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Abstract

Snow is a critical contributor to our global water and energy budget, with profound

impacts for water resource availability, snow albedo feedback and flooding in cold regions.

The vast size and remote nature of the Arctic present serious logistical and financial chal-

lenges to measuring snow over extended time periods. Satellite observations provided by

the Cloud Profiling Radar (CPR) instrument—installed on the NASA satellite CloudSat—

allow the retrieval of snowfall rates in high latitude regions, which have been used to

estimate surface snow accumulation. In this study, a validation of CloudSat-derived ter-

restrial snow estimates is presented at four Environment and Climate Change Canada

(ECCC) weather stations situated in the Arctic for the common period 2007-2015. Com-

parisons of monthly climatological snow accumulation show mean biases of less than 1.5

mm SWE annually. Monthly time series exhibit correlations above 0.5 and RMSE below

10 mm SWE at the two highest latitude stations (Eureka and Resolute Bay) with corre-

lations falling below 0.5 south of 70° N. CloudSat was also found to underestimate annual

mean snow accumulation at the majority of sites, suggesting a potential negative bias

in CloudSat’s snowfall estimates, or underestimation related to sampling. These results

imply that CloudSat can provide reliable estimates of snow accumulation across similar

high latitude regions above 70° N. Accurate space-based snowfall measurements provide

new important observational perspectives of Arctic snow accumulation, which is a critical

region for environmental monitoring in an era of global change.
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Chapter 1

Introduction

1.1 Background

Snow plays a critical role in contributing to our global water and energy budget (Déry and

Brown, 2007; Brutel-Vuilmet et al., 2013). Changes to snow accumulation impact global

water resource availability, drought and flood frequencies as well as snow cover extent, all

of which are rapidly changing due to the effects of Arctic amplification (Hou et al., 2014;

Vavrus, 2007; Peacock, 2012; Danco et al., 2016). Recent literature has shown that due to

shifting global temperatures, the Arctic is one of the locations seeing the most pronounced

changes and fastest overall warming (Serreze and Barry, 2011). Temperature changes have

altered atmospheric moisture distributions which has led to increased Arctic precipitation

by up to 4% annually, causing increased accumulation during cold periods and reductions

during the summer (Dietz et al., 2012). Model estimates have also noted decreases in
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the total number of snow cover days across the majority of the Arctic by between 10-

20%, along with decreases in snow cover extent by up to 18% by 2050 (Callaghan et al.,

2011). However, there are uncertainties associated with these estimates, especially over

the Arctic due in part to the limited availability of observational constraints throughout

this region with previous studies showing model ensemble estimate standard deviations of

snow accumulation by up to 50% (Mudryk et al., 2015; Callaghan et al., 2011). Fig. 1.1

illustrates the differences between two multimodel mean estimates of SWE trends over

the 1981-2005 historical period for CMIP5 (Fig 1.1.a) and CanESM (Fig 1.1.b) (Kushner

et al., 2018). Understanding how snow is changing at these high latitude locations will

allow us to better prepare for and mitigate against the issues we expect to encounter as

global temperatures continue to rise.

Figure 1.1: (a) 1981-2005 CMIP5 multimodel mean SWE trends over Canada and (b) the
corresponding large-ensemble SWE trend means from CanESM (Kushner et al., 2018).
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One important quantity for tracking changes in accumulation is snow water equivalent

(SWE). SWE is the total amount of liquid water contained within a snowpack that would

be produced if the snowpack was to be instantly and completely melted (Doesken and

Robinson, 2009). SWE is more formally defined as the product of snowpack depth and

snowpack density (with units in mm or kg/m2), and this quantity is primarily controlled

by the surrounding temperature and snowfall availability in the region (Brown and Mote,

2009). SWE displays complex responses to the changes in temperature and precipitation

we are experiencing under a warming global climate, and characterizing these changes is of

critical importance for deriving accurate and robust predictions in future climate feedbacks

(Risnen, 2008).

Measuring SWE by hand is often a time consuming and expensive task, and there-

fore one common method for obtaining observational measurements is to use automated

monitoring instruments to record changes in accumulated SWE. Multiple iterations of au-

tomatic weighing gauges like the Geonor or Pluvio series instruments have been actively

used across Canada since 2006, providing high temporal resolution measurements of snow

accumulation across previously difficult to monitor locations (Mekis et al., 2018). However,

when we consider areas above 70° N throughout the Canadian Arctic Archipelago (CAA),

this entire region hosts only approximately 1% of all of Canada’s active reporting surface

weather stations (as shown in Fig. 1.2). Furthermore, due to the vast size of the Arctic,

these stations are sparsely distributed and there are considerable observational gaps left

between them.

Reanalysis can offer another perspective towards filling these gaps and reducing uncer-

tainty by combining observational records with model estimates of SWE (as described in
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section 1.2.2) (Rienecker et al., 2011a; Dee et al., 2011). Products like the Arctic System

Reanalysis (ASR) use a combination of assimilated observational station data and numeri-

cal model estimates to provide an optimized, low error estimate of SWE through the use of

a dynamical model and evolving system states (UCAR/NCAR, 2017). However, since these

estimates rely on the availability of input observational data, fewer observations lead to

increases in associated uncertainty within the reanalysis system output estimates of SWE

due to the additional degrees of freedom introduced as contributions from inherent model

biases (Dee and Uppala, 2009). To help combat this uncertainty, one popular method has

been to use an ensemble approach (similar to techniques commonly used in weather and

climate modelling) where multiple reanalysis products, model outputs and observational

datasets are aggregated to help correct for individual product biases and uncertainties

(Mudryk et al., 2015). One such blended dataset is the Blended-4 (B4) product which is

examined in this report.

The Arctic is one of the most sensitive locations to the effects of climate change. Yet

due to its vast size and remote nature, there remain considerable observational gaps when

using current methods to derive estimates of SWE. Given the uncertainty and diversity of

in situ and reanalysis-based estimates, in this thesis we investigate an alternative approach

to estimating accumulated SWE: the Cloud Profiling Radar (CPR) instrument installed

onboard the NASA satellite CloudSat.
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Figure 1.2: Map displaying the location and type of all operational surface weather stations
in Canada (Mekis et al., 2018).

1.2 Methods for Measuring Snow Accumulation

1.2.1 In Situ Measurements

One of the longest continuous sources of snow accumulation observations comes from in

situ weather station records. The instruments used in obtaining these measurements have

undergone many iterations throughout the years, evolving from manual tools requiring

constant human supervision, to automatic systems that can run nearly autonomously over

prolonged time periods. Two common tools used across North America for measuring

changes in accumulated SWE include the Federal Snow Sampler (FSS), and snow pillow

(Doesken and Robinson, 2009). The FSS is a portable, manual hand measurement tool

equipped with a set of tubes that are used to extract snow core samples from a snowpack
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(Beaumont and Work, 1963). The cores are taken at a single point location and the

SWE estimates are averaged between each of the cores to provide a more accurate and

robust estimate of density throughout the snowpack (Doesken and Robinson, 2009). This

technique can provide density information in difficult to reach locations due to the portable

nature of the instrument, however it only provides instantaneous snapshots in time at a

single point location, and requires the transportation of a trained individual to potentially

remote locations.

The snow pillow is another widely used snow accumulation measurement instrument

that provides point density measurements of accumulation like the FSS, however it can

record measurements autonomously over the course of the entire snow season (Doesken and

Robinson, 2009). Snow pillows operate in a similar manner to weighing scales, and estimate

snow accumulation by measuring changes in the weight of the snow that is accumulating or

melting directly above the device (Marks et al., 2018). Although the observational changes

in accumulation have been shown in previous work to generally display high accuracy, snow

pillow estimates can often be biased by processes like snow bridging where the snowpack

above the gauge partially melts and refreezes, creating a layer of ice which can then support

some of the weight of newly fallen snow (Steiner et al., 2018).

More recent techniques for obtaining in situ measurements of SWE involve the use of

automatic systems like the Geonor (200B) or Pluvio (PLUVIO1, PLUVIO2) series weigh-

ing gauges. Once installed, these devices can provide continual data records of accumu-

lation with minimal human oversight (Mekis et al., 2018). Fig. 1.3 displays a timeline of

snow measurement instrument usage periods, describing when each instrument came into

widespread use across North America. These automated weighing gauges operate by col-
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Figure 1.3: Timeline of the periods where each weather observing instrument was com-
monly used by ECCC across Canada (Mekis et al., 2018).

lecting falling snow into a specialized bucket containing a mixture of water and antifreeze

from an opening on the roof of the device (Fountain et al., 2009). This liquid mixture

combined with a surface layer of oil, causes snow particles to instantly melt and prevents

them from evaporating back into the atmosphere (Smith, 2009). These measurements of

accumulation are then recorded by the instrument and remotely transmitted back to the

underlying weather network.

Although we can obtain observational records of accumulation using these techniques,

their measurements contain uncertainties that must also be considered. Automatic gauges

have been shown to often underestimate snowfall accumulation during periods of high winds

due to undercatchment problems where snow particles are moving with a high enough

velocity to completely avoid capture by the device (Kochendorfer et al., 2017). Shielding
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instruments like the Nipher or Alter shields can help to somewhat reduce the impact of

this undercatchment issue (as seen in the comparisons of Fig. 1.4), however the problem

continues to persist even with a shield once wind speeds reach approximately 10 km hr−1

(Doesken and Robinson, 2009). Snowfall can also be blocked from entering instrument

orifices from ice formation along the device’s openings, or from snow capping that occurs

when large snow drifts fully envelope the device (Colli et al., 2015).

In this study, we examine in situ station observations from four separate ECCC weather

stations positioned throughout the CAA. These stations are equipped with ground station

precipitation weighing gauges (Geonor T-200B) which provide daily estimates of snow

accumulation in mm SWE. Uncertainty introduced from snow catchment issues coupled

with periods of missing data where no measurements are reported by the station may lead

to a potential negative bias in the station data measurements which we consider when

performing the analysis.

1.2.2 Reanalysis Systems

Reanalysis systems can offer another perspective towards Arctic snow accumulation by

interpolating between gaps in station observations. Reanalysis systems operate by using

observational records from external data sources like ground-based stations or satellites to

constrain a priori estimates of accumulation generated by a Bayesian numerical forecasting

model to estimate evolving system states (Takala et al., 2011). The steps for linking obser-

vational records with model estimates differ depending on the data assimilation methods

being used in the system (Parker, 2016). These assimilation methods are optimization al-
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Figure 1.4: Snow core measurements of SWE compared to automatic weighing gauges
using different shielding techniques under changing wind-speed intensities (Doesken and
Robinson, 2009).

gorithms that use interpolation techniques to minimize the error between what is observed

and what is estimated by the forecasting model (Rienecker et al., 2011a). The resulting

estimate is the best fit (lowest overall error) for each system state at each time step, and

the result is then fed into the following iteration of the algorithm to generate the next

system state (Lorenc, 1986). These techniques have been used to great effect when esti-

mating surface parameters like precipitation throughout the Arctic in previous literature,

with monthly correlations above 0.75 between station observations and reanalysis products

like ERA-Interim (Lindsay et al., 2014).

There are challenges to using reanalysis products throughout the Arctic, due to the

limited number of available observations in this region. Since reanalysis systems rely on

observations to constrain a numerical model, the fewer available observations, the greater
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the uncertainty associated with the system’s estimates (Derksen and Brown, 2012). These

uncertainties are more pronounced across landscapes that are more difficult to model and

observe, such as Arctic regions (which comprise the study area of this report). These re-

gional uncertainties are highlighted in Fig. 1.5 for an ensemble comparison of five separate

gridded SWE products, by displaying differences in their multi-dataset mean of snow water

mass (SWM) across various land types. SWM is spatially aggregated SWE over a defined

region which is then converted to mass using the density of pure water. The compar-

isons in Fig. 1.5 are performed using the Blended-5 (B5) gridded SWE product which was

developed by Mudryk et al. (2015) and includes estimates of SWE from GLDAS-2 (G2),

ERA-Interim/Land (E), GlobSnow (G), Crocus (C) and MERRA (M). The anomaly contri-

butions from the multi-dataset mean of the five gridded products included in the Blended-5

dataset are depicted in the shaded regions of Fig. 1.5 for each season across North Amer-

ica (NA), Europe (EU) and the Northern Hemisphere (NH), and we note that the largest

anomaly contributors come from alpine and arctic land types. Furthermore, a recent study

by Broxton et al. (2016b) suggests that global reanalysis and land data assimilation prod-

ucts often underestimate SWE when compared to high resolution observation-based snow

products due to excessive snow ablation occurring when temperatures in the region are

fluctuating near 0° C.

In this study we examine two separate reanalysis systems along with a blended product

and compare their estimates of snow accumulation (mm SWE) to those recorded by Cloud-

Sat. The blended product used in this thesis, is the Blended-4 dataset which is composed of

a ”blend” or average of four other gridded SWE datasets: CROCUS, GlobSnow, MERRA-2

and Ross Brown’s Simple Snow Models (SSM) (Mudryk et al., 2015; Brown and Brasnett,
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Figure 1.5: Differences in the multi-dataset mean of SWM, with each dataset represented by
a different color, over three seasons, for NA, EU and NH with the shaded areas showing the
anomaly contributions of different land types (total differences outlined in black) (Mudryk
et al., 2015).

2010). This is a different product to the Blended-5 gridded dataset described previously

in this section, as it includes a different combination of gridded components which are

blended for similar purposes. The Blended-4 product is used here instead of Blended-5 due

to its longer overlapping time series with the available CloudSat data record. Although

the Blended-4 and Blended-5 products both include SWE estimates from GlobSnow, and

Crocus, the remaining datasets in each blended product differ. Since these datasets are pro-

duced using different snow models, assimilation schemes and assimilated observations, the

resulting Arctic SWE estimates between each product will vary. However, issues related to

the poorly constrained nature of the Arctic persist across both datasets, and the blending

technique described by Mudryk et al. (2015) has been shown to be a useful method for

reducing individual product biases and variability across these regions. The remaining two
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reanalysis products included in this comparison are the Arctic System Reanalysis Version

1 (ASRV1) and the Arctic System Reanalysis Version 2 (ASRV2) (Bromwich et al., 2012;

UCAR/NCAR, 2017) which use optimized versions of the Polar Weather Forecast Model,

in combination with the High Resolution Land Data Assimilation System (HRLDAS) to

provide a comprehensive regional climate representation of SWE throughout the Arctic

(Bromwich et al., 2012).

1.2.3 Space-Based Remote Sensing

A third perspective for gathering measurements of snowfall over these remote regions,

is to use space-based remote sensing techniques. Through the use of specialized satellite

instruments, we are able to scan areas of the Earth that are typically difficult or expensive to

visit and measure by hand. These observations can be derived from a variety of techniques

including active and passive microwave products, airborne LIDAR, hyper-spectral imaging

and aerial photography (Dietz et al., 2012). For the purposes of this report, we will analyze

the abilities of one satellite in the estimation of snow accumulation: CloudSat, and the

active CPR system installed onboard.

CloudSat was launched in 2006 by NASA as part of a program for providing high

resolution information about the interior structures of clouds (Kulie et al., 2010). The

CPR is a high power 94 GHz (W-band) nadir-facing, active radar instrument with 125 240

meter vertical resolution bins which cover the bottom 30 km of the atmosphere (Tanelli

et al., 2008). The instrument itself is sensitive to atmospheric hydrometeors by measuring

the power backscattered from interior cloud particles (Marchand et al., 2008). Using this
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backscatter information, a radar reflectivity estimate can be generated (Z) which describes

interior cloud properties (Kulie and Bennartz, 2009). The detectable signal range required

by CloudSat using this frequency lies between ±29 DBz, which makes the instrument

highly sensitive to light intensity snowfall (Milani et al., 2018). Additionally, due to the

nature of CloudSat’s WRS-2 sun-synchronous orbital range of 81° N/S, it produces a high

frequency of overpasses at high latitude locations like the Arctic (Fig. 1.6) and in turn,

an increased number of observational CPR records that can be used in the estimation of

snowfall accumulation throughout the region (Hiley et al., 2010).

Figure 1.6: A 1° grid of CloudSat overpass count totals from 60° N to 81° N spanning
2007-2015.

Assumptions about the physical and spectral properties of snow particles allow us to use

the power backscatter information received by the CPR on CloudSat when it encounters a

cloud to infer estimates of atmospheric snowfall rates (Wood et al., 2014). Spectral radar
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scattering and reflectivity properties of atmospheric snowfall are closely related to physical

snow properties like grain size, shape and particle distribution, along with assumptions

about snow composition (purity), density information, ice content and temperature (Dietz

et al., 2012). When we consider the radar frequencies used by CloudSat and other ac-

tive cloud radars, scattering from precipitation-sized particles do not necessarily follow the

Rayleigh scattering approximation which can lead to potentially significant attenuation

from hydrometeor interference during strong precipitation events (Bucholtz, 1995; Wood

et al., 2014). Mie theory has also been used in previous literature to derive single scatter-

ing properties of atmospheric hydrometeors and their relationship with radar attenuation

(Marzano et al., 2003). These studies suggest that multiple scattering effects are present in

space-borne retrievals from instruments like the CPR, when atmospheric conditions allow

for the presence of large quantities of high-density ice particles, due to single scattering

albedo effects along with the hydrometeor extinction properties of have ice grains (Battaglia

et al., 2007). These attenuation issues are potential sources of additional uncertainty in

CloudSat snowfall rate estimates, which contribute to retrieval measurement error in the

optimal estimation algorithm as described in Wood et al. (2014) for deriving CloudSat’s

2C-SNOW-PROFILE.

There are additional uncertainties that must also be considered when using radar

backscatter to extract atmospheric snowfall rate estimates of SWE. Radar attenuation

is an issue where very intense precipitation events lead to a high amount of between-

particle scattering which prevents the backscatter signal from reaching the instrument

onboard CloudSat (Haynes et al., 2009). Previous work by Hudak et al. (2008) has shown

that this can occur with CPR measurements when the precipitation intensity reaches lev-
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els of 5 mm/hr or more. There is also some uncertainty associated with the individual

retrieval snowfall rates from CloudSat with a study by Duffy and Bennartz (2018) sug-

gesting additional Bayesian uncertainties upwards of 200% in the derived surface snowfall

rate estimates, that arise due to additional a priori model assumptions related to retrieved

precipitation state, fallspeed and cloud particle distributions. While other remote sens-

ing techniques exist from projects like NASA’s Global Precipitation Measurement (GPM)

mission, which could be used as an additional snowfall perspective in this thesis, GPM’s

orbital coverage has a very limited area of overlap with our region of interest in the Arctic

(±65° latitude) along with a much shorter overlapping data record (2014-2019) to com-

pare against (Matsui et al., 2013). GPM may however be another useful perspective into

atmospheric snowfall rates when performing comparisons at locations further south.

Despite these uncertainties, CloudSat estimates have been used in previous studies to

extract surface snow accumulation estimates over similar high latitude locations (Hiley

et al., 2010; Milani et al., 2018; Palerme et al., 2017). A CloudSat overpass is composed

of a set of spatially averaged snowfall measurements (with a 1.7 km by 1.3 km ground

footprint) that are collected when passing near a station. One challenge we encounter

when comparing this data to the station observations is finding the appropriate spatio-

temporal scales for obtaining a large enough sample of individual CloudSat measurements

to accurately represent what is being reported at the station below.

The aggregation of CloudSat overpasses within a predefined spatial grid box has been

shown in these studies to be an appropriate technique for performing comparisons between

gridded CloudSat retrievals and point station data. Fig. 1.7 shows high correlations and low

RMSE between a CloudSat 200 km grid box and point station measurements at Resolute
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Bay for one year of SWE data in a study by Hiley et al. (2010). Additional studies by

Boening et al. (2012) and Palerme et al. (2017) have shown that CloudSat estimates of

snowfall over Antarctica agree well with estimates from the European Centre for Medium-

Range Weather Forecasts (ECMWF) product ERA-Interim (August 2006 - April 2011),

with a total difference in mean annual snowfall rates of less than 10 mm SWE (171 mm

SWE for CloudSat and 163 mm SWE for ERA-Interim) (Fig. 1.8). However, a comparison

between CloudSat and in situ observations over the full CloudSat data record has not

yet been completed across the Canadian Arctic to my knowledge. We build on the work

of these previous studies by using similar overpass gridding techniques in a comparison

between CloudSat, station data and reanalysis output across the CAA over (2007-2015),

to evaluate CloudSat’s general performance throughout this region.

Figure 1.7: Total accumulated SWE for Resolute Bay using three snow-reflectivity rela-
tionships (lower, mid and upper) along with the corresponding observed surface stations
measurements over one year from 2006-2007 (Hiley et al., 2010).

16



Figure 1.8: Comparison of the mean annual snowfall rates for Antarctica from (a) CloudSat
and (b) ERA-Interim over four years (2006-2011) (Palerme et al., 2017).

1.3 Research Objectives

The primary goal of my research is to examine whether CloudSat is an appropriate tool for

providing high quality estimates of snow accumulation throughout the Canadian Arctic.

To perform this validation, we adopt the validation criteria defined in Hiley et al. (2010)

and Palerme et al. (2014), who concluded that temporal correlations above r = 0.5, and

RMSE below 10 mm of SWE, represent good agreement between CloudSat estimates and

ground-truth observations. These criteria are important as they allow us to asses whether

CloudSat is capable of capturing the general seasonality of accumulation present at each

station throughout the year. Additionally, RMSE of this magnitude is a useful metric

for assessing month-to-month variability in CloudSat’s estimates of SWE accumulation at
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each station, and allows us to identify locations and periods which exhibit high uncer-

tainty in our analysis. Differences in annual mean accumulation rates of approximately

10 mm SWE have also been described as displaying good agreement with low variability

in comparisons between CloudSat and reanalysis across Antarctica (Palerme et al., 2014).

Additional comparisons between CloudSat and in situ performed in Greenland by Bennartz

et al. (2019), have shown what is described as good agreement with monthly correlations

above r = 0.5 (Fig. 1.9). Building on the results of previous literature, I will perform a

validation of CloudSat-CPR observations against measurements from four ECCC weather

stations and three gridded SWE products throughout the Canadian Arctic. This thesis

will investigate whether through the careful construction of snowfall rate estimates from

CloudSat, we can derive an estimate of accumulation that displays strong agreement with

station observations, and therefore show that CloudSat provides new insights into snow

accumulation throughout other high latitude locations.

Figure 1.9: Average monthly snowfall rate (mm SWE) correlations over the Greenland Ice
Sheet between CloudSat and ERA-Interim (2007-2016) (Bennartz et al., 2019).

18



The main scientific questions to be addressed in this thesis:

1. What are the appropriate spatial and temporal scales necessary for deriving high

quality estimates of snow accumulation from CloudSat overpasses?

2. Does the performance of CloudSat snow retrievals vary in space and/or time?

3. Can CloudSat adequately capture observed climatological means and seasonality of

Arctic snow accumulation?

1.4 Thesis Structure

The focus of the introduction is to provide background and motivational information re-

lated to the work described in the manuscript portion of the report, which is in chapter 2.

The manuscript evaluates the extent to which CloudSat estimates of snowfall can be used

to extract accurate snowfall accumulation information (Using CloudSat-CPR retrievals to

estimate snow accumulation in the Canadian Arctic). The final section of this report de-

scribes the main findings, as well as the conclusions from this study, and suggests potential

next steps to be taken based on the results of this research.
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Chapter 2

Using CloudSat-CPR retrievals to

estimate snow accumulation in the

Canadian Arctic

2.1 Overview

Snow is a critical contributor to our global water and energy budget, with profound impacts

for water resource availability, snow albedo feedback and flooding in cold regions. The vast

size and remote nature of the Arctic present serious logistical and financial challenges to

measuring snow over extended time periods. Satellite observations provided by the Cloud

Profiling Radar (CPR) instrument—installed on the NASA satellite CloudSat—allow the

retrieval of snowfall rates in high latitude regions, which have been used to estimate sur-
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face snow accumulation. In this study, a validation of CloudSat-derived terrestrial snow

estimates is presented at four Environment and Climate Change Canada (ECCC) weather

stations situated in the Arctic for the common period 2007-2015. Comparisons of monthly

climatological snow accumulation show mean biases of less than 1.5 mm SWE annually.

Monthly time series exhibit correlations above 0.5 and RMSE below 10 mm SWE at the

two highest latitude stations (Eureka and Resolute Bay) with correlations falling below 0.5

south of 70° N. CloudSat was also found to underestimate annual mean snow accumula-

tion at the majority of sites, suggesting a potential negative bias in CloudSat’s snowfall

estimates, or underestimation related to sampling. These results imply that CloudSat can

provide reliable estimates of snow accumulation across similar high latitude regions above

70° N. Accurate space-based snowfall measurements provide new important observational

perspectives of Arctic snow accumulation, which is a critical region for environmental mon-

itoring in an era of global change.

2.2 Introduction

Snow in the Arctic is critical to the hydrologic cycle and energy budget of the region, and

through climate feedbacks this has important knock-on effects across the Northern Hemi-

sphere, and even globally (Bokhorst et al., 2016; Brown et al., 2003; Déry and Brown, 2007).

Understanding the impact of climate change on Arctic snow is, therefore, of critical impor-

tance, and is made more urgent by observed accelerated warming in high latitude regions

in recent years (Bromwich et al., 2013; Church et al., 2013; Brown and Mote, 2009). In situ

snow observations above 70° N are only available from approximately 21 of 1735 weather
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stations across Canada (Mekis et al., 2018). These stations provide near-continuous ob-

servational records of climate parameters such as precipitation (quantity and type), and

ground temperature (ECCC, 2017). Station data has been used effectively to track changes

in snow accumulation at other high latitude locations in Canada as described in Derksen

et al. (2003), however it can be susceptible to issues with blowing snow, phase identifica-

tion and includes uncertainty introduced from the decisions and assumptions made in the

processing of instrumental observations (Mekis et al., 2018). The expensive operational

and maintenance costs required to keep weather stations running across an area as large

and remote as the Canadian Arctic results in sparse data coverage and poor sampling

throughout the region (Derksen and Brown, 2012; Liston, 2004).

Another option for estimating snow accumulation are reanalysis systems, which com-

prise a numerical model constrained by available observations to provide complete spatio-

temporal coverage. Some commonly used reanalysis products for snow are MERRA-2,

GlobSnow and CROCUS (Gelaro et al., 2017; Takala et al., 2011; Brun et al., 2012). Dif-

ferences between these products relate mainly to the details of the underlying modelling

system, and it can be challenging to evaluate which of a collection of similar reanalyses is

the ”best”. For this reason, a useful approach has been to combine a series of reanalysis

products together through averaging, or ”blending”, in an effort to increase the signal-to-

noise ratio, much like the approach used in ensemble numerical weather prediction (Molteni

et al., 1996).

One such product is Blended-4, which is calculated as the mean of daily gridded SWE

across the Northern Hemisphere from MERRA-2, GlobSnow, CROCUS and the Simple

Snow Model produced by Ross Brown (Mudryk et al., 2015; Brown and Brasnett, 2010).
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The Arctic System Reanalysis (ASR) is another high-resolution reanalysis product that is

primarily focused on Arctic observations and their assimilation (Bromwich et al., 2016).

Both version 1 (ASRV1) and version 2 (ASRV2) of this product provide 3-hourly, high

resolution land surface estimates of SWE, which are generated using the Polar Weather

Forecast Model in combination with 3D-Var assimilation using the High Resolution Land

Data Assimilation System (HRLDAS) scheme (Chen et al., 2007). These products can

provide information on snow accumulation in high latitude regions, but are often limited

by coarse spatial resolutions and relatively few available observational constraints (Kushner

et al., 2018; Lindsay et al., 2014; Mudryk et al., 2015).

Remote sensing has great potential for collecting estimates of snow accumulation across

the Arctic, as it can provide excellent spatial coverage with year-round sampling. The

cloud-profiling radar onboard the NASA CloudSat satellite generates vertical reflectivity

profiles of a cloud’s inner structure (Stephens et al., 2002). Derived data products from

CloudSat can be used in the classification of precipitation to identify areas of hydrometeor

content within a cloud and provide estimates of surface snowfall rates that agree closely

with in situ when sufficiently aggregated at high latitudes (Behrangi et al., 2016; Tanelli

et al., 2008; Matrosov et al., 2008). CloudSat is especially suited for monitoring high

latitude regions at monthly timescales due to the nature of its 16-day repeating orbit which

can provide up to 25 instantaneous cloud measurements per month at 80° N (Fig. 2.1.a).

However, sampling can be an issue when moving to lower latitudes as orbital granule tracks

become less concentrated over a region resulting in fewer total observations compared to

similarly sized grid cells at higher latitudes (Hiley et al., 2010). The effect of CloudSat’s

orbit on overpass quantity is highlighted by the difference in monthly overpass counts for
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two stations (Eureka and Cambridge Bay) over 10 degrees latitude in Fig. 2.1.b.

Figure 2.1: (a) 16 day repeat cycle of CloudSat orbital granule tracks over the Northern
Hemisphere. (b) Stacked time series of total monthly overpass counts in a 1° grid box
around Eureka (red) and Cambridge Bay (blue).

To our knowledge, a validation of CloudSat snowfall estimates against in situ snow

accumulation observations from stations across the Canadian Arctic (spanning 63° N to

80° N) over the full data record of available CloudSat measurements (2007-2015), has yet

to be completed. Yet, these comparisons are critical to evaluate whether CloudSat can be

used to provide Pan-Arctic estimates of snowfall accumulation.

The primary goals of this thesis are to:

1. Identify the spatial and temporal scales required for obtaining a sufficiently large

number of CPR samples for comparison across the Arctic

2. Compare derived CloudSat snow accumulation estimates with station data to deter-

mine whether CloudSat is a reliable source for monitoring snowfall across the Arctic
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3. Examine the agreement between CloudSat and reanalysis system estimates of snow

accumulation by investigating their correlations, RMSE and bias

2.3 Data and Methods

2.3.1 CloudSat Data

The CPR installed on CloudSat is a nadir-looking 94 GHz frequency (W-band) radar

that measures the power backscattered from cloud particles to identify the presence of

hydrometeors within a cloud (Stephens et al., 2002; Hudak et al., 2008). CloudSat’s CPR

observes the lowest 30 kilometers of the atmosphere divided into 125 layers (bins) of 240

meters in depth, with a 1.7 km by 1.3 km ground footprint (Palerme et al., 2014). The

lowest bins of the profile, up to an altitude of 1440 meters above the surface, are contained

within a radar ”blind zone” where CloudSat is unable to discern meaningful observations

due to interference from terrain backscatter (Milani et al., 2018). In order to derive an

estimate of surface snowfall, CloudSat makes use of a ”Near Surface Bin” (NSB) which is

the lowest precipitating layer outside of the blind zone in the vertical cloud profile (Li L.,

2007). The snowfall rate from this NSB is extrapolated down from the cloud to the terrain

below which is then used to provide an estimate of the surface snowfall rate at that point

directly beneath the cloud (Wood and L’Ecuyer, 2013). This NSB extrapolation can be

seen in a reflectivity profile (Fig. 2.2.a) retrieved from a CloudSat overpass near Eureka

station, which is used in the generation of interior cloud snowfall rates (Fig. 2.2.b) and

surface snowfall rates (Fig. 2.2.c).
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Figure 2.2: (a) Reflectivity profile derived in 2B-GEOPROF showing the power backscat-
tered by the cloud to the CPR. (b) Vertical profile of the snowfall rate estimates in the
cloud from 2C-SNOW-PROFILE. (c) Surface snowfall rates extrapolated down from the
lowest precipitating cloud layer shown in (b).

The 2C-SNOW-PROFILE product, provides estimates of snowfall rates within the

cloud and on the surface. This product has been examined in previous studies for Antarc-

tica as described in Milani et al. (2018) and Palerme et al. (2014), however to our knowledge

a comprehensive comparison between CloudSat, in situ station observations and reanalysis

spanning the complete CloudSat record has yet to be completed over the Canadian Arctic.

The CloudSat data record is available from February 2006 - August 2016, but contains a

series of gaps due to battery failures that resulted in a break in CPR measurements during

September 2009 - December 2009, January 2011 and May 2011 - April 2012. These missing

time periods are visible as observational gaps at both of the stations shown in Fig. 2.1.b.

Discrete CloudSat profiles of snowfall rate estimates have been shown to include Bayesian

uncertainties of up to 150-250 % which exist as a result of a combination of uncertainties
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in CloudSat’s retrieved precipitation state, particle model parameters, fallspeed model

and assumptions about cloud particle distributions (Duffy and Bennartz, 2018; Wood and

L’Ecuyer, 2013). However, previous work by Hiley et al. (2010) and Palerme et al. (2014)

has shown that by aggregating a representative sample of discrete CloudSat profiles along

the track into an ”overpass average” snowfall rate, the uncertainty is considerably reduced,

and the signal-to-noise ratio is increased.

To implement this aggregation method at the stations, we first define a grid box which

surrounds each station, and examine all CloudSat profiles occurring within each grid box

during each month. The overpass average snowfall rate is calculated as the median snowfall

rate from all profiles collected in each CloudSat overpass that passes through the box. We

use the median because the mean snowfall rate can be positively biased by small groups of

radar profiles containing extremely large precipitation values during an overpass, and we

therefore find the median more representative of the snowfall rate across the grid box as a

whole. The mean monthly snowfall rate (in mm SWE hr−1) is then calculated as the mean

of all overpass medians in a month. Finally, assuming a constant snowfall rate throughout

the month, monthly snowfall accumulation is estimated by multiplying the mean monthly

snowfall rate by the total number of hours in the month, and then multiplying this result

by the land cover fraction of the grid box around each station.

2.3.2 In Situ and Reanalysis Data

To perform a validation of CloudSat estimates of snowfall, suitable reference measurements

of Arctic snow for ground-truthing are required. Daily historical observations of total
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precipitation, total rainfall, and 2 meter air temperature over a nine-year time period are

collected from four stations operated by ECCC as described in Table 2.1 with locations

displayed in Fig. 2.1.a.

Table 2.1: Summary data for the historical ECCC weather station records used in the
validation of CloudSat snowfall estimates. Latitude (Lat) is measured in degrees North,
Longitude (Lon) is measured in degrees East, elevation is measured in meters above sea level
and TC IDs are meteorological identifiers assigned to each station by Transport Canada.

Station Lat Lon Elevation WMO ID TC ID Missing Days

Eureka 79.99 -85.93 10 71917 WEU 0
Resolute Bay 74.72 -94.97 67.7 71924 YRB 37

Cambridge Bay 69.11 -105.14 31.1 71925 YCB 18
Iqaluit 63.75 -68.54 33.5 71321 XFB 85

These precipitation observations are recorded at each station by an automatic precipi-

tation weighing gauge which uses vibrating wire transducers to weigh a collection bucket

each day, and in turn derive an estimate of the total daily precipitation (Mekis et al.,

2018). Measurements of total daily SWE are computed at each station as the difference

between total precipitation and total rainfall for each day. On days when total rainfall

is missing but total precipitation is available, solid and liquid precipitation are separated

using a similar method to Brown et al. (2003). Any precipitation measured on days when

the daily maximum temperature (Tmax) is equal to or below 0° C is classified as entirely

snow, and any precipitation measured when Tmax > 5° C is classified as entirely rain. For

temperatures between 0-5° C, the rain fraction is given by frain=Tmax/5, and the snow

fraction is fsnow = 1− frain.

The number of missing observations in this study is shown in Table 2.1 for all stations.

Missing days appear sparsely distributed across all years with only 3 of the 432 total
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station-months (108 months × 4 stations) displaying more than 10 total missing days.

All non-missing daily snow accumulation values are then used to derive a mean daily snow

accumulation (in mm SWE) for each of the 108 months at each station. Assuming a

constant snowfall rate for all days in a month, the mean daily snow accumulation for each

month is then multiplied by the number of days in that month to provide an estimate of

the total monthly snow accumulation at the station.

Data from the Blended-4 SWE gridded product is regridded from 0.5° resolution to

1° resolution so that it aligns with the grid used for CloudSat overpass aggregation around

each station. We experimented with varying grid sizes for this comparison and found

that the 1° grid performed optimally with strong correlations and low RMSE between

CloudSat and the station measurements of SWE. Since the Blended-4 product contains

daily estimates of SWE on ground, monthly snow accumulation is calculated as the monthly

sum of all positive differences in SWE from one day to the next:
∑n−1

i=1 di ∀ d > 0 where

i is the subscript for each day in a month, n is the total number of days in a month, and d

is the difference in mm SWE computed as d = SWEi+1 − SWEi (Broxton et al., 2016a).

This method does not account for melt that may have occurred between two consecutive

days, but provides an estimate of accumulation (only) that can be compared with snowfall

measurements from CloudSat. A similar regridding process and accumulation calculation

is also performed for both ASRV1 and ASRV2.
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2.4 Validation of Snowfall Estimates By CloudSat at

Stations in the Canadian Arctic

2.4.1 Long-term Climatological Mean Snow Accumulation

We first examine CloudSat’s ability to sample monthly climatological snow accumulation

at each of the four stations. Fig. 2.3 compares the seasonal cycle of monthly climatolog-

ical snow accumulation observed by each station and estimated by CloudSat in a 1° grid

box. Higher accumulation is observed at all stations in SON, with reduced accumulation

throughout DJF and MAM (excluding Resolute Bay), followed by low levels of accumu-

lation during the summer in JJA. CloudSat captures the broad features of the seasonal

cycle at each station, with only the southernmost station Iqaluit displaying a correlation of

less than 0.5 (r = 0.28). In terms of mean monthly snow accumulation, all of the stations

displayed similar values (less than 1.5 mm SWE difference) to that of CloudSat, excluding

Iqaluit which has a difference in mean annual snow accumulation (mm SWE per month) of

approximately 4 mm SWE (Fig. 2.4). Additionally, based on the 95% confidence interval

from the CloudSat sample, CloudSat’s results are consistent with the monthly mean accu-

mulation reported at each station. We also note a general underestimation of approximately

50% in snow accumulation from CloudSat throughout December and January across all

stations. This general underestimation in CloudSat’s 2C-SNOW-PROFILE snowfall rates

has been previously attributed to an inability of the satellite to capture low cumuliform

snowfall occurring within CloudSat’s blind zone and this may be a contributing factor here

as well (Bennartz et al., 2019).
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Figure 2.3: Results of the monthly snowfall accumulation climatology performed from
the data retrieved in a 1 degree grid box at Eureka, Cambridge Bay, Resolute Bay and
Iqaluit. The red shaded regions correspond to the 95% sampling confidence intervals from
CloudSat. The mean annual snow accumulation averages (in mm per month) are displayed
as colored dashed lines.
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The nature of CloudSat’s orbit implies that the number of overpasses at a particu-

lar ground station rapidly decreases moving towards the equator. For example, under

a 1° grid, Eureka (82° N) receives on average 15-25 overpasses per month, while Iqaluit

(63° N) receives just 2-3. This difference in sampling provides us with fewer observational

measurements from CloudSat which results in a poorer representation of snow accumula-

tion and declining agreement between CloudSat and station measurements moving south

from 80° N. The southernmost station Iqaluit is the site showing lowest overall agreement

to CloudSat, with r = 0.28, RMSE = 10.9 (mm SWE) and a bias of -3.95 (mm SWE).

Figure 2.4: Mean annual snow accumulation (mm SWE per month) calculated for each
station, CloudSat, Blended-4 and ASR. Also included are the 95% confidence intervals
from the estimates provided by the CloudSat sample and gridded samples.

Turning to estimated accumulation from the different gridded SWE products, the sea-

sonal cycle of Blended-4 is similar to CloudSat at all stations with correlations of ap-
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proximately 0.5, excluding Resolute Bay (r = 0.03). However, Blended-4’s estimates of

climatological monthly mean snowfall are systematically higher than CloudSat’s estimates

at all stations, with the exception of the summer JJA period, where little snowfall is ob-

served at any station. Similar seasonal cycles and climatological monthly mean snowfall

values also exist between CloudSat and the ASRV2 product with correlations above 0.5 at

all stations excluding Eureka (r = 0.14), along with low RMSE (below 10 mm SWE) at

all stations excluding Iqaluit (RMSE = 19.3 mm SWE). We note systematically higher

accumulation from both the blended product and reanalysis system estimates.

2.4.2 Interannual Variability

We next examine monthly mean estimates of snow accumulation over all 108 months in the

CloudSat data record (2007-2015), which allows us to compare time series from CloudSat,

ECCC and the reanalysis products. Working at a monthly time scale means that fewer

CloudSat overpasses are available for each month, and so the time series display higher

uncertainties and larger RMSE than the results from the climatological monthly means.

We will focus on Eureka and Cambridge Bay (Fig. 2.5); Resolute Bay and Iqaluit display

most of the same general features and are excluded for brevity. Overall, the performance

of CloudSat at stations above 70° N (Eureka and Resolute Bay) is substantially better

with higher correlations (r = 0.79 at Eureka) than those at lower latitudes (r = 0.21 at

Cambridge Bay), which can again be explained by poorer temporal sampling (Table 2.2).

Eureka also displays the lowest overall RMSE when compared to ECCC (5.2 mm SWE)

with Cambridge Bay exhibiting increased RMSE (8.5 mm SWE) further south.
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Table 2.2: Correlations and RMSE (mm SWE) of interannual variability for CloudSat
(CS), ECCC (EC) and Blended-4 (B4) snow accumulation estimates at each station.

Stations
Correlation RMSE

CS & EC CS & B4 B4 & EC CS & EC CS & B4 B4 & EC

Eureka 0.79 0.57 0.71 5.2 7.3 6.3
Resolute Bay 0.57 0.14 0.36 9.4 12.7 8.3

Cambridge Bay 0.21 0.06 0.66 8.5 13.1 8.5
Iqaluit 0.00 0.28 0.21 31.6 25.4 24.9

Figure 2.5: Monthly snowfall accumulation (mm SWE) time series comparisons spanning
108 months at Eureka and Cambridge Bay, with the CloudSat estimates shown in red,
station estimates in blue and the Blended-4 estimates in green. The red shaded regions
correspond to the 95% sampling confidence intervals from CloudSat.
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These results suggest that for the approximate 5° increase in latitude between each of

the stations, we find a corresponding increase in the correlation of interannual variability

of at least 0.2, with the largest increase occurring between Cambridge Bay and Resolute

Bay (between 69° N and 74° N). Furthermore, these results imply that there exists a

southern boundary latitude, above which CloudSat observations can be used reliably to

estimate monthly snow accumulation at a 1° spatial resolution near 70° N. To test whether

sampling at annual (12-month) frequency could improve the sampling sufficiently to move

the southern boundary, we also construct time series of annual mean snow accumulation

at all stations. The annual mean results display a similar latitudinal relationship to the

climatological results, with the highest correlation between CloudSat and Eureka (0.88)

and the lowest at Iqaluit (-0.01). Additionally, for the stations below 70° N (Cambridge

Bay and Iqaluit), moving from monthly to annual timescales still provides sample sizes

that are too poor in quantity for a 1° grid to derive an estimate of snow accumulation that

agrees well with in situ data.

To more clearly view inter-station similarities and differences, scatter plots of monthly

snow accumulation are shown in Fig. 2.6 for Eureka and Cambridge Bay for the three

pairs of data products: ECCC (EC) vs. CloudSat (CS), CloudSat vs. Blended-4 (B4),

and ECCC vs Blended-4. These scatter plots of snowfall accumulation are extracted from

the 108 months shown in the time series in Fig. 2.5 where the CloudSat distributions dis-

play relatively strong correlations (above 0.5) at high latitude stations (r = 0.79 Eureka)

with lower correlations further south (0.21 at Cambridge Bay). We identified 33 out of

108 months at Cambridge Bay with zero snow accumulation in CloudSat when the corre-

sponding value from ECCC is non-zero, compared to only nine of these months at Eureka.

35



This difference is again likely related to the poor temporal sampling from CloudSat at

1° resolution at these lower latitudes. With an average of only five CloudSat overpasses

per month at Cambridge Bay, this appears insufficient to accurately derive estimates of

monthly snow accumulation as CloudSat is missing an increased number of snowfall events

occurring near the station.

Finally, we consider the comparison between CloudSat and the Blended-4 gridded prod-

uct in the remaining two scatter plots of Fig. 2.6. Both Fig. 2.6.b and Fig. 2.6.c display a

similar positive bias in snow accumulation in the Blended-4 estimates to what was noted

in the climatology, suggesting that CloudSat’s snow accumulation estimates are closer in

overall magnitude to observed measurements at the station. However, Fig. 2.6.c displays

a much stronger correlation between the Blended-4 and station data at Cambridge Bay

(r = 0.66) compared to that of CloudSat and the station data (r = 0.21), which further

highlights issues with CloudSat sampling at latitudes below 70° N.

2.5 Sources of Uncertainty in Validating CloudSat Snow-

fall

2.5.1 Spatial Heterogeneity

There are several highly important sources contributing to uncertainty in our evaluation

of CloudSat’s snow accumulation estimates. First, we have shown several times above that

uncertainty due to limited temporal sampling from CloudSat becomes a critical source
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Figure 2.6: Scatter plots displaying the interannual variability of snowfall accumulation
(mm SWE) for both Eureka (red) and Cambridge Bay (blue), between (a) EC and CS, (b)
CS and B4, and (c) EC and B4.
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of uncertainty below 70° N. Temporal averaging, through taking the climatological mean,

helps to reduce the impact of sampling uncertainty (Hiley et al., 2010); however, this

remains a problem at the lower-latitude stations. Furthermore, comparing aggregate esti-

mates of snowfall from CloudSat over a grid with a point estimate at a station, provides us

with additional uncertainty since observations recorded by one instrument will not neces-

sarily be observed by the other. In order to combat this issue, we tested four spatial scales

(0.5°, 1°, 1.5° and 2°) to identify the optimal grid size for use in our comparisons. Our

findings indicated that the 1° grid cell was optimal as it produced results with low RMSE

and high correlations when compared to the station data, and this resolution was similar

to other high latitude studies using CloudSat (Palerme et al., 2017; Milani et al., 2018).

2.5.2 Snowfall Uncertainty

Additional uncertainty also arises from any near surface precipitation occurring close to a

station within CloudSat’s radar blind zone. The blind zone comprises the lowest 1440 m of

the atmosphere where ground interference impacts the quality of CloudSat’s retrievals. It

has been shown in a study by Maahn et al. (2014) over a similar high latitude location in

Antarctica that approximately 10% of the total annual snowfall is missed by sensors similar

to those installed on CloudSat due to shallow event snowfall occurring throughout the radar

blind zone (Kulie and Milani, 2018; Behrangi et al., 2016). Another recent comparison

over Greenland displays similar findings from issues arising as a result of ground clutter

over alpine regions influencing CPR retrievals of snowfall in the lowest precipitating bin

(Bennartz et al., 2019).
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Adding to uncertainties in the detection of snowfall, the CPR has a minimum detectable

signal intensity of -29 dBZ which allows for the detection of light intensity precipitation,

but is unable to accurately record measurements of intense precipitation due to radar signal

attenuation caused by the presence of excessive ice water content, cloud liquid water, and

water vapour interference (Haynes et al., 2009; Hudak et al., 2008; Kulie et al., 2010).

Additionally, assumptions used by CloudSat to describe snow grain shape and particle size

have been shown to be dominant contributors to modelled reflectivity (up to 4 dB) and

snowfall rate uncertainties (40-60%) (Wood et al., 2013).

2.5.3 Station Measurement Uncertainties

When we consider the reference snow accumulation values from ECCC station observations,

we must also consider some measurement uncertainty associated with the precipitation

weighing gauges and the Data Management System (DMS) used to record and process

surface weather data. There are several decisions made by the DMS in generating data

records of total precipitation and the climatic assumptions used to facilitate these decisions

add additional uncertainty towards each recorded measurement (Mekis et al., 2018). The

precipitation weighing gauges used in the collection of total precipitation data at each of the

stations are required to operate under a variety of challenging environmental conditions due

to their Arctic locale. These extreme conditions can lead to problems with precipitation

phase identification, bucket evaporation, precipitation accumulation on the gauge opening,

and snow capping over the gauge top which can block observational records for extended

time periods (Colli et al., 2015).
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2.6 Conclusion

Due to the nature of CloudSat’s orbit, the Arctic receives a high frequency of overpasses

which results in an increased chance at observing synoptic snowfall events throughout

the region. Using aggregated CloudSat profiles of snowfall rates, we are able to generate

monthly estimates of snowfall accumulation from a 1° grid box over four Arctic stations.

Comparing our CloudSat estimates with surface measurements from these stations allows

us to identify areas of agreement, error and uncertainty. Long-term climatological CloudSat

estimates of accumulated SWE display similar seasonal cycles to what is reported by the

ECCC stations with strong correlations and low RMSE. Monthly CloudSat estimates at the

two stations above 70° N (Eureka and Resolute Bay) performed favorably when compared

with in situ data by displaying strong correlations above 0.5 and RMSE below 10 mm

SWE.

As we move further south, the CloudSat overpass count begins to decline and we note

decreasing correlation and increasing RMSE between monthly CloudSat estimates and sta-

tion observations. When considering all four stations, we find that the highest amount of

error occurs at Iqaluit, which is located at the lowest latitude and includes the fewest total

number of CloudSat overpasses. These results suggest that the latitude in which CloudSat

begins to perform optimally (in terms of 1° monthly correlations with ECCC station obser-

vations above 0.5 and RMSE less than 10 mm SWE), exists somewhere between Resolute

Bay and Cambridge Bay where we begin to receive a minimum of approximately seven

overpasses from CloudSat per month. Moving south from this location, we find the 1° grid

too restrictive in terms of overpass sampling at a monthly timescale, and recommend that
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a coarser resolution be considered to incorporate more overpasses into the aggregation

process.

CloudSat also appears to underestimate snowfall accumulation across the Arctic with

monthly and annual averages showing less accumulation compared to both the station and

reanalysis. This is noted at Iqaluit, Cambridge Bay and Resolute Bay, with only Eureka

displaying a higher monthly average snow accumulation estimate from CloudSat than the

station observations. The differences between Eureka and the other stations may be related

to the decreasing sample size as we move south, or the extreme dry conditions at Eureka

combined with the fact that CloudSat has been shown to have difficulty differentiating

between solid and liquid precipitation when temperatures are fluctuating near 0° C and

potentially incorrectly classifying the precipitation being recorded by the ground station

(Liu, 2008).

Our findings here suggest that CloudSat CPR estimates can be used as an effective per-

spective towards generating monthly 1° snow accumulation estimates throughout regions

above 70° N. This aggregation method could therefore be generalized to a grid outside of

just the four stations examined in this thesis, to provide new insights into snow accumula-

tion throughout other Arctic regions.
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Chapter 3

Conclusions

3.1 Summary

Building on similar strategies of CloudSat overpass aggregation from work by Hiley et al.

(2010), Palerme et al. (2017), Milani et al. (2018), and (Bennartz et al., 2019), we find

strong agreement between CloudSat and the ECCC station estimates of snow accumulation,

with correlations above 0.5 and RMSE below 10 mm SWE for the northernmost stations.

After experimenting with a variety of different grid boxes, we find that the 1° grid produces

the necessary number of overpasses (approximately seven overpasses per month) required

for achieving CloudSat and station correlations above 0.5 at monthly time scales. This

lower limit of seven overpasses per month is likely also tied to the variability of snowfall for

a given region, and consistently cold areas with more predictable patterns of precipitation

(the cold desert conditions of Eureka) are more easily captured by CloudSat from a small
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number of overpasses compared to other regions with more variability in temperature

and precipitation. Northern stations performed optimally due to the increased number

of CloudSat overpasses they receive, with decreasing correlations further south as the

frequency of overpasses decline. CloudSat’s climatological results capture the seasonality

present at each location and display strong positive correlations (above 0.5) and small

differences in mean monthly snow accumulation (less than 1.5 mm SWE). The effects of

limited sampling at monthly time scales result in decreasing correlations (of approximately

0.2 per 5 degrees latitude) as we move south from Eureka which has the strongest overall

correlation between CloudSat and ECCC (r = 0.79). CloudSat also performed well (with

correlations above 0.5 and RMSE below 10 mm SWE) when compared to the Blended-4

dataset and reanalysis products, which display similar correlations and RMSE to that of

the CloudSat and ECCC comparisons.

The critical latitude where correlations rise above 0.5 appears near 70° N (between

Cambridge Bay and Resolute) where we begin to receive more then seven overpasses per

month in a 1° x 1° grid box. The southernmost station Iqaluit has the lowest overall

correlations between CloudSat and ECCC (r = 0.00) along with the largest overall RMSE

of 31.6 mm SWE. Furthermore, Iqaluit receives on average 2-3 overpasses per month which

is an order of magnitude less than the frequency at Eureka (15-25 overpasses per month).

We also note an overall underestimation in CloudSat’s estimates of snow accumulation

when compared to both the ECCC and gridded estimates which is similar to the findings

of other high latitude CloudSat validation studies, and may be a consequence of missing

shallow cumuliform snowfall in CloudSat’s observational record due to surface attenuation

(Milani et al., 2018). This general underestimation is even more pronounced when we
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compare the CloudSat estimates to the Blended-4 data and reanalysis products, all of

which display larger estimates of accumulation compared to both CloudSat and the station

observations.

The results of this validation are significant as they describe a remote sensing technique

that can be used to fill current observational gaps of snow accumulation measurements

across important, but difficult to observe portions of the cryosphere. As we have previ-

ously mentioned, Arctic snow is a critical contributor to our global water and energy budget

with far reaching impacts to water resource availability, climate feedbacks and cold region

flooding. Due to the nature of CloudSat’s orbit, we have shown that the CPR presents

a unique perspective in providing snow accumulation measurements across high latitude

regions like the Arctic, by displaying strong correlations and low RMSE between its esti-

mates of accumulated SWE and both in situ observations and reanalysis estimates above

70° N. Through a generalization of the techniques described here to other high latitude

locations outside of the sites selected in this study, CloudSat can provide new insights into

how snow is changing across Arctic regions and allow us to better prepare for and mitigate

against future changes encountered under warming temperatures during an era of global

change.

3.2 Future Work

The overall positive performance from CloudSat suggests that a similar method of overpass

aggregation using CPR estimates could be completed over other high latitude regions to

provide observational measurements of snowfall accumulation over previously difficult to
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observe Arctic locale. Following the positive results of this validation over a set of high

latitude locations in the Canadian Arctic, a generalization of this CloudSat overpass ag-

gregation technique and snow accumulation estimation could be completed over other high

latitude regions outside of the four grid boxes selected in this study. We have identified a

range of latitudes where CPR snow data is most reliable, and it would therefore be appro-

priate to produce a gridded snow product over that region, which can then be compared

with other gridded SWE datasets like the Blended-4 product along with its individual com-

ponent members. Using the resulting CloudSat dataset, we could then provide a means

to quantify potential uncertainties in reanalysis products, by providing an independent

observational constraint.

Current reanalysis products and model estimates of SWE have been shown in previous

studies to display biases in accumulated SWE throughout areas like the Arctic due to

issues arising from model representations of ablation during periods with near-freezing

temperatures (Broxton et al., 2016b). Previous literature has also shown that the poorly

constrained nature of the Arctic along with the complex nature of physical snow processes

occurring throughout the region can lead to increased uncertainty in reanalysis ensemble

estimates of SWE (Mudryk et al., 2015). Minimizing the impacts of these limitations in

current reanalysis systems would provide us with a clearer picture of how SWE is changing

throughout the Arctic. The CloudSat accumulation gridded dataset would therefore an

advantageous observational constraint to current gridded SWE datasets to help address

known limitations in reanalysis products and provide new insights towards changes in

Arctic snow.
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