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Abstract 

In a chaîne opératoire or ‘operational sequence’ conceptual framework, reduction technologies 

are recognized as an entangled, stepwise enactment of human knowledge (connaissance) and 

skill (savoir-faire). Through this model, as discussed in Chapter One, lithic assemblages may be 

situated within sets of Indigenous traditional knowledge marked by lifelong engagements 

between practitioners and their materials. In Chapter Two, this study adopts a coupling of the 

chaîne opératoire theory with an attribute-based analysis of extant primary and secondary 

sourced lithic materials recovered from the Late Woodland Iler Earthworks (AaHr-22) in Essex 

County, Ontario, in an effort to illuminate embedded stone economizing behaviours such as raw 

material acquisition and core reduction, as well as object manufacture, use, and discard.  
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Chapter One 

Of Body, Mind, and Matter: The Chaîne Opératoire as Situated Practice 

 

1.1 Introduction 

This component of my study demonstrates the potential for certain chaînes opératoires 

(operational sequences) to be aligned with systems of Indigenous/traditional knowledge (IK/TK). 

To perceive material through the lens of IK/TK is to engage with an epistemology that is 

intertwined with the lives of its past and present human cohabitants, and to understand cultural 

practices as not imposed upon the world but as emergent designs within a “material world 

transforming itself” (Ingold 1993:164). Such situated approaches, empathetic to Indigenous 

understandings of material, landscape, place, and being, allow for a more contextualized and 

nuanced understanding of established technical strategies (afforded by a chaîne opératoire), 

while arguing for an abandonment of the sharp separation of rule-based sciences from more 

reflexive understandings (Haraway 1998:589).  

Theories of materiality reinforce this position: humans and things co-constitute each 

other through interconnected routes (Hodder 2011, 2012). Material industries interpreted as such 

challenge prior assumptions employed in the (re)construction of past systems of technological 

organization, and ultimately contribute to the ongoing understanding of the reciprocities between 

person and object: how materials become imbued with humanistic significance (Yellowhorn 

2006).  

 

1.2 Against Imposed Templates  

As described by Leroi-Gourhan (1964), the basic principle on which a chaîne opératoire 

relies is an understanding of things within a sequence of technical actions, beginning (after its 
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conception and prior contemplation) with the raw material and ending with the discard or ‘death’ 

of the finished object (Tixier et al. 1999) (see also Chapter 2). Furthermore, this method 

emphasizes another dimension—that of technological representations in the maker’s mind, a 

fundamental feature to consider in the understanding of technical tradition and action 

(Lemmonier 1992). However, while this application has merit in soliciting process-oriented 

perspectives on material, its analytical method still relies heavily on the classification of 

individual items according to prescribed theoretical categories. The significance of certain 

objects therefore risks being a typological re-construction only in the mind of the analyst, and 

potentially imposes mental templates on past peoples, what Bar-Yosef and Van Peer (2009:103) 

refer to as the “illusion of reading the minds of the knappers”. 

Leroi-Gourhan’s approach to analysis holds that objects can be interpreted as a direct 

emanation or ‘secretion’ of distinctive behaviours—purposeful activities that exploit material 

properties, resulting in an object type indicative of a unique assemblage and the finalized product 

of a specific creation process. Such an approach emphasizes the notion that the shape of 

recovered objects (e.g., tools, flakes, and cores in lithic analysis) is one that makers originally 

sought to impose on their materials (Leroi-Gourhan 1964; see also Ingold 2013:39). To Tim 

Ingold (2013) however, such pre-established mental templates or ‘geometric intentions’ may 

never have existed at all. Material forms are not imposed upon but rather emerge from the 

multiple processes and specific techniques involved in their production. In contrast to the 

typically employed ‘construction kit view’ of materials—in which making is regarded as a 

succession of distinct, separate steps—the events that shape raw materials instead act as a 

continuum, an “ongoing current of skilled activity that is carried through from one piece to the 

next”. The process of making acts not as a building from discrete parts into a hierarchically 
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organized totality, “but as a carrying on of the constant emergence of form” (Ingold 2013:43, 

45).  

This ‘formula’ for various making activities is transmitted across generations through 

processes of development. Humans are not born with prefigured representations of the material 

world, but are instead constituents of the surrounding environments (Ingold 2000:36-38). Human 

perception and actions are better understood as emergent processes of ‘enskilment’: learning is 

not a purely cognitive process but is rather “grounded in the contexts of practice, involvement 

and active personal engagement” with things disseminated through cultural bodies of 

information (e.g., traditional knowledge sets) (Pálsson 1994:920). 

 

1.3 Defining Traditional Knowledge  

There is no universally accepted definition of traditional knowledge (TK). Indeed, the 

word traditional in itself is ambiguous, often referring to ideas of cultural continuity and agency, 

transmitted in the form of social norms, attitudes, belief, materials, and conventions of 

behaviours. What descendent communities call ‘Knowledge of the Land’ is in turn defined as the 

understanding, however acquired, people have of one another (relations) and their environment 

(Berkes 1993; see also Leopold 1949). This situated, personal, and intimate Indigenous 

understanding of the ever-changing ‘natural’ milieu aligns with Ingold’s (2000) emergent 

processes of enskilment—that subsistence activities are forms of attentive ‘coping’ with the 

world that is intentionally “carried out by persons in an environment replete with other agentive 

powers of one kind and another” (Ingold 2000:59). 

For the purposes of this research, Traditional or Indigenous knowledge refers to this 

transmission of cumulative bodies of knowledge, experience, epistemology, ontology, and 
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material attributed to societies with historical continuity in resource use practices (Lassere and 

Ruddle 1982; Nicolas and Markey 2015). This contrasts with the often overly reductionist and 

synchronic ‘Western World’ view, wherein “notions of time, space, causality and classification 

are characterized, in part, as a series of binary oppositions” (Nicholas and Andrews 1997:5). 

Through TK/IK, the processes involved in object creation are seen as qualitative as opposed to 

quantitative, intuitive as opposed to purely rational, and moral as opposed to supposedly value 

free (Berkes 1993). Altered materials—obtained though co-operation with the surrounding 

environment—are ultimately considered as the combined result of body, mind, and matter. 

Situating operational sequences (by way of their interpreters) within such traditional forms of 

knowledge allows for a move beyond the concepts that underlie rigid typological approaches, 

and for a re-evaluation of the dynamic interactions between person and material (Chazan 2009). 

 

1.4 Traditional Knowledge in Practice 

1.4.1 Evidentiary Reasoning  

Archaeological practices in Canada—deeply rooted as they are in ‘Western’ notions of 

positivism—have been to date largely dismissive of the so-called ‘parochial’ nature of 

Indigenous knowledge sets. Indeed, while it can be debated as to what exactly constituted 

‘archaeological knowledge’, our adherence to explanations rooted in positivism has led to the 

marginalization of ‘non-metric’ perspectives, referring to Indigenous knowledge systems only in 

sentimental, romantic, and/or culturally subordinated terms (Beckford et al. 2010; Knudtson and 

Suzuki 2006). As stated by Hodder et al. (1995:241), this ‘postmodern’ condition is 

characterized as “fragmented, dislocated, [and] eclectically pillaging the past and other cultures 

without regard for traditional forms of authenticity”. This can be contrasted with other 
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epistemological approaches such as those of the Ojibway as revealed through A. Irving 

Hallowell’s (1960) study of Ojibway ontology and belief practices. As Hallowell (1960) notes 

with regard to the animacy of seemingly inanimate things (e.g., stones), what matters to the 

Ojibway is experience—who, for example, has witnessed a stone offer medicine or move about 

on the floor. Standards of verification in this case revolve around personal accounts rather than 

an appeal to the scientific method, and it is these standards that can dislocate the empirical 

backbone of archeological knowledge. 

With this in mind, can archaeologists work toward an understanding of Indigenous 

materials within an emergent and complex set of Indigenous socio-cultural designs? And how 

can we come to identify and interpret what can never be observed directly, namely the 

ontologies, actions, and associated material culture assemblages of past peoples (see Nicholas 

and Markey 2015)? While the interpretation of archaeological data has long relied on 

ethnographic/ethnohistoric sources to reveal (or provide proxies) for behavioural patterns in the 

archaeological record, what is often considered ‘evidence’ is still a matter for debate. As 

suggested by Hallowell’s (1960) work, ignoring Indigenous knowledge sets may result in a 

biased and selective interpretation of material (and thereby its associated process of creation) that 

differs significantly from the interpretations of source communities, thus jeopardizing the 

integrity of archeologically derived evidence (Nicholas and Markey 2015:288; see also Denton 

1997). 

 

1.4.2 Human-Thing Entanglement  

Building upon the chaîne opératoire framework, which seeks to interpret the full 

sequence of human activities involved in the creations of objects (e.g., lithic tools), as well and 
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their respective roles within assemblages, may perhaps enable a move beyond the suggestion that 

production is governed by mental templates. If we consider that objects are not inert, but instead 

play a vibrant part in the ongoing understandings that people have of the world, we can then 

begin to rethink the relationship between traditional knowledge and technological organization 

(Jones 2015:335). This understanding of materials is reflected in Hallowell (1960) and the idea 

that things such as stones may be considered ‘alive’ by virtue of their positioning within fields of 

human experience. Their ‘liveliness’, in other words, is not a fixed state (or essence) but rather 

something that emerges relationally through the lives of persons (see also Ingold 2000:96-97). 

Analyses of assemblages must therefore consider materials within the specific actions of 

their human counterparts. Fairlie and Barham (2017), for example, explore this in their study of 

the lithic chaîne opératoire and its potential for analyzing changes in task structuring strategies 

across human tool-making events. This approach, they argue, recognizes the body as “the 

interface between mind, materiality and society, where the gestures of the tool-maker are learned 

through activity” (Fairlie and Barham 2017:644). Such notions may be further explored through 

heterogeneous approaches to the understanding of human and material agencies and the 

intertwining processes through which they are transformed. Lithic materials may be seen as 

perpetually unfolding with their human participants and emergent through a “set of relationalities 

across time and space,” imbued with significance through creation processes, while having a 

direct formative effect on their makers (Edensor 2011:249; Gosden and Malafouris 2015:706).  

 

1.5 Discussion: ‘Meeting Pasts Halfway’ 

In summary, to properly contextualize materials involved in Indigenous systems of 

technological organization we should recognize that individual objects are not inert but rather 
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bound up in a set of complex relations. This would provide for more productive and inclusive 

analyses that engage both traditional knowledge and archeological expertise, thus challenging the 

limited self-reflexivity that has led to an invention of essentialized Indigenous identities, 

“rendered ahistorical, and devoid of subjectivities and dynamism” (Trofanenko 2006:309; see 

also Bell 2017). Indeed, as stated by Ingold (2000:96), taxonomic distinctions imposed upon 

materials are not often articulated by local Indigenous populations themselves but are rather 

“imposed by Western researches who brought with them their own ‘conventional’ 

understandings”. 

Dean Jacobs of the Bkejwanong (Walpole Island) First Nation is one that highlights this 

need to move away from the rigid analytical systems that often hinder the dissemination of 

IK/TK. “Aboriginal peoples” he (1994) states “bring skills and knowledge to the development 

process in particular. The juxtapositions of aboriginal knowledge and knowledge systems with 

mainstream European-based science is likely to enrich world views for all”. Incorporating such 

contextualized understandings of traditional history and material stories—embodied in lands of 

social, cultural, and spiritual significance (see Basso 1996)—allows for the diversification of 

archaeological discourse in the interpretation of various material evidences (Jones 2015). Indeed, 

this ‘meeting of pasts halfway’ would provide descendent groups with the ability to “articulate 

nativist thought in the dialogue with the larger world [and] mitigate the impact of a modern 

world on cultural traditions” (Yellowhorn 2006:206-207). A combined, heterogeneous discourse 

surrounding pre-contact material would in turn facilitate public understandings of what 

constitutes Indigenous ways of being with the world, and how these have been manifested, 

interpreted, mediated, and entangled within material assemblages (Harrison 2013:6). Ultimately, 
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this would testify to the ongoing assessment of material as a vital component integral to and 

generative of human behaviours (Hodder 2011, 2012). 

 

1.6 Conclusion 

Conceptualizing archaeological materials demands that we devise a variety of theoretical 

frameworks to more fully explore, comprehend, and appreciate ‘traditional’ perspectives in a 

rapidly changing world (Harrison 2013). Indigenous materials are not passive, static entities 

within assemblages, but reflective of dynamic relationships and emergent “negotiations, desires, 

and knowledges” (Bell 2017:245; Jones 2015). A situated chaîne opératoire analytical strategy 

ultimately contains the potential to be considered at this interface between human, material, and 

society. Indeed, it can be part of an empathetic and reflexive archaeology “based on the 

traditional understandings of social and cultural enablers of creation processes” and for the 

bridging of the problematic divide between standardized archaeological practice and Indigenous 

understandings of material culture (Fairlie and Barham 2017:644; Lauer and Aswani 2009). 

Toward this end, I intend to publish my Chapter Two research findings in the 

Midcontinental Journal of Archaeology (MCJA) as it features many peer-reviewed papers on the 

archaeology of the region between the Appalachian Mountains and the Great Plains. This Journal 

has also become a key publication outlet for the dissemination of situated archaeological 

research in the in (western) lower Great Lakes. 
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Chapter Two 

Connaissance and Savoir-Faire: A Chaîne Opératoire Perspective on the Lithic Industries at 

the Iler Earthworks (AaHr-22), Essex County, Ontario 

 

2.1 Introduction  

Analyses of lithic industries are little represented in the scholarship of the Late Woodland 

Western Basin Tradition of southern Ontario. Indeed, little systematic investigation of Late 

Woodland tool-making events in the area has occurred to date, thus relegating this field of 

inquiry and the broader study of Western Basin Tradition lifeways to the “far periphery of 

Ontario archaeology” (Murphy and Ferris 1990:191). Recent archaeological analyses in the 

Western Basin study area (e.g., Watts 2008, 2016, 2018), along with earlier studies (e.g., Lennox 

1982, 1995), have, however, revealed a distinct technological industry during the Late Woodland 

throughout the southwestern-most corner of the province. In an effort to advance the study of this 

industry, this chapter details the lithic chaîne opératoire (operational sequence) and how its 

conceptual framework—focused on both the recognition of the overall technology, as well as the 

practical skills of the individual maker—informs lithic raw material procurement, tool 

production, and use during the Western Basin Late Woodland at the Iler Earthworks (AaHr-22) 

in Essex County, Ontario. 

With regard to the tool production phase of the sequence, the lithic remains from Iler 

were classified using an attribute-based typological approach. This analysis, which involves tool, 

debitage, and core fragments, attempts to further understand the cultural landscapes of the 

western Lake Erie region and how Late Woodland Western Basin peoples interacted with their 

lithic materials. This analysis also seeks to illuminate what factors may have influenced Western 

Basin core reduction strategies, with an understanding that these activities would have been 
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embedded within broader lifeways. This chapter proceeds by first describing the emergence of 

the chaîne opératoire, and what is entailed by its conceptual framework, before moving on to a 

discussion of Late Woodland Western Basin culture history. It then continues with an overview 

of the analytical methods applied to the tool and debitage assemblages from the Iler Earthworks 

before concluding with a discussion of the chaîne opératoire at Iler, and how we might work 

toward a more nuanced understanding of lithic industries in Ontario.   

 

2.2 Origins of the Chaîne Opératoire                                                                                                           

The study of lithic assemblages in both European and Americanist archaeologies has 

been largely dominated by Typologie Morphologique (morphological typology), a well-

established way of analyzing materials which provides type-lists of formal retouched tools and 

associated debitage (see Boëda et al. 1990; Bordes 1953; Geneste 1985; Mauss 1973). François 

Bordes of the University of Bordeaux was its founder and leading advocate. His typological 

paradigm—a departure from the older and more evolutionary ‘guide fossil’ method in which 

stone tools served as ‘interpretation-free cultural markers’—instead recognized ‘synchronic 

variability’ among object groups (Bordes 1953; Soressi and Geneste 2011:355). This, in time, led 

to the emergence of an approach that brought together “materials and tools, their actors and their 

actions within a technical time frame” (Delage 2017:158). The lithic chaîne opératoire, as this 

approach came to be known, built upon Bordes’ typologies, and conceptualized reduction 

technologies as a suite of operations involving both mental operations and technical gestures 

(Perles 1987:23). 

The concept was initially adapted for archaeological use by André Leroi-Gourhan in his 

seminal (1964) offering Le Geste et Parole (Gesture and Speech). In this work, Leroi-Gourhan 
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envisioned all technical behaviours as being composed of systematic gestures from which the 

entire life history of an object—from conception to final discard—could be investigated (Ryan 

2009:18). According to Leroi-Gourhan, le geste “functions as the link between the 

archaeologically visible technique and a group’s social behavior” (1964, 1993:114). 

Incorporating this notion into material analysis allows the researcher to consider the chaîne 

opératoire as a “means to link people and their decision-making processes to the material culture 

remains contained in the archaeological record” with its theoretical framework acting as a grid 

for the observation of these techniques. When viewed with reference to both motion (gesture) 

and tool, these techniques form a chain that gives the operating series its shape (Leroi-

Gourhan 1993:323). This, in turn, allows for the development of a more diachronic (i.e., spatial-

temporal) understanding of human-altered materials (Delage 2017:160). 

Perhaps more importantly, Leroi-Gourhan’s approach further emphasizes the integration 

of mind with body during the act of making tools; materials, it can be argued, cannot be properly 

understood when separated from the underlying bodily techniques and agential intentions 

involved in their production (Dobres 2000; Tixier et al. 1999). Seen as a response to the 

increasing de-humanization of typological analyses, this ‘anthropological reality’ hidden within 

the archaeological record would become appealing to those scholars interested in describing and 

interpreting the variability observed in lithic industries according to culturally specific factors 

(Bar Yosef and Van Peer 2009:103-104; see also Delage 2017). This intellectual trend also 

triggered the development and establishment of lithic technological studies more in line with the 

‘anthropology of technology’ (Lemonnier 1992). 

A critical component of the chaîne opératoire, therefore, involves viewing the process of 

manufacture from the perspective of a person carrying out the action—that knowledge 
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(connaissance) is enacted through the unique skills (savoir-faire) of the individual (Chazan 

2009; Pelegrin 1986). Viewed through such a lens, the processes employed to make objects are 

cognitively disciplined: they are enacted in time based on personal expertise. Such series or 

‘sequences’ of actions come about “because of interaction between experiences, which 

conditions the individual by processes of trial and error” (Leroi-Gourhan 1993:230). Lithic 

assemblages are recognized as the sum of these unique knowledge sets, established by way of 

lifelong engagements between practitioners and their materials.   

 

2.3 The Chaîne Opératoire as an Analytical Strategy 

2.3.1 Object Flow Model    

The chaîne opératoire approach ultimately acts to chronologically process how raw 

materials are introduced into the technological cycle of production activities and transformed 

into culturally meaningful objects (Geneste 1985:77). The sequence is best represented by a 

basic object flow model (Figure 1) which divides the process into meaningful subsystems, 

namely: 1) the raw material procurement phase (through the distribution of available resources); 

2) the tool’s production (primary/secondary core reduction) within established technical 

strategies; and 3) its intended use-life (embedded in settlement-subsistence practices), 

maintenance, and eventual discard (Tixier et al. 1999). This form of analysis, as underscored by 

Sellet (1993), is also dependent on three major criteria: 1) it relies on the reproduction of 

procurement and manufacturing techniques to classify archaeological remains into meaningful 

units; 2) it incorporates all lithic materials present at a site, both ‘end products’ and debitage 

(flake products); and 3) it considers the often nonlinear order, or sequence, of production 

activities. Reconstructing the spatio-temporal organization of these various lithic economies is 
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Figure 1: Chaîne opératoire: object flow model (modified from Tixier et al. 1999) 

instrumental to understanding the intentions held by past makers (Pelegrin 1986; Tixier et al. 

1999). 

 

 

 

 

  

 

 

 

 

 

 

2.3.2 Observing Technical Strategies  

While the analysis of finished tools and debitage is key to reconstructing past lifeways, a 

chaîne opératoire analytical strategy is not committed to the rigid identification of only one 

essential production technique. Its ultimate purpose is instead to recognize and describe the 

varying, and often re-visited, stages in a reduction sequence (Shott 2003:100-101). This is crucial 

when considering the fabrication of tools as a series of interrelated decisions: which materials 

can and should be used, alternatives to employ should one or more materials be unavailable, and 

the performance of the finalized tool given various circumstances. By identifying these choices 

and placing them along the chaîne opératoire, it become possible to discern which were based on 

cultural considerations, and which were based on unique environmental factors (Ryan 2009:32).   
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Understanding decision-making processes, particularly how they are impacted by cultural 

and environmental considerations, allows one to identify at what point in the sequence various 

elements acted to constrain or broaden the choices available to Western Basin peoples. The 

creation of stone tools ultimately involves a series of consistently employed strategies, traceable 

through a chaîne opératoire methodology, that considers the variables and regularities that result 

in a recognizable product. 

 

2.4 The Late Woodland Western Basin Tradition  

2.4.1 Developmental Sequence  

The Western Basin refers to one of two archaeologically discernible cultural traditions of 

the Late Woodland period (ca. CE 600-1550) in the lower Great Lakes Region, with 

manifestations found throughout southeastern Michigan, northwestern Ohio, northeastern 

Indiana, and extreme southwestern Ontario (Ferris and Spence 1995; Fitting 1965; Murphy and 

Ferris 1990). Its developmental sequence—first established by James Fitting (1965) as “The 

Younge Tradition” in southeastern Michigan, and later modified for use in Ontario by Murphy 

and Ferris (1990)—consists of four phases: Riviere au Vase (ca. CE 600-800 or 900), Younge 

(ca. CE 900-1200), Springwells (ca. CE 1200-1400) and Wolf (ca. CE 1400-1600). These phases 

were initially based on ceramic trends at prominent multicomponent sites in southeastern 

Michigan, and later refined by researchers such as David Stothers, Neal Ferris, and Carl Murphy, 

based on additional analyses of changes in material culture and mortuary practices, as well as 

adjustments to various settlement and subsistence strategies (Watts 2008:11). While currently 

lacking radiocarbon dates, the Iler Earthworks clearly dates to the Springwells Phase based on 

ceramic design trends and the arrangement of settlement features. 
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Investigations into Western Basin subsistence-settlement patterns and socio-political 

organization have long been entangled with notions of ‘ethnic affiliation’. Indeed, since the 

establishment of Fitting’s (1965) sequence, researchers such as David Stothers (e.g., Stothers et 

al. 1994)—through the largely qualitative appraisal of Ontario Late Woodland materials—have 

regarded Western Basin groups to be an ‘ethnic variant’ of Iroquoian populations to the east. 

Such claims of Iroquoian affiliation have been refuted by Murphy and Ferris (1990:271-277) 

who argue that despite evidence of both cooperative and antagonistic interaction with adjacent 

Ontario Iroquoian groups (see discussion below on procurement), the Western Basin Tradition 

remains representative of a single, and distinct, cultural development. As stated by Watts 

(2008:13) this perspective (which will be adopted in this study) ultimately envisions material 

procurement, manufacture, and use within the region as “contributing forces in the production of 

social realties,” conditioned by specific, yet diverse, cultural practices. 

 

2.4.2 Springwells Settlement/Subsistence    

Murphy and Ferris (1990:231) suggest that Western Basin groups inhabiting the 

ecologically diverse region of southwestern Ontario generally practiced mobile subsistence and 

settlement patterns, based on the seasonal availability and abundance of preferred plant and 

animal resources at known extraction locales. While largely adhering to this pattern, the 

Springwells Phase ushered in greater degrees of sedentism and inter-season coalescence, 

compared with the earlier Riviere au Vase and Younge Phases. However, with Springwells, 

settlements would begin to move toward more intensive occupations during the warmer months, 

and groups may have remained within, and operated from, a single location throughout the 

growing seasons (Murphy and Ferris 1990:245). 
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This trend toward greater degrees of sedentism is evidenced by the emergence of new site 

features, including palisades and multiple dwelling structures set among an array of numerous, 

large, and overlapping pit features (see e.g., Kenyon 1988; Lennox 1982; Lennox and Dodd 

1991). While the dietary importance of maize cultigens and other domesticates is thought to 

increase during the Springwells Phase, a shift in warm weather site locations may reflect a 

preference for placing settlements (as is the case with Iler) in microenvironments replete with 

opportunities for hunting, fishing, and collecting (Foreman 2011:34; see also Watts et al. 2012). 

Population aggregation and accelerated territorial retraction would continue through the 

succeeding Wolf Phase, and is possibly related to the appearance of earthworks (see discussion 

below on procurement). Indeed, in Essex County alone, several earthworked sites—often 

consisting of various circular/semicircular embankment features—have been reported along the 

east side of Sturgeon Creek, in several places along the north shore of Lake Erie between Point 

Pelee and Big Creek, and near the mouth of the Detroit River (Murphy and Ferris 1990; Watts 

2018). As stated by Murphy and Ferris (1990:241; see also Knight and Ramsden 1972), while 

numerous earthen enclosures have been investigated, their exact function and season of use has 

been difficult to determine, in part due to the idiosyncratic depositional patterning of what is 

sparse cultural refuse (see also discussion below on discard). 
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2.4.3 Material Trends 

As with prior phases in the sequence, Springwells is delineated primarily by changes in 

ceramic morphology, which are found across the Western Basin Tradition area of southwestern 

Ontario and southeastern Michigan (Fitting 1975; Krakker 1983; Murphy and Ferris 1990:209-

218). Springwells vessels are marked by castellated collars, horizonal, oblique and cordmarked 

rim motifs, and elongated, cylindrical, and slightly constricting necks. These ‘bag shaped’ forms 

continue, with some morphological differences, into the succeeding Wolf Phase (Murphy and 

Ferris 1990:209). With regard to lithic assemblages, Springwells Phase sites in Ontario are 

represented by few, if any, complete bifaces, and instead feature more expedient utilized flake 

tools (e.g., spokeshaves and end-scrapers; see Figure 2). The majority of these tools were 

produced through the bipolar reduction of locally obtained secondary source chert nodules (e.g., 

Lennox 1982:19, 1995; Lennox and Molto 1995). Springwells projectile point styles would also 

continue the earlier pan-regional emphasis on Levanna point forms while moving toward the 

slightly narrower, isosceles-triangular Madison point (Kenyon 1988; Reid 1983a, 1983b). Side 

notched points have also been reported to occur at Springwells sites along the Thames River 

(Knight and Ramsden 1972). 

  

Figure 2: Examples of Springwells Phase lithics from the E. C. Row site. 1. Spokeshave (denticulated, utilized lateral edge); 

2. Biface mid-section; 3-6. Expended bipolar cores/nodules (from Lennox and Molto 1995) 
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Figure 3: Location of the Iler Earthworks (drawing by C. Watts) 

2.5 The Iler Earthworks (AaHr-22) 

The Iler Earthworks are found along a NE-SW trending ridge on the northern half of Lot 

36, in the Township of Colchester South, Essex County, some 2 km north of the Lake Erie 

shoreline (see Figure 3). With regards to physiography, the site is situated on a small glacial 

outwash of Tuscola fine sandy loam, in a broad, largely flat region known as the Essex Clay 

Plain. 

 

   

 

 

 

 

 

 

 

 

 

 

     

 

The earthen enclosure was first documented by local antiquarian John C. Bonham, who 

in 1944 produced a measured drawing of the site detailing a large semicircular berm and ditch 

opening to the east. These features—as suggested by aerial photography dating to the 1950s—

may have at one time been elliptical in shape and partially destroyed during the clearing of parts 
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of Lot 36 prior to 1944. The western portion of the embankment was leveled when the remaining 

woodlot was converted to agricultural production in the 1960s (Mr. Earl Iler, personal 

communication). This was completed prior to a surface collection of the site by Harry Bosveld of 

the Hiram-Walker (now Windsor Community) Museum in 1968, which recovered a “great deal 

of pottery, and a few pipe sherds as well as a single corner-notched projectile point” (Watts 

2018). A small surface collection of “collared, cord-roughened” vessel rims was later recovered 

from the Iler Earthworks (Carey 1978; Reid 1981), possibly suggesting a late Springwells Phase 

occupation. However, it was not until Watts’ investigations of the neighbouring Cedar Creek 

Earthworks that the Iler Earthworks were formally surveyed and excavated. In 2015, he and his 

team conducted a magnetometer survey of roughly 1.2 ha of Lot 36, in an area corresponding to 

the location of the site as depicted by Bonham in 1944. Materials recovered from two test units 

placed atop prominent magnetic disruptions contained collared rim shreds and were deemed to 

be diagnostic of a Late Woodland Western Basin site dating to the late Springwells Phase. 

The Iler site was formally excavated later that field season under the direction of Dr. 

Christopher Watts of the Department of Anthropology at the University of Waterloo. The 2015 

season saw the excavation of one-metre units organized into five trenches (see Figure 4), one of 

which (Trench A) impacted the ditch feature within a metre of its location of the Bonham map. 

Artifacts recovered from these trenches included myriad lithic remains, including one formal 

tool, a Levanna projectile point, and portions of several bifaces. The total number one-metre 

square units placed across the site in 2015 was 116. 
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Figure 4: Plan view of the Iler Earthworks. The red squares denote one-metre units excavated 

in 2015. The area enclosed by the dashed yellow line marks the operation conducted in 2016 

(drawing by C. Watts). 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

      

 

The 2016 season saw the mechanized removal of ploughzone soils to completely expose cultural 

features and the embankment ditch (Figure 4). Topsoils from a 210 m2 area, immediately south 

of the trenches examined the previous year, were removed to reveal a number of pit features, 

particularly in the southeastern portion of this locale. Pit features were recorded, mapped, 

profiled, excavated, and screened (or set aside for flotation). Artifacts recovered from the 

screened fill from both field seasons were bagged with the necessary provenience information 
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(unit, level, and feature designation) and assigned an accession number in the lab. The lithic 

materials recovered from both unit excavations in 2015 (n=466) and pit feature fills in 2016 

(n=83) consist of primary, secondary (flakes), and tertiary (shatter) pieces of debitage, a small 

assortment of formal bifacial (n=7) and retouched/utilized flake tools (n=23), and cores 

(expended primary and secondary sourced nodules) at varying stages of reduction. Additional 

materials collected from pit features in 2018 (Figure 4, in the area enclosed by the dashed blue 

line) were not examined as part of this study.  

 

2.6 Methodology  

The methods employed in the analysis of Iler’s lithic assemblage take into account the 

chaîne opératoire described above, including raw material procurement strategies and associated 

manufacturing processes, site configuration, tool function, environmental exploitation, and 

differential attrition rates of various artifact types (see Andrefsky 1994; Bamforth 1991; Kuhn 

1991). These methods are used to reconstruct the various social processes that might impinge 

upon stone objects before their deposition in the archaeological record (Garvey 2015). 

 

2.6.1 Analyzing Acquisition  

Examining the multitude of factors involved in raw material acquisition is the first 

fundamental step in an understanding of the broader operational sequence, whether as a model 

for assessing anticipated manufacturing costs (i.e., the effort required to locate and utilize a chert 

source) or the amount of time involved in a particular core reduction activity (Odell 2015:159-

160). Indeed, the makeup of raw materials should be an important consideration with regard to 

procurement patterning. Analyzing variations in material quality (e.g., isotropism, patination, and 
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homogeneity) may gesture toward the structuring of Western Basin chert acquisition practices 

(Cotterell and Kamminga 1979; Garvey 2015; Whittaker 1994). In the southwestern Ontario 

study area (e.g., Essex County), locally obtained secondary materials—categorized here by their 

small, insular quality and heavily patinated cortical surfaces—tend to be manufactured into 

informal/expedient tool forms. Less abundant primary sourced materials—obtained through the 

travel to, and laborious quarrying of, distant surficial outcrops—require greater manufacturing 

efforts, resulting in an ideal template for further refitting (e.g., sharpening, hafting, and bifacial 

flaking) into formal tool types (Andrefsky 1994:31). This model ultimately considers the 

physical nature of accessible raw materials as crucial when inferring procurement trends (see 

Odell 2000:270) and was therefore implemented in the appraisal of strategies for raw material 

acquisition by Iler residents.  

 

2.6.2 Analyzing the Reduction Sequence 

Core reduction is a major component of the chaîne opératoire and focuses on the kinetic 

techniques applied to cores to produce ideal tool forms (see Shott 2003; Tixier et al. 1999). To 

analyze the reduction phase of the operational sequence, this study has elected to implement a 

macroscopic, attribute-based approach to lithics and microwear. In keeping with a chaîne 

opératoire analytical strategy, this understanding of the lithic reduction techniques employed at 

Iler may be sequentially ordered, and fractured pieces may be easily identified and placed into 

replicable typologies. The following outlines the analytical approaches to Iler: a) debitage; b) 

formal and utilized flake tools; and c) core assemblages. 

 

 



23 

 

a) Analytical Approaches to Debitage 

Andrefsky’s (1991, 2005) typologies for debitage (flake waste) were primarily used in 

the analysis of the Iler debitage assemblage in order to most accurately distinguish the stage of 

reduction, the intended tool type, and to discern between hard hammer and pressure (trimming) 

techniques. Various attributes of the Iler material were also assessed for their value in 

differentiating between reduction strategies and proportions of biface manufacture. These 

typologies assume that the Iler debitage was primarily the ‘by-product’ of manufacturing various 

objects that make up the Late Woodland Western Basin toolkit. The benefit of incorporating the 

approaches outlined below is ultimately the ‘immediate behavioural inference’ gained from the 

recognition of a single piece of debitage (Andrefsky 2005:114). 

A frequently used approach in the analysis of lithic debitage, which is adopted here, is 

known as the ‘triple cortex’ typology. In this scheme, analysts classify debitage as either 

primary, secondary, or tertiary in nature based on the amount of cortical surface found on the 

dorsal side of the flake (Andrefsky 2005:114; Sullivan and Rozen 1985:764). In this study, it was 

important to adopt this approach given Iler’s abundance of small yet often heavily cortexed chert 

pieces, frequently derived from secondary nodules. Additionally, the Sullivan and Rozen (1985) 

analytical method, which discriminates between the reduction of standardized cores and the 

bipolar reduction of secondary cobbles based on the crushing of the platform edge, together with 

a flattish fracture surface and a battered distal end (see Cotterell and Kamminga 1987) is also 

employed. As well, a ‘technological’ typology is also adopted when the physical characteristics 

of specific lithic objects are deemed sufficient to determine their place in the manufacturing 

process (e.g., biface trimming flakes) (Andrefsky 2005:118, 120). With these methods in mind, 
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the following flake types are used in this study: primary flakes (whole and fragmented); 

secondary or biface trimming flakes (whole and fragmented); and chipping waste (shatter). 

Another approach employed herein is the ‘application load’ typology. This is used to 

classify flakes according to their manufacturing technique (i.e., hard or soft hammer percussion 

and pressure flaking). As with the broader chaîne opératoire analytical strategy, this 

investigation of fracture mechanics is valuable when examining the more specific reduction 

sequence chronologically—from initial stages of hard hammer percussion, to soft hammer 

percussion during tool refinement, to finishing with pressure flaking (notching and sharpening). 

It is also useful when developing behavioural interpretations, such as changes in tool production 

preferences over time (Andrefsky 1994; Parry and Kelly 1987). 

 

b) Analytical Approaches to Stone Tools 

The formal tools from Iler are distinguished here by the presence of bifacial flaking. 

Bifaces are defined as tools with two sides that circumscribe the object and meet to form a single 

edge (Andrefsky 2005:77). While limited (n=7), the formal bifacial tools recovered from Iler 

were analyzed according to their specific modes and attributes (i.e., variations in form, size, 

proportions, and chipping characteristics) as well as, in the case of the complete projectile point, 

its blade, stem, notching, and base. In line with prominent lithic trends at other Springwells 

Phase sites in the area (e.g., Bruner Colasanti and E.C. Row; see Lennox 1982; Lennox and 

Molto 1995) many of the tools at Iler are made in an expedient fashion (n=23). These are 

detached flakes that display evidence of modification, either from intentional retouch of edges or 

from use wear along the margins (Cotterell and Kamminga 1987). The variability in the 

assemblage’s flake tool morphology was examined with the following sources in mind: 
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1) The functional design of the maker in relation to specific task requirements;  

2) The overall use life of the tool, along with its constant re-sharpening and re-

configuration;  

3) The size, quality, and abundance of raw materials.  

However, the term ‘utilized flake tool’ is itself potentially problematic, as both function and 

morphological criteria are used to assign flakes to this category, and a purely macroscopic 

method used to distinguish utilized flake tools from debitage may at times prove inaccurate 

(Shen 1999). For the purposes of this study, therefore, the term utilized/retouched flake tool 

refers only to those lithic pieces which exhibit patterned use (i.e., edge-damage, edge-wear, and 

micro-wear) as determined by techniques of use-wear analysis (see e.g., Hayden and Kamminga 

1979; Odell 1975; Odell and Odell-Vereecken 1980). 

 

c) Analytical Approaches to Cores  

The analysis of both bifaces and flake tools is best approached by considering the core on 

which it was produced. As stated above, knowing the origin of a flake—whether obtained from 

primary sourced, formalized cores types that have undergone several stages of preparation, or 

secondary nodules obtained opportunistically—can help explain prominent attributes that relate 

to tool function (Andrefsky 2005; Patterson 1983:304).   

Very few expended primary sourced cores (as suggested by patterned flake scars and 

evidence of conchoidal fracture) were recovered at Iler. Indeed, the vast majority of the 

recovered debitage and expedient style flake tools in the assemblage appear to have been formed 

through the bipolar reduction of secondary sourced cores. As defined within Bordes’ Typologie 

Morphologique as les pièces esquillées, (scaled or splintered pieces), bipolar objects are created 
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when placed on an anvil and struck from above, thereby producing two opposing points of 

impact (see also Cotterell and Kamminga 1987; Kooyman 2000). This compressive force applied 

to a core nucleus results in the following definable attributes: twin ridged bulbs of percussion, 

profusion of step and hinge termination, as well as an irregular outline. Furthermore, the 

presence of thermal alteration may significantly affect material qualities (e.g., colour and the 

development of glassy/waxy lustre) as well as manufacturing profile (Domanski and Webb 1992; 

Jeske and Lurie 1993). 

      

2.7 Attribute Analysis  

With the above methods in place, it becomes possible to make sense of the entire lithic 

operational sequence at the Iler Earthworks. Between August of 2017 and June of 2018, I 

analyzed the lithic inventory (i.e., debitage, tool and core assemblages) recovered from this site 

in 2015 and 2016. All recovered materials were lightly washed using a toothbrush, air-dried, and 

then weighed before being examined with a 10x or 15x magnifying glass (hand lens) to 

determine use-wear. Each lithic piece was then classified based on the methods described above 

and with reference to terms contained in the Iler Earthworks Project Catalogue Taxonomy, based 

in large part on a classificatory scheme developed by David G. Smith (1997). The following 

categories were utilized: 1) Primary flakes, biface trimming flakes, and shatter; 2) projectile 

points; 3) assorted formal bifacial tools; 4) utilized and retouched flakes; and 5) cores and 

nodules. A copy of this code may be found in Appendix B. 

Attribute analysis of the debitage suggests that certain object traits provide valuable 

information in identifying specific technologies employed at the Iler Earthworks. Flake and 

chipping waste from various reduction stages occur most frequently, with the overall debitage 
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assemblage accounting for 93.6 percent (n=514) of the 549 lithic pieces recovered in 2015 and 

2016. Though sparsely represented, there was still a number of whole or fragmentary tools 

recovered (n=30, 5.5%), many of which are expedient style utilized and retouched flakes. As 

well, a relatively small number of expended cores (n=2, 0.4%), and chert nodules, both whole 

and fragmentary (n=3, 0.5%), and likely acquired from local till plains, were also examined.  

As with other Late Woodland Western Basin Tradition sites in the immediate vicinity 

(e.g., Bruner-Colasanti), the materials used in the production of lithic tools at the Iler Earthworks 

appear to consist mainly of cherts native to southern Ontario, including Onondaga, Selkirk, and 

Kettle Point. These cherts, while outcropping some distance away from Iler, were likely 

deposited in local till fields during the last Ice Age and picked up locally. 

  

Table 1: Debitage: Primary and Secondary Flakes, and Shatter  

Flake Types f (%) 

Primary Flakes 
 

Whole 97 (18.9%) 

Fragmentary 153 (30%) 

Subtotal                                                 

 

Secondary/Biface Trimming Flakes 

250 (48.9%) 

Whole 62 (12.0%) 

Fragmentary 68 (13.2%) 

Subtotal 130 (25.2%) 

  

Shatter 

 

Subtotal 134 (26.1%) 

TOTAL 514 (100%) 
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Figure 5: Debitage: a-f. Primary flakes (whole/fragmentary); g-l. Biface trimming flakes (whole/fragmentary); m-q. Shatter 

 

 

 

 

      

 

  

     

 

 

 

      

      

      

           Table 1, above, provides the frequencies of the flake types represented in the Iler flake 

waste. Primary flakes were revealed to make up 48.9 percent (n=250) of the debitage assemblage 

(see, for example, Figure 5: a-f). As the initial stage in the reduction process, these flakes are 

generally the largest in size and are classified here by their pronounced bulb of percussion, 

visible striking platform, and feathered termination (when intact). Biface trimming or secondary 

flakes, (Figure 5: g-l) were also heavily represented (n=130, 25.2%). These flakes are produced 

through soft hammer percussion or pressure flaking and are often smaller and/or thinner as they 

reflect the perceived ‘final’ phases of the reduction sequence. Chipping waste or shatter, (Figure 

5: m-q) (n=134, 26.1%) occurs when fracture planes are encountered in reducing a core. Instead 
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of producing a classic flake style, portions will break off along pre-existing lines of weakness 

when encountered, creating blocky, amorphous chert fragments with no clear ventral or dorsal 

service, bulb of percussion, or termination. 

Many of the primary and/or secondary flakes bear evidence of having been produced 

using the bipolar core technique. These flakes are often elongated, with crushed striking 

platforms and flakes scars on their dorsal surface parallel to their longitudinal axis. Bipolar 

flakes often display little cortical surface, as they are more often derived from the reduction of 

expended random cores rather than the initial reduction of chert nodules (see Shott 1999; see also 

Cotterell and Kamminga 1987; Kobayashi 1975).  

Table 2 lists the identified biface and utilized flake types in Iler’s limited tool 

assemblage. Bifaces (see Figure 6: a-e) comprise most of the very limited number of recovered 

formal lithic tools, approximately 1 percent (n=7) of the total lithic assemblage. These are 

organized by the reduction phase component of the operational sequence, with each form 

identified as a stage in the evolution of the tool, from raw-material blank to refined finished 

product. Of the identified bifacial tools, only one was recovered intact (Figure 6: a). This piece, 

which measures 22 mm in width, 33 mm in height, and 4 mm in thickness, is manufactured on 

Selkirk chert, with a straight to slightly convex lateral edge that conforms to the Levanna point 

type (Ritchie 1965:31). A paucity of formal tools is common to Springwells Phase sites, as 

suggested by Paul Lennox’s (1982) report on the Bruner-Colasanti site which, like Iler, reports 

only one complete biface.   
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Table 2: Tools: Formal Tools and Utilized/Retouched Flakes  

 

 

 

 

 

 

     

      

 

 

      

      

The remaining fragmentary pieces include what resembles a tip fragment from a possible second 

Levanna point (Figure 6: b), as well as an unknown bifacial tool tip, and mid- and longitudinal 

sections (Figure 6: c-e) all made from Onondaga chert.  

Twenty-three (4.1%) pieces of lithic debitage (classified here as utilized/retouched 

flakes) show evidence of modification (Figure 6: f-j), either from the intentional retouch of edges 

or from use-wear along margins. A continuous series of minute scars on one or both retouched 

flake faces denotes their potential scraping, cutting, and drilling functions respectively. One 

fragmented chert piece (Figure 6: f) has two retouched lateral edges, rounded through use, 

forming a point on the flake’s distal end. The resulting wear pattern possibly indicates its use as a 

scraper. A second specimen (Figure 6: g) displays a series of flakes scars on its distal end, 

seemingly the result of pressure applied to its pointed tip, which Lennox (1982) suggests is  

Tool Types  f (%) 

Projectile Points  
 

Whole 1 (3.3%) 

Tip 1 (3.3%) 

Subtotal 2 (6.6%) 

 

Bifacial Tools  

 

Tip 3 (10.0%) 

Mid-Section 1 (3.3%) 

Longitudinal Section  1 (3.3%) 

Subtotal 5 (16.6%) 

  

Utilized Flakes   

  

Whole  16 (53.3%) 

Fragmentary 4 (13.3%) 

Subtotal  20 (66.6%) 

 

Retouched Flakes  

 

 

Whole 2 (6.6%) 

Fragmentary 1 (3.3%) 

Subtotal 3 (10.0%) 

TOTAL 30 (100%) 
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Figure 6: Tools: a-b. Projectile points (whole/tip); c-e. Bifaces (fragmentary); f-j. Utilized/retouched flakes (whole/fragmentary)  

indicative of its use as a ‘piercer/borer’. The fine alternate use retouch occurring on the lateral 

edges of many of the other utilized flakes, as well as the crushed edges on some of the larger 

pieces in the assemblage (Figure 6: h-j) suggests their use as chopping/cutting tools (see Lennox 

and Dodd 1991; Lennox and Molto 1995). Furthermore, many of the tools listed above bear 

some degree of thermal alteration. 

 Table 3 and Figure 7, below, illustrate the morphology and frequency of Iler’s few lithic 

cores and cobbles. There are two (Figure 7: a,b) standard, multidirectional, hand rotated cores 

identified out of the five recovered. The remaining cores are small, modified, yet heavily 

patinated (round, waterworn) chert nodules (Figure 7: c,d). All of these cores, as with core 

assemblages from other Springwells sites such as E.C. Row and La Salle-Lucier, bear some 

evidence of bipolar reduction. The small size of these original pebbles, as well as their high 
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Figure 7: a-b. Cores (expended); c-d. Waterworn nodules  

incidence of patinated, heavily battered cortex, attests to their secondary source derivation (see 

discussion below on procurement). 

 

Table 3: Lithic Cores: Expended Cores and Nodules (Bipolar) 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8 Discussion: A Chaîne Opératoire Perspective   

By following the lithic chaîne opératoire object flow model, several notable patterns 

emerge in the analysis of lithic materials from the Iler Earthworks. As noted in Section 2.3.2, 

what we are after in this reconstruction are inferences regarding the decisions made about lithic 

procurement, manufacturing, and use based on cultural considerations and environmental factors.  

By emphasizing the social aspects of the Iler operational sequence, focus can then be directed to 

the underlying processes and negotiations that contributed to the creation of the lithic 

Core Types f (%) 

Expended Cores 
 

Subtotal                                                    

 

Nodules (Bipolar) 

2 (40.0%) 

Whole 1 (20.0%) 

Fragmentary 2 (40.0%) 

Subtotal 3 (60.0%) 

TOTAL 5 (100%) 
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assemblage. Such choices are guided by personal and group knowledge and reflect the physical 

and cultural considerations in which the tool was acquired, produced, and used (Ryan 2009:442; 

see also Flenniken 1993). 

 

2.8.1 Procurement  

The following outlines the choices and decisions of Iler’s inhabitants with respect to the 

procurement of lithic raw materials. This represents the first phase of the chaîne opératoire at 

Iler while speaking to issues of mobility, opportunism, and adaptation to local resource 

conditions. In the southwestern Ontario study area specifically, there is little in the way of 

primary chert sources due to a thick mantle of secondary glacial deposits. The closest sizeable 

and surficial material outcrops are found 180 km north of Iler at Kettle Point and nearly 250 km 

north and east of Iler with the Onondaga and Selkirk deposits (see Eley and Von Bitter 1989; 

Fox 1979; Janusas 1984). The chert sources in and around Essex County are mostly comprised of 

regularly occurring nodules, scattered in the till by glacial action, and left in a series of 

recessional moraines from south to north out of the Lake Erie basin (Luedtke 1976). The look 

and feel of secondary deposits are highly variable. Along the Lake Erie shoreline, large cobbles 

can be found of material virtually indistinguishable from the primary sourced Onondaga, in 

terms of material composition, yet the presence of cortical surface and evidence of wave action 

belie their secondary status. The high incidence of waterworn nodular cortex on recovered cores, 

as well as the proportionally small size of the associated debitage at Iler—as reflected in the 

lithic assemblages of contemporary Springwells sites in the study area (see e.g., Kenyon 1988; 

Lennox and Dodd 1991; Lennox 1995 and Molto 1996; Murphy 1987)—attests to the collection 

of chert from these local till sources. Indeed, the easy accessibility of workable materials in the 



34 

 

Figure 8: Heavily patinated and waterworn pieces of nodular Onondaga chert recovered from the Lake Erie shoreline (2km 

South of Iler) 

 

local till suggests that the inhabitants of Iler may not have needed to visit or trade for materials 

from primary surface outcrops.  

The use of secondary materials at the site is further evidenced by my purposeful 

handpicking of thoroughly patinated pieces of Onondaga chert from the nearby Lake Erie 

shoreline during the summer of 2018. Some of these pieces are depicted in Figure 8, below. 

 

 

 

These nodular cobbles—very similar in quality to the flake scarred cores excavated 2 km north 

in the fine sandy loam at Lot 36—would have provided ideal objective pieces for the production 

of the expedient style-tools prevalent in Iler Earthworks lithic assemblage. In adopting this 

procurement strategy, Iler’s occupants were however limited in their production trajectories (i.e., 

the reduction of primarily smaller pebbles for tools used in more expedient tasks). Yet, despite a 

thorough utilization of secondary chert sources, a number of formal bifacial tools (e.g., the 

Levanna point and fragmentary bifaces) were found at Iler, along with a number of utilized 

flakes too large to have been derived from local pebble sources, suggesting the acquisition of 
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larger, primary sourced cores. In observing stage 1 of the chaîne opératoire object flow model 

(i.e., the distribution of material resources) one must take into consideration the interactions 

between and movements among local Late Woodland groups, preserved through artifacts present 

in the material record (Sellet 1993; Tixier et al. 1999). It is along these lines that scarce, nonlocal 

resources, often used in the fashioning of formal tools, may be acquired (Andrefsky 1994). 

The scarcity of formal tools at Iler, however, suggests there may have been few options 

for exchange in the Western Basin region, possibly due to an emerging conflict between Late 

Woodland communities. As previously stated, it was the terminal end of the Springwells Phase 

that first saw the development of earthen enclosures in southwestern Ontario, at sites such as 

Parker and Iler in Ontario, and Graham-Vogt in Michigan (see Watts 2016). This phenomenon 

was possibly precipitated by the movement of Iroquoian peoples into the area, as evidenced by 

the presence of Iroquoian materials on Bkejwanong (Walpole Island) near Wallaceburg, as well 

as the appearance of more substantial and possibly fortified Iroquoian villages near what is now 

Chatham (Adams 1989; Foster 1990; Murphy 1988; Murphy and Ferris 1990). Hostilities 

between Western Basin and Ontario Iroquoian groups would have been of serious concern to 

both cultural traditions and may have acted as an impetus for site fortification. A trend toward 

isolationism, and population aggregations within fortified communities, could be seen as a direct 

response to the increased proximity of Ontario Iroquoian peoples in ‘occupied areas’ and may 

have engendered the settlement patterns seen among Western Basin Springwells and later Wolf 

Phase groups (Murphy and Ferris 1990:256). Indeed, an encroachment of Iroquoian ‘frontier 

sites’ may be another factor in the procurement patterns observed at Iler. It may be that it was 

simply too dangerous to frequently travel beyond what is now Essex County, to the north and 

east, where Onondaga, Selkirk, and Kettle Point quarry sites are found.  
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2.8.2 Production and Use  

The next stage of the chaîne opératoire outlines how the lithic tools at Iler were formed, 

but were also changed and modified over the course of their use-lives. This refers not only to 

physical levels of analysis but also to scales at which past social action occurred and to which 

‘archaeological explanation’ is therefore directed (Dobres and Hoffman 1994:213). As stated in 

Section 2.6.2, what this interpretation of the core reduction sequence ultimately hopes to 

illuminate are the potential uses of various tools (i.e., ‘formal’ bifaces or ‘utilized’ flakes) when 

faced with a variety of specific task requirements. In keeping with Stages 2 and 3 of the chaîne 

opératoire object flow model, the various technical traditions (e.g., the use of unstandardized, 

expedient core technology within a bipolar industry) present at the Iler Earthworks during the 

Late Woodland period may also be illuminated.  

Prior investigations into Late Woodland lithic industries in southwestern Ontario have 

revealed few changes in formal biface use through time (see Fitting 1965; Murphy and Ferris 

1990). Indeed, as indicated by Shott (1996), their frequent application as projectile points has 

remained a cultural constant throughout the Late Woodland Western Basin, being used almost 

exclusively in the hunting of larger game and, occasionally, in the pursuit of warfare among 

conflicting groups (see also Odell 2000). As stated above, the presence of few, formal bifaces at 

Iler hints at the possible reduction of large, primary sourced cores acquired through exchange 

networks or possible travel to distant quarry sites. Objects derived successfully from the 

reduction of such larger materials are regarded as tools only when they are manufactured 

according to particular yet recurrent design specifications, as reflected in archaeological 

typologies (Shen 1999:71). 
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The majority of tool types at Iler instead represent ‘utilized flakes’. As stated in the 

Methodology section, these expedient style tools are defined only with regards to their functional 

purpose, as evidenced by their varying patterns of use wear (i.e., alterations of edges and 

surfaces as a result of deliberate retouch). However, some use wear studies have revealed a 

multitude of flake types whose observed characteristics may not reflect their intended purpose 

(Odell 1981; Shen 1995, 1999). Flake tools of no morphologically distinguishable type may 

therefore have been used in expedient tasks (e.g., scraping, cutting, and drilling) associated with 

various hunting and gathering activities (see Foreman 2011; Watts et al. 2012). Many such 

pieces with demonstrable use-wear are present in Iler’s assemblage (see Figure 6) and many of 

its larger by-products of core reduction (i.e., primary, biface trimming flakes and shatter; see 

Figure 5) have the potential to be classified as ‘utilized’. 

Such tools are often components of a bipolar industry. This reduction strategy—

interpreted within a chaîne opératoire as both the action and resulting object—is perhaps the 

most efficient way to reduce small chert pieces, and is frequently implemented at sites where 

such secondary sourced raw materials (e.g., heavily patinated chert nodules; see Figures 7-8) are 

primarily accessible (Barham 1987; Crovetto et al. 1994). In sedentary contexts such as Iler, 

where mobility is constrained, flakes rather than finished bifaces may indeed have been a 

required choice for occasional tool use (Parry and Kelly 1987; Shott 1999:220). The 

overwhelming presence of utilized flakes at Iler may therefore account for the site’s lack of 

formal bifaces. Due to the ubiquity of secondary materials when compared with larger primary 

cores, as well as a proficiency in bipolar reduction, its inhabitants may have indeed ‘settled’ on, 

or perhaps even preferred, flake tools for expedient tasks.  
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Furthermore, when supply of lithic raw materials is low, depleted tools may be further 

reduced to produce a few more useful flakes (Goodyear 1993). This, in addition to the retouch of 

many formerly discarded cores and flake tools (and to some extent bifaces), many of which bear 

some evidence of thermal alteration as suggested by lustre, demonstrates a non-linear 

organization of reduction activities at the site (see Sellet 1999). Although constrained by 

technologies, the inhabitants of the Iler Earthworks possessed the necessary knowledge sets 

(connaissance and savoir-faire) required to derive as much use as possible from a limited 

amount of material. Indeed, this ability to incorporate alternative methods of reduction reflects a 

larger set of adaptive behaviours that populations use in their interaction with the surrounding 

environment (Goodyear 1993; Jeske and Lurie 1993:146). 

 

2.8.3 Discard  

This ‘final’ phase of the operational sequence refers to site patterning as suggested by 

discarded lithic materials. Unlike discard patterns present at other Western Basin settlements, 

where materials appear to have been purposefully deposited within selected storage pits in 

accordance with specific habitation activities or mortuary practices (see Fitting 1970:156; 

Greenman 1937), evidence from various Late Woodland earthworks (see e.g., Krakker 1983; 

Watts 2016), including Iler, suggests a generalized, non-purposeful treatment of discarded 

lithics, as given by their scattered depositional patterning. Despite this technological organization 

at Iler—the potential result of a combination between natural and cultural agencies (e.g., erosion 

over time into the semicircular embankment ditch and later agricultural disturbances)—it is 

entirely possible that much of Iler’s lithic material may have instead been reserved for further 
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application, as reflected above in the re-retting of expended objects. Here, it seems, is evidence 

of an exhaustive exploitation of all available resources.  

In line with the so-called ‘final’ stage of the chaîne opératoire object flow model, 

wherein the concept of fixed, unchangeable categories may be challenged, such discarded 

materials are not viewed as end products of the reduction sequence but as part of a continuous 

cycle of use and re-use (Shott 1996, 2003). This analytical strategy ultimately considers material 

discard—the perceived last phase of use before deposition in the archaeological record—as a 

crucial consideration when inferring the overall technological strategies that in part comprise 

Late Woodland lifeways (see Bradbury and Carr 1999, 2014).  

 

2.9 Conclusion 

As both a conceptual device and methodological framework, the chaîne opératoire 

provides a way of understanding how lithic production is organized. With regard to the former, it 

serves to theorize how the manufacturing process would be viewed from the perspective of a tool 

maker, and how their knowledge (connaissance) comes to be enacted through unique skills 

(savoir-faire) born of ongoing engagements with materials. Concerning the latter, the chaîne 

opératoire allows the analyst to envision how raw materials are introduced into the technological 

cycle of production activities and transformed into culturally meaningful objects (Geneste 

1985:77). The sequence, as noted earlier, can be divided into meaningful phases, including raw 

material procurement, tool production, and intended use-life, maintenance, and discard.  

In implementing a chaîne opératoire analytical strategy to the Late Woodland Iler 

Earthworks lithic assemblage, we have been able to direct attention to the broader, embedded 

stone economizing behaviours that were woven into the very fabric of the Western Basin 
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(Springwells) cultural landscape. A total of 549 lithic objects were examined as part of this 

study, including principally flake and chipping waste from various reduction stages, along with 

whole or fragmentary tools, expended cores, and chert nodules likely acquired from local till 

plains or lacustrine/riverine environments. Various technological and function-based typological 

approaches to the Iler debitage and tool assemblages were employed in order to infer technical 

traditions at the site, revealing a largely secondary source, expedient-style lithic industry (i.e., the 

reduction of nodular cores to useable flakes) and the re-touch/re-fitting of formerly discarded 

flakes and tools. Such continued cycles of use and re-use may challenge potentially rigid 

taxonomies, and the so-called ‘death’ of discarded objects.  

The analysis described above suggests that, rather than availing themselves of materials 

from primary sources, the inhabitants of Iler focused on an alternative procurement strategy—the 

collection of localized, secondary nodules. Furthermore, the paucity of formal, bifacial tools in 

the sample and ubiquity of utilized flakes hints at a somewhat circumscribed territorial range. 

Limited options for exchange, and/or a reluctance to travel to distant primary sources during the 

later Springwells Phase—the possible result of an emerging conflict between Ontario Western 

Basin, and westward-encroaching Iroquoian peoples—may have instigated the procurement 

patterns observed at Iler. Ultimately, the analysis and interpretation of the Iler Earthworks lithic 

assemblage contributes to the ongoing assessment of Western Basin Tradition lifeways, and the 

work needed to bring such fascinating practices into the broader ‘canon’ of Ontario 

archaeological research (Murphy and Ferris 1990). 
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Appendix A: Summary Tables  

Borden #: AaHr-22  

Table A.1 Projectile Points and Bifacial tools  

Unit Trench Level Feature Cat# Articode Description #Pieces Weight(g) 

558-262 Trench C A 
 

015.230.2.1 BAA0001 Projectile Point - Whole 1 2.6 

560-259 Trench C A 
 

015.251.2.1 BAA0002 Projectile Point - Tip 1 0.1 

550-220 Trench F C 
 

016.214.2.1 BAZ0002 Bifacial Tool - Tip 1 11.3 

563-269 Trench E A 
 

015.277.2.1 BAZ0002 Bifacial Tool - Tip 1 1.5 

565-260 Trench D A 
 

015.278.2.1 BAZ0002 Bifacial Tool - Tip 1 1 

561-260 Trench C C F1 015.264.2.1 BAZ0004 Bifacial Tool - Mid Section 1 0.4 

561-262 Trench C A 
 

015.229.2.1 BAZ0016 Bifacial Tool - Longitudinal 
Section 

1 0.4 

 

Table A.2: Utilized/Retouched Flakes  

Unit Trench Level Feature Cat# Articode Description #Pieces Weight(g) 

559-263 Trench C A F1 015.236.2.1 BDA0001 Utilized Flakes - Whole 1 2.7 

610-240 F1 Ditch C F1 Ditch 016.211.2.1 BDA0001 Utilized Flakes - Whole 1 3.1 

550-265 Trench F C F3 016.201.2.1 BDA0001 Utilized Flakes - Whole 1 4.2 

555-255 Trench F C F6 016.209.2.1 BDA0001 Utilized Flakes - Whole 1 1.1 

560-254 Trench C A 
 

015.217.2.1 BDA0001 Utilized Flakes - Whole 1 0.6 

560-261 Trench C A 
 

015.220.2.1 BDA0001 Utilized Flakes - Whole 1 0.3 

561-261 Trench C A 
 

015.222.2.1 BDA0001 Utilized Flakes - Whole 1 1.8 

560-256 Trench C A 
 

015.224.2.1 BDA0001 Utilized Flakes - Whole 1 0.6 

560-259 Trench C A 
 

015.251.2.3 BDA0001 Utilized Flakes - Whole 1 1.6 

560-262 Trench C A 
 

015.252.2.1 BDA0001 Utilized Flakes - Whole 1 0.9 

561-258 Trench C A 
 

015.261.2.1 BDA0001 Utilized Flakes - Whole 1 0.2 

577-240 Trench B A 
 

015.303.2.1 BDA0001 Utilized Flakes - Whole 1 1 

577-270 Trench E A 
 

015.304.2.1 BDA0001 Utilized Flakes - Whole 1 2.9 

579-260 Trench D A 
 

015.306.2.1 BDA0001 Utilized Flakes - Whole 1 3.1 

580-224 Trench A A 
 

015.311.2.1 BDA0001 Utilized Flakes - Whole 1 0.4 

580-234 Trench A A 
 

015.317.2.1 BDA0001 Utilized Flakes - Whole 1 3.3 

555-265 Trench F C F14 016.207.2.2 BDA0002 Utilized Flakes - Fragmentary 1 0.8 

561-262 Trench C A 
 

015.229.2.2 BDA0002 Utilized Flakes - Fragmentary 1 2.8 

560-255 Trench C A 
 

015.218.2.1 BDA0002 Utilized Flakes - Fragmentary 1 0.2 

560-256 Trench C A 
 

015.224.2.2 BDA0002 Utilized Flakes - Fragmentary 1 0.1 

562-260 Trench D C F1 015.274.2.1 BDC0001 Retouched Flakes - Whole 1 16 

570-240 Trench B A 
 

015.289.2.1 BDC0001 Retouched Flakes - Whole 1 0.4 

576-269 Trench E A 
 

015.302.2.1 BDC0002 Retouched Flakes - 
Fragmentary 

1 2.3 
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Table A.3: Nodules and Cores 

Unit Trench Level Feature Cat# Articode Description #Pieces Weight(g) 

555-265 Trench F C F14 016.207.2.1 BEA0001 Chert Nodule - Whole 1 65.5 

550-225/545-

225 

Trench F C F12 016.203.2.1 BEA0002 Chert Nodule - Fragmentary 1 11.1 

560-259 Trench C A 
 

015.251.2.2 BEA0002 Chert Nodule - Fragmentary 1 19.1 

550-225/545-

225 

Trench F C F12 016.203.2.2 BEB0004 Core - Expended 1 2.6 

568-269 Trench E A 
 

015.287.2.3 BEB0004 Core - Expended 1 14 

 

Tables A.4: Primary Flakes  

Unit Trench Level Feature Cat# Articode Description #Pieces Weight(g) 

559-263 Trench C A F1 015.236.2.2 BEH0001 Primary Flakes - Whole 1 0.2 

561-260 Trench C C F1 015.264.2.2 BEH0001 Primary Flakes - Whole 3 1 

550-225/545-

225 

Trench F C F12 016.203.2.3 BEH0001 Primary Flakes - Whole 1 0.9 

555-265 Trench F C F14 016.207.2.3 BEH0001 Primary Flakes - Whole 2 9.5 

550-265 Trench F C F3 016.201.2.2 BEH0001 Primary Flakes - Whole 6 8 

555-260 Trench F C F5 016.216.2.1 BEH0001 Primary Flakes - Whole 1 1.1 

555-255 Trench F C F6 016.202.2.1 BEH0001 Primary Flakes - Whole 1 3.5 

550-255 Trench F C F7 016.210.2.1 BEH0001 Primary Flakes - Whole 2 2.1 

561-262 Trench C A 
 

015.229.2.3 BEH0001 Primary Flakes - Whole 2 1.8 

560-255 Trench C A 
 

015.218.2.2 BEH0001 Primary Flakes - Whole 2 1.6 

560-256 Trench C A 
 

015.224.2.3 BEH0001 Primary Flakes - Whole 4 4.3 

568-260 Trench D A 
 

015.227.2.1 BEH0001 Primary Flakes - Whole 2 0.9 

559-261 Trench C A 
 

015.235.2.1 BEH0001 Primary Flakes - Whole 2 1.5 

559-262 Trench C A 
 

015.238.2.1 BEH0001 Primary Flakes - Whole 1 0.5 

560-242 Trench C A 
 

015.240.2.1 BEH0001 Primary Flakes - Whole 1 2.1 

560-243 Trench C A 
 

015.242.2.1 BEH0001 Primary Flakes - Whole 1 0.4 

560-248 Trench C A 
 

015.246.2.1 BEH0001 Primary Flakes - Whole 1 0.4 

560-259 Trench C A 
 

015.251.2.4 BEH0001 Primary Flakes - Whole 1 0.2 

560-258 Trench C A 
 

015.254.2.1 BEH0001 Primary Flakes - Whole 2 2.2 

560-264 Trench C A 
 

015.255.2.1 BEH0001 Primary Flakes - Whole 1 0.6 

560-263 Trench C A 
 

015.256.2.1 BEH0001 Primary Flakes - Whole 2 2.8 

560-267 Trench C A 
 

015.258.2.1 BEH0001 Primary Flakes - Whole 1 0.4 

560-269 Trench C A 
 

015.259.2.1 BEH0001 Primary Flakes - Whole 2 1.1 

561-258 Trench C A 
 

015.261.2.2 BEH0001 Primary Flakes - Whole 2 1.1 

560-268 Trench C A 
 

015.262.2.1 BEH0001 Primary Flakes - Whole 1 1.4 

561-260 Trench C A 
 

015.263.2.1 BEH0001 Primary Flakes - Whole 1 1.1 

561-259 Trench C A 
 

015.265.2.1 BEH0001 Primary Flakes - Whole 2 0.8 

561-259 Trench C C 
 

015.266.2.1 BEH0001 Primary Flakes - Whole 1 0.2 

562-240 Trench B A 
 

015.269.2.1 BEH0001 Primary Flakes - Whole 1 0.6 

561-263 Trench C A 
 

015.270.2.1 BEH0001 Primary Flakes - Whole 1 0.3 

563-240 Trench B A 
 

015.273.2.1 BEH0001 Primary Flakes - Whole 1 0.6 



53 

 

564-240 Trench B A 
 

015.275.2.1 BEH0001 Primary Flakes - Whole 1 0.2 

563-269 Trench E A 
 

015.277.2.2 BEH0001 Primary Flakes - Whole 1 0.2 

565-260 Trench D A 
 

015.278.2.2 BEH0001 Primary Flakes - Whole 2 0.6 

566-260 Trench D A 
 

015.282.2.1 BEH0001 Primary Flakes - Whole 1 0.6 

567-260 Trench D A 
 

015.285.2.2 BEH0001 Primary Flakes - Whole 3 0.6 

567-260 Trench D A 
 

015.286.2.1 BEH0001 Primary Flakes - Whole 1 0.4 

568-269 Trench E A 
 

015.287.2.1 BEH0001 Primary Flakes - Whole 2 19.5 

570-260 Trench D A 
 

015.288.2.1 BEH0001 Primary Flakes - Whole 3 1.4 

569-260 Trench D A 
 

015.289.2.1 BEH0001 Primary Flakes - Whole 1 0.6 

571-260 Trench D A 
 

015.291.2.1 BEH0001 Primary Flakes - Whole 2 1 

573-240 Trench B A 
 

015.292.2.1 BEH0001 Primary Flakes - Whole 1 0.4 

574-260 Trench D A 
 

015.294.2.1 BEH0001 Primary Flakes - Whole 1 0.5 

573-269 Trench E A 
 

015.295.2.1 BEH0001 Primary Flakes - Whole 1 1.7 

574-269 Trench E A 
 

015.297.2.1 BEH0001 Primary Flakes - Whole 1 0.6 

575-240 Trench B A 
 

015.298.2.1 BEH0001 Primary Flakes - Whole 1 0.2 

576-240 Trench B A 
 

015.299.2.1 BEH0001 Primary Flakes - Whole 1 0.1 

576-260 Trench E A 
 

015.301.2.1 BEH0001 Primary Flakes - Whole 1 0.3 

576-269 Trench E A 
 

015.302.2.2 BEH0001 Primary Flakes - Whole 1 1.9 

577-260 Trench D A 
 

015.305.2.1 BEH0001 Primary Flakes - Whole 1 1.2 

578-260 Trench E A 
 

015.310.2.1 BEH0001 Primary Flakes - Whole 1 1.6 

580-216 Trench A A 
 

015.313.2.1 BEH0001 Primary Flakes - Whole 1 1.1 

580-210 Trench A A 
 

015.315.2.1 BEH0001 Primary Flakes - Whole 1 0.9 

580-234 Trench A A 
 

015.317.2.2 BEH0001 Primary Flakes - Whole 2 0.9 

580-229 Trench A A 
 

015.318.2.1 BEH0001 Primary Flakes - Whole 1 0.9 

580-230 Trench A A 
 

015.319.2.1 BEH0001 Primary Flakes - Whole 2 0.8 

580-232 Trench A A 
 

015.320.2.1 BEH0001 Primary Flakes - Whole 4 2.4 

580-236 Trench A A 
 

015.323.2.1 BEH0001 Primary Flakes - Whole 3 0.5 

580-235 Trench A A 
 

015.326.2.1 BEH0001 Primary Flakes - Whole 4 4.2 

559-260 Trench C C F1 015.233.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.4 

558-260 Trench C C F1 015.234.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.7 

559-261 Trench C C F1 015.237.2.1 BEH0002 Primary Flakes - Fragmentary 2 1.7 

560-259 Trench C C F1 015.253.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.8 

560-265 Trench C A F1 015.257.2.1 BEH0002 Primary Flakes - Fragmentary 2 1.5 

610-240 F1 Ditch C F1 Ditch 016.211.2.2 BEH0002 Primary Flakes - Fragmentary 1 1.3 

605-230 (2m 

E) 

F1 Ditch C F1 Ditch 016.215.3.2 BEH0002 Primary Flakes - Fragmentary 1 0.7 

555-265 Trench F C F14 016.207.2.4 BEH0002 Primary Flakes - Fragmentary 3 2.5 

550-265 Trench F C F3 016.201.2.3 BEH0002 Primary Flakes - Fragmentary 2 4.4 

550-260 Trench F C F3 016.205.2.1 BEH0002 Primary Flakes - Fragmentary 1 1.4 

555-260 Trench F C F5 016.216.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.2 

555-255 Trench F C F6 016.209.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.5 

550-255 Trench F C F7 016.210.2.2 BEH0002 Primary Flakes - Fragmentary 2 0.7 

555-250 Trench F C F8 016.208.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.9 
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555-250 Trench F C F8 016.212.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.5 

580-233 Trench A A 
 

015.324.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.3 

560-254 Trench C A 
 

015.217.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.4 

560-255 Trench C A 
 

015.218.2.3 BEH0002 Primary Flakes - Fragmentary 1 0.2 

560-252 Trench C A 
 

015.219.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.7 

560-261 Trench C A 
 

015.220.2.2 BEH0002 Primary Flakes - Fragmentary 2 1.3 

571-269 Trench E A 
 

015.221.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.4 

561-261 Trench C A 
 

015.222.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.6 

560-261 Trench C C 
 

015.223.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.6 

560-256 Trench C A 
 

015.224.2.4 BEH0002 Primary Flakes - Fragmentary 2 1.4 

568-260 Trench D A 
 

015.227.2.2 BEH0002 Primary Flakes - Fragmentary 1 2.5 

560-266 Trench C A 
 

015.228.2.1 BEH0002 Primary Flakes - Fragmentary 4 3.3 

558-262 Trench C A 
 

015.230.2.2 BEH0002 Primary Flakes - Fragmentary 2 2.1 

558-260 Trench C A 
 

015.231.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.4 

559-260 Trench C A 
 

015.232.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.8 

559-261 Trench C A 
 

015.235.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.6 

559-262 Trench C A 
 

015.238.2.2 BEH0002 Primary Flakes - Fragmentary 4 1 

560-242 Trench C A 
 

015.240.2.2 BEH0002 Primary Flakes - Fragmentary 2 1.8 

560-243 Trench C A 
 

015.242.2.2 BEH0002 Primary Flakes - Fragmentary 3 1.1 

560-244 Trench C A 
 

015.244.2.1 BEH0002 Primary Flakes - Fragmentary 3 10.5 

560-248 Trench C A 
 

015.246.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.3 

560-250 Trench C A 
 

015.248.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.8 

560-259 Trench C A 
 

015.251.2.5 BEH0002 Primary Flakes - Fragmentary 2 1.2 

560-258 Trench C A 
 

015.254.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.4 

560-263 Trench C A 
 

015.256.2.2 BEH0002 Primary Flakes - Fragmentary 2 2.6 

560-267 Trench C A 
 

015.258.2.2 BEH0002 Primary Flakes - Fragmentary 2 2.4 

561-240 Trench B A 
 

015.260.2.1 BEH0002 Primary Flakes - Fragmentary 4 1.5 

561-258 Trench C A 
 

015.261.2.3 BEH0002 Primary Flakes - Fragmentary 6 2.1 

560-268 Trench C A 
 

015.262.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.5 

561-260 Trench C A 
 

015.263.2.2 BEH0002 Primary Flakes - Fragmentary 2 6.2 

561-259 Trench C A 
 

015.265.2.2 BEH0002 Primary Flakes - Fragmentary 6 2.3 

561-259 Trench C C 
 

015.266.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.3 

561-269 Trench E A 
 

015.267.2.1 BEH0002 Primary Flakes - Fragmentary 2 10.1 

562-240 Trench B A 
 

015.269.2.2 BEH0002 Primary Flakes - Fragmentary 4 1.1 

564-240 Trench B A 
 

015.275.2.2 BEH0002 Primary Flakes - Fragmentary 2 0.4 

564-260 Trench D A 
 

015.276.2.1 BEH0002 Primary Flakes - Fragmentary 3 0.7 

563-269 Trench E A 
 

015.277.2.3 BEH0002 Primary Flakes - Fragmentary 1 5.8 

567-240 Trench B A 
 

015.280.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.6 

566-260 Trench D A 
 

015.282.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.3 

567-269 Trench E A 
 

015.283.2.1 BEH0002 Primary Flakes - Fragmentary 2 1.1 

568-240 Trench B A 
 

015.284.2.2 BEH0002 Primary Flakes - Fragmentary 2 1 

568-269 Trench E A 
 

015.287.2.2 BEH0002 Primary Flakes - Fragmentary 1 7 

570-260 Trench D A 
 

015.288.2.2 BEH0002 Primary Flakes - Fragmentary 2 1.8 
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569-260 Trench D A 
 

015.289.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.7 

570-240 Trench B A 
 

015.289.2.2 BEH0002 Primary Flakes - Fragmentary 3 0.8 

572-260 Trench D A 
 

015.290.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.4 

571-260 Trench D A 
 

015.291.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.6 

574-260 Trench D A 
 

015.294.2.2 BEH0002 Primary Flakes - Fragmentary 3 3.4 

573-269 Trench E A 
 

015.295.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.1 

574-240 Trench B A 
 

015.296.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.3 

574-269 Trench E A 
 

015.297.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.5 

575-240 Trench B A 
 

015.298.2.2 BEH0002 Primary Flakes - Fragmentary 2 3.9 

576-240 Trench B A 
 

015.299.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.1 

575-260 Trench D A 
 

015.300.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.8 

576-260 Trench E A 
 

015.301.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.5 

576-269 Trench E A 
 

015.302.2.3 BEH0002 Primary Flakes - Fragmentary 4 2.4 

577-240 Trench B A 
 

015.303.2.2 BEH0002 Primary Flakes - Fragmentary 1 1.5 

577-270 Trench E A 
 

015.304.2.2 BEH0002 Primary Flakes - Fragmentary 3 1.3 

579-260 Trench D A 
 

015.306.2.2 BEH0002 Primary Flakes - Fragmentary 1 1.8 

578-269 Trench E A 
 

015.307.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.2 

580-224 Trench A A 
 

015.311.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.4 

580-221 Trench A A 
 

015.312.2.1 BEH0002 Primary Flakes - Fragmentary 1 0.4 

580-210 Trench A A 
 

015.315.2.2 BEH0002 Primary Flakes - Fragmentary 3 2 

580-232 Trench A A 
 

015.320.2.2 BEH0002 Primary Flakes - Fragmentary 2 2.7 

580-225 Trench A A 
 

015.322.2.1 BEH0002 Primary Flakes - Fragmentary 2 0.7 

580-236 Trench A A 
 

015.323.2.2 BEH0002 Primary Flakes - Fragmentary 1 1 

580-235 Trench A A 
 

015.326.2.2 BEH0002 Primary Flakes - Fragmentary 1 0.2 

 

Table A.5 Biface Trimming Flakes  

Unit  Trench Level Feature Cat# Articode Description #Pieces Weight(g) 

559-260 Trench C C F1 015.233.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.2 

559-261 Trench C C F1 015.237.2.2 BEE0001 Biface Trimming Flakes - 
Whole 

3 0.6 

555-265 Trench F C F14 016.207.2.5 BEE0001 Biface Trimming Flakes - 

Whole 

7 1.3 

550-265 Trench F C F3 016.201.2.4 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.5 

555-255 Trench F C F6 016.209.2.3 BEE0001 Biface Trimming Flakes - 
Whole 

2 0.2 

550-255 Trench F C F7 016.210.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.4 

561-262 Trench C A 
 

015.229.2.4 BEE0001 Biface Trimming Flakes - 

Whole 

2 0.4 

555-265 Trench F C 
 

016.206.2.1 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.2 

560-261 Trench C A 
 

015.220.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.2 

571-269 Trench E A 
 

015.221.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

561-261 Trench C A 
 

015.222.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.2 

560-261 Trench C C 
 

015.223.2.2 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.1 
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560-256 Trench C A 
 

015.224.2.5 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.1 

560-266 Trench C A 
 

015.228.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

2 0.3 

559-260 Trench C A 
 

015.232.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

559-262 Trench C A 
 

015.238.2.3 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.1 

560-242 Trench C A 
 

015.240.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

560-243 Trench C A 
 

015.242.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

560-245 Trench C A 
 

015.243.2.2 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.1 

560-248 Trench C A 
 

015.246.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

560-262 Trench C A 
 

015.252.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

561-240 Trench B A 
 

015.260.2.2 BEE0001 Biface Trimming Flakes - 
Whole 

2 0.2 

561-258 Trench C A 
 

015.261.2.4 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

561-260 Trench C A 
 

015.263.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

2 0.2 

561-259 Trench C C 
 

015.266.2.3 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.1 

561-264 Trench C A 
 

015.272.2.1 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

564-240 Trench B A 
 

015.275.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.2 

564-260 Trench D A 
 

015.276.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

3 0.3 

565-269 Trench E A 
 

015.279.2.1 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

567-240 Trench B A 
 

015.280.2.2 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

567-260 Trench D A 
 

015.285.2.3 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.1 

573-260 Trench D A 
 

015.293.2.1 BEE0001 Biface Trimming Flakes - 

Whole 

2 0.3 

575-240 Trench B A 
 

015.298.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

576-269 Trench E A 
 

015.302.2.4 BEE0001 Biface Trimming Flakes - 
Whole 

4 0.4 

577-240 Trench B A 
 

015.303.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

577-270 Trench E A 
 

015.304.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.1 

579-260 Trench D A 
 

015.306.2.3 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.4 

580-234 Trench A A 
 

015.317.2.3 BEE0001 Biface Trimming Flakes - 
Whole 

1 0.2 

580-236 Trench A A 
 

015.323.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

2 0.2 

580-235 Trench A A 
 

015.326.2.3 BEE0001 Biface Trimming Flakes - 

Whole 

1 0.2 

562-260 Trench D A 
 

015.271.2.1 BEE0001 Biface Trimming Flakes - 
Whole 

2 0.6 

559-263 Trench C A F1 015.236.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

559-261 Trench C C F1 015.237.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.3 

559-263 Trench C C F1 015.239.2.1 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.2 

560-265 Trench C A F1 15.257.2.2 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

561-260 Trench C C F1 015.264.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

600-235 F1 Ditch C F13 016.215.2.1 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.3 
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555-265 Trench F C F14 016.207.2.6 BEE0002 Biface Trimming Flakes - 
Fragmentary 

9 2.2 

550-265 Trench F C F3 016.201.2.5 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.4 

550-260 Trench F C F3 016.205.2.2 BEE0002 Biface Trimming Flakes - 

Fragmentary 

6 1.7 

555-255 Trench F C F6 016.209.2.4 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.1 

550-255 Trench F C F9 016.204.2.1 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

555-265 Trench F C 
 

016.206.2.2 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.3 

560-261 Trench C A 
 

015.220.2.4 BEE0002 Biface Trimming Flakes - 
Fragmentary 

2 0.2 

561-261 Trench C A 
 

015.222.2.4 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

560-261 Trench C C 
 

015.223.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.2 

560-256 Trench C A 
 

015.224.2.6 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.2 

568-260 Trench D A 
 

015.227.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.2 

560-266 Trench C A 
 

015.228.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.2 

558-260 Trench C A 
 

015.231.2.2 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.1 

559-261 Trench C A 
 

015.235.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

560-245 Trench C A 
 

015.243.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.3 

560-244 Trench C A 
 

015.244.2.2 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.2 

560-249 Trench C A 
 

015.247.2.1 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

560-251 Trench C A 
 

015.250.2.1 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.2 

560-262 Trench C A 
 

015.252.2.3 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.1 

560-263 Trench C A 
 

015.256.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.2 

560-267 Trench C A 
 

015.258.2.3 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.2 

561-240 Trench B A 
 

015.260.2.3 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.1 

561-258 Trench C A 
 

015.261.2.5 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.3 

561-260 Trench C A 
 

015.263.2.4 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.3 

561-259 Trench C C 
 

015.266.2.4 BEE0002 Biface Trimming Flakes - 
Fragmentary 

2 0.1 

561-263 Trench C A 
 

015.270.2.2 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.2 

574-240 Trench B A 
 

015.269.2.2 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.1 

573-240 Trench B A 
 

015.292.2.2 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

575-240 Trench B A 
 

015.298.2.4 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.1 

576-269 Trench E A 
 

015.302.2.5 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.2 

577-270 Trench E A 
 

015.304.2.4 BEE0002 Biface Trimming Flakes - 

Fragmentary 

2 0.2 

579-260 Trench D A 
 

015.306.2.4 BEE0002 Biface Trimming Flakes - 
Fragmentary 

1 0.1 

580-234 Trench A A 
 

015.317.2.4 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

580-231 Trench A A 
 

015.321.2.1 BEE0002 Biface Trimming Flakes - 

Fragmentary 

1 0.1 

580-235 Trench A A 
 

015.326.2.4 BEE0002 Biface Trimming Flakes - 
Fragmentary 

3 0.3 
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Table A.6: Chipping Waste (Shatter) 

Unit Trench Level Feature Cat# Articode Description #Pieces Weight(g) 

559-260 Trench C C F1 015.233.2.3 BFA0002 Chipping Waste - Shatter 1 0.3 

559-261 Trench C C F1 015.237.2.4 BFA0002 Chipping Waste - Shatter 3 4.1 

559-263 Trench C C F1 015.239.2.2 BFA0002 Chipping Waste - Shatter 1 0.9 

561-260 Trench C C F1 015.264.2.4 BFA0002 Chipping Waste - Shatter 1 18.1 

550-225/545-

225 

Trench F C F12 016.203.2.4 BFA0002 Chipping Waste - Shatter 1 3.6 

555-265 Trench F C F14 016.207.2.7 BFA0002 Chipping Waste - Shatter 3 1 

550-265 Trench F C F3 016.201.2.6 BFA0002 Chipping Waste - Shatter 7 13.6 

550-255 Trench F C F9 016.204.2.2 BFA0002 Chipping Waste - Shatter 1 0.3 

561-262 Trench C A 
 

015.229.2.5 BFA0002 Chipping Waste - Shatter 2 2.1 

555-265 Trench F C 
 

016.206.2.3 BFA0002 Chipping Waste - Shatter 1 2.9 

560-254 Trench C A 
 

015.217.2.3 BFA0002 Chipping Waste - Shatter 1 0.6 

560-252 Trench C A 
 

015.219.2.2 BFA0002 Chipping Waste - Shatter 1 5.5 

560-261 Trench C A 
 

015.220.2.5 BFA0002 Chipping Waste - Shatter 3 4.8 

560-256 Trench C A 
 

015.224.2.7 BFA0002 Chipping Waste - Shatter 1 0.6 

560-260 Trench C C 
 

015.225.2.1 BFA0002 Chipping Waste - Shatter 1 0.9 

568-260 Trench D A 
 

015.227.2.4 BFA0002 Chipping Waste - Shatter 2 0.5 

558-260 Trench C A 
 

015.231.2.3 BFA0002 Chipping Waste - Shatter 1 0.2 

559-261 Trench C A 
 

015.235.2.4 BFA0002 Chipping Waste - Shatter 1 0.4 

559-262 Trench C A 
 

015.238.2.4 BFA0002 Chipping Waste - Shatter 3 3.8 

560-241 Trench C A 
 

015.241.2.1 BFA0002 Chipping Waste - Shatter 1 0.7 

560-243 Trench C A 
 

015.242.2.4 BFA0002 Chipping Waste - Shatter 2 5.8 

560-245 Trench C A 
 

015.243.2.4 BFA0002 Chipping Waste - Shatter 2 0.9 

560-247 Trench C A 
 

015.245.2.1 BFA0002 Chipping Waste - Shatter 1 1.8 

560-248 Trench C A 
 

015.246.2.4 BFA0002 Chipping Waste - Shatter 1 0.4 

560-249 Trench C A 
 

015.247.2.2 BFA0002 Chipping Waste - Shatter 2 11 

560-250 Trench C A 
 

015.248.2.2 BFA0002 Chipping Waste - Shatter 1 1.8 

560-253 Trench C A 
 

015.249.2.1 BFA0002 Chipping Waste - Shatter 2 3.5 

560-251 Trench C A 
 

015.250.2.2 BFA0002 Chipping Waste - Shatter 1 0.2 

560-262 Trench C A 
 

015.252.2.4 BFA0002 Chipping Waste - Shatter 1 0.2 

560-258 Trench C A 
 

015.254.2.3 BFA0002 Chipping Waste - Shatter 1 0.1 

560-263 Trench C A 
 

015.256.2.4 BFA0002 Chipping Waste - Shatter 3 2.7 

560-267 Trench C A 
 

015.258.2.4 BFA0002 Chipping Waste - Shatter 1 0.3 

561-258 Trench C A 
 

015.261.2.6 BFA0002 Chipping Waste - Shatter 2 3.7 

560-268 Trench C A 
 

015.262.2.3 BFA0002 Chipping Waste - Shatter 3 1.1 

561-260 Trench C A 
 

015.263.2.5 BFA0002 Chipping Waste - Shatter 4 6.3 

561-259 Trench C A 
 

015.265.2.3 BFA0002 Chipping Waste - Shatter 3 6.9 

561-259 Trench C C 
 

015.266.2.5 BFA0002 Chipping Waste - Shatter 1 0.4 

561-269 Trench E A 
 

015.267.2.2 BFA0002 Chipping Waste - Shatter 2 7.6 

562-240 Trench B A 
 

015.269.2.3 BFA0002 Chipping Waste - Shatter 3 1.7 

561-263 Trench C A 
 

015.270.2.3 BFA0002 Chipping Waste - Shatter 3 2 
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561-264 Trench C A 
 

015.272.2.2 BFA0002 Chipping Waste - Shatter 1 0.1 

564-240 Trench B A 
 

015.275.2.4 BFA0002 Chipping Waste - Shatter 2 8.4 

564-260 Trench D A 
 

015.276.2.3 BFA0002 Chipping Waste - Shatter 1 0.4 

563-269 Trench E A 
 

015.277.2.4 BFA0002 Chipping Waste - Shatter 2 1.2 

565-260 Trench D A 
 

015.278.2.3 BFA0002 Chipping Waste - Shatter 1 0.3 

565-269 Trench E A 
 

015.279.2.2 BFA0002 Chipping Waste - Shatter 2 0.4 

566-269 Trench E A 
 

015.281.2.1 BFA0002 Chipping Waste - Shatter 3 1.9 

566-260 Trench D A 
 

015.282.2.3 BFA0002 Chipping Waste - Shatter 1 0.2 

567-269 Trench E A 
 

015.283.2.2 BFA0002 Chipping Waste - Shatter 1 0.5 

568-240 Trench B A 
 

015.284.2.3 BFA0002 Chipping Waste - Shatter 3 4.2 

567-260 Trench D A 
 

015.285.2.4 BFA0002 Chipping Waste - Shatter 1 0.3 

567-260 Trench D A 
 

015.286.2.2 BFA0002 Chipping Waste - Shatter 2 1.1 

570-260 Trench D A 
 

015.288.2.3 BFA0002 Chipping Waste - Shatter 1 0.7 

569-260 Trench D A 
 

015.289.2.3 BFA0002 Chipping Waste - Shatter 1 0.2 

572-260 Trench D A 
 

015.290.2.2 BFA0002 Chipping Waste - Shatter 1 2.5 

573-240 Trench B A 
 

015.292.2.3 BFA0002 Chipping Waste - Shatter 1 0.8 

575-240 Trench B A 
 

015.298.2.5 BFA0002 Chipping Waste - Shatter 2 0.3 

576-240 Trench B A 
 

015.299.2.3 BFA0002 Chipping Waste - Shatter 4 1.4 

575-260 Trench D A 
 

015.300.2.2 BFA0002 Chipping Waste - Shatter 1 3.5 

576-269 Trench E A 
 

015.302.2.6 BFA0002 Chipping Waste - Shatter 1 0.5 

577-270 Trench E A 
 

015.304.2.5 BFA0002 Chipping Waste - Shatter 1 0.5 

577-260 Trench D A 
 

015.305.2.2 BFA0002 Chipping Waste - Shatter 1 2.9 

579-260 Trench D A 
 

015.306.2.5 BFA0002 Chipping Waste - Shatter 2 1 

578-269 Trench E A 
 

015.307.2.2 BFA0002 Chipping Waste - Shatter 4 3 

580-209 Trench A A 
 

015.308.2.1 BFA0002 Chipping Waste - Shatter 2 0.5 

580-208 Trench A A 
 

015.309.2.1 BFA0002 Chipping Waste - Shatter 2 8 

578-260 Trench E A 
 

015.310.2.2 BFA0002 Chipping Waste - Shatter 1 6.1 

580-215 Trench A A 
 

015.314.2.1 BFA0002 Chipping Waste - Shatter 1 13.5 

580-210 Trench A A 
 

015.315.2.3 BFA0002 Chipping Waste - Shatter 1 0.4 

580-222 Trench A A 
 

015.316.2.1 BFA0002 Chipping Waste - Shatter 1 1.3 

580-234 Trench A A 
 

015.317.2.5 BFA0002 Chipping Waste - Shatter 1 0.3 

580-229 Trench A A 
 

015.318.2.2 BFA0002 Chipping Waste - Shatter 1 0.1 

580-232 Trench A A 
 

015.320.2.3 BFA0002 Chipping Waste - Shatter 2 1.8 

580-231 Trench A A 
 

015.321.2.2 BFA0002 Chipping Waste - Shatter 1 1.6 

580-236 Trench A A 
 

015.323.2.4 BFA0002 Chipping Waste - Shatter 1 0.4 

580-250 na (mag) A 
 

015.325.2.1 BFA0002 Chipping Waste - Shatter 3 10.5 

560-260 Trench C A 
 

015.226.2.1 BFA0002 Chipping Waste - Shatter 2 12.2 
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Appendix B: Iler Earthworks Project Catalogue Taxonomy 
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