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Abstract 

The primary objective of this study was to measure the soil organic carbon (SOC) sequestration 

performance of The City of Calgary Dewatered Biosolids Land Application Program – Willow 

Biomass and Marginal Land Reclamation Demonstration Project (hereafter, “the demonstration 

Project”) after five years of operation. The second objective was to assess the demonstration Project’s 

potential to earn soil-based carbon offset revenue through the Alberta Emissions Offset System in the 

future. To accomplish the first objective, SOC stocks were measured at three sampling locations 

subject to different combinations of recommended management practices (RMP) for SOC 

sequestration by the 21st Conference of the Parties to the United Nations Framework Convention on 

Climate Change (COP21). The agricultural Crops + No Biosolids (Control), agricultural Crops + 

Biosolids (C+BS), and Willows + Biosolids (W+BS) sampling locations were subject to zero, one 

(organic amendments), and three (no-till, agroforestry, and organic amendments) of the COP21 RMPs 

respectively. When comparing SOC stocks between the Control and RMP treatment sampling 

locations the results were not consistent - which aligns with expectations of this study. At the 0-15 cm 

differences in SOC stocks between sampling locations at the 0-15 cm depth interval was not 

significant.  In contrast, the differences in SOC stocks between the W+BS and Control sampling 

locations at the 15-30 cm depth interval was larger (4.5 ± 1.6 Mg C ha-1) and significant. A post hoc 

pairwise comparison (Games-Howell test) analysis indicated that the SOC stocks at the 15-30 cm 

depth interval of the W+BS sampling location were significantly higher than both the C+BS and the 

Control sampling locations. When converting the difference in SOC stock between the W+BS and 

Control sampling locations at the 15-30 cm depth interval to a carbon offset equivalent, the estimated 

carbon offset performance of the demonstration Project within the first five years of operation was 

16.5 ± 5.9 Mg CO2e ha-1. The expected (and observed) inconsistency of between the 0-15 cm 

sampling depth and the 15-30 cm sampling depth intervals aligned with the results of peer literature 

for similarly designed SOC monitoring studies at local and global scales. This is because the 

dynamics of SOC flux rates are influenced by numerous heterogeneous limiting (e.g. climate, and 

vegetation community), determining (e.g. clay content, pH, and mineral content), and reducing 

factors (e.g. microbial community) that shift across time, lateral distance, and depth. Therefore, 

differences in land management study outcomes are expected when experimental designs do not 

control for all the same variables. To accomplish the second objective, the knowledge gained from 

this study was used to develop recommendations for approaching future SOC stock monitoring 
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studies of Willow + Biosolids systems more strategically by (1) providing guidance on conducting 

baseline studies to screen and compare proposed SOC sink project sites for their SOC sequestration 

potential, and (2) proposing more cost effective and statistically powerful study designs.  This study 

has demonstrated that it is possible to verify measurable changes in SOC stocks at Willow + 

Biosolids project sites, and that SOC stocks at the demonstration Project site are likely to continue 

increasing and eventually plateau within the next 15 to 20 years. To move forward with developing a 

custom quantification protocol and gain approval within the Alberta Emissions Offset System, further 

research and documentation efforts are required to address the remaining key issues associated with 

biogenic based carbon offset protocols including; additionality, permanence, transparency, and 

leakage.  
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Chapter 1 

Background & Investigative Context 

Over the last three decades, the rapid pace and increased geographical extent of anthropogenic 

climate change instigated several international climate change mitigation meetings and anthropogenic 

greenhouse gas (GHG) reduction commitments such as the Rio Earth Summit (1992), Kyoto Protocol 

(1997), the Copenhagen Accord (2009), the Cancun Pledge (2010), and the Paris Agreement (2015). 

The IPCC (2018 pg. 6), reports “high confidence” (high scientific community agreement and robust 

evidence from multiple independent studies) that anthropogenic activities are responsible for causing 

a 1.0°C (+/-0.2°C) increase in average global temperatures since pre-industrial times (1850–1900).  If 

global GHG emissions continue at their current rate, scientists estimate that average global 

temperatures will rise to 1.5°C above pre-industrial times somewhere between 2030 and 2052. In an 

attempt to avoid the anticipated catastrophic environmental consequences associated with global 

temperatures exceeding 1.5°C above pre-industrial levels, the scientific community has developed a 

global carbon emission budgets to define the limits of allowable annual GHG emissions to maintain 

average global temperatures  (UNEP, 2018 pg. XVIII). To date climate change mitigation 

commitments and efforts have not curtailed anthropogenic GHG emission rates (IPPC, 2018 pg. 57). 

In fact, annual global GHG emissions have continued to increase since 1997 (IPCC, 2018 pg. 57). 

Although low-carbon technology and policy strategies are readily available to achieve carbon 

emissions targets, lack of political will has continued to inhibit progress (IPCC, 2018 pg. 93). For 

example, as of 2017, the United States government announced its intent to withdraw from the Paris 

Agreement (UNEP, 2018 pg. 15). Similarly, in Canada, recent changes in provincial leadership has 

led to announcements from the Ontario Government (2018) to scale back its climate change targets 

(Hansard Reporting and Interpretation Services, 2018) and the Alberta Government (2019) to repeal 

its carbon tax. 

In response to political barriers, international organizations have re-focused their 

recommendations, guidelines, and strategies to better incentivize sub-state global climate change 

mitigation action and provide more evidence supporting the synergistic benefits (e.g. biodiversity, 

food security, and desertification alleviation) of investment in low-carbon economies. One strategy 

has been to incorporate climate change mitigation discussions, research, and programs within the 

broader socio-ecological initiatives like the United Nations Sustainable Development Goals (Raul 
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Ponce-Hernandez & Antoine, 2000).  By designing sustainable policies and practices aimed at 

generating multiple co-benefits across a broad spectrum of socio-economic and environmental goals, 

more opportunities can be identified to incentivize the behaviors and innovations needed to satisfy 

multiple societal objectives (i.e. climate change mitigation and sustaining economic growth) (IPCC, 

2018 pg. 70-73).   

For example, several internationally acclaimed organizations and scholars argue that the use 

of market-based compliance tools such as carbon pricing in the form of carbon taxes, cap-and-trade 

systems, or a combination of the two, are one of the most efficient and cost effective mechanisms for 

incentivizing climate change mitigation behavior and technological innovation (Bowen, 2011; 

Government of Alberta, 2018b pg. 8; WBCSD, 2017; IPCC, 2014 pg. 466, 1159). On January 17, 

2019, the largest public statement of economists in history was released when 3508 United States 

based economists, 27 Nobel laureates, all four of the former chairs of the Federal Reserve, two former 

secretaries of the USA department of treasury, and 15 former chairs of the council of economic 

advisers signed a letter published in the Wall Street Journal titled “Economists’ Statement on Carbon 

Dividends”. This letter stated that “Global climate change is a serious problem” and called for 

immediate government action via five policy recommendations supporting carbon taxation. 

By enacting carbon cap-and-trade legislation in 2007, the Government of Alberta was one of 

the first jurisdictions in North America to implement climate change mitigation policies (Government 

of Alberta, 2007). This policy signaled Alberta’s commitment to climate change mitigation and 

established the regulatory foundation complementary to the carbon levy introduced under the Carbon 

Competitiveness Incentive Regulation in 2017 (Government of Alberta, 2018a). In between these 

policy developments, the Government of Alberta deployed the Alberta Carbon Offset System.  The 

Carbon Offset System complements carbon tax policies by providing a mechanism for industry to 

earn revenue via carbon offset credits through application of GHG emissions reducing practices and 

technologies.  

Most of the Alberta Carbon Offset System protocols are targeted towards agricultural 

management practices. Agriculture plays an extensive role in climate change mitigation because it has 

the capacity to reduce net GHG concentrations through improving operation efficiencies and 

sequestering atmospheric carbon dioxide (CO2) into biomass and soil sinks (IPCC, 2014 pg. 24, 816). 

Utilizing treated domestic wastewater residuals as fertilizer for short rotation woody crop (SRWC) 

plantations (e.g. Willow (Salix spp.)) located on marginal (i.e. poor fertility) agricultural land is one 
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emerging agricultural practice that is generating interest for its sustainable wastewater management 

merits and carbon offset credit potential. Since 2010, five of these integrated municipal waste residual 

and SRWC demonstration projects have been installed across Alberta (Keoma, Beaverlodge, 

Clairmont, Camrose, Ryley, Ohaton) (AROWRN, 2019).  These green infrastructure projects 

represent the types of synergistic sustainable water management, soil restorative, and renewable 

energy system practises endorsed by IPCC (2018 pg. 316) which will be needed to build resilience, 

enhance adaptability, and mitigate future climate change conditions.  

For industry and municipalities to continue investing into sustainable development and 

climate change mitigation projects they will require consistent signals from all levels of government 

indicating that climate change mitigation will remain a long-term commitment regardless of the short-

term vagaries the political parties that currently hold power. Future decisions and discussions about 

climate change action should be evidence based rather than driven by populist political opinions. 

1.1 Knowledge Gaps & Rationale 

Although numerous studies have demonstrated that willow plantations have substantial carbon offset 

potential via biofuels production (Amichev, Kurz, Smyth, & Van Rees, 2012; McClean et al., 2015; 

Pacaldo, Volk, & Briggs, 2013a) the soil-based carbon offset potential of these bio-sequestration 

systems has been largely unaccounted for (Hu, Zeng, Ma, & Chang, 2016; Lockwell, Guidi, & 

Labrecque, 2012; Paustian et al., 2016). Many studies have documented the soil fertility, biomass 

productivity, and net GHG emission reduction benefits of substituting biosolids land application for 

petroleum-based fertilizers, yet limited research has been conducted to quantify the effects that 

biosolids have on soil carbon sequestration rates (Brown, Kurtz, Bary, & Cogger, 2011; Torri, Corrêa, 

& Renella, 2014). The lack of soil organic carbon (SOC) research within willow plantation systems is 

likely related to the complexity of SOC sequestration processes and cost of measuring and verifying 

carbon stock relative to biomass monitoring costs. 

There do not appear to be any peer reviewed studies that have investigated the influence of 

combining biosolids land-spreading application and willow plantation land management treatments at 

marginal agricultural lands on SOC stocks and sequestration rates. To highlight the soil carbon offset 

potential of willow plantations and dewatered biosolids land-spreading management practices, Table 

1 includes estimated SOC sequestration rates and associated carbon offset values for three land 

management practice scenarios; tillage, fertilizer, and crop selection practices for projects located in 
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the dry prairie region of Alberta. These estimated net SOC sequestration rates and carbon offset 

values were calculated by summing the reported annual SOC emissions and sequestration rates for 

each land management practice combination and multiplying it by the regions SOC reserve discount 

factor set by the Alberta Conservation Cropping Carbon Offset Protocol and the carbon offset values 

for 2017 and 2022. One limitation of using this approach is that potential SOC stock amplification or 

suppression interactions between land management practices were not accounted for. This research is 

intended to provide more insight into the SOC sequestration performance potential of integrated 

Willow + Biosolids systems. 

Table 1: Estimated average net emission reduction rates of carbon dioxide equivalents 

(CO2e) ha-1 yr-1) and associated carbon offset values for three different land management 

practice combinations 

Land Management 

Practices    

Full & Reduced-Till 

Chemical Fertilizer 

Small Grain 

Agricultural Crops 

Full & Reduced-Till 

Biosolids Fertilizer  

Small Grain 

Agricultural Crops 

No-Till 

Biosolids Fertilizer 

 Willow 

Study Treatment Name Control Crops + Biosolids 
 Willows + 

 Biosolids 

Full & Reduced Till 

Agriculture a 
-0.14 -0.14 NA 

Chemical Fertilizers a -0.061 0 0 

Biosolids Fertilizers b 0 6.33 6.33 

Willow Plantation c 0 0.00 5.97 

Net Rate (CO2 e ha-1 yr-1) -0.20 6.19 12.30 

Sequestered SOC Reserve 

Discount Factor for Dry 

Prairie Region = 0.92 a 

-0.18 5.70 11.31 

Carbon Offset Credits 

Value at $30/Mg CO2 e ha-

1 yr-1 

 $(5.55)  $170.89   $339.41  

Carbon Offset Credits 

Value at $50/Mg CO2 e ha-

1 yr-1 

 $(9.25)  $284.82   $565.69  

References: a Government of Alberta (2012) Conservation Cropping Carbon Offset Protocols, b 

Tian et al. (2009), c Hansen (1993), NA = not applicable 

Note: Carbon offset accounting practices consider full till (>2 till passes) and reduced till (1-2 till 

passes) to be equivalent (Government of Alberta, 2012). Carbon dioxide equivalents (CO2e) are a 

standard unit for quantifying GHG global warming impacts. 
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1.2 Research Goals and Objectives 

The objectives of this study were to (1) determine if measurable differences in SOC stocks can be 

detected within the topsoil (0-15 cm and 15-30 cm depth intervals) between the Control and the two 

treatment sites, agricultural Crops + Biosolids and  Willow + Biosolids at The City of Calgary 

Dewatered Biosolids Land Application Program – Willow Biomass and Marginal Land Reclamation 

Demonstration Project site (the demonstration Project) after five years of implementation, and (2) 

compile the background research  and  study results data to initiate the Government of Alberta 

process for developing a cost effective, technically sound, and statistically robust custom carbon 

offset protocol for Willow + Biosolids systems. 

This study is organized into five sections and six chapters to contextualize, review, assess, and 

synthesis the following objectives: 

1. Summarize why climate change mitigation incentives and strategies are needed (SECTION 1 

INTRODUCTION, Chapter 1 Background & Investigative Context);  

2. Explain how biogenic based climate change mitigation projects and protocols can contribute 

to developing solutions (SECTION 2 LITERATURE REVIEW, Chapter 2 Climate Change 

and Climate Change Mitigation, Chapter 3 Protocol Development Considerations for Willow 

+ Biosolids Systems Carbon Offsets);  

3. Demonstrate the potential for Willow + Biosolids Systems to offset carbon dioxide emissions 

through measuring differences in soil organic carbon stocks between control and treatment 

sites (SECTION 3 FIELD ASSESSMENT, Chapter 4 Project History, Chapter 5 Study 

Design & Overview) and; 

4. Discuss the practicality of using Willow + Biosolids Systems to cost effectively generate 

carbon dioxide emissions offset credits (SECTION 4 SYNTHESIS, Chapter 6 Discussion, 

Recommendations, and Conclusions). 

This study was based on The City of Calgary Dewatered Biosolids Land Application Program – 

Willow Biomass and Marginal Land Reclamation Demonstration Project which was implemented in 

2013 by SYLVIS Environmental. Background data and information collected by SYLVIS is 

presented in SECTION 5 SUPPORTIVE INFORMATION.



6 

Section 2—Literature Review 
  



 

7 

Chapter 2 

Climate Change & Climate Change Mitigation Initiatives 

It is well established that anthropogenic climate change is caused by increases in the atmospheric 

concentrations of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), and fluorinated gases. These gases trap excess radiant solar energy within the 

atmosphere that would otherwise escape to outer space (IPCC, 2018 pg. 99). Although CO2 has the 

lowest warming influence (watts/m2) per metric ton out of the four main GHGs, it receives the most 

attention because it accounts for approximately 60% of the total annual GHG index (Torri et al., 

2014). Since the pre-industrial times (1850–1900) atmospheric CO2 concentrations have steadily 

increased from 280 parts per million (ppm) (Torri et al., 2014) to 408 ppm as of November 2018 

(NOAA/ESRL, 2018). In in recent decades CO2 concentrations have increased by about 0.5% year 

(yr)-1 (Lal, 2002) which equates to approximately 2.3 ppm yr-1 (Lal, 2016). Without substantial 

advancements in global emission reduction behavior and technology continued growth in 

anthropogenic GHG, emissions are anticipated to increase global mean surface temperatures between 

3 °C and 4 °C (compared to pre-industrial levels) by 2100 (IPCC 2018 pg. 56). To mitigate 

anthropogenic based climate change net GHG concentrations must decrease through either reducing 

GHG emission rates, sequestering and storing atmospheric carbon, or both.  

2.1 Agriculture’s Role in Climate Change and Climate Change Mitigation 

The agricultural industry has played a major role in anthropogenic climate change.  By converting 

approximately 40% the earth’s ice-free land surface from natural ecosystems to arable lands 

agriculture has been the second largest generator (25%) of total GHG emissions after fossil fuel 

combustion (75%) (Lal, 2016, IPCC, 2014 pg. 24, 816). Agriculture generates GHG emissions by 

intensifying soil carbon losses through soil disturbance and utilizing fossil-fuel based inputs for 

machinery and fertilizers (West & Marland, 2002). It has been estimated that North American prairie 

soils alone have lost between 25% and 50% (~0.46 Gigatons (Pg)) of their original carbon content 

due to deforestation and cultivation (Lemus & Lal, 2005; Post & Kwon, 2000). The total soil carbon 

losses resulting from converting natural ecosystems to agriculture lands worldwide is estimated at 

≥350 CO2e Pg (Oertel, Matschullat, Zurba, Zimmermann, & Erasmi, 2016). Agricultural practices 

deplete soil carbon pools in three ways (1) enhancing oxidation and mineralization of SOC 

compounds (2) leaching and translocating dissolved organic carbon compounds, and (3) accelerating 
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soil erosion (Lal, 2002).   Additionally, annual fossil-fuel based agriculture inputs generate 

approximately 10-12% of total annual anthropogenic greenhouse gas emissions (IPCC, 2014 pg. 822).  

By implementing SOC sequestration land management practices like the UN Framework on 

Climate Change (UNFCCC) 21st Conference of the Parties (COP21) recommended management 

practices (RMPs) (e.g. no-till agriculture, organic amendments and, agroforestry) much of these 

agricultural based carbon emissions can be reversed through soil re-carbonization (Paustian et al., 

2016; Lal, 2016). Lal (2005, 2016) estimates that through applying SOC sequestration land 

management practices carbon-depleted agricultural soils have the potential to re-carbonize up to 60-

70% (62 Mg C ha-1, 227 Mg CO2e ha-1) of their native ecosystem SOC levels within 50-75 years.  

While the IPCC (2014 pg. 816) estimates that with the right combination of Agriculture, Forestry and 

Other Land Use (AFOLU) practices, SOC sequestration could contribute between 20% and 60% of 

the total cumulative GHG offsets within 15 years. 

2.2 Alberta’s Climate Change Mitigation Actions 

In 2002, Alberta's Climate Change and Emissions Management Act was the first legislation 

pertaining to climate change mitigation in Canada. In 2007, Alberta became the first jurisdiction in 

North America to implement a multi-sectoral compliance-based GHG emissions offset program with 

a complementary carbon offset system (Government of Alberta, 2007).  This program caps emissions 

for large GHG emitters (>100,000 Mg yr-1) and gives them the option to buy or sell carbon offset 

credits when their GHG emissions are above or below this limit. Incentives to reduce provincial GHG 

emission reductions were broadened under the Climate Leadership Act (2017) by introducing carbon 

levies to consumer fuel purchases. As of January 2018 the price of carbon pollution in Alberta was 

$30/MgCO2e and it is scheduled to rise to $50/MgCO2e by 2022 (Environment and Climate Change 

Canada, 2017).  By complementing the Alberta carbon offset credit system with carbon levies the 

provincial government has created more favorable market conditions for land owners, municipalities, 

and industry to invest in carbon offset projects. Revenues generated by the global carbon market 

reached $22 billion USD in 2016 and $33 billion USD in 2017 (World Bank and Ecofys, 2018). The 

IPCC (2014 pg. 87) indicates that the most cost effective AFOLU based carbon sequestration 

mitigation strategies (i.e. afforestation, sustainable forest management and agriculture management) 

depend on the current price of carbon offsets and the region where the AFOLU practices are applied.  
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2.3 Alberta’s Carbon Offset Protocols 

The Alberta carbon offset system has been designed to incentivize cost-effective reduction and 

sequestration of GHG emissions. Currently Alberta has 19 approved Carbon Offset Quantification 

Protocols. The range of carbon offset protocol project activities includes; renewable power generation 

(solar, water, and wind), agriculture (livestock, organic waste, biofuel and land management) and fuel 

efficiency. The importance of Agriculture’s role in climate change mitigation opportunities is 

highlighted by the fact that approximately half of the current Carbon Offset Quantification Protocols 

have been developed specifically for this industry. However, none of these Quantification Protocols 

capture the full carbon offset potential of Willow + Biosolids projects; particularly in regard to SOC 

sequestration. Soil based bio-sequestration has been considered for carbon offset protocol status in the 

past. In 2006, Paragon Soil and Environmental Consulting published the Draft Guide to Development 

of Customized Agricultural Soil Carbon Sink Protocol for Greenhouse Gas Emission Reductions 

and/or Removals under Canada's Offset System. However, due to shifts in federal government 

priorities in 2006 unapproved protocols at that time were not considered further (Haak, 2007). 

Although substantial evidence has been generated to support the carbon sequestration potential of 

agricultural soils (Paustian et al., 2016) there is still considerable uncertainty around the operation of 

specific mechanisms driving SOC sequestration (Lehmann & Kleber, 2015). This is due to (1) the 

large number of environmental factors transforming SOC inputs into a diverse spectrum of carbon 

compounds with broad biochemical and physical properties, and (2) the limitations of SOC analysis 

tools to accurately detect and measure all the various SOC compounds over time. This situation 

creates challenges with selecting soil sampling and analysis methods that are both scientifically valid 

and cost effective enough to satisfy carbon offset approval and carbon offset trading market 

standards.  

2.4 Climate Change Mitigation Potential of SOC Sequestration 

Soils play a major role in the global carbon cycle. With an estimated total of 2000-2500 Gt (60% 

SOC and 40% soil inorganic carbon (SIC)) of soil carbon within the top 1 m, soils hold four times 

more carbon than the biotic pool and three times more carbon than the atmospheric pool (Sommer & 

Bossio, 2014).  Therefore even small changes in global soil carbon pools can measurably influence 

atmospheric carbon pool stocks (Garten, Wullschleger, & Classen, 2011; Lal, 2016; Tian et al., 2009; 

Torri et al., 2014; Wijesekara et al., 2017). Within the peer literature the estimated climate change 

mitigation potential of increasing global SOC stocks varies as there are numerous assumptions and 
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variables built into the GHG emissions and SOC sequestration equations that may differ between 

studies. Kirschbaum, (2000) estimated that a 10% increase in the global SOC pool would equate to 

capturing 30 years’ worth of anthropogenic emissions. Similarly, Goglio et al. (2015) estimated that 

increasing SOC sequestration rates could offset as much as 5% to 15% (0.4 to 1.2 Pg C yr-1) of global 

Anthropogenic GHG emissions.  A three-study global meta-analysis of the GHG emission offset 

potential of adopting the COP21 RMP’s  reported total carbon emission offset potentials that ranged 

from 4.4% to 15% of the estimated 7.91 to 9.1 Pg yr-1 total global carbon emissions (Sommer & 

Bossio, 2014). When investigating the regional emissions offset potential of adopting COP21 RMP’s, 

Sommer & Bossio (2014) reports that Europe, USA, Australia and Central Asia have the potential to 

offset 8.3% of 1.2 Pg yr-1, 14% of 2 Pg yr-1, 8.4% of 0.15 Pg yr-1,  and 16% of 0.11 Pg yr-1 of their 

total annual carbon emissions respectively. 

The climate change mitigation opportunity of promoting SOC sequestration has been gaining 

recognition in recent years (Lal, 2016) and received global attention during the COP21 when the “4 

per Thousand” target was proposed. The “4 per Thousand” proposal outlines a voluntary action plan 

targeted to enhance SOC content of the world’s topsoil (0-40 cm depth) at the rate of 0.4% per year 

through adopting the COP21 Recommended Management Practices (Wijesekara et al., 2017).  

Although the carbon offset potential for SOC sequestration is considerable, its potential climate 

change mitigation effects are finite and reversible (Lal, 2016; Goglio et al., 2015). Instead of viewing 

SOC sequestration as a climate change mitigation solution, it should be considered a stop-gap 

measure until more comprehensive and long term solutions become available (Sommer & Bossio, 

2014; Grigal & Berguson, 1998).  
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Infobox 1. Approval Requirements for a Custom Willow 

+ Biosolids Project Carbon Offset Protocol  

 

To support sustainable climate change, mitigate advancements in Alberta, the 

current (2019) Alberta government encourages development of custom carbon offset 

protocols for new carbon offset activities or technologies. Approved quantification 

protocols require activity-specific emission reduction methodology that are (1) not 

already a legal requirement, (2) are tailored to Alberta-specific conditions and are 

(3) based on the best available science at the time. To gain approval, proposed 

custom protocols must satisfy the principals and requirements outlined in the 

International Standards Organization (ISO) ISO-14064-2 specifications for guidance 

at the project level for quantification, monitoring and reporting of greenhouse gas 

emission reductions or removal enhancements. These standardized carbon offset 

quantifying, monitoring and reporting methodologies provides the transparency 

necessary for carbon offset traders to be confident that the carbon offset credits they 

are exchanging are real, quantifiable and verifiable. To gain government approval 

for a Willow + Biosolids project based protocol, an extensive process including 

expert engagement and rigorous peer reviews would be required to confirm that the 

proposed protocol methodologies are scientifically defensible, and monitoring 

practices are transparent enough to satisfy carbon offset traders and auditors 

expectations (Government of Alberta, 2018; Goddard & Haugen-Kozyra, 2008). 

Apart from cost and scientific validity considerations, key policy issues associated 

with developing biogenic based carbon offset protocols include; demonstration that 

the carbon offsets are: 

• Real: comprehensive evidence presented to support carbon offset claims 

• Additional: demonstration that that business as usual practices would not 

have generated the same SOC sequestration results 

• Measurable: standard and repeatable data collection and analysis methods 

applied 

• Transparent: detailed documentation of all land management practices, 

data collection and analysis methods, and monitoring events  

• No-leakage: confirmation that adoption of the carbon sequestration 

practices at project location would not cause an increase in GHG emissions 

elsewhere  

• Verifiable: Confirmation by a third party that soil monitoring data and 

carbon offset calculations are correct.  
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Chapter 3 

Protocol Development Considerations for Willow + Biosolids 

Systems Carbon Offsets  

For policy makers and investors to support soil-based carbon offset markets, SOC monitoring plans 

must cost-effectively produce scientifically sound results that achieve a high degree of accuracy 

within a reasonable timeframe. For SOC sequestration projects to be considered cost-effective and 

valid, the soil monitoring and analysis costs should be less than 20% of the anticipated carbon offset 

value (Paragon, 2006) and produce statistically significant results (α = 0.05, β =0.15) (Necpálová et 

al., 2014). Ideally projects should also generate measurable results within five years to align with 

industry and political business plan cycles and maintain project support and funding (Smith, 2004). 

Unfortunately current standard SOC monitoring and analysis methods do not consistently satisfy all 

of these objectives and the scientific community has yet to reach consensus on best practices for SOC 

monitoring (Jandl et al., 2014).  The  heterogeneous and dynamic nature of SOC pools increases soil 

monitoring and analysis costs as a result of the large sample sizes required to maintain the high 

degrees of statistical power necessary to confidently differentiate natural SOC variation from SOC 

changes induced by new land management treatments (Conant & Paustian, 2002). Annual SOC 

changes are relatively small compared to background levels (Carter & Gregorich, 2006) and therefore 

typically take 7-10 years (Saby et al., 2008; Smith, 2004) to detect SOC rate changes above 2 Mg C 

ha-1 yr-1 in magnitude (Conant, Smith & Paustian, 2003; VandenBygaart, 2006). Given these 

constraints, the cost, time, and effort required to satisfy Quantification Protocols standards can often 

outweigh the value of the anticipated SOC offset credits (Singh, Murphy, & Marchant, 2012). 

Fortunately, substantial research efforts are being made to improve SOC monitoring plan 

performance and to better understand SOC sequestration dynamics. Key SOC monitoring programs 

steps and approaches being tested include; study design strategies (stratification), field sample 

collection methods (in-situ vs. ex-situ, aerial imagery), transport and processing protocols (sample 

integrity), laboratory analysis parameters selection, laboratory analysis methods, and data analysis 

procedures (Carter & Gregorich, 2006; Olander, Haugen-kozyra, & Kravchenko, 2011). 
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3.1 Conceptual Models of Soil Organic Carbon Dynamics 

It is well-understood that the SOC sequestration processes are controlled by rates of soil carbon inputs 

(photosynthesis) and outputs (respiration) and is initiated by the breakdown of fresh organic matter 

into the soil (McClean et al., 2015; West & Marland, 2002).  However the specific mechanisms 

driving SOC sequestration after the initial decomposition stage are still not clearly understood 

(Bloom, Exbrayat, van der Velde, Feng, & Williams, 2016; Rowley, Grand, & Verrecchia, 2018; 

Zang et al., 2018) and there are competing conceptual models explaining the composition, chemical 

behavior, and turnover rates of SOC compounds (Bloom et al., 2016; Lehmann & Kleber, 2015). 

Lehmann & Kleber (2015) indicate the three most prominent SOC sequestration conceptual models 

today are; classic humification, selective preservation and progressive decomposition. The classic 

humification model emerged in repose to early alkali-based SOC extraction methods. This model 

suggests that over time soil organic matter molecules undergo biochemical processes that transform 

them from small labile compounds into larger and more stable “humic substances” with heightened 

resistant to oxidation. Lehmann & Kleber (2015) argue against this conceptual model because modern 

soil analysis techniques have not produced evidence to support the existence of these humic 

substances under natural conditions. The selective preservation model (also known as preferential 

decomposition) assumes that organic soil inputs are composed of both labile and relatively 

recalcitrant compounds and that microorganisms selectively consume labile carbon compounds which 

leads to an accumulation of recalcitrant compounds. Although recent studies have demonstrated that 

the preservation model is not replicable under all conditions (Lehmann & Kleber 2015). The 

progressive decomposition model (also known as biopolymer degradation) describes the SOC pool as 

a continuum of progressively decomposing organic compounds where all organic inputs are subject to 

continuous degradation towards smaller molecule sizes. Lehmann & Kleber (2015) argue that from a 

thermodynamic standpoint the progressive decomposition model is the most robust of the three 

conceptual models. To build upon this model, Lehmann & Kleber (2015) developed a modified 

version called the soil continuum model to better explain differences in organic compound turnover 

as a function of variations in local biogeochemical and climactic conditions.  The continued 

refinement and alignment of SOC dynamics conceptual models is important for future biogenic 

carbon offset accounting because these conceptual models can be used to increase the accuracy of 

SOC process-based models such as CENTURY. By improving the accuracy of SOC dynamics 

process model predictions for a broader spectrum of land uses and soil conditions scenarios, fewer 

costly SOC stock verification soil monitoring events will be required. 
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3.2 Biogeochemical and Climactic Factors Influencing SOC Dynamics 

There are numerous complex biogeochemical processes, climatic interactions, and land management 

practices that influence total SOC stock capacity and flux rates to varying degrees across the 

landscape (Lemus & Lal, 2005; Necpálová et al., 2014; West & Six, 2007). Understanding how these 

factors may affect SOC dynamics and total SOC stock potential over time is important for identifying 

favorable SOC sink project site locations because recent studies suggest that ecosystem properties are 

stronger predictors of a sites SOC turn-over rates than levels of SOC recalcitrance (Rowley, Grand, & 

Verrecchia, 2018). 

The most prominent factors governing mechanisms of SOC stabilization and turnover 

includes; climate (temperature and precipitation), parent material properties (soil texture i.e. % clay 

and available mineral content i.e. calcium (Ca2+), magnesium (Mg2+), iron (Fe2+/3+), and aluminum 

(Al3+)), biota (vegetation and microbial community composition) and land management practices 

(crop selection, nutrient amendments, and crop selection) (Corsi, Friedrich, Pisante, & Sà, 2012; 

Grigal & Berguson, 1998). Mcconkey et al., (2000) separates environmental factors governing SOC 

dynamics into three categories; limiting factors, determining factors, and reducing factors.  Limiting 

factors control the quantity of carbon inputs (biomass) entering a system. Biomass production rates 

are generally controlled by regional factors such as climate and vegetation community composition. 

Determining factors set the upper limits of a sites total SOC stock capacity potential through SOC 

stabilization and primarily include the physical (soil depth, density, etc.) and chemical (organo-

mineral complex potential) constraints of a site (Lemus & Lal, 2005).   

Physical SOC stabilization occurs by protecting SOC compounds from decomposing 

organisms and factors of aerobic decomposition (i.e. oxygen and moisture) through physical 

separation. The physical protection of SOC compounds from decomposers may occur over large (via 

freezing or waterlogged soil conditions) and small scales (via soil aggregate formation) (Rabbi, 

Lockwood, & Daniel, 2010; Rowley et al., 2018). Chemical SOC stabilization occurs when SOC 

compounds form organo-mineral complexes with minerals that prevent microbes from accessing the 

carbon molecules. The role of calcium in chemical SOC stabilization is especially strong (Rowley et 

al., 2018). Reducing factors influence the rate of SOC stock turnover. Reducing factors include any 

land management practice or biogeochemical or climatic condition that accelerates microbial 

community activity or increases soil erosion.  Regions with the highest total carbon stock capacity are 

those with the most favorable combinations of biogeochemical characteristics (productive vegetation 



 

15 

communities on deep fine-textured soil with high cation concentrations), climatic conditions (warm 

and humid climates), and land management practices (minimal soil disturbance, high rates of carbon 

inputs) for amplifying biomass inputs, enhancing SOC stabilization and suppressing microbial 

decomposition (protection from soil disturbance) (Lemus & Lal 2005). 

3.3 SOC Sequestration Rate Trends 

Understanding how SOC stocks and flux rates and stocks are likely to change over time is an 

important consideration for SOC sink project planning (Corsi et al., 2012; West & Six, 2007). When 

the total SOC stock of a SOC sink project is graphed over time, it typically follows a sigmoid curve 

pattern (Sommer & Bossio, 2014) where the rates of SOC sequestration are relatively slow at both the 

beginning and end and relatively fast in the middle of a SOC sink project’s lifespan as shown in 

Figure 1. Active SOC sequestration typically lasts up to 30 years at SOC sink project sites (Sommer 

& Bossio 2014). Because the project was five years old at the time of the study, its position along the 

SOC sequestration curve is most likely within the initial slow to medium SOC sequestration rate 

ranges. Depending on how the soil microbial community responded to the demonstration project 

implementation land management practices, the site may also have undergone temporary loss in SOC 

stocks during the first few years due to soil priming (discussed in more detail below). The width of 

the sigmoid curve represents the duration of the SOC sink project’s productive SOC sequestration 

life-span and the height represents the difference in total SOC stock between project establishment 

and maximum total carbon sink capacity (steady-state) for given set of conditions. Depending on a 

sites land management practices and biogeochemical and climatic conditions, the time period between 

SOC sink project establishment and steady-state typically takes between 20-40 years (Sommer & 

Bossio 2014; Corsi et al., 2012; Government of Alberta, 2012; West & Post, 2002). The SOC 

sequestration sigmoid curve begins with a ramp-up period represented by slow to medium SOC 

sequestration rates while SOC sequestration processes recalibrate to new land management practices. 

This ramp-up period generally ranges between year 0 and 10 (West & Six, 2007).    

A common explanation for the initially slow SOC sequestration rates (lag phase) is due to the 

time it takes to shift the soils microbial communities from a bacterial dominated community that 

persist in cultivated agricultural systems to fungal dominated microbial communities that persists in 

no-till agroforestry systems (Six et al 2006). As microbial communities’ transition towards fungal 

dominated systems, the SOC stocks increase because soil fungi organisms have higher carbon to 

nitrogen ratios and they support micro-aggregate formation which physically protects SOC 
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compounds from decomposition (Corsi et al., 2012; Six et al., 2006). The conceptual models and 

explanations of microbial community responses to land use changes are still under debate within the 

literature (Hydbom, 2017) and further research is needed to reveal the full spectrum of conditions and 

factors influencing their dynamic responses to environmental changes. 

In some instances, the SOC stocks may also drop during the first few years of a SOC sink 

project due to a phenomenon called “priming” which is caused by a temporary acceleration of soil 

bacteria activity due to a surge in labile carbon and increased soil disturbances from SOC sink project 

installation activities (Fontaine, Bardoux, Abbadie, & Mariotti, 2004). In these situations, little to no 

increase in SOC stocks may be observed within the first 5 years of a SOC sink project (West & 

Marland, 2002). The ramp-up period is followed by an acceleration period represented by fast SOC 

sequestration rates resulting from an increase in SOC sequestration processes and low SOC stocks 

relative to the steady-state SOC stock. This period generally occurs between year 5 and 20 (West & 

Six, 2007; Corsi et al., 2012).  The acceleration period (exponential phase) is followed by a 

deceleration period (stationary phase) where SOC sequestration rates begin to decrease due to total 

SOC stocks approaching their SOC steady-state levels. This period generally begins after year 15 

(West & Six, 2007). The steady-state period occurs when the net SOC sequestration rate is 

approximately zero because the rates of soil carbon input (leaf and root litter) and output (respiration) 

are relatively equal (West & Six, 2007). Steady-state is generally reached before year 30 (Sommer & 

Bossio 2014). The steady-state level (height of sigmoid curve) of a SOC sink project site may be 

adjusted by altering the land management practices at the site which can influence soil carbon input 

and mineralization rates (Sommer & Bossio 2014, Lal 2016).   
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Figure 1: Typical SOC sequestration rates expected for a SOC sink project over time (adapted 

from Sommer & Bossio 2014).  
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3.4 Study Design Considerations for Monitoring SOC Stocks 

SOC stock monitoring studies requires strategic planning as there are numerous trade-off decisions 

between sampling costs, sample size, sample timing, statistical power, minimum detectable 

difference, and study duration expectations when making budget and scheduling decisions (Smith, 

2004).  

Sample Size and Statistical Power Considerations   

The most cost-effective SOC monitoring plans are those which prescribe the smallest sample size 

necessary to attain minimum measurable detection levels of SOC stock changes within accepted 

accuracy standards and specified time periods (Conant & Paustian, 2002). However without detailed 

information of SOC stock variability trends across space and time, the risk of  falsely accepting the 

null hypothesis (Type II error) due to the low statistical power of a small sample size can far 

outweigh the cost of collecting additional soil samples (Necpálová et al., 2014; Carter & Gregorich, 

2006 pg. 52; Kravchenko & Robertson, 2011). Due to the high cost of soil sample collection and 

analysis, small sample sizes are a common problem in SOC research (Necpálová et al., 2014) and 

decisions based on these low statistical power studies can negatively impact future SOC research and 

related policy decisions (Kravchenko & Robertson, 2011; Singh et al., 2012, Carter & Gregorich, 

2006). Therefore, it is important to be mindful that the absence of a significant difference found in 

low statistical power studies does not necessarily indicate an absence of the ecological processes 

being investigated (Kravchenko & Robertson, 2011).   

Predefining expectations the SOC stock minimum detectible difference and monitoring 

duration of a SOC sink project is an important study design planning consideration as these factors 

can have major influences on SOC monitoring costs.  For example, Olander et al. (2011) estimates 

that a 10% decrease in the SOC coefficient of variation would reduce the soil sampling and analysis 

costs by approximately 30%. To further illustrate the integrated relationship between SOC coefficient 

of variation, minimum detectible difference, and sample size requirements, Necpálová et al. (2014) 

estimates that a 15% coefficient of variance for SOC stocks would require a sample size of 400 to 

detect a 1% change in SOC stock from the mean (e.g. a 0.5 Mg C ha-1 change in a 50 Mg C ha-1 pool). 

Conversely much smaller samples sizes are required when minimum detection limits are higher.   For 

comparison Conant & Paustian (2002) estimated that a sample size between 14 and 28 is sufficient to 

detect a SOC stock change of 2.3 Mg C ha-1. However, SOC stock changes of this magnitude can take 
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years to develop. Smith (2004) reported that it is difficult to detect changes in SOC stocks in projects 

that are less than 7-10 years old without very large sample sizes (>100).  

Use of P Values to Define Effect Outcomes — Pros and Cons 

Within the recent peer reviewed literature (Nature, 2019; Wasserstein, Schirm, & Lazar, 2019), 

debates have been building around the appropriateness of using arbitrary p values for determining 

ecological study effects.  Some researchers argue that the use of a single p value to determine 

experimental effects is a too narrow of an approach for effective scientific inquiry and discovery 

because it creates conditions that promotes bias, false positives, and overlooked effects (Wasserstein 

et al., 2019). Instead Wasserstein et al., (2019) recommends taking a more thoughtful approach to 

data analysis which includes a broader set of study variables and data analysis approaches to more 

holistically explore and evaluate research development and results. Although adopting more holistic 

methods for scientific inquiry exploration would be more challenging than using arbitrary p values, 

many researchers argue that this approach would lead to a better understanding of the scientific 

phenomenon being explored and more clarity on why similar studies generate different results 

(Wasserstein et al., 2019).  With regards to SOC stock and dynamics monitoring, adopting a holistic 

approach to data analysis for determining effects would likely generate higher quality insights than 

single arbitrary p values because (1) SOC stocks represent the net balance between an infinite number 

of interactions between multiple variables across broad scales of space and time, and (2) due to the 

nature of ecological systems measured soil parameters (e.g. pH, bulk density, %SOC, clay content, 

etc.) often do not satisfy parametric statistical test assumptions (Halvorsen Okland, 2007) – which 

were also observed in this study.   

Managing SOC Stock Variability 

Accurately measuring and monitoring global SOC stocks and fluxes is challenging due to naturally 

high variability of SOC stocks. Approximately 44% of SOC variability has been linked to spatial 

scale and soil profile depth (Maillard, McConkey, & Angers, 2017). To increase SOC stock change 

detection sensitivity without dramatically increasing sample size, SOC monitoring study designs need 

to separate natural SOC variation from SOC changes induced by new land management practices 

(Kravchenko & Robertson, 2011; Smith et al., 2012). This separation of natural SOC variation from 

land management induced SOC changes is generally accomplished through paired repeat measures 

sampling designs and stratified sampling plans (Heim, Wehrli, Eugster, & Schmidt, 2009; Olander & 
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Haugen-Kozyra, 2012). Stratified sampling plans partition sampling categories by biophysical, 

chemical, climatic, and land management variables that influence SOC dynamics; including 

topographic position, depth interval, soil texture, vegetation communities, and land management 

practices (Necpálová et al., 2014; Olander, Haugen-kozyra, & Kravchenko, 2011).   

3.5 Soil Organic Carbon Analysis Parameters 

Measuring Total Soil Organic Carbon  

Traditionally, SOC analysis was performed to rate soil productivity and fertility; quantifying the 

relative differences of SOC stock between samples yielded an acceptable level of accuracy (Carter & 

Gregorich, 2006). However, because carbon offset credits are legally binding, the standards for 

measuring total SOC are substantially higher now (Chatterjee, Lal, Wielopolski, Martin, & Ebinger, 

2009). Contemporary research efforts now focus on improving the speed, accuracy, precision and cost 

of total SOC monitoring. 

Currently, ex-situ SOC analysis methods (e.g. chemical oxidation and thermal oxidation) are 

the standard analytical approaches for measuring the organic carbon content of soil samples 

(Stockmann et al., 2013).  Both methods decompose carbon compounds within soil samples to expel 

carbon dioxide which is measured to calculate the soil samples total SOC content (Schumacher, 2002) 

– though each method has some drawbacks. Chemical oxidation tends to underestimate SOC content 

by not completely oxidizing a samples organic carbon and the thermal oxidation tends to overestimate 

organic content by degrading some of the sample’s inorganic carbon (Chatterjee et al, 2009). Studies 

show that thermal oxidation methods, specifically the dry combustion with infrared reflectance 

spectroscopy, tend to be the most precise (Carter & Gregorich, 2006) with reported standard 

deviations ranging from 5-8% (Australia Government, 2014). However, when the soil analysis error 

is combined with the sampling error introduced during the soil collection, handing, and processing 

stages, ex-situ methods are generally not sufficient enough to detect small SOC stock changes short 

time spans to the standards needed for sustaining a robust carbon offset market (Chatterjee et al., 

2009; Stockmann et al., 2013).   

Alternative SOC monitoring approaches such as in-situ SOC analysis are being explored to improve 

the speed, accuracy, and cost-effectiveness of measuring SOC stocks (Chatterjee et al., 2009). Two 

complementary in-situ SOC measuring methods being evaluated are near-infrared spectroscopy (NIR) 

and mid-infrared spectroscopy (MIR) (Stockmann et al., 2013). These methods work by utilizing the 
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near-infrared and mid-infrared regions of the electromagnetic spectrum to identify and quantify 

organic compounds known to vibrate at specific wavelengths (Chatterjee et al., 2009). These methods 

provide a faster and more efficient means of measuring total carbon content and its fractions than ex-

situ methods. Although, the calibration methods of these technologies are not yet reliable (Chatterjee 

et al., 2009; Soriano-Disla, Janik, Rossel, MacDonald, & McLaughlin, 2014). 

Measuring Soil Organic Carbon Fractions  

The heterogeneous mix of SOC compounds ranging from stable to labile are primarily differentiated 

by mean turn over time and are analytically segregated by physical (size, density, aggregation) and 

chemical (solubility, mineralogy) fractionation processes (Lockwell et al., 2012; Stockmann et al., 

2013).  In the early stages of a SOC sequestration project, the labile carbon pools (particulate organic 

carbon, dissolved organic carbon and, microbial biomass carbon) are particularly valuable as early 

indicators of SOC responses to land treatments because they react most strongly to changes affecting 

carbon mineralization and accumulation rates (Ghani, Dexter, & Perrott, 2003; Lockwell et al., 2012). 

Labile SOC pool flux rates are controlled by microbial (bacteria and fungi) activity, community 

composition, and soil enzyme activity which can be analysed to represent SOC stock dynamics 

(Torri, Corrêa, & Renella, 2014). Examples of two soil products strongly tied to these labile carbon 

fractions attributes are hot water extractable carbon and amino sugars (Lockwell et al., 2012).  Hot 

water extractable carbon is a highly labile carbon fraction and is well correlated with microbial 

biomass size and root exudates. Amino sugars are more stable of the two labile carbon fractions and 

are generated during microbial mineralization of organic matter (Lockwell et al., 2012). Together, 

these products can help evaluate the influence of microbial activity in SOC dynamics and its 

contribution to SOC sequestration. 
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3.6 SOC Dynamics Research on Agricultural Land Management Practices 

Some of the most prominent climate change mitigation land management practices include; 

conversion from till to no-till agriculture, adoption of perennial crop systems, and application of 

organic amendments (Stockmann et al., 2013).  Research on quantifying the biogenic carbon offset 

potential of these land management practices has focused on characterizing the biomass and biofuel 

production potential of these land management practices. Comparatively little research has explored 

the SOC sequestration benefits of these practices, especially when multiple land-use management 

practices are combined. The following sections summarize the best available research on the SOC 

sequestration potential of these three land management practices.   

Conversion from Till to No-till Agriculture 

Adopting no-till agriculture reduces net CO2 emissions by decreasing demand for fossil-fuel based 

agricultural inputs, and increasing SOC sequestration rates (West & Marland, 2002).  When 

accounting for net emission reductions of these two outcomes together, West & Marland (2002) 

calculated the relative net flux of no-till compared to reduced till to be -1.35 CO2e ha-1 yr-1 while the 

Government of Alberta (2012) calculates it to be -0.2 CO2e ha-1 yr-1 for the dry prairie region of 

Alberta. 

No-till agriculture usually decreases the rate of GHG emissions by reducing the number of 

machinery field passes and the size and power of the machinery required to manage the agricultural 

crops at a site (West & Marland, 2002; Corsi et al., 2012). On average conversion from a till to a no-

till agricultural system reduces fuel consumption unit input per unit area by 35-80%, decrease the 

number of land passes by 50-54%, and reduce the size of the machinery required to manage the land 

by 50% (Corsi et al., 2012 pg.31).  

By minimizing soil disturbances and increasing soil organic residues, no-till agriculture 

supports SOC sequestration by increasing supply of carbon inputs and reducing exposure of SOC 

compounds to oxidative elements (Garcia-Franco, Albaladejo, Almagro, & Martínez-Mena, 2015). As 

presented in Table 2, global meta-analysis research studies have shown that adopting no-till 

agriculture generates a wide range of SOC sequestration results depending on the biogeochemical and 

climatic conditions of the region. For example, VandenBygaart, Gregorich, & Angers (2003) found 

that the Chernozemic soils of the western Canada prairies sequestered more carbon than the Gleysolic 

soils of the eastern Canadian provinces after no-till agriculture is adopted.  
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Table 2: A summary of studies using global meta-analyses of average and range of CO2e offsets 

generated by SOC sequestration resulting from converting from till to no-till agriculture 

Reported Mean 

Mass and range of 

Sequestered SOC 

(Mg CO2e ha-1 yr-1) 

Sampling 

Depth 

(cm) 

Experiment Details Mean 

Land Use 

Duration 

(years) 

Reference 

1.27 

-0.43 - 3.62 

 

  NA Meta-analysis of 250 

studies located across the 

United States 

NA Olander et al., 

(2011)  

1.54 

-0.14 - 3.22 

 

   24 ± 6  Meta-analysis 35 literature 

studies consisting of 96 

paired treatments located 

across south eastern United 

States 

10 ± 5 Franzluebbers 

(2005)  

10.61 

5.85 - 15.37 

 

  

  10-45  Meta-analysis of 12 studies 

across consisting of 35 

paired treatments located 

across western Canada 

11.4 ± 1.5 VandenBygaart, 

et al., (2003) 

0.21 

0.16 - 0.26  

  23 ± 0.5  Meta-analysis of 67 studies 

consisting of 276 paired 

treatments located world 

wide 

15 West & Post, 

(2002) 

1.23 

NA 

 

  30  Meta-analysis of 76 long-

term studies located across 

the United States 

NA West & 

Marland (2002) 

0.08 

NA 

  18 ± 2  Meta-analysis of 7 studies 

consisting of 39 

comparisons located in 

temperate climates world 

wide 

13 Paustian et al., 

(1997) 

Notes: NA= not available  
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Short Rotation Woody Biomass 

Afforestation, the process of replanting woody biomass in areas previously deforested by agricultural, 

is one of the simplest and most efficient climate change mitigation practices available (Hu et al., 

2016). Willow are ideal afforestation species, especially on marginal lands, because they are fast-

growing, adapted to grow on marginal soils, and require few land management inputs (Agostini, 

Gregory, & Richter, 2015).  Most of the climate change mitigation attention that willow plantations 

have received is because of their biofuel production potential. A second climate change mitigation 

contributing factor of willow systems that is often overlooked is their SOC sequestration potential. 

Grogan & Matthews, (2002) and Hu et al. (2016) estimate that as much as 20% of the carbon offset 

potential of willow systems can be generated by SOC sequestration.  Willow plantations support SOC 

sequestration processes through leaf and root litter soil inputs (Lemus & Lal, 2005; Hu et al., 2016) 

and once established receive few soil disturbances. 

To-date willow plantation SOC sequestration studies have produced inconsistent results 

(Paul, Polglase, Nyakuengama, & Khanna, 2002) which has led to uncertainty around the SOC 

sequestration benefits of converting conventional agricultural fields to willow plantations (Zang et al., 

2018). Some of the initial loss or low initial sequestration rates of SOC stocks at willow plantations 

has been attributed to soil priming due to the soil disturbances caused by site preparation and planting 

activities (Lemus & Lal, 2005; Grigal & Berguson, 1998), which can take up to 10 years to recover 

(Bashkin & Binkley, 1998).  Others (Olson & Al-Kaisi, 2015) suggest that inconsistencies in total soil 

sampling depths and sampling depth interval lengths between studies are responsible for some of the 

inconsistent and inconclusive willow SOC study results because SOC variance increases with both 

the depth and length of a sampling interval and much of a sites SOC stock data is lost when soil 

sampling depths are too shallow. Therefore more standardized long-term studies (>25 years) of 

willow plantations with sampling depths that correspond to root system depths are needed to better 

characterize their SOC sequestration rates and stability  (Agostini et al., 2015). Table 3 summarizes 

the SOC sequestration results from short-rotation woody biomass plantation studies conducted 

globally. 
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Table 3: A summary of global meta-analyses of average and range of CO2e offsets generated by 

SOC sequestration resulting from converting conventional agriculture to short rotation woody 

crop (willow and poplar) plantation systems 

Reported Mean 

Mass and Range of 

Sequestered Carbon 

(Mg CO2e ha-1 yr-1) 

Reported 

Sampling 

Depth 

Experiment Details Mean 

Treatment 

Duration 

(years) 

Reference 

1.5 

NA 

NA Sweden willow a plantation 7 Rytter 

(2012) 

0.15 

NA  

60  Study of 2 willow plantation 

sites located in Southwestern 

Quebec  

3 Zan, Fyles, 

Girouard, & 

Samson 

(2001) 

4.25 

3.66-4.83  

100  Meta-analysis of 11 studies 

with poplar trees located North 

Dakota, Minnesota, Iowa, and 

Wisconsin 

12-18 Hansen 

(1993) 

No significant 

difference 

NA  

25  Paired study of 5 poplar tree 

planation compared to adjacent 

crop lands located across 

Minnesota 

6-15 Grigal & 

Berguson 

(1998) 

No significant 

difference 

NA  

80  Paired study of 21 willow/crop 

land sites located on former 

crop land in central Europe 

8 Walter, 

Don, & 

Flessa 

(2015) 

No significant 

difference 

NA  

30 Replicated plantations with 

willows (Salix spp.) on former 

arable land at 5 sites across 

Sweden. 

5 Rytter, 

Rytter, & 

Högbom 

(2015) 

2.05 

NA 

15-70  Meta-analysis of 7 long-term 

field trials for willow 

plantations located in Sweden, 

Ohio, Germany, and New 

York. 

13 Agostini et 

al., (2015) 

Notes: NA= not available 
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Biosolids as Organic Based Fertilizer 

Because of their high nutrient content, treated biosolids can be provide a high quality substitute for 

synthetic fertilizers (Xue et al., 2015). Studies have shown that application of biosolids on willow 

plantations can improve soil fertility and increase biomass productivity - especially on nutrient and 

carbon depleted soils (Adegbidi, Briggs, Volk, White, & Abrahamson, 2003; Athamenh, Salem, Et-

Zuraiqi, Suleiman, & Rusan, 2015; S. Brown et al., 2011; Quaye & Volk, 2013; Torri et al., 2014; 

Wijesekara et al., 2017). The rapid growth rates of willow species make them particularly well suited 

to transform nutrient rich biosolids into biomass (Quaye & Volk, 2013).  By substituting synthetic 

fertilizers with biosolids, the net energy ratio of the biofuels produced has been reported to increase 

by 34% (Quaye & Volk, 2013) to 40% (Heller, Keoleian, & Volk, 2003). The high carbon content of 

biosolids, which can range from 40-70%, also provides the soil with an excellent source of labile 

carbon (Torri, Corrêa, & Renella, 2014). A recent study conducted by Wijesekara et al., (2017) 

reported that biosolids application increased surface soil (0-15 cm) carbon concentrations by 45% on 

both sandy and clay soils. Another study conducted by Tian et al., (2009) on a 32-year (1974-2004) 

reclamation project located in Fulton County Illinois that was vegetated with herbaceous crops and 

fertilized with biosolids reported average SOC sequestration rates of 6.33 Mg CO2e ha-1yr-1.   

Although biosolids have demonstrated potential to support SOC sequestration directly 

through soil carbon inputs and indirectly through willow biomass production support (Wijesekara et 

al., 2017), few studies have investigated the SOC sequestration potential of adding biosolids into 

willow plantations. In an extensive biosolid management life cycle meta-analysis review, Yoshida, 

Christensen, & Scheutz (2013) reported that only 3 out of 35 studies considered SOC sequestration 

and only one of these three studies acknowledged Willow + Biosolids systems. This study reported 

that biosolids can offset approximately 0.68 g CO2e for every MJ of energy produced by biomass 

when the following variables are accounted for; direct and indirect fuel use; N2O emissions from 

applied fertilizer and leaf litter; and carbon sequestration (soil and below ground biomass) (Heller, 

Keoleian, & Volk, 2003). No studies to date have been found to have specifically investigated the 

SOC sequestration CO2e offset contribution of biosolids within willow plantations. 
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Section 3—Field Assessment 
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Chapter 4 

Project History  

 

In 2010 the City of Calgary determined that their biosolids management program was approaching 

maximum capacity. To address this issue, the City teamed with SYLVIS Environmental (SYLVIS) to 

explore biosolids management diversification options.  Together they developed The City of Calgary 

Dewatered Biosolids Land Application Program – Willow Biomass and Marginal Land Reclamation 

Demonstration Project (the demonstration Project). Implementation of the demonstration Project 

involved applying municipal biosolids (treated wastewater sludge) to marginal (low fertility) 

agricultural land and planting willows (Salix spp.) to an area 350 hectares (ha) in size. The purpose of 

the demonstration Project was to assess the economic and environmental merits of land-spreading the 

City’s excess dewatered biosolids onto marginal agricultural land planted with willow. The purpose 

of this study was to determine if measurable differences in SOC stocks could be detected between 

land management treatments within the Study Area to evaluate the carbon emissions offset potential 

of the demonstration Project. The Study Area for this SOC monitoring study of the demonstration 

Project is located within a small portion of the entire demonstration Project footprint. 

4.1 Study Area Overview  

Study Area Location 

The Study Area was located at the southwest quarter of 07-026-25 W4M within Wheatland County 

which is approximately 70 km east of the City of Calgary, Alberta and 13 km east of the Hamlet of 

Keoma.  Maps of the Study Area location relative to regional communities and local secondary roads 

are presented in Appendix A (Figure A 1 and Figure A 2 respectively). 

Biophysical and Climatic Conditions  

The Study Area is located within the foothills fescue natural subregion (Natural Regions Commitee, 

2006). This subregion experiences semiarid climate conditions.  The Canadian prairies often 

experience drought conditions (Watson, 2016).  The Alberta Agriculture and Forestry (2019) 180 day 

(April through October) standardized precipitation index (SPI) maps indicate that the soil moisture 

conditions at the demonstration project region were near normal between 2012 and 2015 (SPI = -0.44 
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to 0.44), less than 1-in-6 year wet (SPI= 0.97 to 1.39) in 2016 and less than 1-in-3 year dry (SPI= -

0.97 to 0.44) in 2017. The nearest weather station with historical climate data records available during 

the demonstration Project operation period is Beiseker AGCM Alberta (Climate ID 3020610). This 

weather station is located approximately 20 km north of the Study Area (12 U 335766 m E, 5694727 

m N). A summary of the annual key climate parameters averages is presented in Appendix A (Table 

A 1). 

Topography, Soil Classification and Soil Characteristics  

The Study Area’s soils are classified as well-drained Orthic Black Chernozems which are generally 

composed of moderate to medium textured soils (Alberta Forestry and Agriculture, 2016). The 

Alberta Forestry and Agriculture (2016) Soil Information Viewer, indicates that the entire Study Area 

is located within Soil Polygon 11501 which is classified as high gradient undulating landscape (slope 

gradient 4%, slope length 250 m, and 5 m relief) represented by the Midnapore, Rockyview and 

Delacour soil series in order of predominance. The elevation within the Study Area ranges from 955 

m to 960 m (Alberta Forestry and Agriculture, 2016). Collectively these soil series top soils are 

typically sandy, with fine texture, non to very weakly saline (<4 mS/cm) saline), non-calcareous (<1 

calcium carbonate (CaCO3) equivalent percent (%)), and medium SOC concentrations (2.2-3.4%) 

(Alberta Soil Information Centre, 2016; Government of Canada, 2018; Alberta Agriculture Food and 

Rural Development, 2005). Summaries of the typical physical and chemical properties of these soil 

series top soils under agricultural land management according to the Government of Canada, (2018) 

soil classification system are presented in Appendix A (Table A 2 and Table A 3). 

The topsoil of undisturbed native Chernozem soils have relatively high SOC concentrations, 

well developed soil structure, and high mineral content (i.e. Calcium (Ca2+) and Magnesium (Mg 2+) 

cations) (Watson, 2016). Although the SOC content of cultivated Chernozem top soils is often low 

due to mixing with carbon poor subsurface layers (Watson, 2016).  

Land Management History  

Agriculture, in the form of grazing and till cropping of short season crops, is the principal land use in 

the Foothills Fescue Natural Subregion and occupies approximately 80% of the landscape (Natural 

Regions Committee, 2006). According to historic Google Earth imagery and landowner management 

reports (Lavery, J. (SYLVIS Environmental), personal communication, March 15, 2019a), the non-

willow plantation Study Area was used for conventional agricultural purposes (e.g. small grain and 
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oil seed rotations) prior to and during demonstration project operations.  The historic air photos from 

July and November, 2011 show relatively uniform landscape patterns (vegetation, coloration, and 

agriculture machinery lines) between each sampling location within the Study Area are presented in 

Appendix A (Figure A 3 and Figure A 4 respectively). This visual consistency suggests that the 

biophysical conditions and land management practices were relatively uniform at each sampling 

location for at least two years prior to the demonstration Project implementation.  

From 2012-2017 the Study Area (except for the willow plantation) was planted with spring 

wheat, canola, barley, and oats and received numerous fertilizer, herbicide, and fungicide treatments. 

A summary of the 2012-2017 land management practices is presented in Appendix B (Table B 7 

through Table B 6). Between harvests, the landowner left the fields as stubble and occasionally used a 

heavy harrow to manage crop residue as part of reduced-till agriculture practices (Lavery, J. (SYLVIS 

Environmental), personal communication, March 15, 2019a).  

4.2 Summary of Study Area land Management Practises (2013-2017) 

Demonstration Project Land Preparation 

To prepare the Study Area for the demonstration Project land management practices in 2013, the 

Willow + Biosolids site was deep tilled to a minimum depth of 15 cm, burying remaining crop 

stubble / residue remaining after harvest, using a disc Horsch Anderson Joker disc during the fall of 

2013 (J. Lavery (SYLVIS Environmental), personal communication, March 15, 2019a). 

Dewatered Biosolids Land-spreading Application 

In the fall of 2013, biosolids were land-spread evenly across the Study Area at a rate of 23.8 Mg ha-1 

using a Bunning vertical auger manure spreader and incorporated into the top 15 cm of the surface 

soil with two passes of a Horsch Anderson Joker disc (J. Lavery (SYLVIS Environmental), personal 

communication, March 15, 2019b).  In 2016, biosolids were applied to the Study Area rate of 21.1 

Mg ha-1. Within the recently harvested (coppiced) portion of the Study Area, a cultivator was used to 

incorporate the biosolids with the leaf litter and organic debris on the soil surface. The small grain 

crop portions of the Study Area received biosolids via a Bunning® vertical auger manure spreader 

which were incorporated into the top 1-3 cm of soil using a Case TurboTill 330 vertical tillage disc (J. 

Lavery (SYLVIS Environmental), personal communication, March 15, 2019b) 
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Dewatered Biosolids Characteristics 

The treatment and application of biosolids at the demonstration Project site was conducted 

according to the Guidelines for the Application of Municipal Wastewater Sludges to Agriculture 

Lands (2001) criteria to optimize the environmental benefits and mitigate potential risks of biosolids 

land-spreading application. The biosolids were treated at the City’s wastewater treatment plant via 

aerobic and anaerobic digestion involving biochemical breakdown and stabilization of municipal 

wastewater sludge using microorganisms in the presence and then absence of oxygen. This process 

was followed by dewatering via filtration to separate the biosolids from the wastewater liquids. A 

summary of the Biosolids chemical analysis for both the 2013 and the 2016 land-spreading 

application events is presented in Appendix B (Table B 7). The mean chemical analysis results of 

2013 (n=12), 2016 (n=11), indicated that key chemical parameters to this study such as % total 

organic carbon and pH were the same (TOC = 27% in 2013 and 2016) or similar, (pH = 7.7 (2016), 

7.4 (2013)) while other SOC sequestration co-factors such as cation exchange capacity and available 

nutrients were generally 35% lower in 2016 than in 2013.   

4.3 Willow Plantation Site Preparation, Planting and Harvesting 

During the fall of 2013, willows were planted at the demonstration Project in various sized blocks 

according to the number of available willow stakes for each cultivar variety. Each block included one 

of 12 different willow cultivar varieties. ‘Milbrook’ is the willow cultivar sampled within the Study 

Area (J. Lavery (SYLVIS Environmental), personal communication, March 15, 2019d). ‘Milbrook’ is 

a hybrid of Salix purpurea ‘95026’ crossed with Salix miyabeana ‘SX64’ and was published under 

the US Plant Patent No.17, 646 in 2007. ‘Milbrook’ was bred for rapid growth rate, disease 

resistance, and adaptability to a wide range of soil and moisture conditions; characteristics ideal for 

biomass production (Cornell University, 2010).  After biosolids land-spreading of the Study Area in 

2013, the willow portion of the Study Area was sprayed with glyphosate for weed control prior to 

planting and SureGuard® weed control was used 1-3 days after willow planting for pre-emergent 

weed control (J. Lavery (SYLVIS Environmental), personal communication, March 15, 2019d).  

Willow Biomass Production 

In 2016, the mean biomass collected from the Milbrook planting plot during was 19.4 ±3.3 Mg dry 

tonnes ha-1 (n=4) (J. Lavery (SYLVIS Environmental), personal communication, March 15, 2019d). 

Belowground biomass was not sampled.   
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4.4 Environmental Monitoring  

For environmental regulatory purposes, SYLVIS conducted environmental soil monitoring prior to, 

and on an annual basis after the demonstration Project was established to monitor the site’s soil 

nutrient and mineral concentrations over time.  To collect soil samples, SYLVIS used methods 

outlined in the Alberta Guidelines for the Application of Municipal Wastewater Sludges to 

Agricultural Lands (2001). Between April 2013 and July 2017 SYLVIS conducted five sampling 

events where composite soil samples composed of 6 sub-samples collected at the 0-15 cm and 15-30 

cm depth intervals were collected from four sampling ellipse located within the north, east, south, and 

west portions of the Study Area. A schematic of the sampling protocol used by SYLVIS is presented 

in Appendix B (Figure B 1). The SYLVIS environmental monitoring sampling results for the 

sampling events that occurred prior to biosolids land-spreading application (2013) and after two 

biosolids land-spreading application events (2017) are presented in Appendix B (Table B8)  

4.5 Study Sampling Locations  

Three sampling locations representing three different land management practices; agricultural Crops 

+ no biosolids (Control), agricultural Crops + Biosolids (C+BS), and Willow + Biosolids (W+BS), 

were included in this study.  Each sampling location was chosen using a random number generator to 

select a northing and easting UTM coordinate pair within the range of possible coordinates available 

for each land management practice area already in place at the time of the Study.  The Study Area, 

sampling areas (zones within Study Area representing the Control, C+BS, and the W+BS land 

management practices), and sampling locations (sampling plot representing each of the three land 

management practices) are presented in Figure 2 and the UTM coordinates for each sampling location 

are presented in Table 4. Photos of each sampling location are presented in Figure 3 through Figure 5. 
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Figure 2: View of Study Area location on August 22, 2015 with an overlay of the treatment 

sampling areas and the treatment sampling locations. Image date (Google Earth, 2018a). 

 

Table 4: UTM coordinates and land management practice treatments of study soil sampling 

locations 

Sampling Locations Zone Easting Northing 
Crop 

Type 

Total Tones of 

Dried Biosolids  

Willow + Biosolids 

(W+BS) 
12 U 326531m E 5675443 m N Willow 45 Mg ha-1 

Agricultural  

Crops + Biosolids 

(C+BS) 

12 U 326024 m E 5674940 m N 
Small 

Grains 
45 Mg ha-1 

Agricultural  

Crops + No 

Biosolids (Control) 

12 U 326289 m E 5674789 m N 
Small 

Grains 
0 Mg ha-1 
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Figure 3: View of the Control sampling location looking south 

 

Figure 4: View of the agricultural Crops+ Biosolids (C+BS) sampling location looking west 
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Figure 5: View of the Willows + Biosolids (W+BS) sampling location looking east 
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Chapter 5 

Study Overview & Design  

Because the demonstration Project was in operation for five years prior to the study, a space-for-time 

substitution experiment design was the best of few options available to investigate changes in soil 

organic carbon (SOC) stocks across the Study Area. The space-for-time substitution experimental 

design uses a paired sampling approach by linking treatment sites with control sites. To avoid 

sampling bias in SOC space-for-time substitution studies all spatial and temporal variation of SOC 

and its sequestration cofactors must be relatively equal (Blois, Williams, Fitzpatrick, Jackson, & 

Ferrier, 2013; Lal, 2005). To support this requirement, the locations of treatment and control 

sampling plots should be relatively close to minimize natural spatial variation (Maillard et al., 2017) 

and exhibit the same biological, chemical, and physical properties prior to land management 

treatments (Johnson & Miyanishi, 2008).  Therefore, under these uniform soil conditions it can be 

assumed that any differences detected in SOC stocks between control and treatment sites are a result 

of changes in land management practices (Smith et al., 2012). Based on apparent consistencies in land 

management history prior to demonstration Project implementation (Figure A 3 and Figure A 4); and 

that the entire Study Area is located within the same soil classification polygon (Alberta Forestry and 

Agriculture, 2016), this study was based on the assumption that each sampling location exhibited the 

same biological, chemical and physical properties prior to demonstration Project implementation. 

However, results of this study revealed that differences in soil physical and chemical properties 

between sampling locations did exist.  

5.1 Pre-hoc Power Analysis for Sample Size Selection 

To estimate the minimum sample size necessary to measure the Study Area SOC stocks with within 

10% of the true mean 90% of the time, an estimate of the Study Areas SOC stock (Mg C ha-1) 

variation was required.  The Study Areas SOC stock variation was estimated using the coefficient of 

variation equation (Equation 1) and five years of previous soil sampling data collected by SYLVIS 

during their environmental monitoring events.  The coefficient of variation was calculated for the 

SOC stock (Mg C ha-1) results (n=4) for each of the five sampling events that occurred from 2013 

through to 2017 using Equation 1. 

Equation 1: Coefficient of variation = sample data standard deviation / sample data mean  
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The coefficient of variation data was then used to estimate the minimum sample size necessary to 

generate statistically significant results using Equation 2 from Aynekulu, Vagen, Shephard, & 

Winowiecki, (2011). 

Equation 2:   n = (N * S)2/[n2 x (E2/t2) + (N x S2)] 

   Where:  n = sample size 

                        E = allowable error calculated by multiplying the mean carbon by the desired  

                                  precision i.e. mean carbon stock x 0.1 (for 10% precision) 

                         t = the sample statistic from the t-distribution for the 95% confidence interval 

                        N = the number of sampling units in the population 

                            S = standard deviation of the stratum 

 

The sample size was selected based on the largest recommended sample size calculated from 

Equation 2 across all five of SYLVIS’ historic sampling events within the Study Area at both 

sampling depth intervals (0-15 cm and 15-30 cm). The largest recommended sample size calculated 

using Equation 2 was 23. To improve the study’s statistical power and to implement a symmetrically 

balanced sampling plot, a sample size of 25 was chosen for the soil parameters directly associated 

with measuring SOC stocks i.e. %SOC and soil bulk density.  For the remaining SOC sequestration 

cofounding factors, where high statistical power was less critical to the study research questions, a 

sample size of 15 was chosen.   

5.2 Soil Sampling Methods 

The sampling plot size and spacing pattern was modeled after the Australian National Carbon 

Accounting system (McKenzie, 2000). Each sample site was a 20 m x 20 m grid divided into 25 

sampling sites spaced 5 m apart as shown in Figure 6.  A 30 m Komelon 6611IM Fiber Reel tape 

measure was used to mark out the sampling site boundaries and sampling locations. Soil sampling 

locations were recorded with a Samsung Galaxy Tab S2 9.7 tablet, using the Locus Maps-Pro 

mapping software (version 3.34.1) and a Garmin GLOTM GPS Bluetooth antenna to improve GPS 

accuracy. GPS accuracy ranged between 2 – 4 m at each sampling location. 
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Figure 6:  Study soil sampling grid pattern 

 

At each of the 25 soil sampling sites, one soil sample was taken from the entire length of each 

depth interval, 0-15 cm and 15-30 cm, for laboratory analysis. Soil samples taken for laboratory 

analysis were retrieved using a hand operated AMS 2 3/4" Signature Regular Auger and placed into a 

labelled sealable plastic bag provided by the laboratory including sampling location code, sample 

replicate number, and laboratory analysis codes information. Sample depths were measured using a 1 

m foldable fiberglass ruler. The soil analysis parameter data used for calculating SOC stock i.e. 

%SOC and bulk density was collected from each of the 25 sampling locations. SOC sequestration co-

factor parameters i.e. soil pH and texture were analyzed for 15 of the 25 soil samples submitted to the 

lab. The soil samples selected for analyzing SOC sequestration cofactors were selected using a 

random number generator. 

A second soil sample for was taken approximately 5 cm east of each laboratory soil analysis 

sampling location for soil bulk density analysis. The soil bulk density collection methods presented in 

the United States Department of Agriculture (1998) and Brown & Wherrett, (2014)  were followed. 

Soil samples taken for bulk density analysis were retrieved using AMS Bulk Density 5 cm X 5 cm 

Liners. A soil bulk density liner >4 cm was chosen to avoid compaction of the soil core and 

compromise the integrity of the soil bulk density sample (Australia Government, 2014). Three soil 

core liner lengths (5 cm each) totaling 15 cm were taken for each sampling depth interval (0-15 cm 
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and 15-30 cm). The volume of soil taken for each sampling depth interval totaled 295 cm3; the soil 

sample was placed in labelled sealable plastic bags with information on sampling location code, 

sample replicate number, and depth interval.   

All soil samples collected for chemical analysis were submitted to Exova Laboratories 

(Exova) located at No. 5, 2712 - 37 Avenue N.E., Calgary, Alberta on the same day that they were 

retrieved. Exova (www.exova.com) is an independent laboratory accredited through the Canadian 

Association for Laboratory Accreditation Inc. (CALA). Soil samples were analyzed for total carbon, 

pH, and texture. Soil samples were taken during the spring and late summer of 2018. 

5.3 Physical Soil Parameter Analysis Methods 

Soil Bulk Density  

The methods used to measure bulk density were adapted from Brown and Wherrett (2018). The 

contents of each soil sampling bag were transferred to a tarred 20 cm x 20 cm x 3 cm tin baking sheet, 

weighed and baked in a kitchen oven at 170°C for 3 hours. After removal from the oven, the dried 

soil samples were re-weighed.  All the soil samples were weighed using a Smart Weight Pro Pocket 

Scale with an accuracy to 0.1 g which was calibrated using two, 200 g Newer® weight kits. 

Soil Texture  

Soil texture analysis was performed by Exova using a modified version of the soil hydrometer method 

No. 55.3 prescribed in Carter (2008). A detailed description of Exova’s soil texture procedures are 

presented in Appendix C. Soil texture was classified based on the proportion of sand (50 µm - 2 mm), 

silt (2 µm - 50 µm), and clay (<2 µm) particles in each sample. The soil texture classes were based on 

the Canadian system of soil classification. 

5.4 Chemical Soil Parameter Analysis Methods 

Prior to chemical analysis soil samples were thoroughly mixed, subsampled, air dried to each 

parameter analysis specifications, and ground until all the soil sample contents could pass through a 2 

mm sieve. A detailed description of Exova’s drying and grinding procedures are presented in 

Appendix C. 
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Total Organic Carbon 

Percent total soil organic carbon (SOC) was measured via dry combustion with a LECO Truspec 

Analyzer using modified procedures from Nelson and Sommers (1996) and British Columbia 

Ministry of Environment (2014) to accommodate instrument set up and calibration procedures. A 

detailed description of Exova’s total organic carbon soil analysis procedures are presented in 

Appendix C. 

Soil pH  

Soil pH was determined using a modified version of the 1:2 extraction method No. 4.12 from 

McKeague (1978). The soil pH was determined by mixing soil in water in a 1:2 ratio and recording 

the pH meter values. A detailed description of Exova’s pH analysis procedures are presented in 

Appendix C. 

5.5 Data Analysis Approach 

Soil bulk density, SOC stock, texture, and pH calculations were conducted, tabulated, and graphically 

presented using the Windows Excel 2013 software program.   

Soil Bulk Density Calculation 

Soil bulk density was calculated by dividing the oven dried soil weight by total core volume as shown 

in Equation 3. The total core volume was calculated using the volume of a cylinder equation as shown 

in Equation 4. 

Equation 3: Soil Bulk Density = weight of dry soil (g)/volume of soil from the cylinder (cm3) 

 

Equation 4: Volume of a cylinder: = π*cylinder radius2* cylinder height  

                                                         = π*2.5 cm2* 15.0 cm  

                                                         = 294.52 cm3                                                        

Soil Organic Carbon Stock Calculation 

To calculate the stock of SOC at each soil sampling site in terms of the mass of carbon in metric tons 

per hectare (Mg C ha-1), the percent total carbon %TC results were multiplied by their corresponding 

soil bulk density results at each sampling location, the soil depth interval, and a unit area scale 

correction factor as presented in Equation 5. The %TC results represented %SOC because the soil 
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conditions of the Study Area were too acidic (<7.2) for soil inorganic carbon (SIC) compounds to 

form (Brown et al., 2011).   

Equation 5: %TC * bulk density (kg/L) * 0.15 m (thickness of sampling interval) * 100 (unit area 

scale correction factor) = Mg C ha-1 

Statistical Analysis Approach 

Statistical analysis of the data was conducted using the Windows Excel 2013 and the R Studio 

version (1.1.456) software programs. Excel was used to generate the descriptive statistics tables and 

graphics presenting the mean and standard error of the mean (SEM) of each parameter, soil sampling 

location and depth interval. The statistical tests selected to detect differences in parameters where 

chosen based on the outcomes of the statistical test decision tree presented in Figure 7. Normality of 

the data was assessed by reviewing the skewness and kurtosis coefficients generated by the 

descriptive statistics data analysis feature in Excel and the Shapiro-Wilk test for normal distribution. 

The data set passed the normality assumption if the skewness and kurtosis coefficients were between 

±1.96 (Rose et al., 2014)) and if the results of the Shapiro-Wilk test were p ≥ 0.5. Homogeneity of the 

residuals variance were assessed using the Leven’s test. When the data were not normally distributed, 

non-parametric tests were used and the data medians were used for pairwise comparisons rather than 

the data means. When parameters were compared across soil depth interval pairs, the Wilcoxon 

signed-rank test was selected because the sampling data sets being compared were not independent.   
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Figure 7: Statistical test decision tree for small sample sizes (n<50)  
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5.6 Soil Organic Carbon Dynamics 

Soil organic carbon concentrations represent the ongoing balance between soil organic matter inputs 

via photosynthesis and losses via respiration (Follett, 2006). Numerous soil chemical, physical, and 

biological factors influence SOC dynamics and interactions between these factors effect SOC stocks 

to varying degrees across spatial and temporal scales. The complexity of SOC dynamics is one reason 

why these SOC sequestration processes are not fully understood and why main drivers of SOC 

dynamics shift according to site conditions. The following sections (1) summarize key findings of the 

study, (2) includes background information on select limiting, reducing and determining co-factors of 

SOC dynamics, and (3) discusses opportunities to improve the statistical power, statistical certainty, 

and cost effectiveness of future Willow + Biosolids baseline field studies. Figure 8  highlights the key 

limiting, reducing and determining co-factors of SOC dynamics categories in Willows + Biosolids 

systems.   

 

Figure 8: Schematic of limiting, reducing and determining co-factors of SOC dynamics in 

Willow + Biosolids systems 
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5.7 Limiting Factors of Soil Organic Carbon Sequestration 

Limiting co-factors of SOC sequestration such as climate conditions and vegetation communities 

control the rate of in-situ carbon inputs via biomass production (Lemus & Lal, 2005). Hobley & 

Willgoose, (2010) found that climate is the primary driver of SOC dynamics at the surface soil layers 

(SOC stocks decrease with increases in temperature and increase with precipitation rates) and the 

influence of clay content on SOC dynamics increases with depth. 

Climate 

During the year prior to and over the course of the demonstration Project operations, some climatic 

records (Natural Regions Committee, 2006) suggested that the demonstration Project experienced 

mild drought conditions, while other records indicate that the soil moisture conditions were relatively 

normal (Alberta Agriculture and Forestry, 2019).  Over the 2012-2018 period, the demonstration 

Project region experienced slightly cooler temperatures (-0.2°C) and substantially less precipitation  

(-28%) than is typical for the Foothills Fescue Natural Subregion (see Table A 1). Despite the 

relatively low precipitation rates for the Natural Subregion, the standardized precipitation index (SPI) 

maps published by Alberta Agriculture and Forestry (2019) indicated that the demonstration Project 

site location predominantly experienced near normal moisture conditions between 2012 and 2018. 

Although the potentially drier soil conditions may have inhibited willow establishment and biomass 

production early on during the project, the well-developed root system and vegetation shaded soil of 

the 5-year-old plantation will better protect the plantation for impacts of future drought conditions. 

Agriculture Soil Capability 

In terms of the soils biomass productivity potential, the agricultural soil capability of the local region 

was categorized as ‘2M’ - meaning that the site has slight limitations for small grain agricultural 

crops due to moisture deficiencies (Alberta Forestry and Agriculture, 2016). The Soil Research 

Institute, (1976) categorized the site as ‘poor’ due to soil moisture limitations and low pH (<5.5 pH).  

Soil Carbon Inputs  

Carbon inputs within the Study Area include 45 Mg ha-1 of dewatered biosolids that were 27% 

organic carbon (dry weight) (see Table B 7) and vegetation biomass inputs from the root and leaf 

litter of the crop and willow vegetation covers. Willow biomass production (root and shoot) rates can 

vary substantially based on the, climate, soil conditions, and physiological characteristics of each 
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willow cultivar (Amichev et al., 2012; Cunniff et al., 2015; Garten et al., 2011). Cornell University 

(2017) reported that the average willow plantation in North America produces 11.3 Mg ha-1yr-1 of dry 

biomass, while a four year study conducted in Quebec, (Zan et al., 2001) found that willows can 

generate approximately 1.71 Mg ha-1 yr-1 of above ground biomass and 1.25 Mg ha-1 yr-1 of below 

ground biomass on marginal lands. In a willow biomass production and allocation study conducted by 

Rytter (2001), the root biomass the Salix viminalis from year 1 to year 3 shifted from 25%-30% to 

10%-20% of the total biomass. Although this estimate would be substantially higher if fine root 

biomass were included in the calculation (Cunniff et al., 2015). Data on willow fine root biomass 

turn-over is not readily available because measuring it is technically difficult and labor intensive 

(Cunniff et al., 2015). In comparison to the Rytter (2001) study, SYLVIS (J. Lavery, personal 

communication, March 15, 2019) reported that the mean willow biomass harvest rates for the 

Milbrook cultivar at the demonstration Project was 19.4 ±3.3 Mg ha-1 (n=4) of dry biomass mass 

which equates to an annual rate of 6.5 ± 1.1 Mg ha-1 yr-1 of dry biomass during the first five years of 

operation. Assuming that Milbrook cultivar root-shoot ratio physiology is similar to the Salix 

viminalis, this would equate to an estimated total of 1.94-3.88 Mg ha-1 of dry below ground willow 

biomass after three years of growth.  Table 5 provides a high-level summary of the estimated soil 

organic carbon inputs based on soil organic matter inputs from the biosolids and the willow biomass. 

  



 

46 

Table 5: High-level estimate of organic carbon inputs in the Willow + Biosolids Area of the 

Demonstration Project Site. 

Soil Organic Matter Inputs 
Proportion of Organic Carbon Within 

Organic Matter Inputs (Dry Mass) 

Estimated Organic Carbon 

Inputs (Dry Mass) 

2013 Biosolids Land-

Spreading Application 
24 Mg ha-1 at 27% Carbon 6.48 Mg C ha-1 

2013- 2016 Estimated 

Willow Leaf Litter 

Production 

Unknown NA 

2013-2016 Estimated 

Study Area Willow Root 

Litter Production 

10%-20% (Rytter, 2001) of Willow 

Shoot Production (19.4 ±3.3 Mg ha-1) 
1.94-3.88 Mg ha-1 

2016 Biosolids Land-

Spreading Application 
21 Mg Dry Tons ha-1 at 27% Carbon 5.67 Mg C ha-1 

2016-2018 Leaf Litter 

Production 
Unknown NA 

Total Estimate of Known Carbon Inputs (2013-2016) 14.09 -16.03 Mg C ha-1 

 

5.8 Determining Factors of Soil Organic Carbon Sequestration 

Determining factors of SOC stocks and SOC sequestration rates are represented by the physical and 

chemical constraints of a soil system such as the total volume and the concentration of chemical 

bonding sites available to store and protect SOC compounds from SOC decomposition agents (Lemus 

& Lal, 2005).  

Percent Soil Organic Carbon 

Within the Study Area the mean percent soil organic carbon (%SOC) content ranged from 1.64 ± 0.04 

% (Control) to 1.88 ± 0.08% (C+BS) at the 0-15 cm depth interval, and from 1.04 ± 0.04% (C+BS) to 

1.41 ± 0.09 % (W+BS) at the 15-30 cm depth interval. The mean SOC stocks and standard error of 

the mean bars (SEM) for each sampling location and depth interval are presented in Figure 9.  
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Figure 9: Mean percent (%) Soil Organic Carbon and standard error of the mean bars for each 

sampling location and sampling depth interval combination. 

When testing the parametric assumptions of the %SOC data, the data from the 0-15 cm sampling 

depth intervals passed the normal distribution test (Shapiro-Wilk test; p=0.05) and failed the variance 

of the residuals homogeneous test (Levene’s test; p=0.05). Therefore, the Welches ANOVA was used 

to compare the means of %SOC content between sampling locations at the 0-15 cm depth interval. 

The Welches ANOVA indicated that at least one significant difference was detected between the 

mean %SOC content data between two or more sampling locations at the 0- 15 cm (df = 43.68, F = 

3.51, p <0.05). A post hoc pairwise comparison of the data conducted using the Games-Howell test. 

The results indicated that the mean %SOC content at the C+BS sampling location was significantly 

higher than both the Control sampling location (p=0.05). The pairwise comparisons of %SOC content 

results from the 0-15 cm depth interval are presented in Table 6.  

When testing the parametric assumptions of the %SOC data of the 15-30 cm sampling depth interval, 

the data failed both the normal distribution test (Shapiro-Wilk test; p=0.05) and the variance of the 

residuals homogeneous test (Levene’s test; p=0.05). Therefore, the data was log(10) transformed and 

reanalyzed.  When testing the parametric assumptions of the log(10) transformed %SOC data, the 

data failed the normal distribution test (Shapiro-Wilk test; p=0.05) and passed the variance of the 
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residuals homogeneous test (Levene’s test; p=0.05). Therefore, the Kruskal-Wallis test was used to 

compare the means of %SOC content between sampling locations at the 15-30 cm depth interval. The 

Kruskal-Wallis analysis indicated that at least one significant difference was detected within the 

log(10) %SOC content data between two or more sampling locations (df = 2, H= 11.195, p=<0.05). A 

pairwise comparison of the %SOC content within the Kruskal-Wallis outcomes was conducted using 

the post hoc Dunn’s Test adjusted with the Holm-Bonferroni correction. The pairwise comparison 

results (Table 7) indicated that the mean %SOC content at the W+BS sampling location was 

significantly higher (p=0.05) than both the Control, and C+BS sampling locations at the 15-30 cm 

depth interval. 

Table 6: Pairwise comparison of mean %SOC content between sampling locations at the 0-15 

cm depth interval using the post hoc Games-Howell test (p = 0.05) within the Welches ANOVA 

outcomes (bold text highlights significant outcomes) 

Pair wise Comparisons of Sampling Locations df t p 

W+BS vs Control   39 2.95 0.01 

Control vs C+BS  47 0.92 0.63 

W+BS vs C+BS 35 3.69 <0.01 

 

Table 7: Pairwise comparisons of mean log(10)%SOC content results between sampling 

locations at the 15-30 cm sampling depth interval within the Kruskal-Wallis outcomes using a 

post hoc Dunn’s Test (p = 0.05). Results were adjusted with the Holm-Bonferroni correction for 

detecting significant differences (bold text highlights significant outcomes) 

Pairwise Comparisons of Sampling Locations Z P adj 

Control vs W+BS -2.52 0.04 

Control vs C+BS  -0.65 1.00 

W+BS vs C+BS -3.17 0.004 

Soil Bulk Density 

The potential for soil to store SOC per unit volume of soil increases with soil bulk density (Lemus & 

Lal 2005). However trade-offs occur at soil bulk densities around 1.4 g/cm3 to 1.6 g/cm3 when 

vegetation growth and associated soil carbon inputs are restricted (Chaudhari, Ahire, Ahire, 

Chkravarty, & Maity, 2013). Within the Study Area, the mean soil bulk density did not exceed 1.4 

g/cm3. Across the Study Area, the mean soil bulk density ranged between 1.13 g/cm3 (C+BS) to 1.25 

g/cm3 (Control) at the 0-15 cm sampling depth interval and 1.28 g/cm3 (C+BS) to 1.38 g/cm3 (Control) 

at the 15-30 cm sampling depth interval. The mean soil bulk density and SEM for each sampling 

depth interval and sampling location are presented in Figure 10. The Study Area soil bulk density 
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results were consistent with typical soil bulk densities associated with the Midnapore, Rockyview and 

Delacour soil series (Government of Canada, 2013) (See Table A 2 and Table A 3).  

 

 

Figure 10: Soil bulk density (g/cm3) mean and standard error of the mean bars for each 

sampling location and depth interval combination 
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When testing the parametric assumptions of the soil bulk density data, the data from both sampling 

depth intervals failed the normal distribution test (Shapiro-Wilk test; p=0.05) and passed the variance 

of the residuals homogeneous test (Levene’s test; p=0.05).  Therefore, the non-parametric Kruskal-

Wallis analysis was used to compare the median soil bulk density data between sampling locations at 

each depth interval. The Kruskal-Wallis analysis indicated that at least one significant difference was 

detected within the median soil bulk density data between two or more sampling locations at both the 

0- 15 cm (df= 72 H= 13.79, p=<0.01) and the 15-30 cm (df= 72 H= 6.66, p= 0.03) sampling depth 

intervals. A pairwise comparison of the median soil bulk densities within the Kruskal-Wallis 

outcomes was conducted using the post hoc Dunn’s Test adjusted with the Holm-Bonferroni 

correction. The pairwise comparison results indicated that the median soil bulk density at the C+BS 

sampling location was significantly lower (p=0.05) than the median densities at both the Control and 

W+BS sampling locations at the 0-15 cm depth interval. At the 15-30 cm depth interval, the pairwise 

comparisons using the post hoc Dunn’s Test indicated that the median soil bulk density at the C+BS 

sampling location was significantly lower than the Control sampling location (p=0.05). The pairwise 

comparisons of median soil bulk density results are presented in Table 8.  

Table 8: Pairwise comparisons of median soil bulk density results between sampling locations at 

each sampling depth interval within the Kruskal-Wallis outcomes using a post hoc Dunn’s Test 

(p = 0.05). Results were adjusted with the Holm-Bonferroni correction for detecting significant 

differences (bold text highlights significant outcomes) 

Pairwise Comparisons of Sampling 

Locations 

Sampling Depth (cm) Z P adj 

Control vs W+BS 0-15  0.67 0.50 

Control vs C+BS  0-15 -3.50 <0.01  

W+BS vs C+BS 0-15 -2.83 <0.01 

Control vs W+BS 15-30 -1.12 0.30 

Control vs C+BS  15-30 -2.57 0.03 

W+BS vs C+BS 15-30 1.45 0.26 
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Across the 15-30 cm depth interval, the significantly lower median soil bulk density at C+BS 

sampling location compared to the other sampling sites likely inhibited the SOC stock potential by 

suppressing the total mass of SOC that could be sequestered within the volume of soil sampled.  

Soil bulk density tends to increase with depth due to shifts in organic matter content, porosity 

and compaction (Chaudhari et al., 2013). As expected, the non-parametric Wilcox signed rank test 

results indicated that the median soil bulk densities at the 15-30 cm depth interval were significantly 

higher (p=0.05) than the median soil bulk densities at the 0-15 cm depth interval at the Control and 

the C+BS sampling locations. The results for comparing median soil bulk densities across sampling 

locations between sampling depths using the Wilcox signed rank are presented in Table 9.   

 

Table 9:  Wilcoxon signed rank test (p = 0.05) results comparing the median soil bulk density 

results between the sampling depth intervals at each sampling location (bold text highlights 

significant outcomes 

Sampling locations n V p 

Control 25 27.5 <0.01 

C+BS  25 39.5 <0.01 

W+BS 25 94.5 0.11 

 

Although the median soil bulk density at the 15-30 cm depth interval of the W+BS sampling 

location was lower than the 0-15 cm depth interval, the difference was not significant.  The lack of 

significant differences in soil bulk density detected between sampling depth intervals at the W+BS 

sampling location was potentially caused by a combination of factors including; an increase in bulk 

density 0-15 cm layers bulk density resulting from 5 years of no-till (Rytter, 2016; Stahlman et al., 

2009), and a decrease in soil bulk density at the 15-30 cm layers bulk density resulting from willow 

roots penetrating the soil matrix (Kahle, Hildebrand, Baum, & Boelcke, 2007; Lemus & Lal, 2005; 

Lockwell et al., 2012), or a sample size that was too small to detect a difference. 
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Soil Organic Carbon Stocks  

The carbon sequestration potential of a new SOC sink project site depends on the initial SOC stock 

relative to the SOC stock saturation i.e. steady-state potential of the current land management practice 

(Thamo & Pannell, 2016) ( see Figure 1). Considering that agriculture has depleted North America’s 

native prairie SOC stocks by approximately 25%-50% (Alberta Agriculture and Forestry, 2001; 

Lemus & Lal, 2005; Post & Kwon, 2000), and it takes approximately 20-40 years for SOC sink 

projects to reach SOC stock saturation (Corsi et al., 2012; Government of Alberta, 2012; Sommer & 

Bossio, 2014; West & Post, 2002), it is unlikely that SOC saturation will present a SOC sequestration 

constraint within Study Area during the next 10-15 years (Sommer & Bossio 2014; Corsi et al., 2012; 

West & Post, 2002; Government of Alberta, 2012). Within the Study Area the mean SOC stocks 

ranged from 30.8 ± 1.0 Mg C ha-1 (Control) to 32.6 ± 1.4 Mg C ha-1 (W+BS) at the 0-15 cm depth 

interval, and from 19.8 ± 0.9 Mg C ha-1 (C+BS) to 27.5 ± 1.6 Mg C ha-1 (W+BS) at the 15-30 cm 

depth interval. The mean SOC stocks and standard error of the mean bars (SEM) for each sampling 

location and depth interval are presented in Figure 11.The estimated increase in total SOC stocks 

across both sampling depths (0-15 cm and 15-30 cm) from 2013 to 2018 between the Control and the 

W+BS sampling locations was 7.02 ± 1.6 Mg C ha-1 .which equates to approximately 50% of the total 

estimated sum of carbon inputs listed in Table 5.  

When converting sequestered SOC stocks (Mg C ha-1) to carbon offsets (Mg CO2e ha-1) using 

a conversion factor of 3.66 (relative difference between the mass of elemental carbon and the mass of 

CO2) the estimated carbon offset potential of the demonstration Project after 5 years of operation was 

25.7 ± 5.9 Mg CO2e ha-1. However as discussed below the differences in SOC stocks between 

sampling locations at the 0-15 cm were not significantly different and therefore further research is 

necessary to confirm these results. 
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Figure 11: SOC stock (Mg C ha-1) mean and standard error of the mean bars for each sampling 

location and sampling depth interval combination 

When testing the parametric assumptions of the SOC stocks (Mg C ha-1) the sampling data 

from both depth intervals (0-15 cm and 15-30 cm) were normally distributed (Shapiro-Wilk test; 

p=0.05), and only the 0-15 cm depth interval indicated that the variances of the residuals were 

homogeneous (Levene’s test; p=0.05).  Therefore, the Analysis of Variance (ANOVA) was used to 

compare the mean SOC stocks between sampling locations at the 0-15 cm depth interval and the 

Welches ANOVA was used to compare the means of SOC stocks between sampling locations at the 

15-30 cm depth interval.  The ANOVA indicated that no significant differences in SOC stock means 

were detected between sampling location SOC stock means at the 0-15 cm depth interval (df = 72, F 

= 0.46, p = 0.63). The Welch’s ANOVA indicated that at least one significant difference in SOC 

stock means between sampling locations was detected at the 15-30 cm depth interval (df = 72, F = 

8.85, p <0.01). A post hoc pairwise comparison of the mean SOC stocks at the 15-30 depth interval 

was conducted using the Games-Howell test. The results indicated that the mean SOC stocks at 

W+BS sampling location were significantly higher than both the C+BS and the Control sampling 

locations (p=0.10) at the 15-30 cm depth interval. The pairwise comparisons of mean SOC stocks at 

the 15-30 cm depth interval are presented in Table 10. 
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Table 10: Pairwise comparison of mean SOC stocks between sampling locations at the 15-30 cm 

depth interval using the post hoc Games-Howell test (p = 0.10) within the Welches ANOVA 

outcomes (bold text highlights significant outcomes) 

Pair wise Comparisons of Sampling Locations t p 

W+BS vs Control   2.2 0.08 

Control vs C+BS  2.0 0.11 

W+BS vs C+BS 4.1 <0.01 

 

Because significant difference in bulk density were detected between sampling locations at 

each sampling depth, questions arises on whether soil bulk density or %SOC content was responsible 

for driving or inhibiting differences detected in SOC stocks between sampling locations. Figure 12 

presents the measured SOC stocks at the Study site with arrows indicating which sampling location 

results had significantly different %SOC and soil bulk density relative to one another at each 

sampling depth.  These findings suggest that differences in soil bulk density between sampling 

locations at the 0-15 cm sampling depth potentially supressed the SOC stock outcomes at the C+BS 

sampling location relative to the Control and the W+BS sampling locations. However, these results 

do not indicate that differences in soil bulk density supressed or amplified the Control and W+BS 

SOC stocks relative to one another. At the 15-30 cm sampling depth interval, it appeared that the 

significantly higher %SOC content at the W+BS sampling location relative to the other two sampling 

sites was the main driver of SOC stocks and that any potential amplification or suppression of SOC 

stocks resulting from differences in soil bulk density should only be considered when assessing 

relative SOC stock differences between the Control and C+BS sampling locations.  



 

55 

 

Figure 12: Potential influence of significant differences in percent soil organic carbon (%SOC) 

content and soil bulk density (BD) between sampling locations that may have affected the SOC 

stock outcomes. Note: *indicates that significant differences in BD at the 15-30 cm depth 

interval only occurred between the Control and the C+BS sampling locations and not the 

W+BS sampling location.  

Due to the inconsistent results reported within the literature for similarly designed SOC 

monitoring studies at local and global scales, the inconsistency of results between the 0-15 cm 

sampling depth and the 15-30 cm sampling depth intervals were anticipated.  Out of the previous 

SOC sequestration studies reviewed (see section 3.6), the closest analog for this  study based on 

biophysical and climatic conditions was the VandenBygaart, Gregorich, & Angers (2003) study of 12 

no-till projects located across western Canada. This meta-study analysis reported a SOC sequestration 

rate of 10.61± 4.76 Mg CO2e ha-1 yr-1 for 11.4 ± 1.5-year-old willow plantations at sampling depths 

ranging from 10-45 cm. Because the average age of the studies included in this Canadian-based meta-

analysis were approximately twice as old as this five-year-old study, the outcomes of this no-till 

agriculture meta-analysis may be used as a benchmark for projecting future SOC stock trends at the 

Study Area. Moreover, the sampling depths of benchmark studies should also be considered.  Studies 
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with deeper sampling depths are expected to have higher SOC stock estimates than studies with 

shallower sampling depths.  

Based on SOC sink project age and recommended management practice (RMP) treatments 

applied, two potentially more comparable SOC monitoring studies for the current demonstration 

Project conditions include a three year old willow plantation located in Southwestern Quebec (Zan, 

Fyles, Girouard, & Samson, 2001) and a five year old willow plantation study located in Sweden 

(Rytter, Rytter, & Högbom, 2015). The SOC sequestration rates of  these projects ranged from no 

significant difference (sampling depth 30 cm) (Rytter, Rytter, & Högbom, 2015) to 0.15 Mg CO2e ha-

1 yr-1 (sampling depth 60 cm) (Zan, Fyles, Girouard, & Samson 2001). Remarkably, despite large 

variability and differences in the physical and chemical conditions of the soil properties influencing 

SOC stocks and SOC sequestration rates between sampling locations at the Study Area, detectible 

differences in SOC stocks between the Control and the W+BS sampling locations were still observed 

at this early stage in the demonstration Project and were substantially larger (3.3 ± 1.2 Mg CO2e ha-1 

yr-1) than reported in similarly aged willow plantation studies. The higher SOC sequestration/ CO2e 

offset results from this study relative to the other willow plantation studies indicates the SOC 

sequestration benefits of including carbon and nutrient rich biosolids into willow plantation systems. 

Soil SOC stocks generally decrease with depth due to a decrease in biological activity (Don, 

Schumacher, Scherer-Lorenzen, Scholten, & Schulze, 2007; Franzluebbers, 2005; Olson & Al-Kaisi, 

2015). The non-parametric Wilcoxon signed rank test was used to compare median SOC stocks 

between sampling depth intervals at each sampling location.  As expected, the study results indicated 

that median SOC stocks decreased significantly with depth (p=0.10) at all three sampling locations 

within the Study Area. The Wilcoxon signed rank test results comparing median SOC stocks across 

sampling depths at each sampling location are presented in Table 11.  

Table 11: Wilcoxon signed rank test (p = 0.10) results for comparing the median SOC stocks 

(Mg C ha-1) between the sampling depths at each sampling location (bold text highlights 

significant outcomes) 

Sampling Locations V p 

Control 302 <0.01  

C+BS  325 <0.01 

W+BS 232 0.06 
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Notably, the difference in median SOC stocks between sampling depth intervals was the least 

pronounced at the W+BS sampling location (p=0.06). This outcome is potentially a result of the 

willow root litter releasing more carbon compounds into the 15-30 cm depth interval relative to the 

agricultural crop root litter production at the Control and C+BS sampling locations (Hu et al., 2016; 

Olson & Al-Kaisi, 2015). After investigating SOC contributions of willow root and leaf litter, Hu et 

al., (2016) concluded that willow root litter is the main driver of SOC sequestration on marginal 

agricultural land afforested with willow.  Hu et al., (2016) suggests that fine root litter contributes 

more to SOC sequestration and stabilization than leaf litter because root exudes support soil aggregate 

formation which physically protects SOC compounds from decomposition agents. Root litter also has 

a higher proportion of recalcitrant carbon compounds (e.g. lignin) that are more resistant to 

decomposition than the more labile leaf litter compounds Hu et al., (2016). This differential SOC 

stock contribution from root and leaf litter could provide some explanation into why significantly 

higher median SOC stocks were detected at the W+BS sampling location compared to the other 

sampling locations at the 15-30 cm depth interval. 

Soil pH 

Since pH is influenced by soil mineral cation concentrations (e.g. calcium and magnesium), soil pH is 

a strong predictor for SOC stabilization mechanisms (microbial activity, vegetation growth, soil 

aggregate structure, etc.) (Rowley et al., 2018). Neutral pH ranges (6.5 to 7) are optimal for biomass 

production and cation exchange capacity, while strongly to very strongly acidic soil conditions tend to 

suppress SOC Stocks and sequestration rates by reducing bio-available cation concentrations, 

inhibiting vegetation growth, and suppressing soil microbial activity (Alberta Agriculture and Food, 

2008 pg. 42-44). 

Within the Study Area, the mean soil pH levels ranged from 4.91 (very strongly acidic) to 5.31 

(strongly acidic) at the 0-15 cm depth interval and 5.34 (strongly acidic) to 6.03 (slightly acidic) at the 

15-30 cm depth interval (Alberta Agriculture Food and Rural Development, 2002).  In general, the 

Study Area mean pH results were more acidic than are typical for the soil series associated with this 

location; Midnapore (pH = 6.9), Rockyview (pH = 7.4), Delacour (pH = 6.0) (See Table A 2 and 

Table A 3). The study results for the mean and standard error of the mean of the soil pH for each 

sampling location and sampling depth interval combination are presented in Figure 133. 
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Figure 13: Soil pH mean and standard error bars for each sampling location and sampling 

depth interval 
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When testing the parametric assumptions of the pH data, the 0-15 cm depth interval data 

failed the normal distribution test (Shapiro-Wilk test; p=0.05) and passed the variance of the residuals 

homogeneous test (Levene’s test; p=0.05); while the 15-30 cm depth interval passed the normal 

distribution test and failed the variance of the residuals homogeneous test. Therefore, the non-

parametric Kruskal-Wallis was used to compare the median soil pH between sampling locations at the 

0-15 cm depth interval and the Welches ANOVA was used to compare the mean soil pH between 

sampling locations at the 15-30 cm.  

The Kruskal-Wallis indicated that there were no significant differences in median soil pH 

between sampling locations at the 0-15 cm sampling depth interval (df= 41, H=4.55, p = 0.10). The 

Welches ANOVA indicated that there was at least one significant difference in mean soil pH between 

two or more sampling locations at the 15-30 cm depth interval (df = 22, F=11.34, p<0.01).  

The post hoc pairwise comparison of the 15-30 cm depth interval data using the Games-

Howell test indicated that the mean soil pH at the C+BS sampling location was significantly lower 

both the Control and the W+BS sampling locations (p<0.05). The results of the pairwise comparison 

of mean soil pH means within the Welches ANOVA results at the 15-30 cm using a post hoc Games-

Howell test (p = 0.05) are presented in Table 12.  

Table 12: Pairwise comparison of the mean pH results at each sampling location across the 15-

30 cm sampling depth interval using the post hoc Games-Howell test (p = 0.05) within the 

Welches ANOVA results (bold text highlights significant outcomes) 

Pairwise Comparisons of 

Sampling Locations 

Sampling Depth (cm) t df p 

Control vs W+BS 15-30 0.16 27 0.99 

Control vs C+BS  15-30 4.02 19 <0.01 

W+BS vs C+BS 15-30 3.14 17 0.02 

 

Because soil pH is a key driver of SOC sequestration and retention rates, the significantly lower pH 

levels at the 15-30 cm depth interval of C+BS sampling location likely suppressed the sites SOC 

sequestration and retention potential relative to the other two sampling locations. Therefore, it was 

unclear if the significantly lower SOC stocks at the 15-30 cm sampling depth interval of the C+BS 

sampling location were a result of the land management practice at this location and depth or because 

of the relatively low pH levels. 
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Soil Texture 

Out of the three main soil fractions (sand, silt, and clay), clay has the greatest positive influence on 

SOC sequestration rates and retention periods due to its relatively high mineral concentrations ( Lal, 

2002; McClean et al., 2015; Zhao, Sun, Zhang, Yang, & Drury, 2006). Likewise, sandy soils tend to 

have more variable SOC stocks and shorter SOC retention periods due to their lower mineral 

concentrations (Necpálová et al., 2014; Wijesekara et al., 2017). The soil within the Study Area was 

sandy loam with  average clay contents ranging between 9%-12% which were approximately 10%-

15% lower than typical clay content ranges for the Midnapore,  Rockyview, and  Delacour soil series 

present within the Study Area (see Table A 2 and Table A 3) (Government of Canada, 2013). 

Figure 14 and Figure 15 present the soil texture measured at each sampling location and the 

0-15 cm and the 15-30 cm depth interval respectively as a percentage of the mean percent (%) weight 

composition and standard deviation bars of the sand (50 μm - 2 mm), silt (2 μm - 50 μm) and clay (<2 

μm) soil fractions. Standard deviations bars were selected instead of standard error of the mean bars 

because the variations of percent soil fractions were too small for the standard error bars to be visible 

when graphed.   
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Figure 14: Soil classification and texture at the 0-15 cm depth interval of each sampling location 

represented by the mean percent (%) composition of each soil fraction (sand, silt, and clay) and 

standard deviation bars 
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Figure 15: Soil classification and texture at the 15-30 cm depth interval of each sampling 

location represented by the mean percent (%) composition of each soil fraction (sand, silt, and 

clay) and standard deviation bars 

When testing the parametric assumptions of the soil clay content data, both depth intervals (0-

15 cm and 15-30 cm) failed the normal distribution test (Shapiro-Wilk; p=0.05) and passed the 

variance of the residuals homogeneous test (Levene’s test; p=0.05).  Therefore, the non-parametric 

Kruskal-Wallis analysis was used to compare the median percent clay content between sampling 

locations at each depth interval. The Kruskal-Wallis indicated that at least one significant difference 

was detected within the median percent clay content results between two or more sampling locations 

at both the 0-15 cm (χ2= 26.5, df = 2, p < 0.01) and the 15-30 cm (χ2= 16.6, df = 2, p = < 0.01) 

sampling depth intervals. Therefore, a pairwise comparison between sampling locations across each 

sampling depth interval was conducted using a post hoc Dunn’s Test adjusted with the Holm-

Bonferroni correction.  The pairwise comparisons of mean percent clay content across sampling depth 

intervals and between sampling locations are presented in Table 13. 
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Table 13: Pairwise comparisons of mean percent clay content across sampling depth intervals 

and between sampling locations within the Kruskal-Wallis outcomes using a post hoc Dunn’s 

Test (p = 0.05) results adjusted with the Holm-Bonferroni correction (bold text highlights 

significant outcomes)   

Pairwise Comparisons of 

Sampling Locations 

Sampling depth (cm) Z padj 

Control vs W+BS 0-15 5.15 <0.001 

Control vs C+BS  0-15 -2.42 0.023 

W+BS vs C+BS 0-15 2.64 0.047 

Control vs W+BS 15-30 4.05 <0.001 

Control vs C+BS  15-30 -1.62 0.31 

W+BS vs C+BS 15-30 2.36 0.06 

 

Within the Study Area, the W+BS sampling location exhibited the significantly lower median 

percent clay content than both the C+BS and the Control sampling locations at the 0-15 cm depth 

interval, and the Control sampling location at the 15-30 cm depth interval (p=0.05).  Because clay 

content is a key driver of SOC sequestration and retention rates, the lower clay content at the W+BS 

sampling location may have suppressed the W+BS SOC sequestration and retention potential relative 

to the Control and C+BS sampling locations. 

Soil Minerals 

Soil minerals, especially calcium and magnesium cations, play an important role in SOC 

sequestration and stabilization through the development of organo-mineral complexes (Grigal & 

Berguson, 1998; Heim, Wehrli, Eugster, & Schmidt, 2009; Merino, Nannipieri, & Matus, 2015). 

These organo-mineral complexes support SOC compound stabilization by providing both physical 

and chemical protected from microorganism degradation.  Soil mineral concentrations are influenced 

by several biophysical, chemical, and land management factors including; slope position, parent 

material, pH, soil drainage patterns, clay content, and soil amendments (Heim et al., 2009; Jodral-

Segado, Navarro-Alarcón, De La Serrana, & López-Martínez, 2006). 

Soil minerals were not analyzed during this study. However SYLVIS  collected the soil 

mineral (calcium, magnesium, iron, and sodium) and soil chemistry (pH, cation exchange capacity) 

data during routine environmental monitoring events and the soil data for immediately before (2013) 

the first biosolids application and a year after (2017) the biosolids application  are presented in 

Appendix B (Table B 8 and Table B 9).Appendix B (Table B8) The SYLVIS environmental 

monitoring results indicated that the Study Area soils are non-calcareous which is consistent with 
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regional soil studies (Alberta Forestry and Agriculture, 2016). The Study Area magnesium 

concentrations were within the range of values (60-300 mg/Kg) which is categorized as medium by 

Horneck, Sullivan, Owen, & Hart, (2011). Regional maps of relative exchangeable calcium and 

magnesium concentrations in Alberta soils were not available. The canola council of Canada (2017) 

indicates that calcium and magnesium deficiencies are rare in Alberta soils, although calcium 

deficiencies are possible in soils with strong acidity and sandy textures.  

Cation Exchange Capacity 

Cation Exchange Capacity (CEC) is an estimate of soil’s capacity to retain and release 

positively charged ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), sodium (Na+), 

hydrogen (H+) and aluminum (Al3+) and is an indicator of soil fertility (Alberta Agriculture and Food, 

2008 pg. 49). Soils with high CEC tend to have high clay and organic matter content while with soils 

with low CEC tend to have high sand and low organic content (Alberta Agriculture and Food, 2008 

pg. 109).  The CEC was not measured during this study, however the SYLVIS 2013 environmental 

monitoring results (n=4)Appendix B (Table B8)  show that the average CEC within the Study Area 

was on the high end of the typical CEC  range (5-15 meq/100g) for sandy loams in Alberta (Alberta 

Agriculture and Food, 2008 pg. 109).  The CEC does not drive SOC sequestration, however it is a 

helpful indicator of a site’s potential to sequester and stabilize SOC stocks. 

5.9 Reducing Factors of Soil Organic Carbon Sequestration 

Reducing factors are land management practices and site conditions which degrade or deplete SOC 

stocks by accelerating SOC decomposition rates (Smith et al., 2012).  Any land management practice 

or site condition that increases exposure of SOC compounds to oxidative or decomposition agents 

will reduce SOC stocks. Soil microbial communities are key regulators of SOC dynamics and their 

influence on SOC sequestration and respiration rates depends on how often they are disturbed, how 

well they are protected from predators and decomposition agents, and what types of organic matter 

they have access to consume (Six, Frey, Thiet, & Batten, 2006).   

Microbial community composition was not monitored during this study or during the historic 

SYLVIS environmental monitoring events. However, because microbial communities are responsible 

for the partitioning of fresh organic matter into carbon dioxide and SOC compounds, future 

monitoring of microbial activity and community composition in conjunction with SOC monitoring 

could provide valuable insights into the optimal conditions for SOC sequestration in Willow + 
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Biosolids systems. If effective, monitoring of fungal and bacterial community composition could also 

be used as a strategy to signal optimal timing of more intensive SOC stock monitoring events.  

Tillage Practices 

Soil disturbance is the primary mechanism of SOC depletion in agricultural systems (Post & Kwon, 

2000).  When soil aggregates are broken apart during soil disturbance events e.g. cultivation, 

harrowing, etc., the newly exposed SOC compounds become more susceptible to oxidation and 

microbial degradation (Smith et al., 2012). As little as one pass of cultivation can negate several years 

of SOC sequestration. As indicated in section 4.2, reduced tillage was practised at the C+BS sampling 

location and deep tillage was practised at the W+BS sampling location. During demonstration Project 

operations, the C+BS sampling location received reduced tillage annually and received numerous 

agriculture machinery passes during drill seeding and applications of fertilizer and pesticides as 

presented in Appendix B. 

Tillage practices influence the composition of the microbial community, which in turn 

influences SOC sequestration and respiration rates. Regularly tilled soils of agricultural systems favor 

bacterial dominated microbial communities because the soil disturbances disrupt and break down 

fungal communities. No-till and agroforestry systems are believed to favor fungal dominated 

microbial communities (Lockwell et al., 2012) and sequester more SOC because fungal cells have a 

higher carbon to nitrogen (C:N) ratios than bacteria cells and fungal hypha support micro-aggregates 

formation which physically protect SOC compounds from decomposing agents (Six et al., 2006; Torri 

et al., 2014).  Although there is still some debate on how other soil factors including chemical, 

physical, and biological characteristics play a role in how the microbial community compositions 

respond to tillage and agroforestry practices (Hydbom, 2017). 

Soil Organic Matter Inputs 

In some circumstances the addition of fresh organic matter to soil has been linked to temporary SOC 

stock losses (Corsi et al., 2012; Fontaine, Bardoux, Abbadie, & Mariotti, 2004; R. M. Rytter, 2016; 

Stockmann et al., 2013) that can last for several years (Pacaldo, Volk, & Briggs, 2013b). This 

phenomenon is known as  “soil priming” and it is caused by an exponential surge in bacterial 

dominated microbial activity resulting from a rapid increase in labile organic matter (McClean et al., 

2015). After the fresh labile organic matter is consumed, the exponentially larger microbial 

community begins consuming older and less labile compounds within the SOC stocks. The 
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mechanisms controlling soil priming events occurring after influxes in labile organic matter are not 

fully understood, but it is presumed that priming events are largely dependent on the physio-chemical 

and biological conditions of the soil (McClean et al., 2015; Merino et al., 2015). 

Future studies of microbial community composition in Willow + Biosolids systems would 

provide valuable insights into the optimal forms and rates of biosolids inputs that support SOC 

sequestration processes. Because willow/agroforestry systems generally favor fungal dominated 

microbial communities and biosolids are known to increase the proportion of soil bacteria (Cogger, 

Bary, Kennedy, & Fortuna, 2013), the competing community composition pressures could potentially 

explain unexpected periods of SOC stock losses or low sequestration rates during the Willow + 

Biosolids system project lifespan. Although biosolids landspreading has been linked to increased 

SOC sequestration rates, this outcome may largely depend on the relative application rates of 

biosolids land-spreading events. If biosolid application rates are too high, a rapid shift towards 

bacterial dominated microbial communities could reduce total SOC stocks.  For example Jin, 

Johnson, Haney, & Arnold, (2011) reported that following an 8 year study of annual biosolids 

application SOC mineralization rates were significantly higher at sites which received a total of 45 

Mg ha−1 or more of Class B biosolids. Meanwhile, SOC mineralization rates remained stable at 

biosolid application rates below 45 Mg ha−1. 

With regards to the Study Area, the significantly lower SOC stocks at the 15-30 cm depth 

interval of the C+BS sampling location relative to the Control and the W+BS sampling locations 

could be related to soil priming because willow roots were not available to absorb the excess biosolid 

nutrients and produce willow root exudes that were more resistant to decomposition than the labile 

biosolids carbon compounds.  

5.10 Summary of SOC stocks and SOC dynamics Co-factor Results 

The study data suggest that biosolids land-spreading application and willow plantation land 

management practices had insignificant to weakly positive effects on the SOC stocks within the 

Project Area.  Because significant differences in the SOC dynamic cofactors between sampling 

locations were also detected, it was unclear to what degree the SOC stock levels were influenced by 

differences in land management practices and by differences in soil physio-chemical conditions 

across the Study Area.  More time is required to conclusively assess the influence of Willow + 

Biosolids systems on SOC stocks. Based on the general consensus within the research community 
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that SOC sink projects require a minimum of 10 years to generate conclusive results, it is 

recommended that the next intensive SOC stock monitoring event at the Study Area/demonstration 

Project site occur after 2023. This longer time period is expected to allow for the SOC sequestration 

effects of land management practices to override minor differences in the physio-chemical soil 

conditions between sampling locations. 

Based on the SOC stock and SOC dynamics co-factors analyzed and considered in this study,   

provides a high-level overview of the net number of limiting, determining, and reducing factors 

identified at each sampling location within the Study Area. This table also highlights where soil 

conditions were not homogeneous between sampling locations which violates the assumption of the 

space-for-time study design.  It is also important to note that   only notes the net number of positive or 

negative influences on SOC dynamics considered between sampling locations and does not account 

for relative differences in strength between influencing factors.
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Table 14: Summary of relative influences of limiting, determining and reducing factors on SOC stocks compared between Control, C+BS, 

and W+BS sampling locations 

 Control C+BS W+BS Notes 

Legend: o = Negligible Influence; ? = Unknown Influence; - = Negative Influence; + = Positive Influence 

Limiting Factors 

Perennial Small 

Seed Crops vs. 

Annual Crops (Root 

and Leaf Litter 

Production) 

o o + 

The Milbrook willow cultivar at the W+BS sampling location produced an 

unknown mass of leaf litter and an estimated total of 1.94-3.88 Mg ha-1 of root litter 

during the first five years of project implementation. The root and leaf litter 

production of small grain agricultural crops are assumed to be negligible by 

comparison.  

Determining Factors 

Baseline SOC 

Stocks 
+ + + 

All the sampling locations within the Study Area are presumed to have started with 

the same level of depleted SOC stocks prior to demonstration Project 

implementation because of being subject to the same agricultural practices for 

several decades. 

Bulk Density  

0-15 cm 
o - o 

Across the 0-15 cm depth interval, the mean soil bulk density at the C+BS 

sampling location was significantly lower than the mean soil bulk densities at the 

Control and the W+BS sampling locations (p=0.05) (See section 5.8) 

Bulk Density 15-30 

cm 
+ - o 

Across the 15-30 cm depth interval, the mean soil bulk density at the C+BS 

sampling location was significantly lower than the mean soil bulk density at the 

Control sampling location (p=0.05) (See section 5.8) 
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Table 14 continued: Summary of relative influences of limiting, determining and reducing factors on SOC stocks compared between 

Control, C+BS, and W+BS sampling locations  

 Control C+BS W+BS Notes 

Legend: o = Negligible Influence; ? = Unknown Influence; - = Negative Influence; + = Positive Influence 

Soil pH  

0-15 cm 
o o o 

Across the 0-15 cm depth interval, no significant differences in mean soil pH 

were detected between the three sampling locations (p=0.05) (see section 5.8)  

Soil pH  

15-30 cm 
o - o 

Across the 15-30 cm depth interval, the mean soil pH at the C+BS sampling 

location was significantly lower Control and the W+BS sampling locations 

(p=0.05) (see section 5.8) 

Soil Texture  

0-15 cm 
+ + o - 

Across the 0-15 cm depth interval, the mean percent (%) clay content at the 

W+BS sampling location was significantly lower than the Control and the 

C+BS sampling locations, and the mean %clay content at the C+BS sampling 

location was significantly lower than the mean %clay content at the Control 

sampling location (p=0.05) (See section 5.8) 

Soil Texture  

15-30 cm 
+ o - 

Across the 15-30 cm depth interval, the mean percent % clay content at the 

W+BS sampling location was significantly lower than the mean % clay 

content at the Control sampling location (see section 5.8) 

Soil Minerals  

0-15 cm,  

15-30 cm 

? ? ? 
Currently, there is insufficient data to compare soil mineral concentration data 

between sampling location  

Cation Exchange 

Capacity (CEC) 

 0-15 cm,  

15-30 cm 

? ? ? 
Currently, there is insufficient data to compare CEC data between sampling 

location. 
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Table 14 continued: Summary of relative influences of limiting, determining and reducing factors on SOC stocks compared between 

Control, C+BS, and W+BS sampling locations  

 Control C+BS W+BS Notes 

Legend: o = Negligible Influence; ? = Unknown Influence; - = Negative Influence; + = Positive Influence 

Reducing Factors 

Site Preparation 

(2013) i.e. Biosolids 

Incorporation, and 

Deep Till 

- - - - 

During site preparation the Control and C+BS sampling location received 

reduced till and biosolids incorporation, while the W+BS sampling location 

received deep till and biosolids incorporation (see section 4.2) 

Tillage Practices 

(2014-2018) 
- - o 

The W+BS sampling location was the only site where no-till agriculture was 

practiced 

Soil Priming 

Induced by Biosolids 

Inputs 

o ? ? 

More research is required to evaluate the influence of biosolids on SOC 

dynamics and the circumstances in which biosolids land-spreading application 

rates or methods could shift SOC dynamics between net sequestration and 

respiration.  

Net balance of the 

number of positive 

and negative 

factors influencing 

SOC stocks 

+4 -4 -2 

These results indicate that the Control sampling location had substantially 

better environmental conditions for stabilizing sequestered SOC than both of 

the W+BS and the C+BS sampling locations.  

 

Based on the net balance results tabulated in  , it appears that soil physio-chemical conditions put it at a SOC sequestration disadvantage 

relative to the Control and the C+BS sampling locations. Therefore, if the soil physio-chemical conditions had been more consistent across the 

Study Area, this study would have likely reported higher relative SOC stocks at the W+BS and the C+BS sampling locations compared to the 

Control sampling location.
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Section 4—Synthesis 
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Chapter 6 

Discussion, Recommendations, and Conclusions 

6.1 Recommendations for Future Willow + Biosolids Project Field Study 

Design and Data Collection Methodologies  

In order for Alberta soil-based carbon offset credits to become a viable trading commodity, SOC 

quantification protocols must satisfy stringent, methodological, statistical, auditing, and economic 

standards to earn market confidence (Poudyal, Siry, & Bowker, 2011). To reconcile these often 

competing data quality (validation and verification) and cost management objectives, SOC 

quantification protocols should be strategic in selecting study designs, biophysical parameters, soil 

analysis methods, and project locations to optimize study design statistical power and cost ratios. 

Quantification protocol study designs should also be (1) standardized enough to be universally 

reproducible, (2) flexible enough to accommodate Alberta’s range of biophysical and climatic 

conditions, and (3) simple enough for landowners or other stakeholders to conduct easily.   

Another important and potentially overlooked consideration for developing soil-based carbon 

offset quantification protocols are the perceptions, cultural norms, and expectations of the land 

owners considering adoption of COP21 RMPs to earn carbon offset credits.  To develop successful 

soil carbon offset policy incentives that increase the “carbon farming” land base, SOC offset policies 

and marketing programs should be mindful of the various potential cultural, technical, and 

administrative barriers that could impede RMP adoption (Olander et al., 2011). 

The following sections summarize the key field study design considerations, challenges, 

opportunities in need of attention before the environmental and societal value of developing and 

implementing a customized carbon offset protocol for Willow + Biosolids systems can be 

comprehensively assessed. 

6.2 Field Study Designs for Measuring Soil Organic Carbon Stocks 

One of the primary environmental barriers to cost effectively measuring SOC stocks accurately is the 

natural spatial and temporal variation that occurs across biogeophysical and climatic conditions that 

influences SOC sequestration rates and stability (Heim et al., 2009; Necpálová et al., 2014). To 

overcome this challenge, SOC stock monitoring study decisions should focus on systematically 
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partitioning the SOC stock noise caused by natural biophysical variation from the SOC stock signals 

induced by new RMP SOC sequestration land use treatments.  By separating SOC stock signals from 

noise and minimizing introduced systematic (i.e. sampling) error, the sample size (i.e. the cost) 

necessary to satisfy the carbon offset market’s data verification and validation standards decreases.  

Study design formats have a strong influence on how variances in SOC stocks and co-factors 

are controlled and evaluated (Heim et al., 2009; Putten & Knippers, 2010). Because the 

demonstration Project was already in operation at the time of this study; a mensurative space-for-time 

substitution (chronosequence) experiment design was the only option available to investigate the 

effects of biosolids land-spreading application and willow plantations on soil organic carbon (SOC) 

stocks within the Study Area.  Although the arrangement for sampling locations relative to one 

another was not ideal for controlling natural environmental variation across the Study Area, it was the 

best approach given the pre-existing land management practices that were established by SYLVIS in 

2013.  

The space-for-time study design is standard for most SOC monitoring studies at the farm 

scale (Smith et al., 2012).  This paired study design approach uses the differences measured in SOC 

stocks between the treatment and the control sampling locations to represent the net SOC 

sequestration effects of the RMP treatments (Smith et al., 2012).  The advantage of the space-for-time 

study design is its ability to maintain relative differences in SOC stocks between sampling locations 

regardless of regional SOC stock gains or losses trends caused by annual climatic variation (Smith et 

al., 2012; Olander et al., 2011). The disadvantage of the space-for-time study design for monitoring 

SOC stock dynamics is its assumption that all spatial variability of SOC stocks and co-factors are 

equivalent at all sampling locations prior to RMP implementation. Given the naturally high variability 

of SOC stocks and its co-factors (i.e. soil texture, pH, mineral content, etc.), this assumption is 

difficult to satisfy under most natural conditions (Don et al., 2007; Jandl et al., 2014; Johnson & 

Miyanishi, 2008) – as was demonstrated during this study.  The space-for-time study design increases 

the risk of falsely under or over estimating the effects of RPM SOC sequestration treatments when 

natural biophysical variation is not controlled or accounted for (Maillard et al., 2017).  

The time-for-time study design is a common alternative to the space-for-time study design  

(Blois et al., 2013) and is generally used for SOC stock process-modelling studies  (Olander & 

Haugen-Kozyra, 2012). The time-for-time study design establishes a SOC stock base-line prior RMP 

treatment applications and then repeatedly measures the same locations within the Study Area at 
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regular time intervals.  The advantages and disadvantages of the time-for-time study design and the 

space-for-time study design are reciprocal (Olander et al., 2011). The repeated measures approach of 

the time-for-time study design minimizes natural variation, however the potential effects of annual 

climate fluctuations on SOC stocks are not accounted for. Therefore some advocate for a hybrid study 

design approach to counteract the spatial, temporal, and climatic variation limitations of these 

individual study design approaches (Carter & Gregorich, 2006 pg. 50; Hooten, Wikle, Sheriff, & 

Rushin, 2009; Maillard et al., 2017).  A hybrid study design approach also allows for more versatile 

analysis of the data and application of the results (Smith et al., 2012). 

For future Willow +Biosolids systems SOC monitoring, the comparative mensurative design 

used in this study could be taken a step further with a manipulative study design such as the 

randomized complete block design to gain more detailed insights into the effects of different biosolid 

application rates and different willow cultivar varieties on SOC sequestration rates.  The inclusion of 

a time-for-time feature within a study design allows for the application of SOC process modelling 

(i.e. CENTURY model) which may be used to (1) predict time frames for which changes in soil 

stocks will likely be detected (Necpálová et al., 2014), and (2) develop SOC sequestration coefficients 

based on biogeoclimatic regions similar to the Alberta conservation agriculture (no-till) quantification 

protocol. Once SOC sequestration coefficients are established for Willow + Biosolids systems, the 

SOC sink project management costs would substantially decrease because only the land management 

practices would require verification rather than the SOC stocks themselves (Olander & Haugen-

Kozyra, 2012 pg. 29).  

One prominent time-for-time SOC monitoring protocol deployed in Alberta is the Prairie Soil 

Carbon Balance Project which uses micro-plots (e.g. 4 m x 7 m, or 2 m x 5 m) with permanent 

electronic GPS markers. The GPS marker allow for precise positioning of annual soil sample 

positions to ensure that repeat measurement locations are adjacent but not overlapping as shown in 

Figure 16 (Carter & Gregorich, 2006 pg. 57).  One option for a hybrid study design approach would 

be to use this staggered micro-plot sampling plan design in a space-for-time design to control for both 

spatial and climatic variation. 
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Figure 16: Example of a repeat measures sampling design plan based on the Prairie Soil 

Carbon Balance Project (adapted from Carter & Gregorich, 2006) 

6.3 Strategies for Controlling Soil Organic Carbon Stock Variation  

Enhancing the ability to measure and quantify SOC stock variance is vital for improving the accuracy 

of SOC stocks change detection and the reliability of soil carbon offset calculations. Millard et al., 

(2017) found that the combination of spatial scale (the size of a sampling plot) and soil profile depth 

accounts for approximately 44% of the variability measured in SOC stocks. Spatial variability of SOC 

stocks is a function of several spatio-temporal biophysical factors such as, soil type, soil texture, 

moisture, climate, vegetation community, land management etc. (Carter & Gregorich, 2006 pg. 39) 

and is generally assumed to increase with distance between sampling points or locations (Millard et 

al., 2017). Stratification of the biophysical factors that influence SOC stocks is considered to be one 

of the most efficient strategies for partitioning SOC stock signals from natural variation noise and 

improving the sensitivity of  SOC monitoring studies to detect SOC stock changes (Carter & 

Gregorich, 2006; Conant & Paustian, 2002; Karunaratne, Bishop, Odeh, Baldock, & Marchant, 2014).   
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The Study Area of this study was stratified by vegetation cover type (willow vs. small grain crops), 

tillage practices (reduced till vs. no-till), and biosolids land application treatment (treatment vs no-

treatment), and soil sampling depth intervals (0-15 cm, 15-30 cm). Based on background literature 

reviews and landowner records, the Study Area was presumed to have been subject to the same 

historical land management practices and exhibited relatively uniform biophysical characteristics 

based on prior to implementation of the study. To validate this assumption, soil parameters 

representing key SOC dynamics co-factors (pH, density, texture, %SOC) were tested. Section 5.10 

Summary of SOC stocks and SOC dynamics Co-factor Results identifies where these assumptions fell 

short.   

6.4 Soil Sampling Depth Considerations 

After spatial variability, soil depth is the second largest source of SOC stock variability (Millard et 

al., 2017). To control SOC stock variability introduced by soil sampling depth, shorter depth intervals 

ranging from 5-20 cm in length are recommended (Don et al., 2007; Olson & Al-Kaisi, 2015). 

Because SOC stocks tend to decline exponentially with soil depth (Franzluebbers, 2005), SOC 

monitoring studies generally favor shallow soil sampling depth intervals (<20 cm) (Harrison, Footen, 

Harrison, Footen, & Strahm, 2011) to capture the highest proportion of SOC stock information across 

a sampling area for the lowest sampling cost.  This shallow soil sampling strategy is endorsed by the 

international panel on climate change (IPCC), a leader in climate change research, which 

recommends a soil sampling depth of 30 cm for SOC monitoring (IPCC, 2014). Yet many (Carter & 

Gregorich, 2006 pg. 56; Hobley & Willgoose, 2010; Jandl et al., 2014; Olson & Al-Kaisi, 2015; Zang 

et al., 2018) argue that too much SOC stock information is lost when shallow sampling methods are 

applied and that it is more important to collect more accurate data from deeper soil depth intervals at 

fewer sampling sites than to collect more precise data from a higher number of shallow soil sampling 

sites. To illustrate, Harrison et al., (2011), reported that 27-77% more SOC stock was accounted for 

when sampling depths measured 80 cm or deeper.  Harrison et al., (2011) and Olson & Al-Kaisi 

(2015) report that the conclusions of SOC stock studies have changed (in terms of both gains and 

losses) when SOC stock data from deeper soil sampling intervals were included in the analysis.  

Therefore, sampling depth should be included with all SOC stock reports.  

When choosing a SOC stock sampling depth interval, it is important to consider the root 

physiology of the vegetation community occupying the sampling location and to ensure that the 

sampling depth accounts for the entire root zone (Hansen, 1993; Olson & Al-Kaisi, 2015; Rytter, 
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2016). Because Hu et al., (2016) has found that root rather than leaf litter is the primary driver of 

SOC sequestration in marginal soils of willow systems, sampling across the root zone is important for 

accurate SOC stock estimates of Willow + Biosolids systems. Hu et al., (2016) study also found that 

SOC sequestered from root litter was more stable than SOC sequestered from leaf litter because it 

contained more recalcitrant compounds, was less exposed to aerobic decomposition, and the fine 

roots enhanced aggregate formation (which provides SOC compounds with more physiochemical 

protection).  

The study used sampling depth intervals of 0-15 cm and 15-30 cm to align with the IPCC 

protocols and historic environmental monitoring events conducted by SYLVIS environmental 

monitoring data. However, for future Willow + Biosolids systems SOC stock monitoring studies it is 

recommended that the sampling depth protocol include depth intervals that are a maximum of 15 cm 

and total sampling depths are minimum of 60 cm (Carter & Gregorich, 2006 pg.56) and preferably 

100 cm (Zang et al., 2018). Because there is inconsistency within SOC stock research literature and 

SOC stock monitoring protocols (Maillard et al., 2017) soil sampling depths should be reported with 

estimate total SOC stocks and SOC sequestration rates. 

6.5 Soil Bulk Density Methods 

Soil density is a key parameter of SOC stock estimates and therefore it is important that soil density 

measures are conducted as precisely and as accurately as possible. Most soil monitoring protocols use 

a soil fixed volumetric approach to measure soil density because of methodological ease,  

(Mackenzie, 2011). Mackenzie, (2011) and Olander et al., (2011) argue that the fixed volume soil 

bulk density approach is not appropriate for multi-year paired-study assessments of SOC stocks; 

especially when soil bulk density altering land management practices (i.e. tillage, addition/removal of 

large volumes of material) or soil physio-chemical characteristics (swelling or shrinking) are 

involved. Therefore Carter & Gregorich, (2006 pg. 59),  Olander et al., (2011), and Goidts, Van 

Wesemael, & Crucifix, (2009) recommend using the mass equivalent approach to bulk density 

measurements because it significantly reduces vertical variability of SOC stock measurements by 

ensuring that the same mass i.e. same “population” of soil particles are being compared between soil 

sampling locations. The mass equivalent bulk approach is also a more appropriate method to use 

when SOC sink project sites are subject to bulk density altering land management practices (e.g. 

tillage, biosolids landspreading applications).  Additionally, Harrison et al., (2011) recommends that 

soil bulk density and %SOC concentration analysis be conducted on the same sample. During the 
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study, the soil bulk density and %SOC analysis was conducted on separate adjacent soil samples 

because the laboratory conducting the soil chemistry analysis did not use volumetric or fixed mass 

soil bulk density analysis methods. For future monitoring of Willow + Biosolids systems, it is 

recommended that the fixed mass bulk soil density method be applied and that %SOC analysis be 

conducted on the same sample. 

6.6 Sample Size Selection  

The sample size required to detect a specified change in SOC stocks is dependent on the size of the 

Study Area, the background SOC stocks, the SOC stock variance, and the desired degree of statistical 

certainty (Conant & Paustian, 2002). To estimate the sample size necessary to measure SOC stocks at 

the sampling locations with a 95% certainty within ±10% of the mean, an ad hoc power analysis was 

conducted using the Aynekulu et al., (2011) samples size formula and a SOC stock coefficient of 

variance (CV) of 27% based historic environmental monitoring data (2013-2017) collected by 

SYLVIS. Based on this sample size formula and the SYLVIS CV results, a sample size of 23 was 

recommended and a sample size of 25 was chosen to improve statistical power. When comparing to 

other sample size assessment studies, a sample size of 25 appeared appropriate. Pennock, (2004) 

recommended a sample size of 17 for a SOC stock coefficient of variation of 20%, a certainty of 0.95, 

and a power of 0.8; while Conant & Paustian (2002) estimated that a sample size of 14-28 was 

enough to detect a SOC stock change of 2.3 Mg C ha-1 with %CV ranging from 12 to 19%.  

The study SOC Stock CV results were similar to the SYLVIS results and ranged from 20-

30% across all of the sampling locations and depth intervals. The Study Area SOC stock CV results 

reported by SYLVIS and the study were also consistent with the VandenBygaart (2003) regional 

meta-analysis study of 12 SOC stock monitoring studies located across western Canada which 

reported an average SOC stock %CV of 28 ± 7%. Although the %CV used in the ad hoc power 

analysis was similar to the post hoc power analysis, the  study post hoc power analysis using the 

Aynekulu et al., (2011) formula (Equation 2) recommends a sample size 4 times larger (n=106) than 

the ad hoc power analysis for β = 0.80 and SOC stock CV=30%. This discrepancy is due to the 

relatively large differences in sampling area sizes between the study sampling plan and the SYLVIS 

environmental monitoring sampling plan.   The available sampling area for which the W+BS 

sampling plot location could be randomly positioned was only 5% (84 m2) of the size of the sampling 

area from which one of the SYLVIS environmental monitoring samples could be collected (1620 m2). 

Although the SOC stock CV results for both sampling programs were similar, the relative spatial 
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variation Study Area is much higher than the SYLVIS environmental monitoring data when sampling 

area was considered.  The difference in soil sampling techniques is one potential explanation for the 

SYLVIS environmental monitoring data exhibiting relatively low spatial variability compared to the 

study data. The  study used the point sample methods, while the SYLVIS environmental monitoring 

program used a composite (six sub-samples) sampling method; a practise known to reduce sampling 

variation relative to the point sampling method Study (Carter & Gregorich, 2006 pg. 34; Goidts et al., 

2009).   

To compare means and variation of measured SOC stock co-factors (pH, soil texture) a 

sample size of 15 was selected. Because these soil parameters typically have relatively low to 

moderate cofactor of variation values (<15%) (Carter & Gregorich, 2006), the smaller sample size 

was considered sufficient according to Carter & Gregorich (2006) recommended sample size chart 

based on CV, desired confidence and desired relative error.  

6.7 Selection of Study Statistical Certainty Parameters  

The main objective of this study was to determine if significant differences in SOC stocks can be 

detected between a control and two variations of COP21 RMP treatments for the purpose of assessing 

soil-based carbon emissions offset potential of Willow + Biosolids systems.  Because it typically 

takes SOC sink projects 7-10 years to generate statistically significant results (Saby et al., 2008; 

Smith, 2004), the likelihood of this study detecting significant differences in SOC stocks between 

sampling location at the demonstration Project site which was five years old at the time of the study 

was possible but relatively low. Because the findings of this study will likely be used to assess the 

merits of continued investigation into the soil-based carbon emissions offset credits potential of 

Willow + Biosolids systems, it was considered more important to avoid committing a Type II 

statistical error by using a stringent p value of 0.05 than to avoid a Type I statistical error with a less 

stringent p value of 0.10. Therefore, this study used a p value of 0.10 to compare SOC stocks between 

sampling locations.  It is important to note that if and when the demonstration Project site is 

monitored for soil-based carbon emissions offset credit calculations, future studies should occur after 

the demonstration Project is at least 10 years old and should be accurate and precise enough to 

calculate SOC stocks within 0.5 Mg C ha-1 of the mean 95% of the time (Paragon, 2006). 
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Because homogeneous biophysical conditions were a key assumption of space-for-time studies, a 

more stringent p value of 0.05 was chosen to compare the co-factor parameters between sampling 

locations. 

6.8 The Economics of Soil Carbon Farming in Willow + Biosolids Systems 

To be competitive in the carbon offset trading market, Smith (2004) suggests that SOC based carbon 

offset protocols have the capacity to measure SOC stock within 0.5 Mg ha-1 of the mean 95% of the 

time, generate statistically significant results within five years. Additionally, Paragon (2006) 

recommends that the total soil monitoring costs sum to less than 20% of the SOC sink’s total carbon 

offset credit value. Given that the market value for carbon offsets has doubled since 2007 ($15/Mg 

CO2e to $30/Mg CO2e) and that key elements of the Keoma demonstration Project overlap with 

currently approved offset protocols (Conservation Cropping, Biofuel Production and Usage, and 

Energy Generation from the Combustion of Biomass Waste), a pre-existing protocol (Afforestation), 

and a previously submitted protocols (Customized Agricultural Soil Carbon Sink Protocol for 

Greenhouse Gas Emission Reductions and/or Removals), there is strong indication that the 

development and utilization of a customized carbon emissions offset protocol for Willow + Biosolids 

systems is feasible.   

However, the economic success of a SOC sink project largely depends on the value of carbon 

offsets, the sites SOC sequestration potential, and the homogeneity of the SOC stocks, i.e. the sample 

sizes required to accurately and precisely detect SOC stock changes at a project site within a given 

period.  Evidently, unless the value of emissions offset credits continue to rise, there are a limited 

number of locations within Alberta where the soil conditions are favorable enough for carbon farming 

to be economically viable under the Alberta Emissions Offset System.  To move forward in protocol 

development, trade-offs and improvements are necessary in the areas of statistical performance 

expectations, SOC analysis technology performance, and SOC monitoring study design approaches. 

The following sections explore SOC monitoring study design considerations and emerging SOC 

monitoring technologies opportunities in more detail. 
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Relationships between Coefficient of Variation, Sample Size, and Minimum Detectible 

Differences 

The minimum detectible difference of a SOC stock data depends not only the variability of the data 

set but also on the relative size of the mean SOC stock difference in proportion to the total SOC stock 

pool. As SOC stocks increase via SOC sequestration, larger absolute changes in SOC stocks are 

required to detect relative percent changes in SOC stocks. Based on the background SOC stocks 

measured at the Control sampling location (30.8 Mg C ha-1 at the 0-15 cm depth interval and 23.0 Mg 

C ha -1 at the 15-30 cm depth interval), and the statistical power set at of β = 0.80 and certainty of 

95%, the expected minimum detectable difference of this  study with a sample size of 25 was >±3 Mg 

C ha-1 at the 0-15 cm depth interval and >±2 Mg C ha-1 at the 15-30 cm depth interval.  At the 0-15 

cm depth interval, the difference between the Control and the W+BS sampling locations was less than 

>±3 Mg C ha-1 (1.8 Mg C ha-1) and therefore, if the W+BS treatments did influence SOC stock 

changes it would not have been detected. At the 15-30 cm depth interval, the difference between the 

Control and the W+BS sampling locations was 4.5 Mg C ha-1 and a significant difference (p=0.1) was 

detected.  In comparison, based on a meta-analysis of 51 studies Millard et al., (2017) reported that a 

10 ha Study Area with a depth interval of 0-30 cm, would require a minimum sample size of 50 to 

detect a 15% SOC stock change, while a sample size of 25 could detect a 22% SOC stock change 

with a 95% certainty. To expand further, Table 15 provides a high-level summary of the relationships 

between coefficient of variance (CV), sample size, and minimum detectable differenced (MDD) 

influence soil monitoring costs and carbon offset revenue potential.  In many of these scenarios, 

(particularly when the desired minimum detectible differences are small and the time frames are 

short) the mass of sequestered SOC required just to cover the cost of the soil sampling collection and 

analysis may be physically impossible. 
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Table 15: Relationship between coefficient of variation, sample size and minimum detectable difference (adapted from figure 3.2 in Carter 

& Gregorich 2006) 

Coefficient 

of 

Variation 

(CV) 

Sample 

Size 

Minimum 

Detectable 

Difference 

(MDD)  

(Mg C ha-1) 

Estimated Time 

(years) to 

Sequesterb MDD 

of SOC stocks 

(Mg C ha-1) 

Estimated Cost of Soil 

Sample Collection Labor 

and Analysisa 

(For Each Soil Sampling 

Depth Interval) 

Total Mass of Sequestered SOC (Mg C) per 

Sampling Depth Interval of a Given Sampling 

Area Necessary to Make Soil Sampling and 

Analysis Cost Effectivec 

At $30 Mg CO2e At $50 Mg CO2e 

25% 

20 11 11 $1980 90 54 

30 8.5 9 $2970 135 81 

50 6.75 7 $4950 225 135 

100 4.75 5 $9900 451 270 

20% 

20 9 9 $1980 90 54 

30 7 7 $2970 135 81 

50 6 6 $4950 225 135 

100 4 4 $9900 451 270 

Assumptions:  
a 0.5 hr/sample, $110/hr labor, $14/sample bulk density analysis, and $30/sample %SOC analysis.  
b Very high SOC sequestration rate of 1.0 Mg C ha-1 yr-1 (Goidts et al., 2009) 
c To be cost effective soil sampling costs should be less than 20% of the value of the carbon emissions offset credits (Paragon, 2006) 

  Excludes field sampling project management costs 
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6.9 Soil Organic Carbon Monitoring Time Scales 

In addition to sample size and minimum detectible difference considerations, SOC monitoring study 

designers should also account for how much time is required to sequester minimum detectible 

differences in the SOC stocks of each project location (Necpálová et al., 2014) as the timing of 

producing significant results could impact access to future project funding. Given that regional 

governments generally operate on 4 to 5-year election and budgeting cycles (Smith, 2004), it is 

beneficial to design experiments with the statistical power to generating conclusive results within 

these time periods. Geochemical process models like CENTURY, could also assist with SOC 

sequestration forecasting and identify optimal scheduling periods for future SOC monitoring events 

(Albrecht & Alain, 2016). 

As indicated in Table 15, sample sizes of 100 are generally required to detect SOC stock 

differences of <5 Mg C ha-1.  Assuming that the demonstration Project has a SOC stock CV of 25% 

and a very high SOC sequestration rate of 1.0 Mg C ha-1 yr-1 (Goidts et al., 2009) a minimum sample 

size of 100 would be necessary for the chance to satisfy a 5-year target.  A more cost-effective 

scenario would be to wait until 2023 when the project is 10 years old and a sample size of 30 would 

be sufficient to detect than the minimum detectible difference of 8.5 Mg C ha-1 (assuming a SOC 

sequestration rate of 1.0 Mg C ha-1 yr-1). 

6.10 Future Study Design Recommendations for Willow + Biosolids Soil 

Carbon Offset Projects 

Although there are still knowledge gaps within the fundamental mechanics of the ecological 

mechanisms driving SOC dynamics, continued improvements in field study designs and SOC 

analysis methods are helping to drive the science of SOC stock monitoring forward. With regards to 

optimizing the carbon offset earning potential for Willow + Biosolids systems, targeted research is 

required to explore the specific mechanics and conditions driving the SOC processes unique to these 

systems. By investing in comprehensive Willow + Biosolids SOC dynamics studies with broader sets 

of soil carbon monitoring parameters, future Willow +Biosolid SOC sequestration models may be 

better calibrated to the specific climatic, land management, biological, physical, chemical, and 

morphological properties of project locations. Once these Willow + Biosolids SOC dynamics models 

are developed, the cost of SOC stock monitoring decreases rapidly because only baseline studies of 

select parameters and a limited number of repeated measures samples would be necessary to calibrate 
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and validate the Willow + Biosolids SOC dynamics process models. The following study design and 

soil monitoring parameter recommendations are intended to generate some of the data necessary to 

close some of the foundational knowledge gaps in characterizing SOC dynamics for Willow + 

Biosolids systems. 

6.11 Detailed Baseline Study Design 

Before implementation of willow and biosolids treatments, a site characterization study should be 

conducted at the proposed project location in a systematic grid pattern across the entire project area to 

stratify the site according to SOC dynamics co-factors. Study stratification factors could include; 

morphology, land use history, vegetation communities, parent material, soil classification, and soil 

chemistry results (soil texture, bulk density, pH, CEC, soil minerals, SOC stocks, total nitrogen). 

Then the error propagation method could be used to quantify the relative contribution of each 

measured variable on SOC stock variability and the experimental design can be stratified into spatial 

landscape units according to the top contributors of SOC stock variability (Goidts et al., 2009). The 

number and spatial pattern of stratified spatial land units could be used to identify the number and 

location of sampling locations for future Willow + Biosolids SOC dynamics studies.  

6.12 Soil Organic Carbon Monitoring Study Design 

Because there is limited research on the interactive effects of willows and biosolids on SOC stocks in 

marginal agricultural lands, and because space-for-time studies generally do not control for natural 

variances in soil physical and chemical conditions effectively, it is recommended that future Willow 

+ Biosolids SOC dynamics studies us randomized complete block design with repeat measures. This 

way both spatial and temporal variability can be controlled and it will be easier to infer the influences 

of biosolids and willows on SOC stocks separately. This experimental design could also help to 

identify optimal biosolids land application rates and willow cultivar species. An example Willow 

+Biosolids complete block design data collection arrangement is presented in Figure 17 and an 

example of the field sampling block plan is presented in Figure 18. Within each block, the sampling 

plan could be arranged in a similar fashion to Figure 16 to allow for repeat sample analysis over time. 
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Willow 

Cultivar  

Biosolids 

Application 

rate (Mg ha-1) 

Block 1 Block 2 Block 3 

time 

1 

time 

2 

time 

3 

time 

1 

time 

2 

time 

3 

time 

1 

time 

2 

time 

3 

Cultivated 

Field (No 

Willow 

Cultivar) 

0                   

20                   

50                   

Willow 

Cultivar 1 

0                   

20              

50                   

Willow 

Cultivar 2 

0              

20                   

50                   

Figure 17: Example block plot soil sampling plan with varying willow species and biosolids land 

application rates (adapted from Gumpertz 1993) 
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No 

Biosolids 

(BS0) 

BS0, W0 BS0,W1 BS0, W2 

Biosolids 

rate 1 (BS1) 
BS1, W0 BS1,W1 BS1,W2 

Biosolids 

rate 2 (BS2) 
BS2,W0 BS2,W1 BS2,W2 

Figure 18: Example of a Willow + Biosolids field sampling block treatment plan 

6.13 Broader Exploration of the Willow + Biosolids SOC dynamics 

During the 10-year period that it generally takes to detect changes in total SOC stock, there are 

several opportunities to monitor dynamics of the more labile carbon fractions as they transition into 

more stable carbon compounds. By doing so, much can be learned about the relationship between 

short term labile carbon decomposition patterns and long term SOC sequestration and stabilization 
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trends. The more immediate feedback generated by short-turn-over SOC parameters (Han et al., 

2017) also provides opportunities to adjust land management practices (adaptive management) to 

improve SOC sequestration conditions within a few years rather than a decade. Potential adaptive 

management adjustments for Willow + Biosolids systems include; biosolids application and re-

application rates, biosolids incorporation methods; willow harvesting periods; soil amendment types 

and, selection of neighboring willow cultivar species. The key to optimizing adaptive management 

strategies for Willow + Biosolids systems is to identify the best short term parameter surrogates to 

signal long term SOC sequestration and stabilization trends (Cogger et al., 2013). 

6.14 Monitoring Labile Carbon Fractions 

Examples of labile carbon pool parameters that may be used as indicators of SOC stock responses to 

land management practices includes; microbial biomass, light fraction carbon, and particulate organic 

carbon (Han et al., 2017). Monitoring of microbial communities could be a valuable indicator of SOC 

dynamics trends because the higher the ratio of fungus to bacteria, the more likely the soil system will 

be in a state of SOC sequestration (Cogger et al., 2013). Because adoption of Willows + Biosolids 

land management practices involves soil tillage for site prep and the addition of labile organic carbon 

from biosolids, the microbial community during the first few years is likely bacterial dominated 

would be at a higher risk of soil priming. For example Cogger et al., (2013), reported that 

bacterial/fungus ratios ranged from 2:1 to 4:1 after cumulative application of medium (34 Mg ha−1) to 

high rates of biosolids (45 Mg ha−1). However, as the willows establish after soil disturbance ceases, 

the microbial community will likely transition into a fungal dominated system (Six et al., 2006). 

Through monitoring microbial community fungus and bacteria composition, more informed decisions 

could be made on scheduling total SOC stock monitoring events. 
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6.15 Soil Organic Carbon Isotope Tracer Monitoring 

The use of isotopic tracers such as Ϩ13C/ Ϩ 15N ratios to fingerprint the flow carbon inputs sourced 

from biosolids through a soil system is also a useful technique for assessing how biosolids influence 

SOC sequestration and mineralization processes (Agostini,et al 2015). Wijesekara et al., (2017) used 

this isotopic tracer technique in tandem with soil respiration monitoring to measure in-situ carbon 

fluxes. Wijesekara et al., (2017) found evidence for the accumulation of biosolids residual carbon in 

non-labile carbon compounds at both sandy and clayey sites during the same year the study site 

received one treatment of 70 Mg ha-1 biosolids. In this study, biosolids were applied with horizontal 

disc rear discharge spreaders and were incorporated into surface soils (0-15 cm depth) using chisel 

ploughs. 

6.16 Emerging Methods Soil Organic Carbon Analysis  

Because of the high costs associated with soil sample collection and ex-situ SOC analysis, concerted 

efforts have been made to develop in-situ soil carbon analysis technologies that are less costly, more 

time efficient, more accurate, and provides better data resolution than conventional laboratory soil 

carbon analysis methods (Chatterjee et al., 2009). Infrared spectroscopy is one of the most prominent 

ex-situ SOC analysis technologies. This technology works by measuring how soils absorb and re-emit 

different wavelengths, to determine SOC content and other soil physiochemical properties including;   

soil water content, texture, cation exchange capacity, calcium and magnesium (exchangeable), total 

nitrogen (N), pH, concentration of metals, microbial size, and microbial activity (Paustian et al., 

2017). When comparing the two methods, near-infrared (NIR) and mid-infrared (MIR), NIR can 

measure a wider range of soil carbon properties to monitor soil humification processes, however the 

MIR produces more accurate results (Soriano-Disla, Janik, Rossel, MacDonald, & McLaughlin, 

2014).  The major drawback of this technology that is preventing it from becoming a more 

widespread alternative to dry combustion laboratory analysis is the challenges with calibrating large 

datasets to the local soil conditions (Jandl et al., 2014; Paustian et al., 2017). 
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6.17 Conclusions 

Climate change mitigation is a complicated issue requiring complex multi-disciplinary solutions. 

SOC sequestration is one of several promising strategies currently available to help overcome this 

global challenge. To incentivize and support the land management practices and economic systems 

that promote SOC sequestration, international collaboration across political, economic, scientific, and 

engineering sectors, practices, and communities is required.   

Given that the United Conservative Party recently (April 2019) succeeded in forming a 

legislative majority in Alberta and stated their intention to dismantle Alberta’s climate legislation (the 

Climate Leadership Act (2017)), it is unlikely that development of a custom Willow +Biosolids 

project emission offset quantification protocol through the Alberta Emissions Offset System will be 

possible in the near future. However, despite the more broadly regressive climate change mitigation 

policies of Alberta’s newly elected government compared to their predecessors, alternative climate 

change mitigation pathways are available for Alberta’s municipal government and industry 

organizations who do not favor these low social discount rate policies.  For those individuals, 

municipal governments, and organizations in Alberta wishing to invest in a more sustainable future, 

global carbon offset markets provide one alternative technological and global societal network 

pathway for supporting sustainable development advancements being supressed by local government 

policies. Examples include; the Gold Standard (www.goldstandard.org); The Climate Trust 

(climatetrust.org), First Carbon Credits (firstcarboncredits.org)) and the United Nations Framework 

Convention on Climate Change Clean Development Mechanism.   



 

 

Section 5—Supporting Information



 

89 

References 

Alberta Agriculture Food and Rural Development. (2002). Liming Acid Soils. Retrieved March 14, 

2019, from https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex3684/$file/534-

1.pdf?OpenElement 

NOAA Earth System Research Laboratory ESRL (NOAA/ESRL). (2018). Recent Monthly Mean 

CO2 at Mauna Loa. Retrieved January 22, 2019, from 

http://www.esrl.noaa.gov/gmd/ccgg/trends/ 

Adegbidi, H. G., Briggs, R. D., Volk, T. A., White, E. H., & Abrahamson, L. P. (2003). Effect of 

organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil 

chemical characteristics. Biomass and Bioenergy, 25(4), 389–398. 

https://doi.org/10.1016/S0961-9534(03)00038-2 

Agostini, F., Gregory, A. S., & Richter, G. M. (2015). Carbon Sequestration by Perennial Energy 

Crops: Is the Jury Still Out? Bioenergy Research, 8, 1057–1080. https://doi.org/10.1007/s12155-

014-9571-0 

Alberta Agriculture and Food. (2008). Nutrient Management Planning Guide. ( and L. U. Atta Atia, 

Phil Boehme, Dr. Jason Cathcart, Rob Dunn, Shawn Elgert, Lloyd Healy, Crystal Korth, Len 

Kryzanowski, Germar Lohstraeter, Dr. Ross McKenzie, Blaine Metzger, Jennifer Neden, 

Sheilah Nolan, Dr. Barry Olson, Matt Oryschak, Doon Pauly, Brian Sexton, Ed.). Edmonton, 

AB: Alberta Environmentally Sustainable Agriculture Program. 

Alberta Agriculture and Forestry. (2001). Soil Organic Matter. https://doi.org/doi:10.1201/b11267-14 

Alberta Agriculture and Forestry. (2019). 180-Day Standarized Precipitation index (SPI). Retrieved 

January 25, 2019, from https://agriculture.alberta.ca/acis/climate-maps.jsp 

Alberta Forestry and Agriculture. (2016). Alberta Soil Information Viewer. Retrieved November 21, 

2018, from https://soil.agric.gov.ab.ca/agrasidviewer/ 

Albrecht, G., & Alain, S. (2016). Methods for Measuring Greenhouse Gas Balances and Evaluating 

Mitigation Options in Smallholder Agriculture. In Methods for Measuring Greenhouse Gas 

Balances and Evaluating Mitigation Options in Smallholder Agriculture (pp. 135–162). 

https://doi.org/10.1007/978-3-319-29794-1  



 

 90 

Amichev, B. Y., Kurz, W. A., Smyth, C., & Van Rees, K. (2012). The carbon implications of large-

scale afforestation of agriculturally marginal land with short-rotation willow in Saskatchewan. 

GCB Bioenergy, 4(1), 70–87. https://doi.org/10.1111/j.1757-1707.2011.01110.x 

AROWRN. (2019). Alberta Rural Organic Waste to Resources Network. Retrieved March 25, 2019, 

from https://www.arowrn.ca/ 

Athamenh, B., Salem, N., Et-Zuraiqi, S., Suleiman, W., & Rusan, M. (2015). Combined land 

application of treated wastewater and biosolids enhances crop production and soil fertility. 

Desalination and Water Treatment, 53(12), 3283–3294. 

https://doi.org/10.1080/19443994.2014.933037 

Australia Government. (2014). Carbon farming iniative soil sampling and analysis methods and 

guidelines. 

Aynekulu, E., Vagen, T.-G., Shephard, K. D., & Winowiecki, L. (2011). A Protocol for Modeling , 

Measurement and Monitoring Soil Carbon Stocks in Agricultural Landscapes. World 

Agroforestry Centre (ICRAF) United, (May), 26. 

Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T., & Ferrier, S. (2013). Space can 

substitute for time in predicting climate-change effects on biodiversity. 

https://doi.org/10.5061/dryad.d5f1r.1 

Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L., & Williams, M. (2016). The decadal 

state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and 

residence times. Proceedings of the National Academy of Sciences, 113(5), 1285–1290. 

https://doi.org/10.1073/pnas.1515160113 

Bowen, A. (2011). The case for carbon pricing: policy brief. The Grantham Research Institute in 

Climate Change and the Environment; The Centre for Climate Change Economics and Policy 

(Vol. 1). https://doi.org/10.1039/c3ta14042c 

Brown, K., & Wherrett, A. (2014). Bulk Density-Measuring. 

https://doi.org/10.1016/j.eururo.2007.10.015" 

Brown, S., Kurtz, K., Bary, A., & Cogger, C. (2011). Quantifying benefits associated with land 

application of organic residuals in washington state. Environmental Science and Technology, 

45(17), 7451–7458. https://doi.org/10.1021/es2010418 



 

 91 

Canola Council of Canada. 2017. Managing Other Nutrients. Available 

at:https://www.canolacouncil.org/canola-encyclopedia/fertilizer-management/managing-

other-nutrients/#calcium-supply-for-canola. Accessed on March 23, 2019. 

Carter, M. R., & Gregorich, E. . (2006). Soil Sampling and Methods of Analysis. Canadian Society of 

Soil Science (2nd ed., Vol. 44). Taylor & Francis Group, LLC. 

https://doi.org/10.1017/S0014479708006546 

Chatterjee, A., Lal, R., Wielopolski, L., Martin, M. Z., & Ebinger, M. H. (2009). Evaluation of 

different soil carbon determination methods. Critical Reviews in Plant Sciences, 28, 164–178. 

https://doi.org/10.1080/07352680902776556 

Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil Bulk Density as 

related to Soil Texture , Organic Matter Content and available total Nutrients of. International 

Journal of Scientific and Research Publications, 3(2), 1–8. 

Cogger, C. G., Bary, A. I., Kennedy, A. C., & Fortuna, A.-M. (2013). Long-Term Crop and Soil 

Response to Biosolids Applications in Dryland Wheat. Journal of Environment Quality, 42(6), 

1872. https://doi.org/10.2134/jeq2013.05.0109 

Conant, R.T; Smith, G.R.;Paustian, K. (2003). Spatial variability of soil carbon in forested and 

cultivated sites: implications for change detection. Journal of Environmental Quality, 32, 278–

286. https://doi.org/doi: 10.2134/jeq2003.2780 

Conant, R. T., & Paustian, K. (2002). Spatial variability of soil organic carbon in grasslands: 

Implications for detecting change at different scales. Environmental Pollution, 116, S127–S135. 

https://doi.org/10.1016/S0269-7491(01)00265-2 

Cornell University. (2017). Willow energy crop information. Accessed on October 18, 2017. 

Available at: http://willow.cals.cornell.edu/. 

Corsi, S., Friedrich, T., Pisante, M., & Sà, J. D. M. (2012). Soil Organic Carbon Accumulation and 

Greenhouse Gas Emission Reductions from Conservation Agriculture: a literature review (Vol. 

16). Rome, Italy.  



 

 92 

Cunniff, J., Purdy, S., Barraclough, T., Castle, M., Maddison, A., Jones, L., … Karp, A. (2015). High 

yeilding biomass genotype of willow (Salix spp.) show differences in below ground biomass 

allocation. Biomass and Bioenergy, 126(80), 114–127. https://doi.org/.1037//0033-

2909.I26.1.78 

Dahlby, B., Ragan, C., Drummind, D., Frank, B., & St-Hiliaire, F. (2019). 10 Myths about carbon 

pricing in Canada. EcoFiscal Comission. Montreal. 

Don, A., Schumacher, J., Scherer-Lorenzen, M., Scholten, T., & Schulze, E. D. (2007). Spatial and 

vertical variation of soil carbon at two grassland sites - Implications for measuring soil carbon 

stocks. Geoderma, 141(3–4), 272–282. https://doi.org/10.1016/j.geoderma.2007.06.003 

Environment and Climate Change Canada. (2017). Pricing Carbon Pollution: How it will work. 

Retrieved January 22, 2019, from https://www.canada.ca/en/environment-climate-

change/news/2017/05/pricing_carbon_pollutionincanadahowitwillwork.html 

Follett, R. F. (2006). Soil management concepts and carbon sequestration in cropland soils. Progress 

in Natural Science: Materials International, 16(3). https://doi.org/10.1016/S0167-

1987(01)00180-5 

Fontaine, S., Bardoux, G., Abbadie, L., & Mariotti, A. (2004). Carbon input to soil may decrease soil 

carbon content. Ecology Letters, 7(4), 314–320. https://doi.org/10.1111/j.1461-

0248.2004.00579.x 

Franzluebbers, A. J. (2005). Soil organic carbon sequestration and agricultural greenhouse gas 

emissions in the southeastern USA. Soil and Tillage Research, 83, 120–147. 

https://doi.org/10.1016/j.still.2005.02.012 

Garten, C. T., Wullschleger, S. D., & Classen, A. T. (2011). Review and model-based analysis of 

factors influencing soil carbon sequestration under hybrid poplar. Biomass and Bioenergy, 35, 

214–226. https://doi.org/10.1016/j.biombioe.2010.08.013 

Goglio, P., Smith, W. N., Grant, B. B., Desjardins, R. L., McConkey, B. G., Campbell, C. A., & 

Nemecek, T. (2015). Accounting for soil carbon changes in agricultural life cycle assessment 

(LCA): A review. Journal of Cleaner Production, 104, 23–39. 

https://doi.org/10.1016/j.jclepro.2015.05.040  



 

 93 

Goidts, E., Van Wesemael, B., & Crucifix, M. (2009). Magnitude and sources of uncertainties in soil 

organic carbon (SOC) stock assessments at various scales. European Journal of Soil Science, 

60(5), 723–739. https://doi.org/10.1111/j.1365-2389.2009.01157.x 

Google Earth (2018a). Study Area location including treatment sampling areas and treatment 

sampling locations. Imagery date: August 22, 2015. Location: 12 U 326303.00 m E 5675229.00 

m N. Map scale: 1:5029200. Eye altitude: 2.7 km. Retrieved on November 19, 2018. 

Google Earth (2018b). View of Study Area on July 16, 2011 two years prior to demonstration Project 

implementation. Imagery date: July 16, 2011. Location: 12 U 326303.00 m E 5675229.00 m N. 

Map scale: 1:5029200. Eye altitude: 2.7 km. Retrieved on November 19, 2018. 

Google Earth (2018c). View of Study Area on November 11, 2011 two years prior to demonstration 

Project implementation. Imagery date: November 11, 2011. Location: 12 U 326303.00 m E 

5675229.00 m N. Map scale: 1:5029200. Eye altitude: 2.7 km. Retrieved on November 19, 

2018. 

Google Earth (2019a). Study Area location relative to regional communities. Imagery date: October 

18, 2018. Location: 12 U 321876 m E 5682234 m N. Map scale: 1:161176. Eye altitude: 

59.03 km. Retrieved on February 21, 2019. 

Google Earth (2019b). Study Area location relative to local secondary roads. Imagery date: July 12, 

2018. Location: 12 U 327004 m E 5675318 m N. Map scale: 1:9424. Eye altitude: 3.46 km. 

Retrieved on February 21, 2019. 

Government of Alberta. (2007). Facts about climate change. Retrieved March 15, 2019 from 

http://www.assembly.ab.ca/lao/library/egovdocs/2007/alen/158856.pdf . 

Government of Alberta. (2012). Quantification Protocol for Conservation Cropping. Retrieved 

March 15, 2019 from https://extranet.gov.ab.ca/env/infocentre/info/library/8561.pdf. 

Government of Alberta. (2018a). Climate Leadership Plan - Implementation Plan 2018-19. Retrieved 

from https://open.alberta.ca/dataset/da6433da-69b7-4d15-9123-

01f76004f574/resource/b42b1f43-7b9d-483d-aa2a-

6f9b4290d81e/download/clp_implementation_plan-jun07.pdf 

Government of Alberta. (2018b). Technical Guidance for Offset Protocol Development and Revision. 

Government of Canada. (2013). Soils of Alberta. Retrieved December 21, 2018, from 

http://sis.agr.gc.ca/cansis/soils/ab/soils.html 



 

 94 

Government of Canada. (2017). Beiseker AGCM Alberta Monthy Data Report. Retrieved November 

21, 2018, from http://climate.weather.gc.ca/historical_data/search_historic_data_e.html 

Grigal, D. F., & Berguson, W. E. (1998). Soil carbon changes associated with short-rotation systems. 

Biomass and Bioenergy, 14(4), 371–377. https://doi.org/10.1016/S0961-9534(97)10073-3 

Grogan P., & Matthews, R. (2002). A modelling analysis of the potential for soil carbon sequestration 

under short rotation coppice willow bioenergy plantations. Soil Use and Management, 18, 175–

183. https://doi.org/10.1079/SUM2002119 

Haak, D. E. (2007). Soil Management Protocols and Projects for Greenhouse Gas Offsets in Canada. 

Halvorsen Okland, R. (2007). Wise Use of Statistical Tools in Ecological Field. Folia Geobotanica, 

42, 123–140. 

Han, X., Zhao, F., Tong, X., Deng, J., Yang, G., Chen, L., & Kang, D. (2017). Understanding soil 

carbon sequestration following the afforestation of former arable land by physical fractionation. 

Catena, 150, 317–327. https://doi.org/10.1016/j.catena.2016.11.027 

Hansen, E. A. (1993). Soil carbon sequestration beneath hybrid poplar plantations in the North 

Central United States. Biomass and Bioenergy, 5(6), 431–436. https://doi.org/10.1016/0961-

9534(93)90038-6 

Harrison, R. B., Footen, P. W., Harrison, R. B., Footen, P. W., & Strahm, B. D. (2011). and in 

Assessing Whole-Ecosystem Response to Management and, (June 2016). 

Heim, A., Wehrli, L., Eugster, W., & Schmidt, M. W. I. (2009). Effects of sampling design on the 

probability to detect soil carbon stock changes at the Swiss CarboEurope site L??geren. 

Geoderma, 149(3–4), 347–354. https://doi.org/10.1016/j.geoderma.2008.12.018 

Heller, M. C., Keoleian, G. A., & Volk, T. A. (2003). Life cycle assessment of a willow bioenergy 

cropping system. Biomass and Bioenergy, 25, 147–165. https://doi.org/10.1016/S0961-

9534(02)00190-3 

Hobley, E., & Willgoose, G. (2010). Measuring soil organic carbon stocks – issues and consideratio. 

19th World Congress of Soil Science, Soil Solutions for a Changing World. Brisbane, Australia. 

Retrieved from http://www.iuss.org/19th WCSS/Symposium/pdf/1794.pdf 

Hooten, M. B., Wikle, C. K., Sheriff, S. L., & Rushin, J. W. (2009). Optimal spatio-temporal hybrid 

sampling designs for ecological monitoring. Journal of Vegetation Science, 20(4), 639–649. 



 

 95 

https://doi.org/10.1111/j.1654-1103.2009.01040.x 

Horneck, D. A., Sullivan, D. M., Owen, J. S., & Hart, J. M. (2011). Soil test interpretation guide. 

Oregon State University Extension Service, (July), 1–12. 

https://doi.org/10.1017/CBO9781107415324.004 

Hu, Y. L., Zeng, D. H., Ma, X. Q., & Chang, S. X. (2016). Root rather than leaf litter input drives soil 

carbon sequestration after afforestation on a marginal cropland. Forest Ecology and 

Management, 362, 38–45. https://doi.org/10.1016/j.foreco.2015.11.048 

Hydbom, S. (2017). Tillage practices and their impact on soil organic carbon and the microbial 

community. Lund. Retrieved from 

http://portal.research.lu.se/ws/files/34560477/Hydbom_thesis_kappa.pdf 

Jandl, R., Rodeghiero, M., Martinez, C., Cotrufo, M. F., Bampa, F., van Wesemael, B., … Miglietta, 

F. (2014). Current status, uncertainty and future needs in soil organic carbon monitoring. 

Science of the Total Environment, 468–469, 376–383. 

https://doi.org/10.1016/j.scitotenv.2013.08.026 

IPCC. (2014). Climate Change 2014 Mitigation of Climate Change: Working Group III Contribution 

to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 

IPCC. (2018). Global warming of 1.5°C: An IPCC Special Report on the impacts of global warming 

of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the 

context of strengthening the global response to eradicate poverty. Geneva, Switzerland. 

https://doi.org/10.1017/CBO9781107415324 

Jin, V. L., Johnson, M. V. V., Haney, R. L., & Arnold, J. G. (2011). Potential carbon and nitrogen 

mineralization in soils from a perennial forage production system amended with class B 

biosolids. Agriculture, Ecosystems and Environment, 141(3–4), 461–465. 

https://doi.org/10.1016/j.agee.2011.03.016 

Jodral-Segado, A., Navarro-Alarcón, M., De La Serrana, H., & López-Martínez, M. (2006). Calcium 

and magnesium levels in agricultural soil and sewage sludge in an industrial area from 

southeastern Spain: Relationship with plant (Saccharum officinarum) disposition. Soil and 

Sediment Contamination, 15, 367–377. https://doi.org/10.1080/15320380600751736  



 

 96 

Johnson, E., & Miyanishi, K. (2008). Testing the assumptions of chronosequences in succession. 

Ecology Letters, 11, 419–431. https://doi.org/10.1111/j.1461-0248.2008.01173.x 

Kahle, P., Hildebrand, E., Baum, C., & Boelcke, B. (2007). Long-term effects of short rotation 

forestry with willows and poplar on soil properties. Archives of Agronomy and Soil Science, 

53(6), 673–682. https://doi.org/10.1080/03650340701648484 

Karunaratne, S. B., Bishop, T. F. A., Odeh, I. O. ., Baldock, J. A., & Marchant, B. P. (2014). 

Estimating changes in soil organic carbon using legacy data as the baseline; issues, approaches 

and lessons to learn, 349–365. 

Kaufmann, N., & Krause, E. (2016). Putting a Price on Carbon: Reducing Emissions. World 

Resources Institute. https://doi.org/10.3109/02841851003691979 

Kirschbaum, M. U. F. (2000). Will changes in soil organic carbon act as a positive or negative 

feedback on global warming? Biogeochemistry, 48(1), 21–51. 

https://doi.org/10.1023/A:1006238902976 

Kravchenko, A. N., & Robertson, P. G. (2011). Whole-Profile Soil Carbon Stocks: The Danger of 

Assuming Too Much from Analyses of Too Little. Soil Science Society of America Journal, 

75(1), 235. https://doi.org/10.2136/sssaj2010.0076 

Lal, R. (2002). Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 116(3), 

353–362. https://doi.org/10.1016/S0269-7491(01)00211-1 

Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220, 242–

258. https://doi.org/10.1016/j.foreco.2005.08.015 

Lal, R. (2016). Beyond COP 21 : Potential and challenges of the “4 per Thousand” initiative. Journal 

of Soil and Water Conservation, 71(1), 20–25. https://doi.org/10.2489/jswc.71.1.20A 

 Lavery, J. (SYLVIS Environmental), personal communication, March 15, 2019a.  2012-2017 land 

management practices at 07-026-25 W4M of The City of Calgary Dewatered Biosolids Land 

Application Program – Willow Biomass and Marginal Land Reclamation Demonstration 

Project.   



 

 97 

Lavery, J. (SYLVIS Environmental), personal communication, March 15, 2019b.  2012-2017 biosolid 

landspreading application practices and rates at 07-026-25 W4M of The City of Calgary 

Dewatered Biosolids Land Application Program – Willow Biomass and Marginal Land 

Reclamation Demonstration Project.  

Lavery, J. (SYLVIS Environmental), personal communication, March 15, 2019c.  2013 and 2016 data 

on the City of Calgary Shepard waste water treatment plant biosolid chemical analysis results 

used for land-spreading at The City of Calgary Dewatered Biosolids Land Application 

Program – Willow Biomass and Marginal Land Reclamation Demonstration Project. 

Lavery, J. (SYLVIS Environmental), personal communication, March 15, 2019d.  SYLVIS 2016 

willow cultivar planting locations and willow biomass harvesting results from the SW 07-

026-25 W4M location of The City of Calgary Dewatered Biosolids Land Application 

Program – Willow Biomass and Marginal Land Reclamation Demonstration Project. 

Lavery, J. (SYLVIS Environmental), personal communication, March 15, 2019e.  2013 and 2016 data 

from the City of Calgary Shepard waste water treatment plant biosolid chemical analysis 

results use for landspreading at The City of Calgary Dewatered Biosolids Land Application 

Program – Willow Biomass and Marginal Land Reclamation Demonstration Project. 

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 61–68. 

Lemus, R., & Lal, R. (2005). Bioenergy Crops and Carbon Sequestration. Critical Reviews in Plant 

Sciences, 24(1), 1–21. https://doi.org/10.1080/07352680590910393 

Lockwell, J., Guidi, W., & Labrecque, M. (2012). Soil carbon sequestration potential of willows in 

short-rotation coppice established on abandoned farm lands. Plant and Soil, 360(1–2), 299–318. 

https://doi.org/10.1007/s11104-012-1251-2 

Mackenzie, D. (2011). Best Management Practices For Conservation of Reclamation Materials in the 

Mineable Oil Sands Region of Alberta. Direct. https://doi.org/978-1-4601-0048-6 

Maillard, É., McConkey, B. G., & Angers, D. A. (2017). Increased uncertainty in soil carbon stock 

measurement with spatial scale and sampling profile depth in world grasslands: A systematic 

analysis. Agriculture, Ecosystems & Environment, 236, 268–276. 

https://doi.org/10.1016/j.agee.2016.11.024 

  



 

 98 

McClean, G. J., Rowe, R. L., Heal, K. V., Cross, A., Bending, G. D., & Sohi, S. P. (2015). An 

empirical model approach for assessing soil organic carbon stock changes following biomass 

crop establishment in Britain. Biomass and Bioenergy, 83, 141–151. 

https://doi.org/10.1016/j.biombioe.2015.09.005 

Mcconkey, B., Liang, C., Padbury, G., Pennock, D., Lindwall, W., Canada, A., & Canada, E. (2000). 

Measuring Soil Carbon Change on Cropland : The Prairie Soil Carbon Balance Project. 

Proceedings for the Climate Change Workshop. 

Merino, C., Nannipieri, P., & Matus, F. (2015). Soil carbon controlled by plant, microorganism and 

mineralogy interactions. Journal of Soil Science and Plant Nutrition, 15(2), 321–332. 

https://doi.org/10.4067/S0718-95162015005000030 

Michael A. Bashkin, & Dan Binkley. (1998). Changes in soil carbon following afforestation in 

Hawaii. Ecology, 79(3), 828–833. 

Natural Regions Commitee. (2006). Natural Regions and Subregions of Alberta. (D. J. Downing & 

W. W. Pettapiece, Eds.). Edmonton: Pub. No. T/852. 

Nature. (2019). Significant debate. Nature, 567, 283. 

Necpálová, M., Anex, R. P., Kravchenko, A. N., Abendroth, L. J., Del Grosso, S. J., Dick, W. A., … 

Villamil, M. B. (2014). What does it take to detect a change in soil carbon stock? A regional 

comparison of minimum detectable difference and experiment duration in the north central 

United States. Journal of Soil and Water Conservation, 69(6), 517–531. 

https://doi.org/10.2489/jswc.69.6.517 

Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas 

emissions from soils—A review. Chemie Der Erde - Geochemistry, 76(3), 327–352. 

https://doi.org/10.1016/j.chemer.2016.04.002 

Olander, L. P., & Haugen-Kozyra, K. (2012). Using biogeochemical process models to quantify 

greenhouse gas mitigation from agricultural management. Climate Change Mitigation and 

Agriculture, (March), 227–241. https://doi.org/10.4324/9780203144510 

Olander, L. P., Haugen-kozyra, K., & Kravchenko, A. (2011). Assessing Greenhouse Gas Mitigation 

Opportunities and Implementation Strategies for Agricultural Land Management in the United 

States. 



 

 99 

Olson, K. R., & Al-Kaisi, M. M. (2015). The importance of soil sampling depth for accurate account 

of soil organic carbon sequestration, storage, retention and loss. Catena, 125, 33–37. 

https://doi.org/10.1016/j.catena.2014.10.004 

Pacaldo, R. S., Volk, T. A., & Briggs, R. D. (2013a). Greenhouse Gas Potentials of Shrub Willow 

Biomass Crops Based on Below- and Aboveground Biomass Inventory Along a 19-Year 

Chronosequence. Bioenergy Research, 6(1), 252–262. https://doi.org/10.1007/s12155-012-

9250-y 

Pacaldo, R. S., Volk, T. A., & Briggs, R. D. (2013b). No significant differences in soil organic carbon 

contents along a chronosequence of shrub willow biomass crop fields. Biomass and Bioenergy, 

58, 136–142. https://doi.org/10.1016/j.biombioe.2013.10.018 

Paragon. (2006). Draft Guide to Development of Customized Agricultural Soil Carbon Sink Protocol 

for Greenhouse Gas Emission Reductions and / or Removals under Canada ’ s Offset System 

Prepared By : Quantification Methodology and Protocol Division Canada ’ s Greenhouse Ga. 

Edmonton, AB. 

Paul, K. I., Polglase, P. J., Nyakuengama, J. G., & Khanna, P. K. (2002). Change in soil carbon 

following afforestation. Forest Ecology and Management, 168, 241–257. 

Paustian, K., Andrén, O., Janzen, H. H., Lal, R., Smith, P., Tian, G., … Woomer, P. L. (1997). 

Agricultural soils as a sink to mitigate CO 2 emissions. Soil Use and Management, 13(s4), 230–

244. https://doi.org/10.1111/j.1475-2743.1997.tb00594.x 

Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., Delonge, M., … Grundy, M. (2017). 

Quantifying soil carbon measurement for agricultural soils management : A consensus view 

from science, (September), 1–24. 

Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart 

soils. Nature, 532, 49–57. https://doi.org/10.1038/nature17174 

Pennock, D. J. (2004). Designing field studies in soil science. Canadian Journal of Soil Science, 

84(December 2003), 1–10. https://doi.org/10.4141/S03-039 

Post, W. M., & Kwon, K. C. (2000). Soil carbon sequestration and land-use change: processes and 

potential. Global Change Biology, 6, 317–327. https://doi.org/10.1007/s00704-011-0500-2 

  



 

 100 

Poudyal, N. C., Siry, J. P., & Bowker, J. M. (2011). Quality of urban forest carbon credits. Urban 

Forestry & Urban Greening, 10(3), 223–230. https://doi.org/10.1016/j.ufug.2011.05.005 

Putten, B. Van, & Knippers, T. (2010). On Design and Statistical Analysis in Soil Treatment 

Experiments. Soil Science, 175(11), 519–529. https://doi.org/10.1097/SS.0b013e3181fa2821 

Quaye, A. K., & Volk, T. A. (2013). Biomass production and soil nutrients in organic and inorganic 

fertilized willow biomass production systems. Biomass and Bioenergy, 57, 113–125. 

https://doi.org/10.1016/j.biombioe.2013.08.002 

Raul Ponce-Hernandez, P. K., & Antoine, J. (2000). a Methodological Framework for the Assessment 

of Carbon Stocks and. Data Base, (Cdm), 1–17. 

Rose, S., Spinks, N., & Canhoto, A. I. (2014). Tests for the assumption that a variable is normally 

distributed. In Management research: Applying the principles. (pp. 1–4). 

Rowley, M. C., Grand, S., & Verrecchia, É. P. (2018). Calcium-mediated stabilisation of soil organic 

carbon. Biogeochemistry, 137(1–2), 27–49. https://doi.org/10.1007/s10533-017-0410-1 

Rytter, R. (2001). Biomass production and allocation , including root turnover , and annual N uptake 

in lysimeter-grown basket willows, 140, 177–192. 

Rytter, R. (2012). The potential of willow and poplar plantations as carbon sinks in Sweden. Biomass 

and Bioenergy, 36, 86–95. https://doi.org/10.1016/j.biombioe.2011.10.012 

Rytter, R. M. (2016). Afforestation of former agricultural land with Salicaceae species - Initial effects 

on soil organic carbon, mineral nutrients, C: N and pH. Forest Ecology and Management, 363, 

21–30. https://doi.org/10.1016/j.foreco.2015.12.026 

Rytter, R., Rytter, L., & Högbom, L. (2015). Carbon sequestration in willow (Salix spp.) plantations 

on former arable land estimated by repeated field sampling and C budget calculation. Biomass 

and Bioenergy, 83, 483–492. https://doi.org/10.1016/j.biombioe.2015.10.009 

Saby, N. P. A., Bellamy, P. H., Morvan, X., Arrouays, D., Jones, R. J. A., Verheijen, F. G. A., … 

Simota, C. (2008). Will European soil-monitoring networks be able to detect changes in topsoil 

organic carbon content? Global Change Biology, 14, 2432–2442. https://doi.org/10.1111/j.1365-

2486.2008.01658.x  



 

 101 

Schumacher, B. a. (2002). Methods for the Determination of Total Organic Carbon in Soils and 

Sediments. Ecological Risk Assessment Support Center. Las Vegas, NV. 

https://doi.org/http://epa.gov/esd/cmb/research/papers/bs116.pdf 

Singh, K., Murphy, B. W., & Marchant, B. P. (2012). towards cost effective estimation of soil carbon 

stocks at the field scale. Soil Research, 50, 672–684. 

Six, J., Frey, S. D., Thiet, R. K., & Batten, K. M. (2006). Bacterial and Fungal Contributions to 

Carbon Sequestration in Agroecosystems. Soil Science Society of America Journal, 70(2), 555. 

https://doi.org/10.2136/sssaj2004.0347 

Smith, P. (2004). How long before a change in soil organic carbon can be detected? Global Change 

Biology, 10(11), 1878–1883. https://doi.org/10.1111/j.1365-2486.2004.00854.x 

Smith, P., Davies, C. A., Ogle, S., Zanchi, G., Bellarby, J., Bird, N., … Braimoh, A. K. (2012). 

Towards an integrated global framework to assess the impacts of land use and management 

change on soil carbon: Current capability and future vision. Global Change Biology, 18(7), 

2089–2101. https://doi.org/10.1111/j.1365-2486.2012.02689.x 

Soil Research Institute. (1976). Soil Capability for Agriculture. Retrieved January 25, 2019, from 

http://sis.agr.gc.ca/cansis/publications/maps/cli/1m/agr/cli_1m_agr_alberta.jpg 

Sommer, R., & Bossio, D. (2014). Dynamics and climate change mitigation potential of soil organic 

carbon sequestration. Journal of Environmental Management, 144, 83–87. 

https://doi.org/10.1016/j.jenvman.2014.05.017 

Soriano-Disla, J. M., Janik, L. J., Viscarra Rossel, R. A., MacDonald, L. M., & McLaughlin, M. J. 

(2014). The performance of visible, near-, and mid-infrared reflectance spectroscopy for 

prediction of soil physical, chemical, and biological properties. Applied Spectroscopy Reviews, 

49(2), 139–186. https://doi.org/10.1080/05704928.2013.811081 

  



 

 102 

Stahlman, P. W., Blanco-Canqui, H., Schlegel, A. J., Stone, L. R., Lyon, D. J., Vigil, M. F., … 

Mikha, M. M. (2009). No-till Induced Increase in Organic Carbon Reduces Maximum Bulk 

Density of Soils. Soil Science Society of America Journal, 73(6), 1871. 

https://doi.org/10.2136/sssaj2008.0353 

Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., … 

Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil 

organic carbon. Agriculture, Ecosystems and Environment, 164, 80–99. 

https://doi.org/10.1016/j.agee.2012.10.001 

Thamo, T., & Pannell, D. J. (2016). Challenges in developing effective policy for soil carbon 

sequestration: perspectives on additionality, leakage, and permanence. Climate Policy, 16(8), 

973–992. https://doi.org/10.1080/14693062.2015.1075372 

Tian, G., Granato, T. C., Cox, A. E., Pietz, R. I., Carlson, C. R., & Abedin, Z. (2009). Soil Carbon 

Sequestration Resulting from Long-Term Application of Biosolids for Land Reclamation. 

Journal of Environment Quality (Vol. 38). https://doi.org/10.2134/jeq2007.0471 

Tom Goddard, Karen Haugen-Kozyra, A. R. (2008). Session 3 . 1 : Climate Change Conservation 

Agriculture Protocols for Greenhouse Gas Offsets in a Working Carbon Market, 341–350. 

Torri, S. I., Corrêa, R. S., & Renella, G. (2014). Soil carbon sequestration resulting from biosolids 

application. Applied and Environmental Soil Science (Vol. 2014). Hindawi Publishing 

Corporation. https://doi.org/10.1155/2014/821768 

United Nations Environment Programme (UNEP). (2018). Emissions Gap Report. Nairobi, Kenya. 

Retrieved from http://www.un.org/Depts/Cartographic/english/htmain.htm 

United States Department of Agriculture. (1998). Bulk Density/Moisture/Aeration - Soil Quality Kit. 

Retrieved January 25, 2019, from 

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053260.pdf 

VandenBygaart,  a. J., Gregorich, E. G., & Angers, D. a. (2003). Influence of agricultural 

management on soil organic carbon: A compendium and assessment of Canadian studies. 

Canadian Journal of Soil Science, 83(4), 363–380. https://doi.org/10.4141/S03-009 

  



 

 103 

VandenBygaart, A. J. (2006). Monitoring soil organic carbon stock changes in agricultural 

landscapes: Issues and a proposed approach. Canadian Journal of Soil Science, 86, 451–463. 

https://doi.org/10.4141/S05-105 

Walter, K., Don, A., & Flessa, H. (2015). No general soil carbon sequestration under Central 

European short rotation coppices. GCB Bioenergy, 7, 727–740. 

https://doi.org/10.1111/gcbb.12177 

Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a World Beyond “ p  &lt; 0.05.” 

The American Statistician, 73(sup1), 1–19. https://doi.org/10.1080/00031305.2019.1583913 

Watson, K. (2016). Field Handbook for the Soils of Western Canada Section 3 Soil Profile 

Description. Retrieved from http://sis.agr.gc.ca/cansis/taxa/cssc3/index.html. 

West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and net 

carbon flux in agriculture: Comparing tillage practices in the United States. Agriculture, 

Ecosystems and Environment, 91(1–3), 217–232. https://doi.org/10.1016/S0167-

8809(01)00233-X 

West, T. O., & Post, W. M. (2002). Soil Organic Carbon Sequestration Rates by Tillage and Crop 

Rotation. Soil Science Society of America Journal, 66(6), 1930–1946. 

https://doi.org/10.2136/sssaj2002.1930 

West, T. O., & Six, J. (2007). Considering the influence of sequestration duration and carbon 

saturation on estimates of soil carbon capacity. Climatic Change, 80, 25–41. 

https://doi.org/10.1007/s10584-006-9173-8 

Wijesekara, H., Bolan, N. S., Thangavel, R., Seshadri, B., Surapaneni, A., Saint, C., … Vithanage, M. 

(2017). The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil. 

Chemosphere, 189, 565–573. https://doi.org/10.1016/j.chemosphere.2017.09.090 

World Bank and Ecofys. (2018). State and Trends of Carbon Pricing 2018 (May). Washington, DC. 

https://doi.org/10.1596/978-1-4648-1218-7 

World Business Council for Sustainable Development (WBCSD). (2017). Why Carbon Pricing 

Matters: A guide for implementation. https://doi.org/10.1108/978-1-78714-447-720171009 

  



 

 104 

Xue, J., Kimberley, M. O., Ross, C., Gielen, G., Tremblay, L. A., Champeau, O., … Wang, H. 

(2015). Ecological impacts of long-term application of biosolids to a radiata pine plantation. 

Science of the Total Environment, 530–531, 233–240. 

https://doi.org/10.1016/j.scitotenv.2015.05.096 

Zan, C. S., Fyles, J. W., Girouard, P., & Samson, R. A. (2001). Carbon sequestration in perennial 

bioenergy, annual corn and uncultivated systems in southern Quebec. Agriculture, Ecosystems 

and Environment, 86, 135–144. https://doi.org/10.1016/S0167-8809(00)00273-5 

Zang, H., Blagodatskaya, E., Wen, Y., Xu, X., Dyckmans, J., & Kuzyakov, Y. (2018). Carbon 

sequestration and turnover in soil under the energy crop Miscanthus: repeated13C natural 

abundance approach and literature synthesis. GCB Bioenergy, 10, 262–271. 

https://doi.org/10.1111/gcbb.12485 

Zhao, L., Sun, Y., Zhang, X., Yang, X., & Drury, C. F. (2006). Soil organic carbon in clay and silt 

sized particles in Chinese mollisols: Relationship to the predicted capacity. International 

Journal of Industrial Engineering and Management, 7(4), 143–152. 

https://doi.org/10.1016/j.geoderma.2005.04.026 

  



 

 105 

Appendix A 

Experimental Study — Supporting Information 

  



 

 106 

Study Location  

 

Figure A 1: Study Area location relative to regional communities (Google Earth, 2019a) 
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Figure A 2: Study Area location relative to local secondary roads (Google Earth, 2019b) 
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Climactic Conditions 

Table A 1: Annual (2012-2018) Beiseker AGCM weather station data and average climate data 

and standard error of the mean for the Foothills Fescue Natural Subregion 

Climate 

Parameters 

Foothills 

Fescue 

Natural 

Subregiona 

Annual Beiseker AGCM Climate Datab 

Average  

(2012-2018) 

2012 2013 2014 2015 2016 2017 2018 

Mean Daily 

Mean 

Temperature 

(°C) 

3.9 3.4 ± 0.2 
3.3  

± 0.6 

3.3  

± 0.6 

2.9  

± 0.6 

4.3  

± 0.5 

4.6  

± 0.5 

3.3  

± 0.6 

1.9  

± 0.6 

Mean Daily 

Max 

Temperature 

(°C) 

16.3 10.8 ± 0.3 
11.3 

± 0.7 

10.7 

± 0.7 

9.7  

± 0.7 

12.0 

± 0.6 

11.8 

± 0.6 

10.8 

± 0.7 

9.6  

± 0.7 

Mean Daily 

Min 

Temperature 

(°C) 

-9.7 -4.0 ± 0.2 
-4.2  

± 0.6 

-4.1  

± 0.6 

-4.2  

± 0.6 

-3.4  

± 0.5 

-2.6  

± 0.5 

-4.2  

± 0.6 

-5.7  

± 0.6 

Total Annual 

Precipitation 

(mm) 

470 344 ± 19 274 362 350 357 423 349 292 

References: a Natural Regions Commitee (2006), b Government of Canada (2017) 
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Regional Soil Characteristics 

Table A 2: Soil physical properties modified from Soils of Alberta (Government of Canada, 

2013) 

Soil Series 

(Agriculture 

Version) 

Depth  

(cm) 

Bulk 

Density 

(g/cm3) 

Course 

Fragments 

(%) 

Total 

Sand 

(%) 

Total 

Silt 

(%) 

Total 

Clay 

(%) 

Dominant 

Sand 

Fraction 

Midnapore 0-30 1.25 0 33 42 25 Fine 

Rockyview 0-18 1.15 0 15 65 20 Fine 

Rockyview 18-40 1.4 0 15 60 25 Fine 

Delacour 0-20 1.15 20 24 52 24 Fine 

Delacour 20-35 1.4 20 31 36 33 Fine 
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Table A 3: Soil chemical properties modified from Soils of Alberta (Government of Canada, 

2013) 

Soil Series  

(Agriculture Versions) 

Depth  

(cm) 

Soil Organic 

Matter (%) 

pH in Calcium 

Chloride 

Calcium 

Carbonate (%) 

Midnapore 0-30 4 6.9 0 

Rockyview 0-18 4 7.4 1 

Rockyview 18-40 1.5 7.4 1 

Delacour 0-20 4 6 0 

Delacour 20-35 1.3 5.9 0 
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Historic Air Photos  

 

Figure A 3: View of Study Area on July 16, 2011 two years prior to demonstration Project 

implementation (Google Earth, 2018b) 
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Figure A 4: View of Study Area on November 11, 2011 two years prior to demonstration 

Project implementation (Google Earth, 2018c) 
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Appendix B 

Historical Environmental Monitoring and Land Management 

Practices within the Study Area (2012-2017) 
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Table B 1: 2012 Agriculture Land Management Practices at all sampling locations within the 

Study Area  

Activity Product Application or harvesting rate per acre  

April 23, 2012 

Fertilizing  Nitrogen (18-0-0) 26.5 L 

Fertilizing Urea (46-0-0) 68 kg 

Planting GO Spring Wheat 45 kg 

Fungicide Tilt 250E (29820) (3) 100 L 

Fungicide Folicur 250 EW (298020) (3) 0.20 L  

Herbicide Barricade SG (29544) (2) 0.16 L 

Herbicide Roundup Transorb HC (28198) (9) 100 L 

Herbicide Simply Herbicide (28887) (2) 0.20 L  

August 8, 2012 

Harvesting GO Spring Wheat 39.34 bushel 
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Table B 2: 2013 Land Management Practices at the C+BS and the Control Sampling Locations 

within the Study Area 

Activity Product Application or harvesting rate per acre (ac) 

May 10, 2013 

Fertilizing Phosphate canola 11-52-0 18 kg 

Fertilizing Ammonium sulphate 45 kg 

Fertilizing Urea (46-0-0) 33 kg 

Herbicide Roundup Transorb HC (28198) (9) 0.33 L 

Planting Canola Dupont D3153 (RR) 0.9 kg 

Planting Canola (RR Nexara 1012) 0.9 kg 

June 4, 2013 

Fertilizer Nitrogen (18-0-0) 11 L 

Herbicide 
R-T 540 Liquid Herbicide (28487) 

(9) 
0.33 L 

June 23, 2013 

Fertilizer Nitrogen (18-0-0) 11 L 

Herbicide 
R-T 540 Liquid Herbicide (28487) 

(9) 
0.33 L 

October 7, 2013 

Harvesting Canola (RR Nexara 1012) 24 bushels 

Harvesting Canola Dupont D3153 (RR) 34 bushels 
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Table B 3: 2014 Land Management Practices at the C+BS and the Control Sampling Locations 

within the Study Area 

Activity Product Application or harvesting rate per acre (ac) 

May 14, 2014 

Herbicide Crush R plus 0.5 L 

Herbicide Amitrol 1.0 L 

May 30, 2014 

Planting Barley (Xena) 54 kg 

Planting Barley (Xena) 54 kg 

June 30, 2014 

Herbicide Turbocharge 23135 0.095 L  

Fertilizer Ammonium sulphate 0.5 L 

Herbicide Liquide Achieve SC 0.0125 case 

Herbicide Approve Herbicide (28124) (4) 0.20 L  

November 3, 2014 

Harvesting Barley (xena) 7.5  bushel 
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Table B 4: 2015 Land Management Practices at the C+BS and the Control Sampling Locations 

within the Study Area 

Activity Product Application or harvesting rate per acre (ac) 

April 27, 2015 

Herbicide Vantage plus max (27615) (9) 0.75 L 

May 15, 2015   

Planting Oats (mustang) 36 kg 

Planting Wheat Spring (GO) 54 lbs 

May 19, 2015 

Herbicide Vantage Plus Max (27615) (9) 1.0 L 

Planting Canola (Liberty L130) 1.0 kg 

June 6, 2015 

Herbicide Simply Herbicide (28887) (2) 0.3 L  

Herbicide MPCA Ester 600 (29001) (4)  0.3 L 
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Table B 5: 2016 Land Management Practices at the C+BS and the Control Sampling Locations 

within the Study Area 

May 05, 2016 

Herbicide 
Maverick III Herbicide (28977) 

(9) 
0.75 L/ac 0.75 L 

May 08,2016 

Fertilizing 0-20-0-10 4.50 lb/ac 2.04 Kg 

Planting Canola (Liberty L252) 5.00 lb/ac 2.26 Kg 

June 09,2016 

Herbicide 
Centurion Herbicide (27598) 

(1) 
0.01 case/ac 0.01 case 

Herbicide 
Liberty 150 SN Herbicide 

(28837) (10) 
1.50 L/ac 1.50 L 

September 09, 2016 

Herbicide Vantage Plus Max (27615) (9) 0.75 L/ac 0.75 L 

October 25, 2016 

Harvesting  Canola (Liberty L252)  9.10 bu/ac 9.10 bu 
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Table B 6: 2017 Land Management Practices at the C+BS and the Control Sampling Locations 

within the Study Area 

May 10, 2017 

Fertilizing 18-0-0 2.00 US gal/ac 7.57 L 

Fertilizing Humates 5.00 US gal/ac 18.92 L 

Fertilizing Alpine g22 3.00 US gal/ac 11.35 L 

Herbicide 
PrePass Flex Herbicide (31259) 

(2) 
8.00 US gal/ac 30.28 L 

Herbicide Vantage Plus Max (27615) (9) 0.60 L/ac 0.60 L 

Planting Hard red spring (cdc go) 110.00 lb/ac 
49.89 Kilograms 

(kg) 

June 15, 2017 

Adjuvant Agral 90 (11809) 0.06 L/ac 0.06 L 

Herbicide Octain 0.45 L/ac 0.45 L 

Herbicide Simplicity GoDri 0.01 jug/ac 0.01 jug 

July 04,2017 

Fertilizing  Humates 1.00 US gal/ac 3.78 L 

Fertilizing 18-0-0 1.00 US gal/ac 3.78 L 

Fungicide  
Folicur 250 EW Fungicide 

(29820) (3) 
0.02 jug/ac 0.02 jug 

October 09, 2017    

Harvesting  Hard red spring (cdc go) 65.45 bu/ac 65.45 bu 
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Table B 7: Summary of the City of Calgary Shepard waste water treatment plant biosolid 

chemical analysis results used for land-spreading at the demonstration Project site in 2013 and 

2016 

Biosolids 

Chemical 

Parameters 

Analyzed 

Units 

2013 Mean Chemical 

Analysis Results 

(n=12)  

2016 Mean Chemical 

Analysis Results 

(n=11) 

% Change 

Moisture Content  % 82 82 0 

pH (1:2) NA 7.4 7.7 4 

Cation Exchange 

Capacity  
meq/100g 80 60 

-25 

Organic Matter  
% dry 

weight 
53 54 

-2 

Total Organic 

Carbon  

% dry 

weight 
27 27 

0 

Available Nitrate  mg/kg 10 2 -80 

Available 

Phosphorous  
mg/kg 6467 4318  

-33 

Available 

Potassium  
mg/kg 1878 1665 

-11 

Available Calcium  mg/kg 6063 3998 -34 

Available 

Magnesium  
mg/kg 2318 1534 

-34 

Available Sodium  mg/kg 841 630 -25 

Available Iron  mg/kg 927 1053 14 

References:  J. Lavery (SYLVIS Environmental), personal communication, March 15, 2019c6 

 

  



 

 121 

Table B 8: Soil mineral concentration results from soil samples (0-15 cm) taken from within the 

Study Area during environmental monitoring events conducted by SYLVIS in prior to the 

demonstration Project installation (2013), and after two biosolids land-spreading application 

events (2017) totaling 45 Mg ha-1 

0-15 cm Soil Sampling Depth Interval  SYLVIS 2013 (n=4) SYLVIS 2017 (n=4) 

Available Nutrients Units Mean SEM Mean SEM 

Calcium mg/kg 1658 201 1505 146 

Magnesium mg/kg 246 37 240 19 

Iron mg/kg 89 7 113 8 

Sodium mg/kg 68 42 16 9 

Soil Acidity 

pH  6.5 0.3 5.9 0.2 

Cation Exchange Capacity meq/100g 15.0 2.9 NA NA 

Note: NA= not available 

Data provided by  J. Lavery (SYLVIS Environmental), personal communication, March 15, 

2019e 
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Table B 9: Soil mineral concentration results from soil samples (15 -30 cm) taken from within 

the Study Area during environmental monitoring events conducted by SYLVIS in prior to 

demonstration Project installation (2013), and after two biosolids land-spreading application 

events (2017) totaling 45 Mg ha-1 

15-30 cm Soil Sampling Depth Interval  SYLVIS 2013 (n=4) SYLVIS 2017 (n=4) 

Available Nutrients Units Mean SEM Mean SEM 

Calcium mg/kg 2158 349 1960 307 

Magnesium mg/kg 441 91 243 13 

Iron mg/kg 61 7 67 6 

Sodium mg/kg 215 24 118 14 

Soil Acidity 

pH  7.2 0.2 6.6 0.5 

Cation Exchange Capacity meq/100g 12.5 2.5 NA NA 

Note: NA= not available  

Data provided by J. Lavery (SYLVIS Environmental), personal communication, March 15, 

2019e 
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Figure B 1: General representation of Alberta Guidelines for the Application of Municipal 

Wastewater Sludges to Agricultural Lands (2001) soil sampling protocol implemented by 

SYLVIS (not to scale 
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Appendix C 

EXOVA Laboratory Methodologies 

 



  
  

 
DRYING SOIL SAMPLES 

 

1. INTRODUCTION 
Many analyses require that a soil sample be dried and ground prior to analysis.  The soil is dried to the 
point where the moisture content is constant. 

2. SCOPE 
This method is applicable to all soil samples received in the lab where the analysis must be performed 
on a dried and ground sample. 

3. SUPPORTING DOCUMENTS 
3.1. WI PREP 010-10, In-house Subsampling Procedures 
3.2 Despatch Oven Operations Manual 

4. SAMPLE REQUIREMENTS 
4.1. The holding time and quantity of sample required is dependent on the analyses requested.  See 

individual test methods for holding times and quantities. 
4.2. Sample collected in a container that prevents gross contamination is required. 

 



 

 SAMPLE GRINDING 
 

1. SIGNIFICANCE AND SCOPE 

The types of dried samples which are processed by way of grinding include, but are not limited to: 
• agricultural soil 
• environmental soil 
• international soil 
• sludge 
• stone/sand 
• waste 
• feed 

 

2. PRINCIPLE 

Grinding samples prior to analysis increases the surface area of the sample, allowing more efficient 
reaction with the chemicals used during laboratory analysis. The type of sample received dictates 
the method(s) by which it must be ground. The resultant particle size is limited to 2mm width by 
sifting ground/crushed sample though 2mm sieve or other grillwork 

 

3. INTERFERENCES 

Rocks will not be ground in the manual grinder. Large rocks will be omitted by hand removal, or by 
passing the sample through a large sieve prior to grinding. Samples must be completely dried 
(according to WI PREP 007-10) prior to grinding for optimal results. 

 

4. SAMPLE REQUIREMENTS 

Dried sample: the amount of ground sample required is dependent on the analysis required. 
Usually, the final volume of sample ground will be about 400mL. This can weigh anywhere from 
10g (of very light material) up to 800g (of dense material). 

 



 
 

PARTICLE SIZE ANALYSIS OF SOIL BY HYDROMETER 

1. METHOD 

1.1 Reference Method  
Martin R. Carter & E.G. Gregorich.  Soil Sampling and Methods of Analysis, 2008. Method 55.3, 
Hydrometer Method; Modified. 

1.2 Modifications 
1. A dried and ground sample is used.  
2. 50 g of sample is used rather than 40 g specified in the reference method. 
3. 2 minutes initial mixing of the conditioned soil is used rather than 5 minutes specified in the 

reference method. 
4. The reference method instructs to take the second hydrometer readings at 7 hours. In 

practice, readings are taken at 6 hours for environmental samples and 2 hours for agricultural 
samples.  

5. The hydrometer reading varies considerably with temperature. This is compensated by using 
blank-corrected readings which eliminate the need for adjustment to standard temperature, 
notwithstanding the fact that most published versions of the hydrometer method (except 
Sheldrick and Wang, 1993) include one.  Justification for ignoring any temperature correction 
came from tests with suspensions of fine silt and clay.  In these tests, blank-corrected 
readings agreed well with weights of suspended solids (obtained by drying the suspensions) 
whether hydrometer  readings were made at 15 or at 24 °C. The temperature dependence of 
the raw reading  (δR/δT= – 0.3 g/L per °C) parallels that of RL.  The lab oratory operates at 
virtually all times within the range 22 – 24 °C.  A lthough the hydrometer scale is calibrated by 
the manufacturer at 20 °C, judging from the results  of our calibration tests, any difference 
from 20 °C in the actual operating  temperature has  little or no effect on the direct relationship 
between R’ and the true density of suspensions. To ensure that R’ is accurate, RL must be 
read carefully, and the temperature of the blank and soil suspensions must be the same, or 
very nearly. 

2. SIGNIFICANCE AND SCOPE 
This method is valid for all soil types except certain organic soils with un-decomposed plant material 
such as peat. Un-decomposed organic material is less dense than mineral particles and has a slower 
rate of settling. However, the method is valid for soils with as much as 10 % or more of well-
decomposed organic matter. Oil-contaminated soils must be pre-treated by washing with toluene to 
obtain a friable sample. Detection limits are not applicable to this method and the measurement limits 
of 0.4% for clay and 1.6% for sand are used. A measurement limit is not applicable to silt as it is a 
calculated value. The analytical range for clay is 0.5 to 100%, and for sand is 2.0 to 100%. The 
analytical range for silt is not applicable. 
 
Associated LIMS methods: 
- Particle Size Analysis – GS 
- Particle Size Analysis – FS 

3. PRINCIPLE  
Particle size analysis is the measurement of the proportions by weight of primary soil particles of 
different size. This method relies on separating size-fractions in aqueous suspension by means of 
differing sedimentation rates.  Size fractions are traditionally given as percentages of sand (> 50 
microns ), silt (2 – 50 microns) and clay (< 2 microns). Their relative amounts determine various 
properties of the whole soil, such as its bulk density, hydraulic conductivity and saturation percentage. 
These in turn are related to ease of cultivation, to drainage, compaction, erosion, crop production and 
suitability for landscaping, etc. Numerous guidelines stipulate particle size distribution criteria for 
specific soil uses. 
 
The hydrometer method is a sedimentation procedure in which the density of a soil suspension is 
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measured at various times.  It is based upon “Stokes’ Law” which determines the relationship 
between the size of a particle (its equivalent spherical diameter) and its rate of settling in a liquid.  
Sand, silt and clay particles settle at different rates, the larger sand particles falling fastest.  A slurry is 
made with a known mass of sample in a specific sample volume.  Individual soil particles are 
separated from each other using first, a chemical dispersing agent in water and second, mechanical 
agitation.  A hydrometer reading taken at 40 seconds after vigorously homogenization (and corrected 
for the weight of dispersing agent) includes the density (g/L) of clay and silt particles remaining in 
suspension.  The change from the initial soil in suspension (50 g/L) represents the weight percentage 
of sand. A second reading after 6 h similarly indicates the weight percentage of clay. The weight 
percentage of silt is calculated as the balance required to make the total equal to 100%.  



 
 

pH AND ELECTRICAL CONDUCTIVITY IN SOIL 

1. METHOD 

1.1 Reference Method  
1. 1:2 extraction: J.A. McKeague.  Manual on Soil Sampling and Methods of Analysis, 1978.  

Method 4.12, 1:2 Soil:Water Ratio; Modified. 

1.2 Modifications 
1. Mixture allowed to settle for 15 minutes before measuring the pH and EC. 
2. Depending on the service package requested, the EC value is multiplied by 2.06 to represent 

the equivalent of a saturated paste EC.  This corresponds to the EC measurement 
recommended by McKeague in Table 10 (page 154).   

3. A 5, 10, or 25 g scoop is used to sub-sample the dry and ground soil rather than weighing the 
portion.  

2. SIGNIFICANCE AND SCOPE 
2.1 This method is applicable to determining Electrical Conductivity (EC) and pH of extractions of 

all types of soil with the exception of soils containing oils which may interfere with the 
measurement by coating the probe.   The electroconductivity (EC) can be used to assess soil 
salinity. The EC increases with increasing salt concentrations. The pH of a soil indicates 
whether it is acidic, neutral, or alkaline.  A pH of 7 is neutral only for pure water at 25 °C.  For 
soils, neutrality is typically in the range 6.2 – 7.3.  Acidic soils have pH <6.1 and alkaline soils 
have pH >7.4. EC and pH analysis can be used to determine the suitability of the soil for plant 
growth.  pH values are useful for estimating lime requirements. 

2.2 For EC, the detection limit is 0.01 dS/m and the analytical range is 0.01 – 100 dS/m.  The 
analytical range is 0.5 – 14 for pH. 

 
Associated LIMS methods: 
- pH and Conductivity in general soil 1:2 
- pH in soil by 1:10 water extraction 
- pH and Conductivity in farm soil 

3. PRINCIPLE  
3.1 The EC of a soil can be determined by measuring the electrical resistance in a soil-water 

mixture between two parallel electrodes.  The EC is the inverse of the resistance.   An EC 
electrode is placed directly in the soil-water mixture, and the EC reading is recorded.  The EC 
result obtained from this method is then multiplied by 2.06 to simulate a saturated paste EC 
measurement.  This conversion factor is used by Alberta Agriculture (1995). 

3.2 Hydrogen ion activity is estimated in soil by mixing the soil with water in a  1:2 ratio and reading 
the pH of the soil/water suspension using a pH meter. 
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1. METHOD 
1.1 Reference Method 

1.1.1 Carbon in Soil: SSSA Book Series: 5, Methods of Soil Analysis Part 3 – Chemical Methods, 1996.  
Chapter 34, Total Carbon, Organic Carbon and Organic Matter, D.W. Nelson and L.E. Sommers. 
Modified  

1.1.2 Nitrogen in Soil: SSSA Book Series: 5, Methods of Soil Analysis Part 3 – Chemical Methods, 1996.  
Chapter 37, Nitrogen-Total, J.M. Bremner. Modified  

1.1.3 British Columbia Ministry of Environment, Total Organic Carbon (TOC/FOC) in Soil/Sediment by 
Combustion PBM, August 2014. 

1.2 Modifications 
1.2.1 Instrument conditions are set up specific to the LECO Truspec Analyzer 
1.2.2 Reference standard soils supplied by LECO are used for calibration. 

2. SIGNIFICANCE AND SCOPE 

2.1 The analysis of Total Nitrogen and Total Sulfur content of composts and manures allows assessment of 
potential deficiencies and allows managed use a source of nutrients in soil. 

2.2 The Total C in soils is the sum of the Organic C present in the soil organic matter fraction and the Inorganic 
C of the carbonate minerals. Organic C consists of cells of microorganisms, decomposing plant and animal 
residues, humus and highly carbonized forms of C such as charcoal, graphite and coal. It is present in all 
agricultural soils. Inorganic C is associated with the principal carbonate minerals present in the soil, primarily 
calcite and dolomite. In non-calcareous soils, the Total Carbon is equal to the Organic Carbon. In calcareous 
soils, the Organic Carbon can be estimated as the difference between the Total Carbon and the Inorganic 
Carbon. 

2.3 This method is applicable to all dried and ground soils and composts.  Based on an approximate 0.2 g 
sample size, the nitrogen reporting range is 0.02 to 47% N; the carbon reporting range is 0.02 to 99% C. 

3. PRINCIPLE  

3.1 The sample is weighed into a foil cup and inserted into a combustion chamber where the high temperature 
and flow of oxygen gas cause the sample to combust. The combustion process will convert any elemental 
carbon and nitrogen into CO2, N2 and NOx.  

3.2 The CO2 gas absorbs IR radiation at specific wavelengths in amounts proportional to the level of CO2 
present.  

3.3 The gases are passed through a TC (thermal conductivity) cell that detects differences in thermal 
conductivity. The cell consists of two pairs of matched filaments used in four legs of a Wheatstone bridge. 
Helium carrier gas is passed over one pair of filaments while the sample gas is passed over the other pair. 
The lower thermal conductivity of the nitrogen causes an imbalance in the Wheatstone bridge proportional 
to the concentration of the nitrogen present. 

3.4 The dry combustion method is based on the oxidation of organic C and thermal decomposition of 
carbonate minerals in the induction furnace of the combustion analyzer. The CO2 liberated by combustion 
is determined by infrared absorption to produce values for the samples for Total C. 

3.5 Ignition of soils at 500 °C for two hours will burn off the Organic Carbon. The ignited soils are then analyzed 
for carbon to give Inorganic Carbon values. The Organic Carbon may then be calculated as the difference 
between Total Carbon and Inorganic Carbon. 

4. SAMPLE REQUIREMENTS 

4.1 Minimum sample volume: a minimum of 5 g of sample prepared 
4.2 Sample container: glass or plastic 
4.3 Transportation and storage conditions: Room temperature, samples are dried upon receipt 
4.4 Holding time: 28 days 
4.5 Chemical preservation: none 
4.6 Sample pre-treatment:  Samples are dried as soon as possible after receipt 
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5. CALCULATION OF RESULTS 

5.1 Standards correction calculation: 

 

Corrected Result  
D

RD
 (wt%)R t

c
×

=  

 
Where Dt is the theoretical value of drift standard   

    R  is the test result (wt%) 

D  is the mean measured value of the drift before and after  
 

5.2 Instrument results are wt% with the sample weight being entered electronically.  To correct to actual   
sample weight, in the case of sample mix-up. 

 

    
s

di
c W

WR
R

×
=  

 
Where Ri is the instrument result (wt%)   
   Wd  is the instrument entered weight  
Ws is the actual sample weight (g) 
 
5.3 Inorganic carbon can be calculated as in 16.2 with Ws the weight of ignited sample as entered 

electronically. 
5.4 Inorganic carbon is corrected back to pre-ignited weight. 
 

   
( )

100

100
 (wt%)

LOI
RR iIC

−×=  

 
Ri is the instrument result (wt%) based on the weight of ignited sample as entered electronically 
    

And where LOI is given  
 

 
( )
( ) 100%)( ×

−
−

=
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ad

mm

mm
wtLOIIgnitiononLoss  

 
  where  md = oven dried weight (g) 
    ma = ashed weight (g) 
   mc = crucible weight (g) 
 

5.4.1 Organic Carbon 
 

CarbonInorganicCarbonTotalCarbonOrganic −=  
 

5.4.2 Organic Matter (by combustion) 
 

CarbonOrganicMatterOrganic ×= 2  
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6. QUALITY CONTROL AND DATA ACCEPTANCE 

6.1 Quality Control Plan  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.1 One method blank is run within the batch, this is not the same as the initial pre run blanks.  .   
6.1.2 All data generated under an out of control condition shall be considered nonconforming data 

unless approved by the quality officer, team leader or manager and the reason for approval 
documented. 

6.1.3 If an out of control condition is discovered, it is necessary to go back and reanalyze at least some 
of the samples run since the last in control analyses, unless the expressed approval of the quality 
officer, team leader or manager is obtained and the reason for the approval is documented.   

 
 
Based on TM SOIL 008(8)-60 C, N by Combustion 
Revised 23-Apr-2018 
 
 

AQC Material  Frequency  Insertion  Criteria  
Total carbon 

Blank 
<60 mesh Sand 

1 per batch  0.00 ± 0.05 

Total nitrogen 
Blank 

<60 mesh Sand 
1 per batch  0.00 ± 0.03 

Total carbon 
Duplicate 

Samples 
1 per batch, 

every 15 
samples 

 

Absolute Range 
of 0.1%, 

Relative Range 
of 6.0%. 

Total nitrogen 
Duplicate 

Samples 
1 per batch, 

every 15 
samples 

 

Absolute Range 
of 0.1%, 

Relative Range 
of 2.5%. 

SS-20XX 
Carbon 

In-house soil 
standard 

1 per batch, 
every 25 
samples 

Beginning & end 
of analysis 

See LIMS 

SS-20XX 
Nitrogen 

In-house soil 
standard 

1 per batch, 
every 25 
samples 

Beginning & end 
of analysis 

See LIMS 
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