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Abstract

Let G be a compact abelian group and I' be its discrete dual group. In this thesis
we study various types of interpolation sets.

A subset £ C T' is Sidon if every bounded function on E can be interpolated by
the Fourier transform of a finite complex measure. Sidon sets have been extensively
studied, and one significant breakthrough, that Sidonicity is equivalent to propor-
tional quasi-independence, was proved by Bourgain and Pisier during the early 80s.
In this thesis we will give a detailed demonstration of Pisier’s approach. We also
seek for possible extensions of Pisier’s theorems. Based on Pisier’s techniques, we
will show Sidonicity is equivalent to proportional independence of higher degrees
and minimal constants.

A subset E C T is e-Kronecker if every function on E with range in the unit circle can
be interpolated by a continuous character on I' with an error of €. We will prove some
interesting properties of e-Kronecker sets and give an estimation of the Sidon constant
of such sets. Generalizations of Kronecker sets include binary Kronecker sets and
N-pseudo-Rademacher sets. We compute the binary Kronecker constants of some
interesting examples. For N-pseudo-Rademacher sets, we give a characterization
of such sets, describe their structures and prove the existence of large N-pseudo-
Rademacher sets.
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Chapter 1

Introduction

We begin by introducing the basic concepts and notations that will be used
throughout the thesis.

1.1 Basic harmonic analysis background

Let G be a locally compact abelian group with its Haar measure m. The dual
group of GG, G or I', contains all the continuous multiplicative characters on G.
When we identify T' as a subset in L®(G) = L'Y(G)* equipped with the weak™*
topology, I' becomes a locally compact, abelian topological group with its Haar
measure.

There is a natural embedding, ¢, between GG and the dual group of I, ¢ : G — f,
defined by ¢(z)(vy) = v(x) for z € G and v € T.

Theorem 1.1.1 (Pontryagin duality theorem). The embedding given above between
G and T" is a homeomorphism of G onto T'.

Proposition 1.1.2. G is compact if and only if I' is discrete.



When G is compact, the Haar measure m is normalized so that m(G) = 1. The
Haar measure on the discrete group I' is the counting measure.

Example 1.1.3. (1) When G = T, the unit circle group in C, I" can be identified
as the group of integers Z.

(2) When G = Z,, for n € N, the group of n-th roots of unity, I" is also Z,.

(3) When G = JJ,,;G; is a product of locally compact abelian groups Gj,

I'= @z’e[ I['; is the direct sum of the dual groups I'; = G;.

Notation 1.1.4. Suppose I' = @jel I';, For j € I we define the projection
Proj; : I' = I'; by letting Proj;(7) be the j-th coordinate of ~.

Definition 1.1.5. (1) The group I' is torsion-free if I' has no elements of finite
order (except the identity).

(2) The group G is divisible if for all # € G and n € N there exists y € G such that
y"=x.

Proposition 1.1.6. Suppose G is compact. The following are equivalent:
(1) T is torsion-free.

(2) G is connected.

(3) G is divisible.

For f € L*(G), the Fourier transform is given by f:Ir—cC,

) = / f(@)7(@) dm.

The Fourier-Stieltjes transform (or just Fourier transform) of a finite complex
measure 1 € M(G) is defined similarly:

i) = [ 3@ duta).



Example 1.1.7. (1) For v € I', the Haar measure m of a compact abelian group G
satisfies

_ 0 ify#1
m(V):{m(G) if;::r

(2) Let a € G and v € I'. The point mass measure §, has

Definition 1.1.8. For fi, f» € L'(G), the convolution f; * f, € L'(G) is defined
as

fi s /fl ) ol — ) dm(t).

For i, po € M(G), g * ps € M(G) is defined as

/fdm*m //fx+y dpa (z)dp2(y)

for simple functions f.

Definition 1.1.9. Suppose G is compact. R

(1) For f € L'(G), the Fourier series of f is the series 3°__. f(7)7.

(2) The set of trigonometric polynomials, Trig(G), is defined as the set of all
f € LY(@) such that fis supported on a finite set. Furthermore, for £ C I" we
define Trigy(G) to be the set of all f € Trig(G) such that fis supported on E.

Theorem 1.1.10. (1) For all uy, o € M(G),
{1+ po = [+ [z
and
i1 % iy = [ la-
Moreover, ||py * pallyrcy < llillarey 2l )

3



(2) For f € LY(G) and p € M(G), we have

~

igglf(vﬂ <II£ll,

and

sup [2(y)] < ullpr ) -
vyel

(3) [Riemann-Lebesgue Lemmal If f € LY(G), then fe Co(I).
(4) [Parserval’s Theorem] If f € L*(GQ), then f € L*(T) and

HfHL2(G) - Hﬂ

L2(r)

Let H C G be a closed subgroup. We denote by H+ the annihilator of H. We have
the following relation between dual groups and quotient groups.

Proposition 1.1.11. H+ = CT/?I and H=T/H".

In this thesis, the unit circle group T is identified in multiple ways. When T is
the unit circle in the complex plane, T = {e™ : x € [0, 2]}, the group operation is
multiplication and duality is given by n(e®®) = €™ for n € Z. The trigonometric

polynomials have the form p(z) = Zjvzf N @2

When T is identified as an interval [0,1] in chapters 4 and 5, then the group
operation is addition mod integers and the duality is multiplication mod integers.
The trigonometric polynomials have the form p(z) = Zjvz_ N Q€T

Notice that when T is the unit circle group in C, Z,,, the group of n-th roots of unity,
is

Zn:{e%ij/”:ogjgn—l}.



When T = [0, 1],

Zp={k/n:0<k<n-—1}.

Next we recall the Bohr compactification of I Consider the group G equipped
with the discrete topology, Gy, and the dual group of G4, I'. Clearly I' C I'. By
Proposition 1.1.2, I' is compact.

Definition 1.1.12. The compact group I is called the Bohr compactification of
Ir.

Proposition 1.1.13. T is a dense subgroup in T.

Example 1.1.14. In the case that G = T and I' = Z, basic open neighborhoods
around 0 in Z are the sets {8 € Z: |1 — B(z;)| < e V1 < i < N} for finite collections
{z1,..,zny} C T and € > 0.

More details on this background information can be found in [35].

1.2 Independent sets and the Riesz product

From here on GG will denote a compact abelian group with identity element e, and
I' will be its discrete dual group with identity element 1. The books by Lopez and
Ross [25] and Graham and Hare [9] are good references for the material discussed in
the rest of this chapter and include the proofs of any results not otherwise referenced.

Definition 1.2.1. A set £ C I'\ {1} is independent if for all j € N, distinct
Yy .syj € E and my,...,m; € Z, [T/ _, 77 = 1 implies 7/ = 1 for all 1 < n < j.

n
This equivalent to saying m, = 0 for all n if ' is torsion-free.



The notion of independence is classical. One example of an independent set is the
Rademacher set defined as follows. Let G = [[{"Zy and I' = @° Zy = Z3°. The
Rademacher set is {m; : j > 1} C I', where each 7; has only a non-trivial entry at
coordinate j.

Independent sets are known to have good interpolation properties. For example, in
the case that I' is torsion-free and £ C I' is independent, for every ¢ : £ — T there
exists € G such that p(y) = vy(x) for all v € E. More specifically, we will prove
the following.

Proposition 1.2.2. Let E C I'. The following are equivalent:

(1) For all p : E — T with p(v) € Range(7) there exists x € G such that o(y) = v(x)
for v e E.

(2) The set E is independent.

Proof. Assume F is independent and that ¢ : E — T satisfies ¢(7) € Range(y) for
v € E. We let (E) be the subgrggp generated by E. By Proposition 1.1.11, we can
deduce that if we can find x € (E) such that p(y) = v(x) for all v € E, then there
exists 2’ € G such that p(y) = v(2). Thus we may assume I' = (E) = P, (7).

—~

For each v € E, there exists =, € () such that y(x,) = ¢(y). If E is finite, we let
xr = Hwe £ T, and x can interpolate ¢ exactly. For the case that E is infinite, since
G is compact, we let x € G be a cluster point of the following set,

{1_[:107:FCE,|F|<oo}7

yeF

and such an z can interpolate ¢ exactly.

Conversely, if F is not independent, then there exist £ € N, vy,...,7 € E and
ma,...,my € Z such that v ...y = 1, but 7;" # 1 for all 1 < ¢ < k. Consider
the function ¢ : E — T such that ¢(y;) = 1 for all @ > 1, p(y)™ # 1 and
©(y) € Range() for all v € E. Notice that such ¢ exists, because 7" # 1 means
Range(~™) # {1} and hence there exists x € G such that v (z)™ # 1. Let
©(71) = 1 (x). This function ¢ cannot be interpolated by any = € G. ]



Remark 1.2.3. Suppose E' C I' is independent and I' is torsion-free. Notice that
v(x) = d,-1(7), and therefore using Proposition 1.2.2 we see that for all bounded
¢ : E — T there exists p € M(G) such that ¢ = 1 on E.

However, in the case that G = T and I' = 7Z, there are no independent subsets other
than singleton sets. Thus weaker notions of independence have been introduced.

Definition 1.2.4. (1) A set £ C I is dissociate if for all j € N, distinct
M,y € E and mq,...,m; € {£2,£1,0}, Hz:,:l ymn = 1 implies m, = 0 for all
1<n<g.

(2) A set E C T is quasi-independent if the same statement holds for
my,...,m; € {£1,0}.

Important examples in Z include the lacunary sets.

o0

Definition 1.2.5. A positive integer sequence (n;)%2, is a lacunary set of ratio

g>1lifn;/nj_y >qforall j > 1.

Example 1.2.6. The lacunary integer sequence {n;:j > 0} of ratio ¢ is quasi-
independent if ¢ > 2 and is dissociate if ¢ > 3.

These weaker notions of independence also have the interesting interpolation
properties. This can be shown by what is known as a Riesz product construction.

Assume E C T is a dissociate set and I' has no elements of order two. Suppose we
have a function ¢ : £ — C with ||p||,, < 1/2. For each v € E we can define a
trigonometric polynomial p, by

py =140 )7+ o)y =1+ 2R(p()7).

Notice that each p, is positive-valued.



For a finite subset F' C E, we form pp := HA{E D Since pp is positive-valued and

E is dissociate,
Ioelly = [ =1

The dissociate property similarly implies that for v € F, pr(v) = ¢(v). Hence, we
may obtain a measure yu as the unique weak™ limit of the family

{pr: F C E is finite} ¢ LY(G) c M(G) = C(G)*,

with the property that |[u[,;) =1 and 7i(y) = ¢(7) for all ¥ € E. The measure p1
is called a Riesz product.

Hence, if F is dissociate and I" has no elements of order two, for every ¢ : E — C
with [[p]|, < 1/2, there exists p € M(G) such that 1 = ¢ on E and [|uf] ;) = 1.

This construction is the Riesz product construction. Over 100 years ago M.
Riesz used this construction to show the set {4j :j >0} has this interpolation

property.

Later in the next section we will see the Riesz product construction also works to
show quasi-independent sets have this same interpolation property. Moreover, when
I' has elements of order two, a modification of the Riesz product construction shows
any dissociate or quasi-independent set still has the interpolation property.

1.3 Sidon sets

The notion of Sidon sets is motivated by this interpolation property of independent
and dissociate sets. Sidon sets are named after the Hungarian mathematician Simon
Sidon who did preliminary work in this area.

Definition 1.3.1. A set £ C I is Sidon if for every bounded ¢ : £ — C, there
exists u € M(G) such that () = ¢(y) for all vy € E.



If E is Sidon, an open mapping theorem argument further implies that there
exists a constant C' > 1 such that for all ¢ : E — C there exists u € M(G) with
el < Cllells, such that pi(y) = ¢(v) for all v € E. The smallest such
constant is called the Sidon constant of E, denoted by S(E).

Example 1.3.2. (1) As we have seen with the Riesz product construction in
Section 1.2, if £ C I' is dissociate and I' has no elements of order two, then F is
Sidon with Sidon constant S(E) bounded by 2.

(2) If F C T is finite, then F is Sidon with S(F) < /]F].

(3) All lacunary sets are Sidon.

(4) No infinite group I itself is Sidon.

Sidon sets are plentiful. In fact, every infinite set contains an infinite Sidon set.
Furthermore, every infinite set contains a translate of an infinite dissociate set [25].

There are many equivalent descriptions of Sidon sets. For example, rather than
the precise interpolation, we only need to interpolate +1-valued functions within a
small error.

Theorem 1.3.3. Let EE C T be a subset. The following are equivalent.
(1) The set E is Sidon.
(2) For each ¢ : E — C, with ||¢|| <1, there exists p € M(G) such that

sup [p(7y) — u(y)] < 1.
yeEE

(8) For each ¢ : E— {£1} there exists u € M(G) such that

sup [p(7) — H(y)] < 1.
yeE

Proposition 1.3.4. Let E C I'. Suppose there exists a constant K and ¢ < 1 such
that for all p : E— C with |[¢||,, <1, there exists p € M(G) such that ||p||yyq) < K
and sup,cp |¢(y) — 1(y)| < e. Then E is Sidon and S(E) < K/(1 —¢).



Proof. The proof of this statement involves an iterative argument, which we include
to illustrate the technique. Let ¢ : E — C satisfy ||¢||,, < 1. Choose i € M(G)
such that ||p|[ /) < K and |¢(7) — 11 (7)| < e for all v € E. Note that the function
(¢p—fu)/e satisfies ||(¢ — 1) /e||, < 1, and therefore we can choose py € M(G) with
|22/ sy < K such that

[(6(7) — (7)) /e — ()| < e

for all v € E. Iterating in this way, for each n € N we can find u,, € M(G) such that
inllpsqy < K and

—
n

gzﬁ—Zsj—luj < e
=1 .

Let p = Z;’il e97 ;. Then we have i = ¢ on E and because

el <> & Ml <Y K = K/(1—¢),
j=1 j=1

we have S(E) < K/(1 —¢). O
There is another characterization based on the duality of C(G) and M(G).

Theorem 1.3.5. A set E C T" is Sidon with Sidon constant S(E) if and only if for
all f € Trigy(G),

ST < S(E) £l

yeE

Remark 1.3.6. (1) Theorem 1.3.5 still holds if we replace f € Trigg(G) by all the

bounded functions f : G — C such that fis supported on FE.
(2) Since not every continuous function on T has absolutely convergent Fourier
series, Theorem 1.3.5 implies that Z itself is not Sidon.
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We will use the Riesz product construction and Proposition 1.3.4 to show quasi-
independent sets are Sidon.

Proposition 1.3.7. Suppose E C I is quasi-independent and I has no elements of
order two. Then E is Sidon with S(E) < 3v/3.

Proof. For a finite subset /' C Ef and 8 € I, we define
R(F,B) := Hw e {-1,0,1}": H7w<v> - 5}‘ ,
yeF

For n > 1 and § € I', we define

R(E,n,B):= Y  R(Fp).

FCE,|F|=n
We first claim that for all g € T,
1 n
> (—) R(E,n,B) < 1.
n>1 2

Indeed, consider the Riesz product v := [ 5(1+7/2+~7"/2). Then ||v|[);q) =1
and for g €T,

1 n
(8 =3 (5) R(E.n. ).
n>1

Hence, we have

1 n
> (—) R(E,n,f) < 1.
n>1 2
Notice that, in particular, if v € E, then

1 n
>, (—) R(E,n,v) <1/2,
n>2 2

because R(E,1,7) = 1.

11



Fix a function ¢ : E — C with ||¢|| < 1. For a € (0,1), we let

=TT (1 + (ae(n)/27 + (@2()/277)

veE

w2 = [T (1= (ae()/2)7 = (ap(2)/277).

veEE

Then [[palyrq) = lk2llye = 1. For v € E,

S - s —eml<s Y Y mEN () L)
n>3,n odd FCE,|F|=n BEF
< 2a* 23 (%) R(E,n,~)
< a’ :

Hence, by Proposition 1.3.4, S(E) is bounded by ﬁ% and this obtains its minimum

3\/§Whena:1/\/§. O

One of the classical properties of lacunary sets is the following: If (ng)r>1 C N is
lacunary and f(z) := Y, ae™" is integrable, then f € L? for all p < co. This
is known as the A(p) property and is true for independent sets of characters (and
known as the Khintchine’s inequality).

Rudin [36] showed in the 1960s that if F is Sidon, then E is A(p) for all p > 2.

Theorem 1.3.8. Suppose E C I' is Sidon with Sidon constant S(E). Then for all
f € Trigg(G), || fIl, < 2S(E)/plflly for all2 <p < oco.

Sidon sets also have the important property that a union of two Sidon sets is still
Sidon.

Theorem 1.3.9. Suppose E, and Es are two Sidon sets. Then Ey U Ey is also a
Sidon set.

12



This theorem was first proved by Drury [6] using carefully constructed and compli-
cated Riesz products. Later, another proof was given by Rider using his probabilistic
characterization of Sidonicity (Theorem 2.2.19, [33]).

In light of the union result, it is natural to ask if every Sidon set is the finite union of
“nicer” or “simpler” sets. For example, is every Sidon set a finite union of lacunary
sets or quasi-independent sets? The answer to the first question is no, while the
second is an open problem.

Of course, if every Sidon set is a finite union of sets of some special type, then
every finite subset of every Sidon set will contain proportional sized subsets of that
special type. Because of the poor progress in characterizing Sidon sets as a finite
union of nicer sets, researchers are interested in studying the weaker problem of
characterizing Sidon sets by proportionality properties.

Major progress was made by Bourgain and Pisier in the early 1980s when they
independently proved that Sidon sets can be characterized by the property of being
“proportionally independent” ([4], [5], [29]). The precise statement is the following:

Theorem 1.3.10. A set E C I' is Sidon if and only if there exists 6 > 0 such that
for every finite subset F' C E, there is a quasi-independent subset F' C F with
F| > §|F).

Both directions of this theorem are deep, difficult and important. The theorem
was a break-through contribution to the study of Sidon sets as it is (still) the only
algebraic characterization of Sidon sets known. This characterization gives new
ways to build examples of Sidon sets and has been used to prove a number of
other results about Sidon sets. For example, the union result, Theorem 1.3.9, is an
immediate consequence since a union of two proportional quasi-independent sets is
still proportional quasi-independent. The machinery constructed for their proofs
was also used to prove the converse to Theorem 1.3.8, so that Sidon sets can also be
characterized in terms of the A(p) condition.

Bourgain’s proof is combinatorial and analytic. The details can be found in [24].

13



Chapters 2 and 3 of this thesis will focus on Pisier’s approach to the Theorem. The
first step of Pisier’s proof is to show that “proportional Sidonicity with bounded
Sidon constants” implies the set is Sidon. As we have seen in Proposition 1.3.7, every
quasi-independent set is Sidon with Sidon constant bounded by 3+v/3; hence this first
step proves one direction of the Theorem, namely proportional quasi-independence
implies Sidonicity.

Pisier’'s proof involves analytical, topological, combinatorial and probabilistic
arguments. The original proofs are scattered across a number of mainly unpublished
manuscripts and the details are often omitted. In chapter 2, we will give a complete
and detailed proof of this first step. In addition, we determine an upper bound for
the Sidon constant of the set in terms of the proportionality data. That bound
will then be used in chapter 4 to give an upper bound for the Sidon constant
of Kronecker sets. (Kronecker sets and their relationship to Sidon sets will be
introduced in section 1.5 of this chapter.)

Pisier’s proof of the other direction of Theorem 1.3.10, that Sidon sets are propor-
tionally quasi-independent, is primarily a probabilistic argument. In chapter 3, we
will upgrade this argument to prove that Sidonicity implies not only proportional
quasi-independence, but, in fact, a higher level of proportional independence. Using
this stronger condition, we then prove that any Sidon set in a torsion-free group
is proportionally Sidon with Sidon constants arbitrarily close to 1, the minimum
possible value. This is one of our main new contributions to the study of Sidon sets.

1.4 I, sets

Since every measure has a unique decomposition as a sum of a discrete and a
continuous measure, it is natural to extend the notion of Sidon and further ask
the question of whether we can do interpolation with discrete or continuous measures.

In the case of a continuous measure, the answer is yes and was proven independently
by Hartman and Wells ([17], [38]).

Proposition 1.4.1. If E C T’ is Sidon, then for every bounded ¢ : E — C there

14



exists a continuous measure p such that p(y) = @(vy) for all v € E.

Interpolating with discrete measures motivates the notion of I sets.

Definition 1.4.2. A set £ C I' is I if for every bounded ¢ : E — C there exists a
discrete measure p € My(G) such that fi(y) = ¢(y) for all v € E.

The I, constant is defined similarly to the Sidon constant. If E is [, the open
mapping theorem implies there exists a constant C' such that for all p : E — C with
]l <1 there exists p € Mq(G) with [|p||yq) < C such that 1i(y) = ¢(v) for all
v € E. The I, constant of E is the infimum of these constants.

Naturally, every I, set is Sidon and the Iy constant is greater than or equal to the
Sidon constant. Grow [I3] showed that if E is finite, then the I, constant of E is
the same as the Sidon constant of F.

Similar to Sidon sets, Iy sets also have the following characterization through
approximating +1-valued functions.

Theorem 1.4.3. A set E C T is Iy if and only if there exists ¢ < 1 such that for
all p : E — {£1} there exists u € My(G) such that |fi(y) — o(7)| < e forally € E.

Finite sets are . Kunen and Rudin ([23]) showed that all lacunary sets are Iy.
However, the Riesz product construction does not help prove this result because
the Riesz product measure that arises as the weak™® limit is not a discrete measure.
Because of Proposition 1.2.2, independent sets, such as the Rademacher set, are Ij.

We have mentioned that Sidon sets are plentiful. In fact, I sets are also plentiful:
every infinite set in I" contains an I subset of the same cardinality (Corollary 4.5.3

in [9]).

Topologically, I sets are closely related to almost periodic functions, the continuous
functions that are periodic within any desired level of accuracy. The original
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definition of an [y set was a set F such that ‘every bounded function on £ C Z can
be extended to an almost periodic function’. But these extensions could always be
found in the space consisting of Fourier transforms of discrete measures restricted
to £ ([18]). Thus, the modern definition is that Iy sets are the sets such that ‘every
bounded function is a Fourier transform of discrete measures’.

Unlike Sidon sets, I, sets have an elegant topological characterization due to
Hartman and Ryll-Nardzewski [18].

Theorem 1.4.4. A set E C I is Iy if and only if any two disjoint subsets in E
have disjoint closures in the Bohr compactification, T.

Using Theorem 1.4.4 we can show that a union of two I sets may not be [y. Hence,
the class of I sets is indeed a proper subset of the class of Sidon sets.

Example 1.4.5. [27] Consider £y = {107 : j > 1} and Ey = {107 +j : j > 1}. The
sets F, and FEy are disjoint and lacunary. Hence, both E; and F5 are ;. Because N
is dense in Z, there exists a net (n, ), that clusters at 0. If we let 3 € Z be a cluster
point of (10"), in Z then we have 8 € E; N Ey. Theorem 1.4.4 implies By U Es is
not 1.

Since the class of Iy sets is not closed under finite unions it is natural to ask if
every Sidon set is a finite union of I sets. This is open. However, it was proven
by Ramsey ([32]), using the proportional quasi-independent characterization of
Sidonicity, that every Sidon set is proportionally .

Ramsey ([32]) also used Theorem 1.4.4 to prove the fact that an I, set cannot cluster
at a continuous character and hence cannot be dense in the Bohr compactification.
A long standing open problem is whether Sidon sets can be dense in the Bohr
compactification of I'. If Sidon sets were finite unions of I sets, the answer would
be no. Partial progress was made by Ramsey, who showed that if there exists a
Sidon set clustering at 1 € I', then there exists a dense Sidon set [32]. This also
used the proportional quasi-independent characterization of Sidonicity.
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1.5 Kronecker sets

Another interesting family of interpolation sets are the e-Kronecker sets.

Definition 1.5.1. Let 0 < ¢ < 2 and E C I'. The set FE is e-Kronecker if for all
¢ : E — T there exists © € G such that |p(y) —y(z)| < e for all v € E.

The Kronecker constant of £, x(E), is defined by

k(E) :=inf{e: E is e-Kronecker} .

Definition 1.5.2. A set £ C I' is Kronecker if x(E) < 2.

Historically, the notion of e-Kronecker sets was inspired in part by the classical
approximation theorem of Kronecker, with early work done by Hewitt and Kakutani
[19]. The terminology was introduced by Varapolous in [37].

There are many known examples of e-Kronecker sets.

Example 1.5.3. (1) In Z any singleton set other than {0} is 0-Kronecker.

(2) The set {—1,1} has Kronecker constant /2.

(3) Any finite set in Z excluding 0 is Kronecker.

(4) The Radamacher set has Kronecker constant v/2. More generally, independent
sets in I' with large orders have small Kronecker constants. An independent set in
a torsion-free group has zero Kronecker constant, as we have seen in Proposition 1.2.2.

Lacunary integer sequences with large ratios have small Kronecker constants. To be
precise, the following is known.
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Proposition 1.5.4. (1) Suppose E = (n;)32; C N is lacunary with ratio ¢ > 2.
Then k(E) < |1 — e™/(a=1)],
(2) The geometric sequences, E, := {n/:j>0} for integer n > 2, have

K(En) = 1= e™/?| ([15]).

Remark 1.5.5. It is an open problem whether a lacunary sequence with ratio
between 1 and 2 is Kronecker.

Kronecker sets exist universally. Indeed, given any infinite set £ C I', there exists a
Kronecker set Ey; C E with |Ey| = |E] ([L1]).

Kronecker sets are closely related to the other interpolation notions we have already
introduced. From Theorem 1.4.3 we immediately see that (1 — ¢)-Kronecker sets
are Iy. In fact, a more careful iterative argument shows that a Kronecker set with
Kronecker constant less than /2 is I, and this bound is known to be sharp.

Hare and Ramsey in [I1] proved that any Kronecker set is Sidon. Their proof
is based on another characterization of Sidonicity due to Pisier, called the e-net
condition. For details of the e-net condition we direct the reader to chapter 3.
In chapter 4 we will give a quantitative estimation of the Sidon constants for
(2 — e)-Kronecker sets based on further generalizations that we develop of Pisier’s
work on the connection between the e-net condition and Sidon sets.

While there are Sidon sets in some groups that are not Kronecker, it is unknown
if every Sidon set in Z is Kronecker. Furthermore, it also unknown if every Sidon
set is a finite union of Kronecker sets. Thus again it is of interest to investigate
the weaker notion of proportionality. In chapter 4 we will show Sidon sets are
proportional e-Kronecker for any € > 1. This improves the previous result that only
obtained £ > v/2. The problem is open for arbitrarily small € > 0.

There are other interesting open problems about Kronecker sets. For example,
unlike Sidon sets and I sets, it is unknown if a union of two Kronecker sets in Z
remains Kronecker. In chapter 4, the partial result that the union of an integer
Kronecker set and a finite set excluding 0 is still Kronecker will be proved. Using
this we will show that a translation of a Kronecker set in Z away from the identity
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remains Kronecker.

1.6 Generalizations of Kronecker sets

Sidon sets and [ sets have characterizations based on the interpolation of +1-valued
functions (Theorem 1.3.3 and Theorem 1.4.3). This motivates the notion of binary
Kronecker sets.

When investigating binary Kronecker sets, it is convenient to identify the unit circle
T as T = [0, 1], with 0 as the identity and addition mod 1 as the group operation.
The metric on T is

The duality is given by the following: for n € Z and z € T, the duality is
multiplication nx mod integers.

Definition 1.6.1. Let ¢ > 0. A subset £ C Z is called binary e-Kronecker
if for all p : E — {0,1/2} there exists # € G such that dr(¢(n),nz) < e foralln € E.

The binary Kronecker constant of F, 3(F), is defined by

B(E) :=inf {7 : F is binary 7-Kronecker} .

Using this identification of T, an angular e-Kronecker set £ C Z is defined by
requiring that for all ¢ : E — [0, 1] there exists € T such that dr(p(n),nx) < e.
The angular Kronecker constant of F C 7 using the identification T = [0,1] is
denoted by a(F) and is called the angular Kronecker constant of F.

Remark 1.6.2. Let £ C I'. (1) We have o(F), B(E) € [0,1/2].
(2) The relation between the angular Kronecker constant a(E) and the Kronecker
constant x(E) is that k(E) = |1 — e2™(F)],
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Binary Kronecker sets are different from Kronecker sets. For example, we will see in
chapter 5 that the set of odd integers is binary 1/4-Kronecker, but it is not a Sidon
set and not a Kronecker set either.

Clearly for E C I', a(E) > [(F). When E has small binary Kronecker con-
stant, its angular Kronecker constant is also small because it is known that
B(E) < a(E) < 2B(F) (Theorem 2.5.1 in [9]). In chapter 5 we will see examples
showing that this inequality is sharp. When G(F) < 1/3, Theorem 1.4.3 implies F
is Iy. Thus it is very interesting to study binary Kronecker sets with small binary
Kronecker constant.

Because it is difficult to compute the Kronecker constant of the set {1,...,n}, Hare
and Ramsey [16] computed the binary Kronecker constant

BH1,.on}) =1/2 — 1/(n+1).

This is the best known lower bound for the angular Kronecker constant of the set

{1,...,n}.

In chapter 5 we will show that the binary Kronecker constant of a symmetric set is
particularly easy to compute and is always greater or equal to 1/4. We will compute
the binary Kronecker constants for such sets as {£1,...,+n}, {ink k> 0} and
{£(ak +b) : k € N} for a,b € N.

We will also show that the binary Kronecker constant of the lacunary sequence
{n¥:k >0} is the same as its angular Kronecker constant, 1/(2k).

Another way to generalize Kronecker sets based on targeting 4+1-valued functions
is to ask for exact interpolation of these functions. This is the notion of pseudo-
Rademacher sets.

Definition 1.6.3. A set £ C I' is pseudo-Rademacher if for every ¢ : £ — {£1}
there exists © € G such that ¢(y) = v(z) for all v € E.

These sets are called pseudo-Rademacher because the Rademacher set, being an
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independent set in Z3°, has this property. Pseudo-Rademacher sets are I.

In chapter 6, we introduce a more general notion where we ask to exactly interpolate
Zy-valued functions.

Definition 1.6.4. Let N > 2 be an integer. A set £ C I is called N-pseudo-
Rademacher if for every ¢ : E — Zy there exists © € G such that ¢(y) = y(x) for
all v € E.

Naturally, N-pseudo-Rademacher sets are I and are e-Kronecker for e = |1 — /N,

As we have seen in Proposition 1.2.2, the property of independence is equivalent
to exact interpolation of all functions with proper range by characters. In chapter
6 we will prove N-pseudo-Rademacher sets can be characterized by a weaker
independence property.

Using this characterization, we will explore the structure of N-pseudo-Rademacher
sets. Our main result is to prove, similar to the case for Sidon, I, and e-Kronecker
sets, that large (with regard to cardinality) N-pseudo-Rademacher subsets always
exist (in the appropriate settings) and, in particular, this gives a new proof that all
uncountable sets contain I, subsets of the same cardinality.
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Chapter 2

Pisier’s Characterization of Sidon
Sets

2.1 Introduction

Sidon sets have been extensively studied since the 1920s, when Sidon proved
that lacunary series have the property that every bounded function with Fourier
transform supported on the series has absolutely convergent Fourier series, and
hence are Sidon sets, as we have seen in chapter 1 (Theorem 1.3.5, Remark 1.3.6).
Many important results, including the union theorem (Theorem 1.3.9) and the
characterization by proportional quasi-independence (Theorem 1.3.10), were found
during the 1970s and 1980s by Drury, Rider, Bourgain and Pisier, among others.

In Pisier’s approach to the “proportional quasi-independent” property, one crucial
step is to show Sidon sets are equivalent to being “proportional Sidon”. In this
chapter we explore Pisier’s proof of that result. We start in section 2.2 with the
necessary definitions, preliminary probabilistic results and facts about Orlicz spaces
and entropy numbers that will be needed. We begin section 2.3 by stating the
main theorem, which consists of six equivalent statements. To prove it, we first
translate the “proportional Sidon” condition into various Orlicz norm comparisons
(section 2.3.1). The hardest step (section 2.3.2) is to relate these Orlicz norm
characterizations of Sidonicity to relevant properties involving entropy. We finally
obtain the Sidon property through probabilistic results of Dudley, Fernique and
Rider (section 2.3.3). The proof presented in this chapter has all the necessary
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details and is slightly simpler than Pisier’s argument.

While proving the equivalence of the statements in the main theorem, we will also
trace the constants involved and obtain a bound for the final Sidon constant, which
will be used in later chapters.

In the next chapter we will upgrade Pisier’s proportional quasi-independence
characterization of Sidonicity and show that Sidon sets are “proportional Sidon”
with arbitrary levels of independence and “minimal Sidon constants”.

2.2 Definitions and preliminary results

In this section we give the definitions and preliminary results needed to state and
prove the main result. Throughout this chapter, we let (€2, P) be a probability space
and (e,)er be a collection of independent random variables on (€2, P) indexed by
I', such that each ¢, takes only values 1 and —1 with equal probability 1/2. We
let (€4, P1) be another probability space and (g,),er be a collection of independent
standard Gaussian random variables on (€, P;), indexed by I'. (X, pu) is any
universal probability space.

2.2.1 Special Orlicz Spaces and the ¢,; space

In this subsection, we collect basic facts about Orlicz spaces and the £, ; space that
will be used in the main proof of this chapter, Pisier’s proportionality result.

Definition 2.2.1. For ¢ > 1 and x € R, we define

¢q(7) = exp(|z]?) — 1
and

0q(x) = |z (1 + log(1 + |z])) /.
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Notice that ¢, and ¢, are convex, increasing on R™ and pass through the origin.

Definition 2.2.2. Suppose f3, is either ¢, or ¢, for ¢ € (1,00). We let Lg, (X), the
Orlicz space, be the set of all measurable f : X — C such that there exists ¢ > 0

with [y B (1£]) < oc.

Remark 2.2.3. We note that Lg, (X) defined above is a vector space.

Note that

L¥(X) C Ly, (X) C [ L"(X

p>1

Definition 2.2.4. On the Orlicz space Ly, (X), we may define the Orlicz norm as

the following: for f € Ly (X),
g [elah e -1},
X X

For 3, being ¢, or ¢,, we define the Luxemburg norm by

i1, = {e0: [, ([2]) <)

for f € Lg, (X), and we define the dual norm via

gr -— Sup ‘/fg|
|9‘@

wwwzm{
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Remark 2.2.5. Notice that by the convexity of ¢, and the fact that ¢,(0) = 0, if
for some ¢ > 0 we have that
feul[]) = xe=n
c
for some K > 1, then

o= ()=

Hence, [|f[|,, < Kec.

Theorem 2.2.6. [22] The norms given above are well-defined and are equivalent.
Indeed, for all f € Ly, (X) we have

Ao, < AN g, = 111

o <211,

Moreover, the Orlicz space, equipped with any norm given above, is a Banach space.

Theorem 2.2.7. [22] If f € Ly,(G) and g € L,,(G), then f*g e C(G) and

1 *gllo < T, gl

for some constant C'.

The following is an interpolation result.

Proposition 2.2.8. Suppose 1 < ¢ < q < oo and let 0 := q1/q. Then for any
f € Loo(X),

0 1-0
1o, < 1A, 1A1loe™-
q a1

Proof. 1t suffices to show for every ¢ > 0,




By the Riesz-Thorin interpolation theorem,

0 —0
1F g < 1F 1, 111125

for all £ > 1. Thus, using the definition of ¢,(z) = exp(|z|?) — 1 we have

N

k>1

k 1-0)k
1 !If!|k31||f||‘
1-0
kg k>1 kL CGHfHOO )ka
f

Tl A

o en1—0 o en1—0
Ao Cellfll

)

Remark 2.2.9. From the proof above, we can also see that if f,g € Ly, (X) and
A1l < llgll, for all 1 <'s < oo, then [|f]],, < lgll,,

Next, we define the space ¢, ;.

Definition 2.2.10. Let (ay)n,>1 be a sequence of complex numbers such that
lim, 00 @, = 0. We define the complex sequence (a),>1 as the re-arrangement of
(n)n>1 in the way that if i < j then |af] > [aj].

Definition 2.2.11. Let (a,)n,>1 be a sequence of complex numbers. We define
(0n)n>1 € £y if and only if

(), = Z\&nm 14 < oo,

where 1/p+1/g=1and 1 <p<2<qg<oo.

Example 2.2.12. Consider a finite set A C I'. We let 14 be the indicator function
of A. Then |[14]|,, = S22 /e > |A[|A|"V/a = | AV,
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Remark 2.2.13. Here is a useful convex decomposition of finitely supported positive
sequences in f,;. Assume a := (a,), is supported on a finite set A C I' and
each a, € R for v € A. Assume further that [laf|,, = 1. Order A such that
Qyy > Qyy.o. > iy, > 0, where [A| =n. For 1 <i <n, define 4; :={vy;: 1 <j <3}
and let 14, be the indicator function of A;,. We put \; := (o, — a,,,) for
1<i<n-—1and A\, := «a,,. We note that each

illp,1

for v € A. Thus, if we define Bi(y) = Hi“‘& then o = - A;8; with each
A

1Bill,, = 1. We further notice that 1 = [|a
combination of norm one sequences.

p,1

|p,1

= > ", Ai. Thus, a is a convex

If 1 <r<p<2 then ¢, C {,; C ly ([22]). Furthermore, we have the following
interpolation result.

Proposition 2.2.14. [I/] Let 1 <r < p < 2. Define 0 < 6 <1 by 110 =104 8
Then, there exists a constant Ky such that for all o € 0y,

1-0
e,y < Kolledl;™ llalf3-

pl —

2.2.2 Probabilistic results

Lemma 2.2.15. Let (£,)%_, be real valued, non-zero almost everywhere, indepen-
dent, symmetrical and identically distributed random wvariables on the probability
space (X, p1). Let (an)k_; be real numbers. Suppose (x,)%_, are from a Banach space
Y and ® : RT — R* is a measurable function with ®(0) = 0. For all +1-valued

(ﬁn)ﬁ:l: we hcwe
k
)= Lo (e )
Y X n=1 Y

k
n=1 =
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Proof. We first consider the case that every &, is +1-valued. For each [ € {—1, 1}k
we consider the set

X ={r e X : &) =1n) vVl <n <k},

oo frnn])

Since &,, 1 < n < k, are independent and identically distributed, u(X;) = 1/2* for
all | € {—1,1}*. Hence,

foo (|

If we define F : {£1}" — {£1}" by F(I)(n) = I(n)5(n), we note that F is a bijection.

/
X

and let

k

Z apl(n)x,

n=1

)Z Z CL[~,U(X[>: Z %

le{£1}" le{£1}*

): > appuX) =) ;—,i~

le{+1}* le{£1}*

Jor(esen] ) = Lo (e )

Notice that this can be generalized to deal with the case that each &, is a symmetric
simple function and therefore the Lemma 2.2.15 follows. O]

k
n=1
Hence,

k
Z an&nxn
n=1

k
> nBulntn
n=1

Proposition 2.2.16. Let (&,)%_, be real valued, non-zero almost everywhere, inde-
pendent, identically distributed, symmetric random variables on the probability space
(X, 1) and (z,)k_, be in a Banach space Y. Suppose ® : RY — RT is a convez,
increasing function and ®(0) = 0.
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(1) Suppose (a,)k_, are real numbers. Then

n=1
k
/X (mln « § /X ;a T §
k
/X <maX « nz::l T §

(2) Suppose (a,)k_, are complex numbers such that |a,| =1 for 1 <n <k. Then

el )< ol )< bl

k
> &urn
n=1

Proof. (1) Assume that max|a,| = 1. Notice that the function F': [-1,1]F — R,

k

> &

n=1

(a1, .yap) = [ @
b

is convex. Hence, it will obtain its maximum on the extreme points in [—1,1]*,
namely (B, ..., Bx) where each 5, = £1. By Lemma 2.2.15, for all g, = +1,
Y)

k k k
/ o ( > Bubnn ) :/ P ( > &ntn ) =/ @ (maxlanl > &atn
X n=1 Y X n=1 Y X n=1
proving the second inequality.
To see the first inequality in (1), we suppose min |a,| > 0. Let 7, = i and v, =
(min |ov,|)anx,. The first inequality follows as
k k
/ P (min|an] an:vn > :/ ) ( Zﬁnfnyn )
X n=1 Y X n=1 Y
Y>

k k
g/XQ) (max]nn\ ;’Snyn Y) :/X(I)< ;Oéngnl'n

29



(2) Since ® is convex and increasing, notice that

k k k
/X@( Zangnxn )S/XCD( Z?R(ozn)gnxn + Z%(an)ﬁnxn )
k k
=1 @(2 > Rlan)enr Y) +3 /0 (2 > Slanlguss Y)

k

by (1) as each [R(av,)|, |S(an)| < 1. The other inequality follows via replacing x,, by
L, O

Proposition 2.2.17. Suppose A C T is a finite subset. For |a,| =1,

sup Z ayey(w)yl| < 2sup Z e4(w)y
weN ~eA 4 weN ~eA o
Proof. We first show that if h, € [—1,1] for v € A, then
sup Z hyey(w)y|| < sup Z ey (w)y
we cA weN A
Y bq Y bq

Indeed, the map F : [—1,1]4l — R given by

Z haeq(w)y

YEA

(hey)yea — sup
weN

bq

is convex. Hence, it obtains its maximum on the extreme points of [—1,1]4/, which
are {—1,1}. Since e, are +1-valued, we have that for all b, € {—1,1},

va&y(w)v Zﬁy(w)v

veEA yEA

sup
we

= sup
weN

bq bq

30



Hence, for some (by)yeq € {—1, 1},

Zh ey (w

yeEA

D_&lw)

yEA

Zb ey (w

YEA

sup
weN

< sup
we

= sup
weN

bq

Now assume «., € C with |a,| = 1 and we write o, = d, + ¢,i for d,,c, € [-1,1].
We have

sup Z ey (W < sup Z dyey(w + sup Z CyEy (W
we we we
"/GA d’ ’YEA (bq ’YGA ¢q
< 2sup Z e4(w
wel
YEA bq
Proposition 2.2.18. If h € Trig(G) and k € L,,(G), then
|| Zehe < CIHlL Il
~yel

C(G)

for some constant C'.

Proof. From Khintchine’s inequality ([21]), it is well-known that

ZE(V)% <2Vk Zﬁ(v)%

vyel’ L2k (Q) vel L2(Q)
We first claim that it follows from this that
/ Zh gw < 12||h|l,.
~vel
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We note that for all t € G,

/¢CZMxm»)C“@ﬁmwwﬁm
S\ e, ) 621 | |12 5!

—
2j

w 25 || ke )|

2 6% [[1]J7 E:%ﬂ

IN

Thus, if we put

B |3 h()ey (W)(t)
“”fé@< 611l )ﬁ

then fQS < 1.

We let K(w) := HZ h(7)ey(w ’yH By the definition we have

|3, ke wh®l
/G¢2< K(w) >dt—e 1>1.

Ifa>1and f(z) =2 —ax+a—1, then f(z) > 0 for all z > 1. Applying this with
x = exp(b?), for b > 0 we have agq(b) < ¢a(ab) for a > 1. Thus, if K(w) > 6]|hll,,

KEw) . (15, h()e @)y ()] y
G6Mm@< K@) )“SS()

Hence, if K(w) > 6||h|y, K(w) < 6]]A|], S(w).

By considering the set

{we: K(w) = 61[hll,}
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and its complement separately, we have

/QK§6HhH2+6HhH2/Q S(w) < 12|Jhll,,

proving the claim.

By Theorem 2.2.7, we have

LS ehakon| <c [

vyel
for some constant C. ]

[1K[l,, < 12C ][Rl (K],
b2

> h(eyy

[e.e]

Finally, we have an important result from Rider which is a key ingredient in the
proof of the main result of this chapter. The proof can be found in Rider’s original
paper [33] and a detailed proof can be found in [21].

Theorem 2.2.19 (Rider). [75] Consider the probability space (T", P5), where Py is
the Haar measure on TV. For each t = (t,)yer € TF and v € T, let w,, : TV — T be
gwen by w,(t) = t,. Let A C I' and assume there exists a constant C such that for

every f € Trig, (G),
o
01 T

Then A is Sidon. Moreover, there exists a constant K such that the Sidon constant
of A is bounded by KC3.

> F()w, () () dt.

yerl’

I

c@)

2.2.3 Entropy numbers

Entropy integrations will be involved as an intermediate step during the proof of
the main theorem. We start with definitions.
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Definition 2.2.20. Suppose d is a pseudo-metric on G.

(1) The entropy number Ny(e) is the minimum of the number of open e-balls in
metric d needed to cover G.

(2) We let My(e) be the minimum integer n such that there exists a partition of G,
Py, ..., P,, with each P; having diameter at most ¢.

(3) We say d is translation invariant if d(s,t) = d(sx, tx) for all s,t,x € G.

Lemma 2.2.21. Let d,dy, dy, ds be pseudo-metrics on G.
(1) For all ¢ > 0, we have My(2e) < Ny(e) < My(e).
(2) If there is some 6 € (0,1) with

d3(57 t) S dl(sa t>170d2(87 t>9
for all s,t € G, then for all e1,e9 > 0, My, (5%_963) < My, (e1) Mg, (g2).

Proof. (1) It is clear from the definitions that My(2¢) < Ny(e). To see that
Ng(e) < My(e), we let Py, ..., Py be a partition of G, each of which has diameter
at most €. Pick x; € P; for 1 <1i < My(e). For e > 0 and x € G we let b.(x) be the
open ball of radius ¢ centered at x. Then, b.(z;) D P, and hence Ui]\iﬁ(a) b-(z;) D G.
ThUS, Nd(é) S Md(E).

(2) Let Py, ..., Puy, (e,) be a partition of (G, d;) where each P; has diameter at most

e1. Let Q1, ..., Quy, (e,) be a partition of (G, dy) where each @); has diameter at most
9. Let s,t € P,()Q;. We have

ds(s,t) < di(s,t)" dy(s, 1)’ < ]l
Thus, each P, Q; in (G, ds) has diameter at most g1 %4 for 1 < i < My, (e;) and
1 < j < My(22), proving (2). 0
Definition 2.2.22. Suppose d is a translation invariant pseudo-metric on G and e
is the identity in G. We let py : RT — [0, 1] be given by
pa(e) =m({x € G : d(x,e) < e}).
We also let 04 : [0, 1] — R* be the increasing rearrangement of d(z, ), that is,

oq(t) == sup{y : paly) <t}.
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Lemma 2.2.23. Suppose d, dy, ds, d3 are translation invariant pseudo-metrics on G.
Put 0, := 04, fori=1,2,3.
(1) For e >0,

pa(e) ™ < Nale) < pale/2)7h
(2) If there exists 6 € (0,1) such that

dg(ﬂf, y) S dl ('T7 y)l_edQ (.CE, y)9
forall z,y € G, then

os(ts) < 4oy (t)1_902(8)9

for all s,t € [0,1].

Proof. (1) From the definitions, it is clear that Ny(e)uqa(e) > 1. Moreover, we
note that if we let Sy(e) be the maximum number of points @1, ..., zg,.) such that
d(z;,x;) > € for all i # j, then Ny(e) < Sy(e). Thus,

Na(e)pa(e/2) < Sa(e)pale/2) <1,
because the balls b, /o(z;), 1 <1 < Sy(e), are pairwise disjoint.
(2) We first show that for all £1,5 > 0, we have

pas (€1/Dpas (£2/4) < pray (e17"€5).

Indeed, from previous results, we have

tiay (€1/4) " pay (€2/4) ™1 > Ny, (e1/2)Nay (22/2) = My, (€1) My, (£2)
> Mds(g%iegg) > Nds(g%iegg) > /Lds(g%iegg)il'

Now we suppose that for some s,t € [0, 1], we have

o3(ts) > (401 (1)) 0 (404(s))’.
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Let y1,v2 € [0,1] be such that y; > (401(¢))' 7%, y2 > (402(5))? and Y1y < o3(ts).
Then,

—0 0
ts > pay (y1y) > pay (01" 4 pay (17 /4) > ts,

which is a contradiction. ]

Definition 2.2.24. Let d be a translation invariant pseudo-metric on G. For a > 1
we let

Jo(d) == /Ooo(log Nd(r))l/a dr
Kold)i= [ Nlog ) dr
I(d) = /1 __oa)

t|logt|t -1/ =

Lemma 2.2.25. (1) K,(d) < J,(d) < 2K,(d).
(2) Ko(d) < oo if and only if 1,(d) < co. If I,(d) < 0o, then I,(d) = aK,(d).

Proof. (1) is clear from Lemma 2.2.23 (1). To see (2), we use integration by parts.
Since oy is the distribution function of pg,

0 1
Ka(d):/o o ja(r)[/° dr:/o Hog £/ dog(t).

From integration by parts, for § > 0 we have

1 1 1
/ |log |V doy(t) = [ad(t)|1ogt|1/“}§+—/ __oal) _ dt
1

a Js tllogt|t-Ve
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We let

1
F1(9) ::/ | log t|Y® dogy(t)
5

Fy(8) := 04(8)|log 6]/
F3(0) := /1 __oalt) _ dt
5

t|log t|t=1/e =
If I,(d) < oo, then limgs_,¢ F3(5) < oo. Thus,

Ka(d) = lim F3 (9) < lim Fy(0) /o < oo.

Moreover, we cannot have lims_,o F»(d) > 0, for then lims o F3(0) = oco. Therefore
we have K, (d) = I,(d)/a.

Next, we suppose K,(d) < co. We note that for any ¢ > 0,
F3(8) /o = F1(6) + F»(0)
< Kofa)+ [ " g ) dr
<2K,(d) < (c])o

Thus, I,(d) < co. O

Definition 2.2.26. Let 1 < p < oo and ¢ be the dual index to p. Given f € L*(G)
with f € £,1, we define a pseudo-metric on G by

Jpa(f) = /Ooo(long,l(%f))l/q da.
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Similarly, for fE ¢p, we define

1/p
Ai(s.1) (ZUI% m@ .

vyerl

We let Ny(z, f) = Ny (x) and let

Jp(f) := /Ooo(long(x,f))l/q dz.

Remark 2.2.27. Let 1 < p < 2 with dual index ¢ and f € L%(G) with f € ly.
Using notations introduced in Definition 2.2.24 we have that

Jp,l(f) = Jq(d£,1>
To(f) = Jo(d}).

We next prove a result about the convergence of the entropy integration J,(f).

Proposition 2.2.28. Suppose f € C(G) with fe 01(I"). Let 1 < p < oo. Then
Jp(f) < oo and, furthermore, there exists a constant C, such that

T(f) <G> 1F ()

770

In order to prove Proposition 2.2.28 we first prove a lemma.

Lemma 2.2.29. [20] Let 1 < p < 0o and (ax)r>1 € ¢1 be a non-increasing, non-
negative sequence. Define the section

B((ar)) = {(bx)r>1 : [br] < ax} C .
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For e >0, we let H(e, (ay)) be the minimum number of e-balls in ¢, needed to cover
B((ax)). There exists a constant C,, dependent on p, such that

/ log(H (r, (a))¥? dr < szak;
0

k>0

where 1/p+1/q = 1.

Proof. Throughout the proof C, will denote a constant, only dependent on p, that
may change from one occurrence to another. The main strategy for this proof
is to build epsilon dense sets of points for a rich set of epsilons for the section.
Actually, we will produce these for a larger section, B((cy)), defined similarly, whose

properties are easier to work with. The sequence (¢) € ¢; will be non-increasing,

non-negative and satisfy a < ¢, cx < 2¢p4q for k > 2, and ¢; > (% Y ey c’,;)l/p

Moreover, Y o ¢ < 5 | Q.

Indeed, we can construct such a sequence by putting cs := max {as,a;/2} and for
k > 2 define ¢4 to be ¢x_1/2 if ar, < ¢x_1/2 and otherwise define ¢, to be aj. Notice
that

chSZak+ (Z%):2Zak.
k>2 k=1 k=1 \j=1 k=1
We put
cli=aj + (%Zcz)l/p

Eond
[|
I\

It is easy to see (cx) has the specified properties.

Since ¢, < 2¢g41, for n > 2 we have

00 1/p 0o 1/p
(Zci) <2 < > ci) - (20)

k=n =n+1
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For n > 0, we define

1 o 1/p s 1/p
5"::(714_1262) ,gn::<ZZCZ> ,

k=n+1 k=n+1
M(n) := min{n,max{k :cx > 0,}}.

Observe that 6, is a decreasing sequence, M (n) is increasing and
On < £n/n'P < CL, (2.1)

for n > 1. Moreover, since we have ¢; > 61, {k: cx > 0,} # 0 for all n > 1.

For a fixed n > 1, consider the following subset S((cx),n) in B((cx)), which consists
of the complex sequences (by) with

b — JkOn + li0n0 for some ji, Iy € Z if 1 <k < M(n)
T 0 if k> M(n)

If (b)) € S((cx),n), say by = Jxbn + lkdni, then for k < M(n), |jkl, || < [cx/6n].
Hence,

S((ex),m)] < ﬁ)4 (5— + 1>2.

Moreover, for every x € B((cx)), since ¢ < 6, if M(n) +1 < k < n, there exists
y € S((ck),n) such that

IIx—yll,’;SMm)(@é’"‘) + ) 4+ D q

k=M(n)+1 k=n+1
<ndh+ Y E<2 Y
k=n-+1 k=n-+1
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Hence, ||z — yl|, < &, and therefore,

log H(ep, (cx)) < log H 4 < + 1> <log [ 16"
On k=1

We have

/0 " log(H(r, ()Y dr = / " (log(H (r, (c1))) " dr

We note that g < 2|(ck)l|, <23 3, e and one can check that

T(1) = log (%%) = log (16 (51 + 1)2>

1/p 2
< log (16 (2 L 1) ) <log(16(2"7 -2+ 1)?).

Co

Since T'(n) > log(16™) > n, we have

en(T(n+ 1)V =T(n)"7) = ¢, <T1;7§n+Jr1)11)/p - Tfé;}/p)

T(n+1)—T(n)
= én
nl/P

< Cpbn(T(n+ 1) — T(n)),

41

e
7N
SEES
N——
[N}
N—
I
=

(2.2)

(2.3)



because of Eq. (2.1). Also,

5 2M (n) M(n+1
T(n+1)—T(n)=log | 16 (5 = )

ntl k= M(n)+1 Ons1

= log(16) + 2M (n) log( n+1> Mi log< 5 ) .

Observe that, if M(n) < n, we have

M(n+1)

> 10%( = ) < (M(n+1) — M(n))log (M)

k=M (n)+1 n+1 5n+1

< (M(n+1) - M(n))log( On > .

6n+1

Otherwise, if M(n) = n, then

Mgl) lo C; < Cn+1
S\o. ) "o

k=M (n)+1

Hence, in general, we have

M (n+1)

Y log (50’“ ) < (M(n+1) — M(n))log (55” ) + gnﬂ.
k=M (n)+1 ntl n+1 n+1
Therefore,
611 2Cn+l
T(n+1)—T(n) <log(16) 4+ 2M(n + 1) log +
5n+1 5n+1
6TL 2Cn+1
< log(16) + 2M(n + 1) 1)+ . (2.4)
5n+1 5n+1
Eq. (2.0) implies 6, < Cp0,,41 and since M(n) < n, we have
571 2Cn+1
on [ 2M(n+1) -1+ < Cp(n(dy, — Ont1) + Cngr). (2.5)
5nJrl 5n+1
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Hence, Eq. (2.4) and Eq. (2.5) imply
Zé (n+1) (n)) < 10g(16)2§n+0p2n(5n — Opt1) —I—C'I,chﬂ
n=1 n=1
Z (0, + Cn).

It is known (see [2], Theorem 2) that

Z 6n S Cp Z Ck,
n=1 k=1
and hence,
D u(T(n+1)=T(n) <Cp> ke (2.6)
n=1 k=1

Finally, by Eq. (2.2), Eq. (2.3), Eq. (2.6) and the definition of &j, we have

/000 log(H (r, (ak))l/q dr < /00 log(H (r, (ck))l/q dr

0

< goT(1 /q—i—Zs T(n+ 1)1 — T (n)"7)

<eT ()Y 4C, Z 6.(T(n+1) —T(n))

. n;l
~ C’chk S C’pZak.
k=1 k=1

Proof of Proposition 2.2.28. The proof is based on Lemma 2.2.29. Let (ag)r>0 be
the non-increasing re-arrangement of (|f(y)|),er and for € > 0, let H(e, (ax)) and
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B((ax)) be defined as in Lemma 2.2.29. Lemma 2.2.29 gives a constant C,, such that

/ log(H (e, (ax))Y de < CpZak,
0

k>0

where 1/p+1/¢ = 1.

Let (7x)k>0 be a rearrangement of I' such that |F(w)| = ax for k& > 0. Define
F:G — (,(C) by F(x) = (f(v&)v(z))k>0- Notice that F' is an isometry from
(G, dl) onto F(G) C £,(C).

We claim that for € > 0, N,(2¢, f) < H(e, (ax)). Indeed, suppose € > 0 and by, ..., b,
are balls of radius € in ¢, such that (J;_, b; D B((ax)) D F(G). We choose (may
reorder if necessary) by, ..., by, to be the ones with b; (| F(G) # 0 for 1 <i < m. Let
z; € bV F(G) and let (B;)1<i<m be the balls of radius 2¢ and centered at z;. We
have that |J]*, B; D F(G). Since F : G — F(G) is an isometry, we can cover G by
m balls of radius 2¢ as well. Hence, N,(2¢, f) < H(e, (ax)).

Thus, we have

|/\
L\D|Q

F 2.1

-~

Finally, we let g € C(G) such that g(v) = f(~) for all v # 0 and g(1) = 0. We notice
that df = d;j and therefore we have

W)= hie) < 23| >l =23 1)

¥#0

Next we prove an interpolation type result.

There

Proposition 2.2.30. Let 1 < r < p < 2. Let 0 be given by % = =04

T

N[
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exists a constant Cy such that for all f € Trig(G) we have
Toa(f) < Ko Jo ()1 ()1
Proof. Let q,s be given by 1/p+1/q =1 and 1/s+ 1/r = 1. Since f € Trig(G),

Proposition 2.2.28 implies J,(f), Jo(f) < oo and therefore by Lemma 2.2.25,
sK,(d) = I,(d]) < oo and 2K5(d}) = L(d}) < .

From Proposition 2.2.14, for all s,t € G and some constant Cp,
d’ ((s,t) < Codl(s,t)'df(s, )’
Thus, by Lemma 2.2.23, for all s,t > 0,
(N1=0 N6
Udfl(tS) < ACyo 4 (1) adg(s) .

Using the previous inequality, the change of variable x = ¢? and Holder’s inequality,

Lo 1 Udi,l(x) ] 1 Udﬁ,l(tQ) "
= | o= |, P

x|log z|'/P

<4 .24, /1 (Ud[ (t>>16 (%g (ﬂ)e

0 t| logt\¥+g

_ 0
Lo (t) FOL o)
1 dy. d:
§4'2/q09(/ Wdt) /Wdt
o tllogt| o tllogt|

—4.2Y9C, (1,(d)))" ™" (I(d]))? < oc.

Combined with the relationships of Lemma 2.2.25, this gives
8
q
2N SOC (K (df)' (Ko (d)))’

Toa(f) = Jy(d},) < §Iq<d£1> < = 2Y9Cy (1 (d]))' " (Ia(d3))’

Il
-~

IA
QIO |0 |00

2SO (T (@) (Ja(d)))?

2MTHOSTOC (1, ()0 (R ()’
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which shows the desired result with the constant in the statement of the Proposi-
tion 2.2.30 being 7 - 21/a+051=00, O

Finally, we will need to use Fernique’s classical inequality. A proof can be found
in [24] for example. Recall that (g,)er is a collection of independent standard
Gaussian random variables on (€, P;) indexed by I

Theorem 2.2.31 (Fernique’s inequality). There exists a constant C' such that for
all f € Trig(G),

Jo(f) +17(0 !<C

Z fVgy

yerl’

C(G)

2.3 The main theorem

We state and prove the main theorem. Recall that the definitions of the entropy
integrals J,(f) and J,1(f) are given in Definition 2.2.26. Recall that (e,),er is a
collection of independent random variables on (€2, P) indexed by I' such that each
e, takes only values 1 and —1 with equal probability 1/2.

Theorem 2.3.1. Let A = {7, : n € N} be a subset in T'. The following are equiva-
lent.

(1) The set A is proportionally Sidon with bounded Sidon constant, which means
there exist constants Cy and 01 > 0 such that for all finite subsets A C A, there exists
a Sidon set B C A such that S(B) < Cy and |B| > 6;|A|.

(2) There exists 62 > 0 such that for every finite subset A C A we have

JA IS

vyEA

> 6,|Al.

(@)
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(8) For all p € (1,2] there exists some constant Cs such that for all finite A C A,

>y

YEA

< Cs|A|VP.
®q

(4) For all p € (1,2] there exists some constant Cy such that for all f € Trig,(G) we
have

ST IFOI < Cudpa(f)-

yeA\{0}
(5) There exists some constant Cs such that for all f € Trig,(G) we have

S 1FO)I < Csa(f)-

yeA\{0}

(6) The set A is Sidon with Sidon constant bounded by Cs.

Remark 2.3.2. The constants stated in Theorem 2.3.1 will be used later in this
thesis. In particular, given that (2) holds for ds, we need to know a bound Cj for
the Sidon constant in (6) (in terms of ds).

Assume (2) holds for d5. During the proof of Theorem 2.3.1, we will show (3), (4), (5)
and (6) hold and the quantities C3, Cy, C5 and Cg can be chosen in the following man-
ner (in terms of d2) for some constants K (p) (or K(§) depending on &) independent
from d5:

Cs = K(p)d; ' (q is the dual index to p in (3))
Cy = K(p)égg/q (q is the dual index to p in (4))
Cs = K(S)(g—(l-l-f)

(&)

Note that (6) — (1) is obvious and therefore we will prove (1) — (2) — (3) —
(4) = (5) — (6) of Theorem 2.3.1.
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2.3.1 Proof of Theorem 2.3.1: (1) — (2) — (3)
Proof of Theorem 2.3.1 (1) — (2) — (3): (1) — (2): Fix a finite set A C A. From

(1), there exists a Sidon set B C A with S(B) < C and |B| > §;|A|. Hence, for w €
Q, there exists y,, € M(G) such that fi,(v) = e(w) for v € B and |[|pw|| ) < Ch-

We have

(@)

9

(&)

*(Q_en)

y€EB

> 7

YEB

SIAl< Bl =) (o)l =

YEB

where the last equality is because of the definition of fi,. As ||u,|| < Ch,

oy /||uw||MG) Seal  zaf|Ten

yE€B yEB (G) ~vEB
Notice that from Lemma 2.2.15 (take ®(z) =z, X = (Q, P) and Y = (C(G),||||.)
in Lemma 2.2.15) and the triangle inequality, we have

(>Rl
g

Putting everything together, we get (2).

(&)

Ser|.

yeEA

D&

e

YEA

/ st—k Z e,y

YEDB veA\B

C(G)

(@)

(2) — (3): Assume (2). We first show (3) in the case that p = 2. From Proposi-
tion 2.2.18, for all g € L,,(G) and any finite subset A C A, we have

[|5ea0n

yeEA
By assumption (2) and Proposition 2.2.16 (2) (take ®(z) = z, X = (Q,P) and

< ClA[M|gll,,

(&)
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Y = (C(G),|||l,) as in Proposition 2.2.16), there exists d, > 0 such that

>en

YEA

Y egy

YEA

.
524 i [50)| < min G| |

o
Q

C(G)

< 20141 lgll,, -

c(q)
Hence,
1/2 s < ~1
A min [§(7)] < 28, [lgll,, -

Next, we reorder A so that A = {v;: 1 <7 <|A|} and [g(v;,)] > |9(75,)| if j1 < Jo.
Applying the argument above to each A; := {y; : 1 < k < j}, we have

J72 G| < 2065 (19l
for all 1 < j <|A|. Hence,

|4 |Al
S el <205 | D02 lgll, < 4Cs; A2 g, -
j=1 i=1

Hence, by Theorem 2.2.6 and the definition of the ¢} norm,

Syl <D = sup /(271)9
vEA b0 vEA o3 HQHMSI G'yeA
= sup |Y g(y)| <4C5; AV,
lall,<1 |5

proving the case for p = 2.

Next, we deal with p € (1,2). We let p € (1,2) and ¢ be such that 1/p+1/q = 1. By
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the interpolation property of Orlicz norms (Proposition 2.2.8) and taking 6§ = 2/¢,

0 1-6
Sl <I5A] (150 < @os A A = (408 AP,
7eA g, Thred g, Thved Hie)
proving (3) with C5 = K(p)52_2/q. O

2.3.2 Proof of Theorem 2.3.1: (3) — (4)

Next we prove (3) — (4). This is a critical step because we are going to transit to
the entropy integration. We need the following variation of Dudley’s Theorem [7].

Proposition 2.3.3. Let d be a pseudo-metric on G, 2 < q¢ < oo and f € Trig(G).
Suppose that [;*(log Ng(r))"/? dr < oo and for all s,t € G, ||fi — fll,, < d(s,1),
where fy(x) = f(x+t). Then,

sup |7(e) = F)] < D, [ (o5 Nu(r)) " ar

z,yeG

for some constant D,.

Proof. Let D be the diameter of G with respect to d and 9,, := D4~ for n > 0.
Let N, := Ny(6,). For each n € N, there exist a partition (A4;,);<n, of G and
Zjn € Aj, such that the diameter of each A;, is at most 24,,.

We let

fi(x) =) 1a,, (0 f(2)

J<Nn

and notice that f{(z) = f.,,(z). Since f is continuous, f/*(z) — fi(x) as n tends to
infinity for each t,x € G and therefore

filw) = f@) + Y (i) = 77" (@) -

n>1
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Hence, for all a € G,

sup [f(x) = f(y)| = sup |fi(a) — fs(a)|

x??JGG t,SEG

<2 suplfi(a) - [ ()]

n>1 teG

= 22 sup |fzi,n (a) - fzj,n%(a)”

n>1 (4,5)€AR

where A, C {1,...,N,} x {1,..., N,,.1} and (¢,5) € A, exactly when A;,, (A4, is
non-empty.

We next claim that

/ SUD. (o = fopnr| < 871N sup || o — Fop]]
G ( ('LJ)EAn

,j)€An

Indeed, we may assume sup; jiea, Hfzm — foina ’ |¢q < 1, which means

/ ¢q(|fzz,n - fzj,n,1|) S e—1.
G

Since ¢, is convex and increasing, by Jensen’s inequality we have

¢q (/ sup ‘fzi,n - ij,n—ll) S / ¢q ( sup |fzz,n - fzj,n—1’>
G (i,j)€An G (3,7)EAn

= / sup ¢q (‘fziyn - ijmle
G (

i,3)EAR

SL S 0ullfern — forni])

(4,7)EAR
< |An|(e — 1) < 2/A,].

Hence, [, supg jiea, |foin = fona| < @71 (2|An]), proving the claim.
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Thus, we have

sup | f(z) — f(y)| = /G sup | — /i

z,yeG t,seG
< 2 Zin  JZin—
- /c ;u?epA oin = g
<:2§£:¢) 2h\| sup ’|f4n f@n J‘
n>1

We also note that
L 21A]) < ¢t (2N2) < 4V(log N,,)'Y.
For all (i,5) € A, and t € A;,, () A1, we have
1o = Loally, < o = Ally, + 11 = £,

< d(2ip,t) + d(2jp-1,t) < 2D4~ D,

Hence,

sup |f(z) = f(y)l <4-4Y7) D4~V (log ;)1

z,yeG n>1
4 3D
Z .yl A=) (160 No(D4™™)) /4
= 4 T g N DI
4 1/ D4—™m 1/
< — .41 (log Ng( 7 dr
- 3 ;/ n+1) g d ))

4

4
< e 41/‘7/ (log Na(r)¥? dr.
0
We are now ready to prove (3) — (4) in Theorem 2.3.1.
Proof of Theorem 2.3.1: (3) — (4). Let p € (1,2] and C' = C3 be as given in (3).

The triangle inequality and (3) gives that for all finite sets A C A and for h, = %1,
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we have

Zhw <IDoAll +]] D ]| <2004

yeEA hy=1 b hy=-1 b
By Proposition 2.2.17, for |a,| = 1,
sup Z ey (w)y < 2sup Z ey (w
we cA we A
v bq K bq
Thus, whenever |a,| =1 and A C A, then
Zawy < sup 2304757 < 2sup 257 < AC|AIMP.(2.7)
yEA bq wes YEA bq wehd YEA bq

Let f € Trig,(G) and &, € T be such that &, f(y) = | f(7)|. We denote

9= &I =>Y_If

YEA vEA

~

Since (§,f(7))yea is a positive sequence, we decompose it, as explained in Re-
mark 2.2.13, by

) AL
§100 =2 o a0
i1 1+Aillp
so that
|A]

13, =3 A
=1

where here A; are suitable subsets in A and \; are positive real numbers. (For the
definition of the [|-|[, ; norm we direct the reader to Definition 2.2.11.)
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As shown in Remark 2.2.13 and Example 2.2.12, we have

14|
_ 11/
7] =1l = ZA Z T Il = 30
i=1 illp,1
Thus, by (2.7),
|
H > 3
-
= [T YEA; b
The triangle inequality implies
4|
I, =[S 3 =€
vEA i=1 Ai
bq
Kl
< <4C H (2.8)

We recall that for a € G, g.(x) = g(z + a) and we direct the reader to Defini-
tion 2.2.26 for the definitions of J,1(f) and the d},’il pseudo metric, which we will
now use.

The inequality Eq. (2.8) above holds for all f € Trig,(G). Since g € Trigy,(G), it is
easy to see that for all s,t € G we have g5 — ¢, € Trig,(G). Applying Eq. (2.8) to
9gs — gt gives

lgs = gilly, < 4C 115 = Gill, 1 = 4Cdy (s, 1).

Since f € Trig(G), Proposition 2.2.28 implies J,(f) < oo for all u > 1. Hence, we
have J,1(f) < oo from Proposition 2.2.30. Thus, by Proposition 2.3.3, we have

sup |g(x) — g(y)| < 4CD,Jp1(f).

z,yeG
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Notice that

Yolfwl= Y §(7):Zﬁ(v)—ﬁ(o)zg(e)—ég(y) dm/(y)

yeA\{0} yeA\{0} yel
<sup |g(x) — /g(y) dm(y)‘ < sup [g(x) — g(y)|.
zeG z,yeG

Hence,

S 1F0)| < 4CD T (),

veA\{0}

proving (4) with Cy = 4D,C5 = K(p)52_2/q.

]

It remains to show (4) implies (5) and (5) implies (6) because (6) implies (1) is trivial.

2.3.3 Proof of Theorem 2.3.1: (4) — (5) — (6)

We first prove a lemma. Recall that (g,),er is a collection of independent stan-
dard Gaussian random variables indexed by I' on a probability space (€, Py).

We let w, on (T", P,) be given as in Rider’s theorem (Theorem 2.2.19).

We

continue to let (g,),er be a collection of independent random variables on (2, P)
indexed by I' such that each ¢, takes only values 1 and —1 with equal probability 1/2.

Lemma 2.3.4. (1) Given C > 0 and £ > 0, there ezists a constant Cy =
such that

/ S Fgn||  dp < / Y fWen||  dP

! vyel C(G) vyel C(G)
for all f € Trig(G).
(2) For all f € Trig(G),
/ > e f(n) dP§2/ > w f(y)y dP;.
yEA veEA

(&) (&)

%)

K(§)C*



Proof. (1) Given C' > 0, we let C; > 0 be large enough that

/ |9+ 1519, 151y dPL < 1/C
Q

for all v € T'. Later we will see such ('} exists and consider the size of (.

For each v € ', we put ¢/ := g,1q4, >0y} and g := g, — ¢/. From the symmetry of
the Gaussian distribution we note that

/ > gy dP, = / / V)eLgiy dP, dP
Ql ’YGF C( Ql ’YEF (G)
= / / > ey dp | dp:.
HAT her (@)
As |¢]| < Cy, Proposition 2.2.16 (1) implies
/ > fme dPlé/ /01 > Fyen dP | dPy
P lyer @) . ver c(@)
/ Zsﬂf dp.
el (@)
Hence,
LIZfoen|| < [ |SFon|  + [ |[X Fonan
B lger c@ U ller o O llher c(@)
D [ wgieen [ afon
Q1 =y
él + 0 /
yEA folte)
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We now consider the size of C;. Indeed, we have

/Q 0 Loy APy = CLP ({1, > C}) + /C Pi({lg,| > 1) dt.

Since g, is Gaussian, it is well-known that for z € R*, P,({|g,| > z}) < 2e7%°/2,
Hence,

/ 1941419, 1501} APy < 201e~C1/% 4 2/ e/ .
Ql C11

Since both e~**/2 and [ e~ /2 dt decay more rapidly than any power of 2!, for all
¢ > 0 there exists K(§) such that

2we /2 4 2/ e dt < K(€)a V¢
for all z > 0. Hence, we can make C; = K (£)*C*¢ and

/g 19,11 1g, 1500 dPL < K(€)CTVE =1/C.

(2) From Proposition 2.2.16 and the symmetry of (w- )., we have

/Q > e foy dP§2/TF

ved (@)

dP,.
(&)

> w f(v)y

veEA

Proof of Theorem 2.3.1 (4) — (5) — (6): (4) — (5): Let p € (1,2) and Cy > 0 be
given in (4). We invoke Proposition 2.2.30 and Proposition 2.2.28. From (4) and
Proposition 2.2.30, for f € Trig,(G) we have

ST < Cudya(f) < Ciodo(f)" (),

yeA\{0}
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where 1 <r < p < 2 and i = 1%9 + g. As ]/‘:E {1, Proposition 2.2.28 then shows

ST F0) < Cio o (H(C D

yeA\{0} yEA\{0}
Thus,

> FO)I < (G 1o (£ ).

yeA\{0}

Recall that Cy = K(p)dy 2/4 and therefore we have that the constant in (5), Cs, is
K(p,7)(65)72/14  where ¢ is the dual index to p and, as stated above, 6 is given by
L= 184+ ¢ for r € (1,p). We note

P T
2 _(-DH2-1)
q0 p—r
One can easily check that if we let r — 1, decreases to 1.

Hence, C5 is K (£)(85)~(+9) for £ > 0.

To show (5) — (6) we start from Fernique’s inequality (Theorem 2.2.31). Then
we use probabilistic arguments to change the Gaussian random variables to the
random variables on T so that the Rider’s Theorem (Theorem 2.2.19) can be applied.

(5) — (6): Fix some f € Trig,(G) and let A C A be the support of f. From (5) and
Fernique’s inequality (Theorem 2.2.31) we have that

<R+ FO1 < G [ S Fign (29)
& |[yer
for the constant C5 coming from (5).
From Lemma 2.3.4 (1), we obtain a constant ¢, depending on Cf, such that
Al
—t 2.1
LI Fmen|| < St e [ |1 Fe (2.10)
~el ~yel'

e} o0
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Combining Eq. (2.9) and Eq. (2.10) with Lemma 2.3.4 (2), we have

il < 05/
01 0

> Fg

vyel

12 ~

§§Hf + Csc / vaf(V)V
0 Q
yEA C(G)

1y —~

<3 Hf . +205C/]1‘F Zwvf(’Y)’Y
ved (@)
Therefore, we have
1], < acse [ |15 wFeon
1 Tr ’YGA C(G)

and hence by Rider’s theorem (Theorem 2.2.19), A is Sidon.

Lastly, Rider’s Theorem gives that the Sidon constant is bounded by K (C5c)3. Recall
that, for &€ > 0, C5 is K(€)(65)~*% and from Lemma 2.3.4 (1), ¢ can be made of size

K(€)CE. Hence, we can make Cg = K(§)55(3+E), as we claimed in Remark 2.3.2. [

Finally, we repeat this quantitative corollary from the proof of Theorem 2.3.1 for
later use.

Corollary 2.3.5. Suppose A C T', and for some § > 0 we have that for any finite

A CA,
/

Then A is Sidon with Sidon constant of K (€)d~G0 for any € > 0.

Z &Y

YEA

> 5]A.

C(G)
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Chapter 3

New Characterizations of Sidon
Sets

3.1 Introduction

One of the central open problems about Sidon sets is whether Sidon sets can be
decomposed into a finite union of more special sets. As we mentioned in chapter 1,
there has not been much progress towards solving this problem. The best positive
result is due to Bourgain, who proved that every Sidon set is a finite union of
n-length independent sets [3].

Definition 3.1.1. Let n € Nand E C I'. We say that F is n-length independent
if whenever k € N, ~,....,7 € FE are distinct and my,...,my; € {0,£1} satisfy
S Imi| < n, then Hle v =1 1implies 7" =1 for all 1 <i < k.

Theorem 3.1.2. For each n € N, a Sidon set E C T is a finite union of n-length
independent sets.

Unfortunately, Theorem 3.1.2 is not very profound because the notion of n-length
independence is relatively weak in nature.

Researchers have therefore considered the notion of proportionality. Bourgain and
Pisier ([1], [5], [29]) proved one of the most important results about Sidon sets:
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Sidonicity can be characterized by proportional quasi-independence. In light of
this, it is natural to wonder whether a Sidon set is related to stronger notions of
independence in terms of proportionality. One way to strengthen quasi-independence
is the notion of n-degree independence.

Definition 3.1.3. Let n € Nand £ C I'. We say that F is n-degree independent
if whenever £ € N, v,...,7% € FE are distinct and my,...,m; are integers with
|m;| < n, then Hle v =1 implies 7, =1 for all 1 <7 < k.

Remark 3.1.4. (1) 1-degree independence and 2-degree independence are usually
known as quasi-independence and dissociateness.

(2) A set is independent if it is n-degree independent for all n > 1.

(3) n-degree independence is much stronger than n-length independence. In fact,
even a quasi-independent set (1-degree independent) is n-length independent for all
n>1.

One of our main results in this thesis, proven in section 3.2, is the following.

Theorem 3.1.5. Suppose E C T'\ {1} is Sidon and n € N. Suppose I' contains no
non-trivial elements of order less or equal to n. There exists & > 0 such that for
all finite A C E, there exists an n-degree independent subset A" C A with |A'| > 6| A|.

Remark 3.1.6. (1) Taking n = 1 in Theorem 3.1.5 gives Bourgain and Pisier’s
quasi-independence characterization of Sidon sets.

(2) When T is torsion-free, Theorem 3.1.5 implies there are proportional n-degree
independent subsets for all n.

Pisier [29] introduced probabilistic techniques to prove Sidon sets are proportional
quasi-independent. We will upgrade his techniques to prove Theorem 3.1.5. Once
we obtain this, we will use a Riesz product construction to prove another one of the
main results of this thesis (Theorem 3.3.1), that a Sidon set in a torsion-free group
is even proportional Sidon with Sidon constants arbitrarily close to 1, the minimum
possible value.
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In the case that I' has torsion, it is not realistic to expect a Sidon set is propor-
tional Sidon with Sidon constants arbitrarily close to 1 because in this case even an
independent set of two elements can have Sidon constant above 1 (Proposition 3.3.6).

Pisier also proved that the Sidon property is equivalent to the “c-net condition”.

Definition 3.1.7. Let £1,e5 > 0. We say the subset F C I satisfies the (1, e5)-net
condition if for any finite subset F' C E there exists A C G such that |A] > 2517
and

sup [y(x) —v(y)| > €2
yeF

for all x #y € A. When g; = ¢5 = ¢, F is said to satisfy the e-net condition.

Notice that the (e1,e2)-net condition is more demanding when &; and e5 increase.
Naturally, the (&1, 2)-net condition is not achievable when ey > 2.

The following theorem is proved by Pisier in [31].

Theorem 3.1.8. A subset E C T' is Sidon if and only if E satisfies the c-net
condition for some € > 0.

We will strengthen this by proving that in the torsion-free case, a Sidon set can sat-
isfy the (1, 2)-condition for e arbitrarily close to 2 (Theorem 3.4.2). This uses our
Theorem 3.1.5. In the torsion case it is not realistic to expect this result. For exam-
ple, in the group Z3° any subset can only satisfy the (g1, £2)-condition for €5 up to V3.

Finally, we will use the techniques introduced in chapter 2 to estimate an upper
bound of the Sidon constant of a set satisfying the e-net condition (Corollary 3.4.7).
Our estimation greatly improves the result in [24].
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3.2 Sidon sets are proportionally n-degree inde-
pendent
In this section we will show Sidon sets in a torsion-free group, for example, are

proportionally n-degree independent for all n € N. We start with some preliminary
results.

Lemma 3.2.1. Suppose E C T'\ {1} is Sidon. There exists a constant K, depending
only on E, such that for all finite A C E and real numbers (o) ea, we have

/exp <Z aﬁ%(*y)) < exp <K2a3> )

Proof. Let A C E be a finite set. We let f := >
S(F) is the Sidon constant of E.

a7y and M := 2S(FE) where

YEA

By Theorem 1.3.8, ||f||, < MVk||f]|, for all k > 2. Using this gives

/exp<za7 7> dm = Z/ ”EA 0)" dm

yEA k>0
= ”EA RO 4 I
;/ m+1§kz>;/ o dm 41
HfH (MVE||f]],)*
M\/_HfH )2p (M+/2p +1]|f]],)*"*!
; +; (2p+1>!2 + 1.

We let L := max {M + 1,4}. Then, since p? < (2p)(2p —1)...(p+ 1),

(M/2p | fl],)%
(2p)!

(2LM? || £[[5)?
(M + 1)p!

<
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Thus,

(M~2p || f1],)%" 1 211 r112 1
§ : < QLM — .
= (2p)! - M+1eXp( 1£1]2) M+1

Moreover, we also have

(MV2p+ T f|L)*+ MLl LM |11

(2p+1)! - M+1 p!
Hence,
(M\2p +T||fll)P* _ M|fll, sz MIflly
E < - M2
(2p+1)! - M+1 expLMZ]If]l,) M+1

p>1

We therefore have

1+ M M—M
/eXP (Z ozﬁ(v)) dm < #exp(ﬂ;]\ﬁ I£115) + #
vEA

Hence, if || ]|, > 1,

/eXp (Z 0@*(7)) dm < (1+M||fll,) exp(2LM? || f]|3) < exp(4LM? | f]l;).

YEA

Otherwise || f||, < 1, and we have

1+M M- M
[ew (Zaﬂe(v)) am < (2l AR eprae 11

vEA

= exp(2LM? ||f1]5)-

Hence, in general we have

[ew (Z %9%(7)) dm < exp(LM?|f]3)

YEA
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Notation 3.2.2. Let £ C I be a subset. For k > 1 we let
Ek::{vk:veE}

and

Lemma 3.2.3. Suppose E C T is a Sidon set.

(1) Letn € N. IfT" has no elements of order less or equal to n, then for alll < k <n,
By, is Sidon with the same Sidon constant as E.

(2) If T is torsion-free, then for all k € N the set Ej is also Sidon with the same
Sidon constant as E.

Proof. (1) We first claim that for all 1 < k < n and = € G there exists y € G such
that y* = z. Indeed, consider the map fx : G — G given by fi(z) = a*. If f is

not onto, then fx(G) is a compact subgroup of G and G/ fi(G) is non-trivial. This
means fi(G) has non-trivial annihilator, which contradicts that I' has no elements
of order less or equal to n.

~

Since E is Sidon with Sidon constant C', 3~ ;[ f(7)| < C||f]|, for all f € Trigg(G).
Let g € Trigg, (G). By the claim above, if we let g, € Trigg(G) be given by g; =

> er G(7v*)v, then ||g1||, = |lg]|.. Hence,

D= 13 < Cllgrlle = Cllgll -

YEE) yeE

This shows E} is also a Sidon set with Sidon constant bounded by C'. It is even
easier to see E} has Sidon constant at least C' and hence we have equality.

(2) This follows immediately from (1). O

Lemma 3.2.4. Suppose E C I'\ {1} is Sidon, n € N and I contains no non-trivial
elements of order less than or equal to n. Then there exists a constant K,,, depending
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only on n and the Sidon constants of Ey, 1 < k < n, such that for all X\ € (0,1/n)

and finite A C E,

yEA

(1 + /\zn:ﬂ?(vk)) < exp(K,|Aln)\?).

Proof. Let A C E be a finite set and A € (0,1/n). Since 0 < 1+ x < exp(x) for
x € (—1,00), we have

/H <1+/\§%(7’“)) < /exp (AZi%M)) -

yeA yEA k=1

Using the notations in Notation 3.2.2, we write

YD RGN =D aRB).

yeA 1<k<n BEAm)

Note that the coefficients ag satisfy 0 < ag < 2n, since the assumption that T’
contains no elements of order < n ensures that R(v*) = R(x*) for v,x € A and
k < n only if 7y = x or Y. As a finite union of Sidon sets is Sidon (Theorem 1.3.9)
with Sidon constant depending only on the Sidon constants of the individual sets and
the number of sets in the union, Lemma 3.2.3 implies A™ is Sidon with Sidon con-
stant bounded by that of E, which depends only on the Sidon constant of E and n.

We invoke Lemma 3.2.1 to see there exists a constant K, such that

[0 XY R69) = [ewt 3 as(e)

vyeA k=1 BeAm)
< exp(Kn|A(n)|n2)\2) < eXp(Kn|A|n3)‘2)'

We now prove our main result.

Proof of Theorem 3.1.5. Firstly, we notice that we only need to prove Theorem 3.1.5
for subsets A with |A| > C for some large C' and obtain the proportion ¢, because
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we can then prove Theorem 3.1.5 by making ¢ := min{1/C,d'}.

Fix n € N. For a finite subset F' C F, we let

R.(F) := H@W)WEF e{-n,..,—1,0,1, ...,n}F : H’ygV = 1}

yeF

We first claim that if E is Sidon, then there exist constants 9, > 0 and «,, > 0
such that for all finite subsets A C E, there exists A" C A with |A’| > §,|A| and
R, (A") < 2. 204,

To prove the claim, we fix an arbitrary finite subset A C E and A € (0,1/n). Let
(7y)~ea be a collection of independent random variables on a probability space (€2, P)
such that P{r, =1} = A/2 and P{r, =0} = 1 — A\/2. From Fubini’s Theorem,
independence and Lemma 3.2.4, we have

LI (em s ) - [ [

yeEA yEA

:/GH

YEA

(1 +7 Z(’Vk + W))
(1 + A zn: a%(ﬂ) < exp(K,|Aln®)\?).

If we let A(w) :=={y € A:7,(w) =1}, then

| maw) = [ [ 11 (1 12 WCh J)) < exp(K Aln®X7).
@ RIG yeq k=1
By Markov’s inequality, with probability at least a half we have
Ry (A(w)) < 2exp(K,|An\%).

Meanwhile,

E(|Aw)| — E[A@)])* =E()_(r, —Er,))".

YeEA
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Notice that if v; # 7, then E((7,, — E7,)(7,, — E7,,)) = 0. Hence,

E(|A(w)| — E|A(w Z]E —Er,)% = |A|(\/2 — N\?/4) < |A]N/2.

YEA

Since E|A(w)| = |A|A/2, it follows from Chebyshev’s inequality that

P{Aw)| < [A]A/4} <P {(IA(w)| — E|A(w))? > _‘APAQ}

- 16
E((|AW) - E[AW)])*) _ [AA2 _ 8
= [A]2X2/16 IARPA2/16 AN

Choose A, € (0,1/n) small enough that exp(4K,n3)\,) < 2 and let a,, € (0,1) be
given by 2°» = exp(4K,n3)\,). The probability that |A(w)| > |A|\,/4 is at least
1—- ﬁ > % if A is sufficiently large.

Hence, there is a positive probability that both |A(w)| > |A|\,/4 and

Ru(A(w)) < 2exp(K,|A[n3)2) < 2. 2004

which proves the claim.

We now show that F is proportionally n-degree independent. We call a finite set
F C E an n-relation set if there exists (§,)ser € {—n,...,—1,1, ,n}F such that
[Ler 7% = 1. For a finite set FF C E, we let M(F) be a maximal (with respect to
inclusion) subset in F' that is an n-relation set. The maximality gives that F\ M (F)
is an n-degree independent set.

It only remains to verify the following claim: If A C A is a finite set that is large
enough, and for some o > 0 we have R,(A) < 2224l then there exist a constant
0, only depending on «, and a subset H C A with |H| > |A|/2 and |M(H)| < 0|H|.

Once this claim is established the proof is complete since H\M (H) C A is n-degree
independent with |[H\M (H)| > (1 — 0)|A]/2.
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Before proving this, we first notice that if we let

e (15 ()

for 0 € (0,1), then limy_,; x(¢#) = 0 and, since (Z) < (%)k, we have

(n(ln—s)) < 9x(e)n
2

We let 6 be sufficiently close to one that 1 — x(6) > a.

Assume, otherwise, that the claim is false. Without loss of generality we can assume
A has an even number of elements. Then for all H C A with |H| = |A|/2 we have
|M(H)| = 0|H|.

If Hy € A and 2 < |Hy| < 4L then

|A| — |Ho| Al 0
Hy C A:|Hy| = |A|/2,Hy C H }| = = < 20
[{Hy C A:|Hi| = [A]/2,Hy C Hy} | <|A|/2—|Ho| A =-6)/2) ~

We let F(A) be the collection of all subsets Hy C A such that there exists H; C A,
|H,| = |A|/2 and M(H,) = Hy. Naturally, we have R, (A4) > |F(A)|.

We thus have

Qﬁ/'z) — [{H\ C A |H)| = |A]/2}
= > |{H\ C A:|H)|=|A|/2, M(H,) = Ho} |

HoeF(A)

< |f(A)‘2|A\X(9) < Rn(A)2|A‘X(9).
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We therefore have a contradiction for A large enough:

R,(4) > ( Al >2—|Ax(9) L olalg-ian®) < 9. galal

|A]/2 VIA|

because we have chosen 1 — x(6) > «, which finishes the verification of the claim.

Theorem 3.1.5 is therefore proved. O

Corollary 3.2.5. Suppose E C T is Sidon. Then E 1is proportionally quasi-
independent.  Furthermore, if ' contains no elements of order 2, then E 1is
proportionally dissociate.

Corollary 3.2.6. Suppose I' is torsion-free and E C I' is Sidon. For all n € N,

there exists 0 > 0 such that for all finite A C E, there exists an n-degree independent
subset A" C A with |A'| > §|A|.

3.3 Sidon sets are proportionally Sidon with small
Sidon constants

3.3.1 Sidon sets in a torsion-free group

In this subsection we assume G is a connected compact abelian group and I' is the
discrete torsion-free dual group of G.

It is an immediate consequence of Theorem 3.1.5 that Sidon sets in a torsion-free

group are proportionally n-degree independent for all n > 1, as stated in Corol-
lary 3.2.6.

Our next main result is the following.
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Theorem 3.3.1. Suppose E C T is Sidon. For all & > 1 there exists 6 > 0 such
that for every finite F C E there is a Sidon set F' C F with Sidon constant bounded
by € and |F'| > J|F|.

Before proving Theorem 3.3.1, we establish an elementary lemma.

Lemma 3.3.2. For any € > 0, there exists a continuous even function f on T =

[—1/2,1/2] such that f >0, f(0) =1, f(1) = f(~1) and f(+1)>1—¢
Proof. We identify T = [—1/2,1/2] in this lemma and consider the maps

fo: T — Rt n>2 given by f,(0) =n, fu(x) =n —nlz| for z € [-1/n,1/n] and
fn(x) = 0 elsewhere. It is clear that f, is even, f, > 0 on T and f,(0) = || .||, = 1.

Fix € > 0. Choose N large enough that |e*™ — 1| < ¢ for t € [-1/N,1/N]. Then,
F-=11=1 [ v at= [ ) ar
< /fN(t)|e2mt ) di<e.
T

Thus, ‘7]\\7<_1) > 1 —¢e. Moreover, as fx is even, f;(l) = ]/C]\V(—l). O
We prove Theorem 3.3.1 using a Riesz product style of construction.

Proof of Theorem 3.3.1. We first claim that for all ¢ > 0, there exists a real-
valued, non-negative trigonometric polynomial p € Trig(T) such that p(0) = 1,
p(1) =p(—1), and p(£1) > 1 —e.

Indeed, fix € > 0 and choose 6 > 0 such that * 1—+5 >1—e.

From Lemma 3.3.2, we find a real-valued, continuous, even function f on T such
that f( ) =1, f( )= f( 1), f(:l:l) > 1 —5/2 and f > 0. By the Stone-Weierstrass
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Theorem, we find a real ¢ € Trig(T) such that ||¢ — f||., < 0/2, q(0) € R and
q(1) =q(—1) e R. Put

_q+6/2
q(0) +6/2
It is clear that p(0) = 1, p(1) = p(—1) € R and p > 0. We also note that

Gx)  1-0

ﬁ(il):a\(o)w/z “1+9

Next, we suppose € > 0 is arbitrary and we let the polynomial p be given as above.
Put n := deg(p). By Corollary 3.2.6, there exists § > 0 such that for all finite
A C E, there exists an (n + 1)-degree independent A’ C A with |A’| > §|A|.

We will use generalized Riesz products to show A’ has Sidon constant bounded by
1/(1—¢). Let o : A = C and ||p]|, <1 —¢e. We claim that for each v € A’, there

exists P, € Trig(G) such that E(l) =1, P, >0, E(y) = () and deg(P,) < n.

For this we let u, := % € T and P, be given by

_ el ()]
Pv-—p (7’7)+<1 —ﬁ(l))7

where we identify p € Trig(T) as p(z) = S_n__y ax2*.

Using properties of p, it is easy to see f’;(l) =1 and ﬁ;('y) = p(y). We also note
that P, > 0 because |p(vy)] <1 —¢e < p(1).

Finally, we let F':= [, P, € L'(G) C M(G). Since A’ is (n + 1)-degree indepen-
dent, we have that F = ¢ on A’ and ' are) = [IFl[, = 1. This shows A’ has Sidon

constant bounded by 1/(1 —¢) < &, if e is chosen suitably, and finishes the proof of
Theorem 3.3.1. [
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3.3.2 Sidon sets in a torsion group

We first consider the case I' = 691]11 ZE where {pi,...,pny} is a finite collection of
prime numbers. We need two results from Bourgain.

Theorem 3.3.3. /7] Let p be a prime number. Any Sidon set in I' = Zg is a finite
union of independent sets.

~

Theorem 3.3.4. [3] Suppose G = G1 x Gy and I' = G = I'1 @ Ts. Recall that
Proj, : I' = Iy, i € {1,2}, are the projections defined in Notation 1.1.4. Suppose
S C I' is a Sidon set. Then there is a finite set F' so that S can be decomposed as
S = Upep Sa- For each S,, o € F, there exists i € {1,2} such that Proj;(S,) is a
Sidon set in I'; and Proj; is one-to-one on S,.

It is not hard to see that Theorem 3.3.4 can be extended to a finite product of
groups. Based on these two results we have the following corollary.

Corollary 3.3.5. Suppose I' = @Z]\Ll Zi. Let | = min{py, ...,pn}. Then any Sidon
set in I' is a finite union of sets that are at least (I — 1)-independent.

Proof. Let S C T be a Sidon set and the projections Proj; : I' = Pr, Ly, — T,
for 1 < 37 < N. Extending Theorem 3.3.4 to I' gives that there exists a finite set F
and a decomposition of S, S = |J, cr Sa, satisfying that for each o € F there exists
j €{1,..., N} such that Proj; is one-to-one on S, and Proj;(S5,) is a Sidon set in ZEJ_.

Theorem 3.3.3 implies Proj;(S,) is a finite union of independent sets in Zg; . Thus,
we have that there exists a decomposition for S,, S, = Uﬁe I Sa,p for some finite
sets Fy, satisfying Proj; is one-to-one on S, g and Proj;(S,,) is an independent set
in ZEJ_ . It is easy to check that S, 3 C I' is (p; — 1)-degree independent and therefore
the decomposition S = ,cr Ugep, Sa,s Proves the corollary. O

Unfortunately, even an independent set in a torsion group does not necessarily have
Sidon constant 1.
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Proposition 3.3.6. Suppose I' = ZE for some prime number p. Suppose E =
{a,b} C T is an independent set of two elements. The Sidon constant of E is at least

1/ cos(m/2p).

Proof. The Sidon constant of F is the supremum of H f H /| fll as f ranges over
1

Trigp(G). Thus, as E' is independent, the Sidon constant of E is the following:

a a
sup o] + fa| . (3.1)
al,OZQE(C manl 7526217 |a1€1 + a2€2|

Notice that for all a;, as € C, the maximum of | &) + a2&s| for &, & € Z, can be
obtained as |a; + a2&y|, where &, € Z, is such that

| Arg(an) — Arg(aeéo)| < 7/p.

Hence, it is not hard to see Eq. (3.1) is at least 1/ cos(m/2p), as this value is obtained
by the quotient when oy = 1 and ay = e™/?. ]

Remark 3.3.7. Thus Theorem 3.3.1 does not extend to these groups.

. o o0 o . . «
We next consider the case I' = @@,2, Z,,, where (p;)32, is a sequence of increasing
prime numbers.

Proposition 3.3.8. Suppose I' = @;° | Z,, where (p;)32, is a sequence of increasing
prime numbers, and E C T is Sidon. For all & > 1 there exists 6 = §(FE, &) > 0
such that for all finite F C E, there exists H C F such that H has Sidon constant
bounded by £ and |H| > 6|F)|.

Proof. Fix £ = 1/(1 —¢) > 1 and suppose F' is a finite subset of E. Let p be the
polynomial defined in the proof of Theorem 3.3.1 with p(0) = 1, p(1) = p(—1) > 1—¢
and p > 0. Put N = degp. Choose ng such that p; > N + 1 for all © > ng. Let
I' = @2 Z, and M = |I';|. Choose Fi C F such that Fi = 7Y where v € I'y,
Y C @Djon, Zp; and |F1| > |F| /M. Since translation preserves Sidon constants, Y is

a Sidon set with constant at most that of E.
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Now consider Y, = {x* : x € Y} for £ < N. Since the elements of Z,, for i > ng
have prime order exceeding N, Lemma 3.2.3 shows that each Y}, is Sidon with Sidon
constant the same as F.

Applying Theorem 3.1.5 we see there is a constant § > 0 (depending on N) and
an (N + 1)-degree independent set Yy C Y such that |Yy| > 0]Y|. For Yj, being
(N +1)-degree independent is the same as saying Hle " =1for |m;| < N+1 only
if 7, = 1 for all &. That fact allows us to apply the Riesz product construction of
the proof of Theorem 3.3.1 (with the polynomial p) and as in that proof we deduce
that the Sidon constant of Y| is at most £. Of course, this is also a bound on the
Sidon constant of H = ~Y, and this subset of F' has cardinality at least (6/M) |F|,

completing the proof. ]

3.4 The e-net condition

The main result of this section is that if I' is torsion-free, then any Sidon set E in I’
will satisfy the (e1,e3)-condition for ey arbitrarily close to 2 and some ¢; > 0. We
direct the reader to Definition 3.1.7 for the definition of the (g1, £9)-condition.

We start with a lemma.

Lemma 3.4.1. Let I' be a torsion-free discrete abelian group. Suppose E C T' is a
Sidon set. Given any T € (—1,0), there exist constants 6 = 6(E,7) > 0 and a =
a(E,7) > 0 such that for any finite F' C E, there exists F' C F with |F'| > §|F|, with
the property that whenever integer N < |F'|, {71,....,7v} C F', and ¢1,...,.cy € T,
then the set

Xy, = {x eqG: ianS%(cn”yn(x)) > T}

1<n<
has Haar measure less than (14 a)™V.

Proof. Fix 7 € (—1,0). There exists a = a(7) > 0 such that the function h: T — C
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defined by

h(z):{ l+a ifR(z)>71

0 else

satisfies fTh = 1 and h > 0. Notice that h is continuous except at two points
and thus by the Stone-Weierstrass Theorem, there exists a real-valued polynomial
p € Trig(T) such that p(0) =1, p > 0 and p(z) > 1+a/2 for all z € T with R(z) > 7.

Let deg(p) = K. Since I' is torsion-free, by Corollary 3.2.6 there exists 6 > 0 such
that every finite set F' C E has a subset F' C F with |F’| > ¢|F| and F’ is K-degree

independent.

For any 7, ...,7nv € F' and ¢4, ...,cy € T, we define a product in Trig(G) as

P(‘T> = H p(cn'yn($))'

1<n<N

We let

XN, = {x eqG: 1§17111£N R(cpyn(z)) > T} :

Since F” is K-degree independent, the constant term in the product P is 1 and
therefore 1 = fG P dm. On the other hand, by the definition of the set Xy -, we also
have

/ Pdm > (1+a/2)"m(Xn.,).
G

Hence, m(Xy,) < (1+a/2)~". O
The main theorem of this section is the following.

Theorem 3.4.2. Let I' be a torsion-free discrete abelian group. Suppose E C T’ is
Sidon. For all ¢ > 0 there exists €1 > 0 such that E satisfies the (¢1,2 — ¢)-net
condition.
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Proof. Fix small ¢ > 0. Put 7 = —cose so that |z| = 1 and R(z) < 7 imply
|z — 1| > 2—¢. Obtain §, a as in Lemma 3.4.1; without loss of generality a < 1. Pick
Ny large enough that 4 > (1 + a)™ > 3. We will show E satisfies the (1,2 — &)-net
condition with g1 = $logs(1 + a).

Suppose F' C E is a finite set. Notice that we may assume |F| > Ny/d, because
otherwise

2€1|F| — 2(5\F|log3(1+a)/2 < 2

and we can take A to be a singleton to trivially satisfy the requirement.

From Lemma 3.4.1, we pick F' C F with |[F'| > §|F| > Ny with the specified
properties of the lemma. We put K := |log;((1 + a)¥)| > 1. For any fixed
Z1,...,rx_1 € G, we have

K-1
- . —|F|
m ({xéG;&E/?R(%H x@)fy(x)> >T}> <(1+a)"N
Hence, if for n = (n4,...,ng) € {—1,0, 1}K we denote

K
N K . n;
X, = {(ml, i) €G 712}?/9? (7(H$Z )) > 7‘} :

1

we have m%(X,) < (1 +a)~""l, where m* is the product measure on G*.

The definition of K ensures that 35 < (14 a)l*'l, and therefore,

m* (| JX) <3 =D+ < 1.
n#0

We let (21, ..., xx) € GF\ (U, Xn) and define the set

A= {szmfi:Si 6{0,1}}.

1
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We have

|A] =258 > 9 (logz(1+a))d| F|/2.

Finally, we verify this set A has the desired property. If x £y € A, xy~! = fx;“
for some n = (ny,...,ng) € {—1,0,1}*\ {0}. Since (z1,...,xx) € GK\(UH#OXn),

there exists v € I’ such that R(( K x;

’L

)) < 7, which implies

(@) =) = y(zy™) =1 > 2 —e.

Finally, we give a numerical bound for the Sidon constant based on the (1, €2)-net
condition.

Notation 3.4.3. Let A C I' be a finite set and f = > _, v € Trig,(G). We recall
that the pesudo-metric dg on G is given by

dl(s,t) : (ZW )1/2.

yEA

We also define

da(s,t) == sup [v(s) —(t)]-

Let N4 be the entropy number associated with d4. For simplicity we let Ny 4 = N ¢
2
be the entropy number associated with dJ.

Remark 3.4.4. Suppose E C T satisfies the (g1,e2)-net condition for some
£1,62 > 0. For any finite set A C E we have Ny(g/2) > 251141,

The following lemma shows the entropy numbers Ny and Ny 4 are comparable
(Proposition V.10. in Chapter 13 of [21]).
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Lemma 3.4.5. Let A C T\ {1} be a finite set. There exists a constant K > 1, not
depending on A, such that for all e > 0 and €' € (0, 1], we have

NA(2e) < KNy (ee'\/A]) XKV

Theorem 3.4.6. Let E C I'\ {1} satisfy the (1, e3)-net condition for some 1,e5 €
(0,1). Then E is Sidon with Sidon constant bounded by

K(¢

)
7.5(14¢) 3(148)7
&1 )

where £ > 0 and K(§) is a constant only depending on &.

Proof. Let C' be a constant that may change according to the context. Fix a finite
set A C F and put f, := Z%Av € Trig(G). Let K be the constant in Lemma 3.4.5.

We first assume A is large enough that |A| > 4(In K)/e;. From the (eq,e2)-net
condition and Lemma 3.4.5, for all &’ € (0, 1], we have

KNau (625 \/\A]) exp(KVZ|A|) > Na(e2/2) > exp(er|A|1n2).
Hence,

Noa <825 \/|A|) > KV exp(ei|A|In2 — KVE|A]).

(The entropy integral will now be involved and we direct the reader to Defini-
tion 2.2.26 for the definitions.) Since Ny a(t1) > Na a(t2) if t; < to, we get

- 1/2 e /141/4 1/2
5a) = [ ooy ar> [ (log Na.a(1))'? dt
0 0
1/2
> 5—25' IA] (51|A|1n2 — KVZ|A| - an)
> 2 62 SN <51|A|ln2—K\/_|A\—51|A|/4)
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Put ¢/ = 16?{2 and then we have Jy(fa) > Ce25e,| Al.

Recall that (g,),er are the independent standard Gaussian random variables indexed
by I and (e,)er are independent f1-valued random variables.

From Fernique’s inequality (Theorem 2.2.31),

Z 9y

YEA

Jo(fa) < CE

[e.o]

Hence,

Ce?5g,|A| < E

Z 9y

veEA

o0

From Lemma 2.3.4, for all M > 0 and £ > 0, there exists a constant M; = C/(&)M*
such that

E(> g

YyEA

_—+M1

e

YEA

[e.e]

Put M = 2/(Ce¥5ey) and we have that for all £ > 0, there exists a constant K (£)
such that

2.5(1
Zéw > K(€)er™ 9514,

vEA

Moreover, we may assume K (&) € (0, ﬁ)

Next, we deal with the case |A| < 4(In K)/e;. If |a,| = 1, then

D_an

yEA

9

C(G)

D lay| =141 < S(4)

yeEA

where we recall that S(A) denotes the Sidon constant of A. As the Sidon constant
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of A is at most \/|A|, in this case we have

|A| €1 1% 2.5(14€) _1+€
E > > Al > K Al.
2|z 2 \amg) A2 K©O©e A
YEA o
Corollary 2.3.5 gives the desired result. ]

Taking €1 = ¢4 gives the following corollary.

Corollary 3.4.7. Let E C T'\ {1} satisfy the e-net condition for some € € (0,1).
Then E is Sidon with Sidon constant bounded by ﬁ%, where £ > 0 and K(§) is a
constant only depending on &.

Remark 3.4.8. Corollary 3.4.7 improves Proposition V.12. in Chapter 13 of [21]
by reducing the degree from 63 to 10.5.
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Chapter 4

Kronecker Sets

4.1 Introduction

In this chapter we explore another notion of interpolation sets: e-Kronecker sets.
We recall that £ C I' is e-Kronecker for some ¢ > 0 if every ¢ : & — T can
be interpolated by some z € G within a difference of ¢ (Definition 1.5.1). The
Kronecker constant of F, x(F), is defined as the infimum of € such that E is
e-Kronecker.

Definition 4.1.1. Let ¢ > 0 and E C I'. We say F is weak e-Kronecker if for all
¢ : E — T there exists © € G such that |p(y) —y(z)| < e forall v € E.

Remark 4.1.2. Since G is compact, a compactness argument shows F C I is weak
k(F)-Kronecker.

In some cases, the angular notion, viewing T = [0, 1], is convenient, and we also
have the definition of angular Kronecker sets.

Definition 4.1.3. (1) We define the angle metric dr on T = [0, 1] by
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(2) We define Arg : {e*™ : 6 € [0,1)} — [0,1) by

Arg ™ = ¢.
(3) E C T is (weak) angular 0-Kronecker if for all f: E — T = [0, 1] there ex-
ists = € G such that dr(f(7y), Argy(x)) < @ (or dr(f(7y), Arg~y(x)) <) for ally € E.

(4) The angular Kronecker constant of F, «(E), is defined by

a(E) :=inf {6 : E is angular #-Kronecker}

Recall that we say E C I' is Kronecker if x(F) < 2 or, equivalently, a(E) < 1/2.
Clearly, we have x(E) = |1 — e2m(E)],

Example 4.1.4. As noted in Proposition 1.5.4 (2), for E, := {nk k> 0}, n > 2,
we have a(E,) = 1/(2n).

Kronecker sets are closely related to other interpolation notions. As we mentioned
in chapter 1, e-Kronecker sets with ¢ < v/2 are I. Hare and Ramsey ([14]) proved
that any Kronecker set is Sidon and, as a partial converse, Graham and Hare proved
Sidon sets are proportionally weak v/2-Kronecker (Theorem 9.3.2 in [9]). In general
there are non-Kronecker, Sidon sets ([11]), but this is unknown for Z.

In this chapter, we first give an estimation of the magnitude of the Sidon constant
of a (2 — ¢)-Kronecker set (Theorem 4.2.1). This uses Theorem 3.4.6. We improve
Theorem 9.3.2 in [9] by proving Sidon sets are proportionally (1 + £)-Kronecker for
any £ > 0 (Theorem 4.2.2). It is still open if a Sidon set (even in Z) can be propor-
tional e-Kronecker for any arbitrarily small e. Moreover, when e < /2, an explicit
relation between e-Kronecker sets and [ sets will be given (Proposition 4.2.8).

Unlike Sidon sets, it is open if a union of two Kronecker sets in Z remains Kronecker,
even in Z. We will show that a union of two Kronecker sets is still Kronecker in
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some special cases (Corollary 4.3.7). We will also show a translation of a Kronecker
set away from 0 in Z remains Kronecker (Corollary 4.3.8).

4.2 Interpolation properties of Kronecker sets

In this section we show various relations among Kronecker sets, Sidon sets and [ sets.

4.2.1 Kronecker sets and Sidon sets

We give an upper bound for the Sidon constant of a Kronecker set.

Theorem 4.2.1. Let € > 0 and £ > 0. Suppose E C T" is (2 — €)-Kronecker. Then
E is Sidon with S(E) < 52[7(/%’ where K (&) is a constant depending on &.

Proof. Let ' C E be a finite subset. Consider the pseudo-metric on G given by
dr(z,y) == sup,cp [7(z) — v(y)| and the collection

C={ACG:Ve#yecA, dp(z,y) >¢c/2}.

Zorn’s lemma gives a maximal element M € C and furthermore, the compactness
of G implies M is finite. We will see that the set M is large enough to satisfy the
e-net condition.

For h € G and A > 0, we let
U(h,\) :={g9 € G:dp(h,g) <},

which is the ball centered at h of radius A. By the maximality of M, for all ¢ € G
there is h € M such that g € U(h,e/2).

Let ¢ : F — T. By the definition of the Kronecker constant, there is some g € G
such that sup. ¢ [7(9) — #(7)| < k(E) =2 —e. Since g € U(h,¢/2) for some h € M,
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we have ¢ € W(h), where

W(h) = {(p cF = T:sup|y(h) —e(y)] <2 - 5/2} :

yeF

Hence, T = UpepW (h). Notice that, if we identify T with [0, 27], each

W(h) c [ [ (h) —n,v(h) + ] € TF

yeEF

for some angle n € [0, 7], and therefore have

U TTlv®) = n.v(h) + 5] =T".

heM ~EF
By the cosine law, cos(n) =1 — %, which implies n = n(e) < w. Comparing the

|F|
volumes, we have |M| > (%) — 9alF|,

Hence, E satisfies the (g1, e5)-condition for €5 = £/2 and ¢, = log, (%) = f(e). It
is easy to check lim. o f(¢)/v/€ = v/2/(wlog(2)) and therefore g, ~ /z.

Hence, by Theorem 3.4.6, S(E) < 5217(/%, where £ > 0 and K(&) is a constant
depending on &. O

Next, we show Sidon sets in a group with no elements of order two are proportional
angular (1/6 + &)-Kronecker (or equivalently, (1 + £)-Kronecker).

Theorem 4.2.2. Assume I' has no elements of order 2. Suppose E C T’ is Sidon.
For all £ > 0 there exists 0 > 0 such that for any finite subset F' C E, there exists a
weak angular (1/6 + £)-Kronecker set F' C F with |F'| > 0|F)|.

Before proving Theorem 4.2.2; we state a few preliminary results. The first one is a
lemma from [9] (Lemma 9.2.5 in [9]).
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Lemma 4.2.3. Let F' C T be a finite set. Let ¢ > 0 and assume Y C G satisfies
Y| > 211 and

sup [y(z) —y(y)| = €
YEF

forall x #vy €Y. Then there exist constants 0 < (3,0, A < 1/8, depending only on

e, a subset F' C F and two arcs I, Is C T satisfying the following:
(1) |[F'| = 6| F|,

(2) The lengths of Iy and Iy are equal and bounded by A,
(3) The gap between I and I is at least (3,
(4) For any A C F' there exists g € Y such that

I ifyveA
swe{ S

We also need a combinatorial result from A. Pajor.

Lemma 4.2.4. [25] Suppose X = XT|JX~, where | XT| =p>1, | X |=q>1
and XT (X~ =0. For N > 1 we define m : XV — ZY by

1 ifr,e XT
m(x)n = { 1 ifz, € X~

for x € XN. There erists § > 0, depending only on p and q, such that whenever

S c XV is large enough that w(S) = ZY, then there existt € X, u € X~ and
I c{1,...,N} satisfying:
(1) [I| =z 0N,

(2) For all x € {t,u}" there exists y € S such that the restriction of y to I, y|; = x.

Finally, we need a known result about e-Kronecker sets (Corollary 2.5.5 in [9]).

Lemma 4.2.5. Assume I' has no elements of order 2 and let E C I'. Suppose there
are two disjoint intervals I,J C T = [0,1] of the same length strictly less than 1/2
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such that for all E' C E there exists g € G such that
I ifyekFr

Then E is weak angular (1/2 — m)-Kronecker, where m is the length of the smaller
of the two gaps separating I and J.

We now prove Theorem 4.2.2.

Proof of Theorem 4.2.2. We fix 1/200 > £ > 0 and assume E is Sidon. Choose
N large enough that 1/N < “1—5. Since F is Sidon, there exists d; > 0 such that F
satisfies the d;-net condition. Hence, for every finite F' C FE, there exists aset Y C G
with |Y| > 2%!F1 and satisfying

sup [y(z) — y(y)| > 01
YEF

forallz #y €Y.

Lemma 4.2.3 thus gives a dy > 0, F' C F with |F'| > §|F|, and two intervals I;
and I, of equal length at most A and separated by a gap of length at least g < 1/8,
where d3, A and S only depend on E, having the property that for all A C F” there
is some g € Y such that v(g) € I; for v € A and 7(g) € I for v € F'\ A. We define

Yii={9geY:v(g) e LULVyeF'}.

Partition each I, and I, into s disjoint subintervals Ii,...,I) and I ..., I;,,
respectively, having equal lengths at most p := B/N. Let X* := {1,...,s} and
X ={s+1,...,2s}and X := Xt UX".

View Y as a subset of X" by identifying g € Y’ with (g,),cr where v(g) € I, .
Define 7 : X¥' — {—1,1}"" by

T((gy)rerr) = (14 )rer,

where r, =1if g, € X" and r, = —-1if g, € X~
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Lemma 4.2.4 shows that there exist t € X*, w € X, 3 > 0 and F] C F’ with
|F{| > 05| F'| such that for every A C FY, there exists g € Y’ such that v(g) € ] if
v e Aand y(g) € I if v € F]\A.

Let b > [ be the length of the smaller gap between I] and I/. If b exceeds 1/3,
Lemma 4.2.5 implies F] is weak angular 1/6-Kronecker.

For an interval I = [a,b] C T and a factor ¢ € Rt, we let cI = [ca, cb] identified in
T = [0,1]. We note that when intervals I and J are small and a gap T" between [
and J is so small that |c¢T'| < 1 —|cI| — |c¢J], the gap between ¢l and ¢J will be ¢T.
Thus, if b € [1/6,1/3), the two gaps between the intervals 2] and 21/, have lengths
at least 1/3 and

1—-2/3—4p>1/3—43/N >1/3—386>1/3 —¢.

Hence, by Lemma 4.2.5, F] is weak angular (1/6 + £)-Kronecker. Similarly, if b €
[5/36,1/6), the two gaps between the intervals 3] and 31/, have lengths at least 5/12
and

1—-1/2—6p>1/3.
Again, by Lemma 4.2.5, F] is weak angular 1/6-Kronecker. Otherwise,
et [l )
6 |k+1 kK k k-1
for some k > 3. Notice that if k > 3,
1 1 1
(k+1) (%er) < 3

with equality obtained at k = 3. Hence, the two gaps between the intervals (k+1)I;
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and (k + 1)1/, have lengths at least (k+ 1)b > 1/3 and

g k+1/1 1
1-2k+Dp—(k+1)0>1-2k+1)=—— -+ —
(b 1)p— (+ b > 1= 2(k+ )5 = T (24—
5
> 12k + 1) 55—-
4 3{
> - —2(k
-9 2k + )4
4 1/1 1 3¢
>——2(k+1)= —
=9 <+)6(k+k—1)4
4 5¢
> ———=>1/3.
2575 >
Thus, Lemma 4.2.5 still implies F] is weak angular 1/6-Kronecker. ]

Remark 4.2.6. The condition that I" has no elements of order 2 is necessary, as in
[9] (Example 9.3.1) a set E' is constructed such that every element in E has infinite
order, but E is not proportional e-Kronecker for any ¢ < /2.

4.2.2 Kronecker sets and [ sets
Definition 4.2.7. Let N € Nand 6 > 0. A set £ C I' is [y(V,9) if for every

¢ : E — Cwith ||p||, <1 there exists u = >~ | ¢,d,,, where |¢,| <1 and z, € G,
such that |i(v) — p(y)| < § for all y € E.

From the iterative argument, which is used in Proposition 1.3.4, we have that
any Io(NV,d) set with 6 < 1 is I;. A significant fact is that the converse is also
true: every I set is Io(N, 0) for some N € Nand § € (0, 1) (Proposition 3.2.12 in [9]).

We will show an angular -Kronecker set with 6 < 1/4 is Iy(1,6) for some ¢ < 1.
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Proposition 4.2.8. Let E C I' be a subset with o(F) =0 < 1/4. Then E is Iy(1,6)
for

5= sin(270) if 0 >1/8
| sec(2m0)/2 if0<1/8 °

Before we prove this, we first prove a technical lemma.

Notation 4.2.9. Let 6§ € (0,1/2) and

Ag:={e"":a e (-0,0)} CT.

Lemma 4.2.10. Let 6 € (0,1/4). Then

inf sup |z — \w| =
A€(0,1) ze0,1]
’LUEAQ

sin(270) if 0 >1/8
{ sec(2m0)/2 if 0 <1/8 -

Proof. We first compute sup.cp1] |2 — Aw| as a function of A and 6.
’weAg

Write w = e*™@ for a € (—0,0) and we have
|z — Xe®™* = 2% — 2\ cos(2ma)z + A%
For a € (—0,60) the maximum is obtained at z = 0 or z = 1, and therefore

sup |z — Ae”™? = sup max {\*,1—2Xcos(2ra) + A\*}

z€[0,1] ag(—0,0)

ac(—0,0)
S if A > sec(276)/2
| 1—2Xcos(2m0) + A? if X < sec(2m6)/2

Thus,
inf sup |z—Aw*=  inf (1 —2X\cos(270) + \?).
AE(0,1) 1efo.1] A€(0,1)
weAy A<sec(270)/2
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Notice that the minimum above is obtained either at A\ = cos(270), if
cos(2mh) < sec(27m6)/2,
or at the end point A\ = sec(276)/2. Hence,

sec?(2m0)/4 if 0 < 1/8
sin®(2m6)  if0>1/8 °

A€(0,1)
A<sec(270)/2

inf (1 —2X\cos(270) + \?) = {

Next, we prove Proposition 4.2.8.

Proof of Proposition 4.2.8. We first deal with the case that § € [0,1/8). Let ¢ :
E — C be a function such that ||¢||, < 1. Define ¢ : E — T by

_ ) A e #0
= { i 2020

Since E has angular Kronecker constant 0, we can find x € G such that % € Ay
for all v € E.

Let A = sec(2mf)/2. Notice that |¢(y)| € [0,1] and % € Ay and therefore,
Lemma 4.2.10 implies

B3 0) = )] = o) = )] = AT = et
< sup |z — Aw| = sec(270) /2.
z€[0,1]
wEAg
Hence, F is Iy(1,sec(270)/2).
Similarly, if 8 € [1/8,1/4), E is Iy(1,sin(276)) O
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Remark 4.2.11. Suppose E satisfies a(E) < 1/4. As we have shown, for every
¢ B — C with ||p|| <1, there exists A > 0 and « € G such that

M. (7) — p(7)] < 6 < 1.

If we apply the iterative argument (Proposition 1.3.4, for example), we have that
every bounded ¢ : E — C can be interpolated by the Fourier transform of not just
a discrete measure, but even a positive discrete measure.

4.3 Union of Kronecker sets

In this section we obtain some partial results about unions of Kronecker sets. We
first note that in general, it is false that a union of two Kronecker sets is still
Kronecker. In fact, as the following proposition shows, even a finite set excluding
the identity element may not be Kronecker.

Proposition 4.3.1. Let G = T' = Z,, for some composite n € N. Then the set Z,
excluding the identity element has Kronecker constant 2.

Proof. During this proof, we identify
I'=Z,={%0,7,"1},
where 7y is the identity element, v; = 7{ and
G=72,={xo,x1,..., 01} CT

with identity element 7y = 1 € T and z; = €*%/". The duality is given by
vi(zg) = xpj for 0 < j, bk <n —1. We let E, :=T\ {70}

Suppose n = ap where p is prime and a > 2. We have 7,(x,) = 7,(2,) = 2o = 1. We
define a function ¢ : E,, — T by the following:

[ —wlm) kAaandk#p
gb(%)’_{—lk ' k=pork=a
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Notice that for all z;, € G, 0 < k < n — 1, there is some v; € E,, 1 < j <n—1,
such that |¢(v;) — v;(xr)| = 2. Indeed, this can be seen by pairing z with 7,, xj
with v for & # a,p, z, with v, and z, with ~,.

This implies F,, is at most weak 2-Kronecker and therefore F,, has Kronecker constant
2. H

As we mentioned before, it is still open if a union of even two integer Kronecker
sets remains Kronecker. We will prove the partial result that a union of an integer
Kronecker set and a finite set, excluding 0, is still Kronecker.

Notation 4.3.2. For n € Z and € > 0, we define
By, ={zeT:a" € A}

using the notation introduced in Notation 4.2.9.

Lemma 4.3.3. Let E C Z.
(1) E is weak |1 — e™2)|-Kronecker if and only if for any (z,)neg C T C C,

| #uBu-#T CC.

nekr

(2) E is not Kronecker if and only if for any € > 0 there ezists a sequence (x,)nep C
T C C such that

U z,B,. =T CC.

nekl

Proof. (1) Fix ¢ > 0. Suppose E is not weak |1 — e/™%)|-Kronecker. Let 2 € T.
There exist f : F — T and n = n(x) € E such that

[f(n) =" > 1 =72,

For each n € E, choose x, € T such that 27 = —f(n). Then (zz,')" € A., so
x € x,B,, .. Therefore UnE g TnBn . =T. This can be reversed to give the converse.

(2) The proof of (2) follows similarly. O
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Definition 4.3.4. (1) Let £ C Z, X = (x,)ner be a sequence in T C C and € > 0.
We define the covering

C(E,X,e) = U2 p7,B,. C T.
(2) Let £ C Z and € > 0. We define the maximum covering length

L(E,e) := sup  {A(l):lCC(F,X,¢)is a closed arc in T},

X=(2n)nepCT

where \({) is the arc length of .
(3) Givenn € Z, x € T and € > 0, we call a point y € T a center in 2B, if y is the
center of one of the branches of 2B, ., that isy = ze?™/™ for some j € {0,...,n — 1}.

Remark 4.3.5. Notice that L(E, <) is non-decreasing with respect to .

Proposition 4.3.6. A subset E C Z is Kronecker if and only if lim._,o L(E,e) = 0.

Proof. We first assume that if lim._,o L(E, ) > 0 and prove that F is not Kronecker.
Pick M € N such that

L:=2r/M < lim L(E,¢).
e—0

Suppose, for a contradiction, that E has Kronecker constant |1 — e'"=%0)| < 2 for
some £y > 0. Since

L < lir%L(E, ) < L(E,&/(2M)),
E—

there exist a finite set {ny,...,n;} C E and {x1,...,24} C T such that

k
U$jan’50/(2M) D) {ew 10 € [O,L]} = [L- (41)
j=1

As L =27/M, given any z € T, we can find 2z, € I}, such that 2}/ = 2.

By Eq. (4.1), there exist 1 < s < kand yo € T such that y, is a center of x,B,,, -, /2
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and

Zoyy ' € Aco /2Mny)-

Clearly, y3! is a center of ) B, ., /5. Moreover,

1

Yo' 27t = (yozg )M € Asyyana)-

Thus, z € xéw By, <02 and this shows

k
U ‘rjuan,EO/Q ) T,

J=1

which contradicts Lemma 4.3.3 (1).

Conversely assume lim,_,o L(E,e) = 0. Then, for £ small enough and for any choice
X = (Tn)ner C T, C(E,X,e) # T . Lemma 4.3.3 (2) implies that E is Kronecker.

]

We thus have the following corollary.

Corollary 4.3.7. If E C Z is Kronecker and F C Z\ {0} is a finite set, then EUF
is Kronecker.

Proof. We may assume F' = {n} and n # 0. Since E is Kronecker, by Proposi-
tion 4.3.6, lim._,q L(E,e) = 0. Choose 6 > 0 small enough that

21 — 26

7]

L(E,0) <

As the arcs between the branches of yB,, 5 have length (2m — 2J)/|n| for any y € T,
there is no choice of y and (zy)rerp C T such that

yBus| J\J #xBrs =T.

keE

Hence, Lemma 4.3.3 (1) implies £ U F is weak |1 — e!™9|-Kronecker . O
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Next, we deduce that a translation of a Kronecker set in Z away from 0 is Kronecker.
This is open for Kronecker sets in other groups.

Corollary 4.3.8. Suppose E C Z is Kronecker, n € Z and —n ¢ E. Thenn+ E is
Kronecker.

Proof. This follows from Corollary 4.3.7 and the fact proven in [9] (Corollary 2.2.15)
that says if £ C Z is Kronecker and n € Z, there exists a finite subset F' C E such
that n + (E\F) is Kronecker. O

Finally, we have a result regarding a Kronecker set union its inverse.

Proposition 4.3.9. Suppose E C T' and o(E) < 1/4. Then, E U E~' is also
Kronecker.

Proof. Let ¢ : EUE™!' — T =[0,1]. For v € E, we let ¢, : {1,—1} — T be given
by ¢,(1) = ¢(7) and ¢,(—1) = ¢(v7).

It is not hard to see a({—1,1}) = 1/4 (see [16]) and therefore for each ~ there exists
x, € T such that

| ) < 1/4.
jonax  dn(jy, 6,(7)) < 1/

Since a(F) < 1/4, there exists y € G such that

sup dr(Arg¥(y), z,) < 1/4.
yeE

Putting these together, we have

sup  dr(Argy (y),0(¥) < sup  de((y), jz,) + dr(jzy, (7))
je{-1,1}y€eE je{-1,1}yeFE
<1/4+1/4=1/2,

which implies £ U E~! is Kronecker. [
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Chapter 5

Binary Kronecker Sets

5.1 Introduction

Recall that binary Kronecker sets are weakened versions of Kronecker sets. Instead
of interpolating functions with range T, in the binary Kronecker setting we only
require to interpolate +1-valued functions.

In this chapter we identify T = [0,1] with 0 being the identity and the group
operation being addition mod integers. The metric on T in this chapter is
dr : T x T — [0,1/2] given by dr(x,y) = min {|z — y|,1 — |z — y|}. The dual group
is the integer group Z and, for n € Z and = € T, we identify the duality by the
multiplication nz mod integers.

Since we identify T = [0, 1], £1-valued functions become {0, 1/2}-valued functions.
We recall the definition of binary e-Kronecker sets in this notation.

Definition 5.1.1. Let ¢ > 0. A subset £ C Z is called binary e-Kronecker
if for all ¢ : E'— {0,1/2} there exists x € T such that dr(p(n),nz) < e foralln € E.

The binary Kronecker constant of F, 3(F), is defined by

B(E) :=inf {7 : F is binary 7-Kronecker} .

97



Remark 5.1.2. The notion of a binary Kronecker set can be defined more generally
for £ C I'. But our interest is in £ C Z.

Example 5.1.3. Consider F C Z, the set of odd integers. We note that if n € FE
and zo = 1/4, then nxzg is either 1/4 or 3/4. Hence, S(F) < 1/4. Later in the
chapter we will see, being a symmetric set, S(E) > 1/4 from Proposition 5.2.4.
Hence, B(E) = 1/4. We also note that F is not a Sidon set because it is known that
Sidon sets cannot contain arbitrarily long arithmetic progressions, and the angular
Kronecker constant is a(E) = 1/2.

As we mentioned in chapter 1, for a subset £ C I' we have f(F) < o(F) < 206(E)
([10]). Example 5.1.3 shows if E is the set of odd integers, 26(F) = a(F). On the
other hand, f(Z) = «(Z) = 1/2. Proposition 5.3.1 will show that for geometric
sequences F we also have a(FE) = 5(F).

Since I sets can be characterized by interpolating +1-valued functions within error
1 (measuring on the unit circle on the complex plane) (Theorem 1.4.3), if a set has
binary Kronecker constant less than 1/6, it is an Iy set. Moreover, if a set has binary
Kronecker constant less than 1/4, then its angular Kronecker constant is less than
1/2 and therefore it is a Sidon set. Note that the example of odd integers implies
the bound 1/4 is sharp.

It is known that if a set has angular Kronecker constant less than 1/2; the set does
not cluster at any continuous character in the Bohr topology. The binary Kronecker
sets have similar properties.

Proposition 5.1.4. If 5(F) < 1/2, then E C Z does not cluster at 0.
Proof. Since B(E) < 1/2, we can find ¢ > 0 and x € G such that dr(nz,1/2) < 1/2—¢

for all n € E. That means dy(nz,0) > ¢ for all n € E and therefore E does not
cluster at 0. ]
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As with Kronecker sets, the binary Kronecker constant of a set is the supremum of
the binary Kronecker constants of its finite subsets.

Lemma 5.1.5. Let E C Z be a subset. Then B(E) = SUPpcg r finite 3(F)-

Proof. Let suppcp p gnite 3(F) := a. We only need to show a > 3(E). Let o : E —
{#£1} be a function. For each finite subset F' C E we let xp € G be such that
dr(nzp,p(n)) < a for all n € F. We partially order the subsets of £ by inclusion.
Since T is compact, we let z be a cluster point of the net (g )gnite rcg. Then for all
n € E we have dr(nz,¢(n)) < a. This proves a > 5(F). O

Thus it is of interest to compute the binary Kronecker constants of finite sets of
integers and this is what we will do in the remainder of the chapter for particular
examples. The structure of symmetrized sets often makes this problem tractable
and most of our examples are of this type.

Since Z\ {0} is dense in Z, Proposition 5.1.4 implies B(Z\{0}) = 1/2. Hence,
it is of interest to know the growth rate of the binary Kronecker constant of
E, = {#£1,..,4n} as a function of n. In Proposition 5.2.5 we will prove

B(E,) =n/(2(n+1)). In comparison, the binary Kronecker constant of {1,...,n} is
known to be (n —1)/(2(n+ 1)) ([16]).

In Proposition 5.2.6 we study the symmetric powers H,, = {j:nk k> 1}. One
interesting phenomenon here is that 5(H,) = f{£1,£n}. Another is that the
answer depends on whether n is even or odd.

Proposition 5.2.8 concerns cosets in Z. Since Sidon sets cannot contain arbitrarily
long arithmetic progressions, these cosets are never Sidon sets and it is interesting
to study their binary Kronecker interpolation properties.

We also study one class of non-symmetric examples in section 5.3, which is the
non-symmetrized geometric sequences. As we mentioned before, this is a non-trivial
example of a set whose binary Kronecker constant coincides with its angular
Kronecker constant.
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5.2 Symmetrized sets

In this section we will see symmetry can greatly reduce the complexity of computing
the binary Kronecker constant. A subset F C Z is symmetrized if £ = —F. We
need a few notations.

Notation 5.2.1. Let f: E C Z — {0,1/2} be a function.
(1) Let z € T. We define

D(E, f,x) := supdr(nx, f(n)).

ner
(2) D(E, f) :=inf.er D(E, f, z).
0 ifn>0
(3) We define ¢ : E— {0,1/2} as pg(n) = 1/2 ifn<0 "
(4) For x € T we define D(E, z) := sup,,c dr(nz, pr(n)).

We establish a few preliminary results.

Lemma 5.2.2. (1) Suppose ng € E is a positive integer. Assume f: E — {0,1/2}
satisfies f(ng) = f(—no). Welet g : E— {0,1/2} be given by g(ng) = 1/2 — f(no)
and g = f elsewhere. Then,

D(E.g) = D(E, f).
(2) Suppose f: E — {0,1/2} and £ng € E. We define g: E — {0,1/2} C T by

9(no) = f(—no)
g(—no) = f(no)

and g = f elsewhere. Then, D(E, f) = D(FE, g).

Proof. (1) Define Ey := E\ {—ng}. Since f(ng) = f(—no) € {0,1/2}, for all z € T,
dr(nox, f(no)) = dr(—noz, f(—ng)) and therefore D(E, f) = D(Ey, f|g,). As Ey C
E’

D(E, f) = D(Eyv, f|g,) = D(Eo, glg,) < D(E, g).
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(2) If f(no) = f(—np), we are done. Hence, we assume f(ng) # f(—ng) and without
lose of generality, we further assume f(ng) = 0 and f(—ng) = 1/2. Then, for any
reT,

D({in[)} ) f‘{:ﬁ:no}v .ﬁE) = max {dT(n0x> 0)7 dT(_HO:U? 1/2>} = D({:I:nO} 79’{:|:n0}> .Z')

Since f = g off {+ny}, we have D(E, f,x) = D(F,g,x) for all z € T. Hence,
D(E, f) = D(E, g). O

Corollary 5.2.3. Let E C Z be symmetrized. Then B(E) = D(E,f) for all
f: E —{0,1/2} satisfying f(n) # f(—n) for alln € E.

Proposition 5.2.4. (1) B(E) = D(E, ) = inf,er D(E, z).
(2) For any symmetrized set E C Z we have B(E) > 1/4.

Proof. (1) This follows from Corollary 5.2.3.
(2) Notice that for n > 0 in F and any z € T,

D(E,z) > D({£n},z) = max{dr(nz,0),dr(—nz,1/2)} > 1/4.
Thus, S(E) > 1/4. O

We compute the binary Kronecker constants for three types of symmetrized integer
sets.

Proposition 5.2.5. Let S, := {£1,£2,...,£n}. Then B(S,) =n/(2n + 2).

Proof. We first note that if we let zy = 1/(2n + 2), then dr(xg, 1/2) = dr(nzo,0) =
n/(2n + 2). Hence,

D(Sn, x) = max {dr(kz0,0),dr(—kxo,1/2)} =n/(2n + 2).

1<k

Thus, 5(S,) < n/(2n+ 2). It remains to prove §(S,) > n/(2n + 2).
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Suppose, otherwise, that there exists y € T such that D(S,,,y) < n/(2n+2). Clearly,
forall 1 <k <mn,

1 11 1 1 1
thy ¢ |0 = - 1- 1] .
y¢{’%ﬁQ}LWQ 2n+T2+2n+JLJ[ 2n+T}

In other words, for 1 < k < n, tky stays in two open intervals:

1 n n+2 2n+1
+k .
ye(én+2?n+2>Luén+2?n+2>

Notice that the open intervals have equal length (n —1)/(2n + 2).

For1<k<n-—1,let

I E k+1
P \omr 2 oan 2|

Notice that (I)i<k<n—1 is a partition of (515, 525]. Also, for 1 <k <n—1, we let

(n+kz+1 n—l—k—i—ﬂ
Jy =

on+2 7 2n+2

n+2 2n+1]
2n+27 2n421"°

Then, (Jx)1<k<n—1 forms a partition for (

For 1 <k <n-—1, welet P, := I UJ. Since {y,2y,...,ny} C Uijl Py, there

exist 1 <m <n—1and 1<a,b<nsuch that ay,by € P,, = I, |J Jin-

If
cr m m+1
a m — y
y Mm+2 2+ 2
and
by e ] — n+m+1 n+m-+2
Y=m=\"on %2 " Tont2 |
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then

on+2"2n 42

(a—b)ye( n n+2>‘

But (a — b)y = +ky for some k = 1,...,n and therefore we get a contradiction.
Similarly, if ay € J,, and by € I,,,, we also have a contradiction.

It remains to consider the case ay,by € I,, or ay,by € J,,. Since I,, and J,, have
length 1/(2n + 2), either ay, by € I, or ay, by € J,, implies

(a=bly e {0’ 2n1—1—2} U {1_ 2n1+2’1]’

which is again a contradiction. Thus 3(S,) > n/(2n + 2). O

Proposition 5.2.6. Let H, := {+n": k > 0}. Then B(H,) = 2 for even n and
B(H,) = 1/4 for odd n.

Proof. First, if n is odd, n* is odd for all k > 0 and by Example 5.1.3, 3(H,,) < 1/4.
Since H, is a symmetric set, Proposition 5.2.4 gives 5(H,) > 1/4. Thus, for odd n,

B(H,) = 1/4.

If n is even, we denote 1 = n/(4n + 4), x2 = (n+ 2)/(4n + 4), v3 = —xy and
x4 = —x1. Notice that z; and x5 are symmetric about the point 1/4.
We first deal with the case n = 4m for some m € Z. We note that
nry —xs=n’/(4n+4)+n/(d4n+4) =n/4€Z
and therefore nx, = x4. Likewise,

nry —r1 = (n*+2n)/(4n+4) —n/(4n+4) =n/4 € Z

implies nxy = 1. Similarly, nzs = x4 and nx, = z; follow by symmetry.

Based this observation we can show §(H,) < (n + 2)/(4n + 4). This is because

103



nx; = x4 and n’z, = nwy = 71, therefore
D(H,, 1) = sup max {dr(n*z1,0), dr(—nFz1,1/2)}
k>0
= Imax {dT($1, 0), dT(—xl, 1/2), d'ﬂ*(l’4, 0), d'ﬂ*(—.’ﬂ4, 1/2)}
=(n+2)/(4n+4).

Next we show B(H,) > (n+2)/(4n + 4). Suppose for some y we have
D(Hp,y) < (n+2)/(4n +4).
Then, n*y € (z1,22) U (24, 23) for all k > 0. So, y € (21, 79) U (24, 73) and
ny € (nxy,nxe) U (nry, nrs).
But
(nxy,nzy) = (nxg,nxy) = (x4, 1),

which is a contradiction. Hence, B(H,,) = (n+2)/(4n + 4).

Otherwise, n = 2(2m + 1) for some m € Z. We can show that nx; = x9, nry = w3,
nxsz = ro and nxy = x3 and the argument is similar to the above. O

Remark 5.2.7. We have 3({%1,+n}) = B({£n" : k > 0}) in the n-even case.

Proposition 5.2.8. Let A, := {£(an +b) : n € N} for positive integers a,b € N.
Then B(Aqp) = 1/4 if a/ged(a,b) is even, and B(A.p) = 1/4 + ged(a, b)/(4a) if
a/ ged(a, b) is odd.

Proof. We first notice that we may assume ged(a,b) = 1 by replacing a and b with
a/ ged(a, b) and b/ ged(a, b) because

p(mE) = B(E) Vm € Z\ {0} .

Case 1: a is even. In this case, since ged(a,b) = 1, b is odd and hence A,; only
contains odd numbers. Thus, 3(A,;) = 1/4.
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Case 2: a is odd. If a = 1, clearly we have 5(A,;) = 1/2. Hence, we assume a > 3.
Since f(Aqp) = infyer D(Aap, ), we will find the optimal = to minimize D(A,, ).
For x € T we let

Gy = {(an+b)x : n > 0}.
It is not hard to see

D(Aup, x) = sup max {dr(y,0),dr(y,1/2)}.

yeGy

If |G.| = oo, G, is dense in T and thus D(Aup,z) = 1/2. If |G| = N < oo,
it is a translation of a finite subgroup of order N in T and we can observe

D(Agp, ) 2 (L= 1/N)/2.

We have that the optimal x is a rational number in T = [0, 1], because irrational x
implies |G| = co. We let & = k/m for some integers k, m with ged(k, m) = 1. Since
ged(k, m) = 1, we have that |G| = m/ged(m, ak) = m/ ged(m,a).

If |G| > 3, D(Aap,x) > 1/3. Moreover, if |G,| = 1, then m divides a and hence
ged(b,m) < ged(b,a) = 1. Since G, = {bk/m}, we have that

D(Aup, ) = max{dqr (%,0) , dr (%, 1) } .
' m m’ 2

Since ged(b,m) = 1, as k ranges over the integers, bk/m can range over all m-th
roots of unity. Thus, the optimal & and m are such that bk/m (mod integers) is
closest to 1/4 (or 3/4). Hence, the optimal choices are m = a and k satisfies

b — (a—1)/4 ifa=1mod4
| (a+1)/4 fa=3mod4 °

Thus, the minimal D(A,, x) in the case that |G| = 11is 1/4 4 1/(4a). Notice that
1/441/(4a) < 1/3 when a > 3.

It remains to consider x such that |G,| = 2. Then, m/ged(m,a) = 2 and hence m
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divides 2a. The set G, is {bk/m,bk/m + 1/2}. Notice that
bk bk 1 bk 1 bk 1
max d’]I‘ —,0 ,d’[[‘ —, = = max d']r ——|——,O ,d'ﬂ* —+ =, =
m m- 2 m 2 m 2 2

and therefore
bk bk 1
D(Aa,b, I) — max {d’]f <—, 0) ,d'[[‘ (—, —> } .
m m’ 2

Similar to above, the optimal choice for m is m = 2a and k is such that bk/m is
closest to 1/4. We have that the minimal D(A,,, z) is 1/4 + 1/(4a).

Hence, to summarize, when a is odd, 5(A.p) = 1/4+ 1/(4a). O

5.3 A non-symmetrized example

Lastly, we compute one non-symmetrized example.

Proposition 5.3.1. Let Ay :={k™ :n >0}, k > 2. Then B(Ay) = 1/(2k).

Proof. Since the angular Kronecker constant for Ay is 1/(2k) ([15]), we have
B(Ar) < 1/(2k). We will show B(Ay) > 1/(2k).

We write each z € [0,1] = T in digits of base k: = = 0.dyd;...d,,.... We need to find
optimal digits to minimize D(Ay, f,z) for functions f : Ay — {0,1/2}. We have

K"z = dn [k + dpyr JK* + ...

mod integers.

First, we assume k is odd. Consider the function f : Ay — {0,1/2} given by
f(1)=0and f(k™)=1/2 for all m > 1.
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We claim that if we were to have D(Ay, f,z) < 1/(2k), then d,, could only be
(k—1)/2 for m > 1. Indeed, for m > 1, if we have d,,/k > 1/2+ 1/(2k), then

D(Ay, f,2) = de(k™x, f(K™)) = dp/k = 1/2 = 1/(2K).

Or, if d,,/k < 1/2 — 3/(2k), we have

D(Ag, f,x) > dy(f(K™),k"™x) = 1/2 — K™z > 3/(2k) — (k — 1)) _ 1/k7) = 1/(2k).

Jj=>2
Thus, we only need to consider
1/2 —3/(2k) < dy/k < 1/2+1/(2k)

for m > 1, equivalently, d,,, = (k — 1)/2. Then = = dy/k + 1/(2k) and it is easy to
see dr(f(1),z) > 1/(2k) for all choices of dy. This shows D(Ay, f,z) > 1/(2k) for
all z € [0, 1] and therefore, when k is odd, 8(Ax) = 1/(2k).

Otherwise k is even. Consider the target function f(1) =0, f(k) = 1/2 and f(k™) =
0 for all m > 2. We claim that if D(Ag, f,x) < 1/(2k), either dy = d3 = ... =k — 1
or dy = dy = ... = 0. Indeed, similar to above, since f(k™) = 0 for all m > 2, if
1<d,, <k—2 for some m > 2, then

1k <k"zx <Y (k=1)/K + (k—2)/k= (k- 1)/k

j>2
Hence, dy(k™x, f(K™)) > 1/k > 1/(2k).
If dy =0 and d3 = k — 1, then
D(A, f,x) 2 de(kz, f(K*)) = (k = 1)/k* > 1/(2k)

as k > 2. Hence, if do = 0 then d3 = 0. Continuing this way, we have that
dy =d3 =dy = ... =0. Similarly, if d = k — 1, then d,, = k — 1 for all m > 2.

If d,, = 0 for all m > 2, then D(Ay, f,z) < 1/(2k) implies d; = k/2. Hence,
x =dy/k+ 1/(2k) and one can check that D(Ay, f,x) > 1/(2k) for all choices of dj.

It is a similar situation for d,, = k — 1 for all m > 2. O
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Remark 5.3.2. The odd integer set has binary Kronecker constant 1/4 and the
angular Kronecker constant is 1/2. In the example of Proposition 5.3.1, the binary

Kronecker constant is the same as the angular Kronecker constant. Hence, the
bounds, (E) < o(FE) < 2B(F), are sharp.
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Chapter 6

N-pseudo-Rademacher Sets

6.1 Introduction

Independence is a property prevalent throughout mathematics and has motivated
this thesis. Recall that the Rademacher set in the dual of the infinite direct product
of infinitely many copies of Z, is an independent set of characters. These functions
have the property that every +1-valued function defined on the set is evaluation at
some x in the group. A similar interpolation property holds for all independent sets.

Graham and Hare in [11] introduced the weaker notion of pseudo-Rademacher
sets, sets of characters where every +1-valued function is point-wise evaluation,
in order to study the problem of the existence of Kronecker sets. Galindo and
Hernandez in [¢] and Graham and Lau in [12] both consider interpolation sets of
characters of finite order. For other references and further background information
on pseudo-Rademacher sets we refer the reader to [J].

In this chapter, we generalize pseudo-Rademacher sets to N-pseudo-Rademacher sets
(or N-PR sets for short), sets of characters with the property that every Zy-valued
function on the set is point-evaluation. Specifically, we recall the following definition
that we introduced in chapter 1.

Definition 6.1.1. A set £ C I' is N-pseudo-Rademacher (or N-PR) if for all
¢ : E — Zy there exists © € G such that p(y) = y(z) for all v € E.

109



Example 6.1.2. As we have seen in chapter 1, typical examples of N-PR sets are
the independent sets in Z$ (Proposition 1.2.2). More generally, if £ is independent
and Zy C Range(y) for all v € E, then E is N-PR.

Of course, a pseudo-Rademacher set is a 2-PR set. Moreover, if a set is N-PR, it is
also M-PR if M divides N.

We first observe that N-PR sets are e-Kronecker sets for ¢ = ¢(N) = |1 — eﬂﬁi|. Note
this tends to 0 as N — oco. Later in this chapter, the Example 6.2.3 will show that
not every e-Kronecker set is N-PR.

Proposition 6.1.3. N-PR sets are weak e-Kronecker for e = |1 — e¥|.

Proof. Assume E C I'is N-PR. Let ¢ : E — T. Define oy : £ — Zy by pn(7) =t,
where t € Zy satisfies [t — p(7)| < |1 — e%\_. Let x € G be such that y(z) = pn(y)
for v € E. We have |y(z) — ¢o(7)] < |1 —e¥]|. ]

The 2-PR sets are Iy by Theorem 1.4.3. An N-PR set for N > 3 is at least
1-Kronecker and therefore is also Ij.

In this chapter, we give an arithmetic characterization of N-PR sets (Theorem 6.2.2),
describe their structures (Proposition 6.3.5) and prove the existence of large N-PR
sets (Theorem 6.4.3). Theorem 6.4.3 gives a new proof that any uncountable subset
in I' contains a large e-Kronecker set.

For this chapter, important groups are the group of all p™-th roots of unity, C(p™),
and the group of n-th roots of unity, Z,.

Notation 6.1.4. Let p be a prime number. The group C(p™) is the group of all
p"-th roots of unity for n > 1. That is,

C(p>®) = {x € T: 2" =1 for some n € N} = {e*™/"" . jn e N}.
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Notice that when we identify T = [0, 1], the group C(p™) is identified as
Cp*)={k/p" :neN,0<k<p'—1} C0,1] =T,
and Z,, is

Zp=1{k/n:0<k<n-1}Cl0,1]=T.

6.2 Characterization of N-PR sets

In this section we give an algebraic characterization of N-PR sets. We first establish
some useful lemmas.

Lemma 6.2.1. Let ECT, N €N, and A CT be a subgroup.

(1) Let ¢ : T' — T'/A be the quotient map. If q is one-to-one on E and q(E) is N-PR,
then E 1s N-PR.

(2) Suppose E C A. Then E is N-PR as a subset of T if and only if E is N-PR as
a subset of A.

Proof. (1) Suppose ¢ : I' — I'/A is one-to-one on E and ¢(E) is N-PR. Let
¢ : E — Zy be a function. Because ¢ is one-to-one on FE, for each v,3 € FE, if
S # 7, then v3~1 ¢ A. Thus, we can define ¢’ : ¢(F) — Zy via ¢'(yA) = ¢(v) for

L—

v € E. Since q(E) is N-PR, there exists z € At = I'/A such that ¢'(yA) = z(yA)
for all v € E. As x € At, () = v(x) for all ¥ € E. This means E is N-PR.

(2) We first suppose E is an N-PR subset of I'. Let ¢ : E — Zy be a function.
There exists z € G such that p(y) = v(z) for all ¥ € E. Let zA+ € G/A+ = A.
Since F C A, for all v € E we have

p(7) = ~(z) = (zAT) (7).

This means E is N-PR as a subset of A. The proof of the converse part of (2) is
similar. O
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Next, we introduce our main result in this section, a characterization of N-PR sets.

Theorem 6.2.2. The following are equivalent:
(1) ECT is N-PR.

(2) If v; € E for 1 < i <n are distinct and [[\_, 7" =1 for some m; € Z, then N
divides m; for all 1.

Proof. Suppose (2) fails. Then there exist distinct 7; € E and integers m; € Z
with [}, 7" = 1, while N does not divide my. Let f : E — Zy be given by
f(n) = e¥/N and f(y) =1 for all v # ;. For any x € G, 1 =[], 7i(z)™, while

n

[1FG0™ = f™ #1.

i=1
Thus, this function f cannot be interpolated by any = € G and therefore (1) fails.

Conversely, suppose (2) holds. Let Ex = (vV : v € E), the subgroup generated by

{ny Dy E E}, and 7 : I' = I'/Ey be the quotient map. Elements in Ey have the

form ¥N kN for y1, ... ym € E and ky, ..., ky, € Z. We claim that 7(E) C «(T)

is independent. Indeed, suppose there are v; € E with distinct 7(v;) and m; € Z
such that [, 7™ € ker(m). Then there exists k; € Z, 1 < j < s and s > n such
that

n S

m; ki N
112 =11
i=1 j=1

with distinct v; € E. Hence,

ﬁ%mi_ki]v ﬁ 7;ij =1el.
i=1

j=n+1

By (2), N | m; — k;N for all 1 < i < n and hence N | m; for all 1 <4 < n. This
means each 7" € ker(m) and therefore the set 7(F) is independent.

Moreover, we claim that 7 is one-to-one on E. Suppose, otherwise, that there are
71 # Y2 € E and y17; " € ker(mr). Then there exists k; € Z, 1 < j < s and 5 > 2
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such that
_ kN
et =11
j=1

with distinct 7; € E. We have
S
N RN Y = 1
j=3

Again, (2) gives N | (1 = k;N) and N | (=1 — kuN), which are not possible.

Clearly, the elements of w(E) have order N. Thus 7(F) is N-PR from Proposi-
tion 1.2.2. Because 7 is also one-to-one on E, Lemma 6.2.1 gives that F is N-PR,
proving (1). O

Now we can deduce that not every e-Kronecker set in a torsion group is N-PR. Here
is an example.

Example 6.2.3. For every ¢ > 0 and N € N, there exists an infinite e-Kronecker
set I/ with every v € F having finite order a multiple of NV, but E is not N-PR.

Let N € Nand ¢ > 0. Let (p;)32; be an increasing sequence of primes coprime to N.
Let I' = Zy @ D>, Zyp, Let
S :={(1,0,0,...),(1,1,0,0,...),(1,1,1,0,0,...), ...} .

One can easily see that elements in S have orders a multiple of N. It is not hard
to see that if we exclude finitely many elements of small orders, we have a co-finite
e-Kronecker set £ C S (See [11] where a similar idea is used). From Theorem 6.2.2
no subsets of S other than singletons are N-PR and therefore E is not N-PR.

We also note that not every p-PR set is an independent set. The following example
shows a p-PR set whose only independent subsets are singletons.

Example 6.2.4. Consider E = {y,:n>2} C @,5,C(p™) C [0,1]Y, where
Proj;(v.) = 1/p?, Proj,(v,) = 1/p and Proj,(y,) = 0 for all k¥ # 1,n. (Recall
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that the projection is defined in Notation 1.1.4 and here we use additive group
operation.) The set E is p-PR by Theorem 6.2.2, but E does not contain any
independent subsets other than singletons because for all ¢ # j, py; = py; # 1.

Corollary 6.2.5. Let a,b € N be co-prime. The subset E C I' is (ab)-PR if and
only if E is both a-PR and b-PR.

Proof. Since Zg,Zy, C Zga, if E is (ab)-PR, E is both a-PR and b-PR. To see
the converse, we assume F is both a-PR and 0-PR. Consider 7, ...,7, € E and
my, ...,my, € Z such that [[_, 7" = 1. Since E is both a-PR and b-PR, a|m; and
blm; for all 1 < i < n. Since a and b are co-prime, ablm; for all 1 < ¢ < n. Hence,
by Theorem 6.2.2, E is (ab)-PR. O

Similarly to Kronecker sets in Z (Corollary 4.3.8), N-PR sets are closed under
translation assuming suitable hypotheses.

Corollary 6.2.6. Suppose E C I" is N-PR and (E) N () = {1}. Then vE is also
N-PR.

Proof. Let w,...,v, € E and my,...,m,, € Z be such that [[}_,(y)™ = 1. Since
(E) N (y) = {1}, we have [, 7" = 1 and therefore N|m; for all 1 < ¢ < n. This
shows vE is N-PR by Theorem 6.2.2. ]

6.3 Structure of N-PR sets

In this section, we investigate the structure of N-PR sets. We rely heavily on the
following structure theorem for general abelian groups.

Theorem 6.3.1. [7/] Every abelian group T is isomorphic to a subgroup of
De.DDer).
a B

where Q, are copies of Q and pg are prime numbers.
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Notation 6.3.2. (1) We let I'y be the torsion subgroup of I' and mg : I' — I'/T’y be
the quotient map. In the notation of Theorem 6.3.1,

m DU DDCr) » D
« B [’

is the quotient map.

(2) Let p € N be a prime number and n € N. We let I')n be the subgroup of I'y
containing elements whose orders are not a multiple of p”, or equivalently, whose
orders are not divisible by p™. Let myn : I' — I'/I',» be the quotient map.

(3) If T' = @, C(p°) with p; distinct, the map m,, can be viewed as m,, = Proj;.

Remark 6.3.3. Notice I',» in (2) above is indeed a subgroup because if v, and 7,
have orders m; and ms, neither a multiple of p™, then lem(m;y, ms) is not a multiple of
p". Hence, the order of 7;7,, which divides lem(m;, my), is not a multiple of p™ either.

Example 6.3.4. (1) We identify T as T = [0,1]. In the case that I' = C(p>®) C T
and n € N, we note that T', = {0} and T')» = (1/p"!). Take an element z =
(p+1)/p" =1/p" ' 4+ 1/p™. Then, mpn(x) has order p and can be identified as 1/p.
In general, we can identify

o = C(p™) = C(p™)/Tpn = C(p™)
Tpn (7) = p" .

(2) We still identify T as T = [0,1]. In the case that I' = Q@@ C(p>) P C(¢™) for

another prime number g # p, since m,» does not affect elements of infinite order, mn
can be understood as

o QA COr™) P Ca™) = QEP ™) P cla™)

(x,y,2) = (z,p""'y,0)
(3) If we identify T as the unit circle group in C, the map
T C(p™) = C(p™)/Tpn = C(p™)

. n—1 5 Imk .
is . — 2P" ", where x = *™/?" for some j, k € N.
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Proposition 6.3.5. Let E CT', n € N and p be a prime number. The following are
equivalent:

(1) E is p*-PR.
(2) wpr(E) is p"™'*-PR and 7. is one-to-one on E for all1 < k < n.

(3) Tk (E) is p" ™' F-PR and 7. is one-to-one on E for some 1 < k < n.

Proof. We first show (1) implies (2). Fix 1 < k < n and suppose E C T' is p"-PR.
To see that m, is one-to-one on K, note that if 71,7 € E have vy, le 'y, then
717, " has finite order that is not divisible by p*. But from Theorem 6.2.2, this
implies E is not even p*-PR and therefore contradicts that E is p"-PR.

Now, we show that m(E) is p"™*-PR. We let 7,...,7s € E and f3; := mu(v;) for
1 < i < s. Suppose for some my,...,m; € Z we have [[._, ;" = 1. This means
[T;_, 7™ € I'pr and therefore there exists I € N, which is not divisible by p*, such
that [J;_, 7™ = 1. By Theorem 6.2.2, p"|lm; and hence p"+'~*|m,. Theorem 6.2.2

implies m(E) is p"™'~*-PR.

Since (2) implies (3) is obvious, it remains to show (3) implies (1). We assume (3)
holds for some 1 < k < n. Let vy, ...,7s € E be distinct and my, ..., ms € Z such that
[[;_, %" =1. Then [[;_, mpx(7;)™ =1 and the injectivity of 7, implies m,(7;) are

distinct. Since m(E) is p" ™' *-PR, we have p"™'~*|m, for all 1 <1i < s.

Ifn+1—k>k—1, then m;/p*! is an integer. We note that order of the product
TT°_, """ divides p*~" and therefore [T%_, /""" -
i1 Vi ivides p“~! and therefore [[,_, v; € I'y». This means

k
[ 7 ()™ =1 e /T
i=1

Hence, by Theorem 6.2.2, we have p"*1=* divides m;/p*~! and this gives p" divides
m; for all 1 <7 <'s. Theorem 6.2.2 gives (1).

Otherwise, we have n + 1 — k < k — 1. Notice that the order of the product
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n+1—k

I, %mi/p divides p"*'7%. Sincen+1—k < k —1,

k
) n+1—k
H,yimz/p S Fpk.

i=1

nt+l1—k 2(nt+1-k

As above, we have p"*1=* divides m; /p , which means p )|m;. We continue
doing this until we reach r(n + 1 — k) > k — 1 for some r € N. The previous case
gives (1). O

Corollary 6.3.6. Let N = pi*...pi* for distinct primes p; and n; € N. Then E is
N-PR if and only if 7 (E) is pi-PR and i is one-to-one on E for all 1 <i < k.

Proof. This follows from Corollary 6.2.5 and Proposition 6.3.5. [

We thus have the following result about the structure of N-PR sets in the torsion
subgroup.

Proposition 6.3.7. Let E C I'o C D, . C(p™)* be an N-PR set (o, are some
cardinals) and N = pi*...pi* where the p; are distinct prime numbers. There exist p;' -
PR sets E; C C(p°)*: for 1 <1 <k, and bijections fy : By — Es, ..., fr: E1 — Ej
such that

E={(v, (v), - fu(7),8y) : v € E1}
for some B, € @, vi<i<i, C(p™)*.

Proof. For 1 <i <k, we let E; := m,,(E) and the quotient map

Tyt @D Cp™)™ — C(pi)°

p prime

will be understood as in Example 6.3.4 (2). Since F is N-PR, from Proposition 6.3.5,
each E; is p;"-PR and the maps 7,, : E — E; are injective. For 2 <i < k, we define
fion Ey as fi(m,, (7)) := mp, () for v € E. The injectivity of m, on E ensures the
maps are well-defined. Moreover, the injectivity of m,, implies f; is injective. Each f;
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is clearly surjective by its construction and therefore a bijection. Since each v € FE
can be represented as

v = (ﬂpl (’y), ooy Ty, (,7)7 B’y)

for some B, € D,,. vi<i<x C(p™)**, Proposition 6.3.7 follows. O

We also have the following result about the maximum size of a p-PR set inside a
product group.

Proposition 6.3.8. Suppose E C @, p, QD Dicp, C(p™) is p-PR. Then |E| <
|B1| + | Ba.

Proof. Recall that we can identify each element in C(p™) in the form of a/p"
for some a,n € N with additive group operation. Hence, we can identify
Bicp, QD D,p, C(p™) as a subset of the real vector space RIFHFIF:1,

Suppose that E is not linearly independent in RIP1+B2l Then there exist
{vi : 1<i<k} CFE and ay,...,a; € R such that a;y; + ... + a7y, = 0, while not
all a;’s are zero and each v; € RIP1H+B2 g identified as above. Since the entries of
each ~; are in Q, we may assume a; € Q for all 1 < ¢ < k. Furthermore, we may
assume a; € Z. Notice that if p|a; for all i, we may replace a; by a;/p. Hence, we
may find a choice of such a;’s, not all divisible by p. This contradicts that E is p-PR
by Theorem 6.2.2.

Thus, [E| < |Bi| + | Bl 0

6.4 Existence of N-PR Sets

In this section, we show some existence results about N-PR sets and that large
N-PR sets are plentiful. We first notice that if £ C I' is countable, there may not
exist non-trivial N-PR subsets.
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Example 6.4.1. Let £ = C(p™), so that E is countably infinite. By Proposi-
tion 6.3.8, E only contains p-PR sets that are singletons.

The more interesting case is that £/ C I' is uncountable. We first prove a lemma.

Lemma 6.4.2. Assume £ C g p's is uncountable.

(1) Let p be a prime number. If I's = C(p™) for all 5 € B, then E contains a p-PR
subset of the same cardinality.

(2) If T'g = Q for all B € B, then E contains an independent subset of the same
cardinality.

Proof. Without loss of generality, we further assume for each 5 € B there exists
v € E such that Projs(v) is non-trivial. Since each v € E can only have finitely
many (3 € B such that Projs(7) is non-trivial, our assumption implies |E| = |B].

(1) We first prove (1) in the special case that every v € E has order p. We consider
the collection C of subsets of E defined as A € C if for all finite subsets FF C A
there exists an arrangement F' = {71, ...,7,} such that for each 1 < k < n there is
some 3 € B with Projs(7x) non-trivial, but Projs(v;) trivial for all 1 < j < k. We
partially order C by inclusion and Zorn’s Lemma gives a maximal S € C.

We claim |S| = |E|. Indeed, if |S| < |E|, we let By C B be given by € By if there
exists 7 € S such that Projs(v) is non-trivial. We thus have |B| = |S] < |E| = |B|.
Let By € B\B; and 7 € E be such that Projs (7o) is non-trivial. Since 3y € B\B;,
Y ¢ S and we form the set S; := S U {y}. It is easy to see S; € C and this
contradicts the maximality of S.

Moreover, the construction of S, the assumption that every element has order p
and Theorem 6.2.2 imply S is p-PR. Indeed, take any finite set {v,....,7} C S
and order the elements such that for each 1 < k < n there is some § € B with
Projs(vx) non-trivial, but Projs(v;) trivial for all 1 < j < k. Suppose for some
integers my,...,m, € Z we have [[;_, 7,"* = 1. Let 3, € B satisfy that Projz (7,)
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is non-trivial but Projg (&) is trivial for all 1 <k < n. Therefore,
(Projﬁn(’yn))m" = Projz (7,,") = Projg, <H T ) = Proj; (1) = 1.

Since <, has order p and Projz (7,) is non-trivial, Projs (v,) also has order p.
Hence, p divides m,,.

We next find 8,1 € B such that Projs  (7,-1) is non-trivial but Projs () =1
for all 1 < k < mn — 1. Since 7, has order p, Projs ,(v») has order p or 1. As p
divides m,,,

(Projg, (7)™ = Proj,, _ (vim) = 1.

Hence,

(Projs, ,(Ya=1))"""" = Projs, , (vnr") Projs, _, (va)
= Projs, | (H 7]:%> =1.
k=1

Since 7,1 has order p, we again have p divides m,,_;.

Continue this way and we deduce that p divides my, for all 1 < k < n. Theorem 6.2.2
therefore implies S is p-PR, which finishes the proof for the special case.

For the general case, we let Ej be defined as the subset in F containing elements
whose order divides p*. Then E = |J,., Ex and hence there exists a positive integer
K € N* such that |Ex| = |E| = |B|. If K = 1, the special case finishes the proof,
and therefore we suppose K > 1.

We also recall that the quotient map mp» on @ C(p™) will be understood as m,n
@Dz C(p>*) = Pz C(p™) in the manner of Example 6.3.4 (2). That is, if we identify
T=10,1], 5 € Band vy € F,

_ .n—1

Projg(myn (7)) = p" Projz(7).



We have two cases. The first case is that there exists 1 < ny < K such that
|Tpmo (Ex)| = |Ek|, while |myne+1(Ex)| < |Ex|. We let By C B be given by 8 € B,
if there exists v € Ex such that Projs(y) has order greater or equal to pmo+l and
therefore mno+1(7y) has non-trivial entry at 5. Hence,

[Ba] < Rl (Exc)| < | Ex|

because |Tno+1(Ek)| < |Ex| and |Eg| = |E| is uncountable.

For a subset C' C B, we define the projection Projc : g5 C(p™) — Dsec C(p™)-
Since |B;| < |Ek| = |mpno (Ek)| and C(p*™) is countable,

| Projp, (mpmo (Ex )| < [BilRo < [Ek| = [mpmo (Ex)-
Moreover, we note that
[mpro (B )| < | Proj, (mpmo (B ))|| Projpy g, (mpmo (B )|
Hence, we have
| Projp g, (o (Eixc))| = |mpmo (B )| = [Exc|.

Furthermore, by the construction of the set By, Projg g, (v) has order p" for some
n < ng for each v € Ek. As a result, since we identify the quotient map 7y as in
Example 6.3.4 (2),

Projp, g, (mpno (E)) = mpmo (Projpy , (Ek))
only contains elements of order p or 1. Thus, the special case gives a p-PR set
E' € Projy s (o (Bic))
such that
|E'| = | Projp, s, (o (Ex))| = | Exc| = | E.

Then, Lemma 6.2.1 (1) implies there exists a p-PR subset in myn (Ex) of the same
cardinality as E' (as a one-to-one choice for the pre-image). Proposition 6.3.5 finishes
the proof for this case.
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The other case is that |7« (Ex)| = |Ek|. Since Ex consists of elements whose order
divides p*, m,x (Ex) only contains elements of order p or 1, and therefore satisfies
the special case. A similar argument to above finishes the proof.

(2) The proof of (2) is similar to the first part of the argument of (1). We use Zorn’s
lemma to obtain a maximal subset S C E such that for all finite subsets F' C S
there exists an arrangement F' = {v1,...,7,} such that for each 1 < k < n there
is some 8 € B with Projs(y) non-trivial, but Projs(v;) trivial for all 1 < j < k.
Then, |S| = |E| and it is easy to verify S is independent, since the elements of S
have infinite order. O

Theorem 6.4.3. Let EE C I' be uncountable. Then there exists a prime number p
such that E contains a p-PR set of the same cardinality.

Proof. Embed E C @, QD D), Dicp, C(p5°), where (B;)52, are index sets
and p; are distinct primes. We assume that for each index i € U(;io Bj, there exists
v € E such that Proj;() is non-trivial. Since E is uncountable and the groups Q
and C(p}°) are countable, there exists K € N such that |Bg| = |E].

If K =0, from Lemma 6.4.2 (2) we may extract an independent set F' C mo(F) with
|F| = |E|. If we choose E' C E such that m is one-to-one on E’ and my(E') = F,
then £ is N-PR for all N > 2 by Lemma 6.2.1 and Proposition 1.2.2.

Similarly, if K > 1, by Lemma 6.4.2 (1) we extract a px-PR subset F' C 7, (E) with
|| = |E| and therefore obtain a px-PR subset in E of the same cardinality. O

Remark 6.4.4. Since any p-PR set is an I set, Theorem 6.4.3 implies that any
uncountable subset in I' contains a large I set of the same cardinality.

Theorem 6.4.5. Let E C T" be uncountable, p be a prime number and n € N. Then
E contains a p"-PR subset of the same cardinality if and only if | (E)| = |E|.

Proof. If E/ contains a p"-PR subset E; of the same cardinality, by Proposition 6.3.5
|7 (E)| 2 |mpn (En)| = |E0| = |E].

122



)| = |E|. Recall that the quotient map m,» is understood as in
2) and we represent

m (D) € oD D ™)

i€Bg i€By

Now assume |mn(E
the Example 6.3.4 (

for some index sets By and B;. We define the projection

m: BeP P cr™) - Her™).

i€ Bg 1€B1 1€By

Either |mo(mpn (E))| = | E] or |7y (7 (E))| = | E|, because otherwise E being uncount-
able implies

|7 ()] < [0 (7pn (B)) [ (pm (E))| < |E],

which is a contradiction.

If |mo(mpm(E))| = |E|, we appeal to (2) in Lemma 6.4.2 to get a p"-PR set in
mo(mpn (E)) and Lemma 6.2.1 finishes the proof. If |m(mm(E))| = |E|, then (1)
in Lemma 6.4.2 similarly finishes the proof. O]

Proposition 6.4.6. Suppose I is an uncountable infinite group and N = p{"*...p;'*
15 an integer with distinct prime numbers p;, 1 < i < k. Then I' contains an N-PR
set £ with |E| = |T| if and only if |m,m:(L')| = |T| for all 1 <i < k.

Proof. If T' contains an N-PR set E with |E| = |['|, then by Corollary 6.3.6
|7,m: (L)] = |['[ for all 1 < i < k.

To see the converse, first, suppose |m(I')| = |I'|. Lemma 6.2.1 implies we may assume
I is torsion-free. Since I' is uncountable, the conclusion follows by Lemma 6.4.2 (2),
because independent sets in a torsion-free group are N-PR.

Thus we may assume |m(I")| < |T'|. Hence |['y| = |T'| and we may further assume I'
is a torsion group.

123



Since |7, ()] = |['| for all 1 < 4 < k, by Lemma 6.4.2 (1) (thinking of
m,mi(0) C @C(pi)), we let S; be a subset in m,mi(I') such that S; is p;-PR with
|Si| = |I'|. We let J; C I" be such that 7, m: is one-to-one on J; and 7,m:(J;) = S;.

For each v € J;, there exists an integer n., only containing prime factors p; with
J # 1, such that the order of v is a power of p;. We let J! := {#™ : v € J;} and
SZ/ = ﬂ'pm(J-/).

7

As m,mi is one-to-one on J;, if 1 # 72 € Jj, then 7,m; (M) # 7, s (72). Since p; does
not d1v1de N, and n.,, and S; is p;-PR, Theorem 6 2.2 1mp11es

nm

m (1) = () ™ # (m (1)) = e (057)

and therefore v,”* # 75 *. This implies |J!| = |J;| and m,mi is injective on J}.

Moreover, since for v € J;, p; does not divide n.,, Theorem 6.2.2 also implies 5] is
pi-PR. Hence, by replacing J; with J! and S; with S, we may further assume that
for all v € J;, 1 < i < k, the order of 7 is a power of p;.

Since |J;| = |T'| for all 1 <i < k, we let f; : J; — J;, for 2 < i < k, be bijections and
we form the set

E = {vfo(y)...fuly) v € Ji}.

Then |E| = |I'|. For all v € J;, 1 < i < k, the order of ~y is a power of p;. Thus, if
v € Jp, then fi(v) € Fp;m for all 2 <4 < k and hence

T (Vf2 () e (7)) = Ty (7).

Similarly,

i (V2 () fe(y)) = Toprmi (fi(7)),

for all 2 < < k. Hence, m,m (E) = m,m(J;) = S; for 1 <i < k. By Corollary 6.3.6,
E is N-PR. O]

In [11] the terminology “N-large” sets is introduced.
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Definition 6.4.7. Let N € N, Hy C I' be the subgroup of elements of orders
dividing N and Qu : I' — I'/Hy be the quotient map. A set £ C I' is N-large if
[Qn(E)] < |E].

Example 6.4.8. Let By and By, be two countable infinite index sets. Consider
I'= @jeBl Z> D @jeBg L.

(1) Suppose E; C I' is given by v € E if and only if Proj;(v) is non-trivial for one
j € By and no j € By. Since Q2(E;) = {1} and Q3(E;) = Fy, the set E; is 2-large,
but not 3-large.

(2) If we define Ey analogously and put E = E; U E,, we have that E is neither
2-large nor 3-large.

(3) Finally, we note that no infinite set F in I" can be both 2-large and 3-large. This
is because |E| < |Q2(E)||Qs(F)| and hence either |Q2(E)| = |E| or |Qs(E)| = |E|.

The following is one of the main theorems (Theorem 2.2 (2)) in [11].

Theorem 6.4.9. If E C ' and N 1is the smallest integer for which E is N-large,
then for all primes powers p" dividing N there exists a weak |1 — e™/P"|-Kronecker
subset F C E with |F| = |E|.

Suppose E C I' is uncountable. We recall that in Theorem 6.4.5 we prove that if
| (E)| = | E| for some prime number p and n € N, then E contains a p™-PR subset
of the same cardinality. We claim this result is stronger than Theorem 6.4.9 for
uncountable sets.

First, we note that the assumption made in Theorem 6.4.5 is weaker than the as-
sumption in Theorem 6.4.9: specifically, if E is infinite and N-large for minimal
N =pmpi™..p*, and if n < m for some integer n, then |y (E)| = |E|. To see this,
we argue by contradiction and assume |y (E)| < |E|. Let M := p"~'p!"..p"* < N.
If vy € I'yn N Hy and k is the order of v, then k divides N, while p" does not divide
k. This implies k divides M and hence v € Hy;. Thus I'yn N Hy = Hjys. Consider
the map

T:Qu(E) = Qn(E) X my(E)
T(Qu() = (@n (), mp (7))
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This map is well-defined and injective, because Qu(71) = Qu(72) if and only if
Y1y, b € Hyy, which is equivalent to

Y175 " € Tpn N Hy.
Hence, Qar(m) = Qar(7s) is equivalent to
(@ (1), mpn (1)) = (@ (12), Tpn (72))-
Thus, if |7, (E)| < |E|, then
Qu(E)| < [Qu(E)||mp (E)| < |E||E] = |E]

for infinite . Thus E is M-large and this contradicts the assumption that N is
minimal.

Moreover, recall that p™-PR sets are special weak |1 — e™/?"|-Kronecker sets. This
shows Theorem 6.4.5 improves Theorem 6.4.9 when F is uncountable.
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