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Abstract

Fluid-structure interactions are highly complex and difficult to resolve using classical
physics tools. Recently, information theory has been proposed as an alternative for ex-
ploring these often highly non-linear and complex multi-physics problems. By viewing the
fluid-structure system as a flow of information, valuable knowledge can be gained with-
out needing to resolve the details of the interaction. Here, a combination of simulations
and experiments are used to assess how the behaviour of the fluid-structure system can
be recast into an information-theoretic framework. The proposed information-theoretic
tool is transfer entropy, which takes time series of some aspect of the system behaviour,
for example structural displacements, and infers directed casual relationships between the
components. Furthermore, due to dependence on the lag parameter, transfer entropy can
infer information about the critical time scales of the system. The first experiments consist
of two structures, constrained to allow only unidirectional communication and designed to
have enough known properties to validate the information-theoretic analysis. Additional
experiments are performed that add a third structure, thereby increasing the number of
communication pathways. This work shows that, while transfer entropy is model free,
the order of operations and interpretation of the results are significantly impacted by the
characteristics of the input data. As a result, it is imperative to have a clear research
goal and an understanding of the critical behaviours of the system. With that, it is rela-
tively inexpensive to gain valuable information from even the most complex fluid-structure
systems. Overall, transfer entropy is proven to be a useful tool for the analysis of fluid-
structure interactions, provided it is not naively applied and the data exhibits some degree
of randomness.
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Chapter 1

Introduction

Fluid-structure interactions (FSI) are prominent in many engineering and scientific fields.
They are typically highly complex, involving multi-disciplinary physics and non-linear dy-
namics [25, 46]. This makes it exceedingly difficult in most cases to disentangle and under-
stand the underlying physics. Few FSI systems allow for analytical solution, those that do
are only made possible by making significant simplifying assumptions. As such, it is more
common to apply numerical methods, which must resolve the physics of the structural
dynamics, throughout the fluid and at the interface. Time dependent and non-periodic
interactions are particularly expensive to solve due to the large number of variables. These
problems lend themselves to data driven methods which can focus on the behaviours of
interest without having to resolve all of the details of the interactions.

Data driven time-series analysis can be used to focus analyses by identifying cause
and effect relationships. This has long been performed through correlation of time-series.
However, correlation is rarely a suitable indicator of causality. Additionally, most methods
for doing this require the fitting of a model, which is expensive and often ill-suited to non-
linear, non-normally distributed data [24, 31, 61]. Information theory can provide a model
free method for dealing with non-linear data [8]. Information is a contextual measure
based on the likelihood of a variable being in a specific state [13]. Measuring the mutual
information of two variables, that is the amount of non-unique information, is analogous
to correlation, but, being symmetric, cannot be used to differentiate the direction of any
implied interaction [42]. Neither correlation method is equivalent with causality, so another
measurement is sought.

Transfer entropy (TE) is an asymmetric, model free, non-linear measure that has been
used in a range of fields to identify directed causal relationships as a function of the
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communication delay [9, 32, 41, 59, 63, 64, 66, 67]. Coupled with some knowledge of the
system, this can be used to identify the communication pathways and other time-scale
information. It is based on the information-theoretic property, Shannon entropy. This
property relies on uncertainty about the state of a variable, meaning TE is only applicable
for non-deterministic systems.

One of the key challenges of applying transfer entropy to fluids data is the structure
of the data itself. TE was developed for data with a more natural information-theoretic
interpretation, such as text characters. In these data, the temporal evolution of an event
is unimportant and the information is naturally discretised. With the data common to
fluid dynamics, the temporal dimension of an event is not always easily defined and is
susceptible to change. For example, a pressure blast with a very short interval may cause an
oscillatory motion response of a nearby structure. In this scenario, a short message causes a
long response, something that is uncommon in information-theory. For this reason, a clear
hypothesis and a reasonable understanding of the information-theoretic concepts must be
obtained before the method of recasting fluid data in an information-theoretic framework
can be developed.

Zhang et al. [74] took the first steps toward analysing the interactions of fish with their
surrounding fluid using transfer entropy (TE). Their motivation is to disentangle the fish’s
other senses from the fluid interaction, allowing for a better focused FSI investigation.
They use a simplified experimental setup to confirm that TE is an appropriate tool for
identifying causal relationships between two structures that are communicating via a fluid,
using only the time-series of the structure displacements. The following work builds upon
the framework set out by Zhang et al. [74] by adding a third structure to the analysis,
thereby increasing the possible interactions. Additionally, this work begins to explore what
other knowledge can be obtained by measuring TE, as well as the broader applicability of
TE to other FSI problems. The focus here is systems with dynamic structures, using the
structural displacements as the only input. However, it is noted that it is likely possible
to extend the method to other information, such as force or direct fluid measurements.

1.1 Study Objectives and Thesis Overview

The objective of this work is to explore what knowledge can be obtained about complex FSI
systems using information theoretic tools. Specifically, it will be focused on the application
of transfer entropy to two and three body FSI problems.
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To assess the applicability of transfer entropy to FSI problems, one must first develop
an understanding of the nuances of its application. It is acknowledged that most readers
will have limited prior knowledge of the general concepts of information theory, so this doc-
ument begins with a focused introduction to information theory (Section 2.1, Section 2.2)
before discussing the particulars of transfer entropy specifically (Section 2.3). This intro-
duction draws from published literature as well as worked experiments to demonstrate some
of the intricacies and, where possible, create an intuitive understanding of the concepts.
Section 2.4 gives a very brief overview of the applicable fluid phenomena to accompany
the experiment design (Chapter 3) and to set expectations of the experiment results to
compare to the information-theoretic analysis.

The methodology for measuring transfer entropy from the type of data available in
FSI systems is not fully developed. This work uses simulations (Chapter 4) and two body
experiments (Chapter 5) to compare different methods suggested in the literature and to
fill in the gaps. The methodology is then expanded to three body experiments (Chapter 6)
to explore the use of conditional transfer entropy.
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Chapter 2

Background

2.1 Variables and Probability

This section is designed to define some of the concepts that will provide a foundation
for discussing information theory and to introduce the notation that will be used for the
remainder of this document. For general introductions to probability and statistics, the
reader is directed to the works of Bossomaier et al. [8], Dekking et al. [16], Dixon [17] and
Schay [49].

In the broadest sense a variable is any value that can be manipulated. Here we will
be talking about discrete random variables, denoted by an italicised capital letter, which
record a number of outcomes. When referring to an arbitrary outcome in a variable, the
lower case letter will be used. A subscript value can be added to refer to a specific outcome.
For example, a coin is flipped five times giving the results X such that X = [H,T,T,H,T],
where H is used to indicate heads was showing and T to indicate tails. The fourth outcome
can be referred to as x4. The number of outcomes or the length of X is denoted |X|. In
general:

X = [x1, x2, x3, ..., xN ]

Many of the variables used here will actually be time series. The only difference is that
the order of the outcomes is related to the time at which the outcome was observed. In
this sense it can be said that a time series variable contains time information as well as the
observation. For example, if X contained observations of the position of the sun in the sky
taken every hour, with the first observation (x1) being taken at midday, then observation
x3 would contain the position of the sun at 2 pm. When it is important to differentiate a
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variable as a time series, a subscript t will be added. Time shifts, which will arise in later
discussions, are treating naturally via index shifting, such as

Xt = [x1, x2, x3, x4, x5, x6, x7, x8, x9]
Xt−1 = [ - , x1, x2, x3, x4, x5, x6, x7, x8]

The values that an outcome can take are called events. In our example series there are
5 outcomes and 2 events, heads or tails. The collection of events is called the sample space
which has the general form:

ΩX = {ω1, ω2, ω3, ..., ωM}

where ΩX is the sample space of X containing all of the possible events, ω. Specific events
are referred to using a subscript. The outcomes of the variable must take one of the values
of the sample space, so for the example ΩX = {H,T}.

For much of the work here, multiple variables will be operated on at a time. In these
cases the sample space contains all possible combinations of the states in the variables. For
an example using two coins, X and Y , the individual sample spaces are ΩX = ΩY = {H,T}.
For both coins the sample space is ΩXY = ΩX × ΩY = {(H,H),(H,T),(T,H),(T,T)} where
each event now includes two states; for example ω2 =(H,T). The order of the values inside
the event is very important as they relate to a specific variable and cannot be mixed. As
such the general notation is

ΩXY = {(ωX,1, ωY,1), (ωX,2, ωY,2), . . . , (ωX,M , ωY,M)} (2.1)

where the subscript of ω denotes both the variable and the event to which it belongs.
For countable variables, such as those dealt with here, the probability that a variable takes
on the value of a specific event can be estimated by the number of times that event occurs
as an outcome.

Pr(X = ωi) = N(X = ωi)
|X|

(2.2)

where N() is the number of occurrences of the event inside the bracket and |X| is the length
of X. This should be read as the probability that the event ωi occurs in X is equal to the
number of times that event occurs divided by the number of outcomes. In the single coin
example variable, the event H occurs twice, N(ω1) = 2, in 5 outcomes, |X| = 5. Therefore:

Pr(X = H) = 2
5

Notice that this does not match the exactly match the known outcome, Pr(X = H) = 0.5,
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because the sample length is so short. To achieve the expected outcome requires |X| → ∞.

When dealing with more that one variable it is sometimes desirable to calculate joint or
conditional probabilities which account for all variables. Joint probability is the probability
of two events occurring, written as Pr(X = ωX , Y = ωY ), read as the probability that event
ωX occurs in X and event ωY occurs in Y . When the two variables are independent, the
joint probability is the product of the two individual probabilities. In the two coin example,
the probability of both coins showing heads1 is Pr(X = H, Y = H) = Pr(X = H) Pr(Y =
H) = 1

4 .

Conditional probability is the probability of an event given that another event is oc-
curring. Written as Pr(X = ωX |Y = ωY ), read as the probability that event ωX occurs in
variable X given that ωY has occured in Y . For example, imagine the two coins are glued
together so that when one shows heads, they both show heads. The sample space is still
the same but there is no chance of one coin showing heads at the same time as the other
shows tails, Pr(X = H|Y = T) = Pr(X = T|Y = H) = 0. The remaining probabilities
must be Pr(X = H|Y = H) = Pr(X = T|Y = T) = 1. The joint probabilities can then be
calculated using Eq. 2.3 [16].

Pr(X = ωX , Y = ωY ) = Pr(X = ωX |Y = ωY )Pr(Y = ωY ) (2.3)

Notice that in this system, with the coins glued together, the joint probability of both coins
showing heads is Pr(X = H, Y = H) = 0.5. This differs from the previous case because
they are no longer independent.

In the following work, the solutions are not so intuitive. To explain all of these concepts
in a more relevant way we will use a less tired example. Someone wants to know how the
probability of seeing a kangaroo changes depending on the time of day so they make three
recordings per day, one in the morning, one in the afternoon and one in the evening. The
results are stored in variable K with the events defined as:

kt =

1,Kangaroo was seen during time t
0,Kangaroo was not seen during time t

1Using the analytical results Pr(X = H) = Pr(Y = H) = 0.5
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The time of day is stored in another variable D which follows the rules

dt =


M, Observation t was taken in the morning
A, Observation t was taken in the afternoon
E, Observation t was taken in the evening

The sample spaces of the variables individually are ΩK = {0, 1} and ΩD = {M,A,E}. The
combined sample space Ω = {(0,M), (0,A), (0,E), (1,M), (1,A), (1,E)}. Hopefully it is clear
that the variables K and D are linked by the time of the observation so an outcome of K
needs to be compared to its companion in D. To calculate any of the probabilities (basic,
joint or conditional), the number of occurrences of the events must be found by counting.
Consider the example results from the first 9 observations:

K = [1, 0, 0, 0, 0, 1, 0, 0, 1]
D = [M, A, E, M, A, E, M, A, E]

The event ‘a kangaroo is seen,’ occurs three times in nine observations, Pr(K = 1) = 1
3 .

The event (1,M) occurs once in nine observations so the joint probability of that event is
Pr(K = 1, D = M) = 1

9 . Similarly the conditional probability is Pr(K = 1|D = M) = 1
3

because from the 3 samples where D = M, K = 1 occurs once.

2.2 Information Theory Primer

At first it can be difficult to visualise how anything can be learned by looking at systems
as information events which we have defined as contextual and devoid of meaning. The
following example is intended to demonstrate how powerful this is in an intuitive way.
Figure 2.1 shows two arbitrary time series. It does not matter what the different states
are or what is being measured, only how they compare within the system. Without any
math, it can be seen that it is likely that variable X is causing a response in Y at a delay
(lag) of 19 time steps. This is deduced from the following facts:

1. The behaviour (or pattern) of X and Y are the same.
2. Changes in X occur before changes in Y , so Y is not causing X.
3. The lag between an event occurring in X to it occurring in Y is constant.

This is simply lagged correlation, which is not equivalent with causality, but it is an
intuitive, information-theoretic, data driven measure. Of course, this is a highly simplified
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δ (Lag)

Figure 2.1: Time series for variables X and Y to intuitively demonstrate how causality
can be inferred from time series.

case but the idea that something can be learned about a system simply by looking at the
time series of some behaviour, without even knowing what the system is, is central to the
field of information theory. Suppose that system was the displacement of two structures
in a fluid. Without resolving the fluid flow, it is possible to infer that they are interacting
and to estimate the time it takes for the communication to occur. In the following sections
these concepts will be formalised.

2.2.1 Information Content

In information theory, information and meaning are entirely separate ideas [51]. We could
send two emails, the first saying "Hello", the second saying "elHol". The information of
both is identical but the first has meaning and the second is gibberish. Mathematically
information content, or simply information, is a measure of the likelihood of an event
occurring. It is a property of an event defined as [28].

η(ω) = − loga (Pr(ω)) (2.4)

where a defines the units of the result. When information is calculated by a natural
logarithm, the units are nats. For all of the work here a = 2 and information is measured
in bits.
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A more colloquial understanding can be obtained from thinking about it as a measure
of how significant some information is. Using the kangaroo example from earlier, let us say
that the kangaroo spotter spent 10 years recording whether or not they saw a kangaroo,
but they were taking the observations in downtown Toronto. Intuitively we would say
that seeing a kangaroo in Toronto was far more significant information than seeing one
in Australia because it is less likely or because it occurs less often; this also works out to
be mathematically true. Assume in those 10 years, 10959 observations are made and a
kangaroo was spotted once. From Eq. 2.2, Pr(KToronto = 0) = 10958

10959 ,Pr(KToronto = 1) =
1

10959 so the information generated by that event (from Eq. 2.4) is η(KToronto = 1) ≈ 13bits.
By comparison, seeing one in outback Australia is fairly likely; assume Pr(KAustralia = 1) =
1
2 , then η(KAustralia = 1) = 1 bit. This demonstrates how the measure of information
is related to uncertainty of the outcome, and it shows that the same event can have
different information content in a different system; in Australia the event ‘a kangaroo
is seen’ contains 1 bit of information, in Toronto it contains 13 bits.

The idea that the same event in two different data sets can have entirely different
information contents is an important property to understand. Formally, it is stated that
information is a contextual measure meaning the measured value only has meaning in the
context in which it was calculated. This is not very intuitive, since we are used to dealing
with measures like energy where 1 J in this system is the same as 1 J in that system. The
difference being that the value of information is measured against the data set in which it
exists.

It will soon be shown that this property will propagate through to transfer entropy.
The consequence that has the biggest effect on this work is that it becomes very difficult
to compare the results obtained from different data sets. We never actually compare
information content so that discussion is saved for later.

2.2.2 Shannon Entropy

This section starts with an important disticntion; Shannon entropy is not thermodynamic
entropy.2 The moniker Shannon entropy is often used when clarity is needed but for

2Claude Shannon formulated Shannon entropy in 1948 [51], some hundred years after the idea of
thermodynamic entropy became popular. Tribus & McIrvine [60] detail an interview with Shannon about
why he would call his tool the same name as something already in use. He explains that he had originally
called it uncertainty but that name was already in use in statistical mechanics. The suggestion of entropy
came from John von Neumann who asserted that "no one knows what entropy really is, so in a debate you
will always have the advantage."
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this document it is sufficiently clear to simply call it entropy. Entropy is the amount
of uncertainty contained in a variable, that is how uncertain the observer is about what
state the variable will be in. It is described mathematically as the expected value of the
information content of all of the possible events.

H(X) = 〈η(ω)〉 (2.5)

Substituting Eq. 2.4 into Eq. 2.5:

H(X) = −
∑
ω∈Ω

Pr(X = ω) log2 (Pr(X = ω)) (2.6)

where X is the variable and the summation occurs over all possible states ω contained in
the sample space Ω. This sounds confusing but is actually fairly straightforward. Let us
continue the kangaroo analogy from before. We created a variable K containing kangaroo
sightings in downtown Toronto and we are reasonably certain that no kangaroos will be
sighted. Intuitively, if entropy is a measure of uncertainty then entropy of this data set
should be low. Mathematically, this is proven from the probabilities of seeing/ not seeing
a kangaroo; Pr(KToronto = 0)→ 1, Pr(KToronto = 1)→ 0. Therefore from Eq. 2.6:

H(KToronto) = −0 log2 0− 1 log2 1→ 0

Repeating this experiment in the Australian outback where the probability of seeing a
kangaroo is about 0.5, we are very uncertain if we will see a kangaroo on any given day:
the entropy is high.

H(KAustralia) = −0.5 log2 0.5− 0.5 log2 0.5 = 1

To show that the result is only dependant upon the likelihood of an event, not the value
it takes, the experiment is repeated again at a kangaroo sanctuary where we are almost
certain of seeing a kangaroo; Pr(KSanctuary = 0)→ 0, Pr(KSanctuary = 1)→ 1.

H(KSanctuary) = −1 log2 1− 0 log2 0→ 0

It is important to understand that an outcome is most uncertain when the probability of
any outcome is uniform, i.e when Pr = 1/|Ω|. For the case where cardinality is 2 (K can
only be one of two values), uncertainty is maximum when the probability of either event

10



is 0.5 as shown in Fig. 2.2.

Figure 2.2: The relationship between H(X) and p(x) for variables of cardinality 2.

2.2.3 Conditional Entropy

In a manner analogous to conditional probability, conditional entropy accounts for another
conditioning variable. That is, the conditional entropy of X given Y (H (X|Y )) is the
uncertainty about the state of X when the state of Y is known [28]. The derivation of
the probabilistic form (Eq. 2.7) is given as part of the derivation of transfer entropy in
Appendix B.1 and in Cover & Thomas [13].

H (X|Y ) = −
∑
x,y∈Ω

Pr (X = x, Y = y) log2 Pr (X = x|Y = y) (2.7)

where x and y would be more correctly written as ωx and ωy based on the previous dis-
cussion but since the two statements are technically equivalent and the single letter is less
cumbersome, that is the common notation.

To demonstrate the use of conditional entropy, the kangaroo example is once again
employed. In Section 2.1, observations were made at three different times of day for three
days. Substituting the joint and conditional probabilities into Eq. 2.7 gives a conditional
entropy of H (K|D) = 1.14bits. Without some reference or comparison this number is
meaningless because the magnitude is contextual. A valid comparison would be to H (K);
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if the conditional entropy and the unconditioned entropy are the same then no change in
uncertainty was created by the knowledge about the conditioning variable. In other words,
the time of day has no effect on kangaroo sightings if H (K|D) = H (K). For the example
data H (K) = 2.20 bits so uncertainty about K is reduced by knowing D and it can be said
that the time of day does affect kangaroo sightings. It cannot yet be said if this change is
statistically significant but that will be covered in Appendix A.

Conditional entropy can similarly be used to measure the dependence of the current
state of a variable on its previous state by replacing the conditioning variable with a lagged
version of the main variable.

H (Xt|Xt−1) = −
∑
x,ẋ∈Ω

Pr (Xt = x,Xt−1 = ẋ) log2 Pr (Xt = x|Xt−1 = ẋ) (2.8)

where the dot over ẋ indicates that it relates to the lagged variable Xt−1. The time series
notation is the same as that in Section 2.1. The example data is not long enough to be
useful here but it is not difficult to imagine that this form could be used to see if the
uncertainty of seeing a kangaroo today would be changed by knowing if one was seen
yesterday.

All of the concepts covered so far can be applied to the example from the start of this
section. Looking only at variable Y in Fig. 2.1 we would be very uncertain about what state
Y will be in at time step 101 (y101), that is, the entropy of Y (H(Y )) is high. However, we
can see that Y seems to be following X with a lag of 19 so considering both variables, we
would be reasonably certain that the state of y101 will be the same as x82 = 0. This means
the conditional entropy of Y given X (H(Y |X)) is low. More technically, the conditional
entropy of Y given X delayed by 19 time steps (H(Yt|Xt−19)) is low. Entropy measured at
other time lags will be higher because the correlation will be less; this is a property that
will be discussed further in Section 2.3.1.

2.3 Transfer Entropy

This section contains a review of the theoretical aspects of transfer entropy. Some of the
content is obtained from published literature, as cited, but much of it is based on logical
extensions of the general concepts or the results of some experimentation, as supported
by worked examples or thought experiments; it is designed to form the foundation of the
discussions of experimental results.
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Transfer entropy (TE) is an information-theoretic measurement which can be used to
infer the existence of directed causal relationships between pairs of variables. Since it’s
inception by Schreiber [50] in 2000, it has been used to identify functional circuits in
brains [64, 66, 67], infer cardio-respiratory interaction [63], analyse climate change [63],
financial markets [32] and animal behaviour [9, 41, 59]. Parametric methods for achieving
similar results are also widely used but they are typically time consuming to apply and are
often sensitive to non-normal distributions of the input data. These points are discussed in
detail in Appendix C. A popular data driven method for inferring causality is to measure
mutual information. However, this method is symmetrical so the direction of the causal
relationship is indistinguishable. Additionally, Paluš et al. [42] demonstrated that mutual
information is not equivalent to causality. Transfer entropy has the benefit of being both
data driven, asymmetric and equivalent with Granger causality (see Section 2.3.6).

In the discussion of conditional entropy it was shown that the raw value had little
physical meaning; it is the amount of uncertainty about one variable given knowledge
about another. However, the difference between the entropy of X and the conditional
entropy of X given Y results in the reduction of uncertainty in X given the influence of Y .
This is called mutual information, I, and is analogous to, but not equivalent to, causality.

I(X : Y ) = H(X)− H(X|Y ) (2.9)

In some cases this measure can be used to infer causality but it does not take into account
the shared history of the two variables, limiting its applicability. Good examples of this
are provided in Bossomaier et al. [8] and Kaiser & Schreiber [29]. By adding the condition
of previous states3 to the difference between entropy and conditional entropy, the formal
description of transfer entropy is obtained.

TEY→X = H(Xt|Xt−1)−H(Xt|Xt−1, Yt−δ) (2.10)

The notation here TEY→X is read as the transfer entropy from Y to X. The first variable
is called the source variable, the second is the target variable. The parameter δ is the lag
as shown in Fig. 2.1 and discussed in Section 2.3.1. As previously mentioned, the measure
is asymmetric so this is a measure of the communication from Y to X not from X to Y .

3See Section 2.3.5 for a discussion of the history length. The method here accounts for only one previous
state.
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Measurements in the other direction are performed by swapping the variables:

TEX→Y = H(Yt|Yt−1)−H(Yt|Yt−1, Xt−δ) (2.11)

These can be interpreted as the reduction of uncertainty about the state of the target
variable caused by knowledge about the state of the source variable, while also considering
the shared history. Due to the equivalence of TE with Granger causality, it can be said that
statistically significant TE values indicate the presence of a significant causal relationship.
The asymmetry of TE allows for the direction of the relationship to be inferred.

2.3.1 Communication Lag

In Eq. 2.10, it is seen that three variables, (Xt, Xt−1, Yt−δ), are required to calculate TEY→X .
The process of time shifting variables is demonstrated in Section 2.1. Once shifted, the
start of the series are trimmed to the same length such that the first time index is τ = δ+1,
as shown by the boxed section below (assuming δ = 3).

Xt = [x1, x2, x3,
Xt−1 = [ - , x1, x2,
Yt−3 = [ - , - , - ,

x4, x5, x6, x7, x8, x9]
x3, x4, x5, x6, x7, x8]
y1, y2, y3, y4, y5, y6]

So far the lag parameter δ has been treated as a simple quantity corresponding to the
time it takes for information created at the source to be transferred to the target as shown
in Fig. 2.1. This definition is sufficient for the original purpose of TE, where one bit of
information fit inside one time instance, but for systems where an event spans a finite time,
a different analysis is required.4 In reality, what is obtained from Eq. 2.10 and Eq. 2.11 are
the TE values at the defined lag. Generally, it will not be known what the communication
time is, so there is no way to know what the lag parameter should be. It is often sufficient
to simply determine whether TE is significant at any δ, thereby identifying the existance
of a directed causal relationship. Wibral et al. [66] and Zhang et al. [74] infer additional
information about the system by estimating the communication time from the dependence
of TE on the lag parameter; although their interpretation methods differ.

4In the original definition, the system was entirely information. Using a binary example, either a 0 or
1 would be sent by the source at every time instance and the information received by the target would
also be in the form 0 or 1. In a physical system it is possible for the information to transform as it is
transmitted. For example, a step impulse to the end of a simple cantilever beam insights an oscillatory
response.
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Zhang et al. [74] selects the communication delay, δ̂, by identifying the δ which max-
imises |TEnet| (Eq. 2.12). Logically, this is mostly applicable to simple systems where
communication occurs in one direction because, if the two communication periods are
similar, the two peaks will cancel each other out.

Wibral et al. [66] uses a similar method but uses the maximums of the TE compo-
nents to identify δ̂; i.e, δ̂XY is the lag parameter that maximises TEX→Y . This allows for
bidirectional communication but is more susceptible to spurious results.

TEnet = TEX→Y − TEY→X (2.12)

Wibral et al. [66] supported their method by simulating a range of systems with two
variables, exploring the various possible information pathways, as shown in Fig. 2.3. They
correctly predict the communication times of those systems by selecting the local peaks
of each TE component independently. In all cases the local peaks of TE(δ) match the
actual communication times, confirming that this method is viable for a range of systems.
However, they approach the analysis with a priori knowledge of the systems behaviour. For
example in case b they conclude that the existence of multiple local peaks corresponding to
the multiple communication times is proof of their method. In case a there are also multiple
peaks (δ = 14, 20, 23) but the side peaks are ignored as noise because they knew that there
was only one communication path. Going into the analysis blind could potentially lead to
the conclusion that case a has multiple communication paths. It is not possible to state
whether those peaks would be removed by using TEnet because some of the data TEY→X

is missing.
The broad spectrum communication, case c can be defined either by multiple commu-

nication paths that are very close together or as an inconsistent communication time over
a range of lags. These two definitions are almost the same in the discreet domain. In this
case Fig. 2.3 c shows that the TE(δ) spectrum has a broad peak (compared to a) covering
all of the communication times. From this it is reasonable to say that communication
occurs over some range but it becomes very difficult to select a single TE value to use for
comparison with other systems.

Cases with a feedback loop as shown in Fig. 2.3 e create an interesting effect. Looking
only at the components TEX→Y and TEY→X in Fig. 2.3 e it is seen that the communication
path X → Y is identified as before but additional peaks are seen at δX→Y ± δX→X . This
could easily be misinterpreted as additional paths from X → Y but Wibral et al. [66]
offers a useful check for feedback. Figure 2.3 f shows the transfer entropy from X along the
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path X → X (TEX→X). This component has a clear peak at the feedback communication
time indicating that this check should be performed before concluding that a system has
multiple communication paths. One factor not discussed by Wibral et al. is the effect
of periodicity in the system. When the source variable is periodic, TE(δ) is also periodic5

and it becomes impossible to correlate a response to a specific causal event. The only
conclusion that can be drawn in this case is that the actual communication time is some
integer multiple of δpeak.

5If both variables are periodic, TE is zero as the system is deterministic.
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X Y X Y

TEY→X TEX→Y  TEnet

a. b.

c. d.

e. f.

TEX→X 

X Y X Y

X Y

Figure 2.3: TE(δ) for various two variable systems; adapted from Wibral et al. [66].
a. Single pathway, single delay; δ′ = 20. b. Single pathway, multiple delays; δ′ =
15, 20, 25, 30, 35. c. Single pathway, broadband delay; δ′ = (18, 22). d. Bi-directional
communication; δ′XY = 45, δ′Y X = 75. e,f. Single delay from X to Y plus self feedback of
X; δ′XY = 75, δ′Y X = 45.
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2.3.2 Sampling Rate

In most cases the input data will be discreet. The rate of discreetisation (the sampling
frequency) has a significant effect on the detectability6 of TE so it must be chosen carefully.
In many other applications it is generally accepted that faster sampling will give a better
approximation of the continuous process being sampled so it is best to sample as fast as
possible. When calculating TE this is not necessarily the case, there is an ideal sampling
period which is unlikely to be known a priori. The selection of the correct sampling period
is often glossed over in literature pertaining to experimental applications. In many cases
the ideal sampling period is related to, but not necessarily equal to, the event period, that
being the period at which events occur in the system [4, 50]. Sometimes this is an obvious
quantity such as for a square wave periodic signal which changes state every half period (see
Fig. 2.4). In other cases it may not be so clear, such as when the event timings are chaotic.
Zhang et al. [74] perform tests to identify where the results are relatively insensitive to
changes in the sampling period. Other texts do not detail how they chose the sampling
period. The minimum sensitivity method worked well but it is not suitable when different
cases with different event timings are being compared.

Paluš & Vejmelka [43] describe how oversampling does not improve accuracy but does
increase susceptibility to noise. This is because noise often has a much lower period than the
event period so low sampling rates can act to smooth out data. In addition to the sensitivity
to noise, oversampling causes a significant reduction in the magnitude of TE. This effects
both components (TEX→Y ,TEY→X) so it is not necessarily an issue but it increases the
potency of rounding errors and can effect comparisons if not properly accounted for. The
reduction in magnitude is caused by the low number of events compared to the total number
of data points. In other words, a dataset that is sampled at the same rate as events occur
will see an event at each data point while the same dataset sampled ten times faster will see
an event every tenth data point. To understand the full implication of this requires a quick
departure from the main point. Looking at Eq. 2.10 it is seen that the maximum possible
value of TE is H(Xt|Xt−1), when the term H(Xt|Xt−1, Yt−δ) is zero. Remembering that
conditioning cannot increase entropy it is clear that the upper limit of TE is the entropy
of the target variable i.e. the maximum of TEY→X is H(Xt). It has already been shown
in Section 2.2.2 that entropy is maximised when the probability of each state is equal.
Over-sampling skews the probability thereby reducing the entropy and causing a decrease
in the maximum magnitude of TE. This is investigated in Chapter 4 and Chapter 5. At

6Detectability errors are discussed below.
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the other end of the scale, under-sampling causes events to be missed thereby skewing the
results.

Although not specific to TE, Barnett & Seth [5] found that the detectability of causality
had an oscillatory relationship with the sampling period. The harmonic of sampling period
(∆) with the event period (T0) is crucial because of the way it affects the fidelity of the
down-sampled data. Using the square wave from Fig. 2.4 as an example, when the sampling
frequency is an even harmonic (∆ = T0

2 ,
T0
4 ,

T0
6 ...), the system is faithfully replicated. When

the harmony is slightly off the system will usually be correctly replicated but occasionally
there will be a skip in the data. When the sampling frequency is an odd harmonic, the
system is completely skewed. In Fig. 2.4 the even-harmonically sampled data has two data
points per peak/trough while the odd-harmonic sample has two data points in the trough
and one at the peak giving the impression that the duty cycle is around 0.66 rather than
0.5. The off-harmonic sample usually has one data point per peak/trough but occasionally
adds in a second, thereby changing the periodicity of the signal. It follows logically that the
entropy of the down-sampled data will be different at sampling periods that cause the data
to be misrepresented. A perfect sample of X will have half of the values in the high state
and half in the low state, therefore entropy equals 1 bit (H= −0.5 log2 0.5−0.5 log2 0.5 = 1
bit). Compare that to the odd harmonic sampling where the duty cycle is 0.66, then
H = −0.66 log2 0.66− 0.34 log2 0.34 = 0.92 bits.
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Continuous Signal Even Harmonic Sample
Odd Harmonic Sample Off Harmonic Sample

Figure 2.4: Example of how different sampling harmonics change how data is represented.
The samples are shifted in the y direction for clarity.

In practice, it is best to acquire data at a higher rate and down-sample it to the desired
sampling period. This can be done by simply picking every ith value to reduce the data
from the acquisition period (TA) to the sample period (∆).7 The reason for acquiring data
at a higher rate will be demonstrated here: It was previously noted that sub-sampling had
the potential to miss events when the event impulse was significantly less than the time
between events, this is demonstrated in Fig. 2.5, where the first down-sample captures two
of the three peaks and the second only picks up one. The only difference between the two
is the time index at which the down-sampling process started.

7The down-sampling rate is defined from the ratio of the TA to δ.
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Figure 2.5: An example of how down-sampling impulse behaviour can cause events to be
missed. The down-sampled data is shifted vertically for clarity.

To overcome the differences in the data caused by the starting point Zhang et al. [74]
starts the down-sampling at index 1, then down-samples again starting at index 2 and so
on up to ∆/TA, ensuring all acquired data is accounted for in one of the down-sampled
series. Then TE is calculated for each down-sample and the mean of all the results is
given as the correct result. In Section 4.2 this method is tested and it is shown that
the measured mean does match the analytically calculated value, thereby validating the
method. It should be obvious that having to calculate TE ∆/TA times per lag and sampling
period drastically increases the computation time so it is still advisable to choose TA to
balance the resolution of results and computation time. To give a typical example, optical
displacement measurements can easily be acquired at 50Hz (TA = 0.02 s). For a process
with an event period of 2 s, TE would be calculated at ∆ = 2 s, 100 times per lag. Given
that the actual event period and lag values are unlikely to be known, it can be seen that
the problem can quickly become computationally intense.
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2.3.3 Symbolisation

The cardinality, |Ω|, of the variables has a significant impact on computational intensity,;
explored in Section 2.3.7, and the required test length; these factors are improved by lower
cardinality. Remembering that the cardinality is defined as the number of unique values
that can occur in a variable, it can be seen that for most measurements this value will
be very high. Even a modest 12 bit data acquisition system (DAQ) can represent 4096
unique values. The cardinality can be reduced by binning the data (Fig. 2.6 b.), effectively
lowering the spatial resolution but this still often has relatively high cardinality. It is often
better to remember that events are information and therefore independent of their original
meaning. As such they can be further abstracted to indicate behaviours like moving/
not moving or moving clockwise/ counter-clockwise (Fig. 2.6 c and d). This process,
introduced by Staniek & Lehnertz [54], is called symbolisation and is very common for
empirical measurements of TE. If done correctly, the reduction in spatial resolution of the
variables is achieved by removing unimportant information, leaving only the behaviours of
interest. Symbolising is done by creating a set of rules to relate the data to a behaviour
similar to those used in Section 2.1. For the moving/ not moving symbols, the rules are
based on a comparison of the current state to the previous state:

xt =

1, xt 6= xt−1

0, xt = xt−1

22



|Ω| = 400

|Ω| = 8

|Ω| = 3

|Ω| = 2

Figure 2.6: Examples of binning and symbolisation of data. a. shows a typical measured
displacement with a spatial resolution of 0.005 resulting in a cardinality of |Ω| = 400. b.
Data is binned to a spatial resolution of 0.25. c. Data is symbolised based on the direction
of movement with symbols for moving up, moving down and not moving. d. Data is
symbolised based on whether the object is moving or not.

2.3.4 Conditional Transfer Entropy

Conditional transfer entropy considers how additional variables affect the source and tar-
get variables already discussed. The additional variables are called conditioning variables
because they are used to pre-condition the data to remove potential mutual influences or
cascade effects [8]. In effect, conditional TE measures the dependence of the interaction
between the source and target variables on the conditioning variable. As such, some work
has been done in recent years to use conditional TE to map causality networks in multi-
variate systems [2, 48, 53].8 The mathematical description of conditional TE defined in
Eq. 2.13 is a combination of the definitions in Bossomaier et al. [8] and Aste & Di Matteo
[3].

TEX→Y |Z = H(Yt|Yt−1, Zt−ζZY )−H(Yt|Yt−1, Xt−δXY , Zt−ζZY ) (2.13)
8The method proposed here differs slightly from those in the cited literature to better match the

approach of Zhang et al. [74]. Here, instead of calculating conditional TE with a large history length, the
data is down-sampled and single lags are applied to the source and conditioning variables.

23



The notation follows the conventions already set out and the variables can be replaced in
the exact same way as they were between Eq. 2.10 and Eq. 2.11 to calculated the other
TE components. The extra variable also comes with an extra time lag [3] to account for
the time it takes for information to be transmitted from Z to Y as shown in Fig. 2.7. Note
that when the delay is from the conditioning variable, the symbol ζ is used in place of
δ to make future comparisons easier. The equation can be extended to include as many
conditioning variables as necessary but is shown here with only three variables.

A simple thought experiment will help clarify the physical interpretation. In Fig. 2.7
a wave drives two floating structures which are placed far enough apart that there is no
possible way they could be communicating. From the earlier discussions it should be clear
that the expected TE measured between X and Y is zero but looking only at the time series
X and Y (Fig. 2.7 b.) it would be easy to conclude that they are actually communicating
with a delay equal to δ̂ZY − δ̂ZX . Only by considering a measurement of the wave (Z) can
it be seen that they are actually mutually driven. In terms of transfer entropy, a significant
peak in TEX→Y would be measured at a delay δXY = 25, the temporal separation of the
events at X and Y respectively. Evaluating conditional TE with a conditioning lag equal
to the actual communication delay from Z → Y (δZY = 60) will condition out the effect
of Z on Y . i.e. TEX→Y (δ = 25) 6= 0 and TEX→Y |Z(δ = 25, ζ = δZY = 60) = 0.
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δZX

Wave Propagation

Y

Z

X

δZY

δXY 

a.

b.

Figure 2.7: Intuitive example of how conditional transfer entropy can be used to remove
mutual driver effects. In this case both X and Y are driven by waves Z but have no
interaction themselves. Note that Z is a measurement of the wave height at that point not
a structure. The dashed arrow is used to show that the calculation would be performed
along that path but no interaction exists.

The other potential compound when considering systems of more than two bodies is
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cascade effects,9 that is when Z communicates with X and X relays that information on
to Y . An example of this would be if X was driven by waves Z as before but now Y is not
driven by the waves, it is mechanically coupled toX. The time series would be qualitatively
similar to that in Fig. 2.7 despite the communication path being entirely different. In this
case, the false communication path is Z → Y with a delay equal to δ̂ZX + δ̂XY . Evaluating
conditional entropy along this path, conditioned at lag ζ = δ̂XY gives TEZ→Y |X(δ = 60, ζ =
25) = 0.10 For comparison, in this system TEX→Y |Z(δ = 25, ζ = 60) 6= 0.

2.3.5 History Length

In Section 2.2.3 it was shown that the current state of a variable may be affected by
previous states. The equations so far offered have all only accounted for the effect of the
last state (the effect of Xt−1 on Xt) but the historical effects may be more far reaching.
To include this longer history time, the variables can be replaced with Takens embedding
vectors [8, 50], which contain all of the previous states from times t − k + 1 up to and
including t, such that

X
(k)
t = (xt, xt−1, ..., xt−k+1)

where k is the history length. Computational intensity is significantly increased with
increasing k, so this parameter should be balanced. For Markovian systems, the current
state is dependent upon the previous M states, where M is the order of the Markov chain.
Schreiber [50] proved that ideally the history length (k) should encompass all of those
states and only those states; therefore k = M . For non-Markovian systems, the ideal
history length is infinite [30].

2.3.6 Equivalence to Granger Causality

The concept of causality versus correlation is ubiquitous in modern science. The most
commonly used definition of causality in time-series analysis is Granger causality. The
distinction ‘Granger causality’ rather than simply ‘causality’ exists to address the short
comings of the measure. There are a number of other definitions of causality which are
discussed in Chicharro & Ledberg [11] and Pearl [44]. However, Barnett et al. [4] proved

9Cascade and relay will be used interchangeably.
10It should be noted that this relies on some randomness in the interactions as is the case for all TE

measurements. The applicable subtleties of this sort of analysis are not widely documented so they are
investigated further in Section 6.1.
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that Granger causality and TE are equivalent measures, so that is the causality definition
that will be used in this work.

Granger [22] summarises the conditions for his definition as “1. The cause occurs before
the effect; and 2. The cause contains information about the effect that is unique, and is
in no other variable.” The first condition is a formal restriction on the communication lag
being negative. The second explains the necessity of some degree of randomness in the time-
series. For example, if variable Y was perfectly coupled to X and X contained a periodic
signal, no Granger causality could be inferred because there is no unique information in
either. However, if the coupling was imperfect or X was not periodic, it is possible to
detect Granger causality. The formal definition was first published in 1969 by Granger
[23]. In that work, a parametric prediction model is used to predict the state of xt using
all past values of X (P(xt|X)11). Then the state of xt is predicted using all past values
of X and all past values of Y (P(xt|X, Y )). It is determined that if the variance of the
prediction error is decreased by the inclusion of Y in the prediction model, Y can be said
to cause X. The degree of causality is then determined by the coherence of the cross power
spectra.

Transfer entropy was introduced as a measure of the reduction in uncertainty of Xt

given the past of X and the past of Y compared to the uncertainty of Xt given only X.
Barnett et al. [4] equates the ideas of ‘reducing uncertainty’ and ‘prediction,’ then goes on
to prove the two concepts are analytically identical for normally distributed time-series.
That work does not comment on how the two may diverge with non-normal data but it
does state that non-zero TE will still imply non-zero Granger causality.

2.3.7 Calculating TE

The TE equation was previously defined as a difference of entropies, which is the most
intuitive formulation, but it is not the most practical. A number of TE estimators are
outlined by Bossomaier et al. [8], but when the input data is discreet and countable,
Eq. 2.11 can be recast as a collection of probabilities as derived in Appendix B.1, following
the work of Porfiri [45].

TEX→Y =
∑

y,ẏ,x∈Ω
Pr(Yt, Yt−1, Xt−δ) log2

(
Pr(Yt, Yt−1, Xt−δ) Pr(Yt−1)
Pr(Yt−1, Xt−δ) Pr(Yt, Yt−1)

)
(2.14)

11The notation is adapted from [23] for consistency
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where y, ẏ, x are the possible states of the variables Yt, Yt−1, Xt−δ. The over dot on the y is
used to indicate that it is related to the lagged variable Yt−1. It would be more consistent to
use the notation ωYt , ωYt−1 , ωXt−δ ∈ Ω but this is overly cumbersome. Using a two symbol
example, each of the variables can take on a value of 0 or 1. Given that there are three
variables Yt, Yt−1, Xt−δ, each with two possible states, there are eight possible combinations
so the sample space is

Ω = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}

Each term of Eqn. 2.14 corresponds to one of these combinations of states such that

TEX→Y = Pr(Yt = 0, Yt−1 = 0, Xt−δ = 0) log2

(
Pr(Yt = 0, Yt−1 = 0, Xt−δ = 0)Pr(Yt−1 = 0)
Pr(Yt−1 = 0, Xt−δ = 0)Pr(Yt = 0, Yt−1 = 0)

)

+ Pr(Yt = 0, Yt−1 = 0, Xt−δ = 1) log2

(
Pr(Yt = 0, Yt−1 = 0, Xt−δ = 1)Pr(Yt−1 = 0)
Pr(Yt−1 = 0, Xt−δ = 1)Pr(Yt = 0, Yt−1 = 0)

)
...

+ Pr(Yt = 1, Yt−1 = 1, Xt−δ = 1) log2

(
Pr(Yt = 1, Yt−1 = 1, Xt−δ = 1)Pr(Yt−1 = 1)
Pr(Yt−1 = 1, Xt−δ = 1)Pr(Yt = 1, Yt−1 = 1)

)

The effect of cardinality on calculation intensity is evident here. For a cardinality of two
for each variable there are eight terms. If all of the states of a 12 bit DAQ were used, there
would be 69× 109 terms.

The probabilities are calculated from their frequency of occurrence (Eq. 2.2) by counting
how often a particular combination occurs and dividing by the total number of samples.
For example take the time series

Yt = 1, 1, 0, 1, 0, 1

Yt−1 = 1, 1, 1, 0, 1, 0

Xt−δ = 0, 1, 1, 0, 0, 0

The combination (Yt, Yt−1, Xt−δ) = (0, 0, 0) does not occur so the probability Pr(Yt =
0, Yt−1 = 0, Xt−δ = 0) = 0. However the event Yt−1 = 0 occurs twice in a series of six data
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points so Pr(Yt−1) = 2
6 = 0.333. Following this through Eq. 2.14 becomes

TEX→Y = 0.000 log2

(0.000× 0.333
0.333× 0.000

)
+ 0.000 log2

(0.000× 0.333
0.000× 0.333

)
+ 0.167 log2

(0.167× 0.667
0.333× 0.333

)
+ 0.167 log2

(0.167× 0.667
0.333× 0.333

)
+ 0.333 log2

(0.333× 0.333
0.333× 0.333

)
+ 0.000 log2

(0.000× 0.333
0.000× 0.333

)
+ 0.167 log2

(0.167× 0.667
0.333× 0.333

)
+ 0.167 log2

(0.167× 0.667
0.333× 0.333

)
TEX→Y = 0.004 bits

A number of terms take the form 0 log2
0
0 , L’Hospital’s rule can be used to show that these

terms equal zero. Typically, this process will need to be repeated many times to obtain
results over a range of ∆ and δ.

2.3.8 Expansion for Conditional TE

The calculation of conditional transfer entropy is not significantly more complicated than
the standard form although the computational intensity does increase. The probabilistic
formulation of the conditional TE equation (Eq. 2.15) is derived in Appendix B.1.

TEX→Y |Z =∑
y,ẏ,x,z∈Ω

Pr(Yt, Yt−1, Xt−δXY , Zt−ζZY ) log2

(
Pr(Yt, Yt−1, Xt−δXY , Zt−ζZY ) Pr(Yt−1, Zt−ζZY )
Pr(Yt−1, Xt−δ, Zt−ζZY ) Pr(Yt, Yt−1, Zt−ζZY )

)
(2.15)

2.3.9 Transfer Entropy Summary

In the preceding sections, it was demonstrated that TE can be used to infer directed
causality between two variables, using only time series data. One important limitation is
that there must exist a significant amount of randomness in the system, either by stochastic
action of the source variable or imperfect coupling of the two variables.

The process for calculating TE for a single set of parameters ∆, δ and ζ requires the
following operations:

• Collect data at a higher rate than events occur in the system.
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• Down-sample the data to the desired, often unknown, sampling period, ∆. This is
done ∆/TA times to ensure all data is accounted for.

• Lag the variables as necessary.
• Symbolize the data as necessary, making an effort to minimise the cardinality while

retaining the important behaviour of the system.

In most cases it will be necessary to repeat this process over a range of ∆, δ and ζ where
appropriate.

2.4 Fluid Dynamics

This section is an overview of some of the fluid dynamic concepts that will provide a
foundation for the design of experiments. The main focus is on systems where one or more
dynamic structures are interacting with an external fluid. The study of these systems is
a topic with broad engineering applications including energy harvesting [18, 33] and flight
control [26, 56, 72], as well as scientific applications such as the study of animal propulsion
and flocking behaviour [45, 72, 74]. However, these systems are often poorly understood
because the large number of parameters and significant non-linearity make it difficult to
apply many of the classical analysis tools [25]. The following reviews are aimed to identify
the significant parameters for the purpose of designing the experiments and to support
the claim that parametric analysis tools are difficult to apply to fluid-structure interaction
problems.

2.4.1 Flow Around a Cylinder

It is well established that bluff bodies often shed vorticies in their wake. For static, uniform,
infinitely long cylinders, this occurs for Reynolds numbers12 between 50 and 2× 105 [69].
The characteristics of the cylinder wake and its vorticies are heavily dependent upon the
Reynolds number, aspect ratio and surface roughness of the cylinder, incoming turbulence
intensity and flow blockage [37], [38], [73], as well as by movement of the cylinder.13 For the
purposes of this study, only a high level understanding of the process is required because
the system being analysed is inherently chaotic and many of these factors are beyond
experimental control.

12based upon cylinder diameter, d and free stream velocity, U .
13Numerous references throughout the text.
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Jeon & Gharib [27] summarises the process of a cylinder shedding vorticies as having
three stages; vortex growth, saturation and shedding. Initially, vorticity is generated at
the cylinder’s surface due to pressure gradients tangential to the surface. Vorticity can
only be generated at boundaries of the fluid domain for homogeneous fluids [36], so the
surface must be the only source of vorticity. The vorticity is transmitted to the near wake
by the viscous action in the shear layers. Instabilities in the separated shear layer cause it
to roll up into wake vortices. The reader is directed to the review papers of Roshko [47]
and Williamson [69] for in-depth discussions of these vortex structures and the mechanisms
which shape them. The onstant influx of vorticity causes the vortex structures to grow
until saturation occurs. The vortex saturates at uniform intervals referred to as the critical
formation time,14 which, for static cylinders, is equal to the inverse of the Strouhal number,
St. Once a vortex has saturated, it separates from the structure and ‘pinches off,’ thereby
preventing the influx of additional vorticity, and is advected away. The periodicity of this
process results in a vortex street, a series of vortices travelling downstream with a uniform
pattern as shown in Fig. 2.8 a. For the Reynolds numbers studied here (Re∼ 103), the
static cylinder is in the shear layer transition regime [69], defined by an increase in three-
dimensional structures. Fig. 2.8 shows how the cylinder wake becomes less ordered as the
Reynolds number increases but periodicity is still evident. The Strouhal number, St, is
relatively insensitive to Re at this range with a value St ∼ 0.2. The shedding period is
then defined as;

TS = StU
d

(2.16)

The particulars of the saturation mechanisms, times and strengths, as well as the instabil-
ities, are thoroughly discussed in the review papers of Roshko [47] and Williamson [69].

Rotating cylinders have been broadly studied for a wide range of applications. One
of the earliest studies being that of Heinrich Gustav Magnus who studied the deflection
of cylindrical missiles caused by their axial rotation [57]. Investigations into the wake of
rotating cylinders began with Ludwig Prandtl in 1925, inspiring a broad investigation of
constantly rotating cylinders, such as those by Glauert [21], Mittal & Kumar [34], Moore
[35] andWood [70]. The exact results of these studies vary significantly, especially in the low
Reynolds number regimes, most likely due to the high level of sensitivity to experimental
conditions. For the present study, it is sufficient to surmise that cylinder rotation causes an
increase in circulation. At high cylinder surface speed to free stream velocity, ratios, Vs/U
the stagnation points move off of the cylinder surface, the flow becomes stable and the

14a non-dimensional form of the shedding period.
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a.

b.

Figure 2.8: Wake of cylinders with different Reynolds numbers. a, Re= 140, b, Re= 104.
Modified from Van Dyke [62]
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circulation becomes trapped inside closed streamlines around the cylinder. Typically it is
said that the flow is stable for ratios greater than 2 but Mittal & Kumar [34] demonstrates
that this stability does not persist for all cylinder speed ratios.

Better approximations of the flow studied here are rotationally oscillating cylinders,
studied by Filler et al. [20], Morton [36], Okajima et al. [40], Tokumaru & Dimotakis
[58] and Wu et al. [71], or impulsively started rotating/translating cylinders as in Chew
et al. [10] and Coutanceau & Menard [12]. These studies show that oscillating a cylinder
at or near the fundamental shedding frequency causes the shedding cycle to lock-in to
the oscillation frequency. Additionally, Tokumaru & Dimotakis [58] show that very high
frequency, large magnitude oscillations can almost eliminate shedding. Morton [36] studied
the vortex formation process for an accelerating cylinder rotation, finding that acceleration
significantly shortened the critical formation time due to the additional vorticity flux. It
was also noted that higher rates of acceleration led to earlier separation of the first vortex.
Similar results were seen by Chew et al. [10] and Coutanceau & Menard [12] in studies of
cylinders which were impulsively started into a rotation and translation motion, although
they attribute this starting vortex to the translation, analogous with the phenomenon seen
when an airfoil is accelerated. The pertinent result of all these studies is that the timing of
vortex shedding can be affected by rotations of the cylinder and the effect is proportional
to the acceleration rate and the magnitude of the rotation.

No studies have been found which deal with short, random, rotational impulses of
cylinders. However, it is evident that cylinder rotation causes an increase in vorticity
compared to the static cylinder case. It follows that when the cylinder stops rotating, this
vorticity must either be dissipated by interactions at the cylinder surface or shed, the latter
being the most intuitive result. This indicates that a rotational impulse of the cylinder
is a reasonable way to generate information in the fluid. The sensitivity of the results to
experimental conditions suggests that the test parameters (rotation speed, etc) should be
selected empirically.

Once vorticies are shed they are advected downstream forming a Karman vortex street.
Viscous forces in the fluid act to diffuse the vorticity, eventually resulting in a turbulent,
non-periodic wake. In the applicable Reynolds number ranges and with a relatively low
turbulence free-stream, it was found that the wake would devolve to fully turbulent at
around 40 to 50 diameters downstream [7]. This will be affected by the wake impinging
upon solid structures as it will in this study but it demonstrates the upper limit of usable
stream-wise separations between the cylinder and secondary structures.

33



2.4.2 Flow Around an Airfoil

This section will discuss the basics of flow around an airfoil. This review is highly focused as
airfoil dynamics are not central to this study. For this study, the most important property
is the pitching moment, discribed below. For a broad discussion of aerodynamics, the
reader is referred to Anderson Jr [1]. The applicable concepts will be introduced using the
example of an isolated, static airfoil in uniform flow before moving on to the more complex
case of a pitching airfoil. The field of airfoil aerodynamics is very broad so the following
conditions are imposed to limit the scope of this review based on the experiments to be
conducted.

1. This study will deal solely with thin airfoils, defined as having a chord length, l,
much greater than the maximum thickness, t0.

2. The airfoils will be symmetric about the chord line.
3. The airfoils will be span-wise uniform.
4. The Reynolds number will be low, on the order of 103.

In a general sense, airfoils cause a deflection of the incident air, creating pressure at
the surface. This pressure results in a net force acting on the body which is commonly
separated into the components of lift and drag, which are aligned normal to and along
the fluid velocity vector, U , respectively, as shown in Fig. 2.9. In addition to the pressure
induced force, there is a viscous force which is often not considered as it becomes negligible
at high Reynolds numbers, with the exception of low lift conditions when the pressure forces
are low. The forces on the body also cause a pitching moment. For the described class
of airfoil, the center of pressure and aerodynamic center are both located at the quarter
chord point,15 although this is not true for all airfoils. Additionally, the moment about
the quarter chord point is, theoretically, zero. Viscous effects reduce the validity of these
assumptions but they serve as a reasonable starting point for this study given the lack of
information available for airfoils in this Reynolds number range.

It is well established that rapid pitching of an airfoil causes a delay in stall and increases
the forces and moments acting upon an airfoil [72]. Yu et al. [72] uses a flat plate with Re=
1.45× 104 to demonstrate that the rapid pitching motion causes an increase in circulation
which increases the moment about the quarter chord by up to a factor of 5. They also show
that the minimum absolute moment (|CM |) occurs when the the pivot is placed somewhere
between the quarter and half chord.

15One quarter of the way from the leading edge to the trailing edge, following the chord.
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Figure 2.9: Coordinate system and forces acting on the airfoil.

2.4.3 Fluid Structure Interactions

Broadly speaking, in most fluid-structure interactions, the boundary conditions of the fluid
domain change due to motion of the structure, while the structure responds, at least in
part, to the imposed fluid loading. Typically, it is not possible to formulate an analytical
solution for such systems [25], due to the complex and often highly non-linear nature of
the interaction. In some cases it is made possible by making significant assumptions. For
example, Falnes [18] developed an analytical solution for energy extraction from an array
of wave energy converters by assuming the structures are infinitely small and the array
is infinitely large, thereby making use of the asymptotic nature of the solution; similar
models exist for wind farms, such as that of Meyers & Meneveau [33]. It is more common
to analyse them experimentally or numerically, although the large number of parameters
that typically exist make this difficult [25]. The following section reviews some of the
specific FSI systems of interest to this study; for a more complete review, readers are
directed to the review papers of Hou et al. [25] and Rockwell [46].

Of interest to this study is the response of a pivoted plate to a passing parallel vortex
as shown in Fig. 2.10. This system depends upon many parameters, so it has not been
studied exactly as it will be employed here. Therefore, similar systems will be discussed
here to highlight these parameters and help set expectations for the experiments; this
is not intended to be a complete review of the field. Walker [65] demonstrated that a
vortex passing an infinite, fixed, flat plate generates an unsteady surface pressure, that
is affected by vortex strength, Γ, and passing distance, ξ. From classical mechanics, this
would result in an unsteady pitching moment on the plate. The response of a pivoted
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Figure 2.10: A schematic of a pivoted plate in a uniform flow with a passing parallel
vortex

plate would be affected by the location of the pivot as well as the damping, restoring and
inertial forces. The dynamics of the flow around the plate as it starts to move becomes
increasingly complex. Studies on airfoils driven in an oscillatory pitching motion, such as
that of Widnall & Wolf [68], confirm that the lift remains unsteady even if the airfoil is
pitching. That study found that unsteady lift was generated for passing distance to chord
length ratios greater than two across a range of loading parameters. The motion of the
structure being affected by the passing vortex adds more parameters to the system. The
most important for this work is the arrival time of the vortex relative to the structure’s
motion, which was shown to significantly affect the dynamics of the fluid. For example,
vortices in a quiescent fluid may induce a leading edge vortex or not, depending upon the
phase of oscillation when the vortex arrives at the structure [46].

In cases where the vortex passes very close to, or impinges upon, the structure, the fluid
dynamics are dominated by distortion of the vortex. This has a significant effect on the
response of the structure as well as on the wake and the response of subsequent structures
[46].

From this discussion, it is clear that the parameters that affect the studied system
are vortex strength, vorticity distribution, passing distance, pivot location and forces,
structure mass and geometry (in part due to the added mass) and the phase. To counter
this the models used to analyse these systems are typically inviscid and neglect the solid
body forces [6, 26, 56, 65, 68]. Extending these parametric models to the free response
of the structure is, therefore, not trivial. This is especially true when the vortices are
generated stochastically, as they will be in the following experiments. For that purpose,
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it is sufficient to surmise that a vortex passing a pivoted plate or airfoil is likely to induce
a pitching moment. This moment will lead to motion described by classical mechanics
providing the resisting forces are sufficiently low. Additionally, the response is unlikely to
be accurately modelled using any parametric models, so another analysis method should
be applied.
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Chapter 3

Experimental Setup

3.1 Flow Facility

The experiments performed here placed an array of structures into a uniform fluid flow.
The facility is a constant pressure, closed water channel designed and documented by
Sommer [52]. Water is stored in two, 250L reservoirs below the channel, and pumped1 up
to the inlet settling chamber (see Fig. 3.1) with an estimated maximum volumetric flow
rate of 0.0019m3/s. The settling chamber has two purposes, to dampen the turbulence of
the incoming fluid and to maintain constant pressure at the channel inlet. Water enters via
a perforated pipe designed to slow the fluid and fills up to the level of the top of the spillway
wall. The free surface ensures a constant pressure at the inlet to the water channel. The
return of the spillway feeds back into the reservoir. The settling tank and water channel
are connected by three evenly spaced vertical pipes. These pipes extend through to the
bottom of the water channel and are perforated to encourage two dimensional flow in the
channel [52]. The water channel (Fig. 3.2) consists of:

• A pre-conditioning volume, where fluid enters.
• The conditioning element; a hexagonal aluminium honeycomb detailed in Sommer

[52].
• A 3.7:1 two dimensional contraction.
• The test section, discussed below.
• The exit region where fluid is conditioned for a smooth exit.
1Pump: WEG, model: 00156ES3EB56C
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Figure 3.1: Hydraulic schematic of the test facility.

Figure 3.2: A rendered image of the flow facility with no model installed. Structural
components have been removed to highlight the functional components.
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Figure 3.3: Flow facility drawing. Blue arrows indicate water flow into/ out of the facility.
The red line highlights the footprint of the water channel.

The test section is 0.60m long, 0.27m wide and 0.16m deep with a removable top and
optical access available through the three other sides (see Fig. 3.4). Models are attached
to the top plate and and a camera is placed underneath to capture the movements of the
models.
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Figure 3.4: Isometric view of the test section with an example model installed.

In all cases the working fluid was water with a free-stream velocity of 0.04m/s and a
pressure head of approximately 0.3m as measured at the start of the test section, mid-
depth.

The test section roof was modified from that described by Sommer [52] to make the
channel more adaptable to different experiments. It consists of a series of interlocking
plates, shown in Fig. 3.5, which can easily be exchanged to suit the experiments. In this
case the interface is made of three plates; an insert plate supports the two interface plates,
one which mounts a single cylinder model and one with a series of threaded holes for
mounting airfoils, see Section 3.2 for more information about the models. The plates are
designed to maintain a flush inner surface and are symmetrical to allow the plates to be
installed in any orientation, increasing the flexibility of the system. The two interface
plates are easily removed to reconfigure the models or provide access to the inside of the
channel.
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Figure 3.5: Model of the plates which form the top of the test section.

3.2 Models

3.2.1 Cylinder Model

The two types of models used are a circular cylinder and an airfoil. For many of the
experiments the cylinder is driven to rotate about its axis by a motor located outside of
the channel. As such, it is required to pass through the interfacing plates while maintaining
a water tight seal without hindering the rotational freedom. The cylinder is constructed
from two concentric cylinders (Fig. 3.6), the outer cylinder has a diameter of d = 44mm
and is in contact with the flow, while the inner cylinder serves as an axle, supported by a
bearing assembly outside the channel. It passes through an oil seal mounted in the interface
plate, as shown in Fig. 3.5. The fluid pressure on the seal (McMaster Carr PN. 5154T841)
is approximately 2200Pa, about 3% of the seal’s pressure rating. A plate mounted in
the underside of the cylinder contains the alignment markings used to optically track the
cylinder’s rotation. The marking plate is printed from PLA (Polylactic Acid) plastic; it is
designed such that when the counter-sunk center bolt is tightened, the plate expands to
create a friction connection with the cylinder. Wells printed into the underside are filled
with green acrylic paint to create the markings.

Properties of this cylinder are provided in Table 3.1, whilst test conditions are provided
in Table 3.2.
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Figure 3.6: Isometric and Section views of Cylinder Assembly.

Table 3.1: Properties of the cylinder. Assuming free-stream of water at 0.04m/s where
appropriate.

Property Symbol Value Unit

Length L 0.160 m
Diameter d 0.044 m
Aspect Ratio AR 3.63 -
Blockage Ratio βR 16.3 %
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Table 3.2: Test conditions.

Property Symbol Value Unit

Free Stream Velocity U 0.04 m/s
Reynolds Number (Cylinder) ReCyl 1760 -
Reynolds Number (Airfoil) ReAF 2400 -
Strouhal Number St ∼ 0.2* -
Shedding Frequency** ff 0.18 Hz

* [19], [69] Excluding the effect of the body/bodies in the cylinder
wake. This serves only as a guide.
** Calculated from St estimate. This is the expected shedding fre-
quency from the cylinder without rotation or interference from the
other bodies.

3.2.2 Airfoil Models

The airfoil profiles are NACA0018 with the exception of a small provision in the lower
span to accommodate a bearing as shown in Fig. 3.7. The airfoil are printed from PLA
plastic with a wall thickness of 1mm and coated in epoxy resin (Smooth-On XTC-3D),
which seals the parts and allows them to be sanded smooth. Due to printer constraints,
the airfoils are printed in two pieces and connected end to end with steel connector pins.
A solid shaft (brass or stainless steel) screws into the interface plate then passes through
the span of the airfoil, attaching to the bearing, allowing the airfoils to pitch freely about
their quarter-chord.
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Figure 3.7: Drawing of the airfoil assembly. The airfoil’s coordinate system is shown by
the green arrows.

The system is designed to minimise resistance to rotation about the pivot, thereby
maximising the airfoil’s response. The following factors were considered for this purpose:

1. Pitching moment due to free stream. i.e. Restoring moment.
2. Weight or buoyancy driven rotation.
3. Bearing friction.
4. Mass ratio of moving components.

From the discussion in Section 2.4.2, the minimum pitching moment is expected to occur
between the quarter and half chord points. For that reason and because it is the thickest
point, the pivot is placed at the quarter chord.

One of the most critical design factors was the balance of the weight and buoyancy
vectors. The main reason for this is the tilt of the channel. The channel is tilted by 5
degrees (inlet up) to allow it to bleed as it fills. This would cause a rotational moment

45



about the pivot for pitching angles other than zero if the vectors are not properly balanced.
This is easily imagined, if we take the airfoil and pivot in air, where buoyancy is negligible,
and rotate it so the pivot shaft is horizontal, the airfoil would want to fall into a position
where the center of mass is directly below the pivot. This happens inside the channel due
to the table tilt, albeit to a less extreme degree. The moment about the pivot is calculated
as

Mz = ẑ · (RW×CG + RB×CB) (3.1)

where W is the weight vector and B is the buoyancy vector, both aligned with gravity.
They are projected onto the reference frame of the airfoil by multiplying by the rotation
matrix R, Eq. 3.2; note that for brevity Eq. 3.2 has been simplified using the knowledge
that the table roll angle is zero. CG and CB are the displacement vectors from the origin
to the center of gravity and center of buoyancy, respectively.

R =

∣∣∣∣∣∣∣∣∣
cos(α) cos(β) cos(β) sin(α) − sin(β)
− sin(α) cos(α) 0

cos(α) sin(β) sin(α) sin(β) cos(β)

∣∣∣∣∣∣∣∣∣ (3.2)

where α (Fig. 3.11) is the pitching angle and β is the inlet up table tilt.

The most obvious solution is to balance |W| = |B| and set the centers of gravity and
buoyancy to be coincident but this is difficult to achieve exactly. In an effort to achieve
this balance, three designs were analysed; one fully solid part and three hollow parts
with various degrees of flooding. The no flooding model is fully sealed, trapping air in
all chambers, the partially flooded model has vent holes (see Fig. 3.9) to flood the rear
chambers with water and the fully flooded model has vents to flood all of the chambers.
The different chambers of the flooded models are shown in Fig. 3.7, with colour coding to
show the partial flooding condition.

The solid lines in Fig. 3.8 show that W and B cause a small moment about the pivot
(the z axis). The no flooding design creates moments in the opposite direction to the other
designs because it is the only positively buoyant design. Little difference is seen in the
moment created about the pivot axis by the other three designs. Note that these results
are hydrostatic and are calculated for a table tilt β = 5 deg. The effects of moving fluid
are not considered here because the point of this analysis is to minimise the forces other
than those related to the flow.
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Figure 3.8: Pitching moment about the pivot (solid line) and magnitube of the moment
on the bearing (dashed line) as a function of pitch angle for four different airfoil designs
submerged in quiencent water. The channel is tilted 5 deg inlet up.

The bearing used in the pivot is a nylon bearing with glass balls;2 chosen for it’s high
corrosion resistance and low stiction. The nylon race is very susceptible to distortion so
the tolerance of the bearing housing must be very low. To achieve this from the 3D printed
part, the housing recess was printed slightly oversize, filled with epoxy then reamed to the
correct diameter. This bearing is also sensitive to out of axis torsion. Shakedown testing
proved that having bearings at the top and bottom of the airfoil caused high resistance due
to low accuracy of the bearing alignment inherent to the chosen manufacturing process. It
was determined that good results could be obtained by installing a single bearing in the
bottom of the airfoil if the out of axis torsion was minimised by balancing the moments
caused by the weight and buoyancy forces. As before the moment on the bearing (MB,
Fig. 3.7) is calculated for the hydrostatic case and the four designs are compared in Fig. 3.8.
The dotted lines show that the best results are obtained by the partial or fully flooded
designs.

The clearance around the shaft also acts to minimise the axial alignment error. The
shaft has a radius of 6.35mm in a 6.80mm hole and the bearing is 156mm from the upper
opening. Therefore the maximum alignment error is tan−1(0.225/156) = 0.8 deg. Tighter
tolerances are not feasible given the accuracy of the printing process used.

2Canada Bearings part number POM623
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The ideal mass ratio of the airfoil for maximum amplitude response is 1. For a first
approximation the mass ratio is simply calculated as the ratio of the mass of fluid displaced
by the static airfoil to airfoil mass; m∗ = m/V– Dρf . Added mass is ignored for simplicity
but it is acknowledged that this will act to increase the mass ratio, so a value less than one
is better than a value greater than one. For airfoils with flooding, the mass of the fluid
inside the airfoil is included in the airfoil mass because it can be considered trapped. The
mass ratio’s for the four designs are listed in Table 3.3.

Table 3.3: Mass ratios for various airfoil designs where m∗ = m/V– Dρf

Design m∗

Solid 1.20
No flooding 0.54
Fully Flooded 1.12
Partially Flooded 1.02

Given the above analysis, the selected design is the hollow airfoil with 1mm thick walls.
The compartments at the leading edge are sealed and the tail compartments are allowed
to flood, see Fig. 3.7. Flooding is achieved through vents drilled in the top and bottom of
each airfoil section as highlighted in Fig. 3.9. The recess between the connected parts is
also allowed to flood to unsure no air is trapped in the lower section. Other features of the
airfoil, shown in Fig. 3.9, are:

• The holes which accept the connector pins are reinforced by a 2.2mm rod printed
with the part, this connects the outer face to the inner structure.

• The mating faces are recessed to ensure the outer face has no gap.
• Wells are printed in the bottom face of the airfoil which are filled with green acrylic

paint to allow for optical tracking from below.
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Figure 3.9: Renders of the lower airfoil section to highlight the design features.

3.2.3 Model Placement

Two different sets of interface plates were made for this facility. The single airfoil experi-
ments in Chapter 5, where the airfoil was placed directly downstream of the cylinder used
one style, here referred to as the in-line setup. All other experiments used the plates shown
in all of the above renders, here call the array setup.

In-line Setup

The interface plate for the in-line setup is shown in Fig. 3.10. It has a single plate for
mounting the cylinder and airfoil, with all positions in-line with the free-stream. The
possible separation distances are 0.052m to 0.156m with a resolution of 0.026m. This was
originally designed with a larger cylinder in mind but the experiments were performed with
a 0.044m diameter cylinder which leads to the inconvenient non-dimensional separations
of s/d = 1.18, 1.77, 2.36, 2.95, 3.55. This was corrected for the second setup.
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Cylinder Mounting Hole Airfoil Mounting Holes

Figure 3.10: Model mounting locations for in-line configuration, as viewed from below.

Array Setup

The cylinder is mounted to a separate plate, with its location fixed at 205mm from the
beginning of the test section and on the cross-stream mid-line. Airfoils can be installed
into any of the threaded holes in the second interface plate. This plate has symmetrical
mounting holes allowing it to be installed in either of the configurations shown in Fig. 3.12.
The result is that the airfoils can be installed in any position from s/d = 2.5 to 4.0
downstream of the cylinder with a resolution of 0.5 d and at any cross-stream location
p/d = ±1.5 from the mid-line with a resolution of 0.25 d. The coordinate systems and
nomenclature are shown in Fig. 3.11.
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Figure 3.11: Schematic showing the coordinate system as viewed from below and the
dimension convention.
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Figure 3.12: Schematic of possible model mounting locations as viewed from below. The
two different configurations are achieved by rotating the insert plate.
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3.3 Drivers and Electronics

This section details the electro-mechanical systems used to drive the cylinder. The desired
movement is a rotational impulse at effectively random intervals. The characteristics of
the cylinder rotation were guided by the literature reviewed in Section 2.4.1,3 but were
ultimately determined experimentally to incite a measurable response of the airfoil. The
chosen impulse is a movement of 0.75 revolutions in 0.3 s which gives a surface speed of
0.345m/s, approximately nine times the free stream velocity.

cRio Based Control System

The first driver, used for the experiments in Chapter 5, utilised existing components. The
facility previously had two linear stages (Danaher 2RB12 with Kollmorgen T23 steppers)
with rotation heads (CTP12 steppers) as detailed in Sommer [52]. This was more degrees
of freedom than required for this work but in an effort to maintain cross functionality,
the drivers were built into a universal frame with improved bearing support as show in
Fig. 3.13. The sub assembly of each stage is shown in Fig. 3.14. The vertical tube contains
bearings and and retaining collets to ensure high axial stiffness of the models. The full
assembly is easily attached to alignment dowels in the interface plates.

3In general, a larger amplitude rotation with higher acceleration should incite a stronger response but
there are exceptions to this. The lack of applicable data led to the decision to choose the values empirically.
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Figure 3.13: Rendered image of the model driver assembly. The system consists of a
frame and two movement stages, each with a linear motion and a rotation axis.

Figure 3.14: Rendered image of one of the movement stages. The linear stage is driven by
the T23 stepper motor. The rotation axis is driven by the CTP12 stepper motor through
a 10:1, right angle gearbox and is supported by the bearing tube. Movements are shown
by blue arrows.

The motors are controlled by a National Instruments (NI) cRio 9074 with NI-9512 motor
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driver interfaces and Kollmorgen P70530-SDN stepper drivers.4 Originally the control
system was sitting on top of the water channel. For safety, the electronics were built into
a separate cart before testing began.

The control software was programmed in NI LabView. The software makes a random
decision whether or not to impulse the cylinder at predefined decision period (TD). The
randomness of the decision is sufficient for the system to be considered stochastic (see
Chapter 5), despite the regularity of the decision period. If the decision to impulse is
made, a command is sent to the driver interface and the cylinder is driven by one of
the CTP12 stepper motors. This system suffered from robustness issues and ultimately
the cRio control unit failed. Rather than replace the unit, a new system was built using
open-source components.

Arduino Based Control System

The new control system was designed to drive a single CTP12 stepper motor, limiting the
functionality to a single degree of freedom. The micro-controller is programmed to make
random decisions of whether to impulse the cylinder or not, at regular intervals, similar
to the LabView program used previously. The decision period, probability of a positive
decision and the rotation direction can be changed with simple buttons and are displayed
on a small LCD screen. When the decision to move is made, the micro-controller sends
a ‘run’ command over the serial interface to the motor driver, see Fig. 3.15. The motor
driver converts the micro-controller’s command into a series of electrical impulses, powering
each of the phases of the stepper motor in the correct order, with precise timing. It has
many settings to tune the response of the motor, as detailed in [55]. A number of these are
required to be accurately set for this system to work due to the relatively high power output
of the motor. Charging the coils of the stepper motor generates a back electromotive force
(BEMF) which opposes the incoming electric current [55]. To overcome this, the voltage
into the motor must increase with the motor speed. The voltage model employed by this
stepper driver is given in Eq. 3.3 with variables defined in Table 3.4. With the exception
of the electric constant, these values are from the motor’s datasheet [15].

V =

Rm|IPH|+ ke
4 ω, ω ≤

4Rm
2πLm

Rm|IPH|+ keTm
2πLm + 2πLm|IPH|+ke

4

(
ω − 4Rm

2πLm

)
, ω > 4Rm

2πLm

(3.3)

4The control system schematic, Fig. D.1, shows the layout of this system.
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Figure 3.15: Schematic of new control system

Table 3.4: Variables used in the voltage model, Eq. 3.3

Variable Definition Value Unit
IPH Phase current 1.0 A
ke Electric constant of motor 0.01∗ V

rad
Lm Phase impedence 0.012 H
Rm Phase resistance 6.5 Ω

* Measured

This results in the model shown in Fig. 3.16. The maximum supply voltage for this
stepper driver is 45V, limiting the speed to 2100 steps/s (10.5 rev/s).5 To achieve the
desired cylinder speed of 2.5 rev/s, the gearbox must be removed and the stepper directly
connected to the cylinder. Removing the gearbox results in a significant reduction in
available torque but as long as good alignment of the motor, cylinder and cylinder seal is
maintained, it is sufficient. This required a new mount to made, shown in Fig. 3.17, which
is connected directly to the cylinder mount and these pieces are manufactured with tight
tolerances.

5The motor driver is able to generate steps much faster than this but the voltage required to turn the
motor at higher speeds is not available. The previous system was able to supply over 100V to the motors.
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Figure 3.16: Voltage required by the stepper motor as a function of the rotational speed.
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Figure 3.17: Rendered image of the direct motor mount assembly.

3.4 Data Capture

The only data recorded for these experiments is the structure displacements as a function of
time. This is done by capturing video from below the structures (Fig. 3.18) and optically
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tracking green markers attached to them. The camera is a Nikon D72006 recording at
50Hz. It is mounted on optical rails built into the frame of the flow facility allowing it to
film the structures through the window in the floor of the flow channel. The advantages of
this method are that it is cheap, it is easy to expand to many structures without needing
a new sensor per structure and the data is always synchronised.

The camera is controlled using the open-source software DigiCamControl. The software
for tracking the structures was written in Matlab. At the start of the program, the user is
presented with a sample frame, they draw boxes around each structure then the software
outputs the angle of each structure relative to the image for the full data set. This does not
need to be oriented with the flow or corrected for bias because the data will be symbolised
based on relative angles (Section 5.2.2).

Figure 3.18: A rendering of the camera position and optical rails

6with lens: Nikon AF-S Nikkor 18-70mm 1:3.5-4.5G ED, set to 18mm focal length, f/4.5
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Chapter 4

Results of Simulated Experiments

This study is designed to validate the Matlab code used to calculate transfer entropy,
written by this author. Results from simulation data will be compared to an analytical
solution. The rules used to generate the data for this experiment are guided by those used
by Bossomaier et al. [8] to formulate the analytical solution below. The system contains
two variables (X, Y ) each with two possible states (−1, 1). X is deterministic and has no
dependence on Y . Every time step the value of X flips creating a periodic signal with a
period of 2 time steps, t. Y has a probability of following X such that Pr(yt = xt−1) = 1+c

2

where c ranges from -1 to 1. X is independent of its own past so Pr(yt = −xt−1) = 1−c
2 .

The analytic solution is given as [8].

TEX→Y = 0.5[(1 + c) log2(1 + c) + (1− c) log2(1− c)]

− 0.5[(1 + c2) log2(1 + c2) + (1− c2) log2(1− c2)] (4.1)

TEY→X = 0 (4.2)

To allow for an investigation into the effects of sampling period and the lag parameter, the
data is reshaped into a square wave. To maintain the rules of the system, the period of
oscillation of X is 24 t and the communication delay X → Y is 12 t as shown in Fig. 4.1.

Before analysing the calculation method, it is worth considering the analytical result
in Fig. 4.2. From the rules of the system, it appears that the ‘strength’ of the causal link,
X → Y , is proportional to the absolute value of c. At c = 0, the probability that Y takes
the value X is equally likely as Y taking the value of −X. At high values of |c|, Y has
a high probability of following one of X or −X. However, in Fig. 4.2, it is seen that this
is not the case. This difference comes from the difference between Granger causality and
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the intuitive understanding of causality. As discussed in Section 2.3.6, TE is equivalent to
Granger causality which is predicated upon the existence of unique information in the two
considered variables. It is apparent that for c = 1, Y = X so there is no uniqueness and
Granger causality is zero, despite the fact that Y is caused by X.

4.1 Validation of TE Algorithm

Results calculated from a 5×106 data point synthetic data series deviate from the analytic
solution with an RMS error of only 0.17 × 10−3 bits, thereby validating the code. The
results are too close for the difference to be clearly shown in Fig. 4.2.

Figure 4.1: A sample of the time series used in this simulation.
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Figure 4.2: A comparison of calculated and analytic solutions to validate the algorithm
used to calculate transfer entropy. TEY→X is not shown because it is exactly 0 for both
methods. RMS error = 0.17× 10−3 bits

4.2 Analysis of Calculation Parameters

As described in Section 2.3, calculating transfer entropy requires two parameters ∆ and δ
to be selected. The values of these parameters are reported in the literature to be related
to physical characteristics of the system as described in Chapter 2. In short, ∆ relates
to the time period between information events and δ is the amount of time it takes for
information to pass from the target to the source. The parameters can be selected using a
priori knowledge of the system as they were in the preceding section. However, since the
purpose of using this tool is to learn information about the system, data driven methods for
selecting the parameters are required. This section details a simple method for achieving
this and validates the relationships between the parameters and the physical properties.

In the described system, the communication lag is known to be δ̂ = 12 t and the period
of oscillation is 24 t which means a change occurs every 12 t; this should be the critical
∆. The expectation is that, at these parameters, TEX→Y and TEY→X will match the
analytical solution and |TEnet| will be maximised. To test this, the data is down-sampled
for a range of ∆ from 1 to 24. Similarly, TE is calculated for a range of δ from 1 to
24. This results in two, two-dimensional arrays TEX→Y and TEY→X per c value. All of
the results are plotted in Fig. 4.3 which, through its wide spread and large number of
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Figure 4.3: Scatter of TE results for parameters ∆ = (1, 24) and δ = (1, 24) compared
to analytical results. Note that the analytical result for TEY→X = 0.

spurious values,1 demonstrates the need to correctly select the calculation parameters ∆
and δ. Fig. 4.4 demonstrates that |TEnet| is less chaotic and tends to conform better to
the analytical results which lends credit to the idea that this is a useful tool for parameter
selection.

To simplify the discussion, the case of c = 0.2 will be looked at in isolation. Fig. 4.7
shows the results for all ∆ and δ parameters tested, for each TE component (TEX→Y , top
left, TEY→X , top right and |TEnet|, bottom). The component TEX→Y is dominated by
the regions about δ = 4, 16, ∆ = 8 which is not the expected result2 but it does match
Fig. 4.3 where there are many values greater than the analytical solution. It can be seen
in Fig. 4.5 that this spike at ∆ = 8 t is also seen in the entropy calculations, H(X) and
H(Y ), which is propagating through to the TE calculation. This one case is not a good
demonstration of the principle but it will be demonstrated in Chapter 5 that filtering out
sampling periods based on the entropy is a robust, data driven method for avoiding spurious
results. In Fig. 4.8 this filter is applied by setting all values corresponding to ∆ = 8, 16, 24 t
to 0. In Fig. 4.3, these filtered values are highlighted red. Applying this filter allows for a
better analysis of the patterns, revealing there are additional spikes in the data (Fig. 4.8
at ∆ = 4, 6, 12, 18) that were not detected by the entropy. The spikes occur when the
sampling period is a harmony of the event period (T0) similar to the demonstration in

1In this context ’spurious’ is used to describe values greater than the analytical result. This is because
it is asserted that a false positive detection of causality (or a high measurement of TE) is incorrect, where
a low measurement is a detectability issue.

2The expected result is ∆ = 12, δ = 12.
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Figure 4.4: Measured TEnet compared to analytical results for simulated experiment.
Filtered ∆ values are those that are identified as causing erroneous measurements of en-
tropy.

Fig. 2.4. The periodicity of this signal increases the harmonic content such that anomalies
are created at ∆ = iT0/j where i and j are any positive integer. The power of the harmonic
is affected by the magnitudes of i and j as well as the number of modes in which it occurs.
To avoid these anomalies, Zhang et al. [74] calculated TE over a range of ∆, then identified
where the results are relatively insensitive. However, that step is not necessary here and
it will be demonstrated in Chapter 5 that filtering using the entropy is sufficient for that
experimental data.

On a macroscopic level there is a clear pattern in both the ∆ and δ directions. The
pattern along δ has a period of 12 t and is expected due the periodicity of X which, as
explained in Section 2.3.1, makes it impossible to distinguish which cycle is causing the
response. The oscillations with respect to ∆ are variations in the detectability as detailed
by Barnett & Seth [5]. While it is not expressly stated, the results of Barnett & Seth [5]
suggest that ∆ can be selected by which value causes TE to be maximised. This does not
work at the component level (TEX→Y ) for this data but it does work using TEnet, i.e. TEnet

is maximum at ∆ = T0 = 12 t. Interestingly, at this sampling period the periodicity hides
all of the lag information and TEX→Y is uniform with respect to δ as shown in Fig. 4.6.
However, the TE measurement does match the analytical result. Using a slightly different
sampling period, the communication delay can be accurately detected as the value that
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Figure 4.5: The relationship between sampling period and entropy for the synthetic data
at c = 0.8

maximises TEX→Y as is done by Wibral et al. [66]. This is evidenced by the peak at δ = 12
in TEX→Y (∆ = 7) in Fig. 4.6, but the measurement of TE is incorrect. The figure also
shows that δ can only be selected from the maximum of TEnet, as advised by Zhang et al.
[74], if ∆ is correctly selected first. Here, the slight shift in ∆ had a minimal effect but
for ∆ = 7, the communication lag is incorrectly identified as 9 t. This indicates that the
sampling period should be selected before analysing communication delays or both should
be identified together.

Applying the principles just discussed, the results for the full range of c are truncated
to those sampling periods which cause |TEnet| to be maximised. In all cases, the results
are independent of δ and match the analytical result as shown in Fig. 4.9. Note the slight
increase in error compared to Fig. 4.2 is caused by the reduction in the sample length to
5× 104 data points which was done to reduce the computation time. Fig. 4.10 shows that
in all cases except c = 0, the selected sampling period is ∆ = 12. For the case c = 0, the
TE magnitude is zero so the selection is sensitive to noise. To estimate the communication
delay, the sampling period is shifted by 1 from that just identified.3 i.e. if ∆ = 12 is
identified as the correct sampling period, ∆ = 11 is used to estimate the communication
lag. To remove the effect of periodicity, the range of δ is reduced to 1 to 23 otherwise the
result was as likely to be 0 or 24 as it was 12. As seen in Fig. 4.11, the correct lag, δ = 12

3This is only necessary because of the periodicity of X.
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Figure 4.6: TE results for select ∆’s. Analytical result is TEX→Y = 0.0279bits.

is identified in all cases except c = 0 as before.

Figure 4.10: Identified critical sample
period using data driven methods

Figure 4.11: Identified critical commu-
nication delay using data driven methods
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TEX→Y TEY→X

TEnet

Figure 4.7: Contours of transfer entropy for all calculated ∆ and δ. TEX→Y at top left,
TEY→X at top right and |TEnet| at the bottom.
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TEX→Y TEY→X

TEnet

Figure 4.8: Contours of transfer entropy with respect to ∆ and δ with the entropy filter
applied. TEX→Y at top left, TEY→X at top right and |TEnet| at the bottom.
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Figure 4.9: Final results of TEX→Y using data driven methods to select ∆ and δ param-
eters.

4.3 Simulation Conclusions

By comparing synthetic data to an analytical result, it has been that the numerical method
introduced in Section 2.3 is equivalent to the analytical method and the code used is
correct. Additionally, It has been confirmed that there is are direct relationships between
the parameters ∆ and δ and the system properties event timing and communication delay,
respectively. Data driven methods for identifying the correct values of these parameters,
without a priori knowledge of the system, have been introduced. Some of the nuances of
interpreting the data have also been discussed; particularly in relation to periodic variables.
This experiment also highlighted the difference between causality and Granger causality,
seen as detectability issues for c values that resulted in a lack of unique events in the two
variables, c→ ±1.

In summary:

• In most cases, it was possible to identify the causal relationshipX → Y using transfer
entropy.

• The calculation parameter ∆ was shown to be related to the physical time at which
events occur. In this case how often the symbol X changes.

• Some values of ∆ caused the data to be misrepresented. These values show up as a
spike in entropy and thus can be filtered out.
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• For this data, it was possible to select ∆ using |TEnet| once the data has been filtered
using the entropy results.

• The calculation parameter δ was shown to be related to the time it takes for the
information to get from the source to the target.

• The communication delay could be found from TEX→Y , as suggested by Wibral et al.
[66], once an appropriate ∆ was selected.

• For this data, it was not appropriate to select the communication delay based on
|TEnet|, as had been suggested by Zhang et al. [74], due to the periodicity of X.
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Chapter 5

Methodology and Results of Two
Body Experiments

5.1 Preliminary Analysis

The purpose of these experiments is to validate the hypothesis that transfer entropy can
be used to infer directed causal relationships in fluid-structure systems. They will also be
used to identify the best methods for applying TE to this type of data. The results will
be validated against expected trends or known values where possible. These experiments
are designed to be similar to the experiments of Zhang et al. [74] to ensure a high chance
of success but are modified to expand our understanding of the application of information
theoretic tools to fluid-structure interaction problems. In the present experiments a NACA
0018 airfoil of chord length l = 0.060m is placed in the wake of a circular cylinder of
diameter D = 0.044m, both in a free stream of water at velocity U = 0.04m/s, as detailed
in Chapter 3. The rotational position of the cylinder is stored in time series C and the
rotational position of the airfoil is stored in A. The cylinder is driven by a random decision
process with regular decision periods, TD, similar to a first order Markov Decision Process.
When the decision to move is made the cylinder performs a rotational impulse. This
rotation disrupts the fundamental vortex shedding that occurs in the wake of the cylinder
while it is stationary, discussed in Section 2.4.1. In terms relevant to this topic, this action
adds information to the system at a random interval. Information is advected along with
the vortex in the form of distortions to the flow field. These distortions act to create a
pitching moment on the airfoil. The passive pivot at the quarter chord of the airfoil allows
it to rotate in response. This system only allows for communication in one direction; from
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the cylinder to the airfoil. The cylinder is coupled to the motor so it cannot be moved by
the airfoil. This is the first known condition to which the results will be compared; TEA→C

must be statistically zero.

The disturbances created by the cylinder are expected to diffuse as they travel down
stream which is likely to cause a decrease in airfoil response as the separation between
the two structures increases. This was seen to be true and detectable in the experiments
of Zhang et al. [74], so that condition is used here to validate the method, i.e. the final
results should show a decrease in TEC→A as separation increases. The other effect of
increasing separation is the time taken for the information to pass between structures
should increase. As discussed in Section 2.3.1, this should result in an increase in the value
of the lag parameters at which peaks in TE are observed. Assuming the information is
advected by vortices, it is unclear what the exact communication time is because there
are a few complicating factors. Firstly, it is not a good assumption that the vortex will
travel at the free stream speed when it is so close to solid structures which alter the local
fluid velocity and may interact with the vortex, causing it to accelerate or decelerate. It
is also unclear how long after the rotation the vortex sheds and where it will shed from.
Assuming that these factors are uniform between cases, the communication delay should
be linearly proportional to the separation of the structures, s. By trialling five separations
it is possible to evaluate the accuracy of the delay parameter, δ̂, from the trend without
having to know the true value of communication lag.

To investigate the effect of the sampling period (∆) on the results, three different
decision periods are trialled. The expectation set by Barnett & Seth [5] is that the sampling
period should be close to the event period and Schreiber [50] has shown that the event
period is the decision period for systems driven by a Markov process. Therefore, the
sampling period should be close to the decision period. The decision periods are chosen
to not be harmonic with the fundamental shedding period, which is estimated at 5.6 s.
This period is estimated using the Strouhal number for an equivalent stationary, isolated
cylinder, so it is not expected to be exactly correct. It is, however, the best estimate
available and serves as a reasonable starting point. The chaotic temporal relationship
between the fundamental shedding and the rotation is critical because it will decrease the
significance of the fundamental shedding interaction in the TE calculation.

The separation distances and decision periods for all 15 cases are given in Table 5.1.
Separation is non-dimensionalized using the cylinder diameter, s∗ = s/d. The decision
period is non-dimensionalized by the convection time of the airfoil, T ∗D = TDU/l.
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Table 5.1: Case numbers and parameters

s∗/T ∗D 1.33 2.00 2.50
1.18 1 2 3
1.77 4 5 6
2.36 7 8 9
2.95 10 11 12
3.55 13 14 15

Based on this preliminary analysis of the system, the following hypotheses are defined
to validate the use of the proposed methodology for this type of fluid-structure system.

1. In all cases TEA→C should be statistically zero.
2. TEC→A should decrease as separation between the cylinder and airfoil increases.
3. TE should peak at lags (δ) matching actual communication times. The actual com-

munication lag is unknown but the trend with respect to separation should be linear;
δ̂ ∝ s.

4. The sampling period (∆) should be approximately the decision period.

5.2 Methodology

5.2.1 Captured Data

Optical tracking is used to measure the angular displacement of the two structures. A
camera placed below the test section acquires images at 50Hz. These images are processed
in Matlab to track the position of two green markers attached to each of the structures.
From these positions, the structure angles are measured to create the time-series shown
in Fig. 5.1. This angle is relative to the camera frame, so it is not exactly the structure
angle. No viewing angle correction is made because the data will be symbolized in such
a way that the small error will disappear. The example time series shows the cylinder
is mostly stationary with short impulses of movement. The markings on the cylinder are
approximately aligned to be 45 degrees to the free-stream and the rotation moves it through
270 degrees creating two distinct cylinder positions. This is seen as the plateaus of the
angle at approximately ±0.75 rad and was done to simplify the symbolization process. The
spacing between impulses demonstrates how the driving process can be used to approximate
a random signal despite the regularity of the decision period. The airfoil is seen in the
first plot of Fig. 5.1 to be constantly oscillating but demonstrates little periodicity. The
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second plot is for a case with greater separation between the structures which results in
lower amplitude responses.

Figure 5.1: Samples of raw data for single airfoil experiments. Top: case 1. Bottom:
case 5. The angle is measured relative to the camera frame which is approximately aligned
with the free-stream.
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5.2.2 Symbolization

Symbolization reduces the spatial information of the data so the rules must be carefully
constructed to avoid removing important behaviour information. It was demonstrated by
Zhang et al. [74] that two symbols was sufficient for their experiment, which is similar to
this one. They did demonstrate that increasing the number of symbols to six increased
the accuracy of the results but the computational intensity increases by a factor of 32. For
minimal computational intensity the decision was made to limit the number of symbols to
two. This will be shown in the following sections to be sufficient.

The measured property of the structures is the angular position, but this is not the
behaviour of interest. Here the experiment is exploring if movement of one structure
causes a movement response of the other structure. For the cylinder it is sufficient to
symbolize on the condition “moving” or “not moving” because the details of the movement
are constant and unimportant. As such, the symbols for the cylinder data are determined
by the rule:

ct =

βt − βt−1 ≥ 0.1, 1
βt − βt−1 < 0.1,−1

(5.1)

where β is the measured angle and t refers to a specific time instance. The threshold of
0.1 radians is included to filter out measurement noise. Figure 5.2 shows that the symbol-
ized data faithfully represents the measured data.

Figure 5.2: Sample of cylinder symbolization.
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The same rules cannot be used to symbolize the airfoil data because this would not
accurately portray the behaviour of the data. Looking at the raw data it is seen that it
would almost never be in the “not moving state”. Once again following the framework set
out by Zhang et al. [74], the symbols are constructed based on the direction of rotation as
below:

at =


αt > αt−1, 1
αt < αt−1,−1
αt = αt−1, at−1

(5.2)

where α is the measured airfoil angle. The slow motion of the airfoil makes these data
highly sensitive to noise because the change in position per time step is often of the same
order of magnitude as the noise. When the data is down-sampled before it is symbolized
this is not an issue because the movement per time step is much greater, but when the data
is symbolized first it is necessary to use a simple smoothing function. Figure 5.3 shows
the symbols created from a sample of airfoil angle data with a 20 point moving average
smoothing function applied.

Figure 5.3: Sample of airfoil data symbolization.

Using these symbols strips the data of all amplitude information. Thought experiments
are proposed here to show the significance of this. In a first experiment, the airfoil responds
to every cylinder rotation by rotating 15 degrees, then rotating back to 0 angle of attack.
Then, in a second experiment the airfoil responds to every cylinder rotation by rotating 3
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degrees and then back. Intuitively the communication in the second experiment is not as
strong as in the first but using these symbols, both will have the same TE. The information
that is kept is whether the airfoil responds to the cylinder rotation, the degree of that
response is considered less important for this experiment. In other cases, the amplitude
data may be necessary. This highlights the importance of understanding the research
question before setting the symbolization rules.

Alternate Symbolization Rules

There are many other ways to symbolize these data but testing has identified the above
method as the one that gives the best agreement to the known conditions listed in Sec-
tion 5.1 and it is consistent with the method published by Zhang et al. [74]. It will be
demonstrated in the next section that this method creates the appearance of two responses
of the airfoil, one for the initial rotation and another for the counter-rotation. This can be
removed by setting the rules as

at =


αt > 0, 1
αt < 0,−1
αt = 0, at−1

(5.3)

This would still not contain amplitude information but would more faithfully represent the
response. In practice this worked well for some cases but generally failed because there is
no mechanism to center the airfoil at 0 degrees angle of attack. The pivot is placed at the
quarter chord so there is no restoring force at shallow angles and the airfoil often ’settles’
at a non-zero angle of attack. This is demonstrated in the bottom plot of Fig. 5.1 where
the airfoil pauses at 0.13 rad (t ≈ 212 s), then next time it settles at -0.12 rad (t ≈ 220 s).
As a result the oscillations in the range t = (220, 250) only become a positive angle once.
The symbols using this system then fail to capture most of the response.

5.2.3 Determine Test Length

To test for convergence of the results a twenty minute test was broken into intervals from
two to twenty minutes. The on-board memory of the camera set the limit on test length.
This could have been extended by a hardware change but the analysis shows that this is
not necessary. The expectation is that the convergence time will be related to the number
of events that occur during the test, i.e. the number of decisions made. To account for this,
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the test was performed using the longest decision period, 3.75 s. The results are shown in
Fig. 5.4 to have a spread of less than 10% at ten minutes. A test length of twenty minutes
is selected as a balance of accuracy and convenience.

Figure 5.4: Scatter of results for different test lengths.

5.3 Results

5.3.1 Down-Sample First Method

The literature suggested that symbols should be created based on down-sampled data [74],
so that method was originally employed. The TEnet results for the 15 cases are given in
Fig. 5.6. One case is given here in Fig. 5.5 as an example.

77



TEnet
Max = 0.2564 bits

TEA→C
Max = 0.0406 bits

TEC→A

Max = 0.2587 bits

0

Max

Figure 5.5: TE results for case 1. The plots are self-normalized so the patterns can be
compared but the relative magnitudes cannot. The orange asterisk indicates the location
of the peak TEnet and the orange circle indicates the peak of TEC→A.

These plots are normalised by the maximum TE for that case allowing the patterns
with respect to ∆ and δ to be analysed, but mostly obscuring the trends with respect to
separation and decision period. Those results will be discussed later. Note that TEnet and
TEC→A are almost identical because TEA→C is several orders of magnitude smaller than
TEC→A; as such, only TEnet needs to be considered for this analysis. The |TEnet| results
for all 15 cases are given in Fig. 5.6. It is immediately evident from the steep gradients of
the plots that the magnitude of TE is highly sensitive to both the sample period and lag
parameter, as it was in Chapter 4. Using this method, the selection of the two parameters
is strongly linked. An incorrect selection of ∆ will cause a vastly different identification
of the critical lag. The results demonstrate the predicted periodicity with respect to both
parameters but it is not entirely consistent between cases. For example, cases 7 to 15
exhibit clear diagonal bands where cases 2, 3 and 6 exhibit less structure. In addition to
the large scale variations, sharp distortions are seen at distinct ∆’s. One such anomaly is
seen at ∆ = 2 s in Fig. 5.5, TEnet and TEC→A. It will later be demonstrated that these
spikes are erroneous and should be filtered out. Two methods for selecting parameters
have been identified in the literature, selecting the parameters which maximise |TEnet|
or selecting the parameters which maximise the individual components. The parameter
selections for these two methods are shown in Fig. 5.5 and Fig. 5.6 as an orange asterisks
and circle respectively. The selection method has very little impact for this type of data but
the method using TEnet is slightly more predictable. The root mean square error (RMSE)
of all cases is 1.11 s for the net method and 1.14 s for the component method.
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Figure 5.6: |TEnet| for all 15 cases for a range of ∆ and δ parameters, calculated using the
down-sample first method. The orange asterisk indicates the location of the peak TEnet
and the orange circle indicates the peak of TEC→A.
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Figure 5.7: Critical lag values selected using TEnet (left) and TEC→A (right). Black lines
are fitted using linear regression. The inverse of the gradient of this line is used to estimate
the advection speed.

From the preliminary analysis the peak is expected to be close to ∆ = TD. The selection
of ∆ is relatively accurate, using either method, for cases with TD = 2.00, 3.00 s; however,
for TD = 3.75 s they tend to select TD/2. The reason for occasionally selecting TD/2 is not
clear but it being the first harmonic is an encouraging sign that it is not a random error.
The true value of δ̂ is not known but it should trend as δ̂ ∝ s. The location of the peak is
seen to increase with s in Fig. 5.6 but the linearity of this increase is better shown in Fig. 5.7.
Using linear regression, the advection speed is estimated to be 0.036m/s (RMSE(δ) 0.26 s)
using the parameters selected from TEnet and 0.037m/s (RMSE(δ) 0.31 s) using TEC→A.
These are both reasonable values considering a free-stream velocity of 0.04m/s. Note that
the RMSE is on the estimate of δ which is then used to calculate the advection speed
estimate, not the error of the advection speed itself.

To investigate the distortions of the TE results with respect to ∆, the entropy of the
two variables are plotted in Fig. D.2 with an example given here in Fig. 5.8. Given the
highly oscillatory behaviour of the airfoil, it is expected that the entropy will be close to
one because it should spend about the same amount of time in either the clockwise rotating
state and the counter-clockwise rotating state. The expected value of the entropy of the
cylinder is derived from the expected number of impulses, TtPr(d = 1)/TD where Tt is the
test length in seconds and Pr(d = 1) is the probability of the driving process returning a
decision to move. The amount of time the cylinder spends in the moving state (C = 1) is
the product of the number of impulses and the amount of time each impulse takes (TP ).
The probability of the cylinder being in the moving state is then defined by Eq. 5.4.

Pr(C = 1) = TPPr(d = 1)
TD

(5.4)

The expected value of the entropy is then calculated by substituting Eq. 5.4 into Eq. 5.5
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which is adapted from Eq. 2.6.

HC = −Pr(C = 1) log2(Pr(C = 1))− (1− Pr(C = 1)) log2(1− Pr(C = 1)) (5.5)

The expected entropy of C for the three decision periods TD = (2.00, 3.00, 3.75) s are
HC = (0.38, 0.29, 0.24)bits respectively. Comparing the analytical result to the measured
(Fig. D.2) shows a significant difference. It is interesting that the TE results still tend
to be accurate and usable. This is possibly due to the formulation of TE which is set
up as a difference of entropies (Eq. 2.11). It does however cast doubt on this method so
other methods are explored. This analysis was kept because it is an established, published
method which gives erroneous results for this type of data. That is not to say that the
published results are incorrect because it is seen that the entropy of the airfoil data is
correct. This means the algorithm must be tailored to the data and introduces the entropy
as a low cost sanity check of the results.

Figure 5.8: Entropy of variables for test case 1 using the down-sample first method.
Black dots indicate the sampling periods which will be filtered out by the entropy filter.

5.3.2 Symbolize First Method

In an attempt to remedy the erroneous entropy issue, it was found that the error arose from
the symbolization process. The logic of the symbolization rules is sound, but creating them
from the down-sampled data caused the issue. It is not clear why this happens, but the
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following section provides sufficient evidence to suggest that for this data it is more correct
to symbolize the full data then down-sample the symbols. The entropy of the cylinder data
for all 15 cases are shown in Fig. D.5 to closely match the analytical result from Eq. 5.5.
Using Fig. 5.9 as an example, it can be seen that with the exception of the sharp spikes,
the measured entropy is in close agreement with the analytical solution. The spikes are
caused by sampling periods which are harmonic to different features of the raw data. This
was demonstrated in Section 2.3.2 for a simple square wave. The data here has greater
harmonic content because of the random nature of the system. An in-depth analysis of
this point adds very little to the understanding of the system, but it is sufficient to say
that the spikes are erroneous so they should be filtered out. To that effect, any sampling
period which caused a significant spike in the calculated entropy of either variable was not
used in the following analysis.

Figure 5.9: Entropy of case 1 using the symbolize first method. The dashed line indicates
the analytical result. Black dots indicate the sampling periods which will be filtered out
by the entropy filter

As before, the full results are shown in the appendix (Fig. 5.11) and the example of
case 1 is given here in Fig. 5.10. The plots show low sensitivity to ∆ compared to that
of δ. More importantly, the peaks of δ are independent of ∆, meaning that an incorrect
selection of one will not cause the incorrect selection of the other as it did in the previous
method.

82



Although it is difficult to see in the plots, TE trends toward zero with the sampling
period,1 as expected. The TE results also have sharp spikes (with respect to ∆) caused by
erroneous sampling as discussed in Chapter 4. As before, the sharp spikes can be filtered
out by removing ∆’s which correspond to peaks in erroneous entropy; shown as black dots
in Fig. D.5. It also has long time scale variations caused by the harmonic relationship with
the decision period, similar to that in Chapter 4. Unlike the simulation, the driver of this
system (C) is not periodic, meaning the period between events at C can take assume any
integer multiple of TD. This is evidenced by Fig. 5.11, in which the peak TEnet

2 is often
at harmonic values of ∆/TD. It will be shown in Section 5.3.5 that the mean of the null
distribution also increases, so the higher magnitude does not necessarily mean a result is
more statistically significant. The reasoning is somewhat convoluted but the consequence
is that selecting ∆ from the maximum of TEnet is not as reliable with this data as it was
in the simulations of Chapter 4.

TEnet
Max = 0.0600 bits

TEA→C
Max = 0.0116 bits

TEC→A

Max = 0.0645 bits

0

Max

Figure 5.10: TE results for case 1. The plots are self-normalized so the patterns can be
compared but the relative magnitudes cannot. The ornage asterisk indicates the location
of the peak TEnet and the orange circle indicates the peak of TEC→A.

The behaviour of TE with changing δ appears different with this method. In Fig. 5.11,
all cases have at least two identifiable peaks,3 but the distance between them is not very
consistent. At first glance, the existence of two peaks suggests that either there are two
communication paths from the cylinder to the airfoil or one impulse of the cylinder results
in two responses from the airfoil at different delays. However, the actual cause is the

1TE→ 0 as ∆→ 0 due to detectability issues, discussed in Section 2.3.2.
2Indicated by the asterisk.
3Shown as dark bands at certain δ values.
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TD = 2.00 s TD = 3.00 s TD = 3.75 s
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Figure 5.11: |TEnet| for all 15 cases for a range of ∆ and δ parameters, calculated using
the symbolise first method. The orange asterisk indicates the location of the peak TEnet
and the orange circle indicates the peak of TEC→A.
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symbolization of the airfoil data. It was stated that the airfoil is expected to rotate, then
counter-rotate in response to the passing vortex. With the current symbolisation rules
(Eq. 5.2) this creates two symbols for that one response. The separation of the peaks
corresponds to the time between the initial rotation and the counter-rotation which is
affected by the vortex coherence and the distance between the airfoil and the vortex. In
shake-down testing using dye injection, it was noted that in some cases the shed vortex
would collide with the airfoil and breakdown. In other cases the vortex would pass as a
coherent structure.4 This case dependent behaviour may explain the noted variation in
the separation of the peaks. In some cases, case 5 for example, third and fourth peaks
are seen. These may be numerical anomalies where a response is incorrectly attributed to
a cylinder movement or they may be due to the regularity of the driving process. These
later peaks are always less significant so they are not considered to be part of the primary
behaviour of the system and, for the most part, are ignored in this analysis.

For clarity and because data driven selection of ∆ has been shown to be unreliable for
these data, the data will be truncated by preselecting ∆. It has been established that ∆
should be about TD, but it cannot be exactly equal, as this results in erroneous sampling;
as evidenced by the entropy measurements (Fig. D.5). Therefore the value closest to TD
which is not filtered by the entropy filter is used. This truncated data is presented in the
easier to read line plots Fig. D.8 and Fig. 5.12. The Null Threshold line is generated by
bootstrapping the data as discussed in Appendix A. Anything below this line is considered
not statistically different from 0 with 95% confidence. This accounts for both the inherent
bias in the TE calculation and the distribution of the results. It is seen in Fig. D.8 that
the component TEA→C is never significant, which meets the first known condition from
Section 5.1. It is apparent that using either TEnet or TEC→A to select the dominant
communication lags will have no effect on the results for this type of data because TEA→C

has no spurious results.
4A thorough flow visualisation analysis was not feasible for this experiment because of the large number

of modes of the system.
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Figure 5.12: TE of case 1 as a function of lag for a set sample period, ∆ = TD

Following the work of Wibral et al. [66], the dominant communication lags δ̂ are iden-
tified by the local peaks of TEC→A, excluding those below the null threshold. Linear
regression is used to fit the trend of the delay as a function of the separation between the
structures in Fig. 5.13. The advection speed is estimated as the inverse of the gradient
of this trend. To account for the bimodal distribution, the two most dominant delays
are treated separately, in order of which occurs first. Due to the low confidence in cases
13 - 15, these cases are excluded from the regression. Both trend lines have a gradient
of 28.7 s/m giving an advection speed estimate of 0.035m/s, which is in good agreement
with the free stream velocity of 0.04m/s. The RMSE of the two regressions are 0.070 s and
0.368 s, confirming the initial observation that the timing of the second peak is inconsistent
between cases. Since the actual communication delay is unknown, there is no ground truth
with which to validate this method of selecting δ̂. However, the high linearity displayed in
Fig. 5.13 is a good indication.
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Figure 5.13: Dominant communication delays of cases 1 to 12 with linear fit. The
different colours indicate either the first or second peak.

Figure 5.14 presents the measured magnitudes of TEC→A for all 15 cases as a function of
the separation between the structures. The magnitudes are bias corrected by subtracting
the mean of the null distribution from the measured value. Values that are not signifi-
cantly different from zero are indicated by the + symbol. These results confirm there is a
measurable decline in the interaction strength as the separation increases as is expected.
A reduction is also seen as the decision period increases in Fig. 5.15, although this appears
less prominent.
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Figure 5.14: Bias corrected TEC→A as a function of separation between structures. Three
tests are performed at each separation, corresponding to the different decision periods. The
designations first and second when referring to the delays denote the order of occurrence.
i.e the lowest magnitude of δ, not the relative magnitude of TE.

Figure 5.15: Bias corrected TEC→A as a function of decision period. Five tests are
performed at each decision period, corresponding to the different separations. The desig-
nations first and second when referring to the delays denote the order of occurrence, not
the relative magnitude of TE.
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Figure 5.16: Comparison of symbolization methods.

5.3.3 Alternate Symbols

It was stated that the two peaks in TEC→A with respect to δ were caused by the symbol-
ization method. To prove this, the method is changed to that defined by Eq. 5.3 and the
methods are compared in Fig. 5.16. Using the alternate symbolization method, only one
peak is seen in the middle of the two peaks detected by the actual symbolization method
(defined by Eq. 5.2). This would be a more intuitive symbol to use because it makes sense
to lump the rotation and counter-rotation into a single event. However, this method fails
to detect causality in all cases except 1, 2 and 3 where the oscillations are very large as
discussed in Section 5.2.2.

5.3.4 Check for Self-Feedback

Measuring TE along the pathways A → A and C → C (Fig. 5.17 and Fig. D.9) reveals
significant feedback in the system. Both components show high feedback at δ → 0 due to
the time it takes for the movement to be complete; more correctly, the time it takes for the
state to change. TEC→C has easily explainable spikes at integer multiples of the decision
period not caused by real feedback but by the regularity of the movement. TEA→A has
a significant spike at approximately δ = 3 s, which is independent of either separation or
decision period suggesting it may be real. The feedback delay (δ̂AA) is shown in Figure 5.18
and Fig. D.10 to match the separation of the two peaks of TEC→A. There is no precedent in
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the literature to advise whether two peaks in TEC→A would show up as a peak in TEA→A.
However, Wibral et al. [66] found that feedback appears in the pairwise results as peaks at
δ̂CA± δ̂feedback as discussed in Section 2.3.1. There is sufficient evidence that the twin peaks
are caused by the symbolization method so it is concluded that the feedback is spurious.
It is interesting to note that there is no data driven method for distinguishing between a
system with significant self feedback and one with two communications paths between the
structures but this is outside the scope of this experiment.

Figure 5.17: TE results along self feedback pathways.
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Figure 5.18: TEC→A for case 1 with indicators of communication delays predicted from
the self feedback results.

5.3.5 Null Distribution

In the contour plots Fig. 5.11 and Fig. 5.10, it appears that the magnitude of TE does not
change significantly with ∆. This is true but it does not tell the whole story because the
null distribution is not shown there. In all cases the significance of the measured TE value
must be compared to the null distribution shown in Fig. 5.19 to have a large variation for
sampling periods close to the decision period. The abstract nature of the TE equation
makes it very difficult to identify the cause of the shape of this graph but the deviation
from the general trend always occurs about the decision period for all 15 cases.
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Figure 5.19: Mean of the null distribution for case 7, TD = 2 s. Note that some of the
expected spikes are missing due to the relatively low ∆ resolution this data was calculated
at. For example, a spike is expected at ∆ = 2 s but the null distribution was not calculated
at this value.

Marschinski & Kantz [32] suggest that TE can be bias corrected by subtracting the null
distribution from the measured value. However, for this experiment, this causes a decrease
in TE around ∆ = TD which ensures the correct ∆ is not selected. The selected ∆ always
corresponds to a value on the lower A→ C trend-line, meaning it is compared to a lower
statistical significance threshold. As a result, there is an increased tendency to falsely infer
communication along the path A→ C.

5.4 Single Pathway Conclusions

It has been shown in the preceding analysis that it is possible to infer directed causal rela-
tionships in fluid-structure systems using transfer entropy. Additionally, this method has
been shown to be useful for identifying dominant communication delays between structures
which can provide additional information about the mechanisms acting in the system. By
comparing the results obtained by different methodologies, some of the nuances of this
technique have been highlighted. The majority of the issues arose from the symbolization
of data due to the vast decrease in information. It was demonstrated that changing the
symbolization rules and order of operations had a significant impact on the results. The
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symbolization process was successful but did require careful design with consideration for
the important qualities of the data. At this stage it was necessary in order to maintain an
acceptable level of computational intensity. It is impressive that such a complex, chaotic
system could be analysed in such depth using such a small amount of information.

Once a reliable symbolization method has been identified, the calculation on TE is
straight forward but contains two unknown parameters. No reliable data driven method
for selecting ∆ was identified here. Selecting it based on the maximum TE value was shown
to have a moderate aggregate error but could be off by as much as 100%. With proper
symbolization this had no effect on estimates of the communication delays but caused a
significant change in the measured TE. Preselecting sample periods using knowledge of
the system, as is common in the literature, was shown to give accurate results. For a
system driven by a Markov process, which is similar to the driving process used here,
it is recommended to use ∆ ≈ TD; this proved to be correct. Entropy of the individual
variables was introduced as a cheap method for filtering out sampling periods which lead to
erroneous results and as a method for checking the accuracy of the symbolization process.
Neither of these points have been addressed in any of the reviewed literature.

Interpretation of the results with respect to the communication delay were shown to
be more complex than simply selecting one correct TE value. Communication was shown
to occur over a range of delays making the case to case comparisons difficult. For this
experiment, where it is known that only one communication mechanism exists, it was
shown that two delays were detected. Both delays are true because the response of the
target takes a finite amount of time. This was shown to be caused by the symbolization
method but the question of what is the true delay is still ambiguous and, for the most part,
is up to the researcher to decide. For these experiments the logical delay to choose is from
the cylinder rotation to the start of the response of the airfoil but this is open to debate.
Ultimately it was decided that consistency was most important so the trend of the results
were used. By selecting either the first peaks or second peaks, the information advection
speed was estimated by linear regression to be 0.875U.

Comparison of the magnitude of TE is highly interpretive but some definitive statements
can be made. By calculating the null distribution, it was shown that no statistically
significant communication occurred from the airfoil to the cylinder. Additionally, it was
shown that the strength of the communication decreased as the separation between the
structures increased and as the decision period increased. It is unclear what the magnitude
of this decrease means in real terms.
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Figure 5.20: Maximum measured TE for various cross-stream offsets. Magnitude is bias
corrected.

5.5 Cross-Stream Offset Experiment

This short experiment forms a bridge between the two body and three body experiments.
For the later, it is desired to know the influence of the cylinder on airfoils not directly
in its wake. To get this information, an airfoil is placed s = 1.5D downstream of the
airfoil with cross-stream offsets p = −1.5,−1.0,−0.5, 0.0, 0.5, 1.0, 1.5D. Only one decision
period is used, TD = 2 s and the cylinder always rotates counter-clockwise. Entropy of
the variables is calculated for a range of sample periods surrounding TD to aid in selecting
that parameter. From this the selected sampling period is ∆ = 2.02 s as it had been
for the earlier experiments. TE is calculated over the range δ = (0, 12) s to ensure all
communication is captured.

For this experiment, the only property of interest is the maximum TE. Figure 5.20
shows the asymmetry of the communication path caused by the uniform rotation direction
of the cylinder. For a down-stream separation of 1.5D, the influence of the cylinder is
shown to be significant in the range p/D = (−1, 0).

94



Chapter 6

Results of Three Body Experiments

These experiments are intended to advance the functionality of transfer entropy in the
field of fluid-structure interactions by expanding the number of structures being analysed.
Transfer entropy is always a pairwise calculation, measuring the strength of communication
from one structure to another. When more than two structures are present, the calcula-
tion can be performed for each pair to generate a map of the communication network.
Section 2.2.3 discusses that the TE calculation must be conditioned on all variables of the
system to avoid spurious detection of communication which is actually caused by mutual
influence or cascading information pathways. The physical experiments in this chapter
build on the previous experiments by adding a second airfoil, identical to the first, into the
system. As before, the cylinder is driven in a manor similar to a first order Markov process.
This time the decision period is limited to 2.0 s as the effect of changing this parameter has
already been covered in Chapter 5. Simulations of highly idealized systems are provided
at the beginning of this chapter to help set expectations for the results and to identify the
effects of the various indirect communication pathways.

6.1 Simulations

The following simulations represent highly simplified systems to investigate the various
effects caused by the presence of a third structure. Conditional TE was introduced in
Section 2.3.4 as a method for accounting for the effect of additional variables on the primary
pair (the target and source variables) being analysed. There are three proposed methods
for analysing these systems, depending on the desired result.

• Plot conditional TE over a range of δ and ζ to highlight patterns or trends.
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– Non-uniform results with respect to the ζ parameter indicate the communication
from source to target is dependent upon the conditioning variable.

• Analyse the dominant lags, attempting to determine the true cause of that interac-
tion.
– In Section 2.3.4 it was stated that if Z was a mutual driver of X and Y , TEX→Y

would give a false positive detection of communication with a delay δ̂ZY − δ̂ZX .
– Additionally, relayed communication Z → X → Y will give a false positive

detection of communication TEZ→Y at delay δ̂ZX + δ̂XY .
• Hypothesis testing can be used to evaluate specific ideas. For example, ‘is this path

significant?’

The first two methods are employed for the simulations below. All three will be applied
to the analysis of the experimental data.

6.1.1 Mutual Driver

In this system, both X and Y are driven by Z at delays δZX = 8, δZY = 21 but no
communication occurs between them as shown in Fig. 6.1. Z is driven by a first order
Markov process with a decision period of 100 time-steps and a probability of a positive
decision of 0.7. When a positive decision is returned, Z switches state for 5 time-steps. The
probability of X or Y responding to Z is 0.7. As discussed, it is expected that calculating
TE from X to Y will give a spurious, significant measurement of TE at δ = δZY − δZX .
The correct peaks TEZ→Y (δ = 21) and TEZ→X(δ = 8) as well as the spurious result can
be seen in Fig. 6.2a. Conditional TE of the three significant components (Z → Y , Z → X,
X → Y ) are plotted for a range of δ and ζ in Figs. 6.2b to 6.2d. It can be seen in Fig. 6.2c
that the dominant communication delay δ̂ZX = 8, identified by the peak of TEZ→X in
Fig. 6.2a, appears in the conditional plot at the same δ. The result is uniform across
the full range of ζ confirming that the interaction Z → X is independent of Y . In the
other two components, the dominant delays, δ̂, again appear as peaks in conditional TE
but now the results are not uniform with respect to ζ suggesting some dependence on the
conditioning variable. The conditional result TEX→Y |Z (Fig. 6.2d) demonstrates that TE
is insignificant if it is conditioned on Z at ζ = 21. Not coincidentally, the conditioning lag
which gives the correct result is the real delay from the conditioning variable to the target;
i.e, the correct result is obtained at ζ = δ̂ZY .

If the delays of the system are unknown, as they will be in the experiments, the commu-
nication delay δ̂ZY can be obtained from the conditional TE, TEX→Y |Z . Using the reverse
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of the logic above, the critical ζ is that which causes a significant reduction in TE.

Care must be taken when using this analysis method. Consider Fig. 6.2b, which has
a significant change in TE at ζ = 13. This appears to support the hypothesis that
TEX→Y (δ = 13) is real. However, it has already been shown that TEX→Y is insignifi-
cant if conditioned appropriately. The cause of the reduction in TEZ→Y |X is the similarity
of the time-series that result from mutual driver and cascading systems as was briefly dis-
cussed in Section 2.3.4. This result is a spurious reduction in conditional TE1 which is
related to the relative probabilities of X following Z (Pr(xt = zt−δZX )) and Y following
Z (Pr(yt = zt−δZY )). When both probabilities are high, it is impossible to distinguish be-
tween a mutual driver effect and a cascading information effect. It is up to the researcher
to determine whether one or both of these are possible using some other knowledge of the
system. The measurement of TE should be taken from the pairwise calculation because
the reduction in conditional TE is spurious. Proof of this comes from knowledge of the
system; the coupling strengths ZX and ZY are equal, so TEZ→X should equal TEZ→Y ,
which they are in the pairwise calculation, but not in the conditional.

In summary,

• The components Z → X and Z → Y are determined to be significant with delays 8
and 21 respectively.
– The TE measurement for Z → Y is taken from the pairwise calculation, not the

conditional because the reduction seen there is spurious.
• X → Y is determined to be insignificant because it can be completely conditioned

out.
• The remaining components are determined to be insignificant because significant TE

is never measured.

1This is why it is not possible to blindly select significant ζ values as those which cause a significant
change in TE.
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Z

Y

X

δZY = 21

δZX = 8

Figure 6.1: Communication pathways for mutually driven X and Y .
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(a) Pairwise TE results. For clarity, compo-
nents with no measurable TE are not shown. (b) Conditional TEZ→Y |X results

(c) TEZ→X|Y (d) TEX→Y |Z

Figure 6.2: TE results for simulation of three variables with Z mutually driving X and
Y .
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6.1.2 Relayed Information

The behaviour of variables X and Z in this system is the same as that of the previous
simulation. However, this time Y is driven only by X with a probability of 0.7. Fig. 6.3
shows that the information transfer from X to Y is wholly relayed from Z. Fig. 6.4
shows the expected false detection of TEZ→Y at δ = δZX + δXY = 34. In this case the
definition of a false result is less clear than the previous simulation. It can be said that
the significant measurement of TEZ→Y is false because there is no direct communication
along that pathway. However, regardless of the pathway, the information is generated at
Z and received by Y so it is a legitimate pathway. Conversely, a significant measurement
of TEX→Y is an accurate indication of the information transferred along that path, but no
information is being generated by X. Once again the appropriate definition is up to the
researcher. Here it is proposed that a separate definition is used, in which the relay path
Z → X → Y is a separate entity. It will be shown here that the TE measurement along
the relay path matches the pairwise measurement TEZ→Y at the specific delay related to
the relay path.

The conditional results for TEZ→Y |X in Fig. 6.5b again show that the false path can
be conditioned out at a conditioning lag equal to the real delay ζ = δ̂XY . From this it is
determined that there is no direct communication along the path Z → Y . Looking at the
component TEX→Y |Z in Fig. 6.5a, it can be seen that TE is reduced, but still significant,
at ζ = δ̂ZY , where δ̂ZY comes from the pairwise calculation. This is where the analysis
becomes subjective; the researcher must decide what constitutes real communication. It is
known that no information is generated at X so it could be argued that this is not real.
However, in the next experiment it will be demonstrated that it is not usually possible
to distinguish between the system in Fig. 6.3 and one where information is generated at
X as in Fig. 6.6. Also, as in the previous simulation, the amount of reduction seen at
ζ = δ̂ZY is related to the probability of Y responding to X. When Pr(yt = xt−13) = 1,
TEX→Y |Z(δ = 13, ζ = 34) = 0 and it is impossible to distinguish between mutual driver
and cascade effects.

If one was to test the hypothesis, ‘there is direct communication X → Y ,’ the condi-
tional results alone would not be sufficient to disprove it; there is significant TE measured
for all conditioning lags. However, the hypothesis ‘there is significant communication along
the path Z → X → Y ,’ can be tested by evaluating TEZ→Y at δ = δ̂ZX + δ̂XY . This results
in a significant measurement of TE, thereby inferring the existence of a significant relay.
The researcher could then conclude that the communication X → Y is caused by the relay.
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Z

Y

X

δXY = 13

δZY = 21

Figure 6.3: Communication pathways for a system where information generated at Z
is relayed to Y by X. The path X → Y is drawn starting at the end of the Z → Y to
symbolize the idea that no information is generated at X.

The next simulation will demonstrate that this is only reasonable if it is known that X
cannot generate information.
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Figure 6.4: Pairwise TE results. For clarity, components with no measurable TE are not
shown.

(a) TEX→Y |Z (b) TEZ→Y |X

Figure 6.5: Conditional TE results for simulated system with three variables with a
relayed pathway.

6.1.3 Relayed Information With Active Relay

To better reflect the physical experiments in the following sections, the system is modified
so X also generates information. This is analogous to the airfoil responding to the funda-
mentally shed vortices (those not cause by the rotation of the cylinder). This is achieved
by driving X with a separate Markov process with a different decision period to that of
the process which drives Z. The delay from X to Y is unchanged by the pathway and is
drawn separately in Fig. 6.6 to indicate the two different pathways.
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The pairwise TE for this system (Fig. 6.7) has peaks at the same δ locations as the
previous simulation but the relative magnitudes are significantly different. TE measured
from X to Y is by far the most significant due to its involvement in two pathways; directly
communicating its own information and relaying information from Z. The mean of the
null distribution is increased, resulting in insignificant but non-zero results across all δ.
This is likely caused by the multiple event periods which now exist in the system, allowing
for more possible apparent delays. For example, an event at Z at t = 100 causes a
response at Y at t = 134. It is possible that another event occurs at X at t = 110 which
gets a response from Y at t = 123. This results in apparent delays Z → Y of 23 and
34 as well as delays X → Y of 3 and 13. Formally, this is described by the following
relations; δ̂ZY = δZX + δXY , δZX − τ + δXY and δ̂XY = δXY , δXY − τ where τ is the time
between independent events at Z and X. τ can be any value because the events are not
synchronized, thereby accounting for the increased number of non-zero TE values.

The conditional results show that TEX→Y |Z is slightly reduced by conditioning on Z at
ζ = 34 (Fig. 6.8a), matching the relayed pathway. Comparing this system to the previous
one, the results are qualitatively similar making the determination of whether X generates
information almost impossible unless something is known about the system. Consequently,
it is not often possible to rule out direct communication in the latter stages of a relayed
path, preventing the researcher from arguing that the existence of the relay Z → X → Y ,
precludes the existence of a separate, direct pathway X → Y . This is why it is proposed
to define relays as separate entities as shown in Fig. 6.9.

The two relay systems Fig. 6.3 and Fig. 6.6 are summarised together here:

• The component Z → X is determined to be significant and independent of Y . The
delay of that path is 21.

• The component X → Y is determined to be significant with a delay of 13, identified
by a peak in TEX→Y and confirmed by significant interaction in TEZ→Y |X at ζ = 13.
This could be nullified at the discretion of the researcher using knowledge of the
system and contingent on their definition of an interaction. However, here that is
not possible.

• The component Z → Y is determined to be insignificant2 because there are values of
ζ which cause TEZ→Y |X to be insignificant. The reason significant TE is measured
by the calculation of TEZ→Y is the existence of a relay path. The determining factor
is that the dominant delay in TEZ→Y is equal to δ̂ZX + δ̂XY .

2A caveat to this is included in the next simulation.
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Z

Y

X

δXY = 13

δZY = 21

δXY = 13

Figure 6.6: Communication pathways for a system where information generated at Z is
relayed to Y by X.

Figure 6.7: Pairwise TE results. For clarity, components with no measurable TE are not
shown.
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(a) Conditional TEX→Y |Z results (b) Conditional TEZ→Y |X results

Figure 6.8: Conditional TE results for simulated system with three variables with infor-
mation generation at Z and X.

Z

Y

X

δZXY = 34

δZY = 21

δXY = 13

Figure 6.9: Identified communication pathways for the system described in Fig. 6.6
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6.1.4 Multiple Pathways

This simulation combines all of the pathways from the previous two simulations. X and
Y are mutually driven by Z and information is relayed from Z to Y via X as shown by
Fig. 6.10. The pairwise results (Fig. 6.11) are a combination of the mutual driver and
relay results. Two peaks are seen in TEZ→Y , one at δ = 34 caused by the relay and one
at δ = 52 caused by the direct interaction. Similarly, two peaks are seen in TEX→Y , one
at δ = 13 caused by the direct interaction and the other at δ = δ̂ZY − δ̂ZX = 31 caused
by the mutual driver effect. Using the results from the previous simulations, a structure
for beginning the analysis is worked through here. The goal is to identify the underlying
cause of each of the significant delays.

1. Identify significant delays from pairwise TE

As before the significant delays are the delays which cause pairwise TE to peak. The results
are give in Table 6.1. The components with no significant delays are declared insignificant.

Z

Y

X

δXY = 13

δZX = 21

δZY = 52

Figure 6.10: Communication pathways for a system where information generated at Z
is relayed to Y by X and also directly.
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Table 6.1: Significant delays identified from
pairwise TE

Component Delays (δ̂)
Z → X 21
X → Z -
Z → Y 34,52
Y → Z -
X → Y 13,31
Y → X - Figure 6.11: Pairwise TE results. For clar-

ity, components with no measurable TE are
not shown.

2. Identify components which are dependent upon the conditioning variable

Components which are dependent upon the conditioning variable are identified by varia-
tions in conditional TE with respect to the conditioning lag ζ. TEZ→X|Y is not shown here
but it is not dependent upon the conditioning variable, so that interaction is considered
resolved and significant with a delay of 21. Fig. 6.12a and Fig. 6.12b show that the re-
maining two components are influenced by the conditioning variable at conditioning lags
ζZY = 34, 52 and ζXY = 13, 31. The interactions are made insignificant at ζZY = 52 and
ζXY = 13, respectively.

At this stage it is possible to construct a simple map of the system. Starting with a map
of the delays identified in Table 6.1, as shown in Fig. 6.13. Then remove those pathways
which can be made insignificant by conditioning at any ζ value, shown as red arrows in
Fig. 6.13. This is seen to match the simulated system but offers minimal information about
the dynamics. Additional information is obtained by the following two steps.
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(a) TEX→Y |Z (b) TEZ→Y |X

Figure 6.12: Conditional TE results for simulation of three variables with both mutual
driver and cascade effects.

Z

Y

X

δXY = 13

δZX = 21

δZY = 52

δZY = 34

δXY = 31

Figure 6.13: Identified communication pathways for the system described by Fig. 6.10.
Red pathways are determined to be insignificant.
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3. Identify delays related to mutual driver and cascading effects for unresolved
components

The delays associated with the mutual influence of the conditioning variable and those
associated with information relayed through the conditioning variable, for the two unre-
solved components are given in Table 6.2. Note that negative delays are not allowed. More
complex pathways could be added but those listed are sufficient for this discussion.

Table 6.2: Delays related to indirect communication

Component Mutual Drive Delays Relay Delays
Z → Y δ̂XY − δ̂XZ - δ̂ZX + δ̂XY 34, 52
X → Y δ̂ZY − δ̂ZX 13, 31 δ̂XZ + δ̂ZY -

4. Relate significant delays to their cause

From this point forward the analysis resembles a puzzle. The goal is to identify the cause
of each of the dominant delays. This simulation is relatively simple and has no noise which
makes this solvable, but real systems can quickly become unclear. This can be offset by
some knowledge of the system, that is an approach which will be avoided here.

It has already been determined that δ̂ZX = 21 is caused by a real interaction from Z

to X. Comparing Table 6.1 and Table 6.2, the following can be determined:

• X is not mutually driving Y and Z.
• There is no significant relay X → Z → Y .

The analysis so far has narrowed the possibilities down to two systems; δZX = 21, δZY =
52, δXY = 13 or δZX = 21, δZY = 34, δXY = 31.

Focusing on X → Y , it is seen in Fig. 6.12a this is insignificant at δ = 31, ζ = 52,
suggesting that this is a false result. If δ̂XY = 31 is false, then it must be caused by
something else. From Table 6.2, that must mean it is cause by the mutual influence of Z.
It also implicates δ̂ZY = 52 as a real delay because the relay Z → X → Y cannot have a
delay of 52 unless δ̂XY = 31.

A similar argument can be made from TEZ→Y |X (Fig. 6.12b) which is insignificant at
δ = 34, ζ = 13, suggesting δ̂ZY = 34 is false. This implies that δ̂ZY = 34 is most likely
caused by the relay Z → X → Y , leaving δ̂XY = 13 as the real delay.

From this analysis, a map is drawn in Fig. 6.14
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Z

Y

X

δXY = 13

δZX = 21

δZY = 52

δZXY = 34

Figure 6.14: Identified communication pathways for the system described by Fig. 6.10
using lag analysis.

Admittedly, for this system, not a lot of additional knowledge is gained in the last two
steps of this analysis. Ideally, the direct path X → Y would have been reasoned away but
this would require prior knowledge of the system. It may appear that the relay path exists
whenever there is communication along both Z → X and X → Y given that the sum of
the delays is the delay of the relay path, but that is not the case. The significance of the
path is determined by a measurement of TE from Z to Y so it is information generated
at Z that eventually reaches Y . This becomes an important distinction if X significantly
modifies the information before relaying it or it selectively relays information; i.e, if X
passes information it creates to Y but does not relay information it receives from Z.

The final section of the analysis should not be employed without considerable thought.
There are a number of complications which can be hidden. For example, if the system
delays are changed so the real delay from Z → Y matches the relay delay, δZY = δZXY ,
conditional TE still goes to zero at ζ = δXY . This hides the real interaction making it look
like the system in Fig. 6.3. For this analysis to be useful, some knowledge of the system is
usually required.
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6.1.5 Simulation Conclusions

Mutual driver and cascading pathways were shown to lead to spurious measurements of
TE. By conditioning on all other variables in the system, it was possible to identify these
spurious results. If an interaction could be conditioned out, at any value of ζ, that inter-
action is not caused by direct communication from the source to the target. Using that
technique, a basic causal map of the system can be drawn. Additional knowledge can be
gained by analysing the peak delays. It has been demonstrated that if Z is a mutual driver
of X and Y , the following conditions are true;

1. TEX→Y (δ = δ̂ZY − δ̂ZX) 6= 0
2. TEX→Y |Z(δ = δ̂ZY − δ̂ZX , ζ = δ̂ZY ) = 0

where δ̂ZY > δ̂ZX . However, if the communication X → Y is relayed through Z, the
following are true;

1. TEX→Y (δ = δ̂XZ + δ̂ZY ) 6= 0
2. TEX→Y |Z(δ = δ̂XZ − δ̂ZY , ζ = δ̂ZY ) = 0

There are some exclusions to this discussed in the previous section.

6.2 Experiments

The simulations in the preceding section set out expectations for the various communication
mechanisms which are likely to occur in the physical experiments containing two passive
airfoils. Many configurations of the airfoils were trialled to investigate the effectiveness of
conditional TE in identifying the correct communication pathways. Obtaining statistically
meaningful results from this experiment proved to be difficult so the following example is
included to demonstrate the concepts.

6.2.1 Preliminary Analysis

The locations of the two airfoils in this experiment are given in Fig. 6.15. The expectation
is that the communication from C to A will be very strong as it is similar to case 1 in Sec-
tion 5.3.2. With airfoil B being so close behind A, it is expected that that communication
link will also be very strong. The cross-stream offset of B makes it possible for direct com-
munication from C to B but it is possible that A will intercept all of the information from
C. It is known that it is not possible for either airfoil to affect the cylinder. The decision
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period for this experiment is TD = 2.0 s. Based on the results in Chapter 5, the sampling
period is selected as ∆ = 2.02 s, which is the value closest to TD which does not cause an
erroneous measurement of entropy and symbolization is done before down-sampling, using
Eq. 5.1 and Eq. 5.2.

s/d = 1.5  

C A

B
s/d = 3.0  

p/d = 1.0  ω
U

Figure 6.15: Relative placements of structures. Drawn to scale 1:2.

Pairwise TE

The results of the pairwise calculations of TE are given in Fig. 6.16 and the feedback
results are shown in Fig. 6.17. They confirm that the components A→ C and B → C are
never significant. The dominant delays, δ̂, can be selected from the local peaks of TE and
transcribed onto the schematic Fig. 6.18. It is known that the feedback C → C is caused
by the regularity of the decision process that drives the cylinder, so this can be ignored.
Similarly, high TE for δ → 0 are not counted as they are caused by the finite time of the
response, not communicated information.
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Figure 6.16: Pairwise TE results for Test T14

Figure 6.17: Feedback results for Test T14

113



δ = 3.2, 6.2, 
9.6, 11 

δ = 0, 4.3 

δ = 6.6, 9.6 

δ = 0.8, 3.4 6.4 

C A

B
δ = 4.0, 6.0,
8.0, 10.0, 12.0 

δ = 3.0 

Figure 6.18: Dominant communication lags identified by pairwise TE, for Test T14.

6.2.2 Conditional TE

Plotting conditional TE over a range of δ and ζ lag values can aid in identifying the true
communication paths of the system by highlighting trends or patterns in the results. When
the conditional result is significantly different from the pairwise result, it can be said that
the communication from the source to the target has some dependence on the conditioning
variable. The exact nature of that interaction is not always clear so it takes discretion by
the researcher to interpret the results. To create the most basic causality map, the only
information needed from conditional TE, Figs. 6.20a to 6.21d, is if there are any δ̂ which are
made insignificant at any ζ value. This is the case for both δ̂CB = 6.6, 9.6 s, evidenced by
insignificant values at δCB = 6.6, 9.6, ζ = 3.4 s.3 Therefore, that path is determined to be
insignificant at those delays; they must have a cause other than direct communication from
C to B. Similarly, the interactions δ̂AB = 0.8, 6.4 s are shown in Fig. 6.21d to be artefacts
of another mechanism related to the self feedback of A.4 Also, the interaction described by
δ̂CA = 11 s is never significant when conditioned upon A, indicating that interaction is part
of a longer pathway.5 The results from this analysis, presented in Fig. 6.19, give a much
clearer picture of the communication pathways and their associated delays, compared to
the pairwise results in Fig. 6.18.

A deeper understanding of the system can be gained by identifying the cause of the
differences between the pairwise and conditional results as was done in Section 6.1. The
analysis is convoluted for this system, so the important results are summarised in Table 6.3;

3This also implies 3.4 s is the real delay from A to B.
4Again the conditioning delay suggests the real delay from A→ B is 3.4 s.
5One must be careful when conditioning on a variable that is also either the source or target. TEA→B|A

has exactly zero measured TE when δ = ζ because it is conditioning out all of the source information.
Similarly, TEC→A|A has zero measured TE at ζ = 0 because it is conditioning out the target’s response.
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Table 6.3: Summary of the pathway analysis in Appendix E.

Component Delay (s) Cause
C → A 3.2 Real interaction. Consistent with results from Chapter 5
C → A 6.2 The interaction C → A plus the self feedback of A
C → A 9.6 A long relay C → A → A → B → A, with the B → A

delay 0.0 s
C → A 11.0 As above but with the longer B → A delay
C → B 6.6 Simple relay from C to B via A
C → B 9.6 As above plus the self feedback of A
A→ B 0.8 Unknown. Significance is very low so potentially spuri-

ous.
A→ B 3.4 Real interaction. Consistent with previously identified

advection speed
A→ B 6.4 The self feedback of A plus the real interaction A→ B
B → A 0.0 Real interaction. Consistent with pressure communica-

tion
B → A 4.3 Unknown. Probably a real interaction but the mecha-

nism is unknown.

the full analysis is in Appendix E. The summary explains the cause of all of the delays
identified by the pairwise TE calculations. One of the most interesting results is that
the interaction C → B was caused by a relay through A, evidenced by the matching of
delays δ̂CB = δ̂CA + δ̂AB. Another interesting result was the identification of a long path,
C → A→ A→ B → A. The existence of this path was unexpected but it does explain the
longer measured delays from C to A. It also has much lower significance than the direct
C → A interaction which is expected.

Depending upon the desired information, the conditional TE results (Fig. 6.19) may be
a sufficient. However, there are several ways to interpret the results which the researcher
should be mindful of. For example, the interaction C → B was determined to be entirely
dependent upon A, thereby labelling it a false path. However, information generated at C
was being communicated to B, even if it was relayed by A. If the research question is, ‘is
information from C reaching B,’ the answer is yes and the pairwise calculation should be
employed. If the question is, ‘is there a direct interaction C → B,’ then the answer is no
and the conditional calculation is correct.
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C A

B

δ = 3.2
δ = 3.0

δ = 0.0, 4.3
δ = 3.4

Figure 6.19: Causality map determined by detecting statistically significant values of
conditional TE at some δ and all ζ values.

(a) TEC→A|B (b) TEC→B|A

Figure 6.20: Conditional TE results for three structure experiment. a; TEC→A|B, b;
TEC→B|A.
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(a) TEA→B|C (b) TEB→A|C

(c) TEC→A|A (d) TEA→B|A

Figure 6.21: Conditional TE results for three structure experiment. a; TEA→B|C , b;
TEB→A|C , c; TEC→A|A, d; TEA→B|A.

6.2.3 Path Significance

In the previous section, the various pathways were determined. A path was considered
significant if all of its components were significant. For example, the path C → A → B
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is considered significant at a delay of 6.6 s because C → A is significant at a delay of 3.2 s
and A → B is significant at 3.4 s. To compare the relative significance of the different
paths it must be possible to measure the TE along that path. The method proposed here
is to calculate TE from the first variable (the source) to the last variable (the target)
at the delay of the full path. The TE of the path C → A → B is then TEC→B(δ =
δ̂CAB = 6.6 s) = 0.0075bits.6 All of the significant pathways, summarized in Fig. E.1, are
measured in this way and the results are tabulated in Table 6.4. Interestingly, the result
is not always the magnitude of the least significant component as may be expected. The
component C → A→ A→ B → A is more significant than the interaction B → A.

Table 6.4: Summary of the delays and TE for the paths in Fig. E.1. Null threshold for
all paths is 0.0051 bits.

Path Delay TE
A→ A 3.0 0.0597
C → A 3.2 0.0279
C → A→ A 6.2 0.0313
A→ B 3.4 0.0501
A→ A→ B 6.4 0.0176
C → A→ B 6.6 0.0075
C → A→ A→ B 9.6 0.0075
C → A→ B → A 11.0 0.0073
C → A→ A→ B → A 9.6 0.0073

6.2.4 Hypothesis Testing Approach

The detection of pressure communication B → A raises the question of whether it should
also be detected in the other direction. Using the method of selecting the local peaks in
TE to get the dominant delays, outlined by Wibral et al. [66], does not detect pressure
communication A → B. However, the hypothesis ‘there is pressure communication A →
B,’ cannot be disproved because significant TEA→B is measured at δAB = 0 s. Similarly,
the logic used to identify the pathways in Fig. E.1 found that there should be a path
C → A → B → A with a delay of 6.6 s. Measuring TEC→A(δ = 6.6s) gives a result
of 0.0206 bits which is very significant. It is hypothesised that in both of these cases, the

6The null threshold is also taken from the pairwise calculation
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proximity of the expected result to another, more dominant delay7 has hidden these effects.
The question then is ‘what else is being hidden by the wide peaks in TE?’ It is recommended
that the approach is guided by the research question, as has been the common theme
throughout this work. A lot was learned by analysing the delays as suggested by Wibral
et al. [66] but this method neglects much of the information in the results. Sometimes it
may be more appropriate to do specific hypothesis testing.

6.2.5 Conclusions

The applicability of transfer entropy to fluid-structure problems with more than two bodies
has been explored. It has been shown that using pairwise transfer entropy can give a false
interpretation of the causal relationships that exist in such systems. By conditioning the
calculation on the third structure it was possible to identify interdependent relationships
such as mutual driver effects and relayed pathways. It was determined that a path iden-
tified by significant pairwise TE was not a direct link if it could be made insignificant by
conditioning at any conditioning delay, ζ. In the simplest sense, if conditional TE was
significant at any δ and all ζ, a causal relationship can be said to exist from the source to
the target; assuming all dependent variables are conditioned out.

Identifying the true nature of an interaction could, in part, be achieved by comparing
all of the critical delays, δ̂. Through simulations, it was shown that mutual influence caused
an apparent interaction at δ̂XY = δ̂ZY − δ̂ZX . Similarly, relay paths caused an apparent
interaction at δ̂XY = δ̂XZ + δ̂ZY . In the physical experiment, where many pathways were
possible, this proved difficult to employ and required significant a priori knowledge of the
system.

Many nuances specific to applying TE to systems with more than three structures were
discovered. The common theme was the importance of having a clearly defined research
question and following an appropriate path. To some, the question of where information is
generated may be important, while others may want to know if an communication occurs
between two structures regardless of the origin of the information.

Wibral et al. [66] suggests using the maximum of TE to identify the critical commu-
nication delays. This was demonstrated to be a useful tool but it also likely masks other
interactions if the delays are too similar. In some cases hypothesis testing may yield very

7The delay related to pressure communication (δAB = 0) is dominated by the unexplained interaction
with delay 0.8 s. The path C → A→ B → A with delay 6.6 s is dominated by the interaction C → A→ A
at delay 6.2 s.
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different results. Again, the researcher is advised to be rigorous in defining the research
question. Further work on this masking effect is likely to be useful.

Overall, conditional transfer entropy has proven a useful tool for fluid-structure prob-
lems with more than two bodies. More experiments of different fluid-structure arrange-
ments are likely to yield interesting results. The increased computational intensity that
comes with more degrees of freedom may prove prohibitive for large arrays. To this end,
methods more efficient than brute force should be investigated in the near future; perhaps
before increasing the number of structures.
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Chapter 7

Conclusions and Recommendations

The applicability of the information theoretic measure, transfer entropy, to fluid-structure
systems has been investigated through a combination of experiments and simulations. It
has been shown that treating structure displacement as information events sufficiently
captures the dynamics of the particular systems in this study. The intended purpose of
TE is to identify directed causal relationships. Not only was it possible to detect these
relationships, but changes in the relative interaction strength were identified and significant
knowledge of the system dynamics was gained. However, there are many nuances to the
application of TE and to the interpretation of results.

Analysis of analytical solutions highlighted the difference between true causality and
Granger causality, to which TE is analogous. This demonstrated the need for some degree
of randomness in the system for TE to be applicable. This could either be in the behaviour
of the source variable or by having imperfect coupling from the source to the target.
Comparing simulations to analytical results confirmed that correct selection of the sampling
period and lag parameter is critical. It was demonstrated that the sampling period is
related to the time between events in the system and the two should be approximately
equal. However, at some sampling periods the data could be misrepresented due to a
harmonic relationship between the sampling and the event timing. This error presented
as spurious measurements of Shannon entropy, providing a cheap method for filtering out
erroneous sampling periods. The lag parameter was shown to be equivalent with the
communication delay from the source to the target variables. Two methods for selecting
the correct lag were discussed throughout the simulations and experiments; the correct
method was dependent upon the type of data.

The first set of experiments was performed with two bodies; one randomly, rotation-
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ally impulsed cylinder and one passively pivoted airfoil. The separation of the structures
and the period between potential cylinder rotations (decision period) were varied to give
15 unique cases. Various methods were compared due to inconsistencies or gaps in the
published literature. These comparisons demonstrated the importance of matching the
methodology to the type of data. For example, data from similar experiments conducted
by Zhang et al. [74] could be calculated on by down-sampling the time-series before sym-
bolizing. However, this caused errors in results from the cylinder data in this experiment,
so the order had to be reversed.

The two body experiment showed that the sampling period should approximately equal
the decision period, similar to systems driven by Markov processes. Again, the down-
sampling process was shown to have the potential to misrepresent the data due to the
harmonic relationship with the event period, but this was also able to be filtered out
using the measured entropy. Once the appropriate sampling period was selected, the exis-
tence of a directed causal relationship could be inferred if any measured TE(δ) value was
greater than the null threshold. The null threshold was identified by bootstrapping the
data, destroying the temporal relationship between the variables. Additional knowledge
of the system could be gained by analysing the significant communication delays. Com-
munication delays were identified as the lag parameters which maximised |TEnet|. The
validity of the results obtained through TE were confirmed through comparison with a
priori knowledge of the system. For example, it was known that the airfoil could not affect
the cylinder, the cylinder to airfoil interaction should weaken as the separation increases
and the communication delay should increase.

For the first time, TE was applied to fluid-structure systems with more than two bodies.
This increased the complexity of the possible pathways. Not only are there n(n− 1) direct
pathways but there is also the potential for mutual driver effect and relayed pathways.
This experiment proved to be less clear than anticipated due to the difficulty in isolating
the structures. As a result, the interpretation of the results was very manual and time
consuming; only one of more than twenty experiments was fully presented. Still, significant
knowledge of the system was obtained, including some unexpected but feasible results.
Ultimately, while more research is needed, TE appears to be a highly useful tool for the
analysis of fluid-structure systems and, with care, is relatively easy to apply.

Throughout this work, a common theme has been the importance of clearly defining
the research question as this affects the method of interpreting results. Identification
of directed causal links is, perhaps, the simplest result from this tool. If any measured

122



value is statistically significant, and cannot be conditioned out, then such a link exists.
It is however, possible to obtain a deeper understanding of the system. An exploratory
analysis can be performed by calculating TE over a range of parameters and analysing
the trends in the results. By comparing the various significant communication delays, it is
possible to gain an understanding of the communication mechanisms that drive the system.
Alternately, hypothesis testing at specific delays can confirm or rule out the existence of
some phenomenon of interest. As is common in statistical methods, using TE it is easier
to disprove a hypothesis than to prove it. In all cases, understanding what behaviour of
the system is of interest is essential for creating an appropriate symbolization algorithm.

This is a relatively new field of study so there are many opportunities for development.
Further experimentation on different fluid-structure systems will help identify which sys-
tems are most suitable for this type of analysis. From a theoretical understanding of TE,
the most likely candidates are chaotic systems where traditional fluid-structure analysis
techniques break down. The usability of this tool would be greatly expanded if direct fluid
measurements could be used as a variable.
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Chapter 8

Key Ideas

The following is a summary of the key points of this thesis. They are listed in order of
occurrence in the main text.

1. Fluid-structure interactions are common in many engineering and science fields. How-
ever, they tend to be non-linear, multi-physics problems so they are not easily re-
solved. Page 1

2. Information content is a contextual measure based on the probability of an event
occurring. Page 9

3. Entropy is a measure of the uncertainty about the state of a variable. Page 11
4. Transfer entropy is the difference between the uncertainty about the state of the

target variable given knowledge about its past and the uncertainty about the state of
the target variable given knowledge about its past and about the state of the source
variable. Page 14

5. The communication time of the system is directly related to the lag parameter δ and
can be determined from the local maxima of TE(δ). A great deal of care needs to
be taken when interpreting the results when the mode of communication is unknown
because different systems can have similar spectra. Page 16

6. The sampling period should be scaled by the event period of the system to minimise
detectability errors and sample fidelity errors. Page 20

7. Symbolisation reduces the cardinality of a variable by recasting the data as predefined
behaviours. This takes care by the researcher to ensure the critical information is
retained. Page 22

8. Conditional transfer entropy can be used to identify dependence of an interaction on
additional variables and can condition out mutual driver or cascading effects. Page
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26
9. Transfer entropy is equivalent with Granger causality. Page 27
10. The TE equation can be recast as a collection of joint probabilities. These proba-

bilities are calculated by counting the number of times the described event occurs.
Page 27

11. A simulation is used to validate the probabilistic form of the TE equation by com-
paring it to an analytical result. Page 59

12. Granger causality, and therefore TE, is undetectable if there is no randomness in the
input data. Page 60

13. The sampling period, ∆, has a harmonic relationship with the event period which can
cause the data to be poorly represented. These error causing sampling periods can
be filtered out because they cause sharp changes in the calculated entropy. Page
61

14. Experiments place a randomly impulsed cylinder in a uniform fluid flow, upstream of
a passively pivoted airfoil. The impulses of the cylinder generate information which
is expected to be transmitted to the airfoil in the form of advecting vortices; this is
expected to incite a rotational response in the airfoil. The structural displacements
will be used to generate the information data. Page 71

15. The trend of TE with respect to the ∆ and δ parameters demonstrate their relation-
ship to the event time and the communication delay between structures, respectively.
Analysis of these trends can yield valuable knowledge of the system dynamics. Page
82

16. Simulations and experiments with three bodies show that many more communication
pathways exist, some of which can cause spurious TE results if the pairwise form of
the equation is used. Additional variables must be accounted for using conditional
TE. Page 95

17. Mutual driving of X and Y by Z results in a false positive detection of TEX→Y at
δ = δ̂ZY − δ̂ZX . This can be conditioned out by evaluating TEX→Y |Z at ζ = δ̂ZY .
Page 96

18. Relayed communication along the path X → Z → Y results in a false positive
detection of TEX→Y at δ = δ̂XZ + δ̂ZY . This can be conditioned out by evaluating
TEX→Y |Z at ζ = δ̂ZY Page 100

19. A causality network can be drawn by using the condition, ‘a directed causal relation-
ship exists if conditional TE is significant at any δ, which cannot be made insignificant
by conditioning.’ Assuming all variables are included in the conditioning. Page 114
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20. Significant knowledge of the dynamics of systems with three structures can be ob-
tained by analysing the trends of conditional TE with respect to δ and ζ. This
process is very manual and requires some a priori knowledge of the system. Page
115
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Appendix A

Statistical Significance

The determination of whether two samples are significantly different is performed by a
t-test. t-tests estimate the likelihood that the means of two samples is zero. For the cases
presented here, the paired t-test is used because the systems are not independent; this is
the same approach as [74]. A specific example is worked through here for clarity. For the
case s = 104mm, TD = 2 s the experiment is repeated four times as tabulated in table A.1.
To gain statistical relevance the number of repeated experiments should be higher but the
time each experiment takes is prohibitive. One method for increasing the power of the test
will be discussed below.

The null hypothesis (H0) is that the difference of the mean result of TEC→A is not
significantly different to the mean result of TEA→C , the measured values are listed in
table A.1. As explained in [39] the t-statistic is simply the ratio of the mean difference
to the standard error (SE), the probability that the mean difference is zero is found by
converting the t-statistic to a p-statistic using a standard table (discussed further below).
The mean difference is the average of the difference between TEC→A and TEA→C in each
test (µdifference = 0.1463). The SE is calculated from eqn. A.1 as the standard deviation of
the differences (SDdifferences = 0.0327) over the square root of the number of observations
(N=4), giving a SE = 0.0164.

SE = SD√
N

(A.1)

The t-statistic is calculated from eqn. A.2 giving a value of 8.9.

t = µdifference

SE
(A.2)

The p-statistic, or probability of the null hypothesis being true, is found using a standard

133



t-table although it is more accurate to use a software package to interpolate the table. For
this work, MATLAB is used for this step. Note that to find a p-statistic on the t-table
two additional pieces of information are needed (as well as the t-statistic); the degree of
freedom, which for all relevant cases is N-1, and the type of test (one-tail or two-tailed)
[39]. A one-tailed distribution is used when the hypothesis is set up to include the direction
of the difference in the mean (is x greater than y) but for these tests the hypothesis will be
phrased to ask if the two values are different so the two-tailed test is employed. For this
case the p-statistic is 0.0030, so there is a 0.3% chance of the two values being the same.
As is common the threshold used here is 5% [39] [74] so the null hypothesis is rejected;
there is a reasonable level of confidence that TEC→A is greater than TEA→C .

Table A.1: Results from repeated experiments of TE. s = 104mm, TD = 2.0 s.

1 2 3 4 Mean

TEC→A 0.1421 0.1414 0.1137 0.1948 0.1480
TEA→C 0.0010 0.0006 0.0013 0.0038 0.0017
difference 0.1411 0.1408 0.1124 0.1910 0.1463

A.0.1 Bootstrapping

The t-test relies on the data taking on a known distribution. The distribution of TE
results cannot be known a priori so multiple measurements must be taken. The more
measurements taken, the better the estimate of the distribution will be. However, with
each test taking 20minutes, the number of trials is limited. Bossomaier et al. [8] suggest a
number of methods for estimating the TE distribution from a small number of experiments.
The method chosen here is to repeat the test a few times then do simple bootstrapping to
re-sample the data. Verdes [63] demonstrates that the source and conditioning variables
should be bootstrapped, leaving the target variable intact. This generates a large number
of sampled sets from the original set. The distribution of the means of these sets can be
determined empirically. There are a large number of bootstrap methods [17] but the simple
case resampling method is selected. The more complex methods are useful for increasing
the accuracy of the distribution estimations but the simple resampling method is shown
by Dixon [17] to be suitable for estimating the SE when high accuracy is not a priority.
The overestimation of SE is also helpful in this case to avoid spurious results.
Simple case resampling is the process of randomly sampling the original data many time
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to generate new sets called resamples (fig A.1).

X ⇒

X∗1

X∗2
...
X∗N

⇒

µ∗1

µ∗2
...
µ∗N

µX

SDX

Figure A.1: An overview of the case resampling bootstrapping method

The resamples can contain repeated values from the original dataset. For example,
the variable X= (x1, x2, x3, x4, x5) may become X ∗1 = (x3, x2, x5, x2, x1). Resamples are
indicated by the asterisk, and the subscript differentiates it among the resample variables.
The mean of each resample (µ∗i ) is approximately normally distributed even if the original
data is not. A thorough discussion of the distribution of means is provided by Norman
& Streiner [39]. Once the resampled means are obtained for both series, the t-test is
performed as before except the resampled means are the inputs. Returning to the example
above; the two variables TEC→A and TEA→C are resampled N= 100 times.

For brevity, a notation change will be employed, TEC→A = C and TEA→C = A, the
resamples are C ∗i are A∗i respectively and the means are µ∗C,i and µ∗A,i, where i equals all
integers 1 to N. The differences of the means is calculated as

d = µ∗C,i − µ∗A,i (A.3)

As before the mean and standard deviation of the differences are taken to calculate the SE
(eqn. A.1) and t (eqn. A.2). This time the result is far more confident, the t-statistic is
105.9 with 99 degrees of freedom so the two-tailed p-statistic is much less than 0.001; the
results are almost definitely different. The difference between the methods is highlighted
in table A.2. It can be seen that increasing the number of samples reduces the SD and SE
which has a large effect on the t-statistic.
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Table A.2: A comparison of the statistical properties when bootstrapping is applied
compared to when it is not.

Quantity No Bootstrap Bootstrap

µdifference 0.1463 0.1471
SDdifference 0.0327 0.0139
SE 0.0164 0.0014
t-statistic 8.921 105.9
p-statistic 0.0030 << 0.001

A.0.2 Statistical Comparison to Zero

The same method can be used to determine whether a measured value is statistically
different from zero. This is done by finding the null distribution, that is, the distribution of
the TE calculation when the two variables are independent. This is done by bootstrapping
the source variable multiple times and calculating TE of all of the resamples; e.g., TE∗X∗

i→Y
.

The mean of these measurements is equivalently the mean of the null distribution and the
bias error which exists due to noise in the data. The null threshold is defined by the mean,
standard deviation and desired confidence interval;

NullThreshold = TE∗X∗
i→Y

+ 1.96SD (A.4)

for 95% confidence. If the measured value is greater than the null threshold, it is statisti-
cally different from zero.
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Appendix B

Derivation of Probabilistic TE

B.1 Pairwise TE

This section derives a probabilistic form of the standard TE equation, Eq. 2.11, which is
easier applied to the data in this work. First, a general probabilistic form of conditional
entropy is derived using A and B to denote general variables. Local conditional entropy,
is defined as [13],

h(a|b) = − log (Pr(A|B)) (B.1)

The expected value of this is conditional entropy,

H(A|B) = −
∑
a,b∈Ω

Pr(A,B) log(Pr(A|B)) (B.2)

where a, b ∈ Ω means all possible pairs of a and b. The first term of the Eq. 2.11 is obtained
by replacing A and B with Yt and Yt−1, respectively.

H(Yt|Yt−1) = −
∑
y,ẏ∈Ω

Pr(Yt, Yt−1) log(Pr(Yt|Yt−1)) (B.3)

where the over dot indicates that event belongs to to the lagged variable, y ∈ Yt and
ẏ ∈ Yt−1.

The second term of Eq. 2.11 is obtained by substituting A = Yt and B = (Yt−1, Xt−δ)
into Eq. B.2.

H(Yt|Yt−1, Xt−δ) = −
∑

y,ẏ,x∈Ω
Pr(Yt, Yt−1, Xt−δ) log(Pr(Yt|Yt−1, Xt−δ)) (B.4)
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To combine the two terms, Eq. B.3 and Eq. B.4, the summations must be made to match.
This is achieved by applying the definition Pr(A) = ΣbPr(A,B) to Eq. B.3, so it becomes,

H(Yt|Yt−1) = −
∑

y,ẏ,x∈Ω
Pr(Yt, Yt−1, Xt−δ) log(Pr(Yt|Yt−1)) (B.5)

Therefore, Eq. 2.11 becomes,

TEX→Y =
∑

y,ẏ,x∈Ω
Pr(Yt, Yt−1, Xt−δ) [log(Pr(Yt|Yt−1, Xt−δ))− log(Pr(Yt|Yt−1))] (B.6)

which is simplified using the identity log(A)− log(B) = log
(
A
B

)

TEX→Y =
∑

y,ẏ,x∈Ω
Pr(Yt, Yt−1, Xt−δ) log

(
Pr(Yt|Yt−1, Xt−δ)

Pr(Yt|Yt−1)

)
(B.7)

Although this is an applicable probabilistic form of the TE equation, it is desirable to
rearrange so all of the probabilities are joint. This simplifies the code written to calculate
the probabilities but it is not an essential step. Using the identity Pr(A|B) = Pr(A,B)

Pr(B) ,

Pr(Yt|Yt−1, Xt−δ) = Pr(Yt, Yt−1, Xt−δ)
Pr(Yt−1, Xt−δ)

(B.8)

and
Pr(Yt|Yt−1) = Pr(Yt, Yt−1)

Pr(Yt−1) (B.9)

Therefore, the final form of Eq. 2.11 is,

TEX→Y =
∑

y,ẏ,x∈Ω
Pr(Yt, Yt−1, Xt−δ) log

(
Pr(Yt, Yt−1, Xt−δ) Pr(Yt−1)
Pr(Yt−1, Xt−δ) Pr(Yt, Yt−1)

)
(B.10)

To obtain the formula for the calculation in the opposite direction, the variables are simply
switched.

TEY→X =
∑

x,ẋ,y∈Ω
Pr(Xt, Xt−1, Yt−δ) log

(
Pr(Xt, Xt−1, Yt−δ) Pr(Xt−1)
Pr(Xt−1, Yt−δ) Pr(Xt, Xt−1)

)
(B.11)
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B.2 Conditional TE

The process for deriving the probabilistic form of the conditional TE equation, Eq. 2.13,
is similar to that of pairwise TE. The first term is obtained by substituting A = Yt,
B = Yt−1, Zt−ζ into Eq. B.2.

H(Yt|Yt−1, Zt−ζ) = −
∑

y,ẏ,z∈Ω
Pr(Yt, Yt−1, Zt−ζ) log(Pr(Yt|Yt−1, Zt−ζ)) (B.12)

where Z is the conditioning variable, lagged by ζ. As before, the identity Pr(A) =
ΣbPr(A,B) is used to make the summations of the two terms uniform.

H(Yt|Yt−1, Zt−ζ) = −
∑

y,ẏ,x,z∈Ω
Pr(Yt, Yt−1, Xt−δ, Zt−ζ) log(Pr(Yt|Yt−1, Zt−ζ)) (B.13)

Similarly, the second term is obtained by substituting A = Yt, B = Yt−1, Xt−δ, Zt−ζ into
Eq. B.2.

H(Yt|Yt−1, Xt−δ, Zt−ζ) = −
∑

y,ẏ,x,z∈Ω
Pr(Yt, Yt−1, Xt−δ, Zt−ζ) log(Pr(Yt|Yt−1, Xt−δ, Zt−ζ))

(B.14)
Combining the two terms gives,

TEX→Y |Z =
∑

y,ẏ,x,z∈Ω
Pr(Yt, Yt−1, Xt−δ, Zt−ζ) log

(
Pr(Yt|Yt−1, Xt−δ, Zt−ζ)

Pr(Yt|Yt−1, Zt−ζ)

)
(B.15)

This can be recast as purely joint probabilities using the identity Pr(A|B) = Pr(A,B)
Pr(B) , such

that Eq. 2.13 becomes,

TEX→Y |Z =
∑

y,ẏ,x,z∈Ω
Pr(Yt, Yt−1, Xt−δ, Zt−ζ) log

(
Pr(Yt, Yt−1, Xt−δ, Zt−ζ)Pr(Yt−1, Zt−ζ)
Pr(Yt−1, Xt−δ, Zt−ζ)Pr(Yt, Yt−1Zt−ζ)

)
(B.16)

which can be reversed by substitution to get,

TEY→X|Z =
∑

x,ẋ,y,z∈Ω
Pr(Xt, Xt−1, Yt−δ, Zt−ζ) log

(
Pr(Xt, Xt−1, Yt−δ, Zt−ζ)Pr(Xt−1, Zt−ζ)
Pr(Xt−1, Yt−δ, Zt−ζ)Pr(Xt, Xt−1Zt−ζ)

)
(B.17)
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Appendix C

Comparison to ARIMA Residuals
Method

The following section contains a report submitted to Prof. Keith Hipel in December 2017,
toward the completion of SYDE631, Time-Series Analysis. It is included to demonstrate
the application of a parametric model to FSI data. It shows that, while possible, these
models are time consuming to apply and rely on the data being normally distributed.
Minor formatting changes have been made but the content is unchanged.

C.1 Introduction

Identification of causal relationships in arrays of structures is incredibly difficult and not
well developed. The main issue is that in most cases when one structure acts on another,
that structure usually acts on the first creating a feedback loop. This makes it difficult to
differentiate interactions between structures from the base excitation or noise. In the field
of fluid dynamics, these types of interacting arrays are very common. For example wind
farms are arrays of windmills which all modify the air flow and thereby interact with one
another, as do tall buildings in cities, structural supports of off-shore oil platforms, moving
cars on a highway and any other collection of structures that are acted upon by a fluid.
Traditional methods for resolving the fluid interactions can be prohibitively difficult and
rarely yield results regarding the degree of feedback between structures. This report details
a comparison of two techniques for determining causal interaction between two structures
in a fluid flow using the time series of their displacement.
The experiment used to generate the time series used here, places two structures in series
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in a flow and measures their displacements with respect to time as detailed in Section C.
The time series of the displacement angles is used to calculate the Transfer Entropy in the
system. For comparison Auto Regressive Moving Average (ARMA) models are fitted to
the individual series (Sections C, C) and the cross correlation of the residuals is used to
identify causal interactions (Section C). Exploratory analysis (Section C) shows the obser-
vation data to be non-seasonal and stationary thereby indicating that the basic form of
ARMA models is appropriate, it does however indicate that Box-Cox transformations may
be necessary. The order of the model and any transformation coefficients are determined
through a combination of exhaustive and targeted techniques (Section C). Diagnostic tests
are used to confirm that the models are appropriate before the Akaike Information Crite-
rion (AIC) is used to discriminate between models. All calculations were performed using
MATLAB, as this is a learning exercise everything was coded from scratch where feasible
but native functions were used sparingly as detailed in Section C.
The comparison between the two methods of identifying causal interactions is important
because, while Transfer Entropy has been widely applied to other networks, it has almost
never been applied to fluid-structure interactions. In fact, the only study of this known to
the author is the one that generated the data used in this report. This work is directly
related to the Master’s research of the author who is studying the applicability of Transfer
Entropy to fluid-structure interactions.

C.1.1 Description of Experiments

The observation series used throughout this report were obtained at New York University
Tandon School of Engineering, Brooklyn, NY, USA. A complete description of the exper-
imental method and results are in the process of being published by Zhang et al. [74] as
listed in the reference section. A brief outline of the experiment is included here to aid
understanding of the results. All calculations and numerical results in this paper were
independently calculated from data shared by Maxwell Rosen of New York University.
The experiment placed two airfoils in a channel of flowing water, one directly upstream of
the other (Fig. C.1). The airfoils are both placed on pivots, one is driven and the other is
allowed to passively change its angle. The driven airfoil is driven to either ±15 deg, which
position it takes is decided randomly every 0.5 seconds to emulate a stochastic process.
Six test cases are utilised, three different distances between the airfoils and two driving
cases, upstream active and downstream active as listed in Table C.1. This experiment is
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used because the fluid dynamics are relatively well understood so the qualitative results
are predictable. The expected behaviour is that vortices shed periodically from the up-
stream airfoil will act to rotate the downstream airfoil. When the active airfoil is driven
to a new position the shedding process is disrupted a pressure disturbance is introduced.
Vortices are carried by the fluid and as such cannot advect upstream, so the downstream
airfoil cannot communicate to the upstream airfoil with vortices. The pressure disturbance
caused by the rotation of the airfoil can act upstream but its range of communication is
biased downstream. Therefore the expected results are:

• The driven airfoil will have more effect on the passive than the passive has on the
active.

• The upstream airfoil will have more effect on the downstream than the downstream
has on the upstream airfoil.

• Causal interactions will decrease as distance between the airfoils increases.
The time series used throughout this report are of the airfoil angles with respect to time.
Figure C.9 illustrates the relationship between the two airfoils over a small sample period
in the case where the upstream airfoil is driven and the downstream airfoil is passive.

Figure C.1: Schematic of airfoil placement in experimental setup.

Each case contains a data set for the angular position of the upstream airfoil, from here
called U and a set for the angular position of the downstream airfoil, henceforth called D.
This means there are 12 data sets which require individual models to be fit to them.

C.1.2 Auto-regressive Moving Average Models

Auto-regressive moving average (ARMA) models are a highly versatile class of model
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Case Active L/c
1 U 0.2
2 U 0.5
3 U 1.0
4 D 0.2
5 D 0.5
6 D 1.0

Table C.1: Test Cases

which can be fit to time series data, primarily for the purposes of forecasting or simulation.
As discribed by Hipel & McLeod [24], the model is made up of observations (zt) and
random innovations (at), auto-regressive parameters (φ) determine the importance of past
observations while moving average parameters (θ) act on past innovations. The form is
defined by eqn. C.1

φ(B)(zt − µ) = θ(B)at (C.1)

where B is the back step operator which operates on t and µ is the mean of the series.
Note if any transformation is performed on the series, µ is the mean of the transformed
series. φ(B) and θ(B) can be expanded to

φ(B) = 1− φ1 − φ2 − ...− φp (C.2)

θ(B) = 1− θ1 − θ2 − ...− θq (C.3)

where p and q are the orders of the AR and MA parameters respectively. ARMA models
of this form require observation series to be non-seasonal and stationary with innovations
that are identically independently distributed (IID). It is also common to impose the
additional constraint of normality on the innovations. The power of ARMA models comes
from the ability to add on additional processes to help meet those requirements. For
example non-stationarity can be removed by including a differencing operator, seasonality
can be accounted for in various ways and residuals can be made normal through data
transformations, see Section C. In this study the models are used to whiten the data so the
residuals can be compared in an effort to identify causal relationships between the series.

C.1.3 Exploratory Analysis

In this section the data is used to inform decisions regarding appropriate models to use.
The sample auto correlation function (ACF) and partial auto correlation function (PACF)
are used to guide the selection of parameter ranges for the exhaustive study and the data
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distribution histogram helps identify the need for a data transformation.

Case 1, U

This series is of the upstream airfoil which, in this case, is driven. This is evident by the
almost binary distribution of the observations. The raw time series (Fig. C.2) clearly shows
the process is stationary, has constant variance and in not seasonal. This is confirmed by
knowledge of the physical process which is mechanically driven to either 15 or −15 deg.

Figure C.2: The raw observation series for case 1, U

Taking the auto-correlation function (Fig. C.3a) and partial auto-correlation function
(Fig. C.3b) of this series shows indicates an MA(1) model is likely as demonstrated by
the truncation of the ACF after lag 1 and the attenuation of the PACF. However the
distribution of the series (Fig. C.3c) shows that it is very likely that a transformation will
be required because it is far from a normal distribution.
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Figure C.3: Sample ACF, PACF and data distribution for case 1, U

From this analysis it appears that a moving average model is likely, however the near
binary distribution of the data makes it very likely that a Box-Cox transformation will be
needed and this may introduce the need for auto regressive parameters. Therefore ARMA
models with a wide range of Box-Cox coefficients will be trialed.

Case 1, D

This is the series of the downstream airfoil which is passive. A plot of the time series
shows that the observations are somewhat correlated but are overall stationary. The large
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scale fluctuations do not appear to be periodic or seasonal, especially considering the
Sample ACF which demonstrates non-periodic cycling. No change in variance is obviously
visible.

Figure C.4: The raw observation series for case 1, D

Both the sample ACF (Fig. C.5a) and sample PACF (Fig. C.5b) attenuate, indicating
the need for an ARMA model. The data distribution looks to be approximately normally
distributed but not exactly so it is unclear if a transformation will be required.
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Figure C.5: Sample ACF, PACF and data distribution for case 1, D

Unlike the model for U, it is not immediately clear what order of model is needed so an
exhaustive study is carried out in the next section. From this analysis it is concluded that
an ARMA model should be an appropriate model class, a Box-Cox transformation may or
may not be required.

C.1.4 Confirmatory Analysis

The confirmatory analysis phase of model construction involves fitting models with
estimated parameters to the data, performing diagnostic checks to confirm the model is
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appropriate and measuring the relative suitability of the model compared to other models.
Note that this stage only applies to fitting the ARMA models to the data, Transfer Entropy
calculations are done independently.
The approach employed in this study uses a combination of exhaustive and targeted meth-
ods to identify the best possible models to fit to the time series data. Exploratory analysis
in Section C was used to set parameter limits and identify the appropriate class of model
to use. A coarse exhaustive study runs through all possible combinations of p, q and λ

and selects the best model based on the Akaike Information Criterion (AIC). Initially the
values of p, q and λ are set to the following ranges; p = 1, 2, ..., 10; q = 1, 2, ..., 10; λ =
−2, 00,−1.75, ...2.00, a total of 1600 combinations per data set. Of course λ = 1 is equiv-
alent to no transformation.
This study automatically excludes any models which do not pass the diagnostic checks.
The diagnostics are based on the core assumptions required by ARMA models, those be-
ing; the model must be invertible and stationary, the residuals must be white, normally
distributed and heteroscedastic. Invertibility and stationarity are confirmed automatically
by the MATLAB native function which estimates the parameters, see Section C. Residual
whiteness is checked by a version of the Portmanteau test, normality is measured from the
g1 and g2 statistics and heteroscedasticity is checked using the Engle test.
The results are then used to inform refinement decisions, such as model constraints, on a
case by case basis.

Exhaustive Study

The code used to perform the exhaustive study follows the procedure:

• For all cases
• Read in data for case
• For λ = all λ
• Transform data

• For p = all p
• for q = all q

• Create a model template in the form ARMA(p,q)
• Estimate model parameters using the Maximum Likelihood Estima-

tion method.
• Perform diagnostics checks
• If diagnostic checks pass

• Calculate AIC
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• Find the best (lowest) AIC

Data transformations are performed by the Box-Cox transformation in eqn. C.4 [24].

z
(λ)
t = wt =

λ
−1
[
(zt + c)λ − 1

]
, λ 6= 0

ln (zt + c) , λ = 0
(C.4)

where the coefficient c ensures the series is all positive values. In the code this is done by
finding the minimum value of zt and rounding it up to the nearest integer. The rounding
step is not necessary but it helps keep things a bit more clean and has no residual effects.
MATLAB has native tools for setting up ARIMA models and estimating the parameters
based on the maximum likelihood of the input data. The model is setup by the com-
mand model = arima(p,d,q), this can then be fed into the function estimate(model,data)
which outputs MLEs for the parameters, the maximized log likelihood value and the
variance-covariance matrix of the estimates. Standard errors are calculated from the varian-
coavariance matrix by squaring the diagonal.
The AIC is calculated from eqn. C.5.

AIC = −2 log(ML) + 2k (C.5)

where log(ML) is output by the estimate function and k is the number of degrees of freedom
based on the number of parameters plus one for variance.

Diagnostics

As previously mentioned the invertibility and stationarity of the estimated model are
confirmed automatically by the estimate function.
Whiteness of the residuals is checked by graphically from the ACF of the residuals. All
values for lags > 0 should be less than the 95% CI where the confidence interval is

CI = 1.96√
n

(C.6)

where n is the number of samples. It is confirmed via a Ljung-Box Q-test which is a
modified version of the Portmanteau test. The null hypothesis of this test is the data is
independently distributed. The test statistic is calculated by the method of Ljung & Box
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[31].

Q = n(n+ 2)
h∑
k=0

ρ̂2
k

n− k
(C.7)

where h is the number of lags, in this case h = ln(n) as recommended by Tsay [61]. Q is
χ2 distributed with h− (p+ q) degrees of freedom.
Normality of the residuals is measured by the skewness and kurtosis parameters as outlined
in Cramer [14]. They are calculated as g1 (eqn. C.8) and g2 (eqn. C.9) receptively and
compared to their standard errors given by eqns. C.10 and C.11.

g1 =
1
n

∑n
t=1 ât

3(
1
n

∑n
t=1 ât

2
)3/2 (C.8)

g2 =
1
n

∑n
t=1 ât

4(
1
n

∑n
t=1 ât

2
)2 − 3 (C.9)

SES =

√√√√ 6n(n− 1)
(n− 2)(n+ 1)(n+ 3) (C.10)

SEK = 2(SES)

√√√√ n2 − 1
(n− 3)(n+ 5) (C.11)

The skewness coefficient (g1) should be within the bounds ±1.96(SES) and the kurtosis
coefficient should be within ±1.96(SEK) to prove that the residuals are normally dis-
tributed with a confidence on 95%. If the residuals are not normally distributed, then a
Box-Cox transformation is required to be performed on the observations.

C.1.5 Case 1, U

The exploratory analysis suggested that a MA(1) model may be appropriate, however
this model failed diagnostic checks as the residuals were not normally distributed. This
confirmed that a Box-Cox Transformation would be required so the exhaustive study was
performed. Unfortunately no model was found which would result in normally distributed
residuals, the values of the Box-Cox parameter that were tried ranged from +5 to -5. It is
noted in Hipel & McLeod [24] (pg. 247) that the kurtosis of the residuals is a less important
assumption than residual whiteness so this condition was removed from the auto-selection
criteria of the exhaustive study. The results of the coarse exhaustive study with no kurtosis
requirement are given in Table C.2. Only the best model for each Box-Cox transformation
is given to avoid a table of 2000 elements being included.
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λ p q AIC g1/SES g2/SEK
1.00 0 1 7469.5 0.0832 -7.6122
1.00 3 4 7457.4 0.1920 -7.3450
0.75 3 4 6257.4 0.0819 -7.2247
0.50 7 5 5127.1 -0.1521 -7.6295
0.25 10 10 4071.8 -0.2771 -6.7509
0.00 9 6 3102.7 -1.0466 -7.3167
0.00 0 1 3110.5 -1.0469 -7.3796

Table C.2: Results of an exhaustive study for case 1, U with parameter ranges p =
1, 2, ..., 10; q = 1, 2, ..., 10; λ = −2, 00,−1.75, ...2.00

The model identified in the exploratory phase is included for comparison, it is clearly
not the best fit. This is likely due to the data transformation. Interestingly, looking at
the ACF and PACF of the transformed data (Fig. C.6) no significant change is noted,
it still appears that an MA(1) model would be appropriate. The significantly lower AIC
score shown in Table C.2 seems to be unfounded. It is suspected that the highly non-
normal distribution of the data has made the AIC less accurate. With this in mind the
model MA(1) with λ = 0 was tested. The AIC score is slightly higher than that of the
ARMA(9,6) with a value of 3110.5 but there is an obvious gain in model parsimony and
the sample ACF and sample PACF clearly implicate this model.
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Figure C.6: Sample ACF, PACF and histogram of transformed data with λ = 0 for case
1, U

In an attempt to select between the models MA(1) and ARMA(9,6), the parameter
estimates and their SE are shown in Table C.3. This seems to indicate that all of the
parameters of the ARMA(9,6) model are significant, with the possible exception of φ8.
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Parameter MLE SE
φ1 −0.5531 0.08586
φ2 −0.2962 0.07064
φ3 −0.4451 0.07307
φ4 −0.1397 0.06868
φ5 −0.7968 0.04806
φ6 −0.417 0.06441
φ7 0.1813 0.04715
φ8 −0.04418 0.03675
φ9 0.08226 0.03598
θ1 1.008 0.05865
θ2 0.5003 0.07292
θ3 0.551 0.08583
θ4 0.3109 0.07825
θ5 0.8927 0.06157
θ6 0.8222 0.04935

Parameter MLE SE
θ1 0.4752 0.05121

Table C.3: Parameter estimates and standard errors for ARMA(9,6) and MA(1) models
with λ = 0

Knowing that the residuals for all of these models significantly deviate from the nor-
mality assumption, the standard errors and AIC are likely incorrect. Also, because the
ACF does not rely on the normality assumption and it strongly indicates an MA(1) as
being appropriate (see section C), that is the chosen model. For due diligence both models
were used to calculate RCCF, see Section C, and no significant difference was noted. This
result is shown in Appendix C.

C.1.6 Case 1, D

As discussed in the exploratory analysis the process driving the data is known to be
stationary, to confirm that the series is statistically stationary, an Augmented Dickey-Fuller
test is employed. The null hypothesis is that the data is non-stationary and is rejected
with a value < 0.0001 compared to a 95% confidence threshold 0.05.

The results of the coarse exhaustive study are given in Table C.4, it found that the
best model to fit to the data is an ARMA(7,8) model with a Box-Cox Transformation of

153



λ = 0.50. Transformations with λ < 0.50 resulted in non-normal residuals.

λ p q AIC
1.00 0 3 5109.0
0.75 10 7 3783.6
0.50 7 8 2626.3
0.25 - - -
0.00 - - -

Table C.4: Coarse exhaustive study for case 1, D

To reduce model fit errors, the exhaustive study is now refined for this data set. Based
on the high order of the indicated models the new parameter ranges are p = 1, 2, ..., 15; q =
1, 2, ..., 15;. The resolution of the transformation parameter is increased and it’s range
reduced so the new range is λ = 0.30, 0.35, 0.40, ..., 0.95. The refined results are presented
in Table C.5

λ p q AIC
0.95 0 5 4848.4
0.90 9 9 4507.9
0.85 10 9 4262.5
0.80 10 8 4029.2
0.75 10 7 3783.6
0.70 10 10 3543.7
0.65 9 8 3316.5
0.60 13 10 3082.7
0.55 7 10 2853.1
0.50 7 8 2626.3
0.45 - - -
0.40 - - -
0.35 - - -
0.30 - - -

Table C.5: Refined exhaustive study for case 1, D
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The best AIC value is for the model ARMA(7,8) with a Box-Cox transformation with
λ = 0.5. The MLEs and SEs in Table C.6 shows that φ4, θ6 and θ7 are possibly insignificant
as the MLE is less than 1.96 SE.

Parameter MLE SE
φ1 0.8988 0.1119
φ2 0.0309 0.1203
φ3 −0.5820 0.1074
φ4 −0.0030 0.1123
φ5 0.5993 0.1073
φ6 −0.6004 0.1173
φ7 0.5555 0.0843
θ1 0.0478 0.1186
θ2 −0.7424 0.1096
θ3 0.4107 0.1520
θ4 0.7557 0.1390
θ5 −0.3782 0.1542
θ6 −0.0357 0.1494
θ7 −0.0517 0.0971
θ8 −0.2430 0.0877

Table C.6: MLEs and SEs for an ARMA(7,8) model with λ0.5 for case 1, D

The insignificant values indicate that it may be appropriate to employ a constrained
model. An exhaustive study that tests constrained models would require an unfeasible
amount of computation time. Therefore targeted constrained models are chosen and fitted
for all of the possible combinations of φ4, θ6 and θ7. The AIC results of this study are given
in Table C.7, the parameter estimates for each of these models are listed in Appendix C.
Where no AIC is listed, the model failed diagnostic checks.
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λ p q constrained AIC
0.50 7 0 φ4, φ5, φ6 2644.2
0.50 7 8 φ2, φ4, θ1, θ6, θ7 2618.3

Table C.8: Refined constrained model AICs

λ p q Constrained AIC
0.50 7 8 φ4, θ6, θ7 2637.7
0.50 7 8 φ4, θ6 -
0.50 7 8 φ4, θ7 -
0.50 7 8 φ4 -
0.50 7 8 θ6 2624.3
0.50 7 8 θ7 -
0.50 7 8 θ6, θ7 2622.5

Table C.7: AICs for select constrained models fitted to case 1, D

Where no AIC is given, the model failed at least one of the diagnostic checks. In an
effort to achieve model parsimony, other constraints were applied based on the parameter
estimates of the above combinations. This iterative process led to the constraint combina-
tions in Table C.8.

The chosen model is now a constrained ARMA(7,8) with no φ2, φ4, θ1, θ6, θ7 and with
a Box-Cox transformation with λ = 0.5. The MLEs for this model are:
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Parameter MLE SE
φ1 0.9297 0.01946
φ3 -0.5952 0.02423
φ5 0.6286 0.03150
φ6 -0.6307 0.02657
φ7 0.5454 0.01983
θ2 -0.7306 0.02133
θ3 0.4866 0.01232
θ4 0.7487 0.02145
θ5 -0.4402 0.02231
θ8 -0.2416 0.03167

Table C.9: MLEs and SEs for the chosen model for C1, D

After two exhaustive studies of 4700 possible models plus nine constrained models,
the chosen model is a constrained ARMA(7,8) with no φ2, φ4, θ1, θ6 or θ7 and a Box-Cox
transformation of λ0.5. Diagnostic checks were automatically performed during the fitting
process, the details of this for the chosen model are discussed here.

The Residual ACF (Fig. C.7a) shows that the residuals of this model are white. This
is confirmed by a Portmanteau test value of 13.7, less than the critical value 31.4 given by
the χ2 distribution for 95% confidence. Normality of the residuals is confirmed by the g1
and g2 statistics. g1 has a magnitude 0.1486 which is less than 1.96 SES = 0.1566 and g2
has a magnitude 0.1606 which is less than 1.96 SEK = 0.3130, the residuals are therefore
normal. This is supported by the distribution in Fig. C.7b. Heteroscedasticity is confirmed
by the Engle test for heteroscedasticity.
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Figure C.7: Residual ACF and histogram for case 1, D after applying a Box-cox trans-
formation λ = 0.50 and constrained ARMA(7,8) model.

C.1.7 Cases 2 to 6

Due to the time constraints of this project, models are selected based on the results of
the exhaustive study; further fitting will be applied at a later date. The selected models
are listed in Table C.10, parameter estimates and standard errors are listed in Appendix C.

Case Series p q λ

2 U 9 7 0.00
2 D 9 7 0.25
3 U 6 7 0.00
3 D 0 2 1.00
4 U 2 7 0.00
4 D 5 8 0.00
5 U 7 10 0.75
5 D 9 10 0.00
6 U 8 8 0.75
6 D 7 10 0.00

Table C.10: Models selected by the coarse exhaustive study for cases 2 to 6. Note that
the active airfoil cases do not meet the normal residuals condition
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C.1.8 Causality

The models developed in Sections C and C are fitted to the data to generate the residual
series. As discussed below the cross correlation of the residual series is used to identify
causal interaction between the airfoils. These results are compared to the Transfer Entropy
of the series pair which is calculated independent of this report.

C.1.9 Case 1

By overlaying the raw time series of U and D, it is fairly apparent that U affects D.

Figure C.8: Overlaying the time series of case 1, U and case 1, D.

A method for determining causality between two time series is outlined in Hipel &
McLeod [24]. The series are pre-whitened by fitting ARMAmodels then the cross-correlation
of the residuals (RCCF) is calculated. Causality is indicated by significant cross correla-
tion of the residuals of two series. A significant value at lag 0 indicates contemporaneous
causality, significant values at positive lags indicates U affects D while negative lags indi-
cates D affects U. Significant values at both positive and negative lags indicates feedback.
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The RCCF is calculated by eqn. C.12 [24].

rÛD̂(k) = cÛD̂(k)√
cÛ(0)cD̂(0)

(C.12)

where cÛD̂ is the estimated cross-covariance given by

cÛD̂ =


1
n

∑n−k
t=1 ÛtD̂t+k, k ≥ 0

1
n

∑n
t=1−k ÛtD̂t+k, k < 0

(C.13)

and cÛ(0), cD̂(0) are the sample variances given by

cÛ(0) = 1
n

n∑
t=1

Û2
t (C.14)

cD̂(0) = 1
n

n∑
t=1

D̂2
t (C.15)

Figure C.9a shows that there is some instant negative correlation and U affects D at time
lags 2, 3 and 4, whilst feedback (D also affects U) occurs at lag 1. This matches the expected
results which predicts that U will act on D through vortex advection at approximately time
lag 2, surface wave communication and mechanical connection communication happen in
both directions at sufficient speed to happen in < 1 lag period; due to discretisation it is
expected that these affects will bleed into the surrounding bins.
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Figure C.9: a. Cross correlation of the residuals of case 1, U and case 1, D. b. Transfer
Entropy of case 1

The Transfer Entropy plot is read as separate plots for U affecting D (U → D) and
D affecting U (D → U) where significant values of TE indicate a causal interaction. TE
values cannot be negative so it is only a measure of affect and cannot be used to determine
between positive and negative correlation. It is also not possible to compare the magnitudes
of the results between the two methods because they are measuring different properties.
The only appropriate comparison is of the lags at which significant values exist. If the two
methods agree, the comparison of RCCF and TE plots should give the following results:

• Significant values at a positive lag on the RCCF should be matched by a significant
TEU→D value at the same lag on the TE plot.

• Significant values at a negative lag on the RCCF should be matched by a significant
TED→U value at the same lag magnitude on the TE plot.

Figure C.9b shows that significant values of Transfer Entropy exist at lags 0 and 2 for
U acting on D and at lag 0 for D acting on U. If the significance threshold of the ARMA
method is expanded slightly, the two results would match perfectly. It would be reasonable
to do so because the confidence interval is based on the assumption that the residuals are
normally distributed, which we have confirmed they are not. This is a promising indication
that TE is a viable method for detecting causality.
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C.1.10 Cases 2 to 6

Figure C.10: a. Cross correlation of the residuals of case 2. b. Transfer Entropy of case
2

Figure C.11: a. Cross correlation of the residuals of case 3. b. Transfer Entropy of case
3
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Figure C.12: a. Cross correlation of the residuals of case 4. b. Transfer Entropy of case
4

Figure C.13: a. Cross correlation of the residuals of case 5. b. Transfer Entropy of case
5
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Figure C.14: a. Cross correlation of the residuals of case 6. b. Transfer Entropy of case
6

C.1.11 Discussion

Comparing the lags at which significant interaction is identified by the two methods
shows relatively good agreement. It is easier to compare using the summary table C.11
which orders the lags by significance for each case and method. Remember that TEU→D
is comparable to RCCF + and TED→U is comparable to RCCF -. The most obvious
property of this comparison is that the RCCF method always identifies more significant
lags than the TE method. It is not immediately obvious which is more accurate since
discussions of causality rarely have a ground truth. The lack of ground truth coupled with
the idea that falsely indicating causality is worse than failing to identify causality leads to
the conclusion that the significance level of the RCCF method should be increased. The
agreement between the most significant values is excellent. Cases 1, 4, 5 and 6 all perfectly
agree on the two most significant lags while case 2 agrees on the two most significant
values but in the opposite order for U → D. Case 3 is very noisy with a wide range of lags
indicated and very small values of TE and correlation.
Both methods confirm the hypothesis that for the cases with a driven upstream airfoil
(cases 1-3) the communication time increases as separation distance increases. Case 1 is
the closest case with a primary lag of 2, case 2 has a primary lag of 2 or 3 and case 3 is 3
or 4. Both methods also confirm that the driven airfoil has a greater effect on the passive
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airfoil than the passive has on the driven. This cannot be seen in Table C.11 but is evident
in Figures C.9 - C.14. For cases 1-3 where U is driven, the RRCF is more significant
at positive lags than at negative lags and TEU→D is more significant than TED→U . The
inverse is true for cases 4-6 where D is driven.

Case TEU→D TED→U RCCF + RCCF -
1 2,0,1 0 2,0,4,3 0,1
2 3,2 0 2,3,1,5 0
3 4,2,1,3,6 - 3,9,1,2,8,7 -
4 0,1 0,2 0,1 0,2,4,11
5 0 0,2 0,1 0,2,1
6 0 0,2 0,1 0,2,1

Table C.11: Summary of significant lags predicted by the two methods ordered by sig-
nificance.

Now that it is proven that the models are significantly dependent it is theoretically pos-
sible to fit multivariate ARMAmodels to these cases. Contemporaneous ARMA (CARMA)
models are not appropriate given the significant values at lags other than 0. Transfer func-
tion noise models could be fitted to cases 2 and 3 because the interaction in uni-directional
however the feedback in cases 1, 4, 5 and 6 mean that the general form of the multivariate
ARMA models must be employed. That is not ideal because it leads to a high number of
parameters.

C.1.12 Conclusion

Transfer Entropy is a relatively new method for determining causal relationships be-
tween nodes of a network. Despite having been applied successfully to a range of industries,
Zhang et al. [74] claim for the first time that this method can be applied to arrays of struc-
tures interacting via a fluid. To test this claim, their method for applying the principles
of Transfer Entropy is compared to the residual cross-correlation function. The residual
series were obtained by fitting ARMA models to each series individually. This class of
model was proven to be acceptable for the passive airfoils because the observation series
are stationary and non-seasonal. Box-Cox transformations were required in almost all cases
to obtain normally distributed residuals. For the driven airfoils it was never possible to
obtain normally distributed residuals therefore it was determined that the ARMA models
were not ideal. However, the models were still able to produce uncorrelated residual series
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and the results of the causality analysis strongly agreed with both the expected results and
the TE method.
ARMA models were selected based on the Akaike Information Criterion after a coarse
exhaustive study which was informed by an exploratory analysis, then for case 1 model
fit errors were reduced through targeted model fitting experiments based on those results.
For cases 2-6, the results of the coarse exhaustive study were used, further model fitting
for these series is recommended at a later date. Diagnostics were performed to ensure the
models were stationary and invertible, and the residuals were uncorrelated, heteroscedastic
and normally distributed. For case 1, the chosen models are

(u(0)
t − µ) = at − 0.4752at−1 (C.16)

(1− 0.9297B + 0.5952B3 − 0.6286B5 + 0.6307B6 − 0.5454B7)(d(0.5)
t − µ) =

(1 + 0.7306B2 − 0.4866B3 − 0.7487B4 + 0.4402B5 + 0.2416B8)at (C.17)

Models for cases 2-6 are given in Appendix C.
Figures C.9 to C.14 and Table C.11 are used to show a high level of agreement between the
two methods, especially when the significance threshold of the RCCF method is increased.
Both models confirmed the working hypotheses that causal interactions are stronger when
the distance is less and that the driven airfoil has a greater affect on the passive airfoil
than the passive has on the driven. In general the RCCF method appears to be more likely
to falsely identify causality where none exists. There is also a significant difference in the
complexity of the methods. Fitting the ARMA models to the data took considerable
time, the coarse exhaustive study took 8 hours to compute plus several hours for the
targeted studies and some time for the exploratory analysis; over 20,000 models were
trialed. A certain amount of artfulness was also required to select an appropriate model. By
comparison the TE calculation to 0.6 seconds to calculate all 12 series. It also required some
knowledge of the physical system to appropriately define the symbols but the efficiency
gain is self evident. The RCCF model did prove to be robust given that the model was not
a perfect fit for the driven series but the results worked none the less. The result was also
barely affected by fitting of different models as proven by the two models fitted to case 1,
U (Appendix C).
Due to the high level of non-normality in the ARMA residuals of the driven series, it
is unlikely that these models would be useful for forecasting or simulation experiments.
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Therefore, while it is potentially possible to fit multivariate ARMA models to the data,
there is no practical application for such a model. This study has shown that they are
useful for detecting causality and in the future they are likely to be used to strengthen the
argument that Transfer Entropy is also a viable method.

C.2 Additional Information

C.2.1 Case 1, U RCCF comparison

Knowing that the AIC could not be relied upon to select an appropriate model for this
case, the two most likely models were compared by their affect on the AIC.

(a) RCCF with MA(1) for U (b) RCCF with ARMA(9,6) for U

Figure C.15: A comparison of the affect of the two most likely U models on the RCCF
for case 1
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C.2.2 Models 2 to 6

Parameter MLE SE
phi1 −0.7946 0.1066
phi2 −0.6542 0.1779
phi3 −0.5655 0.1979
phi4 −0.1258 0.1981
phi5 0.1953 0.1844
phi6 0.562 0.1313
phi7 0.4912 0.06014
phi8 −0.06989 0.04693
phi9 0.1901 0.04452

theta1 1.275 0.1171
theta2 1.044 0.2401
theta3 0.8709 0.3045
theta4 0.4189 0.3237
theta5 −0.09381 0.3048
theta6 −0.5617 0.2318
theta7 −0.6291 0.1059





Parameter MLE SE
phi1 −0.2526 0.1666
phi2 −0.4313 0.1199
phi3 −0.09315 0.1156
phi4 0.3985 0.09544
phi5 0.03784 0.1286
phi6 0.09646 0.09146
phi7 0.4766 0.08161
phi8 0.03224 0.05882
phi9 0.2761 0.05614

theta1 1.664 0.1666
theta2 1.344 0.2753
theta3 0.8448 0.2447
theta4 0.1424 0.1854
theta5 −0.1134 0.1876
theta6 0.2902 0.1844
theta7 0.1672 0.07918


Table C.12: Parameter estimates and SEs for Case 2
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Parameter MLE SE
phi1 0.8743 0.1471
phi2 −0.5689 0.1575
phi3 0.6136 0.152
phi4 −0.851 0.1364
phi5 0.3391 0.1749
phi6 0.3884 0.1032

theta1 −0.4206 0.1776
theta2 0.1483 0.1229
theta3 −0.3466 0.09029
theta4 0.5773 0.07858
theta5 0.08057 0.1357
theta6 −0.5734 0.0556
theta7 −0.1859 0.08398




Parameter MLE SE

theta1 1.414 0.02337
theta2 0.7317 0.02287



Table C.13: Parameter estimates and SEs for Case 3



Parameter MLE SE
phi1 0.344 5.407
phi2 0.6228 5.306

theta1 0.4362 5.409
theta2 −0.6694 1.083
theta3 −0.5043 2.938
theta4 −0.1521 0.8647
theta5 −0.0185 0.279
theta6 −0.02547 0.08212
theta7 −0.02216 0.1878





Parameter MLE SE
phi1 0.8766 0.5149
phi2 −0.7215 0.6576
phi3 0.7951 0.5961
phi4 −0.1455 0.6563
phi5 −0.2165 0.3911

theta1 −0.3975 0.4961
theta2 0.3027 0.4595
theta3 −0.4686 0.2901
theta4 −0.2543 0.3677
theta5 0.3178 0.2134
theta6 0.04857 0.2016
theta7 −0.01026 0.04604
theta8 −0.05732 0.03936


Table C.14: Parameter estimates and SEs for Case 4
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Parameter MLE SE
phi1 1.134 0.3352
phi2 0.02237 0.5549
phi3 −0.6249 0.4655
phi4 0.2837 0.4554
phi5 −0.2681 0.4852
phi6 0.4683 0.4083
phi7 −0.03938 0.2426

theta1 −0.1933 0.3322
theta2 −0.5982 0.2926
theta3 0.4309 0.2318
theta4 0.1958 0.314
theta5 0.2154 0.2043
theta6 −0.3358 0.1759
theta7 −0.2121 0.09941
theta8 0.157 0.1057
theta9 −0.08876 0.04774
theta10 −0.138 0.06273





Parameter MLE SE
phi1 0.5199 0.1802
phi2 0.1585 0.1849
phi3 −0.5481 0.1543
phi4 0.1913 0.1827
phi5 −0.1974 0.1701
phi6 0.1484 0.1519
phi7 0.1524 0.1373
phi8 −0.3695 0.1513
phi9 0.5928 0.1345

theta1 −0.02937 0.1757
theta2 −0.4356 0.1509
theta3 0.4681 0.178
theta4 0.1265 0.1604
theta5 0.1401 0.1546
theta6 −0.1449 0.1444
theta7 −0.2694 0.1385
theta8 0.4014 0.155
theta9 −0.4685 0.1164
theta10 −0.345 0.07369


Table C.15: Parameter estimates and SEs for Case 5
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Parameter MLE SE
phi1 0.3268 0.06346
phi2 0.2772 0.06377
phi3 0.4055 0.06249
phi4 0.1113 0.07345
phi5 −0.0004029 0.0665
phi6 −0.09919 0.06126
phi7 −0.5925 0.05946
phi8 0.5583 0.03745

theta1 0.6235 0.07283
theta2 −0.1598 0.0868
theta3 −0.6754 0.08917
theta4 −0.6313 0.09926
theta5 −0.3591 0.09986
theta6 −0.1682 0.08146
theta7 0.574 0.07999
theta8 0.185 0.05432





Parameter MLE SE
phi1 0.1263 0.1898
phi2 −0.3765 0.1394
phi3 1.0 0.1228
phi4 0.07859 0.258
phi5 0.3345 0.1308
phi6 −0.543 0.1131
phi7 −0.449 0.1825

theta1 0.3754 0.2167
theta2 0.3452 0.06708
theta3 −0.83 0.08792
theta4 −0.5778 0.2312
theta5 −0.3896 0.07067
theta6 0.3918 0.08386
theta7 0.7334 0.1537
theta8 0.2276 0.1166
theta9 −0.05092 0.03805
theta10 −0.03673 0.03753


Table C.16: Parameter estimates and SEs for Case 6
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Appendix D

Additional Figures

Figure D.1: Schematic of electronics used to drive the cylinder from the cRio
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Figure D.2: Entropy as a function of sampling period, calculated using the down-sample
first method. Orange line: H(A), blue solid line: H(C) measured, blue dashed line: H(C)
analytical, black dots indicate ∆ will be filtered out by the entropy filter.
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Figure D.3: TEC→A for all 15 cases of the single airfoil experiments, calculated using the
down-sample first method.
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Figure D.4: TEA→C for all 15 cases of the single airfoil experiments, calculated using the
down-sample first method.

175



TD = 2.00 s TD = 3.00 s TD = 3.75 s

s
=

52
m
m

s
=

78
m
m

s
=

10
4
m
m

s
=

13
0
m
m

s
=

15
6
m
m

Figure D.5: Entropy as a function of sampling period, calculated using the symbolise
first method. Orange line: H(A), blue solid line: H(C) measured, blue dashed line: H(C)
analytical, black dots indicate ∆ will be filtered out by the entropy filter.
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Figure D.6: TEC→A for all 15 cases of the single airfoil experiments, calculated using the
symbolise first method.
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Figure D.7: TEA→C for all 15 cases of the single airfoil experiments, calculated using the
symbolise first method.
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Figure D.8: TE as a function of δ, for a single ∆, for all 15 cases of the single airfoil
experiments, calculated using the symbolise first method. Blue line; TEC→A, orange line;
TEA→C , yellow line; |TEnet|, black dashed line; null threshold.
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Figure D.9: Self feedback of A (orange line) and C (blue line) compared to the null
threshold (black dashed line). Data is presented for a single ∆ and a range of δ for all 15
cases.
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Figure D.10: TEC→A for all cases with indicators of communication delays predicted
from the self feedback results.

181



Appendix E

Analysis of Pathways: Three Body
Experiments

In Section 6.1.4, the first step in the delay analysis was to identify the delays which could
possibly be related to mutual driver or cascading effects. That is done here again but with
a slight modification to suit this data. In the simulation the pathways were simple and
obvious. For example, there was only one possible relay path Z → Y . Here there are
many paths that have the same start and end points; these are listed in Table E.1. The
current version of the software written to calculate conditional TE cannot process more
that one conditioning variable, so any path with more than three nodes cannot be assessed
with that tool.1 The significance of a pathway is then evaluated by assessing the pairwise
TE of the component at the delay of the path. For example, the significance of the path
C → A→ A is measured by TEC→A at delays 6.2 and 9.2 s; that path is significant.

It is acknowledged that this method is incomplete, being entirely new, and that this
experiment ended up not being a great example so the following analysis contains a few
assumptions to allow for the demonstration to be completed. Here it will be assumed that
if the delay of a relayed path matches one of the delays previously attributed to a direct
interaction (δ̂) and it is feasible given what is known about the system, then that is the
most likely cause of the detected interaction.2 The goal is to attribute each of the direct

1Time restrictions prevent the software being rewritten.
2Ideally, each of the identified pathways would be evaluated by conditional entropy. Just as the path

C → A→ B was shown to have insignificant TE when evaluated by TEC→B|A(δ = δ̂CA + δ̂AB , ζ = δ̂AB),
TEC→A|A(δ = δ̂CA + δ̂AA, ζ = δ̂AA) should also be insignificant. This is shown not to be case in Fig. 6.21c
suggesting that either, δ̂CA = 6.2 s is real or another path is matching the delay. The most likely candidate
for that is C → A→ B → A with delay 6.6 s.
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delays to either one of the relay paths or a feasible physical interaction.

δ̂CA = 3.2 s does not match any of the other path delays, but it is a reasonable physical
delay as it closely matches similar experiments in Chapter 5. δ̂CA = 6.2 s only appears in
C → A → A, making that a likely cause. The true cause of the 3.0 s delay A → A was
identified in Chapter 5 to be caused by the combination of the symbolization algorithm
and the dynamics of the airfoil’s response,3 so this pathway is feasible. δ̂CA = 9.6 s occurs
in both C → A → B → A and C → A → A → B → A. This may indicate that both are
true but there is no better tool for assessing the validity of this, at this stage. δ̂CA = 11.0 s
does not exactly match any of the paths, but the low magnitude and wide spread of TEB→A

around δ = 4.3 s makes the estimation of the delay along that path susceptible to noise.
Accepting that this method is imperfect and noting the low significance this determination
has on the final result, it is decided that δ̂CA = 11.0 s is most likely caused by the path
C → A→ B → A.

δ̂CB = 6.6 s matches the relay path C → A→ B, that coupled with the conditional TE
being insignificant suggests that that is the real path. δ̂CB = 9.6 s occurs in both alternate
paths but logic dictates that if C → A→ B and A→ A are both significant, the cause is
most likely the path C → A→ A→ B.

The significant TE values at δ̂AB = 0.8, 3.4 s appear to be real as they do not match the
alternate path. δ̂AB = 3.4 s is a reasonable value given the advection speed measured in
Chapter 5 and the separation of the airfoils. δ̂AB = 0.8 s is also possible because the airfoils
are separated by 16mm at their closest position. It is possible that the communication
delay is affected by the amplitude and/or the relative angles of the airfoils. This is not
accounted for in any way so there is no way to validate this. δ̂AB = 6.4 s is most likely
caused by the path A → A → B as the delays match and conditional TE TEA→B|A(δ =
6.4, ζ = 3.4) is insignificant.

3This also implicates A → A as the cause of δ̂AA = 3.0 s. That hypothesis is supported by the lack of
matching values for other paths.
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Table E.1: Possible relay pathways. A limit is imposed to prevent recurring loops. For
example, the path A → B → A → B is excluded. Delays greater than 12 s are also
excluded. Delays which result in insignificant TE for the corresponding path are indicated
by ∗

Component Path Delays (s)

C → A

C → A 3.2, 6.2, 9.6, 11.0
C → A→ A 6.2, 9.2
C → A→ B → A 4.0, 6.6, 7.0∗, 8.3∗, 9.6, 10.4∗, 10.9, 11.3, 11.8∗

C → A→ A→ B → A 7.0∗, 9.6, 10.0, 11.3

C → B

C → B 6.6, 9.6
C → A→ B 4.0∗, 6.6, 7.0∗, 9.6, 10.4∗, 11.8∗

C → A→ A→ B 7.0∗, 9.6, 10.0∗

A→ A

A→ A 3.0
A→ B → A 0.8, 3.4, 5.1∗, 6.4, 7.7, 10.7∗

A→ A→ B → A 3.8, 6.4, 8.1, 9.4∗, 10.7∗

A→ B
A→ B 0.8, 3.4, 6.4
A→ A→ B 3.8, 6.4, 9.4∗

A reasonable conclusion of this analysis is to summarise the cause of each of the dom-
inant delays identified by the pairwise calculation, and group them to suit the intended
purpose of the research. Here the compound communication paths are listed

• C → A has real delay of 3.2 seconds. The most likely communication mechanism is
advection because those results are similar to those in Chapter 5.

• C → A→ A feeds the information from C back to A with a delay of 3.0 s, resulting
in a delay of 6.2 seconds for this path. This was shown in Chapter 5 to be caused
by the symbol selection so it could be removed although it does provide some insight
into the time scale of the airfoil’s response.

• A → B has a real delay of 3.4 seconds which is consistent with the advection speed
previously estimated. It is unclear if this delay exists solely due to its role in the
relay paths or if information generated at A is also being communicated at this delay.
The 0.8 second delay is not satisfactorily explained. Its most suspicious property is
its absence from the relay paths, although it is conceded that the time of the delay
is feasible. More testing is required to evaluate this delay.

• A→ A→ B has a delay of δ̂CA + δ̂AA = 6.4 seconds.
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• C → A→ B is a simple relay from C to B, through A with a delay of δ̂CA + δ̂AB =
3.2 + 3.4 = 6.6 s.

• C → A → A → B is similar to the above relay but with the A → A feedback
included, resulting in a delay of 9.6 seconds.

• C → B likely has no direct communication although this statement cannot be made
definitively. Both of the detected communication delays can be explained by the
alternate paths above and independent testing showed that if airfoil A is fixed, no
significant communication is seen C → B.

• B → A has delays of 0 and 4.3 seconds. The 0 s delay is consistent with pressure
communication but the physical mechanism that leads to the 4.3 second delay has
not been identified but its effect is seen in the path C → A → B → A so it is
suspected to be real. It does not meet the criteria for being an artefact of mutual
influence of C on A and B but it may be part of a higher order communication path.
From knowledge of the system, it is expected that no information is generated at B
so, at the discretion of the researcher, this direct path could be removed.4

• C → A → B → A combines the relay C → A → B and the direct interaction
B → A resulting in delays of 6.6 and 11 seconds. The 11 s matches one of the delays
previously identified by the pairwise calculation as being directly C → A. The 6.6 s
delay does not match a peak but could still be significant. This point is discussed in
a later section.

• C → A → A → B → A adds the A → A feedback loop to the path above resulting
in delays of 9.6 and 14 seconds. The 14 s delay is ignored because the calculation
stops at δ = 12 s. The 9.6 s delay is the last of the delays previously identified by the
pairwise calculation as being directly C → A.

From the information presented here, a map of the communication pathways is created
(Fig. E.1) based on the philosophy, any marked path would still exist if any variable not
included in that path were removed. For example, the path C → B only exists because of
A, so it is not included. Conversely, A likely generates information from the fundamental
shedding of the cylinder5, so the path A→ B is kept, both as a direct link and in the relay
paths.

4The effect of this delay is still accounted for in the relay path, so no information is discarded.
5It is important to remember that the cylinder structure is a separate concept from the variable C

which is a representation of the rotation events of the cylinder. The information generated by A is in
response to the cylinder structure, the information relayed through A is in response to the rotation events
C.
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C A

B

C→A
C→A→A

A→B
A→A→B

C→A→B
C→A→A→B

C→A→B→A
C→A→A→B→A

A→A

Figure E.1: One interpretation of the communication pathways of the three structure
system.

This is just one interpretation of the results, other simplifications can be made by
considering which information is important to the research question. Here the feedback
loop A → A can be reinterpreted as two responses of A to C, or it could be removed all
together by acknowledging that it is a construct of the dynamics of the response, thus, not
part of the information transfer in the system. Fig. E.3 uses this logic argument to create
a more digestible map of the communication pathways6. That figure appears to be simpler
but each path has multiple delays associated with it which may make it difficult to draw
conclusions.

C A

B

C→A A→B C→A→B C→A→B→A

Figure E.2: Another interpretation of the communication pathways of the three structure
system, assuming that the feedback A → A is part of the system dynamics rather than
information transfer.

6Both methods result in the same map but the associated delays are different.
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For this system, the most useful presentation of the information is the longest pathway,
C → A → A → B → A. The delays of each section of the pathway represent the real
(physically explainable) communication delays between those structures. This removes the
complication of having multiple paths between the same structures and, as long as it is
noted that direct communication can occur concurrently with any section of the relay path,
all of the information in preserved.

C A

B

C→A→A→B→A

δ = 3.2 s

δ = 3.0 s

δ = 3.4 s

δ = 0.0, 4.3 s

Figure E.3: Another interpretation of the communication pathways of the three structure
system, assuming that the feedback A → A is part of the system dynamics rather than
information transfer.
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