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Abstract

This thesis reviews some aspects of a large class of vertex operator algebras labelled
by (p, q) webs colored by non-negative integers associated to faces of the web diagrams
[1, 2, 3, 4]. Such vertex operator algebras conjecturally correspond to two mutually dual
setups in gauge theory. First, they appear as a subsector of local operators living on two-
dimensional junctions of half-BPS interfaces in four-dimensional N = 4 super Yang-Mills
theory. Secondly, they are AGT dual to N = 2 gauge theories supported on four-cycles
inside toric Calabi-Yau three-folds.

We review four (conjecturally equivalent) definitions of the vertex algebra vertex YN1,N2,N3

associated to the simplest trivalent (p, q) web. The algebra can be defined in terms of 1.
the quantum Hamiltonian (BRST) reduction, 2. truncations of the W1+∞ algebra, 3. the
kernel of screening charges and 4. the generalized Miura transformation. Equivalence of
such definitions is strongly supported by matching various properties of the algebra such
as characters and highest weights of their modules, central charges, duality properties and
many others.

The algebra YN1,N2,N3 plays the role of a building block of more complicated algebras
that can be characterized as extensions of YN1,N2,N3 ’s associated to each vertex of the (p, q)
web by bimodules associated to each internal line. This procedure mimics the topological-
vertex-like counting of D0-D2-D4 bound states in toric three-folds that motivates the name
“The Vertex Algebra Vertex”. Conjecturally, there exists an unique (or at least canonical)
vertex operator algebra characterized by such an extension. We review different definitions
of a larger class of algebras corresponding to truncations of a gl(N1|N2) analogue of the
W1+∞ algebra and their shifted versions. Finally, we discuss various generalizations of
the Feigin-Frenkel duality coming from the S-duality of the N = 4 super Yang-Mills
setup, stable equivalence (equivalence of vertex algebras up to decoupled free fields) and
its interpretation in terms of brane transitions, ortho-symplectic version of the algebras
and the structure of their modules.

Even though this thesis is largely a compilation of the above-mentioned papers, it
contains many novel remarks that are not contained in the original work.
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1. Introduction

Vertex Operator Algebras (VOA) formalize the notion of local operators on a Riemann
surface with the following two properties. First, correlation functions are meromorphic
functions of insertion points with singularities associated to colliding operators. Secondly,
the algebra contains the Virasoro algebra associated to the holomorphic component of the
stress-energy tensor [6, 7, 8, 9]. Since their discovery, VOAs have played an important role
in string theory and the theory of critical phenomena in two-dimensional condensed matter
systems. Due to the rich structure but computational manageability, VOAs turn out to be
often related to deep but solvable problems and they keep appearing in other contexts in
both physics and mathematics (see for example [10, 11, 12, 13, 14, 15, 16, 17]).

Starting with the work of Alday-Gaiotto-Tachikawa, VOAs have been shown to be
closely related to four-dimensional supersymmetric gauge theories [14, 18]. AGT conjec-
tured a correspondence between four-dimensional N = 2 gauge theories coming from a
compactification of N M5-branes [19, 20] on a Riemann surface and VOAs known under

the name WN × ĝl(1) algebras [21, 22].

This thesis is a review of recent developments from the series of papers [1, 2, 3, 4] (see
also [23, 24, 25, 26, 27, 28, 29, 30, 31, 30, 32, 33, 34, 35, 36, 37]) that considerably extend
the family of vertex operator algebras corresponding to some setups in gauge theory. The
gauge-theoretical viewpoint provides an intuitive way to study such VOAs and the rigidity
of VOAs allows us to probe many non-trivial gauge-theoretical questions exactly.

1.1 Colored (p, q) webs

Vertex operator algebras from [1, 2, 3, 4] are labelled by a colored (p, q) web such as the
one in the figure 1.1. Each vertex of the diagram is a trivalent fan of (p1, q1), (p2, q2) and
(−p1 − p2,−q1,−q2) vectors satisfying p1q2 − p2q1 = 1. For each such (p, q) web, colored

1



N1

N2

N3

N4

N5

N6
N7

N8

Figure 1.1: A generic (p, q) web colored by non-negative integers Ni to which we associate
a vertex operator algebra.

by non-negative integers at each face of the diagram, we conjecturally associate a family
of vertex operator algebras parametrized by a complex parameter Ψ ∈ CP1.

To the simplest trivalent junction of (1, 0), (0, 1) and −(1, 1) lines with integral pa-
rameters N1, N2, N3 shown in the figure 1.2, we associate an algebra YN1,N2,N3 generalizing

the well-known Y0,0,N =WN × ĝl(1). This four-parameter family of algebras will be called
the vertex algebra vertex and it will serve as a building block of more complicated VOAs
associated to more general colored (p, q) webs. Such general algebras can be characterized
as extensions of tensor products of YNi,Nj ,Nk associated to vertices of the web diagram by
bimodules associated to internal lines of the web diagram. Even though we do not have a
precise definition of the algebra associated to a generic colored (p, q) web, we conjecture
that such an extension is unique or at least canonical.

1.2 Dual setups

The (p, q) web VOAs are expected to naturally appear in two mutually dual gauge-
theoretical setups. Correspondingly, the web diagrams above can be given two mutually
dual interpretations.

First, we can look at the (p, q) web as a projection of a ten-dimensional type IIB string
theory setup to the 23-plane. Different (p, q) lines then correspond to (p, q)-fivebranes1

spanning directions 01456 and one extra direction in the 23-plane specified by the web
diagram. The web diagram can be thus thought of as a diagram labeling a junction of
fivebranes [38, 39]. The integers Ni then correspond to numbers of D3-branes attached to
the web from different corners and spanning directions 0123.

1(1, 0) can be identified with the D5-brane and (0, 1) with the NS5-brane.

2



N1

N2

N3

Figure 1.2: The simplest colored (p, q) web (the vertex algebra vertex) associated to the
algebra YN1,N2,N3 .

The string theory configuration has a low energy effective description in terms of a four-
dimensional supersymmetric gauge theory in the presence of junctions of domain walls. The
field theory describing the low energy behavior of N D3-branes is known to be N = 4 super
Yang-Mills theory with the gauge group U(N). The configuration at hand thus leads to a
system of U(Ni) supersymmetric gauge theories associated to directions 0123 at different
corners, mutually coupled by domain walls as indicated by the colored (p, q) web.

Throughout the text, we are going to restrict to a subclass of operators in the physical
theory that live in the cohomology of the Geometric Langlands (GL) supercharge2 from
[40]. GL-twisted theories depend on a complex parameter Ψ ∈ CP1 that is a non-trivial
combination of the complexified gauge coupling of the N = 4 super Yang-Mills theory and
a parameter parametrizing different choices of the GL supercharge. The parameter Ψ plays
the role of a structure constant of VOAs discussed in this thesis.

In the infra-red (when zooming out the (p, q) web), the configuration at hand generally
looks like a star-shaped junction of non-trivial interfaces. It turns out that local operators
in the cohomology of the GL supercharge for generic values of Ψ live at the two-dimensional
junction and form generators of a VOA [41, 42, 43, 44, 45, 46, 47, 1].

The colored (p, q) web can be given a very different interpretation. One can start with
M-theory on R4 × S1 × CY 3, where CY 3 is a toric Calabi-Yau three-fold with (p, q) web
being its toric diagram[48, 49, 50]. Such a Calabi-Yau three-fold can be thought of as a
R × T 2 fibration over the R3 base with the toric diagram specifying loci where different
(p, q) cycles of the fibration degenerate. Faces of the toric diagram can be associated with
four-cycles inside CY 3 that are fixed under the toric action. The interpretation of the
integral numbers in the colored (p, q) web are simply multiplicities of M5-branes wrapping
such four-cycles and sharing an extra Riemann surface Σ ⊂ R4×S1 in orthogonal directions
[51, 52, 53, 54, 55].

2To preserve the GL-supercharge in the presence of (p, q) interfaces, a deformation of the interfaces
is needed as we will briefly discuss in section 3.1.2. A precise form of such deformations (and even the
possibility to move away of the family of GL-twists) still remains to be explored in detail.
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Toric Calabi-Yau three-folds admit a two-parameter Ω-deformation with parameters
ε1, ε2, ε3 satisfying ε1 + ε2 + ε3 = 0 [56, 57, 42, 54, 55]. One can argue that the system of
M5-branes in the presence of such an Ω-background have an effective description in terms
of a theory on Σ giving rise to a vertex operator algebra. It turns out that in all examples,
the resulting algebra actually depends only on the ratio Ψ = −ε1/ε2.

The two setups discussed above can be related along the lines of [48] and the relation
will be reviewed further in section 3.2.1. The two perspectives give orthogonal viewpoints
on the VOAs at hand. The type IIB perspective turns out to be convenient in addressing
relations to various GL-like dualities as discussed in [24, 26, 27]. The type IIA perspective
provides us with a connection with the topological-vertex-like counting of D0-D2-D4 brane
bound states from [51, 52, 53]. In particular, BPS characters of [51, 52, 53] can be identified
with vacuum characters of the involved algebras. Furthermore, the type IIA perspective
points towards a generalization of the AGT correspondence [14, 18]. AGT associates the

algebra WN × ĝl(1) to an N = 2 gauge theory on C2. More concretely, WN × ĝl(1) can
be shown to act on the cohomology of the moduli space of instantons on C2 as discussed
in [58, 57, 16, 59, 60]. The Nekrasov partition function [57] can be then identified with
conformal blocks of the algebra. Note that C2 can be embedded inside C3 leading to the
geometric configuration associated to Y0,0,N . Turning on Ni M5-branes at each of the three
coordinate planes leads to a natural generalization of the AGT conjecture for these spiked-
instanton configurations [54, 55]. One can indeed show [4] that the algebra YN1,N2,N3 plays
the role of the AGT dual in the generalization of the AGT correspondence to toric divisors
inside C3 [54, 55]. Presumably the story have further generalizations beyond this example
with (p, q) web VOAs being the VOA duals of gauge theories supported on intersecting
four-cycles inside toric Calabi-Yau three-folds and possibly even more generally [54, 30, 4].

1.3 Four constructions of YN1,N2,N3

A concrete definition of the VOA associated to a general colored (p, q) web is currently not
known but there exist large classes of colored webs whose VOA do have such a definition.
Furthermore, in some cases, more (conjecturally equivalent) definitions exist.

Let us first restrict to the simplest trivalent junction and the algebra YN1,N2,N3 . Using
the results of [44, 43, 46, 47], one can argue that the path integral of the N = 4 SYM in the
type IIB setup localizes to the path integral of a pair of complexified Chern-Simons theories
with gauge groups U(N1|N3) and U(N1|N2) coupled together along a two-dimensional
interface, possibly involving some extra 2d fields. Along the lines of [41, 61], one can
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argue that local operators at the interface give rise to a VOA that can be identified with
a BRST reduction (motivated by the defect conditions coming from D3-branes ending on

a D5-brane from [62, 63]) of two coppies of Kac-Moody algebra ̂gl(N1|N3) and ̂gl(N1|N2)
extended by extra free fields. The type IIB perspective thus gives a natural proposal for
a BRST definition of the algebras YN1,N2,N3 that combine the quantum Drinfeld-Sokolov
reduction [64, 65, 66, 67, 68, 69] and the BRST coset [70, 71].

Another perspective comes from the analysis of the large Ni limit of the vacuum charac-
ter of YN1,N2,N3 and the type IIA picture. It turns out that the large Ni limit of the vacuum
character can be identified with the MacMahon function3. MacMahon function can be fur-
thermore identified with the character of a VOA generated by fields W1,W2,W3, . . . with
Wi being a generator of conformal weight i. As discussed in [74, 75, 5, 76], there exists
a two-parameter family of algebras satisfying associativity of the operator product expan-
sion with such a conformal-weight content. It turns out that there exist specializations of
the parameters to one-dimensional lines inside the two-dimensional space of algebras for
which W1+∞ contains an ideal IN1,N2,N3 . This ideal can be factored out that leads to the
algebra YN1,N2,N3 with Ψ parametrizing the corresponding truncation line. This gives an
alternative definition of the algebra YN1,N2,N3 .

There exists a well-known construction of the algebraWN× ĝl(1) as a subalgebra of the

tensor product of N coppies of ĝl(1) current algebras (Heisenberg VOAs) [22]. Such a free

field realization can be obtained by multiplying N Miura differential operators L(3)
i = ε3∂+

Ji(z), where Ji(z) is the i’th ĝl(1) current. It turns out that there exists a generalization of

the construction to an arbitrary YN1,N2,N3 by introducing pseudo-differential operators L(1)
i

and L(2)
i and taking a product of Ni factors of each type [3]. This free field realization turns

out to be useful when discussing generic modules of the algebras and more importantly
when comparing with the algebras coming from the geometric action of the cohomological
Hall algebra [73] ofC3 used in the proof of the AGT correspondence [4] for spiked instantons
[54, 55] associated to divisors in C3.

There exists yet another characterization of the free-field realization as an intersection
of kernels of screening charges discussed in [28, 29, 3]. For each ordering of Miura factors,

one can associate a screening charge to each neighbouring pair of ĝl(1) currents and identify
the free field realization as an intersection of kernels of such screening charges.

3Note that the MacMahon function is also the generating function of Donaldson-Thomas invariants of
C3 [72, 73] and we can see first hints of the geometric side.
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1.4 Glued algebras

Let us now discuss algebras associated to more complicated (p, q) webs. As mentioned
above, zooming out a (p, q) web leads to a single junction with local operators giving rise
to a more general VOA. From the resolved point of view, the local operators of the infrared
can have different origin. They can be local operators associated to vertices of the (p, q)
web or line operators stretched between them (if we have also non-trivial compact faces,
one might have to consider also surface operators spanning these internal faces). The
resulting VOA is then expected to be an extension of the tensor product of Y-algebras
associated to such vertices by bi-modules4 associated to the internal lines. It is tempting
to conjecture that such extensions are uniquely fixed by Jacobi identities (associativity of
OPEs).

In some cases, one can be more specific and give a concrete definition of the glued
algebra. A large class of examples come from considering a general number of (1, 0) lines
ending from the left and from the right on sequence of (n, 1) lines. If the colors decrease
from the up to the bottom on both sides of the (n, 1) lines, such as in the figure 4.5, the
analysis of boundary conditions from [62, 63] allow us to find a proposal for the BRST
definition of the algebra [2]. One can furthermore check (at least in examples and in the
large Ni limit) that characters of such reductions agree with characters predicted form
gluing.

Similarly, one can consider the large Ni limit of the vacuum character and look for a
definition of the glued algebras in terms of truncations of universal infinity algebras. It
turns out that in the example above, the limit depends only on a half-integral parameter ρi
associated to each finite (p, q) segment. The character agrees with a gl(n|m) version of the
algebra W1+∞ containing a n|m super-matrix of generators at each spin with n/m being
the numbers of (1, 0)-branes ending from the left/right. For example the (p, q) web from
the figure 4.5 leads to an algebra of type gl(1|3). Fixing values of ρi fixes all the parameters
Ni up to three. It is tempting to conjecture that there again exists a unique two-parameter
family of algebras with a given spin content (containing gl(n|m) as a subalgebra and
having all the fields at higher weights in its adjoint representation) with the web VOAs
corresponding to its truncations. On the other hand, fixing general values of ρi leads to
an algebra with generators associated to the roots of gl(n|m) starting at level 1 + ρi with

4As we discuss bellow, line operators ending at a junction lead naturally to a degenerate module of the
algebra. Lines stretched between two vertices then correspond to bimodules. The necessary bimodules are
expected to be labelled by tensor representations of gl(Ni|Nj) Lie super-algebras, i.e. representations that
can be obtained from tensor products of the fundamental and the anti-fundamental representation.
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Figure 1.3: An example of a diagram with a known BRST definition.

i labeling the root. For example, the N = 2 super W1+∞ algebra [77] should correspond
to the gl(1|1) configuration with shift5 ρ = 1/2. It is natural to speculate that the picture
of truncations naturally extends also to other brane diagrams.

Finally, we expect that the free-field realization can be extended to glued algebras.
Having a free-field realization of the algebras associated to each vertex, one can construct
a field associated to each highest weight of the added bi-modules as an exponential vertex
operator of free bosons (or their descendant). One can then consider an algebra extended
by such vertex operators.6 There are two technical difficulties in the construction. First,
it turns out that there exist more possible choices of vertex operators with correct highest
weights. Secondly, OPEs are generally not reproduced correctly unless we include integrals
of screening currents. We will review these issues briefly in later sections but their proper
investigation (along the lines of [78]) is still to be performed.

1.5 Some properties

The gauge theory perspective motivates various constructions of a large class of vertex
operator algebras relevant to different gauge-theoretical setups. It also provides us with
many non-trivial insights into the properties of VOAs.

We have already mentioned that local operators at the two-dimensional junction in

5Note in particular that the two fermionic currents G± have the conformal weight 3
2 = 1 + 1

2 .
6In particular, it turns out that the vertex operators have only Z2 braiding.
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the type IIB perspective give rise to a VOA. Local operators are not the only operators
surviving the GL twist. One can also consider line operators (Wilson, ’t Hooft or more
general lines) supported at the interfaces [40, 46, 47]. Line operators ending at a junction
then naturally give rise to modules for the VOA generated by a fusion of the endpoint
with local operators at the intersection. These line operators are expected to be labeled by
tensor representations (representations that can be constructed from tensor products of the
fundamental and the anti-fundamental representation) of the Lie super-algebra gl(Ni|Nj)
for line operators living on a (p, q) interface between theories of gauge groups U(Ni) and
U(Nj).

On the other hand, one can consider Gukov-Witten (GW) surface operators sitting at a
point of the junction but spanning faces of the (p, q) web [79, 46, 47, 1, 3]. It turns out that
Ni complex parameters valued on a torus survive the GL twist of the U(Ni) gauge theory.
Furthermore, the torus is lifted to a whole complex plane (modulo Weyl transformations
permuting the parameters) by the choice of the boundary condition specifying how the
defect ends at the interface. Fusion of line operators living at the interfaces with boundary
lines of surface defects then change such a boundary condition.

Let us discuss how this physical picture fits into the VOA story. Gauge theory suggests
an existence of a continuous family of modules parametrized by as many complex numbers
as the sum of integral parameters in the given colored web diagram, e.g. N1+N2+N3 in the
case of YN1,N2,N3 . Furthermore, whenever we specialize parameters in such a way that some
of the torus-valued GW parameters vanish, one gets a degenerate module (corresponding
to line operators in a representation of the gauge group preserved by the specialized GW
defect). In particular, if all the parameters are specialized, one gets modules parametrized
by line operators associated to each semi-infinite line in a given (p, q) web. Moreover,
modules associated to different lines are expected to braid trivially.

Apart from an intuitive understanding of modules, the physical picture predicts various
dualities generalizing the Feigin-Frenkel duality [67]. Feigin and Frenkel realised that the

Drinfeld-Solokov reduction of the ŝl(N) Kac-Moody algebra at shifted levels Ψ = k + N
and 1

Ψ
both lead to the sameWN algebra. This duality can be understood as a consequence

of the S-duality. Note that the type IIA setup is manifestly invariant under the relabeling
of the cycles of the torus. On the other hand, such a relabeling (corresponding to SL(2,Z)
transformations of the charges (p, q) and the modular parameter Ψ) gives rise to a non-
trivial transformation of boundary conditions in the type IIB setup [63]. If a brane diagram
preserves some subgroup G of the SL(2,Z) transformations, there will be a non-trivial
duality action on the family of corresponding vertex operator algebras giving rise to dual
BRST constructions of the corresponding algebra. For example in the case of YN1,N2,N3 , the
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web diagram preserves an S3 subgroup of SL(2,Z) permuting the (p, q) lines. This gives
rise to an S3 duality group action on YN1,N2,N3 . Form theW1+∞ algebra perspective, the S3

action can be identified with the triality7 discovered in [75]. Another example of a diagram
preserving some subalgebra of the SL(2,Z) duality group would be the diagram associated
to the gl(1|1) version of W1+∞ (and its shifted versions) that leads to a Z2 × Z2 duality
action. This action can be identified for ρ = 1

2
with the one of [77] and it is enhanced to

S4 if ρ = 0.

Let us note that the algebra in the infra-red picture depends on a specific resolution.
It was conjectured and checked in examples in [2] that different resolutions give rise to the
same algebra up to the contribution of decoupled b, c and β, γ ghost systems. Transition
of branes then leads to various (sometimes highly nontrivial) identities between vertex
operator algebras. Equivalence of algebras up to free-field contributions goes under the
name stable equivalence [81] and is an active area of research.

Finally, let us mention that introducing orientifolds parallel to D3-branes in the type
IIB setup leads to an otrhosymplectic version of the algebras [1]. Calculation of characters
in the large Ni hits that the algebras might be identified with quotients of the even version
of the W1+∞ from [82, 83]. Algebras associated to more complicated (p, q) webs in the
presence of the orientifold planes should come from gluing of these algebras.

7The algebra W1+∞ is known to be isomorphic to the affine Yangian of gl(1). The triality in the
representation of [80] simply permutes the deformation parameters hi.
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2. VOA preliminaries

This section reviews basics of vertex operator algebras and introduces the notation in terms
of fields and operator product expansion. Physically oriented readers are advised to consult
[6, 7, 8] and mathematically oriented readers are recommended to see [11, 9] for further
details.

2.1 Vertex operator algebras

Roughly speaking, VOAs are algebras of fields Oα(z) depending on a position z ∈ C to-
gether with a set of operator product expansions specifying singular behavior of correlation
functions when two fields collide. From two fields Oα(z) and Oβ(w), one can form new
operators by considering derivatives ∂nOα(z) and the normal ordered product1

(OαOβ)(w) =

∮
w

dz

2πi

Oα(z)Oβ(w)

z − w . (2.1)

The derivative satisfies

∂(OαOβ)(w) = (∂OαOβ)(w) + (Oα∂Oβ)(w). (2.2)

Vertex operator algebras admit a Z × Z2 grading, where the Z grading is called the
conformal weight h(Oα) and satisfy

h((OαOβ)) = h(Oα) + h(Oβ),

h(∂Oα) = h(Oα) + 1. (2.3)

1The normally-ordered product can be thought of as an operator coming from a collision of two operators
while subtracting the singular terms in the operator product expansion.
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The Z2 grading2 |Oα| distinguishes fermionic and bosonic fields. The grading Z2 is additive
under the normal ordering |(OαOβ)| = |Oα|+|Oβ| and does not change under the derivative
|∂Oα| = |Oα|. Fields Oα(z) and Oβ(w) satisfy the operator product expansion (OPE)

Oα(z)Oβ(w) =

h(Oα)+h(Oβ)∑
k=0

{OαOβ}k(w)

(z − w)k
, (2.4)

where {OαOβ}(w) is a field of conformal weight k. In particular, we have

{OαOβ}0(z) = (OαOβ)(z). (2.5)

OPEs furthermore satisfy

Oα(z)Oβ(w) = (−1)|Oα|+|Oβ |Oβ(w)Oα(z). (2.6)

Sometimes, we omit the regular term in the OPE and exchange the equal sign by ∼.

A vertex operator algebra is called strongly generated by fields Wα(z) with α labeling
different strong generators, if all the other fields are generated from Wα(z) by deriva-
tives and normally-ordered products. The algebra structure is given by operator product
expansions of strong generators

Wα(z)Wβ(w) =

h(Wα)+h(Wβ)∑
k=0

{WαWβ}k(w)

(z − w)k
. (2.7)

Knowing the system of OPEs of strong generators, one can find OPEs of a general field by
using contractions defined as

Oα(z)Oβ(w) =

h(Oα)+h(Oβ)∑
k=1

{OαOβ}k(w)

(z − w)k
(2.8)

and the generalized Wick’s theorem

Oα(z)(OβOγ)(w) =

∮
w

dx

2πi

1

x− w
(
Oα(z)Oβ(x)Oγ(w) +Oα(z)Oβ(x)Oγ(w)

)
. (2.9)

The operator ∂ acts simply as a derivative wrt. z or w respectively on the right hand side
of OPE.

2VOAs with such Z2 grading are sometimes called vertex operator super-algebras. We will not distin-
guish these notions in this thesis.
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The above data satisfy various properties. First, there exist the identity field 1 with
trivial OPEs and a field T called the stress-energy tensor that is a weight-two bosonic field
with OPE

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (z)

z − w (2.10)

where c ∈ C is called the central charge. All generators have the following OPE with the
stress-energy tensor3

T (z)Wα(w) ∼ · · ·+ h(Wα)Wα(w)

(z − w)2
+
∂Wα(w)

z − w . (2.11)

Secondly, the system of OPEs satisfy the associativity constraint

{Oα{OβOγ}j}k − (−1)|Oα|+|Oβ |{Oβ{OαOγ}k}j =
∑
l>0

(
k − 1
l − 1

)
{{OαOβ}lOγ}j+k−l.(2.12)

This constraint might be satisfied only modulo some composite fields forming an ideal I of
the OPE algebra as we will see for example in the algebra Y0,1,2[Ψ]. The algebra Y0,1,2[Ψ]
is going to be strongly generated by five fields satisfying the associativity constraint up to
two composite fields together with the normally-ordered product of their derivatives. The
algebra is consisted if we mode out these fields. The fields in I are sometimes going to be
called null.

The VOA data naturally lead to an associative algebra of modes. We can expand the
strong generators into the modes as

Wα(z) =
∞∑

n=−∞

Wα,i

zn+h(Wα)
, (2.13)

i.e.

Wα,i =

∮
dz

2πi
Wα(z)zn+h(Wα)−1. (2.14)

The commutation relations of modes can be determined from the OPE by the standard
contour deformation argument

[Wα,i,Wβ,j] =

∮
0

dw

2πi

∮
w

dz

2πi
zi+h(Wα)wj+h(Wβ)Wα(z)Wβ(w) (2.15)

3A field Wα with all the other terms corresponding to the dots vanishing are called primary.
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with the corresponding OPE inserted on the right hand side. The modes of the normally-
ordered products and derivatives can be explicitly written as

(∂Oα)i = −(h(Oα) + i)Oα,i
(OαOβ)i =

∑
j≤−h(Oα)

Oα,jOβ,i−j +
∑

j>−h(Oα)

Oβ,i−jOα,j. (2.16)

The corresponding associative algebra is the universal enveloping algebra of the modes (or
its completion containing the infinite sums from the normal ordered products) of the gener-
ating fields satisfying the above commutation relations modded by the ideal corresponding
to modes of null fields. Note that the associativity of OPE becomes the Jacobi identity of
the associative algebra.

2.2 Examples

Virasoro algebra First, one can consider the VOA with the stress-energy tensor T (z)
being the only generator of the algebra. Expanding into modes

T (z) =
∞∑

i=−∞

Li
zi+2

(2.17)

and using the contour integral formula (2.15), one gets the Virasoro algebra with commu-
tation relations

[Li, Lj] = (i− j)Li+j +
c

12
(i3 − i)δi+j,0. (2.18)

Heisenberg VOA Second, probably the first non-trivial example is the Heisenberg VOA

(or the ĝl(1) Kac-Moody algebra) that is an algebra generated by a single field J(z) with
OPE of the form

J(z)J(w) ∼ 1

(z − w)2
. (2.19)

One can show that there exists a stress-energy tensor

T (z) =
1

2
(JJ)(z) (2.20)
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with J(z) being a primary field of weight one, i.e. h(J) = 1. If we decompose the field
into the modes

J(z) =
∞∑

n=−∞

Jn
zn+1

, (2.21)

we get an infinite system of Heisenberg algebras

[Jn, Jm] = nδn,−m. (2.22)

Kac-Moody algebra More generally, one can associate Kac-Moody algebra the ĝk to
any simple Lie algebra (or super-algebra) g generated by currents Jα with α labeling
generators of g and satisfying

Jα(z)Jβ(w) ∼ kgαβ
(z − w)2

+

∑
γ f

γ
αβJγ(w)

z − w . (2.23)

In this expression, k ∈ C is called the level, gαβ is the Killing form of the Lie algebra and
fγαβ are the structure constants [gα, gβ] =

∑
γ f

γ
αβgγ. The algebra contains the standard

Sugawara stress-energy tensor

T =
1

2(k + h)

∑
α,β

gαβ(JαJβ) (2.24)

with h the dual Coxeter number of g and gαβ the inverse of gαβ.

It is convenient to introduce the notation ̂gl(N |M)Ψ for a product of the ̂gl(N |M)Ψ−N+M

Kac-Moody algebra and the Heisenberg VOA ĝl(1)(N−M)Ψ. OPEs of the currents Jab (with
a, b labeling row and column indices of the gl(N |M) super-matrix) are given by

Jab (z)J cd(0) ∼ (−1)p(b)p(c)(Ψ−M +N)δadδ
c
b + δab δ

c
d

z2
+

+
(−1)p(a)p(b)+p(c)p(d)+p(c)p(b)δadJ

c
b (0)− (−1)p(b)p(c)δcbJ

a
d

z
(2.25)

where p(a) = 0 for a = 1, . . . ,M and p(a) = 1 otherwise.

Note that for ̂gl(N |0)Ψ the algebra reduces to the Kac-Moody algebra ĝl(N)Ψ−N ×
ĝl(1)NΨ with OPEs given by

Jab (z)J cd(w) ∼ (Ψ−N)δadδ
c
b + δab δ

c
d

(z − w)2
+
δadJ

c
b (w)− δCb JaD(w)

z − w (2.26)
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and similarly ̂gl(0|M)Ψ reduces to the algebra ĝl(M)−Ψ+N × ĝl(1)−NΨ. In the expres-

sions above, we choose a certain normalization of the diagonal ĝl(1) current that will be
important in later discussions of VOA modules.

β, γ and b, c ghosts Finally, there is the β, γ system and its fermionic version b, c system
generated by fields β(z), γ(z) and b(z), c(z) respectively. They satisfy OPE

β(z)γ(w) ∼ 1

z − w, b(z)c(w) ∼ 1

z − w. (2.27)

There exists a one parameter family of stress-energy tensors

T = (∂βγ)− λ∂(βγ), T = (∂bc)− λ∂(bc) (2.28)

with the corresponding central charge

c = ±(3(2λ− 1)2 − 1) (2.29)

with the plus sign for β, γ ghosts and minus sign for b, c ghosts. The b, c system with the
choice of the stress-energy tensor such that c = 1

2
is also called the free fermion (ψ, χ) and

the β, γ system is sometimes called the symplectic-boson pair (X,Y).

We introduce the notation SN |M for a system of N pairs of symplectic bosons (Xa, Y
a)

where a = 1, . . . N and M free fermions (χi, ψ
i) for i = 1, . . . ,M with OPEs given by

Xa(z)Y b(w) ∼ δba
z − w, χi(z)ψj(w) ∼ δji

z − w. (2.30)

Note that the algebra SN |M contains ̂gl(N |M)N−M−1 subalgebra generated by bilinears

J =

(
XaY

b Xaψ
i

χjY
b χjψ

i

)
. (2.31)

Similarly, exchanging the role of bosons and fermions, we introduce a notation SN |M for a
system M symplectic bosons (Xi, Y

i) and N free fermions (χa, ψ
a) with OPEs given by

Xi(z)Y j(w) ∼ δji
z − w, χa(z)ψb(w) ∼ δba

z − w. (2.32)
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From their bilinears, we can construct ̂gl(N |M)N−M+1 algebra generated by bilinears

J =

(
χaψ

b χaY
i

Xjψ
b XjY

i

)
. (2.33)

We also introduce a notation F for the algebra of a free fermion S0|1 and B for the algebra
of a free symplectic boson S1|0.

Occasionally, we also use notation SN |Mi for the system SN |M with a choice of the
stress-energy tensor such that the fields have the shifted conformal dimension (1

2
+ i, 1

2
− i).

Corresponding stress-energy tensor have central charge

(N −M)(12(1 + i)2 − 1). (2.34)

We analogously define SN |Mi , Bi and Si.

2.3 Modules

Let us briefly discuss some aspects of VOA modules. By a module of a VOA strongly
generated by Wα, we mean a set of fields Mβ(w) with a set of OPEs with the generating
fields Wα(z) that are consistent with the algebra structure, i.e. they satisfy the associativity
constraint with two insertions ofWα(z) and a single insertion ofMα(w) and they have trivial
OPE with the null fields of the algebra. Note that OPEs of the fields Mα(w) themselves
are not part of the data.

For each VOA, there exists a natural module called the vacuum module that comes
from the action of the algebra on itself. The vacuum module has also a simple description
in terms of the associative algebra of modes. Such algebra decomposes into the subalgebra
of positive, negative and zero modes. One can consider a one-dimensional module of the
subalgebra of positive and zero modes on which all such modes act by zero. One can then
generate the module of the full algebra by an action of all the negative modes modulo the
commutation relations and the relations coming from the action of positive modes of null
fields. Such an induced module is not irreducible and one needs to further set Wα,i = 0 for
i < h(Wα) to get the desired vacuum module.

One can generalize the construction of the vacuum module slightly by considering a
non-trivial representation of the zero-mode subalgebra (with the zero mode of the null
fields acting by zero), extending the action to the subalgebra of non-negative modes by
letting all the positive modes act by zero and inducing the module of the whole algebra in
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a similar way as in the case of the vacuum module. Such a module is generically not going
to be irreducible and passing to an irreducible quotient, one needs to again remove some
states. We will see many non-trivial modules of this form (and even more complicated
examples) in later sections.

Heisenberg VOA For example, one can define a module of the Heisenberg VOA by
introducing a field M [α](w) with OPE

J(z)M [α](w) ∼ αM [α](w)

z − w . (2.35)

The module is then generated by a normally-ordered product of M [α](w) with normally-
ordered products of derivatives ∂nJ(z). One can show that in terms of modes, the module
can be identified with a highest weight module generated from the state |α〉 anihilated by
all the positive modes Jn|α〉 = 0 for n > 0 and satisfying J0|α〉 = α|α〉. Note that the
vacuum module can be identified simply with the α = 0 case.

Virasoro algebra Similarly, modules of the stress-energy tensor VOA can be generated
from M [h](z) with OPE

T (z)M [h](z) ∼ hM [h](z)

(z − w)2
+
∂M [h](z)

z − w . (2.36)

The vacuum module then corresponds to h = 0 and ∂M [h] = 0 that corresponds to setting
L−1|0〉 = 0.

Ising model As an illustration of possible restrictions that arise in the presence of null
fields that are modded out, let us consider the c = 1/2 Virasoro algebra. It is well-
known [84] that the vacuum representation contains a singular vector at level 6 with the
corresponding primary field

φ6 = 128(T (TT )) + 186(∂T∂T )− 264(∂2TT )− 9∂4T. (2.37)

The requirement of vanishing of the null field constrains possible modules for the VOA.
In our case, let us consider a generic primary field M [h](z) of dimension h as above and
require the operator product expansion of φ6 and M [h](z) to vanish. The most singular
(sixth order) term is precisely the zero mode of φ6 acting on the highest weight

1

2πi

∮
dzz5φ6(z)|h〉 = 4h(2h− 1)(16h− 1)|h〉 = 0 (2.38)
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and the variety of highest weights consists of three points h = 1/2, h = 1/16, and h = 0.
These are the allowed primary fields of the Ising model.

It is interesting to look also at the conditions following from the vanishing of the lower
order poles in the OPE

φ6(z)M [h](w) ∼ 4h(2h− 1)(16h− 1)M [h](w)

(z − w)6
+

12(2h− 1)(16h− 1)∂M [h](w)

(z − w)5
(2.39)

+
48h(8h− 17)(TM [h])(w)

(z − w)4
+

6(64h+ 7)∂2M [h](w)

(z − w)4
+O((z − w)−3).

The quintic pole vanishes for h = 1/2 and h = 1/16, while for h = 0 it requires ∂M [0] = 0
which is the usual singular vector of the vacuum representation at level 1 (translation
invariance of the vacuum).

Let us look at the quartic pole more closely. For h = 0 it does not give us anything
new while for h = 1/2 it requires

4(TM [1/2])(z)− 3∂2M [1/2](z) (2.40)

to be zero and for h = 1/16

3(TM [1/16])(z)− 4∂2M [1/16](z) (2.41)

to be zero. These are just the singular vectors of h2,1 and h1,2 Virasoro primaries. We
could proceed further and find other relations coming from the lower order poles.

2.4 Constructions

Definition of VOAs is very non-trivial and it is not a simple task to construct new VOAs.
Let us now mention few well-known constructions that will be used intensively throughout
the text.

BRST reduction The fist construction goes under the name BRST (or the quantum
Hamiltonian) reduction. If we have an algebra that contains a fermionic field JBRST of
conformal weight one and trivial OPE with itself, one can restrict to the cohomology of
the zero mode of such a generator

QBRST =

∮
dz

2πi
JBRST (z). (2.42)
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Associativity of OPEs ensure that OPE of QBRST -closed operators contains only QBRST -
closed operators and OPE of a QBRST -exact operator with any other operator is QBRST

exact. The restriction to the QBRST cohomology thus makes sense. We will see various
examples of such BRST reductions called the Drinfeld-Sokolov reduction [64, 65, 66, 66,
67, 68] or the BRST cosets [85, 86, 70, 71].

Free field realization Secondly, one can consider algebras constructed as subalgebras
of tensor products of free-field algebras such as the Heisenberg VOA, β, γ ghosts and b, c
ghosts. The corresponding construction goes under the name free field realization.

As a simple example, note that the stress-energy tensor T (z) of central charge c =
1− 12α2

0 can be constructed in terms of a single Heisenberg VOA as

T (z) =
1

2
(JJ)(z) + α0∂J(z). (2.43)

We will see many examples of free field realizations that will be characterized in terms of an
intersection of kernels of operators called screening charges [87] or coming from a product
of differential operators containing fields as coefficients called the Miura transformation
[22].

Extensions by modules Thirdly, one can consider extensions of known VOAs by their
modules. In particular, it turns out that we can sometimes give a VOA structure to a
VOA together with a collection of modules by specifying OPEs of the fields associated to
modules. The simplest example dates back to the early days of VOAs [11] and corresponds
to various lattice extensions of Heisenberg VOAs. In recent years, it turned out that the
construction is much more general [88, 24, 2] and is an active area of research.

Bootstrap Finally, one can take a very pedestrian way to construct new VOAs using
bootstrap. Starting with some assumptions on the VOA (with a prototypical example of
looking for extensions of the stress-energy tensor by primary fields of prescribed conformal
weights), one can write the most general ansatz for OPEs that is consistent with such
assumptions and solve the conditions coming from the requirement of the associativity
of OPEs. For example, if we consider the algebra to be an extension of T (z) by a single
primary field of conformal weight three W3(z), it turns out that the associativity constraint
fully fixes the OPE of W3(z) with itself and leads to the algebra calledW3 [21] that depends
on a single continuous parameter c. Performing a similar analysis with adding a primary
field for each weight 3, 4, 5, . . . , one finds a two-parameter family of algebras [74, 75, 5, 76]
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called W∞. One can see that the bootsrap approach is very restrictive and might serve as
a great tool to construct new VOAs.
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3. The vertex

In this section, we discuss the algebra YN1,N2,N3 [Ψ] associated to the simplest, trivalent
(p, q) web. We review the type IIA and the type IIB perspective and give four conjecturally
equivalent definitions of the algebra in terms of a BRST reduction, truncations of W1+∞
algebra, a kernel of screening charges and a Miura transformation.

3.1 Type IIB perspective

The first perspective originates from the following string theory setup. Type IIB string
theory contains six-dimensional objects labelled by co-prime integers (p, q) with (1, 0) cor-
responding to the D5-brane, (0, 1) to the NS5-brane and (p, q) to a brane of a general
D5 and NS5 charge. One can consider a web of such branes that preserves quarter of the
supersymmetry as first discussed in [38, 39]. The (p, q) diagram then describes a projection
of the ten-dimensional string-theoretical setup to the 23-plane with the lines specifying the
position of branes and its slope equal to the ratio p/q.

We can then attach Ni D3-branes to such a web of (p, q)-branes from various corners1

as indicated by the colored (p, q) web. The low energy dynamics of Ni D3-branes is
known to have an effective description in terms of 4d N = 4 super Yang-Mills (SYM)
theory with the gauge group U(Ni). D3-branes ending on (p, q) fivebranes then imply the
existence of a family of half-BPS interfaces2 B(p,q) for 4d N = 4 SYM with unitary gauge
groups, parameterized by two integers (p, q) defined up to an overall sign. Concretely, these

1This motivated the name “corner algebras” in [1].
2The main property of these interfaces is that they are covariant under the action of PSL(2, Z) S-duality

transformations of N = 4 SYM, which act in the obvious way on the integers (p, q). This action leads to
conjectures of dual descriptions of VOAs and served in [1] as a strong test of the correct identification of
the algebra YN1,N2,N3

[Ψ].
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interfaces arise as the field theory limit of a setup involving two sets of D3 branes ending
on a single (p, q)-fivebrane from opposite sides [62, 89, 63].

3.1.1 Gauge theory setup

Most of the B(p,q) interfaces do not admit a straightforward, weakly coupled definition.
Rather, they involve some intricate 3d SCFT coupled to the U(N) and U(M) gauge theories
on the two sides of the interface. The exceptions are B(1,0) and B(p,1) interfaces.

The B(1,0) interface, also denoted as a D5 interface, has a definition which depends on
the relative value of N and M :

• If N = M , a D5 interface breaks the U(N)L × U(N)R gauge symmetry of the bulk
theories to a diagonal U(N). A set of 3d hypermultiplets transforming in a funda-
mental representation of U(N) is coupled to the U(N) gauge fields. Concretely, the
4d fields on the two sides of the interface are identified at the interface, up to some
discontinuities involving bilinears of the 3d fields.

• If N > M , a D5 interface breaks the U(M)L × U(N)R gauge symmetry of the bulk
theories to a block-diagonal U(M). Concretely, U(N)R is broken to a block-diagonal
U(N − M)R × U(M)R and U(N − M)R × U(M)L × U(M)R is further broken to
the diagonal U(M). The breaking of U(N −M)R involves a Nahm pole boundary
condition of rank N −M . No further matter fields are needed at the interface.

• If M > N , a D5 interface breaks the U(M)L × U(N)R gauge symmetry of the bulk
theories to a U(N), including a Nahm pole of rank M −N .

The B(0,1) interface, also denoted as an NS5 interface, has a uniform definition for
all N and M [63]: the gauge groups are unbroken at the interface and coupled to 3d
hypermultiplets transforming in a bi-fundamental representation of U(M) × U(N). The
B(p,1) interface is obtained from a B(0,1) interface by adding q units of Chern-Simons coupling
on one side of the interface, −q on the other side.

A well known property of (p, q)-fivebranes is that they can form quarter-BPS webs
[38, 39], configurations with five-dimensional super-Poincare invariance involving fivebrane
segments and half-lines drawn on a common plane, with slope determined by the phase of
their central charge. For graphical purposes, the slope can be taken to be p/q, though the
actual slope depends on the IIB string coupling τ and is the phase of pτ + q. The simplest
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example of brane web is the junction of three semi-infinite branes of type (1, 0), (0, 1) and
(1, 1).

These configurations preserve four super-charges, organized in a (0, 4) 2d supersymme-
try algebra. One may thus consider a setup with N1,N2,N3 D3 branes respectively filling
the faces of the junction in between the (1, 1) and (1, 0) fivebranes, the (1, 0) and (0, 1)
fivebranes and the (0, 1) and (1, 1) fivebranes.

D5

(1,1)

NS5

N3 D3

N2 D3
N1 D3

x2
x3

x4, x5, x6

× C × R3

x0, x1 x7, x8, x9

Figure 3.1: The brane system engineering our Y-junction for four-dimensionalN = 4 SYM.
The three fivebranes extend along the 01456 directions together with a ray in the 23 plane.
The stacks of D3-branes extend along the 01 directions and fill wedges in the 23 plane.
Notice the SO(3)456 × SO(3)789 isometry of the system, which becomes the R-symmetry
of a (0, 4) 2d super-symmetry algebra.

We will next conjecture the field theory description of the junction. Our conjecture is
motivated by some matching of 2d anomalies and consistency with the GL-twisted descrip-
tion discussed later in this section.

The N1 = 0, N2 = N3 junctions At first, we can set N2 = N3 and N1 = 0. That means
we have a U(N3) gauge theory defined on the x2 > 0 half-space with Neumann boundary
conditions at x2 = 0. The boundary conditions are deformed by an unit of Chern-Simons
boundary coupling on the x3 < 0 half of the boundary. We also have an interface at x3 = 0,
where the U(N3) gauge theory is coupled to a set of N3 3d hypermultiplets transforming
in a fundamental representation of the gauge group.

The interface meets the boundary at x2 = x3 = 0. The hypermultiplets must have some
boundary conditions at the origin of the plane, preserving (0, 4) supersymmetry. There is a
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U(N1)

U(N2)

U(N3)

B(0,1)

B(1,1)

B(1,0)YN1,N2,N3

x3

x4

Figure 3.2: The gauge theory image of a Y-junction on the 23 plane. We denote the specific
junction as YN1,N2,N3 . The YN1,N2,N3 [Ψ] VOA will arise as a deformation of the algebra of
BPS local operators at the junction.

known example of such a boundary condition, involving Neumann boundary conditions for
all the scalar fields. We expect it to appear in the field theory limit of the junction setup.
The choice of Neumann b.c. is natural for the following reasons: the relative motion of the
D3 branes on the two sides of the D3 interface involves the 3d hypermultiplets acquiring
a vev. The junction allows for such a relative motion to be fully unrestricted and thus the
3d hypermultiplets boundary conditions should be of Neumann type.

The (0, 4) boundary conditions for the hypermultiplets have an important feature: they
set to zero the left-moving half of the hypermultiplet fermions at the boundary. Such a
chiral boundary condition has a 2d gauge anomaly which is cancelled by anomaly inflow
from the boundary U(N3) Chern-Simons coupling along the negative imaginary axis. This
anomaly will reappear in a similar role in the next section.

The N1 = 0, N2 6= N3 junctions Next, we can consider N3 = N2 + 1 and N1 = 0. Now
we do not have 3d matter along the positive real axis, but the gauge group drops from
U(N2 + 1) to U(N2) across the boundary. The four-dimensional gauginoes which belong to
the U(N2 +1) Lie algebra but not to the U(N2) subalgebra live on the upper right quadrant
of the junction plane with non-trivial boundary conditions on the two sides. They may in
principle contribute a 2d U(N2) gauge anomaly at the corner. It is a bit tricky to compute
it, but we will recover it from a vertex algebra computation in Section 3.1.2. Again, we
expect it to cancel the anomaly inflow from the boundary U(N2) Chern-Simons coupling
along the negative imaginary axis.

Similar considerations for general N3 6= N2 and N1 = 0, though the positive real axis
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now supports a partial Nahm pole boundary condition along with the reduction from
U(N1) to U(N2) or vice-versa. Again, we will describe the corresponding anomalies and
their cancellations in Section 3.1.2.

The N1 > 0, N2 = N3 junctions Next, we can set N2 = N3 but take general N1. That
means we have an U(N3) gauge theory defined on the x2 > 0 half-space and an U(N1) gauge
theory defined on the x2 < 0 half-space. Both boundary conditions are deformed by an
unit of Chern-Simons boundary coupling on the x3 < 0 half of the boundary, with opposite
signs for the two gauge groups. At the common boundary at x2 = 0, the gauge fields
are coupled to 3d N1 × N3 bi-fundamental hypermultiplets. We also have an interface at
x3 = 0, x2 > 0, where the U(N3) gauge theory is coupled to a set of N3 3d hypermultiplets
transforming in a fundamental representation of the gauge group.

The interfaces meet at x2 = x3 = 0. The fundamental hypermultiplets should be given a
boundary condition at the origin which preserve (0, 4) symmetry. The boundary condition
may involve the bi-fundamental hypermultiplets restricted to the origin and, potentially,
extra 2d degrees of freedom defined at the junction only.

We can attempt to define the boundary condition starting from the basic (0, 4) Neu-
mann b.c. for the fundamental hypermultiplets and adding extra couplings at the origin.
These couplings will not play a direct role for us but help us conjecture the correct choice
of auxiliary 2d degrees of freedom needed at the corner in order to reproduce the field
theory limit of the brane setup.

Indeed, the values at x2 = x3 = 0 of the bi-fundamental and fundamental hypers behave
as (0, 4) hypermultiplets and (0, 4) twisted hypermultiplets respectively. There is a known
way to couple these types of fields in a (0, 4)-invariant way, but it requires the addition of an
extra set of (0, 4) fields: Fermi multiplets transforming in the fundamental representation
of U(N1) which can enter in a cubic fermionic superpotential with the hypermultiplets and
twisted hypermultiplets [90].

This coupling is known to occur in similar situations involving multiple D-branes ending
on an NS5-brane [91]. The Fermi multiplets should arise from D3-D5 strings and the
coupling from a disk amplitude involving D3-D5, D3-D3’ and D3’-D5 strings in the presence
of an NS5 brane.

The U(N1) fundamental Fermi multiplets also play another role: they consist of 2d
left-moving fermions, whose anomaly compensates the inflow from the boundary U(N1)
Chern-Simons coupling along the negative imaginary axis.
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The N1 > 0, N2 6= N3 junctions Next, we can consider N3 = N2 + 1 and general N1.
Now the number of hypermultiplets along the imaginary axis drops from N1×N3 to N1×N2

across the origin of the junction’s plane. We can glue together N2×N1 of them according
to the embedding of U(N2) in U(N3) along the real axis, but we need a boundary condition
for the remaining N1 hypermultiplets.

Neumann boundary conditions for theseN1 hypermultiplets would contribute an anomaly
of the wrong side to cancel the inflow from the boundary U(N1) Chern-Simons coupling
along the negative imaginary axis. The opposite choice of boundary conditions, i.e. Dirich-
let b.c. for the scalar fields, imposes the opposite boundary condition on the hypermulti-
plet’s fermions and seems a suitable choice. We will thus not need to add extra 2d Fermi
multiplets at the corner.3

Similar considerations for general N2 6= N3 and general N1, though the positive real
axis now supports a partial Nahm pole boundary condition along with the reduction from
U(N3) to U(N2) or vice-versa. The boundary conditions at the corner for the |N3−N2|×N1

hypermultiplets which do not continue across the corner will be affected by the Nahm pole.
We will refrain from discussing them in detail here and focus on the GL-twisted version in
the next section.

3.1.2 From junctions to interfaces in Chern-Simons theory

The analysis of [43] gives a prescription for how to embed calculations in (analytically
continued) Chern-Simons theory into GL-twisted four-dimensional N = 4 Super-Yang-
Mills theory.

Concretely, a Chern-Simons calculation on a three-manifoldM3 maps to a four-dimensional
gauge theory calculation on M3 × R+ with a specific boundary condition which deforms
the standard supersymmetric Neumann boundary conditions. The (analytically continued)
Chern-Simons level is related to the coupling Ψ of the GL-twisted N = 4 SYM as [46]

k + h = Ψ (3.1)

Assuming that the deformed Neumann boundary conditions transform in a manner
analogous to the undeformed ones, that means the S transformation will map the Chern-

3Notice that one can obtain such boundary conditions starting from Neumann boundary conditions
and coupling them to (0, 4) 2d Fermi multiplets, which get eaten up in the process. It would be nice to
follow in detail in the field theory the process of separating a D3 brane segment from the N = M system
and flowing to the N3 = N2 + 1 system, by giving a vev to the fundamental hypermultiplets which induces
a bilinear coupling of the 2d Fermi multiplets
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Simons setup to a different setup involving a deformed Nahm pole boundary condition.
This was a basic step in the gauge-theory description of categorified knot invariants in [46].

In general, we expect the B(p,q) boundary conditions to admit deformations B̃(p,q) com-

patible with the GL twist, such that B̃(0,1) coincides with deformed Neumann boundary
conditions and PSL(2, Z) duality transformations act in the obvious way on the integers
(p, q).

The general formalism of [43] relates a variety of analytically continued path integrals
in d dimensions and topological field theory calculations in d + 1 dimensions, possibly
including local observables or defects. Intuitively, observables which are functions of the
d-dimensional fields will map to the same functions applied to the boundary values of
(d+ 1)-dimensional fields, but modifications of the d-dimensional path integral may prop-
agate to modifications of the (d+ 1)-dimensional bulk. Extra degrees of freedom added in
the d-dimensional setup may remain at the boundary of the (d + 1)-dimensional bulk or
analytically continued to extra degrees of freedom in the bulk.

A simple, rather trivial example of this flexibility is the observation that one can split
off a well-defined multiple of the Chern-Simons action before analytic continuation, giving
rise to a bulk theory with coupling Ψ + q with a B̃(q,1) boundary condition.

A more important example is analytically continued Chern-Simons theory defined on
a manifold with boundary, M3 = C × R+, with some boundary condition B3d. This setup
will map to a calculation involving four-dimensional gauge theory on a corner geometry
C × R+ × R+. One of the two sides of the corner will have deformed Neumann boundary
condition B̃(0,1). The other side will have some boundary condition B4d which can be
derived from the boundary condition B3d in a systematic fashion. At the corner, the two
boundary conditions will be intertwined by some interface which is also derived from the
boundary condition B3d.

The simplest possibility is to consider holomorphic Dirichlet boundary conditions D3d

in Chern-Simons theory, given by Az̄ = 0 at the boundary. It is well known that these
boundary conditions support Kac-Moody currents J = Az|∂ of level Ψ − h, given by the
holomorphic part of the connection restricted to the boundary. These boundary conditions
will lift to a deformation of Dirichlet boundary conditions in SYM.

A slightly more refined possibility is to consider a generalization of holomorphic Dirich-
let boundary conditions D3d

ρ which is labelled by an su(2) embedding in the gauge Liea
algebra [92, 93]. These boundary conditions require the boundary gauge field to be a
generalized oper of type ρ. They are expected to support the vertex operator algebras
DSρ[ĝΨ−h] obtained from the ĝΨ−h Kac-Moody algebra by a Quantum Drinfeld-Sokolov
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reduction. In particular, for the regular su(2) embedding inside gl(N), one obtains the

standard WN [Ψ]× ĝl(1) algebras. These boundary conditions will lift to a deformation of
the regular Nahm pole boundary conditions in SYM.

The regular Nahm pole boundary condition in SYM is precisely B(1,0). That means

the Chern-Simons setup leading to the standard WN [Ψ] × ĝl(1) algebras lifts to a corner
geometry in SYM with B̃(1,0) on one edge and a boundary condition we expect to coincide

with B̃(0,1) on the other edge. This is supported by the analysis of [42], which reduced the
problem on a compact Riemann surface C and found conformal blocks for the corresponding
WN -algebras.

At this point it is natural to seek configurations in Chern-Simons theory which could
be uplifted to a deformation of the junctions in the previous section for general N1, N2,
N3, involving B̃(1,0), B̃(0,1) and B̃(1,1) interfaces.

We take the same coupling Ψ uniformly in the whole plane of the YN1,N2,N3 junction
and the T-shaped configuration of Figure 3.2: the construction of [43] applied along the x2

direction maps the four-dimensional gauge theory with B̃(0,1) boundary conditions at x3 > 0
to a Chern-Simons theory with k + h = Ψ and the four-dimensional gauge theory with
B̃(1,1) boundary conditions at x3 < 0 to a Chern-Simons theory with k + h = Ψ − 1. The
interface at x3 = 0 together with the junction will encode some two-dimensional interface
between the two Chern-Simons theories, as described in the following.

The N1 = 0 and N3 > N2 junctions At first, we can take N1 = 0 and N3 > N2. In
order to re-produce the (deformation of the) bulk Nahm pole, we can consider the following
interface between U(N3) and U(N2) Chern-Simons theories at levels Ψ−N3 and Ψ−N2−1.
First, we take the boundary condition D3d

N3−N2,1,··· ,1 for the former CS theory, defined by the
same SU(2) embedding in U(N3) as the Nahm pole we need to realize, which decomposes
the fundamental of U(N3) into a dimension N3 −N2 irrep together with N2 copies of the
trivial representation. This boundary condition preserves an U(N2) subgroup of the U(N3)
gauge group, which we couple to the U(N2) gauge fields on the other side of the interface.

Classically, the U(N3) connection at the interface decomposes into blocks

AU(N3)|∂ =

(
∗(N3−N2)×(N3−N2) ∗(N3−N2)×N2

∗N2×(N3−N2) AU(N2)|∂

)
(3.2)

with one block identified with the U(N2) connection and the other blocks subject to the
oper boundary condition.
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In order for this interface to make sense quantum mechanically, the anomaly of the

gl(N2) currents in the VOA DSN3−N2,1,··· ,1[ĝl(N3)Ψ] ≡ DSN3−N2 [ĝl(N3)Ψ] must be cancelled
by anomaly inflow from the expected level Ψ−N2−1 of the U(N2) Chern-Simons theory.4

We will demonstrate this fact for general N3 − N2 later on with a detailed Quantum
Drinfeld-Sokolov reduction. Essentially, the naive level Ψ−N3 is shifted to Ψ−N2− 1 by
boundary ghost contributions. For N3 = N2 + 1 it is almost obvious: the gl(N2)Ψ currents
in gl(N3)Ψ currents have anomaly Ψ−N3 = Ψ−N2 − 1, just as expected.

The N1 = 0 and N2 = N3 junctions Next, we can take N1 = 0 and N2 = N3.
Recall that the bulk setup involves fundamental hypermultiplets extended along the B̃(1,0)

interface. It turns out (see [1, 94] for details) that the topological twist of these 3d degrees of
freedom implements an analytically continued two-dimensional path integral for a theory of
free chiral symplectic bosons or sometimes called β, γ system, where here the dimension of
both β and γ are 1/2, so that they can be treated on the same footing. Each hypermultiplet
provides a single copy of the symplectic bosons VOA.

Thus we will consider a simple interface between U(N3)Ψ−N3 and U(N3)Ψ−N3−1 Chern-
Simons theories: we identify the gauge fields across the interface, but couple them to
the theory SN3 of N3 β, γ systems transforming in a fundamental and anti-fundamental
representation of gl(N3). This VOA includes gl(N3) currents Jab = βaγb whose anomalies
precisely compensate the shift of Chern-Simons levels. This is just another manifestation
of the corner anomaly cancellation discussed in the previous section.

The N1 > 0 junctions Next, we can consider general N1. Now we will have B̃(0,1)

and B̃(1,1) interfaces between U(N1) and U(N3) gauge theories. According to [47], a B̃(0,1)

interface between U(N1) and U(N2) GL-twisted gauge theories will map to a U(N3|N1)
Chern-Simons theory at level Ψ − N3 + N1. We can thus proceed as before and consider
interfaces between U(N3|N1) and U(N2|N1) Chern-Simons theories at levels Ψ−N3 +N1

and Ψ−N2 +N1 − 1.

If N2 6= N3, the interface should be a super-group generalization D3d
N−M,1,··· ,1|1,··· ,1 of the

Nahm-pole-like boundary condition, preserving an U(N2|N1) subgroup of the gauge group
which can be coupled to the Chern-Simons gauge fields on the other side of the interface.
The oper-like boundary conditions have an obvious generalization to supergroups, with
sl(2) embedding into the bosonic subalgebra. It would be interesting to determine the

4We remind the reader again that the VOA we denote as ĝl(N3)Ψ has an ŝl(N3)Ψ current subalgebra.
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corresponding boundary condition on the bi-fundamental hypermultiplets present on the
B̃(0,1) and B̃(1,1) interfaces.

If N2 = N3, we need to generalize the symplectic boson VOA to something which
admits an action of U(N3|N1) with appropriate anomalies. The obvious choice is to add
at the interface both N copies of the chiral symplectic bosons VOA and N1 chiral complex
fermions. The fermions do not need to be uplifted to 3d fields and can instead be identified
in four-dimensions with the (0, 4) Fermi multiplets at the origin of the junction.

The symplectic bosons and fermions combine into a fundamental representation of

gl(N3|N1) and define together a VOA SN3|N1 which includes the required ̂gl(N3|N1) cur-
rents. 5

For concreteness, let us conclude this section by explicitly writing the oper boundary
condition in the Chern-Simons theory for N1 = 1, N2 = 1, N3 = 4:


∗ 1 0 0 0

N −M∗ ∗ 1 ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 M
∗ ∗ 0 L

. (3.3)

3.1.3 From Chern-Simons theory to VOA’s

In the gauge theory constructions of Section 3.1.2, we have encountered a variety of bound-
ary conditions and interfaces for (analytically continued) Chern-Simons theory. In this sec-
tion we discuss the chiral VOA of local operators located at these boundaries or interfaces.

Kac-Moody algerbas The best known example, of course, is the relation between
Chern-Simons theory and the Kac-Moody models [41]: a Chern-Simons theory with gauge
group G and level k defined on a half-space with appropriate orientation and an anti-chiral
Dirichlet boundary condition Az̄ = 0 supports at the boundary a VOA ĝk based on the

5Notice that the coupling of the SN3|N1 VOA to the 3d Chern Simons theory induces a discontinuity of
Az across the interface proportional to the Kac-Moody currents in the VOA. In particular, the discontinuity

of the odd currents in ̂gl(N3|N1) is proportional to products of a 2d symplectic boson and a 2d fermion.
This must correspond to the effect of the junction coupling between the (0, 4) Fermi multiplets and the
restrictions of the fundamental and bi-fundamental hypermultiplets to the junction.

30



Lie algebra g of the gauge group G, with currents J of level k which are proportional the
restriction of Az to the boundary.6

Dirichlet boundary conditions are associated to a full reduction of the gauge group at
the boundary: gauge transformations must go to the identity at the boundary and constant
gauge transformations at the boundary become a global symmetry of the boundary local
operators. For our purposes, we need to consider a more general situation, where the
gauge group is only partially reduced and may be coupled at the boundary to extra two-
dimensional degrees of freedom.

Coset First, we should ask if Neumann boundary conditions could be possible, so that
the gauge group is fully preserved at the boundary. In the absence of extra 2d matter
fields, this is not possible, because of the boundary gauge anomaly inflowing from the
bulk Chern-Simons term. We would like to claim that Neumann boundary conditions are
possible if extra 2d matter fields are added, say a 2d chiral CFT T 2d equipped with chiral,
g-valued currents J2d of level −k − 2h.

Indeed, we can produce Neumann boundary conditions by coupling auxiliary two-
dimensional chiral gauge fields to the combination of T 2d and standard Dirichlet boundary
conditions. The level of T 2d is chosen in such a way to cancel the naive bulk anomaly
inflow when combined with the ghost contribution to the boundary anomaly. The effect if
coupling two-dimensional gauge fields to VOA is well understood from the study of coset
conformal field theory [70, 71].

The VOA of boundary local operators should be built from the combination of ĝk, T
2d

and a bc ghost system bc(coset) valued in the Lie algebra g, taking the cohomology of the
BRST charge

Q
(coset)
BRST =

∮
dzTr

[
1

2
: b(z)[c(z), c(z)] : +c(z)(J(z) + J(z)2d)

]
+Q2d

BRST (3.4)

which implements quantum-mechanically the expected boundary conditions J(z)+J(z)2d =
0. We included Q2d

BRST to account for the possibility that T 2d itself was defined in a BV
formalism. We will denote such procedure as a g-BRST reduction.

The relation to coset constructions is related to the observation that the BRST coho-
mology includes the sub-algebra of local operators in T 2d which are local with the currents
J2d. In other words, the boundary VOA includes the current algebra coset

T 2d

ĝ−k−2h

(3.5)

6The proportionality factor is k.
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which generalizes the idea that Neumann boundary conditions support local gauge-invariant
operators in T 2d.

Interfaces can be included in this discussion by a simple folding trick. The change in
orientation maps k → −2h− k. Thus we can consider a Neumann-type interface between
Gk and G′k′ Chern-Simons theories coupled to a 2d chiral CFT T 2d equipped with chiral,
g× g′-valued currents of levels −k − 2h and k′.

The interface VOA will be the g⊕g′-BRST reduction of the combination of gk, g
′
−k′−2h′ ,

T 2d and bcg⊕g
′
. This implements a coset

T 2d

ĝ−k−2h ⊗ ĝ′k′
(3.6)

The construction above has an obvious generalization to mixed boundary conditions,
where the gauge group is reduced to a subgroup H at the boundary and coupled with extra
degrees of freedom T 2d equipped with chiral, h-valued currents J2d of level −kH − 2hH .
The boundary VOA will consist of the h-BRST reduction of the combination of ĝk, T

2d

and bc(coset).

The simplest example of this construction is a trivial interface between Gk and Gk

Chern-Simons theories. The interface breaks the G × G gauge groups to the diagonal
combination, gluing together the gauge fields on the two sides. The VOA of local operators
should be the BRST cohomology of ĝk × ĝ−k−2h combined with one set bcg of bc ghosts
valued in the Lie algebra of G. This BRST cohomology is trivial: the trivial interface in
Chern-Simons theory supports no local operators except for the identity.

A more interesting example is an interface where the Gk Chern-Simons theory is coupled
to some 2d degrees of freedom T 2d equipped with chiral, g-valued currents J2d of level k′.
Notice that the levels on the two sides of the interface should be k and k + k′.

Then the interface VOA will be given by the BRST cohomology of ĝk×T 2d× ĝ−k−k′−2h

combined with one set of b c ghosts valued in the Lie algebra of G. This can be interpreted
as either of two conjecturally equivalent cosets

ĝk × T 2d

ĝk+k′

?
=

ĝ−k−k′−2h × T 2d

ĝ−k−2h

(3.7)

An example of this was discussed in [95] with T 2d taken to be a set of chiral fermions
transforming in the fundamental representation of sl(N), resulting in the coset

ŝl(N)k × ŝl(N)1

ŝl(N)k+1

(3.8)
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which is a well-known realization of the WN [k +N ] VOA.

Drinfeld-Sokolov reduction A second important topic we need to discuss is the Quan-
tum Drinfeld-Sokolov reduction DSρ[ĝk] of the Kac-Moody algebra ĝk, the VOA which
appear at “oper-like” boundary conditions for a Gk Chern-Simons theory, labelled by an
sl(2) embedding ρ.

As a starting point, we may recall the construction for sl(2) gauge group and the regular
sl(2) embedding [92]. The classical boundary condition takes the schematic form

Az̄ =

(
1
2
aKz̄ 0
∗ −1

2
aKz̄

)
Az =

(
∗ 1
∗ ∗

)
(3.9)

where the ∗ denotes elements which are not fixed by the boundary condition and 1
2
aKz̄ is

the connection on the canonical bundle.

Gauge-transformations can be used to locally gauge-fix the holomorphic connection to

Az =

(
0 1
t(z) 0

)
(3.10)

with t(z) behaving as a classical stress tensor.

Quantum mechanically, one proceeds as follows [64, 65, 66]. The stress tensor of the

usual ŝl(2)k currents is shifted by the current ∂J3 associated to the Cartan element, in such
a way that J+(z) acquires conformal dimension 0 and J−(z) acquires conformal dimension
2. Furthermore, a single pair of b c ghosts is added, allowing us to define a BRST charge

Q
(DS)
BRST =

∮
dzc(z)(J+(z)− 1) (3.11)

enforcing the J+(z) = 1 constraint. The total stress tensor

T = T
ŝl(2)k

− ∂J3 − b∂c (3.12)

is in the BRST cohomology and generates it. It has central charge

3k

k + 2
− 6k − 2 = 13− 6

k + 2
− 6(k + 2) = 1 + 6(b+ b−1)2 (3.13)

with b2 = −(k + 2) = −Ψ.
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The construction generalizes as follows [66, 67, 68]. Take the t3 element in the su(2)
embedding ρ. The Lie algebra g decomposes into eigenspaces of t3 as

g = ⊕igi/2 (3.14)

The raising generator t+ of ρ is an element in g1. Naively, we want to set to zero all
currents of positive degree under t3 except for the one along t+, which should be set to 1.
We cannot quite do so because if we set to zero all currents in g1/2 we will also set to zero
their commutator, including the current along the t+ direction. The commutator together
with the projection to t+ gives a symplectic form on g1/2 and we are instructed to only set
to zero some Lagrangian subspace g+

1/2 in g1/2.

Then DSρ[ĝk] is defined as the BRST cohomology of a complex which is almost the
same as the one we would use to gauge the triangular sub-group

n = g+
1/2 ⊕

⊕
i>1

gi/2 (3.15)

In particular, we add to ĝk a set of b c ghosts valued respectively in n and n∗ .

The main difference is that we will shift the stress tensor by the t3 component of ∂J
and by a similar ghost contribution [b, t3] · c in such a way that currents and b-ghosts in
gi/2 have conformal dimension 1− i/2. This allows us to add the crucial extra term setting
the t+ component of J to 1:

Q
(DS)
BRST =

∮
dzTr

[
1

2
: b(z)[c(z), c(z)] : +c(z)J(z)

]
− t+ · c(z) (3.16)

In general, if the gl(2) embedding ρ commutes with some subalgerba h of g, the currents
in h can be corrected by ghost contributions to give h currents in DSρ[ĝk]. The ghost
contributions will shift the level away from the value inherited from ĝk.

The oper-like boundary conditions can be further modified by gauging subgroups of h
coupled to appropriate 2d degrees of freedom and/or promoted to interfaces by identifying
the H subgroup of the G connection with an H connection on the other side of the interface.
This will lead to further ĥ-BRST cosets involving DSρ[ĝk] as an ingredient.

3.1.4 BRST definition of YN1,N2,N3
[Ψ]

After describing junction conditions and VOAs associated to different junctions of Chern-
Simons gauge theories, it is simple to write down a proposal for a BRST definition of
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Y-algerbas as a combination of the Drinfeld-Sokolov reduction and the coset construction
of a super Kac-Moody algebra. Schematically, they are defined as7

YN1,N2,N3 [Ψ] =
DSN3−N2 [ ̂gl(N3|N1)Ψ]

̂gl(N2|N1)Ψ−1

for N3 > N2

YN1,N2,N3 [Ψ] =
̂gl(N3|N1)Ψ × SN3|N1

̂gl(N3|N1)Ψ−1

YN1,N2,N3 [Ψ] =
DSN2−N3 [ ̂gl(N2|N1)−Ψ+1]

̂gl(N3|N1; )−Ψ

for N3 < N2 (3.17)

where DSN3−N2 denotes the Drinfeld-Sokolov reduction with respect to the principal em-
bedding inside the (N3−N2)× (N3−N2) diagonal block of gl(N3|N1) and by the division

by ̂gl(N2|N1)Ψ−1 we mean the BRST coset to be defined later. SN3|N1 labels the set of

N symplectic bosons and N1 free fermions that contains a ̂gl(N3|N1)N3−N1−1 subalgebra
formed from the field bilinears. More concretely, for parameters in the range N3 > N2,
YN1,N2,N3 [Ψ] is defined as the BRST reduction of

̂gl(N3|N1)Ψ × ̂gl(N2|N1)−Ψ+1 × gh(DS) × gh(coset) (3.18)

by two successive BRST reductions. In the expression above, we have introduced gh(DS)

for (super)ghosts needed for the Drinfeld-Sokolov reduction implemented by Q
(DS)
BRST and

gh(coset) for (super)ghosts associated to the BRST coset implemented by Q
(coset)
BRST .

Q
(DS)
BRST can be defined in the following three steps (assuming N > M):

1. Pick the principal sl(2) embedding inside the gl(N3−N2) subalgebra associated to the
(N3 −N2)× (N3 −N2) block inside gl(N3|N1). The corresponding Cartan generator
of such embedding can be taken to be of the form

h =
N3 −N2 − 1

2
E11 +

N3 −N2 − 3

2
E22 + · · ·+ N2 −N3 + 1

2
EN3−N2,N3−N2 (3.19)

7Throughout the paper, we use the notation ̂gl(N3|N1)Ψ = ĝl(1)(N3−N1)Ψ × ̂sl(N3|N1)Ψ−N3+N1
, where

Ψ−N3 +N1 is the level of the ̂sl(N3|N1) Kac-Moody subalgebra, i.e. Ψ is the level relative to the critical

level. Although ĝl(1) current algebra does not have any intrinsic level, we use the subscript to indicate the

normalization of the ĝl(1) current with respect to which the electric modules have integral dimensions.
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where Eij is a generator of the gl(N3|N1) Lie algebra associated to the matrix with
one at the position i, j. The generator h provides us with a grading that we use in
the next step.

2. Decompose the adjoint representation of gl(N3|N1) into subspaces of h-charge greater
then, equal to, and smaller than one half: g< 1

2
⊕ g 1

2
⊕ g> 1

2
. Introduce fermionic bc

ghosts for each bosonic element and bosonic βγ ghosts for each fermionic element in
g> 1

2
and for half of the elements in g 1

2
.8 This system of (super)ghosts is labeled by

gh(DS).9

3. Define a nilpotent BRST charge Q
(DS)
BRST constraining g> 1

2
and half of g 1

2
generators

to a fixed value

Q
(DS)
BRST =

∮
dz

[
(Ji − t+i )ci +

1

2
fkijbkc

icj
]

(3.20)

where t+ is the raising operator of the SU(2) embedding. In our conventions, this
generator has all the entries vanishing except of those above the diagonal that are
set to one. fkij are the structure constants of the algebra of constraints (restrictions
of the structure constants of the gl(N |L) Lie algebra).

The coset BRST reduction is then performed by adding (super)ghosts of conformal
dimension h(ci) = h(γj) = h(bi)− 1 = h(βj)− 1 = 0, one for each generator of gl(N2|N1).
We denote this (super)ghost system by gh(coset) and study the cohomology with respect to

Q
(coset)
BRST =

∮
dz

[
(J1
j − J2

j )cj +
1

2
f ljkblc

jck
]
. (3.21)

Here Jαj are the currents of the two copies of the ̂gl(N2|N1) algebra being sewed and fkij are
the structure constants of gl(N2|N1).10 For the notational simplicity we wrote the formula
as if there were only bosonic generators and fermionic ghosts, but the generalization should
be obvious.

8This half of the elements needs to to be picked such that they form a Lagrangian subspace inside g 1
2

with respect to the symplectic pairing given by the standard invariant two-form of SU(N).
9The conformal dimensions of such ghosts are h(ci) = h(γi) = 1−h(bi) = 1−h(βi) = 1−h(Ji) = −H(Ji)

where H(Ji) is the H-charge of the element Ji. This assignment of conformal dimensions ensures that
the BRST charge has degree one with respect to the modified stress-energy tensor of the Drinfeld-Sokolov
reduction and it is useful to count the contribution from the ghosts in the total stress-energy tensor.

10The upper index α = 1, 2 runs over the two copies of algebra while indices j run over the generators
of the adjoint representation of gl(N2|N1).
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In the case when N3 − N2 = 1, the DS1 is a trivial operation and can be omitted.
On the other hand, if N3 = N2, one needs to add symplectic bosons SN3|N1 in the funda-
mental representation of gl(N3|N1). These are known to contain a conformally embedded
̂gl(N3|N1)N3−N2−1 Kac-Moody algebra formed by their bilinears. The resulting Y-algebra

can be identified with the BRST reduction of

̂gl(N3|N1)Ψ × SN3|N1 × ̂gl(N3|N1)−Ψ+1 × gh(coset) (3.22)

by the BRST charge

Q
(coset)
BRST =

∮
dz

[
ci(J1

i − J2
i − JSi ) +

1

2
fkijbkc

icj
]

(3.23)

where JS are the
̂

ĝl(N3|N1) currents obtained from the bilinears in SN3|N1 fields. Intuitively,
this BRST operator couples the symplectic bosons to the two Chern-Simons theories con-
nected by the interface.

In the following, we will use the unified notation

DSN3−N2 [ ̂gl(N3|N1)Ψ] (3.24)

for any non-negative N3 − N2 that is defined by the DS-reduction described above for
N3 −N2 > 1, that is trivial in the case of N3 −N2 = 1, and that produces

DS0[ ̂gl(N3|N1)Ψ] = ̂gl(N3|N1)Ψ × SN3|N1 (3.25)

in the case that N3 = N2.

3.2 Type IIA perspective

3.2.1 Divisors in toric three-folds

Let us describe a dual M-theory configuration associated to the trivalent junction leading
to the YN1,N2,N3 [Ψ] algebra. Consider three stacks of N1, N2 and N3 M5-branes supported
on C2

x1,x2
, C2

x1,x3
and C2

x2,x3
inside C3

x1,x2,x3
, i.e. a configuration associated to the divisor

N1C2
x2,x3

+N2C2
x1,x3

+N3C2
x1,x2

with Ni ∈ Z≥0, and wrapping an extra Riemann surface Σ
inside S1 ×R4. Compactifying on the extra Riemann surface Σ shared by all the branes,
the configuration has a low-energy description in terms of U(Ni) gauge theories supported
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C2
x2,x3

C2
x1,x2

C2
x1,x3

N2 D4

N3 D4

× R4

N1 D4

Figure 3.3: Configuration of branes in type IIA string theory associated to spiked instan-
tons. Three stacks of D4-branes span the three four-cycles inside C3 fixed under the T 2

action discussed in the main text together with one orthogonal direction in R4.

at the three irreducible components of the divisor, namely on C2
x1,x2

, C2
x1,x3

and C2
x2,x3

,
mutually interacting along their intersections Cx1 , Cx2 , Cx3 via bi-fundamental 2d fields.
This setup can be identified with a restriction of the more general spiked-instanton setup
of M5-branes intersecting inside C4 from [54, 55]. The type IIA setup can be obtained
by a compactification of the circle S1 leading to type IIA string theory on C3 ×R4 with
M5-branes (originally wrapping the M-theory circle) becoming D4-branes.

The above M-theory setup can be related [48, 42, 96, 2, 4] to the type IIB configuration
from above using the duality between the M-theory on a torus and type IIB string theory in
the presence of a web of (p, q)-branes. In the example at hand, C3 = R6 endowed with the
standard symplectic structure has the natural Hamiltonian action of T 3 = U(1)3, whose
moment map realizes C3 as a singular Lagrangian T 3- fibration over the first octant in
R3. The action of the 2-dimensional subtorus T 2 ⊂ T 3 preserving the canonical bundle is
generated by the following rotations (eit1z1, z2, e

−it1z3) and (z1, e
it2z2, e

−it2z3). The moment
map of this T 2 action from C3 to R2 is given by µ1 = |z1|2 − |z3|2 and µ2 = |z2|2 − |z3|2.
The directions in which the T 2 torus fibration, when projected to R2, are as follows. The
t1 action degenerates for z1 = z3 = 0, corresponding to the µ1 = 0, µ2 > 0, the t2 action
degenerates at µ2 = 0 and µ1 > 0 and finally t1 + t2 degenerates at µ1 = µ2 < 0. The
degeneration of the fibers in the µ1, µ2 plane is shown in the figure 4.12 on the left.

From the dual point of view, one gets a type IIB theory on R8 × T 2 with one of the
cycle S1 ⊂ T 2 coming from the toric fibration of the Calabi-Yau 3-fold and the other
cycle corresponding to the M-theory circle S2 ⊂ T 2. Singularities of the torus fibration
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(0, 1)(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 0)

(−1, 0)

(2, 1)

N1

N2

N3

N4

N1

N2

N3

N4

(0, 1)

(1, 0)
N1

N2

N3

(1, 1)

Figure 3.4: Toric diagram associated to C3 (left), O(−1) ⊕ O(−1) → CP
1 (middle) and

O(−2)⊕O → CP
1 (right). The lines show loci where (p, q)-cycles of the torus T 2 degen-

erate.

correspond to (p, q)-branes spanning orthogonal directions with p and q labeling the degen-
erating circle. The geometry of the Calabi-Yau 3-fold thus maps to a web of (p, q)-branes.
M5-branes associated to the faces in the toric diagram map to D3-branes attached to
(p, q)-branes from the three corners. This is exactly the type IIB setup described above
leading to YN1,N2,N3 [Ψ]. Furthermore, as discussed in [4], the parameter Ψ is related to the
Ω-deformation parameters as Ψ = −ε1/ε2.

The example of C3 has a natural generalization for an arbitrary toric Calabi-Yau 3-fold
given by a toric diagram specifying loci where the torus cycles degenerate. The two simplest
examples are shown in the figure 4.12 and correspond to the bundles O(−1) ⊕ O(−1) →
CP

1 and O(−2) ⊕ O → CP
1 respectively. Smooth components of a general toric divisor

can be identified with faces of the corresponding toric diagram and the colored (p, q) web
thus labels such a divisor. Compactifying on the extra Rieman surface, one gets a system of
four-dimensional theories with gauge groups U(Ni) supported on various four-cycles inside
the toric Calabi-Yau three-fold and mutually coupled along their intersections.

3.2.2 AGT for spiked instantons

Note that YN1,N2,N3 [Ψ] becomes the standard WNi × ĝl(1) algebra if two of the remaining
parameters Nj = 0 for j 6= i vanish. Moreover, the gauge theory configuration reduces to
a simple configuration of the U(Ni) gauge theory on C2 in the presence of Ω-background.
This is the standard setup of the AGT correspondence. Indeed, Alday-Gaiotto-Tachikawa
[14, 18] relate the Nekrasov partition function [56] of a U(Ni) gauge theory on M4 = C2
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B1

B2

B3

n

Figure 3.5: Quiver for the cohomological Hall algebra of C3.

in the presence of the Ω-background with conformal blocks of the WN algebra living on
the extra Riemann surface Σ. It thus seems natural to generalize the AGT correspondence
and conjecture that YN1,N2,N3 [Ψ] is the VOA dual to the spiked-instanton configuration
of Nekrasov [54, 55]. In a greater generality, one might expect that the general (p, q)
web VOA (to be discussed in a grater detail in the next chapter) is the AGT dual to a
more complicated gauge-theoretical configuration associated to a toric divisor inside a toric
Calabi-Yau three-fold.

A key step in the proof of the standard AGT correspondence is the construction of

the action of WN [Ψ] × ĝl(1) on the equivariant cohomology of the moduli space of U(N)
instantons on C2 with equivariant parameters ε1, ε2 [59, 16, 60]. Such an action descent
from the action of the cohomological Hall algebra associated to C2 by taking its Drinfeld

double that can be identified with the affine Yangian of gl(1). Algebras WN × ĝl(1) then
appear as specializations associated to a choice of the rank of the gauge group.

Generalization to C3 is conceptually straightforward but rather technical. A proper
exposition would require an introduction of new techniques that would move us too far
from our discussion of VOAs. Let us at least briefly review the idea of the proof from [4].
Interested reader is referred to [4] and references therein.

In analogy with the C2 case, one can consider the cohomological Hall algebra [73]
associated to C3. The cohomological Hall algebra is an algebra defined on the equivariant
cohomology of representations of the triple quiver from the figure 3.5 lying in the critical
locus of the potential

W = Tr [B1[B2, B3]] (3.26)

and satisfying stability conditions that we are going to omit in our discussion. The quiver
3.5 can be thought of as a quiver of an effective quantum mechanics describing the low-
energy dynamics of a stack of n D1-branes. The three loops with the corresponding n× n
complex-valued matrices B1, B2, B3 are associated to the three complex directions along
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Figure 3.6: Quiver for spiked instantons associated to the toric divisor N1C2
x2,x3

+N2C2
x1,x3

+
N3C2

x1,x2
inside C3.

C
3. The potential W is the potential of the quiver quantum mechanics. The equivariant

cohomology then corresponds to the space of vacua of such a quantum mechanics.

There exists a natural algebra structure on the cohomology if we consider a tensor sum
of equivariant cohomologies over all n > 0. Having a tripple of matrices (B1, B2, B3) of
rank n and a triple of matrices (B̃1, B̃2, B̃3) of rank m, we can embed them diagonally inside
a matrix of rank n + m. This naturally lead to the restriction map p and the embedding
η of the form (

Bi 0

0 B̃i

)
p←−
(
Bi ∗
0 B̃i

)
η−→
(
Bi ∗
∗ B̃i

)
. (3.27)

These maps induce a multiplication on the tensor sum of equivariant cohomologies of
the above space by composing the pull-back of p with the pushforward of ∗ = η, i.e.
η∗p
∗. It can be checked that the conditions of being in a critical locus and the stability

conditions are consistent with such maps. Note that the multiplication produces a rank
n + m configuration. Physically, we can thus expect that the multiplication describe a
process that is associated to a fusion of a bound state of n and m D0-branes into a stack of
n+m D0-branes. Indeed, one of the motivations of [73] for the cohomological Hall algebra
was to give a precise definition of the BPS algebra associated to such processes [97].

Repeating the above argument for a system of n D0-branes bound to the intersecting
D4-branes, one arrives to the framed quiver from the figure . Apart from the three loops
B1, B2, B3, we have also degrees of freedom coming from the D0-D4 strings with Ni × n
matrices Ii, Ji for each i = 1, 2, 3. The potential of the corresponding quantum mechanics
is

Tr [B1[B2, B3]] + I1B1J1 + I2B2J2 + I3B3J3. (3.28)
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The vacua then correspond to the equivariant cohomology of such matrices lying in the
critical locus of the potential coming from the variation with respect to all the involved
fields. The variation with respect to Ii, Ji modify the stability conditions and the variation
with respect to Bi lead to modified moment-map equations. The more general quiver is
expected to parametrized spiked instantons11 [54, 55] associated to intersecting theories
with n corresponding to the instanton number.

An analogous correspondence as the one in (3.27) can be also written down in the
case of the spiked instanton moduli, where the restriction p restrict to a product of a
representation of the framed quiver of dimension m and unframed quiver of dimension n
and the embedding η is inside a framed-quiver representation of dimension n + m. This
correspondence induces an action of the cohomological Hall algebra on the equivariant
cohomology of the moduli space of spiked instantons that increases the instanton number
m. Physically, the multiplication should capture a process of forming a bound-state of
n+m D0-branes with D4-branes from a bound state of m D0-branes bound to D4-branes
and a stack of n D0-branes.

In order to describe reverse processes that decrease the instanton number (correspond-
ing to a decay of a bound state), we need to extend the cohomological Hall algebra. At
the level of VOAs, such an extension corresponds to an extension of the subalgebra of
positive modes by an algebra of zero and negative modes. It turns out that there exists an
extension of the cohomological Hall algebra that naturally acts on the moduli space known
as the affine Yangian of gl(1). The affine Yangian of gl(1) is known to be isomorphic (as
an associative algebra) to a VOA called W1+∞ that is closely related to YN1,N2,N3 [Ψ].

One can actually proof an equivalence of the module of the affine Yangian with the
generic module (to be discussed in the last section) by matching free field realizations
along the lines of [16]. It is a well-known fact that the action of the affine Yangian of gl(1)
on the moduli space associated to the rank-one moduli space N3 = 1, N1 = N2 = 0 can be
identified with the action of the Heisenberg algebra on a generic module. Action on the
modules associated to other directions N2 = 1, N1 = N3 = 0 and N1 = 1, N2 = N3 = 0
can be simply obtained by a permutation of the equivariant parameters εi. Furthermore,
using a coproduct of the affine Yangian N1 +N2 +N3-times and letting Ni affine Yangian
factors act on a rank-one moduli space associated to the direction i, one gets a new module
depending on parameters ε1, ε2, ε3 and N1 +N2 +N3 parameters associated to the highest
weights of each Heisenberg factor. This gives a free field realization of more complicated
modules. One can also show that there exists a so-called hyperbolic localization map that

11It turns out that in the N2 = N3 = 0 case (or its permutations), the moduli space reduces to the
standard ADHM moduli parametrizing instantons on C2.
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decomposes the general moduli spaces with dimensions (N1, N2, N3) of framing vectors into
a product of N1 + N2 + N3 rank-one moduli spaces. Furthermore, using the hyperbolic
localization, it can be shown that the action of the affine Yangian can be identified with
the free field realization above. It is just a straightforward calculation to check that the
free field realization agrees with the one defined later in this chapter.

The parameters εi parametrizing OPEs of the resulting algebra come from equivariant
parameters associated to the rotation of the coordinates C ⊂ C3 and the N1 + N2 + N3

highest weights of the modules come from the equivariant parameters associated the U(n)
action on matrices Ii, Ji associated to the framing nodes.

3.2.3 D0-D2-D4 brane counting

Apart from the generalization of the AGT for spiked instantons, the D4-D2-D0 configura-
tion suggests a relation to the BPS counting of [51, 52, 53]. From the point of view of the
theory on intersecting D4-branes, D2- and D0- branes modify the gauge bundle of the cor-
responding effective gauge theories. Fixing numbers D0 and D2 branes then corresponds
to restricting the path integral to a particular instanton sector. Counting of BPS states
for such configurations in a fixed instanton sector has been performed in [51, 52, 53]. BPS
indices can be arranged into a generating function with parameter q corresponding to the
fugacity for the D0 charge and Q corresponding to the fugacity for the D2 charge. It is
natural to expect that such characters are going to appear naturally also from VOAs.

We will later argue that vacuum characters of YN1,N2,N3 [Ψ] indeed agree with those of
Jafferis in [51] who proposed the same box-counting interpretation for the corresponding
D0-D2-D4 brane counting. Moreover, we will see that the gluing proposal at the level
of vacuum characters (to be discussed in the next chapter) matches the one proposed
in [52, 53]. Gluing at the level of full algebras seems to categorify these BPS counting
problems.

3.2.4 W1+∞ and topological vertex

We will now discuss an alternative definition of YN1,N2,N3 [Ψ] in terms of truncations of the
W1+∞ algebra. The identification of YN1,N2,N3 [Ψ] with truncations of W1+∞ is supported
by the following consistency checks:

1. Agreement of the vacuum character in the large Ni limit and the appearance of the
first null state of YN1,N2,N3 [Ψ] with respect to the large Ni limit character.
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2. Factorization of the central charge that allows us to naturally identify parameters
λ1, λ2, λ3 of the W1+∞ algebra.

3. Triality symmetry inherited from the S-duality.

Apart from these three, there are many other consistency checks in explicit examples
discussed in [1, 2, 76].

The vacuum character The vacuum character of YN1,N2,N3 [Ψ] for N3 ≥ N2 can be
computed using the BRST prescription along the lines of [1] and give the following contour-
integral representation (see also [36])

χ [YN1,N2,N3 [Ψ]] = χWN3−N2
(q)

∮
dVN2|N1χ

N2|N1
N3−N2

2

(q, xi, yi). (3.29)

In this expression, χWN3−N2
is the character of the WN3−N2 × ĝl(1) algebra,

∮
dVN2,N1 is

the Vandermonde projector (invariant integration) that projects to gl(N1|N2) invariant

combinations of fields, and χ
N2|N1
N3−N2

2

(q, xi, yi) is the character of a system of symplectic

bosons in the fundamental representation of gl(N2|n1) and with the level shifted by N3−N2

2

that comes from the DS-reduction of the off-diagonal blocks of ̂gl(N3|N1)Ψ. All of these
ingredients are reviewed in appendix A.2.

Let us give a combinatorial description of the fields in Y0,N2,N3 . The Drinfeld-Sokolov
reduction DSN3−N2 produces N3 −N2 fields Wi of conformal weights i = 1, 2, . . . , N3 −N2

together with N2 U, V fields with conformal weight N3−N2

2
and transforming in fundamental

(anti-fundamental) representation of the preserved gl(N2) algebra. Fields preserved by the
coset are then labelled by gl(N2)-invariant words built from the following letters: ∂nWi

singlets of U(N2) of weight i + n, with 1 ≤ i ≤ N3 − N2, ∂nU fundamentals of gl(N2) of
weight n+ N3−N2+1

2
and ∂nV anti-fundamentals of gl(N2) of weight n+ N3−N2+1

2
.

Equivalently, we can quotient the collection of words built from singlets ∂nWi and
bilinears ∂nU · ∂mV by the relations satisfied by products of bilinears. If we ignore these
relations, the ∂nU · ∂mV give 1 generator of weight N3 −N2 + 1, 2 of weight N3 −N2 + 2,
etc. and combine with the ∂nWi to give a W1+∞-like set of generators.

The first non-trivial relation should be det(N2+1)×(N2+1) (∂nU · ∂mV ) = 0, occurring at
level N3 −N2 + 1 +N3 −N2 + 3 + · · ·N3 +N2 + 1 = (N3 + 1)(N2 + 1).

For the algebra YN1,0,N3 [Ψ], we can again give a combinatorial description of its gen-
erators. The Drinfeld-Sokolov reduction DSN3 produces Wi generators of weight i =
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1, 2, . . . , N3 together with fermionic fields A,B of weight N3+1
2

transforming in the fun-
damental (anti-fundamental) representation of the preserved gl(N1) algebra. The fields
surviving the coset are then labelled by gl(N1)-invariant words built from the following
letters: ∂nWi singlets of gl(N1) of weight i+n, with 1 ≤ i ≤ N3, ∂nA fermionic fundamen-
tals of gl(N1) of weight n+ N3+1

2
and ∂nB fermionic anti-fundamentals of gl(N1) of weight

n+ N+1
2

.

Equivalently, we can quotient the collection of words built from singlets ∂nWi and
bilinears ∂nA · ∂mB by the relations satisfied by products of bilinears. If we ignore the
relations which occur at finite N1, the combinations of the form ∂nA ·∂mB give 1 generator
of weight N3 + 1, 2 of weight N3 + 2, etc. and combine with the ∂nWi to give a W1+∞-like
set of generators. The first non-trivial relation should be (A · B)N1+1 = 0, occurring at
level (N1 + 1)(N3 + 1).

The combinatorial description of the generators for Y0,N2,N3 [Ψ] and YN1,0,N3 [Ψ] has an
obvious generalization: they should be labelled by gl(N2|N1)-invariant words built from
the following letters: ∂nWi singlets of gl(N2|N1) of weight i+n, with 1 ≤ i ≤ N3−N2, ∂nU
fundamentals of gl(N2|N1) (i.e. sets of N2 bosons and N1 fermions) of weight n+ N3−N2+1

2

and ∂nV anti-fundamentals of gl(N2|N1) (i.e. sets of N2 bosons and N1 fermions) of weight
n+ N3−N2+1

2

Equivalently, we can quotient the collection of words built from singlets ∂nWi and
bilinears ∂nU · ∂mV by the relations satisfied by products of bilinears. If we ignore the
relations which occur at finite N1 and N2, the combinations of the form ∂nU · ∂mV give 1
generator of weight N3−N2 + 1, 2 of weight N3−N2 + 2, etc. and combine with the ∂nWi

to give a W1+∞-like set of generators.

The first non-trivial relation should involve a mixed symmetrization of the ∂nU labels in
a product of bilinears which vanishes for fundamentals of gl(N2|N1). The representations
Ra,s of gl(N2|N1) labelled by rectangular Young Tableaux obtained from mixed symmetriza-
tion of fundamentals of gl(N2|N1) are non-vanishing for (a, s) inside the “gl(N2|N1)-hook”,
the difference between the positive quadrant and the shifted quadrant with s = N1 + 1,
a = N2 + 1.

The first non-trivial vanishing condition occurs for RN2+1,N1+1. This is a modification
of the (N1 + 1)-th power of the determinant det(N2+1)×(N2+1) (∂nU · ∂mV) and should have
weight (N1 + 1)(N2 + 1)(N3 + 1).

We now formulate the following conjecture: the generators of YN1,N2,N3 are in one-to-one
correspondence with 3d partitions (as in the crystal melting story [72]) restricted to lie in
the difference between the positive octant and the shifted positive octant with origin at N1,
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n2, N3. (See figure 3.7 for the Y2,1,1[Ψ] example.) Notice that unrestricted 3d partitions
are counted by the McMahon function

χ∞(q) =
1∏

n>0(1− qn)n
(3.30)

which also counts generators of W1+∞ and is the generating function of Donaldson-Thomas
invariants of C3 appearing in the topological vertex literature [49, 50]. This conjecture has
been chect for a large class of YN1,N2,N3 [Ψ] in [1], agrees with the D4-D2-D0 brane counting
of [51] and (as we will see bellow), there exist quotients of the gl(1) affine Yangian with
correct vacuum character.

x

y

z

Figure 3.7: Example of a 3d partition for algebra Y2,1,1[Ψ]. All the boxes of all allowed
partitions are constrained to lie between the corner with a vertex at the origin and shifted
(red) corner with vertex at (2, 1, 1).

Truncations of W1+∞

The vertex operator algebraW∞ is an algebra obtained by extending the Virasoro algebra
by independent primary fields of each integral spin ≥ 3, so that the generators are

T,W3,W4,W5 . . . (3.31)

Imposing the conditions of associativity, [74, 75] concluded that there exists a two param-
eter family of such algebras, one parameter being the central charge c and the other one
can be chosen to be

x2 =
(C4

33)2C0
44

(C0
33)2

(3.32)
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where C l
jk are the OPE coefficients (C l

jk is the coefficient of primary operator Wl in the
OPE of Wj and Wk)

12.

It is convenient to add a decoupled ĝl(1) current into the algebra and define W1+∞ ≡
W∞× ĝl(1). At special curves in the two-parameter space of such algebras,W1+∞ develops
an ideal I. Quotienting this ideal out, one obtains a truncation of W1+∞. According to

[75], some of such truncations can be identified with WN × ĝl(1) algebras generated by
fields up to spin N . The structure of truncations of W1+∞ was further analyzed in [5] and
later in [2] where new truncations were discovered. It turns out that Y-algebra can be
identified with these more general truncations of W1+∞.

As pointed out in [5], there exists an useful parametrization of the structure constants
in terms of a triple of parameters λi satisfying

1

λ1

+
1

λ2

+
1

λ3

= 0 (3.33)

in terms of which the central charge and parameter (3.32) are given by

c∞ = (λ1 − 1)(λ2 − 1)(λ3 − 1)

x2 =
144(c+ 2)(λ1 − 3)(λ2 − 3)(λ3 − 3)

(λ1 − 2)(λ2 − 2)(λ3 − 2)
. (3.34)

Modifying the stress energy tensor in such a way that the current J has conformal weight
one, the central charge get shifted by one c1+∞ = c∞ + 1. The reason for introducing this
parametrization is that for λj = N where N is any positive integer, the algebra truncates

to WN × ĝl(1). Although the structure constants of the algebra in the primary basis are
manifestly invariant under S3 transformation permuting the parameters λj, this triality
symmetry acts non-trivially on representations. We might as well analytically continue

the structure constants of WN × ĝl(1) as a function of the rank parameter N (since with
a suitable choice of normalization they are just rational functions of N and c) and find
following Gaberdiel and Gopakumar [75] that for a fixed value of the central charge c,
there are generically three different values λj of N for which we get the same structure
constants.

The local fields of theW1+∞ algebra can be labeled by 3d partitions where the conformal
dimension of fields is given by the number of boxes of the corresponding partition13. At

12Although starting from spin 6 the primary operators are not uniquely determined even up to an overall
rescaling, there is no such problem with primaries of spin 3 or 4.

13This simple combinatorial interpretation is one of the main reasons for considering the additional U(1)
factor instead of restricting purely to W1+∞.
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Figure 3.8: Truncation curves parametrized by (N1, N2, N3) such that (N1+1)(N2+1)(N3+
1) ≤ 6. This restriction means that the first generator that we are removing appears at level
≤ 6 in the vacuum module. We use the parametrization from [5] where the two axes are
related to λi parameters by x = 1

3
(2λ1−λ2−λ3), y = 1√

3
(λ2−λ3) which manifestly shows

the S3 triality symmetry. At the points where two curves cross, we find the minimal models
of W1+∞ algebra if we quotient out by the maximal ideal which in particular contains the
two ideals coming from the two curves that meet.

special curves in the two-dimensional parameter space of W1+∞ algebras, the generators
associated to 3d partitions having a box at coordinates (N1 + 1, N2 + 1, N3 + 1)14 form
an ideal IN1,N2,N3 . In other words, IN1,N2,N3 contains all the configurations, where the
boxes do not fit between the corner and its copy shifted by (N1, N2, N3). The curve in the
parameter space for which IN1,N2,N3 appears is given by

N1

λ1

+
N2

λ2

+
N3

λ3

= 1. (3.35)

Note that due to (3.33), the ideals IN1,N2,N3 ⊃ IN1+k,N2+k,N3+k are associated to the same
curve. Derivation of the formula (3.35) using the isomorphism of the algebra with the
affine Yangian of gl(1) along the lines of [98, 2] can be found in the appendix A.1. If we
quotient by the ideal IN1,N2,N3 , we recover an algebra with generators associated to 3d
partitions living between the corner at the origin and the corner shifted by (N1, N2, N3).
Each truncation curve has a corresponding maximal truncation which we get by factoring
out

I(N1,N2,N3)−max(N1,N2,N3)(1,1,1), (3.36)

14Here we use the convention that the box corresponding to J−1|0〉 is at position (1, 1, 1).

48



or in other words choosing one of (N1, N2, N3) to be zero. These are the truncations
discussed in [5] and they correspond to quotients that are irreducible for generic values of
the central charge. For illustration, few truncation curves are depicted in figure 3.8.

Identification of YN1,N2,N3 with W1+∞

We can now see that the vacuum character of YN1,N2,N3 agrees with the vacuum character of
the truncationW1+∞/IN1,N2,N3 . In this section we discuss few pieces of evidence supporting
this identification.

The central charge of YN1,N2,N3 can be determined from the BRST definition [1] and
one finds the following expression

cN1,N2,N3 [Ψ] =
1

Ψ
(N1 −N3)

(
(N1 −N3)2 − 1

)
+ Ψ(N2 −N3)

(
(N2 −N3)2 − 1

)
+

+
1

Ψ− 1
(N2 −N1)((N2 −N1)2 − 1) + (2N3 +N2 − 3N1)(N3 −N2)2 +N1 −N3. (3.37)

Note that this is invariant under replacements

Ψ↔ 1
Ψ

N1 ↔ N2

Ψ↔ 1−Ψ N2 ↔ N3 (3.38)

which generate the S3 group of transformations that will be further discussed in tha last
section. The group acts by permutations on (N1, N2, N3) and on Ψ by fractional linear
transformations permuting (0, 1,∞). This motivates us to introduce another parametriza-
tion

λ1 = N1 −ΨN2 − (1−Ψ)N3

λ2 = −N1 −ΨN2 − (1−Ψ)N3

Ψ
(3.39)

λ3 =
N1 −ΨN2 − (1−Ψ)N3

Ψ− 1

satisfying

1

λ1

+
1

λ2

+
1

λ3

= 0 (3.40)

just like in the case of W1+∞. Furthermore, the expression for the central charge (3.37)
can be rewritten in the form

c1+∞ = (λ1 − 1)(λ2 − 1)(λ3 − 1) + 1. (3.41)
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which is equal to the central charge in W1+∞ (3.37).15 The S3 triality action of [1] acts
simply by permutations of the parameters λi and the central charge is manifestly triality in-
variant in this parametrization. It is convenient for what follows to introduce h parameters
(h1, h2, h3) by

Ψ = −h2

h1

0 = h1 + h2 + h3 (3.42)

(note that they are determined by Ψ only up to an overall scale factor). In terms of these,
the parameters λi can be written in more symmetric form

λi =
N1h1 +N2h2 +N3h3

hi
. (3.43)

Parameters hi naturally appear as parameters of the affine Yangian of gl(1) and can also be
identified with the Nekrasov Ω-deformation parameters in the cohomological Hall algebra
construction [4].

Note the special points where the two truncation curves intersect. Algebras with such
values of parameters contain further null-states that can be factorized. From the point
of view of Y-algebras, these points correspond to DS-reduction and coset of Kac-Moody
algebras at rational levels. At rational levels the Kac-Moody algebras contain null states
and to take them into account one should use Kac-Weyl characters to calculate the char-
acters of the final algebra. At least in the case of WN algebras these are known to lead
to minimal models [99]. It would be nice to generalize this construction to all Y-algebras.
In our considerations we will always consider Ψ to be generic corresponding to a generic
points of the truncation curve (N1, N2, N3).

3.2.5 Generalized Miura transformation

As motivated above, we also expect an existence of a free-field realization of a general
YN1,N2,N3 algebra. Such a free field realization can be characterized either in terms of the
Miura transformation or the intersection of kernels of screening charges. Let us now give
a generalization of the well-known Miura transformation for Y0,0,N of [22, 7] to general
YN1,N2,N3 .

15Note the shift by one due to the presence of the ĝl(1) factor.
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Review of Y0,0,N Firstly, we review the standard Miura transformation for Y0,0,N . Con-

sider a set of N ĝl(1) currents Jj(z) with OPEs

Jj(z)Jk(w) ∼ δjk
(z − w)2

(3.44)

and define operators Uk(z) via

(α0∂ + J1(z)) · · · (α0∂ + JN(z)) ≡
N∏
j=1

L(3)
j (z) =

N∑
k=0

Uk(z)(α0∂)N−k, (3.45)

where we have an identification α0 = h3. Operators Uk and their normal ordered products
and derivatives form a closed algebra under operator product expansion [100].

The general case One can extend the Miura transformation to the case where there are
nodes of different types. For that it is important to remember that we have three types of
nodes corresponding to three different free field representations of W1+∞ corresponding to
λ1 = 1, λ2 = 1 or λ3 = 1 (as well as their conjugates). The usual Miura transformation in
our conventions has all nodes of type 3 with λ3 = 1. We will see that the usual procedure
works even in the case of λ1 = 1 or λ2 = 1 but we have to replace the elementary factor

L(3)(z) ≡ α0∂ + J (3)(z) (3.46)

by a pseudo-differential operator with an infinite number of coefficients which are local
fields. This generalization is common in the context of integrable hierarchies of differential
equations (e.g. KdV or KP hierarchies), [101, 102].

Let us first consider what happens in the case that λ1 = 1. In this situation, there
exists a free field representation of W1+∞ associated to a single free boson φ(1), but in
the quadratic U -basis (which is itself associated to the third direction), there is an infinite
number of non-trivial Uj generators, all expressed in terms of φ(1). Choosing for convenience
the parametrization as in [98]

h1 = h

h2 = −1

h
(3.47)

h3 =
1

h
− h = α0

ψ0 = λ3 = N
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we need to require
1 = λ

(1)
1 , (3.48)

i.e.

N (1) = λ
(1)
3 = − h2

h2 − 1
= − h1

h1h2h3

. (3.49)

From the Miura transformation point of view, thisN (1) is the order of the pseudo-differential
operator corresponding to the φ(1) representation. In the following, it will be useful to
choose the normalization coefficient of the two-point function of the current J (1) ≡ ∂φ(1)

to be N (1),

J (1)(z)J (1)(w) ∼ N (1)

(z − w)2
. (3.50)

Having fixed all the parameters of algebra, we can now find the expressions for U
(1)
j (z)

fields in terms of J (1), requiring just the commutation relations spelled out in [5]. They
are uniquely determined up to the conjugation J (1) ↔ −J (1) symmetry. Fixing a positive
sign, the expressions for the first few fields are

U
(1)
1 = J (1)

U
(1)
2 =

(
2− 1

h2

)(
(J (1)J (1))

2
+
h∂J (1)

2

)
U

(1)
3 =

(
2− 1

h2

)(
3− 2

h2

)(
(J (1)(J (1)J (1)))

6
+
h(∂J (1)J (1))

2
+
h2∂2J (1)

6

)

U
(1)
4 =

(
2− 1

h2

)(
3− 2

h2

)(
4− 3

h2

)(
(J (1)(J (1)(J (1)J (1))))

24
+

+
h(∂J (1)(J (1)J (1)))

4
+
h2(∂J (1)∂J (1))

8
+
h2(∂2J (1)J (1))

6
+
h3∂3J (1)

24

)
(3.51)

The expressions for higher U
(1)
j fields are uniquely determined from the OPE of U

(1)
3 U

(1)
j−1.

But even the general pattern is not very difficult to understand: first of all, each U
(1)
j has

an overall multiplicative factor

j−1∏
k=1

[
1 + k

(
1− 1

h2

)]
=

j−1∏
k=1

(
1− k

N (1)

)
. (3.52)

Next, there is a sum of all dimension j operators that we can construct out of a free boson.
The power of h in each term counts the number of derivatives appearing in the operator and
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the combinatorial factors can be most easily seen using the operator-state correspondence:

U
(1)
1 → a−1

U
(1)
2 → a2

−1

2
+
ha−2

2

U
(1)
3 → a3

−1

6
+
ha−1a−2

2
+
h2a−3

3

U
(1)
4 → a4

−1

24
+
ha2
−1a−2

4
+
h2a2

−2

8
+
h2a−1a−3

3
+
h3a−4

4
(3.53)

These are exactly the coefficients appearing in Newton’s identities if we think of Uj to be the
homogeneous symmetric polynomials and aj to be the power sum symmetric polynomials.
One can thus also write a closed-form formula

U
(1)
j =

j−1∏
k=1

(
1− k

N (1)

) ∑
m1+2m2+...+jmj=j

j∏
k=1

1

mk!kmk

(
hk−1

(k − 1)!
∂k−1J (1)

)mk
(3.54)

where everything is normal ordered. The total Miura operator representing the φ(1) node
of the diagram (see figure 3.9) is thus given by the pseudo-differential operator

L(1)(z) ≡ (α0∂)
h1
h3 +

∞∑
j=1

U
(1)
j (z)(α0∂)

h1
h3
−j
. (3.55)

In the case of representation of type φ(2) the calculation is entirely analogous and in fact
we can just make a replacement h↔ − 1

h
. We require λ

(2)
2 = 1 and so in this case

N (2) = λ
(2)
3 =

1

h2 − 1
= − h2

h1h2h3

. (3.56)

The current is again normalized such that the quadratic pole of the J (2)J (2) OPE is equal
to this value of N (2). Choosing the sign of U

(2)
1 , all other U

(2)
j operators are uniquely

53



determined and we find

U
(2)
1 = J (2)

U
(2)
2 = (2− h2)

(
(J (2)J (2))

2
− ∂J (2)

2h

)
U

(2)
3 = (2− h2)(3− 2h2)

(
(J (2)(J (2)J (2)))

6
− (∂J (2)J (2))

2h
+
∂2J (2)

6h2

)

U
(2)
4 = (2− h2)(3− 2h2)(4− 3h2)

(
(J (2)(J (2)(J (2)J (2))))

24
−

−(∂J (2)(J (2)J (2)))

4h
+

(∂J (2)∂J (2))

8h2
+

(∂2J (2)J (2))

6h2
− ∂3J (2)

24h3

)
(3.57)

The formula for U
(2)
j is now

U
(2)
j =

j−1∏
k=1

(
1− k

N (2)

) ∑
m1+2m2+...+jmj=j

j∏
k=1

1

mk!kmk

(
(−1)k−1

(k − 1)!hk−1
∂k−1J (2)

)mk
(3.58)

and the Miura pseudo-differential operator representing a node of type φ(2) is

L(2)(z) ≡ (α0∂)
h2
h3 +

∞∑
j=1

U
(2)
j (z)(α0∂)

h2
h3
−j
. (3.59)

It has been later noticed in [37] that the above pseudo-differential operators have ac-
tually a simpler and uniform description in terms of the following operator

L(κ) = exp

[
− i

hκ
φ(κ)

]
(h3∂)

hκ
h3 exp

[
i

hκ
φ(κ)

]
, (3.60)

where the products are normally ordered and we have introduced auxiliary fields φκ with
a logarithmic OPE

φκ(z)φκ(w) ∼ − hκ
h1h2h3

log(z − w) (3.61)

such that we can identify J (κ) = ∂φ(κ).
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Figure 3.9: An example of the ordering of free bosons for Y3,1,4. The algebra
can be found by multiplying the Miura pseudo-differential operators in the order
L(1)

1 (z)L(1)
2 (z) . . .L(1)

7 (z)L(3)
8 (z) as shown in the figure. Alternatively, one can construct the

free field realization as an intersection of kernels of screening charges S
(1;1)
12 , S

(12)
23 , . . . S13

78

associated to the lines of the chain of free bosons.

We can use these newly constructed building blocks to find a free field representation
of any YN1,N2,N3 algebra: pick an arbitrary ordering of Nj bosons of type φ(j) as shown in
the figure 3.9 for a particular ordering of the Y3,1,4 algebra and multiply the corresponding

Miura operators L(κj)
j . Commuting all the derivatives to the right (recall that even for

non-integer powers of derivative the generalization of Leibniz rule still applies), we find in
the end a pseudo-differential operator of the form

L(z) = (h3∂)
N1h1+N2h2+N3h3

h3 +
∞∑
j=1

Uj(z)(h3∂)
N1h1+N2h2+N3h3

h3
−j

(3.62)

where Uj are certain normal ordered differential polynomials in the free boson fields. The
statement is that the fields Uj(z), their normal ordered products and derivatives form a
closed subalgebra of the algebra of N1 +N2 +N3 free bosons which represents YN1,N2,N3 in
terms of free bosons. Furthermore, OPEs of these Uj fields are still those of the quadratic
U -basis with structure constants given in [5].

3.2.6 Screening charges

To each ordering of Nκ free bosons φ
(κ)
i of type κ with the corresponding currents J

(κ)
i =

∂φ
(κ)
i normalized as

J
(κ1)
i1

(z)J
(κ2)
i2

(w) ∼ − hκ
h1h2h3

δκ1,κ2

(z − w)2
, (3.63)

we have the associated free field realization of the algebra YN1,N2,N3 . On the other hand,
the authors of [28, 29] construct a free field realization of the same algebra as a kernel of
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N1 + N2 + N3 − 1 screening charges acting on the tensor product of the current algebras
above. Let us define screening charges for each such ordering and check that they are of
the form of [29].

Consider a fixed ordering of free bosons such as the one in the figure 3.9. One associates
a screening charge to each neighboring free bosons (lines connecting two nodes of the chain).
If the two free bosons are of the same type, say κi = κi+1 = 3, the corresponding screening
current can be chosen to be either

S
(3;1)
i,i+1 =

∮
dz exp

[
−h1φ

(3)
i + h1φ

(3)
i+1

]
(3.64)

or

S
(3;2)
i,i+1 =

∮
dz exp

[
−h2φ

(3)
i + h2φ

(3)
i+1

]
. (3.65)

These two can be determined from the requirement that the zero mode of the exponential
vertex operator commutes with the free field realization of the spin one and the spin two
fields in the Virasoro algebra Y0,0,2. One gets similar expressions for the other three types
with the hi parameters permuted. To a pair of free bosons of different type (say ordering

φ
(3)
i × φ(2)

i+1), one associates instead the screening charge16

S
(32)
i,i+1 =

∮
dz exp

[
−h2φ

(3)
i + h3φ

(2)
i+1

]
(3.66)

and similarly for the other five combinations.

The screening charge Si,i+1 maps the vacuum representation of the product of the

current algebras generated by J
(κ)
i = ∂φ

(κ)
i to a module with the highest weight vector

ji,i+1(0)|0〉, where ji,i+1 is the screening current associated to the screening charge Si,i+1.
The algebra YN1,N2,N3 can be defined as an intersection of kernels of screening charges

YN1,N2,N3 =

N1+N2+N3−1⋂
i=1

kerSi,i+1. (3.67)

Consider now a triple of free bosons neighbouring in the chain and let us compute the
matrix of inner products of the corresponding two exponents of the screening currents with

16The commutation with the spin one and the spin two field gives two possible solutions as in the case
of the Virasoro algebra but only one is preserved by the requirement of commutativity with the spin three
generator.
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respect to the metric given by the normalization of two-point function

gjk = − hκj
h1h2h3

δjk (3.68)

We will see that the different choices of ordering and different choices of the screening
currents (3.64) and (3.65) lead to different matrices from [29].

If all the three free bosons are of the same type φ
(3)
1 × φ(3)

2 × φ(3)
3 , one can pick either

both screening charges to be of the same type (3.64) or (3.65) or one of the first type and
the second one of the second type. In these four cases, one gets respectively the following
two matrices

−h1

h2

(
2 −1
−1 2

)
, −h1

h2

(
2 −h2

h1

−h2

h1
2

)
, (3.69)

together with matrices with the parameters h1 ↔ h2 interchanged. These two matrices are
of the form 1 and 2 from (2.24) of [29].

If one of the three free bosons is of a different type than the other two, say 332, one has
two possible orderings. In the first case, φ

(3)
1 × φ(3)

2 × φ(2)
3 , one has again a choice between

the screening currents (3.64) and (3.65) leading to the following two overlap matrices(−2h1

h2
1

1 1

)
,

(−2h2

h1

h2

h1
h2

h1
1

)
(3.70)

that are of the form 4 and 3 of [29]. The last, symmetric ordering φ
(3)
1 × φ(2)

2 × φ(3)
3 gives

an overlap matrix of the form (
1 h3

h1
h3

h1
1

)
(3.71)

which is of the form 5. Finally, if all the bosons are of a different type, one gets the matrix
of overlaps (

1 1
1 1

)
. (3.72)

Comparing the free field realizations of Y0,0,2 and Y0,1,1 from the Miura transformation and
from the kernel of screening charges together with the triality symmetry permuting the
Y-algebra labels, one can see that the two free field realizations are the same.
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4. Webs

4.1 Modules

Before continuing with the discussion of VOAs associated to a general colored (p, q) web
let us pause and discuss the physics and the structure of degenerate modules of YN1,N2,N3 .

4.1.1 Type IIB perspective and BRST construction

The standard WN algebras have maximally degenerate modules Mλ,µ labelled by a pair
of dominant weights of sl(N). These modules are expected to arise in the gauge theory
construction from local operators at the corner which are attached to a boundary Wilson
line of weight λ along the NS5 boundary and a boundary ’t Hooft line of weight µ along
the D5 boundary. These two line defects are correspondingly exchanged by S-duality.

If we denote Wλ = Mλ,0 and Hµ = M0,µ, then the following facts hold true:

• The Wλ have the same fusion rules

Wλ ×Wλ′ ∼
∑
λ′′

cλ
′′

λ,λ′Wλ′′ (4.1)

as finite-dimensional sl(N) irreps. They have non-trivial braiding and fusion matrices
which are closely related to these of slΨ−N . Conformal blocks with Wλ insertions
satisfy BPZ differential equations.

• The Hµ also have the same fusion rules

Hµ ×Hµ′ ∼
∑
µ′′

cµ
′′

µ,µ′Hµ′′ (4.2)
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as finite-dimensional sl(N) irreps. They have non-trivial braiding and fusion matrices
which are closely related to these of sl(N)Ψ−1−N . Conformal blocks with Hµ insertions
satisfy BPZ differential equations

• The Wλ and Hµ vertex operators are almost mutually local. They are local if we
restricts the weights to those of GL-dual groups. The fuse in a single channel Mλ,µ.

We expect analogous statements for maximally degenerate modules of YN1,N2,N3 [Ψ],
involving local operators sitting at the end to three boundary lines, one for each component
of the gauge theory junction. These modules should thus carry three labels, permuted by
the S3 triality symmetry, corresponding to the possible labels of BPS line defects living on
the B̃(p,q) boundary conditions. It is known [47] that such line defects include analogues of
Wilson lines, labelled by data akin to dominant weights of gl(N1|N2), gl(N2|N3), gl(N3|N1)
respectively.

In particular, we expect the following to be true: if we denote Wλ, Hµ and Dσ the
modules associated to either type of boundary lines

• The Wλ should have the same fusion rules as finite-dimensional gl(N3|N1) irreps,
with appropriate non-trivial braiding and fusion matrices and BPZ-like differential
equations.

• The Hµ should have the same fusion rules as finite-dimensional gl(N2|N3) irreps,
with appropriate non-trivial braiding and fusion matrices and BPZ-like differential
equations.

• The Dσ should have the same fusion rules as finite-dimensional gl(N1|N2) irreps,
with appropriate non-trivial braiding and fusion matrices and BPZ-like differential
equations.

• The Wλ, Hµ and Dσ vertex operators should be mutually local and fuse together into
a single channel Mλ,µ,ν

In the BRST constructions for YN1,N2,N3 [Ψ], the data for gl(N3|N1) and gl(N3|N2) rep-
resentations appears rather naturally, as one may implement the BRST reduction starting
from Weyl modules of the current algebras built from irreducible representations of the
zero-mode algebra, up to subtleties in relating weights and representations for supergroups.

The data of gl(N2|N3) is much harder to uncover, though in principle it can be done
with the help of the gauge theory description in [47]. In general, the line defect along the D5
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Wµ

Hµ

Dµ
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N2

N3
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M 1
µ

M 3
µ

N1
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Figure 4.1: Modules Hµ,Wλ, Dσ associated to the three classes of boundary lines. We also
include the notation from [2] that relabelled M1

µ = Hµ,M
2
µ = Wµ,M

3
µ = Dµ in a triality

covariant way.

interface will map to some disorder local operator at the interface between Chern-Simons
theories.

It is straightforward to modify the vacuum character calculations in order to compute
the characters of degenerate modules of type W or D: essentially, one just inserts characters
of finite-dimensional irreducible representations in the contour integrals, with fugacities
associated to DS-reduced directions specialized to the appropriate powers of q.

In the following, we will illustrate the calculation on the example of M2
ν ⊗M3

µ modules
of Y0,N2,N3 [Ψ] algebras such that we do not have to take into account the complications
associated to representations of Lie superalgebras. These modules are labeled by tensor
representations of gl(N2) and gl(N3).

Representations of gl(N2) are labeled by a set of integers (µ1, µ2, . . . , µN2), where µ1 ≥
µ2 ≥ · · · ≥ µN2 (note that we do not restrict these to be non-negative and look at all the
irreducible representation one can get from the tensor product of the fundamental and the

anti-fundamental representation). Choosing a normalization of the ĝl(1) current such that

J(z)J(w) ∼ λ1 + λ2

(z − w)2
= −λ1λ2

λ3

1

(z − w)2
, (4.3)
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the charge of M3
µ and its conformal dimension are given by 1

j(M3
µ) =

M∑
j=1

µj, (4.4)

h(M3
µ) = − λ3

2λ1

M∑
j=1

µ2
j −

λ3

2λ2

M∑
j=1

(2j −M − 1)µj +
N

2

M∑
j=1

|µj|. (4.5)

The characters of M2
ν and M3

µ modules of Y0,N2,N3 [Ψ] can be calculated according to
[1, 2] in a similar way as the vacuum character. The only modification is to insert a
corresponding Schur polynomial sµ(xi) and sν(xi) into the formula, i.e. in the case of
N3 > N2 and M3

µ representation, the character is given by

χ0,N2,N3(M3
µ) = χWN3−N2

(q)

∮
dVN2χ

N2|0
N3−N2

2

(q, xi)sµ(xi). (4.6)

In the case of M2
ν modules, one needs to first perform the DS reduction by substituting

xj = q
1
2

(2j−N2−1) for j ≤ N3 −N2 and then insert into the integral

χ0,N2,N3(M2
ν ) = χWN3−N2

(q)

∮
dVN2χ

N2|0
N3−N2

2

(q, xi)sν

(
xj → q

1
2

(2j−N2−1), xi

)
. (4.7)

One can similarly calculate characters of modules with two asymptotics M2
µ ⊗M3

ν by first
doing the DS reduction substitution and then inserting into the integral formula both
characters.

For positive values of µj, these characters have a nice box-counting interpretation that
was discussed above. The conjugate representations have the sign and the order of µ’s
reversed and they have the same character and the same conformal dimension. Further-
more, if we split µ into positive and negative parts, µ = µ+ + µ−, we see that both the
gl(1) charge and the dimension are additive under this splitting. As discussed in [33], the
general character have also a box-counting interpretation coming from shifts of µi charges.

There is also an obvious extension of the 3d partition counting problem we associated
to the vacuum characters of YN1,N2,N3 [Ψ]: one may consider 3d partitions with semi-infinite
cylindrical ends modeled on 2d partitions λ, µ, ν, as in the definition of the topological
string vertex [72].

1Checks of these formulas for YN,0,0, Y0,1,0, Y0,1,1, Y0,2,1, Y0,1,2 can be found in the appendix of [2].
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The crucial observation is that the restriction for the 3d partition to lie in the region
RN1,N2,N3 forces λ, µ, ν to lie respectively in RN2,N3 , RN3,N1 and RN1,N2 . Thus λ, µ, ν have
precisely the same form as the data labeling our degenerate modules Mλ,µ,ν = Wµ×Hλ×Dν .

We are thus lead to the conjecture that the counting of 3d partitions with semi-infinite
ends restricted to RN1,N2,N3 computes the character of Mλ,µ,ν for YN1,N2,N3 for λ, µ, ν co-
variant representations (such that appears in a tensor product of the fundamental repre-
sentation) of the corresponding Lie super algebras. For a general tensor representation
(obtained from tensor products of both the fundamental and the anti-fundamental repre-
sentation), a shifting is required as discussed in [33]. Further investigation of the relation
with the representation theory of Lie superalgebras is desirable.

4.1.2 Type IIA perspective and truncations of W1+∞

The above conjecture identifies the characters of degenerate modules of YN1,N2,N3 with
functions counting box configuration with prescribed asymptotics. This partition func-
tions naturally appear in the geometric context from counting D4-D0 bound states in C3

in the presence of extra D2 branes supported on the lines Cx1 ,Cx2 ,Cx3 [52, 53, 51] or
its unrestricted analogue leading to the topological vertex [49, 50, 72]. Indeed the line
operators supported at the interfaces map to D2-branes with correct support under the
duality of [48]. Moreover, it is well-known that the affine Yangian of gl(1) admits modules
parametrized by three assymptotic Young tableaux (see for example [98]) and it is natural
to expect that the truncation condition simply restricts the possible Young tableaux.

In the special case that the three asymptotic representations are covariant representa-
tions (i.e. contained in the tensor power of the fundamental representation), we can use
the box counting interpretation of the topological vertex to find the conformal dimensions,
other highest weight charges and characters [72, 103, 80, 98]. In this case, the represen-
tations (λ, µ, ν) can be labeled by three Young diagrams. The states in the module of
YN1,N2,N3 are then in one-to-one correspondence with the plane partitions which have non-
trivial asymptotics given by the Young diagrams (λ, µ, ν) and further restricted such that
the box at coordinates (N1 + 1, N2 + 1, N3 + 1) is not present.

The highest weight state corresponds to the configuration with minimal (but infinite)
number of boxes compatible with the asymptotics. The states at level l are in one-to-
one correspondence with plane partitions obtained by adding l boxes to this minimal
configuration (always in a way such that the resulting configuration of boxes is a plane
partition). This identification allows us to write down the character purely in terms of a
combinatorial counting. The conformal dimension of the module can be similarly computed
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[98] by first computing the generating function of the conserved charges of YN1,N2,N3 and
extracting the eigenvalue of the L0 generator from it. The result for the representation
with an asymptotic Young diagram in the third direction is2

j(M3
µ) =

∑
j

µj (4.8)

h(M3
µ) = − λ3

2λ1

∑
j

µ2
j −

λ3

2λ2

∑
j

(2j − 1)µj +
λ3

2

∑
j

µj

= − λ3

2λ1

∑
j

µ2
j −

λ3

2λ2

∑
j

(µT )2
j +

λ3

2

∑
j

µj. (4.9)

In particular, the conformal dimension of the minimal representation is given by

h(�3) =
1 + λ3

2
(4.10)

irrespectively of the truncation that we are considering. Its complex conjugate representa-

tion has an opposite ĝl(1) charge but the same conformal dimension. By fusing these, we
can in principle obtain an arbitrary maximally degenerate representation of the type we
need for the gluing procedure.

The main disadvantage of the approach using box counting is that we have only access to
representations whose asymptotics are those obtained from the fundamental representation
(i.e. covariant representations) and it is not clear how to generalize these results directly to
the case of fusions of both fundamental and anti-fundamental representations. The second
disadvantage is the lack of useful closed-form formulas for the characters of the modules,
but see [28] for the case where one of the parameters (N1, N2, N3) vanishes.

4.1.3 BRST construction

4.1.4 Free field realization

Vertex operators Above, we have identified the algebra YN1,N2,N3 as a subalgebra of the
tensor product of N1 +N2 +N3 Heisenberg algebras. Here, we will discuss how to realize
degenerate modules as zero modes of exponential vertex operators of the form

|q1, . . . , qN1+N2+N3〉 = exp

(
N1+N2+N3∑

j=1

qjφj

)
|0〉. (4.11)

2The normalization of ĝl(1) current is discussed later.
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acting on the vacuum state |0〉. If we act on this state with the zero mode of current
Jj = ∂φj, we find

Jj,0|q1, . . . , qN〉 = gjkq
k|q1, . . . , qN〉 ≡ qj|q1, . . . , qN〉 (4.12)

where gjk is the metric extracted from the two-point functions of the currents,

Jj(z)Jk(w) ∼ gjk
(z − w)2

∼ − hκ(j)

h1h2h3

δjk
(z − w)2

. (4.13)

Our conventions for charges are such that qj are the charges that appear in the exponents
of vertex operators while qj are the coefficients of the first order poles of OPE with currents
Jj.

For example, the zero more of the ĝl(1) current

U1(z) =

N1+N2+N3∑
j=1

Jj(z) (4.14)

acts on the highest weight state by

U1,0|q1, . . . , qN1+N2+N3〉 =

(∑
j=1

qj

)
|q1, . . . , qN1+N2+N3〉 (4.15)

and analogously for the stress-energy tensor

T = W2 = −1

2

∑
j

h1h2h3

hκj
(JjJj)(z) +

1

2

∑
j<k

hκk∂Jj −
1

2

∑
j>k

hκk∂Jj (4.16)

and other generators of the algebra. Using such expressions and the knowledge of the Wi,0

eigenvalues of the highest weight states that can be determined from box counting in the
affine Yangian language [98] or the BRST calculation of [1], one can in principle identify
values of qi for each degenerate module.

Such an identification is not unique and more representatives of the same module might
exist. Even more representative exist if we look at free-field realizations in terms of the
free-boson descendants. Let us briefly discuss the situation for the fundamental and the
anti-fundamental representation of the algebra YN1,N2,0. For more details see section 5.4.

As discussed above, there exist (N1 + N2)! free field realizations of any YN1,N2,0[Ψ]
algebra associated to different orderings of the free bosons. It turns that for a given
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ordering, there exist at most (N1 +N2)! free field realization of both the fundamental and
the anti-fundamental representation, but in generally not all of them.

It might be puzzling that we find more than one free field realization of the same
YN1,N2,0 module since it is not clear that all of these have the correct fusion and braiding
properties and lead equivalent OPEs of degenerate modules. We expect the analysis of
[87, 78] to lead to a resolution of the puzzle. To determine the braiding and the fusion,
one needs to determine three-point functions of all the degenerate modules. Choosing a
particular free-field realization of degenerate modules within a given three-point function
leads generically to a zero value if we do not insert a correct number of screening charges.
After such an insertion, we expect (and check in a very limited number of examples) that
all the free field realizations lead to zero value or equal fusion and braiding properties.
Note also that the free field realization gives an explicit construction of all the conformal
blocks in terms contour integrals of meromorphic functions with possible branch-cuts.

Simple realization Before discussing the fusion and braiding and checking the indepen-
dence on the choice of the free field representative, let us mention one simple realization
of the fundamental and the anti-fundamental representation that exists for every free field
realization.

Based on examples, we conjecture that one can realize the fundamental representation
in the first direction as a descendant of the exponential exp[h3φ

(2)
i ], where φ

(2)
i is the left-

most free boson of the second type in a given ordering. The level of the descendant equals
the number of free bosons of the first type on the left of such φ

(2)
i . The anti-fundamental

field is given by a descendant of exp[−h3φ
(2)
j ], where φ

(2)
j is the right-most free boson of

the second type and the level is given by the number of free bosons of the first type on the
right of φ

(2)
j . Similar simple realizations can be found also for representations in the second

and third direction: a simple box in the second direction is associated to the left-most free
boson of the first or third type and the level is given by the number of bosons of the second
type on the left of it. For N3 = 0 the box and antibox in the third direction correspond
to the first and last boson and are always on level 0 (there are no obstructions since we
have no bosons of the third type). The charge q appearing in the exponential is given by
hσ for box and −hσ for the anti-box and σ is such that the triple (σ, τ, π) in hσ, φ

(τ) and
the direction π is a permutation of (123).
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Y0,0,2 example Let us start by an illustration how things work in the case of the Virasoro

algebra in ordering L(3)
1 L(3)

2 . The two available screening currents are

j1 = exp
[
−h1

(
φ

(3)
1 − φ(3)

2

)]
j2 = exp

[
−h2

(
φ

(3)
1 − φ(3)

2

)]
(4.17)

The two realizations of the identity, the fundamental representation and the anti-fundamental
representation in the first and the second direction are

M1
1

= 1, M2
1

= exp
[
h3

(
φ

(3)
1 − φ(3)

2

)]
,

M1
�1

= exp
[
h2φ

(3)
1

]
, M2

�1
= exp

[
h2φ

(3)
2 + h3

(
φ

(3)
1 − φ(3)

2

)]
,

M1
�̄1

= exp
[
−h2φ

(3)
2

]
, M2

�̄1
= exp

[
−h2φ

(3)
1 + h3

(
φ

(3)
1 − φ(3)

2

)]
, (4.18)

M1
�2

= exp
[
h1φ

(3)
1

]
, M2

�2
= exp

[
h1φ

(3)
2 + h3

(
φ

(3)
1 − φ(3)

2

)]
,

M1
�̄2

= exp
[
−h1φ

(3)
2

]
, M2

�̄2
= exp

[
−h1φ

(3)
1 + h3

(
φ

(3)
1 − φ(3)

2

)]
.

We see that there indeed exists the simple free field realization of the identity, the funda-
mental and the anti-fundamental representation.

Let us now check that two-point functions of different realizations of the identity and
the two-point function of the fundamental with the anti-fundamental field are independent
of the choice of the free field realization. To check all the three-point functions, one would
have to relate normalizations of different realizations of all the degenerate modules and
then compare all the three point funcions. Because we do not aim to do the comparison
here, we disregard such normalizations and only check the braiding properties.

The charge of the identity realized by M2
1

cannot be subtracted by insertions of the
screening charges and thus vanishes. The true identity 1 is the only realization of the
vacuum module giving a non-zero one-point function.

The only combination that gives a non-vanishing two-point function of the fundamental
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and the anti-fundamental representation comes from the first realizations and give

〈M1
�2

(z)M1
�̄2

(w)〉Y0,0,2 ∝
∮
z

dz̃〈j1(z̃)M1
�2

(z)M1
�̄2

(w)〉

∝
∮
z

dz̃ (z̃ − z)
h1
h2 (z̃ − w)

h1
h2 ∝

∮
0

dz̃ z̃
h1
h2 (z̃ + z − w)

h1
h2

∝ (z − w)
2
h1
h2

∮
0

dz̃

(
z̃

w − z

)h1
h2

(
1− z̃

w − z

)h1
h2

(4.19)

∝ (z − w)
2
h1
h2

+1
,

where 〈. . . 〉YN1,N2,N3
denotes the correlation function with possible insertions of the screen-

ing charges of YN1,N2,N3 that cancel the charge of the exponential factors. The exponent is
exactly (up to the minus sign) the sum of conformal dimensions of the fundamental and
the anti-fundamental representation which is the expected z-dependence of the two-point
function.

Y1,1,0 example The second example is the first non-trivial case that contains free field
realizations of degenerate modules at higher levels and at the same time there is a mismatch
between the number of free field realizations of the fundamental and the anti-fundamental
representation. One gets the following realizations of the identity, the fundamental and
the anti-fundamental field in the first and second direction for the ordering φ

(1)
1 × φ(2)

2 of
the free bosons

M1
1

= 1, M2
1

= exp
[
h2φ

(1)
1 − h1φ

(2)
2

]
M1

�1
= exp

[
h2φ

(1)
1 + (h3 − h1)φ

(2)
2

]
, M2

�1
= (h2J

(1)
1 − h1J

(2)
2 ) exp

[
h3φ

(2)
2

]
,

M�̄1
= exp

[
−h3φ

(2)
2

]
, (4.20)

M�2 = exp
[
h3φ

(1)
1

]
,

M1
�̄2

= exp
[
(h2 − h3)φ

(1)
1 − h1φ

(2)
2

]
, M2

�̄2
= (h2J

(1)
1 − h1J

(2)
2 ) exp

[
−h3φ

(1)
1

]
.

and the following screening current

j = exp
[
−h2φ

(1)
1 + h1φ

(2)
2

]
. (4.21)

Note that there is only a single realization of the fundamental field and one of the realiza-
tions (the simple one) of the anti-box is at level one.
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Let us first check that one-point function of the identity realized as M2
1

equals the
vacuum amplitude〈

M2
1
(z)
〉
Y0,1,1

∝
∮
z

dz̃ 〈j(z̃)M2
1
(z)〉 ∝

∮
z

dz̃ (z̃ − z)
h2
h3

+
h1
h3 ∝ 1. (4.22)

Similarly for the two-point function with two contour integrations, one gets〈
M2

1
(z)M2

1
(w)

〉
Y0,1,1

∝
∮
z

dz̃2

∮
w

dz̃1〈j(z̃1)j(z̃2)M2
1
(z)M2

1
(w)〉

∝
∮
z

dz̃2

∮
w

dz̃1
(z̃1 − z̃2)(z − w)

(z̃1 − z)(z̃1 − w)(z̃2 − z)(z̃2 − w)

∝
∮
z

dz̃2
(w − z̃2)

(z̃2 − z)(z̃2 − w)
∝ 1. (4.23)

Let us now show that the two-point function of both realizations of the anti-fundamental
representation with the fundamental representations are also equal

〈M1
�1

(z)M1
�̄1

(w)〉Y0,1,1 ∝
∮
z

dz̃ 〈j(z̃)M1
�1

(z)M�̄1
(w)〉 (4.24)

∝
∮
z

dz̃ (z̃ − z)−2(z̃ − w)(z − w)
h1
h3
−1

= (z − w)
h3
h1
−1
.

One gets the same expression from the other realization〈
M2

�1
(z)M�̄1

(w)
〉
Y0,1,1

∝
〈
J

(2)
2 exp

[
h3φ

(2)
2

]
(z) exp

[
−h3φ

(2)
1

]
(w)
〉

∝ (z − w)
h1
h3
−1
, (4.25)

where the −1 factor comes from the contraction with J
(2)
2 .

4.2 Motivation for gluing

4.2.1 Type IIB perspective

It is natural to consider gauge theory configurations involving a more intricate junctions
involving several semi-infinite interfaces converging to a single two-plane. It is also natural
to consider intricate webs, involving finite interface segments as well as semi-infinite ones.
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Web configurations would break scale invariance. In the IR, they would approach a single
junction.

Conversely, one may consider webs with several simpler junction as a regularization of
an intricate junction. If all junctions are dual to our basic Y-junctions, this may become
a computational tool to determine the VOAs at generic junctions.

There is a precedent to this: complicated half-BPS interfaces in N = 4 SYM can often
be decomposed as a sequence of simpler interfaces, with a smooth limit sending to zero
the relative distances between the interfaces. This is an important computational tool, as
it allows one to apply S-duality transformations to well-understood individual pieces and
then assemble them to the S-dual of the original, intricate interface.

A concrete example could be a Nahm pole associated to a generic su(2) embedding
ρ, realized as a sequence of individual simple Nahm pole interfaces. This is a smooth
resolution, as long as the individual interfaces are ordered in a specific way [62]. The
S-dual configuration is a sequence of bi-fundamental interfaces building up a complicated
three-dimensional interface gauge theory with a good IR limit [63].

One may want to follow that example for junctions, say to decompose a Y-junction of
complicated interfaces into a web of simpler Y-junctions. This idea raises a variety of hard
questions, starting from figuring out criteria for a smooth IR limit of an interface web.
Furthermore, the same configuration may be the limit of many different inequivalent webs
an issue that will be discussed in the section 5.2.

In general, local operators at the final junction may arise either from local operators at
each elementary junction in the web or from extended operators, such as a finite line defect
segment joining two consecutive junctions. Thus we may hope that the final VOA will be
an extension of the product of the VOA’s at the vertices of the web, including products of
degenerate modules associate to the finite line defect segment.

This picture is supported by the observation that although the dimensions of degenerate
modules are not integral, the sum of the dimensions of the local operators at the two ends
of a finite line defect segment will be integral. For example, a finite Wilson line Wµ on
a finite segment of NS5 interface supports two local operators at the endpoints which
have dimensions which differ by integral amounts from ∆µ[Ψ] and ∆µ[−Ψ] = −∆µ[Ψ]

respectively, where ∆µ[Ψ] is the dimension of the µ vertex operator in the ̂gl(N3|N1)Ψ

Kac-Moody algebra. This is not quite a full definition of the final interface VOA, but it
strongly restricts its form.3

3It may be possible to formalize this procedure as a sort of tensor product of VOAs over a common
braided monoidal category.

69



A striking observation is the formal resemblance between this idea and the way the
topological vertex is used to assemble the topological string partition function of general
toric Calabi-Yau, by summing up over a choice of partition µ for each internal leg of the
toric diagram [72] or its D4-D2-D0 brane-counting analogue [49, 52, 51].

The simplest possible situation for us is a web which can be interpreted as a collection of
D5-branes ending on a NS5-brane: a sequence of (qi, 1) fivebrane segments with Y-junctions
to semi-infinite D5-branes coming from the left or the right. Such a configuration can be
lifted directly to a sequence of interfaces in 3d Chern-Simons theory. If the 3d interfaces
have a good collision limit, one can derive directly the junction VOA. This situation also
allows one to start probing questions about the extension structure of the final VOA and
the equivalence between different web resolutions of the same interface that leads to the
notion of the stable equivalence of VOAs discussed further in the section 5.2.

The simplest possibility we can discuss is that of an infinite D5 interface crossing an
infinite NS5 interface. The four-way junction has two obvious resolutions, akin to the toric
diagram of the conifold, involving either a (1, 1) or a (1,−1) finite interface segment.

← →
N1

N2 N3

N4N1

N2
N3

N4 N1

N2 N3

N4

Figure 4.2: Two possible resolutions of the configuration of D5-brane (horizontal) crossing
NS5-brane (vertical). First resolution includes a finite segment of (1, 1)-brane whereas the
second resolution includes a (1,−1)-brane segment. N1, N2, n3, N4 D3-branes are attached
to fivebranes leading to webs of interfaces between U(N1), U(N2), U(N3), U(N4) theories.

We can denote the choices of gauge group in the four quadrants as N1, N2, N3, N4,
counterclockwise from the top left quadrant. For some values of N1, N2, N3, N4, the two
resolutions produce obviously the same 3d interface in the scaling limit and then the same
VOA. For example, if N1 = N2 and N3 = N4 then the CS theory interface results from
the collision of interfaces which support some 2d matter coupled to the U(N3|N1) CS
gauge fields. The two resolutions give the same two interfaces in different order, and the
collision/scaling limit is obviously the same: an interface which supports both 2d matter
fields at the same location. For general values of N1 = N2 and N3 = N4 the VOAs seem
to differ by contributions of free fields.
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(0, 1)(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 0)

(−1, 0)

(2, 1)

N1

N2

N3

N4

N1

N2

N3

N4

(0, 1)

(1, 0)
N1

N2

N3

(1, 1)

Figure 4.3: Toric diagram associated to C3 (left), O(−1) ⊕ O(−1) → CP
1 (middle) and

O(−2)⊕OCP1 (right). The lines show loci where (p, q)-cycles of the torus T 2 degenerate.

4.2.2 Type IIA perspective

The example of the simple trivalent junction associated to C3 has a natural generalization
for an arbitrary toric Calabi-Yau 3-fold given by a toric diagram specifying loci where
the torus cycles degenerate. The two simplest examples are shown in the figure 4.3 and
correspond to the bundles O(−1)⊕O(−1)→ CP

1 and O(−2)⊕OCP1 respectively. The
extensions described above have now different interpretation. Note that both examples
above contain a compact two-cycle CP1 that is fixed under the toric action. One can then
treat D2-branes wrapping compact two-cycles as dynamical objects. Moreover, there are
two points (the south and the north pole of CP1) that are fixed under the toric action.
Assuming that the vertex operator algebra have an origin from the algebra of BPS states
associated to such brane configurations, one can expect that a general bound state of D2-
branes dressed by D0-branes located at the two fixed points are going to play a role. This
resembles the type IIB configuration with D2-branes (associated to finite internal lines of
the web diagram) corresponding to the highest weight vectors of the added bi-modules and
dressing by D0-branes corresponding to a generation of the descendants. This picture is
consistent at the level of characters, where one can argue that the gluing prescription for
VOAs agrees with the one of [49, 52, 51].

Moreover, one can also expect that both the free-field realization construction and
the truncation picture generalizes to the glued algebras. In particular the BPS algebra
(cohomological Hall algebra) associated to the given toric three-fold is independent of the
choice of the divisor. Based on the analysis of the vacuum character of the glued algebras,
we can conjecture that there exists a Drinfeld double of the BPS algebra at least in the
examples 4.3 and they can be identified with shifted affine Yangians of gl(1|1) and gl(2)
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respectively. Shifts are determined by the intersection number of the corresponding divisor
D with the CP1 associated to the internal line. In particular for the last two examples
from figure 4.3, we expect shift

#(D ∩CP1) = N2 +N4 −N1 −N3, #(D ∩CP1) = N2 +N4 − 2N3, (4.26)

where the divisors are

N2(Fiber over the north pole of CP1) +N4(Fiber over the south pole of CP1)

+N1(O(−1)1 → CP
1) +N3(O(−1)2 → CP

1) (4.27)

in the case O(−1)⊕O(−1) (middle) and analogously for the case O(−2)⊕O (right)

N2(Fiber over the north pole of CP1) +N4(Fiber over the south pole of CP1)

+N1(O(−2)→ CP
1) +N3(O → CP

1). (4.28)

Similarly, one can consider (p, q)-webs of n D5-branes ending from the left and m D5-
branes ending from the right on a sequence of (n, 1)-branes for varying integer n such that
the (p, q) charges are conserved at each vertex. These configurations are expected to lead to

shifted Yangians of ̂gl(n|m) with shifts determined by the intersection numbers of D with
various CP1’s associated to internal lines. The Yangians associated to more complicated
web-diagrams are highly unexplored.

Both Yangians enjoy a co-product structure and the brane-separation argument holds
also in this case. This suggests that the free-field realization should also admit a general-
ization in this case. On the other hand, many technical difficulties appear. For example,
we do not expect that Heisenberg algebras themselves are sufficient in this case. As we
will see, particular lattice extensions by exponential vertex operators seem to be required.
Also, it is not clear what is the role of screening generators and different realization of the
bi-fundamental fields. Further investigation of these issues is needed.

4.3 BRST construction

In some cases, one can give a BRST definition of the glued algebra. Gluing construction
can then shed new light on the structure of the algebras obtained by such reductions.
Configurations we discuss in this section are associated to diagrams with D5-branes ending
from both left and right on a linear chain of (n, 1) branes. The most general configuration
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that we will be able to give a BRST definition is such that the diagram can be cut into two
halves that satisfy the following condition: The number of D3-branes is non-increasing if
we follow the upper part of the diagram from the top to the bottom and the number of
D3-branes is non-increasing if we follow the lower part of the diagram from the bottom up.

(0, 1)

(1, 0)

(p, p+ 1)

(1− p,−p)

p = 1

(0, 1)

p = −1 p = 0

(0, 1)

(1, 0)

(1, 2)

(0,−1)(0, 1)

(1, 0)

(0, 1)

(1, 0)

(1, 0)

(−1, 0)

(2, 1)

N1

N2

N3

N4

N1

N2

N3

N4

N1

N2

N3

N4

N2

N3

N4N1

Figure 4.4: Configurations containing a simple finite leg segment. The p = ±1 cases are
related by S-duality and it acts within the family of p = 0 algebras.

Let us motivate the BRST construction. We expect that a proper justification along
these lines can be done analogously to [104, 43, 46, 47]. In the Kapustin-Witten twisted
theory, the path integral in this configuration localizes to the path integral of the complex-
ified CS theory supported at (n, 1) branes connected by a nontrivial interface descending
from D3-branes ending on D5-branes. In the IR, the finite internal fivebrane segments
shrink and we can view the configuration as a single interface between the upper and the
lower CS theory. The half-BPS boundary conditions in the N = 4 super Yang-Mills theory
descending from D3-branes ending on fivebranes were analyzed in [62]. These boundary
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conditions can be translated to the boundary conditions of the bosonic blocks of the com-
plexified super Chern-Simons theory. The boundary condition on the off-diagonal blocks
(descending from boundary conditions on the 3d bifundamental hypermultiplets supported
at the (n, 1) interface) requires some guesswork and will be discussed later. We conjecture
the corresponding VOA to be a BRST reduction of the super Kac-Moody algebra induced
at the interface from the upper and lower CS theories by a BRST charge implementing the
boundary conditions.

One can see that requiring a single internal edge (or equivalently two vertices), only
the configurations from the figure 4.4 appear. Note that the S-duality action maps the
families p = −1 ↔ p = 1. We give a BRST definition for the p = −1 case. The p = 1
algebras can be identified with those by S-duality. On the other hand, p = 0 example
is self-dual under the S-duality action and we expect the corresponding algebras to have
dual BRST descriptions in general. This section gives a BRST definition of almost all
algebras associated to diagrams with these configurations. The only exceptions are the
configurations for p = 0 with D3-branes satisfying the following four conditions N1 >
N2, N3 > N4, N3 > N2, N1 > N4.

4.3.1 Algebras of type 1|1 (resolved conifold diagram)

N4

N3

N1
N2

(1, 0)

(1, 0)

(0, 1)

(0, 1)

In this section we want to discuss the junction of two Y-
algebras that corresponds to the resolved conifold diagram
as in the figure on the left. We first introduce a convenient
notation W1|1

N1,N̄2,N3,N̄4
[Ψ] for these algebras. The label W1|1

refers to algebras associated to a linear chain of (n, 1) five-
branes to which one D5-brane is attached from the left and
the other one is attached from the right. Furthermore, we
overline the numbers N̄2 and N̄4 of D3-branes ending on the
(n, 1)-branes from the left and we leave N1 and N2 for the

D3-branes ending from the right. This labeling will be used also for more complicated
diagrams with a linear chain.

From the gluing point of view the algebra is a conformal extension of

W1|1
N1,N̄2,N3,N̄4

[Ψ] ⊃ YN2,N3,N1 [Ψ]× YN3,N2,N4 [Ψ] (4.29)

by bimodules labeled by representations of gl(N3|N2). It turns out that the conformal
weight of the fundamental and the anti-fundamental bi-module equals a half-integral num-
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ber given by

h(�) = 1 + ρ = 1 +
N1 +N4 −N2 −N3

2
(4.30)

that is the level at which the first field needs to be added. Moreover, at the level of
characters, the BRST construction result must agree with the gluing proposal

χ[W1|1
N1,N̄2,N3,N̄4

] =
∑
µ

χ[YN2,N3,N1 [Ψ]](M3
µ) χ[YN3,N2,N4 [Ψ]](M3

µ). (4.31)

BRST construction In the Kapustin-Witten twisted theory, the path integral of the
configuration again localizes to the path integral of the complexified U(N1|N2)Ψ and
U(N3|N4)Ψ Chern-Simons theories connected by a nontrivial boundary condition that is
a combination of oper boundary condition and continuity condition. The BRST defini-
tion of the VOAs is then a reduction that implements the boundary condition on the two
̂gl(N1|N2)Ψ and ̂gl(N3|N4)−Ψ Kac-Moody factors coming from the restriction of the gauge

fields of the upper and lower CS theory to the interface.

Implementing the constraints coming from the boundary conditions for N1 > N3 and
N2 > N3 by a BRST reduction, one expects the final VOA to be a combination of the

Drinfeld-Sokolov reduction of ̂gl(N1|N2)Ψ with respect to the principal sl(2) embedding
inside the (N1−N3)×(N1−N3) block in the gl(N1) bosonic part of gl(N1|N2), the Drinfeld-
Sokolov reduction with respect to the principal embedding in the (N2−N4)×(N2−N4) block

in the other gl(N2) bosonic part and the coset with respect to the remaining ̂gl(M |N)ψ
Kac-Moody algebra. In analogy with the construction of [1], one writes for such a combined
BRST reduction

W1|1
N1,N̄2,N3,N̄4

[Ψ] =
DSN2−N4

[
DSN1−N3 [ ̂gl(N1|N2)Ψ]

]
̂gl(N3|N4)Ψ

. (4.32)

In expressions of this form, we need to be careful what we mean by a sequence of
Drinfeld-Sokolov reductions. There are two natural definitions. The first natural choice
would be to pick a grading associated to the sum of the Cartan elements of the two sl2
embeddings and constrain the fields with positive weight with respect to this combined
element as in the case of the standard DS-reduction. We can see that this choice would be
symmetric with respect to both trivalent junctions of the diagram. This would not match
the predictions from the gluing suggesting that this is not the right thing to do. We expect
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the symmetric variant to be related to the unresolved configuration. In particular, note
that the Z2 × Z2 symmetry of the resolved conifold diagram get enhanced to S4 that is
consistent with the S4 symmetry of the central charge derived from the BRST construction.
We leave details for the future.

The other possibility is to slightly modify the standard construction by doing the re-
duction in two steps. First, we need to constrain the components with positive weight
with respect to the first embedding associated to the gl(N1 − N3) block (DS-reduction
associated to the upper vertex as in the case of Y-algberas). Classically (and at the level

of characters), this first constraint decomposes ̂gl(N1|N2)Ψ fields as

DSN1−N3 : ̂gl(N1|N2)Ψ → WN1−N3 × ̂gl(N3|N2)Ψ−1 × S
N3|N1
N1−N3

2

(4.33)

where WN1−N3 denotes the fields with the spin content of the WN1−N3 × ĝl(1) algebra and

SN3|N2
N1−N3

2

a system of N3 symplectic bosons and N2 fermions with the conformal dimension

N1−N3+1
2

. The first reduction produces an algebra containing the ̂gl(N3|N2)Ψ−1 Kac-Moody

algebra as a subalgebra coming from the the ̂gl(K|L)Ψ currents modified by off-diagonal
ghosts. In the second step, one needs to constrain the fields of the Kac-Moody algebra
̂gl(N3|N2)Ψ−1 with shifted level by setting to zero fields with positive weight4 with respect

to the Cartan element of the sl2 embedding associated to the second vertex. The algebra
decomposes classically (at the level of characters) as

DSN2−N4 : ̂gl(N3|N2)Ψ−1 → WN2−N4 × ̂gl(N3|N4)Ψ × S
N3|N4
n2−N4

2

(4.34)

where SN3|N4
N2−N3

2

now contains N3 fermionic and N4 bosonic generators that refers to the fact

that corresponding D5-brane ends from the opposite direction. The SN3|N1
N1−N3

2

fields from the

first step are left unconstrained but the modification term that needs to be added to the
stress-energy tensor in the second step splits them into fields

DSN2−N4 : SN3|N1
N1−N3

2

→ SN3|N4
N1−N3

2

×
ρ+N2−N4− 1

2∏
i=ρ+ 1

2

Fi (4.35)

where N2 −N4 components were split into fermionic fields Fi with dimensions

ρ+ 1, ρ+ 2, . . . , ρ+ L−N. (4.36)

4Remember that only half of the fields with weight 1
2 need to be constrained as in the case of Y-algebras.
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In the case when DS-reduction is with respect to a one dimensional block (i.e. N1−N3 =
1 or N2 − N4 = 1), no constraints need to be imposed remembering that fields from the
off-diagonal block of the first reduction are not constrained in the second step. Similarly
if N1 − N3 = 0 or N2 − N4 = 0 vanishes, instead of constraining the fields, one needs

to introduce extra SN3|N2 or SN3|N4
fields into the system, similarly as in the case of the

trivalent vertex and use currents modified by bilinears in these extra fields in the BRST
reductions of the following steps.

After the two DS-reductions, the algebra still contains a ̂gl(N3|N4)Ψ factor as a sub-
algebra and one should take a coset with respect to this factor. By coset, we mean an

equivariant BRST reduction with respect to the BRST charge that glues this ̂gl(N3|N4)Ψ

subalgebra with the ̂gl(N3|N4)−Ψ algebra induced from the bottom Chern-Simons theory.
Note that the shifted levels of the two factors are opposite which is a necessary condition
for the BRST charge to be nilpotent.

An analogous definition of the algebra can be given in the case N3 > N1 and N4 > N2

with N1 ↔ N3, N2 ↔ N4 and the two DS-reductions interchanged (this correspond to
rotation of the diagram by 180◦).

We can also define a similar reduction for the case when the number of D3-branes
decreases from the top and from the bottom until the two series of D3-brane numbers
meet. In the case of the resolved conifold diagram, this corresponds to N1 > N3 and
N4 > N2. One can then read the boundary conditions from both sides, show that the
resulting algebras contain two Kac-Moody algebras of opposite level and then equivariantly
glue these factors. The resulting algebra is the BRST reduction of the system

DSN1−N3 [ ̂gl(N1|N2)]×DSN4−N2 [ ̂gl(N3|N4)−Ψ]× gh (4.37)

that glues the two ̂gl(N3|N2)Ψ−1 × ̂gl(N3|N2)−Ψ+1 subalgebras. As usual, gh in the ex-
pression above denotes the ghosts needed to implement the gluing. Note that combining
the fields in the fundamental representation of the remaining gl(N3|N2) factors coming
from the two DS-reduction into the gl(N3|N2) invariant combinations gives rise to fields
of dimensions starting with ρ + 1. This is consistent with the gluing picture and BRST
reduction above although the origin of the fields is slightly different.
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Central charge and characters Having defined the algebras by a BRST reduction,
one can calculate the central charge straightforwardly. The result is5

c
[
W1|1

N1,N̄2,N3,N̄4
[Ψ]
]

= Ψ
(
(L−N4)((L−N4)2 − 1)− (N1 −M)((N1 −M)2 − 1)

)
+

1

Ψ

(
(N2 −N1)((N2 −N1)2 − 1)− (N4 −N3)((N4 −N3)2 − 1)

)
+(N2 −N4 +N3 −N1)(N2

2 +N2N4 − 4N2N3 +N2N1 − 2N2
4

+N4N3 + 2N4N1 +N2
3 +N3N1 − 2N2

1 + 1). (4.38)

The details of the computation are given in [2].

Having central charge of a general 1|1 algebra, we can now test the predictions of the
gluing construction. We conjectured that the central charge of the glued algebra is simply
a sum of the central charges associated to its vertices and indeed

c
[
W1|1

N1,N̄2,N3,N̄4
[Ψ]
]

= c [YN2,N3,N1 [Ψ]] + c [YN3,N2,N4 [Ψ]] (4.39)

so the extension is conformal. Moreover, one can check that the central charge is invariant
under the Z2 × Z2 duality action.

Characters The vacuum character of the resulting algebra can be also computed straight-
forwardly following the description outlined above. One finds a general expression

χ
[
W1|1

N1,N̄2,N3,N̄4

]
= χWN1−N3

χWN2−N4

ρ+N2−N4− 1
2∏

r=ρ+ 1
2

χFr

∮
dVN3,N4χ

N4|N3
N1−N3

2

(xj, yi)χ
N1|N3
N2−N4

2

(yi, xj).(4.40)

Note that the variables xi and yj in the two symplectic boson factors interchange. We can
identify the first two factors with the vacuum characters of WN1−N3 and WN2−N4 algebras
coming from the diagonal blocks of DS-reduction, the factors χFi coming from the N2−N4

fermionic fields with a shifted level and the integral projecting to the U(M |N) invariant
combinations of the fundamental fields. Explicit expressions for these building blocks can
be found in appendix A.2.

To write the characters of more general modules associated to Wilson lines supported
at the two NS5-like interfaces one only needs to insert the corresponding Schur polynomials
into the formula above in the same way as in the case of Y-algebras.

5Note that the pole at Ψ = 1 in the formula disappeared and the poles at 0 and ∞ are multiplied with
two factors associated to the two external legs with given asymptotics as expected from the orientation of
the infinite fivebrane segments.
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4.3.2 Algebras of type 0|2

N4

N3

N1

N2

(0, 1)

(1, 0)

(1, 0)

(2, 1)

In this section, we consider an analogous diagram as the one
of the resolved conifold but now with both D5-branes ending
from the right as shown in the figure. The discussion will be
similar to the one of the previous section but let us highlight
few differences.

The glued algebra is a conformal extension of two mutually
commuting Y-algebras

W0|2
N1,N̄2,N3,N4

[Ψ] ⊃ YN2,N3,N1 [Ψ]× YN2,N4,N3 [Ψ− 1] (4.41)

with gluing matter given by bimodules M3
µ ×M2

µ. Specializing the parameters from the
section 4.4.2 to the case at hand, one finds p = 1 and

h(�) = 1 + ρ = 1 +
N1 +N4 − 2N3

2
(4.42)

(note that this is independent of N2). In terms of the characters, we expect the BRST
construction to produce

χ
[
W0|2

N1,N̄2,N3,N4

]
=
∑
µ

χ[YN2,N3,N1 [Ψ]]
(
M3

µ

)
χ[YN2,N4,N3 [Ψ− 1]]

(
M2

µ

)
(4.43)

and the central charge to be the sum of the central charges of the two Y-algebras.

BRST construction Looking at the system from the IR, the configuration looks like a
junction of interfaces between U(N1), U(N2) and U(N4) gauge theories. After a topological
twist, the path integral localizes to the path integral of the complexified Chern-Simons
theories induced at the NS5 and (2, 1) interface glued together by a boundary condition
descending from the boundary condition coming from D3-branes ending on fivebranes.
This boundary condition can be extracted from the boundary conditions discussed in [62]
in the case when N1 ≥ N3 ≥ N4 or N4 ≥ N3 ≥ N1 and is a combination of two oper
boundary conditions and a continuity condition.

Let us first discuss the N1 ≥ N3 ≥ N4 case. Imposing the boundary conditions as con-
straints on the Kac-Moody algebras descending from the upper and the lower CS theories
using the BRST procedure leads to the following identification of the VOA

W0|2
N1,N̄2,N3,N4

[Ψ] =
DSN3−N4

[
DSN1−N3 [ ̂gl(N1|N2)Ψ]

]
̂gl(N4|N2)Ψ−2

. (4.44)
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Note that both DS-reduction are performed in the same block of the bosonic generators

of ̂gl(N1|N2)Ψ. Analogously to the resolved conifold algebra, we perform the reduction
in three steps. After the first reduction associated to the upper vertex, one obtains an

algebra containing the ̂gl(M |L)Ψ−1 subalgebra. In the second step one uses the BRST
charge implementing the DS reduction associated to the second vertex with the currents

of the ̂gl(M |L)Ψ−1 algebra with the level shifted by one. Since the second reduction is
performed in the same bosonic block of the algebra, the resulting algebra contains subal-
gebra U(N |L; Ψ−2) with the level shifted by two. In the final step one glues equivariantly

the components of the ̂gl(N4|N2)Ψ−2 subalgebra with the extra ̂gl(N4|N2)−Ψ+2 Kac-Moody
algebra coming from the lower CS theory.

Under the two DS-reductions, the fields decompose in a similar way as in the case of
the 1|1 algebra. The only difference is that the the SN3|N2

N1−n3
2

factor from the first reduction

decomposes under the second reduction as

DSN3−N4 : SN3|N2
N1−n3

2

→ SN4|N2
N3−N4

2

×
ρ+N3−N4− 1

2∏
i=ρ+ 1

2

Bi (4.45)

producing N3 −N4 bosonic fields of the shifted dimension

ρ+ 1, ρ+ 2, . . . , ρ+N3 −N4. (4.46)

Note again the appearance of the parameter ρ from (4.42). The fields with shifted dimen-
sions (coming from the off-diagonal blocks containing fields charged under the Cartans of
both sl2 embeddings) are now bosonic. The same is true also for the gl(N |L) invariant
combinations of the symplectic bosons and fermions coming from the two BRST reductions.
All the fields of the resulting algebra are bosonic in this case as expected.

An analogous definition can be given in the case of N4 ≥ N3 ≥ N1 with the factors
N1 ↔ N4 and Ψ→ −Ψ + 2 exchanged (since this configuration can be obtained from the
previous one by an SL(2,Z) transformation).

One can also define BRST reduction in the case when N1 > N3 and N4 > N3 by
performing the DS-reduction for the upper and to lower vertices independently,

DSN1−N3 [ ̂gl(N1|N2)Ψ]×DSN4−N3 [ ̂gl(N4|N2)−Ψ+2] (4.47)

and then gluing the ̂gl(M |L)Ψ−1 subalgebra of the first vertex with the ̂gl(M |L)−Ψ+1 of
the second vertex using BRST (as in the resolved conifold case).
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Central charge and characters The central charge is given by (more details of the
computation are given in [2])6

c =
(N4 −N2)((N4 −N2)2 − 1)

Ψ− 2
− (N2 −N1)((N2 −N1)2 − 1)

Ψ
(4.48)

+(((N1 −N3)2 − 1)(N1 −N3) + ((N3 −N4)2 − 1)(N3 −N4))Ψ−N3 −N1

+(N4 −N3)2(−3N2 +N4 + 2N3) + (N3 −N1)2(−3N2 +N3 + 2N1) + 2N2

−
(
(N4 −N3)2 − 1

)
+ (N4 −N3)−N3 −N1(N4 −N3)2(−3N2 +N4 + 2N3)

+(N3 −N1)2(−3N2 +N3 + 2N1) + 2N2 −
(
(N4 −N3)2 − 1

)
(N4 −N3).

It can again be shown to be equal to the sum of the two central charges of the two
elementary vertices.

Characters The vacuum character is given by an integral formula

χ = χWN1−N3
χWN3−N4

ρ+N3−N2− 1
2∏

r=ρ+ 1
2

χBr

∮
dVN,Mχ

N4|N2
N1−N3

2

(xi, yj)χ
N4|N2
N3−N4

2

(xi, yj). (4.49)

The characters of the two modules associated to the line defects supported at the NS5
and the (2, 1) interface can be computed in a similar way with an extra insertion of the
corresponding Schur polynomials.

4.3.3 Algebras of type M |N

In this section, we briefly discuss a generalization of the BRST reductions in the case of
diagrams with D5-branes ending on (n, 1)-branes from both left and right. We describe the
BRST reduction of a general configuration with monotonic number of D3-branes. Example
of such a configuration is given in the figure 4.5.

BRST construction Let N1 ≥ N2 ≥ · · · ≥ Nn be the sequence of D3-branes on the
left of the (n, 1)-branes and M1 ≥ M2 ≥ · · · ≥ Mn be the sequence of D3-branes attached
from the right. There is a natural generalization of the construction from the previous two
sections where 1|1 and 0|2 algebras were constructed using a sequence of DS-reductions

6The structure of poles in Ψ can be again read off from the diagram. Note that the pole at Ψ = 2
associated to the (1, 2) infinite five-brane appeared.
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6

4

1

2

(1, 0)

(1, 0)

(1, 0)

(1, 0)
(2, 1)

1

(0, 1)

Figure 4.5: Example of a configuration of branes with a BRST definition.

and one coset construction. To find the expression for the BRST reduction, we follow the

diagram from the top to the bottom. We start with the Kac-Moody algebra ̂gl(M1, N1)Ψ.
Each time a D5-brane ends from the right, the Drinfeld-Sokolov reduction DSMi−Mi+1

needs to be performed (where i labels the D5-branes ending from the right). Similarly,
each time a D5-brane ends on the chain of (n, 1)-branes from the left, the Drinfeld-Sokolov
reduction DSNj−Nj+1

needs to be performed (here i labels the D5-branes ending on the left).

Finally, one needs to take a coset with respect to the remaining ̂gl(Mm|Nn)Ψ+M−N super
Kac-Moody algebra. For example, the diagram from 4.5 leads to the following algebra

W62̄41̄10[Ψ] =
DS1[DS3[DS1[DS2[ĝl(6|2)Ψ]]]]

ĝl(1)Ψ−2

(4.50)

where the DSN and DSN are defined as in the case of 1|1 and 0|2 diagrams. Note that
after each DS-reduction associated to the D5-brane ending from the right, the final algebra
contains a Kac-Moody algebra with level shifted by minus one and after each DS-reduction
associated to the D5-brane ending from the left, the final algebra contains a Kac-Moody
algebra with level shifted by one. The final level one gets after performing all the DS-
reductions is opposite to the level of the Kac-Moody algebra induced from the bottom CS
theory.

Let us now summarize how the fields decompose under DSN−M and DSK−L reductions
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at each step. The ̂gl(N |K)Ψ Kac-Moody algebra factor decomposes as

DSN−M : ̂gl(N |K)Ψ → WN−M × ̂gl(M |K)Ψ−1 × S
M |K
N−M

2

DSK−L : ̂gl(N |K)Ψ → WK−L × ̂gl(N |L)Ψ+1 × S
N |L
K−L

2

. (4.51)

On the other hand, the fields SN |Kk and SN |Kk from the previous steps decompose as

DSN−M : SN |Kk → SM |Kk × Bk−N−M−1
2
× · · · × Bk+N−M−1

2

DSN−M : SN |Kk → SM |Kk ×Fk−N−M−1
2
× · · · × Fk+N−M−1

2

DSK−L : SN |Kk → SN |Lk ×Fk−K−L−1
2
× · · · × Fk+K−L−1

2

DSK−L : SN |Kk → SN |Lk × Bk−K−L−1
2
× · · · × Bk+K−L−1

2
. (4.52)

The decomposition is shown explicitly for the example above in the figure 4.6.

ĝl(4|2)Ψ−1

S4|2
1

ĝl(4|1)Ψ

S4|1
1
2

S4|1
1

F 3
2

S1|1
3
2

ĝl(1|1)Ψ−1

S1|1
1

F− 1
2
×F 1

2
×F 3

2

B × B1 × B2

S1|1
1
2

S0|1
1

F1

S0|1
1
2

B 1
2

S0|1
3
2

B 3
2

ĝl(1)Ψ−2

S0|1
1
2

ĝl(6|2)Ψ

Figure 4.6: The structure of DS-reductions from the example 4.50.

A similar BRST reduction can be defined in the case when the diagram can be cut
into two halves where in the upper half, the number of D3-branes decreases from the top
to the bottom and in the lower half it decreases from the bottom to the top. The BRST
definition is then given by performing a sequence of DS-reductions on both the upper and
the bottom Kac-Moody algebra and then gluing two remaining Kac-Moody subalgebras
with opposite level by BRST construction.
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It was already suggested in [1] that one can use a construction analogous to the topo-
logical vertex [49, 52, 51] to produce more complicated vertex operator algebras by gluing
Y -algebras. Consider a web of (p, q)-branes with stacks of D3-branes attached to them
from different sides as in Figure 4.7.7

N1

N2

N3

N4

N5

N6
N7

N8

Figure 4.7: A generic (p, q)-web with stacks of Ni D3-branes attached. The gluing con-
struction associates a vertex operator algebra to such a diagram. To each vertex in the
diagram, one associates a Y-algebra and to each finite line segment one associates a class
of bimodules for the two Y-algebras that are connected by the corresponding line segment.
The final vertex operator algebra is a conformal extension of the product of Y-algebras by
such bimodules and their fusions.

This configuration gives rise to a web of domain walls in the N = 4 super Yang-Mills
theory. In the topological twist of the theory, local operators inserted at trivalent junctions
of the diagram give rise to Y-algebras. Looking at the configuration from the IR, the finite
segments of fivebranes become infinitely small and the whole configuration can be thought
of as a resolution of a single star shaped junction of more complicated domain walls.
According to this picture, the line operators supported at finite segments and ending at
the two trivalent junctions play the role of local operators of the IR junction and should
be added to the final vertex operator algebra. The line operators living at interfaces and
ending at their junctions will be associated to modules for Y-algebras. Operators one
needs to add to the collection of Y-algebras correspond to bimodules associated to such
line operators and their fusions. It turns out that these bimodules have (half-) integral
conformal dimension with respect to the total stress-energy tensor (sum of the stress-
energy tensors associated to each trivalent junction) and can indeed be added to the vertex
operator algebra. In this section, we explain this construction in detail.

7Throughout the paper, we consider only webs corresponding to toric diagrams of Calabi-Yau three-
folds without compact four-cycles, i.e. tree-like diagrams. The construction should be possible in general
but in the presence of the closed faces, generic modules associated the Gukov-Witten defects [79] stretched
within the internal faces can also be added to the VOA.
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4.4 Gluing proposal

Now, we will review general structure of the gluing construction.

4.4.1 The vertex

We start with a description of the basic building blocks of our construction. The algebra
of local operators associated to the trivalent junction of D5, NS5 and (1,1)-brane can be
identified with YN1,N2,N3 [Ψ] algebra reviewed above. In order to allow more general gluing,
it proves useful to consider a larger family of trivalent junctions that will then serve as
building blocks in the gluing construction. Luckily, one can obtain a larger class of such
vertices by applying S-duality transformations to the basic D5-NS5-(1,1) junction. In the
topological vertex literature, this operation is related to the change of framing.

S-duality acts on an AT ≡ (p, q)T five-brane by a left multiplication by an SL(2,Z)
matrix

M =

(
a b
c d

)
for ad− bc = 1. (4.53)

The corresponding transformation of the coupling parameter Ψ is

Ψ→ aΨ + b

cΨ + d
. (4.54)

In terms of ε parameters, the transformation is implemented by the left multiplication of
(ε1, ε2)T by matrix (

M−1
)T

=

(
d −c
−b a

)
(4.55)

such that the combination

εTA ≡
(
ε1 ε2

)(p
q

)
(4.56)

stays invariant.

Using these SL(2,Z) transformations, one can map a trivalent junction ofAj = (pj, qj), j =
1, 2, 3, defects (satisfying conservation of charges and the condition that ensures existence
of such a transformation)

0 = A1 + A2 + A3 (4.57)

1 = A1 ∧ A2 ≡ p1q2 − p2q1
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A2 = (p2, q2)

A1 = (p1, q1)A3 = −A1 − A2

(0, 1)

(1, 0)

(−1,−1)

M

Figure 4.8: Transformation relating generic vertex of interest with the one used in identi-
fication of Y-algebras.

to the configuration used in the definition of Y-algebras by

M =

(
q2 −p2

−q1 p1

)
. (4.58)

In other words, to each such trivalent junction of A1, A2, and A3 defects as shown in the
figure 4.8 and the coupling parameter Ψ, one associates the algebra

Y A1,A2,A3

N1,N2,N3
[Ψ] = Y

(
1
0

)
,
(

0
1

)
,
(
−1
−1

)
N1,N2,N3

[
−q2Ψ− p2

q1Ψ− p1

]
≡ YN1,N2,N3

[
−q2Ψ− p2

q1Ψ− p1

]
. (4.59)

In terms of ε parameters ε = (ε1, ε2)T and the fivebrane charges

Y A1,A2,A3

N1,N2,N3
[εj] = YN1,N2,N3

[
εTAj

]
≡ YN1,N2,N3 [hj] (4.60)

where hj = εTAj = pjε1+qjε2. Note that the necessary consistency requirement ε̃1+ε̃2+ε̃3 =
0 follows from the charge conservation A1 + A2 + A3 = 0 at the trivalent junction.8 In
terms of the invariant λ-parameters parametrizing the structure constants of Y (3.39) we
have

λj =
N1h1 +N2h2 +N3h3

hj
=
εT (N1A1 +N2A2 +N3A3)

εTAj
. (4.61)

This is insensitive to rescalings of ε and Aj parameters. λj determined in this way satisfy
both (3.33) and (3.35).

8Note also that identification is possible for any values of A1 and A2 not only those related to the
junction of NS5- and D5-branes by S-duality. One is tempted to identify generic vertex with such algebra.
This naive guess would not be consistent with gluing proposal since bimodules added in gluing construction
would not be (half-) integral.
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There exists a natural Z2 sign of the SL(2,Z) transformations. By taking a Z2 reduction
of an SL(2,Z) transformation matrix, we obtain an element of SL(2,Z2) ' S3 and taking
the sign of the corresponding permutation gives us a homomorphism SL(2,Z) → Z2.
Concretely, we can map (

a b
c d

)
7→ (−1)ac+ad+bd+1. (4.62)

obtaining the required sign. Choosing our canonically oriented vertex to have the + orien-
tation, any other vertex can be assigned an orientation given by the sign of the SL(2,Z)
transformation mapping the canonically oriented vertex to the vertex we are considering.
Concretely, the orientation is given by

sgn
[
Y A1,A2,A3

N1,N2,N3

]
= (−1)p1p2+q1q2+p1q2+1 = (−1)p1p2+q1q2+p2q1 . (4.63)

4.4.2 The edge

Let us first consider gluing two vertices as in the figure 4.9 where the numbers are subject
to constraints

A1 + A2 = A′1 + A′2
A1 ∧ A2 = 1 (4.64)

A′1 ∧ A′2 = 1

The first equation is simply the condition of the conservation of charges and the remaining
conditions come from the requirement that both vertices are S-dual to the elementary
junction of NS5, D5 and (1,1)-brane. One can always change the orientation of the ingoing
and the outgoing legs and change the signs of corresponding (p, q) charges in order to
obtain the configuration in 4.9.

(p1, q1)

(p2, q2)

(p′2, q
′
2)

(p′1, q
′
1)

(p1 + p2, q1 + q2)
K

L

N

M

Figure 4.9: Any junction of two Y-diagrams can be put into this form by reversing the
orientation of the legs and changing the signs of the corresponding labels. The parameters
are subject to the constraints from (4.64).
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Using the S-duality transformation and the fact that all the building blocks are S-dual
to the triple junction of D5, NS5, and (1,1)-brane, one can transform our system uniquely
to a new configuration depicted in figure 4.10 by the transformation

M =

(
q2 −p2

−q1 p1

)
. (4.65)

We used the fact that conditions (4.64) let us express all pairings in terms of one remaining
invariant parameter (measuring the relative framing of the two vertices)

p ≡ −A2 ∧ A′2 = 1 + A2 ∧ A′1 = −1 + A1 ∧ A′2 = −A1 ∧ A′1. (4.66)

The first vertex is by definition positively oriented, while the orientation of the second
vertex can be easily read off from (4.63) and we find it to be equal to (−1)p.

(1, 0)

(0, 1)

(p, p+ 1)

(1− p,−p)

(1, 1)
K

L

N

M

Figure 4.10: By SL(2,Z) transformation, one can put diagram 4.9 to this form where
parameter p is given by combination 4.66.

By looking at the two Y-vertices in diagram 4.9 or 4.10, one can deduce that the final
algebra will be a conformal extension of

Y −A1,−A2,A1+A2

L,M,K [Ψ]× Y A′1,A
′
2,−A′1−A′2

M,L,N [Ψ] (4.67)

by a collection of M3
µ bimodules of the two Y-algebras on the right hand side.

Conformal dimension of gluing fields We can now check that dimension of the bi-
modules are (half-)integral. This can be easily seen from the transformed diagram 4.10.
Remember that the total stress-energy tensor of the glued algebra is given by a sum of
stress-energy tensors associated to the vertices. In particular, the conformal dimension of
a bimodule is the sum of the two dimensions coming from the two endpoints,

hµ = h(M3
µ) + h′(M3

µ). (4.68)
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In the special case that the exchanged representation is the fundamental one, we find

h� = 1 +
λ3 + λ′3

2
= 1 +

K +N − L−M
2

+
p(M − L)

2
≡ 1 + ρ. (4.69)

Note in particular that all the dependence on continuous parameters like Ψ has canceled.
The resulting dimension is always (half-)integral. The parameter ρ introduced in this
formula will be important in later sections.

Specializing now to the case L = 0, we can be more general and write the expression
for arbitrary line operator in representation µ:

hµ =
1 + p

2

M∑
j=1

µ2
j +

1− p
2

M∑
j=1

(2j −M − 1)µj +
K +N

2

M∑
j=1

|µj|. (4.70)

Analogously, in the case that M = 0, we have

hµ =
1− p

2

L∑
j=1

µ2
j +

1 + p

2

L∑
j=1

(2j − L− 1)µj +
K +N

2

L∑
j=1

|µj| (4.71)

This is again independent of the continuous parameter Ψ and is (half-)integral.

Gluing in terms of λ parameters If we fix the discrete parameter ρ which determines
the dimension of the gluing matter and the fivebrane charges Aj and A′j, we can write
explicitly the gluing conditions for Y-algebras directly in terms of λj and λ′j parameters.
Let us first introduce a vector in fivebrane charge space characterizing the first vertex

σ =
A2

λ3

− A3

λ2

(4.72)

and similarly for the second vertex. Using the fivebrane charge conservation

A1 + A2 + A3 = 0 (4.73)

and (3.40) we find that the definition of σ is cyclic invariant,

λ1λ2λ3σ = λ2(λ3A3 − λ1A1) = λ3(λ1A1 − λ2A2). (4.74)

The usefulness of σ lies in the fact that it encodes the λj parameters of the vertex, i.e.

σ ∧ Aj =
1

λj
. (4.75)
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Furthermore, eliminating the number of D3-branes and parameter Ψ from the gluing con-
ditions, the gluing condition translates to a simple condition

σ ∧ σ′ = 0 (4.76)

satisfied by σ and σ′ associated to glued vertices. This condition means that the vectors σ
associated to the neighbouring vertices are parallel. We can use this and the definition of
ρ to determine λ′j once we know λj, ρ,Aj and A′j,

2ρ = λ3 + λ′3
0 = (λ1A1 − λ2A2) ∧ (λ′1A

′
1 − λ′3A′3) (4.77)

0 = (λ1A1 − λ2A2) ∧ (λ′2A
′
2 − λ′3A′3)

which is a linear system of equations and can be easily solved for λ′.

Statistics of the gluing matter Gluing fields turn out to have either bosonic or
fermionic character depending on the relative Z2 sign (4.63) of the two vertices that we are
gluing (and not whether the dimension of the gluing matter is integral or half-integral).
We expect to have fermionic fields if the two vertices have the same sign and bosonic fields
if the sign is opposite. In terms of the framing factor p we will have bosons for p odd and
fermions for p even. This is indeed consistent examples with values p = −1, 0, 1 that we
discuss in greater detail in later chapters.

4.4.3 Gluing in general

Let us consider an arbitrary of (p, q)-webs composed of the trivalent junctions glued by five-
brane edges as discussed in the previous sections and let us attach stacks of D3-branes to the
faces of the diagram. This configuration gives rise to a web of domain walls in N = 4 SYM
that we want to associate a vertex operator algebra to. The vertex operator algebra will be
a conformal extension of a tensor product of mutually commuting Y-algebras associated
to the vertices in the diagram by the bimodules associated to line operators inserted at
the finite five-brane segments and their fusions. To each such segment, one can associate
a parameter ρi as in the case of a single edge.

One can make following conjectures about the resulting algebra:

1. The total stress-energy tensor of the resulting algebra is the sum of stress-energy
tensors of the individual vertices.
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2. As consequence of this, the central charge of the resulting algebra is the sum of the
central charges associated to all vertices.

3. The characters of modules associated to a collection of edges can be computed as a
sum of products of Y-algebra characters, where the sum runs over representations
of a tensor product of Lie (super-) algebras associated to the internal edges. For
example in the case of two vertices we have

χ =
∑
µ

χ
[
Y (1)

]
(M3

µ)χ
[
Y (2)

]
(M3

µ) (4.78)

4. These modules can be obtained by fusion of elementary bimodules associated to the
line operators in the fundamental and anti-fundamental representation supported at
the internal edge. The dimension of these representations is given by (4.69).

5. To each external leg, one can associate a family of modules labeled by representations
of the supergroup associated to the corresponding leg. Different families associated
to non-parallel legs braid trivially, i.e. have conformal dimension that differs by an
integer.

6. If the (p, q)-web is invariant under a subgroup of SL(2,Z) transformation, the glued
algebra will turn out to have dual BRST realization. If the algebra is realized as a
truncation of an infinite algebra, there will be corresponding duality action on the
parameter space of the corresponding infinite algebra.

In the following we will illustrate the general discussion of the gluing construction on few
concrete examples.

4.4.4 Example - N = 2 superconformal algebra

Let us start with N = 2 superconformal algebra. This algebra is obtained by extending the
Virasoro algebra by a U(1) current J and two oppositely charged spin 3

2
fermionic primaries

G±. The ĝl(1) current J generates the SO(2) R-symmetry rotating the supercharges. The

91



operator product expansions are given by

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)G±(w) ∼ 3/2G±(w)

(z − w)2
+
∂G±(w)

z − w

T (z)J(w) ∼ J(w)

(z − w)2
+
∂J(w)

z − w

J(z)J(w) ∼ c/3

(z − w)2
(4.79)

J(z)G±(w) ∼ ±G±(w)

z − w
G+(z)G−(w) ∼ 2c

3(z − w)3
+

2J(w)

(z − w)2
+

2T (w)

z − w +
∂J(w)

z − w
G±(z)G±(w) ∼ reg.

The central charge c is the only free continuous parameter.

1

2

From Poincaré-Birkhoff-Witt theorem we see that the vacuum char-
acter of this algebra at a generic central charge is given by

∞∏
n=0

(
1 + q

3
2

+n
)2

(1− q1+n) (1− q2+n)
(4.80)

Up to an ĝl(1) factor, this is exactly what one would obtain from the
gluing construction starting from the diagram on the left. We can thus

attempt to decompose the N = 2 SCA ×ĝl(1) into elementary building blocks that enter

the gluing construction. First, we decouple the ĝl(1) currents to isolate the W∞ stress-
energy tensor that lives at the (2, 0, 1) vertex. The unique combination commuting with
J(z) is

T0(z) = T (z)− 3

2c
(JJ)(z). (4.81)

Similarly, we can find spin 3 and spin 4 primaries that commute with J(z) (they are
determined uniquely up to a rescaling). We can next compute the combination of OPE
coefficients

(C4
33)2C0

44

(C0
33)2

=
12(c+ 1)(c+ 9)2(5c− 9)

(c− 1)(c+ 6)(2c− 3)(5c+ 17)
(4.82)
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and assuming OPEs to be those of W∞, this together with c∞ = c − 1 lets us determine
the λ parameters associated to (2, 0, 1) vertex to be

λ
(1)
1 = − 2c

c− 3
=
−2ε1 − ε2

ε1
= Ψ− 2

λ
(1)
2 = − c

3
=
−2ε1 − ε2

ε2
=

2−Ψ

Ψ
(4.83)

λ
(1)
3 =

2c

c+ 3
=
−2ε1 − ε2
−ε1 − ε2

=
2−Ψ

1−Ψ

which is what we could directly read off from the diagram. The identification between
parameters is

c = 3− 6

Ψ
, Ψ = − 6

c− 3
. (4.84)

We can also determine the λ parameters of the second vertex

λ
(2)
1 = 1

λ
(2)
2 =

c− 3

6
=
ε1
ε2

= − 1

Ψ
(4.85)

λ
(2)
3 = −c− 3

c+ 3
=

ε1
−ε1 − ε2

=
1

Ψ− 1

which is consistent with the ĝl(1) degree of freedom coming from the second vertex.

Finally, let us identify the gluing matter. The fields of the lowest dimension that do not
come from the vertices are are the fields G±(z). Following the choice of the normalization

of ĝl(1) factors

J (1)(z)J (1)(w) ∼ − c(c+ 3)

3(c− 3)

1

(z − w)2
, J (2)(z)J (2)(w) ∼ c+ 3

6

1

(z − w)2
, (4.86)

we know that the basic gluing fields will have charges ±1 with respect to these. We define

a rotated basis of ĝl(1) currents

J(z) ≡ c− 3

3(c− 1)
J (1)(z)− 2c

3(c− 1)
J (2)(z), J̃(z) ≡ J (1)(z) + J (2)(w) (4.87)

such that J(z) is the conventionally normalized R-current in N = 2 SCA and that J̃(z)
decouples. The other primary gluing fields are given by the normal ordered products

G±(k)(z) ≡ (∂k−1G±(∂k−2G±(· · · (∂G±G±) · · · )))(z). (4.88)
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Their U(1) charges are given by

j(1)(G±(k)) = ±k, j(2)(G±(k)) = ∓k, j(G±(k)) = ±k, j̃(G±(k)) = 0. (4.89)

The conformal dimensions are

h
(1)
1+∞(G±(k)) =

(c− 3)k2 + 2(c+ 3)k

2(c+ 3)
, h

(2)
1+∞(G±(k)) =

3k2

c+ 3
, h1+∞(G±(k)) =

k(k + 2)

2
.

(4.90)
as predicted by (4.70)

4.4.5 Example - W (2)
3

As another example, consider the Bershadsky-Polyakov algebraW(2)
3 [105, 106]. It has the

same matter content as N = 2 SCA except for the fact that the spin 3
2

fields are bosons
instead of being fermions. The operator product expansions are now

T (z)T (w) ∼ − (2k + 3)(3k + 1)

2(k + 3)(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

T (z)J(w) ∼ J(w)

(z − w)2
+
∂J(w)

z − w

J(z)J(w) ∼ 2k + 3

3(z − w)2

T (z)G±(w) ∼
3
2
G±(w)

(z − w)2
+
∂G±(w)

z − w (4.91)

J(z)G±(w) ∼ ±G±(w)

z − w
G±(z)G±(w) ∼ reg.

G+(z)G−(w) ∼ (k + 1)(2k + 3)

(z − w)3
+

3(k + 1)J(w)

(z − w)2
− (k + 3)T (w)

z − w

+
3(JJ)(w)

z − w +
3(k + 1)∂J(w)

2(z − w)
.

3

1

From the gluing construct we see that the vacuum character

∞∏
n=0

1

(1− q1+n)2(1− q 3
2

+n)2(1− q2+n)
(4.92)
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of ĝl(1)×W(2)
3 equals that of the diagram on the left. We can try to see if

this identification works even at the level of operator product expansions.

Similarly to the discussion in the previous section, we can first decouple the ĝl(1) factors
and find the stress-energy tensor

T (1)
∞ (z) = T (z)− 3

2(2k + 3)
(JJ)(z) (4.93)

with the central charge

c(1)
∞ = −6(k + 1)2

k + 3
. (4.94)

Analogously, we can construct primary spin 3 and spin 4 currents commuting with ĝl(1)
factors,

W
(1)
3 = (G+G−) +

3(k + 3)

2k + 3
(TJ) +

k + 3

2
∂T − 9(k + 2)

(2k + 3)2
(J(JJ))

−3(J∂J)− k2 + 4k + 6

2k + 3
∂2J

W
(1)
4 = (J(G+G−)) + . . . , (4.95)

compute their three-point functions

C0
33 = −(4k + 9)(2k + 1)(k + 3)(k + 1)2

2k + 3

C0
44 = −(5k + 12)(4k + 9)(3k + 5)(2k + 1)(k + 1)2k2

3(15k2 + 19k − 18)
(4.96)

C4
33 =

12(k + 3)2

2k + 3

and finally find the invariant combination of structure constants

C4
33C

0
44

(C0
33)2

= − 48k2(k + 3)2(3k + 5)(5k + 12)

(k + 1)2(2k + 1)(4k + 9)(15k2 + 19k − 18)
. (4.97)

Equating this to (3.37), we can determine the λ
(1)
j parameters (assuming that the commu-
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tant of ĝl(1) currents is W∞) to be

λ
(1)
1 = 2k + 3 =

ε2 + 3ε3
ε1

= 2Ψ− 3

λ
(1)
2 = −2k + 3

k + 3
=
ε2 + 3ε3
ε2

=
−2Ψ + 3

Ψ
(4.98)

λ
(1)
3 =

2k + 3

k + 2
=
ε2 + 3ε3
ε3

=
−2Ψ + 3

1−Ψ
.

We identified
Ψ = k + 3. (4.99)

We can read-off the λ-parameters of the second vertex from the diagram (again we cannot
determine them from the algebra because of no continuous parameters associated to the

affine ĝl(1) algebra)

λ
(2)
1 =

−2ε1 − ε2
−2ε1 − ε2

= 1 (4.100)

λ
(2)
2 =

−2ε1 − ε2
ε1

= −2 + Ψ = k + 1 (4.101)

λ
(2)
3 =

−2ε1 − ε2
ε1 + ε2

=
−2 + Ψ

1−Ψ
= −k + 1

k + 2
. (4.102)

ĝl(1) currents Now we can turn our attention to the identification of the ĝl(1) currents.

We take a linear combination of ĝl(1) currents

J(z) =
k + 3

3(k + 2)
J (1)(z)− 2k + 3

3(k + 2)
J (2)(z) (4.103)

J̃(z) = J (1)(z) + J (2)(z) (4.104)

such that J̃(z) decouples from W(2)
3 .

Gluing matter The gluing fields in the case of W(2)
3 are given by powers of G±(z),

G±(n)(z) ≡ (G±(G±(· · · (G±G±) · · · )))(z). (4.105)

Their ĝl(1) charges are

j(1)(G±(n)) = ±n, j(2)(G±(n)) = ∓n, j(G±(n)) = ±n, j̃(G±(n)) = 0. (4.106)
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and the conformal dimensions are

h
(1)
1+∞(G±(n)) =

n(3k + 6− n)

2k + 4
, h

(2)
1+∞(G±(n)) =

n2

2k + 4
, h1+∞(G±(n)) =

3n

2
. (4.107)

which is consistently with (4.70). Note that because of the bosonic nature of the gluing

fields, the quadratic terms proportional to n2 in h
(1)
1+∞ and h

(2)
1+∞ cancel so that the total

dimension of the gluing fields grows linearly with n.

4.5 Truncations

In this section we study what happens as the number of attached D3-branes grows to
infinity. We have already discussed the simplest case of the algebra YN1,N2,N3 [Ψ]. As
N1, N2 or N3 goes to infinity, the vacuum character approaches the MacMahon function
which counts the plane partitions without any further constraints. Combinatorially, the
requirement of the absence of a box at position (N1 + 1, N2 + 1, N3 + 1) which leads to
truncation of the algebra disappears. The operator product expansions for the spin content
given by MacMahon functions were studied in [75] and the result is a two-parametric
family of algebras W1+∞ parametrized by λj with constraint (3.33). The central charge
and the OPE structure constants in the primary basis are determined in terms of λj as
in (3.37). YN1,N2,N3 algebras can be recovered by recalling that if (3.35) is satisfied the
algebra W1+∞ develops an ideal such that YN1,N2,N3 is the quotient of W1+∞ by this ideal.
In this section, we generalize this point of view to other algebras that we constructed by
the gluing procedure.

4.5.1 Resolved conifold - Wρ
1|1×∞ algebras

As a first example, let us see what are the possible limits of the conifoldW1|1
K,L̄,M,N̄

algebras
as the number of D3 branes approaches infinity. Compared to the YN1,N2,N3 junction, the
conifold configuration has another stack of D3-branes so one might naively expect a three-
parametric family of algebras. We will see that in the infinite numbers of branes limit, one
recovers different characters for each choice of the discrete parameter

ρ =
N + L−K −M

2
(4.108)
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that we keep fixed as we take the limit. For each choice of ρ, there are two continuous
independent λ-parameters from one of the vertices as in the case of YN1,N2,N3 . The λ-
parameters of the second vertex can be then determined in terms of the discrete parameter
ρ and the gluing conditions (4.77). We thus obtain a family of algebras Wρ

1|1×∞ associated

to the conifold diagram, labeled by one discrete parameter ρ (associated to the edge) and
two continuous parameters parametrizing the structure constants of the algebra. We expect
to be able to recover W1|1

K,L̄,M,N̄
algebras as truncations of the Wρ

1|1×∞ family.

BRST computation of the character Let us now explicitly verify the claims of the
previous section by computing the vacuum character of Wρ

1|1×∞,

χ
[
Wρ

1|1×∞

]
=
∞∏
n=1

(1 + qn+ρ)
2n

(1 + qn)2n
. (4.109)

Let us first see how the character (4.109) appears from the BRST definition of the algebra
for K ≥ M and L ≥ N . When computing the vacuum character, there are various
contributions coming from the different blocks of gl(K|L). Firstly, there are characters of
WK−M and WL−N coming from the two diagonal blocks. Secondly there is a sequence of
pairs of L−N fermionic fields with conformal weights

ρ+ 1, ρ+ 2, . . . ρ+ L−N (4.110)

coming from the fermionic off-diagonal blocks that are influenced by both DS-reductions.

Apart from these, there are gl(M |N) invariant combinations of SM |NK−M
2

and SM |NL−N
2

. These

can be identified with products of bilinears of their generators. If we forget about the
relations satisfied by the products of bilinears (which is a condition that disappears in

the infinite number of branes limit), SM |NK−M
2

fields form an infinite tower of generators of

each integral spin starting with K −M + 1. This sequence continues the one of WK−M
and together they form one factor of W1+∞. Similarly, gl(M |N) invariant combinations of

SM |NL−N
2

continues the sequence of fields of WL−N to produce the second factor of the W1+∞

vacuum character. Finally, the bilinears mixing SM |NK−M
2

and SM |NL−N
2

form an infinite tower

starting at conformal dimension ρ+ L−N + 1. Note that these fields are fermionic since
a bosonic field gets combined with a fermionic field and these combinations continue the
L − N fermionic fields discussed above. One can see that total character is indeed given
by (4.109).
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The BRST proposal for K ≥M and N ≥ L produces the same character by a slightly
different argument. The two WK−M and WN−L blocks get extended by bilinears of SM |LK−M

2

and SM |LK−M
2

respectively. In this case there are no off-diagonal blocks that would be in-

fluenced by both DS-reductions but gl(M |K) invariant combinations combining the fields

coming from both SM |LK−M
2

and SM |LK−M
2

give rise to fermions with each integral spin starting

at spin 1 + ρ and we can draw the same conclusion as in the previous case.

Character from gluing From the point of view of gluing, the character formula (4.109)
can be obtained by a small modification of the standard sums used in topological vertex
calculations. In the limit of infinite numbers of branes K,L,M,N →∞, the relevant tensor
representations of U(∞) decouple into contravariant representations (contained in tensor
powers of the fundamental representation) times covariant representations (contained in
tensor powers of the anti-fundamental representation). Moreover, the pit conditions trun-
cating the two trivalent vertex algebras disappear to infinity and the characters involved
considerably simplify.

We can use this example to illustrate the gluing at the level of W1+∞ algebras. First
of all, the λ parameters associated to two vertices are connected via

λ′j = λj
λ3

2ρ− λ3

(4.111)

as follows from (4.77). We want to sum over all characters of W1+∞ labeled by the rep-
resentations of the line operators stretched along the edge. In the limit of large number
of D3-branes, these are parametrized by a pair of Young diagram labels (µ, ν), the first
labeling the contravariant part and the second labeling the covariant part of the U(∞)
representation. The corresponding W1+∞ character factorizes and is equal to

χ(µ,ν) = qhµ+hν

∞∏
n=1

1

(1− qn)n
Pµ(q)Pλ(q) (4.112)

where the power of q in the prefactor is the conformal dimension of the representation and
where Pµ(q) is the quantum dimension of the representation (normalized to be a polynomial
in q starting with 1 + . . .),

Pλ(q) =
∏
�∈λ

1

1− qhook(�)
(4.113)

(see [49, 72, 98]). The full vacuum character for the conifold algebra is now obtained
by summing over all the representations of the line operators and taking the product of
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characters of algebras associated to both vertices

χWρ
1|1×∞

=
∑
µ,ν≥0

z|µ|−|ν|χ(µ,ν)χ
′
(µ,ν) (4.114)

=
∞∏
n=1

1

(1− qn)2n
×
∑
µ,ν≥0

(
qhµ+h′µz|µ|P 2

µ(q)
)
×
(
qhν+h′νz−|ν|P 2

ν (q)
)
.(4.115)

We turned on the fugacity parameter z for the U(1) current associated to one of the two
Y-algebra vertices which refines the character. Now we need to evaluate∑

µ≥0

(
qhµ+h′µz|µ|P 2

µ(q)
)

=
∑
µ≥0

(
q

1
2

∑
j µ

2
j+

1
2

∑
j(2j−1)µj+ρ

∑
j µjz

∑
j µjP 2

µ(q)
)
. (4.116)

This sum is a typical example of sums studied in the topological vertex computations and
we find ∑

µ≥0

(
qhµ+h′µz|µ|P 2

µ(q)
)

=
∞∏
n=1

(1 + zqρ+n)n. (4.117)

This again reproduces the formula (4.109), this time with the additional fugacity parameter
z.

Let us now consider two special values of the parameter ρ. In the case when ρ = 0,
one gets in the large N limit the character ofW1|1

1+∞ (an algebra generated by 2× 2 matrix
of generators for each integral spin). This algebra appeared in [107] as an example in
the context of categorified Donaldson-Thomas invariants and corresponding counting of
D0-D2-D6 bound states. We devote the next section to the example of ρ = 1

2
that can be

identified with N = 2 super-W∞.

N = 2 super-W∞ In the case of ρ = 1
2
, the character can be identified with the vacuum

character of N = 2 super-W∞ × ĝl(1) of [77].9 The authors extended the N = 2 super-
conformal algebra by a simple tower of higher spin N = 2 supermultiplets with spins of
lowest components being 2, 3, . . .. Imposing the Jacobi identities, a two-parameter family
of such algebras was found. For special values of parameters, a truncation of this algebra
admits a coset construction using the Kazama-Suzuki coset

̂gl(N + 1)Ψ−1 × SN |0

ĝl(N)Ψ−1

(4.118)

9See also [108] for the special case of parameters where the algebra becomes linear.
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Figure 4.11: First few truncation curves in the (µ1, µ3) parametrization for 0 ≤ ρ ≤ 5
2

and
the number of branes K + L+M +N ≤ 8. Note that the figures are invariant under the
reflection µ1 ↔ µ2 corresponding to the S-duality action.
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and a construction using the Drinfeld-Sokolov reduction of ̂gl(N + 1|N). Both of these
realizations can be identified with the BRST constructions that we propose for a special
choice of discrete parameters K,L,M,N and turn out to be related by S-duality of our
diagram

W1|1
N+1,N̄ ,0,0̄

[Ψ] ↔ WN+1,0̄,N,0̄

[
1

Ψ

]
. (4.119)

In particular, for N = 1, we get the N = 2 superconformal algebra that is an extension
of the Virasoro algebra by a spin 1 current and two oppositely charged spin 3

2
fermions.

Together with the stress-energy tensor, these four fields form a N = 2 supermultiplet with
lowest component having spin 1. In [109], the N = 2 SCA was extended by adding a N = 2
supermultiplet with lowest spin 2. It is natural to conjecture that in general the N = 2
extension of WN is given by the L1|1

N+1,N̄ ,0,0̄
algebra and that all the other configurations

with ρ = 1
2

are other truncations of N = 2 W∞.

Candu and Gaberdiel introduce a parameter µ with the property that setting µ = −N ,
we recover the truncations discussed above and parametrize the full algebra in terms of µ
and the central charge c. Analogously to the triality symmetry of W1+∞, at each generic
fixed value of the central charge c there are four different values of µ which give identical
OPEs in the primary basis. These values of µ are [77]

µ1 = µ, µ2 =
(c− 1)µ

c+ 3µ
, µ3 =

c+ 3µ

3(µ− 1)
, µ4 = − c

3µ
.

Since N = 2 W∞ has apart from the stress-energy tensor an extra spin 2 primary field

commuting with the ĝl(1) factor, we can find a linear combination of the spin 2 fields which
give us two independent commuting Virasoro subalgebras. Their central charges are

c1 =
c(µ+ 1)(c+ 6µ− 3)

3(c+ 3µ)2

c2 = −(c− 3µ)(c(µ− 2)− 3µ)

3(c+ 3µ2)
(4.120)

c = c1 + c2 + 1.

Note that we have

c1 =
(1 + µ1)(1 + µ3)(µ1µ3 − µ1 − µ3)

µ1 + µ3

,

c2 =
(1 + µ2)(1 + µ4)(µ2µ4 − µ2 − µ4)

µ2 + µ4

(4.121)
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so defining

µ1 = −λ1, µ2 = −λ′1, µ3 = −λ2, µ4 = −λ′2 (4.122)

we can rewrite the partial central charges c1 and c2 in the standard form

c1 = (λ1 − 1)(λ2 − 1)(λ3 − 1)

c2 = (λ′1 − 1)(λ′2 − 1)(λ′3 − 1). (4.123)

We can thus identify the parameters λj and λ′j with the λ-parameters associated to the
two vertices. This hints that N = 2 super W∞ algebra indeed contains two mutually
commuting W∞ algebras as subalgebras and gives a picture consistent with the gluing10.
The duality transformations of the algebra that can be identified with the Z2×Z2 duality
action given by transformations

Ψ↔ Ψ, K ↔M, L↔ N (4.124)

and

Ψ↔ 1

Ψ
, K ↔M (4.125)

that can be identified with permutation of parameters

µ1 ↔ µ2, µ3 ↔ µ4

µ1 ↔ µ3, µ2 ↔ µ4. (4.126)

Note that the parametrization and the whole construction works for arbitrary value of ρ
and we expect an existence of a two continuous parameter families of Z2 × Z2 algebras
for each choice of ρ such that W1|1

K,L̄,M,N̄
are their truncations. The structure of these

truncations in the (µ1, µ2) parameter space is shown in the figure 4.11 for various values
of ρ. You can see that figures are indeed invariant under µ1 ↔ µ2. The points where two
truncation curves intersect correspond to the BRST reductions at rational levels and we
expect them to correspond to minimal models of Wρ

1|1×∞ algebras.

4.5.2 Truncations of Wρ
2×∞

Let us now consider the case of algebras of the type 0|2 with the corresponding parameter
ρ fixed. Sending parameters K,L,M,N → ∞ to infinity, relations satisfied by product

10A similar observation was made by [25, 32] where the authors study the gluing of N = 2 W∞ from
the Yangian point of view.
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of bilinears in the BRST calculation of the character disappear and one gets a character
analogous toWρ

1|1×∞. The only difference is that all the invariant combinations are bosonic
and the final character is given by

χ
[
Wρ

0|2×∞

]
=
∞∏
n=1

1

(1− qn)2n(1− zqn+ρ)n(1− z−1qn+ρ)n
. (4.127)

The same formula can be obtained from the gluing construction in the same way as in the
resolved conifold case. We just need to use

∑
µ≥0

(
qhµ+h′µz|µ|P 2

µ(q)
)

=
∑
µ≥0

(
q
∑
j(2j−1)µj+ρ

∑
j µjz

∑
j µjP 2

µ(q)
)

=
∞∏
n=1

1

(1− zqρ+n)n
. (4.128)

Algebras discussed in this section can be identified with truncations of Wρ
0|2×∞. Note

that ρ = 0 case again coincides with algebras studied in [107] in the context of counting
D6-D2-D0 bound states on the resolution of C2/Z2 × C.

4.5.3 Truncations of Wρi
M |N×∞

All examples discussed so far in this section can be identified with truncations of some
infinite algebra. In the BRST reduction described in above, one generates WN algebra
and symplectic bosons in fundamental representation of the reduced group associated to
each vertex. Moreover, at each vertex, symplectic bosons generated in the previous step
decomposes into the fields of shifted dimensions and symplectic bosons in fundamental
representation of the reduced group. Example of such process for first three reductions
from the example (4.50) is diagrammatically captured in 4.6. After projecting to the coset
invariant combinations, one can argue that in the infinite number of branes limit, one
obtains the character of the form

χ[Wρi
M |N×∞] =

(
∞∏
n=1

1

(1− qn)n

)N+M∏
i=1

(1± qn+ρi)±2n
∏
i>j

(1± qn+ρi+ρj)±2n (4.129)

where the products run over all internal edges and one chooses the + sign if both branes
of corresponding finite segment ends from the same side and the − sign otherwise. The
same character follows from the gluing construction: for example, in the U(3) case we use
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the fact that

∞∏
n=1

1

(1− z1
z2
qn)n(1− z1

z3
qn)n(1− z2

z3
qn)n

=

=
∑
µ,ν

q||µ||
2+||ν||2−(µ,ν)

(
z1

z2

)|µ|(
z2

z3

)|ν|
P (·, µ)P (µ, ν)P (ν, ·) (4.130)

where P (µ, ν) are the the box-counting functions [98] related up to an overall factor to the
topological vertex C(µ, ν, ·). For the total character we thus find

χρ=0
3×∞ =

∞∏
n=1

3∏
j,k=1

1

(1− zjz−1
k qn)n

(4.131)

as expected for W3×∞.

Algebras coming from gluing or BRST construction for finite number of branes can
be identified with truncations of χρiN |M×∞. For fixed values ρi, there are three integral

parameters left unfixed. These parameters parametrize truncation lines of χρiN |M×∞ inside
the conjecturally two parameter family of algebras. Shifting all the numbers of branes by
a constant value again corresponds to a different truncation above the same truncation
curve.

4.6 Free field realization

Starting with YN1,N2,N3 [Ψ] as a building block, one can construct more complicated VOAs
associated to an arbitrary (p, q) web of five-branes and D3-branes attached to them at
various faces. The resulting vertex operator algebra is an extension of tensor product of
Y-algebras associated to each vertex by bi-modules (and their fusion) associated to each
internal line of the web diagram. Existence of such an extension11 was conjectured in [2]
but no explicit construction of OPEs between gluing bi-modules was proposed. The free
field realization discussed above seems to provide us with a way to determine OPEs of such

11There exists a large list of special examples appearing in various contexts in the literature. The story
of extensions of VOAs dates back to the early days of VOAs, where authors of [10, 11] constructed lattice
extensions of the free boson VOA. Extensions of WN algebras are discussed for example in [110, 111] and
many other places. More recently, gluing at the level of affine Yangians was initiated in [25, 32] and at the
level of quantum toroidal algebras appears in [112].
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bi-modules. In the two explicit examples bellow, we will indeed see that this is indeed the
case. Note also that such construction leads to an algorithmic way to determine a free field
realization of the glued algebra. We expect some of the free field realizations to be related
via bosonisation to well-known free-field realizations, such as the Wakimoto realization of
Kac-Moody algebras [113, 114].

Let us briefly review the gluing construction in the case of a single edge. The general-
ization to more complicated configurations is straightforward and will be briefly discussed
later. Consider a (p, q)-brane configuration from the figure 4.12. The resulting VOA is an
extension of the product

Y −Ã1,−Ã2,Ã1+Ã2

N2,N4,N3
[Ψ]⊗ Y A1,A2,−A1−A2

N4,N2,N1
[Ψ] (4.132)

where Y A1,A2,A3

N1,N2,N3
[Ψ] is related to the standard algebra YN1,N2,N3 [Ψ] by an SL(2,Z) transfor-

mation of parameters

Y A1,A2,A3

N1,N2,N3
[Ψ] = YN1,N2,N3

[
−q2Ψ− p2

q1Ψ− p1

]
. (4.133)

The parameters hi of the algebra can be easily determined from

hi = Ai · ε, (4.134)

where we have introduced the vector ε = (ε1, ε2) and Ai are the (p, q) charges of the ith
interface with the arrow pointing out of the vertex. Note that εi are universal parameters
and in the case of the standard trivalent junction of NS5, D5 and (1, 1) branes, one has
the identification hi = εi with ε3 = −ε1 − ε212. The extension is then generated by fusions
of the tensor product of the fundamental representation associated to the first vertex and
anti-fundamental representation associated to the second vertex and vice versa.

In the free field realization, the fundamental and the anti-fundamental representation
have a simple realization in terms of an exponential vertex operator and its descendant. For
simplicity of the discussion, we will restrict to the case N4 = 0 and identify only the simple
realization of the fundamental and the anti-fundamental representation for the following
ordering

L(2)
1 · · · L(2)

N2
L(3)
N2+1 · · · L

(3)
N1+N2

(4.135)

12If we consider gluing of vertices, we need to distinguish ε-parameters and h-parameters. The ε-
parameters are determined by Ψ while the h-parameters are associated to each vertex and they are related
to εj by SL(2,Z)-transformation which brings the vertex to the standard one. [2]
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(p1, q1)

(p2, q2)

(p′2, q
′
2)

(p′1, q
′
1)

(p1 + p2, q1 + q2)
N3

N2

N1

N4

Figure 4.12: Gluing of two vertices.

of free bosons in the right vertex and

L̃(3)
1 · · · L̃(3)

N2
L̃(1)
N2+1 · · · L̃

(1)
N2+N3

(4.136)

in the left vertex. The generalization for N4 6= 0, a general ordering and ‘non-simple’
realizations is straightforward but the formulas become more involved.

The gluing fields are the generated from the fundamental and the anti-fundamental
representation associated to lines supported at the internal interface generated by

M� = M3
� ⊗ M̃3

�̄, M�̄ = M3
�̄ ⊗ M̃3

� (4.137)

whereM3
� andM3

�̄ are the primaries associated to the fundamental and the anti-fundamental

module associated to the third direction of the right vertex and M̃3
� and M̃3

�̄ associated to
the left vertex. The simple free field realizations in the given ordering are of the form

M3
� = exp

[
h1 φ

(2)
1

]
M3

�̄ = f(J) exp
[
−h1 φ

(2)
N2

]
M̃3

� = exp
[
−h̃2 φ̃

(3)
1

]
M̃3

�̄ = f(J̃) exp
[
h̃2 φ̃

(3)
N2

]
(4.138)

where f(J) is a level N1 and f(J̃) is a level N3 field of the free boson. Even though
we lack a closed form expression for f(J) and f(J̃), they can be easily determined from
the requirement that M3

� and M̃3
�̄ are primary fields of correct W -charges. All the other

bi-fundamental fields can be constructed from the fusion of M� and M�̄.

In configurations with more internal finite interfaces, one can introduce corresponding
fundamental and anti-fundamental representations associated to each finite segment and
extend the tensor product of Y-algebras by fusion of all such generators. We will illustrate
the gluing procedure on two examples bellow.
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1

Figure 4.13: The simplest example of gluing of two ĝl(1) Kac-Moody algebras.

4.6.1 Gluing two ĝl(1)’s

Let us consider the first example of gluing of two ĝl(1)Ψ Kac-Moody algebras as shown in

the figure 4.13. Let φ ≡ φ
(2)
1 be the free boson associated to the right vertex and φ̃ ≡ φ̃

(1)
1

be the one associated to the second one. We normalize them such that J = ∂φ
(2)
1 and

J̃ = ∂φ̃
(2)
1 have the following OPE

J(z)J(w) ∼ − 1

ε1ε3

1

(z − w)2
, J̃(z)J̃(w) ∼ − 1

ε2ε3

1

(z − w)2
. (4.139)

Generators that need to be added to the algebra can be identified with the fusion of the
following vertex operators realizing the fundamental and anti-fundamental representation

M� = exp
[
ε1φ− ε2φ̃

]
, M�̄ = exp

[
−ε1φ+ ε2φ̃

]
. (4.140)

One can easily check that the two generators have correct charges with respect to the two
gl(1) subalgebras and that the conformal weight with respect to the sum of the two stress-
energy tensors is 1/2. Moreover, the free field realization gives also an explicit realization
of the OPE between the added fields M� and M�̄ that has the following simple form

M�(z)M�̄(w) ∼ 1

z − w (4.141)

with all the other OPEs trivial. The exponent was determined from the product of the
two exponents (with the metric determined by the normalization of the free bosons)

−(−ε1)ε1
ε1ε3

− ε2(−ε2)

ε2ε3
= −1. (4.142)

One can immediately see that the BRST definition of the algebra is reproduced. In
particular, the added fields M� and M�̄ form the free fermion pair and the combination

J+ J̃ can be identified with the decoupled ĝl(1) Kac-Moody algebra. The relation between
free fermions and the vertex operators M�, M�̄ is the well known bosonization.
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2

1

Figure 4.14: The web diagram associated to the ĝl(2) Kac-Moody algebra.

4.6.2 ĝl(2) from gluing

Let us now discuss the structure of glued generic modules for the algebra ĝl(2) associated
to the figure 4.14. This example will serve as a prototype for a more general configuration
whose GW-defects give rise to VOA modules induced from the Gelfand-Tsetlin modules of
the zero-modes algebra.

Y0,1,2 vertex First, let us construct the free field realization of the algebra Y0,1,2. The
algebra has a free field realization in terms of three free bosons normalized as

J
(2)
1 (z)J

(2)
1 (w) ∼ − 1

ε1ε3

1

(z − w)2
,

J
(3)
2 (z)J

(3)
2 (w) ∼ − 1

ε1ε2

1

(z − w)2
,

J
(3)
3 (z)J

(3)
3 (w) ∼ − 1

ε1ε2

1

(z − w)2
. (4.143)

The generators of the algebra Y0,1,2 were already found previously. For the purpose of

our discussion, let us recall the ĝl(1) field

J = J1 + J2 + J3. (4.144)

Let us now discuss the free field realization of the fundamental and the anti-fundamental
module in the third direction that will play the role of J+ and J− generators after tensoring
with the corresponding modules of the other vertex. The fundamental field can be realized
as

M� = exp
[
ε1φ

(2)
1

]
. (4.145)

Note that ε1 is precisely the charge predicted by the generating function of the ψ-charges
and all the W -charges of the representation match. The anti-fundamental field is more
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complicated since it appears at level two (there are two of free bosons of the third type to

the left of φ
(3)
3 ). One finds the following expression for the fundamental field

M�̄ =

(
−ε1ε2

ε3
J3J2 + ε1J1(J2 + J3)− ε1ε3

ε2
J1J1 − ∂J2 +

ε3
ε2
∂J1

)
exp

[
−ε1φ(2)

1

]
. (4.146)

Note that this asymmetric form of the fundamental and the anti-fundamental field is related
to our asymmetric choice of the free-boson ordering. The symmetric choice would to lead to
both J+ and J− at level one. We expect the two choices to correspond to the symmetric and
the asymmetric Wakimoto realizations. The symmetric Wakimoto realization is a free field

realization of ĝl(2) in terms of two free bosons and parafermionic fields. Parafermionic fields
can be bosonized and we expect to find our symmetric free field realization. Similarly, one
can bosonize the β, γ system of the Wakimoto realization in terms of two free bosons and
a β, γ system and we expect to recover our non-symmetric free field realization. Detailed
discussion of the relation with Wakimoto realization is beyond the scope of this paper.

Y0,0,1 vertex Let us normalize the free boson J̃ = ∂φ̃
(2)
1 of the second vertex as

J̃(z)J̃(w) ∼ 1

ε1ε3

1

(z − w)2
. (4.147)

The fundamental and the anti-fundamental representations associated to the second
direction are then

M̃� = exp [ε1φ(z)] , M̃�̄ = exp [−ε1φ(z)] . (4.148)

Glued algebra Having identified the fields and the relevant fundamental and the anti-
fundamental representation of each vertex, one can now easily construct the glued VOA.
The Cartan elements of the ĝl(2) Kac-Moody algebra can be fixed by requiring the correct
OPE between them and with the fields J12 ∝M�̄ and J21 ∝M�. One finds

J11 = ε3J̃ , J22 = −ε2
ε3
J + ε1J̃ . (4.149)

The normalization of generators J12 and J21 can be found from their OPE. One finds

J12 =
ε2ε3
ε1

M�̄, J21 = M�.

Note that the OPE of the exponential factors is trivial and both the second order and
the first order pole come from the OPE of the Ji fields with the exponential factor of the

anti-fundamental field. All the OPEs of ĝl(2) Kac-Moody algebra are reproduced.
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5. Some advanced topics

5.1 Dualities from S-duality

Let us add few comments on dualities mentioned many times throughout the text. The
(p, q) webs enjoy the action of SL(2,Z) duality transformations. Many calculations in
the geometric picture based on the affine Yangian and free-field realizations are manifestly
triality covariant. The SL(2,Z) action in this picture corresponds simply to relabeling of
complex coordinates parametrizing the toric three-fold and relabeling cycles of the torus
fibration.

On the other hand, in the picture based on interfaces in N = 4 SYM, we can see
that SL(2,Z) transformation acts non-trivially on the boundary conditions at hand. In
some cases, starting with a configuration with known BRST definition, there might exist a
transformation that produces another configuration with a known BRST definition. One
then expects that both BRST reductions lead to an equivalent VOA. Using S-dualities, we
can thus predict many new dual constructions1 of (p, q)-web VOAs.

For example, in the YN1,N2,N3 [Ψ] case, there exists an S3 subalgebra of SL(2,Z) that
preserves the (p, q) web and simply permutes its legs. This action descends to dualities
of the corresponding VOA. Our definition is manifestly symmetric under the reflection
Ψ↔ 1−Ψ accompanied by the exchange N3 ↔ N2. A non-trivial conjecture comes from
the “S-duality” transformation Ψ ↔ Ψ−1 accompanied by the exchange N1 ↔ N2. The
two transformations combine into an S3 triality symmetry which acts by permuting the
three integral labels N1,N2,N3 while acting on the coupling Ψ by appropriate PSL(2, Z)
duality transformations. In particular, we have cyclic rotations:

YN1,N2,N3 [Ψ] = YN3,N1,N2 [
1

1−Ψ
] = YN2,N3,N1 [1− 1

Ψ
] (5.1)

1This duality action played an important role in testing the proposal for the BRST definition of
YN1,N2,N3 in [1].
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(1, 0)

(−1,−1)

(0,−1)

1 − 1
Ψ
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(1, 0)

(1, 1)

Ψ
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(−1,−1)

(0, 1)

(−1, 0)

1
1−Ψ

TSTS

N3

N2

N1

N3

N2

N1

N3

N2

N1

Figure 5.1: The dualities which motivate the identification (5.1) of the VOA YN1,N2,N3 [Ψ],
YN3,N1,N2 [ 1

1−Ψ
] and YN2,N3,N1 [1− 1

Ψ
].

An alternative, instructive way to describe the S3 symmetry is to use the parameters
εi which satisfy

ε1 + ε2 + ε3 = 0 Ψ = −ε2
ε1

(5.2)

Then the S3 symmetry acts on

Y ε1,ε2,ε3
N1,N2,N3

≡ YN1,N2,N3 [−ε2
ε1

] (5.3)

by a simultaneous permutation of the εi and Ni labels.

Finally, note that in terms of the parameters λi of the W1+∞ algebra, the triality
transformation acts by permutation that is consistent with the triality action of [75, 5]

We can illustrate this type of relations for Y0,0,N . The Y0,0,N [Ψ] VOA is defined as the

regular quantum Drinfeld-Sokolov reduction of ĝl(N)Ψ and thus coincides with the standard
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W-algebra WN [Ψ] × ĝl(1) with parameter b2 = −Ψ2 The WN algebra has a symmetry
b → b−1 known as Feigin-Frenkel duality, demonstrating immediately the expected S-
duality relation between Y0,0,N [Ψ] and Y0,0,N [Ψ−1].

On the other hand, our definition of YN,0,0[1 − Ψ−1] involves a BRST reduction of a
product of elementary VOAs

ĝl(N)− 1
1−Ψ
× ĝl(N) Ψ

1−Ψ
× S0|N × gh(coset), (5.4)

where S0|N denotes the VOA of N complex free fermions transforming in a fundamental
representation of gl(N) and gl(coset) a bc ghost system valued in the gl(N) Lie algebra.

The BRST complex is essentially a symmetric description of a coset construction, which
is essentially the analytic continuation of the well-known coset definition of theWN algebra.
See e.g. [115] for a review and further references on this “triality” enjoyed byWN algebras.

The general case leads to many new dualities for VOAs YN1,N2,N3 .

Similarly, the resolved conifold diagram preserves the Z2 ×Z2 subgroup leading to the
following duality action

W1|1
K,L̄,M,N̄

[Ψ] ↔ W1|1
K,M̄,L,N̄

[
1

Ψ

]
W1|1

K,L̄,M,N̄
[Ψ] ↔ W1|1

N,L̄,M,K̄

[
1

Ψ

]
. (5.5)

In the case where both left and right algebras have a known BRST definition, we are led
to many new dualities. Similarly, we expect that the triality of W1+∞ becomes Z2 × Z2

duality for Wρ
1|1×∞ generalizing the story of [77] for ρ = 1

2
.

Note also that for ρ = 0 the algebra is conjectured to be independent of the resolution
of the X-diagram (an issue discussed in the next section). One can then consider the
unresolved diagram and see that its symmetry is enhanced to S4 that permutes the numbers
K,L,M,N . We expect these algebras to be symmetric under such an enhanced symmetry.

Moreover, we expect that for general ρ, the S4 symmetry is broken to Z2 × Z2 only
in a very mild way. It turns out that different resolutions lead to the same algebra up to
the contribution of extra b, c ghosts (see the next section). We can then expect that the
S4 duality will indeed be present for general ρ but only up to such contributions (we say
that the S4 duality holds up to the spable equivalence [81]). Moreover, note the assymetry

2Recall our choice of notation ĝl(N)Ψ in terms of ŝl(N)Ψ−N and the ĝl(1) current
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in the definition of the type 1|1 algebra originating from the two successive DS-reductions
with the two orders associated to the two possible resolutions. It is natural to expect that
the symmetric situation (a single BRST reduction with respect to the sl(2) embedding
that is a sum of the two sl(2) embeddings) leads to an algebra naturally associated to the
unresolved diagram. Such a tetravalent junction preserves the full S4 symmetry and one
expects this symmetry to descent to the corresponding VOA. It is easy to check that the
central charge of the algebras S4-invariant.

5.2 Stable equivalence and flips

In this section, we comment on the flip transition that plays an important role in the liter-
ature related to the BPS counting. At the level of diagrams the flip transition corresponds
to the sliding of fivebranes. We conjecture that the algebras associated to diagrams related
by a flip transformation differ by a trivial algebra of decoupled bc and βγ ghosts. These
flip transitions and independence of the algebra on the resolution of the diagram leads to
the notion of the stable equivalence of VOAs [81].

As a test of this conjecture we argue that central charges of the algebras related by a
flip differ only by a contribution of bc and βγ ghosts and the large Ni limit calculation
of the character is consistent as well. Many other checks have been performed in [2] and
some situations have been rigorously proved [116, 81].

5.2.1 Flip of algebras of type 1|1
Let us start with a flip in the resolved conifold diagram. This transition exchanges the
order of the two D5-branes as shown in the figure 5.2. The related algebras are

W1|1
KL̄,M,N̄

[Ψ] ↔ W1|1
L,K̄,N,M̄

[−Ψ] (5.6)

where the minus sign is a consequence of the parity transformation relating the right hand
side of the figure 5.2 to the standard resolved configuration.

The central charges of the flipped algebras differ by a Ψ-independent factor

c
[
W1|1

KL̄,M,N̄
[Ψ]
]
− c

[
W1|1

L,K̄,N,M̄
[−Ψ]

]
= 4ρ(2ρ2 − 1). (5.7)

This is exactly the contribution coming from free (b, c) systems with conformal dimensions

(ρ+ 1,−ρ), (ρ+ 2,−ρ), . . . , (−ρ, ρ+ 1) (5.8)
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Figure 5.2: Flip transition for type 1|1 (resolved conifold) algebras.

since (for ρ < 0)

−ρ∑
h=ρ+1

c[h] = 4ρ(2ρ2 − 1) (5.9)

where c[h] is the central charge of the stress-energy tensor of the b, c ghost system with
respect to which hc = h and hb = 1− h are the conformal weights of the c, b fields.

At the level of characters, the difference is by a factor of (for ρ negative)

−ρ+ 1
2∏

m=ρ+ 1
2

χFm =
∞∏
n=0

−ρ+1∏
m=ρ+1

(
1 + qn+m

)
(5.10)

as can be most easily seen from the BRST construction. The only difference at the level
of the BRST reduction is in the two off-diagonal blocks whose elements are charged under
the Cartan elements of both sl(2) embeddings. The contributions from the WK−M and
WL−N factors are present in the characters of both algebras. The integral projecting on the
gl(N |M) invariant combinations is the same as well since all the fields under the integral
originate from the off-diagonal blocks charged with respect to only one of the two sl2
embeddings. The only difference is thus in the product of χFi factors given above.

Example - Flip of ĝl(1)Ψ The flip of the ĝl(1)Ψ algebra is the simplest but also trivial
example of a flip transition since the algebra is simply

DS0[ĝl(1)Ψ] = ĝl(1)Ψ ×F (5.11)

from the definition. It automatically contains a decoupled fermion F .
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Example - Flip of Virasoro ×ĝl(1)Ψ A non-trivial example is the flip of theW1|1
2,0̄,0,0̄

[Ψ]

algebra, i.e. W1|1
0,2̄,0,0̄

[−Ψ]. The BRST definition of the algebra is in terms of a reduction of

ĝl(2)Ψ × {χ1, ψ1} × {χ2, ψ2} × {b, c} (5.12)

implemented by the BRST charge

Q =

∮
dz(J12 + χ1ψ2 − 1)c (5.13)

that can be identified with the BRST reduction associated to the principal sl(2) embedding
inside gl(2) but with the current modified by a fermionic bilinear.

The cohomology is generated by fields

J = J11 + J22

ψ̃1 = ψ1 + cbψ2 + J11ψ2

χ̃1 = χ1

ψ̃2 = ψ2

χ̃2 = χ2 − cbχ1 + J11χ1 (5.14)

T =
1

2Ψ
(J11J11 + 2J12J21 + J22J22)

−c∂b− ψ1∂χ1 + ∂ψ2χ2 +
Ψ− 1

2Ψ
(J ′11 − J ′22)

where T is the stress-energy tensor with the central charge

c = 10− 6Ψ− 6

Ψ
(5.15)

as expected. The fields (ψ̃1, χ̃1) and (ψ̃2, χ̃2) have OPEs of a pair of free fermions. Their
OPEs with J are

J(z)ψ̃1 ∼ −
Ψψ̃2

(z − w)2
, J(z)χ̃1 ∼

Ψχ̃2

(z − w)2
. (5.16)

χ̃1 and ψ̃2 are primaries of conformal dimension 0 while χ̃2 and ψ̃1 having OPEs with the
stress-energy tensor of the form

T (z)χ̃2(w) ∼ (1−Ψ)χ̃1

(z − w)3
+

χ̃2(w)

(z − w)2
+
∂χ̃2(w)

z − w

T (z)ψ̃1(w) ∼ −(1−Ψ)ψ̃2

(z − w)3
+

ψ̃1(w)

(z − w)2
+
∂ψ̃1(w)

z − w (5.17)
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Note that one can modify both the J current and the stress-energy tensor T as

J → J + Ψ∂χ̃1ψ̃2

T → T − ∂χ̃1ψ̃1 − ∂ψ̃2χ̃2 −Ψ∂χ̃1χ̃1ψ̃2∂ψ̃2 +
Ψ− 1

2
∂2(χ̃1ψ̃2). (5.18)

After such a modification, the free fields decouple and one is left with the Virasoro algebra
times a U(1) algebra. The central charge of the modified stress-energy tensor

14− 6Ψ− 6

Ψ
(5.19)

is the same as the central charge of the algebra before the flip.

5.2.2 Flip of algebras of type 0|2

K

L
M

N

L

K

N

K −M

M −N

N

K −M

M −N
N

N M K N
K −M +N

K

K −M +N

Figure 5.3: Flip transition for type 0|2 algebras in the case of K ≥M ≥ N . A fixed number
of D3-branes is attached to each D5-brane. The crossing of D5-branes acts non-trivially
on the number of D3-branes at the internal face.

Flipping D5-branes in the 0|2 diagram results in the change of numbers of D3-branes
between the two fivebranes as shown in the figure 5.3. The algebras related by such a flip
are

W0|2
K,L̄,M,N

[Ψ] ↔ W0|2
K,L̄,K−M+N,N

[Ψ]. (5.20)
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One can show analogously to the resolved conifold diagram that the central charges and
characters again differ by a contribution of 2|ρ| copies of the (β, γ) systems with correct
conformal dimensions. The only difference in this case is the different expression for the
parameter ρ and the bosonic nature of the decoupled fields.

Example W0|2
0,0̄,2,3

Let us show that the algebra W0|2
0,0̄,2,3

associated to the flip of the

W(2)
3 × ĝl(1) algebra contains W(2)

3 × U(1) as a subalgebra together with a decoupled free
fermion.

The algebra W0|2
0,0̄,2,3

is defined as a BRST reduction of ĝl(3)Ψ×{b12, c12} by the BRST
charge

Q2 =

∮
dz(J12 − 1)c12. (5.21)

The cohomology contains the currents

J1 =
J11 + J22

Ψ
− 1−Ψ

Ψ
J33,

J2 = J11 + J22 (5.22)

that are mutually local and they are normalized according to (4.5) as

J1(z)J1(w) ∼ Ψ + 3
Ψ
− 4

(z − w)2
, J1(z)J1(w) ∼ 2(Ψ− 1)

(z − w)2
. (5.23)

Apart from these currents, the reduced algebra contains generators of dimension 1
2

given
by

G+
1 = J13,

G−1 = J32 (5.24)

and of dimension 3
2

of the form

G+
2 = J23 + (Ψ− 2)J11J13 + (Ψ− 3)J13J22 + J13bc,

G−2 = J31 + (Ψ− 3)J11J32 + (Ψ− 2)J22J32 − J32bc (5.25)

together with the stress-energy tensor

T =
1

2Ψ

∑
i,j=1,2,3

JijJji +
1

2
∂J11 −

1

2
∂J22 + ∂b12c12 (5.26)
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with the central charge

c = 25− 24

Ψ
− 6Ψ. (5.27)

The superscripts ± in the expressions above denote the charge of the gluing fields with
respect to J1 and J2 currents.

Let us discuss OPEs of the algebra. G±1 form subalgebra of symplectic bosons with
OPE

G+
1 (z)G−1 (w) ∼ 1

z − w. (5.28)

The operator product expansions between Ji currents and G±2 fields are

J1(z)G±2 (w) ∼ ± G±2
z − w, J2(z)G±2 (w) ∼ (Ψ− 1)(2Ψ− 5)G±1

(z − w)2
± G±2
z − w, (5.29)

OPEs between G±1 and G±2 fields are

G±1 (z)G±2 (w) ∼ ±(2−Ψ)G±1 G
±
1

z − w
G±1 (z)G∓2 (w) ∼ ± 1

z − w

(
(3−Ψ)G−1 G

+
1 +

Ψ

Ψ− 1
J1 +

1− 3Ψ + Ψ2

Ψ− 1
J2

)
. (5.30)

Finally for OPEs between G±2 fields we find

G±2 (z)G±2 (w) ∼ ±
(
2Ψ3 − 13Ψ2 + 27Ψ− 17

)( G±1 G
±
1

(z − w)2
+
G±1 ∂G

±
1

z − w

)
G+

2 (z)G−2 (w) ∼ (Ψ− 1)(Ψ− 3)(2Ψ− 5)

(z − w)3

+
1

(z − w)2

(
2(2Ψ−Ψ2)

Ψ− 1
J1 +

(Ψ− 3)(Ψ− 2)

Ψ− 1
J2 + (2Ψ3 − 11Ψ2 + 16Ψ− 3)G+

1 G
−
1

)
+

1

z − w

(
ΨT + 2(2Ψ− 5)J2G

+
1 G
−
1 −

Ψ2

2(Ψ− 1)2
J1J1 +

Ψ(6− 7Ψ + 2Ψ2)

(Ψ− 1)2
J1J2

+
(2Ψ4 − 12Ψ3 + 21Ψ2 − 8Ψ− 4)

2(Ψ− 1)2
J2J2 + (1−Ψ)G+

1 G
−
2

+ 2(Ψ3 − 6Ψ2 + 10Ψ− 3)∂G+
1 G
−
1 + (Ψ2 − 4Ψ + 3)G+

1 ∂G
−
1

+
2Ψ−Ψ2

Ψ− 1
∂J1 −

Ψ2 − 5Ψ + 6

2(Ψ− 1)
∂J2

)
. (5.31)
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If we redefine the generators of the algebra as

J1 → J1 +G+
1 G
−
1

J2 → J2 +G+
1 G
−
1

G+
2 → G+

1 − (G+
1 )2G−1 +

ΨJ1G
+
1

1−Ψ
+

(1− 3Ψ + Ψ2)J2G
+
1

1−Ψ
+ (Ψ− 1)∂G+

1

G−2 → G−1 −G+
1 (G−1 )2 +

ΨJ1G
−
1

1−Ψ
+

(1− 3Ψ + Ψ2)J2G
−
1

1−Ψ
− (Ψ− 1)∂G−1

T → T − 1

2
∂(G+

1 G
−
1 ) (5.32)

we discover that the currents G±1 form a symplectic boson pair and they decouple. The

remaining algebra can be identified with the algebra W(2)
3 × ĝl(1) with the stress-energy

tensor of the correct central charge

c = 26− 24

Ψ
− 6Ψ. (5.33)

5.2.3 Flip in a general diagram

In a general tree diagram, the flip is a local transition that influences only the vertices
associated to the flipped leg and the edge along which the leg flipped. In particular, this
means that both the vacuum character and the central charge of the full algebra differ by
a contribution of free fields that can presumably be decoupled and the change in these
quantities can be read-off locally.

N
N

Figure 5.4: Flip leading to the stable equivalence DSN [ĝl(N)Ψ ×Fgl(N)] ' DSN [ĝl(N)Ψ].

Note also that both the central charge and the vacuum character remain the same in the
case of vanishing ρ = 0. At the level of BRST reduction, one can indeed see that the two
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reductions can be related by a unitary transformation of the current algebra generators. It
is natural to expect that the two algebras related by a flip are equal in arbitrary diagram
as long as ρ = 0.

The equivalence of VOAs up to the contribution of free fields has been called by Creutzig
the stable equivalence [81] and will be denoted as '. For example, considering the config-
urations of type M |N , the brane transitions lead to the conjecture of stable equivalence of
algebras related by a permutation of the DS reductions in their BRST definition, schemat-
ically

DS[. . .DSn[DSm[. . .DS[ ̂gl(K|L)] . . . ]

̂gl(M |N)
' DS[. . .DSm[DSn[. . .DS[ ̂gl(K|L)] . . . ]

̂gl(M |N)
. (5.34)

In particular considering the flip from the figure 5.4, one recovers the relation from [116, 81]:

DSN [gl(N)×Fgl(N)] ' DSN [gl(N)] (5.35)

that generalizes to all the other Drinfeld-Sokolov reductions DSρ by modifying the bound-
ary condition on the right corresponding to a more general diagram of type 1|M .

5.3 Ortho-symplectic algebras

5.3.1 Branes and O3-planes

In this section, we describe an analogue of the above construction to a Y -junction of defects
in N = 4 SYM with orthogonal and symplectic gauge groups. Theories with these gauge
groups can be realized by D3-branes sitting on an O3-plane. The gauge theory perspective
on boundary conditions and interfaces associated to fivebranes in the presence of O3-planes
was developed in [63], building on a broad literature in string theory [117, 118, 119] and
gauge theory [120, 121, 122].

There are four O3-planes in type IIB string theory. When superimposed to a stack
of D3 brane, they give rise to four possible choices of gauge groups: O3− planes give an
SO(2n) gauge theory, Õ3− planes give an SO(2n + 1) gauge theory, O3+ planes give an
Sp(2n) gauge theory and Õ3+ planes give a gauge theory denoted as Sp(2n)′, which is the
same as Sp(2n) but has a different convention for the θ angle, so that θ = 0 in Sp(2n)′ is
the same as θ = π in Sp(2n).
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The O3− plane is unaffected by duality transformations. Correspondingly, SO(2n)
N = 4 SYM has a PSL(2, Z) S-duality group. The remaining three types of O3 planes are
exchanged by duality transformations. A T transformation clearly maps Sp(2n)↔ Sp(2n)′

and relates O3+ and Õ3+. It leaves Õ3− invariant. On the other hand, an S transformation
exchanges the Sp(2n) and SO(2n + 1) gauge groups and the Õ3− and O3+ planes, while
it maps Sp(2n)′ to itself and leaves Õ3+ invariant.

The story is further complicated by the fact that the elementary interfaces in the
presence of O3 planes are associated to “half-fivebranes” that are Z2 projections of ordinary
fivebranes. The type of O3 planes jumps across these interfaces. As a consequence, half-
NS5 interfaces must interpolate between SO(2n) and Sp(2m) or between SO(2n+ 1) and
Sp(2m)′:

NS5 NS5

O3− O3+ Õ3− Õ3+

SO(2n) Sp(2m) SO(2n+ 1) Sp′(2m)

while half-D5 interfaces must interpolate between SO(2n) and SO(2m+ 1) or Sp(2n) and
Sp(2m)′:

D5 D5

O3− Õ3− O3+ Õ3+

SO(2n) SO(2m+ 1) Sp(2n) Sp′(2m)

The gauge theory description of the interfaces is very similar to the unitary cases,
except that the orbifold projection cuts in half the interface degrees of freedom. Half-NS5
interfaces support “half-hypermultiplets” transforming as bi-fundamentals of SO × Sp. 3

Half-D5 interfaces between orthogonal groups involve a Nahm pole of odd rank 4. Half-

3Notice that half-hypermultiplets must transform in a symplectic representation, precluding such ele-
mentary interfaces for SO × SO or Sp× Sp. Furthermore, half-hypermultiplets have a potential anomaly
which has to be cancelled by inflow from the bulk, constraining the choice of Sp(2n) vs Sp(2n)′ as predicted
by string theory.

4Notice that the rank of the Nahm pole must be odd for the sl(2) embedding to exist in an orthogonal
group
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D5 interfaces between symplectic groups involve a Nahm pole of even rank or a half-
hypermultiplet in the fundamental representation of Sp. 5

The half-(1, 1)-type interfaces work in a similar manner as half-NS5 interfaces, except
that the role of Sp′ and Sp is reversed because of the extra interface Chern-Simons terms.

The relation between the four-dimensional gauge theory setup and analytically contin-
ued Chern-Simons theory works in the same manner as in the unitary case, up to matter
of conventions for the levels of the corresponding Chern-Simons theories.

We use conventions where κ is the level of the ŝo currents and −κ/2 the level of the ŝp
currents. The dual Coxeter number for so(n) is n−2 and for sp(2m) is m+ 1. The critical

level for ̂osp(n|2m) is 2 − n + 2m. A half-NS5 interface in the presence of gauge theory

parameter Ψ will result in an ̂osp(n|2m)±Ψ−n+2m+2 theory, depending on which side of the
interface the SO and Sp or Sp′ groups lie.

The relation between Nahm poles and DS reductions will be the same as before. Fur-
thermore, half-hypermultiplets in the fundamental representation of Sp(2m) will map to

symplectic bosons which support ŝp(2m)− 1
2

currents. Adding n Majorana chiral fermions

will promote that to ̂osp(n|2m)1 currents.

5.3.2 Definition of ortho-symplectic Y -algebras

Depending on the choice of O3 plane in the top right corner, the Y-junction setup for
orthogonal and symplectic gauge groups gives rise to four classes of ortho-symplectic Y -
algebras: Y ±L,M,N [Ψ] and Ỹ ±L,M,N [Ψ].

Because of the duality properties of O3 planes, Ỹ +
L,M,N [Ψ] will have the same triality

properties as YL,M,N [Ψ]. Instead, triality will map into each other Y ±L,M,N [Ψ] and Ỹ −L,M,N [Ψ],
up to the usual S3 action on labels and coupling.

In particular, the definition of the algebras will imply

Y +
L,M,N [Ψ] = Y +

L,N,M [1−Ψ] Y −L,M,N [Ψ] = Ỹ −L,N,M [1−Ψ] (5.36)

and the non-trivial S-duality conjecture is

Y +
L,M,N [Ψ] = Ỹ −M,L,N [

1

Ψ
] Y −L,M,N [Ψ] = Y −M,L,N [

1

Ψ
] (5.37)

5Notice that the rank of the Nahm pole must be even for the su(2) embedding to exist in an orthogonal
group. Also, the type of Sp theory must jump across the interface for the same anomaly inflow constraint
mentioned in the previous footnote.
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etcetera.

SO(2N)

SO(2M + 1)

Sp(2L)
SO(2N + 1)

SO(2M)

Sp′(2L)

Y −L,M,N [Ψ] Ỹ −L,M,N [Ψ]

Sp(2N)

Sp′(2M)

SO(2L)
Sp′(2N)

Sp(2M)

SO(2L + 1)

Y +
L,M,N [Ψ] Ỹ +

L,M,N [Ψ]

Figure 5.5: Configurations defining ortho-symplectic Y -algebras.

We will give now a brief definition of these vertex algebras. The VOAs Y −L,M,N [Ψ]
corresponding to the first figure in 5.5 are defined as follows. There are a super Chern-
Simons theory with gauge groups OSp(2N, 2L) and OSp(2M + 1, 2L) induced at the NS5
interfaces. For L = 0, N = M or N = M + 1, there is no Nahm-pole present and
corresponding Y -algebra is a BRST reduction of

̂so(2M)Ψ−2M+2 × ̂so(2M + 1)−Ψ−2M+2

̂so(2M + 2)Ψ−2M × ̂so(2M + 1)−Ψ−2M+2 (5.38)

that lead to cosets

Y −0,M,M [Ψ] =
̂so(2M + 1)−Ψ−2M+2

̂so(2M)−Ψ−2M+2

Y −0,M,M+1[Ψ] =
̂so(2M + 2)Ψ−2M

̂so(2M + 1)Ψ−2M

. (5.39)
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For L = 0 and N > M+1 , the VOA is defined as a BRST reduction of the DS-reduction
by the (2N − 2M − 1)× (2N − 2M − 1) block

DS2N−2M−1[ŝo(2N)Ψ−2N+2]× ̂so(2M + 1)−Ψ−2M+2 (5.40)

i.e. coset

Y −0,M,N [Ψ] =
DS2N−2M−1[ŝo(2N)Ψ−2N+2]

̂so(2M + 1)Ψ−2M

. (5.41)

and similary for N < M

Y −0,M,N [Ψ] =
DS2M+1−2N [ ̂so(2M + 1)Ψ−2M ]

ŝo(2N)Ψ−2N+2

. (5.42)

For L 6= 0, levels of the super Chern-Simons theories are Ψ− 2N + 2L + 2 and −Ψ−
2M + 2L respectively. In the four cases described above, one gets BRST reductions of
similar combinations of DS-reduced and not reduced theory leading to

Y −L,M,M [Ψ] =
̂osp(2M + 1|2L)−Ψ−2M+2+2L

̂osp(2M |2L)−Ψ−2M+2+2L

,

Y −L,M,M+1[Ψ] =
̂osp(2M + 2|2L)Ψ−2M+2L

̂osp(2M + 1|2L)Ψ−2M+2L

,

Y −L,M,N [Ψ] =
DS2N−2M−1[ ̂osp(2N |2L)Ψ−2N+2L+2]

̂osp(2M + 1|2L)Ψ−2M+2L

N > M + 1,

Y −L,M,N [Ψ] =
DS2M+1−2N [ ̂osp(2M + 1|2L)Ψ−2M+2L]

̂so(2N |2L)Ψ−2N+2+2L

N < M. (5.43)

The VOA Ỹ −L,M,N [Ψ] corresponding to the second configuration in 5.5 are defined simply
as

Ỹ −L,M,N [Ψ] = Y −L,N,M [1−Ψ]. (5.44)

Let us now define the VOAs Y +
L,M,N [Ψ] corresponding to the bottom left diagram in

5.5. Let L = 0 and N = M . An Sp(2N) Chern-Simons theory is induced at the vertical
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boundary with shift in the level by 1
2
. The anomaly mismatch compensated by a (half)-

symplectic boson in a fundamental representation of Sp(2N). The VOA is then identified
with the BRST reduction of

ŝp(2N)Ψ
2
−N−1 × Ssp(2N) × ŝp(2N)−Ψ

2
−N− 1

2
(5.45)

i.e. the coset

Y +
0,N,N [Ψ] =

ŝp(2N)Ψ
2
−N−1 × Ssp(2N)

ŝp(2N)Ψ
2
−N− 3

2

. (5.46)

If M 6= N , there are no symplectic bosons present but Nahm-pole boundary conditions
appears leading for N > M to

Y +
0,M,N [Ψ] =

DS2N−2M [ŝp(2N)Ψ
2
−N−1]

̂sp(2M)Ψ
2
−M− 3

2

(5.47)

and for N < M to

Y +
0,M,N [Ψ] =

DS2M−2N [ ̂sp(2M)−Ψ
2
−M− 1

2
]

ŝp(2N)−Ψ
2
−N−1

. (5.48)

If L 6= 0, one gets analogous expression with super-groups and dual super-Coxeter
numbers:

Y +
L,N,N [Ψ] =

̂osp(2L|2N)−Ψ+2N−2L+2 × Sosp(2L|2N)

̂osp(2L|2N)−Ψ+2N−2L+3

,

N > M YL,M,N [Ψ] =
DS2N−2M [ ̂osp(2L|2N)−Ψ+2N−2L+2]

̂osp(2L|2M)−Ψ+2M−2L+3

(5.49)

N < M YL,M,N [Ψ] =
DS2M−2N [ ̂osp(2L|2M)−Ψ+2M−2L+1]

̂osp(2L|2N)−Ψ+2M−2L+2

. (5.50)
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The last diagram of 5.5 gives rise to Ỹ +
L,M,N [Ψ]:

Ỹ +
L,N,N [Ψ] =

̂osp(2L+ 1|2N)−Ψ+2N−2L+1 × Sosp(2L+1|2N)

̂osp(2L+ 1|2N)−Ψ+2N−2L+2

,

N > M Ỹ +
L,M,N [Ψ] =

DS2N−2M [ ̂osp(2L+ 1|2N)−Ψ+2N−2L+1]

̂osp(2L+ 1|2N)−Ψ+2M−2L+2

(5.51)

N < M Ỹ +
L,M,N [Ψ] =

DS2M−2N [ ̂osp(2L+ 1|2M)−Ψ+2M−2L]

̂osp(2L+ 1|2N)−Ψ+2M−2L+1

. (5.52)

where Sosp(n|2N) denotes a combination of N symplectic bosons and n real fermions which

supports bilinear ̂osp(n|2N) currents.

5.3.3 Central charge

Central charge of orthosymplectic Y -algebras are given by (see appendix of [3] for a detailed
calculation)

c−L,M,N [Ψ] = c̃−L,N,M [1−Ψ]

= −(2(L−M)− 1)(2(L−M) + 1)(L−M)

Ψ− 1

+
2(2(L−N) + 1)(L−N + 1)(L−N)

Ψ
+2Ψ(2(M −N) + 1)(M −N + 1)(M −N)

−2L(1 + 6M2 +M(6− 12N)− 6N + 6N2)

+4M3 − 3M(1− 2N)2 +N(5− 12N + 8N2) (5.53)

and

c+
L,M,N [Ψ] = c̃+

L− 1
2
,M,N

[Ψ]

= −2(M − L)(2(M − L) + 1)(M − L+ 1)

1−Ψ

−2(N − L)(2(N − L) + 1)(N − L+ 1)

Ψ
+Ψ(2(M −N)− 1)(2(M −N) + 1)(M −N)

+L(1− 12(M −N)2)−N + 2(M −N)2(3 + 2M + 4N). (5.54)
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One can check that the expressions above are indeed invariant under transformations 5.37.
Note also that S3 action preserves Ỹ +-algebras and we can indeed write their central charge
c̃+
L,M,N [Ψ] in S3 invariant way

c̃+
L,M,N [Ψ] =

1

2

1

Ψ
(L−N)(4(L−N)2 − 1) +

1

2
(1− 1

Ψ
)(N − L)(4(N − L)2 − 1)

1

2
Ψ(M −N)(4(M −N)2 − 1) +

1

2
(1−Ψ)(N −M)(4(N −M)2 − 1)

1

2

1

1−Ψ
(L−M)(4(L−M)2 − 1) +

1

2

Ψ

Ψ− 1
(M − L)(4(M − L)2 − 1)

−2(L+M − 2N)(L− 2M +N)(−2L+M +N) +
1

2
. (5.55)

Note that the centra charges factorize nicely

((2(M −N) + 1)Ψ + 2(L−N)− 1)(2(M −N + 1)Ψ + 2(N − L− 1))((M −N)Ψ +N − L)

Ψ(Ψ− 1)
,

((2(M −N) + 1)Ψ− 2(L−N − 1))((2(N −M)− 1)Ψ + 2(L−N)− 1)((N −M)Ψ + L−N)

Ψ(Ψ− 1)
.(5.56)

5.3.4 Relation to the even W∞
Let us conclude this section by few comments related to the orthosymplectic algebras.
First, one can check that characters of the algebra in the large L,M,N limit equal the one
of the even W∞ algebra with even-spin content W2,W4,W6, . . . . It is known that there
again exists a two-parameter family of algebras [82, 83] with such a spin content. It is
natural to expect that the finite L,M,N algebras will be truncations of such an universal
algebra. The problem is that some cosets produce an extra generator that does not fit the
spin content. The conformal weight of such an extra generator goes to infinity in the large
L,M,N limit. It might still be possible that this extra generator can be either decoupled or
projected out of the algebra by some orbifold. Note also that the more complicated duality
structure from [82] corresponds to the more complicated dualities of the webs discussed
above. Finally, from the string theory perspective, the transition to the ortho-symplectic
algebras correspond to taking orientifolds of the original setup. It would be interesting to
explore a possibility that the even W∞ algebra can be also obtained from some projection
of the standard W∞ algebra.

128



5.4 Modules

5.4.1 Gauge theory origin

Line operators Apart from the local operators living at the two-dimensional corner, line
operators supported at each of the three interfaces are part of the twisted theory as well.
Consider line operators supported at one of the three interfaces, going from the infinity
and ending at the corner at point z ∈ C. The endpoint z determines the insertion of the
corresponding vertex operator from the CFT point of view. The process of fusing local
operators living at the corner with the line endpoint generates a module for YN1,N2,N3 [Ψ].

Line operators supported at the NS5 interface can be identified with the Wilson lines
associated to a finite-dimensional representation µ of the Lie super-algebra gl(N1|N3) as
discussed in [47]. Similarly, line operators at the D5-interface are ’t Hooft operators as-
sociated to gl(N3|N2) representations and line operators at the (1,1)-interface are Wilson
line operators associated to representations of gl(N2|N1). These modules play the role of
degenerate modules of YN1,N2,N3 [Ψ]. The algebra YN1,N2,N3 [Ψ] has a natural grading by spin
and degenerate modules are characterized by the fact that they contain less states in some
graded component compared to a generic module.

Gukov-Witten defects Apart from the line operators discussed above, Gukov-Witten
(GW) surface defects [79] also survive the GL twist. Inserting such a GW defect at a point
z ∈ C and attaching it to one of the corners of the Y-shaped junction, one gets a new
(continuous) family of modules for the corner VOA.

M 2
µ

M 1
ν

M 3
λ

λ
(1)
i

λ
(2)
i

λ
(3)
i

Figure 5.6: Line operators M i
µ labeled by finite representations of the gauge groups are

supported at interfaces and give rise to degenerate modules of VOA. GW defects attached
to the corners of the diagram are labeled by λ

(1)
i , λ

(2)
i , λ

(3)
i in N1, N2 and N3 complex tori

with modular parameters Ψ and give rise to generic modules.
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GW defects in the U(N) gauge theory are labeled according to [79, 46, 47] by four real
parameters6 (α, β, γ, η) ∈ (T, t, t, T ), where T is the Cartan of the gauge group U(N) and t
the Cartan subalgebra of the Lie algebra u(N). In the GL-twisted theory, parameters β and
γ were argued in [47] to deform the integration contour of the complexified Chern-Simons
theory. On the other hand, the combination

λ = Ψα− η (5.57)

parametrizes the monodromy of the complexified gauge connection A = A + ωφ around
the defect, i.e.

A(z) ∼ diag(λ1, . . . , λN)

z
(5.58)

near the defect at the origin z = 0. The parameter ω is related to Ψ in such a way that
A is a closed combination at the interface (modulo a gauge transformation). Since both

α and η live in the Cartan subgroup α, η ∈ (S1)
N

of the gauge group U(N), we see that
the corresponding monodromies (and Gukov-Witen defects in the GL-twisted theory) are
labeled by points in N complex tori of modular parameter Ψ.

Let us discuss S-duality transformation of the GW parameters identified in [79]. The
pair (β, γ) transforms as

S : (β, γ)→ |τ |(β, γ) (5.59)

under the S-transformation and it is unaffected by the T-transformation. On the other
hand, the pair (α, η) relevant to us transforms as

S : (α, η)→ (η,−α), T : (α, η)→ (α, η − α). (5.60)

The complex parameter λ of the twisted theory transforms as

S : λ = Ψα− η → λ′ = α− 1

Ψ
η, T : λ→ λ. (5.61)

We see that λ is invariant under the T-transformation and the S-transformation simply
multiplies the Gukov-Witten parameter by 1/Ψ and exchanges the role of α and η. In later
sections, we will see that this transformation is consistent with the triality covariance of
YN1,N2,N3 .

6In general, the parameter η lives in the Cartan subalgebra of the Langlands dual gauge group T∨.
Since U(N) is left invariant under the Langlands duality, we do not distinguish them in this work.
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When a GW defect ends at an interface, one needs to further specify a boundary
condition for the defect. We will see later that the choice of the boundary condition
lifts λ(κ) for κ = 1, 2, 3 living in the Nκ complex-dimensional torus of in each corner to
λ̃(κ) ∈ CNκ . The boundary line of the surface operator can be fused with line operators
discussed above. Such a fusion changes the boundary condition for the GW defect. For
example in the Y0,0,1 configuration, line operators supported at the NS5 interface produce
a defect with charge n ∈ Z that lifts the parameter η and the line defect supported at the
other interface creates a vortex of monodromy Ψm ∈ ΨZ lifting the parameter α. Similarly
in the other two corners, the fundamental domain of the torus is lifted to the full C by
modules coming from line operators at the corresponding two boundaries.

For generic values of GW-parameters, the defect breaks the gauge group to the maximal
torus at the defect. Corresponding modules are going to be associated to generic modules
for the corner VOA. For special values of parameters, a Levi subgroup of the gauge group
is preserved and we expect the corresponding representations to be (partially) degenerate,
i.e. the associated Verma module contains some null states. For example, if two of the
monodromy parameters are specialized, the next-to-minimal Levi subgroup U(2)×U(1)Ni−2

is preserved. One can decorate such a configuration by line operators in some representation
of the preserved SU(2) gauge group. In the parameter space of the lifted GW parameters,
one gets a discrete set of codimension one walls corresponding to degenerate modules for
each pair of Cartan elements. The full parameter space of generic modules thus has a
chamber-like structure with the modules degenerating at the walls. At the intersection of
more walls, we expect further degeneration to appear. These intersections correspond to
larger Levi subgroups. In the case that GW parameters are maximally specialized, we have
a trivial interface (there are no singularities in the bulk) and we expect the corresponding
modules to be maximally degenerate. The corresponding modules are labeled by finite
representations of gauge groups (labeling line operators at the interfaces).

Finally, let us note that throughout the discussion above, one needs to mod out Weyl
groups of U(Ni) since modules related by the Weyl transformations are gauge equivalent.

Y0,0,1 = ĝl(1) example Let us illustrate how above gauge theory elements fit nicely

with the simplest example Y0,0,1 = ĝl(1). This example is extremely important since all
the other algebras can be obtained from a fusion (coproduct) combined with the triality
transformation of this simple algebra.

The insertion of the complexified gauge connection A at the corner can be identified
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with the ĝl(1) current J normalized as

J(z)J(w) ∼ Ψ

(z − w)2
. (5.62)

In [1], line operators supported at the NS5-boundary were identified with electric modules
of charge n ∈ Z and conformal dimension 1

2Ψ
n2. Line operators at the D5-boundary were

identified with magnetic operators with monodromy Ψm ∈ ΨZ and conformal dimension
Ψ
2
m2. On the other hand, GW defects are parametrized by a complex torus with the

modular parameter Ψ parametrizing the monodromy for the complexified gauge connection
in the bulk. If the GW defect ends at the NS5 boundary, one can fuse the end line of the
defect with line operators supported at the boundary. Such a line operator shifts the charge
by 1 and lifts the torus of the Gukov-Witten defect in the real direction. Similarly, fusing
with modules supported at the D5-boundary lifts it in the Ψ direction tessellating C as
shown in the figure 5.7. The GW parameter λ thus lifts to λ̃ ∈ C that can be identified
with the J0 eigenvalue. The fusion with an electric module shifts it by one λ̃ → λ̃ + 1,
whereas the fusion with a magnetic module shifts it by Ψ, i.e. λ̃ → λ̃ + Ψ. The module
coming from the GW defect has charge λ̃ and conformal dimesion 1

2Ψ
λ̃2.

1

Ψ λ

λ + 2 + Ψ

Figure 5.7: The lattice structure of modules of the ĝl(1) algebra. GW-defects are labeled by
a point in the torus of modular parameter Ψ. Fusion with electric and magnetic modules of
charges n and Ψn lift the torus along the full complex plane parametrizing generic module
of the algebra. Lattice points correspond to dyon modules of the algebra and the position
in the fundamental domain corresponds to the GW-parameter. For example, the modules
of charge λ̃ = λ + 2 + Ψ and λ in the fundamental domain are related by fusion with the
electric module of charge 2 and the magnetic module of charge 1.
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Note that the S-duality transformation exchanges NS5-brane and D5-brane and the
orientation of the diagram gets reversed. The transformed level of the algebra is 1/Ψ
and the transformed lifted GW parameter becomes λ̃/Ψ. This is consistent both with
the transformation of degenerate modules and the unlifted GW parameter. Note that
conformal dimension of the generic module is invariant under the S-duality transformation
and so is the charge if we renormalize J̃ = 1√

Ψ
J . The roles of α and η interchange.

Let us show that transformations of parameters are also consistent with the triality
relation

Y0,0,1 [Ψ] = Y0,1,0

[
Ψ̃ = 1− 1

Ψ

]
. (5.63)

The insertion of A at the corner of Y0,1,0[Ψ̃] leads to the ĝl(1) Kac-Moody algebra normal-
ized as

J(z)J(w) ∼ 1− Ψ̃

(z − w)2
. (5.64)

Consider a GW defect with the parameter λ̃(2). The charge of the corresponding module

with respect to the normalized current J/
√

Ψ̃− 1 equals

λ̃(2)√
1− Ψ̃

=
λ̃(2)√

1− 1 + 1
Ψ

=
√

Ψλ̃(2). (5.65)

Comparing it with the charge with respect to the normalized current of Y0,0,1[Ψ] that equals
λ̃(3)/

√
Ψ, we see that the two GW parameters must be indeed related by λ̃(3) = λ̃(2)/Ψ

consistently with the above discussion.

Reparametrization of GW defects The trivalent junction of interest is invariant un-
der the S3 subgroup of the SL(2,Z) group of S-duality transformations. To get manifestly
triality invariant parametrization of the algebra and its modules, let us introduce parame-
ters h1, h2, h3 by

Ψ = −h2

h1

, h1 + h2 + h3 = 0. (5.66)

Note that the parameters hi are determined up to the overall rescaling. The VOA is
independent on such a rescaling. Up to the rescaling, one can relate parameters hi and Ψ
for example as

h1 =
1√
Ψ
, h2 = −

√
Ψ, h3 =

√
Ψ− 1√

Ψ
. (5.67)
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Instead of the lifted GW parameter λ̃(3) parametrizing defects in the third corner, one can
consider the combination

x(3) =
1√
Ψ
λ̃(3) = h1α

(3) + h2η
(3) (5.68)

and similar combinations in the other two corners

x(2) = h3α
(2) + h1η

(2)

x(1) = h2α
(1) + h3η

(1). (5.69)

In the Y0,0,1 example, we can identify the parameter x(3) with the coefficient in the
exponent of the vertex operator7

exp
[
x(3)φ(w)

]
(5.70)

in the free field realization of the module with the current J (3) = ∂φ(3) = J/
√

Ψ normalized
as

J (3)(z)J (3)(w) ∼ − 1

h1h2

1

(z − w)2
. (5.71)

In this parametrization, the electric module M2 of unit charge corresponds to α(3) = 1
whereas the magnetic module to η(3) = 1.

In the other two frames Y1,0,0 and Y0,1,0 with currents J (κ) = ∂φ(κ) normalized as

J (κ)(z)J (κ)(w) ∼ − hκ
h1h2h3

1

(z − w)2
, (5.72)

parameters x(κ) are again exponents of the corresponding vertex operator. We will later
see that parameters x

(κ)
i can be identified with shifts of exponents of N1 +N2 +N3 vertex

operators also for general YN1,N2,N3 .

In the parametrization using hi, the triality tranformation simply permutes hκ together
with parameters α(κ), η(κ). The invariance of the charge of the current normalized to
identity is manifest.

7In the following we will drop the normal ordering symbols and we assume all the exponential vertex
operators are normal ordered.
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5.4.2 Generic modules

Let us turn to the discussion of generic modules of YN1,N2,N3 [Ψ] associated to Gukov-Witten
defects. We start with a review of the algebra of zero modes and how to parametrize
modules of a VOA induced from modules of the zero mode algebra. We review a compact
way to parametrize highest weights in terms of Yangian generating functions ψ(u). The,
we describe a general structure of the variety of highest weights parametrizing generic
representations of YN1,N2,N3 in the primary basis. The next two sections state the generating
function for such representations and related its parameters with Gukov-Witten parameters
and parameters of Fock modules in the corresponding free field realization of modules.
Finally, a simple example of the variety of highest weights.

Zero modes and generic modules A rich class of YN1,N2,N3 [Ψ] representations can be
induced from representations of the subalgebra of zero modes

X0 =
1

2πi

∮
dzzh(X)−1X(z) (5.73)

for X a field of spin h(X). Starting with a highest-weight vector anihilated by all positive
modes, one can show that the algebra of zero modes of truncations of W1+∞ acting on the
highest weight vector is commutative [76]. We can thus define a one-dimensional module
for the zero-mode algebra by prescribing how zero modes of the strong generators Wj act.
If there are relations in the space of fields (which show as singular vectors of the vacuum
Verma module), the zero mode of the corresponding null fields must vanish when acting
on the highest weight state. The existence of null fields thus constrains possible highest
weights leading to a variety of highest weights.

Let us add few comments:

1. In the math literature, the algebra of zero modes acting on the highest weight state
appears under the name of the Zhu algebra8 [124]. If the Zhu algebra is commutative
(as in the YN1,N2,N3 [Ψ] case [76]) the variety of highest weights is the spectrum of the
Zhu algebra.

2. Not all the modules produced by gluing are induced from the algebra of zero modes
with trivial action of the positive modes on the highest weight vectors. Gluing of

8The Zhu commutative product is defined as a modified normal ordered product [X] ? [Y ] = (X,Y ) +
corrections. The corrections are the commutators [Y1, Y−1] + [Y2, Y−2] + . . . from the mode expansion of
the normal ordered product acting on the highest weight state. For a more precise comparison see [123].
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highest weight modules of YN1,N2,N3 [Ψ] leads in general to irregular modules of the
glued algebra. We will later illustrate this phenomenon on the simplest example of
the ĝl(2) Kac-Moody algebra.

3. Even in the case when the module of the glued algebra has a trivial action of positive
modes on the space of highest weights, the space of highest weights itself generically
forms an infinite-dimensional representation of the zero mode algebra.

Generating function of highest weights for YN1,N2,N3 Generic highest weight mod-
ules of a VOA with a commutative algebra of zero modes are parametrized by the action

of such zero modes on the highest weight state. For example, modules of the ĝl(1)×WN ≡
Y0,0,N algebra are labeled by N highest weights, i.e. eigenvalues of Wi zero modes for
1, 2, 3, . . . N . Analogously, a generic representation of W1+∞ is specified by an infinite set
of higher spin charges of the highest weight state, one for each independent generator of spin
1, 2, 3, . . .. To label a generic highest weight representation of W1+∞ and its truncations,
it is convenient to introduce a generating function of the highest weight charges.

We will not be able to write down explicitly the generating function of highest weights
in the primary basis of the algebras. Instead, we will see that the modules can be easily
parametrized using the Yangian description in terms of generators ψi, fi, ei from [80, 98].
We will specify the module by the eigenvalues of the commuting ψi generators on the
highest weight state encoded in the generating function

ψ(u) = 1 + h1h2h3

∞∑
j=0

ψj
uj+1

. (5.74)

Another possibility to encode the highest weight charges is in terms of the generating
function of U -charges of the quadratic basis9 of W1+∞. U -basis is particularly useful for
description of Y0,0,N with the generating function given by

U(u) =
N∑
k=0

uk
(−u)(−u+ α0) · · · (−u+ (k − 1)α0)

(5.75)

where uj are the eigenvalues of zero modes of the Uj-generators of Y0,0,N and u0 ≡ 1. The
generating function is a ratio of two N -th order polynomials in u-plane, so we may factorize

9OPEs of theW1+∞ algebra in the U-basis contain only quadratic non-linearities with all the structure
constants fixed in [5].
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it and write

U(u) =
N∏
j=1

u− Λj − (j − 1)α0

u− (j − 1)α0

. (5.76)

As shown in [98], the transformation between generating function U(u) and ψ(u) is given
by

ψ(u) =
u−Nα0

u

U(u− α0)

U(u)
(5.77)

if we identify the parameters as

h1h2 = −1, h3 = α0, ψ0 = N. (5.78)

These relations allow us to translate between ψj charges of the highest weight state and
the corresponding uj charges.

Plugging in the product formula for U , we find

ψ(u) =
(u− Λ1 − α0)(u− Λ2 − 2α0) · · · (u− ΛN −Nα0)

(u− Λ1)(u− Λ2 − α0) · · · (u− ΛN − (N − 1)α0)
. (5.79)

Defining
xj = Λj + (j − 1)h3 (5.80)

we can rewrite this as

ψ(u) =
N∏
j=1

u− xj − h3

u− xj
, (5.81)

i.e. the parameters xj specify the positions of poles of ψ(u) in the spectral parameter
plane while the zeros are at positions xj + h3. Using the variables xj, we have a manifest
permutation symmetry of the generating function, while the shifted variables Λj are chosen
such that the vacuum representation has Λj = 0.

Zero mode algebra of YN1,N2,N3 The algebras YN1,N2,N3 are finitely (generically non-
freely) generated vertex operator algebras by fields W1,W2, . . . ,Wn, where

n = (N1 + 1)(N2 + 1)(N3 + 1)− 1. (5.82)

The finite generation can be seen from the structure of null states of the algebra. The first
state of W1+∞ that needs to be removed in order to get the algebra YN1,N2,N3 appears at
level n + 1. Assuming that the coefficient in front of Wn+1 does not vanish, one can use
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this null field to eliminate the Wn+1 field from the OPEs. At the next level, three more
null fields appear. Two of them are the derivative of the null field at level n + 1 and its
normal ordered product with W1 but one also gets one extra condition. This condition can
be used to remove the field Wn+2. One can continue this procedure and (assuming that
there are enough conditions at each level) one can remove all Wi for i > n from OPEs.

In this way, one can solve many null state conditions by restricting to a finite number of
W-generators but generically (apart from the case of YN,0,0, Y0,N,0, Y0,0,N) some null states
remain. These are going to be composite primary fields formed by the restricted set of
W -generators and need to be removed as well. The first constraint appears generically
already at level n + 2. For large enough values of Ni, one can see from the box-counting
that there are be 12 null states at this level but only ∂2Wn, (Wn∂J), (J∂Wn), (J(JWn)),
(TWn), ∂Wn+1, (JWn+1), Wn+2 are removed by the above argument. One has still 4
constrains that lead to a non-trivial conditions on the algebra of zero modes. Note that for
small values of of Ni, there will be less states at this level as can be easily seen from the
box-counting and as we will see in examples below. We will also see that some constraints
will be trivially satisfied and only some of them are actually non-trivial.

One can see that for generic values of N1, N2, N3 the problem outlined above becomes
rather complex. The null states have been fully identified only in the case Y0,1,1 and Y0,1,2 in
the literature [125, 126] and lead to nontrivial constraints on the allowed highest weights10.
From the discussion above, one can still draw the conclusion what will be the general
structure of the variety of highest weights. As argued above, the possible highest weights
are given by a subvariety inside the space of the highest weights of zero modes

(Wi)0|wi〉 = wi|wi〉. (5.83)

The highest weights are constrained by the existence of null states X i
null and we conjecture

that the resulting variety of highest weights of the algebra of zero modes

(X i
null)0|wi〉 = f i(wi)|wi〉 = 0 (5.84)

is N1+N2+N3 dimensional subvariety inside Cn. Although we will not be able to explicitly
construct the null states in general in terms of primary fields, we will give an explicit
parametrization of the variety by generalizing the generating function of ψi charges of the
WN algebra. The conjecture for the dimensionality comes from the existence of N1 +N2 +
N3 continuous parameters of surface defects available in the configuration. The number
N1 + N2 + N3 can be also guessed from the free field realization of the algebra YN1,N2,N3

10The cases YN,N,0, YN,N−1,0 and YN,N−2,0 have been considered rigorously in math literature [127, 128,
129, 130, 76]
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inside Y ⊗N1
1,0,0 ⊗ Y ⊗N2

0,1,0 ⊗ Y ⊗N3
0,0,1 , where modules of each of the factors are parametrized by

N1, N2 and N3 parameters respectively. The dimensionality indeed matches in examples
of Y0,1,1 and Y0,1,2 from the literature.

Note that the above discussion also implies that the character of the module with
generic highest weights counts N1 +N2 +N2-tuples of partitions, i.e.

χN1+N2+N3(q) =
∞∏
n=1

1

(1− qn)N1+N2+N3
. (5.85)

A general state of a generic module of the algebra can be constructed by an action of
negative modesWi on the highest weight state subject to the null state conditions. As in the
case of zero modes, where the null states were used to carve out an N1+N2+N3 dimensional
subvariety, one can use negative modes of the null conditions to remove appropriate states
at higher levels. Only N1 +N2 +N2 of the modes at each level are independent, giving rise
to the above character.

Generating function for YN1,N2,N3 As we have just seen, truncations YN1,N2,N3 are
finitely generated by W1, . . . ,Wn where n is given by (5.82). In particular, generic rep-
resentations have a finite number of states at level one. Following the usual notion of
quasi-finite representations of linear W1+∞ [131, 132], it was argued in [98] that a highest
weight representation of W1+∞ has a finite number of states at level 1 if and only if gener-
ating function ψ(u) equals a ratio of two Drinfeld polynomials of the same degree. This is
indeed true for Y0,0,N . We will now generalize the formula (5.81) to a generating function
ψ(u) that parametrize generic representations for all YN1,N2,N3 . In particular, we conjecture
that the complicated variety parametrizing modules of the algebra YN1,N2,N3 can be simply
parametrized.

Such a parametrization of the variety of highest weights is natural the from point of
view of the coproduct structure of the affine Yangian, but also from free field realization
viewpoint and the gauge theory perspective. After stating these motivations, we write
down an explicit formula for the generating function of ψi charges for arbitrary YN1,N2,N3 in
5.88. A parametrization of the variety of highest weights can be recovered after changing
the variables from the affine Yangian generators ψi to the zero modes of Wi generators as
discussed in [3].

Free field realization Both the Miura transformation for YN1,N2,N3 and the definition
in terms of a kernel of screening charges give an embedding of the algebras of the form

YN1,N2,N2 ⊂ YN1,0,0 × Y0,N2,0 × Y0,0,N3 ⊂ Y ⊗N1
1,0,0 × Y ⊗N2

0,1,0 × Y ⊗N3
0,0,1 . (5.86)
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Each factor Y0,0,1 in the free field realization above can be identified with one multiplica-
tive factor in (5.81). The full free field realization therefore suggests that the generating
function of a generic module of YN1,N2,N3 should be simply a product of three WN factors
corresponding to YN1,0,0, Y0,N2,0 and Y0,0,N3 . Note that the parameter α0 remains the same
in the fusion procedure.

Yangian point of view Using the map between W1+∞ modes and Yangian generators
[98], we can translate the fusion to Yangian variables. The coproduct of ψj generators with
j ≥ 3 is no longer a finite linear combination of other generators and their products, but
involves an infinite sum. This is related to the non-local terms that enter the map between
VOA description and the Yangian description. Fortunately, when acting on a highest
weight state (corresponding to a primary field via the operator-state correspondence) these
additional terms drop out and we obtain a simple formula

ψ(u) = ψ(1)(u)ψ(2)(u) (5.87)

analogous to the usual ones in finite Yangians.11 This coproduct of the affine Yangian also
suggests a simple form of the generating function in terms of a product of three WNi factors
associated to each corner. The compatibility of parameters in this case requires that h1, h2

and h3 parametrizing the algebra are the same while the ψ0 is additive under the fusion.
In terms of λ-parameters this is the same condition as found above.

Gauge theory and brane picture The gauge theory setup suggests that the modules
should be parametrized linearly. The GW parameters that label modules live in the N1 +
N2 + N3 dimensional tori (modulo Weyl group) that we expect to be lifted to CN1+N2+N3

by boundary conditions imposed on the GW defect ending at the interfaces. Moreover,
this picture suggests that generically the contribution from GW-parameters in each corner
should be independent.

The coproduct from the point of view of the gauge theory corresponds to increasing
the rank of gauge groups in the three corners of the diagram. One can look at it as an
inverse process to Higgsing the theory that corresponds to separation of D3-branes and
reduces the gauge group. This procedure can be performed in each corner suggesting that
the coproduct of WN should have a natural generalization for YN1,N2,N3 [Ψ]. The process

11Since the Yangian has a non-trivial automorphisms, like the spectral shift automorphism translating
the parameter u, we can precompose this with the coproduct if needed to obtain slightly more general
coproducts. This is actually what is needed if we want the fusion of two vacuum representations to produce
a vacuum representation.
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is independent on the gauge coupling suggesting that Ψ is constant in agreement with the
other pictures discussed above.

Generating function The discussion above motivates us to write down an explicit for-
mula for the generating function of ψi charges for YN1,N2,N3 acting on the highest weight
state by simply multiplying contributions from WN algebras from each corner

ψ(u) =

N1∏
j=1

u− x(1)
j − h1

u− x(1)
j

N2∏
j2=1

u− x(2)
j − h2

u− x(2)
j

N3∏
j3=1

u− x(3)
j − h3

u− x(3)
j

. (5.88)

Note that the expression is manifestly triality invariant, depends on the correct number of
parameters and the truncation curves are reproduced correctly. In particular, extracting
ψ0 from the expression above, one gets

h1h2h3ψ0 = −N1h1 −N2h2 −N3h3. (5.89)

Identifying the scaling-independent combinations12

λ1 = −ψ0h2h3, λ2 = −ψ0h1h3, λ3 = −ψ0h1h2, (5.90)

one gets the correct expression

N1

λ1

+
N2

λ2

+
N3

λ3

= 1 (5.91)

satisfied by parameters of YN1,N2,N3 .

Parameters x
(κ)
i can be identified with the lifted Gukov-Witten parameters in the third

corner. This can be seen from the comparison of the U(1) charge for Y0,0,1 and the fact
that each multiplicative factor corresponds to one such factor. The unlifted Gukov-Witten
parameters themselves can be identified by modding out by the lattice h1n + h2m for
n,m ∈ Z. We will later see that that x

(3)
i = h1n + h2m corresponding to the trivial GW

defect (and a possibly non-trivial line operator) corresponds to a degenerate module. We
will also see that the fusion of a degenerate module with a generic module labeled by a
parameter x(3) amounts to a shift of x(3) by a lattice vector.

Note also that the generating function is manifestly invariant under the Weyl group
associated to the three gauge groups U(Ni).

12The algebra is invariant under the simultaneous rescaling of ψ0 and hi, see [80, 98].
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Free field realization The parameters x
(κ)
i from the generating function of ψi charges

that have been already related to the Gukov-Witten parameters can be also related to
exponents in the expression for the vertex operators in free field realization. A highest
weight vector in free field representation with generic charges can be obtained by acting
on the vacuum state with the vertex operator

|q1, . . . , qN〉 = exp

(
N∑
j=1

qjφj

)
|0〉. (5.92)

Acting on this state with the zero mode of current Jj = ∂φj, we find

Jj,0|q1, . . . , qN〉 = gjkq
k|q1, . . . , qN〉 ≡ qj|q1, . . . , qN〉 (5.93)

where gjk is the metric extracted from the two-point functions of the currents,

Jj(z)Jk(w) ∼ gjk
(z − w)2

∼ − hκ(j)

h1h2h3

δjk
(z − w)2

. (5.94)

Our conventions for charges are such that qj are the charges that appear in the exponents
of vertex operators (and in positions of zeros and poles of ψ(u)) while qj are the coefficients
of the first order poles of OPE with currents Jj. We reintroduce the −h1h2 factors in order
to make the expressions manifestly triality invariant and also of definite scaling dimension
under the scaling symmetry of the algebra [98].

The ĝl(1) current of W1+∞ whose zero mode is ψ1 is given by

U1(z) =
N∑
j=1

Jj(z) (5.95)

so ψ1 acts on the highest weight state by

ψ1|q1, . . . , qN〉 =

(
N∑
j=1

qj

)
|q1, . . . , qN〉. (5.96)

To find the total stress-energy tensor of W1+∞, we first use the Miura transform to find
the free field representation of U2(z):

U2(z) =
1

2

∑
j≥1

(
1− h3

hκj

)(
(JjJj)(z) + hκj∂Jj(z)

)
+
∑
j<k

(JjJk)(z) +
∑
j<k

hκj∂Jk (5.97)
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from which we can find the total W1+∞ stress-energy tensor

T1+∞(z) = −1

2

∑
j

h1h2h3

hκj
(JjJj)(z) +

1

2

∑
j<k

hκk∂Jj −
1

2

∑
j>k

hκk∂Jj (5.98)

Let us now Consider one free boson φ(κ)(z) in κ-th direction associated to elementary
Miura factor R(κ). It is easy to verify that the state created by the vertex operator

: exp
(
qφ(κ)

)
: (5.99)

from the vacuum is a highest weight state with the generating function of highest weight
charges ψ(u) equal to

ψ(κ)(u) =
u− q − hκ
u− q . (5.100)

For a longer chain with more free bosons, we have an analogous product of the corre-
sponding simple factors, but the spectral parameter is shifted between the nodes: ψ(u)

corresponding to Y0,0,2 with ordering of fields R(z) = R
(3)
1 (z)R

(3)
2 (z)

ψ(u) =
u− q1 − h3

u− q1

u− q2 − 2h3

u− q2 − h3

. (5.101)

Analogously, ψ(u) corresponding to Y1,1,0 with ordering of fields R(z) = R
(1)
1 (z)R

(2)
2 (z) has

ψ(u) =
(u− q1 − h1)

(u− q1)

(u− q2 − h1 − h2)

(u− q2 − h1)
. (5.102)

In other words, the Miura factor on the left affects the factors that come on the right of it
by shifting the u-parameter. The general formula for an arbitrary ordering

L(z) = L(κ1)
1 (z) · · · L(κN1+N2+N3

)

N1+N2+N3
(z) (5.103)

has the generating function of charges equal to

ψ(u) =

N1+N2+N3∏
j=1

u− qj −∑k≤j hκk
u− qj −∑k<j hκk

. (5.104)

We see that up to constant shifts and rescalings (depending on ordering of free fields) the
zeros and poles of the generating function ψ(u) of highest weight state correspond to zero
modes qj of the free bosons, in particular

x
(κ(j))
j = qj +

∑
k<j

hκk . (5.105)
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Let us start with the analysis of domain walls of minimal degenerations associated to
the next-to-minimal Levi subgroup.

As we discussed in connection with (5.88), the N1 +N2 +N3 lifted GW parameters x
(κ)
i

correspond to positions of poles of the generating function ψ(u) in the u-plane. The poles
are determined up to a permutation of order of poles in each group. A natural question to

ask is for which values of parameters x
(κj)
j do we obtain a degenerate module.

Y1,1,0 - singlet algebra of symplectic fermion The algebra Y1,1,0 is the simplest trun-
cation of W1+∞ which is not a WN algebra, although as we will see, it can be understood
as (a simple quotient of) W3 algebra at a special value of the central charge. First of all,
the Y1,1,0 truncation requires

1

λ1

+
1

λ2

= 1 (5.106)

as well as the usual constraint
1

λ1

+
1

λ2

+
1

λ3

= 0. (5.107)

From these constraints, we learn that λ3 = −1. Plugging this into the central charge
formula, we find

c∞ = −2 (5.108)

independently of the value of λ1.

Considering Y1,1,0 algebra as truncation ofW1+∞, the first singular vector in the vacuum
representation appear at level 4 = 2 · 2 · 1. Generically, starting from spin 4 we can use
these singular vectors to eliminate the higher spin generators of spin 4, 5, . . ., obtaining an
algebra that is generated by fields of spins 1, 2 and 3. Therefore we identify Y1,1,0 with a
quotient of the W3 algebra at c = −2 times a free boson. The OPEs of W3 are given by
the Virasoro algebra coupled to a spin 3 current which has OPE

W3(z)W3(w) ∼ C0
33

(
1

(z − w)6
− 3T (w)

(z − w)4
− 3∂T (w)

2(z − w)3
− 4(TT )(w)

(z − w)2

+
3∂2T (w)

4(z − w)2
− 4(∂TT )(w)

z − w +
∂3T (w)

6(z − w)

)
. (5.109)

We kept the normalization of W3 generator free for later convenience. We could absorb
the structure constant C0

33 by rescaling the W3 generator.
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We are now interested in constraints on generic representations of Y1,1,0. From the
physical reasoning as well as from the free field representations, we would expect the
generic representation of Y1,1,0 to be parametrized by two continuous parameters, while

the ĝl(1) × W3 algebra have in general three highest weights. We thus need to find a
singular vector in W3 that would reduce the number of parameters by one. From the
general reasoning, we expect the first relation to appear at level 6. In fact, there are two
singular primaries at level 6. We can see this by looking at characters: the character of

the vacuum representation of ĝl(1)×W3 is

3∏
s=1

∞∏
j=0

1

1− qs+j ' 1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 40q6 + 67q7 + 117q8 + . . . (5.110)

while the vacuum representation of Y1,1,0 has

χvac(q) =
∞∑
j=0

qj∏j
k=1(1− qk)2

=

∑∞
j=0(−1)jqj(j+1)/2∏∞
k=1(1− qk)2

(5.111)

' 1 + q + 3q2 + 6q3 + 12q4 + 21q5 + 38q6 + 63q7 + 106q8 + 170q9 + . . .

We see that at level 6 there are two null states in Y1,1,0 compared to the situation in

ĝl(1) × W3 at the generic value of the central charge. The first null state is the even
quadratic primary composite field

N6e = (W3W3) + C0
33

(
8

9
(T (TT )) +

19

36
(∂T∂T ) +

7

9
(∂2TT )− 2

27
∂4T

)
(5.112)

and the second one is the odd field

N6o = 8(T∂W3)− 12(∂TW3)− ∂3W3. (5.113)

Requiring that the action of the zero mode of N6o on the generic highest weight state
vanishes gives us identical zero while the similar requirement for N6e gives us a non-trivial
constraint

0 = w2
3 +

C0
33

9
h2(8h+ 1). (5.114)

This is the constraint we were looking for. It reduces the dimension of the space of generic
primaries from three to two which is in accordance with what we expect. In principle, we
could proceed further by studying the singular vectors at higher levels and possibly discover
new (independent) constraints. In order to show that (5.114) is necessary and sufficient,
we will construct a free field realization of Y1,1,0 and check that the generic modules can
indeed by realized.
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Free field realization from Miura Let us see what free field representation we find by
applying the Miura transformation explained above. The total Miura operator is a product
of two basic Miura factors associated to first and second asymptotic direction

R(z) = ∂−1 + U1(z)∂−2 + U2(z)∂−3 + . . .

=
[
1+ U

(1)
1 (α0∂)−1 + U

(1)
2 (α0∂)−2 + . . .

]
(α0∂)h1/h3 ×

×
[
1+ U

(2)
1 (α0∂)−1 + U

(2)
2 (α0∂)−2 + . . .

]
(α0∂)h2/h3 (5.115)

By commuting the derivatives to the right we find

U1 = U
(1)
1 + U

(2)
1

U2 = U
(1)
2 + U

(2)
2 + U

(1)
1 U

(2)
1 + h1∂U

(2)
1 (5.116)

U3 = U
(1)
3 + U

(2)
3 + U

(1)
1 U

(2)
2 + U

(1)
2 U

(2)
1 + (h1 − h3)U

(1)
1 ∂U

(2)
1

+h1∂U
(2)
2 +

h1(h1 − h3)

2
∂2U

(2)
1

Plugging in expressions for Uj in terms of free bosons, we find

U1 = J1 + J2

U2 =
2h2 − 1

2h2
(J1J1) + (J1J2) +

2− h2

2
(J2J2) +

2h2 − 1

2h
∂J1 +

3h2 − 2

2h
∂J2

U3 =
(2h2 − 1)(3h2 − 2)

6h4
(J1(J1J1)) +

2h2 − 1

2h2
(J1(J1J2))− h2 − 2

2
(J1(J2J2))

+
(h2 − 2)(2h2 − 3)

6
(J2(J2J2)) +

(2h2 − 1)(3h2 − 2)

2h3
(∂J1J1) (5.117)

+
2h2 − 1

2h
(∂J1J2) +

5h2 − 4

2h
(J1∂J2)− (h2 − 2)(4h2 − 3)

2h
(∂J2J2)

+
(2h2 − 1)(3h2 − 2)

6h2
∂2J1 +

11h4 − 16h2 + 6

6h2
∂2J2

in the normalization

J1(z)J1(w) ∼ −h1/h1h2h3

(z − w)2
, J2(z)J2(w) ∼ −h2/h1h2h3

(z − w)2
(5.118)

and with conventions in (3.47). There is an infinite number of non-zero Uj operators with
j ≥ 4 but they can all be read off from OPE of Uj fields with j = 1, 2, 3. Finally using the
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transformations of appendix A.3 we find in the primary basis

W1 = −J1 − J2

W2 =
1

2h2
(J1J1) + (J1J2) +

h2

2
(J2J2)− 1

2h
∂J1 −

h

2
∂J2

W3 = −h
2 + 1

3h4
(J1(J1J1))− h2 + 1

h2
(J1(J1J2))− (h2 + 1)(J1(J2J2)) (5.119)

−h
2(h2 + 1)

3
(J2(J2J2)) +

h2 + 1

2h3
(∂J1J1) +

h2 + 1

2h
(∂J1J2)

+
h2 + 1

2h
(J1∂J2) +

h(h2 + 1)

2
(∂J2J2)− h2 + 1

12h2
∂2J1 −

h2 + 1

12
∂2J2

with all other Wj currents, j ≥ 4 vanishing (as they should). To compare to the previous
discussion, where the current J was chosen to be J1 + J2 with unit normalization and T
and W3 were expressed in terms of the orthogonal combination, if we choose the orthogonal
combination to be the current

J− = −h−1J1 − hJ2 (5.120)

we exactly reproduce the formulas of the previous section up to an overall normalization.

5.4.3 Degenerate modules

Surface defects preserving Levi subgroups A generic Gukov-Witten defect breaks
the gauge group at the defect to the maximal torus U(1)N , but a larger symmetry group
can be preserved if the GW-parameters are specialized. In particular, if the parameters
x

(κ)
i and x

(κ)
j specifying the singularity of the ith and jth factors are equal x

(κ)
i = x

(κ)
j

(modulo the lattice), the next-to minimal Levi subgroup U(2) × U(1)N−2 is preserved
by the configuration. On the VOA side, these specializations are going to correspond to
degenerate modules. For a fixed value of the specialized GW parameters, one can still
turn on a Wilson and ’t Hooft operator in some representation of the preserved U(2)
at each boundary. Different choice of the line operators will label different degenerate
modules. Similarly, if parameters in different corners are specialized, U(1|1) supergroup
is preserved at the boundary Chern-Simons theory by the defect and one gets different
classes of degenerate modules as we will see below.

We can see that the parameter space parametrizing generic modules is divided into
domains with a degeneration appearing at the boundaries of the domains. At intersections
of such domain walls (where more parameters are specialized), we expect further degen-
eration of the module. These more complicated representations correspond to larger Levi
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subgroups decorated by line operators in a representation of the preserved Levi subgroup
on the gauge theory side.

A maximal degeneration appears when N − 1 parameters are specialized and the full
gauge group U(N) is preserved at the defect. Note that the value of the overall U(1)
charge does not affect the structure of modules and breaking of the gauge symmetry. On
the other hand, maximally degenerate modules with generic values of the U(1) charge still
correspond to a nontrivial GW defect with a prescribed singularity for the U(1) factor.
Modules associated to line operators with a trivial GW defect correspond to maximal
specializations of all the N parameters with quantized values of the U(1) charge.

Minimal degenerations Let us start with the analysis of domain walls of minimal
degenerations associated to the next-to-minimal Levi subgroup.

As we discussed in connection with (5.88), the N1 +N2 +N3 lifted GW parameters x
(κ)
i

correspond to positions of poles of the generating function ψ(u) in the u-plane. The poles
are determined up to a permutation of order of poles in each group. A natural question to

ask is for which values of parameters x
(κj)
j do we obtain a degenerate module.

The discussion is easy at the first level. A generic module has N1 + N2 + N3 states at
this level. We can detect the appearance of a singular vector by studying the rank of the
Shapovalov form

〈hw|fkej〉hw| = −〈hw|ψj+k|hw〉 (5.121)

(where we used the basic commutation relation between ej and fj generators of Y ). The
matrix on the right is a Hankel matrix and we can use a variant of the basic theorem by
Kronecker which tells us that (in general infinite dimensional) Hankel matrix has a finite
rank if and only if the associated generating function∑

j

ψjz
j (5.122)

is a Taylor expansion of a rational function. Furthermore, the rank of the Hankel matrix
is equal to one plus the degree of this rational function. In our case we have a slightly
different version of this theorem because the coefficients ψj are Taylor coefficients of

ψ(u)− 1

σ3

(5.123)

but the result is the same: the number of vectors at level 1 in the irreducible module
with highest weight charges ψ(u) is equal to the degree (i.e. number of zeros counted with
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multiplicities) of ψ(u). This is automatically consistent with the form of the generating
function (5.88) which has generically N1 + N2 + N3 zeros and poles. In this way we also
rederive the result of [98] that the vacuum representation has exactly one zero and one
pole. The distance between them is fixed by the parameters of the algebra. The absolute
position of the zero in u-plane is determined by U(1) charge of the highest weight vector
and is translated under the spectral shift transformation.

This also refines the statement it [98] that the representation is quasi-finite (i.e. has
only a finite number of states at each level) if and only if ψ(u) is a rational function. In
the case of YN1,N2,N3 the quasi-finiteness is automatically satisfied.

Applying the results of the previous discussion to the highest weight vector of the
generic YN1,N2,N3 module with weights parametrized by (5.88), we conclude that we have a
singular vector at level 1 if one of the following conditions is satisfied

x
(τ)
j − x(σ)

k = −hτ , (5.124)

i.e. a zero of type j collides with a pole of type k.

At higher levels the discussion is not so simple because the commutation relations
used to evaluate the ranks of Shapovalov matrices become more involved. But from the
structure of the Shapovalov matrices, we expect the highest singular vectors to appear
only if the distance between a zero and a pole of (5.88) is an integer linear combination of
hj parameters. If this assumption of locality (i.e. pairwise interaction between zeros and
poles) is satisfied, we can learn more about the relation between the level where such a
singular vector appears and the corresponding distance between the zero-pole pair. It is
then enough to look at the case of the zero-pole pair of the same type in the algebra Y0,0,2

and of different type in the case of Y1,1,0.

The first case is simple - we are interested in singular vectors of the Virasoro algebra for
which we have a known classification: for generic values of the central charge the Verma
module has a singular vector at level rs if and only if the highest weight equals ∆r,s [84].
The generating function of charges ψ(u) is

ψ(u) =
(u− x(3)

1 − h3)(u− x(3)
2 − h3)

(u− x(3)
1 )(u− x(3)

2 )
(5.125)

We can extract the conformal dimension ∆ with respect to the T∞ Virasoro subalgebra
(decoupled from the U(1) field)

∆ =
h2

3 −
(
x

(3)
1 − x(3)

2

)2

4h1h2

. (5.126)
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This is equal to ∆r,s if and only if

x
(3)
1 − x(3)

2 = sh1 + rh2, or x
(3)
2 − x(3)

1 = sh1 + rh2. (5.127)

Therefore, a singular vector of the algebra Y0,0,2 appears at level rs if and only if the distance
between two poles of the 3rd type is a positive or negative integer linear combination of h1

and h2. Similarly for the other two types of poles.

The Kac determinant and singular vectors of WN are known as well [133, 7]. The
singular vectors (zeros of the Kac determinant) at level rs (where r, s ≥ 1 are integers) are
labeled by roots of SU(N). Choosing the standard ordering (J1 the leftmost field in the
Miura transformation), the equations for vanishing hyperplanes are

qj − qk + (j − k)h3 = sh1 + rh2 (5.128)

where 1 ≤ j 6= k ≥ N label the (positive and negative) roots of SU(N). The poles of
ψ(u) are related to U(1) charges qj (still assuming the standard ordering and using the
conventions of (3.47)) by

x
(3)
j = qj + (j − 1)h3 (5.129)

so we can rewrite the equations for vanishing hyperplanes as

x
(3)
j − x(3)

k = sh1 + rh2. (5.130)

This is exactly of the same form as the condition that we found in the case of the Virsoro
algebra. We see is that the positive or negative roots in theWN language determine which
poles of ψ(u) approach each other and the integers s and r determine the distance between
these poles, quantized in the units of h1 and h2. Therefore, in the case of WN , we have
an independent confirmation of the fact that the leading singular vectors in degenerate
modules correspond to pairwise interactions between poles of ψ(u).

In the gauge theory language, we see that (at least in the case of WN -algebras) degen-
erations appear when the GW parameters are specialized in such a way that a next-to-
minimal Levi subgroup is preserved. The parameters r, s then label representations of the
preserved SU(2) subalgebra associated to the corresponding line operators supported at
the two interfaces.

The remaining elementary case that we need to analyze is Y1,1.0. In this case, the
parameter space of generic modules is two-dimensional, so after decoupling the overall
U(1), we are left with a one-dimensional parameter space. Analogously to the case of
the Virasoro algebra, there is no difference between minimally and maximally degenerate
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modules. We can look for degenerate modules in at least three possible ways: directly
studying the Shapovalov form (Kac determinant), using box counting [98, 2] or using the
BRST construction of the algebra [1].

A direct calculation (which we explicitly checked up to level 4) leads to the following
condition: given n ≥ 1, we have a leading singular vector at level n if

x
(1)
1 − x(2)

2 = −h1 − nh3, or x
(1)
1 − x(2)

2 = h2 + nh3. (5.131)

Note that these two conditions are exchanged if we formally replace n ↔ 1 − n. We can
thus use only one of the conditions with n running over all integers, but for non-positive
values of n the level at which corresponding singular vector appears is 1− n.

In Y1,1,0, there is no difference between the maximally degenerate and minimally de-
generate modules. For the maximally degenerate modules we can use the box counting
(plane partition) interpretation of modules.13 The maximally degenerate modules of Y110

in this picture correspond to plane partitions (with possible asymptotics) which have no
box at position (2, 2, 1). In other words, they can be thought of as pairs of partitions glued
together by the first column (assuming for the moment that there is no asymptotics in 3rd
direction). The degenerate modules are labeled by two integers, the heights of asymptotic
Young diagrams in 1st and 2nd directions. But only the difference of these two integers
matters, the modules with the same difference of heights differ only by the overall U(1)
charge. Finally, the parameter n appearing in (5.131) can be identified with one plus the
difference of the heights of the asymptotic Young diagrams. It is easy to check that this
interpretation predicts the correct level of the null vector, the correct irreducible character
and the conformal dimension.

Turning on a non-trivial asymptotics in 3rd direction decouples the pair of Young
diagrams so the box counting predicts a generic module (i.e. character equal to the square
of the free boson character). The conformal dimensions of these modules also don’t produce
any additional zero of the Shapovalov form, confirming the whole box-counting picture.

The same structure of maximally degenerate modules can also be seen from the BRST
analysis of [1]. In particular, the BRST analysis of the algebra have not found any other
degenerate modules and the degenerate ones appear exactly for the above values of generic
parameters. From the gauge theory point of view, the value n can be identified with the

13In general the box counting works only for so called covariant modules which have asymptotics made
of boxes (tensor products of the fundamental representation). In general it is important to consider a more
general class of representations where there are both asymptotic boxes and anti-boxes. Fortunately in the
case of Y1,1,0 the anti-box in first direction is equivalent to a box in the second direction and vice versa,
so the simple box counting picture is applicable.
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difference of charges of the U(1) line operators supported at the boundary 1 and 2. Turning
on the Wilson line operator at the boundary 3 lifts the degeneration.

Free field representation of degenerate primaries Let us briefly comment on the
realization of the degenerate modules of Y1,1,0 in a given free field realization. The highest
weight primaries of all the representations (including the generic ones) can be realized as
simple exponential vertex operators with exponents given by the parameters qj (related to

x
(κj)
j by constant shifts). It turns out that a half of the degenerate modules associated to

the degenerations (5.131) can be also realized in terms of a free boson descendant of an

exponential vertex operator. For example, in the φ
(1)
1 × φ(2)

2 ordering, the modules in the
2nd direction specialized to n = 1 and n = 2 can be realized as(

h2J
(1)
1 − h1J

(2)
2

)
exp

[
qφ

(1)
1 + (q + h3)φ

(2)
2

]
,

−1

2

((
h2J

(1)
1 − h1J

(2)
2

)2

− ∂
(
h2J

(1)
1 − h1J

(2)
2

))
exp

[
qφ

(1)
1 + (q + 2h3)φ

(2)
2

]
. (5.132)

Similarly, for any n > 0, one can realize the corresponding degenerate modules in terms of
a level n descendant. The descendants are generally given in terms of Bell polynomials∑

m1+2m2+···+nmn=n

n∏
k=1

1

mk!kmk

( −1

(k − 1)!
∂k−1J

)mk
exp

[
qφ

(1)
1 + (q + nh3)φ

(2)
2

]
(5.133)

for J = h2J
(1)
1 − h1J

(2)
2 . This is analogous to expressions for singular vectors in free

field representations of the Virasoro algebra which are given in terms of Jack polynomials
[134, 135]. In the case of Y110 these reduce to Schur polynomials whose special case are the
Bell polynomials (5.133). Higher level specializations will be further discussed in the next
section in the context of maximally degenerate representations but note that the issue is
present already for the partially degenerate modules associated to specializations of GW
parameters at different corners.

Maximally degenerate modules In the previous section, we have discussed the general
structure of degenerations of Y-algebra modules and concentrated mostly on the minimally
degenerate ones. On the other hand, we will now discuss briefly free field realization of the
maximally degenerate modules associated to line operators supported at the interfaces, i.e.
trivial GW defects. These modules play an important role in the gluing construction that
allows to engineer more complicated VOAs by extensions of tensor products of YN1,N2,N3

algebras [1, 2, 30].
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Here, we mostly concentrate on the free field realization of the identity operator to-
gether with the modules associated to the line operators in the fundamental and the anti-
fundamental representation. All the other maximally degenerate representations can be
obtained from the fusion of these two (and a shift of gl(1) charge). We will further re-
strict to the case when N3 = 0. The general case is a bit more complicated because of
the appearance of continuous families of free field realizations. We will briefly comment
on this issue later. Let us start with writing down the generating function ψ(u) for such
representations.

The generating function for the vacuum representation has a single factor

ψ•(u) =
u+ h1h2h3ψ0

u
=
u−N1h1 −N2h2 −N3h3

u
(5.134)

where we used the identity

h1h2h3ψ0 = −N1h1 −N2h2 −N3h3. (5.135)

On the other hand the generating function for the fundamental representation in the first
direction can be written as

ψ�1(u) =
(u+ h1h2h3ψ0)(u+ h1)

(u− h2)(u− h3)
(5.136)

and similarly for the fundamental representation in the other two directions [98, 2].

The generating function of the anti-fundamental representation can be obtained from
the formula for the generating function ψ(u) of a conjugate representation [25]

ψ̄(u) = ψ−1 (−u− h1h2h3ψ0) . (5.137)

This is a composition of the inverse anti-automorphism and the reflection in spectral param-
eter and produces an automorphism just as in the case of finite Yangians. The additional
spectral shift is necessary in order to have self-conjugate vacuum representation. It is easy
to verify that the effect of conjugation is to flip the sign of all odd primary highest weight
charges. Note that there exists a conjugation automorphism of the whole affine Yangian
(not just acting on the highest weight state), but the ψj generators transform in a more
complicated way, mixing with ej and fj generators.

Applying the conjugation to the generating function (5.136), we get the generating
function for the anti-fundamental representation

ψ�̄1
=

(u+ h2 + h1h2h3ψ0)(u+ h3 + h1h2h3ψ0)

u(u− h1 + h1h2h3ψ0)
(5.138)

and similarly for the other two directions.
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5.4.4 Gluing and generic modules

Let us discuss how to glue generic modules and its interpretation in terms of the physics of
GW defects. The highest weight vector of a generic module of a Y-algebra can be realized
as an exponential vertex operator exp [QµΦµ], where we introduced a vector of free fields
and a dual vector of charges

Φµ =
(
φ

(2)
1 , . . . , φ

(2)
N2
, φ

(3)
N2+1, . . . , φ

(3)
N2+N1

)
Qµ =

(
q1, . . . , qN2 , qN2+1, . . . , qN2+N1

)
(5.139)

and similarly for the other vertex

Φ̃µ =
(
φ̃

(1)
1 , . . . , φ̃

(1)
N2
, φ̃

(3)
N2+1, . . . , φ̃

(3)
N2+N1

)
Q̃µ =

(
q̃1, . . . , q̃N2 , q̃N2+1, . . . , q̃N2+N1

)
(5.140)

A generic module of a glued algebra can be then realized as a tensor product of such
exponentials associated to each vertex in the diagram.

Note that the parameters qi and q̃i correspond to the same GW defect and the gauge
theory setup suggests that they must be identified (up to shifts induced by line operators
supported at the boundary A1 and Ã2), in particular

qi ± q̃i = nih3 (5.141)

for some integers ni and h3 = A3 · ε = −Ã3 · ε = (−A1 −A2) · ε. The relative sign depends
on the relative orientation of the two glued vertices. In [2], we defined the orientation of
a vertex Y A1,A2,A3

N1,N2,N3
as a sign given by (−1)p1p2+q1q2+p2q1 . The relative orientation and the

sign in the above equation14 is given by a product of such factors in the two vertices. In
particular, one gets −1 for the resolved conifold diagram and +1 for the toric diagram of
C/Z2 × C. We will see later in examples that this condition is necessary for the gluing
bi-modules to be local with the GW modules.

Note that inclusion of bi-fundamental fields might change the algebra of zero modes
that might become non-commutative. Moreover, we will see later that the modules are
in general not even modules induced from the modules of the zero-mode algebra. GW
modules associated to the commutative zero-mode algebra of YN1,N2,N3 are thus building
blocks of modules for more complicated algebras with non-commutative algebra of zero
modes.

14The sign would be opposite if we have glued the fundamental representation of the first vertex with
the fundamental representation of the second vertex and similarly for the anti-fundamental representation.
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Gluing two ĝl(1)’s Let us come back to the example of gluing of two ĝl(1) Kac-Moody
algebras as shown in the figure 4.13. Having an explicit description of the glued algebra in
terms of free fields, we would like to discuss generic modules of the glued algebra. According
to the discussion above, we expect the correct GW-defect module to be generated by
descendants of

M [q, q̃] = exp
[
qφ+ q̃φ̃

]
, (5.142)

where the parameters β, β̃ are related by (5.141), i.e.

q − q̃ = nε3 (5.143)

for some integer n. Note that this is exactly the condition following form the locality of
M [q, q̃] with the gluing bi-modules M� and M�̄. In particular, requiring the OPE to be of
the following form

M�(z)M [q, q̃](w) ∼ exp [q − ε1, q̃ + ε2] (w)

(z − w)n
+ . . . (5.144)

where n is an integer, one gets a constraint

ε1q

ε1ε3
− ε2q̃

ε2ε3
= n (5.145)

which is the same constraint as (5.143).

Note that the fusion with gluing fields preserve the constraint (5.143) and only shifts
the coefficient n. Fields M [q−ε1, q̃+ε2] and M [q, q̃] are actually vectors of a single module.
The only parameter of the module is thus the gl(1) charge of the decoupled current J + J̃ .

ĝl(2) from gluing Let us now discuss the structure of glued generic modules for the

algebra ĝl(2) associated to the figure 4.14. Generic modules can be now constructed from

M [q1, q2, q3, q4] = exp
[
q1φ

(2)
1 + q2φ

(3)
2 + q3φ

(3)
3 + q4φ̃

(2)
1

]
(5.146)

where q1 and q4 are constrained by the condition

q1 + q4 = ε3n (5.147)

for some integer n.
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For each such module, it is simple to compute the action of the ĝl(2) generators on
each such vector. Depending on the number n in the constraint above, one gets different
structure of the modules. For example, for n > 1, one gets

J21(z)M [q1, q2, q3, q4](w) ∝ M [q1 + ε1, q
2, q3, q4 − ε1]

(z − w)n
+ . . .

J12(z)M [q1, q2, q3, q4](w) ∝ O((z − w)n−2). (5.148)

For n < 1, the singularity is present in the OPE with J12 instead. We expect corresponding
modules to be a special type of the irregular modules discussed in [136].

The most interesting situation appears when n = 1. In such a case both M� and M�̄

have a simple pole in the OPE with generic modules and one obtains

J11(z)M [−q4 + ε3, q
2, q3, q4](w) ∼ q4

ε1

M [−q4 + ε3, q
2, q3, q4]

z − w

J22(z)M [−q4 + ε3, q
2, q3, q4](w) ∼ −q

1 + q2 + q4 + ε2
ε1

M [−q4 + ε3, q
2, q3, q4]

z − w

J12(z)M [−q4 + ε3, q
2, q3, q4](w) ∼ −(q1 + q4)(q2 + q4 − ε3)

ε21

M [−q4 + ε3 − ε1, q2, q3, q4 + ε1]

z − w

J21(z)M [−q4 + ε3, q
2, q3, q4](w) ∼ M [−q4 + ε3 + ε1, q

2, q3, q4 − ε1]

z − w . (5.149)

We can see that the zero modes of J12 and J21 shift the exponent of M [−q4 + ε3, q
2, q3, q4].

The representation of the zero-mode subalgebra is thus spanned byM [−q4+ε3+nε1, q
2, q3, q4−

nε1] for n ∈ Z.

We can actually show that the above action of zero modes generate a generic Gelfand-

Tsetlin module of ĝl(2).

Gelfand-Tsetlin modules for gl(2) are parametrized by a triple of complex parameters(
λ21 λ22

λ11

)
(5.150)

where λ11 and λ11 + n are vectors of the same module. For generic values of parameters,
the Gelfand-Tsetlin module is spanned by vectors with Gelfand-Tsetlin table of the form(

λ21 λ22

λ11 + n

)
(5.151)
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for each n ∈ Z. Generators J11, J22, J12, J21 act on such vectors as

J11

(
λ21 λ22

λ11

)
= λ11

(
λ21 λ22

λ11

)
,

J22

(
λ21 λ22

λ11

)
= (1 + λ22 + λ21 − λ11)

(
λ21 λ22

λ11

)
,

J12

(
λ21 λ22

λ11

)
= −(λ11 − λ21)(λ11 − λ22)

(
λ21 λ22

λ11 + 1

)
,

J21

(
λ21 λ22

λ11

)
=

(
λ21 λ22

λ11 − 1

)
, (5.152)

Comparing parameters λ21, λ22, λ11 with the lifted Gukov-Witten parameters qi from
(5.149), one gets15

λ11 =
q4

ε1
,

λ21 = −q
3

ε1
,

λ22 = −q
2 − ε3
ε1

. (5.153)

Note that fusion of a vector of the generic module with J12 and J21 shifts q4 by an integral
multiple of ε1, this corresponds exactly to the shift of parameter λ11 by an integer as
expected. Note also that the parameters associated to a given face of the toric diagram
correspond to Gelfand-Tsetlin parameters of a given row of the Gelfand-Tsetlin table.

5.4.5 Gelfand-Tsetlin modules for ĝl(N) and their W-algebras

ĝl(N) Kac-Moody Algebras In the previous section, we have described the structure

of generic modules for the ĝl(2) Kac-Moody algebra. Let us now comment on the structure

of generic modules for any ĝl(N) Kac-Moody algebra and W-algebras associated to their
Drinfeld-Sokolov reduction.

The Kac-Moody algebra ĝl(N) can be realized in terms of a web diagram in the figure
5.8. The lifted GW parameters associated to internal faces must be again equal up to

15There are actually two solutions related by an exchange of λ21 ↔ λ22.
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N

N − 1

1

Figure 5.8: The web diagram associated to the ĝl(N) Kac-Moody algebra.

3

1

Figure 5.9: The web diagram associated to the W(2)
3 × ĝl(1) algebra.

shifts induced by line operators supported at the (1, 0) interfaces, i.e. they differ by a
multiple of ε1 + mε2, where −(m, 1) are charges of the finite interface of the given face.

In the same way as in the case of the ĝl(2) Kac-Moody algebra, one should be able to
choose of the shifts of the lifted GW parameters such that the OPEs of Jij for i > j with
generic modules have OPE with a simple pole. Generic modules are then going to be
parametrized by a Gelfand-Tsetlin table of N(N+1)

2
entries. For example, in the case of

ĝl(3), the Gelfand-Tsetlin table will be of the formλ31 λ32 λ33

λ21 λ22

λ11

 . (5.154)

The parameters in each line will be shifted and renormalized GW parameters associated
to a given face. The full modules is then spanned by the vectorsλ31 λ32 λ33

λ21 + n1 λ22 + n2

λ11 + n3

 (5.155)

for any integers n1, n2, n3. These shifts are generated by the fusion with bi-modules coming
from line operators at each internal face.
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W-algebras The same structure of modules is expected also for similar configurations
with different ranks of gauge groups. The corresponding algebra can be identified with a

W-algebra associated to the Drinfeld-Sokolov reduction of the ĝl(N) Kac-Moody algebra
possibly with extra symplectic bosons as discussed in [2]. The corresponding Gelfand-
Tsetlin modules are parametrized by a generalized Gelfand-Tsetlin table with Ni complex
numbers associated to each face with gauge group U(Ni). Except of the N1 corner pa-
rameters in the upper-right face, all the other parameters can be shifted by fusion with
bi-modules added to the algebra.

For example the algebraW(2)
3 × ĝl(1) associated to the diagram 5.9. Have the following

Gelfand-Tsetlin table parameterizing generic modules(
λ31 λ32 λ33

λ11

)
. (5.156)

The full modules is spanned by such vectors with the parameter λ11 shifted by any integer.
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6. Conclusion and outlook

This thesis reviews some aspects of a large class of vertex operator algebras labelled by
colored (p, q) webs. The web diagrams can be given two different interpretations and
the corresponding algebras appear in two mutually dual gauge-theoretical setups. The
gauge theory perspective then provides many interesting conjectures and insights. Let me
conclude by mentioning few interesting directions and open questions:

1. We have given four definitions of the algebra YN1,N2,N3 [Ψ]. Can we prove their equiv-
alence?

2. Do all four definitions generalize to the ortho-symplectic version of YN1,N2,N3 [Ψ]?

3. Can we glueW1+∞ algebras associated to any (p, q) web with parameters ρ associated
to the internal lines? Is the corresponding algebra a unique two-parameter family
with the web algebras being its truncations?

4. What are all the possible free-field realizations of degenerate modules of YN1,N2,N3 [Ψ]
for any choice of ordering?

5. How to determine relations of the gluing fields using the free field realization? Which
free field representatives and what contour integrals of screening currents do we need?

6. Does the Miura transformation generalizes to other web algebras?

7. Does the gluing story generalize to double truncations associated to points where two
truncation curves of the infinity algebra intersect?

8. What representations of Lie superalgebras gl(N |M) are needed to produce all the
modules needed in the gluing construction?

9. What specializations of Gelfand-Tsetlin modules are needed to find a BRST definition
of generic modules of YN1,N2,N3 [Ψ]?
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10. Can we proof the stable equivalence of algebras associated to different resolutions?

11. Can we associate VOAs to tetravalent and more complicated star-shaped junctions?

12. W1+∞ is known to be isomorphic to the affine Yangian of gl(1). Can we formulate
the gluing proposal at the level of affine Yangians?

13. What is the q-deformation of the above story?

14. The algebras should naturally emerge from the cohomological Hall algebra of the
toric three-fold. Can we extend the construction of YN1,N2,N3 [Ψ] to any other (p, q)
web algebra or beyond? This could be considered as a proof of AGT for gauge
theories supported on divisors in toric Calabi-Yau three-folds. Can we go beyond
toric manifolds or to higher dimension?

15. The cohomological Hall algebra naturally leads to generic modules of YN1,N2,N3 [Ψ]. Is
there a geometric construction that produces degenerate modules or the MacMahon
module of the corresponding W1+∞ algebra?

16. The motivation for the BRST definition uses a non-trivial configuration of interfaces
in N = 4 SYM. What is the exact form of junction conditions and what exactly is the
deformation of the interfaces discussed in the main text? Why are the corresponding
type IIA and the type IIB twists dual to each other?

17. Is there a holographic description of the algebras?

18. Can we use some of the results to find some consequences in the geometric Langlands
program?
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[3] Tomáš Procházka and Miroslav Rapčák.W-algebra Modules, Free Fields, and Gukov-
Witten Defects. 2018.
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[98] Tomáš Procházka. W-symmetry, topological vertex and affine Yangian. 12 2015.

168



[99] Edward Frenkel, Victor Kac, and Minoru Wakimoto. Characters and fusion rules
for W algebras via quantized Drinfeld-Sokolov reductions. Commun. Math. Phys.,
147:295–328, 1992.

[100] SL Lukyanov. Quantization of the Gel’fand-Dikii brackets. Functional Analysis and
Its Applications, 22(4):255–262, 1988.

[101] Tetsuji Miwa, Michio Jimbo, and Etsuro Date. Solitons: Differential equations,
symmetries and infinite dimensional algebras, volume 135. Cambridge University
Press, 2000.

[102] Boris Khesin and Ilya Zakharevich. Poisson - Lie group of pseudodifferential symbols.
Commun. Math. Phys., 171:475–530, 1995.

[103] Boris Feigin, Michio Jimbo, Tetsuji Miwa, Evgeny Mukhin, et al. Quantum toroidal
gl1-algebra: Plane partitions. Kyoto Journal of Mathematics, 52(3):621–659, 2012.

[104] Victor Mikhaylov. Teichmuller TQFT vs Chern-Simons Theory. 2017.

[105] Michael Bershadsky. Conformal field theories via Hamiltonian reduction. Commun.
Math. Phys., 139:71–82, 1991.

[106] Alexander M. Polyakov. Gauge Transformations and Diffeomorphisms. Int. J. Mod.
Phys., A5:833, 1990.

[107] Kevin Costello. M-theory in the Omega-background and 5-dimensional non-
commutative gauge theory. 2016.

[108] E. Bergshoeff, C. N. Pope, L. J. Romans, E. Sezgin, and X. Shen. The Super
W (infinity) Algebra. Phys. Lett., B245:447–452, 1990.

[109] L. J. Romans. The N = 2 super-W3 algebra. Nucl. Phys., B369:403–432, 1992.

[110] A. A. Belavin, M. A. Bershtein, B. L. Feigin, A. V. Litvinov, and G. M. Tarnopolsky.
Instanton moduli spaces and bases in coset conformal field theory. Commun. Math.
Phys., 319:269–301, 2013.

[111] Mikhail Bershtein, Boris Feigin, and Alexei Litvinov. Coupling of two conformal field
theories and Nakajima-Yoshioka blow-up equations. Lett. Math. Phys., 106(1):29–56,
2016.

169



[112] B. Feigin, M. Jimbo, T. Miwa, and E. Mukhin. Branching rules for quantum toroidal
gln. Adv. Math., 300:229–274, 2016.

[113] Minoru Wakimoto. Fock representations of the affine lie algebra A1(1). Commun.
Math. Phys., 104:605–609, 1986.

[114] B. L. Feigin and E. V. Frenkel. Affine Kac-Moody algebras and semiinfinite flag
manifolds. Commun. Math. Phys., 128:161–189, 1990.

[115] Matthias R. Gaberdiel and Rajesh Gopakumar. Minimal model holography. 07 2012.

[116] Tomoyuki Arakawa, Thomas Creutzig, and Andrew R. Linshaw. W-algebras as coset
vertex algebras. 2018.

[117] Eric G. Gimon and Joseph Polchinski. Consistency conditions for orientifolds and
d-manifolds.

[118] David Kutasov. Orbifolds and solitons.

[119] Ashoke Sen. Duality and orbifolds.

[120] Amihay Hanany and Alberto Zaffaroni. Issues on orientifolds: On the brane con-
struction of gauge theories with so(2n) global symmetry.

[121] Bo Feng and Amihay Hanany. Mirror symmetry by o3-planes.

[122] Philip C. Argyres, Anton Kapustin, and Nathan Seiberg. On s-duality for non-
simply-laced gauge groups.

[123] D. Brungs and W. Nahm. The Associative algebras of conformal field theory. Lett.
Math. Phys., 47:379–383, 1999.

[124] Yongchang Zhu. Modular invariance of characters of vertex operator algebras. 1995.

[125] Wei-qiang Wang. Classification of irreducible modules of W3 algebra with c=-2.
Commun. Math. Phys., 195:113–128, 1998.

[126] Tomoyuki Arakawa, Ching Hung Lam, and Hiromichi Yamada. Zhu’s algebra, c2-
algebra and c2-cofiniteness of parafermion vertex operator algebras, 2012.

[127] Linshaw, Andrew R. Invariant theory and the W1+∞ algebra with negative integral
central charge. arXiv preprint arXiv:0811.4067, 2008.

170



[128] Thomas Creutzig and Andrew R. Linshaw. Cosets of affine vertex algebras inside
larger structures. 2014.

[129] Andrew R. Linshaw. The Structure of the Kac-Wang-Yan Algebra. Commun. Math.
Phys., 345(2):545–585, 2016.

[130] Tomoyuki Arakawa, Thomas Creutzig, Kazuya Kawasetsu, and Andrew R. Linshaw.
Orbifolds and Cosets of Minimal W-Algebras. Commun. Math. Phys., 355(1):339–
372, 2017.

[131] Victor Kac and Andrey Radul. Quasifinite highest weight modules over the Lie
algebra of differential operators on the circle. Commun. Math. Phys., 157:429–457,
1993.

[132] Victor Kac and Andrey Radul. Representation theory of the vertex algebra
W(1+infinity). 1995.

[133] S. Mizoguchi. Determinant Formula and Unitarity for the W3 Algebra. Phys. Lett.,
B222:226–230, 1989.

[134] Katsuhisa Mimachi and Yasuhiko Yamada. Singular vectors of the virasoro algebra
in terms of jack symmetric polynomials. Communications in mathematical physics,
174(2):447–455, 1995.

[135] Hidetoshi Awata, Yutaka Matsuo, Satoru Odake, and Jun’ichi Shiraishi. Excited
states of Calogero-Sutherland model and singular vectors of the W(N) algebra. Nucl.
Phys., B449:347–374, 1995.

[136] Davide Gaiotto and Joel Lamy-Poirier. Irregular Singularities in the H+
3 WZW

Model. 2013.

[137] Masayuki Fukuda, Satoshi Nakamura, Yutaka Matsuo, and Rui-Dong Zhu. SHc

realization of minimal model CFT: triality, poset and Burge condition. JHEP, 11:168,
2015.

171



A. APPENDICES

A.1 Truncation curves

To derive the truncation curves, we proceed by determining the generating function ψ(u)
in the affine Yangian language [80, 98] for the first null state in the given module. The
state in question is now represented by a cube of dimensions (N1 + 1, N2 + 1, N3 + 1) and
it is the first state that does not lie below the corner shifted by (N1, N2, N3). We want to
see for which values of parameters of the algebra is this state singular (a null vector).

First of all, the generating function of charges for a configuration of N1×N2×N3 boxes
is

ψ(u) =
u+ ψ0h1h2h3

u

N1∏
l=1

N2∏
m=1

N3∏
n=1

ϕ(u− lh1 −mh2 − nh3) (A.1)

=
(u+ ψ0h1h2h3)(u−N1h1 −N2h2)(u−N1h1 −N3h3)(u−N2h2 −N3h3)

(u−N1h1)(u−N2h2)(u−N3h3)(u−N1h1 −N2h2 −N3h3)
(A.2)

The simple poles in this function are positions where boxes can be added or removed
[137, 98]. In particular there is a simple pole at

u = N1h1 +N2h2 +N3h3 (A.3)

which means that the box at coordinates (N1, N2, N3) can be generically removed. But
for special values of parameters h1, h2 and h3 this simple pole can be canceled by a simple
zero at u = −ψ0h1h2h3 and this is the equation for the truncation curve:

N1h1 +N2h2 +N3h3 = −ψ0h1h2h3. (A.4)

Note that for (N1, N2, N3) truncation we should consider the configuration of boxes with
(N1 + 1)× (N2 + 1)× (N3 + 1) boxes, but because of the condition h1 + h2 + h3 = 0 these
give us the same truncation curve.
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An alternative way to arrive at this result to is to study vanishing of F coefficient. Its
vanishing means that the amplitude for removal of the box at coordinates (N1 + 1, N2 +
1, N3 + 1) vanishes which is exactly the condition for this vector to be the highest weight
vector of the submodule it generates. We find

F (Λ + �→ Λ) ∝
√
N1h1 +N2h2 +N3h3 + ψ0h1h2h3 (A.5)

and the equation (3.35) follows from this immediately.

A.2 Characters

A.2.1 Building blocks

This section contains explicit formulæ for various terms appearing in the calculation of
the characters using BRST construction of the algebras discussed in the text. The vacuum
character of WN algebra is given by

χWN
(q) =

∞∏
m=0

N∏
n=1

1

1− qn+m
. (A.6)

The characters of the complex SM |Lm of M symplectic bosons and L free fermions with the
level shifted by m is

χM |Lm (q, xi, yj) =
∞∏
n=0

M∏
i=1

L∏
j=1

(
1 + yjq

n+ 1
2

+m
)(

1 + y−1
j qn+ 1

2
+m
)

(
1− xiqn+ 1

2
+m
)(

1− x−1
i qn+ 1

2
+m
) . (A.7)

The character of SM |Lm withM fermionic and L bosonic components has analogous character
with xi ↔ yi together with M ↔ L interchanged.

The projection onto U(M |L) invariant combinations is performed by integration with
the Vandermonde measure

dVM,L =
1

M !L!

M∏
i=1

dxi
xi

L∏
j=1

dyj
yj

∏
i1>i2

(
1− xi1

xi2

)∏
j1>j2

(
1− yj1

yj2

)
∏

i

∏
j

(
1 + xi

yj

)(
1 +

yj
xi

) . (A.8)
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In the generic U(M |L) case, the denominator needs to be expanded and regularized. In all
the examples of this paper, we restrict to the case of M = 0 or L = 0 when the denominator
vanishes and we do not have to deal with these technicalities.

In later sections, we also need the character of free fermions and symplectic bosons
with shifted dimension

χFm =
∞∏
n=0

(
1 + qn+ 1

2
+m
)
,

χBm =
∞∏
n=0

1

1− qn+ 1
2

+m
. (A.9)

A.2.2 S-duality transformations of modules

Triality transformation of modules of Y-algebras is given by following diagram:

YL,M,N [Ψ] YM,N,L

[
1 − 1

Ψ

]
YN,L,M

[
1

1−Ψ

]
M1
µ

M2
µ

M3
µ

M1
µ

M2
µ

M3
µ

M1
µ

M2
µ

M3
µ

S-duality then acts as

YL,M,N [Ψ] ↔ YM,L,N

[
1

Ψ

]
, M1

µ ↔ M2
µ. (A.10)
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A.3 Transformation between primary and quadratic

bases

We list first few formulas relating the primary basis generators Wj to the generators Uj in
quadratic basis.

W1 = −U1

W2 = −U2 +
N − 1

2N
(U1U1) +

(N − 1)α0

2
U ′1

W3 = −U3 +
N − 2

N
(U1U2)− (N − 1)(N − 2)

3N2
(U1(U1U1))− (N − 1)(N − 2)α0

2N
(U ′1U1)

+
(N − 2)α0

2
U ′2 −

(N − 1)(N − 2)α2
0

12
U ′′1

W4 = −U4 +
(N − 3)(N − 2)(N − 1)(5N + 6)α0(α2

0N
2 − α2

0N − 1)

2N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′1(U1U1))

+
(N − 3)(N − 2)(N − 1)(α2

0N
2 − α2

0N − 1)(2α2
0N

2 + 3α2
0N − 3)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′1U
′
1)

−(N − 3)(N − 2)(N − 1)α0(5α2
0N

2 + 7α2
0N − 5)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′1U2)

+
(N − 3)(N − 2)(N − 1)(5N + 6)(α2

0N
2 − α2

0N − 1)

4N3(5α2
0N

3 − 5α2
0N − 5N − 17)

(U1, (U1, (U1, U1)))

−(N − 3)(N − 2)(5N + 6)(α2
0N

2 − α2
0N − 1)

N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U1(U1U2))

+
(N − 3)(N − 2)(5α2

0N
2 + 7α2

0N − 5)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

(U2U2)

+
(N − 3)(N − 2)(N − 1)(2α4

0N
4 − 5α2

0N
3 − 2α4

0N
2 − 7α2

0N
2 − 4α2

0N + 5N − 2)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

(U ′′1U1)

+
(N − 3)(N − 2)(N − 1)α0(α4

0N
4 − 10α2

0N
3 − α4

0N
2 − 14α2

0N
2 − 2α2

0N + 10N − 1)

24N(5α2
0N

3 − 5α2
0N − 5N − 17)

U
(3)
1

−(N − 3)(N − 2)(2α4
0N

4 − 2α4
0N

2 − 5α2
0N

2 − 11α2
0N + 3)

4N(5α2
0N

3 − 5α2
0N − 5N − 17)

U ′′2

−(N − 3)(N − 2)α0

2N
(U1U

′
2) +

(N − 3)

N
(U1, U3) +

(N − 3)α0

2
U ′3

We choose the normalization such that Wj = −Uj + . . .. Since this choice of normalization
is rather arbitrary, we should also specify the values of structure constants that fix the
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relative normalization of the charges:

C0
11 = N

C0
22 =

1

2
(N − 1)(1−N(N + 1)α2

0)

C0
33 =

(N − 1)(N − 2)(1−N(N + 1)α2
0)(4−N(N + 2)α2

0)

6N

C0
44 =

(N − 1)(N − 2)(N − 3)(N + 1)

4N2(5N3α2
0 − 5Nα2

0 − 5N − 17)
× (1−N(N + 1)α2

0)(4−N(N + 2)α2
0)×

×(9−N(N + 3)α2
0)(1−N(N − 1)α2

0)

C0
55 =

(N − 1)(N − 2)(N − 3)(N − 4)(N + 1)

10N3(7N3α2
0 − 7Nα2

0 − 7N − 107)
× (1−N(N + 1)α2

0)(4−N(N + 2)α2
0)×

×(9−N(N + 3)α2
0)(16−N(N + 4)α2

0)(1−N(N − 1)α2
0)

Acting on the highest weight state, the relation between charges becomes somewhat simpler

w1 = −u1

w2 = −u2 +
N − 1

2N
u2

1 −
(N − 1)α0

2
u1

w3 = −u3 +
N − 2

N
u1u2 −

(N − 1)(N − 2)

3N2
u3

1 − (N − 2)α0u2

+
(N − 1)(N − 2)α0

2N
u2

1 −
(N − 1)(N − 2)α2

0

6
u1
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w4 = −u4 +
N − 3

N
u1u3 +

(N − 3)(N − 2)(5α2
0N

2 + 7α2
0N − 5)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

u2
2

−(N − 3)(N − 2)(5N + 6)(α2
0N

2 − α2
0N − 1)

N2(5α2
0N

3 − 5α2
0N − 5N − 17)

u2
1u2

+
(N − 3)(N − 2)(N − 1)(5N + 6)(α2

0N
2 − α2

0N − 1)

4N3(5α2
0N

3 − 5α2
0N − 5N − 17)

u4
1 −

3(N − 3)α0

2
u3

+
(N − 3)(N − 2)α0(15α2

0N
3 + 2α2

0N
2 − 17α2

0N − 15N − 29)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

u1u2

−(N − 3)(N − 2)(N − 1)(5N + 6)α0(α2
0N

2 − α2
0N − 1)

2N2(5α2
0N

3 − 5α2
0N − 5N − 17)

u3
1

−(N − 3)(N − 2)(6α4
0N

4 − 6α4
0N

2 − 5α2
0N

2 − 19α2
0N − 1)

2N(5α2
0N

3 − 5α2
0N − 5N − 17)

u2

+
(N − 3)(N − 2)(N − 1)(α2

0N
2 − α2

0N − 1)(6α2
0N

2 + 7α2
0N + 1)

4N2(5α2
0N

3 − 5α2
0N − 5N − 17)

u2
1

−(N − 3)(N − 2)(N − 1)α0(α2
0N

2 − α2
0N − 1)(α2

0N
2 + α2

0N + 1)

4N(5α2
0N

3 − 5α2
0N − 5N − 17)

u1

As one can see from these expressions, they are becoming increasingly complicated and it
is unfortunate that no closed-form expression for the primary charges is known.
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