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Abstract

This thesis presents a set of experiments that explore gate defined hole quantum dots in
the GaAs/AlGaAs heterostructure. These experiments explore the evolution of the quantum
states of holes in a double quantum dot. The focus is placed on the charge distribution and
spin degrees of freedom, with a view toward developing quantum information technologies.

Chapter 1 briefly introduces the concept of quantum information and gives a perspective
on the role of quantum dots and spin qubits in implementations of quantum information
technology. The particular potential of hole spins will be summarized.

Chapter 2 outlines the design and fabrication of the device, as well as simple characteri-
zation measurements.

Chapter 3 describes the experimental setup used to perform measurements and describes
the methods and circuits used to perform different types of electrical measurements of the
device.

Chapter 4 reviews basic theory of transport through quantum dots and develops the
notation and conventions used in the rest of the thesis to describe both transport and charge
detection measurements. The technique of resonant transport spectroscopy is applied to a
double quantum dot to show that, in contrast with electronic quantum dots in the same
material system, the full spectrum of states are visible in transport spectroscopy due to
strong spin orbit interactions for holes. The effective gyromagnetic ratio of a single hole is
measured via transport magnetospectroscopy. The dramatic anisotropy of the g-factor in a
plane perpendicular the heterostructure growth axis is studied by tilting the magnetic field.
The degree of anisotropy in this double quantum dot suggest the confined holes are heavy
holes, and some preliminary estimates of spin coherence are made.

Chapter 5 presents a novel method for the projection and measurement of a single hole
spin in a double quantum dot, which allows for fast spin to charge projection of a hole spin
in 100 ns or less using a charge detector. This is accomplished by encoding the projected
spin information into a long-lived metastable charge state. An experimental study using
this method to measure the spin relaxation of a single hole over a range of magnetic fields
is presented, and the dominant microscopic mechanism of single spin relaxation is deduced.

In chapter 6, the coherence of the charge and spin degrees of freedom is studied more
carefully through the technique of Landau Zener Stueckelberg Majorana interferometry. The
technique is briefly reviewed and an experiment is presented in which LZSM interferometry
was explored in the transport spectra of a single hole, revealing the mean coherence times
of the charge and hybrid spin/charge qubits.
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Chapter 1

Introduction

1.1 Quantum Information

The large scale manual collection and processing of information, as well as computation
and modeling of systems, vastly predates the automated processing of information with the
aid of mechanical or electronic devices. Examples of manual mechanical aids for numerical
calculation date back as far as the ancient Sumerian abacus or the Antikytheria mechanism,
and the practice of manually, yet accurately collecting and disseminating information
through large-scale organizations dates back at least as far as the concepts of taxation and
military strategy.

Automated mechanical computation has been an academic interest for at least two
centuries. However, the maturation of computation and information as an academic,
industrial, and cultural phenomenon arguably began between the mid 1930s and 1940s. In
1937 Alan Turing presented his Turing machine, a foundational model of computational
theory [1]. Meanwhile, the founding of information theory as an academic discipline is
commonly attributed to Claude Shannon [2], who published his seminal work in 1948: a year
after the point contact transistor was demonstrated in 1947. The field of computer science
has grown and flourished well into the present day, as technology has allowed automated
computation and collection and processing of information has become more economical.

Large quantities of human labour have historically been organized and applied to
computation and information processing problems such as tax collection, scheduling, and
logistics; and yet the impetus to discuss information and computation mathematically
apparently did not emerge until it became possible to surpass the computational and
information processing limits of organized human bureaucracies, individuals, and teams.
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The revolution brought on by automated information processing devices has transformed
the language we use to describe information. Concepts like “data” feature prominently in
our daily vocabulary, and we instinctively think of information in quantifiable terms. It
has become comparatively trivial to distribute and copy large works and databases. The
changes to our culture and lifestyle in the developed and developing worlds are so great
that the development of automated information processing arguably defines our current
age. The theory and practice of classical information processing and communication has
been revolutionary.

The origin of the quantum information field is often attributed to Richard P. Feynmann,
who spoke in 1981 [3] about the attractive possibility of simulating quantum phenomena
with a quantum computer. Be that as it may, works in quantum information do pre-date
his talk, including Holevo’s theorem [4] bounding the transmission of classical information
by quantum channels in 1973 and an attempt to generalize Shannon’s information theory
to a quantum theory of information [5].

As was the case with classical computation and information theory, quantum information
has developed dramatically in recent decades. As computational technology has begun
to butt the physical limits of classical systems for classical computation, the impetus to
explore beyond those limits to understand the challenges and opportunities of systems with
quantum phenomena has grown.

Theoretically, some potential applications of quantum computing have emerged. These
include assisting our understanding of many body quantum phenomena through quantum
simulation [6, 7], solving difficult logistics problems in the classical world using quantum
searching [8], challenging existing cryptographic security previously thought sufficient in a
classical world [9], and simultaneously assisting in the exchange of private communications
[10, 11] to name just a few.

In response to the growing possibilities, many physical implementations of quantum
information have been developed, including photonic qubits [12], superconducting qubits
[13], and spin qubits [14].

1.2 Quantum Dot Spin Qubits in Gated Semiconduc-

tor Heterostructures

Some physical implementations have clear advantages and disadvantages for certain appli-
cations. For example, photonic qubits are seemingly ideal for long-range communication of
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information, but photons may be a comparatively poor choice for in place, long term infor-
mation storage and retrieval because they always travel at the speed of light, necessitating
some sort of light-matter interaction. Spin qubits in semiconductors can be long lived [15],
but spin qubits do not directly interact over long distances (meters to kilometers). These
competing properties can be complementary, and there is great interest in inter-conversion
of quantum information between qubit implementations [16].

Toward the realization of quantum information networks, spin qubits have been pursued
in optically active defect centers [17–21] and quantum dots in optically accessible semicon-
ductors [22–29]. In particular, spin qubits in gated quantum dots [30] are attractive because
of the large degree of in-situ electrical tunability of quantum dot properties offered by
these platforms, as well as the capacity for electrical control of spin qubits and electrically
mediated interactions between them. Moreover, gated quantum dot technology supports
the precise placement of multiple dots to create double [31], triple [32, 33], quadruple [34],
and even larger [35] arrays with relative ease. Whereas in nitrogen vacancy centers and
other defects the charge of the quantum dot is fixed by the defect type, in quantum dots
in gated heterostructures the charge occupation and total charge of even large arrays of
quantum dots can be varied by tunneling to and from a lead [34].

1.3 Hole Spin in Quantum Dots

To date, efforts to explore spin qubits in gate defined quantum dots in III-V semiconductors
have mostly focused on the electron spin, but owing to advances in device fabrication [36]
and predictions of increased coherence [37, 38], hole spins have received some attention in
recent years. Investigations of hole quantum dots have been made in InAs [39], InSb [40],
and SiGe [41] nanowires, Silicon CMOS devices [42, 43]; Silicon [42], GaAs [44], and SiGe
[45] heterostructures; and self-assembled InGaAs quantum dots [46].

Some of the interest has been driven by a desire for longer qubit coherence times, which
are frequently limited by hyperfine interactions between the spin qubit and the angular
momentum bath of the host material’s nuclear spins. In [40] the hole spins were estimated
to experience hyperfine couplings an order of magnitude weaker than electrons in the same
system. In [41], the qubit decoherence times for holes were estimated to be 20 times longer
than for electrons, and this difference was attributed to a weaker hyperfine interaction.
Reducing the hyperfine interaction strength is a key motivation for the study of spin qubits
in (isotopically purified) Silicon rather than group III-V semiconductors. However, Silicon
is not a direct band-gap semiconductor and the development of optical photon to spin or
spin to photon interfaces is challenging in this material.
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Other studies focused on observations of the anisotropic hole spin g-factor [47, 48],
which was demonstrated to vary in magnitude by up to 50% depending on the orientation
of the magnetic field. A tunable g-factor, ideally approaching zero, is relevant for photon to
spin conversion [16, 49] as it would enable the quantum media conversion between photon
polarization and hole spin [16] or help increase the fidelity of photon time bin and hole spin
conversion [50].

In addition to the anisotropic g-factor and potentially extended coherence times, effects
of strong spin-orbit interactions have been observed in hole transport experiments through
quantum dots [39] including specifically in GaAs [44]. As the spin orbit interaction couples
the electric dipole to the spin of the carrier, these interactions offer an avenue to fast
and efficient qubit control and may enable other novel techniques. GaAs is an attractive
material because the technology to create gate-defined quantum dots is well developed and
GaAs permits coherent electron hole pair photo-generation because of its direct band gap,
which is important for quantum media conversion between photons and spins.

This work presents several experimental studies of some of these properties of hole
spin qubits in gate defined lateral quantum dots in GaAs, focusing on the coherence of
single hole spins and inter-dot charge tunneling, as well as some of the implications and
consequences of the strong spin orbit interaction for holes.
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Chapter 2

Sample Fabrication and
Characterization

2.1 Design and Fabrication

The experiments described in the following chapters were performed on a double quantum
dot device fabricated by Sandia National Labs [36, 51]. This chapter will briefly introduce
quantum dots and describe the fabrication of this specific device, as well as highlight several
noteworthy differences between this device and typical double quantum dot devices used to
confine electron spins in GaAs heterostructures.

In the language of artificial semiconductor quantum dots, the term “gate-defined” as
applied to quantum dots implies that electrostatic gates provide confinement in at least
one dimension. This provides an element of in-situ electrical tunability that is attractive
for experiment and for applications. Moreover, the gates can be modulated electrically at
microwave frequencies to manipulate the quantum dot and confined spins, including hole
spins [52].

A common variety of gate-defined quantum dot is the “lateral” semiconductor quantum
dot, where confinement is provided in two dimensions by electrostatic gates. For example,
in a III-V semiconductor material system such as GaAs, a heterostructure is fabricated
with either a two-dimensional conductive heterointerface or quantum well. If the quantum
well is populated with carriers, the resultant conductive layer is called a Two-Dimensional
Electron Gas (2DEG) or Two-Dimensional Hole Gas (2DHG) depending on the carrier type.
Two-dimensional systems can exhibit the Quantum Hall Effect [53, 54], Microwave-Inducted
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Resistivity Oscillations [55, 56], and associated Zero-Resistance States [57, 58] to name just
a few. These effects are well studied and can be used to measure certain characteristics of
2D systems, including the concentration and mobility of carriers (as in section 2.2).

While modulation doping [59] is frequently used to introduce a built-in electric field
that attracts carriers to populate the two dimensional gas, for the device under study a
global accumulation gate was employed to provide a tunable hole concentration in the
2DHG. In addition to the global gate operating in accumulation mode, local depletion mode
gates were deposited to locally shape and tune the confining potential of the quantum dots.
Finally, electrical contact was made to the 2D system using an ohmic metal-semiconductor
interface so that currents could be supplied from the ohmic contacts to initialize the device
in a conductive state.

Figure 2.1 shows the vertical layout of the heterostructure used to host the quantum
dot used in these particular experiments. With the sample kept at a temperature of 630
C, GaAs and Al0.5Ga0.5As were deposited on the surface via Molecular Beam Epitaxy. In
chronological order, the following layers were deposited on a GaAs substrate:

1. A 300nm “buffer” layer of GaAs.

2. A superlatice layer: 300 repetitions each of 3nm of GaAs and 10nm of Al0.5Ga0.5As,
alternating

3. 1000nm of GaAs

4. 100nm of Al0.5Ga0.5As

5. A 10nm GaAs “cap” layer.

The purpose of the “buffer” layer is to suppress structural defects at the substrate/buffer
interface that propagate layer by layer through epitaxial growth. If the buffer layer is too
thin compared to the mean propagation length of these defects, these defects will be present
in the surface.

Ohmic electrical contacts were made to the 2DHG by evaporation of AuBe alloy and
annealing. Ti/Au local gates and an Aluminium global gate were isolated from one another
and from the ohmic contacts by 130nm of Al2O3 deposited by Atomic Layer Deposition
(ALD). Figure 2.2 shows an SEM image of the horizontal layout of local gates in a similar
sample, indicating the intended positions of the two quantum dots (circles) and a Quantum
Point Contact (QPC). The current through the QPC was used as a charge sensor [60].

The next section will focus on the characterization of the sample, including the tunability
of the carrier concentration.
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Figure 2.1: A schematic vertical cross section of the device showing layers of material
including 2DHG, local Ti/Au depletion gates and Al global gate separated by Al2O3 insulator,
as well as the 2DHG at the AlGaAs/GaAs heterointerface between depletion-mode local
gates.
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500nm

Figure 2.2: Scanning electron microscope image of a similar device with Al global gate and
Al oxide omitted. The horizontal local gates (light grey), the ohmic charge reservoirs, the
quantum dots (labeled 1 and 2), and the QPC charge sensor (identified by a star) are visible.

2.2 Sample Characterization

As described in the previous section, the 2DHG in this device was populated with carriers
using a global accumulation gate to provide electrically tunable carrier concentration. A
model AVS-47 cryogenic resistance bridge was used to measure the two-point resisistance
(R2) of the sample, including ohmic contacts and 2DHG, with the sample held at a
temperature of 60 mK. Shubnikov de Haas magnetoresistance oscillations were observed by
measuring R2 as a function of an applied magnetic field normal to the plane of the 2DHG
(BZ) between 2.0 T and 4.0 T. Shubnikov de-Haas Resistivity Oscillations (SdHO) were
used as an experimental probe of the bulk majority carrier concentration as a function of
the accumulation gate voltage. The period of the SdHO resistivity oscillations is inversely
proportional to the carrier concentration:

∆

(
1

B

)
=

2e

hn
(2.1)

where n is the carrier density.

The period of each SdHO trace was measured as a function of the uniform magnetic
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field applied normal to the plane of the sample, and from this data the carrier density was
obtained.

Typical resistivity oscillations are plotted in panel A of figure 2.3 for several values
of VGG, the voltage on the global accumulation gate, while a set of extracted carrier
concentrations are plotted in panel B for VGG between −8.0 V and −6.8 V. Over this range,
the carrier concentration varied between 3.36× 1011 cm−1 and 1.10× 1011 cm−1 at a rate
of dη

dV
= −1.87× 1011 cm−2 V−1.

The 2DHG and the global accumulation gate were modelled as a parallel plate capacitor
with a total separation (as designed) of 240 nm (including the cap layer, Al2O3, and 100
nm of GaAs).

From the capacitive charging of the 2DHG, the effective dielectric constant k of the
sample can be estimated according to:

dη

dV
= −kε0

d
(2.2)

where d = 240 nm. This formula gives k = 8.13, which is comparable to the dielectric
constants of GaAs and Al2O3 at cryogenic temperatures. This suggests that no large
parasitic charge has accumulated near the interface to screen the global accumulation gate.

From a linear fit to figure 2.3 an offset voltage of -6.18 V can be identified which is required
to produce the necessary band bending to populate the interface QW. In the following
experiments VGG=-7.9 V was used, which corresponds to initial 2DHG concentration of
3.2× 1011 /cm2 or 1 hole per 312 nm2 before depletion gate voltages were applied. The
bulk concentration of holes is roughly indicative of how many holes can be confined in a
quantum dot of a certain size.
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Figure 2.3: A) 2-point measurement of resistance as a function of the magnetic field applied
normal to the sample (BZ) for various voltages applied to the global accumulation gate
(VGG). B) Carrier concentration extracted from the Shubnikov de-Haas Oscillations, varying
linearly in VGG at 1.87 · 1011/cm2/V
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Chapter 3

Experiment Setup and Methods

3.1 Equipment

DC voltages were generated using three Iotech DAC488HR/4 modules to generate twelve
total DC voltages. DC gate voltages were applied through 1 MΩ series resistors to limit
current supplied to the gates in case of a short. Bias voltage for the quantum dot and
Quantum Point Contact (QPC) charge sensor were supplied similarly, with the assistance of
custom built voltage divider circuits (see figures 3.11 and 3.12) to provide better resolution.
Current through the dot and QPC was measured to a virtual ground supplied by an Ithaco
1211 current preamplifier with configurable gain and bandwidth. The output voltage was
digitized using a Hewlett Packard 3458A digital multi-meter. A Tektronix AWG710B
arbitrary waveform generator was used to supply the voltage pulse sequence described in
chapter 5, while a Tektronix TDS6154C digital storage oscilloscope was used to visualize
the pulse delivered to the sample. The oscilloscope’s line-trigger signal was used to trigger
both the AWG710B and the HP 3458A during the charge sensing experiments of chapter 5,
providing additional rejection of 60 Hz noise. Finally, an Anritsu 69377B synthesized high
performance signal generator was used to generate the microwave signal for the experiments
described in chapter 6.

3.2 He3 Refrigerator

In section 4.5, experiments were performed in an Oxford Instruments cryostat equipped
with a split-coil 5 Tesla magnet. A Heliox AST VL sorption pumped cryogenic He3 insert
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was used to cool the sample to a base temperature of approximately 300 mK inside the
bore of the split-coil magnet.

This setup was used because the entire Heliox insert can be rotated freely in the bore of
the magnet, even at base temperature, effectively changing the orientation of the magnet
relative to the sample about one axis.

The cryostat features a liquid He4 dewar with liquid nitrogen shielding, and is pictured
in figure 3.1 fully assembled, with the He3 insert and magnet assembly in the cryostat.

The insert can be rotated in the cryostat. The insert is equipped with a mechanical
indicator pointing to a protractor on the magnet assembly, allowing for the rotation angle
to be read out visually. The rotation angle was calibrated using the Hall effect in the 2DHG
to compare the Hall field (field normal to the 2DHG) with the applied field. The protractor
markings are spaced out about every 5 degrees.

The magnet assembly is pictured in figure 3.2, here removed from the cryostat. The
coils are directed horizontally, while the insert can be rotated about the vertical axis.

The insert itself, pictured in figure 3.3 without its vacuum shield, contains the refrig-
eration and electrical components including the microwave transmission lines and sample
header. Note that the sample is mounted with the normal axis of the 2DHG horizontal,
enabling rotation between a condition where the field is oriented in-plane with the 2DHG
and a condition where the field is directed normal to the 2DHG.

Note that the sample was mounted such that the in-plane component of the magnetic
field was approximately directed along the major axis of the double quantum dot (the
direction of current flow). Figure 3.4 shows the coordinate system that will be referred
to in the experiments performed on the He3 system. The x axis is chosen such that the
in-plane component of the field is directed along x. The z axis is directed out of the
plane of the 2DHG in the growth direction. The y axis is perpendicular to both, and in
principle the applied magnetic field in this direction is null. The angle θ corresponds to the
displacement of the field orientation from the growth direction (z axis), such that θ =0◦

corresponds to a perpendicular field along z and θ =90◦ corresponds to an in-plane field
along x. Unfortunately, the orientations of the crystallographic axes are not known.
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Cryostat

Sealing Ring

Insert (Rotates)

Figure 3.1: He3 cryostat with insert and magnet assembly installed. If cryostat is cold,
insert can rotate in-situ. Bath seal is maintained by the sealing ring and clamp (indicated).
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Split-Coil
Magnet

Figure 3.2: He3 cryostat magnet assembly removed from cryostat. Split-coil magnet bore is
horizontal (visible) while the insert rotates about the vertical axis when installed. Sample
rests in the bore of the magnet when installed.
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Sample Mount

Figure 3.3: He3 sorption pumped insert, shown here with vacuum shield not installed. The
entire insert (and sample) rotates when installed in the cryostat.
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X

Y

Z
B

Figure 3.4: Coordinate system used to describe experiments on the He3 system. The Z axis
is directed along the growth direction, while the X and Y axes are in the plane of the 2DHG.
The angle θ denotes the rotation angle of the applied field from the Z direction into the
plane (X direction). The y axis points “up” in the sense of the Earth’s gravitational field.
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3.3 Dilution Refrigerator

Many experiments described in this thesis were performed in an Oxford Instruments
Kelvinox dilution refrigeration unit. The dilution refrigerator cryostat is equipped with
a superconducting magnet capable of achieving a 16 T field at 4 K. The sample header
included 19 independent voltage pins, each connected to 19 copper lines that delivered DC
voltage from room temperature. Two additional semirigid microwave coaxial cables were
used to deliver microwave and arbitrary waveform pulses to the lower temperature stages
where the signals were added to two of the DC lines. This setup provided a fixed magnetic
field normal to the plane of the sample and the capacity to drive two gates on the sample
(‘L’ and ‘R’) with microwave signals and/or so-called ‘arbitrary waveform’ voltage pulses.

A schematic showing the wiring of the dilution refrigerator unit is shown in figure
3.5. The exact schematic of the DC biasing circuits used depend on the experiment, and
specifically whether the sample is being operated in transport or charge detection mode.
Both biasing circuits will be discussed in this section.

The gate electrodes and ohmic contacts on the sample were bonded with Au wires to
Au-plated pins on the sample header. The sample header is pictured in figure 3.10, which
shows the sample, sample header, Au bonding wires, and the DC and RF lines delivering
electrical signals to the header.

Each of the DC lines were part of a lab-made copper wire loom. The loom delivered
voltage from room temperature to the sample, but each line was interrupted by one 60 cm of
Nickel Chromium thermocoax type coaxial cable for each line between the 1.5 K stage and
the Mixing Chamber. The thermocoax cables functioned as high-frequency low-temperature
filters [61]. At room temperature, additional filtering on the DC lines was provided by pi
filters: 5 µF Oxley pi-capacitor in series with 470 Ω resistor.

The two plunger gate electrodes, ‘L’ and ‘R’ as labeled in figure 2.2, were driven by both
DC and RF electric fields. DC biasing of the RF transmission lines was accomplished with
customized Anritsu V251 bias tees featuring (nominally) 100 nF replacement capacitors
(measured at cryogenic temperatures). The DC input to each bias Tee was driven by a
normal DC line. The DC+RF output of each bias tee was semi-rigid Cu coaxiable cable.

The DC lines were thermally anchored to the 4 K plate as well as at the 1.5 K plate and
the mixing chamber, at the interfaces between the copper loom and thermo-coaxial cables.
The RF coaxial lines were thermally anchored at 1.5 K and the mixing chamber, where the
low temperature attenuators and bias tees were located.

The RF lines were thermally anchored to the 4 K plate, the 1.5 K plate, and the
mixing chamber using copper wires, plates, and brass screws to provide clamping pressure.
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300K

1.5 K

25 mK

Sample

AWG

20 dB Attenuator
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Nb Coax

(Modified) Bias Tee

Cu Loom

Fisher

Cu Coax
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Figure 3.5: Dilution refrigerator setup wiring diagram. Most gate electrodes and ohmic
contacts are DC biased through copper wire. Two gates (just one pictured) are driven by
a DC and RF signal combined in a bias tee thermally anchored to the mixing chamber.
Cu-Be coaxial transmission line is used to deliver the high frequency component of the signal
from the Arbitrary Waveform Generator (AWG) or microwave generator to the 1.5 K stage,
where it is attenuated. A superconducting Niobium line is used to thermally isolate the
mixing chamber. Below the bias tee, copper coaxial cable is used to deliver the DC+RF
signal to the sample mount.
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From room temperature to the 1.5 K stage, the transmission lines were composed of
Copper/Beryllium alloy. A 20 dB in-line attenuator serves also as a thermal anchor to
the 1.5 K stage. Below the attenuator, superconducting Niobium coaxes were used as
low-temperature heat-switches to prevent thermal conduction from the 1.5 K stage to the
mixing chamber once it is cooled below the superconducting transition of Niobium at 9.3 K.
The Niobium coaxial cables fed into the RF input of the bias tees and the AC+RF signals
from the tees were delivered to the sample by copper coaxial transmission lines to the L
and R gate electrodes via Au bonding wires.

Due to a mechanical fault in one of the transmission lines that manifested at low
temperatures, likely caused by mismatched thermal contraction of the metal and dielectric
in the coaxial cable, only the transmission line connected to the L gate was functional
during the experiments described in chapter 6. Fortunately, only one transmission line was
required. The R gate was DC biased as normal.

Figures 3.6 through 3.10 show the dilution refrigerator insert with the shielding removed.
Many of the components described in the above paragraphs are visible and identified in
these photographs.
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Magnet Bore

Superconducting
Magnet

Figure 3.6: 16/18 tesla superconducting magnet assembly for Oxford cryostat, showing the
open core where the shielded dilution unit was inserted.
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4.0 K Flange
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Thermal AnchorThermal Anchor-20 dB Attenuators-20 dB Attenuators

1.5 K Thermal Anchor
For Thermo-Coax

Figure 3.7: Upper body of dilution refrigeration unit. 4 K flange is visible with Indium
vacuum seal. Custom wire loom, thermo-coaxial cables, and radio frequency attenuators
with copper wire thermal anchoring to the 1.5 K He4 pot are all indicated.
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Figure 3.8: Main body of dilution unit with sample mount installed. DC and RF lines are
indicated, along with the 1.5 K stage and mixing chamber.
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Figure 3.9: Stepped heat exchangers and mixing chamber are visible. The bias tees, indicated
in the photograph, are heat-synced to the mixing chamber with copper wire. Below the mixing
chamber plate is the sample mount.
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Figure 3.10: Lower part of sample mount and sample header. Sample pictured is the sample
used in the experiments. The red wire contains DC lines, which are soldered to the pins
from below. Au bolding wires were used to contact the sample.
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3.4 Hole Transport Circuit

In the transport configuration, a current was measured through the double quantum dot
directly. The measurement circuit show diagramatically in figure 3.11 used for the transport
magnetospectroscopy and Landau Zener Stueckelberg Majorana (LZSM) interferometery
experiments detailed in chapters 4 and 6.

DMM1211

ISDVSD

1:21666 Divider

390k

18DAC

50
50

Figure 3.11: Schematic diagram of the bias and measurement circuits used in the transport
configuration. Yellow boxes represent contact made with the four reservoirs including the
ohmic contacts, DC lines, and filters as discussed in the previous sections. The voltage
divider and the virtual ground supplied by the 1211 current amplifier are shown connected
to the left and right dot leads respectively. The unused reservoirs were grounded through
50 Ω terminators.

A passive 1:10000 voltage divider was used to supply the bias voltage VSD to the left-most
dot lead, while the right-most lead was virtually grounded by the current measurement
circuit. When measuring transport current, the Ithaco 1211 current pre-amplifier was set
to output 108 V per A of input current.

3.5 Charge Detection Circuit

In the charge sensing configuration, a current was measured through the quantum point
contact and used to infer the charge state of the double quantum dot. The measurement
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circuit show diagramatically in figure 3.12 was used for the single spin relaxation experiment
detailed in chapter 5.

A passive 1:21666 voltage divider was used to supply the bias voltage VQPC to the QPC
charge sensor, while the right-most lead was virtually grounded by the current measurement
circuit. The bias voltage used in the charge sensing experiments of chapter 5 was VQPC = 1
mV. When measuring transport current, the Ithaco 1211 current pre-amplifier was set to
output 108 V per A of input current. When measuring charge sensor current, the Ithaco
1211 current pre-amplifier was set to output 107 V per A of input current.
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Figure 3.12: Schematic diagram of the bias and measurement circuits used in the charge
detection configuration. Yellow boxes represent contact made with the four reservoirs
including the ohmic contacts, DC lines, and filters as discussed in the previous sections. The
voltage divider and virtual ground supplied by the 1211 current amplifier are shown connected
to the two QPC leads. The unused reservoirs were grounded through 50 Ω terminators.
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Chapter 4

One and Two Hole Transport
Spectroscopy and Spin Blockade

4.1 Charge Transport Through Quantum Dots

A quantum dot is a three dimensional finite potential well in which one or more carriers
may be bound. In the case of a GaAs heterostructure such as the one investigated in these
studies, confinement is provided in one direction by the vertical band structure of the device,
whereas in the remaining two directions it is provided by an electrostatic potential. The
electric fields are created by the electrostatic gates, and thus may be tuned by tuning the
applied gate voltages.

A source of carriers, holes in this case, is typically provided by a lead. In the case of
this structure, the lead is the two-dimensional hole gas outside the quantum dot. The
lead is tunnel coupled to the dot by tuning the electrostatic barrier, and depending on the
voltage settings on the gates different numbers of charges will occupy the dot at equilibrium
[62]. When the energy associated with the addition of a single charge well exceeds the
temperature, the charge of the quantum dot is well described by a discrete number of
carriers and the eigenstates of the double quantum dot will generally be eigenstates of the
charge number operator.

The Coulomb interaction energy of a quantum dot array is that of a capacitor with
discrete charge N with an effective applied voltage:

E(N) =
(qN)2

2C
+
eN

C

∑
i

Ci(Vi − V0i) (4.1)
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where C is the total self-capacitance of the quantum dot, Vi is gate voltage setting of gate i,
V0i is an offset voltage taking into account the uncontrolled background electric field (chosen

such that when ~V0 = ~V the zero charge state has zero energy) and Ci is a capacitance that
couples the charges on each gate to the carriers on the dot.

The electrochemical potential, or energy associated with the addition of the (N + 1)th
carrier, is the difference between E(N + 1) and E(N):

µN+1 =
e2

C
(N + 1

2
) +

e

C

∑
Ci(Vi − V0i) (4.2)

µN+1 =
e2

C
(N + 1

2
) +

∑
i

αi(Vi − V0i) (4.3)

where a constant charging energy EC = e2

C
separates successive values of µN . Here, αi

calibrates the contribution of gate i to the energy of the excess carrier.

For qualitative interpretations and discussions, it can be helpful to draw energy diagrams
such as figure 4.1, which depict the ladder of electrochemical potentials associated with
different charge states.

The ground state of a quantum dot connected to a lead will depend on the Fermi level
in the lead. At zero temperature, if the Fermi level in the source lead (εS) exceeds the
electrochemical potential of the charge state N , carriers will tunnel from the lead onto the
dot until this is no longer true. If the Fermi level is below that charge state, the carriers
will tend to tunnel off the dot and into the empty states in the lead. The ground charge
state of the quantum dot depends on the Fermi energy and the applied local gate voltages.

If a drain lead is added and is also tunnel coupled to the dot, a second Fermi energy is
introduced into the system: εD. a voltage bias eVSD = εS − εD = εSD can be applied and a
non-equilibrium condition may be introduced into the system. For finite bias, it is possible
for one or more electrochemical potential levels to lie above one Fermi energy but below
the other, allowing carriers to tunnel onto the dot from one lead and out of the dot into
the other, passing a net current. This current can be measured, and this forms the basis of
charge transport measurements. The span of energies between the Fermi energies of the
source and drain is called the “bias window”.

For a bias window smaller than the charging energy, current can pass only at certain
values of ~V . If only one gate is varied, V , the pattern will be periodic in V where the
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Figure 4.1: Electrochemical potentials of discrete charge states of a single quantum dot,
showing the ladder of energies separated by the charging energy EC = e2

C
. The Fermi level

of the source lead (to the left) is also shown.
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Figure 4.2: A) Energy level diagram showing a condition where current may flow through
the quantum dot. The electrochemical potential of the N + 2 charge state is within the bias
window, allowing current to flow. B) Measured current through the quantum dot. Peaks
occur where one of the electrostatic potentials is within the bias window. Between peaks, the
charge ground state is constant and each peak marks a change in the average occupancy of
the dot.

period is equal the charging energy EC = α−1(Vi+1 − Vi) 1. Here α−1 is the inverted lever
arm matrix and VN is the Nth voltage at which current is observed, corresponding to an
instability where the electrochemical potential of the Nth charge state is in the bias window.
See figure 4.2, where this phenomenon was observed as a function of the gate voltage L
with the device described in chapter 2 tuned in the single dot regime in the He3 dilution
refrigerator. The device was tuned in the many-hole regime and N was not known. A bias
of εSD = 10 µeV was applied.

The width of each peak is a function of both the electron temperature and the lifetimes
of the charge states determined by the tunnel barriers to the leads.

A Double Quantum Dot (DQD) is a pair of tunnel coupled quantum dots. Commonly,
each quantum dot is connected to a dedicated lead: the left dot is tunnel coupled to the
left lead, the right dot is tunnel coupled to the right lead, and each dot is tunnel coupled

1In the simple quantum capacitor model described by equation 4.1
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to the other.

In this configuration, transport is more complex because each dot has its own ladder
of energy states, each with its own charging energy, and inter-dot Coulomb interactions
become relevant. This complicates equation 4.1:

µ(N+1,M) = E(N + 1,M)− E(N,M) =
e2

CL
(N + 1

2
) +

∑
αLi(Vi − V0i) + MEint (4.4)

µ(N,M+1) = E(N,M + 1)− E(N,M) =
e2

CR
(M + 1

2
) +

∑
αRi(Vi − V0i) + NEint (4.5)

where CL and CR are the self-capacitances of the left and right dot respectively, N and M
count the existing charges in the left and right dots respectively, and Eint is an inter-dot
charging energy reflecting the increasing energy cost of adding a carrier to one dot in the
presence of a repulsive charge in the coupled dot. αLi [αRi] is the lever arm representing
the contribution of gate i to the energy of the excess carrier in the left [right] dot.

Figure 4.3 panel B shows the current through the double quantum dot as a function of
two gate voltages, VL and VR applied to gates L and R as identified in figure 2.2. A bias of
εSd = 100 µeV was applied. In the single dot case a single charging energy is visible and
Coulomb blockade peaks present as sloped lines in the two-dimensional voltage space where
the slope gives the ratio of the α̂ matrix elements for gates VL and VR: VL = −αLR

αLL
VR + V0,

for example, for some offset V0. Because the lines separate regions of the voltage space
with different ground charge distributions and a charge is added as one of these lines are
crossed, in transport spectroscopy these lines are called “addition” lines. In the double dot
case two distinct sets of addition lines are visible, corresponding to addition of charges into
two different dots. The slopes of these lines give the relative α parameters αRR

αRL
and αLR

αLL
.

Also visible is a jump where the addition lines intersect. These jumps reflect the inter-dot
charging energy, which displaces the addition lines of one dot when a hole is added to the
other. Short lines with positive slope appear when two different charge configurations with
the same total charge (for example, (1,0) and (0,1) in figure 4.3 B are equal in energy).

In the single dot case, the dot is coupled to a continuum of states in the source and
drain leads and thus elastic tunneling is always possible. In the double quantum dot case,
transport involves both elastic and inelastic inter-dot tunneling processes. By definition,
elastic or resonant tunneling can occur only if the energy required to transfer a charge from
one dot to another is zero, and may be coherent. Conversely, inelastic tunneling requires a
source or sink of energy, which is very often provided by the phonon bath in crystaline bulk
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Figure 4.3: A) Coulomb blockade observed in transport as a function of L and R with the
device tuned in the single-dot many-hole regime. Current is suppressed as VL becomes more
positive because the tunneling barrier to the lead becomes opaque. B) Transport through
the same device in the double dot few-hole regime. Transport is enhanced at the two triple
degeneracy points at the center of the figure, as well as along some of the addition lines
where the tunnel barriers to the leads are more open (toward the bottom left of the image).
The total current is sensitive to both VL and VR because the tunnel barriers to the leads
change with both voltages.

GaAs. Because of the involvement of the phonon bath, inelastic tunneling may be slower
than resonant tunneling and is incoherent.

Resonant tunneling is visible in figure 4.3 B at the interface between the (1,0) and
(0,1) regions, where a short line of positive slope is visible. This “charge transfer line”
corresponds to where holes can resonantly tunnel between the (1,0) and (0,1) charge states,
leading to a current enhancement. Current is further enhanced at the extremes of the
charge transfer line, at the intersection of the (1,0) and (0,1) regions and either the (0,0) or
(1,1) regions. At these triple degeneracy points (or “triple points”) three charge states are
equal in energy and the DQD can cycle from, for example, (0,0) to (1,0) to (0,1) and back
to (0,0) without emitting a phonon. Similarly, a triple point is visible where the (1,1) to
(1,0) to (0,1) to (1,1) cycle is resonant. If the bias is reversed, the cycles can simply occur
in reverse and the triple points remain visible in DQD current.

Addition lines and transfer lines are more reliably and uniformly visible using charge
detection techniques as charge detection is not reliant on the conditions that govern direct
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Figure 4.4: Charge sensor current IQPC measured simultaneously with the transport current
ISD shown in figure 4.3 B. The current is differentiated to show the discontinuities. Lines
with negative slopes are addition lines. The faint line with positive slope at the center of the
image is an example of a charge transfer line. Charge ground states are indicated in several
regions.

transport, such as relatively open tunnel barriers to the leads. A QPC is a point contact
between two leads, the resistance of which is highly sensitive to the electrostatic confinement
and therefore to local electrostatic fields such as the ones produced by single holes[60]. As
an example, the DQD was configured in the few-hole regime and a 1 mV bias was applied
across the QPC near pinch-off RQPC > 50 kΩ. In this state, the current through the QPC,
IQPC , varied continuously with the local depletion gate voltages but was discontinuous near
the addition lines because of the change in DQD charge configuration. Figure 4.4 shows
IQPC as a function of VL and VR, differentiated along the VL axis, showing clear addition
and transfer lines and serving to confirm that there are no further addition lines in the (0,0)
region (because no further carriers could be removed).
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4.2 Blockade and High-Bias Transport

Transport through a single quantum dot is suppressed when there are no states in the bias
window, as only states in the bias window can be populated from the source and empty
into the drain to sustain the instability that leads to transport. This current suppression,
lifted under specific circumstances, is called Coulomb blockade.

Current blockade may occur in double quantum dots even if one or more states are
within the bias window because of the inter-dot charging energy. For example, under
positive bias, suppose the (1,0) charge state could be populated by tunneling a hole from
the left lead (source) into the left dot. If the (0,1) charge state is above the (1,0) state in
energy, however, the (0,1) state cannot necessarily empty into the drain even if there is an
empty state of equal energy in the drain lead. Figure 4.5 panel B depicts this situation. The
(1,0) state in this case is meta-stable, and will prevent the flow of current. Gate voltages
may be adjusted to detune the (0,1) state below the (1,0) state to lift the blockade, provided
both states remain in the bias window.

In the space of voltage values for any two gates (VL, VR) with all other gates held
constant, there exist triangular regions of voltage space where this form of current blockade
is lifted. The edges of the transport regions are defined by the three conditions that must
be met to enable transport. If the transport cycle is (0,0) → (1,0) → (0,1) → (0,0) for
example, then:

1. εS >= E(1,0) − E(0,0). There is a filled state in the source to charge the left dot.

2. E(1,0) >= E(0,1). Tunneling from left to right is possible without energy input.

3. E(0,1) − E(0,0) >= εD. There is an empty state in the drain to receive the right hole.

The range of voltages that satisfy all three criteria for the (0,0), (1,0), (0,1) cycle is not
the same as for the (1,1), (1,0), (0,1) cycle:

1. εS >= E(1,1) − E(0,1). There is a filled state in the source to charge the left dot.

2. E(1,1) − E(1,0) >= εD. There is an empty state in the drain to receive the right hole.

3. E(1,0) >= E(0,1). Tunneling from left to right is possible without energy input.

The inter-dot tunneling condition is identical for both cycles, so one of the edges in
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Figure 4.5: A) A configuration of energy levels that supports transport through a double
quantum dot. Each dot has one level in the bias window. A single carrier may tunnel into
the left dot from the source lead. That carrier may inelastically tunnel (downward arrow) to
the right dot and then out to the right lead. This process can repeat to support current. B)
Because of the ordering of the energy levels, the carrier becomes trapped in the meta-stable
(1,0) charge state in this configuration and the double quantum dot is blockaded. If the bias
were reversed or the detuning were reversed, blockade would be lifted.
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each transport triangle should be colinear with a corresponding edge in the other triangle.
The other two inequalities are shifted by a constant (E(1,1) − E(1,0) = E(1,0) − E(0,0) +

Eint + (ECL − ECR)). This constant shift is equivalent to a shift in ~V0 in equations 4.4 and
4.5, and so the other two pairs of edges should be parallel.

For a charge state x it is convenient to define the energy quantity εx = Ex−E(0,0) in the
context of the cycle involving the (0,0) charge state and εx = E(1,1) − Ex for the triangle
involving (1,1). If we do so, the transport conditions can be re-written the same way for
both triangles:

1. εS > ε(1,0).

2. ε(1,0) > ε(0,1).

3. ε(0,1) > εD.

Taking the limit where εD = εS = εf it’s clear that each triangle must include one triple
point: ε(1,0) = ε(0,1) = εf where εf is by definition the energy of either the (0,0) or the (1,1)
state with one excess or missing hole in a lead (respectively) to compensate.

This approach applies with no loss of generality to transport through states that involve
many holes.

For example, a bias of εSD = −2 meV was applied across the device and transport was
observed near the triple points at the intersections of (1,0), (2,0), (1,1), and (2,1) regions.
The results are presented in figure 4.6. Panel A shows a charge stability diagram for
reference, showing that indeed the device is being operated in the few-hole regime. Panel B
shows two overlapping triangular regions of current, which share a base as predicted, and
includes an overlay to show that the triangles extend from what would be the triple points
for small bias. In both triangles, the base features a resonant current enhancement, which
can be explained by the precise alignment of (2,0) and (1,1). We can define the detuning
∆ε = ε(1,0) − ε(0,1) and see that the bright line at the base of the triangle corresponds to
zero detuning, ∆ε = 0.

The size of each triangle should be proportional to the source drain bias applied, given
the established conditions. Figure 4.7 shows the same experiment repeated for different
bias voltages VSD = εSD/q, showing that this is indeed the case.

In later sections, high bias transport will be used to perform magneto-spectroscopy on
the states of the double quantum dot. However, the immediately following section will
discuss how high bias transport can be used to calibrate the lever arm matrix α̂ in the
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Figure 4.6: A) Example of a charge stability diagram showing regions of gate voltage space
defined by different ground states of definite charge. The QPC current is measured and
differentiated with respect to VL to highlight the abrupt changes in the charge sensor current
at the boundaries between stable charge regions. B) Example of triangular charge transport
features at finite bias, VDC = 1.6 mV or εSD = 1.6 meV. Source drain current is measured
directly. A sketch of the charge stability regions at zero bias is overlaid on the raw data.
The triangles extend from the triple degeneracy points with this source-drain biasing scheme.
Directed arrow indicates increasing ∆ε. C) Level diagram showing the charge states that
participate in inter-dot tunneling: (2,0) with energy ε(2,0) and (1,1) with energy ε(1,1). Also
shown are the Fermi levels, with energy εL and εR, and the bias window spanning a range
of εLR.
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Figure 4.7: Observation of charge transport through the double quantum dot as a function of
the left and right gate voltages (VL, VR) and applied bias (VDC) showing triangular features
in voltage space.
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double quantum dot so that transport spectroscopy may be performed in terms of energy
instead of voltage.

4.3 Transport Calibration of Lever Arms

To obtain the lever arm matrix from high bias transport measurements, one must first
identify a gate set. In principle if there are N gates, two leads, and two dots, then α̂ in
equations 4.4 and 4.5 is an N + 2 by 2 matrix. Typically it suffices to find the lever arms
for one or two gates at a time. For spectroscopy, the most important gates to calibrate are
the one or two that are varied to detune the double quantum dot.

This method produces the lever arm elements for two particularly chosen gates, though
in principle it can be applied to any two gates to obtain every lever arm.

The calibration data was obtained by measuring ISD as a function of VL and VR using
the transport circuit and a source-drain bias of εSD = 2 mV and is shown in figure 4.8 panel
A.

Consider the three specific points in voltage space recorded in figure 4.8: (VLN, VRN),
(VLH, VRH), and (VL•, VR•).

[
ε10

ε01

]
=

[
αLL αRL
αLR αRR

] [
VL
VR

]
(4.6)

ε10(VL, VR) = αLLVL + αLRVR (4.7)

ε01(VL, VR) = αRLVL + αRRVR (4.8)

∆ε = αLLVL + αLRVR − αRLVL + αRRVR (4.9)

At each of the three points, the alignment of both energy levels with the Fermi levels in
the leads are known. We can therefore obtain four equations with four unknowns:

eVDC = αLLVLN + αLRVRN − αRLVLN − αRRVRN (4.10)

eVDC = αLLVL• + αLRVR• − αRLVLH − αRRVRH (4.11)

eVDC = αLLVL• + αLRVR• − αRLVLN − αRRVRN (4.12)

0 = αLLVLH + αLRVRH − αRLVLN − αRRVRN (4.13)
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Figure 4.8: A) Triangular transport region in the single hole occupation regime. Two
triangles appear, here overlapping, with the lower triangle shaded in blue. The vertices of the
triangle are identified by three symbols. B) Alignments of energy levels at each of the three
identified vertices. For example, at the blue downward-facing triangle, ε(1,0) = ε(0,1) = εD

Using VDC = −2 meV, one obtains for the alpha parameters:

αLL = 78 meV/V (4.14)

αLR = 32 meV/V (4.15)

αRL = 29 meV/V (4.16)

αRR = 61 meV/V (4.17)

This gives the detuning of the two energy levels at any point in voltage space, according
to:

∆ε = αLLVL + αLRVR − αRLVL − αRRVR (4.18)

or:

41



∆ε = 49 meV/V VL − 29 meV/V VR (4.19)

In the next section, transport magneto-spectroscopy as a function of a calibrated
detuning will be applied to measure the effective g-factor of a single hole in a quantum dot.

4.4 Single Hole g-Factor Via Transport Spectroscopy

In previous sections, it was observed that elastic (i.e. resonant) inter-dot tunneling can
be more efficient because no energy is absorbed or emitted in tunneling, and a bright
zero-detuning line was observed in a high-bias triangle and attributed to this resonant
enhancement of tunneling. In fact, the current inside the un-blockaded region in figure 4.8
displays several sharp resonances at finite detuning as well. These resonances correspond to
transitions between the (1,0) ground state and several different states of the (0,1) manifold,
including orbital excited states. In earlier discussion of quantum dots orbital excited states
were ignored, but in general orbital degrees of freedom can create a number of bound excited
states with the same charge. These states will not be discussed in detail here. However, the
mechanism by which they become visible in transport will be used in most of the following
studies.

Transport blockade occurs when the DQD enters a meta-stable state, which will eventu-
ally occur if the lowest accessible energy state in the bias window is not directly coupled
to the drain. For example, if the orbital ground state of (1,0) is below the orbital ground
state of (0,1) for positive bias, the DQD will become blockaded. It should be noted that in
high bias transport, higher excited states of (1,0) might become populated instead of the
ground state, but eventually either the ground state will receive a hole or an excited state
of (1,0) will relax into a ground state before transfering the hole to (0,1) and the DQD will
become blockaded.

This blockade will be lifted when the ground state of (1,0) is at least equal in energy to
the ground state of the (0,1) manifold for positive bias, and we have seen in the previous
two sections that in fact a resonant enhancement to the current occurs when the two ground
states are energetically aligned. In fact, this resonant enhancement is not unique to the
(1,0) to (0,1) transition or to the transition to the (0,1) ground state. If transport requires a
transition from one charge configuration to another, then a resonant enhancement may be
expected when the ground state of the initial configuration is resonant with any ground or
excited state of the destination configuration. Here the initial charge configuration will be
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refered to as the “emitter” and the final configuration will be called the “receiver”. Figure
4.9 illustrates the concept.

This form of transport spectroscopy is similar to Coulomb blockade spectroscopy [63] at
high bias, where multiple states of a quantum dot can be resolved as a function of increasing
bias. This technique provides a single reference state, the emitter state, with known energy
and spin. The spectroscopy therefore reveals more specific information about the nature of
the transition between states in addition to the target state’s energy.

To acquire the spectrum of states in the (0,1) charge state, a bias of εSD = 2 mV was
applied across the device in the single hole regime near the (0,0),(1,0),(0,1),(1,1) triple
points and ISD was measured. The current is plotted in figure 4.10 for two values of the
magnetic field B oriented in the z direction and over a range of values of VL and VR, showing
that the uniform current resonance at the base of the triangle (the zero detuning line) splits
into two for a finite applied field.

A spectrum was acquired by fixing VR at −0.43 V and sweeping VL as a function of B.
The result, plotted in figure 4.11, shows two current resonances that diverge linearly with
field and are degenerate at zero field.

The resonances were fitted against a numerical model of the single hole tunneling that
included spin relaxation, inter-dot inelastic tunneling, and spin decoherence, explained in
detail in [64] and in appendix A. In the (0,⇓), (0,⇑), (⇓, 0), (⇑, 0) basis, the system was
modeled using the following Hamiltonian:

H =


∆ε
2

+ EZ
2

0 −tN −itF
0 ∆ε

2
− EZ

2
−itF −tN

−tN itF −∆ε
2

+ EZ
2

0
itF −tN 0 −∆ε

2
− EZ

2

 (4.20)

The tunneling matrix elements tF and tN couple different charge states of similar (tN)
and dissimilar (tF ) spin, such that the transition associated with tF includes a spin flip and
tN does not flip the spin. Notably, the phase factors i and −i for the tF matrix elements
are somewhat arbitrary and cosmetic in the above Hamiltonian. In principle tF may be a
complex number, and the transport experiments in this chapter can only reveal the absolute
value. The imaginary part of the tunneling matrix element is contributed by the Dresselhaus
spin orbit interaction, whereas the real part is contributed by the Rashba interaction. As
will be shown, the Dresselhaus interaction is apparently present, and hence the choice of
phase.
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Figure 4.9: Schematic illustrating the mechanism of transport spectroscopy. Carriers from
the energetically elevated lead (left) can enter the emitter quantum dot (left) in one of many
possible states of a particular charge distribution. Carriers may then directly tunnel into
states of the receiver dot that are of equal or lesser energy, and will do so more efficiently
on resonance. A) Diagram showing that populated excited states of the emitter can decay
into the ground state (downward arrows) to cause blockade if the ground state of the emitter
is lower in energy than the ground state of the receiver. B) If the emitter is not blockaded,
the current may increase with each inter-dot transition that becomes energetically allowed.
C) Current through the double quantum dot is further enhanced when the ground state
of the emitter dot is resonant with an energy level of the receiver dot. As a function of
detuning, the positions of resonant peaks and discontinuities in the current correspond to
energy eigenstates localized in the receiver dot.
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Figure 4.10: Transport spectra of the (0,1) charge state A) for B = 0 and B) B = 2.0 T.
White arrows indicate the sweep line for the spectrum shown in figure 4.11.

Additional fitting parameters to the model included the mean tunneling rates from the
source lead into the (1,0) state (Γi) and from the (0,1) state into the drain lead (Γo). Also
included were the single-dot mean spin relaxation lifetime (T1S, corresponding to relaxation
within a single dot), an inelastic inter-dot spin flip tunneling lifetime (T1F , corresponding
to the inter-dot spin-flipping transition), the spin non-flipping lifetime (T1N , modeling the
lifetime of spin conserving inter-dot transitions), the associated phase decoherence lifetimes
(T2F and T2N) and finally the coherent tunneling matrix elements tF and tN . These mean
lifetimes are inverses of the tunneling rates between related states. Table 4.1 summarizes
the model parameters used to fit the data for different values of magnetic field. Finally,
figure 4.12 plots the two tunneling matrix elements.

Figure 4.12 shows that the two tunneling matrix elements behave somewhat differently.
As explained in [65] and [64], tN is expected to decrease with increasing magnetic field
because a tightening of the (1,0) and (0,1) cyclotron orbitals causes a reduced overlap
between them as B increases. tF decrease for the same reason at large enough B, though it
initially increases. In the analysis presented in [64], the Dresselhaus spin-orbit contribution
to the spin flip matrix element contains a term that is proportional to B2, to which this
initial increase may be attributed. The values of tN and tF become comparable at B = 0.7
T and remain of a similar order for larger fields.
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B (T) 0.5
Γi (GHz) 2.0
Γo (GHz) 2.0
T1S (µs) 0.75
T1N (µs) 2.7
T1F (µs) 2.4
T2F (ps) 80
T2N (ps) 80

Table 4.1: Parameter values used to reproduce the transport current observed in figure 4.11.
A single value T2 was used for both T2F and T2N .

The spin-flip tunnel couplings can be expected to increase with increasing field as though
the vector potential were effectively contributing to the momentum operator. In [64, 65], a
microscopic theory modeling the behaviour observed here was developed in more detail.

While coherence (T1, T2) parameters can in principle be estimated from these data,
there are complications in interpreting them. The T2 values are decoherence values in the
tunneling regime. The decoherence effects of tunneling to and from the leads (at random
times) are similar to phase decoherence of the four states within the double quantum dot
itself. In chapter 6, a second transport experiment will be presented where the coherence
of the inter-dot tunneling was independently measured and the T2 values in table 4.1 are
consistent with the fitting parameters obtained in those experiments. T1S was also measured
by an independent experiment explained in chapter 5, which studied spin relaxation in a
different regime, where a single hole was isolated in a single quantum dot. In that experiment
the value of T1S was found to vary by several orders of magnitude over the field range
from B = 0.5 to B = 1.5 T. The value of T1S found here is relatively field-independent,
suggesting a different relaxation mechanism is dominant in the transport regime explored
here.

In addition to modeling the line-shapes to extract coherence, relaxation, and tunneling
parameters, it is possible to extract information from the positions of the resonances as
well.

At finite field, the (⇓,0) to (0,⇓) and (⇑,0) to (0,⇑) transitions are simultaneously
resonant at ∆ε = 0. At ∆ε = EZ , the (⇓,0) to (0,⇑) resonance is active. At ∆ε = −EZ , the
(⇑,0) to (0,⇓) transition is active. These resonance conditions are illustrated in figure 4.13.
At zero field, all four resonances are simultaneously active when ∆ε = EZ = 0. However,
for finite EZ the (⇑,0) to (0,⇓) transition occurs at ∆ε = −EZ and the current is expected
to be energetically blockaded by occupation of the (⇓,0) state as illustrated in figure 4.13
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Figure 4.11: A) Transport spectra of the (0,1) state showing the divergence of (0,⇓) and
(0,⇑) with increasing B. B-D) Transport spectra at the indicated applied fields and fits to a
numerical model (solid red curves).
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Figure 4.12: Tunneling matrix parameters tF (blue triangles) and tN (red circles) extracted
by fitting transport spectra as a function of magnetic field.

panel C. Thus, only two resonances can be expected to be visible in transport and they
can be expected to diverge linearly with increasing field, as was observed. The energy
displacement between the two resonances follows ∆ε = EZ = g∗µBB, which serves as a
measurement of the effective g-factor.

In the spectra plotted in 4.11, the divergence is EZ
B

= 76.7 ± 3.8 µV T−1, giving
g∗ = 1.33± 0.07.

In the following section, a transport magnetospectroscopy experiment will be presented
in the two-hole regime with a focus on extracting information about the effective g-factor
as a function of magnetic field orientation.
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Figure 4.13: A) Schematic of the ε = 0 resonance, showing the two simultaneously active
spin-preserving transitions. B) Schematic of the ε = EZ resonance, where a single spin-
flipping transition (aided by T1S spin relaxation)enables a resonance enhancement of the
current. C) Schematic of the ε = EZ resonance, where a single spin-flipping transition
(aided by T1S spin relaxation)enables a resonance enhancement of the current.

4.5 Two Hole Magnetospectroscopy

Previously, the transport spectra of a singly occupied quantum dot was examined and a
single measurement of the effective g-factor, g∗, was made in that regime. In this section,
the transport spectra of a doubly occupied quantum dot (2,0) will be examined as probed
by the (1,1) ground state of a double quantum dot. The spectra will be used to extract
information on the anisotropy of the effective hole g-factor with respect to the orientation
of the applied magnetic field.

The spin physics of a doubly occupied quantum dot are richer than that of a singly
occupied quantum dot due to the presence of exchange. For electrons in GaAs, with spin
1/2, the possible eigenvalues of the total spin of two particles are 0 and 1 and the eigenvalues
of the spin projection operators are −1,0, and 1. Valence band holes in GaAs can have
total angular momentum eigenvalues of J = 3/2 or 1/2. The large spin orbit gap in the
valence band ensures the J = 1/2 states are far from the band edge, whereas the J = 3/2
states are degenerate at the k=0 point in bulk GaAs. Anisotropic confinement, such as in a
lateral or nanowire quantum dot, lifts the degeneracy of the J = 3/2 states and separates
the JZ = ±1/2 sub-band (‘light’ holes) and the JZ = ±3/2 sub-band (‘heavy’ holes). This
separation occurs due to different microscopic p-type bloch orbitals of the holes in each
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Exchange Eigenvalues Spin Eigenvalues
Symbol State Orbital Spin Overall J JZ
|S〉 1√

2
(|⇓⇑〉 − |⇑⇓〉) +1 -1 -1 0 0

|T−〉 |⇓⇓〉 -1 +1 -1 1 -1
|T0〉 1√

2
(|⇓⇑〉+ |⇑⇓〉) -1 +1 -1 1 0

|T+〉 |⇑⇑〉 -1 +1 -1 1 +1

Table 4.2: Simultaneous eigenstates of J , JZ, and particle exchange operators and their
eigenvalues. Because holes are Fermions, the overall symmetry factor of every two-particle
state must be -1. However, the spin and orbital exchange eigenvalues may differ individually.

sub-band. The heavy and light hole sub-bands are so named for the differences in the
effective mass of each sub-band. If these two sub-bands are well separated, it is frequently
useful to describe spin states in either sub-band in terms of a pseudo-spin with J = 1/2
and JZ = ±1/2, though the properties of this pseudo-spin in each sub-band may depend
on whether it is a heavy or light hole pseudo-spin. In this case, it will be verified that
lateral confinement (with one dimension more tightly confined than the other two) confined
a heavy hole pseudo-spin.

The four simultaneous eigenstates of total spin or pseudo-spin J and projection JZ of a
two-spin system are summarized in table 4.2. These four spin eigenstates are also eigenstates
of three kinds of particle exchange. Spin exchange swaps the spins of two particles, whereas
orbital exchange swaps the wavefunctions of two particles while preserving the spin. “Overall”
exchange (or simply exchange) swaps both simultaneously.

Any eigenvalue λ of an exchange operator must satisfy λ2 = 1 =⇒ λ = ±1, since
exchange is self-inverse. Electrons and holes are also fermions, so by definition their overall
exchange eigenvalue must be −1. The spin exchange eigenvalues can be calculated by
applying spin exchange to the states in table 4.2 and the orbital exchange eigenvalues can
be deduced without any knowledge of the orbital wavefunctions themselves 2.

Orbital exchange is relevant in the calculation of the energy spectra of the (1,1) and
(2,0) states. The strength of the exchange interaction depends on the overlap of the single
particle wavefunctions, which is much larger for (2,0) configurations, and thus an energy
gap is expected between the spin singlet |S〉 and triplets |T 〉 in the (2,0) configuration. This
gap may vanish in the (1,1) configuration provided the wavefunction overlap between the

2Hole eigenstates are generally not eigenstates of true spin because of the spin-orbit interaction. However,
within any of the individual light and heavy hole sub-bands, a pseudo-spin arises that can be discussed
similarly. This discussion will apply provided the band intermixing is small
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State Energy
E(1,1)S 0
E(1,1)T− −g∗µBB
E(1,1)T0 0
E(1,1)T+ g∗µBB
E(2,0)S ∆ε
E(2,0)T− ∆ε+ EST (B)− g∗µBB
E(2,0)T0 ∆ε+ EST (B)
E(2,0)T+ ∆ε+ EST (B) + g∗µBB

Table 4.3: Expected energies of spin and charge eigenstates in both the (1,1) and (2,0)
configurations, defined relative to the separated spin singlet.

dots is sufficiently small. For the purposes of this discussion, EST (B) is taken to represent
the energy gap in the (2,0) configuration between the singlet and triplet states. In principle
it may be field (B) dependent, but it is non-zero at zero field.

Table 4.3 gives the energies of each of the four spin states of each of the (1,1) and (2,0)
charge states of the double quantum dot in terms of the detuning (∆ε), the singlet triplet
gap (EST ), and the applied magnetic field (B).

Transport measurements in the dilution refrigerator were used to test this theory against
measured transport magnetospectra in the two hole regime. Transport triangles were
observed near the (2,0)/(1,1) charge transfer line and transport spectroscopy was performed
along the sweep lines indicated in figure 4.14.

In the negative bias direction, VDC = −2 mV, the ground state of the (1,1) configuration
(|T−(1, 1)〉) was used to probe the spectrum of the (2,0) configuration. Indeed, all four (2,0)
states are visible in transport as shown in figure 4.15.

In the positive bias direction, V = +2 mV, the ground state of the (2,0) configuration
was used to measure the spectrum of the (1,1) configuration. For B < 1.5 T, the ground
state of (2,0) is the singlet (|S(2, 0)〉) but for B > 1.5 T the Zeeman term overcomes the
energy gap EST and the ground state is (|T−(1, 1)〉). Again, all four (2,0) states are visible
in transport as shown in figure 4.15.

The effective g-factor was measured by obtaining transport spectra of the (2,0) configu-
ration of the double quantum dot in the He3 cryostat. The (2,0) configuration was chosen
because the (2,0) spin triplets are composed of two holes in the same quantum dot.

The spectrum plotted in figure 4.16 was obtained as a function of the magnetic field,
here directed normal to the plane of the sample (i.e. in the z direction). Care was taken
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Figure 4.14: High bias transport through the (2,0)/(1,1) charge configurations of the double
quantum dot in the A) positive and B) negative bias directions, with multiple resonances
visible in transport. A 1.0 T magnetic field was applied in the z direction.

to reduce the background current between resonances by reducing the tunnel coupling
between dots. The energy gap between T−(2, 0) and T+(2, 0) yields g∗ = 1.45 ± 0.05 for
this spectrum.

Similar spectra were obtained for various field orientations rotated by an angle θ between
the z and x axes (refer to figure 3.4, which specified the spatial axes) and an effective
g-factor was obtained from each one. The smallest g-factor measured with this method was
0.22, limited by the increasing overlap between the transport resonances.

The results are plotted in figure 4.17 alongside similar data reported in the literature
for InAs self-assembled dots[47] and Si nanowires[48]. The effective g-factor was also fitted
against the following equation:

g∗(θ) = g∗⊥|sin(θ)|+ g∗min (4.21)

with fitting parameters g∗⊥ = 1.45 and g∗min = −0.04.

While the absolute anisotropy in the effective g-factor is comparable to that of the holes
in InAs dots and Si nanowires, the relative anisotropy is more pronounced. Anisotropy
in the effective g-factor is expected for holes under anisotropic confinement and has been
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Figure 4.15: A) Transport from the (1,1) to the (2,0) charge configuration showing four
resonances corresponding to S(2,0) and the three T(2,0) states. C) Transport from the (2,0)
to the (1,1) charge configuration showing at least three resonances, corresponding to T−,
T+, and the degenerate S and T0 states of (1,1). B,D) Numerical derivatives of the source
drain currents in A,C with respect to detuning to enhance visibility of the resonances. Solid
lines are visual guides.
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observed previously. In this case, however, the small hole g-factors observed and the
prediction of the model that the g-factor vanishes when the magnetic field is directed in the
plane of the sample suggests that these are heavy holes composed of the spin eigenstates
J = 3/2, JZ = ±3/2. In quantum electrodynamics, a photon cannot directly couple two
states with angular momenta differing by more than one unit of ~ to first order in the
interaction parameter. The heavy hole spin eigenstates differ by three units of ~. Therefore,
an electromagnetic field (including a magnetic field) can only indirectly couple the heavy
hole eigenstates through the light hole eigenstates via three (or more) photon processes.
Because a z-directed magnetic field does not couple the heavy hole eigenstates, the z-directed
component of the Zeeman interaction survives.

In a solid, a Hamiltonian describing heavy holes can contain terms that couple these
heavy hole eigenstates [66] because heavy hole eigenstates do not have well defined angular
momentum in the presence of a non-zero spin orbit interaction. The Luttinger parameter q
describes the strength of the interaction that couples the heavy hole eigenstates directly,
even in the absence of heavy hole / light hole mixing.

If the heavy and light hole subbands are decoupled, it implies a suppression of the heavy
hole pseudospin effective g-factor in the xy plane of the sample, which is exactly what was
observed. This is the origin of sin(θ) in equation 4.5: the effective g-factor measured was
expected to be proportional to the z-directed component of the magnetic field as a fraction
of the total field, since only the z-component is ‘felt’ by the hole. The observation of such
pronounced g-factor anisotropy therefore suggests the holes under study are indeed heavy
holes.
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Figure 4.16: Spectrum of the (2,0) charge configuration showing the Zeeman gap between
T+ and T− growing with field. A) Raw source-drain current and B) current differentiated
with respect to detuning.
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4.6 Spin and Spin Orbit Blockade

Previously in this chapter, Coulomb blockade (or energy blockade) was introduced. Another
commonly encountered form of blockade is Pauli blockade (or spin blockade) wherein
the blocking state is unable to relax due to spin conservation rules rather than energy
conservation rules. For example, the two hole pseudo-spin singlet (J=0) and triplets (J=1)
differ in angular momentum. Transport from left to right through intermediate states (1,1)
and (2,0) in a double quantum dot may be prevented if the (1,1) triplet is populated and
no state of compatible spin in (2,0) is available at a lower energy in the bias window. This
prevents transport without exchange of angular momentum with the environment. This
scenario is illustrated in figure 4.18 panel A in the absence of a magnetic field, where the
triplet is degenerate. Panel B illustrates the scenario in the opposite bias direction, where
all four populated spin states in (2,0) can tunnel into (1,1) respecting spin conservation.
Spin blockade through double quantum dots has been studied in detail for electrons in
GaAs.

Spin blockade can be lifted by processes that do not conserve the electron or hole spin,
such as interaction with lattice phonons (mediated by spin orbit interactions) and the spins
of the Gallium and Arsenic nuclei in the lattice. For electrons in GaAs, the hyperfine
contribution lifts the spin blockade in the absence of an applied field [67]. The Hyperfine
contribution to the Hamiltonian is:

HHY P =
∑
i

Ai~Ii·~S (4.22)

Here, i indexes the individual nuclei, Ii is the spin of that nucleus, S is the spin of
the carrier, and Ai quantifies the strength of the interaction between the carrier and the
particular nucleus. In cases where many nuclei are relevant, such as in quantum dots that
span many thousands of nuclei, the hyperfine interaction can be treated semi-classically by
replacing the hyperfine field with its expectation value, sometimes expressed as an effective
magnetic field.

The often spatially inhomogeneous and generally time dependent nuclear hyperfine
field can couple spin states of different total spin or spin projection and therefore lift spin
blockade. When the Zeeman field EZ = g∗µBB is much larger than the hyperfine field,
however, it stabilizes the spin and prevents mixing (in particular) of states of different total
spin. In GaAs, externally applied magnetic fields in excess of tens to hundreds of mT can
suppress spin flips due to the hyperfine field in this way, enabling spin blockade to occur.
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Figure 4.18: Schematic illustrating an example of spin blockade. A) Transport is blockaded
in the forward bias direction because the spin triplet states (T(1,1)) can be populated from
the source, but cannot relax into S(2,0) or S(1,1) without violating spin conservation rules.
B) Transport is not blockaded in the reverse bias direction because all four spin states of
(2,0) can tunnel into (1,1) respecting spin conservation.
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Experiments have shown that holes in GaAs quantum dots can experience weaker hyperfine
coupling (Ai) compared to electrons [68].

Spin blockade has been reported for holes in GaAs quantum dots [44]. However, spin
orbit interactions for holes in GaAs are stronger by several orders of magnitude than for
electrons, which can suppress angular momentum conservation in inter-dot tunneling [69].
The spin orbit interactions have been shown in the previously described experiments to
allow inelastic inter-dot spin flip tunneling at similar rates to the spin-conserving tunneling
(see table 4.1). Because inelastic inter-dot transport does not necessarily conserve spin as it
does for electrons, conventional spin blockade in a magnetic field was not observed in this
device. However, an unconventional form of blockade was observed in small fields.

In the dilution refrigerator unit, using the transport measurement circuit, a transport
spectrum was obtained for the small field range B ∈ [−125, 125] mT using a bias of
VDC = −2 mV. Dips were observed in the current along the S(2,0) resonance and the nearly
degenerate T(2,0) resonances, as shown in figure 4.19. Over this range of fields the source
states (the four spin states of the (1,1) charge configuration) are nearly degenerate, since
EZ < 10 µeV.

Also shown in figure 4.19 panel B is the single spectral line observed in the opposite
bias direction: VDC = +2 mV over the range B ∈ [−60, 60] mT. No corresponding dip was
observed in this spectral line over that range of magnetic fields.

To understand these dips, the doubly occupied DQD system was modelled by the
following Hamiltonian [64] expressed in the S(2, 0), T−(2, 0), T0(2, 0), T+(2, 0), T−(1, 1),
S(1, 1), T0(1, 1), T+(1, 1) basis:

Ĥ =



ES(2,0) 0 0 0 it
(F )
ST −

√
2t

(N)
ST 0 −it(F )

ST

0 ET−(2,0) 0 0 −t(N)
TT

i√
2
t
(F )
TT − i√

2
t
(F )
TT 0

0 0 ET0(2,0) 0 − i√
2
t
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TT 0 −t(N)

TT
i√
2
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TT

0 0 0 ET+(2,0) 0 − i√
2
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TT − i√

2
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TT t

(N)
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i√
2
t
(F )
TT 0 ET−(1,1) 0 0 0
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√
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TT 0 i√
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TT 0 ES(1,1) 0 0

0 i√
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t
(F )
TT −t(N)

TT
i√
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(F )
TT 0 0 ET0(1,1) 0

it
(F )
ST 0 − i√

2
t
(F )
TT t

(N)
TT 0 0 0 ET+(1,1)


(4.23)

The tunneling matrix elements, parameterized by t
(F )
ST , t

(F )
TT , t

(N)
ST , and t

(N)
TT , represent

inter-dot tunneling. Here, the value of the tunnel coupling is assumed to vary depending
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on the total spin of the source and destination states (S vs. T) as well as the change in
total spin projection and whether there is a spin flip (F) involved or not (N).

At the ∆ε = 0 resonance, ES(2,0) = ES(1,1) = ET−(1,1) = ET0(1,1) = ET+(1,1). At the ∆ε =
EST resonance, ET−(2,0) = ET0(2,0) = ET+(2,0) = ES(1,1) = ET−(1,1) = ET0(1,1) = ET+(1,1).

In the negative bias direction, where the inter-dot tunneling is from (1,1) to (2,0), the
observed dips in the current at each resonance near B = 0 can be understood in terms of
meta-stability of the (1,1) charge state. At ∆ε = 0 and B = 0, the Hamiltonian in the
reduced S(2, 0), T−(1, 1), S(1, 1), T0(1, 1), T+(1, 1) basis (those states that are involved in
transport) is:

HS =


∆ε −

√
2t

(N)
ST it

(F )
ST 0 −it(F )

ST

−
√

2t
(N)
ST 0 0 0 0

−it(F )
ST 0 −EZ 0 0

0 0 0 0 0

it
(F )
ST 0 0 0 EZ

 (4.24)

This Hamiltonian has three degenerate eigenstates with zero energy composed exclusively
of (1,1) states. There are two non-degenerate eigenstates that are mixtures of S(2, 0) and
(1, 1) states: the ground state and the most excited state.

At zero detuning and zero field, the non-degenerate eigenstates that include a component
of S(2, 0) are:

|−〉 = − i√
2
|S(2, 0)〉+ t̃F |T−(1, 1)〉+ t̃F |T+(1, 1)〉 − i√

2
t̃N |S(1, 1)〉 (4.25)

|+〉 = − i√
2
|S(2, 0)〉+ t̃F |T−(1, 1)〉+ t̃F |T+(1, 1)〉+

i√
2
t̃N |S(1, 1)〉 (4.26)

t̃F =
t
(F )
ST√

t
(F )2
ST + t

(N)2
ST

(4.27)

t̃N =
t
(N)
ST√

t
(F )2
ST + t

(N)2
ST

(4.28)

with energies:
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Matrix Element Value (µeV)

t
(F )
ST 0.41

t
(N)
ST 0.51

t
(F )
TT 0.38

t
(N)
TT 0.41

Table 4.4: Tunneling matrix elements used as parameters to model the data in 4.19.

E− = −
√

2(t
(F )2
ST + t

(N)2
ST ) (4.29)

E+ = +

√
2(t

(F )2
ST + t

(N)2
ST ) (4.30)

The energies of the |+〉 and |−〉 states can be in terms of an effective magnetic field:

BSO = 2
√

2

√
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(N)2
ST )

g∗µB
(4.31)

E− = −1
2
g∗µBBSO (4.32)

E+ = +1
2
g∗µBBSO (4.33)

When B << BSO, there are three degenerate blocking spin states in the (1,1) charge
configuration that cannot coherently tunnel into (2,0). As B becomes finite compared to
BSO, two of these states become non-blocking and acquire some component of S(2, 0). This
causes an increase in the current on the ∆ε = 0 resonance.

This is observed as a dip in the current at resonance as a function of the magnetic
field applied in the z direction. A more complete analysis of this current dip, including an
analysis of the ∆ε = EST resonance and inelastic processes, is in preparation [70]. From
that analysis, a numerical model of the resonant currents at both resonances vs B in figure
4.19 gives an estimate of the tunneling matrix elements. These estimated tunneling matrix
elements are summarized in table 4.4.

No supression is expected or observed in the resonant transport in the reverse bias
direction because there are no blocking states of (2,0) at zero field. Specifically, there are
no eigenstates of the system that contain only (2,0) charge states at zero detuning.
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Figure 4.19: Source drain current as a function of detuning and applied magnetic field in
the forward (A) and reverse (C) directions. Single line traces extracted at constant detuning
along the two visible resonances are shown in B and D showing current suppression at zero
field, fitted to the numerical model discussed in the text.
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4.7 Conclusions

The transport spectroscopy experiments in this chapter were used to directly probe the
energy spectra of the singly and doubly-occupied double quantum dot, and specifically the
(1,0),(0,1),(2,0), and (1,1) charge states 3. Numerical simulation of the transport current
revealed that these measurements encode coherence information about the tunneling,
including relaxation times. Most notably, the single-spin dephasing time (at B=0.5 T) was
estimated from these measurements to be 0.75 µs in this transport regime. The energy
spectrum of the singly occupied dot was used to extract the single hole g-factor, found to
be g∗ = 1.35 along the z direction (parallel to the growth axis). The spectrum of the (2,0)
configuration was used to study the anisotropy of the effective hole g-factor, which was
found to vary dramatically with the angle of the applied field with a maximum of g∗ = 1.45.
While zero effective g-factor could not be observed due to the finite width of the spectral
lines, the smallest directly observed value was g∗ = 0.2 and a fit to a sinusoidal model was
consistent with zero minum g-factor. This suggests that the holes confined in this system
were heavy holes with minimal light/heavy hole mixing.

3Similar results were obtained for the (0,2) state and were not shown
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Chapter 5

Single Hole Spin Relaxation

Coherence is of particular interest in the study of spin qubits. The characterization of
decoherence is especially important for applications, where longer coherence times are needed.
Moreover, since both spin relaxation and intrinsic phase decoherence are fundamentally the
product of interactions with the environment of the spin qubit, studying the details of both
can give a better understanding of environmental sources of noise and decoherence.

The parameters that quantify the most common decoherence mechanisms for qubits
are the spin relaxation time T1 and the spin decoherence times T2 and T ∗2 . T1 defines the
mean relaxation lifetime of the excited qubit state. T2 defines the mean dephasing time,
including only the intrinsic or “bare” (free induction decay) component of the dephasing
due to quantum entanglement between the qubit and the environment. T ∗2 is a similar
quantity, but also includes dephasing due to (semi-) classical interactions between the qubit
and a noisy or uncertain environment.

In this chapter, the focus will be placed on spin relaxation (T1). Because spin relaxation
into an energy eigenstate necessarily erases phase information as well, T1 establishes an
upper bound on the values of T2 and T ∗2 . A measurement of T1 is therefore an appropriate
first step in assessing the coherence of single hole spin qubits.

T−1
1 measures the rate at which the excited component of the spin (denoted |⇑〉 here)

relaxes into the ground state (|⇓〉 here). By the linearity of quantum mechanical processes,
a single rate describes relaxation from any linear superposition of |⇑〉 and |⇓〉 to the
ground state. Under T1-like spin relaxation for a time TR, the time-dependence of the spin
superposition is captured by:

P⇑(t = TR) = exp(−TR/T1)P⇑(t = 0) (5.1)
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Measuring T1 is important to evaluate hole spin qubits as candidate qubits for quantum
information processing. It has been claimed that holes interact more weakly with the nuclei
of the crystal lattice [71, 72], which is a dominant cause of spin relaxation for electron spin
qubits. It is important to study spin relaxation to experimentally establish the effect of
hyperfine interactions with the lattice nuclei.

In electron spin qubits, two mechanisms contribute to spin relaxation [30, 73]. Which
effect is dominant depends on the strength of the applied magnetic field. For small fields,
hyperfine interactions between the lattice nuclear spin bath and the spin qubit dominate
spin relaxation. When the external magnetic field is smaller than the effective hyperfine
field, the qubit can efficiently exchange angular momentum with the nuclear spins in the
lattice. Because the Bloch functions of holes in GaAs have reduced overlap with the nuclei,
contact interactions (including contact hyperfine interactions) have been predicted [71,
74–76] and measured [77–79] to be suppressed in hole systems.

When a magnetic field is applied and the Zeeman field exceeds the effective hyperfine
field, hyperfine induced spin flips are suppressed. In this regime the dominant contribution
to T1

−1 is phonon mediated spin-orbit interaction with the lattice. Phonons couple lattice
charge motion with the motion of the charge distribution and spin orbit interactions couple
the charge distribution to the spin. These interactions become more significant at larger
magnetic fields, as the Zeeman energy separating the two qubit terms becomes larger and
the phonon density of states increases with energy. Theoretically [80, 81] and experimentally
[30, 80–86], the electron spin T1 in GaAs has been found to depend on the magnetic field
as T1 ∝ B−5 in this regime.

For hole spins, a T1 ∝ B−5 term is contributed by the Dresselhaus spin orbit interaction
and T1 ∝ B−9 originates in Rashba spin-orbit[37, 52].

The focus of this section is an experimental study of the T1 spin-relaxation time in a
single heavy hole spin qubit in a lateral GaAs quantum dot. To measure T1 as a function
of the applied magnetic field, a novel technique will be presented that accomplishes high
speed single shot projection of the single spin qubit without the use of a high-speed charge
detector such as an RF-QPC.

Charge-latch techniques have been used in the study of spin qubits for some time, in
conjunction with Pauli blockade in electron systems [87–90]. However, Pauli blockade
techniques do not apply naturally to holes due to the large spin non-conserving tunneling
interaction [65, 69] described in section 4.4. Spin-selective tunneling to a lead [82, 84, 85,
91] could in principle be used for single shot spin detection, but these methods require
fast, sensitive electronics for high-fidelity measurement. Instead, spin-selecting spin non-
conserving tunneling was utilized to enable fast projection of a single spin onto the state
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of a charge latching. This was accomplished using tunneling effects that couple states of
dissimilar spin between dots, discussed in section 4.4. The resulting charge states could be
interrogated by the relatively insensitive charge sensor to extract the information encoded
in the charge latch, demonstrating that high-speed charge detection is not necessary for
high-speed projection of hole spin qubits. This projection and readout technique is the
subject of the next section.

5.1 Single Hole Spin Projection and Readout in a

Double Quantum Dot

The spin projection procedure described in this section makes use of the unique properties
of holes studied in previous sections to rapidly project a single hole spin in a quantum dot
onto the charge state of a second quantum dot. The secondary quantum dot, tunnel coupled
to the primary dot, is used to perform spin to charge conversion and as a charge-based
memory latch to encode and store the result of the spin measurement. The charge latching
capability is provided by an asymmetric tuning of the tunnel barriers. The spin to charge
conversion capability is provided by the strong resonant spin non-conserving inter-dot
tunneling explored in section 4.4.

In the reference experiment developed for this device, the primary dot was the left
dot and the secondary dot was the right dot. The reference experiment included state
preparation for the spin qubit in the left dot, projection of the prepared spin state using
spin to charge conversion, and finally latched charge readout of the right dot.

The relative tuning of the tunnel barriers in the DQD was critical. In order to ensure
the right dot could be used as a charge latch, it was isolated from the right lead to prevent
direct tunneling between the (0,0) and (0,1) charge configurations. The rightmost tunnel
barrier was therefore effectively pinched off, such that the tunneling rate from the right dot
to the right lead was ∼2 Hz as measured by the mean lifetime of the (0,1) state relaxing
in the (0,0) charge stability region. The off-resonant inter-dot inelastic tunneling rate
was tuned to approximately 500 kHz, while the on-resonance inter-dot tunneling matrix
elements were tuned to approximately 0.2 µeV each (spin-flipping and non-flipping) giving
a resonant tunneling rate of approximately 50 MHz. Finally, the tunneling rate from the
left dot to the left lead (1,0) to (0,0)) was approximately 100 MHz: two orders of magnitude
faster than the inelastic interdot tunneling rate, ensuring that this rate was dominant. This
ensured that if the (1,0) state was able to decay into either the (0,0) or (0,1) states, the
(0,0) decay pathway was more likely. Each of these quantities were calibrated at B=1 T.
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Figure 5.1: Sketch showing asymmetric tunnel barriers and single-hole states in the DQD.
The left barrier is effectively more transparent than the inter-dot barrier, such that if the
right dot (‘R’) is empty then the left dot (‘L’) can be emptied reliably by raising it above the
Fermi level in the left lead. In the positive detuning condition shown, the (0,0) and (0,1)
or ‘R’ charge states are meta-stable and the (1,0) or ‘L’ states tend to decay into (0,0) by
ejection of a hole to the lead. This preserves the charge state of the right dot. The inelastic
tunneling rates associated with each barrier are indicated above their respective barriers.

Figure 5.1 shows the effects of the asymmetric tunnel barriers.

These asymmetric tunnel barriers provided charge latching capability simply by visiting
positive detuning, where the right dot is effectively decoupled from the leads.

The spin information was encoded into the charge state of the right dot prior to latching
by attempting to allow the hole to tunnel into the right dot on the spin-flip resonance
depicted in figure 5.2 panel A. On this resonance, only the state |⇑L〉 can tunnel to the
state |⇓R〉 to change the charge state of the device. Thus, if this resonance is engaged for a
time and the right dot is later latched and found occupied, it implies the initial spin state
was |⇑L〉. This is the resonant spin to charge conversion enabled by spin non-conserving
tunneling.

These two components of the protocol, specifically charge latching and resonant spin to
charge conversion, were combined with spin initialization steps to form the 5 step pulse
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Figure 5.2: Energy diagram showing three important inter-dot resonances. A) When
∆ε = −EZ, tunneling matrix element tF resonantly couples ⇑L and ⇓R. B) When ∆ε = 0,
tunneling matrix element tN resonantly couples the L and R charge states without a spin
flip. C) When ∆ε = +EZ, tunneling matrix element tF resonantly couples ⇓L and ⇑R.

sequence shown in figure 5.3. The first two voltage steps empty the DQD to clear the latch
and ensure successive experiments are independently initialized with new spins. The third
step admits a hole with random spin from the lead. The fourth step performs spin to charge
conversion. The fifth step latches the chage state that now encodes the spin information.

The steps, in greater detail, are as follows. Consult figure 5.3, which identifies the points
of interest: ‘M’, ‘R’, and ‘T’ in the charge stability diagram.

1. In the (1,0) region at point ‘R’ in figure 5.3, the right dot was emptied into the left
dot to reset the memory latch.

2. In the (0,0) region at point ‘M’, the hole was ejected from the left dot leaving the
DQD empty in (0,0).

3. Once more visiting point ‘R’, a hole was admitted from the lead with random spin
and it was allowed to relax for a time TR.

4. At point ‘T’ near the charge transfer line, the excited spin state in the left dot was
allowed to resonantly hybridize with the dissimilar spin state of the right dot. An ‘up’
hole was allowed to freely tunnel between the dots while a ‘down’ hole was not.

5. Visiting point ‘M’ for an extended period latched the charge state readout by the
nearby charge detector.

68



Time

R (-2 mV)

T (0 mV)

M (16 mV)

V
L

A

10 s

10 s

TR

TT
(100 s)

16.66 ms

(1)

(2)

(3) (4)

(5)

-16 -12 -8 -4 0
VR(mV)

-16

-12

-8

-4

0

V
L(

m
V

)

B

(1,0)

(0,1) (0,0)

(1,1)
R

T

M

C (1) D (2)

E (3) F (4) G (5)

H (3) I (4) J (5)

Figure 5.3: A) Five step voltage pulse sequence applied cyclically to gate ‘L’ on the AC
input of the gating circuit. Time axis not to scale. Levels and timing are indicated. The
default value of TT is 100 ns unless otherwise indicated. B) Sketch of the charge stability
diagram showing which regions were visited in execution of the protocol. The indicated points
‘M’, ‘T’, and ‘R’ correspond to ‘Measurement’, ‘Transfer’, and ‘Relaxation’ respectively as
well as to the levels in panel A. C) At point ‘R’ a hole is collected in the left dot, possibly
from the right dot, and ejected. D) The (0,0) charge state is prepared by ejecting the hole
at point ‘M’. E,H) At ‘R’ a hole with random spin is allowed to tunnel into the left dot.
Either E) a down spin is randomly admitted or H) an up spin is admitted. F,I) At the
∆ε = −EZ resonance, point ‘T’, resonant tunneling permits only an up spin to tunnel to
the right. G,J) If the hole is in the left dot, it is ejected. In either case, the charge state is
then rendered meta-stable by remaining at positive detuning.
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The timings and relative detunings of each step in the reference experiment are summa-
rized in table 5.1.

Step Point Detuning (meV) Duration
1 R -0.882 10 µs
2 M 0 10 µs
3 R -0.882 TR (100 ns to 100µs)
4 T -0.784 100 ns
5 M 0 16 ms

Table 5.1: The five steps of the voltage pulse sequence and the duration and detuning at
each step used in the experiment.

With a 1 mV bias applied to the QPC1, the current through the QPC (IQPC) was
averaged over a single cycle and recorded. Because of the exceptionally long storage times
enabled by the charge latching technique, which further enabled long integration times
on the order of several miliseconds, the fidelity of the charge detection was not a limiting
factor in evaluating the success of the protocol.

The fidelity of the spin to charge conversion in step 4 will be analyzed in appendix
B. However, irrespective of the fidelity of the spin to charge conversion, the charge state
of the DQD manifests itself as a distinct level of current in the QPC charge sensor. If
the statistical charge outcome after the transfer step is sensitive to the spin input after
relaxation, then equation 5.1 predicts exponential decay of the average QPC current with
increasing TR according to:

IQPC(t = TR) = IQPC(t = 0)e−TR/T1 + IQPC(t→∞)(1− e−TR/T1) (5.2)

where the initial and final values of IQPC depend on the fidelity and visibility of the spin to
charge conversion, as well as the charge sensitivity of the QPC, but the parameter T1 does
not.

The protocol presented above depends sensitively on the position of the point ‘T’, where
spin-selective charge transfer projects the spin state onto the charge configuration of the
DQD in step 4. The protocol was performed as a function of the average detuning (∆ε)

1At this bias the QPC energy dissipation varies between 2 and 20 pW depending on the resistance of
the QPC, which could contribute to spin relaxation by (for example) populating the phonon bath. The
results presented in this chapter have been replicated under conditions of reduced QPC bias to verify that
the QPC itself is not a source of relevant phonons or thermal excitation, but these results have not yet
been published.
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Figure 5.4: A) Probability of finding the DQD in the state (0,1), obtained by sampling 1000
measurements, as function of the detuning ∆ε for two values of relaxation time TR: 100 ns
(blue) and 100 µs (red) at B = 1 T. B) Difference between the blue and red traces in panel
A.

and the relaxation time (TR) to determine the optimal setting for spin to charge conversion.
For each setting, the probability of a (0,1) charge outcome (P01) was calculated from 1000
measurement outcomes. Panel A of figure 5.4 shows the results for two extreme different
values of TR differing by three orders of magnitude. The probability of tunneling into (0,1)
dramatically differed for TR = 100 ns and TR = 100µs when ε ≈ −EZ or EZ > ε > 0.
The contrast in the outcome probability depends on ∆ε, and panel B shows that the
maximum contrast occurs near ∆ε = −EZ . Variation of TR was expected to impact the spin
superposition during step 4 according to equation 5.1. The variation in the charge state
outcome with decay of the measured spin at ∆ε = −EZ is evidence of the spin sensitivity
of the protocol.

To confirm that the QPC current depends on the relaxation time in step 3 as expected,
the detuning was fixed at the maximum of apparent sensitivity of the charge state outcome
to the spin state input: ∆ε = −EZ .

The duration of the relaxation step was varied logarithmically from TR = 100 ns to
100µs over 500 steps and at each value the average QPC current was measured. Each of
these single-shot QPC measurements implied one of two charge outcomes (0,0) or (0,1)
using a simple current threshold technique, whereby the current threshold dividing the
(0,0) outcomes and the (0,1) outcomes was simply the average of the 10 largest and 10
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smallest recorded current values in the data set. An example of this raw data and the
thresholding technique is shown in panel A of figure 5.5. For the purposes of extracting T1,
raw QPC current values were averaged using a Gaussian kernel. This procedure yielded
data sets such as panel B of figure 5.5. The averaged QPC current was then fit to equation
5.2, yielding T1.

This procedure was repeated to extract T1 over multiple values of B from B =0.5 T to
1.5 T. The results are plotted in panel C of figure 5.5. A good fit is obtained over this range
of B to T1 = 2.5 µsB−5.

As mentioned previously, the observed B−5 dependence of T1 on the applied field is a
hallmark of the phonon mediated Dresselhaus spin-orbit relaxation in the case of heavy
holes. Dresselhaus spin-orbit interactions are notably much weaker for electrons in GaAs,
and indeed the values of T1 obtained in this sample are four orders of magnitude shorter
than typical values obtained for electron spin qubits in similar GaAs quantum dots [92–95].
Over this range of magnetic fields, the spin relaxation is an order of magnitude faster
than hole spin relaxation observed in Silicon quantum dots [41, 43, 96]. This is expected
owing to the suppressed Dresselhaus spin-orbit interaction in the centro-symmetric Silicon
lattice. However, the measured relaxation time compares favourably to other reports of
spin relaxation in hole systems in GaAs, for example T1 = 53.7 µs at B = 0.5 T compared
to T1 = 312 ns under the same conditions in [44]. In that paper, the qubit under study
was not confirmed to be a pure heavy hole and indeed the degree of g-factor anisotropy
observed in section 4.4 was not observed in that case, suggesting that the more pronounced
heavy hole character of this qubit may be protective.
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Figure 5.5: A) Single-shot measurements of average QPC current as a function of TR at B
= 1.0 T and ε = −EZ . The horizontal line is used as the current threshold for discriminating
between (0,0) and (0,1) charge outcomes. B) Average IQPC obtained by Gaussian averaging
of 10 traces. The curve is a fit to equation 5.1 giving T1 = 3.1 µs. C) Gray circles represent
measurements of T1 obtained using data similar to the above for different values of B. The
lines correspond to fits to power laws of the form T1 = ABn, either with the power n as a
free fitting parameter (solid green) or fixed to n = −5 (dashed red).
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5.2 Conclusions

As with all control fields, the spin-orbit interaction is a path for decoherence and noise to
act on the qubit as well. Efforts to mitigate the relaxation of hole spins in GaAs quantum
dots system might focus on minimizing coupling to phonons by engineering of the phonon
density of states [97] or by optimization of the shape and orientation of the dot, as for
example in [98], where circular symmetry was shown to slow spin relaxation.

Two advantages of this protocol can be stated compared to conventional single spin
readout techniques that use a reference lead in lieu of a charge latch [84]. This technique
separates the spin to charge conversion step from the charge readout step, separating them
in time. The spin to charge conversion step is limited in speed only by the tunable inter-dot
tunnel coupling, and therefore fast spin projection can be achieved irrespective of the
integration time of the charge sensor. Additionally, the separation of fast spin to charge
conversion and relatively slow charge readout allows spin projection with greater temporal
resolution than may in principle be achieved with a typical charge sensor and a readout
protocol that relies on stochastic inelastic tunneling [84].
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Chapter 6

LZSM Interferometry of Single Hole
Tunneling

The spatial charge configuration of an electron in a quantum dot has been thoroughly
investigated [99–102] owing to the relative ease with which the charge degree of freedom of
a qubit can be manipulated and read out. The charge degree of freedom’s sensitivity to
electric fields is both a boon and a challenge due the presence of electrical noise, limiting
the coherence times of electrically driven charge qubits to a typical range from 100 ps to
10 ns.

Despite the sensitivity to noise, the charge degree of freedom can be an asset in charged
spin qubit systems. Hybridized spin/charge qubits have been investigated [103, 104] and
shown to possess longer coherence times than simple charge qubits by one or two orders
of magnitude. The readout of spin qubits can be achieved by converting spin information
into charge information, and the previous chapter is just one example of such spin to
charge conversion techniques. Normally, the magnetic moment of a free electron does not
directly couple to the electric field and must be manipulated through a magnetic field as in
[105–107]. In semiconductor quantum dots, however, electrical control of spin has has been
achieved using inhomogeneous magnetic fields [108–111]. In these techniques the spatial
charge distribution may be oscillated with an electric field to create an effective oscillating
magnetic field. This technique drives the spin through the charge degree of freedom without
entangling them.

Electrical control of spin qubits through the spin-orbit interaction has been demonstrated
for electrons in GaAs [112, 113] and InAs [114, 115] devices, though the SOI is weaker for
electrons in those systems than for holes in GaAs. Similar methods may be applicable for
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holes to achieve high speed spin qubit control and work towards that goal is in progress at
the time of writing.

In previous chapters, spin to charge conversion has been demonstrated using the unique
properties of holes. Moreover, spin flipping charge tunneling transitions have been discussed
in the context of transport measurements. In this chapter, the coherent driving of a
hole charge qubit and hybrid spin/charge qubit will be demonstrated and analyzed using
Landau Zener Stueckelberg Interferometry. This analysis will reveal the coherence of the
spin conserving and non-conserving transitions. Finally, simultaneous coherent driving of
multiple transitions in the double quantum dot will be demonstrated and discussed.

6.1 Introduction to Two Level LZSM Interferometry

The technique of LZSM interferometry [116], used for example to study the coherence
of charge qubits [101, 112, 117–121], involves the application of radio frequency electric
fields to modulate the energy separation of (at least) two energy levels, causing them to
cross repeatedly. During the transition through zero separation, some of the population
of each level will be coherently transfered to the other. Successive transitions may have
a cummulative (constructive) or negative (destructive) effect on the state of the system,
depending on the phase evolution of the system between transitions, leading to interference
patterns in the time-averaged state of the system.

An intuition for LZSM Interference can be obtained by examining the adiabatic impulse
model [116], which will be summarized below.

Suppose a two level system, for example a charge qubit in a double quantum dot with
levels (1,0) and (0,1), is driven through an anti-crossing by an electromagnetic field. The
Hamiltonian of such a system is:

H0 =

[
∆ε
2

t
t −∆ε

2

]
(6.1)

HAC(t) =

[
A sin(ωt)

2
0

0 −A sin(ωt)
2

]
(6.2)

H = H0 +HAC (6.3)

where the tunneling matrix element t parameterizes the gap between the two states at zero
detuning.
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The eigenstate energies of the time-independent part of the Hamiltonian (H0) are plotted
in figure 6.1, while the time-dependent energies of the instantaneous eigenstates of the full
Hamiltonian are plotted in figure 6.2. In the adiabatic impulse model, the evolution of
the system is assumed to be adiabatic far from the anticrossing and non-adiabatic at each
anti-crossing, where coherent Landau-Zener transitions occur between the two levels.

En
er

gy

A

(0,1)

(1,0)

(1,0)

(0,1)

Figure 6.1: Sketch of eigenstate energies of H0 vs. detuning. In LZSM interference
experiments, the two levels of the system are detuned off resonance and driven by a microwave
field of amplitude A. In this example, A is sufficiently large to repeatedly drive the system
through the avoided crossing, where the energy levels are inverted. Respectively, green and
red show where positive and negative phase accumulation occurs.

If |∆ε| < A the system will undergo two Landau-Zener transitions per cycle, whereas
away from the anti-crossings the system will accumulate alternating positive and negative
phases denoted θ0 and θ1 in figure 6.2. The four parts of the cycle are as follows:

• Adiabatic evolution of the detuning away from the crossing. A dynamical phase (θ0)
is accumulated.

• Landau Zener crossing of the two levels. The crossing is modeled as an arbitrary
unitary operator Û .

• Adiabatic evolution of the detuning away from the crossing. A dynamical phase (θ1)
is accumulated.
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• The second Landau Zener crossing. This crossing is modeled by the inverse operation
Û−1.

The total phase accumulated by the system in one cycle of the detuning oscillation is
∆θ = θ0 − θ1.

Successive coherent Landau-Zener transitions through the anti-crossings can cummu-
latively cause coherent oscillations between the (0,1) state to the (1,0) state over time.
However, alternating Landau-Zener transitions in this case proceed in opposing directions
and therefore invert one another, preventing a cummulative effect. This suppression is
lifted when the phase of the qubit is changed between transitions (θ0 and θ1 are not both
multiples of 2π). In the case that the accumulated phases are inverted between transitions,
constructive interference occurs instead.

In fact, constructive interference will occur when two conditions are met. First, if
∆θ = 2πN for any integer N , then the net rotation of the qubit over one cycle preserves
phase (or azimuthal angle in the Bloch sphere). A rotation preserving phase necessarily
maximizes the amplitude of the oscillation between the eigenstates ((0,1) and (1,0)). ∆θ
can be obtained by integration of the diagonal elements of the Hamiltonian (neglecting the
tunneling element t):

∆θ =
1

~

∫ 2π
ω

0

(A sin(ωt) + ∆ε)dt (6.4)

=
2π∆ε

~ω
(6.5)

This gives:

∆ε = N~ω (6.6)

The first condition can be satisfied and constructive interference fringes are expected at
evenly spaced intervals in ∆ε with period equal to the photon energy.

However, this first condition only guarantees the phase is inverted an even number
of times per cycle. In fact, constructive interference is maximized when each individual
transition is accompanied by an odd number of phase flips, or

θ0 = (2k + 1)π (6.7)
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for some integer k, whereas θ0 = 2kπ corresponds to destructive interference because the
second transition in every cycle becomes the inverse of the first. Since θ increases with A
for any given value of ∆ε, oscillatory behaviour is expected in each interference fringe with
increasing A.

Figure 6.3 shows a pattern of LZSM fringes for a simulated two level system with driving
field of frequency ω

2π
= 3.0 GHz amplitude A varied between 0 µV and 100 µV. As predicted,

fringes are visible evenly spaced by the photon energy ~ω, with a central fringe visible at
zero detuning and zero amplitude. Moreover, the amplitudes of the fringes oscillate with
increasing A and more fringes are visible at greater detuning as the amplitude increases.

To summarize:

• Constructive LZSM interference is possible near ∆ε ≈ N~ω.

• Constructive LZSM interference occurs when |∆ε| < A, the amplitude of the modula-
tion.

• Maximal constructive LZSM interference occurs when θ0 = (2k + 1)π and therefore
θ1 = (2l + 1)π for some integers k,l.

• Because θ0 and θ1 both vary with A, oscillations between constructive and destructive
interference are expected with A for each fringe.
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Alternate Dressed State Approach Suppose a quantum dot is described by a local
Hamiltonian H consisting of a time-independent component H0 and a sinusoidal time-
dependent component.

H(~r, t) = H0(~r, t) + A cos(ωt) (6.8)

Here the time-dependent term could reflect the oscillating electric potential created by
microwaves applied to an electrostatic gate, where the wavelength of the electric field is
much larger than the characteristic length scales of the potential itself. Because there is no
spatial dependence in the time-dependent perturbation, we can solve the time-dependent
Schrodinger equation exactly. Where ψ0 solves the time-independent H0, the following
ansatz can be shown to satisfy the full Schroginger equation:

ψ(~r, t) = ψ0(~r, t) exp

{
− i

~ω
A sin(ωt)

}
(6.9)

In detail:

i~
dψ(~r, t)

dt
= H0ψ(~r, t) + A cos(ωt)ψ(~r, t) (6.10)

i~
dψ0

dt
exp

{
− i

~ω
A sin(ωt)

}
+i~

(
− iω
~ω

)
ψ0A cos(ωt) exp

{
− i

~ω
A sin(ωt)

}
=H0ψ0

+A cos(ωt)ψ0 exp

{
− i

~ω
A sin(ωt)

}
(6.11)

Terms 1 and 3 of equation 6.11 are the Schrodinger equation as applied to H0

and ψ0, and therefore cancel. Terms 2 and 4 cancel directly. Therefore, ψ(~r, t) =
ψ0(~r, t) exp

{
− i

~ωA sin(ωt)
}

solves the Schrodinger equation.
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The time-dependent exponential term can be expressed as a power series in Bessel functions
using the identity:

exp

{
− i

~ω
A sin(ωt)

}
≡

∞∑
N=−∞

Jn

(
A

~ω

)
exp{−iNωt} (6.12)

ψ(~r, t) = ψ0(~r, t)
∞∑

N=−∞

Jn

(
A

~ω

)
exp{−iNωt} (6.13)

Under an oscillating spatially-independent perturbation, the eigenstates H0 therefore lose
the quality of a single scalar energy eigenvalue, instead becoming spread over a discrete
spectrum of quasi-energies EN = N~ω, where ω is the frequency of the driving perturbation
[122]. The amplitude of the N-th pseudo-level is the bessel function of the first kind of
order N with the ratio of the driving amplitude to the energy ~ω as its argument. This
function is oscillatory in its parameter, so we expect oscillations in the amplitude of each
pseudo-level with increasing driving amplitude.
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Figure 6.2: Energies (in arbitrary units) of the eigenstates for charge qubit driven by an
oscillating detuning for various average separations ∆ε relative to the detuning modulation
amplitude. The qubit accumulates alternating positive (θ0) and negative (θ1) phases between
crossings of the two energy levels. The phase accumulated depends on both the amplitude of
the oscillation and the average detuning.
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Figure 6.3: Time-averaged occupation of the excited state of a numerically simulated two
level system described by equation 6.3 initially in the ground state. Fringes appear for finite
A, equally spaced in ∆ε by multiples of the photon energy ~ω, and the amplitude of each
fringe oscillates with A. Dashed lines roughly mark example loci where each of the two
conditions for constructive LZSM interference are met. Maxima occur where both conditions
are met simultaneously. Here f = 3 GHz was chosen.
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6.2 Coherence in LZSM Interferometry

The discussion so far has involved an ideal decoherence-free model of LZSM interference.
The effect of phase decoherence in LZSM is to broaden and eventually extinguish the
fringes along the detuning axis. To see why this must be so, recall that the condition for
constructive interference in equation 6.1 arises because of the relationship between energy
and phase. The phase of the qubit must be preserved over each cycle of the driving field
to achieve maximum constructive interference. If the phase accumulation is probabilistic
with increasing uncertainty over time, the energy matching condition can be expected to
broaden and the maximum degree of constructive interference can be expected to decrease.

0 20 40 60 80 100
A ( eV)
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-2
0
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4
6

 (
)

A T2 = 200 ps

0 20 40 60 80 100
A ( eV)

B T2 = 100 ps

0 20 40 60 80 100
A ( eV)

C T2 = 50 ps

Figure 6.4: Time-averaged occupation of the excited state of a numerically simulated two level
system described by equation 6.3 with phase decoherence introduced. The phase coherence
lifetime T2 is varied as indicated. Here f = 3 GHz was chosen.

The numerical model that produced figure 6.3 can be extended to include phase
decoherence described by a mean phase lifetime T2. Results are plotted in figure 6.4,
where T2 is varied from 200 to 50 ps. The effect of reduced phase coherence is to broaden
the interference fringes, allowing the phase coherence lifetime to be extracted from a fit to
the model [65].

The following section will detail an experiment where the technique of LZSM inteferom-
etry was used to experimentally study the coherence of spin preserving and spin flipping
transitions of a hole in a double quantum dot using similar numerical simulation techniques.
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6.3 LZSM Interferometry of Inter-dot Transitions

The spin flipping charge tunneling transitions have been discussed and analyzed with
transport measurements in previous chapters. This section presents an LZSM inteferometry
experiment that independently demonstrates the coherence of these transitions and the
potential for coherent manipulation of hole charge qubits and spin qubits through the
charge degree of freedom.

A

(1,0) (0,1)t

B
tF

C

tN

tN

Figure 6.5: Energy level diagram showing experimental settings for LZSM interferometry.
The device was tuned such that the four lowest DQD states were within the bias window,
but the panels show particular configurations: A) ∆ε = EZ = 0, B) ∆ε = EZ > 0, and B)
EZ > ∆ε = 0.

The experiment was performed with the device configured in the single hole regime,
near the intersection of the (1,0) and (0,1) charge stability regions of the device. Figure
6.5 illustrates the tuning of the device for this experiment. A positive bias VDC = 2
mV was applied and the transport current was recorded as in the magnetospectroscopy
experiments of chapter 4. In addition, an oscillating voltage was applied to gate ‘L’ through
the high-frequency transmission line to induce an oscillating detuning:

∆ε(t) = V0sin(2πft) + ∆ε0 (6.14)

where V0 is the amplitude of the modulation. f is the frequency of the detuning modulation,
typically several GHz, and ∆ε0 is the static (time-independent) component of detuning
typically on the order of several hundred µeV.
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The relationship between V0 and the controllable microwave power output of the
microwave generator P depends on fine details of the microwave circuit; including the
frequency dependence of the transmission line impedance, the gate capacitance, and the
quantum dot shape and orientation. Figure 6.6 demonstrates that this frequency dependence
of V0 exists for fixed generator output power over the frequency range of interest. With no
magnetic field applied and for a fixed output power of P = −20 dBm, the output frequency
of the microwave generator was varied between 4 and 20 GHz while the detuning was swept
between -150 and 150 µeV. While the positions of the fringes vary linearly with the applied
frequency, as expected according to equation 6.1, their amplitudes vary considerably and
unpredictably in the GHz regime.

4 6 8 10 12 14 16 18
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I S
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A
)

Figure 6.6: LZSM spectra in transport current, obtained by sweeping ∆ε and varying the
driving frequency f .

Owing to the linearity of the microwave transmission circuit, for fixed frequency the
power can be varied to reveal an LZSM interference spectrum in the transport current.
Again with zero applied magnetic field, spectra were obtained by sweeping detuning and
varying the applied power at different discrete frequency values where the circuit exhibited
good transmission. The results are plotted in figure 6.7.

When little to no power is applied, a single resonant current line is visibile at ε = 0 as
observed in section 4.4. With increasing microwave power, the single resonance at zero field
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developed multiple side-resonances at positive and negative detunings equal to multiples
of the photon energy hf . In addition to the appearance of higher order resonances with
increasing power, the fringes showed oscillatory behaviour with applied power as expected.

The side-resonances can be explained by LZSM driving of the two level system consisting
of the (1,0) and (0,1) charge levels of the double quantum dot. With no microwave
field applied, the current is supressed by Coulomb blockade for ∆ε < 0 and limited to
inelastic relaxation from the (0,1) charge state to the (1,0) charge state for ∆ε < 0.
At ∆ε = 0, however, there is a resonant enhancement to the current because (0,1) and
(1,0) are hybridized and neither is a time-independent eigenstate of the system. When a
microwave field is applied, (0,1) and (1,0) become hybridized at discrete values of detuning
corresponding to the conditions for constructive LZSM interference. The transport current
is directly proportional to the amplitude of oscillation between (0,1) and (1,0) or the
time-averaged occupation of the (1,0) state when the system is initialized in (0,1).

Notably, the (1,0), (0,1) charge qubit is not a true two level system because the charge
states contain doubly degenerate spin sub-levels. Indeed, the degeneracy is broken and a
multi-level LZSM spectrum appears in transport when a magnetic field is applied.

Just as in section 4.4, a second resonant enhancement to the current appears at ε = EZ .
When microwaves are applied the signature of LZSM interference is revealed at both
resonances. Figure 6.8 shows LZSM fringes at B=1.34 T and B=2.1 T. As before, for
positive VDC , the ε = −EZ resonance cannot lift the blockade condition and thus is not
expected to be visible in transport.

Both figures 6.7 and 6.8 present numerically simulated transport through the double
quantum dot. The simulation models the lowest four energy levels of the DQD near the
(0,1)/(1,0) degeneracy, and is discussed in more detail in [64] and in appendix A. The state
space of simulation is spanned by four basis states: (⇑,0), (⇓,0), (0,⇑), and (0,⇓); where for
example (0,⇓) represents precisely one hole in the right dot in the lower spin state. In the
weak tunneling regime, the system can be described by the following Hamiltonian:

H =


∆ε
2

+ EZ
2

0 −tN −itF
0 ∆ε

2
− EZ

2
−itF −tN

−tN itF −∆ε
2

+ EZ
2

0
itF −tN 0 −∆ε

2
− EZ

2

 (6.15)

where tN and tF are the spin non-flipping and spin flipping tunneling matrix elements
respectively and EZ = g∗µBB is the Zeeman energy.
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Figure 6.7: A, C, E: Tunneling current through the quantum dot with microwave excitation
applied to gate L at various frequencies. Generated power is varied and photon assisted
tunneling fringes appear. B, D, F: Simulated tunneling current for the conditions given in
6.1.
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Figure 6.8: A, C: LZSM interferometry with a magnetic field applied. Tunneling current
is measured as detuning and microwave power are varied, at the indicated frequencies and
magnetic fields. B, D: Numerical simulation for the conditions given in table 6.2.

Figure 6.9 panel A is a diagram of the energies of the four steady states as a function of
detuning at zero field. In this case the spin eigenstates are always degenerate and there is
one anticrossing between the doubly-degenerate charge states, (1,0) and (0,1). In the zero
B limit the minimum energy splitting t is a combination of the off-diagonal Hamiltonian
parameters: t =

√
t2F + t2N .

Figure 6.9 panel B is a similar diagram showing the case of finite field where the Zeeman
term is larger than t. The spin degeneracy is lifted and there are four anti-crossings: two
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Figure 6.9: A) Diagram of eigenstate energies as a function of detuning at B = 0 with
tF = tN = 0.1. Upper and lower branches are spin-degenerate, and at extreme detuning
are composed of distinct and localized charge states in each dot. Axes indicate arbitrary
units. B) Similar diagram with B = 0.5. At extreme detuning eigenstates correspond to
well defined and localized spin states.

between states of similar spin (at ε = 0) and two more for dissimilar spin (at ε = ±EZ).

The single anti-crossing at zero field is qualitatively analogous to the expected case for
electrons in GaAs except that t would be dominated by tN in the electron case. Unlike
the electron case in GaAs, however, additional prominent anti-crossings appear at finite
detuning and originate from the spin-orbit interaction [37, 52, 64, 123, 124]. The anti-
crossings are individually parameterized by spin flipping and non-flipping tunneling matrix
elements, tF and tN respectively, as shown in figure 6.9. Panels C and D show the alignment
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Panel f (GHz) B (T) t (µeV) T1 (µs) T2 (ps)
B 15.9 0.0 0.375 0.8 60
D 6.7 0.0 0.375 0.8 75
E 4.0 0.0 0.375 0.8 90

Table 6.1: Parameter values used to reproduce the LZSM interference patterns in figure 6.7.

Panel f (GHz) B (T) tF (µeV) tN (µeV) T1S (µs) T1N (µs) T1F (µs) T2 (ps)
B 15.9 1.34 0.28 0.26 1 2.421 2.721 70
D 15.9 2.1 0.125 0.08 1 2.421 2.721 70

Table 6.2: Parameter values used to reproduce the LZSM interference patterns in figure 6.8.

of energy levels at ε = 0 and ε = EZ conditions for EZ >> t. These conditions support
resonant enhancements to charge transport, exactly as in section 4.4, whereas the ε = −EZ
case is energetically blockaded for positive VDC .

The LZSM fringes in figures 6.7 and 6.8 were reproduced with a numerical four-level
model based on the Hamiltonian in equation 6.3 and several incoherent processes. The
master equation for the model was:

∂

∂t
ρ(t) = − i

~
[H, ρ(t)] + Γ̂in + Γ̂out + Γ̂T2F + Γ̂T2N + Γ̂T1N + Γ̂T1F + Γ̂T1S (6.16)

where the operators Γ̂in and Γ̂out represent tunneling into the (0,1) and out of the (1,0)
states respectively, Γ̂T2N and Γ̂T2F respresents phase decoherence of the spin conserving and
non-conserving transitions, Γ̂T1N and Γ̂T1F represent spin non-flipping and flipping charge
relaxation, and finally Γ̂T1S is the relaxation of the spin excited state inside each quantum
dot. These relaxation pathways are depicted in figure 6.10. The simulation algorithm and
fitting procedure are presented in more detail elsewhere [64]. Table 6.1 presents the values
that best reproduced the LZSM spectra at zero field. At zero field the quasi two level
system is described by the single tunneling matrix parameter t and just two decoherence
parameters: T1 (relaxation) and T2 (dephasing). Table 6.2 presents the input values used at
finite field where the system is described by two matrix elements tF and tN . The dephasing
times T2F , T2N were found to be sufficiently similar that the same value (denoted T2) was
used for both.

In chapter 4.4 it was found that above B = 0.7 T the spin flipping and non-flipping
tunneling matrix elements were similar in magnitude, as was reflected in this experiment as
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Figure 6.10: Sketch of the incoherent processes and relaxation pathways included in the
double quantum dot model, all of which act simultaneously. A Tunneling to the left dot
from the left lead at a rate Γl when the double quantum dot is empty, as well as tunneling
from the right dot to the right lead at a rate Γr when the right dot is full. Spin relaxation
within each dot is parameterized by a mean lifetime T1S. B Inter-dot relaxation preserving
spin is parameterized by the mean lifetime T1N . C Inter-dot relaxation with a spin flip is
parameterized by a single mean lifetime T1F .
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well. Moreover, the phase coherence of the LZSM driven tunneling appears to be similarly
coherent for both processes, and thus the coherence of the spin/charge hybrid qubit driven
in this manner does not appear to be limited by spin decoherence. Both the spin flipping
and non-flipping processes are similarly strong and similarly coherent. In electron spin
qubits in GaAs, spin non-conserving tunneling has been observed assisted by the hyperfine
interaction [94]. However, this process is much slower (by at least an order of magnitude)
than non-spin-flip tunneling and is not a coherent process, and therefore cannot be used for
coherent spin manipulations. In this system, both the spin preserving and non-preserving
transitions can be coherently driven simultaneously, as will be demonstrated in the following
section.

6.4 Simultaneous Driving of Inter-Dot Transitions

In the previous section, it was demonstrated that spin flipping and non-flipping transitions
could be driven equally coherently with a microwave field applied to a gate. This section
will briefly discuss simultaneous driving of multiple transitions.

When driven by a microwave field, the positions of the LZSM fringes attributable to
the spin preserving transition are fixed as a function of ∆ε. However, the positions of the
fringes attributable to the spin flipping transitions are not fixed with magnetic field, and
indeed their positions vary linearly with the applied field.

Figure 6.11 shows the evolution of these fringes with field for high frequency, f = 19.56
GHz and microwave power P = 0 dBm. Panel A shows measured LZSM spectra in
transport, whereas panel B is a simulation. The current is visibly enhanced where the
fringes coincide, which occurs under two distinct conditions: first, there are the points where
EZ = (N + 1

2
)~ω and ∆ε = (M + 1

2
)∆ε for integers N , M . One such point is identified

as point 1 in panel B, and this condition corresponds to constructive interference of both
spin-flipping transitions as depicted in panel C. While normally only one of these transitions
produces fringes because only one lifts the blockade condition for the ground state (0,⇓),
the current is still limited by incoherent relaxation from (0,⇑) unless this state is also mixed
with one or both states from the (1,0) manifold. At points that satisfy these conditions,
both states are hybridized with the (1,0) state of opposite spin and a current enhancement
is observed. In this configuration the hole is resonantly driven between the two dots with a
spin flip.

The second class of coincidence occurs where EZ = N~ω and ∆ε = M~ω for some
integers M , N . One example is identified as point 2 in panel B, and these coincidences
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Simulation of the conditions in panel A. Two concidences of fringes are identified: points 1
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correspond to simultaneous driving of both spin-flipping transitions and both spin preserving
transitions. Again an enhancement in the current is expected and observed at point 2, even
though ~ω = M∆ε is itself sufficient to lift blockade. Here the enhancement is due to the
constructive interference of multiple transitions being driven simultaneously.

6.5 Conclusions

In this chapter, the technique of Landau Zener Stueckelberg Majorana Interferometry
was applied to transport through a double quantum dot in the single hole regime. From
the experiment, the coherence of the spin orbit induced spin flipping tunneling processes
between dots was estimated and found to be similar to that of the spin preserving tunneling
process in the same system (T2 ∼ 70 ps). In previous chapters, the large spin-flip tunneling
of holes in quantum dots was applied to develop a novel spin projection technique, but this
technique did not rely on the coherence of the tunneling process. In this chapter coherent
driving of singular or multiple transitions in the double quantum dot are possible in this
system owing to the spin-orbit enabled spin flip tunneling exibited by holes, potentially
enabling new functionalities and spin control.
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Chapter 7

Conclusions and Future Work

This work has presented transport and charge detection measurements of holes in double
quantum dot. From those measurements, several conclusions can be drawn.

First, resonant transport spectroscopy experiments presented in chapter 4 demonstrated
a dramatic anisotropy in the effective g-factor of the holes (with a maximum effective
g-factor of g∗ = 1.45), consistent with heavy holes. The confinement of heavy holes in
quantum dots has been suggested as a route to the suppression of an important source of
decoherence for spin qubits in GaAs: interactions with the spins of the lattice nuclei [125].
Further study of the phase coherence of single heavy hole spin qubits in this system is in
progress.

In addition to the anisotropic g-factor, a form of spin blockade was observed at small
fields for these heavy holes; the blockade was lifted by the strong spin orbit interaction for
larger z-directed magnetic fields. Other experimental studies have demonstrated pauli spin
blockade to be anisotropic in GaAs quantum dots in the many hole regime [44]. Whereas
the g-factor should be minimized for an applied field anywhere in the plane of the two-
dimensional hole gas, the effective spin-orbit field BSO defines a particular axis of interest
and it would be interesting to study single spin decoherence with full three-dimensional
control of the magnetic field.

In chapter 5, a novel spin projection technique was demonstrated as part of a study
of hole spin relaxation. This technique took advantage of the unique spin flip tunneling
of holes that enabled the resonant transport spectroscopy experiments. By projecting the
spin of a single hole onto meta-stable charge states of the double quantum dot, the spin
measurement result could be preserved at the device level long enough to extract with a
charge detector. It is the author’s opinion that latching spin to charge conversion techniques
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like this are both experimentally practical and are likely to play an important role in future
spin qubit technology.

The mean hole spin relaxation time T1 was measured in a z-directed magnetic field
(i.e. along the growth axis) and shown to vary by three orders of magnitude from 53.7 µs
at 0.5 T to 0.39µs at 1.5 T. The spin relaxation time was modeled by a power law in B,
showing good agreement with a T1 ∝ B−5 power law. This power law is indicative of the
microscopic origin of the spin relaxation in Dresselhaus spin orbit mediated interaction
with lattice vibrations (phonons), whereas if Rashba spin orbit interaction were dominant
it should produce a B−9 dependence. These T1 values compare favourably to other results
in the literature for hole spins, which can be expected because heavy hole pseudo-spin
relaxation is a third order process.

Finally, Landau Zener Stueckelberg Majorana interferometry was used to study the
coherence of inter-dot transitions. It was found that when driven by a microwave excitation,
the inter-dot charge transitions were coherent, with mean phase lifetimes of approximately
70 ps. These coherence lifetimes are typical for charge qubits, which are succeptible to noise
in local environmental electric field. Nonetheless, this result suggests that it is in principle
possible to coherently drive transitions between charge and spin states in hole quantum dots.
Future work would ideally strive to control the single spin qubit alone, without entangling
it with the charge state, which should extend the coherence time and enable measurement
of the phase decoherence time of a single spin qubit. One such study is in progress at the
time of writing.
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[77] P. Fallahi, S. T. Yılmaz, and A. Imamoğlu. “Measurement of a Heavy-Hole Hyperfine
Interaction in InGaAs Quantum Dots Using Resonance Fluorescence”. In: Physical
Review Letters 105.25 (Dec. 2010), p. 257402. doi: 10.1103/PhysRevLett.105.
257402.

[78] E. A. Chekhovich et al. “Direct Measurement of the Hole-Nuclear Spin Interaction
in Single InP/GaInP Quantum Dots Using Photoluminescence Spectroscopy”. In:
Physical Review Letters 106.2 (Jan. 2011), p. 027402. doi: 10.1103/PhysRevLett.
106.027402.

104

https://doi.org/10.1103/PhysRevB.94.121302
https://link.aps.org/doi/10.1103/PhysRevB.94.121302
https://link.aps.org/doi/10.1103/PhysRevB.94.121302
https://doi.org/10.1103/PhysRevLett.118.167701
https://doi.org/10.1038/nmat2107
https://doi.org/10.1038/nphoton.2011.262
https://doi.org/10.1038/nphoton.2011.262
https://doi.org/10.1002/pssb.200642348
https://doi.org/10.1103/PhysRevB.79.195440
https://doi.org/10.1103/PhysRevB.79.195440
https://doi.org/10.1103/PhysRevLett.109.237601
https://doi.org/10.1103/PhysRevB.78.155329
https://doi.org/10.1103/PhysRevLett.105.257402
https://doi.org/10.1103/PhysRevLett.105.257402
https://doi.org/10.1103/PhysRevLett.106.027402
https://doi.org/10.1103/PhysRevLett.106.027402


[79] S. G. Carter et al. “Strong hyperfine-induced modulation of an optically driven hole
spin in an InAs quantum dot”. In: Physical Review B 89.7 (Feb. 2014), p. 075316.
doi: 10.1103/PhysRevB.89.075316.

[80] Alexander V. Khaetskii and Yuli V. Nazarov. “Spin-flip transitions between Zeeman
sublevels in semiconductor quantum dots”. In: Physical Review B 64.12 (Sept. 2001),
p. 125316. doi: 10.1103/PhysRevB.64.125316.

[81] Vitaly N. Golovach, Alexander Khaetskii, and Daniel Loss. “Phonon-Induced Decay
of the Electron Spin in Quantum Dots”. In: Physical Review Letters 93.1 (June
2004), p. 016601. doi: 10.1103/PhysRevLett.93.016601.

[82] Toshimasa Fujisawa et al. “Allowed and forbidden transitions in artificial hydrogen
and helium atoms”. en. In: Nature 419.6904 (Sept. 2002), pp. 278–281. issn: 1476-
4687. doi: 10.1038/nature00976.

[83] Miro Kroutvar et al. “Optically programmable electron spin memory using semi-
conductor quantum dots”. en. In: Nature 432.7013 (Nov. 2004), pp. 81–84. issn:
1476-4687. doi: 10.1038/nature03008.

[84] J. M. Elzerman et al. “Single-shot read-out of an individual electron spin in a
quantum dot”. en. In: Nature 430.6998 (July 2004), pp. 431–435. issn: 1476-4687.
doi: 10.1038/nature02693.

[85] R. Hanson et al. “Single-Shot Readout of Electron Spin States in a Quantum Dot
Using Spin-Dependent Tunnel Rates”. In: Physical Review Letters 94.19 (May 2005),
p. 196802. doi: 10.1103/PhysRevLett.94.196802.

[86] T. Meunier et al. “Experimental Signature of Phonon-Mediated Spin Relaxation
in a Two-Electron Quantum Dot”. In: Physical Review Letters 98.12 (Mar. 2007),
p. 126601. doi: 10.1103/PhysRevLett.98.126601.

[87] I. Siddiqi et al. “Dispersive measurements of superconducting qubit coherence with
a fast latching readout”. In: Physical Review B 73.5 (Feb. 2006), p. 054510. doi:
10.1103/PhysRevB.73.054510.

[88] S. A. Studenikin et al. “Enhanced charge detection of spin qubit readout via an
intermediate state”. In: Applied Physics Letters 101.23 (Dec. 2012), p. 233101. issn:
0003-6951. doi: 10.1063/1.4749281.

[89] M. A. Fogarty et al. “Integrated silicon qubit platform with single-spin addressability,
exchange control and single-shot singlet-triplet readout”. En. In: Nature Communica-
tions 9.1 (Oct. 2018), p. 4370. issn: 2041-1723. doi: 10.1038/s41467-018-06039-x.

105

https://doi.org/10.1103/PhysRevB.89.075316
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevLett.93.016601
https://doi.org/10.1038/nature00976
https://doi.org/10.1038/nature03008
https://doi.org/10.1038/nature02693
https://doi.org/10.1103/PhysRevLett.94.196802
https://doi.org/10.1103/PhysRevLett.98.126601
https://doi.org/10.1103/PhysRevB.73.054510
https://doi.org/10.1063/1.4749281
https://doi.org/10.1038/s41467-018-06039-x


[90] Patrick Harvey-Collard et al. “High-Fidelity Single-Shot Readout for a Spin Qubit
via an Enhanced Latching Mechanism”. In: Physical Review X 8.2 (May 2018),
p. 021046. doi: 10.1103/PhysRevX.8.021046.

[91] C. B. Simmons et al. “Tunable Spin Loading and T1 of a Silicon Spin Qubit Measured
by Single-Shot Readout”. In: Physical Review Letters 106.15 (Apr. 2011), p. 156804.
doi: 10.1103/PhysRevLett.106.156804.

[92] S. Nadj-Perge et al. “Disentangling the effects of spin-orbit and hyperfine interactions
on spin blockade”. In: Physical Review B 81.20 (May 2010), p. 201305. doi: 10.
1103/PhysRevB.81.201305.

[93] John M. Nichol et al. “Quenching of dynamic nuclear polarization by spin–orbit
coupling in GaAs quantum dots”. en. In: Nature Communications 6 (July 2015),
p. 7682. issn: 2041-1723. doi: 10.1038/ncomms8682.

[94] T. Fujita et al. “Signatures of Hyperfine, Spin-Orbit, and Decoherence Effects in a
Pauli Spin Blockade”. In: Physical Review Letters 117.20 (Nov. 2016), p. 206802.
doi: 10.1103/PhysRevLett.117.206802.

[95] V. F. Maisi et al. “Spin-Orbit Coupling at the Level of a Single Electron”. In:
Physical Review Letters 116.13 (Mar. 2016), p. 136803. doi: 10.1103/PhysRevLett.
116.136803.

[96] Yongjie Hu et al. “Hole spin relaxation in Ge–Si core–shell nanowire qubits”. en. In:
Nature Nanotechnology 7.1 (Jan. 2012), pp. 47–50. issn: 1748-3395. doi: 10.1038/
nnano.2011.234.

[97] M. Wang, Y. Yin, and M. W. Wu. “Electric manipulation of electron spin relaxation
induced by confined phonons in nanowire-based double quantum dots”. In: Journal
of Applied Physics 109.10 (May 2011), p. 103713. issn: 0021-8979. doi: 10.1063/1.
3592340.

[98] S. Amasha et al. “Electrical Control of Spin Relaxation in a Quantum Dot”. In:
Physical Review Letters 100.4 (Jan. 2008), p. 046803. doi: 10.1103/PhysRevLett.
100.046803.

[99] T. Hayashi et al. “Coherent Manipulation of Electronic States in a Double Quantum
Dot”. In: Physical Review Letters 91.22 (Nov. 2003), p. 226804. doi: 10.1103/
PhysRevLett.91.226804.

[100] Alexander Croy and Ulf Saalmann. “Coherent manipulation of charge qubits in
double quantum dots”. en. In: New Journal of Physics 13.4 (2011), p. 043015. issn:
1367-2630. doi: 10.1088/1367-2630/13/4/043015.

106

https://doi.org/10.1103/PhysRevX.8.021046
https://doi.org/10.1103/PhysRevLett.106.156804
https://doi.org/10.1103/PhysRevB.81.201305
https://doi.org/10.1103/PhysRevB.81.201305
https://doi.org/10.1038/ncomms8682
https://doi.org/10.1103/PhysRevLett.117.206802
https://doi.org/10.1103/PhysRevLett.116.136803
https://doi.org/10.1103/PhysRevLett.116.136803
https://doi.org/10.1038/nnano.2011.234
https://doi.org/10.1038/nnano.2011.234
https://doi.org/10.1063/1.3592340
https://doi.org/10.1063/1.3592340
https://doi.org/10.1103/PhysRevLett.100.046803
https://doi.org/10.1103/PhysRevLett.100.046803
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1088/1367-2630/13/4/043015


[101] J. Stehlik et al. “Landau-Zener-Stuckelberg interferometry of a single electron charge
qubit”. In: Physical Review B 86.12 (Sept. 2012), p. 121303. doi: 10.1103/PhysRevB.
86.121303.

[102] Dohun Kim et al. “Microwave-driven coherent operation of a semiconductor quantum
dot charge qubit”. en. In: Nature Nanotechnology 10.3 (Mar. 2015), pp. 243–247.
issn: 1748-3395. doi: 10.1038/nnano.2014.336.

[103] Gang Cao et al. “Tunable Hybrid Qubit in a GaAs Double Quantum Dot”. In:
Physical Review Letters 116.8 (Feb. 2016), p. 086801. doi: 10.1103/PhysRevLett.
116.086801.

[104] Bao-Chuan Wang et al. “Tunable Hybrid Qubit in a Triple Quantum Dot”. In:
Physical Review Applied 8.6 (Dec. 2017), p. 064035. doi: 10.1103/PhysRevApplied.
8.064035.

[105] F. H. L. Koppens et al. “Driven coherent oscillations of a single electron spin in a
quantum dot”. eng. In: Nature 442.7104 (Aug. 2006), pp. 766–771. issn: 1476-4687.
doi: 10.1038/nature05065.

[106] F. H. L. Koppens, K. C. Nowack, and L. M. K. Vandersypen. “Spin Echo of a Single
Electron Spin in a Quantum Dot”. In: Physical Review Letters 100.23 (June 2008),
p. 236802. doi: 10.1103/PhysRevLett.100.236802.

[107] M. Veldhorst et al. “An addressable quantum dot qubit with fault-tolerant control-
fidelity”. en. In: Nature Nanotechnology 9.12 (Dec. 2014), pp. 981–985. issn: 1748-
3395. doi: 10.1038/nnano.2014.216.

[108] E. A. Laird et al. “A new mechanism of electric dipole spin resonance: hyperfine
coupling in quantum dots”. en. In: Semiconductor Science and Technology 24.6
(2009), p. 064004. issn: 0268-1242. doi: 10.1088/0268-1242/24/6/064004.

[109] Stefano Chesi et al. “Single-spin manipulation in a double quantum dot in the
field of a micromagnet”. In: Physical Review B 90.23 (Dec. 2014), p. 235311. doi:
10.1103/PhysRevB.90.235311.

[110] Jun Yoneda et al. “Robust micromagnet design for fast electrical manipulations
of single spins in quantum dots”. en. In: Applied Physics Express 8.8 (July 2015),
p. 084401. issn: 1882-0786. doi: 10.7567/APEX.8.084401.

[111] F. Forster et al. “Electric-dipole-induced spin resonance in a lateral double quantum
dot incorporating two single-domain nanomagnets”. In: Physical Review B 91.19
(May 2015), p. 195417. doi: 10.1103/PhysRevB.91.195417.

107

https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1103/PhysRevB.86.121303
https://doi.org/10.1038/nnano.2014.336
https://doi.org/10.1103/PhysRevLett.116.086801
https://doi.org/10.1103/PhysRevLett.116.086801
https://doi.org/10.1103/PhysRevApplied.8.064035
https://doi.org/10.1103/PhysRevApplied.8.064035
https://doi.org/10.1038/nature05065
https://doi.org/10.1103/PhysRevLett.100.236802
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1088/0268-1242/24/6/064004
https://doi.org/10.1103/PhysRevB.90.235311
https://doi.org/10.7567/APEX.8.084401
https://doi.org/10.1103/PhysRevB.91.195417


[112] L. R. Schreiber et al. “Coupling artificial molecular spin states by photon-assisted
tunnelling”. en. In: Nature Communications 2 (Nov. 2011), p. 556. issn: 2041-1723.
doi: 10.1038/ncomms1561.

[113] K. C. Nowack et al. “Coherent Control of a Single Electron Spin with Electric Fields”.
en. In: Science 318.5855 (Nov. 2007), pp. 1430–1433. issn: 0036-8075, 1095-9203.
doi: 10.1126/science.1148092.

[114] A. Pfund et al. “Spin-state mixing in InAs double quantum dots”. In: Physical
Review B 76.16 (Oct. 2007), p. 161308. doi: 10.1103/PhysRevB.76.161308.

[115] S. Nadj-Perge et al. “Spin–orbit qubit in a semiconductor nanowire”. en. In: Nature
468.7327 (Dec. 2010), pp. 1084–1087. issn: 1476-4687. doi: 10.1038/nature09682.

[116] S. N. Shevchenko, S. Ashhab, and Franco Nori. “Landau–Zener–Stückelberg inter-
ferometry”. In: Physics Reports 492.1 (July 2010), pp. 1–30. issn: 0370-1573. doi:
10.1016/j.physrep.2010.03.002.

[117] T. H. Oosterkamp et al. “Microwave spectroscopy of a quantum-dot molecule”. en.
In: Nature 395.6705 (Oct. 1998), pp. 873–876. issn: 1476-4687. doi: 10.1038/27617.

[118] J. R. Petta et al. “Manipulation of a Single Charge in a Double Quantum Dot”. In:
Physical Review Letters 93.18 (Oct. 2004), p. 186802. doi: 10.1103/PhysRevLett.
93.186802.

[119] F. R. Braakman et al. “Dynamics of spin-flip photon-assisted tunneling”. In: Physical
Review B 89.7 (Feb. 2014), p. 075417. doi: 10.1103/PhysRevB.89.075417.

[120] F. Forster et al. “Characterization of Qubit Dephasing by Landau-Zener-Stuckelberg-
Majorana Interferometry”. In: Physical Review Letters 112.11 (Mar. 2014), p. 116803.
doi: 10.1103/PhysRevLett.112.116803.

[121] M. Fernando Gonzalez-Zalba et al. “Gate-Sensing Coherent Charge Oscillations in a
Silicon Field-Effect Transistor”. In: Nano Letters 16.3 (Mar. 2016), pp. 1614–1619.
issn: 1530-6984. doi: 10.1021/acs.nanolett.5b04356.

[122] P. K. Tien and J. P. Gordon. “Multiphoton Process Observed in the Interaction
of Microwave Fields with the Tunneling between Superconductor Films”. In: Phys.
Rev. 129 (2 Jan. 1963), pp. 647–651. doi: 10 . 1103 / PhysRev . 129 . 647. url:
https://link.aps.org/doi/10.1103/PhysRev.129.647.

[123] P. Szumniak et al. “Spin-Orbit-Mediated Manipulation of Heavy-Hole Spin Qubits
in Gated Semiconductor Nanodevices”. In: Physical Review Letters 109.10 (Sept.
2012), p. 107201. doi: 10.1103/PhysRevLett.109.107201.

108

https://doi.org/10.1038/ncomms1561
https://doi.org/10.1126/science.1148092
https://doi.org/10.1103/PhysRevB.76.161308
https://doi.org/10.1038/nature09682
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1038/27617
https://doi.org/10.1103/PhysRevLett.93.186802
https://doi.org/10.1103/PhysRevLett.93.186802
https://doi.org/10.1103/PhysRevB.89.075417
https://doi.org/10.1103/PhysRevLett.112.116803
https://doi.org/10.1021/acs.nanolett.5b04356
https://doi.org/10.1103/PhysRev.129.647
https://link.aps.org/doi/10.1103/PhysRev.129.647
https://doi.org/10.1103/PhysRevLett.109.107201


[124] P. Szumniak et al. “All-electrical control of quantum gates for single heavy-hole
spin qubits”. In: Physical Review B 87.19 (May 2013), p. 195307. doi: 10.1103/
PhysRevB.87.195307.

[125] Jan Fischer and Daniel Loss. “Hybridization and Spin Decoherence in Heavy-Hole
Quantum Dots”. In: Phys. Rev. Lett. 105 (26 Dec. 2010), p. 266603. doi: 10.1103/
PhysRevLett.105.266603.

109

https://doi.org/10.1103/PhysRevB.87.195307
https://doi.org/10.1103/PhysRevB.87.195307
https://doi.org/10.1103/PhysRevLett.105.266603
https://doi.org/10.1103/PhysRevLett.105.266603


Appendix A

Single Hole Transport Model

The single hole transport phenomena in chapters 4 and 6 were modeled numerically using a
four-point Runge Kutta approach to integrate the following master equation:

∂

∂t
ρ(t) = − i

~
[H, ρ(t)] + (Γ̂in + Γ̂out + Γ̂T2F + Γ̂T2N + Γ̂T1N + Γ̂T1F + Γ̂T1S)ρ(t) (A.1)

where the operators Γ̂in and Γ̂out represent tunneling of a single hole into the dot from the
source or out of the dot to the drain. Γ̂T2N and Γ̂T2F model phase decoherence of the spin
conserving and non-conserving tunneling, and Γ̂T1N and Γ̂T1F represent inelastic inter-dot
charge tunneling via spin non-flipping and flipping pathways respectively. Finally, Γ̂T1S is
the relaxation of the spin excited state inside each quantum dot. These relaxation pathways
are depicted in figure A.2.

Single hole transport was modeled in the basis: (0,⇓), (0,⇑), (⇓, 0), (⇑, 0), where for
example (⇓,0) represents a single hole in the left dot in the lower spin state. This basis
spans the lowest four states of the double quantum dot near the (1,0)/(0,1) charge transfer
line. Note that ρ(t) is not a true density matrix, as the state (0,0) is omitted and the
trace of ρ(t) is not preserved in general. The probability of occupation of the (0,0) state is
P00(t) = 1− tr ρ(t).

The Hamiltonian of the system expressed in this basis is:

110



H =
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∆ε
2
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2
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 (A.2)

where tN and tF are the spin non-flipping and spin flipping tunneling matrix elements
respectively and EZ = g∗µBB is the Zeeman energy.

The Γ operators representing the incoherent transitions are as follows:

Γ̂in =


−Γoρ11 0 −1

2
Γoρ13 −1

2
Γoρ14
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 (A.3)

Γ̂out =


0 0 0 0
0 0 0 0
0 0 Γi(1− tr ρ) 0
0 0 0 Γi(1− tr ρ)

 (A.4)

with scalar fitting parameters Γo and Γi representing tunneling rates to the drain and from
the source respectively.

Γ̂T2F + Γ̂T2N =
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 (A.5)

with scalar fitting parameters T2F and T2N representing mean dephasing lifetimes for the
spin flipping and non-flipping transitions.

Γ̂T1S =
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− 1
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 (A.6)

with scalar fitting parameter T1s representing the mean spin relaxation lifetime within
either quantum dot.
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Finally, the inter-dot inelastic tunneling is more complex depending on which pathways
are energetically allowed. For |∆ε| > |EZ | (the alignment depicted in figure A.1 A-C) all
transitions occur in the same direction and:

Γ̂T1N+Γ̂T1F =
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(A.7)

for |∆ε| < |EZ | the transition between the higher spin state of the lower charge distribution
and the lower spin state of the higher charge distribution runs counter to the other transitions,
and instead:

Γ̂T1N+Γ̂T1F =
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(A.8)

The measured current through the dot is then given by the trace of the matrix Γ̂oρ0,
where ρ0 is the steady solution to the master equation:

< ISD >= − < q tr Γ̂oρ0 > (A.9)
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Figure A.1: Energy level diagrams showing different (simultaneously active) relaxation
and tunneling pathways included in the model, with the arrows indicating the source and
destination states for each operator for positive detuning. In A-C ∆ε > EZ and in D-F
∆ε > EZ. Note that one arrow is inverted between panels C and F.
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Figure A.2: Sketch of the incoherent processes and relaxation pathways included in the
double quantum dot model, all of which act simultaneously. A Tunneling to the left dot
from the left lead at a rate Γl when the double quantum dot is empty, as well as tunneling
from the right dot to the right lead at a rate Γr when the right dot is full. Spin relaxation
within each dot is parameterized by a mean lifetime T1S. B Inter-dot relaxation preserving
spin is parameterized by the mean lifetime T1N . C Inter-dot relaxation with a spin flip is
parameterized by a single mean lifetime T1F .

114



Appendix B

Fidelity and Visibility of Single Hole
Spin Projection and Readout

An assessment of the fidelity of the spin to charge conversion scheme used in chapter 5
requires knowledge of the input spin state. Where P⇑ and P⇓ are the respective proba-
bilities of injecting up and down holes, the injected hole initially occupies the incoherent
superposition:

|Ψ〉 = P⇑ |⇑〉〈⇑|+ P⇓ |⇓〉〈⇓| (B.1)

However, it has been shown that P⇑ is a function of relaxation time, following equation
5.1. If the initial P⇑(t = 0) can be estimated, then process tomography can be used to
estimate the probability of a correct outcome of spin to charge conversion for a particular
input spin.

To find the parameter P⇑(t = 0), an experiment was conducted using off-resonant charge
tunneling instead of the resonant scheme demonstrated in chapter 5. A random spin was
injected using a minimal injection time TR = 100 ns into the left dot of the DQD, as in
the main experiment, at B = 1 T. However, spin to charge conversion was executed at
ε = −EZ

2
instead of ε = −EZ . This produced the arrangement of levels depicted in panel B

of figure B.1.

Only three levels are relevant in this configuration: the initially populated states |L ⇑〉
and |L ⇓〉, as well as |R ⇓〉 in the right dot. Because no populated state ever crosses the
state |R ⇑〉, it is assumed not to be populated.
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Figure B.1: A) Sketch of the three-level decay model used to model the inelastic tunneling
during inelastic spin to charge conversion. B) The probability of outcome (0,1) from 1000
inelastic spin to charge conversion attempts as a function of the inelastic transfer time,
TT . A fit to the lambda decay model to the right gives TN = 3.58 µs, TF = 1.86 µs, and
P⇑ = 0.766. T1 = 3.3 µs was used as obtained in from chapter 5 for B = 1 T.

116



The transfer time TT , the duration of step 4 in figure 5.3, was varied. For each value of
TT , 1000 measurements were performed and a probability of outcome (0,1) was extracted:
P01. Panel A of figure B.1 shows the result. With increasing TT , an initial increase in P01 is
visible due to the finite inelastic charge tunneling time between |L ⇑〉 and |R ⇓〉. Moreover,
an initial population of state |R ⇓〉 is observed. An opportunity for Zener tunneling occurs
as |L⇐〉 crosses |R ⇓〉 between the injection and transfer steps. Indeed, for TR = 0, this
opportunity and this initial population both vanish.

P01 begins to decrease after 1 µs, due to inelastic tunneling from |R ⇓〉 into the left dot
state |L ⇓〉, which is the ground state. P01 was fitted to a simple model with three decay
rates: T1 (single spin relaxation), TF (spin flipping tunneling) and TN (non spin-flipping
tunneling). The fit yielded TF = 1.86 µs, TN = 3.58 µs, and P⇑ = 0.766.

Given this information it is possible to calculate P⇑ and P⇑ for any given relaxation
time TR using equation 5.1.

Let the probability of receiving charge outcome x from the spin to charge conversion
process given spin input y be P (x|y). For example, P (0, 1| ⇑) denotes the probability of
receiving charge outcome (0,1) with input spin ⇑.

Given the measured probability of each outcome shown in figure 5.4 panel A, and
considering the (now) known input spins to the spin to charge conversion step for TR = 100
ns and TR = 100 µs, the conditional probabilities can be calculated from the measured
charge state outcomes (P01(TR)) and predicted spin probability distribution (P⇑(TR)):

Solving:

P01 = P (0, 1| ⇑)P⇑(TR) + P (0, 1| ⇓)P⇓(TR) (B.2)

P00 = P (0, 0| ⇑)P⇑(TR) + P (0, 0| ⇓)P⇓(TR) (B.3)

(B.4)

for both TR = 100 ns and TR = 100 µs gives:

P (0, 1| ⇑) = 0.52 (B.5)

P (0, 1| ⇓) = 0.01 (B.6)

P (0, 0| ⇑) = 0.48 (B.7)

P (0, 0| ⇓) = 0.99 (B.8)
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The fidelity of the measurement for an input spin ⇑ is the probability of (correctly)
obtaining outcome (0,1). Similarly, the fidelity for a ⇓ input is the probability of correctly
obtaining outcome (0,0).

Therefore:

F⇑ = P (0, 1| ⇑) = 0.52 (B.9)

F⇓ = P (0, 1| ⇓) = 0.99 (B.10)

The fidelities for each spin species were: F⇑ = P (1| ⇑) = 0.52 and F⇓ = P (0| ⇓) = 0.99,
yielding a maximum visibility of V = F⇑ + F⇓ − 1 = 0.51 at B=1 T.

The dominant source of infidelity, and thus the limiting factor in the visibility, is likely
the pulse shape. By simply resting on the resonance at ε = −EZ for 100 ns, the left and
right dot states hybridize and the probability of occupuying each of them equalize with
time; hence, the probability of a net transfer from left to right is approximately 50%. An
adiabatic charge transfer from left to right would raise the visibility closer to ideal.
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