelling choices because they are generally presented without reference
to previous predictive STS research and no work makes an objective comparison of their

results to a standard description of STS.
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One area where this limitation is highlighted is in the choice of muscles in the model.
Garner included 8 muscles, modelled for gait [18], in his biomechanical model and rec-
ommended the inclusion of additional uniarticular muscles [104]. Daigle included 10 more
muscles [105] but did not address the effects of this change, and Domire resorted to the orig-
inal model presented by Garner [24]. Later, Ozsoy and Mombaur and Ho Hoang excluded
muscles from their models, but Ozsoy made their inclusion a primary recommendation for
future work. After 25 years of research, the literature lacks an established set of muscles

to include in biomechanical models for STS prediction.

Another area to comment on is the description of seat-chair contact. The simplest
buttocks model omitted contact entirely [106, 108]. The location of the centre of mass
in this set up is well behind the base of support in the seated position, and the only
natural response is for the model to fall down, which is not the goal of this work. At the
other extreme, rigid contact models, for example considering the hip to be hinged to the
chair while the upper body flexes and disengages at maximum flexion [109], restricted the
motion of the lower extremities in ways that are incongruous with experimentally observed
STS. The one compliant buttocks model used in a model for STS prediction employs an
exponential spring and linear damper [104]. The equilibrium position of this spring was not
stated, and for the STS motion observed in experiment there is a trade-off between having
a chair that is practically ineffective and one that is implausibly sticky, and all equilibrium
positions produce physically unachievable net ankle moments [113] during sitting, making

STS impossible. None of these models are appropriate for STS prediction.

By choosing different models and controls, applying different constraints, and specifying
different performance criteria, the five studies explored in this Section are unique. However,
it is very difficult, if not impossible, to discuss which research decisions hold most merit as
validation attempts have been oversimplified in all of these works. Plans to address this

limitation and more are presented next.
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2.5 Conclusion

This Chapter has explored STS through three lenses: experimental biomechanics, biome-
chanical modelling, and biomechanical motion prediction. All of these will be discussed in

this Section.

In terms of experimental biomechanics, many researchers have collected experimental
STS data and, although there is not one all-encompasing description of normative ST'S,
this motion is well described from a clinical perspective in the work of Schenkman et al. [10]
and defined in terms of kinematics and kinetics when the studies of Nuzik et al. [58] and

Kralj et al. [27] are considered together.

The foundational concepts of biomechanical modelling are well-established in the liter-
ature. Nevertheless, there is an absence of validated models for biomechanically describing
STS. This thesis endeavours to continue the strong tradition of biomechanical modelling
to advance knowledge of the STS motion. The model developed in Chapter 3 of this thesis
is a female Frankenstein model built from models used previously in STS research, with
models from gait studies, and models developed in other areas of the biomechanics litera-
ture. There are model components however, including the buttocks and muscle geometry,

that required major deviations to overcome deficiencies in previous models.

Like biomechanical modelling, the foundational concepts of motion prediction are also
well-established. However, biomechanical motion prediction is a niche field of study. There
is not an established “best” problem formulation or solution method for biomechanical mo-
tion prediction. Still, dynamic optimization has long been an influential strategy and was
used in four of the five major works in STS prediction, as seen in Table 2.4. Previous
researchers have affirmed that dynamic optimization provided “good” STS prediction re-
sults, motivating the use of dynamic optimization in this thesis. In all Chapters, the
STS motion is described geometrically by a set of Bézier curves with parametrized control

points. Assuming that people prefer to move in ways that are efficient, disinclination to a
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motion is described as a cost function of joint torques (as in Equation 2.9) in Chapter 3

and Chapter 4 and as a cost function of muscle stress (as in Equation 2.11) in Chapter 5.

Each main work in STS prediction touches on the previous themes to an extent. Ta-
ble 2.3 and Table 2.4 show that, in these five works, there are large variations in biomechan-
ical modelling choices, motion controls, and performance criteria. However, the influence
of these works are limited by the fact that their results are generally presented without

reference to previous research and without comparison to a STS standard.

In this thesis, there is unprecedented comparison of both predicted kinematic and pre-
dicted kinetic results to healthy STS in a meaningful way, by discussing the physical
feasibility of the resulting motion and comparing it with normative data in the literature.
This means that, for the first time, the fundamental need and responsibility as a researcher
to assess the choices made in modelling and predicting any motion is being met in this
thesis. From this comparison, the validity of the modelling choices made in all chapters
are discussed with context and the results establish a benchmark for future work in STS

prediction.

It was mentioned previously in this Section that the buttocks model, designed in Chap-
ter 4 of this thesis, is substantially different from previous buttocks models. Assessment of
existing buttocks models has determined that those that are physiologically realizable are
either too time-consuming to use in a dynamic optimization routine for STS prediction, or
inaccurate over the expected range of tissue deformation in STS [71]. In Chapter 3, the
buttock is modelled as a one-dimensional Kelvin-Voigt element, intended for use with off-
road-vehicle operators [73]. However, extending the results of Chapter 3, Chapter 4 details
the design of a lumped parameter, force-deformation, Kelvin-Voigt model of buttocks-chair
interaction motivated by constitutive models of soft biological tissues found elsewhere in

the literature.

The other modelling area requiring substantial re-design is modelling of musculoskeletal

geometry. The model of musculoskeletal geometry used by Garner has been superseded by
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the White and Carhart models, introduced in Section 2.2, which have proven insufficient for
describing musculoskeletal geometry for motions with large ranges in joint angles [82], such
as STS. In Chapter 5, a musculoskeletal model is built that is motivated by existing muscu-
loskeletal models [80,81] with attention to reported muscle lengths [114] and experimentally
measured moment arms from across the biomechanics literature. This model strategically
incorporates muscle path modelling strategies, such as muscle wrapping [115-117], used
more commonly in the upper extremity, in a model of the lower extremity. This model
takes account of the recommendations of Garner to include more uniarticular muscles in
a musculoskeletal model for STS and Ozsoy’s hypothesis that muscles are integral to STS

prediction.

These improvements in biomechanical modelling and validation of STS predictions will
overcome the greatest gaps in past STS prediction research. The models built will serve as
a starting point for future work in STS prediction and will be useful in applications across
the field of modelling and simulation of human movement. The care taken in validation
in this thesis should serve as a model to future work in STS prediction and will promote

collaborative communication within this research community.
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Predictive Sit-to-Stand of a
Three-Link Torque-Driven Model

The aim of this work is to model how a healthy individual rises from a seated position.
This is a first initiative in understanding pathological sit-to-stand (STS), the reality of
an increasing proportion of the population struggling with this motion. Researchers have
been studying STS prediction for over 25 years. The key works in this area, examined in
the Literature Review, have been focused on actuating a triple inverted pendulum, typi-
cally with male anthropometrics, from a seated pose to a standing pose. The models and
optimal control strategies used by past researchers are, however, limited to applications
with idealized plants and motions. This Chapter builds on the tradition of modelling and
predictive simulation of STS by construction of a three-link-model and use of dynamic op-
timization to solve for a STS motion requiring minimal effort. Also, this Chapter provides,
for the first time, an objective assessment of the predicted STS with respect to established

descriptions of healthy STS.

IThis research is published as “Constrained dynamic optimization of sit-to-stand motion driven by

Bézier curves,” in The Journal of Biomechanical Engineering [118].
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This Chapter has three major components. The first component is a discussion of the
structure of the biomechanical model. With a future goal of predicting pathological STS,
the model created describes a female, as women have proportionally more difficulty per-
forming STS according to self-reporting studies [7]. The second component is a description
of the optimal control framework used. The control strategy invoked is unique in that it
considers physical limitations of humans in STS and that it is purely predictive. The last
component is a comparison of the predicted STS to healthy STS in a meaningful way, by
discussing the physical feasibility of the resulting motion and comparing it with normative
data in the literature. This Chapter, thereby, establishes a benchmark for future work in

STS prediction.

3.1 Biomechanical model construction

The human is represented as three rigid links in the sagittal plane. This model captures
aspects of joint, foot, and buttocks physiology, which makes it the most comprehensive

planar model for predicting STS to date.

3.1.1 Model components and parameters

A schematic of the human model, created in MapleSim [119], is seen in Figure 3.1. Its
skeleton consists of two legs moving in parallel, each with a foot fixed to the ground, leg,
and thigh, and a head arms torso (HAT). The arms of the model are crossed in front of
the chest as is required of patients performing a clinical STS test [21]; such that the model
reflects the clinical test. For simplicity, a three link model was chosen in this work. It is
possible to include more links in the biomechanical model and, for example, the inclusion of
eight links is a feature of the model made by Mombaur and Ho Hoang [110]. Opportunities
to free additional body segments from this model are discussed in Chapter 6. Body segment

parameters [19], foot [62], and pelvis [67] dimension of a healthy female human are from
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the literature. Joint damping [120] and passive elastic moments [121] are included in the

model. Knees are constrained from extending beyond straight to avoid bifurcation.

HAT
buttock
hip
thigh
knee

leg

Y

L.,

Figure 3.1: A schematic of the three-link sagittal plane model while seated.

chair

ankle

foot
S S S S S S S S

Buttocks model details are included in the next chapter. Suffice it to say for now,
that buttocks are added to the HAT as one-dimensional Kelvin-Voigt elements [72, 73]
of representative female dimension [71] with a gap [122]. This Modelica model ensures

continuity in the force profile and disallows pulling between the buttocks and chair [123].

The chair is assumed to be of steel construction, rigid, backless, armless, and of standard

adjustable height [124]. A hyperbolic tangent regularized friction model, previously used
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for feet [69], is included between the buttocks and chair with coefficient of friction of canvas

on steel [125].

3.1.2 Fixed foot implications

The position of the foot is predetermined and fixed. Foot location has major influence on
the ability to perform STS [7] and people will move their feet to a favourable position prior
to initiating STS, when convenient. This stabilization strategy is not always accessible
because of the immediate environment or physiotherapists instructions [126] and therefore

the decision is to disallow it in this simulation.

Fixing the foot introduces the possibility for the model to respond unnaturally in sit-
uations where a foot ought to lift from or slip relative to the ground. These cases are
determined considering the foot as in the free body diagram in Figure 3.2. The foot of
the model is of known dimension (d) and weight (W). The coefficient of static friction ()
between skin and metal is assumed between the foot and ground. For forces, Ay, Ax, and
moment A,;, the system is determined and it is possible to solve the static equilibrium
equations for 7y, Fy, and N to establish if the conditions for static equilibrium are in
violation. The modelled system is in error when conditions are incongruent with static
equilibrium of the foot. Equations 3.1 through 3.3 quantify these errors. First, when the
modelled foot, were it not fixed to the ground, ought to tip,

N — dtoe TN > dtoe
ETTOT = § TN + dpeel N < —dheel (3.1)
0 otherwise
when it should lift,
|N| N <0
error; = (3.2)
0 otherwise
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Figure 3.2: Free body diagram of the foot.

and when it should slip,

F¢| — uN F¢| > uN
— Fil > p (33)
0 otherwise
A last implication of fixing the feet is defining the model’s workspace. The chosen

controls, described in the following section, may specify an (X,Y") hip location outside of

its workspace, so Equation 3.4 is added

V X? + Y2— (lthigh+lleg) \% X? + y? > lthigh + lleg

errory, = (3.4)
0 otherwise

where li4, and [, are the length of the thigh and leg, respectively.

From Equations 3.1 through 3.4, errory,, errory, error;, and error, are excursions of the
specified hip location beyond the model’s workspace, excursions of the centre of pressure
beyond the base of support, pulling forces at the ankle, and lateral forces at the ankle
exceeding stiction, respectively. In a successful STS transfer, there is zero cost associated

with these errors.
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3.2 Optimal control framework

For this three-degree of freedom model, the location of the hip joint centre and inclination
of the upper body are chosen as controls to fully control this system. Based on previous
work in predictive STS, explored in Chapter 2, the optimal control problem is framed as a

parameter optimization problem.

The locations of the controls in time are modelled using composite Bézier curves so
that a control point has global rather than local influence on curve shape [127], and not
only is it unnecessary to bound them in value when optimizing, but the solution space is
smoother. The choice of kinematics as controls is advantageous in directly describing quiet
sitting and standing poses. Moreover, the ability to define and redefine the hip position is
useful in exploring effects of seat height and relative anterior-posterior (AP) foot position,

known to influence natural STS [7], on the predicted motion.

Defining a cost function for the optimizer is an attempt at modelling preferences in
motion. The cost function created here penalizes mechanical effort with respect to the
foundational theory that people move in ways that are energy-efficient [99, 100] and, for
the first time, motions contrary to standing, (i.e. slipping and falling), which an individual

would avoid when getting up from a chair.

The optimal control strategy, dynamic optimization of time histories of the generalized
coordinates, allows increasing motion complexity through an iterative technique. It is in
harmony with the foundational belief that natural, practiced motions are optimal and
learned. The complexity of the optimization problem is increased by performing degree
elevation, but by seeding the solver with the solution of the problem with fewer control

points, it remains manageable.
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3.2.1 The controls

The global (X,Y) position of the hip relative to ankle location and angle of inclination of
the HAT are represented as three composite Bézier curves, or paths, in the time domain.
Bézier curves are smooth parametric curves with points defined, in [127], by a function of

the form
p(u) = ;)pi (Ml —uw)*  welo,1] (3.5)

where the term (?) is the binomial coefficients. In matrix form this is,
p(u) = UMgP (3.6)
where U is a 1 x n+1 row matrix of the powers of the parametric coordinate u,
U= [u" urt o ut 1] (3.7)

Mg is the n+1 x n+1 Bézier basis transformation matrix, and P is the n+1 x 1 column
matrix of two-dimensional control points, p. To transform between u and time, u is

multiplied by the final time.

The initial paths are shown in Figure 3.3. The sitting component is the first part of
each path and describes the coordinate in quiet sitting as two sitting control points of equal
value, as seen in the Figure. For example, the control points, (X;,0) and (Xg;,1) define
the Bézier curve representing the AP position of the hip, X, during quiet sitting. As such,
the AP position of the hip is described for the entirety of quiet sitting as

—1 1| [ (Xs,0)
X (u) = [u 1} ' (3.8)
1 0] | (X, 1)
Multiplying this out,

That is, the hip is at the location Xj;; at all times during quiet sitting. As mentioned in

Equation 3.5, u assumes values between 0 and 1 inclusively. It is analogous to a percentage
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of motion and is scalable to suit the motion of interest. In the case of quiet sitting,
multiplying u by 0.5 seconds gives the desired (static) motion seen in the first half second

of the following figure.

HAT inclination (rad)

Y hip height (m)

1y . .
g /O/—®—+ X hip AP location (m)
g 0 5*_@. o) ¥ sitting control point
O motion control point
ol +  standing control point
-0.5 : : : :
0 1 2 3 4 5

time (s)

Figure 3.3: Three Bézier curves describing the initial motion paths with sitting, motion,

and standing components.

The motion component is the middle part of each path and begins and ends with
two control points of sitting and standing values, respectively, to enforce first derivative
continuity. The standing component of is the final part of each path and again has two
control points to parameterize quiet standing. Coordinate values for sitting and standing
are determined from the literature [58] with freedom given to the sitting hip height and
standing hip AP position because simulation results are very sensitive to the initial buttocks
deformation and because of natural patterns of balance in quiet stance [128]. In this
parameterization of a human motion, there are bounds that must be observed. Hip height
is bounded to enforce contact with the chair during sitting, and all points must maintain

their sequence in time to prevent the model from being directed to two places at once.

48



That is,
Pi1>Picin t=1,...,n+1 (3.10)

Beyond this, only the number and value of control points restricts possible motions. A
five-second window is prescribed for the path; including a half second each for each of the
sitting and standing components, to be able to represent ST'S motions slightly longer than

the average plus one standard deviation [27].

The paths, and therefore the candidate STS motions, are determined by the locations
of the control points. Initially, the possible shapes of these curves are limited as only the
two intermediate points of each path may move in time and only points parametrizing
the hip height while sitting, and hip AP position while standing may change in value.
For greater freedom, two control points, free to move in time and value, are added to the
motion component of each path while preserving the shape of the path by the process of

degree elevation.

By degree elevation, the number of control points is increased while the shape of the
curve is maintained. Because both the previous (p) and new (p’) set of control points must

generate the same curve, it is true that

p'(u) = p(u) (3.11)
For one degree elevation, this is
n+1 n
, (T +1 i n+l—i n 7 n—i
- 1— = il 1— 3.12
N R S (T (3.12)

which is true when

) i i
() p, 1— . 3.13
P’; (n+1)p 1+( n+1>p (3.13)

In short, a Bézier curve described by a set of control points may be described by a larger
set of control points determined from the original set. This work leverages this attractive

characteristic of Bézier curves.
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3.2.2 Objective function construction

Candidate motions are evaluated for optimality including feasibility. Impossible configura-
tions (errory), motions that ought to result in tipping (errory), lifting (error;) or slipping

(errors) of the foot are penalized as follows,

5 5 5 5
COSterror = Wh / errorydt + w, / erroridt + wy / erroridt + w / error’dt (3.14)
0 0 0 0

2 are weighting factors and

where w, = 1 N2, w, = 103 N2, w; = 1 m?, and wy, = 1 m
errory, errory, error;, and error, are calculated from Equations 3.1 through 3.4. It is
important to the optimal control identification process, described in the next sub-section,
that these errors are weighted because, from observation, it is detrimental to either focus

on or disregard them entirely.

Beyond feasibility, optimality is determined in accordance with the theory that the
healthy population performs everyday motions in ways demanding minimal exertion, which
in this model is considered as the time history of active joint torques [52,101, 110] deter-
mined by inverse dynamics. Therefore, the effort of a candidate STS motion is evaluated

as the sum of required joint torques, squared, as in Equation 3.15

5 5 5
oSt iorque = / A3, dt + / K3,dt + / H3dt (3.15)
0 0 0

where Ay, Ky, and H); are the net ankle, knee, and hip joint moments, respectively.

The overall cost of a candidate STS motion is

cost = coStiorque + COSterror (3.16)

3.2.3 Computation of optimal controls

An initial optimization problem is solved to establish a feasible STS starting-point. The

initial motion is passed to the model, and errors in feasibility are calculated. Control point
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locations are adjusted by fmincon in MATLAB [129] to decrease errors (Equation 3.14).
The routine exits with the first solution with zero associated error. This STS motion is

used to seed the solver in the iterative dynamic optimization routine.

The iterative dynamic optimization routine is shown in Figure 3.4. The initial motion
is passed to the model, and errors in feasibility and the joint torques required to complete
the STS are calculated. Control point locations are adjusted by fmincon to decrease cost
(Equation 3.16). This choice of a gradient-based solver likely influences the importance of
weighting errors, as mentioned, aiming for a value large enough to influence the cost of
the solution, but not dictate it. The optimal control points are those that minimize cost
with zero associated error. The cost of this candidate motion is recorded when the routine
terminates. This process is repeated after elevating the degree of each path by one, giving
increased freedom to possible solutions. This process is iterated until successive solutions

demonstrate convergence.

degree
elevation

A

input set - have output
- bounds optimize X P
initial on »| control solutions optimized
cor_mtrol control points cor_1tr0|
points points points

Figure 3.4: The iterative routine to determine an optimal sit-to-stand.

The range of required joint torques is evaluated against normative joint torque strengths
of old females [113], as in Figure 3.5, as a final, manual, check of feasibility and a prediction

acceptance criterion. The solution at the end of this process is purely predictive STS.

o1



120t
TE\ 60 1 Hip
£ Knee
S
= Ankle
S ) T e RS ——— — — — limits

-60 :

0 1 2 3 4 5
time (s)

Figure 3.5: Joint torques for optimal sit-to-stand from a 46 cm chair compared to joint

torque strengths (horizontal limit lines), reported in Schultz et al. [113].

3.3 Resulting motion

STS predictions are fully parameterized by the locations of the control points. The iter-
ative process described in the previous section adds control points necessary in defining
coordinate paths that converge to a solution. While there is limited freedom in the initial
set of control points, the final paths demonstrate the versatility of a higher-order Bézier

curve. The optimal coordinate paths of STS from a 46 c¢cm chair are shown in Figure 3.6.

Paths of optimal control points were input to the model and ground reaction forces
were determined through inverse dynamics to define the start and end of the predicted
STS as in Equations 2.1 and 2.6. The resulting motion is shown as a series of snapshots
in Figure 3.7. It is a point of curiosity that the model chooses a standing pose with legs
straighter and HAT more forward than observed in experiment. Looking to Figure 3.7,
above, the predicted standing posture does resemble standing and from Figure 3.5 it is clear

that the predicted standing posture is more cost effective (Equation 3.16) than the pre-
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Figure 3.6: Optimal sit-to-stand from a 46 cm chair.

scribed standing posture. This predicted end-posture describes statically stable standing

and deemed acceptable for this exercise.
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Figure 3.7: Evenly spaced snapshots of predicted sit-to-stand.

The prediction looks reasonable, as has been said of past work. From sitting, the model

flexes the HAT, the buttocks lift from the chair, and the ankles dorsiflex and then return
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to a neutral posture while the knees and hips extend to standing. To examine how valid

is this optimal STS, it is compared to normative data from the literature.

3.4 Comparison with healthy sit-to-stand

A predicted STS is evaluated against two sets of normative data introduced in Chapter 2:
one, from a paper by Nuzik et al., describing angular positions at evenly-spaced intervals
[58] and the other, from a paper by Kralj et al., defining the timing of kinematic and
kinetic events [27] of STS in a healthy population. As has been mentioned, STS is strongly
influenced by seat height and AP foot location. It is impossible to replicate definitively
the sitting pose in either paper with the limited information given for the stature of our
biomechanical model, so the results of three conditions are examined. The first considers
a chair height of 51 c¢m, the maximum height of a standard adjustable chair [124], which
provides best agreement to sitting joint angles from Nuzik et al. The second considers a
chair lowered to 46 cm, the only height common between papers, with foot location kept
constant. The third results are for a chair furthered lowered to 42 cm, a height within
range of the chairs used by Kralj et al., and the minimum height of a standard adjustable
chair. All chair conditions are for the same subject, as if the same person sat in three

different chairs.

The kinematics and kinetics calculated, for the optimal paths predicted, are next com-
pared to the normative occurrence of events separating the phases of STS: quiet sitting,
initiation, seat unloading, ascending with vertical acceleration, deceleration, stabilization,

and quiet standing [27].

Figure 3.8 shows the differences between predicted results and normative joint angle
data. The plot of the hip angle does not include a standard deviation for comparison
with this lumped HAT model because the mean is calculated as a function of the pelvis

and trunk angles reported by Nuzik et al. shown in Figures 2.1 and 2.2. The predicted
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joint angles closely follow the normative trends during STS and, from the 51 cm chair,
are often within 1 standard deviation of healthy variation. Because of the model’s stature,
initial angles are deviated for the lower chairs. The prediction with 46 cm chair faithfully
represents the range of ankle dorsiflexion from Nuzik et al. from a chair of equal height.
Two trends noticed will be discussed further in the Discussion Section. First, a trend of
increasing peak hip flexion with decreasing chair height was observed in the hip angle curve
of Figure 3.8. Second, there is a decrease in peak flexion angular velocity of the hip as the

chair height increased from 42 cm and 46 cm to 51 cm as seen in Figure 3.9.

As can be observed from Figure 3.6, the prediction reshapes the paths of the generalized
coordinates and shortens the duration of STS from 3.96 s to 1.24 s. From all seat heights,
the final event of STS, standing on, was predicted to occur within 1.5 s, quicker than even
the minimum of what was observed in experiments from the literature. It follows that when
event times are compared to their normative occurrence during STS, as in Figure 3.10, few

are predicted within range of what is expected from a healthy population.
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Figure 3.8: Sit-to-stand joint angle profiles as predicted from three chairs compared to
experimental sit-to-stand from a 46 cm chair, measured by Nuzik et al. [58]. Seat-off of all
predictions is aligned to 47 percent motion. The root mean square errors are 14.3 deg, 9.7
deg, and 4.2 deg at the hip, knee, and ankle, respectively for the 51 c¢cm chair. Similarly,

the root mean square errors are 12.9 deg, 15.0 deg, and 3.5 deg, for the 46 cm chair, and
11.6 deg, 17.2 deg, and 4.9 deg, for the 42 cm chair.
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Figure 3.10: Predicted sit-to-stand event timing from three chairs compared to experimen-

tal means, standard deviations, and ranges, measured by Kralj et al. [27].
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3.5 Discussion

This work has described how healthy females stand from a seated position using a three-
link biomechanical model. The proposed model is the most comprehensive planar model
used for predicting STS to date and is capable of producing the following gross motions of
healthy STS when the chosen controls are driven: HAT flexion, seat off, ankle dorsi- and

plantar flexion, knee and hip extension.

Minimizing exertion and using a function of joint torques (Equation 3.15) as interme-
diary when evaluating candidate motions is not new, however minimizing infeasibilities
(Equation 3.14) in the motion is. These performance criteria appear to contain some truth
in how healthy people stand from seated and as a result, it predicts STS with generally
good agreement to that found in the literature [10,27,58].

This is the first use of Bézier curves in dynamic optimization of STS, an application for
which they have proven advantageous. As is characteristic of Bézier curves, control points
have global rather than local influence on curve shape and so not only is it unnecessary
to bound them in value when optimizing, the solution space is smoother. Their shape-
conserving properties in degree elevation allow the solution space to start with a small
number of control points, or variables, to optimize. The iterative optimization routine
maintains a relatively smooth solution space and facilitates use of a computationally inex-
pensive, gradient-based solver. By exploiting the possibility of degree elevation for Bézier
curves, there is no need to predetermine the number of control points defining the final
curve, avoiding either prematurely restricting the solution space to exclude the natural
solution or over-doing it and having a large and potentially unwieldy optimization problem
from the beginning. Also, this method is in harmony with the fundamental belief that

natural, practiced motions are optimal.

It was noticed that predictions of STS from decreasing chair height produce increasing

angular displacements. This is a phenomenon observed in a healthy population [7] and
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the first serendipitous result of this work. A second is the accurately predicted trend
of increased hip flexion angular velocity with decreased chair height, from approximately
100% knee height to approximately 80% knee height [7,130], at STS initiation. Finally, the
observation that the demand of predicted STS, defined in terms of cost (Equation 3.16),

increases with decreasing chair height as expected [7].

The consistencies between prediction and experiment speak to the quality of this model
and the motion optimization approach. Predicting over-all motion patterns, characteristic
events, and subtle changes in motions caused by changes in chair height is unprecedented
in predictive STS research. These results, for a healthy model, give confidence that the
model and STS prediction strategy are a credible starting point to predicting pathological
STS.

However, there are some places where the prediction fell short. The model did not
faithfully predict the standing posture reported in the literature and assumes an end pos-
ture with the ankles less flexed and the HAT more inclined than expected. This difference
is indicative that people prioritize more than mechanical efficiency when standing, such as
spatial awareness and the ability to reject an environmental disturbance are of personal
importance, and this model does not address these. Regardless, this alternate end-posture
describes statically stable standing and deemed acceptable for this exercise for the time
being.

Caution is another human tendency the model does not observe and a possible reason
the STS predicted is relatively too quickly. There are, again, further reasons for this. Pure
torque producers actuate the model and while the torques are within physiologically plau-
sible ranges there are no checks, at this time, that they can be physically produced by the
muscles spanning these joints, which have activation and deactivation time requirements.
This point will be addressed in Chapter 5 of this thesis. A last possibly is that the experi-
ments captured anticipatory or terminating motions that are not necessarily mechanically

productive to STS and therefore not produced by this model, but there is no intention of
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exploring this idea at this time. The discrepancies in event timing are further discussed in

Section 4.4.

Requiring immediate exploration, the model predicts the hip and therefore ischial
tuberosity locations well above the chair in quiet sitting and the buttocks deformation
is substantially less than what is expected. The linear spring-damper and corresponding
constants used in this model have created particularly stiff buttocks. Not only does this
choice influence kinematics, but also kinetics at a defining level of STS. Chapter 4 addresses

the challenge of buttocks modelling for predictive STS.

It is difficult to put these results into context in the greater research community because
of the minimal comparison of existing studies to other studies or experimental findings.
It is possible to say that this model is superior to others in that it is physically plausible
where others are not, in terms of attention to torque limits, for example. It is more
versatile than existing models that use, at best, a pre-set numbers of nodes, evenly spaced
in time. Possibly the greatest boon of this purely predictive work to another researcher
is the unprecedented comparison of both kinematic and kinetic results to normative data

that should serve as a benchmark for future work in STS prediction.
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Better Buttocks

for Sit-to-Stand Simulation

The buttocks are reported to transmit between 18 and 77 percent of body weight during
quiet sitting [131] and to remain in contact with the chair for the first third of healthy
sit-to-stand (STS) [27]. It is important to the work of predicting STS to have a buttocks
model capable of characterizing this relatively large force acting while the model sits. The
purpose of this work is to model the dynamic response of the soft human buttocks for STS

prediction.

When building the biomechanical model, as in Chapter 3, the potential to use but-
tocks models from past researchers in STS prediction [51, 52, 104-106] was investigated.
As discussed in the Chapter 2, their models proved underwhelming in terms of physical
meaning and validation. Elsewhere in the literature, constitutive models of component tis-
sues of the buttocks, for example adipose (fat) or muscle, for large ranges of deformations
exist [74,75,132]. There are models for groups of tissues in small range of deformation, for
example seated buttocks [72,73]. There are also finite element models of individual tissues
that have been grouped, for example transverse muscle over adipose tissue, applicable for

larger deformations [71]. However, the literature lacks a validated model of buttocks tis-
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sues, as a whole, for large changes in deformation, which is necessary for this work. Thus

emerged the requirement of describing a buttocks model for application in STS prediction.

First, force-deformation behaviour of the buttocks was collected from 15 healthy partic-
ipants in a STS experiment to characterize the model. Inspired by the observed behaviour,
candidate spring models were specified and, substituting these in a Kelvin-Voigt element,
candidate models of buttocks were made. Next, each model was driven by the experimental
kinematics and model parameters were tuned to best match the forces measured. Then
errors were calculated for each model for each participant to determine which model best

represented the participant population.

The model whose response best matched experimental results replaced the simple but-
tocks model in the biomechanical model from Chapter 3 and that STS prediction routine
was run again. The predicted motion was compared to that from Chapter 3 and to nor-
mative STS to determine if this buttocks model is viable for use in STS prediction, and to

what extent changes in this physical aspect of the model changed the predicted motion.

4.1 Mechanical behaviour of the buttocks

The buttocks are comprised of three tissue layers. The deepest layer is transverse gluteus
muscle, superficial to the muscles is adipose tissue, and superficial to both is a layer of skin.
In terms of mechanical behaviour, there is an expectation that the buttocks behave as a
visco-hyperelastic material [131]. In terms of mechanical properties, the literature lacks
information [133] required for mathematical modelling. This section addresses a portion of
this need by providing measurements of the force-displacement behaviour of the buttocks
in STS. This behaviour is important to developing the mechanical model of the buttocks for
STS prediction because, at minimum, a reasonable model ought to produce physiological

ranges and profiles of force for a typical STS motion.
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4.1.1 Experimental procedure

Fifteen healthy participants, 7 female (23.4 years (3.9), 1.63 m (0.06), 58.1 kg (7.5)) and 8
male (26.1 years (3.2), 1.82 m (0.04), 79.1 kg (8.1)), performed a STS experiment detailed
in Appendix A. Participants sat comfortably, toward the front edge of a chair of standard
(46 c¢cm) height [124]. This forward sitting posture, an example of which may be seen in
Figure 4.1, isolates the majority of interaction between the seat and participant through the
buttocks, the response of which is of interest in this experiment. Sitting, the participants
were asked to place their feet in a comfortable location where they would not need to move
them to stand up. For two minutes, participants remained seated. On cue, they crossed
their arms on their chest and sat quietly. On a second cue, three seconds later, they stood
up. Participants stood still for five seconds while the collection was completed. On a third
cue, the participant walked on the spot for one minute at a self-selected pace to encourage
buttocks tissues to return to a neutral state. On a final cue, the participant sat again.

This STS task was completed a minimum of eight and a maximum of ten times.

4.1.2 Experiment set-up

Throughout the experiment, participants wore a system of active optical markers. This
system consisted of clusters (i.e. markers that are rigidly connected) attached to the right
thigh, the right leg, the right foot and the pelvis, as shown in Figure 4.1. Palpation and dig-
itization of bony landmarks created virtual markers on these locations, which were tracked
assuming the respective segment as a rigid link. Placements of virtual markers include
the right greater trochanter, each of the right medial and lateral femoral epicondyles, right

medial malleolus, anterior superior iliac spines and posterior superior iliac spines.

The movement of the markers and, by extension, the kinematics of the subject were
captured by a system of six banks of Optotrak Certus cameras at a rate of 100 Hz while,

simultaneously, kinetics were collected at 2048 Hz from a pair of Advanced Mechanical
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pelvis cluster
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foot cluster

force platforms

Figure 4.1: One participant, wearing the motion-capture clusters, is sitting on one force

platform with feet on another.

Technology Inc. (AMTI) OR6-7 force platforms as seen in Figure 4.1. Studying these

kinematics and kinetics together provide insight into the role of the buttocks in STS.

4.1.3 Data processing

Prior to analysis, the data was filtered using a dual-pass Butterworth filter with 6 Hz
cut-off frequency. The data was next analyzed for event markers of normative STS, as in

Equations 2.1 through 2.6. This analysis required summation of the vertical and fore-aft
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force plate data, their first derivatives, and knee kinematics. By calculating knee angles
from the relative sagittal-plane geometry of the markers on the greater trochanter, femoral
epicondyles, and medial malleolus, consistency with event definitions in the literature [27]

was maintained.

Few of the 147 collected trials exhibited normative STS as defined by Kralj et al. [27].
Some trials failed to meet this standard because there was too much movement while
sitting or standing to discern STS initiation and termination (i.e. eventy and events). For
the remainder of the trials, the difference was overwhelmingly because participants in this
study completed STS more quickly than even the fastest subject in Kralj et al. It is
assumed this discrepancy is because of differences in the populations and/or environments
of the experiments, as discussed in Section 4.4. Because the participants in this study were
performing their natural STS, and because of the differences between this study and the
study performed by Kralj et al. the focus on timing of all normative events was relaxed.
Trials were accepted on the criteria that all events of STS were demonstrated in the defined

order. Still, 9 trials were discarded. The remaining 138 trials were analysed for modelling.

Typically, people sit on their ischial tuberosities (ITs). The locations of the ITs, shown
in Figure 4.2, are not easily measured directly by external palpation. In this study, the
locations of the ITs were instead approximated from the locations of the superior iliac
spines, which are easily palpated. The anterior superior iliac spines (ASISs) and posterior
superior iliac spines (PSISs) were marked and tracked in the experiment. Approximat-
ing the locations of the I'Ts from the superior iliac spines requires use of a standardized
pelvis geometry dataset, pelvis scaling guidelines, and an assumption of left-right pelvis

symmetry. The specific method of approximating the locations of these ITs is next.

To approximate the locations of the ITs, first, each subject’s pelvis type is categorized
according to the dataset of human pelvises from Reynolds et al. [67]. A pelvis is categorized
as a female, a smaller male, or a larger male pelvis based on the subject’s sex, height, and

mass, as in Equation 4.1. For each pelvis type, the Reynolds dataset provides reference
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non-weight-bearing

ischial tuberosity (bone)
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fat
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Figure 4.2: Magnetic resonance image of buttocks while lying down (non-weight-bearing)
and sitting (weight bearing). Adapted from Linder-Ganz et al. [71] and used with permis-

sion.

pelvis geometry with the expected locations of bony landmarks including the anterior

superior iliac spines, the left posterior superior iliac spine, and the left IT.

female sex = female
) 1657kg — mass
pelvis type = { larger male height > 8%3 7 (4.1)
smaller male otherwise

The next steps to approximating the locations of the ITs are illustrated in Figure 4.3.
After determining which reference (Reynolds’) pelvis represents the participant best, lo-
cations of the bony landmarks, available only for the left side of the reference pelvis, are
reflected across the sagittal plane allowing consideration of the right side of the pelvis as
well. Then, the reference pelvis model is scaled anterior-posteriorly and mediolaterally,
according the guidelines of White et al. [80], to the geometry of the participant, calculated

from the virtual markers placed on the superior iliac spines during the experiment. By
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rotating and translating the reference pelvis model, the model tracks the superior iliac
spines of the participant for the captured STS motion, identifying expected locations of

the ITs for each participant for each trial.
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Figure 4.3: Mlustrated procedure of approximating the locations of a participant’s ischial
tuberosities (ITs) from their anterior superior iliac spine (ASIS) and posterior superior
iliac spine (PSIS) locations (light gray), a reference pelvis geometry from Reynolds et
al. [67] (dark gray), and the scaling guidelines of White et al. [80]. In the top, left-hand
corner, plot (a) represents the geometries as they are initially. Plots (b)-(e) represent the
reference geometry; (b) reflected sagitally, (c¢) scaled to the participant, (d) aligned to the

participant, (e) superimposed on the participant to estimate IT locations.

There is an element of uncertainty in the estimated location of the I'Ts because they
are not measured directly. Reynolds et al. [67] made measurements on 28 female skeletons,
26 larger male skeletons, and 33 smaller male skeletons, and found standard deviations of
11 mm, 9 mm, and 8 mm, respectively, in the caudal-cranial direction. It is anticipated
that discrepancies of similar scale exist in the location of the participants’ I'Ts calculated
using the method described in this Section. Nevertheless, now that the locations of the

ITs have been estimated, it is possible to analyze the STS forces in light of I'T motion.
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4.1.4 Experimental results

Experimental data from STS initiation to seat-off is of interest when building a one-
dimensional, lumped-parameter buttocks model. After removing the weight of the chair
from the data, the vertical component of force on the force plate under the chair starts
steady with a small, gradual bump, signifying an increase and then decrease in force, before
a rapid descent to zero as seen in Figure 4.4. Female participants in this study sat with
approximately 78% of their body weight, on average, on their buttocks. Similarly, male
participants sat with approximately 79% of their body weight on their buttocks. These
values are just beyond the top of the 18% to 77% range of normalized forces reported in

the literature [131].

female male

0.6

-0.8

force normalized to body weight

0 0.5 1 0 0.5 1
time (s) time (s)
Figure 4.4: Average force profiles at the chair in the second leading to seat-off.
The motions of the ITs, and therefore buttocks deformations, show a similar pattern to

that of the forces. Deformation (AL) is considered as the change in the thickness of tissue

under the ITs from the undeformed thickness, that is
AL=1-1L (4.2)
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where [ is the tissue thickness and L is the reference tissue thickness, as described in
Figure 4.5. Buttocks in the experiment are deformed to a maximum of 3.9 cm on average
in both females and males, with an average undeformed dimension of 8.6 cm in females and
7.3 ¢cm in males. This -45% average deformation in females and -53% average deformation
in males is within the -27% and -54% range reported in Linder-Ganz et al. [71], measured in
six participants. The buttocks are under relatively constant strain until there is a gradual
downward shift before a rapid descent to zero. In some cases, but not all, there is a
bump, more easily observed in the female deformation rate data in Figure 4.6, between
approximately 0.3 and 0.7 seconds before seat-off. This bump signifies that the ITs are
driving downward and therefore buttocks tissues are deforming further before standing.

Observed deformation rates reach a maximum of less than 0.4 m/s at or very near seat-off.

/

(@) (b)

ischial tuberosity
L buttocks

Figure 4.5: The buttocks (a) deformed and (b) undeformed.
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Figure 4.6: Average deformation of the buttocks and vertical velocity of the ischial tuberosi-

ties in the second leading to seat-off.

These forces and deformations are considered together to gain insights into the material
behaviour of the buttocks. Figure 4.7 shows force-deformation curves of the buttocks
during STS. In both females and males, the relationship between force and deformation
are non-linear and demonstrate signs of viscoelasticity (portion of hysteresis loop) where
deformations are relatively large. In all, buttocks deformations during STS are non linear

and finite (i.e. large).
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Figure 4.7: Average force-deformation and force-velocity behaviour of each participant’s

buttock, measured in the sit-to-stand experiment.

4.2 Characterizing the buttocks

The relationship between the forces going through the buttocks and buttocks deformation
informs the choice of mechanical buttocks model for implementation. This relationship
appears comparable between females and males from the experimental data described in
the previous section, and so, for purposes of modelling, the data is lumped together for a

larger sample size.
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The force-deformation curves in Figure 4.7 are non-linear. The Figures exhibit large de-
formations and evidence of viscoelasticity. These observations motivate a visco-hyperelastic
material model of the buttocks. This section addresses this need by using the experimental
data collected and material modelling to construct a lumped parameter force-displacement

model of the buttocks.

4.2.1 Constructing the model

From the literature and the presented experiments, it is clear that the dominant response
of the buttocks during STS is characteristic of a visco-hyperelastic solid. This motivates
a Kelvin-Voigt material model with a non-linear spring element. Inspired by models of
soft tissues in this and other applications, three hyperelastic spring models are derived
in Appendix B, characterized by neo-Hookean, Mooney-Rivlin, and Ogden strain energy
density functions, respectively. A linear spring model, used in Chapter 3, is considered as

a baseline of performance.

The equation of a linear spring is well known,
Einear = kx (43)

where k is the spring stiffness and x is the lengthening (or shortening) of the spring from it’s
equilibrium state, as in Figure 4.8. With regards to the buttocks model, the displacement

x is the deformation, AL, from Equation 4.2.

Neo-Hookean and Mooney-Rivlin models are, in fact, Ogden-type models of first and
second order, respectively. A third order “Ogden” model was also derived, and the equiv-

alent spring equations of these hyperelastic models are

FnH = UnH ()\ — )\_2) (44)

Fyr = prrr (A= A72) + pre (A2 — 1) (4.5)
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Figure 4.8: Deformation of a spring.

Fo =01 (A=A"2) 4+ o2 (A2 = 1) + pos (A1 =721 (4.6)

where A is the principal stretch ratio,

A=< (4.7)

from the lengths defined in Equation 4.2.

These hyperelastic spring equations are used to describe the force developed in the

spring of the Kelvin-Voigt element under deformation.

A damper is used to describe the viscous property of the buttocks as,

Fi=co (4.8)

where ¢ is the damping coefficient.

Adding an elastogap [123] to the Kelvin-Voigt element alleviates the trouble of sticking

identified in previous work and enforces continuity in contact forces in STS. It accomplishes
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this by bounding the force developed in the damper as in Equation 4.9 and Figure 4.9. For

a negative spring force

Fspm'ng Fd < Fspring
Fdamper = _Fspring Fd > _Fspm'ng (49)
Fy otherwise

the contact force of the Kelvin-Voigt element is

F= Fsp’ring + Fdamper (410)

spring

d

force (N)

damper

m T T m

0 02 04 06 08 1
time (s)

Figure 4.9: Example effects of the elastogap model.

There are now four forms of candidate buttock models, all with parameters to be

determined, and it remains unknown which is the best for use in STS prediction.

4.2.2 Parameter identification

The behaviours of the constitutive models depend heavily on their parameters. These

parameters, shown in Table 4.1, are physical in nature and assumed to be consistent for
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each participant over the trials performed. Natural variability, which may motivate a desire
to define subject-specific parameters, is neglected and parameter values are sought that
best represent the buttocks across the participant population for use in the biomechanical

model.

An optimization scheme was used to identify best parameters for each model across
the population of participants based on the experimental data collected. The experimental
kinematics of each subject is used to drive their pelvis model for all trials they completed.
This biomechanical model is augmented with each buttocks model. The corresponding,
simulated, kinetics are calculated by the candidate buttocks model and compared to ex-
perimentally collected kinetics. Errors in the simulated kinetics are evaluated in a least

squares sense as

i N\ 2
sumof squared errors = Z <E - E) (4.11)
i=1

where n is the number of frames, F; is the vertical buttocks force measured at the ith
frame and ﬁ’z is the force produced by the model from the geometry of the ith frame. The
best parameters for each model come closest to reproducing the experimental force when
driven with experimental kinematics.

Parameters were unbounded with the exception of the damping coefficient. Because
the rate of deformations recorded in experiments, shown in Figure 4.6, were particularly
low, it is possible that this parameter was not adequately excited for identification and a
lower limit of 371 Ns/m [72,134] was set in the parameter optimization routine.

The identified parameters are provided in Table 4.1. That the identified values of the
damping parameters are the minimum possible value, in three of four models, reaffirms
the assumption that there is a lack of data for determining the damping coefficient. The

simulated force profiles from the experimental kinematics are shown in Figure 4.10.

When simulated with experimental kinematics, all of the spring models had a mean
response similar to the experimental mean. The Mooney-Rivlin model tracks the mean

best. The linear model and neo-Hookean model are underestimating the force for a majority
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Table 4.1: Parameters of the four candidate spring models.

Model Parameter | Identified value
k 12700 N/m
Linear
& 371 Ns/m
neo-Hookean
CnH 371 Ns/m
park 213 N
Mooney-Rivlin UM R2 34 N
CMR 371 NS/HI
Ho1 2090 N
Ho2 94 N
Ogden Hos 7650 N
Q -0.7 -
co 815 Ns/m
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Figure 4.10: Experimental forces leading to seat-off versus simulated forces from the can-

didate buttocks models.

of sitting. All models over-estimate force close to seat-off (approximately 0.9 to 1.0 s in
Figure 4.10) although the neo-Hookeam model makes the closest approximation. There
are differences in variance of forces also. All models other than the Ogden model have
greater variability than was seen in experiment, with the neo-Hookean having the greatest
standard deviation. From this evidence, it is assumed that one model will prove best for

representing general buttocks. A statistical analysis is performed to identify this model.
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4.2.3 Statistical analysis

The goal of this exercise is to determine the buttocks model to be implemented in the
biomechanical model, introduced in Chapter 3. The biomechanical model may be described
as a Frankenstein model, with sub-models and parameter values from across the literature
gathered together. It is not representative of an individual; similarly, its buttocks is not
expected to be representative of one individual, but it is important that it have buttocks
that could reasonably belong to a person. For this reason, the preferred buttocks model is

one that best represents the participant population.

In this case, “best” was decided as the model whose kinetic response to experimental
kinematics best matched experimental kinetics. The sum of squared errors was calculated
as in Equation 4.11 for the four optimized models for each simulated trial and normalized to
the number of frames per trial. Errors within each participant were averaged so that each
participant-model pair has an associated error. The errors of the models are right skewed,
as seen in Figure 4.11. As the distributions of errors are non-normal, the Kruskal-Wallis
test (kruskalwallis in MATLAB) rather than the classical analysis of variance (ANOVA),

was used to compare them.

The Kruskal-Wallis test rejected the null hypothesis that each models errors come from
the same distribution. From this result, a multiple comparison test was performed, using
the MATLAB function multcompare, to determine which of the models have statistically
different errors. This test concludes that the mean rank of the third-order Ogden model is
statistically different from the mean ranks of the linear (p<0.04) and neo-Hookean (p<0.01)
models. Although the test did not show statistical difference between the Mooney-Rivlin
model and linear (p<0.47) model, both the linear and neo-Hookean models were removed
from consideration on the bases that they are statistically inferior to the third-order Ogden
model and that their mean errors are greater than the mean error of the Mooney-Rivlin

model.
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Figure 4.11: Errors of the candidate buttocks models.

Next, the responses of the two remaining spring models to deformation were compared.
The range of stretch (Equation 4.7) found in experiment was applied, with results plotted
in Figure 4.12. It is important to keep in mind that elastic and viscous effects are lumped
together in the experimental results and the lines of the modelled force are for the candidate
springs alone. It is also useful to remember that the dampers modelled in the Kelvin-Voigt
elements of the buttocks are able to contribute damping forces up to the magnitude of the
spring force. With this in mind, both models follow the trend of experimental data between

stretches of 0.7 and 0.4 reasonably well. Between stretches of 1 and 0.7, the Ogden model is
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specifies quite a large contact force (with a curve under the experimental data) reflective of
the separation of the experimental force curve and the Ogden model’s force curve in the 0.2s
before seat-off in Figure 4.10, while the Mooney-Rivlin model performs markedly better.
Between stretches of 0.4 and 0.2, the Ogden model dictates the material phenomenon of
yielding followed by strain hardening to a level that is not seen in the experimental data,
while the Mooney-Rivlin model dictates particularly large forces but no such anomalous
behaviour. Over all, the force-deformation(stretch) behaviour of the Mooney-Rivlin spring
more closely represents the force-deformation behaviour of the buttocks seen in experiment,

and is the preferred model.
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Figure 4.12: Force-deformation behaviour of the participants’ buttocks and the candidate

spring models.

4.3 Sit-to-stand prediction with better buttocks

The purpose of developing this buttocks model is to use it in a biomechanical model for

STS prediction. The “old” linear buttocks model [73] used in Chapter 3 was removed
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from the biomechanical model and the “new” Mooney-Rivlin buttocks model determined
in Section 4.2 replaced it. The weighting factor w; in Equation 3.14 was increased from
103 N2 to 1.3x10% N2 so that the magnitude of the errors produced using the new buttocks
model were similar to those using the old buttocks model for the initial motion paths. The
STS prediction routine outlined in Chapter 3 was run again for the updated biomechanical
model for a 46 cm chair. This produced the STS motion in Figure 4.13. As before, the

gross motions predicted are consistent with healthy STS.

Figure 4.13: Evenly spaced snapshots of predicted sit-to-stand.

4.3.1 Comparison with the prediction using the Chapter 3 model

The optimal coordinate paths of STS from a 46 cm chair are shown in Figure 4.14 for
models with each the old and new buttocks. The STS motions predicted using each model
are comparable with a major difference being STS duration and three minor differences
in kinematics. As can be observed, the prediction reshapes the paths of the generalized
coordinates and lengthens the duration of STS to 1.55 s with the new model, compared
to 1.24 s with the old model. Even so, 1.55 s is much faster than STS durations reported
in the literature. The first minor difference is that the new buttocks model lends itself to

a STS with less anterior-posterior translation of the hip prior to STS. The second minor
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difference is that the hip of the model with the new buttocks doesn’t extend prior to flexion.
And the last minor difference is that the is that the hip of the model with the new buttocks
flexes more deeply. These kinematic differences are reflected the first two snapshots of both
Figures 4.13 and 3.7 in that the model with the new buttocks “digs into” the chair before

seat-off, while the previous model does not.

HAT inclination (rad)
Y hip height (m)

: / § L X hip AP location (m)

value

|
0571 1 o event 0 beginning of STS
: : : ————— event 5 standing on
o1 | g
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Figure 4.14: Optimal sit-to-stand from a 46 c¢m chair with the new buttocks model, com-

pared to the results of Chapter 3 (dashed curves and dotted vertical lines).

Although the STS motions may be similar, there are large differences in the joint torques
associated with the optimal STS of each model, as seen in Figure 4.15. The over-all trends
of joint torques are similar but the peak torques required are lower with the new buttocks

model, although they are be sustained longer.

According to Equation 3.15, the optimal STS of the model with the new buttocks is
more costly, and requires greater exertion, than the old model. In this sense, it can be
thought of as being more difficult, which is true in the sense that it is more difficult to

get up from a chair with a softer cushion than a firmer one [135]. Perhaps it is also true
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Figure 4.15: Joint torques for optimal sit-to-stand from a 46 cm chair with the new buttocks
model (solid curves), compared to the results of Chapter 3 (dashed curves), compared to

joint torque strengths, reported in Schultz et al. [113].

that a softer chair should be preferred by a person reluctant to produce large joint torques,

preferring to sustain moderate joint torques for a longer duration of STS.

4.3.2 Comparison with healthy sit-to-stand

To examine the validity of the STS prediction, it is compared to normative data from
the literature in Figures 4.16 and 4.17. The predicted angles closely follow the normative
trends during STS, although the hip appears particularly flexed in sitting and standing
and the knee is particularly flexed in sitting. Although STS is predicted to take longer
with the new buttock, only three of the six events of STS are predicted within the range

of times reported in the literature.

83



190t

(=)
E oo
~— 150 P
Q P 4
2 s
© 110 k 7
< 70 : :
0 20 40 60 80 100
190
”~ - .
o 1501 -~ — — — prediction
8 // experimental mean
< 110} // experimental SD

70 - :
0 20 40 60 80 100

190

o 150

~

c e ——

© 110 — i~
70

0 20 40 60 80 100

percent of motion
Figure 4.16: Predicted sit-to-stand joint angles profiles compared to experimental sit-to-
stand, measured by Nuzik et al. [58]. Seat-off of the prediction is aligned to 47 percent

motion. The root mean square errors are 8.9 deg, 8.0 deg, and 4.8 deg at the hip, knee,
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Figure 4.17: Predicted sit-to-stand event timing compared to experimental means, standard

deviations, and ranges, measured by Kralj et al. [27].

4.4 Updating the description of sit-to-stand

In both Chapters 3 and 4, what appears to be a relatively fast STS has been predicted.
The predicted STS motions had durations of 1.24 s and 1.55 s respectively, while Kralj et
al. suggests the duration should be 3.33 s on average [27] and gives a range from 2.12 s to

5.86 s, as seen in Table 4.2.

As mentioned in Section 4.1, many of the participants in the STS experiment completed
STS more quickly than even the fastest subject in the study by Kralj et al. did. For purpose
of comparison, the trails collected in the STS experiment with clear STS initiation (eventy)
and termination (events) were processed according to the methods of Kralj et al. These
138 trials were analysed for similarity to Kralj et al. in terms of kinematic and kinetic
trace patterns, existence of STS events, and duration of STS phases: initiation (eventy to

eventy ), seat unloading (event; to event,), ascending (eventy to event,), and stabilization
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Table 4.2: Comparison of event timings (s) from two sit-to-stand experiments.

o seat- standing
1nitiation

off on

study | measure event eventy | eventy | events | eventy events
average 0.00 0.91 1.13 1.52 2.44 3.33

Kralj | standard deviation 0.00 0.38 0.39 0.40 0.55 0.56
et al. | maximum 0.00 2.94 3.12 4.28 4.92 5.86
minimum 0.00 0.40 0.62 0.82 1.02 2.12
average 0.00 0.88 1.51 1.84 2.58 2.76

This | standard deviation 0.00 0.62 0.62 0.65 0.70 0.75
study | maximum 0.00 3.19 3.50 3.57 4.28 5.29
minimum 0.00 0.00 0.62 0.78 1.33 1.64

(event, to events) and overall STS duration with comparison to timing reported in Kralj

et al.

Comparison of eventq criteria indicate that they occur at times that are statistically

significantly different, and one does not always precede the other. The same is true of

events criteria. To promote consistency of event definitions across trials and participants,

eventy and events definitions from Kralj et al. were modified from their presentation, as

Equations 2.1 and 2.6 respectively, such that

dM. dM.
event : 2l > 2.5% ( Z)
dt dt peak—to—peak
eventy : Fy = 99%bodyweight

(4.12)

(4.13)

Trials were synchronized to the beginning of standing (event0), and event times are

presented in Table 4.2 where they are compared with the findings of Kralj et al. The par-
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ticipants in the experiments performed STS an average of 0.57 s faster than the participants

of the previous study.

It is hypothesized that the participants in this study stand up quicker than the par-
ticipants in the study by Kralj et al. because of differences in study environments and
populations. Timing differences remained after controlling for the environmental factor of
seat height. In terms of populations, no sex differences were observed, but the participants
in Kralj et al. are both significantly taller at the hip and significantly older than in this
study. It is established that younger adults typically perform STS more quickly than rel-
atively older adults [6,113], which may explain why participants in this study (24.9 years
(3.6)) found a quiet standing posture 0.57 s more quickly than was reported for the older
population (32.6 years (6.7)).

In light of these findings, it is proposed that the results of this study are more repre-
sentative of normative STS for a healthy, young adult population between 1.54 and 1.91
m tall, and should be used for this population when seat-height is within standard range

of 42 to 51 cm [124].

4.5 Discussion

In this Chapter, the force-deformation behaviour of buttocks during STS was measured
and modelled. From the tissue models considered, the Kelvin-Voigt element with Mooney-
Rivlin spring faithfully represented the data collected in the STS experiment. It is a visco-
hyperelastic model, characteristic of the tissues of the buttocks. It is computationally
inexpensive and produces plausible forces over the measured range of STS tissue deforma-
tions. And, when implemented in the biomechanical model and STS prediction routine,
this buttocks model allowed for prediction of STS closer to what has been reported in the

literature than the model from Chapter 3.

87



STS is a challenging and interesting motion to study in part because of the large ranges
of motion the body goes through. In this Chapter, it was observed that buttocks experience
large deformations, on the order of centimetres, and transfer proportionally large forces,
with maximums in the vicinity of 3/4 body weight, during STS. The buttocks models that
exist in the literature are either not valid for these large ranges of deformation or are too
complex for a dynamic optimization problem. The modelling work in this Chapter has ad-
dressed these shortcomings by building candidate buttocks models without discontinuities
in force at lift-off and without sticking, and by tuning these models to experimentally col-
lected STS data. After statistical analysis, two of the four models remained in contention.
The Mooney-Rivlin model was chosen because it best represented the force-deformation

behaviour measured.

The buttocks model proposed will, however, fail for models that are exceptionally more
massive than the participants in the experiment. As is seen in Figure 4.10, the Mooney-
Rivlin spring described by the parameters in Table 4.1 has a maximum compressive strength
of approximately 1200 N (600 N x2) and should not be expected to represent the buttocks
force-deformation behaviour of models of similar or greater weight. The heaviest subject
in the experiments weighed approximately 916 N and, if a considerably heavier subject is
of interest, it may be worth-while to collect subject-specific data on this person and re-

parameterize the model or to use the buttocks model with a linear spring from Chapter 3.

The Kelvin-Voigt buttocks model with Mooney-Rivlin spring has proven useful for
applications of STS simulation and prediction. When implemented in a STS prediction
routine it has produced a STS motion with over-all patterns and the events characteristic
of healthy STS. These results, for a healthy model, again give confidence in the validity of
the proposed buttocks model.

The temporal STS data collected in the experiment provide evidence that healthy young
adults, such as the participants in the study, complete STS more quickly than what has

been reported in Kralj et al, as shown in Table 4.2. This discovery is especially relevant to
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this Chapter as the timing of STS events predicted with this better buttocks are all within
the range of event times observed in the experiment. From the results of this Chapter,
the agreement of the kinematic trends and accurate timing of the predicted STS compared
to experimental STS, there is strong evidence that the models built are predicting a STS

motion characteristic of healthy young adults.
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Contributions of Muscles to

Sit-to-Stand

Voluntary motion is the result of coordinated contraction of skeletal muscle. The muscles
produce moments about joints dependent on muscle force and musculoskeletal geometry.
Introduced in Chapter 2, Garner’s 8-muscle musculoskeletal model is the best-known for
sit-to-stand (STS) prediction [104] and, inspired by his recommendations to include more
uniarticulate muscles, the model in this Chapter includes 10 muscle units representing the
major flexors and extensors of the lower extremity [120]. These muscles are iliopsoas, rectus
femoris, vasti, gluteus maximus, hamstrings, tibialis anterior, gastrocnemius, soleus, flexor

digitorum longus, and tibialis posterior as seen in Figure 5.1.

Section 5.1 of this Chapter details the construction of a musculoskeletal model built
upon the rigid link model of the previous Chapters. This model is built with attention
to the modelling work of previous biomechanists and is strongly motivated by studies of
human anatomy and physiology. After incorporating the model of musculoskeletal geom-
etry into the three-link-model, Section 5.2 describes how information from the muscles is
incorporated into the STS prediction routine of Chapter 3, and the remaining sections

discuss the implications of considering muscular effort in STS prediction.
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Figure 5.1: Major flexors and extensors of the lower extremity.

5.1 Modelling musculoskeletal geometry

Details of musculoskeletal geometry are required to include muscles in the biomechanical
model formed in the previous Chapters. Depending on the application, this geometry
may include moment arms, lengths, effective attachment points, and lines of action of the
musculotendinous units, which will be referred to as muscles for brevity. In this Chapter,

knowledge of moment arms calculated from effective attachment points will be sufficient
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for analysis. It is a non-trivial task to integrate experimental geometry data from the

necessary variety of sources for a system of muscles.

Muscle path modelling is a common way of describing this geometric information. In
lower extremity muscle path modelling, the path of a muscle is (in theory) determined
experimentally and often described using a set of attachment points, via points (points the
muscle is constrained to pass through), and wrap points (points the muscle is conditionally
constrained to pass through). Wrapping surfaces (geometric constraints on the muscle
path) have also been in muscle path modelling, most commonly in the upper extremity
[115]. These muscle path models are typically built for a biomechanical model of specific
stature for a specific motion, and challenges arise when the model of interest is of a different
stature or a different motion is of interest. The dataset of White et al. [80] is a model of
muscle paths, designed for gait, specifying attachment points, one via point for each of the
iliopsoas, gastrocnemius, tibialis anterior, flexor digitorum longus, and tibialis posterior
muscles, and recommending an alternate path modelling strategy from Brand et al. [1§]
for the quadriceps. A second data set, from Carhart [81], was designed for use over slightly
larger ranges of joint angles and includes many more via points and wrap points. The
musculoskeletal geometry in this work is based on the model developed by White et al.
referred to as the White model, with influence from the data set provided by Carhart,
referred to as the Carhart model. The musculoskeletal model developed in this Chapter
meets the challenge of extending these models for the biomechanical model from Chapter 3
and Chapter 4 and modelling musculoskeletal geometry over the entire ranges of healthy

joint angles presented in Table 2.2.

A key advantage of this strategy of modelling musculoskeletal geometry is that muscle
origins, insertions, as well as effective origins and insertions, lines of action, moment arms,

lengths, and velocities are all available and consistent within the model.
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5.1.1 Musculoskeletal model mapping

While neither the White model nor the Carhart model is appropriate for this work, because,
for example, both generate negative muscle moment arms during a healthy STS motion,
there are insights gained from each. The White model is unique in providing locations of
muscle origins and insertions in relation to joint centres as well as guidelines for subject-
specific scaling [80], while the Carhart model provides further detail about muscle geometry
at larger ranges of motion [81] and is a foundational component of the OpenSim Gait
models [136].

A first step in representing the musculoskeletal geometry for the model in this Chapter
was scaling the White model to the three-link model and augmenting it with the Carhart
model. This augmentation was accomplished by mapping each segment of the Carhart
model to the same segment in the White model in a least squares sense using all points
in common between the segments of each model. It was necessary to allow rotation (and
translation) of the Carhart model because anatomical axis definitions (and joint centre
locations) were not provided by Carhart. The points from the White model were then
discarded, leaving the musculoskeletal geometry in Figure 5.2. These points describe the
initial musculoskeletal geometry of the model and will be modified and/or tuned before

their use in a motion prediction routine.

5.1.2 Geometric constraints and muscle wrapping

In the classic case of gait analysis, it may be true that via and wrap point models are
sufficient when modeling the musculoskeletal geometry of the lower extremity because the
range of joint angles is relatively small, as was seen in Table 2.2. However, when motions
such as STS are of interest, a model of musculoskeletal geometry valid for a much larger
range of joint angles is required. The potential for errors due to simplifications in muscle

path modelling magnifies as the joint’s range of motion increases, reducing the accuracy
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Figure 5.2: Attachment, via, and wrap points describing musculoskeletal geometry initially.

of the estimated muscle forces. Models such as the patellar pulley model, recommended
in the White model, aim to address the need for accurate musculoskeletal modelling of

anatomical constraints.

The patellar pulley model is a strategy of representing the effect of patellofemoral artic-
ulation on the moment arms of the quadriceps muscles about the knee [18]. In the patellar
pulley model, the patella is idealized as an infinitely long and infinitely thin frictionless rod.
The rod runs in the medial-lateral direction and its location is determined by the angle

of the knee joint and from the effective radius of the femoral condyles (R;) and patellar
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thickness (7)), as in Equations 5.1 and 5.2 where positive 0 is knee flexion, positive X is
anterior, and positive Y is proximal in the femoral reference frame as described by Brand
et al. [18] and shown in Figure 5.3. Please notice that when 6 = 0, X5 > Ry and so, the
singularity in Equation 5.2 is not encountered. The location of the patellar pulley (Xg, Y5)
is plotted as a function of knee angle in Figure 5.4. This patellar pulley model is only valid
for smaller ranges of knee joint angle, because when the knee goes into deep flexion (> 80
degrees in Figure 5.4) it specifies that the patella run up the thigh (which is unrealistic -

try flexing your knee.)

Ry +1T,) cost Xp>R
Xy — (Ry +T,) B f (5.1)
Ry otherwise
—(Rf+Tp) sin @ Xp >Rf
Yp = Ry — (Ry +T,) cost (5.2)

—(Rs+1T,) sinf— otherwise

tan 0

Figure 5.3: Femoral reference frame for patellar pulley model.

The patellar pulley model was modified in two ways before implementation in this

biomechanical model. First, the Y value was adjusted such that the minimum value is
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Figure 5.4: Patellar pulley location assuming typical female skeletal geometry [120, 137].
Ypre is defined in Equation 5.5.

chosen when the knee is in flexion, as in Equation 5.5 and shown as the dashed line in

Figure 5.4.

Y1 = — (Ry +T,) sind (5.3)

Ry — (Ry +1T,)cost
tan ¢

YBQ = — (Rf + Tp) sinf — (54)

Yire = V2 X < Ryand Ypy < Yp (5.5)
Y51 otherwise

Second, the axis of the patella defined in the patellar pulley model is given three-
dimensional geometry. That is, the pulley was given a radius. This was accomplished by

bringing the point (Xpg, Y,..) at distance

lengthye = \/ X% + Y2 (5.6)

pre

96



from the origin, toward the knee joint centre by one patellar thickness, as in Figure 5.5
such that the location (X, Y'), as in Equations 5.7 and 5.8, is representative of a point on

the articulating surface of the patella.

(XB’ Ypre)

Figure 5.5: Patellar pulley models with pulleys of radius (a) 0 (please note, a small radius

is shown for visualization purposes), and (b) patellar thickness.

¥ - XBlengthpTe —Tp

lengthpyre

v _ Yprelengthpm —Tp

lengthpy.

With reference to the convention shown in Figure 5.6, the patellar pulley is now speci-
fied in the thigh reference frame with centre at point (X,Y’) with a medial-laterally running
long axis (0, 0, 1) and radius of patella thickness, as in Appendix C. By including proximal
and distal attachment points of the vasti and rectus femoris, this patellar pulley becomes
a reasonable three-dimensional model of a patellar obstacle for modelling quadriceps ge-

ometry.

This cylindrical wrapping geometry has certain benefits; it does not have anatomically

unnatural edges or vertices where a muscle may contact it, it is relatively simple to de-
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Figure 5.6: Points, dimensions, and directions of interest when modelling musculoskeletal
geometry that includes a cylindrical wrapping constraint. Please refer to Appendix D for

full details.

fine mathematically, and it will constrain the muscle to one side of the geometry in the

musculoskeletal model which does not contain connective tissues found in the human body.

Without inclusion of the patella in the musculoskeletal model, the moment arms of
the vasti and rectus femoris would have become negative within the natural range of knee
motion, which is nonphysiological. Further anatomy requiring extra attention in muscu-
loskeletal modelling was identified by driving the joints of the model through their full
ranges of motion [76] and examining muscle geometry curves for anomalous behaviour.
[liopsoas and gastrocnemius were also found to produce negative moment arms at larger
ranges of joint motions, and gastrocnemius had discontinuities in length where its wrap
point is activated or deactivated. The alternate approach of representing anatomical con-

straints using three-dimensional cylindrical geometries was implemented for these muscles

98



also, as described in Appendix C. The mathematical model of the muscle path wrapping
freely over the surface of a frictionless cylinder of infinite length is derived and presented

in Appendix D.

5.1.3 Optimization of musculoskeletal geometry

Of the muscles included in the model, iliopsoas, vasti, gluteus maximus, hamstrings, and
gastrocnemius are equivalent muscles and representative of a group of muscles in the
Carhart model. The geometry of these equivalent muscles was determined as the weighted
average of their comprising parts where individual muscles are weighted by their maximum

isometric force, as described in Appendix C.

After scaling the White model to the stature of the rigid-link model, mapping the
more detailed Carhart geometry to that model, adding cylindrical wrapping constraints,
and combining muscle groups, this Frankenstein model contains no musculoskeletal com-
ponent exactly as described in its source. Although known inaccuracies in modelling were
addressed by this scheme, discrepancies were also introduced. Therefore, the model was
tuned next to mitigate these discrepancies. In the tuning of the musculoskeletal model,
the locations of via points and geometries of the cylindrical constraints were optimized to
best match experimentally determined flexion-extension moment arms and muscle lengths
reported in the literature. Details of this tuning are included in Appendix C. The resulting

moment arms are shown in Figure 5.7.

The final model expresses a point of interest in a local coordinate system, specified by
the frame in Table 5.1. The principal axes of these frames are defined using the anatomical
landmarks and scheme proposed by Mansour and Pereira [138], although the origins have
been relocated. In this model, the origin of both the pelvis and thigh frames are defined
at the hip joint centre, the origin of the leg frame is the knee joint centre, and the origin of
the foot frame is the ankle joint centre, as shown in Figure 5.8. The final model is included

as Table 5.1 and shown in Figure 5.8.

99



8r .
“'-IIIIIIIII.III..... |||opsoas
41 e, — = = rectus femoris
’ gluteus maximus
M — ===x=ss hamstrings
AT S —m - vasti
-8 . . . . ‘ === == gastrocnemius
-30 0 30 60 90 120 soleus
hip angle (degrees) e tibialis anterior
’g 3 flexor digitorum longus
o [ I = = = tibialis posterior
E 4 prmmm—
O - "trnawmngmmawent
= 4
o g . . . . . —
= -135 -100 -80 -60 -40 -20 010

knee angle (degrees)

--—-—-—-—-—.-_-.-.-'

0 [ = o o o e o e e e e

S4B

-8 : : : ;
-50 -4 -20 0 20

ankle angle (degrees)

Figure 5.7: Muscle moment arms. Moment arms of biarticulate muscles are shown for a

configuration with the alternate joint at 0 degrees.
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Table 5.1: Musculoskeletal geometry.

Muscle Type Frame | Location (m)/Direction/Radius (m)
proximal attachment | pelvis | (-0.0718, 0.0183, 0.1032)
via point pelvis | ( 0.0316, 0.0048, 0.0364)
via point pelvis | ( 0.0318, 0.0013, 0.0151)
Iliopsoas cylinder centre thigh | ( 0.0000, 0.0000, 0.0000)
cylinder long axis thigh | (-0.0085, -0.0919, -0.0137)
cylinder radius - 0.0171
distal attachment thigh | (-0.0185, -0.0185, -0.0554)
proximal attachment | pelvis | ( 0.0319, -0.0190, 0.0410)
cylinder centre thigh | patella centre
cylinder long axis thigh | (-0.0100, 0.0385, -0.0100)
Rectus femoris | cylinder radius - 0.0146
via point leg ( 0.0560, -0.0169, -0.0072)
via point leg ( 0.0515, -0.0107, -0.0341)
distal attachment leg ( 0.0444, -0.0012, -0.0759)
proximal attachment | thigh | (0.0209, -0.0406, 0.1773)
via point thigh | (0.0263, -0.0313, -0.2376)
cylinder centre thigh | patella centre
cylinder long axis thigh | (-0.0100, 0.0385, -0.0100)
Vasti
cylinder radius - 0.0159
via point leg (0.0560, -0.0117, -0.0011)
via point leg (0.0507, -0.0069, -0.0355)
distal attachment leg (0.0444, -0.0012, -0.0759)
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Table 5.2: Musculoskeletal geometry. Continued.

Muscle Type Frame | Location (m)/Direction/Radius (m)

proximal attachment | pelvis | (-0.1011, 0.0333, 0.0277)
Gluteus via point pelvis | (-0.0740, 0.0333, -0.0172)
maximus via point thigh | (-0.0488, -0.0542, -0.0890)

distal attachment thigh | (-0.0114, -0.0542, -0.0890)

proximal attachment | pelvis | (-0.0448, 0.0174, -0.0509)
Hamstrings

distal attachment leg (-0.0015, -0.0009, -0.0383)

proximal attachment | leg ( 0.0199, -0.0077, -0.1575)
Tibialis via point leg (10.0385, 0.0302, -0.4219)
anterior

distal attachment foot ( 0.0708, 0.0152, -0.0290)

proximal attachment | thigh | (-0.0030, -0.0125, -0.3539)

cylinder centre thigh | ( 0.0009, -0.0003, -0.3703)

cylinder long axis thigh | ( 0.0076, -0.0480, -0.0023)
Gastrocnemius

cylinder radius - 0.0178

via point leg (-0.0270, 0.0081, -0.1175)

distal attachment foot (-0.0388, 0.0230, -0.0215)

proximal attachment | leg (-0.0005, -0.0021, -0.1474)
Soleus

distal attachment foot (-0.0388, 0.0230, -0.0215)

proximal attachment | leg (-0.0073, 0.0100, -0.1991)
Flexor via point leg (-0.0282, 0.0189, -0.4125)
digitorum via point foot ( 0.0000, 0.0318, -0.0277)
longus via point foot | ( 0.0298, 0.0251, -0.0021)

distal attachment foot ( 0.1049, -0.0319, -0.0647)
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Table 5.3: Musculoskeletal geometry. Concluded.

Muscle Type Frame | Location (m)/Direction/Radius (m)

proximal attachment | leg (-0.0069, 0.0028, -0.1282)
Tibialis via point leg (-0.0083, 0.0468, -0.4385)
(0.0000, 0.0254, -0.0127)
( )

0.0345, 0.0254, -0.0310

posterior via point foot

distal attachment foot

pelvis

iliopsoas

Xpelvis
thig

rectus femoris

gluteus maximus

vasti

hamstrings

gastrocnemius

soleus
tibialis anterior
tibialis posterior (hidden)

flexor digitorum longus

Figure 5.8: The optimized musculoskeletal geometry.

103




Constructing a musculoskeletal model from component parts is a labourious exercise,
but the finished model provides reliable muscle geometry for any sagittal plane pose or
motion of interest, which is important for this application because the motions are not pre-
determined and their possible ranges are large. With the musculoskeletal system defined,

the next sections investigate the influence of muscles on STS.

5.2 Optimal control framework

In Chapters 3 and 4, a candidate motion (i.e. a motion that begins in sitting and ends in
standing) was evaluated in terms of its feasibility and required joint torques. These torques
were calculated by solving the equations of motion of the human system using inverse dy-
namics, as in the schematic of Figure 2.6. With the knowledge of musculoskeletal geometry
gained in Section 5.1, it is possible to hypothesize the muscle forces that created these joint
torques and to then consider these forces when evaluating the cost of a candidate motion.
This Section details the changes made to the optimal control framework of the previous
Chapters such that the solver may benefit from the biologically relevant information gained

from the musculoskeletal model of this Chapter in predicting STS.

5.2.1 The inverse muscle force approach

In the human system, muscles contract and, in accordance with their geometry, produce
moments about joints to move the body, as in Figure 2.6. Joint moments may be accurately
estimated given a sufficiently accurate estimation of muscle forces, from an electromyog-
raphy (EMG)-driven model [139] or from direct [140] or indirect measurement [141], and
a sufficient representation of the geometry of the system. From these joint moments, the
biomechanical problem may be solved forward and the resulting motions calculated. The
inverse problem, going from kinematics to muscle forces, introduces a problem of me-

chanical indeterminacy where there are multiple combinations of muscle forces capable of

104



generating a given net joint moment. Fortunately, this indeterminacy problem has been

tackled by many researchers although there is no perfect solution.

In this Chapter, the indeterminacy problem is managed using an optimization approach
after adopting four simplifying assumptions to the model [59]. The first three assumptions
made in this Chapter are non-ideal in that they simplify the human system beyond what
is physiological, but they make the problem substantially more manageable (by not in-
corporating models of the corresponding phenomena.) The first assumption is that are
there are no pre-defined patterns of co-contraction for the modelled muscles. The second
assumption is that maximum muscle forces are unaffected by the muscle length or rate of
change in length [142]. The third assumption is that muscles may generate force or relax
instantaneously [142], that is there are no muscle dynamics in the model. The fourth as-
sumption, which is physiological, is that the musculoskeletal system works in ways that are
efficient. This efficiency is not fully understood, but has been proposed as a minimization
of a function of muscle forces, muscle stresses, or muscle activations, as in Equations 2.10

to 2.12, for example.

After applying these assumptions to the model, the following static optimization prob-
lem may be solved to find a set of muscle forces, F', from the known net joint moments,

@, at any instant,
J'F=qQ

10 2
min such that (5.9)
=1 (PCSAl szn S F S Fmaa:

where J7 is the (Jacobian) matrix of moment arms, F),;, are the minimum and F,,,, are
the maximum allowable muscle forces at that time. In this problem, F,,;, is set to 5% Fyqz

where,

Foaw = TPCSA (5.10)

where PC'S A are the physiological cross sectional areas of the muscles. In accordance with

Arnold et al. [114], a specific tension (T') of 61 N/cm? was used for all muscles.
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Minimization of muscle stresses squared was chosen for the cost function because of
its popularity in the literature and because Anderson and Pandy showed, in their gait
prediction work, that it resulted in the greatest similarity between static and dynamic
predictions [142]. Alternate functions are available for use but have not been implemented

at this time.

Now, having defined minimization problem 5.9, it is possible to estimate the muscle
forces that would produce a candidate STS motion. It is also possible to evaluate the

required effort of that motion in terms of these muscle forces.

5.2.2 Objective function construction for optimal sit-to-stand

Again, as in Chapters 3 and 4, candidate motions are evaluated for optimality and feasi-
bility. In this Chapter, optimality is considered using a weighted sum of the time history
of active joint torques determined by inverse dynamics, as in Equation 3.15 reproduced as

Equation 5.11,
5 5 5
Ot orque = / A3 dt + / K3 dt + / H3,dt (5.11)
0 0 0
and the time history of muscle stresses determined from these torques. Here, the equality

constraint of Equation 5.9 is relaxed such that the effort of a motion in terms of its muscular

requirements is

5 10 F 2
tmuscles = Wi JTF - 2 2 - dt 5.12
Costaes = om | |ITF ~ QI+ p §<pcs,4i) (5.12)

where the weighting factor p is assigned a value of 10 m?, as per Ou [143] such that the
first term dominates and discriminates against physically infeasible “solutions”. The entire

COStmuscies term is given a weight of w,, = 10,

The cost,useies term is now added to the terms of Equation 3.16 and the overall cost of

a candidate STS motion becomes

cost = coStiorque + COStmuscies + COSterror (5.13)
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where,

5 5 5 5
COSterror = Wh, / errorydt + w, / erroridt + wy / erroridt + w / error’dt (5.14)
0 0 0 0

as was defined as Equation 3.14 in Section 3.2 with the weighting factors defined in Chap-
ter 4.

5.2.3 Computation of optimal controls

As in Chapter 3, an initial optimization problem is solved to establish a feasible STS
starting-point. The initial motion, the same as described in Section 3.2, is passed to the
model, and errors in feasibility are calculated from Equation 5.14. Bézier curve control
point locations are adjusted by fmincon in MATLAB [129] to decrease errors and the first
solution with zero associated error is used to seed the solver in a second optimization. The
second optimization problem is new to this Chapter. It is solved to establish a feasible ST'S
with plausible muscular demands. That is, the optimization routine of Section 3.2 is run
until a candidate motion is found with zero associated error (according to Equation 5.14)
where there is a solution to Equation 5.9 at all points in time. Whereas the solution of
the first optimization problem, used in previous Chapters, is (theoretically) mechanically
feasible, the solution of the second optimization problem, used in this Chapter, is also
(theoretically) biomechanically feasible. This solution is used to seed the solver in the

iterative dynamic optimization routine.

The iterative dynamic optimization routine is shown in Figure 5.9 and with further
detail in Appendix E. The backbone of this routine is the same as in Section 3.2, while
the difference between the two is the addition of muscular considerations for this Chapter,
highlighted using dashed borders. In this optimization routine, the initial motion is passed
to the model along with feasible and optimized muscle forces, calculated using Equation 5.9.
Control point locations are adjusted by fmincon to decrease cost (Equation 5.13), which

now includes adjusted muscle forces optimized using Equation 5.12. The optimal control
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points are those that minimize cost with zero associated error. The cost of this candidate
motion is recorded when the routine terminates. This process is repeated after elevating
the degree of each Bézier curve by one, giving increased freedom to possible solutions. This
process is iterated until successive solutions demonstrate convergence. The solution at the

end of this process is purely predictive STS for the musculoskeletal model.
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Figure 5.9: The iterative routine to determine an optimal sit-to-stand for the muscu-
loskeletal model. Components that are new from previous Chapters are highlighted using

a dashed border. Further detail is included in Appendix E.

108



5.3 Sit-to-stand prediction for a musculoskeletal model

The purpose of developing this musculoskeletal model is to use it in a biomechanical model
for STS prediction. The results of this Section demonstrate to what extent incorporating
muscular contributions in the motion prediction problem facilitates its solution. In this
Chapter, the biomechanical model of Chapter 4 was augmented with the iliopsoas, rectus
femoris, vasti, gluteus maximus, hamstrings, tibialis anterior, gastrocnemius, soleus, flexor
digitorum longus, and tibialis posterior muscles. To incorporate these muscles in the opti-
mal control problem, the cost function and iterative routine to determine an optimal ST'S,
introduced in previous Chapters, were updated to include considerations of muscle forces
and muscle stresses as in Equation 5.14 and Figure 5.9. The STS prediction routine was
run for the new musculoskeletal model. The resulting motion is shown as a series of snap-

shots in Figure 5.10. As before, the gross motions predicted are consistent with healthy

STS.

¢ ¢ ¢ ¢

LIVIETET)

Figure 5.10: Evenly spaced snapshots of predicted sit-to-stand.
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5.3.1 Comparison with the prediction using the Chapter 4 model

The optimal coordinate paths of STS are shown in Figure 5.11 for models without and
with muscles. The STS motions predicted using each model are comparable, with a major
difference being STS duration and four minor differences in kinematics. As can be ob-
served, the prediction reshapes the paths of the generalized coordinates and lengthens the
duration of STS to 2.00 s with the musculoskeletal model, compared to 1.55 s with the
Chapter 4 model. The first minor difference is that the musculoskeletal model lends itself
to a STS with a prolonged sitting phase, as can also be seen by comparing Figure 5.10 and
Figure 4.13. The second and third minor differences are that the HAT of the musculoskele-
tal model moves more moderately, in terms of range of inclination, and the hips of the
musculoskeletal model rise more abruptly than the model without muscles. The fourth,
and last, minor difference is that the hips of the musculoskeletal model tend to be more

anterior than the hips of the torque-driven model for the duration of motion.

HAT inclination (rad)

Y hip height (m)

! V4 i X hip AP location (m)

value

0571 b T event 0 beginning of STS
: : e event 5 standing on
of| :
' i
-0.5 H : L :
0 1 2 3

time (s)

Figure 5.11: Optimal sit-to-stand from a 46 cm chair with the new musculoskeletal model,

compared to the results of Chapter 4 (dashed curves and dotted vertical lines).
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Although the STS motions are similar, there are differences in the joint torques asso-
ciated with the optimal STS of each model, as seen in Figure 5.12. Generally, the mus-
culoskeletal model tends towards a STS motion that demands smaller flexion torques, but
larger extension torques for a shorter period of time. This preference for extension torques
is consistent with Figure 5.7, because the bulk of muscle mass and largest moment arms are
in the modelled extensor muscles. Also, looking to Figure 5.12, the musculoskeletal model
tends towards a motion with less demand to the ankles, which again seems reasonable

given that the modelled ankle muscles are generally smaller with smaller moment arms

than muscles crossing the knee and hip.
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Figure 5.12: Joint torques for optimal sit-to-stand from a 46 cm chair with the muscu-
loskeletal model (solid curves), compared to the results of Chapter 4 (dashed curves),

compared to joint torque strengths, reported in Schultz et al. [113].

Comparing the results according to Equation 3.15, the optimal STS of the muscu-
loskeletal model has a lesser cost, and requires less exertion, than the torque-driven model

of Chapter 4 (and, in fact, the Chapter 3 model). It is particularly interesting that account-
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ing for muscular demands in a motion’s cost drives the prediction problem to a solution

that is the most economizing of all STS predictions made in this thesis.

5.3.2 Comparison with healthy sit-to-stand

As in previous Chapters, the predicted STS is compared to normative STS data from
the literature. It is also compared to the temporal information from STS experiments as
reported in Section 4.4. In this Chapter, the predicted STS muscle forces are also compared
to the experimental findings of Roebroeck et al. [144]. It must be stressed that this last
comparison is a) to results of a descriptive study, rather than a normative one and b) to
experimentally measured EMG, which is related to, but not the same thing as, muscle

force.

The muscle forces found from the STS prediction are first divided by their maximum
possible muscle force, determined from Equation 5.10, before being compared with normal-
ized EMG, when available, in Figure 5.13. Three of the muscles, iliopsoas, flexor digitorum
longus, and tibialis posterior, investigated in this Chapter do not have corresponding EMG
data, which is not unexpected because their activity is impractical if not impossible to cap-
ture via surface EMG. The comparison of activity in the remaining seven muscles neglects
the complexities of the relationship between motor unit action potentials, the origins of
EMG, and muscle force (see Figure 2.6) and, therefore, analysis of these results is best
limited to observing on/off patterns in the muscles. Comparing the normalized muscle
forces and normalized EMG leads to two conclusions. First, of the seven muscles with
recorded EMG activity, the prediction correctly identifies six as producing force, with
the outlier being rectus femoris. Second, onset and offset patterns between the measured
EMG and predicted muscle forces are not always consistent. The most likely reasons for

this discrepancy and mitigating factors are discussed in the next Section.

Next, to examine the validity of the STS prediction, it is compared to normative data

from the literature in Figures 5.14 and 5.15; the temporal information reported in Fig-
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Figure 5.13: Normalized predicted muscle forces compared to normalized EMG (EMG
divided by maximum EMG from static isometric contraction trials) from the experiments
of Roebroeck et al. (in gray) [144]. Note that only normalized predicted muscle forces are
presented for the iliopsoas, flexor digitorum longus, and tibialis posterior muscles as their

activity was not measured experimentally.
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ure 5.15 is from the STS experiment in this thesis. The predicted angles closely follow the
normative trends during STS, although, as before, the hip appears particularly flexed in
sitting and standing and the knee is particularly flexed in sitting. STS is predicted to take
longer with the musculoskeletal model, and now five of the six events of STS are predicted
within a standard deviation of what was observed in experiment, with the remaining event

well within the range of times observed.
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5.4 Discussion

In this Chapter, muscles were added to the STS prediction problem. This work builds on
the recommendations of Garner, to include more uniarticular muscles when modelling STS
[104], and extends the torque-driven model of Chapter 4 to incorporate muscles forces into
the optimal control routine for predicting STS. By comparing the results of this Chapter
with the prediction results of Chapter 4 and to normative STS data from the literature, it is
possible to emphasize that not all joint torques are created equal, as they were quantified
in the earlier cost function, 3.16, but that a torque generated using a relatively longer
moment arm is mechanically efficient and a torque generated by a relatively larger muscle
is physiologically efficient, as is captured in the cost function 5.13. Including muscles in
the STS prediction problem and the cost function of this Chapter, makes it possible to
optimize around the muscular origins of joint torques, and is important to the biofidelity

of the resulting solution.

Section 5.1 of this Chapter detailed the construction of a musculoskeletal model built
upon the rigid link model of the previous Chapters. The challenges of musculoskeletal
model mapping and scaling were addressed as were the challenges of modelling muscle
geometry over large ranges of joint angles. Tackling these challenges meant updating
the patellar pulley model [18] to reframe it as a three-dimensional model with reasonable
kinematic tracking in deep knee flexion. It also meant designing a validated model of lower
extremity flexors and extensors for the popular deLeva model of female anthropometry [19].
The construction of this musculoskeletal model was, however, limited to the sagittal plane.
If, in future studies, other muscles or planes of motion are of interest, use of modelling and

validation strategies similar to that of Section 5.1 and Appendix C is strongly encouraged.

Incorporating muscles into the motion prediction problem was done in harmony with the
fundamental theory of Crowninshield and Brand that people move in ways that minimize

a function of muscle forces over time [99]. As is discussed in Section 5.2, no full muscle
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models were used when incorporating these muscles. This simplification has influenced
the solution space; for example, by neglecting muscle dynamics, non-physiological jumps
in muscle force or non-physiological magnitudes of muscle force at a given geometry are
possible. However, the magnitude of muscle force of a candidate solution is required to
be below its maximum force in idealized conditions, as in Equation 5.10. The possibility
of adding muscle activation dynamics and muscle contraction dynamics to the model is

discussed later in this Section.

In this Chapter, a cost function minimizing both torques and muscle stresses was im-
plemented (Equation 5.13). In previous formulation attempts, cost functions replacing
joint torques with muscle forces entirely (i.e. removing the costioque term in Equation 5.13
completely) were tested; however the solver failed to progress from the initial seed and this
strategy was rejected. It is suspected that the optimizer did not progress because the initial
guess is particularly inefficient, and because the cost was measured by a variable (muscle
stress) even farther removed than torques from the control (kinetics), which resulted in a
poorly conditioned solution space. This response of the system, where the solver fails to
progress from the initial seed, is also evoked when the weight of the cost,,ysees term, w,, in
Equation 5.12, is increased by an order of magnitude or more. Including muscles in the STS
prediction resulted in slower and more normative timing. However, the static optimization
routine that solves for muscle forces increased computation time drastically, from finding a
final solution within hours using the Chapter 4 model to days using the Chapter 5 model.
Nevertheless, muscular contributions have proven influential to predicting realistic ST'S,
and therefore, more efficient strategies of including these muscles and resolving their con-
tributions in a motion prediction routine should be investigated to obtain a more efficient

optimal control solution.

The muscle contributions predicted in this Chapter are similar to those found by pre-
vious researchers. For example, like Daigle, this study finds the uniarticular hip extensor,

iliopsoas, and the vasti primarily influential to STS [105]. Judging by the magnitude of
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the muscle force traces in Figure 5.13, if an ankle muscle is to be added to this list, it
should be tibialis anterior. There are, however, differences to predicted muscle contribu-
tions compared to those measured in the STS experiments of Roebroeck et al. [144]. These
are because of differences between the model and physiology and there are at least three
changes that may help to mitigate these discrepancies. The first possible change is to
include muscle synergies in the inverse muscle force problem, which may be reasonable
between the modelled quadriceps - rectus femoris and vasti, for example - and may force

reasonable activity in rectus femoris when none was predicted in this Chapter.

The second possible change is re-defining the cost function in stance. It has been true
in previous Chapters as in this one that the model assumes a standing posture demanding
a particularly low ankle joint torque (to minimize the defined cost function). Upon further
investigation differences between the predicted soleus muscle force and measured soleus
EMG in stance as displayed in Figure 5.13, evidence was found that healthy people tend
to stand with their centre of mass aligned more closely with the middle of the foot than
through the ankle [145]. It has been hypothesized that this phenomenon exists because
it economizes a person’s potential to ambulate from stance, even though it is not the
most economical in terms of muscular effort [146]. The origins of this phenomenon could
be tapped into directly if predicting a “Get Up and Go” motion [147], which could be
achieved by building a composite motion of STS followed by gait using Chapter 3 of this

thesis as a framework.

The third change is adding muscle activation dynamics and muscle contraction dynam-
ics to the model. This change would immediately address the physiologically inappropriate
abrupt changes in predicted hamstrings and tibialis anterior muscle forces. It would also,
likely, increase the duration of the predicted STS motion to make it even more in line with
observed STS timing. However, incorporating these dynamics adds considerable complex-
ity to the model that requires added validation and is therefore left as future work. On

a last, minor, note, judging by the inactivity of the flexor digitorum longus and tibialis
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posterior muscles, their inclusion in this model was likely superfluous, especially consider-
ing that the other uniarticular plantarflexor, soleus, has a superior moment arm and force

production potential.

Inclusion of muscle geometry and forces in the STS motion prediction problem has
been beneficial to finding a more human-like motion. In previous Chapters, STS motions
with gross motion patterns characteristic of healthy STS were predicted and normative
STS events were synthesized. In this Chapter, because of the addition of muscles, the STS

motion predicted also exhibits timing within healthy variability seen in experiments.

The musculoskeletal model designed in this Chapter allows for investigation into the
origins of STS. It is known anecdotally, and is represented in Figure 2.6, that changes to
the musculoskeletal geometry and muscle dynamics can impact STS. Including muscles in
this model makes it more useful for investigating pathology, progression of pathology, and
adaptation to intervention as they relate to STS, which will be important for future work

in STS prediction.
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Conclusion

This thesis presents a biomechanical model and motion prediction routine for discovering
purely predictive sit-to-stand (STS) motions. The model designed is the most comprehen-
sive planar model for predicting STS to date. The motion prediction routine is built on
the fundamental assumption that healthy people naturally prioritize mechanical efficiency
in motion. The resulting motion is convincing when compared to experimental kinetics

and kinematics of STS.

6.1 Previous state of the field

The body of research exploring healthy STS prediction is particularly small. In Chap-
ter 2, the five major works of STS prediction were introduced. Two of the five, by Daigle
and Domire, used models largely based on the model of Garner, but instead employed a
minimum time criterion to predict STS [24, 105] and subsequently solved for the fastest
possible STS motion, rather than an every-day STS motion. The work of Mombaur and
Ho Hoang used a geriatric model and focused on the interaction between that model and
a modelled assistive device. The remaining two works, by Garner and Ozsoy, provided the

most appropriate starting point for the research presented in this thesis. Garner built a
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musculoskeletal model for rising from seated [104]. He controlled his model through muscle
excitations to find a STS motion minimizing a function of muscle stresses and peak muscle
force rates. Ozsoy, instead, broke the STS motion into 5 phases. In each phase the joint
angles of the digital human model were represented as quartic B-splines with adjustable
knots. He implemented a multi-objective cost function in a highly constrained optimiza-
tion problem to optimize the knots and predict a STS motion [52]. The approaches of
researchers attempting to predict STS are unique, and, as was lamented in Chapter 2, it
is very difficult, if not impossible, to discuss which research decisions hold most merit as

validation attempts have been oversimplified in all of these works.

One research question that remained unresolved was how to model the buttocks. Gar-
ner’s buttocks model was the most useful of previous predictive STS researchers. He
modelled vertical contact forces between the buttocks and chair with a Kelvin-Voigt el-
ement with an exponential spring and linear damper [104]. However, as proved to be a
shortcoming with all investigated lumped parameter buttocks models, including those out-
side of this application, it didn’t provide physically plausible force values for the range of
natural tissue deformations in STS [71]. There are finite element models of adipose [74]
and muscle [75] tissues built from studies of pigs that are promising for use in human
buttocks modelling; however finite element models are too time-consuming for use in a
dynamic optimization routine of STS prediction. The most appropriate buttocks model
for STS prediction, previous to this thesis, was a Kelvin-Voigt model built by Wan and
Schimmels [73] to model off-road vehicle operators while seated. It models the buttocks
as a Kelvin-Voigt element with linear spring and linear damper, and is the model used in

Chapter 3 of this thesis.

With respect to musculoskeletal modelling, it is the nature of the field that there are
an abundance of non-validated, application-specific models of musculoskeletal geometry.
Garner included eight muscles, modelled for gait [18], in his biomechanical model and

recommended the inclusion of additional muscles [104]. Ozsoy excluded muscles from his

122



model altogether but made their inclusion a primary recommendation for future work.
Two of the most well known and accepted musculoskeletal models in the literature are
the White [80] model and Carhart [81] model. The White model is designed for use in
gait analysis and gives details on how to scale the musculoskeletal geometry to models of
different stature. The Carhart model is designed for use over larger ranges of joint angles.
However, neither of these models were able to accurately represent musculoskeltal geometry
for the large range of joint angles in STS, but they did provide the foundation of the model

of musculoskeletal geometry designed in Chapter 5 of this thesis.

6.2 Summary of thesis work

The goal of this thesis is to predict healthy STS. To this end the following work was com-
pleted: in Chapter 3 the biomechanical model and optimal control problem were defined,
in Chapter 4 the buttocks was modelled and STS was redefined, and in Chapter 5 muscu-
loskeletal geometry was modelled and the optimal control problem was recast to include
muscular effort. The remainder of this Section provides a more detailed summary of the

work produced in each chapter of this thesis.

In Chapter 3, a motion pattern imitating STS was synthesized and it was compared to
normative descriptions of healthy STS. First, the human was represented as three rigid links
in the sagittal plane. This model captures aspects of joint, foot, and buttocks physiology,
which makes it the most comprehensive planar model for predicting STS to date. Second,
candidate STS trajectories were described geometrically by a set of Bézier curves which
seem well suited to predictive biomechanical simulations. Third, with the assumption that
healthy people naturally prioritize mechanical efficiency, disinclination to a motion was
described as a cost function of joint torques, and for the first time, physical infeasibility

including slipping and falling. Using these models and optimal control strategy together
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has produced gross motion patterns characteristic of healthy STS when compared with

normative data from the literature.

Chapter 4 detailed the analysis of experimentally collected buttocks force-deformation
behaviour and the construction and evaluation of a constitutive model of buttocks for STS
prediction. Four candidate models of buttocks were characterized and it was determined
that the Kelvin-Voigt model with Mooney-Rivlin spring best matched experimental results.

This buttocks model was used in the remainder of the STS predictions in the thesis.

The temporal STS data collected in the Chapter 4 experiment provided evidence that
healthy young adults, such as the 15 participants in the study, complete STS an average
of 0.57 s more quickly than what was reported in Kralj et al. [27]. Given this informa-
tion, modifications to two of five STS event descriptions and updated temporal data were
proposed for use in describing normative STS of healthy young people from a standard

chair.

In Chapter 5, 10 muscles were added to the rigid link model of the previous Chap-
ters and a STS motion was again predicted and compared to healthy STS. This model
of musculoskeletal geometry was built with attention to the modelling work of previous
biomechanists and was strongly motivated by studies of human anatomy and physiology to
provide realiable muscle moment arms and muscle lengths for the natural range of sagittal
plane joint motions. Maintaining the assumption that healthy people naturally prioritize
mechanical efficiency, disinclination to a motion was described as a cost function of muscle
stresses, rather than joint torques, in this chapter. Using these new models and the new
optimal control strategy together produces gross motion patterns and normative events

characteristic of healthy STS.
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6.3 Contributions to the field

In summary, this thesis has made significant contributions to the fields of biomechanical
modelling and predictive simulation of STS in four main areas: validating STS predictions,
modelling the biomechanics of STS, modelling the musculoskeletal system, and proposing

a dynamic optimization routine for STS prediction.

First, gains were made in STS prediction validation in two areas. The first area is in
comparing predicted motions to normative STS data in the literature for the first time,
thereby establishing a benchmark for future work in STS prediction. This changes the tide
of the research where for 25 years researchers have not been able to say which decisions
in STS prediction produced better results. The comparisons made in this thesis make it
possible and desirable for a future researcher to compare their prediction to the predictions
made in this thesis, using these models and optimal control strategies. The second area is
in the updated definitions and timing of STS events for the purpose of describing healthy
STS. The new definitions supersede the seminal work of Kralj et al. [27] and are based on
visual motion capture and force plate data from 15 healthy young adults standing from a
46 cm chair. Notably, the time-scale information presented in this thesis is more consistent
with the notion that healthy young adults take less than 3 seconds to stand from seated [6],

making this update even more acceptable to the biomechanics community.

Second, significant advancements were made in biomechanical modelling for STS. This
thesis describes the most comprehensive planar model of a female human in STS prediction.
This is particularly relevant for a goal of predicting pathological STS because women have
proportionally more difficulty performing STS according to self-reporting studies [7]. Also,
for the first time, the buttocks model used in this STS prediciton work was characterized
by measured STS force-deformation buttocks behaviour. Lastly, the implications of fixing

the feet to the ground in STS prediction was acknowledged by describing disinclination to
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a motion as a cost function of physical infeasibility including slipping and falling, for the

first time.

Third, a minor contribution and a major contribution were made in the general area
of musculoskeletal modelling. The minor contribution is the extension of Brand’s patellar
pulley model for consistency with deep knee flexion and for a three-dimensional patella. The
major contribution is the creation of a model of musculoskeletal geometry for the popular
deLeva female anthropometric data set that is validated with respect to experimentally

determined moment arms published in the literature.

The fourth contribution is in proposing a dynamic optimization routine for STS pre-
diction. In this routine, candidate STS trajectories are described geometrically by a set of
Bézier curves that seem well suited to predictive biomechanical simulations. This new dy-
namic optimization routine allows for motions of gradually increasing complexity while the
model’s performance is improving and has produced gross motion patterns characteristic

of healthy STS when compared with normative data from the literature.

6.4 Recommendations for future research

There are at least three categories of future work that will add to and complement the
research reported in this thesis: work that addresses limitations of the research presented,
work that further develops the research as presented to make it more applicable to general
use, and work to expand on this thesis to approach a vision of a future where modelling and
simulation of biomechanical systems is inherent when discussing pathology and assessing
medical treatment options. The work that is recommended to address limitations of this

research is discussed first.

First, before applying the biomechanical models and motion prediction routines de-
veloped in this thesis to new research questions, it is advised that computation time be

decreased, for example by investigating direct collocation techniques, implementing code
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optimization, or moving this problem to a more powerful server. The optimization routine,
described in Chapter 5, is slow and increasing its speed would make it considerably more

practical for exploratory research.

Next, it would be prudent to explore more cost function forms when developing the
performance criteria for the STS motion. The ones used in this thesis, minimizing functions
of torque and muscle stress, produce realistic results but there are possibly others that
would be more representative of how people control a STS motion. It may be a worthwhile
exercise to apply an inverse optimal control approach to identify more optimal criteria [20]
and weighting factors. Along this line, it would also be relevant to look for cost functions
able to predict not only kinematics, but also muscle excitations that could be compared to

experimental EMG.

The results of Chapter 5 of this thesis support the notion that muscles are important
to the development and execution of motion patterns. While the muscles modelled in
Chapter 5 are validated in terms of the sagittal-plane moment arms across the natural
range of motion, they are not validated in terms of their lengths or moment arms in
alternate planes. If this model of musculoskeletal geometry is to be used to calculate
muscle activations or excitations, it will need to be tuned to account for these 3D effects
and will need to include muscle dynamics. If this model is to be used in a study interested
in joint moments in alternate planes, it should be tuned to known moment arms in those

planes.

It would also be valuable to validate the scalability of the model, specifically if it can

be used to predict subject-specific differences in STS motion patterns.

Depending on a future research question, it will be worth-while to expand on the
three-link model to consider a four (or more) link model, by adding degrees of freedom
at the spine (to free the pelvis) or the shoulder (to free the arms). If significantly non-
symmetric motions are of interest, for example if there is an asymmetrical pathology, it will

be important to extend the model to three dimensions by reducing the coupling between
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the legs and changing the revolute joints to joints more complex and more representative

of their anatomical counterpart.

This thesis proposed an iterative routine of STS “learning.” It would be enlightening
to investigate if this process is in harmony with theories of motor learning. If not, it
would be interesting to remodel this routine to better match what is known about motor
learning. However, if is relevant to theories of motor learning, it would be logical to apply

this strategy to more motions learned in this way.

This research direction gets particularly exciting if it becomes possible to model motor
learning, because it seems natural to adopt those theories to motion adaptation to changes
in biomechanics or the environment. For example, a subset of age-related changes may be
incorporated in the biomechanical model by adjusting the body segment parameters, and
in the control routine by increasing the cost of falling to investigate alterations in STS with
age. Other avenues of exploration include modelling the progression of degenerative dis-
eases and the effects of therapeutic intervention. Then, at the intersection of this research
work, it will be possible to examine when and how to intervene to promote health and well

being through modelling and predictive simulation of human motion.
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Appendix A

Experiments Performed

This appendix provides details on the subjects, equipment used, and protocol of the per-
formed experiments, the data from which informs the buttocks modelling in Chapter 4.
The Office of Research Ethics at the University of Waterloo approved the experimental

protocol and all participants gave informed consent to the study.

Subjects

Fifteen healthy subjects volunteered to participate in this study. The subjects had no pain
when sitting, standing, walking or going between these activities in the six months prior to
the study. Table A.1 summarizes the participants sex, age, height, mass and self-reported

physical training status.
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Table A.1: Summary of participant information.

Participant | Sex Age Mass Hip to Height Training
(years) (kg) floor (m) | (m) Status
PO1 male 29 80.0 0.90 1.79 average
P02 male 32 72.0 1.00 1.80 high
P03 male 25 83.9 0.96 1.83 average
P04 male 28 93.4 0.90 1.79 average
P05 female 24 72.6 0.88 1.73 average
P06 female 19 55.3 0.75 1.54 average
PO7 female 26 54.0 0.86 1.64 average
P08 female 26 55.0 0.88 1.63 high
P09 female 19 59.2 0.81 1.67 average
P10 male 25 70.0 0.98 1.80 average
P11 female 21 61.4 0.96 1.60 low
P12 male 24 79.4 0.97 1.85 high
P13 male 23 83.9 1.02 1.91 high
P14 female 29 49.0 0.90 1.58 average
P15 male 23 70.3 0.92 1.80 high
Average 24.9 69.3 0.91 1.73 average
Standard deviation 3.6 12.8 0.07 0.11 n/a
Maximum 32 93.4 1.02 1.91 high
Minimum 19 49.0 0.75 1.54 low
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Equipment

Figure A.1 is a block diagram of the experimental set-up. Calibrations of the motion
capture and force platform systems were performed at the beginning of each collection day

and occasionally between participants.

motion capture

force platforms
system

A 4

amplifiers

data acquisition unit

A

motion capture system software

A 4 A 4

point coordinates force plate
(mm) readings (V)
post-processing calibration

A 4 A 4

processed point
coordinates (mm)

\_/—\_/—

forces (N)

Figure A.1: Experimental data flow.

A pair of Advanced Mechanical Technology Inc. (AMTI) OR6-7 force platforms record
ground reaction forces in this study. After amplification, this data travels to the Optotrak
Data Acquisition Unit (ODAU). Six banks of Optotrak cameras captured the motions of 17
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optical markers organized into five rigid body clusters in the calibrated collection volume.

These markers are wired to a strober, which itself is wired to the ODAU.

The ODAU collects the force plate and Optotrak data, synchronously, in real time.
Sampling and digitization of force plate data was set to happen at 2048 Hz while Optotrak
data was collected at 100 Hz. From the ODAU, the data was passed to Northern Digital
Incorporateds First Principles software on the desktop computer, which records, processes,
and exports experimental data. This software also supports defining the global coordinate
system, calibrating the collection volume, and defining virtual markers in the Optotrak

system. Finally, the software is used to export the data as comma separated value files.

The motion capture data is exported as calibrated point coordinates in the global coor-
dinate system while the force plate data is exported in Volts. With respect to the kinematic
data, post processing included approximating the locations of markers that have been oc-
cluded during the experiment. Missing values were replaced using linear interpolation or,
if not possible, by holding the last known value. Force plate data in Volts was calibrated
to Newtons using calibration matrices provided by the original equipment manufacturer

and certified calibration technician.

Experimental protocol

Throughout the experiment, participants wore a system of four marker clusters: one cluster
of four on the right thigh, a cluster of four on the right leg, a cluster of four on the right
foot, a cluster of five on the sacrum of the pelvis, and a fifth cluster of three on the chair.
Adhesive tape and Velcro straps were used to hold these clusters in place. Palpation and
digitization of bony landmarks created virtual markers on locations including: the right
greater trochanter, each of the right medial and lateral femoral epicondyles, right medial

malleolus, anterior superior iliac spines and posterior superior iliac spines.
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A chair of 46 cm height was placed on one force plate. Sitting in that chair, the
participants were asked to place their feet fully on the second force plate in a comfortable
location where they would not need to move them to stand up. Participants were reminded

to move as naturally as possible.

Each trial began with the participant sitting quietly for two minutes. On cue, they
crossed their arms on their chest and sat quietly. The data collection was then initiated.
On a second cue, approximately three seconds later, the participant stood up. Participants
stood still for five seconds and then walked on the spot for one minute at a self-selected
pace. During this time, ten seconds after initiation, the data collection terminates. 10
seconds of data was sufficient to capture quiet sitting and standing data for use as a
baseline while allowing ample time for a sit-to-stand task of typical duration. On a final
cue, the participant sat again. This sit-to-stand task was completed a maximum of ten

times. Results of this experiment are included in Chapter 4.
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Appendix B

Hyperelastic Spring Equations

Hyperelastic materials, by definition, have a stress-strain relationship derived from a strain
energy density function. The three hyperelastic material models under investigation in
Chapter 4 are the neo-Hookean material model, the Mooney-Rivlin material model, and
the Ogden material model. The derivation of the spring equations representing each of

these models, given the assumptions stated herein, is provided in this Appendix.

Background

The strain energy density function (W) of a material relates the strain energy density of

the material to the deformation gradient (F)

W =W(F) (B.1)

where
oz Oz1 Oz
0X; O0Xs 0Xs

— 8:)32 8x2 amg
Fj 0X1 0Xo 0X3 (B'2)

Ox3 Ozs Oxs
0X1 0Xo 0X3

When aligned to the principal directions, that is the axes of a coordinate system in which

the material undergoes pure stretch, the normal stretches are the principal stretches and
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the off-axis stretches are zero, such that

o1
e 0 0
_ Oxo
F=|0 £ o0 (B.3)
oz
0 0 _8X?;,

where, by definition, the diagonal elements are the principal stretch ratios (A1, A2, A3)

Or1 vy O

A3 = ——— B.4
P 0X, (B4)
All of the models of interest are expressed in terms of these principal stretch ratios and

are, in fact, Ogden type models. The strain energy density of an Ogden material model is

- Y

N
w=S"E (0 gy - 3) (B.5)
j=1

where p; and o are material constants.

Constitutive relation

To relate the principal strains to the principal stretches, the strain energy density function is
substituted into the equations of principal stresses for hyperelastic materials. The buttocks
is assumed incompressible and therefore, as shown in [156], the principal Cauchy stresses
are represented by

ow

where p is the pressure enforcing incompressibility, A;A\oA3 = 1.

Differentiating the partial derivative in Equation B.6 results in stresses of the form
N
0; :P+Zﬂj>\?j (B.7)
j=1

Buttocks loading is assumed to occur uniaxially in the vertical direction, making the

off-axis principal stresses zero. On account of incompressibility, the principal stretches are
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related such that
1 1
)\1 - )\1, )\2 - )\1 2, )\3 = )\1 2 (BS)

and the deformation gradient becomes

A0 0
F=10 xz2 0 (B.9)
0 0 M=

where the subscript indicating the vertical direction has been dropped for brevity.

The pressure, p, is solved for using the relationships between the principal stretches

and principal stresses such that
N
_%
b= —Zﬂj)‘l ’ (B.10)
j=1

By substitution of the expression for pressure in Equation B.10 into Equation B.7, the

Cauchy stress in the vertical direction may now be written as

o — ;N;Mj (Aaj _ A—%) (B.11)

where the subscript indicating the vertical direction has again been dropped.

Spring equations

Desiring a force-deformation constitutive model of the buttocks, it is advantageous to
consider the nominal stress as it is work conjugate to the deformation gradient. The

relationship between the nominal stress (P) and Cauchy stress is
P=JF'.¢o (B.12)

The vertical component of this nominal stress, for the deformation and Cauchy stress

identified in the previous section, is

- S (A:f -2 %) s,
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assuming a unit area for this application, the Ogden-type spring equation is found to be
N .
F=Yu (A%—l - )\‘TJ‘1> (B.14)
j=1

where F', in Equation B.14 and all equations to follow, is force.

A first order (N = 1) Ogden-type spring with oy = 2 reduces to a neo-Hookean-type
spring, while a second order (N = 2) Ogden-type spring with oy = 2 and ay = —2 reduces
to a Mooney-Rivlin-type spring. The equations of these springs are provided in Chapter 4.
Arbitrarily assigning the values of the puq, pe, and us of each spring model as 10N, 1IN,
and 1N, respectively and the value of a3 as —1, the springs display the force-deformation
behaviour shown in Figure B.1. Doubling each constant, in turn, produces the behaviours
in Figure B.2. The constants that best model the force-deformation behaviour of the

buttocks in sit-to-stand are determined in Chapter 4.

stretch ()
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1-100
1-200
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Figure B.1: Force-deformation behaviour of three hyperelastic springs.
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Figure B.2: Changes in force-deformation behaviour of the three springs from doubling

each pq, o, p3, and ag in turn.
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Appendix C

Details of Musculoskeletal Geometry

Optimization

Musculoskeletal geometry dictates muscle length, moment arms, and lines of action. This
geometry in turn affects a muscles potential for force production, efficiency in producing
joint torques, and resulting bone on bone forces. It is important to this work to appro-
priately capture these kinetics and, therefore, to appropriately represent a musculoskeletal

geometry for this model.

The muscles of this model; iliopsoas, rectus femoris, vasti, gluteus maximus, hamstrings,
tibialis anterior, gastrocnemius, soleus, flexor digitorum longus, and tibialis posterior, are
represented using line segments connecting approximated centroids of the muscles proximal
and distal attachment points according to the models of White et al. [80] and Carhart
[81], as in Chapter 5. Via points (points the muscle is constrained to pass through) and
wrap points (points the muscle is conditionally constrained to pass through) are included
to account for interactions between muscles and, what are assumed to be, anatomical
constraints such as retinacula or bone. Still, these models were not made for larger ranges
of joint motions and have not been validated for this application. In this Appendix, the

biomechanical model defined in Chapters 3 and 4 is actuated through the ranges of healthy
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hip, knee, and ankle flexion and extension angles and a muscle model is tuned to better

agree with descriptions of muscle geometry from the literature.

Defining equivalent muscle units

Of the muscles included in the model, iliopsoas, vasti, gluteus maximus, hamstrings, and
gastrocnemius, are equivalent muscles and representative of a group of muscles as described
by Carhart [81]. Iliopsoas is comprised of iliacus and psoas; vasti of vastus medialis, vastus
intermedius, and vastus lateralis; gluteus maximus is made of its superior, middle, and
inferior parts; hamstrings are comprised of semimembranosus, semitendinosus, and the long
head of biceps femoris; and gastrocnemius is the combination of the medial gastrocnemius
and lateral gastrocnemius. The geometry of the component parts can be seen in the model
on the left of Figure C.1. The geometry of the equivalent muscles was determined as the
weighted average of their comprising parts where the individual parts were weighted by
their maximum isometric force capacity [114]. The hamstrings were a special case of this
application where the geometries of semimembranosus and the long head of biceps femoris
are described using proximal and distal attachment points alone while the geometry of
semitendinosus includes two via points. These via points of semitendinosus were discarded
before determining the hamstrings equivalent muscle unit. The geometry of the resulting

equivalent muscle units is seen in the model on the right in Figure C.1.
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iliopsoas
rectus femoris

gluteus maximus

vasti

gastrocnemius
hamstrings

soleus

tibialis anterior

tibialis posterior

flexor digitorum longus

Figure C.1: Points describing musculoskeletal geometry initially (left) and after grouping

equivalent muscle units (right).

Inclusion of muscle wrapping

Muscles naturally encounter anatomical constraints that influence their paths. These alter-
ations are typically accounted for over limited ranges of motion using via points and wrap
points. In addition to these points, White et al. endorse the use of a patellar pulley model
for wrapping of the quadriceps over the patella across the knee joint [80]. Examination of

the muscle geometry models from White et al. and Carhart indicate that this strategy of
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muscle wrapping in muscle path modelling may be advantageous and possibly necessary
for more muscles than the quadriceps. Strategic inclusion of muscle wrapping geometries
in a musculoskeletal model alleviate issues in modelling including muscles folding back
on themselves, crossing joint centres, and/or changing discontinuously in length. In the
Chapter 5 model, cylindrical constraints have been included for iliopsoas, rectus femoris,
vasti, and gastrocnemius according to Table C.1. The wrapping geometry about these

constraints is described in Appendix D.

Table C.1: Evidence or prior modelling of anatomical obstacles.

Muscle Cylinder Evidence

iliopsoas neck of the femur | iliopsoas bursa

rectus femoris | patella patellar pulley model [18]
vasti patella patellar pulley model [18]
gastrocnemius | femoral condyles | gastrocnemius bursa

Cylinders in this model are defined by four values; their centre, the direction of their
long axis, their radius, and sense, as described in Appendix D. The anatomy of the patella
suggests a radius of 1.63 cm, which is the thickness of a patella reported in the literature
[155], for the cylinders in the quadriceps models. Radii of the cylinders for the iliopsoas and
gastrocnemius are more abstract and first defined as the minimum length from the nearest
(via or wrap) point on the same segment to the long axis of the cylinder, as described in

Equation C.1.

(point — centre) - long axis

(C.1)

point — centre — long axis

radius = : ,
long axis - long axis

The cylinder about the neck of the femur was defined in the thigh frame. It was located
at the centre of the femoral head and its long axis was defined in the direction of the greater

trochanter. The initial radius of the cylinder was defined according to Equation C.1 as the
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minimum length from the existing via point on the thigh to the long axis of the cylinder.
This via point was then discarded as its contribution to the geometry of the iliopsoas is

redundant by its inclusion in defining this cylinder.

The quadriceps are comprised of the rectus femoris and vasti. Their cylinders are
located at the centre of the deep surface of the patella as defined in Chapter 5. Their

initial long axes run medial-laterally as defined using the epicondyles of the femur.

The last cylinder is that of gastrocnemius. It is located at the midpoint between the
medial and lateral femoral epicondyles, with long axis along the ray connecting these points.
Its initial radius is the minimum length from the existing wrap point on the thigh to the

long axis of the cylinder, found using Equation C.1.

All muscles whose geometry was described with wrap points have cylindrical constraints
in the vicinity of those wrap points. It is assumed that these strategies of modelling muscle
geometry are redundant and all wrap points are removed from the model. The muscle paths
of this model now consist of proximal attachment points, via points, cylindrical constraints,

and distal attachment points.

Optimization

All muscle geometries were optimized by the following routine, with deviations to follow.
Via points, cylinder centres, cylinder long axis, and cylinder radii were varied to improve
muscle moment arms without de-optimizing muscle lengths. This was accomplished by
minimizing the difference between modelled moment arms and those measured experimen-
tally as reported in the literature, while ensuring that changes to the muscle length brought
the length closer to that reported in the literature [114]. Optimal muscle lengths were as-
sumed to occur at the starting posture specified by the Surface Electromyography for the
Non-Invasive Assessment of Muscles (SENIAM) project [157], when available. It was also

assumed that proximal and distal attachments of the muscles are accurately described in
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the model and were typically not varied. Therefore, the hamstrings and soleus are not
included in this optimization because their models consist of only attachment points and

are well behaved, even after mapping to this model.

The values optimized were bounded in this optimization routine. Locations of via points
are allowed to vary so long as they remain within the three dimensional space defined by the
maximum and minimum coordinates of the via point £1 ¢cm and the next most proximal
and next most distal point on the same segment. In absence of a next most proximal
or distal point, the point describing the proximal or distal joint centre of the segment,
respectively, was used as substitute. It was assumed that via points without influence on a
moment arm are in reasonable locations and are further bound within a space extending 1
cm in all directions from their initial location. Cylinder centres and long axes were bound
within 1 cm in all directions. Radii were allowed to vary between half and one and one

half their initial value.

Considerations specific to each muscle are included in the sub-sections below as well as
a comparison of experimental and optimized moment arms for the natural range of joint
motions. For reference, the range of hip motion is 30 degrees extension to 120 degrees flex-
ion, the range of knee motion is 135 degrees flexion to 10 degrees extension, and the range
of ankle motion is 50 degrees plantar flexion to 20 degrees dorsiflexion [76] as introduced

in Chapter 2.

liopsoas

The iliopsoas geometry had a cylinder added to it, as mentioned previously, to alleviate
issues of the muscle bending over itself in deep flexion. As in the Table C.2, via points
on the pelvis, the long axis, and the radius of the cylinder were optimized to best match
experimental moment arms while achieving a length of 20.7 cm [114], without knowledge

of the angle at which this length ought to occur.
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Table C.2: Iliopsoas geometry optimized

Type | Frame | Optimized

proximal attachment | Pelvis No
via point | Pelvis Yes

via point | Pelvis Yes

cylinder centre | Thigh No

cylinder long axis | Thigh Yes

cylinder radius - Yes

distal attachment | Thigh No

60 1
40 1 p—
~

— ~
= experiment
% Or = = = modelled result
€ -20 optimized to experimental
GE) moment arm data
© 40t
S

-60

-80

-30 0 30 60 90 120
hip angle (degrees)

Figure C.2: Iliopsoas moment arm from experiment [148] and simulation. The root mean

square error is 5.6 mm.
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Rectus femoris

The rectus femoris geometry had a cylinder added to it in the location of the patella as
specified by the modified patellar pulley model, described in Chapter 5. As in Table C.3,
the long axis and radius of the cylinder were optimized, as well as the via points on the
leg. The proximal attachment point of the rectus femoris was allowed to move up to 2 cm
in all directions as, no matter the distal geometry, its original location produced negative
moment arms at extreme joint angles. The length of the moment arm produced by rectus
femoris at the hip has not been specified for a given joint angle, although a constant of 4.3
cm [153] was provided for a straight knee. In light of this lack of information the rectus
femoris was only expected to achieve a moment arm of 4.3 cm at the hip at some hip angle
while the knee was at 0 degrees. An optimal length of 42.2 ¢cm [114] was ascribed with
a knee in ‘slight’ flexion and the upper body ‘slightly’ bent backward. This length was
assumed to occur when the knee was between 0 and 10 degrees flexion and the hip between

0 and 10 degrees extension.

Table C.3: Rectus femoris geometry optimized

Type | Frame | Optimized
proximal attachment | Thigh No
cylinder centre | Thigh No
cylinder long axis | Thigh Yes
cylinder radius - Yes
via point | Leg Yes
via point | Leg Yes
distal attachment | Leg No
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Figure C.3: Rectus femoris moment arm at the hip from simulation with a straight knee.
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Figure C.4: Rectus femoris moment arm at the knee from experiment [149] and simulation

with a straight hip. The root mean square error is 1.4 mm.
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Vasti

The remaining quadriceps, the vasti, have a cylinder added to them in the location of the
patella as specified by the modified patellar pulley model, described in Chapter 5. As in
Table C.4, the via points on the thigh and leg as well as the long axis and radius of the
cylinder were optimized to best match experimental moment arms while achieving a length

of 21.8 cm [114] with the knee in ‘slight’ flexion, assumed between 0 and 10 degrees.

Table C.4: Vasti geometry optimized

Type | Frame | Optimized

proximal attachment | Thigh No
via point | Thigh Yes

cylinder centre | Thigh No
cylinder long axis | Thigh Yes
cylinder radius - Yes
via point | Leg Yes

via point | Leg Yes

distal attachment | Leg No
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Figure C.5: Vasti moment arm from experiment [149] and simulation. The root mean

square error is 1.4 mm.

Hamstrings

The hamstrings geometry was tuned to rectify the production flexion moment arms at the
hip. As in Table C.5, the attachment points are optimized to best match experimental
moment arms while aiming for a length of 43.7 cm [114], with the hip straight and knee

flexed no more than 90 degrees.

Table C.5: Hamstrings geometry optimized

Type | Frame | Optimized

proximal attachment | Pelvis Yes

distal attachment | Leg Yes

169



60 1

40
’E\ 20 L
é experiment
% Or = = = modelled result
< 20 P . optimized to experimental
GE) > ’ 7 moment arm data
O 40 ¢F \\ ’
= \

60 \/

-80

-30 0 30 60 90 120
hip angle (degrees)

Figure C.6: Hamstrings moment arm at the hip from experiment [152] and simulation with

a straight knee. The root mean square error is 3.5 mm.
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Figure C.7: Hamstrings moment arm at the knee from experiment [149] and simulation

with a straight hip. The root mean square error is 0.6 mm.
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Gluteus maximus

The two via points of gluteus maximus are optimized to best match the moment arm data

from the literature while aiming for a length of 22.2 cm [114] in prone, assumed 0 degrees.

Table C.6: Gluteus maximus geometry optimized

Type | Frame | Optimized

proximal attachment | Pelvis No
via point | Pelvis Yes

via point | Thigh Yes

distal attachment | Thigh No
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Figure C.8: Gluteus maximus moment arm from experiment [152] and simulation. The

root mean square error is 0.3 mm.
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Tibialis anterior

The via point of tibialis anterior was optimized to so that the moment arm produced fell
within the moment arm data from the literature while aiming for a length of 31.5 cm [114]

in dorsiflexion.

Table C.7: Tibialis anterior geometry optimized

Type | Frame | Optimized

proximal attachment | Leg No
via point | Leg Yes
distal attachment | Foot No

60 r
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Figure C.9: Tibialis anterior moment arm from experiments 1 [154] and 2 [150] and simu-

lation. The root mean square error is less than 0.1 mm.
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Gastrocnemius

The gastrocnemius geometry had a cylinder added to it to alleviate issues of the muscle
bending over itself in deep flexion. As in Table C.8, all variables other than the distal
attachment point are optimized to best match experimental moment arms while achieving

a length of 44.9 cm [114], with the knee straight and ankle in a neutral posture.

Table C.8: Gastrocnemius geometry optimized

Type | Frame | Optimized

proximal attachment | Thigh Yes
cylinder centre | Thigh Yes
cylinder long axis | Thigh Yes

cylinder radius - Yes
via point | Leg Yes
distal attachment | Foot No
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Figure C.10: Gastrocnemius moment arm at the knee from experiment [149] and simula-

tion. The root mean square error is 5.5 mm.
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Figure C.11: Gastrocnemius moment arm at the ankle from experiments 1 [154] and 2 [150]

and simulation. The root mean square error is 5.2 mm.
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Flexor digitorum longus

The via points of flexor digitorum longus were optimized so that the moment arm produced
fell within the moment arm data from the literature while aiming for a length of 42.3

cm [114], without knowledge of where this length ought to occur.

Table C.9: Flexor digitorum longus geometry optimized

Type | Frame | Optimized
proximal attachment | Leg No
via point | Leg Yes
via point | Foot Yes
via point | Foot Yes
distal attachment | Foot No
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Figure C.12: Flexor digitorum longus moment arm from experiments 1 [154] and 2 [150]

and simulation. The root mean square error is 1.5 mm.
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Tibialis posterior

The via points of tibialis posterior were optimized to fall within the moment arm data from
the literature while aiming for a length of 32.0 cm [114], without knowledge of where this

length ought to occur.

Table C.10: Tibialis posterior geometry optimized

Type | Frame | Optimized
proximal attachment | Leg No
via point | Leg Yes
via point | Foot Yes
distal attachment | Foot No
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Figure C.13: Tibialis posterior moment arm from experiments 1 [154] and 2 [150] and

simulation. The root mean square error is 0.2 mm.
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Summary

The model identified from this optimization of musculoskeletal geometry can be seen in
Figure C.14 and are provided in Table 5.1. As an improvement to the initial geometry of
this model, and other models in the literature, muscles do not fold back on each other, they
do not have negative moment arms, and they do not have discontinuous length profiles.
In addition, the moment arms and muscle lengths produced by this model are in better

agreement to experimental data reported in the literature.

iliopsoas

rectus femoris

gluteus maximus

vasti
hamstrings

gastrocnemius

soleus
tibialis anterior

tibialis posterior (hidden)

flexor digitorum longus

Figure C.14: The optimized musculoskeletal geometry.
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Appendix D

Geometry of Wrapping a Cylindrical

Constraint

One way of computationally modelling the effect of an anatomical constraint on the path
of a muscle is by inclusion of a geometric obstacle in that path. The geometry of a
muscle allowed to wrap freely over the surface of a frictionless cylinder of infinite length
is determined as the minimum length path from the nearest proximal attachment point to
the nearest distal attachment point. If the path of the muscle includes a portion wrapped
over the surface of the cylinder, as seen in Figure D.1, the locations of the points of contact

between the muscle and cylinder are calculated according to the equations in this Appendix.

For these calculations, the nearest proximal and distal attachment points to the cylinder
are required as well as the centre of the cylinder, the long axis of the cylinder and radius
of the cylinder and the sense of the wrapping geometry, as in Figure D.2. The requirement
that the sense of the wrap be defined is a consequence of defining cylinders of infinite
length it must be decided which side of the cylinder the muscle is to reside on. For the
muscles of this work, this information is found in Table 5.1 and all cylinders lie between
the muscle and the joint centre spanned. Although the vectors in the table are expressed

in different body frames, they should be transformed to the same frame; for the purpose
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Figure D.1: The minimum length path around a cylinder. The portion of the path repre-

sented as spheres indicates where the path is on the surface of the cylinder.

of this Appendix, they are expressed in what has been called the obstacle frame, i.e. the

frame where the cylinder is originally defined, as in Figure D.2.
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radius

distal
attachment

proximal
attachment

Figure D.2: Points, dimensions, and directions of interest when wrapping a cylinder.

In two-dimensions

Looking down the long axis of the cylinder, there is symmetry between a) the proximal
attachment point and point of arrival to the cylinder and b) the distal attachment point
and point of departure from the cylinder. These points of arrival and departure are each
referred to as a point of contact in Figure D.3. Two parallel planes were conceived such
that the intersection of each plane and the cylinder is a circle, the first plane passing
through the proximal attachment point and the second plane passing through the distal

attachment point. The geometry of each plane was evaluated separately, as follows.

First, proximal and distal cylinder local coordinate systems were defined. The z-
direction is coincident with the long axis of the cylinder, as in Equation D.1. The z-

direction was defined along the vector from the centre of the cylinder to the attachment
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point of contact

attachment

Figure D.3: The geometry at a point of contact with the cylinder.

point and the y-direction is defined to make a right-handed orthonormal system, as in

Equations D.2 and D.3.

] :
5 — _long azis (D.1)
|long axis||
. Z X (attachement — centre)
U= (D.2)
|z x (attachement — centre)||
F=gx2 (D.3)

Assuming wrapping occurs, the muscle contacts the cylinder tangent to the surface of

the cylinder, and the geometry of Figure D.3 is defined.

The point of arrival to (or departure from) the cylinder is at (x, y). These coordinates

were found via Pythagorean Theorem,

2% +y? = radius® (D.4)

y* + b = a? (D.5)
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and a simple geometric relationship from Figure D.3,

x + b = base (D.6)

Re-arranging these equations, x and y are known given the sense of the wrap which

determines the sign of y.

radius?
T = “base (D.7)

y = Vradius? — 2 (D.8)

Once the point of arrival, the point of departure, and the base lengths are known, both

the proximal and distal sides of the wrapping geometry are considered together.

In three-dimensions

The point of arrival and the point of departure were next expressed in the same cylinder
frame (either the proximal cylinder frame or distal cylinder frame). Let the points of arrival
and departure be (x4, Yo, za) and (xp, Yp, 2p), respectively, where the x and y components

are known.

It is next determined for which geometric arrangements wrapping will occur. Assuming
the current frame is the proximal cylinder frame, wrapping occurs when x, < x,. When
Ty > T4, the muscle does not contact the cylinder and its path is a straight line from
proximal to distal attachment points. When there is wrapping, the z components of the

point of arrival and point of departure are determined.

Looking down the long axis of the cylinder again, the two-dimensional (2D) length of
the muscle from proximal attachment point to point of arrival is base, and the 2D length

of the muscle from distal attachment point to point of departure is base,. The 2D length

182



of the muscle wrapping over the cylinder is the arc length from the point of arrival to the
point of departure, where the arc angle, 6, is calculated using either Equation D.9 or D.10.
The choice of arc angle equation was made to avoid small angle calculations. The muscle

segments found were arrayed to form the base of the triangle in Figure D.4.

Ty Lq
_ — D.
f = arccos ( radius ) areeos <md’ius ) (D-9)

V@ —20)° + (g — 92)°

6 = 2 radiussin

2 radius

z of distal
attachment

z of proximal
attachment

base, radius© base,

Figure D.4: Relating the two- and three-dimensional wrap through similar triangles.

Allowing the z components of the proximal and distal attachment points to be z, and
24, Tespectively, z, and z, are found using Equations D.11 and D.12. These equations are
derived from the similar triangle relationships in Figure D.4.
24 base, + 2, radius 0 + z, basey

a — ; D.11
: base, + radius 0 + basey, ( )

24 base, 4+ z4 radius 0 + z, basey

(D.12)

Zn =
b base, + radius 0 + basey

With these final calculations the points of arrival and departure are known in a cylinder
frame of reference and may be transformed to other useful frames, as in Chapter 5, to better

understand the geometry of the musculoskeletal system as a whole.
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Appendix E

The Routine to Determine an

Optimal Sit-to-Stand

There are two itereative dynamic optimization routines used in this thesis. The first is
presented in Chapter 3 and is appropriate for the torque-driven model of Chapters 3 and
4. The second routine is built on the first. It is presented in Chapter 5 and is appropriate for
the muscle-driven model of that Chapter. This second routine was presented in Chapter 5

as Figure 5.9 and is presented in further detail in this Appendix as Figure E.1.
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Figure E.1: The iterative routine to determine an optimal sit-to-stand for the musculoskele-
tal model. The thesis sections and equations most relevant to execution of this routine are

provided in gray. Routine signals are labelled along arrows in gray.

185



	Examining Committee Membership
	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	The problem, the challenge, and the approach
	Contributions
	Applications
	Thesis Structure

	Literature Review
	Biomechanical descriptions of sit-to-stand
	Biomechanical modelling for sit-to-stand
	Motion prediction in biomechanics
	Controls
	Performance criteria

	Previous work in sit-to-stand prediction
	Garner, 1992
	Daigle, 1994
	Domire, 2004
	Ozsoy, 2014
	Mombaur and Ho Hoang, 2017
	Summary

	Conclusion

	Predictive Sit-to-Stand of a Three-Link Torque-Driven Model
	Biomechanical model construction
	Model components and parameters
	Fixed foot implications

	Optimal control framework
	The controls
	Objective function construction
	Computation of optimal controls

	Resulting motion
	Comparison with healthy sit-to-stand
	Discussion

	Better Buttocks for Sit-to-Stand Simulation
	Mechanical behaviour of the buttocks
	Experimental procedure
	Experiment set-up
	Data processing
	Experimental results

	Characterizing the buttocks
	Constructing the model
	Parameter identification
	Statistical analysis

	Sit-to-stand prediction with better buttocks
	Comparison with the prediction using the Chapter 3 model
	Comparison with healthy sit-to-stand

	Updating the description of sit-to-stand
	Discussion

	Contributions of Muscles to Sit-to-Stand
	Modelling musculoskeletal geometry
	Musculoskeletal model mapping
	Geometric constraints and muscle wrapping
	Optimization of musculoskeletal geometry

	Optimal control framework
	The inverse muscle force approach
	Objective function construction for optimal sit-to-stand
	Computation of optimal controls

	Sit-to-stand prediction for a musculoskeletal model
	Comparison with the prediction using the Chapter 4 model
	Comparison with healthy sit-to-stand

	Discussion

	Conclusion
	Previous state of the field
	Summary of thesis work
	Contributions to the field
	Recommendations for future research

	References
	Appendix Experiments Performed
	Appendix Hyperelastic Spring Equations
	Appendix Details of Musculoskeletal Geometry Optimization
	Appendix Geometry of Wrapping a Cylindrical Constraint
	Appendix The Routine to Determine an Optimal Sit-to-Stand

