
Model-Based Bayesian Sparse
Sampling for Data Efficient Control

by

Timmy Rong Tian Tse

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Timmy Rong Tian Tse 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this work, we propose a novel Bayesian-inspired model-based policy search algorithm for
data efficient control. In contrast to other model-based approaches, our algorithm makes
use of approximate Gaussian processes in the form of random Fourier features for fast
online systems identification and computationally efficient posterior updates via rank one
Cholesky updates. Furthermore, fast and tractable posterior updates permits policy opti-
mization to leverage knowledge from posterior evolution tracking for a directed Bayesian
approach to the exploration-exploitation dilemma. To address the optimization formu-
lation involving belief monitoring as well as the potentiality of a loss surface with zero
gradients everywhere, we leverage a blackbox optimizer in the form of covariance matrix
adaptation evolution strategy (CMA-ES). We test our algorithm on four challenging con-
trol tasks and report the superior data efficiency as well as the exploration capabilities of
our model.

iii

Acknowledgements

First, I would like to thank my supervisor, Prof. Pascal Poupart and my co-supervisor,
Prof. Edith Law, both for their support, patience and guidance they have provided me
over the past years. In particular, I am grateful to Edith for accepting me as a student
and giving me the invaluable chance to find my vocation. Also, many thanks to Pascal for
taking me under his wing when, unacquainted at the time, I burst into his office proclaiming
that we ought to work together!

I would also like to thank my committee members, Prof. Yaoliang Yu and Prof. Peter
van Beek for taking the time to read, edit and analyze my thesis. Their feedback and
suggestions will provide me with new perspectives for future work.

I would like to thank my colleagues and friends for making my time at the university
fun and enjoyable.

Finally and of course the most, I thank my family for their love, support and patience.

iv

Dedication

To my mom, dad and sis.

v

Table of Contents

List of Figures viii

1 Introduction 1

1.1 Contributions . 2

1.2 Thesis Organization . 3

2 Background and Related Work 5

2.1 Markov Decision Processes . 5

2.2 Reinforcement Learning . 6

2.2.1 Model-free Reinforcement Learning 8

2.2.2 Model-based Reinforcement Learning 11

2.3 Gaussian Process Regression . 13

2.4 Covariance Matrix Adaptation Evolution Strategy 19

2.5 Related Work . 22

3 Proposed Model 26

3.1 System Identification . 27

3.2 Policy Search Optimization . 29

3.3 Bayesian Belief Tracking . 30

3.4 Algorithm Overview . 34

vi

4 Experiments and Results 36

4.1 Classical Control Problems . 36

4.1.1 Environments . 36

4.1.2 Systems Dynamics Regression . 38

4.1.3 Classic Continuous Control . 43

4.2 pybullet Environments . 43

4.3 Comparisons to PILCO and deepPILCO 49

5 Conclusion and Future Work 51

References 53

vii

List of Figures

2.1 Five functions sampled from a GP (a) prior and (b) posterior. The gray-
shaded regions represent three standard deviations from the mean. 17

2.2 A GP fitted to a training set of 100 pairs of scalar observations where xi ∼
unif(−4, 4) and yi = sin(5xi)

xi
+ εi where εi ∼ N (0, 0.04) for all i = 0, . . . , 99.

The gray-shaded regions represent three standard deviations from the mean. 18

3.1 An information-state transition diagram for the drug allocation problem
(adopted from [12]). 32

4.1 A screenshot of the Pendulum-v0 environment. 37

4.2 A screenshot of the MountainCarContinuous-v0 environment. 38

4.3 A comparison between the true and predicted st+1 given an input sequence
{(st, at)}199

t=0. The blue and purple curves are the true and predicted curves
respectively. The predicted curve is accompanied by green error bars which
represent one standard deviation of uncertainty. The training set consists
of three epochs of data (600 data points). 39

4.4 A comparison between the true trajectory and 50 samples of the predicted
trajectories given a seed state s0 and action sequence {at}199

t=0. The blue and
red curves are the true and predicted curves, respectively. The training set
consists of three epochs of data (600 data points). 39

4.5 A comparison between the true and predicted rewards given an input se-
quence {(st, at)}199

t=0. The blue and purple curves are the true and predicted,
respectively. The predicted curve is accompanied by green error bars which
represent one standard deviation of uncertainty. Training set consists of
three epochs of data (600 data points). 40

viii

4.6 A comparison between the true and predicted si+1 given an input sequence
{(st, at)}998

t=0. The blue and purple curves are the true and predicted curves
respectively. The predicted curve is accompanied by green error bars that
represent one standard deviation of uncertainty. The training set consists
of on epoch of data (999 data points). 41

4.7 A comparison between the true trajectory and 50 samples of the predicted
trajectories given a seed state s0 and action sequence {at}998

t=0. The blue and
red curves are the true and predicted, respectively. Training set consists of
one epoch of data (999 data points). 41

4.8 A comparison between the true and predicted rewards given an input se-
quence {(si, at)}998

t=0. The blue and purple curves are the true and predicted,
respectively. The predicted curve is accompanied by green error bars which
represent one standard deviation of uncertainty. Training set consists of one
epoch of data (999 data points). 42

4.9 A comparison of learning curves between our model and DDPG for (a)
Pendulum-v0 and (b) MountainCarContinuous-v0. 44

4.10 A comparison between the true and predicted st+1 given an input sequence
{(st, at)}199

t=0. The blue and purple curves are the true and predicted curves
respectively. The predicted curve is accompanied by green error bars which
represent one standard deviation of uncertainty. 45

4.11 A comparison between the true trajectory and 50 samples of the predicted
trajectories given a seed state s0 and action sequence {at}199

t=0. The blue and
red curves are the true and predicted curves, respectively. 45

4.12 Screenshot of (a) HumanoidBulletEnv-v0, (b) AntBulletEnv-v0, and (c)
HalfCheetahBulletEnv-v0. 45

4.13 Screenshot of (a) InvertedPendulumBulletEnv-v0, and (b) InvertedDoublePendulumBulletEnv-v0. 47

4.14 A comparison between my model configured with multi-output regression
and DDPG for (a) InvertedPendulumBulletEnv-v0 and (b) InvertedDoublePendulumBulletEnv-v0. 47

4.15 A comparison of learning curves between our model, DDPG, PILCO and
deepPILCO for (a) Pendulum-v0 and (b) MountainCarContinuous-v0. . . 50

ix

Chapter 1

Introduction

One eventual goal of Artificial Intelligence is to get agents to autonomously make sequential
decisions in an environment to realize a given task. A mathematical formulation between
the interaction of an agent and its environment known as Reinforcement Learning (RL)
provides a rich and attractive framework to approach this problem. The beginnings of
Reinforcement Learning date back to the ideas of Bellman in the 1950s, but there has been
a resurgence of interest in these ideas in recent times due to the recent success of Deep
Learning, allowing a re-visitation of old ideas with new tools and more powerful hardware.

Despite the recent success, however, there remains problems in RL and optimal control
for which a solution that is theoretically satisfying and computationally feasible would
be desirable. One such problem, for example, concerns the sample inefficiency of current
algorithms wherein these algorithms require an exorbitant number of interactions with the
environment before learning a successful policy, rendering them impractical for real-world
applications (e.g., mechanical systems such as robots that are prone to wear and tear).

In this thesis, we address the problem of sample efficiency along with the (related)
problem of the so-called exploration exploitation dilemma (related in that improving the
latter will also improve the former). This term describes the dilemma faced by an agent
interacting with an environment wherein the agent must balance the selection of actions
that either 1) explore by revealing reachable states that were previously unknown or 2)
exploit by using its current knowledge of the environment to maximize the collected re-
wards. With too much exploration the agent will collect a suboptimal amount of rewards
and with too much exploitation the agent may never reach a (near) optimal strategy; hence
the dilemma and the need to aptly balance exploration and exploitation.

An elegant and theoretically justified approach in dealing with the exploration-exploitation

1

dilemma involves a technique known as model-based Bayesian Reinforcement Learning
(BRL). In this formulation, we model both the transition and reward function with a
probabilistic model and update the model upon new evidence based on Bayes’ rule. Learn-
ing an optimal policy then involves unrolling the model into the future and searching for
a set of actions that maximize the cumulative rewards of the trajectory. The presence of a
distribution over world models allows the agent to “know what it does and does not know”
rendering it capable of selecting actions that naturally balance exploration-exploitation by
considering the statistical averages of all possible world models.

Historically, much of the work on BRL involved experiments that were limited to toy
grid-world like problems which had discrete states and actions. In this thesis, we extend
the BRL formulation to tasks that resemble more real-world control problems, that is,
problems that involve continuous states and actions. We first introduce an approximate
Gaussian process (GP) regression model in the form of Bayesian linear regression (BLR)
with random Fourier features (RFFs) for learning the system and reward dynamics of an
environment. This formulation allows us to approximately leverage the regression powers
of Bayesian nonparametrics while retaining the benefits of fast online learning due to the
fact that covarianace matrices possess constant space complexity in primal space. The
value of a policy is given by the expected cumulative discounted rewards obtained via the
unrolled trajectory following said policy with respect to the learned reward and system
dynamics model. In accordance to the BRL formulation, we maintain an information
state corresponding to the covariance and cross-covariance matrices of the system and
reward dynamics model and during policy optimization, we track the posterior of the
information state for all hypothetical experience tuples during trajectory rolllouts, thereby
allowing the controller to optimize for a policy that balances exploration-exploitation via
the Bayes-optimal formulation. Note that the repeated computation of the posterior during
optimization further motivates a primal space formulation of the regression model. Finally,
our optimization objective calls for a black-box optimizer and to this end, we make use of
an algorithm call covariance matrix adaptation evolution strategy (CMA-ES).

1.1 Contributions

The main contribution of this work is that we extend the formulation of model-based BRL
with its principled approach to the exploration-exploitation dilemma under the Bayes-
optimality to Markov decision processes (MDPs) with continuous states and actions. We
draw inspiration from pioneering ideas and leverage modern software tools to explore an
algorithm that is not only data-efficient and theoretically-sound, but also scales to problem

2

domains beyond just grid-world. Specially, we contribute:

• A novel probabilistic non-linear regression method that allows for fast online learn-
ing as well as an efficient posterior updates via rank-one Cholesky updates. The
regression method approximates a GP but maintains a form that is fast enough for
posterior tracking during policy optimization in finding a policy that addresses the
exploration-exploitation dilemma under the BRL formulation.

• An approximation to the loss function that reflects the Bayes-optimality condition
under a continuous state and continuous action MDP. In addition, we propose a
Monte Carlo sampling procedure in conjunction with a black-box optimizer to effec-
tively solve for a policy.

• A set of experiments that demonstrate the data-efficiency of our model-based method
compared to a model-free baseline as well as the ability of our model to perform few-
shot learning on a set of classical control tasks. As well, we test our algorithm on more
complex tasks and observe how well our model-based algorithm scales to problems
with high-dimensional state and/or action spaces.

1.2 Thesis Organization

The remainder of the thesis is organized as follows:

• Chapter two presents the background on MDPs as well as algorithms for model-
free RL including REINFORCE, Q-learning, SARSA and actor-critic methods and
model-based reinforcement learning such as the Dyna architecture and the model
predictive control (MPC) algorithm. In addition, we review GP regression as well as
the CMA-ES algorithm as they are major components of this work.

• Chapter three describes the proposed algorithm which is the major focus of this
thesis. We elucidate the two major components of the work, that is, regression of
the system and reward dynamics and policy search. In addition, we discuss the
design decisions of the algorithm including approximations that make the algorithm
computationally tractable and addenda that allow the method to reflect the theory
posited by BRL.

• Chapter four describes the set of experiments which were conducted to test the
performance and data-efficiency of our method. The first set of experiments compares

3

our method to a model-free baseline on a set of toy control tasks, the second set of
experiments scales the former set of experiments to higher dimensional control tasks
and finally, the last set of experiments compares our method to the PILCO and
deepPILCO algorithms [10, 27].

• Chapter five concludes the thesis by summarizing the contributions and outlining
directions for future work.

4

Chapter 2

Background and Related Work

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical model that formalizes planning and
decision making in uncertain environments. A MDP is defined by the tuple (S,A, P,R, γ),
where

• s ∈ S is the finite set of states;

• a ∈ A is the finite set of actions;

• P = Pr(s′|s, a) is the probability of transitioning to state s′ when taking action a in
state s;

• R = Pr(r|s, a) is the probability of obtaining reward r when taking action a in state
s;

• γ ∈ [0, 1] is the discount factor, which is a scalar that represents the amount in which
immediate rewards are valued in comparison to future rewards.

The events of a MDP proceed as follows: in the beginning, the current state of the world
is set to some initial state s0 drawn from an initial state distribution P0. Upon the agent
executing action a, the state of the world is updated to the next state s1 obtained by
sampling from the distribution P (s1|s0, a). The environment emits rewards r0 obtained
by sampling the distribution P (r0|s0, a). Given a time horizon T , the task of solving a

5

MDP involves finding a sequence of actions a0, a1, ..., aT−1 so that the expected sum of the
discounted rewards, that is,

E[r0 + γr1 + · · ·+ γT−1rT−1]

is maximized. We see that the discount factor determines how quickly the value of the
future rewards are depreciated. For example, consider the extreme, undiscounted case
where γ = 1 and thus immediate and all future rewards are weighted equally. At the other
extreme, γ = 0 and hence, only immediate rewards are considered.

Roughly, in the case where the reward and next state distributions are not known by
the agent, then the problem formulation becomes what is known as reinforcement learning.

2.2 Reinforcement Learning

Reinforcement learning (RL) enables an agent with a goal to learn by continuously inter-
acting with an environment. At each time step, the agent exists in a given state within the
environment and the agent executes an action in the environment where the environment
provides feedback to the agent with the next state and reward. The goal of the agent is to
find a policy π : S → A such that the expected cumulative rewards E[

∑T
t=0 γ

trt|at = π(st)]
in the lifetime T of the agent is maximized. More formally, the state-action quality function
describes the expected total rewards received by an agent in state s taking action a and
then following policy π thereafter and is defined

Qπ(s, a) = E[r0 +
T∑
t=1

γtrt|s0 = s, a0 = a, at = π(st)]. (2.1)

One popular algorithm for obtaining the optimal state-action quality function Q∗ is Q-
iteration where the Q(st, at) is updated using the observed reward and a bootstrapped
estimate of the next value:

Q(st, at)← (1− α)Q(st, at) + α[rt + max
a
Q(st+1, a)] (2.2)

where α ∈ (0, 1] is the learning rate. After the algorithm has converged, the optimal policy
π∗ can be simply obtained from Q∗ by picking the action that yields the highest value, i.e.,
π∗ = arg max

a
Q∗(s, a).

One of the fundamental challenges faced by a RL agent, known as the exploration-
exploitation dilemma, concerns the predicament faced by an agent wherein it must balance

6

the selection of actions that either explore the environment so as to discover regions of the
state space that may yield higher rewards or exploit the environment by reaching states
known to yield high rewards. One can imagine that the agent must find a good balance
between the two as exploring too much and exploiting too little would hamper the total
rewards collected by the agent, but the converse might also result in the agent getting stuck
in a suboptimal policy. Some of the most popular algorithms used to tackle this dilemma
falls under a category known as undirected exploration. These algorithms are “undirected”
because they do not take into the account the agent’s current state of knowledge. In other
words, they are heuristic algorithms that simply ensure that enough (blind) exploration
will be performed to guarantee convergence to an optimal policy. An example of such
heuristics is the classic ε-greedy algorithm, which selects actions uniformly at random once
in a while and otherwise exploits by choosing a greedy action with respect to the agent’s
current estimates. More formally, assuming a continuous action space, we may define the
the choice of action to select aselect for a given time step t as

aselect =

{
aunif ∼ unif(amin, amax) if p < ε

agreedy otherwise
,

where p ∼ unif(0, 1), ε ∈ [0, 1] and agreedy is the current best action predicted by the
agent. We may fix ε to a constant but perhaps a more judicious choice would involve, for
example, setting ε = εmin + (εmax − εmin)e−τt where 0 ≤ εmin < εmax ≤ 1 and τ is the decay
rate, as this would allow ε to decrease exponentially over time, following the intuition that
during the early stages of the algorithm, the agent would have little information about the
environment and hence, ought to explore. Conversely, as t grows larger, the agent would
have presumably explored much of the state space by then and thus should prioritize
selecting actions that exploit.

In contrast, directed exploration is a term used to describe algorithms that do in fact,
take into consideration the agent’s current knowledge state in addressing the exploration-
exploitation dilemma. In other words, these methods explicitly model the unknown distri-
butions P (s′|s, a) and/or P (r|s, a, s′) and the choice of action will depend on the posterior
evolution of these distributions for a given planning trajectory. One example of such algo-
rithm that falls under this category involves performing forward search in a Bayes-Adaptive
MDPs (BAMDPs) [12]. BAMDPs can roughly be thought of augmenting MDPs the state
space S with the posterior parameters of the transition function Φ, resulting in a joint
space S+ = S × Φ, which we call the hyper-state. This joint space models not only the
physical state but also the information state of the agent, allowing it to track its belief
of the system dynamics as it performs forward search planning. In more details, consider

7

Bellman’s equation in classic RL

V (s) = max
a

∑
s′

P (s′|s, a)(R(s, a, s′) + γV (s′))

which gives us a mathematical condition to be satisfied for a policy to be optimal. In
the case of BAMDPs, we augment this equation with the agent’s belief state φ of the
environment’s transition dynamics:

V (s, φ) = max
a

∑
s′

P (s′|s, φ, a)(R(s, a, s′) + γV (s′, φs,a,s′))

where φs,a,s′ is the posterior belief after observing transition tuple (s, a, s′). The belief
φ tells us what parts of the model are not well known and therefore worth exploring.
Under this framework, the exploration-exploitation dilemma gets lumped under a single
objective of maximizing the expected total rewards in a given time horizon. If we can model
these equations with high fidelity, then in theory, we can achieve an optimal exploration-
exploitation trade-off known as Bayes-optimality condition.

The two aforementioned methods of exploration, directed and undirected, respectively
do and do not require a model of the system dynamics and we call the former class of algo-
rithms model-based and the latter model-free. Extending beyond exploration-exploitation,
it turns out almost all algorithms in RL can be dichotomically categorized to either side
and we take some time to discuss their similarities and differences as well as highlight a
few example algorithms from both classes.

2.2.1 Model-free Reinforcement Learning

As suggested by the name, model-free algorithms are methods that do not model explic-
itly the state dynamics, but instead learn policies and/or values directly from the tuples
(s, a, r, s′). There is a general consensus that model-free algorithms tend to have poor
sample efficiency in the sense that relative to more sample efficient algorithms, model-free
methods require more training tuples, hence more interactions with the environment, to
learn a policy of the same performance. This bottleneck renders model-free algorithms
inapplicable to, for example, low-data tasks such as the learning from scratch of real-world
robots as these systems are constrained from repetitively performing actions for data gath-
ering due to the subjection of wear and tear to physical systems. An advantage, however,
is that these methods are generally more computationally efficient, resulting in procedures
with shorter run-time duration than algorithms of a different class. Another benefit is that

8

model-free algorithms are generally simpler as a consequence of eschewing the need to fit
model dynamics in favor of directly learning the policies and/or values.

The Q-learning update 2.6 discussed earlier is an example of a model-free algorithm
since it directly updates its state-value estimation using its data tuples. It is also an
instance of what is known as a off-policy technique in that it learns a value function that is
based on a greedy policy, due to the presence of the max operator, when in fact, the agent
does not necessarily follow a greedy policy. An example of a model-free on-policy algorithm
is the the SARSA algorithm, standing for state-action-reward-state-action, obtained simply
via replacing the max operation of Q-learning with the Q-value for the subsequent state st+1

and the subsequent action at+1 that the agent would take in st+1 (and hence, on-policy):

Q(st, at)← (1− α)Q(st, at) + α[rt +Q(st+1, at+1)]. (2.3)

Both Q-learning and SARSA are action-value methods in that they implicitly derive a
policy after first learning a state-action value function, in contrast to policy-based methods
that directly learn a policy mapping π : s→ a from state to action.

A popular policy-based method is the REINFORCE algorithm, derived from the idea
that one can directly optimize the parameters of the policy via gradient descent to increase
the probability of selecting actions towards a trajectory of high rewards under expectation.
Formally, we define a class of parameterized policies Π = {θπ, θ ∈ Rm} and for each policy
we define its value J(θ) and the task is to find the optimal policy θ∗ = arg maxθ J(θ).
Mathematically, we write

J(θ) = E
[∑
t≥0

γt|πθ
]

= Eτ∼p(τ |θ)[R(τ)]

=

∫
τ

R(τ)p(τ |θ)dτ,

(2.4)

where r(τ) is the reward of the trajectory τ = {(st, at, rt)}T−1
t=0 . Taking the derivative of

J(θ) with respect to θ, we obtain

∇θJ(θ) =

∫
τ

R(τ)∇θp(τ |θ)dτ

=

∫
τ

R(τ)p(τ |θ)∇θp(τ |θ)
p(τ |θ)

dτ

=

∫
τ

R(τ)p(τ |θ)∇θ log p(τ |θ)dτ

= Eτ∼p(τ |θ)[R(τ)∇θ log p(τ |θ)dτ],

(2.5)

9

which is a value that can be estimated using Monte Carlo methods. Furthermore, we have

p(τ |θ) =
∏
t≥0

p(st+1|st, at)πθ(at|st),

thus
log p(τ |θ) =

∑
t≥0

log p(st+1|st, at) + log πθ(at|st),

and differentiating, we obtain

∇ log p(τ |θ) =
∑
t≥0

∇ log πθ(at|st),

noting that the resulting gradient does not depend on the transition probabilities. Given
a sample trajectory τ , the gradient can thus be estimated as

∇J(θ) ≈
∑
t≥0

Rt(τ)∇ log πθ(at|st)

and applied via the learning update θ ← θ + α∇J(θ). Rt(τ) =
∑T−1

k=t γ
k−trk is the Monte

Carlo estimate of the discounted sum of rewards from time t to T − 1.

Rather than just learning the action-values or just the policy, it is possible to learn
both, and indeed a class of model-free methods by the name of actor-critic algorithms do
just that. The name derives from the notion that the “actor” maps states to actions and
the “critic” maps state-action pairs to values, critiquing the performance of the actor. As
a simple example, consider the scenario where we separately parameterize an action-value
Qθ(·, ·) and policy πϑ(·) mapping with parameters θ and ϑ respectively. One may use
any action-value method to train Qθ(·, ·) (e.g., Q-learning or SARSA) and as a concrete
example consider the use of an one step temporal difference (TD) Q-learning algorithm,
with corresponding squared error loss

L(θ) = (rt + γmax
a′

Qθ(st+1, a
′)−Qθ(st, at))

2. (2.6)

This error is referred to as one step TD because it unrolls Bellman’s equation one step into
the future, but in general any n step TD loss can be constructed by unrolling Bellman’s
equation n steps into the future. In addition, Q-iteration can roughly be understood as the
term ascribed to the tabular case of Q-learning while 2.6 is appropriate for a parameterized
class of action-value functions. The policy is trained using a REINFORCE-like algorithm

10

wherein Monte Carlo estimate is replaced by the learned action-value function, resulting
in a gradient estimator of the form

∇J(ϑ) ≈
∑
t≥0

Qθ(st, at)∇ log πϑ(at|st). (2.7)

Learning is performed by alternating between minimizing loss 2.6 and applying gradient
update 2.7.

2.2.2 Model-based Reinforcement Learning

As suggested by the name, model-based is the opposite of model-free wherein a part of
the algorithm involves learning the system dynamics P (s′|s, a) of the MDP. Model-based
algorithms also possess many properties that are converse to model-free such as the notion
that model-based methods have better sample efficiency, but are less computationally
efficient. Likewise, this bottleneck renders model-based algorithms inapplicable to, for
example, tasks that require a short response time such as robotic systems with real-time
response. I give two examples below to better illustrate the algorithms belonging to this
class.

A classical model-based method is the Dyna architecture [1], a framework inspired by
the commonsense idea that planning is ‘trying things in your head,’ using an internal
model of the world. In more technical details, Dyna, as with standard RL agents, uses
reinforcements from real experience (i.e., (s, a, r, s′) received from the environment), but
in addition, the framework also uses this experience to construct what the author calls
an action model that can be used to predict the results of actions. Unique to Dyna, this
action model is used to generate hypothetical model-generated experiences based on which
reinforcement are then used to improve the policy; this in effect is a planning process.
Experiments in grid-world domains involving simple navigation tasks have demonstrated
that the more hypothetical experiences using the world model (i.e., the more “planning
steps” per interaction with the MDP), the faster an optimal path was found [42].

In spite of the theoretical appeal of Dyna, the success of the framework has mainly been
most pronounced in grid-world toy tasks. When scaling the problem to higher dimensions
and/or real-world control, a classical model-based technique by the name of model pre-
dictive control (MPC) has been shown to be fruitful. The method was derived from the
field of classical control theory and had initial applications in chemical plants and oil re-
fineries [15] and since then, it has found application in control problems in a diverse set

11

of fields ranging from power electronics [16] to wind turbines [26], planetary rovers [6] and
agriculture [11]. Consider the generic constrained optimization problem

minimize
a0,...,aT−1

J =
T−1∑
t=0

`(st, at)

subject to st+1 = f(st, at, et), t = 0, . . . , T − 1,

(2.8)

that is, we wish to find a control sequence that minimizes the cumulative cost over a
time horizon T subject to the dynamics given by f with random disturbance et. In some
cases, the cost (i.e., negative reward) `(·, ·) and/or transition function f are given, but
in the general scenario, they would have to be learned from data. The pseudocode for
MPC is given by Algorithm 1. The time and space complexity of finding an (approximate)

Algorithm 1 MPC

1: procedure MPC(`(·, ·), S, A) . s ∈ S, set of states; a ∈ A, set of actions.
2: Initialize E . Initialize the environment.
3: scurrent ← E.reset() . Observe initial state of environment.
4: for T interactions with the environment do
5: a∗0, . . . , a

∗
T−1 ← solve(`(·, ·), scurrent) . Solve 2.8 for s0 = scurrent to obtain

optimal trajectory.
6: scurrent ← E.step(a∗0) . Step through the environment with the first action.
7: end for
8: end procedure

solution to 2.8 (solve() in line 5) is vital to the scalability and applicability of MPC as
the algorithm calls this sub-procedure at every time step. In the special case where the
formulation is linear in system dynamics and quadratic in cost, in other words, they are
respectively of the form st+1 = Ast + Bat + et and J = Ee[xT−1Qx

>
T−1 +

∑T−2
t=0 xtQx

>
t +

atRa
>
t], where A, B, Q and R are square matrices, then the optimal control sequence

can be computed in closed form by solving the Algebraic Riccati equation. In the general
case, however, solving 2.8 may be intractable and one simple procedure to approximate its
solution is the “shooting method”, wherein a set of k trajectories K = {(a0, . . . , aT−1)i}ki=0

are first sampled uniformly at random, then each trajectory is assigned a cost according to J
and the trajectory with the lowest cost is chosen as the solution. Effectively, the algorithm
plans for a horizon, takes one step into the environment and replans upon observing the
new state. At the cost of the additional computation incurred with frequent replanning,
this strategy makes the algorithm robust to non-stationary environments.

12

One of the main challenges to model-based methods that prevent them from being
widely applied is the notion of model-bias [39, 4]. The idea is that when a regression
model is fitted with limited training data, there may be areas in the parameter space
in which there are very few examples for the model to base its predictions upon, yet it
makes these inferences with one hundred percent confidence; in other words, the model
has no notion of uncertainty. To illustrate the detrimental effects of model-bias, consider
the example where an autonomous car is using a model-based RL algorithm to learn how
to drive and the dynamics model is learned from training data gathered from on-road
experience. If the model does not factor in any notion of uncertainty, then it would make
predictions about the effects of both driving down the highway and driving off the cliff with
full certainty! Needless to say, this may have catastrophic consequences if the predictions
from the model are in fact wrong. Therefore, for the sake of reducing model-bias, it is
paramount that probabilistic dynamics models are employed to represent uncertainty in
the predictions. One of the most popular regression methods for such a task is the Gaussian
process regression (GPR) and we elaborate on this technique below.

2.3 Gaussian Process Regression

Gaussian processes (GPs) are a powerful state-of-the-art Bayesian nonparametric regression
method. GPs infer a distribution over functions and in the context of nonparametrics, this
corresponds to lifting the parameter space to infinitely many dimensions where the function
is modelled as a distribution over an infinitely long vector. This allows the model to be
highly expressive, making underfitting an issue that typically does not occur. At the same
time, the model is resistant to overfitting as the Bayesian approach provides a systematic
approach in accounting for noise in data with a prior and a posterior update upon new
observations [9].

The interpretation of GPs can be approached from what is called a function-space view
or a weight-space view [37] and in this exposition, we proceed with the latter. Consider
a training set of D of M observations, D = {(xi, yi)|i = 0, . . . ,M − 1} where x is an
input column vector of size n and y is a scalar. Denote the design matrix X ∈ RM×n

as the aggregate of the input vectors and the column vector y as the collation of the
output scalars. The weight-space view begins with the Bayesian linear regression model
where it assumes a linear relation between x and y corrupted with Gaussian noise, that
is, y = Xw + ε where ε = [ε0, . . . , εM−1]>, εi ∼ N (0, σ2), for all i = 0, . . . ,M − 1. The
noise and independence assumption along with the model definition give rise to a likelihood

13

function given by the expression

p(y|X,w) =
M−1∏
i=0

p(yi|xi,w)

=
M−1∏
i=0

1√
2πσ2

e−
(yi−xiw)2

2σ2

=
1

(2πσ2)
M
2

e−
‖y−Xw‖22

2σ2

= N (y|Xw, σ2I).

The Bayesian formulation requires a prior over the weights specifying the belief of w before
any observations are made. We proceed by specifying a normal prior with zero mean and
covariance V0

w ∼ N (0,V0).

The posterior distribution of the model is computed according to Bayes’ rule which states
that the posterior is equal to the likelihood times the prior divided by the marginal likeli-
hood, that is,

posterior =
likelihood× prior

marginal likelihood
.

Applying Bayes’ rule, the posterior of the model is given by the expression

p(w|X,y) =
p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

.

Focusing on the numerator, the likelihood times the prior, then “completing the square”,
yields the expression

p(w|X,y) ∝ N (y|X, σ2I)×N (0, V0)

∝ exp
(
− 1

2σ2
(y −Xw)>(y −Xw)

)
exp
(
− 1

2
w>V −1

0 w
)

∝ exp
(
− 1

2
(w −wN)>(V −1

0 +
1

σ2
X>X)(w −wN)

)
.

We recognize that the posterior is also a Gaussian distribution with covariance VN =
σ2(σ2V −1

0 + X>X)−1 and mean wN = 1
σ2VNX

>y. In the Bayesian model, predictions
are made by averaging the output over all possible function parameters, in contrast to the
non-Bayesian approach which produces a single output prediction. Hence, the predictive

14

distribution, f∗ , f(x∗), at a given a test point x∗, is obtained by marginalizing over the
model parameters of the posterior distribution, given by the expression

p(f∗|x∗,X,y) =

∫
p(f∗|x∗,w)p(w|X,y)dw

= N (f∗|x>∗wN , σ
2 + x>∗ VNx∗).

The predictive distribution is again a Gaussian distribution with mean prediction centred
at x>∗wN and variance σ2 + x>∗ VNx representing the uncertainty in the prediction. Note
that two factors affect the predictive uncertainty, namely, the uncertainty that is inherent
in the noise of the measured data, represented by the additive term σ2, as well as the
uncertainty reflected by the proximity of the test point to the training set, given by the
term x>∗ VNx∗.

A drawback to Bayesian linear regression is that its expressive power is limited to
modelling linear patterns in data. One simple way that Bayesian linear regression can
be extended to perform non-linear regression is by first mapping the inputs into a higher
dimensional space via a non-linear basis function φ(·) and then performing linear regression
on these high dimensional features rather than directly on the inputs. Similar to before,
denote φ(xi) as the column basis vector obtained after applying mapping φ(·) to input xi
and the matrix Φ(X) as the concatenation of the input basis vectors. We proceed as before
where we assume a linear relation between φ(x) and y corrupted with Gaussian noise:

y = Φ(X)w + ε.

The derivation is unchanged as well except for the minor difference where every instance
of X is substituted with Φ(X). Hence, for a test data point x∗, the posterior predictive
distribution is given by the expression

p(f∗|x∗,X,y) = N
(
f∗

∣∣∣ 1

σ2
φ(x∗)

>VNφ(X)y, φ(x∗)
>VNφ(x∗)

)
. (2.9)

Using the Woodbury matrix identity, one can show that Equation 2.9 has the following
equivalent form:

p(f∗|x∗,X,y) = N
(
f∗
∣∣φ(x∗)

>V0φ(X)
(
φ(X)>V0φ(X) + σ2I

)−1
y,

φ(x∗)
>V0φ(x∗)− φ(x∗)

>V0φ(X)
(
φ(X)>V0φ(X) + σ2I

)−1

φ(X)>V0φ(x∗)
)
.

(2.10)

15

Note that in this expression, the basis functions and the covariance matrix always appear
together in the form φ(·)>V0φ(·). Let us define k(x,y) = φ(x)>V0φ(y), which is called a
kernel. Since a covariance matrix is symmetric positive definite, we can apply the Cholesky
decomposition to decompose V0 into an upper triangular matrix, U , and a symmetric
lower triangular matrix, U>, such that V0 = U>U . Defining ϕ(x) = Uφ(x), the kernel,
k(x,y) = ϕ(x) · ϕ(y), can then be expressed as an inner product of two basis vectors.
Replacing all instances of the basis vector inner products with a kernel, the posterior
predictive distribution then takes the form

p(f∗|x∗,X,y) = N (f∗|f̄∗, var(f∗)), (2.11)

where

f̄∗ = (k(X,X) + σ2I)−1y,

var(f∗) = k(x∗,x∗)− k(x∗,X)(k(X,X) + σ2I)−1k(X,x∗).
(2.12)

Through kernelizing the input features, the resulting model 2.12 is known as a Gaussian
process.

As an example to demonstrate the regression capabilities of GPs, consider a training
set of 100 pairs of scalar observations where xi ∼ unif(−4, 4) and yi = sin(5xi)

xi
+ εi where

εi ∼ N (0, 0.04) for all i = 0, . . . , 99. The covariance function is chosen to be the squared
exponential kernel (SE) defined as

k(x,y) = σ2
fe
− ‖x−y‖22

2`2 ,

where ` is the length-scale which controls the smoothness of the function and the scaling
factor σ2

f is the signal amplitude which determines the range and rate of change of the

function [13]. Consider a vector x∗ = [−6, . . . , 6]> consisting of 1000 evenly spaced test
points in the range [−6, 6]. The prior of the GP evaluated at the test points is given by
the distribution

f∗ ∼ N (f∗|0, k(x∗,x∗))),

Figure 2.1a depicts five functions sampled from the prior distribution and the gray-shaded
regions represent three standard deviations from the mean centered at zero. As expected
from an uninformed prior, the error bars have “uniform” lengths and the sampled curves
exhibit characteristics of random functions. The posterior distribution evaluated on the test
points is given by var(f∗) and in the same vein, Figure 2.1b illustrates five functions sampled
from distribution 2.12 and the gray-shaded regions, likewise, represent three standard
deviations from the mean prediction (shown in Figure 2.2 by the dashed red line). In

16

6 4 2 0 2 4 6
Input

4

2

0

2

4

Ou
tp

ut

(a) Prior

6 4 2 0 2 4 6
Input

4

2

0

2

4

Ou
tp

ut

(b) Posterior

Figure 2.1: Five functions sampled from a GP (a) prior and (b) posterior. The gray-shaded
regions represent three standard deviations from the mean.

contrast, the error bars are narrow within the interval [−4, 4] and wide outside of this
region, representing the notion that in the domain with training data, the model is very
confident and vice versa in said domain’s complement. Indeed, this idea is corroborated by
the sampled functions as their deviation is minuscule within [−4, 4] and large outside of this
interval. Finally, Figure 2.2 plots the training data, alongside the mean fit accompanied
by their corresponding confidence intervals, and the ground truth function, illustrating the
non-linear regression capabilities of GPs.

Covariance functions are a crucial component to the GP as they encode assumptions
about the functions that we wish to learn such as, for example, the smoothness of the
learned curves. From another viewpoint, they could be thought of as a metric specifying
the distance similarity between two points under the assumption that closer points ought
to be more similar [37]. In the example above, the squared exponential (SE) kernel is used,
which is one among others, each with varying characteristics. To illustrate this, we give
examples of two other kernels and touch upon their properties. The SE kernel is a special
case of a class of kernels known as the Matérn covariance function, defined

kMatérn(x,y) =
21−ν

Γ(ν)

(√2νr

`

)ν
Kν

(√2νr

`

)
where r = ‖x− y‖2, with positive hyperparameters ν and ` and Kν is the modified Bessel
function of second kind of order ν [3]. The ν parameter controls the smoothness of the

17

6 4 2 0 2 4 6
Input

4

2

0

2

4

Ou
tp

ut

Mean Prediction
Ground Truth
Training Data

Figure 2.2: A GP fitted to a training set of 100 pairs of scalar observations where xi ∼
unif(−4, 4) and yi = sin(5xi)

xi
+εi where εi ∼ N (0, 0.04) for all i = 0, . . . , 99. The gray-shaded

regions represent three standard deviations from the mean.

18

resulting function and the Matérn kernel reduces to an SE kernel for ν →∞. For the case
that ν = 1/2, the kernel becomes

kν=1/2 = e−
r
` ,

known as the Ornstein-Uhlenbeck process [46] which was introduced to model the behaviour
of a particle undergoing Brownian motion. Another example, consider the periodic kernel
given by

kperiodic(x,y) = exp

(
−

2 sin2
(π‖x−y‖2

p

)
`2

)
which, as the name suggests, encodes a periodic assumption in the function, making them
well-suited for sinusoidal-like data. The period p determines the distance between repeti-
tions and ` parameter functions the same way as in the SE kernel.

In the discussions above, there is a notion of hyperparameters. Yet it was not elaborated
as to how one may go about choosing these hyperparameters in the model, but fortunately,
the Bayesian formulation offers a principled approach to this task. Consider the marginal
likelihood, or the marginalization of a distribution over the parameter θ, given by the
expression

p(y|X) =

∫
p(y|θ,X)p(θ|X)dθ

and for GPs, the log of the marginal likelihood can be shown to be

log p(y|X) = −1

2
y>(K + σ2I)−1y − 1

2
log |K + σ2I| − n

2
log 2π. (2.13)

Selecting the hyperparameters would involve maximizing 2.13 with respect to the hyper-
parameters. This amounts to maximizing the model evidence which is a principled and
automatic way of selecting parameters that balance between expressivity and simplicity by
Occam’s razor [36].

2.4 Covariance Matrix Adaptation Evolution Strat-

egy

Covariance matrix adaptation evolution strategy (CMA-ES) is a stochastic, or randomized,
method for real-parameter (continuous domain) optimization of non-linear, non-convex
functions [18]. We first explain the concepts of evolution strategy and genetic algorithms
and then the extensions made by CMA-ES.

19

Evolution strategy could roughly be understood as a term that describes any algorithm
that produces a set of candidate solutions to evaluate a problem. The quality of the
candidate solutions are measured based on what is known as a fitness function and the
fitness of each solution is fed back to the evolution strategy where then the algorithm
produces the next generation of (hopefully) fitter candidate solutions. In more detail,
the candidate solutions are generated by sampling an arbitrary number of times from a
distribution and upon receiving fitness scores of each candidate solution, the algorithm
updates the distribution to reflect the new gain in information. As a concrete example,
consider a two-dimensional fitness function F (x, y) and we wish to find the parameters x
and y such that F (x, y) is maximized. One simple evolution strategy for this objective
would be to define a normal distribution with mean µ and covariance Σ where the latter is
held fix. µ is initially set to the origin and the algorithm proceeds by sampling N candidate
solutions and µ is set to the candidate solution with the highest fitness. The algorithm
then repeats by sampling around the new mean.

Informally, the term “genetic” in genetic algorithms refer to the idea of injecting vari-
ations in the process of selecting/generating the next generation of candidate solutions.
In our two-dimensional example, diversity could be incorporated into our procedure by,
for instance, keeping only the top ten percent of the candidate solutions and letting the
remaining prospects die. Upon updating the new mean, we randomly select two solutions
in the survivor pool and recombine their parameters, that is, use the x from one solution
and the y from the other solution as the parameters of the new mean.

One of the limitation of the evolution and genetic algorithms described above is that
their covariance function is held fix. CMA-ES is an algorithm that addresses this shortcom-
ing with a way to adapt the covariance function at every iteration of the search procedure.
To understand how CMA-ES works, we recall the formulas for estimating the mean and
covariance of a distribution given N samples and continuing from our two-dimensional

20

example, these are given by

µx =
1

N

N∑
i=1

xi,

µy =
1

N

N∑
i=1

yi,

σ2
x =

1

N

N∑
i=1

(xi − µx)2,

σ2
y =

1

N

N∑
i=1

(yi − µy)2,

σxy =
1

N

N∑
i=1

(xi − µx)(yi − µy).

Of course, applying these equation would only lead to the estimation of the mean and
covaraince of the current generation. CMA-ES modifies these equations such that it can
dynamically increase the variance when the optimum is far away and conversely, narrow
the distribution if the optimum is close. CMA-ES works by keeping only the best Nbest

candidate solutions of a population sample and it calculates the mean of the next generation
(g + 1) using the best Nbest solutions, i.e.,

µ(g+1)
x =

1

Nbest

Nbest∑
i=1

xi,

µ(g+1)
y =

1

Nbest

Nbest∑
i=1

yi.

CMA-ES modifies the calculation of the covariance values by using the mean of the current
generation g, rather than the next generation (g + 1), yielding

σ2,(g+1)
x =

1

Nbest

Nbest∑
i=1

(xi − µ(g)
x)2,

σ2,(g+1)
y =

1

Nbest

Nbest∑
i=1

(yi − µ(g)
y)2,

σ(g+1)
xy =

1

Nbest

Nbest∑
i=1

(xi − µ(g)
x)(yi − µ(g)

y).

21

With the updated parameters µ
(g+1)
x , µ

(g+1)
y , σ

2,(g+1)
x , σ

2,(g+1)
y and σ

(g+1)
xy , the algorithm can

iterate by sampling to generate the population of the proceeding generation [2].

2.5 Related Work

The foundational work of DYNA has inspired numerous work in model-based RL including
recent work by [17] where the authors demonstrated that challenging continuous control
problems, such as simulated contact robotics, could be solved with less interactions with
the environment if a learned system dynamics model augmented the data buffer with
imagination rollouts. Further, experiments suggested that while prior methods proposed
a variety of models for system identification including neural networks, Gaussian process
and locally-weighted regression, but the authors found that they were able to obtain good
results with a technique known as iteratively refitted time-varying linear models.

The seminal work of [10] introduced the PILCO algorithm which was able to learn
optimal policies with unprecedented data efficiency on a set of simulated cart-pole and
unicycle riding control problems as well as on a real cart-pole-swing-up environment. The
PILCO algorithm consists of first learning a one-step system dynamics model using a GP
with SE kernel and then using this learned model, perform trajectory rollouts in search for
an optimal policy. Trajectory unrolling calls for the propagation of distributions through
the model which are intractable in exact inference and instead, the algorithm circumvents
this by opting for approximate inference at every unroll step via a moment matching
method. The controller is parameterized by a non-linear radial basis function (RBF)
network and policy improvement is performed using analytic gradients. The cost function
is exposed to the controller and is given as the RBF of the absolute difference between the
controller’s current position and the target position. The authors of PILCO stressed the
need to overcome model-bias and demonstrated that by leveraging a probabilistic dynamics
model in the form of GPs, control polices can be learned from scratch with unprecedented
data efficiency. The success of PILCO has spurred numerous research that builds upon
the original algorithm such as, for example, PILCO with partially observable states [28],
combining PILCO with MPC [20] and extending PILCO to deepPILCO by replacing the
GP with a Bayesian neural network (BNN) [27].

With the advent of Deep Learning (DL) and thus, deep RL (DRL), there have been
countless works that approach the paradigm of model-based RL from the viewpoint of
blackbox neural network architectures and we outline a few of these below. In one example,
[43] proposed a neural network architecture called Value Iteration Network (VIN) which
implements the idea of enforcing a structural prior on a network based on a stack of

22

convolutional neural net layers in the goal of mimicking the update operation in the classical
value iteration algorithm upon recurrent forward passes through the architecture. The
algorithm is not exactly considered a model-based method as it does not learn the system
dynamics but it does possess traits of a model-based algorithm in that the value iteration-
like update allows the algorithm to perform planning, making it what the authors call a
planning-based method. Experiments have demonstrated superior performance on maze
navigation tasks that require a notion of planning to reach long-term goal states. In
addition, the authors argue that the network was able to generalize by showing that the
algorithm was able to learn policies that performed well on unseen environments after it
was trained on several instances of the domain with different start state, goal and obstacle
positions.

On a similar thread of work, the Predictron [41] introduced the idea of planning in
abstract space where at every step, a model is applied to an internal state that simulates a
trajectory of next state, action and rewards which are used to predict future value function.
Each forward pass of the Predictron computes internal rewards and value functions across
multiple planning steps. The architecture is trained end-to-end so that its simulated value
functions accurately approximate the true value functions. Experiments were performed
on a set of maze problems and pool domain and the authors argued that the controller
demonstrated successful maze navigation and sophisticated pool trajectories and cited this
as evidence that the Predictron learned to plan.

In yet another similar work, [34] proposed Prediction Network (VPN) which is neural
network architecture that attempts to combine model-based and model-free RL in a united
network by, respectively, learning the dynamics of an abstract state space for computing
future rewards and values, and mapping the learned abstract state space to rewards and
values. In other words, VPN learns to predict values via Q-learning and rewards via
supervised learning and at the same time, perform lookahead planning to choose actions
and compute bootstrapped Q-values. Experiments on a set of 2D grid world domains with
the task of collecting as many goals within a time limit shows that the VPN performed
better than DQN and that the VPN’s performance increases as the number of planning
steps increases. In addition, the authors demonstrated the viability of their method in
environments with complex visual observations by outperforming DQN in 7 out of 9 Atari
games [5].

On the front of vision-based RL, [33] introduced a convolutional autoencoder neural
network architecture that conditionally predicts future frames based on a provided action
input to the latent features. Using a suite of Atari games, the authors were able to show
that the architecture was able to accurately generate up to 100-step action-conditional
frames into the future. Furthermore, this strategy of video prediction was put forward as a

23

method to perform informed exploration whereby the controller would select sequences of
actions that lead to a frame that has been visited least often. Experiments on Atari games
using DQN with proposed video prediction exploration strategy showed that informed
exploration improved DQN’s performance in three of five games.

Returning to the area of continuous control robotic systems, the work of [31] investi-
gated the viability of model-based DRL to challenging high-dimensional contact simulated
locomotion tasks from the MuJoCo benchmark system [44]. The work parameterized the
learned dynamics function as a deep neural network and the parameters were learned via
gradient descent on a mean squared error loss. To cope with the model-bias incurred by a
non-probabilistic dynamics model, the controller used the MPC algorithm so that only the
actions with the lowest uncertainty in the predictions (i.e., actions for the immediate next
step) were executed. The work used a simple shooting method where K candidate action
sequences are randomly generated, the corresponding state evolutions are calculated using
the dynamics model, the rewards of each sequence are calculated, and the sequence that
yielded the highest discounted sum of rewards is chosen. The work corroborates the gen-
eral perception that compared to model-free, model-based methods initially learn faster,
but do not match the final performance of model-free algorithms. The work addresses this
by combining the strengths of both approaches by first learning a policy with their model-
based algorithm and then using this policy as an initialization to the model-free algorithm,
Trust Region Policy Optimization (TRPO) [40]. Experiments demonstrated superior per-
formance for the hybrid model compared to both either model-free or model-based alone
in all four different MuJoCo location tasks.

[32] extends the previous work by scaling their model-based algorithm to control a real
robotic system and in addition, endowing the robot with the ability to automatically learn
the visual cues of the terrain that affect its dynamics by augmenting the inputs of the
dynamics function with image observations. The resulting MPC controller was tried on
the VelociRoACH, a small, mobile, highly dynamic, and bio-inspired hexapedal millirobot
on a set of terrain-varying track navigation tasks and the VelociRoACH demonstrated
successful and robust policies across all terrains.

One of the most successful and influential work in RL robotics is the Guided Policy
Search (GPS) [23] algorithm. This method makes use of a classical trajectory optimization
technique called differential dynamic programming (DDP) which yields approximate closed
form solutions to the state and reward dynamics under linear quadratic assumptions. For
a set of tuples generated by a policy, the DDP algorithm solves for an optimal trajectory
which then serves as a “guide” to a neural network policy by having it imitate the DDP
output. The neural network policy is then executed on the environment to obtain a new
trajectory and from there, the algorithm repeats by solving for a new trajectory using DDP.

24

GPS has inspired many other research that use and build upon the original work such as,
for example, the application of GPS to visuomotor control [14, 22] and to learning contact-
rich manipulation skills [24], the demonstration that GPS can be cast as an approximation
to mirror descent [29], the augmentation of memory states to GPS [47], and finally, the
extension of the algorithm to environments with unknown dynamics [21]. The success
of GPS and its related work has demonstrated its potential to be applied to control in
real-world robotic systems.

25

Chapter 3

Proposed Model

The work in this thesis is inspired by the PILCO algorithm described in Section 2.5. Like
the PILCO algorithm, our algorithm performs system identification by learning a function
f : S × A → S that maps state-action pairs to next states. Unlike PILCO, however, we
instead opt to use an approximate GP based on random Fourier features (RFFs) [35] for the
system dynamics function f rather than an exact GP. The rationale behind this decision is
that using RFFs allows the regression model to remain in primal space, meaning the design
matrixX>X does not grow in size with respect to the amount of training data, making the
model more applicable to an online learning setting. Using the learned dynamics model,
we perform policy search by unrolling states into the future to find the sequence of actions
that yields the highest expected cumulative discounted rewards. Following the formulation
of BAMDPs [12], our algorithm augments the state space with a belief state constructing
a set of hyperstates that are used by the policy search algorithm to optimize for a policy
that performs directed exploration by taking into account the uncertainty in the state
space given by the belief state. The tracking of hyperstate evolution through future time
steps calls for a tree search-like operation, which does not suit well with gradient-based
optimizers, hence to optimize the parameters of the policy, we opt instead for a black box
optimizer in the form of covariance matrix adaptation evolution strategy (CMA-ES) [18].
Our algorithm thus can be naturally divided into three components: system identification,
Bayesian belief tracking, and policy search optimization. We outline each constituent in
detail below.

26

3.1 System Identification

The model used for learning the system dynamics is Bayesian linear regression using RFFs
which can be interpreted as an approximation to GP regression [35]. Recall that all kernels
can be written in the form k(x,y) = φ(x) · φ(y), that is, a dot product of two possibly
infinite length basis vectors φ(x) and φ(y). Hence, one strategy to approximate the kernel
would be to come up with a finite length basis function ψ(·) such that k(x,y) ≈ ψ(x)·ψ(y).
Given a shift-invariant kernel, i.e., k(x−y) , k(δ), and is properly scaled, then Bochner’s
theorem [38] guarantees that its Fourier transform is a proper probability distribution, i.e.,

k(x− y) =

∫
Rd
p(ω)ejω

>(x−y)dω

= Eω[z(x)z(y)],

where z(x) =
√

2 cos(ω>x + b), ω is drawn from p(ω) and b is drawn from unif(0, 2π).
Hence, the shift-invariant kernel can be approximated via a simple summation average,

Eω[z(x)z(y)] ≈ 2

D

D−1∑
i=0

cos(ω>i x+ bi) cos(ω>i y + bi)

= ψ(x) · ψ(y),

where ψ(x) =
√

2
D

[cos(ω>0 x+ b0), . . . , cos(ω>D−1x+ bD−1)] and D is the number of samples

used in the approximation. We arrive at a simple yet powerful algorithm that allows us
to approximate a GP by projecting the input into a feature space with a random matrix
sampled from p(ω) then passing that result through a cosine function. It turns out that
the Fourier transform of a Gaussian is a Gaussian and hence we can show that a GP with
a SE kernel can be approximated by the basis function

ψSE(x) = σf

√
2

D

[
cos
(ω>0 x

`
+ b0

)
, . . . , cos

(ω>D−1x

`
+ bD−1

)]
,

where ωi ∼ N (0, I), bj ∼ unif(0, 1) for all i, j and σf and ` are respectively, the signal
amplitude and length-scale parameters of the GP.

Next, we detail how f , that is, the function that maps state action pairs to next
state, st+1 = f(st,at) is learned using Bayesian linear regression (BLR) with RFF basis
functions. Consider a set of M experience tuples, {(si,ai, s′i)|i = 0, . . . ,M − 1)} where
s′ is the next state resulting from taking action a in state s. We take a simple approach

27

where we learn a separate BLR model for every state dimension. Define xi , [s>i ,a
>
i]>

and yi , s′i,j where xi is the result of concatenating the state and action vector and yi is
the jth dimensional output of next state s′i. Thus for every output dimension, we have a
training set D = {(xi, yi)|i = 0, . . . ,M −1} and the design matrix X and column vector y
are as defined in Section 2.3, but with the slight difference that X>X is constructed after
each input xi is transformed via RFF basis ψ(·), i.e., X>X =

∑M−1
i=0 ψ(xi)ψ(xi)

>. Given
training set D and with this notation redefinition, we may proceed like we did before and
thus, the posterior is a Gaussian distribution with covariance

VN = σ2
(σ2

τ 2
I +X>X

)−1

where we assume V0 = τ 2I and mean

wN =
1

σ2
VNX

>y,

and given a test point x∗, the posterior predictive distribution is also given by a Gaussian
distribution, but with variance

σ2
N(x∗) = σ2 + x>∗ VNx∗

and mean
µN(x∗) = x>∗wN .

The hyperparameters of the model, that is, σ, σf and ` are chosen by maximizing the log
marginal likelihood, which for BLR, is given by the expression

log p(y|X) = −N
2

log(2π)− N

2
log(σ2)− 1

2
log

(
|V0|
|VN |

)
− y

>y

2σ2
+

1

2
w>NVNwN .

With this formulation, we now have a probabilistic model that yields one-step predictions
of the state dynamics.

We take a moment to touch upon the pros and cons in opting for an approximate model
of the GP. One of the most important ingredient to both the GP and BLR model is the
covariance matrix. For the GP, the covariance matrix takes the form var(f∗) (Equation
2.12) and we take note that computing this result requires the inversion of the gram matrix
(i.e., k(X,X)). This matrix grows quadratically with respect to the amount of training
data, hence making it unscalable when naively applied to domains with vast amounts of
training data (i.e., an online learning setting). On the other hand, the covariance matrix of
the BLR model is given by the VN which in this case, requires the inversion of the matrix

28

X>X. Under this formulation, however, the size of the matrix X>X does not grow with
respect to the training set and thus is more applicable under large training sets.

Given xt, the BLR model maps a vector to a distribution over all the possible values
that the next state st+1 may take on. In order to predict future states thereafter, i.e.
st+2, we would have to calculate a marginal distribution that averages over all the possible
input values over the output distribution. In general, the exact computation of this re-
sulting distribution is intractable. The PILCO algorithm [10] circumvents this problem by
approximating the intractable distribution using moment-matching, but in this work, we
take a simpler approach by sampling P states, propagating the predicted states through
the model and approximating the resulting distribution via an average of the P point
evaluations.

We close this section by remarking that it is possible and computationally efficient
to formulate the model so that it can have multi-output (i.e., an output for each state
dimension). In this case, the covariance matrix VN will remain unchanged and will be
shared across each output dimension. The mean will differ slightly where the vector y
will be replaced by the matrix Y , i.e., wN = 1

σ2VNX
>Y . The obvious computational

benefit arises from the fact that since VN is shared across the output dimensions, the
prediction of the next state would call for only a single inversion of the covariance matrix
as opposed to one for each output dimension for the case where we have a BLR model for
each output dimension. Sharing the covariance matrix across all output dimensions also has
drawbacks, since the covariance matrix encodes the uncertainty in our predictions, having
a single covariance matrix would imply that there would also only be a single uncertainty
value for all output dimensions. This is especially an issue if the smoothness of the state
dimensions vary greatly between the dimensions. The hyperparameters of the BLR dictate
the smoothness of the model and hence if a single set of hyperparameters is responsible for
all of the output dimensions, then if would be difficult to find hyperparameter values that
will provide a good fit for all of the output dimensions.

3.2 Policy Search Optimization

We detail our policy improvement algorithm in this section. The policy πθ(·) is parameter-
ized as a neural network with parameters θ. Given P samples of the initial state distribution

29

{s0,p|p = 0, . . . , P −1} and a time horizon of T , we wish to solve the optimization problem

minimize
θ

L(θ) = − 1

P

P−1∑
p=0

T−1∑
t=t′

γtR(st,p, πθ(st,p))

subject to st+1,p ∼ f(st,p, πθ(st,p)), t = t′, . . . , T − 1, p = 0, . . . , P − 1,

(3.1)

where st+1,p is sampled from f , our probabilistic system dynamics model given by our
regression model described above. The reward function R(·, ·) may be given, but if it is
not, then it may be learned in a similar fashion described in Section 3.1 which is what was
done for some of our experiments.

One of the obvious strategies to optimize 3.1 is to use gradient descent methods to
minimize L(θ). However, preliminary experiments have demonstrated that under certain
circumstances, gradient-based methods may not at all be able to optimize our objective. A
salient example involves the classical control problem known as the Mountain car problem
[30] (i.e., MountainCarContinuous-v0 on OpenAI Gym [8]). The environment exhibits
a sparse reward structure in that under the formulation provided by OpenAI Gym, the
agent receives a slight punishment for exerting actions and gets a large reward for reaching
the goal (i.e., the top of the mountain). Put it another way, the reward function of the
environment can effectively be thought of as step function with respect to the position of
the cart. Thus, we would expect gradient-based optimizers to not work in this environment
because the loss landscape contains zero gradients everywhere. In this work, we opt instead
for a black-box optimizer in the form of CMA-ES [18] for this reason, but also for the
purpose of Bayesian belief tracking which we will elaborate in the section below.

3.3 Bayesian Belief Tracking

Different from other work in model-based RL we attempt to perform directed exploration
by incorporating Bayesian belief tracking in our policy search algorithm. Our approach
follows that of BAMDPs which was briefly covered in Section 2.2 and we expand on this in
the following section. If one is willing to adopt a Bayesian perspective, then the problem of
exploration-exploitation can be settled. The formulation of policies that optimally balance
the exploration-exploitation trade-off, known as Bayes-optimal policies begins with ab-
stracting the notion of “state” to be an ordered pair tuple (s, x) consisting of the “physical
state” s and the information state “information state” x. One may think of the physical
state as the traditional notion of state in that it describes the current condition and cir-
cumstance of the agent and the information state as the set of parameters that summarizes
the entire observation history of the agent.

30

As a concrete example (adopted from [12]), consider the problem where a medical
researcher is presented with two types of drugs and twenty critically ill patients. The task
is to administer the drugs to the patients so as to maximize the number of survivors. It is
not hard to see that there is an exploration-exploitation component to this problem: we
must spend actions to explore which of the drugs is more promising and at the same time,
commit to exploiting the promising drug once we have discovered this drug. In the Bayesian
approach, we would model the success and failure rate of each drug with a probability
distribution and upon observing a new outcome, we would update our distribution via
Bayes’ rule. Due to the nature of this problem where the action is discrete and the outcome
set is binary, an appropriate distribution to use for modelling the success and failure of
each drug would be the Beta distribution with its PDF given by

p(x|α, β) =
xα−1(1− x)β−1

B(α, β)
where B(α, β) =

Γ(α)Γ(β)

Γ(α + β)
.

Roughly, one may think of the Beta distribution as a model for an experiment with a
binary output where the two parameters α and β parameterize the two outcomes, where
in the context of our problem, would be the success and failure rate of a drug. The mean
of a random variable X with a Beta distribution is given by E[X] = α

α+β
. One can show

that upon receiving a new observation, the posterior update of a Beta distribution simply
amounts to incrementing the corresponding α or β parameter associated with the new data
point. In the drug allocation example, α1 may represent the number of times that drug 1 has
succeeded and β1 may represent the number of times that drug 1 has failed (subscripts of α
and β are used to indicate that they correspond to drug 1). Upon administering the drug
to a new patient and making the observation that the trial was a success, then the posterior
PDF and mean are respectively given by p(x|α1 +1, β1) and α1+1

α1+1+β1
. The information state

corresponds to the tuple consisting of α1 and β1, i.e., x1 = (α1, β1). Under this framework,
the Bellman equation gets augmented with the information state allowing uncertainty to
be factored into the calculation of the value function. Abstractly, one could imagine that
this amounts to performing tree search to find a set of actions that maximize the return
averaged over the model uncertainty subject to the hyperstate evolution at every tree
depth. Figure 3.1 depicts the posterior evolution of the Beta distribution given a sequence
of administered drugs and their corresponding successes/failures. On the leftmost path,
for example, where in the hypothetical scenario drug 1 always succeeds, then we can see
that the model gets updated in such a way that the distribution heavily skews towards 1
(i.e., it is becoming more confident that drug 1 has a high probability of success). Consider
Bellman’s equation in classic RL given by

V (s) = max
a

∑
s′

p(s′|s, a)(R(s, a, s′) + γV (s′)),

31

Figure 3.1: An information-state transition diagram for the drug allocation problem
(adopted from [12]).

32

augmenting this equation with an information state and assuming deterministic posterior
updates, we obtain

V (s, x) = max
a

∑
s′

p(s′|s, a, x)(R(s, a, s′) + γV (s′, xs,a,r,s′))

where xs,a,r,s′ is the posterior information update after observing transition tuple (s, a, r, s′).
In summary, p(s′|s, a, x) corresponds to the depicted distributions in Figure 3.1 and track-
ing the evolution of the information state allows us to model the information gain when
making a hypothetical action. When these distributions are factored into the calcula-
tion of the value function, then the Bellman backups at every time step will be averaged
over the uncertainties of the model, yielding values that naturally balance exploration and
exploitation.

In this work, we extend the ideas from BAMDPs to the problem domain of continuous
states and actions. As aforementioned, the one step state dynamics is modelled using BLR
with RFF basis functions, i.e., p(s′|s,a) = N (s′|µ,Σ), and extrapolating from the drug
allocation problem, the information state corresponds to the tuple x = (µ,Σ). Letting
at = πθ(st), then

V (st, xt, θ) = max
θ

∫
st+1

p(st+1|st, πθ(st, xt), xt)[R(st, πθ(st, xt), st+1)

+ γV (st+1, xt+1)]dst+1

≈ E
[t+T−1∑

τ=t

γτR(sτ , πθ(sτ , xτ))

]

≈ 1

P

P−1∑
p=0

t+T−1∑
τ=t

γτR(sτ,p, πθ(sτ,p, xτ,p)).

(3.2)

To arrive at our final optimization objective, we first make two approximations to our
augmented Bellman’s equation. In the first approximation, we unroll Bellman’s equation up
to only T time steps into the future due to computational restrictions. Given that the state
space is continuous, exact inference calls for integrating over the value function with respect
to the next state which in general, is intractable and hence, the second approximation
amounts to a Monte Carlo estimation of this integral. After these two approximations, we

33

arrive at our final objective

minimize
θ

L(θ) = − 1

P

P−1∑
p=0

t+T−1∑
τ=t

γτR(sτ,p, πθ(sτ,p, xτ,p))

subject to sτ+1,p ∼ f(sτ,p, πθ(sτ,p, xτ,p)),

xτ+1,p = BayesUpdate(xτ,p, sτ,p, πθ(sτ,p, xτ,p), sτ+1,p),

τ = t, . . . , t+ T − 1,

p = 0, . . . , P − 1,

(3.3)

where xτ+1,p is the posterior information update after observing transition tuple (sτ,p, πθ(sτ,p,
xτ,p), R(sτ,p, πθ(sτ,p, xτ,p)), sτ+1,p), f is the probabilistic dynamics model and P is the num-
ber of Monte Carlo samples used to approximate the integral.

We close this section by making a few remarks. The optimization problem in Equation
3.3 requires the calculation of the posterior distribution after observing a hypothetical tuple
and this further motivates the use of a BLR model and a black-box optimizer. BLR provides
a easy way to calculate the posterior, that is, after observing a new data tuple (x, y)
calculating the posterior simply amounts to making a rank-one update to the covariance
and cross-covariance matrices, i.e., X>X ← X>X + x>x and X>y ← X>y + x>y.
Further, rank-one updates are operations that do not suit well with computational graphs
hence gradient-based optimizers may not be applicable, motivating the need for black-box
optimizers.

The policy network also takes as input the information state, allowing the policy to
select actions that reflect the uncertainty of the model. In addition, the information state
oftentimes takes the form of a very large matrix (e.g., if we use basis dimension of size 256,
then the covariance matrix will be of size 256× 256) and to reduce the size of this matrix,
we use a straightforward, random projection technique [7] to embed the information state
to a lower dimension.

3.4 Algorithm Overview

Algorithm 2 provides a pseudocode summary of the overall algorithm.

34

Algorithm 2 Bayesian Policy Search

1: Gather initial training data D = {(si,ai, ri, s′i)|i = 0, . . . ,M − 1)}
2: Sample initial state distribution S0 = {s0,p|p = 0, . . . , P − 1}
3: for e number of epochs do
4: Fit approx GP models G with D to obtain distributions over p(s′|s,a) and p(r|s,a)
5: Optimize 3.3 using CMA-ES with inputs S0, G and πθ(·) . remembering to

update the belief state at every time step
6: Initialize environment and observe initial state s

7: while epoch is not over do
8: Take action a according to policy network given state s and belief x
9: Observe immediate reward r and next state s’

10: Cache training tuple (s, a, r, s’)

11: s ← s’

12: end while
13: Update D with new data
14: end for

35

Chapter 4

Experiments and Results

In this chapter, we describe the set of experiments that were conducted to test the efficacy
of our algorithm.

4.1 Classical Control Problems

The first set of experiments were conducted on various classical continuous control tasks
simulated in OpenAI Gym. In the next subsections, we first describe the set of environ-
ments used in our experiments then we detail the methodology and result of each of our
experiments.

4.1.1 Environments

We briefly describe the two OpenAI Gym environments used in the first set of experiments.

Pendulum-v0

The first problem domain is Pendulum-v0 and this environment is a basic control task
that involves a hinged pendulum that swings up when torque is applied. The state s =
(cos(θ), sin(θ), θ̇) where θ ∈ [−π, π] is the angle of the pendulum and θ̇ ∈ [−8, 8] is the
angular velocity and the action (applied torque), a ∈ [−1, 1]. The precise equation for the
reward is rt = −(θ2

t + 0.1θ̇2
t + 0.001a2

t). Therefore, the lowest reward is −(π2 + 0.1× 82 +

36

Figure 4.1: A screenshot of the Pendulum-v0 environment.

0.001× 22) = −16.2736044 and the highest reward is 0. Essentially, the goal is to have the
pendulum standing vertically with the least rotational velocity and the least effort. Figure
4.1 depicts a screenshot of the Pendulum-v0 environment.

MountainCarContinuous-v0

The second problem domain is MountainCarContinuous-v0 which is a variant of the clas-
sical Mountain car problem originally introduced in [30]. In this domain, an under-powered
car is situated in a valley and must drive up a steep hill. Since gravity is stronger than
the car even at full throttle, it must first drive backwards to leverage potential energy and
then drive forward to reach the top of the hill. The state s = (p, v), where p ∈ [−1.2, 0.6]
and v ∈ [−0.07, 0.07] is the position and velocity of the cart, respectively, and the action
(applied force), a ∈ [−1, 1]. The reward is given by

rt =

{
100− a2

t if pt ≥ 0.45

−a2
t otherwise.

Figure 4.2 depicts a screenshot of the MountainCarContinuous-v0 environment.

37

Figure 4.2: A screenshot of the MountainCarContinuous-v0 environment.

4.1.2 Systems Dynamics Regression

We conduct a preliminary experiment as a proof of concept to evaluate the capabilities
of our method. The purpose of the first experiment is to visualize and do a sanity check
of the regression power of our model and this is done by performing simple tests on time
series forecasting in Pendulum-v0 and MountainCarContinuous-v0.

Pendulum-v0

We trained a BLR model with 256 SE RFF basis functions that makes one step predictions
st+1 = f(st, at) using a training set consisting of three epochs of data (600 data points) and
then we make a comparison between the true and predicted st+1 given an input sequence
{(st, at)}199

t=0. As depicted in Figure 4.3, the regression model is very accurate in that the
predictions match the true states closely and the green errors bars are small, indicating
that the model is very confident in its predictions (which are correct in this case). To
add a bit more difficulty to the task, we also conducted an experiment where the model
was queried to predict the sequence of states that would result from an action sequence
{a199

t=0} starting from a given initial state s0. As illustrated in Figure 4.4, the predicted
trajectories, which are sampled 50 times to visualize uncertainty, all closely match the true
trajectory. Finally, we visualize the predicted reward function in Figure 4.5 and we see
that the predicted reward function is also quite accurate.

38

0 50 100 150 200
Timestep

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

co
s(
θ)

0 50 100 150 200
Timestep

1.0

0.5

0.0

0.5

1.0

si
n
(θ

)

0 50 100 150 200
Timestep

4

3

2

1

0

1

2

3

4

5

θ̇

Figure 4.3: A comparison between the true
and predicted st+1 given an input sequence
{(st, at)}199

t=0. The blue and purple curves
are the true and predicted curves respec-
tively. The predicted curve is accompanied
by green error bars which represent one stan-
dard deviation of uncertainty. The training
set consists of three epochs of data (600 data
points).

0 50 100 150 200
Timestep

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

co
s(
θ)

0 50 100 150 200
Timestep

1.0

0.5

0.0

0.5

1.0

si
n
(θ

)
0 50 100 150 200

Timestep

4

3

2

1

0

1

2

3

4

5

θ̇

Figure 4.4: A comparison between the true
trajectory and 50 samples of the predicted
trajectories given a seed state s0 and action
sequence {at}199

t=0. The blue and red curves
are the true and predicted curves, respec-
tively. The training set consists of three
epochs of data (600 data points).

39

0 50 100 150 200
Timestep

12

10

8

6

4

2

R
e
w

a
rd

Figure 4.5: A comparison between the true and predicted rewards given an input sequence
{(st, at)}199

t=0. The blue and purple curves are the true and predicted, respectively. The
predicted curve is accompanied by green error bars which represent one standard deviation
of uncertainty. Training set consists of three epochs of data (600 data points).

40

0 200 400 600 800 1000
Timestep

1.5

1.0

0.5

0.0

0.5

1.0

p
o
si

ti
o
n

0 200 400 600 800 1000
Timestep

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

v
e
lo

ci
ty

Figure 4.6: A comparison between the true
and predicted si+1 given an input sequence
{(st, at)}998

t=0. The blue and purple curves are
the true and predicted curves respectively.
The predicted curve is accompanied by green
error bars that represent one standard devia-
tion of uncertainty. The training set consists
of on epoch of data (999 data points).

0 200 400 600 800 1000
Timestep

4

2

0

2

4

6

8

p
o
si

ti
o
n

0 200 400 600 800 1000
Timestep

1

0

1

2

3

4

5

6

7

v
e
lo

ci
ty

Figure 4.7: A comparison between the true
trajectory and 50 samples of the predicted
trajectories given a seed state s0 and ac-
tion sequence {at}998

t=0. The blue and red
curves are the true and predicted, respec-
tively. Training set consists of one epoch of
data (999 data points).

MountainCarContinuous-v0

Similar experiments are performed on MountainCarContinuous-v0 task using a BLR
model with the same settings described above and a training set consisting of one epoch
of data (999 data points). Analogous Figures of Figure 4.3, Figure 4.4 and Figure 4.5 are
Figure 4.6, Figure 4.7 and Figure 4.8.

However, we notice that the MountainCarContinuous-v0 domain illustrates something
that Pendulum-v0 does not. To understand this, we first realize that the goal of the agent
is to reach the top of the mountain in the MountainCarContinuous-v0 domain. The
experiment was setup so that the training set did not have the agent reach the goal whereas
the testing set did. Hence, we see that the model predicted an area of the state which it
has never seen before, that is the goal state, with very large uncertainty. This is what is
desired and expected as there is potential to exploit this feature in the model to perform
directed exploration-exploitation.

41

0 200 400 600 800 1000
Timestep

300

200

100

0

100

200

300

R
e
w

a
rd

Figure 4.8: A comparison between the true and predicted rewards given an input sequence
{(si, at)}998

t=0. The blue and purple curves are the true and predicted, respectively. The
predicted curve is accompanied by green error bars which represent one standard deviation
of uncertainty. Training set consists of one epoch of data (999 data points).

42

4.1.3 Classic Continuous Control

The next experiment involves actually learning a policy and seeing how well our con-
troller performs. The baseline for our comparison is the deep deterministic policy gradient
(DDPG) [25] method which is a pioneer model-free actor-critic algorithm for continuous
states and actions and has since become a popular baseline for other algorithms that op-
erate over a continuous state action space. We parameterize a policy network πθ(·) as
an artificial neural network (ANN) with weights θ. Specifically, the architecture of the
policy network is a feedforward ANN with an input layer, one hidden layer and an output
layer and the number of hidden units is 8. All units used the tanh(·) activation and the
output layer was scaled so that the resultant values were clipped to match the minimum
and maximum action values specified by the environment. The discount factor γ is set
to 0.995 for both environments, the unroll steps T are 35 and 120 and the number of
Monte Carlo trajectories are 30 and 7 for Pendulum-v0 and MountainCarContinuous-v0,
respectively. For Pendulum-v0 we trained a BLR model with 50 SE RFF basis functions
for the system dynamics and another BLR model with 150 SE RFF basis functions for the
reward dynamics while for MountainCarContinuous-v0 we trained a BLR model with 50
SE RFF basis functions for the system dynamics and another BLR model with 50 SE RFF
basis functions for the reward dynamics. The BLR model for the system dynamics remain
unchanged from the model used in Section 4.1.2. The training curves comparing our model
to the DDPG baseline for Pendulum-v0 and MountainCarContinuous-v0 are depicted in
Figure 4.9(a) and Figure 4.9(b), respectively. Each curve is generated from averaging the
results of three trials of the experiment. These results corroborate the hypothesis that our
model is much more sample efficient in that it was already able to learn a near optimal
policy during the initial epochs.

4.2 pybullet Environments

We attempted to scale our algorithm by testing it on environments involving simulated
high-dimensional contact robotics such as the tasks found in the MuJoCo benchmark sys-
tem [45]. However, due to license restrictions, we opted instead for the pybullet robotics
reinforcement learning environments which is an open-source competitor to MuJoCo for
simulating contact robotics tasks for RL. The pybullet suite provides a rich set of loco-
motion tasks including minitaur robot, humanoid walking, ant walking, hopper, cheetah
running and walker (MinitaurBulletEnv-v0, HumanoidBulletEnv-v0, AntBulletEnv-v0,
HopperBulletEnv-v0, HalfCheetahBulletEnv-v0 and Walker2DBulletEnv-v0). Figure

43

0 25 50 75 100 125 150 175 200
Epoch

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

To
ta

l (
Un

di
sc

ou
nt

ed
) R

ew
ar

d

Our Model
DDPG

(a)

0 25 50 75 100 125 150 175 200
Epoch

0

20

40

60

80

100

To
ta

l (
Un

di
sc

ou
nt

ed
) R

ew
ar

d

Our Model
DDPG

(b)

Figure 4.9: A comparison of learning curves between our model and DDPG for (a)
Pendulum-v0 and (b) MountainCarContinuous-v0.

4.12 depicts screenshots of a few of these environments. However, preliminary experiments
suggest that our Gaussian process regression was unable to learn the contact discontinu-
ities involved in such robotics environments. In similar vein to Figures 4.3 and 4.4 and
Figures 4.6 and 4.7, Figure 4.10 and Figure 4.11 depicts the regression of the next state
given state-action and the predicted trajectories given a seeding state, respectively for one
particular state dimension of the AntBulletEnv-v0 environment. These two figures high-
light the difficulties in learning contact dynamics as the true underlying function exhibit
characteristics of a square function but our regression model fails to learn these “jumps”
in the data under the smoothness assumptions made by the GP model. As a result, we
observe from the plots that our regression model makes predictions that are inaccurate
along with high uncertainty in many regions. Unsurprisingly, it produces trajectories that
do not resemble any coherent pattern.

This shortcoming unfortunately limits the applicability of our regression model to envi-
ronments with dynamics that exhibit smooth transitions and in the suite of pybullet

environments, only two pendulum-related tasks, InvertedPendulumBulletEnv-v0 and
InvertedDoublePendulumBulletEnv-v0, satisfy this criterion, making them the only tasks
considered in this experiment. InvertedPendulumBulletEnv-v0 is a classical pole on a
cart task where the pole is initially standing upright on the cart with state s ∈ R5 and the
goal of the controller is to apply a force a ∈ [−1, 1] so as to counteract the gravitational force
to keep the pole upright. In this instance, the environment is formulated in such a way that

44

0 200 400 600 800 1000
Timestep

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tr
aj
ec

to
ry

Figure 4.10: A comparison between the true
and predicted st+1 given an input sequence
{(st, at)}199

t=0. The blue and purple curves are
the true and predicted curves respectively.
The predicted curve is accompanied by green
error bars which represent one standard de-
viation of uncertainty.

0 200 400 600 800 1000
Timestep

−0.5

0.0

0.5

1.0

1.5

Tr
aj
ec

to
ry

Figure 4.11: A comparison between the true
trajectory and 50 samples of the predicted
trajectories given a seed state s0 and action
sequence {at}199

t=0. The blue and red curves
are the true and predicted curves, respec-
tively.

(a) (b) (c)

Figure 4.12: Screenshot of (a) HumanoidBulletEnv-v0, (b) AntBulletEnv-v0, and (c)
HalfCheetahBulletEnv-v0.

45

the rail with which the cart runs on has finite length with walls existing at both terminals
and we note that the presence of these walls introduce discontinuities in the system dynam-
ics if the controller drives the cart to the edge of the rail. The episode ends when the pole
falls below a certain angle measured from the upright position or when it has elapsed a max-
imum number of time steps and the agent receives a reward of one at every time step until
the episode terminates (i.e., the agent is incentivized to keep the episode alive for as long
as possible). We point out that the reward function as described is problematic and does
not lead to convergence when we apply our algorithm. The reason being is that our model-
based method has no notion of end-of-episode but rather it only attempts to maximize the
expected discounted sum of rewards up to some horizon T under the assumption that the
episode will always remain alive for the next T time steps. This is in contrast to model-free
algorithms where, for example, in the Q-learning algorithm, end-of-episode is implied when
the unrolled next state action value is zero (i.e., if T is the time step where the episode
terminates, then Q(sT ,aT) = R(sT ,aT) implies end-of-episode). This lack of notion of
end-of-episode in our model-based method coupled with a flat reward function (i.e., the
controller always observes a reward of one) will fool our model in predicting the same loss
for all trajectories leading to a flat fitness function with no policy improvement in our policy
search algorithm. This is rectified via reward shaping where the reward function is instead
set to be the cosine of the angle of the pole measured from the upright position thereby pro-
viding the controller with a difference between the “goodness” of various states resulting in
a loss function with a varying landscape upon which the policy algorithm can optimize. As
the name suggests, the InvertedDoublePendulumBulletEnv-v0 environment is a more
advanced version of InvertedPendulumBulletEnv-v0 where the pendulum attached to
the cart is hinged midway creating a “double” pendulum whilst the rest of the dynamics
remain same with InvertedPendulumBulletEnv-v0. The double pendulum environment
does not require reward shaping as the reward function is already a function of the pendu-
lum angles. Figure 4.13 depicts a screenshot of the InvertedPendulumBulletEnv-v0 and
InvertedDoublePendulumBulletEnv-v0 environment.

sI ∈ R5 and TI = 150 where sI and TI are respectively the state vector and num-
ber of unroll steps for InvertedPendulumBulletEnv-v0 and similarly, sID ∈ R9 and
TID = 150 where sID and TID are respectively the state vector and number of unroll
steps for InvertedDoublePendulumBulletEnv-v0. The number of Monte Carlo samples
is 7 for both environments and the discount factor as well as the specifications of the policy
network remain unchanged from the experiments in Section 4.1.3. The state dimensions
of the environments were large enough that we opted for multi-output regression model
to speed up the computation time at the expense of having the same uncertainty across
each output dimension. We noticed that our state and reward dynamics model saturated

46

(a) (b)

Figure 4.13: Screenshot of (a) InvertedPendulumBulletEnv-v0, and (b)
InvertedDoublePendulumBulletEnv-v0.

0 200 400 600 800 1000
Epoch

0

100

200

300

400

500

600

To
ta

l (
Un

di
sc

ou
nt

ed
) R

ew
ar

d

Our Model
DDPG

(a)

0 200 400 600 800 1000
Epoch

100

200

300

400

500

600

700

800

900

To
ta

l (
Un

di
sc

ou
nt

ed
) R

ew
ar

d

Our Model
DDPG

(b)

Figure 4.14: A comparison between my model configured with multi-output
regression and DDPG for (a) InvertedPendulumBulletEnv-v0 and (b)
InvertedDoublePendulumBulletEnv-v0.

47

quickly and a near-optimal policy was learnt in the first few epochs of interaction of the
environment with negligible policy improvements for epochs thereafter. Hence, in this
experiment we use the first few epochs for training and the remaining to just interact
with the environment. The training curves comparing our model to the DDPG baseline
for InvertedPendulumBulletEnv-v0 and InvertedDoublePendulumBulletEnv-v0 are de-
picted in Figure 4.14(a) and Figure 4.14(b), respectively. The plots provide some corrob-
oration for our hypothesis that our model-based algorithm is more sample efficient than
the DDPG baseline in that our model was able to leverage the smoothness assumption
of the system dynamics and learn a policy with high return at the initial epochs whereas
it took DDPG to reach and saturate to the same performance at approximately epoch
200 for InvertedDoublePendulumBulletEnv-v0 while InvertedPendulumBulletEnv-v0

never quite reached the same performance of our model with the same stability.

The main limitation to our method is the computationally complexity of the algorithm.
This computational complexity is high because of the following reasons:

1) we are constrained to use for loops to compute the prediction for every Monte Carlo
sample as opposed to the more efficient numerical “broadcasting” operation due to
the posterior updates enforcing the covariance matrices to be different across Monte
Carlo samples and

2) we compute the posterior distribution for the system and potentially reward dynamics
model.

Note that we incur the inefficiencies of both 1) and 2) for each Monte Carlo sample and time
step unroll in each fitness evaluation. Let us attempt to quantify the inefficiencies for both
1) and 2) and assume that we are modelling only the system dynamics and that we are using
a basis function of size B. Consider the first point 1), where we are making a prediction
and we assume that prediction is dominated by the complexity of matrix multiplication
which is O(B3). Assuming that we use S Monte Carlo samples and an unroll horizon
of T time steps, then the algorithm will make a total of ST predictions resulting in a
complexity of O(STB3). This is as opposed to a complexity of O(TB3) without incurring
the need to perform a separate matrix multiplication across each Monte Carlo sample (due
to an unaltered covariance matrix) and without quantifying the computational efficiency
gained in numerical broadcasting. The second point 2), calls for computing the posterior
for an additional data point and two of the most computationally fast methods are rank-
one Cholesky updates and Sherman-Morrison formula as both have a complexity of O(B2)
and we opt for the former as it exhibited better numerical stability in our experiments.
Posterior updates were necessary for each Monte Carlo sample and time step, hence we

48

have a total complexity of O(STB2) for the second point. Therefore, the computation
complexity for a single evaluation of the fitness function is O(STB3 +STB2) if we perform
Bayesian belief tracking as compared to a computational complexity of O(TB3) if we do
not. Note that the computational complexity would be magnified if we opt for a separate
regression model for each output dimension.

4.3 Comparisons to PILCO and deepPILCO

In the last set of experiments, we attempt to compare our model against PILCO and
deepPILCO. We use an open-source implementation of PILCO and deepPILCO which
constitutes a component of the code repository, entitled kusanagi, released for the experi-
ments conducted in [19]. PILCO and deepPILCO were designed to have access to the cost
function (as opposed to samples from the reward function in the case of traditional RL)
and for example, consider the cost

c(x) = 1− e
‖x−xtarget‖2

σ2c (4.1)

which is the squared exponential subtracted from unity, where x is the current location of
the controller, xtarget is the target location and σc is a parameter that controls the width
of the cost. The motivating choice for cost 4.1 is that it allows the expected cost at each
time step, that is,

Ext [c(xt)] =

∫
c(xt)N (xt|µt,Σt)dxt

to be calculated in closed form. In light of these requirements, the Pendulum-v0 and
MountainCarContinuous-v0 environments were modified so that the instead of returning
reward samples, the target goals of both environments were provided to construct the
cost function as specified in Equation 4.1 and were provided to PILCO and deepPILCO.
The settings for our model and DDPG remain unchanged from the set of experiments
specified in Section 4.1.3 and the default settings from the kusanagi package were used
for PILCO and deepPILCO. The training curves comparing our model, DDPG, PILCO
and deepPILCO for Pendulum-v0 and MountainCarContinuous-v0 are depicted in Figure
4.15(a) and Figure 4.15(b), respectively. Each curve is generated from averaging the results
of three trials of the experiment. As depicted in the figures, our model outperforms PILCO
and deepPILCO for both environments despite the additional domain knowledge that is
supplied to PILCO and deepPILCO. We suspect PILCO and deepPILCO’s shortcoming is
potentially due to the model’s difficulty in environments with long time horizons. Indeed,

49

0 25 50 75 100 125 150 175 200
Epoch

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

To
ta
l (
Un

di
sc
ou
nt
ed
) R

ew
ar
d

Our Model
DDPG
PILCO
deepPILCO

(a)

0 25 50 75 100 125 150 175 200
Epoch

−100

−75

−50

−25

0

25

50

75

100

To
ta

l (
Un

di
sc

ou
nt

ed
) R

ew
ar

d

Our Model
DDPG
PILCO
deepPILCO

(b)

Figure 4.15: A comparison of learning curves between our model, DDPG, PILCO and
deepPILCO for (a) Pendulum-v0 and (b) MountainCarContinuous-v0.

the test-bed environments for PILCO and deepPILCO (i.e., the environments that come
along with the kusanagi package) have time horizons that range from 25 to 40 whereas
the time horizons are 200 and 999 for Pendulum-v0 and MountainCarContinuous-v0,
respectively. In some environments, for instance, MountainCarContinuous, long rollouts
are necessary due to sparse rewards and we can see that our model was able to capture the
long-term payoff whereas PILCO and deepPILCO learned to just stay still and remained
stuck in this local optimal policy.

50

Chapter 5

Conclusion and Future Work

In this work, we explored a model-based Bayesian sparse sampling method for data-efficient
control. This work was inspired by the success of PILCO which used a GPR model for
learning the system dynamics and we follow in this direction but with the slight deviation
in that we used an approximate GP in the form of RFF thereby providing us with the
advantage of a design matrix that does not grow with respect to the size of the training
data. Posterior updates then correspond to a simple rank-one Cholesky update, making the
model well-suited for an online learning setting. In addition, our work takes a step towards
the possibility of directed model-based Bayesian RL exploration inspired by the work in
BAMDPs, but we extend the previous research by applying the theory to continuous
states and actions and we proposed a simple Monte Carlo sampling for approximating
the intractable integrals that result from this formulation. With our Bayesian approach,
optimization involves tracking the belief state of the agent at every unrolled step of the
optimization procedure, which further motivates the use BLR as the alternative, that is
with GPs, posterior updates would correspond to augmenting the gram matrix with the
hypothetical tuple at every time step, making the model computationally infeasible. For
the choice of optimizer, we chose a gradient-free black-box optimizer in the form of CMA-
ES mainly for the reasons that 1) computational graphs in gradient-based optimizers do
not mend well with operations involving posterior updates and 2) black-box optimizers
cope well with environments that exhibit loss functions with zero gradients everywhere
(i.e., mountain car problem).

We compared our model to a baseline model-free method and showed that our model-
based method was able to learn optimal policies within the first few epochs in the OpenAI’s
pendulum and mountain car tasks. Due to the smoothness assumption made by our re-
gression model, our algorithm struggles in robotics tasks simulated using the pybullet

51

physics engine but our model still demonstrated superior data-efficiency in two of the envi-
ronments that had minimal contact dynamics. In our last set of experiments, we compared
our model against PILCO and deepPILCO on the pendulum and mountain car task and
showed that our algorithm was able to learn better and more data-efficient policies than
the baselines.

There are a few directions for future research, and we close by enumerating two salient
potential future areas to explore and improve. Open problems/questions for future research
may include:

1. An obvious future direction is the address the difficulties of contact dynamics in
some environments. Assuming a model-based method, how would be designed a
regression technique that is able to faithfully model the contact discontinuities in
such environments?

2. As evidenced through the experiments, our method is still computationally demand-
ing due to the need to propagate the Bayesian belief state at every consecutive time
step. Are there any ways to work around this and make our algorithm more com-
putationally tractable? Further, if we are able to design it so that we can do away
with a black-box optimizer in favor of a gradient-based optimizer, then this would
add an extra boost in computational tractability as it is known that gradient-based
optimizers learn faster than gradient-free optimizers.

In this thesis, we introduced a framework for model-based Bayesian RL algorithm that is
though computationally very demanding, we hope that it will provide as an example for
the direction of principled exploration-exploitation via model-based Bayesian techniques
for the challenging domain of continuous states and actions.

52

References

[1]

[2] A visual guide to evolution strategies. http://blog.otoro.net/2017/10/29/

visual-evolution-strategies/. Accessed: 2019-03-15.

[3] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover printing,
tenth gpo printing edition, 1964.

[4] C. G. Atkeson and J. C. Santamaria. A comparison of direct and model-based re-
inforcement learning. In Proceedings of International Conference on Robotics and
Automation, volume 4, pages 3557–3564 vol.4, April 1997.

[5] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The ar-
cade learning environment: An evaluation platform for general agents. CoRR,
abs/1207.4708, 2012.

[6] Giovanni Binet, R Krenn, and Alberto Bemporad. Model predictive control applica-
tions for planetary rovers. 01 2012.

[7] Avrim Blum. Random projection, margins, kernels, and feature-selection. In Craig
Saunders, Marko Grobelnik, Steve Gunn, and John Shawe-Taylor, editors, Subspace,
Latent Structure and Feature Selection, pages 52–68, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[9] Marc Deisenroth. Efficient reinforcement learning using gaussian processes. 11 2010.

53

http://blog.otoro.net/2017/10/29/visual-evolution-strategies/
http://blog.otoro.net/2017/10/29/visual-evolution-strategies/

[10] Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-
efficient approach to policy search. In Proceedings of the 28th International Conference
on International Conference on Machine Learning, ICML’11, pages 465–472, USA,
2011. Omnipress.

[11] Ying Ding, Liang Wang, Yongwei Li, and Daoliang Li. Model predictive control and
its application in agriculture: A review. Computers and Electronics in Agriculture,
151:104 – 117, 2018.

[12] Michael O’Gordon Duff. Optimal Learning: Computational Procedures for Bayes-
adaptive Markov Decision Processes. PhD thesis, 2002. AAI3039353.

[13] David Duvenaud. Automatic model construction with Gaussian processes. PhD thesis,
11 2014.

[14] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter
Abbeel. Learning visual feature spaces for robotic manipulation with deep spatial
autoencoders. CoRR, abs/1509.06113, 2015.

[15] Carlos E. Garca, David M. Prett, and Manfred Morari. Model predictive control:
Theory and practicea survey. Automatica, 25(3):335 – 348, 1989.

[16] Tobias Geyer. Model Predictive Control of High Power Converters and Industrial
Drives. 09 2016.

[17] Shixiang Gu, Timothy P. Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous
deep q-learning with model-based acceleration. CoRR, abs/1603.00748, 2016.

[18] Nikolaus Hansen. The CMA evolution strategy: A tutorial. CoRR, abs/1604.00772,
2016.

[19] Juan Camilo Gamboa Higuera, David Meger, and Gregory Dudek. Synthesizing neural
network controllers with probabilistic model based reinforcement learning. CoRR,
abs/1803.02291, 2018.

[20] Sanket Kamthe and Marc Peter Deisenroth. Data-efficient reinforcement learning with
probabilistic model predictive control. CoRR, abs/1706.06491, 2017.

[21] Sergey Levine and Pieter Abbeel. Learning neural network policies with guided policy
search under unknown dynamics. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 1, NIPS’14, pages 1071–1079,
Cambridge, MA, USA, 2014. MIT Press.

54

[22] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training
of deep visuomotor policies. CoRR, abs/1504.00702, 2015.

[23] Sergey Levine and Vladlen Koltun. Guided policy search. 06 2013.

[24] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation
skills with guided policy search. CoRR, abs/1501.05611, 2015.

[25] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. CoRR, abs/1509.02971, 2015.

[26] Wai Hou Lio, J. A. Rossiter, and B. L. Jones. A review on applications of model
predictive control to wind turbines. In 2014 UKACC International Conference on
Control (CONTROL), pages 673–678, July 2014.

[27] Rowan McAllister and Carl E. Rasmussen. Improving pilco with bayesian neural
network dynamics models. 2016.

[28] Rowan McAllister and Carl Edward Rasmussen. Data-efficient reinforcement learning
in continuous state-action gaussian-pomdps. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems 30, pages 2040–2049. Curran Associates, Inc., 2017.

[29] William Montgomery and Sergey Levine. Guided policy search as approximate mirror
descent. CoRR, abs/1607.04614, 2016.

[30] Andrew William Moore. Efficient memory-based learning for robot control. Technical
report, 1990.

[31] Anusha Nagabandi, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. Neural
network dynamics for model-based deep reinforcement learning with model-free fine-
tuning. CoRR, abs/1708.02596, 2017.

[32] Anusha Nagabandi, Guangzhao Yang, Thomas Asmar, Gregory Kahn, Sergey Levine,
and Ronald S. Fearing. Neural network dynamics models for control of under-actuated
legged millirobots. CoRR, abs/1711.05253, 2017.

[33] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L. Lewis, and Satinder P. Singh.
Action-conditional video prediction using deep networks in atari games. CoRR,
abs/1507.08750, 2015.

55

[34] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. CoRR,
abs/1707.03497, 2017.

[35] Ali Rahimi and Ben Recht. Random features for large-scale kernel machines. In In
Neural Infomration Processing Systems, 2007.

[36] Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced Lec-
tures on Machine Learning, ML Summer Schools 2003, Canberra, Australia, February
2-14, 2003, Tübingen, Germany, August 4-16, 2003, Revised Lectures, pages 63–71,
2003.

[37] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press,
2005.

[38] W. Rudin. Fourier Analysis on Groups. Dover Books on Mathematics. Dover Publi-
cations, 2017.

[39] Jeff G. Schneider. Exploiting model uncertainty estimates for safe dynamic control
learning. In Proceedings of the 9th International Conference on Neural Information
Processing Systems, NIPS’96, pages 1047–1053, Cambridge, MA, USA, 1996. MIT
Press.

[40] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel.
Trust region policy optimization. CoRR, abs/1502.05477, 2015.

[41] David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim
Harley, Gabriel Dulac-Arnold, David P. Reichert, Neil C. Rabinowitz, André Bar-
reto, and Thomas Degris. The predictron: End-to-end learning and planning. CoRR,
abs/1612.08810, 2016.

[42] Richard S. Sutton. Integrated architectures for learning, planning, and reacting based
on approximating dynamic programming. In In Proceedings of the Seventh Interna-
tional Conference on Machine Learning, pages 216–224. Morgan Kaufmann, 1990.

[43] Aviv Tamar, Sergey Levine, and Pieter Abbeel. Value iteration networks. CoRR,
abs/1602.02867, 2016.

[44] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033, 2012.

56

[45] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. pages 5026–5033, 10 2012.

[46] G. E. Uhlenbeck and L. S. Ornstein. On the theory of the brownian motion. Phys.
Rev., 36:823–841, Sep 1930.

[47] Marvin Zhang, Sergey Levine, Zoe McCarthy, Chelsea Finn, and Pieter Abbeel. Policy
learning with continuous memory states for partially observed robotic control. CoRR,
abs/1507.01273, 2015.

57

	List of Figures
	Introduction
	Contributions
	Thesis Organization

	Background and Related Work
	Markov Decision Processes
	Reinforcement Learning
	Model-free Reinforcement Learning
	Model-based Reinforcement Learning

	Gaussian Process Regression
	Covariance Matrix Adaptation Evolution Strategy
	Related Work

	Proposed Model
	System Identification
	Policy Search Optimization
	Bayesian Belief Tracking
	Algorithm Overview

	Experiments and Results
	Classical Control Problems
	Environments
	Systems Dynamics Regression
	Classic Continuous Control

	pybullet Environments
	Comparisons to PILCO and deepPILCO

	Conclusion and Future Work
	References

