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Abstract

For legged robots to be useful in the real world, they must be able to balance and walk
reliably. Both of these abilities improve when a system is more effective at moving itself
around relative to its contacts (i.e., its feet). Achieving this type of movement depends
both on the controller used to perform the motion and the physical properties of the
system. Although much work has been done on the development of dynamic controllers
for balance and gait, only limited research exists on how to quantify a system’s physical
balance capabilities or how to modify the system to improve those capabilities.

From the control perspective, there are three strategies for maintaining balance in
bipeds: flexing, leaning, and stepping. Both stepping and leaning strategies typically
depend on balance points (critical points used for maintaining or regaining balance) to de-
termine whether or not a step is needed, and if so, where to step. Although several balance
point estimators exist, the majority of these methods make undesirable assumptions (e.g.,
ignoring the impact dynamics, assuming massless legs, planar motion, etc.).

From the physical design perspective, one promising approach for analyzing system
performance is a set of dynamic ratios called velocity and momentum gains, which are de-
pendent only on the (scale-invariant) dynamic parameters and instantaneous configuration
of a system, enabling entire classes of mechanisms to be analyzed at the same time.

This thesis makes four key contributions towards improving biped balancing capabili-
ties. First, a dynamic bipedal controller is proposed which uses a 3D balance point estima-
tor both to respond to disturbances and produce reliable stepping. Second, a novel balance
point estimator is proposed that facilitates stepping while combining and expanding the
features of existing 2D and 3D estimators to produce a generalized 3D formulation.

Third, the momentum gain formulation is extended to general 2D and 3D systems,
then both gains are compared to centroidal momentum via a spatial formulation and
incorporated into a generalized gain definition. Finally, the gains are used as a metric in
an optimization framework to design parameterized balancing mechanisms within a given
configuration space. Effectively, this enables an optimization of how well a system could
balance without the need to pre-specify or co-generate controllers and/or trajectories.

To validate the control contributions, simulated bipeds are subjected to external distur-
bances while standing still and walking. For the gain contributions, the framework is used
to compare gain-optimized mechanisms to those based on the cost of transport metric.

Through the combination of gain-based physical design optimization and the use of
predictive, real-time balance point estimators within dynamic controllers, bipeds and other
legged systems will soon be able to achieve reliable balance and gait in the real world.
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Chapter 1

Introduction

For two-legged robots, or bipeds, to be useful in the real world, they must be able to
safely walk and work in human environments, even when faced with external disturbances.
This requires bipeds to move reliably over real terrain and recover from many environmental
challenges, such as rocks underfoot, carrying shifting loads, or being jostled on the sidewalk.

For bipeds and other legged systems, both balance and gait performance improve when
the system is more effective at moving its Center of Mass (COM) relative to its contacts
(i.e., its feet). Whether it is standing still or walking, external disturbances and unknown
environments may also require real-time adjustments to this COM motion. The capacity
of a legged system to move its COM relative to its contacts depends on both the controller
used to perform the motion and the system’s physical design.

Controllers used to maintain or recover balance typically use disturbance compensation
methods called balance strategies, which mainly fall into three categories: flexing, by push-
ing against the ground and other contacts; leaning, by changing the system’s momentum
or posture; and stepping, by stepping out to change the contact surface(s).

Flexing strategies allow a robot to absorb small disturbances through joint compliance,
either passively as part of the robot’s mechanical design or actively as part of the controller
[1-4]. Flexing is only capable of countering small disturbances, and generally introduces
complexity into both the robot’s mechatronic design and low-level controller.

Leaning applies changes in momentum (e.g., by varying posture or using momentum
actuators such as reaction wheels) to recover from disturbances, often by using momentum-
based control [5-10]. However, leaning strategies can only handle small to moderate dis-
turbances, and momentum-based controllers are typically dependent on having an accurate
model of the biped’s dynamics.



Stepping strategies use balance point estimators to find a point or region where the
biped must step to regain balance after a large disturbance [11-14]. These strategies all
consist of lifting and then placing a foot somewhere specific (a region or point) on the
ground, often repeatedly, to regain balance. In an unknown environment, this usually
requires estimates of safe places to step, leading most balance point estimators to assume
a smooth, horizontal walking surface.

Several different balance point estimators have been developed, both in 2D and 3D, to
determine where a biped should step to maintain or regain its balance [14-20]. However,
the majority of these methods are not predictive, assuming that the biped is capable of
placing a foot at a range of desired locations instantaneously! [17-20]. Those that are
predictive often make undesirable assumptions, such as constraining the biped’s motion
artificially, ignoring impact dynamics, or ignoring angular momentum [14-16].

Although much work has been done to date on developing controllers to achieve balance
and gait for legged systems, only limited research has investigated the quantification of a
system’s innate physical capacity for balance, or how to adjust its design to improve this
capacity. The most promising measures of a mechanism’s inherent balance abilities are
dynamic COM manipulability [21-24] and velocity and momentum gains [25-27].

Recently, Azad et al. proposed an updated formulation of dynamic COM manipulability
[23], which defines an ellipsoid in 3D space which outlines the system’s physical COM
acceleration limits. However, this metric depends on the use of a normalizing weighting
matrix and the ellipsoid must be projected into lower dimensions to be used for balance.
Further work analyzing the impact of the weighting matrices on the dynamic manipulability
of these systems has also recently been published [24].

Featherstone developed dynamic ratios called velocity gains [27], which quantify how
effectively an articulating system balancing on a passive contact can move its COM. These
gains are invariant to a scaling of the system’s total mass, and the angular velocity gain
is also invariant to a scaling of length, allowing the balance abilities of an entire class
of mechanisms to be quantified with one metric [27]. They are also independent of the
controller used, as they are functions of the physical properties and configuration of the
mechanism, and define a limit on how well any controller could balance the mechanism?.

'In addition to considering the time it takes to lift and move a foot to the desired stepping point, for a
balance point estimator to be considered predictive in this work it must also take into account the effects
of having finite-length legs and the effects of the robot’s existing contacts. Incorporating these additional
effects will change the dynamics of the system, and by extension the desired stepping point, which in some
cases may mean that a step is no longer required or that multiple steps are needed to avoid falling.

2In this context, balance is assumed to be primarily a function of COM motion (i.e., to move the COM
above the support polygon). Angular momentum about the COM is assumed to be regulated.



1.1 Contributions

In this thesis, the challenge of biped balance is addressed from two perspectives: how to
generate and use continuously updated balance points to maximize balance and disturbance
recovery abilities; and the definition and application of physical metrics to both quantify
a system’s balance capabilities and improve them via mechanical design optimization.

Specifically, this thesis makes the four following contributions to the state of the art in
humanoid balance and dynamic gait:

C1. Dynamic Balance and Gait Strategy

A dynamic balance and gait control strategqy based on an existing 3D balance point
estimator and a continuously updated impact plane, which uses both leaning and stepping
balance strategies to respond to external disturbances while standing and walking.

This dynamic balance and gait strategy generates gait trajectories by purposely moving
into an unbalanced state, then recovering using stepping. The novelty of this contribution
is in the use of a 3D balance point estimator which has only been used in the biomechanics
literature in tandem with a continuously updated impact plane, which hasn’t been done
to date. The goal of this contribution is to demonstrate that this approach to balance and
gait is capable of compensating for external, unknown disturbances as part of a gait cycle.

A balance point estimator is used to allow the robot to respond to external disturbances
while standing still or walking. One of the key benefits of this strategy is that recovery
from external disturbances is a subset of the elements required for dynamic gait. To walk,
the biped needs only push itself into an unstable state in the desired direction of motion
and allow the recovery behavior to avoid a fall by stepping. To validate the proposed
approach, simulations were run to evaluate and compare the two most promising balance
point estimators for use as the key metric in the resulting stepping and leaning strategy.

C2. Spherical Foot Placement Estimator

A novel balance point estimator which combines and extends the desirable properties
of existing estimators while removing or reducing the majority of their drawbacks.

Building on the simulations in Contribution C1 and the foundational work in [14, 18,
20], a novel 3D balance point estimator called the Spherical Foot Placement Estimator



(SFPE) was developed. The SFPE maps the biped’s current kinematics and dynamics to
a simplified model to continuously predict whether or not a step is needed, and if so where
to step, in order to maintain or restore balance in 3D.

This novel estimator has been developed to address the drawbacks of existing balance
point estimators: it is predictive, considers impact, includes rotational inertia, allows ankle
torques and 3D Center of Mass (COM) motion, does not require flat ground or heuristic
parameters, and works for a biped at rest or in motion.

An example of a controller using the SFPE was also developed and validated in sim-
ulation, which augments an existing optimal controller with both leaning and stepping
strategies for disturbance rejection: SFPE-based feedback is used to generate a desired
momentum for momentum-based leaning while the SFPE point is used as a control refer-
ence for stepping. This new estimator outperforms existing balance criteria by providing
both recovery step location prediction and momentum objectives with smooth dynamics.

C3. Generalized 2D and 3D Gains

Generalized definitions of momentum gain for 2D and 3D systems, the definition of
a novel spatial gain based on changes in centroidal momentum, and the formulation of a
generalized gain equation which includes all existing gains as special cases.

This contribution builds on Featherstone’s foundational work on the development of
velocity and momentum gains [27] by:

e Extending Featherstone’s momentum gain formulation from only being defined for
planar 2-link inverted pendulums to general 2D and 3D models;

e Defining two different methods for calculating momentum gains for these general 2D
and 3D models, including via an additional novel gain defined using spatial notation;

e Relating the definitions of velocity and momentum gains to the system’s centroidal
momentum via the newly defined spatial gain of the system; and

e Formulating a generalized gain equation which includes all existing gains, the newly
defined general momentum gains, and spatial gain as special cases and/or subsets.

The generalized momentum gains inherit the corresponding velocity gains’ indepen-
dence from the applied control scheme and invariance properties, in addition to including
a consideration of the inertial properties of the system. These properties make the mo-
mentum gains a good choice for analyzing the balance capabilities of a given mechanism,
or as a criterion for optimizing the design of balancing mechanisms.
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C4. Generalized Optimization Framework

A framework using generalized gains which enables the optimization of parameterized
balancing mechanisms without the need to define or generate controllers or trajectories.

An optimization framework has been developed which uses the generalized gains de-
scribed in Contribution C3 as the core element of its objective functions. This enables
the framework to optimize parameterized mechanisms for a given set of behaviors within
a specified motion space based purely on the physical properties of the system. The opti-
mization is therefore independent of the controller and/or trajectories used to achieve those
behaviors, invariant to gravitational or velocity product dynamics, and (when balancing
on a point or line contact and using angular gains) independent of the contact angle.

The generalized gain formulation also enables the application of weighted matrix norms
in the objective function, which allows the optimization problem to incorporate domain
knowledge. To demonstrate the usefulness of both this framework and the newly developed
gains, planar velocity and momentum gains were compared when used as criteria for the
design of simple 2- and 3-link planar balancing systems using this framework.

Based on the results of this gain comparison, angular momentum gain was used as
the objective in optimizing the design of a 2D 5-link biped. These new results were then
compared to optimizing the same mechanism using a cost of transport based objective
function®. Finally, the use of different norms and weighting matrices in the objective
function was analyzed through the optimization of a 3D 5-link biped. This was also used

to validate the generalized gain formulations from Contribution C3 on a 3D mechanism.

1.2 Outline

The remainder of this thesis is organized as follows:

In Chapter 2, the necessary background concepts and related work are discussed to
position this research relative to the current state of the art in humanoid robotics, including
a comparison of the majority of existing balance point estimators.

The stepping strategy used for generating balanced dynamic gait described in Contri-
bution C1 is discussed in Chapter 3, while the novel balance point estimator outlined in
Contribution C2 and its use in a leaning and stepping strategy are described in Chapter 4.

3The cost of transport is used as the comparative metric for this optimization as it is the most common
method of comparing between legged designs, as well as for comparing gait controllers (see Section 2.4).



Chapter 5 derives the gain generalizations of Contribution C3 and shows that the
generalized gain equations can be used to formulate both the existing and novel gains
described in this work. The generalized gain formulation is also used to show that the
differences between velocity and momentum gains are entirely a function of scaling.

Chapter 5 concludes with the introduction of the generalized optimization framework of
Contribution C4, along with its associated gain-based objective functions. The framework
and these novel objective functions are then applied and validated, along with a discussion
of the results, in Chapter 6 via three sets of simulations:

e Analyzing the results of using gains in the objective function by optimizing a set of
simple planar mechanisms: 2- and 3-link pendulums and a 3-link biped model;

e Comparing the results of an objective function based on angular momentum gain to
one using cost of transport in the optimization of a 2D 5-link biped model; and

e Applying and comparing the use of 1-, 2-, and co-norms along with 2 different types
of weighting matrices in the optimization of a 3D 5-link biped model.

Finally, Chapter 7 summarizes the results of the thesis, outlines the key contributions,
and suggests future directions based on this work.



Chapter 2

Background

This chapter presents the current state of the art in approaches to humanoid balance,
as it relates to both control strategies and mechanism design. First, an overview of bipedal
dynamics is given in Section 2.1, including definitions and notation for system properties
and reference points which will be used throughout this thesis. A set of simplified models
are also described, which make various assumptions about the biped’s dynamics to facilitate
the development, and reduce the complexity of, bipedal algorithms and controllers.

Section 2.2 examines the use of balance point estimators for foot placement. In Section
2.3, existing applications of balance strategies are categorized and discussed at a high
level, followed by a focused discussion about the existing methods of combining these
strategies. Finally, Section 2.4 outlines existing methods for optimized mechanism design,
including two potentially useful objective function criteria used to quantify a system’s
physical balance capabilities: dynamic COM manipulability and velocity gains.

2.1 Biped Basics

Humanoid robots with rigid links can be modelled and analyzed as a multibody system:
a set of rigid bodies, or links, which are connected by joints into a tree-like structure. These
joints impose constraints on the relative movements between the connected links, such as
a rotary joint preventing any motion which is not a rotation about the joint axis.

For systems which are not attached to a fixed inertial reference frame, such as a hu-
manoid robot, an additional fictitious joint is used which defines the unconstrained motion
of one of the links of the robot, called the floating base, relative to the fixed inertial frame.

7



In humanoid robots, the torso or pelvis link is typically chosen as the floating base link,
as many multibody algorithms can be formulated to take advantage of this choice.

There are four standard sets of multibody algorithms, used to translate between relative
joint variables and absolute (with respect to a fixed inertial reference frame) link variables:

Forward Kinematics uses the joint positions (joint angles, for rotary joints) to determine
the absolute positions and orientations of the reference frames of the system’s links;

Inverse Kinematics does the opposite, using the absolute positions and/or orientations
of one or more links to determine the joint positions;

Forward Dynamics uses the joint forces (joint torques, for rotary joints) and the sys-
tem’s inertial properties to determine the resulting link accelerations; and

Inverse Dynamics (often labelled the “equations of motion”) uses the accelerations and
inertial properties of the links to find the joint forces.

The standard equations of motion for a fully actuated multibody system with n degrees
of freedom (DOFs) can be written as H(q)§+c(q, g, f;zt) = 1, where f.,,; is an aggregated
6D spatial vector of all external forces affecting the system and q, q, ¢ and T are the n
dimensional vectors of joint positions, velocities, accelerations, and forces, respectively.
The H term is the nxn symmetric, positive-definite joint-space inertia matrix, while ¢
is the n dimensional vector of generalized bias forces, which includes the forces due to
Coriolis, centrifugal, and gravity effects (as well as the external forces in ﬁm)

For the same fully actuated multibody system with a floating base, the equations of
motion (using the spatial vector notation from [28,29]) are given by

[f3<q> F(q) H +[ pia.q) | _ H 1)
FT(q) H(q) q C(q7qa .f;:ct) T

where fg(q) is the 6x6 Composite Rigid Body Inertia (CRBI) matrix, @, and p{(q, q)
are the 6 dimensional vectors of spatial acceleration and spatial bias forces for the floating
base, respectively, and F'(q) is a 6xn matrix whose columns are the spatial forces required
at the floating base to support unit accelerations about each of the actuated joints [28].

Efficient methods for determining H and c are readily available in the literature (in-
cluding in [28]). Definitions of the floating base variables (IS, p§, and @) and F can be
found in Subsection 2.1.1, which also includes a description and definition of a number of
other useful matrices and system properties which will be used throughout this work.



Following these definitions, a number of common reference points used in humanoid
robotics are described in Subsection 2.1.2. Using these properties and points, a variety of
simplified models are introduced in Subsection 2.1.3 which are frequently used both in the
development of bipedal controllers and in the design of physical robots.

2.1.1 System Properties

There are a number of overall system properties in multibody dynamics which are useful
for generating models, formulating algorithms, and designing controllers. The definitions
below, and the notation used, are largely based on the book “Rigid Body Dynamics Algo-
rithms” by Featherstone [28]. Further details on the spatial vector notation used can be
found in Appendix A, based mainly on two introductory tutorials on the topic [30,31].

The relevant properties used in this work are:
e the Center of Mass (COM), a weighted average of all of the links’ COM positions;

e centroidal properties, measured relative to the COM (e.g., average spatial velocity);
e the kinetic energy of the system, in terms of joint and centroidal properties; and

e the inertia, Jacobian, and momentum matrices used to calculate these properties.

A fundamental property of any multibody system, which is particularly useful for those
with a floating base such as a humanoid robot, is its Center of Mass (COM). This point is
also sometimes referred to as its Center of Gravity (COG), although in this work the more
common definition of the COG as the ground projection of the COM will be used.

Three types of reference frames will be used in this work: local link reference frames, a
centroidal reference frame, and a fixed inertial reference frame at the origin (O). The local
frame for a given link is attached to the link, rotating and moving with the link, and is
located at the center of the joint which connects the link to its parent (the link in the tree
closer to the floating base). The centroidal reference frame has a fixed orientation, aligned

N

with the fixed inertial frame, and is always instantaneously located at the COM (C).
The location of C for a multibody system of N links (bodies) is given by the vector

SN Zf\il mici(q) Zfil m;ci(q)
c(q) = N - (2.2)
D imt M m
where m; is the mass of link i, ¢; is the COM of link 7, and m is the total mass of the

system. The point G, at the COG (the ground projection of the COM), is therefore defined
as G := (z¢, Yo, ha), where hg is the height of the ground directly below the COM.
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The 6D spatial velocity ¥; of link ¢ can be expressed as the sum of the velocity @) of
its parent p(i), and the velocity due to the movement of the n; DOF joint connecting them:
U; = Uyp(i) + Siq;. Each joint’s contribution is defined by ¢q;, a vector of n; < 6 generalized
joint velocities, and the motion subspace S;, a 6 xn; matrix defining the joint axes.

A 6xn spatial Link Jacobian J;(q) can be defined which relates the ith link’s spatial

velocity v; to the system’s (n = ZZN:1 n; dimensional) joint velocity vector ¢ = [¢{ ... gF]"

Ui = Up(i) + Sidi = Upp(i)) + Spy o) + Sidi = PiSq =: Jiq (2:3)
where § = diag(S,, ..., Sy) is the block diagonal 6N xn System Motion Matrix and
P, =[P, ... Py]is a6x6N selection matrix, where P,; is a 6x6 identity matrix if i = j

or link 7 is above link 7 in the tree, and a 6x6 zero matrix otherwise.

By stacking all of the Link Jacobians together in order, the System Jacobian J can
be constructed: J = [J;7 ... Jy7]" [10]. The System Jacobian relates the system (link)

velocity vector v = [0 ... ¥L]T to ¢ for a particular multibody system: v = Jgq.

The spatial momentum of a given link is defined as i_il = I}'E}, where I~Z is the link’s
spatial inertia (a 6x6 matrix which includes the link’s mass m;, 3D center of mass vector
¢;, and 3x3 rotational inertia matrix fi). Using the spatial momentum equation, the block
diagonal System Inertia matrix I = diag(I;, ..., Iy) can also be defined, which relates
the system momentum h = [FLIT e ﬁ]\?]T to the system velocity vector: h = Iv.

The Joint Space Inertia Matrix (JSIM) H, from Equation (2.1), can be defined using
the System Inertia and the System Jacobian matrices as H = JYIJ. This can quickly be
shown using the two spatial definitions for the kinetic energy T of a multibody system:

N
1 ~ 1 1 1 1
T(q.4) =5 Y oIt = v"Tv = S(JQ)' I(J4) = 54" T TTG= 34"Hq  (24)
1=1

Similar to its use relating joint accelerations to forces, the JSIM can also be used to
relate the joint velocities to the joint momenta h, (also called the generalized or canonical
momenta [10]): h, = Hq. Although it has previously been used in other aspects of
robotics, joint momentum has only recently been used in the control of humanoids [32].

An efficient method for calculating H has been developed, called the Composite Rigid
Body Algorithm [28]. This algorithm makes use of a set of 6x6 matrices called the Com-
posite Rigid Body Inertias (CRBIs), labelled f,f If two bodies are rigidly attached they will
have an identical spatial velocity, therefore based on the definition of spatial momentum
their combined spatial inertia is simply the sum of their spatial inertias.
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Extending this thought, the CRBI for a given joint is defined as the sum of the spatial
inertias of all of the links below the joint in the kinematic tree. This leads to the definition
of the floating base CRBI (I§) from Equation (2.1) as I§ = Y. | I; (note that this is the
sum of the individual links’ spatial inertias, not the sum of their CRBIs). It also allows
us to define the matrix of spatial forces F' which connects the fully actuated multibody
system with the floating base joint dynamics in Equation (2.1): F = [ffSl . f]cVSN].

The total momentum of a closed system is a conserved quantity (it will remain con-
stant), and therefore the total momentum h of a system is snnply the sum of individual
link momenta: h = ZZ 1 h;. In practice, the total momentum h is typically found by

summing coordinate vectors for each link’s momentum referenced to a common frame.
For example, by referencing each link’s momentum to the centroidal reference frame, the

centroidal momentum k¢ can be found: he = PR h; [10,33)].

The Centroidal Inertia Matrix (CIM), also sometimes known as the Centroidal Compos-
ite Rigid Body Inertia (CCRBI) [34], is an Operational Space Inertia Matrix (OSIM) [10]
with its end effector set to the system’s COM C. The CIM I relates the average spatial
velocity U of the system to the centroidal momentum: hC = IC’UC

Using the centroidal reference frame, the CIM can be defined using a 6x6 block diagonal
matrix with two 3x3 blocks (where 0 is the 3x3 zero matrix):

i - [ff‘ ({] _ [ZZN 1 Q] (25)

0 ml 0 ml

where “I; is the standard 3x3 rotational inertia matrix of each link (I;) projected to the
centroidal frame (at C'), m is the total mass, and 1 is a 3x3 identity matrix.

As with any spatial coordinate vector, ¥ can be separated into linear and angular
components: vg = [WL U4]". The vector v is the linear velocity of the COM, while &c
can be thought of as the average angular velocity of the entire system [10].

The system and centroidal momentum vectors can also be found using a pair of mo-
mentum matrices, which relate each momentum vector to the system joint velocity vec-
tor [10,33]. The System Momentum Matrix A relates the system momentum directly to the
system’s joint velocity vector: h = Aq. Using the expressions for the System Inertia and
System Jacobian matrices, it is easy to show that A = I'J (and by extension H = JT A):

h=Tv=1JG= Ag (2.6)
The Centroidal Momentum Matrix (CMM) €A relates the centroidal momentum he
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to the generalized velocities of a system: fzc = “Aq [33]. The structure and properties of
the CMM, as well as methods for its calculation, are discussed further in [10,33].

The simplest method for defining the spatial momentum h; of a rigid body is to use
the local reference frame to generate the coordinate vector h; = I;¥;. These vectors can
then be transformed using a force transformation matrix and summed to find h¢:

N N
=Y %, = Z °X*h; =°Xh (2.7)
=1 =1

where the centroidal transformation matrix is given by ¢X = [CX T CX;,] :
Using this definition for ﬁc, it can be easily shown that YA = X A = °X1J:

he =°Xh=°XAq=C°XIJq="CAq (2.8)

For further details on how these vectors and matrices are defined or the notation used,
see Appendix A, based on [30,31], or see [10,28,29, 33].

2.1.2 Reference Points

There are a number of useful state-dependent reference points which have been defined
for bipedal robots, generally used for control and postural stability assessment. The classic
reference points in bipedal research are the Center of Mass (COM), Center of Pressure
(COP), the Zero Moment Point (ZMP) [35], and the Centroidal Moment Pivot (CMP)
point [36]. Some of these points are also used to define key points for the simplified models
discussed later in this paper, so they will be briefly introduced below.

The Centroidal Moment Pivot (CMP) point was originally proposed by two different
groups at ICRA 2004: Popovic, Hofmann, and Herr defined it as the Zero Spin Center of
Pressure [37], while Goswami and Kallem called it the Zero Rate of Angular Momentum
point [38]. Following this parallel effort, the authors collaboratively defined the point as
the CMP in [36], and compared it to both the COP and ZMP (shown in Figure 2.1).

A standard tool in the analysis of the external forces on a system of rigid bodies is to
find a single equivalent resultant force which produces the same net effect on the system
as the original set of forces. The CMP is defined as the point on the ground through which
the resultant external force would have to act to produce no horizontal torque about the
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Figure 2.1: Illustrations of the Zero Moment Point (ZMP) and Centroidal Moment Pivot (CMP) point
from [36]. In this figure, CM is the COM, M is the total mass, ﬁg,R, is the external (“Ground Reaction”)
force, g is the acceleration due to gravity, and @ is the acceleration of the COM. Since these diagrams are
on horizontal ground, the COP is identical to the ZMP, so is unlabeled. On the left, the line of action of
the external force does not point directly at the COM, leading to a non-zero torque about the COM, so
the CMP and the ZMP are in different locations. On the right, the CMP and ZMP are coincident, due to
the external force acting directly towards the COM and therefore producing no torque about the COM.

COM, or equivalently as the projection of the COM onto the ground along a line parallel
to the external force vector’s line of action. This is illustrated in Figure 2.1.

For legged robots, the resultant external force vector always passes through the support
polygon, and is often called the ground reaction force as it is typically due to the unilateral
(pushing) contacts of the feet with the ground. The support polygon (or volume) of a
legged robot is defined as the shape enclosed by the convex hull connecting every contact
point between a robot and its environment [39]. The intersection of the external force
vector with the support polygon is known as the Center of Pressure (COP).

One of the most well known reference points is the Zero Moment Point (ZMP), defined
as the point on the ground at which the resultant external force would produce no horizontal
torque [35]. If a biped is walking with flat feet on horizontal ground and the feet are the
only contacts, the ZMP is equivalent to the COP [36,40] (see Figure 2.1).

When these restrictions are not met, based on their common definition as a point
through which the external resultant force acts, both the ZMP and the COP must be
located along the line of action of the resultant external force. Since the COP is, by
definition, always located within the support polygon, the ZMP is effectively the projection

13



AZ\‘rp

Tecmp

Temp

ground Yoomp

(a) DCM with Constant Az [11] (b) DCM with Varying Az [13]

Figure 2.2: Illustrations of the Divergent Component of Motion (DCM). In (a), the vertical offset between
the eCMP and the VRP is constant, while in (b) it varies with time. In these figures, = is the position of
the COM and £ is the position of the DCM. Dotted variables represent derivatives with respect to time.

of the COP onto the ground along the resultant external force vector [36].

The final reference point used in this thesis, known as the Divergent Component of
Motion (DCM) [41] (or Extrapolated COM [42]), has been used to analyze the dynamics
of bipeds moving in 3D on non-horizontal ground [11,13,43].

The DCM (£) is defined as € = C' + bile, as shown in Figure 2.2. In [11], b is defined
as the time constant of the DCM dynamics, given by b = \/Az,,/g. The value Az,,,
is heuristically defined as the (estimated) average height of the COM above the ground,
and defines the vertical offset between two more new reference points: the Enhanced CMP

(eCMP) and the Virtual Repellent Point (VRP).

Mathematically, the VRP and eCMP are defined by the total and external (contact)
forces on a biped (see Figure 2.2a), respectively, using a simple force-to-point translation
based on b [11]. However, they can both also be defined using a more intuitive approach
by comparing the eCMP to the COP and the VRP to the DCM.

Similar to how the ZMP is the projection of the COP onto the ground along the external
force vector, the CMP is the projection of the eCMP onto the ground along a line passing
through the COM which is parallel to the external force vector. Further, the intuitive
definition of the DCM as a point which the COM is constantly moving towards is echoed
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for the VRP, by observing that the COM will always be accelerating away from the VRP
and that the DCM will therefore always move directly away from the VRP.

Englsberger et al. used these points to generate desired DCM trajectories from an initial
footstep plan, by assuming a constant angular momentum and ignoring impact. These
DCM trajectories were used as control references for a DCM tracking controller, along with
a heuristic balance point estimator which determines an updated step position based on
the existing footstep plan, predicted DCM location at impact, and the nearby terrain [11].
Recently, Englsberger et al. used their DCM and CMP based trajectory generation with
an analytical footstep adjustment for recovery from strong disturbances [44]. They have
also developed a gait generator based on the DCM which is capable of generating dynamic
walking across moving support surfaces [45].

Hopkins et al. have developed an extension of the DCM, by defining the natural fre-
quency w = 1/b of the DCM dynamics as a function of time (see Figure 2.2b). Since
the rest of the formulation consists only of constants, this effectively allows the use of a
dynamic vertical offset between the eCMP and the VRP. In [13,43], they use this extension
in tandem with centroidal momentum to generate a whole-body controller.

2.1.3 Simplified Models

Although there have been developments in the application of full-body dynamic mod-
els for balancing (for examples, see Section 2.3 and [29]), there is still value in working
with simplified models. In particular, several of these simpler models enable an intuitive
understanding of balance and gait for bipeds which facilitates both their mathematical
expression and the qualitative description of the associated algorithms and controllers.

The simplest dynamic model of a humanoid robot consists of an inverted pendulum
(IP), with a point mass located at the COM, a point foot located at the COP, and a
massless rigid leg between the COM and foot (see Figure 2.3a). A common extension of
this model is the telescoping IP, where a prismatic joint is added to the leg to allow changes
in the distance between the COM and the COP. Due to the way the COP is defined, the
aggregate of the external contact forces can be replaced with a single linear force acting
along the leg connecting the COP to the COM and a moment about the point foot. As
with any pendulum, the dynamics of these IP models are inherently non-linear.

Another model is the rimless spoked wheel (see Figure 2.3b), which is effectively an
IP with a number of massless legs, extending at regular intervals from the common point
mass within a plane [47,48]. This is also a non-linear model, but has the advantage that
it can predict and/or control future step locations by manipulating the angle between the
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(a) Inverted Pendulum Models [10] (b) Passive Biped Models [46]

Figure 2.3: Illustrations of common simplified biped models. The models shown in (a) are (from left to
right, top to bottom): Rigid Inverted Pendulum (IP), Telescoping IP, Cart Table, Linear IP, Variable
Impedance IP, and the Reaction Mass Pendulum [10].

spokes (legs). A similar model is the compass gait biped, consisting of two massless legs
connected together with a rotary joint at the common COM point mass [49]. This model
has the benefits of the spoked wheel model combined with a clear method for manipulating
the angle between the legs, without the need for any additional legs.

The cart table model is an alternative to the above IP-based models, where the COM
is modelled as a frictionless cart running along a horizontal table and the “foot” of the
table has a non-zero contact area [50]. One of the main advantages of this model is that it
is inherently linear, leading to simpler equations and controllers. The cart table model is
often used when discussing the ZMP of a humanoid, as the size of the foot and the location
of the ZMP within the foot is a critical aspect of most ZMP controllers.

A simplification of the telescoping IP model is the Linear IP model (often called the
3D LIPM, or just LIPM), which has both the advantages of a simple IP structure and
linear dynamics [51,52]. Similar to the cart table model, the linearity is imposed due to
a restriction placed on the COM that it remains on a specific plane, usually a horizontal
one as this means that the COM of the biped model remains at a fixed height. Although
it is typically used with a restriction that the COM must remain at a fixed height, the
model itself only confines the COM to a plane, which allows movement over stairs and
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other sloped surfaces. To model the LIPM’s dynamics, the leg force required to maintain
the COM on the given plane can be represented using a preloaded non-linear spring [17].

Another form of TP model which restricts the COM motion is the Prismatic IP model
(PIPM), where the lateral and saggital single contact dynamics are independent ordinary
differential equations [53]. Similar to how the LIPM restricts COM movement to a plane,
the COM in the PIPM is restricted to motion along a non-planar, piecewise linear surface.

The Angular Momentum inducing IP model (AMPM) [54,55], a LIPM model with
a rotational inertia, enables an explicit representation of the angular momentum of the
biped. This extension allowed much better control over the overall motion of the biped, as
it could inherently encode the linear and angular motions of the overall system.

Building on the benefits of the AMPM, the Reaction Mass Pendulum (RMP) model
was introduced by Lee and Goswami [34], compared to the compass gait biped in [49], and
was examined thoroughly from a dynamics and stability perspective in [56]. This model
consists of a modification of the telescoping IP model, by breaking the point mass into
three pairs of equal proof masses which can rotate about the COM position. This enables
the model to take into account both the angular momentum and changes in rotational
inertia, which is required to allow full control of the momentum and other inertial effects.
This modification could potentially be applied to any of the above models which use a
point mass at the COM, alongside the existing assumptions.

All of these models can also be extended with additional features, to create double
pendulums or multibody systems with distributed masses, which is sometimes used in the
generation of balance strategies (see Figure 2.3). However, the additional links and masses
remove many of the benefits of these simplified models, existing on a continuum between
the above simplified models and the full dynamics of the biped.

Finally, a newer model which is being used in most state of the art controllers is
the Centroidal Dynamic model [10]. With this model, shown in Figure 2.4, the various
centroidal properties defined in Subsection 2.1.1 are used directly as a model of the overall
dynamics of the system. Effectively, the biped is assumed to be a single rigid body, with
its inertia equal to the centroidal inertia, its velocity equal to the average spatial velocity,
and all external forces projected to the centroidal reference frame.

2.2 Balance Point Estimators

There are two high-level categories of balance point estimation methods: those which
consider the loss of energy due to the impact of the landing foot with the ground, and those
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Figure 2.4: Tllustration of the Centroidal Dynamic model from [10]. In this figure, G is the COM.

that do not. In the majority of methods that do not consider impact losses, the LIPM is
used so vertical motion of the COM is also ignored.

The methods which account for impact-based energy loss follow a common formulation,
although the specifics and model used to find the balance point can vary [14, 16, 18-20].
Given the (possibly predicted) model state at the time just prior to impact, conservation
of angular momentum about the point of impact and conservation of energy after impact
are used to determine where to step with a rigid leg. Energy is lost at impact, based on an
instantaneous reduction in COM velocity due to the conservation of angular momentum,
and then converted from kinetic energy to potential energy after impact via the rigid leg.

Similarly, methods which ignore the loss of energy at impact also have a common formu-
lation, again with varying specifics and models [15-17,57]. Given the (possibly predicted)
model state at the time just prior to stepping, conservation of energy and constraints on
the COM motion are used to determine where to step. In most of these methods, the COM
is constrained to a fixed height and the orbital energy is conserved via a horizontal force
which is proportional to the horizontal distance between the COM and the COP.

The basic idea behind the two approaches can be examined by comparing an exemplar
method from each category (see Figure 2.5): the Instantaneous Capture Point method
[17], for the impact-free group; and the Foot Placement Estimator [18], for the impact
group. Since they are both balance point estimators, both methods have identical goals:
determining where to step so that the biped can come to rest with the COM directly above
the balance point. They are also both only defined for horizontal, flat ground, and use
simplified models of the biped to determine their different balance points.

The Instantaneous Capture Point (ICP) method [17] uses a LIPM and the conservation
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(a) Hlustration of the ICP [15]. (b) Hlustration of the FPE [18].

Figure 2.5: Illustrations of the Instantaneous Capture Point (ICP) and the Foot Placement Estimator
(FPE). The ICP in (a) is drawn in the horizontal plane, while the FPE in (b) is drawn in a vertical plane.
In (a), r is the COM, rankle is the COP, and r;. is the ICP.

of orbital energy to determine where to instantaneously step to come to rest (i.e., the
balance point). Although the original definition of the ICP in [17] augmented the LIPM
with a flywheel to account for rotational inertia, the vast majority of later work ignores
the inertia and just uses the standard LIPM (with a point mass, as shown in Figure 2.5a).

Using the standard LIPM, the location of the ICP (labelled éxy) is simply defined as

oy =G +V/h/g [ic o 0] (2.9)

where h = z¢ — zg is the current height of the COM above the ground.

The Foot Placement Estimator (FPE) [18], the original impact-based method, was de-
veloped based on a non-linear analysis of a planar biped model with a fixed rotational
inertia and massless, fixed length legs (as shown in Figure 2.5b). However, the actual for-
mulation of the FPE point removes one of the legs (producing a reaction wheel pendulum)
and relaxes the model assumptions by allowing for the leg length to be defined using the
angle ¢ and the height of the COM. It uses conservation of angular momentum about
the balance point to determine the energy lost during impact, then conservation of the
post-impact energy to determine where to step.

Trigonometry can be applied in the vertical plane to find the FPE point F on the
ground, using the angle ¢ at which the model must instantaneously place its point foot:
F:=G+ htan(¢). Therefore, the angle ¢ must be found, using conservation of energy
and momentum and by defining the length [ of the model’s leg using [ = h/ cos ¢:

[mh cos ¢(hsin ¢ + v cos ¢) + Tow cos gf)] i
2mgh cos ¢(1 — cos ¢)(mh? + I cos? @)

—0 (2.10)
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where £ is the height of the COM, h, v, and w are the vertical, horizontal, and angular
(about ) velocity of the COM, respectively, and I is the planar rotational inertia.

The loss of energy at impact due to the FPE model’s rigid leg, compared to the loss
of energy due to compression of the non-linear spring in the LIPM leg used in the ICP,
is the key differentiator between these methods. This can be used to show that, when
both models’ assumptions hold, F'is the closest point in a continuous linear set of balance
points, which includes fxy, where a point’s position in the set depends mainly on the
model’s leg stiffness [20]. Alternatively, since the rigid leg of the FPE model causes the
COM to move in a vertical arc and the LIPM causes the COM to move in a horizontal
line, the actual balance point for the typical flattened arc of bipedal gait would likely fall
somewhere between the balance points found using the FPE and ICP methods [58].

The next two subsections describe a number of extensions to the ICP and FPE methods
for estimating balance points. These extensions mainly aim to reduce the somewhat limit-
ing assumptions made by the ICP and FPE formulations: planar COM motion (horizontal
plane for the ICP, vertical plane for the FPE) and instantaneous swing foot movement.

2.2.1 ICP Extensions

The most often-used extension of the ICP is Capturability, which defines being N-Step
Capturable as the ability of a biped to come to rest in N steps [15]. By this definition, if a
biped is 0-Step Capturable then it does not need to take a step, and can use other balancing
strategies (e.g., movement of the COP/CMP within the existing support polygon) to come
to rest. Otherwise, at least one step is needed, where the number of steps needed depends
on where the first step is placed and the minimum time required to take a step.

It is easy to show that for the classic LIPM, with a point foot on the ground and a
point mass at the COM, the point foot must be placed at the ICP for the model to be
0-Step Capturable. However, in [15] the LIPM model is also progressively augmented, first
with a finite-sized foot and then both a finite foot and a fixed rotational inertia.

The finite sized foot allows the model to be 0-Step Capturable provided the ICP is
anywhere within the finite contact area of the foot, as it assumes that the COP can be
moved freely within the foot. The reaction mass (a fixed rotational inertia) adds a lunging
capability, which allows the ICP to be brought back inside the contact area if it is just
outside the foot’s edge, increasing the size of the 0-Step Capture Region.

If the biped is not 0-Step Capturable, then a set of Capture Regions can be found on
the ground, where stepping into the N-Step Capture Region will cause the biped to become
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Figure 2.6: Tllustrations of the N-Step Capture Regions [15]. The 1-Step Capture Region in each figure is
blue, while the remaining N-Step Capture Regions are progressively darker shades of grey. Models shown
are (a) a LIPM, (b) a LIPM with a finite sized foot, and (c¢) a LIPM with a finite sized foot and a fixed
rotational inertia. All figures are drawn in the horizontal plane.

(N-1)-Step Capturable (see Figure 2.6). For the classic LIPM model, the 1-Step Capture
Region is simply a line pointing away from the model’s point foot, starting at the predicted
ICP location after a minimum swing time has passed (see Figure 2.6a).

For the other models, the 1-Step Capture Region is found using the size of the foot
and the possible predicted ICP locations, which appear as a scaled, mirrored image of the
possible COP locations in the foot projected through the ICP. For all models, each N-Step
Capture Region starting at N=2 is then recursively defined as the region within dy_; of
the (N-1) Capture Region, with dy defined as a function of dy_; with exponential decay.

A planar extension to the ICP was developed by Ramos and Hauser [57], in which
the LIPM constraints are loosened to allow for sloped linear motion or parabolic motion
(labelled a “Nonlinear Inverted Pendulum” model) and the terrain is defined as a set of
piecewise linear segments. Since this eliminates the ICP method’s closed-form equations,
a shooting approach using bisection is applied to successively define equations to find: a
balance point on the (possibly uneven) terrain given a parabolic COM path, coefficients
of a parabolic COM path given a balance point location, and finally an enumeration of
candidate pairs of COM paths and balance points distributed across the given terrain.

Although this method expands the possible applications of the original ICP approach,
it still limits the COM motion and has only been developed in a planar environment. The
use of a shooting approach also requires repeated calculations for every location and COM
path, leading to the potential for massive computational requirements if this approach were
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extended to 3D. Since push recovery in particular demands very fast reactions to external
disturbances, this computational load may be too high for many bipeds to be able to find
an acceptable balance point in time to regain balance before falling.

Finally, the DCM has been described as the 3D analog of the ICP: When the ICP
assumptions are satisfied (horizontal ground and COM motion), the ground projection of
the DCM is equal to the ICP [11]. The DCM also incorporates only state-based information
and makes fewer assumptions about the model or the environment.

2.2.2 FPE Extensions

There are a number of extensions to the FPE, both for planar robots [16,19] and in
3D [14, 20,59, 60]. Currently, all of the 3D extensions to the FPE consist of choosing a
vertical plane, projecting the dynamics of the biped into the chosen plane, then applying
the FPE equations to find a balance point [14,20,59,60].

The first planar extension of the FPE was the Foot Placement Indicator (FPI), which
replaced the reaction wheel model of the FPE with a planar multilink model of the robot
with distributed masses before calculating the restorative balance point [19]. By using a
more realistic model of the distributed masses of the robot, particularly in the swing leg,
the FPI gains accuracy in exchange for a loss in computational efficiency.

Li et al. compared the ICP (in a vertical plane) to a predictive version of the ICP (which
we have labeled the Predictive Capture Point, or PCP) and to a predictive balance point
estimator using a simple inverted pendulum (IP) model for one-step balance recovery [16].
Prediction for both balance point estimators was based on conservation of energy leading
up to stepping and a heuristically chosen desired stance leg angle at step time. With some
rearrangement of the equations, the IP-based estimator is effectively a predictive form of
the FPE, with the stipulation that the stance and swing legs can have different lengths, so
will be labeled the Predictive FPE (PFPE).

Although originally designed and applied in a planar environment, the FPE has been
used directly in a 3D environment by projecting the robot’s dynamics onto either a constant
[59,60] or changing [14,20] vertical plane. By projecting the biped’s dynamics into a specific
vertical plane (typically passing through the COM), and applying the FPE equations, a
balance point can be found along the intersection of the plane and the ground which
balances the robot in the chosen plane. Both the FPI and the PFPE are defined in a
vertical plane, similar to the original FPE, and could also benefit from projection into 3D.

In both [59] and [60], the vertical projection plane is chosen manually and constant,
which keeps the computational cost down (in exchange for requiring separate out-of-plane
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balance in [60]). However, for the Generalized FPE (GFPE) in [14] and the 3D FPE
in [20], the vertical projection plane always passes through the COM, but its orientation is
calculated online in an attempt to include as much of the robot’s 3D dynamics as possible.

The 3D FPE [20] applies the original FPE in a vertical plane (containing the COM)
perpendicular to the horizontal components of Eg, the biped’s angular momentum about
the COG. When using the 3D FPE, the biped’s full 3D dynamics are projected into the
assumed (vertical) impact plane to determine its equivalent planar rotational inertia and
average angular velocity. By basing the vertical plane’s orientation on the angular momen-
tum about the COG, it directly takes into account both the linear velocity of the COM
and its centroidal angular momentum.

This method was developed using the “3D Euler Pendulum” model, a monoped with
a disc foot which is equivalent to the reaction wheel biped model from the original FPE
paper when its motion is restricted to a vertical plane [20]. Similar to the original FPE,
the 3D FPE formulation relaxes the fixed leg length assumption, so the biped need not be
at rest nor in contact with the ground before impact. However, as a direct extension of
the FPE into 3D, it is only defined for horizontal ground surfaces and is not predictive,
requiring continuous calculation until impact occurs.

The GFPE [14], on the other hand, uses a 2D point foot walker (which they have
labelled a rimless wheel) to predict a recovery step location, based on the velocity of the
COM after a biped is pushed while at rest. The model is embedded in a vertical plane
(containing the COM) parallel to the COM velocity (v) and uses a modified version of
the original planar FPE equations for step prediction.

The model’s stance foot location is placed at the orthogonal projection of the Center
of Pressure (COP) into this vertical plane, which for predictive purposes is assumed to be
a point about which the biped is in pure planar rotation until impact. The GFPE can also
be applied to piecewise planar ground surfaces, using an elevation angle between the stance
foot and the desired landing foot location. However, this approach neglects the rotational
inertia of the biped, and assumes that the biped is at rest before a disturbance.

2.2.3 Comparison

To support both balance and gait, the ideal balance point estimator would predict a
location to step in 3D to achieve a desired final state based on the current state of the
biped, without using any heuristic parameters, and should include the effects of impact, a
finite sized foot, centroidal inertia, and realistic 3D COM motion over 3D terrain. Table
2.1 gives an overview of the most well known existing balance point estimators.
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Table 2.1: Comparison between Balance Points

The 3D column indicates whether the balance point is defined in 3D and allows 3D (non-flat) terrain. In
this table, the following variables are used: 7, for ankle torque, I for centroidal inertia, ¢ for vertical
COM velocity, 6_ for the pre-impact angle of the pendulum model, ¢, for the minimum swing time of the
swing leg, and Az for the height of the VRP above the eCMP. An asterix is used to indicate the following
special cases: when using the ICP, I is typically ignored although it was part of the original formulation;
the 3D FPE model is defined in 3D, but the 3D FPE itself is only defined for flat terrain; adding Io to
the GFPE formulation is trivial; and the GFPE is defined for piecewise flat terrain, not 3D terrain.

Balance Point Ref. | Predictive | 7, #0 | Ic #0 | 2c #0 | Impact | 3D | Notes

ICP [17] N/A v X X

FPE (18] X N/A v v v

FPI [19] X N/A v v v X | Distributed mass

3D FPE [20] X N/A v v v X*

Predictive CP [16] v X X X X X | Needs 6_

Predictive FPE [16] v X X v v X | Needs 6_

Capturability [15] v X X X X X | Needs t4
w/ Finite Foot [15] v v X X X X | Needs ¢
w/ Reaction Mass  [15] v v v X X X | Needs t4

DCM-based [11] v v v v X v | Needs Az

GFPE [14] v v X* v v v*

The most successful step-based balance strategies use balance point estimators which
include prediction, such as Capturability [15]. The ability to predict a stepping location
allows the controller to optimize its control efforts towards achieving useful stepping behav-
iors. Without prediction, very fast control loops are required to track an instantaneously
moving point and there are no guarantees that the desired stepping point will end up
within the feasible motion range of the swinging leg’s foot.

The inclusion of ankle torques, or equivalently a finite sized foot, allows the COP to
be shifted within the support polygon, in some cases obviating the need to take a step.
For instantaneous balance points, this is not typically used as they do not make any
assumptions as to the future behavior of the COP, so can decide whether to step based
on if the generated balance point is within the existing support polygon. However, with
predictive methods the ability to move the COP around within the support polygon must
be considered, and therefore ankle torques should be included.
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Allowing the COM to move freely in 3D over 3D terrain and including centroidal inertia
are useful features, as they relax the common assumptions of horizontal COM motion over
flat ground and centroidal angular momentum regulation. When these assumptions are
used, they simplify the equations needed to find balance points, but real bipeds and terrain
often violate these assumptions. In addition, the ability to modify the COM height and
the centroidal inertia for the purposes of balance are effective strategies for compensating
for some disturbances, so should not be neglected in any part of a balancing system.

Since the majority of the balance point estimators depend on the conservation of energy,
considering the effects of impact is a critical feature, which is often ignored to allow the
use of simpler linear models of bipedal motion. Not only does the energy lost to impact
directly effect the location of the generated balance point, it can also be used to determine
the required energy input to maintain a constant desired gait velocity.

In fact, although many balance points exist, none were found which could fully satisfy
these requirements, as shown in Table 2.1. Since the various existing balance point esti-
mators make different assumptions but use similar approaches, there is the potential that
a more general method can be found which encapsulates and generalizes existing methods.

This is partially inspired by [20], which determined that the stiffness of the chosen
model’s leg was the critical difference between the FPE point and the ICP, and that a
continuum of suitable balance points existed along a line between the two named points.
Therefore, a novel balance point estimator is needed that satisfies all of the requirements
of this research (including the features listed in Table 2.1), and which generalizes and
encapsulates most of the existing 2D and 3D balance points.

2.3 Balance for Bipeds

The three basic humanoid balance strategies, as described in [5], are: ankle strategy,
hip strategy, and stepping out. The ankle strategy, also called COP balancing, is used
to keep the COP within the support polygon (SP) by applying ankle torques. The hip
strategy, also called CMP balancing, uses centroidal torques to move the CMP relative to
the COP, while also applying COP balancing to keep the COP in the SP. In [61], the ankle
and hip strategies were extended by adding a knee joint to the model used in [5], effectively
changing the LIPM model back into a non-linear telescoping IP.

More generally, there are three main types of balance strategies which correspond to
the basic strategies described in [5], labelled as: flexing, leaning, and stepping. Flexing
strategies make use of joint compliance to deal with small disturbances, leaning strategies
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use joint movements to deal with moderate disturbances, and stepping strategies use one
or more steps to deal with large disturbances. Each of these types of strategies is discussed
at a high level in the next three subsections, with an emphasis on describing the benefits
and drawbacks of each type of strategy when applied independently.

Briefly, flexing is relatively simple and fast, but its effectiveness is limited by the
strength and duration of the disturbance and requires at least minor mechatronic design
changes to position-controlled joints. Leaning uses body movements (e.g., torso leaning,
swinging arms, etc) to manipulate the system’s centroidal dynamics, which allows it to
handle moderate disturbances but is slower than flexing. Stepping can handle large dis-
turbances, but requires swinging a leg to a desired point on the ground (sometimes more
than once), and thus is highly dependent on the ground surface and the leg swing speed.

Knowing which specific balance strategy, or set of strategies, to apply for a given
disturbance is still somewhat unclear. This is particularly true when the disturbance is
small, and could be compensated successfully (if not quickly or efficiently) by any one
of the different strategies. The speed of response, simplicity of application, and possible
interference with ongoing tasks can all also affect which strategy (or strategies) should
be used to maintain or recover balance. The final part of this section is dedicated to
discussing existing research on combinations of these different types of strategies and/or
multiple strategies of the same type (in Subsection 2.3.4).

2.3.1 Flexing

Flexing strategies can be broadly defined as using joint compliance to enable a robot
to absorb small disturbances automatically (i.e., without high-level controller interven-
tion). This generally happens either passively, by including compliant components in the
mechatronic design, or actively, as part of the joint controller [1-4,62-67].

The main difference between these two approaches is in the complexity of the controller
and the design: with passive compliance, the joint itself is complex while the joint controller
is relatively simple, while controlled compliance requires some form of high-speed force
measurement, and control, but can use fairly standard rigid joint designs. There is also an
added benefit of the use of rigid joints in the controlled compliance cases, as it is sometimes
useful to combine force and position control in a hybrid control strategy [4].

Although flexing is a very useful form of compensation when the disturbance is small,
it is less effective in compensating other forms of disturbances. Some research has also
demonstrated that having high levels of compliance in certain joints can actually increase
the difficulty of performing dynamic motions, such as walking or running [64].
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2.3.2 Leaning

The goal of leaning strategies is to change the biped’s momentum in response to a
disturbance (e.g., by varying posture or using momentum actuators such as reaction wheels)
without modifying the state of any of the robot’s contact points. This includes swinging the
arms or legs, twisting the torso, or bending at the waist, similar to the way humans react to
external disturbances while standing and walking. In general, leaning is performed based
on measuring either the disturbance itself, or the effects of the disturbance, and countering
the changes by accelerating the robot’s links in a suitable direction.

A number of different unique leaning strategies for modifying the posture of a robot
have been introduced in the literature [5,61]. However, the majority of these strategies are
based on a heavily simplified model of the robot in the sagittal plane, which can lead to
difficult translation onto a real system. Yoshida et al. investigated the leaning and stepping
strategies employed by humans in the lateral plane in [68].

The most effective leaning approaches for real bipeds generally control the overall mo-
mentum of the robot to achieve a desired whole-body behavior [8-10,32,38,69-71]. These
methods are primarily used to map a low DOF desired momentum onto a set of high
DOF joint level commands, enabling the controller to automatically and smoothly apply
a number of different leaning strategies in parallel (e.g., arm swing and bending).

Momentum-based control started with two main groups: Kajita et al. with their con-
cept of resolved momentum control [69], and Goswami and Kallem who used the rate of
change of angular momentum [38]. Machietto et al. developed similar methods for using
momentum in the control of animated bipeds [70], while Hofmann et al. used momentum-
based controllers to improve independent COM and COP control of bipeds [71].

Lee, Orin, and Goswami have used the CMM to develop momentum-based controllers
to reject disturbances while standing still on non-level and non-stationary ground in [8-10].
In their work, the centroidal momentum is controlled using the CMM, but achieving the
desired linear momentum is prioritized, causing the robot to lean in response to external
disturbances. CMM-based control with a non-zero desired angular momentum was used
in [72], to successfully generate whole-body motions for kicking and jumping tasks.

Building on this successful dynamic kicking controller, Wensing and Orin showed that
specialized algorithms are not required to calculate the CMM and discussed methods of ap-
plying centroidal momentum control strategies via the CMM in [73]. Centroidal momentum
and centroidal dynamics have also been used to enable whole-body planning approaches
for full-size bipeds, including dynamic contacts for both the feet and hands, in [74].
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In the humanoid balance controller defined in [8,9], the desired Ground Reaction Force
(GRF) and COP of each foot are actively controlled by directly relating them to the desired
rate of change of linear and angular momentum, respectively. When the desired GRF and
COP are not reachable, prioritized optimal solutions for reachable locations are found at
the expense of errors between the desired and actual momentum.

By using weighting matrices to prioritize between the two types of momentum, the
disturbance compensation strategy can be varied between fully respecting either linear or
angular momentum. Effectively, when only the linear momentum is respected the motion
of the COM is actively controlled, so the angular momentum must be used to balance.
Similarly, when only the angular momentum is respected the centroidal rotation is actively
controlled, so the linear momentum (i.e., motion of the COM) must be used to balance.

In [32], Moro et al. propose Whole Body Motion Control (WBMC) based on the use
of a control element called ‘attractors’, to enable a humanoid to perform several tasks at
once. This work was validated on COMAN, a torque controlled compliant humanoid, and
appears to be the first use of joint momentum for the purposes of control [10].

Leaning strategies are by far the most popular of the various balance strategies, since
they do not require the robot to change any of its contact points or include compliance in
either the mechanical system or the controller. Unfortunately, leaning strategies can only
generally handle low to moderate levels of disturbances, and are usually highly dependent
on accurately measuring or calculating the effects of the disturbance.

Also, although leaning is generally capable of maintaining balance when subjected to a
disturbance while standing still, additional challenges arise when there are multiple com-
peting objectives for the robot. To deal with these issues, there is typically a requirement
to define several heuristic parameters to prevent the robot from entering a state which
contradicts its objectives. Subsection 2.3.4 discusses solutions to some of these issues.

2.3.3 Stepping

Stepping is the key balance strategy for dealing with moderate to large disturbances,
particularly when a biped is in motion when disturbed. In its most basic form, a stepping
strategy consists of finding a location on the ground to place a swinging foot to counteract
a given disturbance, either wholly or partially, and then actively stepping to that location.
If the disturbance has only been partially compensated, further steps or other balance
strategies will then be necessary to return the robot to its desired normal behavior.

Finding the location to step requires the use of balance point estimators, which deter-
mine where a biped should step to achieve some desired outcome. As discussed in Section
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2.2, most balance point estimators find a single point where the biped must step instan-
taneously to cause the COM to come to rest above the newly placed foot, although some
are predictive, use multiple steps, or allow alternate desired outcomes. The most common
balance point estimators were discussed in detail in Section 2.2, so here the focus of the
discussion is on how they are applied for balance.

There are three general methods which are used to apply a stepping strategy, based
largely on the balance point. The first method is applied with the majority of the instanta-
neous balance points, and involves moving the swinging foot as quickly as possible towards
the calculated balance point (e.g., [18,60]), which is continuously recalculated during the
step. Since the balance point is typically moving away from the foot, the swinging foot is
effectively trying to catch up to the point before it leaves the achievable stepping range.

The second method requires a predictive balance point estimator, using the predicted
point as a static control reference for some form of task-based control of the swinging foot.
In [14] this is the approach taken, where the GFPE is used once to find a desired balance
point immediately after a push. This point is then provided as a desired footstep to a
standard footstep-based stepping controller, which takes care of moving the swing foot to
the point and brings the stance foot up to step beside the new swing foot location.

If the biped can alter its dynamics to exert some control on the balance point’s dynamics
during the step, generally through modification of external forces, then a third method
can be used: moving both the swinging foot and the balance point towards a common
location. An example of this is the work on using Capturability to control a biped, where
the dynamics of the ICP are controlled by shifting the COP within the stance foot [12].

Stepping strategies rely on the ability to place a swinging foot somewhere specific on
the ground (a region or point) to regain balance, which is usually dependent on having
smooth, flat walking surfaces or a good models of the ground. Since stepping requires
much more energy to achieve than other strategies, and can be computationally expensive,
it should typically not be used to deal with moderate or small disturbances. Stepping also
takes longer to execute, so is generally used as a last resort to prevent falling.

Although the movements associated with stepping will generally include some amount
of leaning, it is typically a byproduct of moving the robot’s swing foot, and does not
necessarily help to counter the disturbance. Finally, the majority of these approaches
ignore the effects of impact and rely on the inertia-free LIPM introduced in Subsection
2.1.3, which has inherent limitations in terms of the need for a COM with a constant
height and no method of modelling either rotational inertia or angular momentum.
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2.3.4 Combined Approaches

Work has been done in combining these different approaches to balance, as well as
different strategies within a given approach, as discussed below. However, in most cases
only one strategy is selected to compensate for a given disturbance, and the majority of
solutions have been designed solely for when the robot is at rest, with no discussion of how
the response would change for a moving robot. This poses several questions about how the
different methods might compensate for disturbances while walking, and how they would
react to successive disturbances. A selection of combined balance approaches are discussed
below, with emphasis on the different types of combinations found in the literature.

In [75], flexing based on controlled compliance is used to maintain a desired waist
orientation, combined with an omnidirectional stepping strategy for a robot at rest. The
robot maintains its existing configuration until a suitably large disturbance is measured
in the COP which will likely cause the robot to fall. When this occurs, the controller
causes the robot to take one or two quick steps at set inter-foot distances, dependent on
the direction of the potential fall. Regardless of whether the robot is stepping or standing,
a compliant waist orientation controller is used to smooth the motion of the robot before
inverse kinematics are applied to generate desired joint angles. This sequential combination
of flexing and stepping makes the robot reasonably robust to disturbances.

In [76], disturbance suppression is applied via state feedback to lean towards external
disturbances, then a reactive step is taken if the disturbance has not been fully com-
pensated. This minimizes the difference between the desired and actual COM and ZMP
trajectories using state feedback to suppress disturbances. If this is not enough, or if the
robot is in a configuration which makes this difficult, the desired COM and ZMP trajecto-
ries are modified for the next step to compensate. Although this was developed for a robot
in motion and has been verified on a physical robot, it relies on the LIPM to represent the
robot’s dynamics and does not take into consideration its posture or momentum.

In [77], a combination of ankle flexing and leaning at the hips is used to compensate
for disturbances, using a double IP model built on the LIPM for a robot at rest. These
two strategies are used in parallel to generate desired torques based on joint feedback, and
are designed to mimic the human response to disturbances. There is no mechanism in this
work for determining if the ankle and hip strategies are combined constructively or not, as
their resulting torques are simply added together within the controller.

In [78], a reinforcement learning method is used to determine how best to apply these
two strategies, as well as ICP-based stepping. This method uses the estimated disturbance
to decide what combination of the three strategies should be applied, and uses them to
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modify an online ZMP-based walking controller. Various points in the gait cycle are sim-
ulated and then applied on a small physical robot with relatively large feet, which show
that the learning system is able to compensate for a slightly larger set of disturbances
than the online ZMP-based walking controller alone. However, since the scale of each of
the different strategies is dependent on learned behavior, and is built on top of an online
ZMP-based walk, there are no guarantees that the strategies combine constructively.

A Model Predictive Control scheme was used in [79,80] to combine the ankle strategy
with stepping, which was later augmented to include the hip strategy and an optimized step
duration in [81]. This approach is promising, as it avoids the saturation or thresholding
which is typically used to transition between strategies, as in [82], as well as allowing online
modification of the step duration, often a fixed or estimated parameter. However, it has
only been applied for a simple simulated robot at rest, and requires both a good model
and the resources to run an optimization over a finite window at every control cycle.

One of the major drawbacks of several of these methods is that they are only used while
at rest, with no discussion of their use while walking or otherwise in motion. All of the
methods which do discuss walking are based on the LIPM, which has several assumptions
that must be compensated for in the controller. Further, for all of these methods, either
only one strategy is used for a given disturbance, or a set of strategies are used in parallel
with no consideration for whether they are combining in a constructive way.

An alternative method to these combinations of simpler strategies is to generate whole-
body behaviors directly, which can automatically apply any number of simpler strategies
by design. For example, the CMM-based leaning controller in [8-10] for a robot at rest
was augmented to include both a GFPE-based stepping strategy, in [14], and a damage-
prevention strategy when falling, in [83,84]. A high level controller is used to choose which
of the strategies (leaning, stepping, or safely falling) is applied at any time, based on the
GFPE point’s location immediately after a push.

The controller used in [14,83,84] also switches between different heuristically chosen
weighting matrices based on the chosen strategy. This weighting matrix is used to prioritize
between the linear and angular momentum: where the original leaning strategy prioritized
respecting linear momentum, the stepping strategy prioritizes minimizing the angular mo-
mentum. In the controllers with stepping, the desired step location was also generated
only once after a push and used as a reference point in a standard step planner, which left
dealing with swing leg dynamics and any further disturbances to a feedback controller.

There have also been several examples in recent years of the application of Model Pre-
dictive Control (MPC) and/or optimization-based controllers in combination with incorpo-
rating the full dynamics of a robot into the planning and control stages to generate balance
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and gait [85-91]. Many of these examples were developed (partially or completely) dur-
ing the concentrated efforts towards completing the DARPA Robotics Challenge (DRC)
and its virtual predecessor [85,87,88,91]. For a thorough discussion of these and other
approaches to the control of legged robots, see [39].

In [85], a combination of high-level instructions from human operators and fast compu-
tation of the full dynamics of the system is used as part of a full-body MPC method. This
controller was applied to several tasks in the virtual DRC, but was determined to be too
slow for application on a real robot due to a desire for simple and abstract costs resulting
in complex motions. Although easier than designing control laws directly, this approach
still requires fine-tuning to achieve the performance required.

The first successful use of a whole-body MPC on a physical robot in real time is de-
scribed in [86]. This successful application of an MPC to the control of a real robot showed
that this is a viable method for generating a feasible control strategy which can respond
in real-time to environmental changes. A real-time nonlinear MPC was later implemented
on a position controlled humanoid robot and found to improve its performance [89].

The most successful applications of MPC for the control of humanoids have incorporated
reference points and balance points [90,91]. Namely, the DCM was combined with MPC
in [90] to achieve a robust walking controller which can be implemented on robots with
different control methods in a variety of environments. In [91], a controller for balance
recovery of the real-world robot DRC-HUBO+ was developed by combining the ICP with
a ZMP-based MPC, achieving push recovery and balanced walking on uneven terrain.

Optimization based planning, estimation, and control approaches have also shown some
promise when combined with full-body dynamics [87,88]. In [87], an inverse dynamics-
based full-body controller is augmented with a COM trajectory planner and a receding-
horizon optimization which generates the next desired foot placement location. Finally,
the MIT DRC team outlined the various optimization-based algorithms they used in their
planning, control, and estimation work that was applied to great success at the DRC in [88].

2.4 Optimized Mechanism Design

Several prior works investigate the possibility of generating dynamic biped parameters
using optimization [92-98]. In these works, either the cost of transport or the number of
steps is used as the optimization metric, with a dual objective of both gait generation and
physical property selection. One of the first examples of this application was the use of
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genetic algorithms and evolutionary computing in [92,93] to select control parameters (or,
equivalently, a trajectory) and generate dynamic parameters in parallel.

Later, Haberland et al. developed a generic framework for extracting design princi-
ples from observed biological systems [94,95] . Using the biological observations, a non-
dimensionalized design space is populated with principles and then sampled. Optimal
control is then used to test whether the principle is valid for the given design space.

In [96], an optimization and associated objective function were developed using a single
design parameter, the spring constant between the model’s legs, to optimize the design
parameters and generate gait. The system is then controlled using trajectory tracking by
reducing the biped to a 1 DOF system using hybrid zero dynamics [99].

Another framework [97] used simulation to co-optimize the control and design of bipeds.
Comparing this to the original methods found in [92,93], the key differences are the addition
of full 2D and 3D dynamics in a simulated environment and the possibility of non-periodic
gait. Building on this approach, [98] fixed the robot’s dynamic parameters and optimized
the spring constants and trajectories (state and input) to design compliant gait trajectories
for bipeds. In this thesis, a passive rotational joint will also be used in place of the stance
ankle and the instantaneous dynamics of stepping will be ignored, as proposed in [98].

The above works all use a controller, either pre-existing or co-optimized, as part of the
formulation of their dynamic parameter optimization. Therefore, the mechanisms which
are found are optimized only for the given controller. The objective functions of these
optimizations are also all based on the cost of transport, with several using torque norms
for comparison. These measures are both dependent on the trajectory and controller used.

Although this approach has shown successful results, it limits the prospective applica-
tions of the biped to those which were conceived as part of the optimization and can suffer
from overfitting (to the controller, trajectory, or both). It also assumes that a controller
must be developed (or at least parameterized) either prior to or as part of the overall
parameterization of the biped.

This limits these methods to a specific controller, or subset of controllers, which prevents
general applicability of the biped itself for other use cases. To avoid these issues, some
researchers have focused on how to quantify a mechanism’s inherent balancing capabilities,
or how to modify the mechanism to improve these capabilities, without depending on (and
potentially overfitting to) a particular controller and/or trajectory formulation.

Building on earlier work (]21,22]), Azad et al. proposed a formulation of dynamic COM
manipulability in [23] which defines a system’s physical COM acceleration limits as an
ellipsoid. Dynamic COM manipulability has also been successfully to optimize a postural
task for the iCub robot as part of the CoDyCo project [100].
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However, dynamic COM manipulability depends on the specification of a weighting
matrix for normalization and the ellipsoid that is generated must be projected into lower
dimensions to be used for balance. Further work analyzing the impact of the weighting
matrices on the dynamic manipulability of these systems has recently been published [24].

An alternative metric was proposed by Featherstone in [25] and extended in [26,27]: A
set of linear and angular dynamic ratios he called velocity gains, which quantify how effec-
tively an articulated system balancing on a passive contact can move its COM. These gains
are independent of the control scheme used, as they are functions only of the properties and
configuration of the mechanism, and provide an upper bound on how well any controller
could balance the given system!. These gains have also been used in the development of
effective planar balance controllers [101-103].

The gains are invariant to a scaling of the total mass of the system, and the angular
velocity gain is also invariant to a scaling of total length, allowing the balancing capabilities
of an entire class of mechanisms to be quantified with a single metric [27].

2.4.1 Velocity Gains

Linear velocity gain [27] is defined as a ratio of the change in horizontal COM velocity
relative to an impulsive change in the velocity of the model’s actuated joint(s), assuming
a single passive (rolling or point) contact with the environment.

Similarly, angular velocity gain [27] is defined as a ratio of the change in angular COM
velocity about the (instantaneous, if rolling) contact point relative to an impulsive change
in the velocity of the model’s actuated joint(s).

For 3D models, the linear velocity gain G, includes both horizontal directions of motion,
while the angular velocity gain G, includes all 3 rotations® about the contact point:

(2.11)

where € = [z¢ yo 20| is a vector from the contact point to the COM (see Figure 2.7a) with
length |@| = ||€ ||z, the change in COM velocity is Ate = [Aie Ao Aze]’, the change in

In this context, balance is assumed to be primarily a function of COM motion (i.e., to move the COM
above the support polygon). Angular momentum about the COM is assumed to be regulated.

2Although the C_fw component about the vertical axis does not contribute to balance, it was included in
the original definition of G, along with a brief discussion of how it could be used in spinning motions [27].
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Figure 2.7: In general, ¢ = [z¢ yo zC]T is a vector from the contact point to the COM and the angles

5 = [¢z ¢y ¢Z]T are measured from the reference frame to ¢. For 2D, we assume gravity acts in the —y
direction and z¢ = 0, which means ¢, =0 and ¢, = 7/2.

angular COM velocity about the contact point is Ag = [Ad, Agby NG, = (€ x ATe) /2,
and the change in actuated joint velocity is Ag,. Note that in these equations, it is
assumed that Aq, is a unit velocity step (i.e., ||Aq,|| = 1) [27]. Both gains are divided by
the velocity step magnitude, which gives G, units of length and makes G., dimensionless.

For a planar model, we assume that gravity acts in the —g direction and set zo = 0,
resulting in ¢ = [0 7/2 ¢.]" (see Figure 2.7b). Using this to simplify Equation (2.11), we
can extract the scalar velocity gains defined in [27]: G,(Aq,) = Aic and G, (Aq,) = Ag,.

Three methods of calculating the velocity gains are given in [27]: Direct, COM Jacobian,
and Augmented Inertia Matrix. When using the Augmented Inertia Matrix method, virtual
immobile prismatic joints (labeled 0 = {z,y, z}) are inserted between the passive contact
and the inertial reference frame.

The impulsive equations, with 3 virtual prismatic joints (labeled 0), 3 passive rotational
joints (labeled p) at the contact, and the actuated joints (labeled a), are therefore:

H,, H,, Hy, 0 Lo
H,Aq/ = HpD pr Hpa qu =10 (212)
HaO Hap Haa Aq

a La

where 7y and ¢, are virtual joint and actuated joint impulses, respectively, and H' is the
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Augmented Joint Space Inertia Matrix®. This enables the direct calculation of A% since
the virtual impulse 1y = mAve, where m is the total mass [27].

Since H,, is a 3x3 symmetric positive definite matrix, we can use the middle row to
get Ag, = —H&}HpaAqa as discussed in [27], and the equation for AU becomes:

.1 - .
Aiic = — (Hoa — Hy,H,'H,,)Aq, (2.13)

In 2D, with one passive contact joint (p = {1}), Hp, is scalar and H ' = H'=1/Hy.

In any given configuration, the matrix H’ and vector ¢ are fixed. Since the velocity
gain equations are linear with respect to Agq,, we can define a pair of gain matrices, G,
and G, such that G,(Aq,) = G,.Aq, and G,(Aq,) = Gu.Ag, [27).

These gain matrices are defined as:

1 [Hx - prHm}Hpa] I

G, = — e, = H, - H,,H_ 'H,, 2.14
Hya - Hyszgaala ( " v ) ( )

=12

m m|c]|

where ¢ represents the 3x3 skew symmetric matrix.

For 2D systems, the (horizontal) gain vectors from [27] can be extracted from these
general gain matrices: the first row of G, is the linear velocity gain vector, and the third
(final) row of G, is the angular gain vector.

Since the only restriction placed on Agq, for these gains is that ||Aq,|| = 1, the relative
values of its elements can be selected to achieve a desired system behavior. As an example,
to use a specific joint for balance, the Ag, element for that joint can be set to 1 and all
other elements can be set to 0.

2.4.2 2-Link Planar Momentum Gains

A 2-link planar inverted pendulum, the simplest balancing mechanism, has only one
actuated joint (a = {2}) so its scalar velocity gains can be directly defined as ratios [27]:

_ Adg A,

Gy = — = —
Ag, Aq,

G,

(2.15)

Featherstone also defined momentum gains for the 2-link planar model [27]:

3The standard Joint Space Inertia Matrix, H, that was defined in Section 2.1.1 is the remaining lower
right submatrix of H' after all of the elements of H’ with a 0 in either subscript have been removed. In
other words, H is the 2 x 2 block matrix consisting of H,,, Hp,, H,p,, and Hg,.
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e Linear momentum gain (G,,) is a measure of the change in horizontal linear COM
momentum due to an impulse at the actuated joint:
mAz Aq
Gm = < =Mmby 12

L2 %)

(2.16)

e Angular momentum gain (G,) is a measure of the change in the moment of momen-
tum of the COM about the contact due to an impulse at the actuated joint:
B mcA¢

Ad
G,=—== mc2Gwﬁ
%) %)

(2.17)

Note that G, is defined using the change in the moment of momentum about the contact
(effectively, the angular momentum about the contact due to COM motion). This is not
the same as the change in total angular momentum about the contact, which is always 0
for a passive rotary joint (which, by definition, cannot apply any torques) [27].

As shown above, momentum gains are directly related to velocity gains. For the 2-link
planar model, they are both strictly positive multiples of their respective velocity gains,
since H is positive definite and Aqgy/1o = Hyp/det(H) [27]. In light of this, Featherstone
concluded that there was no objective reason to use momentum gains.

2.5 Summary

Balance points are an excellent tool for maintaining and regaining balance, as they
are easy to compute, use simplified models, and can generate dynamic footstep locations
online. However, due to the assumptions of the simplified models and a lack of existing
dynamic gait controllers which use these methods, few of the balance point estimators
can be directly used in real world applications. Therefore, a new balance point estimator
which encapsulates and generalizes the existing methods, while reducing or eliminating
their shortcomings, would be a critical asset for dynamic balance and gait control.

There is also a lack of existing research on how to both measure and improve the fun-
damental physical limits of peak balancing performance for a given mechanism. Although
the few approaches that have been developed can handle some situations, a generalized
method is needed to enable these two key outcomes. In light of this, a generalized metric
which can measure how well a given system can balance, for a variety of desired balancing
behaviors, should be developed. Further, to make use of this metric for the purposes of
mechanism design, an optimization framework built on the new metric would be valuable.
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In Chapter 3, the vertical planes used to find the GFPE [14] and the 3D FPE [20] are
compared when used in a push recovery task. The results of this comparison show that
the vertical plane used to find the GFPE is in fact a special case of the 3D FPE plane,
where there is no relative motion or rotation of the robot’s links. The 3D FPE is then
used, along with a continuously updated impact plane, to generate a reference point for
a dynamic balance and gait controller which can produce corrective stepping responses in
real time. However, the performance of this controller is limited due to a lack of a balance
point estimator which includes all of the desirable features discussed in Section 2.2.3.

Chapter 4 describes the development of a novel predictive 3D balance point estimator,
called the Spherical Foot Placement Estimator (SFPE), which extends the FPE [18] and
its existing 3D extensions (the GFPE and 3D FPE [14,20]). This novel estimator has
been developed to address the drawbacks of existing approaches: it is predictive, considers
impact, includes rotational inertia, allows ankle torques and 3D Center of Mass (COM)
motion, does not require flat ground or heuristic parameters, and works for a biped at rest
or in motion. The SFPE is compared to existing estimators using a simple COM feedback
controller, which is then modified to use the SFPE to improve a biped’s dynamic balance.
This results in an augmented optimal controller with both leaning and stepping.

Building on the velocity gains and the planar 2-link momentum gains described in
Sections 2.4.1 and 2.4.2 [27], simplified notation is developed in Chapter 5 to facilitate the
definition of these types of impulsive ratios. Using this notation, the momentum gains are
extended and expanded to general 2D and 3D systems and two methods for calculating
these new general momentum gains are described, along with an additional novel gain
based on Featherstone’s spatial notation which incorporates both the angular and linear
gains. Using this spatial gain and its associated gain matrix, the relationship between the
velocity and momentum gains and the centroidal momentum of a system is discussed.

Bringing all of these definitions together, a generalized gain formulation is then devel-
oped which includes all of the pre-existing and novel gains as special cases and/or subsets.
These generalized gains are then used to define a set of objective functions in a gener-
alized optimization framework. Since the gains are functions only of the configuration
and physical properties of a given system, the framework is therefore able to optimize the
COM motion properties of a mechanism independent of any controller and/or trajectory.
The gains are demonstrated and compared as objective metrics, using this generalized
framework for parameterized mechanism optimization, in Chapter 6.
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Chapter 3

Dynamic Gait: Fall, Catch, Repeat

In this chapter, the 3D FPE [20] is used within a high-level control strategy to achieve
a dynamic gait capable of handling external disturbances. A key benefit of this approach
is that the robot is able to respond in real time to external disturbances, regardless of
whether it is at rest or in motion. This strategy is implemented in simulation to control a
14-DOF lower-body humanoid robot subjected to unknown external forces, both when at
rest and while walking, and shown to generate successful stabilizing stepping actions.

The 3D FPE [20] (see discussion in Section 2.2.2) is used to generate a control reference
to inform both a high-level state machine and its associated task-level trajectory genera-
tor. The task-level trajectories are used as control inputs to a prioritized Jacobian-based
feedback loop [60] and a simple low-level PD joint controller to drive a simulated robot.

The goal of this overall control strategy is to allow the robot to respond directly to
external disturbances by stepping onto the 3D FPE point, either while standing still or
walking. One of the key benefits of this strategy is that recovery from external disturbances
is simply a subset of the elements required for dynamic gait. To walk, the robot needs
only to push itself into an unstable state in the desired direction of motion, then allow the
step-based recovery mechanism to prevent it from falling.

Both [18] and [60] have investigated earlier versions of this form of state-machine-based
control strategy. However, the first deals only with planar bipeds with point feet, while
the second uses a constant plane of motion, requires separate lateral stabilization, and has
very limited discussion of external disturbances. This work uses a continuously updating
plane, similar to [20] and [14], which allows it to respond in 3D to unknown external

L An earlier version of this chapter was previously published in [104].
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disturbances. It also includes dynamic gait generation, unlike [14], and is used directly as
part of a control method, as opposed to a measurement method such as in [20].

The main novelty of this controller is the use of a continuously calculated 3D FPE point
to achieve step-based balance, both while standing and in motion. The 3D FPE has only
been used until now in the biomechanics literature, and no existing work has been done in
3D using a continuously updating FPE plane. The results demonstrate that this approach
is capable of compensating for external, unknown disturbances as part of a gait cycle.

3.1 Formulation

The proposed method of handling recovery from external disturbances, and by extension
dynamic walking, builds on the previous FPE research discussed in Section 2.2.2. Here,
the 3D FPE will be used to generate a control input for a high level state-machine based
controller with online task-level trajectory generation and a prioritized Jacobian-based
feedback loop, as described in Section 3.2. First, this section explains the differences
between the GFPE and 3D FPE, to justify the use of the 3D FPE method in this work.

In [14], the vertical GFPE plane is chosen parallel to ¢, sampled immediately after an
external disturbance. In their formulation, the robot is assumed to be at rest before any
disturbance occurs, and therefore the COM should only move in the direction of ¥c until
action is taken. This assumption, and therefore the plane itself, is reasonably valid if the
robot is standing still when a disturbance takes place, but is less appropriate if the robot
is already moving when disturbed (such as being bumped while walking).

In [20], the vertical 3D FPE plane is chosen to be perpendicular to E(;, the total angular
momentum of the robot taken about the COM ground projection. A system’s centroidal
angular momentum, /ZC, is a product of the average angular velocity, &, and its centroidal
rotational inertia, as shown in equation (2.5). Therefore, by using the angular momentum
calculated about the COG, Eg, the 3D FPE directly takes into account both the linear
velocity of the COM, iz, and its centroidal angular momentum, l;c.

This means that the GFPE plane defined in [14] can be considered a special case of the
3D FPE plane, where none of the links are rotating or moving relative to one another (i.e.,
IZC = 0). Since this special case is only valid when the entire robot is at rest or translating
purely linearly (difficult to achieve in the real world), the plane from the 3D FPE work is
used in the remainder of this chapter. This allows the robot to respond to disturbances
not only in the restricted cases of the GFPE plane, but also when it is already moving.
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Figure 3.1: Image showing the Generalized FPE and 3D FPE planes, as defined in [14] and [20]. The
robot’s right foot (on the left side of the image) has just lifted during walking. The green plane is the 3D
FPE plane, while the red plane is the GFPE plane.

The difference between the two planes is shown in Figure 3.1, just after the robot has
lifted its right foot (on the left, in the figure) while dynamically walking: the 3D FPE
plane has already responded to this change by rotating towards the lifted foot, but the
GFPE plane remains aligned with the current direction of linear translation. Once the
robot starts to fall towards the lifted foot, the GFPE plane approaches the 3D FPE plane,
as the COM velocity rotates to point in that direction.

Once a plane is selected, the centroidal dynamics are projected into the plane to deter-
mine the position of the 3D FPE point. The projection uses a horizontal unit _vector normal
to the plane, 7 = 7i/||7i||, and 77 in the case of the 3D FPE is given by 7 = ke — (kg - k)k,
where k is a vertical unit vector in the direction opposite gravity.

First, the average angular velocity, &, is projected to find the angular velocity of
the model in the plane: w = &¢ - n. Second, the centroidal rotational inertia defined in
equation (2.5), Io, is projected to find the rotational inertia of the model in the plane:
Ic = n - Ic - n. Third, the linear velocity of the COM, v¢, is projected into the plane
using k to get the vertical speed of the COM, h =0 - 12: and using 4, a horizontal unit
vector parallel to the plane (i.c., & =k x 71), to get its horizontal speed: v = T - G.

Using these planar properties, the angle ¢ between a vertical axis and the line between
the COM and the 3D FPE point can be found using the original 2D FPE angle equation
(2.10). Once the angle ¢ is found, the location of the 3D FPE point F' can be found (using
trigonometry) as: F' = G + htan(e).
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This balance point is used as a reference position for the high-level state machine and
the task-level trajectory generation algorithms described in the next section. More details
on the development of the 2D FPE and the 3D FPE extension can be found in [18] and [20].

3.2 Gait Controller

A gait controller is defined in this section which enables a biped to recover from external
disturbances, both at rest and while walking, using the 2D gait controller from [18] as a
starting point. Although a 3D extension of the original controller was made in [60], it used
a constant FPE plane in the desired direction of motion, requiring the use of ZMP-based
stable gait generation for the majority of the gait cycle to compensate for the out-of-plane
3D dynamics. The existing controller was augmented to improve the walking performance,
both by defining functions at a higher level and including states for leaning forward (to
instigate walking) and settling the feet on the ground.

Online Prioritized
State | _ rajectory —» Jacobian —» . "D » Robot
Machine ! Control
Generation Control
A A A A
3DFPE _ Kinematics | _
Calculation | & Dynamics |

Figure 3.2: Diagram of the high-level controller.

The high-level controller (shown in Figure 3.2) is built around the use of a symmetric
state-machine which defines the high level state of the robot at any particular time, as
shown in Figure 3.3. A key feature of the controller is that recovery from external distur-
bances while at rest is a direct subset of the functionality required to walk. To walk, the
high-level controller simply needs to cause the robot to move its COM until it begins to fall
in the desired direction of motion, then enter push-recovery mode. It should be noted that
the ground projection of the COM, G, moving outside the robot’s support polygon is only
indirectly related to this mode: If the angular momentum is large enough, the stepping
strategy will kick in before G exits the support polygon.

The state of the system, as determined by this state machine, is used to generate task-
level trajectories, for the COM and both feet, to achieve the objectives of the given state.
These trajectories are generated online, to avoid the need to calculate trajectories a prior:
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Figure 3.3: Diagram of the high-level state machine used in the controller.

and therefore allow maximum flexibility to respond to disturbances. Depending on the
current state, different objectives exist for the desired COM and position and orientation
of each foot. A set of goal positions and orientations are defined, based in part on the
positions and orientations when each state starts. A trajectory is then generated using a
quintic spline, to allow specification of the trajectory’s initial and final derivatives.

To translate between task-level trajectories and the desired joint angles of the robot, a
prioritized Jacobian-based feedback loop is used. This portion of the control method has
been described previously in [60], so will only be briefly introduced here. In each state,
task trajectories are prioritized into high and low categories. The high- and low-priority
Jacobians are then built by stacking the task Jacobians in each priority category.

The overall Jacobian is found by projecting the low-priority Jacobian onto the null space
of the high-priority Jacobian, and this overall Jacobian is inverted to translate between the
task trajectories and desired joint trajectories. Finally, a simple PD control loop is used
to calculate the torques required to move the robot to the desired joint angles.

3.2.1 State Machine

In the original state machine in [18], developed for a simple planar robot, the states
defined joint trajectories directly. These definitions were specific to the particular biped
geometry, and not easily generalizable to other configurations. In [60], the trajectories
were defined in task space, in terms of Cartesian trajectories of the COM and swing foot,
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providing a more general framework for arbitrary DOF legs. However, the trajectories
defined in [60] were specific to the a priori chosen FPE plane and assumed level ground.

In the state machine described below, the states and the transitions have been defined
with a further level of abstraction, to facilitate its use on a broad range of different biped
robots and handle on-line changes to the orientation of the FPE plane. For example, during
either of the ‘Swing’ states, the swinging foot is required to maintain “ground clearance”
instead of “a height of at least h”, to allow for variable terrain in the future.

States and Objectives

Stand: The COM is moved to a set height to maximize its ability to respond to
disturbances, centered between the positions of the two feet. A secondary objective
is to maintain full ground contact with both feet.

Lean: Move the COM at the desired COM velocity (where a velocity of 0 is equivalent
to standing still), while maintaining full ground contact with both feet.

F Push: Move the COP into the opposite foot, by augmenting the desired COM
velocity, and maintain full ground contact with both feet.

F Lift: Lift and rotate the given foot off the ground to achieve the desired ground
clearance, while using remaining joints to maintain the desired COM velocity.

F Swing: Move the given foot horizontally towards a point above the 3D FPE point,
while both maintaining ground clearance of the foot and the desired COM velocity.

F Drop: Lower the given foot onto the 3D FPE-based tracking point, while main-
taining the desired COM velocity. The tracking point is offset from the 3D FPE
point depending on the desired velocity. If the robot is walking, the tracking point is
slightly behind the 3D FPE point, allowing the robot to maintain momentum in the
desired gait direction. If the robot is standing and responding to a disturbance, or
intends to stop walking, the tracking point is slightly in front of the 3D FPE point.

Settle: Maximize the ground contact area of both feet.

Transition Functions

TakeStep(F'): Checks if the given foot should take a step. The function is active if
the 3D FPE point is further from the given foot than the opposite foot.
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e COPInFoot(F): Checks if the Center of Pressure is within the given foot. The func-
tion is active once the COP is at least a set distance within the foot’s perimeter.

o ClearOfGround(F): Checks if the given foot is clear of the ground. The function is
active if the entire foot contact surface is a suitable distance away from the ground.

e AtFPE(F): Checks if the given foot has reached the 3D FPE point. The function is
active if the given foot is within a set horizontal distance of the 3D FPE point.

o GroundContact(F): Checks if the given foot has touched the ground. The function
is active if the foot’s contact surface has touched the ground’s contact surface.

e FullContact: Checks if both feet are in full contact with the ground. The function is
active when both feet are flat on the ground.

o Walking: Checks if there is a desired COM velocity. If so, the function is active.

3.3 Results

The dynamic gait controller discussed in Subsection 3.2 was verified in simulation using
a custom 14 DOF lower body humanoid (70cm tall, approx. 30kg) developed at the
University of Waterloo [105]. The robot has 7 DOF in each leg, 3 at the hip, one at
the knee, and 3 at the ankle. The CAD drawings of the robot were used to generate a
SimMechanics dynamic model, including both the inertial and motor dynamics [106].

Various simulations were carried out where internal (walking) and external (pushes)
disturbances were introduced, and the biped used the proposed controller to regain stability.
These simulations consist of three classes of disturbance: being pushed while standing still,
dynamic walking without external disturbances, and being pushed while walking. In all of
these simulations, the robot was initialized to begin the simulation in a static staggered
stance, with the robot’s left foot forward and both feet flat on the ground.

The first simulation was used to verify that the controller was acting as expected in the
presence of an external disturbance while the robot was stationary. A simulated force of
150 N was applied to the center of the torso in a direction out of the page for 0.1 seconds.
The series of images in Figure 3.4 show the progression of the simulation at the transitions
between the various states in the controller’s state machine. At the end of the simulation,
the robot is stationary with both feet on the ground.
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(a) Initial Pose  (b) After Push state (c) After Lift state (d) After Swing state (e) In Stand state

Figure 3.4: Simulation results when the robot is pushed from behind on the center of the torso with a
force of 150 N for 0.1 seconds. The dark blue circle indicates the location of the disturbance force, the
orientation is perpendicular to the plane shown, out of the page.
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(a) Initial Pose  (b) After Lean/Push (c) After Lift (d) After Swing (e) In Stand

Figure 3.5: Simulation results when the robot walks by leaning until it starts falling, then recovering.

The second simulation included a desired COM velocity, representing a desired speed
and direction to walk. In this simulation, the robot is statically stable until it reaches the
Swing state, as the Lift state is augmented to move the swinging foot in the direction of
desired motion before switching to the Swing state. A series of images, in Figure 3.5, show
the simulation at the transition points between states for one step of the walking cycle.
The gait is such that the robot is statically stable at the end of each step in the cycle.

In the final set of simulations, the robot was subjected to external disturbances from
various angles while dynamically walking using the strategy from the second simulation.
For these simulations, the disturbance lasted for 0.1 seconds and acted on the center of the
torso. The external force was applied during the Swing state, to demonstrate the robot is
capable of responding to disturbances while in the dynamic portion of its walk cycle. The
landing positions of the swinging foot in each of the various scenarios are shown in Figure
3.6, along with the foot paths from the point they start to differ.

In Figures 3.7a and 3.7b, the X and Y trajectories of the 3D FPE point in the three
different push-while-walking scenarios are compared to the trajectory of the 3D FPE point
in the normal walking scenario. Since the 3D FPE point is located on the ground, and the
ground is assumed to be flat, the Z component is left out of the comparisons.
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Figure 3.6: Landing positions of the swing foot in each of the four walking scenarios: normal walking
(Walk), and being pushed in the X, Y, and XY directions while walking (* Push). The foot paths leading
up to and after being pushed are also shown.

It is apparent from these graphs that at the time of the push (2 s), the 3D FPE
point’s location starts to diverge, depending on the different forces applied. As can be seen
from the final robot poses in Figures 3.4 and 3.5, the controller performs very well in all
applied scenarios. All of the final poses are statically stable, and in the case of the walking
simulations the robot moves on to begin a step with the opposing foot.

In the specific implementation of the controller used in the simulations above, the Push
and Lean states were combined to allow the robot to both move in the desired direction of
motion and shift its COP into the chosen stance foot in parallel. This may have affected the
timing of the initial states while walking, but since these states are during statically stable
double support sections of the gait, this would not have affected the overall performance.

3.3.1 Discussion

Some potential issues with the current state machine used in the controller are:

e If both feet are an equal distance from the 3D FPE point, the chosen swing foot
depends on the order of transition evaluation.
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Figure 3.7: Comparison of the 3D FPE point trajectories for the four different walking scenarios (X on top,
Y on bottom). The Swing state starts at 1.94 s, ending the initial oscillations caused by lifting the swing
foot, while swinging the foot causes the smaller oscillations leading up to the push starting at 2 s. During
the push, more oscillations are seen as the swinging foot causes directional changes in Eg. Following the
push, the robot enters the Drop state at different times in each scenario. Switching from Swing to Drop is
the cause of the large oscillations between 2.1 and 2.25 seconds, when the controller switches from global
to local reference frames to facilitate contact dynamics with the dropping foot. Note that although the
3D FPE point oscillates frequently due to changes in the direction of I;G, these oscillations are filtered out
before the balance point is used in the controller.
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e If the robot is pushed in the F Lift or F Swing states, the wrong foot may be in
the air. However, the continuous calculation of the 3D FPE point should allow the
controller to adapt to many of these disturbances. For example, if the robot is pushed
from the side opposite to the lifted foot, the raised foot will attempt to track the new
3D FPE point. If it is unable to do so, then it will make contact with the ground
and a new round of push recovery will begin with the other foot.

e [f the robot is pushed away from the 3D FPE point in the F' Drop state, it is possible
that the robot will fall. A possible solution is adding a transition to detect this and
using it to switch back to the F' Swing state.

3.4 Summary

This chapter outlined an approach for dynamic gait generation and control, capable of
responding to unknown disturbances, using the 3D FPE balance point estimator to find a
point at which to step to regain balance after a disturbance. This target stepping location
is re-computed at each timestep, allowing the robot to adapt to disturbances on-line.

A simple state machine is used to generate a full gait cycle; the robot initiates lifting of
the swing leg either when forward progress is desired or when a disturbance is observed, and
tracks the target foot placement location to determine the swing leg placement. The pro-
posed approach was tested in simulation and shown to generate stabilizing foot placements
to disturbances from arbitrary directions, both while standing still and in motion.

Although the 3D FPE is useful for finding an instantaneous footstep location, a pre-
dicted future footstep location and the time available to swing the foot would improve
the performance of this system. The heuristic approach developed in the state machine, to
determine how to shift the COP into the desired stance foot, and then move the swing foot,
would also benefit from a predictive balance point estimator. Finally, the use of switching
prioritized Jacobians for controlling the robot results in control disturbances and oscilla-
tions each time the prioritization is switched, leading to a desire for a more robust method
of controlling the robot as a whole.

A predictive balance point estimator is introduced in the next chapter which solves some
of the issues with the 3D FPE. Along with an optimization-based whole body controller,
it enables smooth transitions between motions.
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Chapter 4

Spherical Foot Placement Estimator

In Chapter 3, the existing 3D formulations of the FPE [18], the GFPE [14] and 3D
FPE [20], were compared and the 3D FPE point was chosen as a decision variable and to
generate desired stepping locations online. When using the 3D FPE, the full 3D dynamics
of a biped are projected into the assumed 3D FPE impact plane, to determine the planar
inertia and an average angular velocity.

As shown in the previous chapter, although the 3D FPE can be used as the foundation
of a reasonably successful leaning and stepping strategy, there are several issues with this
approach. In this chapter, a novel balance point estimator is introduced which projects
a biped’s full 3D dynamics into a vertical plane containing the COM and a fixed anchor
point, a predicted vertical impact plane, and a horizontal plane.

The formulation of this new balance point estimator has many desirable features (e.g.,
those in Table 2.1): it is predictive, considers impact, includes rotational inertia, allows
ankle torques and 3D COM motion, does not require flat ground or heuristic parameters,
and works for a biped at rest or in motion. It also provides recovery step location prediction
and momentum objectives with smooth dynamics.

This novel balance point estimator is called the Spherical Foot Placement Estima-
tor (SFPE), as it uses spherical coordinates to extend the original (planar) Foot Place-
ment Estimator (FPE) found in [18] and its existing 3D extensions: the Generalized FPE
(GFPE) [14] and 3D FPE [20]. The SFPE has been developed to address the drawbacks
of existing balance point estimators, and can be used to determine if a biped is going to
lose its balance, how to compensate, and where to step if a step is needed.

L An earlier version of this chapter was previously published in [107].
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(a) Diagram of the SFPE’s 3D rimless (b) Diagram of the spherical coordinates used
spoked wheel model. for the SFPE.

Figure 4.1: Diagrams of the SFPE model and coordinates. The model in (a) shows that the COM, C, is
used as the attachment point of two legs with point feet. Note that the model used here includes a 3D
rotational inertia about C, labeled Ic. In (b), the spherical coordinates centered at the anchor point, A,
are used to describe the motion of the COM, C. Note that 6 is always measured in a vertical plane which
contains both C' and A and the distance between C' and A, the leg length [, is assumed to be constant.

4.1 Formulation

Similar to the GFPE [14], the SFPE uses a rimless wheel model, with two fixed length
legs attached at the COM, C, and a leg separation of 2« (see Figure 4.1a). It is assumed
that only one of the model’s point feet is in contact with the ground at any given time,
allowing them to be labeled based on the state of the model: Ay, the current anchor foot
(on the ground), and A,, the future anchor foot. When a step is taken, A, is assumed to
land on the ground without slipping or bouncing at the same instant as Ay lifts off the
ground, causing the status (and therefore labels) of the feet to switch instantaneously.

By assuming a fixed leg length between C and each anchor point, the motion of C' can
be described by a series of piecewise rotations about successive anchor points, replacing
the common assumption of planar motion of the COM. This assumption produces a more
realistic COM path, as typically the COM of a biped follows smoothed inverted pendular
curves in 3D, not motion in successive (approximately horizontal) planes [108].
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Thanks to this assumption of purely spherical motion of C during each step, spherical
coordinates centered at each successive anchor point are used to define the model’s dynam-
ics in terms of three variables (see Figure 4.1b): the angle between the leg and the vertical
axis, 0; its derivative, w = 9; and the angular velocity of C about the same vertical axis,
~v. We assume no rotation about the stance leg axis.

These variables define the motion of the COM of the simplified model about the given
anchor point, based on the linear velocity of the COM of the full multibody system. The
simplified model includes only a single rigid body with its COM at the COM of the full
system, which is constrained to spherical rotation about the anchor point.

Unlike the GFPE, the model used in this chapter moves in 3D and includes rotational
inertia about the COM, labeled I. This rotational inertia is the rotational submatrix
of the biped’s centroidal inertia matrix (the Composite Rigid Body matrix for the biped
evaluated at the COM [10]). Multiplying the inverse of the centroidal inertia matrix by
the centroidal momentum of the biped, the system’s COM velocity v and average angular
velocity We can also be calculated [10].

For the purposes of generating a predictive balance point, we select a pair of planes
(one vertical and one horizontal) which approximate the motion of the 3D model. The
planar inertia of the simple model in both of these planes is estimated using the I matrix
(similar to the projection used to generate the 3D FPE in [20] and Chapter 3).

The height of the horizontal plane and the location and rotation of the vertical plane
require the definition of an appropriate anchor point for the simplified model. For the
SFPE, the anchor point Ay is chosen to represent the location of maximum effectiveness
for the Centroidal Moment Pivot point (CMP), as shown in Figure 4.2.

As discussed in [11], the dynamics of the Divergent Component of Motion (DCM) can
be controlled using the CMP, as the DCM always moves directly away from the CMP.
Therefore, placing the CMP on the edge of a biped’s convex support polygon (SP) in the
direction of ¥z will produce maximum deceleration of the COM (if the DCM is above the
SP). Similiarly, as described in [15], once the instantaneous Capture Point (ICP) has exited
a biped’s SP, maintaining the CMP as close as possible to the ICP is found to minimize
the number of steps required to recover.

Unlike the COP or projected COP, which is used in the GFPE and may be discon-
tinuous, this choice of anchor point will vary smoothly with changes in C and Uo, and is
more likely to be the point around which C will be purely rotating once a step is needed.
When a step is required, this anchor point also provides the ability to correct for small
disturbances (internal or external) without affecting the predicted SFPE point (assuming
the stance foot is fixed), by moving the COP around within the support polygon.
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Figure 4.2: Illustrations of how to select the anchor point location, 1210. When the DCM, é , is above the
biped’s convex support polygon (SP), Ay is chosen as the (furthest) intersection of the perimeter of the
SP with a ground-projected vector from C through f , as shown in (a). If é is not above the biped’s SP,
Ay is chosen as the point on the edge of the SP closest to the ground projection of é, as shown in (b).

In the development of the SFPE, several specific instants in the progression of the
simplified model’s state (z = [0 w 7]) are used, and are labeled with the following subscripts:

0 The current state of the model,

— Just before the landing foot impacts the ground,

+ Just after the landing foot impacts the ground, and

x The final state of the model

As shown in Figure 4.3, there are several possible state transitions when using the
SEFPE. If a step is not required, an SFPE point is defined within the biped’s SP which can
be used to predict COM motion (as discussed in Section 4.1.1). Otherwise, finding the
SFPE point requires a set of equations which relate the current state of the biped (zg) to
its final state (z.), which are separated into three categories:

e Pre-impact equations, relating xy to x_;

e Impact equations, relating x_ to z; and

e Post-impact equations, relating x, to x,.

These three sets of equations are defined in Sections 4.1.2 to 4.1.4, using conservation

of energy and/or momentum, as appropriate. The SFPE point S is then found as the point
which satisfies these equations and results in the desired final state. In these examples,

A N

this desired final state is when the COM (C) is at rest above the SFPE point (.5).

93



A N

Ey > mgly v Impact Ey =F,
. . — —_—
A, A L g A, A,

No Impact
s

s
*

I
(O]

Ao

2
Ey < mgly
—_
Ag

Figure 4.3: Illustration of the possible state transitions of the SFPE model. The top row illustrates the
case where the initial energy is high enough to overcome the potential energy well created by the rigid
leg, requiring a step. In this case, the legs are assumed to be equal in length and a balance point, S , is
determined which, when stepped on by a swinging foot, will result in C stopping above S. If the energy is
not high enough to require a step, the bottom row of state transitions applies. In this case, the swinging
leg length is [, = Ey/mg and therefore is only equal to ly when Ey = mgly.

4.1.1 Core Equations

The rotational inertia of the model is estimated for the two planes introduced above,
where I and I/ are defined as the scalar projections of I onto vectors normal to the ver-
tical w and horizontal v planes, respectively. Using these definitions, the angular momenta
estimates about A (normal to the two planes) are

E(w) = (Ig + mlP)w = [w (4.1)
EY(0,v) = (I% + mi*sin®(0))y = 17 (0)y (4.2)
The estimated kinetic energy 7'(6,w,y) = T%(w) +17(0, ) can therefore be written as

1 1 k)2 k)2
T:_IwWQ_{__I'y,yQ:( ) ‘l‘( )

4.3
2 2 21% 20 (43)
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Writing the potential energy as U () = mgl cos 6, we can then write the system’s total
estimated energy as
E(0,w,7) =T"(w) +17(0,7) + U(V) (4.4)

If C' is above the support polygon, then there is the possibility that a given disturbance
doesn’t require the biped to step, but simply to shift its CMP. If the current estimated
energy of the model, Fy, is no more than the maximum potential energy (Ey < mgly),
then no step is required (assuming full control over the CMP) [109].

In this case, the balance point S is defined as the closest point the COM ground
projection G will reach, relative to the edge of the SP, if the CMP is held at Ag. This
is found by setting the final leg length [, to the maximum height C will reach above Ay,
l. = Ey/mg, and applying trigonometry to determine the distance d,,;, from G to Ay at
that height (using the constant leg length Iy between C and /10). S is the point between
the current G and A, which is d, ., away from Ao (see the bottom row of Figure 4.3).

If a step is required (i.e., Ey > mgly), then the three sets of impact equations are
required to determine where to step to achieve the desired final state. To simplify these
equations, it is assumed that the model’s pre- and post-impact leg lengths are equal (ly =
l. = 1) and therefore that all of the above equations can be used at all instants in question.

As was done in the original FPE method (and its extensions), at each time step the
current 3D inertia of the multibody system is used to estimate the planar inertia(s) of the
simplified model. For the SFPE, this means the planar inertia estimates about the axes
normal to the two planes of motion (I& and I/)) are assumed to be constant at the three
critical instants for prediction purposes. The predicted location of the SFPE balance point
is recalculated at each time step using the current inertial and dynamic properties of the
multibody system, instead of making one prediction just after the disturbance.

4.1.2 Pre-Impact Equations

Pre-impact equations enable prediction of where the biped will need to step at some
point in the future to recover its balance, by defining z_ in terms of the current state, .

In [18] and [20], it was assumed that a foot could be instantaneously placed anywhere on
the ground, and therefore that xy = x_. In [14] and [16], conservation of energy was used
to determine the pre-impact equations, although they assumed vertical planar rotation
about the COP (or its projection) and ignored the biped’s rotational inertia.

The assumption of spherical motion about Ay leads to a formulation using conservation
of energy and conservation of angular momentum to determine the pre-impact state, z_.
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Since gravity cannot create a torque about a vertical axis and no active torque is
applied about the vertical axis, k7 around that axis is a conserved quantity. Based on this,
the angular momentum around the vertical axis at Ay prior to impact is assumed to be
constant: kj = k7.

Defining T7, = (kg)*/212, we can rewrite T7(0_) as
(K1) _ (ky)* _ T¢

-2 200m- - (45)

where n(0) = 1+ (mi?/1})sin® 6 and n_ = n(6_).

Conservation of energy is used as the basis of the pre-impact equations by setting the
pre-impact energy equal to the current energy (i.e., Ey = E_). We assume that the values
of I and 1, in their respective planes, will have the same value at impact as their current
values, and that all current values (those with subscript 0) are known. The only remaining
unknowns in the pre-impact equation are the impact angle #_ and its derivative w_.

This leads to an equation for 7% in terms of 6_, known values Ej, and T/, and constants:
e
n(6-)

T = By — —U6) (4.6)

4.1.3 Impact Equations

Due to the loss of energy during impact, conservation of angular momentum is used
to generate the impact equations to relate the pre-impact kinetic energy, 7, to the post-
impact kinetic energy, T'y. The constants used to generate the pre-impact equations are
also assumed to remain constant across impact, since there is effectively no change in the
model’s dynamics other than an instantaneous change in velocity.

The vertical plane in which impact will occur is assumed to currently include both Ay
and the DCM f (and, of course, the SFPE balance point S) but not necessarily C, as
shown in Figure 4.4. This ensures that S is calculated relative to where C' is heading, as
opposed to its current location, as the COM is attracted towards the DCM according to
¢ = C' + biig, where b is the time constant of the DCM dynamics [11].

Note that the impact and post-impact equations are being calculated before the future
anchor foot lands (i.e., as part of a prediction), so the predicted landing foot location
maintains its label (A ) In the vertical impact plane, the angular momentum around A,
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Figure 4.4: Illustrations showing a bird’s eye view of the vertical plane of impact and the points C, AO,
S, and the DCM f It is clear that although C is not currently in the impact plane defined by Ay and 5 ,
that it will be located in the plane (or very close to it) once impact occurs.

just after impact will be kY. However, since the model is assumed to be purely rotating

about Ag just prior to impact and about A, just after impact, kY # k%.

To relate k¢ to k¥, the standard FPE equations for conservation of angular momentum
at impact are used [18]. As shown in Figure 4.5, due to the geometry of the model the
equality vy = cos(2a))v_ = cos(2a)lw_ holds, so k¥ can be written in terms of w_ as

kS = Igw_ +milvy = (I¢ + mi® cos(2a)) w_ (4.7)

This leads to the dimensionless impact ratio ((«) relating the pre- and post-impact
angular momenta in the w plane:

kY (IE + mi? cos(2a) Jw-

4.8
¢= = I°w_ (48)
Therefore, T% can be written in terms of 7% as:
(k9)* _ (Ch®)*
w pr— = = w 4.
I 21% 21% CI= (4.9)

Using a similar method, the dimensionless inertia ratio 1(f_,60,) can be written as
(using d(6) = [ sin 0):
kL (& —mdyd_)y-

T i (4.10)
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Figure 4.5: Tllustration of relationship between various angles and points in the impact plane at the moment
of impact (assuming Cis in plane during impact). Since the leg length is assumed constant, the distance
from Ag to C is equal to the distance from A, to C. Note that v_ is perpendicular to C' Ay, while vy is
perpendicular to C'A,.

Combining this with the assumption of conservation of angular momentum about the
axis normal to the horizontal plane leading up to impact (i.e., k] = k) enables us to write
T as:

+

= =1 (4.11
217 210m+ T+ )

4.1.4 Post-Impact Equations

After impact, conservation of energy can again be applied by assuming that the model
remains in a fixed configuration and that the desired final angle 6, and final angular velocity
w, are known. This builds on the assumptions that the model is in pure rotation about 121*
after impact, and that the model’s fixed parameters ([, I¢, etc) remain constant.

Based on these assumptions, the model’s post-impact equations can be determined in
the same way as the pre-impact equations. Conservation of angular momentum about the
axis normal to the horizontal plane can be used again to define the equality k] = k7. Using
the pre- and post-impact conservation of k7 and the inertia ratio 1), we can then write T
- () (R LT

T — * _ 0 — ¢2_C
VAT TUN R

(4.12)
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which, along with the desired values of 6, and w,, allows us to calculate the final estimated
energy B, =T¢ + 1) + U..

This leads to the post-impact equation, very similar to the pre-impact equation (4.6),
for T in terms of only 6_, 6, known values E, and T/, and constants:

T'Y

Ty = B = 07(0-,0)

—U(0.) (4.13)

By combining the pre- and post-impact equations (4.6) and (4.13) with the ratios ¢
and 1, the following energy-based SFPE equation in terms of «, 6_, and 6, is produced:

E*—wQT U, = (E —ﬂ—U_) (4.14)
N+ n

To determine the location of S, the §_ and 6, values must be redefined to allow this
equation to be in terms of one common angle. As shown in Figure 4.5, these angles can be
defined as §_ = a — 8 and 0, = a + (3, where (3 is the angle between S and a horizontal
plane, measured at Ay. For a horizontal planar ground surface, it is easy to show that
£ = 0 at all instants, and therefore that 6 =6, = a.

For a planar, but not necessarily horizontal, ground surface, 5 can be easily determined
based on the impact plane and the value of . To determine the angle § for intersecting
planar ground surfaces, the methods discussed in [14] can be used to define § as a function
of @ and the surface slopes. In general, it is assumed [ can be defined as a function of «,
leading to an equation whose only variable is a.

Solving the SFPE equation for a and applying trigonometry in the impact plane gives
the location of S the SFPE balance point, with respect to the current anchor point Ap.

In general, we assume that the final desired state consists of the COM (C) held directly
above the final anchor point (A,), by setting 6, = 0 and w, = 0. Based on this assumed

final state, the final estimated energy F, is the sum of the final potential energy, U, = mgl,
and the final kinetic energy, T, = T = ¢*T}..

Although the SFPE was developed with this specific final state in mind, an alternative
final state only requires modifications to the values of 0, and w,. For example, a final state
which includes a desired velocity for the COM (e.g., for gait generation purposes) requires
setting w, # 0, and would likely require 6, # 0 as well. See [18] and Chapter 3 for examples
of the application of the FPE and its extensions for the generation of bipedal gait.
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Figure 4.6: System dlagrams for the COM-based and SFPE-based control systems. The labelled signals
are: T for torque, vg for COM velocity, lc for linear momentum, G for the ground projection of C S
for the SFPE balance point, gpose for postural joint angles, L( ) and R( ) for the foot trajectories, and x
for the state of the full bipedal robot (joint angles and 6-DOF floating base). Dots over a variable signify
a derivative, a bar over a variable signifies a desired value, and a A in front of a variable signifies an
error. In both of these systems, the optimal controller from [112] is augmented with a linear momentum
input, which is calculated using a proportional gain (K = 5) on an error term. As shown in (a), for the
comparisons in Figure 4.7 the COM ground projection error was used. For the comparisons in Figure 4.8,
the controller in (b) was used, where the SFPE error was used to generate the linear momentum reference
and an SFPE-based stepping controller was included.

4.2 Comparison

To clearly show the differences between the SFPE and existing balance point estimators,
a simulation of Boston Dynamics’ Atlas robot [110] in the MATLAB toolbox Drake [111]
was subjected to initial instantaneous velocity disturbances. These initial velocities are
similar to the disturbances used in [16] to compare two balance points and the instantaneous
velocity changes applied as disturbances in [11]. The optimal controller from [112] (the
default Atlas controller in Drake) was slightly modified to take a desired linear momentum
as an additional control reference, to be tracked using PD gains on the linear momentum
error (see Figure 4.6a).

The SFPE is formulated to handle piecewise flat ground, similar to the GFPE. However,
the results in this chapter have been generated for flat ground, by setting 5 = 0 everywhere.
Also, the upper body joints (back, arms, neck) were held static, to allow fair comparisons
between criteria that assume a point mass at the COM and those with rotational inertia.

The desired linear momentum of the COM was set in the same way as in [8-10],
with damping on the COM velocity and the desired COM set to the center of the single
supporting foot. The SFPE point and other balance points are calculated and graphed
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Figure 4.7: Comparison between the SFPE and other balance points for an Atlas robot [110] when the pelvis
is subjected to initial velocity disturbances in the X direction. The values of the velocity disturbances were
chosen to illustrate the differences between the balance points and hold no special significance. Smaller
velocities cause similar patterns to Figure (a), with the COM remaining closer to the foot center, while
larger velocities cause the COM to exit the foot faster. The robot is standing on one foot throughout each
simulation, with the ground projection of the ankle shown by a thin blue line, while dashed blue lines show
the toe (top) and heel (bottom) of the foot. Since the angular momentum and COM velocity are damped,
the 3D FPE point and ICP are approximately equal. Since it has no concept of the support polygon, the
GFPE point sometimes predicts a step is required when the system can recover by leaning. Anytime the
GFPE does not predict a step is required, the GFPE point is not clearly defined. Here we define it using
similar methods as used for the SFPE (see the bottom row of Figure 4.3). In these simulations, the robot
is controlled using the COM-based controller shown in Figure 4.6a. In (a), the COM-based controller
is able to compensate for the disturbance. Since no step is required, the SFPE predicts the location at
which the COM could stop, assuming the COP is used to maximum effect (i.e., placed at /10). Note the
SFPE and GFPE points start outside of the foot in both cases, due mainly to their initial kinetic energy
assumptions being violated right after the initial disturbance. In (b), the COM-based controller is not
able to compensate for the disturbance, and a step is required. Although the SFPE point returns to the
foot temporarily, suggesting that a better controller may be able to avoid stepping, it then leaves the SP
and quickly predicts a stepping location to recover from the given disturbance. Note that in (b) the 3D
FPE point and ICP do not leave the SP until 0.6 s and 0.8 s, respectively, and the GFPE point does not
reliably predict a step is needed until 0.8 s and then stops just before 2 s. Also, due to the SFPE including
rotational inertia, it predicts a larger step is needed than the GFPE, which only considers a point mass.

at each time step.Figure 4.7 illustrates the results and highlights the differences between
the balance points: The ICP is purely a function of the COM kinematics and gravity, and
therefore is not directly influenced by inertia, angular momentum, or any of the internal
system kinematics. The 3D FPE also makes no assumptions about the system’s kinematics,
but includes an impact model, rotational inertia, and angular momentum in addition to
the COM kinematics and gravity.
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This effectively means the 3D FPE is an extended form of the ICP, which includes
the system’s rotational properties and the energy losses due to impact. In these initial
comparisons, due to regulation of angular momentum, the 3D FPE tracks along with the
ICP very consistently, confirming this. In general, it is apparent that the exit of the ICP
or 3D FPE from the support polygon can be used as a good indicator that the biped will
need to take a step in the near future.

However, if a step is required, only the SFPE and GFPE are predictive and can therefore
provide a desired landing location ahead of time for the motion planner to generate a
suitable trajectory for the swing foot. Although a predictive CP was discussed in [16], it
was shown to be a worse step indicator than their predictive FPE-based solution, so was
left out of this comparison. Capture regions [15] are also a predictive extension of the ICP,
but require flat ground and supply a region in which to step based on a minimum step
time instead of a specific location based on COM motion.

As predictive models, the GFPE and SFPE use an anchor point to define the pre-impact
equations of motion, which directly influences their associated balance points. The GFPE
anchor point is at the orthogonal projection of the COP into the vertical plane used for the
GFPE model (described in Section 2.2). This means the GFPE anchor point moves due to
changes in the relative locations of the ICP, COM, or COP, which causes the GFPE point
in Figures 4.7b and 4.8a to falsely predict a step is needed when the biped is balanced.
This is also the cause of the fluctuations in the GFPE in the figures.

The GFPE equations are not clearly defined when the initial energy is lower than the
model’s peak potential energy. In this chapter, we assume this no-step-required GFPE
point is defined similarly to the SFPE when no step is required.

Instead of using the projected COP, the SFPE anchor point moves along the edges of
the stance foot, which is kinematically fixed (barring foot rotation or slipping) and moves
smoothly. Also, when no step is required, an alternative set of equations are defined for its
use as a predictive COM reference signal (see Subsection 4.1.1). During this low energy
portion of motion, the SFPE predicts where the COM will stop, assuming a COP at Ay.
Unlike the 3D FPE or GFPE, which only consider energy in a vertical plane, the SFPE
also takes into consideration the kinetic energy due to motion about a vertical axis, which
causes the model’s kinetic energy to be both smoother and closer to the real kinetic energy.
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Figure 4.8: Comparison between the SFPE and other balance points when the pelvis of an Atlas [110]
is subjected to large initial velocity disturbances in the X direction, and an SFPE-based controller is
used instead of the COM-based controller. Immediately after the disturbances, the SFPE is far from its
desired location (the foot center), which causes the controller to generate a desired COM velocity which
will bring the SFPE back towards its desired location (as shown in 4.6b). Note that other than changing
the method for generating the reference momentum, the conditions of (a) are identical to those in Figure
4.7b, including standing in single support at rest before the disturbance. Again, the SFPE and GFPE
points start outside of the foot due to their initial kinetic energy assumptions being violated right after
the instantaneous velocity disturbance. However, in (b) the SFPE point maintains its position outside the
foot over several time steps, so a step is required. The SFPE point is used as a control reference to place
the raised foot on the ground (as shown at approximately 0.3 s into the simulation, using dashed red lines
for the extents of the right foot and a thin red line for the ground projection of the right ankle). Note that
in this case, the COP immediately moves to the toes of the landed foot, moving the SFPE point (and the
DCM and COM) back towards the desired location at the center of the original support polygon (the left
foot). For larger velocities, a longer step is required but the behavior is qualitatively similar.

4.3 SFPE-Based Controller

As a proof of concept, we demonstrate that the SFPE can be used for both leaning and
stepping using an example of an SFPE-based controller. This controller uses a proportional
gain on the error between the current and desired SFPE points (at each time step) to
generate a desired COM velocity, which is then multiplied by the mass of the robot to
produce a linear centroidal momentum reference (see Figure 4.6b).

If the desired SFPE is set as the ground projection of the desired COM location, the
key difference between this controller and the COM-based controller is the error term used
to generate this linear momentum reference. The new controller uses the error between the
predicted future COM ground projection (i.e., the current SFPE) and the desired COM
ground projection, instead of using the error between the current and desired projections.
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Figure 4.9: Comparison between the linear momentum behavior for the COM- and SFPE-based controllers.
The results in (a) correspond to Figure 4.7b, while those shown in (b) correspond to Figure 4.8a. As shown
here, since the SFPE predicts where G will come to rest if the COP is placed at Ay, it can be used to
preemptively move the COM backwards.

As shown in Figure 4.8, this momentum reference signal enables the robot to respond
to stronger disturbances without losing its balance. The only difference between Figures
4.7b and 4.8a is the formulation of the momentum reference which is provided to the CMM
controller. This is clearly shown in the linear momentum graphs of Figure 4.9, where the
immediate reaction of the SFPE-based controller (Figure 4.6b) allows the biped to remain
balanced, while the delayed reaction of the COM-based controller (Figure 4.6a) does not.

The SFPE controller’s response to a larger disturbance is shown in Figure 4.8b, where
even though the controller reacts immediately, the limitations of balancing solely using the
COP are exceeded and, in the absence of other strategies, a step is needed. When taking
a step, the controller uses the SFPE point as a control reference to help determine where
to place the swinging foot. As shown in Figure 4.8b, the foot is placed to ensure that the
COP can be used to move the SFPE back into the original support polygon.

Note that the robot itself is not constrained to the assumed motion of the simplified
pendulum, and in fact departs significantly from the 3D pendulum motion predicted using
the SFPE’s internal model. Evidence of this is clearly shown at the beginning the graphs
in Figures 4.7 and 4.8, where the SFPE and GFPE points are initially located outside the
foot just after the disturbance due to violations of their kinetic energy assumptions.

Much like the FPE point, the SFPE point serves only as an estimate (albeit a reasonably
good one) of where the full multibody system should step to come to rest. A dual version
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of the SFPE with an anchor point at each of the robot’s ankles and a corresponding
stepping point for each foot was also developed, but was found not to perform as well as
the support-polygon-based SFPE that was used in this chapter.

4.4 Discussion

The SFPE evaluates the current system dynamics in 3D by finding the current cen-
troidal momentum and inertia and the overall energy of the system. It was designed to
address the drawbacks of existing balance point estimators, by incorporating and extending
desirable features of the GFPE, 3D FPE, and other methods discussed in Section 2.2.

Like the GFPE, the SFPE is predictive and can be applied to piecewise planar ground
surfaces. Unlike the GFPE or the predictive estimators in [16], the SFPE also defines a
balance point when it does not predict that a step is required, which can be used for leaning
control. The SFPE also includes knowledge about the support polygon, instead of using
the projected COP anchor point of the GFPE, avoiding false indications that stepping is
required when it is not.

Unlike the more common ICP, FPE, and 3D FPE, the SFPE is predictive, which enables
it to estimate both when a step is required and where to step ahead of time, allowing time
to plan a swing foot trajectory. Although we have previously used the 3D FPE for the
control of a biped in Chapter 3, the predictive nature of the SFPE and its inclusion of
non-flat ground make it the better choice in most cases. This prediction also incorporates
rotation about a vertical axis, which is a novel estimator feature not found in the literature.

The main limitation of the SFPE approach is due to the estimation of the inertia in
the two assumed planes of motion, ignoring any intrinsic rotation of the system about
the COM, coupled inertia terms, or changes in centroidal inertia, and the assumption of
a constant leg length in the simplified model. As discussed in [20], a numerical sensitivy
analysis can be conducted to judge the effects of these assumptions.

The original FPE, on which the SFPE and 3DFPE are based, was found to be insensitive
to changes in leg length, moment of inertia, or overall energy [20]. A direct effect of these
assumptions is the location of the SFPE point being outside of the foot when the system
is subject to a large initial velocity disturbance (as seen in Figures 4.7 and 4.8).

Some insight into the behavior of a biped at impact can be gained by analyzing the
((a) = k% /K inertia ratio of equation (4.8). The equation can be further simplified, using
the trigonometry identity cos(2a) =1 — 2sin? a, to

((a) =1 —2(ml*/I°)sin® o (4.15)
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By assuming a maximum leg separation of 7/2; the range of « is restricted to 0 < a <
7 /4, which leads to the inequality: 0 < 2sin?a < 1. In other words, the angular velocity of
the biped is reduced during impact by the product of the positive inertia ratio, mi/I* < 1,
and a positive scaling factor, 2sin® o < 1. Therefore, 0 < ((a) < 1.

Effectively, this means that for a given biped which can be approximately modeled as
above, the loss of energy at impact is purely a function of the separation angle of the legs,
2. Tt also means that if an impulsive force (or an approximation of one) is generated by
the biped’s stance leg at the moment of impact, which produces an increase in wy equal
to the loss due to impact above, the effects of impact on the biped could be ignored. Since
the effects of impact are routinely assumed to be negligible in many humanoid control
strategies, the equations above could be used to develop a simple controller which might
enforce the validity of the lossless-impact assumption.

Finally, a number of existing controllers can benefit from the SFPE, particularly those
without the capability to generate footsteps online or which do not control momentum.
For example, the optimal controller from [112] (Drake’s default Atlas controller) was aug-
mented with linear momentum feedback using the SFPE (see Figure 4.6b), enabling an
easy combination of their pre-planned movements with online compensation while adding
minor additional complexity.

4.5 Summary

In this chapter, a novel balance point estimator called the Spherical Foot Placement
Estimator has been introduced. It has been formulated to overcome a number of drawbacks
of existing balance point estimators, by combining and extending desirable features of
several different balance points.

The SFPE was compared to other balance point estimators, and was shown to out-
perform them by providing recovery step location prediction and momentum objectives
with smooth dynamics. An SFPE-based feedback loop was used in a momentum-based
controller as an example of how to add leaning to an existing whole-body controller and a
dynamic SFPE-based stepping strategy was used to deal with large disturbances, demon-
strating its utility in bipedal control.

So far in this thesis, several performance metrics related to balancing and stepping
controllers were considered. Specifically, balance point estimators and the points they
generate were applied and compared. In the remaining chapters, performance metrics
related to a system’s physical structure and dynamics will be investigated.
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Chapter 5

Generalized Gains and Optimization

The ability of a biped to balance and walk is impacted by both the physical properties
of the biped and the controller used to achieve the desired behavior(s). Much of the existing
work discussed in Chapter 2, along with the novel research described in Chapters 3 and
4, has focused on developing methods for achieving dynamic gait by using Balance Point
estimators as part of a biped’s controller. However, as discussed in Section 2.4, only limited
research has focused on how to quantify a mechanism’s inherent balancing capabilities, or
how to modify the mechanism to improve these capabilities.

For legged systems, achieving balance and locomotion depends on the system’s capabil-
ity to effectively and efficiently move its Center of Mass relative to its contact point(s). The
two main existing methods for achieving this kind of quantified measurement of a mecha-
nism’s abilities are Azad’s dynamic COM manipulability [23] and Featherstone’s velocity
and momentum gains [27], as discussed in Section 2.4.

This chapter starts by introducing notation to simplify impulsive dynamics equations
with passive contact (including the existing velocity and momentum gains) and then uses
this simplified notation to build on Featherstone’s work by:

e Extending the momentum gains from their existing 2D, 2-link inverted pendulum
formulation to general 2D and 3D models;

e Defining two methods for calculating momentum gains for these general models; and

e Relating the velocity and momentum gains of a system to its centroidal momentum
(a commonly used measure of aggregate system behavior).

'Earlier versions of portions of this chapter were previously published in [113-115].
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These general momentum gains inherit the corresponding velocity gains’ independence
from the applied control scheme and invariance properties, in addition to including a con-
sideration of the inertial properties of the system. Effectively, they measure how efficiently
an articulating system balancing on a passive (point or rolling) contact can move its COM
via actuated joint motions. These properties make the momentum gains a good choice for
analyzing the balance capabilities of a given mechanism, or as a criterion for optimizing
the design of balancing mechanisms.

In Section 5.1, simplified notation is introduced and used to re-formulate Featherstone’s
velocity gain matrix definitions before the momentum gain definitions are extended to the
general 3D case in Section 5.2. This includes a discussion of the two different methods for
calculating the momentum gains, namely the Augmented Inertia Method in Section 5.2.1
and the Spatial Method in Section 5.2.2. The spatial gain defined as part of the Spatial
Method is then used to draw comparisons between a system’s velocity and momentum
gains and its centroidal momentum in Section 5.2.3 before a brief discussion of controls
applications and limitations of the general momentum gains in Section 5.4.2.

Building on this foundation, a generalized gain is defined in Section 5.3 which can be
used to broadly characterize a system’s ability to move its COM. All of the existing and
novel velocity and momentum gains are shown to be special cases and/or subsets of this
generalized gain. This generalized gain formulation is also used to directly show that the
differences between velocity and momentum gains are entirely a function of scaling.

Building on these gain definitions, a generalized optimization framework for performing
optimal mechanism design is then defined in Section 5.4. This framework uses gains as
the core of its objective functions (as described in Section 5.4.1) to design a mechanism
which maximizes its ability to move its COM throughout a given subset of the mechanism’s
configuration space, without having to define an associated controller or trajectory. The
generalized objective function uses weighted matrix norms to enable the application of do-
main knowledge in the parameterized optimization of 2D and 3D mechanisms. The results
of the application of this optimization framework to a set of simple planar mechanisms, a
5-link planar biped, and a 5-link 3D biped are discussed in Chapter 6.

'In this context, balance is assumed to be primarily a function of COM motion. Angular momentum
about the COM is assumed to be regulated.
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5.1 H-Bar Notation

To simplify the formulation of impulsive dynamics equations which include an initial
passive joint, an augmented joint space inertia matrix notation is introduced. This notation
is used to denote the relationship between an impulse and the associated impulse response
in a given configuration (i.e., 7y = Hoa(q)Aq, or t, = Hu(q)Aq,).

In general, this notation is written as follows (with Hg, = Hp,(q) and Hg, = Hp,(q)):
Hgy, = Hy, — Hy,H, 'H,, (5.1)

where o and 3 can each be either a single joint index or a range of indices provided « is a
subset of the actuated joint indices, a. In 2D, for a planar system with only one passive
rotational contact joint (i.e., where p = {1}), H,, is a scalar, giving H )} = Hy;' = 1/Hy;.

This simplifies the notation for the impulsive change in COM velomty (due to Ag,) to

. 1 N . 1 - .
ATo = — (Hoo — Hopprala) Aq, = EHOQAqa (5.2)

which then also simplifies the velocity gain matrices from this:

1 |H, —H,H'H
G.lqgg=— 1| ™ Eppp PG G..(q) = H, - H,,H 'H,, 5.3
(q) m[Hya_HypHp_pl-Hpa] (q) = m|c\2( 0 opdd )y p) (5.3)
to this
1 |H,, ¢
G, = — | _ G, = —H,, 5.4
(q) m [Hyj (q) = mlCP 0 (5.4)

where ¢ again represents the 3x3 skew symmetric matrix which performs the cross product
operation ¢ x d = &d for any 3D vector d (for details, see A.17).

Using the matrix determinant lemma, it can be shown that the matrix H,, = H,, —
HapHp_lepa is always invertible since H,,' always exists (H,, is positive definite as it is
a principal submatrix of the positive definite matrix H). This can be used to define the

change in actuated joint velocities Aq, given an actuator impulse: Aq, = H_ 't,.

This simplified notation will be used throughout this chapter and the next to facilitate
the definition of the generalized momentum gains introduced in the next section and the use
of both velocity and momentum gains as objective criteria in the optimization framework
outlined in Section 5.4 and applied in Chapter 6.

69



\@
(el z

(a) 3D Coordinates (b) 2D Coordinates

]T is a vector from the contact point to the COM and the angles (5 =
[Pz Dy qbZ]T are measured from the reference frame to ¢. For 2D, gravity acts in the —¢ direction.

Figure 5.1: Here, ¢ = [z¢ yo 2o

5.2 Momentum Gain

In this section, the momentum gains from Section 2.4.2 are expanded to general models
in 2D and 3D, and the augmented inertia method is modified for use in calculating these
general momentum gains. A novel method is also introduced for calculating both velocity
and momentum gains using spatial notation (see [28,29]) which depends on the direct
relationship between a system’s gains and its centroidal momentum [10,33].

Recall the definitions of linear and angular momentum gain for planar, 2-link inverted
pendulums as measures of the change in horizontal COM momentum and moment of
momentum of the COM about the contact, respectively, due to an instantaneous change
in joint torque AT, called an impulse and labeled ¢, (see Section 2.4.2).

Building on this, the linear and angular momentum gains (G,, and G,, respectively)
for a general system are (using the change in linear COM momentum Al = mAvs = 1p):

- Al, o 5 =
Gm(ts) = Golty) = m|C]PA¢ = ¢ x Al (5.5)
Al,
where @ = [z¢ yo 2] is a vector from the contact point to the COM with length |&] = |||,

the change in linear COM momentum is Al = [Al, Al AL)" = mATg, the change in

angular COM velocity about the contact point is Ag = [Ad, Aéy AG, )T = (€x AT:)/|E)?,
the total mass is m, and gravity acts in the —Z direction (see Figure 5.1a).
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In the planar case, the gains (G,, and G,) and the change in angular COM velocity (A¢)
reduce to scalars, and the change in linear COM velocity (At), linear COM momentum
(Al), and COM vector () reduce to 2D vectors. Defining b = [—yc z¢]"/|¢], a 2D unit
vector perpendicular to ¢ (see Figure 5.1b), the gains for general planar models are:

Glta) = Al Golta) = m|ePAd, = |¢|(Al-b) (5.6)
where & = [z¢ yo]” is the vector from the contact point to the COM (with length |&| =
|€]|2), the instantaneous change in linear COM momentum is Al = [Al, Al,]", the instan-
taneous change in angular COM velocity about the contact point is A¢p = (Al-b)/(m|c]),
and the impulse at the joints is ¢, (which must satisfy ||¢,|| = 1).

Note that G, and G, are defined using the change in the angular momentum about
the contact due only to COM motion. This is not the change in total angular momentum
about the contact, which is always 0 for a passive rotary joint [27]: the instantaneous
change in total angular momentum about a passive rotary joint cannot be changed by any
impulsive change in a robot’s joint angles.

The actuator impulse vector (i.e., the instantaneous change in torque ¢, = AT,) is
assumed to be a unit step impulse (||¢,|| = 1). After dividing the gains by the step impulse
magnitude, this means that G,, has units of reciprocal length and G, is dimensionless.

Comparing the different types of gains, there are two key differences between the mo-
mentum gain equations in (5.5) and the velocity gain equations in (2.11):

e First, the angular momentum gain equation does not include the division by |¢|?
which is present in the angular velocity gain equation. This means that angular
momentum gain is always finite, while the angular velocity gain approaches infinity
as |¢'| approaches 0 and is undefined at |¢'| = 0. Although this may not be an issue
for some systems, for those that it affects it can be detrimental.

e Second, these equations now assume a unit step impulse instead of a unit velocity
step, which inherently incorporates inertial information into the momentum gain. As
shown in the next section, this inertial information enables the momentum gain to
act as a measurement of how quickly the model can move its COM for unit motor
impulses. In effect, a higher momentum gain implies less motor effort (i.e., less power)
is required to achieve the same COM movement.
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5.2.1 Augmented Inertia Method

Recall that the notation from Section 5.1 for augmented inertia matrices can be used
to show that ¢, = H,,Aq, and, via the matrix determinant lemma, that Aq, = H_'t,.

Therefore, the change in linear momentum Al can be defined in terms of Ly:

Al'= 0y = Hy,Aq, = Hy H, ¢, (5.7)

This enables the definition of the momentum gain matrices G,,,,(q) and G,,(g) in terms
of the velocity gain matrices, where G, (to) = Gat, and G o(ta) = Goala, as:

'HLBG, 3 3

Gra= | _"|H,}) =mG,H,} (5.8)
a,

G, = ¢Hy H,! = m|¢|*G,.H,} (5.9)

The equation ¢, = ﬁaaAqa can also be used to determine the impulse required at the
actuators to achieve a given change in actuated joint velocity. This can be used to select
which of a set of possible Ag, unit vectors would require the least energy to achieve, given
the inertias of the links.

5.2.2 Spatial Method

Using spatial notation, the centroidal momentum of a system is defined as the aggre-
gated angular and linear momenta of the system’s links computed at the system’s overall
COM [33]. The linear component (1) of the centroidal momentum (h¢) is the linear mo-

mentum of the system (f = mu¢), while the angular component (I;C) is the total angular
momentum the system has about its overall COM.

As shown in Equation (5.5), the momentum gains of a system are calculated using only
its change in linear momentum, Al. This is due to the use of a passive rotational contact
point, which causes Akg =0 = [0 0 0], as discussed in Section 5.2.

Therefore, by using the contact point as the reference point, the change in angular
momentum about the COM is: AEC = AEO — &x Al = —&x Al. This relation is part of
the spatial transformation matrix (°X) from the contact to the COM, which maps the
total system momentum at the contact (ﬁo) to the centroidal momentum: ho = CX’{J“EO.
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Using CXS and AEO =0 (due to passive contact), spatial gain is defined as:

— — ~ - 6T 6 ék
G, = Ahc = “X;Ahg = |. . L= 5.10
RO TR G 1 |al G, (510
where G, = —@ x Al = —m|¢|2A¢ and G, = Al = mAT..
Assuming ||Aq,|| = 1, these gains can be defined in terms of velocity gains:
=~ . -2~ ~ . C_jv
Gi(Ad,) = —mlePGoy  Gildd) =m | | (5.11)
Gy(Aq,)
while assuming ||¢,|| = 1 gives their definitions in terms of momentum gains:
Gi(ta) = —G,, Gi(L,) = : (5.12)
Gy(ta)

Notice that él includes a vertical component of linear gain, labeled G,, which could
be used as a measure of hopping ability (as discussed in Section 5.4.2). This is similar to

the component of éw about a vertical axis, which could be used as a measure of spinning
ability (as noted in [27]).

These equations can also be used to define gain matrices for the new gains él and (jk,
similar to those defined for the velocity and momentum gains:

Gla(Aqa> = -FIO(M Gla(La) = -EIOGLﬂ—g;ll = Gla(Aq'a)ﬂ—a:}) (5 13)
Gka(Aqa) = éTI_{Qa, Gka(l’a) = ~Tﬂ—0aﬂ(;ll = Gka(Aqa)H(;ll. ‘

Combining these equations, the spatial gain matrices Ga(Aq,) and Gha(t,) can be
defined in terms of Hy, and H_:

T

—

Gh<Aqa) - I_{OGAQ(; = Gha(AQa)AQa7
- (5.14)

I:IOGI:I(;IILQ = Ghra(to)te = Gha(Aqa)ﬁ;j/,a.

— O

Gh(ba) =

— O
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5.2.3 Centroidal Momentum Comparison

The centroidal momentum matrix A relates the centroidal momentum of a system
to its joint velocities: ho = CAgq [10,33]. As discussed in Section 2.1 and earlier in
this chapter, the centroidal momentum of a system is a common tool for measuring and
controlling the overall COM dynamics of a balancing system.

By dividing “A into passive and actuated components (A = [¢A,, “A,]), an actuated
centroidal momentum matrix “A, can be defined:

Ahe = “A,Aq, + “A,Aq,
= (“A. - “A,H, H,)Aq, (5.15)
= CAaAQa

_Therefore, since the spatial gain has been defined as G, :_Af_ic, it can be shown that
CA, is equivalent to the velocity-based spatial gain matrix (“A, = Gj.(Aq,)):

Gha(AG,)AG, = G, = Ahe = AAG = CA,Aq, (5.16)

These definitions provide another alternative method of calculating both the velocity
and momentum gains of a system using the well known centroidal momentum equations.
They also provide an intuitive interpretation for control algorithms based on centroidal
momentum [10,73,74]. Using velocity and momentum gains as a metric against which to
evaluate these controllers could also be used as a controller-agnostic tool to analyze and
compare the balancing performance of different mechanisms and controllers.

Velocity and momentum gains quantify the fundamental physical limits of a system’s
COM motion, and by extension its ability to balance. As demonstrated in [101-103], using
the velocity gain directly in the system model enables excellent balance performance with
even a simple PID controller. In fact, it could be argued that any existing balancing
controller which is capable of reliably returning the COM to a balanced state is actually
using some form of these gains already, typically by regulating angular momentum.

Based on the inherent relationship between the centroidal momentum and these gains,
which led to the definition of the spatial gain, more complex controllers which use centroidal
momentum to balance should also demonstrate excellent balance performance. While using
the gains (either directly or indirectly) as part of a control strategy can lead to balance
performance near the peak of what a given system is capable of, they can also be used to
optimize a system’s physical properties to maximize its peak balance performance.
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5.3 Generalized Gain

Velocity and momentum gains quantify how fast an articulating system balancing on
a passive (possibly rolling) contact can move its COM, and by extension how well it will
be able to balance or walk. In addition to their independence from the controller and/or
trajectory used, these gains are invariant to a scaling of the total mass of the system, and
the angular gains are also invariant to a scaling of total length, allowing the balancing
capabilities of an entire class of mechanisms to be quantified with a single metric [27].

Therefore, a generalized gain equation is desired which can be used to calculate any of
these gains. Building on the spatial gain formulation, the generalized gain G(u,) = G,u,
is defined for a given system (with G, and u, the generalized gain matrix and input vector,
respectively) as

G = ScGh(Aq,) st |udll = [|SaAq,[l =1 (5.17)

where Sg is an ng X 6 gain selection and scaling matrix and S, is an n, x n, actuator
scaling matrix (with ng the desired gain vector length and n, the number of actuated
joints). This generalized gain can be used to formulate all of the velocity and momentum
gains described in 2.4 and 5.2.

Using (5.14), the generalized gain matrix is defined as

G, = ScGhi(Aqg,)S, (5.18)

In general, the matrix Sg can be used to both scale each of the computed gains and
select which gains are of interest. When computing velocity gains, the generalized input
vector u, is equal to Aq,, so the actuator scaling matrix is set to S, = 1, xn,. For
momentum gains, the actuator scaling matrix is set to S, = H,, based on the definition
t, = H,,Aq, from Subsection 5.1. As shown in (5.18), this leads to the familiar post-
multiplication of velocity gain matrices by H_! to become momentum gain matrices.

The scaling factors and selection matrices required to formulate each of the gains from
Sections 2.4 and 5.2 are shown in Table 5.1. It also shows the key differences between
velocity and momentum gains:

e The velocity gains include a division by m, the total mass, and (for the angular
portion) by the square of |¢|, the distance between the contact and the COM.

e The momentum gains include H,,, which defines the relationship between the change
in joint velocities Aq, and the impulse ¢, that causes that change.
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Table 5.1: Generalized Gain Formulations for 2D, 3D, and Spatial Gains
For these gains, the matrix S¢g can be defined as the product of a scaling factor kg and a selection
matrix I'g: Sg = kglg. To concisely define I, é; is defined as the ith column of the 6 x 6 identity
matrix 1. With a minor abuse of notation, the n, x n, identity matrix is written as 1,x,. For
these gains, the generalized gain equation can be rewritten as:

~T
C _
G =kglg [i ] Ho, S u, st |lugll = [|S.Aq,| =1

2D, 3D, and Spatial Gains ka I S,
Spatial Velocity Gain: G (Aq,,) 1 1
3D Angular Velocity Gain: @W(Aqa) 1 [él é ég]T
m|c|?
2D Angular Velocity Gain: G,(Aq,) és3 Laxa
3D Linear Velocity Gain: G,(Ag,) 1 (&4 é5]T
m
2D Linear Velocity Gain: G,(Agq,) é4
Spatial Momentum Gain: G (L) 1 1
3D Angular Momentum Gain: (_jo(l,a) [el és ég]T
-1
2D Angular Momentum Gain: G,(¢4) é3 Heq
3D Linear Momentum Gain: ém(La) [é4 é5}T
1
2D Linear Momentum Gain: G, (t,) éy4
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Based on these differences, Featherstone’s conclusion that there was no objective reason
to use momentum gains after defining them for the 2-link planar system in [27] are justified:
The mechanism in [27] has only one actuated joint and fixed link lengths and inertias, which
would cause the scaling matrices to all simplify to constant positive scalar values.

However, it should be evident based on Table 5.1 that in any other case (such as a
planar system with more joints or a 3D system) the momentum gains provide additional
useful and different information about the system compared to the velocity gains. This is
primarily due to the consideration of inertial loading on the actuators via kg and S,,.

5.4 Optimization Framework

A general optimization-based framework has been developed for designing parameter-
ized mechanisms without the need for designing/defining a controller or trajectory. By
relying only on the gains, the optimization is formulated solely using the physical proper-
ties of the system within a desired motion space. This enables the framework to determine
where a mechanism’s fundamental limits exist for the desired behavior, independent of the
controller used to achieve the behavior (typically gait or balance?) or the desired trajectory.

Specifically, the parameters of the model are found which maximize the potential of the
given mechanism to balance and locomote, independent of the controller used to achieve
those goals. This gives an upper limit on how well the mechanism can balance and walk
using any controller in a range of configurations near the desired motion subspace, avoiding
overfitting to a specific controller and/or trajectory.

This framework requires five main elements:

e A model of the parameterized mechanism (the number of links, joint details, etc.);

The modifiable parameters « of the model (e.g., link mass, length, COM), with their
allowable upper and lower bounds (&,,;, and ®,q., can be +oo if desired);

A parameter map x, which dictates how to assign the parameters  to the model;

A set of key poses Q = {q1, @, ...} in the model’s configuration space (including
the passive joint); and

An objective function J(x) which quantifies a model’s ability to achieve a desired
behavior for a given x.

2In this framework, it’s assumed that the angular momentum about the COM is negligible or regulated,
so balance is only concerned with the horizontal COM motion.
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Once these five elements have been selected, a global optimization is used to find the
optimal parameterization within the limits set on the parameters:

max J(x), st. Tpin < T < Thas (5.19)

x

The model must define the overall morphology of the desired mechanism. This will
typically include the relative positions and orientations of the joints, motion freedoms of
the joints, and the links’ inertial properties. Any aspect of the mechanism which cannot
be changed or modified as part of the optimization is included in the model definition.

Aspects of the mechanism to be optimized are then defined as the modifiable parameters
@ of the system. This will typically consist of link properties (e.g., mass, length, inertia),
but can also include joint directions, orientations, or any other desired model property. A
set of upper and lower bounds on the parameters, labeled x,,;, and @,,,, must also be
defined. For ease of use, these limits can be set equal to each other to fix a parameter at
a particular value or can be set to +00, as appropriate, to allow unbounded exploration.

Once the model and parameters are defined, a mapping « is required which assigns
a given set of parameters onto the model. This enables the use of an existing modeling
platform to be used in the objective function calculations. As an example, in 2D the scalar
inertia of each link about its COM can be parameterized using a ratio between the link’s
radius of gyration and its length. As part of the mapping, these ratios would be converted
to an equivalent inertia, using the (possibly also parameterized) length and mass of the
link, and applied to the dynamic model.

The key poses q; in  can be chosen to approximate the entire configuration space of
a given model, or can be used more selectively to focus the optimization on a particular
subset of the space. Whether some or all of the joints are passive or active, the full
configuration of the model must be specified for each key pose in the set Q.

Finally, the objective function J(x) generates a scalar value which quantifies the ability
of a particular parameterization of the model to achieve a desired behavior. In general,
J(x) uses the parameter map @ to assign the parameters x to the given model, and then
computes an objective value based on the model’s dynamics for the set of key poses Q.
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5.4.1 Objective Functions

The global objective function used in this work is the mean of the pose-specific objective
function J(q, ) across all n, key poses:

J(@) = ni S Jaz),  VaeQ. (5.20)
9 =1

Pose-specific objective functions are defined for each of the velocity- and momentum-
based gains, quantifying the model’s balancing ability for each (g, x) pair as the maximum
magnitude each gain could achieve for the given pair (where J, = J.(q,x)):

Jo = max|G(Ag,)| = [|Guall st 1AG,] =1,

(5.21)
J* = Tﬂbi%X|G*(l’a)| = ||G*a|| s.t. ||La|| =1

Note that although q and x are fixed, the Aqg, or ¢, unit vector which maximizes the
velocity or momentum gain, respectively, must be determined for each pair of g and «.

By maximizing the mean of these objectives across all key poses as the overall objective
and using the magnitude of the gains, any parameter set with zero crossings (or gains near
zero) in the configuration set Q will be avoided.

The selected key poses in @ may cover a model’s entire (active and passive) configu-
ration space, if it is expected to regularly operate throughout the entire space, or can be
used selectively to focus the optimization on a particular subset of the space (e.g., a biped
standing on one or both feet).

These objective formulations enable the design of parameterized mechanisms without
a controller or trajectory, as the gains are a function only of the physical properties of
the system in a given configuration. In fact, the gains are independent of the controller
used, invariant to gravitational and velocity product dynamics, and (when balancing on a
point or line contact) independent of the contact angle. Therefore, the framework is able
to determine and improve a system’s fundamental physical limits for a desired behavior
(typically gait or balance?®) independent of the controller.

3Here, it’s assumed that the angular momentum about the COM is negligible or regulated, so balance
is only concerned with the COM motion.
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Planar Objective Functions

A typical goal for this framework would be to find a unit velocity or impulse vector
which maximizes a given gain for one configuration g of the model. The gain vectors are
a useful tool for finding the Aq, or ¢, vector which achieves this maximization.

For the purposes of balancing in the plane, whether the system is 2D or can be mapped
from 3D into a given plane, the pose-specific objective functions can be simplified as follows:

e For velocity-based gains, the objective function is the norm of the gain vector, ei-
ther linear or angular. Since velocity gains require ||Agq,|| = 1, these vector norms
maximize the selected gain for the given (g, x) pair.

(g %) = max|G.(Ag,)| = [|Gualg; )| (5.22)

e For momentum-based gains, the gain vectors are replaced with momentum gain vec-
tors and the assumption is ||¢,|| = 1. As above, the objective function is the norm
of the gain vector, which maximizes the selected gain for the given (g, x) pair.

Ji(g, x) = max |Gy (k)] = [|Gralg, )] (5.23)

Maximizing Gains via Norms

In the planar case, the pose-specific objective functions make use of vector norms to
simplify their calculations. The vector norm to use will depend on the norm being used to
determine the magnitude of the unit vector in question. In general, assuming a unit vector
u,, gain G(u,), and gain vector G, the following definition holds:

J(g,z) = max |G(u,)| s.b. ||ugl| =1
= max |Gqu,| st ||uall =1 (5.24)
=max|) .. G| st ||ugl| =1
Uq
Since u, can be freely chosen, provided it satisfies ||u,|| = 1, the magnitude brackets

can be dropped by matching the signs of G; and u; (i.e., Vi € a, G;u; > 0):

J(g,x) =max) . Gu; s.tllu.ll =1 (5.25)
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If the oo-norm is used to determine the magnitude of the unit vector (||u.|l =
max;e, [u;] = 1), the maximum magnitude of the gain will occur when Vi € a, |u;| = 1.
In other words, the maximum gain will occur when every entry in the unit vector has a
magnitude of 1 (where the sign doesn’t matter due to the norm formulation).

Similarly, if the 1-norm is used to determine the magnitude of the unit vector (||u,|[s =
Y ica [til = 1), the maximum magnitude of the gain will occur when |u;| = 1 and Vk €
a # j,ur = 0 (where j is the index of the largest magnitude element in G,). In other
words, the maximum gain will occur when the only non-zero entry in the unit vector is at
the same index as the maximum magnitude entry in the gain vector.

This leads to the following simplifications:

J(g,®) = ||Galloc  1f [Juta]s =1

. (5.26)
J(gx) =[|Gallr  if [t =1

Finally, if the 2-norm is used to determine the magnitude of the unit vector (||uy||2 =
VD ica Wi = 1), the following simplification can be used based on the definition of the

inner product as @- b = ||@|> ||b]]2 cos@ (where 6 is the angle between the vectors):

J(q, ) = max |G, u,| s.t. ||uglla =1
= max |GY - u,| st [|ugll2 =1 (5.27)
Uq
= max||GL||y | cos | st ||uglle =1
Uq

Since G, is a function only of g and @, and u, can be freely chosen provided ||u,||2 = 1,
|cosf] =1 (its maximum value) can be guaranteed by setting u, parallel to G,. As their
signs are equal, setting u, = G /||GT||, will maximize the gain when ||u,||s = 1. Given
that norms are independent of the orientation (row vs column) of the normed vector (i.e.,
|G|l = ||GT]]), this leads to the final simplification that is used in this work:

J(gz) =[|Gall2 if [|ugl[z =1 (5.28)
Therefore, the type of vector norm that must be used on the gain vector in order to

maximize the gain in these objective functions depends directly on the type of norm that
is used to define the unit vectors ||Aq|| = 1 and ||¢,]|| = 1:

e If the unit vector uses a 1-norm, the objective function must use the co-norm.
e If the unit vector uses an co-norm, the objective function must use the 1-norm.

e If the unit vector uses a 2-norm, the objective function must also use the 2-norm.
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Generalized Objective Function

An objective function is now defined to optimize mechanism design using the gener-
alized gain equations from above, building on the planar approach proposed above. This
generalized objective function is then augmented with weighting matrices to enable the
application of domain knowledge to guide the optimization.

As before, the purpose of this novel objective function is to guide the automated optimal
design of a mechanism by quantifying its ability to move its COM throughout a given
subset of the mechanism’s configuration space, without defining or generating an associated
controller or trajectory.

To automatically generate an optimal mechanism, one or more of the gains defined
in Section 5.3 are maximized. When working in 3D, the gains are no longer scalars but
vectors. Similarly, if optimization over multiple gains is desired (in 2D or 3D), the overall
gain is also a vector. In light of this, a method for choosing what value to optimize as the
scalar representation of the overall gain is required.

Therefore, the general pose-specific objective function used in this work (under the
assumption that ||u,|| = 1) is defined as

J(q, ) = max||G(u)|| = max||Gou|| = [|Ga (5.29)

where |G, || represents the induced matrix norm of G,.

Choosing which gain(s) and norm(s) to use in the objective function to achieve the
desired outcome is a critical step in successfully applying the optimization framework.
Here, three different types of high-level goals are considered:

e Maximizing one particular direction of the selected gain for each configuration, with
the specific direction either chosen a priori (e.g., sagittal motion) or automatically
determined using an oo-norm on the gain matrix.

e Maximizing the selected gain based on the use of only a single joint in each configura-
tion, with the specific joint either chosen a priori (e.g., ankle pitch) or automatically
determined using a 1-norm on the gain matrix.

e Maximizing the largest possible gain in any included direction for each configuration,
with the direction determined using a 2-norm on the gain matrix.

Using the first type of goal with a direction chosen a priori effectively results in pro-
jecting the 3D system into 2D, where the gain is a scalar and the planar formulation of
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the objective function from Equations (5.22) and (5.23) can be used. As an example, the
scaling and selection matrices can be set as defined in Table 5.1 to duplicate the objec-
tive functions defined in (5.21) and apply 2-norms to reproduce the planar optimization
functions.

For the second goal, which focuses on a specific joint, the formulation of the generalized
gain will result in a scalar quantification of how well the system can balance using only
that joint. For a joint chosen a priori, this scalar gain is a metric for how well that specific
joint can balance the system with the given parameters. For automatically chosen joints,
it can also be used to define which joint(s) to use for balance in each region of the robot’s
configuration space.

For the final goal, which attempts to maximize the overall gain for each configuration,
the result is comparable to the ellipses and ellipsoids generated by the (dynamic) COM
manipulability metrics defined in [21-23].

Although the results of these metrics (both generalized gain and dynamic COM manip-
ulability) can be applied directly to the optimization of a mechanism, their real flexibility
and power are revealed when combined with weighting matrices to incorporate domain
knowledge into the optimization. For example, combinations of weights can be used to
account for scaling issues, differences in units, joint limits (on position, torque, etc.), and
even the relative importance of the gain directions and/or the inputs.

To augment the objective function with this kind of expert domain knowledge, weights
can be applied to the gain matrix and input vector by using weighted matrix norms in place
of the standard induced norms. To this end, the weighted general pose-specific objective
function (with Jy = Jiw (¢, %) and symmetric positive definite weights) are defined as

Jw = max |Gl st || wallw, =1
= max IWeG o u,|| st | Wau| =1
= r%;x [WeG W, || s.b. |Jvg|| = 1 (5.30)
= [WeG. W, |
= | Gallwe.w.

where W and W, are the gain and actuator weights, respectively, and the weighted vector
norm || - |[a = ||A - || induces the weighted matrix norm || - [|a.g = ||[A - B}|.
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5.4.2 Discussion

The main existing application of velocity and momentum gains are the planar momen-
tum based controllers developed and used in [101-103]. The plant model gains which were
defined in [103] can also be defined using H 3, notation as:

1 H, 1 1 _
Y= ——= Y, = ——= Y;=—=—H, 5.31
1 ., Hy 2 Hﬂg 3 3 ( )

Comparing the common element H,, = mG, to Equation (5.13), the model defined
in [103] could equivalently use the horizontal component of G;(Aq,).

Similarly, a majority of recent work on whole body balance uses centroidal momentum
(e.g., [10,73,74]), which also use controllers which could be defined using spatial gain. An
examination of the relationship between balancing a system using centroidal momentum
and the evolution of its spatial gain is warranted.

As mentioned in [27], the angular gains in 3D include a vertical component, which does
not contribute to balance but to spinning around the contact point. The linear analog
are the vertical gains defined in this work as G, which also do not contribute to balance.
However, they could be used as a method of quantifying the capability of a system to move
vertically, with applications in hopping or bouncing.

The momentum gains defined in this chapter can be easily extended to the case of
rolling contact, knife-edge contact, or a compliant base of support in 2D or 3D, similar
to how the velocity gains have been extended in [27]. However, assuming the system has
only a single contact with the environment (or mimics one via compliance) is the main
limitation of both velocity and momentum gains.

This single contact limitation can be partially overcome by assuming a set of one or
more co-located joints are passive (e.g., an ankle or hip). This assumed-passive set of joints
can then be used in place of the contact point, allowing the momentum and velocity gains
to be applied. To determine the physical capabilities of a system with multiple contacts
where a set of co-located joints cannot be assumed passive, a more complex metric is
needed such as dynamic COM manipulability [23].

Alternatively, the passive contact point can be assumed to be located in the common
rotation point of a set of co-located actuated joints of the system (e.g., the ankle or hip).
If this is done, the actuated joints can be used to simulate a rolling contact by artificially
modifying and controlling the apparent radius of gyration of the system’s contact surface,
thereby changing the balance and gain properties directly.®

4This observation is from a discussion with Roy Featherstone at IROS 2018 about actuated ankles.
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5.5 Summary

In this chapter, Featherstone’s initial definition of momentum gain for planar 2-link
inverted pendulums have been extended to general 2D and 3D mechanisms, along with
defining notation to simplify both the velocity and momentum gain equations. Two dif-
ferent methods were described for calculating these general momentum gains, namely the
Augmented Inertia method and the Spatial method.

The Spatial method development also provided insight on the relationship between a
system’s centroidal momentum and its velocity and momentum gains. This enabled the
definition of the spatial gain of a system, incorporating both angular and linear components
in all 6 directions of 3D motion, and to define an actuated centroidal momentum matrix
which was shown to be equivalent to the spatial gain matrix.

Building on this work, a generalized gain formulation was developed for walking and
balancing mechanisms that quantifies their COM motion properties and encapsulates and
clarifies the relationship between velocity and momentum gains. This novel gain formula-
tion provides an easily defined metric for analyzing the COM motion capabilities of any
mechanism using passive contact to interact with its environment, which enables simple
quantitative comparisons between different mechanisms across the design space.

A general optimization framework was also introduced for the design of parameterized
mechanisms using these generalized gains in combination with weighted matrix norms as
optimization criteria. Since the gains are all invariant to a scaling of total mass and the
angular gains are invariant to a scaling of total length, entire families of mechanisms can be
optimized in one application of the framework. The gains’ invariance to mass and length
scaling also means that a smaller, cheaper prototype can be built and tested to evaluate
the performance of a full size system.

This framework provides an additional tool for mechanism designers to automatically
explore the design space of their given mechanism, without having to generate simulations,
trajectories, or controllers. An existing design with fixed kinematic and inertial parameters
can also benefit from the application of a gain-based optimization. For example, using
matrix 1-norms to evaluate a system’s gains over a given configuration space (or subset of
the space) can provide insights into which joint can be used most effectively to move the
COM in each region of its configuration space.

The next chapter will apply and validate both the generalized gains and the optimiza-
tion framework introduced in this chapter using several parameterized mechanisms: a set
of simple planar mechanisms, a 2D 5-link biped, and a 3D 5-link biped.
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Chapter 6

Optimization Results

In this chapter, the generalized gains and optimization framework described in the
previous chapter are used to optimize progressively more complex balancing systems. Since
the gains are independent of the controller used, invariant to gravitational or velocity
product dynamics, and (when balancing on a point or line contact) independent of the
contact angle, entire families of mechanisms can be optimized at once.

First, planar velocity and momentum gains are compared in Section 6.1 as criteria for
the design of simple balancing systems using the parameterized optimization framework
introduced in the previous chapter. For this initial exploratory work, planar 2- and 3-link
inverted pendulums and a simple planar 3-link biped are used to determine how optimizing
for each of the four planar gains affects the resulting optimized design.

Based on the results of this comparison, angular momentum gain was used as the
objective in optimizing the design of a 5-link planar biped and compared the results to
optimizing the same mechanism using a cost of transport based objective function in Sec-
tion 6.2. These two objectives were shown to produce very similar results, even though
the angular momentum gain calculation requires only the joint space inertia matrix at
each configuration of interest while the cost of transport calculation requires slow hybrid
dynamics equations and pre-generated or co-optimized trajectories.

Finally, in Section 6.3 the generalized objective framework and the weighted generalized
objective function are validated through the optimized design of a 3D 5-link biped. This
validation includes a comparison between using 1-, 2-, and co-norms on the gain matrices
along with 2 different types of weighting matrices and an examination of how the horizontal
gains change throughout a single step of the biped for a given set of parameters.

'Earlier versions of portions of this chapter were previously published in [113-115].
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6.1 Optimization of Simple 2D Examples

Using the planar objective functions and the optimization framework described in Chap-
ter 5, three examples of simple planar models were selected to help demonstrate and com-
pare the benefits of using velocity and momentum gains as a design criterion (with n; the
number of independent links and n, the number of actuated joints):

e A 2-link inverted pendulum, with 2 independent links and 1 actuated joint;

e A 3-link biped, with 2 independent links (identical legs) and 2 actuated joints; and

e A 3-link inverted pendulum, with 3 independent links and 2 actuated joints.

Note that in the biped model the legs are assumed to be identical, so only one of the
legs is independently parameterized. Three parameters are used for each independent link:

e The length of the link, 0 < [; < 1;

e The fraction of total mass in each link, 0 < m;/m < 1; and

e The position of the link’'s COM as a fraction of the link’s length, 0 < ¢;/l; < 1.

Unless otherwise noted, the elements of x,,;, are all set to a small positive value € > 0,
to ensure that the link masses, COMs, and lengths remain within a reasonable range for

an actual mechanism. Since the gains are invariant to a scaling of the total mass, assume
m =Y. m; =1 (reducing the number of independent parameters by 1 for every model).

For each of the example models, an optimization was run for each objective function.
To generate specific key poses to populate Q, ranges were set for each joint (passive and
active) as shown in Table 6.1 and key poses were automatically generated to uniformly
span the desired joint space.

Table 6.1: Joint Ranges used to Generate Key Poses for 2- and 3-Link Models

Joint Type: | Passive Actuated
Model Q1 q2 qs
2-Link Inverted Pendulum /4 | £7/2
3-Link Biped /4 | £1/2 +1/2
3-Link Inverted Pendulum tn/4 | £7/2 +7w/2
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The joint ranges shown in Table 6.1 have been selected to maximize the number of key
poses which are likely to be encountered by a real-world mechanism with the given form.
With this in mind, the body angle specified for the biped model is relative to a vertical
axis to mimic the typically upright bodies of bipeds. Similarly, the biped’s swing leg hip
joint has been flipped so that an angle of 0 points down, as is typical in biped robots.

6.1.1 2-Link Inverted Pendulum

For this model, both links were parameterized as discussed above, leading to a total of
6 parameters. Since the length of the final link (furthest from the contact point) has no
effect on the gains, assume cy/l; = 1. This change, in combination with setting m = 1,
leaves 4 independent parameters.

Although it has been suggested that analysis of a planar 2-link inverted pendulum with
only 1 actuated joint does not benefit from using momentum gain over velocity gain [27],
in the case of mechanism design there is a benefit to using momentum rather than velocity
gains. Since the lengths, masses, and link COMs are free to change in this formulation,
the momentum gain includes additional useful information about the mechanism’s ability
to balance which is not available if the velocity gain is used.

This is demonstrated in Table 6.2 and the diagrams in Figure 6.1a, where the results of
running the four different optimizations are summarized. Each optimization has success-
fully found a parameter set which maximizes the desired gain, but the best solution found
differs greatly for each gain. Note that e = 0.1 for these initial examples.

Table 6.2: 2D 2-Link IP Optimization Results Table 6.3: 2D 3-Link Biped Optimization Results
2-Link TP | L & g |22 3-Link Biped | &= &£ 3, |2 2 4,
m m 1y m I m Iy
Optim. for G, | .1 1 1 9 1 1 Optim. for G, | .45 .1 1 1 1 1
Optim. for G, | .9 1 .134] .1 1 .831 Optim. for G, | 45 .1 .232| .1 719
Optim. for G,,| .9 .1 .1 B | Optim. for G,,| .1 .9 .1 S 1 1
Optim. for G, | .1 .1 .1 9 1 1 Optim. for G, | .1 .9 .1 8 1 1

6.1.2 3-Link Biped

For this model, 2 of the 3 links were parameterized as discussed above, leading to a
total of 6 parameters. The third link is defined as an identical copy of the first link.
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Due to the symmetry created by using identical legs, the upper bounds in @,,,, were
set to 1 — € for the leg link COMs and remained set to 1 for all other parameters. Since
the length of the body link has no effect on the gain calculations (much like the final link
in inverted pendulums), assume ¢y /Iy = 1, which leaves 4 independent parameters.

Table 6.3 summarizes the results of the 4 different optimizations using the framework
for the 3-link biped model, with associated diagrams shown in Figure 6.1b.

6.1.3 3-Link Inverted Pendulum

For this model, each of the 3 links was parameterized as discussed above, leading to a
total of 9 parameters. As before, set m = 1 and the COM of the final link at the end of
the link (c3/l3 = 1), which leaves 7 independent parameters.

This type of model was used as a design example by Featherstone in [27] where the
center of mass of each of the links was fixed to the end of the link (i.e., ¢;/l; = 1), leaving 6
independent parameters which were initialized to m; = .5 and [; = .3. They then manually
explored the parameter space and compared angular velocity gain plots to determine how
to improve on their initial design.

Table 6.4 and the diagrams in Figure 6.1c include the two parameterizations from [27],
as well as the results of the 4 different optimizations using the framework. It should be
noted that although m = 1.5 for the original Featherstone models, the mass fractions are
used in the table and gain calculations as it is only the relative mass which matters since
the gains are invariant to a scaling of the mass.

Table 6.4: 2D 3-Link Inverted Pendulum Optimization Results?

3-Link TP % %1 L % % L % %’ Iy
Optim. for G, 1 1 1| 1 1 1| 8 1 1
Feath. Initial [27] 333 1 3 | 333 1 3|33 1 .3
Feath. Tmproved [27] | 467 1 .2 | 333 1 25| 2 1 .35
Optim. for G, 8 1 15| 1 1 1| a1 1 1
Optim. for Gy, 8 1 1 T o1 1] 1 1 1
Optim. for G, 1 1 1 1 1 1 .8 1 1

2Although m = 1.5 for both of Featherstone’s models, the mass fractions are used in Table 6.4 and the
gain calculations. Only relative mass matters, since all the gains are invariant to a scaling of the mass.
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(a) 2-Link Inverted Pendulum Models from Table 6.2

(b) 3-Link Biped Models from Table 6.3

Dy,

Gy F. Init. F. Impr.

G

(¢) 3-Link Inverted Pendulum Models from Table 6.4
Figure 6.1: Diagrams of the optimized 2- and 3-link planar models which correspond to the optimization

results in Tables 6.2, 6.3, and 6.4. In these diagrams, the relative thicknesses of each link denote their
relative masses. Note that the configurations of the models’ joint angles in these figures are arbitrary.

6.1.4 Observations for Inverted Pendulums

For GG,, placing maximum mass as far from the contact point as possible maximizes
every joint’s potential ability to move the COM. The links are expected to be as long as
possible, since G, has units of length.
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For GG, the COM is expected to be as close to the first joint as possible while main-
taining the ability to rotate the COM around the contact point by placing a small mass
far away. This is due to the invariance of G, to changes in ¢; for a point contact (which
shifts the desired COM from the contact point to the first joint) and that G, o« 1/|€].

Both momentum gains include their corresponding velocity gains, but the inertial load-
ing on the joints is now included via multiplication by H, ok which in the 2-link TP case
reduces to Hy,' = Hyp/det(H) = Ady/ts.

This effectively makes it expensive to move mass which is far from the actuated joints
by penalizing high joint torques. This is qualitatively different from penalizing high joint
accelerations, as is the case with velocity gains.

The effects of this are clearly seen in the linear momentum gain (G,,) inverted pendulum
examples, with the majority of the mass very close to the contact point. Very short links
are also present, as (7,, has units of reciprocal length.

Considering the angular momentum gain (G,) inverted pendulum results, the influence
of the additional |¢|* term can be seen which causes G, o |c|: the majority of the mass
is placed as far away from the contact as is possible. The remainder of the mass is then
placed within the mechanism so as to minimize the required torque demands for balancing
(i.e., close to the contact for inverted pendulums).

6.1.5 Observations for 3-Link Biped

For G, the biped’s mass has moved to its feet instead of keeping it far from the contact.
This is mainly a function of the selected key poses maintaining the body link above and the
feet below the hips, such that a smaller mass in the leg contributes more to the horizontal
COM motion for a given joint velocity than a larger body mass.

Effectively, due to the passive contact enforcing conservation of angular momentum
about the contact, moving a moderate-sized mass close to the contact requires a smaller
passive rotation to compensate, and therefore a larger horizontal COM motion.

These heavy legs are also due to there being no consideration of the inertial loading
or location of the COM in the linear velocity gain (G,) equations, only a ratio between
horizontal COM velocity and joint velocity. The biped which is optimized for angular
velocity gain (G,,) also has heavy feet, due to the same effect.

The analog of the momentum gain IP effects are also seen in the biped, where locating
most of the mass in the body and placing the COMs of the legs close to the hips means it
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is very cheap to move the swing leg. This is the direct opposite of what was shown for the
velocity gains, where there is no cost to swing a heavy leg. For G,, this serves to minimize
the required torque demands for balancing (as done in the IPs).

6.1.6 Comparison between Gains

Based on the results above, as well as comparing the formulations of the velocity and
momentum gains, several key differences become apparent. These observable differences
exist not only between velocity and momentum gains, but also between the linear and
angular gains of the same type.

The inclusion of inertial effects in the momentum gains compared to the velocity gains
enables them to act as a proxy for energy efficiency. Since momentum gains incorporate
a consideration of the amount of joint impulse required to move the COM relative to the
contact point, maximizing the momentum gain for a given configuration has the same effect
as minimizing the joint torques. Maximizing velocity gains will only provide a proxy for
minimizing joint accelerations for a given configuration, which is not equivalent.

Comparing the linear and angular gains of each type, the angular gains are more suitable
for mechanism design as they are dimensionless and, when the contact can be approximated
as a spherical (rotary in 2D) joint, invariant to the passive contact angle(s).

Both these properties reduce the complexity of the design space, while maintaining
the means to quantify the physical ability of a mechanism to move its COM relative
to the contact. Using dimensionless metrics removes the dependence on scale from the
calculation, allowing angular velocity and momentum gains to be used across a family of
different mechanisms at various masses and lengths.

Looking specifically at the biped results in Table 6.3 and Figure 6.1b, it is apparent
that designing a biped using velocity gains will produce an inefficient walking mechanism
due to the heavy feet. Compare this to the designs based on momentum gain, which place
most of their mass in the body and shift the leg masses as close to the hip as possible to
minimize hip torques.

Due to the above issues with the linear gains and velocity gains, the preferred gain for
mechanism design (at least in the case of a planar biped) is the angular momentum gain,
which is used in this chapter for this purpose.
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6.1.7 Discussion

Since the linear velocity and momentum gains have units of length and reciprocal length,
respectively, they are dependent on not just the relative lengths of the links but the total
length (height for biped) of the system. This is directly evident in the examples in the
previous section, where all of the links had the maximum length when optimizing for G,
and minimum length when optimizing for G,,.

In light of this, in a more practical application of these gains as part of the framework
there would need to be either more restrictive limits set on the lengths for the links (or
fixed lengths, if appropriate) or a fixed overall length (or height) which can then be used
to parameterize using a ratio of link length to total length.

Other forms of overall objective function were also considered which would change the
results or achieve higher gains across more key poses, such as using the median or minimum
of the gains over all poses. For example, when using the minimum of the gains, the value
of the objective function represents the guaranteed worst case gain for the system across
all poses. A critical consideration when using the mean is that it can be more sensitive to
the set of key poses used to define the joint ranges than other options.

6.2 Optimization of a 2D 5-Link Biped

In this section, the framework is illustrated on a 2D 5-link biped (see Figure 6.2). This
mechanism can be used as a simplified representation of a broad range of natural and
artificial bipeds, including humans, ostriches, and others [95]. The parameters, parameter
mapping and key configuration poses for this mechanism are outlined in the following
subsections, along with an alternative objective function based on the Cost of Transport
for comparison to the proposed objective function from Section 5.4.1.

6.2.1 Parameters

A modified version of the 5-link biped parameters defined by Haberland and Kim are
used [95]. Since the model has a symmetric form, the legs are assumed to be identical so
only one set of leg links are independently parameterized.

In [95], the mass and length of the body link are defined in units of kg and m, respec-
tively, and all other lengths and masses are defined relative to these values. However, since

93



Table 6.5: 2D 5-Link Biped Parameters

Parameter Ratio | Min | Max

L I Body Link
— My, Lo ody Lin 1/2  3/4
by < Mass mo/m / /
Body Link
C lp/1 1/4 1/2
b Length b/ / /
Mass
Thigh Link 1/ 1/3 92/3
Length i/l / /
All Link
i/ 1/4 3/4
COMs ¢/ / /

Inertias

(a) Joint Labels (b) Parameters

Figure 6.2: Diagram of the 2D 5-link biped model’s joints and parameters. In (a), passive rotation about
the contact point g, is measured from a vertical axis, knee rotation g is measured relative to a straight
leg, body link rotation ¢, is measured relative to the stance thigh, and leg rotation ¢; is measured from the
swing thigh to the stance thigh. In (b), the link parameters are the mass m;, length I;, COM ¢;, and inertia
I, = m;r2, where the index i is replaced with b, ¢, or s for the body, thigh, and shank links, respectively.
In this figure, quartered circles show the locations of each link’s COM and solid circles represent the joints.

the objective functions will be using measures which are invariant to a scaling of the total
mass m or length [ of the system, all parameters will be defined as ratios.

Four parameters are used for each independent link 7: mass m;, inertia I; = mirf, COM
¢;, and length [;. For each of the links, the COM and inertia (via the radius of gyration
r;) are defined relative to that link’s length, while the link length and mass are defined
relative to other links.

A minimal representation of these ratios is shown in Table 6.5. It’s assumed that the
system has identical, symmetric legs and the indices b, s and t are used to indicate the
body, shank and thigh links, respectively. The mass and length of the leg are then defined
as m; = mg + my and [; = I, + [;, respectively, and the total mass and length of the biped
are m = my + 2my and [ = [, + [;, respectively.

Note that in Table 6.5, the mass and length of the body link are scaled by the total
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mass and length of the system, respectively, while the mass and length of the thigh links
are scaled by the mass and length of the leg, respectively. This eliminates the need to
parameterize the (dependent) mass and length of the shank link.

This parameterization consists of 10 independent parameters, which can be satisfied
strictly using lower and upper bounds: two mass ratios, two length ratios, and the COM
and inertia for each of the three independent links.

The parameter map which applies these parameters to the model, X, assumes m = 50
kg and [ = 2 m to facilitate the calculation of the kinematic and dynamic properties. This
means the system’s masses, lengths, COMs, and inertias can be defined using real values
and applied to the model used in the objective function. However, the measures used in
the objective function are invariant to m and [, so these values could be chosen arbitrarily
with the same results.

6.2.2 Key Poses

For this example, the key poses are used to outline a set of typical motion paths within
the configuration space of the biped model. This set of poses is chosen to be representative
of the swing phase of a standard walking gait, where the swing leg starts on the ground
behind the stance leg and finishes in the same pose but with the leg positions switched.

The leg poses are assumed to be symmetric in the starting/ending configuration. In
this type of gait, the stance knee is fully extended for the duration of the stance phase
following the results of [116], who showed that optimal periodic gaits for simple bipeds
always involve pendular motion in the stance phase, due to the elimination of work when
the system is acting as an inverted pendulum.

The considered motion subspace in the biped’s configuration space is defined by the
following joint angle ranges:

—7/6< ¢, <7/6

0< g <7/3
—r/3< q <m/3
—m/4< g <7/4

(6.1)

To ensure a fair comparison to the cost of transport based objective function defined
below, only configurations which are in the CoT trajectories will be sampled to generate
key poses. Compared to the larger motion subspace above, this primarily limits the motion
of the body link to within /12 of vertical and limits the swing leg joint angles to remain
within typical walking ranges.
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6.2.3 Objective Function

Motivated by the discussion in Section 6.1.7, for this example the angular momentum
gain is used to define the objective function for four reasons:

e Momentum gains incorporate inertial information, quantifying the effort needed at
the actuated joints to generate COM motion (either for balancing or gait).

e Angular gains are dimensionless, removing any dependence on the total length of the
system and allowing link lengths to be parameterized as ratios.

e Angular gains for mechanisms with a point contact (line contact in 3D) are invariant
to the passive contact angle.

e Angular momentum gain is defined everywhere, whereas the angular velocity gain
approaches infinity as the COM nears the contact point and becomes undefined
when the COM is at the contact.

The angular momentum gain is therefore an ideal candidate for use in the objective
function: It is a dimensionless measure of how efficiently a system’s actuated joints can
move the COM around a passive contact, independent of the total mass, total length,
gravity, and the passive contact angle between the stance leg and the ground.

Since the angular momentum gain is linear with respect to ¢,, define a gain vector
Goo = [Goz Gog ...] such that Go(ta) = D, Goiti = Gogle. If the 2-norm is used to
define the step impulse as ||tq||]2 = 1, then the maximum angular momentum gain for any
configuration and parameter pair (g, x) is given by ||Goa(q, x)||2 (as discussed above).

The momentum gain based objective function Jg is then defined as the mean over Q
of the maximum angular momentum gains (assuming ||¢,||2 = 1):

Ja(x) = niqz 1Gul@.@)l:  YgeQ 62)

where n, is the number of configurations in the set Q.

6.2.4 Comparison Objective Function

In addition to the momentum gain-based objective function defined above, an alter-
native objective function is evaluated based on the Cost of Transport (CoT) (the most
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commonly used cost function in the literature, e.g., [96-98]). The CoT for a system is de-
fined as a ratio between the energy consumed (W) and the product of the system’s weight
(mg) and the distance (d) it travels while consuming said energy: W/mgd. For this objec-
tive function, the energy required to move along a given trajectory parameterized as shown
in Equation (6.3) below is evaluated using Featherstone’s spatial2 MATLAB library [117].

Around a nominal swing phase pattern (with a fully extended stance knee and symmet-
ric start/end configurations), the initial/final and midstance poses are varied to increase
the effective motion subspace being optimized over.

These variations are parameterized using:

e The initial angle between the legs, 7/9 < 260, < 7/3;

e The swing knee angle at midstance, 0 < 6, < 7/3; and
e The body link angle at midstance, —7 /12 < 6, < 7/12.

If the joint positions are defined as ¢ = [, 0 ¢» ¢ gk, using the labels shown in Figure
6.2a, the configurations at the start, middle, and end of the step (with smooth transitions
between these poses based on quintic splines) are:

qQo = [—9p 0 -6, =20, 0 ]T
qm = | 0 6 O 60" (6.3)
g =006, 0 6, 20, 0 ]T

These trajectories are then used to generate the required joint torques to achieve re-
quired motions via hybrid dynamics, to ensure that the trajectories are dynamically feasible
and satisfy the dynamic constraints of the model. These joint torques are not necessary for
the momentum gain based optimization, but are used in the comparison objective function
based on the cost of transport below.

For this purpose, since the ground is flat and impact is ignored, assume the energy
consumed is W = f To - Qudt, where T, is a vector of actuated joint torques. This is similar
to the CoT from [98] without the absolute power assumption, which itself is a modified
version of the CoT from [97] when dealing with flat ground and no impact.

The objective function then minimizes the average of this CoT over the set of ny
trajectories g(t) € Q, (where the step length d is defined as the distance between the feet
at both the start and end of the step):

L [ 74a(1)

Joor(x) = T m—gddt vq(t) € Qy (6.4)
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Table 6.6: 2D 5-Link Biped Optimization Results

Objective Basis
Parameters M(A):Illgelrlllgfm Tfa(;sgpzit

my/m 3/4 1/2
1)1 1/2 1/2
— 1/4 1/4
I/l 1/3 1/3
co/lp 3/4 3/4
e/l 3/4 3/4
cs/ls 1/4 1/4
s/lp 0 0
re/ly 0 0
G, CoT re/ts : :

Figure 6.3: Diagrams of the 2D 5-link biped models which correspond to the quantitative optimization
results given in Table 6.6. In the diagrams, the relative thicknesses of each link denote their relative
masses, quartered circles show the locations of each link’s COM, and solid circles are the joints.

6.2.5 Observations

The results of optimizing the 2D 5-link biped are shown in Figure 6.3. These results
show that optimizing for the cost of transport over a set of trajectories provides almost
identical results to optimizing for the average angular momentum gain over a comparable
configuration space. The only difference between the two results is the mass of the body
link: for the CoT results m, = m/2, while for the G, results m;, = 3m/4.

The resulting mechanism obtained by optimizing the angular momentum gain has sev-
eral characteristic properties: First, the body link has the maximum possible mass and
length, and its COM is as far from the hips as possible. This confirms the observations
earlier in this Chapter, where the large mass near the top of the body link enables small
changes in stance hip angles to produce large COM angular displacements.

Much like the body link, the swing leg has also been optimized to place most of the
leg mass near the foot and the remaining mass very close to the hip, allowing both swing
leg joints to move the system’s COM around with minimal effort. The long shank length,
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relative to the thigh, ensures that the swing knee can produce maximal COM motion even
if the swing hip is held fixed.

It is interesting to note that, although it was an available parameter, the inertia of all
of the links has been eliminated. Although this is not realistic in a real world robot, it is
feasible in a model like this as the addition and subtraction of virtual masses at the joints
can add inertia back to the links (as described in [27]).

The only difference between the two optimizations is the relative mass of the body link
to the total mass. The mass of the body link has been reduced to its minimum possible
value in the model optimized for the cost of transport. This is likely due to the cost
of transport having no concept of balancing outside of the given trajectories, as well as
incorporating gravitational effects which make heavier feet slightly cheaper due to pendular
swing leg motion.

6.2.6 Discussion

The similarity in the results is expected, as both the CoT and the G, optimizations
should produce a mechanism which can efficiently move its COM around in the plane. Note
that the GG, based optimization was able to achieve similar results to the CoT optimization,
without the need for trajectories, torques, an integration over time, or a controller. Despite
this similarity in results, there are four main differences between the angular momentum
gain and CoT approaches:

First, the cost of transport approach requires a trajectory and/or a controller to be
defined. These elements could be either specified [118], or co-optimized in parallel with
the physical optimization [97,98]. The angular momentum gain approach requires only a
desired configuration space, defined using a set of key poses which span the space.

Second, the cost of transport approach must include some form of hybrid or inverse
dynamics calculation over time to determine the work required to take a step. By com-
parison, the angular momentum gain approach requires only the calculation of the joint
space inertia matrix (or generalized inertia matrix, for systems with kinematic loops) for
each configuration of interest, and the inverse of a positive definite symmetric submatrix.

Third, the cost of transport depends directly on the scale of the mechanism (i.e., its
total mass and length), which means that it is only effective for a specific design. The
angular momentum gain, however, is invariant to scaling of the total mass and/or total
length, as well as to various modifications of the inertial properties as discussed in [27],
which enables it to optimize an entire family of mechanisms at once. This is primarily due
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to defining the gain using impulsive dynamics, which do not include gravitational terms or
any velocity-product terms (e.g., Coriolis terms).

Finally, the cost of transport is concerned only with how much effort it takes the
mechanism to follow the prescribed trajectory and/or use the prescribed controller. This
may result in a system that has excellent performance near the nominal trajectory, but
suffers from poor performance if disturbed away from the nominal trajectory. With angular
momentum gain, the inherent physical ability of the mechanism to move the COM with
minimal effort is maximized.

To improve the biped’s balance not only along the specified trajectories generated for
the CoT optimization but also throughout the configuration space near them, the motion
subspace defined in Equation (6.1) should be uniformly sampled to generate a set of key
poses for a subsequent application of the angular momentum gain optimization.

6.3 Optimization of a 3D 5-Link Biped

To validate the general pose-specific objective functions defined in (5.29) and (5.30) and
show the effects that the different norms and weights have on the resulting parameterization
of the model, they are applied to a 3D 5-link biped (see Figure 6.4). This biped has a passive
spherical contact (3 DOF), universal hip joints (2 DOF) separated by a fixed offset®, and
a rotary knee joint (1 DOF) in the swing leg.

Similar to the parameterization of the 2D 5-link biped in the previous section, here a

minimal representation of mass and distance ratios is used based on the parameters defined
in Figure 6.4b (as shown in Table 6.7).

For this model, the parameter map assumes m = 50 kg and [ = 1 m to facilitate the
calculation of the kinematic and dynamic properties. However, since all of the gains are
invariant to changes in m and the angular gains are invariant to changes in [, the values
can be modified with minimal impact.

For this model, key poses have been defined which incorporate a set of typical motion
paths within the configuration space of the biped. To generate these key poses, a set of
joint ranges has been chosen to approximate the required motions in the swing phase of a
standard 3D walking gait where the swing leg starts on the ground behind the stance leg
and finishes in the same pose but with the leg positions switched.

3Although the relative width of the hips could be used in the optimization, for this work it has been
fixed at 20% of the biped’s total length.
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(a) Joint Labels (b) Parameters

Table 6.7: 3D 5-Link Biped Parameters

Parameter Ratio Min | Max
Body Link my/m 1/2 3/4
Mass
Body Link L/l 1/4 1/9
Length o/ / /
Thigh Link me/my 1/4 3/4
Mass
Thigh Link 1Ll 1/3 92/3
Length £/l / /
All Link
i/ 1/4 3/4
COMs ci/ls / /
All Li‘nk ri/l; 0 2/3
Inertias

Figure 6.4: Diagram of the 3D 5-link biped model’s joints and parameters. In (a), passive rotations about
the contact point ¢,, body rotations ¢;, and swing leg rotations ¢; are all measured relative to a vertical
axis, while swing knee rotation g is measured relative to a straight leg. In (b), the link parameters are
the mass m;, length I;, COM ¢;, and inertia I; = m;r?, where the index i is replaced with b, ¢, or s for the
body, thigh, and shank links, respectively. The hip width (I;) has been set at 20% of the total length . In
this figure, quartered circles show the locations of each link’s COM and solid circles represent the joints.

The considered motion subspace in the biped’s configuration space is defined by the
following joint angle ranges (which, other than g, are all relative to a vertical axis):

—7/6 <
—m/18 <
—m/12 <
—7m/18 <

—m/3 <

—7m/9 <

0<

Apz
Apy
Qba
Qby
iz
iy
dk
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Next, the results of optimizing the parameterized model across this range of motions
for the frontal (x), sagittal (y), and combined horizontal (zy) gains are compared using:

e Unweighted 2-norms on the zy gains;

Unweighted 2-norms on the x and y gains;

Unweighted oo-norms on the xy gains;

Gain-weighted 2-norms on the xy gains;

Unweighted 1-norms on the z, y, and zy gains; and

Input-weighted 2-norms on the xy gains.

6.3.1 Results

The resulting optimized parameter sets are summarized in Figure 6.5 and Table 6.8,
where duplicates have been combined under a single label wherever possible. In cases where
the only difference between two (or more) optimized parameter sets are the locations of
their link COMs, a numbered label is used to distinguish between the lettered sets.

The high-level observations of these results are:

(1) In general, optimizing a mechanical design for a particular gain will result in a better
performing system than any heuristically generated design or even an optimal parameter
set from another family of mechanisms. For example, based on the results in the previous
section one might assume that the mechanism with the best overall balance performance
would be parameter set F' (which has the same parameters as the optimal 2D 5-link biped).
However, optimizing for the overall horizontal angular momentum gain (and by extension
the 3D balance performance) leads to model G, which is very different.

(2) The design generated differs depending on the chosen objective function, with trade-
offs between mobility in one direction vs another. This means that a mechanism which
is optimized in one direction is typically poor in the other direction. However, based on
the numerical results in Table 6.9, one can see that in some cases a slight reduction in
an optimal gain can dramatically increase the gain in the perpendicular direction. See
Subsection 6.3.1 for specific examples of these direction-dependent trade-offs.

(3) Using velocity gain(s) results in different mechanisms compared to using momentum
gain(s), and each momentum gain objective also results in a different mechanism. The
results in Table 6.9 illustrate that most of the velocity gain objectives result in the same
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i bbb

Baseline Lin. & Ang. Sagittal Angular 1-Norm Sag. Lin. Frontal Linear 1-Norm Angular Sagittal Angular
Velocity Velocity Momentum Momentum Momentum Momentum
El % % E4 % /;
7-Limit Linear oo-Norm Linear Baseline Linear Sagittal Linear Frontal Angular Baseline Angular
Momentum Momentum Momentum Momentum Momentum Momentum

Figure 6.5: Diagrams of the 3D 5-link biped models which correspond to the results in Table 6.8. The
relative thicknesses of each link denote their relative densities (i.e., short heavy links are thickest, long
light links are thinnest). Note that the configuration of the models’ joint angles are arbitrary but identical.

parameter set as they do not consider the additional inertial information used to generate
momentum gains. In addition, every single optimized momentum gain objective results
in a different parameter set, providing evidence that momentum gain objectives lead to
quantifiably different designs even for the reduced set of parameters used in this section.

(4) Further, it is important to consider that gains are pose-dependent and will change
throughout a given motion and/or configuration space. In Subsection 6.3.1, the continu-
ously changing effect of a motion on the gains is shown. Gain ellipses are used to give a
comparable measure to the ground-projected dynamic COM manipulability from [23].

(5) One final general observation about the results in Table 6.9 is that there are families
of parameter sets that are good or bad at different types of motions (i.e., have different
levels of gain for different types of gains). For example, models A, B1, B2, and E1-4 all
have good general angular velocity gains, which leads directly to good balance performance
for systems where the inertia is negligible. However, once inertia is taken into account (i.e.,
in the angular momentum gains) the models with a higher overall COM (C2, F, and G)
replace B1, B2, and E1-4 as the peak performers.
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Table 6.8: 3D 5-Link Biped Optimization Results?

Label & Main Gain i I B A N A
m l my l l Ly Ls
A: Baseline Velocity 1/2 | 1/4 | 1/4 | 2/3 | 1/4 | 1/4 | 1/4
B1: Sagittal Ang. Vel. 1/4
agitta’ Afle. Ve o L2 || s | e YA 1
B2: 1-Norm S. Lin. Mom. 3/4
C1: Frontal Lin. Mom. 1/4 1/4 | 3/4
ronte” L om 34| 12 | 14| o3 AL LA LS
C2: 1-Norm Ang. Mom. 3/4 | 3/4 | 1/4
D: Sagittal Ang. Mom. | 3/4 | 1/4 | 1/4 | 2/3 | 1/4 | 1/4 | 3/4
El: 7-Limit Lin. Mom. 450
E2: co-N Lin. Mom. .540
oo S O N ygp | 1/2 | 14 | 1/3 | 1/4 1/4
E3: Baseline Lin. Mom. .614
E4: Sagittal Lin. Mom. 631
F: Frontal Ang. Mom. 3/4 | 1/2 | 1/4 | 1/3 | 3/4 | 3/4 | 1/4
G: Baseline Ang. Mom. 3/4 | 1/4 | 1/4 | 1/3 | 1/4 | 1/4 | 1/4

Baseline: Unweighted 2-Norms

First, a set of baseline results were generated by conducting optimizations using the
horizontal components of the four different gains based on the matrix 2-norm with both
weighting matrices set to appropriately sized identity matrices.

As shown in Table 6.9, the baseline results for the linear and angular horizontal velocity
gain optimizations both correspond to model A in Figure 6.5 and Table 6.8. However, the
linear and angular momentum gain optimizations resulted in very different parameter sets:
E3 and G, respectively.

Compared to the velocity gain results of model A, the linear momentum gain results
in E3 maintain the division of mass between the links but the COMs of the thighs shift
towards the hips and the relative link lengths change, with the body and shank links
growing to maximum length and the thighs shrinking to their minimum.

“Note that the r;/l; parameters are left out of this table, as the link inertias were optimized to 0 for
every set of results generated in this work. In a physical robot this is not realistic, but for a model like
this it is feasible since inertia can be added back to the links via the addition and subtraction of virtual
masses at the joints (see [27] for details).
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Table 6.9: 3D 5-Link Biped Objective Function Values for Selected Parameter Sets

Each of the numerical entries in this table represents the value of the global objective function J(x), as
defined in (5.20): the mean of the given pose-specific objective function J(g,x) evaluated across the set
of ng poses g; € Q spread uniformly throughout the configuration space defined in (6.5) for the given
parameter set . When defining these objective functions, the subscripts on the gain matrix or vector
indicate which gain is being optimized while the subscript on the norm indicates which type of norm is
being applied. Note that in this section, and by extension this table, models are only optimized for the
horizontal components of the gains so the angular gains do not include a vertical component.

Parameter Set (x)

Jo) | A [ b1 [ b2 [ o1 [ c2 | b [ e | B2 [ 8 | ma | F |

|Guall2 |0.1956 | 0.1346 | 0.1237 | 0.06235 | 0.06084 | 0.08505 | 0.1162 | 0.1154 | 0.1147 | 0.1146 | 0.05755 | 0.09023
|Guall2 | 0.2449 | 0.2227 | 0.2007 | 0.08022 | 0.07628 | 0.08483 | 0.1823 | 0.1808 | 0.1797 | 0.1795 | 0.07216 | 0.09339
Gmallz | 43.87 | 36.94 | 37.49 | 28.43 | 36.36 | 28.90 | 42.64 | 43.64 | 43.91 | 43.90 | 41.75 | 41.45
IGoallz | 21.92 | 13.87 | 14.52 | 14.38 | 23.14 | 18.69 | 16.10 | 16.56 | 16.83 | 16.87 | 25.84 | 26.01

1Gozall2 | 0.1175 | 0.09465 | 0.08723 | 0.04587 | 0.04488 | 0.05354 | 0.08186 | 0.08128 | 0.08081 | 0.08071 | 0.04289 | 0.05513
1Goyall2 | 0.1376 | 0.08353 | 0.07711 | 0.03899 | 0.03781 | 0.06026 | 0.07387 | 0.07339 | 0.07302 | 0.07294 | 0.03650 | 0.06485
|Guweallz [0.1837 | 0.1513 | 0.1384 | 0.05753 | 0.05264 | 0.06636 | 0.1316 | 0.1306 | 0.1298 | 0.1297 | 0.05256 | 0.07382
1Guyall2 | 0.1352 | 0.1463 | 0.1309 | 0.05277 | 0.05095 | 0.04638 | 0.1165 | 0.1154 | 0.1145 | 0.1143 | 0.04740 | 0.04838
Gmazallz | 19.50 | 19.05 | 7.359 | 2559 | 7.034 | 24.99 | 12.65 | 10.97 | 9.913 | 9.720 | 9.212 | 17.93
1Gmyallz | 38.11 | 3222 | 37.08 | 14.78 | 35.95 | 14.12 | 41.34 | 42.78 | 43.27 | 43.29 | 40.91 | 36.61
|Gozallz | 18.51 | 11.18 | 14.42 | 5.819 | 23.02 | 7.033 | 14.84 | 15.78 | 16.31 | 16.40 | 25.53 | 21.24

||@oya||2 9.604 | 7.478 2.139 13.06 3.665 16.60 5.832 4.828 4.081 3.928 5.129 12.43

For the angular momentum gain results in G, there are only two changes from model
A: the mass of the body increases to its maximum (lowering the relative mass in the leg
links) while the long shanks and short thighs appear again, although this time with no
change in the COMs of any link.

These results echo those in Section 6.1, where optimizing for linear momentum gain
caused a shift of mass closer to the hips while optimizing for angular momentum gain
typically led to most of the mass moving further away from the contact.

Intuitively, having heavy ”feet” and long legs will result in larger velocity gains, where
small hip velocities can produce large COM motions. Since momentum gains include
inertial information, they are increased by shifting mass away from the feet towards the
hips and body as this reduces the relative torques required to move the COM.
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A Priort Direction Selection: Frontal and Saggital

To determine how many of the differences between the 2D and 3D 5-link biped results
are due to rotating in multiple planes, optimizations were run to determine the parameters
which would result in the maximum gain in each of the horizontal directions separately.
Other than selecting which gain was included in the objective, these results used the same
formulation as the baseline optimizations.

As shown in Table 6.9, the optimal frontal (z) and saggital (y) linear velocity gain
parameter sets and the optimal frontal angular velocity gain parameter set are all model
A, the same as the baseline velocity gain optimizations. However, the optimal sagittal
angular velocity gain parameter set is B1, where the relative length of the body increases
to half the model’s length (from 1/4 the length in model A).

When optimizing for momentum gains, differences between the frontal and saggital
results emerge when they are optimized independently. These differences can be quantita-
tively and qualitatively analyzed by comparing the four different parameter sets generated
by these optimizations (corresponding to models C1, D, E4, and F).

The main observation here is that the baseline horizontal momentum gain optimization
results (E3 and G) are each dominated by motions in a different direction:

e The baseline linear momentum results (E3) are dominated by the sagittal dynamics,
with only a slight shift in ¢, from the sagittal linear momentum results (E4).

e The baseline angular momentum results (G) are dominated by the frontal dynamics:
the frontal component of the objective function for set G is almost double the frontal
component (and almost 5x for set F).

Comparing the frontal linear momentum results (C1) to the baseline results (E3), most
of the mass has shifted to the body link, the thigh link gets as long as possible, and the
COM of the leg links shift towards the knee. For the sagittal angular momentum set (D)
compared to (G), the thighs get longer and the shank COMs shift towards the knees.

Although the baseline angular momentum results are dominated by the frontal dynam-
ics, the doubling in sagittal angular momentum gain when switching from F to G increases
the overall angular momentum gain enough to compensate for the relatively small drop in
frontal gain. This also helps to demonstrate a key observation: the overall horizontal gain
is always greater than either individual horizontal gain but smaller than their sum, due to
the use of induced norms.

It is interesting to note that the non-dominant momentum gain results, corresponding
to sets C1 and D, differ only in the relative length of the body link and have the top
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two values for both the non-dominant momentum gain directions. They are also the
two parameter sets with the lowest dominant momentum gains and lowest baseline linear
momentum gain, but these differences are almost unnoticeable when looking at the baseline
angular momentum gain.

Further, looking at models B2 and C1, where the objective values for the angular
momentum gain are separated by less than 1%, the overall performance of the models might
appear to be similar. However, looking at sizable differences in the directional angular
momentum gains for these models shows that they will actually perform differently in the
two given directions. This disparity between the baseline and directional gains justifies the
need for weighting and selection when optimizing mechanisms for specific tasks.

Automatic Direction Selection: Unweighted oco-Norms

When the gain needs to be optimized in a single direction but the direction is not
known a priori, an co-norm can be used on the gain matrix to automatically select the
single direction with the highest gain in each configuration.

To verify this, each 2-norm used to generate the baseline results was replaced with an
oo-norm. This formulation should find a parameter set which is similar to both the baseline
and dominant a priori results of Sections 6.3.1 and 6.3.1, respectively.

Although the velocity gain results for this formulation are identical to the baseline
results (see model A), the momentum gain results include some interesting differences.
As expected, when using the oo-norm, the linear momentum gain results (model E2) are
similar to both the baseline and sagittal 2-norm results (E3 and E4, respectively).

However, the COM of the thighs has shifted further down the leg, almost to the halfway
point between the hip and knee. This shift is in the opposite direction from the shift
between the baseline results and the dominant sagittal a priori results, giving an indication
that there are configurations where the frontal component of the gain is a larger contributor
to the overall linear momentum gain than the sagittal dynamics.

Similarly, the angular momentum gain results (model G) are the same as the baseline
results and shares features with the (dominant) frontal results (model F'). This is a strong
indication that the sagittal dynamics play a minor but critical role in the overall angular
momentum gain formulation.

The information gained from an optimization using co-norms could also be used for a
mechanism with fixed inertial and kinematic parameters: This optimization would provide
insight into which directions the system can control the COM more easily (and by extension,
balance and move).
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Weighted Directions: Gain Weighting Matrix

Unlike the optimizations in Sections 6.3.1 and 6.3.1, which focus on maximizing the
gain due to a single component (manually or automatically determined) of the generalized
gain for each configuration, there are often applications where multiple components of the
generalized gain are important to consider. This is where the 2-norm is generally used,
which will result in maximizing the largest possible gain via a combination of the included
gain components.

However, there are cases where one of the gain components may be more critical to the
performance of the desired behavior. In this case, the gain weighting matrix can be used to
bias the optimization towards a particular component without removing the others from
the formulation entirely.

To demonstrate, two different gain weighting matrices were added to the baseline for-
mulation. To bias the optimization towards the frontal plane, a weighting matrix was used
which emphasizes the gain in the x direction:

Wi = W, = [9 0] (6.6)
01

To bias towards the sagittal plane, a weighting matrix was used which emphasizes the
gain in the y direction:

10
We =W,y = [ ] (6.7)
09

Comparing the results of these weighted gain optimizations to the a priori direction
selection results from Section 6.3.1, when a given plane is emphasized the results of the
weighted optimization are identical to the results from the a prior: direction selection when
the same plane is selected. For example, when the  component is emphasized over the y
component using a gain weighting matrix for this model, the results are the same as if the
x direction was chosen a priori (and vice versa).

Scaling the relative values of the weights in the W matrix can therefore be used to
shift an objective across a continuous subspace of gains, ranging from a complete focus on
one direction (as seen in Section 6.3.1) to the equally weighted contributions from multiple
directions used in Section 6.3.1.

108



Automatic Joint Selection: Unweighted 1-Norms

If a single known joint is to be used to realize balancing behavior, the formulation will
reduce to the maximization of the chosen vector norm of a column vector (or a scalar, if
only one component of the gain is being used).

However, if the goal of the optimization is to determine which single joint should be used
for balancing in any particular configuration, possibly to free up the rest of the system’s
DOFs for other tasks, then the matrix 1-norm can be used in place of the 2-norm from the
formulations of the baseline results. As with the previous optimizations, all velocity gain
results were identical to the baseline results.

The linear momentum gain results using the 1-norm are different from any other linear
momentum results, with the same parameter set as the frontal angular momentum gains
(see model F). The angular momentum gain results (model C2) are closer to the rest of the
angular momentum results, although they still differ from the (dominant) frontal angular
momentum gain results (F) by switching the relative lengths of the thigh and shank links.

The 1-norm can also be applied to the a priori direction results, assuming the matrix
norm is used for the single-row gain vector, to determine which joint contributes the most
to the selected component of the gain in each pose. For these optimizations, all of the
velocity gain results and two of the four momentum gain results (the non-dominant frontal
linear momentum and sagittal angular momentum) were identical to their corresponding
a priori results using the 2-norm.

The frontal angular momentum gain results were the same as the angular momentum
I-norm results (model C2), as expected since the angular momentum gain is dominated
by the frontal dynamics. However, the sagittal linear momentum gain results (model B2)
show a similar leg length switching behavior to what was seen for the angular momentum
gain results above, when compared to the baseline and sagittal linear momentum gain
results that used the 2-norm (corresponding to models E3 and E4, respectively).

These leg length adjustments when switching from the 2-norm to the 1-norm suggest
that if a system would benefit from using only a single joint (or a reduced set of joints)
for balancing, that longer links further from the contact will provide more relative gain.
Intuitively, this makes sense as it implies that the subset of joints being used for COM
motion would require longer lever arms to move distant masses.

An additional key observation here is that, even if a mechanism has already been
designed and the inertial and kinematic parameters are fixed, an optimization which uses
1-norms to evaluate the gains over a given configuration space can provide insight into
which joint can be used most effectively to balance. If the optimization is run on different
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areas of the configuration space, this could also be used to map which joint should be used
in which regions of the space to maximize the model’s COM motion capabilities.

Weighted Inputs: Actuator Weighting Matrix

In cases where the joints are not all equivalent (different motors, energy sources, etc.)
it is often useful to be able to weight these inputs to provide both an indication of relative
importance and to avoid joint limits (e.g., maximum torque). This is also useful when it
is desirable that only a subset of joints are to be used for balancing, as in the previous
section, which can be given much higher weights than non-balancing joints to drive the
solution towards a desirable outcome.

To this end, the generalized objective function also incorporates the ability to apply a
weighting matrix to the input vector. As an example, the input vector weights could be
similar to those used in [23] for COM manipulability, which correspond to defining either
the relative importance of the joint accelerations or the maximum torques.

For this example, the following input weighting matrix was applied to the input vector,
which prioritizes using the hip joints over the knee joints for balance:

W, = 6-diag(1, 1/9, 1/4, 1/4, 1/9, 1) (6.8)

With this weighting matrix, the parameter sets either closely or exactly correspond
to the automatic direction selection results (using co-norms) generated in Section 6.3.1,
corresponding to models A, E1, E2, and G.

Variations In Gain due to Pose

In addition to the changes in overall gain due to differences between the parameter
sets, it is also critically important to understand how the gains change based on a model’s
pose. As shown in Figure 6.6, the magnitudes and directions of each of the gains can vary
substantially throughout a given motion, even for a single parameter set (in this case, A).

For this model, the main reason for these changes in gain direction and magnitude is
the motion of the swing leg masses relative to the model’s passive contact point, which can
cause dramatic shifts in the model’s COM and other inertial properties. Since the gains
are effectively quantifying the potential of the system to move its COM, longer ellipse axes
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Figure 6.6: Variations in horizontal gains throughout a single step for the 3D 5-link biped model using
a single parameter set (A). The four ellipses in each graph show the magnitudes and directions of the
four different baseline horizontal gains for each selected pose, with linear velocity gain in blue, angular
velocity gain in orange, scaled linear momentum gain in yellow, and scaled angular momentum gain in
purple (the scaling of the momentum gains in this figure is purely for the purpose of visual clarity). The
percentage labels on these graphs indicate progress through a complete swing phase (note the symmetry
between (a) and (1)), while the black stick figure in the lower left of each graph and the underlying gray
stick figures show the pose of the model at each point. In this figure, gain ellipses based on 2-norms are
used to facilitate comparisons with the ground-projected dynamic COM manipulability defined in [23].
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in Figure 6.6 correspond to more capacity in the inertial structure of the model to move
its COM in that direction.

The gains are also symmetric, since the gains are entirely a function of the static
configuration of the joints and the parameters of the model. The symmetry also means
fewer gain calculations are required, as the gains can be mirrored from one half of the
configuration space to the other.

6.3.2 Discussion

As introduced in Section 6.3, optimizing a system’s gains is equivalent to maximizing
the potential of that system to be able to move its COM and, by extension, to walk and
balance. Applying the optimization framework and generalized objective function defined
in this work to a parameterized model will therefore maximize the potential of the given
mechanism to effectively move its COM in a region of its configuration space, independent
of the controller used or any predefined trajectories within that space.

This optimization provides an upper limit on how well the mechanism can balance
and walk using any controller in a range of configurations in the desired motion subspace,
avoiding overfitting to a specific controller and/or trajectory. Additionally, the gains are
effectively a quantification of the peak COM motion capabilities that could be achieved
with a ‘perfect’ controller, so they could be used as a metric for how close to optimal a
controller can move the system’s COM.

Currently, humanoid robot performance is compared after the physical mechanism, con-
troller, and trajectories have all been designed. Many of these design choices (especially in
the mechanism design) are made through a combination of heuristics and physical fabrica-
tion constraints. The optimization approach proposed in this paper also helps to resolve
computationally some of the legged robot design trade-offs that are currently approached
heuristically: heavy vs. light feet, long vs. short legs, etc.

By providing designers with a quantitative way to compare between different designs
(kinematic, inertial, or otherwise), the optimization can even be used to select a reduced
region of parameter space within which to heuristically design a system.

To account for real world effects, such as joint limits and energy costs, here weighted
norms were used in place of the standard input vector norms (as introduced in [27]). Recent
work on dynamic COM manipulability provides some evidence for the benefits of this type
of approach, where the input vector has been weighted to account for the torque and
acceleration limits of the mechanism’s actuators or the relative importance of minimizing
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joint accelerations [23]. The weighting matrices from [23] were also applied in this work to
instantaneous changes in velocity and momentum.

As discussed in [27] and Chapter 5, different norms on the actuator input vectors are
useful in different scenarios:

e The oo-norm is an appropriate choice if the most critical issue in the optimization is
the effects of joint limits (provided each joint’s limits are independent).

e The 1-norm is appropriate if energy consumption is the most critical issue and the
energy cost of moving a joint is proportional to its entry in the input vector.

e The 2-norm should be used if the energy cost of moving a joint is proportional to the
square of the input vector entry, or if other 2-norm based metrics are being used.

Building on this discussion, general guidelines are provided for choosing the right gain,
norm, and weighting matrices given a desired task and mechanism: Typically, as discussed
in Section 6.2, using an unweighted 2-norm to optimize the angular momentum gain will
generate similar results to the standard cost of transport for legged locomotion. This is
also a good choice for systems that will be using dynamic balance and require consideration
of the inertial rotation about their passive support point (e.g., inverted pendulums).

If a very specific COM motion task must be achieved by the mechanism, to the exclusion
and/or detriment of any other tasks, then optimizing for a single gain (or subset of gains)
which correlates directly to the direction and goals of that task is recommended.

However, when a more general mechanism capable of achieving several different tasks is
desired the balance of objective formulation shifts. In this case, all of the gains associated
with the various tasks should be included in the objective formulation and a gain weighting
matrix can be used to prioritize between them as needed or compensate for differences in
scale and/or units. The constraints on the inputs will again dictate the type of norm and
the input weighting matrix, although with a general system typically the 2-norm and the
identity matrix will be appropriate.

Ideally, the goal would be to increase the gains in directions where stability is lacking
to facilitate recovery motions when needed. Note that these gains represent the peak COM
motion performance that any controller will be able to achieve for the given model and
parameter set.

Therefore, a model with a high gain and a simple controller can potentially achieve the
same COM motion performance as an optimal controller on a low-gain model. In other
words, similar performance can be achieved with a simple controller running on an opti-
mized mechanism compared to an optimal controller running on the original mechanism.
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Due to the strong dependence of these (and other) gains on the configuration and
parameters of the model, there is not yet a clear and effective method of manually designing
a high-gain system. This is the key motivating factor behind the development of the
generalized optimization framework in Section 5.4 and the validation of the components of
the framework that has been described in this section.

6.4 Summary

In this chapter, the generalized gains defined in Chapter 5 have been applied as part
of a parameterized design optimization. This serves both to validate the gain formulations
and the optimization framework which uses them as part of the objective function.

The application of the novel gain-based optimization framework defined in Chapter 5
has been demonstrated using three sets of parameterized mechanism design optimizations:

e First, a set of optimizations were performed on three simple planar mechanisms over
four different planar gains and the results were compared to the expected outcomes
from a theoretical perspective, which led to angular momentum gain being found as
the most useful for performing mechanism design;

e Second, angular momentum gain was used in the objective function for a 5-link
planar biped mechanism, giving results very similar to those found using an objective
function based on the cost of transport (the typical objective for walking mechanism
optimization), while requiring less computational effort and not being limited to
selecting or generating a specific controller or trajectory.

e Third, the generalized objective function was used to compare the results of different
gain-based optimizations using three different types of norms and several different
weighting schemes for a parameterized 3D 5-link biped mechanism.
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Chapter 7

Conclusions

In this thesis, improvements to the performance metrics used both to control balancing
bipeds and to quantify their physical balance capabilities have been developed. These
improvements will enable bipeds and other legged robots to safely walk and work in human
environments, even when faced with external disturbances.

An online gait generation and tracking controller capable of responding to unknown
disturbances while walking or standing was introduced in Chapter 3. The controller uses
the 3D FPE to locate the point on the ground where the robot must step to regain stability
following a disturbance. The 3D FPE location is re-computed at each time-step, allowing
the robot to adapt to disturbances online by adjusting its desired stepping location.

A simple state machine is used to generate a full gait cycle: the robot initiates lifting
of the swing leg either when forward progress is desired or when a disturbance requires it,
and tracks the target foot placement location to determine the swing leg placement. This
controller was tested in simulation and shown to generate stabilizing foot placements in
response to disturbances from arbitrary directions, both while standing still and in motion.

A novel balance point estimator called the Spherical Foot Placement Estimator (SFPE)
was introduced in Chapter 4. It has been formulated to overcome the drawbacks of existing
balance point estimators, by combining and extending desirable features of several estima-
tors to produce a generalized, predictive 3D formulation (including impact and inertia).

The SFPE was compared to other balance point estimators, and shown to outperform
them by providing recovery step location prediction and momentum objectives with smooth
dynamics. An SFPE-based feedback loop was used in a momentum-based controller as an
example of how to add leaning to an existing whole-body controller, and a dynamic SFPE-
based stepping strategy was used to deal with large disturbances.
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In Chapter 5, Featherstone’s initial definition of momentum gain for planar 2-link in-
verted pendulums was extended to general 2D and 3D mechanisms by using simplified no-
tation to facilitate the definition of both the velocity and momentum gain equations. Two
different methods for calculating these general momentum gains were described, namely
the Augmented Inertia method and the Spatial method.

The Spatial method provides insight on the relationship between a system’s centroidal
momentum and its velocity and momentum gains. The definition of the spatial gain of
a system incorporates both angular and linear components in all 6 (translational and
rotational) directions of 3D motion, and enables the definition of an actuated centroidal
momentum matrix which was shown to be equivalent to the spatial gain matrix.

Building on the spatial definitions of the velocity and momentum gains, a generalized
gain formulation was defined for walking and balancing mechanisms that concisely quanti-
fies their COM motion properties and encapsulates and clarifies the relationship between
velocity and momentum gains. This novel gain formulation provides an easily defined met-
ric for analyzing the COM motion capabilities of any mechanism using passive contact to
interact with its environment, which enables quantitative comparisons between different
mechanisms across the design space.

At the end of Chapter 5, these generalized gains were then used to formulate an op-
timization framework for the design of parameterized mechanisms, without the need to
specify or generate controllers or trajectories. To this end, the generalized gain formula-
tion was combined with weighted matrix norms to produce a generalized objective function
for optimizing the design of parameterized mechanisms. Since these gains are all invariant
to a scaling of total mass and the angular gains are invariant to a scaling of total length,
entire families of mechanisms can be optimized in one application of the framework.

This generalized framework and objective function was then demonstrated using a series
of progressively more complex balancing mechanisms in Chapter 6. First, the simplest gains
were compared as objective metrics for planar inverted pendulums and a 3-link biped.

Based on the results of these comparisons, a 5-link planar biped mechanism was opti-
mized using angular momentum gain. It was shown that the results were very similar to
those found using an objective function based on the cost of transport (the typical objec-
tive for mechanism optimization), while requiring less computational effort and not having
the optimal motion potentially overfit to a specific controller and/or trajectory.

Finally, to demonstrate the wide variety of possible objective functions that are enabled
via the generalized gain formulation, the framework was applied to a parameterized 3D
5-link biped using 3 different types of norms and several different weighting schemes.
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7.1 Contributions

The contributions of this thesis to the state of the art are as follows:

C1. Dynamic Balance and Gait Strategy

A dynamic balance and gait control strateqy based on an existing 3D balance point
estimator and a continuously updated tmpact plane, which uses both leaning and stepping
balance strategies to respond to external disturbances while standing and walking.

The goal of this overall strategy is to allow the robot to respond to external disturbances
by stepping onto the 3D FPE, either while standing or walking. One of the key benefits
of this strategy is that recovery from external disturbances is a subset of the elements
required for dynamic gait. To walk, a robot need only push itself into an unstable state in
the desired direction of motion and allow the recovery mechanism to avoid a fall.

To evaluate the proposed approach, the 3D FPE [20] is used to find a balance point
for a 14-DOF lower-body humanoid robot. This point is then used as a control reference
to inform both a high-level state machine and its associated task-level trajectory genera-
tor. The task-level trajectories are used as control inputs to a prioritized Jacobian-based
feedback loop [60] and a simple low-level PD joint controller to drive a simulated robot.

Both [18] and [60] have investigated earlier versions of this form of state machine based
control strategy. However, [18] deals only with planar bipeds with point feet, while [60]
uses a constant plane of motion, requires separate lateral stabilization, and has very limited
discussion of external disturbances. The approach developed in this thesis uses a continu-
ously updating plane, which allows it to respond in 3D to unknown external disturbances.
It also includes dynamic gait generation, unlike [14], and is used directly as part of a unified
control method, as opposed to a measurement method such as in [20].

C2. Spherical Foot Placement Estimator

A nowel balance point estimator which combines and extends the desirable properties of
existing estimators while removing or reducing the majority of their drawbacks.

Building on the work in Chapter 3 and the definitions of the FPE, GFPE, and 3D
FPE [14,18,20], a novel 3D balance point estimator called the Spherical Foot Placement
Estimator (SFPE) was developed. The SFPE maps the biped’s current kinematics and
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dynamics to a simplified compass gait model and projects its motion into two perpendicular
planes. These projections are used to continuously predict whether or not a step is needed,
and if so where to step, in order to maintain or restore balance in 3D.

This novel estimator was developed to address the drawbacks of existing balance point
estimators, as outlined in Section 2.2: it is predictive, considers impact, includes rotational
inertia, allows ankle torques and 3D COM motion, does not require flat ground or heuristic
parameters, and works for a biped at rest or in motion.

An example of an SFPE-based controller was also developed and compared to a COM-
based controller in simulation. The addition of the SFPE to the control structure augments
an existing optimal controller with both leaning and stepping strategies for disturbance
rejection: SFPE-based feedback is used to generate a desired momentum for momentum-
based leaning while the SFPE point is used as a control reference for stepping. The new
estimator outperforms existing balance criteria by providing both recovery step location
prediction and momentum objectives with smooth dynamics.

Unlike the existing 3D balance point estimators, such as the ICP, GFPE or 3D FPE
[14,17,20], the SFPE does not assume instantaneous planar motion of the COM relative to
a single point or plane. Through the predictive formulation of the SFPE, any desired “final”
state of the system (after the next foot-fall) can be used to modify the resulting balance
point. In this way, the SFPE can act both as a traditional balance point estimator and as
a tool for the generation of dynamic gait and other whole body motions, which typically
requires a significantly more complex strategy (such as those using Capturability [12,15]).

C3. Generalized 2D and 3D Gains

Generalized definitions of momentum gain for 2D and 3D systems, the definition of
a novel spatial gain based on changes in centroidal momentum, and the formulation of a
generalized gain equation which includes all existing gains as special cases.

In Chapter 5, simplified notation was developed which facilitates the definition of gains
and other impulse based dynamic ratios. Then, building on Featherstone’s initial defini-
tions of momentum gains for 2-link planar inverted pendulums [27], the momentum gain
formulation was extended to general 2D and 3D models and two different methods for
calculating these general momentum gains were defined.

An additional gain was defined as part of the spatial method for calculating momentum
gains, which was labeled the spatial gain of a system. Via this new gain definition, the
velocity and momentum gains of a system were compared to its centroidal momentum
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and the associated Centroidal Momentum Matrix (CMM) [33]. The spatial gain matrix
was shown to be a direct link between centroidal momentum and the gains, along with
providing an alternative method of calculating the CMM.

Bringing all of these novel elements together, a generalized gain formulation was defined
which incorporates all existing gains as special cases and/or subsets. Specifically, this new
formulation is able to reproduce all of the gains defined in [27] along with the novel gains
defined in this thesis through the application of selection and scaling matrices. This new
formulation was also used to show that the difference between velocity and momentum
gains for is purely a function of scaling.

C4. Generalized Optimization Framework

A framework using generalized gains which enables the optimization of parameterized
balancing mechanisms without the need to define or generate controllers or trajectories.

This optimization framework was defined in Chapter 5 along with its gain-based ob-
jective functions. Since the gains are purely functions of the physical properties and con-
figuration of a system, a parameterized mechanism can be optimized for a given set of
behaviors over a desired configuration space. This enables the optimization to be indepen-
dent of the controller and/or trajectories used to achieve the given behaviors, invariant to
gravitational or velocity product dynamics, and (when balancing on a point or line and
using angular gains) independent of the contact angle.

By including the generalized gain formulation as part of the objective function, weighted
matrix norms can be used to allow the optimization to incorporate domain knowledge such
as torque limits and/or the relative importance of the various joints. As a demonstration
of this framework and validation of the gains, several different sets of optimizations were
carried out on simple planar mechanisms along with both 2D and 3D 5-link bipeds. The
results of these optimizations, including a comparison to a cost-of-transport-based opti-
mization, showed that the angular momentum gain generates comparable results without
needing a controller and/or a trajectory to be defined.

Although there has been some work in the past on the optimization of mechanisms
(as discussed in Section 2.4), there has not been an investigation of how to optimize a
mechanism for better physical balance capabilities. There are only two contenders for
measuring this type of performance: the dynamic COM manipulability of [23] and the
gains defined in [27] then extended and generalized in Chapter 5. This framework enables
the use of either of these metrics, and has been demonstrated using the novel gains that
were introduced in this thesis to show the benefits of this approach.
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7.2 Future Work

One main goal of the research in this thesis is to develop methods to facilitate the
design and comparison of robust mechanisms which are inherently easy to balance and
move, embedding as much capability into the mechanism itself as possible to enable the
use of simpler controllers to achieve complex tasks.

One possible method to address this is the use of generalized gains in parallel with
other suitable objectives for the design of a more complex system. This would benefit from
an examination of the position gains of a system, defined briefly in [27] as the integral
of velocity gain along a path in configuration space, and the analogous gains found by
integrating the momentum gains along a similar configuration space path.

Another approach to maximizing the balancing capability of a mechanism would be
to combine the benefits of the dynamic COM manipulability metric with those of the
generalized gains defined in this thesis. The generalized gain formulation seems to be an
instantaneous version of the dynamic COM manipulability of [23,24], although more work
is required to determine if this is in fact the case. Whether or not this is the case, an
analysis of how the pairing of these instantaneous and continuous dynamic metrics could
be used for balancing and gait would be an interesting and valuable contribution.

An important question which remains unanswered is how to effectively compare gains
in a mechanism’s configuration space. Since the configuration space of typical complex
and/or 3D systems are not human-readable in most cases, this work could augment the
existing tools available for designing these systems with an understanding of how effectively
the mechanism could move its COM across a defined subset of the configuration space.

Finally, instead of using weighted matrix norms as is done in this work, other formula-
tions of a scalar objective from a vector of gains could also be explored, such as minimizing
the condition number of the gain matrix or maximizing its smallest singular value.

Once the physical form of the robot has been designed, the focus of future work will
shift back to the controller and its associated metrics. In the case of this research, the
chosen metrics are all dynamic balance point estimators such as the SFPE.

The benefits of extending the SFPE model to allow varying leg lengths, and different
stance and swing leg lengths, should be analyzed. Both of these extensions would further
relax the assumptions which currently restrict the SFPE model’s COM motion to fixed-
radius spherical motion about the anchor points. These changes are also included in a
number of other balance point estimators which could be further examined, such as [16,119]
which make use of analytical solutions to the energy equations.
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Using a varying centroidal inertia in the SFPE model should be tested, inspired by the
inertia shaping methods explored as part of the safe falling strategy in [83]. In combination
with the average spatial velocity of the biped, the centroidal inertia could be used to modify
the centroidal angular momentum and therefore could be used as part of a SFPE-based
component of a balance strategy based on centroidal momentum.

Alternative pre-impact equations should also be explored to enable the SFPE to apply
to a broader range of possible scenarios. For example, for a biped in flight the pre-impact
equations could be generated by applying conservation of momentum and projectile motion
of the COM to find the pre-impact state.

In [18], conservation of energy and momentum were used to determine the stable regions
of the phase space of a planar compass gait biped in a predictive form, followed by a form
of inversion to produce the real-time FPE derivation. Similarly, an inverted form of the
SFPE should be developed which uses the current state and a desired footstep location to
generate the required angular velocity for the SFPE model.

This desired angular velocity of the model could then be used to augment the control
objectives of a biped. The integration of the SFPE and its inverse into a comprehensive
disturbance compensation controller would enable a complementary combination of flexing,
stepping, and leaning approaches within a single controller to respond to a wide variety of
external disturbances.
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Appendix A

Spatial Vector Algebra: Details

Spatial vector algebra was introduced by Featherstone in 1983 [120], while the closely
related spatial operator algebra was introduced in 1991 [121]. Both approaches make use
of 6D vectors and tensors, including a family of (usually sparse) matrices, to enable the
efficient representation and calculation of the various physical properties of a multibody
system. Spatial vectors are very similar to other 6D formulations of multibody dynamics,
such as screw theory, the dual Lie algebras se(3) and se*(3), and real-number motors [28] .

The application of these 6D methods of representation and calculation, and in partic-
ular spatial vectors, have been shown to reduce the apparent complexity in modelling the
dynamics of humanoids [10]. An introduction to the concepts of spatial vector algebra
follows, based heavily on Part 1 of an introductory tutorial on the topic [30]. Part 2 of the
tutorial serves as an introduction to how to write algorithms using spatial vectors [31].

Pliucker Coordinates

Spatial vectors are defined in two vector spaces: motion vectors in IM® and force vectors
in IF%, where the superscript denotes the dimension of each space. The most common
motion vectors are the spatial Ve1001ty v and spatial acceleratlon a, while the most common
force vectors are the spatial force f and spatial momentum h. To facilitate the generalized
definitions below, motion vectors are labelled m, force vectors are labelled f , and spatial
vectors in either space are labelled §. Although f is used for both a general force vector
and specifically for spatial force, the equations in this section apply to all properties which
are considered force vectors, such as momentum, unless otherwise noted. A scalar product
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(dot product) is defined between the two vector spaces, which maps one vector from each
space together to produce a single, real value: m - f = f-m € R.

In classic 3D vector notation, three independent unit vectors in Cartesian coordinates
(ie., {8,), k}) are used as basis vectors to represent the 3D vectors, such as @ = a,? +
ay] —I— a.k, using 3D coordinate vectors: @ = [ay, ay, az] € R3. Similarly, a set of 12
independent unit vectors in Pliicker coordinates [122] are used to represent spatial vectors.
These are split into two sets of six basis vectors each: D = {dy, ds, ..., dg} C MS for
motion vectors and € = {é;, €,, ..., és} C IS for force vectors. This enables the use of
spatial coordinate vectors m = [my, ma, ..., mg]" € RS and f: [f1, for ooy fo]" € RS
to represent motion vectors (1 = 3.0 m;d;) and force vectors ( f= SO fiéd).

The most useful set of basis vectors comprises a dual basis, where d;-é = 1 and
d; - é; = 0 for 7 # j. Using a dual basis for the vector spaces allows the dot product
between the motion and force spaces to be calculated in the same fashion as classic 3D
vectors (1 - F=m'f= Z?:l m; fi) and makes the product invariant with respect to the
chosen coordinate frame. Since a given set of Pliicker coordinates are defined entirely by
the position and orientation of a single Cartesian reference frame, the specific dual basis
used in this work (for an arbitrary Cartesian reference frame O) is:

D= {dOrm JOZN CiOZu Ci:m Ciyv dz} - ]N-[6 (Al)
&= {éx: éya éZ? éOxa éOya éOz} - IF6 (AQ)

In these equations, the following conventions are used (where a replaces x, y, or z): ciOa
is a unit angular motion around the Oa axis, cia is a unit linear motion in the a direction,
€, is a unit couple in the a direction, and ép, is a unit linear force along the Oa axis.
Spatial coordinate vectors are given a presuperscript to specify the Cartesian reference
frame used to define their Pliicker coordinates, in this case O (e.g., “m, © I )

In cases where the spatial vector being represented has a subscripted label (e.g., §4),
if the label is the same as the coordinate vector’s Pliicker coordinate label, then typically
only the subscript is used: s, = §,. Note that if the coordinate vector is transformed to
another coordinate frame (as discussed below), both labels are still needed.

Due to the dual coordinate system, spatial motion and force vectors use different rules
for transforming between reference frames: if X is a transformation matrix for motion vec-

tors, then the corresponding matrix for force vectors is labelled X*. These two matrices are

directly related through the equation X* = (X T)_1 = (X 71)T =X 7T, which guarantees

that the spatial dot product is invariant to coordinate transformations:

—

XF'Xm)=f X Xm=Ff m (A.3)
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Spatial Vectors

Using 3D kinematics, the velocity of a rigid body can be defined using the linear velocity
vp of a point P on the body, and the body’s angular velocity @. The body’s spatial velocity
v can be found using these 3D vectors, by converting between their respective coordinate
vectors. Since angular velocity is a property of the rigid body, it can be moved from P to
O and its coordinate vector & can be used directly in the spatial coordinate vector ©%. By
moving &, the linear velocity must be augmented to compensate, using 7op (a 3D vector
from O to P). The coordinate vectors & and ¥, can then be used to construct %G € RS
which, when combined with the basis D, leads directly to the value of ¥ € IM°

Up = Up +Top X & (A4)

Oz T T r T
v = [Q Qo:| = |:w:r Wy Wz Yoz Voy Voz (A5)
T = wydp, + wycioy + w,dos + vordy + voycim + v0.d, (A.6)

Similarly, in classical dynamics all forces acting on a rigid body can be defined using
a linear force f acting through a point P on the body and a couple np. Much like the
spatial velocity calculations above, the spatial force f € IS can be found by recalling that
f can be moved to any point by adding an appropriate couple:

o = Tip + Top X JF (A7)

og =T =T T T
f= [no f } = |:n0x noy no: fe fy fz] (A.8)
f: nOxé:(; + nOyéy + nOzéz + fxéOx + fyéOy + fzéOz (Ag)

Spatial Transforms

If we define two Cartesian frames with associated Pliicker coordinate systems, labelled
A and B, then we can also define the coordinate vectors 4m, Pm, AL and P f, which

represent the spatial vectors m and f in these coordinates. Transformations between the
two frames can then be defined as 4 = AX 3P and Af = AX 3 Bf, where “X 5 and X3,
are the coordinate transformation matrices from B to A coordinates for motion and force
vectors, respectively. Note the presuperscript denotes the new coordinate frame.

In classical methods, a transformation from B to A would make use of a 4x4 homo-
geneous transformation matrix which contains a 3x3 rotation matrix R specifying the
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rotation of A with respect to B, and a vector 7 specifying the position of A with respect to
B, both in B coordinates. Using the spatial vector examples above, it is easy to show that
the spatial transformation matrices from the frame at B to the one at A can be determined
entirely using R and the skew symmetric matrix 7 (where 7@ = 7 X @, as discussed later):

_ ‘R 0|1 o] [R 0]
Xp=1. . =1 ~ (A.10)

0 R| |77 1] |RT R

_ [rR 0] [1 7] [R RF]
axe— | D =Y (A.11)

0 R| [0 1] [0 R|

where 1 and 0 are 3x3 identity and zero matrices, respectively, and the matrix 7 is the
3x3 skew symmetric matrix defined by the coordinates of 7 (where 7 = [r,, 7y, ’I“Z]T)Z

F=Skew(r)=1 r, 0 -r, (A.12)

Based on these equations, and the properties of rotation and skew symmetric matrices,
the following conversion between force and motion transformation matrices holds:

7x; = ("X.) o (AXB>T _ (Ang)_l (A.13)
Differentiation

The derivative 8(t) of a generalized spatial vector §(t) is also a spatial vector in the
same space, given by the usual differentiation equation for vectors
d S(t + ot) — s(t)

H0) = 50 = o S

(A.14)

This standard formulation leads to two key equations for finding the derivatives of
different instances of spatial vectors. First, the spatial coordinate vector of § in a fixed
frame O is simply the component-wise derivative of “s (in O coordinates):

d T T
(© ):E Os; 98y ... 086] :[051 95 ... Y5 (A.15)

o d
0 _

St

3
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Second, the derivate 5 of a spatial vector § whose coordinate vector is constant in a
moving frame, where the frame has a velocity of v, is given by

. 1 S 1 S 6
i 1i><sﬁ 1f.i€]M (A16)
v x*s ifsels

As seen above, a pair of spatial cross products are required to perform differentiation
due to the dual basis: one between motion vectors, which uses the standard operator
notation (x), and one between a motion vector and a force vector (x*). As shown, the

first spatial vector in these operations is always a velocity (e.g., ¥ X m or v x* f).

To gain some insight into these different spatial cross products, the standard cross
product between 3D vectors is examined. Given two arbitrary 3D vectors, @ and l;, and
their coordinate vectors in Cartesian space, @ = [a,, ay, az]T and b = by, by, bZ]T, the
cross product of the vectors can be written as a matrix multiplication:

Qg b, ayb, — a.by, 0 —a. ay b,
axb= ay | X |by| = [a.by —azb,| = | a; 0 —a, by | = ab (A.17)
a, b, azby, — ayb, —ay Ay 0 b,

A similar method exists for defining 6x6 matrices to replace both forms of spatial
cross products, using the coordinate vectors “m, Oj?, and U, (the velocity of O in O
coordinates) where O is the moving frame. Each 6x6 matrix contains three 3x3 skew
symmetric matrices (two of them identical) and 0, a 3x3 zero matrix:

Voxm=|_|x|_ |=|__ =1 . | =vom (A.18)
Vo mo wmo + vom Vo w| [mo

Lo @] el efotuof | @ wo| [fo] L 2

SR MR el B | ST

where the matrix ©* can easily be shown to be equal to —o7 using the inherent properties
of skew symmetric matrices.

Finally, the spatial coordinate vector O§ of the derivative g of a general spatial vector
§, in a moving frame O with velocity vp, is found by adding together the first two types
of derivatives, one for § changing relative to O and one for the movement of O itself:

. 1 ’l~)0§ if s¢ M6
Og _ |o; O O }
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Acceleration

The spatial acceleration of a body is found by simply differentiating its spatial velocity:
a = ¥. For a simple example of this, consider two bodies attached by a joint along
an axis § € M° (fixed in the second body), which constrains their movement such that
Uy = U1 + 8¢, where ¢ is the joint velocity. The acceleration of the second body is found
by simply differentiating the spatial velocity equation: @y = d; + ¢ + 5.

The second term in this equation can then be simplified, using the above methods for
differentiation of spatial vectors which are fixed in a given frame, the equation for v, and
a few spatial cross product identities (i.e., v(sa) = (0§')a, 9U = 0, and V,U; = —U,7;):

~ — . —

§q = ('ﬁgg)q = ’UQ(S(]) = 132(’172 — 171) = 172(-’01) = ’l~)1'l72 <A21)

Momentum and Inertia

The spatial momentum h € TS of a rigid body is given by h=1I ¥, where T is the
body’s spatial inertia. The spatial inertia also provides a simple formulation of the kinetic
energy T of a rigid body: T = v - h = SU- I¥. Since momentum is conservative, the total
momentum of a system of bodies is simply the sum of the momenta of each of the bodies.
If the bodies are rigidly connected, their spatial velocities will all be equal, which directly

leads to their total spatial inertia being equal to the sum of their individual inertias.

The spatial inertia matrix of a body in any dual coordinate system is a 6x6 symmetric,
positive definite matrix (positive semi-definite for massless bodies) which combines three
rigid body inertial properties: its mass m, a 3D vector ¢ from O to the body’s Center of
Mass (COM) C, and the 3x3 symmetric matrix Io: the rotational inertia of the body
around C'. Therefore, the inertia matrix for any body in the O frame is given by

fc+n;aaT mE] _ [fo mé] (A22)

R

o

mé ml mél ml

where I is the rotational inertia of the body around O and 1 is a 3x3 identity matrix.

It should be noted that although a general spatial inertia matrix potentially has 21
independent parameters, the spatial inertia matrix for a single rigid body is a function of
only 10 parameters. The full 21 parameters are only needed to define the spatial inertia of
a system of rigid bodies which are not rigidly connected [30].

The construction of the ©I matrix can be demonstrated easily, using equations from
classic momentum calculations. In classic 3D dynamics, the linear momentum [ of a rigid
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body is found by multiplying the mass of the body by the linear velocity of its COM:
[ = mvec. The angular momentum k¢ of a rigid body around its COM is given by k¢ = [,
which leads to a simple method for defining the spatial momentum and inertia at C":

k Ie@ Ie 0| .
el I e I e S (A.23)
l mue 0 ml| |dx

To find Oh the spatial momentum in O coordinates, the angular momentum ko must
be converted to ko, in a similar fashion to the couple in a force: ko = kc + roc X l where
Toc = € by the definition above. This leads to a formulation for OQ as follows

il

It is easy to verify this relationship in terms of the R and 7 variables from equation
(A.11) by recalling that the frame of reference at the COM does not rotate, making R a
3x3 identity matrix, and that the transformation matrix °X, is translating from C' to O

|;"L

kc+Cl
r

Q
S

0 1

1 é| .- L
[~ f] h = OX:Ch (A.24)

coordinates, so " = —¢ and therefore ¢ = 7. Building on this understanding, a mapping
between ®h and “¥ can be used to generate the equality: I = °X:I¢X:
OE _Ox* C’E _Ox* (CiCﬁ) _Ox+* Ci(CXOOﬁ) _ OiOﬁ (A25)

where the construction of ©I can easily be verified by recalling that X, = OXC This
also leads to a more general equation for transforming a spatial inertia matrix from one
coordinate frame to another:

Bf — BXAF(BX )T = BXATAX (A.26)
Equation of Motion
The derivative of the spatial inertia of a rigid body, which is moving with velocity v, is
4] =o' T —1Iv (A.27)
which directly leads to the equation of motion for a rigid body (recall h =13, 6 = 0):
f=h=200%)=Ii+ (LD)5 = Ia+o'Iv— Ivo = Ia +o°h (A.28)
where f is the total spatial force acting on the body and h is its spatial momentum.

For a more in depth treatment of spatial vectors as they relate to the dynamics of
robots in general, readers are invited to consult [28] or [29].
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