
Degrees of Categoricity and the Isomorphism
Problem

by

Mohammad Assem Abd-Alqader Mahmoud

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Pure Mathematics

Waterloo, Ontario, Canada, 2019

©Mohammad Assem Abd-Alqader Mahmoud 2019

Examining Committee Mambership
The following served on the Examining Committee for this thesis. The

decision of the Examining Committee is by majority vote.

External Examiner NAME: Douglas Cenzer
Title: Professor

Supervisor(s) NAME: Barbara F. Csima
Title: Professor

Internal Member NAME: Ross Willard
Title: Professor

Internal-external Member NAME: Bruce Richter
Title: Professor

Other Member(s) NAME: Rahim Moosa
Title: Professor

Author’s Declaration
This thesis consists of material all of which I authored or co-authored: see
Statement of Contributions included in the thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the
public.

Statement of Contributions
I hereby declare that I am the sole author of this text, with exception of Chapter
3. Chapter 3 is a modified version of a joint work with Csima, Deveau and
Harrison-Trainor [12].

Abstract
In this thesis, we study notions of complexity related to computable structures.
We first study degrees of categoricity for computable tree structures. We show
that, for any computable ordinal α, there exists a computable tree of rank α+1

with strong degree of categoricity 0(2α) if α is finite, and with strong degree of
categoricity 0(2α+1) if α is infinite. For a computable limit ordinal α, we show
that there is a computable tree of rank α with strong degree of categoricity
0(α) (which equals 0(2α)).

In general, it is not the case that every Turing degree is the degree of cate-
goricity of some structure. However, it is known that every degree that is of a
computably enumerable (c.e.) set in and above 0(α), for α a successor ordinal,
is a degree of categoricity. In this thesis, we include joint work with Csima,
Deveau and Harrison-Trainor which shows that every degree c.e. in and above
0(α), for α a limit ordinal, is a degree of categoricity. We also show that every
degree c.e. in and above 0(ω) is the degree of categoricity of a prime model,
making progress towards a question of Bazhenov and Marchuk.

After that, we study the isomorphism problem for tree structures. It fol-
lows from our proofs regarding the degrees of categoricity for these structures
that, for every computable ordinal α > 0, the isomorphism problem for trees
of rank α is Π2α-complete. We also discuss the isomorphism problem for pre-
geometries in which dependent elements are dense and the closure operator
is relatively intrinsically computably enumerable. We show that, if K is a
class of such pregeometries, then the isomorphism problem for the class K is
Π3-hard.

Finally, we study the Turing ordinal. We observed that the definition of the
Turing ordinal has two parts each of which alone can define a specific ordinal
which we call the upper and lower Turing ordinals. The Turing ordinal exists
if and only if these two ordinals exist and are equal. We give examples of
classes of computable structures such that the upper Turing ordinal is β and
the lower Turing ordinal is α for all computable ordinals α < β.

Acknowledgements

To my sui generis father, the master and commander, Assem Hamdy: Thank
you for architecting my life for the past three decades.

I wish that my mother Nazek Ayoub could witness this finally happening.
I am dedicating this thesis to her because I believe she is the one who endured
the most to help me grow. I also wish that I could tell my grandmother Samiha
Hemmat about this.

To my siblings Amena and Ali: I am grateful for having you as informative
colleagues and reliable family members.

To my supervisor Barbara Csima: I am thankful for your kindness, pa-
tience, and keeping things well on track for the past half of a decade.

I would like to thank the department officers Nico Spronk and David McK-
innon; and to thank the staff Jackie Hilts, Lis D’Alessio, Nancy Maloney, and
Pavlina Penk for their unfailing planning and assistance.

I appreciate my examining committee: Douglas Cenzer, Bruce Richter,
Raheem Moosa, and Ross Willard for their careful reading and for their valu-
able feedback.

It was a great opportunity working with Michael Deveau and Matthew
Harrison-Trainor, as well as the many other great colleagues. Special thanks
to Suzanne Findleton, Stanley Xiao, and the most recent José Luis Avilez.

I would have not made it to this point without the help of some of the peo-
ple I knew during my time at Cairo University. Thanks to Tarek Sayed Ahmed,
Ahmed El-Guindy, Gonzalo Aranda Pino, Gábor Sági, Hany Elhosseiny, Ne-
fertiti Megahed, Eslam Essam, and Diaaeldin Taha.

I finally want to thank the salsa commuinty, the Society of Arab Students,
and all the amazing people I met.

Thank you God for all I have.

vi

Table of Contents

1 Introduction 2
1.1 Basic Computability Review . 2
1.2 Computable Structure Theory Review 10

1.2.1 Degrees of Categoricity 10
1.2.2 The Isomorphism Problem 12
1.2.3 The Degree of a Structure and the Turing Ordinal 13

2 Degrees of Categoricity of Trees 17
2.1 Preparation . 18
2.2 Results . 23

3 Degrees of Categoricity Above Limit Ordinals 39
3.1 Categoricity Relative to Decidable Models 41
3.2 C.E. In And Above a Limit Ordinal 46

4 The Isomorphism Problem 54
4.1 The Isomorphism Problem for Trees 54
4.2 The Isomorphism Problem for Pregeometries 56

4.2.1 Preliminaries . 56
4.2.2 When Dependent Elements are Dense 59

5 Separating the UTO and LTO 66

Bibliography 72

1

Chapter 1

Introduction

Computability theorists have developed techniques for studying sets of nat-
ural numbers. These techniques can be applied more generally for studying
other mathematical objects that can be coded into natural numbers. Many
structures like linear orders, graphs, trees and algebraic structures, by Gödel
numbering their atomic diagrams, can be coded into sets of natural numbers.
Hence, one can talk about the complexity of such structures, their copies and
the isomorphisms between pairs of these copies from a computability theoretic
perspective.

As mentioned in the abstract, we study here three notions of complexity
related to structures and their isomorphisms. After the introduction (Chapter
1), we study degrees of categoricity (Chapters 2,3), the isomorphism problem
(Chapter 4) then we study the Turing ordinal (Chapter 5). The work in this
thesis resulted into three papers ([28], [12], [29]).

1.1 Basic Computability Review

Turing Programs and Partial Computable Functions

In computability theory we study the idea of using an effective procedure (al-
gorithm) for answering mathematical questions. Informally, by an effective
procedure we mean a set of step-by-step unambiguous instructions (think of a
computer program). Formally, we mean a Turing Machine (see [36] for a def-

2

inition). We believe that a function is effectively calculable by a human being
if and only if it can be computed by a Turing machine. That belief is known
as Turing’s Thesis.

When we talk about a set of instructions as in a program, or an algorithm,
we are talking about a finite sequences of lines where each line is a sequence
of symbols from a finite alphabet. In a finite alphabet, one can always ef-
fectively code its characters by natural numbers. This implies that a program
is just a finite sequence of natural numbers; hence, a program can always be
coded as a single natural number (Gödel number). Accordingly, we can list
all Turing programs and give them indices in such a way that for any program
we can effectively find its index, and conversely, from the index we can find
the program. This is called the standard numbering or canonical numbering

of Turing programs.

Let Pe denote the Turing program with Gödel number e. We write ϕe(x) =
y if program Pe with input x halts with output y. For every natural number e,
we can view ϕe as a partial function on the set of natural numbers; hence, ϕe
is called a partial computable (p.c.) function. When the domain of ϕe is all
the natural numbers, we remove the word “partial”. In other words, a function
f ∶ ω → ω is computable if there is a natural number e such that f = ϕe, and
ϕe is total (with domain ω).

Fact (The Padding Lemma): Each p.c. function has infinitely many indices
(see [36]).

Oracle Turing Programs and Relative Computability

Sometimes we answer a question ‘Q’ using the knowledge of the answer to an-
other question ‘P’ without worrying about how the answer to ‘P’is established.
This motivates the idea of an Oracle Turing Machine; see [36] for definition.
Informally, if A is a set of natural numbers, a program with oracle A is one
that allows the following to be one of its step-by-step instructions: If x ∈ A,

then ... , else,

For two sets of natural numbers X and Y , we say that X is Turing re-

ducible to Y (or, that X is computable relative to Y) if there is a Turing pro-

3

gram, with Y as an oracle, which answers the question: “Does x ∈ X?” for
every natural number x. In symbols, we write X ≤T Y . We also write X <T Y

to mean that X ≤T Y but not Y ≤T X .

Let {P̃e}e∈ω be an effective numbering of the Turing oracle programs. We
write ΦA

e to mean the p.c. function that can be computed by P̃e using A as an
oracle. We regard Φe as a (partial) functional on sets (from 2ω to 2ω) mapping
A to B if B = ΦA

e (we identify sets with their characteristic functions). This
means that, for two sets of natural numbers X and Y , the set X is Turing

reducible to Y if, for some natural number e, X = ΦY
e .

Remark: The fact that programs are finite implies that, if a computation
of the program P̃e with oracle A halts, then only finitely many bits of A were
used in that computation (see Theorem 3.3.9. in [36]).

Multi-variable P.C. Functions and the Lambda Notation

We defined p.c. functions with a single argument. We will allow writing sev-
eral arguments. This is safe because one can effectively transition from several
arguments to a single argument using the standard pairing function (see [36]).
The pairing function has two arguments, and is denoted by brackets ⟨, ⟩ (like
inner product notation). For n = ⟨x, y⟩, we let π1(n) = x and π2(n) = y (i.e.
π1 and π2 are the projections).

The situations in which we have several arguments require us, sometimes,
to distinguish which are variables and which are parameters. The Church
lambda notation for partial functions helps in such situations. Suppose that
[. . . x . . .] is a mathematical expression such that, for every integer x, [. . . x . . .]
has at most one corresponding value. Then, λx[. . . x . . .] denotes the corre-
sponding partial function x↦ [. . . x . . .] (e.g. λx[x2]). We also use the lambda
notation for partial functions of multiple variables; λxy[x+ y], say. Note now
the difference between λxy[x + y] and λx[x + y]. The first denotes addition
as a function of x and y. However, the second indicates that the expression is
viewed as a function of x with y as a parameter.

We will not use the lambda notation in this thesis except for the statement
of the next theorem.

4

The s-m-n Theorem

The following is a fundamental result that allows us to move arguments around
effectively. For a proof, see [36].

Theorem 1.1.1 (The (Relativized) s-m-n Theorem). For every m,n ≥ 1, there

exists an injective computable function smn of m + 1 variables such that for all

sets A ⊆ ω and for all x, y1, . . . , ym ∈ ω,

ΦA
smn (x,y1,...,ym)

= λz1, . . . , zn[Φ
A
x (y1, . . . , ym, z1, . . . , zn)].

The last theorem is also known as the Parameter Theorem.

Computable Approximations

We write ϕe,s(x) = y if x, y, e < s and y is the output of ϕe(x) in < s steps
of the Turing program Pe. When there is an oracle A, and if the use of the
computation is < s, we write ΦA

e,s(x) = y.

Computably Enumerable (C.E.) Sets

A set is computably enumerable (c.e.) if it is the domain of some a p.c. func-
tion. We define the eth c.e. set to be We ∶= dom(ϕe). A c.e. set We can be
approximated (see Definition1.1.3 below) by the finite sets We,s ∶= dom(ϕe,s).
Similarly, we have the eth c.e. in X set WX

e ∶= dom(ΦX
e). We also have the

approximations WX
e,s = dom(ΦX

e,s).

The Arithmetical Hierarchy

We have just defined what it means to be a c.e. set. Note that, x ∈ We iff
∃s(x ∈ We,s). If we regard x ∈ We,s as a relation R(x, s) on ω × ω, then R is
computable. A set A is said to be Σ0

1 if it is of the form {x ∶ (∃y)R(x, y)}.
This means that c.e. sets are Σ0

1. In fact, we can show that every Σ0
1 set is c.e.

(see Theorem 2.1.3. in [36]). This makes Σ0
1 exactly the class of c.e. sets.

Now we define the more general notion of Σ0
n sets for every natural num-

ber n. The superscript 0 is used to indicate that the sets within the class Σ0
n are

5

definable by formulas that use quantification on numbers and that no quantifi-
cation is on functions or sets. Since we will never use function quantifiers in
this thesis, we will drop the superscript 0.

Definition 1.1.2. (1) A set is Σ0 (also Π0, ∆0) iff it is computable.

(2) We defined Σ1 earlier. The class of complements of Σ1 sets is denoted
by Π1. Define ∆1 ∶= Σ1 ∩Π1; this is exactly the computable sets.

(3) For n > 1, a set is Σn if there is a Πn−1 relation R such that x ∈ A ⇔

(∃y)R(x, y). The class of complements of Σn sets s denoted by Πn.
Define ∆n ∶= Σn ∩Πn.

A set is arithmetical if it belongs to ⋃n(Σn ∪Πn).

We can relativize the arithmetical hierarchy with respect to an oracle A by
replacing the word computable with A-computable in the definition. We use
the notation ΣA

n , ΠA
n , and ∆A

n to denote the relativized hierarchy.
One can show that (see Theorem 4.1.4 in [36]):

(1) if a set A is Σn (or Πn), then A ∈ ∆m for every m > n;

(2) the classes Σn, Πn, and ∆n are closed under ∩ and ∪.

Noncomputable C.E. Sets and the Turing Jump

Consider the following set K ∶= {e ∶ ϕe(e) halts } = {e ∶ e ∈ We}. It is easy
to see that K is domain of a p.c. function; namely, ψ(x) = x if ϕx(x) halts,
and undefined otherwise. This means that K is computably enumerable. One
can show that K is not computable by a standard diagonalization argument.
Indeed, if K was computable, then one can bulid the following computable
function:

f(x) =

⎧⎪⎪
⎨
⎪⎪⎩

ϕx(x) + 1 if x ∈K
0 if x ∉K

Clearly, f ≠ ϕx for every x; hence, a contradiction.
With the development of relative computability, Kleene and Post defined

KA which is a relativization of the definition of K to an oracle A; KA ∶= {e ∶

6

e ∈WA
e }. They also noted that, by relativizing the argument above, KA >T A

and KA is c.e. in A. The set KA is known as the jump of A and is denoted
A′. The prime sign is known as the jump operator. One can iterate the jump n
times (finite n); we define A(0) = A, A(n+1) = (A(n))′. Note that A(1) = A′.

Turing Degrees

For two sets A,B of natural numbers, we write A ≡T B if A ≤T B and B ≤T

A. It is not hard to see that ≡T is reflexive, transitive, and symmetric which
means that ≡T is an equivalence relation. The Turing degree of a set A is the
equivalence class deg(A) = {B ∶ B ≡T A}. We can define a partial ordering
≤ on the set of Turing degrees as follows: deg(A) ≤ deg(B) iff A ≤T B. We
write deg(A) < deg(B) if A <T B, i.e., if A ≤T B and B ≰T A.

We mostly use boldface small letters to denote Turing degrees (e.g. a,b, . . .).
We use 0 (bold-face 0) to denote the Turing degree of the empty set (the com-
putable degree). We will just say a degree to mean a Turing degree.

It is helpful to define the Turing jump for degrees in the following, obvi-
ously well defined, way: (deg(A))(n) = deg(A(n)).

A degree a is computably enumerable if it contains a c.e. set. A degree a

is computably enumerable in another degree b if a contains some set A which
is c.e. in some set B ∈ b. A degree a is computably enumerable in and above

b if a is c.e. in b and a ≥ b.

Uniform Computability and Limit Computable Sets

We mentioned earlier how c.e. sets can be approximated by a sequence of fi-
nite sets. Note that the members of such a sequence are generated computably
(we can effectively, given s, compute We,s). We can more generally talk about
approximations by sequences of computable sets. It makes sense to also as-
sume that, not only every member of the sequence is a computable set, but also
there is a computable procedure with which we can generate those members.
Such are called uniformly computable sequences. More precisely, a sequence
of computable functions {fs(x)}s∈ω (or sets) is uniformly computable if there
is a computable function g(x, s) = fs(x) for all natural s and x.

7

Now consider the following natural definition:

Definition 1.1.3. [See [36]] A set A is limit computable if there is a uniformly
computable sequence {As}s∈ω such that for all x,

A(x) = lim
s
As(x).

An associated concept with limit computability is that of a modulus. Given
A and {As}s∈ω such that A = limsAs, a function m(x) is a modulus (of con-

vergence) if

(∀x)(∀s ≥m(x))(∀y ≤ x)[A(y) = As(y)].

Note that A ≤T m.

The following is a key result which we will rely on in Chapter 4 (for a
proof, see Theorem 3.6.5 in [36]).

Theorem 1.1.4 (Modulus Criterion). A set A has a c.e. degree iff A = limsAs

for a computable sequence {As}s∈ω with modulus m(x) ≤T A.

Computable Ordinals, Transfinite Jumps, and the Hyperarith-
metical Hierarchy

We saw how one defines the iterated jump A(n) and the arithmetical hierar-
chy. Both are defined inductively. Such inductive definitions can be carried
transfinitely along higher ordinals (e.g. A(ω),A(ω+1), . . .). However, we can-
not effectively inductively go beyond the countable ordinals. In fact, the class
of countable ordinals is too big (is itself uncountable); hence, we will be only
confined to those countable ordinals which we can effectively code by natu-
ral numbers. The latter class of ordinals is called the computable ordinals.
Rigorously, an ordinal is computable if it is a well ordering (X,<) where X
is a computable set and < is a computable binary relation on X (recall that
ordinals are just well orderings, and that every well ordering is isomorphic to
an ordinal). One can show that computable ordinals form an initial segment

8

of the ordinals (see Proposition 4.6 in [4]). It is not hard to see that the first
non-computable ordinal is strictly less than ω1.

In what follows we describe Kleene’s system of notations that codes com-
putable ordinals as natural numbers. We define simultaneously a set of nota-
tions O, a function ∣ ∣O from O to the class of computable ordinals, and a strict
partial ordering <O on O.

(1) Let ∣1∣O = 0 (i.e. 1 is the notation for 0).

(2) If ∣a∣O = α, then ∣2a∣O = α + 1; define b <O 2a iff b = a or b <O a.

(3) For a limit ordinal α, α = ∣3.5e∣O for every e such ϕe is total computable,
with values in O, where

ϕe(0) <O ϕe(1) <O ϕe(2) <O . . . ,

and α is the least upper bound of the sequence of ordinals αn = ∣ϕe(n)∣O.
Define b <O 3.5e if there exists n such that b <O ϕe(n).

This finishes describing the system of notations. The class of ordinals having
notations in O is called constructive ordinals. For an elaborate discussion of
why constructive ordinals are exactly the computable ones, see [4].

Note that, in general, it is not the case that every ordinal has a unique no-
tation in O. In fact, only finite ordinals do. This is because notations for limit
ordinals are defined as the index of some computable sequence of notations
which we call a fundamental sequence. In practice, we a pick large enough
limit ordinal below which we restrict ourselves to a subset of the notations so
that every limit ordinal has a unique fundamental sequence which we require
to contain only successor ordinals and to start with 1.

Now, given a set A, we can extend the sequence of jumps A,A′,A′′, . . .

effectively transfinitely. For a computable limit ordinal α (e.g. α = ω), let
A(α) = {⟨u, v⟩ ∶ u <O 3.5e and v ∈ A(u)}, where α = ∣3.5e∣O. For every com-
putable ordinal β, A(β+1) = (A(β))′. Rigorously, the transfinite recursion we
have just described is done in terms of the notations from O (see [4]).

We know what are Σn, Πn, and ∆n for every finite n. At this point we
can expand the definitions to any computable ordinal α instead of n. For a

9

computable ordinal α, a set A is Σα if it is definable by a formula of the form

⋁k∈ω ∃ȳkRk(x, ȳk) where {Rk(x, ȳk)}k∈ω is a c.e. set of formulas such that,
for every k, Rk(x, ȳk) is Πβk , βk < α. Accordingly, Σα = Σ∅(α)

1 for every limit
ordinal α.

A set is Πα if its complement is Σα. A set is ∆α if it is both Σα and Πα.

Many-one Reducibility and Complete Sets

Within a class of sets, it is useful sometimes to know sets that are the, in some
sense, the hardest in that class.

A set A is said to be m-reducible (or many-one reducible) to a set B if for
some computable function f , for every x ∈ ω, x ∈ A iff f(x) ∈ B.

For a class of sets Γ, a set C is Γ-complete if

(1) C ∈ Γ,

(2) C is Γ-hard; that is, every set X ∈ Γ is m-reducible to C.

The following are examples of complete sets (for proofs, see Theorem
4.2.2. in [36] for the finite case; the infinite case is just a relativization).

(1) ∅(n) is Σn-complete for every finite n.

(2) ∅(α+1) is Σα-complete for every computable infinite α.

1.2 Computable Structure Theory Review

1.2.1 Degrees of Categoricity

We mentioned earlier that one can talk about mathematical structures that can
be coded into natural numbers. From a computably theoretic perspective, our
main objects will be computable structures.

Definition 1.2.1. [Computable Structure [4]] A structure is computable if it
has a computable atomic diagram and a computable universe.

10

In most of mathematics we consider isomorphic structures as the same
thing; however, in a world in which structures are computable, two isomorphic
structures may have different computational properties. This happens when
there are only non-computable isomorphisms between the two computable
copies. Structures for which this issue does not show up we call computably

categorical (see [4]); more precisely, a computable structure C is computably

categorical if, for every computable A such that A ≅ C, there is a computable
isomorphism from C to A.

One can generalize the definition to study situations when the isomor-
phisms are not necessarily computable but computable from a certain Turing
degree:

Definition 1.2.2. A computable structure C is d-categorical for a Turing de-
gree d if, for every computable A such that A ≅ C, there is a d-computable
isomorphism from C to A.

Sometimes, it is of natural interest to see if d is the least such degree (i.e.
it exactly describes the difficulty of computing isomorphisms between copies
of the structure). The following definition of a “degree of categoricity” for a
computable structure was first introduced by Fokina, Kalimullin and Miller in
[15] :

Definition 1.2.3. A Turing degree d is the degree of categoricity of a com-
putable structure C if d is the least degree such that C is d-computably categor-
ical. The degree d is a degree of categoricity if it is the degree of categoricity
of some computable structure.

Clearly there are only countably many degrees of categoricity and so there
are examples of degrees that are not degrees of categoricity (see [1]). So far,
every known example of a degree of categoricity d has the following additional
property: There is a structure C with computable copies C1 and C2 such that not
only does C have degree of categoricity d, but every isomorphism f ∶ C1 → C2

computes d. If a degree of categoricity has this property, we say it is a strong

degree of categoricity. Recently, Bazhenov, Kalimullin and Yamaleev [6] have
shown that there is a c.e. degree d and a structureAwith degree of categoricity

11

d, but d is not a strong degree of categoricity for A. Csima and Stephenson
[14] have shown that there is a structure that has a degree of categoricity but
no strong degree of categoricity.

For every computable ordinal α, 0(α) is the degree of categoricity of some
tree structure ([13],[27]). However, the trees used were not optimal in the
sense that they do not have the least possible rank. In Chapter 2, we realize
the same degrees using trees of around half the ranks of those used before. In
fact, our trees are of minimal ranks for that purpose.

Fokina, Kalimullin, and Miller [15] showed that, for any n < ω, if d ≥ 0(n)

is the Turing degree of a difference of computably enumerable sets (d.c.e.)
relative to 0(n), then d is a degree of categoricity. Also in the same paper
they showed that 0(ω) is a degree of Categoricity. Later, Csima, Franklin, and
Shore [13] expanded the result to every computable successor ordinal α. They
showed that, for every computable successor ordinal α, every degree d.c.e.
in and above 0(α) is a degree of categoricity. Also in the same paper they
showed that, for every computable α (not only successors), 0(α) is a degree of
categoricity. Csima and Ng have announced a proof that every ∆2 degree is
a degree of categoricity. In Chapter 3, we present our joint work with Csima,
Deveau and Harrison-Trainor which fills in a gap above limit ordinals that was
missing from the work in [13] making progress towards Question 5.1 of that
paper. The question was: Is every degree that is n-c.e. in and above a degree
of the form 0(α) for a computable limit ordinal α and n < ω a (strong) degree
of categoricity? We show here that, for every computable limit ordinal α, if d
a degree c.e. in and above 0(α), then d is a strong degree of categoricity.

1.2.2 The Isomorphism Problem

Whereas computable categoricity measures the complexity of isomorphisms
between copies of structures, it is also of interest sometimes to measure the
complexity of the question whether two given computable structures over the
same signature are isomorphic. It makes sense to study such a question for
known classes of computable structures. Given a class of structures K, the
isomorphism problem for K is the set I(K) = {(n,m) ∶ Mn,Mm ∈K,Mn ≅

12

Mm} where (Mn)n∈ω is some computable enumeration of all computable
structures (on a fixed computable language). Asking whether two given struc-
tures fromK are isomorphic is exactly the same as asking whether the ordered
pair formed from their indices belongs to I(K).

It is well known that the isomorphism problem for computable structures is
complete for the first existential level of the analytical hierarchy Σ1

1. In fact, the
Σ1

1-completeness is known to hold for many subclasses of computable struc-
tures (see [10], [17], [33], [34], [21]). As a consequence, such subclasses do
not have a “good classification” (they do not have a hyperarithmetical Fried-
berg enumeration). For some other classes, as we shall see, the complexity of
the isomorphism problem is relatively low (e.g. Π3); hence, they have a good
classification.

In Chapter 4, we completely describe the complexity of the isomorphism
problem for the class of computable trees of rank α for every computable or-
dinal α. We also describe the complexity of the isomorphism problem for a
class of pregeometries which generalizes a number of well known examples.
In [20], Harrison-Trainor, Melnikov and Montalbán gave a sufficient condi-
tion for a structure with some notion of independence to have a computable
presentation with a computable basis (“good” copy) and a another computable
presentation with no computable basis (“bad” copy). They applied the con-
dition to differentially closed, real closed, and difference closed fields. The
condition also implied classical results on vector spaces, algebraically closed
fields, torsion-free groups and Archimedean ordered abelian groups. In [8],
Calvert studied the isomorphism problem for classes that admit a notion of
independence. We observed that the ideas in [20] are applicable to the classes
studied by Calvert.

1.2.3 The Degree of a Structure and the Turing Ordinal

One natural way to measure the complexity of a structure is by assigning to it
the Turing degree of its atomic diagram (regarded as a set of natural numbers).
In this sense, different copies of a structure may have different degrees without
any relationship that relates them (even without changing the universe). For

13

example, for every Turing degree d, one can construct a copy of the usual
linear order on the natural numbers but with degree d. Indeed, suppose D is a
set of degree d and consider the linear order with universe N and < defined as
per usual except that 2n + 1 < 2n if n ∈D.

It is desirable to assign degrees in a way that is invariant up to isomor-
phism. We have the following notion:

Definition 1.2.4 (Jockusch). For a structure A:

(1) The degree spectrum of A is

Spec(A) = {deg(D(B)) ∶ B ≅ A, B has a computable universe };

and

(2) A has degree d if d is the least member of Spec(A).

A structure is trivial if there is a finite tuple in the domain of that structure
such that any permutation of the domain which fixes that tuple is an isomor-
phism of the structure. Knight showed that the degree spectrum of a trivial
structure is a singleton, whereas that of a non-trivial structure is upward closed
[24]. Therefore, if a non-trivial structure has degree d, then its degree spec-
trum is the cone of Turing degrees above d.

In case that a non-trivial structure does not have a degree, it is perhaps
possible that we are still capable of assigning a degree of complexity to that
structure using the jumps (or iterated jumps) of the degrees in its spectrum.
Consider the following generalization:

Definition 1.2.5 (Jockusch). For any computable ordinal α, A has αth jump

degree d if d = min{deg(D(B)(α)) ∶ B ≅ A, B has a computable universe }.
When α = 0, we know that d is the degree of the structure A.

Given a class of structures K, and any computable ordinal α, one can ask
which degrees can be realized as the αth jump degree of a structure in K.
For example, for the case α = 0, if K is the class of graphs, every degree is
realizable as the degree of a structure inK (see [35]). IfK is the class of linear

14

orderings, we have that only 0 is the degree of a structure inK (see [35]). This
suggests that coding information into linear orders is “harder” than it is into
graphs.

What about coding into the first jums? In other words, is every degree ≥ 0′

the first jump degree of some linear order? It turns out that only 0′ can be
realized as the first jump degree of a linear order (see [24]). But, any degree
≥ 0(2) is the second jump degree of a linear order [3]. Finding the ordinal
α = 2 at which we started being capable of coding any degree gave us, in some
sense, a measurement of how much harder linear orderings are than graphs
when it comes to coding information.

The idea of coding information into jumps motivated Jockusch and Soare
to introduce the following definition.

Definition 1.2.6 (The Turing Ordinal). Let T be a first-order theory with con-
tinuum many pairwise non-isomorphic countable models. We call a com-
putable ordinal γ the Turing ordinal (abbreviated as TO) of T if:

(1) every degree ≥ 0(γ) is the γth jump degree of a model of T , and

(2) for all η < γ, the only possible ηth jump degree of a model of T is 0(η).

Note that the definition is for a theory T . Instead, we will be talking about
the Turing Ordinal for a class of structures (which could be chosen to be the
class of models of some theory T).

One natural question that arises from the definition is whether the Turing
Ordinal always exists. As the reader may have noticed, there are two condi-
tions that must hold true. The first condition says that every degree above the
γth jump is the γth jump degree of some model, whereas the second condition
says that, for η < γ, only one degree (which is 0(η)) can be the ηth jump degree
of some model. There are two events here; one of them starts at γ while the
other stops at γ. There is no guarantee that there is such an ordinal γ. In fact,
Montalbán gave an example of a theory for which the Truing ordinal does not
exist (see [32]).

To understand the Turing ordinal better, we break down its definition into
two auxiliary definitions.

15

The Upper Turing Ordinal: Let K be a class of first-order structures. We
call a computable ordinal β the upper Turing ordinal (abbreviated as UTO)

of K if it is the least ordinal such that the first condition of the TO definition
holds. More precisely:

(1) every degree ≥ 0(β) is the βth jump degree of a structure in K, and

(2) for all η < β, there exists a degree d ≥ 0(η) which is not the ηth jump
degree of a structure in K.

The Lower Turing Ordinal: Let K be a class of first-order structures. We
call a computable ordinal α the lower Turing ordinal (abbreviated as LTO) of
K if it is the greatest ordinal such that the second condition of the TO definition
holds. More precisely:

(1) there exists a degree d ≠ 0(α) such that d is the αth jump degree of a
structure from K, and

(2) for all η < α, the only possible ηth jump degree of a structure from K is
0(η).

It is clear that the Turing ordinal exists if and only if the upper and lower
Turing ordinals exist and are equal. In Chapter 5, for any computable ordinals
α,β such that α < β, we give examples of “nice” classes of structures such
that UTO = β and LTO = α.

16

Chapter 2

Degrees of Categoricity of Trees

The work in this chapter, as well its consequences in Chapter 4, have been

accepted for publication by the Mathematical Logic Quarterly (MLQ)[28].

In this chapter, we study a specific class of structures which is the class of
computable trees. By a tree T we mean a universe (set of nodes or vertices)
together with a strict partial ordering ≺ such that:

(1) For all x, the set of predecessors of x is finite and well ordered by ≺.

(2) T contains a unique least element under ≺ called the root.

We will say for x, y ∈ T that y is an immediate successor of x (or that x is
the immediate predecessor of y) if x ≺ y, and for no z in T , x ≺ z ≺ y. Note
that for every y except the root, there exists a unique immediate predecessor
because of condition 1.

For a node x in a tree T , we define its level as LevelT (x) = ∣{y ∈ T ∶

y ≺ x}∣. All trees we use throughout this thesis have no infinite paths, and
therefore the level of a node is always a natural number. The height of a tree
T , h(T) = supx∈T (LevelT (x) + 1). This means that a tree of height 1 is a
single point (trivial case). The least possible height is 1 because a tree as a
structure is assumed to be non-empty. For our purposes here, it will be rather
more convenient to use the concept of a rank instead of height.

17

For a tree of height ≤ ω that has no infinite path, each terminal node is as-
signed rank 0, and each nonterminal node x has as its rank (rk(x)) the supre-
mum of the ordinals rk(y) + 1 where y ranges over all the immediate succes-
sors (equivalently, over all successors) of x. The rank of a tree is the rank of
its root node. For finite height trees, the rank plus one equals the height. All
countable ordinals can be ranks of countable trees, and all computable ordinals
can be ranks of computable trees.

For u ∈ T , we will use the notation T [u] to refer to the subtree of T which
has the node u as a root.

By a computable tree we mean that both the universe T and the relation
≺ are computable (recall Definition 1.2.1 of a computable structure). Note
that according to this definition, in a computable tree, deciding whether y is
an immediate successor of x is not computable (it is co-c.e.). Although this
is the general case, all of the trees we are going to use in our proofs have a
computable immediate successor relation, and so our results are also valid in
case we look at ≺ as the edge relation (on the tree as a graph). In general
different ways of defining ≺ give computationally different properties.

It is not hard to see that, for any computable ordinal α, a computable tree
of rank α + 1 is 0(2α)-categorical if α is finite, and 0(2α+1)-categorical if α
is infinite (Proposition 2.1.2 below). From this it is natural to wonder, if the
oracle 0(2α) (or 0(2α+1) in the infinite case) is in general necessary or more
than enough. We answer here that it is necessary (Theorem 2.2.11).

2.1 Preparation

Given two isomorphic trees S,T (all our trees are assumed computable un-
less otherwise stated), if we want to define an isomorphism between them,
then we need to know which level 1 nodes in S should be mapped to level
1 nodes in T . If a level 1 node u from S is mapped to v from T , then
this means that the subtrees S[u] and T [v] are isomorphic. We continue
defining the isomorphism by matching level 1 nodes in S[u] and T [v] and
so on. To know how complex the isomorphism is, we need to know how
complex it is to determine the level 1 nodes in S,T , and we also need to

18

know how complex it is to decide for subtrees S[u], T [v] (rooted at level
1) if they are isomorphic (clearly there is induction going on there). It is
straightforward to see that, in general, for x ∈ T and n ∈ N, the question
“LevelT (x) = n ?” is computable in 0′. More clearly, LevelT (x) = n if and
only if (∃x1...xn)[x1 ≺ . . . ≺ xn ≺ x] ∧ (∀x1...xn+1)[¬(x1 ≺ . . . ≺ xn+1 ≺ x)].

Let us now give a detailed proof of the fact that, for a computable ordinal
α, a computable tree of rank α + 1 is 0(2α)-categorical if α is finite, 0(2α+1)-
categorical if α is infinite. First we need the following lemma:

Lemma 2.1.1. Checking whether two computable trees of rank α are isomor-

phic is Π2α-uniformly.

Proof. We use induction on α. The base case α = 0 is easy, each tree is only a
single point. Assume the lemma holds for all β < α. For any two computable
trees S,T of rank α, they are both isomorphic if and only if for every level
1 node u in S, the isomorphism type of S[u] exists among the subtrees of S
with roots at level 1 exactly as many times as in T . In symbols we can write
this as:

∀u
⎡⎢⎢⎢⎢⎣
u ∈ S ∧LevelS(u) = 1⇒

∀k(∃ū(∣ū∣ = k ∧ ⋀
i≠j<k

ui ≠ uj ∧ ∀i < k(LevelS(ui) = 1 ∧ S[ui] ≅ S[u])) ⇒

∃v̄(∣v̄∣ = k ∧ ⋀
i≠j<k

vi ≠ vj ∧ ∀i < k(LevelT (vi) = 1 ∧ T [vi] ≅ S[u])))
⎤⎥⎥⎥⎥⎦
∧

∀v
⎡⎢⎢⎢⎢⎣
v ∈ T ∧LevelT (v) = 1⇒

∀k(∃v̄(∣v̄∣ = k ∧ ⋀
i≠j<k

vi ≠ vj ∧ ∀i < k(LevelT (vi) = 1 ∧ T [vi] ≅ T [v])) ⇒

∃ū(∣ū∣ = k ∧ ⋀
i≠j<k

ui ≠ uj ∧ ∀i < k(LevelS(ui) = 1 ∧ S[ui] ≅ T [v])))
⎤⎥⎥⎥⎥⎦
.

This is a conjunction of two formulas each is of the form:

19

∀u[Π1⇒ ∀k(∃Π2βu,k ⇒ ∃Π2βu,k)],

where βu,k < α for all u, k ∈ ω.

Such a formula is equivalent to one of the form:

∀u[Σ1 ∨ ∀k(∀Σ2βu,k ∨ ∃Π2βu,k)].

This can be written as ∀u∀k[Σ1 ∨∀Σ2βu,k ∨∃Π2βu,k] which is the same as
∀u∀k[Π2βu,k+1 ∨ ∃Π2βu,k]. We can pull the existential quentifier outside the
brackets, and regard the universal quantifier at the beginning as an infinitary
conjunction (obviously of a c.e. set of formulas) to obtain

⋀
u,k∈ω

∃Π2βu,k+1.

Since, for every u, k ∈ ω, βu,k < α, we must have that 2βu,k + 1 < 2α. Hence,
our formula is Π2α.

To explain some parts more, note that, for a node u, deciding whether it
is of level 1 in a computable tree is equivalent to answering a Π1 question:
“Is it the case that, for all v different from u, and from the root r, there is
no v such that r ≺ v ≺ u?”. Moreover, by the induction hypothesis, we can
decide whether S[ui] ≅ T [v] (similarly whether T [vi] ≅ S[u]) by answering
a Π2β question for some β < α. This can be done uniformly in ui and v; also
uniformly (within Πα) we can find the ranks of the subtrees S[ui] and T [v].
The latter can be checked by a simple inductive argument.

Note that in the case α = 1, what we did is exactly comparing the sizes of
the trees which can be done using 0(2).

Proposition 2.1.2. For any two computable copies S, T of a tree of com-

putable rank α + 1, there exists an isomorphism from S to T which is 0(2α)-

computable if α is finite, and 0(2α+1)-computable if α is infinite. In other

words, a computable tree of rank α + 1 is 0(2α)-categorical if α is finite, and

0(2α+1)-categorical if α is infinite. Moreover, if α is a limit ordinal or 0, a

computable tree of rank α is 0(2α)-categorical.

20

Proof. Let S and T be two copies of a tree of rank α + 1. We define an
isomorphism f ∶ S → T going back and forth. We go through level 1 in S
until we find the first u not in the domain of f yet, and we look for the first
v in level 1 in T which is not in range f yet such that S[u] ≅ T [v]. Set
f(u) = v. Conversely, for the first y in level 1 in T not in the range of f yet,
look for the first x in level 1 in S not in the domain of f yet such that S[x] ≅
T [y]. Set f(x) = y. By the lemma, for finite (infinite) α, 0(2α) (0(2α+1)) can
decide uniformly for us whether S[u] ≅ T [v] for all u, v. Therefore, for finite
(infinite) α, f ≤T 0(2α) (0(2α+1)).

For the case when S and T are copies of a tree of rank α (limit or 0), if α is
a limit ordinal, then every subtree with root in level 1 in S or T has rank < α.
So, again, 0(α) (= 0(2α)) can decide uniformly for us whether S[u] ≅ T [v] for
all u, v. The case α = 0 is trivial.

Note that it looks like we have not considered how the complexity of de-
termining the root and level 1 nodes is involved in the complexity of f just
mentioned. Everything is fine because determining each can be done using 0′

(x is the root if and only if ¬(∃y)(y ≺ x), and x is a level 1 node if and only if
(∃y)(y ≺ x) ∧¬(∃y)(∃z)(y ≺ z ≺ x)). So for α > 1 it does not affect the com-
plexity 0(2α) (or 0(2α+1)). For α = 1, we just map the root to the root and the
rest of the vertices can be mapped computably. So f can be computable.

Now after seeing the last proposition, it is natural to ask if we necessarily
need the 2α-th (or (2α + 1)-th) jump, not less. More precisely, we are trying
to establish for every finite (infinite) α the existence of two copies of a tree
of rank α + 1 such that any isomorphism between the two copies can compute
0(2α) (0(2α+1)). Also if α is a limit, there exists a tree of rank αwith two copies
such that any isomorphism between the two copies can compute 0(2α). Indeed,
we could prove this for all computable ordinals α (Theorem 2.2.3). The case
α = 0 is trivial and the case α = 1 is easy. Let us have a look now at α = 2 to
see how things go.

Proposition 2.1.3. There exists a tree of rank 2 with computable copies S2, T2

such that every isomorphism between the two copies can compute 0(2).

Proof. The existence of such a tree can be proved by just directly defining the

21

ω . . . 0 . . . 1 . . . 2 . . .

Figure 2.1: The isomorphism type of S2 (or T2).

copies. Here, as well as in all our next results, we will describe our trees as
sets of finite sequences (which can be effectively coded by natural numbers),
and ≺ will be the initial segment relation.
Let S2 be the tree with root () (the empty sequence) and level 1 nodes (i) for
all i ∈ ω. For level 2, include (i, s) if and only if Wi,s+1 ≠ Wi,s (See Figure
2.1). Note that Wi is infinite if and only if (i) has infinitely many children
(branches). Also note that in S2, from the padding lemma and the fact that
there are c.e. sets of every size, we have infinitely many subtrees of every size
≤ ω with roots in level 1 in S2.

Now let us define the tree T2. As usual, T2 has root (). Let level 1 consist of
all nodes (i), i ∈ ω. For level 2, include (2i, j) for all i, j ∈ ω , and (2 ⟨i, k⟩ +

1, j) for i, k ∈ ω and j < i. Note that (2 ⟨0, k⟩ + 1) is a dead end for all k.
Clearly both trees are isomorphic. Also it is clear that every isomorphism f

computes Inf = {e ∶ We is infinite } because r ∈ Inf if and only if f(r) is
even. Inf is Π2-complete and so f can compute 0(2).

The isomorphism type of S2 (or T2) looks like:

Where N is the tree type of rank 1 with N children for N > 0, and 0 is the
tree of rank 0 (a single dot).

The construction above was simple. The case α ≥ 2 is a lot harder; we
will use a dynamic way to construct our trees (movable marker technique,
see [36]). We will do the case when α is finite first. Before we go for such
construction in the next section, we recall some representation theorems.

22

Consider the following notation (where U is some oracle):

FinU = {x ∶WU
x is finite} InfU = {x ∶WU

x is infinite}

CofU = {x ∶WU
x is cofinite} TotU = {x ∶WU

x = ω}

We have the following:

Lemma 2.1.4. (1) ΣU
2 ≤1 Fin

U (equivalently, ΠU
2 ≤1 Inf

U).

(2) IfA ∈ ΣU
3 , then there is a computable function (not merelyU -computable)

h such that, for all x ∈ ω:

x ∈ A⇔ (∃y)[h(x, y) ∈ TotU ∧ (∀z ≠ y)h(x, z) ∈ FinU],

x ∉ A⇔ (∀y)[h(x, y) ∈ FinU].

Note that when x ∈ A, there is a unique y such that WU
h(x,y)

is infinite.

Proof. This is a straightforward relativization of results in [36](pages 86-91).
The function h is computable, not just U -computable, because its definition is
independent of the oracle U (we use the relativized s-m-n Theorem).

2.2 Results

Our aim in this section is to generalize Proposition 2.1.3. We mentioned before
that this will not be as easy and we will need some dynamic procedure. For the
reader to see the issue, let us look at the most obvious way to generalize the
result to rank 3 and it will be clear then why such obvious generalization does
not seem to work. Looking at the proof of Proposition 2.1.3, we have built two
trees S,T such that T was “nice” while S was “hard”. The tree T was nice in
the sense that it was not built to “code” a certain set; it was just an evident way
to describe a member of the isomorphism type in detail. On the other hand
S was “hard” in the sense that it was built through the knowledge of some

23

specific set with certain complexity to code that set. A level 1 node in S was
the father of infinitely many children if and only if the node corresponded to a
member of Inf . This means that S was built to code the set Inf in some sense.
We will try to do the same for rank 3, and we will keep the nice copy denoted
T and the hard copy denoted S. We will assume D is some Σ4 set (which we
can take later to be ∅(4)) and we will build S so it codes D in information
about level 1 nodes.

We know that there exists some Σ2 relation R such that x ∈ D if and only
if ∃y∀zR(x, y, z). By Lemma 2.1.4(1), R is one-one reducible to Fin. This
gives the intuition that we want to end up having that a level 1 node x is the
root of some sort of “finite type” subtree of rank 2 if and only if x ∈ D, or the
root of some “infinite type” subtree if and only if x ∉ D. We later will give
precise definitions to what we mean by finite and infinite types; now we are
just helping the reader understand the picture.

The direct way to represent D at this point will be as follows: For some
computable function g(x, y, z),

x ∈D⇔∃y∀zWg(x,y,z) is finite;

x ∉D⇔∀y∃zWg(x,y,z) is infinite.

Now if we want to build the tree S of rank 3 from this information, it seems
that we should try something like: Root and level 1 as usual. Level 2 in-
cludes (x, ⟨y, z⟩) for all y, z, and level 3 will include (x, ⟨y, z⟩ , s) whenever
Wg(x,y,z),s+1 ≠Wg(x,y,z),s. Unfortunately we end up getting a “bad” tree in the
sense that there is no way to distinguish whether x belongs to D or not based
on the shape of the subtree below it.

Imagine now we could find a way of representing Σ4 sets that makes the
tree S look “good”; say for example we could make the subtrees of the type n
for each finite n always appear infinitely often and ω appears either infinitely
many or finitely many (and when it happens finitely many, it will not matter
how many exactly).

When x ∉D:

24

(x)

ω . . . 0 . . . 1 . . .

When x ∈D:
(x)

ω ω ω 0 . . . 1 . . .

If we accomplish this, we basically would have solved the problem. We
will make the nice copy T so it has the level 1 even nodes, say, as roots to the
first figure above and the odd nodes are roots to the second figure and so, an
arbitrary isomorphism from S to T will take x to an even number if and only
if x ∉D and D will be computable from any isomorphism.

In what follows we establish such a helpful representation result for ΣU
4

sets where U can be any oracle.

Lemma 2.2.1. Let D be a ΣU
4 set. Then, there exists a computable function h̃

such that for all x:

(1) x ∈D⇔ (∃y)(∀z)[h̃(x, y, z) ∈ FinU];

(2) (∀y)[(∀z)h̃(x, y, z) ∈ FinU ⇒ (∀y′ ≥ y)(∀z)h̃(x, y′, z) ∈ FinU]; and

(3) (∀y)[(∃z)h̃(x, y, z) ∈ InfU ⇒ (∃!z)h̃(x, y, z) ∈ InfU].

Proof. Since D is a ΣU
4 set, then there exists some ΣU

3 relation R such that
x ∈ D if and only if ∃y¬R(x, y). By Lemma 2.1.4(2), there is a computable
function h such that

R(x, y) ⇔ (∃!z)(WU
h(x,y,z) = ω ∧ (∀w ≠ z)[WU

h(x,y,w) is finite]) (∗),

¬R(x, y) ⇔ (∀z)(WU
h(x,y,z) is finite).

That is, we have

x ∈D⇔ (∃y)(∀z)(WU
h(x,y,z) is finite),

25

x ∉D⇔ (∀y)(∃!z)(WU
h(x,y,z) = ω ∧ (∀w ≠ z)[WU

h(x,y,w) is finite]).

It is not hard to see that, for any x (not necessarily outside D) if y is such
that for some z, WU

h(x,y,z)
is infinite, then such z is unique. Indeed, if such z

exists, then it is not the case that ¬R(x, y), i.e., R(x, y) and so z is unique
by (∗). This means that condition 3 alone is satisfied if h̃ is taken to equal h
(clearly condition 1 also valid). We get h̃ to satisfy condition 2 by modifying
h in a way that will keep properties 1,3 valid.

To describe h̃, we use the movable marker method. Our marker position
at each stage will be determined based on a U -computable function rU ∶ N3 →

N∪{+∞}. For fixed x, y, at every stage s, rU(x, y, s) tries to land on the least
value z such that WU

h̃(x,y−1,z)
is infinite. We define U -c.e. sets uniformly in

x, y, z (construction is also uniform in U , i.e., it is the same using any set in
place of U).
For all x, y set rU(x, y,0) = +∞.
First, for y = 0, set WU

h̃(x,0,z)
=WU

h(x,0,z)
, and set rU(x,0, s + 1) = µl{l < s + 1 ∶

WU
h(x,0,l),s+1

≠WU
h(x,0,l),s

} if such l exists, and otherwise rU(x,0, s + 1) = +∞.
Fix y > 0 and assumeWU

h̃(x,y−1,z)
is defined for all x, z. We will defineWU

h̃(x,y,z)

in stages.
Stage 0: WU

h̃(x,y,z),0
is empty.

Stage s + 1: Assume WU
h̃(x,y,z),s

as well as rU(x, y, s) are now defined for
all x, z. If π2(z) = rU(x, y, s) (otherwise do nothing), set WU

h̃(x,y,z),s+1
=

WU
h̃(x,y,z),s

∪WU
h(x,y,π1(z)),s

(notice the uniformity of the definition of rU(x, y, s)),
and set rU(x, y, s+1) to be the least l < s+1 (if it exists, otherwise rU(x, y, s+
1) = +∞) such that WU

h̃(x,y−1,l),s+1
≠WU

h̃(x,y−1,l),s
.

End of description.
Now we show that h̃ does what we want.

Case 1: x ∈ D. Choose y to be least such that (∀z)(WU
h(x,y,z)

is finite). If
y = 0, then WU

h̃(x,y,z)
= WU

h(x,y,z)
which is finite for all z. If y > 0, then for

every z, WU
h̃(x,y,z)

⊆ WU
h(x,y,π1(z))

which is also finite. As a consequence, for
every natural value l, it happens that rU(x, y+1, s) = l for only finitely many s.
This will make WU

h̃(x,y+1,z)
finite for all z because WU

h̃(x,y+1,z)
gains elements at

a stage s + 1 only if π2(z) = rU(x, y + 1, s). Inductively, we have for all y′ ≥ y
that WU

h̃(x,y′,z)
is finite for all z.

26

To complete verifying this case, we need to show that if y > 0 is like above,
then, for every y′ < y, there is a unique z′ such that WU

h̃(x,y′,z′)
is infinite. For

y′ = 0 this is direct becauseWU
h̃(x,0,z)

=WU
h(x,0,z)

. Assume 0 ≤ y′ < y. Note that,
for every z, WU

h̃(x,y′,z)
⊆ WU

h(x,y′,π1(z))
, and so the former is possibly infinite

whenever the latter is. There is a unique z′′ such that WU
h(x,y′,z′′)

is infinite, and
so for only the z-values such that π1(z) = z′′, WU

h̃(x,y′,z)
is possibly infinite.

But we need more to verify, we need a unique z such that WU
h̃(x,y′,z)

is possibly
infinite (which is actually infinite). Indeed, z′ = ⟨z′′, l⟩ is that unique z where
l = lim infs rU(x, y′, s) (the unique l such that l = rU(x, y′, s) for infinitely
many s). The last sentence can be verified by induction on y′ < y: y′ = 0 is
clear. Assume there is a unique l1 such that l1 = rU(x, y′ − 1, s) for infinitely
many s, and z1 = ⟨z′′1 , l1⟩ (where z′′1 is the unique such that WU

h(x,y′−1,z′′1)
is

infinite) is the unique such that WU
h̃(x,y′−1,z1)

is infinite. By the definition of
rU , z1 is the unique value such that z1 = rU(x, y′, s) for infinitely many s.
At every stage s, all (and only) the elements of WU

h(x,y′,π1(z)),s
get enumerated

into WU
h̃(x,y′,z),s+1

only when π2(z) = z1. Whence, z′ = ⟨z′′, z1⟩ (where z′′ is
the unique such that WU

h(x,y′,z′′)
is infinite), is the unique such that WU

h̃(x,y′,z′)
is

infinite.
Case 2: x ∉D. We show by induction on y that for every y, lim infs rU(x, y, s)

exists and that there is unique z̃y such thatWU
h̃(x,y,z̃y)

is infinite. Indeed, first we
know that for every y there is unique z (call it zy) such thatWU

h(x,y,zy)
is infinite.

For y = 0, clearly lim infs rU(x, y, s) = z0 (we have z̃0 = z0) and WU
h̃(x,0,z̃0)

=

WU
h̃(x,0,z0)

which is infinite. Assume now lim infs rU(x, y, s) = l exists and that
WU
h̃(x,y,z̃y)

is infinite (assume z̃y is unique). Then we have that lim infs rU(x, y+

1, s) = z̃y. Take z̃y+1 = ⟨zy+1, l⟩, then clearly WU
h̃(x,y+1,z̃y+1)

= WU
h(x,y+1,zy+1)

which is infinite. Notice that WU
h̃(x,y+1,z)

is infinite only if WU
h(x,y+1,π1(z))

is
infinite and π2(z) = rU(x, y + 1, s) for infinitely many s. The latter happens
only when π2(z) = z̃y. Hence, z = z̃y+1 is the only value making WU

h̃(x,y+1,z)

infinite. We have that for all y, lim infs r(x, y + 1, s) = z̃y.

Now we can build our general case trees in a good shape in the sense we
discussed before Lemma 2.2.1. Let us first introduce some new tree notation.
For finite n ≥ 1 and N ∈ N ∪ {ω}, we inductively define type [n ∶ N] trees as

27

follows.
[1 ∶ N] is the tree N defined before.
[n ∶ N] is the tree such that exactly N of its level 1 vertices are roots of
subtrees of type [n− 1 ∶ ω] and infinitely many from every type [n− 1 ∶m] for
every natural m.
For convenience, whenever there is no confusion about the rank, we are going
to call the type [n ∶ ω] “infinite type” while, for finite N , [n ∶ N] is of “finite
type”.

Lemma 2.2.2. Given a Σ2n+2 setD for some natural n ≥ 0, there is a uniformly

computable sequence of computable trees (T x)x∈ω of rank n + 1 such that for

every x

x ∉D if and only if T x is of type [n + 1 ∶ ω] and

x ∈D if and only if T x is of type [n + 1 ∶m] for some finite m.

Proof. We use induction on n. If n = 0, we have D ≤m Fin say via f . Let
T x be the tree with root (x) and just include (x, s) in level 1 if and only if
Wf(x),s+1 ≠Wf(x),s. Assume the lemma holds for n = k, and let D be a Σ0

2k+4

set. By Lemma 2.2.1, there is a Σ0
2k+2 relation R such that

(1) x ∈D⇔ (∃y)(∀z)[R(x, y, z)],

(2) (∀y)[(∀z)R(x, y, z) ⇒ (∀y′ ≥ y)(∀z)R(x, y′, z)],

(3) (∀y)(∃z)¬R(x, y, z) ⇒ (∃!z)¬R(x, y, z).

Now, since for any fixed x, the set Hx = {⟨y, z⟩ ∶ R(x, y, z)} is Σ2k+2, so
by the induction hypothesis, there exists a uniformly computable sequence of
computable trees T ⟨y,z⟩x such that
⟨y, z⟩ ∉Hx if and only if T ⟨y,z⟩x is of type [k + 1 ∶ ω] and
⟨y, z⟩ ∈Hx if and only if T ⟨y,z⟩x is of type [k + 1 ∶m] for some finite m.

Now let T x be the tree of rank k + 2 such that every even level 1 vertex
(2 ⟨y, z⟩) is the root of the tree T ⟨y,z⟩x and let the odd vertices be roots of in-
finitely many copies of all the finite types of rank k + 1. That separation into
even and odd vertices is just to guarantee that T x is of type [k + 2 ∶ ω] or
[k + 2 ∶m].

28

Now it remains to confirm that our sequence of trees satisfies the condi-
tions.
Case 1: x ∈D. Let y = y0 be least such that (∀z)R(x, y0, z). Then by 2 above,
for all y ≥ y0, (∀z)R(x, y, z) and by 3, for all y < y0, (∃!z)¬R(x, y, z). This
means that for all y ≥ y0, the trees T ⟨y,z⟩x are of the finite type. At the same
time, for every y < y0 there exists a unique zy such that the tree T ⟨y,zy⟩x is of
type [n + 1 ∶ ω] (for z ≠ zy, T

⟨y,z⟩
x is of the finite type). Therefore, the tree T x

is of type [n + 2 ∶ y0].
Case 2: x ∉D. In a similar way, one can see that T x is a tree of type [n+2 ∶ ω].
This is exactly what we want.

Now we are ready to prove our main theorem for finite ranks.

Theorem 2.2.3. For all n ≥ 0, there exists a tree of rank n + 1 with strong

degree of categoricity 0(2n).

Proof. From Proposition 2.1.2, all we need to do is to show that there is a tree
of rank n + 1 with computable copies Tn+1, Sn+1 such that every isomorphism
between the two copies computes 0(2n). The case n = 0 is trivial. Let T x be
a computable sequence of trees like in the previous lemma for D = ∅(2n+2).
Let Sn+1 be the tree of type [n + 2 ∶ ω] with root () and every even level 1
vertex (2x) is the root of T x and let the odd vertices cover infinitely often the
possibilities [n + 1 ∶m] for all finite m.
Defining Tn+1: simply, make every even level 1 node the root of a tree of type
[n + 1 ∶ ω] while keep the odd nodes for infinitely many copies of [n + 1 ∶m],
m ∈ N.

Now, if f ∶ Sn+1 → Tn+1 is an isomorphism, then for all x, x ∈ D if and
only if f(2x) is odd.

Generalizing the last theorem to rank ω is immediate because of the uni-
formity of our tree constructions in n:

Corollary 2.2.4. There exists a tree of rank ω with strong degree of categoric-

ity 0(ω)(= 0(2ω)).

29

Proof. Let Tω be the tree such that every level 1 node n is the root of the
tree Tn obtained in the previous theorem. Similarly let Sω be the tree such that
every level 1 node n is the root of the tree Sn obtained in the previous theorem.

.

S1 S2 S3 . . .

.

T1 T2 T3 . . .

Clearly any isomorphism between Tω and Sω uniformly computes ∅(2n)

for every n, hence, computes ∅(ω). On the other hand, there is an isomorphism
between the two copies which is computable from 0(ω) by Proposition 2.1.2.

Note that, in the last corollary, we could also have used the trees from
[13] which are Hirschfeldt and White’s back-and-forth trees [22](see Defini-
tion 2.2.5 below). Also, in [13] (Theorem 3.1), it was shown that there is a
computable structure with strong degree of categoricity 0(ω+1). The structure
defined there is a collection of disjoint trees each of rank ω. We can glue those
trees to obtain a tree of rank ω + 1 with strong degree of categoricity 0(ω+1).

Starting at this point, throughout the rest of this chapter, we are going to
use the trees Aγ , Eγ , Lγk and Lγ∞ exactly as defined in Definition 3.1 [22]. We
recall the definitions here.

Hirschfeldt and White defined, for each successor ordinal β, a pair of trees
Aβ and Eβ which can be differentiated exactly by β jumps. These trees are
called back-and-forth trees.

Definition 2.2.5 ([22, Definition 3.1]). Back-and-forth trees are defined recur-
sively in β. We take A1 to be the tree with just a root node and no children,
and we take E1 to be the tree where the root node has infinitely many children,
none of which have children. See Fig. 2.2.

Suppose β is a successor ordinal. DefineAβ+1 as a root node with infinitely
many children, each the root of a copy of Eβ , and define Eβ+1 as a root node
with infinitely many children, each the root of a copy ofAβ , and also infinitely
many other children, each the root of a copy of Eβ . See Fig. 2.3.

30

A1 E1

⋯

Figure 2.2: A1 and E1

Aβ+1 Eβ+1

Aβ Aβ Eβ ⋯EβEβEβ ⋯ Eβ⋯

Figure 2.3: Aβ+1 and Eβ+1 when β is a successor ordinal.

Now suppose β is a non-zero limit ordinal, and let β0, β1, . . . be a funda-
mental sequence of successor ordinals for β, that is, a sequence of successor
ordinals below β with limit β. We first define a family of helper trees Lβ,k
where k ∈ ω ∪ {∞}. Define Lβ,∞ to consist of a root node whose children are
root nodes of copies of Aβi , and such that each copy appears exactly once as a
child. For k ∈ ω, Lβ,k has a root node whose children are root nodes of copies
of Aβ0 , . . . ,Aβk ,Eβk+1 ,Eβk+2 , . . . where again each copy appears exactly once
as a child. Such trees are shown in Fig. 2.4.

We can now define Aβ+1 and Eβ+1 for the non-zero limit ordinal β. For
Aβ+1, we have a root node with infinitely many children, each the root node
of a copy of Lβ,k such that for each k ∈ ω, Lβ,k appears infinitely many times.
The definition of Eβ+1 is similar, except k is drawn from ω∪{∞}. See Fig. 2.5.

The tree A1 has rank 0 while the tree E1 has rank 1. For γ > 0, Aγ and Eγ
have rank γ. The trees Lγk and Lγ∞ both have rank γ.

We also have the following proposition (Proposition 3.2 in [22]):

31

Lβ,∞ Lβ,k

Aβ0 Aβk Eβk+1 ⋯Aβ2Aβ1Aβ0 ⋯ Eβk+2

Figure 2.4: Helper trees Lβ,∞ and Lβ,k for k ∈ ω for the non-zero limit ordinal
β.

Aβ+1 Eβ+1

Lβ,0 ⋯Lβ,1Lβ,0 ⋯ ⋯⋯Lβ,∞⋯ ⋯

Figure 2.5: Aβ+1 and Eβ+1 for the non-zero limit ordinal β.

32

Proposition 2.2.6. Let P be a Σα predicate.

(1) If α is a successor ordinal, there is a sequence of trees Tn, uniformly

computable from a Σα index for P such that for all n, Tn ≅ Eα if P (n),

and Tn ≅ Aα if ¬P (n).

(2) If α is a limit ordinal, there is a sequence of trees Tn, uniformly com-

putable from a Σα index for P such that for all n, Tn ≅ Lαk (for some

finite k) if P (n), and Tn ≅ Lα∞ if ¬P (n).

Now we have all the information we need about the trees from [22]. The
tree we mentioned earlier to have strong degree of categoricity 0(ω+1) is in fact
isomorphic to Eω+1.

The next case we consider is trees of rank ω + 2. That case requires us to
define new types of trees. Let B(y, s) denote the tree type where: level 1 has
exactly y + 1 many dead ends, and every other node in level 1 has exactly one
immediate successor. Each of these immediate successors (level 2 nodes) is
the root of the tree Ak or Ek so that they appear as A1, . . . ,As,Es+1,Es+2
We let B(y,ω) be the same but the types Ek do not show up.

B(y, s):
.

0 . . . y . . .

A1

.

As

. . .

Es+1

33

B(y,ω):
.

0 . . . y .

A1

.

A2

. . .

A3

Let [ω + 1 ∶ ω] denote the tree type such that:

(1) Every level 1 node is the root of a tree of the typeB(y, s) for some y ∈ N
and s ∈ N ∪ {ω},

(2) For every natural y, s, the type B(y, s) appears infinitely often.

(3) For every natural y, the type B(y,ω) appears infinitely often.

Let [ω + 1 ∶m] denote the tree type defined exactly like [ω + 1 ∶ ω] except
that 3 happens exactly for y ≠m (i.e., the type B(m,ω) does not appear at all,
whereas for every y ≠m, the type B(y,ω) apears infinitely often).

Lemma 2.2.7. LetD be a Σω+2 set. There is a uniformly computable sequence

(T x)x∈ω of trees of rank ω + 1 such that T x ≅ [ω + 1 ∶m] (for some finite m) if

x ∈D and T x ≅ [ω + 1 ∶ ω] if x ∉D.

Proof. Since D is a Σ∅(ω)

3 set, we can apply part 2 of Lemma 2.1.4 to obtain a
computable function h such that:

x ∈D⇔ (∃y)[h(x, y) ∈ Tot∅
(ω)

∧ (∀z ≠ y)h(x, z) ∈ Fin∅
(ω)

],

x ∉D⇔ (∀y)[h(x, y) ∈ Fin∅
(ω)

].

Let T x be the tree with root x such that

(1) the level 1 node (x,2⟨y, z⟩) has the children (x,2⟨y, z⟩,0), . . . , (x,2⟨y, z⟩, y)

as dead ends.

(2) for every natural x, y, z and k, (x,2⟨y, z⟩, y+k+1) has exactly one single
immediate successor (let it be (x,2⟨y, z⟩, y + k + 1,0)),

34

(3) (x,2⟨y, z⟩, y + k + 1,0) is the root of a tree of type Ak if z ∉ W∅(ω)

h(x,y),k
,

and of type Ek if z ∈W∅(ω)

h(x,y),k
. This is doable because deciding whether

a number enters W∅(ω)

h(x,y)
within k stages uses only finitely many pieces

from the oracle ∅(ω) (we can assume that the used part is ∅(k)).

(4) Every node (x,2⟨y, z⟩ + 1) is the root of a tree of type B(y, z) (this is
just to homogenize the tree).

Verification:

Case 1: x ∉ D. In this case we have that, for every y, W∅(ω)

h(x,y)
contains

at most finitely many z. This means that, for only finitely many z, z en-
ters W∅(ω)

h(x,y)
(at stage sz, say). Then, (x,2⟨y, z⟩) is the root of a tree of type

B(y, sz). For those z that do not enter W∅(ω)

h(x,y)
at any stage, (x,2⟨y, z⟩) is the

root of a tree of type B(y,ω). So, at the end, T x ≅ [ω + 1 ∶ ω].

Case 2: x ∈ D. In this case there exists exactly one y0 such that W∅(ω)

h(x,y0)

contains every natural number z, and for every y ≠ y0, W∅(ω)

h(x,y)
contains at

most finitely many z. For y ≠ y0, we explained in case 1 what the tree
rooted at (x,2⟨y, z⟩) looks like for every z. Similarly, for every z, one can see
(x,2⟨y0, z⟩) is the root of a tree of the type B(y0, sz) for some finite sz. This
means that B(y0, ω) never shows up. In other words, T x ≅ [ω + 1 ∶ y0].

Theorem 2.2.8. There is a tree of rank ω + 2 which has strong degree of cate-

goricity 0(ω+3).

Proof. Follows from the previous lemma the same way we used Lemma 2.2.2
to prove Theorem 2.2.3, and from Proposition 2.1.2.

It is easy now to see that we can inductively prove Theorem 2.2.3 for ranks
greater than ω using a relativization of Lemma 2.2.2. In what follows we
prove a relativization of Lemma 2.2.2, but first some notation: For n ≥ 1, let
[ω+n+1 ∶ N] denote the tree of rank ω+n+1 consisting ofN many trees of the
type [ω + n ∶ ω] and, for every finite k, infinitely many of the type [ω + n ∶ k].
Also to have the next Lemma written nicely, let [ω ∶ ω] denote the type Lω∞,
and let [ω ∶ k] denote the type Lωk .

35

Lemma 2.2.9. (Relativization) For every finite n ≥ 0, given a Σω+2n set D,

there is a uniformly computable sequence of computable trees (T x)x∈ω of rank

ω + n such that for every x

x ∉D if and only if T x is of type [ω + n ∶ ω] and

x ∈D if and only if T x is of type [ω + n ∶m] for some finite m.

Proof. The case n = 0 is in Proposition 2.2.6. The case n = 1 is Lemma 2.2.7.
For n > 1, the proof is a raltivization, with respect to ∅(ω), of that of Lemma
2.2.2 (recall that Σω+2n = Σ∅(ω)

2n+1).

Theorem 2.2.10. For all n ≥ 0, there exists a tree of rank ω+n+1 with strong

degree of categoricity 0(ω+2n+1).

Proof. Recall that, from Proposition 2.1.2, all we need to do is to show that
there is a tree of rank ω + n + 1 with computable copies Tn+1, Sn+1 such that
every isomorphism between the two copies computes 0(ω+2n+1). The case n =

0 is the tree Eω+1 as mentioned in the lines after the proof of Proposition 2.2.6.
The case n > 0 follows directly from the last lemma by a similar argument to
that of Theorem 2.2.3. Let T x be a computable sequence of trees like in the
previous lemma forD = ∅(ω+2n+1) (which is Σω+2n-complete). Let Sn+1 be the
tree of type [ω + n + 1 ∶ ω] with root () and every even level 1 vertex (2x) is
the root of T x and let the odd vertices cover infinitely often the possibilities
[ω + n ∶m] for all finite m.

Defining Tn+1: simply, make every even level 1 node the root of a tree
of type [ω + n ∶ ω] while keep the odd nodes for infinitely many copies of
[ω + n ∶m], m ∈ N.

Now, if f ∶ Sn+1 → Tn+1 is an isomorphism, then for all x, x ∈ D if and
only if f(2x) is odd.

As the reader can see at the moment, we can easily generalize the previous
work to all computable ordinals. First, it is easy to see that Corollary 2.2.4 can
be generalized to any rank α that is a computable limit ordinal. This can be
done, in the obvious way, by considering a sequence (increasing) of successor
ordinals with limit α in place of the natural numbers for ω. For a rank that is a
successor of a limit ordinal, such case is handled exactly like the case of rank

36

ω + 1. Indeed, for a limit ordinal γ, the tree Eγ+1 has rank γ + 1 and has strong
degree of categoricity 0(γ+1) (again, by gluing the disjoint trees composing the
structure in Theorem 3.1 in [13]). If the rank is the successor of a successor
ordinal, this case is exactly like Theorem 2.2.10. More clearly, we have:

Theorem 2.2.11. For every computable ordinal α, there exists a computable

tree of rank α+1 with strong degree of categoricity 0(2α) if α is finite, and with

strong degree of categoricity 0(2α+1) if α is infinite. Also, if α is a computable

limit ordinal, there exists a computable tree of rank α with strong degree of

categoricity 0(α) (= 0(2α)).

Proof. Case 1: α is finite. That is exactly Theorem 2.2.3.
Case 2: α is a limit ordinal. Let (αk)k∈ω be a computable increasing sequence
of successor ordinals with limit α. Assume (induction hypothesis) that for
every k, there is a tree of rank < α with two copies T (k), S(k) such that any
isomorphism between these two copies computes 0(αk) (note that this can be
immediately deduced from the proof of Theorem 3.1 in [13]). Let Sα be the
result of gluing the trees S(k) (as in Corollary 2.2.4), and similarly Tα is the
result of gluing the trees T (k) for k ∈ ω. By Proposition 2.1.2, we have a tree
of rank α with strong degree of categoricity 0(α).
Case 3: α is the successor of a limit ordinal γ (i.e. α = γ + 1). We have the
tree Eα.
Case 4: α is the successor of a successor ordinal. We split this case into two
subcases:

Subcase 4.1: α = γ + 2 for some limit ordinal γ. This subcase is exactly
like Lemma 2.2.7. All we need to do is to replace the oracle ∅(ω) by ∅(γ),
and the finite portions considered from the oracle will depend on the chosen
sequence of successor ordinals which has γ as a limit. Suppose that γk is a
sequence of successor ordinals with limit γ such that, in order to decide if
z ∉ W∅(γ)

h(x,y),k
, the portion used from the oracle ∅(γ) is computable from ∅(γk)

(think of ∅(γ) as ⊕k∈ω∅(γk) ∶= {⟨k, x⟩ ∶ x ∈ ∅(γk)}). Then, in the proof of
Lemma 2.2.7, change the following:

(1) In number (3) of the definition of T x, let (x,2⟨y, z⟩, y + k + 1,0) be the
root of a tree of type Aγk if z ∉W∅(γ)

h(x,y),k
and Eγk otherwise.

37

(2) In the definition of B(y, z) (where z ∈ N ∪ {ω}), use Aβk and Eβk in the
places of Ak and Ek.

Subcase 4.2: α = γ + n + 1 for some n > 1. This subcase is exactly like
Theorem 2.2.10. Relativizing Lemma 2.2.9 to ∅(γ) is straightforward.

38

Chapter 3

Degrees of Categoricity Above
Limit Ordinals

The work in this chapter is joint with Csima, Deveau and Harrison-Trainor

(see [12]).

Recall from the introduction that Fokina, Kalimullin, and Miller [15] showed
that every degree that can be realized as a difference of computably enumer-
able (d.c.e.) sets in and above 0(n), for any n < ω, and also the degree 0(ω), are
degrees of categoricity. Later, Csima, Franklin, and Shore [13] showed that
every degree 0(α) for every computable ordinal α, and every degree d.c.e. in
and above 0(α) for any successor ordinal α, is a degree of categoricity. In this
chapter, as we mentioned in the introduction, we fill in a gap above limit ordi-
nals that was missing from the last mentioned work in [13] making a progress
towards Question 5.1 of that paper. More precisely, we prove Theorem 3.2.8
below which states that : If α is a computable limit ordinal and d a degree c.e.
in and above 0(α). Then, there is a computable structure with strong degree of
categoricity d.

Recall that the theory of a structure is the set of first order formulas true
in the structure, and that models of the same theory need not be isomorphic.
The type of a tuple in a structure is the set of formulas (with the appropriate
number of free variables) that the tuple satisfies in the structure. The types

39

of a theory are the types that are realized by models of the theory. A type is
called principal (or isolated) if there is one formula from which the rest follow
(isolates the type). A model of a theory is prime if it elementarily embeds into
all other models of the theory, and when everything is countable, this is the
same as saying that the model only realizes principal types (see [30]). In a
sense, prime structures are the most basic or natural structures.

Our second result in this chapter gives progress towards a question of
Bazhenov and Marchuk.

Question (Bazhenov and Marchuk [5]). What can be the degrees of categoric-
ity of computable prime models?

A computable prime model is always 0(ω+1)-categorical (see [5]). Bazhenov
and Marchuk constructed a computable homogeneous model (which is implied
by being prime for countable models) with degree of categoricty 0(ω+1). The
complexity here is in the structure itself, rather than in the theory. To build a
prime model with degree of categoricity 0(ω+1), the complexity must be in the
theory: If A is a computable prime model of a theory T , then A is T ′ ⊕ 0(ω)-
categorical as T ′ (the jump of T) can decide whether a formula is complete,
and 0(ω) can decide whether a formula holds of a tuple in A. In Theorem
3.2.10 below, we build a computable prime model with degree of categoricity
0(ω+1) (or any other degree c.e. in and above 0(ω)), showing that the bound
cannot be lowered.

Bazhenov and Marchuk stated in [5] that a careful examination of the struc-
tures constructed in [15] shows they are prime models, so that all degrees d.c.e.
in and above 0(n) for a finite n, as well as 0(ω), are strong degrees of categoric-
ity of prime models. Along the way to proving Theorem 3.2.10 we verify in
Lemma 3.1.10 that the building blocks used by Csima, Franklin and Shore for
their examples in [13] are prime. This is enough to see that their structures re-
alizing degrees of categoricity less than or equal to 0(ω) are prime. However,
the structure in [13] with degree of categoricity 0(ω+1) is not prime. With The-
orem 3.2.10, we see that all known degrees of categoricity less than or equal
to the 0(ω+1) bound can be realized by a prime model.

40

3.1 Categoricity Relative to Decidable Models

As a warm-up, we give a simple proof of a result of Goncharov [16] that for
every c.e. degree d, there is a decidable prime model with degree of categoric-
ity d with respect to decidable copies. Recall that a structure is said to be
decidable if its full elementary diagram is computable. In [16], Goncharov
made the following definitions:

Definition 3.1.1. Let d be a Turing degree and A a decidable structure. Then
A is d-categorical with respect to decidable copies if for every decidable copy
B of A, d computes an isomorphism between A and B.

Definition 3.1.2. Let d be a Turing degree and A a decidable structure. Then
d is the degree of categoricity of A with respect to decidable copies if:

• A is d-categorical with respect to decidable copies, and

• whenever A is c-categorical with respect to decidable copies, c ≥ d.

It is not hard to see that between any two decidable copies of a prime
model, there is a 0′-computable isomorphism. Goncharov showed that any
c.e. degree can be the degree of categoricity with respect to decidable copies
of a prime model. We give a different proof, which we think is simpler, and
which demonstrates some of the techniques that we will use later.

Theorem 3.1.3 (Goncharov [16, Theorem 3]). Let d be a c.e. degree. Then

there is a decidable prime modelM which has strong degree of categoricity d

with respect to decidable models.

Proof. Let D ∈ d be a c.e. set. We will construct the structures M and N .
They are the disjoint union of infinitely many structures Mn and Nn, with
Mn and Nn picked out by unary relations Rn. The nth sort will code whether
n ∈ D. Fix n. The structureMn will have infinitely many elements (ai)i∈ω.
There will be infinitely many unary relations (U`)`∈ω defined onMn so that:

a0 ∈ Us⇐⇒ n ∈Dat s

41

where n ∈Dat s means that n enters D at exactly stage s (n ∈Ds ∖Ds−1), and

ai ∉ Us for i > 0 and all s.

Similarly, Nn will have infinitely many elements (bi)i∈ω with the unary rela-
tions defined so that:

bi ∈ Us⇐⇒ i = s and n ∈Dat s.

It is easy to see that we can build computable copies of M and N . These
copies are in fact decidable.

Claim 3.1.4. M and N are decidable.

Proof. Given a formula ϕ(x1, . . . , xn) with k quantifiers and ai1 , . . . , ain ∈ M,
it is not hard to see thatM⊧ ϕ(ai1 , . . . , ain) if and only if the finite substruc-
ture M′ of M whose domain consists of a1, . . . , ak+n+1 and ai1 , . . . , ain also
hasM′ ⊧ ϕ(ai1 , . . . , ain). ThusM is decidable.

ForN , suppose we have a formula ϕ(x1, . . . , xn) with at most k quantifiers
and which uses only some subset of the relations U0, . . . , Uk. Let bi1 , . . . , bin be
elements of N . Then N ⊧ ϕ(bi1 , . . . , bin) if and only if the finite substructure
N ′ ofN whose domain consists of b1, . . . , bk+n+1 and bi1 , . . . , bin also hasN ′ ⊧

ϕ(bi1 , . . . , bin). Thus N is decidable.

Claim 3.1.5. M and N are isomorphic.

Proof. It suffices to show that for each n, Mn and Nn are isomorphic. If
n ∉D, then ai ↦ bi induces an isomorphism betweenMn andNn. If n ∈Dat s,
then the map

a0 ↦ bs

ai ↦ bi−1 when 0 < i ≤ s

ai ↦ bi when i > s

is an isomorphism betweenMn and Nn.

42

Claim 3.1.6. M and N are prime.

Proof. It suffices to show that eachMn and Nn are prime, since these struc-
tures are determined inside M and N uniquely by the relation Rn. It is not
hard to see that Mn and Nn are models of an ℵ0-categorical theory (a the-
ory such that any two countable models of it are isomorphic), and hence are
prime.

Claim 3.1.7. Any isomorphism betweenM and N can compute D.

Proof. Let g be an isomorphism betweenM and N . For each n, let (ai)i∈ω

and (bi)i∈ω be the elements in the definition ofMn and Nn. Let s be such that
g(a0) = bs. Then n ∈D if and only if n ∈Ds.

Claim 3.1.8. Given a decidable copy M̃ of M, D can compute an isomor-

phism betweenM and M̃.

Proof. For each n, let M̃n be the structure with domain Rn in M̃. It suffices
to compute an isomorphism g betweenMn and M̃n for each n. Let (ci)i∈ω be
the elements of M̃n. If n ∉ D, no relation Uj holds of any of the the elements
(ai)i∈ω or (ci)i∈ω. So ai ↦ ci is an isomorphism. On the other hand, if n ∈ D,
then for some unique s, a0 ∈ Us. We can look for ck such that ck ∈ Us. Map a0
to ck; map each other ai to some other ci.

These claims complete the proof of the theorem.

The next two lemmas piece together the facts that we will need about the
back-and-forth trees (recall Definition 2.2.5), first for arbitrary β, and second
some additional properties for finite β in particular. These facts come from
[22] and [13].

Lemma 3.1.9. Let α be a computable ordinal. For a successor ordinal β < α,

the structures Aβ and Eβ (from Definition 2.2.5) satisfy the following proper-

ties:

(1) Uniformly in β and an index for a Σβ set S, there is a computable se-

quence of structures Cx such that

x ∈ S ⇐⇒ Cx ≅ Eβ and x ∉ S ⇐⇒ Cx ≅ Aβ.

43

(2) Uniformly in β, there is a Σ0
β sentence ϕ such that Eβ ⊧ ϕ and Aβ ⊭ ϕ.

(3) Aβ and Eβ are uniformly 0(β)-categorical.

Proof. For (1), take (Cx)x to be the computable sequence of trees given by
Proposition 3.2 in [22].

For (2), take ϕ to be the sentence given by evaluating the formula guaran-
teed by Lemma 3.5 in [22] for B = Eβ at its own root node. The complexity of
ϕ is the natural complexity of Eβ , which is Σβ . This lemma says that for any
tree T , T ⊧ ϕ if and only if T ≅ Eβ .

Finally, for (3), we use a result from Csima, Franklin, and Shore [13] about
back-and-forth trees. We will consider Aβ; the case for Eβ is identical. We
have that Aβ is a back-and-forth tree, and hence if C is a computable structure
isomorphic to Aβ , then it is also a computable back-and-forth tree. Corollary
2.6 in [13] allows ∅(γ) to uniformly compute an isomorphism between these
two trees when the rank of the trees is at most γ. Since the rank of Aβ is β by
construction, the isomorphism is uniformly computable in 0(β).

Now for finite ordinals β (and writing n for β), we have some additional
properties. We will state the lemma in full, including properties that were
covered by the previous lemma. We think that these facts are well-known, but
we do not know of a reference in print.

Lemma 3.1.10. For 0 < n < ω, the structuresAn and En satisfy the properties:

(1) Uniformly in n and an index for a Σn set S, there is a computable se-

quence of structures Cx such that

x ∈ S ⇐⇒ Cx ≅ En and x ∉ S ⇐⇒ Cx ≅ An.

(2) For each n, there is an elementary first-order existential sentence ϕn,

computable uniformly in n, such that En ⊧ ϕn and An ⊭ ϕn.

(3) An and En are prime.

(4) An and En are 0(n)-categorical uniformly in n.

44

Proof. (1) and (4) are the same as in the previous lemma. We show using
induction on n that these sequences satisfy (2) and (3) as well. It is easy to
see that A1 and E1 are prime models of their theories and that they are distin-
guishable (in the sense of (2) in the statement of the lemma) by the existential
sentence ϕ1 = ∃x∃y(x ≠ y). Assume now that An and En are prime and dis-
tinguishable by a first-order existential sentence ϕn (in the sense that En ⊧ ϕn
but An ⊭ ϕn). We show that An+1 and En+1 are prime and distinguishable by a
first-order existential sentence ϕn+1.

It is not hard to see that we can take ϕn+1 to be the sentence ∃x(¬ϕn[⪰
x]∧“x is a child of the root node”) where x is a new variable not appearing in
ϕn and ϕn[⪰ x] is the formula obtained from ϕn by bounding every quantifier
to the subtree with root x.

It remains to show that An+1 and En+1 are prime. We will do that for En+1
(the same method will work for both structures). Let ā be an arbitrary tuple in
En+1. We describe a formula that isolates the type of the tuple ā. Let r1, . . . , rk
be the level 1 nodes which are the roots of subtrees containing elements of
ā. Write ā = (ā1, . . . , āk) where āi is in the subtree below ri. Note that we
can re-order the tuples as we like (if the type of some permutation of ā is
isolated, then so is that of ā). By the induction hypothesis, we know that the
subtree with root ri is prime for every i; hence, for each i ∈ {1, . . . , k}, there
is a formula which isolates the type of the tuple āi in the subtree with root ri.
There is also, for each ri, a formula (either ϕn or ¬ϕn) which distinguishes
between whether the subtree below ri is isomorphic to An or En. So, we can
isolate the type of ā by saying that there are children r1, . . . , rk of the root such
that āi satisfies the formula which isolates it (in the subtree with root ri), and
by saying whether the subtree below each ri is isomorphic to An or En.

Fokina, Kalimullin, and Miller [15] showed that there is a structureA with
strong degree of categoricity 0(ω). We note the well-known fact that one can
also have A be a prime model.

Theorem 3.1.11. There is a computable structure A with strong degree of

categoricity 0(ω) such that A is a prime model of its theory.

Proof. The structure is just the disjoint union of infinitely many copies of

45

each En for n < ω. Theorem 3.1 of [13] shows that this has strong degree
of categoricity 0(ω), and it is not hard to see using Lemma 3.1.10 that this
structure is prime.

3.2 C.E. In And Above a Limit Ordinal

We begin this section by a short discussion of how we code a c.e. set into
a structure. Consider a c.e. set C. If one knows, for each n, at what stage
s, Cs(n) = C(n) (i.e. the approximation has settled), then one can compute
C. Moreover, one does not need to know exactly when C settles, but just a
point after which C(n) has settled. Following the terminology of Groszek and
Slaman [18], we say that C has a self-modulus.

Definition 3.2.1 (Groszek and Slaman [18]). Let F ∶ω → ω and X ⊆ ω. Then:

• F is a modulus (of computation) forX if everyG∶ω → ω that dominates
F pointwise computes X .

• X has a self-modulus if X computes a modulus for itself.

The self-modulus of a c.e. set C is the function f(n) = µs(Cs(n) = C(n)).
Groszek and Slaman showed that every ∆2 set has a self-modulus. In fact, the
self-modulus of a c.e. set has a nice form; it has a non-decreasing computable
approximation.

Definition 3.2.2. A function F ∶ω → ω is limitwise monotonic if there is a
computable approximation function f ∶ω × ω → ω such that, for all n,

• F (n) = lims→∞ f(n, s).

• For all s, f(n, s) ≤ f(n, s + 1).

In fact, it is well-known that the sets of c.e. degree are exactly those with
limitwise monotonic self-moduli (Theorem 1.1.4).

The next lemma encodes a limitwise monotonic function into the isomor-
phisms of copies of a computable structure. Any isomorphism dominates the
limitwise monotonic function; but it does not seem to be the case that dominat-
ing the limitwise monotonic function is sufficient to compute isomorphisms.

46

Lemma 3.2.3. Let α be a computable limit ordinal. Let F ∶ω → ω be limitwise

monotonic relative to 0(α) (i.e. the approximation function is computable in

0(α)). There is a structure with computable copiesM and N such that:

(1) Every isomorphism betweenM andN computes a function which dom-

inates F .

(2) F ⊕0(α) computes an isomorphism between any two computable copies

ofM and N .

Proof. Let Φ be a computable operator such that F (n) = lims→∞ Φ∅(α)(n, s)

and this is monotonic in s. Write ∅(α) = ⊕γ<α∅(γ) for successor ordinals
γ < α. By convention, for β < α, we say that Φ∅(β)(n, s) converges if the
computation Φ∅(α)(n, s) halts, but the only part of the oracle ∅(α) = ⊕γ<α∅(γ)

that is read during the computation is that part with γ ≤ β. So, if Φ∅(β)(n, s) =

m, then Φ∅(α)(n, s) = m. Since α is a limit ordinal, if Φ∅(α)(n, s) = m, then
Φ∅(β)(n, s) =m for some successor ordinal β < α.

Let (Aβ)β<α and (Eβ)β<α be as in Lemma 3.1.9. We will construct the
structuresM and N . They are the disjoint union of infinitely many structures
Mn and Nn, withMn and Nn picked out by unary relations Rn. The nth sort
will code the value of F (n).

Fix n. Mn will have infinitely many elements (ai)i∈ω satisfying a unary
relation S. Each of these elements will be attached to, for each successor
ordinal β < α, a “box” Mi,β which contains within it a copy of either Aβ
or Eβ; each of the boxes are disjoint. By this we mean that there are binary
relations Tβ such that Tβ(ai, x) holds for exactly those x ∈ Mi,β . The structure
Mi,β will be a structure in the language of Lemma 3.1.9 and will be defined
so that:

(1) M0,β ≅ Aβ for all β.

(2) Mi,β ≅ Eβ , i ≥ 1, if there is s such that Φ∅(β)(n, s) ≥ i.

(3) Mi,β ≅ Aβ , i ≥ 1, otherwise.

Note that the condition in (2) is Σβ and so we can build such a structureMn

computably.

47

Similarly, Nn will have infinitely many elements (bi)i∈ω, each of which is
attached to, for each β < α, a box Ni,β which contains within it:

(1) Ni,β ≅ Eβ if there is s such that Φ∅(β)(n, s) > i.

(2) Ni,β ≅ Aβ otherwise.

Again, the condition in (1) is Σβ and so we can build such a structure Nn
computably.

Claim 3.2.4. Fix n.

(1) For each j < F (n), there is β < α such that:

• for γ < β,Mj+1,γ ≅ Nj,γ ≅ Aγ ,

• for γ ≥ β,Mj+1,γ ≅ Nj,γ ≅ Eγ ,

(2) For each j ≥ F (n) and β < α,Mj+1,β ≅ Nj,β ≅M0,β ≅ Aβ .

Proof. For (1), it is clear from the definitions ofMj+1,β and Nj,β that for all
β < α, Mj+1,β ≅ Nj,β . Since j < F (n), there is s such that Φ∅(α)(n, s) =

F (n) > j. In particular, there must be some β < α such that there is s with
Φ∅(β)(n, s) > j. Let β be the least such ordinal. Then for all γ ≥ β, there is
s such that Φ∅(β)(n, s) > j, and soMj+1,γ ≅ Nj,γ ≅ Eγ . By choice of β, for
γ < β, there is no s such that Φ∅(β)(n, s) > j, and soMj+1,γ ≅ Nj,γ ≅ Aγ .

For (2), it is clear thatMj+1,β ≅ Nj,β for each j ≥ F (n) and each β < α,
and it is also clear thatM0,β ≅ Aβ for each β < α. If j ≥ F (n), then since Φ is
limitwise monotonic approximation to F , Φ∅(β)(n, s) ≤ F (n) ≤ j for all s and
β. Thus Nj,β ≅ Aβ for all β.

Claim 3.2.5. M and N are isomorphic.

Proof. It suffices to show that for each n,Mn and Nn are isomorphic. Fix n.
Using Claim 3.2.4, we see that the map

a0 ↦ bF (n)

ai ↦ bi−1 when 0 < i ≤ F (n)

ai ↦ bi when i > F (n)

48

extends to an isomorphism betweenMn and Nn.

Claim 3.2.6. Any isomorphism between M and N can compute a function

which dominates F .

Proof. Let g be an isomorphism betweenM and N . We will compute, using
g, a function ĝ which dominates F . For each n, define ĝ(n) as follows. Let
(ai)i∈ω and (bi)i∈ω be the elements in the definition ofMn andNn. Then ĝ(n)
is the number satisfying g(a0) = bĝ(n).

We have that ĝ(n) ≥ F (n). For each β < α, M0,β ≅ Aβ , but if j <

F (n), there is β < α such that Nj,β ≅ Eβ (by Claim Theorem 3.2.4). Thus, no
isomorphism can map a0 to bj for j < F (n), and so ĝ(n) ≥ F (n).

Claim 3.2.7. Given a computable copy Ñ of N , F ⊕ 0(α) can compute an

isomorphism between N and Ñ .

It is more convenient for the proof to consider N rather than M in this
claim, but as they are isomorphic it does not matter which we choose.

Proof. For each n, let Ñn be the structure with domain Rn in Ñ . It suffices
to compute an isomorphism g between Nn and Ñn for each n. Inside of Ñn,
let (ci)i∈ω list the elements x satisfying S(x). For each ci, let Ñi,β be the tree
whose domain consists of the elements y satisfying Tβ(ci, y). To begin, we
will define g on (bi)i∈ω ⊆ Nn. Compute F (n). Using 0(α), look for F (n)

elements ci such that, for some β < α, Ñi,β ≅ Eβ . This search is computable
relative to 0(α) by Lemma 3.1.9 (2), and by Claim 3.2.4 we know that there
are exactly F (n) such elements and so the search will terminate after finding
every such element. Rearranging (ci)i∈ω, we may assume that these elements
are c0, . . . , cF (n)−1.

Now, for each k < F (n), find the least βk such that Nk,βk ≅ Eβk , and the
least γk such that Ñk,γk ≅ Eγk . Again, this is computable in 0(α) by Lemma
3.1.9 (2). Note that we must ask 0(α) to determine what βk and γk are least.
The sets {β0, . . . , βF (n)−1} and {γ0, . . . , γF (n)−1} must be identical including
multiplicity (but possibly in a different order) as Ñn and Nn are isomorphic.
So by rearranging (ci)i∈ω once again we may assume that βk = γk for each
k < F (n).

49

We have now rearranged the list (ci)i∈ω so that for each i and β < α,Ni,β ≅
Ñi,β . Define g so that g(ai) = ci. For each i and β < α, Ni,β ≅ Ñi,β are
isomorphic to either Aβ or Eβ , which are uniformly 0(β)-categorical (Lemma
3.1.9 (3)), and we can compute using 0(α) which case we are in. So we can
define g onNi,β to be an isomorphism to Ñi,β . Thus g is an isomorphism from
Nn to Ñn.

These claims complete the proof of the theorem.

Using this lemma, and taking the limitwise monotonic function to be the
self-modulus of a c.e. set, it is not hard to prove our main theorem.

Theorem 3.2.8. Let α be a computable limit ordinal and d a degree c.e. in and

above 0(α). There is a computable structure with strong degree of categoricity

d.

Proof. Fix α and let D ∈ d be a set c.e. in and above 0(α). Since D is c.e.
in and above 0(α), it has a self-modulus f that is limitwise monotonic relative
to 0(α). Consider the structureM constructed in Lemma 3.2.3 for this f . We
will enrich this structure slightly to produce a new structure S . Let Sα be the
computable structure with strong degree of categoricity 0(α) constructed in
Theorem 3.1 of Csima, Franklin and Shore [13]. The new structure S consists
ofM and a disjoint copy of Sα, and a new unary relation R such that R(x)

holds exactly when x belongs to the copy of Sα. We claim that S has strong
degree of categoricity d.

First, suppose that T is some other computable copy of S . We will show
that there is a d-computable isomorphism between S and T . Using the relation
R, we may identify the component of T isomorphic to Sα. Since Sα has strong
degree of categoricity 0(α) ≤ d, we can d-computably find an isomorphism
between the copies of Sα in S and T . We can also identify the component
isomorphic toM in each structure. By choice ofM, any two such copies have
an isomorphism between them computable in f⊕0(α), andD can compute this
self-modulus f . Hence d can computably produce such an isomorphism, since
it can compute f ⊕0(α). Gluing these two isomorphisms together gives us the
result.

50

Since Sα has strong degree of categoricity 0(α), there is a computable copy
Ŝα of Sα such that every isomorphism between the two computes 0(α). Let S̃
be a computable copy of S built in the following way. Rather than using the
“standard” copy Sα, use the “hard” copy Ŝα of Sα. Additionally, rather than
usingM, instead use N as built in Lemma 3.2.3. Any isomorphism between
Sα and Ŝα computes 0(α), and any isomorphism between M and N must
compute a function that dominates f . Let g be any isomorphism between S
and S̃ . Then by using R, we can restrict g to an isomorphism between Sα
and Ŝα and hence g can compute 0(α). Since g can also be restricted to an
isomorphism betweenM and N , it must compute a function dominating F .
But F is a modulus for D computable in 0(α), and hence g must be able to
compute D since it can compute 0(α) and a function dominating f . Hence g
can compute d.

We now turn to prime models, working above 0(ω). Essentially, our work
here is to check that in taking α = ω in the previous theorem and lemma, the
construction results in a prime model.

Lemma 3.2.9. Let f ∶ω → ω be limitwise monotonic relative to 0(ω). There is

a prime model with two computable copiesM and N such that:

(1) Every isomorphism betweenM andN computes a function which dom-

inates F .

(2) F ⊕0(ω) computes an isomorphism between any two computable copies

ofM and N .

Proof. The construction is exactly the same as that of Lemma 3.2.3 with α =

ω. We refer to the structuresAβ and Eβ of Theorem 3.1.9 asAn and En, n < ω,
but of course these are the same. It remains to argue, using the properties from
Lemma 3.1.10 which hold only for the structures An and En with n finite, that
the resulting structure N is prime.

Recall thatN is the disjoint union of structuresNn, each of which satisfies
the relation Rn. So it suffices to show that the structures Nn are prime. Nn
was defined as follows: there were infinitely many elements (bi)i∈ω (satisfying

51

the unary relation S), each of which is attached to (by binary relations Tm),
for each m < ω, a box Ni,m which contains within it:

(1) Ni,m ≅ Em if there is s such that Φ∅(m)(n, s) > i.

(2) Ni,m ≅ Am otherwise.

By Theorem 3.2.4 of Theorem 3.2.3, for each i, either i < F (n) and there is
some mi < ω such that:

• for ` <mi, Ni,` ≅ A`,

• for ` ≥mi, Ni,` ≅ E`,

or i ≥ F (n) and for all m < ω, Ni,m ≅ Am. Note that the sequence {mi}i<F (n)

is non-decreasing.

By Lemma 3.1.10 (2), for i < F (n), the automorphism orbit of bi is de-
termined by the first-order formula with free variable x which expresses that
S holds of x, that the structure with domain Tmi(x, ⋅) satisfies ϕmi (and so
is isomorphic to Emi), and that the structure with domain Tmi−1(x, ⋅) satisfies
¬ϕmi−1 (and so is isomorphic to Ami−1). For i ≥ F (n), the automorphism
orbit of bi is determined by the first-order sentence with free variable x which
expresses that S holds of x, and that the structure with domain TmF (n)−1(x, ⋅)
satisfies ¬ϕmF (n)−1 (and so is isomorphic to AmF (n)−1).

Fix a tuple c̄ from Nn. We will give a first-order formula defining the orbit
of c̄. We may assume that whenever c̄ contains an element of Ni,m, c̄ contains
bi as well. We can break the tuple c̄ up into finitely many elements bi1 , . . . , bik
and finitely many tuples c̄i,m from Ni,m. The orbit of c̄ is determined by the
orbits of bi1 , . . . , bik (each of which is determined by a first-order formula as
described in the previous paragraph), the fact that Tm(bi, y) holds for any y ∈
c̄i,m, and the orbits of each of the tuples c̄i,m within Ni,m. The latter orbits are
first-order definable by Theorem 3.1.10 (3).

Theorem 3.2.10. Let d be a degree c.e. in and above 0(ω). There is a com-

putable prime model A with strong degree of categoricity d.

52

Proof. The construction of such a model is similar to Theorem 3.2.8, except
we replaceM and N from Theorem 3.2.3 with thoseM and N from Lemma
3.2.9 (which are actually the same structures, if α = ω), and we also replace
the “easy” and “hard” copies of Sα with copies of the structure from The-
orem 3.1.11 such that any isomorphism between them computes 0(ω). The
same argument from Theorem 3.2.8 shows that this new structure has strong
degree of categoricity d. It remains to show that such models are prime. In-
deed, they are the disjoint union of prime structures, distinguishable by the
relation R, and hence must be prime themselves.

53

Chapter 4

The Isomorphism Problem

In this chapter, we are interested in knowing how hard it is to decide for two
given computable structures (in certain classes) whether they are isomorphic
or non-isomorphic.

Recall the following definition from the introduction:

Definition 4.0.1 (Goncharov and Knight [17]). The isomorphism problem,
denoted I(K), for a class K of computable structures, is the set I(K) =

{(n,m) ∶ Mn,Mm ∈ K,Mn ≅ Mm} where (Mn)n∈ω is some computable
enumeration of all computable structures (on a fixed computable language).

4.1 The Isomorphism Problem for Trees

In Chapter 2, we studied the degrees of categoricity for tree structures. It is
immediate to notice a connection between Definition 4.0.1 and the work in
Chapter 2. Recall that Lemma 2.1.1 proves that checking whether two com-
putable trees of rank α are isomorphic is Π2α-uniformly. This implies that,
for α > 0, if Kα is the class of computable trees of rank α, then I(Kα) is
Π2α. We dropped the case α = 0 because deciding membership for the class
of computable trees is Π2. Note that deciding whether a computable tree is of
rank α > 0 can be done within Π2α for all computable ordinals α. This can be
proved by an inductive argument.

In this section, we use our work in Chapter 2 to show that I(Kα) is in fact

54

Π2α-complete. Recall that a setX in a class Γ is said to be Γ-complete if every
set in Γ is m-reducible (equivalently, 1-reducible) to X .

Theorem 4.1.1. For every computable ordinal α > 0, the isomorphism prob-

lem for the class of computable trees of rank α is Π2α-complete.

In light of Lemma 2.1.1, the proof will be a one-liner once we introduce
some notation and a lemma. For a limit ordinal α, let [α ∶ m] and [α ∶ ω]

denote the trees Lαm and Lα∞ from [22], respectively. If α is the successor of
a limit ordinal, say α = γ + 1, we define [α ∶ m] and [α ∶ ω] the same way
we defined [ω + 1 ∶ m] and [ω + 1 ∶ ω]. We just replace Ak by Aγk and Ek by
Eγk where (γk)k∈ω is a computable increasing sequence of successor ordinals
with limit γ. If α is the successor of a successor, then [α ∶ m] and [α ∶ ω]

can be defined the obvious way inductively. This is exactly as how we defined
[ω + n + 1 ∶ N] before. For n ≥ 1, let [α + n + 1 ∶ N] denote the tree of rank
α+n+1 consisting of N (can be ω) many trees of the type [α+n ∶ ω] and, for
every finite k, infinitely many of the type [α + n ∶ k].

Lemma 4.1.2. Let α be a computable ordinal and let C be a Π2α set. There is

a sequence (T x)x∈ω of trees of rank α uniformly computable from an index of

C such that T x is of the type [α ∶ ω] if x ∈ C, and of the type [α ∶m] for some

finite m if x ∉ C.

Proof. The case α = 0 is trivial. The case when α > 0 is finite follows immedi-
ately from Lemma 2.2.2 (apply it to the complement of C). The case when α
is infinite is an easy generalization of Lemma 2.2.9 which is used in the proof
of Theorem 2.2.11.

Proof of Theorem 4.1.1. Fix α. Let C and T x be as in Lemma 4.1.2. Consider
the following function η ∶ ω → ω given by η(x) = ⟨⌜T x⌝, ⌜[α ∶ ω]⌝⟩ where the
⌜.⌝ indicates the number of the structure according to some fixed computable
enumeration of computable ≺-structures. Clearly η is computable and it is a
many-one reduction of C to I(Kα) where Kα is the class of computable trees
of rank α.

It is possibly a little surprising to the reader that Theorem 4.1.1 does not
need distinct formulas for finite and infinite α, whereas in Chapter 2 we had to

55

distinguish between these cases. This makes perfect sense because, for a set,
being a 0(α)-c.e. is equivalent to being Σα+1 when α is finite, but equivalent to
being Σα when α is infinite.

Remark 4.1.3. It is worth mentioning that a result similar to Theorem 4.1.1
is true for automatic trees. In [26], Kuske, Liu and Lohrey proved that the
isomorphism problem for automatic trees of height n ≥ 2 (natural number) is
Π2n−3-complete.

4.2 The Isomorphism Problem for Pregeometries

The work in this section is motivated by that of Harrison-Trainor, Melnikov
and Montalbán in [20]. There they gave a sufficient condition for a structure
with some notion of independence to have a computable presentation with
a computable basis (“good” copy) and another computable presentation with
no computable basis (“bad” copy). They applied the condition to differen-
tially closed, real closed, and difference closed fields. The condition also im-
plied classical results on vector spaces, algebraically closed fields, torsion-free
groups and Archimedean ordered abelian groups.

In [8], Calvert studied classes that admit a notion of independence. In fact,
they are among the types of classes for which the ideas in [20] are applicable.
We implement the unified framework built in [20] to generalize some of the
work in [8] and [9]. We also take the opportunity to clarify the key methods in
the proofs in [8] and to explain the details that were not quite clear.

4.2.1 Preliminaries

The standard abstraction for independence is the notion of a pregeometry.

Definition 4.2.1 (See [30]). Let X be a set and let cl ∶ P(X) → P(X) be an
operator on the power set of X . We say that (X, cl) is a pregeometry if

(1) If A ⊆X , then A ⊆ cl(A) and cl(cl(A)) = cl(A),

(2) if A ⊆ B ⊆X , then cl(A) ⊆ cl(B),

56

(3) (exchange principle) if A ⊆ X , a, b ∈ X , a ∈ cl(A ∪ {b}), and a ∉ cl(A),
then b ∈ cl(A ∪ {a}),

(4) (finite character) if A ⊆ X and a ∈ cl(A), then there is a finite A0 ⊆ A

such that a ∈ cl(A0).

An operator which satisfies the first two properties is called a closure op-

erator. Let (X, cl) be a pregeometry, and A ⊆X . We say that

(1) A is closed if A = cl(A);

(2) A spans a set B ⊇X if B ⊆ cl(A);

(3) A ⊆X is independent if for all a ∈ A, a ∉ cl(A∖{a}), andA is dependent

otherwise;

(4) B is a basis for Y ⊆X if B spans Y and is independent.

One can show that B is a basis for Y if, and only if, B is a maximal
independent set contained in Y . A standard argument shows that every set has
a basis, and that every basis for Y has the same cardinality which is called the
dimension of Y (see for example [37]).

Because a pregeometry has finite character, all the information of the pre-
geometry is captured in the relations (for all natural n) x ∈ cl({y1, . . . , yn}).
For convenience, we will write cl(y1, . . . , yn) to mean cl({y1, . . . , yn}) and
will refer to {(x, y1, . . . , yn) ∶ x ∈ cl(1, . . . , yn), n ∈ N} as the pregeometry

relation.

As in [20], we will be working in the context of pregeometries that can
be effectively enumerated. We will say cl is c.e. (computably enumerable) if
each of the relations x ∈ cl(y1, . . . , yn) is c.e. uniformly in n. Since we are
interested in pregeometries defined on structures and their copies, we have the
following definition.

Definition 4.2.2. [20] A pregeometry operator cl on a structureM is r.i.c.e.
(relatively intrinsically computably enumerable) if, uniformly in n, for every
fixed n, the relation x ∈ cl(y1, . . . , yn) is c.e. relative to every copy ofM.

57

Being r.i.c.e. is a general property that can be defined by relations that are
not necessarily a pregeometry. In [2, 11], it was shown that a relation is r.i.c.e.
if and only if it is definable by an infinitary computable Σ1 formula. Through-
out this section we will use the word “pregeometry” to mean a structure in
some first order language (not merely a set) with a pregeometry relation as ex-
plained earlier. All standard examples of pregeometries (vector spaces, fields,
etc.) are r.i.c.e. pregeometries.

In this section, we will prove the Π3-hardness of the Isomorphism Prob-
lem for classes of pregeometries in which there is an abundance of dependent
elements. To understand the last sentence, we recall here the following defini-
tions.

Definition 4.2.3. (Condition B) [20]. In a pregeometry (M, cl), we say that
dependent elements are dense if, whenever ψ is quantifier-free and M ⊧

∃ȳψ(c̄, ȳ, a) for a non-empty tuple c̄ and a ∈ M, there is b ∈ cl(c̄) and
M⊧ ∃yψ(c̄, ȳ, b).

It is not hard to see that, for any class of structuresK, the hardest I(K) can
be is Σ1

1. Several classes of computable structures are known to have the hard-
est isomorphism problems. Indeed, for Undirected Graphs, Linear Orders,
Trees, Boolean algebras, and Abelian p-groups the isomorphism problem is
Σ1

1-complete. Proofs may be found in articles by Goncharov and Knight [17],
Morozov [33], and Nies [34]. Also, the isomorphism problem is Σ1

1-complete
for Rings, Distributive Lattices, Nilpotent Groups, and Semigroups. This fol-
lows from the work of Hirschfeldt, Khoussainov, Shore, and Slinko in [21].

In [8], the focus was on calculating the complexity of the isomorphism
problem for classes of fields. There Calvert proved that the class of real closed
fields can be added to the lists above. However, in the same paper, Calvert also
proved that the isomorphism problem is simple for some classes.

Theorem 4.2.4 ([8]). If K is any of the following classes, then I(K) is Π3-

complete.

(1) Computable vector spaces over a fixed infinite computable field.

(2) Computable algebraically closed fields of fixed characteristic.

58

(3) Archimedean real closed fields.

It is easy to see that, for any of the last three classes, the isomorphism
problem is Π3 (for example, two vector spaces are isomorphic iff they have
the same dimension). Proving the hardness (hence, completeness) for 1 and
2 was established by defining a 1-reduction of the set of indices of coinfinite
c.e. sets Cof into I(K). For Archimedian real closed fields, the reduction
was of an arbitrary Π3 set. The key property used in the three proofs for the
hardness part is, in essence, Condition B. This is not mentioned directly in
[8], but instead the existence of dependent elements is established through
strong minimality (for 1,2), or through some basic topological argument for 3.
Applying Condition B directly makes the arguments clearer and allows us to
prove the Π3-hardness for other classes.

The following are more examples of classes for which Condition B holds
and for which the isomorphism problem hasn’t been considered before.

(1) Algebraically closed valued fields. By the proof of Theorem 5.6 in [19],
an algebraically closed valued field of infinite transcendence degree sat-
isfies Condition B.

(2) The class of p-adically closed fields. By the proof of Theorem 5.8 in
[19], a p-adically closed field of infinite transcendence degree satisfies
Condition B.

4.2.2 When Dependent Elements are Dense

In this section, we prove a general theorem (Theorem 4.2.6 below) that cap-
tures the results mentioned in the earlier sections. We assume our structures
are for some computable infinite language with equality. Our proofs work for
finite languages as well.

First, let us start by rephrasing Condition B in a more helpful way.

Lemma 4.2.5. Condition B is equivalent to the following: For every quantifier-

free formula ψ and non-empty tuples ā, c̄ inM, ifM ⊧ ψ(c̄, ā), then there is

b̄ ⊂ clM(c̄) such thatM⊧ ψ(c̄, b̄).

59

Proof. It is obvious that the statement above implies Condition B. The other
direction follows by an easy induction argument. More clearly, suppose ā =

(a0, . . . , an). IfM ⊧ ψ(c̄, ā), thenM ⊧ ∃ȳψ(c̄, ȳ, a0). By Condition B, we
can find â0 ∈ clM(c̄) such thatM ⊧ ∃ȳψ(c̄, ȳ, â0). This means that for some
tuple m̄0, M ⊧ ψ(c̄, m̄0, â0). Note that ∣m̄0∣ = ∣ā∣ − 1. Let c̄1 = â0c̄. Again
using condition B, we know that there exists â1 ∈ clM(c̄1)(= clM(c̄)) and m̄1

such that ∣m̄1∣ = ∣m̄0∣−1 andM⊧ ψ(c̄1, m̄1, â0, â1). Continuing the same way,
we end up withM⊧ ψ(c̄1, â0, . . . , ân) for some â0, . . . , ân ∈ clM(c̄).

Theorem 4.2.6. Let K be a class of computable r.i.c.e. pregeometries which

is closed under isomorphism. Suppose that K contains an infinite dimen-

sional computable pregeometry with computable basis that satisfies Condition

B. Then, the isomorphism problem for the class K is Π3-hard (i.e. every Π3

set is m-reducible to I(K)).

Before we prove the theorem, we introduce some notation. Suppose θ′ =
θ(m1, . . . ,mi) is a sentence in the diagram of some structure M, and that f
is some function with domain that contains m1, . . . ,mi. Then, we write f(θ′)
to mean θ(f(m1), . . . , f(m2)). If m = (m1, . . . ,mi) is a tuple of elements
in dom(f), then we write f(m̄) to mean the tuple (f(m1), . . . , f(mi)). Ac-
cordingly, θ(f(m)) and f(θ(m)) mean the same thing. We also adopt similar
definitions for f−1(θ′) and f−1(m).

Proof. LetM ∈ K be computable such that M = {mi}i∈N, and let {ai}i∈N ⊂

M be an infinite computable basis ofM. We uniformly build a computable
sequence of structures Nk such that Nk is isomorphic toM∣Wk ∣

, whereMt =

clM(a0, . . . , at) for every natural number t andM∞ = M. This implies that
Cof , which is Π3-complete, is 1-reducible to I(K).

Fix an arbitrary k. We build a computable structureN(= Nk) with universe
N = {ni ∶ i ∈ N} by defining its atomic diagram stage by stage. To do so, at
every stage s, we will define a partial computable function fs from M to a
subset of N . As s gets bigger, Im(fs) gets bigger and eventually ∪sIm(fs) =

N . We also make sure that the limit lims fs exists and is an isomorphism from
M∣Wk ∣

onto N . The partial functions fs will be used to define the relations of
N stage by stage.

60

Let {θe}e∈N be a computable enumeration of the atomic sentences of N .
We construct f and D (D will be the atomic diagram of N) by stages to meet
the following conditions:

P 1
e ∶ θe ∈D or ¬θe ∈D,

P 2
e ∶ ne ∈ Im(f),

Qe ∶ dom(f) ⊇ clM(a0, . . . , ae) if and only if ∣Wk∣ ≥ e.

We also make sure that, once θe (or ¬θe) is enumerated in D, it stays in D
forever; hence D is computable. At every stage s, fs is injective and is a
partial homorphism.

We say that P 1
e requires attention at an odd stage s + 1 = 2p + 1 if neither

θe nor ¬θe is in Ds, and the ni occurring in θe have i ≤ p. The requirement
P 1
e will not require attention at even stages. We also say that Qe requires

attention at an even stage s + 1 = 2p if ze,p−1 ∈Wk,p (where for every natural t,
Wk,t = {z0,t < z1,t < z2,t < . . .}). In other words, the requirement Qe requires
attention at an even stage s + 1 = 2p if the eth element of the complement
of Wk,p−1 enters Wk,p. The requirement Qe will not require attention at odd
stages.

We start with f0 = {⟨a0, n0⟩} and D0 = ∅. Suppose fs and Ds are now
defined such that Im(fs) = {ni ∶ 0 ≤ i ≤ s

2} and every ni that occurs in a
sentence in Ds is such that i is less than s

2 .

At odd stage s + 1 = 2p + 1, look for the least e ≤ p such that P 1
e requires

attention. If such e does not exist, leave Ds+1 = Ds. If such e exists, check if
M⊧ f−1s (θe). If so, let Ds+1 =Ds ∪ {θe}. Otherwise, let Ds+1 =Ds ∪ {¬θe}.

Set fs+1 = fs (we work on it when s + 1 is even).

At even stage s + 1 = 2p, we will work on Qe for e > 0. At the end of
the structure, the reader will be able to see that Q0 is automatically satisfied
because fs(a0) = n0 for all s. Let Θs(n0, . . . , np−1) be the finite conjunction
of all the sentences in Ds∪{ni ≠ nj ∶ i ≠ j and i, j ≤ p−1} (we took that union
to ensure later that fs+1 is injective when we define it). For ease, let n denote
(n0, . . . , np−1).

Look for the least e > 0 such that e < p and Qe requires attention. If

61

such e does not exist, define fs+1 = fs ∪ {⟨m,np⟩} where m is the least that is
not in dom(fs). Otherwise, let us write the tuple n as (c, d) where c are the
components that appear in fs(clMs (a0, . . . , ae)) and d are the rest. To make
our construction easier to follow, assume that our computable approximation
of the operator clM is such that, for every tuple v ⊂ M , v ⊆ clM0 (v), and
clMs (v) ⊆ clMs+1(v) for every s. Moreover, for all tuples v, u ⊂ M , we assume
(without loss of generality) that our enumeration of clM(v) is fast enough so
that, if at any part of the construction before a stage t, we find out that the
elements of u belong to clM(v), then u ⊆ clMt (v). This last sentence relates
to what is going on in the next paragraph when we look ahead (possibly) in
the enumeration of clM(v) (speed it up) to apply Condition B (using Lemma
4.2.5).

We now have thatM ⊧ Θs(f−1s (c), f−1s (d)). Then, by Condition B, there
exists w ⊂ clM(f−1s (c)) ⊆ clM(a0, . . . , ae) such that M ⊧ Θs(f−1s (c),w).
Assume thatw is the first such tuple to get enumerated into clM(f−1s (c)). Note
that according to the previous paragraph, we assume that w ⊆ clMs (f−1s (c)).

Set fs+1(w) = d and fs+1(c̄) = fs(c̄). Define fs+1(m) = np where m is the
least that is not yet in dom(fs+1).

Set Ds+1 =Ds. This completes the construction.

We start our verification by observing the following:

(1) Once an element from N becomes in Im(fs), at some stage s, it will
remain in Im(ft) for all t > s.

(2) For every even stage s + 1 = 2p and every e, if ze,p−1 gets enumerated
into Wk (i.e. Qe requires attention at stage s + 1), we set dom(fs+1) to
be the union of a subset of clM(a0, . . . , ae) with a singleton set. This
is because we made f−1s+1({n0, . . . , np−1}) ⊆ clMs (a0, . . . , ae−1), and we
made f−1s+1(np) equal to the next fresh element in M .

(3) Suppose s is a stage after which Qe′ does not require attention for e′ < e
(for some e ≥ 1). For ni ∈ Im(fs) (i.e. for i ≤ s

2), once f−1s+1(ni)
is defined to be an element from clM(a0, . . . , ae), we will have that
f−1t (ni) = f−1s+1(ni) for all t > s. For, we argue by induction. Assume for

62

some t > s that f−1t′ (ni) = f−1s+1(ni) for all t′ such that s < t′ ≤ t. Assume
towards a contradiction that f−1t+1(ni) ≠ f−1t (ni). This means that, at
even stage t + 1, Qe′ requires attention for some e′, which has to be ≥ e,
and f−1t (ni) ∉ clMt (a0, . . . , ae′). But, this will not happen because of our
assumption regarding the speed of enumerating clM. Indeed, our enu-
meration of clM guarantees that f−1t (ni) = f−1s+1(ni) ∈ cl

M
s+1(a0, . . . , ae) ⊆

clMt (a0, . . . , ae′).

From the list of observations above, we can prove the following essential
claims to complete our proof.

Claim 1: For every i ∈ ω, once ni ∈ Im(fs) for some stage s, we have that
ni ∈ Im(ft) for all t > s. Moreover, we have that lims f−1s (ni) exists which
implies that there is a function f such that f = lims fs from ∪s∈ωf−1s (N) onto
N .

Proof of Claim 1: It easy to see that the first part of the claim is true. For
the second part, we will consider two cases:

Case 1: ∣Wk∣ = e < ∞. In this case, lims ze′,s exists for all (and only for)
e′ < e. This means that there is a stage s such that, in the stages t > s, none
of ze′,t (for e′ < e) will get enumerated into Wk. In other words, for e′ < e,
Qe′ will not require attention after stage s. But, in the same time, at infinitely
many stages t, ze,t will get enumerated into Wk. Let t0 > s be such a stage,
and let n = {ni ∶ i ≤

t0
2 }. Then, from observation 2 above, ft0+1 will be defined

so that f−1t0+1({n0, . . . , nt0}) is a subset of clM(a0, . . . , ae). From observation
3, we will have that f−1t (n) = f−1t0+1(n) for all t > t0. Now, since t0 can be
arbitrarily large, we have that lims f−1s (n) exists for every n ∈ N . Moreover,
that limit belongs to clM(a0, . . . , ae).

Case 2: ∣Wk∣ = ∞. In this case, for every e, lims ze,s exists. This means
that, for every e, there is a stage s(e) (for which ze,t = ze,s(e) for all t > s(e))
which is the last stage at whichQe requires attention, and after whichQe′ does
not require attention for all e′ ≤ e. It follows from observation 3, through the
same reasoning in case 1, that lims f−1s (ni) exists for i ≤ ns(e) for every e.
Since s(e) → ∞ as e → ∞ (obvious), it follows that lims f−1s (ni) exists for

63

every i ∈ N.

Claim 2: dom(f) =M∣Wk ∣
.

Proof of Claim 2: We consider our two cases:

Case 1: ∣Wk∣ = e < ∞. As explained in the previous note, in infinitely
many stages t, ze,t will get enumerated into W∣Wk ∣

. This implies that, for every
i ∈ ω, there is a stage s such that f−1s (ni) ∈ M∣Wk ∣

. We have that f−1t (ni) ∈

M∣Wk ∣
for all t > s (see observations 2 and 3). Hence, f−1(ni) ∈ M∣Wk ∣

.
Conversely, every element in M∣Wk ∣

is in dom(f). Indeed, at every stage
2s + 1 in which Qe requires attention (and Qe′ no longer requires attention
for e′ < e), the members of the first available tuple in the enumeration of
clM(a0, . . . , ae) = M∣Wk ∣

get enumerated into dom(fs+1). We end up consid-
ering all tuples because every element ofM∣Wk ∣

appears within a sentence in
the atomic diagram ofM∣Wk ∣

. Since Qe requires attention infinitely often, we
eventually have that dom(f) =M∣Wk ∣

.

Case 2: ∣Wk∣ = ∞. In this case, it is clear that dom(f) ⊆ M∣Wk ∣
= M.

Conversely, every element inM gets enumerated into dom(f) eventually. For,
it is enough to show that, for every e, every element of clM(a0, . . . , ae) gets
enumerated into Im(fs), for some s, and remains in dom(ft) for all t > s.
Indeed, let s be a stage after which Qe′ stops receiving attention for all e′ < e.
Then, for every t > s, if m ∈ clM(a0, . . . , ae) gets enumerated into dom(ft),
then m ∈ dom(ft′) for all t′ > t (i.e. remains in the image forever as explained
in observation 3). Since we always enumerate the first available fresh element
from M or from clM(a0, . . . , ae′) for some e′ ≥ e, and since every element
of M appears within a sentence in the atomic diagram of M, we have that
every element which is not enumerated in dom(fs) yet will be enumerated in
dom(ft) for some t > s and will remain in dom(ft′) for all t′ > t.

Claim 3: The set D = ∪sDs is computable.

Proof of Claim 3: Indeed, for every l ∈ ω, there is some stage s+1 at which
either θl or ¬θl enters Ds+1. Note that this happens based on whether M ⊧

f−1s (θl) or not. In the construction, we managed to maintain that satisfiability

64

at later stages by applying Condition B. To be clearer, we have that M ⊧

f−1s (θl) implies thatM⊧ f−1t (θl) for t ≥ s (and the same for ¬θl). This implies
that it will never happen that both θl and ¬θl end up in D. So eventually,
every atomic sentence or its negation will get enumerated in D; hence D is
computable.

Finally, it is not hard to see that f is an isomorphism. As mentioned in the
proof of Claim 3, at every stage s + 1, fs+1 is chosen to preserve the sentences
included in Ds (behavior of a homomorphism). Also we chose fs+1 to explic-
itly preserve n ≠ m for all different n,m ∈ Im(fs). Accordingly, ft has to be
injective all stages t. From this and from Claims 1 and 2, it is obvious that f
is an isomorphism fromM∣Wk ∣

onto N . This completes our verification.

65

Chapter 5

Separating the UTO and LTO

Recall from the introduction that Jockusch and Soare introduced the notion
of Turing ordinal of a class of computable structures as a measurement of the
difficulty of coding information into the structures of a given class.

The following are examples of known Turing ordinals for some classes:

(1) Abelian groups, graphs, partial orderings and lattices have TO = 0 (see
[35]).

(2) Equivalence Structures have TO = 1 (see [35],[31]).

(3) Linear ordering TO = 2 (see [35],[24]).

(4) Boolean algebras TO = ω (see [7]).

In [25], Knoll used the linear orderings defined by Ash, Jockusch and
Knight in [3] to give examples of classes with Turing ordinal α for every com-
putable ordinal α.

Recall the definitions of the Upper and Lower Turing Ordinals from the
introduction.

Definition 5.0.1. Let K be a class of first-order structures. We call a com-
putable ordinal β the upper Turing ordinal (abbreviated as UTO) of K if it is
the least ordinal such that the first condition of the TO definition holds. More
precisely:

(1) every degree ≥ 0(β) is the βth jump degree of a structure from K, and

66

(2) for all η < β, there exists a degree d ≥ 0(η) which is not the ηth jump
degree of a structure from K.

Definition 5.0.2. Let K be a class of first-order structures. We call a com-
putable ordinal α the lower Turing ordinal (abbreviated as LTO) of K if it is
the greatest ordinal such that the second condition of the TO definition holds.
More precisely:

(1) there is a degree d > 0(α) such that d is the αth jump degree of a structure
from K, and

(2) for all η < α, the only possible ηth jump degree of a structure from K is
0(η).

We will show that for all computabe ordinals α,β such that α < β, there is
a class of structures with UTO = β and LTO = α. We will use combinations of
the classes given by Knoll in [25], graphs, and equivalence structures.

It is worth mentioning that the classes we construct here are “natural” in
the sense that they are not too hard to axiomatize. Axiomatizability is not our
concern here but one can show that the way we derive our classes from those
defined by Knoll maintains the Borelness (definability by an Lω1,ω sentence).

The following are some definitions and notation to make describing our
classes easier.

Definition 5.0.3. We classify the computable ordinals ≥ 2 into three types:

(1) Successor ordinal of type I: which is either a finite even number ≥ 2 or
β+ odd (for some limit ordinal β).

(2) Successor ordinal of type II: which is either a finite odd number ≥ 3 or
β+ even (for some limit ordinal β).

(3) Limit ordinal.

For every computable ordinal α ≥ 2 and every set S of natural numbers,
there is a linear order Aα(S) (using the notation in [25]) which is defined
based on the type of α according to Definition 5.0.3. We will not need here
to fully describe the linear orderings, but a full description can be found in
Chapter 6 of [25].

67

Definition 5.0.4. [23] Let α be a computable ordinal. A set S ⊆ ω is α-generic

if for each Σα set X ⊆ 2<ω, there is some finite σ ⊂ S such that either σ ∈X or
else there is no finite τ ⊇ σ such that τ ∈X .

Recall that for every computable limit ordinal γ, there is a fundamental
sequence of computable ordinals (γk)k∈ω that converges to γ. We introduce
here the following defintion:

Definition 5.0.5. Let γ be a computable limit ordinal with fundamental se-
quence (γk)k∈ω. The adjusted fundamental sequence of γ, denoted (γ′k)k∈ω is
defined as follows:

(1) If γk is finite, then γ′k = min{i ∶ i is even, i ≥ 4, i ≥ γk, i ≥ γ′k−1}.

(2) If γk is infinite, then let β be the greatest limit ordinal ≤ γk and define
γ′k = min{η ∶ η = β + i, i is odd , η ≥ γk, η ≥ γ′k−1}.

Definition 5.0.6. Let S be a set of natural numbers and let Sn = {k ∶ ⟨n, k⟩ ∈

S} for every natural number n. Let γ ≥ 2 be a computable ordinal. We define
Pγ(S) to be the set theoretic predicate of S that stands for:

(1) “S = S” if γ is a successor ordinal of type I,

(2) “S is γ-generic” if γ is a successor ordinal of type II,

(3) “Sk /≤T (S0 ⊕ . . .⊕ Sk−1)(γk) for all k ∈ ω” if γ is a limit ordinal.

We have the following fundamental results (for proofs, see [25]).

Theorem 5.0.7 (Ash, Jockusch and Knight). For every S ⊆ ω, and every com-

putable ordinal γ ≥ 2, we have that Spec(Aγ(S)) = :

(1) {deg(D) ∶ deg(S) ≤T D(γ)} if γ is a successor ordinal of type I;

(2) {deg(D) ∶ S is c.e. in D(γ−1)} if γ is a successor ordinal of type II; and

(3) {deg(D) ∶ Sn ≤T D(γ
′

n) uniformly in n} if γ is a limit ordinal and γ′n is

an adjusted fundamental sequence with limit γ.

We note an immediate consequence of Theorem 5.0.7.

68

Corollary 5.0.8. For every computable ordinal γ ≥ 2,

Spec(Aγ(S)) ⊆ {deg(D) ∶ S ≤T D
(γ)}.

Theorem 5.0.9 (Ash, Jockusch and Knight). For every computable ordinal

γ ≥ 2, the class Cγ = {Aγ(S) ∶ S ⊆ ω ∧ Pγ(S)} has Turing ordinal γ.

Remark 5.0.10. For every computable ordinal γ ≥ 2, the proof of Theorem
5.0.9 (see [25]) explains how, for a given degree d, we choose the set S to
realize d as a degree of the structure Aγ(S). We mention here the connection
between the degree of Aγ(S) and deg(S) as it will be useful later.

(1) If γ is a successor ordinal of type I and S is any set of natural numbers
such that deg(S) ≥ 0(γ), we have that deg(S) is the γth jump degree
of Aγ(S) (for proof, see Theorem 6.1.9 in [25]).

(2) If γ is a successor ordinal of type II or is a limit ordinal, and S is γ-
generic, then the γth jump degree ofAγ(S) is deg(S)(γ) (for proof, see
Theorems 6.1.13, 6.1.20 in [25]).

Now let us define some building blocks which we will use to build our
classes. In the statement of Theorem 5.0.9, we defined the notation Cγ for
γ ≥ 2. It will be helpful to denote the class of equivalence structures by C1.

For every computable ordinal γ ≥ 2, and every computable ordinal β, let
C(γ, β) be the class {Aγ(S) ∶ S ⊆ ω ∧ Pγ(S) ∧ S ≰T 0(β)}.

We know that for any set X of natural numbers, there is a graph GX that
has degree deg(X). Let C(0, β) be the class {GX ∶X ⊆ ω ∧X ≰T 0(β)}.

Let Uβ be an equivalence structure on an infinite domain (i.e. (ω,E) for
some equivalence relation E on ω) such that Uβ has first jump degree 0(β+1).
Such a structure exists because of the fact that the Turing ordinal for the class
of equivalence structures is 1. For every computable ordinal β, let C(1, β) be
the class {B ∶ B ≅ Uβ}.

Let Cβ
α = Cβ ∪C(α,β). We will show that Cβ

α is the class we are looking
for.

Lemma 5.0.11. Let α,β and η be computable ordinals such that η ≥ α. Then,

any degree ≤ 0(β) cannot be the ηth jump degree of any structure fromC(α,β).

69

Proof. When α < 2, the lemma is clear. Suppose α ≥ 2. Let D be a sub-
set of natural numbers such that deg(D) is in the degree spectrum of some
structure from C(α,β). Then, for some S ⊆ ω such that S ≰T 0(β), deg(D)

belongs to Spec(Aα(S)). We show that, for every computable ordinal η ≥ α,
deg(D)(η) ≰ 0(β).

Indeed, since S ≰T 0(β), by Corollary 5.0.8 we have that D(α) ≰T 0(β).
This implies that D(η) ≰T 0(β) for any computable ordinal η ≥ α.

The following readily follows from the last lemma.

Corollary 5.0.12. Let α,β and η be computable ordinals such that α ≤ η < β.

There exists at least one degree which is strictly greater than 0(η) and cannot

be realized as the ηth jump degree of a structure in C(α,β).

Proof. An example of such a degree is 0(β). By Lemma 5.0.11, 0(β) cannot
be the ηth jump degree of any structure from C(γ, β).

Now let us prove the following:

Proposition 5.0.13. Let α,β be computable ordinals such that α < β. The

class Cβ
α has UTO = β and LTO = α.

Proof. Let us start by showing that UTO = β. It is easy to see that UTO ≤ β.
This is because if d ≥ 0(β), then d can be realized as the βth jump degree of
a structure in Cβ (a subclass of Cβ

α) which has Turing ordinal β by Theorem
5.0.9.

It remains to show that UTO ≥ β. This can be done by showing that, for
every computable ordinal η < β, there exists at least one degree ≥ 0(η) which
cannot be realized as the ηth jump degree of a structure in Cβ

α . This is clearly
equivalent to showing that there exists at least one degree which is strictly
greater than 0(η) and cannot be realized as the ηth jump degree of a structure
in C(α,β). The latter follows immediately from Corollary 5.0.12.

Let us now prove that LTO = α. To see that LTO ≥ α, first note that for
every computable ordinal η < α, 0(η) is realizable as the ηth jump degree of
a structure in Cβ . Moreover, these are the only degrees realizable as the ηth

jump degree of a structure in Cβ . Also it is clear that for η < α, if d > 0(η),

70

then d is not relaizable as the ηth jump degree of any structure in C(α,β).
This is because C(α,β) is a subclass of Cα which has Turing ordinal = α.

To see that LTO ≤ α, we need to realize a degree > 0(α) as the αth jump
degree of some structure in Cβ

α . When α = 0 or 1, consider for example the
degree 0(β+1). That degree is obviously > 0(α) and realizable as the αth jump
degree of a structure from C(α,β) ⊆ Cβ

α .
When α ≥ 2, we need to consider the different cases of α.

Case 1: α is the successor ordinal of type I. In this case, by Remark 5.0.10,
Aα(S) has αth jump degree deg(S). We can choose S to have any degree
≰ 0(β). This will guarantee that Aα(S) belongs to C(α,β) ⊆ Cβ

α and that it
has a non-trivial αth jump degree (different from 0(α)).
Case 2: α is the successor ordinal of type II or is a limit ordinal. Again, from
Remark 5.0.10, for an α-generic set S,Aα(S) has αth jump degree deg(S(α)).
Again, we can choose S to have any degree ≰ 0(β) which implies that we have
a structure in C(α,β) ⊆ Cβ

α with non-trivial αth jump degree.

71

Bibliography

[1] Anderson, B. and Csima, B. F. (2016). Degrees that are not degrees of
categoricity. Notre Dame J. Form. Log., 57(3):389–398.

[2] Ash, C., Knight, J., Manasse, M., and Slaman, T. (1989). Generic copies
of countable structures. Ann. Pure Appl. Logic, 42(3):195–205.

[3] Ash, C. J., C. G. Jockusch, J., and Knight, J. F. (1990). Jumps of orderings.
Trans. Amer. Math. Soc., 319(2):573–599.

[4] Ash, C. J. and Knight, J. (2000). Computable structures and the hyper-

arithmetical hierarchy, volume 144 of Studies in Logic and the Foundations

of Mathematics. North-Holland Publishing Co., Amsterdam.

[5] Bazhenov, N. and Marchuk, M. (2018). Degrees of categoricity for prime
and homogeneous models. In Sailing routes in the world of computation,
volume 10936 of Lecture Notes in Comput. Sci., pages 40–49. Springer,
Cham.

[6] Bazhenov, N. A., Kalimullin, I. S., and Yamaleev, M. M. (2016). On
strong and not-strong degrees of categoricity. Algebra Logika, 55(2):257–
263.

[7] C. G. Jockusch, J. and Soare, R. I. (1994). Boolean algebras, Stone spaces,
and the iterated Turing jump. J. Symbolic Logic, 59(4):1121–1138.

[8] Calvert, W. (2004). The isomorphism problem for classes of computable
fields. Arch. Math. Logic, 43(3):327–336.

72

[9] Calvert, W. (2005). The isomorphism problem for computable abelian
p-groups of bounded length. J. Symbolic Logic, 70(1):331–345.

[10] Calvert, W. and Knight, J. F. (2006). Classification from a computable
viewpoint. Bull. Symbolic Logic, 12(2):191–218.

[11] Chisholm, J. (1990). Effective model theory vs. recursive model theory.
J. Symbolic Logic, 55(3):1168–1191.

[12] Csima, B. F., Deveau, M., Harrison-Trainor, M., and Mahmoud, M. A.
(2019). Degrees of categoricity above limit ordinals. Submitted.

[13] Csima, B. F., Franklin, J. N. Y., and Shore, R. A. (2013). Degrees of
categoricity and the hyperarithmetic hierarchy. Notre Dame J. Form. Log.,
54(2):215–231.

[14] Csima, B. F. and Stephenson, J. (2019). Finite computable dimension
and degrees of categoricity. Ann. Pure Appl. Logic, 170(1):58–94.

[15] Fokina, E. B., Kalimullin, I., and Miller, R. (2010). Degrees of categoric-
ity of computable structures. Arch. Math. Logic, 49(1):51–67.

[16] Goncharov, S. S. (2011). Degrees of autostability relative to strong con-
structivizations. Tr. Mat. Inst. Steklova, 274(Algoritmicheskie Voprosy Al-
gebry i Logiki):119–129.

[17] Goncharov, S. S. and Naı̆t, D. (2002). Computable structure and anti-
structure theorems. Algebra Logika, 41(6):639–681, 757.

[18] Groszek, M. J. and Slaman, T. A. (2007). Moduli of computation. Talk
presented at the Conference on Logic, Computability and Randomness,
Buenos Aires, Argentina.

[19] Harrison-Trainor, M. (2018). Computable valued fields. Arch. Math.

Logic, 57(5-6):473–495.

[20] Harrison-Trainor, M., Melnikov, A., and Montalbán, A. (2015). Inde-
pendence in computable algebra. J. Algebra, 443:441–468.

73

[21] Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., and Slinko, A. M.
(2002). Degree spectra and computable dimensions in algebraic structures.
Ann. Pure Appl. Logic, 115(1-3):71–113.

[22] Hirschfeldt, D. R. and White, W. M. (2002). Realizing levels of the hy-
perarithmetic hierarchy as degree spectra of relations on computable struc-
tures. Notre Dame J. Formal Logic, 43(1):51–64 (2003).

[23] Johnson, J., Knight, J. F., Ocasio, V., and VanDenDriessche, S. (2013).
An example related to Gregory’s theorem. Arch. Math. Logic, 52(3-4):419–
434.

[24] Knight, J. F. (1986). Degrees coded in jumps of orderings. J. Symbolic

Logic, 51(4):1034–1042.

[25] Knoll, C. (2013). Complexity of Classes of Structures. PhD thesis.

[26] Kuske, D., Liu, J., and Lohrey, M. (2013). The isomorphism problem on
classes of automatic structures with transitive relations. Trans. Amer. Math.

Soc., 365(10):5103–5151.

[27] Lempp, S., McCoy, C., Miller, R., and Solomon, R. (2005). Computable
categoricity of trees of finite height. J. Symbolic Logic, 70(1):151–215.

[28] Mahmoud, M. A. (2019a). Degrees of categoricity of trees and the iso-
morphism problem. To appear in the J. MLQ.

[29] Mahmoud, M. A. (2019b). The isomorphism problem for pregeometries.
In preparation.

[30] Marker, D. (2006). Model theory: an introduction, volume 217. Springer
Science & Business Media.

[31] Montalbán, A. (2012). Counting the back-and-forth types. J. Logic Com-

put., 22(4):857–876.

[32] Montalbán, A. (2018). Coding and definability in computable structures.
Notre Dame J. Form. Log., 59(3):285–306.

74

[33] Morozov, A. S. (1993). Functional trees and automorphisms of models.
Algebra i Logika, 32(1):54–72, 112.

[34] Nies, A. (1996). Undecidable fragments of elementary theories. Algebra

Universalis, 35(1):8–33.

[35] Richter, L. J. (1981). Degrees of structures. J. Symbolic Logic,
46(4):723–731.

[36] Soare, R. I. (2016). Turing computability. Theory and Applications of
Computability. Springer-Verlag, Berlin.

[37] Tent, K. and Ziegler, M. (2012). A course in model theory, volume 40
of Lecture Notes in Logic. Association for Symbolic Logic, La Jolla, CA;
Cambridge University Press, Cambridge.

75

	Introduction
	Basic Computability Review
	Computable Structure Theory Review
	Degrees of Categoricity
	The Isomorphism Problem
	The Degree of a Structure and the Turing Ordinal

	Degrees of Categoricity of Trees
	Preparation
	Results

	Degrees of Categoricity Above Limit Ordinals
	Categoricity Relative to Decidable Models
	C.E. In And Above a Limit Ordinal

	The Isomorphism Problem
	The Isomorphism Problem for Trees
	The Isomorphism Problem for Pregeometries
	Preliminaries
	When Dependent Elements are Dense

	Separating the UTO and LTO
	Bibliography

