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Abstract

Prompted by the recent surge of interest in integrating atomically thin layers of conduct-
ing materials into nanophotonic and nanoplasmonic devices; we propose, in this thesis, a the-
oretical framework to analyze the interaction of externally moving charged particles with two-
dimensional (2D) materials. The interactions of 2D materials with externally moving charged
particles in the context of electron energy loss spectroscopy (EELS) has become a very popu-
lar experimental technique for exploring the plasmon excitations in 2D layered specimens over
a broad range of frequencies. On the other hand, the technological need for a stable and tun-
able source of terahertz (THz) radiation has inspired researchers to explore the electromagnetic
radiation from a family of 2D materials, induced by their interaction with fast charged particles.

We present a fully relativistic analysis of the energy loss of a charged particle traversing such
layers. We distinguish between two contributions to this process: (i) the energy deposited in
the layers in the form of electronic excitations (Ohmic losses), which include excitation of 2D
plasmon polariton (PP) modes, and (ii) the energy emitted in the far-field region in the form
of transition radiation. Owing to the proposed theoretical framework, we study various struc-
tures consisting of isotropic and anisotropic conducting and semiconducting sheets with differ-
ent trajectories of the incident charged particles, including single and multiple parallel layers
of graphene under normal incidence of charged particles and single-layer graphene and phos-
phorene under oblique incidence, in broad ranges of frequency, incident particle’s speed, and its
angle of incidence relative to the layers.

Suitable models for the 2D conductivity of each layer are chosen to represent: (a) excitation
of the Dirac PP (DPP) mode in doped graphene in the THz range, (b) interband transitions in
graphene in the range from infrared to ultraviolet frequencies, and (c) hyperbolic plasmon modes
in doped phosphorene at the THz to mid-infrared frequencies. Among other findings, we observe
that, for multilayer graphene, strong asymmetries arise in the Ohmic losses and in the radiation
spectra with respect to the direction of motion of the incident particle. These asymmetries are
explained by hybridization taking place between DPPs in different layers, which is found to be
strongly affected by the interlayer distances and the differences in the doping densities of those
layers.

In addition, we explore the possibility of exciting the so-called transverse plasmon mode in
graphene as well as the directionality of exciting anisotropic plasmons in phosphorene by an
obliquely incident charged particle. Our findings may help in the ongoing studies of plasmon
excitations in 2D materials via EELS, as well as in exploring the possibility of designing a THz
radiation source using an electron beam.
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Chapter 1

Introduction

In the first chapter of the thesis we introduce the problem under consideration. We motivate
the readers of the thesis by explaining the overall idea of the thesis and how we are going to
approach the problem while providing a thorough review of the literature. We offer all aspects
of the importance of the thesis containing the theoretical, experimental, application-minded and
technological and also the educational viewpoints. Next, we present the general organization of
the thesis by listing the content and the management of the building blocks of the chapters.

1.1 Motivation and literature review

The emergence of two-dimensional (2D) crystals that took place in recent years has been re-
garded as a platform that may impact future photonic science and electronic technologies. Ever
since the discovery of graphene in 2004 [1], unique optical properties of 2D materials have en-
abled many important device applications in nanophotonics and nanoplasmonics. In comparison
with the common three-dimensional photonic materials, such as noble metals or silicon, 2D ma-
terials exhibit many exceptional features, including: (1) quantum confinement in the direction
perpendicular to the 2D material, (2) naturally passivated surfaces without any dangling bonds,
making it easy to integrate 2D materials with photonic structures such as waveguides and cavities,
(3) the capability of constructing vertical heterostructures using different 2D materials without
the conventional “lattice mismatch” issue since layers with different lattice constants in such
heterostructures are only weakly bonded by the van der Waals forces, (4) the ability of strong
interaction with light despite being atomically thin, and (5) the capability of operating in a very
wide range of the electromagnetic (EM) frequency spectrum because of their diverse electronic
properties [2, 3, 4, 5, 6].
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Initially, graphene has attracted enormous amount of interest in plasmonic and optoelec-
tronic research owing to its low-energy electronic band structure being akin to the massless Dirac
fermions, its high carrier mobility, and the dynamic tunability of its doping density. However,
graphene suffers the lack of a band gap, which is a serious limitation for its use in electronic
devices. In the wake of the initial excitement about graphene, the need for a direct band gap in
the electronic band structure has lead researchers to study other 2D materials, such as transition
metal dichalcogenides [7, 8] and various monoelemental 2D crystals termed Xene (X = Si, Ge,
Sn,...) [9]. The advent of these new 2D materials also opened the possibility to integrate differ-
ent 2D materials together in layered structures to provide novel heterostructure applications [5].
Nevertheless, relatively low carrier mobility in these materials, in comparison to graphene, has
been recognized as a considerable setback [10].

The invention of phosphorene in 2014 by exfoliation from black phosphorus (BP) [11, 10, 12,
13] – one of the four known allotropes of phosphorus that shows semiconducting properties, a
thickness-dependent (i.e., highly tunable) band gap, strong in-plane anisotropy (particularly the
anisotropy of electric conductance), and high carrier mobility– offers improvements for many
technological concerns regarding the above mentioned 2D materials. Structurally, BP is similar
to graphite and other layered (van derWaals) materials, comprised of 2D sheets that are vertically
stacked with respect to one another. However, unlike graphite, the in-plane bonding in BP occurs
via sp3 hybridization and, accordingly, phosphorene does not form an atomically flat sheet like
graphene, but rather a puckered honeycomb-structured layer (Fig. 5.1). Owing to this unique
topological structure and the resulting differences between the armchair (AC) and the zigzag
(ZZ) directions, many properties of phosphorene display strong in-plane anisotropy with respect
to those two principal directions. Particularly, this anisotropy is markedly manifested in a large
difference in the effective electron and hole masses along the AC and ZZ directions [14].

Determining the EM response of 2D materials and, in particular, graphene and phosphorene
is of great significance for their potential applications in nanophotonics and nanoplasmonics.
Optical properties of 2D layered materials have been extensively investigated using photon irra-
diation, both from the experimental and theoretical viewpoints. Currently associated to optical
spectroscopies and techniques, surface plasmons were first observed in electron energy loss ex-
periments, where energetic free electrons interact with the plasmon fields losing defined amounts
of energy [15, 16]. As regards the plasmonic properties of 2D materials, electron energy loss
spectroscopy (EELS) has become one of the most widely used analytical techniques that mea-
sures the dynamic polarization of a 2D material by a fast electron beam in a broad range of
frequencies [17]. Such technique also allows one to study the dispersion relation of plasmon
modes and their relation with the stopping of the incident particle [18].

Experimentally, by performing EELS in a modern scanning transmission electron microscope
(STEM), one can obtain structural information about the target with spatial resolution down to

2



the atomic scale [17, 18], while simultaneously probing its collective electronic modes [19],
detecting the cathodoluminescence (CL) light emission from the target [18, 20] and performing
angle-resolved measurements of transition radiation (TR) from it [21]. The experimental setting
of a STEM which allows for measurements of CL light emission from the material, can also be
applied to the TR detection [18, 20, 22]. In particular, angle-resolved measurements of CL can
be used within STEM experiments to distinguish between TR and incoherent CL, which often
appears in the form of, e.g., luminescence from various materials [21, 23]. In addition, a number
of experiments have been carried out using different energetic electron sources to generate EM
radiation from graphene [24, 25, 26], increasing the interest in studying the coupling between
moving electrons, plasmons and radiation fields. In that context, electron beam irradiation of
graphene has been recently explored for its prospects to fill in technological gap regarding the
lack of radiation sources at terahertz (THz) frequencies [27].

Nowadays, EELS benefits from the high spatial and energetic resolutions available in STEMs,
allowing new insights in the study of plasmons, e.g., the mapping of plasmon modes at a nanoscopic
scale [28, 29]. Whereas only the long-wavelength region is accessible in experiments probing
nanostructures with incident photons, EELS can scan an extended range in the reciprocal space to
cover both the long- and short-wavelength regimes of the dynamic response of those structures.
Furthermore, it is possible to obtain momentum-resolved energy loss spectra in the low ultravio-
let (UV) range, including the range 0− 2 eV which was usually inaccessible due to the presence
of a zero-loss peak [30]. Even spatial mapping of plasmon modes in graphene and graphene-
related nanostructures has been accomplished in recent works [19, 31]. Accordingly, EELS has
been the main experimental technique for investigating electronic excitations in graphene over a
broad range of frequencies and wavenumbers [32]. In particular, the high energy peak structures
occurring at about 4 eV and 14 eV in the EELS of graphene have been studied in detail, both
experimentally and theoretically, for free-standing single-layer graphene (SLG) and multilayer
graphene (MLG) structures [33, 34, 35, 36, 37, 38, 39]. Although nonretarded calculations in
the theoretical studies of EELS have reproduced the experimental data for graphene quite suc-
cessfully [33, 40], a quantitative assessment of the importance of the relativistic correction was
undertaken in a broad range of the electron energy losses to elucidate the role of retardation ef-
fects in energy loss spectra [9, 41] and to investigate the significance of TR in such experiments
[22, 42, 43].

Studying interactions of the fast, externally moving charged particles with 2D materials is
not only important in the context of EELS. We note that free-electron interactions with 2D tar-
gets were recently studied in several other contexts [24, 44, 45, 46, 47, 48, 49]. In particular,
such interactions play a possibly important role in an effort towards designing a stable, highly
tunable source of THz to infrared (IR) and even X-ray radiation. In that respect, there have been
several recent proposals to use EM radiation from graphene induced by a fast electron beam,
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moving either parallel (aloof scattering) [25, 50, 51] or perpendicular to graphene [52] and also
cyclotron electron beam [26]. It has been shown that, depending on the trajectory of external
particles with respect to graphene, various parameters such as the velocity of the particles may
be used as additional tuning parameters, besides the chemical potential in graphene, for creating
radiation at various frequencies [25, 50]. Moreover, the opportunity that EM radiation can be
measured in a STEM equipped for the detection of CL light from the target material [53], opens
the possibility of studying the low-energy losses beyond the detection limit through the emitted
radiation patterns.

Considering the isotropy of graphene’s (or, in general, isotropic 2D materials’) polarization
by a normally incident electron beam, graphene-based radiative applications are expected to offer
relatively isotropic radiation patterns in all spatial directions. This intuitive argument calls for
attention to study interactions of an external charged particle with a strongly anisotropic sheet,
such as phosphorene, in the retarded regime. In particular, using an oblique incidence of the
charged particle could reveal how the more exotic collective modes in anisotropic 2D materials
may affect the energy loss spectra of the incident particle and the directional patterns of the
emitted EM radiation from the target. Finally, to further motivate our study here, we mention
that the systematic study of radiative and nonradiative losses is known to provide insight into
the limitations that may arise in the fundamental physical properties of plasmonic systems, for
example plasmon propagation lengths in nanoparticles [54].

In this thesis, we present fully relativistic calculations of the energy loss spectra in the THz
to UV frequency range, generated by STEM electrons at different trajectories of incidence pass-
ing through a single-layer or multilayer structure of 2D materials. We establish a theoretical
framework to analyze the interaction of fast moving charged particles with single- or multilayer
conducting sheets with an arbitrary number of parallel monolayers, taking the retardation effects
into account. In the case of multilayer structures, we assume that the layers are well separated
so that the only interaction between their electronic systems is due to EM fields. Our approach
is, essentially, to solve the corresponding macroscopic Maxwell’s equations within the dielectric
response formalism with adequate boundary or matching conditions [55, 56].

The inputs to this theoretical framework are two-fold: (1) the external current density as-
sociated to the motion of the external charged particles, which, in turn, can be related to the
straight-line trajectory of the motion with respect to the plane of the 2D materials and the speed
of the motion and (2) the induced current density associated to the dynamical response of the
2D materials which is dependent on the response model of the conducting sheets. Assuming a
straight-line trajectory, we neglect the recoil of the incident charged particle and, accordingly,
we neglect its bremsstrahlung. Thereby, focusing on various ranges of frequency, we use the
appropriate optimal models of the response of each monolayer which will be validated for each
structure under consideration. However, this analysis is essentially independent of the model
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used for the response of the layers.

We elucidate two contributions to the total energy loss of the external particles: the Ohmic
loss in 2D materials (conducting sheets) and the EM energy emitted in the far-field region in the
form of TR, a purely relativistic phenomenon which is characteristic of the passage of a charge
through an interface. We further show that Ohmic loss is related to excitation of the plasmon
polaritons (PPs) which is the excitation of the valence electrons in each monolayer, as well as to
generation of the Joule heat due to decay of those PPs in the presence of dissipative processes in
the conducting sheets. While TR contributes only inside the light cone, with frequencies ω > ck
(with c, ω, and k being the speed of light, operating frequency, and the in-plane wavenumber,
respectively), the Ohmic energy loss has finite contributions both within and outside the light
cone (ω ≶ ck).

1.2 Organization of the thesis

This thesis is comprised of six chapters and two appendices. The first chapter is dedicated to the
introductory concepts such as motivation, literature review, etc. The last chapter is dedicated to
the general conclusion of the thesis, suggestions and probable future research projects concerning
the thesis. Each chapter of 2-5 begins with a short section in the form of an abstract where we
give the gist of the chapter and is followed by an Introduction section devoted to motivating the
readers for the specifics of the chapter and the general structure of it. In the Theory section, then,
we give the formulation of the proposed problem followed by the Results and discussion section
where we show several quantitative aspects of the problem and discuss them, and ultimately each
chapter will be wrapped up by a Concluding remarks section.

The overall content of the thesis is as follows: in Chapters 2, 3, 4 and 5 we present the
formalism of the relativistic interaction of fast charged particles with 2D materials in order to
analyze the transfer of energy between the external particles and 2D materials. In Chapter 2 we
apply our formalism to a multilayer structure consisting of isotropic conducting sheets identified
by scalar conductivities, under normal incidence of external charged particles. In such a case we
consider graphene with a scalar conductivity model. The results of this chapter are published
in three ISI journal papers [57, 58, 59]. In Chapter 3 we apply our formalism to a single-layer
structure consisting of an isotropic conducting sheet identified by a tensorial conductivity model
interacting with charged particles moving on a parallel trajectory. The model system in this
chapter is again graphene. The results of this chapter are published in an ISI journal paper [60].

In Chapter 4 we apply our formalism to a single-layer structure consisting of an isotropic con-
ducting sheet identified by a tensorial conductivity, under oblique incidence of external charged
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particles. The model system here is graphene with a tensorial conductivity. The results of this
chapter are published in an ISI journal paper [61]. In Chapter 5 we apply our formalism to
a single-layer structure consisting of an anisotropic conducting sheet identified by a tensorial
conductivity, under oblique incidence of external charged particles. The model system is single-
layer BP, also known as phosphorene with a tensorial conductivity. The results of this chapter
are published in a conference proceeding [62] and will be submitted shortly to an ISI journal.
Ultimately, the thesis becomes complete by the concluding aspects of the research presented in
the thesis in Chapter 6.

Unless otherwise stated, Gaussian units of electrodynamics are used throughout the the-
sis [63]. The reader should also note that the subsequent chapters are written in a self-contained
form, so that some general definitions and equations will appear repeatedly in each chapter. This
avoids the reader going back and forth among chapters for similar definitions. Likewise, each
chapter contains its own set of introduced acronyms.
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Chapter 2

Energy Loss and Transition Radiation in
Multilayer Graphene Traversed by Fast
Charged Particles under Normal Incidence

We present a fully relativistic formulation of the energy loss of charged particles traversing a mul-
tilayer graphene structure under normal incidence. We focus on the terahertz (THz) frequency
range and we assume a large enough separation d between the layers to neglect any electronic
interaction among them, such as interlayer electron hopping or formation of excitons. We use
the Drude model for two-dimensional (2D) conductivity of each layer to describe hybridization
between Dirac plasmon polaritons (DPPs) in different layers. We distinguish two types of con-
tributions to the external charged particles energy loss: the energy deposited in graphene layers
in the form of electronic excitations (Ohmic loss), which include the excitation of DPPs, and the
energy that is emitted in the form of transition radiation. We study in detail the contribution of
each layer to the Ohmic loss and analyze the directional decomposition of the radiation emitted
in the half-spaces defined by the graphene planes.

Firstly, we apply the formalism to the case of two spatially separated layers, probed by an en-
ergetic electron and allowing for different doping density in each layer by defining an asymmetry
parameter in the THz frequency range. By increasing the interlayer distance and changing the
relative doping densities in graphene layers, we find surprisingly strong asymmetries in both the
directional and layer-wise decompositions with respect to the direction of motion of the external
charged particles.

A modal decomposition is also performed in the limit of vanishing damping in graphene,
exposing quite intricate roles of bonding and antibonding hybridization between DPPs in Ohmic
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losses. We obtain the probability density of exciting the hybridized DPP (HDPP) modes that
result from the coupling of the layers, and we also calculate the average number of HDPPs
excited by the external charged particles traversing the two parallel graphene layers. We analyze
the effect of different parameters, such as the interlayer distance, the incident particle velocity,
and the asymmetry in doping densities. In particular, we find a cusp-like behaviour for nearly
equal conductivities, that indicates a high sensitivity of the system to slight variations in doping
densities.

Secondly, we analyze the energy loss channels for a fast charged particle traversing a mul-
tilayer graphene (MLG) structure with N layers under normal incidence. Focusing on a THz
range of frequencies, and assuming equally doped graphene layers, we describe hybridization
of graphene’s DPPs. Performing a layer decomposition of Ohmic energy losses, which include
excitation of those HDPPs, we have found for N = 3 that the middle HDPP eigenfrequency is
not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest
HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by
the charged particle. While the angular distribution of transition radiation emitted in the far-field
region also shows asymmetry with respect to the traversal order by the incident charged parti-
cle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of
both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in
transition radiation.

We have further found that the integrated Ohmic energy loss in optically thin MLG scales as
∝ 1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes
in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequen-
cies in the integrated Ohmic energy loss for MLG structures that are not optically thin. The
magnitude of those peaks is found to scale with N for N ≤ 2, while their shape and position
replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plas-
mon hybridization in such MLG structures is dominated by electromagnetic interaction between
the nearest-neighbor graphene layers.

2.1 Introduction

The study of plasmons in graphene is the subject of a vast experimental and theoretical effort in
the last years, due to its remarkable properties that make it preferable to other plasmonic materi-
als like noble metals [64, 65, 66, 67]. Researchers have explored its capabilities taking advantage
of the long plasmon lifetimes, low losses [68], high spatial confinement, and versatile tunability
[69, 70], together with the large electro-optical response provided by its two-dimensional (2D)

8



geometry and peculiar electronic structure [71]. Graphene-based devices are designed for ap-
plications in optoelectronics [64, 72, 73], solar cells [74, 75], sensing of gases and molecules
[76, 77, 78, 79], photocatalysis [80, 81], terahertz (THz) technology [82], etc. Also, the fine
biocompatibility of graphene makes it an admirable candidate for applications in biotechnol-
ogy and medical sciences [83, 84]. From a fundamental point of view, the simplicity of its
atomic structure as well as the definiteness and richness regarding its electronic structure, makes
graphene an excellent material to test methods for modeling emerging new phenomena of other
low-dimensional systems [85, 86, 87].

Although the optical response of graphene presents pronounced spectral features at fre-
quencies in the ultraviolet (UV) range (∼ 2 − 30 eV, the so-called π and σ + π plasmons)
[35, 38, 39, 88], it is in the THz to infrared (IR) [89] region (with frequencies < 1 eV) where it
stands out for the aforementioned applications. In this regime, heavily doped graphene supports
the so-called Dirac plasmon, originated in intraband π-electron excitations [90, 91]. A distinct
property of this plasmon is the high tunability of frequencies, which can be controlled by altering
the chemical potential through external gates in a relatively simple manner [69, 70], a unique fea-
ture not applicable in the higher energy regime. The associated plasmon polariton shows strong
confinement in the direction perpendicular to graphene and propagates along it for relatively long
distances [92].

Tunable plasmons have been detected also in a variety of graphene nanostructures, like rib-
bons, nanodisks, rings, and others [93], which add localization properties in the plane of the
layers. Nevertheless, extended graphene remains a central topic for theoretical as well as experi-
mental investigation of graphene, both monolayered and multilayered, isolated or combined with
other materials and heterostructures [68, 94, 95, 96, 97], and even in nonparallel configurations
[98]. Furthermore, stacks of multiple graphene layers, which are typically separated by distances
in excess of some 10 nm, have shown great promise for nanophotonic and nanoplasmonic ap-
plications due to hybridization taking place between Dirac plasmons in individual layers, which
may be tuned by controlling their doping densities [99, 100, 101]. Over the past several years,
growing effort has been invested in developing optoelectronic devices using layered structures
that contain stacks of multiple layers of graphene [100, 102, 103, 104, 105, 106, 107]. Other
examples of applications of multilayer graphene (MLG) structure include radiation absorbers at
sub-THz frequencies [108] and ultrasensitive THz biosensors [109, 110]. Graphene layers in
such applications are usually well separated, so that the only interaction between their electronic
systems is due to EM fields.

Both experimental and theoretical investigations of the collective electron excitation modes
in doped graphene have played important roles over the past decade in the subfield of photonics
research concerned with the range of frequencies from THz to mid-infrared (MIR) [66, 82, 111].
While the main effort of research in this area is aimed at designing optoelectronic and plasmonic
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devices with optimal functionalities, interactions of graphene with externally moving charged
particles have also attracted substantial interest in recent years, e.g., in the context of using
electron energy loss spectroscopy (EELS) to explore plasmonic properties of both single-layer
graphene (SLG) and MLG in the ∼ 2 − 30 eV range of frequencies [35, 38, 32]. On the other
hand, joining the global effort to design a stable, highly tunable source of THz radiation, there
have been several recent proposals to use EM radiation from graphene induced by a fast elec-
tron beam, moving normal to graphene [52], where the electron velocity may be used as tuning
parameter.

In a recent article [42], the authors presented fully relativistic calculations of the energy loss
spectra in the THz to UV frequency range, generated by a scanning transmission electron micro-
scope (STEM) electrons at normal incidence passing through a SLG. The research was performed
in order to elucidate the role of retardation effects in EELS, Ohmic losses and transition radia-
tion (TR) from doped graphene probed by a fast electron in a STEM, where it is shown that the
retardation effects are of significant importance at low frequency range. In that context, it may
be worthwhile mentioning that the experimental setting of a STEM allows for measurements of
cathodoluminescence light emission from a target [18, 20], which could be adapted to perform
angle-resolved measurements of TR from graphene [21].

Motivated by [42], in this chapter we generalize the theoretical framework to MLG with
an arbitrary number of parallel sheets. We assume that graphene layers are well separated so
that the only interaction between their electronic systems is due to EM fields. As mentioned
before, in the THz to infrared range, the graphene π electrons participate in low energy intraband
excitations, giving rise to Dirac plasmons (or sheet plasmons), which can couple with EM waves
to generate Dirac plasmon polaritons (DPPs) that propagate along the graphene sheet. As a result,
a key novel mechanism arises in the optical response of such MLG based devices due to strong
hybridization among the DPP modes of individual graphene layers, which opens the possibility
of using the geometric design of such structures to achieve eigenmodes with various dispersion
relations and oscillator strengths in the THz to MIR frequency range.

In our theory, we solve the corresponding Maxwell’s equations within the dielectric response
formalism with adequate boundary conditions [55, 56]. As mentioned before, we next elucidate
two contributions to the total energy loss of the external particle: the Ohmic losses in graphene
and the EM energy emitted in the far-field region in the form of TR. We further show that Ohmic
losses are related to excitation of the DPPs in graphene, as well as to generation of the Joule heat
due to decay of those DPPs in the presence of dissipative processes in graphene. Focusing on the
THz range, we use the Drude model of conductivity and apply our model to, initially, double-
layer graphene (DLG) [99] and then to MLG, onto which a ∼ 100 keV electron beam impinges
perpendicularly. We emphasize that we do not consider a bilayer graphene in the sense of two
electronically-coupled layers [94]. Besides calculations of the total Ohmic and radiative energy
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loss spectra, we also derive a layer-wise decomposition of the Ohmic losses and a directional
decomposition of the radiation emitted in the upper and lower half-spaces.

It is worth mentioning that, theoretical investigation of MLG structures was initially con-
cerned with plasmon hybridization in DLG, first studied by Hwang and Das Sarma [99], followed
by other authors [112, 113, 114]. The dispersion of a DPP mode in an SLG is well described
in [42] considering the retardation effects. The presence of a second graphene layer (even at
a relatively large distance) produces hybridization of the single-layer DPPs giving rise to new
modes with essentially different frequencies (low-energy bonding and high-energy antibonding
modes [101]), which depend on the physical parameters of the coupled system, such as the inter-
layer distance and the asymmetry in doping densities [99, 105, 106, 115]. The interplay of these
parameters may be the key to optimize the performance of such system in a particular design.
Hence, relative roles of the bonding and antibonding hybridization modes in the two graphene
layers are elucidated by developing a modal decomposition for Ohmic losses in the limit of van-
ishing dissipation in graphene. Furthermore, in addition to the case of graphene layers with equal
conductivities, we also study an inherently asymmetric structure with two graphene layers hav-
ing different conductivities due to doping with different densities of charge carriers. We analyze
the dependence of the Ohmic loss spectra and the angular distribution of the emitted radiation
with parameters such as the interlayer distance and the relative doping density.

This analysis is essentially independent of the model used for the conductivity of the layers.
Generally speaking, the conductivity σ of a graphene layer is a complex function of frequency ω
(and wavevector k, if we consider a non-local response model). The real part <{σ} accounts for
dissipative effects, while the imaginary part={σ} corresponds to reactive phenomena, including
the excitation of plasmons. As stated before, the Ohmic contribution to the energy loss includes
both the excitation and the subsequent decay of plasmons through an explicit dependence on
<{σ}. For the modal decomposition, we adopt a conductivity model with zero damping (i.e.
<{σ} = 0 for each layer), hence disregarding dissipative effects and focusing on the fundamen-
tal aspects of the excitation of plasmons. Using the aforementioned relativistic formulation, we
analyze the production of plasmons in a two-layered graphene system, with an emphasis on the
role played by the external parameters that can be adjusted in an experiment. Finally, for both
symmetrically and asymmetrically doped DLGs, we give an analysis of the average number of
plasmons excited by the swift external electron.

Plasmon hybridization in MLG systems with N ≥ 2 layers was theoretically studied by
Zhu et al. [116], Stauber [101], and Rodrigo et al. [106], among other authors. Those authors
have found that, for an MLG with N layers, there exist N hybridized DPP (HDPP) modes with
eigenfrequencies ωj(k), for j = 1, 2, . . . , N , where k is an in-plane wavenumber. The spread
among those frequencies was found to generally increase with decreasing interlayer distance(s),
so that the highest-lying hybrid mode with frequency, say, ωN merges with the light line, ω = ck,
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at long wavelengths and approached the typical ωN ∝
√
k dependence of a 2D electron gas at

shorter wavelengths [91], whereas the remaining N − 1 hybrid modes with lower frequencies
exhibit quasi-acoustic dispersions at long wavelengths [116]. Thus, while the highest mode is
always strongly affected by retardation effects at the wavelengths of interest in the THz range
[117], the lower lying modes are pushed further below the light line ω = ck by decreasing
interlayer distance, and are therefore less affected by retardation.

Several applications of MLG rely on the properties of the highest HDPP mode in optically
thin structures, such that their thickness is much smaller than the characteristic wavelength of that
mode. In that limit one may represent the conductivity of an MLG as a sum of conductivities
of independent graphene layers [100, 105, 106, 107, 109, 110]. As a result, it was shown that
an optically thin MLG may exhibit considerably higher effective doping density than in an SLG,
which could give rise to a larger oscillator strength, as well as a higher eigenfrequency of its
highest HDPP mode in comparison to the DPP mode in a SLG [106]. On the other hand, there has
also been an increasing interest in the past several years to exploit dispersion relations associated
with the acoustic plasmon modes in graphene for various applications [95, 118]. For example,
it was recently shown that radiation sources could be developed at THz frequencies based on
excitation of the low-frequency quasi-acoustic HDPP hybrid modes in an MLG by an electron
beam moving parallel to graphene at a moderate speed [95, 118]. We remark that such acoustic
modes can be produced, not only in an MLG structure with electronically decoupled graphene
sheets [99, 101, 116], as discussed above, but also in an SLG in the presence of a nearby metal
gate [118], or in a structure that combines those two designs, namely, an MLG on a conducing
substrate [95].

With all the above mentioned intricacies regarding the dispersion relations and oscillator
strengths of the HDPP modes in MLG structures, and in view of a diverse range of their ap-
plications, we expose some new features of MLG at THz frequencies when such structures are
traversed by a fast external charged particle. Since we are interested in the limit of extremely long
wavelengths associated with those frequencies, we adopt the Drude model, which was shown to
describe rather well the DPP mode in a doped graphene by means of an in-plane optical con-
ductivity [119, 43]. Specifically, in this work we analyze the effects of the number of layers N
and the interlayer distance on the energy loss of a fast charged particle traversing the MLG, as
well as the resulting TR from those layers in the THz range of frequencies. We only consider
a somewhat idealized system represented by a stack of graphene layers suspended in free space
in order to emphasize the role of plasmon hybridization between graphene layers by eliminating
screening, or possible additional hybridization with collective modes due to the presence of a
substrate or dielectric spacer layers [115]. By choosing such a system we also focus on TR from
graphene layers, while eliminating Cherenkov radiation in a substrate [51], as well as TR arising
when the charged particle traverses a dielectric boundary.
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Regarding the results of N -layer problem, for DLG we find strong asymmetries with respect
to the order in which graphene layers are traversed by the external charged particle that are man-
ifested in the angular distributions of TR in the half-spaces defined by the DLG, as well as in the
amounts of energy deposited in individual graphene layers, which mostly goes into the excitation
of two HDPP modes. Those asymmetries were found to be accentuated by increasing interlayer
distance and by increasing asymmetry between the doping densities of the two graphene layers
in a DLG. Next, we add the number N of layers as a critically important parameter for all MLG
structures, and investigate how the above mentioned physical observations change with N in the
range 1 ≤ N ≤ 5 for equally doped graphene layers with a broad range of interlayer distances.

The chapter is organized as follows: in the Theory section (2.2) we give a derivation of the
EM fields and define probability densities for various energy losses for the general case of N
graphene layers. We apply this theory to the case of two graphene layers providing a more
detailed analysis, for which we study a modal decomposition of plasmon excitation probability
and average number of plasmons. The Results and Discussion section (2.3) is divided in two
parts, dedicated to DLG layers with equal conductivities and different conductivities, and MLG
with more than two layers with equal conductivities. For the case of DLG we also investigate
the effects of changing damping rates and external particle’s velocity for both cases of equal and
different conductivies. That section is followed by the Concluding remarks section (2.4).

2.2 Theory

We consider a structure with N parallel graphene layers with large area placed in the planes
z = zl with l = 1, 2, . . . , N in a three-dimensional Cartesian coordinate system with coordinates
R = {r, z}, where r = {x, y}, as shown in Fig. 2.1. We shall assume in our calculations that
the structure is placed in vacuum in order to be able to neglect any other sources of radiation or
dissipation, apart from those pertaining to the graphene layers.

2.2.1 Self-consistent solution for the induced electromagnetic fields

By the symmetry of the structure, we find it convenient to use the electric Hertz vector Π(R, t)
to describe the electric and magnetic fields generated by the external and induced currents in
the system. Assuming that the system is always invariant under time translation to prevent the
alteration of the material properties, we employ the Fourier transform pair with respect to time
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Figure 2.1: Geometry of the structure for probing the multilayer specimen by an electron under
normal incidence in STEM.

and frequency so that we can express the Hertz vector via

Π(R, t) =

� ∞
−∞

dω

2π
e−iωtΠ(R, ω). (2.1)

Then, in an infinite medium described by a frequency dependent relative dielectric constant
εd(ω) and relative permeability µd(ω) the electric field and the magnetic field may be obtained
from [120]

B(R, ω) = −iω
c
εd(ω)µd(ω)∇×Π(R, ω),

E(R, ω) = ∇∇ ·Π(R, ω) +
ω2

c2
εd(ω)µd(ω)Π(R, ω),

(2.2)

respectively, where c is the speed of light in vacuum.

Assuming translational invariance inside each graphene layer, we may perform a 2D spatial
Fourier transform with respect to the 2D materials’ in-plane coordinates (r = {x, y} → k =
{kx, ky} with k being the in-plane wavevector), enabling us to express the Hertz vector as

Π(R, ω) =

�
d2k

(2π)2
eik·r Π(k, z, ω). (2.3)
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This vector may be decomposed into two contributions as Π = Πext + Πind, resulting from
the external charged particle and the currents induced in graphene layers, see Fig. 2.1. In the
presence of a charge current with density J(k, z, ω) the Hertz vector in vacuum (i.e., setting
εd(ω) = µd(ω) = 1), is obtained by solving the equation [120](

∂2

∂z2
− q2

)
Π(k, z, ω) = −4πi

ω
J(k, z, ω), (2.4)

where q2 = k2 − k2
0 with k =

√
k2
x + k2

y and k0 = ω/c. This equation implies that the Hertz
vector is in the direction of the current density (in the absence of any scattering condition) and
may be solved for arbitrary current density J as

Π(k, z, ω) =

� +∞

−∞
dz′GΠ0(k, z − z′, ω) J(k, z′, ω), (2.5)

where GΠ0(k, z, ω) is the scalar retarded Green’s function (GF) [63, 121] for the components
of the Hertz vector in vacuum (subscript 0 implies the homogenius medium), obtained in Ap-
pendix A:

GΠ0(k, z, ω) =
2πi

ωq
e−q|z|, (2.6)

with the field dependency on the z coordinate governed by

q(k, ω) =


|ω|
c

√(
ck
ω

)2 − 1 ≡ α(k, ω), |ω| < ck

−iω
c

√
1−

(
ck
ω

)2 ≡ −iκ(k, ω), |ω| > ck.
(2.7)

Here, we have defined α =
√
k2 − k2

0 as the inverse decay length of evanescent fields outside
the light cone representing the solutions of Eq. (2.4) in the near-field region that are localized
around the conducting layer when |ω| < ck and κ = sign(ω)

√
k2

0 − k2 as the wavenumber of
traveling wave inside the light cone representing the radiative waves propagating in the far-field
region as |z| → ∞ when |ω| > ck in directions perpendicular to graphene layers, respectively.

Considering the external particle to be a point charge Ze that moves along the z-axis with
constant velocity v = ẑv (enabling us to neglect its braking radiation), where ẑ is a unit vector
in the direction of that axis, one may write the external volume charge density as ρext(R, t) =
Ze δ(2)(r) δ(z−vt) and the corresponding current density as Jext(R, t) = vρext(R, t). Thus, the
Fourier transform of the current density due to the external charge is given via

Jext(k, z, ω) = Ze eiQz ẑ, (2.8)
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where Q = ω/v. This external current density inserted in Eq. (2.5) yields the corresponding
Hertz vector as

Πext(k, z, ω) =
i

ω
A(k, ω) Jext(k, z, ω), (2.9)

with the auxiliary amplitude

A(k, ω) =
4π

q2 +Q2
. (2.10)

Using standard vector relations in Eq. (2.2), one may retrieve from Πext the usual expressions
for electric and magnetic fields associated with a uniformly moving point charge in free space
[63, 120].

Defining jl(k, ω) as the in-plane current in the lth graphene layer, which arises due to dynamic
polarization of charge carriers in that layer, we may express the total induced current in the
system in terms of a sum involving Dirac’s delta functions as

Jind(k, z, ω) =
N∑
l=1

δ(z − zl) jl(k, ω). (2.11)

We assume that the lth graphene layer is characterized by its own equilibrium density of charge
carriers, nl, giving rise to an in-plane, scalar conductivity σl(k, ω), which may be generally
dependent on both the wavenumber k =

√
k2
x + k2

y and frequency ω. Then, the polarization
current in that layer may be expressed by the 2D Ohm’s law as jl(k, ω) = σl(k, ω)E||(k, zl, ω),
where E||(k, zl, ω) is the tangential, or the in-plane component of the total electric field evaluated
at z = zl. Equation (2.11) allows us to express the total induced Hertz vector as

Πind(k, z, ω) =
i

ω

2π

q

N∑
l=1

e−q|z−zl|jl(k, ω)

=
i

ω

2π

q

N∑
l=1

e−q|z−zl|σl(k, ω)E||(k, zl, ω).

(2.12)

Notice that the components of this vector are parallel to the graphene layers, Πind(k, z, ω) =
Π||(k, z, ω) = k̂Π||(k, z, ω), where k̂ is a unit vector in the direction of k, whereas the z
component of the Hertz vector is entirely due to the external charged particle, Πext(k, z, ω) =
ẑΠz(k, z, ω), where

Πz(k, z, ω) =
i

ω
ZeA(k, ω) eiQz. (2.13)
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Using the vector relations between the electric field and the Hertz vector expressed in Eq. (2.2),
we may express components of the total electric field in directions parallel to the graphene layers
as

E||(k, z, ω) =

(
ω2

c2
− k k·

)
Π||(k, z, ω) + ik

∂

∂z
Πz(k, z, ω). (2.14)

We insert Eq. (2.12) for Π|| in Eq. (2.14), multiply by k̂· and set z = zl, to obtain a system of
algebraic equations for the in-plane, longitudinal components of the total electric field, E|| =

k̂ · E||, in all layers,

E||(k, zl, ω)

(
1 +

2πi

ω
q σl

)
+

2πi

ω
q

N∑
l′=1,l′ 6=l

σl′e
−q|zl−zl′ |E||(k, zl′ , ω) = −ikZe

v
A eiQzl , (2.15)

having a solution that gives a self-consistent set of values for E||(k, zl, ω). Now, this system of
equations may be further written in a matrix form as εE = b, where the N ×N matrix ε has its
components defined by

εll′ =

{
1 + i2π

ω
qσl if l = l′

i2π
ω
qσl′e

−q|zl−zl′ | if l 6= l′,
(2.16)

whereas vectors E and b have their components defined by El ≡ E‖(k, zl, ω) and bl = A eiQzl

with A ≡ −ikAZe
v

, respectively. Then, the solution of the system, E = ε−1b, may be inserted
back into Eq. (2.12) to obtain an expression for Π‖(k, z, ω) = k̂ ·Πind,

Π‖(k, z, ω) =
2πi

qω

N∑
l=1

σle
−q|z−zl|El, (2.17)

which finally gives from Eq. (2.14)

E‖(k, z, ω) = −2πi

ω
q

N∑
l=1

σle
−q|z−zl|El +AeiQz. (2.18)

In a similar manner, the z component of the total electric field, Ez = ẑ ·E, may be evaluated
as

Ez(k, z, ω) =
∂

∂z

(
ik ·Π‖ +

∂

∂z
Πz

)
+
ω2

c2
Πz

=
2π

ω
k

N∑
l=1

σl e−q|z−zl|El sign(z − zl) + iωAZe
( 1

c2
− 1

v2

)
eiQz.

(2.19)
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Having obtained Πind, one may use standard vector relations, Eq. (2.2), to express the in-
duced electric and magnetic fields as [42, 120]

Eind(k, z, ω) = −k̂
2πiq

ω

N∑
l=1

σl e−q|z−zl|El + ẑ
2πk

ω

N∑
l=1

σl e−q|z−zl|El sign(z − zl),(2.20)

Hind(k, z, ω) = −2π

c

(
ẑ× k̂

) N∑
l=1

σl e
−q|z−zl|El sign(z − zl), (2.21)

with “sign” being the signum function.

Once the components of the electric field are identified, the derivations of the probability
densities for the total energy losses of the external charged particle, the Ohmic energy losses,
and radiative energy losses become straightforward. For instance, for the radiative energy losses
one requires the z component of the complex Poynting vector in the Fourier domain, which is
given by

ẑ ·
[
Eind(k, z, ω)× H∗ind(k, z, ω)

]
=

(2π)2

ωc
κ

N∑
l=1

N∑
l′=1

σl σ
∗
l′e
iκ(|z−zl|−|z−zl′ |)El E

∗
l′ sign (z − zl′).

(2.22)

Moreover, the eigenvalues of the system in Eq. (2.15) yield N eigenfrequencies ωj(k), with
j = 1, 2, . . . , N , of the HDPP modes, satisfying 0 < ωj(k) < ck. It should also be noted that we
assume that the electron systems in graphene layers are not spin polarized, e.g., by the presence
of an external magnetic field [122], and we neglect the effects of spin-orbit coupling on the Dirac
plasmon, which are deemed to be small in graphene [101].

2.2.2 Energy loss probability densities

The energy balance of the system composed of the incident particle traversing a number of
graphene layers gives the condition Wext + WOhm + Wrad = 0, where Wext < 0 is the total
energy lost by the external charged particle, WOhm > 0 is the Ohmic energy deposited in the
graphene layers, and Wrad > 0 is the electromagnetic energy radiated in the far-field region. We
use appropriate Physical definitions for each term to deduce expressions for the corresponding
probability densities while upholding the conservation of the total energy. Each of these energy
contributions may be further suitably decomposed into Physically motivated and/or experimen-
tally observable components.
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We define Wext as the total work done by the induced electric field on the external charge,

Wext =

� +∞

−∞
dt

�
d3R Jext(R, t) · Eind(R, t). (2.23)

Switching to Fourier transforms and invoking the parity properties of σl(k, ω), A(k, ω) and
q(k, ω) as functions of frequency enables us to write Eq. (2.23) in a form, which defines a joint
probability density that the external charge will lose an energy ~ω ≥ 0 (at zero temperature) and
suffer a change in the momentum ~k perpendicular to its trajectory, Fext(k, ω), via

Wext ≡ −
�

d2k

� +∞

0

dω ω Fext(k, ω), (2.24)

where

Fext(k, ω) =
1

4π3ω

N∑
l=1

<
{
σlElA∗e−iQzl

}
(2.25)

can be evaluated upon substitution of the solution of the system of equations in Eq. (2.15) for El.

In a similar manner, we may write the total Ohmic energy loss in all graphene layers in terms
of the total electric field E as

WOhm =

� +∞

−∞
dt

�
d3R Jind(R, t) · E(R, t)

≡
�

d2k

� +∞

0

dω ω FOhm(k, ω), (2.26)

where we have defined FOhm(k, ω) as the corresponding joint probability density. In principle,
it may be possible to observe the Ohmic losses in individual graphene layers, so it makes sense
to define a layer-wise decomposition of the total Ohmic loss as WOhm =

∑N
l=1WOhm,l, with the

Ohmic loss in the lth layer given by

WOhm,l ≡
�

d2k

� +∞

0

dω ω FOhm,l(k, ω), (2.27)

where the corresponding probability density for Ohmic loss in the lth layer is

FOhm,l(k, ω) =
1

4π3ω
|El|2 <{σl} . (2.28)

Thus, the total probability density for Ohmic losses may also be written as a layer decomposition,
FOhm(k, ω) =

∑N
l=1 FOhm,l(k, ω).
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Finally, we obtain the total electromagnetic energy radiated in the far-field from the flux of
Poynting vector due to induced electric and magnetic fields taken over a large closed surface S
enclosing all graphene layers,

Wrad =
c

4π

� +∞

−∞
dt

�
S

dS n̂ · [Eind(R, t)× Hind(R, t)]

≡
�

d2k

� +∞

0

dω ω Frad(k, ω),

(2.29)

where Frad(k, ω) is the corresponding joint probability density. We may represent the surface S
by two (infinite) planes at z = ±∞, so that dS = d2r and n̂ = ±ẑ. Then, the total radiated
energy may be written as the sum Wrad = W ↑

rad + W ↓
rad, involving contributions in the upper

half-space (↑) and the lower half-space (↓), with

W ↑↓
rad ≡

�
d2k

� +∞

0

dω ω F ↑↓rad(k, ω), (2.30)

where we have defined the corresponding probability densities of the radiation losses as

F ↑↓rad(k, ω) =
κ

ω2 (2π)2

N∑
l=1

N∑
l′=1

<
{
σl σ

∗
l′e
∓iκ(zl−zl′ )El E

∗
l′

}
. (2.31)

Thus, the total probability density for the radiation energy losses may also be written as a direc-
tional decomposition, Frad(k, ω) = F ↑rad(k, ω) + F ↓rad(k, ω).

We emphasize that the function Frad(k, ω) for radiative losses is non-zero only for frequen-
cies above the light line, ω > ck, whereas external and Ohmic losses may generally occur at
all frequencies, ω > 0. Thus, the functions Fext(k, ω) and FOhm(k, ω) for external and Ohmic
losses have non-zero contributions both below and above the light line, which may be accord-
ingly defined via

Fext(k, ω) =

{
F<

ext(k, ω), ω < ck

F>
ext(k, ω), ω > ck,

(2.32)

and

FOhm(k, ω) =

{
F<

Ohm(k, ω), ω < ck

F>
Ohm(k, ω), ω > ck.

(2.33)

Hence, in that sense, one may write the conservation of energy with respect to the frequency
ranges as F<

ext(k, ω) = F<
Ohm(k, ω) and F>

ext(k, ω) = F>
Ohm(k, ω) + Frad(k, ω), outside and

inside the light cone, respectively. It should be stressed, however, that the probability density
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F>
Ohm(k, ω) in the second line of Eq. (2.33) is not associated with any radiation, even though that

contribution to Ohmic losses covers the region of frequencies above the light line.

In various electron energy loss spectroscopies it is often of interest to study quantities after
performing integration over the momentum transfer, so that for each joint probability density
function FL(k, ω), we define an associated total integrated probability density as

PL(ω) =
1

~2

�
d2kFL(k, ω), (2.34)

where L = ext,Ohm, rad. In the case of Ohmic and radiation losses, one may also express
the corresponding integrated densities in terms of layer-wise and directional decompositions,
POhm(ω) =

∑N
l=1 POhm,l(ω) and Prad(ω) = P ↑rad(ω) + P ↓rad(ω), respectively.

Any differences between the radiation emitted in the upper and the lower half-spaces would
be most feasibly observed in the joint spectral density and the angular distribution, S(θ, ω),
defined so that the total radiation energy loss is written as

Wrad ≡
�

d2Ω̂

� ∞
0

dω S(θ, ω), (2.35)

where d2Ω̂ = sin θdθdφ is the element of solid angle in spherical coordinates (0 ≤ θ ≤ π and
0 ≤ φ < 2π, see Fig. 2.1), with the angle θ defining the direction of radiation with respect to the
z-axis. One may express the joint spectral density and the angular distribution of radiation as

S(θ, ω) =
ω3

c2
|cos θ| ×


F ↑rad

(ω
c

sin θ, ω
)
, 0 ≤ θ ≤ π/2

F ↓rad

(ω
c

sin θ, ω
)
, π/2 ≤ θ ≤ π.

(2.36)

The relation between the joint spectral density and the angular distribution of radiation and
the corresponding joint momentum and energy loss density, given in Eq. (2.36), may be obtained
by writing k = {kx, ky} = ω

c
sin θ {cosφ, sinφ}, so that d2k = dkxdky = ω2

c2
sin θ| cos θ|dθdφ,

k = ω
c

sin θ, and κ = ω
c
| cos θ|. Thus, one finds for the integrated probability density of radiation

in the upper and lower half-spaces

P ↑↓rad(ω) =
1

~2

�
d2kF ↑↓rad(k, ω) =

1

ω

�

∨,∧

d2Ω̂S(θ, ω), (2.37)

where the last integral over solid angle goes over 0 ≤ θ ≤ π/2 (region ∨) or π/2 ≤ θ ≤ π
(region ∧).
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2.2.3 Conductivity model

We note that our theory may be implemented for any 2D material, which can be described by
a scalar conductivity σ(k, ω). In order to be specific, we adopt here a Drude model for optical
conductivity of doped graphene, but note that conclusions of this work are applicable to any 2D
conductive system exhibiting low-energy intraband electronic excitations that may be described
by a Drude-type model [91]. Our interest in doped graphene stems from the fact that it supports
the technologically interesting Dirac plasmon in the THz to IR frequency range [82], which is
well reproduced by the Drude model [66, 119]. At the same time, this range of frequencies
implies that we work in an extreme long-wavelength limit, for which Novko et al. showed that
ab initio calculations of graphene conductivity give a Drude model as a correct k → 0 limit at
low frequencies [43]. We further assume that distances between graphene layers in our work
are large enough that the electronic band structure of each layer is not affected by the presence
of other layers, so that the optical conductivity of each layer may be adequately described by
a Drude model under sufficient graphene doping [101]. The validity of this assumption was
demonstrated in experiments performed by Yan et al. on the IR plasmonic devices with stacks of
graphene layers separated by 20 nm thick spacers [100].

The general form of a Drude model for optical conductivity of graphene is given by

σ(ω) = i
vB
π

vFkF
ω + iγ

, (2.38)

where vB = e2/~ ≈ c/137 is the Bohr velocity, vF ≈ c/300 is the Fermi speed of graphene’s π
electron bands, kF =

√
π|n| is the Fermi wavenumber in a graphene layer doped with the charge

carrier density n, and γ is phenomenological damping rate, which we let γ → 0+ in the limit of
vanishing dissipation. This model is accurate enough for the range k � ω/vF � kF [91].

In the THz range, it is convenient to work with nondimensionalized wavenumber and fre-
quency, defined as k = k/kc and ω = ω/ωc, respectively, where kc = e2vFkF/ (~c2) and
ωc = ckc [42]. We note that for the doping density of |n| = 2.36 × 1013 cm−2, with the corre-
sponding Fermi energy of εF = ~vFkF ≈ 0.57 eV that is easily achieved in experiments with
MLG, one obtains λc = 2π/kc ≈ 300 µm and νc = ωc/(2π) ≈ 1 THz. Thus, defining the
reduced conductivity by σ = σ/c, the Drude model gives

σ(ω) =
i

π

1

ω + iγ
, (2.39)

where γ = γ/ωc is the reduced damping rate.

Considering the Drude model in relation (2.38), the difference in the conductivities of the
graphene layers can be spotted in the differences in the doping densities and damping rates of
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the layers. A symmetric MLG structure is the one in which all the layers have the same doping
densities, n, and damping rates, γ. In contrast, in an asymmetric MLG structure, graphene layers
have, in general, different doping densities, nl’s and damping rates γl’s. While for the MLG
with N > 2 we shall only analyze the symmetric structure, for the special case of DLG we shall
consider both symmetric and asymmetric structures under analysis.

Clearly, the Drude model neglects nonlocal effects in the graphene’s conductivity, which
may become critical for theoretical modeling of the quasi-acoustic HDPP modes in an MLG
[101, 114, 116, 118]. Namely, the lowest-lying of those modes may be pushed close to the
boundary line ω = vFk of the continuum of the low-energy, single electron excitations within
graphene’s π electron bands [91]. Defining the reduced distance between graphene layers as
d = kcd (assuming equally spaced layers), one may use Eq. (9) in Ref. [116] to show that the
condition d� (vF/c)

2 guarantees that the dispersions of the lowest-lying HDPPs are well above
the line ω = vFk, thereby rendering the Drude model adequate for all HDPP modes in an MLG.
In order to test the role of nonlocal effects, we have performed calculations using a wavenumber
dependent conductivity based on the random-phase approximation given in Ref. [123]. We have
found no difference in comparison with the results obtained from the Drude model in Eq. (2.39),
even down to d = 10−5. We adopt here the range of interlayer distances 10−3 ≤ d ≤ 1,
corresponding to the physical distances of 48 nm . d . 48 µm for the doping density of
|n| = 2.36 × 1013 cm−2. We note that, even for the shortest distance of d = 48 nm considered
in this work, which is comparable to distances used in the experiments in Refs. [100, 105], one
may safely assume that graphene layers are electronically decoupled and their only interaction is
due to the EM fields.

It should be mentioned that theoretical modeling of optical experiments using MLG at THz
frequencies often invokes an approximation that the conductivity of N equally doped graphene
layers is given by σN(ω) = Nσ(ω), where σ(ω) is the optical conductivity of an SLG [100,
105, 107]. This approximation is expected to work well if the interlayer distances are not too
large, so that the MLG may be considered as optically thin, but also not too small, so that the
graphene layers are electronically decoupled. The validity of this approximation was confirmed
in experiments using plasmonic devices with two graphene layers separated by an 80 nm polymer
layer [105], stacks of up to N = 5 graphene layers separated by 20 nm thick spacers [100],
periodic lattices of graphene nanoribbons in two parallel planes a distance 1 nm apart [106],
and even stacks of randomly oriented graphene layers with d ∼ 0.3 nm [107]. Accordingly,
in the subsequent sections, we shall test the range of applicability of the above approximation
for optically thin MLG by using an analytical result obtained in Ref. [42] for the integrated
Ohmic energy loss in an SLG, P SLG

Ohm[σ(ω), ω], where the conductivity of an SLG is replaced by
σN(ω) = Nσ(ω).
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2.2.4 Two graphene layers

We apply the general formulation of the problem forN layers to the case of two parallel graphene
layers with distance d between them. Letting z1,2 = ∓d

2
, we solve the system of equations in

Eq. (2.15) for E1,2 and obtain expressions for joint probability densities. Limiting our focus to
N = 2 for such a case, the matrix ε in Eq. (2.16) becomes

ε =

[
1 + i2π

ω
qσ1 i2π

ω
qσ2e−qd

i2π
ω
qσ1e−qd 1 + i2π

ω
qσ2

]
. (2.40)

Then, the solution of the matrix equation ε E = b may be written as El = A Ẽl eiQzl with
l = 1, 2, where the dimensionless in-plane electric fields are given by

Ẽ1,2 =
1

∆

[
1 + i

2π

ω
qσ2,1

(
1− e−qd e±iQd

)]
, (2.41)

with ∆ ≡ det
(
ε
)

being the determinant of the matrix in Eq. (2.40). Thus, using this solution
for E1,2 in Eqs. (2.25), (2.28) and Eq. (2.31) gives our final results for probability densities for
various contributions to the energy loss in the case of two graphene layers. One may then use the
expressions for E1,2 obtained from Eq. (2.41) to explicitly verify that the conservation of energy
is expressed in terms of the probability densities as Fext(k, ω) = FOhm(k, ω) + Frad(k, ω).

To facilitate further discussion, we give here explicit expressions for FOhm and Frad in the
case of graphene layers with equal conductivities (symmetric DLG). Noticing that the radiative
losses are non-zero only for frequencies above the light line, ω > ck, we obtain

Frad(k, ω) =
|A|2

4π3ω

2π

ω
κ |σ|2

{
[1− cos(Qd)] [1− cos(κd)]∣∣1 + 2π

ω
κσ (1− eiκd)

∣∣2 +
[1 + cos(Qd)] [1 + cos(κd)]∣∣1 + 2π

ω
κσ (1 + eiκd)

∣∣2
}
.

(2.42)
On the other hand, Ohmic losses may generally occur at all frequencies, ω > 0. Defining the
probability densities for Ohmic losses above the light line and below the light line as in Eq. (2.33),
we obtain

F>
Ohm(k, ω) =

|A|2

4π3ω
<{σ}

{
1− cos(Qd)∣∣1 + 2π
ω
κσ (1− eiκd)

∣∣2 +
1 + cos(Qd)∣∣1 + 2π
ω
κσ (1 + eiκd)

∣∣2
}
, (2.43)

and

F<
Ohm(k, ω) =

|A|2

4π3ω
<{σ}

{
1− cos(Qd)∣∣1 + i2π
ω
ασ (1− e−αd)

∣∣2 +
1 + cos(Qd)∣∣1 + i2π
ω
ασ (1 + e−αd)

∣∣2
}
. (2.44)
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We finally note that, in the non-retarded regime, we let c → ∞ so that both Frad(k, ω) → 0
and F>

Ohm(k, ω) → 0, whereas the total energy loss of the external charged particle becomes
FNR

ext (k, ω) = F<
Ohm(k, ω), with F<

Ohm given in Eq. (2.44) where we set α(k, ω) → k and A →
−ik Ze

v
ANR with ANR = 4π/

(
ω2

v2
+ k2

)
. The non-retarded integrated probability density is

then

PNR
ext (ω) =

2π

~2

+∞�

0

dk k FNR
ext (k, ω). (2.45)

We next show that both the Ohmic and radiative losses exhibit an asymmetry with respect to
the direction of motion of the external charge particle, i.e., the corresponding decompositions of
those two types of losses depend on the sign of the external charge particle’s velocity component
along the z-axis. This is best illustrated by considering the special case of the symmetric structure
consisting of two graphene layers with equal conductivities. In that case, we may write the
probability densities for Ohmic losses in the layers 1 and 2 as

FOhm,1,2(k, ω) =
|A|2

4π3ω
<{σ}

[
1− cos(Qd)

2 |λ−|2
+

1 + cos(Qd)

2 |λ+|2
∓ sin(Qd)=

{
1

λ∗−λ+

}]
, (2.46)

and the probability densities for radiative losses in the upper/lower half-spaces as

F ↑↓rad(k, ω) =
|A|2

4π3ω

2π

ω
κ |σ|2

[
1− cos(Qd)

2 |λ−|2
(1− cos(κd)) +

1 + cos(Qd)

2 |λ+|2
(1 + cos(κd))

± sin(Qd) sin(κd)<
{

1

λ∗−λ+

}]
,

(2.47)

where λ∓ = 1 + i2π
ω
qσ
(
1∓ e−qd

)
are the eigenvalues of a 2 × 2 matrix, which defines the

system of equations in Eq. (2.15) upon setting σ1 = σ2 = σ. Clearly, asymmetries arise in
the layer-wise decomposition of Ohmic losses and in the directional decomposition of radiative
losses from the last terms in Eqs. (2.46) and (2.47), respectively. Those terms will be canceled
out when we evaluate the total Ohmic and the total radiative losses as FOhm = FOhm,1 + FOhm,2

and Frad = F ↓rad + F ↑rad, respectively.

Going back to a more general case of two graphene layers with different conductivities,
σ1 6= σ2, we emphasize that the function Frad(k, ω) for radiative losses is non-zero only for
frequencies above the light line, ω > ck, whereas Ohmic losses may generally occur at all
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frequencies, ω > 0. Conductivity of each graphene layer has both a dissipative part, <{σl}, and
a reactive part, ={σl}, which are generally different from zero. While the collective oscillations
of charge carriers in each graphene layer or, equivalently, the excitation of its DPP gives rise to
={σl} > 0, scattering of those carriers on phonons, charged impurities or atomic-size defects in
graphene gives rise to <{σl} > 0, signalling the existence of several possible decay channels for
the DPPs. Referring to the result obtained by FOhm,l(k, ω) = 1

4π3ω
|El|2 <{σl}, one may assert

that the Ohmic losses describe both the process of plasmon excitation in graphene layers and
the decay of those plasmons, which ultimately generates Joule heat at all frequencies whenever
<{σl} > 0.

In an idealized case of clean graphene layers at zero temperature, and at frequencies well
separated from the phonon frequencies, it is worthwhile considering a theoretical limit of van-
ishing dissipation, <{σl} → 0+, when no heat is generated in those layers. It may be then shown
that the function in the second line of Eq. (2.33) vanishes, F>

Ohm(k, ω)→ 0, leaving the radiation
to be the only cause of energy losses of the external charged particle at frequencies ω > ck,
governed by a probability density Frad(k, ω), which turns out to be only marginally affected by
reduction of dissipation in graphene layers. On the other hand, it may also be shown that, by
taking the limit <{σl} → 0+, the function in the first line of Eq. (2.33) does not vanish, but is
rather reduced to a new function, F<

Ohm(k, ω) → Fpl(k, ω), which we define as the probability
density for exciting collective modes that result from hybridization of the DPPs in two graphene
layers. We will later outline a procedure showing that, in the limit of vanishing dissipation,
<{σl} → 0+, the total probability density of plasmon excitations may be expressed in the form
of a modal decomposition, Fpl(k, ω) = F−pl (k, ω) + F+

pl (k, ω), with the function F∓pl (k, ω) con-
taining a Dirac’s delta function that involves a dispersion relation for the bonding/antibonding
hybridized mode.

The dispersion relations for those modes may be found by letting <{σ1} = <{σ2} → 0+ in
a 2 × 2 matrix defining the system of equations in Eq. (2.15). Solving an eigenvalue problem
with that matrix yields two eigenvalues, given by

λ∓ = 1 + i
2π

ω
α

(
σm ∓

√
σ2
d + σ1σ2 e−2αd

)
, (2.48)

where σm = σ1+σ2
2

and σd = σ2−σ1
2

, and α(k, ω) ≡
√
k2 −

(
ω
c

)2 . Those eigenvalues have real-
valued zeros in the (k, ω) plane only for frequencies below the light line, 0 < ω < ck, i.e., when
α(k, ω) is real-valued. Note that the square root in Eq. (2.48) is purely imaginary in the limit
of vanishing dissipation, and it should be taken with the same sign as the sign of the reactive
part of graphene conductivities, ={σ1,2}. By solving the equations λ∓(k, ω) = 0 defined via
Eq. (2.48) we obtain two dispersion relations, ω = ω∓(k), for two hybridized DPP modes in
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graphene layers, where the signs ∓ correspond to the low-energy bonding and the high-energy
antibonding coupling between the layers, respectively [99, 100]. Since those dispersion relations
are located below the light line, excitation of long-lived bonding and antibonding DPP modes is
the only cause of energy loss of the external charged particle at frequencies ω < ck in the limit
of vanishing dissipation in graphene, governed by the probability density Fpl(k, ω).

According to Eq. (2.38), the Drude model for optical conductivity of the lth graphene layer,
with l = 1, 2, is given by

σl(ω) = i
vB
π

vFkF,l
ω + iγl

, (2.49)

where kF,l =
√
π|nl| is the Fermi wavenumber in the lth graphene layer, and γl is phenomeno-

logical damping rate, which we let γl → 0+ in the limit of vanishing dissipation.

In the case of DLG with generally different conductivities, it is convenient to introduce
reduced wavenumber and reduced frequency, k = k/kc and ω = ω/ωc, respectively, with
kc = vBvF (kF,1 + kF,2) / (2c2) and ωc = ckc. The system also needs to be characterized by
the ratio ρ = kF,1/kF,2 =

√
|n1/n2|, where l = 1 stands for the “lower” layer and l = 2 stands

for the “upper” layer with respect to the direction of the z-axis. Thus, defining the reduced
conductivities by σl = σl/c, we may write

σ1(ω) =
i

π

2ρ

ρ+ 1

1

ω + iγ1

and σ2(ω) =
i

π

2

ρ+ 1

1

ω + iγ2

, (2.50)

where γl = γl/ωc are the reduced damping rates.

Upon switching to reduced units and setting γ1 = γ2 = 0 in Eq. (2.50), it may be shown that

the equations λ∓(k, ω) = 0 become equivalent to ω2−2α [1∓R(α)] = 0, where α =

√
k

2 − ω2

and

R(α) =

√(
ρ− 1

ρ+ 1

)2

+
4ρ e−2αd

(ρ+ 1)2 , (2.51)

with d = kcd. Solving those equations in the region below the light line, 0 < ω < k, gives the
dispersion relations of the bonding/antibonding modes in reduced units, ω = ω∓(k).

Modal decomposition of plasmon excitation

Considering the case of two graphene layers with different conductivities, we take the limit of
vanishing dissipation in both layers, <{σ1,2} → 0, which gives rise to two HDPP modes with
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the dispersion relations localized in the range of frequencies below the light line, ω < ck. Thus,
we may start from an expression for the probability density for total energy loss of the external
charged particle at frequencies ω < ck, and obtain an expression for the total probability density
for excitation of those modes according to Fext(k, ω) = F<

Ohm(k, ω) → Fpl(k, ω). We wish to
express this probability density in the form of a modal decomposition, Fpl(k, ω) = F−pl (k, ω) +

F+
pl (k, ω), corresponding to excitations of the bonding and antibonding modes, respectively.

Note that the eigenvectors of the matrix ε in Eq. (2.40) corresponding to the eigenvalues λ∓,
given in Eq. (2.48), may be written as

u∓ = N∓

[
σ2 e−αd

σd ∓
√
σ2
d + σ1σ2 e−2αd

]
, (2.52)

where N∓ are normalization factors. Using eigenvalue decomposition, we have ε = UΛU−1,
where U =

[
u− u+

]
and Λ = diag [λ− λ+]. Thus, one may express the longitudinal compo-

nents of the in-plane electric fields in graphene layers, El ≡ k̂ · E||(k, zl, ω) with l = 1, 2 as a
modal decomposition E = ε−1b = UΛ−1U−1b. If we write El = A Ẽl eiQzl , we obtain the
dimensionless variables Ẽl as

Ẽ1,2 =
C−1,2
λ−

+
C+

1,2

λ+

, (2.53)

where

C∓1 =
1

2

(
1∓ σ2e−αdei

ω
v
d − σd√

σ2
d + σ1σ2 e−2αd

)
, (2.54)

C∓2 =
1

2

(
1∓ σ1e−αde−i

ω
v
d + σd√

σ2
d + σ1σ2 e−2αd

)
. (2.55)

Note that the expression in Eq. (2.53) is fully equivalent to that in Eq. (2.41). Recall that the
dispersion relations, ω = ω∓(k), of the bonding/antibonding modes are obtained from the zeros
of the the eigenvalues λ∓(k, ω), given in Eq. (2.48), in the limit of vanishing dissipation in
graphene layers.

Using the above solution for the in-plane longitudinal electric fields E1,2 in Eq. (2.25) gives

Fext(k, ω) =
|A|2

4π3ω
<
{
σ1Ẽ1 + σ2Ẽ2

}
−→ F−pl (k, ω) + F+

pl (k, ω), (2.56)

where the joint probability densities for excitation of the bonding/antibonding modes,

F∓pl (k, ω) =
|A|2

4π3ω
<

{
1

λ∓

[
σm ∓

σ2
d + σ1σ2e−αd cos

(
ω
v
d
)√

σ2
d + σ1σ2e−2αd

]}∣∣∣∣∣
<{σ1}=<{σ2}→0+

, (2.57)
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ultimately result in the expression given by

F∓pl (k, ω) = Fc
β2 (ω2 + α2)

(ω2 + α2β2)
2

{
1∓ 1

R(α)

[(
ρ− 1

ρ+ 1

)2

+
4ρ e−αd

(ρ+ 1)2 cos

(
ω

β
d

)]}
×δ
(
ω2 − 2α [1∓R(α)]

)
, (2.58)

where Fc ≡ 4(Ze)2/ (πω2
ckc) and β ≡ v/c. As with the other contributions to energy losses, we

may use the above result in Eq. (2.34) to define the integrated probability densities, P∓pl (ω), for
exciting the bonding and antibonding modes per unit interval of frequency. Note that integra-
tion of F∓pl (k, ω) over k (or α) is greatly aided by the presence of the Dirac’s delta function in
Eq. (2.58), which is peaked along the dispersion relation ω = ω∓(k) for those two modes.

Average number of plasmons

Based on the interpretation of P∓pl (ω) as the probability density for exciting the hybridized DPP
modes per unit energy, we can evaluate the average numbers of the bonding and antibonding
modes as [124]

ν∓ = ~
� ∞

0

dω P∓pl (ω)

= 8
vB
c

� ∞
0

dω

� ∞
ω

dk k F
∓
pl

(
k, ω

)
,

(2.59)

where we switched to reduced quantities and defined F
∓
pl = F∓pl/Fc, with Fpl given in Eq. (2.58).

Interchanging the order of integration in Eq. (2.59), using the Dirac’s delta function,

δ
(
ω2 − 2α [1∓R(α)]

)
=
δ (ω − 2α [1∓R(α)])

2 |ω|
,

and changing the variable k to α =

√
k

2 − ω2, we finally obtain for the average numbers of the
excited modes

ν∓ = 8
vB
c

� ∞
0

dω

� ∞
0

dααF
∓
pl (α, ω)

= 4
vB
c

� ∞
0

dαα
α2 + ω2

ωβ2
(
ω2

β2 + α2
)2

×
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1∓ 1

R(α)

[(
ρ− 1

ρ+ 1

)2

+
4ρ e−αd

(ρ+ 1)2 cos

(
ω

β
d

)]} ∣∣∣∣∣
ω=
√

2α[1∓R(α)]

,

(2.60)
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with R (α) defined in Eq. (2.51). As one can easily verify, the average number of plasmons
is symmetric with respect to ρ = 1, showing that the production of plasmons in each mode is
independent of the direction of motion of the incident electron. In the following section we assess
this expression for different values of the involved parameters.

We note that the corresponding analytical expression for the DPP in a single-layer graphene
may be obtained by replacing the expression in curly brackets in Eq. (2.60) by unity, and substi-
tuting ω =

√
2α. On the other hand, the non-retarded results for ν∓ are obtained from Eq. (2.60)

by transforming the variable α → k with the same range of integration, 0 ≤ k < ∞, and by
replacing the numerator k

2
+ ω2 in the first quotient in the integrand of that equation by k

2
.

It is necessary to comment that we ignore any electromechanical interactions between doped
graphene layers, including van der Waals and Casimir forces, and assume that the distance be-
tween them remains constant in the course of the charged particle traversal. Also, note that, with
the use of the Drude conductivity model given in Eq. (2.39), in the limit of vanishing dissipation,
each (non-interacting) layer supports a single-layer Dirac plasmon, with dispersion relation [42]

(
ωlSL

)2
= 2 (vFkF,l)

2

−(vB
c

)2

+

√(vB
c

)4

+

(
vB
vF

k

kF,l

)2
 . (2.61)

The single-layer Dirac plasmons are electrodynamically coupled when the interlayer distance
d = |z1 − z2| is finite, giving rise to two hybridized DPP modes with dispersions ω = ω∓(k),
which can be identified as bonding and antibonding modes (for the case σ1 = σ2 = σ they
are symmetric and antisymmetric). We assume that the distance between graphene layers is
bounded below, such that d kF,l � ~vF/e2, allowing us to neglect the effects of the intraband
single-electron excitation continuum on the hybridized plasmon dispersions. For typical doping
densities, this condition also guarantees that direct electron coupling, or electron tunneling be-
tween graphene layers may be neglected as well. Remember that the “asymmetry parameter” ρ
characterizes any difference between the doping densities. Hence the case ρ = 1 corresponds to
equal conductivities, and any ρ̃ = 1/ρ is equivalent to reversing the order of the layers.

2.3 Results and Discussion

While the formalism developed in the preceding sections can be directly applied to multiple
layers of any 2D material described by a scalar conductivity [3], it may also be readily gener-
alized to anisotropic 2D materials [125]. However, in this chapter, we are primarily interested
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in graphene based layered structures of interest for possible applications in photonic and plas-
monic devices that operate in the THz to IR range of frequencies. For this purpose it suffices
to adopt the Drude model in Eq. (2.38), which is accurate enough for doped graphene satisfying
k � ω/vF � kF [91], or in terms of the reduced variables, vF

c
k � ω � c

vB
[42].

2.3.1 Double-layer graphene

For two graphene layers, one of the most important parameters is the interlayer distance d, which
we define in reduced units as d = kcd and take it to vary in the range of values 10−3 ≤ d ≤ 1.
Our calculations are designed to illustrate interferences due to retardation effects, which may give
rise to asymmetries in: (a) directional decomposition of the radiation emitted in the upper and
lower half-spaces, (b) layer-wise decomposition of the Ohmic losses in graphene, and (c) modal
decomposition of the plasmon excitation probability density for the bonding and antibonding
modes. We analyze what roles are played in those interference effects by the distance d and the
ratio ρ = kF,1/kF,2 =

√
|n1|/|n2| defining asymmetry between the doping densities of the two

graphene layers.

At the same time, we keep the damping rates in graphene layers fixed at a given value γl =
0.1, except when discussing the dispersion relations of HDPP modes and the corresponding
modal decomposition. In addition, we assume the external particle to be an electron (Z = 1) and
keep its (reduced) speed fixed at the value β = v/c = 0.5, corresponding to a typical electron
velocity in STEM. The effects of variation in the γl and β values are illustrated separately.

Equal conductivities

In this subsection we study the case of two graphene layers with equal doping densities (ρ = 1),
and hence equal conductivities, σ1 = σ2 = σ(ω), described by the Drude model in Eq. (2.38).

Figure 2.2 shows dispersion relations for the bonding and antibonding modes using reduced
units for frequency and wavenumber, ω and k. Results for the retarded case are shown in panel
(a) by pairs of solid lines of different colors for different d values, while the corresponding
results for the non-retarded case are shown in panel (b) by pairs of the dashed lines using the
same colors, whereas the corresponding dispersion curve for single graphene layer is shown by a
black line in each panel. One notices that the effect of retardation is to push the dispersion curves
for both modes ω∓ below the light line, which is represented by the dotted line ω = k in Fig. 2.2.
The two eigenfrequencies ω∓(k) are seen in Fig. 2.2 to always straddle the dispersion relation

for single graphene layer, given by ωsingle =

√
2

(
−1 +

√
1 + k

2
)

. While for d → ∞ we
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find that ω∓ → ωsingle, the separation between ω∓ increases with decreasing interlayer distance,
where the long wavelength limit is particularly interesting. Namely, when kd = k d � 1,

we find for antibonding mode ω+ ∼ 2

√
−2 +

√
4 + k

2
, corresponding to a single graphene

layer with a doubled Fermi wavenumber, whereas the bonding mode exhibits a quasi-acoustic

dispersion given by ω− ∼
√

2d
1+2d

k. It is interesting that the dispersion of this mode is not

affected by retardation for small inter-graphene distances, d � 1, in which case we obtain in
non-reduced units ω− ∼

√
2kFdvFvB k. Accordingly, one can see in the two panels of Fig. 2.2

that the bonding mode dispersion relations ω = ω−(k) in the retarded and non-retarded cases
are almost the same for d ≤ 0.1. On the other hand, it is observed that, generally, the bonding
mode frequency ω−(k) is much more affected by variations in the interlayer distance d than the
antibonding mode frequency ω+(k).

d=1

d=0.1
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d=0.001

Single-layer
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1
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Figure 2.2: Dispersion curves for double-layer graphene with equal conductivities for several
interlayer distances d in comparison with single-layer dispersion. Solid lines in panel (a) show
retarded regime and dashed lines in panel (b) show non-retarded regime.

It is expected that, for sufficiently small distances and/or sufficiently small doping densi-
ties of graphene layers, the bonding mode will be subjected to strong Landau damping in the
continuum of the intraband, single particle excitations of graphene’s π electrons, which take
place at frequencies ω < vFk [91]. Thus, the condition for Landau damping of the bond-
ing mode, ω−(k) < vFk, may be expressed as kFd < 1

2
vF
vB
≈ 0.23. However, this regime is
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not of interest in the present context because inclusion of the Landau damping due to single-
particle excitations in graphene would require using a more elaborate model for its conductivity,
σ(k, ω), which goes beyond the scope of the present chapter. In terms of the reduced distance
between graphene layers, the condition for Landau damping of the bonding mode amounts to
d < 1

2

(
vF
c

)2 ≈ 5.6× 10−6, so the range of inter-graphene distances we have chosen in the inter-
val 0.001 ≤ d ≤ 1 eliminates the need to consider this regime and, at the same time, maintains
the range of confidence in Drude model.

In Fig. 2.3 we show the joint probability densities for (a) Ohmic losses, FOhm(k, ω), and (b)
radiation losses, F rad(k, ω), as functions of the reduced frequency and wavenumber, ω and k,
for an illustrative case of the reduced interlayer distance d = 0.1. The color coding for those
functions is based on reduced units using the normalization factor Fc = 4 (Ze)2 / (πω2

ckc). Also
shown are the dispersion relations for the bonding and antibonding modes with eigenfrequencies
ω∓(k) for two graphene layers (white solid lines), the dispersion curve for single graphene layer
(black dashed line) with eigenfrequency ωsingle, and the light line (gray dashed line) ω = k.

It is obvious from the panel (a) of Fig. 2.3 that the peak values of FOhm(k, ω) closely follow
the dispersion curves for bonding and antibonding DPP modes, indicating that Ohmic energy
losses of the external electron mostly go to excitations of those modes. However, the finiteness
of γ causes a significant fraction of Ohmic losses to go to generating Joule heat in the layers,
as is indicated by the red regions below and above the light line in Fig. 2.3(a), around small ω
and k values. When the damping rate is reduced, the energy losses due to the Joule heating are
reduced, leaving the excitation of long-lived bonding and antibonding DPP modes as the only
contribution to the Ohmic losses in the limit γ → 0+. In that limit, FOhm(k, ω) in Fig. 2.3(a)
would be represented by a weighted superposition of two Dirac’s delta functions located at the
dispersion relations ω = ω∓(k). On the other hand, in the panel (b) of Fig. 2.3 one notices
that F rad(k, ω) exhibits a relatively broad spectrum of radiation energy losses, which are strictly
located above the light line, ω > k. Those losses are not strongly affected by reduction of the
damping rate, and they remain finite in the limit of vanishing dissipation in graphene.

Figure 2.4 displays joint probability densities for radiation and Ohmic losses, F rad(k, ω)
(dash-dotted lines) and FOhm(k, ω) (dashed lines), respectively, which we show in reduced units
using the normalization factor Fc = 4(Ze)2/ (πω2

ckc). We show cross sections of those functions
with k = 1 (panel (a)) and k = 2 (panel (b)) for several interlayer distances in the interval
0.01 ≤ d ≤ 1 using lines of different colors, and compare them with the results for F rad(k, ω)
and FOhm(k, ω) (black lines) for single graphene layer. One notices in Fig. 2.4 that the Ohmic
losses are dominated by two peaks at frequencies ω < k, with the lower-frequency peak located
near the bonding mode eigenfrequency ω−(k) and the higher-frequency peak located near the
antibonding mode eigenfrequency ω+(k). While the positions of those peaks are controlled by
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Figure 2.3: (a) The total Ohmic, FOhm(k, ω), and (b) the total radiative, F rad(k, ω), joint prob-
ability densities for two graphene layers having equal conductivities with the damping rate
γ = 0.1, for interlayer distance d = 0.1, and the reduced electron speed β ≡ v/c = 0.5.
Results are shown in reduced units using the normalization factor Fc = 4(Ze)2/ (πω2

ckc). Also
shown are the dispersion relations for the bonding and antibonding modes with eigenfrequencies
ω∓(k) for two graphene layers (white solid lines), the dispersion curve for single graphene layer

(black dashed line) with eigenfrequency ωsingle =

√
2

(
−1 +

√
1 + k

2
)

, and the light line (gray

dashed line) ω = k.
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the interlayer distance d in a manner that is expected from Fig. 2.2, we find that the magnitude of
the peak at ω−(k) decreases, and the magnitude of the peak at ω+(k) increases with decreasing
interlayer distance. There is also a small, broadly distributed contribution of Ohmic losses at
frequencies ω > k, which seems to decrease in magnitude with decreasing interlayer distance.
However, the region of frequencies ω > k is dominated by a broad spectrum of radiation losses,
exhibiting complicated dependence on the interlayer distance due to oscillatory behavior implied
by the terms involving cos(κd) in Eq. (2.42). Such dependence is emphasized for large interlayer
distances, whereas the radiation losses are practically independent of the interlayer distance for
d ≤ 0.1.
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Figure 2.4: Ohmic (dot-dashed lines) and radiative (dashed lines) joint probability densities for
two wavenumbers, (a) k = 1 and (b) k = 2, and for several inter-graphene distances d. Col-
ored curves show results for double-layer graphene, while the black curves are for single-layer
graphene. Other parameters are γ = 0.1 and β = 0.5.

In Fig. 2.5 we show layer-wise decomposition of the joint probability density for Ohmic
losses in the lower graphene layer, FOhm,1(k, ω) (green solid lines) and the upper graphene layer,
FOhm,2(k, ω) (blue dotted lines), respectively. Also shown are the results for the total Ohmic
losses, FOhm(k, ω) = FOhm,1(k, ω)+FOhm,2(k, ω), in those two layers (red dot-dashed lines), as
well as for the Ohmic loss in a single graphene layer (black dot-dashed lines). Results are shown
in reduced units for k = 1 and for several d values. One notices that most of the Ohmic losses in
both graphene layers occur within the peaks located near the frequencies ω∓ corresponding to the
bonding and antibonding modes, respectively. It is seen that the total Ohmic loss, FOhm(k, ω),
as well as the layer losses, FOhm,1,2(k, ω), contain contributions from the peak at ω−(k) with
a magnitude that decreases, and from the peak at ω+(k) with a magnitude that increases with
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decreasing inter-layer distance d. What is interesting here is that there is an asymmetry between
FOhm,1 and FOhm,2 such that the Ohmic losses are generally larger in the lower than in the upper
layer. This asymmetry stems from the interference terms in Eq. (2.46), which contain a factor
sin (ωd/v), explaining why the asymmetry diminishes with decreasing d values. We note that the
two peaks in the total Ohmic losses, FOhm, represent a broadened version of the total probability
density for plasmon excitations, F pl = F

−
pl +F

+

pl, with the Dirac delta functions in Eq. (18) being
broadened due to finite damping rate γ = 0.1 used in Fig. 2.5.
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Figure 2.5: Layer-wise decomposition of Ohmic joint probability density for double-layer
graphene at three interlayer distances, (a) d = 1, (b) d = 0.5, and (c) d = 0.1, in compari-
son with single-layer Ohmic joint probability density, with k = 1, γ = 0.1 and β = 0.5.

In Fig. 2.6 we show the directional decomposition of the joint probability density for radiation

36



losses in the lower half-space, F
↓
rad(k, ω) (green solid lines) and upper half-space, and F

↑
rad(k, ω)

(blue dotted lines), respectively. Also shown are the results for the corresponding total radiation
losses in both half-spaces, F rad(k, ω) = F

↓
rad(k, ω) + F

↑
rad(k, ω) (red dashed lines), which are

compared to the total radiation losses for single graphene layer (black dashed lines). Results
are shown in reduced units for k = 1 and for several d values. One notices an asymmetry in
the decomposition with more radiation going into the upper half-space than into the lower half-
space, which is pronounced for larger interlayer distances and vanishes for decreasing distances.
However, for different values of k, it may happen that we see a different scenario, i.e., with more
radiation going in the lower half-space. This asymmetry stems from the interference terms in
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Figure 2.6: Directional decomposition of radiative joint probability density for double-layer
graphene at three interlayer distances, (a) d = 1, (b) d = 0.5, and (c) d = 0.1, in compari-
son with single-layer radiative joint probability density, with k = 1, γ = 0.1, and β = 0.5.
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Eq. (2.47), which contain a factor sin(κd) sin (ωd/v), explaining why the asymmetry diminishes
with decreasing d values. (We remark that, in the case of a single graphene layer there is no
such asymmetry [42].) It is interesting that the total radiation from two graphene layers may be
smaller than that from a single-layer (at large distances), as well as larger than the total radiation
from a single-layer (at shorter distances). In the latter case, the radiation in the upper or lower
half-spaces from two graphene layers seems to be comparable to the total radiation from a single-
layer.

Changing the interlayer distance d brings rich variety of effects due to retardation in both
the dispersion relations ω = ω∓(k), and the probability densities FOhm(k, ω) and F rad(k, ω).
Figure 2.7 shows such effects in the radiation spectra, which should be readily observable by
using angle-resolved measurements of TR of double-layer graphene in STEM [20, 21, 23]. In
this figure the angular distribution of the joint spectral density of radiation emitted from two
graphene layers, S(θ, ω), is plotted as function of the angle θ relative to the direction of motion
of the external electron, for several values of the radiation frequency ω. Results are shown using
reduced units for the spectral density with normalization factor Sc = (Ze)2 /c, for two interlayer
distances, (a) d = 0.1 and (b) d = 1. One sees typical “butterfly” patterns of TR, with no
noticeable difference between contributions to the upper and lower half-spaces for the shorter
distance d = 0.1, similar to the case of single-layer graphene [42]. On the other hand, there is
quite large asymmetry between the angular distributions of radiation emitted in the upper and
lower half-spaces at the longer distance d = 1, which is particularly emphasized with increasing
frequencies. This asymmetry results from the interference terms in Eq. (2.47), which contain the
factor sin(ωd/v) sin(κd) = sin

(
ωd/β

)
sin
(
ωd cos(θ)

)
, explaining the retardation origin of the

asymmetry, as well as why the asymmetry is diminished when ωd� 1.

In the panel (a) of Fig. 2.8 we show the integrated probability densities for the total energy
loss of the external electron, P ext(ω) (solid lines), total Ohmic loss, POhm(ω) (dash-dotted lines),
and the total radiation loss, P rad(ω) (dashed lines). Results are displayed in reduced units using
the normalization factor Pc = 4

π
vB
c

1
~ωc , for several values of the inter-graphene distance in the

interval 0.001 ≤ d ≤ 1. While those three functions were computed from their respective
definitions, we remark that each set of curves in Fig. 2.8(a) upholds the conservation of energy
in the sense P ext(ω) = POhm(ω) + P rad(ω). One notices that P ext(ω) is almost completely
determined by the Ohmic losses POhm(ω) for frequencies ω > 1, where the main channel of the
total energy loss of the external charged particle is due to excitation of the HDPP modes, see
Fig. 2.3. On the other hand, radiation losses P rad(ω) are comparable to the Ohmic losses when
ω ∼ 1, and they become a dominant contribution to P ext(ω) for ω . 0.1.

It is interesting to see in Fig. 2.8(a) that there is almost no dependence on the interlayer dis-
tance in radiation losses, P rad(ω), indicating that integration of the angular distributions shown
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Figure 2.7: Angular joint probability density S(θ, ω), normalized using the factor Sc = (Ze)2/c,
for two graphene layers having equal conductivities with the damping rate γ = 0.1, for the
reduced electron speed β = 0.5, and for two interlayer distances: (a) d = 0.1 and (b) d = 1, and
for several reduced frequencies ω. A strong directional asymmetry arises between the radiation
emitted in the upper and lower half-spaces for the larger interlayer distance.
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Figure 2.8: (a) Integrated probability density P is shown in reduced units using the normalization
factor Pc = 4

π
vB
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1
~ωc as a function of the reduced frequency ω for the total energy loss of the ex-

ternal charged particle, P ext (ω) (solid lines), the total Ohmic loss, POhm (ω) (dot-dashed lines),
and the total radiative loss, P rad (ω) (dashed lines) for several interlayer distances, d = 1, 0.1,
0.01, and 0.001. (b) The results for P ext (ω) in two graphene layers at the distances d = 0.001
and 1, as well as those for P ext (ω) in single graphene layer (solid lines) are compared with the
corresponding results obtained in the nonretarded limit (dotted lines). For both panels: γ = 0.1
and β = 0.5.
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in Fig. 2.7 over a full range of angles 0 ≤ θ ≤ π removes the dependence on d. This may
be traced to the presence of factors [1∓ cos(κd)] in Eq. (2.47), which exhibit strong oscilla-
tions as functions of κ (and k) for large d values. When integration over k is performed in
Frad(k, ω) to obtain Prad(ω), then the d–dependence that would result from the nearby factors
[1∓ cos(ωd/v)] in Eq. (2.47) is washed out. On the other hand, the integrated Ohmic losses
in Fig. 2.8(a), POhm(ω), show rather strong dependence on the interlayer distance in the range
d ≥ 0.1. This may be explained by absence of any factors exhibiting strong oscillations as a
function of k in Eq. (2.46). Then, the factors [1∓ cos(ωd/v)], which are present in that equa-
tion, survive integration over k in FOhm(k, ω), giving rise to strong interference effects in the
resulting distribution of Ohmic losses POhm(ω) for two graphene layers at a large distance.

In the panel (b) of Fig. 2.8 we compare the results for P ext(ω) including retarded effects with
the nonretarded case, P

NR

ext (ω) ≡ P
NR

Ohm(ω), for two graphene layers at the distances d = 0.001
and d = 1, as well as for a single graphene layer. One sees that the effects of retardation are
quantitatively relevant for Ohmic losses at frequencies ω < 10, giving rise to a significant in-
crease in magnitude of POhm(ω) in comparison to P

NR

Ohm(ω). When combined with the radiation
losses, this increase amounts to P ext(ω) � P

NR

ext (ω) for ω . 1. On the other hand, one sees in
Fig. 2.8(b) that the results for two graphene layers with short separation of d = 0.001 exhibit
energy losses that are quite similar to those for single graphene layer, both in the retarded and
nonretarded cases, whereas two layers with larger separation of d = 1 exhibit substantially larger
energy losses in both cases.

From Fig. 2.8 one may conclude that interesting interference effects arise in the Ohmic losses
of two graphene layers at large distances. For example, a curious peak-and-valley structure de-
velops in POhm(ω) in the retarded case for d = 1 in the interval of frequencies 1 . ω . 5, which
degenerates in a structure with two peaks in the nonretarded case. Hence, it is worthwhile analyz-
ing separate Ohmic losses in each graphene layer. In addition, recalling the strong asymmetries
observed in Fig. 2.7(b) for d = 1 at higher frequencies, it appears also worthwhile analyzing the
angle-integrated energy losses due to radiation emitted in the upper and the lower half-spaces.
Accordingly, we show in Fig. 2.9 the integrated probability density of the total energy loss of the
external electron, P ext(ω), along with the layer-wise decomposition of the integrated probability
density for Ohmic losses in the lower and upper graphene layers, POhm,1(ω) and POhm,2(ω),
and the directional decomposition of the integrated probability density for radiation losses in the
upper and lower half-spaces, P

↑
rad(ω) and P

↓
rad(ω), for two interlayer distances, (a) d = 1 and

(b) d = 0.1.

It is interesting to see in Fig. 2.9 that there is almost no asymmetry between P
↑
rad(ω) and

P
↓
rad(ω), which are obtained by integrating the angular distributions shown in Fig. 2.7 over two

ranges of angles, 0 ≤ θ ≤ π/2 and π/2 ≤ θ ≤ π, respectively. The fact that the asymmetry
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seen in the angular distributions shown in Fig. 2.7(b) for d = 1 has disappeared upon integration
may be traced to the same reason as the lack of dependence on the interlayer distance d in the
total radiative losses, P rad(ω) = P

↑
rad(ω) + P

↓
rad(ω). Namely, the presence of the factor sin(κd)

in the interference terms in Eq. (2.47) gives rise to strong oscillations as a function of κ (and k),
which will largely diminish contributions of those terms upon integration of F

↑↓
rad(k, ω) over k.

On the other hand, one sees in Fig. 2.9 that POhm,1(ω) and POhm,2(ω) exhibit relatively
large differences for ω . 1 with increasing d values, resulting from the interference terms with
the factor sin(ωd/v) in Eq. (2.46), which survives integration of FOhm,1,2(k, ω) over k. It is
interesting that POhm,2(ω) < POhm,1(ω) at ω . 1 for both interlayer distances in Fig. 2.9,
showing that lower graphene layer absorbs more Ohmic losses than the upper layer at low fre-
quencies. Moreover, there are some other interesting features in Ohmic losses of individual
graphene layers at high frequencies, ω & 1. For example, it appears that the peak-and-valley
structure seen in P ext(ω) in the interval of frequencies 1 . ω . 5 in Fig. 2.9(a) for d = 1
results from partial cancelation of a local minimum in POhm,1(ω) and a local maximum in
POhm,2(ω). This effect also explains the double-peak structure seen in the total Ohmic loss,
POhm(ω) = POhm,1(ω) + POhm,2(ω), in Fig. 2.8(a) for d = 1. Likewise, even though P ext(ω)
exhibits a single peak near ω = 5 in Fig. 2.8(b) for d = 0.1, Ohmic losses of individual layers,
POhm,1,2(ω), show somewhat unexpected features at frequencies ω > 5.

We have shown that dominant contributions to the joint probability densities for Ohmic losses
in both the lower and upper graphene layers, FOhm,1(k, ω) and FOhm,2(k, ω), are contained in two
peak regions centered at the frequencies ω∓ corresponding to the bonding and antibonding DPP
modes. Relative weights describing the participation of these modes in the Ohmic losses in each
graphene layer strongly depend on the interlayer distance d. Accordingly, it is worthwhile to take
the limit of vanishing damping rates in graphene layers and to evaluate the modal decomposition
of the integrated probability density for Ohmic energy losses in both graphene layers. Such
decomposition gives the probability densities, P

−
pl(ω) and P

+

pl(ω), for exciting the bonding and
antibonding DPP modes per unit frequency, respectively. As a result, we reveal below in Fig. 2.10
that oscillations arise in the modal decomposition, which may shed light on the features observed
at large frequencies in the total Ohmic losses POhm(ω) in Fig. 2.8, and in their layer components
POhm,1,2(ω) in Fig. 2.9.

In Fig. 2.10 we show the modal decomposition of the probability density for plasmon ex-
citations, P pl(ω) = P

−
pl(ω) + P

+

pl(ω), for (a) d = 1 and (b) d = 0.1. Results are shown in
reduced units using the normalization factor Pc = 4

π
vB
c

1
~ωc . One notices strong oscillations in the

components P
∓
pl(ω) at large frequencies, which nevertheless superimpose into a rather smooth

frequency dependence of the total probability density for plasmon excitation, P pl(ω), in that
range. The origin of these oscillations may be explained by setting ρ = 1 in the expressions
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Figure 2.9: A layer-wise decomposition of the integrated Ohmic energy losses, POhm,1,2(ω), and
a directional decomposition of the integrated radiative losses, P

↑↓
rad(k, ω), are shown in reduced

units for two graphene layers at the distances: (a) d = 1 and (b) d = 0.1. The Ohmic decom-
position (dot-dashed lines) shows strong asymmetry with respect to the direction of motion for
increasing d, while the radiation decomposition (dashed lines) shows no such asymmetry. Also
shown are the results for the total integrated energy loss of the external charged particle, P ext(ω),
(solid lines). All results are obtained with γ = 0.1 and β = 0.5.
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within curly brackets in Eq. (2.58), giving factors 1∓ cos(ωd/v) = 1∓ cos
(
ωd/β

)
, which sur-

vive upon integrating F∓pl (k, ω) over k to obtain P∓pl (ω). The onset of these oscillations around
the frequency ω ∼ πβ/d seems to give rise to the features observed in Ohmic losses at high
frequencies in Fig. 2.9. For example, referring to Fig. 2.10(a), one may ascertain that the double
peak seen in POhm(ω) in Fig. 2.8(a) for d = 1, which is a result of coupling of the external
electron to the bonding and antibonding modes, is accompanied by an interference that gives rise
to the peak-and-valley structure seen in P ext(ω) in Figs. 2.8(a) and 2.9(a) for d = 1. On the other
hand, referring to Fig. 2.10(b), one may ascertain that the main peak seen near ω = 5 in both
P ext(ω) and POhm(ω) in Fig. 2.8(a) for d = 0.1 predominantly originates from the antibonding
mode, whereas features seen in POhm,1,2(ω) at ω > 5 in Fig. 2.9(b) for d = 0.1 are the signature
of interferences between the bonding and antibonding modes.

By comparison of P pl(ω) in Fig. 2.10 with the function POhm(ω) for d = 1 and 0.1 in
Fig. 2.8(a), one may assert that the total integrated Ohmic losses at frequencies ω & 1 are dom-
inated by the excitation of both the bonding and antibonding DPP modes. Further comparison
reveals that the plasmon excitation probability densities in Fig. 2.10 approach constant values
at low frequencies, ω < 1, in contrast to the behavior of the Ohmic losses in Figs. 2.8 and 2.9,
which grow in magnitude with decreasing ω. This difference is a consequence of the fact that
the integrated probability densities for Ohmic losses in Figs. 2.8 and 2.9 were calculated with
finite damping rate of γ = 0.1, whereas the plasmon excitation probability densities in Fig. 2.10
are calculated in the limit of vanishing damping rates. Accordingly, the competition between the
Ohmic and radiation losses seen in Figs. 2.8 and 2.9 at frequencies ω . 1 is strongly affected
by increasing the damping rates in graphene layers, which ultimately leads to deposition of the
Joule heat in those layers at such frequencies, as discussed in Fig. 2.3.

Finally, regarding the role of the interlayer distance in Fig. 2.10, it is interesting to note that
P
−
pl(ω) and P

+

pl(ω) settle at different constant values at low frequencies, ω < 1. In particular,
the probability density of exciting the antibonding mode at such frequencies, P

+

pl ≈ 0.2, is not
affected by the value of d, whereas the bonding mode is excited with a probability density that
strongly depends on d, which goes from P

−
pl < P

+

pl for d = 0.1 to P
−
pl > P

+

pl for d = 1. This may
be related to the strong sensitivity of the bonding mode eigenfrequency ω−(k) on variations in the
interlayer distance. On the other hand, we recall the relation POhm,2(ω) < POhm,1(ω) between
the integrated Ohmic energy losses in the lower and upper graphene layers, seen in Fig. 2.9 at
frequencies ω . 1 for both d = 1 and 0.1, which primarily results from the interference terms
with sin(ωd/v) in Eq. (2.46). Therefore, it appears that the interlayer distance plays different,
and somewhat intricate roles in the modal decomposition of plasmon excitation probability and
the layer-wise decompositions of Ohmic losses at sub-THz frequencies.
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Figure 2.10: Modal decomposition of the integrated probability density for plasmon polariton
excitations in two graphene layers having equal conductivities with zero damping, γ = 0, for
two interlayer distances: (a) d = 1 and (b) d = 0.1. The reduced speed of the external electron
is β = 0.5. The blue dotted lines label excitations of the bonding and the green dashed lines
label excitations of the antibonding modes, while the red solid lines show the total excitation
probabilities.
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The effect of damping rate γ. As we have already mentioned in our discussion, variations in
the damping rate seem to exhibit much weaker effects on radiative losses than on Ohmic losses,
at least for the reduced damping rates γ . 0.1. We show in Fig. 2.11 the effects of damping on
the joint probability densities for both Ohmic contribution, FOhm(k, ω) (dot-dashed lines), and
radiative contribution, F rad(k, ω) (dashed lines), with k = 1 for three different γ values and two
interlayer distances, d = 1 and 0.1. One sees that the effect of increasing damping rate on Ohmic
energy losses is to broaden and reduce the height of the two peaks, which occur near frequencies
ω∓ corresponding to the bonding and antibonding modes, respectively. This effect of broadening
is more pronounced for the lower-energy bonding mode ω− than for the antibonding mode ω+.
In particular, for the highest damping rate of γ = 1 shown in Fig. 2.11, the two peaks tend to
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Figure 2.11: Ohmic (dot-dashed lines) and radiative (dashed lines) joint probability densities for
two interlayer distances, (a) d = 1 and (b) 0.1, and for three damping rates, γ = 0.01, 0.1, and 1,
with k = 1 and β = 0.5.

merge into one broad structure, which is peaked near the frequency ω− for d = 1 and near the
frequency ω+ for d = 0.1. For frequencies above the light line, ω > k = 1, one may observe
that the Ohmic contribution is almost proportional to γ because there are no resonant frequencies
in that range and the only parameter, which can influence the Ohmic losses there is the damping
ratio. At the same time, radiative losses are seen in Fig. 2.11 to decrease with increasing γ and
increasing d, so that for very large damping rates, Ohmic energy losses may become completely
dominant over the radiation losses at ω > k = 1 in the case of large interlayer distances.

In order to understand the effect of damping over full range of wavenumbers, we show in
Fig. 2.12 the integrated probability densities for the total energy loss of the external charged
particle, P ext(ω) (solid lines), along with the Ohmic, POhm(ω) (dot-dashed lines), and radiative,
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P rad(ω) (dashed lines) contributions for d = 1 and 0.1 and for several damping rates. We see
that both the Ohmic and radiative energy losses are mostly affected by changing damping rates at
the sub-THz frequencies, ω . 1, showing opposite trends. It is interesting that, with the Ohmic
losses increasing, and the radiative losses decreasing with increasing γ, the total energy loss
of the external charged particle shows relatively weak dependence on damping rate, especially
in the range γ ≤ 0.1. It is also remarkable that the radiative energy losses are quite weakly
dependent on damping rate in the range γ ≤ 0.1.
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Figure 2.12: Integrated probability density for the total energy loss of external particle (solid
lines), Ohmic loss (dot-dashed lines) and radiative loss (dashed lines) for two interlayer distances,
(a) d = 1 and (b) 0.1, and for three damping rates, γ = 0.01, 0.1, and 1, with β = 0.5.

Finally, in Fig. 2.13 we discuss the effects of different damping rates on the angular distri-
bution of the joint spectral density of radiation emitted from two graphene layers, S(θ, ω), as
a function of the angle θ relative to the direction of motion of the external electron, for several
values of the radiation frequency ω. Results are shown for the interlayer distance d = 1 using
reduced units for the spectral density with normalization factor Sc = (Ze)2 /c. The cases of
reduced damping rates γ = 1 and γ = 0.01 shown in Fig. 2.13 should be compared with those
shown in Fig. 2.7(b) for γ = 0.1 with the interlayer distance d = 1. As in that figure, we also see
here quite large asymmetry between the angular distributions of radiation emitted in the upper
and lower half-spaces, which is particularly emphasized with increasing frequency. It is inter-
esting that the asymmetry shows similar redistribution of the radiation emitted in the upper and
lower half-spaces for all three damping rates for ω & 1, while for the lower frequency range
the patterns tend to be symmetric, but differently shaped for different γ values. In general, the
overall intensity of radiation decreases with increasing damping rates.
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Figure 2.13: Angular distribution of the joint spectral density of radiation losses, S(θ, ω), for
two damping rates, (a) γ = 1 and (b) γ = 0.01, and for several emission frequencies ω. The
other parameters are fixed at d = 1 and β = 0.5. (The case for γ = 0.1 is shown in Fig. 2.3(b).)

The effect of charged particle’s speed. Figure 2.14 shows the effect of β = v/c on joint prob-
ability densities for Ohmic energy losses, FOhm(k, ω) (dot-dashed lines) and the radiative energy
losses, F rad(k, ω) (dashed lines), with k = 1 and γ = 0.1, and for two interlayer distances, d = 1
and 0.1. One sees that the peak near the lower-energy bonding mode, ω−, decreases in magni-
tude with increasing speed, while the peak near the higher-energy antibonding mode, ω+, seems
to show the opposite trend. These effects obviously depend on the interlayer distance, and it is
remarkable that, for the distance d = 1 the higher-energy peak near ω+ disappears at the lowest
speed shown in Fig. 2.14, β = 0.3. At the same time, radiative energy losses at frequencies
ω > k = 1 are seen to strongly increase with increasing charged particle speed, as expected, at a
rate that is higher for the shorter interlayer distance d = 0.1.

In Fig. 2.15 we show the integrated probability densities for the total energy loss of the exter-
nal charged particle, P ext(ω) (solid lines), along with the Ohmic, POhm(ω) (dot-dashed lines),
and radiative, P rad(ω) (dashed lines) contributions for γ = 0.1 and two interlayer distances,
d = 1 and 0.1, and for several external particle speeds. We see that the total losses P ext(ω),
which are completely determined by the Ohmic losses POhm(ω) at frequencies ω & 5, decrease
in magnitude with increasing speed in that range of frequencies. On the other hand, both the
Ohmic losses POhm(ω) and the radiative losses P rad(ω) increase with increasing speed at fre-
quencies ω . 5.

Finally, we show in Fig. 2.16 the angular distribution of the reduced joint spectral density
of emitted radiation, S(θ, ω), as a function of the angle θ for several values of the radiation
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Figure 2.14: Ohmic (dot-dashed lines) and radiative (dashed lines) joint probability densities for
two interlayer distances, (a) d = 1 and (b) 0.1, and for four external particle speeds, β = 0.3,
0.5, 0.7, and 0.9, with k = 1 and γ = 0.1.
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Figure 2.15: Integrated probability density for the total energy loss of external particle (solid
lines), Ohmic loss (dot-dashed lines) and radiative loss (dashed lines) for two interlayer distances,
(a) d = 1 and (b) 0.1, and for four external particle speeds, β = 0.3, 0.5, 0.7, and 0.9, with
γ = 0.1.
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frequency ω, with d = 1 and γ = 0.1. Results are shown for the relative speeds β = 0.3, 0.7
and 0.9, which should be compared with those shown in Fig. 2.7(b) for β = 0.5. One notices
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Figure 2.16: Angular distribution of the joint spectral density of radiation losses, S(θ, ω), for
three external particle speeds, β = 0.3, 0.7, and 0.9, and for several emission frequencies ω. The
other parameter are fixed at d = 1 and γ = 0.1. (The case for β = 0.5 is shown in Fig. 2.7(b).)

a strong distortion of the “butterfly” pattern towards the trajectory of the external particle with
increasing speed, similar to the case of single-layer graphene [42]. However, the asymmetry in
radiation patterns from two graphene layers is seen at higher frequencies for all speeds, with
an interesting re-distribution of intensity, which is most likely due to the interference terms in
Eq. (2.47), containing the factor sin(ωd/v) sin(κd) = sin

(
ωd/β

)
sin
(
ωd cos(θ)

)
.
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Average number of plasmons. We have seen that the modal decomposition of integrated prob-
ability density for plasmon excitations, P pl(ω) = P

−
pl(ω) + P

+

pl(ω), exhibits intricate effects of
the interlayer distance d, which differently affects the bonding and antibonding modes. Here we
show in Fig. 2.17 the average numbers of those two modes, ν∓, obtained by integrating P

∓
pl(ω)

over all frequencies, as functions of the interlayer distance d for several external particle speeds,
β = v/c = 0.3, 0.5, and 0.7. Besides the results for ν− (solid lines) and ν+ (dashed lines),
obtained from the fully retarded Eq. (2.60), we also show in Fig. 2.17 the corresponding results
for ν− (dot-dashed lines) and ν+ (dotted lines) obtained in the nonretarded limit of that equa-
tion. One notices a surprisingly strong effect of increasing interlayer distance, which promotes
the bonding mode from a suppressed mode at short distances to a dominant mode at large dis-
tances. At the same time, the antibonding mode, which dominates at short distances in a manner
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Figure 2.17: Average numbers of DPP’s for the bonding mode, ν−, and antibonding mode, ν+,
versus inter-graphene distance d, for several external particle speeds β = v/c. Results for the
retarded case (Ret), obtained from Eq. (2.60) with ρ = 1, are compared with those obtained in
the nonretarded (NR) limit.

corresponding to the limit of two graphene layers being merged into single-layer, undergoes a
dip in the range of intermediate distances, where a crossing with the bonding mode occurs (at
d ≈ 0.032, 0.1, and 0.24 for the three particle speeds β), but the antibonding mode regains a
weight comparable to the bonding mode at large interlayer distances. Figure 2.17 further shows
that relative weights of excitation of the bonding and antibonding modes may also be efficiently
controlled by the particle’s speed. While the number of the antibonding mode ν+ does not vary
too much in the full range of speeds and interlayer distances shown in this figure, one notices a
suppression of the number of the bonding mode ν− with increasing charged particle speed, which
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is particulary strong at short distances, d . 0.1. On the other hand, the increase of ν− with d
seems to saturate at large interlayer distances.

Different conductivities

In the previous subsection we have analyzed asymmetries, which arise in the Ohmic energy
losses and radiation spectra with respect to the direction of the external particle trajectory, for a
symmetric structure consisting of two graphene layers with equal conductivities. In this subsec-
tion we focus on a structure that is inherently asymmetric due to different doping densities of two
graphene layers, |n1| 6= |n2|, which we parameterize by the ratio ρ = kF,1/kF,2 =

√
|n1|/|n2|

as quotient of the Fermi wavenumbers kF,1 and kF,2 (or doping densities) in the lower and upper
graphene layers, when viewed relative to the direction of motion of the external charged particle.
Some of the results shown in this subsection will exhibit an asymmetry with respect to changing
the ratio from a value ρ > 1 to 1/ρ, which is equivalent to changing the direction of motion of
the external charged particle, while other results will not exhibit such asymmetry. Accordingly,
whenever a set of results for some ρ > 1 cannot be distinguished from results for the correspond-
ing value 1/ρ, we shall only discuss a range of values ρ ≥ 1. Otherwise, we shall show results
for both ρ > 1 and the corresponding 1/ρ values.

Figures in this subsection discuss various effects following, roughly, the same progression as
in the previous subsection, which was devoted to two graphene layers with equal conductivities.
In some figures in this subsection, which have multiple panels, results for the value ρ = 1 are
excluded if they replicate results shown in the previous subsection. For example, panels (a) with
ρ = 0.1 and (b) with ρ = 10 in Fig. 2.20 should be compared with panel (a) with d = 1 of
Fig. 2.5 for ρ = 1. Likewise, panels (a) with ρ = 0.1 and (b) with ρ = 10 in Fig. 2.21 should
be compared with panel (a) with d = 1 of Fig. 2.5 for ρ = 1. In Figures 2.19, 2.20, and 2.21 we
assume that graphene layers have equal damping rates, γ1 = γ2 = γ, whereas in Fig. 2.24 we
also allow those rates to take different values in different graphene layers.

In Fig. 2.18 we show the dispersion relations for the bonding and antibonding hybridized
modes with eigenfrequencies ω− (lower groups of colored lines) and ω+ (upper groups of colored
lines), respectively. Results are shown for the retarded (solid lines in panels (a) and (c)) and
nonretarded (dashed lines in panels (b) and (d)) cases, for two inter-graphene distances, d = 0.1
(panels (a) and (b)) and d = 1 (panels (c) and (d)), and for several values of the asymmetry ratio
ρ ≥ 1. The effects of changing distance d seen in Fig. 2.18 are similar to those observed in
Fig. 2.2 for the case ρ = 1. For fixed value of d, one can see that the separation between the two
modes ω∓ increases with increasing asymmetry ratio ρ. Particularly sensitive to this asymmetry
is the bonding mode, where the dispersion curves for ω− are seen to be strongly lowered by
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Figure 2.18: Dispersion curves for double-layer graphene with different conductivities for two
interlayer distances, (a) and (b) d = 0.1, (c) and (d) d = 1. Solid lines in the left panels show the
retarded case and dashed lines in the right panels show the nonretarded case for three values of
the asymmetry ratio, ρ = 1, 10, and 100.
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increasing ρ values, while the dispersion curves for the antibonding mode tend to gather close
to each other and close to the light line as ρ increases. In the limit of long wavelengths, when
kd = k d � 1, we find that the antibonding mode follows the dispersion relation given in

reduced units by ω+ ∼ 2

√
−2 +

√
4 + k

2
, which is independent of the ratio ρ and corresponds

to a single graphene layer with the effective Fermi wavenumber kF = kF,1 + kF,2. On the
other hand, the long wavelength limit gives for the bonding mode a quasi-acoustic dispersion

ω− ∼
√

8ρd

(1+ρ)2+8ρd
k, which in the limit of short distances, d � 1, becomes independent of

retardation effects and is given in nonreduced units by ω− ∼
√

2kF,hdvFvB k, where kF,h =
2kF,1kF,2/ (kF,1 + kF,2) is the harmonic mean of the Fermi wavenumbers in the two graphene
layers.

Figure 2.19 displays the joint probability densities for radiation and Ohmic losses, F rad(k, ω)
(dashed lines) and FOhm(k, ω) (dot-dashed lines), respectively, which we show in reduced units
using the normalization factor Fc = 4(Ze)2/ (πω2

ckc). We show the results for the cross sections
of those functions with k = 1 for two values of the inter-graphene distance, d = 1 (panel (a))
and d = 0.1 (panel (b)) and for several values of the asymmetry ratio ρ ≥ 1. One notices in
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Figure 2.19: Ohmic (dot-dashed lines) and radiative (dashed lines) joint probability densities for
two inter-graphene distances, (a) d = 1 and (b) d = 0.1, and for three asymmetry ratios, ρ = 1,
10, and 100, with k = 1, γ = 0.1 and β = 0.5.

Fig. 2.19 that the Ohmic losses are dominated by two peaks at frequencies ω < k, with positions
that are controlled by the ratio ρ in a manner that is expected from the behavior of the dispersion
curves in Fig. 2.18, namely, the peak at ω+ is barely affected by changing the ρ value, whereas
the position of the peak at ω− decreases with increasing ρ. The shift of the peak at ω− increases,
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and its amplitude decreases by decreasing the inter-graphene distance d. On the other hand,
the energy losses at frequencies ω > k are dominated by the radiation losses, which are not
affected by the changing ρ values for the shorter distance d = 0.1, but increase in magnitude
with increasing ρ when the inter-graphene distance takes larger value, d = 1.

In Fig. 2.20 we show layer-wise decomposition of the joint probability density for Ohmic
losses in the lower and upper graphene layers, FOhm,1(k, ω) (green solid lines) and FOhm,2(k, ω)
(blue dotted lines), respectively, as well as the total Ohmic losses in those two layers, FOhm(k, ω) =
FOhm,1(k, ω) + FOhm,2(k, ω) (dot-dashed lines). Results are shown in reduced units for k = 1
and d = 1 and for two values of the asymmetry ratio, ρ = 0.1 (panel (a)) and ρ = 10 (panel (b)).
As in Fig. 2.5, one notices that the most Ohmic losses in Fig. 2.20 occur in the peaks located
near the frequencies ω∓ corresponding to the bonding and antibonding modes. In particular,
we recall that in the panel (a) of Fig. 2.5 with d = 1 and ρ = 1, Ohmic losses were generally
larger in the lower layer than in the upper layer, but both the bonding and antibonding modes
made comparable contributions to the Ohmic losses in both layers. However, we see in Fig. 2.20
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Figure 2.20: Layer-wise decomposition of Ohmic joint probability density for double-layer
graphene at the distance d = 1 for two asymmetry ratios, (a) ρ = 0.1 and (b) ρ = 10, with
k = 1, γ = 0.1, and β = 0.5.

some important differences, namely, for ρ = 0.1 Ohmic losses in the lower layer occur mostly
in the bonding mode, while the Ohmic losses in the upper layer occur mostly in the antibonding
mode. The roles of graphene layers are largely reversed in the case ρ = 10, but the distribution
of weights coming from the bonding and antibonding modes to Ohmic losses in those layers is
not completely symmetrical when going from ρ = 0.1 to ρ = 10. Notwithstanding this small
asymmetry due to the direction of charged particle motion, one may conclude that, when there is
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large difference in doping densities of the two graphene layers, it is the layer with higher concen-
tration of charge carriers that absorbs Ohmic losses predominantly in the antibonding mode with
the peak at the frequency ω+, while the layer with lower concentration absorbs Ohmic losses
predominantly in the bonding mode with the peak at the frequency ω−. We remark that this is
only true for the wavenumber k = 1, and the conclusion may change for other wavenumbers.
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Figure 2.21: Directional decomposition of radiative joint probability density for double-layer
graphene at the distance d = 1 for two asymmetry ratios, (a) ρ = 0.1 and (b) ρ = 10, with k = 1,
γ = 0.1, and β = 0.5.

In Fig. 2.21 we show the directional decomposition of the joint probability density for ra-
diation losses in the lower and upper half-spaces, F

↓
rad(k, ω) (solid lines) and F

↑
rad(k, ω) (dot-

ted lines), respectively, as well as the total radiation losses in both half-spaces, F rad(k, ω) =

F
↓
rad(k, ω) + F

↑
rad(k, ω) (dashed lines) . Results are shown in reduced units for k = 1 and d = 1

and for two values of the asymmetry ratio, ρ = 0.1 (panel (a)) and ρ = 10 (panel (b)). We recall
that in the panel (a) of Fig. 2.5 with d = 1 and ρ = 1, there was significantly more radiation
emitted in the upper than in the lower half-space for k = 1. The situation is similar in the case
ρ = 0.1 in Fig. 2.21, but is reversed in the case ρ = 10 in this figure. While there is no com-
plete reversal of contributions of the upper and lower half-spaces when going from ρ = 0.1 to
ρ = 10, one may conclude that, for the wavenumber k = 1, more radiation is emitted into the
half-space next to the graphene layer with higher concentration of charge carriers. Of course,
this conclusion may be different for other k vales and other ρ values.

Figure 2.22 displays angular distribution of the joint spectral density of radiation losses,
S(θ, ω), which we show in reduced units using the normalization factor Sc = (Ze)2 /c for d = 1
at fixed frequency ω = 1, for several values of the asymmetry ratio in the range 0.01 ≤ ρ ≤ 100.
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Notice that the curve with ρ = 1 is reproduced from Fig. 2.7(b) for ω = 1 in order to recall that
there exists an asymmetry between the radiation patterns emitted in the upper and lower half-
spaces. While that figure showed substantial variability of the patterns for different ω values due
to oscillating terms in Eq. (2.47), we see in Fig. 2.22 that, for fixed ω = 1 and fixed d = 1, there
also exists great variability with ρ in the asymmetry of the emitted radiation patterns, especially
in the interval 0.1 ≤ ρ ≤ 10.

0 02

d=1

ρ=0.01 ρ=0.1 ρ=1 ρ=10 ρ=100

Figure 2.22: Angular distribution of the joint spectral density of radiation losses, S(θ, ω), at
fixed frequency ω = 1, for two graphene layers at a distance d = 1, having equal damping rates,
γ1 = γ2 = 0.1, but different doping densities giving rise to several values of the asymmetry ratio
ρ. The reduced speed of the external electron is β = 0.5.

Furthermore, it should be noted in Fig. 2.22 that the emitted spectra in the upper and lower
half-spaces are not completely reversed when going from ρ = 0.1 to ρ = 10, which points to an
interesting interplay of the inherent asymmetry of a structure with ρ 6= 1 and the asymmetry due
to retardation effects upon changing the direction of motion of the charged particle. On the other
hand, it seems that the asymmetry between the spectra emitted in the upper and lower half-spaces
is significantly reduced when either ρ = 0.01 or ρ = 100, corresponding to situations when one
graphene layer is almost removed from the structure on the account of having a negligibly small
charge carrier density compared to the other layer. Finally, it is worthwhile to remark that,
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similarly to the trends discussed in Fig. 2.7(a), the asymmetry with respect to varying the ratio ρ
is also diminished when ωd � 1. This describes a situation where the two graphene layers are
almost blended into a single layer with an effective Fermi wavenumber kF = kF,1 + kF,2 [42].

Figure 2.23 displays the integrated probability densities for the total energy losses of the ex-
ternal electron, P ext(ω) (solid lines), total Ohmic losses, POhm(ω) (dash-dotted lines), and the
total radiation losses, P rad(ω) (dashed lines), which we show in reduced units using the normal-
ization factor Pc = 4

π
vB
c

1
~ωc for (a) d = 1 and (b) d = 0.1, and for three values of the asymmetry

ratio, ρ = 1, 10 and 100. Note that each set of curves upholds the conservation of energy in the
sense P ext(ω) = POhm(ω) + P rad(ω). One notices in the panel (a) of Fig. 2.23 a progression
of peak structures in P ext(ω), which grow in magnitude and move to lower frequencies with
increasing ρ values. When ρ = 1 and 10, those structures are related to Ohmic losses, POhm(ω),
which dominate at frequencies ω & 1, whereas radiation losses, P rad(ω), are comparable to
the Ohmic losses when ω ∼ 0.1 and become dominant for ω . 0.1. On the other hand, when
ρ = 100 in Fig. 2.23(a), a peak in POhm(ω) that occurs at a frequency 0.1 < ω < 0.5, is con-
verted to a shoulder in P ext(ω) in the same frequency interval owing to the presence of a strongly
increasing P rad(ω) at decreasing frequencies. In the case of a shorter interlayer distance d = 0.1
in Fig. 2.23(b), the peak structures that arise from POhm(ω) are moved to higher frequencies, so
that the effects of radiation losses are not so prominent in the features observed in P ext(ω). It is
interesting to observe in Fig. 2.23(a) that the total energy losses of the external electron, as well
as the Ohmic losses, decrease in magnitude with increasing ρ at frequencies ω & 2, whereas
the opposite is true for those losses at frequencies ω . 0.5. Similar observations are made in
Fig. 2.23(b), but for frequencies ω & 5 and ω . 1, respectively.

Finally, it is noteworthy in Fig. 2.23 that the integrated radiation energy losses, P rad(ω), do
not show any appreciable dependence on the value of the asymmetry ratio ρ or on the interlayer
distance d. This is similar to observations made in Fig. 2.8(a) regarding the d–dependence of
P rad(ω). Our calculations for directional decomposition of the radiation losses (not shown) also
confirm that the integrated probability densities for radiation losses in the upper and lower half-
spaces, P

↑
rad(ω) and P

↓
rad(ω), do not show any appreciable dependence on ρ or d, similar to the

observations made in Fig. 2.9(a).

Later, in Fig. 2.25, we further analyze the effects of the asymmetry ratio ρ in the layer-
wise decomposition of the integrated probability density for Ohmic energy losses, POhm(ω) =
POhm,1(ω) + POhm,2(ω), and find much larger differences between contributions from the lower
and upper graphene layers for values ρ 6= 1 when d = 1 than differences observed in Fig. 2.9(a)
for ρ = 1. This is further elucidated by analyzing modal decomposition of the probability density
for plasmon excitations, P pl(ω) = P

−
pl(ω)+P

+

pl(ω), which reveals an intricate interplay between
the effects of increasing interlayer distance d and variations in the asymmetry ratio ρ in Ohmic
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Figure 2.23: Integrated probability densities for the total energy losses of the external electron,
P ext(ω) (solid lines), total Ohmic losses, POhm(ω) (dot-dashed lines), and the total radiation
losses, P rad(ω) (dashed lines), are shown in reduced units for two graphene layers with equal
damping rates, γ1 = γ2 = 0.1, at distances: (a) d = 1 and (b) d = 0.1, for three values of the
asymmetry ratio, ρ = 1, 10 and 100. The reduced speed of the external electron is β = 0.5.
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losses at frequencies ω & 1.

The effect of asymmetry in damping rates on integrated Ohmic losses. Another issue of in-
terest is to analyze the situation when the lower and upper graphene layers have different damping
rates, γ1 and γ2, respectively. In Fig. 2.24 we show the total integrated probability density for
Ohmic energy losses, POhm(ω) (dot-dashed lines), along with its layer-wise decomposition into
the lower and upper graphene layers, POhm,1(ω) (dashed lines) and POhm,2(ω) (dotted lines),
respectively. Results are shown for the inter-graphene distance d = 1 and for three asymmetry
ratios, ρ = 0.1, 1 and 10, using two asymmetric combinations of damping rates: γ1 = 0.5 and
γ2 = 0.1 (red lines) and γ1 = 0.1 and γ2 = 0.5 (blue lines). One notices in the panel (b) of
Fig. 2.24 that, for the case of graphene layers with equal doping densities, ρ = 1, the asymmetry
in damping rates gives surprisingly large effects in the layer-wise decomposition of Ohmic losses
at frequencies ω . 2. In particular, one sees that the graphene layer with higher damping rate
absorbs more energy at frequencies 0.1 . ω . 2 (see the difference between the blue and red
dashed lines, as well as the difference between the blue and red dotted lines), whereas the oppo-
site is true at frequencies ω . 0.05. At the same time, one sees in Fig. 2.24(b) that there is no big
difference between the total integrated Ohmic energy losses, POhm(ω), for the two asymmetric
combinations of damping rates.

We next consider the cases of asymmetric doping densities with ρ = 0.1 and ρ = 10, shown
in the panels (a) and (c) of Fig. 2.24, respectively. One sees somewhat larger differences between
the total Ohmic losses, POhm(ω), for the two asymmetric combinations of damping rates, which
are remarkably reversed when going from ρ = 0.1 to ρ = 10, i.e., the red and blue dot-dashed
lines approximately reverse the roles in the panels (a) and (c). On the other hand, the reversal
between the red and blue lines in the panels (a) and (c) for the layer-wise decomposition of Ohmic
losses is much more complicated. Namely, one can only observe reversal between the curves
describing Ohmic losses in a graphene layer with higher doping density and lower damping
rates, i.e., the red dashed and dotted curves in panel (a) look very similar to the blue dotted and
dashed curves in panel (b), respectively.

We finally note that our calculations (not shown here) imply that there are no substantial
effects of the asymmetry in the damping rates in the directional decomposition of integrated
radiative energy losses.

The effects of interlayer distance and doping asymmetry on the layer-wise and modal de-
compositions. In Fig. 2.25 we show the total integrated probability density for Ohmic energy
losses, POhm(ω) (dash-dotted lines), along with its layer-wise decomposition into the lower and
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Figure 2.24: Layer-wise decomposition of the integrated probability density for Ohmic energy
losses in double-layer graphene at the distance d = 1 for three asymmetry ratios for doping
density, (a) ρ = 0.1, (b) ρ = 1, and (c) ρ = 10, and for several asymmetric combinations of the
damping rates γ1 and γ2, with β = 0.5.
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upper graphene layers, POhm,1(ω) (dashed lines) and POhm,2(ω) (dotted lines), respectively. Re-
sults are shown for the interlayer distances (a) d = 1 and (b) d = 0.1, and for three asymmetry
ratios, ρ = 0.1, 1 and 10. (Notice that the curves for ρ = 1 are reproduced from Figs. 2.8 and 2.9
for the sake of comparison.) One sees in Fig. 2.25 that, while there is practically no difference
between the curves for the total Ohmic losses POhm(ω) with ρ = 0.1 and ρ = 10, there are large
differences between the contributions from the lower and upper graphene layers for those two ρ
values when d = 1 in panel (a), and much smaller differences when d = 0.1 in panel (b). This
points to a possibly very important role played by the asymmetry ratio ρ in the d–dependence of
interference terms determining the layer-wise decomposition of Ohmic losses.

When ρ = 0.1 in Fig. 2.25(a), Ohmic losses in the lower layer are dominated by a mas-
sive peak in POhm,1(ω) at ω ≈ 1, while the upper layer is characterized by a large increase in
POhm,2(ω) at low frequencies, ω . 0.05. The roles of the lower and upper layers are reversed
when ρ = 10 in Fig. 2.25(a), but this reversal is completely symmetrical only for ω > 1, whereas
a strong asymmetry remains for frequencies ω . 1. This residual asymmetry with respect to
reversal of the direction of motion of the external electron in the case of graphene layers with
different doping densities has the same origin as the asymmetry seen between the curves for
POhm,1(ω) and POhm,2(ω) with ρ = 1, showing that a graphene layer with given doping density
absorbs more Ohmic losses at frequencies ω . 1 when it is first traversed by the external elec-
tron than when it is traversed last, as discussed in Fig. 2.9. Similar conclusions may be deduced
from Fig. 2.25(b), but with the main peak in POhm(ω) with ρ = 0.1 and ρ = 10 being moved
to a frequency ω ≈ 2, and with much weaker residual asymmetry when going from ρ = 0.1 to
ρ = 10 at ω . 1.

A progress towards better understanding of the roles of graphene layers with different doping
densities in Fig. 2.25 is provided by analyzing the modal decomposition of the probability density
for plasmon excitations in Fig. 2.26 below. Namely, it is revealed in that figure that the peaks seen
in POhm(ω) at ω ≈ 1 in Fig. 2.25(a) and ω ≈ 2 in Fig. 2.25(b) are related to the bonding DPP
mode. This leads us to an assertion that the layer with lower doping density absorbs Ohmic losses
predominantly via excitations of the bonding DPP mode. This assertion was previously verified
in the Fig. 2.20 by analyzing the layer-wise decomposition of the joint probability density for
Ohmic energy losses in the lower and upper graphene layers, FOhm,1(k, ω) and FOhm,2(k, ω) for
ρ 6= 1. It was shown in Fig. 2.20 that graphene layer with higher doping density absorbs Ohmic
energy predominantly within a peak centered at higher frequency close to ω+ for antibonding
mode, while the layer with lower doping density absorbs Ohmic energy predominantly within a
peak centered at lower frequency close to ω− for bonding mode.

Finally, in Fig. 2.26 we show the modal decomposition of the probability density for plas-
mon excitations of the bonding and antibonding modes, P pl(ω) = P

−
pl(ω) + P

+

pl(ω), with the
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Figure 2.25: The total integrated probability density for Ohmic energy losses, POhm(ω) (dot-
dashed lines), along with its layer-wise decomposition into the lower and upper graphene layers,
POhm,1(ω) (dashed lines) and POhm,2(ω) (dotted lines), respectively. Results are shown for two
graphene layers with equal damping rates, γ1 = γ2 = 0.1, at two distances, (a) d = 1 and (b)
d = 0.1, for three asymmetry ratios, ρ = 0.1, 1 and 10. The reduced speed of the external
electron is β = 0.5.
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Figure 2.26: Modal decomposition of the integrated total probability density (solid red lines) for
plasmon polariton excitations of the bonding (green dashed lines) and antibonding (blue dotted
lines) modes, P pl(ω) = P

−
pl(ω) + P

+

pl(ω), for two graphene layers with zero damping rates and
the asymmetry ratios (a) ρ = 10 and (b) ρ = 100, for two interlayer distances, d = 1 (thick lines)
and d = 0.1 (thin lines). The reduced speed of the external electron is β = 0.5.
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asymmetry ratios (a) ρ = 10 and (b) ρ = 100, for two interlayer distances, d = 1 and d = 0.1.
Results are shown in reduced units using the normalization factor Pc = 4

π
vB
c

1
~ωc . Results in

Fig. 2.26 should be compared with those in Fig. 2.10 for ρ = 1, recalling that the limit of zero
damping in graphene layers, γ = 0, was used in both figures. Whereas P

∓
pl(ω) in Fig. 2.10 for

ρ = 1 showed strong oscillations at frequencies ω > πβ/d, such oscillations are suppressed in
Fig. 2.26 for ρ 6= 1. This may be explained by referring to the expression in the square brack-
ets in Eq. (18), showing that the oscillatory term with the factor cos(ωd/β) will be suppressed
whenever ρ + 1

ρ
− 2 � 1, i.e., when the asymmetry ratio is sufficiently different from unity.

Suppression of oscillations for ρ 6= 1 explains why the curves for POhm,1,2(ω) with ρ 6= 1 in
Fig. 2.25 do not exhibit intricate features seen in the curves with ρ = 1 at frequencies ω ∼ πβ/d.

On the other hand, one notices in Fig. 2.26 that the probability density for the antibonding
mode, P

+

pl(ω), is practically independent of both the interlayer distance d and the asymmetry
ratio ρ, whereas the density for the bonding mode, P

−
pl(ω), increases in magnitude with both

increasing d and increasing ρ. This is in close correlation with observations made in Figs. 2.2
and 2.18 regarding the dispersion relations for those two modes, with the bonding mode found
to be much more sensitive to variations in both d and ρ than the antibonding mode.

Moreover, it is seen in Fig. 2.26 that the total probability density for plasmon excitations
P pl(ω) is dominated by a peak in P

−
pl(ω), occurring at a frequency ω that decreases with in-

creasing d and increasing ρ. Comparing the curves for P pl(ω) in Fig. 2.26(a) with the curves
for POhm(ω) with ρ = 0.1 or ρ = 10 in Fig. 2.25, one may assert that the total integrated
Ohmic losses in the latter figure are dominated by the excitation of both hybridized DPP modes
at frequencies ω & 0.5, whereas differences at ω . 0.1 stem from the fact that POhm(ω) in
Fig. 2.25 was calculated with finite damping rate of γ = 0.1. In particular, the peaks in P pl(ω)
in Fig. 2.26(a) with ρ = 10, which occur at ω ≈ 1 for d = 1 and ω ≈ 2 for d = 0.1, correspond
to the peaks in POhm(ω) in Fig. 2.25 for ρ = 0.1 and ρ = 10, and they clearly originate from
excitation of the bonding mode.

These conclusions should be contrasted with conclusions regarding the features seen in POhm(ω)
in Fig. 2.25 for ρ = 1, which have different origins. We recall that analyzing the results in Figs. 4
and 5 in terms of the modal decompositions in Fig. 2.10 revealed that the peak-and-valley in
POhm(ω) in Fig. 2.25(a) for ρ = 1 originates as an interference between the bonding and anti-
bonding modes, whereas the peak near ω = 5 in POhm(ω) in Fig. 2.25(b) for ρ = 1 originates
from excitation of the antibonding mode. This shows that there is a strong interplay between the
effects of interlayer distance d and the asymmetry ratio ρ in Ohmic losses at frequencies ω & 1.
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Average number of plasmons. In the previous section we have extensively analyzed the plas-
mon excitation for two graphene layers in the case ρ = 1, i.e., for layers with equal conductivities.
In the present subsection we extend this study to the case of different conductivities, ρ 6= 1.

Using the expression obtained in the previous section in Eq. (2.60), we plot in Fig. 2.27
the contribution ν∓ of each mode as a function of ρ for different values of d̄. We compare the
results from the fully retarded expression in Eq. (2.60) with nonretarded results obtained in the
limit c → ∞. One notices that the retardation affects primarily the antibonding mode, which is
not strongly dependent on the interlayer distance, except when ρ ≈ 1. On the other hand, the
bonding mode does not show effects of retardation at distances d < 1, but it is strongly promoted
by increasing interlayer distance for the asymmetric ratio in the interval 0.1 . ρ . 10, in which
range the retardation effects also become remarkable.

It is interesting that all curves in Fig. 2.27 exhibit a cusp-like dependence on the asymmetry
ratio when ρ→ 1. This indicates that even small variations of nominally equal doping densities
can cause significant variations in the number of excited plasmons. Nevertheless, we note that
the abrupt structure is wiped out when adding the modes to obtain the total average number of
plasmons, as shown in Fig. 2.28 for the cases d̄ = 0.1 and d̄ = 1.

A close inspection of Eq. (2.60) makes it evident that the oscillatory term in the integrand
is damped by the exponential function e−αd when ρ 6= 1. In the limit ρ → 1, the exponential
is cancelled out and the oscillatory term prevails at all frequencies. To illustrate this, we plot in
Fig. 2.29 the integrated probability of exciting plasmons Ppl ∝

�
dk kFpl(k, ω) as a function of

frequency for ρ = 1 and ρ = 0.99. It is clear that the behaviour at ρ = 1 is the result of the
highly oscillatory integrand, which disappears with a relatively small variation of ρ.

Finally, in Fig. 2.30 we explore the behaviour of the average number of excited plasmons
as a function of the interlayer distance for three cases of ρ, considering equal and different con-
ductivities. For each ρ we choose three values of the incident velocity, β = 0.3, 0.5 and 0.7.
Notice that the case ρ = 1 has been considered in Fig. 2.17. For the cases with ρ 6= 1, we
observe that the relative behaviour of the modes is maintained, with the bonding mode passing
from negligible values at small distances to be dominant over the antibonding mode by increas-
ing d. Nevertheless, the structure shown by the antibonding mode for ρ = 1, with a pronounced
minimum at intermediate distances, is smoothed for ρ 6= 1 and tends to disappear for layers with
very different conductivities. On the other hand, when the particle velocity increases, the average
number of excited plasmons diminishes for each mode, as expected.
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Figure 2.27: Average numbers of DPPs at the bonding mode, ν− (red, continuous), and antibond-
ing mode, ν+ (blue, continuous), versus asymmetry parameter ρ for several interlayer distances
d. The external particle speed is β = v/c = 0.5. Results are compared with nonretarded results,
obtained from Eq. (2.60) in the limit c→∞ (dashed lines).
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Figure 2.28: Total average number of plasmons obtained summing both contributions, ν = ν−+
ν+, for d = dkc = 0.1 (solid red line) and d = dkc = 1 (solid green line), with the particle speed
β = v/c = 0.5, showing the cancellation of the cusp-like behaviour. The two pairs of dashed
lines with matching colors show the individual numbers of plasmons ν− and ν+.

2.3.2 Multilayer graphene

In the previous subsection we have shown that there are strong effects of variations in the charged
particle speed v and the damping rate γ on both the Ohmic and radiation energy losses in a DLG,
showing much more variety than in the case of an SLG due to the presence of two HDDPs in the
case of DLG [42]. Moreover, we have found strong effects due to differences in doping densities
of graphene layers in a DLG. However, in order to decrease the size of the parameter space in this
subsection, we keep the reduced particle speed fixed at β = v/c = 0.5 (corresponding to a typical
electron energy in a STEM) and the reduced damping rate fixed at γ = 0.05, while assuming
that all graphene layers are doped with equal densities. For the same reason, we assume equal
spacing d between the nearest graphene layers in an MLG. Thus, with the conductivity of each
layer being described by Eq. (2.39), we concentrate on the effects of variations in the number
of layers N and the interlayer distance d for the energy loss and radiation spectra when a fast
charged particle traverses an MLG.

In Fig. 2.31, we use reduced units to show the joint probability densities of the total Ohmic en-
ergy loss, FOhm(k, ω) = FOhm(k, ω)/Fc (panel a), and the total radiation energy loss, F rad(k, ω) =
Frad(k, ω)/Fc (panel b), where Fc = 4(Ze)2/ (πω2

ckc), as well as the dispersion curves for three
HDPP modes, ω = ωj(k), with j = 1, 2 and 3 (panel c), for a three-layer graphene (TLG)
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Figure 2.30: Average number of plasmons ν∓ as a function of the reduced interlayer distance d =
dkc for asymmetry parameters ρ = 1, 2, and 10. Bonding modes (−) are plotted with continuous
lines, while antibonding (+) modes are plotted with dashed lines. The reduced particle speeds
are β = 0.3 (indigo lines); β = 0.5 (orange lines); β = 0.7 (magenta lines).

structure with d = 0.1. Besides the exact dispersion curves, for the sake of comparison we
also show in Fig. 2.31(c) three approximations to the exact dispersion curves, ω = ωappr

j (k),
which will be introduced later, as well as the DPP dispersion curve for an SLG with ωSLG(k) =√

2

(
−1 +

√
1 + k

2
)

.

By comparison with the panel (c), it is clear that the main contribution to the Ohmic en-
ergy loss in panel (a) of Fig. 2.31 occurs predominantly in the regions close to the three HDPP
dispersion curves. Those regions exhibit different amounts of broadening, such that the largest
width occurs along the middle dispersion curve, ω = ω2(k), and the smallest width occurs along
the lowest dispersion curve, ω = ω1(k). One notices that the three broadened curves merge in
Fig. 2.31(a), giving rise to a relatively broad and structureless background of Ohmic energy loss
in a region of very small ω and k values, which is a consequence of finite damping rate that
governs dissipative processes at low frequencies. It should be stressed that, even though part of
this background extends above the light line, ω > k, the associated processes do not give rise
to any radiation, but rather produce Joule heat that remains in graphene. On the other hand, we
display in the panel (b) of Fig. 2.31 the energy loss density due to the TR, which is seen to be
broadly distributed in a region that is located strictly above the light line.

In the panel (c) of Fig. 2.31, one notices that all three dispersion curves lie below the light
line, ω = k, and that the highest dispersion exhibits a transition to the ω3 ∝

√
k form, whereas
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Figure 2.31: The total Ohmic energy loss density, FOhm = FOhm/Fc (panel a), and the total
radiative energy loss density, F rad = Frad/Fc (panel b), are displayed in reduced units with
Fc = 4(Ze)2/ (πω2

ckc), as functions of the reduced wavenumber k = k/kc and the reduced
frequency ω = ω/ωc, for a three-layer graphene with reduced interlayer distance d = kcd = 0.1.
Panel (c) displays with white solid lines the dispersion curves for three hybridized Dirac plasmon
polariton modes, ω = ωj(k) for j = 1, 2, 3, along with the corresponding long-wavelength
approximations (white dotted lines), a dispersion curve for single-layer graphene (black dashed
line), and the light line ω = k (gray solid line).
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the two lower lying curves exhibit quasi-acoustic dispersions. Besides the dispersion curves with
the exact eigenfrequencies, ωj(k), we also show in Fig. 1(c) their corresponding long wave-
length approximations with frequencies ωappr

j (k) for j = 1, 2, 3. The highest-lying dispersion
is approximated with ωappr

3 (k), which is evaluated by making the assumption that an N -layer
MLG may be treated as an SLG with an effective conductivity given by σN(ω) = Nσ(ω).
This assumption yields a dispersion relation with the approximate eigenfrequency ωappr

N (k) =

N

√
2

(
−1 +

√
1 + k

2

N2

)
, shown for N = 3 by the dotted line in Fig. 2.31(c). This relation

reproduces well the exact dispersion curve ω = ω3(k) for sufficiently long wavelengths, but de-
viations are already observed for k & 2. On the other hand, the two lower-lying dispersion curves
that behave as quasi-acoustic modes at long wavelengths, may be approximated to the leading or-

der in k by the eigenfrequencies ωappr
2 (k) = k

√
4d/

(
1 + 4d

)
and ωappr

1 (k) = k
√

4d/
(
3 + 4d

)
,

which are obtained from Eq. (2.15) in the limit k → 0. Similarly to ωappr
3 (k), one notices in

Fig. 2.31(c) that the lower-lying approximations ωappr
1,2 (k) are quite close to the corresponding

exact modes ω1,2(k) for wavenumbers k . 1.

For further reference, it is worthwhile commenting on the behavior of the exact dispersion
curves with ωj(k) in the range of large k values, well beyond those shown in Fig. 2.31(c). In
Fig. 2.32 we essentially discuss the dispersion relations ω = ωj(k) with j = 1, 2, 3 for HDPPs
in a TLG with the reduced interlayer distance d = 0.1, which were shown in Fig. 2.31(c) in the
range of wavenumbers and frequencies given by 0 < k < 3 and 0 < ω < 3. In Fig. 2.32 we
show those same dispersion relations as blue solid curves over an extended range, 0 < k < 40
and 0 < ω < 9, and we label them as ”Exact” because they were obtained from the exact
eigenvalues of the matrix defining the left-hand side in Eq. (2.15). One can see in Fig. 2.32
that, as the wavenumber increases, the dispersion curves start converging at k ∼ 15 and, for still
larger wavenumbers, say k & 30, they approach the dispersion relation of a SLG, shown as a
solid yellow line.

We also demonstrate in Fig. 2.32 that, for large enough wavenumbers, the converging dis-
persion curves are reasonably well approximated by their nonretarded (NR) limits, shown by
the dotted green lines, which were obtained by setting q =

√
k2 − (ω/c)2 → k in the matrix

on the left-hand side of Eq. (2.15). Finally, to emphasize a dominant role of the interaction
between neighboring graphene layers for increasing wavenumbers, we use the red dashed lines
in Fig. 2.32 to show the dispersion curves obtained for the TLG with d = 0.1 in the nearest-
neighbor approximation (NNA), discussed later at the end of this section. One notices that the
NNA dispersion curves in Fig. 2.32 present an excellent approximation to the exact dispersion
curves for k & 20, as well as that the middle NNA dispersion curve, ω = ω2(k), coincides with
the dispersion curve for SLG.
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Figure 2.32: Dispersion curves for a three-layer graphene discussed in Fig. 2.31. Results are
shown for the exact (solid blue lines), nonretarded (dotted green lines) and the nearest-neighbor-
approximation (dashed red lines) solutions of Eq. (2.15), along with the dispersion curve for
single-layer graphene (solid yellow line).
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In Fig. 2.33, we show a decomposition of the total Ohmic energy loss from Fig. 2.31(a),
FOhm(k, ω) =

∑3
l=1 FOhm,l(k, ω), with contributions to the top (l = 3, panel a), middle (l = 2,

panel b), and the bottom (l = 1, panel c) graphene layers. In the insets to the panels in Fig. 2.33,
we display the cross sections of the corresponding Ohmic energy losses FOhm,l(k, ω) for k = 0.5,
along with three vertical bars showing the positions of the corresponding HDPP mode frequen-
cies ωj(k), evaluated from Fig. 2.31(c) at k = 0.5 for j = 1, 2, 3. It is remarkable that the widths
of the peak regions in the spectra FOhm,l(k, ω) corresponding to the three HDPP dispersions, are
differently distributed in different graphene layers. So, for example, in the panel (a) we see that
in the top layer (l = 3) the widest contribution occurs along the middle dispersion curve ω2, a
somewhat narrower contribution occurs along the highest dispersion curve ω3, and the narrowest
contribution occurs along the lowest lying dispersion curve ω1. A similar distribution of widths
is seen in the panel (c) for the bottom layer (l = 1), with two important differences: the con-
tribution in the region above the light line is more abundant than in the top layer for small ω
and k values and, more interestingly, there exists a dip near the position of the dispersion curve
ω = ω1(k), which is clearly discernible on the nearby diffuse background for small ω and k
values below the light line. A closer inspection of that dip in the inset to the panel (c) shows that
the contribution of the lowest lying HDPP mode to Ohmic energy losses in the bottom graphene
layer has the characteristics of a Fano resonance [109, 117, 126]. This may be tentatively ex-
plained by an assertion that the resonance due to the HDPP mode with ω2 is broad enough and
the resonance due to the HDPP mode with ω1 narrow enough, so that destructive interferences
between them cause diminishing Ohmic losses at frequencies ω1(k) . ω < ω2(k) in the bottom
graphene layer. It should also be noticed in the panel (c) that the strongly asymmetric shape of
the Fano resonance near ω = ω1(k) in the bottom layer effectively pushes the contribution of
the Ohmic loss in that layer towards somewhat lower frequencies than ω1 when compared to the
regions below the broadened resonances along the dispersion ω = ω1(k) in the middle and top
layers. On the other hand, the reason for the lack of a Fano shape in the top graphene layer, as
observed in the inset to the panel (a), is not obvious, but may be guessed to be due to insufficient
difference between the widths of resonances corresponding to the HDPP modes with ω1 and ω2

in that layer. In any case, those two differences between the Ohmic energy loss distributions in
the top and bottom layers signal an asymmetry with respect to the order in which graphene layers
are traversed by the external charged particle, pointing to the retardation effects as their common
cause.

However, the most striking behavior of the three HDPP modes is observed in the panel (b)
of Fig. 2.33 for the middle graphene layer (l = 2), where the Ohmic energy loss in the region
corresponding to the mode with the middle dispersion curve ω2 is completely missing, whereas
the widths of the resonant modes with ω1 and ω3 are similar to the corresponding widths in the
top layer in the panel (a). This may be tentatively explained by the nature of charge carrier oscil-
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Figure 2.33: A decomposition of the Ohmic energy loss, FOhm,l(k, ω) = FOhm,l(k, ω)/Fc, is
displayed in reduced units with Fc = 4(Ze)2/ (πω2

ckc), as a function of the reduced wavenum-
ber k = k/kc and the reduced frequency ω = ω/ωc, for a three-layer graphene with reduced
interlayer distance d = kcd = 0.1. Contributions to the top (l = 3), middle (l = 2), and bot-
tom (l = 1) layers are shown in the panels (a), (b) and (c), respectively. The insets display the
corresponding cross-sections of FOhm,l(k, ω) for k = 0.5, with the red vertical bars showing
the values of the hybridized Dirac plasmon polariton eigenfrequencies, ωj(k) for j = 1, 2, 3,
evaluated from Fig. 2.31(c) at k = 0.5.
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lations in the three graphene layers, which give rise to the HDPP modes with eigenfrequencies
ω1, ω2 and ω3 (see, e.g., Fig. S1(b) in Ref. [106]). Namely, the mode with the highest-lying ω3

is characterized by an in-phase oscillations of charges in all three layers, whereas the mode with
the lowest-lying ω1 is characterized by an in-phase oscillations of charges in the outer layers and
the out-of-phase oscillations of charges in the middle layer. On the other hand, the mode with the
middle eigenfrequency ω2 is characterized by the out-of-phase oscillations of charges in the outer
layers, whereas the charges in the middle layer oscillate in phase with charges in either the upper
or in the lower graphene layer. Owing to this double-degeneracy of charge configurations at the
middle eigenfrequency in a symmetric structure of equally spaced and equally doped graphene
layers in a TLG, one may surmise that, on average, there is no charge carrier polarization in the
middle layer for the HDPP mode with ω2.

In Fig. 2.34, we show the angular distributions of the spectral density for TR in reduced
units, S(θ, ω) = S/Sc with Sc = (Ze)2/c, for a TLG system with (a) d = 0.1 and (b) d = 1.
One notices in the panel (a) that the angular patterns in the upper and lower half-spaces are
largely similar in shape, but slight asymmetry starts appearing for frequencies ω & 1. On the
other hand, one sees in the panel (b) that an increase of the interlayer separation to d = 1
gives rise to an asymmetry between the angular patterns emitted in the upper and lower half-
spaces already for ω & 0.1, which becomes quite strong with increasing frequency. A similar
effect was observed for a DLG in in Subsection 2.3.1, albeit for somewhat larger interlayer
separations. One may surmise that, for the MLG systems, which may not be considered optically
thin, as is likely the case in Fig. 3(b), there are strong interferences in the TR emission patterns
due to retardation effects. These interferences can be ascribed to products of the oscillatory
factors exp [∓iκ (zl − zl′)] and exp

[
∓iω

v
(zl − zl′)

]
in Eq. (2.31), which give rise to the observed

asymmetry in the radiation energy loss for increasing ωd values.

Figure 2.35 shows several integrated probability densities in reduced units, P (ω) = P/Pc
with Pc = 4

π
1
εF

, for a TLG system with (a) d = 0.1 (studied in Fig. 2.31) and (b) d = 1.
In addition to the total Ohmic energy loss and the total radiation energy loss, we show their
decompositions into the contributions to different graphene layers, POhm =

∑3
l=1 POhm,l, and

contributions to the upper and lower half-spaces, P rad = P
↑
rad + P

↓
rad, respectively. We also dis-

play a result for the total energy loss of the external charged particle evaluated from the definition
in Eq. (2.25), showing the conservation of energy in the form P ext(ω) = POhm(ω) + P rad(ω).

One notices in the panel (a) of Fig. 2.35 that the radiation contributions to the upper and lower
half-spaces, P

↑
rad and P

↓
rad, are practically identical for d = 0.1 at all frequencies, which is not

surprising given the similarity of the angular patterns in Fig. 2.34(a). On the other hand, the two
radiation contributions in the panel (b) of Fig. 2.35 are quite close to each other, with somewhat
higher values of the radiation emitted in the upper than in the lower half-space, P

↑
rad > P

↓
rad for
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Figure 2.34: Angular distribution of the spectral density for transition radiation, S(θ, ω) = S/Sc,
shown in reduced units with Sc = (Ze)2/c, for a three-layer graphene with reduced interlayer
distances: (a) d = 0.1 and (b) d = 1, for several values of the reduced frequency ω.
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Figure 2.35: Integrated probability density, P (ω) = P (ω)/Pc, shown in reduced units with
Pc = 4

π
1
εF

, for a three-layer graphene with reduced interlayer distances: (a) d = 0.1 and (b)
d = 1. In addition to the total Ohmic energy loss, POhm(ω) (blue solid lines), and the total
radiation energy loss, P rad(ω) (blue dashed lines), we show their decompositions into different
graphene layers, POhm,l(ω) with l = 1, 2, 3 for the bottom, middle and top layers (solid lines),
and radiation emitted in the upper/lower half-spaces, P

↑,↓
rad(ω) (dashed lines), respectively. Also

shown by dotted blue lines is the total energy loss of the external charged particle from Eq. (2.25),
confirming the conservation of energy as P ext(ω) = POhm(ω) + P rad(ω). The black vertical
bars at (a) ω = 13.3 and (b) ω = 4.2 indicate frequencies below which POhm,l(ω) exhibit large
differences.
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ω < 1. However, it is surprising that, for the case of a TLG with d = 1, which is not optically
thin, the strong asymmetry between the angular patterns observed in Fig. 2.34(b) at frequencies
ω > 1, does not give rise to any detectable asymmetry between P

↑
rad and P

↓
rad in Fig. 2.35(b) in

the same range of frequencies, except for a small “bump” at ω ≈ 2.5. It should be noted, however,
that the radiation energy losses are heavily suppressed for frequencies ω > 1 in Fig. 2.35, but
they give a dominant contribution to the total energy losses of the external charged particle at
frequencies ω < 0.5 and ω < 0.1 in the panels (a) and (b), respectively. It is remarkable that the
radiation energy losses at those frequencies show no significant differences when the interlayer
distance changes from d = 0.1 to d = 1 in going from the panel (a) to panel (b) in Fig. 2.35.
This may be rationalized by asserting that only charge carrier oscillations in the outer graphene
layers give rise to the emission of electromagnetic energy in the far-field regions, whereas the
integration over the angles in Eq. (2.37) causes a massive cancelation in the Poynting vector for
radiative components of the electromagnetic fields due to destructive interferences in the regions
between graphene layers.

In view of the above discussed similarity between the radiation contributions P
↑
rad and P

↓
rad, it

is remarkable that in Fig. 2.35 the layer contributions to the total Ohmic energy loss, POhm,l(ω),
show large differences at frequencies ω < 13.3 and ω < 4.2 in the panels (a) and (b), respec-
tively. We suggest that, in the case of a TLG with the interlayer separation d = 0.1, differences
seen in Fig. 2.35(a) at ω . 3 may be related to different distributions of the weights for the
three HDPP modes in the joint distributions FOhm,l(k, ω) for each graphene layer, as implied
by different widths of those modes in the panels (a-c) of the Fig. 2.33. Namely, the largest dif-
ference among those distributions is that FOhm,2(k, ω) for the middle graphene layer is missing
a contribution from the HDPP mode with the middle dispersion ω2, whereas that mode makes
the largest contribution to the Ohmic losses in the bottom and the top graphene layers. Accord-
ingly, one sees in Fig. 2.35(a) that the integrated Ohmic losses in the outer layers, POhm,1(ω)
and POhm,3(ω), have similar values for 0.5 . ω . 3, which exceed the value of the integrated
Ohmic loss in the middle layer, POhm,2(ω). On the other hand, at frequencies ω < 0.1, one ob-
serves that POhm,2(ω) and POhm,3(ω) take similar values for the middle and top graphene layers,
which are mostly determined by the resonant contributions of the HDPP with the lowest lying
dispersion, ω1. Those values are seen to be smaller than the value of POhm,1(ω) at frequencies
ω < 0.1, which may be tentatively ascribed to increased contribution to the Ohmic energy loss
at frequencies lower than ω1 due to the strongly asymmetric Fano resonance near ω = ω1(k) for
the bottom layer, as displayed in the inset to Fig. 2.33(c).

In the panel (a) of Fig. 2.35, one notices that the integrated Ohmic energy losses POhm,l(ω)
exhibit peculiar and rather different structures in the frequency range 3 . ω . 13. It is interesting
that a superposition of those structures gives rise to a well defined and broad peak at ω ≈ 8 in
the total integrated Ohmic energy loss distribution POhm(ω). When the interlayer separation is
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increased to d = 1 in the panel (b), those structures become even more complex and they move
to a lower frequency range of 0.5 . ω . 5. In that case, the total integrated Ohmic energy loss
distribution exhibits two peaks at ω ≈ 1 and ω ≈ 3. This behavior of the layer decomposition
and the total Ohmic energy loss distributions for the TLG is surprisingly similar to the behavior
of those distributions for a DLG with the same interlayer separations, discussed in Fig. 2.9. We
shall demonstrate below that this similarity is not coincidental, but is rather universal for MLG
with N > 2 in a regime of intermediate optical thickness. Namely, we argue that the DPP
hybridization in such MLG is governed mostly by the electromagnetic interaction between the
nearest-neighbor graphene layers, which should be similar to the hybridization taking place in a
DLG. This assertion is further tested in Figures 2.32 and 2.37. In that respect, it is worthwhile
mentioning that an analysis of the modal decomposition of the total energy losses in a DLG
showed that single- and double-peak structures in POhm(ω) result from an onset of interference
in the excitation of the two HDPP modes at frequencies ω ∼ πβ/d (see Fig. 2.10 ). We suggest
that a similar mechanism may be responsible for the single- and double-peak structures observed
in POhm(ω) for the TLG in the panels (a) and (b) of Fig. 2.35.

From the features seen in the distributions in Figs. 2.34 and 2.35, one may conclude that
large qualitative differences may arise when the interlayer distance increases from a sufficiently
small value for which the MLG may be considered as optically thin, at least in a range of small
frequencies, to a large value, d ∼ 1, for which the retardation effects should be strong. Therefore,
we next explore the effect of increasing the number of graphene layers and analyze changes in
the integrated energy loss spectra as we decrease the interlayer distance further into the regime
of optically thin MLG. So, in Fig. 2.36 we show the total Ohmic loss, P

(N)

Ohm(ω), and the total
radiation loss, P

(N)

rad (ω), for N = 1, 2, 3, 4 and 5 graphene layers and for d = 0.001, 0.01, 0.1 and
1. Also shown (by dotted lines) are the results for the integrated Ohmic energy loss in an SLG,
P

SLG

Ohm[σN(ω), ω], where the effective conductivity is given by σN(ω) = Nσ(ω), with σ(ω) given
by the Drude model in Eq. (2.39). Those results are expected to provide a good approximation
for P

(N)

Ohm(ω) in an optically thin N -layer graphene structure [100, 105, 107].

In order to quantify the criterion for an optically thin MLG regarding the Ohmic loss, we note
that the approximation σN ≈ Nσ follows from Eq. (2.15) when all the exponential factors can be
replaced by unity, i.e., when (N−1)qd� 1. In order to estimate relevant values of the factor q =√
k

2 − ω2, we may temporarily neglect the role of damping and use the approximate expressions
for the HDPP dispersion relations obtained from the approximation σN ≈ Nσ itself. Thus, for
the highest lying mode, using ω ≈ ωappr

N (k) gives a criterion for an optically thin MLG in the

form ω �
√

2/d, independent of N . A rough estimate of the same criterion for lower-lying,
quasi-acoustic dispersion relations may be obtained, at least for sufficiently thin MLG, such
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Figure 2.36: The total integrated Ohmic energy loss, P
(N)

Ohm(ω) (solid lines), and the total radi-
ation loss, P

(N)

rad (ω) (dashed lines), both normalized with Pc = 4
π

1
εF

, are shown for multilayer
structures with N = 1, 2, 3, 4 and 5 graphene layers, having several interlayer distances: (a)
d = 0.001, (b) 0.01, (c) 0.1 and (d) 1. Also shown (by dotted lines) is the integrated Ohmic
energy loss in a single-layer graphene, P

SLG

Ohm[σN , ω], evaluated with an effective conductivity
σN = Nσ forN = 1, 2, 3, 4 and 5 with σ given in Eq. (2.39). The thin dash-dotted lines show the
high-frequency asymptotics of the total integrated Ohmic energy loss, P

(N)

Ohm(ω) ∼ 2πN/ (βω)2,
with β = v/c = 0.5.
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that d � 1. With that assumption, an expansion of the exponential factors in Eq. (2.15) to the
leading order in d gives ωj ∼ φj

√
d k in the limit of long wavelengths, where φj is a numerical

factor of order one for all j = 1, 2, . . . N − 1. Thus, replacing k ∼ ω/
√
d in (N − 1)qd �

1 gives a criterion for optically thin MLG in the form ω � 1/
(
N
√
d
)

. Accordingly, one

notices in Fig. 2.36(a) that the distribution P
SLG

Ohm[Nσ(ω), ω] provides a very good approximation
to P

(N)

Ohm(ω) at frequencies ω . 10 for all N values. This seems to be consistent with the

criterion ω �
√

2/d, showing that the HDPP mode with the highest-lying eigenfrequency likely

dominates in the case of the thinnest MLG with d = 0.001 studied in Fig. 5(a). We remark
that the corresponding physical distance of d = 48 nm is commensurate with the interlayer
distances used in experiments [100, 105]. However, a gradual deterioration of the approximation
P

(N)

Ohm(ω) ≈ P
SLG

Ohm[Nσ(ω), ω] is observed in the panels (b) and (c) of Fig. 2.36 for frequencies
above some critical value, which decreases when both d and N increase. This seems to be
consistent with the criterion ω � 1/

(
N
√
d
)

, indicating an increasing role of the N − 1 quasi-
acoustic HDPP modes with increasing interlayer distance, which start affecting the Ohmic energy
loss at shorter wavelengths and hence higher frequencies.

A close inspection of the low-frequency dependence of the P
(N)

Ohm(ω) distributions in Figs. 2.36(a,b)
shows that the integrated Ohmic energy loss decreases in an inverse proportion to N for frequen-
cies ω . γ = 0.05 for optically thin MLG. The reason for this behavior is not immediately obvi-
ous, but it may be conjectured by recalling that the Ohmic energy loss at low frequencies is dom-
inated by dissipative processes in graphene (see Ref. [42] and Subsection 2.3.1). Namely, the dc
resistivity of a SLG may be represented, in reduced units, as ρ = 1/σ(0) = πγ, so that the dissi-
pative processes in an optically thin MLG withN graphene layers may be represented by a paral-
lel connection of N resistors with the effective resistivity given by ρN ≈ ρ/N = πγ/N . This ar-
gument may be made more quantitative by considering the analytical result for P

SLG

Ohm[Nσ(ω), ω]
for SLG obtained in Ref. [42], which we have used in this work to calculate the dotted curves
in Fig. 5 with σ(ω) given by the Drude model with finite damping rate γ in Eq. (2.39). Since
P

(N)

Ohm(ω) ≈ P
SLG

Ohm[Nσ(ω), ω] to a very good approximation at low frequencies in Figs. 2.36(a,b),
an analysis of the ω → 0 behavior of P

SLG

Ohm[Nσ(ω), ω] shows that

P
(N)

Ohm(ω) ∼ β2

4N

γ

ω

[
4 ln

(
2N

βγ

)
+ β−2 − 4− ln

(
β−2 − 1

)]
, (2.62)

to the leading order in γ. This result exposes the predominantly 1/N dependence of the integrated
Ohmic energy loss at frequencies ω . γ = 0.05 for optically thin MLG.

Turning our attention to the regime of higher frequencies and larger d values, we recall from
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Fig. 2.35 that interferences among the HDPP modes give rise to the peak structures in the Ohmic
energy loss spectra for N = 3 with d = 0.1 and 1 in a regime that may be considered as
intermediate between optically thin and optically thick TLGs. Considering the MLG in Fig. 2.36,
peak structures are barely visible at high frequencies for d = 0.001 in the panel (a), whereas they
seem to gradually increase in magnitude with increasing d andN values, as seen in the panels (b-
d) of that figure. Specifically, single-peak structures appear for N ≥ 2 in the range 10 . ω . 20
for d = 0.01 in the panel (b) and at ω ≈ 8 for d = 0.1 in the panel (c), whereas a double-peak
structure appears at ω ≈ 1 and ω ≈ 3 for d = 1 in the panel (d). While the peak position in the
panel (b) increases in the interval 10 . ω . 20 with increasing N values, it is remarkable that
the peak structures in the panels (c) and (d) exhibit both the shape and position, which are rather
independent from the number of layers for N ≥ 2. This may be qualitatively explained by an
argument that, for thicker MLG with d = 0.1 and d = 1, the interferences giving rise to the peak
structures are mainly governed by the distance between neighboring graphene layers, so that the
effect of increasing N is merely to increase the magnitude of the peaks. More specifically, it
seems that the peaks in the panels (c) and (d) for N > 2 are replicas of the peak structure of a
DLG, with their magnitudes that scale with the number of layers N . (These notions are further
tested later using a nearest-neighbor approximation in solving Eq. (2.15) to generate the curves
in Fig. 2.37.)

Such scaling of the total Ohmic energy loss with N at high frequencies may be deduced by
considering the limit of an optically thick MLG consisting of N independent graphene layers,
which formally arises when the exponential factors in Eq. (2.15) may be set to zero, i.e., when
qd � 1 for sufficiently short wavelengths. Given that in this limit the dispersion relations of all
N HDPP modes in an MLG approach the dispersion of a SLG, as shown in Fig. 2.32, one may use
the nonretarded form of the SLG dispersion, ω =

√
2k, to obtain a criterion for an optically thick

MLG as ω �
√

2/d. Because in that regime we may write P
(N)

Ohm,l(ω) ≈ P
SLG

Ohm[σ(ω), ω] for each
graphene layer with the conductivity σ(ω) given in Eq. (2.39), the total integrated Ohmic energy

loss in an MLG becomes P
(N)

Ohm(ω) ≈ NP
SLG

Ohm[σ(ω), ω] for ω �
√

2/d. Using the analytical

result for P
SLG

Ohm[σ(ω), ω] obtained in Ref. [42] for SLG in the limit of zero damping, we can
easily deduce that the asymptotic behavior of the total Ohmic energy loss in an optically thick
MLG with N > 1 at large frequencies has the form given by P

(N)

Ohm(ω) ∼ 2πN/ (βω)2, which is
indicated by the thin dash-dotted curves in Figs. 2.36(c,d).

Finally, it is remarkable to observe in Fig. 2.36 that the total integrated radiation energy
loss P

(N)

rad (ω) in an MLG with N layers is largely independent of the interlayer distance and is
only weakly increasing with increasing N at sub-THz frequencies. As in Fig. 2.35, this may
be explained by the fact that only the charge carrier oscillations in the outer layers give rise
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to the radiation emitted in the far-field region, whereas the energy flux due to radiating fields
experiences destructive interference in the regions between graphene layers within an MLG.

Nearest-neighbor approximation. The NNA is achieved by retaining only the l′ = l ± 1
terms in the summation in Eq. (2.15), which is written for a general MLG. This approximation
is justified whenever the distance between the lth graphene layer and its nearest neighbor(s) with
l′ = l ± 1 is such that the inequality exp (−q|zl − z′l|) � 1 holds, with q > 0 given by its
fully retarded form. Applying the NNA to the case of a MLG with N > 1 layers having equal
conductivities σ and equal interlayer distances d, one can easily obtain approximate eigenvalues,
λj , of the matrix on the left-hand side in Eq. (2.15) as [127]

λj = 1 +
2πi

ω
q σ

[
1 + 2 e−qd cos

(
jπ

N + 1

)]
, with j = 1, 2, . . . , N. (2.63)

Then, an approximation to the eigenfrequencies ωj(k) is obtained within the NNA by solving
the equations λj(k, ω) = 0 for j = 1, 2, . . . , N . We note that for N = 2, Eq. (2.63) gives exact
results for the dispersion relations in a DLG with cos

(
jπ
3

)
= ±1/2 for j = 1, 2 (Eq. (2.48) with

σ1 = σ2 = σ), whereas for increasing N values, the boundedness of the cos
(

jπ
N+1

)
factor in that

equation indicates the emergence of a well-defined plasmon band in the (k, ω) plane [33].

In order to further demonstrate the utility of the NNA, we show in Fig. 2.37 the total inte-
grated Ohmic energy loss, POhm(ω), in MLG with N = 2, 3, 4 and 5 layers for two reduced
interlayer distances, d = 0.1 and d = 1, corresponding to the cases discussed in Figs. 2.36(c)
and (d). Besides the results obtained by using the exact solution of Eq. (2.15), which are shown
in Fig. 2.37 by solid lines that reproduce the solid lines from Figs. 2.36(c) and (d), we also
use dashed lines in Fig. 2.37 to show the results for POhm(ω) obtained by using the solution of
Eq. (2.15) with the matrix on the left-hand side of that equation expressed in the NNA. One sees
in Fig. 2.37 that the NNA curves agree very well with the exact curves for ω & 5 and ω & 1 at the
interlayer distances d = 0.1 and d = 1, shown in the panels (a) and (b), respectively. Moreover,
the shapes of the peak structures seen in those frequency ranges appear remarkably independent
of the number of graphene layers N , which may be related to the emergence of a plasmonic band
with well-defined boundaries for increasing N values [33].

These observations confirm our assertion that the peak structures seen in POhm(ω) for MLG
with N > 2 in the panels (c) and (d) of Fig. 2.36 appear as replicas of the peak structure for
a DLG because of the prevalence of hybridization between the plasmon modes in neighboring
layers for increasing interlayer distances and/or increasing frequencies.
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Figure 2.37: The total integrated Ohmic energy loss density, normalized as POhm = POhm/Pc,
corresponding to the cases discussed in Figs. 2.36(c) and (d), but shown here over different ranges
on the axes. Results are shown for the exact (solid lines) and the nearest-neighbor-approximation
(dashed lines) solutions of Eq. (2.15).
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2.4 Concluding remarks

In this chapter, we have presented a fully relativistic treatment of energy losses and transition
radiation from multilayer graphene (MLG) with N layers traversed by an electron at a speed
typical for scanning transmission electron microscope (STEM). Our model uses standard defini-
tions, which demonstrate that probability density of the total energy loss of an external charged
particle is given by a sum of the probability densities for Ohmic losses in graphene layers and
the energy emitted in the far-field region as transition radiation (TR). In particular, Ohmic losses
are dominated by excitations of the hybridized Dirac plasmon polariton (HDPP) modes at fre-
quencies located outside the light cone, and are accompanied by release of the Joule heat in the
presence of finite damping rates in graphene, taking place at frequencies located both outside and
inside the light cone. Adopting the Drude model for the conductivity of graphene we have con-
centrated on a terahertz (THz) range of frequencies and analyzed , first, the case of two graphene
layers (DLG), N = 2, and, then, the case of MLG with N > 2.

Our main interest in the study of the DLG structure was to reveal the effects of interlayer
distance d and the difference in doping densities of charge carriers in those layers, n1 and n2, as
the two parameters that are most relevant for the design of graphene-based nano-photonic and
nano-plasmonic devices. For this structure, strong hybridization takes place between the DPPs
in individual graphene layers, giving rise to a low-frequency, quasi-acoustic mode designated as
bonding mode, and a high-frequency, quasi-optical mode designated as antibonding mode. As
a result, Ohmic losses are dominated by excitations of the bonding and antibonding modes for
0 < ω < ck, and subsequent Joule heat due to finite damping rates in graphene for ω > 0.

We have seen that the effects of retardation are quantitatively relevant for frequencies . 10
THz for typical doping densities of graphene. Moreover, the total energy loss of the external
particle is completely determined by the Ohmic losses for frequencies & 1 THz, whereas radia-
tion losses are comparable to the Ohmic losses around ∼ 1 THz, and they become dominant in a
sub-THz range of frequencies.

Our calculations also aimed at analyzing interferences due to retardation effects, which may
give rise to observable asymmetries in: directional decomposition of the radiation emitted in
the upper and lower half-spaces, layer-wise decomposition of the Ohmic losses in graphene,
and modal decomposition of the excitation probability density for hybridized plasmon polariton
modes.

We have found that differences between the angular distributions of radiation spectra emitted
in the upper and lower half-spaces show strong asymmetry with respect to the direction of motion
of the external charged particle for frequencies satisfying ω & c/d, where c is the speed of light
in vacuum. This effect of retardation was observed when the graphene layers have equal doping
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densities, and was found to be greatly magnified when there is a difference in doping densities,
such that the ratio of the Fermi wavenumbers in graphene layers, ρ = kF,1/kF,2 =

√
|n1|/|n2|,

falls in an interval 0.1 . ρ . 10. This asymmetry in the radiation spectra is reduced when
ω . c/d or when the ratio ρ falls outside the indicated interval. On the other hand, when the
radiated spectra are integrated over all angles, both their asymmetry and their dependence on the
interlayer distance and the ratio ρ are diminished.

We have further discovered a surprising asymmetry in Ohmic energy losses at frequencies
ω . kFvFvB/c (i.e., sub-THz frequencies for typical doping densities), such that a graphene
layer with given doping density absorbs more Ohmic energy when it is first traversed by the
external charged particle than when it is traversed last. While this is true for both the case of
graphene layers with equal doping densities and the case of layers with different doping densities
for a distance d ∼ c2/(vBvFkF ) (≈ 73 µm for typical doping densities), a reduction of the
interlayer distance diminishes such asymmetry in Ohmic losses.

At higher frequencies (typically supra-THz), excitations of the hybridized Dirac plasmon
polariton modes play a decisive role in the Ohmic energy losses and, accordingly, in the total
energy losses of the external charged particle. We have found that, if two graphene layers have
equal doping densities, then there is onset of strong oscillations in the modal decomposition at
a frequency ω ∼ πv/d (where v is the speed of the external particle), giving rise to observable
interference features in the Ohmic energy spectra. If the graphene layers have sufficiently dif-
ferent doping densities, then oscillations subside in the modal decomposition. In that case it was
found that the graphene layer with smaller doping density predominantly absorbs Ohmic energy
by excitation of the bonding mode, whereas the layer with higher doping density absorbs Ohmic
energy by excitation of the antibonding mode. In general, Ohmic losses at supra-THz frequen-
cies were found to be strongly dependent on both d and ρ in a nontrivial manner, mostly owing
to the sensitivity of the bonding mode to variations in values of those two parameters.

After performing the modal decomposition, we have analyzed the average number of hy-
bridized plasmons excited by a charged particle traversing a DLG. We considered different dop-
ing densities in each layer in the nondissipative limit (γl → 0+) to obtain the probability density
of exciting the HDPP modes and the average number of excited bonding and antibonding modes,
ν∓. We showed that the interlayer distance d, the asymmetry parameter ρ and the incident parti-
cle velocity v are the relevant quantities that determine the production of the HDDP modes. In
particular, the cusp-like structure around ρ = 1 revealed an extreme sensitivity of the system to
small variations of the doping densities in two graphene layers that are nominally doped with
equal charge carrier densities. This observation along with the intricate interplay between the
speed v and the inter-graphene distance should be taken into account in future devices design.

Besides the effects of varying interlayer distance and doping densities of graphene layers,
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we have also investigated the effects of varying damping rates in graphene layers and varying
speed of the external electron. As in the case of SLG [42], we have found a strong increase
in Ohmic losses in DLG at sub-THz frequencies with increasing damping rate(s). In particular,
when graphene layers are characterized with different damping rates, γ1 6= γ2, there arises a
surprisingly large asymmetry in the layer-wise decomposition of Ohmic losses with respect to
the direction of motion of the external charged particle, even in the case of graphene layers with
nominally equal doping densities. On the other hand, radiative losses were found to be rather
independent of the damping rate when γ . 0.1 THz, but strongly suppressed when the damping
rate increases above γ ∼ 1 THz, while still exhibiting directional asymmetry in the angular
spectra at frequencies ω & c/d.

As for the speed v of the external electron, we have found a strong increase in the magnitude
of radiation losses with increasing v, as expected. While the overall shapes of the angular spectra
of emitted radiation change with increasing v in a manner similar to that observed for SLG [42],
the directional asymmetry in the spectra from a DLG is observed over a broad range of the
electron speeds for large interlayer distances. On the other hand, Ohmic losses also exhibit a
strong increase in magnitude with increasing v at frequencies ω . 1 THz, whereas this effect is
reversed at frequencies ω & 1 THz.

As for the study of the Ohmic and radiation energy losses in an MLG with N > 2 layers tra-
versed by a fast charged particle under normal incidence, we assumed equal interlayer distances d
and equal doping densities n of the constituent graphene layers, where we have explored the lim-
its of both optically thin MLG and optically thick MLG in terms of plasmon hybridization among
the constituent graphene layers in the THz range of frequency ω. By adopting the Drude model
for the optical conductivity of each graphene layer, σ(ω), we found that an optically thin/thick
MLG is roughly defined by values of the Ohmic energy loss ~ω being much smaller/larger than
the parameter ∼ e

√
εF/d, where εF is the Fermi energy in individual graphene layers.

Performing a layer-wise decomposition of the Ohmic energy loss in a three-layer graphene
(TLG) structure, N = 3, we have found that the hybridized plasmon mode with the middle
eigenfrequency is not excited in the middle graphene layer, which was explained by a double-
degeneracy of the corresponding charge oscillation patterns in that layer. This observation may
be of technological interest, as the excitation of such mode in the middle layer appears to be
efficiently prevented by the presence of the outer graphene layers in a TLG, thereby providing a
symmetry protected plasmonic channel.

On the other hand, we have observed important differences between the distributions of the
Ohmic energy losses in the outer graphene layers in a TLG, as well as between the angular distri-
butions of the TR emitted in the half-spaces on either side of the TLG. Such differences indicate
asymmetry of those processes with respect to the order in which graphene layers are traversed by
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the external charged particle, pointing to the retardation effects as the likely cause of the asym-
metry. As a possible manifestation of those effects in a TLG, we have found that the Ohmic
energy loss distribution in the graphene layer, which is first traversed by the external charged
particle, exhibits a Fano resonance near the lowest-lying hybridized plasmon eigenfrequency,
whereas such resonance is not observed in the graphene layer that is traversed last.

Whereas the observed asymmetry in the angular distributions of the TR should be detectable
by using parabolic mirrors in a STEM setting, we have found that the integrated distribution of
the radiative energy loss is rather independent of both the interlayer distance and the number of
graphene layers in an MLG. This is explained by the fact that only charge carrier oscillations in
the outer layers in an MLG give rise to the radiation emitted in the far-field region, whereas the
energy flux due to radiating fields experiences cancelation due to destructive interference in the
interior regions of the MLG.

We have further observed that prominent peak structures develop in the integrated Ohmic
energy loss distributions at the supra-THz frequencies due to interferences between hybridized
plasmon modes in MLG systems with N ≥ 2. Those peaks were found to be very similar in
shape and position to the peak structures in a DLG (N = 2), but with their magnitudes that scale
with the number of graphene layers for N > 2. This is explained by asserting that, in an MLG
that is intermediate between the optically thin and optically thick systems, plasmon hybridization
is governed mostly by the electromagnetic interaction between the nearest-neighbor graphene
layers.

For an optically thin MLG with N layers, we have confirmed that representing its structure
as a single-layer with the effective conductivity Nσ provides a very good approximation to the
distribution of the integrated Ohmic energy loss at low frequencies. Moreover, the magnitude
of that distribution was found to decrease in an inverse proportion to N at low frequencies,
which was explained by recalling that graphene’s response at such frequencies is dominated
by dissipative processes. Given that the plasmon damping is generally unwanted process in
graphene-based nano-photonic and nano-plasmonic devices, whereas the damping rate is largely
unknown parameter in modeling of such devices, it is therefore remarkable that the effects of
damping may be efficiently suppressed, at least at sub-THz frequencies, by using optically thin
MLG with increasing number of graphene layers [51, 115].

We remark that the above conclusions are deduced for a system represented by a stack of
graphene layers suspended in free space. In most experimental setups, there is a substrate, which
would probably affect the observed asymmetry with respect to the traversal order of graphene
layers by the incident charged particle. Moreover, a possible presence of dielectric spacers be-
tween graphene layers would affect the hybridization between their plasmon modes, not only
via screening provided by their dielectric constant(s), but also by additional hybridization of

89



graphene plasmons with phonon modes in those layers [115]. On the other hand, the pres-
ence of a substrate and dielectric spacers would also strongly affect the radiation spectra due to
Cherenkov radiation in those materials at sufficiently large particle speeds, as well as TR arising
when this particle traverses a boundary between materials with different dielectric constants.
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Chapter 3

Energy Loss Rate in Isotropic 2D Materials
due to Fast Charged Particle Moving in
Parallel Trajectory

In this chapter, we present a fully relativistic formulation for the energy loss rate of a charged
particle moving parallel to a sheet containing two-dimensional electron gas, allowing that its in-
plane polarization may be described by different longitudinal and transverse conductivities. We
apply our formulation to the case of a doped graphene layer in the terahertz range of frequencies,
where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major role. By using
the Drude model with zero damping we evaluate the energy loss rate due to excitation of the
DPP, and show that the retardation effects are important when the incident particle speed and
its distance from graphene both increase. Interestingly, the retarded energy loss rate obtained
in this manner may be both larger and smaller than its nonretarded counterpart for different
combinations of the particle speed and distance.

3.1 Introduction

In recent years there has been an increase of interest in using electron beams to generate radiation
from graphene in the terahertz (THz) range of frequencies using different electron trajectories,
including aloof scattering [25, 50]. It has been shown that, when the incident charged particle
moves parallel to graphene, its velocity may be used as additional tuning parameter, besides
the chemical potential in graphene, for creating radiation at various frequencies [25, 50]. Being
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interested in the THz frequencies, those authors adopted a model for dynamic polarization of
doped graphene based on the Drude model [25, 50, 52], which was also found to be reliable in
many other applications of graphene in the area of Nanoplasmonics [3, 119].

In Refs. [128, 129], the authors have studied stopping power and image force on charged
particles moving parallel to graphene using a nonrelativistic approach to elucidate the role of
Dirac plasmon in doped graphene. More recently, the authors in [42] have developed a fully
relativistic treatment of the energy loss and induced transition radiation from graphene traversed
by a fast charged particle under normal incidence applied to a single-layer graphene, and also we
have developed the formulation to multiple graphene layers in the previous chapter.

In this chapter we adapt the relativistic treatment to the case of a charged particle moving
parallel to a single layer of doped graphene. When the particle moves with constant speed in the
absence of other polarizable media, no radiation is generated from graphene, whereas its energy
loss to the electron excitations in graphene occurs at a constant rate, which is related to the usual
stopping power for a parallel incidence trajectory [128, 129]. The study of relativistic effects
in stopping power of charged particles has a long history, mostly focusing on solid targets (see,
e.g., Ref. [130] and references therein) and their surfaces [131, 132], whereas relatively less is
known for strictly 2D targets. In that respect, we note that our formulation of the energy loss rate
for incident particle is given in terms of the 2D conductivity of the target and hence it may be
applied to any 2D material, not just graphene.

The main novelty regarding our description of graphene in comparison with Ref. [42] and
Chapter 2 is that, in the case of parallel trajectory of the incident particle, graphene may exhibit
differences between its longitudinal and transverse polarizations. Accordingly, our formulation
of the problem in this work is more general, allowing for a tensorial in-plane conductivity of
graphene. However, since we are primarily interested in the processes occurring in graphene at
the THz to mid-infrared (MIR) range of frequencies, it is safe to take the long wavelength limit
of the graphene’s conductivity [43]. In that limit, the longitudinal and transverse conductivities
become equal, and are well described by a sum of the Drude model describing the intraband elec-
tron transitions and a term, which describes interband transitions between graphene’s π electron
bands [133, 134, 135]. Moreover, focusing on the role of Dirac plasmon in doped graphene at the
THz frequencies, it turns out that using just the Drude term for graphene conductivity suffices
[3, 25, 50, 52, 119].

While it was shown in the previous chapter that the damping factor in the Drude model exerts
rather strong effects on energy losses of the perpendicularly incident charged particle due to the
excitations of charge carriers in graphene [42], taking the limit of zero damping can provide
an insight into the efficiency of exciting the collective mode in graphene known as the Dirac
plasmon polariton (DPP), see subsection 2.2.4. Accordingly, taking the limit of zero damping
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in this work will enable us to evaluate the energy loss rate due to the excitation of the long-
lived DPP in doped graphene as a function of the incident particle speed and its distance from
graphene.

After outlining a general theoretical formulation in the Theory section 3.2, we present and
discuss several results for the energy loss rate based on the Drude model with zero damping in the
Results and disscusion section 3.3, which are followed by our concluding remarks in Section 3.4.

3.2 Theory

We consider an infinitely large conducting layer of zero thickness, placed in vacuum, which oc-
cupies the z = 0 plane of a three-dimensional Cartesian system with coordinates R = {x, y, z},
and assume that a point charge Ze moves with constant velocity v parallel to that layer at a
fixed distance b . Since both the external charge and the induced charge in the layer are mov-
ing uniformly, no electromagnetic radiation is expected in the absence of dielectric environment.
We assume that the conducting layer is isotropic in the direction of the in-plane coordinates
r = {x, y}, but the polarization of its electron gas may depend on the direction of propagation
relative to the in-plane wavevectors k = {kx, ky}. This property is generally captured by a tenso-
rial in-plane conductivity of the layer that depends on k =

√
k2
x + k2

y and frequency ω, but may
exhibit distinct longitudinal and transverse components, σl(k, ω) and σt(k, ω), which describe
different responses of the electron gas in the directions of the unit vectors k̂ and τ̂ = ẑ × k̂,
respectively. Accordingly, we shall also define the longitudinal and transverse components of
the external particle’s velocity via v = k̂vl + τ̂vt.

3.2.1 Self-consistent solution for the induced electromagnetic fields

As in Ref. [42] and the previous chapter, we use the Hertz vector Π(R, t) [120] and perform
Fourier transforms with respect to the in-plane coordinates and time, according to

Π(k, z, ω) =

�
d2r e−ik·r

� ∞
−∞

dt eiωt Π(R, t), (3.1)

which enables us to express the corresponding electric field as

E(k, z, ω) =
ω2

c2

[
Π‖(k, z, ω) + ẑΠz(k, z, ω)

]
+

(
ik + ẑ

∂

∂z

)[
ik ·Π‖(k, z, ω) +

∂

∂z
Πz(k, z, ω)

]
, (3.2)
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where Π‖(k, z, ω) and Πz(k, z, ω) are components of the Hertz vector parallel and perpendicular
to the conducting layer, and c is the speed of light in vacuum. The advantage of using the Hertz
vector is that it may be expressed in terms of the source charge current, J(k, z, ω), by means of a
free-space, retarded Green’s function, GΠ0(k, z, ω), for a nonhomogeneous Helmholtz equation
in scalar form (see Appendix. A) as

Π(k, z, ω) =

� ∞
−∞

dz′GΠ0(k, z−z′, ω) J(k, z′, ω), (3.3)

where

GΠ0(k, z, ω) =
2πi

ωα(k, ω)
e−|z|α(k,ω) (3.4)

with

α(k, ω) =

√
k2 −

(ω
c

)2

, (3.5)

for |ω| < ck.

Note that the current density of the moving external charge may be written as

Jext(R, t) = vρCM
ext (r− vt, z), (3.6)

where ρCM
ext (r, z) = Zeδ(r)δ(z − b) is the density of a point charge in its center-of-mass (CM)

frame of reference. Performing the Fourier transform, we obtain

Jext(k, z, ω) = 2πZevδ(ω − k · v)δ(z − b), (3.7)

which gives the corresponding Hertz vector from Eq. (3.3) in the form

Πext(k, z, ω) = GΠ0(k, z − b, ω) 2πZevδ(ω − k · v). (3.8)

Clearly, the Dirac’s delta function in Eq. (3.8) only selects frequencies ω = k · v = kvl, corre-
sponding to a resonance condition for exciting the polarization modes in the conducting layer,
which lie outside the light cone, |ω| < ck. While using Eq. (3.8) in Eq. (3.2) gives an electric
field due to the external charge that has all three non-zero Cartesian components, we only require
its components parallel to the conducting layer, which may be conveniently decomposed into the
longitudinal and transverse parts via E

‖
ext = k̂Eext,l + τ̂Eext,t, where

Eext,l(k, z, ω) =

(
ω2

c2
− k2

)
GΠ0(k, z − b, ω) 2πZevlδ(ω − k · v), (3.9)

Eext,t(k, z, ω) =
ω2

c2
GΠ0(k, z − b, ω) 2πZevtδ(ω − k · v). (3.10)
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On the other hand, the induced charge carrier current density in the conducting layer may be
written as

Jind(k, z, ω) = δ(z) j(k, ω), (3.11)

where the in-plane current density may be expressed in terms of a generalized Ohm’s law as
j(k, ω) =←→σ (k, ω) · E‖(k, 0, ω), with←→σ = σl k̂k̂+σt τ̂ τ̂ being a conductivity tensor in diago-
nal form and E‖(k, 0, ω) the in-plane (tangential) component of the total electric field evaluated
at the plane z = 0. Using Eq. (3.11) in Eq. (3.3) gives the Hertz vector due to the induced
currents in the form

Πind(k, z, ω) = GΠ0(k, z, ω)←→σ (k, ω) · E‖(k, 0, ω), (3.12)

which when used in Eq. (3.2) yields all three Cartesian components of the corresponding electric
field. However, we only require components of the induced electric field that are parallel to
the conducing layer, which are again decomposed into the longitudinal and transverse parts via
E
‖
ind = k̂Eind,l + τ̂Eind,t, where

Eind,l(k, z, ω) =

(
ω2

c2
− k2

)
GΠ0(k, z, ω)σl(k, ω)El(k, 0, ω) (3.13)

Eind,t(k, z, ω) =
ω2

c2
GΠ0(k, z, ω)σt(k, ω)Et(k, 0, ω). (3.14)

In order to obtain a self-consistent set of equations for the longitudinal and transverse com-
ponents of the total in-plane electric filed, Elt(k, 0, ω) = Eext,lt(k, 0, ω) +Eind,lt(k, 0, ω), we set
z = 0 in Eqs. (3.9), (3.9), (3.13), and (3.14), whence adding Eqs. (3.9) and (3.13) and solving
the resulting equation gives

El(k, 0, ω) =

(
ω2

c2
− k2

)
GΠ0(k, b, ω)

1−
(
ω2

c2
− k2

)
GΠ0(k, 0, ω)σl(k, ω)

2πZevlδ(ω − k · v), (3.15)

whereas adding Eqs. (3.9) and (3.14) and solving the resulting equation gives

Et(k, 0, ω) =
ω2

c2
GΠ0(k, b, ω)

1− ω2

c2
GΠ0(k, 0, ω)σt(k, ω)

2πZevtδ(ω − k · v). (3.16)

Using the results obtained in Eqs. (3.15) and (3.16) in the right hand sides of Eqs. (3.13) and
(3.14) gives final expressions for the longitudinal and transverse components of the induced
electric fields at arbitrary position z, respectively.
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Notice that the thus obtained expressions for Eind,lt(k, z, ω) contain a delta function δ(ω −
k · v), which is “inherited” from the external current density in Eq. (3.7). Thus, performing the
inverse Fourier transform shows that the induced electric field is stationary in the moving frame
of reference attached to the external particle, so that the spatiotemporal dependence of its parallel
component may be written as Eind‖(R, t) = ECM

ind‖(r − vt, z). Here, the induced electric field
parallel to the conducting layer is defined in the CM frame via its 2D spatial Fourier transform
as

ECM
ind‖(k, z) = −2πiZe e−(|z|+|b|)α(k,kvl)

×
{

k̂
α(k, kvl)

k

[
1

εl(k, kvl)
− 1

]
− τ̂

vlvt
c2

k

α(k, kvl)

[
1

εt(k, kvl)
− 1

]}
,

(3.17)

where we have taken into account that ω = k · v = kvl, and we defined the longitudinal and
transverse dielectric functions of the conducting layer by

εl(k, ω) = 1 + 2πi
α(k, ω)

ω
σl(k, ω), (3.18)

εt(k, ω) = 1− 2πi
ω

c2α(k, ω)
σt(k, ω), (3.19)

respectively.

3.2.2 Energy loss rate

One may further refer to Eq. (3.6) and write the rate of energy dissipation in the conducting layer
as

dW

dt
= −

�
d3R Jext(R, t) · Eind(R, t)

= −
�

d2r

�
dz ρCM

ext (r− vt, z) v · ECM
ind‖(r− vt, z)

= −
�

d2r

�
dz ρCM

ext (r, z) v · ECM
ind‖(r, z)

= −Ze
�

d2k

(2π)2
v · ECM

ind‖(k, b). (3.20)

Using Eq. (3.17) in the last line of Eq. (3.20) and performing the angular integration over the
direction of k with respect to v, one may invoke parity properties of the functions σl,t(k, ω) to
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express the energy loss rate in a more familiar form involving integration over the frequency and
the in-plane wavenumber [128],

dW

dt
=

2

π
(Ze)2

∞�

0

dk

k

kv�

0

dω ω e−2|b|α(k,ω)

×
{

α(k, ω)√
k2v2 − ω2

=
[
−1

εl(k, ω)

]
+

√
k2v2 − ω2

c2α(k, ω)
=
[

1

εt(k, ω)

]}
. (3.21)

This result represents a modification of the formula (5.30) of Ref. [130], derived for the stopping
power in the bulk of a solid, to the case of a charged particle moving parallel to a 2D target. From
the expression in Eq. (3.21), it is obvious that any resonant modes in the conducting layer are
given by the zeros of the 2D dielectric functions εl,t(k, ω) in the (ω, k) plane. Those modes may
be excited by the externally moving charged particle if their dispersion relations (in the limit of
vanishing damping) traverse the boundary of the region 0 < ω ≤ kv. Clearly, the two terms
within the curly brackets in Eq. (3.21) represent contributions to the energy loss of the external
charged particle resulting from the longitudinal and transverse polarizations of the electron gas
in the conducting layer.

In the nonretarded limit, one lets c → ∞ and hence α(k, ω) → k in Eq. (3.21), so that
only the longitudinal contribution survives, giving the familiar expression for the energy loss
rate [128, 136, 137, 138]

dW

dt

∣∣∣∣
nr

=
2

π
(Ze)2

∞�

0

dk

kv�

0

dω
ω√

k2v2 − ω2
e−2|b|k =

[
−1

εnr(k, ω)

]
, (3.22)

with the usual definition of dielectric function for a 2D electron gas in the nonretarded limit,

εnr(k, ω) = 1 + 2πi
k

ω
σl(k, ω). (3.23)

3.2.3 Conductivity model

While the formalism developed in the previous subsection can be directly applied to any isotropic
2D material with tensorial in-plane conductivity, we limit our focus on doped graphene, where
low-energy electron excitations within and between its π electron bands give rise to the Dirac
plasmon, with an appealing property of tunability by changing the doping density of charge car-
riers in graphene, n, by using external gates [70]. Calculations of the conductivity of graphene
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using the Dirac cone approximation for its π electron bands [134, 135], as well as the ab initio
calculations based on all graphene bands [43], show that the longitudinal and transverse conduc-
tivities, σl,t(k, ω), exhibit rather different behaviors when the dependence on the wavevector k is
included in those functions. On the other hand, applications of the DPP in Nanophotonics involve
rather low frequencies, ranging from THz to MIR [70], so that it is safe to consider conductivities
in the optical limit by letting k → 0, in which case one finds that σl(0, ω) = σt(0, ω) = σ(ω)
[133, 134, 135].

The dispersion relation for the DPP is readily deduced from zeros of the longitudinal dielec-
tric function, εl(k, ω) = 0, by using a simple Drude model for conductivity in Eq. (3.18). This
model describes intraband electron excitations in doped graphene in the optical limit, and is
given at zero temperature by

σintra(ω) = i
vB
π

ωF
ω + iγ

, (3.24)

where the parameters in the Drude model are the same as those of introduced in the previous
chapter valid for the frequency range of kvF � ω � ωF .

On the other hand, a collective mode due to transverse polarization of graphene has proven to
be more elusive. Its existence was predicted theoretically by including interband electron tran-
sitions between the π electron bands in the Dirac cone approximation, which may be described
in the optical limit by a contribution to the conductivity, given at zero temperature and with zero
damping by [133]

σinter(ω) =
vB
4

[
Θ(ω − 2ωF ) +

i

π
ln

∣∣∣∣ω − 2ωF
ω + 2ωF

∣∣∣∣] , (3.25)

with Θ being the Heaviside unit step function. Combining the Drude and the interband contri-
butions, Eqs. (3.24) and (3.25), gives a conductivity model σ(ω) = σintra(ω) + σinter(ω), which
relaxes the requirement ω � ωF . Using this model in Eq. (3.19) gives a condition for the trans-
verse plasmon polariton (TPP) from zeros of the transverse dielectric function, εt(k, ω) = 0. It
was found that the dispersion of such a collective mode is pinned at the light line, ω = ck, and
would only be observable in a narrow range of frequencies close to 2ωF [133]. Since excitation
of such a mode by an external charge moving parallel to graphene would require that the reso-
nance condition is satisfied, ω = kv, it appears that only ultrarelativistic particles with v → c
would be capable of exciting the TPP in doped graphene placed in vacuum. While this indicates
that the so-called relativistic density effect (see Section 5.6.4 in Ref. [130]) is possibly much
weaker in graphene than in a solid target, a further detailed analysis of the TPP contribution in
Eq. (3.21) is warranted, but is left for the next chapter.
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Therefore, we shall only study here energy loss of the external charged particle due to excita-
tion of the DPP in doped graphene in the optical limit. Limiting our consideration to frequencies
ω � ωF and taking the limit of zero damping, γ → 0+, in Eq. (3.24), one can show that the
contribution of the transverse polarization in Eq. (3.21) vanishes, whereas the contribution of the
longitudinal polarization may be well described by using just the Drude conductivity, Eq. (3.24),
in Eq. (3.18), provided that the external charged particle is sufficiently fast.

To facilitate the computations, it is useful to introduce the reduced wavenumber and reduced
frequency, k = k/kc and ω = ω/ωc, respectively, where kc = vBvFkF/c

2 and ωc = ckc =
vBvFkF/c [42]. We note that, using |n| = 1013 cm−2 as typical doping density of graphene, the
characteristic wavenumber attains the value kc ≈ 1.36× 10−5 nm−1, whereas the corresponding
characteristic frequency yields ~ωc ≈ 2.69 meV or νc = ωc/(2π) ≈ 0.65 THz. Using the reduced
quantities, the conditions validating the Drude model may be written as vF

c
k � ω � c

vB
.

3.3 Results and discussion

By taking the limit of zero damping in Eq. (3.24), one can further show that the loss function
= [−1/εl(k, ω)] in Eq. (3.21) yields a Dirac’s delta function that is peaked at the dispersion

curve of the DPP, given in the reduced form by ω =

√
2

(
−1 +

√
1 + k

2
)

. Note that, in the

nonretarded limit, this dispersion is reduced to ω =
√

2k. Moreover, the resonance condition
for exciting the DPP by a particle moving with the reduced speed β = v/c may be written
as ω = βk, which crosses the DPP dispersion curve in a fully retarded limit at the reduced
wavenumber kr = 2

β

√
β−2 − 1. It may be then shown that the pair of values kr and ωr = βkr

may be chosen so that the conditions validating the Drude model, are fulfilled when the speed of
the external charged particle is v � vB, or β & 0.1.

In Fig. 3.1 we show both the retarded and nonretarded dispersion relations in the reduced
units. One notices significant differences, where the retarded dispersion is placed below the
light line for all wavenumbers, whereas the nonretarded dispersion lies above the light line for
0 < k < 2. Similarly, considering the resonance line for a particle with v = 0.5 c, one sees
that its intersections with the retarded and nonretarded dispersions occur at k ≈ 7 and k ≈ 8,
respectively.

Next, taking advantage of the Dirac’s delta function that results from the loss function= [−1/εl(k, ω)]

in Eq. (3.21), and introducing the auxiliary variable y = (vk/ω)2 ≡
(
βk/ω

)2
, one can write the
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Figure 3.1: Dispersion relations in reduced variables ω = ω/ωc and k = k/kc. Red: Dirac

plasmon polariton (including retardation), ω =

√
2

(
−1 +

√
1 + k

2
)

. Green: Dirac plasmon

(nonretarded limit), ω =
√

2k. Blue: resonance line, ω = βk, for external charge with the
reduced speed β = v/c = 0.5. Cyan: light line, ω = k.
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final expression for the energy loss rate to the DPP excitation as

dW

dt
=
R

β3

∞�

1

dy
(y − β2)

3/2

y
√
y − 1

exp

[
−4

b

β2

(
y − β2

)]
, (3.26)

where R = (2Zekc)
2c ≈ 3.2 × 108 eV/sec ≈ 5.1 × 10−11 W, and b = |b|kc is the reduced

distance. Notice that the value b = 1 corresponds to a rather large physical distance of |b| ≈ 73.5
µm.

To obtain the nonretarded result for energy loss, one needs to transform the expression that
appears twice in the parentheses in Eq. (3.26) according to (y − β2)→ y giving

dW

dt

∣∣∣∣
nr

= R̃

∞�

1

dy

√
y

y − 1
exp

(
−4b̃y

)
(3.27)

=
R̃

2
e−2b̃

[
K0(2b̃) +K1(2b̃)

]
, (3.28)

where R̃ ≡ R/β3 = (2ZekFvFvB)2/v3 and b̃ ≡ b/β2 = |b|kFvFvB/v2, whereas K0 and K1 are
modified Bessel functions of the second kind.

Using the expressions in Eqs. (3.26) and (3.27), we evaluate the corresponding energy loss
rates and show them in Fig. 3.2 as a function of the reduced distance b (for several reduced speeds
β) and in Fig. 3.3 as a function of the reduced speed (for several reduced distances). One notices
in Fig. 3.2 that the retardation effects increase with increasing distance and increasing speed,
as expected. It is somewhat surprising that, at larger speeds, the retarded energy loss tends to
exceed the nonretarded loss at large distances, but this trend is reversed for intermediate and
shorter distances.

Given the strong decrease of the energy loss rate with distance, we have multiplied each
curve in Fig. 3.3 by a suitable factor, so that all the retarded curves in that figure have the same
maximum value, with a position that depends on the reduced speed. One notices that the positions
of these maxima increase with the reduced distance, as expected. Moreover, as the distance
increases, one also notices increasing differences between the retarded and nonretarded energy
loss rates, such that the nonretarded energy losses are larger than the retarded losses at sufficiently
large speeds, whereas this trend is reversed at lower speeds.

Both Figs. 3.2 and 3.3 exhibit an interesting dependence of the ratio of the retarded to the
nonretarded energy loss rates as a function of the reduced particle speed in a range 0.2 . β < 1
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Figure 3.2: Solid lines show the retarded, and the dotted lines show the nonretarded energy loss
rate dW

dt
divided by the factorR as a function of the reduced distance b = |b|kc of external charged

particle with Z = 1 that moves parallel to doped graphene at the reduced speed β = v/c, which
takes values β = 0.1 (red curves), β = 0.3 (green curves), β = 0.5 (blue curves), β = 0.7 (cyan
curves) and β = 0.9 (black curves).
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and the reduced distance in a range 0.01 . b . 1. This behavior may be qualitatively analyzed by
applying the Mean-Value Theorem to the factor (y − β2)

3/2 in the integral in Eq. (3.26), giving

dW

dt
= e4b

(
1− β2

y∗

)3/2
dW

dt

∣∣∣∣
nr

, (3.29)

where y∗ & 1. This expression shows that the ratio of the retarded to the nonretarded energy
loss rates may take values < 1 for increasing β and decreasing b, and > 1 for increasing b and
decreasing β. However, from both Figs. 3.2 and 3.3, one observes that at distances shorter than
about b = 10−3, i.e., for |b| . 73.5 nm, there are practically no differences between the retarded
and nonretarded energy loss rates in the full range of the incident particle speeds.

Figure 3.3: Solid lines show the retarded, and the dotted lines show the nonretarded energy
loss rate dW

dt
multiplied by the factor f

R
as a function of the reduced speed β = v/c of external

charged particle with Z = 1 that moves parallel to doped graphene at the reduced distance
b = |b|kc, which takes values b = 10−4 (red curves with f = 10−5), b = 10−3 (green curves with
f = 3.15× 10−4), b = 10−2 (blue curves with f = 10−2), b = 10−1 (cyan curves with f = 0.34)
and b = 1 (black curves with f = 16).

It may be worthwhile mentioning that, by attaching a semiclassical interpretation to the ex-
pressions for the energy loss rate given in Eqs. (3.21) and (3.22), one can calculate the corre-
sponding inverse inelastic lifetimes of the external charged particle, Γ and Γnr, respectively. This
is achieved by simply replacing the factor ω in the integrands in those equations with a factor
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1/~ [137]. Furthermore, by taking the limit of zero damping in the loss function = [−1/εl(k, ω)],
the thus obtained expressions for Γ and Γnr yield the rates of excitation of the DPP in doped
graphene by the external charged particle in a fully retarded and nonretarded regimes, respec-
tively. It is interesting that, following the same procedure as that used in deriving Eqs. (3.26) and
(3.27), both those rates can be evaluated in terms of elementary functions as

Γ =
Q

β
e4b

[
1√
b

e−4 b
β2 − 2

√
πβ erfc

(
2

β

√
b

)]
, (3.30)

where Q =
√
πωF

(
vB
c

)2 ≈ 53 GHz, and erfc is the complementary error function, and

Γnr =
Q̃√
b̃

e−4b̃, (3.31)

where Q̃ = Q/β2 and b̃ = b/β2. A simple analysis of Eqs. (3.30) and (3.31) shows that the ratio
of the retarded and nonretarded excitation rates for the DPP, Γ/Γnr, exhibits a similar dependence
on the reduced particle speed β and the reduced distance b as the ratio of the energy loss rates,
discussed above.

3.4 Concluding remarks

We have presented a fully relativistic formulation for the energy loss rate of a charged particle
moving parallel to a sheet containing two-dimensional electron gas, and applied it to a single
doped graphene layer. While our formulation of the problem allows for different longitudinal
and transverse in-plane conductivities of graphene, limiting our attention to the terahertz range
of frequencies allowed us to work in the optical limit, where those conductivities are well ap-
proximated by a Drude model. Taking this model in the limit of zero damping allowed us to
evaluate the energy loss rates due to excitation of the Dirac plasmon polariton in doped graphene
by a charged particle that moves at speeds in excess of about one tenth of the speed of light.

We have observed that the retardation effects are important when the incident particle speed
and its distance from graphene both increase, as expected. However, there are some interesting,
nonmonotonous relations between the values of the retarded and nonretarded energy loss rates.
Namely, for a given particle speed, the retarded loss rate is greater than the nonretarded rate at
large distances, but this trend is reversed at shorter distances, whereas for a given distance, the
nonretarded loss rate is greater than the retarded rate at high speeds, but this trend is reversed
at lower speeds. On the other hand, using the parameters relevant for the Dirac plasmon in a
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typically doped graphene layer, we have found no significant retardation effects for distances
of the charged particle trajectory up to ∼ 100 nm. Given that in most experiments using aloof
scattering of electrons the distance of closest approach does not reach so large values, we may
conclude that nonrelativistic treatment would be valid for studying Dirac plasmons in graphene.
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Chapter 4

Energy Loss and Transition Radiation in
Isotropic 2D Materials Traversed by Fast
Charged Particle under Oblique Incidence

In this chapter, we perform fully relativistic calculations of the energy loss channels for a charged
particle traversing a single layer of graphene under oblique incidence in a setting pertinent to a
scanning transmission electron microscope (STEM), where we distinguish between the energy
deposited in graphene in the form of electronic excitations (Ohmic loss) and the energy emit-
ted in the far-field in the form of transition radiation (TR). Our formulation of the problem uses
a definition of two in-plane, dielectric functions of graphene, which describe the longitudinal
and transverse excitation processes that contribute separately to those two energy loss channels.
Using several models for the electric conductivity of graphene as the input in those dielectric
functions enables us to discuss the effects of oblique incidence on several processes in a broad
range of frequencies, from the terahertz (THz) to the ultraviolet (UV). In particular, at the THz
frequencies, we demonstrate that the nonlocal effect in the graphene’s conductivity is not im-
portant in the retarded regime, and we show that the longitudinal and transverse contributions to
the emitted TR spectra exhibit strongly anisotropic angular patterns that are readily distinguish-
able in a cathodoluminescence measurement in a STEM. Moreover, we explore the possibility
of exciting the so-called transverse mode in the optical response of graphene at the mid-infrared
(MIR) range of frequencies by means of a fast charged particle under oblique incidence. Finally,
we demonstrate that, besides the usual high-energy peaks in the longitudinal contribution to the
Ohmic energy loss in the MIR to the UV frequency range, there may arise strongly directional
features in the in-plane distribution of the transverse contribution to the Ohmic energy loss for an
oblique trajectory, which could be possibly observed via momentum- and angle-resolved electron
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energy loss spectroscopy of graphene in STEM.

4.1 Introduction

In Chapter 2 we have developed a fully relativistic description of the energy losses suffered by
an energetic electron perpendicularly traversing a single layer of graphene (SLG), as well as a
multilayered graphene stack (MLG). An extension of this work also considered the stopping of
electrons traveling on aloof trajectories, parallel to a graphene layer in Chapter 3. Our formu-
lation gave analytical expressions for the probability density of energy loss. We have shown
that the total energy lost by the electron comes from an Ohmic contribution, due to electronic
excitations, and a radiative term due to transition radiation (TR), generated by the passage of the
electron through the interface. The radiative term is purely relativistic and is absent in the paral-
lel trajectory case. For a perpendicular trajectory, only longitudinal fields are relevant since the
transverse terms are canceled out due to symmetries of the considered configuration; hence, it is
sufficient to consider a scalar in-plane conductivity to describe the response function of graphene.
For a parallel trajectory, on the other hand, it was found necessary to include transverse polariza-
tion in the response of graphene by using a tensorial formulation for its conductivity.

In the present chapter, we extend our formalism to an arbitrary oblique trajectory, and ac-
cordingly we consider a tensorial conductivity with different components along the longitudinal
and the transverse directions with respect to the in-plane wave vector k. The formulation is
made for a general conductivity tensor, which allows us to apply different models to describe the
energy losses of the external charged particle in both the low-energy range (therhertz (THz) to
mid-inferared (MIR)) and in the ultraviolet (UV) domain. We find that both the longitudinal and
transverse excitation mechanisms operate in the case of a general oblique trajectory, which are
conveniently described by introducing two novel in-plane dielectric functions for the response
of graphene layer. In each frequency range, we assess contributions to the external particle en-
ergy loss coming from both the radiative and non-radiative (Ohmic) channels, and for each one
of them we distinguish between the longitudinal and transverse contributions. By exploring the
parameter space, specifically, the charged particle speed and its incidence angle, we are able to
analyze the ranges of importance for relativistic effects, which govern both the radiative energy
loss and the transverse component of the Ohmic energy loss.

The chapter is structured as follows: in the Theory section 4.2 we describe the theoretical
formulation used to obtain the probability densities of energy loss, in terms of the induced elec-
tromagnetic (EM) fields and the conductivity tensor, giving a detailed description of different
models used for the conductivity. Next section, Results and Discussion 4.3, is devoted to present
and analyze the obtained results. Finally, in Section 4.4 we give some concluding remarks.
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4.2 Theory

We consider a structure with monolayer graphene of large area placed in the xy-plane (z = 0)
in a three-dimensional (3D) Cartesian coordinate system with coordinates R = {r, z}, where
r = {x, y}. Graphene is traversed by an external point-like particle with charge Ze, moving
with constant velocity v at an arbitrary angle θ0 with respect to the z axis. We assume that the
structure is placed in vacuum in order to be able to neglect any other sources of radiation or
dissipation, apart from those pertaining to graphene. While the assumption of a free-standing
graphene layer is realistic in the context of EELS experiments in STEM [35], we note that the
existence of a dielectric substrate with the relative dielectric constant εd > 1 on one side of
graphene, could possibly give rise to Cherenkov radiation for the incident particle speeds ex-
ceeding the threshold c/

√
εd > 1, as well as to the transition radiation that normally arises when

a charged particle traverses an interface between materials with different dielectrics constants
[63]. Those two sources of radiation would be absent when graphene is surrounded by a homo-
geneous, nonmagnetic material with the dielectric constant εd and for the particle speeds below
the threshold for Cherenkov radiation, but details of the dispersion relation for the collective
modes in graphene would be modified near the THz frequencies by widening of the light cone
in such material [139]. At the same time, the magnitude of the incident charged particle electro-
magnetic (EM) fields would be reduced by a factor of 1/εd, giving rise to an overall reduction of
its interaction with the charge carriers in graphene. Moreover, the existence of dynamic modes in
the surrounding material(s), which could be encoded via a frequency-dependent dielectric func-
tion εd(ω), such as in the case of a polar substrate or nearby metallic gate(s) [140], could give
rise to a strong hybridization of their modes with those in graphene [115]. However, studying the
above effects of dielectric substrate(s) is beyond the scope of the present work (see the proposed
future research in Chapter 6).

Considering the geometry of the problem, we find it convenient to introduce a dyadic Green’s
function (DGF), which may be derived from the electric Hertz vector [120]. This vector can be
easily obtained by solving a nonhomogeneous Helmholtz vector equation with an electric current
density as the source term by means of a free-space, retarded, scalar Green’s function [42], as
outlined in Appendix A.

4.2.1 Self-consistent solution for the induced electromagnetic fields

Assuming translational invariance inside the graphene sheet, we may perform a 2D spatial Fourier
transform (r → k), as well as a Fourier transform with respect to time (t → ω). Thus, defining
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the electric field as

E(R, t) =

�
d2k

(2π)2
eik·r

� ∞
−∞

dω

2π
e−iωtE(k, z, ω), (4.1)

we may express it in the Fourier space in terms of the corresponding current density J as

E(k, z, ω) =

� +∞

−∞
dz′
←→
G E0(k, z − z′, ω) · J(k, z′, ω), (4.2)

where
←→
G E0(k, z−z′, ω) is the electric DGF (EDGF) for free space. Although the above relation

can be always expressed in Cartesian coordinates, we take advantage of the fact that graphene is
isotropic in the z = 0 plane and express all quantities in terms of their longitudinal and transverse
(LT) in-plane components. With ẑ being a unit vector in the direction of the z-axis, and k̂, the unit
vector in the direction of the in-plane wavevector k. that describes longitudinal components, we
define the unit vector τ̂ = ẑ× k̂, which describes transverse in-plane components, see Fig. 4.1.
Thus, adopting the triad

(
k̂, τ̂ , ẑ

)
, the EDGF may be written in tensorial form as

←→
G E0(k, z, ω) =

i

ω

2π

q

{
−q2k̂k̂ + k2

0 τ̂ τ̂ − ikq sign(z)
(
ẑk̂ + k̂ẑ

)
+
[
k2 − 2qδ(z)

]
ẑẑ
}

e−q|z|,

(4.3)
where k0 = ω/c and

q(k, ω) =

 −iωc
√

1−
(
ck
ω

)2 ≡ −iκ(k, ω), |ω| > ck

|ω|
c

√(
ck
ω

)2 − 1 ≡ α(k, ω), |ω| < ck.
(4.4)

In the above equation, α ≡
√
k2 − k2

0 describes the inverse of the localization length for collec-
tive excitation modes of charge carriers in graphene that occur in the range of the (k, ω) plane
lying outside the light cone.

Defining the volume charge density associated with the external charged particle as ρext(R, t) =
Ze δ(R− vt), we obtain the Fourier transform of the corresponding current density as

Jext(k, z, ω) =
Ze

vz
v eiQz, (4.5)

whereQ = Ω/vz with Ω = ω−k·v‖, whereas v‖ and vz = ẑ·v = v cos θ0, with v = ‖v‖, are the
parallel and perpendicular components of its velocity v with respect to the plane of graphene.
Given that graphene exhibits in-plane isotropy, it is natural to express the wavevector k using
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Figure 4.1: Geometry of the problem consisting of a 2D graphene sheet placed in vacuum and
traversed by a fast charged particle under oblique incidence.

the plane polar coordinates, k = {k, φ}, where k = ‖k‖ and φ is the angle with respect to the
direction of v‖, so that k̂ · v‖ = v‖ cosφ and τ̂ · v‖ = −v‖ sinφ, where v‖ = ‖v‖‖ = v sin θ0. In
order to obtain the electric field produced by the external particle, we insert Eqs. (4.5) and (4.3)
into Eq. (4.2), giving

Eext(k, z, ω) =
i

ω
A(k, ω)

[
−q2k̂k̂ + k2

0τ̂ τ̂ − kQ
(
k̂ẑ + ẑk̂

)
+
(
k2

0 −Q2
)

ẑẑ
]
· Jext(k, z, ω),

(4.6)

where
A(k, ω) =

4π

q2 +Q2
. (4.7)

As a consequence of the dynamic polarization of charge carriers in graphene due to the mov-
ing external charge, the induced in-plane charge current in graphene may be expressed via the
2D Ohm’s low, j(k, ω) =←→σ (k, ω) ·E‖(k, 0, ω), where E‖(k, 0, ω) is the component of the total
electric field parallel to graphene, evaluated at z = 0, simply the in-plane electric field. Here,
←→σ (k, ω) is the 2D conductivity tensor of graphene,

←→σ (k, ω) = σl(k, ω) k̂k̂ + σt(k, ω) τ̂ τ̂ , (4.8)
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where any non-local effects are expressed via its dependence on k = ‖k‖ owing to the isotropy
of graphene. Invoking the zero thickness approximation for graphene, the induced current in the
structure may be written as

Jind(k, z, ω) = δ(z) j(k, ω)

= δ(z)←→σ (k, ω) · E‖(k, 0, ω).
(4.9)

We may easily obtain the induced electric field by inserting Eqs. (4.3) and (4.9) back into
Eq. (4.2) as

Eind(k, z, ω) =
←→
G E0(k, z, ω) · ←→σ (k, ω) · E‖(k, 0, ω). (4.10)

Thus, in order to determine induced electric field throughout the structure, we require a self-
consistent procedure to find the in-plane total electric field, E‖(k, 0, ω). This may be achieved by
taking the in-plane components of Eqs. (4.5) and (4.9), followed by setting z = 0, and using them
to express E‖(k, 0, ω) = Eext‖(k, 0, ω)+Eind‖(k, 0, ω). As a result, we obtain a 2D “constitutive
relation” in graphene,

←→ε (k, ω) · E‖(k, 0, ω) = Eext‖(k, 0, ω), (4.11)

where Eext‖(k, 0, ω) is the component of the external electric field parallel to graphene, evaluated
at z = 0. In the above equation, we have introduced a 2D dielectric tensor of graphene as

←→ε (k, ω) = εl(k, ω) k̂k̂ + εt(k, ω) τ̂ τ̂ , (4.12)

where the longitudinal and transverse dielectric functions of graphene are defined as

εl(k, ω) = 1 + 2πi
q(k, ω)

ω
σl(k, ω), (4.13)

εt(k, ω) = 1− 2πi
ω

c2q(k, ω)
σt(k, ω), (4.14)

respectively.

It is clear from Eqs. (4.11) and (4.12) that the longitudinal and transverse responses of
graphene are decoupled. By evaluating the in-plane external electric field Eext‖(k, 0, ω) from
Eq. (4.6), one can easily solve Eq. (4.11) for the in-plane total electric field, which we write as
E‖(k, 0, ω) = E0l k̂ + E0t τ̂ , and obtain its longitudinal and transverse components as

E0l =
A
εl

(
1− ω

c2k
k̂ · v‖

)
, (4.15)

E0t = −A
εt

ω

c2k
τ̂ · v‖, (4.16)
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respectively. Here, A = −ikZe
vz
A is the amplitude of the longitudinal component of the in-plane

external electric field in the case of normal incidence, v‖ = 0. It is obvious from Eq. (4.16) that
the transverse component of the total in-plane electric field can only be exited in graphene in the
case of oblique incidence, i.e., when v‖ 6= 0.

Finally, having obtained E‖(k, 0, ω) = E0lk̂ + E0tτ̂ , we can use Eq. (4.10) to express the
induced electric filed throughout the structure as

Eind (k, z, ω) = 2πe−q|z|
[(
−iq
ω

σlE0l

)
k̂ +

(
iω

c2q
σtE0t

)
τ̂ +

(
k

ω
sign(z)σlE0l

)
ẑ

]
. (4.17)

Moreover, one can obtain the induced magnetic field by the help of Eq. (4.17) along with
Maxwell’s equations as

Hind (k, z, ω) =
1

ik0

(
ik + ẑ

∂

∂z

)
× Eind (k, z, ω)

=
2π

c
e−q|z|

[
(σtE0t) sign(z) k̂− (σlE0l) sign(z) τ̂ + i

k

q
(σtE0t) ẑ

]
.

(4.18)

4.2.2 Definitions of probability densities

As shown in Ref. [42] and the previous chapters, relativistic treatment of the interaction of an
external charged particle with 2D materials in vacuum implies that the total energy lost by that
particle may go into two contributions: (1) the Ohmic loss due to the electronic excitations and
subsequent damping processes in those materials, and (2) the energy emitted in the far-field
region in the form of TR. Accordingly, for each contribution, we may define the corresponding
joint probability density as a function of the energy loss, ~ω ≥ 0, and the momentum transfer,
~k, of the external particle. For the total energy loss of the external charged particle, we obtain

Fext (k, ω) = − 1

4π3ω
<
{� +∞

−∞
dz Jext (k, z, ω) · E∗ind (k, z, ω)

}
=
|A|2

4π3ω

[(
1− ω

c2k
k̂ · v‖

)2

<
{
σl
εl

}
+
( ω

c2k
τ̂ · v‖

)2

<
{
σt
εt

}]
,

(4.19)

with εl and εt given in Eqs. (4.13) and (4.14), respectively. The joint density for the Ohmic loss
is obtained as

Fohm (k, ω) =
1

4π3ω
<
{� +∞

−∞
dz Jind (k, z, ω) · E∗ (k, z, ω)

}
=

1

4π3ω

[
|E0l|2<{σl}+ |E0t|2<{σt}

]
,

(4.20)
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with E0l and E0t given in Eqs. (4.15) and (4.16), respectively.

The joint density for the radiative energy loss in the upper/lower half-space is obtained from
the complex Poynting vector for ω > ck as

F
↑↓

rad(k, ω) =
1

4π3ω
lim

z→±∞
<{± ẑ · S(k, z, ω)} , (4.21)

where the complex Poynting vector is defined via

S(k, z, ω) =
c

4π
Eind(k, z, ω)×H∗ind(k, z, ω)

=
π

ω

(
|σl|2 |E0l|2 +

ω2

c2κ2
|σt|2 |E0t|2

)
K,

(4.22)

with K = k + κ sign(z) ẑ being the 3D wavevector with the magnitude of ‖K‖ = ω/c, which
represents the direction of the Poynting vector, i.e., the direction of the transfer of EM energy
into the far-field region. One may, also, obtain the total radiative energy loss, Frad(k, ω) =
F ↑rad(k, ω) + F ↓rad(k, ω), as

Frad(k, ω) =
κ

2π2ω2

[
|σl|2 |E0l|2 +

( ω
cκ

)2

|σt|2 |E0t|2
]
, (4.23)

with E0l and E0t given in Eqs. (4.15) and (4.16), respectively. Furthermore, for radiation emitted
at a frequency ω in a direction with the angle θ with respect to ẑ and with polar angle φ with
respect to v‖, one can replace k = ω

c
sin θ in the expression for Frad(k, ω) = Frad(k, φ, ω) in

Eq. (4.23), and hence obtain the spectral angular distribution of the radiative energy loss as

S(θ, φ, ω) =
ω3

c2
|cos θ|Frad

(ω
c

sin θ, φ, ω
)
. (4.24)

It should be mentioned that the longitudinal contribution in Eq. (4.23) is a result of the term
Eind,lH

∗
ind,t in the complex Poynting vector, so that the radiated wave is transverse magnetic (TM)

polarized, whereas the transverse contribution in Eq. (4.23) is a result of the term Eind,tH
∗
ind,l in

the complex Poynting vector, so that the radiated wave is transverse electric (TE) polarized with
respect to the direction of propagation K̂ in the far-field region.

One should notice that in all of the above expressions for the joint energy loss densities,
Eqs. (4.19), (4.20), and (4.23), the first terms in square brackets represent the contributions of
the longitudinal response of graphene, while the second terms in square brackets represent the
contributions of the transverse response of graphene. Moreover, it can be easily verified that the
conservation of energy is explicitly upheld via the relation Fext(k, ω) = Fohm(k, ω)+Frad(k, ω).
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While the radiative losses are restricted to frequencies above the light line, ω > ck, both the total
energy loss of the external particle and the Ohmic energy loss occur at all frequencies, ω > 0. In
a range below the light line, ω < ck, we can denote the energy loss by F<

ext(k, ω) = F<
ohm(k, ω),

which may be written in a more familiar form in terms of the longitudinal and transverse loss
functions of graphene, ={−1/εl} and ={1/εt}, as

F<
ohm(k, ω) =

2

π2

(
Ze

vz

)2
1

(α2 +Q2)2 α

[(
k − k0β‖ cosφ

)2=
{
−1

εl

}
+ α2β2

‖ sin2φ=
{

1

εt

}]
,

(4.25)
where we have defined the reduced parallel speed as β‖ = v‖/c. In the non-retarded limit, one
should set β‖ → 0 and change α → k in Eq. (4.25), confirming that transverse response of
graphene only arises in a fully retarded regime.

It is further of interest to study the role of collective modes pertaining to the charge car-
rier excitations in graphene. Those modes can be formally identified in domains of the (k, ω)
plane where: (a) the interband electron transitions may be neglected, (b) Landau damping due
to the continuum of electron-hole excitations is absent, and (c) dissipative processes due to elec-
tron scattering on impurities, phonons or atomic-scale defects in graphene are sufficiently small.
Under such conditions, one may set <{σl} → 0+ and <{σt} → 0+, so that the loss func-
tions ={−1/εl} and ={1/εt} in Eq. (4.25) become proportional to Dirac delta functions peaked
along the dispersion relations for longitudinal and transverse modes in graphene, ω = ωl(k) and
ω = ωt(k), respectively. The corresponding eigenfrequencies, ωl(k) and ωt(k), may be obtained
under such conditions by solving the equations <{εl(k, ω)} = 0 and <{εt(k, ω)} = 0, where

<{εl(k, ω)} = 1− 2π
α(k, ω)

ω
={σl(k, ω)} , (4.26)

<{εt(k, ω)} = 1 + 2π
ω

c2α(k, ω)
={σt(k, ω)} , (4.27)

showing that the longitudinal and transverse modes in graphene can only exist at frequencies
below the light line, such that ={σl(k, ω)} > 0 and ={σt(k, ω)} < 0, respectively.

Finally, an integrated probability density can be expressed as the integration of the joint
probability densities over the whole wavevector range via

PΛ (ω) =
1

~2

�
d2kFΛ (k, ω)

=
1

~2

� 2π

0

dφ

� ∞
0

dk k FΛ (k, φ, ω) ,

(4.28)

where Λ = ext, ohm, rad. As one would expect, the energy conservation maintains that Pext(ω) =
Pohm(ω) + Prad(ω) for all ω > 0.
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4.2.3 Models of conductivity

For the optical response of graphene in the THz-MIR range of frequencies, it suffices to take into
account low-energy excitations involving its π electron bands described within the Dirac cone
approximation. We consider in this work three models of conductivity of doped graphene in this
range of frequencies: (a) Drude model for intraband excitations, suitable at THz frequencies,
(b) optical conductivity of graphene combining the intra– and inter–band excitations, suitable
at the THz to MIR frequencies, and (c) a model due to Lovat et al. [141], which includes the
intraband electron-hole continuum of excitations, and is suitable at THz frequencies and finite
wavenumbers k. While the Drude model and the optical conductivity are given in a strict long
wavelength limit, k → 0, the Lovat’s model introduces non-local effects into the Drude model.

We note that the longitudinal and transverse conductivities of graphene, σl(k, ω) and σt(k, ω),
are generally different quantities when the wavenumber k is finite, as in the case of Lovat’s
model, but in the long wavelength limit, they both become equal to a frequency dependent con-
ductivity of graphene, σl(0, ω) = σt(0, ω) = σ(ω), which may be modeled either by the Drude
conductivity or by the optical conductivity of graphene.

We will also consider a higher frequency range, corresponding to the energy losses of ω &
1 eV, which is usually probed in the low-energy EEL spectrum obtained with a (S)TEM [35, 37,
38, 39]. In this case, we employ a two-fluid hydrodynamic model (HD) suitable for describing
high-energy interband electron transitions in intrinsic (undoped) graphene in the optical regime,
which we amend by a Dirac correction to account for the lower energy interval [40].

Drude model conductivity

It has been shown that the intraband excitations in doped graphene are well represented by a
Drude-type model of conductivity, [119, 142] which is given at finite temperature T by

σintra(ω) =
i

4π

v2
FkTF
ω + iγ

, (4.29)

where kTF = 8e2 kBT
(~vF )2

ln
[
2 cosh

(
µ

2kBT

)]
is the Thomas-Fermi wavenumber, with µ being

the chemical potential of graphene and vF ≈ c/300 its Fermi speed. In the zero temperature
limit, one obtains µ → EF = ~vFkF and hence kTF → 4vB

vF
kF , where EF is the Fermi energy

of graphene and kF =
√
π |n| its Fermi wavenumber for charge carrier density n, whereas

vB ≡ e2

~ ≈ c/137 is the Bohr speed. In Eq. (4.29), γ is the damping rate due to electron scattering
processes, which is largely unknown parameter that depends on the purity of graphene.
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It is convenient to adopt nondimensionalized variables k = k
kc

and ω = ω
ωc

, where kc =
1
4
kTF

(
vF
c

)2 and ωc = ckc. We note that, for typical doping densities of graphene, the relevant
unit of frequency is νc = 2π

ωc
∼ 1 THz. Thus, the Drude conductivity is given in reduced form by

σintra ≡ σintra
c

= i
π

1
ω+iγ

, where γ = γ
ωc

is the reduced damping rate. In an idealized case when
γ → 0, upon using the Drude conductivity in Eqs. (4.26) and (4.27), one obtains a longitudinal
mode pertaining to the so-called Dirac plasmon polariton (DPP), whereas no transverse modes
exist because ={σintra} > 0. A dispersion relation for the DPP mode obtained from the Drude
model may be then expressed in a simple form using the reduced variables as α = 1

2
ω2, where

α ≡ α
kc

=

√
k

2 − ω2.

The range of validity of the Drude model in Eq. (4.29) is given by a double inequality kvF �
ω � ωF , where ωF = EF/~ is the frequency associated with the Fermi energy in graphene [91].
In the reduced units, these inequalities amount to vF

c
k � ω � ϕ, where ϕ ≡ c

vB
≈ 137 is the

inverse of the fine structure constant.

Non-local model conductivity

Effects due to finite wavenumber k can be introduced into the conductivity of graphene at suffi-
ciently low frequencies, such that ω � ωF , by using the model developed by Lovat et al. [141].
Their model essentially generalizes the Drude conductivity by introducing the effects of intra-
band electron-hole continuum in the domain 0 < ω < kvF of the (k, ω) plane, thereby relaxing
the lower frequency constraint of the Drude model, kvF � ω. Those authors obtained the longi-
tudinal and transverse conductivities of graphene, which may be expressed in the reduced units
used in our work as

σl(k, ω) = 2
σintra

1 + χ

1

χ− i γ
ω

(1− χ)
, (4.30)

σt(k, ω) = 2
σintra

1 + χ
, (4.31)

respectively. Here, σintra(ω) is the Drude conductivity given in Eq. (4.29) and the auxiliary factor
χ(k, ω) is defined as

χ =

√
1−

(vF
c

)2
(

k

ω + iγ

)2

. (4.32)

While the longitudinal and transverse conductivities attain different values in the model due to
Lovat et al., the smallness of the factor

(
vF
c

)2 ≈ 10−5 indicates that nonlocal effects are only
observable at frequencies ω � k, which lie deeply in the non-retarded regime, and hence they are
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expected to be suppressed in the transverse response of graphene in comparison to its longitudinal
response. Therefore, to the order of

(
vF
c

)2 ≈ 10−5, the longitudinal and transverse conductivities
become equal, and are given by the Drude model, σl = σt = σintra(ω).

On the other hand, taking the limit γ → 0 for frequencies outside the continuum of intraband
single-electron excitations, ω > k vF

c
, one can ensure that the real parts of both σl and σt vanish,

while their imaginary parts are found to be both positive. Therefore, by using Eqs. (4.30) and
(4.31) in Eqs. (4.26) and (4.27), respectively, it follows that only a longitudinal mode exists with
a dispersion relation, which is very close to that of a DPP mode from the Drude conductivity
model.

Optical model conductivity

The upper frequency constraint of the Drude model, ω � ωF , may be relaxed by adding to
it the low-energy interband contribution, which is sometimes called Dirac conductivity. This
contribution is given at zero temperature by [55, 142]

σinter(ω) = i
vB
4π

ln

(
2ωF − ω − iγ
2ωF + ω + iγ

)
. (4.33)

It was shown by ab initio calculations [115] that, in the strict long wavelength limit, the conduc-
tivity of graphene at frequencies up to about 2ωF is well represented by the sum of the intra– and
inter–band contributions given in Eqs. (4.29) and (4.33), σopt(ω) = σintra(ω) + σinter(ω), respec-
tively. We shall call such model optical conductivity and apply it to the range of frequencies up
to MIR, corresponding to an energy loss of the incident particle of about 1 eV.

Switching to reduced variables, we note that in the zero damping limit, γ → 0, the reduced
interband conductivity becomes [55]

σinter =
1

4ϕ

[
Θ(ω − 2ϕ) +

i

π
ln

∣∣∣∣ω − 2ϕ

ω + 2ϕ

∣∣∣∣] , (4.34)

where Θ is the unit step function. One observes that <{σinter} ≈ 0 and ={σinter} < 0 for
frequencies ω < 2ϕ ≈ 274, thus opening the possibility for excitation of a transverse mode in
that interval. Indeed, by taking γ → 0 in that same frequency interval for the optical conductivity,
we ensure that its real part vanishes, <{σopt(ω)} → 0, while its imaginary part, ={σopt(ω)},
changes its sign at a critical frequency ω∗ ≈ 1.667ϕ ≈ 228. Therefore, using the optical
conductivity σopt(ω) in Eqs. (4.26) and (4.27), one finds that a longitudinal mode can be excited
at frequencies 0 < ω < ω∗ and a transverse mode can be excited in the interval ω∗ < ω < 2ϕ. We
note that this interval covers a range around 1 eV, using the physical units. The corresponding
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dispersion relations of those modes are given in reduced units as α = αl(ω) and α = αt(ω),
where

αl(ω) =
ω2

2

[
1 +

ω

4ϕ
ln

(
2ϕ− ω
2ϕ+ ω

)]−1

, 0 < ω < ω∗, (4.35)

αt(ω) = −2

[
1 +

ω

4ϕ
ln

(
2ϕ− ω
2ϕ+ ω

)]
, ω∗ < ω < 2ϕ. (4.36)

Therefore, in the case of optical conductivity, we can use Eq. (4.25) to obtain a modal de-
composition in the regime when <{σ(ω)} → 0, where the loss functions for the longitudinal
and transverse responses of graphene are to be replaced by the Dirac delta functions, according
to

=
{
−1

εl

}
→ παl(ω) δ(α− αl(ω)) , for 0 < ω < ω∗, (4.37)

=
{

1

εt

}
→ παt(ω) δ(α− αt(ω)) , for ω∗ < ω < 2ϕ, (4.38)

respectively.

We note that the transverse mode in doped graphene was predicted by Mikhailov and Ziegler
[133], and was studied in some detail by Stauber [101], but its confirmation has eluded ex-
perimentalists so far. Therefore, we use the optical model of conductivity to explore here the
possibility to excite the transverse mode in graphene via electron beam under oblique incidence.

It is interesting to mention that, if a small gap ∆ is opened between graphene’s valence and
conduction π electron bands, then the optical conductivity for an undoped graphene would be
given by an expression similar to that given in Eq. (4.33) for interband transitions, but with the
frequency ωF replaced by ∆/(2~) [101]. When a graphene layer that exhibits a finite gap ∆ is
also doped with its Fermi level shifted into the conduction or the valence band, then its optical
conductivity would consist of both interband term governed by ∆, and an intraband term of the
Drude form in Eq. (4.29), governed by the doping density of gapped graphene.

Extended hydrodynamic model conductivity

The optical response of graphene in the range of high frequencies, from MIR to UW, correspond-
ing to the energy losses in an interval 1− 30 eV, is characterized by the high-energy π → π∗ and
σ → σ∗ interband transitions [34, 43]. The energy loss function shows conspicuous features at
about 4 eV and 14 eV [33, 143], which are usually labeled as the π and σ + π ”plasmon” peaks,
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and their dispersion can be assessed through standard k−resolved EELS experiments. [37] In
that range of energies, a two-fluid hydrodynamic (HD) model was found to be a good description
for the polarization function χ0, obtained as the sum of the contributions from π and σ electrons,
χ0 = χπ + χσ, with

χν(q, ω) =
n0
νq

2/m∗ν
s2
νq

2 + ω2
νr − ω(ω + iγν)

, (4.39)

where n0
ν , m∗ν , ωνr, sνr, and γν are the equilibrium surface number density of electrons, effective

electron mass, restoring frequency, acoustic speed, and the damping rate in the νth fluid (where
ν = π, σ), respectively. In the optical limit, the conductivity of graphene is obtained as the sum
of two Drude-Lorentz-like terms,

σHD(ω) = −ie2ω lim
q→0

χ0(q, ω)

q2

= −ie2ω

[
n0
π/m

∗
π

ω2
πr − ω(ω + iγπ)

+
n0
σ/m

∗
σ

ω2
σr − ω(ω + iγσ)

]
. (4.40)

While this model provided a good fit of the dominant π and σ + π peak structures in the
spectra of graphene at energy losses & 3 eV [33, 35], there are indications in the more recent
experimental data that the Dirac physics of low-energy excitations in graphene could play im-
portant role at energy losses . 2 eV [30, 38, 39, 40]. The inadequacy of the model in Eq. (4.40)
at such energies is readily indicated by the fact that σHD(0) = 0, whereas the conductivity of
undoped graphene should approach the value of vB/4 when ω → 0, i.e., the so-called universal
optical conductivity of graphene [144]. In order to include the low-energy range, Djordjević et
al. [40] extended the hydrodynamic model by adding a Dirac term σD(ω) describing the π → π∗

interband electron transitions that occur near the K points in the Brillouin zone of graphene. The
structure of the extended HD (eHD) model and its various parameters are determined through the
application of the Kramers-–Kronig relations and the f-sum rule, which maintains the conserva-
tion of the number of electrons participating in various excitation processes [40]. This yields the
conductivity of undoped graphene in the form

σeHD(ω) = e2

{
1

4~
ω4
∗

ω4
∗ + ω4

+ i
ω

me

[
ω2
∗ + ω2

ω4
∗ + ω4

ω∗me

√
2

8~

−

(
1− ω∗me

√
2

8~nat

)
n0
π

ω2
πr − ω(ω + iγπ)

− n0
σ

ω2
σr − ω(ω + iγσ)

]}
. (4.41)

It should be noted that the addition of the Dirac term introduces a parameter ω∗ in Eq. (4.41), so
that the universal conductivity of graphene is approached when ω � ω∗, giving σeHD(0) = vB/4.
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The parameter ω∗ may be qualitatively interpreted as a cut-off frequency that separates the low-
energy π → π∗ electron transitions near the K points in the Brillouin zone of undoped graphene,
which give rise to the universal conductivity when ω → 0, from the high-energy π → π∗ electron
transitions near the M points, which give rise to the π plasmon peak near ωπr [40].

We adopt the above model with the following values for the parameters: n0
π = nat = 38

nm−2, n0
σ = 114 nm−2, ωπr = 4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV, γσ = 2.178 eV,

and ω∗ = 3.54 eV. These values ensure that the model reproduces satisfactorily several sets
of experimental data for EELS on single-layered graphene [40], and agrees well with ab initio
calculations of graphene’s optical conductivity in a broad range of frequencies [115].

4.3 Results and discussion

In this section, we present calculations corresponding to the energy loss spectra of the electrons
impinging on graphene under oblique incidence, using the conductivity models described in
the previous section for diverse frequency regimes. One should note that, while the results of
calculations using the eHD conductivity model for the high-frequency range are presented in
the physical units, it is convenient to nondimensionalize the relevant variables in the other three
models for low frequencies, covering the THz to MIR range, as described in the previous section.

There are several parameters that influence the low-energy loss spectra; two of them are as-
sociated with the external charged particle, i.e., the direction of its motion relative to graphene
(quantified by θ0) and its speed (quantified by β), and two of them are associated with the
graphene sheet, i.e., the damping of its charge carriers’ excitations (quantified by the rate γ)
and the collective excitations of its charge carriers, or plasmon polariton modes described by the
corresponding dispersion relations in the (k, ω) plane. In the low-frequency regime, we shall
keep the normalized damping ratio fixed at a relatively low value of γ = 0.05, unless we turn
to a discussion of the role of the dispersion relations, which are obtained from the zeros of the
dielectric functions in Eqs. (4.13) and (4.14) in the limit of vanishing damping. We have chosen
a relatively small value of γ = 0.05 in order to emphasize resonant features in the spectra due to
the excitation of plasmon polariton modes at low energy losses. However, it should be stressed
that we have found in the previous chapters that increasing values of γ exert rather strong influ-
ence on both the Ohmic and radiation energy losses, especially at the sub-THz frequencies, as in
Ref. [42].

Throughout this section, we shall present and compare the decomposition of all energy loss
channels into their longitudinal and transverse components in order to emphasize the importance
of the oblique trajectories of the external particle for generating EM fields with different polar-
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izations by the two types of the excitation mechanisms of charge carriers in graphene, which are
descried by the dielectric functions in Eqs. (4.13) and (4.14).

4.3.1 Energy losses at the THz frequencies

The dynamic response of graphene in the THz range of frequencies is expected to be well de-
scribed by the Lovat’s model, as well as by the Drude model as its local limit. By comparing the
results from those two models, we can directly assess the effects of nonlocality in the energy loss
densities at those frequencies.

Figure 4.2 shows the normalized integrated energy loss density of the external charged par-
ticle, P ext = Pext/Pc with Pc = 4/ (πEF ) where EF is the Fermi energy of graphene, for two
angles of incidence: θ0 = 0 in panel (a) and θ0 = 60◦ in panel (b), and for several external
particle speeds β. We also show in each panel two separate contributions to the function P ext(ω)
coming from the longitudinal (dashed curves) and transverse (dotted curves) dielectric functions,
see Eq. (4.19) with Eq. (4.28).

Under the normal incidence (θ0 = 0), shown in panel (a), there only exists a longitudinal
contribution to the energy loss density P ext(ω). The effect of nonlocality only becomes visible
in the frequency range 0.1 . ω . 100 for the very low speed of β = 0.01, i.e., in the nonretarded
regime. For the low frequency range, ω . 0.1, the function P ext(ω) exhibits a∝ ω−1 dependence
and increases in magnitude with the increasing speed of the charged particle. This is consistent
with the findings of the prvious work [42] and Chapter 2, where it was shown that both the Ohmic
energy loss (for finite damping rate) and the radiative energy loss exhibit the characteristic∝ ω−1

dependence when ω → 0+, with their respective magnitudes increasing with β. Specifically, for
the Ohmic energy loss, this can be seen from Eq. (2.62) in Chapter 2, whereas for the radiative
energy loss, one can obtain from Eq. (48) in Ref. [42] that, in the limit ω → 0+ and for zero
damping, the normalized integrated radiation energy loss density scales as P rad(ω) ∼ 2

3
β2

ω
to

within an accuracy of 10% for the normal incidence at the speeds β . 0.5.

On the other hand, a peak is observed in panel (a) of Fig. 4.2 at frequencies ω & 1, where
the Ohmic energy loss plays a dominant role (see Fig. 3 in Ref. [42]). That peak results from an
interplay of the longitudinal Dirac plasmon polariton (LDPP) mode in graphene and the ampli-
tude |A|2, see Eq. (4.19). The position of this LDPP-induced peak is seen in panel (a) to shift
towards higher frequencies as the particle speed decreases. To understand such behavior of the
peak in the energy loss spectra under the normal incidence, it suffices to consider the limit of
zero damping, and refer to Eq. (47) in Ref. [42], which yields a peak in the integrated Ohmic
energy loss density that is positioned at ωpeak = 2

√
β−2 − 2. This shows that the peak frequency

decreases with increasing speed, and the peak disappears for the speeds β > 1/
√

2.
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Figure 4.2: Normalized integrated energy loss density of the external charged particle, P ext =
Pext/Pc with Pc = 4/ (πEF ) where EF is the Fermi energy of graphene, for two angles of inci-
dence: (a) θ0 = 0 and (b) θ0 = 60◦, and for several external particle speeds β, versus the reduced
frequency ω = ω/ωc. Also, shown are, in each panel, two separate contributions of longitudinal
(dashed curves) and transverse (dotted curves) dielectric functions to the external loss. Nonlocal
effects of the graphene’s conductivity model on the loss spectra is depicted by the comparison
of the Lovat’s (thick lines) and Drude (thin lines) models. The reduced damping rate is fixed at
γ = γ/ωc = 0.05.
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When the charged particle’s trajectory becomes oblique to the plane of graphene, the trans-
verse part begins to contribute to the energy loss density P ext(ω), which is shown in panel (b)
of Fig. 4.2 with the same speeds as in panel (a), but for the angle of incidence of θ0 = 60◦. It
is observed that the transverse part mostly contributes to the energy loss in the low frequency
range. Even though the transverse contribution remains generally smaller than the longitudinal
contribution, their magnitudes can become comparable, e.g., for the speed β ∼ 0.1 at frequen-
cies ω . 0.01, as seen in panel (b). Furthermore, the effect of the nonlocality, which is exposed
by comparing the Lovat’s and Drude models for both the longitudinal and transverse contribu-
tions, appears to be similar to what was observed in panel (a). Namely, the nonlocal effect is
only visible for sufficiently low speeds, i.e., in the nonretarded regime and, while it affects the
longitudinal contribution in the same range of frequencies as in the case of the normal incidence,
the nonlocal effect is practically ignorable for the transverse contribution, as indicated by the
dotted black lines in panel (b). It is further noticed that both the transverse and the longitudi-
nal contributions exhibit the same characteristic ∝ ω−1 dependence at the lowest frequencies,
which is accompanied by an increase in magnitude with increasing particle speed, similar to the
behavior observed in panel (a). On the other hand, while the longitudinal contribution exhibits a
LDPP-induced peak at frequencies ω & 1 in panel (b), with a similar peak position as in panel
(a), the transverse contribution is heavily suppressed at such frequencies.

As was noticed above, the nonlocal effects only matter at low speeds, i.e., in the nonretarded
regime. In order to investigate this regime in some detail, we study in Fig. 4.3 the normalized
integrated densities for both the Ohmic energy loss, P ohm = Pohm/Pc, in panel (a), and the
radiative energy loss, P rad = Prad/Pc, in panel (b), for the charged particle speed of β = 0.01
and for several angles of incidence. In this figure, one can further clarify the differences between
the Lovat’s and Drude models, as well as elucidate the relative weights of the longitudinal and
transverse contributions to the Ohmic and radiative integrated densities in a nonretarded limit.
As expected for this low speed, the effect of nonlocality is apparent at frequencies ω & 0.1, but
only for the Ohmic energy loss, as shown in panel (a). At the same time, panel (b) confirms that
there is no effect of the nonlocality in the radiative energy loss, neither in the longitudinal nor
in the transverse contributions, which is expected since the radiation loss is a purely relativistic
phenomenon.

Regarding the magnitude of various contributions to the energy loss in Fig. 4.3, one no-
tices that the radiative loss channels are significantly smaller than the corresponding Ohmic loss
channels, as expected at such low speed. Moreover, the nonretarded regime is also responsible
for the transverse contributions to both the Ohmic and the radiative energy losses being much
smaller than the corresponding longitudinal contributions. Comparing panels (a) and (b) in that
figure at frequencies ω . 1, one further notices that the longitudinal contribution to the Ohmic
energy loss increases, while the same contribution to the radiation energy loss decreases with
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Figure 4.3: Normalized integrated probability densities for (a) Ohmic energy loss, P ohm(ω) =
Pohm/Pc, and (b) radiative energy loss, P rad(ω) = Prad/Pc, for the charged particle speed of
β = 0.01 (the nonretarded case) and for several angles of incidence. The differences between
the Lovat’s (thick lines) and Drude (thin lines) models, as well as the relative weights of the
longitudinal (dashed lines) and transverse (dotted lines) contributions to the Ohmic and radiative
integrated densities in a nonretarded limit are also shown. The reduced damping rate is fixed at
γ = 0.05.

increasing angle of incidence θ0. The latter observation is consistent with the observations in
Fig. 4.2, implying that it is the normal component of the external particle speed, β cos θ0, that
likely governs the magnitude of the longitudinal contribution to the radiative energy loss chan-
nels. Namely, given that the radiation is most effectively produced by accelerating the charge
carriers in graphene, a reduction in the perpendicular component of the speed would bring down
the “abruptness” of graphene’s interaction with the external charged particle and hence reduce
the production of TR. Clearly, for a strictly parallel trajectory, there can be no radiation (Chap-
ter 3). For a more quantitative assessment, one may invoke the analysis of Fig. 4.2(a) based on
Eq. (48) in Ref. [42], and hence surmise that the longitudinal contribution to the radiative energy
loss scales as ∝ (β cos θ0)2.

Regarding the dependence of the transverse contributions to the Ohmic and radiative energy
losses on the incident angle, similar conclusions can be drawn as for the longitudinal contribu-
tions, with a peculiar “anomaly” seen in panel (b), where the transverse contribution to the radia-
tive energy loss exhibits an apparently symmetric maximum about the incident angle θ0 = π/4.
This can be explained in the following way. By looking at the transverse part of Eq. (4.23), with
the transverse component of the in-plane tangential electric field given in Eq. (4.16), which con-
tains the factor τ̂ · v‖. Therefore, the magnitude of the transverse contribution to the radiative
energy loss is proportional to sin2 θ0, so it vanishes as the incident particle approaches graphene

124



under a grazing angle of incidence, i.e., on a near-parallel trajectory. On the other hand, one no-
tices in panel (b) that there exist equal spacings between any pair of the curves representing the
transverse or longitudinal contributions to the radiative energy loss at low frequencies, ω . 1,
for incident angles θ0 ≥ π/4. This indicates that the transverse contribution likely scales the
same way as the longitudinal contribution to the radiative energy loss in terms of the normal
component of the external particle speed, that is, ∝ cos2 θ0. Thus, one may surmise that the
transverse contribution to the radiative energy loss is proportional to sin2 (2θ0) for the incident
speeds β . 0.5, and it therefore should exhibit a symmetric maximum about θ0 = π/4.

As we have discussed so far, the effect of nonlocality on the energy loss spectra becomes
salient for nonretarded speeds. However, relative contribution of the transverse part with re-
spect to the longitudinal part in the energy loss is expected to increase with increasing speed of
the external particle, i.e., by going into the regime where the retardation effects dominate. To
explore that regime, we show in Fig. 4.4 a decomposition into the longitudinal and transverse
contributions to the energy loss spectra in a manner similar to that employed in Fig. 4.3, but for
a significantly higher incident speed of β = 0.5. In this regime, the Ohmic and radiative energy
losses attain comparable magnitudes, at least at the frequencies ω . 1 and at the angles of in-
cidence that are not too oblique. Thus, in addition to showing the Ohmic energy loss in panel
(a) and the radiative energy loss in panel (b), we also show the total energy loss of the external
particle in panel (c) of in Fig. 4.4, all for various angles of incidence. As expected, no differences
are observed between the Drude and Lovat’s models in any of the shown spectra, confirming that
the nonlocal effects are negligible at such high speed.

The dependencies on the angle of incidence for all contributions shown in panels (a) and (b)
of Fig. 4.4 at low frequencies, are analogous to the trends observed in Fig. 4.3. As in Fig. 4.3(a),
one notices in Fig. 4.4(a) that the longitudinal contribution to the Ohmic loss at low frequen-
cies increases with the increasing angle of incidence. This may be tentatively explained by the
increasing time that the incident particle spends interacting with the near fields induced by the
graphene’s charge carriers, which scales as ∝ sec θ0. However, it is remarkable that, for incident
angles θ0 > 60◦, the longitudinal contribution to the Ohmic energy loss at low frequencies in
Fig. 4.4(a) has a comparable magnitude as the same contribution in Fig. 4.3(a), which is quite
surprising given the large difference in the incident speed β between the two figures and the trend
observed in Fig. 4.2.

One can observe in panel (a) of Fig. 4.4 that, while both contributions to the Ohmic loss in-
crease in magnitude with increasing angle of incidence, the longitudinal contribution dominates
at higher frequencies, where it exhibits an LDPP-induced peak, whereas the transverse contri-
bution may become dominant at lower frequencies, say ω . 0.1, for sufficiently oblique trajec-
tories, say θ0 & 60◦. The latter observation may be rationalized by recalling that the transverse
contribution is mostly a result of retardation effects, which are enhanced at lower frequencies
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and for larger parallel components of the incident speed. At the same time, one observes in panel
(b) of Fig. 4.4 that the total radiative energy loss decreases with increasing angle of incidence,
with a similar rationale as that provided in the case studied in Fig. 4.3. Moreover, for all direc-
tions of incidence, the transverse contribution to the radiative energy loss is seen to be negligible
compared to the longitudinal contribution, while still exhibiting a symmetric maximum at the
incident angle θ0 = π/4, as discussed in Fig. 4.3(b).

The LDPP-induced peak in the longitudinal contribution to the Ohmic energy loss density
is observed in panels (a) and (c) of Fig. 4.4 at a frequency that is significantly lower than the
peak in panel (a) of Fig. 4.3, which is consistent with the trend observed Fig. 4.2 for increasing
total speed β. It is important to notice that this peak grows larger in magnitude for trajectories
closer to the parallel direction. This may be also rationalized by noticing that, the more time the
incident particle spends interacting with the near fields induced by the graphene’s charge carriers,
the more of its energy will go to the excitation of the LDPP mode in graphene.

It is worthwhile exploring the evolution of the position and the shape of the LDPP-induced
peak as the incident angle θ0 of the charged particle increases towards parallel trajectory. To
that effect, we consider the overlap of the resonance condition for exciting the LDPP mode

with a dispersion relation [42] ω = ωLDPP(k), where ωLDPP(k) =

√
2

(
−1 +

√
1 + k

2
)

[42],

and the so-called kinematic condition, ω = k · v‖, which maximizes the amplitude A of the
excitation mechanism, given in Eq. (4.7) (see Chapter 3). One notices that the latter condition
covers the region 0 ≤ ω ≤ kβ‖ in the (k, ω) plane, with an upper boundary that increases
with increasing incident angle. In the limit of a (near-) parallel trajectory, we may refer to the
longitudinal contribution in Eq. (3.21) of Chapter 3, to further observe that the Ohmic energy
loss rate, R = dW

dt
, is maximized when ω = kv‖, or ω = kβ‖. Hence, using the crossing of the

LDPP dispersion relation with the upper boundary of the kinematic region in the (k, ω) plane, we
obtain an equation ωLDPP(k) = kβ‖, which is readily solved for k to yield a reduced frequency

ω‖ = 2
√
β−2
‖ − 1 = 2

√
β−2cosec2θ0 − 1, corresponding to a maximal rate of excitation of the

LDPP mode for a given incident trajectory. This frequency is found to closely match the positions
of the cusp-like peaks observed in Fig. 4.4(a) in the solid curves describing the longitudinal
contribution to the Ohmic energy loss for sufficiently large angles of incidence.

Moreover, one can estimate the total energy, W , lost to the excitation of the LDPP mode for
a near-parallel trajectory by invoking the result for the energy loss rate R(b) for the case of a
parallel trajectory with the external particle moving at a fixed distance b from graphene, which is
given by the first term in Eq. (3.21) of Chapter 3. Using the adiabatic approximation [145], one
may then write W = 1

vz

�∞
−∞ dbR(b) ≡ ~2

�∞
0
dω ωP‖(ω), which, in the limit of zero damping,

readily yields an estimate for the longitudinal contribution to the Ohmic energy loss density for
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Figure 4.4: Normalized integrated probability densities for (a) Ohmic energy loss, P ohm(ω), (b)
radiative energy loss, P rad(ω), and (c) external energy loss, P ext(ω) = P ohm(ω) + P rad(ω),
for the charged particle speed of β = 0.5 and for several angles of incidence. The differences
between the Lovat’s (thick lines) and Drude (thin lines) models, as well as the decomposition
of the longitudinal (dashed lines) and transverse (dotted lines) contributions to those integrated
densities are shown. Also included are, in panel (a), calculations for the Ohmic energy loss
density at high frequencies using the approximation for P || given in Eq. (4.42), for θ0 & 60◦

(dash-double dotted curves). The reduced damping rate is fixed at γ = 0.05.
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a sufficiently grazing angle of incidence,

P ‖ ≈
2π

β2 sin(2θ0)

ω

ω2 + 4

Θ(ω − ω‖)√
ω2 − ω2

‖

. (4.42)

We note that the result in Eq. (4.42) closely reproduces solid curves in Fig. 4.4(a) for frequencies
ω > ω‖ and for the incident angles θ0 & 60◦.

4.3.2 Angular distribution of the emitted THz radiation

Since the transverse contribution to the radiative energy loss densities in panels (b) of the Figs. 4.3
and 4.4 was always found to have much smaller magnitude than the longitudinal contribution,
it is instructive to further compare those two contributions in the angular distribution of TR at
several typical frequencies. In Fig. 4.5, we show the angular distribution of the spectral density
for TR in reduced units, S(θ, φ, ω) = S/Sc with Sc = (Ze)2/c for the external particle with
the speed β = 0.5 and the angle of incidence of θ0 = 60◦, and for three different frequencies,
ω = 0.5, 1 and 5. In the left, middle and right columns, we show the longitudinal contribution,
transverse contribution and the total angular radiative spectra, respectively. As expected, the
radiation patterns are always symmetric with respect to the plane of graphene, as well as with
respect to the xz-plane, i.e., the plane of incidence of the external charged particle. By the
comparison of the left and middle columns, it is seen that, generally, the longitudinal contribution
is larger in magnitude when compared to the transverse contribution, but the difference is not as
large as implied by the curves in Fig. 4.4(a). As a matter of fact, by increasing the frequency,
the transverse contribution in Fig. 4.5 becomes even comparable to the longitudinal contribution
when viewed in different directions, although both contributions decrease in overall magnitude
as the frequency increases.

Another important point to note is that the longitudinal contribution mostly radiates in direc-
tions far from the z axis or, more precisely, in directions close to the plane of graphene, θ ≈ π/2,
covering a broad range of the polar angle φ values with a peak in the (projected) direction of
motion of the external particle. At the same time, the transverse contribution mostly radiates
in directions close to the z-axis, i.e., perpendicular to graphene with θ close to 0 or π, whereas
the range of values covered by the polar angle φ becomes broader with increasing frequency ω,
showing a pronounced minimum in the (projected) direction of motion of the external particle,
φ = 0. Thus, the longitudinal and the transverse contributions to TR exhibit somewhat comple-
mentary angular patterns, both with respect to the plane of graphene and the plane of incidence
of the external charged particle.
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Figure 4.5: Angular distribution of the spectral density for TR in reduced units, S(θ, φ, ω) =
S/Sc with Sc = (Ze)2/c for the external particle with the speed β = 0.5 and the angle of
incidence of θ0 = 60◦, and for three different frequencies, ω = 0.5, 1 and 5. In the left, middle
and right columns, we show the longitudinal contribution, transverse contribution and the total
angular radiative spectra, respectively. The reduced damping rate is fixed at γ = 0.05 and the
Lovat’s model has been used for the conductivity tensor.
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In order to further expose the anisotropy of the radiation patterns, we show in Fig. 4.6 the
cross sections of the angular distribution of the spectral density for TR in the plane of incidence,
S(θ, φ = 0, ω), for an external particle with the speed β = 0.5 and three angles of incidence,
θ0 = 15◦ in panel (a), θ0 = 45◦ in panel (b), and θ0 = 85◦ in panel (c), for several frequencies.
These panels represent the total angular distribution, which is identical to the longitudinal contri-
bution, because the factor sin2 φ renders the transverse contribution identically zero in the plane
of incidence, see Eqs. (4.16), (4.23) and (4.24). One can see in Fig. 4.6 that the overall magnitude
of the TR patterns decreases with increasing frequency and with increasing angle of incidence
θ0. In general, all the TR patterns are skewed towards the plane of graphene, and they become
more asymmetric with respect to the z-axis as the incident trajectory becomes more oblique. In-
terestingly, while the main lobes of the TR patterns occur between the direction of motion of the
external particle and graphene, i.e., in a range of emission angles θ0 < θ < π/2 for the incident
angles θ0 = 15◦ and θ0 = 45◦, when the angle of incidence is very close to graphene, θ0 = 85◦,
the lobes of the maximum TR occur at the emission angles above the direction of motion, θ > θ0,
although quite close to it. With such peculiar features, it would be quite feasible to perform the
CL type of measurements of the emitted radiation in STEM [53], which would be able to not
only detect the anisotropy in the angular patterns of the emitted radiation from graphene, but
also resolve the polarization of the emitted waves coming from the longitudinal and transverse
contributions as the TM and TE polarizations, respectively.

Ω = 0.01

Ω = 0.1

Ω = 0.5

Ω = 1

Ω = 3

Ω = 5

HaL Θ0 = 15 deg Β = 0.5 Γ = 0.05

x

z

0.01

0.02
Ω = 0.01

Ω = 0.1

Ω = 0.5

Ω = 1

Ω = 3

Ω = 5

HbL Θ0 = 45 deg Β = 0.5 Γ = 0.05

x

z

0.01

0.02 Ω = 0.01

Ω = 0.1

Ω = 0.5

Ω = 1

Ω = 3

Ω = 5

HcL Θ0 = 85 deg Β = 0.5 Γ = 0.05

x

z

0.0002

0.0004

Figure 4.6: The cross section of the angular distribution of the spectral density for TR in the plane
of incidence, S(θ, φ = 0, ω), for an external particle with the speed β = 0.5 and three angles of
incidence, (a) θ0 = 15◦, (b) θ0 = 45◦, and (c) θ0 = 85◦, for several frequencies. These panels
represent the total angular distribution, which is identical to the longitudinal contribution. The
spectra are calculated employing Lovat’s conductivity model for graphene where the reduced
damping rate is fixed at γ = 0.05.

On the other hand, the interaction of externally moving charged particles with 2D materials
plays an important role in the prospective design of a stable, highly tunable source of THz ra-
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diation. In this regard, there have been several recent proposals to use the EM radiation from
graphene induced by a fast electron beam, moving either parallel [25, 50] or normal to graphene
[52]. In all of those proposals, both the doping density in graphene and the speed of the external
particle were suggested as possible tuning parameters for such radiation sources, while the issue
of the polarizability of the radiated EM waves was not explicitly addressed. We have seen that
the direction of the trajectory of motion of the external particle relative to a 2D material may also
be used as a suitable tuning parameter for such sources of radiation, which could possibly help
select different polarizations of the radiated EM waves.

4.3.3 A search for the transverse mode

While all the above results were obtained using the Drude and the Lovat’s models of graphene’s
conductivity, which cover the frequencies ω . 100, we next investigate the possibility to ex-
cite the transverse mode by adopting the optical model of graphene’s conductivity, which sup-
ports both the LDPP mode due to the intraband electronic excitations at low frequencies and the
transverse mode due to the interband electronic transitions involving the range of frequencies
228 < ω < 274, as discussed in the previous section. Figure 4.7 depicts the integrated prob-
ability density for the Ohmic energy loss, Pohm, of a graphene sheet described by the optical
conductivity model, along with its decomposition into the longitudinal and transverse contribu-
tions, for a charged particle at the speed β = 0.5. While in panel (a) we show the results for
different angles of incidence, in panel (b) we explore the effects of varying the damping rate γ.

One observes in Fig. 4.7(a) that the Ohmic energy loss increases in magnitude as the external
particle’s trajectory becomes more inclined towards graphene, as noted above. Particularly, the
LDPP-induced peak at ω > 1 in the longitudinal contribution becomes more pronounced with
increasing θ0, whereas at low frequencies, both the longitudinal and transverse contributions to
the Ohmic energy loss echo the behavior observed in Fig. 4.4(a) at ω < 1. As was discussed in
our previous work [42] and also Chapter 2, the very low frequency range, ω . 1, is where the ef-
fect of damping rate is rather strong, and the middle frequency range, 1 . ω . 100, is where the
excitation of the LDPP mode is dominant, whereas the MIR frequency range of 228 ≤ ω ≤ 274,
shown in the insets in Fig. 4.7, is where the excitation of the transverse mode should take place.
In the inset of panel (a), we see negligibly small energy loss densities for both the longitudinal
and transverse contributions, which do increase with the increasing angle of incidence. However,
the transverse contribution is always smaller than the longitudinal contribution, which exhibits a
high-frequency tail, with a dip that extends over the frequency range 228 < ω < 274, owing to
the finite value of damping rate, γ = 0.05, used in panel (a).

In order to demonstrate a regime where only the transverse contribution would survive, we
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explore the effects of varying the damping ratio in panel (b) of Fig. 4.7 with a special role played
by the idealized case of zero damping, γ = 0. Namely, in that case the only mechanism for
energy loss of the external charged particle involves Ohmic losses due to excitation of the collec-
tive modes in graphene (see Chapter 2). Specifically, by using Eq. (4.25) in (4.28) to evaluate the
Ohmic energy loss density by means of Eqs. (4.37) and (4.38), we expect that the LDPP mode
will give a nonzero longitudinal contribution in the range of frequencies 0 < ω < 228, and a
nonzero transverse contribution in the range of frequencies 228 < ω < 274, respectively.
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Figure 4.7: Integrated probability density for the Ohmic energy loss, Pohm, of a graphene sheet
described by the optical conductivity model, along with its decomposition into the longitudinal
(dashed lines) and transverse (dotted lines) contributions, for a charged particle at the speed
β = 0.5. Panel (a) represents the results for different angles of incidence with fixed γ = 0.05
and panel (b) shows the investigation of the effects of varying the damping rate γ which includes
the probability density for the excitations of the LDPP and TDPP modes. The inset of each panel
depicts a closer focus at the range of 228 . ω . 274 where the excitation of the transverse mode
occurs.

While both the longitudinal and transverse contributions to the Ohmic energy loss in panel
(b) show great variability with increasing γ at low frequencies, ω . 1, the situation in the inset
to panel (b) is not much changed compared to the inset to panel (a), except in the case γ = 0.
Namely, one observes in the inset to Fig. 4.7(b) that, for γ = 0, the tail of the density for the
longitudinal contribution (blue dashed line) terminates at the frequency ω = 228, whereas the
density of the transverse contribution (blue dotted line) shows an onset on that frequency, and it
continues increasing with the frequency going up to ω = 274, where this contribution terminates.
Hence, this shows that the transverse mode may indeed be excited by an external charged particle
under oblique incidence upon graphene, although its signature in the energy loss density would

132



not be in the form of a well-defined peak, as in the case of the LDPP mode. Rather, the transverse
mode in a graphene with negligible damping of its charge carriers would show as a cusp in the
Ohmic energy density at a frequency ω ≤ 274, with a hopelessly low probability.

It should be finally mentioned that the effects of finite temperature make the transverse mode
unstable, as shown in Ref. [146].

4.3.4 EELS of graphene at high frequencies

While most experiments using EELS of graphene in STEM [35, 38, 39], as well as the theoretical
models of those experiments [33, 34, 38, 40], considered fast electrons under normal incidence
upon graphene, there has been recent work that also studied oblique incidence in a momentum-
resolved measurement of the dispersion properties of the π and σ + π “plasmon” peaks in the
energy loss spectra [37]. With the advent of the novel monochromatic techniques in STEM [30],
it became possible to probe electron energy losses well below 1 eV, thereby accessing the range
of the low-energy interband π → π∗ electronic transitions in intrinsic (undoped) graphene in
the Dirac cone approximation. Therefore, we use the eHD model of graphene’s conductivity to
assess the relative roles of the longitudinal and transverse contributions to both the Ohmic and
radiative energy loss spectra of electrons traversing the graphene layer under oblique incidence
in a STEM setting.

In panel (a) of Fig. 4.8 we show the integrated probability density of the energy loss, Pext(ω),
as a function of the energy ω (we set here ~ = 1), lost by an incident electron with the speed
β = 0.5 for a broad range of incident angles, whereas in the inset to that figure we show the corre-
sponding energy loss due to the emitted TR, Prad(ω). One notices that the magnitude of the radi-
ation energy loss is very much smaller than Pext(ω), so that practically Pext(ω) ≈ Pohm(ω). One
may confirm from Fig. 4.8(a) that, while the Ohmic energy loss density increases in magnitude
with increasing angle of incidence, in a proportion that scales with sec θ0 for angles θ0 & 60◦,
the opposite trend is seen for the radiative energy loss density in the inset to that figure, which
decreases with the increasing θ0. Those trends are consistent with observations made in Figs. 4.3
and 4.4 at the THz range of frequencies. Namely, the increase in the Ohmic energy loss scales
with increased time the external particle spends interacting with the near-fields induced by the
excitation of graphene’s charge carriers, whereas the decrease in the radiative energy loss is
governed by a decrease in the perpendicular component of the external particle speed, β cos θ0,
which reduces the “abruptness” of the graphene interaction with the external particle. On the
other hand, one notices a small red shift in the main peaks in Prad(ω) in comparison to the peak
positions in Pext(ω), but it is interesting that the positions and the shapes of the peaks in each of
those densities are rather insensitive to variations of the incident angle. We note that the strong
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increase observed in both Pext and Prad as ω → 0 is a signature of the Dirac-term contribution
to the eHD conductivity, coming from the low-energy interband π → π∗ electronic transitions
in undoped graphene. Such feature in the experimental EELS data of graphene may have been
observed in recent measurements [30, 39].
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Figure 4.8: (a) integrated probability density of the external energy loss, Pext(ω), as a function of
the energy ω (with ~ = 1) lost by an incident electron with the speed β = 0.5 for a broad range
of incident angles. Shown in the inset of panel (a) is the corresponding energy loss due to the
emitted TR, Prad(ω). Since the magnitude of the radiation energy loss is very much smaller than
Pext(ω), practically Pext(ω) ≈ Pohm(ω). (b) integrated probability density of the energy loss of
the external particle, Pext (solid lines), as well as the longitudinal (dashed lines) and transverse
(dotted lines) contributions to that density for several incident angles. For both panels the eHD
conductivity model for graphene, with the parameters fixed at n0

π = 38 nm−2, n0
σ = 115 nm−2,

ωπr = 4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV, γσ = 2.178 eV, and ω∗ = 3.54 eV, is used.

In panel (b) of Fig. 4.8 we show the integrated probability density of the energy loss of the
external particle, Pext, as well as the longitudinal and transverse contributions to that density for
several incident angles. One notices that, while the transverse contribution is absent for the nor-
mal incidence, its density for oblique incidence resembles that of the longitudinal contribution,
except for a small red shift in the main peak positions and a significantly smaller magnitude.
While the data for Pext(ω) in Fig. 4.8(b) practically refer to the Ohmic energy loss, we show in
Fig. 4.9 a decomposition of both the Ohmic (panel a) and the radiative (panel b) energy losses
into their respective longitudinal and transverse contributions for the incident angle θ0 = 45◦.
What is remarkable to observe in Fig. 4.9(b) is that the transverse and longitudinal contributions
to the radiative energy loss have similar magnitudes, which is not the case for such contributions
to the Ohmic energy loss shown in Figs. 4.8(b) and 4.9(a). Moreover, unlike the red shifts ob-
served among the peak positions in the longitudinal and transverse contributions to the Ohmic
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energy loss in Figs. 4.8(b) and 4.9(a), one sees in Fig. 4.9(b) that the longitudinal and transverse
contributions to the radiative energy loss exhibit main peaks at approximately equal energies.
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Figure 4.9: A decomposition of (a) the Ohmic and (b) the radiative energy losses into their
respective longitudinal (dashed lines) and transverse (dotted lines) contributions for the incident
angle θ0 = 45◦. For both panels the eHD conductivity model for graphene, with the parameters
fixed at n0

π = 38 nm−2, n0
σ = 115 nm−2, ωπr = 4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV,

γσ = 2.178 eV, and ω∗ = 3.54 eV, is used.

Finally, in Fig. 4.10, we show the joint probability densities for the longitudinal (left column)
and transverse (middle column) contributions to the Ohmic energy loss, along with their sum,
Fohm(k, φ, ω) (right column), which practically represents the total energy loss density of the
external charged particle, given the smallness of the radiative energy loss. Results show the
dependence on the wavenumber k and the energy loss ω, in the direction of φ = π/4 with
respect to the x-axis, i.e., the (projected) direction of motion for an external particle having the
speed β = 0.5 and taking three angles of incidence relative to the z-axis: θ0 = 0 (top row),
θ0 = 45◦ (middle row) and θ0 = 75◦ (bottom row). One notices that, for θ0 = 45◦, there is only

135



a moderate increase in the longitudinal contribution compared to the normal incidence, θ0 = 0,
accompanied by a small transverse contribution near k = 0 and ω = 0. By increasing the
angle of incidence to θ0 = 75◦, there is a substantial increase in the longitudinal contribution for
intermediate wavenumbers, k ∼ kmax, at the energies intermediate between the two main peaks
corresponding to the π and σ+π “plasmons”, as well as an increase in that contribution for large
wavenumbers, k & 2kmax, at the energy close to that of the σ + π “plasmon”.

We note that the color coding in Fig. 4.10 is adopted so that all the probability density values
exceeding the relatively small value of 1 Å2/eV are shown in red, as indicated in the color bars.
This is done so that sub-dominant resonant features can be observable in that figure, in addition
to the dominant peaks.

What is interesting to observe in the middle panel of the bottom row in Fig. 4.10, is that
the transverse contribution exhibits a well defined mode-like intensity for the incident angle
θ0 = 75◦, which extends between ω = 0 and the energy of the π “plasmon”, with a peculiar
linear dispersion with k, lying well below the light line. Noting that the magnitude of the joint
probability densities is shown in Fig. 4.10 with equal scaling factors, this observation is even
more remarkable, given that the transverse contribution plays negligible role in the integrated
Ohmic energy loss in Figs. 4.8(b) and 4.9(a). Like in the case of the angular distribution of
the radiation energy loss in the far-field region at the THz frequencies in Fig. 4.5, one may
assert from Fig. 4.10 that the momentum- and angle-resolved density of the Ohmic energy loss
in graphene at the MIR to UV frequencies also exhibits strong anisotropy and complementarity
in its longitudinal and transverse contributions. This points to the potentially interesting effects
of the in-plane anisotropy in the excitation of the high-energy interband electronic transitions
in graphene by a fast electron under oblique incidence, which could be possibly observed in
STEM via EELS by using a detector with narrow slit to collect the transmitted electrons, and by
rotating the slit with respect to the incident plane in order to probe angles φ that would expose
the transverse contribution to the Ohmic energy loss.
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Figure 4.10: Joint probability densities for the longitudinal (left column) and transverse (middle
column) contributions to the Ohmic energy loss, along with their sum, Fohm(k, φ, ω) (right col-
umn), which practically represents the total energy loss density of the external charged particle,
given the smallness of the radiative energy loss. Results are shown as functions of the wavenum-
ber k and the energy loss ω, in the direction of φ = π/4 with respect to the x-axis, i.e., the
(projected) direction of motion for an external particle having the speed β = 0.5 and for three
angles of incidence relative to the z-axis: θ0 = 0 (top row), θ0 = 45◦ (middle row) and θ0 = 75◦

(bottom row). For all panels the eHD conductivity model for graphene, with the parameters fixed
at n0

π = 38 nm−2, n0
σ = 115 nm−2, ωπr = 4.19 eV, ωσr = 14.15 eV, γπ = 2.04 eV, γσ = 2.178

eV, and ω∗ = 3.54 eV, is used. Also shown are the nonrelativistic dispersion relations of the π
(solid yellow line) and π + σ (dotted green line) plasmons for single-layer graphene [33], and
the light line by the dashed red line. Here, kmax = 0.1 nm−1.

137



4.4 Concluding remarks

We have studied, in this chapter, the interaction of an external charged particle with single-layer
graphene in broad ranges of the relative particle speed β = v/c and the incidence angle θ0 with
respect to an axis normal to the plane of graphene. We have evaluated and compared decompo-
sitions of the Ohmic and radiative energy losses of the external particle into their longitudinal
and transverse components in order to emphasize the importance of the oblique incidence for
generating electromagnetic (EM) fields with different polarizations by two types of the excita-
tion processes of charge carriers in graphene. Those processes were described by defining two
in-plane dielectric functions, which incorporate suitable models of graphene’s longitudinal and
transverse electrical conductivity. Our observations are given below.

In the terahertz (THz) frequency range, we have used the standard Drude model for conduc-
tivity describing the low-energy intraband excitations of Dirac’s electrons in graphene, as well as
the model due to Lovat et al., which introduces nonlocal effects in the conductivity of graphene
at those frequencies. While the Drude model is suitable for describing the longitudinal Dirac
plasmon polariton (LDPP) mode in the supra-THz frequency range, it also reveals the effects
of retardation, which are most prominent at the sub-THz frequencies. By comparing the results
from the Lovat’s and Drude models, we have assessed the effects of the nonlocality in the in-
tegrated energy loss densities at the THz frequencies. We have found that this effect is only
pronounced around the THz frequency for the Ohmic energy loss at very low speeds of the inci-
dent particle, i.e., in the nonretarded regime. In that regime, the radiative energy loss is heavily
suppressed and it exhibits no effect of the nonlocality, which is expected, since the radiative loss
is a purely relativistic phenomenon.

On the other hand, in the retarded regime, i.e., for high incident speeds, the Ohmic and the
radiative energy losses can attain comparable magnitudes at the sub-THz frequencies and at the
angles of incidence that are not too oblique. Moreover, in this regime, both the longitudinal and
transverse contributions to the integrated Ohmic energy loss density increase with increasing an-
gle of incidence. This is true for a full range of frequencies, from the THz to the UV, and it may
be tentatively explained by the increasing time that the incident particle spends interacting with
the near fields induced by the graphene’s charge carriers, which scales as ∝ sec θ0. The longi-
tudinal contribution to the Ohmic energy loss dominates at the supra-THz frequencies, where it
exhibits a pronounced peak related to the LDPP, whereas the transverse contribution is heavily
suppressed at such frequencies. On the other hand, at the sub-THz frequencies, the transverse
contribution to the Ohmic energy loss may even surpass the longitudinal contribution for high
enough speeds and sufficiently oblique trajectories of the charged particle. This may be rational-
ized by recalling that the transverse contribution is mostly a result of retardation effects, which
are enhanced at lower frequencies and for larger parallel components of the incident speed.
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The longitudinal contribution to the integrated radiation energy loss density decreases with
increasing angle of incidence in a manner that seems to be governed by a decrease in the normal
component of the external particle speed, β cos θ0. This is true for a full range of frequencies,
from the THz to the ultraviolet (UV), and it may be explained by recalling that the radiation is
most effectively produced by accelerating the charge carriers in graphene, so that a reduction in
the normal component of the speed would bring down the “abruptness” of graphene’s interaction
with the external charged particle, and hence it would reduce the production of the transition
radiation (TR) from graphene. The transverse contribution to the integrated radiation energy loss
density exhibits a symmetric maximum at the incident angle θ0 = π/4, and is found to be much
smaller than the longitudinal contribution to the integrated radiation energy loss in the full range
of frequencies, for all incident speeds and all angles of incidence.

However, this relation between these two contributions to the radiation energy losses is differ-
ent when considering the angle-resolved spectra of the emitted TR. Namely, both the longitudinal
and the transverse contributions to the TR exhibit rather anisotropic angular distributions, with
somewhat complementary patterns of the emitted EM field intensity. Specifically, while the lon-
gitudinal contribution mostly radiates in broad patterns skewed towards the plane of graphene,
the transverse contribution radiates preferably in a direction perpendicular to graphene, but away
from the plane of incidence of the external particle. Interestingly, unlike the case of the in-
tegrated radiative energy loss density, peaks in the radiation lobes in the angular distribution
that result from the longitudinal and transverse contributions may attain comparable magnitudes
when viewed in different directions. Therefore, we propose that a cathodoluminescence type of
measurements of the emitted radiation in scanning transmission electron microscope (STEM)
could be used to explore this anisotropy in the angular patterns of the emitted radiation from
graphene, where detection of the polarization of the emitted EM waves as the transverse mag-
netic (TM) or transverse electric (TE) may be used to identify contributions coming from the
longitudinal or transverse excitation processes in graphene, respectively.

By adding a contribution due to the low-energy interband electron excitations in graphene to
the Drude model, we have used an optical conductivity model that is valid up to the mid-infrared
(MIR) range of frequencies in order to explore the possibility of exciting a transverse collective
mode in doped graphene by means of a fast electron under oblique incidence. We have indeed
found an evidence that such excitation would be identifiable in the transverse contribution to
the integrated Ohmic energy loss in an ideal case of doped graphene with zero damping, but
with an impractically low probability. This confirms that, despite the fact that the Joule energy
dissipation rate in the transverse dielectric function could be substantial in the sub-THz range,
the energy confined in the near field of graphene due to excitation of the transverse mode is
negligible in comparison with that of the longitudinal mode, as shown in Ref. [147].

Finally, we have used an extended hydrodynamic model of graphene’s conductivity in the
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MIR to UV frequency range to study electron energy loss spectroscopy (EELS) for electrons
traversing the graphene layer under oblique incidence in a STEM setting. We have found that
the integrated radiation energy loss density is much smaller than the integrated Ohmic energy
loss density, and that they both exhibit main peak features with the positions and shapes that
are insensitive to the variation in the incident angle. Moreover, while the transverse contribu-
tion is much smaller than the longitudinal contribution in the integrated Ohmic energy loss, the
longitudinal and transverse contributions in the integrated radiative energy loss have compara-
ble magnitudes but, even when added together, they constitute a negligible fraction of the total
integrated energy loss of the external charged particle. As for the dependence on the angle of
incidence, observations in the MIR to UV range are analogous to those at the THz frequencies:
the overall magnitude of the integrated Ohmic energy loss density increases and the integrated
radiative energy loss density decreases with increasing angle of incidence.

Considering the momentum k and the angle φ dependence of a joint probability density for
the Ohmic energy loss in graphene, we have observed an increase in the longitudinal contribution
in different regions of the (k, φ) plane with increasing angle of incidence θ0 of the external charge
particle. For a sufficiently oblique incident trajectory, we have also observed a well-defined,
mode-like feature in the transverse contribution to the Ohmic energy loss, exhibiting a linear
energy dispersion in the direction φ = π/4 with respect to the incident plane of the charged
particle. We therefore propose an experiment in STEM using a narrow slit detector to collect
obliquely incident electrons upon graphene, which can be rotated with respect to the plane of
incidence on order to search for such directional modes as a signature of the transverse excitation
processes in graphene at the MIR to the UV range of frequencies.
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Chapter 5

Energy Loss and Transition Radiation in
Anisotropic 2D Materials Traversed by
Fast Charged Particles under Oblique
Incidence

In this chapter, we present fully relativistic expressions for the energy loss channels for a charged
particle traversing a single layer of anisotropic material surrounded by a homogeneous lossless
dielectric under oblique incidence in a setting pertinent to a scanning transmission electron mi-
croscope (STEM), and we perform calculations for the case of a free-standing phosphorene in
vacuum. As in previous chapters, we distinguish between the energy deposited in phosphorene
in the form of electronic excitations (Ohmic loss) and the energy emitted in the far-field in the
form of transition radiation (TR). Our formulation of the problem uses a definition of an in-plane,
dielectric tensor with Cartesian component functions along the principal axes of phosphorene,
which describe the anisotropic excitation processes that contribute to those energy loss channels.
Using a phenomenological model for the electric conductivity of phosphorene as the input in
those dielectric functions, enables us to discuss the effects of oblique incidence on several pro-
cesses in a broad range of frequencies, from the terahertz to the mid-infrared. In particular, at
low frequencies, known as purely anisotropic regime, we demonstrate that the plasmon disper-
sion surface forms an ellipsoid affected strongly by retardation. Also, we show that the energy
loss contribution to the emitted TR spectra exhibits strongly anisotropic angular patterns that are
readily distinguishable in a cathodoluminescence measurement in a STEM. It is observed that the
angular patterns of TR are markedly different from those of an isotropic sheet even in the case of
normal incidence. As for the higher frequency range, called hyperbolic regime, we demonstrate
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that the plasmon dispersion surface forms a hyperbloid not affected by retardation. We also show
eccentric radiation angular spectra in hyperbolic regime.

Moreover, for both regimes, we explore the possibility of exciting the directional elliptic and
hyperbolic plasmons by an external charged particle. It is observed that, using an extremely
oblique incidence of charged particle, the directionality of plasmon excitation may be tuned by
the azimuthal angle, as well as by the speed of charged particle, which is of great technological
and experimental importance.

5.1 Introduction

Efforts towards understanding the electromagnetic (EM) properties of anisotropic two-dimensional
(2D) materials, such as the anisotropy of the in-plane optical conductivity, the on-off current ra-
tio, high mobility of charge carriers, and tunability of the band gap, have already begun to deliver
interesting results for phosphorene [148, 149, 150]. The ab initio calculations of electron energy
loss spectroscopy (EELS) for phosphorene were performed in Ref. [151] in order to understand
the plasmonic and excitonic peaks in the loss spectra, as well as their dispersion relations in the
nonretarded regime. The tunability of a multilayer black phosphorus (BP) and its dependence
on the layer thickness, doping density and the applied light polarization were investigated in
Ref. [152], yielding an anisotropic diagonal conductivity tensor. In conjunction with those re-
sults, it was also shown that the in-plane static screening by phosphorene is isotropic, in contrast
to the anisotropy of its collective mode excitations [153]. A phenomenological local conductivity
model for doped phosphorene was proposed in Ref. [125] to probe the light-matter interaction
as a function of the charge carrier concentration, with an emphasis on the hyperbolic plasmon
dispersion in the EM response of phosphorene. It is worth to mention that such topologically-
induced behavior of collective modes in anisotropic 2D materials, like elliptic and hyperbolic
plasmon dispersions, has opened the possibility to utilize those materials in diverse nanophoton-
ics applications. Researchers have also made progress in exploring the effect of nonlocality on
the conductivity, loss spectra, and the plasmonic behavior of phosphorene in Refs. [154, 155].
Moreover, Margulis et al. developed a two-band analytical model for optical conductivity of both
pristine [156] and doped [157] phosphorene placed on a substrate. In addition, the tunability of
plasmon excitation in phosphrene nano-ribbons was studied in Ref. [158], exhibiting variations
of the absorption spectra versus several parameters, such as the spatial dimension and the doping
density.

In this chapter, we present a formulation of the interaction of fast charged particles with
a general anisotropic monolayer placed in a lossless surrounding dielectric, taking relativistic
effects into account. In this regard, we analyze the energy loss channels of the external charged
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particles, and evaluate the corresponding loss probability densities, in order to understand the
EM spectral behavior of the anisotropic sheet. As in the previous chapters on graphene [42,
57, 59], we show that the total energy loss of the an incident charged particle consists of the
energy deposited in the sheet in the form of electronic excitations (Ohmic losses), which include
excitation of its 2D plasmon modes, and the energy emitted in the far-field region in the form of
TR. In particular, we assume an obliquely incident particle, enabling us to explore the effects of
the anisotropy of the sheet on the efficiency of the plasmon excitations and the angular anisotropy
of the emitted TR spectra as a function of the incident particle’s direction relative to the principal
directions of the sheet. Accordingly, in addition to the incident particle energy, its angle of
incidence is established as an important quantity that may be considered as a significant tuning
parameter for the EM response of the anisotropic sheet.

The chapter is organized as follows. In the Theory section 5.2, we present a derivation of
the EM fields and we define probability densities of various energy loss channels for a general
anisotropic layer in a lossless homogeneous medium, followed by applications to the case of a
monolayer phosphorene by using an appropriate 2D conductivity tensor model. The Results and
Discussion section 5.3 is divided in two parts, dedicated to a low-frequency range and a high-
frequency range, elucidating the regimes of the elliptic and hyperbolic dispersion relations for
phosphorene plasmons, respectively. Our findings are summarized in the Concluding remarks
section 5.4.

5.2 Theory

The structure under consideration consists of a 2D material, or a conducting sheet that represents
an atomic monolayer with large area, placed in the xy-plane (z = 0) of a three-dimensional
(3D) Cartesian coordinate system with coordinates R = {r, z}, where r = {x, y}, as depicted
in Fig. 5.1. We assume that the external particle is represented by an electric point charge Ze,
which moves with constant velocity of v on a straight-line trajectory and traverses the sheet under
oblique incidence, defined by the (azimuthal) angle θ0 with respect to the z-axis and the (polar)
angle φ0 with respect to the x-axis. We further assume that the entire structure is placed in a
lossless dielectric medium with the relative permittivity εd > 0. Assuming that the surrounding
dielectric is homogeneous enables us to neglect the effect of the dielectric discontinuities on TR,
and we only consider values of the incident particle speed, v = ‖v‖, smaller than the threshold
for Cherenkov radiation in that dielectric, v < c/

√
εd.

In order to evaluate the EM fields, it is convenient to introduce dyadic Green’s function (DGF)
of the first kind [121], which may be directly derived from the electric Hertz vector potential
Π(R, t) [120]. This vector, in turn, may be easily obtained for the proposed geometry of the
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problem by solving a nonhomogeneous Helmholtz vector equation by means of a retarded scalar
GF, with the external charged particle represented by an electric current density as the source
term in that equation [42]. The procedure of calculating DGF is outlined in A.

Figure 5.1: Schematic geometry of the structure for probing the single-layer anisotropic speci-
men by an electron under oblique incidence in a STEM.

5.2.1 Self-consistent solution for the induced electromagnetic fields

Assuming translational invariance inside the sheet, we may perform a 2D spatial Fourier trans-
form (r = {x, y} → k = {kx, ky}), as well as a Fourier transform with respect to time (t → ω)
with the time dependence e−iωt, enabling us to express the electric field E arising due to the
current density J as

E(k, z, ω) =

� +∞

−∞
dz′
←→
G E0(k, z − z′, ω) · J(k, z′, ω), (5.1)

where
←→
G E0(k, z − z′, ω) is the electric DGF (EDGF) for a homogeneous medium, with the

subscript implying the zero kind EDGF [121]. While the above relation and the corresponding
vectors may be expressed in any arbitrary coordinate system, Cartesian coordinates suitably en-
compass most of our needs for an anisotropic monolayer placed in a homogeneous medium. In
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that respect, the EDGF may be written in the Cartesian coordinate system as

←→
G E0(k, z, ω) =

←→
G
||
E0(k, z, ω)

+
2πi

ωqεd

{
−ikxq sign(z) (x̂ẑ + ẑx̂)− ikyq sign(z) (ŷẑ + ẑŷ) +

[
k2 − 2qδ(z)

]
ẑẑ
}

e−q|z|,

(5.2)

where, for future convenience, we define that part of the EDGF, which only involves components
parallel to the conducting sheet by

←→
G
||
E0(k, z, ω) =

2πi

ωqεd

[(
k2
d − k2

x

)
x̂x̂− kxky (x̂ŷ + ŷx̂) +

(
k2
d − k2

y

)
ŷŷ
]

e−q|z|. (5.3)

Here, kd = ω
c

√
εd is the magnitude of a 3D wavevector, or the wavenumber of the EM radiation

propagating at the frequency ω through the surrounding dielectric, whereas the field dependence
on the z coordinate is governed by

q(k, ω) =

 −iωc
√
εd −

(
ck
ω

)2 ≡ −iκ(k, ω), |ω| > ck/
√
εd

|ω|
c

√(
ck
ω

)2 − εd ≡ α(k, ω), |ω| < ck/
√
εd,

(5.4)

where k = ‖k‖ =
√
k2
x + k2

y . In the above equation, α ≡
√
k2 − k2

d > 0 describes an inverse
of the localization length for collective excitation modes of charge carriers in the conducting
sheet that occur in the range of the (k, ω) space lying outside the light cone, |ω| < ck/

√
εd.

Unlike α, which is a characteristics of evanescent waves, the wavenumber κ ≡ sign(ω)
√
k2
d − k2

characterizes the propagation of traveling waves in directions perpendicular to the sheet, in the
range of the (k, ω) space lying inside the light cone, |ω| > ck/

√
εd.

We further define the volume density of the external charged particle as ρext(R, t) = Ze δ(R−
vt), with its velocity given in the Cartesian coordinates by v = {v||, vz}, where the parallel and
perpendicular components of the velocity with respect to the plane of the conducting sheet are
given by v|| ≡ {vx, vy} = {v sin θ0 cosφ0, v sin θ0 sinφ0} and vz = v cos θ0, respectively (see
Fig. 5.1). This enables us to write the Fourier transform of the associated current density as

Jext(k, z, ω) =
Ze

vz
v eiQz, (5.5)

where Q = Ω/vz with Ω = ω − k · v||. This current density, primarily, produces an electric
field in the homogeneous medium, Eext(k, z, ω), which can be obtained by inserting Eq. (5.5)
and Eq. (5.2) into Eq. (5.1). Resulting from the structure of the EDGF, the external electric field
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may also be decomposed into Cartesian components parallel and perpendicular to the conduct-
ing sheet as Eext(k, z, ω) = Eext||(k, z, ω) + Eext,z(k, z, ω)ẑ. The parallel component of that

field may be conveniently written as Eext||(k, z, ω) = A
(
Ẽext,xx̂ + Ẽext,yŷ

)
eiQz, where the

amplitude defined by A = −ik Ze
vzεd

4π
q2+Q2 plays an important role in the subsequent definitions

of the energy loss densities, whereas the dimensionless, in-plane (z = 0) values of the x and y
components of that field are given by

Ẽext,x =
1

kω

(
k2
dvx − kxω

)
,

Ẽext,y =
1

kω

(
k2
dvy − kyω

)
.

(5.6)

The dynamic polarization of charge carriers in the atomic monolayer by the external charged
particle gives rise to the induced 2D current density in that layer, j(k, ω). To capture the
anisotropic nature of the atomic monolayer, the induced in-plane current may be expressed via
the 2D Ohm’s low for a conducting sheet, j(k, ω) = ←→σ (k, ω) · E||(k, 0, ω), where E||(k, 0, ω)
is the component of the total electric field parallel to the sheet, evaluated at z = 0, which we
simply call the in-plane total electric field. Here,←→σ (k, ω) is the 2D conductivity tensor describ-
ing the dynamic response of an anisotropic conducting sheet. It should be mentioned that, in the
most general case, each component of this tensor may be dependent on both the direction and
the magnitude of the in-plane wavevector, k, as well as on the operating frequency, ω. Com-
ponents of the conductivity tensor expose distinct properties of different types of 2D materials.
For instance, in the case of Weyl semimetals [159], superconductors [160], or gapped Dirac sys-
tems [161], the chirality of the electronic bands plays an important role, so that macroscopically
one has σxy = −σyx for the off-diagonal components of the conductivity tensor represented in
the Cartesian coordinates. Fundamentally, the effects of chirality, which are in close connection
with the Berry phase and the quantum Hall effect alter the Bloch bands, and may ultimately be
considered as the origin of the chiral (edge) plasmons [161, 162, 163].

With the above specifications, we are in the position to define the induced 3D current density
as Jind(k, z, ω) = δ(z) j(k, ω), where δ(z) is the Dirac’s delta function peaked at the conducting
sheet. Inserting Jind(k, z, ω), along with Eq. (5.2), into Eq. (5.1), readily gives the induced
electric field as

Eind(k, z, ω) =
←→
G E0(k, z, ω) · ←→σ (k, ω) · E||(k, 0, ω). (5.7)

Thus, in order to determine the induced electric field throughout the structure, we require a self-
consistent procedure to find the in-plane total electric field, E‖(k, 0, ω). This may be achieved
by setting z = 0 in Eq. (5.7) to deduce an expression for the in-plane induced electric field,
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Eind||(k, 0, ω), so that the in-plane total electric field may be written as E‖(k, 0, ω) = Eext‖(k, 0, ω)+
Eind‖(k, 0, ω) and inserted back in the right-hand side of Eq. (5.7). This gives a ”constitutive re-
lation” for the conducting sheet, which involves the in-plane total electric field and the in-plane
external electric field, Eext||(k, 0, ω), as

←→ε (k, ω) · E||(k, 0, ω) = Eext||(k, 0, ω), (5.8)

where we have introduced an effective 2D dielectric tensor, ←→ε (k, ω), as a key parameter to
be used in the following discussion. This tensor is defined in terms of the EDGF and the 2D
conductivity tensor as

←→ε (k, ω) =
←→
I || −

←→
G
||
E0(k, 0, ω) · ←→σ (k, ω), (5.9)

where
←→
G
||
E0(k, 0, ω) is the EDGF with parallel components, given in Eq. (5.3) and evaluated

in the plane of the conducting sheet (z = 0), whereas
←→
I || is the in-plane identity tensor. We

emphasize that the constitutive relation in Eq. (5.8) involves only the in-plane values of the
parallel electric field components and it provides a self-consistent expression for the total in-
plane electric field by a straightforward inversion of the effective 2D dielectric tensor in Eq. (5.9),
E||(k, 0, ω) = ←→ε −1(k, ω) · Eext||(k, 0, ω). Hence, the determinant of the 2D dielectric tensor,
∆ = det {←→ε }, is a key quantity that is used to extract the dispersion relation for plasmon modes
in the conducting sheet by solving the equation ∆ = 0 in the (k, ω) plane. Solving Eq. (5.8)
will give us the in-plane values of the total parallel electric field on the anisotropic sheet, which
we write as E||(k, 0, ω) ≡ A

(
Ẽ0xx̂ + Ẽ0yŷ

)
, with Ẽ0x and Ẽ0y being the dimensionless field

components.

Finally, having obtained E‖(k, 0, ω), one can finalize the calculation of the full induced elec-
tric field Eind (k, z, ω) by means of Eq. (5.7) and, consequently, find the full induced magnetic
field by the help of the Faraday-Maxwell’s equation, Hind (k, z, ω) = 1

ikd
∇× Eind (k, z, ω).

5.2.2 Energy loss probability densities

From the classical point of view, a swift charged particle with constant velocity v undergoes
energy loss due to the force exerted by the induced electric field Eind. Accordingly, this picture
invokes a physical definition of the total energy loss of the external charged particle, Wext =
−
�
dt
�
d3R Jext · Eind. As mentioned above, we only focus here on the energy loss of the

external particle due to the induced field of the anisotropic sheet since the lossless surrounding
dielectric cannot produce induced field. We also neglect Cherenkov radiation by assuming v <
c/
√
εd.
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As shown in Ref. [42] and the previous chapters, relativistic treatment of the interaction of
an external charged particle with 2D materials in a homogeneous medium implies that the total
energy lost by that particle is decomposed into two contributions only: (i) the Ohmic energy
loss, WOhm, due to electronic excitations, which include any collective modes in those mate-
rials and their subsequent damping, and (ii) the radiative energy, Wrad, emitted in the far-field
region in the form of TR. One should note that the energy balance of the system endorses that
Wext = WOhm+Wrad. Accordingly, for each contribution, we may define the corresponding joint
probability density, F (k, ω), as a function of the energy loss of the external particle, ~ω ≥ 0,
and its momentum transfer to the 2D materials, ~k, as well as the integrated probability density,
P (ω), as a function of the energy loss of the external particle. Invoking the parity properties of
the Fourier transformed quantities, we may express the energy loss for each of those channels
via the following integrals

WL ≡
�

d2k

� +∞

0

dω ω FL(k, ω) ≡ ~2

� ∞
0

dω ω PL(ω), (5.10)

where L = ext, Ohm, rad.

Considering the Physical definition of each contribution and following the formalism pre-
sented in Ref. [42], we first obtain for the total energy loss of the external charged particle due
to the work done by the induced field on that particle,

Fext (k, ω) =
1

4π3ω
<
{
EH

ext(k, 0, ω) · ←→σ (k, ω) · ←→ε −1(k, ω) · Eext(k, 0, ω)
}
, (5.11)

where the superscript H indicates the Hermitian conjugate of a tensor. Recalling Eq. (5.4), one
notices that the total energy loss density of the external particle Fext may be decomposed into
two contributions, F>

ext and F<
ext, coming from different regions of the (k, ω) space, both inside

the light cone and outside the light cone, respectively.

On the other hand, as a result of the work done by the total electric field acting on the induced
current density in the conducting sheet, WOhm =

�
dt
�
d3R Jind ·E, one may evaluate the joint

density for the Ohmic energy loss as

FOhm (k, ω) =
1

4π3ω
<
{

EH
ext(k, 0, ω) ·

(←→ε −1
)H · ←→σ · ←→ε −1 · Eext(k, 0, ω)

}
. (5.12)

We note that the Ohmic energy loss density FOhm may also be decomposed into two contribu-
tions, F>

Ohm and F<
Ohm, coming from the regions inside and outside the light cone, respectively.

Finally, the joint density for the radiative energy loss in both the upper and lower half-spaces
relative to the conducting sheet is obtained from the Poynting vector in the region inside the light
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cone as

Frad(k, ω) =
−1

4π3ω

{
EH

ext(k, 0, ω) ·
(←→ε −1

)H · ←→σ H ·
←→
G
||
E0(k, 0, ω) · ←→σ · ←→ε −1 · Eext(k, 0, ω)

}
.

(5.13)

To simplify the notation in Eqs. (5.12) and (5.13), we have dropped the variables (k, ω) in the
tensors ←→σ and ←→ε , but we kept them in the electric field components. Referring to Eqs. (5.3)
and (5.4), one should note that inside the light cone and for a lossless surrounding dielectric,←→
G
||
E0(k, 0, ω) appearing in Eq. (5.13) is a purely real-valued symmetric tensor.

The conservation of energy at the level of the joint densities may be shown to be fulfilled in
the form Fext(k, ω) = FOhm(k, ω) + Frad(k, ω), valid over the entire (k, ω) space. Accordingly,
the decomposition of various energy loss densities with respect to different regions in that plane
necessitates that F<

ext = F<
Ohm outside the light cone, and F>

ext = F>
Ohm + Frad inside the light

cone. The first equality confirms that the evanescent waves remain localized in the near-field
region and are associated with the excitation of plasmon modes and their subsequent decay due
to damping processes, giving rise to the Joule heat in the conducting sheet. On the other hand,
the second equality shows that the Ohmic energy losses may play a role inside the light cone
in the presence of damping processes, while the radiating far-field contribution of the traveling
waves gives rise to the energy loss due to the emitted TR.

In order to better understand and visualize the wavefront pattern of the traveling waves in
the far-field region due to TR, the total joint probability density for the radiation energy loss,
Frad(k, ω), may be related to the spectral angular distribution of the radiation, S(θ, φ, ω), where
θ is the angle of the emitted radiation with respect to the z-axis and φ is the angle the emitted
radiation with respect to the x axis, via the relation

Wrad ≡
�

d2Ω̂

� ∞
0

dω S(θ, φ, ω). (5.14)

In the above equation, we used spherical coordinates to express k = {kx, ky} = ω
c

sin θ {cosφ, sinφ}
and defined the differential solid angle by d2Ω̂ = sin θ dθ dφ, with 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

Finally, the integrated probability density can be expressed as the integration of the joint
probability densities over the whole wavevector range via

PL (ω) =
1

~2

�
d2kFL (k, ω) , (5.15)

where L = ext,Ohm, rad. With this definition of the integrated probability density, one may
also relate the radiation integrated probability density to the spectral angular distribution via an
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integration over whole range of solid angles as

Prad(ω) =
1

~2ω

�
d2Ω̂S(θ, φ, ω). (5.16)

We finally note that the conservation of energy is also maintained at the level of the integrated
probability densities is the form Pext(ω) = POhm(ω) + Prad(ω).

We emphasize that the expressions derived in this subsection for the energy loss densities
hold for the general case of any 2D material surrounded by a homogeneous lossless dielectric.
Those expressions may be generalized to multilayer structures, with the dynamic response of
each layer described by a suitable conductivity tensor.

5.2.3 Phosphorene as an highly anisotropic 2D material

Within the family of 2D materials, a single layer of BP, or phosphorene, is a direct band-gap
semiconductor, which has a puckered hexagonal atomic structure with two nonequivalent in-
plane crystal directions known as armchair (AC) and zigzag (ZZ). As a result of its peculiar
atomic lattice, phosphorene has a highly anisotropic band structure giving rise to a tensorial
optical conductivity model [125, 151, 156, 157]. In the local limit (k → 0), when the components
of the optical conductivity tensor in Cartesian coordinates only depend on frequency, one can
diagonalize the in-plane conductivity tensor as

←→σ (ω) = σx(ω) x̂x̂ + σy(ω) ŷŷ. (5.17)

Practically, this allows us to set our coordinate system according to the crystal’s lattice principal
axes. Accordingly, for the case of phosphorene, we assume that our x-axis is set in the AC
direction and the y-axis is set in the ZZ direction of the phosphorene atomic lattice.

Having adopted the conductivity tensor of the form given in Eq. (5.17), the 2D dielectric
tensor in Eq. (5.9) also takes a simpler form. Thus, one may further streamline the definitions of
the energy loss probability densities from Eqs. (5.11), (5.12), and (5.13) into

Fext (k, ω) =
|A|2

4π3ω

[
Ẽext,x<

{
σx Ẽ0x

}
+ Ẽext,y<

{
σy Ẽ0y

}]
, (5.18)

FOhm (k, ω) =
|A|2

4π3ω

[∣∣∣Ẽ0x

∣∣∣2<{σx}+
∣∣∣Ẽ0y

∣∣∣2<{σy}] , (5.19)
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and

Frad(k, ω) =
|A|2

4π3ω

2π

ωκεd

[(
k2
d − k2

x

) ∣∣∣σx Ẽ0x

∣∣∣2 +
(
k2
d − k2

y

) ∣∣∣σy Ẽ0y

∣∣∣2 − 2kxky<
{
σx Ẽ0x σ

∗
y Ẽ
∗
0y

}]
,

(5.20)

respectively, where the dimensionless components of the in-plane total electric field are given by

Ẽ0x =
1

∆

{
Ẽext,x −

2πi

qkc2
σy
[(
k2
d − k2

y

)
vx + kx (kyvy − ω)

]}
,

Ẽ0y =
1

∆

{
Ẽext,y −

2πi

qkc2
σx
[(
k2
d − k2

x

)
vy + ky (kxvx − ω)

]}
.

(5.21)

with Ẽext,x and Ẽext,y given in Eq. (5.6).

Surface plasmon polaritons supported by phosphorene may be investigated with the help of
a dispersion relation using ∆ = det {←→ε }, which is for a diagonal conductivity tensor given by

∆ = 1 +
2πi

ωqεd

[(
k2
x − k2

d

)
σx(ω) +

(
k2
y − k2

d

)
σy(ω)

]
+

4π2

εdc2
σx(ω)σy(ω). (5.22)

By setting ∆ = 0 and taking the limit of vanishing damping, <{σx} = <{σy} → 0+, one
obtains the dispersion relation of the plasmon polariton modes in the (kx, ky, ω) space in the
form

k2
x − k2

d

={σy(ω)}
+

k2
y − k2

d

={σx(ω)}
= 2αω

(
εd

4π={σx(ω)}={σy(ω)}
− π

c2

)
, (5.23)

where we introduced α =
√
k2
x + k2

y − k2
d from Eq. (5.4), while noting that all the solutions of

the above equation occur outside or on the light cone, k2
x+k2

y−k2
d ≥ 0. Equation (5.23) is written

in a form exposing the fact that, depending on the form of={σx,y(ω)} and the range of operating
frequency, the iso-frequency curves of the dispersion relation may have different topology in the
(kx, ky) plane, such as circular, elliptic, or hyperbolic, which we shall discuss in detail in the
subsequent section. It should be noted that, in the limit of vanishing damping, there would be
no Ohmic energy losses in the region inside the light cone, i.e., F>

Ohm (k, ω) = 0, whereas the
function F<

Ohm (k, ω) would contain delta functions peaked along the dispersion relation from
Eq. (5.23), so that practically all the energy losses of the external particle in the region outside
the light cone would be going to the excitation of the plasmon polariton modes with infinite
lifetime.
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Topology of plasmon dispersion and the conductivity model

The dispersion relation of phosphorene’s plasmon modes given in Eq. (5.23) represents a surface
that is quadratic in k = (kx, ky), residing in the (k, ω) space with ω ∈ R+ and k ∈ R2. Depend-
ing on the sign of the functions ={σx(ω)} and ={σy(ω)}, that surface may be described by an
ellipsoid or hyperboloid. If ={σx(ω)} and ={σy(ω)} have the same/opposite signs then the dis-
persion surface is ellipsoid/hyperboloid. Accordingly, the level (isofrequency) curves illustrate
ellipses (or circles) implying the excitation of elliptic (circular) plasmon mode and hyperbolas
implying the excitation of the hyperbolic plasmon mode.

Taking the nonretarded limit in Eq. (5.23) (which might be useful for the hyperbolic plasmon
mode), we have

k2
x

={σy(ω)}
+

k2
y

={σx(ω)}
= 2kω

(
εd

4π={σx(ω)}={σy(ω)}

)
. (5.24)

For the isotropic case, ={σx(ω)} = ={σy(ω)} = ={σiso(ω)}, the above equation reduces to
ω

={σiso(ω)} = 2πk
εd

, which results in the familiar dispersion relation ω ∝
√
k when σiso(ω) is given

by a simple Drude model, as in the case of graphene at terahertz (THz) frequencies.

In the case of intrinsic (or undoped) phosphorene, the σj(ω) conductivity components (with
j = x, y) are characterized by a step-like onset of interband electronic transitions for frequen-
cies ω > ωg, where ωg is related to the band gap energy of phosphorene, which lies in the visible
frequency range. As a consequence, in the interval of frequencies 0 < ω < ωg, the real parts of
the conductivity are negligibly small, <{σj(ω)} → 0+, while the imaginary parts are negative,
={σj(ω)} < 0. When phosphorene is doped with charge carriers by applying, e.g., an external
gate potential, there also arise contributions of the intraband electronic transitions to the conduc-
tivities σj(ω), which dominate at the THz frequencies and are well described by a Drude-type
model. While the Drude weights generally take different values for different directions j = x, y
due to the anisotropy of phosphorene, it is noteworthy that this model generally gives positive
imaginary parts of the conductivity, ={σj(ω)} > 0. Since the total conductivity in each direc-
tion is given by the sum of the respective interband and intraband contributions, it is obvious that
={σx} and ={σy} in doped phosphorene can change their signs at different frequencies, which
can be tuned within the THz to the infrared (IR) range by changing its doping density, i.e., by
varying the external gate potential.

Therefore, one can identify two distinct regimes in the electromagnetic response of doped
phosphorene. If the frequency is sufficiently low, the conductivities σj(ω) are predominantly
of the Drude type, with both ={σx(ω)} > 0 and ={σy(ω)} > 0, giving rise to an elliptic
iso-frequency dispersion curve in the (kx, ky) plane, according to Eq. (5.23). This regime is
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labeled by Nemilentsau et al. as purely anisotropic [125]. If the frequency is sufficiently high,
but still lower than the gap value ωg augmented by the Pauli blocking [157], the contribution
from the interband electron transitions may become dominant, and the imaginary part of the total
conductivity component σj(ω) may become negative at some IR frequency. Because of the crys-
tal asymmetry, ={σx} and ={σy} can in principle change their signs at different frequencies.
Therefore, there may exist a range of frequencies where ={σx(ω)}={σy(ω)} < 0, giving rise to
a hyperbolic iso-frequency dispersion curve in the (kx, ky) plane, according to Eq. (5.23). Then,
it can be said that phosphorene operates in a hyperbolic regime [125].

While the above discussion of the optical conductivity is of a general character, Nemilentsau
et al. provided a minimal model for the optical conductivity of doped phosphorene, which cap-
tures all of the mentioned features, and is given by [125]

σj (ω) =
ie2

ω + iγ

n

mj

+ sj

[
Θ (ω − ωj) +

i

π
ln

∣∣∣∣ω − ωjω + ωj

∣∣∣∣] , (5.25)

for j = x, y. Here, n is the doping density, γ is the damping rate, and mj is the effective electron
or hole mass, arising in the Drude term that describes the intraband contributions. On the other
hand, the interband contributions to the conductivity in Eq. (5.25) are weighted by the parameter
sj , with the real part given by the Heaviside function Θ (ω − ωj) at a gap-related frequency ωj
and the corresponding imaginary part ensuring that the Kramers-Kronig relations are satisfied.
The specific values for the parameters, proposed in Ref. [125] are: mx = 0.2m0, my = m0 (with
m0 being the free electron mass), ωx = 1 eV, ωy = 0.35 eV, and sx = 1.7 s0, sy = 3.7 s0, where
s0 = vB/4 with vB = e2/~ ≈ c/137 being the Bohr speed.

In order to normalize the conductivity of doped phosphorene in the THz frequency range,
where this material operates in a purely anisotropic regime [125], we define a characteristic
wave number as kc = πne2

2c2

(
1
mx

+ 1
my

)
and a characteristic angular frequency as ωc = ckc. Then,

the reduced wave number and the reduced frequency are defined as k = k/kc and ω = ω/ωc,
respectively. Using the effective electron masses from Ref. [125] one can show that the value
of ωc = 4.14 meV, corresponding to the frequency of νc = ωc/(2π) = 1 THz, can be achieved
by the doping density of |n| ≈ 7.9 × 1013 cm−2. Thus, in the regime where ω ∼ 1, one has
ω � min(ωx, ωy), so that the interband contributions in Eq. (5.25) may be neglected, leaving
only the Drude terms, which give the reduced conductivities, σj = σj/c, as

σx,y (ω) =
i

π

2

1 + ρ∓1

1

ω + iγ
. (5.26)

Here, γ = γ/ωc and the parameter ρ = my/mx = 5 introduces anisotropy due to the difference
in the effective electron masses [125]. Note that, with the above normalization of the Drude
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conductivity, we have lumped the only tunable parameter of the model, the doping density n of
phosphorene, into the variables k and ω, while keeping the light cone in the form ω = k. It
should be mentioned that, for the typical doping density of n = 7.9 × 1013 cm−2, the onset of
interband transitions occurs when ω > 84.6, corresponding to ω > ωy = 0.35 eV.

In order to obtain the normalized conductivity components of phosphorene up to the IR
frequencies by using Eq. (5.25) [125], we introduce a new characteristic angular frequency,
ωr = ωxωy/(ωx + ωy) ≈ 0.26 eV, corresponding to νr = ωr/(2π) ≈ 62.8 THz. By choos-
ing then the characteristic wavenumber as kr = ωr/c, we define the new reduced frequency as
ω = ω/ωr and the new reduced wavenumber as k = k/kr, so that the light cone relation retains
the same form, ω = k, as in the low-frequency normalization. Using the new reduced variables,
the jth component of the normalized tensor conductivity of phosphorene, σ ≡ σj = σj/c (for
j = x, y), which includes both the intraband and interband contributions, is given by

σj (ω) =
vB
c

(
i

ω + iγ

n

mj

+
1

4
sj

[
Θ (ω − ωj) +

i

π
ln

∣∣∣∣ω − ωjω + ωj

∣∣∣∣]) , (5.27)

where γ = γ/ωr and the doping density is defined in the reduced form by n = n/nr, with
nr = ωrm0/~ ≈ 3.4 × 1014 cm−2. The other fixed parameters of the model in Eq. (5.27)
are obtained from Ref. [125] as: mx = 0.2, my = 1, sx = 1.7, sy = 3.7, ωx ≈ 3.86 and
ωy ≈ 1.35. We note that, with the above normalization, limiting our considerations to the range
of the reduced frequency in the interval 0 < ω < 1 will ensure that the contributions of the
step-like interband jumps in <{σj} vanish for both for j = x, y in the full range of frequencies
from THz to mid-IR, which includes the hyperbolic regime of phosphorene’s optical response.

Directionality of the plasmon excitation by the incident charged particle

From the above discussion of anisotropic plasmon dispersions in phosphorene, it appears that
the interaction of those modes with a charged particle under oblique incidence may be strongly
affected by the direction of its parallel velocity component, v‖. In this section, we propose a
method to explore that directionality.

From the discussion of the average number of excited plasmons in Chapter 2, one can resort
to the regime of vanishing damping rates, <{σj} → 0+ for j = x, y, and consider the probability
density of Ohmic energy loss in phosphorene, FOhm (k, ω), which is then dominated by delta-
function-like factors located at the dispersion surfaces of the plasmon modes, residing outside
the light cone. In order to expose the directional dependence of the excitation of those modes,
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we define an auxiliary function,

Γ(k) =
1

~

∞�

0

dω FOhm (k, ω) , (5.28)

which gives the probability density for exciting modes with 2D wavenumber k = (kx, ky) =
(k cosφ, k sinφ), regardless of their frequency. Then, the total number of the excited modes may
be written as

νtot =

�
d2k Γ(k) =

� π

−π
dφ ν(φ), (5.29)

which helps us define the probability density for exciting modes that propagate in the direction
defined by the angle φ, regardless of the magnitude of their in-plane wavevector (the in-plane
wavenumber), as follows

ν(φ) =

� ∞
0

dk k Γ(k, φ). (5.30)

Furthermore, one may conclude from the discussion in Chapters 3 and 4 that directional
effects in the plasmon excitation by the incident particle are best exposed by considering the
limit of an extremely oblique incidence, or the near-parallel incidence of the charged particle,
where θ0 → π

2
, i.e., βz � β‖. Then, one can show that the squared amplitude in Eq. (5.19) may

be replaced according to

|A|2 → 16π3 (Ze)2k2

vzα3
δ
(
ω − k · v‖

)
, (5.31)

where the delta function expresses the kinematic resonance condition, ω = k · v‖, which auto-
matically places the relevant regions of the (k, ω) space outside the light cone, hence justifying
the choice q = α.

Thus, the joint probability density for the Ohmic energy loss may be written approximately
as

FOhm (k, ω) =
4(Ze)2k2

vzωα3
δ
(
ω − k · v‖

) [∣∣∣Ẽ0x

∣∣∣2<{σx}+
∣∣∣Ẽ0y

∣∣∣2<{σy}] , (5.32)

or in the reduced form, FOhm = FOhm/Fc with Fc = 4(Ze)2

πω2
ckc

, where

FOhm

(
kx, ky, ω

)
= π

1

βz

k
2

ω α3 δ
(
ω − kxβx − kyβy

) [∣∣∣Ẽ0x

∣∣∣2<{σx}+
∣∣∣Ẽ0y

∣∣∣2<{σy}] . (5.33)
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Then, the function in Eq. (5.28) can be evaluated in the limit of an extremely oblique incidence
as

Γ(k) = Γc
1

βz

k
2

ω α3

[∣∣∣Ẽ0x

∣∣∣2<{σx}+
∣∣∣Ẽ0y

∣∣∣2<{σy}] Θ(ω)

∣∣∣∣
ω=kxβx+kyβy

, (5.34)

where we took advantage of the delta function in Eq. (5.32) and accordingly indicated that substi-
tution ω = kxβx+kyβy is to be made in all the occurrences of frequency, subject to the constraint
kxβx + kyβy > 0, as enforced by the Heaviside function Θ(ω), which follows from our consid-
eration of positive values of the Ohmic energy loss in Eq. (5.28). We have also introduced a
normalizing factor in that equation, defined by Γc = 4vB

ck2c
.

Finally, the expression in Eq. (5.34) may be used in Eq. (5.30) upon substitution kx = k cosφ
and ky = k sinφ, subject to the constraint on the angles of plasmon propagation, φ, relative to
the angle of the charged particle incidence, φ0, given by cos(φ−φ0) > 0, or |φ−φ0| < π

2
, which

follows from the Heaviside function Θ in that expression.

5.3 Results and discussion

While the formalism developed in the preceding section can be directly applied to any anisotropic
2D material described by a tensorial conductivity placed in a lossless dielectric surrounding, we
assume here that a free-standing phosphorene layer is placed in vacuum, so that εd = 1, and
hence kd = k0 = ω

c
. In the following, we shall discuss our results separately in the regimes

of low and high frequencies, characterizing the purely isotropic and the hyperbolic responses
of doped phosphorene, respectively. As stated before, since the former regime operates in the
THz range of frequencies, while the later regime operates in the mid-IR range, we shall adopt
different normalizations of the relevant variables. Hence, one should carefully note that the range
of frequency and wavenumber is very different due to different normalization factors.

5.3.1 Low frequency spectroscopy for purely anisotropic regime

Figure 5.2 shows level curves ω(kx, ky) = constant in the (kx, ky) plane, describing plasmon
dispersion in the purely anisotropic regime based on the conductivity model in Eq. (5.26) with
γ = 0, for some typical values of the reduced frequencies: (a) ω = 0.5, (b) ω = 1, and (c) ω = 5.
In each panel of the figure, the green solid lines represent the retarded plasmon dispersions from
Eq. (5.23), the red dashed lines represent the nonretarded dispersions from Eq. (5.24), whereas
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the gray circles identify the light cone, ω = k, for the same set of frequencies. One notices that
part of the nonretarded dispersion curve is inside the light cone and the effect of retardation is
to push the dispersion curves outside the light cone. As discussed before, the topology of the
dispersion for this range of frequencies is elliptic. As we move toward higher frequencies, due
to weaker retardation effects, the retarded and nonretarded dispersion curves tend to coincide
and lie out side the light cone. Also, the topology of dispersion tends to change to hyperbolic
geometry at higher frequencies.
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Figure 5.2: Dispersion level curves based on purely anisotropic conductivity model, shown using
reduced units, ω(kx, ky) = const, for three frequencies: (a) ω = 0.5, (b) ω = 1, and (c)
ω = 5. The retarded regime is shown with green solid curves, nonretarded regime with red
dashed curves, while the gray circles show the light cones.

One notices in Fig. 5.2 that the retarded dispersion curves are tangential to the light circle
when the component of wavevector in the ZZ direction of the phosphorene’s crystal is vanishing,
i.e., ky = 0. As the wavenumber in the ZZ direction increases, the dispersion curves fall off
of the light circle. Hence, one can conclude that the retardation effects are magnified in the AC
direction compared to the ZZ direction. This is because the reactive part of the conductivity
component in the AC direction has larger magnitude compared to that of the ZZ direction, i.e.,
={σx} ≥ ={σy}, as a result of the atomic arrangement of the crystaline structure of phosphorene.

In Fig. 5.3(a), we show the 3D version of the retarded plasmon dispersion by the green
surface, along with a red plane describing the kinematic resonance condition, ω = kxβx + kyβy,
for a highly oblique incidence of the external charged particle with the speed β = 0.5 and angles
θ0 = 75◦, φ0 = 0, while the light cone is shown as a narrow blue cone.

In the panels (b) and (d) of Fig. 5.3, we show the intensity landscape of the Ohmic energy loss
density, FOhm

(
kx, ky, ω

)
evaluated for ω = 1 and ω = 2, respectively, whereas in the panels

(c) and (e) of Fig. 5.3, we show the intensity landscape of the radiative energy loss density,
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Figure 5.3: (a) Three-dimensional dispersion relation (obtained with γ = 0) is shown by the
green surface, accompanied by the plane for kinematic resonance condition with θ0 = 75◦,
φ0 = 0 and β = 0.5, shown in red, and the blue cone representing the light cone, all in purely
anisotropic regime. The Ohmic energy loss density, FOhm(kx, ky, ω) (obtained with γ = 0.24),
is shown for two frequencies: (b) ω = 1 and (d) ω = 2. The radiative energy loss density,
F rad(kx, ky, ω) (obtained with γ = 0.24), is shown for two frequencies: (c) ω = 1 and (e) ω = 2.
Also shown are the corresponding level curves for the dispersion surfaces (white curves, obtained
with γ = 0), the kinematic resonance (yellow lines), and the light cone (grey dashed circles).
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F rad

(
kx, ky, ω

)
, also evaluated for ω = 1 and ω = 2, respectively. Furthermore, displayed are

yellow straight lines, showing cross sections of the kinematic resonance plane kxβx + kyβy = ω
with the frequencies ω = 1 (panels b and c) and ω = 2 (panels d and e), which match frequencies
used for the energy loss densities. In the panels (b)-(e), we also show level curves of the plasmon
dispersion relations (using white solid lines), which are obtained from Eq. (5.23) for the same
set of frequencies, ω = 1 (panels b and c) and ω = 2 (panels d and e), whereas the cross sections
of the light cone with the corresponding frequencies are shown by the dashed grey circles.

Figure 5.4: The same as Fig. 5.3, but with φ0 = 35◦.

In Figs. 5.4, 5.5 and 5.6, we show the same set of data as in Fig. 5.3, obtained using the same
set of parameters, while we only change in those three figures the azimuthal angle of incidence of
the charged particle relative to the x-axis, so that φ0 = 35◦, φ0 = 55◦ and φ0 = 90◦, respectively.

One can see in the panels (b) and (d) in all of the Figs. 5.3, 5.4, 5.5 and 5.6 that the intensity
landscapes of the function FOhm

(
kx, ky, ω

)
for frequencies ω = 1 and 2 are peaked along

the corresponding dispersion level curves, as expected owing to the prevalence of the plasmon
excitation channel in the Ohmic energy losses, but the distribution of that intensity is strongly
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skewed toward the line that indicates the corresponding kinematic resonance condition. While
the kinematic resonance line in Fig. 5.3 is parallel to the ky-axis (because φ0 = 0) and is relatively
distant from the dispersion level curves, which are elongated along that same axis, increasing the
direction angle φ0 of the incident charged particle can bring the kinematic resonance line into
close proximity of the plasmon dispersion curves, as shown in Figs. 5.4, 5.5(b) and 5.6(b), and
can even cause that line to intersect dispersion curves at certain points (k

∗
x, k

∗
y), as shown in

Figs. 5.5(d) and 5.6(d).

Figure 5.5: The same as Fig. 5.3, but with φ0 = 55◦.

In the cases where the kinematic resonance line is close to becoming tangent to the disper-
sion curves, one expects that directions of the plasmon emission across the plane of phosphorene
will be broadly distributed about the direction of motion of the incident particle owing to a
close match of the direction of the group velocity of the plasmon dispersion, ∂ω

∂k
, with the di-

rection of the parallel velocity component of the particle, v‖. In the cases when the intersection
points (k

∗
x, k

∗
y) of the kinematic resonance line with the dispersion curves are well-localized, as

in Figs. 5.5(d) and 5.6(d), one expects that strongly directional plasmon emission will take place
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in the directions defined by the angle φ = arctan
(
k
∗
y/k

∗
x

)
for each intersection point.

Referring to Fig. 5.2, one may assert that the above conditions for the directionality of plas-
mon emission may be quite different if the nonretarded form of the plasmon dispersion is used,
given in Eq. (5.24). Of course, the directionality conditions for plasmon emission change with
changing the values of ω, as indicated in the panels (a) of Figs. 5.3, 5.4, 5.5 and 5.6. Therefore, it
is desirable to consider those conditions by integrating over all frequencies and all wavenumber

magnitudes k =
√
k

2

x + k
2

y.

Figure 5.6: The same as Fig. 5.3, but with φ0 = 90◦.

In Fig. 5.7, we show the total number of plasmons, ν(φ), excited in phosphorene in the purely
anisotropic regime as a function of their angle of propagation φ, regardless of their frequency,
ω, and regardless of the magnitude of their wavevector, k, as defined in Eq. (5.30). Because se
present here only preliminary calculations of the directionality of the plasmon excitation due to
the changing direction of the incident particle, we simplify our computations of ν(φ) by using
the approximation of extremely oblique incidence, giving Eq. (5.34), where relativistic effects
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Figure 5.7: Average number of the excited plasmons as a function of their propagation angle
φ in the purely anisotropic regime, obtained from Eq. (5.30) with Eq. (5.34) for two different
scenarios: (a) a fictitious isotropic case, obtained by setting ρ = 1 in the conductivity model
in Eq. (5.26) with γ = 0.24, and (b) the anisotropic case, obtained Eq. (5.26) with ρ = 5 and
γ = 0.24. The incident charged particle speed is β = 0.5 and the polar angle is θ0 = 75◦, whereas
the pink, green, blue and red curves represent different azimuthal incidence angles: φ0 = 0, 35◦,
55◦ and 90◦, respectively.

are fully retained, while the conductivity model in Eq. (5.26) is used with small, but finite γ. We
consider in Fig. 5.7 a charged particle moving at the speed β = 0.5, with a rather oblique angle
of incidence θ0 = 75◦ upon the phosphorene plane, which justifies the use of Eq. (5.34), whereas
the azimuthal incidence angles of φ0 = 0, 35◦, 55◦ and 90◦ are chosen to match those used in
Figs. 5.3, 5.4, 5.5 and 5.6, respectively.

We first consider in Fig. 5.7(a) an artificially designed isotropic conductivity model, obtained
by setting the asymmetry factor ρ = 1 in the model in Eq. (5.26). Such model is akin to the Drude
model for low-frequency conductivity in doped graphene, studied in previous chapters. In that
case, the dispersion level curves would be given by concentric circles in the (kx, ky) plane, so that
no variations are expected in ν(φ) with changing the incidence angle φ0 of the charged particle.
Indeed, one observes in Fig. 5.7(a) that ν(φ) is given by a broad, structureless distribution in the
interval |φ− φ0| < π

2
.

On the other hand, in Fig. 5.7(b), we use the fully anisotropic conductivity model of phos-
phorene at low frequencies with ρ = 5 in Eq. (5.26), as implied by the parametrization due to
Nemilentsau et al. [125]. In the case of the incident angle φ0 = 0, which was also discussed in
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Fig. 5.3, one notices a rather broad and flat distribution of ν(φ) for angles |φ| < π
2
, which echoes

the fact that the plasmon dispersion curves in Fig. 5.3 are elongated in the direction parallel to
the kinematic resonance line. Namely, in that figure, one may assert that the group velocity of
the plasmon dispersion is almost parallel to the incident velocity of the charged particle v‖ over a
broad range of the wavenumbers ky, giving a rather flat angular distribution of plasmon emission
directions.

As the incidence angle φ0 increases in Fig. 5.7(b), one notices that a well developed, double-
peak structure arises in ν(φ) in the interval of plasmon emission angles |φ − φ0| < π

2
. Those

peaks are generally asymmetric, except in the case of φ0 = 90◦, discussed in Fig. 5.6. A sepa-
ration between two peaks in the plasmon emission directions was predicted to occur at a higher
frequency of ω = 2, used in Figs. 5.5(d) and 5.6(d) for the incidence angles φ0 = 55◦ and
φ0 = 90◦, respectively, but not necessarily at a lower frequency or lower incidence angle. In
that respect, it is a remarkable that one may conclude from Fig. 5.7(b) that integration over all
plasmon frequencies gives rise to well-separated peaks even the incidence angle of φ0 = 35◦,
and quite possibly for still smaller angles φ0 6= 0.

Moreover, the peak positions in Fig. 5.7(b) seem to be dependent of the incidence angle
φ0, while one may assert that the angular separation between the peaks could be controlled by
changing the total speed of the incident particle and/or its angle of incidence θ0 upon the surface
of graphene. Since the existence of the well-defined peaks in the distribution of the excited
plasmons ν(φ) Fig. 5.7(b) implies preferred directions of the plasmon propagation in the plane
of phosphorene, one may conclude from the above analysis that it is indeed the anisotropy in
the retarded plasmon dispersion of phosphorene that gives rise to the directionality effects in
plasmon emission, which can be controlled by changing the direction of motion and the energy
of the incident charged particle.

Finally, we consider the effects of anisotropy of phosphorene on the radiative energy loss.
One observes in Figs. 5.3, 5.4, 5.5 and 5.6 that the intensity landscapes of the functionF rad

(
kx, ky, ω

)
,

which were computed with ω = 1 and 2 in the panels (c) and (e) of those figures, respectively,
are strictly localized inside the circles generated by the light cone at those two frequencies. On
the other hand, the distribution of the intensity of radiation inside those circles is anisotropic and
is strongly affected by the direction angle φ0 of the incident charged particle in a rather unex-
pected manner. This is best illustrated by considering the cases of the incident angles φ0 = 0 and
φ0 = 90◦ in Figs. 5.3 and 5.6, respectively. Namely, in the panels (c) and (e) of Fig. 5.3, one sees
a peak in the radiation intensity in the region of the light circle nearest to the line corresponding
to the kinematic resonance condition with φ0 = 0. On the other hand, in the panels (c) and (e) of
Fig. 5.6 one sees a splitting of the intensity into two peaks, both leaning towards the kinematic
resonance line with φ0 = 90◦, with a local dip in the region of the light circle nearest to that
line. In principle, such dynamically induced anisotropies in the radiation distribution could be
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(a) (b) (c)

Figure 5.8: Angular distribution of the spectral density for TR emitted from phosphorene in the
purely anisotropic regime, shown in reduced units as S(θ, φ, ω) = S/Sc, where Sc = (Ze)2/c
with ω = 0.1 and γ = 2.415, for charged particle moving at the speed β = 0.5 and three
combinations of the incidence angles: (a) θ0 = 0 and φ0 = 0, (b) θ0 = π

4
and φ0 = π

3
, and (c)

θ0 ≈ π
2

(corresponding to a near-glancing incidence) and φ0 = π
6
.

observed in the angle-resolved measurements in STEM.

In Fig. 5.8 we show the angular spectra of the emitted TR, S(θ, φ, ω), where S = S/Sc with
Sc = (Ze)2/c. Results are obtained for charged particle moving at the speed β = 0.5, for several
selected combinations of its incident angles θ0 and φ0. Note that, in the figure, the emission
angles of the TR are introduced via kx = ω sin θ cosφ, ky = ω sin θ sinφ, and kz = ω cos θ
using fixed frequency of ω = 0.1. In the case of normal incidence with θ0 = 0, shown in
Fig. 5.8(a), one can immediately observe rather strong effects of anisotropic conductivity of
phosphorene. Namely, the well-known “butterfly” spectra of TR in isotropic 2D materials, such
as graphene, are axially symmetric about the surface normal to the target, in sharp contrast to the
spectrum seen Fig. 5.8(a), which is localized in the direction of emission angles around φ = 0,
generating four symmetric lobes. Increasing the angle of incidence to θ0 = π

4
in Fig. 5.8(b)

does not change much in the TR spectrum, whereas the near-grazing incidence with θ0 ≈ π
2

(θ0 = 89◦) in Fig. 5.8(c) opens the possibility to generate additional asymmetry in the spectra,
which is controlled by changing the incidence angle φ0.

5.3.2 High frequency spectroscopy for hyperbolic regime

As discussed in the previous section of this chapter, in the regime of higher frequencies, up to
IR, the plasmon dispersion level curves may exhibit hyperbolic shapes. It should be stressed
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here that, in this regime, the plasmon dispersion surface departs significantly away from the light
cone and extends into a range of large in-plane wavenumbers. Therefore, in practice, one may
safely use the nonretarded expression for plasmon dispersion, given in Eq. (5.24), which was
not the case in the regime of low frequencies, characterized by elliptic dispersion curves, seen
in Fig. 5.2. We note that, while calculations in the present subsection were performed with the
retarded dispersion relation from Eq. (5.23), practically no change in the displayed results would
occur if the nonretarded limit of Eq. (5.24) were used.

Figure 5.9 depicts the plasmon dispersion level curves in the reduced units pertinent to the
hyperbolic regime, ω(kx, ky) = constant, for four different reduced frequencies: ω = 0.4 (green
curve), ω = 0.7 (blue curve), ω = 1 (red curve), and ω = 1.3 (pink curve), obtained from
Eq. (5.23) using the conductivity model from Eq. (5.27) with γ = 0. We see that the low-
frequency green curve is still not quite in the hyperbolic regime, but as the frequency increases,
the dispersion curves evolve into hyperbolas with ever larger foci (larger linear eccentricity) and
with less steep asymptotes. It should be stressed that a fully linear dependence is achieved in
those asymptotes only at rather large wavenumbers, |kx| & 100 and |ky| & 100 in Fig. 5.9. At
the same time, it should be remarked that circles related to the light cone, k

2

x + k
2

y = ω2, would
be barely visible in the ranges of axes used in that figure.
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Figure 5.9: Dispersion level curves in hyperbolic regime are shown using reduced units,
ω(kx, ky) = const, for four different reduced frequencies: ω = 0.4 (green curve), ω = 0.7
(blue curve), ω = 1 (red curve), and ω = 1.3 (pink curve), where γ = 0. Note that the green line
with ω = 0.4 is still not in hyperbolic range.
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Guided by the analysis of the low-frequency regime in the preceding subsection, preferred
directions of the plasmon excitation may be expected when the direction of the group velocity
of the plasmon dispersion, ∂ω

∂k
, is closely matched with the direction of the parallel velocity

component of the particle, v‖. In other words, it should be feasible to select the slope in the
straight lines from the kinematic resonance condition, ω = kxβx + kyβy, to match the slope of
any given pair of asymptotes in the dispersion level curves shown in Fig. 5.9 . However, because
of the need for large wavenumbers to achieve a significant overlap of the dispersion level curves
and the line ω = kxβx + kyβy at frequencies ω ∼ 1 used in that figure, one concludes that the
parallel velocity components of the incident charged particle must be rather small, on the order
of βx ∼ 0.01 and βy ∼ 0.01.

In Fig. 5.10, we show the intensity landscape of the Ohmic energy loss density, FOhm(kx, ky, ω),
evaluated for three frequencies in the range ω < 1 using the conductivity model in Eq. (5.27)
with doping density of n = 3 × 1013 cm−2. Also displayed in Fig. 5.10 are yellow straight
lines, showing cross sections of the kinematic resonance plane kxβx + kyβy = ω with the same
set frequencies for the incident particle speeds of β = 0.2, 0.5, 0.035 and incidence angle of
(θ0, φ0) = (75◦, 0), (45◦, 45◦), (75◦, 55◦) with respect to the phosphorene plane, for panels (a),
(b) and (c), respectively. We also show level curves of the plasmon dispersion relations (using
white solid lines), which are obtained from Eq. (5.23) for the same set of frequencies and setting
γ = 0, whereas the cross sections of the light cone with the corresponding frequencies are shown
by the barely visible dashed grey circles.

Figure 5.10: The Ohmic energy loss density, FOhm(kx, ky, ω), in the hyperbolic regime (obtained
using the model in Eq. (5.27) with γ = 0.04), is shown for: (a) ω = 0.3, β = 0.2, θ0 = 75◦,
φ0 = 0 (b) ω = 0.5, β = 0.5, θ0 = 45◦, φ0 = 45◦ and (c) ω = 0.75, β = 0.035, θ0 = 75◦,
φ0 = 55◦. Also shown, for the same set of parameters, are the corresponding dispersion level
curves (white lines, obtained from Eq. (5.23) with γ = 0), as well as the kinematic resonance
condition (yellow lines), kxβx + kyβy = ω. The level curves of the light cone (shown as grey
dashed circles) are barely visible in the centers of the plots.
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As in the preceding subsection, one can see in Fig. 5.10 that the intensity landscape of the
function FOhm

(
kx, ky, ω

)
is generally peaked along the corresponding dispersion level curves,

as expected owing to the prevalence of the plasmon excitation channel in the Ohmic energy
losses, but the distribution of that intensity seems to be skewed toward the line that indicates the
corresponding kinematic resonance condition. In the panel (a) for θ0 = 75◦ and φ0 = 0 with
ω = 0.3 and β = 0.2, where the kinematic resonance line is running between and parallel to
the two branches of “not yet hyperbolas,” one can expect strong excitation of the anisotropic
plasmon (which may be considered as quasi-hyperbolic plasmon as the shape of partly illumi-
nated dispersion curve suggests) in a broad range of directions |φ| < π/2, originating from the
branch closer to the kinematic resonance line. In the panel (b) for θ0 = 45◦ (where the kinematic
resonance is weaker compared to that of panels (a) and (c)) and φ0 = 45◦ with ω = 0.5 and
β = 0.5, there does not appear any particularly pronounced local enhancement in the intensity of
the Ohmic energy loss which implies the poor excitation of hyperbolic plasmon for that particu-
lar angle of incidence and relativistic speed, whereas in the panel (c) for θ0 = 75◦ and φ0 = 55◦

with ω = 0.75 and β = 0.035, one notices a strong local enhancement of the intensity near the
crossing point of the kinematic resonance line with the right branch of corresponding hyperbolic
dispersion curve. This localization of the intensity of the Ohmic energy loss density indicates
that a hyperbolic plasmon may be launched with a narrow angular distribution.

While the cases discussed in Fig. 5.10 were selected somewhat haphazardly, they neverthe-
less demonstrate the possibility to launch hyperbolic plasmons with narrowly distributed angles
of propagation across the plane of phosphorene, which can be controlled by the velocity and the
angles of incidence of the charged particle. Given the large size of the parameter space in this
problem, a more detailed investigation is warranted. In particular, it would be desirable to eval-
uate the integrated average number of the excited plasmons ν(φ), as in the previous subsection,
but computations proved to be rather challenging in the hyperbolic regime so far, so they are left
to be completed in near future.

Finally, we consider the effects of anisotropy of phosphorene on the radiative energy loss
in the hyperbolic regime. While it was found that low speeds are desirable for the incident
charged particle to be able to launch directionally-resolved hyperbolic plasmons, as discussed in
Fig. 5.10, at such low speeds one expects significantly reduced radiative energy loss. Therefore,
in order to explore any signatures of phosphorene’s anisotropy in the angular spectra of the TR,
we again consider Fig. 5.11 a fast charged particle, moving at β = 0.5.

The conductivity of phosphorene is modeled by Eq. (5.27) with doping density of n = 3 ×
1013 cm−2 and γ = 0.03857, and the angular spectra of TR are evaluated in Fig. 5.11 at frequency
ω = 0.5 for three combinations of the incidence angles. When compared to the spectra shown
in Fig. 5.8 for the low-frequency case, one notices large differences. The spectra in Fig. 5.11
show more asymmetry for the oblique incidence in the hyperbolic regime (panels b and c), and
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(a) (b) (c)

Figure 5.11: Angular distribution of the spectral density for TR emitted from phosphorene in the
hyperbolic regime (obtained using the model in Eq. (5.27) with γ ≈ 0.04), shown in reduced
units as S(θ, φ, ω) = S/Sc, where Sc = (Ze)2/c with ω = 0.5 and n = 3 × 1013 cm−2, for
charged particle moving at the speed β = 0.5 and three combinations of the incidence angles:
(a) θ0 = 0 and φ0 = 0, (b) θ0 = π

4
and φ0 = π

4
, and (c) θ0 ≈ π

2
(corresponding to a near-glancing

incidence) and φ0 = π
6
.

even for the normal incidence (panel a), there is a very atypical distribution of the TR intensity.
One sees in Fig. 5.11 that the angular distribution of TR is heavily skewed towards the plane of
phosphorene. At the same time, it exhibits a much broader distribution over k̄y values than in
Fig. 5.8, whereas the TR in the k̄x = 0 direction is sharply depleted, similar to Fig. 5.8. As the
angle of incidence becomes oblique, one notices in Fig. 5.11 that the TR angular distribution is
strongly skewed in the direction of motion of the incident particle. All these remarkable angular
patterns of the TR from phosphorene in the IR frequency range should be readily detectable in
STEM experiments.

5.4 Conclusions

We have developed a theory to study the interaction of an external charged particle with a gen-
eral anisotropic two-dimensional (2D) material and applied it to a single-layer phosphorene in
the retarded and nonretarded relative particle speed β = v/c and the incidence angles (θ0, φ0)
with respect to the normal to the plane and the armchair (AC) principal axis of phosphorene,
respectively. We have evaluated and expressed the Ohmic and radiative energy losses of the ex-
ternal particle with respect to their dependency on the Cartesian components of the wavevector in
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order to emphasize the role of anisotropic excitation processes of charge carriers in phosphorene
under the oblique incidence. Those processes were described by defining an in-plane dielectric
tensor with Cartesian component functions, which incorporate suitable models of phosphorene’s
anisotropic electrical conductivity. We use a phonomenological model proposed in Ref. [125]
where a diagonal conductivity tensor is given in terms of the principal crystal axes of phospho-
rene (here, they are equal to the in-plane Cartesian coordinates). We have also focused on the
directionality of plasmon excitation by a very obliquely incident charged particle.

Doped phosphorene responds to electromagnetic fields in two distinct manners. In a low-
frequency range it shows purely anisotropic response, in which a Drude-type model is involved
to describe intraband excitations of electrons, and in a high-frequency regime it shows hyperbolic
behavior, where the contribution from interband transitions may become dominant, so that the
signs of the imaginary parts of the conductivity components become different. For both regimes,
the Ohmic intensity landscapes are peaked along the corresponding dispersion level curves, ow-
ing to the prevalence of the plasmon excitation channel, but the distribution of that intensity is
strongly skewed toward the line that indicates the corresponding kinematic resonance condition.
In general, we expect that in the cases where the kinematic resonance line is close to becoming
tangent to the dispersion curves, the directions of the plasmon emission across the plane of phos-
phorene will be broadly distributed about the direction of motion of the incident particle owing to
a close match of the direction of the group velocity of the plasmon dispersion, with the direction
of the parallel velocity component of the particle. In the cases when the intersection points of
the kinematic resonance line with the dispersion curves are well-localized, strongly directional
plasmon emission will take place in particular directions depending on the coordinates of the
intersection points in the wavevector plane.

In the terahertz frequency range, i.e., purely anisotropic regime, the dispersion surface forms
an ellipsoid, where the effect of retardation is to push the dispersion surfaces outside the light
cone. As we move toward higher frequencies, due to weaker retardation effects, the retarded and
nonretarded dispersion level curves tend to coincide, lie out side the light circle, and also, change
to hyperbolic geometry at higher frequencies. At the same time, we can see that the retardation
effects are magnified in the AC direction compared to the zigzag direction.

In the case of the incident angle φ0 = 0, the average number of plasmon ν(φ) forms a rather
broad and flat distribution versus φ for angles |φ| < π

2
, which echoes the fact that the plasmon

dispersion curves are elongated in the direction parallel to the kinematic resonance line. As
the incidence angle φ0 increases, a well developed, double-peak structure arises in ν(φ) in the
interval of plasmon emission angles |φ−φ0| < π

2
. Those peaks are generally asymmetric, except

in the case of φ0 = 90◦. Moreover, the peak positions seem to be dependent of the incidence
angle φ0, while one may assert that the angular separation between the peaks could be controlled
by changing the total speed of the incident particle and/or its angle of incidence θ0 upon the
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surface of graphene. Since the existence of the well-defined peaks in the distribution of the
excited plasmons ν(φ) implies preferred directions of the plasmon propagation in the plane of
phosphorene, one may conclude from the performed analysis that it is indeed the anisotropy in
the retarded plasmon dispersion of phosphorene that gives rise to the directionality effects in
plasmon emission, which can be controlled by changing the direction of motion and the energy
of the incident charged particle.

As for the radiative loss in purely anisotropic regime, the distribution of the intensity of radi-
ation inside the light level circles is anisotropic in the wavevector plane and is strongly affected
by the direction angle φ0 of the incident charged particle in a rather unexpected manner. While
there exists a peak in the radiation intensity in the region of the light circle nearest to the line
corresponding to the kinematic resonance condition with φ0 = 0, one sees a splitting of the in-
tensity into two peaks, both leaning towards the kinematic resonance line with φ0 = 90◦, with
a local dip in the region of the light circle nearest to that line. In addition to the joint radiative
loss spectra, rather strong effects of anisotropic conductivity of phosphorene are observed in the
angular distributions of transition radiation (TR). Namely, the well-known “butterfly” spectra of
TR in isotropic 2D materials, such as graphene, are axially symmetric about the surface normal
to the target, in sharp contrast to the spectra of phosphorene, which are localized in the direc-
tion of emission angles around φ = 0, generating four symmetric lobes. Increasing the angle
of incidence to θ0 = π

4
does not change much in the TR spectrum, whereas the near-grazing

incidence opens the possibility to generate additional asymmetry in the spectra, which is con-
trolled by changing the incidence angle φ0. In principle, such dynamically induced anisotropies
in the radiation distribution could be observed in the angle-resolved measurements in scanning
transmission electron microscope (STEM).

On the other hand, in a high-frequency range up to infrared (IR), i.e., hyperbolic regime,
the plasmon dispersion surface departs significantly away from the light cone and extends into
a range of large in-plane wavenumbers suggesting that is safe to apply nonretarded expression
for plasmon dispersion. In such a range, the dispersion surface forms hyperbloids, where as
the frequency increases, the dispersion level curves evolve into hyperbolas with ever larger foci
(larger linear eccentricity) and with less steep asymptotes.

The Ohmic intensity landscape, in the case where the kinematic resonance line is running
between and parallel to the two branches of hyperbolas, demonstrates strong excitation of the
hyperbolic plasmon in a broad range of directions |φ| < π/2, originating from the branch closer
to the kinematic resonance line. By increasing the incidence angle φ0, we notice a strong local
enhancement of the intensity near the crossing point of the kinematic resonance line with the
right branch of corresponding hyperbolic dispersion curve implying that a hyperbolic plasmon
may be launched with a narrow angular distribution across the plane of phosphorene. This feature
can be controlled by the velocity and the angles of incidence of the charged particle.
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We have, also, investigated the angular spectra of TR at a typical frequency ω = 0.1 for
three combinations of the incidence angles. In comparison to those of low-frequency range, the
spectra in hyperbolic regime show more asymmetry, which should be readily detectable in STEM
experiments.
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Chapter 6

Summary, Conclusion, and Future
Perspective

6.1 Summary and conclusion

The study of the interaction of relativistic charged particles with matter in nanoscale is very cru-
cial since it is at the core of many problems in Mathematical Physics, Electromagnetic (EM)
Theory, Condensed Matter Physics, Nanoscience and Technology, Electrical Engineering, Mate-
rial Science, etc. In particular, interactions of graphene and other two-dimensional (2D) materials
with externally moving charged particles have been studied in recent years in the context of elec-
tron energy loss spectroscopy (EELS), which has become a very popular experimental technique
for exploring the plasmon excitations in graphene over a broad range of energies [32, 35, 38].
On the other hand, the technological need for a stable and tunable source of terahertz (THz)
radiation has prompted several recent studies of the electromagnetic radiation from graphene,
induced by its interaction with a fast electron beam [25, 50, 52]. In this thesis, we have proposed
a theoretical framework to analyze the interaction of externally moving charged particles with
2D materials in the context of classical and relativistic electrodynamics.

In this regard, we have developed a fully relativistic treatment of the energy loss of a fast
charged particle traversing a multilayer of isotropic conducting sheets with scalar conductivi-
ties (applied to multilayer graphene, MLG) under normal incidence (chapter 2), the stopping
power of a charged particle moving parallel to an isotropic 2D material (applied to single-layer
graphene, SLG) (chapter 3), energy loss of a fast charged particle traversing a monolayer of
isotropic sheet (applied to SLG) under oblique incidence (chapter 4), as well as energy loss of
a fast charged particle traversing a single layer of anisotropic material (applied to phosphorene)
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under oblique incidence (chapter 5). In order to emphasize the role of electron excitations in 2D
materials, as well as to elucidate the transition radiation (TR) from the 2D materials, we have as-
sumed that the monolayers are placed in air (or vacuum) and neglected the recoil of the incident
charged particle.

The formalism rendered in the thesis to develop the theoretical framework is as follows: (1)
we have employed macroscopic EM theory based on Maxwell’s equations. We have obtained
self-consistent solutions of Maxwell’s equations for the electric and magnetic fields by treating
each layer as an infinitely large and infinitesimally thin, planar conductive sheet, for which a
2D Ohm’s law may be invoked to express the in-plane induced charge current in terms of the
tangential component of the total electric field by using a scalar or 2D conductivity tensor of the
sheets. To this end, we have solved inhomogeneous vector wave equation for which we used the
retarded scalar/dyadic Green’s function approach depending on the geometry of the problem and
the treatment of the boundary conditions. (2) Because we have dealt with 2D material boundary
conditions, we have adopted a dielectric function approach in order to define a 2D in-plane
dielectric response for the structure in the tangential directions across the 2D material. After
finalizing the self-consistent solutions for the EM fields, (3) we have calculated the different
contributions to the energy loss of the external charged particle, based on the Physical definition
of EM work. Last but not least, (4) using the semiclassical approach of stochastic interpretation
of the energy transfer, we have identified the probability density for each contribution to the
energy loss of the external charged particle. Ultimately, we have analyzed the results and drawn
conclusion for the potential applications in nanophotonics and nanoplasmonics.

6.1.1 Main contributions of the thesis

The research presented in this thesis was initiated by Miskovic et al. in Ref. [42] where they
analyzed the EELS and TR of a charged particle traversing SLG under normal incidence over
a wide range of frequency from terahertz (THz) to ultraviolet (UV). Accordingly, they adopted
three different models of graphene’s conductivity: Drude Model (intraband electron transitions
in doped graphene) suitable for THz range, optical (Drude + Dirac) model suitable for THz
to mid-infrared (MIR) range, and Drude-Lorentz (or hydrodynamic) model (interband electron
transitions in undoped graphene) for MIR to UV range also known as optical range. A list of
Miskovic et al. [42] main contributions is as follows:

• THz frequency range:

– Effects of retardation on the dispersion of DPP and loss spectra

– Comparable Ohmic and radiative contributions
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– Strong effects of damping rate on each contribution of loss spectra

– Features of Ohmic loss spectrum:

∗ Localized peak of Dirac plasmon polariton (DPP), located outside the light cone
∗ Strong relativistic effects (by comparing retarded with nonretarded contribu-

tions)
∗ Effective excitation of DPP with ∼ 100 keV electrons in doped graphene

– Features of radiative loss spectrum:

∗ Broadly distributed and only extended within the light cone
∗ Axially symmetric and skewed angular distribution of TR towards the plane of

graphene (with the decrease in damping rate)
∗ Efficient source of sub-THz radiation with a broad energy spectrum and charac-

teristically skewed angular distribution

• Optical frequency range:

– Suppression of radiative energy loss compared to the Ohmic loss

– Displacement of the characteristic π and π+σ peaks in the spectra towards the lower
k values as the speed of charged particle increases, falling inside the light cone at
relativistic electron energies

– Relativistic effects give rise to ∼ 10% increase in the characteristic peak heights in
integrated energy loss density, which is dominated by the Ohmic loss

– π and π + σ peaks in the integrated TR loss density (red shifted in comparison to
those of Ohmic loss)

In the first part of this thesis, a continuation of the work from Ref. [42] was performed to
generalize the results for double-layer graphene (DLG) and MLG structures where we embarked
to investigate the effect of retardation in the THz range. Hence, we only employed a suitable
Drude model (intraband transitions), where for the DLG structure we considered both cases of
equal and different conductivities, while for the case of MLG with N > 2, we considered equal
interlayer distances and equal conductivities. Our main interest in the analysis of DLG was to
analyze the interference as a result of retardation and the effects due to different choices of (1)
inter-graphene distance d and (2) graphene layers’ doping densities n1 and n2. A list of the main
contributions of the results given in chapter 2 is given below, where the particularly intriguing
ones are marked in red.

• Symmetric DLG (n1 = n2):
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– Strong hybridization of DPPs
{

low-frequency, quasi-acoustic mode (bonding mode)
high-frequency, quasioptical mode (antibonding mode)

– Features of Ohmic loss:

∗ Dominated by excitations of the bonding and antibonding modes outside the
light cone
∗ Release of the Joule heat due to finite damping rates, both outside and inside the

light cone
∗ Comparison of retarded with nonretarded distributions shows strong relativistic

effects for . 10 THz for typical doping of graphene

– Features of radiative losses:

∗ TR vs. Ohmic loss: comparable at ∼ 1 THz, dominance of TR at sub-THz
frequencies
∗ Pronounced independence of angle-integrated TR energy loss distribution from

inter-graphene distance d

– Interference due to retardation gives rise to asymmetry with respect to the direction
of motion of the incident charged particle, including:

∗ Asymmetry in directional decomposition of angle-resolved spectra of radiation
emitted in the upper and lower half-spaces
∗ Asymmetry in layer-wise decomposition of the Ohmic loss
∗ Asymmetry in modal decomposition of the excitation probability density for hy-

bridized Dirac plasmon polaritons (HDPPs)
∗ Any asymmetry increases with the increase of the inter-graphene distance d

• Asymmetric DLG (n1 6= n2):

– Increasing the deviation of the asymmetry ratio ρ = n1/n2 from the symmetric case
(ρ = 1) enhance retardation effects, which amplify asymmetries

– Integration of the TR density over all angles implies reduction of: directional asym-
metry, d-dependence, and ρ-dependence

– The dependency of the average numbers of bonding and antibonding plasmons on the
asymmetry ratio ρ shows cusp-like behavior near ρ = 1

For the case of MLG, the main contributions are:
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• TLG (N = 3)

– Absence of middle eigenfrequency HDPP mode in the middle layer (symmetry-
protected plasmonic channel)

– Even stronger asymmetries with respect to the direction of motion of charged particle

– Fano resonance is observed near the lowest-lying HDPP eigenfrequency in the Ohmic
loss distribution in the first traversed layer by the external particle, but is not observed
in the last traversed layer

• MLG (N > 2)

– Peaks and valley structures, which are observed in the integrated Ohmic energy loss
distributions at supra-THz frequencies due to interference between HDPP modes, are
reminiscent of the DLG features

– Applicability of the concepts of optically thin and optically thick structures for the
integrated Ohmic energy loss distributions

– Applicability of the approximation representing an optically thin MLG (N layers) by
SLG with the effective conductivity Nσ

– Pronounced independence of the angle-integrated TR energy loss distribution from
the inter-graphene distance and the number of layers

We have also investigated the energy loss rate of a charged particle moving with speed v
parallel to SLG at the distance b (impact parameter) in chapter 3. In this chapter we used the
suitable Drude model. The main contributions of this chapter are:

• Calculations of the Ohmic energy loss rate at THz range (there is no radiation)

• The theory incorporates longitudinal and transverse in-plane conductivities

• Limit of zero damping implies excitation of the DPP in doped graphene by aloof electrons

• Increase in the importance of the retardation effects by increasing the particle’s speed and
the impact parameter

• Comparison of the retarded with nonretarded energy loss rates: interesting, nonmonotonous
trends
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– v = constant: the retarded loss rate > nonretarded rate at large distances, reversed
trend at shorter distances

– b = constant: nonretarded loss rate > the retarded rate at high speeds, reversed trend
at lower speeds

Next, we considered the third structure where a charged particle traverses SLG under oblique
incidence. In chapter 4, we employed four different models for graphene’s conductivity: Drude
model for THz range (intraband transitions), Lovat’s (nonlocal) model [141] for THz range (in-
traband transitions), Optical model for THz to MIR range (intraband and interband transitions),
and Drude-Lorentz (hydrodynamic) model [40] for MIR to UV range (interband transitions).
The major contributions of Chapter 4 are as follows:

• Ohmic and radiative contributions to energy loss are clearly decomposed into longitudinal
and transverse components

• The angle of incidence as an additional tuning parameter for efficiently exciting plasmons
or TR

• THz range:

– Insignificance of nonlocal effect in the retarded regime

– Strongly anisotropic angular patterns for longitudinal and transverse contributions to
the emitted TR spectra

– Distinction between the polarizations of traveling waves into the far-field

• MIR range:

– Excitation of transverse mode is possible under suitable conditions, but with ex-
tremely low probability

• High energy (MIR to UV) range:

– Strong directional features may arise in the in-plane distribution of the transverse
contribution to the Ohmic loss

Finally, we investigated the energy loss channels of a charged particle traversing a monolayer
of phosphorene under oblique incidence. In this case we employed a phonomenological (Drude
+ Dirac) model for the anisotropic conductivity of phosphorene proposed in [125].
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• Elliptic topology of plasmon dispersion for purely anisotropic regime (∼THz)

• Hyperbolic topology of plasmon dispersion for hyperbolic regime (∼MIR)

• The new exotic behavior of collective modes may affect the energy loss spectra of the
incident particle and the directional patterns of the emitted TR

• Directional and tunable surface plasmon polariton excitation can be achieved and con-
trolled by changing the incident particle trajectory parameters

6.2 Prospective of future

The results presented in this thesis were calculated in the case of free-standing 2D materials in
vacuum in order to investigate the fundamental optical properties of such materials. It is of great
interest to integrate 2D materials with dielectric(s), and hence analyze the effects of the presence
of the dielectric(s) and the resulting discontinuities at the boundary conditions on the energy loss
and TR. More importantly, one can investigate and calculate the energy loss probability density
due to presence of Cherenkov radiation. This can fall under a new research topic of:

• The effect of Cherenkov radiation in the EELS of 2D materials.

More interestingly, the topic may be generalized to consider polar substrates giving the topic of:

• Hybridization of phonons and plasmons in EELS.

In both of those topics the mathematical formulation requires the identification of dyadic Green’s
function for inhomogenouos layered media [121].

In general, in this thesis the relativistic treatment of energy transfer in the interaction of fast
charged particles with 2D materials was considered. The proposed framework may be solidly
extended to calculate the relativistic linear momentum transfer and reciprocating relativistic force
between charged particles and 2D materials. The generalization of such work may be identified
under the topic of:

• Fully relativistic treatment of 4-momentum transfer in the interaction of fast charged par-
ticles with 2D materials.
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One of our main limitations in this thesis is that for all the considered 2D materials with
zero thickness, we introduced a 2D in-plane conductivity model. Recently, researchers showed
a great deal of interest in the accomodation of the out-of-plane polarizability of 2D materials in
their analysis [164, 165, 166, 167, 168]. For us, it is of great interest to propose the full math-
ematical formulation for the electromagnetics of the zero-thickness conducting sheets with the
out-of-plane polarizability component in order to efficiently satisfy the EM boundary conditions,
continuity equation, and Ohm’s law. This project may fall into the subject of:

• 2D materials with out-of-plane polarizability: electrodynamics and EELS.

In our future research, we may also plan to augment the analytical models by including
concepts from Differential Geometry to analyze more complex structures. This subject of interest
may be introduced as:

• The effect of geometry of 2D materials on EELS, plasmon excitation and radiation.

Ultimately, as the last suggestion, it is of great importance to include the effects of quantum
optical excitations in 2D materials traversed by fast charged particles [169]. Such an effort
involves concepts from Quantum Field Theory and Quantum Electrodynamics to tackle more
fundamental aspects of our research pertaining to Condensed Matter Physics and Relativistic
Electrodynamics. This may also fall into the topic of:

• Quantum Field Theory description of EELS of 2D materials by fast charged particles.
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emission by the quantum Čerenkov effect from hot carriers in graphene. Nature Commu-
nications, 7:ncomms11880, jun 2016.

[45] Xiao Lin, Sajan Easo, Yichen Shen, Hongsheng Chen, Baile Zhang, John D Joannopoulos,
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Appendix A

Retarded Green’s Function Formalism

Macroscopic Maxwell’s equations in Gaussian units are written as [63]:

∇ ·D(R, t) = 4πρ(R, t),

∇× E (R, t) = −1

c

∂B (R, t)

∂t
,

∇ ·B (R, t) = 0,

∇×H (R, t) =
4π

c
J (R, t) +

1

c

∂D (R, t)

∂t
.

(A.1)

Applying the Fourier transform with respect to time, for a linear dielectric medium with the
constitutive relations D(R, t) = εd(ω)E(R, t) and B(R, t) = µd(ω)H(R, t) , the Maxwell’s
equations are read as

∇ · E(R, ω) =
4π

εd(ω)
ρ(R, ω),

∇× E (R, ω) =
iω

c
µd(ω)H (R, ω) ,

∇ ·B (R, ω) = 0,

∇×H(R, ω) =
4π

c
J(R, ω)− iω

c
εd(ω)E(R, ω).

(A.2)

Hence, one can derive the vector wave equation for the electric field in Gaussian units as

∇×∇× E(R, ω)− ω2

c2
εd(ω)µd(ω)E(R, ω) =

4πiω

c2
µd(ω)J(R, ω). (A.3)
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Defining k0 = ω
c

and kd = k0

√
εd(ω)µd(ω), we end up with

∇×∇× E(R, ω)− k2
dE(R, ω) =

4πi

ωεd(ω)
k2
d J(R, ω). (A.4)

A.1 Retarded scalar Green’s function for the components of
electric Hertz vector potential Π

Considering the relationship between the EM fields and the Hertz electric potential vector, ex-
pressed via

E(R, ω) = ∇∇ ·Π(R, ω) + ω2εd(ω)µd(ω)Π(R, ω)/c2,

B(R, ω) = −iωεd(ω)µd(ω)∇×Π(R, ω)/c,
(A.5)

one may transform the vector wave equation in Eq. (A.4) into the vector Helmholtz equation for
the Hertz electric potential Π(R, t). Applying the 2D in-plane spatial Fourier transform (r→ k),
we have (

∂2

∂z2
− q2

)
Π(k, z, ω) = − 4πi

ωεd(ω)
J(k, z, ω), (A.6)

where k =
√
k2
x + k2

y and q2 = k2 − k2
d. From the above equation one can ascertain that the

Hertz electric vector potential is in the same direction of the current source. Thus, in order to
solve the equation for the Π vector, it suffices to solve the equation for a component of the Π
vector and hence find the retarded scalar Green’s function (GF) for each component.

In order to obtain the scalar GF for each component of the Hertz vector in vacuum or free
space (εd(ω) = µd(ω) = 1), we write the time domain version of Eq. (A.6) and write as scalar
wave equation for each component ψ(R, t) of the Hertz vector Π(R, t), in the form of(

∇2 − 1

c2

∂2

∂t2

)
Π(k, z, ω) = −4π f(R, t), (A.7)

where f(R, t) is a nonhomogeneous term due to the corresponding component of the current
density J(R, t). A solution of the above equation due to the nonhomogeneous term is given by

ψ(R, t) =

�
d3R′

∞�

−∞

dt′G(R−R′, t− t′) f(R′, t′) (A.8)
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where the retarded scalar GF is given by [63]

G(R, t) =
1

R
δ(
R

c
− t) =

∞�

−∞

dω

2π
e−iωt

1

R
e−i

ω
c
R, (A.9)

with R = ‖R‖ =
√
r2 + z2 and r = ‖r‖. Hence, performing the Fourier transform of G(R, t)

with respect to time and the coordinates r = {x, y} gives an expression for the GF as

G(k, z, ω) =

�
d2r

∞�

−∞

dt e−ik·r+iωtG(R, t) = 2π

∞�

0

drr√
r2 + z2

J0(kr) ei
ω
c

√
r2+z2 , (A.10)

where k = ‖k‖ and J0 is the Bessel function of the first kind of zeroth order. It is important
to notice that the real and imaginary parts of the last expression in Eq. (A.10) are even and odd
functions of ω, respectively. Using the table integrals 8 and 9 (obtained from the Sommerfeld
integrals) from Section 2.12.23 in Ref. [170] gives a result for the scalar retarded GF as

G(k, z, ω) =

{
2πi

κ(k,ω)
ei|z|κ(k,ω), |ω| > ck

2π
α(k,ω)

e−|z|α(k,ω), |ω| < ck
(A.11)

with

κ(k, ω) =
ω

c

√
1−

(
ck

ω

)2

, for |ω| > ck,

α(k, ω) =
|ω|
c

√(
ck

ω
− 1

)2

, for |ω| < ck,

(A.12)

which is valid for both positive and negative frequencies.

Considering the appropriate coefficient in the right hand side of Eq. (A.6), the scalar retarded
GF for the components of the Hertz vector in a homogeneous medium, listed in Chapters 2, 3, 4
and 5, is given by

GΠ0(k, z, ω) =
2π

ωqεd
e−q|z|, (A.13)

where

q(k, ω) =

 −iωc
√
εd −

(
ck
ω

)2 ≡ −iκ(k, ω), |ω| > ck/
√
εd,

|ω|
c

√(
ck
ω

)2 − εd ≡ α(k, ω), |ω| < ck/
√
εd

(A.14)
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It can be shown that, taking an inverse Fourier transform with respect to time of Eq. (A.10) gives

G(k, z, t) = 2πc J0(k
√
c2t2 − z2) Θ(t− |z|

c
), (A.15)

where the Heaviside unit step function Θ expresses retarded nature of the GF.

The approach mentioned so far is borrowed from the Ref. [42]. An alternative method to this
approach for obtaining GΠ0(k, z, ω) is that we consider the fully (4D space and time, {R, t} →
{K, ω}) Fourier transformed version of the scalar Helmholtz equation for the components of the
Hertz vector (

K2 − k2
d

)
Πj(k, z, ω) = − 4πi

ωεd(ω)
Jj(k, z, ω), (A.16)

where K = kxx̂ + kyŷ + kzẑ is the 3D wave vector and K = ‖K‖, and then obtain the fully
Fourier transformed scalar GF as GΠ0(K,ω) = 4πi

ωεd(ω)
1

K2−k2d
. Next, we apply the inverse Fourier

transform in the z direction, i.e. kz → z, which involves contour integration in the complex plane
and needs to be carefully executed, while paying attention regarding the Physics of the solution
waves in different regions of the light cone.

A.2 Retarded dyadic Green’s function for a homogeneous medium

Using the relation between the electric field and the Hertz potential in Eq. (A.5), one can obtain
the electric dyadic GF (EDGF) via [121]

←→
G E0(R,R′, ω) =

(
k2
d

←→
I + ∇∇

)
GΠ0(R,R′, ω) (A.17)

Here, considering the z dependency of the scalar GF, we can use the transformation ∇→
(
ik + ∂

∂z
ẑ
)
,

to express the EDGF as

←→
G E0(k, z, ω) =

(
k2
d

←→
I − kk + i

∂

∂z
(kẑ + ẑk) +

∂2

∂z2
ẑẑ

)
GΠ0(k, z, ω). (A.18)

which may be separated into its in-plane, mix out-of-plane, and normal out-of-plane elements,
for a better understanding of the utilization of each term, as

←→
G E0(k, z, ω) =

←→
G
||
E0(k, z, ω) +

←→
G ×E0(k, z, ω) +

[←→
G ×E0(k, z, ω)

]T
+ ẑGE0,zz(k, z, ω) ẑ,

(A.19)
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with

←→
G
||
E0(k, z, ω) =

2πi

ωq(k, ω)εd(ω)

(
k2
d

←→
I || − kk

)
e−q(k,ω)|z|,

←→
G ×E0(k, z, ω) =

2π

ωεd(ω)
sign(z) e−q(k,ω)|z| kẑ,

GE0,zz(k, z, ω) =
2πik2

ωq(k, ω)εd(ω)
e−q(k,ω)|z| − 4πi

ωεd(ω)
δ(z),

(A.20)

and T denoting the transpose operation. Some important properties of the EDGF can be listed
as:

• symmetry:
[←→
G E0(k, z, ω)

]T
=
←→
G E0(k, z, ω),

• parity:
←→
G E0(−k, z,−ω) =

←→
G ∗E0(k, z, ω) →

←→
G E0(−k, z,−ω) =

←→
G H

E0(k, z, ω),

•
←→
G
||
E0(k, z,−ω) =

[←→
G
||
E0(k, z, ω)

]∗
,

•
←→
G ×E0(k, z,−ω) = −

[←→
G ×E0(k, z, ω)

]∗
,

• G×E0,zz(k, z,−ω) = G∗E0,zz(k, z, ω),

•
←→
G
||
E0(k,−z, ω) =

←→
G
||
E0(k, z, ω),

•
←→
G ×E0(k,−z, ω) = −

←→
G ×E0(k, z, ω),

• G×E0,zz(k,−z, ω) = GE0,zz(k, z, ω),

with ∗ being the complex conjugate sign.

The expansion of EDGF in Eq. (A.18) can always be expressed in any arbitrary coordinate
system. Particularly, it is found to be quite useful to expand the EDGF in terms of the longi-
tudinal and transverse (LT) in-plane components when the problem involves isotropic boundary
conditions. Note that the LT coordinate system is composed of two in-plane unit vectors and the
normal vector as

(
k̂, τ̂ , ẑ

)
with τ̂ = ẑ × k̂. Therefore, in the LT coordinate system, one may

give the EDGF as

←→
G E0(k, z, ω) =

2πi

ωqεd

[
−q2k̂k̂ + k2

dτ̂ τ̂ − ikq sign(z)
(
k̂ẑ + ẑk̂

)
+
(
k2 − 2qδ(z)

)
ẑẑ
]

e−q|z|.

(A.21)
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On the other hand, Cartesian coordinates suitably encompass most of the needs for anisotropic
boundary conditions. In that case, the EDGF in Cartesian coordinate system can be identified via
←→
G E0(k, z, ω) =

2πi

ωqεd

[(
k2
d − k2

x

)
x̂x̂− kxky (x̂ŷ + ŷx̂) +

(
k2
d − k2

y

)
ŷŷ

−ikxq sign(z) (x̂ẑ + ẑx̂)− ikyq sign(z) (ŷẑ + ẑŷ) +
(
k2 − 2qδ(z)

)
ẑẑ
]

e−q|z|.

(A.22)

One should note that the transformation of any arbitrary variable between the two coordinate
systems can be easily derived by the projection of the unit basis vectors as

k̂ · x̂ =
kx
k

= cosφ,

k̂ · ŷ =
ky
k

= sinφ,

τ̂ · x̂ =
−ky
k

= − sinφ,

τ̂ · x̂ =
kx
k

= cosφ,

(A.23)

where φ is the angle between the in-plane wavevector k and x-axis.

We may, also, need the magnetic dyadic GF (MDGF) for future easier calculations. This
MDGF which is for the vector B, would be given by

←→
G B0(R, ω) =

c

iω
∇×←→G E0(R, ω)

=
c

iω
∇×

[(
k2
d

←→
I + ∇∇

)
GΠ0(R,ω)

]
=
ωεd(ω)µd(ω)

ic
∇×

[←→
I GΠ0(R,ω)

]
=
ωεd(ω)µd(ω)

ic
[∇GΠ0(R,ω)]×

←→
I .

(A.24)

Applying the 2D in-plane spatial Fourier transform and seperating the in-plane and mixed out-
of-plane elements, we have

←→
G B0(k, z, ω) =

c

ω
K×

←→
G E0(R, ω)

=
ωεd(ω)µd(ω)

ic

[(
ik +

∂

∂z
ẑ

)
GΠ0(k, z, ω)

]
×
←→
I

=
ωεd(ω)µd(ω)

c
GΠ0(k, z, ω)K×

←→
I

=
←→
G
||
B0(k, z, ω) +

←→
G ×B0(k, z, ω),

(A.25)
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where

←→
G
||
B0(k, z, ω) =

2π

c
µd(ω) sign(z) (x̂ŷ − ŷx̂) e−q|z|,

←→
G ×B0(k, z, ω) =

2π

iqc
µd(ω) (kyẑx̂− kxẑŷ) e−q|z|.

(A.26)
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Appendix B

Conservation of Energy for the Loss
(Transfer) Probability Densities

Using the Einstein notation convention, we may rewrite the 2D in-plane dielectric tensor as εij =
δij − Gisσsj with Gis = 2πi

ωqεd
(k2
dδis − kiks). Thus, inside the light cone, when q = −iκ, Gis =

− 2π
ωκεd

(k2
dδis − kiks) is real and outside the light cone, when q = α, Gis = 2πi

ωαεd
(k2
dδis − kiks)

is pure imaginary, if we let εd > 0. Knowing from the 2D in-plane constitutive relation that
εijE0j = Eext,i, one can start from the external joint probability density to prove the conservation
of energy at the level of joint probability densities via

Fext(k, ω) =
1

4π3ω
<
{
EH

ext||(k, 0, ω) · ←→σ (k, ω) · E0

}
=

1

4π3ω
<
{
EH

0 · ←→ε H · ←→σ · E0

}
=

1

4π3ω
<
{
E∗0j ε

∗
ji σilE0l

}
=

1

4π3ω
<
{
E∗0j

(
δji − σ∗jsG∗si

)
σilE0l

}
=

1

4π3ω
<
{
E∗0i σilE0l − E∗0j σ∗jsG∗si σilE0l

}
=

1

4π3ω
<{E∗0i σilE0l}+

1

4π3ω
<
{
E0j σ

∗
js (−G∗si) σilE0l

}
=

{
1

4π3ω
<{E∗0i σilE0l} , ω < ck,

1
4π3ω
<{E∗0i σilE0l}+ 1

4π3ω
<
{
E∗0j σ

∗
js

(
−G∗e0,si

)
σilE0l

}
, ω > ck,

=

{
F<

ohm(k, ω), ω < ck,
F>

ohm(k, ω) + Frad(k, ω), ω > ck,

(B.1)

204



where H denotes the Hermitian (transpose and complex conjugate) operation. One should note
that the above proof is general for any coordinate systems. Letting i, j, l, s = {x, y} leads the
proof for the case of anisotropic 2D material in Chapter 5 and i, j, l, s = {l, t} leads the proof
for the case of isotropic 2D material in Chapter 4. It is also simple to show that the proof applies
for the case of multilayer structure with scalar conductivity.
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