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Abstract

Fifth generation of cellular networks brings new challenges to the network operators
as new applications create new demands. In this thesis, we will study different topics on
cellular networks, explain the challenges of each topic, and propose solutions to tackle these
challenges. The topics we consider are: i) uplink scheduling in multi-cell OFDMA networks,
ii) downlink scheduling in multi-cell OFDMA networks, iii) full-duplex communications in
cellular networks, and iv) cellular networks with intra-cellular traffic.

We begin our study with uplink scheduling in 5G networks as its importance has in-
creased in recent years and the related literature is relatively scarce. Scheduling on the
uplink is a challenging task mostly due to power and interference management. In practi-
cal scenarios, each cell schedules its own users independently from the other cells. In this
case, the interference that is received from the neighboring cells cannot be known since the
schedules of the other cells are not known. Therefore, interference has to be estimated in
order to estimate the rate of each user. When this estimation is not done properly, it can
cause resource losses or under-utilization as we show in this thesis. To avoid this problem,
all the cells could be scheduled simultaneously using a cloud radio access network (C-RAN)
and hence we can take the exact interference into account while scheduling. Formulating
the optimal multi-cell scheduler is straightforward, but it is a very large integer problem
that cannot be solved easily and fast. We transform it into a more tractable upper bound-
ing problem and solve it with an iterative algorithm. However, it is still not fast enough
to be used in real time. Hence, we focus on improving the existing uplink schedulers by
proposing practical solutions for the case when there is no C-RAN and for the case when
a C-RAN is present. We also propose a soft frequency reuse (SFR) based scheduler that
performs much better than the existing schedulers.

We then perform a similar study for downlink scheduling that carries the majority of the
cellular traffic today. While downlink scheduling is easier than the uplink due to simpler
interference management, it is still not trivial to achieve performance comparable to the
maximum achievable performance using a practical scheduler. The main contribution of
this study is to show that a well-tuned SFR-based local scheduler can perform almost as
well as the centralized scheduler and hence a centralized scheme for downlink might not
be necessary.

We next consider a cellular network where full-duplex communications (FDC) are en-
abled at the base stations. The coexistence of uplink and downlink transmissions in co-
channel cells create new sources of interference that have to be taken into account when
studying the performance of FDC. When doing so, traffic asymmetry (TA), i.e., the fact
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that the traffic is in general much larger on the downlink than on the uplink, should also be
considered. We will show that ignoring TA biases the results in favor of FDC. We compute
the performance gain that an FDC-enabled multi-cell OFDMA network has over a regu-
lar time division duplex (TDD) system considering all sources of interference and TA by
formulating a multi-cell centralized scheduling problem. We use it to analyze the impact
of each new source of interference as well as of TA. Our conclusion is that, FDC does not
improve performance enough in a multi-cell system to warrant its added complexity in an
urban setting when TA and the interference have realistic values. The verdict is slightly
better in a rural setting. Furthermore, we show that heterogeneous networks can be a
better choice than the homogeneous networks to deploy FDC when it is adjusted well.

We finalize our study with device-to-device (D2D) communications. With the advent
of smart phones, there are many new applications that create local (intra-cellular) traffic
among the users in the same network. Most work in the literature focuses on the possibility
to utilize a direct link between those users to by-pass the base station. Such transmissions
are called D2D mode. However, implementing D2D is not easy due to difficult interference
management and not knowing the required channel gains. We face a major problem while
studying D2D. We need a clear benchmark to evaluate the performance of D2D mode. To
this end, we focus on designing a type-aware scheduler (a scheduler that has the information
on the type of traffic, which can be downlink, uplink, or intra-cellular) in a case where direct
communication between users is not enabled. This scheduler can be seen as the benchmark
against D2D mode. We show that performance gain can be obtained by jointly scheduling
the uplink and downlink with respect to the case where the scheduler is blind to the types.
We show for a homogeneous network that when the traffic types are known to a scheduler,
a significant performance gain can be achieved compared to the case where the traffic types
are not known. We also analyze heterogeneous networks that consist of macro cells and
small cells and show that large performance gain can be obtained by performing type-aware
user association jointly with user scheduling.

The main contributions of the thesis are i) to analyze the performance of existing
schedulers and see if they perform well enough compared to the maximum achievable
performance both on the uplink and the downlink, ii) to propose enhancements or new
schedulers when the existing schedulers do not perform well enough, iii) to illustrate when
FDC deployment can be useful under which scenarios, and iv) to show the importance of
information of traffic types when users with different types of traffic exist.
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Chapter 1

Introduction

In this thesis, we will focus on resource management problems in cellular networks for
different scenarios. This chapter gives a brief overview of cellular networks, the problems
we will consider, and the challenges associated to these problems. We will also explain our
contributions and the related messages in the following.

1.1 Overview

A typical cellular network consists of many Base Stations (BS) and users associated to
these BSs. A cellular network operates on a licensed frequency band. All transmissions are
traditionally from a BS to users or from a user to its BS. The frequency band is divided into
smaller units called subchannels. Time is also slotted and each slot is called a subframe.
A set of T subframes is called a frame (typically, a subframe is 1 ms, T = 10). Each
BS serves its users on the wireless resources (subchannels) allocated to that BS by the
operator. Wireless transmissions are usually half-duplex, i.e., the BS either transmits or
receives at a given time. A user sees two types of traffic, the uplink traffic that it generates
and transmits to its BS, and the downlink traffic that it receives from the BSs.

Next, we will introduce some terminology regarding cellular networks.

Orthogonal Frequency Division Multiple Access (OFDMA)

OFDMA is the physical layer technology used in the forth and fifth generations of
cellular networks. Although it will be explained later in Chapter 2, we will briefly describe
it here.
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OFDMA is made of Physical Resource Blocks (PRB). A PRB consists of one subchan-
nel and one subframe. It is the smallest unit that can be allocated to a user for either
a downlink or an uplink transmission. Note that each transmission in a cell creates in-
terference to the neighboring cells. In a traditional cellular network, there is only one
transmission per PRB either on the downlink or the uplink. All devices are half duplex,
i.e., they cannot transmit and receive on the same PRB. Typically, part of a frame is dedi-
cated for uplink transmissions and while the rest is for the downlink transmissions. This is
called Time Division Duplex (TDD). It is also possible to dedicate a set of subchannels to
uplink transmissions while the other subchannels are for downlink transmissions. This is
called Frequency Division Duplex (FDD). In the following, we will assume that the network
operates in TDD mode except when otherwise stated.

There are some important Radio Resource Management (RRM) processes performed
by the BSs that critically impact the network performance, namely user scheduling, user
association, channel allocation, and interference management. While we will study all of
these processes in this thesis, our main focus will be on user scheduling and interference
management. Next, we will explain those processes and their related challenges.

User Scheduling and Interference Management

User scheduling [3] is one of the most critical processes in a cellular network. It is
responsible for:

• allocating the BS resources, i.e., the cell PRBs, in an efficient and fair manner.

• determining the power used on each PRB by the BS on the downlink and by each
user on the uplink. As the power budget is limited for both the users and the BSs,
using the power efficiently while managing the interference is very important.

• choosing a Modulation and Coding Scheme (MCS) on each PRB. This depends on
the interference and hence the Signal to Interference plus Noise Ratio (SINR) on each
PRB.

These three missions have to be completed very fast, e.g., in a few milli-seconds, as
user scheduling is a process that is called every frame. In a practical cellular network, each
BS performs these processes locally and independently from other BSs. However, with the
advent of Cloud Radio Access Network (C-RAN), which will be explained shortly, it might
be possible to perform these operations centrally for all the BSs. In the rest of this thesis,
we will consider Proportional Fairness (PF) as our fairness criterion. We will describe it
in more details in Chapter 3.
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Interference management is another process that is crucial to network performance and
it is closely related to user scheduling. Each transmission in a cell creates interference at the
receivers in the co-channel neighboring cells. This interference depends on the transmitters
and the power used. It crucially impacts the system performance since it directly affects
the SINR and hence the rate each user gets. Therefore, user scheduling is very important as
which user or BS transmits in each cell on a given PRB with which power directly impacts
the interference created to other cells. In a practical system, since each BS schedules its
own users, it might not be easy for a BS to estimate the interference correctly.

A scheduler relies on computation of SINRs on each PRB to make decisions, which
means it needs an estimate of the interference on each PRB. These estimates depend what
other BSs are scheduling on these PRBs. So, we have a loop in the sense that the BSs
need to know the interference to schedule, and the schedule creates interference. We have
also an inter-dependence between BSs.

Channel Allocation (CA) and User Association (UA)

Channel allocation and user association are two other network processes that have sig-
nificant impact on system performance. User association simply determines which user is
associated to which BS. This is very important for load balancing as simple user association
schemes, such as those connecting a user to the BS corresponding to the strongest signal
received, might sometimes result in poor performance, especially for a heterogeneous net-
work configuration, which will be explained later in this chapter. Although user association
is not the main focus of this thesis, we will study it in two chapters.

Channel allocation determines which subchannels are available to which BS. For ex-
ample, the network might employ a reuse factor r among the BSs, where each BS can
only use a subset comprised of 1/r of the subchannels. This is very important mainly
because it affects the interference and hence the performance of the network. Similar to
user association, channel allocation will not be our main focus, but we will study it briefly
especially in the context of heterogeneous networks in this thesis.

C-RAN

In a typical cellular network, each BS is responsible for most of the RRM processes, such
as scheduling, of its own cell. Hence, there is no coordination among the BSs. However,
a recent technology, called C-RAN, enables the centralization and coordination of some
processes among a set of BSs.

A C-RAN provides a mean to centralize. However, to use the power of centralization,
one might need more information, i.e., more channel gains between the users and the BSs,
and this might not be easy. Hence, adding C-RAN brings potential benefits, but new
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challenges: 1) the problems are larger as it considers many cells together, 2) there is a
need for more information.

The question of which RRM processes to push back to the C-RAN is open for debate.
User scheduling is often considered as a strong candidate for this.

Homogeneous Networks and Heterogeneous Networks:

Homogeneous networks are cellular networks, where all the BSs have similar features,
such as power budget, antenna gains, and channel models between them and the users,
all of which will be explained later in this thesis in detail. We refer to the BSs of a
homogeneous networks as macro BSs.

Heterogeneous Networks (HetNets) have recently emerged as a new solution to improve
the coverage and throughput performance of the homogeneous networks. It is simply based
on deploying low-cost low-powered BSs to decrease the load of the macro BSs. Examples
of such low power BSs include pico base stations, relay nodes, and femto base stations. In
the following, we will refer to these BSs as small cells.

While HetNets bring the opportunity to increase the network performance, they pose
new challenges. For example, while a UA policy that associates each user to the BS from
which the user receives the strongest signal works quite well for a homogeneous network,
it is not the case for a HetNet since macro BSs have higher power and yield better channel
gains [4].

In the remaining of the thesis, we will mostly focus on homogeneous networks, but we
will extend some of our results to HetNets.

Full-Duplex Communications (FDC)

Unlike the traditional cellular networks that only allow a single transmission on a PRB,
FDC allows one downlink and one uplink transmission on a PRB, thanks to the recent
advances in self-interference cancellation. A priori, both BSs and users can be FDC-
enabled, however it might be more realistic to assume that only the BSs are FDC-enabled.
FDC brings additional complexity to the network operation as interference management
becomes more complicated. More details on FDC will be given later in this chapter.

Traffic Asymmetry

Today’s cellular networks are dominated by downlink traffic [5] even if uplink traffic
has also increased recently in volume. Therefore, the ratio of the uplink to downlink traffic
volume should be taken into account while operating a network. For example, a TDD
system should be parametrized with this in mind.

Traffic Types
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As discussed before, a classical cellular traffic has two types of traffic, which are the
uplink and downlink traffic. With the advent of recent applications on the smart phones
such as photo sharing, the users start exchanging data with users in the same cellular
network in close proximity to them. We define this type of traffic as Intra-Cellular (IC).
The users might be in the same cell or in adjacent cells. We will study the RRM processes
in a network with IC traffic in Chapter 6.

Device-to-Device (D2D) Communications

As the intra-cellular traffic has emerged recently, it introduced the opportunity to
improve the network capacity by utilizing direct links between the users. In a traditional
network, every transmission occurs between a user and a BS. However, when two users have
intra-cellular traffic, since they are geographically close to each other, it might be beneficial
to by-pass the BS and enable direct transmission between these users. Such transmissions
are called D2D communications. Although it can theoretically improve the performance,
it bring many challenges such as interference management, intra-cellular traffic discovery,
etc.

1.2 Research Questions and Contributions

In this section, we explain the research questions we try to answer in this thesis together
with our contributions and messages. We focus on four main problems, all of which are
somehow related to each other.

The main challenge in next generation cellular networks is to meet the ever increasing
demand of higher data rates using limited wireless resources. Fig. 1.1 shows the overall
mobile data traffic prediction for the next years by Cisco [2]. In order to meet this demand,
the RRM processes, which are mentioned above, have to be done in the most efficient
way. In the following, we will focus on scheduling in four different scenarios, which are
multi-cell uplink scheduling, multi-cell downlink scheduling, a network with full-duplex
communications enabled, and a network when there is intra-cellular traffic.

1.2.1 Uplink Scheduling in Multi-Cell OFDMA Networks

While most of the RRM studies in the literature focus on the downlink because it carries the
majority of the cellular traffic, the importance of uplink has increased in recent years with
the advent of Internet of Things (IoT) and new smart phone applications. It is also pointed
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Figure 1.1: Overall Mobile Data Traffic Predictions by Cisco [2]

out in [6] that applications such as Netflix create more and more uplink traffic. Unlike 4G
networks, where Single Carrier Frequency Division Multiple Access (SC-FDMA) is used
on the uplink, 5G uses OFDMA as the uplink multiple access technology. We conduct
a detailed study on uplink scheduling in multi-cell OFDMA networks since it will be the
new frontier in 5G networks. As discussed before, interference management is critical for
scheduling, hence the scheduler needs to either compute or estimate the interference so
that it can compute/estimate the SINR and hence chooses an appropriate MCS. However,
the interferers are other users transmitting in other cells and since the neighboring cells’
schedules are not known to a BS when it computes its own schedule, the interference has
to be estimated and this is not easy. The BS might not be able to decode some PRBs if
the interference is under-estimated yielding PRB losses. Some of the PRBs might not be
fully utilized due to an over-estimation of the interference (i.e., a higher rate could have
been obtained with a different MCS).

Our research questions are: How do existing local schedulers perform compared to
the maximum achievable performance? How can we improve the performance of practical
schedulers?

Since a BS cannot know other cells’ schedules beforehand and interference is directly
linked to these schedules, the best performance can be obtained only when all cells are
scheduled simultaneously in a centralized fashion as exact interference can be taken into
account.

Our contributions on the uplink scheduling can be summarized as follows:
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• We begin our study with two existing practical local schedulers and explore their
gooput/loss performance, where goodput is defined as the rate seen by a user after
possible PRB losses.

• We formulate the centralized multi-cell scheduling problem. Solving the centralized
scheduling problem is very hard since it is a very large sized Mixed Integer Non-Linear
Programming (MINLP) problem. To solve it, we propose a two-step transformation
to transform it into an upper bounding signomial programming problem that can
be solved using the iterative algorithm proposed in [7]. We then extract a feasible
solution to the original scheduling problem from the result of the upper bounding
problem. The feasible solution serves as a lower bound to the optimal solution of
the original problem. We will show that the two bounds are close to each other.
The results show that the above two local schedulers perform much worse than the
centralized scheduler .

• We propose two enhancements that improve the performance of the local schedulers,
one when there is no C-RAN and one when there is a C-RAN. The first one is a
loss-aware MCS selection that takes possible losses into account, and the second one
is called Coordinated Link Adaptation (CLA) and adjust the MCS to avoid all losses.
Note that avoiding losses can be critical in 5G networks as losses create jitter and
hence degrade the user Quality of Experience (QoE). There enhancements reduce the
performance gap with the centralized scheduler significantly, but there is still room
for improvement.

• We finally propose a complete suite of schemes, i.e., scheduler and a power alloca-
tion scheme, based on Soft Frequency Reuse (SFR) and parametrize it in a robust
centralized fashion. It outperforms the benchmark schedulers and perform only 17%
worse than the centralized scheduler.

The messages are: Interference estimation in a practical uplink scheduler is critical
and when it is not done carefully, the system performance degrades. While a centralized
scheduler can perform better than any other scheduler, it is not possible to implement
it in real time. Having a C-RAN allows us to provide better enhancements. The
proposed enhancements improve the performance of practical schedulers drastically,
i.e., more than 50%, we still need a new scheduler to get a reasonable performance, i.e.,
a performance close to the one of the centralized scheduler.
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1.2.2 Downlink Scheduling in Multi-Cell OFDMA Networks

We then study downlink scheduling in a similar fashion. Designing practical downlink
schedulers is easier since interference management is simpler as the transmitters in the
neighboring cells are always the BSs. However, it is not trivial to design a scheduler that
performs well enough.

Our main research question is: What is the maximum achievable performance on the
downlink and how do practical schedulers perform compared to it? Similar to the uplink
scheduling problem, the best performance can be obtained when all cells are scheduled
centrally. To this end, we again study the centralized scheduling problem and compare
its performance with practical schedulers. We show that the simple Round Robin (RR)
scheduler performs significantly worse than the centralized scheduler and then we will focus
on designing an SFR-based scheduler. In this chapter, we also study HetNets. Our main
contributions are to show that a well-parametrized SFR scheduler performs well enough
so that we might not need centralization via a C-RAN and we also study centralized
scheduling in HetNets.

The main message of this study is that a well-parametrized SFR-based local down-
link scheduler performs very well, hence centralizing downlink scheduling might not be
necessary.

1.2.3 Full-Duplex Communications in Cellular Networks

After studying uplink and downlink scheduling separately, we focus on how to combine the
uplink and downlink to further improve their performances. While traditionally wireless
devices are half-duplex, full-duplex communication (FDC) is being considered as a possible
5G technology. Specifically, a BS would be able to transmit and receive at the same time
on a given PRB. This is enabled by the advances in self interference cancellation capability
(at the BSs) [8]. While it is a promising approach to improve performance, it introduces
many new challenges.

New types of interference are introduced in FDC mode such as Self Interference (SI),
Inter-BS Interference (IBI), and Inter-User Interference (IUI), all of which will be discussed
in detail in Chapter 5. Furthermore, practical scheduling becomes more difficult to design
as we need to have more channel gain information since new types of interferences require
user-user or BS-BS channel gains, which are not easy to collect, and interference manage-
ment becomes much more challenging due to the new types of interferences. Therefore,
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before deploying an FDC-enabled cellular network, we need to ensure that the gain is
significant to warrant its added complexity. In the following, we will focus on a cellular
network, where only the BSs are FDC-enabled, and we only consider a centralized multi-
cell scheduler both for homogeneous and heterogeneous networks to explore the potential
gain of FDC by considering each new type of interference as well as the uplink/downlink
traffic asymmetry, which is ignored in the literature.

Our contributions are:

• We formulate a multi-cell joint scheduling problem for FDC-enabled multi-cell net-
works that includes all types of interference and takes traffic asymmetry into account.
This problem allocates power and resource blocks jointly for the uplink and the down-
link. We also formulate a similar problem for TDD. Using these problems, we study
the impact of the different types of interference on the performance gain of FDC over
TDD as a function of the traffic asymmetry and draw engineering insights on the
potential of FDC in cellular networks for different scenarios (urban and rural) and
for different values of Self-Interference Cancellation (SC) and IBI parameters as well
as the uplink/downlink traffic asymmetry. In particular, we show that ignoring some
of the new sources of interference (for example by analyzing full duplex in a single
cell) biases the results in favor of FDC and we quantify this.

• We study FDC in HetNets and show that FDC might bring more benefits in HetNets
than in homogeneous networks, when the other RRM operations such as CA and UA
are performed appropriately.

• We also show how the results produced by models not taking traffic asymmetry into
account are biased and favor FDC.

The main message of this study is that the performance of FDC strictly depends on
the network parameters and FDC deployment might not always bring a large enough
gain to warrant its added complexity. It can be beneficial in the following conditions: i)
equal amount of uplink and downlink traffic, ii) rural scenario, iii) HetNet deployment,
and iv) very crowded networks.

1.2.4 Cellular Networks with Intra-Cellular Traffic

Many new applications, such as file or photo sharing, create local, i.e., intra-cellular (IC),
traffic among cellular users. In a traditional cellular network, all data transfer is done
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through the BS (cellular mode). D2D communication has emerged as a component of 5G
networks that allows users to by-pass the BS and communicate directly with each other
(D2D mode) [9]. However, it is not easy to implement the D2D mode in practical systems
since it requires a very careful interference management and the knowledge of channel gains
between the users, which is hard to obtain. In the following, we consider three traffic types
that are uplink, downlink and IC traffic, where IC traffic is defined as the traffic between
two users in close proximity.

We focus on a cellular network with intra-cellular traffic in cellular mode, i.e., when all
communications are done between the BSs and the users. Note that a system with D2D
mode would need access to information on the type of the traffic (flows) and would treat
traffic differently based on its type. In the following, we consider different types of traffic,
such as uplink, downlink, and intra-cellular. Our main research question is: How would
we operate a system in cellular mode if we had access to the traffic type information? We
say that the network is type-aware when it knows all type of traffic in the system, whereas
we call it type-blind when it does not the types.

In summary, our contributions can be described as follows:

• We revisit the concept of fairness in the case of multiple flows per user and propose
a single metric that measures (device) fairness and efficiency at the same time.

• We formulate and study the coupling of the uplink and the downlink schedulers in
the type-aware case for an homogeneous system in the cellular mode. We compare,
for different mixes of flows, the gains in performance with respect to the type-blind
case, where the schedulers are decoupled.

• We consider a HetNet configuration, for which we formulate and study a type-aware
joint user scheduling and user association problem. We compare the gains in perfor-
mance with respect to the type-blind scheme for different mixes of flows.

The two main messages of the study are that i) important network processes, such
as user scheduling and association, should be performed with the knowledge of the
type of flows; ii) the uplink and downlink should be jointly scheduled to obtain the
best performance when there is IC traffic in the system.
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1.3 Outline

The rest of the thesis is organized as follows. In Chapter 2, we explain our system model
and the notation commonly used in this thesis. Note that each chapter needs some extra
notation for their system model and we explain them in their respective chapters. We
give the related literature at each chapter separately. We study uplink scheduling in
Chapter 3 by focusing on multi-cell centralized scheduler, practical local schedulers, and
their performance improvement. We perform a similar study on downlink scheduling in
Chapter 4. We study the performance of full duplex communications in cellular network
in Chapter 5. In chapter 6, we study cellular network operations in the existence of intra-
cellular traffic and finally conclude the thesis in Chapter 7.
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Chapter 2

System Model

In this chapter, we will define the system model we use commonly in this thesis. Note that
in some of the following chapters, we need to introduce more details on the system model
about the specific problems we study in these respective chapters.

2.1 Network model

We consider a multi-cell OFDMA network that consists of K BSs (set of BSs is K), all of
which are using the rM subchannels licensed to the system, where r is the reuse factor
between the BSs. Hence, each BS is allowed to use M subchannels. Note that except
Chapter 6, where we study intra-cellular traffic, we use a reuse factor r = 1 among the
BSs. We consider a wrap-around model in order to avoid any border effects.

User scheduling is the process, performed every frame made of T subframes, that allo-
cates the M subchannels to its associated users. A PRB consists of one subchannel and
one subframe and it is the smallest scheduling unit. We denote the set of users with U ,
the set of users associated to BS k with Uk, the set of subchannels withM, and the set of
subframes in a frame with T . In some problems, the Uk’s are given, in some others, they
are not, i.e., user association is part of the problem.

We consider a full buffer traffic model, i.e., users and BSs always have data to transmit.
To simplify the notation, we assume that the channels are flat within a frame time.
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2.2 Power, SINR, and rate models

Each user has a power budget PU and each macro BS has a power budget PBS to be spent
in a given subframe over multiple subchannels.

Let P c,t
u,k (resp. pc,tu,k) denote the power used by BS k to transmit to user u ∈ Uk on the

downlink on PRB {c, t}, corresponding to subchannel c and subframe t (resp. used by user
u to transmit to BS k on the uplink).

On the downlink, the total interference seen at user u ∈ Uk on PRB {c, t} is denoted by
Ic,tu,k and on the uplink the total interference seen at BS k is denoted by Qc,t

u,k. Note that in

a classical cellular network, Ic,tu,k includes all the downlink transmissions in the neighboring

cells and Qc,t
u,k includes all the uplink transmissions in the neighboring cells. However,

for the full duplex scenario we will study in Chapter 5, they both include all the uplink
and downlink transmissions in the neighboring cells as well as the current cell as will be
discussed later.

We denote the channel gain between a user u and a BS k with Gu,k. We consider
symmetric channel gains, i.e., the channel gain between a user and a BS is the same on
the uplink and on the downlink. For this kind of channel gains, we use a channel model
validated by 3GPP [10]. Numerical details will be given in the following chapters.

The SINR on the downlink, Sc,tu,k, (resp. on the uplink, sc,tu,k) when BS k transmits to
(resp. receives from) user u ∈ Uk on PRB {c, t} is computed as:

Sc,tu,k =
P c,t
u,k ×Gu,k

µDL + Ic,tu,k
, (2.1)

sc,tu,k =
pc,tu,k ×Gu,k

µUL +Qc,t
u,k

, (2.2)

where µDL (resp. µUL) is the thermal noise on the downlink (resp. uplink) on one PRB.

An adaptive MCS is used and the set of MCS is characterized by the discrete rate
function f(.) that maps the SINR to data rates. It is a piece-wise constant function with
L steps [1]. Specifically if the SINR on a PRB is in range (−∞, η1], the rate is zero, if in
range (ηj, ηj+1] (for j ∈ {1, . . . , L − 1}), then the rate is ϑj (see Table 2.1). Hence, if the
SINR on a PRB, say Sc,tu,k on PRB {c, t}, has been estimated or computed correctly, the

MCS to use should be so that the rate seen by the user on that PRB is f(Sc,tu,k).

We use the binary variables xc,t,lu,k and yc,t,lu,k to denote if PRB {c, t} of cell k is allocated
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Table 2.1: Modulation and Coding Schemes [1]

SINR (dB) -6.5 -4 -2.6 -1 1 3 6.6 10 11.4 11.8 13 13.8 15.6 16.8 17.6
Rate (kb/s) 25.2 38.6 63.8 100.8 147.8 198 248.6 321 404.9 458.6 557.8 655 759.4 860 932.4

to user u using MCS level l on the downlink and uplink, respectively.

2.3 Performance Metric

In the rest of thesis, we will consider proportional fairness as our fairness criterion as it
considers efficiency and fairness simultaneously. Therefore, we will use Geometric Mean
(GM) of the user throughputs as our performance metric. Specifically, for a network with
N users, we will aim at maximizing the following metric:

Γ(N) = (
N∏
i=1

λi)
1/N . (2.3)

In this case, the higher the GM is, the more fair and efficient the scheduler is.

2.4 Scenarios

In the following, we will consider mainly two scenarios. In the first scenario, there is no
coordination among the BSs, hence scheduling is done independently at each BS. In the
second scenario, there is a C-RAN in the network that enables the coordination of the
scheduling in each cell. A C-RAN is assumed to control a set of cells simultaneously and
have access to information, which is not normally available to BSs, such as the channel
gains between each user and each BS. However, a practical scheme in that case needs to
be fast to compute and not too expensive in terms of information. Most of the centralized
problems that we formulate cannot be solved fast enough to be practical. Note that we
define a practical scheme as fast scheme that does not require too much information that
are difficult to obtain, such as all channel gains in the network.
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2.5 Settings

We will consider two different settings, namely a static (snapshot) one and a dynamic
one for our performance evaluation. In the first one, we evaluate the performance of a
network for several global realizations. A global or local realization ω is characterized by
the random deployment of a set of users and the channel gains between each user and each
BS. We usually assume that user association is given in this setting. Then, for a given user
association, a local realization in cell k is characterized by the set of users associated to
BS k and the channel gains between these users and BS k.

The second setting is a dynamic setting where fixed users get powered on, get an
association, get served, and then get powered off. We study the dynamic setting for uplink
scheduling in Chapter 3. We assume that users get powered on according to a Poisson
Point Process (PPP) and depart from the system after completing the upload of a fixed
sized file. We analyze the system performance in terms of the average delay experienced
by the users. We simulate the dynamic setting with a five percent confidence interval.
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Chapter 3

Uplink Scheduling in Multi-Cell
OFDMA Networks

3.1 Introduction

The last decade has witnessed a tremendous growth in cellular traffic, which has resulted
in a necessity to perform resource management processes in a more efficient way [2]. Such
processes include user scheduling, channel allocation, and user association. Most of the
work so far has focused on improving the downlink performance since today’s applications
create a very large amount of downlink traffic [11]. However, more and more applications
also need an efficient uplink (e.g., Netflix is creating a large amount of return traffic [6]) and
with the advent of IoT that allows millions of devices to collect and transmit data [12], the
importance of efficient resource management processes on the uplink increases significantly.
With the emergence of 5G networks, uplink transmissions will be using OFDMA unlike
in LTE-A where SC-FDMA is used. In this chapter, we focus on uplink scheduling in a
multi-cell OFDMA network. Note that this is the main chapter of this thesis.

An uplink scheduler decides, in each cell, which user transmits on each PRB and with
which transmit power in order to be fair and efficient. A scheduler also assigns an MCS to
each {user,PRB} pair. In the following, we only consider proportional fair schedulers [3].
A scheduler also assigns an MCS to each {user, PRB} pair. This assignment requires the
computation or estimation of the SINR on each PRB since the signal can only be decoded
if the SINR is above a threshold dependent on the MCS. A scheduler needs to compute
a new PRB to user assignment along with power and MCS every few milli-seconds, i.e.,
every frame, and hence the process has to be fast.
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Figure 3.1: An example C-RAN architecture

Typically, each BS performs these processes independently from other BSs. However,
the introduction of C-RAN, allows the centralization and coordination of certain processes
across many BSs [13]. A sample C-RAN architecture is shown in Fig. 3.1. The decision
of which processes are pushed back to the C-RAN is open for debate. User scheduling is
often considered as a strong candidate for this.

In this chapter, we focus on a multi-cell OFDMA-based network with no C-RAN
(Scenario 1) and with C-RAN (Scenario 2). In the first scenario, there is no coordina-
tion between the BSs. Therefore, the scheduler has to estimate the interference and SINR
based on measured information. When this is not done perfectly, it could lead to PRB
losses, if the BS cannot decode the signal because of an under-estimation of the interfer-
ence, or to under-utilization, if the interference is over-estimated. We define goodput as the
effective throughput each user sees after possible PRB losses. Note that since we consider
proportional fairness, our performance metric will be the GM of user goodputs.

In the second scenario, there is a C-RAN in the network, in which the scheduling can
be done in a centralized fashion. In this case, the C-RAN requires more channel gain
information than the BSs can have access to in scenario 1. Then, the challenge is to
perform the much larger scheduling task (since it is for all BSs) fast.

We are now ready to state our research questions: are the existing uplink schedulers
efficient enough? If not, can we design efficient practical schedulers for those two scenarios?

We start with the study of two practical local benchmark schedulers for the first sce-
nario, one of which is a simple RR scheduler and the other one is proposed in [14]. We
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study their goodput/loss performance over many snapshots. We show that interference
estimation is critical to their performances and that losses are numerous. To the best
of our knowledge, our work is the first to explore the goodput/loss trade-off for an up-
link scheduler (Contribution 1). We present the benchmark schedulers together with their
goodput/loss performance in Section 3.31.

Then, we check how these schedulers perform compared to the best achievable perfor-
mance. To this end, we consider a fully centralized scheduler that schedules all the cells
simultaneously assuming full information (i.e., the channel gains for all {i, j} pairs where
i is a user and j is a BS). Solving the centralized scheduling problem is very hard since it
is a very large sized MINLP problem. To solve it, we propose a two-step transformation
to transform it (Contribution 2) into an upper bounding signomial programming problem
that can be solved using the iterative algorithm proposed in [7]. We then extract a feasible
solution to the original scheduling problem from the result of the upper bounding problem
and show that the difference between the feasible solution and the upper bound in terms
of GM goodput is very low, hence the upper bound is very tight2.

We do not believe that such a scheduler could be realized in a C-RAN because i) getting
all the cross-channel information, i.e., channel gain with users and other BSs than their
own, is not practical and ii) the problem is very large and complex and cannot be solved
quickly. However, this centralized scheduling problem is very useful because it provides an
upper bound for the performance of practical scheduling schemes. We formulate and solve
the centralized scheduling problem and then compare its performance with the benchmark
scheduler in Section 3.4.

We show that the performance of the benchmark schedulers is significantly worse than
of the centralized scheduler (around 55% worse). Then, we focus on means to improve
their performance. To do so, we propose two simple to implement practical schemes, one
for each aforementioned scenario.

The first scheme (Contribution 3), called Loss-Aware (LA), is a data-driven MCS se-
lection method and is used in each BS. It replaces the simple MCS selection method, which
selects the MCS assuming that SINR estimate is exact, by a method that considers possible
PRB losses. It selects the appropriate MCS based on a statistical interference estimation
method, i.e., the MCS is selected using the probability distribution of previously measured
interference. This method takes into account possible PRB losses, and hence maximizes
the expected throughput. Note that avoiding losses can be critical in 5G networks as losses

1Some of these results are presented in our work [15]
2Some of these results are presented in our work [16]. Our work [17] is under review for publication

and it is an expanded version of [16].
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can create jitter and hence degrade the user QoE.

For the second scenario, we propose that the C-RAN runs a local scheduler per BS (this
can be done in parallel and hence fast) and uses on top of it a simple and fast coordination
scheme (Contribution 4). In the following, we will refer to this C-RAN based scheduling
scheme as the coordinated link adaptation (CLA) scheme. CLA reduces the PRB losses
significantly even when only partial channel state information (CSI) is available. With
CLA, the C-RAN computes the real interference on each PRB at each BS once it knows
all the schedules and adjust the MCS on each PRB to avoid losses.

We present and evaluate the performance of the benchmark schedulers along with the
proposed schemes, for each scenario, in a dynamic setting in Section 3.5. The schemes
significantly improve the delay and loss performance of the existing schedulers with little
added complexity. However, when we compare their performance with the centralized
scheduler in the snapshot model, we show that the performance gap is still significant
(around 30%), which means that a better scheduler is needed.

To this end, we propose to extend SFR to the uplink (Contribution 5). One of the
challenges of using SFR on the uplink or on the downlink is the difficulty to parametrize it
in a robust fashion. We show how to do so in in Section 3.6. Another challenge is to design
a practical scheduler that takes full advantage of SFR. We propose one that uses our LA
scheme and show that it outperforms significantly the benchmark schedulers in a dynamic
setting in both scenarios. We end the chapter by showing that this scheduler along with
CLA reduces the gap with the upper bound, i.e., the centralized scheduler, to only 17% in
the second scenario.

Altogether, we believe we provided efficient solutions for the uplink scheduling problem
for the two scenarios we considered.

3.2 Related Work

Authors of [18] focus on maximizing the weighted sum-rate of the users. Note that maxi-
mizing the sum-rate ignores fairness among the users. Max-min fairness is used in [19] to
maximize the performance of the worst user in an OFDMA uplink. Energy efficiency on
the uplink is the main focus of [20], where the authors develop low complexity algorithms.
However, all these three papers use a single cell scenario and neglect the inter-cell interfer-
ence. It has been shown in [15] that neglecting inter-cell interference can lead to zero GM
goodput since the SINR is grossly overestimated.
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It has been shown in [21] that uplink interference depends on the type of scheduler and
has a significant effect on the system performance. Therefore, interference management
should be taken into account while scheduling the users. Uplink interference estimation is
performed in [22] and [23]; however, there is no discussion on scheduling in these papers.

System-wide uplink scheduling is studied in [24] for a simple TDMA-like system that
maximizes the sum-rate using a distributed iterative algorithm considering the interference.
Heuristic algorithms are proposed in [25] and [26] for more realistic systems; however, there
is no discussion on optimality of the schedulers, whereas there is a big amount of data
communication overhead among the BSs.

Local scheduling schemes for multi-cell networks are studied in [27], [28], and [14]. The
system model has been simplified in [27] by assuming a single modulation scheme and the
scheduler maximizes the sum-rate, which results in unfairness. A probabilistic approach is
adopted in [28], where transmitting on a PRB is decided based on a probability in order to
mitigate inter-cell interference. However, this scheme also uses log2(1 +SINR) as the rate
function. Note that PRB losses are not taken into account when log2(1 + SINR) is used
because different MCS levels are not considered. In real networks, a certain MCS is selected
and a PRB might not be decoded at the BS if the SINR is below the threshold for that MCS
level. This results in losses and it has a significant impact on system performance [15].
In [14], a local uplink scheduler is proposed that we use as our local benchmark scheduler.
It will be described in details in Section 3.3.

Inter-Cell Interference Coordination (ICIC) for the uplink has been studied in [29].
It is based on maximizing the signal to leakage plus noise ratio, where leakage is the
interference created to the other cells by one cell. An iterative algorithm is used where
the interference created to the other cells on each resource block is limited and this limit
is computed iteratively. This scheme requires a high amount of computation and data
exchange between the cells and it does not consider possible resource losses. To mitigate
the interference problem in Multiple Input Multiple Output (MIMO) systems, a water-
filling algorithm is proposed in [30]. Both papers use log2(1 +SINR) as the rate function;
which gives different results than when a realistic piece-wise constant function is used [14].

3.3 Practical Benchmark Schedulers

In this section, we present the two practical benchmark schedulers and evaluate their
performances for the first scenario where there is no C-RAN in the system in both static
and dynamic settings. In both schedulers, the BSs schedule the users associated to them
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locally, independently from the other BSs. In this case, a local scheduler cannot know
the exact interference at its BS on each PRB since the transmitters and the power they
use on each PRB in the neighboring cells are unknown. This is because a BS cannot
know the schedule of another BS beforehand. Therefore, the scheduler has to estimate
the interference on each PRB. This can possibly yield under or over-estimation the SINR,
which leads to either under-utilization or resource losses.

3.3.1 Round Robin (RR) Scheduler

RR scheduler is the simplest scheduling implementation, which assigns the PRBs one by
one to the users in a round-robin fashion (starting from PRB {1, 1} then {2, 1} and so on)
and allocate for a given user, equal power on all subchannels allocated to this user within
a subframe, i.e., if user u gets 3 PRBs in subframe t, then the power per PRB would be
PU/3. This is the default scheduler in NS-3 [31]. The only remaining job is to allocate an
MCS for each PRB and user pair given the allocated power on that PRB. The problem is
that to do so the scheduler needs an estimate of the interference. In its simplest form, the
scheduler would use the same estimate Iest for all PRBs which we assume in the following.
Note that Iest is an input to the scheduler. If the estimate is not well chosen, there might
be losses (because the PRB cannot be decoded correctly) or under-utilization (because a
higher MCS could have been used).

In the following, we will show how different values of Iest yield different goodput per-
formance.

3.3.2 Local Benchmark (LBM) Scheduler

Next, we present the Local Benchmark (LBM) scheduler originally proposed in [14] in a
cell l. LBM allocates a set of subchannels to a user for the duration of the frame. Note that
it is different from RR since LBM operates at the subchannel level and RR operates at the
PRB level. Similar to the RR scheduler, it uses a fixed estimation Iest of the interference
on every subchannel, which is an input parameter of the scheduler. Its goal is to give mi

channels to user i such that
∑

i∈Ul mi ≤M in order to maximize a PF objective function,
i.e.,

∑
i∈Ul log(λi) where λi is the throughput that user i would receive if the interference

estimate was exact (i.e., estimated throughout).

Since each BS schedules its users separately, we will only focus on one cell, which we
call cell l. Let a realization ωl be characterized by the set Ul of users associated with cell l
with their channel gains to BS l. The operation of the scheduler is based on allocating mi
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subchannels to user i and sharing the power budget of user i, PU , equally among these mi

channels so as to maximize the proportional fair objective.

Let Rm
i (Iest) be the estimated throughput of user i when Iest is used for interference

estimation and user i receives m subchannels. It can be computed as follows:

Rm
i (Iest) = mf(

(PU/m)Gi,l

µUL + Iest
) (3.1)

Note that Rm
i (Iest) can be computed for all users i and all number of subchannels m

beforehand once Iest is given. We will use the binary variable vmi to denote if user i receives
m subchannels. Then, given a realization ωl, a per-channel interference estimation Iest,
and estimated throughputs Rm

i (Iest), the corresponding problem PBM(ωl, I
est) is:

PBM (ωl, I
est) : max

vmi ∈{0,1},λi≥0

∑
i∈Ul

log(λi) (3.2)

s.t. λi =
∑

m∈{1,...,M}

vmi R
m
i (Iest) , ∀i ∈ Ul (3.3)

∑
i∈Ul,m∈{1,...,M}

vmi m ≤M (3.4)

∑
m∈{1,...,M}

vmi ≤ 1 , ∀i ∈ Ul (3.5)

where λi is the throughput that user i would receive if the interference estimate was exact
(i.e., estimated throughout). Constraint (3.3) determines the estimated throughput of user
i depending on how many subchannels are assigned to user i. Constraint (3.4) enforces
that the total number of subchannels assigned to the users cannot exceed M .

PBM(ωl, I
est) is a non-linear integer programming problem due to its non-linear objec-

tive function and integer variables. So, it cannot be solved fast. A heuristic algorithm is
proposed in [14] that performs quasi-optimally and can be solved fast.

Most of the times, solving PBM(ωl, I
est) allocates more subchannels to the users with

better channel conditions. Therefore, they allocate lower power to their subchannels. This
can be considered as a simple power control mechanism that tries to make the received
signal strength of each user at the BS similar to each other.

As discussed above, λi is the estimated throughput. The goodput seen by a user might
be different if the real interference on some of its PRBs is different from Iest. When the
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Figure 3.2: Deployment of the 9 BSs.

interference is underestimated, the PRB cannot be decoded at the BS due to low SINR
and hence is lost.

3.3.3 Performance Evaluation of the Benchmark Schedulers in a
Static Setting

We consider the 9 cell network represented in Fig. 3.2 with a wrap-around model to avoid
border effects3. The total number of subchannels M is set to 45 and number of subframes
T is set to 10. We set PU to 24 dBm. The piece-wise constant rate function f(.) is given
in Table 2.1.

We use one of the channel models recommended by 3GPP [10] to compute the channel
gain in dB between user u and BS k:

GdB
u,k = Au + Ak − PL(d)− ζ − ν, (3.6)

where PL(d) represents the path loss computed with the following formula: 128.1 + 37.6×
log10(d) dB, where d is the distance between u and k. Au and Ak represent the antenna
gains of the users and BSs, which are 0 dBi and 15 dBi, respectively. ζ, a random variable,
is the log-normal shadowing of 8 dB standard deviation and ν is the penetration loss of 20
dB. Note that whenever we use Gu,k earlier, it had no units and it can be obtained from

GdB
u,k as Gu,k = 10G

dB
u,k/10. Finally, we associate each user to the BS that yields the highest

channel gain.

3The hexagonal shape of the cells is to be taken symbolically. It does not represent the exact geometrical
shape of a coverage area.
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We consider a global realization ω characterized by a set of users U partitioned in
subsets Uj (j ∈ {1, ., 9}) corresponding to a user association, and the set of channel gains
for each pair {i, j} where i is a user and j is a BS. Given a value for Iest, we will obtain the
goodput for each user in U for one of the two benchmarks in two steps for a given frame:

• Step 1: We schedule each BS j ∈ {1, ., 9} using the benchmark under consideration
and Iest. In this step, each scheduler has an estimate of the goodput in that frame
for each user.

• Step 2: We can now compute for each PRB in each cell the real interference since we
know which user is transmitting with which power. We can then determine for each
PRB if it can be decoded or not depending if the SINR is greater or not than the
threshold for the MCS used in that PRB. If the PRB is not decodeable, it is assumed
lost and does not count for the goodput. We now have the true value of the goodput
for each user in that frame.

For each ω, we repeat the above process for 100 frames (in each frame, we randomize the
channel allocation) and compute the estimated and exact goodput of each user averaged
over all the frames.

Since we use proportional fairness, the system performance metric is the geometric
mean of the user goodputs given as Γ(N) = (ΠN

i=1λi)
1/N , where N is the number of users

in realization ω (i.e., N = |U|) and λi is the goodput of user i.

Fig. 3.3 shows the results in terms of the estimated GM goodput and the exact GM
goodput for the two benchmarks for different values of Iest.
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Figure 3.3: GM estimated throughput and GM goodput comparison of the local benchmark
schedulers

The figure unveils several insights. First of all, the value of the interference estimate
plays an important role in the performance of the two schedulers. Second, there is a
significant difference between the estimated GM throughput and the real GM goodput
when the interference is under-estimated which corresponds to the left part of the graph.
In this case, the PRB loss rate is very high, e.g., around 80% when Iest is zero. On the
other hand, when the interference is over-estimated (in the right part of the graph) then
the estimated GM throughput is almost identical to the GM goodput as the PRB loss
rate drops below 1%.. Thirdly, under estimating or over estimating the interference yields
bad performance. The maximum GM goodput is achieved when the interference estimate
is I∗, which is different for the two schedulers. The PRB loss rate at I∗ is 20% for both
schedulers. Therefore, good performance can only be obtained at a cost of high losses,
which create retransmissions and high jitter. Finally, LBM performs slightly better than
the RR scheduler. The maximum value of GM goodput for LBM is 1.07% the maximum
value of RR.

We then investigate the goodput/loss trade-off. Since RR and LBM yield similar trade-
off curves, we will only illustrate the results for LBM in Fig. 3.4 when the average number
of users per cell is set to 10.
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Figure 3.4: GM goodput/PRB loss rate trade-off performance of LBM

It is seen that when PRB loss rate is minimized, the GM goodput is very low compared
to the maximum achieved at I∗.

3.3.4 Performance of the Benchmark Schedulers in a Dynamic
Setting

In a dynamic setting, a local scheduler would use a data-driven estimator for the interfer-
ence. A simple one is to collect the interference values in the previous frame and use the
average of these values as an estimate for the next frame. This is the one, we will use for
the baseline benchmarks. Note that the estimation changes from frame to frame and is
different from a cell to another.

To evaluate the performance of the two benchmark schedulers with this interference
estimation in a dynamic setting, we consider a scenario where users arrive in the 9-cell
network according to a Poisson Point Process with an arrival rate Λ. Each user is associated
to the BS that yields the highest channel gain. The users leave the system after completing
the upload of a fixed sized file of F = 10 Mb. Fig. 3.6 shows the average delay spent in
the system as a function of Λ. Recall that when a PRB cannot be decoded, it is considered
lost. We do not model retransmissions, instead we assume optimistically that the file is
received when a total number of bits equal to F has been received correctly at the receiver.
All the simulations are done with a five percent confidence interval.
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LBM in a dynamic setting continues to perform better than RR. For example, the
arrival rate that yields an average delay less than 10 seconds is around 4.5 users per second
for RR, and around 5 users per second for the benchmark scheduler. At these arrival rates,
the RR scheduler yields a PRB loss of 27%, and the benchmark scheduler yields a PRB
loss rate of 24%. Note that these numbers are quite high and one reason for these high
loss ratios is that the MCS selection does not consider possible PRB losses due to bad
interference estimation, i.e., it takes the interference estimate at face value.

So far, we have shown how different interference estimates lead to different results
and how the benchmarks perform with respect to each other in both static and dynamic
settings. The real question is: How do the two local schedulers perform compared to the
maximum achievable performance? Recall that we can achieve the best performance when
we schedule all the cells simultaneously with the knowledge of all channel gain information
in the system, since interference can then be taken into account exactly. In the next section,
we will formulate and solve the centralized multi-cell scheduling problem and compare its
performance with the benchmark schedulers. Note that we do not propose it as a practical
scheme due to its complexity, but we will use it to compute offline an upper bound on the
performance of practical schedulers.

3.4 Multi-Cell Centralized Scheduler

3.4.1 Formulation

The most important feature of the system-wide user scheduling problem for the uplink of an
OFDMA cellular network is that it considers the interference in the formulation as opposed
to using an estimate input as in a local scheduling problem. In the problem formulation,
we use the binary variable yc,t,lu,k that is equal to 1 if PRB {c, t} of BS k is allocated to
u ∈ Uk using MCS level l. All the variables are continuous and non-negative except when
otherwise indicated. The scheduling problem is about allocating PRBs to users (via the
binary variables yc,t,lu,k ) and the corresponding transmit powers (via the continuous variables

pc,tu,k).

Recall that the SINR to rate mapping function f(sc,tu,k), where sc,tu,k is the SINR of user
u ∈ Uk on PRB {c, t}, can be written as:

if ηl ≤ sc,tu,k < ηl+1, then rc,tu,k = ϑl ∀l ∈ L (3.7)
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To include this discrete function in our optimization problem, we use the following con-
straint:

sc,tu,k ≥ yc,t,lu,k ηl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , l ∈ L (3.8)

Note that when the SINR sc,tu,k on a PRB {c, t} is lower than the decoding threshold

ηl, y
c,t,l
u,k is set to zero. Otherwise, it can be either one or zero. Since the objective is to

maximize the goodput, the maximum MCS level that satisfies sc,tu,k ≥ ηl is selected on each
PRB.

Then, for a given global realization ω, we formulate the system-wide problem PS(ω)
(given in Equations (3.9)-(3.18)) that maximizes the proportional fair objective function
over all users in the system, which is the GM of the user goodputs.

PS(ω) : max
(pc,tu,k),(λku),(yc,t,lu,k ),(Qc,t

k ),(rc,tu,k)

∑
u∈Uk

∑
k∈K

log(λku) (3.9)

s.t. λku =
1

T

∑
c∈M

∑
t∈T

rc,tu,k, ∀u ∈ Uk, k ∈ K (3.10)

rc,tu,k =
∑
l∈L

yc,t,lu,k ϑl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (3.11)

sc,tu,k ≥ y
c,t,l
u,k ηl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , l ∈ L (3.12)

sc,tu,k =
pc,tu,kGu,k

µUL +Qc,tk
, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (3.13)

Qc,tk =
∑

j∈K,j 6=k

∑
v∈Uj

P c,tv,jGv,k, ∀k ∈ K, c ∈M, t ∈ T (3.14)

∑
c∈M

pc,tu,k ≤ PU , ∀u ∈ Uk, k ∈ K, t ∈ T (3.15)

pc,tu,k ≤
∑
l∈L

yc,t,lu,k PU , ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (3.16)

yc,t,lu,k ∈ {0, 1}, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (3.17)∑
u∈Uk

∑
l∈L

yc,t,lu,k ≤ 1, ∀k ∈ K, c ∈M, t ∈ T (3.18)

The throughput of a user is the sum of the rates seen at each PRB (constraint (3.10)).
The rate on each PRB is defined by constraint (3.11) by picking the appropriate MCS
level as only one MCS level is selected on each PRB by each user, which is enforced by
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constraint (3.18). Constraint (3.12) defines which MCS level is selected on each PRB as
explained above. Constraint (3.13) defines the SINR on each PRB and constraint (3.14)
defines the interference seen by cell k on PRB {c, t}. Constraint (3.15) ensures that the
total power used by user u cannot exceed PU at a given time. A user cannot allocate power
to a PRB if that PRB is not allocated to that user, which is ensured by constraint (3.16).
Constraint (3.17) enforces that the variable that indicates if a PRB is assigned to a user
is a binary variable while Constraint (3.18) enforces that a PRB can be allocated to only
one user using one MCS level.

The main issue with this optimization problem is its computational complexity. It is
an MINLP problem: it includes a large number of integer variables yc,t,lu,k and its objective
function is non-linear. Hence, it cannot be solved using a commercial solver unless the
network size is very small.

Next, we propose a method to eliminate the integer variables through two non-trivial
transformations to obtain a signomial programming problem [32] that upper bounds PS(ω).

3.4.2 Transformations Yielding The Upper Bound Signomial Pro-
gramming Problem

First Transformation

Recall that the discrete rate function f(γ) is given in Equation (3.7) and to include it
in the optimization problem, we have used the constraints (3.11), (3.12), and (3.18). We
propose to replace f(γ) by an upper-bounded function, g(γ), made up of H linear functions
ah × γ + bh (see Fig. 3.5). This upper bound can be made tight by selecting H and the
{ah, bh} properly. Let H be the set of linear functions. We can then replace constraints
(3.11), (3.12), and (3.18) with the H linear constraints:

rc,tu,k ≤ ah × sc,tu,k + bh,∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , h ∈ H (3.19)

since maximizing the objective function ensures that the maximum feasible rate will be
chosen. We can also replace the binary variables yc,t,lu,k by yc,tu,k and hence eliminate many
binary variables.

Second Transformation

Binary variables are used in PS(ω) for PRB allocation since a PRB can be allocated to
only one user by a BS. We can eliminate those variables altogether if we add the following
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Figure 3.5: MCS function f(γ) with 15 discrete rates and the piece-wise linear upper bound
g(γ) for H = 5

two constraints to the problem ∀u, v ∈ Uk, u 6= v,∀k ∈ K, c ∈M, t ∈ T :

pc,tu,kp
c,t
v,k ≤ σ, rc,tu,kr

c,t
v,k ≤ σ (3.20)

where σ is a very small positive constant. In this case, even though multiple users of a
cell can technically use the same PRB, we force the product of the power allocated by
those users (and their rates) on that PRB to be close to zero so that only one user actually
uses that PRB. Although using one of those constraints would be enough to satisfy this
requirement, having both constraints makes the problem more robust.

For a given local realization ω, the sets Uk’s, H, and σ, we formulate PUB(ω), which
finds an upper bound for PS(ω):
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PUB(ω) : max
(pc,tu,k),(λku),(sc,tu,k),(rc,tu,k)

∏
u∈Uk

∏
k∈K

λku (3.21)

s.t. pc,tu,kp
c,t
v,k ≤ σ, ∀u, v ∈ Uk, u 6= v,∀k ∈ K, c ∈M, t ∈ T (3.22)

rc,tu,kr
c,t
v,k ≤ σ, ∀u, v ∈ Uk, u 6= v,∀k ∈ K, c ∈M, t ∈ T (3.23)

λku =
1

T

∑
c∈M

∑
t∈T

rc,tu,k, ∀u ∈ Uk, k ∈ K (3.24)

rc,tu,k ≤ ahs
c,t
u,k + bh, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , h ∈ H (3.25)

sc,tu,k =
pc,tu,kGu,k

µUL +
∑

l∈K
∑

v∈Ul,v 6=u P
c,t
v,lGv,k

, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (3.26)∑
c∈M

pc,tu,k ≤ PU , ∀u ∈ Uk, k ∈ K, t ∈ T (3.27)

PUB(ω) is obtained from PS(ω) by replacing constraints (3.11), (3.12), and (3.18) with
constraint (6.4) and adding constraints (3.22) and (3.23) so that there are no binary vari-
ables left in the problem. The rest of the constraints are simply rewritten versions of
the constraints in PS(ω). Note that maximizing

∏
u∈Uk

∏
k∈K λ

k
u is the same as maximizing∑

u∈Uk

∑
k∈K log(λku). PUB(ω) is a non-convex problem that includes non-linear constraints.

However, PUB(ω) can be further transformed in order to belong to the class of signomial
programming problems and as such it can be solved by converting the problem into a series
of geometric programming problems4 [7].

To convert PUB(ω) into an equivalent signomial program, we first replace the equality
constraints with inequality constraint (≤) in constraints (3.24) and (3.26) (this does not
change the optimal point of the problem since it is a maximization problem). We then
modify the constraints so that the variables are all positive (constraints that were omitted
for brevity in PUB(ω)) by stating that all the variables are greater than a very small positive
number ρ. We also arrange the other constraints and the objective function to highlight the
typical structure of a signomial problem. Then, we obtain the signomial problem P∗UB(ω)
that upper bounds the original problem PS(ω):

4A geometric program can be solved optimally by transforming it into an equivalent convex problem [32].
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P∗UB(ω) : min
(pc,tu,k),(λku),(sc,tu,k),(rc,tu,k)

∏
u∈Uk

∏
k∈K

(λku)−1 (3.28)

s.t.
Tλku∑

c∈M
∑

t∈T r
c,t
u,k

≤ 1, ∀u ∈ Uk, k ∈ K (3.29)

rc,tu,k

ahs
c,t
u,k + bh

≤ 1, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , h ∈ H (3.30)

∑
l∈K

∑
v∈Ul,v 6=u

Gv,k
Gu,k

pc,tv,ls
c,t
u,k(p

c,t
u,k)
−1 +

µUL

Gu,k
sc,tu,k(p

c,t
u,k)
−1 ≤ 1, (3.31)

∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T∑
c∈M

pc,tu,k
PU
≤ 1, ∀u ∈ Uk, k ∈ K, t ∈ T (3.32)

1

σ
pc,tu,kp

c,t
v,k ≤ 1, ∀u, v ∈ Uk, u 6= v, k ∈ K, c ∈M, t ∈ T (3.33)

1

σ
rc,tu,kr

c,t
v,k ≤ 1, ∀u, v ∈ Uk, u 6= v, k ∈ K, c ∈M, t ∈ T (3.34)

pc,tu,k ≥ ρ, r
c,t
u,k ≥ ρ, s

c,t
u,k ≥ ρ, λu,k ≥ ρ, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (3.35)

An Iterative Method to Solve the Upper Bound Problem

In this section, we briefly explain the method of solving P∗UB(ω) [7]. It is an iterative
algorithm in which we convert the problem into a geometric programming problem at each
iteration. Note that P∗UB(ω) is not a geometric program because of the first two constraints
((3.29) and (3.30)). Inequality constraints of a geometric programming problem should be
of the form:

f(x) ≤ 1, (3.36)

where f(x) is a posynomial5.

The main idea behind the algorithm in [7] is to modify these constraints such that the
program becomes a geometric program. Note that the denominators of the left hand side
of those two constraints are posynomials. If they can be approximated as monomials, then
P∗UB(ω) becomes a geometric programming problem.

5A posynomial is a sum of monomials, of the form g(x) =
∑K
k=1 dkx

a
(1)
k

1 x
a
(2)
k

2 . . . x
a
(n)
k
n .
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It is shown in [32] that the best monomial approximation around a point x = y > 0,
say h̄(x, y), for a posynomial h(x) =

∑
i gi(x), where the gi(x)’s are monomials, is:

h̄(x, y) =
∏
i

( gi(x)

αi(y)

)αi(y)
, (3.37)

where αi(y) is equal to:

αi(y) =
gi(y)

h(y)
(3.38)

Hence, at a given point y, the constraints (3.29) and (3.30) can be approximated using
equations (3.37) and (3.38). By doing so, we obtain the problem P∗∗UB(ω, y), which is a
geometric program that can be solved by techniques presented in [32].

The purpose of the iterative algorithm is to find y. The point, around which the
approximation is made, changes in each iteration. The overall algorithm is explained
below.

Algorithm 1 Solving P∗UB(ω) iteratively

1: Find a feasible initial solution for P∗UB(ω). Let that vector be s(0).
2: At the tth iteration, compute the monomial approximations for the first two constraints

of P∗UB(ω) using equations (3.37) and (3.38), with y = s(t−1), and obtain P∗∗UB(ω, s(t−1)).
3: Solve P∗∗UB(ω, s(t−1)) with the new constraints by converting it into a convex problem

using a log transformation as explained in [32] and obtain s(t)

4: if ||s(t−1) − s(t)|| < ε then
5: Algorithm terminates
6: else
7: Go to step 2
8: end if

3.4.3 Deriving a Feasible Solution to PS(ω)

We can derive a feasible solution for PS(ω) out of the solution for P∗UB(ω). Note that this
feasible solution serves as a lower bound to PS(ω). To obtain it, we use the values of pc,tu,k
we obtain by solving P∗UB(ω) and compute a feasible PRB allocation using ∀u ∈ Uk:

yc,t,lu,k =

1, if arg max
i∈Uk

pc,ti,k = u & ηl ≤ sc,tu,k < ηl+1

0, otherwise
(3.39)
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and the corresponding value for pc,tu,k if yc,t,lu,k = 1. This simply means that a PRB is allocated
to the user that uses the highest power on that PRB and the appropriate MCS level is also
selected depending on the SINR of that user on that PRB. We will show numerically that
the gap between the lower and the upper bounds is small and hence the upper bound is
tight.

3.4.4 Numerical Results

In this section, we report the results illustrating the tightness of the upper bound and the
performance of the benchmark schedulers compared to the centralized scheduler.

We use the same network configuration as before. Each user is associated to the BS
that yields the highest channel gain.

We consider the following five linear functions to upper bound the original rate function
(in kb/s) as shown in Fig. 3.5:

rc,tu,k ≤ 127.68× sc,tu,k (3.40)

rc,tu,k ≤ 20.66× sc,tu,k + 159.6 (3.41)

rc,tu,k ≤ 8.544× sc,tu,k + 451.21 (3.42)

rc,tu,k ≤ 7.465× sc,tu,k + 502.86 (3.43)

rc,tu,k ≤ 940.8 (3.44)

We use Bonmin solver [33] to solve the optimization problems.

Tightness of the Upper Bound

To show the tightness of the upper bound we obtain by solving P∗UB(ω), for different values
of the number of users in the system, N , we create 100 realizations for each value of N
and show the average difference in the GM goodput for the upper bound and the feasible
solution in Table 3.1. The difference is around 7% and since the optimal solution to PS(ω)
is between the upper bound and the feasible solution, the upper bound we obtain can be
considered tight.
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Table 3.1: Comparison of the upper bound and the feasible solution as a function of the
total number of users N

N : Total number of users in the system 45 90 135

Avg. Difference (%) 7.27% 7.42% 7.59%

Performance comparison of the benchmark schedulers and the centralized sched-
uler

To compare the performance of the benchmark schedulers with the centralized scheduler,
we compute the per realization ratio (in percentage) of the best GM goodput of the local
scheduler (i.e., the one obtained for I∗) to the GM goodput of the centralized scheduler.
Table 3.2 report these ratios averaged over 100 realizations as a function of N , the total
number of users in the system. In the table, a value of 43.9 means that the performance
of the local scheduler is equal to 43.9% of the centralized system on average. Note that I∗

depends on the number of users N in the system. Therefore, we use the best I∗ for each
value of N in the table (see Fig. 3.3 for more details on I∗).

Table 3.2: Averaged performance ratio of the local schedulers to the centralized scheduler

N : Total number of users in the system 45 90 135
RR 39.9 41.2 42.1

LBM 43.9 43.6 44.4

Clearly, there is a very significant performance gap between the performance of the
benchmark schedulers and the centralized scheduler. This is mainly due to the fact that the
benchmark schedulers have no information about the neighboring cells’ schedules, therefore
the interference needs to be estimated and this cannot be done accurately. Hence, many
PRBs are lost or under-utilized. Also, the centralized scheduler computes the best power
allocation, whereas the local schedulers do the power allocation with simpler schemes. In
the next section, we will propose enhancements to the schedulers to decrease this perfor-
mance gap for the two scenarios presented in the introduction.

3.5 Scheduler Enhancements

In this section, we are going to propose enhancements to the benchmark schedulers to
minimize the loss rate and then evaluate their performances in a dynamic setting.
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3.5.1 The Loss-Aware (LA) Scheme

We begin with the first scenario, where each cell schedules its own users and there is no
C-RAN in the network. The LA scheme is a data-driven MCS selection scheme. It collects
all the interference measurements during the previous frame6 (typically there are MT
such measurements, i.e., 450 in our case) and obtains a Cumulative Distribution Function
(CDF) of that interference. Then, while choosing an MCS for each PRB, it can also
consider possible PRB losses due to under-estimating the interference by maximizing the
expected PRB rates after possible losses. The details are given next.

To begin with, we need to know the power used on a subchannel by each user in order
to estimate the SINR. Since the users allocate equal power to the subchannels allocated
to them in RR and LBM, we know the power used on a subchannel by each user i when
mi subchannels are allocated to that user, which is PU/mi. Let the SINR of user i of BS
k when i uses a power P c,t

i on PRB {c, t} be:

sc,ti =
pc,ti ×G

c,t
i,k

µUL +Qk

, (3.45)

where Qk is a random variable representing the interference on that PRB which is charac-
terized by its CDF Fk(.). The PRB can be decoded at the zth MCS level only if ηz ≤ sc,ti ,
which translates into the interference Qk being below the threshold:

δz(i, k)c,t =
pc,ti ×G

c,t
i,k

ηz
− µUL, (3.46)

the probability of which can be computed given the CDF. Then, the expected rate user
i ∈ Uk can get using MCS level z on that PRB is:

Ei,k(z) = Fk(δz(i, k)c,t)× ϑz, (3.47)

where ϑz is the rate corresponding to the zth MCS.

If we select the MCS z∗ maximizing this expectation:

Ei,k(z
∗) = max

z∈L
Ei,k(z), (3.48)

6It can also collect the measurements for a few frames instead of just one. Based on results that are
not reported here, collecting data for more frames has little impact on system performance while bringing
more complexity.
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Figure 3.6: Scenario 1: Average delay performance of the RR and local benchmark sched-
uler for constant interference estimation and with LA

we choose the MCS level that gives the maximum expected rate. This MCS selection takes
into account possible PRB losses since the probability of loss increases as z increases.

Once the maximum expected rate of each user i for each PRB is computed, we can
solve the same scheduling problem for the benchmark scheduler. Note that the same CDF
is used on all PRBs.

Fig. 3.6 shows the delay performance of the RR and local benchmark scheduler when
they use the LA scheme.

The maximum arrival rate supported by each scheduler improves by around 10% when
using the LA scheme. Furthermore, the losses decrease to around 15% from 27% for RR
and to 14% from 24% for LBM, which is the main decrease for the decrease in average
delay. Therefore, the LA scheme improves the performance significantly. Recall that we
do not simulate retransmissions. In a real system where retransmissions are triggered after
a certain number of subframes, the losses would have a more serious impact. Hence, lower
losses would further improve the performance gain of our LA scheme over the benchmark
MCS selection scheme in a real system.

3.5.2 Coordinated Link Adaptation

In the previous system, each BS uses limited information to compute its local schedule,
i.e., an interference estimate and the channel gains from all its users. Consider now the
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case where the system has a C-RAN (scenario 2). In that case, the scheduling can be done
in a coordinated fashion, however, it has to be done fast.

We propose the following two-step process that has the advantage of being simple and
fast:

• Step 1: Each cell is scheduled independently (i.e., in parallel) in the C-RAN using a
practical local scheduler (e.g., RR or LBM).

• Step 2: The C-RAN coordinates the scheduling using a fairly simple and fast process
to minimize losses.

In an ideal case, the C-RAN would know the channel gains between each user and
each BS. Then, after the first step, once the scheduling is completed for each cell, the C-
RAN could compute the real interference on each PRB for each cell since it knows all the
transmitters on that PRB along with the power allocation and the channel gains. Indeed,
on PRB h = {c, t} in cell l, the interference can be computed by the C-RAN as:

Ql,h =
∑

k∈K,k 6=l

phuhk ,k
×Guhk ,l

(3.49)

where uhk is the transmitting user in cell k on PRB h.

Hence, in the second step, the C-RAN computes the exact SINR on each PRB for each
cell and can correct the MCS, i.e., pick the best MCS to maximize the data rate. Note that
this is a very simple level of coordination that does not require any complex computations.
It does not change the PRB allocations in terms of users and power. It just adjusts the
MCSs through coordination. We call this coordinated link adaptation (CLA).

In the following, we first study the ideal case (with complete information on the channel
gains) and then the case with partial information.

The ideal case: since we have full channel gain information, there will be no PRB losses
after Step 2 since the real SINRs are known.

Fig. 3.7 shows the performance of the benchmark schedulers with and without CLA
in the case of scenario 2. Note that when there is no CLA, we assume that the schedulers
are using the LA scheme, while when there is CLA, the LA scheme is not used in Step 1
since it does not bring any gain. CLA does improve the delay performance drastically. The
maximum arrival rate supported by both schedulers is improved by more than 40%.

Next, we consider the case where not all channel gains are available at the C-RAN.
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Figure 3.7: Scenario 2: Average delay performance of the RR and local benchmark sched-
uler with and without CLA (ideal case)

The non-ideal case: In practice, the C-RAN does not have access to full channel gain
information. Instead, each user measures its channel gains to some other BSs than the one
it is associated with for handover purposes. Let q be the number of neighboring BSs each
user i monitors for Channel State Information (CSI) (i.e., the q neighboring BSs yielding
the highest gains to that user). Let the set of such neighbors be Ni(q). Hence, with respect
to Eq. (3.49) the C-RAN has access to Guhk ,l

if l ∈ Nuhk (q), otherwise Guhk ,l
is unknown.

While computing the interference, the C-RAN uses the real value of Guhk ,l
if l ∈ Nuhk (q).

Otherwise, it uses a pre-computed estimate of Guhk ,l
. For simplicity, we choose to select a

value that does not depend on the PRB or on the transmitting user in cell k. We call it
c(k, l) and we compute it offline as the median of the channel gains of all possible locations
in the Voronoi cell around BS k. Specifically, for each point in that Voronoi cell, we
compute the channel gain between that point and the BS in cell l using Equation (3.6).

In Fig. 3.8, we show how this heuristic performs compared to the ideal case of full
information for the cases of q = 2 and q = 3 when using LBM as the scheduler. Clearly,
even when the channel gain information is limited, we can improve the performance of the
uplink scheduler by using CLA. For example, when we check the maximum arrival rate
that yields a delay of 30 seconds, it is 5.5 users/second without CLA, 7.25 users/second
with CLA and q = 2, 7.75 users/second with CLA and q = 3, and 8.75 users/second with
CLA in the ideal case.

In summary, the two-step scheduling process we propose is simple and efficient and
works well even when the cross-channel information is limited.
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Figure 3.8: Scenario 2: Average delay performance of LBM with and without CLA for the
ideal and non-ideal cases

3.5.3 Closing the Gap?

In this section, we have proposed two schemes to enhance the benchmark scheduler, one for
scenario 1 and one for scenario 2. The one proposed for scenario 2 has drastically improved
the performance, however we still need to check how much the gap with the upper bound
reduced. We first note that the gap is clearly still very large in the case of Scenario 1 since
CLA cannot be used.

To answer this question in the context of scenario 2, we will compare the performance
of the centralized scheduler with the benchmark schedulers when they use CLA. To do
so, we revert to the snapshot model. Table 3.3 shows the average performance ratio of
the benchmark schedulers to the centralized scheduler for different values of N , the total
number of users in the system. Note that the results with CLA show the ideal case where
all channel gain information is present at the C-RAN.

Table 3.3: Averaged performance ratio of the local schedulers with CLA to the centralized
scheduler

Total number of users in the system 45 90 135
RR 66.4 68.1 68.9

LBM 68.5 70.5 70.9

Table 3.3 shows that the schedulers perform much better when using CLA than when
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they do not (recall that the case without CLA was reported in Table 3.2). However,
the difference with the centralized scheduler is still significant, i.e., it is around 30%.
Therefore, although the proposed LA and CLA schemes can improve the performance of
simple benchmark schedulers significantly and are very easy to implement, there is still
room for improvement. In the next section, we will propose a new uplink scheduler that is
inspired by SFR and uses the LA scheme.

3.6 An SFR-based Practical Scheduler

In the previous sections, we have focused on how to improve the performance of existing
local uplink schedulers. The local benchmark schedulers assume that each user transmits
at full power and shares its power equally at a given time over all the allocated PRBs. We
now propose an SFR scheme that is adapted to the uplink along with its scheduler.

3.6.1 Adapting SFR to the Uplink

The local schedulers we have studied so far use simple power allocation schemes. We will
use SFR as the power allocation scheme for our proposed local scheduler that we call SFR-S
in the following. The main idea behind SFR on the downlink is to restrict a priori, using a
power-map, the power that can be used on different sets of channels such that neighboring
BSs do not use the same power on the same set of channels. We propose to extend this
notion of the power-map to the uplink, recognizing that contrarily to the downlink, each
user brings its own power on the uplink. In the following, we will 1) define the concept of
power-map on the uplink, 2) show how to parametrize this power-map in a robust fashion,
i.e., this power-map has to work well on a large set of global realizations, 3) propose a
practical scheduler to work on that power-map.

Structure of the power-map: We fix the power values used on each sub-channel by
each BS. We call such a power allocation scheme a power-map that will be made public,
i.e., each BS knows the power-map of all the BSs. The structure of our power-map is
characterized by the following parameters: {m,n, p, P1, . . . , Pn}. To begin with, we use a
coloring scheme7 to partition the set of cells K into m colored subsets {K1, . . . ,Km}, so that
the cells that create high interference to each other are put in different subsets. Similarly,
we partition the set of subchannelsM into m equal subsets {M1, . . . ,Mm}. We call each
of these subsets a sub-band. Each cell set Kj uses the same sub-band as its primary (a

7Note that the reuse factor is one and the coloring scheme is used to allocate power on sub-bands.
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Figure 3.9: Coloring of the cells when m = n = 3. The cells with the same color use
the same primary band. The cells with the same color and pattern use the exact same
power-map.

cell uses most of its power on its primary sub-band) and the other sub-bands as secondary.
We denote the subchannels belonging to the primary (resp. secondary) sub-band(s) of cell
k with MP (k) (resp. MS(k)). The cells use a very low per subchannel power p on their
secondary sub-bands. By doing so, we decrease the impact of high interference received
from the first tier neighboring cells since they will use different primary sub-bands.

Now, we consider the colored set Kj along with its primary sub-band. We further
partition Kj into n subsets {Kj,1, . . . ,Kj,n}. We also partition its primary sub-band into
n equal sub-bands {Mj,1, . . . ,Mj,n}. A cell j in subset Kj,k uses a per subchannel power
Pk(mod n). Therefore, the cells in {Kj,1, . . . ,Kj,n} uses n different per subchannel powers on
their primary sub-band with a circular shift. The reason for this second level of division
is to balance the interference among the cells in the same colored set to improve the
performance. An example power-map with m = 3 and n = 3 is shown in Fig. 3.10 for
the 27-cell example network given in Fig. 3.9 where the cells of a same color belong to the
same Kj (i.e., have the same primary band) and within a color, the ones exhibiting the
same pattern belong to the same Kj,k, i.e., uses exactly the same powers in the primary
band while cells with different patterns see shifted powers in the primary band.

Each primary sub-band consists of S = M
m∗n subchannels and we will show how to select

the values of the power levels P1, . . . , Pn and the secondary sub-band power value p in the
following.
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Figure 3.10: The power-map when m = n = 3 with the color scheme in Fig. 3.9

Once a power-map structure is decided, i.e., as it was done to obtain the structures in
Fig. 3.9 and Fig. 3.10, the only parameters left to choose are the power values.

3.6.2 SFR Parametrization

Our aim here is to find a robust power-map with the structure described above, i.e.,
one that maximizes the average GM goodput over a large number of realizations (with
different number of users). So in the following, we assume that m and n are given as well
as the complete structure, i.e., the sets Kj’s, Mj’s and Mj,k’s, and we look for values of
p, P1, ..., Pn that are robust. This is what we call parametrizing the power-map, To do so,
we will consider a snapshot model and we use the optimization problem PS(ω), which was
formulated in Section 3.4, with some slight modifications.

The first modification is done in order to maximize the average GM goodput over a
set of global calibration realizations Ωc. The reason we call them calibration realizations
is that we only use them to parametrize the power map, but we do not make the perfor-
mance evaluation with these realizations, i.e., we test the power-map with a different set
of realizations to show its robustness. To this end, we maximize the following objective
function:
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Z(Ωc) =

∑
ω∈Ωc

(∏
u∈Uk(ω)

∏
k∈K λ

k
u(ω)

) 1
|U(ω)|

|Ωc|
(3.50)

This function is basically the arithmetic mean of the GM goodput over the calibration
realizations ω ∈ Ωc.

The second modification is on the power constraints. Using the given power-map struc-
ture, we know which of the power levels {p, P1, ..., Pn} is used on which subchannel in each
cell. Let Pk(c) denote the power level used on sub-channel c in cell k in our power-map.
Then, we add the following constraints:∑

u∈Uk

pc,tu,k(ω) ≤ Pk(c), ∀c ∈M, k ∈ K, t ∈ T , ω ∈ Ωc (3.51)

which denotes that the total power used by any user in realization ω cannot exceed Pk(c)
on subchannel c of cell k. Note that Pk(c) corresponds to one of the power levels P1, P2, P3,
or p depending on the cell k and subchannel index c. For example, if we consider the
power-map in Fig. 3.10, the first subchannel corresponds to P1 for the cells in cell set K1,1,
P2 for the cells in cell set K1,2, P3 for the cells in cell set K1,3, and p for the remaining
cells.

Finally, we formulate the following problem that maximizes the average GM goodput
over the calibration realizations in Ωc given the power-map structure presented above.

PSFR(ω) : max
(pc,tu,k(ω),λku(ω),yc,tu,k(ω),Qc,t

u,k(ω),rc,tu,k(ω),p,Pj)
Z(Ωc) (3.52)

s.t. constraints (3.10-3.18) and (3.51) (3.53)

This is basically the same problem as PS(ω) but over many realizations and with
additional power constraints. This problem can be solved with the method discussed
in Section 3.4. However, it is computationally very expensive to solve it that way since we
consider many realizations at the same time. To tackle this, we use a brute-force search
method. We assume the power per subchannel values for the sub-bands P1, P2, P3, p can
take values in the form of PU/k, where k is an integer. Then, we try all possible values
of k on each sub-band and solve all the realizations separately with these power values
and get the average GM goodput over all calibration realizations, for each power value
combination. Then, we pick the power-map that gives the largest average GM goodput.
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Figure 3.11: Performance of the power-maps obtained with different number of calibration
realizations. Each power-map is tested with a separate 100 test realizations.

Note that we only try very high values of k for the secondary sub-bands since they use low
power by construction.

We consider the same 9-cell network that we have used before. In this case, we use the
power-map depicted in Fig. 3.10. We consider a number H of calibration realizations, each
with a number of users selected at random between 45 to 135, which corresponds to 5 to
15 average number of users per cell. Then, we solve PSFR(Ωc) with the brute-force search
method.

We have tried different values of H and for each of them we obtain a different robust
power-map, i.e., values for {P1, P2, P3, p}. We test these different power-maps on 100 test
realizations corresponding to different values of the total number of users in the system.
Fig. 3.11 shows the results in terms of the GM goodput averaged over the 100 test realiza-
tions as a function of H. Clearly, using a calibration set of size larger than H = 20 does
not provide an increase in performance.

The power values we obtain for H = 20 are as follows:

{P1, P2, P3, p} = {PU , 0.17PU , 0.14PU , 0.0034PU} (3.54)
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3.6.3 The SFR-S Scheduler

We now propose SFR-S, the online scheduler that goes hand to hand with the power-map
computed above. One important difference between SFR-S and the previous benchmark
scheduler is that the BSs now collect measurements for each sub-band and create a CDF
per sub-band. Then, the rate of each user on each subchannel of each sub-band can be
computed.

SFR-S keeps track of what each user i has received since the last event (arrival or
departure in the cell). Let τi(t) be the amount of bits sent by i since the last event till
t. SFR-S aims at being fair for the group of users currently in the system. Therefore, we
reset the variables τi(t) to a small non zero value for all users i in cell k after an arrival or
departure event in that cell. In a subframe t, SFR-S (see Algorithm 2) starts by allocating
the PRBs with the lowest power. A PRB {c, t} is allocated to the user i that sees the
highest Rc

i/τi(t) and then the corresponding τi(t) is updated accordingly.

Algorithm 2 Scheduling algorithm for the proposed scheduler in cell l at subframe t

1: τi(t) is the total data uploaded by user i until t.
2: Set c to 1.
3: Sort the subchannels according to power per subchannel in an ascending order
4: Set Pr(i) = PU , which is the remaining power of user i
5: while c ≤M do
6: i∗ = argmax

i∈Ul:Pr(i)≥Pc

Rc
i/τi(t)

7: Allocate PRB {c, t} to user i∗

8: τ ∗i (t) = τ ∗i (t) +Rc
i∗ , c = c+ 1

9: Pr(i
∗) = Pr(i

∗)− Pc
10: end while
11: After each arrival or departure at cell l, set τi(t) to δ for all the remaining users in the

cell.

3.6.4 Numerical Results

Next, we compare the delay performance of RR, LBM, and SFR-S in a dynamic setting
where each user uploads 10 Mb of data first for scenario 1 and then schenario 2. Fig. 3.12
shows the results for scenario 1. Note that the LA scheme is used in all schedulers in order
to make a fair comparison.
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Figure 3.12: Scenario 1: Average delay performance of the RR, local benchmark scheduler
and SFR-S when the users upload 10 Mb

Clearly, SFR-S drastically outperforms the two benchmark schedulers in terms of de-
lay. It can support an arrival rate of 10 users/second, while the benchmark scheduler
can only support up to 6 users/second. For a target average delay of 10 seconds, the
arrival rate is around 5 users/second for RR scheduler, 5.5 users/second for LBM and 9.5
users/second for SFR-S. In terms of losses, SFR-S also performs slightly better than the
benchmark schedulers with around 11% PRB loss rate while this number is around 15%
for the benchmarks.

Next, we show, in Fig. 3.13, how the performance of RR, LBM, and SFR-S can be
further improved when CLA is used in the ideal case (scenario 2). Clearly CLA significantly
improves the delay performance of all schedulers. Note that even without CLA, SFR-S
outperforms the other two schedulers when they use CLA.

3.6.5 Closing the Gap?

In this section, we have proposed a complete suite of schemes based on SFR that outper-
forms drastically the benchmark (even when it is enhanced with our proposed schemes).
Have we finally reduced the gap with the upper bound enough?

To answer this question, we go back to the snapshot model to compare the performance
of fully centralized scheduler with the performance of SFR-S for both aforementioned
scenarios. Fig. 3.14 shows the results for the centralized scheduler and for SFR-S without
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Figure 3.13: Scenario 2: Average delay performance of RR, LBM and SFR-S with and
without CLA when the users upload 10 Mb

CLA and with (the ideal case of) CLA as a function of N , the total number of users in the
system.
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Figure 3.14: GM Goodput for the centralized scheduler and SFR-S with and without CLA
as a function of the number of users for the ideal case

The difference between SFR-S with CLA and the centralized scheduler is about 17%
(it was more than 30% for the benchmark scheduler with CLA). Since SFR-S and CLA
are very fast algorithms than can easily be implemented in real time, we think that SFR-S
with CLA is a promising scheme for the uplink.
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3.7 Conclusion

In this chapter, we have focused on uplink scheduling. We first have studied a local bench-
mark scheduler and explored its goodput and loss performance. Then, we have showed
how it performs compared to the maximum achievable performance. For that, we have for-
mulated and solved a centralized scheduling problem. To improve the performance of the
benchmark scheduler, we have proposed two schemes, one for the scenario without C-RAN
and one for the scenario with C-RAN. We have shown that a CDF-based interference esti-
mation coupled with a smart MCS selection improves the delay and loss performance in the
first scenario while CLA does even better in the case of scenario 2. Although the proposed
solutions are very simple and they have improved the performance of the benchmark sched-
uler significantly, there is still a performance gap compared to the centralized scheduler.
Then, we have proposed a new scheduler that is inspired by SFR, which we parametrize
in a robust fashion. We have shown that the proposed scheduler performs remarkably well
both in dynamic and static settings and performs only 17% worse than a fully centralized
scheduler with negligible complexity compared to the centralized scheduler.
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Chapter 4

Downlink Scheduling in a Multi-Cell
OFDMA Network: From Full Base
Station Coordination to Practical
Schemes

4.1 Introduction

In the previous chapter, we have studied uplink scheduling in detail. While the importance
of uplink scheduling has increased recently, most of the cellular traffic is still downlink [5].
As a result, most of the work in the literature focuses on the downlink rather than the
uplink and the literature on downlink scheduling is very abundant. However, we considered
it useful to revisit downlink scheduling with a similar methodology and research questions
as we had for the uplink scheduling. In this chapter, we will perform a similar analysis for
downlink scheduling, where we first formulate and study a centralized scheduler and then
revisit practical schedulers.

There are some crucial differences between user scheduling on the downlink and the
uplink. First of all, the power management is different since the BSs are the only sources
of power on the downlink, whereas each user brings its own power budget on the uplink.
Second, the interference management is different. The interferers in the neighboring cells
are not known beforehand on the uplink since the schedules of the neighboring BSs are
unknown. However, the interferers are always the neighboring BSs on the downlink. Hence,
interference management is simpler as long as we assume that the BSs always transmit on
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their subchannels, which is a reasonable assumption with the full buffer traffic model. For
example, if we assume that the power per subchannel used by each BS is known beforehand,
we can compute the exact interference at each user on the downlink, while it is not possible
on the uplink. We assume as in the previous chapter that the channel gains are known
perfectly and hence under this assumption, SINRs can be computed at each user exactly
(because MCSs can be selected using the default selection method) and there will not be
PRB losses.

In this chapter, we will focus on research questions similar to the one we had for uplink
scheduling: Do the existing practical schedulers perform well enough compared to the
maximum achievable performance? If not, can we design better practical schedulers?

Similar to the uplink, the best performance on the downlink can be obtained only
when all the cells are scheduled simultaneously in a C-RAN. The problem formulation
for the centralized downlink scheduler is very similar to the one for the uplink scheduler
except some minor differences in the problem constraints. In the following, we will first
formulate the scheduling problem and then solve it with the exact same method used for
the centralized uplink scheduling problem. We will first consider a homogeneous network,
and then a HetNet, that includes small cells together with the macro BSs. The purpose
of deploying small cells is to decrease the load of the macro BSs and hence to improve the
coverage and throughput performance of the cellular networks. HetNets bring additional
challenges such as channel allocation (e.g., should channels be different for the macro and
the small cells? How many channels should be allocated to the small cells?) and user
association. Such processes are rathe simpler processes in homogeneous networks. In
the following, we will show the impact of different types of channel allocation and user
association methods together with user scheduling in HetNets.

Due to its computational complexity and the need to acquire cross-channel information,
we again believe that the centralized scheduler is not easy to implement and hence we will
use it to obtain an offline upper bound. Our focus will be on practical local schedulers.
As our benchmark, we consider a local scheduler that uses equal power on its subchannels
and allocate equal time to each user [34]. It is commonly used by the network operators in
today’s networks. We show that its performance is significantly worse than the performance
of the centralized scheduler. Therefore, we focus on finding a practical local scheduler that
is simple to implement and that performs better.

To this end, we focus on SFR-based schemes. SFR relies on a very loose coordination
among the BSs, where each BS agrees to use a different pre-defined power on different sets
of subchannels. This allows the BSs to serve their bad users, i.e., users with poor channel
conditions, on the subchannels, which use high power and receive low interference, to
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improve fairness and efficiency. While SFR is often suggested to improve the performance
on the downlink, it is not trivial to define a power allocation structure, i.e., a power-map,
and also to parametrize it.

Our next step is to extract, in the homogeneous case, from these feasible solutions a
practical scheme based on a well-parametrized soft frequency reuse (SFR) along with its
local scheduler (Contribution 1). Similar to the previous chapter, our aim is to create a
per BS power-map that each BS has to follow while scheduling locally its users. We first
define the structure of our power-map, which is a more generalized version of the commonly
proposed 2-power 3-band SFR power-maps, and then we perform a robust parametrization
using a brute-force search in order to find a robust power-map that works well over many
different realizations with different number of users. We show that the practical local
scheme we propose performs significantly better than a benchmark based on round-robin
scheduling, which is the most commonly used scheduler in today’s networks, and does only
20% worse than the centralized case. Since the centralized problem takes a very long time
to solve, it would have to be significantly approximated to be viable as a practical solution
which would probably reduce its performance and hence, it might not be worth it to try
to implement scheduling in a C-RAN for the downlink.

Finally, we consider centralized scheduling in a HetNet (Contribution 2). A HetNet
brings additional challenges due to heterogeneity between the BSs. For example, channel
allocation between the small cells and the macro base stations need to be done carefully.
We apply our proposed method to find an upper bound for the global problem (assuming
scheduling is done centrally for all BSs) and compare this upper bound with practical
scheduling and channel allocation schemes that are inspired by the practical scheme pro-
posed for the homogeneous case1.

4.2 Related Work

Downlink user scheduling in OFDMA networks has been widely studied in the literature.
While some of the earlier work such as [36] considers a single cell model, the inter-cell
interference has a significant impact on the system performance [37] since it directly affects
the rate each user sees. Therefore, interference management is a crucial part of the user
scheduling process.

Interference management can be implemented in different ways. The maximum per-
formance can be obtained only when scheduling is done centrally; however, solving the

1Some of these results are presented in our work [35]
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centralized global optimization problem is very difficult in that case since it is a very large
scaled MINLP. Most of the centralized schedulers, such as [38] and [39], are designed for
simpler schemes than OFDMA, e.g., TDMA or CDMA.

To decrease the computational complexity and the amount of data exchanged between
the cells, a semi-distributed user scheduling is performed in [40], which allows each BS to
collaborate with other cells while scheduling by exchanging important data to balance the
interference on the resource blocks. More specifically, each user sends some information
to the BS that it is associated to including the channel state information and the two
neighboring BSs that create the most dominant interference for that user. A central entity
receives information from all the BSs and then the BSs agree on using lower power on
certain PRBs. Although this decreases the complexity compared to a fully centralized
scheduler [41], this is still very complex in terms of communication overhead; therefore
simpler coordination mechanisms are proposed in [42] and [43]. In both cases, scheduling
is done locally at each BS. However, the BSs still exchange a large amount of information
such as the channel state information of their users.

Typically, each BS schedules its own users independently from the neighboring BSs in
practical systems. This eliminates the necessity for the BSs to communicate with each
other. Moreover, it decreases the size of the scheduling problem drastically and hence it
can be performed very fast. In a simple implementation, the BSs allocate equal power
to all its subchannels and serve its users to maximize a PF objective. It has been shown
in [44] that the optimal scheduler for this case allocates equal time to each user, i.e., in
round-robin (RR) fashion. In the following, we will call this scheduler RR and consider it
as our benchmark and show that its performance is significantly worse than the centralized
scheduler.

One way to perform interference management in a practical system is the static in-
terference coordination, which is also called frequency reuse [41]. It allows the cells to
schedule their users locally without any fine-grained coordination. The main idea behind
frequency reuse is to predetermine the power used on each subchannel at each cell so that
the interference management becomes simpler and the users with worse channel conditions
can be served with the subchannels that use higher power with lower interference. It is
much easier to implement than the centralized schedulers and it has been shown that some
special reuse schemes such as SFR perform well especially for the edge users [45].

Strict frequency reuse directly divides the set of subchannels into some orthogonal
subsets so that each cell can only use one of these subsets to reduce interference. On the
other hand, SFR allows all the cells to use all the subchannels, but it limits the power
that can be used on some of the subchannels so that non-edge users are served on the
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subchannels with high power and low interference. It is a more efficient technique than
the strict frequency reuse as it uses the whole bandwidth at each BS [46]. Most of the
previous studies do not take full advantage of the SFR concept, by limiting the number
of sub-bands to three at most, and the number of power levels to two (i.e., high or low).
In this chapter, we adopt a modified version of SFR, where all BSs use the entirety of
the available bandwidth, and are not limited to two power levels only. By dividing the
frequency band into a number of sub-bands, each BS can transmit on each sub-band with
a different power level, adding more flexibility to the traditional SFR scheme.

Authors of [47] and [48] proposed adaptive SFR schemes that dynamically adapt to
changing traffic load and user distribution among neighboring cells. Their schemes are
based on a continuous exchange of information between neighboring BSs. Such adaptive
techniques further raise questions on communication overhead, and on reactivity in adapt-
ing the reuse scheme to the actual network state, in real-time. To avoid this problem, we
will focus on finding a robust power-map that works well for different realizations and load
distributions.

In a HetNet that includes small cells together with the macro base stations, scheduling
has to be considered jointly with channel allocation and user association [49]. The difficulty
of channel allocation and user association processes in HetNets arises from the heterogene-
ity of the BSs, which does not exist in homogeneous networks. Although there is a large
literature dedicated to HetNets including [34], [50], [51], [52], [53], [54], [55], the problem of
providing the maximum performance in terms of channel allocation, user scheduling, and
user association via full coordination has not been solved.

4.3 The Homogeneous Case

4.3.1 The Global Centralized Scheduling Problem Formulation

In this section, we formulate the system-wide user scheduling problem for the downlink of
a homogeneous cellular network. For a given realization ω (i.e., the channel gains {Gu,k})
and the sets Uk’s, we formulate the following system-wide problem PDLS (ω) that maximizes
the proportional fair objective function over all users in the system:
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PDLS (ω) : max
(P c,t

u,k),(λku),(xc,t,lu,k ),(Ic,tu,k),(Rc,t
u,k)

∑
u∈Uk

∑
k∈K

log(λku) (4.1)

λku =
1

T

∑
c∈M

∑
t∈T

Rc,tu,k, ∀u ∈ Uk, k ∈ K (4.2)

Rc,tu,k =
∑
l∈L

xc,t,lu,k ϑl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (4.3)

Sc,tu,k ≥ x
c,t,l
u,k ηl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , l ∈ L (4.4)

Sc,tu,k =
P c,tu,kGu,k

µDL + Ic,tu,k
, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (4.5)

Ic,tu,k =
∑

j∈K,j 6=k

∑
v∈Uj

P c,tv,jGu,j , ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (4.6)

∑
u∈Uk

∑
c∈M

P c,tu,k ≤ PBS , ∀k ∈ K, t ∈ T (4.7)

P c,tu,k ≤
∑
l∈L

xc,t,lu,k PBS , ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (4.8)

xc,t,lu,k ∈ {0, 1}, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (4.9)∑
u∈Uk

∑
l∈L

xc,t,lu,k ≤ 1, ∀k ∈ K, c ∈M, t ∈ T (4.10)

Note that the problem formulation is almost the same as the centralized scheduling
problem for the uplink. The only differences are constraint (4.6) since the interference is
measured at each user on the downlink while it is measured at each BS on the uplink and
constraint (4.7) since the BS has a single power budget on the downlink while each user
has its own power budget on the uplink. As a result, we can solve PDLS (ω) with the exact
same transformations and the iterative algorithm we used to solve the centralized uplink
scheduling problem.

4.4 Numerical Results on the Centralized Problem

In this section, we first provide results for the global problem to show the tight gap between
solutions of the upper bounding signomial problem and the feasible solutions to PDLS (ω)
obtained from these solutions.
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We then develop practical schemes in the next section using insights from the feasible
solutions to PDLS (ω) and compare their performance with the global optimal and the RR
benchmark that is commonly used in the literature.

For the numerical results, we consider the exact same homogeneous system as in Chap-
ter 3.

4.4.1 Tightness of the Upper Bound

Recall that we first transform the original centralized scheduling problem PDLS (ω) to an
upper bounding problem that we solve. We can then extract a feasible solution from the
result of the upper bounding problem. Table 4.1 shows results on the tightness of the bound
for different values of N . For each value of N , 100 realizations are computed and the table
shows the arithmetic average of the relative difference in GM as well as the maximum
relative difference over these 100 realizations. These results illustrate the tightness of the
upper bounds. For example, when N = 15, the average difference is below 4%.

Table 4.1: Comparison of the upper bounds and the feasible solutions as a function of N

N : Avg. number of users per cell 5 10 15

Avg. Difference (%) 3.51% 3.62% 3.87%

Max. Difference (%) 6.67% 6.79% 6.94%

Note that the difference between the upper bounds and the feasible solutions is lower
in the case of the downlink than the uplink.

4.4.2 Comparing the Upper Bound with the RR Benchmark

In the following, we will consider practical local schedulers, where each BS schedules its own
users independently from the other BSs. It is important to note that the exact interference
can be computed on the downlink with pre-computed power values since the transmitters
in each cell are known and not changing. Then, we can compute the rate each user sees
and schedule the users accordingly.

The first practical scheme we consider is based on each BS agreeing beforehand to
allocate equal power to all its subchannels. Clearly this agreement can be seen as a rough
level of BS-coordination. In that case, the scheduler is local and has been shown to be
equivalent to a round-robin [34].
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Figure 4.1: GM Throughput comparison as a function of average number of users N per
cell

Fig. 4.1 shows results for this scheduler (labeled RR), for the upper bound (labeled UB)
and for the feasible solutions obtained from the upper bounds (labeled FS). The fourth
curve in that figure (labeled SFR) will be discussed in the next section. Specifically, it
shows the arithmetic mean of GM throughput over 100 realizations as a function of N .
The relative difference in the geometric mean is around 120% in average between the upper
bound and the equal power scheduler. Clearly, the RR benchmark performs poorly when
compared to the best achievable performance.

4.5 Design of Efficient and Practical Schemes

We now focus on designing SFR-based scheduling schemes that are practical, i.e., rely
on local scheduling and perform better than round-robin. Note that we do not focus on
finding the optimal SFR scheduler but our aim is to show the existence of an SFR scheme
that performs very well when compared to the optimal scheduler. We explain next how we
design a practical scheme.

We start by examining feasible solutions to the centralized scheduling problem for many
realizations. We see that good users are given a lot of subchannels each with very low power
and there are in fact rare cases where some subchannels are not used. This is clear in the
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Figure 4.2: Results of one sample realization for one cell. Users are sorted w.r.t their
channel gains in an ascending order

realization represented in Fig. 4.2. In this figure, we compare the amount of power, the
number of PRBs, and the interference each user sees. There are 7 users in one cell and
the users are sorted w.r.t. their channel gains in an ascending order. Clearly, user #7 sees
a great channel and gets very little power and many PRBs. On the other hand, user #1
sees a bad channel, gets very high power and very few PRBs.

Based on these insights, we design an SFR-based power-map structure [45], a way to
parametrize it, and its associated scheduler. SFR simply divides the subchannels into sets
of subchannels, we call them sub-bands, which are used with different powers by different
BSs. Our goal is to propose a well parametrized robust SFR scheme as well as the local
scheduler that goes along. We first present how we characterize an SFR scheme, then the
structure of our SFR scheme, followed by the presentation of the local scheduler that goes
with it and finally we show how to parametrize the scheme.

How To Characterize an SFR Scheme: While there are many ways to describe an SFR
scheme, we have chosen to characterize it by the following elements:
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• The number B of channel sub-bands partitioning the available spectrum made of M
channels. We assume that the sub-bands are all of the same size which means that
M is divisible by B. Variations can be designed if this is not the case.

• The set of B power levels Pj (Pj ≥ Pj+1). Pj is a per-channel power. The same
power level is used on each subchannel of a sub-band for a given cell.

• The possible mappings between sub-bands and power levels, typically there are B
mappings that are shifted versions of (P1, P2, . . . , PB) where this B-uple has to be
interpreted as P1 for sub-band 1, P2 for sub-band 2 and so on. A shifted version of
this B-uple is for example (P2, P3, . . . , PB, P1).

• The partitioning of the set K of BSs into B CELL SETS (Cj), where all the BSs in
a CELL SET use the same mapping between power and sub-bands.

Hence, parametrizing an SFR scheme means selecting values for B, the (Pj)’s
and selecting the partition (Cj)’s.

Let’s now discuss one example that we used as a building block to our scheme. It uses
reuse-1 with B = 3. In that case, we used a partition corresponding to a 3-color scheme.
We have tried all the values of P1 and P2 (note that P1 ≥ P2 ≥ P3 and PBS = M(P1+P2+P3)

B

where PBS is the transmit power of a BS). We generated for different values of |U|, the
number of users in the system, 100 realizations. For each realization, we computed the
geometric mean (GM) for each power pair (P1,P2) and then selected for each N = |U|

|K| , the

pair π(N) that gives the highest arithmetic mean of the GMs. The best choice of power
levels was such that P1 >> P2 = P3 6= 0. Roughly, each BS transmits with high power on
one third of the channels to its bad users and transmits on two thirds of the channels at
very low power to its good users. This scheme does better than a scheme based on reuse-1
and equal power by about 35%.

The structure: We are now ready to describe the proposed scheme, which uses B = 92. Its
structure is represented in Fig. 4.3 (we assume that M is divisible by 9). Note that we
have reduced the number of power levels to four and that 6P4 +P1 +P2 +P3 = PBS

B
M

and
P1 > P2 > P3 > P4).

Clearly, now for a given system, we need to map the BSs to the 9 sets to populate
the CELL SETS and select the values for P1 to P4 Once this is done offline, the BSs

2We tried lower values for B such as 3 and 6, however their performances were worse than the one we
obtained with B = 9
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Figure 4.3: Power allocation for the heuristic schedulers for reuse-1

will schedule locally their users with the power-map corresponding to their CELL SET,
knowing the power used on each sub-band by other BSs. For example, if BS j belongs to
CELL SET 6, it will use power P4 on sub-bands SB1, SB2, SB3, SB7, SB8, SB9, power
P1 in SB5, power P2 in SB6 and P3 in SB4. Hence, as for the benchmark which used
a very special case of power-map, there is an offline process during which the BSs agree
on which power level to use on which channel. This can be seen as a rough-grained BS
coordination. Then each BS acts independently and locally.

Note that this power-map structure is very similar to the one we have presented in the
previous chapter for uplink scheduling (see Fig. 3.9 and Fig. 3.10). Before explaining how
we have selected the power levels and the partition of K, we present the local scheduler
that is used along with the SFR scheme.

The local scheduler: Note that when we know the power used in each cell, i.e., for a given
value of (P1, P2, P3, P4), we can compute the exact interference on each subchannel for a
user, and we can compute the rate each user associated with a BS gets on each sub-band.
Then, each cell can schedule their users independently. Assume Rs

u is the per-subchannel
rate of user u ∈ Ul on sub-band s. Then, the following problem maximizes the proportional
fair objective function in cell l. Given our SFR pattern (represented by Fig. 4.3, the CELL
SETS and (P1, P2, P3, P4)), a given cell l and its CELL SET, its set of associated users
Ul, the (Rs

u)’s (which define the local realization ωl), the scheduler can be formulated as
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follows:

max
(xc,tu ),(λu≥0)

∑
u∈Ul

log(λu) (4.11)

s.t. λu =
∑

s∈{1,...,9}

∑
(c,t)∈s

xc,tu
Rs
u

T
, ∀u ∈ Ul (4.12)

∑
u∈Ul

xc,tu ≤ 1, ∀(c, t) ∈MXT (4.13)

xc,tu ∈ {0, 1} ∀(c, t) ∈MXT (4.14)

This is a small MINLP problem that can be replaced by a simpler convex problem by
noting that:

λu =
∑

s∈{1,...,9}

∑
(c,t)∈s

xc,tu
Rs
u

T
=

∑
s∈{1,...,9}

Rs
u

T

∑
(c,t)∈s

xc,tu

yielding the following relaxed version that allocates all of a sub-band s to user u for a
proportion of time αsu.

PDLSFR(ωl) : max
αs
u≥0,λu≥0

∑
u∈Ul

log(λu) (4.15)

s.t. λu =
∑

s∈{1,...,9}

αsuR
s
us̄ , ∀u ∈ Ul (4.16)

∑
u∈Ul

αsu ≤ 1 , ∀s ∈ {1, . . . , 9} (4.17)

where s̄ is the size of a sub-band in number of subchannels (s̄ = M
B

).

Note that PDLSFR(ωl) is a very small sized convex optimization problem that can be
solved very fast using any commercial solver. However, it might still not be possible to use
such a solver in a BS. Hence, we will next present an online SFR scheduler that does not
require to solve the optimization problem above.

Online version of the SFR-based scheduler: Let’s consider cell l. The scheduler is called
at the beginning of each subframe t, whose duration is δ. Given the set of sub-bands
s ∈ {1, . . . , 9}, the rate Rs

u for each user u ∈ Ul on each sub-band s, and the total amount
of data, τu(t), user u ∈ Ul has downloaded so far, the following algorithm allocates a full
sub-band at each subframe t to one user.
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Algorithm 3 Online version of the SFR scheduler in cell l

1: At the beginning of each subframe t, set s to 1.
2: while s ≤ 9 do
3: u∗ = argmax

u∈Ul
Rs
u/τu(t)

4: Allocate sub-band s to user u∗ in subframe t
5: τ ∗u(t) = τ ∗u(t) +Rs

u∗ × δ, s = s+ 1
6: end while

This algorithm, which is very fast, gives results almost identical as the ones of PDLSFR(ωl)
irrespective of the sub-band allocation order. For example, the difference in GM throughput
is around 1% with 100 realizations when the average number of users per cell is 10.

Finalizing the parametrization of the robust SFR scheme: We allocate the cells to the CELL
SETS as represented in Fig. 3.2 and use the same brute force approach to determine the
power levels of a robust power-map (see Table 4.2).

Table 4.2: Power Levels for SFR

Sub-bands (MP1)/9 (MP2)/9 (MP3)/9 (2MP4)/3
Power Values 0.644P 0.201P 0.121P 0.034P

We are now ready to revisit Fig. 4.1 where the black curve labeled SFR represents the
performance of the SFR scheme. We find out that the proposed SFR scheme performs
much better than the equal power scheduler. The difference between the upper bound and
the SFR scheme is only around 20%, which indicates that even when reuse-1 is employed
between the cells, an excellent performance can be obtained without full (fine-grained)
coordination among cells. Remember that a full-grained coordination is complex to perform
and would require a real-time solution that would offer a degraded performance w.r.t. to
the upper bound and hence might not bring much gain when compared to the very practical
SFR scheme.

4.6 The Heterogeneous Case

The methodology we have proposed above to compute an upper bound can be used for
different network configurations. In this section, we consider a heterogeneous network
(HetNet) that consists of small cells as well as macro BSs. HetNets bring additional
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challenges in terms of channel allocation between the small cells and the macro cells, user
association, and also user scheduling.

For simplicity, we assume that the user association is given. The fully centralized
problem can be written as a reuse-1 problem where the scheduling of all BSs (macro BS
and small cells) is done at once. This problem is a simple extension of problem PDLS (ω),
which can be transformed and solved as in the homogeneous case. Next, we present
practical schemes based on channel allocation and scheduling methods and compare their
performance with the upper bound.

An important process in a HetNet is the channel allocation, which allocates the channels
between the small cells and the macro base stations. We study two allocation schemes.
In the first one, k subchannels are allocated to the small cells and the remaining M − k
subchannels to the macro base stations. In this case, the small cells do not cause any
interference to the macro base stations and vice versa. Reuse-1 is used among macro BSs
as well as among small cells. This scheme is called Orthogonal Deployment (OD). The
second channel allocation scheme we consider is the so called Partially Shared Deployment
(PSD), which also allocates k subchannels to the small cells which are used with reuse-1
and M − k to the macro BSs which are also used with reuse-1; however, contrarily to the
OD scheme, the macro cells can also transmit on the k subchannels dedicated to small cells
but with a total power budget P ′ for these channels, while using the remaining power P−P ′
in the remaining M − k subchannels. It has been shown in [34] that PSD outperforms
OD when round-robin scheduling is used (i.e., equal power).

For a given channel allocation and user association, each base station (small cell or
macro cell) can schedule its own users locally. We will study the following four practical
schemes (for a given user association):

• PSD-SFR: This scheme uses PSD as the channel allocation method. The small cells
employ equal power scheduler, while the macro base stations serve their users with
the scheduler based on SFR developed previously.

• PSD-RR: PSD is used for channel allocation and all cells use equal power scheduler
to serve their users.

• OD-SFR: It is the same as PSD-SFR, except OD is used for channel allocation.

• OD-RR: It is the same as PSD-RR, except OD is used for channel allocation.

In the numerical results, we employ the same simple user association method for all
schemes. It is proposed in [34] and is called Small Cell First (SCF). In SCF, a user
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Figure 4.4: Average (over 100 realizations) GM throughput comparison as a function of
Φ, the user association parameter for the small cells, for different schemes

associates with the small cell that yields the largest received SINR as long as this SINR is
greater than a certain threshold Φ. If not, the user associates to the base station (macro
BS or small cell) yielding the best received SINR. Note that computing the SINR from any
small cell is easy since they use equal power on their k channels. For the macro BSs, we
compute the SINRs they produce on a user by assuming that they also use equal power.

To evaluate the performance of the four schemes described above, we perform compu-
tations on the cellular network in Fig. 3.2 with reuse-1; however, there are two small cells
in each macro cell at a distance of 230 meters left and right of the macro base station. We
use the system parameters described in [34] and set the power budget of the small cells to
30 dBm. We assume that there are 100 users in the system distributed uniformly in the
area. For PSD, we use P ′ = 2mW as suggested in [56]. We compare the performance of
the four schemes and the upper bound for different values of Φ. Note that while computing
the upper bound, we do not consider any channel allocation method and we assume every
BS can use every subchannel for the given user association.

Fig. 4.4 shows the results of our computations as a function of the SCF threshold
Φ. For each value of Φ and for each of the four practical schemes described above, we
pick the value of k, the number of subchannels allocated to the small cells, that yields the
highest average GM throughput. The figure contains 8 plots, 3 where there are no small
cells (for comparison) and 5 with small cells. The first remark is that we can improve

64



the performance significantly with small cells. The second is that the PSD performs much
better than OD. The third is that the best value of Φ is different for the upper bound and
the 4 practical schemes. The best of the practical scheme is PSD-SFR since it offer the
maximum average GM. Finally, the upper bound is only 21% better than the maximum
of PSD-SFR. Therefore, a reasonably good performance can be obtained in HetNets by
using the practical scheme PSD-SFR as long as we use the right values for k and Φ. Note
that the difference between the upper bound and the feasible solution is between 3 and 4%
and it is not included in the figure.

4.7 Conclusion

We have revisited user scheduling in OFDMA cellular networks to understand better how
much downlink scheduling would benefit from being done in C-RAN. Similar to the previous
chapter, we have formulated and solved the centralized multi-cell user scheduling problem.
While, we are able to obtain numerical results for reasonably sized network, the complexity
is much too high for a process that is called upon every few tens of milli-seconds. However,
these results can be used to evaluate the goodness of practical schemes. In both the
homogeneous and the heterogeneous cases, we have showed that solutions based on round-
robin are performing very badly compared to the upper bound and hence we designed
practical (i.e., local) schemes, based on SFR along with its scheduler, and showed that
they are only 20% away from the upper bound. Hence, there might not be a need to use
a C-RAN for downlink scheduling.
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Chapter 5

How Useful is Full Duplex in Cellular
Networks?

5.1 Introduction

The use of full duplex communications (FDC) in cellular networks has recently become a
hot topic and it is expected to be an important component of 5G networks [8]. FDC is made
possible thanks to careful interference management at the BSs [57] to allow simultaneous
downlink and uplink transmissions on the same PRB. The coexistence of uplink and down-
link transmissions in co-channel cells create new sources of interference (i.e., sources that
are not present in a TDD system) and their impact has to be studied carefully. Another
important characteristic of any multi-cell OFDMA system is its Traffic Asymmetry (TA),
i.e., the fact that the traffic is in general much larger on the downlink than on the uplink.
For example, today’s cellular traffic is dominated by downlink traffic [5], e.g., in many
networks, it is reported that more than 70% of the traffic is downlink. This characteristic
has not been taken into account in the evaluation of FDC so far.

Operating an FDC-enabled system is going to be very complex due to the need for
careful interference management and for jointly scheduling the uplink and the downlink.
Many recent papers have focused on how to operate such a system without questioning
if the gain in performance makes the added complexity worth it. We focus here on the
following research question: What is the performance gain that an FDC-enabled multi-
cell OFDMA network has over a TDD network when taking into account all sources of
interference as well as the traffic asymmetry? By answering this question, we will help
operators decide if it makes sense to implement FDC based on their network configuration
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Figure 5.1: Sources of Interference: An example FDC scenario in a two-cell system where
straight lines show data transmissions and dashed lines show the interference (all on the
same subchannel). The green dashed lines are new types of interference (i.e., not present
in a TDD system)

and traffic profile. In the following, we focus on systems where FDC is only enabled at the
BSs.

The coexistence of uplink and downlink transmissions in co-channel cells in an FDC-
enabled system, create many new sources of interference that have to be taken into account
and studied carefully. Specifically, there are three new types of interference (i.e. not present
in TDD systems):

• Self-interference (SI) at each BS since the transmission of a BS interferes with the
simultaneous reception at the same BS;

• Inter-BS interference (IBI) between the BSs since each BS transmission is interfering
with the reception of the other ones;

• Inter-user interference (IUI) between users in the same cell and in different cells
(every transmitting user interferes with every receiving user on the same subchannel).

An example full-duplex scenario is shown in Fig. 5.1, where only two co-channel BSs
are represented. In the figure, BS 1 and BS 2 are working in FDC mode and the red lines
show uplink transmissions from some users and the blue lines show downlink transmissions
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towards other users1 on the same subchannel. The dashed lines show the interference
created to the other receivers. The new sources of interference are shown in green while
the ones in black are types of interference already present in a traditional TDD system.

The interference present in a TDD system is modeled using path loss models between
a BS and a user given by the standardization bodies (e.g., 3GPP). Among the new sources
of interference, self interference has been extensively studied and is easily modeled [58].
A BS has limited capability in terms of SI cancellation, therefore there is a residual self
interference and its value has a significant impact on the system performance as will be
seen in this chapter (Section 5.6) where we show that it is the most dominant source
of interference. There also exist models for IUI that were developed in the context of
device-to-device (D2D) communications [59]. IBI, on the other hand, has not received
enough attention so far. IBI is related to the inter-BS path loss model, which depends
on various factors such as antenna height, direction, and being in line of sight or not. In
the following, we evaluate the performance of an FDC-enabled multi-cell system for both
homogeneous and heterogeneous networks using a generic inter-BS path loss model as well
as existing IUI and SI models.

Regarding traffic asymmetry, as mentioned earlier, this is a characteristic of a cellular
network that has not been taken into account when evaluating FDC. Typically, an operator
would know what the average ratio of uplink to downlink throughput is (this is what we
call traffic asymmetry in the following) in its network. This would influence the way it
selects the parameter β (the fraction of time slots allocated to downlink) if the network
is TDD, i.e., it would allocate more or less resources to the uplink based on the ratio.
A specific value of TA would yield a constraint coupling the uplink throughput to the
downlink throughput and this coupling would mean that the performance of the uplink
and the downlink cannot be computed independently. This is true for both a TDD system
(our benchmark) and an FDC-enabled system.

Specifically, we analyze the performance of a multi-cell OFDMA network both for FDC
and TDD, when all sources of interference are taken into account assuming that schedul-
ing can be done centrally for all cells, i.e., using a hypothetical centralized scheduler that
has access to all the channel state information. We are not proposing to use centralized
schedulers for operating the systems. Instead, we are using centralized scheduling in this
offline study to compute the performance of both systems under comparable conditions. By
performing the scheduling centrally, we can manage the interference optimally and thus,
we obtain upper bounds on the performance of practical systems. We expect the upper
bound to be tighter for TDD than FDC since it will be difficult in practice to design joint

1Recall that users operate in half-duplex mode.
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uplink/downlink scheduling for FDC and to accurately estimate the new types of inter-
ference and hence, practical FDC solutions will probably yield much worse performance
than the centralized scheduler. In that sense, this study that compares upper bounds gives
a slight advantage to FDC. However, we will show that even under these conditions, the
performance gains of FDC over TDD are not very significant. We also show that the FDC
gain might be higher in HetNets because of the lower power budget of the small cells, which
leads to lower interference values.

Most of the existing literature on FDC considers simple system models (e.g., a single cell
network), or ignore some sources of interference or over-simplify some important processes
such as scheduling and power control. On the other hand, we take all these into account
and consider TA on top of it.

The main conclusion we reach is that the performance gain of FDC over a TDD system
significantly depends on the network configuration, traffic asymmetry, path loss models,
SC capability, etc. The gain is higher in rural settings but even there, it is far from the
doubling of capacity as it is claimed in the literature for a realistic value of TA. Moreover,
the gain of FDC is higher in HetNets, when the channel allocation and user association
processes are done efficiently2.

5.2 Related Work

We review the recent papers on FDC in terms of the system model they use and the
research question(s) they pose. We first discuss the system models.

System models

Many papers in the literature, such as [61], [62], [63], [64], consider a single cell model that
neglects the inter-cell interference and more importantly the IBI caused by the full-duplex
communications. This is unrealistic.

Since FDC is based on self interference cancellation, an important issue to consider is
the residual self interference since it has been shown in previous studies, such as [58], [65],
that a BS cannot completely cancel its own interference. Some of the earlier papers, such
as [66], [67], [68], and [69], consider perfect interference cancellation.

2Some of these results are presented in our work [60], which is in preparation for submission to a journal.
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Scheduling is the process where the BSs allocate resources (resource blocks and power)
to the users both on the uplink and the downlink. Careful scheduling calls for power
management and fairness [14]. Scheduling is easier in a TDD system because the uplink and
the downlink can be processed independently. Several papers ignore scheduling altogether
or fairness or power management. In a single channel case, power management is simpler
but real systems are OFDMA-based.

Table 5.1 summarizes the main characteristics of the system model of the recent papers
on FDC, namely whether:

• The system is multi-cell or not. Note that a single cell system cannot take into
account important sources of interference.

• Residual self interference is considered or not.

• Traffic asymmetry is taken into account.

• Power management is considered.

• Scheduling is done and if proportional fairness which is the de-facto standard is
considered.

As can be seen, our work is the first that has all the required characteristics.

Research questions

We now discuss the research questions addressed by the recent papers. We classify these
papers in two categories, i.e., those addressing performance analysis and those addressing
operational problems such as scheduling or power management.

The first category includes papers that focus on FDC from any information theory
or a stochastic geometry perspective. There have been many studies on FDC based on
information theory [80], [81], followed more recently by physical layer studies [58], [65], [82],
which focus mostly on sophisticated interference cancellation techniques that allow FDC
to be implemented in real systems. [66] and [69] are information theoretical studies that
do not focus on scheduling but achievable rates in a single-channel network.

Stochastic geometry is used in [74], [77], [78], and [79] in a multi-cell setting. However,
user scheduling is not included in any of these papers. Similarly, [76] considers a multi-cell
network without scheduling and also neglects power control on the downlink. Authors
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Table 5.1: Main characteristics of the models in the relevant literature (the options in italic
are the most realistic)

Ref. Setting SI Cancellation Traf. Asym. Power Management Sched./Fairness
[66] Single Cell Perfect No Yes (single channel) No
[69] Single Cell Perfect No Yes (single channel) No
[61] Single Cell Residual SI No Yes (OFDMA) Sum-rate
[62] Single Cell Residual SI No Yes (OFDMA) Sum-rate
[63] Single Cell Residual SI No Only on Downlink Sum-rate
[64] Single Cell Residual SI No Yes (OFDMA) Weighted Sum-rate
[70] Single Cell Residual SI No Yes (OFDMA) Sum-rate
[71] Multi Small-Cell Residual SI No Yes (OFDMA) Sum-rate
[72] Single Cell Residual SI No Yes (OFDMA) Max-min
[67] Single Cell Perfect No No Power Control No
[24] Multi Macro-Cell Residual SI No No Power Control Weighted Sum-rate
[68] Multi Macro-Cell Perfect No Yes (single channel) Weighted Sum-rate
[73] Multi Macro-Cell Residual SI No Yes (single channel) Sum-rate
[74] Multi Macro-Cell Residual SI No Only on uplink No
[75] Multi Macro-Cell Residual SI No No power control Round-robin
[8] Multi Small-Cell Residual SI No Yes (single channel) Proportional fair
[76] Multi Macro-Cell Residual SI No Only on uplink No
[77] Multi Macro-Cell Residual SI No No power control No
[78] Multi Macro-Cell Residual SI No No power control No
[79] Multi Macro-Cell Residual SI No Yes (OFDMA) Round-robin

Our work Multi Macro-Cell Residual SI Yes Yes (OFDMA) Proportional fair

of [79] focus on FDC and D2D with a simple round-robin scheduler. [75] is a study on user
association in an FDC-enabled network. It neglects power control and uses a round-robin
scheduler. Authors of [68] analyze the spectral efficiency of a single channel multi-cell
FDC-enabled network with a stochastic geometry approach.

In the second category are more recent papers on FDC that focus on Medium Access
Control (MAC) layer and scheduling.

A game theoretical scheduling approach is used in [70] to maximize the sum-rate
throughput. Note that maximizing the sum-rate ignores fairness among the users and
zero resource might be assigned to users with poor channel conditions. Dual composition
method is used in [71] for scheduling with imperfect channel estimation. The model used
in the paper is a two-tiered macro cell, where FDC is allowed only at the small cells. Their
approach is to limit the interference created to the other small cells while scheduling. This
paper also considers sum-rate maximization. Moreover, considering the lower power bud-
get and lower channel gain of the small cells, the impact of IBI would be more significant in
a macro cell network. Max-min fairness is considered in [72] with a user pairing solution,
however a single-cell model is used.

A multi-cell system is considered in [83]. A sub-optimal heuristic scheduler is pro-
posed to maximize the weighted sum-rate. However, there is no power control, which is
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a very crucial part of FDC. Similarly, [63] deals with the channel allocation problem us-
ing matching theory. However, it fixes the transmit power of the uplink users to simplify
the model. Authors of [75], [77], [78] also deal with a multi-cell network without power
control. Without a detailed power control, it has been shown in [84] that the uplink perfor-
mance can be significantly deteriorated due to high interference received from the downlink
transmissions.

A multi-cell system is considered in [73] for a single channel TDMA-like system, which
does not utilize the multi-channel nature of OFDMA. Authors of [8] present some sim-
ulation results on a heterogeneous network where FDC is enabled at the small cells. It
considers a single channel network with little details on the scheduling method. Note that
a multi-channel system is more complex since power management among channels is also
important.

This thesis evaluates the performance of an FDC enabled multi-cell network while
considering all sources of interference as well as traffic asymmetry. We also quantify the
effects of each type of interference on the system performance.

5.3 System Model

We use the same model described in Chapter 2. We will start with a homogeneous network
and then extend our results to the HetNets. However, there is some differences especially
in the interference models.

As explained previously, FDC introduces new types of interferences that do not exist in
a TDD system. The only interfering transmissions for TDD on the uplink (resp. downlink)
are the uplink (resp. downlink) transmissions in the neighboring cells. This interference
can be computed on a per PRB basis, using the channel gains between the BSs and the
users and the transmit power on that subchannel.

The three new types of interference that occur due to FDC are self interference (SI),
inter-user interference (IUI), and inter-BS interference (IBI). Next, we explain the model
we use for each type of interference.

• SI: Recall that users operate in half-duplex mode. Hence, only BSs have the capabil-
ity to transmit and receive on the same PRB. In doing so, self interference is created
on the uplink (due to the downlink transmission on the same subchannel). The BSs
can cancel this interference partially using self-cancellation and the degree to which it
can do so is represented by the parameter C (in dB). Specifically, the self-interference
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after SC (the residual self interference) is equivalent to an extra noise term equal
to (in dBm) P̄ − C if the BS transmits with power P̄ on that PRB. Note that the
residual self interference can be modeled as an additional noise [62,85] but also using
a Rician model [86]. In this chapter, we adopt the first approach, i.e., we consider
the residual self interference as an additional noise.

• IUI: IUI occurs due to the uplink transmissions of other users (within and outside
the cell) while a user is receiving a downlink transmission from its BS. To compute
IUI, we need the channel gains between the users (as well as the transmit powers).
We represent the channel gain between users u and v with Lu,v. Although this type
of interference does not occur in a TDD system, it has been studied before in the
context of D2D communications. Therefore, we will use an existing path loss model
between the users (the one given in [59]) to compute the channel gains.

• IBI: IBI is the interference between BSs. We need the channel gains between the
BSs in order to compute IBI. Let Hj,k be the channel gain between BSs j and k.
Note that Hj,k would certainly depend on many network parameters such as antenna
heights, directions, and the fact that the two BSs are in line of sight or not. Our
objective in this chapter is not to propose a new model but to evaluate the impact
of a generic path loss model on the performance. Therefore, we will consider a path
loss model characterized by its parameters ξ = (aIBI , bIBI), which can be written as
PL(d) = aIBI + bIBI× log(d), where d is the inter-BS distance. We will focus on how
much the pair (aIBI ,bIBI) affects the performance of FDC.

Recall that on the downlink, the total interference seen at user u ∈ Uk on PRB {c, t} is
denoted by Ic,tu,k and on the uplink the total interference seen at BS k is denoted by Qc,t

u,k. In

FDC mode, Ic,tu,k includes all the uplink and downlink transmissions in the neighboring cells
as well as the uplink transmission in the current cell. In TDD mode, it only includes the
downlink transmissions in the neighboring cells. For FDC, the interference Qc,t

u,k includes
all the uplink and downlink transmissions in the neighboring cells and also the residual
interference due to the downlink transmission of BS k, while in the TDD mode, it only
includes the uplink transmissions in the neighboring cells.

One important parameter we introduce in this chapter is β that determines the fraction
of downlink subframes in the TDD system. Then, the remaining 1 − β fraction of the
subframes are allocated to uplink transmissions.
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5.4 System-wide User Scheduling Problem Formula-

tion for FDC

In this section, we present the problem formulation for FDC and show how we solve
it. Our aim is to be proportionally fair among all the users in the system. Therefore,
our performance will be the GM of overall user throughputs, i.e., the sum of uplink and
downlink throughputs.

5.4.1 Key variables and constraints

We start by defining several key variables along with their constraints. Note that all the
variables in the formulation are non-negative. The main variables of the problem are the
power allocated on the PRBs.

We first define the downlink throughput seen by user u ∈ Uk. It is the sum of its
downlink rates on each PRB (see Equation (5.1)). For all PRBs not allocated to that
user on the downlink, the corresponding power will be zero and hence the rate will be
zero. The same will be true for the uplink. The downlink rate on each PRB is computed
using the SINR on that PRB and the SINR-to-rate mapping function f(γ), which we
realize using Constraints (5.2) and (5.3) similar to our formulation in centralized downlink
scheduler. Constraint (5.3) picks the best MCS level depending on the SINR on that PRB
and constraint (5.2) gets the rate of that MCS level. The downlink SINR on each PRB
is defined by Equation (5.4). The interference seen at each user on each PRB is defined
by Equation (5.5). The first term in the interference formula is due to the downlink
transmissions in the neighboring cells, which is the only interference term for a TDD
system. The second term is the IUI, which includes all the uplink transmissions in all cells
including cell k.

λDLu,k =
∑
c∈M

∑
t∈T

Rc,t
u,k, ∀u ∈ Uk, k ∈ K (5.1)

Rc,t
u,k =

∑
l∈L

xc,t,lu,k ϑl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.2)

Sc,tu,k ≥ xc,t,lu,k ηl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , l ∈ L (5.3)

Sc,tu,k =
P c,t
u,k ×Gu,k

µDL + Ic,tu,k
, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , l ∈ L (5.4)
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Ic,tu,k =
∑

j∈K,j 6=k

∑
v∈Uj

P c,t
v,jGu,j +

∑
j∈K

∑
v∈Uj ,v 6=u

pc,tv,jLv,u ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.5)

Next, we define the uplink throughput of each user in a similar fashion using the
following equations:

λULu,k =
∑
c∈M

∑
t∈T

rc,tu,k, ∀u ∈ Uk, k ∈ K (5.6)

rc,tu,k =
∑
l∈L

yc,t,lu,k ϑl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.7)

sc,tu,k ≥ yc,t,lu,k ηl, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T , l ∈ L (5.8)

sc,tu,k =
pc,tu,k ×Gu,k

µUL +Qc,t
u,k

, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.9)

Qc,t
u,k =

∑
j∈K,j 6=k

∑
v∈Uj

P c,t
v,jHk,j(ξ) +

∑
j∈K,j 6=k

∑
v∈Uj

pc,tv,jGv,k

+
1

C
∑

v∈Uk,v 6=u

P c,t
v,k, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.10)

Equations (5.6-5.9) are similar to Equations (5.1-5.4). We define the uplink interference
on each PRB by Equation (5.10). In this case, the interference includes the uplink and
downlink transmissions in the neighboring cells as well as the downlink transmission in
cell k. The first term of Equation (5.10) represents the IBI, where Hk,j(ξ) is the inter-
BS channel gain characterized by the parameters ξ = (aIBI , bIBI). The second term is
the inter-cell interference received from the uplink transmission in the neighboring cells,
which also exists in TDD. The constant C is the self interference cancellation parameter
introduced earlier. The higher C is, the lower the residual interference becomes. Note that
in the equation, power and C are not defined in dBm and dB, respectively, but power is
defined in Watts and C does not have a unit since it is just a coefficient.

Constraints (5.11-5.15) enforce the PRB allocation constraints.

P c,t
u,k ≤

∑
l∈L

xc,t,lu,k PBS, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.11)
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pc,tu,k ≤
∑
l∈L

yc,t,lu,k PU , ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.12)

∑
u∈Uk

∑
l∈L

xc,t,lu,k ≤ 1, ∀k ∈ K, c ∈M, t ∈ T (5.13)

∑
u∈Uk

∑
l∈L

yc,t,lu,k ≤ 1, ∀k ∈ K, c ∈M, t ∈ T (5.14)

∑
l∈L

(xc,t,lu,k + yc,t,lu,k ) ≤ 1, ∀u ∈ Uk, k ∈ K, c ∈M, t ∈ T (5.15)

Constraint (5.11) enforces that a BS k cannot allocate power to serve u on PRB {c, t}
if that PRB is not allocated to that user on the downlink. Constraint (5.12) is the same
for the uplink. Constraints (5.13) and (5.14) enforce that a PRB can be allocated to only
one user on the downlink and the uplink, respectively in a given cell. Constraint (5.15)
indicates that a user cannot transmit and receive at the same time. Note that there is
nothing that prevents a PRB to be simultaneously allocated for a downlink and an uplink
transmissions as long as it is to different users.

Finally, we have the following two power budget constraints, which ensure that the BSs
and users cannot use more power than their power budget at a given time.

∑
u∈Uk

∑
c∈M

P c,t
u,k ≤ PBS, ∀k ∈ K, t ∈ T (5.16)

∑
c∈M

pc,tu,k ≤ PU , ∀u ∈ Uk, k ∈ K, t ∈ T (5.17)

Next, we introduce the downlink/uplink traffic asymmetry constraint. Let θu,k ≥ 0 be
the targeted ratio of uplink to downlink throughput of user u ∈ Uk. This is a parameter
that is network specific and can be measured by the operators. We can then add the
following constraint in our formulation:

λULu,k = θu,k × λDLu,k , ∀u ∈ Uk, k ∈ K (5.18)

We define Θ as the vector consisting of θu,k values of all the users in the system, i.e.,
Θ = {θu,k}.

Finally, we define the overall throughput λu,k of user u in cell k as the sum of the
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throughput it sees on the uplink and the downlink, i.e.,

λu,k = λULu,k + λDLu,k , ∀u ∈ Uk, k ∈ K (5.19)

Our objective is to maximize the GM Γ of the overall throughputs of all the users in
the system, by computing the power allocations and the PRB allocations jointly for the
uplink and the downlink, where:

Γ =
(∏
k∈K

∏
u∈Uk

λu,k

)1/N

, (5.20)

where N is the total number of users in the system.

5.4.2 Problem formulation for FDC

We are now ready to formulate our centralized scheduling problem PFDC(Θ) that maxi-
mizes the GM of the overall rate each user sees. Its input parameters are Θ = {θu,k}, the
realization ω, inter-BS path loss model parameters ξ = (aIBI , bIBI), and SC value C at
the BSs. Its variables are {xc,t,lu,k , yc,t,lu,k , P c,t

u,k, p
c,t
u,k, S

c,t
u,k, s

c,t
u,k, I

c,t
u,k, Q

c,t
u,k, R

c,t
u,k, r

c,t
u,k, λ

DL
u,k , λULu,k ,

λu,k}.

PFDC(Θ) : max Γ (5.21)

s.t. constraints (5.1-5.18)

In the following, we will use the same solution technique that we have used in the
previous two chapters to solve PFDC(Θ). As an aside, we will also show in Section 5.6.4
that when this problem is solved without constraint (5.18), i.e., without enforcing the
traffic asymmetry, it gives a similar amount of throughput to the uplink and downlink,
which is not appropriate for today’s networks, where downlink traffic represents at least
70% of the total traffic.

5.4.3 Transformation and solution technique for PFDC(Θ)

Similar to the uplink and downlink centralized scheduling problems, PFDC(Θ) is an MINLP
with large number of binary variables and non-linear constrains. We perform a similar
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Figure 5.2: The original MCS rate function f(γ) and the upper bound we constitute

transformation to obtain a signomial programming problem, however it is now slightly
different since both uplink and downlink are included in the problem.

The first transformation is done in order to eliminate the discrete rate function similar
to the one we have done for the centralized uplink and downlink scheduling problems in
Chapters 3 and 4, respectively. We replace the rate function f(γ) with a tight upper bound
g(γ), which is slightly different from the one we have used before. For the MCS function
given in [1], we select g(γ) as:

g(γ) = min(aγ0.43, RZ) (5.22)

where RZ is the highest rate achievable by f(γ) and a = 0.168. The tightness of the upper
bound is illustrated in Fig. 5.2 for the MCS function f(γ) given in Table 2.1 and the upper
bound g(γ) in Equation (5.22). Although this upper bound is slightly less tight than the
one we have used in the previous chapters, it is much simpler to use for the much larger
sized centralized scheduling problem for FDC.

We can then replace the binary variables xc,t,lu,k by xc,tu,k and yc,t,lu,k by yc,tu,k and hence
eliminate many binary variables.

The second transformation is similar to the one we had in the previous chapters as we
replace constraints (5.11-5.15) with the following three constraints:

P c,t
u,kP

c,t
v,k ≤ σ, ∀{u 6= v} ∈ Uk, c ∈M, k ∈ K, t ∈ T , (5.23)

pc,tu,kp
c,t
v,k ≤ σ, ∀{u 6= v} ∈ Uk, c ∈M, k ∈ K, t ∈ T , (5.24)
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P c,t
u,kp

c,t
u,k ≤ σ, ∀u ∈ Uk, c ∈M, k ∈ K, t ∈ T , (5.25)

where σ is a very small positive number. Constraint (5.23) ensures that a PRB can be
allocated for only one downlink transmission in a given cell. Similarly, constraint (5.24)
ensures that only one user can use a PRB for an uplink transmission in a given cell.
Finally, constraint (5.25) ensures that a user cannot use a PRB for a downlink and an
uplink transmission simultaneously.

With these two modifications, we obtain a new problem that finds a tight upper bound
to the original problem PFDC(Θ). With some further modifications, we can obtain a
signomial problem [32]. We first replace the equality signs in constraints (2.1), (2.2), (5.1),
(5.5), (5.6), (5.10), and (5.19) with ≤ sign, which does not change the optimal point of
the problem since this is a maximization problem. We also add a constraint to make all
the variables strictly positive by enforcing that all the variables are greater than a very
small positive constant. Then, the problem becomes a signomial programming problem
that finds an upper bound to the original problem PFDC(Θ). We call the new problem
PUB(Θ). In order to solve the resultant signomial programming problem PUB(Θ), we again
use the method proposed in [7].

5.4.4 Deriving a feasible solution to PFDC(Θ)

Note that the problem we solve provides an upper bound to the original scheduling problem
PFDC(Θ). Using the results of that upper bound problem, we can derive a feasible solution
to the original problem as follows:

xc,t,lu,k = 1 if argmax
i∈Uk
{P c,t

i,k} = u & ηl ≤ Sc,tu,k < ηl+1 ( = 0 otherwise)

yc,t,lu,k = 1 if argmax
i∈Uk
{pc,ti,k} = u & ηl ≤ sc,tu,k < ηl+1 ( = 0 otherwise)

xc,t,lu,k = 0 if P c,t
u,k < pc,tu,k (yc,t,lu,k = 0 otherwise)

Then, we set P c,t
u,k (resp. pc,tu,k) to zero if xc,t,lu,k = 0, ∀l ∈ L (resp. yc,t,lu,k = 0, ∀l ∈ L).

Note that this yields a feasible solution since a PRB is allocated for only one downlink
transmission within a cell thanks to the first equation. The second equation ensures that
a PRB can be used for only one uplink transmission within a cell. A PRB can be used
for one uplink and one downlink transmissions simultaneously, but we prevent the same
user to transmit simultaneously on the uplink and downlink using the last equation. Then,
we can compute the GM throughput of the feasible solution using the power values we
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obtain and the real rate function f(γ) instead of the upper bounding function g(γ). We
will show later that the difference between the feasible solution, which is a lower bound to
the original problem, and the upper bound is low (around 5%), therefore the upper bound
we obtain is a tight bound.

5.5 Problem Formulation for TDD

We now formulate the centralized scheduling problem for TDD. Recall that β is the propor-
tion of time spent on the downlink. It can take one of the following values {0, 1/T, 2/T, . . . , 1}
where T is the number of subframes within a frame. In this case, β × T of the subframes
are allocated to the downlink and (1−β)×T subframes are allocated to the uplink. In the
downlink subframes, no uplink transmissions can occur and hence yc,t,lu,k should be equal to

zero for the downlink subframes and similarly, xc,t,lu,k should be equal to zero for the uplink
subframes. The interference includes only the uplink transmissions in the neighboring cells
during the uplink subframes (i.e., Constraint (5.10) does not contain the first term in the
right hand-side) and only the downlink transmissions in the neighboring cells during the
downlink subframes (i.e., Constraint (5.5) has only the first term in the right hand-side).
Keeping the variables and parameters the same as above, for a given β and a given Θ,
we can formulate PTDD(Θ, β) that schedules together uplink and downlink under TDD, as
follows:

PTDD(Θ, β) : max Γ (5.26)

s.t. constraints (5.1-5.18)

yc,t,lu,k = 0, ∀t ∈ {1 . . . βT} (5.27)

xc,t,lu,k = 0, ∀t ∈ {(βT + 1) . . . T} (5.28)

In this formulation, the first βT subframes are allocated to the downlink and the rest
of the subframes are allocated to the uplink. Note that this problem gives us a solution
for a given value of {Θ} and β. Since PTDD(Θ, β) has the same structure than PFDC(Θ),
it can be solved with the method explained in the previous section. Note that the uplink
and the downlink are coupled by the objective function and Constraint (5.18) only.
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5.6 Numerical Results

In this section, we evaluate the performance of FDC and TDD for various parameters
including the interference parameters ξ = (aIBI , bIBI) and C as well as the traffic asymmetry
parameter Θ. To simplify our discussion, we assume the same value of θu,k for all the users,
i.e., we use θu,k = θ to denote the traffic asymmetry for all the users in the network.

We consider a cellular network composed of 3 BSs and study an urban and a rural
setting. The main differences between the two scenarios are the inter-BS distance and the
channel models. For the urban setting, the inter-BS distance is 500 meters while it is 1732
meters for the rural setting [14]. Each user is associated to the BS yielding the highest
channel gain. We set the total number of users in the system to 30, corresponding to an
average of 10 users per cell, unless otherwise stated. The total number of subchannels M
is set to 30. The number of subframes T in a frame is set to 10.

The path loss between the BS and the users for the urban setting is computed with the
formula explained in previous chapters. For the rural setting, we use 117.5953 + 38.6334×
log10(d) to compute the path loss between a user and a BS. We also apply fading to all
channel gain computations.

For IUI, we use a path loss between two users separated by a distance of d equal to
148+40× log10(d) dB [59]. We use C = 110 dB as the default value for the self-interference
cancellation parameter [87]. However, we will later use different values for C to see its
effects on FDC performance. For IBI, we use as a default the free space loss model, which
occurs when the antennas are in line of sight without any obstacles. We use the following
formula to compute the path loss: 128.1 + 20 × log10(d). Note that this is a conservative
model since the path loss might be higher in real life due to obstacles and multi-path fading
and this would yield less interference. Other path loss models will be studied later in this
chapter.

The results are given as an average of 100 realizations.

5.6.1 Tightness of the upper bound

Recall that we solve, for each realization, a signomial optimization problem that finds an
upper bound to the original scheduling problem PFDC(Θ) and we derive a feasible solution
to each problem from the results of the upper bound problem as explained in the previous
section. The differences between the GM throughput (i.e., the objective function) of the
upper bound problem and the feasible solution are reported in Table 5.2 for the urban
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setting for different values of θ when we use C = 110 dB, [87] and the free space loss model
to compute IBI.

Table 5.2: GM throughput (Mb/s) of the upper bound and the feasible solution for
PFDC(Θ) (urban setting, free space inter-BS path loss and C = 110 dB, N = 30)

θ = 0.2 θ = 0.5 θ = 1

Upper Bound 1.9755 2.3951 2.7915

Feasible Solution 1.8639 2.2642 2.6144

The difference between the upper bound and the feasible solution is about 5% which
shows that the upper bound we obtain is tight. In the following, we will show results based
on the upper bound.

5.6.2 Performance comparison of FDC and TDD

Next, we compare the performance of FDC and TDD for different values of traffic asym-
metry, inter-BS path loss model, SC capability, number of users, and network setting (i.e.,
urban or rural). We also evaluate the performance of FDC in HetNets. Then, to quan-
tify which type of interference has the dominant effect on FDC performance, we compare
different scenarios where we disable some of the interference sources. We also investigate
the impact of number of users on FDC performance. Finally, we show how the centralized
scheduler performs if we do not enforce the traffic asymmetry between the uplink and the
downlink.

Impact of θ on FDC performance

We first evaluate the performance of FDC as a function of θ, which determines the per
user uplink to downlink throughput ratio. Fig. 5.3 shows the FDC gains over TDD for
the urban and rural settings with 110 dB of SC and the free space loss model for inter-BS
channels. Note that for TDD, we choose for each θ the best β, i.e., the one that maximizes
the GM of the overall throughput averaged over 100 realizations.

It is clear from Fig. 5.3 that the gain of FDC over TDD strongly depends on the value
of θ and increases with θ. This is because if θ = 0, FDC and TDD are the same and the
larger θ the more uplink traffic there is and hence the more there is to gain with FDC
(note that θ = 1 means that there is as much uplink traffic as downlink traffic). Note that
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Figure 5.3: Performance gain of FDC over TDD as a function of UL/DL GM throughput
ratio θ with free space path loss and C = 110 dB

the range of interest for θ is around the lower values, i.e., (0-0.6), based on real network
measurements [5,11] (for example θ = 0.6 would mean that the downlink traffic is 62.5% of
the total traffic). In this range, the gain of FDC is at most 30% for the urban setting and
40% for the rural setting. These results are obtained with a conservative IBI (i.e., a free
space loss model) and a reasonable C. We will study next how these two parameters affect
our conclusions. As mentioned in the introduction, implementing FDC will be complex
and hence the performance of a practical FDC scheme might be significantly lower than
the performance of our centralized ideal FDC. In that context, a gain of 30% does not seem
very large. Therefore, deploying FDC for the urban setting might not be that beneficial.
On the other hand, the rural setting can be a better candidate for FDC since it yields a
higher gain.

In any case, for the practical range of θ, FDC is far from doubling the data rates. The
highest gain is 60% and it can be achieved when uplink and downlink have equal weight
which is not the case in today’s networks that are dominated by downlink traffic [5,11].

We now investigate how these conclusions are impacted by the IBI model and by SC.

Impact of inter-BS path loss on FDC performance

We analyze the impact of inter-BS path loss on FDC performance, assuming that the BSs
have a SC of 110 dB, i.e., C =110 dB. We begin with the urban setting. We perform the
computations for θ = 0.2 and 0.6.
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Figure 5.4: Performance of FDC and TDD for the urban setting as a function of inter-BS
path loss for θ=0.2 and 0.6 with C = 110 dB and N = 30

We use the path loss model, ξ, defined as PL(d) = aIBI + bIBI × log(d), where d is
the inter-BS distance. Note that d is the same for each BS pair in our system. Fig. 5.4
shows the computed GM overall throughput for different values of inter-BS path loss values
computed for different values of the parameters aIBI and bIBI . The first point in the graph
(around 120 dB) corresponds to the free space loss model. Note that we only consider path
loss values that are yielding less interference than the free space loss model because free
space yields the highest possible channel gain between two BSs since it does not consider
any obstacles or multi-path fading.

It is clear that a better IBI (i.e., higher inter-BS path loss) yields better gains for FDC
over TDD, indeed, the gain for the free space loss model is 29% for θ = 0.6 and 7% for
θ = 0.2 while it is 42% for θ = 0.6 and 15% for θ = 0.2 for an inter-BS path loss of 150 dB,
which is very optimistic.

Similar results are given in Fig. 5.5 for the rural setting, where again the first point
represents the free space loss model. The overall gain of FDC over TDD is significantly
higher for the rural setting. For example, for the free space loss model, the gain over
TDD is around 29% for the urban case whereas it is 45% for the rural case when θ = 0.6.
However, as the path loss increases the amount of performance increase for FDC is lower
for rural settings. This is because the BSs are further away from each other and the effect
of IBI is less pronounced for the rural case than the urban case.

Remark: To verify that our results hold for bigger networks, we performed some compu-
tations for a 5 cell network. The performance gains of FDC over TDD are similar to the
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Figure 5.5: Performance of FDC and TDD for the rural setting as a function of inter-BS
path loss for θ=0.2 and 0.6 with C = 110 dB

3 cell network.

Impact of SC capability at the BSs

Next, we focus on the impact of the self-interference cancellation capability of the BSs
on system performance. We include this effect in our formulation via the self interference
cancellation parameter C (see Constraint (5.10)). In Fig. 5.6, we compare the performance
gain of FDC over TDD for θ = 0.6 for both the urban and rural settings when IBI is
modeled using the free space loss model.
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Figure 5.6: Performance gain of FDC over TDD as a function of self interference cancella-
tion when θ = 0.6 and N = 30 for urban and rural setting
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Figure 5.7: Performance gain of FDC over TDD as a function of total number of users in
the network for the urban setting with C = 110 dB and the free space inter-BS path loss

The capability to cancel self interference greatly impacts the system performance. For
both rural and urban settings, when the BSs can only cancel 50 dB self interference, FDC
performs not better than TDD. A good performance can be achieved only when the BSs
can cancel high level of self interference. Clearly, the gain is higher for the rural case as
explained before. For the urban setting, to see a gain of 40% over TDD, we need a SC
of 130 dB for the free space loss model for the urban setting and 110 dB for the rural
setting. According to [87], a realistic value of SC is 110 dB, which yields around 30% gain
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for the urban setting. Note that a SC value of 150 dB would yield results very similar to
the perfect SI cancellation case for both settings.

Impact of the number of users on FDC performance

Next, we present the FDC performance for different numbers of users. Fig. 5.7 shows the
results for the urban setting as a function of the total number of users in the network.

It is seen that increasing the number of users in the network slightly improves the
gain of FDC over TDD. This can be explained by the fact that with more users, the
number of opportunities to pair uplink and downlink users to share the same PRB increases.
Therefore, a better FDC gain can be achieved in a more crowded network.

5.6.3 Quantifying the effects of each interference type

In this section, we assume that we can disable certain types of interference so that we can
understand how much they contribute to the FDC performance. We consider the 9 FDC
schemes shown in Table 5.3. In the table, a cross mark corresponds to disabling that type
of interference.

Table 5.3: List of FDC Variations

IBI IUI SC IBI IUI SC

Scheme 1 7 7 8 Scheme 6 7 3 110 dB

Scheme 2 7 3 8 Scheme 7 3 7 110 dB

Scheme 3 3 7 8 Scheme 8 3 3 110 dB

Scheme 4 3 3 8 Scheme 9 3 3 50 dB

Scheme 5 7 7 110 dB

Scheme 1 is the most optimistic one as it does not consider any IBI, IUI, or SI. Therefore,
it is an upper bound for all other schemes. Among all the nine schemes, Scheme 8 is the
most realistic one as it considers IBI and IUI while having a realistic SC capability at the
BSs. For the given 9 FDC schemes, we perform computations for 100 realizations and
compute the average gain of each scheme over TDD. The results are given in Fig. 5.8.
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Figure 5.8: Performance gain of FDC over TDD for the urban setting for N = 30 as a
function of θ for the scenarios in Table 5.3
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Figure 5.9: Performance gain of FDC over TDD for the rural setting as a function of θ for
the scenarios in Table 5.3

Fig. 5.8 shows that the most dominant source of interference is self interference and the
amount of interference cancellation C has a great impact on the FDC performance. When
we compare Schemes 4, 8, and 9, where C is infinity, 110 dB, and 50 dB, respectively, we
see that there is a huge difference between the gain of the three schemes. Among the new
sources of interference, IUI has the least effect since adding IUI reduces the gain the least.
However, its impact is still not negligible as can be seen by comparing Schemes 1 and 2.
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The most realistic scheme is Scheme 8 and its reduction with respect to Scheme 1 is very
significant. As noted before FDC brings high gain in GM overall throughput when uplink
and downlink traffic have similar throughput performance. However, today’s networks are
mostly dominated by downlink traffic. Therefore, the region we are interested in in these
graphs is actually the left half, where the GM downlink throughput is higher than the
uplink throughput. In this case, the gains are lower than for the case of equal downlink
and uplink throughput.

We report similar results for the rural setting in Fig. 5.9. Note that the gain is a little
higher compared to the urban case, but the dominant type of interference remains the self
interference.

Note that all studies that are based on single cell, ignore IBI and part of IUI and hence
correspond at best to Scheme 2 which is highly optimistic.

5.6.4 Performance of FDC without traffic asymmetry

Next, we present the performance of FDC when the traffic asymmetry between the uplink
and downlink is not enforced as we did with Constraint (5.18). It is important to note that
almost all the papers in the literature do not take the asymmetry into account.

We perform some computations with and without Constraint (5.18) for the network
configuration described earlier. When we do not enforce a traffic asymmetry, each user
sees a different ratio between its uplink and downlink throughputs. Moreover, the average
uplink to downlink throughput ratio across all users is around 0.8, which is unrealistically
high considering today’s applications that are downlink dominated. For example, the gain
of FDC over TDD is expected to be around 29% when θ = 0.6, however it predicts a gain
of 42% gain when we do not enforce the traffic asymmetry.

To illustrate this, we plot in Fig. 5.10 the CDF of the traffic asymmetry that is obtained
from the solution of the problem without the constraint that enforces that asymmetry. The
CDF is computed over 100 realizations for the urban setting.

Clearly, it gives a higher throughput to the uplink than the downlink for almost 20% of
the users, which is not a good way to allocate resources. In doing so the problem without
asymmetry constraint is biased in favor of FDC since the gain is higher when the uplink
to downlink throughput ratio is close to one. Hence recent papers have over estimated the
gain of FDC over TDD by ignoring the traffic asymmetry.
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Figure 5.10: CDF of the uplink to downlink throughput ratio without Constraint (5.18)
for the urban setting with free space loss model, N = 30, and C = 110 dB

5.6.5 Performance of FDC in heterogeneous networks

Finally, we evaluate the performance of FDC in the context of HetNets. As explained in
previous chapters, HetNets include low-powered small cells. Since their power budget is
comparable to the power budget of the users, small cells might be a better candidate to
implement FDC.

To evaluate the performance of FDC in HetNets, we consider the same 3-cell network
as before, however in this case, there are two small cells installed at 230 meters right and
left of each macro BS. Similar to our study in Chapter 4, we perform channel allocation
and user association separately from the user scheduling problem.

For channel allocation, we use the simple orthogonal deployment (OD) method, where
k subchannels are allocated to the small cells and the remaining M − k subchannels are
allocated to the macro BSs. In this case, the macro BSs and the small cells do not create
interference to each other. Hence, for a given user association and for a given k, we can
consider the macro BSs and the small cells as two separate networks.

We use the same user association (UA) method as in Chapter 4.6, i.e., small cell first.
For this method, just for UA purposes, we compute the SINR per subchannel each user
receives from each BS assuming that the BSs allocate equal power to their subchannels.
Then, a user associates to the small cell if the per subchannel SINR that user receives from
that small cell is greater than a threshold φ. Otherwise, it associates to the cell that yields
the highest SINR.
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Figure 5.11: Performance of FDC and TDD in HetNets as a function of traffic asymmetry
θ for the urban setting with free space inter-BS path loss model, N = 30, and 110 dB SC
capability

Then, for a given realization, user association (i.e., φ), channel allocation (i.e., k), and
traffic asymmetry Θ, we solve the centralized scheduling problem PFDC(Θ). Similar to
what we have done for the homogeneous case, we assume the same traffic asymmetry θ for
all users in order to simplify our computations.

The results are given in Fig. 5.11 as a function of the uplink/downlink traffic asymmetry
θ for different values of φ, i.e., the user association parameter. Note that for each point,
we pick the value of k, i.e., the number of subchannels allocated to the small cells, that
maximizes the average GM overall throughput of the users.

Clearly, a HetNet deployment requires a good parametrization of the user association
scheme since TDD with small cells performs worse when φ = −2 dB than TDD without
small cells. Moreover, the performance gain of FDC also depends on user association.
However, when UA is done properly, e.g., when φ = 5 dB, the gain increases significantly.
For example, when θ = 0.5, the FDC gain over TDD is around 23% without small cells,
whereas it is around 39%, with small cells and when φ = 5 dB.

As a result, the gain of FDC is more significant in HetNets due to the smaller power
budget of the small cells.
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5.7 Conclusion

In this chapter, we study the performance of FDC in multi-cell OFDMA networks. We
present an offline study that compares the performance of FDC with a TDD network. We
show that the inter-BS path loss model and the self interference cancellation capability
of the BSs play a crucial role on system performance. Furthermore, we show the impor-
tance of the mix of traffic (i.e., the parameter θu,k in our model). Based on the many
numerical results obtained for different scenarios, we conclude that the gain of FDC over
TDD significantly depends on the network setting and network parameters and it is rarely
close to 100% (i.e., a doubling of the throughputs), in fact it might not always be high
enough to warrant the very high complexity of a real-time online FDC scheduler. The four
scenarios, where FDC can bring more gain are: i) when uplink and downlink traffic have
equal weights in volume, ii) rural setting, iii) HetNets, and iv) crowded networks.
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Chapter 6

A Benchmark for D2D in Cellular
Networks: The Importance of
Information

In this section, we will present a benchmark for D2D communications. This study was
conducted at the beginning of my Ph.D. studies, hence we use simpler schemes such as
reuse-3 among the BSs and simple schedulers for the uplink and the downlink.

6.1 Introduction

A recent trend in cellular networks is the so called D2D communications that enable cellu-
lar users, in close proximity to each other, to exchange data directly without using the BS
as a relay node [9]. This topic has emerged mostly due to the invent of new smart phone
applications that create local, i.e., intra-cellular, traffic among cellular users. Such applica-
tions include photo sharing, video sharing, and instant messaging. Although it has been a
hot topic in the last few years, many challenges remain to implement D2D communications.
For example, interference management is complicated by D2D communications, detecting
that a traffic is IC is also hard, and it is not easy to obtain the channel gains between
the cellular users and hence to decide if an IC traffic should use D2D communications or
be sent via BS(s). In this chapter, we focus on IC traffic when D2D communications are
not allowed, i.e., the network operates in a classic cellular mode. We show that there is
a significant performance gain if the network processes, such as user scheduling and user
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association, are performed with the knowledge of traffic types even when the direct links
between users are not utilized. However, this requires the joint operation of the uplink and
downlink.

The reason we study this is because the benchmark against the D2D case (i.e., where
direct communications are allowed) should be type-aware since it is unfair to assume that
this information is available for the D2D case and is not available for the case where direct
communications are not allowed.

In a conventional cellular network, uplink and downlink scheduling are performed sep-
arately. There are different challenges for uplink scheduling and downlink scheduling. For
example, in a multi-cell system, inter-cell interference plays a crucial role in system per-
formance and dealing with interference is not easy especially on the uplink. The power
budget on the downlink of a cell comes from a single source (the BS) while it comes from
different sources (the users) on the uplink. Apart from those challenges, we show that
there is also a need to know the traffic types in order to improve the performance of the
cellular network.

Let fij be the unidirectional traffic between any two nodes i and j. If i and j cellular
are users belonging to the same cellular network, we say the flow is IC, if i is a cellular
user and j is a node outside the cellular network, we call it an uplink flow, and if j is a
cellular user and i is a node outside the cellular network, we call it a downlink flow. In a
conventional cellular system, an IC flow fij would use two radio links, one of which is from
i to its BS (uplink) and the other one is from the BS of j to j (downlink). Since these
two radio links are coupled, we should, if at all possible, couple their scheduling to avoid
congestion. Indeed, in a conventional system, if i is very close to its own BS, it might be
allocated a high rate and this could be a problem on the downlink of j especially if j is
far from its BS. In practical systems, this problem would translate into buffer overflows.
The BSs for i and j might be different or might be the same. To illustrate the gain of
a type-aware solution, we will restrict our study to a single macro cell (while considering
interference from the rest of the cells) and only call IC flows the flows for which i and j
share the same BS. We can generalize this in a C-RAN based system [13] to the case where
i and j are on different BSs if the BSs are connected to the same C-RAN and scheduling
is performed in the C-RAN.

We show that the performance can be significantly improved when the uplink and
downlink of an IC flow are jointly scheduled at the BS (this requires the knowledge of the
type of a flow). We call this type of schedulers type-aware and we call the schedulers that
do not take the type of flows into account and hence schedule the uplink and the downlink
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independently type-blind1.

In a cellular network, each user has typically multiple flows, possibly of different types.
Therefore, the issue of fairness among users or flows arises. In this chapter, we define
the concept of device fairness that ensures fairness at the device-level irrespective of the
number of flows each user has.

We will explain the type-aware scheduler in an homogeneous context and then focus
on HetNets, which consist of macro base stations and small cells [49]. In that case, user
association, the process of associating each user to either a macro BS or one of the small
cells, is critical. We show that when UA is type-aware, system performance can be further
improved.

The two main messages of the chapter are that i) important network processes, such
as user scheduling and association, should be performed with the knowledge of the type of
flows; ii) the uplink and downlink should be jointly scheduled to obtain the best perfor-
mance when there is IC traffic in the system. This is easy to do when the source and the
destination of a flow are associated to the same BS or to different BSs linked to the same
C-RAN.

6.2 Related Work

In this section, we explain the work related to our study. We will focus on the papers that
are related to mode selection, channel allocation, and user scheduling in D2D communica-
tions.

Earlier works addressed simple scenarios including one cellular user and a pair of D2D
users in a single cell. Authors of [89] proposed a simple network coding for this scenario.
In [90], a mode selection and a power adjustment mechanism are proposed. In both papers,
interference is neglected and a very simple channel allocation scheme is implemented.
Similarly in [91], a closed-form solution for the rate of a D2D pair is obtained without
considering the interference. However, the assumptions and the system model are very
simple and performance maximization is done only for the D2D pair while neglecting the
performance of the other users.

When spatial reuse between the cellular users (i.e., users with downlink and uplink traf-
fic only) and D2D users (i.e., users with IC traffic only) is utilized, one important question
is whether uplink or downlink resources, or both should be shared between the cellular

1Some of these results are presented in our work [88]
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and D2D users. Most of the time, uplink resources are shared since uplink transmission
causes less harm to D2D users due to lower power budget of the users compared to the BSs.
In [92], uplink resources are shared with D2D users. However, user scheduling and mode
selection are not included in the sense that each cellular user uses one subchannel and
D2D users share these subchannels with the cellular users. On the other hand, downlink
resources are shared with D2D users in [93] with a similar approach. Both papers consider
a single-cell environment which is not a realistic model.

Some of the previous work focused on analytical modeling of D2D communications.
In [94], system throughput equations are derived using stochastic geometry. However a
very simple channel allocation model is assumed. Authors of [95] extended D2D communi-
cation framework to heterogeneous networks and made a similar analysis using stochastic
geometry. Game theoretical approaches are used in [92] and [96]. Combinatorial auction is
used in [92] for energy efficient channel allocation. Coalition formation game is employed
in [96] for channel allocation and interference management.

Authors of [97] consider a relatively more detailed system by modeling the problem
as a weighted sum-rate maximization problem. Both uplink and downlink resources are
available for D2D users to share with cellular users. Furthermore, mode selection, user
scheduling, and power management are also included in the problem. Since the problem
is a very large sized nonlinear integer problem, they proposed a heuristic solution to ap-
proximate the optimal solution. To this end, it is one of the most detailed formulations.
However, similar to the previous examples, this paper considers a single-cell environment.
Therefore, inter-cell interference is neglected. Inter-cell interference is central to our work.

One important issue to consider is fairness. Since there are users with different number
of flows in the system, the question of how to ensure fairness among those users arises.
In [98], IC traffic always uses direct links and they share the resources of the cellular
users while the cellular users have higher priority meaning that Quality of Service (QoS)
requirements of the cellular users are always satisfied, whereas it is not a necessity for the
D2D users. Different fairness criteria are defined in [99]. Authors discuss fairness among
cellular users, D2D users and they propose a new fairness called group fairness. However,
only one type of flow per user is considered. Similarly, authors of [100] focuses on max-min
fairness for the energy consumption among only users with IC traffic. A game theoretical
approach is used in [101] to ensure fairness only among users with IC traffic. In our study,
we generalize the notion of fairness in the sense that each user can have multiple types of
traffic and we define a utility function that enables us to make a fair comparison among
such users. Moreover, no prior work considers a benchmark (i.e., when a network with IC
traffic operates in traditional mode without utilizing the direct links between users) that
takes into account the traffic types and fairness among users.
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6.3 System Details

6.3.1 Overall Network Model

We use the multi-cell system model described in Chapter 2, where each cell has one macro
BS equipped with an omni-directional antenna. Additionally, for the HetNet configuration
we consider in Section 6.7, there are also two small cells in each cell. In that case, each
small cell has a power budget PS. We focus on the macro cell in the middle (that we call
cell 0) while taking into account the interference received from the other cells.

On the downlink, we assume that a BS allocates all its power equally to its allocated
subchannels and we know the interferers which are the other BSs transmitting on the same
channels as the BS in cell 0. Then, if we assume that the channel gains between i and all
these BSs are known exactly, we can compute exactly the interference seen at each user
device and hence the SINR.

On the uplink, calculating the interference seen by the BS is not as easy as calculating
it for the downlink since we do not know how the power is used and who the interferers
in the other cells are (it depends on the schedule in the cells). Hence, we have to estimate
the interference and consider decoding errors, due to a bad estimation of the interference.

The final parameter that we have is 0 < β < 1, which determines how much of the
scheduling frame time is allocated to the downlink (β) and the uplink ((1− β)). Selecting
β might not be so straightforward when IC traffic is present.

6.3.2 The Flows

In our system, a user i in cell 0 may have up to four types of flows:

• Uplink (UL): Uplink flow to the Internet or to a user in another cell

• Downlink (DL): Downlink flow from the Internet or from a user in another cell

• ICo: From i to a device in cell 0

• ICd: From a device in cell 0 to i

Hence, we categorize a flow from i to a device outside cell 0 as an uplink flow and a flow
from a device outside cell 0 to i as a downlink flow. We assume that each user has, at
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most, one flow of the first three types (it can have multiple flows of the fourth type). Let
ζ(i) be the destination of the ICo flow of user i (if any) and let z(i) be the set of sources
of the ICd flows of user i (if any). We define the throughput λULi , λDLi , λICo

i , and λICd
i for

the UL, DL, ICo and ICd flows of user i, respectively. An IC flow contains two hops: the
hop between the source (either i or u ∈ z(i)) and the BS and the hop between the BS and
destination (either i or ζ(i)).

We assume that the binary matrix X, whose dimension is 4xN , showing whether a user
has a given type of flow or not, is given. More specifically:

• X(1, i) = 1 if device i has a UL flow

• X(2, i) = 1 if device i has a DL flow

• X(3, i) = 1 if device i has a ICo flow

• X(4, i) = 1 if device i has ICd flow(s)

6.4 A Single Metric for Fairness and Efficiency

Since each user might have a different number of flows, it is important to decide how to
define fairness among those users. A network operator can offer fairness to flows irrespective
of the devices on which they are or it can offer fairness to devices without considering the
number of flows each device has. We focus on a device fairness, where each device is
treated as a single entity rather than considering each flow separately. This is because
offering flow fairness might cause unfairness among the users with different numbers of
flows by assigning higher weights to the users with higher numbers of flows. To this end,
we define a utility function for each user that is the GM of the throughput of each flow of
types 1, 2, and 3. The reason why we do not include type 4 flows, i.e., ICd flows, is that we
do not want to double count flows. This will become clearer when we define the objective
function across all users in the cell. Let F (i) be the set of flows of types 1, 2, and 3 of user
i where 1 ≤ ‖F (i)‖ ≤ 3. The utility ϕi of user i is defined as:

ϕi = |F (i)|

√ ∏
j∈F (i)

λji , (6.1)

where F (i) = {j ∈ {1, 2, 3} | X(j, i) = 1}. If we use an arithmetic mean instead of a
geometric mean in Eq. (6.1), we might assign zero resource to some IC flows.

Note that this metric is defined for a user. In the following, our purpose will be to
maximize the GM of the user utilities to be efficient and fair among the users.
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6.5 Type-Blind Scheduling

In this section, we explain how user scheduling is performed in a conventional homogeneous
cellular network. We consider the homogeneous network shown in Fig. 6.12. Typically,
user scheduling is performed separately for the uplink and the downlink and the scheduler
does not know if a flow is IC or not, i.e., it is type-blind and in this case the scheduler
considers it two separate flows, one uplink and one downlink. We explain its operation in
this subsection. It allocates all the resources to the downlink for a time fraction β and
then on the uplink for the remaining frame time.

MBS

Cell 0

Figure 6.1: Homogeneous network configuration with a reuse factor (r) of 3. The cells
interfering with cell 0 are shown in yellow.

6.5.1 Downlink Scheduler

We consider a simple downlink scheduler [34], where a BS allocates equal power to all its
available subchannels and allocates all subchannels to a user at a given time. Then, the
users are time scheduled. With these assumptions along with the one stating that the
channel gains are known perfectly, we can compute the exact interference (and the SINR)
seen at each user and hence, knowing the rate function f(.), we can pick the best MCS,
i.e., the one that yields the maximum achievable rate for each user. For a given realization
ω, where a realization corresponds to the random deployment of the users within cell 0

2Reuse-3 is used because this study is chronologically the oldest study in this thesis. We have used
reuse-1 in the remaining of this thesis.
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and their corresponding channel gains, let ri be the rate user i sees (over all the channels)
when it is scheduled and U0 be the set of users associated to BS0. Then, assuming the full
buffer case, the following problem maximizes the proportional fair objective function over
the downlink:

PDL(ω) : max
αi≥0,λi

∑
i∈U0

log(λi) (6.2)

s.t. λi = αiri , ∀i ∈ U0 (6.3)∑
i∈U0

αi ≤ β (6.4)

where λi is the throughput user i sees on the downlink and αi is the fraction of time user i
is scheduled. Note that PDL(ω) is a convex problem and it was previously shown that the
optimal scheduler allocates equal time to each user [34], i.e., λi = β

|U0|ri.

6.5.2 Uplink Scheduler

As discussed before, scheduling on the uplink is more challenging. First, the interference
cannot be known exactly since the transmitters and the power they allocate on each sub-
channel in the neighboring cells are unknown. Furthermore, power allocation is not as
simple as on the downlink since there are multiple possible transmitters in a cell.

The scheduler proposed in [14] allocates mi ≥ 1 subchannels to user i for the duration of
a frame, where mi is an integer. The power budget of user i is divided equally between these
mi channels. The scheduler uses the same interference estimate Iest on all subchannels.
This scheduler is not flexible enough for the type-aware scheduler because it might be
necessary to allocate a user less than T PRBs (i.e., less than one subchannel during the
whole frame). Hence, we propose a scheduler that can be seen as a more flexible version
of the one in [14]. We also use the same interference estimate Iest on all subchannels.

We assume the subchannels are organized into blocks of different sizes and that a user
can only be allocated one block at a time for transmission. If a user is allocated a block
of 1 ≤ k ≤ M subchannels at a given time, we assume that its power budget is shared
equally among the k subchannels. Let the number of blocks of size k be tk. Our uplink
scheduler computes for every frame the values of tk (since the realization can change from
one frame to another) and allocates a block of size k to user i for a fraction of time ξki .

An example of a power allocation and a schedule with 5 subchannels and 4 users (U1
to U4) is given in Figure 6.2. There are three subchannel blocks, shown as B1, B2, and B3,
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Figure 6.2: An example scheduling on an example power allocation scheme

which are also variables of the scheduler. The first two blocks have one subchannel each
and hence are used with PU whereas the third block has 3 subchannels and hence is used
with PU/3. Therefore T1 is equal to 2 and T3 is equal to 1. This figure shows a feasible
schedule since a user uses only one block at a given time with all its power allocated to
the subchannels of the block.

Let Rk
i (I

est) be the rate seen by user i on a subchannel block of size k when the
interference estimate is Iest. This can be computed by first computing the SINR with
equation (2.2) with Iest as the interference estimate and then mapping this SINR to a data
rate using the rate function f(.) and k. Specifically, for a realization ω, given Iest, Rk

i (I
est)

and U0, the uplink scheduler solves the problem PUL(ω, Iest).
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PUL(ω, Iest) : max
(ξki ),(tk),(λi((Iest))

∑
i∈U0

log(λi(I
est)) (6.5)

s.t. λi(I
est) =

∑
k∈{1...M}

ξki R
k
i (Iest) , ∀i ∈ U0 (6.6)

∑
k∈{1...M}

ξki ≤ (1− β), ∀i ∈ U0 (6.7)

∑
i∈U0

ξki ≤ tk(1− β), ∀k ∈ {1..M} (6.8)

∑
k∈{1...M}

ktk ≤M (6.9)

tk ∈ Z+, ξki ≥ 0, ∀k ∈ {1..M}, ∀i ∈ U0 (6.10)

The estimated throughput λi(I
est) of user i is defined as the sum of rates it sees on each

block (constraint (6.6)). Constraint (6.7) ensures that the total time a user is scheduled
cannot exceed the uplink frame duration. Constraint (6.8) ensures that the total time users
are scheduled on blocks of size k cannot exceed tk(1 − β). Constraint (6.9) enforces that
the total number of subchannels allocated to the blocks cannot exceed the total number of
subchannels M .

A crucial part of this scheduler is the computation of the Rk
i (I

est)’s. If we use an
optimistic interference estimate (a small value for Iest), we might see many losses since the
real interference might be higher. Recall from previous chapters that we define the goodput
seen by a user as the effective rate this user sees after considering PRB losses. For a low
value of Iest, we show that the GM estimated by solving PUL(ω, Iest) is different from the
goodput GM. Next, we evaluate the performance of the uplink scheduler with the same
methodology as we evaluated the performance of local uplink schedulers in Chapter 3.

We consider a snapshot scenario in which we create a global realization made of N = 10
users per cell. We schedule each cell locally using the same interference estimate Iest and
obtain the estimated GM for cell 0 as the value of the local objective function. The
resultant schedule is mapped to the PRBs for each cell. We can then compute the goodput
GM since we now have the real interference values (once we know the scheduling in each
cell, we know the exact interference). We perform this simulation for multiple time slots
with different PRB allocation and take the time average. The decoding rule is as follows
for a given PRB: If the real SINR is higher than the threshold of the MCS, the user gets the
rate of that MCS from the PRB. Otherwise, the PRB cannot be decoded and we consider
it lost. We repeat this for 100 realizations and take the average GM goodput. Fig. 6.3
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Figure 6.3: Comparison of GM estimated throughput and GM goodput as a function of
Iest for the uplink scheduler

shows the results.

We can see that the GM throughput estimated by PUL(ω, Iest) is significantly lower
than the GM goodput for low values of Iest. However, the GM estimated throughput and
the GM goodput overlap after some point. In the following, we will select the lowest value
of Iest that yields a difference of less than 0.5% between the two curves, which corresponds
to Iest = 1.6 × 10−13 Watts. Then, we will assume that the estimated throughput is the
same with the goodput of each user.

6.5.3 Operation of the type-blind benchmark scheduler

Now, we explain how the benchmark scheduler works using PDL(ω) and PUL(ω, Iest) defined
above. It does not consider the type of flows and schedule the users on the uplink and
downlink separately.

The uplink scheduling is performed for all the users who have an uplink flow or who
are the source of an IC flow. Then, the throughput is equally divided for each user among
the flows that use uplink transmission. Then, downlink is scheduled for all the users who
have a downlink flow or who are the destination of an IC flow(s). In this case, when the
throughput of the first hop an IC flow is higher than the throughput of the second hop
of the IC flow, then the uplink resources are wasted. Moreover, the scheduler does not
consider the utility metric per user since it does not know the flow types, hence it results
in an unfair schedule.
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6.6 Type-Aware Scheduling

6.6.1 Formulation

Recall that an IC flow (within a cell) uses simultaneously the uplink and the downlink of
that cell. If its uplink and downlink scheduling are not coupled as in the type-blind case,
it is possible that the flow receives a higher goodput on the uplink than on the downlink
and this would create a buffer overflow at the BS. To avoid overflows and wastage, we have
to constrain the goodput seen by an IC flow on the uplink to be equal to the goodput
seen on the downlink. This couples the scheduling on the uplink and the downlink and
makes the computations of the schedules more difficult. We show next how to do it and
what can be gained in terms of performance by doing it. We formulate the problem for
the optimal type-aware scheduler. Our aim is to be proportionally fair in the utilities (Eq.
(6.1)) of the users. Since we focus on device fairness, each flow of each user is not treated
as a separate entity, but we consider a user as a single entity in our scheduling problem.
To avoid double-counting, we do not include ICd flows in the computation of the utility of
a user since each ICo flow for i is an ICd flow for another user. We consider only the first
3 rows of the matrix X.

For a user i with an ICo flow, i.e., an intra-cellular flow originated in i, the ICo through-
put λICi is defined as the minimum of two different equations, one corresponding to the
throughput on the uplink hop and the other to the throughput on the downlink hop.
Both throughputs must be equal to each other to avoid wastage or overflow. We do rate
matching to avoid possible overflow at the downlink buffers, which we do not model. The
throughput of the uplink (resp. downlink) flow of user i is denoted as λULi (resp. λDLi ). If
there is no flow of this type, the throughput is zero.

We use the uplink and downlink schedulers defined in the previous section. However, we
need to extend the notation since each user might have different types of flows. Previously,
we used αi for the fraction of time user i is served on the downlink. Now, we define αDLi
and αICi for the fraction of time user i is served on the downlink for its DL flow and ICo

flow, respectively. Similarly, we extend the notation of ξki to ξk,ULi and ξk,ICi as the fraction
of time user i uses subchannel block k on the uplink for its UL and ICo flows, respectively.

For a realization ω, we formulate POPT(ω, Iest), given {(F (i)), X, (ζ(i)), β, Iest,
(Rk

i (I
est)), (ri)}. The variables are {(λICi ), (λDLi ), (λULi ), (αDLi ), (αICi ), (ξk,ICi ), (ξk,ULi ),

(ϕi), and (tk)}, which are all non-negative.
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POPT(ω, Iest)) : max
∑
i∈U0

log(ϕi) (6.11)

s.t. ϕi = |F (i)|

√ ∏
j∈F (i)

λji , ∀i ∈ U0, (6.12)

λULi =
∑

k∈{1...M}

ξk,ULi Rki (Iest) , ∀i ∈ U0 (6.13)

λICi =
∑

k∈{1...M}

ξk,ICi Rki (Iest) , ∀i ∈ U0 (6.14)

λDLi = αDLi ri , ∀i ∈ U0 (6.15)

λICi = αICi rζ(i) , ∀i ∈ U0 (6.16)∑
i∈U0

(ξk,ULi + ξk,ICi ) ≤ tk(1− β) , ∀k (6.17)

∑
k∈{1...M}

(ξk,ULi + ξk,ICi ) ≤ (1− β) , ∀i ∈ U0 (6.18)

∑
k∈{1...M}

ktk ≤M (6.19)

∑
i∈U0

(αDLi + αICi ) ≤ β (6.20)

ξk,ULi ≤ X(1, i) , ∀i ∈ U0 , ∀k ∈ {1...M} (6.21)

ξk,ICi ≤ X(3, i) , ∀i ∈ U0 , ∀k ∈ {1...M} (6.22)

αDLi ≤ X(2, i) , ∀i ∈ U0 (6.23)

αICi ≤ X(3, i) , ∀i ∈ U0 (6.24)

tk ∈ Z+ , ∀k ∈ {1...M} (6.25)

The throughput of the UL flow of user i is defined by constraint (6.13) and of the DL
flow by constraint (6.15). The throughput of the ICo flow of user i is defined by (6.14)
and (6.16). Constraints (6.21-6.24) ensure that a device does not get resources if it does
not have a flow that uses that type of resources. Constraints (6.17) and (6.20) ensure that
the time users are scheduled on a subchannel cannot exceed the total uplink and downlink
subframe time, respectively. Since the objective function is the GM of user utilities and
each utility is the GM of flow throughputs, we guarantee that no flow gets a zero rate.

POPT(ω, Iest) is an NP-hard problem since it is a mixed integer program. For reason-
able size problems, it can be solved by commercial solvers such as Bonmin [33]. Its high
computational complexity is not a problem for our offline study, which is focused on show-
ing the gain by jointly scheduling the uplink and downlink when the types of the flows are
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known.

6.6.2 Numerical Results

Now, we compare the performance of the Type Aware Scheduler (TAS) with the Type
Blind Scheduler (TBS). We consider the 19 cell system shown in Fig. 6.1 and focus on cell
0. We only consider the six other cells that use the same set of subchannels as cell 0. The
power budgets and the channel models are the same with the ones used in the previous
chapters. The number of users in U0 is set to 10. We assume there are the same number
of users in each of the six cells.

We consider a snapshot scenario in which we create a global realization made of N = 10
users per cell. The destination node ζ(i) of the ICo flow of each user i is selected randomly.
We select Iest so that losses are negligible as discussed previously. Our performance metric
is the GM of the ϕi of the users. We consider two scenarios:

• Scenario 1: 10 users in cell 0 with all three types of flows, i.e., X(1, i) = X(2, i) =
X(3, i) = 1,

• Scenario 2: D (≤ 10) users with an ICo flow, i.e. X(3, i) = 1, and {10−D} users
with UL and DL flows and no ICo flow, i.e., X(1, i) = X(2, i) = 1.

We start with the first scenario. Fig. 6.4a shows the performance difference between
the two schedulers. Both schedulers achieve their peak performance when β is 0.5, i.e.,
equal time for the uplink and downlink. In that case, there is a 14% gain for the TAS.

Next, we consider the second scenario. Note that the two schedulers perform exactly
the same if there is no IC traffic in the network. Fig. 6.4b shows the performance of the
two schedulers when D is 2 and 10. The difference in GM utility is 9% for D = 2, whereas
it reaches 28% for D = 10. To examine this further, we plot Fig. 6.4c which shows the
performance of the two schedulers as D increases when β = 0.5. The gain obtained with
the TAS increases with the amount of IC traffic.

By avoiding wastage and overflows, the TAS can do much better that the type-blind one.
Hence, the researchers who study the performance gain of D2D communications should
use the TAS as their benchmark since this is what can be achieved with a well designed
scheduler when direct communications is not enabled. There are two main reasons for this
difference. First, the type-blind scheduler does not limit the throughput of the uplink hop
of an IC flow if the downlink hop has worse channel characteristics. This avoids some of
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Figure 6.4: GM comparison for the type-aware and type-blind schedulers for different
scenarios in the homogeneous case
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the data to be transmitted on the second hop. Since the type-blind scheduler does not
know the flow types, it also cannot share the resources in an efficient way between the
flows.

6.7 Joint User Association and User Scheduling in

Heterogeneous Networks

We now examine the effects of type knowledge on the UA process of an HetNet. We
consider the cellular network shown in Fig. 6.1 with two small cells added to each cell at
a distance of 230 meters left and right of the MBS. We focus on cell 0 but now the users
in U0 have the choice to associate with the MBS or one of the two small cells. An IC flow
remains a flow between any two users in U0, irrespective of their association.

We consider an orthogonal deployment, where c subchannels are allocated to the small
cells and M − c to the MBS. For downlink scheduling, we assume each BS (macro BS
and small cell) allocates equal power to its subchannels and serve one user at a time. For
the uplink, we adapt PUL(ω, Iest) to the HetNet case. For the interference estimation, we
consider two estimates, one for the MBS and one for the small cells. These two estimates are
independent of each other due to the orthogonal deployment. Similar to the homogeneous
case, we consider a conservative estimation in order to avoid PRB losses.

UA is a critical process that associates each user to a single BS. Furthermore, the
best performance can be obtained only when it is jointly performed with user scheduling
[34]. Here, we compare the performance of joint type-aware UA/scheduling and type-blind
UA/scheduling. For the type-blind UA, we use the optimal UA for the downlink, which
can be found by solving the integer program described in [34]. Once the UA is given, the
user scheduling can be performed independently at each BS for the type-blind scheme as
explained in Section 6.6.

For the type-aware case, we perform the UA and scheduling jointly while coupling the
uplink and downlink. We assume that the BSs of a macro-cell are coordinated using a
C-RAN [13]. The problem formulation is not given here for brevity. Briefly, we add binary
variables to show to which BS a user is associated, and solve POPT(ω, Iest) with the new
UA and HetNet constraints.

We consider Scenario 2, which was explained in the previous section with β = 0.5.
We use the system parameters described in [34] and set PS to 30 dBm. The performance
difference of the type-aware UA and type-blind UA is given in Fig. 6.5 as a function
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of c, the number of subchannels allocated to the small cells. In the figure, type-aware
scheme (TAS) corresponds to the case where UA and scheduling are done jointly with the
knowledge of flow types, whereas type-blind scheme (TBS) corresponds to the case where
UA and scheduling are done without the knowledge of the flow types.
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Figure 6.5: GM comparison for the type-aware scheme (TAS) and type-blind scheme (TBS)
as a function of c for a HetNet

We consider two cases where D, the number of users with IC flows, is 2 and 10. Clearly,
when the UA and scheduling are performed with the knowledge of the type of traffic, the
performance is much better. The difference increases as D increases. The maximum
performance is achieved for both schemes when c = 18 and in that case, the GM difference
is 11% and 36% for D = 2 and D = 10, respectively.

6.8 Conclusion

We analyze cellular networks with IC traffic in this chapter. We show that when the
scheduler has more information about the traffic types of each user, the performance can
be improved significantly. Essentially, user scheduling should be performed jointly on the
uplink and downlink for IC traffic to avoid resource losses caused by bottlenecks. We also
claim that a fair benchmark to use to evaluate the performance gains of D2D direct com-
munications should be type-aware since any solution involving D2D direct communications
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would require the knowledge of the type of the traffic. We also show that UA in a Hetnet
should be type-aware.

110



Chapter 7

Conclusion

7.1 Summary

In this thesis, we studied various aspects of OFDMA cellular networks. We basically
focused on four problems that are uplink scheduling, downlink scheduling, full-duplex
communications, and intra-cellular traffic,.

We began our study with uplink scheduling in 5G networks by considering a multi-
cell OFDMA network since uplink will be the new frontier in 5G networks and it uses
a different technology, i.e., OFDMA, than the one used in LTE, i.e., SC-FDMA. It is a
very challenging problem since inter-cell interference has a crucial impact on the system
performance and is not easy to estimate. We studied a centralized scheduler, which turned
out to be a very large sized MINLP problem. We transformed it into a signomial problem
and solve it with an iterative algorithm. Since it is not feasible for a real system due to
implementation complexity and not being able to have all the channel gains in the system,
we focused on practical local schedulers. We showed the trade-off between the throughput
and PRB losses for practical local uplink schedulers. Since their performance is much worse
than the centralized scheduler, we proposed two schemes to improve their performance that
are loss-aware MCS selection for the case without C-RAN and coordinated link adaptation
for the case with C-RAN. Although these schemes significantly improves the performance
of the practical benchmark schedulers, there is still a big gap with the performance of the
centralized scheduler. Then, we proposed an SFR-based scheduler that we parametrized
in a robust fashion. Its performance is close to the centralized scheduler when coordinated
link adaptation is used, hence it is a more feasible scheduler when we consider its simple
implementation.
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We then had a similar analysis for downlink scheduling. Although downlink scheduling
is simpler than uplink scheduling due to simpler interference management, finding the
optimal system-wide scheduler is still as challenging as the case of uplink. We showed
that the RR scheduler that is commonly used by today’s network operators performs very
poorly compared to the centralized scheduler. We then studied SFR-based schedulers and
showed that a well-parametrized scheduler can perform quite well, hence it questions the
necessity of coordination among the BSs.

After that, we studied full-duplex communications in 5G cellular networks. We used
a similar centralized scheduler to see the potential gain of FDC. We showed that the
gain significantly depends on the network configuration as well as uplink/downlink traffic
asymmetry and it might not be sufficient enough to warrant the complexity of FDC im-
plementation in a real network. We showed which network scenarios are more promising
for FDC deployment.

Finally, we focused on cellular networks in the existence of intra-cellular traffic. We
showed how we can ensure fairness among users with multiple types of flows and also how
scheduling is performed differently when we have the knowledge of flow types compared
to a type-blind scheduler. The main message was to show the importance of flow types in
cellular networks. It is clear that the performance can be significantly increased with that
knowledge even without utilizing the direct links between the users.

7.2 Future Research Directions

In our study, we have considered proportional fairness throughout this thesis. We will
extend this to the concept of generalized α-fairness, from which many different fairness
criteria such as PF or max-min can be derived. We will apply this to uplink and downlink
scheduling first and then to D2D and FDC-enabled networks.

Although our main focus was uplink scheduling in this thesis, we have not considered
the problem of uplink scheduling in HetNets. We will extend our uplink study to HetNets
to find practical schemes.

Backhaul limitation is one other aspect that we will consider as future work. It has
been shown before that limited backhaul significantly affects the scheduling process on the
downlink [102]. We will study its impact on the uplink as well as FDC-enabled networks
and cellular networks with intra-cellular traffic.

One important future work will be to study intra-cellular traffic in D2D mode, where
direct links between the users are enabled. For this case, we first study the multi-cell
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centralized scheduling problem to see how much gain is possible due to D2D mode. Then,
we will focus on practical schemes that are implemented fast.

Finally, we will focus on network slicing, which will be a very important component of
5G networks.
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