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Abstract

Many biomedical applications require observing the response of biological cells to var-
ious stimuli and conditions. Typical optical imaging systems for observing cells require
labelling cells with fluorescent molecules. These systems have drawbacks such as limited
luminescence time and light-induced damage. However, use of electrochemical based mea-
surement methods overcome these issues. One method, which is label-free and non-invasive,
is impedance spectroscopy (IS), which tracks impedance changes caused by variations in

cell membrane properties.

This thesis describes the design and experimental characterization of a CMOS elec-
trochemical camera for biological cell impedance imaging. The electrochemical camera is
fabricated in a 0.18-um CMOS technology, and is the first to implement a row-parallel
architecture which improves upon spatial-readout efficiency compared to previously pub-
lished work. Two integrated microelectrode arrays, one containing 17x11 40x40 pm?
electrodes and the other containing 70x40 10x 10 um? electrodes, are implemented. Each
array is connected to 84 integrated row-parallel lock-in amplifiers to measure the impedance
of live cells on the electrode array surface. A novel lock-in amplifier design allows for an
electrode pitch of only 20 gm. The design of a custom bench-top measurement system for

characterizing the performance of the CMOS electrochemical camera is also described.

Experimental electronic characterization of the electrochemical camera shows that it
can operate from 1 kHz to 1 MHz at a frame rate of 0.0117 Hz, which is sufficient for
several cell imaging applications. The measured input-referred noise is 1.08 nA,.,,; with an
applied input signal at 600 kHz. Compared to previously reported CMOS electrochemical
sensor arrays, the presented work consumes the smallest channel area for the sensor readout
electronics with integrated analog-to-digital converter, the lowest power consumption per
channel for operating frequencies greater than 100 kHz, and the best area-readout figure

of merit.
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Chapter 1
Background and Motivation

Many biomedical and life science research applications, such as drug screening, require
observing biological cells under various stimuli and conditions. This thesis describes the
design and experimental characterization of an electrical impedance camera for imaging

cells.

1.1 Biological Cell Properties

There are two types of biological cells: eukaryotic and prokaryotic. Prokaryotic cells include
bacteria and archaea which contain only ribosomes and a nucleoid. Eukaryotic cells include
plants, animals, and fungi and contain multiple interior organelles such as the mitochondria,
nucleus, and ribosomes. The typical range of diameter for eukaryotic cells is 10-100 pgm, and
for prokaryotic cells it is 1-5 pm [2]. For both tpyes of cells, the cell membrane regulates the
flow of material into and out of the cell. The membrane is composed of a lipid bilayer and a
large quantity of proteins which form channels embedded in the membrane. The thickness
of the lipid bilayer is on the order of 7.5-10 nm [3] and the passage through a protein
channel has a diameter of a few angstroms [1]. Figure 1.1 shows the physical structure
of a cell membrane. The protein channels allow for inorganic ions, nutrients, and other

molecules to enter and exit the cell. Additionally, the cell membrane maintains a potential



which provides energy so that ion channels can function. The interior of a cell contains
cytoplasm and a nucleus as well as other organelles required for cell functionality [5]. The
protein channels are often targeted to deliver drugs into the cell and are observed in drug
screening applications. This requires characterizing and monitoring the cell membrane and

the cell’s internal environment [0].

Qutside
of cell

Carbohydrate
chains

Proteins

Cell
membrane

Inside
of cell Protein .
(cytoplasm) channel Lipid bilayer

Figure 1.1: Physical structure of a cell membrane [1].

1.2 Optical Monitoring of Cells

Characterizing and monitoring biological cells are widely done not only to observe the
effect of new drugs, but also to observe cancer progression, cell growth rate, apoptosis
(programmed cell death), cell motility, cell adhesion, and to count cells [7, &, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19]. Optical-based methods that are widely accepted and used for
imaging biological cells require molecular labels (such as fluorescent molecules), which are
not present in normal cell operation, to generate light when stimulated by a laser beam.
The light emitted by the labels is then monitored using an optical setup [20]. One problem
with fluorescent molecules is that they are subject to “photobleaching”, which renders

a flourescent molecule unable to fluoresce and limits the duration of imaging. Another



problem with using fluorescent labels is physical damage to the cell caused by incident

light used to excite the labels, which is known as “phototoxicity” [21].

Some optical methods for observing cell apoptosis, such as flow cytometry, require
setting up multiple experiments to observe cells at different times. The first set of cells is
observed for a certain time period, then the cells are killed and another set of cells of the
same type is used to continue the experiment. This type of experiment assumes that the
behaviour of the cells in one set of measurements is very similar to cells in another set.
This method requires multiple sets of cells and measurement equipment, which are costly

and complex. In addition, the duration of any single experiment is limited.

Other optical-based cell measurement methods, such as phase contrast, differential in-
terference constrast, and quantitative phase imaging, have been developed to avoid adding
chemicals or excess light and allow for real-time monitoring. Although these techniques are
“label-free”, they are limited to measuring only thin materials and to observe whole-cell
characteristics, such as in cell counting and cell motility measurements. In addition, these

label-free methods are still prone to phototoxicity as significant optical power is required

[22].

1.3 Electrical Impedance Monitoring of Cells

An alternative method that can characterize cell membrane properties, but does not use
light, is electrochemical sensing. Electrochemical sensors characterize cells using electroan-
alytical techniques. One technique, impedance spectroscopy (IS), is a label-free approach,
and, therefore, avoids the problems mentioned in Section 1.2 [23]. Although IS can af-
fect the functionality of the cell when significant voltage potentials are applied across the

membrane, when done within the breakdown potential of the membrane, IS is non-invasive
[24, 25, 26].

IS measurements are made by applying a small-signal sinusoidal voltage to a reference
electrode Vi, (t) = Agppsin(wt + ¢), where w is the angular frequency, A, is the small-
signal voltage amplitude and ¢ is the input phase offset, which is often assumed to be

zero. The current passing through the cell I,,,.q5(t) is captured at a sensing (or “working”)

3



electrode and is given by Ipeas(t) = Ameassin(wt + ), where 6 is and arbitrary phase shift
and A,eqs is the amplitude [27]. To obtain the impedance Z.(jw), the applied voltage

phasor V,,, = |Aaple?® is divided by the measured current phasor Ieas = |Ameas|€?’.

1.3.1 Cell Circuit Model

From the impedance spectrum of Z..;(jw), a passive electrical model of the cell can be
fit to the spectrum. A simple model for characterizing the impedance of a cell uses three
passive components as shown in Figure 1.2. The cell is contained in a bath which contains
an electrolyte or solution with nutrients required for sustinence. The membrane with its
protein channels, charge pumps, and membrane potential is modelled as a capacitor C,, in
parallel with a resistor R,,. The cytoplasm and internal organelles are modelled simply as

a resistor Ry [12]. Based on this cell model, Z..;(jw) is given by

. . Ry Rs
7 (]w) _ V:zpp(]w) _ (Rs + Rm) (1 +]W0m (R3+Rm>> (1 1)
cell Imeas (]OJ) 1 + ijmOm . .

Imeas (]w)
Bath —>

Reference Electrode Working Electrode

Vapp(Jw) =

Figure 1.2: Cell IS measurement model.

As the applied voltage is swept across a range of frequencies w,,, the Nyquist plot shown
in Figure 1.3 is observed. The magnitude and phase plots corresponding to the Nyquist

plot are shown in Figure 1.4 and 1.5, respectively.
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Figure 1.4: Magnitude response of cell impedance Z,;.
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Figure 1.5: Phase response of cell impedance Z..;.

From the Nyquist plot, the values of the electrical components in the cell model can be

extracted. These extracted values can then be related to physical information about the
cell under study.

Depending on the application, more sophisticated cell models have been developed to
represent internal organelles, the membrane voltage, and ion channels. For simplicity, these
models are not considered in this thesis [25].

1.3.2 Impedance Interface Model

Due to the measurement interface, the Nyquist plot will not typically match the impedance
response shown in Figure 1.3. This is because the electrode-cell-electrode interface usually
has some additional parasitics that need to be accounted for. Two major contributing
parasitics are double-layer capacitance Cy;, electrolyte resistance R, and charge transfer
resistance R,. Capacitance Cy arises from the ions in the buffer solution forming a charge
build up on the electrode, which can be modelled as a parallel-plate capacitor. Resistance
Reiec is caused by dissolved ions in the electrolyte [27]. Resistance R, arises from a leaky
Cgq. The included parasitics are show in Figure 1.6, and based on this interface model, the
total impedance Z;,(jw) is given by



+ fim + Rp
JwR,,Cp + 1 ijpCdl +1

(1.2)

o Cm
|

Figure 1.6: Complete cell IS measurement interface model.

There are additional parasitics, such as membrane-electrolyte capacitance and leakage
current to other electrodes, that can be accounted for, but these are not considered in this
thesis as they are typically insignificant [29]. The interface parasitics strongly depend on

the type of interface designed, electrolyte, and platform being used.

1.4 Cell Impedance Measurement Applications

1.4.1 Cell Adhesion

One application of cell impedance measurment is in cell adhesion studies, which is shown
in Figure 1.7, where a cell, initially floating in a bath (pre-adhesion), attaches to a physical
structure such as an electrode (post-adhesion). Cell adhesion information can be used in
cell migration studies, which is done to study cancer. Reference [10] demonstrates that cell
adhesion can be monitored via impedance magnitude, and when cell detachment occurs,
an impedance magnitude decrease on the order of a few hundred k) can be observed in as
short a time as eight minutes. This is caused by the electrode not being fully covered by

the cell which leads to a low-resistance path through the electrolyte.



Electrode Electrode
(a) (b)

Figure 1.7: A cell (a) before adhesion to an electrode and (b) after adhesion.

1.4.2 Apoptosis

Another application is monitoring changes in cell membrane capacitance caused by in-

duced apoptosis. Reference [30] has shown that changes in membrane capacitance from

nkF
mm?2"

genistein induced apoptosis is on the order of 8 Typically, a change in the membrane

capacitance can be observed after two hours.

1.4.3 Wound Healing and Cell Migration

To study cell migration a wound can be afflicted on to a plate of cells via mechanically
induced damage. However, this approach does not produce a well controlled wound size.
An alternative strategy is to use an electrical pulse to damage the cells via an electrode
which results in a more controlled wound size. Additionally, the electrode interface can be
used to monitor the cells as they migrate to close the wound [31]. In the case of reference

[31], a change in impedance of 8 k{2 is observed over a period of several hours.

1.4.4 Drug Screening

Analysing the effects of drugs can also be done using impedance based measurements.

In the study done in [32], the effect of various concentrations of the drug cisplatin was



observed over tens of hours, and a minimum impedance change of 20 k) was observed

from a control.

1.5 Impedance Measurement Structures

Two types of measurement structures are typically chosen for characterizing cells with
impedance sensors: integrated complementary metal-oxide-semiconductor (CMOS) sensor

arrays and custom measurement structures.

1.5.1 Non-integrated Measurement Platforms

Non-integrated measurement platforms involve the design of unique micro/nano-scale struc-
tures and electrodes which utilize off-the-shelf impedance analyzers for signal processing
[33]. This custom approach has the advantage of more design choices for the electrode-
cell interface. The custom measurement structure reported in [31] uses electrodes to trap
a cell and analyse its impedance. The design accomplishes this by using a set of elec-
trodes (quadrupole) to manipulate and move the cell into a set of electrodes for impedance

measurement.

Non-integrated designs can utilize common fabrication materials and processes for the
sensor as they are not limited to a particular technology process. A disadvantage of this
approach is that the signal processing circuits are located far from the electrode interface,
which could result in higher interference coupling into the measured signal. Additionally,
this platform is limited to simultaneously measuring only as many cells as there are unique
measurement, channels. Performing simultaneous measurements on multiple cells therefore
becomes costly as the number of external measurement channels becomes impractically

large.



1.5.2 CMOS Impedance Cameras

Analogous to optical digital cameras that measure light intensity using an integrated pixel
sensor array, CMOS electrochemical cameras record electrochemical impedance changes
sensed by an array of integrated electrodes. CMOS impedance cameras overcome the
interference and simultaneous cell measurement problems characteristic of non-integrated
measurement platforms by having the processing circuitry integrated on the same physical
substrate as the electrodes. This allows for an amplifier to be placed physically closer
to the electrode interface than an external amplifier, reducing parasitics which increases

bandwidth (BW) and decreases external interference.

To read out impedance from multiple cells or electrodes quickly, the sensor array’s
architecture typically consists of an active area that contains the electrodes and additional
processing circuitry (acquisition channel). These circuits reside within a column of an
array of pixels to read out electrodes in the selected column. This architecture, shown
in Figure 1.8, is similar to a CMOS visible-light imager camera and is also known as a
“row-parallel architecture”. It enables read out of multiple electrodes, and hence, multiple
cells simultaneously without requiring external measurement equipment. The row-parallel
architecture functions using an image capture method known as “raster scan” which works
by reading out all rows in a single column and then scanning across each column to obtain
the signal from all electrodes. This approach provides a high frame rate for the system,
which allows for real-time monitoring. Typically, the acquisition channel layout is designed
to fit within the vertical pitch (center-to-center spacing) of the electrodes, as shown in
Figure 1.8. However, for small electrode sizes, it can be difficult to keep acquisition circuits

within the given vertical pitch.

The cell-electrode interface is typically designed using the technology process with post-
processing to make it compatible with the biological material. The electrodes are typically
plated with a noble metal like gold to prevent them from oxidizing or reacting with the
cells or electrolyte. With these advantages, CMOS electrochemical sensor arrays are being

developed and researched for use in biological IS measurements [10, 27, 35, 30].
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Figure 1.8: CMOS camera architecture.

1.6 CMOS Impedance Camera Circuits and Perfor-

mance Parameters

Circuits and performance specifications for implementing CMOS electrochemical cameras

for impedance sensing will now be described.

1.6.1 Lock-in Amplifier

A commonly used circuit for impedance measurement is the lock-in amplifier (LIA). An
LIA is also referred to as a “direct-conversion receiver” [27] and, in its basic form, is built
as shown in Figure 1.9. The analog output of the lock-in amplifier is captured by an
analog-to-digital converter (ADC) so that it can be processed by a computer. In this case

one ADC samples both the in-phase and quadrature components.
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This architecture yields high BW, low noise, and high dynamic range (DR). The operation
of an LIA for IS is done by applying a wideband signal V,,, across Z.;. The resulting
current I,.q.s is then amplified by a transimpedance amplifier (TTA) with gain A. The
resulting output V, is then multiplied by V.o = sin(wt), which has the same frequency
and phase as V,,, and unity amplitude. The result gives the in-phase (V) component of
Vo. To get the quadrature (V()) component of the current through the cell, Vyo is shifted
by 90° before being multiplied. Mathematically, the operation of the LIA is given by

meas

Vi = Apeas - sin(wt + 0) - siny,, (wt) = - [cos(8) + cos(2wt + 0)] (1.3)

meas

Vo = Ameas - sin(wt 4 0) - cosy,, (wt) = - [sin(0) + sin(2wt + 6)], (1.4)
where Apcqs is the gain from .. to V) and V7. As the equations show, V;/ and V() have
components at dc and at two times the frequency of the input. The output is also scaled
by a factor % and exhibits a phase shift #, which is determined by Z..;. In the case where
Vo is a square wave, the scaling factor % becomes % and additional higher order frequency
components are introduced. The dc component of V7 and V() is obtained at the output of

12



the low-pass filter (LPF) in the LIA. The in-phase and quadrature filtered outputs V; and
Vo, respectively, are only dependent on the phase of the signal as given by

V} = Asys : 603(9) (15)

Vo = Agys - sin(0), (1.6)

where Ay is the gain from [,,.qs to Vg or V;. The magnitude of the cell impedance |Z..|

is given by

. ‘/a : As S
| Zuwa(eo) |= Vol Aol (L.7)

VVE+ VS

The phase of Z..; is given by

v
£ Z oo (jw) = tan™ (%) ) (1.8)

The high BW and DR of LIAs is a result of the amplifier and mixer front-end which
exhibit these properties. Low noise is a result of being able to filter the incoming spectrum

down to low frequencies, which attenuates noise [10, 27, 35, 30].

1.6.2 Performance Parameters

The key electrical specifications for the LIA and impedance camera are summarized in the
following list. Each of these parameters arise from a biological or physical property of a

cell.

e Electrode Size refers to the x and y dimensions of the electrodes. These determine
the number of cells that reside on the electrode surface and in-between electrodes.

In order to measure single cells, the electrode dimensions should be less than 10 pym

[37].

13



e Electrode Pitch is the distance between adjacent electrode centres and determines the

spatial resolution of the camera.

e Array Size (Number of Electrodes): determines the total number of cells that can

be imaged.

e Power Consumption is related to heat dissipation of the camera integrated circuit
(IC), which can affect the state of the cells but is not often addressed in the literature.

e Dynamic Range (DR) determines the impedance range that can be measured. A
typical DR extends from about 1 kQ to 10 M (i.e, the DR is 80 dB [34, 38].

e Bandwidth (BW) refers to frequency range over which the LIA is operational. It
therefore determines the smallest (), and Cy that can be measured. Typical Cy
densities are on the order of 20-40 % and C,,, densities are on the order of 1 %
Based on electrode sizes of tens of micrometers, the expected Cy is on the order
of tens of picofarads. For typical cell sizes of tens of micrometers in diameter, the
expected (), is on the order of nanofarads. Cy is dependent on the electrolyte used

and C,, on the cell type. [34, 17, 27, 38].

e Limit of Detection (LOD) determines the largest impedance (smallest I,,c.s) that
can be measured at a signal-to-noise ratio (SNR) of 0 dB, which, for this application,
is 10 M [34, 38].

e Frame Rate is the rate at which all the electrodes in the CMOS camera can be read
out. It determines the minimum period during which a cell physical property can
change and be observed. Typical drug screening assays have observsation times from

tens of minutes to hours [39].

Another parameter that is important to cell measurement is the maximum voltage that
can be applied across a cell. This potential should be less than 200 mV,, so that cell
operation is affacted only negligibly [24, 25, 26]. The specifications for the IS camera that
are most important are limit of detection (LOD) and BW as these determine the range of

component values that can be detected.
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1.7 Summary of Previous Work in CMOS Impedance

Cameras

Previous CMOS electrochemical sensor arrays based on the LIA architecture have a broad
range of applications. The list below highlights some of the advantages and disadvantages

of previous work and the proposed work in this thesis.

e Manickam et al., [27]: In this work, a system is built to measure biological analytes
(such as deoxyribonucleic acid (DNA)). It implements an analog front end which com-
prises of a TTA and mixer to capture in-phase and quadrature components. However,
it does not include an integrated filter or ADC. The large external LPF capacitors
yield low % noise and do not occupy chip area. Additionally, there is only one ex-
ternal ADC which is used to obtain samples from all electrodes. This yields a linear
increase in system readout time versus the number of electrodes. Manickam also does

not allow for simultaneous cell impedance measurements.

e Liu et al. [35]: This work implements a lock-in amplifier architecture with a counter
to convert the analog in-phase and quadrature components. The lock-in amplifier
is implemented with an analog multiplier and integrator. It has better performance
than work in this thesis in terms of LOD and power. This, however, comes at a
trade-off with BW which for this application is not sufficient. The target application

of Liu’s work does not require a high bandwidth.

e Jafari et al. [36]: This work implements a frequency response analysis algorithm to
extract the in-phase and quadrature components. It does this by using a integrator
and dual-slope multiplying ADCs. It has better performance compared to work in
this thesis in terms of LOD and power. This, however, comes at a trade-off with

BW. The target application of Jafari’s work does not require a high bandwidth.

e Chi et al. [10]: This work shows few electronic characterization results, but uses an
I/Q architecture, which is implemented as an integrator and double balanced mixer.
Chi’s work has experimental results which observes the adhesion of cells. It also does

not describe an integrated ADC.
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e Viswam et al. [40]: This work is the most advanced compared to the other four, and
was published after the design in this thesis was in progress. It implements a lock-in
amplifier using a multi-mode TIA and passive mixer. It also contains an on-chip
delta-sigma ADC. This work has a high DR and low LOD. The high DR is only
achieved through 2-mode operation where the gain of the TIA is varied and the
power supply voltage is 3.3 V. One mode has 80 dB and another 40 dB. Additionally,
a LPF filter capacitance of 10 pF would at least increase the input-referred noise of
the channel to approximately 23 pA. Viswam’s work can only read out 32 electrodes
at one time, which is significantly lower than the number of rows in the system and

yields a low frame rate.

1.8 Proposed Work

The objectives of the proposed work are to build a CMOS impedance camera with improved
scalability and frame rate compared to existing work. A way to improve these parameters
is to have one channel per row. This has better scalability when it comes to increasing the
total number of electrodes in the camera. This architecture also helps to reduce the increase
in frame rate as the number of electrodes increases. Additionally, having a small acquisition
channel size to fit within a pixel pitch gives better area efficiency, as the electrodes occupy
a higher percentage of the the overall chip area. The channel area is specified at 0.02 mm?
to improve upon existing work. Because of these design considerations, this architecture
results in a high area-readout figure-of-merit (FOM) compared to previous work, which is

given by

d- Nchan

FOM =
N,

(1.9)

where d is the electrode density and d~* = P, P,, where P, and P, is the electrode pitch
in the x and y directions, respectively), and N, and N4, are the total number of imager
electrodes and readout channels, respectively. A high FOM describes an imager with high
spatial resolution (large d) and the ability to acquire signals from all electrodes simultane-

ously (% = 1). The LIA design specifications are now summarized.
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In order to get a starting design point for the LIA, a peak amplitude for the applied
input signal voltage must first be chosen, which is less than 200 mV,; to avoid causing
damage to the cell. Therefore, a voltage of 10 mV,, is selected to provide adequate margin.
Using the largest | Z..;| of 10 M, a current LOD of at least 1 nA is required. The smallest
| Zeeu| of 1 k2 has a current of 10 uA, which yields a DR of 80 dB. To obtain the required
BW, the smallest expected C,, needs to be considered. A 10x10 um? electrode is the
size required to obtain single cell resolution. Using this electrode size and adding some
margin results in Cy; = 500 fF. The other expected capacitance and resistances are chosen
based on values from literature: R, = 5 G, C,, = 500 pF, and Ree. = R, = 1 k.
Then the cell measurement interface model, which is given by (1.2), is used to obtain an
impedance spectrum. After this, (1.2) is solved to find the required frequency to obtain
enough samples to detect the pole of the impedance caused by (R,,C,,)~" for both real
and imaginary components. This frequency is approximately 350 kHz for the given values.
To give adequate margin, the BW of the TIA is selected to be 1 MHz.

The specification for the number of electrodes is determined by the physical space on
the multi-project wafer provided by CMC Microsystems. The available targeted chip size
is 3x2.5 mm?, which results in 187 40x40 pm? electrodes, 2800 10x10 pm? electrodes
and 84 acquisition channels. The frame rate should be on the order of 10 min or less to
adequately capture cell behaviour. The CMOS technology chosen for this design is 0.18
pm. The final LIA specification, which is not clearly defined by cell properties, includes
acquisition channel power. The targeted power per acqusition channel, is selected to be
300 W in order to improve upon existing work. This improvement is obtained using the
current consumption of [27] at a 1.8 V supply instead of 3.3 V. Table 1.1 summarizes the
results of previous works on CMOS sensor arrays and the target specifications for this

work.
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1.9 Thesis Organization

This thesis describes a novel CMOS electrochemical camera for cell-impedance imaging

and is organized as follows:

e Chapter 2 begins by describing the design choices for the LIA used in the proposed
CMOS impedance camera and then proceeds to describe the design, analysis, and

optimization of the transistor level implementation.

e Chapter 3 describes the physical layout and system architecture of the proposed CMOS

impedance camera.

e Chapter 4 describes the characterization setup and discusses the measured electronic

performance of the proposed CMOS impedance camera.

e Chapter 5 concludes the thesis with a brief summary and discusses future work.
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Chapter 2

Lock-In Amplifier Design

This chapter focuses on the design of the acquisition channel containing the LIA. It begins
by outlining the design choices for the LIA architecture. Then the design of the TTA, mixer,
filter and ADC are explained. The chapter concludes with the LIA simulation results.

2.1 Implemented LIA Architecture

The LIA architecture shown in Figure 2.1 required several design decisions to meet the
specifications. The differences between the architecture in Figure 2.1 and the one in Figure
1.9 is that the mixers are differential and two ADCs are used to sample the differential

output.
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Figure 2.1: Implemented LIA architecture.

Having a differential TTA and electrodes would occupy significant space in an already
small electrode pitch size, making routing next to impossible. As such, a single ended
TIA is implemented. Using four ADCs (one each to sample Vij', Vi;, V;*, and V") was
considered to reduce read out time, but due to physical area constraints, only two were
implemented. As a result, one ADC is dedicated to sampling Vg and V", and the other is
dedicated to sampling V5" and V;~. This design choice doubles the sampling time compared
to the case where four ADCs are implemented. In addition, the ADC input can be switched
between the mixer output and the output of LPF 4. This allows the mixer output can be

directly characterized for test purposes.

To derive the design specifications for each circuit block, a few preliminary parameters
must be known. The passive LPF,; and LPF 4 circuits use a capacitor and weak-inversion
p-channel metal-oxide-semiconductor (PMOS) transistors as resistors, which occupy little
chip area compared to polysilicon resistors. The LPF 4 capacitor C is an important design
parameter because it impacts the input-referred noise current and area requirements of the

LIA. It also affects the frame rate of the system as the filter requires sufficient time to
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settle at each input frequency. Since metal-insulator-metal capacitor (MIMCAP) in the
implemented CMOS process have densities of 1.06 /%’ we chose Cy = 1 pF so that four

capacitors for each of the two mixers could fit in the LIA area allocation of 0.02 mm?.

The average noise voltage at the filter output is I(‘% = 65 (V,ms, where k is Boltzmann’s
constant and T is absolute temperature, at T =300 K. A system single-ended gain of 65
kQ is required to reduce the input-referred noise to 1 nA,,,s as there is a capacitor at VQ+ ,
Vo V¥, and V;. For the calculated Agys, the system output swing for a maximum input
current of 10 pA, is 1.28 V,,,. This is the required system gain, which is scaled by % from
the mixer output and would result in a required mixer output swing of 2 V,,,. This clearly
is not feasible when using a 1.8 V supply. To mitigate this problem, sample averaging can
be applied to reduce the noise which, in turn reduces the required transimpedance. The
ADC can average the noise contribution from the capacitor and from a 1.8 V reference at a
resolution of 16 bits, a voltage LSB (Vysz) of 27.5 uV. The ADC quantization noise is YLSZ

V12
= 7.94 uV,pms [11]. Clearly the limiting factor is Vi sp, and hence, averaging is required

to obtain a resolution of 27.5 V. This approximately halves the Ay, gain requirement to

about 30 k2 and yields a maximum mixer output swing of 0.94 V,,,.

To be comparable to [27] and to meet the frame rate specification, the settling time
of the filter for 16-bit settling accuracy is approximately 1.1 s with a filter BW of 10 Hz.
Averaging increases the frame rate, but ideally scales the SNR by a factor of /N, where
N is the number of samples averaged [12]. For an input current of 1 nA,, the estimated
SNR is -7.8 dB. To meet the LOD specification (A,,eqs at which SNR = 1 or 0 dB), the
minimum number of samples required to average is five. In addition, the ADC sampling

rate needs to be at least 20 Hz to capture frequencies within the filter BW.

A decision was also made to use an external signal generator for V,,, and Vo in order
to allow for more flexibility in the signal parameters. The following sections describe the
design of the TIA, mixer, filter, and ADC.

2.2 TIA Design

The TTA must be designed to meet the specifications shown in Table 2.1.
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Parameter Specification

Potential across the cell <200 mV,

DR 80 dB
BW >50 MHz

R, <100 2

DC gain Ryra 32 k2
Current consumption <55 pA

Input-referred noise <500 pA,,.s

Table 2.1: TTA specifications.

To implement a controlled voltage for fixing the potential across a cell, a virtual ground
must be established which requires at least a differential pair as the basis of the amplifier.
The input resistance R;, to the amplifier must also be less than 100 2 over the BW to
capture the current passing through the cells. A single differential pair is insufficient to
provide a low R;,. Therefore, a modified version of the circuit proposed in [27] is used
instead. The circuit is shown in Figure 2.2 is a bootstrapped current buffer. The use of a
current buffer keeps R;, of the TIA small.

To enhance output swing, a linear resistor Rpr4 is used instead of a diode-connected
PMOS as in [27]. Use of Rrra also increases the linearity of the TIA. The drawback
is that Rrra could vary by +10% from the pre-fabricated value. This, however, is not
a problem in the proposed application as each channel can be calibrated. The actual
transistor implementation of the circuit in Figure 2.2 is shown in Figure 2.3. Component

geometries and bias points are shown in Table 2.2.
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Figure 2.3: TIA circuit.
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Component | W (um) | L (nm) | [Ip| (pA) | |Vas| (V) | Value
M1 100 720 13 0.405 -
M2 25 180 13 0.604 -
M3 & M4 30 540 20 0.530 -
M5 & M6 50 360 20 0.487 -
M7 40 540 40 0.500 -
M8 25 540 - - -
Rrra - - - - 31.95 kQ
C - - - - 326.9 fF

Table 2.2: Transistor geometries, component values, and bias points of the TTA.

The current buffer and bias devices, which are transistors M1 and M2, respectively,
need to remain in saturation over the the specified BW and gain. Starting with an initial
overdrive voltage of 0.175 V for the differential pair (diff pair), the resulting gate bias point
for M3 is 0.75 V. The maximum input swing is 20 ptA,, at 1 k{2 source impedance and the
maximum input swing is determined by the drain current of M1 (Ip;), as M2 will turn off
when the amplitude of the input current exceeds Ip;. To give some margin, Ip; is designed
to be 13 pA. This also leads to a maximum input current of 23 A, being passed through
M2. To obtain a 1-V swing at the output, a maximum Ry;4 value of 34.2 k2 is allowed
within a given tolerance of £10%. To provide some additional margin, Ry, is selected to

be 32 kQ. R;, of the TIA is given approximately by

1 1 R
Ry ( y Raia ) | 1)
|Adif f | 9Im2 ImaTo2

where Agisr is the dc gain of the diff pair, g,, is the small-signal transconductance of a
transistor, and r, is the output resistance of a transistor. Therefore, to keep R;, small, the
channel length of the transistor must be minimized to make g,,» large. In addition, M2
has its input resistance reduced by the gain of the differential pair. As such, R;, of the
current buffer without feedback can be set higher than required. To achieve R;, = 1 kf2,
a width of 25 um for M2 is necessary. The differential pair with active load (transistors

M5 and M6) was designed to meet an output dc operating point of 1.325 V and a gain of
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~100 V/V to achieve an R;, = 10 2. This is much less than 100 2, or 10% of the smallest
source resistance expected.

The diff pair design starts with determining the parameters for the gain specification,

which is given by

21ps L Ls
A, — ) = , 2.2
| dff’ 9 3(T 3//7“ 5) Vov3 <)\NID3//|)\P|[D5) ( )

where V,, is the overdrive voltage, L is the transistor channel length, and Ay and Ap are the
channel-length modulation parameters for n-channel metal-oxide-semiconductor (NMOS)
and PMOS transistors, respectively. To get the design started, Ip7 is chosen to be 42 pA to
meet the estimated power requirements. Transconductance g,,3 is then approximately 240
pS. To achieve Agipp of 100 V/V, the required ros =~ ro; = 830 k2. Using the extracted A
values, the required L for M3 and M4 is 600 nm and for M5 and M6 is 390 nm. To keep
the transistors in saturation, W of these devices are set to 30 um and 50 um, respectively,
and the lengths are decreased to 540 nm and 360 nm, respectively. The resulting BW
is 2 MHz and Agsp is 76.4 V/V. Although this is less than originally designed for, the
result is R;, = 7002 which still meets the R;, specification. Upon analysing the loop gain
of the complete circuit, it was found that the phase margin (PM) was less than 60°. To
compensate for this, a 326.7 fF MIMCAP C. is placed between the gate of M3 and the
input of the TTA. The MIMCAP value was determined by sweeping worst case MIMCAP

value over corners.

The worst case noise of the TTA that falls within the output LPF BW is the flicker
noise at 1 kHz and below. The most significant noise contributor is M1 as its 1/f and
thermal noise currents are injected directly into the input node. The output noise of the
diff pair is negligible comapred to M1, as it undergoes small gain when referred to the TTA
input branch and M2 is a cascode transistor which also contributes insignificant noise [27].
The area of M1 is increased until the noise contribution from M1 is comparable with noise
contribution from M3. Length L; is chosen to yield r,; greater than 1 M(), so that less
than 0.01% of I,,,cqs is captured by MI1.
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2.2.1 TIA Simulation Results

All circuits presented in this thesis are simulated using the Cadence Spectre’™ simulator.
The simulated -3 dB BW of the TIA is 56 MHz, which provides a phase shift of less
than 1.7° at frequencies of 1 MHz and lower. Figure 2.4 shows the simulated TTA gain
(magnitude response) versus frequency.
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Figure 2.4: Simulated TIA gain versus frequency.

The simulated transimpedance gain versus source impedance is shown in Figure 2.5.
As seen in the figure, the TIA maintains stable gain of approximately 90 dBQ (32 k)

with less than 0.002 dB ripple over the range of impedances to be measured.

The simulated magnitude and phase response of the TIA loop transfer is shown in
Figure 2.6. The PM is 71° for nominal MIMCAP value with an infinite source impedance.
Adding a finite source impedance increases the PM. In the case of infinite source impedance,

the dominant pole w), of the loop transfer is approximately given by

1
- TOS//TOS (Oc + Cng + ng3 + ng5) 7

Wp

(2.3)
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Figure 2.5: Simulated TTA gain versus source impedance magnitude.

where C, is transistor total gate-to-source capacitance and Cyq is total gate-to-drain ca-

pacitance.
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Figure 2.6: Simulated TTA loop transfer magnitude and phase.

The input-referred current noise power spectral density (PSD) of the TTA is shown in
Figure 2.7. The average noise power is 326 pA,.,.s over a BW from 900 to 1100 Hz. This
BW is the double side-band noise at the output of the LPF at the lowest input frequency,
which is 1 kHz with an LPF,4 BW of 100 Hz (the specification for the LPF,4 BW is only

10 Hz, analysing noise at 100 Hz bandwidth gives some margin).
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Figure 2.7: Simulated TTA input-referred current noise PSD.

The TIA simulation results are summarized in Table 2.3.

Parameter Specification | Simulation Result
Potential across the cell <200 mV, N/A
DR 80 dB 80 dB
BW >50 MHz 56 MHz
R, <100 Q 70 Q2
DC gain Ryya 32 k2 32 k2
Current consumption <55 puA 53 uA
Input-referred noise (900-1100 Hz BW) || <500 pA, s 326 pA,.s

Table 2.3: Summary of TTA simulation results.

2.3 Mixer Design

The mixer and LPFy; must be designed to meet the specifications shown in Table 2.4.
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Parameter Specification
DR 80 dB
BW >50 MHz
Gain 5.5 dB
LPF BW <100 Hz
Current consumption <27.5 pA
Input-referred noise at TIA input <1 nA,.s

Table 2.4: Mixer specifications.

The LPF}; is implemented using weak-inversion PMOS transistors and a MIMCAP, as

shown in Figure 2.8. Component geometries are shown in Table 2.5. Using PMOS devices

is required as the body of NMOS devices are connected to the substrate in this technology.

Because weak-inversion PMOS transistors are used instead of passive resistors, which allows

for a large resistance to be integrated without occupying a large area. However, this

resistance is non-linear with respect to frequency.

Vbe 1

M1

M2

Figure 2.8: LPF used in the mixer (LPFy).
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Component | W (um) | L (nm) | Value

M1 & M2 10 180 -
C; - - | 436.22 fF

Table 2.5: LPF), transistor geometries and component values.

The mixer is implemented using a double-balanced topology [27], which is shown in
Figure 2.9. Transistors geometries, bias points, and component values are shown in Table
2.6. This circuit has high port isolation and second-order harmonic suppression. For a
double-balanced mixer the stage that contributes most to distortion is the mixing quad [13].
To handle the output range from the TIA, the LO and RF input ports are implemented
using NMOS transistors. This mixer utilizes a diff pair input with the outputs being
switched back and forth between the R,,;, resistors. This allows for high input frequencies

to be mixed down to lower frequencies, and for mixing up the low frequency 1/f noise.
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VBIAS_4|

Figure 2.9: Double-balanced mixer used in the LIA.

Component | W (um) | L (nm) | [Ip] (#A) | [Vas| (V) | Value
M1 40 540 24 0.494 -
M2 & M3 0.750 720 12 0.883 -
M4 - M7 20 180 12.5 - -
Rz - - - - 42.85 k(2

Table 2.6: Mixer transistor geometries and component values.

To reduce the input-referred current noise of the LPF to 1 nA,,,s, the required single-
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ended mixer dc gain A,,;, is designed to be 0.94 V/V. A,,;, is given by

2 2Ipags

2 Lo
Amix:_' m Rmz:p m4—T710,4— o = - :
— m2 //(Gma—1T04-7)T 02,3 Vorns

cRpin) | ——2—. 2.4
//)\2,3 Ipags (24

The gain for gma3 - Rmiz//To2,3 is then required to be 1.48 V/V simply from the % scaling
factor. From the output of the TIA, the maximum signal amplitude is ~0.35 V. This
requires having a swing from the mixer output of ~1 V. To meet the power requirements,
bias current Ip; is selected as 25 pA. The required R,,;, for maximum output swing is
40 k€. To avoid the case where the £10% tolerance causes the output to clip at 1.8 V,
R, is increased to 44 k(). This reduces the common-mode level to allow for a larger
positive output swing. The design parameters r, 3 are chosen to be greater than 1.75 M
to keep the reduction of R, to less than 2.5%, which relaxes the requirement for g,,s 3.
This also increases linearity, as a larger overdrive voltage is obtained and the gain is not
as dependent on the output resistance of transistor devices. This yields Ls3 = 754 nm.
Transistor widths Wy 3 are then swept to obtain a gain of 1.48 V/V at the lowest expected
resistance. Optimization of this process and BW consideration results in Ly 3 = 720 nm,
Rz = 43 kQ, Wy 3 = 750 nm, a BW of 70 MHz, and a current consumption of 24 yA. The
differential small-signal gain for the nominal load resistance is 3 V/V from Equation 2.4.
The filter BW needs to be less 1 kHz to allow for the system to measure signals down to
1 kHz without causing attenuation. The largest possible MIMCAP for the given channel
width of 20 pm is used (436 fF), and the PMOS device widths are chosen accordingly to
give a BW of 100 Hz.

2.3.1 Mixer Simulation Results

Simulation of mixer differential gain versus frequency is shown in Figure 2.10. The mixer

maintains a stable gain of 5.5 dB over the operating frequencies.
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Figure 2.10: Mixer gain versus frequency.

Simulation results of mixer gain versus input voltage, shown in Figure 2.11, yields a 1
dB gain compression at an input amplitude of 10 A, which is required for the maximum
nominal input current. The on resistance of the electrode selection switches keeps the input
swing to about 5 A, at a source impedance of 1 k{2, which is well within the 1 dB gain

compression point.
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Figure 2.11: Simulated mixer gain versus input current.
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The mixer noise PSD is simulated using harmonic balance in Spectre at a 1 kHz operat-
ing frequency. The input-referred noise current at the TIA input branch from a single-ended
output is shown Figure 2.12. The average input-referred noise is 742 pA,,.s over a BW
from 980 Hz to 1020 Hz, which is the double side-band noise at the output of the filter
at 2rw= 1 kHz, with a filter BW of 20 Hz (which is a factor of two larger than the ADC
LPF BW specification). The spikes at approximately 1.1 kHz and 3.5 kHz are caused by

mixing fundamental frequency and second harmonic.
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Figure 2.12: Simulated mixer input-referred noise PSD at TTA input.

The weak-inversion PMOS transistors used in the LPF in Figure 2.8 are simulated
independently with no dc current and by applying a sinusoidal voltage at one side of the
weak inversion transistors and measuring the resulting ac current. The result of impedance

magnitude versus frequency is shown in Figure 2.13.
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Figure 2.13: Simulated weak-inversion PMOS transistor impedance magnitude versus fre-
quency for LPF,,.

At 6 kHz, the impedance magnitude starts to decrease at 20 dB per decade.

Results for impedance versus input amplitude are shown for 1 kHz and 1 MHz input
signal frequencies in Figure 2.14. At 1 kHz, the impedance magnitude is about 3.5 G2 and
at 1 MHz, the impedance magnitude is about 10.6 Mf). In both cases, the LPF BW is less
than an order of magnitude below the operating frequency which is sufficient for passing
the desired signal. The impedance drops at high input amplitudes due to the non-linearity

of the parasitic capacitances in the weak-inversion PMOS transistors.
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Figure 2.14: Simulated weak-inversion PMOS transistor impedance magnitude
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The mixer simulation results are summarized in Table 2.7.

at 1 kHz

Parameter Specification | Simulation Results
DR 80 dB 80 dB
BW >50 MHz 76 MHz
Gain 5.5 dB 5.5 dB
LPF BW <100 Hz 100 Hz
Current consumption <27.5 pA 24 pA
Input-referred noise at TIA input <1 nA, s 742 pA s

Table 2.7: Summary of mixer simulation results.

2.4 LPF, Design

The LPF 4 must be designed to meet a BW of 10 Hz. It is implemented using weak-inversion
PMOS transistors and capacitors as shown in Figure 2.15. Device sizes are shown in Table

2.8.
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Figure 2.15: LPF 4 circuit.

Component | W (um) | L (nm) | Vgg (V) | Value
M1 & M2 10 180 0 -
M3 30 4000 >0.8 -
Ctapc - - - 420.6 fF

Table 2.8: Transistors geometries and component values used in LPF 4

2.5 ADC Design

The ADC must be designed to meet the specifications shown in Table 2.9.

Parameter Specification
DR 80 dB
Sampling Rate >20 Hz
Visp 27.5 pVv
Current consumption <27.5 pA
Input-referred noise <2.2 nA, s

Table 2.9: ADC specifications.

A simple-ramp ADC topology was chosen, which is shown in Figure 2.16. This archi-
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tecture has only comparator and a counter which reduces the area occupied by the ADC.

When a voltage ramp V.4, is compared to the signal input Vj,, the counter increments

when Vi.gmp < Vin. However, when V,4m, > Viy, the counter is disabled and the count value

is held, providing a digital representation of V;,.

V'ramp

EN 16-bit Counter

Vin

Dout

‘/lat

Figure 2.16: ADC architecture.

>

The comparator utilizes a diff pair and latch with enable signal (Vj4) to compare V,.qmy

and V, as shown in Figure 2.17. Component geometries and biases are shown in Table
2.10. Transistors M8 and M9 in the latch turn on and off the positive feedback. Transistors
M10 and M13 are used to reset the latch. M6 and M7 act as a buffer for the diff pair output
which reduces the kickback from V},; to the inputs. Reset is used to hold the outputs high.
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Figure 2.17: ADC comparator architecture.
Component | W (um) | L (nm) | |[Ip| (¢A) | |Vas| (V)
M1 & M2 50 540 15 0.519
M3 & M4 20 720 15 0.57
M5 40 540 30 0.487
M6 & M7 0.5 180 - -
M8 & M9 0.5 180 - -
M10 - M13 1.75 180 - -

41

Table 2.10: Geometry and bias points of ADC comparator transistors.

The asynchronous 16-bit counter is implemented as a clock divider, shown in Figure
2.18, and some simple logic as shown in Figure 2.19. The counter clock (cclk) is gated.
The system clock (clk) is used to control the D flip-flops (DFFs).



DO D1

cclktmp

> qQ > Q >

D15

ol

Figure 2.18: 16-bit ADC counter.

rndig
|7 ;
—b Ql—
Cli> Q

3 |— cclktmp
VO_D Q celk |

Figure 2.19: ADC counter stop logic.

The Vsp of the ADC is given by

Aramp : f samp

flat ’

Vise =

(2.5)

where fi,; is the frequency of Vigt, fsamp is the sampling frequency of the ADC, and A, 4y
is the amplitude of V,.4,p. For A,4m, of 1.8 V, the required fj,; is 1.31 MHz. This frequency
is also the required counter frequency. As such, the asynchronous counter is verified at
frequencies up to 2 MHz. The ramp amplitude can be reduced to 1 V (0.8 V to 1.8 V) which

can then be used to decrease Vigp or increase fsqmp. The ADC comparator must settle to
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within at least half an least-significant bit (LSB) in the period of Vj,;. The relationship
between comparator bandwidth f3;p, the 16-bit relative error e16_pis and fi4;, assuming a

first-order response, is given by

—7-f34B
E16-bits = € Tlat . (2.6)

Solving equation 2.6 yields a f3;5 of 4.38 MHz.

The comparator design uses the diff pair for the TIA as the starting point. Minimum
sizes for the latch transistors reduce their parasitic capacitance, which also reduces kick-
back. The kickback amplitude at the output of the diff pair is ~1.4 mV for the given
topology. In order to be able to resolve 27.5 4V at the input, the gain must be at least 51
V/V. In the case where A, 4, is reduced to 1 V, the gain required becomes 91.7 V/V to

resolve the new LSB.

The power requirement results in a total current consumption of 167 pA. The mixer
and TTA use 101 pA which gives 65.7 'V for each of the two ADCs, resulting in 30 pA
being selected as the bias. New values of L34 for the PMOS transistors are computed
to give a gain of a at least 100 V/V, which yields a length of ~720 nm. Width W,
is selected to give a dc operating point of approximately 1.24 V, which is the minimum
voltage required at that node to keep the NMOS transistors in saturation over the range
of expected input voltages. The LPF is designed to have a BW of approximately 10 Hz
and the maximum equivalent capacitance per filter output is 1 pF. The equivalent BW for
suppression of input frequencies below the detection limit is ~14 Hz. V.4, and Vi, are

generated externally to the IC for flexibility.

2.5.1 ADC Simulation Results

The ADC differential non-linearity (DNL) and integral non-linearity (INL) are not simu-
lated because to demonstrate a 16-bit resolution, the simulation time would be exceedingly
long. Instead, a relatively small number of points are selected to verify the design. The
simulation is run at f;,; of 40 Hz, fi,; frequency of 2.86 MHz, and a Vysp of 14 ©V from
0.8 to 1.68889 V. The results are shown in Figure 2.20. The filtered output can swing
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from 1.6183 V down to 0.982 V. It is found that the ADC cannot resolve 27.5 ©V at input
voltages greater than 1.787 V as the gain of the comparator drops below the minimum
value required. This is not an issue for the filtered output, but will limit the measurements

from the mixer output as it could swing from 1.8 V down to 0.8 V.

70000 | |

60000 — y = 71569x - 57149
RZ=1 g

=9
o
[=]
[=]
o
L ]

0.8 1 1.2 1.4 1.6 1.8
Input (V)

Figure 2.20: Simulated ADC output code vs. input.

The ADC noise current PSD, referred to the input of the TIA, is shown in Figure 2.21.
The ADC has a total simulated input-referred noise of 1.8 nA,.,,s over the frequency range
from 1 Hz to 5 MHz. This is lower than the estimated LPF \/g noise of 65 pV, which
when input-referred, is 2.2 nA,,,;. This is probably due to the noise from the weak-inversion

PMOS transistors not being modelled well.
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Figure 2.21: Simulated ADC noise current PSD referred to TTA input.

The ADC simulation results are summarized in Table 2.11.

Parameter Specification | Simulation Results
DR 80 dB 80 dB
Sampling Rate >20 Hz 40 Hz
Viss 27.5 uv 14 pVv
LPF BW 10 Hz 14 Hz
Current consumption <27.5 puA 30 pA
Noise (1 Hz - 5 MHz BW) || <2.2 nA,,,;5 1.8 nA, ..

Table 2.11: Summary of ADC simulation results.

2.6 Simulation of Acquisition Channel Performance

The LIA components are then laid out together to fit within the minimum electrode pitch
(20 pm). The parallel-in serial-out (PISO) shift registers, which will be discussed in Chap-
ter 3, are also placed within the given area specification. The layout of the entire channel

is shown in Figure 2.22.
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Figure 2.22: Acquisition channel layout.
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The simulation results for extracted layout channel gain versus impedance magnitude

at 10 kHz is shown in Figure 2.23. The 1-dB gain compression point is approximately 900
Q.
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Figure 2.23: Simulated acquisition channel gain versus input impedance at 10 kHz.

The channel gain versus frequency for a purely real 100 k{2 input impedance is shown

in Figure 2.24. Due to simulation runtime, frequencies only up to 1 MHz are simulated.

The acquisition channel input-referred noise PSD is shown in Figure ?7. The input-

referred channel noise, as simulated with harmonic balance at 100 kHz, is 1.9 nA,,,.,.
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Figure 2.24: Simulated acquisition channel gain versus frequency with a purely real source
impedance of 100 k2.
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Figure 2.25: Simulated acquisition channel input-referred current noise PSD.
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Chapter 3

Camera Architecture and Physical

Design

This chapter starts by outlining the physical architecture of the camera and describing
the design decisions made at the system level. Then the individual components of the
architecture, including the electrode selection and interface circuits, power domains, clock
domains, shift registers, PISO shift registers, input/output (I/O) pads, and test circuits
are described. Next, an overview of the functional operation of the camera is given, and

finally a performance summary from simulation is provided.

3.1 Camera Architecture

The camera floorplan, as shown in Figure 3.1, must accommodate electrode arrays, sensor
electronics, and bond pads. The layout of the IC includes the microelectrode array (MEA)
on one side of the chip and the sensor electronics for processing (acquisition channels) on
the other. MEA1 has a 70x40 grid of electrodes, where each electrode has dimensions of
10x10 pm? MEA2 has a 17x11 grid of electrodes, where each electrode has dimensions
of 40x40 pm?.

The I/O bond pads are located along the perimeter of the IC. The electrode selection
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scan chains are located at the bottom of the chip for columns and in-between the electrodes
and acquisition channel for rows. Each row in MEAT1 has its own acquisition channel to
allow for multiple rows to be read out simultaneously. MEA2 has four acquisition channels
per row. ADC data from each acquisition channel is converted from parallel-to-serial format
using a parallel-in, serial-out shift register. System design decisions include having two V,,,
signals to allow for channel coupling measurements. Since only one is needed, the second
acts as a fail-safe. Having two also enables an external impedance analyzer to be used
as an alternative to the acquisition channels. As mentioned before, the ADC can sample
either the mixer output or the filter output, which allows for independent characterization

of the mixer output.

MEA?2 "
17x11 =
40x40 pm? S
T 84 Q

& | Acquisition |5 |<ed— Digital

%Ei()l g Channels § Control
* ]
10x10 pm? 2
&

Col Select Scan Chains

A A
| Y
2X Row &  Analog ADCs Serial

Vapp Column  control Data Out
Selection

—P>>

Figure 3.1: CMOS camera [C architecture.

3.1.1 Electrode Selection and Interface Design

The electrode selection is done with scan chains and switches. The switches are imple-

mented with transmission gates which allow for rail to rail signals to pass through and
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have reduced noise margin compared to single transistor switches. Scan chains are a series
of DFF's which are serially loaded to turn the various electrode switches off or on. For the
input to the acquisition channels and each of the two V,, signals, there are scan chains for
both the rows and columns, yielding a total of six scan chains. Each output of a DFF in a
row scan chain controls a switch to select a row. Similarly, each output from a column scan
chain DFF controls all switches for each electrode in an entire column. A simple diagram
in Figure 3.2 shows this functionality for a 2x2 block. Signals are in the form colry and

rowzy, where x is the row or column position and y is the scan chain identifier (1 = Vj,,,
2= Vopp1, 3 = V;lpp2)-

Each electrode connects to each V,,, signal through a row and column switch. The
electrode also connects to an acquisition circuit through a row and column switch (V;,).
It is found that the capacitive loading from the switches in MEAT is high enough to cause
significant leakage of input current at higher frequencies. To reduce the impact of loading,
each row of an acquisition channel is split into three sections. This leads to three separate
row switches for each acquisition channel input. Since there is limited space, the switch
transistors are designed to have minimum length of 180 nm and widths of 5 ym. The
switch’s width is limited due to the electrode size and pitch. Since the signal V,,, has
to pass through four switches before reaching the acquisition channel input, each switch
contributes an on resistance. The series on resistance combined by four switches between
Vin and the acquisition channel input, is not an problem, as the resistance can be calibrated
out from an impedance measurement. An additional feature added, as shown in Figure 3.3,
is a load value (holdv) and a scan chain output selection (scoutsel). These controls allow
all the switches to be set to the off position simultaneously when holdv=0 and scoutsel=1.
As a result, for the scan chains can be loaded without activating any switches so that the

cells are not disturbed due to transient effects.
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Figure 3.2: Electrode selection functional diagram.
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3.1.2 Electrode Fabrication

Each electrode is formed using the top aluminium metal layer of the CMOS process (metal
6). High density vias connect to the top metal layer to metal layers below, and eventually
to the active devices in the silicon substrate. At the time of manufacture, the passivation
above each electrode is removed so that the metal electrode is exposed. Because aluminium
is electrochemically active and not compatible with live cells, two methods could be used to
interface the electrodes to the cells and bath solution. The first involves wet etching away
the top metal layer to expose the tungsten vias below, which then contacts the electrolyte
and cell. The second method involves depositing gold on top of the aluminium (possibly
by using an electro-less plating process), which would then contact the cell. Chip cross-
sections before post processing and after the proposed gold deposition (not implemented

in this thesis) are shown in Figure 3.4.

Gold Electrode Interface

Metal 6 (Al) Metal 6 (Al)
Tungsten Vias Tungsten Vias
o Metal 5 (Al) o . Metal 5 (Al) o
Passivation Tungsten Vias Passivation Passivation Tungsten Vias Passivation
Metal 4 (Al) Metal 4 (Al)
Metal Metal
1to3 1to3
CMOS Substrate CMOS Substrate
(a) (b)

Figure 3.4: Chip cross-section (a) before post processing and (b) after the proposed gold

deposition.

3.1.3 Power Domains

There are two power domains on the IC, analog VDD (AVDD) and digital VDD (DVDD),
and both operate at 1.8 V. The LIA (with the exception of the digital logic) is powered by
AVDD. The column and row select scan chains also powered using AVDD. The PISO and

asynchronous counter are powered from the digital power supply. Interference from the
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scan chain clock is insignificant as it is turned off when the LIA is operating. To isolate the
substrate of the analog circuits and hence provide ground isolation, a guard ring consisting
of a deep N-well is placed around the NMOS and PMOS transistors that are connected
to digital ground (DVSS). This is the recommended procedure by the manufacturer of the
CMOS process.

3.1.4 Clock Domains

The four clock domains on the IC are summarized in Table 3.1.

Clock Name Description
clk PISO and DFFs for logic
celk ADC counter
vlat Latch
rowcolscelk Scan chains

Table 3.1: Camera IC clock domains.

The reason for a separate scan chain clock is to allow for the digital components on the IC
to run without generating switching interference near the electrode interface. The reason
for separate counter and latch clocks is to add flexibility when setting the period between
the time the latch settles and the time the counter increments. The remaining digital

circuits also have their own clock.

3.1.5 Parallel-in Serial-out Shift Register

Each unit of the two PISOs is designed as shown in Figure 3.5. When signal w/s is
high, the architecture behaves as a scan chain; when it is low, data is loaded from the
counters. The PISO must transmit the ADC data from the IC within the sampling period
of the ADC. The PISO contains 1344 DFFs, which for an ADC fy,, of 40 Hz (double the

specification), sets the minimum PISO clock frequency of 50 kHz. However, to utilize only
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one digital clock, the DFFs need to be able to run at fj,;, which is up to 2 MHz. The data
is transmitted from the IC with most-significant bit (MSB) first.

Counter Out;
W/S
| Out
rndig W/S, [
A
In
—D Q
cky, g

Figure 3.5: PISO unit circuit.

3.1.6 Global Bias Circuits

Each current mirror has a maximum size MIMCAP (30x30 p m?, 952 fF) connected to its
gate to attenuate high-frequency interference. The total decoupling capacitance is 3.8 pF

per current mirror.

3.1.7 I/0 Pads

I/O pads based off work done in [141] were implemented for analog signals, digital signals,
and power busses. The pads utilize diodes to provide electrostatic discharge (ESD) protec-
tion. To prevent large potentials from developing between different power domains, each

domain is connected to the other by anti-parallel diodes.
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3.1.8 On-chip Test Circuits

Two channels within the camera are dedicated to providing direct access to nodes within
the LIA. The two channels selected are the first and last acquisition channels, which are
at either end of the IC. The nodes that are brought out to pads on the IC for both test
channels include: the TTA output, the output of the mixer filter, inputs to the two ADCs,
the ADC comparator outputs, and the latch outputs. The only difference between the test
circuits and the non-test circuits is the extra external capacitance connected to each of
the internal nodes. This added capacitance reduces the BW and could result in additional

interference coupling into the channel from external sources.

3.2 Camera Functional Operation

The proposed operation of the camera is outlined in Figure 3.6. Signals used in figures
in this section are explained in more detail in the pin table in Appendix A. In step (1),
the scan chains are loaded to select a working and reference electrode. At the same time
the output of the scan chains are disabled which keeps all row and column select switches
off until loaded. During the loading of the scan chains, the mixer or filter output for the
real path of the LIA is selected. Once the scan chains are loaded, the outputs are enabled
and the LIA outputs begin to settle. In step (2), once the LIA output has settled the
ADC samples the output of the filter or mixer for the real path. In step (3), the data
is transmitted off chip. After this, in step (4), the output of the filter or mixer for the
imaginary path is sampled, then in step (5), the data is transmitted off chip. The process

is repeated until all electrodes are read out.
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Figure 3.6: Flow graph of camera operation.
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3.2.1 Camera Timing

For each of the core operations (loading scan chains, sampling, and sending data), a timing
diagram is shown below to provide clarity on functionality. The timing digram for loading
scan chain chains for Vj,, (vin) and V1 (vsource) is shown in Figure 3.7. In this timing
diagram, row 3 and column 4 are selected for vsource, and row 2 and column 5 for vin in
MEAT1. For loading the scan chains, the number of clock cycles needed is 164. The reason
for this is that there are three scan chain units per Vj,, row within MEA1, which splits the

columns into approximately three equal sections.

1 2 3 4 5 6 163 164

rowcolscelk NN (Y N S /A N S
/ \ I
/ \ I
/ _
I
[
Y
J/

Figure 3.7: Timing diagram for loading scan chains.

sccolvsourcein

scrowvsourcein

sccolvinin

scrowvinin

holdv

scoutsel

AANENANENENEN
SININININININEE

rnrowcolsc

The timing diagram to sample data for a filter output and real part of the signal is
shown in Figure 3.8. N, is the total number of codes for an N-bit ADC, where N is the
number of bits. This timing diagram assumes that the LPF output has settled to within
the value required by the ADC’s resolution.
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Figure 3.8: Timing diagram for sampling data.

NINIRINE

The timing diagram to send the 16-bit data to an external controller with MSB first is
shown in Figure 3.9. The scanoutp and scanoutn pins send the ADC data for row 1 first,
then row 2, and this process continues sequentially until all 84 rows are sent. The whole

process takes 1344 clock cycles.

1 2 3 4 15 16 17 18 19 1343 1344

o [ L 0 = I 7 I /7 LI 1

w/s 4 // // \_
scanoutn 7////f__o15_J_D14_X_D13_XJ b2 X D1__ X D0 X D15 Y D14 XJ b2 X D1 DO
scanouty 7/ Db15_X_Db14_ X _b13_XJ b2 X b1 po Y b15 ¥ b14 Y/ b2 Y b1 Do

rndig // //

Figure 3.9: Timing diagram for transmitting data off chip.

3.3 System Performance Summary

The fabricated camera IC is shown in Figure 3.10. The simulated performance of the

lock-in circuits and system are summarized in Table 3.2.
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Figure 3.10: Camera IC.
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Reference

Targeted Specification

Simulated Results

Topology Lock-in + Ramp ADC Lock-in + Ramp ADC
Frequency Range 1 kHz-1 MHz 1 kHz-1 MHz
Dynamic Range (dB) 80 80
Channel Power (W) 300 300
Electrode Size (um?) 10x10 & 40x40 10x10 & 40%40
Electrode Pitch (pum) 20 20
No. of Electrodes 2987 2987
Input-Referred Noise 1 nA 1 nA (6 sample averaging)
Number of Channels 84 84
Channel Area (mm?) 0.02 0.0192
Die Size (mm) 3x2.5 3x2.5
Frame Rate (Hz) 0.0117 0.0117
Technology (um) 0.18 0.18
Area-readout FOM (mm™—?) 36 36

Table 3.2: Camera target specifications and simulated performance.
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Chapter 4

Experimental Results

This chapter outlines the printed circuit board (PCB) design and bench top characteriza-
tion of the impedance camera IC. An overview of the complete system experimental setup
is given first. Then, the PCB design and some of its key blocks are also described. The
functionality of the RTL code used to operate the IC is discussed next. Following this, the
camera is characterized and impedance measurements are summarized. Finally a summary

and comparison of the measured camera performance is given.

4.1 Experimental Setup

The experimental test setup is shown in Figure 4.1. The system operates with the PC
working as the master, which controls the PCB and the function generator using a C+-+
program. The experiments are run by setting field-programmable gate array (FPGA)
parameters in software via a software library provided by the Opal Kelly company to
operate the camera in various configurations. The Opal Kelly daughter board contains an
FPGA and Universal Serial Bus (USB) interface which captures data and transfers it to the
PC. The data is saved as binary files which are then imported into MATLAB for processing
and analysis. This setup allows for flexibility in clock frequencies, ADC sampling rates,

and camera operation through software control on a PC.
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Figure 4.1: Experimental setup.

4.2 Printed Circuit Board Design

The PCB is designed and fabricated to operate the impedance camera IC and characterize

its performance. Figure 4.2 shows the PCB used to characterize the camera IC.
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Figure 4.2: PCB showing camera, FPGA, biasing circuits and power ICs.
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The board contains four layers: two for routing and one each for power and ground
distribution. The following sections describe the design of bias circuits, ramp generator for
the ADC, and signal buffers.

4.2.1 Bias Circuits

The impedance camera IC contains current mirrors for biasing the internal blocks. The
current mirror biasing circuits for on-chip diode-connected NMOS and PMOS transistors
are shown in Figure 4.3. An off-chip resistor R is used to generate the bias current for
each device. To ensure low noise and interference, multiple decoupling capacitors C are

inserted as shown.

-1 — 1
On Chip
C —— R —”
—
\ C —/—— R
>
On Chip ..'..

Figure 4.3: Current mirror biasing circuits with integrated transistors shown for clarity.

The off-chip bias circuit for the TTA reference voltage Vpras is shown in Figure 4.4.
This circuit generates a reference voltage using a resistor divider, where R1 = 100 k{2 and
R2 = 66.5 k2, a buffer, and filter capacitor C. The noise from the bias circuit is dominated
by the op amp input-referred noise which is 1 4V, ,s. This, when referred to the input of
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1uV
|Zcell‘

From the two expressions, the input-referred noise will always be

the LIA is given by the expression and the magnitude of the input current is given

10mV
|Zcell ‘ ’

less than the input current magnitude by four orders of magnitude.

by the expression

R1

R2

[ m—

Figure 4.4: TIA reference voltage circuit.

4.2.2 Ramp Generator for ADC

The ramp generator circuit is shown in Figure 4.5.
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Figure 4.5: Ramp generator circuit.

The voltage reference V,.; generates a current though R which is fed into capacitor C; to

generate a ramp voltage V,qm, with slope given by

dv;'amp ‘/ref
= . 4.1
dt Ci-R (4-1)

The ramp is reset when the switch is closed (controlled by the FPGA) and the negative
terminal is connected to the op amp output to maintain a fixed voltage across R. The
ramp must exhibit low noise to meet the ADC LSB requirements. The total output noise
is affected by the noise of the reference voltage, noise of the resistor, and noise of the op
amp. The noise contribution from each component is summarized in Table 4.1. The total
noise when referred to the LIA input is 280 pA,,,s, which is significantly less than the
LOD.
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Component || Part # or value | Output-referred noise
Op amp OPA322 1.4 Vs
Vies MAX6190 8.3 1Vrms
R 100 k2 40.6 0V,
Total - 8.41 Vs

Table 4.1: Ramp generator components and noise contributions.

4.3 FPGA RTL Design

The FPGA is used to implement digital hardware to control the camera IC via a finite-state
machine (FSM). The states implemented in the FSM are:

1. Reset: Resets all the digital circuits on the IC.

2. Load Scan Chains: Loads the row and column scan chains to enable individual

electrodes to be selected as either the working or reference electrodes.
3. Sampling: Initializes the ADC to start sampling data.

4. Data Readout: Reads the ADC data from the IC.

The data path from the IC output to PC over USB involves a single first-in, first-out
(FIFO) on the FPGA. Limitations in FIFO size imposed by the maximum FPGA memory
size leads to a maximum of 189 16-bit ADC samples per acquisition channel. Obtaining
a continuous time sampling size greater than 189 samples would require using the Opal
Kelly’s on board dynamic random access memory (DRAM) or a FPGA with more on-chip

memory.
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4.4 Camera Electrical Characterization

To characterize the electrical performance of the camera IC, an external source impedance
Zeey on the PCB is connected to V,,, which sets a specific input current I;,, into the LIA
through the vsource pin. This default test setup is shown in Figure 4.6. As mentioned in
Chapter 3, there are four switches that must be set to select electrodes. In this case, only
one electrode needs to be selected (to provide a path from V,,, to the LIA input), as there is
no on-chip cell impedance being measured by the electrodes. Signal m fsel selects whether
the ADC samples either the filtered or unfiltered mixer output. Signal irsel, selects the

real or imaginary mixer output.

1
: vsource vsource vin vin mfsel :
. row col electrode col row 1
Oy
Zcell : UII mixer :
/ 1
: VBras \ CAPC
1 * 1
] 1
Vapp 1 TIA irsel !
v IC |
1

Figure 4.6: Default LIA test setup.

Electrical tests are run on the LIA in order to obtains the following results: (1) trans-
fer characteristic at a fixed input sinusoidal frequency, (2) magnitude of the frequency re-
sponse, (3) phase of the frequency response, (4) input-referred noise PSD, and (5) crosstalk.
These tests are run on the 82 non-test channels, and in some cases, only the 39 non-test
channels in M EA1. All channels operate simultaneously, but are individually tested unless

otherwise specified.

4.4.1 Transfer Characteristic

The first test is plotting input current versus filtered output ADC code at a frequency of
10 kHz. This is done for both real and imaginary signals paths. The result for the I signal
path is shown in Figure 4.7, and for the @) signal path is shown in Figure 4.8.
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Figure 4.7: Measured real output versus input current at 10 kHz.
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Figure 4.8: Measured imaginary output versus input current at 10 kHz.

The plots include input sinusoids having amplitudes of up to 7.2 pA,, which covers a
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cell impedance as small as 1.388 k€). As the switch resistance is significantly greater than
388 (), this verifies that a 1 k{2 impedance can be measured by the LIA. The range of input
currents are obtained from selecting multiple impedance values (resistors or capacitors),
as well as changing the amplitude of V,,,. The low input saturation is caused by the
attenuation of [;, from parasitic capacitors when large impedances >10 M2 are placed on
the PCB. From the plots it also observed that the average gain of 34 k) for the channels
is lower than the designed value of 60 k2. The investigation of this reduced gain issue is
described in Section 4.4.5. To characterize the linearity of the system the R? for each of the
channels is computed and the average is taken over all channels from 7.2 nA to 7.2 pA. The
average R? for the real and imaginary transfer curves are 0.9994 and 0.9996, respectively.
These results give a percent error similar to a quantization error similar to that of a 11-bit
ADC which is 0.0005. This low performance is due to the limited accuracy of V,,, and
tolerance on passive components (which are less than 16-bit accuracy). To obtain better

characterization more accurate measurements need to be done.

4.4.2 Magnitude and Phase Response

In the next test, the filtered output magnitude and phase for real signals (at an I, of 4.5
pA,) is measured. The output magnitude versus frequency is shown in Figure 4.9 and the

phase versus frequency is shown in Figure 4.10.
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Figure 4.9: Measured filter output magnitude versus frequency at 4.5 pA,,.
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Figure 4.10: Measured filter output phase versus frequency at 4.5 pA,,.
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The magnitude response over frequency also indicates that the gain is lower than ex-
pected, with a standard deviation of 1.217 k{2 across 82 channels at 10 kHz. To obtain the
low-frequency and high-frequency cut-off, the phase at 1 kHz and 2.5 MHz, and a first-
order approximation are used. The low-frequency cut-off is higher than expected by 33 Hz,
but it is still adequate for having sufficient gain at the lowest operating frequency. The
high-frequency cut-off estimate varies across channels more significantly than the lower
cut-off frequency. This is likely caused by the coupling or feed-through which occurs at
frequencies greater than 2 MHz, as seen by the significant change in output voltage in
Figure 4.9.

4.4.3 Noise

The next test obtains the LIA input-referred current noise. The integrated input-referred
noise is plotted versus mixing frequency for six-point averaging and without averaging for
two different test setups. In the first setup, all selection switches are open, which leaves

the inputs channels at high impedance as shown in Figure 4.11.

1
Im ' vsource vsource vin vin
1 mfsel
. row col  electrode col row
1
Zcell T ‘/o_/o—[l_/o_/ /_
\ ADC

VBras

Figure 4.11: LIA noise test setup.

The results are shown in Figure 4.12 and capture any LIA noise and internal feed-through
within the LIA itself. This result, as well as all other input-referred noise versus frequency
results, are an integrated result versus frequency. This indicates that input-referred noise

is either an up or down-converted noise from the input at a particular mixing frequency.
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(a) Without averaging (b) 6 point averaging

Figure 4.12: Measured LIA input-referred current noise versus mixing frequency for dis-

connected inputs.

As observed in Figure 4.12, the non-averaged input-referred noise is significantly higher
than the averaged noise, especially over the 7 to 12 kHz range. When averaging is imple-
mented, noise peaks at 1 kHz and 8 kHz are visible in Figure 4.12b. This could be caused
by coupling into V4, for the ADC or Vprag for the TIA.

The second test setup uses the same default configuration as in Figure 4.11, which
connects the LIA input to the PCB which contains a passive circuit with a dc level applied.
The results are shown in Figure 4.13. These results include any noise, feed-through and

coupling for both the LIA and the PCB and its components.

10%¢ 10%¢
E s t
=10°E £
S L 8
2 2
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5 10} 3
- 10‘ I I 1 1 1 10“2 \3 \4 \5 ‘5 |7
10° 10° 10° 10° 10° 10 10 10 10 10 10 10
Frequency (Hz) Frequency (Hz)
(a) Without averaging (b) 6 point averaging

Figure 4.13: Measured LIA input-referred current noise versus mixing frequency for con-

nected inputs.
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The input-referred noise is higher at low mixing frequencies because the 1/f noise con-
tribution is higher. This indicates that there is significant noise contribution from the
components on the PCB or the function generator. There is still a peak in noise at 1
kHz and 8 kHz. A histogram of the LIA input-referred noise of each channel with 6 point
averaging and no averaging is shown in Figure 4.14 at a mixing frequency of 600 kHz to

show noise variation across the 82 non-test channels.

N
o
1

6 Point Averaging No Averaging

Average Noise = 1.08 nA, Average Noise = 2.81 nA

0=0.24nA . 0=0.49 DA, ;
“Measured at6oo kHz “Measured at 600 kHz

-
o
T

o
T

Number of Measurement Channels
(=]

05 1 1.5 2 2.5 3 35 4
Input Referred Noise (nArmS)

(o

Figure 4.14: Measured LIA input-referred noise with 6 point averaging and no averaging
measured at a mixing frequency of 600 kHz.

With 6-point averaging, the LIA input-referred noise has an average of 1.08 nA,,,s
across channels at 600 kHz. To further reduce the noise of the system to reach noise
levels below 1 nA,,,, additional averaging can be done at the cost of frame rate. For
example, with 24-point averaging, the frame rate would become 0.0084 Hz, which results
in only 5 frequency points being taken to meet the frame rate criteria. A histogram of
the input-referred noise of each channel with 24-point averaging and no averaging is shown
in Figure 4.15 at a mixing frequency of 600 kHz. This leads to an average noise of 0.618
nA,,.s. The theoretical calculation for noise reduction results in an average noise of 0.574
nA,,.s. Therefore, the 24-point averaging has an effective reduction of 21-point averaging.

This discrepancy could be caused by the noise samples not being normally distributed or
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correlation between samples.
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Figure 4.15: Measured LIA input-referred noise at 600 kHz with 24 point averaging.

4.4.4 Crosstalk

Since multiple channels operate simultaneously during normal operation of the camera IC,
a crosstalk test is done to determine the extent of crosstalk between channels. To obtain
channel crosstalk, an 8 uA, signal is applied to one channel (called the “aggressor channel”).
This is higher than the expected I;, with a 1 k{2 source impedance. Using this value would
indicate a possible worst-case coupling condition, in which there would be a near 0 2 Z..;
impedance and the series switches would establish the current limit. A “victim” channel
adjacent to the aggressor is set with its input floating. The extent of coupling is then
measured by the victim channel. Since the LIA input-referred noise dominates over the
coupling, noise is subtracted from the results to obtain the input-referred coupling. This
method is subject to possible inconsistencies or variation as the noise measurement is taken
separately from the coupling measurement. The 6 point averaging and no averaging result
for 39 non-test channels in M E A1 are shown in Figure 4.16.
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Figure 4.16: Measured LIA input-referred coupling from filtered output.

Similar to the input-referred noise measurements, the coupling exhibits a spike at 8
kHz which is the same case as the noise measurements. They also exhibit a spike at 12
kHz. With the exception of the 8 kHz spike, the maximum amount of coupling between

channels over the intended operating frequency is 10 nA, ;.

4.4.5 Low-Gain Investigation

To investigate the low gain from the filtered output that was measured in Figure 4.17, the
filter is bypassed as shown in Figure 4.17 and new measurements are made. In this setup,
the dc component of the output signal sinusoid is obtained by sapling the output 188 times

and then averaging.

1
Im ' vsource vsource vin vin !
1 mfsel 1
. row col electrode col row 1
7 D o e o Ml e 0o mixer !
cell T | [ /_ :
: VBras \ \APC
1 . 1
1 1
Vapp ' IC TIA irsel !
1
1 ]

Figure 4.17: LIA with LPF bypassed test setup.
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The mixer output magnitude versus frequency is shown in Figure 4.18 and the phase versus

frequency is shown in Figure 4.19 at an input current of 4.5 pA,,.

1001
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Figure 4.18: Measured mixer output magnitude versus frequency at an input current of
4.5 pA,.
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Figure 4.19: Measured mixer output phase versus frequency at an input current of 4.5 pA,,.

The average gain of the channels from the mixer output at 62.1 k€2 has an error of only
3.5% from the designed value. The between-channel gain deviation is also significantly less
than the filtered output. This indicates that there is an attenuation that happens from
filter input to output during normal operation with the filter activated. The input-referred
noise from the mixer output is plotted against mixing frequency for 6 point averaging
and no averaging using the test setup in Figure 4.6 with the mixer output selected. The
results are shown in Figure 4.20. These results capture any channel noise and internal
feed-through within the channel itself.
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Figure 4.20: Measured LIA input-referred noise versus mixing frequency for disconnected
inputs.

The noise is higher than the filtered output at frequencies less than 2 kHz and frequen-
cies greater than 1 MHz. The second case test setup as in Figure 4.11 is used with no
applied sinusoidal voltage. The results are shown in Figure 4.21. This result includes any
noise, feed-through and coupling for both the internal IC input paths and the PCB.
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(a) No averaging (b) 6 point averaging

Figure 4.21: Measured LIA input-referred noise versus mixing frequency for connected
inputs.

The result from the mixer output in general has lower input-referred noise. This is

largely due to the elimination of the filter %T noise and increase in the channel gain. A

histogram of the input-referred noise of the mixer output of each channel with 6 point

averaging and no averaging is shown in Figure 4.22 at a mixing frequency of 600 kHz.
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Figure 4.22: Measured LIA input-referred noise at 600 kHz input signal frequency with 6

point averaging.

As seen, the noise is significantly less than the filter output case. A histogram of the
input-referred noise of each channel with 24 point averaging and no averaging is shown in

Figure 4.23 at a mixing frequency of 600 kHz. Which again is significantly lower.
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Figure 4.23: Measured LIA input-referred noise at 600 kHz input signal frequency with 24

point averaging.

The mixer output coupling result for the 39 non-test channels in M E A1l are shown in
Figure 4.24 at a 8 pA, signal. The coupling is similar to the filtered output which is as

expected.

rms)
rms)

Input Referred Coupling (nA.
Input Referred Coupling (nA.

Frequency (Hz) Frequency (Hz)

(a) No averaging (b) 6 point averaging

Figure 4.24: Measured LIA input-referred coupling from mixer output.

To further examine the attenuation caused by the filter, the two on-chip test channels
are examined. Both test channels have significantly lower cut-off frequency, which is ex-

pected due to the additional loading on internal circuit nodes. However, both channels
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have a gain of approximately 54 k{2 with the filter active, which is much closer to the de-
signed value. Further investigation such as investigating potential substrate voltage divider
or observing the test channels with not external connection needs to be done to pinpoint

the cause of attenuated gain on internal channels.

4.4.6 Cell Impedance Modelling

To simulate the camera response to a cell, a passive circuit model is made using resistors
and capacitors on the PCB, as in Figure 1.2. The full interface model in Figure 1.6 is
not used R, and Cy are large enough over the range of operating frequencies that it does
not significantly affect the measurement result. In order to obtain an accurate result,
the camera IC needs to be calibrated. To calibrate phase offset # and gain mismatch z,

additional terms are introduced into (1.8) and (1.7), as shown below:

| Z(jw) |= e Asys (4.2)
A /V12 + xVé
LZ(jw) = tcml(xvﬁ) +0. (4.3)
I

Variables Ay, 0 and z are quantified by applying an input sinusoid with known amplitude
and phase. For 84 channels, the measured impedance for R,, = 50 k2, R, = 5 k{2, and
C,, = 200 pF over the frequency range of 1 kHz to 1 MHz is shown as a Nyquist plot in
Figure 4.25, and magnitude and phase in Figures 4.26 and 4.27, respectively.
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Figure 4.25: Measured and ideal cell model Nyquist plot for 82 channels.
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Figure 4.26: Measured and ideal cell model magnitude plot for 82 channels.
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Figure 4.27: Measured and ideal cell model phase plot for 82 channels.

The maximum relative error in the magnitude response is 13% over 82 channels. The
maximum relative error for phase is 170% at 1 kHz. This large relative phase error is
expected as the noise is on the same order of magnitude as the imaginary input current
and the tangent function is more sensitive to changes in phase close to zero. Similarly, at
1 MHz, the relative error is 77%. From 6 kHz to 600 kHz, the relative error is 20%.

To simulate simultaneous cell measurements, two adjacent channels are selected to
measure two separate cell models on the PCB. For both models, R, = 10 k2, R,,, = 50 k{2,
and C,, = 200 pF. Figure 4.28 shows a Nyquist plot resulting from the test. The frequency

is swept from 1 kHz to 1 MHz and obtains an accuracy better than 10.4% over the range.
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Figure 4.28: Measured and ideal cell model Nyquist plot for two adjacent channels.

4.5 Performance Summary

The camera’s measured electrical performance is summarized and compared with previous
work in Table 4.2. In addition to the area-readout FOM (FOM1), an additional LIA
FOM (FOM2) is introduced to compare the LIA designed in this thesis with LIAs in

previous work. FOM2 is given by FOM?2 = 1;) % 5> where a lower value indicates better

performance.
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The camera IC developed in this thesis achieves a significantly higher FOM1 compared
to previous work, as well as the best FOM2 for LIAs with integrated ADC. These FOMs
indicates a high spatial resolution and electrode readout efficiency with best LIA design.
This is achieved by using a row-parallel architecture with an extremely compact LIA circuit.
With the exception of [27], which does not contain an on-chip filter or ADC, this work’s
electronic circuits occupy the least amount of area. The camera IC developed in this work
also achieves a significantly lower power consumption compared to other work at a similar
BW. This is mainly because this work operates from a 1.8 V supply and other work operates
from a 3.3 V supply. The noise and DR performance is not as good as the other work.
Better DR and noise can be achieved at the cost of power and the maximum measurable
input current being reduced. The simulation predicted the performance of the system
specifications closely over most parameters. The exceptions to this are the reduced gain
from output of the filter, external coupling, and noise being slightly worse than expected.
Additional simulation could be done to observe the effect of off-chip signals coupling in to
the ADC as well as providing an increased margin for noise performance to account for

simulation inaccuracy.
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Chapter 5

Conclusion and Future Work

This thesis presented a novel CMOS impedance camera IC for characterizing biological
cells. It described the design of an LIA used in the acquisition channels in the camera
IC and also described the experimental setup and characterization of the camera. The
camera achieves a 1 kHz-to-1 MHz operating frequency and an input-referred noise of 1.08
nA,,.s at 600 kHz with 6 point averaging. The camera meets all of the specifications, with
exception of the system gain. The reduction in system gain from the LPF increases the
LOD, from 0.46 nA,,,s to 0.8 nA,,,s. Since this is still below the targeted 1 nA, LOD, it
is not a major problem. This CMOS electrochemical impedance camera can also be used

to obtain a impedance image of any sub-millimetre-diameter object to a 20 pm resolution.

5.1 Future Work

The following list summarizes the improvements that could be made in the next generation
of CMOS camera:

e Investigate package pinout to make sure that sensitive analog signals, such as V,,,, are
not located close to switching signals such as Vip. Additionally, add more on-chip

shielding to reduce coupling between channels.
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Use an alternative to weak-inversion PMOS transistors as a source of resistance for the

LPF. An alternative could be to use transistors with a controlled gate voltage.
Implement a fully differential LIA to reduce noise and crosstalk.

Using a high speed ADC instead of on-chip LPF could be implemented to increase frame

rate.

Add switches to test channels to disconnect the internal nodes from external capaci-

tances. The effect of external capacitance on various nodes could then be examined.

Redesign PCB to add additional shielding and filters to reduce coupling and noise.
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PIN SIGMAL ANASANA-DIG/DIG |I/O/PWR/GND |Description
1|voutp4d ANA 0 positive output of latch for 4040 electrodes test channel
2|voutndld ANA O negative output of latch for 40x40 electrodes test channel
3|compnindd ANA o] negative comparator input for 40x40 electrodes test channel
4lavdd ANA PWR Analog Power 1.8V
5|avdd ANA PWR Analog Power 1.2V
Elavss ANA GND Analog Ground
Tlavss ANA GND Analog Ground
Blcompbias4l ANA | Tail current for ADC comparators of 40x40 electrode channels, 0472V
Sl mixbiasal ANA | Tail current for mixers of 40x40 electrode channels, 0.4756 V
10] diffbias40 ANA | Tail current for TIA diffpair of 40x40 electrode channels, 0.5144 W
11)curbufbiasa0 ANA | Tail current for TIA current buffer of 40x40 electrode channels, 0,405V
12|voffsetdd ANA | Tail current for TIA offset of 40x40 electrode channels, 1.8V
13Jvsource ANA I/O Input for one of the Vapp signals
14]vref ANA 1/O Input for one of the Vapp signals
15| vtran4d ANA 0 cutput of TIA for 40x40 electrode test channel
16 mixindd ANA O output of TIA filter for 40x40 electrode test channel
17|compnoutdd ANA O negative output of comparator for 40x40 electrode test channel
18Jcomppoutdd ANA o] positive gutput of comparator for 40x40 electrode test channel
18} comppindd ANA 0 positive input of comparator for 40x40 electrode test channel
20| scrowvinout ANA-DIG 0 vin row scanchain cutput
21 scrowvsourcecut | ANA-DIG O VSOUrce row scanchain output
22)scrowvrefouT ANA-DIG o] vref row scanchain output
23| clktn ANA | negative clock input for experimental elecirodes
24]clkt ANA | positive clock input for experimental electrodes
25]inl ANA | input for experimental electrodes
26jourl ANA O output for experimental electrodes
27]in2 ANA | input for experimental electrodes
28| out2 ANA 0 output for experimental electirodes
28]in3 ANA | input for experimental electrodes
30]out3 ANA 0 output for experimental electrodes
31]ind ANA | input for experimental electrodes
32]outd ANA o] output for experimental electrodes
33| sccolvsourceout JANA-DIG 0 vsource col scan chain cutput
34| sccolvrefout ANA-DIG 0 vref col scanchain cutput
35)sccalvinout ANA-DIG O vin col scanchain output
36)sccolvsourcein |ANA-DIG | vsource col scanchain input
37)sccolvrefin ANA-DIG | vref col scanchain input
38| sccelvinin ANA-DIG | vin col scanchain input
38] scrowvrefin ANA-DIG | vref row scanchain input
A0)scrowvsaurcein JANA-DIG | VSOUrce row scanchain input
A1) scrowvinin ANA-DIG | vin row scanchain input
42|NC ANA M/A Mo Connection
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PIN SIGMAL ANASANA-DIG/DIG |IfO/PWR/GND |Description
43| holdv ANA-DIG I state for all switches when scoutsel = 1, 1-on, 0-off
4d|scoutsel AMNA-DIG | selection for switches states to be contralled by holdv or scanchains, 1-holdv, 0-scanchains
45|rnrowcolsc ANA-DIG I active low reset for row and column select scanchains
46| rowcolscclk ANA-DIG I row and column scanchains clock
A7 vtran AMNA 0] output of TIA for 10x10 elecirodes test channel
48| mixin ANA a output of TIA filter for 10x10 electrodes test channel
48| comppin ANA a poistive input of ADC comparator for 10x10 electrodes test channel
50| comppout AMNA 8] postive output of ADC comparator for 10x10 electrodes test channel
51| compnout AMNA 8] negative output of ADC comparator for 10x10 electrodes test channel
52|vbias AMNA | voltage bias forthe TIA, 0.715V
53| wref AMNA | Input for one of the Vapp signals
S54|vsource ANA I Input for cne of the Vapp signals
55| voffset ANA I Tail current for TIA offset of 10x10 electrode channels, 1.8V
56| curbutbias AMNA | Tail current for TIA current buffer of 10x10 electrode channels, 0.406 V
57|diffbias AMNA | Tail current for TIA diffpair of 10x10 electrade channels, 0.5148 V
58| mixbias AMNA | Tail current for mixers of 10x10 electrode channels, 0.4756 V
58| compbias AMNA | Tail current for ADC comparators of 10x10 electrode channels, 0473V
&0 avss ANA GND Analog Ground
61| avss ANA GND Analog Ground
62| avdd AN& PWR &nalog Power 1.2V
63| avdd AMNA PWR Analog Power 1BV
| compnin AMNA 0] negative input of ADC comparator for 10x10 electrodes test channel
65|vramp AMNA | Voltage ramp input
66 voutn ANA ] negative output of ADC latch for 10x10 electrodes test channel
67| voutp ANA a positive output of ADC latch for 10x10 electrodes test channel
68| mfsel ANA-DIG I selection for ADC to sample mixer output or filter output, 1-filter output, 0-mixer cutput
69]irsel AMNA-DIG | selection for ADC to sample real or imaginary outputs, 1-real output, O-imaginary cutput
70|viat ANA-DIG I clock for latch
71| lopr AMNA | positive input for mixer switching devices of real path
72| lonr AMNA | negative input for mixer switching devices of real path
73| lopi ANA I positive input for mixer switching devices of imaginary path
74]leni ANA I negative input for mixer switching devices of imaginary path
75| dvss DIG GND Digital Ground
76| dwdd DIG PWR Digital Power 1.8 Y
77| cclk DG I clock for counter
78|scanoutn DIG 0] output of PISO for negative ADC output
78] scancutp DIG a output of PISO for positive ADC output
20|rndig DIG I reset for digital circuits
21|scaninp DIG I input of PISO for positive ADC output
82|scaninn DIG | input of PISO for negative ADC output
B3|clk DIG | clock for digital blocks
Bd|ws DIG | selection for PISO write or shift, 1-write, 0-shift
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