Automated Compilation Framework for
Scratchpad-based Real-Time Systems

by

Muhammad Refaat Sedky Soliman

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2019

(© Muhammad Refaat Sedky Soliman 2019

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Isabelle Puaut
Professor, University of Rennes I

Supervisor(s): Rodolfo Pellizzoni
Associate Professor, University of Waterloo

Internal Member: Mark Aagaard
Associate Professor, University of Waterloo

Internal Member: Hiren Patel
Associate Professor, University of Waterloo

Internal-External Member: Ondfej Lhotak
Associate Professor, University of Waterloo

11

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111

Statement of Contribution

In what follows is a list of publications which I have co-authored and used their content
in this dissertation. For each publication, I present a list of my contributions. The use
of the content, from the listed publications, in this dissertation has been approved by all
co-authors.

1. M. R. Soliman and R. Pellizzoni, “WCET-driven dynamic data scratchpad manage-
ment with compiler-directed prefetching,” in 29th Euromicro Conference on Real-
Time Systems (ECRTS 2017) - Best paper award [131].

Introduced the refined region-based program structure.

Proposed a WCET-driven automated allocation scheme for data scratchpad
with prefetching.

Developed a scratchpad controller and a compiler tool for the allocation scheme.

Designed and executed the experiments, and analyzed the results.

2. M. R. Soliman and R. Pellizzoni, “PREM-based Optimal Task Segmentation under
Fixed Priority Scheduling,” in 31th Euromicro Conference on Real-Time Systems

(ECRTS 2019) [132]
e Introduced the conditional task model for PREM-based system and extended
the schedulability analysis.

e Developed a set of optimal segmentation algorithms for the fixed-size DMA
model under fixed priority scheduling.

e Designed and executed the experiments, and analyzed the results.
3. M. R. Soliman, G. Gracioli, R. Tabish, R. Pellizzoni and M. Caccamo, “Segment

Streaming for the Three-Phase Execution Model: Design and Implementation”, under
review

Designed the segment streaming for the three-phase execution model.

Proposed a OS-level programming interface and its implementation.

Extended the schedulability analysis for the case of fixed-size DMA model.

Designed and executed the schedulability tests, and analyzed the results.

v

Abstract

ScratchPad Memory (SPM) is highly adopted in real-time systems as it exhibits a
predictable behaviour. SPM is software-managed by explicitly inserting instructions to
move code and data transfers between the SPM and the main memory. However, it is a
tedious job to decide how to manage the SPM and to manually modify the code to insert
memory transfers. Hence, an automated compilation tool is essential to efficiently utilize
the SPM. Another key problem with SPM is the latency suffered by the system due to
memory transfers. Hiding this latency is important for high-performance systems. In this
thesis, we address the problems of managing SPM and reducing the impact of memory
latency. To realize the automation of our work, we develop a compilation framework
based on the LLVM compiler to analyze and transform the program code. We exploit
our framework to improve the performance of the execution of single and multi-tasks in
real-time systems. For the single task execution, Worst-Case Execution Time (WCET) is
of great importance to assure correct and safe behaviour of the system. So, we propose
a WCET-driven allocation technique for data SPM that employs software prefetching to
efficiently manage the SPM and to overlap the memory transfer and the task execution in
a predictable way. On the other hand, multi-tasking requires the system to be schedulable
such that all the tasks can meet their timing requirements. However, executing multiple
tasks on a multi-processor platform suffers from the contention of the accesses to the shared
main memory. To avoid the contention, several scheduling techniques adopted the 3-phase
execution model which executes the task as a sequence of memory and computation phases.
This provides the means to avoid the contention as well as to hide the memory latency
by using a Direct Memory Access (DMA) engine. Executing memory transfers using the
DMA allows overlapping the memory transfers with the computations on the processor.
Using the 3-phase model in systems with limited sizes of local SPM may necessitate a
segmentation of the task. Automating the segmentation process is necessary especially for
systems with large task sets. Hence, we propose a set of efficient segmentation algorithms
that follow the 3-phase execution model. The application of these algorithms shows a
significant improvement in the system schedulability. For our segmentation algorithms to
be more applicable, we extend the 3-phase model to allow programs with multiple paths
represented as conditional Directed Acyclic Graphs (DAGs), unlike the previous works that
targeted sequential programs. We also introduce a multi-steaming model to exploit the
benefits of prefetching by overlapping the memory and computation phases of the same
task, which was not allowed in the previous approaches. By combining the automated
compilation with the proposed algorithms, we are able to achieve our goal to efficiently
manage data SPM in real-time systems.

Acknowledgements

First and foremost, I am grateful to Allah for empowering me to complete this thesis.
Without his help, I would not have the ability to reach this stage in my life.

I would like to seize this opportunity to express my deepest gratitude to Prof. Rodolfo
Pellizzoni (my supervisor), not only for his help and guidance through my Ph.D, but also
for his sincere support at a personal level. He impacted my life and career in many ways
and I was lucky to be his student.

[would like to thank my committee members: Professor Isabelle Puaut, Professor Mark
Aagaard, Professor Hiren Patel, and Professor Ondrej Lhotak for taking the time and effort
to participate in my examination committee and provide me with valuable feedback.

I would like thank my friends for the constructive discussions and their help and feed-
back: Mohamed Hassan, Saud Wasly, Ahmed Alhammad, and Michael Guo.

Foremost, I cannot put into words how grateful I am for my parents, Magda and Refaat,
for their unconditional love, continuous support, endless sacrifices, and countless prayers.
Thanks for my sister, Yasmeen, for believing in me and supporting me. Thank you, my
wife Noura, for being patient and standing by my side through the good and the tough
times.

vi

Dedication

Indeed, my prayer, my rites of sacrifice, my living and my dying are for Allah, Lord of
the worlds. [Quran 6:162]

To my parents, Magda and Refaat.

vii

Table of Contents

List of Tables
List of Figures
List of Acronyms

1 Introduction

1.1 Data SPM Management with Software Prefetching

1.2 Task Segmentation and Scheduling for Multi-tasking Systems

1.3 Thesis Outline

2 Compilation Framework: Analysis and Transformation

2.1 LLVM Compiler and Compilation Flow
2.1.1 LLVM-IR Instructions
2.1.2 LLVM Passes
2.1.3 Compilation Flow

2.2 Region-Based Program Structure
2.2.1 LLVM Region Analysis
2.2.2 Refined Region Tree,

2.3 Loop Analysis and Transformation

2.3.1 Loop Iteration Bound,

xiii

xXiv

xvii

(S R

© © o N

2.3.2 Loop Transformations 17

2.4 Memory Access Informationo 21
2.4.1 Stack Object Promotion 23
2.5 Back-end Analysis 23
2.6 SUMMATY 24
The Case of Single Task Execution 25
Scratchpad Management: Background and Related Work 26
3.1 Background 26
3.1.1 On-Chip Memory in Real-Time Systems 26
3.1.2 Cache Prefetching 28
3.1.3 WCET Analysis 30
3.2 Related Work 34
3.2.1 Static Allocation Techniques 34
3.2.2 Dynamic Allocation Techniques 35
3.2.3 Run-time Allocation Techniques 38
3.3 Summary 40

WCET-Driven Dynamic Data Scratchpad Management with Compiler-

Directed Prefetching 41
4.1 Introduction 42
4.2 Motivating Exampleo 44
4.3 Region-Based Program Representation 46
4.4 Allocation Mechanism L 46
4.4.1 Assumptions. 47
4.4.2 ScratchPad Memory (SPM) controller 48
4.4.3 Allocation Commands 52

X

444 Exampleo 54

4.5 Compilation Flow 57
4.5.1 IR Transformation 57

4.6 Allocation Algorithm 59
4.6.1 Problem Description, 59
4.6.2 WCET Optimization 67
4.6.3 Allocation Heuristic. 68

4.7 WCET Analysis 72
4.8 Insights into Dynamic Allocation and Prefetching 77
4.8.1 Static Allocation L o 79
4.8.2 Dynamic Allocation Lo 79
4.8.3 Prefetching 83

4.9 Evaluation 85
4.10 SUMMATY . . .« o o e 87
IT The Case of Multi-Tasking Scheduling 93
5 Multi-Segment Streaming using the 3-Phase Execution Model 94
5.1 Background and Related Work, 96
5.1.1 Memory and Processor Schedule 96
5.1.2 Program Transformation 99

5.2 Multi-Segment Conditional Streaming Model 100
5.2.1 Streaming Execution Model 100
5.2.2 Platform Assumptions 103
5.2.3 Task Model 104

5.3 OS Programming Interface 0L 105
5.3.1 API Implementation 108

5.4 Scheduling Analysis for the Fixed-size DMA Model

5.4.1 Maximum Blocking Length Derivation
5.5 Schedulability Analysis for the Variable-Size DMA Model

5.6 Summary

6 Program Segmentation

6.1 Valid Segmentationo

6.1.1 Segmentation Example L.
6.2 Segmentation for the Fixed-size DMA Model
6.2.1 Tiling Algorithm

6.2.2 Region Sequence Segmentation
6.2.3 Optimal Task Set Segmentation
6.3 Segmentation for the Variable-size DMA Model
6.3.1 Task Set Segmentation

6.3.2 Segmentation Algorithm L.

6.4 Evaluation

6.4.1 Fixed-size DMA Model
6.4.2 Variable-size DMA Model

6.5 Summary

7 Conclusion and Future Work

References

Appendices

el

131
132
134
137
142
146
153
155
157
160
163
165
172
172

177

180

199

Appendix A SPM Controller 200

A.1 Allocation Command Encoding, 200
A.1.1 SPM Controller Abstraction 201

A2 Control Unit e 202
A.2.1 Command Execution, 202

A.2.2 DMA Management 206
Appendix B WCET Analysis 208
B.0.1 Preliminaries 208

B.0.2 Abstract State Model 210

xii

List of Tables

4.1 Evaluation Benchmarks 86
5.1 SPM partitions and buffers stateo 108
6.1 Evaluation Benchmarks oL 163
A.1 Commands encodings 201

Xlil

List of Figures

2.1
2.2
2.3
24
2.5

2.6
2.7
2.8
2.9

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

LLVM compiler tool-chain L. 8
Compilation Flow 10
Simple and extended regions example L. 12
Extended region Example o oo 13
Simple (solid border) and extended (dashed border) regions in a Control

Flow Graph (CFG) 14
Program CFG G and region tree, 15
Refined program CFG G and region tree 16
Region representation of loop transformations 18
Tiling 2-level loop nesto 20
Methods of bound calculation [47] 32
Motivating Example L0 oo 45
ScratchPad Memory (SPM)-based System 49
Data SPM Controller 50
Allocation Example 55
SPM Controller State for Allocation Example in Figure 4.4 %)
Example of Pointer Definition L. 63
Allocation Overlap Example 64
Example of allocation order 69

X1v

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1
5.2
2.3
0.4
2.5
2.6

6.1
6.2
6.3

WCET Example: Merging states from different paths 73

Structure of program unit U L 78
Two usage patternso 78
Allocations for Pattern 1 (shaded object is used in the unit) 79
Allocations for Pattern 2 (shaded object is allocated in the unit) 80
Profit and cost of the dynamic and static allocations 81
Possible allocations for Pattern 1 with SPM size =s. 82
Net profit and pareto-frontier for different allocations 83
Pareto-frontier for e/p =1[0,0.25,0.5,1] 84
Ideality factor (aes)o 88
Ideality factor (compress) 88
Ideality factor (histogram) 89
Ideality factor (g722) 89
Ideality factor (spectral) Lo 90
Ideality factor (Ipc)o o o 90
Ideality factor (gsm) 91
Ideality factor (edge detect) 91
Example: TDMA memory schedule with M =2 cores. 97
Streaming Execution Model o000 101
Application Programming Interface (API) usage example 112
SPM management example oo L 113
Example segment DAG (s? is s*9™ and % is s*"¥). 115
Example critical instant for fixed-priority scheduling in the fixed-sized DMA

model. . . Lo 116
Region representation (— = parent-child / --+ = sequential regions) . . . 134
Segmentation Exampleo 135
Fixed-size DMA: Schedulability vs Utilization 166

XV

6.4 Fixed-size DMA: Weighted Schedulability VS SPM Size (ts, = 100) 167
6.5 Fixed-size DMA: Weighted Schedulability VS SPM Size (¢5., = 1000, footprint

SUKB) st 168
6.6 Fixed-size DMA: Weighted Schedulability VS DMA Slowdown Factor . . . 170
6.7 Fixed-size DMA: Segmentation Time VS Number of Tasks 171
6.8 Variable-size DMA: Schedulability vs Utilization (SPM = 16 / 64 / 256 KB,

§=5000,p=0.5) .\ ot 173

6.9 Variable-size DMA: Weighted Schedulability VS SPM Size (§ = 5000, p = 0.5) 174
6.10 Variable-size DMA: Weighted Schedulability VS § (SPM size — 32 kB, p = 0.5) 175
6.11 Variable-size DMA: Weighted Schedulability VS p (SPM size = 32 kB, § = 5000) 176

A.1 Encoding of the allocation commands 200

Xvi

List of Acronyms

SESE Single Entry Single Exit

PST Program Structure Tree

WCET Worst-Case Execution Time
WCEP Worst-Case Execution Path
ACET Average-Case Execution Time

SPM ScratchPad Memory

CFG Control Flow Graph

ICFG Inter-procedural Control Flow Graph
DMA Direct Memory Access

DAG Directed Acyclic Graph

IR Intermediate Representation

ILP Integer Linear Programming

LRU Least Recently Used

COTS Commercial-Off-The-Shelf

IPET Implicit Path Enumeration Technique
PREM PRedictable Execution Model

OS Operating System

API Application Programming Interface

xXvil

Chapter 1

Introduction

Real-time systems are essential in many domains such as automotive, avionics, telecommu-
nication infrastructures, medical devices, security systems, robotics, fabrication machines,
and military applications [98]. A growing domain of real-time applications is Internet of
Things (IoT) where smart devices are able to communicate, share information, and interact
with their environment. With the rise of autonomous systems, the complexity of critical
functionalities has been increasing, demanding high-performance real-time architectures
and algorithms to cope with these needs.

In real-time systems, the correctness of the system depends on its logical functionality
as well as the timing. Timing constraints are imposed to avoid unacceptable results or to
maintain the quality of service. Hence, the execution time of a task running on a real-
time platform must be bounded. The bound is derived using static or measurement-based
analysis to estimate the Worst-Case Execution Time (WCET) [161] which accounts for the
worst-case scenario to assure the predictability of the system. In a multi-tasking system,
a schedulability analysis uses the WCET of each task to verify the timing constraints of
a real-time system [24]. For a multi-tasking system, timing validation for the set of tasks
running on the system is necessary. Each task in the system has a deadline such that the
execution of a job of this task must finish before the deadline. A feasible task set means
that all jobs of all tasks can meet their deadlines under all combinations of job arrivals of
different tasks. Different schedulability algorithms are used to derive schedules for a task
set execution. A schedulability analysis decides whether a task set is schedulable using a
schedulability algorithm by ensuring that the WCET of any possible job in the system can
meet its deadline. Architectural features like memory hierarchy, interconnect protocols and
pipelining impact the ability to derive tight bounds on the WCET. The memory hierarchy
is a key factor for both performance and predictability of the system. This is especially

true on architectures with multiple processors, because processors (or cores) share hardware
resources, such as cache memory hierarchy, buses, DRAM, and I/O peripherals. Therefore,
operations performed by one processing unit can result in unregulated contention at the
level of any shared resource and thus unpredictably delay the execution of a task running
on a different core.

Embedded systems usually comprise on-chip and off-chip memories. On-chip memories
are small and fast compared to off-chip memories which are large and slow. Combining on-
chip and off-chip memories in a multi-level memory hierarchy improves the performance
[112] by bridging the speed gap between the processor and the off-chip main memory.
Caches are the most common form of on-chip memory. They have been used in general
purpose systems for a long time as they improve the average performance significantly.
Caches employ a set of heuristics that exploit the temporal and spacial locality of memory
accesses to keep the data that most likely will be accessed in the near-future. The execution
time of a memory instruction in a cache-based system depends on whether the accessed
data is a cache hit or a cache miss. The heuristic behavior of caches increases the variability
in the execution time as the cache behavior depends on the history of the memory accesses.
Assuming that every memory access is a cache miss to account for the worst case leads to
a very pessimistic estimation of WCET. Static cache analysis tries to predict the cache
behavior to be able to tighten the WCET bound [96]. The complexity of cache analysis
significantly increases for multi-tasking systems and multi-core architectures as system
resources are shared. Several works have been proposed to enforce a more deterministic
behavior in real-time systems using cache partitioning and cache locking [56]. In the context
of real-time systems, there has been significant attention to ScratchPad Memory (SPM)
as an alternative to caches [155]. SPM is a small on-chip memory that is mapped to the
address space of the processor. Unlike caches, SPM has to be explicitly managed by the
software to move the data between the SPM and the main memory. Hence, SPM is highly
predictable as its content is under software control. However, explicit management of
SPM is challenging as it requires the programmer to be aware of the underlying hardware
and manually embed the required managing instructions in the code. Several allocation
algorithms have been proposed to automatically manage the SPM for both general purpose
systems and real-time systems. An allocation mechanism determines the content of the
SPM based on the SPM size and the platform configuration. The allocation of data in
SPM requires explicit movement of the data to/from main memory. The time for these
transfers is another challenge for SPM management. These transfers are usually performed
using a Direct Memory Access (DMA) engine because of its efficiency.

In this thesis, our goal is two-fold: to automate the management of the SPM in real-time
systems, and to efficiently hide the memory transfers by overlapping the DMA time and

the computation time. The first goal is achieved by introducing a compilation framework
to analyze, optimize and transform a program based on the LLVM compiler. The second
goal has two targets: single task execution and multi-tasking systems. For the execution
of a single task, we use software prefetching to prefetch/write-back data in parallel with
the computation of the task. For a multi-tasking system, this can be achieved using
the 3-phase model [152] by overlapping the DMA time of one task with another task.
The 3-phase model divides the execution of the task to memory and computation phases.
Hiding memory time using the 3-phase model has been explored in many works. However,
the previous works have two shortcomings: 1) the task is assumed to fit in the SPM or
manually segmented by the programmer, 2) the DMA time of a segment of the task cannot
be overlapped with the computation time of another segment of the same task. Hence,
we tackle these two shortcomings in this thesis by: extending the execution model to
allow streaming segments of the same task, i.e. execute them back-to-back, and proposing
algorithms that consider both the task segmentation and the scheduling of the task set to
obtain efficient segmentation and to improve the system schedulability.

1.1 Data SPM Management with Software Prefetching

Although using on-chip memory avoids frequent accesses to the main memory, the perfor-
mance of embedded systems can be significantly affected by main memory latency due to
the need to move the data between on-chip memory and main memory. While novel devices
promise much increased memory bandwidth, in particular through DRAM stacking [!], the
access latency for DRAM main memory has largely remained similar in recent years. In
the context of general purpose systems, this problem is typically addressed through per-
task prefetching techniques to bring content to on-chip memory before it is used and avoid
stalling the processor. Cache prefetching has been extensively researched in the architec-
ture and compilers communities [103]. Prefetching techniques incorporate hardware and/or
software to hide cache miss latency by attempting to load cache lines from main memory
before they are accessed by the program. The essence of these techniques is speculation of
the data locality and the cache behavior, which makes them unsuitable to provide WCET
guarantees for real-time programs.

Using prefetching techniques for SPM can provide similar benefit to hide memory la-
tency. Current SPM management techniques for real-time systems do not solve the fun-
damental memory latency problem, because they generally assume that the core is stalled
while the content of on-chip memory is reloaded.

We target the development of a compiler-directed prefetching scheme that optimizes

the allocation of program code and data in on-chip memory with the objective to minimize
the WCET. For this phase, we focus on single program running on single core.

In Chapter 4, we present a novel prefetching scheme for program data. Our proposed
method employs a Direct Memory Access (DMA) controller to move data between on-chip
memory and main memory. Compared to related work, we do not stall the program while
transferring data; instead, we rely on static program analysis to determine when data is
used in the program, and we prefetch it into on-chip memory ahead of its use so that the
time required for the DMA transfer can be overlapped with the program execution. The
allocation and prefetching framework is automated in the compiler.

1.2 Task Segmentation and Scheduling for Multi-tasking
Systems

Shared resources in Multi-Processor Systems-on-a-Chip (MPSoCs) represent a challenge for
predictability in real-time systems. Main memory shared by all processing elements on the
chip can cause significant performance degradation. For real-time systems, the contention
for memory access among multiple processors may result in extremely high worst-case
latency (66,83, 141] which counter the benefit of using multiple processors. Hence, there is
a significant interest in the real-time community in controlling the pattern of accesses in
memory to avoid worst-case scenarios. This can be difficult in cache-based systems, where
main memory accesses are generated by misses in last level cache, as the precise pattern of
cache hits and misses is hard to predict. The 3-phase model attempts to solve this issue by
dividing the each task in one or multiple program segments and executing each segment
in three phases: loading the data and code of the segment to the SPM, then executing
the segment from the SPM, and finally writing back the modified data to the SPM. Since
a segment does not need to access main memory during its computation phase, a DMA
engine can be scheduled to perform memory transfers from/to the main memory in parallel.
This enables scheduling the tasks as well as the DMA operations in a predictable way as
contention on the main memory is mitigated.

Based on this core idea, successive works [(6—8, 18,22, 28 45 52 97 99, , , ,

, 152,166, 167] have proposed a variety of contentionless approaches targeting different
scheduling schemes and platforms. However, compiling a program to execute based on the
3-phase model is a key problem that has received significantly less attention. Due to the
complexities inherent in each step, an automated tool is required to remove the burden
from the programmer.

The 3-phase model only allows the overlap of the execution time of a task with the
DMA time of another task, i.e. a multiple segments of the same task cannot execute back-
to-back. In Chapter 5, we extend the model to allow multi-segment streaming. Streaming
a segment into the next segment of the same task means that the code and data of the
next segment are transfered to the SPM while the current segment is executing. This is
important as the main structure in a program are usually the loops. So, techniques like
loop tiling enable segment streaming in many cases. We also extend the 3-phase model to
support a conditional Directed Acyclic Graph (DAG) representation for the tasks. Previous
works adopted a sequential model of the program in which the segments of the program
are executed in sequence. The conditional DAG representation allows multiple execution
paths in the program and hence it is more general. Our evaluation has shown that the
system schedulability improves significantly when multi-segment streaming is allowed.

In Chapter 6, we propose a set of program transformation constraints that allow us
to convert a task into a conditional sequence of 3-phase segments. We use a region-based
approach to simplify segment creation, in conjunction with loop splitting and tiling to split
large loops into multiple segments. We address two models for the DMA: fixed-size DMA
model, and variable-size DMA model. In both fixed and variable-size DMA models, the
DMA is arbitrated between different cores using a TDMA memory schedule. The fixed-size
model assigns TDMA slot that is sufficient to transfer the whole SPM space assigned to
the task; while the variable-size model uses a fine granularity for the TDMA slots such
that a transfer can span multiple slots. For the fixed-size model, we are able to derive a
task segmentation algorithm that enumerates the best possible conditional segments for
a given task on a platform with fixed-size memory phases. Furthermore, for the case of
fixed-priority partitioned scheduling, we show that applying the algorithm to each task in
priority order leads to a solution that is optimal for the task set. Then, we propose a set of
heuristics for the variable-size model as an optimal algorithm is too complex to consider.
Our evaluation shows that our proposed algorithms improve the system schedulability
significantly compared to other greedy and heuristic algorithms.

1.3 Thesis Outline

The thesis starts with a presentation of the compilation framework and the analysis and
transformation passes used in Chapter 2. The rest of the thesis is structured in two
parts. The first part is concerned with the case of the execution of a single task. Chapter 3
discusses the background and the related work of SPM management and prefetching. Then,
we present our proposed technique for WCET-driven data SPM allocation and prefetching

in Chapter 4. The second part focuses on multi-tasking. In Chapter 5, we review the
related work for the 3-phase model and then discuss the extension of the model with a
formal schedulability analysis. After that, we present our developed algorithms for task
segmentation and show the evaluation results in Chapter 6. Finally, we summarize the
thesis in Chapter 7 and discuss the future extensions.

Chapter 2

Compilation Framework: Analysis and
Transformation

In this chapter, we present the structure of our compilation framework. The framework is
based on the LLVM compiler which is used to analyze and transform the program code.
We start with an introduction to the LLVM compiler and the compilation flow in our
framework in Section 2.1. Then, we focus on the set of analysis and transformation passes
used to prepare the program and gather the required information about it: region analysis
in Section 2.2, loop analysis and transformations in Section 2.3, memory access information
in Section 2.4, and finally the back-end analysis in Section 2.5.

2.1 LLVM Compiler and Compilation Flow

The Low Level Virtual Machine (LLVM) is a compiler infrastructure introduced in [36].
The compiler is designed in a modular and reusable structure to support optimization of
the program during its lifetime through compile time, link time and run time.

LLVM is based on the LLVM Intermediate Representation (LLVM-IR) which is a typed
RISC-like instruction set. LLVM-IR is agnostic to the target machine and uses an infinite
number of virtual registers. The register operations are in Static Single Assignment (SSA)
form which means each register can be written only once. There are two file types for
LLVM-IR: bytecode (.bc) and human readable assembly language (.11). In this document,
the human readable representation is used.

[I N N

Middle-end

opt

Back-end

1llc as 1d
Assembly Object

Front-end

clang

LLVM-IR
Optimization

Parser, N LLVM-IR
Type Checker Generation

v v v v
foo.ll foo.ll foo.s foo.o

Figure 2.1: LLVM compiler tool-chain

Preprocessor

Code | Code

Generation Generation

The compilation tool-chain of LLVM is shown in Figure 2.1. The code is parsed using
and converted to LLVM-IR on which most of the optimization passes are applied. Then,
the back-end generates the assembly according to the specified target. The assembler
generates the object file that is handled by the linker to emit the executable.

2.1.1 LLVM-IR Instructions

LLVM-IR set of instructions represent common operations to describe the program inde-
pendent of the machine instructions. We focus on memory instructions and other instruc-
tions needed to understand its operation.

In LLVM, an object is represented by a pointer to its address in the memory. The
pointer can refer to a global object, a stack-allocated object or a return from a function,
e.g. malloc for heap allocation. All memory operations are pointer-based where the address
is computed first -if needed- and then provided to the load/store instruction.

The following example shows alloca, load, store, getelementptr instructions:

0x = global [10x32] zerointializer

%ptrl = alloca 132

store i32 5, 132x* Yptril

%ptr2 = getelementptr inbounds [10x32], [10x32]* @x, i32 0, i32 1
%x.1 = load 132, i32* %ptr2

alloca allocates an object in the stack and returns a pointer to it as in line 2 where a
32-bit integer is allocated and a pointer ptri is returned to its address in the stack.

getelementptr is used to get the address of a subelement of an aggregate data structure.
In line 1, an integer array x has 10 elements and line 4 gets the address of the second
element in ptr2.

store is used to write to a memory address as in line 3 where a value of 5 is written to
the integer pointed to by ptri.

load is used to read from a memory address as in line 5 where the data in the address
ptr2 is loaded in register x.1.

Other instructions might be used for handling pointer types like inttoptr and bitcast
or selection like select and phi.

2.1.2 LLVM Passes

LLVM provides a set of analysis and transform passes [2]. The analysis passes collect
information about the program that can be used to apply transformations or for debugging.

The passes in LLVM works in a framework called LLVM Pass Manager. This framework
is responsible for keeping the analysis information updated after the optimization of the
program and maintaining the memory and execution dependency of different passes.

There are multiple types of passes depending on the scope of the pass. This helps the
pass manager to schedule the passes in an efficient way. The pass can be a ModulePass,
CallGraphSCCPass, FunctionPass, LoopPass, RegionPass, or BasicBlockPass. Each
of these types imposes constraints on the information available to the pass and the scope
of the transformation, e.g. FunctionPass can only work on the current function passed to
it and has no information of the other functions.

2.1.3 Compilation Flow

Figure 2.2 depicts the compilation flow of the program analysis and transformations. The
source code is compiled by the front-end of LLVM (clang) accompanied with the profiling
information to Intermediate Representation (IR) code. Then, the middle-end generates
the information about the region structure of the program, the loop bounds, the possible
loop transformations, and the data footprint for each part of the program. The IR code
is passed to the back-end of LLVM to create the assembly code and extract the timing
and function stack information that can be mapped to the IR code. These information
are fed to a set of real-time algorithms that are developed in this work. The output of
these algorithms is a set of transformations to be applied on the IR code. The analysis-
transformation cycle can run for multiple iterations in which the transformed IR code is
analyzed and used by the algorithms. Finally, an executable is create for the optimized
program.

Back-end l—? Executable

A 4
Timing Info.,
Stack Info.

Loop Info., ’
Footprint Inf

[Transformations

Real-time
Algorithms

Figure 2.2: Compilation Flow

2.2 Region-Based Program Structure

In this section, we introduce the region-based program structure as the base of the program
representation in our framework. Then, we discuss the region analysis in LLVM that
generates the region tree representation for the program. After that, we show our proposed
refined region-based structure that allows us to have a more detailed representation of the
program.

The region tree is equivalent to the Program Structure Tree (PST) which is defined
in [76] as a hierarchical representation of the program structure based on Single Entry
Single Exit (SESE) regions of the Control Flow Graph (CFG). PST is used to speedup
algorithms for compiler static analyses and optimizations. The benefit of PST is that
each SESE region is a CFG on which analysis algorithms can be applied using divide-and-
conquer approach. PST is then used to combine the results from each SESE region to the
analysis result for the program.

The following definitions are the basic concepts used in the region representation:

Control Flow Graph (CFG) A control flow graph (CFG) G = (N, E) of a program is
a set of basic blocks represented by vertices N connected with a set of edges E. The
graph starts with an entry basic block and ends with a return basic block. The basic
block is a set of statements executed in a linear order and the basic block might end
with a branch to compose a non-linear control flow.

Dominance and Post-dominance In the CFG, node a dominates node b if every path
from the start of the CFG to b passes by a. Similarly, node b post-dominates node a
if every path that from a to the end of the CFG passes by b.

10

SESE (Simple) Region A SESE (simple) region is a subgraph of the CFG that is con-
nected to the other nodes in the CFG with only two edges, an incoming edge (entry
edge) and an outcoming edge (exit edge). The SESE region is defined using the entry
and exit edge such that the entry edge dominates the exit edge and the exit edge
post-dominates the entry edge.

Canonical Region A region that cannot be constructed out of a set of regions is a canon-
ical region. Two canonical regions are either disjoint or completely nested.

Trivial Region A trivial region is composed of one basic block.

Extended Region An extended region is a subgraph of the CFG that can be transformed
to a simple region by adding empty basic blocks to combine multiple entry edges or
exit edges.

Sequentially-Composed Regions Two regions are considered sequentially-composed if
the exit of one region is the entry of another region.

Region Tree (Program Structure Tree) The region tree (PST) represents the rela-
tionship between canonical regions such that a region r, is an ancestor of region r,
if r, is completely contained in r,. A r, is the parent or region 7y if r, is the closest
containing region of 7.

2.2.1 LLVM Region Analysis

The region analysis pass in LLVM constructs the region tree for canonical non-trivial
regions. A region can be collapsed to a single node and modeled as a call to a function
that contains the CFG of the region. This function can be analyzed and optimized; then
it can replace the original region.

The examples in Figures 2.3, 2.4 and 2.5 are adopted from [58]. The CFG in Fig-
ure 2.3b is constructed from the program code in Figure 2.3a and it highlights the simple
region that represents the if condition in the program code with single entry and single
exit. The example in Figure 2.4 shows an extended region in Figure 2.4a and how it can
be transformed to a simple region by inserting two empty basic blocks ¢ 1 and ¢ 2 in
Figure 2.4b. The CFG in Figure 2.5 illustrates how the definition of an extended region
generalizes the definition of a region. In the figure, the simple regions are fenced by solid
borders while the extended regions are fenced by dashed borders. Note that in LLVM the
top level region, which is the whole CFG that contains the node e, is also considered a
region.

11

inti,a b
i=0

return

void foo() { l
int i, a, b; if (i '=100)
AT

for (i = 0; i != 100; i++) { / X

a=-3; ‘entry :

a =4 !

if (1 == a) if (i == a) :

I

b = 5; T]F

I
lexit

else
b = 8;

T T
/ \
/ I
} - /
) [o=s] [o=e],
/
N L

(a) Program code

(b) Program CFG and simple region

Figure 2.3: Simple and extended regions example

2.2.2 Refined Region Tree

In our framework, we use regions as the basic unit of the program to apply ScratchPad
Memory (SPM) allocation or program segmentation. However, the region analysis in LLVM
has two limitations:

e A basic block with multiple entries/exits is not considered a region.

e A basic block with a function call or multiple calls is considered one region.

We propose to construct a refined region tree that avoids these limitations and allows
regions with finer granularity; hence provide more flexibility to our algorithms.

To obtain the refined regions, we first construct a modified graph G = (N,E) from
the CFG G = (N, E), where N is the set of basic block nodes, call nodes and merge/split
nodes and E is the set of edges such that:

e Fach call to a function in G is split into a separate call node.

e A merge/split node is inserted before/after a basic block or a call node with multiple
entry/exit edges.

12

t 1
I
entry

a b c

T T | F
AN
<entry lentry T »
N ¥ /N
» A IRV
c
d e
T|F .
T A\ | 7
/ |
» A A v ¥
, 7
. /. layi
lexit , ‘exit | exit
v ¥ y
g g

(a) Extenced Region (b) After Transformation

Figure 2.4: Extended region Example

Note that after the transformation, every node in G that is not a merge/split node has a
single entry and a single exit; hence, it is a region. We use the term trivial region to denote
any leaf of the refined region tree; note that by definition, each trivial region must comprise
either a single basic block or a single call node, i.e., trivial regions represent code segments
in the program. We denote a region that consists of a sequence of sequentially composed
regions as a sequential region. A sequential region is not canonical as it is constructed
by combining other regions. Finally, we construct the refined region tree by considering
both canonical regions and maximal sequential regions, i.e., any sequential region that
encompasses a maximal sequence of sequentially composed regions. It is proved in [112]
that adding maximal sequential regions to the tree still results in a unique region tree.

The following example illustrates the process of constructing the refined region tree.
Figure 2.6a shows an example CFG and its canonical regions. The corresponding region
tree is shown in Figure 2.6b. In this example, region r; is the parent of regions ry, r3 and 4.

13

Figure 2.5: Simple (solid border) and extended (dashed border) regions in a CFG

Regions ro and r3 are sequentially composed; this is represented by a solid-line box in the
figure. Figure 2.7 shows the refined CFG and region tree for the example in Figure 2.6. We
added merge points before BB3 and BBs, and split points after BB; and BBs. Assuming
that function ¢() is called at the beginning of BBy, we split BBy to a call node BBy, that
contains the function call and a basic block BBy, for the rest of the instructions in BBj.
In the refined region tree in Figure 2.7b, regions r1, 7% and r4 are sequential regions. The
regions r; to r4 are the same as in the original region tree, while regions r{ to 7}, are added
as a result of the refinement process. We refer to rf as a call region as it contains the call
node BBy,. In this example, the leaf nodes rf, 1}, r2, 7§, 74 and ry, are trivial regions.

14

|/r1 \I
: BBl :
| [
- n i

|
iirz BBZ : Ir— ————::
-9 1 BBf
: r___'___\l Il———f—’—"’Jl i |---E-I | | | |
| 1 1 1 1 1 1
I [BB |rs | L f2 il LT
i : :
| —>=" > —
! | (b) Region tree
| BB |

]

(a) Program CFG

Figure 2.6: Program CFG G and region tree

2.3 Loop Analysis and Transformation

In this section, we discuss two aspects about loops that we employ in our framework: loop
iteration bounds and loop transformations.

2.3.1 Loop Iteration Bound
As our framework targets real-time applications, each loop must have a bound on the
number of iterations that can be used in timing analysis. We obtain a bound on a loop

using one of three approaches:

e Using the loop trip-count analysis.
e Using programmer annotations.

e Profiling the program and use the profiling meta-data added to the IR of the program.

The first method that utilizes the loop trip-count analysis is accurate, but we can only

15

L 4

é (b) Refined region tree
(a) Refined program CFG

n‘
[+

Figure 2.7: Refined program CFG G and region tree

use it if the number of loop iterations is constant *. For the second method, an annotation
can be inserted in the source code and attached to the loop so that it can be retrieved
as a meta-data during the analysis. Currently, clang, the front-end of LLVM, does not
support a #pragma attribute for the loop bound. Hence, we added a new loop attribute as
following;:

#pragma clang loop bound(x)

This allows the programmer to easily insert the required loop information in the source
code.

The final method uses LLVM provides Branch Weight Metadata that is generated by
profiling the program. Branch weights represent the likeliness of a branch instruction to
be taken, hence, we can use weight of the loop back-edge branch to estimate the number of
iterations. Note that this profiling method is dependent on the input data to the program.
The branch weights appear in the IR in the following format:

'For some cases, if the number of iterations is an expression, e.g. depends on the outer loop counter, a
max operation can be used to bound it.

16

G W N =

'0 = metadata !'{

metadata !"branch_weights",
i32 <TRUE_BRANCH_WEIGHT >,
i32 <FALSE_BRANCH_WEIGHT >

X

2.3.2 Loop Transformations

Loop transformations are an important tool to improve the execution time of the loops
by effectively exploiting the features of the processor architecture. A loop transformation
must be legal, i.e. it preserves the temporal sequence of all dependencies and hence the
result of the program. There are many transformations that can be applied to loops, for
example: loop fusion, loop fission, loop peeling, loop skewing, loop tiling, loop unrolling,
..etc. However, it is always a challenge to choose the best set of transformations that
optimizes the required target. Although some transformations are supported in known
compilers, like loop unrolling and loop vectorization; the space exploration of the possible
loop transformations requires more expressive tools. There are multiple tools that support
both source-level and IR-level transformations, like Pluto [21], PoCC [115], and Polly [55].
Many of these tools utilize the polyhedral model [I16] to represent and manipulate the
loops. As our framework is based on LLVM, we depend on Polly to perform the loop
analysis and transformations on the IR-level.

The goal of the optimization is usually to improve data locality and minimize the com-
munication in multi-core and distributed systems. In this work, we use loop transformation
to manage the data in the local scratchpad memory and to allow program segmentation
in multi-tasking systems. We are mainly interested in two transformations: loop splitting
and loop tiling. We next discuss how to represent these transformations in the region tree
of the program as well as the overhead incurred by them.

Loop splitting breaks the loop into multiple loops which have the same bodies but
iterate over different contiguous portions of the index range. Loop tiling combines strip-
mining and loop permutation of a loop nest to create tiles of loop iterations which may
be executed together. A tiled loop nest is divided into tiling loops that iterate over tiles
and element loops that execute a tile. An n-level tiled loop nest has n tiling loops and n
element loops.

Figure 2.8 shows an example of loop splitting and loop tiling. The code of function £ ()
is shown in Figure 2.8a and its region tree in Figure 2.8d in which region 7y represents a

17

£0 1 For)t @ f;i{
X1; 0 } X2 for (..)
for(..){ e for(..){ @ For

: X2; } X2; }xz;

X3; @ X3; @ X3; @
}

} }
(a) Original code (b) Code after splitting

(d) Original region tree (e) Region tree after

(f) Region tree after tiling
splitting

Figure 2.8: Region representation of loop transformations

18

single loop with N iterations. Region 75 can be split by expanding the loop region into
multiple regions. In the example, we split 75 into three nodes as in Figure 2.8e: pre-loop
node ry, with k, iterations, mid-loop node ry,, with N — k, — k; iterations, and post-loop
node 79, with k, iterations. This equivalent of having three loops in the code as shown in
Figure 2.8b. Tiling region r, will result in a single tiling loop and a single element loop as in
the equivalent code in Figure 2.8c which includes two nested loops. However, we represent
the tiled loop in the region tree in more details. The loop in 75 is tiled with tile size k. This
results in [IN/k] tiles with first M = [N/k] — 1 tiles and a last tile with size k! < k such
that k&' = N — M x k. The first M tiles are complete tiles while the last tile might not be
a complete tile. This is illustrated in Figure 2.8f where r3? is the tiling loop that iterates
over the first M tiles and r} is the last tile. Note that 7)Y and 7} are considered sequential
regions. Adding the tiling loop incurs an overhead, e.g. the loop counters. We account for
such overhead by adding a region that represents the tiling overhead in sequence with the
element loops, i.e. rM and rl, in Figure 2.8f.

Tiling Overhead

As we discussed in the previous example, tiling a loop incurs an overhead due to the added
tiling loops. When tiling n-level loops where n > 1, another overhead comes off due to
the loop permutations. To illustrate this overhead, consider the region tree for a 2-level
nested loop in Figure 2.9a. The inner loop has /V; iterations and an execution time ¢; and
an outer loop with N, iterations and an execution time of one iteration Ny * t; + t5. This
implies that the total timing of the loop nest is:

tloop = NQ * (Nl * tl —+ tg)

A 2-level tiling with tile sizes k; and ko of the inner and outer loops will create 2 tiling
loops with [Ny /k1] and [Ny /ks]| iterations, and 2 element loops with k; and ks iterations.
Let M; = [Ny/ki| — 1, then the outer tiling loop has M; tiles with k; iterations of the
outer element loop and a last tile i = N; — M, * k;. Similarly, the inner tiling loop
has My = [No/ko] — 1 tiles with ks iterations of the inner element loop and a last tile
kL = Ny — My x ky. The tiling overhead for each iteration of the tiling loop is ¢}, and t2,,
for the inner and outer loop, respectively. The resultant region tree in Figure 2.9b has 4
tile times: t? repeated M; * M, times, tfl repeated My times, tfl repeated M, times, and
t2l executed one time. Adding the tile times will result in:
= tioop + Nox My xty + (My + 1) 5 (My + 1) sty + (My + 1) x5,

/
tloop

19

e 1) = Kb (k{11 + ta) + ty, + t?ﬂe]

N e
O \@ \t%l:ké(kl*t1+t2)+t}i,e]

T N)
[t%l:kg (kg*t1+t2)+t;le+t3ﬂej
ly
(®)

[ﬁ = ko (k1 x by +15) + ttlile]

(a) Region tree (b) Region tree after tiling
before tiling

Figure 2.9: Tiling 2-level loop nest

20

Hence, the total tiling overhead is:

Y __ gpermutation tiling loops
toverhead - tloop - thOP - toverhead + tm}erhead

And the overhead terms are:

permutation __
toverhead - N2 * Ml * t2

ttilmgloops _ <M2 + 1) * (Ml + 1) * t%ile + (MQ + 1) * t?ile

overhead

The permutation overhead is a consequence of the interchanging the tiling and the element
loops. That is, as the tiling loop of the inner loop is moved on top of the element loop of
the outer loop, the element loop of the outer loop is executed more times.

2.4 Memory Access Information

Optimizing memory accesses is the core of our work. So, our goal is to precisely identify the
memory accesses for every part of the program. A memory instruction can target different
sections of the memory. This includes the stack, the heap and the global data. Analyzing
memory accesses is usually done in the compiler using pointer analysis.

Pointer analysis or points-to analysis tries to decide statically what are the objects that
a pointer may refer to at run-time. It is an essential analysis for languages with pointers.
There has been tens of papers that explore the trade-offs between efficiency and precision
of the pointer analysis |69, 130].

Alias analysis is another term that is usually used interchangeably with pointer analy-
sis. However, alias analysis focuses on the relations between pointers to determine if two
pointers can point to the same object while pointer analysis tries to answer the question
of what objects a pointer might point to.

There are a wide range of applications that benefit from pointer analysis. Pointer
analysis is used in compilers for live range analysis to improve register allocation, constant
propagation, static checking for run-time errors, multi-threading, cache analysis, etc. For
real-time systems, pointer analysis can improve the accuracy of Worst-Case Execution
Time (WCET) analysis by predicting the accesses to memory in systems with multiple
memories.

The precision and the cost of pointer analysis depends on the implementation. There
are multiple aspects to the analysis:

21

Flow-sensitivity Flow-sensitive analysis computes points-to sets for each program point
while flow-insensitive analysis is concerned about points-to sets at any time in the
program collectively. Flow-sensitive analysis is more expensive.

Context-sensitivity Context-sensitive analysis considers the calling context when ana-
lyzing the function while context-insensitive analysis analyzes the function indepen-
dently. Context-sensitivity requires inter-procedural analysis and so adds complexity
to the implementation.

There are other factors that affect the analysis like path-sensitivity, field-sensitivity and
heap-modeling. There are many approximations that try to improve the precision of the
analysis with a reasonable complexity. The application of pointer analysis is a main factor
to determine if the added precision is worth the cost.

LLVM provides a set of alias analysis passes that are effective for most of the common
access patterns. Using LLVM analyses, memory accesses that target distinct global objects,
stack allocations and heap allocations can be easily identified. LLVM also provides a limited
context-sensitive alias analysis for global objects, and an analysis based on Scalar Evolution
for loops that reasons about the induction variables. Other pointer analysis techniques
can be built upon the LLVM alias analysis infrastructure. For example, SVF [3] utilizes
interprocedural dependence analysis to construct a more precise pointer analysis for LLVM.
We use SVF to obtain flow-sensitive points-to information.

Note that pointer analysis is carried-out on the IR representation. So, it captures
memory operations that are represented by load and store instructions. However, there
are accesses to the program stack that only materialize when generating the assembly of
the program; more specifically, stack accesses that are result of register spilling. Compilers
assume an infinite number of registers in their IR representation. However, some of the
registers have to be spilled to the stack when the back-end of the compiler schedules the
assembly instructions due to the limited number of registers on the target processor. We
account for such memory accesses in the back-end analysis. This is done by accounting
for the load and store assembly instructions that target the stack, but do not access the
allocated local objects.

For loops that are split or tiled, we extract the data footprint of each object used in
the loop as a function of the transformation parameters. We make use of Polly to generate
a rectangular bounding box over the data accessed inside the loop as a linear function of
the number of iterations. If the accesses of an object are irregular or data dependent, the
footprint of the object is the whole object.

22

In the developed algorithms in this work, we rely on software to mange the local SPM.
So, we apply the following transformation pass to promote large local objects to be global
objects. This enables more control on the content of the SPM.

2.4.1 Stack Object Promotion

The stack section in the memory has two components: a) temporary spilled registers and
calling context b) allocated local objects. Allocated local objects can be large and hence
it might not be possible to move the stack to the local memory. In order to allow a
flexible allocation of the stack, a pass is implemented to promote large local objects to
global objects [84]. This reduces the maximum stack size and provides the possibility to
allocate local objects in the main memory or in the local memory without the need to
manage multiple stacks. Applying the stack promotion on the IR level allows the compiler
to optimize the code for the local objects before the promotion. Also, the promotion pass
marks the promoted object as local to the function; hence the object does not need to have
an initial value and does not have to be written back after the function scope, counter to
static local objects in C for example.

The pass identifies alloca IR instructions and checks if the size of the allocated object
is larger than a specified threshold, e.g. 32 bytes. For example:

%ptr = alloca [10x32]

This object is promoted to be a global object with the same size:

@ptr_global = global [10x32]

After the object is promoted, all accesses to the local object are modified to reference the
new global object.

2.5 Back-end Analysis

The purpose of the back-end analysis is to analyze the machine instructions and create a
map between the machine CFG and the IR CFG. This allows us to estimate the timing of
different parts of the program at the IR level. Hence, we are able to perform timing-aware
IR optimizations.

LLVM IR code is translated to a machine specific representation [2| with functions,
basic blocks, and instructions. Mapping between IR CFG and machine CFG is possible as

23

LLVM keeps track of the relation between the basic blocks in the back-end. However, a one-
to-one mapping between basic blocks does not always exist due to back-end optimizations
that removes or adds basic blocks. We keep track of the removed and added basic blocks
and use them to generate conservative timing estimates.

Analyzing the back-end also provides information about the memory requirement of
the program stack at each point of the program. So, we extract the stack size for each
function and use this information to assign the required space in the local memory.

2.6 Summary

In this chapter, we presented our compilation framework based on LLVM compiler and how
it is integrated with the algorithms that we discuss in the next chapters. Analysis passes
are utilized to collect information about the program structure, loops, memory accesses,
and mappings to back-end assembly. Program transformations are passed by optimization
algorithms to the middle-end of the compiler and applied on the program IR. We rely on
this compilation flow as the basis for our proposed techniques.

24

Part 1

The Case of Single Task Execution

25

Chapter 3

Scratchpad Management: Background
and Related Work

In this chapter, we discuss the background and the related work for Chapter 4. Section 3.1.1
discusses the use of caches and ScratchPad Memory (SPM) in real-time systems, prefetching
in general purpose processors, and the techniques for Worst-Case Execution Time (WCET)
analysis. In Section 3.2, we focus on the previous research on SPM management and
different allocation techniques for real-time systems as well as general-purpose computing.

3.1 Background

3.1.1 On-Chip Memory in Real-Time Systems

As estimating the WCET of a program is a critical aspect in real-time systems, various
techniques have been proposed to provide a safe and tight bound when on-chip memory
is used. In order to obtain a safe bound, the target of the memory accesses should be
known to estimate the expected delay. The simplest solution is to assume the worst-case
delay for all the accesses which highly overestimates the WCET. To be able to obtain a
tighter bound, researchers have developed predictable techniques to analyze and control
the memory accesses.

Caches and SPM are the two common forms of on-chip memories used in current pro-
cessors. Caches are hardware-controlled, transparent to the software, and use heuristics to

26

exploit temporal and spacial locality. SPM is directly accessed by the processor, software-
managed, and has a smaller footprint. Caches have proved a high efficiency in general-
purpose computing that focuses on improving the Average-Case Execution Time (ACET)
without the need to develop cache-aware software. SPM was introduced as a low energy
alternative to caches [15]. It also provides better predictability for the WCET in real-time
systems [155]. However, SPM has to be managed either by the programmer or using an
automated compilation process. This limits the portability of the software as the SPM
allocation is tied to the configuration of the platform.

The predictability of cache behavior is affected by several aspects: associtivity, replace-
ment policy, write-back policy, and separation of data and instruction caches [67]. The
cache replacement policy has the main impact on the cache predictability [122]. Static
cache analysis is used to classify memory accesses as cache hits or misses [96]. The anal-
ysis of Least Recently Used (LRU) replacement policy in conventional caches based on
abstract interpretation has been the foundation for cache analysis [51]. LRU policy offers
high predictability of the cache behavior. However, the analysis of the common non-LRU
replacement policies of set-associative instruction caches, like pseudo-round-robin in the
ColdFire MCF 5307, and the PLRU (Pseudo-LRU) in the PowerPC MPC 750 and 755,
produces pessimistic WCET bounds [67]. In [122], Reineke et al. analyzed different instruc-
tion cache replacement policies and showed that LRU policy is the most predictable while
Pseudo-LRU and FIFO perform significantly worse than LRU. A quantitative approach
is proposed in [61] to reduce the overestimation ratio of WCET for FIFO replacement
policy. A k-miss classification is used in [60] to analyze MRU replacement policy used for
instruction caches in processors like Intel Nehalem that showed a close WCET estimation
to the LRU policy. A more precise analysis for PLRU policy is introduced in [59], but
with a limited scalability. Although the cache analysis is applicable for both instruction
and data caches, there are no available techniques to analyze non-LRU policies in data

caches [07]. The main challenge of analyzing data caches is the precision of value analysis
due to the usage of pointers, dynamically allocated data, and data dependent array indexes.
In [50,95], the authors try to derive the WCET by restricting the reference string, which

is the sequence of addresses generated by memory operations, by skipping the cache when
the address is unpredictable. This method overestimates the WCET as it eliminates the
benefit of the cache for any unpredictable address. CAMA is a memory allocator proposed
in [68] that employs shape analysis to ensure that data structures that exist simultaneously
in the cache do not conflict.

To improve the predictability of the cache analysis, two important approaches have been
proposed: cache partitioning and cache locking [56, 103]. Both approaches help to reduce
the number of cache states that should be considered for the WCET analysis by disabling

27

the cache replacement policy for part of the cache. Cache partitioning considers a shared
cache between tasks or cores [20,32,93, 105,124, 150]. It divides the cache into partitions
based on cache ways or aggregation of associative sets and assigns a partition for each task.
This prevents the possible interference between tasks and isolates the cache analysis of each
task. Cache locking allows to mark a cache line/way as locked using a hardware feature
that is available in many embedded processors |1 1,26,41,42, 124 143-115]. Locking a cache
line/way prevents the replacement of this line/way until it is unlocked which enforces a
more predictable behavior for the cache accesses.

Method cache [125] is an alternative cache architecture for instruction cache that stores
a complete method /function which means that cache misses can only happen on the call
and return program points. The replacement of cache content depends on the call tree
of the program rather than the addresses of the instructions which facilitate the WCET
analysis. The method cache is used as part of real-time java processor in [126] and a WCET
analysis tool is designed for the estimation of WCET at the byte-code level using Integer
Linear Programming (ILP).

Using SPM in real-time systems is growing as it enhances the predictability of memory
accesses. Unlike caches, the content of the SPM only depends on the program point
and does not require the reference string to predict the target of the memory access [150].
Wehmeyer et al. studied the usage SPM on the WCET analysis in [153] and showed that it
can significantly improve the predictability without the need to modify the timing analysis
tool. They also presented a comparison between the impact of using caches and SPM on
the WCET in [155]. The study showed that increasing the size of the cache increased
the difference between the simulated ACET and the estimated WCET. On the other
hand, increasing SPM size decreased the estimated WCET with a steady ratio between
the ACET and the WCET. In a comparison between an instruction SPM and a method
cache, Whitham et al. |158] showed that a method cache has a lower true WCET. However,
an instruction SPM produces lower estimated WCET using WCET analysis. We review a
wide range of techniques for SPM allocation for both general purpose and real-time systems
in Section 3.2.

3.1.2 Cache Prefetching

Cache prefetching has been exploited in general purpose systems for a long time to effec-
tively reduce the cache miss rate |25, 103]. The cache has an implicit prefetching capability
when a cache miss happens as it fetches the whole line containing the required instruc-
tion/data to take advantage of spatial locality. Prefetching techniques try to hide the

28

transfer latency of a cache miss by loading the required line before its use using hardware
or software. Hardware prefetchers use simple algorithms to speculate the next line to be
referenced like detecting strided accesses to an array or prefetching next few lines. Software
prefetching is performed by inserting prefetch instructions in the code. Data prefetching is
more challenging than instruction prefetching as the data access patterns are more irregu-
lar. Cache prefetchers used in general purpose systems are based on speculation which is
not suitable for real-time systems as it increases the intractability of the cache analysis.

Cache prefetching has been combined with instruction cache locking for real-time sys-
tems in [12,35]. In [12], two address-tagged buffers are used for fetching and prefetching
along with dynamic locking instruction cache. The memory lines to be loaded and locked
in the instruction cache are selected using an ILP-based solution to minimize the WCET
including the context switching time in a multitasking system. Their method shows that
prefetching improves the WCET with small dynamic locking cache compared to locking
techniques without prefetching. The approach in [35] focuses on program code converted to
single-path form by transforming unpredictable branches to single execution trace. They
exploit prefetching to improve spatial locality and cache locking to make use of temporal
locality:.

Prefetch distance is defined as the distance ahead in the execution of which a memory
address should be requested [87]. Prefetching is useful if the prefetch request is sent early
such that the prefetch distance hides the memory transfer latency. The prefetch distance
varies during run-time due to different execution paths. In a cache system, the prefetch
distance should not be too large or too small. Prefetching a cache line very early can
result in evicting cache lines in use which incurs more cache misses. In summary, prefetch
distance is a key factor that can affect the usefulness of the prefetching technique.

Both hardware and software prefetching approaches have their strengths and weak-
nesses |87, 108]. Unlike software prefetching, hardware prefetching techniques do not need
help from the programmer or the compiler and can be applied to compiled programs with-
out changes. Hence, they do not increase the program size as no prefetching instructions
or hints are inserted. Also, hardware prefetchers can be used for both data and instruc-
tion caches while software prefetchers is mostly used for data. However, the dedicated
hardware used for prefetching is large compared to software prefetching especially for com-
plex data structures. The number of streams to be traced using hardware prefetchers are
limited to the available hardware resources while software prefetching schemes are more
flexible. Also, hardware prefetchers require training to be able to increase the accuracy
of prefetching which may not be efficient for shore streams of data and irregular memory
accesses. Software prefetching can be optimized for the application exploiting the avail-
able compile time information to produce more accurate prefetching results. However, the

29

software overhead added can significantly reduce the efficiency of the prefetching scheme.
Other factors like the cache level in which the cache line to be prefetched are considered in
software prefetching techniques. Many approaches are proposed to combine software and
hardware prefetching techniques to leverage the merits of both approaches.

3.1.3 WCET Analysis

WCET analysis is a necessary step in developing hard real-time systems. The analysis
estimates an upper bound on the execution time of a program to ensure the satisfaction of
the timing constraints of the system. A set of programming rules are adhered in real-time
systems that helps in providing an execution bound such as: the program always terminate,
recursion is not allowed and the loop iteration count is bounded. The WCET estimation
difficulty depends on the complexity of the platform architecture. Also, the dependency of
the execution time on the input makes it hard to derive a bound as the worst-case input
is usually unknown.

The methods for WCET analysis can be classified to two main categories:

Measurements The program code is executed on the target platform or using a simulator.

A range of execution times are measured for a set of inputs and combined to estimate
the WCET for the program.

Static Analysis A static method does not rely on the execution or simulation of the
program. The Control Flow Graph (CFG) of the program is analyzed in combina-
tion with an abstract model of the hardware to produce a safe upper bound on the
execution time.

Processor architecture is modeled to be able to analyze its behavior for simulation or
static analysis. The accuracy of the model is a key factor to the accuracy of the timing
behavior. However, a concrete model of a processor is usually complex. So, a conservative
abstract model is considered sufficient. Validation of the abstract model is necessary to
consider the model trustful. Measurements, trace observation, and equivalence checking of
abstraction levels are used to validate abstract models.

Measurements are more suitable for soft real-time systems as they produce estimations
rather than bounds. An end-to-end measurement gives a distribution for the execution
times of a subset of the possible executions based on some possible contexts. However, the
bound on the WCET cannot be guaranteed unless the context of the worst case is known.

30

The bound can be calculated by measuring the execution time of parts of the program
and combining them using path analysis. This can generate better approximations, but
the same problem of the possible contexts apply for the execution of parts of the program.
Exhaustive coverage of all the possible executions is usually infeasible.

Instrumentation using software and/or hardware is a common way to provide timing
measurements. There are other methods that do not interfere with the program execution
like using logic analyzers and hardware tracing. Simulators that incorporate a model for the
processor can be also used to collect measurements for some set of inputs. Measurements
can be used to validate the precision of the analytical methods by comparing the predicted
execution times with the measured ones.

Static methods guarantee a safe bound that may be overestimated. A set of analyses
is applied to the program code using an abstract model of the underlying platform to
obtain upper bound on the execution time. Value analysis is used to compute ranges for
the values in the processor registers and program variables. These ranges are used to
obtain effective memory addresses and loop bounds and also to detect infeasible paths.
The program can also be annotated to provide such information. Control-flow analysis
determines a set or a super-set of the possible execution paths and ignores paths that do
not contribute to the upper bound. The analysis can be applied to the source code, the
intermediate representation or the machine code of the program. Several methods are used
to map between the program structure of different code levels: Pattern-matching, data-flow
analysis, symbolic execution of the source code, and abstract interpretation. The control-
flow analysis generates a set of annotations or flow facts that can be used to constrain
the program behavior. Another necessary information to derive a bound on the execution
is the behavior of the processor when executing an instruction. Due to the architecture
aspects like pipelining, caching, and branch prediction, the execution of an instruction is
dependent on the history of the execution. An abstract model of the system is used to
obtain possible states of the processor for a program point with conservative assumptions
about unknown states. Data flow analysis based on abstract interpretation is usually used
to analyze the processor behavior. A brief discussion about abstract interpretation is
presented in Section 3.1.3

Bound calculation computes a bound on the execution time based on the information
gathered by the static analysis or by combining the measurements of code parts to obtain an
end-to-end execution time. There are three main methods for bound calculation: structure-
based, path-based and implicit-path enumeration (IPET). Example in Figure 3.1 [17] shows
the different bound calculation approaches. Figure 3.1a shows the CFG of the example
program indicating the timing for each block and the loop bounds.

31

exit

(a) Control-flow
graph with timing

Longest path
marked

// Unit timing
tpath =31

header =

// WCET Calc
WCET =

theader + tpath *
(maxiter-1) =
3+31*99=
3069

(b) Path-based calculation

// Start and exit constraints
Xstart = 1’ Xexit =1

// Structural constraints

Xstart = XstartA

XA = XstartA F XHA = Xaexit ¥ XAB
Xg = XaB = Xgc + Xgp

Xc = Xpc = XcE

Xy = Xpy + XgH = XHa
Xexit = XAexit

// Loopbound constraint
xa <100

// WCET Expression
WCET = max(xa*3 + xg*5 +
Xc*7 + ...+ XH*Z) =
= 3069

(c) IPET-based calculation

loop

- \
A seq
— \
T
B C D if \H
— 1
E F G

Syntax-tree

T(seq(S1,52)) = T(S1) +T(S2)

T(if(Exp) S1 else S2) =
T(Exp) + max(T(S1),T(S2))

T(loop(Exp,Body)) =
T(Exp) +
(T(Exp) +T(Body)) * (maxiter-1)
Transformation rules

exit

start @ start

3A Final
Program
WCET

J

3069

A,B,C,D)
E,F,GH

J‘ exit

(d) Tree-based calculation

Figure 3.1: Methods of bound calculation [17]

32

Path-based bound calculation searches for the path with the longest execution time.
This method represents the paths explicitly, however the number of paths is exponential in
the number of branches which makes the search process prohibit-able in the case of nested
loops without a heuristic. The path-based approach is applied in Figure 3.1b where the
longest path is determined inside the loop and then the total WCET is calculated using
the loop path, the loop bound and the exit path.

IPET method represents the structure of the program as a set of flow constraints and
each basic block in the program is marked by an upper bound on its execution time and
a number of execution times. The WCET bound is obtained by maximizing the sum of
products of the execution counts and times. The size of the problem is proportional to the
flow points converted to flow constraints which can grow exponentially with the program
size. The constraint system is usually solved as an ILP problem. The flow constraints for
the example in Figure 3.1c show a start and exit constraints that imply one entry and one
exit. Then, the program flow is formulated as structural constraints to ensure that the
number of times of entering and exiting a basic block are equal. Finally, the loop count
constraint is added and the system is solved to maximize the WCET.

Structure-based methods apply a bottom-up traversal of the syntax tree of the program
combining bounds of the constituting nodes according to the corresponding statement
type. A set of nodes is replaced with a one node with a combined timing. To consider
different flow contexts, transformation like loop unrolling can be applied to the syntax tree.
Applying the structure-based approach to the syntax tree might not be straightforward due
to code optimizations that alter the mapping between structures of the source code and the
executable. The structure-based method is used in Figure 3.1d by collapsing set of nodes
into combined nodes iteratively according the representing statement, i.e., conditional,
sequential, loop, to obtain a single node that represents the WCET.

Abstract Interpretation

Abstract interpretation [37] is a static program analysis based on abstract domains. That
is, it executes an abstraction of the program on an abstract descriptions of values instead
of executing the actual program on the concrete domain of values. An abstract state is
associated with each program point which describes a set of concrete states at this point.
An update function is used to update the abstract state based on the change that would
happen to the concrete state when the program executes. The control flow is handled by
merging the abstract states in a sound way whenever the flow merges.

Abstract domains are lattices |32, i.e., partially ordered sets where all subsets have

33

least upper bounds. The relative information of two elements in the lattice is represented
by the partial order such that a lower element in the lattice carry more information than
a higher element in the lattice. The update functions are monotone [37] such that the
information contained in the current state state is preserved when updated. The flow
merging is handled with the least upper bound operation to join abstract values.

3.2 Related Work

SPM has been used to reduce energy consumption [15], improve the average-case perfor-
mance, and improve the predictability of the system. In this section, we review allocation
techniques in the literature for general-purpose systems and real-time systems.

There are two main categories of SPM allocation schemes: static and dynamic. Static
allocation loads the content of the SPM at the beginning of the program and does not
change it during run-time. On the contrary, dynamic allocation allows the contents of
the SPM to change during run-time by inserting loading /unloading points in the program.
Both static and dynamic allocation techniques are decided before run-time either by man-
ual programming or automated compile-time algorithms. There have also been efforts to
develop SPM allocators that decide where to allocate a memory object during run-time.
We review the related work for static techniques in Section 3.2.1, dynamic techniques in
Section 3.2.2 and run-time allocators in Section 3.2.3

3.2.1 Static Allocation Techniques

Static allocation is considered a partitioning problem in a system with multiple memories,
e.g. on-chip SPM and main memory. Most of the proposed solutions for static allocation
are based on a variation of the common knapsack problem [10].

Allocation of global objects has been modeled as a 0-1 knapsack problem in [12§]
to allocate the most frequently-accessed objects based on points-to analysis and profiling.
Avissar et al. presented an optimal memory allocation for global and stack data in an SPM
based system using 0/1 ILP solution in [11]. The approach distributes the program stack
between multiple memories which offers allocation flexibility and improved performance.
An extension to the approach for heap objects is discussed in [13]. However, the allocation
of heap objects is not optimal and relies on profiling and modification of malloc function to
target an allocation site to either the SPM or DRAM. A Tabu Search heuristic is proposed
in [72] as an easy to implement alternative for solving the knapsack problem.

34

The work in [107] implements a static allocation scheme for compile-time-unknown
SPM size. The scheme relies on the optimal solution developed in [11] to allocate global
and stack objects and code in the SPM. The allocation problem is solved for a range of
SPM sizes and stored in a compact format that is installed in the beginning of the program
to modify the binary according to the available SPM size during run-time.

A WCET-oriented allocation algorithm for global and stack objects of non-recursive
functions is introduced in [134]. The algorithm is based on a greedy heuristic to solve the
ILP formulation of the allocation problem to minimize the WCET of the program. Another
WCET-aware allocation of program code is discussed in [19] that incorporates an ILP-based
allocator to minimize the WCET. In [162], a static allocation strategy for program code is
described in a hybrid SPM-cache system to reduce the WCET. The approach is extended
to both code and data in [170]. The allocation algorithm in [119] optimizes for the energy
consumption while respecting an upper bound on the WCET. A static allocation scheme
is introduced in [117] that targets the Precision Timed Architecture (PRET) [92] to ensure
the temporal requirements are met. A greedy approach that targets both instruction and
data for PRET is presented in [L11]. The work in [30] combines static allocation of SPM
and task scheduling for preemptive hard real-time systems.

Steinke et al. optimizes the static allocation of code and global objects for energy
reduction in [133]. The approach is extended in [147] to partition arrays that do not fit in
the SPM in the original approach. A similar approach in [154] presents an energy model
and an optimal ILP formulation to solve the partitioning problem for energy reduction.
The energy-oriented work is covered in [73].

A variety of approaches try to solve the partitioning problem between the SPM and
DRAM to reduce cache pollution and minimize conflicts in cache-based systems |31, ,

, 171]. An allocation approach for global and local objects that improves the code size
by optimizing the pointer type assignment using ILP formulation is presented in [129].

3.2.2 Dynamic Allocation Techniques

Verma et al. [116] has shown that the dynamic allocation is an extension of the global
register allocation problem. They proposed an optimal formulation for the memory objects

selection and spilling and a near optimal heuristic for the address assignment of the objects
in the SPM.

Udayakumaran et al. [139] proposed a profile-dependent dynamic allocation strategy
for global and stack objects and program code. The method partitions the program into
regions and uses a Data-Program Relationship Graph (DPRG) to represent the timing

35

relationship between the regions. The memory transfers are inserted at the start of each
region based on an allocation heuristic and a cost model to maximize the benefit of moving
objects to the SPM. In order to be able to handle pointers, the authors proposed two
alternatives, the first is based on run-time disambiguation of the pointer to determine if its
reference is in the SPM using a compiler-inserted code and a height-balanced tree structure
to translate the address from DRAM address to SPM address which incurs high run-time
overhead. The second alternative is to fix the address of the object in the regions where it
is accessed using pointers which limits the optimization of the allocation.

The greedy algorithm in [139] is adapted in [70] to optimize the allocation in a hybrid
system consisting of SPM and non-volatile memory (NVM) for both memory access latency
and the number of writes to the NVM. An Adaptive Genetic Algorithm for Data Allocation
(AGADA) is proposed in [L19] for a similar system that produces a better solution than
the greedy algorithm.

Li et al. developed a dynamic allocation algorithm for data aggregates via graph col-
oring in [38]| by partitioning the SPM into a pseudo-register file and solving the allocation
problem as an extension to register allocation to obtain near-optimal solutions compared
to ILP solutions. In [90], they proposed to use interval coloring which exhibited a better
performance compared to [35].

A data allocation algorithm for global and stack objects is developed in [10] to optimize
the allocation for WCET. The problem is formulated as an ILP and solved with a greedy
heuristic that is applied iteratively to account for changes in the worst-case execution path
after allocation.

Several works discussed array-based allocation of data SPM. In |77-79,89], loop trans-
formations are used to partition arrays into data tiles and fetch them to the SPM when
used. On demand array-tiling and SPM allocation are combined in [163] using a com-
parability graph coloring allocator. An iteration-access-pattern-based technique in [165]
overlaps SPM space between array blocks when the array elements are not used in later it-
erations which allows increasing the block size and decreasing the memory transfers. Absar
et al. [1] handle tiling for irregular access pattern with indexing array referenced with an
affine function. In [36,71], a data reuse analysis is used to identify the reuse pattern of ar-
ray elements within a loop to reduce the number of memory transfers. Run-time decisions
are used to improve tiling approaches for irregular access pattern of array-based applica-
tions in [31,34]. Chen et al. [31] handle irregular accesses using indexing array referenced
with an affine function. In [34], a hardware component (DART), data access record table,
records the memory access history to keep frequently accessed data in the SPM for indi-
rectly accessed arrays with non-affine reference functions. Both approaches use compiler

36

generated address assignment for data layout in the SPM. Yemliha et al. [1658] develop a
model based on markov chain to predict irregular data accesses. Array-based approaches
mainly target video/image processing applications where the kernel of the application is
constructed from nested loops that access multi-dimensional arrays [31].

A scratchpad controller is integrated with the CPU in [75] to achieve a low overhead
management of the instruction SPM. A dedicated instruction, Scratchpad Managing In-
struction (SMI), is used to activate the SPM controller to stall the CPU and start copying
instructions from DRAM using a Basic Block Table (BBT) that contains the required
information to copy the basic blocks. The allocation algorithm uses a graph partitioning
procedure to choose the points where SMI instructions should be inserted to reduce the en-
ergy consumption. A similar architectural extension is proposed in [23] where a cache-like
tagging system is used for instruction SPM blocks and managed by explicit instructions
inserted in the code to change the execution mode between the SPM and DRAM. A frame-
work is introduced in [33] to dynamically allocate instructions and data in the SPM using
an Address Translation Logic (ATL). Software interrupts are inserted in the binary code
to invoke an SPM management routine to configure the ATL. A management technique
for code placement for a memory system consisting of an SPM and a mini-cache with a
memory management unit (MMU) is discussed in [16]. The technique profiles the appli-
cation and classifies the code to cache-able and page-able and loads the page-able code
regions on demand during run-time to the SPM. The memory management unit (MMU)
and interrupts are also used in [71] to dynamically allocate pages of the program code by
merging small basic blocks.

Whitham et al. [157,159,160] developed a scratchpad memory management unit (SMMU)
to enhance the predictability of load/store operations. In their work, they depend on the
separation of the logical address used in the program code and the physical address of an
allocated object in the SPM to tackle the pointer aliasing and invalidation problems. The
SMMU is programmed using OPEN/CLOSE operations to move data between SPM and
main memory and a comparator network is used to translate logical addresses to physical
addresses based on the location of the object. A comparison between the average-case
performance of data caches and the worst-case performance of using SMMU with SPM
in [156] showed that using SPM provided predictability while maintaining a performance
similar to data caches.

The work in [14] is the only compile-time allocation for heap data. The approach in
this paper is based on assigning a fixed size, which is called bin, to a dynamic structure
with unknown size, like a linked list. If the size of the dynamic structure exceeds the
size of the bin, the allocation is directed to the DRAM. A bin can be moved between the
SPM and the main memory in the same way global and stack objects are handled in [139].

37

The approach does not guarantee a predictable behavior as the dynamic structure is split
between the SPM and DRAM.

Dominguez et al. developed a compiler-directed scheme for recursive function data
allocation in [13]. The approach is able to dynamically allocate a portion of recursive stack
data in the SPM. The scheme incorporates a depth check for the function recursion and
decides if the stack frame is profitable to allocate in the SPM using profiling.

In [16], the authors propose an allocation scheme for SPM for a higher level dataflow
model of computation to make optimal use of the SPM based on memory access time and
energy consumption.

The placement of the data with possible duplication in a multicore system is discussed
in [62]. The paper targets executing a single task on a multicore system with virtual SPM
in which local and remote accesses to distributed SPM are allowed. In their approach,
the task is divided into parallel code regions that can be executed on multiple cores and
dynamic movement of the data occurs between the execution of parallel regions. The
optimization objective is the memory access cost considering different access times for
local and remote SPM.

A prefetching technique is applied in [164] on the loop level. The authors use SPM
data pipelining (SPDP) technique that utilizes Direct Memory Access (DMA) to achieve
data parallelization for multiple iterations of a loop based on iteration access patterns of
arrays. SPDP technique focuses on array-based applications where regular accesses can
be statically analyzed. A similar technique is used in [38] to minimize the energy and
maximize average performance. They propose a general prefetching scheme for on-chip
memory using DMA priorities and pipelining to prefetch arrays with high reuse.

3.2.3 Run-time Allocation Techniques

Pyka et al. implemented a run-time allocation strategy in |1 18] that incorporates auto-
mated compiler transformation and operating system management of the SPM to reduce
the energy consumption. The allocation scheme depends on information about the content
of the SPM and the possible objects to be allocated during run-time to allocate program
code, static global objects, and dynamically allocated objects. Code transformation adds
locking and de-referencing layers to ensure correct addresses during run-time.

A run-time technique to manage the allocation of stack in the SPM is proposed in |1 10].
The technique is based on the use of Memory Management Unit (MMU) and splitting SPM
into slots similar to virtual memory systems where DRAM is partitioned into pages. A

38

fault handler and a replacement policy are incorporated to handle the allocation during
run-time. The implementation does not require additional hardware or compiler support.
However, the technique lacks predictability. A similar approach is applied in [127] with a
software implementation.

An OS-level run-time approach in [106] relies on annotations inserted by the program-
mer to provide the OS with hints to choose the most suitable memory using run-time
allocator. In [63], a software management scheme of SPM that implements a fully asso-
ciative cache is proposed. The scheme achieves results similar to a fully associative LRU
organization which is practically infeasible using hardware. A similar approach is intro-
duced in [104] where a compiler framework is used to substitute the tag-memory and cache
controller hardware. This framework allows the selection of cache line size, replacement
policy, and associations based on the program. However, such approaches add high over-
head in the software. In [39], a memory reference sampling unit identifies the frequently
accessed memory regions at run-time and processes the memory allocation using MMU
unit in a hybrid cache/SPM system. The allocation does not require a compiler support
and shows a similar performance to systems with cache only while reducing the energy
consumption.

In [102], a management unit called dynamic instruction scratchpad (D-ISP) is added to
the processor to allocate program code on function-based granularity with run-time address
translation and FIFO replacement policy for allocating functions on demand in the SPM.
The approach eliminates the interference of instruction and data memory accesses for more
precision in the WCET analysis. CASA is a contention-aware allocation scheme proposed
in [30] that adds a run-time cache miss tracker to allocate pages with significant misses
to the SPM. The scheme uses a threshold to invoke an interrupt to move a page to the
SPM and a translation lookaside buffer (TLB) to redirect the address to the SPM. SPM
Allocator (SMA) is introduced in [100] as a light weight memory management for heap
allocation in small on-chip memories.

In [9], a run-time SPM management approach is proposed for multicore architectures
with hybrid on-chip memory comprising caches and SPM. The management scheme maps
private inputs and outputs of the task to the SPM during run-time transparently to the
programmer and overlaps the data transfers with task scheduler or previous task. The
evaluation of the approach improved the ACET, the power consumption and the network
traffic in a 32-core multicore system.

Prefetching using DMA is supported in [51]. Francesco et al. add a DMA engine to
the processor to control the DMA transfers using a job queue such that multiple jobs
are scheduled and processed one after the other without stalling the DMA. They also

39

provide high level functions to reserve the SPM space and manage the DMA transfers. A
dynamic memory manager (DMM) to handle the allocation at run-time as the SPM space
is allocated using malloc/free-like functions in the source code.

Although run-time techniques can enhance portability of the programs as they can
adapt to the available SPM in the system, they lack predictable behavior.

3.3 Summary

In this chapter, we reviewed the background and the related work on SPM management.
In the next chapter, we introduce our WCET-driven allocation and prefetching approach
for data SPM in real-time systems.

40

Chapter 4

WCET-Driven Dynamic Data
Scratchpad Management with
Compiler-Directed Prefetching

In the last chapter, we reviewed the background and the related work on the ScratchPad
Memory (SPM) management techniques. Our goal in this chapter is to develop an au-
tomated SPM management scheme that uses software prefetching to effectively manage
the SPM and to tackle the memory latency problem in a predictable way. Our scheme
incorporates SPM controller and a compilation flow based on the framework introduced in
Chapter 2 to analyze, optimize the SPM allocation and transform the code.

The rest of the chapter is organized as follows. We introduce the framework in Sec-
tion 4.1. We then show a motivating example in Section 4.2. We detail the region-based
program representation as a basis for the allocation scheme in Section 4.3. Our proposed
allocation mechanism is explained in Section 4.4, and the compilation flow in Section 4.5.
Section 4.6 discusses the allocation algorithm, and Section 4.7 introduces the Worst-Case
Execution Time (WCET) abstraction for our prefetch mechanism. Finally, we present in-
sights into dynamic allocation and prefetching in Section 4.8 with experimental results in
Section 4.9, and provide concluding remarks in Section 4.10.

41

4.1 Introduction

A lot of research effort has been invested in exploring different allocation schemes for code
and data in SPM to exploit its benefits for performance, energy reduction and predictability.
We focus on data allocation as it is more challenging than code allocation. The goal of
this work is the design of an efficient and predictable prefetching technique for data SPM
in real-time systems.

Static and dynamic allocation techniques discussed in Section 3.2 can provide pre-
dictability as long as it is known if the memory operation will access the SPM or the main
memory. Some allocation algorithms target optimizing the WCET either statically or dy-
namically [10,134]. However, these techniques assume stalling the execution of the program
to transfer the data between the SPM and the main memory. The performance of these
techniques can be improved using prefetching to hide the transfer times by overlapping
with CPU execution. Prefetching has been successful in cache-based systems, however ap-
plying prefetching to SPM-based systems needs different techniques that can be integrated
with the software management schemes of the SPM.

SPM prefetching has been exploited for arrays in [167] on the loop level using software
pipelining which provides significant improvements to the performance by eliminating or
reducing the stalling time for memory transfers. Our work differs from their technique as
they do not provide whole program management scheme and do not account for WCET.

A run-time SPM prefetching mechanism in [51] uses a Direct Memory Access (DMA)
engine coupled with a job queue to schedule multiple data transfers and process them back
to back without stalling the CPU or the DMA. The authors provide high level functions
for the programmer to schedule the DMA operations and manage the SPM space during
run-time in a heap-like style. In our work, we use a similar approach in a framework that
supports automatic compile-time allocation to provide predictability and to optimize the
WCET.

In real-time multitasking systems, SPM prefetching has been applied between tasks in
the Predictable Execution Model (PREM) [5,101,113,151] such that DMA transfers are co-
scheduled with CPU execution between different tasks. However, the proposed approaches
suffer from three main limitations:

1. Statically loading all data and code before the beginning of the program severely
limits the flexibility and precision of the allocation, especially if the data used by the
program is dependent on the inputs and the path taken by the program through its
control-flow graph.

42

2. DMA transfers cannot be overlapped with the execution of the same task, only other
tasks. This makes the proposed approaches less suitable for many-core systems,
where it might be preferable to execute a single task/thread on each core.

3. With the exception of [97], the proposed approaches assume manual code modifica-
tion, which we find unrealistic in practice.

In this work, we tackle these limitations by providing a prefetching mechanism that can
overlap the DMA transfers with the execution of the same task and a compiler-automated
flow that can optimize the WCET.

Software prefetching has been known to add significant execution overhead in cache
prefetching techniques [37]. In order to minimize the overhead, we use an SPM controller
managed by the software to minimize the execution overhead.

An important issue with data allocation is the usage of pointers as they can cause
incorrect execution if they are not handled properly. Most allocation techniques either
assume that the program has no pointers or discard the pointer-referenced objects to avoid
pointer related problems. Handling pointer references during run-time has been addressed
in [139] and [157]. In [139], the authors proposed two alternatives, the first is based on
run-time disambiguation of the pointer to determine if its reference is in the SPM using
a compiler-inserted code and a height-balanced tree structure to translate DRAM address
to SPM address which incurs high run-time overhead. We adopt a similar approach that is
predictable with minimal run-time overhead using hardware SPM controller. The second
alternative is to fix the location of the object in the regions where it is accessed using
pointers which limits the optimization of the SPM allocation. The authors in [157] keep
a unique logical address of the object that is translated to a physical address using a
scratchpad management unit (SMMU) with a comparator array. The downside of this
approach is the need for a per-access translation using the comparator network that is
placed on the critical path of the processor. Also, there is a limitation on the size of
the comparator array. We exploit the compiler analysis to avoid per-access translation by
translating the address only at the pointer assignment points.

In summary, the contributions of this work are:

e We introduce an allocation mechanism for SPM that manages DMA transfers with
minimum added overhead to the program. For simplicity and as a proof of concept,
we implement our mechanism using a dedicated SPM controller, but we argue that
a similar scheme could be supported by other platforms with the required DMA
functionality.

43

e We implement an efficient run-time translation of pointers that does not require
per-access translation and avoids pointer aliasing and invalidation issues.

e We develop an allocation algorithm for data in scratchpad memory that takes into
account the overlap between DMA transfers and program execution.

e We show how to model the proposed mechanism in the context of static WCET
analysis using a standard data-flow approach for processor analysis.

o We fully implement all required code analysis, optimization and transformation steps
within the LLVM compiler framework [30], and test it on a collection of benchmarks.
Outside of loop bound annotations, our prototype is able to automatically compile
and optimize the program without any programmer intervention.

4.2 Motivating Example

In this section, we present an example that shows the benefit of data prefetching in SPM-
based systems. Given a set of data objects used by a program, the general SPM allocation
problem is to determine which subset of objects should be allocated in SPM to minimize
the WCET of the program. Since the latency of accessing an object in the SPM is less
than in main memory, we can compute the benefit in terms of WCET reduction for each
object allocated in the SPM. We model the program’s execution with a Control Flow
Graph (CFG) where nodes represent basic blocks, i.e., straight-line pieces of code. In
particular, Figure 4.1 shows the CFG of a program where object z is read /written in basic
blocks BBy and BB, and object y is read in BB4. Note that BB, and BB,4 are loops,
since they include back-edges (i.e., the program execution can jump back to the beginning
of the block); hence, x and y can be accessed many times. Assume that the SPM can
only fit = or y. A static SPM allocation approach will choose to allocate either x or y for
the whole program execution. A dynamic SPM allocation approach will try to maximize
the benefit by possibly evicting one of the two objects to fit the other during the program
execution.

Let the benefit of accessing x from the SPM instead of the main memory be 100 cycles
for BB; and 10 cycles for BB,. Similarly, the benefit for accessing y from the SPM in BB,
is 70 cycles. Let the cost to transfer x from the main memory to the SPM or vice-versa be
20 cycles, and the cost for y 40 cycles. Note that individual accesses to the main memory
is more costly than transferring a block from the main memory to the SPM. Hence, the
benefit of accessing x /y from the SPM prevails the transfer cost. Then, for static allocation,

44

|
| DMA(X)
: BB]_ [
' |
Stall =20 =
cory(x) (st | (Guli=0) CHECK_DMA(X)]
BB, |+
8 =)
COPY_BACK(x Stall=20) | :

[
[

[

[

[

[

[

[

[

[

[

[

| I
'
[

[

[

[

[

[

[

[

[

[

[

DMA_COPY_BACK(x)
DMA_COPY(y)

[
I BB3
[
[I C
CHECK_DMA(x)
Stall = 40 Stall = 20 -
CoPYly) (stall=40) (t", L) CHECK_DMAL(y)]

X
BB
BB,
| [
Without Prefetch : B B 5 ' With Prefetch

N = - —— e e — J

&

Figure 4.1: Motivating Example

the total benefit of allocating z is 100 4+ 10 = 110 cycles and the cost is 2*20 cycles (fetch
x from memory to SPM at the beginning of the program and write it back from SPM to
main memory at the end). Similarly, the benefit for allocating y is 70 cycles and the cost
is 20 cycles (fetch only as y is not modified, so there is not need to write it back to main
memory). The optimal allocation would choose x as it has a net benefit of 70 cycles versus
50 cycles for y.

In previous approaches that adopt dynamic allocation, the program execution has to be
interrupted to transfer objects either using a software loop or a DMA unit. We represent
this case in the without prefetch box in Figure 4.1. In the example, z is fetched before BB;
and written back after BB, to empty the SPM for y. Then, y is fetched before BB,. Since
x is allocated in the SPM for BBy and y is allocated for B By, this results in a total benefit
of 100 4+ 70 = 170. The program will stall before BB, to fetch x, after BB, to write-back
x, and before BB, to fetch y. The total cost is 20 4+ 20 + 40 = 80 cycles as the execution
has to be stalled for each fetch /write-back transfer. The net benefit is 170 —80 = 90 cycles,
which is 20 cycles better than the static allocation.

However, if memory transfers can be parallelized with the execution time of the pro-
gram, we next show that we can exploit the SPM more efficiently. We illustrate the
prefetching sequence in the with prefetch box in Figure 4.1. Let us assume that the amount

45

of execution time that can be overlapped with DMA transfers is 30 and 40 cycles for BB;
and BBjs, respectively. We start prefetching x before BBy by configuring the DMA to copy
x from main memory to SPM. Then, we poll the DMA before BBy where z is first used to
ensure that the transfer has finished. Since transferring = requires less cycles than the max-
imum overlap for BB; (20 versus 30), the prefetch operation for z finishes in parallel with
the execution of BB;j; hence, there is no need to stall the program before x can be accessed
from the SPM in BB;. Before BB3, we first write-back x so that we have enough space
in the SPM to then prefetch y. We propose to schedule both transfers back-to-back, e.g.
using a scatter-gather DMA, in parallel with the execution of BBj. Since the amount of
overlap for BBj is 40, the write-back for x completes after 20 cycles, leaving 20 additional
cycles of overlap for the prefetch of y. Hence, by the time BB, is reached, the CPU stalls
for 40 — 20 = 20 cycles to complete prefetching y before using it in BB,. For the described
prefetching approach, the benefit is the same as the dynamic allocation. However, the cost
is lower as the CPU only stalls for 20 cycles. The net benefit is 170 — 20 = 150 cycles,
compared to 90 cycles without prefetching.

4.3 Region-Based Program Representation

The motivating example shows that the cost of copying objects between main memory and
SPM can be reduced by overlapping DMA transfers with program execution. However, to
achieve a positive benefit, we also need to predict whether any given memory access targets
the SPM rather than main memory. In general, programs contain branches and function
calls, making such determination possibly dependent on the execution path. To produce
tight WCET bounds, a fundamental goal of our approach is to statically determine which
memory accesses are in the SPM regardless of the flow through the program. To achieve
this objective, we employ the refined region structure that we introduced in Section 2.2.

For this reason and to simplify figures, in the following sections we omit drawing the
node inside each trivial region when representing the CFG. Since allocations are based on
regions, for simplicity we will omit individual nodes when representing CFGs and instead
draw regions.

4.4 Allocation Mechanism

As discussed in the motivational example, to efficiently manage the dynamic allocation of
multiple objects we require a DMA unit capable of queuing multiple operations. In gen-

46

eral, many commercial DMA controllers with scatter-gather functionality support such a
requirement, albeit the complexity of managing the DMA controller in software and check-
ing whether individual operations have been completed could increase with the number of
transfers. As a proof of concept, in the following section we describe the implementation
based on a dedicated SPM controller, reserving implementation on a COTS platform as
future work 1.

4.4.1 Assumptions

In the rest of this chapter, we assume the following:

e We adopt the refined region structure that we introduced in Section 2.2 for the
allocation. We showed in the motivating example that the cost of copying objects
between main memory and SPM can be reduced by overlapping DMA transfers with
program execution. However, to achieve a positive benefit, we also need to predict
whether any given memory access targets the SPM rather than main memory. In
general, programs contain branches and function calls, making the prediction of the
target of a memory access possibly dependent on the execution path. To produce
tight WCET bounds, a fundamental goal of our approach is to statically determine
which memory accesses are in the SPM regardless of the flow through the program.
The region structure fits our purpose as any region has a single entry and a single
exit. This means that allocating an object in the SPM in a region, implies that any
access to that object during the execution of any path in this region is guaranteed to
access the SPM.

e We focus solely on the allocation of data SPM, as it is generally more challenging.
We assume a separate instruction SPM that is large enough to fit the code.

e The allocation is object-based, meaning that we do not allow allocation of parts of
an object. Transformations like tiling and software pipelining could further improve
the allocation, especially for small sizes of SPM. We keep this possible expansion to
future work.

e We assume that the target program does not use recursion or function pointers and
that local objects have fixed or bounded sizes. We argue that these assumptions

'For example, the Freescale MPC5777M SoC used in previous work [136] includes both SPM memory
and a dedicated I/0 processor that could be used to implement the described management functionalities.

47

conform with standard convention for real-time applications. Also, we do not analyze
system calls as we do not include OS support in our prototype.

e We assume that all loops in the program are bounded. The bounds can be derived
using compiler analysis, annotations or profiling.

e We employ pointer analysis to determine the references of the load /store instructions.
A points-to set is composed for each pointer reference. The size of the points-to set
depends on the precision of the pointer analysis. We utilize the pointer analysis
from [3] that is based on inter-procedural static value-flow analysis [135]. Allocation-
site abstraction is used for dynamically allocated objects to represent objects, i.e.,
to consider a single abstract object to stand in for each run-time object allocated by
the same instruction [130]. To be able to allocate a dynamically allocated object, an
upper bound on the size of the object should be provided at compile-time.

e For simplicity, we focus on a system comprising a single core running one program.
However, the proposed method could be extended to a multicore system supporting a
predictable arbitration for main memory as long as each core is provided with private
or partitioned on-chip memory.

4.4.2 SPM controller

We define a set of allocation commands that are inserted in the code and executed by the
SPM controller. The SPM controller is a memory mapped unit connected to the processor
to manage the on-chip fast data memory. Cache memory is transparent to the software
and the cache controller implicitly accesses the caches by mapping the memory address
to the cache. In contrast, the SPM has a distinct address range that is used to access its
content.

Figure 4.2 shows the proposed SPM controller connections to an SPM-based system.
There is a separate instruction SPM (I-SPM) that is assumed to fit the code of the pro-
gram. The data SPM is managed by the SPM controller through the DMA. The system
incorporates a DMA unit for memory transfers. The D-SPM is assumed to have dual-ports,
which means that the CPU can access the SPM while the DMA transfers data between
SPM and main memory. The allocation method and WCET analysis can be applied for
single-port SPM, but this will offer less opportunity to overlap the memory transfers. The
main memory is connected to a shared bus the arbitrates the memory access between the
CPU or the DMA. To efficiently support the parallization of memory transfers with the
execution time, the DMA is designed to work in transparent mode. That is, the DMA

48

[-SPM i CPU

Memory DMA |‘—' D-SPM SPM
= Controller

Figure 4.2: SPM-based System

transfers an object only when the CPU is not using the main memory. Whenever the CPU
requests the main memory bus, the DMA yields to the request and stalls any ongoing
transfer until the memory bus is released.

The general process of allocation starts with reserving the space in the SPM and copying
the object from the main memory if necessary. Then, the references of the object are
directed to the new address in the SPM. Finally, the object is evicted from the SPM and
written-back to the main memory if necessary. We use allocation commands to achieve this

process: ALLOCXX, GETADDR, DEALLOC, SETPTR, SETMM, SETSIZE.

The purpose of using this controller is to manage the DMA transfers between the main
memory and the SPM, keep track of the allocated objects, and resolve pointers during
run-time. Figure 4.3 shows the components of the SPM controller. The following is a
description of these components:

CMD Decoder As the SPM controller is a memory mapped device, we use load/store
operations to implement the allocation commands as we will discuss later in this
section. The CMD decoder decodes the embedded commands in the data and address
to produce the corresponding command (CMD).

CMD Queue The execution of the allocation commands may require multiple cycles
depending on the implementation of the controller. So, the allocation queue is used
to store the commands until they are executed in FIFO order. Using this queue
hides the latency by releasing the bus after one cycle if the command is not blocking.
However, the allocation queue is an optional component that can be eliminated if
the allocation commands execute in one cycle or if it is acceptable to stall until the
command is executed in case of multiple cycles.

49

[_MM_ADDR [ALIASED [0BJ_TBL_IDX |
< >

~
~
~

WR_PTR_TBL —¥

0 PTRy

PTR_TBL_IDX—

1] PR,

PTR_TBL +—|

-

-

-

[A] Prop [we op| wa JuJ users |
——=__ — -
| Mm_aDDR [size [spm_aDDR [Flacs |
~_ ——
~_ -
~ ~
Wr_oB/_tBL{1]—{ 0] 0Bl = =
=) JuliENS |
OBJ_TBL_IDX[1]—/{ 1 OBJ; I E < IO
0BJ_TBL[1]+ g s 39
WR_OBJ_TBL[2]— J, I T
0BJ_TBL_IDX[2] — olo
OBJ_TBL[2] | OP_IN — 3|S—orour
~ N P 2 - — ~_
AN > s _ - ~o
> - | op_vpe | TBL IDX | SPM_ADDR |
~ ~ — - !
~o S o ~ —
RS Z _- - - -
1 —_— -
Pointer Object Allocation -7
T~ Table Table Queve | |_--—7
to CPU— Control Unit = to DMA
CMD CMD
Decoder Queue
/ (NN Te—
’ | \ -~
/ \ \ =<
/ \ ==
/
|§ E Ig
m
©
ADDR — % = 3 %
DATA —» — cvp 11
o|lo
RW — CMD_IN— £| gj—> emp_our
T i T~ ~
| cvp_tvee [pTR [7BL IDX | MEM_ADDR | size |

Figure 4.3: Data SPM Controller

50

Object Table The object table stores the status of the allocated objects and the required
information to manage the DMA and resolve pointers. As shown in Figure 4.3, each
entry in the table identifies an object using its main memory address (MM ADDR)
and its size (SIZFE), and its SPM address (SPM4DDR) if the object is allocated in
the SPM. The allocation status of the object is tracked using a set of flags (FLAGS):

V' the entry is (V)alid and associated with an object
A (A)llocated in the SPM
PF_OP (P)re(F)etching (OP)eration has been scheduled
WB_OP (W)rite-(B)ack (OP)eration has been scheduled
W B (W)rite-(B)ack when de-allocated if used
U (U)sed in the SPM

USERS number of current users (allocations) of the object

These flags are updated based on the allocation commands (ALLOCXX, DEAL-
LOC and GETADDR) and the DMA transfers.

Pointer Table The pointer table is used to store pointers during run-time to determine
if the pointee of a pointer is allocated in the SPM. An entry in the pointer table
contains the pointer value (MM ADDR), a flag to indicate if the pointee exists in
the object table (ALIASED) and the index of the pointee entry in the object table
(OBJ _TBL IDX). The pointer table is managed using the command SETPTR
as we will discuss later.

Allocation Queue The allocation queue allows scheduling multiple DMA transfers and
executing them in FIFO order. An entry in the queue comprises the operation type
(OP_TY PFE) -prefetch or write-back-, the index of the object to be transferred in
the object table (I'BL_IDX), and the SPM address (SPM _ADDR). When the
operation is at the front of the queue, the object entry is checked in the object table
for the main memory address (MM _ADDR) and the size (SIZFE) to pass to the
DMA along with the SPM address (SPM _ADDR). Note that the object table is
also checked for the allocation flags to determine if the scheduled operation is not
canceled.

Control Unit the control unit is responsible for communicating with the CPU and the
DMA, executing the allocation commands, updating the tables, and controlling the
queues. Appendix A explains how the control unit works in detail.

ol

Note that the controller does not perform per-access translation from main memory
addresses to SPM addresses as the SPM is addressed directly in the code. Hence, the
controller does not add overhead to the critical path of the processor unlike the proposed
unit in [157].

4.4.3 Allocation Commands

We propose a set of load /store operations called allocation commands to manage the SPM
controller. The allocation commands are used to achieve the following purposes during
run-time:

e Reserve/release a space for an object in the SPM and trigger DMA transfers if re-
quired using ALLOCXX /DEALLOC commands.

e Translate main memory address to SPM address when required using GETADDR
command.

e Disambiguate pointers using SETPTR command.
e Update the object table using SETMM and SETSIZE commands.

We will explain the functionality of these commands in this section and illustrate how
to use them for different allocation cases in Section 4.4.4.

e SETPTR command targets the pointer table in the SPM controller.

SETPTR TBL IDX, MEM ADDR

The entry at TBL IDX in the pointer table is configured with a main memory
address MEM _ADDR which is compared with the main memory address range of
the objects with valid entries in the object table to find the entry of the pointee
object. If the pointee is found, ALIASED flag is set and the table index of the object
is stored in OBJ TBL IDX of the pointer table entry. All the allocation commands
on pointers checks the pointer entry for the aliasing object to use in allocation. The
alias checking process can be implemented in one cycle using a one-shot comparator
or over multiple cycles comparing one entry at a time. If SETPTR command
is executed over multiple cycles, the command queue is used to keep the order of
commands as the command is non-blocking and its execution is overlapped with the

o2

CPU execution. If the number of entries in the object table is large, an alias set
that specifies which objects that can alias with the pointer can be used to reduce
the number of comparisons. For the sake of simplicity of analysis, we assume in this
work a one-cycle implementation.

ALLOCXX command reserves the space in the SPM and schedules a DMA transfer
if necessary. The command has the following syntax:

ALLOCXX TBL IDX, PTR, MEM ADDR

It requires a table index for an object/pointer (TBL IDX) and an SPM address
(MEM _ADDR). The PTR flag distinguishs between an allocation of an object or
a pointer. If the allocation is for a pointer, the index for the pointee in the object
table is OBJ TBL ADDR field in the entry at TBL IDX of the pointer table.
ALLOCXX command for a pointer must be preceded with SETPTR command to
set the corresponding pointer entry. This mechanism to translate pointer table index
to object table index is used also for DEALLOC and GETADDR commands.

There are four versions of ALLOCXX command according to the flags (X X): AL-
LOC, ALLOCP, ALLOCW, ALLOCPW. The P flag directs the controller to
prefetch the object from the main memory. The SPM controller will schedule a
prefetch transfer for the object and set PF_OP flag in the object entry. The P flag
is used if the object has an initial value or has been previously written. If the P flag
is not used, the object is allocated directly and A flag is set. Otherwise, A flag is
set once the prefetch transfer completes. The W flag informs the controller that this
object should be copied back to the main memory when de-allocated if it has been
used as it might have been modified. The W flag sets the W B flag in the object
entry.

DEALLOC command de-allocates the object/pointer in table index (TBL_IDX).
DEALLOC TBL IDX, PTR

If the W B and U flags are set in the object entry in the object table, the controller
will schedule a write-back transfer, set W B _OP flag and reset A flag. Otherwise,
the object will be de-allocated by simply resetting A flag.

If a prefetch transfer has been scheduled and a DEALLOC command is issued for
the object to be prefetched, the transfer is canceled as the object is not needed
anymore. Also, if a write-back transfer has been scheduled for an object and it was
followed by ALLOCXX for the same object, the transfer is canceled if the object is

23

allocated to the same SPM address, otherwise the transfer is not canceled. This is
particularly important for allocations within loops, when the object can be allocated
to the same address over multiple iterations.

GETADDR command returns the current address of the object.
GETADDR TBL IDX, PTR

It P OP or WB_OP flag is set in the the object entry in the object table, the
controller stalls until the DMA completes transferring the object. If no transfer is
scheduled or after the transfer finishes, the controller returns SPM ADDR if A flag
is set and MM _ADDR otherwise.

GETADDR command is inserted only before the first use of the object/pointer after
the allocation/de-allocation in the SPM. The address returned by the command is
then applied for all the next uses until another allocation/de-allocation occurs. This
process is compiler-automated and it eliminates the per access address translation
used in previous approaches [157]. For pointers, SETPTR and GETADDR com-
mands are required if the pointer can alias with the content of the SPM even if the
pointer itself is not allocated.

SETMM and SETSIZE commands are used to configure the entry at TBL IDX
in the object table with the information of an object.

SETMM TBL IDX, MEM ADDR

SETSIZE TBL IDX, SIZE

These commands are used to initialize the object table. Also, it can be used to add
the information dynamically-allocated objects or change the set of objects tracked
by the table during run-time.

We explain in Appendix A the encoding and IR representation of the allocation com-
mands and the abstraction of the SPM controller and its initialization process.

4.4.4 Example

Figures 4.4, 4.5 depict an example for the allocation process. There are two objects x and
y corresponding to entries 3 and 5 in the object table. Also, a pointer p is an argument
to function f and uses entry 0 in the pointer table. Figure 4.4 shows the CFG of two

54

1
e GETADDR(3,0) |>

N
®

Py
7

[DeALLOC(3,0) | l‘“’
1
"""

[1ox [mm_apDR [ALiasep | oBs_sL_iDx |

0

0

Y

1

o

Pointer Table : Entry 0

ra M i

"}}"T' SETPTR(0,p)
---Y-(ALLOCP(0,2,,1)
—

1

o G Q0

o

Figure 4.4: Allocation Example

. F
¥ 5

[1ox | mm_apoR [size [spm_apor | A | prop | we op [we | u [users |
[« Te] & Jola T o [aJolra] @@
[v [ao] o]l o] o JoJof o]
S35 |« [s] o [l o0 o [:[i] t | Q—>
5] v [ao] o] o] o JoJol o]
03| « [®] o [1[o] o [1[1]2] @ — >
5] v [ao] [o] o] o JofJo] o |
)3 « [w] o [i1] o[o [1[:]:] @—>
5| v [ao] o] o] o JoJo] o |
' 5« [e&] o [o[o [1[:[71] @—>
5] v Ja] o]l o] o JoJof o]
03] x [8] a Jo] 1] o [oJo] o] @
5] vy Ja] a Jo] o] o JoJol o]
23| x [8] a Jo| 1] o JoJol o] @ erwHwsem]
5] v Ja] a Jo]l 2] o JoJo[1]
)31 » [w] 2 Jo[o] o Jfolo] o] @—>
¥ 5| v Ja] a [a] o] o Jofa] 1 |
A3 [x [8] a Jo] o] o JToJol o] o—>
5| v Jao] [ol o] o [oJof o]

| Object Table : Entries 3, 5 |

DMA Queue

Figure 4.5: SPM Controller State for Allocation Example in Figure 4.4

functions where r1-r19 represent regions. x is read/written in r3, and the pointee of p is
read in r9. Note that function f, comprising regions r; to 7y, is called from two different
call regions, r4 with p = &z and r5 with p = &y . In the example, we assume that z is
allocated at address a; in the SPM in sequentially composed regions ry, 73 and r4. The
argument of function f is allocated at a different address as inside the function.

We use program points @ to © to follow the allocation process. Entries 3 and 5 of the

95

object table, Entry 0 of the pointer table and the DMA queue are traced in Figure 4.5 for
these program points. At @, z is allocated to address a; with P and W flags. In the object
table, PF'_OP is set to indicate x is being prefetched, W B is set to indicate a write-back
when de-allocated, and USERS is incremented. A prefetch transfer PF(z) is scheduled
in the DMA queue. At ®, GETADDR checks entry 3 for the address; as PF(z) did not
finish at this point, the CPU is stalled. When the prefetch finishes, x is allocated, PF'__OP
is reset, A is set; and the CPU continues execution. Also, U is set to mark x as used in the
SPM. In r4, function f is called. At ®, SETPTR(0, p) sets the address for p in entry 0 of
the pointer table and apply alias checking with the object table. As p aliases with = at this
point.flag ALIASED is set and OBJ _TBL _ IDX refers to entry 3 in the object table.
An allocation of p to as is issued; however, its pointee z is already in the SPM at address
ai. So, no new allocation at a, is performed, and USFERS is incremented in entry 3 to
indicate that two ALLOC commands (users) have been executed for z. GETADDR at
® returns a;. When p is deallocated at @, USERS is decremented in entry 3 of the object
table. However, x is not evicted as there is another user for it. When z is deallocated at
®, x is evicted as this is the last user of x in the SPM. As W B and U are set, a write-back
is scheduled for z. f is called again in r5. The same process to set entry 0 in the pointer
table at point @ is done with the address of y and OBJ TBL IDX refers to entry 5 in
the object table. Then, p is also allocated to a, with P flag. So, a prefetch is scheduled for
y. Before p is used in 79, GETADDR is executed. At this point the write-back transfer of
x is done and the prefetch for y is partially completed. The CPU stalls till y is completely
prefetched, then U flag is set in entry 5, address as is returned, and the execution continues
at @. Finally, p is deallocated at @ which evicts y. No write-back is needed as W B flag is
not set.

An essential observation is that the state of the SPM and the sequence of DMA op-
erations in function f depend on which region calls f: if f is called from r4, then z is
already available in SPM at address a;, and the allocation of p to as is not used. If instead
f is called from 75, p is allocated to a, and the object y must be prefetched from main
memory. Therefore, let o be the context under which a region executes, i.e., the sequence
of call regions starting from the main function; note that since the main function of the
program is not called by any other function, the only valid context for regions in the main
is 0 = (). We denote the execution of a region r,, in a context o as rZ, which we call a
region-context pair. Then, allocation decisions, which involve adding allocation commands
in the code, must be based on regions, but the state of the SPM and DMA operations,
which are needed for WCET estimation, depend on region-context pairs. Intuitively, this
is equivalent to considering multiple copies of each region 7, one for each context in which
T, can execute.

o6

4.5 Compilation Flow

The proposed SPM allocation algorithm in this chapter optimizes which objects to allo-
cate, where in the SPM, and at which program point using a set of heuristics detailed in
Section 4.6. These heuristics are integrated with our compilation framework introduced
in Chapter 2. We utilize the analysis information about regions, loops, memory accesses,
and the backend of the program along with WCET analysis for the optimization. The
WCET analysis is estimated based on an abstract interpretation approach as detailed in
Section 4.7. The allocation results are used for transforming the Intermediate Represen-
tation (IR) of the program, then the assembly code for the transformed IR is generated.
The final executable is created using a linker script that specifies the memory sections
representing the connected units; i.e., instruction SPM, data SPM, SPM controller, and
main memory. We focus in the rest of this section on the IR transformation pass.

4.5.1 IR Transformation

The transformation of the program IR to apply the SPM allocations includes the following;:

e Insertion of ALLOCXX and DEALLOC commands at load /unload program points.

e Insertion of SETPTR commands before allocation of pointers and before checking
for pointer aliasing.

e Insertion of GETADDR commands before first uses of objects/pointers after allo-
cations and de-allocations.

e Modifying the uses of the allocated object/pointer in the scope of allocation to use
the address returned by GETADDR. commands.

We collect the information required for IR code transformation traversing the program
CFG accounting for SPM allocations.

ALLOCXX (DEALLOC) command is inserted before the entry (exit) of an region.
For trivial regions, ALLOCXX (DEALLOC) is inserted before the first IR instruction
in the region. Otherwise, a basic block is inserted before the entry (exit) of the region
with ALLOCXX (DEALLOC) command. For a top-level region of a function where
there is no exit node, DEALLOC command is inserted before the return instruction of
the function.

57

N

gk W N

SETPTR command is used with pointers to setup the pointer table either for a pointer
allocation or to check for aliases in the SPM. If the pointer will be allocated in the SPM,
SETPTR command is inserted before the ALLOC command. If the pointer can alias
with the content of the SPM, SETPTR is inserted before the usage of the pointer to
access the memory.

GETADDR command is inserted before the first use of an allocated object/pointer.
That is, we traverse the different paths till a load/store instruction to the object/pointer
is found after allocation/de-allocation points. This also applies for a pointer that has a
possible allocated object in its points-to set.

The load/store instruction is referenced to the IR instruction that calculates the mem-
ory address of the instruction and GETADDR command is inserted before it. The ref-
erence to the object/pointer is then modified to the return address of the GETADDR
command. The same modification is applied for other load/store references after the first
use without the insertion of another GETADDR command.

For de-allocated objects/pointers, we need to ensure that the write-back transfer -if
scheduled- is done before the next use of the object/pointer in the main memory. So,
GETADDR command is inserted before the first load /store instruction without changing
references as the purpose is to check the DMA transfer.

As an example, consider an access to element m of the global array x[10] inside a loop
while m is changing every iteration.

%ptr = getelementptr inbounds [10x32], [10x32]* @x, i32 0, i32 Ym
%t = load 132, i32x Yptr

Assume that the object x is at entry 0 of the object table and it has been allocated. The
transformation of this access will be:

%getaddr_ptr = getelementptr [32 x [8 x 132]], [32 x [8 x i32]]1x <«
@SPM_CONT, i32 0, i32 0, i32 5
%addr = load i32, i32% Ygetaddr_ptr

%ptr = getelementptr inbounds [10x32], [10x32]* @addr, i32 0, i32 ¥%m
%t = load 132, 1i32x Yptr

The first two lines are the implementation of GETADDR command to entry 0. This
command is inserted before the loop, then any access to x inside the loop is directed to
use addr which is the current address of x in the SPM.

Note that the scope of the transformation is local as the addresses of the objects/point-
ers are not changed. The transformation is only applied to specific accesses to memory

o8

when a possible reference to an allocated object/pointer is detected. SPM controller guar-
antees the correctness of the address during run-time.

After the transformation, the pointer analysis cannot determine that the access to addr
is actually an access to x as the reference chain will refer it to the SPM controller. However,
we need to differentiate between allocation commands and accesses to objects to be able
to conduct the WCET analysis after the transformation. So, we add metadata to the
added /modified instructions to reflect their usage after the transformation.

4.6 Allocation Algorithm

4.6.1 Problem Description

The dynamic allocation is the problem of choosing the content of the data SPM at each
program point to minimize the program WCET. We divide the problem into the following
sub-problems in the context of prefetching support:

e Decide which objects should be moved to the SPM and which objects should be
evicted.

e Determine the program points to prefetch and write-back objects so that the prefetch
distance is large enough to hide the memory transfer time.

e Assign spaces in the SPM for the allocated objects to assure that objects that exist
in the SPM simultaneously do not have overlapped address ranges.

e Provide predictable memory accesses to be able to derive a bound on the WCET
of the program. An object that is accessed at a program point can be classified to:
must be in the SPM, must be in the main memory, may be in the SPM.

The design space for the allocation problem comprises every program point, i.e., every
instruction in the program. This space is very large while most of these program points do
not provide different solutions and can complicate the WCET analysis. For this reason,
we reduce the allocation problem design space by adopting the region structure described
in Section 4.3.

We now discuss how to determine a set of allocations for the entire program with the
objective to minimize the program’s WCET. For the remainder of the section, we let Sspys

59

denote the size of the SPM. V = {vy,...,v;,...} is the set of allocatable objects, where
S(vj) denotes the size of object v;. We let R = {ry,...,7,,...} be the set of program
regions across all functions. Without loss of generality, we assume that region indexes
are topologically ordered, so that each parent region has smaller index than its children,
each call region has smaller index than the regions in the called function, and sequentially
composed regions have sequential indexes; this is also the order used in Figure 4.4. Note
that such topological order must exist since the refined region tree for each function is
unique, and furthermore the call graph has no loops due to the absence of recursion. To
define the relation between region-context pairs we introduce a parent function p(r?) for a
region-context r¢ in function f as follows: if 7, is the root region of the refined region tree
for f, then p(r7) = r%, where 7’7‘;1/ is the region-context that calls f in context o. Otherwise,
©(r?) = r2 , where r, is the parent region of r,,. As an example based on Figure 4.4, assume
that r4 executes in context . Then when r7 is called from 7,4, 77 executes in context o Ury.
We further have p(rg”™) = rg, while for example p(rg”™) = r7-"*. Finally, to generalize
the problem for the usage of pointers, let P = {p1,...,px, ...} be the set of pointers in the
program. As the pointee of the pointer can change based on the program flow, we define
Xre (P) as the points-to set for pointer p; in region-context r7. For simplicity, we refer to
the allocation of the pointee of pointer as the allocation of the pointer. We define S+ (px)
as the size of py in region-context r¢ which is computed as:

Sre(pr) = max S(v)

vEXg (Pk)

Note that the pointee of p, can be a global, local objects from the set of objects in V'
or a dynamically allocated object. In case of dynamic allocation, v refers to a dynamic
allocation site in the program.

We begin by formalizing the conditions under which a set of allocations are feasible as
a satisfiability problem. This is similar to a multiple knapsack problem where regions are
knapsacks (available space in SPM), except that we add additional constraints to model
the relation between regions. Remember that to allocate an object v; (pointer py) in a
region r,, we have to assign an address in the SPM to the object (pointer). Hence, an
allocation solution is represented by an assignment to the following decision variables over
all regions r,, € R and all objects v; € V' (pointers p; € P):

Hoc®s 1, if v; is allocated in 7,
allocy), = _
0, otherwise

. Vi . .
assign,, — address assigned to v; in r,

60

Hoeh 1, if pg is allocated in r,
allocPr =
m 0, otherwise

assignbt = address assigned to py in 7,

An allocation solution is feasible if the allocated objects fit in the SPM at any possible
program point. As discussed in Section 4.4.4, the state of the SPM depends on the context
under which a region is executed. Hence, we introduce new helper variables to define the
availability of an object v; (pointer py) in a region-context r7:

v 1, if v; is available in SPM for execution of 7
avail,; =

0, otherwise

addv‘ess% — address of v; in the SPM during execution of 77

Tn

P {1, it py is available in SPM for execution of r{
avail,s =

0, otherwise

g

addressys = address of py in the SPM during execution of ry,

We can determine the value of the helper variables based on the allocation. We first discuss
the basic constraints assuming that the points-to information is not available. In this case,
allocation of a pointer is handled as an allocation of an object. After that, we discuss how
the constraints can be modified to consider aliasing between objects and pointers.

Basic Constraints

We present a set of necessary and sufficient constraints for an allocation problem in which
points-to information is not available.

Y, 1y calloc)? v avaz’l;j(ra) & availy. (4.1)
Vg, ry, ¢ alloclt V availly . < availls. (4.2)

Equation 4.1 (4.2) simply states that v; (py) is available in the SPM during the execution
of r7 if either v; (py) is allocated in 7, or if v; (p;) was already available in the SPM
during the execution of the parent region-context pair.

Yo, ro avail;}j(m = address:% = addressz)](rg). (4.3)

61

Vg, ry, ¢ availly oy = addressys = addressy .. (4.4)

4 ()
Vo, r ﬁavailg(rg) Aallocy? = address, = assign,? . (4.5)
Vpr, 1y, + Davailly oy A alloclt = addressys = assign}t. (4.6)

Equations 4.3, 4.5 (4.4, 4.6) specify the address in the SPM for objects (pointers). If the
object (pointer) was already available in the parent region-context, then the address is the
same. Otherwise, if the object (pointer) is allocated in 7,, then the address is the one
assigned by the allocation.

Finally, given the object (pointer) availability and address for each region-context pair,
we can express the feasibility conditions for the allocation problem.

Yuj, 7y avail,y = address,y + S(v;) < Sspa. (4.7)

Vg, 10 availfg’j = addressys + Syo(pr) < Sspu- (4.8)

o
Tn

Yo, vk, 10, § # k- (availd A availlk) =
(address,y + S(v;) < address)%)V (4.9)
(addresst + S(v) < address,s)

Vpj, Dk, T J F K (availf% A availls) =
(addressys + Syq(p;) < addressys)V (4.10)
(addressyt + S,q (pr) < address}})
Yv;, pr, 1y, < (avail,d A availlh) =
(address,s + S(v;) < addressys)V (4.11)
(addressls + Syq () < address,})
Equation 4.7 (4.8) states that if v; (pi) is in the SPM during the execution of r?, then
it must fit within the SPM size. Equations 4.9 to 4.11 state that if two objects/pointers
are in the SPM during the execution of r7, then their addresses must not overlap. Note
that the size for a pointer is dependent on the region-context pair. Giving a points-to set

Xre (D), the size required for allocating py, in rg is the maximum size of all objects in the
points-to set.

Vpr, 7y ¢ defys = —allock (4.12)

62

Figure 4.6: Example of Pointer Definition

The constraint in Equation 4.12 states that the allocation of pointer p; is not allowed
in 7, (allockt = 0) if defys = 1 where def}s is defined as following:

o
Tn

n?

de P

o —
n

{1, if py, is defined in 7, i.e., p; can change its reference in

0, otherwise

This constraint is required for correctness of execution and analysis. This case is depicted
in Figure 4.6 where pointer p is defined in region r3 to point to y rather than x. Hence,
p can be allocated in ry and ry while alloc?, = 0,allocl = 0. The allocation of p in r3 or
r1 will result in pointer invalidation as any reference to p after its definition in r3 should
point to y not x.

As long as Equations 4.7 to 4.11 are satisfied for a given solution in all region-
context pairs, all objects fit in the SPM; hence, the allocation problem can be feasi-
bly implemented. To do so, we next discuss how to determine the list of commands
(ALLOC/DEALLOC/GETADDR) that must be added to each region. For a region
r, that is not sequentially composed, an ALLOC is inserted at the beginning of the region
and a DEALLOC at the end of the region.

In the case of sequential regions, to reduce the number of DMA operations, we note the
following: if the same object v, is allocated in two sequentially composed regions 7, and
re with the same assigned address, then there is no need to DEALLOC v; at the end of
rp and ALLOC it again at the beginning of r,. Hence, we consider the maximal sequence
of sequentially composed regions r,, ..., r, such that for every region r,, in the sequence:

63

-

__-l.-{ ALLOCPW/(Q, 32,1)]\

®

| ! I’4 : (
\[DEALLOC(3,0) J~ ---(__DEALLOC(0,1) }\D
ALLOCPW(5,a1,0)) ___(ALLOCPW/(0,35,1))

---;—--[DEALLOC(0,1) 1/

@rs‘ii

e e

Figure 4.7: Allocation Overlap Example

allocy!, = 1 and the address assign,’, assigned to v; is the same. We then add the ALLOC
command at the beginning of r, and the DEALLOC command at the end of r,. The
P and W flags of the ALLOC command are set as discussed in Section 4.4.3 based on
the usage throughout the whole sequence. The same procedure applies for a pointer p
allocated in a sequence of sequentially composed regions.

Also, we note the following for object v; and pointer pj such that v; € x,.: if object v;
and pointer p, are allocated in an overlapped sequence of sequentially composed regions,
DMA operations on the pointer are inserted to re-locate the pointee to avoid pointer
invalidation. The example shown in Figure 4.7 shows the case where object x is allocated
to address a; in 79,73 and r4, pointer p is allocated to address as in r3,7r4 and rs, and
object y is allocated to a; in r5 and r¢. If p can point to x, it will be already in address
a1 in the SPM when p is allocated in r3 and = will not be copied to address a;. However,
the copy of x at a; should be written-back after r4 to allocate y to a;. Using p in r5 with
the assumption that x is in the SPM will result in a conflict. So, a re-location must be
guaranteed after r4, so that the copy of x is moved to ay before y is fetched to a;. Note
that the relocation commands will cancel each other if p is not pointing to x.

Example: refer to the example in Figure 4.4, where p is allocated in two regions in

64

sequence (rg and 19). ALLOC is inserted before rg and DEALLOC is inserted after rq.
P flag is set in ALLOC even though z is not used in rg, but it is read in r9. Similarly, W
is not set as x is not modified in neither rg nor rg.

Finally, to compute the WCET for the program, we need to determine whether an
ALLOC/DEALLOC command triggers a DMA operation; this again depends on the
context o in which a given region r, is executed, as demonstrated by the example in
Section 4.4.4. As in Equation 4.3, we know that the ALLOC will be canceled if v; was
already available in the parent region-context; hence, for a region r, that performs an
ALLOC on v; and a context o, the ALLOC generates a DMA prefetch on v; only if
both the P flag in the ALLOC is set and avail;j(r%) = 0 (similarly for DEALLOC, a DMA

operation is generated if the W flag is set and avaz’l:)j(ra) =0).

Aliasing Constraints

The feasibility problem can be relaxed using the points-to information of each pointer.
Points-to information are derived from a must-may alias analysis. We consider the must-
alias points-to sets with object v; and pointer p, such that x,(px) = {v;}; which is a
common case with passing by reference in functions. In this case, the allocation of either
vj or py in region-context 77 means that both v; and p;, are available in the SPM in this
region-context. The constraints can be extended if there are multiple pointers that only
point to v; in a region-context.

allocy? \/ alloct* v/ availzj(rg) % avail;j(rg) & avail,}. (4.13)
allocyi \/ alloc?s v/ avaz’l;j(ra) V availly, .y < availys. (4.14)

Equations 4.13, 4.14 replace Equation 4.1 , 4.2 and state that v; and p, are available
in the SPM during the execution of r7 if v; or p is allocated in r,, or if v; or p, was
already available in the SPM during the execution of the parent region-context pair. Note
that in Equation 4.14, v; can be available in the parent region-context (r?) while py is
not available in it if p;, changes its reference in the children of p(r7), i.e., xyo (Pr) # {v;}-
In that case, Equation 4.14 is not applicable to o(r7) and allocz IE?"%) = 0 according to
Equation 4.12.

gV
avail ’

o(re) = addressfg = address"” (4.15)

p(rg)

65

.U,
—avail ’
p(rg

vj . .
address,? = addressts = assign’ .
n n n

y A allocyl A —alloc? =
! ! (4.16)

—mwailvirc,) A alloc’s A\ —alloc? =
ol " " (4.17)

v .
address? = address,, = assignb*.
n n

Tn

ﬁavail;j(rﬁ) A alloc) N allocs = (4.18)
(address,}, address,) = ~y(assign;i , assign?*). '

Equation 4.3 still applies for v; as the availability in the parent dominates any allocation
in the region. However, the address p;, inherits the address of the v; if it is available in its
parent as in Equation 4.15. If v; is not available in the parent, there are two cases:

Equations 4.16,4.17 state that if only v; or py is allocated, the address of v; and py, is the
assigned address of the allocated one.

Equation 4.18 state that if both v; and p; are allocated, the assigned address for each
of them to be determined with an arbitrary function ~ that depends on how the
allocation is implemented. In this work, we use y(assign,, assignt) = assign,’ as
we consider relocation of the pointer as we illustrated before in the example shown
in Figure 4.7.

Example: refer to the example in Figure 4.4, where p is allocated with assigned address
as in rs. For context o Urs, we have avail’ou,, = avail’su,; = 0, since xyeurs(p) = {y}
7 7

and y is not available in rg, the parent of rJ”">. Hence, we also have address’s.., =
T8

address®, .. = ay. However, for context o Ur, we obtain avail’,.,, = avail’our, =1, since
r 7 7

8
Xrgur, (p) = {2} and z is available in r{. So, we get address’,.,, = address’ou., = ai.
7 7

The constraints for SPM size are the same as in Equations 4.7, 4.8. Equations 4.10, 4.11
for address overlap are not applied for must alias cases. That is, if xyo (Pr1) = Xre (Pr2) =
{v;}, then their address ranges match addressfgl = addressﬂ?g2 = addressﬁ%. So, Equa-
tions 4.11, 4.10 are not applied between py1, pro, v; for region-context ry.

We illustrated the possible aliasing constraints for one pointer and one object. Another
set of constraints can be derived for aliasing pointers or pointers with multiple pointees in
their points-to set. We do not detail these constraints as they exploit a may-alias which
means the constraints do not represent necessity.

66

4.6.2 WCET Optimization

For a given allocation solution {alloc;, assign,?,, allocP*, assignP* |Vv;, py, r,, }, the described
procedure determines the set of objects available in the SPM and the set of DMA opera-
tions for each region-context r?. Assuming that bounds on the time required for SPM and
main memory accesses are known, this allows us to determine the benefit (WCET reduc-
tion) for every trivial region in context o, as well as the length of DMA operations. For a
dynamic allocation approach without prefetch, the length of DMA operations could simply
be summed to the execution time of the corresponding region, since DMA operations stall
the core.

However, for our proposed approach with prefetching, the cost of DMA operations
depend on the overlap: since DMA works in transparent mode, for a trivial region the
maximum amount of overlap is equal to the execution time of its code minus the time that
the CPU accesses main memory directly. Furthermore, since the length of DMA operations
is generally longer than the execution of a trivial region, the total overlap depends on the
program flow. Therefore, we compute the amount of overlap as part of an integrated
WCET analysis, which we present in Section 4.7. We solve the allocation problem by
adopting a heuristic approach that first searches for feasible allocation solutions, and then
runs the WCET analysis on feasible solutions to determine their fitness; we discuss it next
in Section 4.6.3.

Finally, we note that the proposed region-based allocation scheme is a generalization of
the approaches used in related work on dynamic allocation. In [134], the authors applied
a structured analysis to choose a set of variables for static allocation. They analyzed
innermost loop as Directed Acyclic Graph (DAG) for worst case path and then collapsed the
loop into a basic block to analyze the outer loop. The region tree representation captures
this structure as loops, conditional statements and functions as regions. The dynamic
allocation in [139] is based on program points around loops, if statements and functions
which can be matched with an entry/exit of a region. In [10], Deverge et al. proposed a
general graph representation that allows different granularities of allocation. The authors
formulated the dynamic allocation problem based on the flow constraints which can also be
applied to the region representation. All such approaches use heuristics to determine the
overall program allocation. Hence, to allow a fair evaluation focused on the benefits of data
prefetching, in Section 4.9 we compare our proposed scheme against a standard dynamic
allocation approach with no overlap using the same region-based program representation
and search heuristic.

The problem formulation is presented as a variation of the general knapsack problem
which is an NP-hard optimization problem [27]. This means that the allocation problem is

67

complex even if we assumed that the WCET is a linear function of the allocations. We opt
to using heuristics in a divide-and-conquer approach to produce a reasonable solution. We
developed a set of algorithms for the allocation, the address assignment and the WCET
analysis in the next sections.

4.6.3 Allocation Heuristic

The allocation heuristic divides the allocation to three sub-problems: profit estimation,
knapsack allocation, and address assignment. The profit estimation provides the expected
profit of a single allocation. The knapsack allocation adopts a genetic algorithm that
uses the estimated profit and a feedback mechanism using the WCET analysis to find
a near-optimal solution. The address assignment is used as a part of the genetic algo-
rithm evaluation to check the feasibility of fitting the allocations in the SPM with distinct
addresses.

Genetic Algorithm

The allocation heuristic adopts a genetic algorithm to search for near-optimal solutions to
the allocation problem.

e Chromosome Model: The chromosome is a binary string where each bit represents
one of the alloc,’ decision variables. Note that we do not represent the assign,’
decision variables in the chromosome; instead, we use a fast address assignment
algorithm as part of the fitness function to find a feasible address assignment for a
chromosome.

e Fitness Function: The fitness fit of a chromosome represents the improvement in
the WCET of the program with this allocation if it is feasible. The fitness function
first applies the address assignment algorithm to the chromosome. If the allocation is
not feasible, the chromosome has fit = 0. Otherwise, we execute the WCET analysis
after the program is transformed to insert the allocation commands; the fitness of
the allocation is then assigned as fit = WCETy iy — WCET 0. where WCET vy
is the WCET with all the objects in main memory and WCET ;. is the WCET for
the analyzed solution.

e Initialization: The initial population P(0) is generated randomly with feasible so-
lutions, u.e., fit > 0.

68

or
1

— ALLOCPW(Y)

DEALLOC(Z)
9— DEALLOC(X)

Figure 4.8: Example of allocation order

e Evolution Operations: The evolution process incorporates random random selec-
tion, one-point crossover and random bit mutation to generate P’(t 4+ 1). The elite
chromosomes with highest fitness from P(t) and P’(t + 1) are chosen to form the
next population P(t + 1).

e Termination: The algorithm is terminated after k generations or if the best chro-
mosome does not change for n generations.

Allocation Order

The order of allocation commands can significantly impact the profit of a solution. The
solution generated by the genetic algorithm consists of a set of allocations, i.e., objects
allocated in allocation regions. The order in which the allocation commands corresponding
to these allocations are executed is known if they are inserted in different program points,
e.g. two objects allocated in two allocation regions different functions. This does not apply
if the allocation regions share program points. The example in Figure 4.8 illustrates this
case.

In the example, three objects X,Y and Z are allocated in allocation regions Ri, R
and R3 respectively. Program point @ is the entry for both R; and R,. So, at this point
both X and Y are allocated and prefetched. The order between them can be X — Y or
Y — X. In R, Y is used before X. If we chose the order X — Y, then at the first use
of Y, the program will stall until both X and Y are prefetched which might eliminate the
profit of allocation. However if we chose Y — X, the program will stall for Y only at the
first use of Y and stall for X only at the first use of X.

69

A similar case occurs at point @ as Y is deallocated and Z is allocated while Z is used
first in R3. However, the order might be forced in this case if the address range assigned
to Y overlaps with the address range assigned to Z in the SPM. In this situation, Y has
to be written-back before Z is prefetched to avoid overwriting Y. If they do not overlap,
it might be more profitable to prefetch Z first, then write-back Y.

We account for the allocation order of allocations that happen at the same program
points in the feedback WCET analysis and the IR transformation. That is, when we record
the usage order of objects in the allocation regions during the profit estimation phase, then
we order the allocation commands such that the object that is used first is scheduled first
whenever possible.

Address Assignment Algorithm

The goal of the algorithm is to assign an address for each of the object allocations in
the SPM. The assignment must conform to the set of constraints on the addresses in
Section 4.6.1.

The address constraints can be linearized using auxiliary decision variables. Then, an
ILP solver can be used to obtain an assignment that satisfies the constraints. This problem
is a generalization of the register allocation problem which has a correspondence to the
graph coloring problem [29,146]. The general graph coloring is known to be NP-hard [55].

The address assignment algorithm is depicted in Algorithm 1. Given a chromosome,
the region tree is traversed in topological order assigning addresses to the allocated objects
and pointers in each region. The topological order visits all the nodes with the same parent
before visiting the children. For the root of a function, all the parents (call regions) of the
function are visited before the root of the function. Also, for a sequence of sequentially
composed regions, the order of the sequence is maintained. After the objects in a region are
assigned to SPM addresses, an end address to the last allocated address is maintained. For
each region r,, the previous end address is the maximum of all parent regions (note that
if r,, is not the root of its function, it has a single parent region). For a region that is not
sequentially composed or the first region in a sequence of regions, addresses are iteratively
assigned to the allocated objects starting from the previous end address. For a region in
a sequence, an allocated object maintains the same address as the previous region if the
object is allocated in both. Otherwise, a best fit algorithm is used to assign the remaining
addresses. The end address for each region is then computed as the maximum end address
for any allocated object. Note that the algorithm trivially ensures that objects/pointers
allocated in a region cannot overlap with any object or pointer that is available in a parent;

70

Algorithm 1 Address Assignment

Input: region information, {allocgi,allocfiﬂ‘v’vj,pk,rn}
1: for all region r, by increasing index starting with r; do
2: end_addr,, < ASSIGN ADDRESSES(r,)

3: function ASSIGN ADDRESSES(r,,)
4 end_addr,, = max,{end_addryq)}

5 if r,,_1 is not sequentially composed with r, then
6: for all v; such that alloc;’, do

7 assign,’ < end _addr,,

8 end_addr,, < end_addr,, + S(v;)

9

for all p; such that allocl* do

10: assignlt < end_addr,,

11: end__addr,, « end_addr,, +max,(S,(px))

12: else

13: for all v; such that alloc;’, A allocy’_, do

14: assign,) < assign,._,

15: for all p; such that allocl* A allocl: do

16: assignt’* <— assignkr

17: for all v; such that alloc;’, A —allocy’_, do

18: Compute assign,. using best fit based on already assigned addresses
19: for all p; such that alloclk A —alloc?* ~ do

20: Compute assignf* using best fit based on already assigned addresses
21: MY = MAX, {assign,’, + S(v;)}

22: AT, = MAX, ¢ qiocks 1058197 + maxy (S (pr)) }

23: end_addr,, < max{max; ,max? }

71

hence, Equations 4.9, 4.11 are always satisfied. However, the algorithm is not optimal,
since it does not consider that an allocation might not be required in any context where
the object is already available in the SPM or the aliasing between objects and pointers.
Finally, the allocation is considered feasible only if the end address never exceeds the SPM
size; this guarantees that Equations 4.7, 4.8 are also satisfied.

4.7 WCET Analysis

We discuss how to model the behavior of our prefetch mechanism in the context of static
timing analysis so that a safe bound to the WCET of the program running uninterrupted
can be computed. We assume a given allocation solution computed based on Section 4.6.
We rely on the standard approach of Data Flow Analysis (DFA) [161], where the detailed
state of the hardware is generalized into an abstract state based on the theory of abstract
interpretation [37,137]. To avoid maintaining a different state for each path through the
program, the analysis relies on computing fixed points by “merging” states when paths join
(i.e., branch join and loops entry/exit). In detail, given two abstract states d and d’, we
need to compute a join operator V such that the resulting state d” = dV d’ is more general
than either d or d’. We model time as natural numbers, i.e., processor clock cycles.

We begin by providing an intuitive discussion of the challenges of handling our prefetch-
ing mechanism, followed by our intended solutions. In what follows, we use function (x)*
as a shorthand or max(0,x) and P(A) to denote the powerset of set A. As discussed in
Section 4.3, let G; = (N, E) denote the refined CFG for function f. To keep track of the
program execution, it is useful to formally define the concept of program state:

Definition 1 (State). The program execution is defined as the transformation of a program
state. We let X be the set of all possible program states; we use s € ¥ to denote an individual
state and S C X to denote a set of states. The state at any given point in the execution of
the program represents the amount of elapsed time s.t since the beginning of the program,
and the content of all hardware registers and memories.

Definition 2 (Transfer Function). For every edge e : BB; — BB; in G; and context o
for f, we define a transfer function T., : X — X such that: if s is the program state
at the beginning of the execution of BB; and the program execution flows from BB; to
BB, then s = T.,(s) is the program state at the beginning of the execution of BB;.
Function T/, : P(X) — P(X) denotes the obvious set-extension of function Teq, i.e.
T25(8) = UsesTeq(s).

72

- :

o = - —————————————————————
N e e e >

Figure 4.9: WCET Example: Merging states from different paths

Note that based on Definition 2 2, if the execution cannot flow from node BB; to BB;
for any state in S, then 7, (S) = (. Given a set of initial program states Se,, with ¢ =02,
a WCET analysis could then simply proceed as follows: enumerate all paths through every
function in the program; for each path through the program, iteratively apply function 77,
starting from state set Se,y for all edges comprising the path, obtaining a set of final states
Sezit- The WCET can then be obtained as the maximum time elapsed for any state in
any final state set S..;;. Since based on our assumptions the number of paths through the
whole program is finite, this approach is computable, but it is generally computationally
intractable for all but the simplest programs, as the number of paths is exponential in the
number of branches/loops in the program.

To obtain a tractable analysis, WCET techniques typically attempt to prune paths
that cannot lead to the WCET by making local decisions: ideally, we could examine each
branch point in the CFG one at a time, determine which branch leads to the WCET, and

2Also note that 7 , defines a deterministic machine: assuming we know the state s at the beginning
of the basic block, we can compute the exact state s’ along e. If the machine is non-deterministic, the
definition can be modified to return a set of states rather than a single state while maintaining the same
theoretical framework, see [137].

3Note that in general, a set of program states must be considered, rather than a single state, because
the initial state of the hardware, including the program inputs, is not known.

73

exclude from the analysis all other branches, thus implicitly identifying the Worst Case
Execution Path (WCEP) through the program. In practice, this might not be possible,
because the worst case path through a branch might depend on the path taken through
another branch preceding or following the one under analysis, either due to the program
semantic (i.e., some paths might be invalid) or due to architectural considerations (i.e., an
hardware operation started during a basic block might influence the timing of a successive
basic block).

Since our objective is to show how to integrate our proposed prefetching scheme in
existing WCET frameworks, in the rest of the section we focus on architectural analysis.
To explain how we model the behavior of DMA operations, consider as an example the
execution of the CFG and associated region tree in Figure 4.9 in a context o. Assume that
the analysis for the path through r{ has computed a program state s with an upper bound
to the execution time of the program up to this point equal to ¢ = 10, and an upper bound
to the remaining time to complete a DMA fetch operation for an object v; equal to t,, = 3.
For the path through rg, we instead have a state s" with ¢t = 8,¢,, = 7, i.e., the execution
takes longer along the path through r{ than through r¢, but results in a shorter remaining
DMA time. Assume now that a GETADDR command on object v; is executed at the
beginning of region/context r¢. The amount of time that the command will block is then
equal to t,, minus the amount of overlap that the DMA operation has with r§, or zero
if the operation completes during r{. Assume a simple case where the execution through
r¢ requires A units of time and performs no access to main memory, so that the DMA
operation can overlap up to A. The program can then resume from GETADDR at time
t 4+ A + max(t,; — A,0). Hence, note that for A = 7, the worst case path is through r{,
resulting in a time of 17 units against 15 for the path through rZ. However, for A = 3,
the worst case path is through g, with a time of 15 time units against 13 for the path
through r{. In summary, we cannot determine which path through a branch leads to the
worst case unless we analyze the regions following the branch in the CFG (rg and r7 in
the example). This shows that the WCEP determination is a global decision.

A typical solution to the global decision problem is to employ a Meet Over Path (MOP)
solution: if we do not know which state to use for by, we can abstract the execution of the
program by considering a new join state s” that is worse than either s or s’. Such state
does not need to represent any real execution of the system (i.e., it is abstract), as long as
we can prove that the WCET obtained based on s” is no smaller than the ones determined
based on s and s’. In this case, a trivial solution would be to computing a join state
s” with ¢t = max(10,8) = 10 and ¢,, = max(3,7) = 7. However, this would lead us to
over-approximate the time for the GETADDR, resulting in 17 time units for A = 3,
rather than the computed bound of 15 time units. Therefore, we seek to derive a tighter

74

abstraction.

Intuitively, this can be achieved by abstracting the states s and s’ for the execution
through r{ and r{ into abstract states d and d’. An abstract state d is composed of two
information: the elapsed program execution time d.t, and a set of timers {t,,}. For an
object v;, d.t,, represents the worst case time required to complete either a prefetch or
write-back operation in the allocation queue; since the allocation queue is served in FIFO
order, this represents the time to transfer that specific object, plus the time required for
all operations ahead of it in the queue. For the example in Figure 4.9, let d be the state
through r{ and d' be the state through rZ. Since there is only one DMA operation in
the queue, we have d.t = 10,d.t,, = 3 and d'.t = 8,d'.t,, = 7, i.e., the abstract states
are equivalent to the corresponding program states. The join state d’ = d V d’ is then
computed as follows:

d"t = tnax = max(d.t,d't), (4.19)

and for every timer £, :
d" t,, = max (d.ty, — (tmax — d.t), d' by, — (tmax — d'.1)). (4.20)

Based on Equations 4.19, 4.20, we compute a join state for the example d”.t = max(10,8) =
10,d".t,, = (3—(10—10),7— (10 —8)) = 5. Note that this abstraction is tighter compared
to the values ¢ = 10,¢,, = 7 obtained by the trivial over-approximation; in particular,
it is easy to see that for the provided example, the time for the GETADDR command
computed based on d” is exactly equal to the worst case between d and d’ for any value of
A, albeit for more complex cases involving multiple DMA operations it is still a (tighter)
over-approximation. However, the abstraction does not correspond to any “real” program
state, since the values of ¢ and ¢, are different than the program state at r7 for either
execution path. The key intuition is that adding A units of time to the execution time
of the program is always worse than adding A units of time to the length of timers, since
a GETADDR might block the program for a time at most equal to the length of the
corresponding timer. Hence, if the execution time along two paths differs by a value A,
we are guaranteed to obtain an upper bound if we consider the longest execution time
but subtract A units of time from the timers along the shortest path, as performed in
Equation 4.20.

Note that in general, a single DMA operation could overlap with many regions, and the
amount of overlap can be further modified by the path through each region and allocation
commands for both the same and other objects. Due to the presence of the max term
in Equation 4.20, modeling the WCET problem as an ILP (a technique also known as
implicit path enumeration [161]) would require adding a large number of auxiliary variables.

75

Therefore, we propose to instead compute the WCET by performing the MOP procedure
using a structure-based approach [161]| that relies on the region tree, as summarized in
Algorithm 2.

Algorithm 2 WCET Analysis

Input: initial program state d with d.t = 0, region information, allocation solution
1: d + ANALYZE REGION(r,0,d)
2: return d.t + max, {d.t,; }

3: function ANALYZE REGION(r,o,d)

4 if r is trivial region then

5 d + STATE TRANSFER(r,0,d)

6: if r calls a region r,, then

7 d < ANALYZE REGION(r,,cUr,d)
8
9

else
: for all paths p; in r do
10: d; < d
11: for all subregions r, along p; do
12: d; + ANALYZE REGION(r,,o,d;)
13: d < JOIN(r,0,{d;})
14: return d

Starting from an initial abstract program state d and region rq, the root of the main
function, the algorithm recursively calls function ANALY ZE REGION to update state
d based on the execution of region r in context o. If r is a trivial region, then function
STATE TRANSFER is used to update d based on the region’s code, including any
allocation command. Note that we need to pass the context o to the function, since as
explained in Section 4.6, the availability and address of objects in the SPM depends on
the context for the region. If the region is a call region, we also need to recursively invoke
ANALYZE REGION on the called region after updating the context. If region r is
not trivial, then we need to recursively analyze all sub-regions along every path in r; this
results in an updated state d; for each path p;. The states are then joined by function
JOIN. If region r has no backedge (i.e., it is not a loop), then the function simply applies
the join operator over all states d;. If the region is a loop, then function JOIN performs
a fixed-point iteration over the abstract state (since such fixed point iteration is a well-
understood technique in DFA [37,137], we do not discuss it further). At the end of the
analysis, we return the total elapsed time plus the maximum timer length, to indicate the

76

need to complete any remaining write back operation.

In the next section, we first provide required preliminaries on the underlying math-
ematical principles of DFA using the MOP approach. We then formally introduce our
abstraction and prove it correct in Section B.0.2. Note that while Algorithm 2 enumerates
regions, in practice the only regions that contain code and must thus be analyzed are trivial
regions, containing one basic block each. Hence, for simplicity and to be consistent with
previous analyses, we discuss the MOP procedure over basic blocks using the refined CFG
G;. Finally, note that while we focused on modeling the behavior of DMA operations, the
abstract state can also model both architectural states, such as the state of the processor
pipeline [137], as well as the value of program variables, which can be used to exclude
invalid paths (flow analysis) and compute loop bounds [94].

We provide a detailed discussion of the WCET analysis in Appendix B.

4.8 Insights into Dynamic Allocation and Prefetching

As discussed in [139], the dynamic allocation without prefetching is more beneficial than
the static allocation only for intermediate SPM sizes which can fit some but not all of the
objects in the SPM. That is, for small sizes of the SPM where none of the objects can fit
in the SPM and for large sizes where most of the objects can fit in the SPM, the benefit of
dynamic and static allocation is similar without prefetching. For object-based approaches
like our method, the range of the SPM sizes that shows benefit for the dynamic allocation
is dependent on the number, sizes and live ranges of the objects in the program. The
significance of dynamic allocation appears when there are multiple objects with distinct
live ranges and the size of the SPM can fit some but not all of them.

Prefetching allows the allocation of objects for which the cost of memory transfers is
larger than the profit of allocation as it can hide all or part of the transfer cost. When
the size of the SPM is large enough to fit most of the objects, prefetching outperforms
the static allocation in choosing the memory transfer points to minimize the transfer cost.
For intermediate SPM sizes where dynamic allocation is useful, prefetching can still offer
additional benefit by hiding the transfer cost when there are opportunities to overlap the
memory transfers.

In this section, we present insights through examples into dynamic allocation and
prefetching.

Let the profit of an allocation be P and the cost to do memory transfers between the
SPM and the main memory be C. Hence, the net profit: P,.; = P — C. We analyze the

7

=
>
<
N

Figure 4.10: Structure of program unit U

(D[w| x @D w| x
©) v|z Q| w| x
)| w| x ©) v|z
©) v|z ©) v|z
| w| x | w| x
©) v|z (o w| x
(| w| x ©) v|z
v|z v|z
Pattern 1 Pattern 2

Figure 4.11: Two usage patterns

factors that affect the profit and the cost of dynamic allocation, mainly the size of the
SPM and the characteristics of the program.

To study these factors, we use a regular program unit U that consists of 3 regions in
sequence such that the top and bottom regions have computations only and the middle
region has memory accesses only as shown in Figure 4.10. The computational region has
an execution time e and the memory region has a usage of all or some of four objects
W, XY and Z. All the objects have size s and profit p when allocated in U where the
object is used. A memory transfer has cost ¢ to prefetch/write-back to/from the SPM.

Assume a program that consists of eight units Uy, ..., Us in sequence. In each unit,
either W, X or Y, Z are used. Figure 4.11 shows two usage patterns of objects W, X, Y
and Z: Pattern 1 and Pattern 2. Each object is used in four program units in the two

78

| w]| x (D| w| x (D| w| x (O w| x

@) Y|z @) v|z @) v|z @©) Y|z

)| w| x O w| x O w| x O wf x

©) Y|z ©) v|z ©) v|z ©) v|z

G| w| x | w| x | w| x Gl w x

©) Y|z ©) v|z ©) v|z (o Y|z

| w| x D w]| x D[w| x D[w| x

Y|z v|z v|z v|z
SPM size=s SPM size = 2s SPM size = 3s SPM size = 4s

Figure 4.12: Allocations for Pattern 1 (shaded object is used in the unit)

patterns. We assume that the object is read/written when used. We next analyze the
static allocation, dynamic allocation and prefetching for these patterns.

4.8.1 Static Allocation

We use static allocation as a reference to assess the efficiency of dynamic allocation. For
static allocation, the allocated object resides in the SPM for the whole program. So, the
profit for the pattern in Figure 4.11 depends only on how many objects can fit in the SPM.
The profit of allocation one object in the program is 4 * p for each object. A cost 2 x ¢ is
needed to transfer the object to/from the SPM at the beginning and end of the program.
The net profit for allocating n objects is P = n* (4% p — 2 % ¢).

4.8.2 Dynamic Allocation

For dynamic allocation, an algorithm is used to determine the program points at which
the content of the SPM changes to maximize the profit.

Figures 4.12, 4.13 depict the allocated objects in each unit to maximize the profit for
different SPM sizes. We show the profit for static and dynamic allocation when varying
the SPM size in Figure 4.14 in terms of p and the cost to achieve this profit in terms of c.
We next analyze the profit, the cost and the optimization space for dynamic allocation.

79

©IRY D[w D] w | w

Q| w Q| w | w| x Qlw

©) Y|z ©) v|z ©) v|z ©) v|z

@) Y|z © Y|z © Y|z @) Y|z

G| w G| w G| w G| w

(o w (ol w (ol w (e)| w

@) Y|z ©) v|z ©) v|z @) v|z

Y|z v|z v|z Y|z
SPMsize = s SPM size = 2s SPM size = 3s SPM size = 4s

Figure 4.13: Allocations for Pattern 2 (shaded object is allocated in the unit)

Allocation Profit

In both usage patterns, the profit for SPM size of s is 8p while static allocation has a profit
of 4p. For sizes of 2s and 3s or larger, dynamic allocation is able to allocate all the objects
in their usage regions achieving profit 16p versus 8p and 12p for static allocation. When
all objects can fit in the SPM at size 4s, dynamic allocation has no preference over the
static allocation.

The efficiency of dynamic allocation stems from the ability of changing the content of
the SPM to evict an object that is not used and fetch another object that will be used, i.e.,
when objects have distinct live ranges. When multiple objects are used simultaneously,
the dynamicity of the program is limited. In the two reference patterns, two objects are
used simultaneously. So, the profit of dynamic allocation is limited when SPM size is s as
only fit one object can be allocated. The profit of dynamic allocation is maximum when
the SPM can fit two objects at least, i.e., all the objects used simultaneously. When the
SPM can fit all the objects with size 4s, there is no preference between dynamic and static
allocation.

Allocation Cost

Dynamic allocation can increase the memory transfer cost compared to static allocation as
it changes the content of the SPM more frequently. The cost depends on the scattering of
the object usage. The usage of an object in Pattern 1 is more scattered than its usage in
Pattern 2. That is, in order to achieve the maximum profit at a certain size, more memory

80

16 { —®- Dynamic Pattern 1 ’.___.__.__._..__.__.__.__...
== Dynamic Pattern 2 I :
14 - "’" Static I i
12 1 | Y RSTTRERLRISIRE g
—~ 101 |
e :
: .l S W—
a :
. | ;
2- I
ok
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
SPM Size (s)
(a) Profit
-@- Dynamic Pattern 1 T' _________ !
309 —¢- Dynamic Pattern 2 1 :
-4~ Static : 1
1 1
25 ! |
1 1
1 1
1 1
20 A ! O !
S 1
c d :
7 S Y SN —— S,
8 151 H . ! !
1 ; | 1
1 I P R ———. !
H .
10 A ' ! I
1(_ | *
. I
+ @eemmmnennnaand
0 T t T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
SPM Size (s)

(b) Cost

Figure 4.14: Profit and cost of the dynamic and static allocations

81

(| w| x | w| x D[w| x

©) Y|z @) v|z @) Y|z

)| w| x G| w] x G| w| x

@ Y|z ©) Y|z ©) Y|z

| w| x G| w| x)| w| x

(o Y|z ©) Y|z (o Y|z

| w| x | w| x | w| x

Y|z Y| 2 Y|z
Allocation 1 Allocation 2 Allocation 3

Figure 4.15: Possible allocations for Pattern 1 with SPM size = s

transfers are needed for Pattern 1 than Pattern 2 even though they have the same profit.
Consider size 2s for instance, the cost of allocation for Pattern 1 is 32¢ compared to 16¢
for Pattern 2. Note that as the size of the SPM increases to fit more objects, the cost of
dynamic allocation decreases. For example, the cost of dynamic allocation for Pattern 1 is
32p for SPM size s and 20c¢ for size 2s for the same profit 16p. Note that in the analyzed
program, we assumed that the object is read/written which induce two memory transfers
to prefetch and write-back the object. If the object is only read, one memory transfer is
required reducing dynamic allocation cost. So, the cost directly depends on the usage of
the object.

Optimization

Due to the added cost for dynamic allocation, the allocation algorithm can ignore some
allocations to reduce the cost and optimize the net profit.

To analyze the impact of the memory transfer cost on the net profit, we focus on pattern
1 and fix the SPM size to s. In Figure 4.15, we show three possible allocations. Allocation
1 achieves profit 8p with cost 16¢ resulting in net profit P!, = 8p— 16c = p*[8 — 16(c/p)].
Allocation 2 achieves profit 5p with cost 4c resulting in net profit P2, = 5p — 4c =

p*[5—4x%(c/p)]. Allocation 3 is similar to static allocation and achieves profit 4p with
cost 2¢ resulting in net profit P23, =4p —2c =px* [4 — 2% (¢/p)].

A dynamic allocation algorithm will explore these possible allocations based on the ratio
¢/p. Figure 4.16 shows how the algorithm would choose the most profitable allocation based
on the net profit. In this figure, we plot PL,, P2, and P2, in terms of p on the y-axis

net’) =~ ne

82

8 -} === Allocation 1
“ —-= Allocation 2
74 \‘ ----- Allocation 3
\‘ Pareto-Frontier
\
6 \
\
‘\
25N \‘
+ N
S A
a4t ‘T'
T | e N,
2 "t-~.._.\
] v
3 \ .Q:....
Vo N
\ o Teee
2 \ N
\ N ey
\ N, Ty
11 \ N
\ N ey,
\ N, Ty
0 T T T T '\I T TI
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
c/p

Figure 4.16: Net profit and pareto-frontier for different allocations

while varying the ratio ¢/p on the x-axis. We highlight the pareto-frontier of the optimal
allocation at each point. For ¢/p < 0.25, it is more profitable to use the allocation 1. For
0.25 < ¢/p < 0.5, the algorithm would choose allocation 2. Finally, static allocation is
more profitable than dynamic allocation for 0.5 < ¢/p < 2. Neither dynamic allocation
nor static allocation is profitable for ¢/p > 2.

To summarize, the cost of allocation is an important factor that affects the efficiency
of dynamic allocation. So, we next discuss how prefetching can enhance the allocation by
hiding the cost of allocation.

4.8.3 Prefetching

We showed that dynamic allocation might not be able to perform better than static alloca-
tion due to limited profit relative to the cost to change the content of the SPM. Prefetching
can improve the dynamic allocation by overlapping the memory transfer with the program
execution, hence reducing the cost.

83

— e/p=0

-=-=- e/p=0.25
—-- e/p=0.>5
----- e/p=1.0

Net Profit (p)

Figure 4.17: Pareto-frontier for e/p = [0,0.25,0.5, 1]

The net profit of the allocations presented in Figure 4.15 are modified to add the
overlap as following: Allocation 1: P}, =p=[8 — 16 % (¢/p — e/p)"], Allocation 2: P2, =
p*[5b—4x(c/p—e/p)T], Allocation 3: P3, =px*[4— (¢/p—3xe/p)" — (c/p—¢e/p)T].
We use the notation 2" to denote max(z,0) as the overlap can reduce the cost till it is
completely hidden, but cannot add profit after that.

For allocation 1 and 2, the object is prefetched at the beginning of the program unit
U and is written-back after the memory region. That is, the cost ¢ to prefetch/write-
back is overlapped with computation e. For allocation 3, prefetching y has more overlap
opportunity as it can start in the beginning of U; while y is first used in Us.

We show the pareto-frontier to maximize the net profit as a variable of ¢/p in Figure 4.17
for e/p values 0, 0.25, 0.5 and 1. For low ¢/p ratio, increasing the overlap percentage
makes it more profitable till it saturates at the maximum possible profit. Prefetching also
increases the range of ¢/p values for which allocation is profitable. That is, the allocation
is profitable when ¢/p < 2 for no overlap e/p = 0 while the allocation is profitable for
c¢/p<4dfore/p=1.

We showed how the possible overlap in terms of the computational part of the program
affects the efficiency of prefetching to hide the allocation cost. For more complex programs,

84

other factors have impact on the possible overlap. We summarize them as following:

e The distance between two uses in sequence of an object. In the example, if z is
allocated in U; and is written back after the memory region of U;, the maximum
overlap for the write-back is limited by the next usage in Uz as the DMA has to
finish before the next usage.

e The address assignment of the allocated objects can limit the possible overlap. In
this example, if X is allocated in U; and Y is allocated in U,, writing back X must
finish before allocating Y to avoid overwriting as X and Y are allocated to the same
space in the SPM.

e The order of DMA operations also impacts the utilization of the possible overlap as
explained in Section 4.6.3.

e Dual-port SPM allows for more overlap as the memory accesses to the SPM can be
overlapped with the DMA transfers. This means that the possible overlap for the
allocation of an object is dependent on the allocation of other objects.

4.9 Evaluation

The evaluation of the prefetching approach for the data SPM allocation is performed using
a simple model of MIPS processor with a 5-stage pipeline and no branch predictor. For
memory instructions, we consider a latency for a word access to main memory of 10 cycles,
1 cycle to SPM and 1 cycle to the SPM controller. For the DMA, we use a similar model
as in [163] such that the latency to initialize the transfer to/from main memory is 10 cycles
and the latency per word is 2 cycles.

We consider three cases: 1) dynamic allocation without prefetching; 2) dynamic alloca-
tion with prefetching; 3) and dynamic allocation with no cost (ideal). Note that the stack
always resides in the SPM as its size becomes small after reducing its depth by the con-
verting stack variables to globals as discussed in Section 4.5 and its access rate is usually
high.

We tested the allocation algorithm for multiple benchmarks from UTDSP [110], and
CHStone [169] suites. We evaluate 8 benchmarks from these suites as described in Table 4.1.
We avoided benchmarks that have the following criteria: 1) benchmarks with system calls,

as we cannot analyze their WCET without the OS code; 2) benchmarks that access only
the stack or have very small sizes for static and local objects.

85

< s . No. of
Benchmark Description Suite Objects
histogram | Enhances a 256-gray-level, 128x128 pixel image by applying | UTDSP 3
global histogram equalization
Ipc Linear predictive coding (LPC) encoder UTDSP 14
gr22 Implementation of the CCITT G.722 ADPCM coding algorithm | UTDSP 18
edge detect | Detects the edges in a 256 gray-level 128 x 128 pixel image UTDSP 6
compress Compresses a 128 x 128 pixel image UTDSP 8
spectral Calculates the power spectral estimate UTDSP 10
gsm Linear predictive coding analysis of global system for mobile | CHStone 10
communications
aes Advanced encryption standard CHStone 6

Table 4.1: Evaluation Benchmarks

As the benchmarks available for real-time systems are usually small kernels, we focus
on the performance of the prefetching algorithm compared to dynamic allocation rather
than the total profit of the allocation. We were not able to apply the algorithm to other
suites with more realistic applications, e.g. SPEC2000, as they have system calls, recursion,
unknown loop bounds, and calls to standard libraries which makes it unsuitable to derive
WCET estimation as part of the framework. We plan to explore other benchmarks in the
future.

We define the ideal case as the dynamic allocation with no cost for memory trans-
fer, i.e., the best case for prefetching where all memory transfers are overlapped with
CPU execution. Figures 4.18 to 4.25 show the ideality factor as a function of the size
of the SPM. The ideality factor is computed as (WCET(dynamic w/o prefetching) —
WCET (dynamic w/ prefetching)) /(W CET (dynamic w/o prefetching) — WCET (ideal)).
The denominator represents the best hypothetical improvement in WCET that prefetching
can achieve relative to the ideal dynamic allocation and the numerator is the improvement
for the prefetching case. The ideality factor is an indication for the performance of the
prefetching approach, with a value of 1 indicating a performance equivalent to the ideal
case. For each benchmark, we vary the range of the SPM sizes starting from the size in
which at least one object can fit in the SPM.

The solving time for the allocation algorithm depends on the number of possible al-
locations, the size of the CFG of the program and the genetic algorithm parameters. In
the experiments, we used a population of 100 chromosomes and termination parameters

= 500,n = 10. The solving time varied between a few seconds to around 15 minutes.
Inserting the allocation commands increases the executable code size by at most 1.2% for
the tested programs.

86

Results Analysis

Benchmark ’histogram’ has two main arrays with size 1024 bytes each. When the size
of the SPM is 1024 bytes, it can fit only one of them and dynamic allocation is able to
arbitrate between the two arrays. Prefetching can overlap part of the cost needed for
dynamic allocation as shown in Figure 4.20. When the SPM size is 2048, both arrays can
fit in the SPM and also prefetching technique can hide the whole memory time required
to transfer the arrays as it can overlap the transfer of one array with the use of the other
array in the SPM.

For benchmark ’g722’ in Figure 4.21, prefetching technique can only overlap part of the
memory transfer as the live range of the used objects are overlapped, i.e., the chance to
transfer one object while using the others is low.

Benchmark ’edge detect’” has three arrays with size 64 Kbyte and a small array with
size 36 bytes. For small SPM size, only the small array can fit and prefetching can overlap
its memory transfer time as shown in Figure 4.25. When the SPM can fit one of the
large arrays, prefetching can overlap around 25% of its memory transfer time. Similarly,
prefetching can overlap around 33% of the transfer time when the SPM can fit two large
arrays. When the SPM can fit all the large arrays, dynamic allocation and prefetching
choose not to allocate all three arrays as the memory transfer cost is larger than the profit.
Hence, the ideal case is much better than the prefetching. This is a typical program where
techniques to allocate portions of the array, e.g. tiling, are important to be able to overcome
the transfer cost issue.

The other benchmarks have more objects and the live ranges are more nested. The
ideality factor changes as the SPM space increases as more objects can fit in the SPM
and hence more memory transfers are introduced. If the space is used to arbitrate for
objects, prefetching does not have enough time to overlap the memory transfers. If the
space allows objects to exist in the SPM simultaneously, prefetching performs better as it
has more opportunity to overlap the memory transfers.

4.10 Summary

In this chapter, we introduced a framework for predictable data SPM prefetching. Our
approach is automated within a compilation flow that is integrated with the LLVM com-
piler. We provided a hardware/software design that includes an SPM controller, an al-
location algorithm and a WCET analysis. The experiments have shown the potential of

87

Ideality Factor

Ideality Factor

1.0

0.8

o
o

I
IS

0.2

0.0

1000 2000 3000 4000
SPM Size (Bytes)

Figure 4.18: Ideality factor (aes)

1.0

0.8

o
o

I
IS

0.2

1000 2000 3000 4000 5000
SPM Size (Bytes)

Figure 4.19: Ideality factor (compress)

38

1.0

0.8

o
o

Ideality Factor

I
IS

0.2

0.0

1000 1200 1400 1600 1800
SPM Size (Bytes)

Figure 4.20: Ideality factor (histogram)

2000

1.0

0.8

o
o

Ideality Factor

I
IS

0.2

0.0

500 1000 1500 2000
SPM Size (Bytes)

Figure 4.21: Ideality factor (g722)

89

Ideality Factor

1.0

0.8

o
o

I
IS

0.2

1 L

0.0

250 500 750 1000 1250 1500 1750 2000
SPM Size (Bytes)

Figure 4.22: Ideality factor (spectral)

1.0

0.8

Ideality Factor
o
o

I
IS

0.2

0.0

2000 4000 6000 8000
SPM Size (Bytes)

Figure 4.23: Ideality factor (Ipc)

90

1.0

0.8

o
o

Ideality Factor

I
IS

0.2

200 400 600 1000 1200

800
SPM Size (Bytes)

Figure 4.24: Ideality factor (gsm)

1400

1.0

0.8

Ideality Factor
o
o

I
IS

0.2

0.0

25000 50000 75000 100000 125000 150000 175000
SPM Size (Bytes)

Figure 4.25: Ideality factor (edge detect)

91

200000

our prefetching technique to provide a predictable mechanism to hide the latency of main
memory transfers and efficiently manage the data SPM with low overhead. Our frame-
work can handle pointer-based memory accesses for static, stack and dynamically allocated
objects.

The performance of the allocation algorithm can be enhanced to tackle large objects
and loops using transformations like tiling and data pipelining. We plan to integrate these
mechanisms in our framework in future work.

92

Part 11

The Case of Multi-Tasking Scheduling

93

Chapter 5

Multi-Segment Streaming using the
3-Phase Execution Model

In Chapter 1, we discussed the challenges of managing shared resources in Multi-Processor
Systems-on-a-Chip (MPSoCs). The shared memory in such systems can incur a very high
latency due to the contention for memory access among multiple processors [66, 83, 141].
Hence, there is a significant interest in the real-time community in controlling the pattern of
accesses in memory to avoid worst-case scenarios. PRedictable Execution Model (PREM)
first proposed in |1 1] attempts to solve this issue by dividing the execution of each software
task in two different parts: memory phases where the data and instructions required by
the task are loaded from the main memory into the local memory (cache or ScratchPad
Memory (SPM)), and computation phases where a processor executes the task based on
the content of local memory only. This approach avoids the memory contention as the task
does not need to access the main memory during its computation phase; and hence other
processors are free to access the memory without contention. The first work on PREM
focused on avoiding the memory contention, but did not hide the latency of the memory
transfers. This is achieved by scheduling the memory and computation phases of the tasks
such that the memory transfers are performed by the processor. To improve the efficiency
of the system, several works proposed using a dedicated Direct Memory Access (DMA) unit
to perform the memory transfers efficiently and to hide the memory phase latency. The
3-phase model [152] divided the task execution into three phases, acquisition-execution-
replication, by loading the SPM during the acquisition phase, executing the task, then
unloading the modified data to the main memory in the replication phase. The model
is able to hide the memory latency by overlapping the DMA transfer of a task with the
execution of another task, which significantly improves the system schedulability |152].

94

To apply the 3-phase model, the program code and data have to fit in the available
SPM. However, many applications require memory larger than the SPM size. In this case,
the program has to be divided into a sequence of multiple segments that execute according
to the 3-phase model. Compiling a program to execute based on the 3-phase model is a
key problem that has received significantly less attention despite the numerous contention-
less approaches based on the 3-phase model that have been proposed in the literature. In
general, the following steps are required to compile a program according to the 3-phase
model: (1) determine the data used by the program; (2) add instructions to create memory
phases; (3) and possibly segment the program into multiple parts, so that the data and
code of each part can fit in local memory. Due to the complexities inherent in each step,
an automated tool is required to remove the burden from the programmer. Our goal is to
utilize the framework introduced in Chapter 2 to analyze a set of tasks and generate pro-
gram transformations based on a set of constraints to convert each task into a conditional
sequence of 3-phase segments. However, before we delve into the segmentation process in
Chapter 6, we extend the 3-phase model to our new multi-segment conditional streaming
model. The new model addresses two limitations of the 3-phase model: 1) the previous
works considered a program with a single execution path comprising a set of segments ex-
ecuting in sequence; while many applications have multiple execution paths, 2) the model
did not allow streaming multiple segments of the same task, i.e. two segments of the same
task cannot execute back-to-back; which limits the overlap of the memory phases and the
execution phases only between different tasks. We address the first limitation by extending
the model to consider a conditional Directed Acyclic Graph (DAG) representation, which
can represent a program with multiple execution paths. For the second limitation, we
introduce the multi-segment streaming model which allows executing two segments of the
same task back-to-back by loading the code and data required by the next segment while
executing the current segment.

In this chapter, we start with a review of the background and related work of the 3-phase
model in Section 5.1. Then, we introduce the new multi-segment conditional streaming
model in Section 5.2. Section 5.3 presents an Operating System (OS)-level programming
interface for the management of the SPM along with a software implementation. After
that, we derive a sufficient schedulability analysis according to the proposed model for
two DMA models, fixed-size in Section 5.4 and variable-size in Section 5.5. Finally, we
summarize the work in this chapter in Section 5.6.

95

5.1 Background and Related Work

In this section, we first present required background on the 3-phase model and discuss
related work on scheduling of 3-phase tasks on multiprocessor. We then discuss existing
limitations of the model.

We consider a MPSoC platform comprising a set of possibly heterogeneous proces-
sors L. Each processor has a fast private local memory in the form of a last level cache or
ScratchPad Memory (SPM); all processors share the same main memory. As discussed in
the chapter introduction, the 3-phase model allows the creation of contentionless memory
schedule. While the seminal work in [I14] first proposed to split the execution of each
application into a memory and a computation phase, the approach has been refined in
successive works [7, 152] into three phases. Here, two memory phases are considered: an
acquisition (or load) phase that copies data and instructions from main memory into local
memory, and a replication (or unload) phase that copies modified data back to main mem-
ory. While the computation phase is always executed on a processor, memory phases can
be either executed on the processor itself [6,7,18,28,45 99,101, 114,123,166, 167], or on an-
other hardware component [52,53], such as a programmable DMA module [5,22, 136, 152].
In all cases, Memory phases are scheduled such that a single memory phase is executed at
any one time in the entire system.

When the data used by a program is small and deterministic, the task can comprise
a single sequence of load-computation-unload phases. However, the code and data of the
program might be too large to fit in one partition of local memory. Second, it might be
difficult to predict the data accessed by a job before it starts executing, as data accesses
can be dependent on program inputs. To address such issue, the works in [28,99, 1141, 152]
split a task into a sequence of 3-phase segments, where each segment has its own memory
and computation phases and is executed non-preemptively.

5.1.1 Memory and Processor Schedule

The authors of [111] were initially concerned with protecting task execution from /0 DMA
transfers, such that memory phases of a general purpose processor were assigned higher
priority than I/O transfers. The approach in [28] assigns higher priority to memory phases
executed by a GPU. Other algorithms employ a round-robin [52] or TDMA [136, 152, 166]

LA processor can either be a general purpose core, or in the case of SIMD machine such as a GPU, a
cluster of cores.

96

schedule among processors, or a static |7, 18,15,99,123] or priority-based [5, 0, 101, 167]
schedule among tasks.

1 1
Task under
Analysis S1 S3

Other
Tasks

I
I
5 |
T
P s | $ & L st 8 80 4 ,

ova [T TR T RITH T TT TR MR AT L
1 1 1 1 1

I:l . Segment using III Load III Unload TDMA Slot of Unused
Partition A/ B Partition A/ B Partition A/ B other Core(s) TDMA Slot

S

Figure 5.1: Example: TDMA memory schedule with M = 2 cores.

The memory scheduling algorithm is different among related work, based on their spe-
cific goals and system assumptions. Approaches targeted at multitasking systems optimize
task execution by overlapping the computation of the current job with the memory phase
for the next job to be scheduled on that processor. In essence, one can pipeline computation
and memory phases using a double-buffering technique [52,53,136,152], at the cost of halv-
ing the available local memory space. As an example, we detail the approach in [136,152],
which has been designed to schedule a set of fixed-priority, partitioned sporadic tasks, and
fully implemented on an automotive COTS platform. The local memory of each processor
is divided into two equal size partitions. Memory phases are executed by a dedicated DMA
component using a TDMA memory schedule with fixed time slots; the size of each slot is
sufficient to either load or unload the entirety of one partition. Figure 5.1 shows an ex-
ample schedule on one processor; the task under analysis (u.a.) consists of three segments
s!, 5% and s%, while segments s2, s* and s° belong to other tasks. The schedule consists of
a sequence of scheduling intervals. Segments are scheduled non-preemptively. During each
interval, a segment of a job (ex: s? in interval (2)) computes using data and instruction in
one partition. At the same time, the DMA unloads the content of the previous segment
(s') and loads the next segment (s®) in the other partition. Note that the length of each
scheduling interval is the maximum of the computation time for the corresponding seg-
ment, and the time required for the load and unload phases. In the figure, interval (3) is
bounded by the memory time, while all other intervals are bounded by the computation
time of the segment.

A downside of the described approach is that a high priority job can suffer blocking by

97

a low priority job due to the non-preemptive interval schedule. First of all, since scheduling
decisions are only made at the beginning of scheduling intervals, the first segment of a task
can be blocked by up to two segments of lower priority tasks, as we will formally illustrate
in Sections 5.4 and 5.5. To avoid blocking on the first segment, the works in [101, 166, 167]
adopt preemptive scheduling, but this requires a number of local memory partitions equal
to the number of tasks: otherwise, a memory phase could be “wasted” by loading a job that
is immediately preempted by a higher priority one. Given that local memory is typically
a limited resource, we will not consider such fully-preemptive approaches. Second, note
that two segments of the same task cannot run back-to-back: in general, the data required
by a segment cannot be determined until the previous segment completes; furthermore,
to load a segment we might need to first evict some data and code of the previous one.
For both reasons, existing approaches do not allow the computation phase of a segment
and the memory phase of the next segment of the same task to be executed in parallel.
To avoid idling the processor while a task loads its next segment, at least one segment of
another task is instead scheduled, but this segment could belong to a lower priority task
if no higher priority jobs are active at that moment. If a task comprises a large number of
segments, such inter-segment blocking could greatly affect the response time of the task.
Therefore, in Section 5.2 we introduce a new, streaming scheduling model where segments
of the same task are allowed to run back-to-back whenever the program code allows it -
that is, the data used by a segment can be determined before the previous segment starts
and both segments fit in SPM.

Finally, we discuss the length of DMA operations. In the rest of this dissertation, we
will consider two DMA models: fixed-size and variable-size. Consider first the fized-size
DMA approach detailed in Figure 5.1: let M be the number of cores, and o the size
of each TDMA slot. Then as proven in [1306], the worst-case memory time is equal to
A = o - (2M + 1): as again shown in interval (3), the previous interval can finish right
after the beginning of a TDMA slot assigned to the core under analysis, forcing that slot
to be wasted. To abstract from the details of the memory schedule, when considering the
fixed-size model, we will simply assume a given value of A as the fixed memory time for
any interval. Hence, under such a model the length of an interval is the maximum of A
and the computation time of the job in that interval. The variable-time model is discussed
in [152]. The scheduling rules are the same as the ones detailed above for the fixed-size
case, except that the memory time for each interval is proportional to the amount of time
required to unload / load required data; in essence, if the data used by a task is smaller
than the size of a partition, then the memory time can be reduced compared to the fixed-
size case. We formalize the computation of the memory time based on the size of DMA
operations in Section 5.2.2. While the variable-size model can result in more efficient usage

98

of the available DMA bandwidth, it also leads to a more complex schedulability analysis,
as we discuss in Section 5.5.

5.1.2 Program Transformation

We next discuss how a program can be transformed to be PREM-compliant. Most single-
segment works do not require program transformation; instead, the entire memory region
allocated by the OS to the program is loaded in local memory [18,22,136,152]. The seminal
work in [114] introduces a set of macros, which the programmer could add to the program
to both segment it, and mark data structures to be loaded / unloaded. Our experience
with programs of even medium complexity is that this places an undue burden on the
programmer, and it is likely to lead to a sub-optimal transformation. The authors of [52,53]
discuss a compiler-based approach to transform a GPU kernel. The approach focuses on
generating code for the memory phase. On the other hand, our focus in this paper is how
to automate data usage analysis and task segmentation for sequential programs running on
a general purpose processor. Light-PREM [97] uses run-time profiling to detect memory
areas used by a program to load during memory phases. We find the approach suitable
for programs with highly dynamic data structures, but since it is based on profiling rather
than static program analysis, it cannot guarantee worst-case bounds. Also, it does not
discuss how to segment a task.

The closest related work is [99], where the authors introduce an automated task com-
pilation and segmentation tool. The approach is similar to our work in that is relies on the
LLVM compiler infrastructure, and employs loop splitting and tiling [6] to break loops
that are too large to fit in local memory. However, the paper is focused on the case of
a parallel, single-task system, and the tool employs a “greedy” segmenting approach that
results in the longest possible segments. As we will show in Section 6.4, such a greedy ap-
proach is not suitable for multi-tasking systems where blocking time due to non-preemptive
segments of lower priority tasks is a concern.

Finally, all related work assumes that a task comprises a single segment or a fixed
sequence of segments. However, a program can have multiple execution paths whereas
it accesses different data along each path, and must be PREM-compliant along all valid
paths. Therefore, in Section 5.2.3 we introduce a new conditional PREM model in which
the fixed segment sequence is replaced by a Directed Acyclic Graph (DAG) of segments. In
Chapter 6 we will then show how to compile the program to a set of conditional segments.

99

5.2 Multi-Segment Conditional Streaming Model

We now introduce our new multi-segment conditional streaming model. In particular, we
first detail the scheduling rules in Section 5.2.1; then we clarify our assumptions on the
hardware platform in Section 5.2.2; and finally we formalize the task model in Section 5.2.3.
Compared to previous approaches discussed in Section 5.1, we extend existing work on the
3-phase model in two directions: 1) instead of assuming a fixed sequence of segments for
each task, we consider conditional execution where at run-time, the sequence of segments
for a job depends on the execution path through the program; 2) we allow streaming the
data of the next segment of a task while its previous segment is executing, such that two
segments of the same task can be executed back-to-back.

5.2.1 Streaming Execution Model

We consider a 3-phase task model in which a task is executed as a set of segments. The
code and data of each segment are loaded into the SPM before the segment starts execution
and the segment is executed only from the local memory without any access to the main
memory. A segment can be either terminal or streaming as we define next:

e Streaming Segment: a segment is streaming if data swapping can be done during
the current segment such that the data used by the previous segment of the same
task is swapped-out to the main memory -if needed- and the data required by the
next segment is swapped-in the SPM -if needed-. Note that data shared between
the current segment and the next segment, or between the current segment and the
previous segment, is not swapped. For example, if array a and array b are loaded
in the SPM and used by the current segment, and the next segment requires array
a and array c, then only array c is swapped-in during the execution of the current
segment. In details, the swapped-out data comprises all data used by the previous
segment but not the current one, while the swapped-in data comprises all data used
by the next segment but not the current one.

o Terminal Segment: a segment is terminal if it cannot be streamed into the next
segment of the same task. That is, the code and data required by the next segment
cannot be loaded during the current segment either due to data dependency or limited
space in the SPM or a constraint imposed by the compiler, e.g. a control dependency
where the next segment is only known at the end of the current segment. Note that
the first and the last segments of a task are always terminal segments.

100

Intervals !0) @
i
k und I
Task under
Analysis S1
Other !
Tasks !
sl |52 st §2 s 350, s> % 895 08 & s s
o [l COi i i i i
y N A A
I:I-Terminal Segment y - y 7 Swap-in Buffer
using Partition A / B Load Partition A/ B 4

to Partition A/ B

777 Streaming Segment . IZV/ Swap-out Buffer
I:I using Partition A/ B . Unload Partition A/ B| |/4 éé from Partition A / B

®©

L]
W

L]
=

L]
18}

Figure 5.2: Streaming Execution Model

Figure 5.2 illustrates an example schedule for a streaming task under analysis. In the
figure, we have a schedule for several tasks running on one processor and a local SPM
with two partitions: A and B. The task under analysis has six segments: s' and s” are
terminal segments while s3, s%, s and s® are streaming segments. Segments s2, 5% and s7
are terminal and belong to other tasks. Like in the example in Figure 5.1, the schedule
consists of a sequence of scheduling intervals; in each scheduling interval, a segment can
be executed in parallel with DMA operations.

The schedule in Intervals (0), (1) and (2) follows the same scheme as in previous work
on the 3-phase model, as discussed in Section 5.1.1, since it involves terminal segments.
Assume that initially no task is ready, both SPM partitions are empty, and that the task
under analysis (u.a) arrives at the beginning of Interval (0). Then the scheduler first loads
s in partition A, so that it can be executed in Interval (1) after the load operation finishes.
Since s' is terminal, it cannot be followed by a segment of the task u.a.; instead, assuming
that a segment s? of another task is ready, s? is loaded in partition B during Interval (1) to
be executed in Interval (2). As s® is the first streaming segment after a terminal segment,
it is completely loaded in partition A during Interval (2) after s' is unloaded. Intervals
3), @), and (5) depict the case of multiple streaming segments executed in sequence. All
such intervals use the same partition A: first, s* is swapped-in partition A during Interval
(3) and executed in Interval (4). Then, s° is swapped-in during Interval (4) in exchange
for swapping-out 5%, then executed in Interval (5). Although s® can be streamed into s,
we assume that the stream is preempted by segments s® and s” from other tasks with

101

higher priority than the task u.a. To execute s% during Interval (6), s> must be unload
and s% loaded in partition B during Interval (5), while the preempted streaming segment
s executes. Since s” must then be executed in partition A, s° is also completely unloaded
from partition A during Interval (6). As the task u.a. can resume execution in Interval (8),
s% is loaded to partition B in Interval (7). Due to the preemption of the stream, all the
code and data for s® has to loaded. Also note that due to preemption, in this case the task
u.a. resumes its execution from the other partition. While s® executes in Interval (8), we
swap-in the data of s?, which terminates both the stream and the task. Note that we do
not need to swap-out the previous segment s° of the task u.a., since it has been unloaded
in Interval (6). Finally, assuming that no other task is ready, s7 is unloaded and partition

A becomes empty in Interval (9), while s? is unloaded and partition B becomes empty in

Interval .

We can now summarize the scheduling rules for our model, where 7(s’) denotes the
task to whom segment s’ belongs.

1. The schedule comprises a sequence of scheduling intervals. During each Interval;,
at most one segment s’ is executed in parallel with at most one memory operation
(unload and load, or only load, or only unload, or swap-out and swap-in, or only swap-
in). The interval ends when both the segment execution (if any) and the memory
operation (if any) have completed.

2. If a segment s° executes during Interval; -i.e. there is a loaded partition-, or if there is
a ready task at the end of Interval;, then Interval,,; starts immediately after Interval;
ends. Otherwise, Interval;,; starts when a task becomes ready.

3. Given two segments s’ and s'™! executed in successive scheduling intervals, if 7(s?) =
7(s"1) then s’ must be a streaming segment.

4. Scheduling decisions are only taken at the beginning of a scheduling interval; namely,
at the beginning of Interval;, the scheduler decides which segment s (if any is ready
and it does not violate Rule 3) to execute in the following Interval; .

5. Consider memory operations performed during Interval;, there are two cases:

e If there is a segment s’ executing in Interval;, a segment s'*! to be executed in
Interval; 1, and 7(s') = 7(s"*1); then: if Interval;_; executed segment s'~! and
7(s71) = 7(s%), s is swapped-out and segment s"t! is swapped-in; otherwise
only segment s'™! is swapped-in.

102

e If no segment is executed in Interval;, or no segment is scheduled to be executed
in Interval;,, or there is a segment s° executing in Interval;, a segment s**! to
be executed in Interval;;, and 7(s') # 7(s'™!); then: if there exists a segment
sP that was executed but not unloaded, then s” is unloaded; and if Interval;
will execute segment s*1, then s**! is loaded.

We now make the following observations based on the rules. First, Rule 4 does not
specify how to choose the next scheduled segment; to construct a schedulability analysis,
we will assume a fixed per-task priority assignment. Second, Rule 5 specifies that swap-
in/swap-out operations are performed for the current task in the same partition if the
next segment belongs to the same task, otherwise the previous segment that has not been
unloaded (if any) is unloaded and the next segment (if any) is loaded. Note that a previous
segment could have been executed multiple intervals before the current interval, but has
not been unloaded. This is the streaming case where the swap-in/swap-out operations are
scheduled for the current executing task until the stream is preempted. An example of this
case is segment s? in Figure 5.2 which is unloaded in Interval (5).

5.2.2 Platform Assumptions

We assume that the model is executed on a MPSoC platform comprising multiple proces-
sors. Tasks are partitioned to processors. A DMA component is used to execute memory
phases and shared among all processors. To ensure that task execution on each processor is
independent of the other processors, we further assume a TDMA arbitration for the DMA
component. As discussed in Section 5.1.1, we consider two timing models for the DMA.
Under the fixed-size DMA model, the time required to complete all memory phases in each
scheduling interval is constant and equal to A. Such model has been implemented, as an
example, on a Freescale MPC5777M SoC platform in [136].

Under the variable-size DMA model, the time depends on the actual length of memory
phases (load / unload / swap-in and out) performed during the interval. As an example,
the implemented tri-core Ultrascale+ platform in [57] employs a fine-grained TDMA arbi-
tration among the cores. Consider M cores, and assume each core is assigned a TDMA slot
of size o, with ¥ = Zj\il o; the length of the TDMA round. Further assume an overhead
over for switching between slots. Let ¢ denote the time required to execute the memory
phases in a given interval on core j, assuming that the DMA services core j only. Then
the total memory time for that interval is bounded by:

[;] Y+ (5.1)

oj — over

103

a number of slots equal to [t/(o; — over)] is required to complete the DMA phases, the
core receives one slot every X, and the first slot can be wasted if the memory phase arrives
just after its beginning.

To abstract from the complexities of the underlying TDMA implementation, in the rest
of the dissertation we will assume that the variable-time model is characterized by a rate
parameter p and a latency parameter d, such that the memory time in an interval can
be bounded as: p -t + 6. Here, the rate parameter represents the slowdown due to the
need to arbitrate between M cores, while the latency parameter represents the overhead
introduced by the granularity of the TDMA schedule. Note that from Equation 5.2 we
obtain:

t by
[N, [R 52)

o; —over o; — over

which means that for the scheme in [57], setting p = £/(0; — over) and 6 = X + o; results
in a valid upper bound on the memory time.

5.2.3 Task Model

We consider a set of sporadic tasks ' = {7, ..., 7x} executed on a given processor. We use
T; to denote the period (or minimum inter-arrival time) of task 7;, and D; for its relative
deadline. We assume constrained deadline: D; < T;. 7; is further characterized by a DAG
of segments G; = (5;, E;), where S; is a set of nodes representing segments, and FE; is a
set of edges representing precedence constraints between segments. We assume that the
set S; contains unique source and sink segments s*9™", s"¢ as we consider programs with
a single entry and exit point. A job of 7; that arrives at time ¢ is feasible if s**¢ completes
execution no later than ¢t + D; 2.

A segment can be either terminal or streaming. We say that segment s’/ streams into
segment s* if the content of the memory required by s* can be loaded in the SPM during
the execution of s7. 9" "4 are terminal segments. Any other segment s’ is a streaming
segment if s7 has a unique immediate successor segment s* that it streams into; otherwise,

2Note that some previous related work [136] required the unload phase of s"¢, rather than its execution

phase, to complete by ¢ + D;. The use of either definition depends on platforms-related assumptions, i.e.,
whether output operations are performed during the execution of the task, or during the unload phase.
We use the definition based on the execution phase of the last segment as it leads to a simpler analysis,
and the main objective of this dissertation is to show how to compile and segment the tasks. However,
we point out that the analysis could be modified to incorporate the assumption in [136]. In particular, if
no streaming is employed, the unload phase of s¢"¢ must be performed at the beginning of the following
segment.

104

s/ is a terminal segment. We further say that a segment s’ is initial if its immediate
predecessor(s) is terminal, or if the segment is s**" (note that by definition, if s/ has
multiple immediate predecessors, they must all be terminal). Note that an initial segment
can either be terminal or streaming.

We use s.c to denote the worst-case computation time of a segment s (including context-
switch overheads). For the variable-size DMA model, we further use s.ld and s.ul to denote
the time of the load and unload phases for s; furthermore if s is a streaming segment, we use
s.st to denote the time for the swap-in/out phase(s) executed in parallel with s. Note that
based on the DMA model in Section 5.2.2, this means that if a streaming phase of length
s.st is performed in a scheduling interval, the memory time for that interval is § + p - s.st;
while if an unload phase for segment s’ is performed together with a load phase for another
segment (possibly of a different task) s*, the memory time is § + p - (s7.1d + s*.ul).

For the fixed-size model, the memory time for every scheduling interval is equal to A.
Hence, we define the length s.l of segment s as the maximum length of any scheduling
interval for the segment, that is, max(s.c, A). For the variable-size model, we similarly
define the length s.l of a streaming segment to be equal to max(s.c,d + p - s.st); while we
define the length s.l of a terminal segment to be simply equal to s.c, as the memory time
depends on the executed memory phases. We use p to denote a DAG path, that is, an
ordered sequence of segments; p.S is the number of segments in the path, p.I is the number
of terminal segments, p.L is the sum of the lengths of all segments, and p.end the length
of the last segment. We write s € p to mean that segment s belongs to path p, and p € G;
to mean that p is a path of G;. We say that a path is maximal if its first segment is s*¢9™
and its last segment is s*¢. To avoid confusion, we use uppercase letters (P) to denote
maximal paths. Note that by definition P.end = s"¢.[. Finally, we will use the notation
p = {p1,...,pn} to indicate that path p can be obtained as a sequence of n (sub-)paths.

5.3 OS Programming Interface

We propose an OS-level Application Programming Interface (API) to be inserted in the
code of a task to partition it into segments and to communicate the changes in the SPM
content to the OS. The API can be inserted manually or automatically during the program
compilation as we propose in this work. The API is used for allocation and de-allocation
of objects and buffers. A buffer is used for segment streaming such that the content of the
buffer can be swapped with other data during execution. We refer to other SPM allocations
that are not buffers as objects.

105

An object /buffer can be a 1D or a 2D memory block. A 1D object/buffer represents a
1D (sub-)array or any linear structure such that all its content is contiguous in the main
memory. Hence, a 1D object/buffer has a single length size. A 2D object/buffer represents
a sub-array of a 2D array in the main memory. We refer to the width of the source 2D
array in the main memory as src_pitch and the width of the destination 2D array in the
SPM as dst_pitch. For the transfer of a 2D object/buffer between main memory and the
SPM, we use parameters height and width, which represent the number of rows and the
number of bytes per row to be copied. Each object/buffer has a usage attribute attr that
indicates if the data in the object/buffer is write-only, read-only, or read-write.

Objects are allocated/deallocated in terminal segments only using allocate/allo
cate2d/deallocate functions. Buffers are allocated before the first streaming segment
using allocate buffer and deallocated using deallocate buffer at the end of the seg-
ment stream. The content of a buffer can be modified during the execution of streaming
segments using swap_buffer and swap2d_buffer functions. A swap implies that the cur-
rent data will not be needed by the next segment, and that new data should be loaded in
the buffer before the next-to-next segment of the task; note that the swap-out and swap-in
operations defined in Section 5.2 correspond to reading from / writing to main memory
the content of buffers.

The wait_for_transfers function informs the OS that the execution of the current
segment has finished. If there are still pending memory transfers in the current interval,
the OS suspends execution until all transfers have completed. Then, a new interval starts
according to Rule 2, and the scheduler is invoked according to Rule 4. Finally, the dis
patch function informs the OS that the buffers allocated so far will be needed by the
next segment. This function is only used in the terminal segment that precedes a segment
stream since all buffers are allocated in this segment.

The following presents a detailed description of each function in the API:

e int allocate(uint64 t *src, uint64 t *dst, int size, int attr):
— Description: create SPM block at dst and copy size bytes from src to dst
if attr is read-only or read-write.

— Parameters: src— address in main memory, dst— address in SPM, size—
size, attr— object usage (|0] read-only, [1] write-only, [2] read-write).

— Return: the ID of the SPM object.

e int allocate2d(uint64_t *src, uint64_t *dst, int width, int height, int
src_pitch, int dst_pitch, int attr):

106

— Description: create 2D SPM block with size dst_pitch*height at dst and
copy a 2D-block with width width bytes and height height bytes src to dst if
attr is read-only or read-write.

— Parameters: src— address in main memory, dst— address in SPM, width—
width of the transfer, height— of the transfer, src_pitch— pitch of the source,
dst_pitch— pitch of the destination, attr— object usage (|0] read-only, [1]
write-only, [2] read-write).

— Return: the ID of the SPM object.
void deallocate(int obj_id):
— Description: release SPM object with ID obj_id.
— Parameters: obj_id— object ID.
int allocate buffer(uint64 t *dst, int size, int attr):

— Description: allocate SPM buffer at dst with size size bytes.
— Parameters: dst— address in SPM, size— size,
— Return: the ID of the SPM buffer.

void swap_buffer(int buf_id, uint64_t *src, int size):

— Description: swap the data in SPM buffer with ID buf_id by writing the
current data if required and fetching the new data from src if required.
— Parameters: buf id— buffer ID, src— address in main memory, size— size,

void swap2d_buffer(int buf_id, uint64_t *src, int width, int height, int
src_pitch, int dst_pitch):

— Description: swap the data in SPM buffer with ID buf_id by writing the
current data if required and fetching the new data from src if required (both
source and destination are 2D arrays).

— Parameters: buf_id— buffer ID, src— address in main memory, width—
width of the transfer, height— of the transfer, src_pitch— pitch of the source,
dst_pitch— pitch of the destination.

e void deallocate buffer(int buf_id):

— Description: deallocate buffer with ID buf_id.

107

— Parameters: buf_id— buffer ID.
e void wait():

— Description: wait for pending memory transfers.
e void dispatch(void):

— Description: force all buffer DMA requsts to move from waiting queue to
dispatch queue.

5.3.1 API Implementation

Table 5.1: Data fields of an entry in the Three-Phase Table (3PT) and Streaming Table
(ST).

] Data Structure Field ‘ Description ‘
usage Usage of the object/buffer (read-only, write-only, or read-write).
size Size for 1D object /buffer.
width, helght’. stc_piteh, Information for a 2D object/buffer.
dst _pitch
src_ ptr Pointer to the address in main memory.
dst_ptr Pointer to the SPM address.

We now discuss how one can implement the API in a Real-time Operation System
(RTOS) and show how it works with an example. The OS tracks the objects and buffers
used by each task using two tables, Three-Phase Table (3PT) and Streaming Table (ST).
An entry in the 3PT or ST includes the fields in Table 5.1. An entry is created in the 3PT
when either allocate or allocate?2d is called and the entry ID is returned. When deallo
cate is called with the entry ID, the entry is removed from the table. Similarly, an entry
is created in the ST using allocate_buffer and is removed using deallocate_buffer.

The memory transfers of a task are managed by the OS using three different queues:
Three-Phase Queue (3P(Q)) for objects and Streaming Wait Queue (SWQ)/Streaming Dis-
patch Queue (SDQ) for buffers. Each queue contains a list of DMA transfer requests:
either reading an object/buffer from main memory to the SPM, or writing back an objec-
t/buffer from the SPM to main memory. Allocating a read-only/read-write object adds
a read request to the 3PQ, and deallocating a write-only /read-write object adds a write
request to the 3PQ. Swapping a buffer adds a write request for the current data to the

108

SWQ if the buffer is write-only/read-write, and a read request for the new data if the
buffer is read-only/read-write. Note that the first swap of a buffer does not add a write
request as the buffer is empty. Deallocating a buffer adds a write request for the current
data to the SWQ. Using two queues for the streaming buffers is necessary: if a single queue
is used, the current segment may call swap_buffer/swap2d_buffer/deallocate_buffer
and hence add new read /write requests to the queue while the requests for the next segment,
are processed. Using two queues avoids this issue by distinguishing between the requests
for the next segment, which are processed during the current segment from the SDQ, and
requests added to the SWQ by the buffer swap/deallocation. Moving requests from the
SWQ to the SDQ is done by the scheduler, with the exception of the explicit usage of
dispatch function before the segment stream starts.

Note that the OS keeps separate tables and queues for each task as attributes of the
Task Control Block (TCB). Since the data required for the first segment in the task has to
be allocated in the SPM before executing the segment, the TCB also contains the allocation
state for the first segment, which the OS copies in the 3PT when a new job of the task
starts.

Besides allocation/swapping/deallocation, DMA requests are managed based on the
scheduling decision at the beginning of each interval. Algorithm 3 shows the steps taken
by the scheduler for a given processor at the beginning of Interval;. We use the notation
7;/Ti11 for tasks scheduled in Interval;/ Interval;, ;. Task 7(s')/7(s"™) is assigned to 7; /7i 41
if s'/s"! is scheduled in the interval, otherwise 7;/7;,; is empty. We also use 7, for the
task of an executed segment sP that has not been unloaded. If s does not exist, then 7, is
empty. The scheduler starts by determining the segment s'*! to be executed in Interval;,;
(Rule 4). Then, the scheduler dispatches buffer DMA requests (if any) from SWQ to SDQ
of task 7; if not empty. After that, it determines the memory operations to be carried out
in Interval; based on Rule 5. If 7; is not empty and 7; = 7,41 -i.e. s; is streaming into s;,1-,
then a swap-out/swap-in operation is scheduled. In this case, the write/read requests for
the previous/next segment are processed by sending the write requests from the SDQ to
the DMA, then sending the read requests from the SDQ to the DMA. If 7; is empty or
T; # Tiz1 -1.e. §; is not streaming into s;,1-, then load and unload operations are scheduled.
For an unload operation, write requests for modified (write-only or read-write) objects
in the 3PT of 7(s”) are added to its 3PQ. Note that if an object is in 3PT, this means
that it has not been deallocated yet and thus needs to be reloaded when the task resumes
execution. Therefore, read requests are also added to 3PQ for all objects in 3PT 3. Then,
write requests in the 3PT are sent to the DMA. For buffers, all write requests in SDQ

3Even if the object is write-only, as the object might have been modified before it is written to main
memory.

109

and SWQ are sent to the DMA. Note that it is necessary to process the write requests in
SWQ even though they have not dispatched to SDQ as all the modified data has to been
written back to main memory. For a load operation, if 7;,; has not started yet, the initial
state of the 3PT is copied from the TCB of 7;,; and read requests are added to the 3PQ
for read-only /read-write objects. Then, all read requests in 3PQ and SDQ are sent to the
DMA. Finally, the task 7, is updated to 7; if no segment is scheduled in Interval; or if
T; # Tiz1, i.e. ' is not streaming into s'*!. That is, a segment that has executed, but has
not been unloaded (if any) is unloaded during Interval; in that case according to Rule 5.
Then, s* will be the last executed segment that has not been unloaded and hence 7, = 7;
if s* exists, or 7, = 7; = 0 if no segment is executed in Interval;.

We assume that the RTOS has access to a platform-specific DMA driver, which it uses to
send requests to the DMA by writing DMA descriptors (or a pointer to each descriptor) to a
shared memory location. TDMA arbitration among processors can either be implemented
by the DMA hardware through multiple channels, or in software by the driver. For 2D
transfers, the data to be read/written is not contiguous; however, standard scatter-gather
DMA capability can be employed to transfer the object /buffer in a single DMA transaction.
Note that when the DMA finishes transferring a request, it must generate an interrupt to
inform the OS to remove the request from the appropriate queue (either 3PQ, SDQ or
SWQ for 7(st71)/7(s1)).

Example

We describe how the schedule from Figure 5.2 is accomplished using the proposed API
and implementation with an example program. Figure 5.3a shows the source code of his
togram function that uses two arrays h and a. It starts with an initialization of all elements
of h, then it iterates over elements of ¢ masking their values and then incrementing the
corresponding histogram bin. Our goal is to do the initialization of A in a segment and
break the histogram loop into 5 segments such that each segment processes 100 element
of array a. The code in Figure 5.3b represents the segmented function after adding the
API calls* and Figure 5.4 shows the OS tables and queues for the task; for each scheduling
interval in Figure 5.2, we show the content for the tables and queues after the scheduler
logic and the code of the segment is executed, but before the DMA interrupt removes any
request.

Since the first segment for the task s' uses array h, h has to be allocated in the SPM

4We unrolled the outer loop that iterates over segments to illustrate the details of the execution and
replaced the actual loops with representative comments.

110

Algorithm 3 Scheduler logic in Interval;

Determine segment s'*! (if any)
7; = 7(s;) if a segment s; is scheduled in Interval;, else 7; = ()
Tiv1 = T(8i41) if @ segment s, will be scheduled in Interval;,q, else 7,1 = ()
if 7, # () then
7;: Dispatch requests from SWQ to SDQ.

if 7, # 0 and 7;., #) and 7; = 7,1 then (swap-out/swap-in)
7;: Send write requests in SDQ to DMA.
Tiv1: Send read requests in SDQ to DMA.
else
if 7, # () then (unload)
7,: Add read/write requests to 3PQ for objects in the 3PT.
7,: Send write requests in 3PQ to DMA.
7,: Send write requests in SDQ to DMA.
7,: Send write requests in SWQ to DMA.

if 7,11 # 0 then (load)
if 7,11 has not started then
7(s"1): Copy initial state of 3PT from TCB.
7(s"1): Add read requests to 3PQ for objects in 3PT.
Tiv1: Send read requests in 3PQ to DMA.
Tiv1: Send read requests in SDQ to DMA.
if T, = @ or 7; 7& Ti+1 then
T =T

111

int h[128];
char a[500];

void histogram() {
for(inti=0;i<128;i++)
h[i] = 0;

for(inti=0;i<500;i++) {
alil = alil & 127;
hlalil] +=1;
}
}

(a) Original code

void histogram() {

// Three-Phase Table is initialized to allocate

//h to h_spm with ID (O1)

GINIT h spm

swap_buffer(B1, a, 100)
dispatch();

swap_buffer(B2, a+100, 100)
wait_for_transfers();

Bl = allocate_buffer(a_bufl, 100, 2);
B2 = allocate_buffer(a_buf2, 100, 2);

~

81

p
// USE a_bufl

swap_buffer(B1, a+200, 100);
| wait_for_transfers();

J

(/1 USE a_buf2
swap_buffer(B2, a+300, 100);
\wait_for_transfers();

n || W
i~ 9

VAN

('// USE a_bufl
swap_buffer(B1, a+400, 100);
\wait_for_transfers();

(/] USE a_buf2
deallocate_buffer(B2);
\wait_for_tra nsfers();

(/] USE a_bufl
deallocate(01);
deallocate_buffer(B1);
\ wait for _transfers();

AN

O | 0| Ot

@ [|®w |[|[®»

(b) Segmented code

Figure 5.3: API usage example

112

®OEOEOOE OO

3PT 3PQ ST
o1

o1 B1

B2

o1 B1

ooy fEL

o1 B1

B2

o1 B1

B2

o1 B1

B2

ol oo ok

o1 B1

) g3

o1 B1

SWQ SDQ

&

&
B2A

sﬁ:eﬁ:

--
@inén-

$3

£
&

[@“

~
o
|

B

/FE .
_>

D DMA requests served during current interval.

Figure 5.4: SPM management example

113

Stream?

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

before s! starts. Accordingly, the 3PT is initialized with entry O1 as shown in Figure 5.3
corresponding to allocating h to h_spm with a write-only status. The OS processes this
allocation in interval (0) before the segmented function starts. Note that O1 does not trigger
a read request as the object is write-only. However, the code and other data, e.g. the stack,
are transferred in this interval. During s' execution in interval (1), h_spm is initialized
and two read-write buffers B1 and B2 are allocated for array a. The first 100 bytes of a
are swapped-in Bl and a read request B171 is added to the SWQ, then moved to the SDQ
once dispatch function is called. After that, the next 100 bytes of a are swapped-in B2
and a load transfer B2 is added to the SWQ. Since s! is a terminal segment, a different
task executes in interval (2). Hence, a write request O1] and read request O11 for O1 are
added to the 3PQ by the scheduler. In this example, segment s® of the task is assumed
to resume in interval (3). Therefore, both O1] and O11 are processed ® during interval (2)
as well as B11. In interval (3), s® executes the histogram loop on the first 100 bytes of a
from B1, then invokes a swap for Bl for the third 100 bytes of a. This adds two transfers
in the SWQ to write back the current data B1] and then read the new data B1T. The
entry for Bl is modified to reflect the swap result. While s? is executing, B2 is filled with
the second 100 bytes of a as B27 is processed from the SDQ. In interval (4), swapping B1
proceeds from the SDQ and a swap for B2 is added to the SWQ. At the beginning of (5),
the OS schedules segment s° from another task to be executed in interval (6) and no DMA
requests are processed for the task as the other partition for s®. A swap for Bl is also
added to the SWQ in interval (5). At the beginning of interval (6), write/read requests for
O1 are added to the 3PQ. Then, B2 is processed from the SDQ, B1J is processed from
the SWQ, and O1/ is processed from the 3PQ. The OS prepares the task in interval (7)
to resume execution. So, B21 is processed from the SDQ along with O171 from the 3PQ.
In interval (8), the task resumes executing s® while B11 is processed. Since s® is the last
segment to use B2, B2 is deallocated and B2| is added to the SWQ. In interval (9), the
segment stream is concluded with s? in which all the remaining objects and buffers are
deallocated; and therefore the tables are cleared. The deallocation triggers B1| and O1]
to copy back the modified data to main memory. The requests B2], B1], and O1] are

processed in interval as shown in Figure 5.3.

The OS identifies the execution mode (streaming or three-phase, as needed for Rule 3)
based on the current mode and the API calls. That is, when B1 and B2 are allocated in
the terminal segment s', the OS knows that it will switch to streaming mode in the next
segment. The task remains in the streaming mode until all buffers are deallocated and the
ST is empty.

5This case can be optimized in the implementation to avoid the read/write DMA transfers.

114

5.4 Scheduling Analysis for the Fixed-size DM A Model

In this section, we develop a sufficient schedulability analysis for a task set scheduled
according to Rules 1 - 5 in Section 5.2.1 on one processor, where scheduling decisions in
Rule 2 are based on fixed per-task priorities and the platform employs the fixed-size DMA
model. In essence, we extend the analysis in [130] for fixed-size DMA systems to support
conditional, streaming task execution. Since we use fixed priority scheduling, without loss
of generality we assume that tasks in I' = {7,..., 7y} are ordered by decreasing and
distinct priorities. Before detailing the critical instant (the task arrival pattern that leads

to the worst case response time for the task under analysis), we begin by introducing some
properties for the DAG model under fixed-size DMA.

(Segment (s))(ts Jmaz(ty, A = 5)] OT@rminal. Streaming

G I=4,1=36,end=5
1:4,1:28,em1:5
1:5,1:26,(371,(1:5

12/12

Figure 5.5: Example segment DAG (s% is 5% and s? is s?).

Figure 5.5 shows an example DAG with three maximal paths: P = {s°, s, s% s, s 5%},
P = {s° 55,55 5%, and P" = {s° 5% 57,55 s°}. Note that we have P.L = 36, P.] =
4, P' L =28 P'.I1=4,P".L=26,P".] =5,and P.end = P'.end = P".end = 5 (recall that
p.L counts the length of all segments in the path, but p.I counts only terminal segments).
In general, a DAG could have many maximal paths, and a task could be segmented into
many different DAGs. The following definitions will allow us to restrict the number of
paths / DAGs to find a schedulable task system.

Definition 3. Given two mazximal paths P, P', we say that P’ dominates (is worse than
or equal to) P and write P' = P iff: P'.L > P.L and P'.I > P.I and P'.end < P.end. If
neither P = P nor P = P’ holds, we say that the two paths are incomparable.

Since the > relation defines a partial order between maximal paths, we can characterize
a task based on its set of dominating paths. Formally, given segment DAG G, we use G.C'
to denote the Pareto frontier ¢ of all maximal paths in G. Intuitively, for a task 7;, we

6Given a partial order over a set of distinct elements, the Pareto frontier is the subset of elements that
are not dominated by any other element.

115

show in this section that the set GG;.C replaces the concept of worst-case execution time.
For example, for Figure 5.5, G.C' is the set P, P”; P’ is not included since P dominates it;
but both P and P” are included since they are incomparable. While P’.end = P.end for
two paths belonging to the same DAG, we can also use Definition 3 to compare two DAGs
for the same program.

Definition 4. Given two segment DAGs G, G’, we say that G' dominates (is worse than
or equal to) G and write G' = G iff: VP € G.C,3P' € G'.C : P' = P. If neither G' = G
nor G = G' holds, the two DAGs are incomparable.

Note that since G.C' is the Pareto frontier, G’ = G implies that for every path in G, there
is a corresponding path in G’ that dominates it.

Intervals @ @ . @
T
|

00,60 0 60,60, 0 6
| | |
o . N

[[[

[
T, |

T

[
T T !
3 !
Lower !
Priority
Tasks T T

? I T, T T T T3 T3] T3 T3
own [T IN0RRN VT T [T4 1 MY T
? : load [unload from any task 1: load/ unload from lower priority task
Terminal Segment A7) swap-i
. o - p-in Buffer
T Arrival I:I - using Partition A / B Iﬂ . Load Partition A/ B Iﬂ 9% to Partition A / B
Time i
7 Streaming Segment m » m Swap-out Buffer
I:I using Partition A / B . Unload Partition A/ B YA from Partition A / B

-

e

T
T3 1 T2, 737 [T

Figure 5.6: Example critical instant for fixed-priority scheduling in the fixed-sized DMA
model.

The critical instant for a task under analysis 73, as derived in [136, 152], is depicted in
Figure 5.6. Since scheduling decisions are only made when an interval starts, the worst
case arrival pattern corresponds to the task under analysis and all higher priority tasks
arriving just after the beginning of an interval for a lower priority task (interval (1) in the

116

figure). As a consequence, the task under analysis suffers an initial blocking time B; equal
to two intervals: neither the task under analysis nor higher priority tasks can execute for
the first two intervals, as another lower priority segment loaded during interval (1) executes
during interval (2). More in general, let 7; be the task under analysis, and let /™ denote
the maximum length of any segment of a lower priority task. Albeit pessimistically, we
then bound the blocking time as:

[imaX — max(A, max max s.[) (5.3)
j=i+1,N s€S;
2. [lmax - if § < N — 1.
B={""0 e (5.4)
A, ifi=N.

For the lowest priority task 7y, the maximum blocking time is A as there can only be one
initial blocking interval consisting of memory only (a load, possibly preceded by an unload
to free a partition). Note that in the worst case, each successive segment of 7; can suffer
a blocking time equal to I!™® since two segments of 7; cannot be executed back-to-back
(interval (6) and interval (8) in the figure). For 7y, we set [!™% = A since there are no
lower priority tasks, but a scheduling interval with memory only would be needed between
successive segments of 7y. Finally, note that 7; suffers one extra blocking time of length
[lmax every time it executes a terminal segment, with the exception of the last terminal
segment s°": a terminal segment cannot be followed by another segment of 7;, hence in
the worst case a segment of a lower priority task can execute instead, as shown in interval
(7) in the figure. Since for a maximal path P of 7; there are P.I terminal segments, such
blocking time is bounded by (P.J — 1) - [imax,

Since higher priority tasks arrive synchronously with the task under analysis, the in-
terference (time the task under analysis is preeempted by higher priority taskss) suffered
by 7; in an interval of length ¢ is equal to:

Inter;(t) = Zi(t/”m - Lj, (5.5)

where L; is the length of the path taken by 7;. Since we cannot make any assumption
on path execution, we maximize the interference by considering the path with maximum
length:

Ly =max{P.L | P € G;.C}. (5.6)

Note that it is sufficient to consider only the maximal paths in G;.C' since each maximal
path in G, is dominated by a path in G;.C, and by Definition 3 the dominating path

117

has longer or equal L. Finally, since segments are executed non-preemptively, a task will
complete by its deadline if its last segment starts execution P.end time units before its
deadline. Therefore, for a maximal path P, the response time R;(P) of 7; up to its last
segment can be computed as a standard iteration:

Ri(P) = B; + (P.I — 1) - I\™ + P.L — P.end + Inter; (R;(P)), (5.7)
and the task is schedulable along that path if:
R;(P) < D; — P.end. (5.8)

Here, P.L — P.end represents the length of intervals where 7; computes (excluding the last
segment), B; is the blocking suffered by the first segment, (P.I — 1) - [!™ is the blocking
suffered by other segments, and Interi(Ri(P)) is the interference of higher priority tasks.
We next prove the key property of the analysis with respect to path domination.

Property 1. Consider two paths P, P with P' = P. If Equation 5.8 holds for P', then it
also holds for P.

Proof. Note that Equation 5.5 is increasing in ¢, and Equation 5.7 is increasing in P.I and
P.L and decreasing in P.end. Since it holds P'.LL. > P.L, P'.I > P.I, P'.end < P.end, at
convergence it must hold: R;(P’") > R;(P).

Now by hypothesis it holds: R;(P’) < D; — P'.end, which is equivalent to: D; >
B + (P'.I —1) - ll™> + P'.L + Inter;(R;(P')). But since we have: B; + (P'.] —1) -
Jimax 4 P4 Interi(Ri(P/)) > B+ (P —1) - llm> 4 PL+ Interi(Ri(P)), we obtain:
D;— P.end > B+ (P.I—1)-1!m 4 P [,— P.end+ Inter; (RZ-(P)), completing the proof. [

Based on Property 1, to check the schedulability of 7; it is sufficient to test the set
of dominating maximal paths. Hence, the following lemma immediately follows, where A
denotes a logical and.

Lemma 5. Tusk 7; is schedulable if:

/\ Ri(P)<D;— Pend. (5.9)
PeqG;.C

If the segment DAG G; for each task 7; € I' is known, then task set schedulability can

be assessed by checking Equation 5.9 for all tasks in the order 7q,...,7y. However, as we
show in Chapter 6, each program can be segmented in many different ways, resulting in

118

different DAGs for the task. Hence, the real problem that we are interested in solving is
how to find a set of “best” DAGs for the tasks in I, that is, a set of DAGs that make
the task set schedulable according to our derived analysis. To discuss how we proceed, we
prove two more properties of the analysis.

Property 2. According to the analysis: (A) the schedulability of task T; depends on the
mazimum length ™% of any segment of lower priority tasks 7, + 1,... 7y, but not on any
other parameter of those tasks; (B) if 7; is schedulable for a value | of IL™®*, then it is also
schedulable for any other value I' < 1.

Proof. Part (A): by definition of Equations 5.7, 5.9. Part (B): since R; is increasing in
[imax the response time for [!™® = |’ cannot be larger than the one for [. n

Based on Property 2, we can proceed as follows: we again iterate on the tasks in in-
verse priority order. At each step, we use the analysis to determine the maximum value
[imax of [lmax ypder which 7; is still schedulable. Such a value is then used by our segmen-
tation algorithm working on 7;,1: as we detail in Section 6.1, the algorithm considers a
segmentation of 7,41 to be valid only if its maximum segment length is no larger than a

specified value [™*. Note that in theory, one could determine [!™#* by performing a binary
search over Equation 5.9. However, we show in the next Section 5.4.1 that an alternative
formulation based on the concept of scheduling points used in [19] can be used to derive

[Imax directly.

Property 3. Consider two DAGs G;,G'; for task 7; where 1 < j < i and G’ = G;. If ;
is schedulable for G; according to the analysis, then it is also schedulable for G;.

Proof. Case j =1,...1— 1: since G’; = Gj, the value of L} for G; is no larger than for
G'. Since the interference Inter;(t) is increasing in LF**, the resulting response time of 7;
for G; cannot be larger than the one for G’.

Case j = i: since G = G}, for each maximal path P € G;.C there must exist a maximal
path P’ € G,.C such that P’ = P. Now since 7; is schedulable for G) according to the
analysis, by Equation 5.9 it must hold R;(P") < D; — P’.end; then by Property 1, it must
also hold R;(P) < D; — P.end. This means that Equation 5.9 holds for G;, concluding the
proof. O]

Property 3 shows that the dominance relation indeed corresponds to the notion of a

DAG being better than another from a schedulability perspective. Hence, the segmentation
algorithm can use Definition 4 to determine the set of “best” DAGs for a task. In fact, in

119

Section 6.2 we will prove that our segmentation algorithm is optimal, in the sense that if
there are segmentations that result in a schedulable task set according to the analysis, the
algorithm will find one such segmentation for each task in I'.

5.4.1 Maximum Blocking Length Derivation

In this section, we show how to efficiently derive the maximum value of [!™* for [lmax,
based on the strategy introduced in [19]. In details, define the set of points:

Si(P.end) = (D; — P.end)U
{k-T;|j=1...i—1k=1...[(D; — Pend)/T;]}. (5.10)

Note that S; is the set of points where the interference value Inter;(t) changes, together
with the deadline D; — P.end for the last segment to start computing. Then if for any
time ¢, the total demand (including blocking time, interference of higher priority tasks and
execution of 7;) is less than ¢, it follows that 7; is schedulable. We have thus obtained the
alternative schedulability test:

AV Bi+(PI-1)-I™ 4 P.L - Pend+ Inter;(t) <t, (5.11)
PeG;.C teS;(P.end)

where \/ represents the or of the conditions. In practice, the test can be efficiently evaluated
because, as shown in [19], it is sufficient to check a subset S;(P.end) of the points in

Si(P.end).

We can now express Equation 5.11 as a condition on the maximum value of [/™max
through simple algebraic manipulation. For a task 7; with ¢ < N — 1 we obtain:
AV (PI+1)-6™ 4 PL— Pend+Inter;(t) <t
PeG;.Cte§;(P.end)
t — P.L + P.end — Inter;(t)
o l{max <
/\ ,\/ ’ - PI+1
PeG;.CteS;(P.end)
— t — P.L + P.end — Inter;(t
& Im = min max - Prend — Interi() (5.12)

PEG;.C te,(P.end) PI+1

Similarly, for the lowest priority task we have [\ = By = A, such that the schedulability
test is equivalent to:

0< min max t— P.L+ Pend— P.I-A — Inter;(t). (5.13)
PeG;.C teS;(P.end)

120

5.5 Schedulability Analysis for the Variable-Size DMA
Model

We next provide a sufficient schedulability analysis for a multi-segment streaming condi-
tional task set based on the variable-size DMA model. As in Section 5.4, we assume fixed
per-task priorities, where tasks are indexed by decreasing, distinct priorities, and each task
7; has an associated segment DAG G; = (S;, F;). Similarly to how Section 5.4 extends

the analysis in [130] to the case of conditional, streaming tasks, here we do the same with
respect to the original 3-phase analysis in [151], which is also based on a variable-size
model.

The same critical instant as in Figure 5.6 applies, where the task under analysis 7;
suffers an initial blocking time by two intervals where lower priority tasks execute. We
assume that the intervals in the busy period (the window of time where the task under
analysis is active) are numbered by increasing indexes, starting with interval (1). Hence, by
definition for the critical instant, intervals (1) and (2) represent the initial blocking time. As
before, we are interested in computing the response time R;(F;) of 7; up to its last segment,
assuming that the task executes along maximal path P;; the task is then schedulable under
the condition:

N\ Ri(P) < D;— Prend. (5.14)
aer
Note that in this case we need to check all maximal paths in G;, rather than just the paths
in the pareto frontier GG;.C, as the more complex DMA model does not allow us to define
a simple dominance relation between paths.

We compute R;(P;) iteratively, after decomposing it in two terms: 1) a constant time
B;, which represents the length of the first blocking interval (1. 2) Term H,(R;(F;)), which
represents the cumulative length of all intervals from interval (2), to the last segment s¢™?
of 7; excluded (intervals (2) to in the example in Figure 5.6). Note that H; depends
on the response time R;(P;) computed at the previous iteration, since the value of R;(P)

determines the number numlInter of interfering jobs of higher priority tasks in H:

numlnter;(t) = [t/T}], (5.15)
i—1

numlInter(t) = Znumlnterj(t). (5.16)
j=1

Let P = { P, ..., Pauminter(r:(P,)) } denote the maximal paths of the numlInter (RZ(PZ)) inter-
fering jobs, where each higher priority task 7; has numlInter; (Rl(PZ)) paths/jobs. Then

121

the number of intervals numH; in H; is equal to

numH;(R;(P)) =P.S+PI—1+ Y PS: (5.17)
vPeP

we have blocking interval (2), plus one lower priority blocking interval for each terminal
segment of 7; expect the last, that is P..J — 1 intervals (interval (7) in the example), plus
P,.S — 1 intervals for segments of 7; except the last (intervals (6), ®), (9)), plus Y, pep PS5

intervals of higher priority jobs (intervals 3), @), (5),)

We begin with two simple observations based on the scheduling rules in Section 5.2.1.
For simplicity, we shall say that a streaming segment is preempted (or for short, a p-
streaming segment) if the segment executed immediately after it in the schedule belongs
to a different task. If instead the following segment belongs to the same task, we say that
the streaming segment is non-preempted (or for short, a np-streaming segment). For task
73 in Figure 5.6, the segment in interval is np-streaming, while the segment in (9) is
p-streaming.

Observation 6. According to Rule 5, in the worst case an interval executing a terminal
or p-streaming seqgment s' also requires unloading a segment s* and loading a segment s7.
Hence, the interval length is bounded by max (sl.c,(S +p - (sFul + sj.ld)). s® can be a
terminal or p-streaming segment; s’ can be an initial segment, or another segment where
the previous segment of the same job was p-streaming.

As an example, note that for task 73 in Figure 5.6 there are three load phases: for
the initial segments executed in interval (6) and (8), and for the segment in interval @,
which follows the p-streaming segment in (9). There are also two unloads: the one for
the terminal segment executed in interval (6), and for the p-streaming segment in (9) (the
download for the last terminal segment is not shown, since it does not affect the response
time).

Observation 7. Based on Rule 4, in the worst case an interval executing a np-streaming
segment s requires a swap operation of duration s.st. Hence, the interval length is bounded
by s.1.

Remember that by definition, for a streaming segment s.l = max(s.c,d + p- s.st). Also
note that for a streaming segment s' that is not initial (meaning, the previous segment is
also streaming), s'.st includes the time to swap-out the previous segment s* and swap-in
the next segment s/ of its job. If in the schedule, s* is p-streaming and s’ is np-streaming

122

(meaning that s' is not executed immediately after s*), then only a swap-out is required
during the interval of s' based on Rule 4, as the data of s* has already been unloaded. This
means that the swap phase is shorter than s'.st; hence, the upper bound in Observation 7
is still valid.

We can now derive the length of B;. Note that for the lowest priority task 7n, By =0
since there is no lower priority task; instead, as already noticed in Section 5.4, 7 suffers
a single blocking interval (2) (included in H;) where no segment executes, but an unload
and load might be required based on Rule 5. Equations 5.19-5.22 are used to derive the
maximum value of any segment length, computation time, load and unload, respectively,
for either any task in the system or just lower priority tasks (the latter is indicated by a
superscript [).

Jlmax - — max ., (5.18)
VSESi+1,...,SN

dmax — max S.c, (5.19)
V865i+17...7SN

ldmax = max s.ld, (5.20)
V863i+17...,SN

ull ™ = max s.ld. (5.21)
VSGSiJrl,...,SN

ul™™ = max s.ld. (5.22)

VseSi,...,SN

Lemma 8. The length of the first blocking interval in the schedule is upper bounded by:

0, ifi = N. (5.23)

5 {max (Irmax 5 4 p - (ul™ 4 ') i < N — 1,
Proof. 1f i = N, then there are no lower priority tasks than the task under analysis 7y; in
this case, there can only be one interval of initial blocking time (consisting of an unload of
a partition, plus the load of one of the tasks executed in Hy), which is already included
in H;. Hence, in this case By = 0.

Otherwise, B; can comprise one interval where the segment s’ of a lower priority task
executes. We have two cases: 1) If s is np-streaming, then the segment length is s'.I by
Observation 7. 2) If s' is terminal or p-streaming, then by Observation 6 the length of
the segment is bounded by max (sl.c, 5+ p- (sFul + sj.ld)); note that here s* can be a
segment of any task, but s/ must be a segment of a lower priority task executed in interval
(2) (which is included in H;). Since for any segment, s.l is either equal (for a terminal) or
larger or equal (for a streaming) than s.c, and furthermore we obtain ('™ [d'™a* a5 the

123

Algorithm 4 Composing Execution and Memory Times
function COMPOSETIMES(numH, NPS, E, UL, LD)

HNP =3, cnpsSl
sort B, UL, LD in non-increasing order

1:

2

3

4: for all j = 1..numH — |[NPS| do
5: DMA; =6+p-(UL; + LD;)
6

7

8

M = DM AU FE in non-increasing order
numH—|NPS
HTP =Y INESE

j=1

return HNP + HTP

maximum s.l, s.ld for any segment of lower priority, and ul™* as the maximum s.ul for

any segment, then max(I'™a § + p - (ul™® + [d'™**)) is an upper bound to the interval
length for both cases.]

We next discuss how to compute the length H; of the remaining num#H; intervals.
Due to the complexity of the analysis, we shall do it in steps. Let us start by assuming
that the following four multisets are given: the multiset N PS containing all np-streaming
segments executed in H;; the multiset £ containing the computation time of all terminal
and p-streaming segments in H;; the multisets LD, UL containing the time of all load and
unload phases in H;. Note that for a multiset A, we use |A| to denote its cardinality, and A;
with j = 1...|A| to denote its j —th element (with repetitions). Function COMPOSETIMES
in Algorithm 4 then bounds H; based on NPS, E, LD and U L, and the number of intervals
numH;. The function bounds the cumulative length of the |NPS| intervals executing np-
streaming segments in line 2 based on Observation 7. To determine the length of the
remaining N H; — [N PS| intervals, the function proceeds similarly to Algorithm 2 in [151]:
the length is maximized without making any assumption on the order in which the various
segments and memory phases are executed. First, multisets F/, LD and UL are sorted in
non-increasing order. Then, LD and UL are combined to determine a new multiset DM A
of memory times based on the DMA parameters ¢, p. Finally, based on Observation 7, the
lengths of the intervals are obtained by taking the maximum values in either £ or DM A.

Lemma 9. Given multisets NPS, E, UL, LD and number of intervals numH;, Algorithm 4
computes a valid upper bound to H;.

Proof. We show that the algorithm computes H; as the sum of upper bounds to the length
of each interval in H; executing an np-streaming segment, and an upper bound to the

124

cumulative length of intervals executing either terminal or p-streaming segments; hence,
the computed value of H; must be a valid upper bound.

NP-streaming intervals: by Observation 7, the length of an interval executing an np-
streaming segment is bounded by the length of the segment. Hence, HNP =), _\pg sl
is an upper bound to the cumulative length of all such intervals.

Terminal and p-streaming intervals: by definition of N PS and numH, the number
of such intervals is numH —| N PS|. By Observation 6, the length of each interval is bounded
by max(c, dma), where ¢ € E is the execution time of a segment, and dma = 6+ p- (ul+1d)
is the memory time, where ul € UL and ld € LD are load / unload phase lengths.

On line 7, the algorithm computes the cumulative length of the intervals by selecting the
maximum numH — | N PS| values out of all ¢ € F, and values in set DM A. If we can thus
show that the values in DM A represent upper bounds to the lengths of the memory times
dma = §+ p- (ul+1d), the cumulative length computed by the algorithm must be an upper
bound. Assume that the maximum cumulative length is found by selecting k ellements in
E and k' in DM A, with k+ k' = numH — | N PS|. We then have to show that Z§:1 DMA;
in indeed an upper bound to the cumulative length of & memory times: Zf;l dma;. We
can rewrite the cumulative memory time as: Zflzl dma; = Zflzl (6 +p- (uly + Udy)) =
E -0+ p- (Zflzl ulj + Zflzl ld;), where ul; and ld; are some unload and load phases
in [/] L and LD. But by cons/truction at l,ines 3 and 5 of tllle algorithm, we must have
Zé?:l DMA; =K -0+p- (Z?Zl UL; + 25:1 LD;) where Z;‘le UL; is the maximum sum
of any k' loads in UL, and Zle LD; is the maximum sum of any &’ loads in LD. Hence,
Zflzl DM A; upper bounds Zf;l dma;, concluding the proof.]

We also state some further properties of Algorithm 4 which will be helpful later on.

Observation 10. Adding an extra element to E, LD or UL, or increasing the value of an
element in either E, LD or UL, cannot decrease the result of Algorithm 4.

Lemma 11. Removing a segment s from NPS and adding an execution time equal to s.l
to E cannot decrease the result of Algorithm /.

Proof. Removing s from N PS results in decreasing HN P by s.l and increasing numH —
INPS| by one. Since the algorithm computes HT'P by summing the numH — |[NPS|
highest values in £ and DM A, and we added a value s.l to E, it follows that HT P must
increase by at least s.l. Hence, the returned value HN P + HT P cannot decrease. O]

125

Lemma 12. Consider two segments s',s" € NPS with s'.1 < s".l. Let H' be the result of
Algorithm 4 after removing s’ from NPS and adding s'.l to E, and H" be the result after
removing s" from NPS and adding s" to E. Then H' > H".

Proof. Let HN P, HT P denote the values originally computed by Algorithm 4 at lines 2, 7,
and let HNP', HT'P' (HNP" , HT P") be the corresponding values computed after moving
s’ from NPS to E (respectively, after moving s”). Then we have HNP' = HNP —
sSIl,HNP" = HNP — §".l, and HTP' = HT P+ ¢ ,HTP" = HTP + ¢", where ¢’ (¢”) is
the extra element summed to HT P’ (respectively, HT P") compared to HT P, due to the
fact that numH — |N PS| increases by one after removing s (s”).

Since in line 7 the algorithm picks the largest numH — | N PS| values out of E or DM A,
it follows that ¢ > ', and if ¢ > s”.I, then ¢’ = ¢/, otherwise ¢’ = s”.l. We consider
both cases. 1) Case ¢ > §".I: since §'.1 < §".l and ¢’ = ¢/, we have HNP' + HTP' =
HNP — §.l+ HTP+¢ > HNP — §"1+ HTP +¢" = HNP" + HTP", proving the
lemma. 2) Case ¢ < §".0: since ¢ > §'.l and ¢’ = $".[, we have HNP' + HTP' =
HNP —§.1l+HTP+¢ >HNP+ HTP=HNP—-5s"1+HTP+¢"=HNP"+ HTP”,
again proving the lemma. O

We next discuss how to compute the multisets NPS, E,UL, LD in a safe manner. The
key complexity is how to divide the streaming segments into p-streaming and np-streaming,
since preemptions are a function of the schedule. We thus use the following idea: we start
by putting all streaming segments into NPS, and determining the maximum number of
p-streaming segments. Then, we remove such number of segments from NPS and add
their corresponding lengths to F based on Lemmas 11 and 12. To determine the number
of p-streaming segments, we reason about preemption in H;.

Observation 13. Based on Rules 2, 4 under fized priorities, the scheduler will continue
executing segments of the same job until it encounters a terminal segment, or the job is
preempted by a higher priority job. Hence, the number of preemptions caused by a job with
mazximal path P to lower priority jobs is bounded by P.I.

The number of preemptions for the highest priority task 7 is obviously 0. Based
on Observation 13, the maximum number of preemptions num#pF;, and thus p-streaming
segments, suffered by jobs of tasks 7, ..., 7; for any 2 < j < N is bounded by the number
of terminal segments of jobs of tasks 7,...,7;_1 :

numP; = > PI. (5.24)

V1<k<jVP:PEPAPEG,

126

Based on the constraints expressed by Equation 5.24, Function COMPUTEH in Algo-
rithm 5 first determines the multisets NPS, E,UL and UD, and then invokes COMPOSE-
TIMES to compute H;. The algorithm begins by considering the initial blocking interval
(2 in line 4, which includes the execution of a segment of a lower priority task. The in-
terval also includes an unload of a previous task, and the load of s*9"" for either 7; or a
higher priority job, which will be added later on. Finally, we have to consider the unload
of the segment executed in interval (2), which will happen within H; (in interval (3) in
Figure 5.6). Then, at line 5 the algorithm adds to E, LD and UD computation, load and
unload phases for the other P;.I — 1 blocking intervals, selecting the maximum such values
among all lower priority tasks. The algorithm then adds to NPS all streaming segments
of 7; and higher priority tasks; and based on Observation 6, it adds to F all executions of
terminal segments, to UL all unload phases of terminal segments (except the last segment
s¢ of 7;, since such unload is executed outside H;), and to LD all load phases of initial
segments. Finally, based on the preemption constraints, the algorithm adds load phases
of non-initial segments to LD (as non-initial segments that follow a p-streaming segment,
based on Observation 6); unload phases of streaming segments to UL (as p-streaming seg-
ments, again based on Observation 6); and finally moves streaming segments from NPS
to E.

Lemma 14. Algorithm 5 compute a valid upper bound H; based on paths P;,P.

Proof. Since a segment of 7; cannot be executed immediately after a terminal segment of
7;, in the worst case each terminal segment of 7; can induce an interval of a lower priority
task. Since H; does not include the execution of the last segment s¢"¢, the number of such
blocking intervals is bounded by P;.I — 1; in addition, there is the initial blocking interval
(2). Hence, the value of numH,; is by construction a valid upper bound on the number of
intervals in H;.

We will next show that the way we construct the multisets £, UL, LD, and NPS can-
not result in a lower value of COMPOSETIMES(numH,;, NPS, E, UL, LD) compared to the
value that COMPOSETIMES would compute given the actual multisets for any valid sched-
ule. Since furthermore by Lemma 9 the result of COMPOSETIMES upper bounds H;, this
will complete the proof. We consider two types of values / segments in £, UL, LD, NPS:
those belonging to segments in P; and P (that is, the job under analysis and higher priority
jobs) and those belonging to other jobs.

We start with the latter, which must belong to segments executed in a blocking interval.
As noted above, such intervals include the initial blocking interval (2), and P,.I — 1 further
intervals. All such intervals must be terminal or p-streaming, since they are followed by a

127

Algorithm 5 Computing H;
1: function CompuTEH(T', i, P;, P)
2 Compute numH; based on Equation 5.17
3 NPS=E=LD=UL=0
4: add ™ to F, add wl™* and ul'™** to UL
5: for P;.1 — 1 times: add ™ to E, add [d'™** to LD, add ul'™** to UL
6
7
8
9

VP € PU P,V streaming s € P: add s to NPS
VP € PU P,V terminal 5,5 € P A s # s add s.c to F and s.ul to UL
VP € P U P,V initial s € P: add s.ld to LD
select the maximum possible number of non-initial segments s € P U P; with max-
imum value of s.ld based on the constraints num/P,..numP; from Equation 5.24 and
add such s.ld values to LD
10: select the maximum possible number of segments s € NPS with maximum value
of s.ul based on the constraints numpP,...numP; from Equation 5.24 and add such s.ul
values to UL
11: select the maximum possible number of segments s € NPS with minimum value of
s.l based on the constraints num/P,..numPF; from Equation 5.24; remove each selected
segment s from NPS and add s.l to E
12: return COMPOSETIMES(numH;, NPS, E,UL, LD)

segment of 7; or a higher priority job. We considering E. Since the algorithm adds P;.1
times to F the maximum computation of any lower priority task, by Observation 10, this
cannot decrease the result of COMPOSETIMES. We next consider UL. In interval (2), an
unload can be performed for a previous segment (note that if the segment executed in
interval (1) is np-streaming, this unload would not belong to such segment); the algorithm
adds to UL the longest unload of any task. Both interval (2) and each of the other P;.J —1
blocking intervals can further induce an unload for a lower priority segment; since again the
algorithm adds to UL the longest unload of any lower priority task for each such interval, by
Observation 10 this cannot decrease COMPOSETIMES. Similarly for LD, P;.I — 1 blocking
intervals can induce a load of a lower priority segment (note that the load of interval (2)
is performed in interval (1) outside of H;), and for each such interval, the algorithm adds
the longest load of any lower priority segment.

We next consider values / segments in E, UL, LD, NPS for jobs of P, and P. We
first discuss loads and unloads. Based on Observation 6, the set of loads includes all
initial segments, and all (non-initial) segments that follow a p-streaming segment. The
algorithm inserts all loads of initial segments in LD at line 8. The number of p-streaming

128

segments is bounded by the number of preemptions, and hence the constraints expressed by
Equation 5.24; and based on the constraints, the algorithm selects the largest load phases
and adds them to LD. In summary, the algorithm adds to LD a number of load phases
that is larger or equal than the number of segments that follow a p-streaming segment in
any valid schedule; and the values added to LD are larger or equal than the length of the
load phases of segments that follow a p-streaming segment. Hence, by Observation 10,
this cannot decrease COMPOSETIMES. The same argument applies for unloads, where the
algorithm first adds to UL all unload phases of terminal segments (with the exception of
s¢™d since its unload is performed outside H;), then maximizes the number and lengths
and unload phases of p-streaming segments. It remains to discuss £ and NPS. The
algorithm first adds to F all terminal segments (again, except s¢*¢), and adds to NPS
all streaming segments. To obtain the actual £ and NPS for an valid schedule, each
p-streaming segment s must be removed from N PS and its computation time s.c added to
E. The algorithm moves segments from NPS to E at line 11. Note that for each selected
segment, the algorithm adds to E the length s.l of the interval, rather than its computation
time s.c; however, since s.l > s.c, this is safe by Observation 10. The number of moved
segments is bound by the constraints expressed by Equation 5.24; hence the algorithm
moves a number of segments that is higher or equal than the actual number of p-streaming
segments in any schedule. By Lemma 11, moving more segments than the actual number
cannot decrease COMPOSETIMES. Finally, the algorithm selects the segments with the
minimum length; hence, the algorithm might move a segment s’ instead of a segment s”
with s'.l < §”.1, while in the actual schedule s’ was np-streaming and s” was p-streaming.
However, by Lemma 12, again this cannot decrease COMPOSETIMES. This concludes the
proof. n

Based on Algorithm 5 and Lemma 8, the response time of 7; can then be computed
based on the iteration:
Ri(P) = B; + Hi(Ri(Pi))7 (5.25)
where at each step of the iteration, R;(P;) is used to obtain numInter(Ri(Pi)), and H;
is computed as the maximum value of COMPOSETIMES(T',, P;,P) for all possible path
sets P. If the number of maximal paths for each task is sufficiently small, then such an
approach can be computationally feasible; this is indeed the case for the benchmarks used
in our evaluation in Section 6.4. Otherwise, we argue that one could still use the analysis
after reducing the DAG G for each higher priority task 7; to a single path P that is worse
than all paths originally in G;; intuitively, this could be performed by taking the maximum
number of terminal, streaming and initial segments over any path in G, and maximizing
their length and load / unload phases. We reserve a formal description of the reduction
procedure as part of our future work.

129

5.6 Summary

In this chapter, we reviewed the background and the related work for the 3-phase model on
which we base our segmentation approach in the next chapter. We identified the limitations
with the model and proposed an extension to a new multi-segment conditional streaming
model and detailed the schedulability analysis based on fixed and variable-size DMA model.
We also presented an OS-interface to realize our new model. In the next chapter, we utilize
our framework proposed in Chapter 2 and the schedulability analysis to produce automated
segmentation algorithms using the new 3-phase model.

130

Chapter 6

Program Segmentation

In this chapter, we show how a task is compiled into segments. A program segmentation
represents a partition of the regions of the program into a set of segments. We start by
discussing the concept of a valid segmentation in Section 6.1: intuitively, the segmentation
must obey a set of constraints deriving from the code structure, and furthermore, the code
and data of each segment must fit in the available SPM space. We also add a length
constraint, which forces the length of all segments to be no larger than a provided value
[™#*_ This is done to limit the maximum amount of blocking time suffered by higher priority
tasks, as detailed in the schedulability analyses in Sections 5.4 and 5.5.

Based on the concept of valid segmentation, we then introduce algorithms to segment a
task in the fixed-size and variable-size DM A models in Sections 6.2 and 6.3. In particular,
for the fixed-size case, we show that we can segment a task set in an optimal manner;
meaning that if there exists a set of valid segmentations that result in a schedulable task set
according to the analysis in Section 5.4, then our algorithm will find one such set. For the
more complex variable-size case, we are not able to find an optimal algorithm. Hence, we
instead propose a heuristic segmentation algorithm. We evaluate both algorithms in terms
of schedulability on synthetic task sets based on actual benchmarks in Section 6.4. Results
show that both approaches greatly outperform a naive, greedy segmentation approach, with
limited loss of schedulability compared to an ideal (non implementable) scheme which does
not suffer from any overhead or constraints.

131

6.1 Valid Segmentation

Program segmentation is the process of assigning each part of the program code to a
segment. In this work, we rely on the refined region structure discussed in Section 2.2;
hence we restrict the parts of the program that can be assigned to a segment to be a region
or a sequence of regions. Note that we assume that the program follows common real-time
coding conventions. Therefore, the code should not use recursion or function pointers and
all loops in the program are bounded. We also assume that the WCET and footprint of
any part of the program are known either using static analysis or measurement as discussed
in Chapter 2.

A segmentation is valid if it satisfies the footprint constraint, the (optional) length
constraint and the compilation constraints. The footprint constraint for a terminal segment
states that the footprint of the segment, i.e. the code and data of regions assigned to
the segment must fit in the available SPM size. For a streaming segment, the footprint
constraint implies that the union of the code and data of the segment as well as the next
segment that it streams into must fit the available SPM size. The length constraint states
that the length of each segment must be at most [™**; setting (™ = 400 is equivalent to
removing the constraint.Note that creating a segment incurs a segmentation overhead t,4
which contributes to the segment length. That is, if region » with WCET ¢, is assigned to
segment s, then 5./ = max(A, (+tseg)tr +tseg). If multiple regions in sequence are assigned
to a segment s, then s.I = max(A, (+tseq)(D, tr) + tseg). We further assume that the
regions’ WCETs satisfy the following property, which we argue is required for the WCET
values to be sound:

Property 4. If r is a conditional region, then t, is equal to the WCET of its longer
children. If v is a sequential region or tiled loop, then its WCET is less than or equal to
the sum of the WCETs of its children or tiles.

The compilation constraints are related to how the code is modelled and transformed.
A necessary compilation constraint on a segment is that the data used by the segment is
known before executing the segment. This implies that if a pointer is used to access a data
object in a segment, the object(s) that the pointer may refer to must be known before the
segment. We add the following compilation constraints based on the region structure to
develop a systematic segmentation process:

e A region cannot be assigned to more than one segment. If a region is assigned to a
segment, all its children are assigned to the same segment.

132

Each basic block region must be assigned to a segment.

For all regions except function calls, we say that a region is mergeable if it satisfies
the footprint and length constraints and all the children of the region are mergeable.

A function is mergeable if the top level region of the function is mergeable. Accord-
ingly, a function call region is mergeable if the called function is mergeable.

A set of mergeable regions that are sequentially-composed can be combined in a
multi-region segment that satisfies the length and footprint constraints.

A loop can be divided into multiple segments using loop tiling and loop splitting.
A loop region is splittable if its child that represents a single iteration of the loop is
mergeable. A loop region that represents the outermost loop of a loop nest is tileable
if it is legal to tile and a single iteration of the innermost loop of the tiling loops
is mergeable. Note that a splittable loop is always tileable based on this definition.
If a loop is tiled, then each tile must be assigned to a segment that comprises that
tile only and the loop node represents a sequence of segments. Tiling allows combin-
ing multiple loop iterations in a repeatable segment by inserting the segmentation
instruction around the element loop.

e All the segments in the program are terminal segments except for tiled loops which
can be streaming or non-streaming. A non-streaming loop comprises of terminal
segments only while a streaming loop has a set of streaming segments that are ended
with a terminal segment.

Based on the introduced constraints, we say that a set of regions in the tree constitute
a region sequence if it comprises either: a single mergeable region, or a tiled loop, or a
sequence of mergeable regions and /or splittable regions and tiles. Note that all regions in a
sequence have the same parent. We say that a region sequence R is maximal if no children
of its parent that is not in R can be merged with a region in R to form a segment. Our
program segmentation produces a segmented tree T, that is, a tree where every node is a
set of segment paths P. In particular, the segmented tree for a program is obtained by
substituting region sequences in the region tree with sets of paths. A path p € P for region
sequence R is a sequence of segments, to which the regions and tiles in R are assigned.
The segmented tree is derived inter-procedurally, i.e. for a call to a function that is not
mergeable, the segmented tree of that function is duplicated in place of the call region. If
there are multiple calls to the function, the segmented tree for all the calls must be the
same. The segmented tree of the program is accordingly the segmented tree of the main
function.

133

Loop sphttlng of 9

TERY

(d) £ pseudo-code (e) £ region tree (f) Loop tiling of r%c

Figure 6.1: Region representation (— = parent-child / --» = sequential regions)

A segmented tree T implicitly generates a set G of segment DAGs: each DAG in G is
constructed by taking one path out of each path set and joining them according to the
segmented tree hierarchy. A maximal path in the DAG thus comprises a sequence of paths
{p1, P2, ..., pn} for some n, where p; encompasses s**9* and p,, encompasses s*¢ and hence
the last region in the program r.,4. Note that for a function that has multiple calls, a path
that is chosen to construct a DAG from the path set of a region sequence in the function
must be used for all the function calls as the region sequence represents the same code.

6.1.1 Segmentation Example

We now show an example of valid segmentation for the program in Figure 6.1; which
consists of two functions main () and £ (). For main, the pseudo-code is shown in Figure 6.1a
and the regions in Figure 6.1b. Region r(, which is the top level region of main(), is a
sequential region with regions r; to ry as its children. Region 75 is a loop with child
that represents one iteration. All leaf regions 71, 73, 74 and r5 are trivial regions. Region
rs is a call to £() in Figure 6.1d. Figure 6.1d is the pseudo-code for £ with its region tree

134

pre

4
1 5

rf

(85/35){ 35/35 J»{ 11/23)
)

) :(32/321-2(32/32}{20/2?,)
R(_J
MI- 23/23
%2_1

(a) Segmented Tree

@ + tseq/MAz(t + toeq, A))d—Segment (s)

(p.L,p.I) «———Path (p)

D Terminal Segment
Mazimal Path (

vavvvv-) . Streaming Segment

- Q‘ N
30/30 35/35 —
(28/28 o(35/35 }»{(19/23 3513 25/2
©67,2) (23,1)
: (723 25,1 23,1
-2; :
\ —t ’ <
> N
5 {19/ 30/30 32/32
28,/28 1»(35/35 5/25
G mp (7
: %, 1 23,1
73,1
. i %
D N
sYRIRS 23/23 § 23/2:
28/28 P 35/35 > 19/23
2/ (67/2)H(23 A i — bt
; ; 523 25,1 23,1
G" 23,1
\) J
(b) DAGs

Figure 6.2: Segmentation Example

135

in Figure 6.1e. Region r(’; is the top level region with 7"{ to 7’3{ as its sequentially-composed

children. Region rJ is an if-else conditional statement with region - as the true path and

region rg as the false path. The true path has two regions in sequence, rg and the loop r; .

Let the maximum segment length be [,,,, = 35, the segmentation overhead ts, = 9,
and the tiling overhead 4,y = 3. We assume for this example that the footprint constraint
is satisfied for all regions except the loop 7"; which can satisfy the footprint constraint if the
tile size < 10 iterations if the loop is not streaming or if the tile size < 5 iterations if the
loop is streaming. Given the times for each basic block ¢ in Figure 6.1b and Figure 6.1d,
regions {ry,ry, r{ , rg , rg , rg , rg } are mergeable regions. Loop regions {rs, r%c } are splittable
and tileable, but not mergeable. Figure 6.2a shows the segmented tree of the program
which represents three possible DAGs.

Assume that we applied loop splitting on 75 that has 10 iterations such that it is split
to two loops: pre-loop with 4 iterations and mid-loop with 6 iterations. In Figure 6.2a,
the region sequence {ry, 75 % 774} is replaced by a path set with a single path that has
2 segments. The first segment combines r; and rgre while the second segment is 72,
As region r3 is a call to a non-mergeable function, it is replaced by a duplicate of the

segmented tree of f. The segmented tree of f has two regions r{ and rg each wrapped

in a segment. Region 7’5 is a conditional that is not mergeable, so the false path T‘g is

wrapped in a segment while the true path rff which has two regions: rg and the loop region

7“} with 100 iterations. We assume that the loop is only tiled but not split; and hence r(’;
is wrapped solely in a segment. There are many possible tiling options for 7’; that would
satisfy the max segment length. We choose two possible non-streaming tilings and one

streaming tiling as following:

e With tile size k; = 9, there are 11 terminal segments that are complete tiles with
computation time 9 * 3 4 t4ijing + tseg = 35. The last terminal segment is the last tile
ki““ =100 — 11 % 9 = 1 with computation time 1 * 3 + tying + tseg = 11.

e With tile size k; = 8, there are 12 terminal segments that are complete tiles with
computation time 8 * 3 + tyijing + tseg = 32. The last terminal segment is the last tile
ki‘wt = 100 — 12 * 8 = 4 with computation time 4 * 3 + tying + tseg = 20.

o With tile size k; = 5, there are 19 streaming segments that are complete tiles with
computation time 5 * 3 + ttijing + tseg = 23. The last terminal segment is the last tile
ké““ = 100 — 19 * 5 = 5 with computation time 5 * 3 + tying + tseg = 23.

Figure 6.2b shows the three DAGs that result from the segmented tree. In the figure,
we show the segment computation time as well as the segment length for a fixed DMA slot

136

A = 23. The three DAGs GG, ', G” have a dominant maximal paths P, P/, P” with lengths
L = 576, L' = 575, " = 628 and number of terminal segments I = 18, I' = 19,1" =
respectively.

6.2 Segmentation for the Fixed-size DMA Model

In this section, we show how to produce an optimal segmentation for a task set I', assuming
the fixed-size DM A model. Based on Property 3 in Section 5.4, we first present an algorithm
that explores the set of all valid DAGs for a program, but quickly cuts dominating (i.e.,
worse) DAGs. Then, in Section 6.2.3 we show that, based on Property 2, we can invoke
the algorithm on each task in priority order and obtain a set of DAGs (one for each task)
that is optimal from a schedulability perspective.

The example in Section 6.1 shows that different segmentation decisions can result in
incomparable maximal paths according to Definition 3 as in Figure 6.2b: for the path P,
we have P.L = 576, P.I = 18 and P.end = 23; while for the path P’, we have P'.L = 575,
P'.I = 18 and P'.end = 23; finally for the path P”, we have P".L = 628, P”".I = 7 and
P'.end = 23. Since a DAG generated from the segmented tree 7 includes either P, P’
or P” the resulting three DAGs G, G’ and G” are also incomparable. This means that
without considering the other tasks in the system, we cannot determine whether GG, G’ or
G" is better from a schedulability perspective. Hence, to guarantee that we can find an
optimal segmentation for the task set, we need to consider all three DAGs. On the other
hand, if for example, G’ = G, we can safely ignore G’ based on Property 3. This is formally
captured by the following definition.

Definition 15. Let G be the set of all valid DAGs for a program according to a set of
constraints, and let G’ be the set of DAGs returned by a segmentation algorithm for that

program. We say that the algorithm preserves optimality iff for any program: G’ is valid
according to the constraints, and VG € G,3G' € G' : G = G'.

Based on Definition 4, a naive optimality-preserving algorithm could proceed as follows:
first, enumerate all valid DAGs in G. Then, cut dominating DAGs based on the dominance
relation. However, due to possible variations of loop tiling/splitting and multi-region seg-
ments, this is practically unfeasible as the set G is too large. Therefore, we propose a much
faster segmentation Algorithm 6 that preserves optimality according to Definition 4 based
on the constraints in Section 6.1, but removes dominating DAGs without enumerating
G; instead, the algorithm explores the segmented tree recursively and removes unneeded

137

Algorithm 6 Segmentation Algorithm

1: function SEGMENTTASK(T)

2 if ro is mergeable then

3 Create DAG G with a single segment comprising rg, return G = {G}

4 Generate DAG set G from 7 = SEGMENT(rg), return G

5: function SEGMENT(r)

6 Initialize R = () > A set of sequential regions.
7 Initialize T to be the subtree whose root is r

8 for all r. € children(r) do

9 if r is sequential and r. is mergeable or splittable loop then

10: Add r. to R

11: else if r, is mergeable then > r is not sequential
12: Replace r. with P = {p}, where p is single-segment path

13: else

14: Replace regions in R with SEGMENTSEQUENCE(R), empty R

15: if r. is a tileable loop then

16: Replace r. with TILE(r.).

17: else if r. is a call to f then

18: Replace 7, with SEGMENT(r)

19: else

20: Replace r. with SEGMENT(7,)

21: If R # (), replace regions in R with SEGMENTSEQUENCE(R)
22: return 7

paths from the path set P of each region sequence R. Note that the length, footprint and
compilation constraints are implied in all the following algorithms whenever a region is
checked to be mergeable, splittable, or tileable and whenever a segment is checked to be
valid.

Algorithm 6 starts with a call to SEGMENTTASK function. Then SEGMENT(rq) is
called on ¢, the top level region of main, hence returning the segmented subtree for the
whole program. Finally, a DAG set G is generated from the segmented tree and returned
as a result of SEGMENTTASK. Note that if ry is mergeable, then the segmented tree is
composed of a single, maximal region sequence R that comprises ry only; hence, in this
case we simply return a DAG with ry as its single segment.

Function SEGMENT(7) segments a subtree of the region tree and returns a segmented
subtree with 7 as its root. The function traverses this subtree from its root r in depth-first

138

order preserving the topological order between sequentially-composed children. If r is a
sequential region, then a set of children in sequence that are mergeable or splittable loops
may be combined in multi-region segments. This is achieved by adding these children
to a region sequence R until a child that is not mergeable or splittable is found or until
all children are traversed. Note that based on the compilation constraints, no children
outside R can be combined with a region in R to form a segment; hence, the obtained R is
maximal. Then, the regions in R are replaced by a set of valid paths P that are generated
using function SEGMENTSEQUENCE(R). If r is not sequential, a mergeable child r. is
directly replaced by a path of one segment, as r. is a maximal region sequence by itself.
If child r. is not mergeable, then it has three cases: 1) r. is a tileable loop, then a set of
paths are generated by tiling the loop using function TILE(r.); 2) r. is a call to a function
f, then the segmented tree of f is duplicated in place of 7.; 3) 7. is not a tileable loop or
a function call, then it is segmented by recursively calling SEGMENT(r..).

Since Algorithm 6 depends on SEGMENTSEQUENCE and TILE, we first state a key
property of both functions, which will be implemented in Algorithms 7 and 8. Since the
functions return a path set P, we begin by defining a concept of domination among paths
and path sets.

Definition 16. Given two paths p,p’, we say that p' dominates p and write p' = p iff:
p.L>pL andp'.I>p.l.

Note that Definition 16 is similar to Definition 3 for maximal paths, except that we do
not consider the last segment, since its length is only relevant in the case of s¢*¢. We can
relate the two definitions through the following lemma.

Lemma 17. Consider two mazimal paths P = {p1, ..., pk, ..y Dnt, P' = {pY, o Phy s DL}
obtained by joining n paths. If pl,.end = p,.end and Yk = 1...n : p} = py, then P' = P.

Proof. Note by construction P.L = >, _, pg.L,P""L =%, | pi.L. From pj > py it
follows p).L > pi.L, hence P'.L > P.L. In the same manner, we obtain P'.I > P.I.
Finally, since p!, and p,, contain the last segments in their corresponding maximal paths P’
and P, p/,.end = p,.end implies P'.end = P.end. Then by Definition 3 we have P’ = P. [

Definition 18. Given two path sets P, P’ for the same region sequence R, we say that
P’ dominates P and write P' = P iff: Vp' € P',Ip € P :p = p, and if reng € R, then
p'.end = p.end.

Property 5. Let R be a region sequence and P’ the set of all valid paths for R. Then
SEGMENTSEQUENCE(R) returns a set of paths P such that P C P" and P' = P.

139

Property 6. Let r, be a tilable loop with N, iterations and P’ the set of all valid paths for
re. Then TILE(r.) returns a set of paths P such that P C P' and P’ = P.

Intuitively, this implies that TILE and SEGMENTSEQUENCE return a set of best path
for the corresponding region sequence / loop. Based on Properties 5, 6, we next prove in
Theorem 22 that Algorithm 6 preserves optimality. We start by showing that the algorithm
can stop traversing the tree at mergeable regions, i.e. if a region is mergeable we do not
need to segment its children.

Lemma 19. Consider a region r that is either mergeable (possibly after splitting) or a tile,
and a valid DAG G’ for the program where r is not assigned to a segment. Then there
exists a valid DAG G where r is assigned to a segment and G' = G.

Proof. Consider any maximal path P’ in G’ of the form P’ = {pyegin, P'; Dena}, where p' is
a path through the descendants of r (note that no path of the form P' = {pyegin,p’} can
exist, since the last region of main r.,4, and thus the program, is a basic block with no
descendants). Note that in case of conditional regions, there could be multiple such p’, and
hence maximal paths P’ with the same pyegir, and penq. Example: consider the conditional
region rJ in Figure 5; a valid DAG G’ has two maximal paths P’ through the descendants
of rg : one for the true path, and one for the false path.

Now consider a valid DAG G obtained by replacing all such maximal paths P’ with a
path P = {piegin, P, Dend }, Where p comprises a single segment that includes r only; note
the DAG is valid since r is mergeable or a tile. Since p has a single segment, it must
hold p.I < 1. On the other hand, since by compilation constraint only tiled loops can be
streamed and must finish with a terminal segment, it must hold p’.I > 1, and hence we
have p’.I > p.I. Based on Property 4, there must also exist one path p’ with p’.L > p.L.
By Lemma 17, we then proved that there must exist a maximal path P’ such that P’ = P.
By definition, this implies G’ > G, completing the proof. m

Lemma 20. Consider a segmented tree T where all region sequences are mazximal, and the
path set P’ for each region sequence R includes all valid paths for R. Then the DAG set
generated from T preserves optimality.

Proof. First note that by definition, each path p € P’ is a sequence of segments, to which
the regions and tiles in R are assigned, i.e. P’ does not include (still valid) paths that
would segment the descendants of a region in R.

By the compilation constraints and definition of maximal region sequence R, it follows
that any region that is in R cannot be merged in a segment with a region that is not

140

in R. Hence, any valid maximal path for the program that includes segments of n region
sequences can be constructed by joining n paths: P = {p1, ..., g, ..., pn }- By Lemma 19, we
can restrict each py to be a path in P’ (where each region r € R is assigned to a segment)
and for each valid DAG G’, generate a DAG G such that G’ = G. By Definition 15, this
means that generating DAGs from 7 preserves optimality. O

Lemma 20 shows that to preserve optimality, it is sufficient to return a single segmented
tree with maximal region sequences, which is what Algorithm 6 builds by construction.
Finally, we show that instead of generating the set P’ of all valid paths for each region
sequence R, we can use a dominated subset P.

Lemma 21. Consider a segmented tree T as in Lemma 20. Let T denote the segmented
tree obtained by replacing, for each maximal region sequence R in T, the set P’ of all valid
paths with a set P such that P C P’ and P’ = P. Then the DAG set generated from T
preserves optimality.

Proof. Since for all regions P C P’, DAGs generated from 7 are still valid. Consider any
DAG G’ generated from 7, and a maximal path P’ of G’ through n region sequences:
P ={p,...,pk, ..., P, }. Since for all regions P’ > P, then for every pj, there exists another
path py in T such that p} = pg, and furthermore p/,.end = p,.end since the last region
sequence in any maximal path must include the last region in the program 7.,4. By
Lemma 17, this means that we can find a maximal path P = {pi,...,px,...,pn} for T
such that P’ = P. Since this is true for any maximal path through a given set of region
sequences, and both 7 and 7 have the same set of (maximal) region sequences, we have
shown that 7 can generate a DAG G such that for every maximal path P € G, there is
a maximal path P' € G’ with P’ = P. This implies G’ > G, and since by Lemma 20
T preserves optimality, it thus follows that the DAG set generated from 7T also preserves
optimality according to Definition 15. [

Theorem 22. If Properties 5, 6 hold, Algorithm 6 preserves optimality based on the foot-
print, length and compilation constraints.

Proof. By construction, the algorithm creates a segmented tree 7 of maximal region se-
quences. Let P’ denote the set of all valid paths for each region R. The actual path set
P used for R is generated at line 12, 16 or 21. At line 12, region r. is not sequential.
Hence, R = {r.} is a maximal region. The algorithm generates a path comprising a single
segment for r., which is the only valid path for R; thus we have P = P’. At line 16 and
21, the path set P is generated by calling either SEGMENTSEQUENCE(R) or TILE(r.); by
Properties 5, 6 and Lemma 21, in both cases P C P’ and P’ = P hold. In summary,
Lemma 21 applies to all maximal regions, hence the algorithm preserves optimality. O]

141

6.2.1 Tiling Algorithm

In this section, we discuss our Algorithm 7 to find optimality-preserving tile sizes for a
2-level tileable loop. While our framework is restricted to 2-level loops (deeper levels of
tiling are uncommon), in general the algorithm could be extended to tile more levels. Note
that 1-level tiling is a special case of 2-level tiling in which the outer loop has a single
iteration.

As discussed in Section 2.3, a 2-level tiling results in the tiles in Figure 2.9 with four
tile timings: 7 repeated M, * My times, t2; repeated M, times, t¥ repeated M, times, and
t2 executed one time. Based on such notation, a path p(kg, k1) that is generated by the
region sequence represented by the tiled loop nest has number of segments:

(M; 4+ 1)(My + 1), (6.1)
and length:

p.L = My * My x max(A, 7 + tseg)
+ My * max(A, 13, + toey)
+ My max(A, 13 + tey)
+ max(A, 3 + teeq)- (6.2)
For a streaming loop, p.I = 1 as only the last segment is terminal. For a non-streaming
loop, all segments are terminal, hence p.I = (M; + 1)(My + 1). We can next rewrite the
length as p.L = tioop + toverheaa + ta such that #;,,, is the original loop time and does not

depend on the tile size, tyerneqq 18 the tiling and segmentation overhead, and ¢ is the total
segment under-utilization:

tioop = No * (N1 * t1 +12), (6.3)
toverhead = No % My s to + (Mo + 1) % ((My 4 1) * (850 + tseg) + tie) s
ta = My x My * max(A — (5 + tseg),0)+
+ M x max(A (tll + tseg), 0)
+ My * max(A — (2" + tseg);0)
+ max(A — (£ + tye,), 0). (6.5)

Note that p.L, as well as the number of segments in p, are non-linear functions in k; and
ko, as the expressions for M; and M, include ceiling functions.

142

Algorithm 7 2-Level Tiling

1: function TILE(r)

2 P = TiLELOOP(r, (0, 0)

3 P = TILELOOP(r, P, 1)

4 return P

5: function TILELOOP(r, P, stream)

6 Compute k5'** based on stream

7 for all £k, < EJ'** do

8 Compute k]"**(k2) based on stream

9 kD (ko) = max{ky | 3 +th,, + teey < A}

10: kl = k11naw’ Z?A = 00, toverhead = 0

11: repeat

12: Generate p(ka, k1) based on stream

13: if p(ka, k1) is valid based on stream then

14: Add p(ka, k1) to P

15: Compute typerhead; ta based on Equations 6.4, 6.5
16: if ta < tAA then

17: gA =tn, 7§overhead = toverhead

18: ki=k —1

19: until kl - klA or gA = 0 or toperhead = foverhead + fA

20: Filter P by removing dominating paths based on Definition 16
21: return P

143

Algorithm 7 takes as input a region r and returns a set of valid paths P for r. The
function TILE calls TILELOOP twice for the case of non-streaming loop (stream = 0) and
the case of streaming loop (stream = 1). The final path set is the union of the returned
paths of both cases. Note that the choice to create a streaming or non-streaming loop affects
the footprint of the generated segments; hence, the value of stream must be considered
in TILELOOP every time the footprint constraint is evaluated. Function TILELOOP starts
by computing the upper limit of the outer loop tile k5" as the maximum kA such that
any tile segment s in p(ks, k; = 1) has length s.l < l,,,4, and footprint s.D < Dgpy,. For
each ko, k7"**(ky) is similarly computed as the maximum k; such that any tile segment s
in p(ko, k1) has length 5. < l,,,, and footprint s.D < Dgpys. A threshold k2 (ky) is then
computed; in Lemma 23, we show that all segments generated from tile sizes (ks, k1) with
ki < k£ (ko) are underutilized, meaning that the length of the segment is less than or equal
to A. Two variables fA, toverhead are used to track the valid solution with total minimum
under-utilization so far in the k; loop such that A is the minimum under-utilization and
toverhead i the overhead due to tiling and segmentation for that solution. Note that the
solution with minimum under-utilization is not necessarily the solution with the minimum
total length for all the tiles. That is due to the non-linear relation between the tile size and
the last tile size. Then, we iterate over k; starting from £{"**. In each iteration, if path
p(ks, k1) is valid we add it to P, then we compute the tiling and segmentation overhead
tovernead and under-utilization ¢, and update toperneaq and ta accordingly. The loop exits if
klA is reached or if the overhead of the current solution toperhead €xc€€ds toperhead + ta, or if
ta of the current solution is 0. Finally, the path set P is filtered and returned, in the same
way as in Algorithm 7. We prove in Lemma 25 that the algorithm preserves Property 6.

Lemma 23. All segments in a path p(ky, ki) with ky < k® (ko) have length A.

Proof. Note that based on the tiling formulation in Section 2.3, t? is increasing in k.
Hence, by definition of k{(k2), it must hold for ky: ¢ + t},, + ey, < A. By definition, we
also have k} < k; and kb < ko. This implies that 2 + tseq, 3 + tseg, 13 + tseg and 130 + Loy
are all smaller than or equal to ¢ +1},,, 4 tse,, and thus A. Since under the fixed-size DMA
assumption, the length of a segment is the maximum of its computation (including t,) or
A, it follows that all segments have length A. O

Lemma 24. Consider two valid solutions (ka, ki) with overhead typerneas and (ko, k7) with
overhead t. assume that both solutions are of the same type (either both streaming,

or both non-streaming). If ki < ki then p(ko, k7).1 > p(ko, k1).1, t! > toverhead, and

overhead =
the number of segments in p(ks, k) is larger than or equal to the one in p(kq, k1)

Proof. The properties for t,yernead @and the number of segments follow directly by noticing

144

that both ,uerneeqd in Equation 6.4 and the number of segments in Equation 6.1 depend on
My, which is non-increasing in k. For what concerns the number of terminal segments,
note that if both solutions are streaming, then p(kq, k7).I = p(k, k1).I = 1, while if both
solutions are streaming, then the number of terminal segments is equal to the number of
segments and hence p(kq, k7). > p(ko, k1).1. O

Lemma 25. Property 6 holds for Algorithm 7.

Proof. Note that r cannot be part of Ry, since the last region in a program must be a
basic block and tiles cannot be merged with other regions. By the compilation constraints,
every generated tile must be assigned to a segment that comprises the tile only. Then
by the footprint and length constraints, the set of all valid paths P’ comprises all valid
streaming paths p(kz, k1) such that ky < k3" and ky < k7" (kq) (where k3 and k7" (ko)
are computed based on the footprint for streaming segments), and all valid non-streaming
paths p(ks, k1) such that ke < k2" and ky < k7"*%(kg) (where k2 and k7 (ko) are
computed based on the footprint for non-streaming segments).

For a given value of k,, define k; as the value of k; for which the algorithm breaks at
line 16. Furthermore, let 1%1 be the value of k; corresponding to fA, toverhead- We prove that
for every k| < ki, there exists a valid k; in ki, ..., k7% such that p(ks, k}) = p(ks, k1). Since
furthermore the filtering on line 20 based on Definition 16 respects Definition 18 (given
that 7 is not Rjus), this implies that Property 6 holds.

We have to consider three cases, based on which breaking condition at line 19 evaluates
to true. Note that we have k; < ky < ky. Furthermore, p(ky, k1) must be valid (otherwise
we would not have set the values of £a, Loverneaq at line 17), and so must be p(ky, k2) (unless
lmaz < A and then there are no valid paths and the lemma trivially holds).

e Assume k; = k. By Lemma 23, all segments in both p(k, k2) and p(kq, k}) have
length A. Given k| < ki, by Lemma 24 the number of segments in p(ks, k) is larger
than or equal to the number of segments in p(ko, k£); hence, p(ko, k}).L > p(ks, k2).L.
Again by k| < k; and Lemma 24, we also have p(ky, k}).I > p(ky, k&).I. Hence,
p(k2> ki) = p(k27 klA)

e If i = 0, then it must hold ¢, > {x. By Lemma 24, we also have t/ ., .. >

foverhqad; therefore, p(kq, k7).L > p(k, l;:}).L. Also by Lemma 24 we have p(ks, k}).1 >
p(ka, k1).1. Therefore p(ks, k7) = p(ka, k1).

o If toverhead Z Eoverhe(id + EAv then ti)ve’r’head + tlA Z toverhead Z foverhead + LfA? this IH}pheS
pka, ky).L > p(kg, k1).L. Since again by Lemma 24 we have p(k, k1).I > p(k, k1)1,
it holds p(ke, k) = p(ka, k1).

145

6.2.2 Region Sequence Segmentation

Next, we consider Algorithm 8 that generates a path set P from a set of sequential regions.
If we do not apply loop splitting, then there are 2! possible paths for m mergeable regions
in sequence. An enumeration of these ways is possible as m is usually small. However,
adding loop splitting greatly increases the number of paths. To tackle this complexity, the
algorithm works by incrementally constructing a set of partial paths. We denote a path
with segments that encompasses all the regions in a region sequence R as a complete path.
Consequently, we define a partial path p as a path that encompasses a sub-sequence R C R
that includes all regions from the beginning of R up to region r. Since a partial path is
still a valid program path (just on a smaller region sequence), we use p./, p.L and p.end
with the usual meaning. However, we also use p.t.,q to denote the WCET of the regions
included in the last segment of p, such that p.end = max(A, p.teng + tsey). The algorithm
iterates over the regions in R, maintaining a set of partial paths . For each region r
with computation time ¢,, a new set of partial paths is constructed by taking each partial
path p in P and adding 7 to it. Note that when doing so, two new partial paths might be
generated in the following way:

1. Add r to a new segment and add it to p. This results in a new partial path p, such
that p,.tena = t., and p,.L = p.L + p,.end. Furthermore, if r is a streaming tile,
then p,.I = p.I, otherwise p,.I = p.I + 1. Note that p, is always valid, since r is
mergeable (or a tile).

2. Add r to the last segment of p, resulting in a new partial path p,,. Note that p,, might
not be a valid path according to the constraints; in particular, tiles cannot be merged
with other regions. Hence, it is only added to the new set of partial paths if valid.
We then have p,,.I = p.1, pp.tend = P-tena + tr, and p,,.L = p.L — p.end + p,.end.

The process continues until after we reach the last region r in R; at that point, the path
in P are complete, so we return a path set P = P. We next prove a set of conditions that
allow us to remove some partial paths from P at each step. Given a partial path p for R,
we say that p generates a complete path p if there are valid segmentation decisions for the
remaining regions in R\ R that result in p.

Lemma 26. Given a sub-sequence R C R and two partial paths p' and p over R, then for
any complete path p’ for R generated from p', there exists a complete path p for R generated
from p such that p' = p if any of the following conditions is satisfied:

146

1. P’ 1 >pd and p'.L — p'.end > p.L — p.end and p' tepg > P-tend.
PI=pl and p'.L > p.L and p'.tepg > Plend > A — tsey

pI>pl andp'.L—p.end>pL and p'tepg < plena and ptepg < A —tsey.

e

]3/.[> }3[and ﬁ/L > ﬁL + A and ﬁ/-tend < Ptend and p/-tend > A — tseg-

Proof. By induction on the number of remaining regions in R \ R. The base case is that
R\ R is empty (no remaining regions); the induction case is that there is at least one
remaining region r that can be added to p’ and p.

Base case: Since R\ R = (), both p and p are already complete paths. Hence, it
suffices to prove that p’.1 > p'.I and p'.L > p.L, from which p’ > p. By cases based on
which of Conditions 1-4 apply between p' and p.

1. We have p'.I > p.I. Furthermore, from p’.L—p".end > p.L—p.end and p' .t .png > P-tena
we obtain p'.L > p.L.

2. We have p’.I = p.I and p'.L > p.L.
3. We have p'.1 > p.I and from p'.L — p’.end > p.L we obtain p'.L > p.L.

4. We have p'.I > p.I and from p'.L > p.L + A we obtain p'.L > p.L.

Induction case: let (P, pn) / (P.,, D)) denote the partial paths generated by adding
r to p/p’; note that p,,/pl, could be an invalid partial path, while p,, / p/, is always valid.
Assuming that one of Conditions 1-4 apply between p’ and p, we then prove that after
adding r, one of Conditions 1-4 apply between p/, and p,, and if p/, is valid, then one
of Conditions 1-4 also apply either between p, and p,, or between p/, and p,. By cases,
based which of Conditions 1-4 apply between ' and p. Note that if §'.t.q > P.tenq, this
implies that D, ;, > De,q. This is always true as p’ and p are constructed from regions in
sequence, and since the execution time of last segment in p’ is larger than the execution
time of last segment in p, then the set of regions and/or split in the last segment of p are

part of the last segment of p'. Hence, D, , > Depq.

end —
1. Since p'.teng > P.tena, then p,, is valid if p/, is valid. We prove that Condition 1

applies between p!, and p,, and if p/, is valid, Condition 1 also applies between p/,
and py,.

147

e Condition 1 applies between p/, and p,,:
Since p'.L — p'.end > p.L — p.end and p'.tepg > P.teng, then Equation 6.6 holds:

p..L—p. .end> pp.L — ppm.end (6.6)
And since p'.1 > p.I, then Equation 6.7 holds:
Prod > Py 1 (6.7)
And since p'.tepg > Potend, then by adding ¢, to both sides Equation 6.8 holds:
Pra-tend = Dm-tend (6.8)

Since Equations 6.6, 6.7 and 6.8 hold, then Condition 1 applies bewteen p/, and
DPm-

e Condition 1 applies between p!, and p,:
Since p'.L — p'.end > p.L — p.end and p .tepg > P.tend, then Equation 6.9 holds:

p..L —p,.end > p,.L — p,.end (6.9)
And since p'.1 > p.1I, then Equation 6.10 holds:
P I > pp.d (6.10)

And since pl,.teng = Dn-tena and Equations 6.9 and 6.10 hold, then Condition 1
applies bewteen p/, and p.

2. Since p'.tena > D.tend, then p,, is valid if p/, is valid. We prove that Condition 1
applies between p/, and p,, and if p/, is valid, Condition 2 also applies between p/,
and p,,.

e Condition 2 applies between p/, and p,,: Since p'.I = p.I, then Equation 6.7
holds.

Since p'.tendg > Potend > A — tsey, Equation 6.8 holds. Since p'.teng > ptena >
A — 154, then Equations 6.11 and 6.12 hold:

Dip-end — P .end = t, (6.11)

Dm-end — p.end = t, (6.12)

148

From Equations 6.11 and 6.12 and since p’.L > p.L, hence p'.L — p'.end +
pl.,.end > p.L — p.end + p,,.end and Equation 6.13 holds:

DL > . L (6.13)

Since Equations 6.7, 6.8 and 6.13 hold, then Condition 2 applies bewteen p,,
and p,.
e Condition 1 applies between p/, and p,:

Since p'.I = p.I, then Equation 6.10 holds. And since p’.L > p.L, then Equa-
tion 6.9 holds. Since P, .teng = Dn-tena and Equations 6.9 and 6.10 hold, then
Condition 1 applies bewteen p/, and p,.

3. Since P .tepg < P.tena, then p,, may not be valid. We prove that Condition 1 applies
between p/, and p,, and if p/, is valid, Condition 1 also applies between p/, and p,.

e Condition 1 applies between p/,, and p,:

Since p.,,.end > p,.end, then p'.L — p'.end + pl,.end > p.L + p,.end and Equa-
tion 6.14
Do L > D L (6.14)

Since p'.1 > p.I, then Equation 6.15 holds:
Do d > DI (6.15)
And since, p'.tenq + t, > t,, then Equation 6.16 holds:
Protend < Dn-tend (6.16)

Since Equations 6.14, 6.15 and 6.16 hold, then Condition 1 applies bewteen p,,
and p,.
e Condition 1 applies between g/, and p,:

Since p,.end = pl.end and p'.L — p'.end > p.L, then Equation 6.9 holds. And
since p’.1 > p.I, then Equation 6.10 holds. From Equations 6.9 and 6.10 and
since p,.end = p.,.end, then Condition 1 applies bewteen p/, and p,,.

4. Since P'.teng < p.-tend, then p,, may not be valid. We prove that Condition 1 applies
between p/, and p,, and if p/, is valid, Condition 1 also applies between p, and p,,.

149

e Condition 1 applies between p/, and p,:
Since p'.] > p.J and p'.L > p.L+ A and p't.pq < Pteng and p'tepg > A — ey
Since p,,,.end > py.end, then Equation 6.17 holds:

p..L—7p end+ p.end > p,.L — py.end + A (6.17)
And since p'.tepg > A — tgey, then Equation 6.18 holds:
A — P tena <0 (6.18)
From Equations 6.17 and 6.18, then Equation 6.19 holds:
oL —p. .end > p,.L — pp.end (6.19)

And since, p'.1 > p.I, then Equation 6.14 holds.

From Equations 6.19 and 6.14 and since P, .tend > P.,-tend, then Condition 1
applies between p/, and p,.

e Condition 1 applies between p/, and p,:
Since p,.end = p,.end and p'.L > p.L + A then Equation 6.9 holds. And since

p'.I > p.I, then Equation 6.10 holds. From Equations 6.9 and 6.10 and since
Dl tend > D, -tena, then Condition 1 applies between p, and p,.

]

Based on Lemma 26, if any of the conditions apply to two partial paths p and p’, then we
can safely cut p’ as one of the complete paths obtained from p is guaranteed to be better
than any complete path that we can obtain from p’. We next present the complete region
sequence segmentation algorithm.

Algorithm 8 traverses the regions in R in topological order generating partial paths using
the current region r. If r is not a splittable loop, then new partial paths p,, and p, are
generated by adding r to each previous partial path in function CREATEPARTIALPATHS.
The new partial paths are placed in Py, which is then filtered based on Lemma 26
before becoming the set of partial paths P at the next iteration. If r is a splittable loop,
then before generating a new partial path, the loop must be split to pre-loop region 7,
mid-loop region 7, and post-loop region r;. Note that all combinations of pre-loop k, and
post-loop k; splits are visited. For each (k,, k), partial paths P, for r, are generated
using CREATEPARTIALPATHS, then r; is tiled and each tile path is sequenced with the

150

Algorithm 8 Segment a Sequence of Regions

Input: A set of sequential regions R and the set of last segment regions Ry,
1: function SEGMENTSEQUENCE(R)

3
4
5
6:
7
8
9

10:
11:
12:
13:

14:

15:
16:
17:

else

18:
19:

20:

21:
22:

23

24:
25:
26:
27:

28:

P = [p = (Z)], Plast = 07 Pnemt = Q)y Rlast = Rlast
for all r € R do > Traverse the sequence in topological order.
if r is a splittable loop then
for all k,, k; do:

Split r to rp, ¢ and r
Proop = CREATEPARTIALPATHS(7,, P)
Filter 75[00;7 using Lemma 26
Proop = all path by joining Py, with TILE(ry, N, — k, — k)
Proop = CREATEPARTIALPATHS(7, Ploop)
if 7y € Rjus then
Create s from all regions in Rjqs
For each p € Piypp, create pras: by adding s to p, add pras t0 Past

Pnewt — 7Dnext U Ploop

> 1 is a mergeable region that is not a splittable loop

Preat = CREATEPARTIALPATHS(r, P)
if r € Rj,s then

Create s frgm all regions in Ry, B
For each p € P, create P by adding s to p, add Pies t0 Plast

Filter P,,c.r using Lemma 26, P = Prests Prewt =0, Riast = Riast \ 7
Filter P by removing dominating paths based on Definition 16
return P = (Pjus if R D Ry else P)

. function CREATEPARTIALPATHS(7, P)

ﬁtmp - @

for all pin P do B
Create p,, by adding r to the last segment in p, add py, t0 Py, if valid
Create p,, by adding new segment using r to p, add p, to Py

return Py,

151

paths in 75100p; note this is equivalent to adding each tile region to a segment and adding
the segment to each partial path, i.e., following the rule for constructing new partial paths
Pn- Then, partial paths are created using r, for all paths in 75100p. All paths 751001, are finally
accumulated in P,e.:.

The final complexity regards the case where R O Rj,s. In this case, Definition 18
requires us to consider all possible combinations of the last segment s*¢. If the current
region r € Ry, and r is mergeable, there is a last segment "¢ composed of all regions in
Ry.s: such that Ry, is the set of all regions starting from r to the end of Rj,. Then s
is combined with partial paths P to form complete paths in Py.. If r is a splittable loop,
then the part that contribute to s*¢ is the post-loop split (tiles cannot be merged with
other regions). Hence for each (k,, ks), we generate the partial paths using r, and add tile
paths from 7, then a last segment 5" is composed from the post-loop split 7, and all the
regions after r until the end of Rj,y. Complete paths are generated by adding s to each
partial path in Py, to produce a complete path in Pj,e. Finally, the path set P for R is

Prast if R D Ry, otherwise it is P.

Lemma 27. Algorithm 8 satisfies Property 5.

Proof. By construction, the algorithm explores all possible combinations for the parameters
of a splittable loop, all possible valid assignments of sequential regions in R to segments,
and tiling decisions based on Algorithm 7 (note that on lines 12, 18, adding the regions
in R C Rige to a single segment s"¢ must be valid based on the definition of Riast)-
Therefore, it must hold P C P’. It remains to show that if a path p’ is discarded (i.e., the
path is in P’ but not in P), then there exists a path p such that p’ = p, and if R O Ry,
then p’.end = p.end. A path can be discarded for three reasons: (1) Algorithm 7 removes
a tiling solution; (2) a partial path is discarded based on the conditions in Lemma 26; (3)
a complete path is filtered based on Definition 16.

Case (1): Assume that Algorithm 7 removes a path p} from the returned path set; by
Property 6, it must return another path p; such that p; = p;. Then if we consider any com-
plete path p’ = {p1, ..., p}, ..., pn} for R, there must exist another path p = {p1, ..., pt, ..., Pn },
and by Lemma 17, it must hold p’ > p. Next consider the case R O Rj,s: by the compi-
lation constraints, a tiled loop cannot generate the last segment in the program (the last
region is a basic block, and tiles cannot be merged with another region). Therefore p,, is
not empty and it must hold p’.end = p.end = p,.end.

Case (2): We first consider the sub-case when Ry, is not contained in R. If a partial
path is discarded, then a path p’ in P’ might be removed from P; however, by Lemma 26,
there must be a path p € P such that p’ = p. Next, consider the sub-case where R D Rj.q.

152

Each complete path p’ can then be written as p’ = {p’l, {se”d}}, where s is a segment

made of the regions in some Rj.s; C Ryus, and p) is a partial path for R\ Ryusi. Then by
applying Lemma 26 to R\ Ry, if a partial path is discarded causing p} to be removed,
then there must still be a path p; for R\ R such that p} = p;. This implies that we
can find a complete path p = {pl, {se”d}} in P, where by Lemma 17 it holds p’ > p, and
p.end = p.end = 541,

Case (3): Note this applies only if Ry, is not contained in R. It thus suffices to notice
that by Definition 16 p’ = p must hold.]

6.2.3 Optimal Task Set Segmentation

Based on the analysis Properties 2, 3 introduced in Section 5.4 and segmentation Algo-
rithm 6, we now show that we can obtain an optimal task set segmentation using Algo-
rithm 9. The algorithm recursively calls function SEGMENTTASKSET for task index ¢ from
1 to N by keeping track of the DAGs G,...G;_ selected for the previous tasks. The
function maintains a maximum segment length [™** which is provided as a constraint to
Algorithm 6 to generate a DAG set G, for 7;. If i < N, the function iterates over all possible
G; € G;; the schedulability analysis is used to determine [!™8* the maximum schedulable
value of [!™* and the function is then invoked recursively for task i + 1 after updating
[™* hased on the computed value. Note that if G; is not schedulable, then we obtain
[™2% < 0; hence, there will be no valid DAG for 7,41 (G; is empty), and the recursive call
will immediately return. Once we reach task 7y, the function checks if 7y is schedulable
for any DAG Gy € Gy, in which case we terminate by finding a solution {G1,...,Gn}. If
no solution can be found, the algorithm eventually terminates on Line 2.

We now prove the optimality of Algorithm 9 for a program segmentation obeying the
footprint and compilation constraints in Section 6.1. We start with a corollary.

Corollary 1. Consider two DAGs Gy, G’ for task 7; where 1 < j < and G'; = G;. Let
[Lmax lﬁma"/ be the mazimum value of 1™ under which 7; is schedulable for G; and G,

—_ /
respectively, according to an analysis satisfying Properties 2, 3. Then [}max > [lmax

Proof. By Property 2, I[!™# and [!™a% are well defined (i.e., there must exist such maximum

!
values). Since 7; is schedulable with Jimax < [imax for G, based on Property 3 it is also

., O T
schedulable with [{max < jimax for G: this implies [{max > [imax O

153

Algorithm 9 Task Set Segmentation

Input: Task set I', source code for each task in I
1: SEGMENTTASKSET(T, 7, +00, 0)
2: Terminate with FAILURE

3: function SEGMENTTASKSET(L, 3, ™, {G4,...,Gi_1})
4: Generate G; = SEGMENTTASK(7;) using Algorithm 6 based on length constraint
lmax

5 if © < N then

6 for all G; € G; do L

7: Compute the maximum value [!™2 of [!™* hased on analysis
8 SEGMENTTASKSET(T, i + 1, min ({™> [!ma) {Gy,...,G;})

9

else
10: for all Gy € G; do
11 If analysis returns schedulable on {Gj, ..., Gy}, terminate with SUCCESS

Theorem 28. Algorithm 9 is an optimal segmentation algorithm for a multi-segment con-
ditional streaming task set I according to any (sufficient) schedulability analysis satisfying
Properties 2, 3 and based on the footprint and compilation constraints.

Proof. We have to show that if there exists a set of segment DAGs G, ..., G’y for I that is
valid according to the footprint and compilation constraints and is schedulable according
to the analysis, then Algorithm 9 finds a (same or different) DAG set Gy,...,Gy that is
also valid and schedulable.

By induction on the index i. We show that for every i, there exists a recursive call
sequence of function SEGMENTTASKSET that results in a DAG set Gy, ...G; such that
G’ = Gj for every j = 1...4; by Property 3 with i = N, this proves the theorem (note
that 7y is schedulable by Property 3, while all other tasks are schedulable because the

—, —
recursion reaches G). We also show that for every j = 1...4 it holds lé»ma" < léma", where
B —
lémax is the maximum schedulable value of l;max computed by the analysis with DAGs

1G5, and léma" is the same value for DAGs G, ...,Gj.

Base Case (i = 1): note [™* = 400, meaning that only the footprint and compilation
constraints apply when invoking Algorithm 6. Hence, by Definition 15 the algorithm must

find a DAG G; € T such that G} = G;. By Corollary 1, this also implies lllmaxl < [imax,

Induction Step (i = 2...N): consider the recursive call sequence that results in G’ =

154

—/ —
G; and lémax < lémax for each j = 1...i—1 (such sequence exists by induction hypothesis);

we have to show that we can find a DAG G; € G; such that G = G; and [! max’ < [lmax

Based on the recursive call at line 7 of the algorithm, it must hold: [™** = miné;ll lé.ma".
. —_
Define [™*" = min’_} ['™»; since the task set is schedulable for G}, ..., Gy, the maximum

length of any segment in G/ is at most [™*'. By induction hypothesis, it must be /™" <
[™** which means that the maximum segment length in G’ is also no larger than [™*.
Hence, if we define G; to be the set of all valid DAGs for a program according to the
constraints with maximum segment length {™**, we have G € G;. By Definition 15, this
implies that Algorithm 6 finds a valid DAG G; with maximum segment length /™ such

that G, = G;. [max’ < [lmax then again follows by Corollary 1. O

Complexity: since it iterates over all G; € G;, Algorithm 9 is exponential. Intuitively,
it might seem sufficient to only use the DAG in G; that results in the highest value of [ima;
however, given two DAGs G; and G} with [}max > lﬁma",, it might be that LP®* > [max
that is, G; results in larger slack for 7;, but it increases the interference caused by 7; on
lower priority tasks based on Equations 5.6. In this case, we have to test both G; and
G'. However, if L < L™ then we can safely ignore G. As we show in Section 6.4,
in practice this results in an acceptable runtime considering the algorithm is an offline
optimization.

Composability and Generality: note that the proposed conditional, streaming exe-
cution model is a generalization of the previous 3-phase model in [136, 152] and related
papers; hence, it is also optimal for such approaches. In fact, our algorithm is optimal
for any schedulability analysis satisfying Properties 2, 3. As we (re-)compile all tasks, our
approach requires the source code of all applications in the system. Since Algorithm 9 seg-
ments tasks in priority order, any code change in a program will not affect higher priority
tasks; however, it might force a recompilation of all lower priority tasks. This might be
undesirable, especially if the priority ordering does not match criticality levels. Therefore,
in Section 4.9 we also explore a simpler and faster (but non-optimal) heuristic that uses
the same value of [™** for all tasks, thus ensuring that each program can be compiled
independently.

6.3 Segmentation for the Variable-size DM A Model

In the previous section, we pursued an optimal approach by segmenting the tasks one at a
time and propagating a maximum length for a segment from the higher priority to the lower

155

priority tasks to control the blocking time. This was possible as the DMA time is constant
and hence it is not part of the optimization problem. So, the optimization was focused on
the segment length; and the approach was to maximize the segment length for the task,
as this incurs less overhead and less blocking from lower priority tasks. For the variable-
size DMA model, both the segment length and the DMA time of the segments affect the
schedulability of the task set. In this case, we cannot rely on maximizing the segment
length as this may increase the memory length also creating more interference on the lower
priority tasks. Also, having a limit on the segment length does not necessarily reflect the
limit on the memory time. Therefore, a global optimization problem that segments all
tasks together is required. However, such an optimization problem is too complicated to
formulate and solve. Therefore, we propose a set of heuristic algorithms to tackle this
complexity. The intuition behind these heuristics is as following:

e Minimize the number of segments whenever possible to avoid the overhead of seg-
mentation, especially terminal segments to limit the blocking from lower priority
tasks. This means that streaming segments are better than terminal segments unless
they introduce high under-utilization. That is, streaming segments cause less block-
ing from lower priority tasks; but if the streaming memory time is larger than the
segment computation time, then the task suffers under-utilization.

e Avoid small segments and large memory times as this can lead to segment under-
utilization, i.e. if a small segment executes in parallel with a large DMA transfer, the
segment has to wait for the DMA time to finish before switching to the next segment.

e Segments with similar sizes are better than segments with different sizes. The vari-
ations in the segment sizes can be quantified using the standard deviation. This
follows the interference computation in Algorithm 5 where segment lengths are listed
along with DMA lengths and the highest elements are chosen. So, if two paths have
similar lengths (path length is the summation of segment lengths), then segments
with more balanced lengths are better than unbalanced lengths as they avoid being
dominated by DMA lengths.

In this section, we start with the proposed iterative algorithm for the task set segmen-
tation. Then, we detail the heuristics for the program segmentation including loop tiling
and region sequence segmentation.

The heuristics are controlled with some parameters that work as knobs to tune how the
segmentation space is explored. More specifically, we use a maximum number of attempts
for segmentation Ngypemprs, @ memory limit factor o« < 1.0, and a step for splitting and

156

tiling loops ksip. We explain the role of each parameter in the context of their usage in
the algorithms.

6.3.1 Task Set Segmentation

In order to optimize the segmentation of the task set, we need to optimize the components
that contribute to the response time of the tasks: segment lengths and the memory times
of the segments. So, we follow an iterative approach in Algorithm 10 by tuning the mem-
ory times through iterations and optimizing the segment lengths in each iteration. Each
iteration, we try to segment the task set giving a limit on the memory time, i.e. load or
unload time, of each segment m™%*. Note that each task segmentation generates a single
DAG from the segmented tree, unlike Algorithm 6 that returns a set of DAGs. We start
with unlimited m™** and try to segment the tasks. If the segmentation fails at task ¢, it
returns m as the maximum load or unload time from the tasks up to task ¢. Then, m™"
is computed as a fraction o of m and the segmentation is repeated giving the new m™**
until the task set is schedulable or until Ngemps attempts are made. If no segmentation
is found, the algorithm declares failure.

In each iteration, each task of the task set is segmented with a maximum segment
length ™. Computing [is not straightforward as in the fixed-size DMA model. So,
we derive an estimate for {"™%* using Algorithm 11. The algorithm uses the points of interest
as computed in Section 5.4.1. Then, it iterates over each point ¢ in S; computing ! .

The final ™** is the maximum [’ over all points. For each point, the algorithm iterates
over the combinations of all paths P; of the task’s DAG and all paths P of interfering jobs.
For each combination, we compute [7*"; then [["** is obtained as the maximum over all
combinations. To estimate [5*, Algorithm 5 is used to get the M list after assuming 0 for
all the lower priority computation and memory times. This implies that only the higher
priority task and the task under analysis will contribute to M. After that, the elements in
the list are used to compute H’ which ignores the lower priority blocking. Then, we use
H!+ B; +zx}}** <t to compute (3%, such that x is the number of blocking intervals and
B; = 1p* if 1 < N or 0 otherwise. This assumes that lower priority blocking is z*[}7** with
x = P.I as initial value. The computed [7** might not be correct if there are elements
of M after the first numH — |[NPS| — z elements that are higher than [7** and hence
will push the I3%* elements after them in the list and hence they contribute to H. The
number of elements x of [7* is decreased for each element that is larger than it. The
process continues until either z becomes 0 and hence [7** becomes the last element in the
complete M list; or until the list is stable, i.e. no more elements can push [down the
list.

157

Algorithm 10 Task Set Segmentation

Input: Task set I', source code for each task in I
1: m™** = 400, attempt = 1
2: while attempt < Ngemprs and m™** > 0 do
3 m = SEGMENTTASKSET(T, 1, 4+o00, m™ ()
4: m™* = a xm, attempt = attempt + 1
5: Terminate with FAILURE
6:
7. function SEGMENTTASKSET(T, 4, ™ m™** {G4,...,G;_1})
8 Generate G; = SEGMENTTASK(7;) using Algorithm 12 based on length constraint
[™* and memory transfer limit m™**
9: if 1 == N then

10: if The analysis returns schedulable on {G,..., Gy} then
11: Terminate with SUCCESS

12: else

13: return m — maximum load or unload time

14: else

15: [imax — COMPUTELMAX(G,)

16: if lﬁma" < (0 then

17: return m = maximum load or unload time

18: SEGMENTTASKSET(T', i + 1, min ({™> [!™>) {Gy,...,G;})

158

Algorithm 11 [™** Computation

1: function COMPUTELMAX(G;)

2 [mer =0

3 Compute the set of points S; as in Section 5.4.1

4 for allt € S; do

5: ["* = 400

6 for all P, € G;,UP € P do

7 Assume that /™8 = 0, /'™ = [@'™> = () in Algorithm 5 to compute H;
8 In COMPOSETIMES in Algorithm 4, obtain list M.

9: Compute HTP' as HTP' = Y - NPs=e pp,

10: Compute H = HNP + HT P’

11: Set e =P, 1, k=0

12: repeat

13: stable = 1

14: Compute 5% = % if + < N, otherwise (3" = t_le{
15: while MnumH—|NPS|+k > l:na:t and z > 0 do
16: Hz/ = HZI + MnumH7|NPS|+k7 r=x—1

17: l}gaz = MnumH—|NPS|+k

18: k=k+1, stable =0

19: until stable =1

20: IBer = min(Ip*®, [rer)

21: [mer = max((* M)

22: return [

159

6.3.2 Segmentation Algorithm

Algorithm 12 Segmentation Algorithm

1: function SEGMENTTASK(T)

2 if 7o is mergeable and (ry is a basic block or satisfies m™*" constraint) then

3 Create DAG G with a single segment comprising rg, return G

4 Generate a single DAG G from 7 = SEGMENT(r), return G

5. function SEGMENT(r)

6 Initialize R = () > A set of sequential regions.

7 Initialize T to be the subtree whose root is r

8 for all r. € children(r) do

9 if 7 is sequential and (7. is mergeable and satisfies m™*" constraint) or r. is a
splittable loop then

10: Add r. to R

11: else if r. is mergeable and (r. is a basic block or satisfies m™%* constraint)
then > r is not sequential

12: Replace r, single-segment path p

13: else

14: Replace regions in R with SEGMENTSEQUENCE(R), empty R

15: if r. is a tileable loop then

16: Replace 7. with TILE(r.).

17: else if r. is a call to f then

18: Replace 7, with SEGMENT(r)

19: else

20: Replace r. with SEGMENT(7,)

21: If R # (), replace regions in R with SEGMENTSEQUENCE(R)
22: return T

Algorithm 12 is the task segmentation algorithm. It is similar to Algorithm 6 with the
following differences: 1) a mergeable region has to be either a basic block or to satisfy the
memory transfer limit m™* to be replaced with a path of a single segment or to be added
to a region sequence; 2) functions TILE and SEGEMENTSEQUENCE return a single path;
3) it returns a single DAG from the segmented tree. For loop tiling and region sequence
segmentation, we propose two heuristics, Algorithm 13 and Algorithm 14.

160

2-Level Loop Tiling

In Algorithm 13, our purpose is to generate a single path for the loop by applying 2-level
tiling. The algorithm is invoked by calling the TILE function for the loop region. The
function TILE starts by calling TILELOOP to generate a path for the loop by streaming
the tile segments. If no path is found, TILELOOP is called again to segment the loop
without streaming the segments. Then, the final path is returned. In function TILELOOP,
we iterate over the two loop levels similar to Algorithm 7. For each ky and ky values, a path
is generated and added to the path set P if it is valid. Then, the tile size is decremented
by a step value kg, which is an arbitrary value to control the algorithm speed. The path
set P is then filtered and one path is chosen if P is not empty. The filtration criteria is
based on three factors:

o [f the function is called with stream = 1, then P is filtered using a streaming thresh-
old. The streaming threshold thg., = s.c/s.l is a threshold on the ratio between the
streaming segment computation time s.c and the streaming segment length s.l of a
complete tile segment. We found by experiment that the streaming case performs
better for 0.6 > ths, < 0.7. The intuition for this threshold is that if the computa-
tion time s.c is lower than the streaming time s.st, then the segment is underutilized.
This implies that the total time of the path also increases revoking the benefit of
streaming.

e The path set is filtered to conform to the memory transfer limit m™** used in the

iterative task set algorithm. That is, each segment with unload time s.ul and load
time s.ld should be less than or equal to m™*". This constraint is not strict as
violating it does not necessarily lead to the failure of scheduling the task set. This
implies that if no paths are found to satisfy this constraint, the closest path to this
limit is chosen.

e The last filter for the path set is based on the number of segments and the variations
of the segment lengths in the path. This means that the paths with the lowest number
of segments are kept. If multiple paths have the same number of segments, then the
paths with the least variation in the lengths of the segments are kept.

Region Sequence Segmentation

Algorithm 14 takes a region sequence as an input and generates a single path. The heuristic
works similar to Algorithm 8 by iterating over the regions in the sequence and generating
partial paths. However, it differs in the following aspects:

161

Algorithm 13 2-Level Tiling

. function TILE(r)
p = TILELOOP(r, 1) > Try to stream first
if p does not exist then
p = TILELOOP(r,0) > Try without stream

1
2
3
4
5: return p
6: function TILELOOP(r, stream)
7
8
9

P=0
Compute ko = k5'** based on stream
repeat
10: Compute k; = k7"**(ks) based on stream
11: repeat
12: Generate p(ks, k1) based on stream
13: if p(ko, k1) is valid based on stream then
14: Add p(kq, ky) to P
15: k1 = k1 — Kstep
16: until k; <0
17: ko = ko — Kstep
18: until k; <0
19: if stream then
20: Filter P using streaming threshold th,.
21: Filter P using memory transfer limit.
22: Filter P based on number of segments, then minimum segment variation.

23: return First p € P

162

e Tiling a loop returns a single path which results in a reduced number of partial paths
to propagate through the sequence.

e The partial path set is filtered at two positions in the algorithm: the path set gener-
ated for each value of k, before joining them with the loop path, and the final path
set is filtered after the last region from which a single path is chosen and returned.

e Filtering a path set in this algorithm depends on: number of segments, path length
and the segment length variation. That is, a path with fewer segments is better;
if two paths have the same number of segments, then the path with lower sum of
segment lengths is better; finally if two paths have the same number of segments
and the same path length, then the path with less variation in the segment length is
better.

6.4 Evaluation

The evaluation of the segmentation algorithms target a simple MIPS processor model with
b-stage pipeline and no branch prediction similar to the model used in Chapter 4. Note
that the WCET of each region in a program is statically estimated using the simple MIPS
processor model. We assume that there are data ScratchPad Memory (SPM), and code
SPM and that the task code fits in the code SPM.

Benchmark Description Suite LOC (]g);t;) (‘2;(2112 ’SI;
adpcm_dec | ADPCM decoder TACLeBench | 476 404 176947
cjpeg_transupp | JPEG image transcoding rou- | TACLeBench | 474 3459 12083696011

tines
fft 1024-point FFT, 13 bits per | TACLeBench 173 24572 89540809
twiddle
compress Compresses a 128 x 128 pixel UTDSP 131 136448 168984645
image
Ipc Linear predictive coding (LPC) UTDSP 249 8744 233390
encoder
spectral Calculates the power spectral UTDSP 340 4584 109074793
estimate
disparity Compute depth information us- | CortexSuite 87 2704641 339361377
ing dense stereo

Table 6.1: Evaluation Benchmarks

163

Algorithm 14 Segment a Sequence of Regions

Input: A set of sequential regions R and the set of last segment regions Ry,

1: function SEGMENTSEQUENCE(R)
P =[p=0], Poext = 0
3 for all r € R do > Traverse the sequence in topological order.
4 if r is a splittable loop then
5 for all k,, ks with step kg, do:
6: Split r to rp, r; and 7y
-) _
8

N

Pioop = CREATEPARTIALPATHS(r, P)
Filter Pjo0p based on number of segments, then path length, then segment
length variation.

9: Proop = all path by joining Py, with TILE(r;)

10: Plroop = CREATEPARTIALPATHS(75, Ploop)

11: ﬁnezt = 75neact U 75loop

12: else > r is a mergeable region that is not a splittable loop

13: Prest = CREATEPARTIALPATHS(r, P)

14: 75 = ﬁnezt

15: Filter P based on number of segments, then path length, then segment length
variation.

16: return First p € P
17: function CREATEPARTIALPATHS(r, P)

18: Prmp =0)

19: for all pin P do)

20: Create py, by adding r to the last segment in p, add py, to Py, if valid
21: Create p,, by adding new segment using r to p, add p,, to Py

22: return P,

164

We evaluate the segmentation and scheduling algorithms using a set of synthetic and
real benchmarks. We used applications from UTDSP [110], TACLeBench [15] and Cortex-
Suite [138] benchmark suites. The applications are chosen to represent a variety of sizes,
complexities and data footprints (see Table 6.1). The applications are used to generate
sets of random tasks. Each task set is composed of a random number of tasks between
5 and 15 tasks where each task is an application from the chosen benchmarks. Given a
system utilization and the number of tasks, the utilization of each task is generated with
uniform distribution [20], and then a period is assigned to each task. The period of 7;
is computed as u; * ¢; where u; is the generated utilization and ¢; is the WCET of the
application if executed without premption from the SPM. We assume deadlines equal to
periods. Schedulability tests are conducted for 100 task sets.

We report the results in terms of the system schedulability and the weighted schedu-
lability metric. The system schedulability is the proportion of the schedulable task sets
out of the total tested task sets. We define the weighted schedulability p of a system as:
= W where sched(u) is the system schedulability for system utilization u. In
this metricu, weighting individual schedulability results by u reflects the intuition that high-

utilization task systems have higher “value” since they are more difficult to schedule [17].

6.4.1 Fixed-size DMA Model

For the fixed-size DMA case, we assume that the DMA needs 1 cycle per word (4 bytes).
We vary the size of the SPM from 2 kB to 512 kB. The segmentation overhead ¢4, includes
the DMA intialization and the context switching, and it is assumed to be 100 cycles.

We compare our optimal algorithm with ideal, greedy and heuristic algorithms. The
tests are done with and without multi-segment streaming to highlight its merit to the
system schedulability. The ¢deal algorithm assumes no restriction on SPM size and that
the program code can be segmented at any arbitrary point without any increased overhead.
Hence, the only constraint is [, Which is produced from Algorithm 9 . The greedy and
heuristic algorithms do not depend on Algorithm 9 to drive the segmentation of each task
based on the schedulability analysis. The greedy algorithm resembles the algorithm used
in [99] and assumes ., = oo for all tasks. The heuristic algorithm uses the same [,,,, for
all tasks by varying [,,., between A and 10 x A with step 0.5 x A, and picking the value of
l;max that achieves the highest weighted schedulability.

!Note that the ideal algorithm is still compliant with the 3-phase model, i.e. the next segment has to
be decided and loaded while the current segment is executing.

165

4096)

Schedulability

(SPM Size = 16 kB | A

16384)

Schedulability

(SPM Size = 64 kB | A

65536)

Schedulability

(SPM Size = 256 kB | A

1.0 1

IdealStreaming

———— ldeal

0.8 1

0.6 ——-@-—-- OptimalStreaming
—&—— Optimal
——-%--—— HeuristicStreaming

041 — % Heuristic
== —— == GreedyStreaming

0.2 4 =——4—— Greedy

0.0 T — _— .

0.2 03 0.4 05 0.6 0.7 0.8 0.9
Utilization

1.0

0.8 4 —====—- IdealStreaming
———— |Ideal

0.61 —— -8 —- OptimalStreaming
—&—— Optimal
——-%-=—= HeuristicStreaming

0.4 ———— Heuristic
—————— GreedyStreaming

0.2 —*—— Greedy

.-——4-—-—‘“'_—*\,,__—*—4,—_‘_ | o |

0.0 1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Utilization
1.0 1

0.8 4 =—===—=- IdealStreaming
————— |deal

0.6 - —— -8 —- OptimalStreaming
——&—— Optimal
——-%-—= HeuristicStreaming

041 — % Heuristic
— = ———=— GreedyStreaming

0.2 4 =——+—— Greedy

e S Y - - N |
0.0 1 - = e - —

0.2 0.3 0.4 0.5 0:6 0.7 0.8 0.9
Utilization

Figure 6.3: Fixed-size DMA: Schedulability vs Utilization

166

Weighted Schedulability

107 gee=e====p—
0.8 -
0.6 -
IdealStreaming
—e—— |deal
—— - —— OptimalStreaming
0.4 1 ——&—— Optimal
——-¥-—-— HeuristicStreaming
———— Heuristic
0.2 - —————— GreedyStreaming
——t— Greedy
0.0 * T I A S T H|
22 23 24 25 26 27 2° 29

SPM size (kB)

Figure 6.4: Fixed-size DMA: Weighted Schedulability VS SPM Size (¢,., = 100)

167

Weighted Schedulability

1.0

g T Tt —
—_—

0.8 1
0.6
IdealStreaming
—f— |deal
0.4 - = === == OptimalStreaming
—f—— Optimal
= === == HeuristicStreaming
e HeoUristic
i == GreedyStreaming
0.21 i Greedy

d——-—i——~-*_—*.
el

— Sy -
- — b I
0.0 A

21 22 23 24 25 26 27 28 29
SPM size (kB)

Figure 6.5: Fixed-size DMA: Weighted Schedulability VS SPM Size
(tseg = 1000, footprint > 24 kB)

168

Figure 6.3 shows the system schedulability for the four algorithms with and without
streaming for SPM sizes of 16, 64 and 256 kB. The graphs show that the greedy algorithm
performs significantly worse than the heuristic and the optimal algorithms, and that the
greedy algorithm does not benefit from segment streaming. The optimal algorithms are
prominently superior to the heuristic algorithms with and without streaming for different
SPM sizes. The graphs also show that using segment streaming can improve the system
schedulability for the ideal, optimal and heuristic algorithms compared to the case with-
out streaming. This is more significant for high system utilization. This is confirmed in
Figure 6.4 that shows the weighted schedulability for the compared algorithms for differ-
ent SPM sizes . Note that the ideal algorithm may suffer from segmentation overhead,
the interference and blocking overhead from other tasks in the system, and also segment
under-utilization. This leads to lower schedulability at high system utilization.

We can notice in Figure 6.4 that the weighted schedulability does not increase as SPM
size increases. This might be counter-intuitive as increasing the SPM size allows more data
to be loaded for each segment which leads to decreased segmentation overhead. However,
the tasks suffer from a higher under-utilization penalty as A increases. The second effect
is dominant since the segmentation overhead is relatively small and 4 benchmarks have
data footprints of less than 8 kB. For this reason, we show in Figure 6.5 the weighted
schedulability using only applications with data footprint greater than 24 kB and t,., =
1000. The figure shows that the system schedulability ascends at first and then declines
around SPM size of 48 kB.

The DMA speed is a main factor in the schedulability of the system. In order to
illustrate its effect, we show in Figure 6.6 the change of the weighted schedulability vs the
DMA speed factor when SPM size is 64 kB. The DMA slowdown factor is relative to the
base speed of 1 cycle per word, i.e. a factor of 2 means the DMA speed is 2 cycles per
word. We can see that the weighted schedulability decreases as the DMA slowdown factor
increases which is related to the segment under-utilization. The figure also shows that the
optimal algorithm is superior to the greedy and heuristic algorithms for all the tested speed
factors.

The segmentation algorithm takes a few seconds to finish with a maximum of a minute
compared to few hours for the naive segmentation algorithm with exhaustive search. Run-
ning the scheduling algorithm for one of the tested task sets takes an average of a minute to
segment the tasks and apply the schedulability test with a maximum of few minutes. We
show in Figure 6.7 the min/mean/max time in seconds to segment a task set with number
of tasks per set varying between 5 and 40. The numbers were obtained by collecting the
time of segmentation 100 task sets for each number of tasks.

169

Weighted Schedulability
(SPM size = 64 kB)

1.0

0.8 1

o
o
)

o©
IS

0.2 1

0.0 1

IdealStreaming
Ideal
OptimalStreaming
Optimal
HeuristicStreaming
Heuristic
GreedyStreaming
Greedy

't

|

___=:__.!___q
—y

6 8 10
DMA Slowdown Factor

Figure 6.6: Fixed-size DMA: Weighted Schedulability VS DMA Slowdown Factor

170

Segmentation Algorithm Time VS Number of Tasks

5 10 15 20 25
Number of Tasks

30

35

40

Figure 6.7: Fixed-size DMA: Segmentation Time VS Number of Tasks

171

6.4.2 Variable-size DMA Model

The evaluation of the segmentation using the variable-size DMA model considers the fol-
lowing points: the effect of the SPM size and DMA parameters, p and §, on the system
schedulability, and the performance of the variable-size vs the fixed-size DMA models, and
the performance of the streaming vs no streaming models.

We first evaluate the effect of the SPM size by fixing p = 0.5 and 5 = 1000 and varying
the SPM size between 4 kB to 256 kB. Figure 6.8 shows the system schedulability vs the
system utilization for SPM sizes of 16, 64, and 256 kB. We can see that the variable-
size model is significantly better than the fixed-length model. The figure also shows that
multi-segment streaming improves the system schedulability over the non-streaming model.
Figure 6.9 shows the weighted schedulability. The graph depicts how the variable-size
model can adapt to the SPM size by using only the space it needs while the fixed-size
model suffers segment under-utilization as the SPM size increases.

Second, we show in Figure 6.10 the effect of varying ¢ by fixing the SPM size to 32 kB
and p = 0.5 and varying J between and 1000 and 50000.

Finally, the effect of varying p is shown in Figure 6.11 by fixing the SPM size to 32 kB
and 0 = 5000 and varying p between and 0.1, 5.0.

We can notice that the weighted schedulability in Figures 6.10 and Figure 6.11 decreases
as 0 /p increases and that effectiveness of the variable-size model over the fixed-size model
also degrades as the d/p increases. This happens due to the greater impact of the memory
time on the schedulability.

6.5 Summary

In this chapter, our goal was to develop an automated compilation flow to segment a set of
real-time tasks considering the limitations on the local SPM size and taking into account
the system schedulability. We presented a segmentation approach based on the region-tree
program structure. We defined a set of constraints to construct a valid segmented DAG.
Then, we addressed the program segmentation considering two models for the DMA, fixed
and variable-size. We derived an optimal approach for the segmentation for the fixed-size
model and presented a heuristic-based approach for the variable-size model. We evaluated
our segmentation approach and showed that the system schedulability can be improved
significantly using our segmentation approach.

172

0.5)

Schedulability
(SPM Size = 16 kB | 6 = 5000 | p

0.5)

Schedulability

(SPM Size = 64 kB | 6 = 5000 | p
o
EN

Schedulability

(SPM Size = 256 kB | 6 = 5000 | p

0.5)

=
o
,

o
o
,

o
o
,

e
i
L

——-#-—= VariableStreaming
——&—— Variable
—==——=—= FixedStreaming

o
N
.

———— Fixed

03 0.4 0.5 0.6 0.7 0.8 0.9
Utilization

e
IN)

Iy
o
.

©
[
)

e
o
)

——-#—— VariableStreaming
——@—— Variable
—=————— FixedStreaming

———— Fixed

o
IN)
.

©
o
)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Utilization

o
[N

=
o
)

0.8 1

0.6 1

0.4
——-#-—= VariableStreaming
——&—— Variable
—=————=— FixedStreaming
——— Fixed

0.0 , |

0.2 1

0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Utilization

Figure 6.8: Variable-size DMA: Schedulability vs Utilization
(SPM = 16 / 64 / 256 KB, § = 5000, p = 0.5)

173

Weighted Utilization (6 = 5000 | p = 0.5)

0.9

0.8 1

0.7 1

0.6 1

0.5 1

- —-fi- == VariableStreaming

—@— Variable -
——-0-—— FixedStreaming -
——e—— Fixed

1

22 23 24 25 26 27 28
SPM size (kB)

Figure 6.9: Variable-size DMA: Weighted Schedulability VS SPM Size
(8 = 5000, p = 0.5)

174

Weighted Schedulability

(SPM Size =32 kB | p

0.5)

0.9 1

0.8 1

o
N
)

o
o
)

o
U
f

e
~
)

0.3 1

0.2

= =i == \/ariableStreaming
el \/ariable
AN = g == FixedStreaming
\ ——— Fixed

10000 20000 30000 40000 50000

Figure 6.10: Variable-size DMA: Weighted Schedulability VS §
(SPM size — 32 kB, p = 0.5)

175

0.8

Weighted Schedulability
(SPM Size = 32 kB | 6 = 1000)

0.2 1

o
o
1

o
~
)

= =i == \/ariableStreaming
N\ el \/ariable
\ = g == FixedStreaming
\ ——— Fixed

Figure 6.11: Variable-size DMA: Weighted Schedulability VS p
(SPM size — 32 kB, § = 5000)

176

Chapter 7

Conclusion and Future Work

High-performance real-time systems are gaining prominent importance in today’s endeav-
ors for automation. The design of real-time systems has to cope with the requirements
for performance without losing guarantees for safety and predictability. Employing more
complex hardware architectures and providing analysis techniques to model and test such
systems is a necessity. On the other hand, software compilation needs to be integrated
with the design process in order to create more optimized systems. In this thesis, we in-
troduced an automated compilation framework as a step in this direction. The framework
presents a compilation flow that is integrated with real-time algorithms for single-task and
multi-tasking systems. We can summarize the work in this thesis as follows:

1. We presented a compilation framework based on LLVM, a well-known compiler that is
open-source and commercially used on a large scale. The framework is equipped with
multiple analysis tools to collect the information of the application with refinements
to serve the purposes of real-time algorithms. The framework is also extendable as
it is designed in a modular way following the LLVM structure.

2. We developed a ScratchPad Memory (SPM) management approach that employs soft-
ware prefetching to optimize the execution of real-time applications. The approach
is a step in the direction of exploiting such techniques in high-performance real-time
systems. With algorithms for allocation, WCET analysis, and address assignment,
the approach fulfills the automation of data SPM management.

3. We extended the 3-phase model, a widely adopted task execution model, to achieve
contentionless execution of the shared resources in MPSoC systems. The extension

177

provided the theoretical bases for scheduling applications with conditional DAG rep-
resentation and supporting multi-segment streaming.

4. We proposed a set of algorithms to automatically segment tasks to conform with
the 3-phase model with limitation on the local memory size and to further enhance
the system schedulability by imposing constraints on the segmentation length. The
algorithms targeted two models for the DMA: fixed-size and variable-size. An optimal
segmentation technique was provided for the fixed-size model and a heuristic-based
technique was proposed for the variable-size model. The evaluation of the 3-phase
model extensions and the developed algorithms shows significant improvements in
the system schedulability.

The compilation flow of our framework allows easy integration of more algorithms to
benefit from the analysis and transformation capabilities, which enables multiple possible
extensions. This includes:

1. In this work, we relied on a simple processor model for the evaluation of our algo-
rithms. The integration of WCET analysis tools such as Heptane [65] and Chronos [91]
will allow the analysis of more complex processor models. Hence, this extends the
applicability of our techniques for more platforms.

2. The compilation framework is used for the analysis of loops using the polyhedral
model. However, the polyhedral model is more capable than only analyzing the
code. It can be used for the optimization of the loops for data locality, array com-
paction, and minimization of inter-core communication. Several works |35, 120, 121]
take advantage of the model to provide high-performance compilation for single core,
multi-core, and distributed systems. The integration of such techniques has the po-
tential of enhancing the performance of the target real-time applications.

3. We provided an allocation and prefetching approach for data SPM. Supporting the
allocation and prefetching of program code will make it more viable to automate
the program compilation and widens the scope of optimization. Also, the proposed
allocation and prefetching technique can be improved by using software pipelining
similar to the proposed segment streaming for multi-tasking systems. This will enable
the allocation and prefetching of data blocks with finer granularity and hence more
overlapping opportunities between computation and memory transfer.

4. The scheduling and segmentation algorithms can be extended for parallel task exe-
cution and accelerator offloading. This will take advantage of the current and future

178

embedded system platforms with multiple heterogeneous processing elements as well
as programmable logic. The segmentation process will have to handle challenges
of data coherency and communication between processing elements as well as the
management of the shared resources.

Software compilation is a vital component to the efficiency of real-time systems. The
integration of real-time algorithms with a powerful compiler like LLVM can have a signifi-
cant impact on providing more control on the performance and the behaviour of real-time
applications. This thesis shows the benefit of such integration and the potential for more
optimized high-performance real-time systems.

179

References

1]
2]
3]
4]

[5]

[6]

7]

8]

19]

Hybrid Memory Cube. http://www.hybridmemorycube.org, 2017.
LLVM analysis and transform passes. http://www.openmp.org, 2017.
Static Value-Flow Analysis in LLVM. http://unsw-corg.github.io/SVF/, 2017.

M. J. Absar and F. Catthoor. Compiler-based approach for exploiting scratch-pad in
presence of irregular array access. In Proceedings of the Conference on Design, Au-
tomation and Test in Europe - Volume 2, DATE ’05, pages 1162-1167, Washington,
DC, USA, 2005. IEEE Computer Society.

A. Alhammad, S. Wasly, and R. Pellizzoni. Memory efficient global scheduling of
real-time tasks. In 21st IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 285—296, April 2015.

Ahmed Alhammad and Rodolfo Pellizzoni. Schedulability analysis of global memory-
predictable scheduling. In Proceedings of the 14th International Conference on Em-
bedded Software - EMSOFT 14, New York, New York, USA, 2014. ACM Press.

Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution of multi-

threaded applications on multicore systems. In Design, Automation € Test in Fu-
rope Conference & FExhibition (DATE), 2014, New Jersey, 2014. IEEE Conference
Publications.

Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory efficient global
scheduling of real-time tasks. In 21st IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 2015.

L. Alvarez, M. Moreto, M. Casas, E. Castillo, X. Martorell, J. Labarta, E. Ayguadé,
and M. Valero. Runtime-guided management of scratchpad memories in multicore

180

http://www.hybridmemorycube.org
http://www.openmp.org
http://unsw-corg.github.io/SVF/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

architectures. In 2015 International Conference on Parallel Architecture and Com-
pilation (PACT), pages 379-391, Oct 2015.

F. Angiolini, L. Benini, and A. Caprara. An efficient profile-based algorithm
for scratchpad memory partitioning. Trans. Comp.-Aided Des. Integ. Cir. Sys.,
24(11):1660-1676, November 2006.

Luis C. Aparicio, Juan Segarra, Clemente Rodriguez, and Victor Vinals. Improving
the wecet computation in the presence of a lockable instruction cache in multitasking
real-time systems. J. Syst. Archit., 57(7):695-706, August 2011.

Luis C. Aparicio, Juan Segarra, Clemente Rodriguez, and Victor Vinals. Combining
prefetch with instruction cache locking in multitasking real-time systems. In Proceed-
ings of the 2010 IEEE 16th International Conference on Embedded and Real-Time
Computing Systems and Applications, RTCSA 10, pages 319-328, Washington, DC,
USA, 2010. IEEE Computer Society.

Oren Avissar, Rajeev Barua, and Dave Stewart. Heterogeneous memory manage-
ment for embedded systems. In Proceedings of the 2001 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’01, pages
34-43, New York, NY, USA, 2001. ACM.

Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory allocation
scheme for scratch-pad-based embedded systems. ACM Trans. Embed. Comput.
Syst., 1(1):6-26, November 2002.

Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Peter Mar-
wedel. Scratchpad memory: Design alternative for cache on-chip memory in embed-
ded systems. In Proceedings of the Tenth International Symposium on Hardware/-
Software Codesign, CODES 02, pages 73-78, New York, NY, USA, 2002. ACM.

Shamik Bandyopadhyay, Thomas Huining Feng, Hiren D. Patel, and Edward A.
Lee. A scratchpad memory allocation scheme for dataflow models. Technical Report
UCB/EECS-2008-104, EECS Department, University of California, Berkeley, Aug
2008.

Andrea Bastoni, Bjorn B. Brandenburg, and James H. Anderson. Cache-related

preemption and migration delays : Empirical approximation and impact on schedu-
lability. In Proceedings of OSPERT, 2010.

181

18]

[19]

20]

21]

22]

23]

[24]

[25]

26]

Matthias Becker, Dakshina Dasari, Borislav Nicolic, Benny Akesson, Vincent Nelis,
and Thomas Nolte. Contention-Free Execution of Automotive Applications on a
Clustered Many-Core Platform. In 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). IEEE, 2016.

E. Bini and G.C. Buttazzo. Schedulability analysis of periodic fixed priority systems.
IEEE Transactions on Computers, 53(11), 2004.

Enrico Bini and Giorgio C. Buttazzo. Measuring the Performance of Schedulability
Tests. Real-Time Systems, 30(1-2), 2005.

Uday Bondhugula, J Ramanujam, and P Sadayappan. PLuTo: A Practical and Fully
Automatic Polyhedral Program Optimization System. In PLDI 2008 - 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2008.

Paolo Burgio, Andrea Marongiu, Paolo Valente, and Marko Bertogna. A memory-
centric approach to enable timing-predictability within embedded many-core acceler-
ators. In 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies
(RTEST). IEEE, 2015.

José V. Busquets-Mataix, Carlos Catala, and Antonio Marti-Campoy. Architecture
extensions for efficient management of scratch-pad memory. In Proceedings of the
21st International Conference on Integrated Clircuit and System Design: Power and
Timing Modeling, Optimization, and Simulation, PATMOS’11, pages 43-52, Berlin,
Heidelberg, 2011. Springer-Verlag.

Giorgio C. Buttazzo. Hard real-time computing systems: Predictable scheduling
algorithms and applications, third edition. In Real-Time Systems Series, 2004.

Surendra Byna, Yong Chen, and Xian-He Sun. A taxonomy of data prefetching
mechanisms. In Proceedings of the The International Symposium on Parallel Archi-
tectures, Algorithms, and Networks, ISPAN ’08, pages 19-24, Washington, DC, USA,
2008. IEEE Computer Society.

Marco Caccamo, Marco Cesati, Rodolfo Pellizzoni, Emiliano Betti, Roman Dudko,
and Renato Mancuso. Real-time cache management framework for multi-core archi-
tectures. In Proceedings of the 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS), RTAS ’13, pages 45-54, Washington, DC,
USA, 2013. IEEE Computer Society.

182

27]

28]

[29]

[30]

[31]

32]

33

[34]

[35]

L. Caccetta and A. Kulanoot. Computational aspects of hard knapsack problems.
Nonlinear Analysis: Theory, Methods € Applications, 47(8):5547 — 5558, 2001.

Nicola Capodieci, Roberto Cavicchioli, Paolo Valente, and Marko Bertogna.
SIGAMMA: Server based integrated GPU Arbitration Mechanism for Memory Ac-
cesses. In Proceedings of the 25th International Conference on Real-Time Networks
and Systems - RTNS ’17, New York, New York, USA, 2017. ACM Press.

Gregory Chaitin. Register allocation and spilling via graph coloring. SIGPLAN Not.,
39(4):66-74, April 2004.

D. W. Chang, I. C. Lin, Y. S. Chien, C. L. Lin, A. W. Y. Su, and C. P. Young. Casa:
Contention-aware scratchpad memory allocation for online hybrid on-chip memory
management. [FEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 33(12):1806-1817, Dec 2014.

G. Chen, O. Ozturk, M. Kandemir, and M. Karakoy. Dynamic scratch-pad mem-
ory management for irregular array access patterns. In Proceedings of the Design
Automation Test in Furope Conference, volume 1, pages 1-6, March 2006.

Yu Chen, Wenlong Li, Changkyu Kim, and Zhizhong Tang. FEfficient shared
cache management through sharing-aware replacement and streaming-aware inser-
tion policy. In Proceedings of the 2009 IEEE International Symposium on Paral-
lelédDistributed Processing, IPDPS 09, pages 1-11, Washington, DC, USA, 2009.
IEEE Computer Society.

Zhong-Ho Chen and Alvin W. Y. Su. A hardware/software framework for instruction
and data scratchpad memory allocation. ACM Trans. Archit. Code Optim., 7(1):2:1-
2:27, May 2010.

D. Cho, S. Pasricha, I. Issenin, N. D. Dutt, M. Ahn, and Y. Paek. Adaptive
scratch pad memory management for dynamic behavior of multimedia applications.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28(4):554-567, April 2009.

Bekim Cilku, Daniel Prokesch, and Peter Puschner. A time-predictable instruction-
cache architecture that uses prefetching and cache locking. In Proceedings of the
2015 IEEE International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing Workshops, ISORCW 15, pages 74-79, Washington,
DC, USA, 2015. IEEE Computer Society.

183

[36]

137]

38

[39]

[40]

[41]

42]

[43]

Jason Cong, Hui Huang, Chunyue Liu, and Yi Zou. A reuse-aware prefetching scheme
for scratchpad memory. In Proceedings of the 48th Design Automation Conference,
DAC ’11, pages 960-965, New York, NY, USA, 2011. ACM.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238252, Los Angeles, California, 1977. ACM Press,
New York, NY.

M. Dasygenis, E. Brockmeyer, B. Durinck, F. Catthoor, D. Soudris, and
A. Thanailakis. A combined dma and application-specific prefetching approach for

tackling the memory latency bottleneck. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(3):279-291, March 2006.

Ning Deng, Weixing Ji, Jiaxin Li, Feng Shi, and Yizhuo Wang. A novel adaptive
scratchpad memory management strategy. In Proceedings of the 2009 15th IEEE
International Conference on Embedded and Real-Time Computing Systems and Ap-
plications, RTCSA ’09, pages 236241, Washington, DC, USA, 2009. IEEE Computer
Society.

Jean-Francois Deverge and Isabelle Puaut. Wcet-directed dynamic scratchpad mem-
ory allocation of data. In Proceedings of the 19th Euromicro Conference on Real-Time
Systems, ECRTS ’07, pages 179-190, Washington, DC, USA, 2007. IEEE Computer
Society.

Huping Ding, Yun Liang, and Tulika Mitra. Integrated instruction cache analysis
and locking in multitasking real-time systems. In Proceedings of the 50th Annual
Design Automation Conference, DAC ’13, pages 147:1-147:10, New York, NY, USA,
2013. ACM.

Huping Ding, Yun Liang, and Tulika Mitra. Wcet-centric dynamic instruction cache
locking. In Proceedings of the Conference on Design, Automation € Test in Furope,
DATE 14, pages 27:1-27:6, 3001 Leuven, Belgium, Belgium, 2014. European Design
and Automation Association.

Angel Dominguez, Nghi Nguyen, and Rajeev K. Barua. Recursive function data al-
location to scratch-pad memory. In Proceedings of the 2007 International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, CASES ’07, pages
65—74, New York, NY, USA, 2007. ACM.

184

|44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

Angel Dominguez, Sumesh Udayakumaran, and Rajeev Barua. Heap data allocation
to scratch-pad memory in embedded systems. J. Embedded Comput., 1(4):521-540,
December 2005.

Guy Durrieu, Madeleine Faugére, Sylvain Girbal, Daniel Gracia Pérez, Claire Pagetti,
and W. Puffitsch. Predictable Flight Management System Implementation on a
Multicore Processor. {Embedded Real Time Software (ERTS’14)}, 2 2014.

Bernhard Egger, Jaejin Lee, and Heonshik Shin. Dynamic scratchpad memory man-
agement for code in portable systems with an mmu. ACM Trans. Embed. Comput.
Syst., 7(2):11:1-11:38, January 2008.

Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time
Analysis. VDM Verlag, 2008.

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Bjorn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sgrensen, Peter Wiagemann, and
Simon Wegener. TACLeBench: A Benchmark Collection to Support Worst-Case
Execution Time Research. DROPS-IDN /6895, 55, 2016.

Heiko Falk and Jan C. Kleinsorge. Optimal static wcet-aware scratchpad allocation
of program code. In Proceedings of the 46th Annual Design Automation Conference,
DAC 09, pages 732-737, New York, NY, USA, 2009. ACM.

Christian Ferdinand and Reinhard Wilhelm. On predicting data cache behavior for
real-time systems. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Embedded Systems, LCTES 98, pages 16-30, London, UK,
UK, 1998. Springer-Verlag.

Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior
prediction for real-timesystems. Real-Time Syst., 17(2-3):131-181, December 1999.

Bjorn Forsberg, Luca Benini, and Andrea Marongiu. HePREM: Enabling predictable
GPU execution on heterogeneous SoC. In 2018 Design, Automation € Test in Europe
Conference € Exhibition (DATE). IEEE, 2018.

Bjorn Forsberg, Andrea Marongiu, and Luca Benini. GPUguard: Towards supporting
a predictable execution model for heterogeneous SoC. In Design, Automation € Test
in Europe Conference € Exhibition (DATE), 2017. IEEE, 2017.

185

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Poletti Francesco, Paul Marchal, David Atienza, Luca Benini, Francky Catthoor, and
Jose M. Mendias. An integrated hardware/software approach for run-time scratchpad

management. In Proceedings of the 4 1st Annual Design Automation Conference, DAC
‘04, pages 238243, New York, NY, USA, 2004. ACM.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antonio Augusto Frohlich,
and Rodolfo Pellizzoni. A survey on cache management mechanisms for real-time
embedded systems. ACM Comput. Surv., 48(2):32:1-32:36, November 2015.

Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pel-
lizzoni, and Marco Caccamo. Designing mixed criticality applications on modern
heterogeneous mpsoc platforms. In Proceedings of the 31th Furomicro Conference on
Real-Time Systems, ECRTS 19, 2019.

Tobias Grosser. Enabling polyhedral optimizations in LLVM. Diploma thesis, Uni-
versity of Passau, 2011.

Daniel Grund and Jan Reineke. Toward precise plru cache analysis. In 10th Interna-
tional Workshop on Worst-Case Execution Time Analysis (WCET 2010), volume 15,
pages 23-35. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

Nan Guan, Mingsong Lv, Wang Yi, and Ge Yu. Wcet analysis with mru cache:
Challenging Iru for predictability. ACM Trans. Embed. Comput. Syst., 13(4s):123:1—
123:26, April 2014.

Nan Guan, Xinping Yang, Mingsong Lv, and Wang Yi. Fifo cache analysis for wcet
estimation: A quantitative approach. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’13, pages 296-301, San Jose, CA, USA,
2013. EDA Consortium.

Y. Guo, Q. Zhuge, J. Hu, J. Yi, M. Qiu, and E. H. M. Sha. Data placement and dupli-
cation for embedded multicore systems with scratch pad memory. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 32(6):809-817, June
2013.

Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-managed cache

design. In Proceedings of the 27th Annual International Symposium on Computer
Architecture, ISCA 00, pages 107-116, New York, NY, USA, 2000. ACM.

186

[64]

[65]

[66]

67]

[68]

[69]

[70]

[71]

[72]

Emna Hammami and Yosr Slama. An overview on loop tiling techniques for code
generation. In Proceedings of IEEE/ACS International Conference on Computer
Systems and Applications, AICCSA, volume 2017-October, 2018.

Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. The Heptane Static Worst-
Case Execution Time Estimation Tool. In 17th International Workshop on Worst-
Case Execution Time Analysis (WCET 2017), volume 8 of International Workshop
on Worst-Case Ezecution Time Analysis, page 12, Dubrovnik, Croatia, June 2017.

Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM Interference in COTS
Heterogeneous MPSoCs for Mixed Criticality Systems. [IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(11), 2018.

R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The influence of pro-
cessor architecture on the design and the results of wcet tools. Proceedings of the
IEEFE, 91(7):1038-1054, July 2003.

J. Herter, P. Backes, F. Haupenthal, and J. Reineke. Cama: A predictable cache-
aware memory allocator. In 2011 23rd Furomicro Conference on Real-Time Systems,
pages 23-32, July 2011.

Michael Hind. Pointer analysis: Haven’t we solved this problem yet? In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE 01, pages 54-61, New York, NY, USA, 2001. ACM.

J. Hu, C. J. Xue, Q. Zhuge, W. C. Tseng, and E. H. M. Sha. Towards energy
efficient hybrid on-chip scratch pad memory with non-volatile memory. In 2011
Design, Automation Test in Europe, pages 1-6, March 2011.

S. W. Huang, Y. C. Chiu, Z. H. Chen, C. K. Shieh, A. W. Y. Su, and T. Y. Liang. A
region-based allocation approach for page-based scratch-pad memory in embedded
systems. In Computational Science and Engineering, 2009. CSE 09. International
Conference on, volume 2, pages 9-16, Aug 2009.

Maha Idrissi Aouad, René Schott, and Olivier Zendra. A Tabu Search Heuristic
for Scratch-Pad Memory Management. In WASET, editor, ICSET 2010 - Interna-
tional Conference on Software Engineering and Technology, volume 64, pages 386—
390, Rome, Italy, April 2010. WASET - World Academy of Science, Engineering and
Technology, WASET.

187

73]

[74]

[75]

[76]

7]

78]

[79]

[80]

[81]

Maha Idrissi Aouad and Olivier Zendra. A Survey of Scratch-Pad Memory Manage-
ment Techniques for low-power and -energy. In Olivier Zendra, Eric Jul, and Michael
Cebulla, editors, 2nd ECOOP Workshop on Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages, Programs and Systems (ICOOOLPS’2007), pages
31-38, Berlin, Germany, July 2007. ECOOP. ICOOOLPS’2007 was co-located with
the 21st European Conference on Object-Oriented Programming (ECOOP’2007).

Ilya Issenin, Erik Brockmeyer, Miguel Miranda, and Nikil Dutt. Drdu: A data reuse
analysis technique for efficient scratch-pad memory management. ACM Trans. Des.
Autom. Electron. Syst., 12(2), April 2007.

Andhi Janapsatya, Sri Parameswaran, and A. Ignjatovic. Hardware/software man-
aged scratchpad memory for embedded system. In Computer Aided Design, 2004.
ICCAD-2004. IEEE/ACM International Conference on, pages 370-377, Nov 2004.

Richard Johnson, David Pearson, and Keshav Pingali. The program structure tree:
Computing control regions in linear time. In Proceedings of the ACM SIGPLAN 199/
Conference on Programming Language Design and Implementation, PLDI 94, pages
171-185, New York, NY, USA, 1994. ACM.

M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh.
Dynamic management of scratch-pad memory space. In Proceedings of the 38th
Annual Design Automation Conference, DAC 01, pages 690-695, New York, NY,
USA, 2001. ACM.

M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh. A compiler-based approach for dynamically managing scratch-pad mem-
ories in embedded systems. IEEFE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 23(2):243-260, Feb 2004.

Mahmut Kandemir, Ismail Kadayif, and Ugur Sezer. Exploiting scratch-pad memory
using presburger formulas. In Proceedings of the 14th International Symposium on
Systems Synthesis, ISSS '01, pages 7-12, New York, NY, USA, 2001. ACM.

S. Kang and A. G. Dean. Darts: Techniques and tools for predictably fast memory
using integrated data allocation and real-time task scheduling. In 2010 16th IEFEE
Real-Time and Embedded Technology and Applications Symposium, pages 333-342,
April 2010.

Sangyeol Kang and Alexander G. Dean. Leveraging both data cache and scratchpad
memory through synergetic data allocation. In Proceedings of the 2012 IEEE 18th

188

82

[83]

[84]

[85]

[36]

[87]

33

[89]

[90]

Real Time and Embedded Technology and Applications Symposium, RTAS "12, pages
119-128, Washington, DC, USA, 2012. IEEE Computer Society.

Gary A. Kildall. A unified approach to global program optimization. In Proceedings of
the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL '73, pages 194-206, New York, NY, USA, 1973. ACM.

Hyoseung Kim, Dionisio De Niz, Bjérn Andersson, Mark Klein, Onur Mutlu, and
Ragunathan Rajkumar. Bounding memory interference delay in COTS-based multi-
core systems. In Real-Time Technology and Applications - Proceedings, 2014.

Sungjun Kim. Using scratchpad memory for stack data in hard real-time embedded
systems. In Proceedings of the Memory Architecture and Organization Workshop,
2011.

Michael Kruse. Lattice QCD Optimization and Polytopic Representations of Dis-
tributed Memory. PhD thesis, 9 2014.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-directed and Runtime Optimization,
CGO 04, pages 75—, Washington, DC, USA, 2004. IEEE Computer Society.

Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. When prefetching works, when it
doesn&rsquost, and why. ACM Trans. Archit. Code Optim., 9(1):2:1-2:29, March
2012.

Lian Li, Hui Feng, and Jingling Xue. Compiler-directed scratchpad memory manage-
ment via graph coloring. ACM Trans. Archit. Code Optim., 6(3):9:1-9:17, October
2009.

Lian Li, Hui Wu, Hui Feng, and Jingling Xue. Towards data tiling for whole programs
in scratchpad memory allocation. In Proceedings of the 12th Asia-Pacific Conference
on Advances in Computer Systems Architecture, ACSAC’07, pages 63-74, Berlin,
Heidelberg, 2007. Springer-Verlag.

Lian Li, Jingling Xue, and Jens Knoop. Scratchpad memory allocation for data
aggregates via interval coloring in superperfect graphs. ACM Trans. Embed. Comput.
Syst., 10(2):28:1-28:42, January 2011.

189

[91]

192]

93]

[94]

[95]

[96]

197]

98]

[99]

Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury. Chronos: A timing
analyzer for embedded software. Science of Computer Programming, 69(1):56 — 67,
2007. Special issue on Experimental Software and Toolkits.

Ben Lickly, Isaac Liu, Sungjun Kim, Hiren D. Patel, Stephen A. Edwards, and
Edward A. Lee. Predictable programming on a precision timed architecture. In
Proceedings of the 2008 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES 08, pages 137-146, New York, NY, USA,
2008. ACM.

Jochen Liedtke, Hermann Haertig, and Michael Hohmuth. Os-controlled cache pre-
dictability for real-time systems. In Proceedings of the 3rd IEEE Real-Time Technol-
ogy and Applications Symposium (RTAS °97), RTAS 97, pages 213—, Washington,
DC, USA, 1997. IEEE Computer Society.

Thomas Lundqvist. A WCET Analysis Method for Pipelined Microprocessors
with Cache Memories. PhD thesis, School of Computer Science and Engineering,
Chalmers University of Technology, Sweden, 2002.

Thomas Lundqvist and Per Stenstrom. A method to improve the estimated worst-
case performance of data caching. In Proceedings of the Sizth International Confer-
ence on Real-Time Computing Systems and Applications, RTCSA ’99, pages 255—,
Washington, DC, USA, 1999. IEEE Computer Society.

Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm, and Wang Yi. A survey
on static cache analysis for real-time systems. Leibniz Transactions on Embedded
Systems, 3(1):05-1-05:48, 2016.

Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-PREM: Automated
software refactoring for predictable execution on COTS embedded systems. In 2014
IEEE 20th International Conference on Embedded and Real-Time Computing Sys-
tems and Applications. IEEE, 2014.

Peter Marwedel. Embedded system design: Embedded systems foundations of cyber-
physical systems. Springer Science & Business Media, 2010.

Joel Matéjka, Bjorn Forsberg, Michal Sojka, Zdenék Hanzalek, Luca Benini, and
Andrea Marongiu. Combining PREM compilation and ILP scheduling for high-
performance and predictable MPSoC execution. In Proceedings of the 9th Interna-

tional Workshop on Programming Models and Applications for Multicores and Many-
cores - PMAM’18, New York, New York, USA, 2018. ACM Press.

190

[100]

[101]

[102]

103

104]

[105]

[106]

[107]

108

109

Ross Mcllroy, Peter Dickman, and Joe Sventek. Efficient dynamic heap allocation of
scratch-pad memory. In Proceedings of the 7th International Symposium on Memory
Management, ISMM 08, pages 31-40, New York, NY, USA, 2008. ACM.

Alessandra Melani, Marko Bertogna, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Giorgio Buttazzo. Memory-processor co-scheduling in fixed pri-
ority systems. In Proceedings of the 23rd International Conference on Real Time and
Networks Systems - RTNS ’15, New York, New York, USA, 2015. ACM Press.

Stefan Metzlaff, Irakli Guliashvili, Sascha Uhrig, and Theo Ungerer. A dynamic
instruction scratchpad memory for embedded processors managed by hardware. In
Proceedings of the 24th International Conference on Architecture of Computing Sys-
tems, ARCS’11, pages 122-134, Berlin, Heidelberg, 2011. Springer-Verlag.

Sparsh Mittal. A survey of recent prefetching techniques for processor caches. ACM
Comput. Surv., 49(2):35:1-35:35, August 2016.

Csaba Andras Moritz, Matthew Frank, and Saman P. Amarasinghe. Flexcache: A
framework for flexible compiler generated data caching. In Revised Papers from

the Second International Workshop on Intelligent Memory Systems, IMS ’00, pages
135-146, London, UK, UK, 2001. Springer-Verlag.

Frank Mueller. Compiler support for software-based cache partitioning. SIGPLAN
Not., 30(11):125-133, November 1995.

T. R. Miick and A. A. Frohlich. Run-time scratch-pad memory management for
embedded systems. In IECON 2011 - 37th Annual Conference on IEEE Industrial
Electronics Society, pages 28332838, Nov 2011.

Nghi Nguyen, Angel Dominguez, and Rajeev Barua. Memory allocation for embed-
ded systems with a compile-time-unknown scratch-pad size. ACM Trans. Embed.
Comput. Syst., 8(3):21:1-21:32, April 2009.

Nir Oren. A survey of prefetching techniques. Technical Report CS-2000-10, Univer-
sity of the Witwatersrand, July 2000.

Preeti Ranjan Panda, Nikil D. Dutt, and Alexandru Nicolau. On-chip vs. off-chip
memory: The data partitioning problem in embedded processor-based systems. ACM
Trans. Des. Autom. Electron. Syst., 5(3):682-704, July 2000.

191

[110]

[111]

112]

[113]

114]

[115]

[116]

[117]

[118]

Soyoung Park, Hae-woo Park, and Soonhoi Ha. A novel technique to use scratch-
pad memory for stack management. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 07, pages 1478-1483, San Jose, CA, USA,
2007. EDA Consortium.

Hiren D Patel, Ben Lickly, Bas Burgers, and Edward A Lee. A Timing Requirements-
Aware Scratchpad Memory Allocation Scheme for a Precision Timed Architecture.
Technical Report UCB/EECS-2008-115, EECS Department, University of California,
Berkeley, 2008.

David Patterson and John L Hennessy. Computer architecture: a quantitative ap-
proach. Elsevier, 2012.

R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for cots-based embedded systems. In 2011 17th IEEE

Real-Time and Embedded Technology and Applications Symposium, pages 269-279,
April 2011.

Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. A predictable execution model for COTS-based em-
bedded systems. In Real-Time Technology and Applications - Proceedings, 2011.

Louis-Noél Pouchet. Iterative Optimization in the Polyhedral Model. 2010.

Louis-Noél Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Cohen, J. Ramanu-
jam, P. Sadayappan, Nicolas Vasilache, Louis-Noél Pouchet, Uday Bondhugula, Cé-
dric Bastoul, Albert Cohen, J. Ramanujam, P. Sadayappan, and Nicolas Vasilache.
Loop Transformations: Convexity, Pruning and Optimization. ACM SIGPLAN No-
tices, 46(1), 2011.

Aayush Prakash and Hiren D. Patel. An instruction scratchpad memory allocation
for the precision timed architecture. In Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’12, pages 659-664, San Jose, CA, USA,
2012. EDA Consortium.

Robert Pyka, Christoph Fassbach, Manish Verma, Heiko Falk, and Peter Marwedel.
Operating system integrated energy aware scratchpad allocation strategies for multi-
process applications. In Proceedingsof the 10th International Workshop on Software
&Amp; Compilers for Embedded Systems, SCOPES ’07, pages 41-50, New York, NY,
USA, 2007. ACM.

192

[119] M. Qiu, Z. Chen, J. Niu, Z. Zong, G. Quan, X. Qin, and L. T. Yang. Data allocation
for hybrid memory with genetic algorithm. IEEE Transactions on Emerging Topics
in Computing, 3(4):544-555, Dec 2015.

[120] Thejas Ramashekar, Uday Bondhugula, Thejas Ramashekar, and Uday Bondhugula.
Automatic data allocation and buffer management for multi-GPU machines. ACM
Transactions on Architecture and Code Optimization, 10(4), 2013.

[121] Chandan Reddy and Uday Bondhugula. Effective Automatic Data Allocation for
Parallelization of Affine Loop Nests. (March), 2014.

[122] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard Wilhelm. Timing pre-
dictability of cache replacement policies. Real-Time Systems, 37(2):99-122, 2007.

[123] Benjamin Rouxel, Steven Derrien, and Isabelle Puaut. Tightening Contention Delays
While Scheduling Parallel Applications on Multi-core Architectures. ACM Transac-
tions on Embedded Computing Systems, 16(5s), 2017.

[124] Abhik Sarkar, Frank Mueller, and Harini Ramaprasad. Static task partitioning for
locked caches in multi-core real-time systems. In Proceedings of the 2012 Interna-
tional Conference on Compilers, Architectures and Synthesis for Embedded Systems,

CASES 12, pages 161-170, New York, NY, USA, 2012. ACM.

[125] Martin Schoeberl. A Time Predictable Instruction Cache for a Java Processor, pages
371-382. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[126] Martin Schoeberl, Wolfgang Puffitsch, Rasmus Ulslev Pedersen, and Benedikt Hu-
ber. Worst-case execution time analysis for a java processor. Softw. Pract. Fxper.,
40(6):507-542, May 2010.

[127] Aviral Shrivastava, Arun Kannan, and Jongeun Lee. A software-only solution to use
scratch pads for stack data. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(11):1719—
1727, November 2009.

[128] Froderberg B. Lindgren T. Sjodin, J. Allocation of global data objects in on-chip
ram. 1998.

[129] Jan Sjodin and Carl von Platen. Storage allocation for embedded processors. In

Proceedings of the 2001 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, CASES ’01, pages 1523, New York, NY, USA,
2001. ACM.

193

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Yannis Smaragdakis and George Balatsouras. Pointer analysis. Found. Trends Pro-
gram. Lang., 2(1):1-69, April 2015.

Muhammad Refaat Soliman and Rodolfo Pellizzoni. Wecet-driven dynamic data
scratchpad management with compiler-directed prefetching. In 29th Furomicro Con-
ference on Real-Time Systems, ECRTS 2017, June 27-30, 2017, Dubrovnik, Croatia,
pages 24:1-24:23, 2017.

Muhammad Refaat Soliman and Rodolfo Pellizzoni. Prem-based optimal task seg-
mentation under fixed priority scheduling. In 31st Furomicro Conference on Real-
Time Systems, ECRTS 2019, July 9-12, 2019, Stuttgart, Germany., pages 4:1-4:23,
2019.

S. Steinke, L. Wehmeyer, B. Lee, and P. Marwedel. Assigning program and data
objects to scratchpad for energy reduction. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’02, pages 409—, Washington, DC,
USA, 2002. IEEE Computer Society.

V. Suhendra, T. Mitra, A. Roychoudhury, and Ting Chen. Wcet centric data alloca-
tion to scratchpad memory. In 26th IEEE International Real-Time Systems Sympo-
sium (RTSS’05), pages 10 pp.—232, Dec 2005.

Yulei Sui and Jingling Xue. SVF': Interprocedural static value-flow analysis in LLVM.
In Proceedings of the 25th International Conference on Compiler Construction, CC
2016, pages 265266, New York, NY, USA, 2016. ACM.

Rohan Tabish, Renato Mancuso, Saud Wasly, Ahmed Alhammad, Sujit S. Phatak,
Rodolfo Pellizzoni, and Marco Caccamo. A Real-Time Scratchpad-Centric OS for
Multi-Core Embedded Systems. In 2016 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2016.

Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation
of Pipeline Models. PhD thesis, Universitdt des Saarlandes, 2004.

Shelby Thomas, Chetan Gohkale, Enrico Tanuwidjaja, Tony Chong, David Lau, Sat-
urnino Garcia, and Michael Bedford Taylor. CortexSuite: A synthetic brain bench-

mark suite. In 2014 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2014.

194

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

148

Sumesh Udayakumaran, Angel Dominguez, and Rajeev Barua. Dynamic allocation
for scratch-pad memory using compile-time decisions. ACM Trans. Embed. Comput.
Syst., 5(2):472-511, May 2006.

UTDSP Benchmark Suite, http://www.eecg.toronto.edu/ corinna/dsp/infrastruc-
ture/utdsp.html.

Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming Non-Blocking
Caches to Improve Isolation in Multicore Real-Time Systems. In 2016 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 2016.

Jussi Vanhatalo, Hagen Volzer, and Jana Koehler. The refined process structure tree.
In Proceedings of the 6th International Conference on Business Process Management,
BPM 08, pages 100115, Berlin, Heidelberg, 2008. Springer-Verlag.

Xavier Vera, Bjorn Lisper, and Jingling Xue. Data cache locking for higher program
predictability. SIGMETRICS Perform. Eval. Rev., 31(1):272-282, June 2003.

Xavier Vera, Bjorn Lisper, and Jingling Xue. Data caches in multitasking hard real-
time systems. In Proceedings of the 24th IEEE International Real-Time Systems
Symposium, RTSS 03, pages 154—, Washington, DC, USA, 2003. IEEE Computer
Society.

Xavier Vera, Bjorn Lisper, and Jingling Xue. Data cache locking for tight timing
calculations. ACM Trans. Embed. Comput. Syst., 7(1):4:1-4:38, December 2007.

Manish Verma and Peter Marwedel. Overlay techniques for scratchpad memories
in low power embedded processors. [EEE Trans. Very Large Scale Integr. Syst.,
14(8):802-815, August 2006.

Manish Verma, Stefan Steinke, and Peter Marwedel. Data partitioning for maxi-
mal scratchpad usage. In Proceedings of the 2003 Asia and South Pacific Design
Automation Conference, ASP-DAC 03, pages 77-83, New York, NY, USA, 2003.
ACM.

Manish Verma, Lars Wehmeyer, and Peter Marwedel. Cache-aware scratchpad allo-

cation algorithm. In Proceedings of the Conference on Design, Automation and Test
i Europe - Volume 2, DATE ’04, pages 21264—, Washington, DC, USA, 2004. IEEE
Computer Society.

195

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

[157]

Z. Wang, Z. Gu, and Z. Shao. Wcet-aware energy-efficient data allocation on scratch-
pad memory for real-time embedded systems. IEEFE Transactions on Very Large Scale
Integration (VLSI) Systems, 23(11):2700-2704, Nov 2015.

Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Ander-
son. Outstanding paper award: Making shared caches more predictable on multicore
platforms. In Proceedings of the 2013 25th Euromicro Conference on Real-Time Sys-
tems, ECRTS 13, pages 157-167, Washington, DC, USA, 2013. IEEE Computer
Society.

Saud Wasly and Rodolfo Pellizzoni. A Dynamic Scratchpad Memory Unit for Pre-
dictable Real-Time Embedded Systems. In 2013 25th Euromicro Conference on
Real-Time Systems. IEEE, 2013.

Saud Wasly and Rodolfo Pellizzoni. Hiding memory latency using fixed priority
scheduling. In 2014 IEEFE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2014.

L. Wehmeyer and P. Marwedel. Influence of onchip scratchpad memories on wcet pre-
diction. In Proceedings of the 4th International Workshop on Worst-Case Ezxecution
Time (WCET) Analysis, New York, 2004. ACM.

Lars Wehmeyer, Urs Helmig, and Peter Marwedel. Compiler-optimized usage of par-
titioned memories. In Proceedings of the 3rd Workshop on Memory Performance

Issues: In Conjunction with the 31st International Symposium on Computer Archi-
tecture, WMPI ’04, pages 114-120, New York, NY, USA, 2004. ACM.

Lars Wehmeyer and Peter Marwedel. Influence of memory hierarchies on predictabil-
ity for time constrained embedded software. In Proceedings of the Conference on
Design, Automation and Test in Furope - Volume 1, DATE 05, pages 600-605,
Washington, DC, USA, 2005. IEEE Computer Society.

J. Whitham and N. Audsley. Investigating average versus worst-case timing behavior
of data caches and data scratchpads. In 2010 22nd Euromicro Conference on Real-
Time Systems, pages 165-174, July 2010.

J. Whitham and N. Audsley. Studying the applicability of the scratchpad memory
management unit. In 2010 16th IEEE Real-Time and Embedded Technology and
Applications Symposium, pages 205-214, April 2010.

196

[158]

[159]

[160]

161

162]

163

[164]

[165]

[166]

J. Whitham and M. Schoeberl. Wecet-based comparison of an instruction scratch-
pad and a method cache. In 2014 IEEE 17th International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, pages 301—
308, June 2014.

Jack Whitham and Neil Audsley. Implementing time-predictable load and store op-
erations. In Proceedings of the Seventh ACM International Conference on Embedded
Software, EMSOFT ’09, pages 265274, New York, NY, USA, 2009. ACM.

Jack Whitham and Neil Audsley. The scratchpad memory management unit for
microblaze: Implementation, testing, and case study. University of York, Tech. Rep.
YCS-2009-459, 2009.

Reinhard Wilhelm et al. The worst-case execution-time problem : Overview of
methods and survey of tools. ACM Trans. Embed. Comput. Syst., 7(3):36:1-36:53,
May 2008.

L. Wu and W. Zhang. Reducing worst-case execution time of hybrid spm-caches. In
2013 IEEE 32nd International Performance Computing and Communications Con-
ference (IPCCC), pages 1-9, Dec 2013.

Xuejun Yang, Li Wang, Jingling Xue, Tao Tang, Xiaoguang Ren, and Sen Ye. Im-
proving scratchpad allocation with demand-driven data tiling. In Proceedings of the
2010 International Conference on Compilers, Architectures and Synthesis for Em-
bedded Systems, CASES 10, pages 127-136, New York, NY, USA, 2010. ACM.

Y. Yang, M. Wang, Z. Shao, and M. Guo. Dynamic scratch-pad memory manage-
ment with data pipelining for embedded systems. In Computational Science and
Engineering, 2009. CSE °09. International Conference on, volume 2, pages 358-365,
Aug 2009.

Yanqin Yang, Haijin Yan, Zili Shao, and Minyi Guo. Compiler-assisted dynamic
scratch-pad memory management with space overlapping for embedded systems.
Software: Practice and Experience, 41(7):737-752, 2011.

Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Emiliano Betti, and Marco Caccamo.
Memory-centric scheduling for multicore hard real-time systems. Real-Time Systems,
48(6), 2012.

197

167]

[168]

[169]

[170]

171]

Gang Yao, Rodolfo Pellizzoni, Stanley Bak, Heechul Yun, and Marco Caccamo.
Global Real-Time Memory-Centric Scheduling for Multicore Systems. IEEE Trans-
actions on Computers, 65(9), 2016.

Taylan Yemliha, Shekhar Srikantaiah, Mahmut Kandemir, and Ozcan Ozturk. Spm
management using markov chain based data access prediction. In Proceedings of the
2008 IEEE/ACM International Conference on Computer-Aided Design, ICCAD 08,
pages 565569, Piscataway, NJ, USA, 2008. IEEE Press.

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii.
Chstone: A benchmark program suite for practical c-based high-level synthesis. In
2008 IEEE International Symposium on Circuits and Systems, pages 1192-1195, May
2008.

Wei Zhang and Yiqgiang Ding. Hybrid spm-cache architectures to achieve high time
predictability and performance. In Proceedings of the 2013 IEEE 24th International
Conference on Application-specific Systems, Architectures and Processors (ASAP),
ASAP 13, pages 297-304, Washington, DC, USA, 2013. IEEE Computer Society.

Z. Zhou, L. Ju, Z. Jia, and X. Li. Fast and accurate code placement of embedded
software for hybrid on-chip memory architecture. In High Performance Computing
and Communications, 2014 IEEFE 6th Intl Symp on Cyberspace Safety and Security,
2014 IEEE 11th Intl Conf on Embedded Software and Syst (HPCC,CSS,ICESS), 201/
IEEFE Intl Conf on, pages 1008-1015, Aug 2014.

198

Appendices

199

Appendix A

SPM Controller

A.1 Allocation Command Encoding

The allocation commands are implemented in LLVM Intermediate Representation (IR) as
load /store instructions.The address and data are used to encode the command as shown

in Figure A.1. The command consists of all or some of the following fields:

1.
2.

=

CMD _TYPE: the op-code for the command.

TBL IDX: the address for the table entry of the object/pointer.

PTR: a flag to indicate that the command is for a pointer.

SIZE': the size of an object.

MEM ADDR: the main memory or scratchpad address.

BASE

OFFSET

Address SPM_CONT

CMD_TYPE | PTR | TBL_IDX

—3 bits——¢"1 bit*¢——n bits—>

Data

MEM_ADDR / SIZE

Figure A.1: Encoding of the allocation commands

200

The first three fields are embedded in the address offset. The MEM ADDR and the SIZE
are passed using the data of the store instruction.

Command | CMD_ TYPE | PTR
ALLOC 000 0/1
ALLOCP 001 0/1
ALLOCW 010 0/1
ALLOCPW 011 0/1
DEALLOC 100 0/1
GETADDR 101 0/1
SETPTR 110 1
SETMM 110 0
SETSIZE 111 0

Table A.1: Commands encodings

Table A.1 shows the binary encoding for each of the allocation commands. The com-
mand type CM D _TY PFE uses 3 bits, the pointer flag PT' R uses 1 bit, and the table index
TBL IDX uses n bits which is the number of address bits required to access either the
object table or the pointer table. n depends on the implementation of the ScratchPad
Memory (SPM) controller.

A.1.1 SPM Controller Abstraction

To be able to address and initialize the SPM controller, we abstract it as a two dimensional
array added to the program IR: SPM _CONT[N][8]. The first dimension of the array
represents the entries for both the object and pointer tables. In terms of command fields,
N = PTR,TBL IDX. The second dimension is the command type CMD TY PFE.
Hence, there are 8 possible commands for each table entry. However, not all of them are
valid, e.q. SETSIZE does not apply for pointers.

Based on the SPM controller abstraction, any allocation command can be represented
in LLVM IR as an access to a two dimensional array. For instance, ALLOCP 5,0,100
allocates the object at entry 5 to the SPM address 100. In C, this can be written as:
SPM CONTI5|[1] = 100 which will be translated in LLVM IR to:
1 %halloc_ptr = getelementptr [32 x [8 x i32]], [32 x [8 x 1i32]]* «

@SPM_CONT, i32 0, i32 5, i32 1
2 store 132 100, i32* Yjalloc_ptr

201

Similarly, GETADDR 1, 4 requests the current address of the pointee of the pointer
in entry 4 of the pointer table. It can represented to C as: addr = SPM _CONT/[12][5].
Then, compiled in LLVM IR as:
hgetaddr_ptr = getelementptr [32 x [8 x i32]], [32 x [8 x 1i32]]x* ¢

@SPM_CONT, i32 0, i32 12, i32 5
%addr = load i32, i32%* Ygetaddr_ptr

This representation can also be used to manually insert the allocation commands in
the high level source code.

SPM Controller Initialization

SPM controller is initialized as a global array in the program. For instance, to initialize
entry 0 in the SPM controller to the main memory address a, of object x and size s,, we
initialize two elements in the array: SPM _CONT[0][6] = a,, SPMcONT|0][7] = s,. The
element SPM CONTI0][6] will be decoded by the SPM controller to SETMM command
and SPM _CONT|0][7] will be decoded to SETSIZE command. The initialization can
be inserted in the beginning of the code or the array initialization is stored in the data
segment and copied from the main memory before the program execution.

A.2 Control Unit

The control unit is responsible for executing the allocation commands and managing the
Direct Memory Access (DMA). It updates the object and pointer tables and the command
and allocation queues accordingly.

A.2.1 Command Execution

Allocate

This command allocates an object or a pointer to the scratchpad and schedules a prefetch
from the main memory if needed. The command passes hints to the control unit about
prefetching (P) and write-back (W) of the allocated object.

ALLOCXX TBL IDX, PTR, MEM ADDR

202

After the command is decoded, it is pushed to the command queue as it is non-blocking.
Then, it is executed as following:

o If PTR flag is set:

TBL IDX is used to access the pointer table.

The pointer entry is checked for ALIASED flag. If the flag is not set, the
command is dismissed as the pointer is not referring to a valid object entry.
Otherwise, the OBJ TBL IDX is used to access the object table.

e [f PTR flag is not set, TBL IDX is used to access the object table directly.

e According to the status flags of the object entry, the object entry is updated and an
allocation operation can be scheduled:

o The

A =0, PF_OP =0, WB_OP = 0: If the command has the P-hint, a prefetch
operation is pushed to the allocation queue and PF_ OP = 1, otherwise A = 1
A =1, PF_ OP = 0, WB_OP = 0/1: No change —the object is already
allocated.

A =0, PF_OP =1, WB_OP = 0: No change —the object is scheduled for a
prefetch.

A =0, PF_OP =1, WB_OP = 1: No change —a previous copy of the object
will be written back and then the object will be prefetched to a new address in
the scratchpad.

A=0,PF OP =0, WB_OP = 1: it MEM _ADDR matches the SPM_ADDR
in the object entry, then the write-back operation will be canceled as the object
will be allocated in its current address space and A = 1, WB_OP = 0. If the
addresses do not match, a prefetch operation will be scheduled it the command
has the P-hint and PF_OP = 1, WB_OP = 1, otherwise A = 1, WB_OP =
1.

number of users of the object in the scratchpad will be incremented by one

(Users++).

e [f the command has the W-hint, the WB flag is set.

203

De-allocate

This command de-allocates an object or a pointer from the SPM and schedules a write-back
to the main memory if needed.

DEALLOC TBL IDX, PTR
The command is non-blocking, so it is pushed to the command queue to be executed.

o If PTR flag is set:

— TBL_IDX is used to access the pointer table.

— The pointer entry is checked for ALIASED flag. If the flag is not set, the
command is dismissed as the pointer is not referring to a valid object entry.
Otherwise, the OBJ TBL _ IDX is used to access the object table.

e If PTR flag is not set, TBL IDX is used to access the object table directly.

e According to the status flags of the object entry, the object entry is updated and an
allocation operation can be scheduled:

- A =1, PF OP =0, WB_OP = 0: it USERS = 1, a write-back operation is
scheduled and A = 0, WB_OP = 1 when toWB_ OP = 1, Dirty = 1, otherwise
A = 0 and the object is de-allocated with copying back to the main memory.

— A =0, PF OP =1, WB_OP = 0/1: if USERS = 1, the prefetch operation is
canceled and A = 0, PF_OP = 0.

— A =1, PF OP =0, WB_OP = 1: if USERS = 1, then A = 0 as a previous
write-back operation is already scheduled.

o If USERS = 1, the two flags toWrite-back, Dirty are reset.

e The number of users of the object in the scratchpad will be decremented by one
(Users-).

Get Address

This command is used to obtain the current address of an object or a pointer. It is
a blocking command that stalls the execution if there is a scheduled memory transfer
(prefetch or write-back).

GETADDR TBL IDX, PTR

204

o If PTR flag is set:

— TBL IDX is used to access the pointer table.

— The pointer entry is checked for ALIASED flag. If the flag is not set, MM _ADDR
is returned as the pointer has no match in the object table. Otherwise, OBJ TBL IDX
is used to access the object table.

e If PTR flag is not set, TBL IDX is used to access the object table directly.

e According to the status flags of the object entry, the object entry is updated and an
address is returned:

— A =0, PF_OP = 0, WB_OP = 0: the object is not allocated and no memory
transfer is scheduled. MM ADDR is returned as it the current address of the
object.

— A =0, PF OP =1, WB_OP = 0/1: the last scheduled memory transfer is
a prefetch, so the command has to wait till the transfer is done and A = 1,
PF _OP = 0, WB_OP = 0. Then, the SPM_ADDR is returned and Dirty =
1 to indicate that the object has been used.

— A =1, PF OP =0, WB_OP = 0/1: the object is allocated in the scratchpad,
so the SPM_ADDR is returned and Dirty = I to indicate that the object has
been used.

— A =0, PF_ OP = 0, WB_OP = 1: the last scheduled memory transfer is a
write-back, so the command has to wait till the transfer is done and A = 0,
PF _OP =0, WB_OP = 0. Then, the MM _ADDR is returned.

Set Pointer

This command is essential to be able to handle the pointer aliasing during run-time.
The command is inserted before the ALLOC/DEALLOC/GETADDR commands of a
pointer to check if there is an aliasing object in the object table.

SETPTR TBL IDX, MEM ADDR

It sets the entry at TTBL IDX in the pointer table with the main memory address
(MEM _ADDR). Then, it starts a comparison with all the objects in the object table.

The command is non-blocking, so it is pushed to the command queue till executed by
the control unit.

205

e MEM ADDR is compared to the range and [MM ADDR:MM ADDR+SIZE-1] of
the valid entries of the object table until a match is found or all entries are checked.
The comparison can be implemented in one cycle using a comparator for each entry or
over multiple-cycles using less number of comparators. The one cycle implementation
is preferable if the size of the object table is small.

e If a match is found for MEM ADDR, the fields in the entry at TBL IDX in the
pointer table are set to MM _ADDR = MEM ADDR, TBL IDX = object table
entry that aliases with the pointer and ALIASED = 1.

e If no object in the object table is found that matches the MEM ADDR, the fields in
the entry at TBL_IDX in the pointer table are set to MM _ADDR = MEM _ADDR
and ALIASED = 0.

Set Main Memory Address

The command sets the main memory address field (MM ADDR) of the entry at TBL IDX
in the object table.
SETADDR TBL IDX, MEM ADDR

Set Size

The command sets the size field (SIZFE) of the entry at TBL IDX in the object table.
If SIZF is 0, this invalidates the object entry and resets the flag V| other wise it sets V to
mark the entry as valid.

SETSIZE TBL IDX, SIZE

A.2.2 DMA Management

The control unit reads the operations from the allocation queue in FIFO order and starts a
DMA transfer if required. The object table at index OBJ TBL I1DX from the operation
entry to be executed is first checked for the scheduled operation. If OP TY PFE is a
prefetch and the flag PF_OP = 0, the operation is canceled. Similarly, if OP TY PFE is
a write-back and the flag W B _OP = 0, the operation is canceled. Otherwise, the DMA is
configured with the source, destination and size of the object. When the transfer is done,
the control unit updates the object entry according to the operation type:

206

e Prefetch: A = 1, PF OP = 0.

e Write-back: WB_OP = 0.

207

Appendix B

WCET Analysis

We discussed in Section 4.7 the intuition of using abstract interpretation to integrate our
prefetching scheme in the Worst-Case Execution Time (WCET) analysis. In the appendix,
we first provide required preliminaries on the underlying mathematical principles in Sec-
tion B.0.1. We then formally introduce our abstraction and prove it correct in Section
B.0.2.

B.0.1 Preliminaries

The theory of abstract interpretation [37] provides a formal way to describe a mathemat-
ical model for the state of the program. In this section, we base our discussion on the
formulation of DFA with abstract interpretation for WCET analysis proposed in [137].

Definition 29 (Bounds for Partially Ordered Set). Consider a set A with partial order
<a. We say that an element a € A is an upper bound (lower bound) for a subset Y of A
Yy €Y 1y <4 a (respectively, a <4 y). We further say that a is the unique least upper
bound (greatest lower bound) for'Y, and write a = VoY (respectively, a = NAY) iff for all
other upper bounds b of Y it holds a <4 b (respectively, b <4 a).

For simplicity, for a set Y = {a, b}, we shall write a V4 b (a A4s D) as a shorthand for
VY (/\AY).

Definition 30 (Complete Lattice). A partially ordered set (A, <4) is said to be a complete
lattice if any subset Y of A admits both a least upper bound and a greatest lower bound.

208

Observation 31 (Concrete State Set). The set P(X) together with the subset partial re-
lation C is a complete lattice, where SV .S'=SUS and SANS =5NS'.

The complete lattice (P(X),C) is used to model the “real” (concrete) state of the
system; in this sense, the partial order C represents a relation of generality, in the sense
that if S C ', we can say that S” is more general (since it contains more program states),
or equivalently less precise, compared to S.

Definition 32 (Monotone Function). Let (A, <) and (B,<pg) be partially ordered sets.
A function f: A — B is said to be monotone iff: Ya,a' € A:a<sd = f(a) <p f(b).

Definition 33 (Abstraction). We say that a complete lattice (D, <p) is an abstraction for
the concrete state (P(Z), C) iff there exists a monotone function vy : D — P(X) such that:

VSeP(X):3dde D:S C~(d). (B.1)

7 is also called the concretization function of the abstraction. Since the concretization
function is monotone, for every d <p d’, it must hold: v(d) C ~(d'). In other words,
the partial order <p on D must express a relation of generality similar to the one for the
concrete state. Furthermore, Equation B.1 ensures that for every concrete state S, there
exists an abstract state d that “contains” S.

Based on the described framework, the MOP DFA is then carried out as follows: we
first obtain an initial abstract state depyy, such that Sepiry C Y(dentry). We then traverse the
DFG using an abstract transfer function 7;0 : D — D, which represents the abstraction
of the transfer function 7., to the abstract state D. Whenever we need to join paths
for two abstract states d,d’;, we compute a new join state d’ = d Vp d'. After obtaining
a final abstract state d..;; for the program, we then determine the WCET as the largest
elapsed time in 7y(dez¢). There are two fundamental advantages to this approach: 1) as
discussed in the example in Section 4.7, we can represent states that cannot occur in the
concrete execution of the system. 2) Since the abstract state set D is a model of the
system, we can ignore program and architectural details that are too complex to handle in
the analysis, albeit at the cost of decreased analysis precision. Overall, the goal is to obtain
an abstract transfer function ’72(, that can be computed in a reasonable amount of time,
rather than evaluating 7., on all program states contained in a concrete state set .S, which
is generally computationally intractable. The following theorem states the fundamental
sufficient condition on the abstract transfer function that we use in this work.

Theorem 34 (MOP II Correctness; Theorem 3.3.5 in [137]). Let D be an abstraction for
P(X). If for every edge e, the transfer function T, , satisfies the following property:

~

S C(d) = T2,(5) S (Tes(d)), (B.2)

209

then the MOP analysis over D using an initial state dentry @ Sentry C Y(dentry) s a correct
analysis for the program, meaning that Sezit T y(dexit)-

Intuitively, Equation B.2 means that applying the abstract transfer function ﬁ,g(d)
results in a state that is more general compared to applying the concrete transfer function
’7;’ »- In turn, this implies that if we start with an initial abstract state depsr, that is more
general than the initial concrete state Sg,, we will obtain a final abstract state dc.; that
is still more general (hence, a safe approximation) than the final concrete state Sey;.

B.0.2 Abstract State Model

We detail our abstraction for WCET analysis in this section. Since our goal is to show how
to handle the scratchpad controller, for the sake of simplicity we will consider the simplest
possible model for the rest of the hardware system, namely, an in-order CPU where the
number of clock cycles required to process the instructions in each basic block does not
depend on previous block (i.e., no pipelining effects between blocks), and memory accesses
stall the CPU. Under this model, we let t., be the maximum computation time for a
code block without considering the stall time due to load/store operations, ts,, be the
maximum time for SPM accesses, and t,,,, the maximum time for main memory accesses;
the total execution time of the basic block can then be bounded as tcomp + topm + tmm
plus the GETADDR blocking time. We will also not include any memory state (i.e.,
value assigned to variables) in the abstract state. However, please note that both memory
state and other architectural states could be included in the abstract state following well-
established WCET analysis techniques [137]. Finally, again for simplicity and to match
our implementation, we will assume that all scratchpad commands can be executed in one
clock cycle, i.e. we do not handle the command queue. However, if the alias check takes
multiple clock cycles, the effects of the command queue could be handled by adding an
additional timer to the abstract state, as it will become clearer in the rest of the discussion.

Based on Theorem 34, in the rest of the section we provide the following steps:

e define abstract state set D and its partial order <p. This is done in Definitions 37
and 40;

e prove that (D, <p) is a complete lattice (Lemma 41);

e define concretization function « (Definition 44), prove that it is monotone and it
satisfies Equation B.1 (Lemma 45);

210

e define 7. ,(d) (Definition 51);

e finally, prove that Equation B.2 holds (Theorem 57).

This ensures that all assumptions in Theorem 34 hold, hence proving that the MOP analysis
over the described abstraction is correct.

We begin by providing a definition for the program state s that will be used throughout
the section. In what follows, let ¢% = denote the time required for the DMA operation
(prefetch or write-back) for an object x, while for a pointer = it denotes the maximum
DMA operation time of any object pointed to by .

Definition 35 (Trailing DMA time). We define the trailing length of any DMA operation
in the allocation queue as follows:

e the trailing length of the operation at the front of the queue is the time remaining to
complete the operation;

o the trailing length for any other operation on an object v st} . plus the trailing
length of the operation immediately ahead in the queue.

Essentially, the trailing length for an operation represents the maximum DMA time

required to complete it, considering that operations in the allocation queue are served in
FIFO order.

Definition 36 (Abstract Timers). Let V be the set of all objects and A be the set of all
addresses assigned to objects/pointers by the address assignment algorithm. We define the
following set of abstract timers:

e For an object v, the abstract prefetch timer TE" is a single value TV .t € N.

e For an object v, the abstract write-back timer T®® is a tuple {TP".t,TP".A} with
Tt € N and T**. A € P(A).

e For a pointer p, the abstract prefetch timer T is a tuple {Tgr.t, 'I[‘gT.V} with TV .t € N
and TF.V € P(V).

e For a pointer p, the abstract write-back timer ']I‘;”b 15 a tuple {T;”b.t,Tgb.A,T;”b.V}
with TW' .t € N, T¥*.V € P(V) and T".A € P(A).

211

For simplicity, we use the symbol T to denote any abstract timer, defining T.V = {v} for
the timers of object v, and T.A = () for prefetch timers. We call the value t the timer’s
trailing length, A its address set, and V its points-to set. We write T = 0 to mean
Tt=0T.A=0TV =0.

Definition 37 (DMA Abstraction). An abstract state d is a tupled = {d.t, ..., d.T%", d.Tg’ib,
o, d T d.Tg’kb, ..., }, comprising one prefetch and one write-back timer for each object
v; and each pointer pi. We call d.t € N the abstract elapsed time. Let D be the set of all

abstract states.

Intuitively, an abstract state is composed of an elapsed time, which is an upper bound
to the time elapsed since the beginning of the program, and a prefetch and write-back
timer for every object and every pointer. For all timers, the trailing length T.t models
the trailing length of any prefetch or write-back operation for that object/pointers. In
essence, our abstraction models the cumulative DMA time required for the operations of
a given object/pointer, rather than the ordered list of DMA operations. Since the same
pointer can point to different objects during its lifetime, pointer timers must also store
the point-to list T.V. Finally, write-back timers additionally store the address at which
the object/pointer was allocated. As explained in Section 4.4.3, this is required to cancel
a write-back operation if the same object is allocated at the same address. To allow the
MOP procedure, T.A must be defined as a set of addresses (i.e., an element of the powerset
of A) so that the union over different paths can be computed.

To simplify notation, we further define the following intuitive operations on timers.

Definition 38 (Operations on Timers). We define the following operations, where A € N.

e T' =T + A returns the timer T where T.t is incremented by A.

o T = T— A returns the timer T" where T.t is decremented by A if A < T.t; otherwise,
T = 0.

T = T \ v returns the timer T" where T'.V = T.V \ {v} if T.V # {v}; otherwise,
T = 0.

T =T VT where T".t = max(T.t,T'.t), T".A=T.AUT ATV =T.VUT.V.
e T = T AT where Tt = min(T.t, T'.t), T".A = TLANT.A, T".V = T.V N T".V.

212

Definition 39 (Partial Order for Abstract Timers). We define the partial order < on
abstract timers such that for any two timers T, T for the same object/pointer and operation
(prefetch or writeback):

T<T & Tt¢t<T.tand T.V CT.V and T.A C T". A. (B.3)

Definition 40 (Partial Order on DMA Abstraction). We define the partial order <p on
the abstraction D such that for any two abstract states d,d’ :

d<pd < dt<d.tandVtimerT:dT+dt<d.T+d.t. (B.4)

Since C is a partial order on any set, and < is a total order on N, it is trivial to see
that <p is also a partial order. Intuitively, d’ is larger than d if and only if it has both
a larger elapsed time, and a larger value of elapsed time plus timer for every object and
pointer; following the example in Section 4.7, this implies that d’ is guaranteed to cause
a larger delay on successive basic blocks compared to d. We next show that (D, <p) is a
complete lattice.

Lemma 41. (D,<p) is a complete lattice, where for any two abstract states d,d’ with
tmax = max(d.t,d'.t) and t;, = min(d.t,d'.t):

e for d = dVpd it holds d".t = tya and for any timer T : d".T = (d.T — (tmax —
dt)) V (d'T = (tmax — d't));

e ford’ =dApd it holds d’.t =ty and for any timer T : d".T = (d.']I‘+ (d.t—tmin)) A
(d'.T + (d' .t — tuin))-

Proof. We formally prove that (D,<p) is a lattice, i.e., for any two elements d and d,
d Vp d is the least upper bound to d,d and d Ap d' is the greatest lower bound to d, d’;
the completeness of the lattice (i.e., the fact that we can find a least upper bound and
greatest lower bound for any subset Y of D) then follows from the completeness of the sets
N, P(A), P(V) used to represent times and address/object sets.

Consider d" = d Vp d'. Since d’.t = max(d.t,d'.t), d".t is the smallest value that
satisfies the partial order constraints d.t < d”.t and d'.t < d”.t. Similarly, since d’.T.A =
d.T.AUd .T.A, it is the smallest set that satisfies d.T.A C d".T.A and d"T.A C d".T.A;
the same argument applies to T.V. Next, assume without loss of generality that d.t < d'.t.
Based on Definition 38 we then obtain: d”.T.t + d”.t = max (d.']I‘.t — (tmax — d.t),d" . T.t —
(tmax — d'.1)) + d’ .t = max(d.T.t — d'.t + d.t,d T.t) + d'.t = max(d.T.t + d.t,d T.t + d't);

213

hence, d”.T.t is the smallest value that satisfies the partial order constraint for timer trailing
length (Equation B.4), concluding the proof for the least upper bound.

We omit the proof for the greatest lower bound as it is specular to the least upper
bound. 0

Note that the operator d Vp d’ computes the same upper bound as in Equations 4.19,
4.20.

Definition 42 (Generation of DMA Operations). Given an abstract state d and a DMA
operation for object v in the allocation queue for a program state s, we say that a timer d.T
can generate the operation if it is of the same type (prefetch or write-back) as the timer
and its trailing length is less than or equal to d.T.t; additionally, v must be contained in
d.T.V; finally, for a write-back timer, the SPM address of the operation must be contained
in d.T.A.

Observation 43. By definition, if a timer T can generate a DMA operation, then any
timer TV : T < T can also generate that operation.

Definition 44 (Concretization Function). Given any abstract state d, the concrete state
S = v(d) is the set of all feasible program states s for which:

e the elapsed time t since the beginning of the program is less than or equal to d.t; let
A=dt—t;

e for any DMA operation in the allocation queue with trailing length greater than A,
there is at least one timer d.T such that d. T + A can generate the operation.

Definitions 42, 44 are key to understand how the abstraction works. In essence, the key
idea is that adding A units of time to the elapsed time is always worse than increasing the
trailing lengths of timers by the same amount A. Hence, if the difference between elapsed
times for the abstract and program state is A, the program state can contain any DMA
operation with trailing length up to A; while for operations with larger trailing length
k > A, a timer of the correct type/address/points-to set is required with k£ < d.T.t + A.

Lemma 45. The DMA Abstraction D is a valid abstraction for P(X).
Proof. We first show that Equation B.1 holds. Given a concrete state S, we construct the
abstract state d such that d.t is an upper bound to the elapsed time of any program state

s € S, and for any object v: d.TP".t is an upper bound to the trailing length of any prefetch

214

operation for v in s; d.T%".t is an an upper bound to the trailing length and d.T*?. A is the
union of the SPM addresses of any write-back operation for v in s. It then immediately
follows that for any s € .S, the elapsed time for s is less than or equal to d.t and every DMA
operation is generated by a timer in d; hence, based on Definition 44, we have s € y(d)
and thus S C ~(d).

It remains to show that + is monotone. Consider two abstract states d <p d’; we have
to show that s € v(d) = s € v(d'). Let t be the elapsed time of s; then it must hold
t <dt <d.t. Define A=dt—t;since A >0, based on Definition 40 it must hold for
any timer: d.T+ A < d"T + A + (d.t' — d.t). Hence, if an operation of s can be generated
by timer d.T 4+ A, it can also be generated by timer d'.T + A 4 (d.t' — d.t). This concludes
the proof. O

It now remains to define the abstract transfer function 7;0, and prove Equation B.2.
We start by defining a set of helper functions. For simplicity of notation, we will consider
three-valued logic variables which can assume one of the following values: {True, False,
Unknown}. In particular, for each ALLOC/DEALLOC command on an object/pointer
x we define an exec flag with the following meaning: if exec = True, then the value of
the USERS field for the object pointed to by z is guaranteed to be 0 before an ALLOC
and 1 before a DEALLOC; this implies that the corresponding command is effectively
executed. If instead exec = False, USERS is guaranteed to be greater than 0/1 for an
ALLOC/DEALLOC; hence, the command does not cause any state change. Finally, if
exec = Unknown, then no assumptions on the value of the USERS can be made. In our
approach, the exec flags are statically computed by the allocation algorithm: for a given
allocation, if there is no enclosing allocation (in an ancestor region) on the same object,
then erec = True. If there is an enclosing allocation which is guaranteed to be on the
same object, then exec = False. Otherwise, exec = Unknown; note this case is required to
handle pointers where the value of USERS can only be determine at run-time.

Definition 46 (ALLOC function). The function d = ALLOC(d, z,a, BB, pr,exec), where
x 15 an object or pointer, a an address, BB a basic block, pr a binary flag and exec a three-
valued flag, modifies the abstract state d into d' by performing the following steps:

1. if exec = True and d.T**.A = {a} and x points to a single object v in BB, then
d' TY = d. T \ v,

2. then if pr = 1 and exec # False, d'.T?".t is set to the maximum trailing length of
any timer plus 3. and d'T?".V is the union of d.T2".V and the points-to list of x
in BB.

215

Definition 47 (DEALLOC function). The function d = DEALLOC(d,x,a, BB, wb),
where wb is a binary flag, modifies the abstract state d into d' by performing the following
steps:

1. if exec = True and x points to a single object v in BB, then d'.T?" = d.T?" \ v;

2. then if wb = 1 and exec # False, d' T .t is set to the mazimum trailing length of
any timer plus t2 - d T A= d T . AU{a}; and d' TV is the union of d.T**.V

and the points-to list of x in BB.

Functions ALLOC and DEALLOC' are applied every time an ALLOC or DEALLOC
command is encountered in a basic block. Based on the discussion in Section 4.4.4, the
ALLOC command is guaranteed to cancel a write-back operation on the same object if
the two allocations target the same address in the SPM. This is performed in the ALLOC
function by checking that the address of the write-back timer coincides with the address of
the ALLOC, and removing the pointed-to object from the points-to set of the write-back
timer. Note that for an object timer, this is equivalent to resetting the timer to 0, since
by definition every object points to itself only; however, for a pointer we can do so only
if there is no ambiguity in the points-to list (i.e., the pointer points to a single object in
b). Then, if pr = 1, meaning that a prefetch operation must be scheduled, the function
intuitively “appends” a new operation of length ¢ to the end of the allocation queue by
setting the prefetch timer to the maximum trailing length in the queue plus t% .. The
behavior of the DEALLOC function is equivalent. Finally, all steps are dependent on the
value of exec: to conservatively capture the worst case, we add a timer if the command
could be executed (exec = True or Unknown), but we remove a timer only if we are certain
that the command is executed (exec = True).

Definition 48 (ELAPSE function). The function d = ELAPSE(d,A,\), with A, A € N,
modifies the abstract state d into d' such that: d'.t = d.t+A and ¥ timer T: d'.T = d.T—A.

Intuitively, the function FLAPSE is used to increment time: the elapsed time is
increased by A and every abstract timer is decreased by an amount A. Note that A < A,
since the DMA unit is stalled while the CPU accesses main memory.

Definition 49 (GETADDR stall). Given an abstract state d, we say that a GETADDR
command on object/pointer x in basic block BB stalls on a timer d.T iff the intersection
of the points-to list of v in BB and d.T.V is not empty.

216

Definition 50 (Depending ALLOC/DEALLOC). We say that an ALLOC/DEALLOC
command for object/pointer x in basic block BB depends on a GETADDR command for
object/pointer y in the same basic block iff the intersection of the points-to lists of x and y
in BB 1s not empty.

Intuitively, if a GETADDR stalls on a timer, then in the worst case we need to wait until
that timer elapses before the GETADDR can proceed. Similarly, if an ALLOC/DEALLOC
depends on GETADDR, then in the worst case the GETADDR will stall on any DMA
operation added by the ALLOC/DEALLOC.

Definition 51 (Abstract Transfer Function). Consider a CFG edge e : BB — BB'. Let
the execution for BB along e be divided into a set of consecutive intervals, such that the
set of intervals cover all executed instructions but any change to the state of the SPM con-
troller (including stalling the core due to a blocking command) only happens between one
interval and the next. Then abstract transfer function ’f;’(,(d) 18 computed by applying an
iterative set of transformations of the abstract state d using functions ELAPSE, ALLOC,
DEALLOC based on the order of intervals, ALLOC, DEALLOC and GETADDR com-
mands in BB:

e For each interval, let teomp, tmm and tepy, be the maximum computation time, main
memory and SPM time for the interval, assuming that all load/stores to any object
v; (pointer py) access main memory iff spmyt = 0 (respectively, spmyt = 0) for all
regions that contain BB. Then transform the state into ELAPSE(d, tiﬁp + B8 4
tBB BB | 4BB .
spm> “comp spm

e For a GETADDR command on object/pointer x, transform the state into
ELAPSE(d,A,A), where A is the mazimum trailing length of any timer on which
the GETADDR stalls.

e For an ALLOC command on object/pointer x, transform the state into
ALLOC(d,x,a, BB, pr,exec), where a is the SPM address of the ALLOC and pr = 1
if the P flag is set.

e For a DEALLOC command on object/pointer x, transform the state into
DEALLOC(d, z,a, BB,wb, exec), where a is the SPM address of the DEALLOC and
wb = 1if the W flag is set in the ALLOC command corresponding to this DEALLOC.

Note that in Definition 51, the execution of the code within the basic block is modeled
by advancing elapsed time by the maximum execution time ¢ omp+tmm+tspm and decreasing

217

all timers by tcomp + tspm, Which is the time that DMA operations can proceed in parallel
with the CPU assuming a dual-ported SPM. If the SPM is single-ported, we amend the
definition to instead decrease the timers by t..m, only.

We are now ready to prove our main Theorem 57, which shows that Equation B.2 holds
for the described abstraction, hence concluding our proof obligations. Due to its complex-
ity, we first present the intuition behind the proof and introduce several supporting lemmas.
We first prove that the equation holds assuming that the order of ALLOC/DEALLOC/GE-
TADDR commands and other instructions in the basic block is known. Intuitively, we con-
struct a chain of abstract and program states, starting at the beginning of the basic block
until its end; each successive pairs of states d’, s’ and d**!, s"*! represent the state changes
caused by the execution of an SPM commands, or time elapsed executing instructions. In
particular, in Lemmas 53-56 we prove that at each step in the chain s* € v(d") = s' € y(d");
this ensures that the abstract state always remains more general than the concrete state,
as required in Equation B.2.

Lemma 52. Consider a DEALLOC command in basic block BB for object/pointer x, and
let v be the object pointed to by x in BB. If for v it holds USERS = 1 before executing the
DFEALLOC, then the W B flag for v is equal to the W flag for the corresponding ALLOC

command.

Proof. Since allocations for objects/pointers that might point to the same object must be
fully nested, if USERS = 1 before the DEALLOC, then it must have hold USERS = 0
before the corresponding ALLOC; hence, the value of the W B flag after the ALLOC
command is equal to the W flag. Furthermore, any nested allocation on the same object
v cannot modify the W B flag, given that after the original ALLOC it holds USERS =1
for v. Hence, the value of the W B flag before the DEALLOC must still be equal to the W
flag for the corresponding ALLOC. m

Lemma 53. Let s be the program state after the instruction(s) for an ALLOC command
has been decoded and processed, but before any change to the state of the SPM controller
is made, and let s’ be the state after the changes (if any). Furthermore, let d' be computed
based on abstract state d according to Definition 46, where x,a, BB, pr,exec are determined
based on the ALLOC command. Then s € v(d) = s’ € y(d').

Proof. By definition, no instruction is processed between s, s’, hence no time elapses and
s.t = §'.t. Furthermore by Definition 46, we have d.t = d'.t; hence, A = d.t — s.t =
A" = d.t — §'.t. Therefore, to show s’ € v(d'), we only need to prove that the timers in
d’ generate all DMA operations in s’ with trailing length greater than A = A’. Hence,

218

consider changes to the list of DMA operations between s and s’ and to the values of timers
between d and d’. If a DMA operation is removed, then all DMA operations in s’ must
also be in s, except that operations in s’ might have smaller trailing length (if the removed
operation was ahead in the queue). Hence, they can still be generated by the abstract
state. Similarly, if a timer T is changed such that d.T < d'.T, then all operations generated
by T in s can also be generated in s’ (Observation 43). In summary, we only need to prove
that the inclusion s’ € v(d') is maintained for the following two changes to the program
and abstract state: a DMA operation is added, or a timer T is changed and d.T £ d'.T;
we call the second case a timer removal.

Timer removal: Note that for step 2 in Definition 46, it holds d.T < d'.T by con-
struction. Hence, we only consider step 1, where d’.T% = d.T*® \ v if exec = True and
d.T*. A = {a} and x points to a single object v in BB. To prove that the inclusion
s’ € y(d') is maintained, we show that any DMA operation on object v generated by d.T*"
in s must be removed in s’. By assumption, any such operation must be a write-back at
the same address a as the ALLOC, the ALLOC command is for the same object v as the
operation, and the command is executed (exec = True); hence, based on Section 4.4 the
ALLOC command will indeed cancel the DMA operation.

Operation insertion: Assume that a prefetch operation for v is inserted in the allo-
cation queue (potentially after canceling a write-back). Based on Section 4.4, the following
must then be true: the P flag is set, USERS = 0 for v before the ALLOC, and the
points-to list of x in BB must include v. This implies pr = 1 and exec # False, hence,
T?" is modified in step 2 of Definition 48. Now let £ be the maximum trailing length of
any DMA operation in s before the write-back removal (if any), and K be the maximum
trailing length of any timer in d. Based on Definition 44, it must hold: k£ < K + A.
Similarly, let k, K be the maximum trailing lengths after the write-back removal: based
on the previous timer removal case, if a timer is reset in the abstract state, then the cor-
responding operation is removed from the program state, thus it also holds k < K + A.
The trailing length of the appended prefetch operation for v in s’ is then k + tma, While

based on Definition 46 for d’ we set the timer d’.T2".t = K + 1% where d’.T?".V is union
of . TPV and the points-to set for z. Since x can point to v, then tj,,, > ty,,,, Implying

dma

kE+t, < K+A+t2 =d.Trt+ A'. Hence, the added prefetch operation in s’ is
generated by d'.T?", concluding the proof. O]

Lemma 54. Let s be the program state after the instruction(s) for a DEALLOC command
has been decoded and processed, but before any change to the state of the SPM controller
is made, and let s’ be the state after the changes (if any). Furthermore, let d' be computed
based on abstract state d according to Definition 47, where x,a, BB, wb, exec are determined
based on the DEALLOC command. Then s € v(d) = s’ € y(d').

219

Proof. Similarly to the proof of Lemma 53, we have A = d.t —s.t = A’ = d.t —s'.t and
we only need to prove that the inclusion s’ € y(d') is maintained for any DMA operation
insertion and timer removal.

As in Lemma 53, a timer T?" can only be removed in step 1; but since exec = True
and x points to a single object v in BB, this guarantees that any DMA operation on
object v generated by d.T?" in s must be removed in s’. The only operation that can be
inserted is a write-back in step 2. Assuming the operation is for object v, it must hold that
before the DEALLOC, the W B flag for v is set, USERS = 1 and z points to v. Based on
Lemma 52, this implies that the P flag for the corresponding ALLOC is set, hence wb =1
in Definition 47. Following the same reasoning as in Lemma 53, it then follows that the
added write-back operation in s’ is generated by d'.T?".]

Lemma 55. Let s be the program state after the instruction(s) for a GETADDR command
has been decoded and processed, but before any change to the state of the SPM controller
(including stalling the CPU) is made, and let s’ be the state after the changes (if any).
Furthermore, let d' be computed based on abstract state d according to Definition /8, where
A = A is the mazimum trailing length of any timer in d on which the GETADDR stalls.
Then s € v(d) = §' € y(d).

Proof. Let A be the amount of time that the program stalls due to the GETADDR com-
mand. Then s'.t = s.t + A, any DMA operation with trailing length less than or equal to
A in s is removed from s’, while all other operations have a trailing length reduced by A.
Let also K = d.t —s.t > 0. Based on the SPM controller behavior in Section 4.4, A is the
maximum trailing length of any DMA operation that stalls the GETADDR. We consider
two cases: 1) A < K; then, there might be no timer in d that generates the maximum
length operation, hence we can only assert A > 0. 2) A > K; then, there must a timer T
in d such that A < d.T.t + K. Since this timer can generate the operation, by definition
GETADDR stalls on the timer. Hence, we have A < A + K. Combining the two cases we
obtain:

A>(A-K)". (B.5)

Now consider K’ = d'.t — s'.t; to prove the inclusion of s’ in d’, we have to show that
K’ is non-negative. Note that based on Definition 48, we have d'.t = dt+ A, and for
each timer: d".T = d.T — A. Hence, we obtain: K' =dt+A —-sti—-A=K+A-A.

Substituting Equation B.5 then yields: K’ > K+ (A-K)"—-A>K+(A-K)—-A=0.
It then remains to prove that operations in s’ can be generated by d’'.

Therefore, consider any operation in s’ with trailing length &” greater than K’; we have
to prove that the operation is generated by a timer in d’. Let k be the trailing length

220

of the operation in s, then & = k' + A. We then obtain: £k = k' + A > K' + A =
K4+A—-A+A=K+A > K. Since k > K, then there must exist a timer T in d
that generates the operation, with £ < d.T.t + K. Note this implies d.T.t > k — K =
F+A—- (K —A+A)>K +A~-K +A—-A = A, since d.T.t > A, it thus holds
dTt = d.Tt+ A (ie, timer T is not reset in d’). We then obtain: ¥ = k — A <
dTt+ K —-A=(d.Tt+A)+ (K —A+A)— A =d.Tt+ K' Therefore, the trailing
length of d'.T is sufficient to generate the DMA operation in s’, completing the proof. [J

Lemma 56. Consider an interval of time where the program executes with no change
to the state of the SPM controller (including stalling the CPU) during the interval, and
let teomps tmm and tgym be the mazimum computation time, main memory and SPM time
for the interval, assuming that all load/stores to any object v; (pointer py) access main
memory iff spmﬁ; = 0 (respectively, spmffj’? = 0) for all regions that contain the interval.
Furthermore, let s be the program state at the beginning of the interval, s the state at the
end of the interval, and d' be computed based on abstract state d according to Definition 48
with A = teomp +tmm +tspm and A = teomp +tspm. If the latency for access to main memory
is greater than or equal to the latency for access to the SPM, then s € y(d) = s’ € v(d').

Proof. Let teomp, tmm and s, denote the actual computation, main memory and SPM
times for the interval, rather than the upper bounds. Then by definition we have t.,, >
teomp and tym > tym. Note that for the SPM time it might hold t,, > tsm, since some
load/stores operations that are assumed to access main memory might access the SPM
in the actual program execution; however, since memory latency is at least equal to SPM
latency, it must still hold . + tepm = Lo + tspm- Now define A = teomp + Lo + tspm
and A = foomp + tepm; N0Ote we must have A, A > 0. Finally, let 6 = A — A and A = A — A.

Note § > 0, and furthermore: § + A = A — A — (A — A) = tym — trm > 0.

By assumption on the behavior of the interval, s'.t = s.t + A, any DMA operation with
trailing length less than or equal to A in s is removed from s’, while all other operations
have a trailing length reduced by A. Also based on Definition 48: d'.t = d.t + A. Let
K =d.t—st>0, we then have K’ = d'.t — s =dt+ A —st— A+ 6= K + 9; thus
K' > K > 0, and to satisfy the inclusion s’ € v(d’) it remains to show that operations in
s’ can be generated by d'.

Therefore, consider any operation in s’ with trailing length &’ greater than K’; we have
to prove that the operation is generated by a timer in d. The trailing length of that
operation in s must be k = k' + A > K’ > K hence, there must be a timer T in d that
generates that operation, such that:

k<dTt+K. (B.6)

221

This implies d.T.t + K > k' + A > K’ + A + A, and thus d.T.t > (K' — K)+ A+ X\ =
A+ 95+ X > A. Based on Definition 48, we have d'.T.t = d.T.t — A, and since d.T.t > A, it
thus holds d.T.t = d".T.t + A (i.e., timer T in not reset in d'). Substituting the expression
for d.T.t in Equation B.6 yields: . Tt 4+ A+ K =d Tt+A+K —6>k=FK+A+ A
which is equivalent to: d’.T.t+ K’ > k' +§ + A > k’. Therefore, the trailing length of d'.T
is sufficient to generate the DMA operation in s’, completing the proof. n

Note that while we proved Lemma 56 for the dual-ported SPM case, the Lemma is

also valid for the single-port case where A = teomp, A = teomyp, since it still holds 6 + A =

tmm + tspm - tmm - tspm 2 0.

Theorem 57. Equation B.2 holds for the described DMA Abstraction (D, <p) with ab-
stract transfer function Te ,(d).

~

Proof. We need to show S C v(d) = T/,(S) € 7(7co(d)) for every edge e : BB — BB'.
Since by definition 7, (S) = UsesTeo(s), this is equivalent to showing that Vd € D, Vs €
~d, if the execution can flow along edge e from state s with d’ = 7. ,(d) and s’ = T ,(s),
it must hold: s’ € v(d').

Since in Definition 51 we have described 7A;U(d) as an iterative transformation based
on the scratchpad commands within basic block BB, we apply the same technique to 7.,
and describe the transformation of the program state s based on a sequence of instruction
intervals and ALLOC/DEALLOC/GETADDR commands. Note that since basic blocks in
the extended CFG do not contain branches or function calls, every execution of BB along
e has the same sequence of intervals/commands as the one considered by ’f;a(d).

Without loss of generality, let N be the total number of intervals and commands. Let
us define a set of abstract states {d°,...,d"} and program states {s’,...,s"}, where
d’ =d,s” =s and for 0 < i < N, d’ and s’ represent the abstract and program state after
the N*® interval/command in the sequence. Then by definition: d' = d,s' = s. Now
note that based on Lemma 56 for intervals and Lemmas 53, 54, 55 for commands, it holds
st € y(d7') = s’ € y(d'). Hence, by induction on i, it also holds: s € (d°) = &' =
sV € ~(dY), concluding the proof. O

Applying Definition 51 requires a precise knowledge of the position of each command
in basic block BB. For simplicity of implementation, it can also be useful to formulate
an analysis where the only available timing information are upper bounds to the compu-
tation, memory and SPM times tiﬁp, tBB and tﬁﬁl for the entire basic block, rather than

individual intervals, and only the relevant ordering of SPM commands in the basic block
is known.

222

Definition 58 (Imprecise Abstract Transfer Function). Consider a CFG edge e : BB —
BB, and let tl7 , t55 tB5 represent the mazimum computation time, main memory and
SPM time for basic block BB, assuming that all load/stores to object v; (pointer py) access
main memory iff spmyt = 0 (respectively, spmit = 0) for all regions that contain BB.
We can then compute an abstract transfer function 7;0(d) by applying an iterative set of
transformations of the abstract state d using functions ELAPSE, ALLOC, DEALLOC

based on the order of ALLOC, DEALLOC and GETADDR commands in BB:

e Order the set of transformations as follows: first, apply transformations for each
GETADDR command and each ALLOC/DEALLOC command that depends on a
GETADDR oris followed by another ALLOC/DEALLOC that depends on a« GETADDR,
in the order in which the commands appear in BB; then, apply the transformation
for BB’s execution time; then, apply transformations for each ALLOC/DEALLOC
commands that has not been considered yet, in the order in which they appear in BB.

e For a GETADDR command on object/pointer x, transform the state into
ELAPSE(d,A,A), where A is the maximum trailing length of any timer on which
the GETADDR stalls.

e For an ALLOC command on object/pointer x, transform the state into
ALLOC(d,x,a, BB, pr,exec), where a is the SPM address of the ALLOC and pr = 1
if the P flag is set.

e For a DEALLOC command on object/pointer x, transform the state into
DEALLOC(d,z,a, BB,wb, exec), where a is the SPM address of the DEALLOC and
wb = 1 if the W flag is set in the ALLOC command corresponding to this DEALLOC.

e To transform the state based on BB’s execution time, apply function
FELAPSE(d,tBB 4 tBB 4 BB BB "4 BB

» Y“comp spm>’ “comp spm

Intuitively, the imprecise transfer function works as follows: we assume that all AL-
LOC/DEALLOC commands that do not depend on a GETADDR are “pushed” to the end
of the basic block, since doing so adds prefetch and write-back operations at the last possi-
ble time, hence maximizing the blocking that can be suffered by following basic block. On
the other hand, GETADDR commands (and depending ALLOC/DEALLOC) are “pulled”
to the beginning of the basic block, since this maximizes the amount of blocking that the
GETADDR suffers due to DMA operations started in preceding basic blocks.

Theorem 59. Equation B.2 holds for the described DMA Abstraction (D, <p) with ab-
stract transfer function Te ,(d).

223

Proof Sketch. Consider e : BB — BB’, and let d' = ﬁ,g(d) and d’ = 7~;,U(d). As in the
proof of Theorem 57, we have to show that s € y(d) = s’ € y(d"), where s’ is the program
state after the execution of BB along e starting from program state s.

Next note that the only case in which commands can be reordered in Definition 58 is
when an ALLOC/DEALLOC that does not depend on any GETADDR is pushed to the
end of the basic block. By definition, the ALLOC/DEALLOC command cannot operate of
any timer that are checked by a GETADDR; hence, reordering the commands in this way
cannot change the behavior of the SPM controller. Therefore, it remains to argue that the
following three changes will maintain the order d’ <p d”: 1) moving a GETADDR to the
beginning of the basic block; 2) moving a non-dependent ALLOC/DEALLOC to the end
of the basic block; 2) moving a dependent ALLOC/DEALLOC (or an ALLOC/DEALLOC
followed by a dependent one) to the beginning of the basic block.

GETADDR. Let A be the blocking time of the GETADDR for the precise abstraction
(T»(d)). Since in 7;,(d) the GETADDR is moved at the beginning of the interval, the
trailing length of any timer on which GETADDR can stall must be greater than or equal
to the trailing length in the precise abstraction; hence, A > A, where A is the blocking
time for the imprecise abstraction. Following the same argument as in Lemma 55, we have
A > A > A, where A is the actual blocking time for s, which then implies s’ € 7(d").

Non-dependent ALLOC/DEALLOC. Note that moving an ALLOC/DEALLOC
while keeping the same order of dependent commands does not change which timers are
removed (if any). Hence, consider any timer T added by the ALLOC/DEALLOC. Since
the command is moved to the end of the basic block, it must hold d'.T.t < d”.T.t, and
hence d' <p d”; since s’ € y(d’') by Theorem 57, then s’ € v(d”) by monotonicity of ~.

Dependent ALLOC/DEALLOC. Any timer added by a dependent ALLOC/DEAL-
LOC will by definition cause a GETADDR in BB to stall. Similarly, any ALLOC/DEAL-
LOC followed by a dependent command will increase the maximum trailing length of any
timer, hence increasing the trailing length of the dependent timers. Therefore, moving these
commands to the beginning of the basic block immediately before the GETADDR, cannot
decrease the program stall time compared to the precise abstraction, meaning A > A and
s’ € y(d") from Lemma 55.

]

224

	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Data SPM Management with Software Prefetching
	Task Segmentation and Scheduling for Multi-tasking Systems
	Thesis Outline

	Compilation Framework: Analysis and Transformation
	LLVM Compiler and Compilation Flow
	LLVM-IR Instructions
	LLVM Passes
	Compilation Flow

	Region-Based Program Structure
	LLVM Region Analysis
	Refined Region Tree

	Loop Analysis and Transformation
	Loop Iteration Bound
	Loop Transformations

	Memory Access Information
	Stack Object Promotion

	Back-end Analysis
	Summary

	I The Case of Single Task Execution
	Scratchpad Management: Background and Related Work
	Background
	On-Chip Memory in Real-Time Systems
	Cache Prefetching
	WCET Analysis

	Related Work
	Static Allocation Techniques
	Dynamic Allocation Techniques
	Run-time Allocation Techniques

	Summary

	WCET-Driven Dynamic Data Scratchpad Management with Compiler-Directed Prefetching
	Introduction
	Motivating Example
	Region-Based Program Representation
	Allocation Mechanism
	Assumptions
	SPM controller
	Allocation Commands
	Example

	Compilation Flow
	IR Transformation

	Allocation Algorithm
	Problem Description
	WCET Optimization
	Allocation Heuristic

	WCET Analysis
	Insights into Dynamic Allocation and Prefetching
	Static Allocation
	Dynamic Allocation
	Prefetching

	Evaluation
	Summary

	II The Case of Multi-Tasking Scheduling
	Multi-Segment Streaming using the 3-Phase Execution Model
	Background and Related Work
	Memory and Processor Schedule
	Program Transformation

	Multi-Segment Conditional Streaming Model
	Streaming Execution Model
	Platform Assumptions
	Task Model

	OS Programming Interface
	API Implementation

	Scheduling Analysis for the Fixed-size DMA Model
	Maximum Blocking Length Derivation

	Schedulability Analysis for the Variable-Size DMA Model
	Summary

	Program Segmentation
	Valid Segmentation
	Segmentation Example

	Segmentation for the Fixed-size DMA Model
	Tiling Algorithm
	Region Sequence Segmentation
	Optimal Task Set Segmentation

	Segmentation for the Variable-size DMA Model
	Task Set Segmentation
	Segmentation Algorithm

	Evaluation
	Fixed-size DMA Model
	Variable-size DMA Model

	Summary

	Conclusion and Future Work
	References
	Appendices
	Appendix SPM Controller
	Allocation Command Encoding
	SPM Controller Abstraction

	Control Unit
	Command Execution
	DMA Management

	Appendix WCET Analysis
	Preliminaries
	Abstract State Model

