
Phase Retrieval Methods for
Polychromatic Propagation-Based

Phase-Contrast X-ray Imaging

by

Rhiannon Lee Lohr

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Rhiannon Lee Lohr 2019



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

X-ray imaging, based on conventional attenuation methods, is employed in various in-
dustrial, medical and scientific imaging application. Phase-contrast X-ray imaging is an
emerging modality that has shown promise to image and characterize weakly absorbing
objects, such as three-dimensional printed plastics and breast tissue. Propagation-based
phase-contrast X-ray imaging is the simplest of the existing phase-contrast methods as
it does not require any additional optics and can easily be integrated into current X-ray
systems that utilize polychromatic X-ray sources. This novel imaging technique requires
post-image processing using an algorithm called phase retrieval to extract phase informa-
tion from the measured intensity.

Although propagation-based phase-contrast X-ray imaging offers the simplest setup, it
possesses the most mathematically intensive methods to retrieve the phase. Phase retrieval
is a nonlinear inverse technique used to estimate the phase shift, thickness or electron
density throughout an image. Many of these phase retrieval methods have been developed
assuming a monochromatic source, although can be extended to a polychromatic source.

This work compares seven phase retrieval methods under various conditions in the pres-
ence of a polychromatic source in simulation of different objects and materials. Six of these
phase retrieval methods are single-shot algorithms that require only one phase-contrast im-
age; whereas one method is iterative and requires an absorption and phase-contrast image.
Each method is derived under different assumptions, but all should produce the same result
of retrieved phase shift, thickness or electron density. Overall, Paganin’s method performed
the best under all test cases and was further applied to experimental data. Polytetrafluo-
roethylene, varying in thickness and shape, was imaged using a polychromatic source under
numerous conditions and Paganin’s method was applied to determine its limitations. In
general, Paganin’s method resulted in a high relative error in experiment, which is not what
was seen in simulation. From these results and analysis, sources of error were determined
to arise from the detector, the object and/or the X-ray source spectrum.

Isolating the source of error is difficult to accomplish in experiment because it is hard
to eliminate certain variables completely. For this reason, further analysis on the sources of
error were accomplished in simulation. The effect of material parameters was investigated
using different X-ray source spectrums, source-to-object distances and object-to-detector
distances. This research suggests that Paganin’s method is highly material dependent and
what is considered sufficiently thin for one material may not apply to another material.
Generally, a filtered spectrum using 2 mm of aluminum gives the lowest relative error for
all materials. Also, the trend between the retrieved thickness and the measured thickness
of the object is observed to be polynomial when the object thickness exceeds 100 µm.
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Further analysis shows that the polychromatic spectrum needs to be well calibrated to
give accurate phase or thickness results and using different X-ray sources can affect the
error produced by Paganin’s method. Paganin’s method uses Fourier filtering that allows
it to increase the signal-to-noise ratio in an image and, thus, makes the algorithm resilient
to noise.

This research suggests that although Paganin’s method is one of the best phase re-
trieval methods derived to date, it has its limitations that include imaging thick materials;
therefore it may not be the best-suited for industrial imaging where thick plastic objects
are imaged for defects. Another limitation of this method is that it is unable to retrieve
the thickness of high-density, high-atomic number materials. Finally, it appears that the
spectrum utilized in imaging needs to be well characterized and calibrated for Paganin’s
method to work.
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Chapter 1

Introduction

In 1895, Röntgen produced and detected X-rays for the first time. This has been the sole
method of radiographic commercial imaging up to this date. The first X-ray examining
room was built in Glasgow in 1896, although the technology did not really become stan-
dard practice until after World War I [1]. This method of imaging relies on variation of
materials’ absorption coefficient, which offers poor contrast when imaging light-element
materials. Regardless of these drawbacks, X-ray radiography is used successfully in many
applications such as: X-ray imaging for medical diagnoses, mammography for tumour or
cancer detection, non-destructive failure detection of cracks and porosities in materials,
and for screening baggage at the airport.

Every object has a complex refractive index, where the imaginary part describes the
absorption of X-rays and is retrieved in conventional X-ray imaging. Over the years it was
found that the object’s electron density causes phase variations that are also present in the
X-ray wavefront that exits the object and can be visualized using phase-contrast techniques
[2, 3]. Using this method of imaging, objects that offer low contrast in conventional imaging,
such as light-element or low density materials and soft tissue, can be imaged with a higher
sensitivity using phase-contrast X-ray imaging (PCI) [4]. There is a high demand for
improving contrast of low density materials (e.g. three-dimensional (3D) printed polymer
composites or in mammography) in a fast, non-destructive manner. PCI has shown promise
in detecting voids or defects in quality control analysis, along with detecting cancer with
high sensitivity and specificity in mammography.

PCI can be performed using many different setups, where some require complex optical
elements such as interferomtery-based [5, 6], analyzer-based, and coded-apertures [7, 8].
The simplest implementation of PCI is free-space propagation since it does not require any
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optical elements [4]. In this method, the object is placed at a sufficient distance away from
the detector to allow the X-ray wavefront to propagate, which gives rise to Fresnel diffrac-
tion fringes. The refractive index changes abruptly at the material boundaries, leading to
edge-enhancement that is caused by the dependency of the fringes on the Laplacian of the
phase. The only requirement for edge-enhancement to occur is there has to be sufficient
transverse coherence length, L⊥ = λR1/s, where λ is the X-ray wavelength, R1 is the
source-to-object distance and s is the X-ray source focal spot size [9].

Propagation-based PCI has been commonly used with a monochromatic synchrotron
source [10, 11], but due to the size and cost of the synchrotron facilities, it makes it difficult
to use in any non-destructive testing or medical imaging. Currently, there are other imaging
methods that can perform similar tasks for lower cost than using a synchrotron source.
More recently polychromatic microfocus sources are being integrated into the propagation-
based PCI systems [4, 12, 13, 14], making the system much more cost efficient and reducing
the amount of space required to capture an image.

Although propagation-based PCI has the simplest setup out of all PCI methods, it
possesses the most mathematically intensive post-processing [15]. The images captured
on the detector of the object contains only qualitative intensity values. Due to the edge
enhancement that is occurring at the boundaries of the object, it makes it difficult to
understand where the boundaries of the object actually are. For this reason, a post-image
processing method called phase retrieval is essential to recover quantitative information
on the object. Once phase retrieval is implemented on the object, it recovers either the
phase, electron density or thickness of the object depending on the equation applied to the
intensity values. For propagation-based phase-contrast X-ray imaging, phase retrieval is a
nonlinear inverse problem that many researchers have tried to linearize to make the math
simpler, the processing time shorter ,and reduce the number of images required to create
the final image, in turn reducing the dose the object receives [16, 17]. Many phase retrieval
methods have been derived in the case of a monochromatic source [18, 19, 15, 20, 21],
thus using a polychromatic source makes phase retrieval an even more complex problem
[12, 13, 22]. Phase retrieval in the case of using a polychromatic source is essential for
this PCI method to be used in mammography or non-destructive imaging of plastics. The
motivation is that polychromatic sources are significantly cheaper than monochromatic
sources and are currently used in many conventional X-ray imaging settings; therefore
making it easier to integrate this phase-contrast method into current settings that already
use X-ray imaging.

In this work, seven different phase retrieval methods are investigated and their lim-
itations are discussed in the case of using a polychromatic source. In the past, many
of these methods have been heavily applied in the case of a monochromatic source and
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have not been investigated for the polychromatic case. The seven methods investigated
are: Paganin’s method [18], Bronnikov method [19], Modified Bronnikov method [23],
Arhatari TIE method [12], Arhatari CTF method [13], phase-attenuation duality [20] and
attenuation-partition based algorithm [21]. The first six of these methods mentioned only
require one image; whereas attenuation-partition based algorithm is an iterative approach
that requires a phase-contrast and attenuation image. Paganin’s method, Bronnikov
method, Modified Bronnikov method and phase-attenuation duality are phase retrieval
methods that are derived for monochromatic sources and have not been applied in many
polychromatic cases. Arhatari’s methods have been derived for polychromatic cases, but
have not been rarely used in literature. After investigating the seven methods, the best
method will be chosen and applied to images containing polytetrafluoroethylene (PTFE)
sample, which is a commonly used plastic in industry. Finally, an investigation on the
parameters that effect phase retrieval of experimental results will be made that includes:
the material’s effect, the spectrum’s effect and a small investigation on the effect of noise.
Based on these investigations, the limitations of the phase retrieval methods when using
a polychromatic source becomes apparent and will aid in understanding when the phase
retrieval method can be applied and possible ways of applying corrections when imaging
specific materials. It also aids in understanding how well the spectrum and other param-
eters need to be known in order to produce accurate results. When phase retrieval is
applied properly to an image, it will aid significantly in the analysis and understanding of
the X-ray image. Also, phase retrieval is a requirement in post-processing of micro com-
puted tomography (CT) images, which could revolutionize diagnosis for certain medical
applications.

1.1 Thesis Organization

The focus of this thesis is to investigate seven different phase retrieval methods in the case
of polychromatic propagation-based phase-contrast X-ray imaging, then apply the best
method to experimental data and discuss the effect of certain parameters on the method.
The thesis chapters are organized as follows:

• Chapter 2 provides background on the X-ray imaging, expanding on some of the cur-
rent existing phase-contrast X-ray imaging methods. It describes the fundamentals
of X-ray interactions with matter and X-ray mechanisms. Also, X-ray sources and
X-ray detectors that are used in current PCI are examined.
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• Chapter 3 describes the derivation of each phase retrieval method and the assump-
tions made in detail. At the end of this chapter, a table outlines the all assumptions
made to assist in choosing the most appropriate phase retrieval method.

• Chapter 4 outlines the numerical model, assumptions made in the model and sum-
marizes the MATLAB numerical implementation of the simulations used throughout
this thesis.

• Chapter 5 compares the seven phase retrieval methods using three different materials
that vary in density. The methods are validated under five different test cases that
include: varying the thickness, varying the source potential, varying the pixel size,
varying the source-to-object distance, and varying the object-to-detector distance.

• Chapter 6 experimentally implements Paganin’s method, which is found to be the
most accurate and reliable method out of the seven investigated methods. It shows
experimental results under different conditions and explains some sources of error.

• Chapter 7 describes parameters that effect the results of Paganin’s method and that
can cause sources of error to arise in experimental imaging.

• Chapter 8 provides the main conclusions and contributions of this work to phase
retrieval. Suggestions for future work are also discussed.

4



Chapter 2

X-Ray Imaging

In this chapter, X-ray interactions, mechanisms of X-ray radiation, X-ray sources, X-ray
detectors, absorption X-ray radiography, phase-contrast X-ray radiography and computed
tomography will be described in detail.

2.1 Absorption X-ray Radiography

The most common form of X-ray imaging performed in medicine and industry is called
absorption X-ray radiography and it relies on the attenuation of X-rays in materials before
the X-rays reach the detector. Different densities and elemental components of materials
attenuate X-rays by different amounts. In this method, the source is placed at some
distance R1 from the object and the object is placed immediately before the detector. The
number of X-rays that travel through the object are determined by the object’s thickness
T (r⊥) and the attenuation coefficient µ. The intensity of X-rays at the detector in the
presence of an object can be determined using the Beer-Lambert Law:

I = Iin exp [−µT (r⊥)] (2.1)

where Iin is the incident intensity that is measured with no object present in the X-ray
wavefront. Thus, it is difficult to resolve objects that are thin or have small attenuation
constants. This method cannot easily resolve objects that have atomic number Z less than
20. Bone, which is mostly composed of calcium (Z = 20), can be resolved in an absorption
X-ray image because it has a density that is two times that of tissue. Soft materials, such
as soft tissue, leads to poor contrast in absorption images.
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2.2 Phase-Contrast X-ray Radiology

Optical light phase-contrast imaging has been used for many years. By mathematically
applying wave optics instead of ray optics in X-ray problems, phase information becomes
apparent [24]. PCI is a technique that has been recently developed that detects X-ray
phase changes in the form of intensity measurements that are caused by X-ray-material
interactions. All materials have a complex refractive index n = 1 − δ + iβ, where δ is
the phase coefficient and β is the absorption coefficient, as will be described in section
2.5.4. Absorption X-ray radiology, as mentioned in section 2.1, retrieves the absorption
component of the object; whereas PCI measures the changes in phase coefficient along
with the absorption coefficient [25]. PCI offers higher sensitivity in early detection of
breast cancer because breast carcinoma’s phase shift and the surrounding tissue’s phase
shift are around 3 magnitudes greater than the linear attenuation coefficients [26]. There
are many different types of PCI techniques, which include interferometry-based [5, 6],
analyzer-based [27, 28] and propagation-based [4] PCI. Most of the PCI techniques, such
as interferometry-based and analyzer-based, are composed of complex optics that can lead
to misalignment and reduced flux [15]. Propagation-based PCI is the only method that
does not require any complex optical components. For this reason, the work done in this
thesis was completed using propagation-based PCI.

Phase-contrast can be considered an aberration to the imaging system as it no longer
truly represents the object that is being imaged, even though it can aid in visualizing
objects that weakly absorb X-rays. It is important to quantitatively recover information
from the image by performing algorithms called phase retrieval. Currently there is no
direct method of recovering quantitative information from the detector. The detector is
only capable of measuring an intensity image and not the phase shift [29]. Phase retrieval
will be further described in Chapter 3.

The phase shift is a fundamental piece of information that is being retrieved from a
phase-contrast image. The phase shift is related to the phase coefficient δ, the electron
density ρe(r⊥) and the projected electron density ρe,p(r⊥) as follows [4]:

φ(r⊥) = −2π

λ

∫
δ(r⊥, z)dz == −2πre

k

∫
ρe(r⊥)dz = −λreρe,p(r⊥), (2.2)

where the wavevector k = 2π/λ, re is the classical electron radius and the integral is
integrated over the propagation direction.

For homogeneous objects, this expression can be simplified and expressed in terms of
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projected object thickness T (r⊥) [18]:

φ(r⊥) = −T (r⊥)δ
2π

λ
. (2.3)

These equations are fundamental for retrieving the phase or thickness in an image.

2.2.1 Interferometry-Based Phase-Contrast X-ray Imaging

In 1965, U. Bonse and M. Hart designed the Laue-Case X-ray interferometers [6]. The
same year, they suggested that this device can be used for the purpose of X-ray phase-
contrast micrography to image biological materials. This method requires three crystals,
where each crystal serves a different purpose: a beam splitter, a transmission mirror and
an analyzer crystal, as seen in Figure 2.1 [5]. The beam splitter splits the beam by way of

Figure 2.1: Interferometry-Based Phased Contrast X-ray Imaging

a symmetrical Laue reflection, the transmission mirrors reflect the two beams back toward
each other and the analyzer crystal combines the beams. The detector is placed close to
the analyzer crystal, and the sample is placed between the transmission mirror crystal and
the analyzer crystal. In order to retrieve the phase in this method, it is a modulo 2π,
therefore unwrapping the phase from the image. This method of phase retrieval is simple
and does not require intensive physics and math. The drawback to this method is that it
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requires complex optics in order to acquire an image, which is impractical in the clinical
setting and could cause for misalignment [30].

2.2.2 Analyzer-Based Phase-Contrast X-ray Imaging

Analyzer-based phase-contrast X-ray imaging, also known as diffraction-enhanced imaging,
takes advantage of small angle X-ray scattering using a single-reflection crystals. It applies
similar concepts to interferometry-based method (see section 2.2.1) that U. Bonse and
M. Harts developed, but their method requires a multiple-crystal arrangement. In the
analyzer-based method, a perfect crystal analyzer is placed after the sample that is being
illuminated by either a laboratory or synchrotron source and the X-rays that are reflected
in the crystal are recorded on a detector. In order to create lateral coherence of the beam,
a monochromator is used that is set at the Bragg angle that corresponds to the desired
energy. The general setup for the analyzer-based phase-contrast X-ray imaging method is
presented in Figure 2.2. Generally, this method is performed using a synchrotron source

Figure 2.2: Analyzer-Based Phased Contrast X-ray Imaging

because its spectra that is extremely intense, highly collimated and tuneable over a wide
energy range [27]. In 2014, Zhou et al. proposed a system using a micro-focus X-ray
source. There are a number of obstacles that make it difficult to integrate the analyzer-
based method with a conventional X-ray tube source, such as system alignment stability
due to the rotating anode vibration and thermal variations. For this reason, Zhou et
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al. have to include three enclosures in order to eliminate mechanical vibrations and to
maintain constant temperature. Another drawback to this system is that it requires long
acquisition time, which also results in a higher dose [28].

2.2.3 Propagation-Based Phase-Contrast X-ray Imaging

Propagation-based phase-contrast X-ray imaging, also known as inline phase-contrast X-
ray imaging, is the simplest form of PCI as it only requires a source and a detector, as seen
in Figure 2.3. The source is placed at a distance R1 from the object, also known as the
source-to-object distance (SOD). The detector is a placed at a distance R2 from the object,
also known as the object-to-detector distance (ODD). When the X-rays hit the object, the
object’s interfaces introduce a phase shift and the detector records the intensities of the X-
rays. The intensity values contain both the phase and attenuation coefficient of the object.
In order to quantitatively assess the image, the phase and attenuation coefficient must
be separated by mathematically filtering the intensity image using analytically intensive
phase retrieval algorithms.

The only criterion that is required for propagation-based PCI is that its chosen param-

Figure 2.3: Propagation-based Phased Contrast X-ray Imaging
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eters for acquisition must satisfy the following relation [9]:

Lshear
L⊥

=
R2s|u⊥|
MR1

=
(M − 1)s|u⊥|

M
<< 1 (2.4)

where Lshear = λR2|u⊥|/M is the phase space shearing length, L⊥ = λR1/s is the trans-
verse coherence length, s is the source size, M = (R1 +R2)/R1 is the magnification factor,
u⊥ is the spatial frequency. If this equation is satisfied, edge enhancement will be easily
visible. Since the microfocus source has a small spot size (5 µm - 10 µm), this relation is
easily satisfied for small SOD and ODD [9].

Due to the simplicity of the setup for propagation-based PCI compared to all the other
PCI methods, this method is investigated in this thesis.

2.3 Mammography

Breast cancer is the leading cause of death in women and accounts for one-quarter of all
existing cancers. Currently, absorption X-ray imaging is the method used in mammography
to detect cancer in breast tissue, but it is known to have low specificity and sensitivity.
Breast density is directly correlated to the risk of developing breast cancer. The higher the
breast density, the higher the chance of developing breast cancer [29]. Approximately 40-50
percent of women between the ages of 40 to 74 in the United States have dense breasts,
therefore making it difficult to diagnose cancer with conventional absorption X-ray imaging
[31]. The one issue is that it is difficult to image carcinoma in dense breasts with current
imaging methods because the linear attenuation coefficient of cancerous tissue is similar
to that of glandular tissue since they are similar composition; whereas adipose (fat) and
glandular tissue is easy to differentiate. At lower energies (10-15 keV), carcinoma and
glandular tissue have the highest contrast and it becomes much poorer at higher energies
(> 35 keV). Low energies require higher dose due to higher tissue absorption and longer
exposure times. Calcium hydroxyapatite or calcium phosphate deposits can form within
the breast, but these calcifications are usually benign. There are two categories of breast
calcifications, which are macrocalcifications and microcalcification. Macrocalcifications
are not cancerous and appear as large white dots. Microcalcifications are small calcium
deposits that can indicate precancerous cells or early breast cancer if clustered, but are
generally also non-cancerous. Current technology is able to image microcalcifications as
small as 0.1 mm or less [29]. Calcifications are easier to visualize than cancerous tissue in
glandular tissue as their linear attenuation coefficients are much different.
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PCI offers opportunity for diagnosing cancer in dense breasts with higher sensitivity
and specificity as it can characterize weakly absorbing objects, such as enhancing soft-tissue
contrast and improving visualization of cancerous structures. This method overcomes the
obstacles found in absorption X-ray mammography and has received considerable attention
and can increase the early detection of breast cancer diagnoses, enabling earlier treatment
and increasing survivability of women.

2.4 Computed Tomography

X-ray computed tomography (CT) is a commonly used three-dimensional X-ray imaging
technique, where either the detector and source rotate around the object or the object is
rotated and the detector and source remain stationary. Initially developed in the 1970s,
CT has advanced greatly in terms of speed of acquisition and technology. Currently, CT
imaging is only commercially used with absorption X-ray imaging, therefore soft tissue
differentiation is not that high and some other image modalities perform better, such as
positron emission tomography (PET) or magnetic resonance imaging (MRI). Ultrasound
offers a better spatial resolution to CT when only a shallow region of interest is required to
be imaged. Regardless of these drawbacks, it is one of the most robust imaging modality
methods for the vast majority of clinical applications. CT systems use polychromatic
sources and an X-ray detector based on energy integration or photon counting. CT system
can take up to 360 two-dimensional (2D) slices. The slices have to be further processed
using an algorithm method called reconstruction in order to produce the final 3D image.
The most common reconstruction method that is used is called the Feldkamp-Davis-Kress
(FDK) reconstruction algorithm [29].

PCI can improve contrast of different types of soft tissues and allow for soft tissue
differentiation. This imaging modality could revolutionize the current CT systems, improve
diagnosis and possibly replace PET and MRI for certain medical applications. PCI CT
requires an addition post-processing step that occurs before reconstruction called phase
retrieval, which creates a quantitative image.

2.5 X-ray Interaction

X-rays interact in many different ways. Their interactions can result in a local deposition
of energy. The X-ray sometimes will exit after the interaction as a scattered X-ray or
a characteristic X-ray. Some types of X-ray interactions are Compton scattering, the
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photoelectric effect and Rayleigh scattering. All of these X-ray interactions are combined
to form the complex refractive index. In this section, different types of X-ray interactions
will be explained, along with the complex refractive index.

2.5.1 Compton Scattering

Compton scattering, also known as incoherent scattering, increases as the X-ray energy
increases. Compton scattering causes the photon to change momentum and transfer an
amount of energy to a scattering electron. The amount of energy that is transferred to
the electron depends on the angle at which the photon interacts with it. It becomes
the dominate scattering event for X-ray energies that are greater than 60 keV. At these
energies, attenuation by the object is negligible and the phase parameter becomes the
dominating factor of the refractive index. The Klein-Nishina formula is used to calculate
the total cross-section for an X-ray photon Compton scattering from a single free electron,
σKN [32]:

σKN = 2πr2e

{
1 + η

η2

[
2(1 + η)

1 + 2η
− 1

η
ln (1 + 2η)

]
+

1

2η
ln (1 + 2η)− 1 + 3η

(1 + 2η)2

}
(2.5)

where η = Ephoton/mec
2, re is the classic radius of an electron (2.82x10−15), me is the mass

of an electron (9.11x10−31 kg) and c is the speed of light, as mentioned before. mec
2 is the

resting energy of an electron and is equal to 511 keV.

2.5.2 Photoelectric Effect

The photoelectric effect dominates at lower X-ray energies. The photon transfers its energy
to an electron, and, due to the conservation of momentum and energy, the electron is ejected
from the atom. Thus, the atom is ionized. The attenuation due to the photoelectric effect
is energy dependent as µ α E−3.

2.5.3 Rayleigh Scattering

Rayleigh scattering is a coherent type of scattering. It increases as the X-ray energy
decreases and with increasing atomic number of the sample. This occurs when there is no
energy transferred to the electron and the photon energy is less than the electron binding
energies. Coherent scattering is defined by the forward scattering factors, f 0

1 and f 0
2 , that

12



are used to define the complex refractive index. The values for the forward scattering factors
are tabulated for a wide range of photon energies and chemical elements on the National
Institute of Standards and Technology (NIST) website [33, 34]. f 0

1 can be approximated
as the atomic number of the element, Z.

2.5.4 Complex Refractive Index

The complex refractive index is describe as:

n = 1− δ + iβ (2.6)

where δ is the phase coefficient and β is the absorption coefficient.

The phase coefficient is on the order of 10−6 for most materials and therefore also has
small refraction angles that allows X-ray trajectories to be approximated as straight lines.
The absorption coefficient is on the order of 10−9 for most low density materials. The
phase shifts of biological materials are around three magnitudes greater than the linear
attenuation coefficients [26].

For objects of known material, the refractive index decrements can be calculated using
the following formulas [35]:

δ =
reh

2c2

2πE2

∑
Z

nZf
0
1Z(E) (2.7)

β =
reh

2c2

2πE2

∑
Z

nZf
0
2Z(E) (2.8)

where re is the classical electron radius, h is Planck’s constant, c is the speed of light, E is
the photon energy of the X-ray beam, Z is the atomic numbers of all elements present in
the material, and f 0

1Z and f 0
2Z are forward scattering factors. The attenuation coefficient

is proportional to energy as 1
E3 and the phase coefficient is proportional to energy as 1

E2 .
In clinical imaging, attenuation arises from the three scattering mechanisms mentioned in
sections 2.5.2, 2.5.3 and 2.5.1, which are the photoelectric effect, Comptom scattering and
Rayleigh scattering [32].

The absorption coefficient β is related to the linear attenuation coefficient µ with the
following expression, where λ is the X-ray wavelength:

β =
λ

4π
µ =

hc

4πE
µ. (2.9)
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The projected linear attenuation coefficient over a sample can be defined by the follow-
ing equation:

µ(x, y) =
4π

λ

∫
β(x, y, z)dz (2.10)

These fundamental equations will be used in this thesis to define material properties.

2.6 Mechanisms of X-ray Radiation

A form of ionizing electromagnetic radiation that can liberate electrons from atoms be-
cause of their high energy are X-rays. Two X-ray generation mechanisms, Bremsstrahlung
radiation and characteristic X-rays, will be discussed in this section.

2.6.1 Bremsstrahlung Radiation

Figure 2.4: Bremsstrahlung Radiation

Bremsstrahlung radiation, also known as braking radiation, is produced by electrons inter-
acting with the Coulomb field of the target atoms’ nucleus, which causes them to undergo
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deceleration. Bremsstrahlung radiation is dependent on the atomic number of the material
being bombarded Z, the charge incident on the target nuclei ze and the mass of the charged
particle bombarding the target m. Thus, intensity of Bremsstrahlung is proportional to
the following expression:

IBremsstrahlung ∝
Z2z4e6

m2
(2.11)

As the atomic number of the target material increases, the intensity of Bremsstrahlung
increases, therefore high atomic number targets are preferred for X-ray generation. Also,
as the mass of the charged particle bombarding the target increases, the intensity of
Bremsstrahlung radiation decreases. For this reason electrons are preferred since their
mass is around four magnitudes less than alpha particles and protons. An electron that
has a glancing angle of incidence atomic coulomb field will only emit a small amount of X-
ray energy; whereas an electron that interacts with the atom will transfer all of its kinetic
energy and produce an X-ray of equivalent energy, as seen in Figure 2.4 [36].

2.6.2 Characteristic X-rays

Figure 2.5: Characteristic X-rays
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Characteristic X-rays are produced when electrons interact with other atomic electrons
in the target, compared to Bremsstrahlung X-rays that are produced when the electron
interacts with the nucleus of the atom.

Electrons are bound to the nucleus of the atom through charge-charge interactions,
and occupy orbitals of specific quantized energy as represented in the Bohr model of an
atom. The innermost shell is called the K-shell and is occupied by two electrons that
have approximately the same binding energy. The next shell is called the L-shell and is
occupied by eight electrons that are bound to the nucleus with approximately the same
binding energy.

An electron will bombard an atomic electron with binding energy less than or equal
to its kinetic energy. This will cause the K-shell electron to eject from its shell, leaving a
vacant spot in the innermost shell. An atomic electron from a different shell will fill this
vacancy and leave a vacancy in a different shell, which will be filled by another atomic
electron that will also leave a vacancy in another shell. This leads to a cascade effect of
electrons filling vacancies in lower shells, leaving vacancies in more distant outer shells.
Once all shells are filled except for the outer shell, free electrons from the environment will
fill the outermost shell. The general process is shown in Figure 2.5. The transition of an
electron from an upper shell to a lower shell causes energies to be emitted in the form a
X-ray energy. An electron moving from the L-shell to the K-Shell is called a Kα emission
because the electron is moving into the K-shell and is making an α transition (coming from
the next shell up).

Thus, X-rays that are emitted from this sequence of atomic electrons moving due to
the bombardment of a free electron that ejects an atomic electron are called characteristic
X-rays. Every element has its own characteristic binding energies, making the energies of
the X-rays emitted characteristic to each atom [36].

2.7 X-ray Source

The typical energy range for diagnostic X-rays is 10 keV to 150 keV. The wavelengths these
energies correspond to is between 0.0083 to 0.124 nm. The relationship between energy
and wavelength λ is given by:

E =
hc

λ
(2.12)

where h is Planck’s constant (4.135 x 10−15 eV·s) and c is the the speed of light (2.997925
x 108 m/s). The most common source of X-ray generation is the standard X-ray tube that
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emits Bremsstrahlung and characteristic X-rays. One of the most common sources used in
phase-contrast imaging is the synchrotron source. Both will be described below [29].

2.7.1 Synchrotron Source

Figure 2.6: Generic scheme of a synchrotron source. IS = injector system; M = monochro-
mator; BL = beamline; EC = experimental chamber; BM = bending and focusing magnet;
RC = radiofrequency cavity.

Synchrotron sources produce a monochromatic X-ray spectrum, meaning that it emits
one specified X-ray energy. A generic synchrotron facility is shown in Figure 2.6. The
synchrotron source works on the basis of electron acceleration. There is an injector system
that produces and pre-accelerates the electrons to a speed that is close to the speed of
light. The electrons are sent into a closed path ultra-high-vacuum chamber by focusing
and bending magnets. As the electron is circulating, it emits X-rays that are collected by
beamlines and sent through a monochromator to filter out all undesirable X-ray energies.
The monochromatic X-ray spectrum is emitted to the experimental chamber. The X-rays
are emitted due to the way the magnets act on the electrons. The bending magnets cause
a centripetal acceleration to the electrons so they remain in the closed path. The change
in acceleration gives off energy in the form of X-rays due to the conservation of energy and
momentum.
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2.7.2 X-ray Tube

Figure 2.7: General schematic of an X-ray tube

Generally, X-ray tubes contain a vacuum environment to ensure that the energetic electrons
will bombard with the target instead of air molecules, since air molecules would decrease
the X-ray efficiency. The target is the anode and is positively-charged where the electrons
bombard to produce X-rays. The typical material used for the anode found in diagnostic X-
ray imaging applications is tungsten. The cathode is negatively-charged and is the source
of the electrons that are bombarding the anode target. Inside the cathode is a filament,
which heats up during X-ray exposures and electrons are emitted through a process called
thermionic emission. Thermionic emission is the emission of electrons from a heated source.
The high voltage between the anode and cathode causes the electrons to accelerate towards
the target and bombard to produce X-ray energy. A general schematic for an X-ray tube
is shown in Figure 2.7.

In X-ray diagnostics, electron volt is commonly used to define the amount of energy
the X-ray has. One electron volt is equivalent to 1.602x10−19 Joules. One electron volt
can be defined as the kinetic energy of an electron accelerated by an applied potential of
one volt. This is different than the tube potential, which is expressed in volts. The tube
potential controls the X-ray energy and the current in the filament controls the number of
electrons being emitted from the cathode.

A small number of the X-rays produced are via Bremsstrahlung and characteristic
radiation mechanisms (see sections 2.6.1 and 2.6.2). The majority of the X-rays produced
are due to an electron transferring a fraction of its kinetic energy to the atomic electron
and as the target atom relaxes, it emits infrared radiation, therefore generating heat. The
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heat produced by this mechanism places a limit on the power density of the focal spot size,
which can impacts the spatial resolution in phase-contrast X-ray imaging [36].

Polychromatic X-ray source is more accessible than a monochromatic X-ray source
because of its lower cost and is used in conventional absorption-based X-ray radiography.
Wilkins et al. describe that a conventional polychromatic microfocus X-ray tube source is
well suited for propagation-based phase-contrast X-ray imaging [4]. For this reason, the
polychromatic source is used in this thesis.

2.8 X-ray Detector

X-ray detection was first performed on a photosentive X-ray film, where the process of
image storage was based on chemical reaction of silver salt when the film interacts with
X-rays. The film, itself, would act as the display. Within the past couple of decades, films
are being replaced with digital technology. Using digital detectors permits characteristics
of the final image to be tuned on a standalone computer. Digital X-ray detectors absorb
the X-ray in the form of an electrical signal, which is collected and digitized [29]. The
digital X-ray detectors are classified as either direct or indirect conversion, described in
sections 2.8.1 and 2.8.2. There are two common digital detectors: charged-coupled device
(CCD) and complementary metal-oxide-semiconductor (CMOS).

CCDs were invented in 1970 by Boyle and Smith [37]. CMOS technology, although
first presented in the 1960s, could not compete in the past with CCD technology. It was
not until the early 1990s when CMOS technology re-emerged as a substitute for CCD
technology. The first generation of CMOS had passive pixel arrays (PPA). In the late
1990s, CMOS Active Pixel Sensors (APS) emerged and offered lower noise readout, higher
readout speed and improved scalability to large arrays compared to PPA. For the longest
time, CCD technology had many qualities that the CMOS technology could not compete
with, such as higher fill factor, smaller pixel size and larger format. The CCD technology
has its limitations as well. It requires several watts for its basic functioning. Its analog
readout and digital control electonics cannot be on the same integrated circuit, unlike
CMOS technology. Also, they cannot function over the whole temperature range or lighting
conditions required for specific applications. CMOS technology is able to be integrated
into very-large-scale integrate electronics on a chip, which can reduce the cost of packaging
and components. To this date, CMOS technology has demonstrated quantum efficiency,
dynamic range and noise comparable to CCDs. Both technologies have their advantages
and disadvantages depending on the application [38]. In this thesis, a 7.8 µm pixel pitch
amorphous selenium (a-Se) direct conversion CMOS X-ray imager will be used that was
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designed within the Silicon Thin-filmed Applied Research (STAR) group at the University
of Waterloo.

An important parameter of detectors is their quantum detection efficiency. The quan-
tum detection efficiency η is defined as the efficiency of a detector to convert incident X-ray
energy into a signal to form an image. It depends on the attenuation of the detector µdet
and the thickness of the detector’s active region d:

η = 1− exp
[
− µdet(E)d

]
(2.13)

The quantum efficiency increases as the active region thickness, the detector material
density and/or atomic number increases.

2.8.1 Direct Detector

Figure 2.8: Schematic of (a) direct conversion detector and (b) indirect conversion detector.

Direct detectors work on the principle of atom ionization and change in current or voltage
as depicted in Figure 2.8 (a). There is a photoconductor placed between two electrodes,
where one of the electrodes is pixelated. In the absence of X-rays, the photoconductor acts
as an insulator and no charge is transferred to the electrodes. When an X-ray hits the
photoconductor, an electron is promoted to the conduction band and becomes conductive.
The conductive electrons then move to the upper and lower electrode. The accumulated
charge on the electrodes is measured electronically. Examples of direct detectors are:
selenium (Se), cadmium zinc telluride (CdZnTe) or mercury iodide (HgI2) detectors, xenon
detectors and film detectors with no intensifying screen [36].
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2.8.2 Indirect Detector

Indirect detectors are scintillator-based, which means the material fluoresces when a high-
energy photon hits it as illustrated in Figure 2.8 (b). When an X-ray hits a phosphor, this
causes the phosphor to emit photons in or near the visible light range. These visible light
photons propagate to a photodetector by a phenomenon called optical diffusion, and from
this the photodetector arrays, CCD or thin-film transistor (TFT) records the pattern from
the visible light photons. Examples of detector compositions are: cesium iodide (CsI),
gadolinium oxysulfide (Ga2O2S) and calcium tungstate (CaWO4).
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Chapter 3

Phase Retrieval

All PCI techniques require a post-image processing method referred to as phase retrieval
because the intensity image produced by the detector is only qualitative since it contains
both the phase and absorption information. In order to retrieve quantitative data about the
sample, the phase must be unwrapped from the intensity data. For most PCI methods,
the post-processing method is relatively simple and only requires an unwrapping of the
2π phase shifts. On the other hand, propagation-based PCI has a more mathematically
intensive method of retrieving the phase [15].

A retrieved phase map is useful for tissue characterizations in medical imaging. A phase
map of a breast can compute the volumetric breast density for use in mammography and
cancer diagnosis (volume of fraction of fibroglandular tissue in the breast) [22].

Phase retrieval was first used in the 1940s in X-ray crystallography, although these
techniques only apply to small molecules. In the late 1970s and early 1980s, methods were
developed that were used in general imaging and since then these methods have been used
in electron microscopy, wavefront sensing, astronomy and X-ray imaging. Phase retrieval is
a nonlinear inverse problem that separates the phase and attenuation component from an
intensity image [39]. Most inverse problems, such as phase retrieval, are mathematically
ill-posed. The best known inverse problem is deconvolution, which, in imaging, can be
stated as an image deblurring problem [17].

There exists two categories of phase retrieval in propagation-based phase-contrast X-
ray imaging: indirect and direct methods. Indirect methods are iterative approaches that
are used when a correlation between the measurement and wavefield is difficult to compute
mathematically; whereas direct methods are non-iterative approaches that express the
solution as a explicit function of the input data or use a deterministic algorithm. Direct
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methods can be further broken down into two categories: multi-image methods or single-
distance methods. Multi-image methods require two or more images to be acquired either
at two or more distances or by using two or more different spectrums for each image.
Quantitative phase retrieval using transport of intensity equation (TIE)-based algorithms
and multiple defocused images suffers when using an X-ray source due to variation in the
incident illumination; whereas using visible light or electrons as the source, quantitative
phase retrieval has been successful. Flat-field correction can be applied to compensate for
the incident intensity, but it cannot correct for changes in the phase distribution that are
present in the incident illumination [40].

Single distance methods require a priori information and assumptions to be made
that include assumptions based on the material and/or wave propagation. Many of the
existing methods begin with the paraxial or parabolic wave equation, using the Fresnel
diffraction integral as a solution to the paraxial wave equation. Using the assumption that
the wave will propagate over a short distance, this equation turns into the TIE. This is a
common starting point to derive many phase retrieval methods in PCI, and it is used as the
starting point for Paganin’s method, one of the most well-known phase retrieval methods
for propagation-based PCI [41, 42]. Another common starting point is using the contrast
transfer function (CTF), which is derived by assuming a slowly varying phase shift. CTF
is based on first-order Taylor expansion of the intensity with respect to the wave and the
forward model of CTF is a linearization of the transmittance function [15, 16].

3.1 Transport of Intensity Equation

As mentioned previously, the TIE is a solution to the paraxial wave equation. It is derived
under the assumption of a paraxial beam propagating along the z-axis over a short distance.
The complex amplitude of an object can be represented by

√
I(r) exp [ikφ(r)

]
, where k

is the wavenumber, I(r) is the intensity, r is the spatial coordinates (x, y) and φ is the
phase. The TIE can be described as the derivative of intensity propagating along the z-axis
that contains the phase information as described in the following equation, where ∇ is the
Laplacian that applies only to the lateral coordinates (x, y) [41]:

∇ · (I(r⊥, z)∇φ(r⊥, z)) = −2π

λ

∂

∂z
I(r⊥, z). (3.1)

TIE can be derived in many different ways. One derivation is by using the Fresnel wave
propagation formula assuming small propagation distance, as mentioned above. It can also
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be derived from the Helmholtz equation under the paraxial approximation or through the
Poynting theory as in the following equation:

− k∂I(r⊥)

∂z
= ∇I(r⊥) · ∇φ(r⊥) + I(r⊥)∇2φ(r⊥). (3.2)

The first term on the right-hand side (RHS) of the equation is called the prism term and
corresponds to the longitude intensity due to the local wavefront slope; whereas the second
term on the RHS is called the lens term and corresponds to intensity variations caused by
the local wavefront curvature.

Using first order approximations on the left-hand side (LHS) of Eq. 3.2 and breaking
down the RHS, the following approximation can be derived [43]:

− kIδz(x, y)− I(x, y)

δz
= ∇I(x, y)∇φ(x, y) + I(x, y)∇2φ(x, y) (3.3)

Eq. 3.3 is the final TIE, which is an elliptical partial differential equation of the phase φ.

If two images are acquired at different propagation distances, each resulting in different
I(x, y), this allows for ∂I(x, y)/∂z to be estimated. Thus, the phase can be determined
uniquely if the boundary conditions are specified.

Boundary conditions are not easy to determine, which make rigorous implementation
of the TIE phase retrieval difficult. The boundary conditions are generally based on a
priori information. The easiest boundary conditions that can be implemented is if the
sample is in the center of the field of view and not touching the edges of the image. In this
case, homogeneous Dirichlet or Neumann boundary conditions can be applied, or periodic
boundary conditions can be considered and, thus, the fast Fourier transform (FFT)-based
TIE solvers can be used. These methods can only be used in a limited number of cases.
If the object is located at the image border, these methods can no longer be implemented
and defining boundary conditions becomes difficult [43].

The most well-known fast TIE solver is Paganin’s method, which is described in 3.3.
This method uses FFT to solve the inverse Laplacian operator, which implies periodic
boundary conditions and forces the phase outside the domain to be periodically extended.
The periodic assumption can cause serious boundary error across the reconstructed phase
if the opposite boundaries of the true phase distribution match poorly. In most cases,
Paganin’s method works without any problems, but it has its restrictions, which will be
described in 3.3 [43].
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3.2 Contrast Transfer Function

The CTF is derived using a Born-type approximation. It gives a solution that is identical
to that was used in electron microscopy derived by Guigay. Since the Born-type approxi-
mation is used, it makes this equation more restrictive to use than TIE. Like the TIE, it
depends on wavelength, feature size and propagation distance, but it also has the restric-
tive requirement that the object is purely phase with little to no absorption [44]. To derive
the CTF, first the transmission equation is used:

U(r⊥) = U0 exp(−µ(r⊥) + iφ(r⊥)) (3.4)

where U(r⊥) is the transmission function and I0 = |U0|2 is the intensity of a plane wavefield
incident on the object. Using the Born-type approximation of µ << 1 and |φ| << 1
and using first order Taylor expansion, the transmission function can be simplified to the
following:

U(r⊥) = U0(1− µ(r⊥) + iφ(r⊥)). (3.5)

Next, the propagated wavefield ψ is calculated:

ψ(r⊥, z) = F−1
[

exp

(
− izu

2
⊥

2k

)
F
(

1− µ(r⊥) + iφ(r⊥)

)]
(3.6)

where F−1 is the inverse Fourier transform, u⊥ is the spatial frequency, z is the propagation
distance and k is the wavenumber. Using the identity exp (−ix) = cos (x) − i sin (x), the
propagated wavefield can be expressed as:

ψ(r⊥, z) = 1 + F−1
[(

cos

(
zu2
⊥

2k

)
− i sin

(
zu2
⊥

2k

))(
iφ̃− µ̃

)]
. (3.7)

where φ̃ is the Fourier transform of the phase coefficient and µ̃ is the Fourier transform of
the attenuation coefficient.

Using Fourier transform convolution theorem, the intensity |ψ|2 can be calculated:

|ψ|2 = 1 + 2φ ∗ F−1
(

sin

(
zu2⊥
2k

))
− 2µ ∗ F−1

(
cos

(
zu2⊥
2k

))
(3.8)

where ∗ denotes the convolution. The intensity in Fourier space Ĩ can be approximated as:

Ĩ(u⊥, z) ≈ 2πδD(u⊥) + 2φ̃(k⊥) sin

(
zu2⊥
2k

)
− 2µ̃(k⊥) cos

(
zu2⊥
2k

)
(3.9)
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where δD(u⊥) is the Dirac delta function. Eq. 3.9 is the final CTF equation in Fourier
space.

This approximation is valid for the weak object approximation that was defined by the
Born-type approximation. Also, it is valid for a pure phase object, where µ(r⊥) ≈ 0 and
the slowly varying phase approximation |φ(r⊥)− φ(r⊥ + λzu⊥/2π)| << 1 are satisfied, or
for a homogeneous object where δ ∝ β and µ(r⊥) << 1 [45].

3.3 Paganin’s Method

Paganin et al. developed a non-iterative phase retrieval algorithm that is based on TIE
and requires a single image [18]. This method is valid for homogeneous objects of known
composition in the near Fresnel region, which is defined as λzu2 << 1 where λ is the
wavelength, z is the propagation distance and u is the spatial frequency of the detector
plane. Paganin developed an algorithm that is able to retrieve the projected thickness of
the object using a single defocused image.

The derivation begins with the TIE, which is described by Eq. 3.1. Using Eq. 2.1
and Eq. 2.3 to describe the intensity and phase of the radiation over the plane at the exit
surface, these equations are substituted into Eq. 3.1 to obtain:

∂

∂z
I(r⊥, z = 0) = − δ

µ
∇2 exp

(
− µT (r⊥)

)
. (3.10)

Next, the LHS of the equation is estimated using two intensities that are separated by
a distance R2, which is also known as the ODD:

∂

∂z
I(r⊥, z = 0) ≈

I(r⊥, z = R2)− exp
(
− µT (r⊥)

)
I in

R2

. (3.11)

Substituting Eq. 3.11 into 3.10 and using the Fourier transform identity of the Laplacian
F [∇2 exp (−µT (r⊥))] = −u2

⊥F [exp (−µT (r⊥))], the following expression can be achieved
with re-arrangement:

F
{

exp
(
− µT (r⊥)

)}
= µ
F {I(r⊥, z = R2)} /I in

4π2R2δ|u⊥|2 + µ
(3.12)

where T (r⊥) is the projected thickness of the sample at a given position, µ is the attenuation
coefficient, δ is the phase coefficient, u⊥ is the spatial frequency, Iin is the incident intensity
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acquired at the object plane, I(r⊥, z = R2) is the intensity image of the object acquired at
the detector plane.

Rearranging Eq. 3.12 and taking into account magnification M = (R1 + R2)/R1 from
point-source illumination, Paganin et al. came up with this final thickness retrieval ex-
pression for a homogeneous object:

T (r⊥) = − 1

µ
ln

(
F−1

{
µ
F {M2I(r⊥, z = R2)} /Iin

4π2R2

M
δ|u⊥|2 + µ

})
(3.13)

Paganin’s method can be related to the phase shift caused by the object by substituting
Eq. 2.3 into Eq. 3.13:

φ(r⊥) =
δ

2β
ln

(
F−1

F {M2I(r⊥, z = R2)} /Iin
λ
R2
M
δ

4πβ
|u⊥|2 + 1


)

(3.14)

Beltran et al. altered Paganin’s method to retrieve the thickness of multi-material
samples using a monochromatic source where one material encapsulates the other [15]
with the following expression [46]:

Tj(r⊥) = − 1

µj − µ1

ln

(
F−1

 F {M
2I(r⊥,z=R2)}

Iin exp[−µ1A(r⊥)]

4π2R2

M
(δj − δ1)|u⊥|2 + (µj − µ1)


)
, (3.15)

where j index represents the encapsulated material’s parameters and 1 index represents
the outer material’s parameters, and A(r⊥) is the total projected thickness of the object.

Paganin’s method has been derived in the presence of a monochromatic source, but can
be further extended to a polychromatic source. In the presence of a polychromatic source,
there is the effect of temporally imperfect coherence in the beam that can cause blurring in
the image. There are some polychromatic phase retrieval methods that exist that only use
the effective wavelength from the spectrum distribution to calculate the energy dependent
parameters. The problem with this is that some of these parameters, such as δ and β, have
different dependencies on energy, as described in section 2.5.4. Taking this into account,
effective values for each parameter are calculated using the spectrum distribution [12].

To extend Paganin’s method from a monochromatic source to a polychromatic source,
this can be accomplished by integrating the monochromatic TIE as follows [12]:

Ipoly(r⊥, z = R2) =

∫
λ

I inλ D(λ)e−µλT (r⊥)
(
R2δλ
µλ
∇2
⊥ + 1

)
dλ (3.16)
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where D(λ) is the X-ray and detector response and includes the detector’s quantum effi-
ciency and the X-ray spectrum. The polychromatic incident intensity can be calculated
using:

I inpoly(r⊥) =

∫
λ

I inλ (r⊥)D(λ)dλ. (3.17)

The effective absorption coefficient and effective phase coefficient are calculated as
follows [12]:

µpoly =

∫
λ
µλI

in
λ (r⊥)D(λ)dλ∫

λ
I inλ (r⊥)D(λ)dλ

(3.18)

δpoly =

∫
λ
δλI

in
λ (r⊥)D(λ)dλ∫

λ
I inλ (r⊥)D(λ)dλ

. (3.19)

Using Eq. 3.18 and Eq. 3.19, the intensity integral turns into the following expression:

Ipoly(r⊥, z = R2) = I inpoly exp [−µpolyT (r⊥)]

(
R2δpoly
µpoly

∇2
⊥ + 1

)
(3.20)

From this, Paganin’s method becomes the following for the polychromatic case:

T (r⊥) = − 1

µpoly
ln

(
F−1

{
µpoly

F {M2Ipoly(r⊥, z = R2)} /I inpoly
4π2R2

M
δpoly|u⊥|2 + µpoly

})
(3.21)

There are only a few differences between Paganin’s monochromatic method and Pa-
ganin’s polychromatic method. The major differences are that it requires a polychromatic
intensity and incident intensity, where every pixel is the sum of all energies from the
spectrum, and the effective absorption and phase coefficients must be used. Overall, this
method is a weighted average of all the X-ray spectrum energies and is valid for thin
homogeneous materials.

To this date, there are very few papers that have used Paganin’s method that gave
quantitative results in the presence of a polychromatic spectrum. There are some groups
that claim that it can be further extended to thin homogeneous objects in the presence
of a polychromatic source, but no proof of the results. A paper published in 2015 by J
Wenz et al. performed a quantitative phase-contrast CT image of a fly and was able to
retrieve the thickness of the fly fairly accurately by using the effective phase and linear
attenuation coefficient [47]. To the best of my knowledge, there are very few papers that
have demonstrated this. In this thesis, Paganin’s method will be used to demonstrate that

28



it can retrieve accurate thicknesses using different types of materials and thicknesses in
the presence of a polychromatic source. Specifics on where error can arise in the quan-
titative results will be introduced for this method and the need for a well-characterized
experimental system will be outlined.

3.4 Arhatari TIE Method

In 2008, Arhatari et al. derived a phase retrieval method from the TIE that gave a different
result than that derived by Paganin [12]. Under the assumption that the homogeneous
object has uniform absorption, the TIE for a monochromatic wave with a wavelength of λ
can be expressed as:

Iλ = I inλ (r⊥) exp
(
− µλT (r⊥)

)[
1 + zδλ∇2T (r⊥)

]
(3.22)

where T (r⊥) is the projected thickness and z is the effective propagation distance, defined
by R2/M . First order Taylor series expansion can be applied to Eq. 3.22 in the weak
absorption object limit to obtain:

Iλ(r⊥) = I inλ (r⊥)[1− µλT (r⊥) + zδλ∇2T (r⊥)]. (3.23)

Replacing the monochromatic X-ray source with the polychromatic X-ray source, the
detector response function and X-ray interactions outside of the sample must be taken into
account for each wavelength, which is accomplished through integration:

Ipoly(r⊥) =

∫
λ

I inλ (r⊥)D(λ)[1− µλT (r⊥) + zδλ∇2T (r⊥)]dλ (3.24)

Eq. 3.17 is used to simplify Eq. 3.24 further, and using the identity of a Laplacian in
the Fourier domain F [∇2T (r⊥)] = −u2

⊥F [T (r⊥)], Arhatari TIE method can be derived:

T (r⊥) = −F−1
(

1

µpoly + 4π2zδpolyu2⊥
F
[
Ipoly(r⊥)

I inpoly
− 1

])
. (3.25)

One major difference between Arhatari’s derivation compared to Paganin’s derivation is
that Arhatari uses first order expansion to define the exponential, whereas Paganin keeps
the exponential in his final expression.

29



3.5 Bronnikov Method

Bronnikov was the first to derive a single-distance phase retrieval algorithm for propagation-
based PCI in 1999. He derived the method to be used in CT reconstruction [19]. In his
derivation, he uses the weak defocusing formula that is similar to the TIE and has been
previously applied in electron microscopy. This method is derived assuming large Fresnel
number, which is defined by:

NF =
a2

λz
>> 1, (3.26)

where a is the smallest feature size and z is the propagation distance. This weak defocusing
formula is derived from the Fresnel diffraction integral, and under the assumption of large
Fresnel number and the absorption being zero, it resembles the TIE [15]:

Iλ(r⊥) = I inλ

(
1− λz

2π
∇2φ(r⊥)

)
. (3.27)

Applying Fourier methods to Eq. 3.27, the following phase retrieval formula is achieved:

φ(r⊥) = F−1
(F { Iλ

Iinλ
− 1
}

2πλz|u⊥|2

)
(3.28)

Setting the LHS of Eq. 3.28 to the RHS of Eq. 2.3, the following equation can be
derived for the projected thickness:

T (r⊥) = − λ

2πδ
F−1

(F { Iλ
Iinλ
− 1
}

2πλz|u⊥|2

)
(3.29)

In order to make Eq. 3.29 valid for a polychromatic X-ray source, Eq. 3.19 is used to
calculate the effective phase coefficient and the effective wavelength is calculated as follows:

λpoly =

∫
λ
λD(λ)dλ∫
λ
D(λ)dλ

. (3.30)

The projected thickness can be calculated using Bronnikov’s method when illuminated
with a polychromatic X-ray source using the resulting equation:

T (r⊥) = − λpoly
2πδpoly

F−1
(F { Ipoly

Iinpoly
− 1
}

2πλpolyz|u⊥|2

)
. (3.31)
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3.6 Modified Bronnikov Method

The Modified Bronnikov method was developed by A. Groso et al. in 2006 and is similar
to the algorithm that A. Bronnikov developed [23], but includes a filter factor to reduce
residual absorption artifacts from the object. To develop this algorithm, it starts with the
TIE with the assumption of weak absorption:

Iλ(r⊥) = I inλ

(
1− λz

2π
∇2φ(r⊥)

)
, (3.32)

which is the same result as the starting point for Bronnikov’s derivation. Therefore, the
phase and projected thickness formula resulting from this equation are the same as Eq.
3.28 and 3.29, respectively. This equation, as metioned in section 3.5, is derived under the
assumption of no absorption and large Fresnel number (refer to Eq. 3.26). A. Groso et al.
improved Bronnikov’s method to allow the absorption requirement to be relaxed by taking
into consideration a Fourier low-pass filter:

q(ξ, η) =
|ξ|

ξ2 + η2
(3.33)

and adding an absorption-dependent correction factor α in the denominator that is found
using a semi-empirical approach:

q(ξ, η) =
|ξ|

ξ2 + η2 + α
. (3.34)

This can be extended to Bronnikov’s method to create the Modified Bronnikov method:

T (r⊥) = − λ

2πδ
F−1

( F { Iλ
Iinλ
− 1
}

2πλz|u⊥|2 + α

)
(3.35)

.

The Modified Bronnikov method can be extended to be used in the case of an object
being illuminated with a polychromatic X-ray source like the Bronnikov method by utilizing
Eq. 3.30 and a slightly modified version of Eq. 3.31:

T (r⊥) = − λpoly
2πδpoly

F−1
( F

{
Ipoly
Iinpoly
− 1
}

2πλpolyz|u⊥|2 + α

)
. (3.36)
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.

The constant α is usually decided by trial and error through simulation, although
Burvall et al. determined the following expression gives reasonable results [15]:

α =
λµ

2πδ
(3.37)

Using Eq. 3.37 in Eq. 3.36 gives the same resulting filter function as that derived by
[12] described in section 3.4.

3.7 Arhatari CTF Method

In 2011, Arhatari et al. developed another phase retrieval method that is an extension of
previously proposed CTF-based methods [13]. Their method extends the validity of the
CTF to the intermediate Fresnel region for homogeneous objects. As described in section
3.2, it requires a slowly varying phase and an object that is weak absorbing. Their final
expression takes into account a polychromatic X-ray source and they claim that they are
able to retrieve quantitative projected thickness values of a thin homogeneous sample.

This method is derived using the equations described in 3.2. It starts with the wave-
field as described by Eq. 3.6 and propagates the wavefield using Eq. 3.7. The propagated
wavefield is linearized assuming a Born-type approximation. After linearization, the inten-
sity can be written in terms of the CTF for monochromatic x-rays and projected thickness
T (r⊥):

F
(
Iλ(r⊥, z)− I inλ

)
= I inλ CTFλ(u⊥, z)F

(
T (r⊥)

)
, (3.38)

where CTFλ(u⊥, z) is defined defined as:

CTFλ(u⊥, z) = 4π

√
δ2 + β2

λ
sin

(
πλzu2

⊥ − arctan
(β
δ

))
. (3.39)

The polychromatic intensity after the sample is defined by:

Ipoly(r⊥, z) =

∫
λ

Iλ(r⊥, z)D(λ)dλ (3.40)

and the incident polychromatic intensity is defined by Eq. 3.17.
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Using Eq. 3.17 and Eq. 3.40, Eq. 3.38 can be re-written to take into account the
polychromatic source:

F
(∫

Iλ(r⊥, z)D(λ)dλ−
∫
I inλ D(λ)dλ

)
=

(∫
I inλ D(λ)dλ

)
CTFλ(u⊥, z)F

(
T (r⊥)

)
.

(3.41)

The CTF in the polychromatic X-ray source case is defined by:

CTFpoly(u⊥, z) =

∫
λ
D(λ, z)CTFλ(u⊥, z)dλ∫

λ
D(λ, z)dλ

. (3.42)

Eq. 3.41 can be re-written using Eqs. 3.17, 3.40 and 3.42 as follows:

F
(
Ipoly

(
r⊥, z)− I inpoly

)
= F

(
T (r⊥)

)
I inpolyCTFpoly(u⊥, z). (3.43)

.

Rearranging Eq. 3.43, the projected thickness T (r⊥) can be calculated from a phase-
contrast X-ray image:

T (r⊥) = F−1
[

1

CTFpoly(u⊥, z)
F

{
Ipoly(r⊥, z)

I inpoly
− 1

}]
. (3.44)

Eq. 3.44 is the Arhatari CTF method used to retrieve the projected thickness of a thin
homogeneous sample using the FFT.

3.8 Phase-Attenuation Duality Method

Phase attenuation duality (PAD) occurs when the X-ray energy is greater than 60 keV
because Compton scattering is the dominant interaction to attenuation µ at these energies
and for light materials (Z < 10, where Z is the atomic number); whereas wen the X-ray
energy is less than 60 keV, the photoelectric effect is the dominant mechanism of X-ray
scattering. Wu et al. used this concept to develop a single image phase retrieval method
that is called the PAD method, which is only valid for energies greater than 60 keV. In
this method, the amplitude of the attenuation image, A(r⊥) can be related to the electron
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density ρe(r, z) because the only major scattering mechanism to the attenuation coefficient
is Compton scattering [48]:

A(r⊥) ≈ exp

[
− σKN

2

∫
ρe(r⊥, z)dz

]
= exp

[
− σKN

2
ρe,p(r⊥)

]
, (3.45)

where the integral is defined over the ray path and results in the projected electron density
ρe,p(r⊥). The Klein-Nishina coefficient, σKN , is defined by Eq. 2.5. At energies above 60
keV, attenuation becomes very small and is almost negligible.

The phase shift can be calculated by relating it to the electron density using Eq. 2.2
found in Section 2.2. Both the attenuation image A2(r⊥) and the phase image φ(r⊥) are
related to the projected electron density when energies greater than 60 keV are considered.
This leads to the phase and attenuation being both proportional to the electron density,
and, therefore, to each other. This relationship is called phase-attenuation duality, which
is rooted in a quantum-mechanical relationship between the atomic form factor and the
atomic incoherent scattering function. This method is derived from the Wigner distribu-
tion, which was originally developed for quantum mechanics, based on the parabolic wave
equation [26, 48, 20]. Assumptions made in the derivation of this method is a slowly vary-
ing phase through the object and a large Fresnel number (refer to Eq. 3.26) [20]. Using
these assumptions, the Wigner distribution becomes a generalized TIE:

I(r⊥) = I inλ

(
A2

0

(r⊥
M

)
− λ2

2πM
∇ ·
(
A2

0∇φ
(r⊥
M

)))
, (3.46)

where A0 is the attenuation amplitude [26].

Using Eq. 3.46, Wu et al. derived a phase-retrieval formula to find the projected
electron density ρe,p of a material based on a single phase-contrast image that is acquired
using a monochromatic point source with an energy greater than 60 keV [20, 48]:

ρe,p(r⊥) = − 1

σKN
ln

(
F−1

{
F(M2Iλ(r⊥))/I inλ
1 + 2π

(
λ2reR2

MσKN

)
u2
⊥

})
. (3.47)

This can be further related to phase φ(r⊥):

φ(r⊥) =
λre
σKN

ln

(
F−1

{
F(M2Iλ(r⊥))/I inλ
1 + 2π

(
λ2reR2

MσKN

)
u2
⊥

})
, (3.48)

and can be related to projected thickness if the object is homogeneous:

T (r⊥) =
λ2re

2πδσKN
ln

(
F−1

{
F(M2Iλ(r⊥))/I inλ
1 + 2π

(
λ2reR2

MσKN

)
u2
⊥

})
. (3.49)
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Eqs. 3.48 and 3.49 can be altered to be used in the presence of a polychromatic source
using an effective wavelength that is calculated using Eq. 3.30, leading to the final PAD
method equations:

φ(r⊥) =
λpolyre
σKN

ln

(
F−1

{F(M2Ipoly(Mr⊥))/I inpoly

1 + 2π
(λ2polyreR2

MσKN

)
u2
⊥

})
, (3.50)

and

T (r⊥) =
λ2polyre

2πδσKN
ln

(
F−1

{F(M2Ipoly(r⊥))/I inpoly

1 + 2π
(λ2polyreR2

MσKN

)
u2
⊥

})
. (3.51)

3.9 Attenuation-Partition Based Algorithm

As mentioned in 3.8, PAD occurs when the X-ray energy is greater than 60 keV, making
this method only valid for energies greater than 60 keV. In 2008, Yan et al. derived an
attenuation-partition based algorithm (APBA) that is iterative. This method uses the same
concepts and assumptions used to derive the PAD method, but can be used for energies less
than 60 keV. This method requires two images to be acquired: an attenuation image and
a phase-contrast image. The two images are acquired at the same X-ray energies and by
varying the ODD, R2. The attenuation image is acquired at R2 = 0 and the phase-contrast
is acquired at R2 > 0. Like the single distance method (Eqs. 3.47, 3.48 and 3.49), this
method first assumes that the Compton scattering is the main scattering mechanism for
both the phase and attenuation image. With this assumption, a guess for the absorption
that occurs in the image is calculated [21].

The total X-ray attenuation amplitude image A0 can be broken down into the X-ray
wave amplitude attenuated by incoherent scattering Aincoh (determined by the electron
density), the X-ray amplitude attenuated by coherent scattering, and the photoelectric
effect Ape,coh [21]:

A0(r⊥) = Aincoh(r⊥) · Ape,coh(r⊥) (3.52)

The X-ray wave amplitude attenuated by Compton scattering AKN is related to an
object’s phase shift φ by [21]:

A2
KN(r⊥) = exp

(
−
∫
µKN(r⊥, z)dz

)
= exp

[
σKN
λre

φ(r⊥)

]
. (3.53)
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Using the TIE, the following equation can be derived when PAD holds:

A2
KN(r⊥) = F−1

(
F
(
M2

Iin
I
)

1 + 4π2k̃u2
⊥

)
(3.54)

where k̃ can be calculated using the following expression:

k̃ =
λ2R2re

2πMσKN
. (3.55)

The phase can be calculated as follows:

φ(r⊥) =
( λre
σKN

)
ln(A2

KN(r⊥)). (3.56)

Yan et al. came up with an iterative approach in order to take advantage of the
relationship between the phase and attenuation. In order to approximate the phase, it is
first assumed that the phase image contains only Compton scattering information. This
means that IKN ≈ I, where IKN is the phase-contrast image where Compton scattering is
dominant and I is the original acquired phase-contrast image. The X-ray wave amplitude
attenuated by Compton scattering is calculated replacing M2

Iin
I with IKN . After, an error

term for attenuation δA(r⊥) is calculated by using the following equations:

δA(r⊥) = Ã(r⊥)− A0(r⊥) (3.57)

where
Ã(r⊥) = AKN(r⊥) = Aincoh(r⊥). (3.58)

δA(r⊥) = AKN(r⊥) · (1− Ape,coh(r⊥)) (3.59)

Once the error is calculated, the next step is to improve the previous estimate on
Ã(r⊥) = AKN(r⊥) by incorporating δA. To do this, a hypothetical object is considered
that can be modeled by δT0(r⊥) · exp iφ(r⊥) and compute the transmitted X-ray wave
field that arrives at the detector at the distance R1 + R2. This is computed using the
paraxial Fresnel diffraction theory for a monochromatic source and can be modeled by the
Fresnel-Kirchhoff integral[21]:

E(r⊥;R1, R2) =

√
Iin

λR2

e−2πi
R1+R2

λ

∫
R2

e
iπ
k

(
ξ2⊥
R1

+
(ξ⊥−r⊥)2

R2

)
A0(ξ⊥)eiφξ⊥dξ⊥ (3.60)
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Eq. 3.60 can be simplified to, where ∗ is the convolution operator and |E1| = M√
Iin

√
I:

E1(r⊥) =
1

2πω

∫
R2

exp

(
i
(r⊥ − ξ⊥)

2ω

)
T0(ξ⊥)dξ⊥ =

1

2πω
·G(r⊥) ∗ T0(r⊥) (3.61)

where

ω =
λR2

2πM
(3.62)

and

G(r⊥) = exp

[
i
r2⊥
2ω

]
. (3.63)

Using these equations, δI can be computed as δI = |E1|2. Using this approximation, a
the phase-contrast intensity that depends only on Compton scattering is calculated:

IKN =
(√

I +
√
δI
)2

(3.64)

Once the new Compton scattering phase-contrast intensity is calculated, a new iteration
step is started. Yan et al. claims that this algorithm can reach an accurate result within
10 iteration step. The algorithm has been summarized below:

Algorithm 1: Attenuation-Partition Based Algorithm

Result: Return φ(r⊥)
while n <= 10 or error < ε do

1. Compute IKN using Eq. 3.64
2. Calculate A2

KN using Eq. 3.54
3. Compute the phase using Eq. 3.56.
4. AKN =

√
A2
KN

5. Calculate δA using Eq. 3.57 and Ã = AKN
6. Calculate the error: error = |δAold − δA|
7. Calculate T = δA exp (iφ)
8. Calculate the analytic transform of Eq. 3.63: g = exp(− i

2
ωu⊥)/(−i/ω)

9. Compute the following: E1 = F−1( 1
2πω

gF(T ))
10. Compute δI = |E1|2
11. Assign δAold = δA
12. Assign n = n+ 1

end

In 2010, Yan et al. published a paper on the performance of the attenuation-partition
based iterative phase retrieval algorithm and suggested that this method can retrieve the
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phase of a polychromatic image. To this date, no one has published a paper proving that
this method works or does not work in the polychromatic case. They explain that there
are two modifications that need to be made to the algorithm in order for it to work in the
polychromatic case. In the polychromatic case, the wavelength must be replaced by the
spectral average 〈λ2〉/〈λ〉 and used to calculate σKN and ω. The parameter k̃ is calculated
as follows in the case of a polychromatic spectrum [49]:

〈k̃〉 =
reR2

2πM
·
〈

λ2

σKN

〉
(3.65)

3.10 Summary of Phase Retrieval Methods

A summary of the assumptions made in the derivation of phase retrieval methods is pre-
sented in Table 3.1.

Table 3.1: Summary of assumptions made in the deriva-
tions of phase retrieval methods

Method (Eq. Number) Assumptions
Bronnikov (Eq. 3.31) - µ ≈ 0

- Fresnel approximation
- NF >> 1
- Weak defocusing formula
- Inhomogeneous or homogeneous samples

Modified Bronnikov (Eq. 3.36) - Weak absorption
- Fresnel approximation
- NF >> 1
- TIE
- Inhomogeneous or homogeneous samples

Paganin (Eq. 3.21) - µ ∝ δ
- Fresnel approximation
- NF >> 1
- TIE
- Homogeneous object

Arhatari TIE (Eq. 3.25) - Weak absorption
- Fresnel approximation
- NF >> 1
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- TIE
- Homogeneous object

- ∂µ
∂r⊥
≈ 0

Arhatari CTF (Eq. 3.44) - Weak absorption
- Slowly varying phase
- Intermediate Fresnel region
- CTF
- Homogeneous object

PAD (Eq. 3.51) - µ ∝ δ
- Fresnel approximation
- NF >> 1
- Slowly varying phase
- TIE
- X-ray energy = 60 keV - 500 keV
- Assumption: Compton scattering is the dominant

scattering phenomena
- Inhomogeneous or homogeneous samples

APBA (Algorithm 1) - µ ∝ δ
- Fresnel approximation
- NF >> 1
- Slowly varying phase
- TIE
- X-ray energy < 60 keV
- Requires attenuation image and phase-contrast image
- Iterative method ( 10 iterations)
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Chapter 4

Numerical Modeling

Numerical modeling is an important step to understanding an imaging system and its
capabilities. It is helpful in determining what parts of the system play the biggest roles
and the most crucial parameters to characterize. It determines where errors can arise and
what parts of the system need improving. The simulation tool defines which objects are
possible to image using a desired technique and how it should be done. The limitation
of simulations is simulating complex or unknown objects because these objects require
accurate parametrization and results.

This chapter covers the simulation of the objects and free-space propagation of X-rays
to create a propagation-based phase-contrast image. All parameters used in the simulation
are a representation of an ideal case of the experimental system.

Initially, an ideal case using a monochromatic plane wave X-ray that contains a single
energy is described. After, modifications are made to extend the simulation to a polychro-
matic source at finite distance.

Noise is taken into account at the end of the simulation.

4.1 Object Modeling

The object is modeled assuming that it is fully described by its complex refractive index
n(x, y, z) = 1 − δ(x, y, z) + iβ(x, y, z). The object is considered homogeneous in a small
sampling region and all scattering that is caused by crystal lattice planes or any material
inhomogenities, such as cracks, impurities and pores are neglected. The wave propagation
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direction that is transverse to the z direction is neglected in the object by considering a
thin object.

The incident plane wave is described by the multiplication of transmission function.
The transmission function of the object at a specified energy is described by the thickness,
t, the linear attenuation coefficient µ, the wavenumber k = 2π/λ, and the phase coefficient
δ:

T (E) = exp

(
− t
(µ

2
+ ikδ

))
. (4.1)

The thickness of the object is defined by the geometrical shape that is simulated, such
as the equation of a cylinder, sphere or box, and is calculated analytically for each point.
The linear attenuation coefficient is defined by values defined by the NIST and the phase
coefficient is calculated using the Eq. 2.7.

4.2 X-ray Propagation

The Fourier filter that corresponds to free space propagation is as follows:

H(E) = exp

(
− iπzλ

(
u2 + v2

))
, (4.2)

where u and v are the spatial frequencies in the x and y direction, respectively. z =
R2/M is the effective propagation distance, where R2 is the ODD and M = R1+R2

R1
is the

magnification.

Using this Fourier filter, the X-ray propagation can be calculated:

U =

∣∣∣∣F−1{F(T (E)
)
·H(E)

}∣∣∣∣2. (4.3)

4.3 Detector Response

The response of the detector is taken into consideration. One important component of the
detector that needs to be taken into account is the quantum efficiency of the detector, as
defined by Eq. 2.13. In order to calculate the quantum efficiency, the linear attenuation
coefficient and the thickness of the detector must be known. The spectrum produced
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by the X-ray source is multiplied by this factor to give the detector response for each
corresponding energy.

One photon that hits the detector might cause the detector’s output signal to be spread
over several pixels, which causes blurring to the image and limits the resolution. The blur-
ring caused by the detector is defined by the point spread function (PSF). The convolution
of the PSF is known as the modulation transfer function (MTF), which is a more common
factor used to describe the resolution of the detector. The MTF of each pixel can be de-
scribed analytically using the following function, which is described in the Fourier domain
as:

MTFpixel = sinc(πdxpu) · sinc(πdypv), (4.4)

where dxp is the size of the pixel in the x-direction and dyp is the size fo the pixel in the
y-direction.

The intensity at the detector is calculated by taking into account the blurring effect of
the pixels:

I = F−1
(
F
(
|U(x, y)|2) ·MTFpixel

)
. (4.5)

4.4 Noise

In previous sections, the final image is produced assuming that the final image is created
by averaging an infinite number images. In reality, this is not feasible, therefore this is not
enough to predict what will occur experimentally. Noise, which is unwanted signal in an
image, plays a large role in X-ray imaging. In the absence of noise, resolution in the sense
of MTF can easily be deconvoluted, but in its presence, MTF becomes important factor.
There are many sources of noise, but, in an X-ray image, many do not need to be taken into
account. The main source of noise in an image is photon noise. Photon noise, also known as
shot noise, can be modelled by a Poisson process and is due to the particle nature of light.
Increasing the number of detected X-ray photons can reduce photon noise. Another source
of noise is caused by the readout electronics and is called readout noise. Readout noise is
small compared to photon noise if there is a large number of photons being detected. Dark
noise caused by the flow of dark current in a pixel is nearly negligible for short exposure
times because the dark current in the CMOS detector used is very small. Another common
source of noise is gain noise that is due to variation in signal gain between the pixels, but
this can be corrected for by dividing the image by the flat-field image since gain is constant
in time. In X-ray imaging, structure noise that is due to overlapping structures of an object
can also be an issue, but this is highly object dependent and not detector dependent. In
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tomography, this is not a problem since the structure is viewed from many angles and all
the structures can be viewed in the reconstructed image. Illumination noise is caused by
variations in X-ray illumination and can be compensated for in the same way as gain noise.

Therefore, the two sources of noise that have the most impact on the image are photon
noise and readout noise. Readout noise can be modelled as additive zero-mean white
noise with a standard deviation. Photon noise depends on X-ray flux and spectrum. The
number of photons reaching a detector pixel is hard to predict since it is inherently random,
although the expectation value N can be calculated using the following formula:

N(x, y) = ΦtwhηdetIb (4.6)

where Φ is the photon flux in the detector plane with no object present, t is the exposure
time, w and h are the pixel width and height, ηdet is the detector absorption efficiency and
Ib is the blurred intensity image. The actual expectation value N ′ follows a Poisson prob-
ability distribution. Thus, the actual signal S ′ detected is random and can be calculated
as follows:

S ′(x, y) = g

∫
EN ′(x, y, E)dE (4.7)

where g is the gain and E is the energy. S ′ will be normally distributed since N ′ is.
Variances add linearly for normal distributions, therefore:

σ(x, y)2 = V ar(S ′(x, y)) = g2
∫
E2N(x, y, E)dE. (4.8)

Scaling using a random number generator that gives values from a standard normal
distribution X, an instance of noise can be added to the simulated image:

S ′(x, y) = S(x, y) + σ(x, y)X. (4.9)

Eq. 4.9 makes the assumption that the X-ray photon deposits all of its energy in a single
pixel. The photon can deposit some of its energy in surrounding pixels, which creates
a correlation of noise in surrounding pixels that is more easily taken into account in the
Fourier domain. The noise power spectrum (NPS) describes this correlation assuming
the noise is shift invariant. The NPS is measured by Fourier transforming and squaring
the image acquired without a sample present and gives the quantity of noise that is at
each spatial frequency. The normalized frequency-dependent part of NPS (NPSn(u, v) =
NPS/σ2) is independent of exposure and the square root of NPSn is used to filter the
noise instance σ(x, y)X in Eq. 4.9, which gives rise to the final noise equation:

S ′(x, y) = S(x, y) + F−1
{
F
{
σ(x, y)X

}√
NPSn(u, v)

}
. (4.10)
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4.5 Polychromatic X-ray Propagation

The difference between monochromatic and polychromatic X-ray propagation is that the
transmission function and the X-ray propagation must be calculated at each energy. The
transmission function and the Fourier filter both rely on the X-ray energy, thus an inte-
gration can be performed over all wavelengths as follows:

U =

∫
λ

∣∣∣∣F−1{F(T (E)
)
·H(E)

}∣∣∣∣2 ·D(E)dE. (4.11)

D(E) is the detector response to the X-ray energies where the quantum efficiency of
the detector is taken into account.

4.6 MATLAB Numerical Implementation

In the previous sections, the functions to describe X-ray propagation are all analytical.
The integrals need to be discretized and evaluated numerically. The model is simulated
in MATLAB R© 2018 using a script. Variations of this code are used to simulate the
propagation-based PCI of the object and this image is used to perform phase retrieval
throughout the entire thesis.

First, the imaging geometry is defined:

R1 = 8/100; % [m] source-to-object distance

R2 = 8/100; % [m] object-to-detector distance

Rtot = R1 + R2; % [m] source-to-detector distance

M = Rtot/R1; % magnification

z = R2/M; % [m] effective propagation distance

The imaging geometry is varied to see its effect on the error when phase retrieval is per-
formed.

Next, the simulation resolution, field of view and spatial frequencies are defined. The
pixel pitch is chosen to be7.8 µm pixel pitch to represent the high-resolution CMOS detector
that is currently in use in the laboratory.
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% Detector

p =7.8*1e-6; % [m] pixel pitch

% Simulation resolution and field of view

model_res = p/10;

dx = model_res; % [m] simulation pixel size in x direction in object plane

dy = model_res; % [m] simulation pixel size in y direction in object plane

xfov = 3*r;

yfov = 20e-6;

xmin = -xfov/2; xmax = xfov/2; % [m] x range of field of view in

% object plane

ymin = -yfov/2; ymax = yfov/2; % [m] y range of field of view in

% object plane

x = xmin:dx:xmax; y = ymin:dy:ymax; % [m] coordinate vectors

[X,Y] = meshgrid(x,y); % [m] coordinate matrices

% Spatial frequencies

nx = length(x); ny = length(y); % number of pixels in x and y direction

% [1/m] frequency in the x and y direction, respectively

u = ifftshift((-floor(nx/2):floor((nx-1)/2))/(nx*dx));

v = ifftshift((-floor(ny/2):floor((ny-1)/2))/(ny*dy));

[U,V] = meshgrid(u,v); % [1/m] frequency grid

w2 = U.^2 + V.^2; % frequency magnitude squared

Furthermore, physical constants that are required to calculate the various equations
throughout the code are defined.

% Physical constants

c = 299792458; % [m/s] speed of light

h = 6.6260689633e-34; % [Js] Planck’s constant

eV = 1.6022e-19; % [J/eV] unit conversion constant

re = 2.82e-15; % [m] classical electron radius

Na = 6.022e23; % [atoms/mol] Avogadro’s number

me = 9.10938356e-31; %[kg] mass of an electron

The X-ray spectrums used for most of the simulations throughout this thesis are ac-
quired using a MATLAB R© toolset developed by Siewerdsen et al. in 2004 called Spektr
[50]. This toolset contains many functions for computing beam-quality characteristics,
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mass and mass-energy attenuation coefficients. The mass and mass-energy attenuation
coefficient data is retrieved from NIST. The spectrum function computes the spectrum,
given the tube potential (kVp), and the inherent or total filtration (mm). This function is
an adaptation of the TASMIP model developed by Boone and Seibert [51] that computes
an X-ray spectra based on the method of interpolating polynomials. The Beer’s function
filters the spectrum by specified materials and thicknesses according to Beer’s law. This
function uses attenuation coefficients acquired from NIST.

The X-ray spectrums used throughout this thesis for experimental images are ones that
were obtained using cadmium telluride (CdTe) Spectrometer. The spectrum defined in the
simulation is a polychromatic spectrum from a Thermo Scientific PXS5-927 MicroFocus
X-ray Source with a maximum energy of 60 kV. Both filtered and unfiltered spectrums are
attempted at 40 kV and 60 kV. The filtered spectrums are obtained by placing 2mm of
aluminum in front of the X-ray source. The problem in obtaining the unfiltered spectrum
is that the count rate of the CdTe spectrometer is not high enough and the X-ray source is
too powerful to obtain an accurate spectrum. In order to obtain a more accurate spectrum,
a 1mm to 2mm piece of tungsten with a pinhole should be placed in front of the CdTe
detector of the spectrometer to act as a collimator, therefore only allowing a percentage of
the photons through. This tungsten piece had not been obtained by the end of this thesis,
but for further studies on the experimental system it is necessary.

The spectrum used in simulation was defined as follows:

E = [1:150]*1e3; % Energy [eV]

filter = -0.8; % Filter for half-value layer of 1.2

kVp = 60; % Source potential [kV]

spectrum = spektrSpectrum(kVp,filter); % defining spectrum using Spektr

The next step is to define the material parameters. This section is altered for different
types of materials. PTFE, polystyrene, Kapton, aluminum, Kevlar and tungsten are the
materials that are tested in this thesis. The code below describes the material information
of PTFE. The phase coefficient values are calculated using Eq. 2.7. The values for the
linear attenuation coefficient are obtained using ’Spektr’ or values defined by NIST. The
linear attenuation values obtained from Spektr and NIST are interpolated to calculate
values corresponding to the energies of the spectrum using MATLAB R©’s interpolation
function.

% PTFE information for phase coefficient:

% Composition: C2F4
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rho = 2.21439238; % density of PTFE [g/cm^3]

Num_of_C = 2; % number of carbon

Num_of_F = 4; % number of fluorine

Num_of_H = 0; % number of hydrogen

% Atomic numbers

ZH = 1; % hydrogen

ZC = 6; % carbon

ZF = 9; % fluorine

Z = ZC*Num_of_C + ZH*Num_of_H+ ZF*Num_of_F; % total atomic number

% Molar Mass

MMC = 12.011*Num_of_C; % [g/mol]

MMH = 1.008*Num_of_H; % [g/mol]

MMF = 18.998*Num_of_F; % [g/mol]

MM_total = MMC + MMH + MMF; % [g/mol] total molar mass

mu = spektrMuRhoCompound([6 2; 9 4])*rho*100; % [1/m] attenuation

% coefficient of PTFE

mu = interp1([1:150], mu, E/1000); % interpolate for all energies

Next, the quantum efficiency of a-Se detector is calculated using Eq. 2.13. The X-ray
spectrum is multiplied by the quantum efficiency to obtain the energies at which selenium
is more responsive.

% Quantum efficiency of selenium

rho_Se = 4.819; %[g/cm^3] density of selenium

mu_Se = spektrMuRhoElement(34)*rho_Se*100; % [1/m] attenuation

%coefficient of selenium (Z=34)

mu_Se = interp1([1:150], mu_Se, E/1000); %interpolate for all energies

thickness_Selenium = 100e-6; % [m] thickness of selenium deposited on

% the detector

eta = 1-exp(-mu_Se.*thickness_Selenium); % quantum efficiency

spectrum_Se = spectrum.*eta; % spectrum seen by detector

The next section of the code is dedicated to the X-ray propagating through the object.
No noise is taken into account in this section. All energy contributions to the image are
summed up and the for-loop iterates through all energies of the spectrum.
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thickness = 2*real(sqrt(r.^2-X.^2)); % [m] geometrical shape: cylinder

img = zeros(ny,nx); %[detector counts] phase image initialized

img_abs = zeros(ny,nx); %[detector counts] absorption image initialized

for n = 1:length(E)

%the transmission function of the object at energy E(n)

transmission = exp(-thickness*(mu(n)/2+1i*k(n)*delta(n)));

%Absorption Image

img0 = abs(transmission).^2;

%Superimpose absorption image data

img_abs = img_abs + spectrum_Se(n).*img0;

%Fourier filter corresponding to free space propagation

propagator = exp(-1i*pi*z*lambda(n)*w2);

%propagator field for current photon energy

img0 = abs(ifft2(fft2(transmission).*propagator)).^2;

%add contribution of this energy to the image

img = img+img0.*spectrum_Se(n);

end

When comparing the phase retrieval algorithms, noise is not taken into consideration
and only the perfect case is studied. For later simulations that determine the error in the
experimental data, noise is added to observe the effect of detector noise on the chosen
phase retrieval algorithm. Noise is calculated using Eq. 4.8. The following line is added
to the end of the for-loop that defines the image:

% Add contribution to the variance of the noise

noiseVariance = noiseVariance + img0*spectrum_Se(n);

Then noise is added to the image after the for-loop as follows:

% Specify the detector resolution

dPSFWidth = 25e-6;% [m] FWHM of Gaussian detector point spread function
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%[m] detector PSF standard deviation in sample plane

dPSFSigma = dPSFWidth/(2*sqrt(2*log(2)))/M;

% Add photon noise

NPS = exp(-w2*pi^2*4*dPSFSigma^2) + .05; %normalized noise power spectrum

% Create an instance of white noise with the right noise variance

noiseInstance = randn(ny,nx).*sqrt(noiseVariance);

% Filter the noise to get the correct noise power spectrum

noiseInstance = ifft2(fft2(noiseInstance).*sqrt(NPS));

img = img + noiseInstance; % Add the noise to the image

In the next section of the algorithm, the image is blurred by applying the MTF of the
pixels, as described in section 4.3 using Eq. 4.4 and Eq. 4.5, which takes into consideration
the resolution of the pixels.

% Blur the image (filter with the MTF)

img_blur = ifft2(fft2(img).*pixelMTF);

All the previous simulation steps assume a smaller pixel pitch in the object plane. The
next step is to interpolate the image from the simulated pixels to the detector pixels in
the sample plane. The pixel size in the sample plane is calculated by taking into account
magnification. Magnification also needs to be taking into account when interpolating the
signal to the detector pixels. Interpolation is completed using the built-in MATLAB R© 2D
interpolation function.

% Interpolate from simulation pixels to detector pixels

% Define pixel coordinates

Dx = p/M; Dy = p/M; % [m] pixel size in sample plane

xp = min(x)-dx/2+Dx/2:Dx:max(x)+dx/2-Dx/2; % [m]

yp = min(y)-dy/2+Dy/2:Dy:max(y)+dy/2-Dy/2; % [m]

% [m] create pixel coordinates matrices

[Xp,Yp] = meshgrid(xp,yp);

% Interpolate and scale signal with pixel size

img = interp2(X,Y,img_blur,Xp,Yp)*p/M*p/M/(dx*dy);
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The codes used for simulations are found in Appendices C and D. The code used for
experimental results is described in E.
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Chapter 5

Comparison of Phase Retrieval
Methods

Every phase retrieval method is derived based on different assumptions, as discussed in
Chapter 3, although each method serves the same purpose (i.e. to retrieve the phase,
electron density or thickness of an object). Currently, no results have been published
comparing all the methods mentioned in Chapter 3 in the polychromatic case to determine
which method produces the best quantitative results overall. This chapter will explore the
limitations of each method through the simulation of a homogeneous cylinder and sphere
using different materials.

5.1 Methodology

The materials used in the analysis are: PTFE, polystyrene and Kapton. The material
parameters are outlined in Table 5.1.

Table 5.1: Material properties
Material Composition Density [g/cm3]
Polystyrene (C8H8)n 1.04
PTFE (C4F4)n 2.2
Kapton (C22H10N2O5)n 1.42
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The best known PTFE-based formula is Teflon by Chemours, and it is chosen for
simulations because this is the plastic that was imaged experimentally and this polymer
has a much higher density compared to polystyrene and Kapton. Polystyrene is a versatile
plastic that is used in a variety of consumer products such as food-service, automotive,
electronics, insulation and medical industries. Kapton is a nearly pure phase object, which
is a requirement for some of the phase retrieval methods, therefore it was chosen to see if
these methods would perform better on this material.

The numerical model described in section 4.6 is used to simulate the object and X-ray
image and the full script can be found in Appendix D for all methods except for APBA.
The script for APBA can be found in Appendix C.

The spectrum used for these simulations was obtained using the external code called
’Spektr’. For all simulation cases, except varying source potential, the 90 kV filtered
spectrum was used that is seen in Figure 5.1.

Figure 5.1: 90 kV filtered spectrum simulated using Spektr

In this chapter, seven different phase retrieval methods are compared, which are: Bron-
nikov method, Modified Bronnikov method, Paganin’s method, Arhatari TIE method,
Arhatari CTF method, PAD method and APBA. All of these algorithms and how they
are derived are described in Chapter 3. These methods are compared by observing the
behaviour of the relative error of the thicknesses under five different cases: varying the
thickness of the object, varying the source potential, varying the pixel size, varying R1 and
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varying R2. The relative error is calculated as follows:

Relative Error =
|Actual Thickness− Retrieved Thickness|

Actual Thickness
(5.1)

where the retrieved thickness is the value retrieved with the phase retrieval algorithm and
the actual thickness is known thickness of the simulated object.

The parameters for each test, unless they are the specified variables, are outlined below:

• Source potential = 90 kV

• Object thickness = 100 µm

• R1 = 8 cm

• R2 = 16 cm

• Pixel size = 7.8 µm

The first test is varying the thickness from 10 µm to 400 µm. The second test is varying
R1 from 1 cm to 100 cm. The third test is varying R2 from 1 cm to 100 cm with R1 set
to 16 cm. The reason R1 is set to 16 cm instead of 8 cm is because when R1 is set to 8
cm, the retrieved thickness values past R2 = 72 cm are imaginary; whereas setting R1 =
16 cm prevents the retrieved thicknesses from resulting in imaginary numbers. The results
for varying R2 from 1 cm to 100 cm with R1 set to 8 cm can be seen in Figures A.5, A.12,
A.14, A.21, A.27, A.34, A.36, A.43, A.49, A.56, A.58 and A.65 Appendix A, and show
the same trend to what will be described for the case of R1 = 16 cm. The fourth test
involves varying the source potential from 20 kV to 140 kV. This test is performed since
some methods state they perform better at energies greater than 60 keV when Compton
scattering becomes the dominant X-ray interaction. The final test performed is to view
how the phase retrieval methods behave with varying pixel size from 10 µm to 100 µm. The
pixel size is also varied from 1 µm to 10 µm in Figures A.6, A.13, A.15, A.22, A.28, A.35,
A.37, A.44, A.50, A.57, A.59 and A.66 seen in Appendix A, and show similar trends to the
case of varying the pixel size from 10 µm to 100 µm. In all these test, the ideal situation
is considered where an infinite number of images are average and therefore noise does not
have an effect.

The tests are performed on spheres and cylinders. The results for the spheres can be
found in sections A.1.1, A.1.2, A.2.1, A.2.2, A.3.1 and A.3.2 in Appendix A. Overall, the
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relative errors of the spheres behave similarly to that of the cylinders. Based on these
results, the shape of the object should not significantly effect the retrieved thickness.

For these tests, the α-term in the Modified Bronnikov method is set to Eq. 3.37, where
λ, µ and δ are all calculated using the weighted averages found in Eqs. 3.18, 3.19 and 3.30.
With the α-term equal to Eq. 3.37, the Modified Bronnikov method equation is equivalent
to Arhatari TIE method.

5.2 Results

In this section, the simulation results of cylinders will be presented for each material and
the best phase retrieval algorithm will be determined. This phase retrieval method will be
used in the remainder of this thesis.

5.2.1 Polystyrene

Polystyrene is a low density polymer with properties described in Table 5.1. Polystyrene
was chosen as a material due to the fact that it is a cheap plastic used a lot in industry.
Figure 5.2 shows the results of all seven phase retrieval methods for relative error versus
thickness. As can be seen in Figure 5.2, Bronnikov method has an exponential increase in
relative error and, overall, its relative error is extremely high. For this reason, all results
for the rest of the tests and the following materials will not include Bronnikov method
as it presents high relative error in each case compared to all of the other phase retrieval
algorithms. All results for each material that include Bronnikov method are found in
sections A.1.1, A.2.1 and A.3.1 in Appendix A.

It can be seen in Figure 5.3 that Paganin’s method, Modified Bronnikov method and
Arhatari TIE method perform the best across all thickness values for polystyrene. Overall,
all the methods seem to produce stable relative error when the thickness is greater than
150 µm.

Figure 5.4 displays the relative error versus SOD for polystyrene. All the methods oscil-
late while R1 is increases and seem to increase significantly around 0.7 m. The four methods
that appear to perform the best with varying R1 value for polystyrene are: Modified Bron-
nikov method, APBA, Arhatari TIE method and Paganin’s method. These methods have
relative errors that are close to overlapping for all R1 values.

Comparable to when varying R1, varying R2 also causes the relative error to oscillate as
can be seen in Figure 5.5. For varying the ODD, the relative error decreases for increasing
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Figure 5.2: Relative error versus thickness for polystyrene retrieved with different phase
retrieval methods (including Bronnikov Method)

Figure 5.3: Relative error versus thickness for polystyrene retrieved with different phase
retrieval methods

R2 value. The same four phase retrieval methods perform the best in this case as for
varying R1 values, which are: Modified Bronnikov method, APBA, Arhatari TIE method
and Paganin’s method.

The next test performed was varying the source potential. These results are viewed
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Figure 5.4: Relative error versus R1 for polystyrene retrieved with different phase retrieval
methods

Figure 5.5: Relative error versus R2 with R1 = 16 cm for polystyrene retrieved with
different phase retrieval methods

in Figure 5.6. The relative errors achieved by PAD and APBA decrease with increasing
source potential. This is expected for PAD as it is derived assuming Compton scattering
is the dominant X-ray interaction, which occurs at X-ray energies greater than 60 keV.
When the source potential is set to 60 kV, most X-ray energies are much less than 60
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keV. In this energy range, Compton scattering is not the main X-ray interaction and the
photoelectric effect dominates. As the source potential is increased past 120 kV, the mean
X-ray energies are around 60 keV and Compton scattering dominates. For this reason,
PAD performs better at higher source potentials. On the other hand, APBA is derived to
work for X-ray energies less than 60 keV, although, according to the results seen in Figure
5.6, this is not the case. APBA behaves similarly to PAD with source potential, therefore
the claim that APBA works for lower X-ray energies appears to be incorrect. This will
be further investigated in a later section. Arhatari CTF performs best with lower source
potentials and the relative error slowly increases with increasing source potentials. Overall,
Modified Bronnikov method, Arhatari TIE and Paganin’s method perform the best out of
all the investigated phase retrieval methods and the relative errors remain relatively stable
for all source potentials. At source potentials greater than 100 kV, it appears that APBA
performs as well as the other three methods for polystyrene.

Figure 5.6: Relative error versus source potential for polystyrene retrieved with different
phase retrieval methods

Figure 5.7 shows the relative error versus pixel size for polystyrene. For pixel sizes less
than 30 µm, Modified Bronnikov method, Arhatari TIE method and Paganin’s method
perform the best. All the methods have the greatest relative error when the pixel size is
between 40 µm and 50 µm. For pixel sizes greater than 60 µm, PAD and Arhatari CTF
method perform the best out of the seven methods.

In general, it appears that Modified Bronnikov method, Arhatari TIE method and
Paganin’s method perform the best for polystyrene in all the test cases.
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Figure 5.7: Relative error versus pixel size for polystyrene retrieved with different phase
retrieval methods

5.2.2 Kapton

Kapton is considered a pure phase object with negligible absorption and was chosen for
this reason. The material parameters for Kapton can be found in Table 5.1.

Like for polystyrene, it can be seen in Figure 5.8 that Modified Bronnikov method,
Arhatari TIE and Paganin’s method perform the best for varying thickness. APBA per-
forms worse for Kapton compared to the results for polystyrene with almost an 10% increase
in relative error. Also, PAD experiences a 10% increase in relative error compared to the
polystyrene case. Arhatari CTF for Kapton remains roughly the same relative error over
all thicknesses compared to polystyrene.

Figure 5.9 shows the relative error versus varying R1 results for Kapton. The same
oscillating behaviour can be seen for Kapton as was seen for polystyrene. Some differences
that can be seen for Kapton is that Modified Bronnikov method, Arhatari TIE and Pa-
ganin’s method perform the best for R1 values less than 0.5 m, but for values greater than
0.5 m APBA performs the best. Another difference is that PAD and Arhatari CTF method
have similar relative error results for Kapton, compared to their results using polystyrene
where they have around a 10% difference in relative error. As in the case of polystyrene,
Kapton also experiences an increase in relative error at greater R1 values.

Modified Bronnikov method, Arhatari TIE method and Paganin’s method have the
lowest relative error for all R2 values as seen in Figure 5.10. Although APBA performs
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Figure 5.8: Relative error versus thickness for Kapton retrieved with different phase re-
trieval methods

Figure 5.9: Relative error versus R1 for Kapton retrieved with different phase retrieval
methods

just as well as those three methods for polystyrene, that is not the case for Kapton. This
shows that the methods can be very material dependent. Also, the relative errors for PAD
and Arhatari CTF method’s are similar in the case of Kapton, which is not the case for
polystyrene. Overall, the oscillating trend observed in Figure 5.10 is similar to that seen
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in Figure 5.5 for the results of all investigated phase retrieval algorithms.

Figure 5.10: Relative error versus R2 with R1 = 16 cm for Kapton retrieved with different
phase retrieval methods

Figure 5.11 shows similar results to Figure 5.6. Like in the polystyrene case, Modified
Bronnikov method, Arhatari TIE method and Paganin’s method have the lowest relative
error for all source potentials in the case that Kapton is the material of choice. The relative
errors of PAD and APBA decrease with increasing source potential, which is expected for
PAD but not for APBA as explained in section 5.2.1. APBA does not perform as well
as the other three methods when the source potential is greater than 100 kV for Kapton.
Arhatari CTF method has increasing relative error when the source potential is increasing
and surpasses the relative error of PAD around 100 kV.

Figure 5.12 shows that for pixel sizes less than 30 µm, Modified Bronnikov method,
Arhatari TIE and Paganin’s method perform the best for Kapton. All methods except for
APBA relative errors increases significantly for pixel sizes between 40 µm to55 µm. In this
range, APBA’s relative error remains less than 10% and performs the best. For pixel sizes
greater than 60 µm, PAD and Arhatari CTF method have the lowest relative errors out of
all phase retrieval methods.

As in the case of polystyrene, Modified Bronnikov method, Arhatari TIE method and
Paganin’s method perform well under all tests cases for Kapton.
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Figure 5.11: Relative error versus source potential for Kapton retrieved with different phase
retrieval methods

Figure 5.12: Relative error versus pixel size for Kapton retrieved with different phase
retrieval methods

5.2.3 Polytetrafluoroethylene

PTFE is a higher density plastic used widely in industry. This plastic was chosen as it is
the material used in experiment. PTFE parameters are described in Table 5.1.
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Figure 5.13 shows the PTFE results for relative error versus thickness. For PTFE, it
is obvious that Modified Bronnikov method, Arhatari TIE and Paganin’s method perform
the best with increasing object thickness as the relative errors remain stable below 5%. At
thicknesses greater than 150 µm, Paganin’s method performs better than Modified Bron-
nikov method and Arhatari TIE method. PAD stabilizes at a relative error of roughly
60%, APBA stabilizes around 40% and Arhatari CTF method stabilizes around 25%; thus
making these methods undesirable to use for a material like PTFE. PAD performs the
worst for PTFE and has relative errors that are roughly six times higher compared to
polystyrene. The results from this plot compared to Figures 5.3 and 5.8 shows that all
these methods are heavily material dependent. Each material gives different relative errors
and express different behaviours.

Figure 5.13: Relative error versus thickness for PTFE retrieved with different phase re-
trieval methods

Similar to the case of varying the thickness of PTFE, it is apparent in Figure 5.14
that Paganin’s method, Modified Bronnikov method and Arhatari TIE method perform
with the lowest relative error. Their relative error is under 5% until R1 is greater than
0.5 m. At this point, the relative error reaches around 10%. Next, Arhatari CTF method
performs with a relative error ranging from around 20% to 35%. Overall, APBA has a
relative error similar to Arhatari CTF method. PAD has the highest relative error out of
the seven methods, reaching values just over 50% for many R1 values. The same oscillating
behaviour is observed in Figure 5.14 as seen in Figures 5.4 and 5.9.

Figure 5.15 presents similar results in relative error to Figure 5.14, but in this case
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Figure 5.14: Relative error versus R1 for PTFE retrieved with different phase retrieval
methods

the ODD is being varied. Paganin’s method, Modified Bronnikov method and Arhatari
TIE method has a relative error consistently under 5% when R2 is varied. Overall, the
oscillations in relative error are more stable for varying R2 than when R1 is varied. PAD
behaves the worst of the seven investigated methods with a relative error around 45% to
50%. APBA and Arhatari CTF method perform better than PAD, but still have relative
errors around 30%.

Figure 5.16 shows the PTFE results for the relative error versus source potential. Simi-
lar to all other test cases, Paganin’s method, Arhatari TIE method and Modified Bronnikov
method perform the best. For low source potentials below 40 kV, Arhatari CTF method
performs as well as the three previously mentioned methods. Past 40 kV, Arhatari CTF
method’s relative error increases, but generally has lower relative errror than APBA and
PAD. The relative error of PAD and APBA decreases with increasing source potential,
as it did with Kapton and polystyrene. This is expected for PAD, but not for APBA as
described in section 5.2.1.

The trend of relative error versus pixel size seems to vary for each material, emphasizing
that these phase retrieval algorithms tend to be highly material dependent. In the PTFE
case seen in Figure 5.17, Modified Bronnikov method, Arhatari TIE method and Paganin’s
method have the smallest relative error for pixel sizes less than 65 µm. Past 65 µm, Arhatari
CTF method performs with the lowest relative error up to a pixel size of 70 µm. When the
pixel size is 75 µm, PAD has the lowest relative error. All the methods have a peak that

63



Figure 5.15: Relative error versus R2 with R1 = 16 cm for PTFE retrieved with different
phase retrieval methods

Figure 5.16: Relative error versus source potential for PTFE retrieved with different phase
retrieval methods

forms in their relative errors that occurs around 45 µm.
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Figure 5.17: Relative error versus pixel size for PTFE retrieved with different phase re-
trieval methods

In conclusion, Paganin’s method, Arhatari TIE method and Modified Bronnikov method
perform the best under most cases for PTFE.

5.2.4 Conclusion

Observing the results in each section, it is difficult to tell if Paganin’s method, Arhatari
TIE method or Modified Bronnikov method performs with the lowest relative error. The
results of Arhatati TIE method and Modified Bronnikov method overlap due to the fact
that the α-value for the Modified Bronnikov method is set to Eq. 3.37 and, thus, results
in the same equation as Arhatari TIE method. Observing the results more closely, it
becomes apparent that Paganin’s method generally has a lower relative error than Modified
Bronnikov method and Arhatari TIE method. This is the most apparent in Figure 5.18.
For this reason, Paganin’s method is chosen as the best phase and/or thickness retrieval
algorithm overall when imaging homogeneous materials with a polychromatic source.
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Figure 5.18: Relative error versus thickness for PTFE in comparing Modified Bronnikov,
Arhatari TIE and Paganin’s method

5.3 Validating APBA

APBA claims that it works for X-ray energies less than 60 keV, but, in simulation results, it
can be seen that this method behaves similarly to the PAD method. It has a higher relative
error for energies less than 60 keV and a reduced relative error for energies greater than
60 keV. This observation is tested in simulation using a monochromatic source to validate
this conclusion, since this method was originally derived for a monochromatic source and
has been extended to the polychromatic case. In the presence of a monochromatic source
and all the same parameters used in the polychromatic simulation, it becomes apparent
that this method is only valid for energies greater than or equal to 60 keV, unlike what the
authors claimed in [21]. The results from this simulation can be seen in Figure 5.19. In the
case of a polychromatic source, both PAD and APBA require most energies present in the
spectrum to be greater than or equal to 60 keV in order for the error to decrease, therefore
the source potential must be set to at least 120 kV or more. Even at these energies, it is
apparent that the error is still relatively high.

Figure 5.19: Relative error versus X-ray energy using APBA for different materials
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Chapter 6

Experimental Results using
Paganin’s Method

Phase-contrast X-ray imaging has many advantages over conventional X-ray imaging when
imaging low atomic number materials, such as 3D printed polymer composites or biological
specimens. Propagation-based PCI has the easiest setup out of all the PCI methods,
but has the hardest post-image processing. Its phase retrieval methods require many
assumptions and, in many cases, that the material of the object to be known. As discussed
in Chapter 5, Paganin’s method shows the most promising results when the object is
homogeneous and exposed by a polychromatic X-ray source. Biological specimens can
generally be considered homogeneous materials. In this chapter, experimental results of
PTFE will be discussed.

6.1 Methodology

A Thermo Scientific PXS5-927 MicroFocus X-ray Source was used to acquire images on
a one-megapixel a-Se CMOS direct conversion detector with 7.8 µm pixel pitch made in-
house in the STAR group at the University of Waterloo. The 40 kV and 60 kV spectrums
are shown in Figure 6.1 and were acquired using the X-123 X-ray Spectrometer by Amptek.
Pile-up may be an issue in these spectrums and a collimator is needed to reduce the number
of photons hitting the photon counter. A collimator using lead was attempted, but some
unknown peaks were appearing in the spectrum, thus these spectrums were not used for
the investigation. Tungsten was used to try to fabricate a collimator, but it was too hard
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of a material to produce a small hole with the current resources. In the end, a collimator
kit was ordered for the spectrometer, but it did not arrive in time for the completion of
this work. In Figure 6.2, the 40 kV and 60 kV spectrums with 2 mm of aluminum placed
in front of the source to filter the tungsten Lα, Lβ and Lγ peaks were acquired using the
spectrometer. Since a filter is placed in front of the source and acts as a collimator, not as
many photons will be read on the spectrometer and thus more accurate X-ray spectrums
are observed when filtered with 2 mm of aluminum.

Figure 6.1: X-ray spectrums of the Thermo Scientific PXS5-927 Microfocus X-ray source
acquired using the X-123 X-ray Spectrometer (a) 40 kV and (b) 60 kV.

The final X-ray imaging setup is depicted in Figure 6.3. The X-ray imaging setup
consisted of the Thermo Scientific source being placed at a known SOD from the object.
The object was placed on three Thorlabs motorized stages: a rotational stage, a x-direction
stage and y-direction stage. These stages allowed for ease in positioning the object in the
center of the detector. The detector is placed at a known ODD from the object. The SOD
and ODD are measured using calipers. The positioning of the X-ray source and detector
are controlled using manual x-direction and y-direction Thorlabs stage. A laser is used to
ensure alignment of the entire system.

A software created by KA Imaging, Inc. is used to acquire images. The integration
time used in experiment was 1 second and an average of 30 images was used. First, a dark
image was acquired after letting the detector warm-up for 30 minutes and was acquired
before each new image of the object was acquired. After 30 minutes, the detector’s dark
noise is stabilized. Also, an open image, where the detector is exposed to X-rays without
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Figure 6.2: X-ray spectrums of the Thermo Scientific PXS5-927 Microfocus X-ray source
acquired using the X-123 X-ray Spectrometer and 2 mm of aluminum placed in front of
the source as a filter (a) 40 kV and (b) 60 kV.

Figure 6.3: X-ray imaging setup
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the presence of the object, was acquired before each new image of the object was acquired.
The open and dark images are used in post-image processing to calculate the gain corrected
image that is inputted into the phase retrieval algorithm. The gain corrected algorithm is
outlined in Appendix E.1.

The material that was mainly investigated in experiment was PTFE, which was pur-
chased from McMaster Carr in different diameters of spheres and cylinders. The PTFE
samples have a known density of 2.13 g/cm3 and a diameter tolerance of -0.002 inch to
0.002 inch. This density is slightly less than the density used in simulation for Teflon,
which is 2.2 g/cm3. The diameters of the PTFE objects used in experiment are outlines
in Table 6.1. Next, the object was placed at a known distance from the source (R1) and
a known distance from the detector (R2) that were measured using a caliper. The spheres
were mounted on plasticine and the cylinders were mounted using a Thorlabs mount. Each
image is gain corrected and Paganin’s method is run on each gain corrected image. An
average of the background profile is subtracted from the maximum thickness of the object
to estimate the retrieved thickness. The phase retrieval experimental code is presented in
Appendix E.2. Three of these estimates are calculated and averaged to estimate the total
retrieved thickness of the object. The relative error is calculated using Eq. 5.1.

Table 6.1: PTFE Shapes
Size (inch) Size (mm) Tolerance (mm) Shape
0.028 0.7112 -0.0508 to 0.0508 Cylinder
0.039 0.9906 -0.0508 to 0.0508 Cylinder
0.055 1.3970 -0.0508 to 0.0508 Cylinder
1/16 1.5875 -0.0508 to 0.0508 Sphere
3/32 2.38125 -0.0508 to 0.0508 Sphere
1/8 3.175 -0.0508 to 0.0508 Sphere

6.2 Experimental Results

In this section, experimental results that were acquired using the unfiltered spectrums (seen
in Figure 6.1) and using the filtered spectrums (seen in Figure 6.2) are presented. Overall,
the unfiltered images have lower noise than the filtered images. The increased noise in
the filtered images could be do to scattering caused by the aluminum filter that is placed
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between the source and object. Paganin’s method is able to retrieve a smooth profile for
the unfiltered images, although the results are not quantitative with high relative error.
The filtered images resulted in higher relative error than the unfiltered images. Paganin’s
method is able to increase the signal-to-noise ratio (SNR) by Fourier filtering, but the
thickness retrieved images obtained using a filtered spectrum still present high noise that
could be caused by backscattering.

6.2.1 Using Unfiltered Spectrums

Figure 6.4 shows a phase-contrast (a) and thickness retrieval (b) image of the 0.028” PTFE
cylinder acquired with the 60 kV Thermo Scientific spectrum (see Figure 6.1 (b)) at an
SOD of 8 cm and ODD of 8 cm. The edge enhancement is clear in the phase-contrast
image and appears as a bright white interface. In the thickness retrieved image, Paganin’s
method eliminated this interface to create a smooth profile. From this image, it appears
that there are no voids within the cylinder. In appearance, the thickness retrieved image
resembles what would be expected after Paganin’s Fourier filter is applied.

Figure 6.4: 0.028” PTFE cylinder imaged with a 60 kV spectrum at R1 = 8 cm and R2 =
8 cm, (a) phase contrast image and (b) thickness retrieval image using Paganin’s method

The intensity profile shows the edge enhancement at the boundaries in the form of
peaks is seen in Figure 6.5 (a), with one peak occurring around pixel number 100 and
the other peak occurs around 290. The intensity profile is a bit noisy, which is most
likely due to photon noise, and makes it harder to distinguish the peaks that represent
the boundary of the object at pixel number 290. With Paganin’s thickness retrieval, the
thickness profile of the object was retrieved and presented in Figure 6.5 (b). Paganin’s
method reduces the noise in the image by Fourier filtering, in turn increasing the SNR.
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The true thickness value of the cylinder is 0.7112 mm; whereas Paganin’s method retrieved
an average thickness value of 0.782554 mm for this image, which results in a relative error
of 10%. This relative error is low and acceptable for this object. It is close to some of
the predicted relative errors from simulation considering only 30 images were averaged to
achieve this profile.

Figure 6.5: 0.028” PTFE cylinder imaged with a 60 kV spectrum at R1 = 8 cm and R2 =
8 cm, (a) phase contrast profile and (b) thickness profile retrieved using Paganin’s method

Figure 6.6 shows a phase-contrast (a) and thickness retrieval (b) image of the 1/16”
PTFE sphere acquired using a 60 kV spectrum at an SOD of 36 cm and ODD of 8 cm.
As in the cylinder image, the edge is well defined and the thickness retrieval creates a
smooth profile. The bright white edge enhancement is eliminated using Fourier filtering
in Paganin’s method and results in a clean, smooth image. There appears to be no voids
present in this object. In both images, some defects from the detectors are visible that
could not be corrected for with gain correction.

It is hard to observe the edge enhancement in the intensity profile of the sphere shown
in Figure 6.7 (a) due to the surrounding noise in the image that is most likely caused by
photon noise. The edge enhancement peaks for the sphere occur at pixel numbers 40 and
230. Paganin’s method increased the SNR by Fourier filtering and the retrieved thickness
profile, seen in Figure 6.7 (b), appears much smoother than the intensity profile. The
retrieved thickness of the sphere is 1.237525 mm and the true thickness of this object is
1.5875 mm. This results in a relative error of 22%, which is higher than that measured for
the 0.7112 mm cylinder. This relative error is much higher than the errors predicted in
simulation. A lower relative error for this object is desirable.

A larger sample size was acquired using all the shapes described in Table 6.1 at different
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Figure 6.6: 1/16” PTFE sphere imaged with a 60 kV spectrum at R1 = 36 cm and R2 =
8 cm, (a) phase contrast image and (b) thickness retrieval image using Paganin’s method

Figure 6.7: 1/16” PTFE sphere imaged with a 60 kV spectrum at R1 = 36 cm and R2 =
8 cm, (a) phase contrast profile and (b) thickness profile retrieved using Paganin’s method

SOD and ODD. These results are shown in Figures 6.8 and 6.9. Generally, the SOD was
set to either 8 cm, 18 cm or 36 cm and the ODD was varied. As a result, the magnification
is varied from 1.22 to 3.67. In Figure 6.8, the relative error versus the object’s thickness
is shown and it can be seen that the cylinder with a diameter of 0.7112 mm and 0.9906
mm generally have the lowest relative error compared to the 1.3970 mm diameter cylinder,
and the 1.5875 mm, 2.38125 mm and 3.175 mm diameter spheres. The 3.175 mm sphere
has the highest relative error. Next, the retrieved thickness versus the measured thickness
is plotted in Figure 6.9 to see if a trend can be observed. The retrieved thickness is the
thickness obtained from Paganin’s method and the measured thickness is the thickness
of the object measured with the caliper. No clear trend is observed from these results,
although a polynomial of third degree would be the best representation and gives an R-
squared value of 0.9680; whereas a linear trend gives an R-squared value of 0.9342 and a
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polynomial of second degree gives an R-squared of 0.9641. The R-squared value does not
improve when increasing the polynomial order past third degree.

Figure 6.8: Relative error versus thickness for PTFE spheres and cylinders experimentally
imaged using a 60 kV spectrum

Figure 6.9: Retrieved thickness versus measured thickness for PTFE spheres and cylinders
experimentally imaged using a 60 kV spectrum

Next, the objects were imaged using the 40 kV Thermo Scientific spectrum to see if
there would be any improvement in the thickness retrieval of PTFE. The SOD was set
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to either 8 cm, 15 cm or 36 cm and the ODD was varied, resulting in a magnification
variation of 1.22 to 2. Overall, the phase-contrast and thickness retrieved images obtained
using the 40 kV spectrum match the images seen in Figures 6.4 and 6.6 in appearance.
The relative error versus object thickness is plotted in Figure 6.10. The results using the
40 kV spectrum are quite different from those obtained using the 60 kV spectrum because
the smallest diameter cylinder has the largest error ranging from 33% to 41%; whereas
the smallest error ranging from around 1% to 4% is achieved by the 0.9906 mm cylinder
and 1.5875 mm sphere. The retrieved thickness versus measured thickness is plotted in
Figure 6.11. The best representation of this curve is either a second degree polynomial,
which results in an R-squared value of 0.9731. A linear trend gives an R-squared of 0.9556,
therefore is not the best representation.

Figure 6.10: Relative error versus thickness for PTFE spheres and cylinders experimentally
imaged using a 40 kV spectrum

The equations derived for the trends depicted in Figures 6.9 and 6.11 are presented in
Table 6.2, where y is the retrieved thickness and x is the measured thickness.

Table 6.2: PTFE experimental result trends using unfiltered Thermo Scientific spectrums
Source Potential (kV) Equation R2

40 y = -0.0999x2+0.8933x+0.3845 0.9731
60 y = -0.1109x2+0.8594x+0.1924 0.9641
60 y = 0.0789x3-0.5344x2+1.5107x-0.0898 0.968
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Figure 6.11: Retrieved thickness versus measured thickness for PTFE spheres and cylinders
experimentally imaged using a 40 kV spectrum

Although the resulting phase-contrast and thickness retrieval images look clean and
appear as one would expect a phase retrieved image, the results are not accurate.

6.2.2 Using Filtered Spectrums

An attempt to improve the results was made by filtering the spectrum with 2 mm of
aluminum, as seen in Figure 6.2, to eliminate low energy photons, therefore reducing the
tungsten Lα, Lβ and Lγ peaks.

As can be seen in Figures 6.12 and 6.13, filtering causes the images to be noisy and
artefacts become present even when acquiring the images with a 3 second integration time
and averaging 100 images. The cylinder in Figure 6.12 was acquired using the 40 kV
Thermo Scientific spectrum filtered with 2 mm of aluminum (see Figure 6.2 (a)). The
sphere in Figure 6.13 was acquired using the 60 kV Thermo Scientific spectrum filtered
with 2 mm of aluminum (see Figure 6.2 (b)). Some of these artefacts are caused by possible
crystallization of the detector. It is hard to distinguish the peaks from the noise in the
phase-contrast profiles shown in Figures 6.14 (a) and 6.15 (a) of the cylinder and sphere,
respectively. Considering how noisy these profiles are, Paganin’s method is able to increase
the SNR significantly and a thickness profile can easily be seen in Figures 6.14 (b) and 6.15
(b) of the cylinder and sphere, respectively. Although these profiles are smooth with little
noise present, the retrieved thickness values for these objects is incorrect. In Figure 6.14,
the actual thickness of the cylinder is 0.7112 mm and the average retrieved thickness is
0.4033 mm, which results in a relative error of 43.29%. The actual thickness of the sphere
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Figure 6.12: 0.028” PTFE cylinder imaged with a 40 kV spectrum filtered with 2 mm
aluminum at R1 = 15 cm and R2 = 15 cm, (a) phase contrast image and (b) thickness
retrieval image using Paganin’s method

Figure 6.13: 1/16” PTFE sphere imaged with a 60 kV spectrum filtered with 2 mm
aluminum at R1 = 36 cm and R2 = 8 cm, (a) phase contrast image and (b) thickness
retrieval image using Paganin’s method

in Figure 6.14 is 1.5875 mm and the average retrieved thickness is 0.66243 mm, resulting
in a relative error of 58.27%. Due to the relative errors being high, the filtered spectrums
were not used for many experimental results. The data acquired for these images was far
too noisy to determine the thickness. It is possible that backscattering of X-rays caused
by the aluminum filter placed in front of the X-ray source is a source of the increased noise
in these images compared to the unfiltered images. Photon noise is also prominent in the
images acquired using a filtered spectrum. The noise in the images makes it difficult to
conclude a trend with the retrieved thickness, thus is not presented.
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Figure 6.14: 0.028” PTFE cylinder imaged with a 40 kV spectrum filtered with 2 mm
aluminum at R1 = 15 cm and R2 = 15 cm, (a) phase contrast profile and (b) thickness
profile retrieved using Paganin’s method

Figure 6.15: 1/16” PTFE sphere imaged with a 60 kV spectrum filtered with 2 mm
aluminum at R1 = 36 cm and R2 = 8 cm, (a) phase contrast profile and (b) thickness
profile retrieved using Paganin’s method
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6.3 Finding the Energy that Retrieves the Correct

Thickness

To further view if there is a correlation in the experimental results, the phase coefficient
δ(E) and linear attenuation coefficient µ(E) values where Paganin’s method retrieves the
correct thickness for a specified image was attempted. To find δ and µ, the code iterated
through δ(E) and µ(E) sequentially according to a specified energy. The minimum relative
error was calculated and the iteration number at which it occurs is returned. The one
problem with this method is that the phase coefficient and the linear attenuation coefficient
vary differently with respect to energy. The phase coefficient varies as 1

E2 and the linear
attenuation coefficient varies as 1

E3 . Overall, this method gives a good estimation of the
correct phase and linear attenuation coefficients required to retrieve the correct thickness.
The energy where the lowest relative error was achieved for all the PTFE objects that
were imaged using the 60 kV spectrum is plotted in Figure 6.16. The average energy
that retrieves the correct thickness is 14.7740 keV, although the phase and attenuation
coefficients at this energy can cause large relative errors for the images in which a slightly
higher or lower energy is required to define the phase and linear attenuation coefficients to
retrieve the correct thickness. Overall, there is no trend found in the energy that returns
the correct thickness with respect to the thickness of the object. These results show that
further investigation is required in order to figure out the sources of error when using
Paganin’s method on different materials, thicknesses and shapes with different spectrums.

Figure 6.16: The energy at which the phase and attenuation coefficients retrieve the correct
thickness for a selected image using the 60 kV Thermo Scientific spectrum
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6.4 Sources of Error

After reviewing all the experimental data, it is clear that there are problems arising in the
system that are causing error to arise in the retrieved thickness. In simulation, Paganin’s
method performs with relatively small relative error for the test cases presented to it in
Chapter 5. There are three regions where the sources of error could arise, which are: the
source, the object or the detector. It is possible if the spectrum of the source is not properly
characterized, this could cause a source of error. With these objects, the density, material
and actual thickness are well known; therefore a possible source of error is that these objects
are no longer considered sufficiently thin for PTFE and, thus, causing Paganin’s method
to fail. To see if the thickness of the object is a source of error, a thin piece of kapton that
was on the order of 10 µm was imaged. Kapton is a well-known purely phase object that
is used in many journal articles to access their PCI system, although many of the systems
require over 30 minute imaging time. The results of the kapton sample were too noisy
using our detector to process with Paganin’s method even with an unfiltered spectrum and
over 100 images averaged. From the detector side, noise can introduce a source of error.
The easiest way to access these sources of error separately is by running simulations on
different types of material, using different spectrums and changing the SOD and ODD. In
experiment, it is very difficult to identify where the error is coming from when there are
three sources where the error can arise. The next chapter will investigate and discuss some
of these possible causes of error in further detail by means of simulation.
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Chapter 7

Effect of Parameters on Paganin’s
Method

As seen in Chapter 6, there are certain parameters that can introduce sources of error in
the quantitative results, but it is challenging to define exactly where the source of error is
coming from within the system. The three areas where the source of error can arise are the
source, the object and/or the detector. It is difficult to distinguish in experiment where
the source of error is arising within the system; thus, in this chapter, the sources of error
will be investigated through simulations.

7.1 Effect of Material on Paganin’s Method

Paganin mentions that a material is required to be sufficiently thin for this method to
retrieve the correct phase or thickness, although it does not mention what is considered
sufficiently thin. This statement is material dependent. In this section, different materials
are investigated to see when Paganin’s method fails to retrieve the correct thickness and the
behaviour of the results when it does fail. Different spectrums were used for each material
and the thickness was retrieved for materials that are greater than 100 µm since most
plastic objects used in both experiment and industry tend to be thicker than 100 µm. In
Chapter 5, thinner samples ranging up to 400 µm were already simulated and investigated.
In experiment, the sample thickness exceeded the thicknesses simulated in Chapter 5,
therefore further investigation is required. The material parameters used in the simulations
are outlined in Table 7.1.
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Table 7.1: Material Properties
Material Composition Density [g/cm3]
PTFE (C4F4)n 2.2
Polystyrene (C8H8)n 1.04
Aluminum Al 2.7
Tungsten W 19.3
Kevlar (COC6H4CONHC6H4NH)n 1.44

A comparison between the thickness results from a PTFE sphere and cylinder simu-
lated using a 60 kV Thermo Scientific spectrum is made in Figure 7.1 to ensure there was
no variation between the results when using a different geometrical shape. The results for
the retrieved thickness of a sphere and cylinder of the same theoretical thickness overlap,
therefore a cylinder can be used for all the remaining simulations as it takes less compu-
tation time to simulate. The theoretical thickness is the thickness value of the simulated
object and the retrieved thickness is the value retrieved from the phase-contrast X-ray im-
age using Paganin’s method. Further proof that a sphere and cylinder result in the same
retrieved thickness for each theoretical thickness can be seen in Figure B.1.

Figure 7.1: Retrieved thickness versus theoretical thickness comparing the results of a
simulated PTFE sphere and cylinder using the 60 kV Thermo Scientific spectrum

Next, simulating PTFE cylinders with a 60 kV Thermo Scientific spectrum at different
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R1 and R2 values are shown in Figure 7.2 to see if there is a trend of the retrieved thickness
for thicker materials and replicate the experimental case without noise. It appears that
changing the R1 and R2 values in the perfect noise-free case does not have an effect on the
results. The relative error of the thickness of PTFE surpasses 10% when the theoretical
thickness is set to 500 µm. Past this point, all three data series appear to behave as a
second-degree polynomial when the retrieved thickness is plotted against the theoretical
thickness. All three data series result in similar polynomial expressions tabulated in Table
7.2 with an R-squared value of 0.999. Henceforth, in the equations, ’y’ is the retrieved
thickness in millimeters and ’x’ is the theoretical thickness in millimeters. It appears that
if an equation is known for any R1 and R2 values, the actual thickness of the PTFE object
imaged at 60 kV using the Thermo Scientific spectrum should be derivable by substituting
the retrieved thickness in for ’y’ and solving for ’x’.

Comparing the resulting equations from simulation in Table 7.2 to the equations ob-
served for the 60 kV spectrum with the experimental data in Table 6.2, it is observed that
both in simulation and experimentally the trend of the data points tends to be quadratic.
The second coefficient of the experimentally found equation is close in value to the second
coefficient of the equation found through simulation, being 0.8594 and 0.8123, respectively.
Otherwise, the first and last coefficients of the equations found experimentally and in sim-
ulation are quite different, with the first coefficient of the experimental results being 1.77
times greater than the simulation results and the third coefficient of the experimental re-
sults being 3.57 times greater than the simulation result. Overall, the only similarity in
the resulting equations when using the 60 kV Thermo Scientific spectrum is that both
simulation and experimental results behave quadratically.

Table 7.2: Polynomial expressions of PTFE cylinders at different R1 and R2 values using
the 60 kV Thermo Scientific spectrum

R1 (cm) R2 (cm) Equation R2

8 16 y = -0.0626x2+0.8123x+0.0539 0.999
8 8 y = -0.0626x2+0.8123x+0.0538 0.999
15 30 y = -0.0627x2+0.8126x+0.0537 0.999

When the theoretical thickness is set to 4.35 mm, the retrieved thickness of this sample
is 2.43 mm and results in a relative error of 44%. To try to improve the relative error, PTFE
is simulated using 60 kV Thermo Scientific spectrum filtered with 2 mm of aluminum. The
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Figure 7.2: Retrieved thickness versus theoretical thickness of a PTFE cylinder varying R1

and R2 using the 60 kV Thermo Scientific spectrum

results are presented in Figure 7.3. The relative error for a theoretical thickness of 4.35
mm reduced to 14%, although a second-degree polynomial trend is still present between
the retrieved thickness and theoretical thickness. The polynomial equations for the two
different R1 and R2 values are almost the same with the only different being the last
coefficient that has a difference of 1x10−4, as seen in Table 7.3. Both equations result in
an R-squared value of 1, which represents a perfect fit. Overall, it appears as though a
filtered spectrum should give results with lower relative error for thicker PTFE objects.
Even a PTFE object with a theoretical thickness of 7 mm should result in a relative error
of around 20%, which is a better result than what was seen using a spectrum that is not
filtered.

These filtered spectrum results contradict what was seen in the experimental case.
Experimentally, the unfiltered spectrum produces lower relative error results when using
Paganin’s method compared to the filtered spectrum results. This contradiction could be
due to the fact that the filtered images appeared to be severely affected by noise in the
experimental case; whereas there is no noise present in the simulation case. The noise in
the experimental images might have been caused by X-ray backscattering of the aluminum
filter. If this backscattering could be diminished or eliminated, it is possible the filtered
spectrum could produce thickness retrieved results with lower relative error for thicker
objects as seen in simulation.
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Figure 7.3: Retrieved thickness versus theoretical thickness of a PTFE cylinder varying R1

and R2 using the 60 kV 2 mm Al filtered Thermo Scientific spectrum

Table 7.3: Polynomial expressions of PTFE cylinders at different R1 and R2 values using
the 60 kV 2 mm Al filtered Thermo Scientific spectrum

R1 (cm) R2 (cm) Equation R2

8 16 y = -0.0228x2+0.9496x+0.0195 1
15 15 y = -0.0228x2+0.9496x+0.0196 1

In Appendix B, Figure B.2 depicts similar results to Figure 7.2. Table 7.4 outlines the
equations that describe the quadratic trends of the simulated data sets. The equations
derived from the simulation results are similar for varying R1 and R2 values. Comparing
these equations with the equation for the 40 kV Thermo Scientific spectrum experimental
results found in Table 6.2, they are very different and the only similarity is that both the
experimental and simulation data behave quadratically.

Next, polystyrene cylinders are simulated using the 60 kV Thermo Scientific spectrum
and the results are presented in Figure 7.4. Due to the lower density of polystyrene, the
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Table 7.4: Polynomial expressions of PTFE cylinders at different R1 and R2 values using
the 40 kV Thermo Scientific spectrum

R1 (cm) R2 (cm) Equation R2

8 8 y = -0.0592x2+0.8779x+0.0366 0.9909
15 15 y = -0.0593x2+0.8783x+0.0361 0.9994
8 15 y = -0.0592x2+0.8779x+0.0366 0.9996

trend of relative thickness versus theoretical thickness is linear compared to the quadratic
trend of PTFE. The linear expressions are tabulated in Table 7.5 and are similar at different
R2 values. This means that one of two expressions may be used for either R2 value with
the introduction of a small error. In Appendix B, Figure B.3 also shows a linear trend
for polystyrene simulated with a 40 kV Thermo Scientific spectrum, thus this trend is
consistent with polystyrene and the unfiltered Thermo Scientific spectrums.

Figure 7.4: Retrieved thickness versus theoretical thickness of a polystyrene cylinder vary-
ing R2 using the 60 kV Thermo Scientific spectrum

Further, a L12531 Hamamatsu source is used in the simulation of the polystyrene
cylinders with a source potential of 60 kV. The L12531 Hamamatsu source is a source that
is currently being purchased for the phase-contrast X-ray system, and, accordingly, it is also
investigated in this analysis. The spectrums are provided by Hamamatsu for the simulation
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Table 7.5: Linear expressions of polystyrene cylinders at different R1 and R2 values using
the 60 kV Thermo Scientific spectrum

R1 (cm) R2 (cm) Equation R2

8 16 y = 0.9307x+0.0525 0.9991
8 8 y = 0.9285x+0.0467 0.9996

and are confidential. For this reason, the spectrums are not shown in this thesis. The source
has a tungsten target and, thus, has the Lα, Lβ and Lγ peaks present. Another reason why
the Hamamatsu spectrum is used in simulations is because the unfiltered spectrum from the
Thermo Scientific source may not be correct since pileup may be present when measuring
the spectrum with the spectrometer. To prevent pileup, a collimator is required and that
is currently being purchased for the laboratory. Therefore, it is difficult to say if the
Thermo Scientific spectrum is accurate; whereas the Hamamatsu spectrums are measured
by Hamamatsu and are more likely to be an accurate representation of the spectrums.

In this case, R1 and R2 are varied. Using the Hamamatsu source results in a quadratic
trend between retrieved thickness and theoretical thickness for polystyrene, as seen in
Figure 7.5, compared to the linear trend that is seen using the Thermo Scientific source.
The quadratic expressions are tabulated in Table 7.6 and all result in an R-squared value
of 0.9988. The only difference between the quadratic equations is the last coefficient which
results in a difference on the order of 1x10−4, therefore the same expression can be used
for each R1 and R2 value with a small error introduced.

Table 7.6: Linear expressions of polystyrene cylinders at different R1 and R2 values using
the 60 kV L12531 Hamamatsy spectrum

R1 (cm) R2 (cm) Equation R2

8 8 y = -0.0205x2+0.4984x+0.1022 0.9988
8 16 y = -0.0205x2+0.4984x+0.1023 0.9988
15 15 y = -0.0205x2+0.4984x+0.1024 0.9988

For the final three tests, metal cylinders were simulated and the thickness was retrieved.
Generally, metals are good absorbers and conventional X-ray imaging can be used to pick
up defects. Since the atomic number of most metals is much greater than 20 and their
densities tend to be much higher than plastics, PCI may not be the best imaging technique
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Figure 7.5: Retrieved thickness versus theoretical thickness of a polystyrene cylinder vary-
ing R1 and R2 using the 60 kV L12531 Hamamatsu spectrum

to find defects. Industries are interested in imaging metals to find small defects, therefore
the final simulations are performed to see if thickness retrieval using Paganin’s method is
possible on higher atomic number samples. The first metal tested is aluminum. Aluminum
is a soft, low-density, light-weight metal with a relatively low atomic number of 13. The first
simulation performed on aluminum was using the 100 kV L12531 Hamamatsu spectrum at
different R2 values and the results are presented in Figure 7.6.

When the theoretical thickness of aluminum is set to 7 mm, the relative error is roughly
85%, therefore the properties of aluminum introduce a high relative error. The trend
between the retrieved thickness and theoretical thickness is relatively quadratic with an
R-squared value of 0.9869. The equations are expressed in Table 7.7. Again, the only
difference between the two expressions at different R2 values is the last coefficient, therefore
either expression could be used to estimate the theoretical thickness given the retrieved
thickness with relatively small error.

Table 7.7: Polynomial expressions of aluminum cylinders at different R2 values using the
100 kV L12531 Hamamatsu spectrum

R1 (cm) R2 (cm) Equation R2

8 8 y = -0.0156x2+0.2282x+0.1174 0.9869
8 16 y = -0.0156x2+0.2281x+0.1175 0.9869
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Figure 7.6: Retrieved thickness versus theoretical thickness of a aluminum cylinder varying
R1 and R2 using the 100 kV L12531 Hamamatsu spectrum

Aluminum is simulated using the 60 kV 2 mm aluminum filtered Thermo Scientific
spectrum to see if the results would improve compared to an unfiltered spectrum. Ideally,
using a 100 kV 2 mm aluminum filtered Hamamatsu spectrum would give a better com-
parison to the unfiltered spectrum, but this spectrum is not currently available. For this
reason, the 60 kV 2 mm aluminum filtered Thermo Scientific spectrum is used. Using this
spectrum, the results improve. A 7 mm aluminum sample leads to a 29% relative error,
which is far better than a relative error of 85% that was produced by the 100 kV unfiltered
Hamamatsu spectrum. The trend between the retrieved thickness and theoretical thick-
ness remains quadratic, as seen in Table 7.8. The R-squared value is 0.9999 for the two
equations, therefore are good representations of the data. Like all the other cases, the two
equations are similar with only the last coefficient varying.

Table 7.8: Polynomial expressions of aluminum cylinders at different R2 values using the
60 kV 2 mm Al filtered Thermo Scientific spectrum

R1 (cm) R2 (cm) Equation R2

8 8 y = -0.0305x2+0.9151x+0.0322 0.9999
8 16 y = -0.0305x2+0.9151x+0.0322 0.9999
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Figure 7.7: Retrieved thickness versus theoretical thickness of a aluminum cylinder varying
R1 and R2 using the 60 kV 2 mm Al filtered Thermo Scientific spectrum

The final test performing thickness retrieval on a tungsten cylinder. Tungsten has a
much higher density and atomic number than plastics. The atomic number of tungsten is
74 and the density is 19.3 g/cm3, which makes it almost a magnitude more dense than most
plastics. The results from the simulation using the 60 kV 2 mm aluminum filtered Thermo
Scientific spectrum are presented in Figure 7.8. First, it can be observed that the results
only go up to a theoretical thickness of 100 µm. This is because beyond this thickness,
Paganin’s method calculates complex numbers. This phase retrieval method, and many
other phase retrieval methods for propagation-based PCI, are not suited for metals, high-
density materials and atomic numbers greater than 20, which is why complex numbers
are computed. The second observation is that the relative errors for the few thickness it
could retrieve are high. For a theoretical thickness of 100 µm, the relative error is around
74%. From these results, it can be concluded that Paganin’s method cannot retrieve the
thickness of hard, dense metals like tungsten.

The results for Kevlar are found in Appendix B, Figures B.5 and B.6. The same
quadratic trends can be observed in Table 7.9 for both the 60 kV and 100 kV L12531
Hamamatsu spectrum cases. The expressions vary between source potential, but remain
similar for different R2 values, as was seen with all the other materials described in this
section. More analysis will be completed in section 7.2 on the effect of using different
source potentials.
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Figure 7.8: Retrieved thickness versus theoretical thickness of a tungsten cylinder varying
R1 and R2 using the 60 kV 2 mm Al filtered Thermo Scientific spectrum

Table 7.9: Polynomial expressions of Kevlar cylinders using different source potentials with
the Hamamatsu L12531 source and different R2 values

Source Potential (kV) R1 (cm) R2 (cm) Equation R2

60 8 8 y = -0.0203x2+0.4402x+0.0992 0.9985
60 8 16 y = -0.0203x2+0.4402x+0.0993 0.9985
100 8 8 y = -0.0194x2+0.4211x+0.1019 0.9983
100 8 16 y = -0.0194x2+0.4212x+0.102 0.9983

7.2 Effect of Spectrum on Paganin’s Method

In this section, the effect of how accurately a spectrum needs to be calibrated will be
discussed. Also, the effect of using a different source and using different source potentials
will be examined.

The effect on how accurately the spectrum needs to be calibrated for Paganin’s method
to work is tested by simulating the PTFE object using the spectrum in Figure 6.1 (b)
and shifting the spectrum to the higher energies by 0.204 keV to 1.84 keV to calculate
the weighted averages for µ and δ used in Paganin’s method. In effect, this means that
the spectrum used to simulate the object is different from the one used to retrieve the
thickness in the image. The results from these simulations are shown in Figure 7.9 for
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different thicknesses of PTFE. From these results, it is observed that shifting the spectrum
over by even a small amount can have an effect on the accuracy of Paganin’s method in
retrieving the correct thickness. As the spectrum used to calculate the weighted averages
is shifted over, the relative error increases. This is expected since the spectrum used
to simulate the image no longer matches the spectrum used to calculate the weighted
averages for phase retrieval. Shifting the spectrum over by even 1 keV increases the relative
error by just over 15 percent. The Amptek X-123 CdTe spectrometer is calibrated using
an americium-241 gamma source where the spectrum is known, and the user outlines
three characteristic peaks and defines the energies at which those peak occur. After the
spectrometer is calibrated with the gamma source, it counts the number of photons from
the X-ray source and uses the calibrated values from the gamma source to define the
corresponding X-ray energies. Therefore, if this calibration is incorrect, the X-ray spectrum
could be shifted by some value and not match up with the spectrum of X-ray energies that
hit the a-Se CMOS detector when imaging. In effect, this can cause for an increase in
relative error.

Figure 7.9: Relative error versus the change in energy that the spectrum is shifted over

The next simulations that are investigated are using the L12531 Hamamatsu source at
R1 = 8 cm, R2 = 16 cm, PTFE cylinders and three different source potentials: 60 kV,
80 kV and 100 kV. The results are shown in Figure 7.10 and they show that varying the
source potential does alter the resulting retrieved thickness. As can be seen in Table 7.10,
each source potential has a different quadratic expression and their R-squared value ranges
from 0.9944 to 0.9949. Because of this difference, this means that the same quadratic
expression cannot be used for different source potentials. Thus, as seen in the previous
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figures in section 7.1, the same quadratic expression can be used when the same source
potential is used and R1 or R2 is varied, but a different quadratic expression is required if
the source potential is changed.

Figure 7.10: Retrieved thickness versus theoretical thickness of a PTFE cylinder varying
source potential using a L12531 Hamamatsu source

Table 7.10: Polynomial expressions of PTFE cylinders at different source potentials using
a L12531 Hamamatsu source

Source Potential (kV) Equation R2

60 y = -0.013x2+0.2418x+0.0973 0.9944
80 y = -0.014x2+0.2404x+0.0933 0.9946
100 y = -0.0136x2+0.2357x+0.0912 0.9949

Another cause of error that is seen in Figure 7.11 using a Kevlar cylinder as an exam-
ple is that using different sources at the same source potential can cause a large difference
between the retrieved thickness and measured thickness. Each source is used in separate
simulations, therefore the same spectrum from a specified source is used to simulate the
object and retrieve the image. The difference between the Thermo Scientific source spec-
trum at 60 kV and the Hamamatsu source spectrum at 60 kV is where the peaks occur
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and the number of peaks present. This change in spectrum causes the Thermo Scientific
source to have a relative error of around 13% for a measured thickness of 7 mm; whereas
the L12531 Hamamatsu source has a relative error of 68%. The only difference between the
two is the inputted spectrum used to create the final intensity image before phase retrieval.
Overall, the Thermo Scientific source seems to produce better results than the Hamamatsu
source according to this simulation. The one issue with the Thermo Scientific spectrum, as
mentioned before in section 7.1, is that there is uncertainty in how accurate the spectrum is
due to pileup caused by the number of photons hitting the spectrometer, and a collimator
is required to eliminate this issue. At this time, a collimator is not available. From these
results, it is obvious that the spectrum can affect the accuracy of retrieved thickness for
thicker objects.

Figure 7.11: Retrieved thickness versus measured thickness of Kevlar while varying the R1

and R2 values, and the source

Thus, the spectrum needs to be well calibrated and if the source potential changes,
a new spectrum and set of equations need to be used to find the true thickness of the
material. Also, different sources can affect the error of the final thickness retrieved image.

7.3 Effect of Noise on Paganin’s Method

As mentioned in section 4.4, noise plays a large role in X-ray imaging. For this reason, some
simulations using polystyrene cylinders where noise is present were run using the spectrum
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from Figure 5.1. The MATLAB code used to introduce noise is described in section 4.6.
Other than adding noise, the same parameters that were used in Chapter 5 are used for
these simulations. For all the simulations that occurred in Chapter 5, Paganin’s method
had a relative error that was always less than 10% for thicknesses between 20 µm to 400 µm.

In the presence of noise, Paganin’s method performs well for the case of relative error
versus thickness for thicknesses ranging between 20 µm to 400 µm, as seen in Figure 7.12.
Overall, the relative error is generally below 10%, except for samples that are thinner than
100 µm. In this case it appears as though Paganin’s method can handle added noise well.
This is expected because the Fourier filter used in Paganin’s method tends to increase the
SNR.

Figure 7.12: Relative error versus thickness of polystyrene in the presence of noise

In the case of changing the source potential and adding noise, the relative error for
lower potential is much higher in Figure 7.13 compared to the no noise case seen in the
same figure. Without noise, the relative error is less than 15% over all source potentials;
whereas for low source potentials (20 kV to 60 kV) with noise present, the relative error
generally exceeds 20%.

In the presence of noise, there is a lot more oscillation occurring with the relative error
due to the fact that noise is random and changes in each image. This oscillation effect
can be seen in all the figures in this section, but is especially obvious in Figures 7.14 and
7.15, where R1 and R2 are varied, respectively. This oscillation trend was observed with

95



Figure 7.13: Relative error versus source potential of polystyrene in the presence of noise

all materials when varying R1 and R2 in Chapter 5, although the oscillations become more
prominent with noise. In Figure 7.14, for the case where R1 is varied, the relative error
oscillates from close to zero up to around 23%.

Figure 7.14: Relative error versus R1 of polystyrene in the presence of noise
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In Figure 7.15, for the case where R2 is varied, the relative error generally oscillates
between zero to around 20% and, occasionally, reaches as high as 44%.

Figure 7.15: Relative error versus R2 of polystyrene in the presence of noise

From these results, it can be concluded that even though Paganin’s method seems to
be decently resilient to noise and, in some cases, can increase the SNR, noise may cause
the relative error to increase.
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Chapter 8

Conclusions, Contributions and
Future Work

8.1 Conclusions

Propagation-based PCI is the most promising PCI method to be used in medical and
industrial applications due to its simple setup that only requires a detector and an X-ray
source. It can be easily integrated into current X-ray systems that use a polychromatic
source. Although it is the simplest setup, it has the drawback that its post-image processing
is the most mathematically intense. All PCI images require a post-processing algorithm
called phase retrieval. Phase retrieval is required because the detector only detects the
intensity of X-rays, which contains both the attenuation and phase information. These
intensity values are a qualitative representation of the object, and, to properly analyze an
image, the phase information must be unwrapped from the data. For many of the methods
that use complex optics, phase retrieval is simple and only requires an unwrapping of the
2π phase shifts. In propagation-based PCI, phase retrieval becomes a nonlinear inverse
technique that is used to estimate the phase shift, thickness or electron density in an
image. When phase retrieval is applied, it removes the edge enhancement from the image
so that the boundaries of the object become well-defined and quantitative.

Most inverse problems, including phase retrieval, are ill-posed, which is caused by
either solutions not existing or not being unique. Also, the solutions may be unstable
with respect to small perturbations of input data. For propagation-based PCI, there ex-
ists two methods of phase retrieval that include iterative and non-iterative approaches.
Many researchers have tried to linearize the equations by using the transport of intensity
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equation and the contrast transfer function. In the end, there are seven well-known meth-
ods that have been derived: Paganin’s method, Bronnikov method, Modified Bronnikov
method, Arhatari TIE method, Arhatari CTF method, phase-attenuation duality method
and attenuation-partition based algorithm. Each method is derived under different math-
ematical assumptions, but they all perform the same task of retrieving the phase in a
phase-contrast image. All of these methods except for Arhatari’s two methods have been
derived under the assumption of a monochromatic source. Monochromatic sources tend
to require a large facility and are expense, thus cannot be easily integrated into industrial
or medical imaging. Polychromatic sources are already used in many imaging facilities,
therefore making it easier to integrate PCI and are cheaper than a monochromatic source.
For this reason, a phase retrieval method for polychromatic X-ray imaging is desirable.
Many of the methods derived under the assumption of a monochromatic source can be
easily altered to include a polychromatic source. These methods have been investigated
by many groups under the assumption of a monochromatic source. In this thesis, they
are extended to a polychromatic source, tested and analyzed under five cases for different
materials, which are varying object thickness, source potential, source-to-object distance,
object-to-detector distance and pixel size. Overall, Paganin’s method performs with min-
imal relative error under each test case and is the best method investigated. Modified
Bronnikov method and Arhatari TIE method perform almost as well as Paganin’s method.
The other four methods perform with relatively high relative error, with Bronnikov method
performing by-far the worst. Further, it was discovered that APBA does not work for en-
ergies less than 60 keV as claimed in [21]. In the end, Paganin’s method is chosen to be
applied experimentally.

Paganin’s method does not perform well experimentally with PTFE samples that have
thicknesses greater than 0.7112 mm. The retrieved thicknesses of these objects have high
relative errors when imaged using an unfiltered or filtered spectrum. The trends in the
results retrieved by Paganin’s method are found to be polynomial. There is no correlation
found between energy and retrieving the correct thickness with each sample imaged. After
reviewing the experimental data, it is clear that problems are arising in the system, which
could be caused by the source, the object or the detector. Since it is difficult to distinguish
where in the system the source of error is arising through experimentation, simulations
where performed.

When the object thickness is greater than 100 µm, the relative error of the thickness
retrieved by Paganin’s method increases. The trend between retrieved thickness versus
theoretical thickness of the objects is observed to be polynomial for many different types
of materials using different spectrums. This is the same trend that was observed in the
experimental results, but the equations were found to be different betweeen simulation and
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experimental results. The equations are similar when imaging the same type of material at
different source-to-object distances or object-to-detector distances, but they vary for differ-
ent spectrums or source potentials. Generally, a filtered spectrum using 2 mm of aluminum
gives the best results with the lowest relative error. Paganin’s method is able to retrieve
the thickness of a polystyrene object in simulation with relatively small error; whereas
PTFE has a large relative error. This proves that what is considered sufficiently thin for
one material may not apply to another material, and that phase retrieval is extremely
material dependent. Paganin’s method does not work on metals or dense materials, such
as tungsten.

Also, the spectrum needs to be well calibrated, and, if the source potential changes, a
new set of equations will need to be derived to calculate the true thickness of the object.
Different sources can affect the error produced by Paganin’s method. From the detec-
tor side, Paganin’s method is resilient to noise and can increase the signal-to-noise ratio
through Fourier filtering.

Overall, the high relative error in experiment is caused by PTFE not being considered
a thin object past 400 µm. Also, another cause is that the spectrum needs to be properly
characterized. These appear to be the largest factors that are causing the high relative
error in experimentation.

8.2 Contributions

The contributions of this work in the development of the phase-contract X-ray imaging
system includes:

• Analyzed the PSF of the 7.8 µm a-Se CMOS detector under optical light.

• Soldered and debugged the printed circuit board used for the detector.

• Improved the X-ray system by including various stages and safety components.

• Adapted some phase retrieval methods to work with a polychromatic X-ray spectrum.

• Compared phase retrieval methods under the polychromatic source condition.

• Applied phase retrieval to experimentally obtained polychromatic images and ana-
lyzed the sources of error in simulation.

• Constructed a micro-CT X-ray system and adapted existing reconstruction toolboxes
to create the final CT image.
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8.3 Future Work

A collimator should be used to measure the spectrum, and this new spectrum should be
applied in the phase retrieval algorithm to observe if there is any improvement in the results
of previously obtained data. Experimental investigation should be completed on various
types of materials. In future work, filtering the spectrum to acquire images is advised and
increasing the source-to-object distance to avoid backscattered X-rays from entering the
object. Most of the methods investigated in this paper only apply to homogeneous objects,
therefore finding a method that can be applied to a multi-material object is desired, such
as one that utilizes two spectrums. The long term goal of this work is to apply the phase
retrieval algorithm in micro-CT imaging, which will revolutionize industrial and medical
applications. Also, applying phase retrieval to mammography to distinguish carcinoma
from tissue and calcification is desired.
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Appendix A

Phase Retrieval Comparison Results

A.1 Polystyrene Results

A.1.1 With Bronnikov’s Method

Cylinder

Figure A.1: Relative error versus R1 for a polystyrene cylinder retrieved by different phase
retrieval methods
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Figure A.2: Relative error versus R2 with R1 = 16 cm for a polystyrene cylinder retrieved
by different phase retrieval methods

Figure A.3: Relative error versus source potential for a polystyrene cylinder retrieved by
different phase retrieval methods
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Figure A.4: Relative error versus pixel size for a polystyrene cylinder retrieved by different
phase retrieval methods

Figure A.5: Relative error versus R2 with R1 = 8 cm for a polystyrene cylinder retrieved
by different phase retrieval methods
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Figure A.6: Relative error versus pixel size for a polystyrene cylinder retrieved by different
phase retrieval methods

Sphere

Figure A.7: Relative error versus thickness for a polystyrene sphere retrieved by different
phase retrieval methods
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Figure A.8: Relative error versus R1 for a polystyrene sphere retrieved by different phase
retrieval methods

Figure A.9: Relative error versus R2 with R1 = 16 cm for a polystyrene sphere retrieved
by different phase retrieval methods
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Figure A.10: Relative error versus source potential for a polystyrene sphere retrieved by
different phase retrieval methods

Figure A.11: Relative error versus pixel size for a polystyrene sphere retrieved by different
phase retrieval methods
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Figure A.12: Relative error versus R2 with R1 = 8 cm for a polystyrene sphere retrieved
by different phase retrieval methods

Figure A.13: Relative error versus pixel size for a polystyrene sphere retrieved by different
phase retrieval methods
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A.1.2 Without Bronnikov’s Method

Cylinder

Figure A.14: Relative error versus R2 with R1 = 8 cm for a polystyrene cylinder retrieved
by different phase retrieval methods
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Figure A.15: Relative error versus pixel size for a polystyrene cylinder retrieved by different
phase retrieval methods

Sphere

Figure A.16: Relative error versus thickness for a polystyrene sphere retrieved by different
phase retrieval methods
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Figure A.17: Relative error versus R1 for a polystyrene sphere retrieved by different phase
retrieval methods

Figure A.18: Relative error versus R2 with R1 = 16 cm for a polystyrene sphere retrieved
by different phase retrieval methods
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Figure A.19: Relative error versus source potential for a polystyrene sphere retrieved by
different phase retrieval methods

Figure A.20: Relative error versus pixel size for a polystyrene sphere retrieved by different
phase retrieval methods
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Figure A.21: Relative error versus R2 with R1 = 8 cm for a polystyrene sphere retrieved
by different phase retrieval methods

Figure A.22: Relative error versus pixel size for a polystyrene sphere retrieved by different
phase retrieval methods
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A.2 Kapton Results

A.2.1 With Bronnikov’s Method

Cylinder

Figure A.23: Relative error versus R1 for a kapton cylinder retrieved by different phase
retrieval methods
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Figure A.24: Relative error versus R2 with R1 = 16 cm for a kapton cylinder retrieved by
different phase retrieval methods

Figure A.25: Relative error versus source potential for a kapton cylinder retrieved by
different phase retrieval methods
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Figure A.26: Relative error versus pixel size for a kapton cylinder retrieved by different
phase retrieval methods

Figure A.27: Relative error versus R2 with R1 = 8 cm for a kapton cylinder retrieved by
different phase retrieval methods
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Figure A.28: Relative error versus pixel size for a kapton cylinder retrieved by different
phase retrieval methods

Sphere

Figure A.29: Relative error versus thickness for a kapton sphere retrieved by different phase
retrieval methods

123



Figure A.30: Relative error versus R1 for a kapton sphere retrieved by different phase
retrieval methods

Figure A.31: Relative error versus R2 with R1 = 16 cm for a kapton sphere retrieved by
different phase retrieval methods
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Figure A.32: Relative error versus source potential for a kapton sphere retrieved by different
phase retrieval methods

Figure A.33: Relative error versus pixel size for a kapton sphere retrieved by different phase
retrieval methods
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Figure A.35: Relative error versus pixel size for a kapton sphere retrieved by different phase
retrieval methods

Figure A.34: Relative error versus R2 with R1 = 8 cm for a kapton sphere retrieved by
different phase retrieval methods
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A.2.2 Without Bronnikov’s Method

Cylinder

Figure A.36: Relative error versus R2 with R1 = 8 cm for a kapton cylinder retrieved by
different phase retrieval methods
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Figure A.37: Relative error versus pixel size for a kapton cylinder retrieved by different
phase retrieval methods

Sphere

Figure A.38: Relative error versus thickness for a kapton sphere retrieved by different phase
retrieval methods
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Figure A.39: Relative error versus R1 for a kapton sphere retrieved by different phase
retrieval methods

Figure A.40: Relative error versus R2 with R1 = 16 cm for a kapton sphere retrieved by
different phase retrieval methods
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Figure A.41: Relative error versus source potential for a kapton sphere retrieved by different
phase retrieval methods

Figure A.42: Relative error versus pixel size for a kapton sphere retrieved by different phase
retrieval methods
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Figure A.43: Relative error versus R2 with R1 = 8 cm for a kapton sphere retrieved by
different phase retrieval methods

Figure A.44: Relative error versus pixel size for a kapton sphere retrieved by different phase
retrieval methods
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A.3 PTFE Results

A.3.1 With Bronnikov’s Method

Cylinder

Figure A.45: Relative error versus R1 for a PTFE cylinder retrieved by different phase
retrieval methods
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Figure A.46: Relative error versus R2 with R1 = 16 cm for a PTFE cylinder retrieved by
different phase retrieval methods

Figure A.47: Relative error versus source potential for a PTFE cylinder retrieved by dif-
ferent phase retrieval methods
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Figure A.48: Relative error versus pixel size for a PTFE cylinder retrieved by different
phase retrieval methods

Figure A.49: Relative error versus R2 with R1 = 8 cm for a PTFE cylinder retrieved by
different phase retrieval methods
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Figure A.50: Relative error versus pixel size for a PTFE cylinder retrieved by different
phase retrieval methods

Sphere

Figure A.51: Relative error versus thickness for a PTFE sphere retrieved by different phase
retrieval methods
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Figure A.52: Relative error versus R1 for a polystyrene sphere retrieved by different phase
retrieval methods

Figure A.53: Relative error versus R2 with R1 = 16 cm for a PTFE sphere retrieved by
different phase retrieval methods
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Figure A.54: Relative error versus source potential for a PTFE sphere retrieved by different
phase retrieval methods
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Figure A.55: Relative error versus pixel size for a PTFE sphere retrieved by different phase
retrieval methods

Figure A.56: Relative error versus R2 with R1 = 8 cm for a PTFE sphere retrieved by
different phase retrieval methods
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Figure A.57: Relative error versus pixel size for a PTFE sphere retrieved by different phase
retrieval methods
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A.3.2 Without Bronnikov’s Method

Cylinder

Figure A.58: Relative error versus R2 with R1 = 8 cm for a PTFE cylinder retrieved by
different phase retrieval methods
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Figure A.59: Relative error versus pixel size for a PTFE cylinder retrieved by different
phase retrieval methods

Sphere

Figure A.60: Relative error versus thickness for a PTFE sphere retrieved by different phase
retrieval methods
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Figure A.61: Relative error versus R1 for a PTFE sphere retrieved by different phase
retrieval methods

Figure A.62: Relative error versus R2 with R1 = 16 cm for a PTFE sphere retrieved by
different phase retrieval methods
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Figure A.63: Relative error versus source potential for a PTFE sphere retrieved by different
phase retrieval methods

Figure A.64: Relative error versus pixel size for a PTFE sphere retrieved by different phase
retrieval methods
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Figure A.65: Relative error versus R2 with R1 = 8 cm for a PTFE sphere retrieved by
different phase retrieval methods

Figure A.66: Relative error versus pixel size for a PTFE sphere retrieved by different phase
retrieval methods
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Appendix B

Effect of Materials Results

Figure B.1: Retrieved thickness versus theoretical thickness comparing the results of a
simulated PTFE sphere and cylinder using the 40 kV Thermo Scientific spectrum
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Figure B.2: Retrieved thickness versus theoretical thickness of a PTFE cylinder varying
R1 and R2 using the 40 kV Thermo Scientific spectrum

Figure B.3: Retrieved thickness versus theoretical thickness of a polystyrene cylinder vary-
ing R1 and R2 using the 40 kV Thermo Scientific spectrum
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Figure B.4: Retrieved thickness versus theoretical thickness of a polystyrene cylinder vary-
ing R1 and R2 using the 100 kV L12531 Hamamatsu spectrum

Figure B.5: Retrieved thickness versus theoretical thickness of a kevlar cylinder varying
R1 and R2 using the 60 kV L12531 Hamamatsu spectrum
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Figure B.6: Retrieved thickness versus theoretical thickness of a kevlar cylinder varying
R1 and R2 using the 100 kV L12531 Hamamatsu spectrum
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Appendix C

Attenuation Partition Based
Algorithm Matlab Code

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%Starts the phase mapping program

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L = 0;

for j = 20:5:140

L = L+1;

r = 50*1e-6; %[m] radius of sphere

R1 = 0.08; % [m] SOD

R2 = 0.16; % [m] ODD

Rtot = R1 + R2; % [m] SDD

M = Rtot/R1; %[unitless] magnification

z = R2/M; %[m] effective propagation distance

%Detector

% p = 7.8e-6; %[m] pixel pitch

%Detector

p = 7.8*1e-6; %[m] pixel pitch

% p=5e-6;

%Simulation resolution of field of view

model_res = p/10; %[m]
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dx = model_res; %[m]

dy = model_res; %[m]

xfov = 3*r; %[m] field of view

yfov = 3*r; %[m]

xmin = -xfov/2; xmax = xfov/2; %[m] x range of field of view in object plane

ymin = -yfov/2; ymax = yfov/2; %[m] y range of field of view in object plane

x = xmin:dx:xmax; y = ymin:dy:ymax; %[m] coordinate vectors

[X,Y] = meshgrid(x,y); %[m] coordinate matrices

%Spatial frequencies

nx = length(x); ny = length(y); %[unitless] number of pixels in x and y direction

%[1/m] frequency in the x and y direction respectively

u = ifftshift((-floor(nx/2):floor((nx-1)/2))/(nx*dx));

v = ifftshift((-floor(ny/2):floor((ny-1)/2))/(ny*dy));

[U,V] = meshgrid(u,v); %[1/m] frequency grid

w2 = U.^2+V.^2; %[1/m^2]

%physical constants

c = 299792458; %[m/s] speed of light

h = 6.6260689633e-34; %[Js] Planck’s constant

eV = 1.6022e-19; %[J/eV] unit conversion constant

re = 2.82e-15; %[m] classical electron radius

Na = 6.022e23; %[atoms/mol] Avogradro’s number

me = 9.10938356e-31; %[kg] mass of an electron

%X-ray energy

E = [1:150]*1e3’; % [eV]

inherent_filtration = [spektrElement2Z(’Be’), 0.1]; % [mm Be]

added_filtration = [[spektrElement2Z(’Al’), 2.0]]; % [mm Al]

kVp = j; % [kVp]

Phi_tube = spektrSpectrum(kVp, inherent_filtration); % spectrum with inherent filtration

spectrum = spektrBeers(Phi_tube, added_filtration); % spectrum with filtration

Quanta = sum(spectrum); % Number of quanta

lambda = c*h./(E*eV); %[m] wavelength

k = 2*pi./lambda; %[rad/m] angular wave number

150



%Teflon information for delta (phase coefficient):

%C2F4 is PTFE

% rho = 2.2; %density of PTFE [g/cm^3]

% Num_of_C = 2;

% Num_of_F = 4;

%

% %Molar Mass

% MMC = 12.011*Num_of_C; %[g/mol]

% MMF = 18.998*Num_of_F; %[g/mol]

% MM_total = MMC + MMF; %[g/mol]

%

% ZC = 6;

% ZF = 9;

%

% Z = ZC*Num_of_C + ZF*Num_of_F; %total atomic number

% nz_total = rho*1e6*1/MM_total*Na; %atoms/m^3

% delta = re*h^2*c^2./(2*pi*(E*eV).^2).*nz_total*Z;

% rho = 1.04; % density of polystyrene [g/cm^3]

%

% Num_of_C = 8;

% Num_of_H = 8;

% Num_of_F = 0;

% %

% % %Atomic numbers

% ZH = 1;

% ZC = 6;

% ZF = 9;

%Teflon information for delta (phase coefficient):

%C2F4 is PTFE

% rho = 2.21439238; % density of PTFE [g/cm^3]

% Num_of_C = 2;

% Num_of_F = 4;

% Num_of_H = 0;

%Molar Mass
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% MMC = 12.011*Num_of_C; % [g/mol]

% MMH = 1.008*Num_of_H; % [g/mol]

% MMF = 18.998*Num_of_F; % [g/mol]

% MM_total = MMC + MMH + MMF; % [g/mol] total molar mass

% Z = ZC*Num_of_C + ZH*Num_of_H+ ZF*Num_of_F; %total atomic number

% %Kapton

rho = 1.42; %[g/m^3] Density of Kapton Polyimide film

%

% % Composition C22H10N2O5

Num_of_C = 22;

Num_of_H = 10;

Num_of_N = 2;

Num_of_O = 5;

% Molar Mass

MMC = 12.011*Num_of_C; %[g/mol]

MMH = 1.008*Num_of_H; %[g/mol]

MMN = 14.00670*Num_of_N; %[g/mol]

MMO = 15.9994*Num_of_O; %[g/mol]

MM_total = MMC + MMH + MMN + MMO; %[g/mol] total molar mass

% Atomic numbers

ZH = 1;

ZC = 6;

ZN = 7;

ZO = 8;

Z = ZC*Num_of_C +ZH*Num_of_H + ZN*Num_of_N + ZO*Num_of_O;

nz_total = rho*1e6*1/MM_total*Na; %atoms/m^3;

delta = re*h^2*c^2./(2*pi*(E*eV).^2).*(nz_total*Z);

%Detector

rho_Se = 4.819; %[g/cm^3] density of selenium

mu_Se = spektrMuRhoElement(34)*rho_Se*100; %[1/m] attenuation
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E_mu = [1:150]*1e3; %Spektr energies [eV]

mu_Se = interp1(E_mu, mu_Se, E);

thickness_Selenium = 100e-6; % [m] thickness of selenium deposited on the detector

eta = 1-exp(-mu_Se.*thickness_Selenium);

spectrum = spectrum’.*eta;

%[1/m] sample attenuation coefficient for the energies E

% mu = spektrMuRhoCompound([6 2; 9 4])*rho*100; %[1/m] attenuation coefficient of teflon

% mu = spektrMuRhoCompound([6 8;1 8])*rho*100;%attenuation coefficient of

% polystyrene

mu = mu_rho_function(E/1000, ’Kapton’)*100;

%Sample data

thickness = 2*real(sqrt(r.^2-X.^2-Y.^2)); %[m] sphere

% thickness = 2*real(sqrt(r.^2-X.^2)); %[m] cylinder

%Phase image

img = zeros(ny, nx);

noiseVariance = zeros(ny,nx);

for n = 1:length(E)

%Transmission function of the object at energy E(n)

transmission = exp(-thickness*(mu(n)/2 + 1i*k(n)*delta(n)));

%Fourier filter corresponding to free space propagation

propagator = exp(-1i*pi*z*lambda(n)*w2);

%propagator field for current photon energy

img0 = abs(ifft2(fft2(transmission).*propagator)).^2;

%add contribution of this energy to the image

img = img + img0.*spectrum(n);

end

%Interpolate from simulation pixels to detector pixels

%Define pixel coordinates

Dx = p/M; Dy = p/M; %[m] pixel size in sample plane

xp = (min(x)-dx/2+Dx/2:Dx:max(x)+dx/2-Dx/2); %[m]

yp = (min(y)-dy/2+Dy/2:Dy:max(y)+dy/2-Dy/2); %[m]

%[m] create pixel coordinates matrices

[Xp,Yp] = meshgrid(xp,yp);

rp2 = Xp.^2+Yp.^2; %[m^2]
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%Spatial freqencies

nxp = length(xp); nyp = length(yp); %number of pixels in x and y direction

%[1/m] frequency in the x and y direction respectively

up = ifftshift((-floor(nxp/2):floor((nxp-1)/2))/(nxp*Dx));

vp =ifftshift((-floor(nyp/2):floor((nyp-1)/2))/(nyp*Dy));

[Up, Vp] = meshgrid(up, vp); %[1/m]

w2p = Up.^2 + Vp.^2; %[1/m^2]

%Specify pixel reslution

pixelMTF = sinc(pi*p/M*U).*sinc(pi*p/M*V); %MTF corresponding to integration over the area of a pixel

%Blur image (filter with MTF)

img = ifft2(fft2(img).*pixelMTF);

%Interpolate and scale signal with pixel size

img = interp2(X,Y, img, Xp, Yp)*p/M*p/M/(dx*dy);

Iin = img(1,1); %incident intensity at the object plane

%Models the absoprtion image

model_res_A = p/10;

dxA = model_res_A; %[m] simulation pixel size in x direction in object plane

dyA = model_res_A; %[m] simulation pixel size in y direciton in object plane

xfovA = 3*r;

yfovA = 3*r;

xminA = -xfovA/2; xmaxA = xfovA/2; %[m] x range of field of view in object plane

yminA = -yfovA/2; ymaxA = yfovA/2; %[m] y range of field of view in object plane

xA = xminA:dxA:xmaxA; yA = yminA:dyA:ymaxA; %[m] coordinate vectors

[XA,YA] =meshgrid(xA, yA); %[m] coordinate matrices

%Spatial frequencies

nxA = length(xA); nyA = length(yA); %number of pixels in x and y direction

%[1/m] frequency in the x and y direction respectively

uA =ifftshift((-floor(nxA/2):floor((nxA-1)/2))/(nxA*dxA));

vA =ifftshift((-floor(nyA/2):floor((nyA-1)/2))/(nyA*dyA));

[UA,VA] = meshgrid(uA,vA); %[1/m] frequency grid

w2A = UA.^2+VA.^2;

%Sample data for absorption image
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% thickness = 2*real(sqrt(r.^2-XA.^2-YA.^2)); %[m] sphere

thickness = 2*real(sqrt(r.^2-XA.^2)); %[m] cylinder

%Sum up contributions to the image for all energies of the spectrum

img_abs = zeros(nyA, nxA); %[detector counts] the image to be calculated

noiseVariance = zeros(nyA,nxA);

for n = 1:length(E)

%transmission function of the object at energy E

transmissionA = exp(-thickness*(mu(n)/2 + 1i*k(n)*delta(n)));

%Absorption Image

img_abs = abs(transmissionA).^2;

img_abs = img_abs + img_abs.*spectrum(n);

end

%Specify pixel resolution

pixelMTF = sinc(pi*p*UA).*sinc(pi*p*VA); %MTF corresponding to integration over the area of a pixel

%Blur image (filter with the MTF)

img_abs = ifft2(fft2(img_abs).*pixelMTF);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

%Initialization values for APBA

%Note: Any physical distances should be divided by 0.0050 cm/pix to

%convert to pixels

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delta_A_old = double(0);

I_delta = double(0);

error = double(0);

% re = re*100/p; %Radius of electron [pixels]

eta = (E*eV)./(me*(c^2));

%Equation 11 (Klein-Nishina equation)

sigma = 2.*pi.*re.^2.*((1+eta)./(eta.^2).*((2.*(1+eta))./(1+2.*eta)-(1./eta)...

.*log(1+2.*eta))+1./(2.*eta).*log(1+2.*eta)-(1+3.*eta)./((1+2.*eta).^2)); %[m^2]
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I0 = Iin;

n = 1;

I = img./I0; %normalized intensity

A0 = sqrt(img_abs);

sigma = sum(sigma.*spectrum)./sum(spectrum);

lambda_2_sigma = sum(lambda.^2./sigma.*spectrum)/sum(spectrum);

lambda = sum(lambda.*spectrum)/sum(spectrum);

delta = sum(delta.*spectrum)/sum(spectrum);

omega = lambda*R2/(2*pi*M); %[m^2]

k = lambda_2_sigma*R2*re/(2*pi*M); %[m^2]

while (n<=10)

I_KN = (sqrt(I) + sqrt(I_delta)).^2;

A_KN_2 = ifft2(fft2(I_KN)./(1+4*pi^2*k*w2p));

% A_KN_2 = abs(A_KN_2);

phi = lambda*re/sigma*log(A_KN_2); %phase

A_KN = sqrt(A_KN_2);

P = A0./A_KN;

A_delta = A_KN.*(1-P);

delta_error = abs(delta_A_old - A_delta);

error = max(max(delta_error));

T = A_delta.*exp(1i.*phi);

G = exp(1i.*(rp2)./(2*omega));

t0 = (fft2(T));

%Analytical transform of G by Rhiannon

g = exp(-1i/2*omega*w2p)/(-1i/omega);

e1 = (1/(2*pi*omega)).*g.*t0;

E_1 = ifft2((e1));

E_2 = conj(E_1);
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I_delta = abs(E_1).^2;

delta_A_old = A_delta;

n = n + 1;

end

thickness_retrieved = -lambda*phi/(2*pi*delta);

theoretical_thickness(L) = max(thickness(:)); %Diameter of the sphere or cylinder

kVp_all(L) = kVp;

absolute_error(L) = abs(theoretical_thickness(L) - max(max(thickness_retrieved)))*100;

relative_error(L) = absolute_error(L)/theoretical_thickness(L);

simulated_thickness(L) = max(max(thickness_retrieved));

R1_all(L) = R1;

R2_all(L)= R2;

pixel_size(L) = p;

end
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Appendix D

Phase Retrieval Simulation Matlab
Code

clear all

clc

close all

addpath(’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\Research Simulations\spektr’);

addpath(’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\xrTK\src’);

addpath(’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\xrTK\tables’);

%initialize matrices

simulated_thickness = [];

absolute_error = [];

relative_error = [];

kVp_all = [];

theoretical_thickness = [];

% method: Paganin = 0

%Arhatari TIE = 1

%Modified Bronnikov = 2

%PAD = 3

%Arhatari CTF = 4

%Bronnikov = 5

method = 0;

L = 0; % initialize a counter
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%material: PTFE = PT

%Kapton = KA

%Tungsten = WW

%Polystyrene = PS

%Aluminum = Al

%Kevlar = KV

material = ’PT’;

geo = ’C’;

noise = 0; %include noise = 1

filter = -0.8; %creates a half-value layer of 1.2

ti = [1.5875, 2.8125, 3.175, 4.35, 5.5, 7]; % thickness to be simulated

spec = 0; %use spectrum from source = 0, use Spektr spectrum = 1

for j = 1:length(ti)

r = ti(j)/2*1e-3; % radius of a sphere

L = L+1;

kVp = 60;

%Imaging geometry

R1 = 8/100; % [m] source to object distance

R2 = 8/100; % [m] object to detector distance

Rtot = R1 + R2; % [m] source to detector distance

M = Rtot/R1; % magnification

z = R2/M; % [m] effective propagation distance

%Detector

p =7.8*1e-6; % [m] pixel pitch

%Simulation resolution and field of view

model_res = p/10;

dx = model_res; % [m] simulation pixel size in x direction in object plane

dy = model_res; % [m] simulation pixel size in y direction in object plane

xfov = 3*r;

yfov = 20e-6;

xmin = -xfov/2; xmax = xfov/2; % [m] x range of field of view in object plane

ymin = -yfov/2; ymax = yfov/2; % [m] y range of field of view in object plane

x = xmin:dx:xmax; y = ymin:dy:ymax; % [m] coordinate vectors
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[X,Y] = meshgrid(x,y); % [m] coordinate matrices

%Spatial frequencies

nx = length(x); ny = length(y); % number of pixels in x and y direction

% [1/m] frequency in the x and y direction, respectively

u = ifftshift((-floor(nx/2):floor((nx-1)/2))/(nx*dx));

v = ifftshift((-floor(ny/2):floor((ny-1)/2))/(ny*dy));

[U,V] = meshgrid(u,v); % [1/m] frequency grid

w2 = U.^2 + V.^2; % frequency magnitude squared

%Physical constants

c = 299792458; % [m/s]

h = 6.6260689633e-34; % [Js] Planck’s constant

eV = 1.6022e-19; % [J/eV] unit conversion constant

re = 2.82e-15; % [m] classical electron radius

Na = 6.022e23; % [atoms/mol] Avogadro’s number

me = 9.10938356e-31; %[kg] mass of an electron

if spec == 1

E = [1:150]*1e3;

spectrum = spektrSpectrum(kVp,filter);

end

% X-ray Spectrum

inherent_filtration = [spektrElement2Z(’Be’), 0.1]; % [mm Be]

added_filtration = [[spektrElement2Z(’Al’), 0.0]]; % [mm Al]

kVp = 90; % [kVp]

Phi_tube = spektrSpectrum(kVp, inherent_filtration); % spectrum with inherent filtration

spectrum = spektrBeers(Phi_tube, added_filtration); % spectrum with filtration

if spec == 0

Counts_Energy = load(’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\Phase retrieval\Matlab_Data\Spectrum_60kV_2mmAl.mat’);

spectrum = Counts_Energy.Phi;

spectrum = spectrum./sum(spectrum);

E = Counts_Energy.E;

E = E*1000;

end
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lambda = c*h./(E*eV); % [m] wavelength

k = 2*pi./lambda; %[1/m] angular wave number

%Sample data

if geo == ’C’

thickness = 2*real(sqrt(r.^2-X.^2)); % [m] cylinder

elseif geo == ’S’

thickness = 2*real(sqrt(r.^2-X.^2-Y.^2)); % [m] sphere

end

if material == ’PS’

%Polystyrene information for delta (phase coefficient):

%C8H8 is polystyrene

rho = 1.04; % density of polystyrene [g/cm^3]

Num_of_C = 8;

Num_of_H = 8;

Num_of_F = 0;

% %Atomic numbers

ZH = 1;

ZC = 6;

ZF = 9;

Z = ZC*Num_of_C + ZH*Num_of_H+ ZF*Num_of_F; %total atomic number

% Molar Mass

MMC = 12.011*Num_of_C; % [g/mol]

MMH = 1.008*Num_of_H; % [g/mol]

MMF = 18.998*Num_of_F; % [g/mol]

MM_total = MMC + MMH + MMF; % [g/mol] total molar mass

mu =spektrMuRhoCompound([6 8; 1 8])*rho*100; %[1/m] attenuation of polystyrene

mu = interp1([1:150], mu, E/1000);
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elseif material == ’Al’

%Aluminum

rho = 2.7; %Density of Al [g/cm^3]

ZAl = 13; %Atomic number of Al

Num_of_Al = 1;

MMAl = 26.98; %[g/mol]

Z = ZAl*Num_of_Al;

MM_total = MMAl;

mu = spektrMuRhoElement(ZAl)*rho*100; %[1/m] attenuation of Aluminum

mu = interp1([1:150], mu, E/1000);

elseif material == ’PT’

% %Teflon information for phase coefficient:

% %C2F4 is PTFE

rho = 2.21439238; % density of PTFE [g/cm^3]

Num_of_C = 2;

Num_of_F = 4;

Num_of_H = 0;

% %Atomic numbers

ZH = 1;

ZC = 6;

ZF = 9;

Z = ZC*Num_of_C + ZH*Num_of_H+ ZF*Num_of_F; %total atomic number

% Molar Mass

MMC = 12.011*Num_of_C; % [g/mol]

MMH = 1.008*Num_of_H; % [g/mol]

MMF = 18.998*Num_of_F; % [g/mol]

MM_total = MMC + MMH + MMF; % [g/mol] total molar mass

mu = spektrMuRhoCompound([6 2; 9 4])*rho*100; % [1/m] attenuation of teflon

mu = interp1([1:150], mu, E/1000);

elseif material == ’KA’

%Kapton
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rho = 1.42; %[g/m^3] Density of Kapton Polyimide film

%Composition C22H10N2O5

Num_of_C = 22;

Num_of_H = 10;

Num_of_N = 2;

Num_of_O = 5;

% Molar Mass

MMC = 12.011*Num_of_C; %[g/mol]

MMH = 1.008*Num_of_H; %[g/mol]

MMN = 14.00670*Num_of_N; %[g/mol]

MMO = 15.9994*Num_of_O; %[g/mol]

MM_total = MMC + MMH + MMN + MMO; %[g/mol] total molar mass

% Atomic numbers

ZH = 1;

ZC = 6;

ZN = 7;

ZO = 8;

Z = ZC*Num_of_C +ZH*Num_of_H + ZN*Num_of_N + ZO*Num_of_O; % total atomic number

mu = mu_rho_function(E/1000, ’Kapton’)*100;

elseif material == ’WW’

%Tungsten

rho = 19.3; %density of tungsten W

MM_total = 183.84;

Z = 74;

mu = spektrMuRhoElement(Z)*rho*100;

mu = interp1([1:150], mu, E/1000);

elseif material == ’KV’

% Kevlar

% COC6H4CONHC6H4NH

% C 14 O 2 H 10 N 2

rho = 1.44; % density of Kevlar in [g/cm^3]
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MM_total = 10*1.008 + 14.00670*2 + 15.9994*2 + 12.011*14;

Z = 1*10 + 6*14 + 2*8 + 6*14;

mu = mu_rho_function(E/1000, ’Kevlar’)*100;

end

nz_total = rho*1e6*1/MM_total*Na; %atoms/m^3;

delta = re*h^2*c^2./(2*pi*(E*eV).^2).*(nz_total*Z);

rho_Se = 4.819; %[g/cm^3] density of selenium

mu_Se = spektrMuRhoElement(34)*rho_Se*100; %[1/m] attenuation

mu_Se = interp1([1:150], mu_Se, E/1000);

thickness_Selenium = 100e-6; % [m] thickness of selenium deposited on the detector

eta = 1-exp(-mu_Se.*thickness_Selenium);

if spec == 1

delta = delta’;

mu = mu’;

lambda = lambda’;

eta = eta’;

end

spectrum_Se = spectrum.*eta;

%Sum up contributions to the image for all energies of the spectrum

%Ignoring noise in this situation

img = zeros(ny,nx); %[detector counts] the image to be calculated

img_abs = zeros(ny,nx); %[detector counts] the image to be calculated - absorption

noiseVariance = zeros(ny,nx);

for n = 1:length(E)

%the transmission function of the object at energy E(n)

transmission = exp(-thickness*(mu(n)/2+1i*k(n)*delta(n)));

%Absorption Image

img0 = abs(transmission).^2;
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%Superimpose absorption image data

img_abs = img_abs + spectrum_Se(n).*img0;

%Fourier filter corresponding to free space propagation

propagator = exp(-1i*pi*z*lambda(n)*w2);

%propagator field for current photon energy

img0 = abs(ifft2(fft2(transmission).*propagator)).^2;

%add contribution of this energy to the image

img = img+img0.*spectrum_Se(n);

%add contribution to the variance of the noise

noiseVariance = noiseVariance + img0*spectrum_Se(n);

end

%Specify the detector resolution

dPSFWidth = 25e-6;%[m] FWHM of Gaussian detector point spread function

%[m] detector PSF standard deviation in sample plane

dPSFSigma = dPSFWidth/(2*sqrt(2*log(2)))/M;

%detector contribution to system MTF

detectorMTF = exp(-w2*pi^2*2*dPSFSigma^2);

%Specify pixel resolution

pixelMTF = sinc(pi*p/M*U).*sinc(pi*p/M*V); % MTF corresponding to integration over the area of a pixel

%Specify the source spatial distribution

sourceWidth = 7e-6; % [m] FWHM of Gaussian source

%[m] source standard deviation scaled to sample plane

sourceSigma = sourceWidth/(2*sqrt(2*log(2)))*(M-1)/M;

%source contribution to the system MTF

sourceMTF = exp(-w2*pi^2*2*sourceSigma^2);

%Add photon noise

NPS = exp(-w2*pi^2*4*dPSFSigma^2) + .05; %normalized noise power spectrum

% create an instance of white noise with the right noise variance

noiseInstance = randn(ny,nx).*sqrt(noiseVariance);

% filter the noise to get the correct noise power spectrum
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noiseInstance = ifft2(fft2(noiseInstance).*sqrt(NPS));

if noise == 1

img = img + noiseInstance; %add the noise to the image

end

%Blur the image (filter with the MTF)

% img_blur = ifft2(fft2(img).*pixelMTF.*detectorMTF);

img_blur = ifft2(fft2(img).*pixelMTF);

%Interpolate from simulation pixels to detector pixels

%Define pixel coordinates

Dx = p/M; Dy = p/M; % [m] pixel size in sample plane

xp = min(x)-dx/2+Dx/2:Dx:max(x)+dx/2-Dx/2; % [m]

yp = min(y)-dy/2+Dy/2:Dy:max(y)+dy/2-Dy/2; % [m]

% [m] create pixel coordinates matrices

[Xp,Yp] = meshgrid(xp,yp);

%Interpolate and scale signal with pixel size

img = interp2(X,Y,img_blur,Xp,Yp)*p/M*p/M/(dx*dy);

%% Phase Retrieval

%Spatial Frequencies

nx = length(xp); ny = length(yp); %number of pixels in x and y direction

dx = Dx; dy = Dy;

%[1/m] frequency in the x and y direction, respectively

u = ifftshift((-floor(nx/2):floor((nx-1)/2))/(nx*dx));

v = ifftshift((-floor(ny/2):floor((ny-1)/2))/(ny*dy));

[U,V] = meshgrid(u,v); %[1/m] frequency grid

w2 = U.^2 + V.^2; %frequency magnitude squared

mu_poly = sum(spectrum_Se.*mu)/sum(spectrum_Se);

delta_poly = sum(spectrum_Se.*delta)/sum(spectrum_Se);

lambda_poly = sum(spectrum_Se.*lambda)/sum(spectrum_Se);

eta = (E*eV)./(me*(c^2));

%Equation 11 (Klein-Nishina equation)
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sigma = 2.*pi.*re.^2.*((1+eta)./(eta.^2).*((2.*(1+eta))./(1+2.*eta)-(1./eta)...

.*log(1+2.*eta))+1./(2.*eta).*log(1+2.*eta)-(1+3.*eta)./((1+2.*eta).^2)); %[m^2]

sigma = sum(sigma’.*spectrum_Se)/sum(spectrum_Se);

alpha = lambda_poly/(2*pi)*mu_poly/delta_poly;

if method == 0

%Paganin’s method

g = img./img(1,1);

%filter function

Hp = mu_poly./(mu_poly+4*pi^2*delta_poly.*z*w2);

%Fourier transform image

FFTgI = fft2(g);

%Multiply by the filter

gf = FFTgI.*Hp;

%Inverse Fourier transform the image

IFFTgf = ifft2(gf);

%Retrieve thickness of homogeneous object

thickness_retrieved = -1/mu_poly*log(IFFTgf);

elseif method == 1

%Arhatari TIE

g = img./img(1,1)-1;

%filter function

Hp = 1./(mu_poly+z*delta_poly*4*pi^2.*w2);

%Fourier transform image

FFTgI = fft2(g);

%Multiply by the filter

gf = FFTgI.*Hp;

%Inverse Fourier transform the image

IFFTgf = ifft2(gf);

%Retrieve thickness of homogeneous object

thickness_retrieved = -IFFTgf; %[m]

elseif method == 2

%Modified Bronnikov method

g = img./img(1,1) -1;

Hp = 1./(2*pi*lambda_poly*z*w2+alpha);
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gf = Hp.*fft2(g);

phase = ifft2(gf);

max(max(phase));

min(min(phase));

thickness_retrieved = -lambda_poly*phase./(delta_poly*2*pi);

elseif method == 3

%PAD

g = img./img(1,1);

Hp = 1./(1+2*pi*re*lambda_poly^2*z/sigma*w2);

gf = Hp.*fft2(g);

phase = lambda_poly*re/sigma.*log(ifft2(gf));

thickness_retrieved = -lambda_poly*phase./(delta_poly*2*pi);

elseif method == 4

%Arhatari CTF

beta = lambda./(4*pi).*mu;

CTF_lambda = zeros(ny,nx,length(lambda));

for k = 1:length(lambda)

CTF_lambda(:,:,k) = (4*pi*sqrt(delta(k).^2+beta(k).^2)./lambda(k).*sin(pi*lambda(k).*z.*w2+atan(beta(k)./delta(k))).*spectrum(k));

end

CTF_poly = zeros(ny,nx);

for k = 1:ny

for j = 1:nx

CTF_poly(k,j) = trapz(E, CTF_lambda(k,j,:))./trapz(E, spectrum);

end

end

Hp = (1./CTF_poly);

g = img./img(1,1)-1;

FFTgI = (fft2(g));

gf = FFTgI.*Hp;

IFFTgf = ifft2((gf));

thickness_retrieved = -(IFFTgf);

elseif method == 5

%Bronnikov method

g = img./img(1,1) -1;
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Hp = 1./(2*pi*lambda_poly*z*w2);

[index1, index2] =find(isinf(Hp));

Hp(index1, index2) = 1e-28;

gf = Hp.*fft2(g);

phase = ifft2(gf);

max(max(phase));

min(min(phase));

thickness_retrieved = -lambda_poly*phase./(delta_poly*2*pi);

end

theoretical_thickness(L) = max(thickness(:)); %Diameter of the sphere or cylinder

kVp_all(L) = kVp;

absolute_error(L) = abs(theoretical_thickness(L) - max(max(thickness_retrieved)))*100;

relative_error(L) = absolute_error(L)/theoretical_thickness(L);

simulated_thickness(L) = max(max(thickness_retrieved));

R1_all(L) = R1;

R2_all(L)= R2;

pixel_size(L) = p;

end

simulated_thickness = simulated_thickness’;

theoretical_thickness = theoretical_thickness’;

figure;

% for Intensity, with Se for Retrieval

plot(theoretical_thickness*1e6, simulated_thickness*1e6)

xlabel(’Theoretical Thickness [um]’)

ylabel(’Simulated Thickness [um]’)

title(’Using Spectrum with Se Absorption’)

xlim([20, 200])

figure;

plot(theoretical_thickness*1e6, relative_error, ’o’)

xlabel(’Theoretical Thickness [um]’)

ylabel(’Relative Error (%)’)

title(’Using Spectrum with Se Absorption’)

]
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Appendix E

Phase Retrieval Experimental
Matlab Code

E.1 Gain Matlab Code

close all

clear variables

filename1 = ’All_Images_Averaged’;

filename2 = ’Iin_Averaged’;

darkpath = ’Z:\Chris\Data\2018\Oct31\Oct31_1_16in_PTFESphere_60kV_2mmAl_2995ms_R1_36cm_R2_8cm_134uA_dark2’;

openpath = ’Z:\Chris\Data\2018\Oct31\Oct31_1_16in_PTFESphere_60kV_2mmAl_2995ms_R1_36cm_R2_8cm_134uA_open2’;

rawpath = ’Z:\Chris\Data\2018\Oct31\Oct31_1_16in_PTFESphere_60kV_2mmAl_2995ms_R1_36cm_R2_8cm_134uA_PTFE2’;

num_rows = 1000;

num_cols = 1000;

%Extract the image from *.dat file that forms a matrix

%Index for number of images want to use in average

Index_Dark = 25:30;

Index_Open = 2:30;

Index_Raw = 2:30;
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Dark_Image = Load_Images_Dat(darkpath, Index_Dark, num_rows, num_cols);

Open_Image = Load_Images_Dat(openpath, Index_Open, num_rows, num_cols);

Raw_Image = Load_Images_Dat(rawpath, Index_Raw, num_rows, num_cols);

n_img_dark = size(Dark_Image, 3);

n_img_open = size(Open_Image, 3);

n_img = size(Raw_Image, 3);

Instructions = menu(’Select the region of interest to be evaluated’, ’OK’);

fig_img = figure;

imshow(squeeze(Raw_Image(:,:,1)));

title(’Select Region of Interest’);

imcontrast;

rect = getrect(fig_img);

close(fig_img);

if (rect(3) == 0) || (rect(4) == 0)

%if the user clicks instead of drawing a rectangle, the entire image

%is selected as the ROI

Raw_Image_roi = Raw_Image;

Dark_Image_roi = Dark_Image;

Open_Image_roi = Open_Image;

else

Raw_Image_roi = Raw_Image(rect(2):rect(2)+rect(4),...

rect(1):rect(1)+rect(3), :);

Dark_Image_roi = Dark_Image(rect(2):rect(2)+rect(4),...

rect(1):rect(1)+rect(3), :);

Open_Image_roi = Open_Image(rect(2):rect(2)+rect(4),...

rect(1):rect(1)+rect(3), :);

end

size_roi = size(Raw_Image_roi);

offset = squeeze(mean(Dark_Image_roi, 3));

open = squeeze(mean(Open_Image_roi, 3));

Open_Offset = open - offset;

gain = mean(Open_Offset(:))./Open_Offset;
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Intensity = (Raw_Image_roi - repmat(offset,1,1,n_img))...

.*repmat(gain,1,1,n_img);

I_in = (Open_Image_roi - repmat(offset, 1, 1, n_img_open))...

.*repmat(gain,1,1,n_img_open);

Intensity = squeeze(mean(Intensity, 3));

I_in = squeeze(mean(I_in, 3));

dicomwrite(uint16(Intensity), filename1);

dicomwrite(uint16(I_in), filename2);

save(’Image.mat’, ’Intensity’, ’I_in’);

E.2 Phase Retrieval Experimental Matlab Code

clear all

clc

close all

addpath(’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\Phase retrieval\spektr’);

fpath = ’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\Phase Retrieval Experimental’;

fname = ’All_Images_Averaged’;

fpath2 = fpath;

fname2 = ’Iin_Averaged’;

I = double(dicomread([fpath ’\’ fname]));

I_in = double(dicomread([fpath2 ’\’ fname2]));

true_t = 1.5875e-3; % measured thickness [m]

c = 2.9979e8; % Speed of light in a vacuum [m/s]

h = 4.1357e-15; % Planck’s constant [eV.s]

r_e = 2.8179e-15; % Classical electron radius [m]

Na = 6.022e23; % Avagadro’s number [1/mol]
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p = 7.8e-6; % [m] Pixel pitch

R1 = 0.36; % [m] Source-to-object distance [m]

R2 = 0.08; %[m] Object-to-detector distance [m]

M = (R2+R1)/R1;

z = R2/M;

dimension = size(I);

nx = dimension(2);

ny = dimension (1);

dx = p/M;

dy = dx;

x = dx*(0:nx-1);

y = dy*(0:ny-1);

[Xp,Yp] = meshgrid(x,y);

u = ifftshift((-floor(nx/2):floor((nx-1)/2))/(nx*dx));

v = ifftshift((-floor(ny/2):floor((ny-1)/2))/(ny*dy));

[U,V] = meshgrid(u,v);

w2 = U.^2 +V.^2;

%X-ray spectrum

Counts_Energy = load(’C:\Users\rlloh\OneDrive - University of Waterloo\Master’’s\Simulations\Phase retrieval\Matlab_Data\Spectrum_60kV_2mmAl.mat’);

spectrum = Counts_Energy.Phi;

E = Counts_Energy.E;

E = E*1000; %[eV]

E_mu = [1:150]*1e3;

mu_Se = spektrMuRhoElement(34)*4.819*100;

mu_Se = interp1(E_mu, mu_Se, E);

thickness_Selenium = 100e-6; % [m] thickness of selenium deposited on the detector

eta = 1-exp(-mu_Se.*thickness_Selenium);

spectrum = spectrum.*eta;

lambda = c*h./E; %[m] wavelength

%Al properties

% rho_obj = 2.7; %density of Al [g/cm^3]

173



% MM = 26.98; %[g/mol]

% Z = 13; %Atomic number of Al

% mu_obj = spektrMuRhoElement(Z)*rho_obj*100;

%PTFE properties

rho_obj = 2.21439238; % Material density [g.cm^-3]

% rho_obj = 2.13135266;

MM = 100.016; % Molecular mass [g.mol^-1]

Z = 2*6 + 4*9; % Total atomic number

% E_mu_obj = [5 6 8 10 15 20 30 40 50 60]*1e3; % [eV]

% mu_rho_obj = [540.9 314.2 132.7 68.05 20.88 9.667 4.025 2.647 2.132 1.880]*1e-1; % Mass attenuation coefficient [cm^2.g^-1]

mu_obj = spektrMuRhoCompound([6 2; 9 4])*rho_obj*100;

%Acrylic properties

% rho_obj = 1.1902357; %[g/cm^3]

% MM = 12.011*5 + 1.008*8 + 15.9994*2; %Molecular mass [g/mol]

% Z = 5*6 + 8*1 + 2*8; %Total atomic number

% mu_obj = spektrMuRhoCompound([6 5; 1 8; 8 2])*rho_obj*100;

mu_obj = interp1(E_mu, mu_obj, E, ’pchip’);

% Attenuation and refraction properites

N = rho_obj*Na/MM; % Atomic number density [#atoms.cm^-3]

% mu_obj = interp1(E_mu_obj,mu_rho_obj,E,’pchip’)*rho_obj*1e2; % Attenuation coefficient [m^-1]

delta = (r_e*(h*c)^2)./(2*pi*E.^2).*(N*1e6).*Z; % Refractive index decrement

mu_poly = sum(mu_obj.*spectrum)/sum(spectrum);

delta_poly = sum(delta.*spectrum)/sum(spectrum);

lambda = sum(lambda.*spectrum)/sum(spectrum);

Image = I./I_in;

Image(isinf(Image)) = 0;

Image(isnan(Image)) = 0;

Hp = mu_poly./(delta_poly*z*(2*pi)^2*w2 + mu_poly);

g = fft2(Image);

g_filtered = g.*Hp;
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thickness = -1/mu_poly*log(ifft2(g_filtered));

%% Determining the thickness of the object

n = 1; %index - n stays 1 as long as the user wants to plot more thickness

%profiles of the object

Figure_number = 0; %Figure number for the thickness profile

while n == 1

Figure_number = Figure_number + 1;

Instructions = menu(’Select line of interest to create thickness profile with cursor and press Enter’, ’OK’);

fig = figure;

title(’Select Line of Interest’);

imshow(thickness*1e6)

imcontrast

[x, y] = getline(fig);

close (fig);

fig_thickness = figure;

thickness_profile = improfile(thickness,x,y);

plot(thickness_profile)

title([’Thickness Profile ’ int2str(Figure_number)]);

%Get the user to draw lines in the region where the object is present and

%where there is no object present

menu(’Draw a line where the max thickness appears for an average and press Enter’, ’OK’);

index_max = floor(getline(fig_thickness));

menu(’Draw a line where there appears to be no object for an average and press Enter’, ’OK’);

index_min = floor(getline(fig_thickness));

%if the indices exceed the length of the vector ’thickness_profile’,

%redefine them as seen below

if index_max(1,1) > index_max(2,1)

if index_max(2,1) < 1

index_max(2,1) = 1;

end

if index_max(1,1) > length(thickness_profile)

index_min(1,1) = length(thickness_profile);
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end

%Calculate the mean over the regions selected by the user

max_thickness = mean(thickness_profile(index_max(2,1):index_max(1,1)))

else

if index_max(1,1) < 1

index_max(1,1) = 1;

end

if index_max(2,1) > length(thickness_profile)

index_min(2,1) = length(thickness_profile);

end

%Calculate the mean over the regions selected by the user

max_thickness = mean(thickness_profile(index_max(1,1):index_max(2,1)));

end

if index_min(1,1) > index_min(2,1)

if index_min(2,1) < 1

index_min(2,1) = 1;

end

if index_min(1,1) > length(thickness_profile)

index_min(1,1) = length(thickness_profile);

end

%Calculate the mean over the regions selected by the user

min_thickness = mean(thickness_profile(index_min(2,1):index_min(1,1)));

else

if index_min(1,1) < 1

index_min(1,1) = 1;

end

if index_min(2,1) > length(thickness_profile)

index_min(2,1) = length(thickness_profile);

end

%Calculate the mean over the regions selected by the user

min_thickness = mean(thickness_profile(index_min(1,1):index_min(2,1)));

end
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%Calculate the total thickness of the object

total_thickness = max_thickness-min_thickness;

%Display the total thickness of the object

display([’The total thickness of the object is ’ num2str(total_thickness*1000) ’ mm’]);

%prompt the user to see if they want to plot another thickness profile

n = menu(’Plot another thickness profile?’, ’Yes’, ’No’);

end

%Multiplication factor used to save the image of a ’.dcm’ file and to show

%the image in a figure at the end

% Multiplication_Factor = 10^3/10^(floor(log10(mean(mean(thickness)))));

dicomwrite(int16((thickness-1e-4).*1000000),’thickness’);
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