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Abstract

Working on quantum systems entail different interests, for example, working on fun-
damental understanding of quantum systems also lay foundation for better quantum com-
putation techniques. A test for whether a system is behaving quantum mechanically or
classically is devised by Leggett and Garg in form of inequalities, called Leggett-Garg In-
equalities (LGI). Such Inequalities are violated by a system whose evolution is governed
by quantum mechanics. A precise experiment to violate LGIs require a guarantee that the
measurement does not affect the system or its future dynamics. These Inequalities were
proposed for dichotomic systems,systems which can have two outcomes. Here we present
an LG experiment on a three-level quantum system, which theoretically have larger quan-
tum upper bound than that of a two-level quantum system. This larger violation also
provides a bigger buffer to taking in account of the various experimental imperfections.

Performing a quantum computing task requires precise level of control to initialize,
perform and measure the quantum system. With increasing size of the quantum processor
the challenge is to maintain optimal control. Nuclear Magnetic Resonance (NMR) has
always been a very faithful test-bed for quantum processing ideas. In NMR, we perform
Radio Frequency (RF) pulses to control and steer the system to the desired state. Most
used method to derive the exact frequency and amplitude of these pulses for a given
task is based on gradient. Although systematic, one have to simulate these pulses on
a classical computer first, which makes the task very inefficient. We report a a way of
performing optimization with a hybrid quantum-classical scheme. This scheme helps us
perform classically harder computational tasks on the quantum processor. We optimize
pulses which drive our system from 7-coherence state to 12-coherence state on a 12-qubit
NMR processor.

Electron Spin Resonance (ESR) employs the same techniques as of NMR but having
advantage in larger polarization compared to later. Although this does not imply better
control, cause the frequency at which pulses are required to control an ESR system fall into
microwave region. Microwave frequency are harder to control electronically, thus making
it harder for performing ESR quantum computing. The hybrid scheme used in NMR
experiment relies on some ideal pulses which are needed to be optimized classically. We
alleviate this requirement by using finite difference method of calculating gradient. We
compare these methods with the earlier methods to show the superiority of such a scheme.

State-to-state transfer pulses are sufficient for most of the quantum computing task,
but, an universal quantum information implementation requires state independent pulses.
The techniques used in optimizing state-to-state pulses can be modified to optimize for a

vi



state independent pulse. We show that this methods scale polynomially with the number
of qubits and is general in terms of its implementation. We further reduce the resource
requirement by using a NMR related implementation.
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4.5 MQFC scheme in creating 12-coherence. a Molecular structure of the 12-
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Chapter 1

Introduction

Quantum mechanical system behave very differently from classical systems. Various phe-
nomena of quantum regime does not show up when system scales to be in a classical regime.
One such phenomena is superposition, everyday objects do not exist simultaneously in two
different states. Schrödinger’s cat [1], simultaneously dead and alive, is never seen in a
classical world. Where is this point when going from microscopic objects to a macroscopic
object the rules of quantum mechanics stop applying, and if there exists such macroscopic
objects how can we demonstrate their presence. To answer the former, there is no known
theoretical limit, for the latter, Leggett and Garg [2] formulated a test which can demon-
strate presence of quantum behavior in macroscopic objects. They started by formulating
a condition based on our intuition of everyday objects: (i) a classical system remains in
one or the other well defined possible states, macroscopic realism, (ii) the measurement
reveals this state without disturbing it or its future dynamics, non-invasive measurements.
If a macroscopic system which satisfies the above criteria failed to conform to the condi-
tions laid by Leggett and Garg, called Leggett-Garg inequalities(LGIs) it does not follow
classical laws.

These LGIs take values between −3 and 1 for a classical system, but a quantum me-
chanical system can obtain a value as big as 1.5. It was believed that this maximal violation
is independent of the number of macroscopically distinct states of the system due to the
fact that the measurements are dichotomic. However, Budroni and Emary [3], showed
that this is only true if the measurements follow the naive Lúders update rule. In a more
general setting, it is possible to observe larger violations by going to higher dimensional
systems, up to the algebraic maximum of 3.

An important requirement of performing these test is a guarantee that the measure-
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ments do not disturb the system or its future dynamics, or in other words measurements
are non-invasive. If they are not satisfied a skeptic can always appeal to them as the rea-
son of violation. However, when an experiment of such a test is performed the violation is
much smaller than the theory expects, which is fairly explained by decoherence and slight
invasiveness of measurements. If one takes in account all the errors it becomes a very hard
task to convince a skeptic that it is a true violation. This is where higher dimensional
systems can be utilized, they have much higher theoretical violation and give a large buffer
to explain all the experimental imperfections and thus we are left with a value which is
inconceivable by classical systems. We perform such an experiment on a spin-1 system and
achieve the highest violation of LGIs known to be achieved experimentally, to the best of
our knowledge. The a rigorous error analysis follows to prove that we truly violate the
LGIs. The hope is this will provide a gateway to a true test of LGIs where macroscopic
systems are show to follow quantum behavior. This work is presented in chapter 3.

Next, we take a turn towards quantum information processing (QIP) tasks. QIP
promises of speeding up various computing task as compared to a classical processor.
Many examples of such a promise has already been demonstrated, most famous being,
ability of efficiently factor large numbers. Gates are implemented in any quantum proces-
sor by controlling few variable parameters, for example, in a Nuclear Magnetic Resonance
(NMR) system these variables are amplitude, frequency, and phase or the Radio Frequency
(RF) pulses. To achieve a high fidelity gate an exact knowledge of these parameters are
required. GRadient Ascent Pulse Engineering (GRAPE) has been the most used technique
for getting these variables for a specific gate [4]. The drawback being the pulses have to
be simulated on a classical computer to obtain the variables.

As we are constantly improving both theory and hardwares performances in QIP com-
munity, we need to control more and more number of qubits. Jun Li [5] came up with
a method to perform the task of obtaining these variables on the quantum processor it-
self, thus greatly reducing the resources needed. The method of optimization on quantum
processor doesn’t also promises a relatively easier control for higher number of qubits, it
also diminishes the pre-required knowledge of information needed. Such as some experi-
mental imperfections are not needed to be characterized due to the procedure taking care
of them by itself. We use this technique to drive a 12 qubit NMR processor to create a
12-coherent state, Z⊗12. Our experiments is one of the few experiments with more than
10 qubit coherence observed, the previous ones being [6, 7, 8]. This work is presented in
chapter 4.

Reforming the optimization on the quantum processor takes care of inaccuracies in our
knowledge of the Hamiltonian. This becomes very useful when we perform these techniques
on and Electron Spin Resonance (ESR) processor. An ESR system is highly attractive
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prospects for QIP tasks, algorithmic cooling, a way to boost the polarization of the spin
finds its ideal test bed in ESR. On the other hand an ESR processor is relatively harder to
control then an NMR. In an ESR processor the frequencies of the pulses lie in the microwave
region. Microwaves are harder to control electronically, resulting in limiting bandwidth of
the resonator. Hence a transfer function, which can be understood as a function which
maps the applied pulses to the pulses seen by the quantum processor, plays a vital role in
designing pulses. An accurate knowledge of the transfer function is required if one wants to
simulate the control parameters on the classical computer. This limitation can be waived
depending on how the transfer function behaves. Jun Li’s [5] method, though ground
breaking, requires some local rotation pulses optimized on a classical processor which
requires perfect knowledge of Hamiltonian. Another method proposed in [9], utilized finite
difference to calculate the gradients for optimization procedure. We utilize these methods
and provide an overview and comparison of how they behave experimentally. Although, 2
qubits may sound a small number of qubits, its really hard to control them in ESR systems,
mainly due to imperfect knowledge of Hamiltonian, presence of a transfer function, high
bandwidth control needed. We perform an experiment on a 2 qubit processor (one electron-
one nucleus) and compare the two methods (closed loop and open loop) of obtaining a
desired state from an initial state. This work is presented in chapter 5.

Finding pulse that takes some initial state to a desired final state is enough for many
QIP tasks, for example algorithmic cooling only requires state-to-state pulses. But, a
universal quantum computing requires gates which can perform independent of the state.
With the inspiration of performing an optimization on a quantum processor itself we ask
the question whether it is possible to perform an optimization involving finding a quantum
gate rather that a state-to-state gate. In first look, it seems an exponentially hard and not
experimentally feasible problem for higher number of qubits. A state independent quantum
gate can be found as a state-to-state pulse which performs correct state to state transfers
for all the elements of the basis, which grows exponentially with the number of qubits.
However, if we take advantage of the Pauli matrix algebra the number of experiments
grows polynomially. We present these finding in chapter 6.
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Chapter 2

Backgrounds

2.1 Introduction to Nuclear Magnetic Resonance quan-
tum computing

A nuclei having non-zero spin result in energy splitting when placed in an external mag-
netic field, this effect is called the Zeeman effect. Most common nuclei used for Nuclear
Magnetic Resonance (NMR) quantum information processing(QIP) are spin-1/2, resulting
in 2 energy levels, which can be encoded as |0〉 and |1〉 analogous to 0, 1 in a classical
computer. In this chapter, we describe the dynamics of spin-1/2 nuclei. Techniques of
NMR were well known before we started using its for QIP tasks, which makes the charac-
terization of molecules for the computing purposes a relatively easier task. Moreover, the
principles of other spin-based techniques can be understood by a good understanding of
NMR. In the following section we will briefly describe the basics of NMR QIP.

2.1.1 Hamiltonian

The magnetic moment of the nuclei interact with the external magnetic field resulting in
the energy level splitting. The magnetic moment of a nuclear spin is,

~µ = γ~I (2.1)
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where , γ is the gyromagnetic ratio of the nucleus and ~I is the spin angular momentum
operator. The exact form of the operator is,

Ii = ~
2σi, (2.2)

where, σi are Pauli matrices and i ∈ x,y,z.
The Zeeman Hamiltonian or the interaction of nucleus with an external Magnetic field,

~B is given by,
HZeeman = −~µ · ~B′ (2.3)

Here, ~B′ is the magnetic field that the nuclei sees. These differ from the external magnetic
field slightly due to the fact that nucleus is surrounded by an electron cloud and they shield
the nuclei, also if multiple spins are presents the magnetic field due to electron clouds of
the other nuclei also affect the local magnetic field. We can write ~B′ = (1 + ∆) ~B where ∆
represents a variation from the external magnetic field to local felt. From eq. 2.1 and 2.2
in the units of ~, we can write,

HZeeman = −γ(1 + ∆)~I · ~B (2.4)

In a typical NMR setup the external magnetic field is applied along the ẑ direction, i.e.
~B = B0ẑ. This implies we can write Zeeman interaction as,

Hz = −γ(1 + ∆)B0Iz = −ω0Iz (2.5)

where, ω0 is called the precession frequency or the Larmor frequency.
Nuclear spins inside a molecule are coupled together through chemical bonds, the cou-

pling is a result of interaction of bonding electrons with the nucleus magnetization. It
is an indirect coupling mediated through the electrons, and thus depends upon the bond
length, angle. It is often termed as indirect spin-spin coupling or J-coupling and for 2 spins
coupled with a strength, J is written as

HJ = 2πJ ~I1 · ~I2. (2.6)

Where the superscripts denote the Spin angular momentum operator for different nuclei.
Using the above information one can write the total Hamiltonian for N spin NMR system
as [10],
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H0 = −
N∑
k=1

ωk0I
k
z + 2π

∑
i,j=1:N,i<j

Jij ~I i · ~Ij (2.7)

The dipole-dipole interactions averages to zero in a liquid state due to rapid tumbling of
the molecule. In the weak coupling regime, when the difference in the Larmor frequency
is much bigger than J coupling between them we can approximate, ~Ii · ~Ij = I izI

j
z , which is

valid for molecules used in this thesis.
The control is achieved by applying the magnetic field (which results in pulses in radio

frequency regime) in x̂ and ŷ direction. The control Hamiltonian on the ith nuclei is then
written as,

H i
ext = ωcos(ω0t+ φ)Ix + ωsin(ω0t+ φ)Iy (2.8)

where, ω is propotional to the stregth of Magnetic field in ~x, ~y direction, The control
Hamiltonian in rotating frame, (rotating at the Larmor frequency) is [10],

H i
ext = ωcos(φ)Ix + ωsin(φ)Iy. (2.9)

Using specifically defined pulse sequence we can selectively turn “off” parts of the internal
(eq. 2.7) and external (eq. 2.9) Hamiltonian. This enables us to apply rotation in any
direction or a controlled-z rotation. Thus providing a way of universal quantum computing.
In practice, as the number of spins increases the selective control becomes harder [11, 12].

Homonuclear and Heteronuclear molecule - If all the nuclei are of same chemical species
the sample is homonuclear, if the molecule consists of more than one type the sample is
heteronuclear. Since the different nuclei of a heteronuclear molecule have Larmor frequency
which are far, the different species of nuclei can be controlled separately. This increases
the control potential of the molecule.

Concentration of the sample - The desired molecule is dissolved in solvent, usually an
organic compound with hydrogen replaced with deuterium. The solvent serves the purpose
of locking the sample, the lock monitors the Larmor frequency of deuterium and adjust the
current in the superconducting coil to maintain a fixed frequency. Solvent also help dilute
the sample, which is necessary since a highly concentrated sample result in a phenomena
called radiation damping [13].
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2.1.2 Initial state

Boltzmann distribution for an ensemble of spins gives, the number of spins in an energy
state, E at the temperature T [10], by

exp(−E/kBT )/Z (2.10)

where kB is the Boltzmann constant, and Z is the partition function. That implies, the
equilibrium density matrix can be written as,

ρeq = exp(−H0/kBT )/Tr(exp(−H0/kBT )), (2.11)

where, H0 is the internal Hamiltonian as defined in eq. (2.7). In high temperature,
E � kBT , we can approximate ρeq,

ρeq = exp(−H0/kBT )/Tr(exp(−H0/kBT ))
≈ (1−H0/kBT )/Tr(1−H0/kBT ))
≈ 1/N −H0/NkBT. (2.12)

The first part is identity and any unitary application will not change it, so most of the
time we work with non-identity part of the density matrix, termed as deviation density
matrix, ρ∆

ρ∆ = − H0

NkBT
= −

N∑
k=1

~ωk0
NkBT

Ikz . (2.13)

Pseudo Pure state : The thermal equilibrium state can be transformed to a pseudo-
pure state through non-unitary processes using standard NMR techniques of temporal or
spatial averaging [14, 15] :

ρpps = (1− ε)1 + ερpure (2.14)

where , ρpure represents a pure density matrix. So in reality the state for NMR systems is
a mixed state but one can ignore the identity part since it doesn’t evolve and we can solely
focus on the deviation part.

2.1.3 Measurements

NMR is an ensemble quantum computing technique, the reason being the magnetic moment
of a single spin is not measurable directly with the current NMR instruments, however,
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many identical copies of the spins are present in a sample and the magnetic moment of this
ensemble is measurable. When the magnetic moments of these identical spins are rotated
to x − y plane, it start precessing around the external magnetic field (in z direction).
The precessing moments induce current in the coil that has is axis in x − y plane. This
magnetization is expressed as the expectation values of observables in x− y direction

Mx(y)(t) ∝ e(−t/T ∗
2 )Tr(ρ(t)σx(y)) (2.15)

This signal is referred as Free Induction Decay (FID) and a NMR spectrum is obtained
by the Fourier transform of this signal. The signal decay with time due magnetic field
inhomogeneities and intrinsic relaxation (T2).

2.2 Introduction to electron spin resonance quantum
computing

The Electron Spin Resonance (ESR) quantum computation is very similar to NMR case,
an electron placed in a magnetic field undergoes splitting in the energy levels. But there
are some extra terms in the Hamiltonian as compared to previously described liquid state
NMR. From here on we will describe the Hamiltonian of a coupled system consisting of an
electron and a nuclei.

2.2.1 Hamiltonian, states and measurement

The Zeeman interaction term similar to nuclei case, for an external magnetic field applied
in the ẑ direction is written as HZeeman = µbgBSz, where Sz is the angular momentum
operator conventionally represented by S for electron and by I for nuclei. g is the electron
g-factor and is represented by 2nd rank tensor, since it depends on the orientation of
molecule with respect to external magnetic field.

The Hyperfine interaction between the electron and the nuclear spin is described as
[16],

HHF = ~S ·A · ~I, (2.16)

where A is the hyperfine tensor. The hyperfine coupling have two contributions, isotropic
part, which comes from electron spin density at the nucleus, and anisotropic part, which
is a result of electron-nuclear dipole-dipole interaction.
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Therefore total Hamiltonian of an electron coupled to a spin-1/2 nuclei with isotropic
g tensor and anisotropic hyperfine coupling can be written as [16],

H = ωSSz + ωIIz + ~S ·A · ~I
≈ ωSSz + ωIIz + ASzIz +BxSzIx +BySzIy, (2.17)

where A = Azz,Bx = Azx,and By = Azy. The second line on the above equation we make
a secular approximation thus neglecting Sx and Sy terms. Without any loss of generality
a unitary transformation with exp(−iφIz) where, φ = arctan(−By/Bx) can be applied
which defines a new x-axis for the nuclei subspace,

H = ωSSz + ωIIz + ASzIz +BSzIx (2.18)

with B =
√

(B2
x +B2

y), This Hamiltonian can be diagonalized with the unitary transfor-
mation produced by,

U = exp(−i(ξIy + η2SZIy)) (2.19)

where, ξ = (ηα + ηβ)/2 and η = (ηα − ηβ)/2. ηα and ηβ are the angles defining the two
nuclear quantization axis with respect to external magnetic field with α, β representing
lower and higher energy respectively, and are given by,

ηα = arctan
( −B
A+ 2ωI

)
& ηβ = arctan

( −B
A− 2ωI

)
. (2.20)

This results in diagonal Hamiltonian,

Hd = ωSSz + (ω+/2)Iz + (ω−/2)2SzIz (2.21)

where, ω± are the addition and subtraction of nuclear frequencies. Explicitly, the four
eigenstates are [16],

|1〉 = cos
(
ηα
2

)
|αα〉 − sin

(
ηα
2

)
|αβ〉

|2〉 = sin
(
ηα
2

)
|αα〉+ cos

(
ηα
2

)
|αβ〉

|3〉 = cos
(
ηα
2

)
|βα〉 − sin

(
ηα
2

)
|ββ〉

|4〉 = sin
(
ηα
2

)
|βα〉+ cos

(
ηα
2

)
|ββ〉 (2.22)
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The two nuclear frequencies can be expressed as,

ω12 =
(
ωI + A

2

)
cos ηα −

B

2 sin ηα

ω34 =
(
ωI −

A

2

)
cos ηβ + B

2 sin ηβ (2.23)

Thus, ωpm = ω12 ± ω34. The four eigenvalues corresponding to the eigenstates in eq. 2.22
are,

ε1 = ωS
2 + ω12

2
ε2 = ωS

2 −
ω12

2
ε3 = −ωS2 + ω34

2
ε4 = −ωS2 −

ω34

2 . (2.24)

2.2.2 Initial state

The thermal state, similar to NMR case is given by Boltzmann distribution, That implies,
the equilibrium density matrix can be written as [16] ,

ρeq = exp(−H/kBT )/Tr(exp(−H/kBT )). (2.25)

In high temperature, E � kBT , we can approximate ρeq,

ρeq = exp(−H/kBT )/Tr(exp(−H/kBT ))
≈ (1−H/kBT )/Tr(1−H/kBT ))
≈ 1/N −H/NkBT. (2.26)

where H is given by eq. (2.18). The first term in eq. (2.18) dominates due to electron
gyromagnetic ratio being much bigger than that of a nuclei (|γe| ≈ 700γH , |γe| ≈ 2800γC).
Thus,

ρeq ≈
1

N
− 1
NkBT

H = 1

N
− ~ωS
NkBT

Sz (2.27)

The deviation density matrix similar to NMR is , ρ∆ = −Sz. The measurements are
similar to the NMR system measuring the expectation values of x, y Pauli operators.

10



Chapter 3

Violation of Leggett-Garg Inequality
in 3-level system

3.1 Introduction

Part of what makes quantum mechanics so exciting and unbelievable is that macroscopic
objects do not show the properties that is exhibited by the microscopic objects. One
such property being superposition, which loosely speaking states objects can be in two
different states at any point in time. We do not see such a thing in macroscopic world
but microscopic entities like photons, electrons, nuclei etc. are superimposed. There
is, however, no known theoretical limit on the size of objects that can be observed in
an arbitrary superposition of two states and it is conceivable that we will one day be
able to isolate large objects from the environment, such that they can be in what we
may call a macroscopic superposition state(macroscopic coherence). The Leggett-Garg
(LG) experiment [2] and some extensions [17, 18] allow us to test the assumption that
a given system confined to a discrete set of classically observable states is never in a
superposition of these states. The experiment leads to an inequality that, under some
reasonable assumptions, cannot be violated when the system is in a definite classically
observable state at all times, but can be violated when it is superposition of these states.

Unlike Bell’s inequality, the assumptions regarding the Leggett-Garg inequality (LGI)
depend on the physical system and the experimental setup. Of the three fundamental
assumptions: (A1) macroscopic realism (MR): the system cannot be in a superposition
of the classically observable state, (A2) non-invasive measurability (NIM): It is possible
to measure the macroscopic system without disturbing it, and (A3) induction: the future

11



cannot influence the past, only the last is independent of the experimental setup. The
LGI is therefore a test of MR under a set of reasonable assumptions about the system, in
particular a version of NIM. The violation of the inequality leads to the conclusion that
either MR or one of the other assumptions is incorrect [19]. The aim of a well-designed
experiment is therefore to convince a skeptic that the incorrect assumption is probably
MR, i.e. the system is in a superposition of classically observable states sometime during
its evolution.

One way to avoid invasive measurements is to use ideal negative result measurement
(INRM). In an INRM the detector registers a ‘click’ if the system is in one specific state,
otherwise it does not interact with the system. If the detector clicks, the result is discarded,
if it does not click, we infer that the system is in the orthogonal subspace and keep the
result. The assumption is that a probe cannot influence the system unless they interact.
By keeping only the negative (no click) results we can then enforce NIM.

In the standard LG experiment a parameter K3 is classically constrained to take val-
ues between −3 and 1, whereas quantum mechanics predicts possible violations of up to
1.5, giving a narrow margin for experimental errors. It has recently been noted [18, 20]
that in order to convince a skeptic that the reasonable assumptions are indeed reasonable,
the assumptions need to be tested and the inequality must be adjusted accordingly. Con-
sequently the margin for error gets reduced even further. Until recently it was believed
that the maximal violation of K3 is independent of the number of possible macroscopically
distinct states of the system due to the fact that the measurements are dichotomic. How-
ever, Budroni and Emary [3] showed that this is only true if the measurements follow the
naive Lüders update rule. Lüders update rule states that a system with degenerate eigen-
states is unaffected by the measurement thus the system remains in superposition after
the measurement [21]. In a more general setting, provided by Von Neumann, where such
a superposition is not preserved [22], it is possible to observe larger violations by going to
higher dimensional systems, up to the algebraic maximum of 3. While such measurements
give a bigger margin for errors, it was not clear how to construct them using INRMs.

Various experimental violations LGI have been performed [23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36] on two level systems. INRMs were used to perform non-invasive
measurements in [33, 34, 35]. Knee et al. [33] performed the first experiment where the
LGI was modified to include imperfections in the (quantum) measurement device. George
et al. [36] performed the first test of realism (albeit, not macroscopic) that also included a
test of measurement disturbance. Their main result was a demonstration of the three box
game, a pre and post selection paradox that can be used to violate a LGI. Theirs was also
the first experiment to violate a LGI on a three level system, however unlike our experiment
their measurement scheme followed the Lüders update rule and had a theoretical upper
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bound of K3 ≤ 1.44. Moreover, their measurements were not INRMs. The assumptions
that go into experiments of this type were discussed in [19]. A modification of Leggett-Garg
experiment, depending on the measurement distribution was recently introduced in [18].
To the best of our knowledge our experiment and one in [18] are the only Leggett-Garg
experiments where the LGI is corrected for the measurement disturbance.

In this work we demonstrate the first violation of the LGI with an experiment that
has a theoretical bound beyond K3 = 1.5. We present results of a set of experiments
performed on an ensemble of 3-level systems in liquid-state nuclear magnetic resonance
(NMR) and provide a natural method for performing the experiment using INRMs. The
inequality is corrected for a number of non trivial assumptions about the state of the
systems and the measurement device, in particular the LGI is corrected to account for non
ideal measurements.

3.2 The Leggett-Garg test.

Consider a system which is evolving under certain Hamiltonian. We decide to perform
dichotomic measurements of an observable Q, at some time ti represented as Qi, that can
perfectly distinguish between two states of a system. The outcomes of these measurements
are denoted as q(1)

i = +1 and q
(2)
i = −1. In a macrorealistic system, the outcomes q(l)

i

(l = 1, 2, the dichotimic outcomes) represent the real state of the system, i.e. if the result
was q(l)

i we can infer that the system was in the state corresponding to q(l)
i at time ti. A

test of macrorealism is a test of this hypothesis. For LG test, one chooses three distinct
times to perform a measurement and three independent experiments. In each of the three
experiments we start with the same state, and then perform measurements on two of
the three chosen times as shown in Fig. 3.1. These three independent experiments are
performed many times to estimate the probabilities of being in different possible states.
Using these probabilities one can calculate the two time correlations of the measurements,

Cij =
∑
l,m

q
(l)
i q

(m)
j P (q(l)

i , q
(m)
j ), (3.1)

where q(l)
i (l = 1, 2) means the lth outcome of measurement performed at ti.

The 3-measurement LG string is

K3 = C12 + C23 − C13. (3.2)
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Figure 3.1: Scheme for LG test. Three experiments are performed such that in each exper-
iment the dichotomic observable Q is measured at two different times. The experiments
are performed many number of times to obtain the probabilities for the correlations and
anti-correlations between two measurements. The results are used to calculate the LG
string in Eq. (3.2).

If we assume that the measurements do not disturb the system (NIM assumption) and
the system is classical (i.e. macrorealistic), the value of K3 is bounded by −3 ≤ K3 ≤ 1.
On the other hand, if the system is quantum it is possible to choose the evolution times
between measurements in such a way that K3 will go beyond 1, violating the LGI that
K3 ≤ 1. The quantum bound for K3 is 1.5 for a 2-level system [17]. More general systems
have the same bound if the measurements follow the Lüders update rule which is natural
for these types of experiments. According to the Lüders rule the dichotomic measurement
projects the state of the system into one of two orthogonal subspaces corresponding to the
±1 measurement results. While this projection is invasive when the system is quantum,
it is theoretically non-invasive if we assume MR. In performing the LG test, we must
however consider the possible objection of a skeptic who may object to our assumption
that the measurement indeed follows the Lüders rule. To counter such an argument, LG
suggested that the experiment is carried out using ideal negative result measurements
(INRMs). INRMs are implemented by measuring the system at a given time (ti), and
asking the question whether the system is in a particular state (say that state corresponds
to q

(1)
i = +1). If the answer is no, we confirmed that the system is in the other state,

thus gaining the information of the state of the system with interacting with it. This post-
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selecting on negative outcomes is what allow us to infer the state of the system, e.g. by
finding that the system is not in a q(1)

i = +1 state we infer that it must be in a q(2)
i = −1

state.
The original LG test considered only 2-level systems. Recently Budroni and Emary

[3] showed that if one relaxes the assumption that the measurement follows the Lüders
update rule, and instead one allows a more general update rule which also destroys some
of the phase information within the ±1 subspaces, then the quantum bound on K3 could
be extended to a value that depends on the dimension of the system, and goes asymptoticly
to the algebraic maximum of 3. For a 3-level system, such measurements can lead to the
value K3 = 1.7566, when the observable Q = −|0〉〈0|+ |1〉〈1|+ |2〉〈2| and the measurement
acts like a complete dephasing channel. However, the channel seems to be more invasive
than necessary and can raise questions about the validity of NIM. For example in an INRM
the update rule for a negative result on the state |0〉 would project the system into the
|1〉, |2〉 subspace without dephasing, following the Lüders rule. The proposal in [3] would
require an additional dephasing step. In such a case, it is harder to justify the violation of
the LGI as a violation of MR. However, as we show below, the channel can be implemented
using INRMs.

3.3 Measuring the Probabilities using INRMs.

The scheme for performing the modified LGI measurement is based on using three INRMs,
one for each of the possible states. The measurement is registered on an ancillary qubit
initially in the state |0〉. When performing the INRM of the system state |j〉, the ancilla
remains in the state |0〉 if the system is in |j〉 and rotates to |1〉 otherwise1. The three
gates below correspond to the three types of measurements.

CG0 = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗X + |2〉〈2| ⊗X, (3.3)
CG1 = |0〉〈0| ⊗X + |1〉〈1| ⊗ 1 + |2〉〈2| ⊗X, (3.4)
CG2 = |0〉〈0| ⊗X + |1〉〈1| ⊗X + |2〉〈2| ⊗ 1. (3.5)

1Note that these INRMs are only ideal if one trusts the quantum mechanical description of the gates
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Consider, for example, the application of CG0 on the following general state of system and
ancilla being in state |0〉

P0 a b
a† P1 c
b† c† P2


S

⊗
[
1 0
0 0

]
A

CG0−−−→



P0 a 0 0 0 b
a† 0 0 0 0 c
0 a 0 0 0 0
0 0 0 P1 0 0
0 a 0 0 0 0
b† c† 0 0 0 P2


SA

,

where a, b and c are the off-diagonal elements of the system’s density matrix. The diagonal
elements of the ancilla after tracing out system are P0, P1 + P2. Thus we can measure
P0 non-invasively. Similarly for CG1 and CG2 after the similar procedure, the diagonal
elements of ancilla are P1, P0 + P2 and P2, P0 + P1 respectively, which enables a way of
measuring P1 and P2 non-invasively. The measurement at the end of the experiment is
not required to be non-invasive since we are not worried about the future dynamics of the
system. After the second evolution of the system, we measure the diagonal elements of the
combined ancilla and system state. The elements corresponding to state |00〉SA, |10〉SA,
and |20〉SA are post-selected. These elements correspond to probabilities, P (i, 0), P (i, 1),
and P (i, 2) respectively when CGi gate is applied, where i = 0, 1, 2 corresponds to the
three states of the system.This scheme is illustrated in Fig. 3.2.

Each single measurement described above follows the Lüders update rule. However,
since we are post-selecting, we end up with only part of the quantum channel (i.e. a
subchannel) that corresponds to the negative result. i.e for each qubit-qutrit channel in
eqs 3.3-3.5 we prepare the ancilla in the |0〉 state and post select it in the |0〉 state to
produce a subchannel represented by a Krauss operator Ki = |i〉〈i|. Adding the three
subchannels that we post-select on, effectively creates a measurement that does not follow
the Lüders update rule. Instead the effective trace-preserving channel that describes the
evolution during the measurement is represented by Ki. Nevertheless the measurement is
an INRM.

3.4 Experimental implementation and results.

The experiments are carried out at the ambient temperature on a Bruker DRX 700MHz
NMR spectrometer. As described earlier, a spin-1 system and a spin-1/2 ancilla are needed
to perform the non-invasive measurements. In the experiments, we use two spin-1/2 nuclei
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System,   ρ

Ancilla, | |0 0

U(ti) U(tj)

Figure 3.2: General Scheme for a single run of the LG test with an INRM. We start
with the system in some state ρ and ancilla in |0〉〈0|. The two evolution times ti and tj
depend on which of the three experiments is performed (see Fig. 3.1). The controlled
gates are the ones given in eqs 3.3, 3.4, and 3.5, are the first measurement performed (one
of three possible INRMs), and it is non-invasive if nothing happens, i.e the state of the
ancilla is unchanged. The last measurement is not necessarily non-invasive since we are
not concerned about the future dynamics of the system. The results are post-selected to
include only the instances when the INRM was successful, i.e. the situations where the
ancilla is in the state |0〉〈0|. For each measurement setting in Fig. 3.1, we perform three
runs, one for each state of the system.

to simulate the dynamics of the spin-1 system via the Clebsch-Gordan approach [37], which
transforms a space consisting of two spin-1/2 particles to another space consisting of one
spin-1 and one spin-0 particle. This transformation defining the spin-1 in terms of two
spin-1/2 particles are (triplets) |0〉s = |00〉, |1〉s = (|01〉 + |10〉)/

√
2, and |2〉s = |11〉, as

well as the spin-0 (singlet) state |s〉 = (|01〉 − |10〉)/
√

2. This basis for convenience will be
called triplet-singlet (TS) basis and we employ TS basis notation to describe the system
state unless otherwise specified.

Therefore, we need three qubits to implement the experiment. The sample is chosen as
13C-labeled trans-crotonic acid dissolved in acetone-d6. The molecular structure, Hamil-
tonian parameters and the relaxation times (T1 and T2) are shown in Fig. 3.3, where C2
and C3 are used to simulate the dynamics of the spin-1 system and C4 as the ancilla. The
spatial averaging method [38] is adopted to initialize the 3-qubit NMR system into the
pseudo-pure state (PPS)

ρpps = 1− ε
8 I + ε|0〉〈0|s ⊗ |0〉〈0|, (3.6)
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C1 C2 C3 C4

C1 ‐2989

C2 41.62 ‐25459

C3 1.46 69.66 ‐21592

C4 7.02 1.18 72.16 ‐29342

T1 1.02 0.92 0.87 0.94

T2 5.7 5.3 5.6 10.2

܌ܑ܋ۯ	܋ܑܖܗܜܗܚ۱

Figure 3.3: 13C-labeled trans-crotonic acid. The table shows the resonance frequencies
(diagonal elements, in hertz), the J-coupling constants (off-diagonal elements,in hertz),
and the relaxation times T1 and T2 (in seconds). C2 and C3 are used to simulate the
dynamics of the spin-1 system, and C4 is used as the ancilla that records the INRMs.

where I is identity and ε ≈ 10−5 is the polarization. The NMR circuit of the PPS prepa-
ration is shown in Fig. 3.4. Note that the PPS in TS basis is same as in computational
basis.

The Hamiltonian of the spin-1 system during the free evolutions in Fig. 3.2 is chosen
as Hsys = −Ωσs1

x /2, where Ω is set as 1 kHz and σs1
x is the Pauli operator in the spin-1

representation. The propagator at time ti is thus

U(ti) = e−i2πHsysti . (3.7)

We prove the equivalence of the two basis:
The Clebsch-Gordan coefficient matrix is,

UB =


1 0 0 0
0 1/

√
2 1/

√
2 0

0 0 0 1
1 1/

√
2 −1/

√
2 0

 . (3.8)
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Figure 3.4: Pulse sequence for the measurement of P (q1, q2), the different sequences cor-
responds to when the control gate used is (a) CG0,(b) CG1, and (c) CG2. These gates
are defined in eqns (3.3), (3.4), and (3.3) respectively. The gate UB is the Clebsch-Gordan
matrix. The first four rows correspond to the pulses acting on different nuclei, and the last
row represents the z-gradient field.
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UB transforms computational basis to TS basis:

UB|00〉 = |00〉 ≡ |0〉s
UB|01〉 = 1√

2
(|01〉+ |10〉) ≡ |1〉s

UB|11〉 = |11〉 ≡ |2〉s
UB|10〉 = 1√

2
(|01〉 − |10〉) ≡ |s〉 (3.9)

We want the evolution under the spin-1 Pauli operator

σs1
x = 1√

2

0 1 0
1 0 1
0 1 0

 . (3.10)

This can be achieved by evolution under I12
x = (σx ⊗ I + I ⊗ σx)/2 in the computational

basis. The matrix form of I12
x in computational basis is,

I12
x = 1

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , (3.11)

And when one changes the basis to TS,

I12
x−TS = UBI

12
x U

†
B = 1√

2


0 1 0 0
1 0 1 0
0 1 0 0
0 0 0 0

 . =

σ
s1
x

0
0
0

0 0 0 0

 (3.12)

Which, in the triplets acts equivalently to the desired evolution.
In the experiment, the three different times are chosen as t1 = 0.5 ms, t2 = τ + t1, and

t3 = τ + t2 respectively, and the experiments are conducted for a few values of τ as shown
in Fig. 3.5. The observable to be measured is chosen as Q = −|0〉〈0|s + |1〉〈1|s + |2〉〈2|s,
which is equivalent to measuring the diagonal elements of the density matrix. Ideally,
the maximal value of K3 should be obtained at τ = 0.208 ms, and the following tests of
non-invasiveness are performed at this optimal point.

The controlled gates in Fig. 3.2 are decomposed into single-qubit rotations and delays,
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and the pulse sequence of the entire experiment is illustrated in Fig. 3.4. All pulses are
realized by the gradient ascent pulse engineering (GRAPE) technique [39, 40, 4], and are
robust against the B1 inhomogeneity with the fidelity over 0.997. The π/2 and π pulses
are of length 1 ms. The observable Q is measured by performing diagonal tomography in
the spin-1 subspace without considering the spin-0 component [41].

The values of K3 for different τ are shown in Fig. 3.5, where the blue curve is the
theoretical prediction, green circles are the simulated results with the T1, T2 and pulse
imperfections incorporated, and red crosses are the experimental results. At the point
of the maximum violation, τ = 0.208 ms, the experimental values of correlations are
C12 = 0.542± 0.021, C23 = 0.294± 0.016, and C13 = −0.676± 0.003, respectively. It leads
to the experimental value of K3 = 1.511 ± 0.027, consistence with the simulated result
1.495. In contrast, the ideal value of the maximum violation is 1.757, and the discrepancy
(≈ 0.246) between the experimental and ideal value is dominated by the T1, T2 relaxation,
as the pulse imperfections merely contribute around 0.01 loss of the ideal value. T1, T2
relaxation simulation were performed by solving the Lindblad equation for a general noise,
the explicit calculations are shown in Appendix B of [42]. Full experimental data is shown
in Table 3.1

21



0.5 1 1.5 2 2.5 3

x 10
−4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

τ

K
3

 

 

Theory

Experiment

Simulation(with T
1
, T

2
, and GRAPE imperfections)

Classical LimitMaximum violation for spin−1/2

K
3
P.E.

K
3
No P.E.

Figure 3.5: Experimental values of K3 (red crosses) along with the ideal quantum pre-
diction (blue curve) and simulated results (green circles). τ is the tunable time between
measurements, i.e. τ = t2 − t1 = t3 − t2. A violation of the LGI means the value of K3
goes beyond 1 which is the classical limit. The maximum violation in a 3-level system is
K3 ≈ 1.757 when choosing τ = 0.208 ms. In experiment, decoherence limits our maximum
violation around K3 = 1.511 ± 0.027. KP.E.

3 and KNoP.E.
3 corresponds to modification on

inequality when including preparation error and not including them. These values are
defined in more detail in the text.
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Measure at time, t1 and t2 Measure at time, t2 and t3 Measure at time, t1 and t3
Theory Sim Exp Theory Sim Exp Theory Sim Exp

00 0.0000 0.0003 0.0317 ± 0.0134 0.0778 0.0765 0.0949 ± 0.0025 0.0000 0.0306 0.0289 ± 0.0033
01 0.0000 0.0333 0.0703 ± 0.0054 0.0636 0.0758 0.0497 ± 0.0028 0.0000 0.0007 0.0486 ± 0.0018
02 0.0000 0.0131 0.0020 ± 0.0029 0.0186 0.0021 0.0090 ± 0.0001 0.0000 0.0001 0.0033 ± 0.0020
10 0.0000 0.0174 0.0142 ± 0.0027 0.2170 0.2036 0.1876 ± 0.0047 0.0000 0.0467 0.0090 ± 0.0041
11 0.0000 0.0253 0.0755 ± 0.0038 0.0318 0.0183 0.0325 ± 0.0079 0.0000 0.0030 0.0410 ± 0.0022
12 0.0000 0.0195 0.0027 ± 0.0010 0.2170 0.2294 0.2331 ± 0.0043 0.0000 0.0048 0.0009 ± 0.0006
20 0.1364 0.1487 0.1680 ± 0.0005 0.0542 0.0781 0.1175 ± 0.0112 0.8682 0.7771 0.7925 ± 0.0054
21 0.4659 0.4061 0.3616 ± 0.0026 0.1853 0.1681 0.1713 ± 0.0024 0.1272 0.1372 0.1064 ± 0.0013
22 0.3977 0.3378 0.3245 ± 0.0010 0.1582 0.1497 0.1261 ± 0.0038 0.0046 0.0144 0.0004 ± 0.0002

sum 1 1.0015 1.0504 1 1.0029 1.0217 1 1.0146 1.0309

Table 3.1: Experimental results for the setting that leads to a maximal LG
violation. Each table shows the result for a single setting (see Fig. 3.1). The row
index denotes the two measurement outcomes and the three values (Theory, Sim, Exp)
correspond to the probabilities for these outcomes in theory, simulation and experiment
respectively. (For example the row 01 represents the probability that the result was 0 in
the first measurement and 1 in the second i.e. P (0, 1)). We then use these probabilities
to calculate correlation as defined in eq. (3.1), which finally is used to get the value of
K3 using eq. (3.2). The decoherence during the experiment and simulations boosts some
values and diminishes some. Since the results are post-selected, the probabilities in the
simulation and experiment do not add up to 1.

3.5 Experimental test of assumptions.

In getting the theoretical bound of K3 we have made a number of implicit assumptions
about our experimental system, in which the most notable assumption is INRMs. Since it is
possible to modify the LGI by taking into account any deviations from these assumptions,
our experiment is supplemented by another set of experiments to test (i) the invasiveness
of the intermediate measurements and loss, (ii) preparation errors, and (iii) malicious
losses. We also discuss the possibility of dark counts. An additional assumption about the
pseudo-pure state is discussed in section 3.6.

First we quantify how much the system is disturbed due to the imperfect controlled
gates. Ideally these controlled gates should not disturb the system when it is in a fixed
state |0〉s, |1〉s, |2〉s or |s〉, but in practice they do disturb the system due to the long
application time and pulse imperfections. Moreover, the three controlled gates are distinct
and are expected to have different back actions on the system even after the negative
results are post-selected in the INRMs. Explicitly, CG0 is a direct J-coupling gate, CG2
involves two SWAP gates and CG1 is a combination of the two. The experimental lengths
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of CG0, CG1 and CG2 are about 40 ms, 116 ms and 76 ms, respectively. In attempt to
quantify how much the system is disturbed by INRMs, we perform the following two types
of experiments: (a) start with either |0〉s, |1〉s, or |2〉s, evolve the system for a fixed time
and measure the probabilities; (b) start with either |0〉s, |1〉s, or |2〉s, apply the controlled
gate,evolve the system for the same amount of fixed time and measure the probabilities.
Ideally, the results from the two experiments should match perfectly, but they indeed have
variations in the presence of errors. Table 3.2 shows the experimental results and their
contribution to the inequality is discussed in next section.

In testing non-invasiveness we can calculate the correlation, C, value when the starting
state is |p〉s(p = 0, 1, 2) using eq. (3.1))

C|p=0〉 = P (0, 0)− P (0, 1)− P (0, 2)
C|p=1,2〉 = −P (p, 0) + P (p, 1) + P (p, 2) (3.13)

Now the difference between the C value when we apply the gate vs no gate is the
disturbance induced by our measurements. This ∆C values contribute thrice in calculation
of LGI (eq.3.2). Since it contributes 2 times positively and one time negatively, we define
the following modification over the original inequality

KM1 = −min(∆C ± P.E., 0) + 2 max(∆C ± P.E., 0) (3.14)

where P.E. is the preparation error, i.e. contribution to correlation due initial state devi-
ating from the expected.

The values of probabilities which were not used in eq.(3.13) are the probabilities cor-
responding to the red color rows of Table 3.2 and thus are considered as loses. The lowest
value when we apply no gate is considered non malicious since it is independent of the gate
and/or initial state. The difference between the highest and lowest give the range for the
possible malicious errors. Now this is the value for one evolution, in the LG experiment
there are 5 such evolutions (two for each of the experiments giving C13 and C23 and one
for the experiment giving C12), hence the total malicious loss(Mal) if 5 times the difference
(see Table. 3.2).

With these modifications, we modify the original inequality on K3 to

KP.E.
3 ≤ 1 +KM1 +Mal = 1 + 0.1936 + 0.2095 = 1.4031 (3.15)

We note that while this value takes the imperfections in preparation into account in
the worst possible way, it is extremely unlikely that these preparation errors decrease the
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Starting state = |0〉〈0| Starting state =|1〉〈1| Starting state =|2〉〈2|
NG CG0 NG CG1 NG CG2

00 0.3885±0.0022 0.3582±0.0021 0.4297±0.0017 0.4133±0.0034 0.1343±0.0012 0.1570±0.0015
01 0.0001±0.0002 0.0323±0.0040 0.0071±0.0012 0.0273±0.0016 0.0001±0.0003 0.0164±0.0023
10 0.4143±0.0055 0.3974±0.0023 0.0521±0.0023 0.0570±0.0013 0.4023±0.0028 0.3637±0.0026
11 0.0006±0.0007 0.0147±0.0012 0.0091±0.0032 0.0293±0.0019 0.0290±0.0022 0.0472±0.0018
S0 0.0525±0.0026 0.0370±0.0067 0.0745±0.0022 0.0672±0.0028 0.0656±0.0026 0.0721±0.0014
S1 0.0003±0.0002 0.0011±0.0018 0.0040±0.0002 0.0021±0.0001 0.0004±0.0002 0.0002±0.0002
20 0.1428±0.0025 0.1351±0.0029 0.4219±0.0019 0.4031±0.0031 0.3680±0.0017 0.3431±0.0012
21 0.0009±0.0003 0.0242±0.0021 0.0016±0.0002 0.0007±0.0003 0.0003±0.0006 0.0002±0.0001

Table 3.2: Experimental results for the test on non-invasiveness. Each of the three
tables shows the result of the experiments in which we either don’t apply the gate or apply
the gate before evolution, when starting with the state mentioned on the top. The rows
corresponds to the probabilities of the state denoted in first column. The first and second
index in first column corresponds to the state of system and ancilla respectively. CGi

stands for the gate applied and NG, when no gate is applied. Ideally the column NG
should contain positive values only for the states |00〉, |10〉 and |20〉 (in blue), all other
values are treated as losses since they are lost in post-selection. Moreover, for an INRM
the columns NG and CGi should match, the discrepancies between these columns at the
post selected values (blue) are used to give an upper bound on the possible deviation from
K3 due to the measurement procedure.

discrepancy between the ideal measurements and the actual measurements. A slightly
more liberal version of the inequality would read

KM1 = −min(∆C, 0) + 2 max(∆C, 0) (3.16)
KNoP.E.

3 ≤ 1 +KM1 +Mal

= 1 + 0.0912 + 0.2095 = 1.3007

Finally, we must account for the sources of errors that lead to dark counts, i.e an
artificial increase in the probabilities that are post selected. There are two possible sources
for this kind of error. First the measurements are not perfect and there are situations
where the ancilla does not rotate to |1〉 when it should, leading to a false reading of |0〉.
Second, there are situations where a system in the singlet state goes back into one of the
triplet states. The margin for the violation leaves us with an upper bound on the tolerance
of the violation for possible dark counts, assuming these behave in the most malicious way

25



Starting state = |0〉〈0| Starting state = |1〉〈1| Starting state = |2〉〈2|
NG CG0 NG CG1 NG CG2

Q -0.1686 -0.1743 0.0443 0.0468 0.6360 0.5498
∆Q = QG −QNG −0.0057 0.0025 −0.0862

P.E. 0.0187 0.0436 0.0152
∆Q−P.E. −0.0244 −0.0411 −0.1014
∆Q+P.E. 0.0130 0.0461 −0.0710
KM1 0.1936

Non.Mal 0.0544
Mal 0.0419 ∗ 5 = 0.2095

Table 3.3: Summary of imperfections calculated in the test of non-invasiveness.
The table list various modification made to the original LG as explained in text. Loss is
calculated using the discarded values in an experiment where we don’t expect to discard
any values in post-selection (the red columns in table 3.2 are discarded in post selection,
and the loss is the sum of these values). Q is calculated using equation-(3.13), ∆Q is the
difference of Q values when the gate is applied and when it is not. For an INRM and the
setup used ∆Q = 0 and any deviation from 0 could theoretically boost K3 even in a MR
system. P.E. stands for preparation error, i.e the probability that the prepared starting
state is not the desired starting state. KM1 is the maximal boost to K3 due to measurement
error, as defined in equation-(3.14). The losses are broken into two types. Non-Malicious
(Non. Mal.) are the losses that appear irrespective of the specific experiment. Malicious (
Mal) are the losses that may depend on the choice of experiment. We assume the malicious
losses are chosen in such a way that they boost the calculated value K3 by as much as
possible.

possible. Based on eq. (3.16, 3.15) the experiment can tolerate malicious errors in dark
counts that will produce an artificial increase of the calculated value up 0.2 depending on
how we account for preparation errors in the test of non-invasiveness.

3.6 The pseudo pure state dynamics.

In an NMR experiment we have access to pseudo-pure states, to verify that this does not
effect the credibility of the result, we perform the Leggett-Garg experiment starting from
an identity state instead of |0〉 for the system. If starting from an identity state the end
state remains identity it has no contribution in the Leggett-Garg inequality. The spectra
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for the Leggett Garg test on the identity was compared with a reference spectra of an
initial thermal state (see fig. 3.6) to ensure that the contribution of the signal is below the
level of precision used in the experiment. This approach to handling the PPS state is very
different from the venality approach introduced in [33]. Venality, is the fraction of ancilla
that was incorrectly prepared thus resulting in the false reading. Venality is only suitable
for systems where the polarization is high enough to handle adversarial noise.

22.22.42.62.83

x 10
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0

0.5

1
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7

Frequency (Hz)
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Figure 3.6: The spectra for the LG experiment with the identity as the initial
state. The blue spectra is the signal for a run of the Leggett-Garg experiment with the
identity as the initial state. The red spectra is the initial thermal state which is given as a
reference. Note that while an identity will give a flat spectrum at 0, the flat spectrum does
not guarantee that the state is the identity. To verify that this is the identity we rotated
the state before the final measurement and produced the same flat spectrum for different
observables.
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3.7 Discussion.

The motivation behind a LG experiment is to test macroscopic realism, i.e try to refute
MR for a macroscopic system or at least convince a skeptic that MR assumption is implau-
sible. While the NMR sample that we use can be considered macroscopic, the individual
molecules are still in the microscopic domain, moreover there is little doubt that the indi-
vidual nuclear spins can be in a superposition state. In that respect it is not too surprising
that the LGI is violated, and indeed its violation tells us nothing new about macroscopic
realism. We do, however, learn that we can control the systems well enough to violate the
inequality and that the qutrit used can pass some quantum tests under reasonable assump-
tions. The violation of a LGI does not rule out the existence of a hidden variable model and
indeed a skeptic could simply argue that our system behaves strangely due to the existence
of hidden variables that are influenced by our choice of measurements. For liquid state
NMR we already know that such a model exists [43]. Moreover we purposely discarded
some of the experimental data as part of the experiment, i.e the spectrum generated at
the end of each experiment could be used to generate more than the six probabilities we
discussed (the off diagonal elements in the density matrix).

Since we are not, strictly speaking, testing MR, our main result is not the violation
per-se but rather the methods used to achieve the violation, the discussion of possible
errors in the experiment and the demonstration of their experimental relevance. Such a
discussion has been missing from much of the experimental literature to date (see [18, 33, 36]
for exceptions). The LG test cannot be performed without some assumptions about the
physical systems involved and, in particular, the inner workings of the measurements that
we assume are non invasive. These assumptions must be tested, as they can lead to
artificial violations of the inequality. In our experiment we tested particular malicious
scenarios that, although unlikely, must be taken into account and discussed before they
are rejected (experimentally or theoretically). We note that both our simulated predictions
and experimental results (see Fig. 3.5) show that such artificial violations are unlikely in
our system, consequently we believe that although many previous experiments did not
include a careful analyses of possible errors, the violations of LGI in those experiments
would probably hold even if imperfections were taken into account.

We have made a fair sampling approximation, since we can only measure the part of
the system i.e. big part of our system is in identity state, we assume that the measurable
part represent the rest. Without the approximation we cannot violate LGI at typical room
temperature NMR.

Conclusion. We demonstrated a violation of 3-level LGI. Non-invasive measurements,
an essential requirement when performing a LG test were carried out using negative result
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measurements. We quantified the deviation from the assumption that the measurements
are non-disturbing and modified the LGI accordingly. We also took in account other
errors that can occur in the experiment and used them to modify the original inequality.
These modifications resulted in increasing the classical bound and making our violation
significantly smaller (but still beyond the error margins). We emphasize that the margin
of violation between quantum and classical upper bound is greater when a 3-level system
is tested (compared to a 2-level system). In practice the actual margin is quite low when
various errors are taken in account and the use of the modified (non Lüders) measurement
scheme allowed us to observe the violation despite many imperfections. The difference in
experimental value from theoretical is due to the T1 and T2 decay, these errors can be
avoided in different systems, for example if the couplings are strong, the gate lengths will
be short. It would be a challenge to the quantum control community to observe a violation
larger than 0.5 above the classical bound (modified for imperfections), however the real
challenge remains to demonstrate such violations in macroscopic systems.

29



Chapter 4

Enhancing quantum control by
bootstrapping a quantum processor
of 12 qubits

4.1 Introduction

A quantum gate is implemented on a quantum processor by controlling some experimen-
tal parameters, these parameters depends on the type of quantum processor. In a Nu-
clear Magnetic Resonance (NMR) quantum processor the gates are implemented by Radio
Frequency(RF) pulses, and the variable controlling these composite RF pulses are the
phases,frequency and amplitudes of the individual pulses. There exists many ways to op-
timize for these variables, but most powerful and used method is gradient ascent pulse
engineering (GRAPE), which as the name suggest calculate gradient of the optimization
function to iteratively update the control parameters [44]. GRAPE is used in wide variety
of quantum computing implementations including NMR [45], electron spin resonance(ESR)
[46], nitrogen-vacancy(NV) centers in diamond [47, 48], superconducting circuits [49, 50],
and ion traps [51, 52].

The difficulty of using these methods for optimizing quantum gates is that they require
full system simulation of the quantum system, which becomes an exponentially harder task
as the size of the system grows. Other than that, the fidelity of implementation depends on
the knowledge of Hamiltonian and inhomogeneities of the implementation apparatus. Here
we consider the task of optimizing a control field that will drive the quantum system from
a fixed input state ρi to a desired target state ρf . At each iteration k of the GRAPE, the

30



algorithm computes the evolution of the initial state of the system under a RF pulse, which
results in a final state ρ̃ and then the value of fitness function f = tr(ρ̃ρf ) is calculated.
Where ρf is the desired state. If the fitness function is not of desired value, it then computes
the gradient g, to be use in updating the pulse control parameters. In every iteration of
the algorithm a quantum evolution has to be simulated which requires exponentiating and
multiplying 2n × 2n matrices, which becomes harder and harder as n increases.

Recently, Li et al. [5] and later Rebentrost et al. [53] showed that a quantum proces-
sor can be used to calculate f and g efficiently. A technique called measurement-based
quantum feedback control (MQFC) enables direct measurement of f and g (see Fig. 4.1),
allowing the quantum processor to optimize its own pulses. MQFC addresses both the is-
sues of scalability and control inaccuracies due to imperfect system characterization [54, 55].
Moreover, this technique is transferable to any implementation in which control fields steer
the system evolution and measurement in a standard basis is possible. In this work, we
implement MQFC on a 12-qubit NMR quantum processor, and in particular demonstrate
for the first time that MQFC enhances the control precision by about 10% due to its self-
feedback property. Furthermore, by creating the 12-coherent state we demonstrate the
capability of our quantum processor to function as a universal 12-qubit quantum processor
with high-fidelity individual controls.

4.2 Theory

In NMR as shown in eq. (2.13) the unnormalized deviation density matrices are refereed as
‘states’. To distinguish them from the Hamiltonian, we use capital X, Y, and Z to denote
states and σx, σy and σz to denote Hamiltonians, while they both refer to the same set of
Pauli matrices.

4.2.1 Quantum processor.

In our NMR quantum processor, the liquid-state sample is per-13C labeled (1S,4S,5S)-7,7-
dichloro-6-oxo-2-thiabicyclo[3.2.0]heptane-4-carboxylic acid dissolved in d6-acetone, which
forms a 12-qubit register. The 12 qubits are denoted by nuclear spins C1 to C7 (13C-
labeled) as qubits 1 to 7, and H1 to H5 as qubits 8 to 12 in the molecule shown by Fig.
4.5a. When placed in a static z-magnetic field, the values of Hamiltonian parameters can
be found in Fig. 4.2.
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Quantum Processor input: control field

Update Control Field

Figure 4.1: MQFC process for optimizing a control field. Starting from an initial guess,
a shaped pulse is created from the pulse generator and then applied to the sample. The
fidelity function f of the control pulse and its gradient g are directly measured on the
quantum processor, where g is used for updating the control field till that sufficiently high
fidelity f has been achieved.
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C1

C3
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C5

C7

C2H 1

H 2

H 4

H 3

H 5

C1 C2 C3 C4 C5 C6 C7 H1 H2 H3 H4 H5

C1 30020

C2 57.58 8779

C3 -2.00 32.70 6245

C4 0 0.30 0 10333

C5 -1.25 2.62 1.11 33.16 15745

C6 5.54 -1.66 0 -3.53 33.16 34381

C7 1.25 37.48 0.94 29.02 21.75 34.57 11928

H1 0 0 2.36 166.6 4.06 5.39 8.61 3310

H2 4.41 1.86 146.6 2.37 0 0 0 0 2468

H3 1.81 3.71 146.6 2.37 0 0 0 0.18 -12.41 2158

H4 -13.19 133.6 -6.97 6.23 0 5.39 3.78 -0.68 1.28 6.00 2692

H5 7.87 -8.35 3.35 8.13 2.36 8.52 148.5 8.46 -1.06 -0.36 1.30 3649

T1 7.99 3.61 1.83 3.72 9.89 7.80 3.64 3.83 2.13 2.28 2.65 3.47

T2
* 0.40 0.31 0.44 0.25 0.25 0.40 0.38 0.29 0.39 0.34 0.15 0.30

C-13 labeled 12-qubit system

Dichloro−cyclobutanone

Figure 4.2: . Molecular structure and Hamiltonian parameters of per- 13C labeled
(1S,4S,5S)-7,7-dichloro-6-oxo-2-thiabicyclo[3.2.0]heptane-4-carboxylic acid. C1 to C7, and
H1 to H5 denote the 12 qubits from qubit 1 to qubit 12, respectively. The diagonal elements
are the chemical shifts (in Hz), and the off-diagonal elements are the J-couplings between
two spins (in Hz). The relaxation times T1 and T2 (in seconds) are also listed at bottom.
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The control Hamiltonian is due to the transverse control field applied in the x-y plane,
which is often digitized into M slices with slice length ∆t. In each slice, there are four
constant control parameters, leading to a control Hamiltonian in the form of

Hc[m] = BC
x [m]

7∑
i=1

σix + BC
y [m]

7∑
i=1

σiy (4.1)

+BH
x [m]

12∑
j=8

σjx + BH
y [m]

12∑
j=8

σjy,

where, for example, BC
x [m] means the x-component of the mth slice of control field in the

13C channel. The superscript H stands for 1H channel.
The dynamics of the NMR system is governed by internal (Hs) and control (Hc) Hamil-

tonian simultaneously, which implies the propagator is

UM
1 = UMUM−1 · · ·U1, (4.2)

where
Um = e−i(Hs+Hc[m])∆t. (4.3)

and the shorthand,
UM
m = UMUM−1 · · ·Um. (4.4)

The essence of NMR quantum information processing is to optimize a control field, i.e.
find a sequence of Bx,y[m], such that one can precisely realize a quantum gate or drive the
system to a target state according to Eq. (4.2).

4.2.2 Fundamentals of the GRAPE algorithm.

To implement a particular target gate or state we need to find an optimal Bx,y[m]. One of
the most prominent optimization algorithms to date is the GRAPE algorithm [44] which
was developed for the design of optimal control pulses in NMR spectroscopy. Here, we
explain the basic principle of GRAPE by considering the problem of state engineering in
the absence of relaxation.

Suppose the initial state of the spin system is ρi, and the target output state is ρf .
After applying a M -slice trial control pulse, the system will evolve to

ρ̃ = UM
1 (ρi) = UM

1 ρiU
M†
1 . (4.5)
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The fitness function defined as f = tr(ρf ρ̃) serves as a metric for the control fidelity, with
the form

f = tr(ρf ρ̃) = tr
(
UM

1 (ρi) · ρf
)
. (4.6)

To find the optimum value of f we calculate the gradient function to the first order

gx,y[m] = ∂f

∂Bx,y[m]

≈
n∑
k=1

tr
(
−i∆t · UM

m+1

[
σkx,y, U

m
1 (ρi)

]
UM†
m+1 · ρf

)
, (4.7)

where, k runs over different spins, n is total number of spins, and
[
σkx,y, U

m
1 (ρi)

]
is the

commutator between σkx,y and Um
1 (ρi). We may increase the fitness function f by using

the gradient iteration rule

Bx,y[m]← Bx,y[m] + ε · gx,y[m], (4.8)

where ε is a suitably chosen step size.
The GRAPE algorithm proceeds as follows on a classical computer:
1. start from an initial guess control Bx,y[m];
2. calculate ρ̃ according to Eq. (4.5);
3. evaluate fitness function f = tr(ρf ρ̃);
4. if f does not reach our preset value, evaluate gradient function g according to Eq.

(4.7);
5. update control variables according to Eq. (4.8), then go to step 2.

4.2.3 MQFC optimization.

The GRAPE algorithm requires the calculation of UM
1 , i.e., the dynamics of the system.

This step is inefficient on a classical computer when the size of the system is large. In
contrast, the scheme of MQFC optimization provides an alternative way which enables
direct measurement of f and g in the experimental manner, or explicitly, via the quantum
evolution and measurement of the quantum processor.

Without loss of generality, let us discuss the scenario of ensemble quantum computing.
e.g., NMR quantum computing, where the state is usually written as a traceless deviation
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density matrix and a single-shot measurement is sufficient to get the expected value of an
observable. For other systems that use the computational basis or projective measurement,
the following procedure needs to be slightly modified and more repetitions may be required
to get the estimate of f and g.

Measuring f is straightforward. For an n-qubit system, the total number of elements
in the Pauli basis is 4n − 1 (without the identity term). If the target state ρf has some
decomposition, say, ρf = ∑G

γ=1 xγPγ with respect to the Pauli basis, then the fitness
function is

f = tr (ρ̃ρf ) =
G∑
γ=1

xr tr (ρ̃Pr). (4.9)

Here, 1 ≤ G ≤ 4n denotes the number of nonzero components, Pγ is the γ-th element of
the Pauli basis, and xγ is its corresponding coefficient.

Therefore, G experiments are required to estimate f . In the γ-th experiment, we just
need to apply the control field to the initial state ρi and measure the expectation value 〈Pγ〉
of ρ̃. For a generic ρf that contains all G = 4n− 1 Pauli terms, measuring f in experiment
is equivalent to carrying out full state tomography, and is thus inefficient. However, many
tasks require the creation of a simple target state where G is quite small. For instance, if
we aim to prepare the 12-coherent state ρf = Z⊗12, one measurement is sufficient to obtain
f .

Measuring g requires us to realize the commutator [σkx,y, ·] inside Eq. (4.7). In fact [5],[
σkx,y, ρ

]
= i

(
Rk
x,y (ρ)−Rk

x,y (ρ)
)
, (4.10)

in which Rk
x,y(ρ) and Rk

x,y(ρ) mean a selective π/2 rotation and −π/2 of the k-th qubit
about x or y axis acting on state ρ, respectively. By substituting Eq. (4.10) into Eq. (4.7),
we get

gx,y[m] = ∆t
n∑
k=1

tr
{(
UM
m+1Rk

x,yU
m
1

)
(ρi) · ρf

}
− ∆t

n∑
k=1

tr
{(
UM
m+1R

k
x,yU

m
1

)
(ρi) · ρf

}
. (4.11)

The terms on the right-hand side are very similar to the measurement of f in Eq. (4.6), and
the only difference is the local ±π/2 pulse inserted between slices m and m+ 1. Explicitly,
the m-th component of gx,y is a weighted sum of 4nG measurement quantities, where 4
comes from the ±π/2 pulses about the x and y axes, n from the sum over all the qubits,
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Figure 4.3: Quantum circuit to create a pseudo-pure state.

and G from the measurement of f . In each experiment, compared to the way of measuring
f , we just need to insert a local π/2 pulse after the m-th slice evolution. Provided that all
the qubits are well individually addressed, high fidelities are attainable in implementing
these local π/2 rotations.

In summary, we need 4nGM experiments in total to perform the gradient measurement,
which is linear in the number of qubits for our case of target state being 12-coherence state.

4.3 Experiment

4.3.1 Experimental MQFC optimization.

The circuit to prepare the pseudo pure state on 12-qubits is shown in Fig. 4.3. It was
designed by making an approximation that the big couplings of all the 1H with the corre-
sponding 13C were assumed to be equal to 148 Hz. The reason for assumption is that the
1H chemical shifts are too close thus their individual control is very hard to achieve, also it
simplified and shortened the circuit. This obviously had a trade-off in the fidelity even be-
fore the non-ideal pulses and experimental imperfections. The result of this approximation
on fidelities at different point in the circuit is shown in Fig. 4.4.

Now we turn to the experiment where the MQFC optimization is used to create the
12-coherent state in the 12-qubit quantum processor. The 12-coherent state is the state
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labeled ρ4 in Fig. 4.3. This part of the circuit is shown in Fig. 4.5c and MQFC opti-
mization is utilized to reach 12-coherent state (Z⊗12) from Z⊗7•I⊗5. First, let us clarify
that all other pulses except the MQFC pulse throughout our experiments are local ro-
tations, which are generated from a subsystem-based gradient ascent pulse engineering
(SSGRAPE) approach [45]. It is a technical improvement of the original GRAPE for our
particular implementation, but does not address its poor scalability issue.

We would like to stress at first that SSGRAPE is still a classical algorithm and thus
cannot address the scalability issues of GRAPE. Even though, SSGRAPE is an important
modification to the original GRAPE algorithm, which can improve the timescale of calcu-
lating GRAPE pulses dramatically by defining subsystems based on the Hamiltonian of the
molecule. For example, in our 12-qubit system, we define two subsystems each consisting
of six spins, SA consisting of (C1, C2, C3, H2, H3, H4) and SB consisting of (C4, C5, C6, C7,
H1, H5). This division of system is artificial, in the sense we assume none of the spins is SA
have coupling with spins in SB. From Fig. 4.2 and the relevant parameters, it can be seen
that the two subsystems are isolated to a good approximation. Both internal and external
Hamiltonians in SA and SB can be determined by tracing out the other subsystem. For a
target operator, say Utar = R1

x (π/2), it can be decomposed into two operators

UA
tar = R1

x

(
π

2

)
, UB

tar = I, (4.12)

where UA
tar and UB

tar are unitary operators of dimension 26 × 26, and Utar = UA
tar ⊗ UB

tar.
Therefore, the 12-qubit GRAPE optimization problem can be treated as two 6-qubit prob-
lems, and SSGRAPE attempts to optimize a shaped pulse which can realize UA

tar and UB
tar

simultaneously. In brief, the SSGRAPE technique greatly reduces the computation time
since the optimization space is of two subspaces of 6-qubits rather than a 12-qubit space.
The problem scales exponentially with the number of qubits, hence two 6-qubits space
is much more faster. It is worth emphasizing that it does not fundamentally solve the
scalability issue.

Another requirement of adopting SSGRAPE is that the target unitary operator can
be effectively decomposed using subsystems and does not involve interactions between
subsystems. In our 12-qubit experiment, this condition holds for every operator. We list
all the SSGRAPE-optimized shaped pulses that are needed in the experiment, as shown
in Table 4.1. We also simulated the fidelity of each pulse in the full 12-qubit system.
That is, each pulse was found using SSGRAPE in the two 6-qubit subsystems, but then
simulated on the full system. All local pulses are over 99.7% fidelity in simulation, which
demonstrates that SSGRAPE is a valid pulse searching method for our 12-qubit system.
What makes the MQFC scheme remarkable is that, it does not involve the computationally
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Figure 4.5: MQFC scheme in creating 12-coherence. a Molecular structure of the 12-qubit
quantum processor. b Schematic of measuring the m-th step gradient gx,y[m]. A π/2
rotation about x(y)-axis for qubit i is inserted between the m-th and (m + 1)-th slices. c
Quantum circuit that evolves the system from the thermal equilibrium to 12-coherence,
where MQFC is applied on 7-coherence Z⊗7I⊗5.
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Operator Length Simulated Fidelity No. of Slices ∆t
C7H5 − SWAP 8 ms 99.0% 400 20 µs
R1−6,8−12

y (π/2) 1 ms 99.8% 100 10 µs
R7

y(π/2) 1 ms 99.9% 100 10 µs
R2

x(π) 2 ms 99.8% 200 10 µs
R6

x(π) 2 ms 99.8% 200 10 µs
R4

x(π) 2 ms 99.7% 200 10 µs
R5,7

x (π) 2 ms 99.8% 200 10 µs
R7

−y(π/2) 1 ms 99.9% 100 10 µs
R2

y(π/2) 1 ms 99.9% 100 10 µs
R1

x(π) 2 ms 99.8% 200 10 µs
R2,3

x (π) 2 ms 99.8% 200 10 µs
R2

−y(π/2) 1 ms 99.9% 100 10 µs

Table 4.1: Shaped pulse optimized by SSGRAPE during the 12-coherence creation. The
pulses are listed in the order of their appearances in Fig. 2(c). Although the pulses are
found with the subsystem method, the fidelities reported here are calculated on the full
12-qubit system.

expensive classical simulation of the 212-dimensional quantum dynamics in the course of
optimization.

For our optimization task, GRAPE is a powerful tool, but handling 12 qubits is near
the limit of capability for a typical laptop computer. In contrast, MQFC is capable of
overcoming this difficulty in certain cases. Taking our experiment as an example, MQFC
is able to solve the problem of finding a control field that evolves single-coherence ZI⊗11

into 12-coherence Z⊗12 in a time that scales linearly with the number of qubits. The entire
experimental procedure is depicted in Fig. 4.5c.

First, we prepare 7-coherence Z⊗7I⊗5 on the seven 13C spins, using the sequence in Fig.
4.5c before the MQFC optimization box. This procedure, benchmarked in our previous
work [56], is mainly done with the aid of SSGRAPE. Subsequently, we create Z⊗12 via
MQFC on the quantum processor, which is the main focus of this work. We attempt
to optimize a control field, namely a shaped radio frequency (r.f.) pulse, to evolve the
system from the input ρi = Z⊗7I⊗5 to the output ρf = Z⊗12. Our control field, as shown
in the MQFC optimization box, is divided into five parts: three parts to realize local
rotations, and two free evolutions to let 13C qubits interact with 1H qubits for the purpose
of generating higher coherence. The circuit shown in Fig. 4.3 going from state ρ3 → ρ4
have three sections of local rotations and two free evolutions. This served as a guess for
this sequence. The whole control field is digitized into M = 278 slices with ∆t = 20 µs
width, while 110 slices are for three sub-pulses and 168 slices remain zero to realize the
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two 1.68 ms free evolutions. The total dynamics of the pulse is given by UM
1 in Eq. (4.2).

The fitness function is defined as f = tr(ρf ρ̃), a metric for the control fidelity, where
ρ̃ = UM

1 (ρi) is the experimental state and ρf = Z⊗12 is the target. In our experiment, only
one measurement of the expectation value of 〈Z⊗12〉 suffices to attain f after each iteration.
If f does not hit our preset value with the current control field, we navigate the control field
along its gradient g. In fact, to measure gx[m] (the same for gy[m]) which is the gradient
of slice m, we just need three steps: insert a local ±π/2 pulse on every qubit about x-axis
between slice m and m+ 1; apply this new control field to the initial state ρi and measure
f (see Fig. 4.5b); compute gx[m] by directly combining these ±π/2-inserted results via
Eq. (4.11). As long as the accurate local ±π/2 pulses are available for each qubit, g can
be measured on a quantum processor. In experiment, we have designed a 1 ms π/2 pulse
on every 13C nucleus with the simulated fidelity over 99.7%. Having the gradient, we can
update the control field and continue the MQFC procedure until a desired f is attained.

4.3.2 Direct observation of 12-coherence.

After the preparation of the 12-coherent state, the next step is to observe it. In NMR spec-
troscopy, multiple coherence is hard to be observed directly in a one-dimensional spectrum,
i.e., by flipping the target spin to the x-y plane while others remain in Z. If all coupling
between the target spin and other spins can be resolved, such observation is feasible. For
example, in a two-qubit system, we can flip spin one to X to observe ZZ. In fact, XZ can
be written as

XZ = X⊗ |0〉〈0| − X⊗ |1〉〈1|. (4.13)

The first term X ⊗ |0〉〈0| leads to a positive peak at ν1 − J12/2 in the spectrum, as the
J-coupling term shifts the frequency of qubit 1 by −J12/2. Analogously, the second term
X⊗ |1〉〈1| leads to a negative (due to the minus sign before the term) peak at ν1 + J12/2.
Generally, these two peaks can be resolved in the spectrum as long as J is large enough to
separate them in frequencies. However, to observe multiple coherence, this requirement is
of great challenge, since all J-couplings between the target spin and other spins should be
sufficiently large to prevent the annihilations of positive and negative peaks. As a result,
two-dimensional spectra and special techniques are usually employed to observe multiple
coherence in conventional NMR spectroscopy.

For the purpose of NMR quantum computing, it is certainly better if one can read
out multiple coherence directly in a one-dimensional spectrum, as one-dimensional spec-
trum reflects the state information more intuitively and reduces experimental running time
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Figure 4.6: Readout sequence to boost the SNR of the C7 spectrum. It transforms the
1H spins from Z to identity and thus enables the decoupling of 1H channel. The phase
correction compensates for the chemical shift evolutions, after which all relevant spins are
along the y-axis. In principle, this technique improves the SNR by a factor of 32, and
makes the measurement of f or g practical using one scan.

remarkably compared to the two-dimensional spectroscopy. In our 12-qubit processor, al-
though there are a few couplings as small as 0.01 Hz, a direct observation of 12-coherence
Z⊗12 is still available on C7. Figure 4.7a exhibits a strong agreement between experimental
observation 12-coherence with merely 32 scans and the simulation, after rescaling the ex-
perimental result by 1.21 times to compensate for decoherence. Our experiment provides
a valid evidence that our 12-qubit processor possesses excellent individual controllability
and the potential to be a universal 12-qubit quantum processor.

4.3.3 Readout sequence.

Although the direct observation of 12-coherence with 32 scans in Fig. 4.7a demonstrates our
control precision, it is not suitable for the many experimental runs during the optimization
since 32 scans leads to a great time cost. One solution is to decouple the five 1H spins to
boost the signal-to-noise ratio (SNR) by 25 = 32 times, which exactly compensates for the
required scan number. We have designed a readout pulse sequence to realize it as shown
in Fig. 4.6.

The local pulses in the readout sequence are computed by SSGRAPE, and the sequence
is implemented before every measurement. The phase correction is a z-rotation to neu-
tralize the unwanted chemical shift rotation during the free evolution. If the state is Z⊗12,
the five 1H spins will be evolved to the identity state after the readout sequence, and the
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decoupling of 1H leads to the C7 spectrum as shown in Fig. 4.7b, which is measured with
a single scan. We then use spectrum fitting to obtain the signal’s amplitude and phase,
and thus the value of 〈Z⊗12〉.

This readout sequence induces errors in terms of decoherence and pulse imperfections.
For the former one, through our simulation we find that it leads to about 30% signal
loss, which is reasonable since multi-coherence is exceptionally vulnerable to decoherence.
Therefore, this factor is taken into account for all the measurement results, that is, the
measured values are rescaled by about 1.3. With respect to the pulse imperfection, it
consists of two parts: the imperfection of the sequence itself, i.e., some approximations
when we design this simple readout sequence, and the infidelities in implementing the
pulses. In total, 3.5% error arises in simulation. We use this value as the uncertainty of
the experimental value of 〈Z⊗12〉, namely, the error bars in Fig. 4.7c.
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4.3.4 Experimental results.

Figure 4.7b shows the spectrum of ρ̃ after the readout stage for each odd iteration. The
peak intensities correspond to the value of f = tr(Z⊗12ρ̃), which clearly shows that MQFC
increases f during the optimization. This demonstrates that MQFC is a practical technique
for designing control fields in large quantum systems.

Our experiment also exhibits MQFC’s ability of correcting unknown experimental er-
rors. To demonstrate this improvement, we implement another group of 12-coherence-
creating experiments, where all experimental settings are the same except that the pulse
is generated from the classical SSGRAPE method other than the MQFC approach. We
then compare these two groups of experiments. Figure 4.7c illustrates the result of SS-
GRAPE and MQFC pulses both in simulation and experiment. Focusing on the final result
at iteration 9 in Fig. 4.7d, in experiment SSGRAPE finally creates a 12-coherence with
f = 0.703± 0.034, whereas MQFC pulse creates f = 0.795± 0.027. This experimental im-
provement (nearly 10%) disagrees with simulation, as in simulation MQFC (0.830) is even
worse than SSGRAPE (0.931). The errors(standard deviation) were obtained by repeating
the experiment few number of times and taking in account the noise.

Considering that MQFC is a feedback-control process, some incomplete knowledge of
the experimental quantum process, such as the nonlinearity of the pulse generator or impre-
cision of the molecular Hamiltonian, may be inherently corrected during the optimization.
Indeed, the experiment clearly suggests that MQFC is advantageous in terms of correcting
errors from unknown sources. Furthermore, we simulate the decoherence effect during the
procedure, and find that the upper bound of tr(Z⊗12ρ̃) in the presence of dephasing noise
is about 0.824. Note that our MQFC result finally reaches 0.795, which is very close to this
bound, demonstrating that our control of this 12-qubit processor is close to the theoretical
prediction after accounting for decoherence.

To numerically simulate the decoherence effect in our 12-qubit system, we first make the
following assumptions: the environment is Markovian; only the T ∗2 dephasing mechanism
is taken into account since T1 effect is negligible in our circuit; the dephasing noise is
independent between all qubits; the dissipator and the total Hamiltonian commute in
each pulse slice as ∆t = 20 µs is small. With these assumptions, we solve the master
equation in two steps for each ∆t: evolve the system by the propagator in Eq. (4.2), and
subsequently apply the dephasing noise for ∆t which is an exponential decay of off-diagonal
elements in the density matrix. The typical length of simulating our 12-qubit experiment
in the presence of dephasing noise is in the magnitude of days on a desktop computer.
The simulation shows that at most Fdec = 0.824 of Z⊗12 can be achieved with the 5.56
ms MQFC pulse applied on Z⊗7I⊗5, which is reasonable as high-order coherence is very
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Figure 4.7: Experimentally created 12-coherence using MQFC. a Direct observation of the
created 12-coherence in one-dimensional NMR spectrum (red), where C7 is the probe qubit.
Simulated spectrum (blue) is also plotted. The experimental result is rescaled by 1.21 times
to compensate for the decoherence effect for better visualization. b Spectra of 12-coherence
after each odd iteration during the MQFC optimization. Unlike the direct observation, a
readout technique is applied to gain a higher resolution. A color scale indicates peak
intensities. The height of the peaks is proportional to the value of created 12-coherence. c
Comparison between GRAPE (blue) and MQFC (red) optimizations, both in simulation
(solid; without decoherence accounted) and experiment (dashed). Fdec is the numerical
simulation of decoherence during the 12-coherence creation. Compared to the GRAPE
algorithm, MQFC optimization is worse in simulation, but better in experiment. The
error bars are plotted by the infidelity of the readout pulse. d Results at iteration 9. The
experimental 12-coherence reaches 0.795 using MQFC which approaches the Fdec = 0.824
bound, while GRAPE only leads to 0.703 (i.e., 0.121 lower than Fdec) in experiment.
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vulnerable to the dephasing noise. Alternatively speaking, the upper bound of the MQFC
experimental result is 0.824, since the optimization procedure does not include the function
of robustness against dephasing noise yet.
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4.4 Discussion

4.4.1 Scalability.

One major concern about control methods is their scalability with the number of qubits
n. Our MQFC protocol involves a single experiment to measure f and 4nM experiments
to measure g for each iteration, where n is the number of qubits and M is the number of
slices the time domain is discretized into. Assuming each experiment takes τexp time, the
MQFC in total consumes Tit = (4nM + 1)τexp for each iteration. For comparison, one has
to deal with massive 2n × 2n matrix multiplications and exponentials using GRAPE on a
classical computer. The speed-up comes from the fact that MQFC utilizes the evolution of
the quantum system instead of computing the system’s dynamics when evaluating f and
g.

For other potential problems when scaling up the GRAPE technique, MQFC confronts
similar difficulties, such as how to effectively represent a generic target state, how to choose
a good initial guess, how to determine the pulse parameters before optimization, and how
many iterations are needed to reach a satisfactory fidelity. Unfortunately, experimental
observation of running time versus number of qubits is not likely in NMR, since changing
the number of qubits would usually require a different sample with different characteristics.
So we cannot experimentally compare the scaling of MQFC versus GRAPE, instead we
must be satisfied with the fact that MQFC performs well at the 12-qubit level and should
theoretically scale better than GRAPE under standard assumptions.

One may also ask if there could be other classical algorithms that scale as well (or
better than) MQFC. This question remains open, but it seems very unlikely – the gradient
calculation is based on the dynamics as shown in Eq. (4.2), i.e., the expected classical
algorithm needs to simulate the dynamics of an NMR system in an efficient way. Even when
boiling down to our particular state engineering task, as far as we can tell, there is no known
numerical method [57, 58, 59] to simplify such an optimization, despite extensive work on
the subject since the early days of experimental quantum computing. Moreover, MQFC
can correct unknown errors to some extent, while open-loop algorithms should require
knowledge about the noise spectrum in advance, which is usually impractical for large
quantum systems. In this sense, another potential application of MQFC is to demonstrate
the quantum computing supremacy [60], where initial endeavors have been made in other
systems, for example in a recent five-photon boson sampling experiment [61].
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4.4.2 Comparison with previous work.

MQFC was originally introduced in Ref. [5] where it was implemented on a 7-qubit NMR
processor. There are two significant improvements in our work. First, our work clearly
demonstrates the superiority of MQFC in correcting unknown errors with around 10%
fidelity boost compared to the best classical optimization result, while in the 7-qubit ex-
periment no improvement was observed. The reason could be that the characterization of
a 7-qubit system is much more accurate than a 12-qubit one, indicating that MQFC should
be more powerful when dealing with large systems as the knowledge of larger systems are
more likely to be incomplete. Second, our 12-qubit experiment lies at the cutting edge of
present experimental quantum computing, and the capability of individual controls at this
qubit number is state-of-the-art. As a comparison, in a recent work [62], the 10-qubit en-
tanglement in a superconducting circuit is created with fidelity 0.668 using global control.
Moreover, we demonstrated that at the 12-qubit level, the algorithm is already fast enough
to justify its use as a tool in the lab. Other experiments where a large number of qubits
were entangled are [6, 7, 8].

In summary, we have created a 12-coherence state on an NMR quantum processor
using MQFC. Our experimental procedure and result, in particular the direct observa-
tion of 12-coherence with one qubit as the probe, signify the capability of our quantum
processor to serve as a universal 12-qubit quantum processor with high-fidelity individual
controls on each qubit. In terms of control field optimization, our experiment demonstrates
two superiorities in efficiency and experimental performance of MQFC beyond its classical
counterpart. MQFC requires a running time that scales linearly with the number of qubits,
and yields about 10% improvement compared to the best result via classical optimization.
This optimization approach could be exceptionally useful in a large system with incom-
plete characterization, and is readily transferable to other systems such as superconducting
circuits or nitrogen-vacancy centers in diamond. We expect that, as experiments involving
more than 10 qubits become more common, quantum feedback methods such as MQFC
will become standard tools in quantum computing labs.
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Chapter 5

Closed loop quantum control

5.1 Introduction

Quantum computers are believed to outperform classical computers in solving certain prob-
lems [63]. However, turning theory into practice will require quantum processors that are
resilient to noise. Fault tolerance theory assumes reasonable noise models and requires low
error rates below a threshold level. Quantum optimal control [64, 44, 65] is a useful tool to
devise high fidelity control pulses that satisfy the threshold condition, and great progress
has been made in different device architectures, e.g. superconducting qubits, quantum
dots, ion traps, and nitrogen-vacancy centers [66, 67, 68, 69].

There are two broad classes of quantum optimal control: open-loop and closed-loop.
Open-loop quantum control typically relies on accurate modelling of the system Hamilto-
nian and control parameters, therefore it may no longer produce expected result in realistic
settings, e.g. effects due to the hardware tranfer function [70, 71, 72]. In such cases, on
one hand, open-loop optimization considering uncertainties in system and control Hamil-
tonians is being studied [73]; on the other hand, better performance can be achieved from
closed-loop quantum control [74, 64, 75, 76, 77]. Moreover, closed-loop quantum control
combines the use of both classical and quantum resources in a way that the calculation
remains efficient when the size of the system Hilbert space becomes classically intractable.

In the context of closed-loop quantum optimal control, both gradient-based and gradient-
free search algorithms have been investigated [9, 74, 76, 77, 78, 79, 80]. Generally speak-
ing, gradient-free algorithms converge slowly compared to gradient-based algorithms [81].
Gradient-based algorithms can be classified into two categories: model-free [9] and model-
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dependent [74, 79]. In their hybrid quantum-classical approach (HQCA), Li et al. [74] devel-
oped a scheme for measuring gradients based on the knowledge of the system Hamiltonian
model, assuming a flat hardware transfer function. HQCA was successfully demonstrated
in liquid-state nuclear magnetic resonance (NMR) [74, 75] where the transfer functions
are relatively flat over the control frequency range, and improvement on control fidelity
compared to open-loop control was observed. Ferrie et al. [9] utilized a model-free algo-
rithm stemming from the finite-difference (FD) method which uses finite differences to
approximate derivatives/gradients. They also compared their FD method with gradient-
free simplex or Nelder-Mead algorithm [76, 77, 78] and numerically showed that their
method is more robust to control noise and requires fewer resources.

We experimentally investigated the two gradient-based closed-loop quantum control ap-
proaches, HQCA and FD, in a solid-state electron spin resonance (ESR) two-qubit system.
The ensemble two-qubit system consists of hyperfine coupled electron and nuclear spins.
This system combines advantages of electron spins and nuclear spins, i.e. large thermal
polarization and fast control of electron spins, and long coherence time of nuclear spins.
It has been shown that universal quantum control using only microwave excitation in this
system is possible [82, 46, 83]. However, achieving high fidelity quantum control in a bulk
ESR system is challenging. One reason is the limited frequency bandwidth of a conven-
tional microwave resonator [72]. Hence, when designing optimal control pulses for ESR
systems, the hardware transfer function cannot usually be ignored. The HQCA method
does not explicitly consider the transfer function, so it is important to test its performance
experimentally and compare it with the FD method, which in principle accounts for the
transfer function. We used two basis sets for the FD method, linear and Slepain [84, 85, 86].
The Slepian basis is designed for limited control bandwidth, and therefore can give further
insights regarding the effects of the transfer function bandwidth. Finally, open-loop quan-
tum optimal control using the first-order gradient ascent method was also implemented
for comparison. In general, higher fidelities were observed with closed-loop control. Al-
though the HQCA and FD methods showed similar experimental performance, we used
simulations to find favorable conditions for each method. When the error in our system is
dominated by the transfer function, the FD method performs better. When the error in
our system is dominated by the randomly fluctuating measurement noise which results in
errors in the measured gradients, the HQCA method performs better.
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5.2 Two methods for deriving gradients

The control problem we consider here is to prepare a desired state starting from a given
initial quantum state. We choose the state fidelity defined in Eq. (5.1) as the metric to
evaluate the control quality,

F = Tr
[
U(T )ρiU(T )†ρf

]
/2n, (5.1)

where ρi and ρf are the initial and target states, respectively, T is the total duration of the
control sequence, and n is the number of qubits. U(t) is the unitary evolution of the spin
system in the presence of the system’s internal Hamiltonian H0 and control Hamiltonian
Hc (u(t)), and hence satisfies:

U̇(t) = −i [H0 +Hc (u(t))]U(t)
U(0) = I⊗n. (5.2)

Here u(t) is the collection of control parameters, e.g. control field amplitudes, and I is the
2-dimensional identity operator. The goal is to maximize the fidelity defined in Eq. (5.1).

Gradient ascent pulse engineering (GRAPE) [44] is a well-known iterative numerical
method to solve the optimization problem, where at the qth iteration the control parameters
are updated by

uq+1 = uq + cqgq, (5.3)

where gq is the gradient of F with respect to the control parameters uq and cq is an adaptive
step size. Convergence happens at certain local optima and the solution can be accepted
once the desired F is realized with the parameters uq. In this paper, we refer to a class of
numerical optimization methods which uses classical resources to calculate the fidelity F
and its gradients gq as open-loop quantum optimal control.

One drawback of open-loop quantum optimal control is that it relies on accurate de-
termination of H0 and Hc, which can be difficult to obtain in real systems. Moreover,
numerical methods become impractical when the size of the system is larger than a handful
of qubits [75]. To address such issues, Li et al. proposed a closed-loop quantum optimal
control scheme known as HQCA which utilizes the quantum system under control as a
quantum simulator in calculating the gradient gq. In the following, we briefly describe the
method.

The HQCA approach can be applied to many quantum systems. Here, we take the
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spin-based magnetic resonance as an example. Consider a common control Hamiltonian
in magnetic resonance systems, where the control magnetic field is in the transverse plane
relative to the static magnetic field, i.e. in the x-y plane:

Hc(m) = ΣN
l=1

[
ux,l(m)σlx + uy,l(m)σly

]
, (5.4)

where N is the number of spins that can be excited by the resonant alternating current
(AC) magnetic field, σlα is the Pauli operator of the lth spin, and uα,l(m) is the piecewise
constant control amplitude (α = x or y) for the mth piece. The unitary generated by the
total Hamiltonian H=H0+Hc is then given by

U(T ) = ΠM
m=1e

−i∆t[H0+Hc(m)], (5.5)

where ∆t is the time step and M is the total number of segments of uα,l(m). The gradient
at the qth iteration, gq, is then defined as the partial derivative of F with respect to uα,l:

gq ≡
[

∂F

∂ux,l(m) ,
∂F

∂uy,l(m)

]
. (5.6)

As proposed by Ref. [74], combining Eqs. (5.1) and (5.5) gives

∂F

∂uα,l(m) ≈ ∆t
Tr
[
ρl+α(m)ρf

]
− Tr

[
ρl−α(m)ρf

]
2n , (5.7)

where ρl±α(m) = UM
m+1R

l
α(±π

2 )Um
1 ρi

[
UM
m+1R

l
α(±π

2 )Um
1

]†
. This means that gq can be exper-

imentally measured by inserting π/2 rotations Rl
α(π2 ) and Rl

α(−π
2 ) into the control pulse

U . Since gq is a 2NM dimensional vector, if we consider one experiment as containing the
preparation of an initial state, implementation of the pulse and measurement over a chosen
basis element, then at each iteration 4NMP experiments are required to obtain gq. Here,
P is the number of Pauli elements with non-zero coefficients that compose the target state
ρf .

Figure 5.1 shows the schematic of how closed-loop quantum optimal control is performed
iteratively. While the HQCA method is a good choice for large systems with uncertain
Hamiltonians [74, 75], it does not account for hardware transfer function. In case the
bandwidth of the hardware transfer function is much narrower than the intended bandwidth
of the inserted π/2 rotation pulse, the scheme can fail. Even if the π/2 pulse functions
properly, HQCA measures ∂F/∂ũ instead of ∂F/∂u (see Fig. 5.1), where ũ represents the
distorted pulse. Compared to the radio-frequency regime typical of NMR, the microwave
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Figure 5.1: Flow diagram of gradient-based closed-loop optimal control as applied to
ESR. Arrows label the direction of information flow. Error sources are labeled using orange
dash-line circles. Both the HQCA and FD methods can compensate for the control errors
caused by the uncertainty in the system Hamiltonian. Theoretically, the FD method finds
the gradient ∂F/∂u, while HQCA finds the gradient ∂F/∂ũ. The pulse shape represented
by ũ is distorted by the hardware.

transfer function relevant to ESR experiments tends to be much less uniform over the
frequency range of interest. Thus, we consider another method of closed-loop control that
can take these effects into account: the FD method. It uses finite differences to approximate
the derivatives when an analytic expression of the gradient function is not available. If
we write uq=(uqx,1, uqy,1, . . . , uqx,N , u

q
y,N) as the qth control amplitude parameters, gq can be

expressed as

gq = Σkg
q
kvk, 1≤k≤2NM

gqk ≈
F (uq + ∆uqkvk)− F (uq −∆uqkvk)

2∆uqk
. (5.8)

Here {vk} is a basis set that spans the parameter space and ∆uqk is a properly chosen
difference value [9]. In ref. [9] this properly chosen value is ∆uqk(j) = 1/(j + 1)1/6, where j
is the iteration number. To obtain the complete gradient vector gq, similar to the HQCA
method, a total of 4NMP measurements are needed at each iteration. As the gradients
are estimated directly from state fidelity measurements, distortions of the pulse due to
the transfer function are accounted for in the process. This method is useful when the
hardware transfer function is strongly frequency dependent or is not accurately known.
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In Ref. [9], the authors simulated a closed-loop (in-situ) optimization scheme based on
the FD method. Instead of using a complete basis set per iteration, they acquired gradient
and performed optimization only with one random element of the basis set at a time. This
results in fewer experiments per iteration, but convergence is slow if the random elements
are not well chosen. In this work, we use two different basis sets: the first is a complete
basis set in the time domain with a dimension of 2NM (we call it the linear basis), and the
second is the Slepian basis [84, 85, 86]. The Slepian basis can be constructed to have fewer
elements than 2NM with narrower control bandwidth, and is thus suitable for applications
when the bandwidth is experimentally limited. Roughly speaking, the Slepian basis set is
a low-pass filtered version of the linear basis as the elements of the Slepian basis exhibit
much smoother amplitude changes in the time domain compared to the linear basis.

5.3 Experimental Results

Experiments were carried out using a custom pulsed ESR spectrometer operating at X-
band. An arbitrary waveform generation (AWG) enables pulse shaping, and a loop-gap
resonator with Q∼100 allows excitation over a bandwidth ∼100 MHz [87]. The sample
we use is a single crystal of unlabeled malonic acid (CH2(COOH)2), where paramagnetic
defects are created by gamma-ray irradiation [83]. Since the carbon atoms are not spin
labeled, all hyperfine couplings involve surrounding hydrogen atoms (I=1/2), and up to 8
have been observed [88]. The general spin Hamiltonian can be written as

H0 = µBB
T
0 ·g·S +

8∑
i=1

(
ST ·Ai · I i − µngnBT

0 ·I i
)
, (5.9)

where µB is the Bohr magneton, µn is the nuclear magneton, B0=B0ẑ is the externally
applied magnetic field, g is the g-tensor of the electron spin, gn is the g-factor of the
nuclear spin, S=(Ŝx, Ŝy, Ŝz) is the electron spin operator, Ai and I i are the hyperfine
tensor and nuclear spin operator for the ith nuclear spin, respectively (vectors are in bold).
The hyperfine coupling to the α-proton dominates, as it is about 10 times stronger than
the second largest coupling. Therefore, we neglect all other protons and write a simplified,
two-spin Hamiltonian:

H0 = ωIIz + ASzIz +BSzIx. (5.10)

This Hamiltonian is written in the rotating frame of the electron and makes use of the
secular approximation. Here A and B are the secular and pseudo-secular hyperfine cou-
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Figure 5.2: (a) Energy level diagram of the two-qubit system. Each level is designated by
electron and nuclear spin quantum number, ms and mI , respectively. (b) Pulse sequence
used for the reference (spin echo), gate 1 (ZI to XI), and gate 2 (ZI to ZZ) measurement. For
the reference and readout, 200 ns long square π/2 and π pulses with excitation bandwidth
of 5 MHz were used throughout the experiments, providing selective excitation of one
allowed transition without affecting the other. The echo is formed after τ=1 µs from the
π pulse. Phase cycling was implemented in gate 2 measurement to remove possible signal
contributions from the transversal polarizations, which we do not want to measure. (c)
ESR spectra acquired by sweeping the magnetic field (blue, lower trace) and frequency
(red, upper trace) using the reference spin echo sequence. For the field swept spectrum,
the microwave pulse frequency is fixed at the resonance frequency of the loop-gap resonator,
determined from a separate microwave reflection (S11) measurement as shown in the inset.
For the frequency swept spectrum, B0 is fixed at 3401 G (denoted by the arrow in the
figure). Two strong signals at 3401±14 G or ±36 MHz (SL and SR) correspond to the
resonance condition of the two allowed ESR transitions. The unequal intensities obtained
in the frequency swept spectrum are due to the frequency dependence of the spectrometer’s
transfer function.
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plings, respectively, and ωI=µngnB0 is the nuclear Zeeman frequency. At X-band where
the strength of the static magnetic field (B0) is around 0.34 T for g∼2, |ωI |∼14.5 MHz.
Diagonalizing H0 gives

Hd
0 = Diag

[
ω12

2 ,−ω12

2 ,
ω34

2 ,−ω34

2

]
|ω12| =

√
(ωI + A/2)2 +B2/4

|ω34| =
√

(ωI − A/2)2 +B2/4, (5.11)

where the superscript ‘d’ denotes the diagonal form. Figure 5.2(a) shows the energy level
diagram for the hyperfine coupled electron-nuclear spin system. The nuclear frequencies
ω12 and ω34 are given in Eq. (5.11). The hyperfine coupling is known to be strongly
anisotropic [87], so the values of A and B depend on how the sample crystal is oriented
with respect to B0. We chose an orientation in which A�B. Under such condition, it is
more difficult to fully characterize the Hamiltonian experimentally compared to the cases
when A∼B. The uncertainty in the Hamiltonian provides a good testbed for comparing
feedback control schemes.

As shown in Fig. 5.2(b), a spin echo sequence is utilized to read out the intensity of
a particular ESR transition. When either the dc magnetic field, B0, or the microwave
frequency is varied to satisfy the resonance condition, strong peaks corresponding to the
two allowed ESR transitions appear, as shown in Fig. 5.2(c). In addition, smaller signals
from the forbidden transitions appear between the two strong allowed peaks.

From spectral fitting, the forbidden transition rates are estimated to be <5% of the
allowed transition rates. The estimated range of A andB is 72>|A|>66 MHz and 0<|B|<26
MHz, where one constraint is that |ω12|+|ω34|=72 MHz (separation of the two allowed
transitions). Since the forbidden transition rates are small, no electron spin echo envelope
modulation (ESEEM) signals were observed. The lack of information from an ESEEM
experiment is a key reason that the Hamiltonian parameters cannot be determined more
accurately in this orientation.

Finally, we test and compare open- and closed-loop quantum optimal control of two
state-to-state gates on the two-qubit system described above. We denote the thermal equi-
librium state by ZI, where the first (second) letter refers to the state of electron (nuclear)
spin. Here, we use the deviation density matrix to describe a state, and X, Y, and Z
stand for the Pauli matrices. Gate 1 is the transformation ZI→XI, and gate 2 is the
transformation ZI→ZZ. Both target states only contain one Pauli element and thus P=1.
Characterizing the control quality requires measurement of the final state. This is done
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*Waveforms corresponding to different basis sets vk
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Slepian

FD 

Slepian

or

Figure 5.3: Process flow for optimizing closed-loop control. Starting with the pulse
obtained from previous iteration (Step 1; shown here is a square pulse as an example),
two control qualities F k,±x are measured (Step 2) to calculate the gradient in a particular
direction of a basis denoted as vk (Step 3). For the HQCA method, a ±π/2 rotation pulse
around the x-axis (Rx(±π/2); see Appendix B) is inserted at the kth segment. For the FD
method, the pulse is perturbed by the addition/subtraction of a small amplitude vector
proportional to the kth basis element in the x-phase. Steps 2 and 3 are repeated for all
elements of the basis, and the final gradient is obtained by summing all gradients (Step 4).
The pulse is updated by adding the final gradient in x-phase (Step 5). A similar procedure
is carried out to obtain the final gradient in y-phase. More details of the procedure,
including information of different basis sets used, are given in the main text.

58



0 100
0.9

1

1.1

Index

S
RS

0 100 200
−1

0

1

A
m

p
lit

u
d

e
 (

a
rb

. 
u

n
it
s
)

Time (ns)

Initial

Updated

(a) (b) (c)

10 12 14 16
0.6

0.7

0.8

0.9

1

0 2 4 6 8

Iteration

F
Z
Z

Gradient

Figure 5.4: (a) FZZ as a function of the number of iterations (HQCA method). Here, the
fidelity measurement for each pulse shape, together with the reference signal measurements,
was repeated 5 times for the first 13 iterations and 50 times for the last 4 iterations. Each
individual measurement was an average of 16,000 phase-cycled scans. The error bars
indicate one standard deviation of the measurement results obtained over the repetitions
(5 or 50). (b) Fluctuation of normalized reference signal intensity (here SR) during 100
repetitions. Dashed lines indicate ±0.03 deviation from the normalized mean. (c) Example
of pulse update. The solid yellow (light gray) curve represents the initial x-phase shape.
The solid orange (medium gray) curve is the experimentally measured gradient g. The
dashed brown (dark gray) curve is the updated pulse obtained by adding cg.

via two separate, selective readouts of the allowed ESR transitions, which we denote SL
and SR (see Fig. 5.2(b)). The selective readout is accomplished by fixing B0 at the cen-
ter of the spectrum and varying the pulse frequency using the AWG. To compensate for
the transmission/receiver transfer function that is not flat, SL and SR must be properly
normalized by their thermal reference signal intensity, SL and SR. From Eq. (5.1) we can
define the control quality for gates 1 and 2 as:

FXI = 1
2
(
SL/SL + SR/SR

)
FZZ = 1

2
(
SL/SL − SR/SR

)
. (5.12)

The minus sign in FZZ is due to the fact that the two allowed transition peaks have opposite
sign in the ideal spectrum for the state ZZ. We note that while FZZ can be considered as the
true state fidelity as defined in Eq. (5.1), FXI should be treated as a relative measure only.
The reason is that FXI can be larger than 1 when gate 1 performs better in exciting the
transitions than the square π/2 pulse used in the reference measurement (see Fig. 5.2(b)).

Figure 5.3 shows the general procedure of the closed-loop gate finding process. Below
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describes each step in detail.
Step 1: We start with the pulse obtained from the previous iteration.
Step 2: Next, we measure two control qualities F k,±x. For HQCA, the pulse is obtained
by inserting a ±π/2 rotation around the x-axis at the kth segment of the x-phase of the
previous pulse (see Appendix B). For the y-phase pulse, a ±π/2 rotation about the y-axis
would be used. For the FD method, the the pulse is obtained by adding/subtracting a
vector that is proportional to the kth basis vector from the x or y-phase of the previous
pulse. The index k runs from 1 to the total number of pulse segments for the HQCA
method, or from 1 to the size of the basis set vk for the FD method.
Step 3: The x-phase gradient is given by gk∝F k,+x−F k,−x (see Eq. (5.7) for HQCA or
Eq. (5.8) for the FD method).
Step 4: By summing over all k, we obtain the full gradient for the current iteration in
x-phase, g=∑

k gkvk. For the HQCA method, vk is a unit vector with the only non-zero
element being 1 at the kth index, e.g. {0,0,1,0,...,0} for k=3. For the FD method, it is the
kth basis vector from a chosen set; in this paper we use linear and Slepian basis.
Step 5: We update the x-phase pulse from previous iteration by adding cg. Here, c is a
scaling factor chosen to avoid over- or undershooting. The y-phase pulse is updated in a
similar manner, after finding the y-phase gradient.

Figure 5.4 summarizes the closed-loop optimization of the ZI→ZZ pulse (gate 2).
Similar to open-loop methods like GRAPE, the fidelity is seen to increase quickly in the
first few iterations, but slows down and eventually saturates when the measured gradient
becomes comparable to the shot noise. Although there is a convergence proof [9, 89] in
case of noisy measurements, there are two problems in practice: (1) inaccuracy in measured
gradients and (2) difficulty in verifying small improvements in F . Moreover, a long-term
drift in measurements can prevent F from reaching a convergence [9]. In practice, we found
that there was no benefit in going beyond ∼15 iterations for the gates and protocols tested
here, i.e. when the improvement in F per iteration is smaller than the measurement noise.

Table 5.1 summarizes the final FXI and FZZ obtained using three closed-loop optimal
quantum control methods, (i) HQCA, (ii) FD with linear basis, and (iii) FD with Slepian
basis. In addition, the results of open-loop control are presented. Here, the open-loop
pulses were designed under three different conditions: (i) A=72 MHz, B=0 MHz, T =1,
(ii) A=66 MHz, B=26 MHz, T =1, and (iii) A=66 MHz, B=26 MHz, T =Tmeas. T denotes
the transfer function, and T =1 means that the pulses were designed under an ideal, flat
transfer function. T =Tmeas indicates that the pulse design accounted for the experimentally
measured transfer function (see Appendix E). In all the three conditions, a ∼10 MHz
FWHM Larmor frequency distribution with the Lorentzian shape was considered. When
designing the open-loop pulses, the gradients were calculated numerically using the FD
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method and two basis sets, the linear and Slepian basis, were used for comparison with
their closed-loop counterparts. All the designed open-loop pulses have a simulated control
quality higher than 1.020 for gate 1 and higher than 0.990 for gate 2 under their specific
design conditions. As mentioned earlier section, the control quality of gate 1 is greater
than 1 because it is more efficient in exciting the transitions than the square π/2 pulse
used in the reference measurement (see Fig. 5.2(b)).

First of all, we remark again that direct comparison of FXI and FZZ is not proper as
FXI is not strictly a fidelity. For open-loop quantum optimal control, we observe higher F
when more accurate Hamiltonian parameters and realistic T are taken into consideration.
However, closed-loop quantum optimal control methods still outperform the best open-loop
results. Both closed-loop methods, HQCA and FD, produced similar control qualities under
the experimental conditions tested here. However, simulations show that under different
conditions, one method can perform better. This is described in the section below.

5.4 Simulations

Simulations were performed to further elucidate the roles of measurement noise and the
spectrometer transfer function in limiting the final closed-loop control quality. In these
simulations, the closed-loop optimization is performed in the same way as before, but with
the experimental system response simulated by computer. The simulations were ended
when the overall improvement after five successive iterations is smaller than 0.01. As
shown in Table 5.2, the simulation results indicate that HQCA is more robust to the
measurement noise than FD methods. We find that this increased robustness for HQCA
is due to its larger gradients compared to the FD methods.

The effect of the transfer function on closed-loop optimization was also tested in sim-
ulations. When the bandwidth of the transfer function is about twice the spectral width,
both HQCA and FD methods give similar results. However, when the bandwidth of the
transfer function becomes similar to the width of the spectrum, FD methods become su-
perior to HQCA. This is because the derivation of Eq. (5.7) assumes T =1, and non-ideal
T will cause imperfections in Rα(±π/2) and measured gradients. In real experiments, if
the transfer function is unknown or has limited accuracy, the distorted gradients cannot
be corrected properly and will slow down the search. However, the gradient measurements
should not be affected by non-ideal T in FD methods as these effects are accounted for
automatically.

Experimentally observed control qualities for gate 2 (FZZ; see Eq. (5.12) and Table 5.1)
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Closed-loop control Open-loop control
HQCA FD (linear) FD (Slepian) A=72 MHz,B=0 MHz, T =1 A=66 MHz,B=26 MHz, T =1 A=66 MHz,B=26 MHz, T =Tmeas

FXI 0.968(39) 0.993(46) 1.010(40) · 0.946(40)† 0.951(41)∗ 0.955(37)† 0.990(51)∗
FZZ 0.914(36) 0.918(43) 0.932(37) 0.807(37)† 0.799(37)∗ 0.891(40)† 0.883(45)∗ 0.889(39)† 0.902(43)∗

Table 5.1: Experimental control qualities for gate operations 1 and 2. For closed-loop
control, results are given for HQCA, FD with linear basis, and FD with Slepian basis. For
open-loop control, the Hamiltonian parameters were varied as well as whether or not the
spectrometer transfer function is accounted for in pulse design. The numbers reported here
are averages of 50 measurements, and given in the parentheses are standard deviations
(e.g. 0.968(39)=0.968±0.039). † The open-loop control pulses were designed using the
full-bandwidth basis set. ∗ The open-loop control pulses were designed using the limited-
bandwidth basis set, i.e. the Slepian basis, with a control bandwidth of 120 MHz. It should
be noted that direct comparison of FXI and FZZ is not proper as FXI is not strictly a fidelity
(see the main text).

are considerably lower than values obtained in the simulations. Transverse and longitu-
dinal relaxations (T2∼4 µs and T1∼28 µs) only give error of ∼2%, which does not fully
explain the discrepancy. This could be due to several reasons.For closed-loop methods, one
reason is that long-term drifts in the spectrometer components during experiment (single
iteration takes ∼8-12 hours) may introduce error. This limited the total number of iter-
ations performed in experiment, which was far fewer compared to the simulations. The
neglect of small couplings to nearby proton spins, i.e. the use of a simplified 2-spin Hamil-
tonian, can partly explain the imperfect control obtained with both open- and closed-loop
methods. Another possibility is that some components in the spectrometer transmission
arm may exhibit small power non-linearities, so that T depends not only on frequency (as
we assume) but also on microwave power.

5.5 Discussion

Two gradient-based closed-loop quantum control methods are experimentally demonstrated
in a solid-state two-qubit system and compared with gradient-based open-loop control
methods. The implemented closed-loop control methods outperform the open-loop meth-
ods when the information of the Hamiltonian and hardware transfer function lacks accuracy
in our quantum system. The open-loop control can be further improved by taking into
consideration of the uncertainties of the transfer function and the Hamiltonian (e.g. dis-
tributions of A, B, and small couplings with the environment) which will increase the
classical resources needed for the open-loop pulse design exponentially.
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Noise HQCA FD (linear) FD (Slepian)
∼0.03 0.958(02) 0.967(01) 0.973(02)
∼0.07 0.958(02) 0.968(04) 0.973(03)
∼0.14 0.957(03) 0.947(26) 0.960(30)
∼0.20 0.956(09) 0.926(48) 0.905(29)

FWHM HQCA FD (linear) FD (Slepian)
∼130MHz 0.958 0.970 0.975
∼70MHz 0.936 0.974 0.964

Table 5.2: Simulation results showing the effects of noise level and transfer function band-
width on the control fidelities FZZ for gate 2. Noise: Zero-mean Gaussian random noise
with a standard deviation (σ) of 0.03, 0.07, 0.14, and 0.20 was added to the ideal gradient
measurements, where the reference measurements (SL and SR) are normalized to 1. The
averages and standard deviations of ten trials in each condition are given. Transfer func-
tion: In each case, the entire control pulse sequence was distorted according to a realistic
transfer function with full width at half maximum (FWHM) of 130 and 70 MHz. In the
simulation with different noise levels, the transfer function with 130 MHz FWHM was
considered. Simulated pulse finding was stopped when the overall improvement over five
successive iterations was smaller than 1%. T2 was not included in this simulation.
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Together with simulations, we find that for the closed-loop optimzation, HQCA works
better than FD methods when shot noise in measurements is large enough to be the dom-
inant error limiting the gradient search. When T is narrow and/or the control bandwidth
is limited (often by hardware), FD methods can perform better than HQCA. With the
bandwidth-limited Slepian basis set, the gradient finding procedure of the FD method
can be made less time-consuming and the pulses generated may be friendlier to imple-
ment in experiment. Thus, starting with a viable open-loop quantum optimal control (e.g.
GRAPE) pulse and running subsequent iterations of an appropriate closed-loop control
protocol may be a good strategy to reach high control quality under realistic experimental
conditions [76]. It should be mentioned that in the experimental setting of this work, the
signal-to-noise ratio (SNR) is one of the major factors limiting the final control quality of
the closed-loop methods (SNR∼17 with 16,000 averaging). This also causes the closed-loop
optimization processes to be more time-consuming than the open-loop counterparts. How-
ever, as mentioned earlier, our open-loop pulse design did not consider all of the factors to
expediate the process. Moreover, the time consumption of open-loop control optimization
process will increase exponentially with the system size, which is not the case with the
closed-loop control process. Therefore, the time consumption is not a critical drawback of
the closed-loop control. In the future, it may be of interest to combine the optimal ran-
dom orientation method [89, 90] with the closed-loop quantum control methods for better
efficiency of convergence rate.
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Chapter 6

Finding Unitary gates on a quantum
processor

6.1 Introduction

Although we see from the previous chapters that it is feasible to learn a pulse that takes a
particular initial state to a desired final state i.e. an state-to-state pulse, a general quantum
computing and information tasks needs an gate which is state independent. The inspiration
for this work is finding out whether we can optimize a gate on a quantum computer itself.
There is many advantages if one is able to do that, especially it will help when there
is partial knowledge of Hamiltonian available or the experimental imperfections are not
exactly known. Experimentally optimizing the gates would help us to perform universal
quantum computing as well as the method can be used efficiently when the number of
qubits increases.

The reason a gate optimization seems elusive is the fitness function associated with it,
f = tr(UtŨ), and gradient, g associated with gate optimization is not directly measurable
as in previous case [44]. So we ask the question given we can optimize only state-to-state
pulses on a quantum computer how does one optimize general gates.

A naive way would be optimizing an state-to-state pulse that take all the basis to the
states to the corresponding output states. This implies we would be optimizing for 4n − 1
states for a n qubit system. Although possible for small number of qubits the problem
the practicality will diminish with rather humble number of qubits. Although if we take
advantage of the Pauli matrix algebra we can reduce the problem size to optimizing for 2n
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chosen basis states only. In the following we discuss how the basis optimization results in
the gate optimization and how we take reduce the problem size.

6.2 Theory

Consider a one qubit system, and a desired unitary Ut one wants to find. The action of
this unitary on all the basis states is represented as:

X
Ut−→ UtXU

†
t ≡ ρX

Y
Ut−→ UtY U

†
t ≡ ρY

Z
Ut−→ UtZU

†
t ≡ ρZ (6.1)

As we only have access to state-to-state pulses optimization, if we can optimize for an
unitary (Ũ) that evolves all the basis states to the desired output state (ρX,Y,Z) simulta-
neously, we know there is only an unique operation i.e. Ut that does this transformation.
Hence, Ũ = Ut. The three fitness function we would be optimizing are,

tr(ŨXŨ †ρX)
tr(ŨY Ũ †ρY )
tr(ŨZŨ †ρZ) (6.2)

However we know from the Pauli matrix algebra that XY = iZ hence the last equation in
Eqs. 6.1 can be written as

UtZU
†
t = Ut(−iXY )U †t

= −iUtXUtU †t Y U †t
= −iρXρY ≡ ρZ (6.3)

also, ρZ ≡ iρY ρX . This means the evolution of Z state is fixed given the evolution of
X, Y states, this is a powerful result and implies we don’t have to optimize for Z state.
In other words if tr(ŨXŨ †ρX) = 1 and tr(ŨY Ũ †ρY ) = 1 this implies tr(ŨZŨ †ρZ) = 1,
before proving this claim let us first prove another result,
Claim — If tr(ŨXŨ †ρX) = 1 it implies ŨXŨ † = ρX
Proof — Let us write ρX as ~aX · ~σ. Similarly, we can write ŨXŨ † as ~̃aX · ~σ where,
where ~aX and ~̃aX are unit vectors with components a1X , a2X , a3X etc. . This implies
tr(ŨXŨ †ρX) = ~aX · ~̃aX . The dot product of two unit vectors is one only when they
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coincide. Hence, tr(ŨXŨ †ρX) = 1 implies ŨXŨ † = ρX .
Now, coming back to our original claim that tr(ŨXŨ †ρX) = 1 and tr(ŨY Ũ †ρY ) = 1

implies tr(ŨZŨ †ρZ) = 1

tr(ŨZŨ †ρZ) = tr(Ũ(−iXY )Ũ †(iρY ρX))
= tr(ŨXY Ũ †ρY ρX)
= tr(ŨXŨŨ †Y Ũ †ρY ρX)
= tr(ρXŨXŨŨ †Y Ũ †ρY )
= 1 (6.4)

where in the second last line we have used the previously provided proof and the fact that
X2 = Y 2 = Z2 = I.

We now look at a two qubit case to give an idea of how we can extend this idea of
optimizing for less number of basis states. The basis states are given by

XI Y I ZI
IX XX YX ZX
IY XY Y Y ZY
IZ XZ Y Z ZZ

It can be easily shown than any of the blue colored basis state can be written as a prod-
uct or is proportional to the product of two or all of red colored operators (XI, Y I, IX, IY ).
This, along with the results obtained in equations 6.1-6.4, prove that we only need to op-
timize state-to-state pulses for 4 input states. Now, we can easily see the generalization is
that 2n state need to be optimized to find a unitary pulses. If we represent

Aj = I
⊗j−1 ⊗ A⊗ I

⊗N−(j+1) (6.5)

then we need to optimize for j ∈ 1 : n and A ∈ X, Y . Note that X, Y is not a unique choice,
any two of the three non-commuting Pauli matrices will do. This significantly reduces the
number of optimizations we have to do and the number varies polynomially now with the
number of qubits.

Although this is well and good, in real world it is very hard to reach the max value of
fitness function, for example, tr(ŨXŨ †ρX) = 1. Going back to our one qubit example, it
becomes much more important to ask the question of what can we say about tr(ŨZŨ †ρZ)
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in such a case then. We again represent the states as dot product of a unit vector with
Pauli vector,

ρX = ~aX · ~σ
ŨXŨ † = ~̃aX · ~σ

ρY = ~aY · ~σ
ŨY Ũ † = ~̃aY · ~σ

Then as proved earlier the fitness functions

tr(ŨXŨ †ρX) = ~aX · ~̃aX = cos(θX)
tr(ŨY Ũ †ρY ) = ~aY · ~̃aY = cos(θY ) (6.6)

Using these we try to find what the fitness function for the Z state look like

tr(ŨZŨ †ρZ) = tr(Ũ(−iXY )Ũ †(iρY ρX))
= tr(ŨXY Ũ †ρY ρX)
= tr(ŨXŨ †ŨY Ũ †ρY ρX)
= tr(ρXŨXŨ †ŨY Ũ †ρY )
= tr

(
(~aX · σ)(~̃aX · σ)(~aY · σ)(~̃aY · σ)

)
= (~aX · ~̃aX)(~aY · ~̃aY )− (~aX × ~̃aX) · (~aY × ~̃aY )
= cos(θX)cos(θY )− sin(θX)sin(θY )(~a⊥X · ~a⊥Y ) (6.7)

where, ~a⊥X is the unit vector perpendicular to ~aX and ~̃aX and ~a⊥Y is the unit vector per-
pendicular to ~aY and ~̃aY . This implies we can put a limit to the value of the third fitness
function,

cos(θX)cos(θY )− sin(θX)sin(θY ) ≤ tr(ŨZŨ †ρZ) ≤ cos(θX)cos(θY ) + sin(θX)sin(θY )(6.8)

Hence, we can faithfully say if the calculated fitness function is close to 1 the rest of the
fitness function will be in acceptable range. We see a visual representation of this bound
in Fig. 6.1.

When we go to higher number of qubits, ~aX and other unit vectors represented are now
unit vectors in a higher dimensional state. The bound still follows the same proof for the
states which are related to 2 of the optimized states, by which we mean: we optimize for
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XI, Y I, IX, IY and fitness function for any state that can be obtained from two of these
four states follows the same proof( for example, ZI = −iXI · Y I). The things become
different for the states which are obtained from three of these four states. The proof goes
as follows:

tr(ŨZXŨ †ρZX) = tr(Ũ(−iXI · Y I · IX)Ũ †(iρY IρXIρIX))
= tr(ŨXI · Y I · IXŨ †ρY IρXIρIX))
= tr(ŨXIŨ †ŨY IŨ †ŨIXŨ †ρY IρXIρIX)
= tr

(
(~aXI · σ)(~̃aXI · σ)(~aY I · σ)(~̃aY I · σ)(~aIX · σ)(~̃aIX · σ)

)
= cos(θXI)cos(θY I)cos(θIX)− sin(θXI)sin(θY I)sin(θIX)(~a⊥XI · ~a⊥Y I · ~a⊥IX)

Thus the bound now is

cos(θXI)cos(θY I)cos(θIX)− sin(θXI)sin(θY I)sin(θIX) ≤ tr(ŨZXŨ †ρZX)
≤ cos(θXI)cos(θY I)cos(θIX) + sin(θXI)sin(θY I)sin(θIX) (6.9)

Similarly the bound can be obtained for any state that is not optimized.

6.3 Experimental proposals and simulation results

6.3.1 Measurement of fitness function

As described in earlier chapters measuring f is straightforward. For an n-qubit system,
the total number of elements in the Pauli basis is 4n − 1 (without the identity term). If
the target state ρf has some decomposition, say, ρf = ∑G

γ=1 xγPγ with respect to the Pauli
basis, then the fitness function is

f = tr (ρ̃ρf ) =
G∑
γ=1

xγ tr (ρ̃Pγ). (6.10)

Here, 1 ≤ G ≤ 4n denotes the number of nonzero components, Pγ is the γ-th element of
the Pauli basis, and xγ is its corresponding coefficient.
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70



6.3.2 Slepian Basis

We utilize the finite difference(FD) method of calculating gradients, mainly, since we can
utilize a Slepian basis which have much less number of control parameter. A Slepian
basis is composed of Slepian sequances which are also called discrete prolate spheroidal
sequences [84]. Slepian sequences with a sequence length N and half bandwidth W∈ (0, 0.5]
are defined to be the real solutions to the eigenvalue problem

N−1∑
m=0

sin 2πW (l −m)
π(l −m) vk(m;N,W )

= λk(N,W )vk(l;N,W ). (6.11)

Here, k, l∈{0, 1, ..., N−1}, and vk(l;N,W ) is the lth element of the kth order Slepian se-
quence. The Slepian sequences are spectrally concentrated in the frequency range [−W/∆t,W/∆t],
especially the first 2NW ones. Ref. [86] used the first 2NW Slepian sequences to approx-
imate the space of bandwidth limited sequences of length N . Slepian sequences also have
the property of beginning and ending smoothly to zero, which is favorable for experimental
setup, since the amplitude of the RF pulses can only smoothly increase in real world. First
four sequences for a chosen value of N and NW is plotted in Fig 6.2

6.3.3 Improvement in the technique when using NMR

Till now the implementation is general and can be easily adapted to any quantum processor,
however we can have even more improvement to this general method when implementing
such a procedure in NMR. Since the initial state of a homonuclear NMR system is written
as

ρin =
∑
j

Zj, (6.12)

we can instead of optimizing lets say for 2 qubits Z1 and Z2 we can perform one optimization
for Z1+Z2, and similarly instead of X1 and X2 we can optimize X1+X2. This decreases the
number of state-to-state pulsed to be optimized to 2 irrespective on number of qubits, which
greatly reduces the amount of experiments needed and time required for optimization. The
single qubit gates do not change the coherence of the state, hence this technique will work
on any molecule. However, for two qubit gates the coupling between the spin should be
resolvable and in practice we choose to apply the two qubit only between such spins, hence,
this technique is valid for any molecule.
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Figure 6.2: Plot of first four slepian sequences for N = 600 and NW = 10, notice the
smooth beginning of the sequences.
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6.3.4 Simulation

We used the aforementioned methods to find a unitary on a 4-qubit quantum processor. We
again used the 13C of crotonic acids. The simulation were performed with the Hamiltonian
parameters as shown in Fig. 6.3

C1 C2 C3 C4

C1 ‐2989

C2 41.62 ‐25459

C3 1.46 69.66 ‐21592

C4 7.02 1.18 72.16 ‐29342

T1 1.02 0.92 0.87 0.94

T2 5.7 5.3 5.6 10.2

܌ܑ܋ۯ	܋ܑܖܗܜܗܚ۱

Figure 6.3: 13C-labeled trans-crotonic acid. The table shows the resonance frequencies
(diagonal elements, in hertz), the J-coupling constants (off-diagonal elements,in hertz),
and the relaxation times T1 and T2 (in seconds).

We first show that a single qubit rotation gate on a 4-qubit processor can be found,
with reasonable experimental expectations, see Fig 6.4 and the properties of the optimized
pulse is shown in Fig. 6.5. We also show we can find a Cnot gate using the same method
the results are show in Fig. 6.6 along with the optimized pulse obtained in Fig. 6.7. The
control Hamiltonian is written as,

Hc(t) = A(t) cos(φ(t))
∑
j=1:4

σjx + A(t) sin(φ(t))
∑
j=1:4

σjy. (6.13)

A is the amplitude of the pulse, and φ is the phase. The guess pulse was obtained as a
linear combination of 19 slepian sequences,

ux(t) =
∑

j=1:19
kjxvj(t) & uy(t) =

∑
j=1:19

kjyvj(t), (6.14)

where, k is the random number sampled from a uniform distribution between 0 and 1, and
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v is the slepian sequence. These controls were converted into amplitude and phase by

A(t) =
√
ux(t)2 + uy(t)2 & φ(t) = atan(uy(t)/ux(t)) (6.15)
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Figure 6.4: (log-log scale) Optimization to find a single qubit unitary gate (Ry
90) on

C1 of crotonic acid, F1 is the sum of the state to state fitness functions, F1 =∑
j,A(tr(ŨAjŨ †ρAj)), where Aj is from eq. (6.5) and ρAj is UtAjU

†
t , and j ∈ 1 : 4,

A ∈ (X,Z). F2 is the unitary fitness function which is our goal and is given by
F2 = tr(U †t Ũ)
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Figure 6.5: Pulse amplitude (top) and phase (bottom) obtained from the optimization of
single qubit unitary gate (Ry

90) on C1 of crotonic acid. The pulse is divided into 600 time
steps, each of length 1µs

75



10 0 10 1

Iterations

10 -1

10 0

F
itn

es
s 

F
un

ct
io

ns
Cnot34

F1
F2

Figure 6.6: (log-log scale) Optimization to find CNOT gate controlled on C3 and target
on C4 of the crotonic acid, F1 is the sum of the state to state fitness functions, F1 =∑
j,A(tr(ŨAjŨ †ρAj)), where Aj is from eq. (6.5) and ρAj is UtAjU †t , and j ∈ 1 : 4, A ∈

(X,Z). F2 is the unitary fitness function which is our goal and is given by F2 = tr(U †t Ũ)
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Figure 6.7: Pulse amplitude (top) and phase (bottom) obtained from the optimization of
CNOT gate controlled on C3 and target on C4 of the crotonic acid. The pulse is divided
into 800 time steps, each of length 10µs

6.4 Experiments

We ran an experiment to search for gate that performs π/2 rotation on C3 around x-axis.
The number of slepian sequences used in eq. 6.14 were 19, and the time was discretized
into 600 steps with each step of 1us. We first prepare the two initial states for which
the optimization was made, namely ∑

Zi and ∑
Xi, where i runs from 1 to 4. Former

is the thermal state of the system and is naturally available, later was prepared using
state-to-state method and the results are shown in fig. 6.8
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Figure 6.8: Driving system from thermal state to ∑Xi, the iteration of optimization runs
from top to bottom and each row shows the spectra at the particular iteration. The fidelity
is the fitness function and since it is normalized with respect to a hard pulse, it can go
greater than 1. When the fitness function is greater than one it means the pulse is better
than the hard pulse which is a short duration non-selective square pulse.

After preparing the state we perform our optimization to find the target gate : π/2
rotation on C3 around x-axis. Such a gate takes ∑i=1:4 Zi to Z1 +Z2−Y3 +Z4 and ∑i=1:4Xi

to ∑ i = 1 : 4Xi simultaneously. The optimization is shown in fig. 6.9 and 6.10.
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Figure 6.9: Driving system from ∑
i=1:4 Zi to Z1+Z2−Y3+Z4 , the iteration of optimization

runs from top to bottom and each row shows the spectra at the particular iteration. A
π/2 rotation along y-axis was performed to obtain these spectra. The fidelity is the fitness
function and since it is normalized with respect to a hard pulse, it can go greater than 1.
When the fitness function is greater than one it means the pulse is better than the hard
pulse which is a short duration non-selective square pulse.
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Figure 6.10: Driving system from ∑
i=1:4Xi to ∑ i = 1 : 4Xi, the iteration of optimization

runs from top to bottom and each row shows the spectra at the particular iteration. The
fidelity is the fitness function and since it is normalized with respect to a hard pulse, it
can go greater than 1. When the fitness function is greater than one it means the pulse is
better than the hard pulse which is a short duration non-selective square pulse.

The gate obtained in such a way is a π/2 rotation on C3 around x-axis. To see whether
this is true or not, we apply the final obtained gate(pulse) on the thermal state, ∑i=1:4 Zi
and expect only C3 to rotate. The result is shown in fig. 6.11
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Figure 6.11: Final gate obtained from the optimization applied on the thermal state selec-
tively rotates C3 as desired.

6.5 Discussion and future work

The simulations suggest the feasibility of doing experiments and finding a gate on the
quantum processor. Although for 4 qubits a classical computer can find a gate much more
faster, the time required to find a gate from onward of 10 qubits becomes impractical
due to exponential increase in the Hilbert space. There is a future plan of implementing
the technique with a hybrid way of first optimizing a pulse classically, which essentially
means we start from a good guess and then use the quantum optimization to produce the
final gates. There are many advantages of doing so, starting from an good initial guess
helps lower down the time for optimization which tough faster than classical still long.
Second, even small imperfections matter when we are dealing with 12 qubits and its highly
likely to be not having exact knowledge of the system this requirement is waived when the
optimization is performed on the quantum system itself, since the procedure takes care of
it. We hope this work will shortly lead to an experimental implementation.

81



Chapter 7

Conclusions

Nuclear magnetic resonance (NMR) has been a faithful test-bed to test many quantum
information processing ideas for years. For moderately sized quantum processor NMR
has proven to show high fidelity control. With time our desire to control more and more
number of spins, we have reached a regime where classical methods for optimizing the
control parameters have been proved to be impractical. With classical methods requiring
full Hilbert space simulation, the amount of time needed to simulate 12 spins is unre-
alistic. Classical simulations for obtaining the control parameters suffer not only from
unreasonable time, but also depend on our knowledge of the Hamiltonian, experimental
imperfections. Moving forward, a solid state electron spin resonance (ESR) the knowledge
of Hamiltonian and experimental imperfections play a huge role. The transfer function
present in ESR system must be known upto a faithful extent to use classical methods of
optimizing quantum control.

We know quantum systems are efficient for simulation of quantum evolution, while
classical computers are far efficient in performing everyday calculation. This naturally
poses a question : can we employ a hybrid classical-quantum optimization which is efficient
for large number of qubits. This is the main question addressed in this thesis. On the
way to answering this question, we performed NMR experiment showing the violation of
Leggett-Garg inequalities (LGIs). LGIs put bounds on the correlation of system with itself
at different point in time depending on the assumption that the evolution is classical.
This bound is violated by quantum systems and the value of violation increases with
dimensionality of the system. We show that we can achieve the highest experimentally
achievable bound till date, to the best of our knowledge and perform rigorous error analysis
to justify the claim. This experiment also serves as a justification of NMR having precise
quantum control to test foundational question of quantum mechanics.
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We move on to showing the optimal control of 12 qubits. We are used to performing
classical methods of optimization to find pulses that perform certain quantum information
processing task. These methods suffer from the requirement that they have to simulate the
evolution of a quantum system, and we know that this task become exponentially harder.
When in the regime of 12 qubits, it is almost impractical to utilize classical methods of
control. We showed a hybrid classical-quantum control technique, utilizing best of both
worlds to reach a 12-coherence state which is produced by entangling operation on a 12
qubit NMR processor. This experiment was not possible before with the classical methods
of control and shows the importance of moving forward with hybrid schemes.

We show that we can utilize the hybrid control scheme on a 2 qubit solid state ESR
system. Although much smaller than the NMR system, they still pose a challenge for
optimal control. The Hamiltonian of the solid state molecule we used depend upon its
relative orientation with the external magnetic field, the nuclei spins present. The trans-
fer function also poses a challenge, hybrid scheme providing less strict condition on our
knowledge of the system proves invaluable for performing such an experiment on an ESR
system. We explicitly show an experimental comparison of all the schemes available with
the best control to date provided by the hybrid scheme thus showing their superiority.

We have shown how to find optimal control pulses utilizing a hybrid scheme experimen-
tally. These pulses are state-to-state pulses, i.e. the take a known initial state to a desired
final state. Such a task is of high importance and many tasks in QIP can be performed
in such a way, an example of such a task being algorithmic cooling. But, an universal
quantum computation requires state independent gates. The hybrid scheme we utilized
earlier to not trivially export to the gate finding. The reason being the fitness function and
gradients for such a task are not in a form that can be measured efficiently on a quantum
processor. We modify this hybrid scheme and show that these hybrid control scheme till
now only possible for driving our system from an initial state to a desired final state can
be utilized to optimize for state independent gates. We prove that such a task is efficient
as in the number of optimization required grow polynomially with the number of qubits
and is achievable by current experimental techniques.

In short term future, it would be great to implement these optimization for finding state
independent gates on a 4 and 12 qubit processor. We have shown it is feasible to optimize
single qubit gates and two qubit gates using the techniques presented in the thesis and
current state of experimental techniques. A multi-control gate however using this method
seems unlikely right now due the amount of control parameters needed, this is something
to work towards in long term. Approximating the circuit using quantum circuit learning
tasks is a exciting option and can provide some of the answers towards this problem [91].

83



References
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J Isoya, JF Du, P Neumann, et al. Quantum error correction in a solid-state hybrid
spin register. Nature, 506(7487):204–207, 2014.

[48] Florian Dolde, Ville Bergholm, Ya Wang, Ingmar Jakobi, Boris Naydenov, Sébastien
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