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Abstract

A C*-algebra A is exact if the functor A ®miy (+) preserves short exact sequences.
This is equivalent to the algebra A having a nuclear faithful *-representation. Exact
C*-algebras are a class of C*-algebras which is much more broad than the class of
nuclear C*-algebras; exactness passes to subalgebras. This property was studied in
great detail by Kirchberg and Wassermann in the early 90’s, and is still interesting
today, for example in the study of exact groups. Exposition will be given to several
results and characterizations related to exact C*-algebras.

We begin by examining certain C*-algebras which play a tremendous role in several
characterizations of exactness in the separable case. The first being the CAR algebra,
which is the UHF algebra corresponding to the infinite tensor product of Ms. The
second is a family of C*-algebras originally introduced by Cuntz in [9], which are unital,
simple C*-algebras generated by isometries which satisfy a certain relation. We then
proceed to explore exact C*-algebras, initially through the exposition given by Brown
and Ozawa in [6], and then through the work of Kirchberg and Wassermann. Kirchberg
classified the separable exact C*-algebras as those that are subquotients as the CAR
algebra in [18], and Wassermann gave his own proof, the one we choose to follow, in [33].
We finally examine unital, simple, purely infinite C*-algebras and their approximation
properties in order to give a proof of the famous Kirchberg-Phillips nuclear embedding
Theorem, as in [19].

This thesis follows work that was done in a previous USRA term (Winter 2018),
supervised by Laurent Marcoux. During that term I studied nuclear C*-algebras, and
the fact that they are a class of C*-algebras with a positive solution to Kadison’s
similarity problem, of which an exposition can be found in [25].
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1 Background

As mentioned in the Abstract, a C*-algebra A is exact if the function A @y, () preserved
short exact sequences. This is equivalent to the algebra A having a nuclear faithful *-
representation. Exact C*-algebras are class of C*-algebras which is much more broad than
the class of nuclear C*-algebras, which will be defined below. For example, exactness passes
to subalgebras, something which fails for nuclear C*-algebras - we will actually see that
C*(Fy) € O,, where the latter is nuclear and the former is not. Exactness was studied in
great detail by Kirchberg and Wassermann in the early 90’s, and is still interesting today,
for example in the study of exact groups.

Our main goal is to present a proof of the Kirchberg-Phillips theorem, which states
that a separable C*-algebra A is exact if and only if A embeds into the Cuntz algebra O,.

In this chapter we very briefly outline some of the basic tools that will be required to
study exactness of C*-algebras and the Cuntz algebra in the subsequent chapters. In order
to keep this thesis reasonable length, we will not include the proofs of the results of Chapter
1, but will mostly refer the reader to the appropriate sources.

1.1 Completely Positive and Completely Bounded Maps

One of the central objects of this thesis is the class of “exact” C*-algebras, which can be
defined in terms of having a nuclear, injective *-representation. These nuclear maps are
defined as point-norm limits (point-wise limits) of contractive completely positive maps which
factor through matrix algebras. A full exposition of the theory of these maps would take
too much time and space, so we content ourselves with outlining results which will be useful
later in the thesis. We refer to [22] for the proofs of the results below.

Definition 1.1.1. Let A be a C*-algebra. We call a self-adjoint, unital subspace S C A an
operator system. We say that a subspace X C A is an operator space.

Note that operator systems have many positive elements. First, given a € S, since S
is a *-closed subspace, Re(a) = £ Im(a) = “5% € S, so that there are many self-adjoint
clements. Now for any a = a* € S C A, an operator system, we have that 1(|la|| - 1+ al|)
and 1(||a|| - 1 — a) are both positive.

Definition 1.1.2. For operator systems S,7T, we say a linear map ¢ : S — T is positive,
denoted ¢ > 0, if ¢(a) > 0 whenever a > 0. If we have a linear map ¢ : S — T, there
are maps ¢ : M, (S) — M, (T) given by ¢ ([a;j]) = [#(ai;)] € M,(T). We say that ¢ is
n-positive if ¢ > 0, and we say that ¢ is completely positive (c.p.) if ™ > 0 for all
n € N. ¢ is completely bounded (c.b.) if ||¢||s = sup,, [|¢™| < oo, and ¢ is completely
contractive (c.c.) if |||l < 1. Moreover, we say that ¢ is c.c.p. if it is contractive and
completely positive (in particular it will be c.c. and c.p.). Note that c.b. and c.c. are
analogously defined on operator spaces.

Completely positive and completely bounded maps have been well studied. We will
state some results, of which the proofs can be found in [22].

Proposition 1.1.3. If A, B are unital C*-algebras, S C A is an operator system, and
¢:S — Bisac.p. map, then ||¢||la = ||¢]] = [|¢(1)]].
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Another important fact related to this is that any unital, completely contractive map
is completely positive. This is analogous to the fact that any contractive functional on a
C*-algebra which is unital is in fact a state.

Theorem 1.1.4 (Stinespring dilation Theorem). Let A be a unital C*-algebra, ¢ : A —
B(H) be a c.p. map. Then there exists a Hilbert space K, a unital *-representation 7 : A —
B(K), and an operator V' : H — K with ||[V*V|| = ||¢(1)]] such that

¢() =Vn()V.

Theorem 1.1.5 (Arveson’s extension Theorem). Let A be a unital C*-algebra, S C A
an operator system. Then every c.c.p. map ¢ : S — B(H) extends to a c.c.p. map
v A— B(H).

Theorem 1.1.6 (Wittstock’s extension Theorem). Let A be a unital C*-algebra, X C A an
operator space. Then every c.b. map ¢ : X — B(H) extends to a c.b. map ¢ : A — B(H)

with [[¢b][cs = [|]les-

Theorem 1.1.7. Let A be a unital C*-algebra, ¢ : A — B(H) be a c¢.b. map. Then
there exists a Hilbert space I, a *-homomorphism 7 : A — B(K) and bounded operators
V(W H — K with ||¢]|s = [|V]|[|W] such that

¢(-) = V(- )W.
Moreover if ||@]|s = 1, V, W can be taken to be isometries.

There is also a good understanding of what happens if we consider maps from and to
M,,.

Lemma 1.1.8. Let A be a C*-algebra, (e;;) the matrix units for M,,. A map ¢ : M, - A
is c.p. if and only if (¢(e;;)) is positive in M, (A). i.e., we have a bijective correspondence

¢ cp. = (9(ei) € My(A)y.

Lemma 1.1.9 ([14], Lemma 2.3). Let S, T be operator systems such that dim(S) =n < co.
Then any map ¢ : S — B is c¢.b. with

o]l < [l < nll¢™].
Proposition 1.1.10. Let A, B be C*-algebras, ¢ : A — B be a c.c.p. map.
1. (Schwarz Inequality) ¢(a)*¢(a) < ¢(a*a) for all a € A.

2. If a is such that ¢(a*a) = ¢(a)*¢(a) and ¢(aa*) = ¢(a)p(a*), then ¢(ba) = ¢(b)P(a)
and ¢(ab) = ¢(a)p(b) for all b € B.

3. The subspace Ay = {a € A | ¢(a*a) = ¢(a)*¢(a) and ¢(aa*) = ¢(a)p(a)*} is a C*-
subalgebra of A, and is called the multiplicative domain of ¢. The multiplicative
domain of ¢ is the largest subalgebra of A on which ¢ restricts to a *~homomorphism.
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Lemma 1.1.11 (6], B.4). Let X be an operator space and ¢ : X — M,, be bounded. Then

I8lles = 16t

Definition 1.1.12. Let A C B be C*-algebras. A map F : B — A is called a conditional
expectation if £ is a c.c.p map such that F(a) = a and E(aba’) = aE(b)d’ for all a,a’ €
A, b€ B.

Theorem 1.1.13 (Tomiyama). Let A C B be C*-algebras, and F : B — A a map such
that E(a) = a for all a € A. The following are equivalent:

1. F is a conditional expectation;
2. Eis c.c.p.;

3. F is contractive.

1.2 Tensor Products of C*-Algebras

When studying algebras, tensor products are a very natural extension which allows one to
“extend scalars.” We will briefly outline the construction of certain tensor products of C*-
algebras, and define two tensor products which exist for every pair of C*-algebras (although
they may coincide) - that is, the max tensor product and the min tensor product. We will
mostly be concerned with the min tensor product.

For two (algebraic) objects A, B, let A® B denote their algebraic tensor product. For
Hilbert spaces H, IC, we will write H ® K to denote the Hilbert space completion of H ® I
under the inner product (3, x; ® yi, D5 u; @ vj) = >, (@i u;)(Yi, vj). It is easy to see that
if (e;) € H, (f;) C K are orthonormal bases, then (e; ® f;) € H ® K is an orthonormal basis
for H ® K.

Now if we take operators S € B(H),T € B(K), then we get a unique operator S ®
T € B(H ® K) defined on elementary tensors by S ® T'(v ® w) = Sv ® Tw. Moreover
IS @7l = IS|I7.

It is clear that if we have two C*-algebras A, B, then their algebraic tensor product is
a *-algebra with natural operations.

Definition 1.2.1. Let A, B be C*-algebras. A C*-norm on A® B is a norm || - ||, such that
lzylo < ||2]lallylle and ||z*z||, = ||2]|2 for all z,y € A ® B. We will denote the completion
of A® B with respect to || - ||o by A ®, B. This is clearly a C*-algebra.

We know that M, ® A ~ M, (A) has a unique C*-norm since M, (A) is a C*-algebra.
Indeed, if we take a faithful representation 7w : A — B(#H), then it has the natural operator
norm on B(H™), which restricts to a C*-norm on M, (A) C B(H™). Since C*-algebras
have unique C*-norms, evidently this norm is unique. This will be a crucial observation
once we examine nuclear C*-algebras.

Definition 1.2.2. Let A, B be C*-algebras.



1. The maximal C*-norm on A ® B is defined as follows: for x € A ® B,
||| max = sup{||7(x)|| | 7 : A® B — B(H) is a *-homomorphism}.
We let A ®pax B be the completion of A ® B with respect to || + ||max-

2. Let m: A— B(H),0 : B— B(K) be faithful representations. The spatial (minimal)
norm is defined as

1)~ i @ billwin = 1> 7(a:) @ 0(b:)l 53

for Y a;®b; € A® B. We will denote the completion of A ® B with respect to || - ||min
by A® B.

Both of these are C*-norms, and ||z||min < [|%]|a < ||Z||max for every C*-norm || - ||, on
A ® B. The last inequality is clear, while the first follows from a theorem of Takesaki. This
can be found in chapter 3 of [6] or chapter IV.4 of [30]. Most of the results that follow are
from chapter 3 of [6] as well.

It is also true that we can extend certain tensor product maps, with the right assump-

tions.

Theorem 1.2.3. Let A, B, C, D be C*-algebras, ¢ : A — C,v : B — D be c.p. maps. Then
the map
pOY:AOB—=-CO®D

extends to a c.p. map on both the minimal and maximal tensor products. Moreover, if we
denote these by ¢ ® ¢ and ¢ @y Y respectively, then

19 Qmax V1| = |0 @ Pl = (@[l |12]].

This next result is quite deep, but is vital for proving that the first two characterizations
of nuclearity, as in chapter [2 are actually equivalent. Because that result will be assumed,
we will state this here without proof.

Theorem 1.2.4. Let ¢ : A — M C B(H) be a map from a unital C*-algebra A to a von
Neumann algebra M. Then there exists c.c.p. maps ¢y : A — My, ¥ : Myy — M such
that ¢(a) = limy ¥, o ¢)(a) (norm-convergence) for all a € A if and only if the product map
Xy AO M — B(H), defined by ¢ X tp(a ® b) = ¢(a)b, is continuous with respect to
the min-norm.

The following result will be useful for exhibiting an example of a non-exact C*-algebra.

Theorem 1.2.5 (The Trick). Let A C B,C be C*-algebras, || - ||, be a C*-norm on B® C,
and || - ||z be the restriction of || - || to A®C. lf 1y : A — B(H),mc : C — B(H)
are representations with commuting ranges and the product 74 X ¢ : A® C — B(H) is
|| - ||s-continuous, then there exists a c.c.p. map ¢ : B — m¢(C') which extends 74.



1.3 Crossed Products (by Discrete Groups)

Crossed products are the realization of non-commutative dynamical systems. One can con-
sider the dynamics of a group acting by automorphism on a compact Hausdorff space, and
understand many things about both the group and the topology of the space. This carries
over nicely to the non-commutative setting: for example, it was proved in [15] that a discrete
amenable group G is C*-simple (that is, its reduced group C*-algebra is simple) if and only
if it acts freely on its Furstenburg boundary, and this is equivalent to C'(0rG) X, G being
simple, where OrG is the Furstenburg boundary. Our use of crossed products will mostly be
to prove that certain C*-algebras are nuclear or exact, or to preserve these properties.

Definition 1.3.1. A C*-dynamical system (A, G, «) consists of a C*-algebra A, a discrete
group G, and a group homomorphism a : G — Aut(A). We will denote a(s) by a,. Given
a C*-dynamical system, a covariant representation is a pair (m,u) where 7 : A — B(H)
is a *-representation, and u : G — B(#) is a unitary representation of g such that

usm(a)ug = m(os(a))
for all a € A, s € G, where ug = u(s).

If (A, G,«) is C*-dynamical system, we let AG = C.(G, A) be the space of finitely
supported functions G — A, and we write elements as finite sums ) ass. We define a
twisted convolution and an involution on AG as follows. For ) _ass,> , bit € AG,

(Z ass> <Z btt> = Z assbys st = Z asas(by)st = Z asas(bs—14)t,

s s,t st st

and

*
(Z ass> = Z s*at =stalss Tt =a; (af)sT! = Zas(a:_l)s.
S S

S
It is clear that these operations align with what we would have in a covariant representation.
Note that given a *-representation AG — B(H), its clear that we can get a covariant
representation, and that given a covariant representation, we can get a *-representation.

Definition 1.3.2. Let (A, G, a) be a C*-dynamical system.

1. The full crossed product of (A, G, a), denoted A x, G, is the completion of AG with
respect to the norm
2]l = sup || (2)]],

where the supremum is taken over all (cyclic) *-representations 7 : AG — B(H).

2. The reduced crossed product of (A4,G,«), denoted A x,, G, is the closure of
the following representation. Let A C B(H) be a faithful representation , and let
m: A= B(H®CGG)) by n(a)(§ ®@dy) = (y-1(a)f) ® §,. Now consider the *-
representation 7 x (1 ® \) : AG — B(H ® (*(G)), where A : G — B({*(G)) is the
left regular representation. This is a covariant representation, and the C*-algebra
AXpq G=C*((m x (1®A))(AG)) is independent of choice of faithful representation
A C B(H).



If A is unital, then there is a copy of A in either crossed product, and a copy of G in
the unitary group of either crossed product.

Theorem 1.3.3. The map £ : AG — A, given by E(_, ass) = a., extends to a faithful
conditional expectation from A X, , G onto A.

Lemma 1.3.4. Let (A, G, «) be a C*-dynamical system, F' C G be finite. Then there exist
cep. maps ¢ : AXg, G = AR M, ¥ : A® Mjp - AG C A X, G such that for all

a€ A seQqG,
|F N sF|
———as.

|F|

We require one last result, which is a Consequence of Green’s imprimitivity theorem.

b0 glas) =

Definition 1.3.5. Let G be a locally compact group, X a locally compact space, and let
G X.

1. G ~ X is free if the stabilizer of every point is trivial.

2. G ~ X is proper if the map ¢ : G x X — X x X, given by ¢(g,2) = (¢ - x,x),
satisfies ¢ ~1(K) is compact for all compact K C X x X.

Theorem 1.3.6 ([34], Remark 4.16). Let G be an infinite, second countable, locally compact
group, and X be a second countable locally compact space. Then if G ~ X is proper and
free,

Co(X) x G ~ Co(X/G) @ K(L*(G),
where X /G denotes the quotient of X by the orbits, with the appropriate topology.

Corollary 1.3.7. Let 7 : Z — Aut(Cy(R)) be the automorphism defined by 7(f)(z) =
f(z+1). Then Cy(R) %, Z ~ C(T) @ K.

Proof. 1t is clear that the action Z ~ R given by n - x — n + x is both free and proper. The
result follows by the above theorem. m

1.4 K-Theory

To every C*-algebra A, we associate two abelian groups Ky(A) and K;(A). Ko(-) and K;(-)
are covariant functors from the category of C*-algebras to the category of abelian groups.
The details of the following constructions and results can be found in [27]. These functors
are of particular interest since they are an isomorphism invariant. There are certain classes
of C*-algebras, where the K-theory is a complete invariant: for example, K is a complete
invariant for the class of approximately finite-dimensional (AF) C*-algebras.

Let (S,+) be an abelian semigroup. We let G(S) be the Grothendieck group of
G. That is, G(S) = S x S/ ~, where (z1,y1) ~ (22,y2) if there exists z € S such that
T1+Ys+z2=ax9+1y + 2. Welet vs: S — G(S) be the map vys(z) = (z +y,y), where (a,b)
denoted the equivalence class of (a,b) € S x S, and z,y € S.

G/(S) is an abelian group with the operation (1, y1) + (2, y2) = (z1+x2, y1 +Y2), where
0= (x,z) and —(z,y) = (y,x) for z,y € S. The map ~g above is called the Grothendieck
map and is independent of choice of y € S.



Definition 1.4.1. Let A be a unital C*-algebra. Let P,(A) = {p € M,(A) | p = p* = p*},
and Py (A) = U,P,(A). Define an equivalence relation ~. on Py (A) as follows. For
p € P,(A),q € Ph(A), p ~ q if there is some m X n matrix v with entries from A such
that p = v*v and ¢ = vv*. Let D(A) = P, (A)/ ~ and define a binary operation on D(A)
by [Pl + [@lc = [P ® ¢]oo- Then (D(A),+) is an abelian semigroup and we let Ky(A) =
G(D(A)). If v: D(A) — Ky(A) is the Grothendieck map, we define [-]o : D(A) — Ky(A) by
[Plo = ([Ploc)- i i

If A is non-unital, let 7 : A — C be the quotient map, where A is the unitization of A.
Then define Ky(A) = ker Ky(m).

Definition 1.4.2. Let A be a unital C*-algebra, U,(A) = U(M,(A)), and Uy(A) =
UnU,(A). Define an equivalence relation ~; on Uy (A) as follows. For u € U,(A),v € U,,(A),
u ~1 v if there exists some k& > m,n such that u® 1;_,, ~, v® 1x_,,, where ~, is the natural
homotopy relation on the unitary group of a C*-algebra. Now for any C*-algebra, A, define
Ki(A) = Uy (A)/ ~1, which is an abelian group with operation [u]; + [v]; = [u®v];, identity
[1;]1 for all k, and inverse given by —[u]; = [u*];.

If A is not unital, let K,(A) = K;(A).

Note that if A is unital, then there is a group isomorphism K;(A) ~ Uy (A)/ ~;.

Theorem 1.4.3. Ky(-) and K;(-) are covariant functors from the category of C*-algebras
to the category of abelian groups.

Remark 1.4.4. Evidently there is another way to construct Ky(A) and K;(A) if A is unital.
One takes the Grothendieck group of P(K® A)/ ~, where P(K® A) is the set of projections
and ~ is Murray-von Neumann equivalence, and the operation is similar to the one above
the one above: if p,q € P(K® A), find orthogonal projections p/, ¢’ such that p ~ p',q¢ ~ ¢,
then set [p] + [¢] = [’ + ¢].

For K7, one just takes K;(A) =U((K® A)™)/Us(K® A)~).

Theorem 1.4.5. Let

0 y [ —— A —T"— A/l —— 0

be a short exact sequence of C*-algebras. Then there is an exact sequence

Ko(I) 22 Ko (4) 22 (A1)

JIT ltso

Ki(A/T) V7 Ki(4) T Ki(1),

where d; is the index map, and dq is the exponential map.

It will not be necessary to know exactly what the maps dy,d; are. All that we shall
need is the exactness of the sequence. This will be used as a computational tool to compute
the K-theory of the Cuntz algebras.



1.5 Excision and Glimm’s Lemma

There is a useful approximation property on the states which are wk*-limits of pure states,
called excision. This along with Glimm’s Lemma will prove to be valuable tools when
considering the structure of unital, simple, purely infinite C*-algebras. The results about
excision can be found in [I], while there are proofs of Glimm’s lemma in chapter 11 of [13]
and chapter 1 of [0].

Definition 1.5.1. Let A be a C*-algebra, ¢ € S(A) a state. A net (e,) of positive elements,
with ||ex|| = 1, excises ¢ if lim), |lexaey — @(a)ei]| = 0 for all a € A.

Theorem 1.5.2. Let A be a unital C*-algebra. A state ¢ can be excised if and only if ¢ is
a wk*-limit of pure states.

Lemma 1.5.3 (Glimm’s Lemma). Let H be separable, K = IC(#) be the compacts, and let
A C B(H) be a C*-algebra such that 14 € A. If ¢ is a state such that ¢|4nx = 0, then ¢ is
a wk*-limit of vector states on A. Moreover, if A is irreducible in #, then ¢ is a wk*-limit
of pure states of A.



2 Nuclear and Quasidiagonal C*-algebras

In this chapter, we outline several approximations properties for C*-algebras and groups.

2.1 Nuclear C*-Algebras

Nuclearity for C*-algebras is sometimes thought of as the non-commutative analogue of com-
pactness, so naturally these algebras are very important. The previous statement becomes
clear when one sees the proof that all abelian C*-algebras are nuclear (Proposition 2.4.2 of
[6]). Most of the following can be found in chapters 2 and 3 of [6] as well.

Definition 2.1.1. A map 0 : A — B between C*-algebras is nuclear if there exists c.c.p.
maps ¢y : A — My, ¥y 1 My — B such that ¢y o ¢ — 6 in point-norm - that is,

[1hx © da(a) — O(a)|| — O for all a € A.

It is clear that this is actually quite a local property. This definition is equivalent
to the condition that for every finite F C A, > 0, there exists n € N, c.c.p. maps
¢:A— M,,¢: M, — B such that ||t o ¢(a) — 0(a)|| < € for all a € F.

This, however, is not the right notion for von Neumann algebras.

Definition 2.1.2. Let A be a C*-algebra, N a von Neumann algebra. We say a map
0 : A — N is weakly nuclear if there exists c.c.p. ¢, : A — M,, ¥y : M, — N such that
Py 0 ¢ — 0 point-ultraweakly - that is,

[1(¢x 0 da(a)) —n(0(a))|| = 0 for all a € A,n € N..

Again, this is a local property and is equivalent to the condition that for all finite
F C A x € N,,e >0, there exists c.c.p. ¢ : A — M, : M, — N such that ||n(¢o¢(a)) —
n(f(a))|| < e foralla € F,n € x.

If algebras are unital, one can replace c.c.p. with u.c.p., if not, we extend nuclear maps
on to their unitizations. As such, the unital and non-unital cases are not all that different.
Also in the weakly nuclear case, one can ensure that the c.c.p. maps are normal.

Remark 2.1.3. Theorem really says that a map ¢ : A — M C B(H) is weakly nuclear
if and only the product map ¢ X ¢y : A ® M’ — B(H) is min-continuous.

Definition 2.1.4. Let A be a C*-algebra, M a von Neumann algebra.
1. We say that A is nuclear if the the map ids : A — A is nuclear.

2. We say that M is semidiscrete if the map idy,; : M — M is weakly nuclear.
Theorem 2.1.5. Let A be a C*-algebra. The following are equivalent.

1. Ais nuclear: i.e., idy : A — A is a nuclear map;
2. A is ®-nuclear: i.e., for any C*-algebra B, A @u.x B = A® B;
3. A* is a semidiscrete von Neumann algebra;

4. A* is an injective von Neumann algebra.

The equivalence of the first two with the last two is in chapter 9 of [6] or chapter XVI
of [31]. This is a very deep result, which we will be assuming.

9



2.2 Amenable Groups

The concept of amenability has been around for quite some time, and it is particularly preva-
lent in the study of groups. The class of amenable groups has many interesting properties,
one of which being that the reduced C*-algebra of a group is nuclear if and only if the group
is amenable. This gives rise to many examples and non-examples of nuclear C*-algebras
- and as we will see, an example of a non-nuclear but exact C*-algebra, in addition to a
non-exact C*-algebra.

Recall that for (*°(G), we have the left translation action given by s - f(t) = f(s7't)
for f € (>(G),s,t € G.

Definition 2.2.1. We say that a group G is amenable if there exists a state p on (*(G)
which is invariant under left translation. That is, u(s- f) = p(f) for all f € (>(G),s € G.

In the discrete case, amenable groups are characterized in several ways. The following
can be found in chapter 2.6 of [6]. Recall that for two sets A, B, AAB = (AUB)\ (AN B).

Theorem 2.2.2. Let GG be a group. The following are equivalent.
1. GG is amenable.

2. G has an approximate invariant mean. That is, for any finite subset ¥ C G and
e > 0, there exists u € Prob(G) such that

max [s - g — plh <.
3. (G satisfies the Fglner condition. That is, for any finite subset £ C F' and ¢ > 0,
there exists a finite subset F' C G such that

|sFAF| _
max —m—— E.
selR |F|

A sequence of finite sets F,, C G such that

|sF,AF,|
| £l

for every s € (G is called a Fglner sequence. It is clear that G satisfies the Fgner
condition if and only if there exists a Fglner sequence.

4. The trivial representation 7 of G is weakly contained in the left regular representation
A. That is, there exists unit vectors & € £%(G) such that ||\ ,& — & — 0 for all s € G.

5. There exists a net (¢;) of finitely supported positive definite functions on G such that
¢; — 1 pointwise.

6. C*(G) = C*(G).

7. C*(G) has a character (a one-dimensional representation).

10



8. For any finite £ C GG, we have

=1.

1
PR

9. C*(G) is nuclear.

10. L(G) is semidiscrete.

2.3 Quasidiagonal C*-Algebras

Quasidiagonality is another very important approximation property that can be defined in
many different ways, but we opt for the treatment given in chapter 7 [6]. These are algebras
which “asymptotically” act in a similar fashion to a matrix algebra. These have been studied
greatly by Voiculescu, and he gave work to show that quasidiagonality is preserved under
homotopy. This property is equivalent to the algebra having an embedding to the quotient
of a product of matrix algebras with a c.c.p lift (or u.c.p. if the algebra is unital). This
will be invaluable as the cone of any C*-algebra is QD. This will allow us to construct our
embeddings into Os.

Definition 2.3.1. A C*-algebra A is quasidiagonal (QD) if there exists c.c.p. maps

ér + A = My such that [|ga(ab) — ¢r(a)Pr(b)|| — 0 and ||a|| = limy [|¢x(a)|| for all
a,b € A. This first property is called asymptotically multiplicative and the second is
called asymptotically isometric.

Again, this is really a local property.

Lemma 2.3.2. A is QD if and only if for every finite set FF C A, > 0, there exists c.c.p.
¢ : A — M, such that

[¢(ab) — ¢(a)p(b)|| < e and [[¢(a)]| > o] — €
for all a,b € F.

Lemma 2.3.3. If A is unital and QD, then there exists u.c.p. maps ¢, : A — Mj,) which
are both asymptotically multiplicative and asymptotically isometric.

Theorem 2.3.4. A C*-algebra A is QD if and only if there exists an injective *-homomorphism

1L, My(n
Aoy k)
which admits a c.c.p. lift A — 11, Mj,).
If A is unital, the above embedding and c.c.p. lift can both be taken to be unital.

Theorem 2.3.5. Let A be a C*-algebra. Let the cone of A be CA = Cy((0,1]) ® A, and
the suspension of A be SA = Cy((0,1)) ® A. Then both CA and SA are QD.
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2.4

Examples

Here we list several examples of objects with and without the above properties. We have
examples and non-examples of each.

Example 2.4.1. First let us look at some examples of C*-algebras.

1.
2.

10.

11.

Abelian C*-algebras are nuclear and QD.
Finite dimensional C*-algebras are nuclear and QD.

Inductive limits of nuclear C*-algebras are nuclear. In particular, approximately finite
dimensional C*-algebras are nuclear.

Inductive limits of QD C*-algebras are QD, as long as the connecting maps are injective.

The reduced C*-algebras of amenable groups are nuclear. Note that the full C*-algebra
is equal to the reduced one in this case.

A® B and A ®p.x B are nuclear if and only if both A, B are nuclear (in which case
the two tensor products agree).

Nuclearity and quasidiagonality is preserved under min-tensors: that is if A, B are
nuclear or QD, then so is A ® B. The converse is true as well.

Both finite and abelian groups are amenable. Amenability is closed under taking
subgroups, quotients, extensions, and direct limits.

If G is an amenable group, a: G — A is an action, then A x,, G = A x, G and A is
nuclear if and only if A x, G is nuclear.

It is well known that the free group Fs is not amenable. This can be seen through the
existence of a paradoxical decomposition, in the sense of Banach-Tarski. Consequently
Cx(Fy) is a non-nuclear C*-algebra, as is C*(Fy).

If G is non-amenable, then C*(G) is not QD. In particular, C(IF3) is not QD, and it
is not nuclear.
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3 Special C*-Algebras

There will be two C*-algebras which give rise to two characterizations of exactness in the
separable setting: the CAR algebra and the Cuntz algebra Oy. We begin by studying the
CAR algebra. CAR stands for canonical anticommutation relations, and the CAR algebra
is a universal algebra generated by these relations, which will be defined shortly. It turns
out that it is isomorphic to the UHF algebra My~ = ®{°M,;. We will see later on that
every separable exact C*-algebra can be realized as the quotient of a subalgebra of the CAR
algebra, giving us one characterization of exactness which allows us to prove that exactness
is preserved under taking quotients.

The second C*-algebra is the Cuntz algebra Oy, which is a universal C*-algebra gener-
ated by two isometries satisfying the Cuntz relations. To understand the structure of Oy, we
will study a family of algebras generated by isometries, namely the Cuntz algebras O,,, for
n > 2, and O4. The algebras O,, will contain canonical copies of M, and O, in particular
will contain a copy of Ms~. My~ will be seen to have a certain Rokhlin property, which
plays a role in the proof that Oy ® Oy ~ (O5. The algebra Oy will give rise to another
characterization of exactness, namely a separable C*-algebra is exact if and only if it embeds
into Oy. This will require plenty of work, and we will get to it by the end.

3.1 The CAR Algebra

The UHF algebra M, is defined to be the direct limit of (M,); with connecting maps
x — 1 ®x. One can also view this as the infinite tensor product ®{°M,,. This is defined as
the norm closure of U, Ay, where Ay = (QFM,) @1 ®@1--- C B(®°43).

Let H be a separable infinite-dimensional Hilbert space, K a Hilbert space, and let
a:H — B(H) be a map such that for all {,n € H,

a(§a(n) +a(n)a€) =0, and a(§) a(n) + a(n)a(§)” = (1,1

These relations are called the canonical anticommutation relations, abbreviated CAR.
It will show that the C*-algebra generated by {a(&) | £ € H} is independent of choice of
a, and that it is isomorphic to the unique UHF algebra My = ®7°Ms. Therefore this
C*-algebra will be a simple, separable, nuclear C*-algebra. The following example can be
seen chapter 5.2 of [3].

Example 3.1.1 (Creation operators on the anti-symmetric Fock space). Let H be a sepa-
rable Hilbert space, and let H"" be the antisymmetric tensor product: that is, H"" is the
subspace of H®" given by span{zy A --- Az, | z; € H}, where

1
TIN Ny = —— SgN(0)Te(1) @ * ++ Q Ty(n)-
1 maezsn () (1) (n)

Let Fo(H) = ®p—oH"", where the n = 0 corresponds to the summand C. Define o : H —
B(F.(H)) ~ B(H) by
a(@)(xy A Axy) =z Az A Az
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and extend by linearity and continuity; clearly this map is continuous. Now it remains to
show that the CAR are satisfied. First notice that x,(1y A -+ A To@m) = sgn(o)zy A -+ Ay,
Thus

ar)a(y)rr A ANy =T AYyAxi A ATy
=—YNTANTL A Ny
= —a(y)a(r)ry A+ Ay,

so that the first relation holds. Now note that as in Proposition 3.8.5 of [29], we have that
(A N Nyt Ao A yy) = det({,95)).

Indeed,

1 n
(T A N i A Aga) = — > sen(0)sgn(I (To(), yrii)

" 0,7€SR

= Z sgn(U)H?zl <xcr(i)7 y1>

= det((z;,y;))-

Therefore, letting v denote when we omit that part of the wedge, we have

<$,y1> T <x7yn+1>
I ’y o .. l’ 7yn
(@) A Az A Ay = det | | 0T ()
<xn7y1> e <xnayn+1>
n+1
= Z(_l)k+1<$ayk><$1 Ao Nyt Ao A Ao A Yng)
k=1

= (D)"Y A Az, (T, Y Yr A Al A AYnsn)

k=1
n+1
= (21 A Ay (D) g, 2y A A A A g,
k=1
which allows us to conclude that
n+1
Q@) G A Agar) = S (=D @hyr A Age Ao A g,
k=1

Now
az)'aly)ry AN ANxy =a(x) yANxg A ANz,

=y )ar Ao Aa+ D (D) g,y Aay A Adp A Ay,
k=1
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and

n

a(y)a(z) zy A ANx, = Z(—l)kH(xk,x)y ANTI A NI A Ay,
k=1

By summing these quantities, it is clear that we are left with (y, z)x; A -+ A x,, hence

a(r) a(y) + a(y)a(z)" = (y,x)I.

Proposition 3.1.2 ([11], Example II1.5.4). Let o : X — B(K) be a map satisfying CAR,
and let B = C*({a(§) | £ € H}). Then B ~ My~. As such, B is independent of choice of a.

Proof. Let ||€]] = 1, then n = £ gives us that a(&)a(n) + a(n)a(é) = 0, hence 2a(£)? = 0,
giving us that a(£)? = 0. Also notice that a(£)*a(€) + a(é)a(£)* = I. Therefore

(&) a(§)) = (&) () I
= ((§)"a(§)) (a(§) a(§) + al§)a()”)
= (a(§)"a())” + a(§) a(§)’a(e)”
= () a(€)”.
Defining E(£) = a(é)*a(é) = (a(é)*a(€))? = (a(é)*a(f))*, this is clearly a projection and

sois a(§)a(é)* = 1-E(€) = E(§)*. So a(f) is a partial isometry, with initial projection F(¢)
and range projection E(£)+. We then have that C*(«(€)) = span{a(€), a(£)*, E(§), E(§)*} ~
M.

Letting egl) = a(f), eglz) = a(&)*, ei? = E(©), e%) = E(&)*, it is clear that this is a set
of matrix units for C*((§)) ~ Ma.

Now for £, n € ‘H orthogonal

Since a(n) commutes with E(§), it follows that E(n) commutes with E({) as well. Now let
Vi=1-2B(¢) = B(&)" — F(€). Then

Via(n)a(§) = —Via(§a(n) = a(§)Via(n),

where the first equality comes from the first anticommutation relation, and the last equality
follows from the following calculation:

a(§)Via(n) = af¢
(¢

) = 2a(§)"a(&))(n)

Ja(n) = 2e(§)a(§) (&) er(n)
—a(n)a(§) + 2a(§)a(§) a(n)a(f)
( 142(1 = E(§))a(n)a(§)

= (1 =2E(¢§))a(n)a(§) = Via(n)a(f).

15



We also have that

Via(n)a(§)” = —Via(§) a(n) = a(§) Vialg),

where the first equality comes from the second relation, and the last equality follows from
the following calculation:

Via(n)a(§)" — a(é)Via(n) = a(n)a(§)” — 2a(&)"a(§)a(n)a(§)
( (

This gives us that V; commutes with all of C*(«/(€)).

Now C*(Via(n)) = span{Via(n), Via(n)*, E(n), E(n)t} ~ M,, and this C*-algebra
commutes with C*(a(€)). Letting i = Via(n),e'2 = Via(n)*, e = E(n), 52 = E(n)*,
these are clearly matrix units for C*(Via(n)). Moreover, we clearly have that C*(a(§), a(n)) ~
M, has matrix units eg)e,(j), 1<4,5, k1 <2

Now if (A )nen is an orthonormal basis for H, let Vi = I, and V,, = II"-}' (I — 2E(h,,))
for n > 2, and we get our V; just by picking Vi with hy = h, hy = k as above. Then we
can always define matrix units, e{?) = a(hy), el? = a(h,)*,e\? = E(h,), e = E(h,)*, to
get an isomorphic copy of Mp, and these copies will commute with each other. Then letting
B, = C*({a(h;) | 1 <1 < n}), B, ~ My with standard basis e,, = H?:lef;()i)T(i), where
o,7:{1,...,n} — {1,2} are functions. Then B = U, B, = C*({a(¢) | h € H}) is clearly
isomorphic to the UHF algebra Ms. ]

Remark 3.1.3. In the UHF algebra My, these V,,’s can be seen as

1 0\™"
Vn—(o _1) o R

Moreover, we have
() = (77 () = ) el

®(n—1)
1 0 n
:(0 _1> S @1m. .

We will see later that every separable exact C*-algebra is isomorphic to a subquotient
of the CAR algebra. Since Oy will be proven to be nuclear, hence exact, and it will contain
a copy of the CAR algebra, O, will be isomorphic to a subquotient of a subalgebra of itself,
which is certainly an intriguing property.

There is an interesting homomorphism My~ — My given by the Bernoulli shift. The
following can be found in [4].
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Lemma 3.1.4. Let A = @M, = C*(a(h) | h € H) where a : H — B(H) is a map
satisfying the CAR. Let (h,) be an orthonormal basis for . Then the maps o,p: A — A
determined by

o(z) = 1@, p(a(h)) = a(Sh),

where S : H — H is the unilateral forward shift with respect to (h,,), coincide on the even
algebra A¢ = C*(a(h)a(k),a(h)a(k)* | h,k € H).

Proof. We will show that o(a(h,)a(hy,)) = pla(h,)a(hy,)) for all n < m € N. Using the
remark above,

pla(hn)a(hm)) = alhnir)o(hm)

1 0\ 1 0\ _
:<(0 —1) ®€§1H)®1®”'> ((o —1> ®€§1H)®1®~-->

@n (n+1) 1 0 ®(m=n-1) (m+1)
=1 ®_621 ® 0 —1 ®621 ®1®

@n o (n+1) 10 \*m Y (m+1)
=—1 ® €91 & 0 —1 ® €9y LR

and

o(a(hp)alhy)) =0 ((((1) _01) ®(n—1) ® —egf) R1l®-- ) ((é _01) ®(m—1) ®1l®--- >>

. 1 0 ®(m—n—1) )
:1®1®(”—1)®—e§7{+)®(0 _1> el gl®---

on iy o (1 0NTTTY

The case where n > m and where we consider a(h,)a(h,,)* are similar. The case where
n = m is trivial. Thus p Ae. [

Ae:U

Proposition 3.1.5 (The Rokhlin Property of the Bernoulli Shift). Let o be the one sided
Bernoulli shift on the CAR algebra A = Myx = Q°Ms: 0(a1 Qa2 @) =1QRa; Qas @+,
where all but finitely many a; are 1, and extend by linearity and continuity. Let A, =
(@KMs) ® 1+ ~ @Y M, be the unital subalgebra of A. For e > 0,7 € N, there exists k € N
and mutually orthogonal projections pg,p1,--- ,per = po in Ay such that Z? p; = 1 and
lo(p;) — pjsal| <eforall j=1,...,2"—1.

Proof. Let a: (*(N) = H — B(H) be a map satisfying the CAR, and let S € B(H) be the
unilateral forward shift. Then the map § : H — B(H) given by 5(h) = «(Sh) is another map
satisfying the CAR. Hence there is a *-homomorphism p : A — A given by p(a(h)) = «(Sh)
for all h € H. .

Let wy, = e 2 , and choose an orthonormal basis fo, f1, ..., f, € 2(N) such that 1S f; —
w;fil < 6 for some 0 < § < 5. Let v; = a(f;)(al(fo) — a(fo)*). Since o(v;) = p(v;) by

Aflerff>
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the above lemma, we have

lo(v;) = wjvsll = la(SFi)(alSfo) + alSfo)) — wjalf;)(alfo) + alfo))ll
< [la(Sf) (S fo) + a(Sfo)") — alSfi)alfo) + alfo)")ll
+ (S ) (alfo) + alfo)”) — wialfi)(alfo) + alfo))ll
< 2l|al*d + 2] 0|8
= 4?6 < e.

Then it is not hard to see that (v;)] satisfy the CAR:
Vv + vpv; = 0 and vjvf + vpv; = 05,1

So by a similar argument to the one above, C*(v; | 1 < j < r) o~ My-. Now since ||o(v;) —
w;v;l| < e, ||o(z) — Ad(u)z|| < e, where v = 13 ® - - - ® u, and

(10
uj—owk.

Therefore o(u) is precisely the 2"th roots of unitary, and u is unitarily equivalent to the cyclic
shift v on Myr. Let p; = X{(u,}(v), which are projections in M- which satisfy Zg ! pj =1
and |lo(p;) — pj41ll <e. O

3.2 The Cuntz Algebras O, and O

Here we will define the Cuntz algebras, show that they are algebraically simple, and that
they are nuclear. These initial results can be found in chapter V.4 of [I1] and in Cuntz’
original paper [9]. These algebras will later be seen to be unital, simple, purely infinite, so
they will have a very nice structure and K-theory.

Definition 3.2.1. The Cuntz algebra O, is the universal C*-algebra generated by n-
isometries (s;)} satisfying > s;s7 = I. Then Cuntz algebra O is the universal C*-algebra
generated by an infinite collection of isometries (s;)7° satisfying > s;s7 < I for all n € N.

We mean that O, is universal in the following sense. If ¢4, ..., ¢, are any other collection
of isometries satisfying the Cuntz relation, then there is a (unique) *-homomorphism p :
O, — C*(t1,...,t,) such that p(s;) = t;.

We can construct this algebra as follows. Let (7,) be a maximal collection of irreducible
representations of the Cuntz relation, which are necessarily on a separable Hilbert space.
Then form © = &7, so O,, = C*(7(s;) | 1 <i < n) has the desired property.

Remark 3.2.2. Since s;’s are isometries, s;s; is a projection. Moreover > s;s¥ = I implies
that (s;sf) are mutually orthogonal and so sfs; = 0 for i # j. Thus sfs; = §;;/. This holds

(3
for n € N, or n = oo.

Definition 3.2.3. For a word p = (iy,...,im) € {1,...,n}™ (or € N™ for O), define
Sp = Siy " Si

and let |u| denote the length of the word p.
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Lemma 3.2.4. Let y1,v be words in {1,...,n} (or N) such that s}s, # 0. Then
L If [u] = |v|, then p = v and s}s, = I.
2. If [u] > |v], then there exists a word ' such that p = vy and s};s, = s7,.
3. If |u| < ||, then there exists a word v’ such that v = pv’ and s7s, = s,/.

Therefore any non-zero word in (s;) U (s}) has a unique reduced expression of the form s,s}.
Moreover any element in the *-algebra generated by these elements can be written as a linear
combination of elements of the form s,s;,.

Definition 3.2.5. For n > 2 (including c0), k € N, let
Fi =span{s,s, | |u| = |v| =k, p, v are words in {1,...,n}},

and let
F = UpFp.

When n = oo, we let
Fi° =span{s,s, | |u| = |v| = k, p, v are words in {1,2,...}}.

Lemma 3.2.6. For n > 2, F! ~ M,» and F" ~ M, ~, the UHF algebra with supernatural
number n*°. Moreover, F° ~ K, the compacts, and F>° is an AF algebra.

Proof. F}!' is spanned by {s,s} | |u| = |v| = k, u, v are words in {1,...,n}}, which is a set
of matrix units for M,,» since

(5u55)(80S5r) = Su(ShSmur)Shy = O SpSay.
If p, v are words with |u| = |v| = k, then

n n
* * . * . *
5,8, = S, E 5;8i | s, = E SuiS,;i-

1 1

Thus the embedding F;' — F!.; is unital and behaves as desired, so that ™ is the UHF
algebra M, ~.

Seeing F° ~ K is easy - we get all the matrix units in B(®%¢?(N)), and the norm
closed span of this is just K. Since F}' C Fp,, C Fiif for all n, k, it follows that

v
which is AF. O

Theorem 3.2.7. For n > 2 (or co), there exists a faithful conditional expectation ® : O,, —
Fr.
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Proof. For A € T, notice that (As;) are a set of isometries satisfying the Cuntz relation.
Therefore there exists a *-automorphism py such that py(s;) = As;. Hence py(sf) = A\7's;,
and py(s,st) = A=s s*. Then the map A + p,(¢) is continuous for all ¢ in the *-algebra
generated by (s;). Since this *-algebra is dense in O,, and ||p,|| = 1 for all A € T, the map
T — O, defined by A +— py(t) is continuous for all t € O,,. Define

©.(6) = [ pr(B)i
T
Then for all words p, v,

if
P (sp5,) = /A“_wsus;d)\ = {O . if |pf # |v]
T

Sust il = ]
So ®,, actually maps to F", and if t € F}!, then ®,,(t) = t, so ,|z» = id. Now since ®,, is a
contractive projection onto F", it is a conditional expectation by Tomiyama ([1.1.13]). Now
if ¢ is positive and non-zero, then p,(t) is positive and non-zero, hence ®,,(t) is positive and
non-zero, so ®,, is faithful. O]

Lemma 3.2.8. Let n € N (or n = o0). Let u,v be words such that |u| # |v|. Let
m > max{|u|, [v]} and let s, = s{"sa. Then s7(s};s,)s, = 0.

Proof. Since |u| # |v|, gives us that if s}s, # 0, then either s}s, = s7,, where 1 <
1] < m, or 875, = s, where 1 < [V/| <m.

Sy)Sy = S5y # 0if and only if 5,y = s'l“l and |p/'| < m. However,

*

In the first case, (s},

f e h
If Sy = 87, then

st (s

¥ SV>87 = S:);(Si)l‘u

*
o

since s7sy = 0.
v/

In the second case, s3(ss,) = ss,s # 0 if and only if 5, = s | as || < m. However,
!
if Sy = 3|1V | then

V| )m—IV’\

s3(87,80)8y = s5(s1)" sy = s5(s7 s1'so =0
since s551 = 0. [l

Theorem 3.2.9. Let n > 2. For each m € N, there exists an isometry wy,,, € O, N (F?)
such that ®,(t) = w}, tw,, € F,, for all t € span{s,s; | |ul, |v| < m}.

—cm — *
Proof. Let s, = sT"sy and let wpm = 35—, $55,55. Then
* * %k * * * *
W Wi = g 5c5057555,85 = E 8555555 = E sssy =1,
le[=lo|=m |6]=m |6]=m

SO Wy, 1S an isometry.
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Now if |u| = m, then
WpmSy = SuS~ and S, Wy, = 548
nmSp = SuSy pWnm = SySp-
If s,,s} is a matrix unit for ), (so |u| = |v| = m), then
* * *
Wi SuSy, = SpS~Sy = SuS,Whm.

So since wy,,;, commutes with the matrix units, it commutes with F,". Moreover since w,,,
is an isometry, we have
* _ _ *
W) S Sy Wnm = SpSy = P (s,5)).

Now if |ul, |v| < m with |u| # |v|, then

WSSy Wi = Z 5585555,5,5c5ys: = 0= @ (5,8;,),
le|=[6]=rm
since if sjs,s;s. # 0, it can be written as s7,s, with [¢/| =m — |u[ # m — [v] = [V/|. Thus

858558, SeSy = 85,85, =0
by the above lemma. O
The proof of the following theorem is similar to that of Theorem above.

Theorem 3.2.10. Let n > 2. For each m € N, there exists an isometry w), € O, such that
Qoo (t) = wyy twy,, € F C Oy for all t € span{s,s; | |n], |v] < m words in {1,...,n}}.

Theorem 3.2.11. Let n > 2. If 0 # x € O,, there exist a,b € O,, such that axb = 1.

Proof. Since x # 0, 2"z # 0, and so ®,,(z*x) # 0 since ®,, is faithful. By scaling if necessary,
let us assume that ||®,(z*z)|| = 1. By density, there exists y in the algebraic span of s,s]
such that [|Jz*z — y|| < 3. By considering the real part of ¥, we may assume that y = y*.
Thus ||, (2°2) — B(y)]] < L. so0 [[@,(1)] > 2

Since y is in the algebraic span of s,s;, there exists m € N such that y is a linear
combination of elements of the form s,s; for |u|, [v| < m. Therefore by Theorem [3.2.9) there
exists an isometry w,,, such that ®,(y) = w,, yw,m € Fr. Since ||[®,(y)|| > 3 and @, (V)
is a self-adjoint element of a matrix algebra, there exists a rank one projection p € F such

that

POu(y) = Bulylp = |2.0) 0 > 2.

Moreover since p and s7*(s7)™ are both rank one projections in F, there exists an isometry
u € FJ such that upu* = s7*(s7)™. Now let

1
2 = ———(s7)upwy,, € O,.
EXOIE
Thus
Il < —— st il il < ———— = = = 2
2| £ ———||s] ull||Ipl Wl < || = = —,
EXOIE OANCRE
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and

* ]' *\M * m *\MmMm *x M x\Mm m X\Mm . m
2y2" = " (8]) " UP Wy Y Wrmpu” 57" = (87) " upu” syt = (s7)"s1"(s1)"sT = 1.
@ ()l
Hence
I = zataz] = |2y - 22)2")| < 2Plly — ool < 5= = =,
- — 34 3
so that zz*x2* is a self-adjoint invertible operator. Now let b = z*(zx*a:z*)_%, SO

=1

I

(b*z*)xb = (zw*xz*)’%zx*xz* (zx*xz™)”

In a similar manner, one can prove the following.
Theorem 3.2.12. If 0 # x € O, then there exists a,b € O, such that axb = I.
Corollary 3.2.13. O, and O, are simple for all n > 2.

Corollary 3.2.14. O, is generated by any n isometries satisfying the Cuntz relation, and
O« is generated by any countable collection of isometries satisfying the (infinite) Cuntz
relation.

Proposition 3.2.15. 0, @ K ~ (M,~ ® K) x Z, and O, is isomorphic to a compression of
(M~ @ K) x Z.

Proof. For each j € Z, let A; = ®2,;M,, ~ M, and consider the doubly infinite sequence

Bi+1 Bj
'—>Aj+1 )AJ )Aj,1—>"'

where §(x) = €3 ® . Since K = lim M,,+ under connecting maps = +— ey; ® z, it follows
-k
that A = lim A; ~ M~ ® K. Now let a;; : A; — A;;; be the natural isomorphism which
ﬁ

makes the following diagram commute:

S|

A, il
M, .

Then we can define an automorphism « : A — A where oS (7)) = Bjt1,00(j(x)), and
extending by continuity. This « effectively shifts our sequence to the left. Indeed, we have
the following commutative diagram:

j Bj Bj Bj—
ﬁj+2> AjJrl Ak > Aj N G—1 & 1) .- > A
T T T T

Bj B; Bij— Bj—
i > Aj . Aj—l /s - Aj_g ! 2) s y A




Now let B = Ax,Z and let u € B be a unitary which implements the action of o a(z) = uzu*
for x € A. Then B is the closure of the algebra of operators of the form

N
a= Z tiu',
N
for t; € A, N € N. Let t; = u*t;u’ € A, so B is the closure of operators of the form
a= Zu’fi + thuz
i<0 >0

Let p; be the unit of A;, which is a projection for all j. Notice that up;ju* = p;;1;. Let
By = poBpg. This contains Ag = poApg, and v = upy since upyg = p1u = poupy. We claim
that By is generated by Ay and v. Consider p = pg € Ay, and notice that for ¢ > 0,
pu'p = u'p = v* and so pu~'p = pu~ = (v*)". Thus

ptau'p = (ptip)(vp)" for i >0,
pu'tip = ((up)*) "t;p for i < 0.

But then this gives
pap =» (v*)'plip+ > _ ptipv’,
i<0 i>0
so that By is indeed generated by A and v.
Now identify Ay with M,(A;) and let (e;;) be matrix units for M, (A;) such that
e = p1. Let s; = e;1v, so

* * * * 3
$; i = PolU €1;€;1UPy = PoU = €11UP = PoU P1UPo = Py = Po,
giving that s; is an isometry. Moreover,
* *
S$iS; = €;1UPoPoU €1; = €41P1€1; = €41€11€1; = E44,

hence (s;) are n isometries satisfying the Cuntz relations, so C*(s1, ..., s,) ~ O,. We claim
that s1,...,s, generate By. It is sufficient to show that A is generated by si1,...,s,. We
can think of Ay as M, x(Ay) for all k. The matrices with scalar entries from Ay form a copy
M, of M,,» in Ay, and the union of these subalgebras is dense in the UHF algebra A,. Recall
that elements of the form s,s}, where p1, v are words in {1,...,n} of length k, generate of a
copy Ny of M, . To see that M, = N, notice that the matrix units for p,_1Mpr_1 are just

! Hey) = u (sisy) () = (s s) (5170 sg) " 1 < i <k

The rest of the matrix units are obtained in a similar fashion. Hence Ay C C*(sy,...,s,)
and we have By = poBpy ~ O,,. Using the same method, we get that B, = pBpr ~ O,.
Now the embedding By < Bj_; is just given by fx(b) = e1; ® b, and so

(Mp ® K) x Z ~ limB;, ~ 0, ® K.
_>
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Corollary 3.2.16. O, is nuclear.

Proof. We saw that O,, ~ pBp = p(M,,~®@K)p, so it is a compression of a nuclear C*-algebra,
hence nuclear. O]

Theorem 3.2.17. O is nuclear.

Proof. For each j € NU {0}, let A; = s]F>(s%) C O. Then A; ~ Ay = F*> for all
j =0 (via t = (s})’t(s1)?). Moreover A;_; ~ CI + (K ® A;), where CI comes from
s (s5) "t € Aj_; and

S{_I(Si1 T SikS;k e Sil)(s*lﬂ)j_l

corresponds to ‘
- 5)(5)) €K@ Ay,

€iy 51 & (8]1(82-2 T SikS;k ) J2
Now extend notation by letting A;_; = CI + (K® A;) for all j € Z. Consider the sequence
of C*-algebras

e A A Ay A A g — -

where the inclusion A; — A;_; is given by x — €13 ® v € K® A; C A;_; (e;; matrix units
for K). Let A be the direct limit of this chain. Since A; is AF,then A is AF and so it is
nuclear. Since A; are all isomorphic, letting o be the automorphism of shifting to the left,
the remainder of the proof follows as in the O, case. Let B = A %, Z and continue as
above. O

Proposition 3.2.18. M3(0,) ~ O,.

Proof. Let Oy = C*(s1, $2) where s1, s are isometries satisfying the Cuntz relation. Letting

. S1 S9 i 0 0
tl_(O 0)’t2_(81 82)’

we have that t1,t, are isometries satisfying the Cuntz relations. It is also clear that ¢, t,
generate My(O,), hence My(Os) ~ O,. O

Proposition 3.2.19. M,,(0y) ~ O, for all n € N.

Proof. The case for n = 1,2 are both done. Suppose that n = k+1 for k > 2, Oy = C*(sq, $2).
Let

00 00 0 O
10 - 00 0 0 S1 S35, 8351 .- sShlsy sk
o1 .--- 00 0 O 0 0 o .- 0
bh=1|{. . . SICTREE LAl B : : - : .| € Mj11(Os).
o0 ---- 01 0 O 0 0 o .- 0 0
00 --- 00 S1 S22

Clearly tTtl = 1. MOI’GOVGI‘, tltT = 252_21 €ii and tgt; = €11. Thus tﬂf){ + tgt; =1. So it

suffices to show that M, (Oy) is generated by t1,t,. Clearly ey € C*(t1,t2) =: A. We have
eir11 = tie; for all 1 <i < k—1, so we have (e;1)} C A. Since this is a C*-algebra, we have
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that (ei,j)ﬁjzl C A. Now for 1 <i <k, tye;; = sb 'sie;; € A, and so si(s5)"le;; € A. We
also have that tie5 = siep411 € A, so

(slek+171)(sf(s§)i_1eu) = SIST(SZ)FIGHM cAforl1<i<k.

But
k
Cht1kt1 = L1t] — Z ei; € A,
i=2
and so
Cht1 k+1t1€k+1 k11 = S2€k+1 k41 € A.
Thus
shlsyst(sy) tepiipi € Afor 1 <i<k.
Now
k—1
= e | 1= (s157(s5)" " + 5253(5) " ersra = (53)" ersrs € Al
i—
Therefore
(s5 " erranrn)((55)" terpn) = 851 (s5)" terpan € A.
Now since
k-1 k—1
s s) T D sh ssi(s3) T = S5 () T+ ) sh tsast(s5)
i=1 i=1
k—2
= o5 (53) T b Psrsi(53) T A ) s tsasi(sa) !
- f—2
= sb2s955(53)" 7+ sh s (s3)F T2 4D sy sisi(s3)
k—2 -
= 552 (5157 + 5253)(53)" 7+ Y sh ssi(s3) !
k—2 -
= )Y s i)
i=1
= S955 + 5151 = 1,
and

i—1 % *\i—1
sy s151(83)" enr11 € A,

we have that A contains all the matrix units. Finally since sje;; € A, and

€1,k41 (52641, k+1)€ht1,1 = S2€11 € A,

Onerr € A, so we have M, (Oz) = A ~ Os. O
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4 Exact C*-Algebras

We finally examine exactness in this chapter. We start by proving the equivalence of the two
main definitions: that A is exact if and only if it is nuclearly embeddable, and proceed to state
some permanence properties: we will see that exactness is preserved under taking the min
and max tensor products, subalgebras, crossed products by amenable groups, unitizations,
and inductive limits. We will then look see an example of a non-nuclear exact C*-algebra,
and a non-exact C*-algebra, proving that the class of exact C*-algebras is really broader class
than that of nuclear C*-algebras. We will then give three other characterizations of exactness
and prove that they are all equivalent in the separable setting: property C, property C’, and
being isomorphic to a subquotient of the CAR algebra. This will give us a proof that exact
C*-algebras, in addition to the permanence properties above, will also be closed under taking
quotients.

4.1 Nuclear Embeddability and ®-Exactness

As mentioned above, our goal here will be to explore the first two equivalent definitions of
exactness. These results can found be in chapter 3 of [6] or chapter 7 of [32]. Throughout,
if not explicitly stated, we will assume that A, B, C' are C*-algebras, I << A, J <1 B are closed
two sided ideals.

Definition 4.1.1. A C*-algebra A is exact if there exists a nuclear faithful representation
m:A— B(H).

It seems as though this is a property specific to the faithful representation. However,
being exact is independent of the faithful representation, as the following proposition shows.

Proposition 4.1.2. Every faithful (non-degenerate) representation of an exact C*-algebra
is nuclear.

Proof. Let m : A — B(#) be a faithful nuclear representation and p : A — B(K) be any
faithful representation. Let ¢ : A — My, ¥y : Myy — B(H) be c.c.p. maps such that
¥y 0 ¢ — m in point-norm. Define ¢ : w(A) — B(K) by o(n(a)) = p(a), which is clearly
a well-defined *-homomorphism (by the faithfulness of 7), hence a c.c.p. map. Now by
Arveson’s extension Theorem ([1.1.5)), there exists a c.c.p. extension ¢ : B(H) — B(K) of o.
Letting 15 = & o ¢\ : Myy — B(K), these maps are clearly c.c.p. and for any a € A,

a0 dx = 6(Y4(0a(a)) = G(m(a)) = p(a)
in norm. Thus p is nuclear as well. [l

We will prove that the existence of a faithful nuclear representation for a C*-algebra
A is equivalent to the property that whenever 0 — J — B — B/J — 0 is a short exact
sequence of C*-algebras, then 0 - A®J - A® B — A® (B/J) — 0 is short exact as well.
Let us formally define this property.
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Definition 4.1.3. We say that a C*-algebra A is ®-exact if for any short exact sequence
0—J— B— (B/J)— 0 of C*-algebras, we have that

0>ARJ > A®B—-A®(B/J)—0

1s exact.

The following observation always gives us the first inclusion, and it follows directly
from the definition of the min-tensor product, along with the fact that it is independent of
choice of faithful representations.

Lemma 4.1.4. Let A C B, C be C*-algebras. Then there is an isometric inclusion A® C' C
B®C.

Throughout, every ideal will be norm closed. Moreover if we have a C*-algebra B and
J < B, it is clear that 0 - J — B — B/J — 0 is exact.

Proposition 4.1.5. Let A, B be C*-algebras, J <« B. Then there is a C*-norm | - ||, on

A ©® (B/J) such that
A® B

AR J

~ A®q (B/J).
It then follows that
0>ARJ—>A®B—A®(B/J)—0

is exact if and only if || - [[o = || - ||min-

Proof. Let || - ||o be the restriction of the quotient norm of 428 to A® (B/J) ~ 425 Then

the first condition is clear. Now the equivalence follows due to the uniqueness of a C*-norm

on a C*-algebra, and the fact that this sequence is exact if and only if ﬁ%ﬁ ~A®(B/J). O

Corollary 4.1.6. If there is a unique C*-norm on A ® (B/J), then
0> A®RJ—>A®B—A®(B/J)—0
is exact.
In particular, if A or B/J are nuclear C*-algebras, the above sequence is exact.
Lemma 4.1.7. If J < B, A C C, then
(CRJ)N(A®B)=A® J.

Proof. Clearly A®J C (C®J)N(A® B). For the other inclusion, let z € (C® J)N(A® B).
Let (e;) C J be an approximate unit. If C'is unital, then (1o ®e;) C C'®J is an approximate
unit, hence (1l¢ ® ¢;)z € A® J since x € A® B. But (1¢ ® ¢;)r — x in norm, therefore
r € A® J since A® J is norm closed. The non-unital case follows from passing to the
unitization and applying the same argument. ]
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Proposition 4.1.8. If A is an exact C*-algebra, then
0> A®RJ—>A®RB—A®(B/J)—0

is exact for every C*-algebra B and ideal J < B.

Proof. Let J <1 B be an arbitrary ideal, and take our sequence to be
0 — A®J — A®B ‘X5 A® (B/J) —— 0

It is always true that A ® J C ker p, so let us show the reverse. Let x € ker p, so we want
to show that x € A ® J. Let m: A — B(H) be a nuclear faithful representation and let
dr A = My, ¥y y = B(H) be c.c.p. maps such that ¢, o ¢y — 7 in point-norm.
Consider the followmg dlagram

0 — + A®J —— 3 A®B —" 5 A® (B)J) —— 0

ldu ®id Li’x ®id l(bA ®id

0—>Mk()\)®J—>Mk( ®B—>Mk()®(B/J)—>O

lﬂb\ ®id lﬂb\ ®id lﬂu ®id

0 — B(H)®J — B(H)® B —— B(H)® (B/J) —— 0.

Notice that the middle row is exact since My, is nuclear. So if we start in the top row,
middle column, and we know that x € ker p, we can follow the diagram to get that ¢, ®
id(xz) € My ® B. But this is in the kernel of p, so by the exactness of the middle row,
P \®id(z) € My ®J. But then (1 o)) ®id(x) € B(H)®J, and since (1y0¢,)®id = 7®id
in point-norm, it follows that

7®id(z) € (B(H)@ J)N(r(A) @ B))=7n(A) & J

by the previous lemma. But 7 ®id: A® J = m(A)®@ J = (B(H)® J) N (7(A) ® B) is an
isomorphism, so it follows that r € J ® B. n

So this gives us that every exact C*-algebra (nuclearly embeddable) is ®@-exact. To
see the other direction, it is useful to work with finite-dimensional operator systems, so we
will need a notion of exactness for these. First, we will define what we mean by an operator
system tensor product.

Definition 4.1.9. Let S C B(#H),T C B(K) be (closed) operator systems. We will let

K
ST =span{z @y |z € S,y e T} BHar)

In general, one can consider abstract operator systems and there are many operator
system tensor products, but we will not delve into it. One can see [16] for details.
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Definition 4.1.10. Let E C B(#) be an operator system. We say that E is ®-exact if for
every C*-algebra B and J <1 B, we have

E®B
E®J

~FE®(B/J)

isometrically.

Remark 4.1.11. Note that we always have a contractive map

E® B
E®J

— E®(B/J)

since the kernel of the contraction £ ® B — F ® (B/J) contains F ® J. It is not always
an isometry though. Indeed, in [25] Pisier defines a quantity ex(E), called the exactness
constant, which in the finite-dimensional setting is equal to the norm of the inverse. It
is shown that ex(S’) > 1 if 8" = span{uy,--- ,u,} € C*(F,), where u; generate F,,, for
n > 3. Hence the operator system S = span{l,uy,uf,..., u,,u;} is not exact. The notion
of exactness presented here coincides with the notion of 1-exact in [17].

Lemma 4.1.12. Let £ C A be an operator system, J < B an ideal. Then there is an

isometric inclusion
E®B A® B

EoJ  AmJ

Proof. We must show that these quotient norms agree as Banach space norms. That is, for
r € F® B, we want that

inf = inf :
A e +yll= mf flz+y]
But if (e;) is an approximate unit for J, then (1 ® e;) is an approximate unit for A ® J, and
so we know that the quotient norm is given by

inf =1 —x(1 Dl
Jinf oyl =lim 2~ 2(1@ )|

But (1 ® ¢;) € F® J since E is an operator system, so this infimum is actually achieved
on £F® J. [

Proposition 4.1.13. A C*-algebra A is ®-exact if and only if all of its finite dimensional
operator systems are ®-exact.

Proof. The union of %, where £ C A is a finite dimensional operator system, is dense in
i%‘j. If all finite dimensional operator systems are exact, then % ~ E® (B/J) for any
finite dimensional ¥ C A, and so for z € A ® B, we can take a finite dimensional operator
system E C A such that + € E ® B. Since we have our isometric inclusion by the above
lemma, it follows that this quotient norm of z is equal to the min-norm, giving us that A is

®-exact.
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On the other hand, we have the following diagram:

;}%3 — A®(B/J)

J J

228 FEe(B/J).

If A is ®-exact, the top row is an isometric isomorphism, hence so is the bottom row. O]

So ®-exactness is really a local property. As such, when dealing with ®-exactness, we
will allow ourselves to assume that our C*-algebras are separable.

Definition 4.1.14. Let (A,,), be C*-algebras. We let II,,A,, be the ¢ direct sum
[, Ap = {(an)n € (An) | sup [|an || < oo}

and @, A4,, be the ¢y direct sum
G A, = {<an)n € (4n) | 117?1 “an“ = 0}‘

Remark 4.1.15. The quotient norm on £242 is ||(ay)n + @nAn|| = limsup,, [|a. |-

Lemma 4.1.16. Let £ C A be a finite-dimensional operator system, (B,), unital C*-
algebras. Then there is a u.c.p. isometric isomorphism

E® (I1,B,) — II,(E ® B,),
defined on elementary tensors by e® (by,), — (e®b,),. This map also gives the identification
E® (®,B,) ~ &, (E® B,).

Proof. Let B,, C B(H,,) and A C B(K) be faithful representations. Then we have a natural
diagonal embedding 11, B, C B(®,H,), which induces an inclusion A ® (I1,B,) C B(K ®
(®nH,)). We also have a natural diagonal embedding I1,,(A ® B,) C I,B(K ® H,) C
B(@,(K®%H,)). Then the canonical Hilbert space isomorphism K ® (&, H,) = ®n(KQH,)
induces an isomorphism

B(K @ (®nHn)) =~ B(@,(K ® Ha,)).
This map acts on a ® (b,), € A® (I1,B,) C B(K ® (©,H,)) as follows:
a® (by)n = (a®by), € (AR B,) C B(®,(K ® H,)).

Thus we have a *-homomorphism A ® (II,B,,) — I1,(A® B,,), but it is not surjective unless
A is finite-dimensional (for example: K(H) ® (> — I, IC(H) is clearly not surjective).

So for our finite-dimensional operator system E C A, let (z1,...,x,) C F be a basis.
Then for (d,), € II,(F ® B,,), there is a unique representation

(dn)n = (Z T; ® bjn) = (@ bjn),

J

where the sequence (bj,,) is bounded for every j. But (z; ® b;,) € E ® (1I,,B,,), so this map
is clearly surjective, hence we have our u.c.p. isometric isomorphism. O
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Consequently, the above identification gives the following Lemma.

Lemma 4.1.17. If F is a finite-dimensional operator system with algebraic basis (z1, ..., .,)
and (B,), are unital C*-algebras, then there is a contractive linear map

II,(F ® B,) > (Han)

such that (3_; 2 ®bjn) = D75 ;5 ® ((bjn) + ©B,). Moreover, if E' is ®-exact, then this map
is an isometric isomorphism.

Proposition 4.1.18. Let A C B(H) be a unital, separable, ®-exact C*-algebra, represented
faithfully on a separable Hilbert space H. Let (P,), be a sequence of increasing finite-rank

projections converging to I in SOT, and let £ C A be a finite-dimensional operator system.
If ¢,: E— M, ~ P,B(H)P, are compressions defined by ¢,(x) = P,zF,, then

-1
162 6n(2) e — 1.
Note that the ¢,’s are eventually injective due to finite-dimensionality.

Proof. Since P, < P,.1, we have that ¢, = ¢, © ¢pr1 = Opr1¢,. Let V,, = ¢;1\¢n(E), and
note that 1 < ||Visille < ||[Villew. This is because if 6, : ¢n11(FE) — ¢,(E) is defined by
On(0ni1(2)) = @n(x), then [[fn]lp <1, and

Vaialles < 1Vabnlles < [IValleollOnlleo < [[Valles.

Let us assume that rankP, = n for all n, so that P,B(H)P, ~ M,. For contradiction,
suppose that lim,, ||V, |l = 8 > 1. In particular, we must have that 1 < ||V,|| for all n

large enough so that inverses exist, and so there exists a sequence (k(n)) of natural numbers
and (X,,)n € IL,(E ® My,) such that || X,|| =1 for all n, and

lim [ ¢ @ idim) (Xn)[| = 87 < 1.

Let

Hn(E X Mk:(n))

Bn(E @ M)
be the image of (X,,), € II,,(E ® My()). Now let X be the image of X under the contractive
linear map

L, (E ® My, L, My,
(E® ’“())—>E®( k())

®an(n)
from the previous lemma. Then

IX[| = suplo, ® id(X)IIM@(nan(m)-

®On Afk(n)

Since M is ®-exact, it follows that we can invert the isomorphism in the above lemma to
get an isomorphism

HTLMTL HnMs MTL
MS®( ’“”)—> (M; @ M)
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Now the image of X under the composition of maps

E® (— — M, ® —
B Miy(n) B Miy(n) S (M @ Myny)

has representation (¢s ® idgn)(Xy)) € I, (Ms ® My (,)). But then
| X[ = sup [|¢s @ id(X)|

< sup ||(¢s ® idk(ﬂ) (Xn)) + 69n(]Ws & Mk(n))”
= sup (lim sup ||ps ® idk(n)(Xn)H) .

But since ¢ = ¢ 0 ¢, for all n > s, it follows that

sup (lim sup ||¢s ® idk(n)(Xn)H) < limsup ||¢,, @ idg) (Xn)||-

Thus 3
1X]| > 7" = limsup [|¢n, @ idke) (Xn) || > 1X]),

which contradicts the above lemma since F is ®-exact as A is. O

We will need one more lemma to prove that the two definitions of exactness are equiv-
alent. We will state the lemma, and give the proof after the proof of the big theorem.

Lemma 4.1.19. With the assumptions of the above Proposition, there are u.c.p. maps
Ut dn(E) — A such that ||[¢, — ¢, o, )| — 0.

Theorem 4.1.20 (Kirchberg). Let A be a C*-algebra. The following are equivalent:

1. A is exact. That is, there exists a faithful *-representation 7 : A — B(H) and c.c.p.
maps ¢y : A — My, ¥ : My — B(H) such that 1) o ¢y — 7 in point-norm.

2. Ais ®-exact. That is, for any C*-algebra B and ideal J < B, the sequence
0>A®RJ—>A®RB—A®(B/J)—0
is exact.

Proof. We have already seen that exact C*-algebras are ®-exact. Conversely, suppose that
A C B(H), and take a sequence of increasing finite-rank projections (P, ), which converge
strongly to the identity. Suppose that rankP, = n for every n. Let E C A be a finite-
dimensional operator system. Then there are u.c.p. maps ¢, : A — M, ~ P,B(H)P,
given by ¢,(a) = P,aP,, and by finite-dimensionailty ¢,|g : E — M, will be injective for
sufficiently large n. Then the inverse maps ¢, |, (5) : ¢n(E) — E satisty ||¢; o)l — 1.
By the above lemma there are v, : ¢,(E) — A such that |1, — ¢, 6. (m)llew — 0. By
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Arveson’s extension Theorem (|1.1.5]), we can extend the 1,’s to maps ¥, : M,, — B(H).
But for every z € E, we have

1n(fn(@)) = 2]l = [¥n(dn(@)) = &5 o) (@) = 0.

Now for any finite 7 C A and € > 0, we can find a finite-dimensional operator system E and
maps ¢ : E — M, : M,, — B(H) such that ||t o ¢(z) — z|| < e for all x € E. Therefore A
is exact. O

So all that is left to do is some housekeeping for Lemma |4.1.19,

Lemma 4.1.21. Let E C A be an operator system, ¢ : E — B(#) be a unital self-adjoint
map. Then there exists u.c.p. ¢ : E— B(H) with ||¢ — ¥l < 2(]|6]|e — 1)-

Proof. By Theorem [1.1.7, there exists a *-representation 7 : A — B(K) and isometries
V.,W . H — K such that
o(a) = A\V*n(a)W = \W*r(a)V,

where A = ||¢]|a and a € E. Let ¢ : E — B(H) be the u.c.p. map defined by
1
P(a) = E(V*W(a)v + W*r(a)W).
Then ]
A(a) = ¢la) = AV = W)'n(a)(V — W).
Since ¢ is unital, AV*W =1, and
16 = Yl < Nl = A|eb + [[AY — Y[
1 *

< MV =WV =W)[+ (A -1)

=2(A—1),
as required. N

Lemma 4.1.22. Let F be a finite-dimensional operator system. Then there exists a basis
(x;)7 where xf = z; with ||z;|| = ||2;|| = 1, where (#;) consists of the dual basis.

Proof. Let (z;) be a basis for £ and consider the map ® : E” — C defined by

q)(yla s ;yn> = det(’gl(yJ»

This is clearly a multilinear function. Now let B,, be the set of self-adjoint elements of the
closed unit ball of E. Since B?, is compact, there exists (z1,...,x,) € Bl, at which ® attains
its maximum absolute value on B?,. Then its clear that (x;)7 is a basis (the determinant

doesn’t evaluate to 0), and we have that

(y) = Q1. Tim1, Y, Tig1,s - -5 T)

Z q)(l‘l,...,l‘n) ’
The functionals z; are self-adjoint , and so ||®(zy,...,z,)|| being maximal gives us that
|2:]| = 1. ;
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Corollary 4.1.23. Let F be a finite-dimensional operator system, B a unital C*-algebra,
and ¢ : E — B a unital self-adjoint map. Then there exists a u.c.p. ¢ : £ — B with

[ = Pllep < 2dim(E)([[@llcs — 1).

Proof. Let B C B(H), then Lemma [4.1.21] gives a w.c.p. ¢/ : E — B(H) with ||¢ — 9| <
2(||ollee — 1). Let 0 = o' — ¢, n = dim(F). If we can show that there is a positive linear
functional § € E* with ||0]] < nl|o|| and 6§ — o is c.p., then ¥ = ¢ + 0 gives our u.c.p. map.
To see that v is c.p., note that

v=¢p+0=0—-0)+¢+o=0-0)+o+¢ —¢p=(0—0)+7,

which is a sum of c.p. maps and thus is unital, (1) = 1 and o is unital, as is ¢'. Moreover
it will clearly satisfy the necessary norm condition. To this end, let (x;)} be a basis for E as
in the above lemma, and let
6= loll Y i,
1

where for a self-adjoint functional f, we have |f| = f. + f_, the sum of the positive and
negative parts. Now for a > 0,

n
=Y iila) x,<2|asz ||axz||<||a||2|xz ) = (a
1

so that 0 — o is positive. Complete positivity follows similarly. n

Now Lemma [£.1.19 follows as a special case of this the above corollary. Finally, we will
end off by stating some permanence properties.

Lemma 4.1.24. Let (A))x, A be C*-algebras such that A C B(#) and there exist c.c.p.
maps ¢ : A — Ay, ¥y : Ay — B(H) with ¢ o ¢ — id4 in point-norm. If each A, is exact,
A is.

Proof. Let F' C A be finite, ¢ > 0. By point-norm convergence, there exists some B = A,
such that ¢ = ¢5,,¢ = 9y, are c.c.p. and satisfy [[1) o ¢(a) — a|| < § for all a € F.
Since B is exact, there exists c.c.p. o : B — M, = Myny,,8 : M, — B(H»,), where
B C B(H,,), such that || o a0 ¢(a) — ¢(a)|| < 5. By Arveson’s extension Theorem [I.1.5]
extend ¢ : B— A C B(H) to a c.c.p. map V¥ : B(H,,) — B(H). But then

[WopBoaog(a)—al <|[¥ofoaocd(a)—1yod(a)l+[¢og(a)—al

<EL
227 °
Clearly «o¢p: A — M,, Vo : M, — B(H) are c.c.p. maps, so the result follows. ]

Theorem 4.1.25 (Permanence). Let A, B be C*-algebras.
1. If A C B and B is exact, then A is exact.

2. If A is exact, then so is the unitization, A.
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3. A® B is exact if and only if A and B are exact.
4. Inductive limits of exact C*-algebras are exact.

5. If «: G — Aut(A) is an action from an amenable group G to a C*-algebra A, then
A X, G is exact if and only if A is exact.

Proof. The first one is clear. (2) follows from the remarks following definition [2.1.2]
about extending nuclear maps to the unitization.

For (3), if A, B are exact, one can take a nuclear embedding of both A, B, and form a
net of tensors of c.c.p. maps which converges point-norm to the tensor of the nuclear
embeddings. Conversely, A ® B C A ® B, of which we can see 4 ~ A® 1 5 as a
subalgebra, hence A is exact by 1. B being exact follows in the same way.

(4) follows easily using nuclear embeddings.

For (5), Theorem [1.3.3] provides a faithful conditional expectation E : A x,, G =
Ax,G — A, from which it follows that A is exact if A x, G is. Conversely, note that if
B, C are C*-algebras, C' is exact, and there exist c.c.p. maps ¢, : B — C, ¢, : C — B
such that ¢, o ¢, — id in point-norm, then B is exact as well.

Lemmaprovides c.c.p. maps ¢y, : AXoG = AQMy(ny and ¢, : AQ My — AXG
such that v, o ¢, — id in point-norm, if we consider a Fglner sequence (F,), in G,
where k(n) = |F,|. Since My, ® A is exact if and only if A is, it follows that A x, G
is exact by the above lemma. ]

It turns out that exact C*-algebras are also closed under taking quotients. This will
be seen in chapter 4.4

4.2 Examples

It is clear that every nuclear C*-algebra is exact, so we have a plethora of examples of
exact C*-algebras already. Exactness is closed under taking subalgebras, crossed products
by amenable groups, inductive limits, tensor products with other exact C*-algebras and, as
we will see, quotients. Evidently this provides us with a rich supply of exact C*-algebras.
We have yet to see an exact C*-algebra which is not nuclear, and a non-exact C*-algebra.
As such, we will prove that C(Fs) is an exact, but not nuclear C*-algebra as Fy is not
amenable, and that C*(IFy) is a non-exact C*-algebra.

For the former, we follow Choi’s paper [7], and the latter we look at chapter 3.7 of
[6]. To show the first C*-algebra is exact, we will have a number of inclusions: C*(Fy) C
C(Zy x Z3) C Oy, and since exactness passes to subalgebras, the result will follow. For the
second, we will show that Fy is residually finite, and that such groups G allow us to easily
determine when C*(G) is exact.

Towards proving the exactness of C¥(IFy), let us start by showing C*(Zy x Z3) C Os.
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Lemma 4.2.1. Let e be a projection of the form e = 1 & 0. Then an operator v satisfies
v?=v"! =0* and e + v*ev + vev* = 1 if and only if

0 s
v = * Y
S1 8285,

where s1, 5o are isometries satisfying sys7 + sa55 = 1.

Proof. If v has this matrix form with isometries s1, 5, then it is easy to see that v? = v~ = v*

and e + v*ev + vev* = 1. On the other hand, suppose that v satisfies the required relations

and write
*
xS
v = 2.
1Y
Using our second relation, we have

10\ o (M@t
(O 1)_e+v*ev+vev —( " sls’{+828§)7

hence s;57 + s255 = 1 and z = 0. Now since v is an order 3 unitary,

1 0\ .  [sis1 = 1 0\ . [s382 *
Olivvi**’OlivvinQ*

2

so that sy, sy are isometries and ys; = 0. Finally since v* = v*, we get
0 *
Si = U* = ’U2 = * * >
2 Y ys1 *
5o s2 = ys1. Thus y = y(s18] + s255) = ys1s] = s25]. So v has the required form. [

Theorem 4.2.2. Suppose that e is a projection and u, v are operators satisfying
1. u=ut=u*e+ueu=1;
2. V¥ =v ! =v* e+ viev +vevt = 1.

Then C*(e, u,v) ~ Os.

. 1 5 . : e
Proof. Writee =1®0, u = 0 LU = X 82* , where s1, s are isometries satisfying
10 S1 828

$187 + s9s5 = 1. Then we have C*(e,u,v) ~ My(Os) ~ Os, where the last isomorphism
comes from Proposition [3.2.18 O]

Corollary 4.2.3. C¥(Zy x Z3) is exact.
Proof. Using notation as above, it is clear that C¥(ZgyxZ3) ~ C*(u,v) C C*(e,u,v) ~ Oy. O

Now it suffices to show that Fy is a subgroup of Zy % Z3. To do this, we will need
the ping-pong lemma, which is a tool used to prove that a given subgroup is in fact a free
subgroup.
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Lemma 4.2.4 (Ping-pong Lemma, [12], I1.B). Let G be a group acting on a set X, and
Hy,---  H, be non-trivial subgroups of size at least 2, where at least one has order greater
than 2. Suppose that there exist pairwise disjoint non-empty subsets Xi,...,X,, € X such
that for all ¢ # j, and for any h € H;\ {e}, h- X; C X;. Then (Hy,..., H,) >~ Hy*--- % H,,
the free product of Hy, ..., H,.

Corollary 4.2.5. C(F,) is exact.
Proof. We just need to show that Fy < Zs x Z3, in which case, both C*(Fy) and C(Zy x Z3)

are exact but not nuclear C*-algebras as both of the groups will be non-amenable. Say
Zo x 73 = {a,b | a* = b® = 1). We claim that (bab, ababa) ~ Fy. Indeed, consider Zsy * Zs
acting on itself by left concatenation. Let X; be the set of reduced words starting with b
and X, be the set of reduced words starting with a. Then notice that (ababa) - X; C X5 and
(bab) - X5 C X;. Thus since X; N X, = (), the ping pong lemma implies that, (bab, ababa) ~
Z x 7 ~ TFy. Thus Fy is a subgroup of Zs * Z3. Consequently, since C*(Fy) C C*(Zy * Z3),
and C¥(Zq % Z3) is exact, C¥(Fq) is exact. O

Remark 4.2.6. One can do something similar to show that Fy contains a copy of F.,, and
so all the free groups are exact. Indeed, one can check that if Fy = (a,b), then (b"ab™"),, are
free in [Fy.

Now we work towards the non-exactness of C*(IFy).

Definition 4.2.7. A discrete group G is called residually finite if there exists subgroups
G 2 G1 2 Gy D --- such that G; is a finite index, normal subgroup of G and N,,G,, = {e}.

Remark 4.2.8. For a discrete group GG, being residually finite is equivalent to the conditions
that for every g1, ..., g, € G, there is a homomorphism 6 : G — F, where F'is a finite group
such that 6(g1),...,0(g,) € F are distinct. If G is finitely generated, this is equivalent
to G being maximally periodic; that is G has a separating family of finite-dimensional
representations. This can be seen in [2].

Lemma 4.2.9. If G is residually finite, then there exists a state p on C*(G) ® C*(G) such

that for finite sums
=Y aws,y=Y BiteC(G),
s t

we have

M(CL’ ® y) = Zasﬁs'
Proof. For a group H, we can consider the product map
AX p:C*(H)®C*(H) — B(*(H))

induced by the commuting left and right regular representations. Taking finite sums = =
Yo ass,y =Y, Bit, we have

<>‘ X p(l‘ & y>(5e7 6e> = Zasﬁt'
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If H is finite, then C*(H) ® C*(H) = C*(H) ® C*(H), and so this would be a state on the
minimal tensor product satisfying the required formula.

Now since each G/G,, is finite, let p, be a state on C*(G/G,,) ® C*(G/G,,) satisfying
the formula above for G/G,. We also have quotient maps =, : C*(G) — C*(G/G,) and
hence tensor product *-homomorphisms

T @m, : C*(G) ® C*(G) — C*(G/G,) @ C*(G/G,).

Since N, G,, = {e}, by taking a cluster point u of pu, o (7, ® m,), it is clear that u will satisfy
the formula. O

Proposition 4.2.10. If G is residually finite, then the product map
A x p:C*GQ)©C*HG) — B(*(Q)),
is min-continuous.

Proof. Let m : C*(G) ® C*(G) — B(H) be the GNS representation of the state from the
previous lemma. Uniqueness of GNS gives us that the algebraic representations

Tlex@ec+@) : C7(G) © C*(G) — B(H)

and
Ax p:C(GQ)®C*HG) = B(AQ))

are unitarily equivalent since d, € £*(G) is a cyclic vector for the algebra A x p(C*(G)©C*(G))
whose corresponding vector functional agrees with . Thus the C*(\ x p(C*(G) © C*(@Q)))
is a quotient of C*(G) ® C*(G). O

Proposition 4.2.11. Let G be residually finite. Then the following are equivalent.
1. G is amenable.
2. C*(G) is exact.
3. The sequence
0—-JC(G)—=C"G)®C"(G) = CH{G)® C*"(G)—0
is exact, where J is the kernel of the quotient map C*(G) — C}(G).

Proof. Clearly (1) implies (2), and (2) implies (3) by definition, so suppose that (3) implies
(1).
If the sequence is exact,
C*(G) ® C*(G)
J ® C*(G)

~ CHG) ® C*(G).

Now since the map A\ X p as above is min-continuous, it then extends to a *~homomorphism
A X min p, Which contains J ® C*(G) in the kernel. Thus it factors through the above quotient,
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giving us a *-homomorphism 7 : C#(G) @ C*(G) — B((*(G)) satistying m(z @ y) = zp(y)
for x € C}(G),y € C*(G). Now by The Trick (1.2.5), there exist a w.c.p. ®: B({*(G)) —
L(G) = p(CG)’, where p is the right regular representation, such that ®(xz) = z for all
x € CHG). Let T be the canonical vector state on L(G), and let n = 7o ®. Since ® is
u.c.p. and restricts to identity on C(G), it follows C’(G) is in the multiplicative domain of
®, hence

n(AszAy) = T(P(Asz X)) = T(A@(2)AS) = 7(2(2)).
Now note that if f € (*°(G), then

Mef NGy = Ao fOs1e = Ao f(s7 )05 1y = F(sT ) AOg1 = f(s71)8 = (5 - f)6:.

Thus A\ fA\: =s- f, and

(s - f) = vAFA) = T(RA X)) = T(AP(F)AY) = 7(2(f)) = n(f)-
So 1 is a left invariant mean on ¢>°(G), so G is amenable. O
Proposition 4.2.12. Let F be a free group. Then F is residually finite.

Proof. Let F be generated by (g)) and let hy,...,h, € F. There are g1,...,gnm € (gr) such
that all h; are in F' = (g1,...,gm). Hh =g -+ g7 € F/, where i; # ijq for 1 <1< k—1,
the length |h| of his ), |n;|. Let m = maxi<;<, |h;| and let S = {h € F' | [h] < m}. Then
for each generator g; of F/, let S; = {h € S | g;h € S. Then S; C S,¢;5; C S} and the
map h — g;h takes s; onto g;s; injectively. Thus |S;| = |g;5:],]S \ S| = |5\ ¢:5:|. Let
¢ S\ S;i — S\ g:S; be a bijection and define p; by

T lgh, heS\S;.

Then we can define a homomorphism ¢ : F — ¥(.S), where ¥(5) is the permutation group
on S as follows:
pi, if gn = g, for some 1 <7 < m,
P(gx) = .
1, otherwise.

Then ¢(h;) is the permutation which sends e to h;, and so ¢(h;) # ¢(h;) for i # j. O

Corollary 4.2.13. C*(F,,) is not exact for all n > 2.

4.3 Properties C and C’

Property C is a property of C*-algebras which has to do with the enveloping von Neumann
algebra. Property C will be of particular interest since it will pass to quotients. Property
C will be seen to imply property C’, and this will be seen to be equivalent to exactness. In
the next section, we will come full circle and see that exactness actually implies property
C as well, giving us that exactness is preserved under quotients - a very deep result. The
following can be found in chapter 9 of [6] and chapter 5 of [32].
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Definition 4.3.1. If M, N, L are von Neumann algebras, a *-homomorphism 7 : MON — L
is said to be bi-normal if both of the restriction maps 7y : M®1y — Land 7y : 1)y QN —
L are normal representations.

Proposition 4.3.2. Let A, B be C*-algebras. Then there is a canonical injective binormal
map
A" O B™ — (A® B)™.

Proof. By considering restrictions of the universal representation of A ® B and taking its
double commutant, the inclusion A ® B — (A ® B)** comes from the commuting copies of
A and B in (A® B)*™. Thus the WOT closures of A C (A® B)** and B C (A ® B)* also

commute, and so there is a bi-normal map
A ®B™ — (A® B)™.

To see that this map is injective, note that pure tensors of functionals on A and B respectively
separate the elements of A** ® B**. But then for ¢ € A* ¢ € B*, the functional ¢ ® 1 can
be extended to a functional ¢ ® 1) on A ® B and then further extended to a normal linear
functional on (A ® B)**, which we will still call ¢ ® ¢b. Now ¢ ® ¢ is the same map as

A*© B* — (Ao By 2% ¢,
which implies injectivity. O
Definition 4.3.3. Let A be a C*-algebra.
1. We say that A has property C if
A" O B™ — (A® B)™
is min-continuous for every C*-algebra B.
2. We say that A has property C’ if
A®B™ — (A® B)*™
is min-continuous for every C*-algebra B.

Proposition 4.3.4. Properties C and C’ pass to subalgebras.

Proof. Suppose that A has property C. Let C' C A be a C*-subalgebra and suppose that
A has property C. Since C** C A* and (C ® B)™ C (A ® B)™, we have the following
commutative diagram for every C*-algebra B

! !

Since C** @ B** C A*™ ® B** and the bottom is min-continuous, the top is min-continuous.
Property C’ is similar. O
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Proposition 4.3.5. Property C passes to quotients.

Proof. Let I <1 A and suppose that A has property C. Let 7 : A — A/I be the quotient map.
Then we have a canonical normal extension 7** : A* — (A/I)**. Let p € A™ be a central
projection such that (A/I)** = pA**. If (e;) is an approximate unit for /, then e; increases
to 1 — p ultraweakly. Let 6 be the *-homomorphism defined by the following diagram

(A/1)* @ B d  ((A/) ® B)*
| firosor

where ¢ is the inclusion coming from property C. Evidently, 6 is continuous. Now let us see
that 6|(4/1)+-op+ coincides with the canonical inclusion (A/I)** ® B** — ((A/I) ® B)**. For
every a € A,b € B,

O(m(a) ®b) = (r @idp)™ o1(pa @ b)
= lilm(w ®idg)*™ o u((1 —€;)a®b)
= li%rn (1 —e)a)®0b
=m(a) ®b.
[

Definition 4.3.6. If A is unital, 0 - I — A =™ A/I — 0 is called locally split if for
each finite-dimensional operator system E C A/J, there exists a u.c.p. o : E — A such that
mTOoo = ldE

Lemma 4.3.7. Suppose that 0 - I — A —™ A/I — 0 is locally split. Then for every B,
0>I®B—-A®B— (A/l)®@B—0
is exact.

Proof. Let || - ||o be such that

A®B
~ (A/]) ®, B.
I®B (A/ne
So we just need to show that || - ||o = || - |lmin- Since y € (A/I) ® B is a finite sum of

elementary tensors, we can find a finite-dimensional operator system E C A/I such that
y€ E®B C (A/I)® B. Then there is a u.c.p. map 6 : E — A such that 7 o 0 = idg,
where m : A — A/I is the quotient map. Thus we have a u.c.p., hence contractive map
f®idg: E® B— A® B. Now we have the following diagram

(A/I)® B
isometric

E ® B 6®idp

A®B —— 428 ~ (A/]) ®, B.

Both the maps on the bottom are contractions, and since 6 is a lift, it follows that y €
E®BCFE®B getsmappedtoy € E® B C (A/J) ®, B, and we have ||y|lo < |y]|lmin- T
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Lemma 4.3.8. Let I <A,z € I"**N A. Then z € I.

Proof. The canonical inclusion A** — (A/I)™ restricted to A is just the quotient map
A — A/I, hence the set of elements in A belonging to the kernel is equal to I. Moreover,
the kernel of A*™* — (A/I)** is I'*, which gives the result. O

Definition 4.3.9. If A is a C*-algebra, the strong™*-topology in A** C B(#H,,) has convergence
x; — x strong™® if and only if x; — = and =7 — z*, both in SOT.

Proposition 4.3.10. A C*-algebra A is exact if and only if it has property C’.

Proof. First assume that A has property C’, and let B be a C*-algebra, J <1 B. Since
0— J* = B*™ — (B/J)* — 0 splits, we have that

0=>J"A—-B"®A— (B/J)"®A—=0
is exact. Since A has property C’, we have the following commutative diagram:

0— > J®A—— s BRA— 3 (B/J))®A ——— 0

| | |

00— J*®A — B*"®A — (B/))*"®A —— 0

J l |

0 — (JRA)™ — (B A —— ((B/J)® A)* —— 0.

Now taking x € B ® A with x in the kernel of B ® A — (B/J) ® A, then the exactness of
the middle row implies that x € (J® A)** N (B® A) = J® A by the above lemma. Thus A
is exact.
Conversely, suppose that A is exact, and B is any C*-algebra. For I any directed set,
we let
Br = {(x;); € 1I; B | strong” li;rn exists in B*}.

Since multiplication is jointly strong*-continuous on bounded sets, B; is a C*-subalgebra of
II;B. Now we have a *-homomorphism o : B — B** given by

(x;); — strong” limz; € B™,
A

which is surjective by Kaplansky’s density theorem (|21, Theorem 4.3.3) if I is large enough
(for example, the directed set of all finite subsets of B*).
Now notice that idys ® 0 : A® By - A® B* C (A® B)*™ is min-continuous. Indeed,

(idy ® 0) (i ap & (:cﬁ’“))z)

)

strong™ lim Z ax ® xz(k

k=1 (A®B)** k=1 (A®B)**
n
< sup Z ar T )
i k=1 A®QB
n
=D ar® (")
k=1 A®Bj
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for all Y 7 ap ® (xgk))l € A ® By, and where this last equality follows by Lemma [4.1.16]
Now let J <1 Br be the kernel of the map By — B**. Then A ® J is in the kernel of
A® B; — (A® B)™, and so this *~homomorphism factors through

A® By
=A®(B;/J)=A® B
since A is exact. Now the map A® B** — (A® B)** agrees with the map A® B** — (A® B)**
on elementary tensors, hence A has property C’. O

Proposition 4.3.11. Let A be a C*-algebra. If A** is semidiscrete, then A has property C.

Proof. Suppose that A** C (A®B)*™ C B(H) where B is a C*-algebra, and (A® B)** C B(H)
is a normal representation. Since A** — A* C (A ® B)** is weakly nuclear, by Theorem
A © B*™ — (A® B)™ C B(H) is min-continuous. O

Consequently, every nuclear C*-algebra, every subalgebra of a nuclear C*-algebra, and
every subquotient of a nuclear C*-algebra has Property C. In the separable setting, we will
see that property C is equivalent to exactness, since we will be able to show that every
separable exact C*-algebra is a subquotient of the CAR algebra, which is nuclear.

4.4 Subquotients of the CAR Algebra

In this section, we would like to prove that every separable exact C*-algebra is a subquotient
of the CAR algebra. This was originally proved in [I§|, but we follow Wassermann’s proof
which can be found in his paper [33] and chapter 9 of his book [32]. Evidently, since nuclear
C*-algebras have property C, which passes to subalgebras and quotient, all separable exact
C*-algebras will have property C, completing the loop.

We first need a technical lifting result. We wish to show that when L is a left ideal
generated by an increasing sequence of projections and R = L*, then for x € A/(L + R),
viewed as a Banach space, there exists y € A such that 7(y) = z and [|y|| < (1 + ¢)||z]|,
where 7 : A — A/(L + R) is the quotient map.

Lemma 4.4.1. Let A be a C*-algebra, L, R C A closed left and right ideals respectively.
Then the subspace L + R C A is norm closed.

Proof. For a € L, dist(a, R) < dist(a, LN R). If (e)) is a right approximate unit for L, with
0 < ey <1, then for € > 0, there exists A such that ||a — ae,|| < e. For r € R,

la — 7| > |laex — rex]] > ||aex — a|| + ||ja — rey]| > dist(a, LN R) — e.
Thus dist(a, L N R) = dist(a, R). If 7: A — A/R is the quotient map, then 7|, factors as

L—L/(LNR)— (L+ R)/R,

where the first map is the quotient map, and the second is an isometry. Thus 7(L) is closed,
and so L+ R =7"!(w(L)). O
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Lemma 4.4.2. Let A be a unital C*-algebra, p a non-zero projection in A. If ¢ > 0 and
x € Awith ||z|| < 1+¢, ||pz|| < 1, then there exists y € A such that py = 0, ||y|| < v2e + €2,
and ||z —yl| < 1.

Proof. Let a = px,b = (1 —p)z, and
bV =b(1—a*a)?((1+e)?—a*a) 2.
Let y=b—1V,s0a+ b =x—y, and y has the required properties. O

Lemma 4.4.3. Let A be a unital C*-algebra, p, ¢ non-zero projections in A. If 0 < e < 1,

x € A with ||z|| < 1+¢, and ||pzq|| < 1, then there exist y,z € A such that yqg = pz = 0,
1

[yll, [[2]l < 4%, and [lz — (y + 2)|| < 1.

Proof. Let a = pzq, b = px(1 — q). Then
la* + 0% = llz"pll < 1+,

a* = qz*p, and ||a*|| < 1. By applying the above lemma to the element z*p and projection ¢,
there exists y € A such that qy* =0, [|y|| < V2 +¢e% < 4ei, |lz*p — y*|| < 1. In particular,
yq = 0 and ||[pzr — y|| < 1. Replacing y with py, we can assume that py = y. Now let
c=pr—y,d=(1—p)x,and 2’ =c+d=x —y. Then

lp’|| = llpell <1,

and

|2'| < 14+e+ V2 +e2 <1+ 3.

Let § = € + v2e + 2 < 3y/e. By the above lemma again, there exists z € A such that
pz=0, 2 = 2| <1, and

2] < V20 + 0% < 1/6v/E + 9 < e
Then ||z — (y + 2)|| = ||l2' — z|| < 1. O

Proposition 4.4.4. Let (p,), be an increasing sequence of non-zero projections in a unital
C*-algebra A, and let L = U, Ap,,. For x € A, there exists T € L + L* such that

|z —Z|| = dist(x, L+ L*) = inf
acL+L*

x —al.

Proof. Let us assume that dist(z, L + L*) < 1. Choose yo € L, zy € L* such that ||z — (yo +
20)|| <2 and let 2’ =z — (yo + 20). We have dist(2’, L + L*) = lim,, [|(1 — p,)2'(1 — p,)]|, so
by passing to a subsequence if necessary, we can assume that [|(1—p,)2z'(1—p,)|| < 1+274
for all n.

We shall construct sequences (yy, ), (25, inductively such that y,(1—p,) = (1—p,)z, =
0, [lynll, 12n]l <9 - 57, and

1
2" =y + -y + 2+ + 2z §1+ﬁ-
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If yo, Yk, 20, - , 2k have been chosen, k > 0, let oy, = 2’ — (y1+- -+ yp+21+ -+ 2x) =
T —(yo+ -+ +yk+ 2+ +2). Then

1
1 = prs) 2l = )| = (1 = pran) (L = pre) | < 1+ Saay-
Applying the above lemma with z, z}, = (m)xk, and p = ¢ =1— p,, since

1+ i
o) < —H— <1+
24(k+1)

ik
there are yj,,, 24, such that |y |, ]| < 6- .

(1— pk+1)y;c+1 = Zl::-',-l(l — Prt1) =0,
and ||z}, — (¥}, + 2,11) || < 1. Now let

1 1
Y1 = (1 + W)yllc-i-la zi1 = (1 + W)leﬁ-l'

Then yiy1, zir1 will have the required properties.
Now let y = " Yn,2 =2 g #n. Theny € L,z € L*, and if T =y + z,

|lo =7 =lim|z — (Yo + - +yn+ 20+ -+ 2,)] < 1.

]

Corollary 4.4.5. Let A be a unital C*-algebra, (p,) an increasing sequence of non-zero
projections, and L = U,Ap,. If p: A — A/(L + L*) is the quotient map, then for each
x € A/(L + L"), there exists T € A such that 2 = p(Z) and ||Z|| = ||z||.

The following technical result will be required.

Proposition 4.4.6. Let A be a separable unital exact C*-algebra, and let B = Ms~ be the
CAR algebra. Then there is a closed left ideal L of B, an isometry ¢ : B/(L + L*) — D, a
unital C*-algebra, and a unital complete isometry o : A — D such thatif p : B — B/(L+L*)
is the quotient map,

1. top: B— D is au.c.p. map;

2. 0(A) € «p(B)).
Proof. Suppose that ¢ : A — B(H) is a nuclear embedding. Since A is separable, ¢ is
nuclear, ¢ is the point norm limit of ¢, o ¢,,, where ¢, : A = My, ¥ : My — B(H) are
w.c.p. maps. But then ¢™ : M,,(A) — M,,(B(H)) is the point-norm limit of "™ o ¢{™.

Thus there is a sequence A; C Ay, C --- of finite-dimensional operator systems in A with
union dense in A. By passing to a subsequence if necessary, we can enforce that

1
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where this norm is computed in M,,(B(H)).

Since B is UHF, there are integers 1 < s; < s9 < ---, subalgebras B; C By C --- such
that s;|s;41, B; ~ M, B = U;B;. By Arveson’s extension Theorem , On A= My
extends to a u.c.p map ¢, : B(H) = My Let Vi, = ¢pi1 0¥y 1 Miny = Myany, W =
tp o @, B(H) — B(#H). Now we show that there is a subsequence 0 < 1y <17y < ... of (s;)
with k(n) < r,, that there projections p, € My, such that (1 — p,) M, (1 — pn) = My,
and that if ®, : M, — M) denotes the compression x — (1 — p,)x(1 — p,), the following
diagram commutes:

B(H) T s B(H) e » B(H) s .

where the maps on the bottom row are the unital embeddings M,, — M,, ® M, ., given by
r — x ® 1. If we have the r;’s above, by identifying M, with its image we have a sequence
p1 < py < --- of projections with the required properties.

To get the r;’s, let r; be the smallest s; such that k(1) < s;, let ¢; be a projection in
M,, of rank k(1), and let p; = 1 —¢;. Identifying M) with ¢, M,, i, the image of the u.c.p.
map @, : M,, — M, given by ®,(z) = q12q: is My ).

Now supposing that we have r; and p; for © < n. Then V,, o @, : M, — M4y is
a u.c.p. map, so by Stinespring, there is a Hilbert space I, a *-homomorphism = : M, —
B(K), and an isometry V : C™ — K such that V,, o ®,(-) = V*n(-)V. But if p; = 7(eq)
(all of these are unitarily equivalent), and we let £ = pk, we have K = @;£ ~ L) then
evidently 7((a;;)) = (aijIz). Now if we let gy41 be the projection in K onto V(C™), then
it is clear that V,, o ®,(x) = qxr17(2)qr+1. Moreover, since this is a Stinespring dilation of
a u.c.p. map from a finite-dimensional C*-algebra, we can assume K is finite-dimensional,
and so V,, o @, is a map between finite-dimensional C*-algebras. Since matrix algebras are
simple, it follows that 7 is an isomorphism. Thus B(K) ~ M, ® M, for some r € N, and
with this map n(z) =z ®1,. Let r,,1 be the smallest s; such that r,r < s;. Then r, | 741,

so B(K) ~ M, @ M, C M, & M, ~ M, .. Identifying Myu41) C M,
the above becomes

Va(@n(@)) = (1 = py) (2 @ (1 = ppga) = G (z @ 1),

where p; = 1 — ¢;. This gives us all of our maps, which satisfy the required commutations
relations. Now identifying p,, with p, ® 1, we see that

(1 _pn+1)pn(1 - pn+1) = Vn(q)n(pn)) =0

which implies that p, < p,i1.
Now we can assume that M, and My, are isomorphic subalgebras of B, 1 € M,, C
M,, C --- and that U,M, 1is dense in B. Then p, € B, so L = U,Bp, is a closed left

as a corner,

n+1/rn n+1
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ideal of B. Letting 7 : (*°(B) — (B)s = £*°(B)/co(B) be the quotient map, we have a map
U : B — [IB/®B given by ¥(x) = 7((¢,xqn),). Since compositions of c.c.p. maps are c.c.p.,
it follows that ® is c.c.p. and that W(1) is the projection e = 7((g,)n). Let D = e(B)ue.
Then V(B) C D, and ¥ : B — D is unital.

Now if x € B, since p; < py < -+, ||gnxqyn|| is decreasing, and so it tends to a limit.
Therefore

[ (@) = lim sup [[gnzga|| = lim [[gnzgnll,

hence dist(z, L+ L*) < ||¥(z)]||. The reverse inequality holds since ®(L) = ¥(L*) = 0. Thus
|V (z)]| = ||p(x)||, where p: B — B/(L + L*) is the quotient map. Consequently, we have a
well-defined linear isometry ¢ : B/(L + L*) — D such that ¥ = 10 p.

Now we need a unital complete isometry o : A — D. For My, C B y € M),
VoY) = ¢ni1Yqn for all n. If o € A, is such that ||z|| = 1, then ||z — W;(z )|| < o fori > n,
and

—_

i1 (2) = Vi@l = [0 (@ = i@ < llo = Wil2)]| < -
Now since ¢;Vi(¢i(x))q; = ¢;(¢i(x))q; for j > i, we have that U(¢;(x)) = U(V;(¢i(x))), hence

W (Dira(x)) = C(di(@)]] = 1W(ira(2)) = C(Vilgi())| < lpisa () — (Viloi()))]| < 21

So if x € U,A,, the sequence (¥(¢,(z))) is Cauchy in D. Since U, A, is dense in A, and
U o ¢, are all contractive, it follows that for any « € A, o(z) = lim,, V(¢,(z)) exists. The
map o : A — D is a u.c.p. map, as it is a point-norm limit of u.c.p. maps, and thus
completely contractive. Moreover it is clear that o(A) C «(p(B)).

To see that o is completely isometric, we can show that if m € N,z € M,,,(A), ||z|| =1,
then || (z)|| > 1. Since o is completely contractive, it suffices to show this for = €
M, (U,A,). So for i € Nyx € M,,(4;) with ||z|| = 1, and € > 0, we want an N € N such
that for n > N,

[ o @) = lim g™ 6 (2)g™ | > 1 - <,
where q](m) = ¢;®1,,. For z € M, (A;) with ||z|| =1, € > 0, choose N € N such that 5x > £
and N > max{i,m}. Then M,,(A;) C M,,(A,) C M,(A,), so that = € M, (A,) forn > N.
Then ]

I8 @) = g™ g = 6™ @ = 4™ @ @) < 5
for | > n. For j > n + 1, applying this for [ = n,---,j — 2, and since ¢; < g4 for these [,
we have

g™ o™ — o™ @™l < o
and

1607 () — ™8 @™l < o
hence

607 () — ¢ ()™ < o
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Now

and since

we have that

1
2n71_%21_€'

g™ o0 (@)™ || > 198 (g™ e (@) ™) | > ||| —

So | (¢ (2))|| > 1 — ¢ for n > N, hence ||o™(z)|| > 1 — . Since ¢ was arbitrary,
| (x)|| > 1, so it follows that o is completely isometric. O

Remark 4.4.7. With everything as above, once can also show that if A is nuclear, then
o,t, L can be chosen such that o(A) = ¢(p(B)).

We are finally ready to give a proof of the main theorem of this section.
Theorem 4.4.8. Let A be a separable unital C*-algebra. The following are equivalent:

1. A is exact

2. There is a unital C*-subalgebra G C My~ of the CAR algebra, and an ideal J < G
such that A~ G/J.

Proof. (1) implies (2). Let A be an exact C*-algebra, and let B = My~ be the CAR algebra.
So B = U, B, where B, >~ My and B; C By C ---. Let A C B(H) be a unital faithful
representation of A. By the above proposition, there exists a unital C*-algebra D, a unital
complete isometry o : A — D, and a u.c.p. map ¢t o p: B — D such that o(A) C «(p(B)).
Now o(A) C D is a closed operator system, and 0! : 0(A) — A C B(H) is a unital complete
isometry, so it is completely positive. By Arveson’s extension Theorem ([1.1.5), 0~1 extends
toacp. map7: D — B(H). Let 1 =7o0r0p. For every u € U(A), o(u) € t(p(B)), so that
(o(u)) € p(B) = B/(L+ L"), and

e (e () = [lull = 1.

Now by Corollary 4.4.5| there exists € B such that ||z = 1, and p(x) = +7*(o(u)); which
means that u = 7(x). Since 7 is u.c.p. and by Choi’s generalized Cauchy-Schwarz inequality
(1.1.10]), we have

1 =v*u=n(z")m(z) < n(2*z) < ||z*~(1) = 1,

1
which implies that w(z*z) = w(z*)m(x). Similarly 7(z2*) = w(x)nm(«*). Thus z,2* are in
the multiplicative domain of 7. Now let X = {z € B | ||z|| = 1,n(z) € U(A)}. Then X is
self-adjoint, and closed under multiplication, so that span(X) is a *-subalgebra of B. Since
X is in the multiplicative domain of 7,7|span(x) is a *~homomorphism, so if F' = span(X), 7|p
is a *~homomorphism by continuity. Now since (X)) = U(A),n(F) = A. Let K = FNkerm,
so that K is a closed ideal of F, and A ~ F/K. Let J = KBK C G (which is hereditary).
We also have F'J C J and 7(J) = 0. Let G = F + J, which is a C*-subalgebra of B, J is a
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closed ideal of G jand G/J ~ A. Indeed, F + J is a C*-subalgebra of B with J as a closed
ideal. If 7' : '+ J — (F + J)/J is the quotient map, then K = F'NJ and

7(F)~ F/(FNJ)=F/K ~ A.

Thus F + J = 7/~(A), so that F + J is closed in B.

To see (2) implies (1), notice that if A ~ G/J where G C Ms~, J <G, then since Mo
is nuclear, it has property C', which passes to the subalgebra G, and further passes to the
quotient A ~ G/J. Since property C implies exactness, A is exact. n

Remark 4.4.9. Another equivalent condition of exactness is that there is a unital completely
isometric map 6 : A — Msy~. Moreover, A is nuclear if and only if there is a unital completely
isometric map 6 : A — My~ such that there is a conditional expectation My — 0(A).

Theorem 4.4.10. Let A be a separable C*-algebra. The following are equivalent:
1. A is exact,
2. A has property C,
3. A has property C’.

Proof. Clearly property C implies property C’, and A being exact is equivalent to having
C’. Now suppose that A is exact. Since A is separable, Theorem [£.4.8 implies that A is a
subquotient of the CAR algebra, which is nuclear. Since nuclear C*-algebras have property
C and property C passes to subalgebras and quotients, the result follows. n

Remark 4.4.11.

1. Another way to see that a separable C*-algebra is exact if and only if it has property
C is to embed it into the Cuntz algebra ;. This algebra is nuclear and contains all
separable exact C*-algebras, as we will see later.

2. The above theorem holds even in the non-separable setting.
Corollary 4.4.12. Quotients of exact C*-algebras are exact.

Proof. Let A be exact, and I <A an ideal. it suffices to show that every separable subalgebra
of A/I is exact since a C*-algebra is exact if and only if all its separable subalgebras are
exact. First, let us assume that A is unital, since passing to unitizations preserves exactness.
Let C' C A/I be a separable subalgebra. Then there exists a separable subalgebra D C A
such that m(D) = C, where 7 : A — A/I is the quotient map. But since A is exact, D is
exact, and so C' is exact. Consequently A/I is exact. n

Remark 4.4.13. There is yet another property, property C”, defined as follows. A has
property C” if A ©® B — (A ® B)* is min-continuous for every C*-algebra B. This is
equivalent to the notion of being locally reflexive - that is, for every finite-dimensional
operator system E C A* there exists a net of c.c.p. maps ¢, : £ — A which converges to
idg point-ultraweakly. Evidently, all exact C*-algebras exhibit this property. More on this
can be found in [I4] and chapter 9 of [6].
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5 Purely Infinite C*-algebras

With a deeper understanding of exact C*-algebras, we will now move towards proving that
all of the separable exact C*-algebra embed into Q3. To do this, we study the class of unital,
simple, purely infinite C*-algebras, of which O, is part of. This class of C*-algebras was
studied both by Cuntz and Kirchberg, and they are C*-algebras which are characterized by
their projections. They have very simple K-theory, in the sense that one does not need to
consider projections or unitaries in the higher matrix levels. We will compute the K-theory
of the Cuntz algebras and show that the Cuntz algebras O,, and O,, can be distinguished
by the natural numbers n,m > 2 (and both of these will not be isomorphic to O, ). These
C*-algebras are further seen to exhibit many approximations properties such as real rank
zero, property weak (FU), and consequently finite exponential length - a very important fact
used in the proof that Oy ® Oy >~ O,.

5.1 Projections and Simple C*-Algebras

As mentioned above, purely infinite C*-algebras are defined in terms of properties of their
projections. We define what it means for a projection to be infinite, for a C*-algebra to be
infinite, and then consider what happens when the C*-algebra is simple. In the case where
an algebra is simple in infinite, it will contain a copy of O, (unital if the C*-algebra is), and
will have O,, as a quotient for all n. We then consider purely infinite C*-algebras, and show
that unital, simple, purely infinite C*-algebras are closed under taking min tensor products,
which will give us that Oy ® O, is unital purely infinite as well.

Definition 5.1.1. We will want to work with the projections in a C*-algebra.

1. We call call two projections p, ¢ in a C*-algebra A equivalent (Murray-von Neu-
mann equivalent), denoted p ~ ¢, if there is a partial isometry v € A such that
p=vv* and ¢ = v*v.

2. A projection p is infinite if it is equivalent to a proper subprojection of itself (that is
there exists ¢ such that p ~ ¢ and g < p,q # p - denoted ¢ < p).

3. A projection p is properly infinite if there are orthogonal projections ¢, g2 such that
P~ qu ~ gz such that ¢, +¢2 < p.

4. A C*-algebra A is (properly) infinite if it contains a (properly) infinite projection.

Example 5.1.2. It is clear that the identities in Oy, O, B(H) are all properly infinite
projections. All projections in M,,, K are finite (not infinite).

The following definition, and equivalent formulations can be found in chapter 3.2 of
[21].

Definition 5.1.3. We say B C A is hereditary if it satisfies one (hence all) of the following:

1. A C*-subalgebra B C A is called hereditary if for 0 <ac€ Aand 0<be B,a<b
implies that a € B.

50



2. bal/ € B for all b,/ € B and a € A.
3. B=LNL*for L aleft ideal of A (this is a one-to-one correspondence).
If B is separable, there exists a € B such that B = aAa.

Theorem 5.1.4 ([21], Theorem 3.2.2.). If B C A is a hereditary C*-subalgebra, and J C B
is a closed ideal, then there exists a closed ideal I of A such that J = BN 1.

Corollary 5.1.5. Every hereditary C*-subalgebra of a simple C*-algebra is simple.

Lemma 5.1.6. If A is simple, ¢ € A is a projection, a € A is non-zero positive, then there
are z; € A such that Y | zfaz; = q.

Proof. Without loss of generality, suppose that ||a|| = 1. Since A is simple, ¢ is in the closure
of the algebraic ideal generated by a, so there exists z;,; such that

g— Y wiay;
1

<1
5

But
¢< > quiayig+ Y qyiariq
1 1
<> quiariq+ Y qyiayig=1b<c-q,
1 1

where ¢ = > ([|lzi]|? + ||yil|?). The first inequality follows since the norm condition implies
that ||¢ — Re(}_} ziay;)|| < 3, and compression by the projection makes them commute -
then it is easy since we can just think of these as real-valued functions. The second inequality
follows since z;ay; + yfax; < x;axf + yfay;. This follows because (z; — yf)*a(zf —y;) > 0.

Now let f € C(o(a)) be a function such that f(z) =272 on [1,¢. Then

g =fODF®) =Y fb)quiaxiqf(d) + > f(b)ay;ayiaf(b),

which is a sum of the desired form. O]

Theorem 5.1.7. Let A be a simple infinite C*-algebra. Then A contains a projection g and
partial isometries (¢;) such that ¢it; = ¢ > > "7 t;t for all n € N. In particular, A is properly
infinite.

Proof. Let s be such that p = ss* < ¢ = s*s. By working in B = ¢qAq, we can view B
as a unital C*-algebra with ¢ = 1. Note that B is simple (its hereditary) and infinite (g is
infinite). Since B is simple and 1 — p # 0, there exists z; such that > 7 27(1 — p)z; = 1. Let

n

t, = Zsi_l(l — p)x;.

1
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Note that s'(1 — p) are partial isometries which have pairwise orthogonal ranges for 7 > 0.
Indeed, since v = pv = vqg = pvq, we have(l — p)v = (1 — p)pv = 0 = s*(1 — p) and
(v'(1 —p))*vi(1 —p)= (1 —p)/~i(1 —p) =0 for all j > i.

Lty = Z Zx;(l —p)(s*)Y s (1 = p)ay

i=1 j=1
= fo(l —p)z; = 1.
1

So t; is a partial isometry, and the range of the t; is clearly contained in the span of the
ranges of s'~1(1 — p), thus

tit] < Z sTHL—p)(s*) =1 —s"(s*)"
1

Let t; = s"~V¢; for i > 2. Then
< Sn(ifl)(l . Sn(s*)nxs*)n(ifl)
— Sn(i—1)<8*>n(i—1) . Sni<8*>m’

Hence t;t! are pairwise orthogonal projections. Since each is equivalent to the identity, B
and A are properly infinite. O

Corollary 5.1.8. If A is simple and infinite, then O, is a C*-subalgebra of A.

Lemma 5.1.9. Let C, be a C*-algebra generated by n isometries (s;) such that > | s;s7 =
p < 1. Then {(p*) ~K and C,/K ~ O,,.

Proof. Since sipt = pts; =0, (pt) is spanned by
{sup™sy | lul, lv| < oo}
This follows by using that lemma about words. Moreover,
(SupLSi)(Sochsg) = 5voc5upL5,g7

so these form a set of matrix units. Thus (pt) ~ K. In the quotient, (3;) will be isometries
such that Y} §;8," = 1, hence C,/K ~ O, O

Corollary 5.1.10. If A is a simple infinite C*-algebra, then O, is a quotient of A.

Proposition 5.1.11. Let A be simple, p,q € A be projections with p infinite. Then ¢ is a
equivalent to a subprojection of p.
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Proof. There exists (z;) C A such that ¢ = > 7 x;pz}. Moreover there exists partial isome-
tries (v;) such that vfv; = p and Y ) v;vf < p. Let v =3} z;pv;. Then

n n
* * * *
VUt = E Tipu; vipx; = E ripr; = q.
ij=1 1

Hence v is a partial isometry, so v*v is a projection. Moreover,

n
Z%‘U: < b,
1

vip = v}, pv; = v; and so
n
* * * *
pviup = E puiT;TipUip = V',
ij=1

and so g = vv* ~ v*v < p. O

Definition 5.1.12. A C*-algebra A is purely infinite if every hereditary subalgebra con-
tains an infinite projection.

Theorem 5.1.13. Let A be a unital, simple C*-algebra of dimension at least 2. The
following are equivalent.

1. A is purely infinite.
2. For all 0 # a € A, there exists x,y € A such that xay = 1.

3. Forall 0 < a e A\ {0}, ¢ > 0, there exists z € A such that ||z]| < ||a]|"2 + ¢ and
rar® = 1.

Proof. If (3) holds, a # 0, then there exists # € A such that za*az* = 1, so (za*)az* = 1,
giving (2).
If (2) holds, a # 0 is positive, find x,y such that xa%y = 1. Then

1 = zazyy*ara* < ly||*rax*.

Thus z = zaz® is invertible, so 1 = (z"2z)a(z*z"2), giving 3 without the norm estimate.
Now suppose that B C A is hereditary and 0 < b € B is not invertible. Then there is
x € A such that xbz* = 1. Let s = b%x*, so s*s = 1 and s is not invertible, so s is a partial
isometry. Moreover, ) )
p=ss" =b2xx"b2 € B.

This is an infinite projection in B, sp € B and (sp)*(sp) = p, while sps* is a subprojection
of p orthogonal to s(1 — p)s*. Thus B is infinite, giving (1).

Suppose that (1) holds. Let 0 < a € A have [ja]| =1, andlet 0 <e < i. Letc=1—¢.
Define

0, 0<z<1-—c¢
1-12 1-e<z<L
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Let B = f(a)Af(a), which is hereditary in A. By (1), B contains an infinite projection p.
Clearly p < xp1—c;1)(a) (in A € B(H)) and so pap > (1 — €)p. Since A is simple, the above
proposition implies that the identity 1 of A is equivalent to a subprojection of p. Hence there
exists a partial isometry vv* < p. Thus v*p = v*, pv = v. Let

b=v"av = (v'p)a(pv) > (1 —e)v'v=(1—epv=(1—¢)- 1.

So b is invertible with ) :
(b~ 20v")a(vb™2) = 1.
Finally, ) ) )
[ob™2 || <oz < (1 —¢)72 <1+¢,

giving (3). O
Corollary 5.1.14. O, is purely infinite for n > 2. O is also purely infinite.

Lemma 5.1.15. Let A be a unital, purely infinite C*-algebra. If p € A is a non-zero
projection, then pAp is unital purely infinite. In particular, all projections in a purely
infinite C*-algebra are infinite.

Proof. Clearly pAp is unital (with unit p). Suppose that B C pAp is hereditary. We claim
that B C A is hereditary. Indeed, suppose 0 < a < bfora € A,b € B. Since b € B C pAp
and pAp C A is hereditary, it follows that a € pAp. But now since B C pAp is hereditary,
a € B. Thus B C A is hereditary. Since A is purely infinite, B is infinite and so pAp is
purely infinite. So pAp contains an infinite projection and thus p is infinite. O]

Theorem 5.1.16. Let A be a unital, simple, purely infinite C*-algebra, p,q € A with p # 0.
Then there exists a projection ¢’ € A such that ¢ ~ ¢’ and ¢’ < p.

Proof. Since p # 0, the above implies that p is infinite. Since A is unital, simple, p is properly
infinite. Thus there exists p’ # 0 in A such that p ~ p’ and p’ < p. The above also implies
that p’ is infinite, so the above proposition implies that there exists ¢’ € A such that ¢ ~ ¢
and ¢ < p' <np. H

Tensor products have played a large role in our study. Let us see what happens if we
take tensor products of purely infinite C*-algebras - in particular the unital simple ones.
First let us see that the tensor product of two simple C*-algebras is simple; obviously only
considering the min-tensor. The simplicity result comes from exercise 3.4.2 of [6], and the
purely infinite results are from chapter 4 in [28].

Lemma 5.1.17. Let M C B(H) be a factor, 7 : M ® M" — B(H) be the product map
defined by m(a®0b) = ab. If (> a; ®b;) =0, then > a; ®b; = 0, where Y a,®b; € MO M'.

Proof. Suppose that > a;b; = 7(>a; ® b;) = 0. Let H,, ~ C™ with orthonormal basis (e;)7.
Let K =H ® H,, and let
Ko z_span{beif@)ei lbe M' ¢ e H} .
1

o4



Note that Ky is M’ ® 1 invariant by construction. Now notice that 7 a;n®e; L Ko for all
n € H. Indeed,

<Z bblg & €4, ZG;TI & €j> = Z<bb257 aj77>
i J

i

= Z<aibbi5, )

:< bazbgn>
(v (Saen)en) o

Now letting p be the projection of K onto Ky, since B(H ® H,,) ~ B(H™), we can view p as
a matrix (p;;) € B(H). Then for b e M', & € H,

Z bbjﬁ & €j = (pZJ) Z bbJE & €j = Zp”bb]f & €j.
J J 2%
Thus bb; = ), p;;bb; for all b € M’, and in particular for b = 1. Thus

0=p) am®e;=) pyan®e;
J ,J

for all n € H, hence by the linear independence of (e;), Zj pija; = 0, and so Zj a;pji =
(Zj pija;)* = 0. Now

®1) (Z bbié ® ei> = abbi§ @ e; =Y bbi(a) ® e; € Ky,

so Ko is both M ® 1 and M’ ® 1 invariant, and so it is (M UM') ® 1 invariant. Consequently
Ko is (MUM')"®1 invariant. But (M UM')" = C1 since M is a factor, and so Ky is invariant

under B(H) ® 1. Thus p must commute with B(H) ® 1, hence p € 1 ® B(H,,). This each p;;
is a scalar multiple of identity, so

Zai ® b; = Zai ® (Zpijbj)
i i j
= Z ai ® pi;b;
1,J
= Zpijai ® b;
1,

-5 (zp) o)

Il
e
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Proposition 5.1.18. Let A, B be C*-algebras. Then A ®, B is simple if and only if || - || =
| * [|min @and both A, B are simple.

Proof. Clearly we can restrict ourselves to the min-tensor since any other tensor will have a
surjection onto the min-tensor. With this in mind, if A is not simple, then there exists some
proper ideal I << A. Then I ® B is an algebraic ideal in A ® B and so I ® B is non-zero in
A ® B. Now there is some state ¢ € A* such that ¢(I) = 0, so if ¢ is any state on B, then
¢px1: A® B — C extends to a state ¢ ® 1) : A® B — C such that (¢ x ¢¥)(I ® B) =0,
and so (¢ x ¢)(I ® B) = 0. Since ¢ X v is non-zero, A ® B is non-simple.

Conversely, if A, B are both simple and A ® B is not, then there would be a non-
faithful irreducible representation. Let 7 : A ® B — B(H) be an irreducible representation.
By taking restrictions, there are non-degenerate *-homomorphisms 74 : A — B(H),7p :
B — B(H) such that the ranges of 74, 75 commute and ™ = m4 X wp. Since 7 is irreducible,
T(A® B) =C-I. But then C- I = 1(A® B) = ma(A) Nwp(B)’". Since m4(A) C 7p(B),
ma(A)" is a factor, and mg(B) C wa(A).

Notice that if 7(>_ a; ® b;) = 0, then since 71 = w4 X g, Y mwa(a;)mp(b;) = 0. But by
the above lemma, this implies that > ma(a;) ® 7(b;) = 0. But then

(T4 @ mpB) (Z a; @ bi> =0.

Since A, B are simple, both 74, 75 are injective, and so m4 ©7p is injective, hence > a;®@b; =
0.

We claim that this is enough. In general, if 7 : A® B — C'is a *-homomorphism, then
7 is injective if and only if 7| 4o is. To see this, let ||- ||, be the C*-norm on A©®B ~ 7(A® B)
which is the restriction of the norm on C. Then A ®, B = C*(7(A ® B)) C C, and so
7: A® B — A®, B is continuous. Since *-homomorphisms are contractive, it follows that
| “ lla < ||+ |lmin, SO these norms are equal and = is isometric, hence injective. ]

Lemma 5.1.19. Let A be a unital C*-algebra, 0 < a,b € A, € > ||a —b||. Then there exists
d € A such that dbd* = (a — ), and ||d|| < 1, where ¢, denotes the positive part of the
self-adjoint element c.

Proof. For § > 1, and let f5 : [0,00) — [0,00) be defined by fs(z) = max{z,2°}. Then
fs(b) = bas 0 — 1,. Since |la — b|| < &, there exists 0y > 1 such that |ja — f5,(b)|| < e. Let
bo = f5,(b) and let 0 < &1 = |la — f5,(b)|| < €. Then a — e, < by. Moreover, we have that
by < b and that by < b%. Since ¢; < ¢, if we assume ¢ < 1, there is a contraction e € C*(a)
such that e(a — e;l)e = (a — el)4, so (a —el); < ebge. To see that such an e exists, if
a(t) =t on [0, 1], then we can take

e(t) = -
{Mgi,egtgL

1
Now let x = bie, and suppose that A C B(H) is a unital embedding. Then there exists
a partial isometry v € B(H) such that © = v|z|. Then v = WOT-lim, z(z*z + %1)_%,
and so v € A”. Let y = v((a —e1),)2z € A”. We want to show that y € A. Clearly y =
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WOT-lim,, x(m*x—i—%l)_%((a—s)”%, and so if we show that z,, = x(x*x—i—%)_% ((a—5)+)% €A
is Cauchy, then y will be the norm-limit of elements in A, hence in A. Notice that

|En|\(_$fi”im)($n — Tm)"||

_ xgﬁx+%)h4ﬁx+%>%)m—@+0ﬁx+%>bwﬂx+%>%)f
< |z ((az*x + %)5 — (z"x + %)5)) o ((x*:c + %)5 — (x*z+ %)%) ot

= ||za* (22" + %)—% — axt (2t + E)_% 2

But notice that tt — +/t uniformly on o(zz*), (z,) is Cauchy, hence y € A. Now we

i‘
S|

have

vy =((a—e))vo((a—e))t = (a—e)s
as (a — )y < ebpe = x*z, and v*v is the projection onto ker(|x|)+, which is the closure of
the range of x*x. Moreover,

1,1
yyt =v(a —e) v <vrtavt = vlz|(v|z]) = 22t = bZe?bg < |le|bo = by < b

Now we will construct our desired element d by forming a Cauchy sequence of elements
1. 60—1
and letting d be its limit. Let d,, = y*(b* + 1)72b"2 . Then
Hdn - dm”2
= ||(dn - dm)*(dn - dm)”

9p—1 5 1.1 5 1.1 . 5 1.1 5 1.1 do—1
= b b + — — (0 + — b + — — (0" 4+ — b

N R R P (R R G S I

5—1 1. 1 | 1. 1 1. 1 5p—1
< b b + =)z — (B0 + =)z )b (B0 + =) — (b + —)"2 )b =
S N G e e L (G R R

2
ot e s Lyt e 4 Ly
. 2071 PZIETS . .
Now since == — Vi > uniformly on o(b), (dn) is Cauchy in A. Hence let d =
t 2

lim, d,, € A.
Now we just need to show that d satisfies the conclusions in the statement of the lemma.
Firstly

_ 1 1 _
didy, = b (0% + =) Fyy (B 4+ =) w b T
n n
59—t 1 1, 1 801

< b (b + Z)"3h(b0 4+ Z) 735
<b 2 ( +n)2( +n)2 2

1
— b50 b(So ~\1
GRS
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which implies that [|d%d,,|| < 1 for all n, hence [|d|| < 1. Finally, db* = lim, y* (b+21)=3p% =
y* as (b% + %)_%b%o — p in WOT, where p is the projection onto ker(b%) and yy* < b%
gives that y*p = y*. Since the norm limit exists, it must be the same as the WOT limit.

Therefore L
dbd* = db2(db2)" = y*y = (a — €) .

]

Lemma 5.1.20 (Kirchberg’s Slice Lemma). Let A, B be unital, D C A® B hereditary. Then
there exist 0 # z € A such that zz* € D and z*2 =a® b for some 0 <a € A,0<be B.

Proof. Let 0 # a € D be positive and let ¢ € A* 1) € B* be pure states such that ¢ @1 (a) #
0. Let by = (¢ ®idg)(a) € B. Then (b)) = ¢ @1 (a) # 0, so by is non-zero and positive. By
scaling a, we can assume that ||b;]] = 1. Now we can excise ¢ (as in chapter [L.F)), so there
exists a; € A with ||a;]| = 1 such that

1 1 1
I{af ® Daaf ®1) — a1 @bi| < 7.

1 1
Now by the above lemma, there exists 7 € A ® B such that 7*(a] ® 1)a(aj ® 1)r = ((a1 ®
by) —3)+. Letting & > 0 such that 3§ < < 1andlet a = (a1 —6); € Ay, b= (b — ), € By,
both of which are non-zero. We claim that there exist s € C*(a;) ® C*(b;) such that
s*((ay @ b1) — 3)1s = a®b. Then z = az(a? ® 1)rs will be our desired element in the
statement of the result.

Notice that ((a1 ® by) — 1)+,a ® b are in the abelian C*-algebra C*(ay) ® C*(ap) = C.
Moreover

GETOI 6@ £0) C {6 5(0) | dl(ar ® b) — 1)) £0),
where ¥(C') is the maximal ideal space of C. Indeed, if ¢ € ¥(C'), then ¢ = ¢ ® ¢, where
o1 € X(C*(ay)), g2 € 2(C*(by)), and ¢(a ® b) # 0 implies that ¢1(a), p2(b) # 0. Then

1 1

¢((a1 @ br) — ilmm > ¢r(a)da(by) — 5 > 87— 5 > 0.

Now looking at C'(X(C)) ~ C*(a;) ® C*(by), there exists s € C*(a;) ® C*(by) such that

1
s*((ay @ by) — leA@B)Jrs =a®b.

Now we see that
1 101 1 1
2'z = s"r"(af ® 1)azaz(a} @ 1)rs =s"((ag ® by) — Z)Jrs =a®b,

and

N[

1 1 1
0<zz"=a2(aj ® )rss'r*(ai @ 1)aj < ||rss*r’|a,

which implies that zz* € D since D is hereditary. O
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Theorem 5.1.21. Let A be a unital purely infinite C*-algebra, and B a unital C*-algebra
such that every hereditary C*-algebra has a non-zero projection. Then A ® B is purely
infinite.

Proof. Let D C A ® B be hereditary. By Kirchberg’s slice lemma, there exists z € A® B
such that zz* € D and 2*z = a ® b for positive a € A,b € B. Let A® B) C B(H), and let
v € (A® B)” be the partial isometry such that z = v|z|. Define 7 : 2*2(A® B)z*z - A® B
by m(z) = vzv*. We will see that 7 is a well-defined isomorphism onto its range, which is
22*(A® B)zz* C D, which is hereditary in D. Since vz*zv* = zz*, vo* is the projection
onto the range of z, and v*v is the projection onto the range of z*, 7 is clearly a well-defined
*_homomorphism. Now if 0 <z € A® B, then

v(Z*zxz"2)v" = z|z|x|2|2 < ||x||z27 227,

so that v(z*zzz*z)v* € 22*(A® B)zz*, since this algebra is hereditary in D. So 7 does
indeed have the correct codomain. Moreover, 7! (y) = v*yv will also be a *~homomorphism
which will be the inverse, hence z*z(A ® B)z*z ~ z2*(A ® B)zz*, the latter being hereditary
in D. To show that D has an infinite projection, it suffices to show that z*z(A ® B)z*z has
an infinite projection. But notice that

aAa @ bBbC (a®b)(A® B)(a®b) =2*2(A® B)z*z.

But since aAa C A,bBb C B are hereditary, A is purely infinite, and every hereditary
subalgebra of B has a non-zero projection, just take an infinite projection p € aAa, and any
non-zero projection ¢ € bBb. Then p ® ¢ is an infinite projection. ]

Corollary 5.1.22. If A, B are unital, simple, purely infinite, then A ® B is unital, simple,
purely infinite. In particular O ® O, is unital, simple, purely infinite.

5.2 K-Theory for Purely Infinite C*-Algebras

This this section, we will follow [10] to see how the K-theory of purely infinite C*-algebra
behaves. In particular, we will use the 6-term exact sequence to compute the Ky and
Ky groups of O,. Since K-theory provides an isomorphism invariant, we will be able to
distinguish the Cuntz algebras. Moreover, we will conclude that O, only has one non-trivial
projection up to Murray-von Neumann equivalence, and that the unitary group is connected.

Theorem 5.2.1. Let A be a unital, simple, purely infinite C*-algebra. Then Ky(A) = {[p]o |
0#p=p"=p*c A}

Proof. First let us see why it suffices to consider projections in A. First note that M, (A)
is unital, simple, purely infinite. If p,q € M, (A), then p,q are equivalent to orthogonal
projections inside A ~ e;;®A C M,,(A). Indeed, one can just take two orthogonal projections
p,q € A~e;;®A, then p will be equivalent to a subprojection of p’ and ¢ will be equivalent
to a subprojection of ¢’ since M,,(A) is unital, simple, purely infinite. Let us show that we
actually have an identity and inverses, so that taking the Grothendieck group will change

nothing. Let Q(A) = {[plo | 0 # p = p* =p* € A}.
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Now let p,q € Pi(A) with p ~ p' < p,q ~ ¢ < ¢, which exist by Theorem [5.1.16 We
can further replace ¢ by an equivalent projection to get that ¢ < p’. Then

p—rlo+la—dlo=Ip— @ —a+d).
If w € A such that w*w = ¢ and ww* = ¢, then letting v = (p — q) + w gives
v'v=p and vv* =p —q+¢.

If e, f are orthogonal projections in A such that e, f < d and e ~ f, then d —e ~ d — f.
Moreover if e = z*z, f = za*, then y = (d — e — f) + x gives

y'y=d— fandyy* =d—e.
Thusif p~p”" <p—p',thenp—p' ~p—p" ~p—(p' —q+¢'), and so
p=plo=p-0To=p-0 -a+d)o=[p—po+g—d]o

By a symmetric argument, [¢ — ¢']o = [p — P'o + [¢ — ¢]o, hence [p — p'lo = [¢ — ¢']o. Thus
[p — p']o acts as identity in Q(A). Indeed, if ¢ € P;(A), then

[alo + [0 —Plo = ldlo +[a— ¢Jo=la— ' + o = [do,
and if ¢ ~ ¢/, ¢" < q where ¢'¢" = 0, then
[do+la—d —d"lo=la—d —d"+dlo=1[a—dlo=[p— Pl
Thus [¢ — ¢ — ¢"]o is the inverse of [¢] in Q(A). It therefore follows that Q(A) ~ D(A) =
P (A)/ ~ is a group, and so Ky(A) = Q(A). O

Lemma 5.2.2. Let A be a unital, simple, purely infinite C*-algebra, u € U(A), A\,..., A\, €
o(u) distinct. For any ¢ > 0, there exists v € U(A) and non-zero orthogonal projections
P1,---,Pn € A such that |ju —v|| < g, each p,, commutes with v, propr = Aps.

Proof. Let fi,..., fn € C(o(u)) be non-zero positive functions whose supports are disjoint
and contained in the sets Q) = {2z € o(u) | |z — M| < €} for ¢ small enough so that
the supports are disjoint. Let p, be any non-zero (infinite) projection in the hereditary
subalgebra fi(u)Afy(uw). Then py are clearly mutually orthogonal, and pjup; = 0 for all
i # j since u commutes with fi(u). Now let

Vo = Z)\Jpj_'_ (1 —ij> Uu <1 —ij> < A,
1 1 1

so that ||vg —u|| < max; ||A;p; —p;up;|| < e. Choosing €y small enough, vy can be invertible,
so and we can let v be the unitary part of vy in the polar decomposition. m

Corollary 5.2.3. Let A be a unital, simple, purely infinite C*-algebra, uw € U(A). Then
there exists a non-trivial projection p € A and v € pAp such that u ~, v+ (1 — p).
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Theorem 5.2.4. Let A be a unital, simple, purely infinite C*-algebra. Then U(A)/Uy(A) —
K, (A) given by [u] — [u]; is a group isomorphism.

Proof. This map is clearly a well-defined homomorphism, so let us show that it is injective.
Suppose that [u]; = 0 in K;(A).We know that

u 0
(o 1n> ~h Ln

for some n € N, and consequently u & 1 ~j, 1541 for all £ > n. So it is clear when we use
the (K® A)™ definition of K, then [u]; = 0if and only if e@u+ (1 —e®1) ~, 1 in (K® A)~
for some rank one projection e € K.

By the above corollary, we can assume that u = «' 4 (1 — p) for some non-trivial
projection p € A, and v € U(pAp). Since 1 — p # 0, there exists ¢ < 1 — p such that
q ~1—p, and since 1 —p — ¢ # 0, there exists pairwise orthogonal projections (r;);>1 in
A such that r; <1 —-p—-qgandr; ~1—-p—gq. Let ro = p+¢q. Then ry ~ 1 and 79 is
orthogonal to each r;. Now let f, = Zlg r;j, so that frAfi, ~ Myi1(A) for all k, and so
(K® A)~ ~ C*(UpfrAfr, 1) € A. Associating o with a rank one projection e in the copy
of Kin (K® A)~, we have that e ® u+ (1 — e ® 1) gets sent to v under this isomorphism.
Since e@u+ (1 —e®1) ~p, 1gga and *-homomorphisms send unitaries to unitaries and are
continuous, it follows that u ~, 1.

For surjectivity, since A is unital, simple, and infinite, Theorem [5.1.7 and its proof give
us isometries (s;)7° such that > 7 s;s7 < 1 for all n. Now let u € U(M,(A)). We claim that
there exists v € U(A) such that [u]; = [v];.

First note that if w € U(A) and s € A is an isometry, then [w]; = [sws* + (1 — s5%)];.
Indeed, sws* + 1 — ss* is clearly unitary and

v(wd 1)v* = (sws™ + (1 —ss")) & 1,

(s 1—ss"
"= \o s* ’

Thus since v is clearly an isometry, [w]; = [w®1]; = [(sws*+1—ss*)D1]; = [sws*+1—s5"];.

This argument carries through further: if wy,...,w, € U(A) and t,...,t, € A are
isometries with mutually orthogonal ranges, then w = > ] t;w;tf +1 = > [ t;t; € U(A) is a
unitary since w = I} (t;w;t} + 1 —t;tF), and we have [w]y = > 7 [t;wit: + 1 — ;5] = > wili.
Now let

where

S]_ . e Sn
0 --- 0

t=1. . | e Mu(A).
0O --- 0

Clearly t is an isometry and tut* = v & 0,1 for some v € A. But since tt* = 0@ 1,,_1,
tut* +1 —tt* = v ® 1,,_1 and tut* + 1 — tt* is unitary, so v is unitary as well. But clearly
[u]y = [v]1, hence the map is indeed surjective. O
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Proposition 5.2.5. Let Hom(O,,) denote the space of unital *-homomorphisms O, —
O,, with the point-norm topology. Then the map U(O,) — Hom(O,), given by u +— ¢,
where ¢,(s;) = us; (which exists by the universal property of the Cuntz algebra), is a
homeomorphism.

Proof. First notice that every unital *-homomorphism does indeed arise as ¢, for some
u € U(O,,). Clearly by the universal property of O,, each ¢, is a homomorphism. Now if
¢ : O, — O, is a unital *-homomorphism, let u =7 &(s;)s;. Then

uru = Z sip(8:) P(s)s; = i sis; =1,
Y] 1
uu® —Zqzﬁslssjgbsj qu

so that u is unitary. Moreover,

Z¢ )sisj = ¢(s;).

Now to see why this is a homeomorphism, it is clear that if ¢,, — ¢,, then uy — u
in U(A). For the converse, if uy — w in U(A), then clearly ¢, (s;) = urs; — us; = du(si)
for all 7. But this clearly implies that ¢,, (a) = ¢,(a) for a in the *-algebra generated by
(s;)7 since the *-algebra operations are continuous. We just need to show that this passes
to the closure. Suppose that (a,) has the property that ¢y, (a,) — ¢u(a,) for all n and that
a, — a. Then

[0y (@) = dula) | < [[Pur(a) = Guy (an)]| + [[uy (an) = dulan)[| + [Pulan) — dula)ll
< lla = an|| + |u, (an) — Pulan)| + [la — ax||
= 2||a’ - (ln” + ”Qﬁux(an) - ¢u<an)|l

since *-homomorphisms are contractive. Now a, — a and ¢y, (a,) — ¢u(an), so ||du, (a) —
¢u(a)|| = 0. O

Proposition 5.2.6. The map A : O, — O, given by A(a) = > s;as! is homotopic to ido, .
Proof. Let A\ = ¢, where u € U(Q,,). Then notice that

*
u = E A(si)s; —E 578i8;8; (E s]szsjsz) =u".
/[:Mj

So u is a self-adjoint unitary, hence o(u) C TNR = {—1,1}. But this implies that u ~, 1
since we can take a logarithm. Consequently, id ~, ¢, = A. [

Corollary 5.2.7. Let B be a unital C*-algebra. Then (n —1)g =0 for all g € Ko(B ® O,,)
and (n — 1)h =0 for all h € K1(B® O,).
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Proof. If A is a C*-algebra, p € P,(A), s € M,(A) is an isometry, then [sps*]o = [plo.
Indeed, the partial isometry v = ps* gives the equivalence. Therefore for p € P,.(O,,),

It then follows that
Ko(id @ A)([plo) = n - [plo

for all p € Py (B ® O,). The same argument applies with K7(-). O
Corollary 5.2.8. Ko(OQ) = Kl(OQ) = KO(OQ X 02) = Kl(Og X 02) =0.
Corollary 5.2.9. The unitary groups U(O3) and U(Oy ® Os) are connected.

Although the above corollaries are all the K-theory we require to prove the nuclear
embedding theorem, we will finish this section off by using the 6-term exact sequence to
compute the K-theory of all the Cuntz algebras.

Recall as in lemma [5.1.9] that if C, is a C*-algebra with n isometries (s;)7 such
that > 7 s;sf < 1, then (1 — > 7s;87) ~ K and C,/K ~ O,. Let &, = C*(s1,...,8,) C
C*(s15. -y 8nt+1) = Opy1. Let us denote the ideal K o~ (1 — Y"1 s;87) 9 &, by Jh.

Lemma 5.2.10. Let vy, ..., v, € B(H), with H separable, be isometries such that Y} v;vf <
1. Then the map v; — s; extends to an isomorphism C*(vq,...,v,) >~ &,.

Proof. Let p=1—>"Tvvf, and let £ = pH C H. By replacing v; with v; ®1 € B(H®H) ~
B(H) if necessary, we can assume that dim K = dimH. Let v,1; : H — K be a Hilbert
space isomorphism. Then there there is an isomorphism C*(vy,...,v,11) ~ O,41 which
takes v; — s;, and so this map will take C*(vy, ..., v,) to &,. O

Now let £ be the smallest C*-subalgebra of O,,,1 which is invariant under A, 1, given
by Api1(z) = ?H sixst, and &, C & . Evidently, £ is generated by Uk‘ZO)‘fLJ,_l(gn)- We
also have that for every x € &), spp1255 1 = A1(x) — >y siws; € E),. Let J, Q&) be the

*

closed ideal generated by s,,1&, s ;.

Proposition 5.2.11. J) <&/ is a proper ideal with J, ~ K® &/ and &),/ T ~ O,,. Moreover
ifqg:& — O, ¢ : E — O, are the quotient maps, the following diagram commutes:

& —150,

Ll

/
gn T> On,

where ¢ is the isomorphism of O, ~ O,, which takes ¢(s;) to ¢/(s;).

Proof. Since & is the smallest algebra which contains &, and is invariant under x ~—

Sp41285 .1, it is clear that &, is generated by si,...,s, together with s,.:&)s) .. Just
as in the proof of Lemma [5.1.9] it is clear that if a is a word in si,...,s,,s7, -+, sk,

*

r € Sy41&) 5., then az = 0 or a = s, for some word g in {1,...,n}. Thus the span
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of s s} for p, v words and = € s,11&,,s;,,, is dense in J,,. Moreover these are matrix units.
Indeed, (s,75;)(8ays5) = duasurysy. Thus there is an isomorphism of 7 onto £ ® &, which
sends s,xs,, to e, ® x. In particular 7, is not unital, so it is proper. The existence of ¢ is
clear from the universal property of the Cuntz algebra. m

Proposition 5.2.12. Let ¢ : J, — &, be the inclusion map, and ¢ : &, — O, be the
quotient map. Then the following hold.

1. Ko(q) : Ko(&,) — Ko(O,,) is surjective;
2. Ki(q) : K1(&,) — K1(0O,,) is an isomorphism;
3. Ko(t) : Ko(Jn) — Ko(E,) is injective.

Proof. We have the short exact sequence 0 — 7, — &, — O, — 0, and so we have the
6-term exact sequence

7 = Ko(T) 2% k(&) —29 koy(0,)

alT lt;o

Since J, ~ K, Ko(J,) = Z and K,(J,) = 0. By exactness, since K(J,) = 0, ImKy(q) =
kerdy = Ko(O,), and so Ky(q) is surjective. Moreover, K;(O,,) is torsion by Corollary
[5.2.7, hence §; = 0, and so ker Ko(¢) = Imé; = 0, giving that Ky(¢) is injective. To see
that K;(&,) ~ K1(O,), notice that ker K(q) = ImK;(¢) = 0, so that this homomorphism
is injective. We further get that ImK;(q) = kerd; = K;(O,) since §; = 0, so we have
surjectivity and injectivity, hence K;(q) is a group isomorphism. O

Proposition 5.2.13.

1. The homomorphisms K(¢') : Ko(&) — Ko(O,) and Ky(¢') : K1(&) — K1(O,,) are
surjective;

2. the homomorphisms Ky(¢) : Ko(J.) — Ko(&)) and Ky(v) : K1(J)) — Ki(E)) are
injective.

Proof. This follows by the above result combined with the the fact that the diagram

& —15 0,

Ll

/
gn T> On,

commutes. O

Lemma 5.2.14. The *-homomorphisms idg, , \pi1le, : & — &) are homotopic.
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Proof. By the same argument in Proposition Ani1 = ¢, for the self-adjoint unitary
U= Z - 8i8;5787 € Opy1, hence \i1(s;) = us; for all 4. Since s, 125y, € &), forallz € &,
si(sjsis ) €&, for i #n+1and, (s;s;87)s € &), for j #n+1. Also s7,,,(s n+1)2 = $p41(1 —
S sisz‘)sflﬂ € &), 80 8;8;57 8} € 5’ forall 1 <i,7 <n+1. Now let v : [0,1] — Hom(&,, E)),
the space of unital *-homomorphisms &, — £/, be given by «(t)(s;) = v:s;, where the map
t — vy is a homotopy such that vy = 1,v; = u, which exists since u is self-adjoint. It is clear
that a provides a homotopy for idg, and A, 41]e, - O

Let p : &, — &, be the map p(x) = s,q12s,,;. Then the homomorphisms Ky(p)
and K;(p) are injective. Indeed, we have K;(&!) — K;(J)) — K;(&)), where the first
homomorphism is induced from the map p : £, — J,, is given by p(z) = s,12s),, is an
isomorphism since K;(v) : K;(J)) — K;(E)) are injective by Proposition [5.2.13 and the
following diagram commutes

g L g

{ Ok
& —— KR £
Proposition 5.2.15.
L. [plo = n[plo + Ko(p)([plo) in Ky(&),) for all projections p € &, C E/.
2. [plo # n[plo in Ko(&,) for all p € &, such that Ky(p)([plo) # 0.

Proof. Notice that [A,41(p)]o = n[plo + Ko(p)([plo) in Ko(E)) for all projections p € &£ If
p € &, then [ply = [Anr1(p)]o in Ko(E)) and so (1) follows.

Now let Ko(q), Ko(q') and K¢(j) be the maps induced from the quotient maps ¢, ¢’ and
the inclusion map j : £, — &/, respectively. Then since ¢ = ¢’ o j, Ko(q) = Ko(q') o Ko(j).

Thus if Ko(q)([plo) # 0, then Ky(5)([plo) # 0, so

Ko(5)([plo) = nKo()([plo) + Ko(p) o Ko(j)([plo) # nKo(5)([plo)
in Ko(&) by (1) and the fact that p is injective. O
Theorem 5.2.16. Ky(O,,) =7, for 2 <n < .

Proof. Since O,, is unital, simple, purely infinite, we only need to consider equivalence classes
of projections in O, itself by Theorem Let r = [1 — > 7 sisf]o € Ko(€,). Then the
kernel of Ko(q) : Ko(E,) = Ko(O,,) is just Zr since r generates Ko(¢)(Ko(T,)) = ker Ko(q).
Thus for every p € Ko(E,), np = p+ kr for some k € 7Z since every element has order n — 1.
Now since n[l]g = [1]o — r, we have

n(p+ k[1]o) =p+ kr + [1]o — kr = p + k[1]o.

But then we have Ky(q)(p) = —kKo(q)([1]o) = —k[1]o in K(O,) by part (2) of the above
proposition. Thus Ky(O,) = Z[1]o, so it is cyclic. Now let us see that k[1]p = 0 in Ky(O,,)
if and only if £ =0 mod (n — 1).
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If k[1]p = 0 in Ko(O,,) for k € Z, then k[1]q = jr in Ky(&,) for some j € Z. Multiplying
both sides by n yields
k([1o) —r = ngr
since n[l]yp = [1]o — r in Ko(&,). As k[1]p = jr,
kr = —(n—1)jr.
Since Ir # 0 for all 0 # [ € Z, it follows that £ = 0 mod (n — 1). O
Corollary 5.2.17. O, # O,, for n # m.
Theorem 5.2.18. K,(0,) =0 for all 2 <n < occ.

Proof. Let K1(j) : K1(&,) — Ki1(€)) be the map induced from the inclusion j : £, — &/. It
suffices to show that the restriction of K (p) : K1(E),) — K1(E)) to K1(&,) is trivial. Indeed,
since Ki(p) is injective, this will imply that K;(p)(K:1(E,)) = 0, and the result will follow
from the surjectivity of Ki(q) : K1(&,) — K1(O,).

Now u = nu + Ki(p)(u) for all u € Ky(j)(K1(&,)) since idg, ~p Antile, by Lemma
[5.2.14 But we also have that v = nu for all u € K;(j)(K1(&,)) by Corollary and
the fact that Ki(€,) ~ Ki(O,) by part (2) of Proposition [5.2.12] But this implies that
Ki(p)(u) =0 for all u € K;(5)(K:1(E)). O

Finally, let us end off by working toward the K-theory of O,.
Proposition 5.2.19. Ky(&,) = Z and K;(&,) =0 for all 2 <n < oco.

Proof. Since Ko(J,) — Ko(&,) — Ko(O,) is exact and Ko(O,) ~ Z,_1, it follows that
Ko(&,) is generated by Ko()(Ko(J,)) and [1]p. But Ko(¢)(Ko(Jn)) = Zr with r = [1 —
> 1 sisi]o as above, and r = —(n — 1)[1]p. Thus Ky(&,) = Z[1]o. Since Ky(¢) is injective,
Z ~ 1(Ko(J,)) C Z[1]p, and since Z[1], is torsion free, it is isomorphic to Z.

K, (&,) = 0 just follows from the fact that K;(&,) ~ K;(O,) by part (2) of Proposition
0.2.12 [

Theorem 5.2.20. K((O) =Z and K;(Ox) = 0.

Proof. Let (s;)3° be a sequence of isometries with pairwise orthogonal ranges such that
Os = C*(s1,...). Then O is the inductive limit of the subalgebras C*(sy, ..., s,) which
are isomorphic to &,. Thus for K;(O) is the inductive limit of

Ki(&) RION Ki(&s) RN ,

where j is the inclusion C*(s1,...,s,) = C*(s1,...,Sp41). Thus it follows that K;(O.) = 0.
Moreover Ko(&,) = Z[1]o and Ko(j)([1n]o) = [Ln+1]o where 1, is the unit for &,. This Ky(j)
is an isomorphism for all n. O

Corollary 5.2.21. O, # O for all n > 2.

Corollary 5.2.22. For all 2 < n < oo, the unitary group of O, is connected. Moreover
if 2 < n < oo, then every projection in O, is equivalent to one of the form Z’f s;s; for
1 <k <n In O, every projection is equivalent to a projection of the form Zlf 587 or
1— Y Vst for 1 < k < oo,
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5.3 Real Rank Zero, Exponential Rank, and Exponential Length

We will now be concerned with certain approximation properties of purely infinite C*-
algebras. We first study algebras of real rank zero, of which many of the results can be
found in [5] and chapter V.7 of [I1]. We then proceed to study the finite unitary property
(FU) and the weak finite unitary property weak (FU), which were studied by Phillips in [23]
and [24]. This paves way for the study of exponential rank and exponential length.

Definition 5.3.1. A unital C*-algebra A has real rank zero if the invertible self-adjoint
elements A_! are dense in the self-adjoint elements Ag,. If A is non-unital, we say it has real
rank zero if its unitization does.

Example 5.3.2.
1. C(X) has real rank zero if and only if X is totally disconnected.
2. Finite-dimensional C*-algebras real rank zero.

3. von Neumann algebras are real rank zero. This is because we have the L*> functional
calculus, and we know that simple functions are dense.

4. Inductive limits of real rank zero algebras are real rank zero. In particular, AF algebras
are real rank zero.

Proposition 5.3.3. Let A be a C*-algebra. The following are equivalent.
(RRO) A has real rank zero.

(FS) The self-adjoint elements with finite spectrum are dense in the self-adjoint elements.

(HP) Every hereditary subalgebra of A has an approximate unit of projections (which is not
necessarily increasing).

Proof. Suppose that (RRO) holds, let a € Ay, with [ja]] = 1, and fix ¢ > 0. Let —1 =
t1,--+,tn = 1 be an increasing subset of non-zero points in [—1,1]. Then, by (RR0), there
exists a; € Ay, such that a; —t;1is invertible and ||a—a;|| = |[(a—%,1) = (a1 —t11)|| < e; = 5.
Now let €5 < g such that [t; —e2,%1 + €2 No(ay) = 0. Then by (RRO), let a; € Ay, be such
that as —t21 is invertible and ||(ag — to1) — (a1 — t21)|| = |laz — a1|| < 2. Then t1,ts € o(as).
Inductively do this to get aq,...,a, € Sy such that ¢1,...,t, € o(a,) and

n n

1 €

[ETNED SEES prp
1 1

Since t; ¢ o(a,) for all i,

b= —X(1-z-1(an) + > tiX(tra(an) + X(1145)(an) € A,
2
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where xg(z) is the spectral projection of z onto S C C. Then b has finite spectrum and

€

€
16 = all < b= an|| +llan —all < 5+ 5 =¢
2 2
Now assume that (F'S) holds and suppose that B C A is hereditary. To see that B has
an approximate identity of projections, it suffices to show that for anyb,,...,b, € B and

0 < & < 1, there exists p = p* = p* € B such that ||b; — bip|| <e. If b = > 7 b;b}, then

1b: = bipl* = 11b:(1 = p)I* = (1 = p)bi (1 = p)|| < [[6(1 = p)|| = [[b = bp]|.

So it suffices to show this for ||b—bp|| < €. Without loss of generality, suppose that ||b|| = 1.

Let 6 > 0 such that § < 5_662, and let n € N be such that 6% > 1 — 8. Then there exists

0 < ¢ € A with finite spectrum such that [|bx — ¢|| < % with ||¢]| < 1. Thus a = ¢" satisfies

n—1

<l e = brflor ]| < mlfbn — | < 6.
0

n—1

—1—3 1,2

la—=bll =1 """ (e~ bu)br
0

Since ¢ has finite spectrum, a has finite spectrum by the spectral theorem, and so x5 is
continuous on o(a), hence letting ¢ = x(51(a), we have that |la — aq|| < ¢ and

lawgar —q|| <1— 67 < 4.
Now since B is hereditary, © = b%qb% € B. Thus
1 1 11
[z —gll < 2[[bx — ax| + lawga» — ql| < 34.

Now
o —2?| = [[(1 = g)(z — q) — (x — q)z|| <60 <e—e”.

Hence o(z) € [0,e] U [l —¢,1]. Thus p = xj1—-,1)(z) € B and |[p — z|| < e. Finally,
16 —=bpll < llp = all + la = bl + [la — agl] < &+ 50 < 2e.

Now assume that (HP) holds and let a = a* € A with ||a|]| = 1. Decompose a into its
positive an negative parts, a = a; —a_. Let B = a;Aa,, so by (HP) there exists p € B
such that ||ay — a;p|| < e. Since a_ay = 0, we also have that a_p = 0. Let

b= pap +2ep + (1 —p)a(l — p) — 2¢(1 — p)
=a—pa(l —p)+ (1 —plap+2e(p — (1 —p)).

Then
la =bll < [[pa(l = p) + (1 = p)apl| + 2[lp = (1 = p)[| < &+ 2¢ = 2e.
But
pbp = (1 =pa_(1 =p+(1=play(l —p) =21 -p)
<e(l—p)—2¢(1—p)
= —¢(1 - p).
Since b and p commute, b must be invertible. It follows that A has (RRO). O]
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Theorem 5.3.4. Let A be unital, simple, purely infinite. Then A has real rank zero.

Proof. Suppose that a € A,, and € > 0. Let

0, if |t| < e,
f-t)=Lt—e, ift>e
t+e, ift<—¢,

and let g.(t) = max{e — [¢|,0}. Let B = g.(a)Ag-(a) C A, which is hereditary, and so
there exists an infinite projection p € B since A is purely infinite. By Theorem [5.1.16]
1—p~gqg<p. Solet v e A be a partial isometry such that v*v =1 — p and vv* = q < p.
Since f.(t)g.(t) = 0, we have that f.(a) = (1 —p)f.(a)(1 — p). Now let

fe(a)
b= foa)+ew+v")+elp—q) ~ €
0

SO M

0
0],
9

where this matrix comes from taking a unital faithful representation A C B(H), and decom-
posing H = (1 — p)H & qH & (p — ¢)’H with matrix unit ey; = v : (1 — p)H — ¢gH. This
matrix has inverse

-(a)

L
22

Qo= O
O 0
oo O

Moreover b is self-adjoint, and
16— all < [Ife(a) —all +ello+ 0"+ (p—g)|| <&+ 3¢ = 4e.
O

Corollary 5.3.5. The Cuntz algebras O,,, O, and the Calkin algebra B(H)/K have real
rank zero.

We now follow [23] and [24] to prove that the unitary groups of the Cuntz algebras
have desirable approximation properties.

Definition 5.3.6. Let A be a unital C*-algebra. We say that A has the finite unitary
property, abbreviated (FU), if the elements of U(A) with finite spectrum are dense in
U(A). We say that A has the weak finite unitary property, abbreviated weak (FU), if
the element of Uy(A) with finite spectrum are dense in Uy(A). If A is non-unital, we say
that A has these respective properties if A does.

Property (FU) is clearly stronger than weak (FU).
Example 5.3.7.

1. Finite dimensional C*-algebras clearly have property (FU) since every unitary has
finite spectrum.
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2. von Neumann algebras have property (FU) since unitaries are normal and simple func-
tions are dense in the bounded Borel functions.

Definition 5.3.8. Let A be a unital C*-algebra. The exponential rank of A, written
cer(A), is the largest element of the set of symbols {1,1 +¢,2,2+¢,...,00}, with obvious
order, such that

L. cer(A) < nif every u € Up(A), u = II7e" for a; = af € A.

2. cer(A) < n+eif every u € Up(A) is a norm limit of products as in (1).

If A is non-unital, we let cer(A) = cer(A).

Proposition 5.3.9. Let A be a unital C*-algebra. Then A has weak (FU) if and only if
A has real rank 0 and cer(A) < 14 ¢. Also A has (FU) if and only if A has real rank 0,
cer(A) <14 ¢ and U(A) is connected.

Proof. Suppose that A has weak (FU). Then cer(A) < 1+ ¢ since every unitary with finite
spectrum is an exponential. To see that A has (RRO0), let a € A,,, and without loss of
generality, suppose that ||a]| < 7. Let €' = lim,, u,, where u,, € U(A) have finite spectrum.
Let f be a branch of the logarithm. Then —if(u,) is self-adjoint, has finite spectrum, and
—if(up) = a.

Conversely, suppose that A has (RR0), cer(4) < 1+ ¢, and let u € Uy(A). Write
u = lim,, " for a, € Ay,. Since A has (RRO), let b, € A, have finite spectrum such that
|an — by|| < . Then u, = e is unitary with finite spectrum and u, — u.

Finally, it is clear that A has (FU) if and only if A has weak (FU) and U(A) is
connected. O

Remark 5.3.10. If A is unital, cer(4 @& C) = cer(A), and so cer(A) = cer(A) for any
C*-algebra.

Proposition 5.3.11. Let A = limA, is a direct limit of C*-algebras (our index set being
—
directed) and that cer(A,) < n + ¢ for all a. Then cer(A) <n +e.

Proof. Without loss of generality, we can assume that the A and the A,’s are unital by
unitizing everything. Let 5, : A, — A be the inclusion maps. Let u € Uy(A) and let
u = II{¥e™ for some N and a; € Ay,. Note that we can assume that N > n since otherwise it

is trivial. Since U,f,(A,) is dense in A, and the index set is directed, there exists a/(k) a'® €

]
(Aa(k))sa such that Ba(k)(a§k)) —aj forall j=1,...,N. Let v, = H{Veiagm € Up(Aawry), s0

Baky (Vi) — u. But for each k there is uj, € Uy(Aar)) which is a product of n exponentials
with |Juy —vg|| < £. Then Baa(uy) is a product of n exponentials which converges to u. [

Lemma 5.3.12. Let ¢ : A — B be a surjective, unital *-homomorphism. Then ¢(Uy(A)) =
Up(B).

Proof. A unital *-homomorphism is continuous and maps unitaries to unitaries, so ¢p(Uy(A)) C
Uo(B). Conversely, say u = l}e® € Uy(B) for some b; € By,. Since ¢ is surjective, there
exists a; € A such that ¢(a;) = b;. Sine ¢ is a *-homomorphism and clearly gb(aj;aj) = bj,
we can assume that a; € Ay,. Now let v = IIfe*™ € Uy(A), so that ¢(v) = u. O

70



Corollary 5.3.13. If ¢ : A — B is a surjective unital *-homomorphism, then cer(B) <
cer(A).

Example 5.3.14.

1. Finite-dimensional C*-algebras have exponential rank 1. Indeed, since we can take a
logarithm f, we can write a unitary as u = e/ where f(u) is self-adjoint.

2. von Neumann algebras have exponential rank 1 by the same argument, except the
logarithm comes from the L*>-functional calculus.

3. The Calkin algebra has exponential rank 1 since B(H) does and the quotient map is
surjective.

4. Commutative C*-algebras have exponential rank 1. This is because for self-adjoints
a,b € A, a commutative C*-algebra, we have ab = ba and so e@e® = ei(@+t).

5. AF algebras have exponential rank 1 or 1 + . This follows from Proposition [5.3.11
and the fact that finite-dimensional C*-algebras have exponential rank 1.

6. Let D C T be the dyadic rational mod Z and let G = D x (Z/27) with the action of
Z/27 on D being inversion. Let D ~ T by rotation and Z/2Z act by z — —z. Thus
G ~ T with these actions. Let A = C(T) x D be the crossed product. One can see in
[20] that A is AF, and we will see that and cer(A) = 1 + ¢, so that proposition
does not hold if we replace n + ¢ by n.

To see that cer(A) = 1+4¢, let f(z) = z. If f = €' for some a = a* € A, then a

commutes with f and f*, so a € C(T). Since f ¢ Uy(C(T)), this is a contradiction.
Hence cer(A) # 1.

Our goal will be to show that cer(A) < 1 + ¢ for any unital, simple, purely infinite
C*-algebra. Consequently, since such an algebra has real rank 0, it will follow that A has
weak (FU). Since all of the Cuntz algebras have connected unitary groups, it will further
follow that they have (FU).

Lemma 5.3.15. Let A be unital, a : [0,1] — U(A), t — wy, by be a piecewise C! path in
U(A) such that a(0) = 1. Let L be length of the path. Then o(a(1)) C {e? | -L <6 < L}.

Proof. If u,v € U(A) and X € o(v), then there exists u € o(u) such that |A — p| < |lv —u]|.
Indeed, if |A — p| > ||lu — v|| for all p € o(u), then

11— (AL =u)ll = (AL = v) (AL = v) = (AL = w)[| < (AL —v) " flu —v] <1

since ||[(A1 —v)7Y| < dist(\,0(v))™! < |lu —v[|™'. But then A1 —v € A~!, which is a
contradiction.

Now let 0 =ty < t; < -+ < t, = 1 be a partition of [0,1]. Let A\ € o(a(1)) and let
pr € o(a(ty)) be such that p, = X and |uy — pr—1| < ||a(tr) — a(tk—1)||. Then py =1 and

> e = ] <) lledtn) = atiy)|-
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Now taking a limit as maxy, [ty —tx_1| — 0, the right hand side approaches L. Since maxy, |p—
trp—1] < maxy |a(ty) — a(ti—1)||, which approaches 0, the liminf of the left hand side of the
inequality above is at most the length of the path around the unit circle from 1 to A\. Thus
A\ = ¢e% for some 0 € [—L, L. O

Corollary 5.3.16. Let A be a unital C*-algebra, u € U(A),e > 0. Then there exists
a € My(A),, such that ||u @ u* — || < e.

Proof. Let
alt) = u 0 cos(t) sin(t)\ [(u* 0Y [cos(t) —sin(t)
~\0 1) \—=sin(t) cos(t)) \ 0 1) \sin(t) cos(t)
for ¢ € [0, 7]. Then a(0) =1® 1 and a(5) = u ® u*. Differentiating o by using the product
rule gives a sum of two unitaries, hence ||o/(¢)|| < 2 for all ¢. Thus the length of the path
oo,y is less that 7 for any A < 7. Hence the above lemma implies that —1 ¢ o(a(t)) for all

t < Z. In particular, each «(t) is of the form € for some a = a* € A, since we are able to
take a logarithm on o(«(?)). O

Lemma 5.3.17. Let A be a unital, simple, purely infinite C*-algebra, e, s, €3, €4 be non-
zero orthogonal projections such that e; +es+e3+e4 = 1, and let s € A be a partial isometry
such that s*s = ey, ss* = e3. Let u € U(ejAey) satisfy o(u) = T, and let v € U(eyAes). Then
for any € > 0, there are unitaries z € U(A),w € U(eqAey), where w has finite spectrum, and

() I2"(u+1—e)z— (u+v+sv's" +w)| <e.

Proof. Since we have 4 orthogonal projections which add to identity, we can think of elements
of A as 4x4 matrices with the the ijth entry in e;Ae;, and we can identify esAey; and ez Aes
via the partial isometry v

Define ¢ : My(eaAes) — (e + e3)A(ea + e3) by

¢ <3311 3312) =11 + xus* + 8T91 + SIQQS*.
T21 22

Then this is clearly an isomorphism since s has initial projection e; and range projection
es. Then v + sv*s* = ¢(v @ v*), and so the above corollary implies that it suffices to prove
that (x) holds if we replace v + sv*s* by €' for some a € ((eg + e3)A(es + €3))sq. Clearly
(ea+e3)A(ea +e3) C A has unit ey + e3, and this is hereditary in A, so that it is both simple
and purely infinite. Thus by Theorem [5.3.4] (es + e3) A(es + e3) has real rank zero. Thus we
can further assume that o(a) is finite. So it suffices to show that (x) holds when we replace
v+ sv*s* by Y7 kg where Ay € T and ¢ are non-zero mutually orthogonal projections
which sum to e + e3. By Lemma , we can further assume that v = ug + Z’f Arpr where
p; are mutually orthogonal projections in e;Ae;, and with p = e¢; — >_7 p;, we have that
up € U(pAp).

Now to find z,w such that z*(u+1—e€1)z = u+ Y] Akqr +w, choose partial isometries
¢k such that cjcp = py, cxcj, < pi, which exist by Theorem Then c=p+ > cpis a
partial isometry with

n n
* . x x . * *
cfc=ey; e =e — E (pr — crcy); cuc™ = ug + E Mk (pr — cxcy).
1 1
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Now let dj, be partial isometries such that djdy = g and dd; < py — ccj, which again exist
by Theorem [5.1.16| Let d = Y} dj, which is a partial isometry such that

d'd = ey + e dd* < (pp — axcy); d (Z )\qu> d* =" Mdpd;.
1 1 1

Next, let b be a partial isometry such that

n

b*b < €4, bb" = > (pr — crcy — didy),

1

and let .
wo = Y Akb™(pr — crch — didi)b,
1

which is unitary in (b*b) A(b*b) with finite spectrum. Consequently, zo = b+ c+d is a partial
isometry such that

n
2520 = €1+ ex+eqs+ 0" 2025 =er; 2o (u+ Z/\qu +w0> 2y = u.
1

Thus [e1]p = [e1 +e2+e4+b%b]o in Ky(A), hence [1—e;]o = [e4 —b*b]p. Therefore by Theorem
there exists a partial isometry y € A such that yy* = 1 — e; and y*y = ey — b*D. Let
z=2y+y and w = wy + e4 — b*b. Then it isn’t difficult to see that z*z = 1 = 2z* and that
w € egAey with finite spectrum. Now

Pt 1— e = (2 + 5+ 1 - en)(z0+ 1)
=zouzo +y (1 —e1)y

=2 (zo (u + Z Akqr + wo> zg) 20+ (e4 — b*D)
1
= (e1+ex+e3+b'D) (u + Z AeQr + w0> (e1 +ex+e3+b"b) + (eq — b*D)
1
:u—i-Z)\qu—i—wo—i— (64—[)*())
1

:u—l—Z)\jqj—i—w.
1

This completes the proof, since we can approximate u+v+svs*+w by the above element. []

Remark 5.3.18. If we let everything be as in the above lemma, then this is saying that

v 0 0 0 u 0 0 O

o 0100 L 0 v 0 O < :
0010 0 0 v 0 '
0 0 01 00 0 w
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Theorem 5.3.19. Let A be a unital simple purely infinite C*-algebra. Then cer(A) < 1+-e.

Proof. Let u € Uy(A) and let £ > 0. If o(u) # T, then u has a logarithm and we are done,
so suppose that o(u) = T. Using Lemma , we can approximate u within § by ug + p,
where p is a non-zero projection and uy € U((1 — p)A(1 — p)). Let = be a partial isometry
such that z*x = p and zz* < p. If @ : [0,1] — U(A) is a continuous path connecting u to 1,
then t — (1 —p+x)a(t)(1 — p+x)* is a continuous path connected ug + xx* to the identity
in (1 —p+xx*)A(1 — p+ zx*). By replacing p with p — x2* and ug with uy + z2*, we can
assume that ug € Up((1 — p)A(1 — p)).

Now since ug € Up((1 — p)A(1 — p)), let uy,...,uy € U((1 —p)A(1 — p)) be such that
|uj —wjpa]] < § for j=0,...,N —1and uy =1 —p. Let ¢;,d; be partial isometries such
that cjc; = djd; =1 —p and p; = ¢;c}, ¢; = d;d; are all mutually orthogonal and satisty

N N
P+t G <P
1 1

Let v = Zf} cjuic; and s = Zjlv djc;. Then svs* = Zf/ djuid;. Applying the above lemma
with e; = 1 — p,eq = Ziv cjci,e3 = Ziv djd;,es = p — ey — e3, there exists a unitary
u € U(eyAey) with finite spectrum and z € U(A) such that

5

12" (uo + p)z — (ug + v+ sv™s" +w)| < 1

Let dy=1—p,b= 37 dj_ic;. Then

N N-—1
Bb=> pi b =1-p+> g
1 1

Moreover,
N
|(up + (sv*s™ —qn) +v) — (bv x b* +v)|| = Z dj1(uj—1 — uj)d;_,
1
£
= max [uj_1 — uyl| < 7.
J 4
Now let

N—-1 N
f= <1—p+2qj> +) pj=1-es—qN.
1 1

Using the above corollary like before, there exists ag = afy, € fAf such that |e" — (bv*b* +
v)|| < §. Now since w has finite spectrum, it has a logarithm ia, € e;Aey. Letting a = ag+ay,
e = ¢'% 4 gy + w since the summand corresponding to gy is 0. Thus

e — z*uz|| < |l — (bv*b* + v)|| + || (bv*b* 4+ v) — (ug + sv*s* — qn + )|
+ [[(uo + v + sv*s™ + w) — 2" (up + p)z|| + ||(uo + p) — u|| < e.

Thus ||e'¢%*") — | < ¢, giving us the result. O
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Corollary 5.3.20. If A is a unital simple purely infinite C*-algebra, then A has property
weak (FU). Consequently since the Cuntz algebras have connected unitary groups, it follows
that O, has property (FU) for all n.

Proof. A has real rank zero, so the corollary follows from Proposition [5.3.9] O

Definition 5.3.21. Let A be a unital C*-algebra. We say that A has exponential length
Lif every u € Uy(A) can be written as u = 1'% where a; € A, are such that Y} [la;|| < L.
We say that cel(A) < L.

Proposition 5.3.22. Let A be a unital C*-algebra with property weak (FU). Then cel(A) <
4.

Proof. Let u € Uy(A). Then there exists v € Uy(A) with finite spectrum such that ||u—v]|| <
2(4—m). But then |Juv* —1|| < 1, so that —1 ¢ o(uv*), hence uv* = e~ for some a; € Ay,
with ||a;]| < 4 — 7. Moreover since v has finite spectrum, v = € for some ay € A,, with
|az]| < 7. Thus u = €€ with a1, as € Ay, and |ja1|| + [Jag|| <4 — 7+ 7 = 4. O

Corollary 5.3.23. A unital simple purely infinite C*-algebra A has cel(A) = 7.

Proof. By Theorem , cer(A) < 1+ e. Firstly, —1 = ¢ some self-adjoint a, and so
cel(A) > .

Conversely, since A has property weak (FU), it suffices to consider a dense set of
unitaries in Up(A), which we can take to be unitaries with finite spectrum. Thus cel(4) < 7
as well since if v has finite spectrum, v = €% for some a such that ||a| < 7. O
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6 The Nuclear Embedding Theorem

In this chapter, we aim to finally prove the Kirchberg-Phillips nuclear embedding theorem,
the main result of this thesis. We will start by using the approximation properties of unital,
simple, purely infinite C*-algebras to prove that O, ® Oy >~ Oy by proving that the unitary
group of a unital, simple, purely infinite C*-algebra A has a certain stability property.
We will use this fact to prove that any two unital injective *-homomorphisms Oy — A are
approximately unitarily equivalent. Letting A = Oy ® 05, the isomorphism result will follow.
We then prove the Effros-Haagerup lifting theorem, which will be useful for proving the
embedding theorem in full generality. In Section [6.3, we prove that any two unital injective
*_homomorphism A — O, from a unital, separable, exact C*-algebra are approximately
unitarily equivalent. We then use this, along with the fact that the cone of a C*-algebra is
QD, to finally prove the theorem.

6.1 Oy Oy~ 0y

We first wish to prove a stability condition for unital, simple purely infinite C*-algebras.
This is the condition that if v is defined as in the following paragraph, then if v is a unitary,
there is always another unitary such that ||oy(v)* — ul| is small. We follow Section 4 of [26],
and then Chapter 5 of [2§].

Let Oy = C*(s1,s2) where s1,s; are isometries satisfying the Cuntz relations. Let
A1 Oy = Oy be defined by A(a) = sjas;+sqash. Let A be a unital, simple, purely infinite C*-
algebra two isometries 1, t5 satisfying the Cuntz relations, u € U(A), and let ¢, 1 : Oy — A
be defined by ¢(s;) = t;,¢(s;) = ut;. Then it is clear that u = ¥(s1)P(s1)* + ¥(s2)d(s2)*.
Let v: A — A be the map y(a) = t1at] + toat.

Note that since A is unital, simple, purely infinite U(A)/Uy(A) ~ K;(A), so in the
following lemmas one assumes that u € Uy(A). More generally, one can work with unitaries
u such that [u]; = 0 in K;(A).

Lemma 6.1.1. For k € N, Imy* = ¢(F7)' N A.

Proof. We have v*(a)$(s,) = ¢(s,)a and ¢(s,)*v*(a) = ad(s,)* for all k € N,a € A, u word
with with [ = k. Thus ¢(s,52)7*(a) = 6(s,)a6(s3) = *(a)(5,53) for ] = |v] = , and
so Imy* C o(F2) N A.

Conversely, let b € ¢(F2) N A and let pu,v be words with |u| = |v| = k. Then
P(s.5,)b = bo(s,s;,), so multiplying on the right by ¢(s)) and on the left by ¢(s,) gives us
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O(s3)b8(5,) = d(s,)b(s,.). Now let @ = o(s3)be(s,), so

= Z ¢(5u)a¢(3u)

|ul=Fk

= > D(52)8(s3)b(5,)b(s,)"

|ul=k

= d(5,)0(s5)bo(s,)d(s7)

|ul=Fk

= D bo(s,)6(5.)"0(5,)0(5,)°

|ul=Fk

=Y bo(s,)0(s

|ul=Fk

]

Let u, = 37, —p ¥(8.)9(s,)". Then wy are all unitary, uy = u, and ¢(s,) = ux¢(s,) for
all words p with |u| = k.

Lemma 6.1.2. For k € N, u = upy*(u)y(up)*.

Proof. Let us prove this by induction on k. k = 1 follows since u; = u. Before we proceed
by induction, notice that

Yuk) =Y (s urd(s;)" =u" Y (s, uped(s;)" = uup1.

Now assume that u = uy*(u)y(ug)* for some k& > 1. Then

k+1(

Y (w) = y(upuy(ug)) = y(upuuug) = y(upug).

Therefore
Wer1 Y ()Y (Uig1)* = Uy (ur)® = U qu = u.
]
Lemma 6.1.3. Let A be a C*-algebra. Then for every unitary u € Uy(A) and m € N, if

u = II}e™ such that a; € Ay, and Y [Ja;]| < C, then there exists unitary vy, ..., v, € U(A)
such that w = vy -+ vy, and |Jv; — 1]| < %

Proof. We will prove this by induction on m. For m = 1, if u € Uy(A), then u = TI}e'%
where a; € Ay, and 3 |la;]| < C. So letting v = u, we have

lor =1 = TIFe’™ — 1) < Y flayll < C.

Now suppose that for some m > 1, any unitary w = [I}e® € Uy(A) such that > ||b;]| < C
can be written as w = wy - - - wy,, where ||w; — 1] < %
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For u = IT7e' with 327 ||a;|| < C, if for some 1 < k <n, S:¥|q,]| < -% +1’ let p be the
largest such k. Otherwise, let p = 0. If p = 0, we will adopt the notion that > ¥ ||a;|| = 0.
Let ¢ € (0, 1] be such that

> gl + lapuall = ==
- m+ 1
Let v; = €@ ...¢l%el%+1 where if p = 0, then the first terms are all just 1. But then
viu = e170%+1 ... gion gatisfies

C’_mC’

1—t ot < € — - .
(1= lapll + -+ flan]l € €= —= = T

By the induction hypothesis, vju = vy vp41 where ||v; — 1 < %(723?1) = mLH Thus

U = vy - - - Upyyq has the required form. O

Note that since we are assuming that A is unital simple purely infinite, A has finite
exponential length L = 7. The above lemma works well in this situation, since we can take
C = L for every unitary in the connected component.

Lemma 6.1.4. Let k,m € N, = k+m—1. Let u € Uy(A). Then there are wop, wy, ..., Wy_1 €
AN ¢(FE) such that .

=1 (wy) =1
and ||7!(u) — w,|| < £ = for all j =0,1,...,m — 1, where L is the finite exponential length.

Proof. Let z; = 'yl(u)fyl“(u) cooqti(u) for j =0,1,...,m—1,and let v = uy(u) - - -y L (u).
Then z,, 1 = 7'(v) and v € Uy(A). Then the above lemma lets us write v as a product of
m unitaries which are % of 1, and applying ' to these unitaries gives us that there are
Yo, Ym—1 € G(F2) such that Zpm_1 = Ym-1Ym—2--- 10 with |ly; — 1| < £ for j =
0,1,...,m —1 by Lemma [6.1.1

Now since z}yiz; € ¢(F;)'NA C A/ (DNG(F)') for j = 0,...,m—1, there are unitaries
20,71, 5 Zm—1 € O(FF) N A such that (z;) = z5yiz;. Now let w; = 7'(u)z;. Then since

ZE; 1%4 _’yH_]( )7

l—i—m—l( m—l(

woy(w) ™ (winer) = 7 (w)z0y T @)y (20) AT W) ()
= (202075) (217(20)27) -+ (T 17" (Zm-1) 1 )T

= YoU1 " YUm-1Tm-1 = L.

Now since ~y is isometric,

S| =

Iy () = wjll = 11 = zll = 11 =7 (=)l = 1 = ;]| <
O

Lemma 6.1.5. For ¢ > 0, there exists & € N such that for all u € Uy(A), there exists v € D
such that [|v*(u) — vy(v)*]| < e.
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Proof. Let m be a power of 2 satisfying % < 5. By the Rokhlin property 1’ there are
[ € N, m mutually orthogonal projections ey, ..., e, = 0 in ¢(F}?) such that 1 = Y "¢,
and ||v(e;) —ej_q|| < 5= for j =1,...,m. Let k =1+ m — 1. Let u € U(A) be such

2m
that [u]; = [0]; in K;(A). Then by the previous lemma, there are unitaries wy, ..., Wy,_1 €

GF) A with 78w) — wy| < £ < 5 and woy(wn) -+ 7" N(wn,) = 1. Let vy = 1

and v; = wyy(wjt1) Y™ I Hwy—1) for 7 = 0,1,...,m — 1. Then v; € ¢(F7) N A and
Vg = Uy, = 1. Moreover w; = v;7y(vj41)* for all j. Let

m
v = E vjej.
1

Then v € U(D) since the v;’s commute with the e;’s. Let

m

A =0 (v(e)) — ej_)v(v))".

1
Then [|A|l < § and

m—1 m—1

vy(v)" = Z ej-17(v;)" + A = Z vY(vj1)e + A = Z wje; + A
j 0 0

Therefore

m

> (F(u) = w;y)e;

1

7" (u) — vy (v)*] <

+ Al = max 17 (u) = wsll + Al <e.

O

Lemma 6.1.6 (Stability). Let w € U(A). Then there exists w € U(A) such that [ju —
wy(w)*| <e.

Proof. First let us assume that u € Up(A). Let k,v be as in Lemma [6.1.5l Since u =
upy*(u)y(ug)* by Lemma we have

lu = (urv)y () [ = lluy* (w)y(ur)” — vy (o) y(w)|
< el llv* () = vy (0) Ny ()|
= [V (u) = vy(v)|| <=
Thus the required unitary is w = ugv.
Now if u € U(A), then [u*y(u)*]; = 0 in K;(A) since Ki(y) = 2idg,(4), and so

u?y(u)* € Up(A) since A is Kj-injective. Then find v € A such that ||vy(v)* — u?y(u)*]| < &,
so that [Jwy(w)* — u|| < e, where w = u*v. O

Definition 6.1.7. Let A, B be unital, separable C*-algebras, ¢,v : A — B unital *-
homomorphisms. We say that ¢ is approximately unitarily equivalent to v if there
exists a sequence (v,) of unitaries in B such that v,¢(a)v) — 1(a) for all a € A.
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Theorem 6.1.8. Let A be a unital, simple, purely infinite C*-algebra. Then any two unital
*_homomorphisms ¢, : Oy — A are approximately unitarily equivalent.

Proof. Let u = 1(s1)o(s1)" + ¥(s2)@(s2)*, where Oy = C*(s1, 52) with s1, 50 € Oy being
isometries satisfying the Cuntz relations. Let t; = ¢(s;). By stability, there exists unitaries
(v,) C U(A) such that v,y(v,)* — u, where v(a) = tyat} + taats. But then

Un(85)vy = Uptjur = vy (vy)*t; — ut; = P(s;).
L]

Lemma 6.1.9. Let A, B be separable C*-algebras, where B is unital, and let 7 : A — B be
an injective *-homomorphism. If there exists (u,) C U(B) such that

|lunm(a) — m(a)uy,|| — 0 and dist(w) bu,, 7(A)) — 0

for all a € A,b € B, then there exists a *-isomorphism ¢ : A — B which is approximately
unitarily equivalent to 7.

be countable dense sets for A, b respectively. Then we can inductively

Proof. Let (ay), (by)
n) € U(B) and elements (a;,)"_; such that

find unitaries (v T

Loy ofbjoy -0y — m(agy)|| < L for 1< j <m;
2. |lonm(a;) — m(a;)val| < 55 for 1 < j <n;
3. Jonr(@jm) — T(agm)onl| < & for 1<m<n—1,1<j<m.

By the first condition, (v; - - - v,m(a;)vy - - - vf), € B is Cauchy for all j. Thus by the density
of (a;), (vy - vym(a)v) - --vf) is Cauchy in B for all a € A. Thus we can define an isometric
*-homomorphism o(a) = lim, v; - - - v,7m(a)v) - - - v} since v; are unitaries.

Now notice that for j < n,

o

1 1
lo(ajm) —v1 - vpm(ajn)vy - - 7| < Z TR TR
m=n-+1
Thus
1 i} . 1 1
165 = aam)ll < 5 + 116 — v vnm(agn)on - 0fl| < o+
Since o(A) is closed, b; € o(A) for all j, and so o0(A) = B by density. 0

Definition 6.1.10. Let A, B be C*-algebras. We say the sequence (b,) C B is asymp-
totically central if lim, ||bb, — b,b|| = 0 for all b € B. We say that a sequence (m,)
of *-homomorphisms 7, : A — B is asymptotically central if (7,(a)) if asymptotically
central in B for all a € A.

Lemma 6.1.11. There is an asymptotically central sequence (p,,) of unital *~homomorphisms

an02—>02.
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Proof. Let A(a) = syjas} + sqasy, where Oy = C*(s1, s3). Then (a,) C O, is asymptotically
central if and only if || A(a,) —an| — 0. If (v,) C U(Oy) with p,, = ¢y, where ¢y, (s;) = vysi,
then (p,) is asymptotically central if and only if | A(p,(s;)) — pn(s;)|| = 0 and

1A (Pn(s5)) = pu(si)[| = IA(vns5) = vns;ll = IA(s;) = A(on) vns;l| = llus; = Avn) vns;|l;

so it suffices to construct unitaries (v,) such that A(v,)*v, — u = A(s1)s] + A(s2)s5 =
Zij:l sisjsis;. Now since U(QOz)/Up(O2) = K1(O2) = 0, stability ensures that there exists
v, € U(Oy) such that v, \(v,)* — u. Since u is self-adjoint, by replacing v,, with v*, we get
that A(v,)*v, — u. O

Theorem 6.1.12. Oy, ® Oy ~ Os.

Proof. Let Oy = C*(s1, 82), ¢ : Oy — O3® Oy be defined by ¢(z) = x® 1, which is clearly an
injective *-homomorphism. It suffices to show that for all ¢ > 0, there exists v € U(Oy® Oy)
such that
||U(Sj ® 1) — (Sj ® 1)1)“ <e¢€
dist(v*(1 ® s;)v, 0, ® 1) < ¢,
from which it will follow that there is a *-isomorphism approximately unitarily equivalent to
¢ by Lemma Solet € > 0. Since O,®0Os is unital, simple, purely infinite, Theorem|6.1.8

implies that the maps Oy — Oy ® Oy given by z +— r ® 1 and x — 1 ® x are approximately
unitarily equivalent, so there exists a unitary w € U(Oz ® Os) such that

Jw(s; @ Dw* —1@ s <e

for j = 1,2. Now let (p,) be a sequence of asymptotically central *~homomorphisms from
Os to Oy, and let ¥, = p, ®id : O3 @ Oy — Oy ® Oy. Let w, = ¥, (w), so that

”wn(sj ®1) - (Sj ® 1)wn” — 0
and

dist(wy, (1 ® 55)w,, O2 @ 1) < Jlwy, (1 ® s5)w, — pu(s;) @ 1|
= ||tn(w* (1 ® sj)w, —s; @ 1)|| <e.

Thus let v = w,, for n € N large enough so that the the quantities above are less than . [

Remark 6.1.13. It clearly follows that any finite tensor of Oy with itself is isomorphic
to Oy. It is also true that the infinite tensor product (the inductive limit of the finite
ones with connecting maps = — = ® 1) is isomorphic to Oy. One must study approximate
intertwinings to get the result. Chapter 2 of [28] covers these, and the result about the
infinite tensor product is Corollary 5.1.5 of [28)].
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6.2 Lifting Theorems

To prove the nuclear embedding theorem to its fullest, we will need to lift certain *-

homomorphisms into (O2)s = €>°(03)/co(O2) to u.c.p. maps to £*°(03). The Effros-
Haagerup lifting theorem will be crucial.

Definition 6.2.1. Let B be a C*-algebra, J < B, and E be an operator system. A c.c.p.
map ¢ : E — B/J is liftable if there exists a c.c.p. map ¢ : E — B such that mo ¢ = ¢,
where 7 : B — B/J is the quotient map. It is locally liftable if for every finite-dimensional
operator system F' C E| the c.c.p. map ¢|g is liftable.

Lemma 6.2.2. Let J < B, E a separable operator system. Then the set of liftable c.c.p.
maps £ — B/J is closed in the point-norm topology.

Proof. Let ¢ : E — B/J be c.c.p. and let ¢/, : E — B be c.c.p. maps such that mo ¢! — ¢
in point-norm. Let (z1)x be a dense sequence in E. Passing to a subsequence if necessary,
we can assume that ||7 o ¢/ (z)) — ¢(zy)|| < 5% for k < n. We claim that there exists c.c.p.
maps ¢, : E — B such that |7 o ¢, (zx) — ¢(xk)|| < 5% and [|[Vps1(zr) — Yn(xp)|| < 557 for
k < n. We prove this by inductions. Let ¢ = 9/{. Now suppose that we have constructed
1, ...,%, with the desired property. Let (e)) be a quasicentral approximate unit for J in
B. Then for k < n,

lim /(1= ex) 3 (i) (1 = ex)? + efvn(mn)es — n(z)]| =0

and for by =, ., (zr) — ¢ () with k # n, we have

3
2n+1'

lim [|(1 = ex)2Bu(1 — ex)2 ]| = [|w(bw)]| <

So let e = ey € J be such that for every k < n we have

1 1
dnlaet — balw)| < 5

N|=
[ SIS

I(1 = e)2 (i) (1 — )2 +e

and

3
2n+1'

(1= €)2by(1 — )2 <
Then the map E — B given by
Unp1(z) = (1= €)29 1 (2)(1 — €)2 + e29p,(z)e?

is c.c.p. and satisfies the desired property.
Now since (¢,,) is a sequence of c.c.p. maps which converges point-norm on a dense set
(x), it converges everywhere to a c.c.p. map ¢ : E — B which is a lift of ¢. O]

Theorem 6.2.3 (Choi-Effros lifting Theorem). Every nuclear c.c.p. map from a separable
C*-algebra A into a quotient B/.J is liftable. In particular, every c.c.p. map from a separable
nuclear C*-algebra is liftable.

82



Proof. Since the liftable c.c.p. maps are point-norm closed and nuclear maps factor through
c.c.p. maps to and from matrix algebras, it suffices to show that every c.c.p. map ¢ : M,, —
B/J is liftable. Let 0 < a = (¢(e;5)) € M,(B/J). Since m, : M,(B) — M,(B/J) is a
surjective *-homomorphism, the positive element a lifts to a positive element b = (b;;) €
M, (B), and the corresponding ¢’ : M,, — B coming from Lemma is a c.p. lift. ]

Theorem 6.2.4 (Effros-Haagerup lifting Theorem). Let J<B, 7 : B — B/J be the quotient
map. The following are equivalent.

1. For any C*-algebra A, the sequence
0-A®J—>A®B—>A®(B/J)—=0
is exact;
2. The sequence
0=>BH)®J—=BH)®B—BH)® (B/J)—=0
is exact, where H is a separable, infinite-dimensional Hilbert space;

3. For any finite-dimensional operator system E C B/J, the inclusion £ — B/J is
liftable.

Proof. Clearly (1) implies (2). To see that (2) implies (3), suppose E C B/J is a finite-
dimensional operator system. By operator space duality ([22], chapter 14), E C B/J cor-
responds to an element z € E* ® (B/J) with ||z]] = 1. Assuming that E* C B(H), we

have
BB _BH)®B _

Er@J T BH)®J
isometrically by Lemma [£.1.12] and so

E*® (B/J) =

B(H) @ (B/J)

E*® B
Ex®J
isometrically. So for any ¢ > 0, one can lift z to an element zZ € E* ® B with ||Z]] < 1 +e¢.

Then the map ¢/’ : E — B corresponding to Z is a lift of ¢ with ||¢/||s < 1+ . Now we can
assume that ¢/ is self-adjoint since ¢/(1) — 1 € J, so there exists 0 < e < 1 in J such that

11— )z ('(1) — 1)(1 — )2 < e.
Now let 6 € E* be a unital positive linear functional and let ¢/” : E — B be defined by
Y'(@) = (1—e)2 (¢¥(x) — 0(x) (¥ (x) — 1)) (1 — €)% + b(x)e
(-0t ) (Y ) (M) e - otw - na- o

1
e?2

Then 9" is a lift of ¢ with ¢”(1) = 1 and |[¢/"|s < 14 2¢. By Corollary [4.1.23] there exists
au.cp. map ¢ : £ — B such that [psi —¢"|| < 2dim(E)(1 + 2e — 1) = 4dim(E)e. Since
€ > (0 was arbitrary, and the space of liftable u.c.p. maps is closed in point-norm, the result
follows. O
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6.3 Homomorphisms into O,

We will now work towards showing that if A is unital, separable, exact, then any two unital
injective *-homomorphisms A — O, are approximately unitarily equivalent. To this end, it
will be necessary to understand the structure of the state space, as well as c.p. maps to and
from unital, simple, purely infinite C*-algebras.

We now follow Dixmier’s book [I3] to show that the wk*-closure of the pure states in a
unital, simple, purely infinite C*-algebra is the whole state space. Consequently, due to real
rank zero, we will be able to excise nets by projections. We start by looking at antiliminal
C*-algebras, of which unital, simple, purely infinite C*-algebras are a subclass.

Definition 6.3.1. Let A be a C*-algebra. For a representation 7 : A — B(H), let K, =
{x e Al n(x) € K(H)} = n~1(K(H)) which is a closed ideal of A. We say that A is liminal
if for every irreducible representation 7w, K, = A. We say that A is antiliminal if the zero
ideal is its only liminal closed two-sided ideal.

Example 6.3.2. The following examples can be found in Chapter 5.6 of [21].
1. Abelian C*-algebras are liminal since every irreducible representation is 1-dimensional.

2. Finite-dimensional C*-algebras are liminal since every irreducible representation is
finite-dimensional.

3. K(H) is liminal since every non-zero irreducible representation is unitarily equivalent
to the identity representation of C(H) on H.

4. Purely infinite C*-algebras are antiliminal.

Proof. Let A be a purely infinite C*-algebra, and suppose that I <1 A is liminal. Since
I is liminal, for every irreducible representation w, K, = I. Now I C A is heredi-
tary, so I is also purely infinite by Lemma Thus there exists a partial isom-
etry v € A such that ¢ = vv* < v*v = p, where p, ¢ are infinite projections. So
(p) = w(v*v) = 7(v)*r(v) and 7(q) = w(v)w(v)* for all irreducible representations
7. In particular, since the image of a projection is a projection, 7(p) ~ m(q) for ev-
ery irreducible representation 7. Now since m(p) and 7(q) are compact, hence finite
rank, m(q) < m(p) implies that 7(p) = 7(q) for all irreducible representations w. But
since irreducible representations separate the points of I, this is a contradiction since

P #q. O

The following is a standard result, which is a consequence of the Hahn-Banach Sepa-
ration Theorem ([8], Theorem IV.3.7).

Theorem 6.3.3 (|2I], Theorem 5.1.14). Let A be a unital C*-algebra, S C S(A) be a
subset of states such that if a € A, satisfies f(a) > 0 for all f € S, then a > 0. Then the

o™ (S) = S(A), and 5™ D PS(A).
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Lemma 6.3.4. Let A be a unital antiliminal C*-algebra, and let S’(A) be the set of states
which vanish on at least one K, for m an irreducible representation. Then PS(A)Wk* =

A"

Proof. Let a = a* € A be such that f(a) > 0 for every f € S’(A). Let m be an irreducible
representation and let p, be a representation with ker p, = K. Then every state associated
to pr corresponds to an element of S’(A), and so every states is > 0 at x. Thus since @, p,
is isometric, it follows that x > 0. By the above theorem, this implies that the wk*-closure
of §'(A) contains PS(A).

Conversely, suppose that f € S’(A) and that there exists an irreducible representation 7
such that f(K,) = 0. Then f defines a state g of m(A) which vanishes on 7(A)NIC(H,). Then
by Glimm’s Lemma (Lemma [1.5.3)), ¢ is a wk*-limit of pure states on 7(A4). Consequently,
f is a wk*-limit of pure states on A. Thus the wk*-closure of PS(A) contains S’(A). O

———wkx

Proposition 6.3.5. Let A be a unital, simple, antiliminal C*-algebra. Then PS(A) =
S(A).

Proof. Since N K, = 0, where the intersection is taken over all unitary equivalence classes
of irreducible representations, it follows that K, = 0 for some irreducible representation
by simplicity. In particular, every state vanishes on K, so the above lemma implies that

PS(A)™ = 5(4). O
Corollary 6.3.6. Let A be a unital, simple, purely infinite C*-algebra. Then PS (A)Wk* =
S(A).

We will now prove several lemmas which will be required for the proof of the nuclear
embedding theorem. We will now be following Kirchberg’s and Phillips’ paper [19].

Lemma 6.3.7. Let A be a unital simple purely infinite C*-algebra, ¢ a state on A. Then
for every € > 0 and every finite subset F' C A, there exists a non-zero projection p € A such
that ||pap — ¢(a)p|| < e for all a € F.

Proof. Since the wk*-closure of the pure states is the whole state space, ¢ can be excised by
a net of positive elements (ey) with |ley|| = 1. That is, lim, ||exaey — ¢(a)es|| = 0. Now let A
be such that |lexaey — d(a)e3|| < § for all @ € F'. Since A has real rank zero, ey > 0, there is
a positive element e € A with finite spectrum such that ||e|| = 1 and ||eae — ¢(a)e?|| < ¢ for
all a € F. Since e has finite spectrum, it is positive, and |le|]| = 1, p = x13(e) is a non-zero
projection in A. Moreover,

lpap — ¢(a)p|| = ||peaep — pp(a)e’p|| < |leae — p(a)e?|| < e.
0

Lemma 6.3.8. Let A be a C*-algebra, p € A a projection, and suppose a € A is such that
ap = a and ||a*x — al| < 1. Then the partial isometry v in the polar decomposition of a in
pAp satisfies v*v = p and

* 1 *
lv—all <1—=(1—la"a—pl)> <lla*a —pl|.
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Proof. Notice that pa*ap = (ap)*(ap) = a*a since ap = a, and so ||a*a — p|| < 1, so that a*a
is invertible in the hereditary subalgebra pAp. In particular since pa*ap = a*a, v = ab where
1
b=lal™! in pAp. So b= (pa*ap)”2 in pAp, and
v*v = ba*ab = vpa*apb = (pa*ap)_%pa*ap(pa*ap)_% =p.
Now let § = ||a*a — p||. Then using the fact that (a*a)% € pAp, we have
(v—a)"(v—a)=vv—v'a—av+aa
1 1
— (pa*ap)~>a —a"(pa”ap)”2) + a’a
1 1
=a a—( a)"2a*a —a*a(a’a)”2 +p
= a*a—2(a*a)? +p
. 2
= ((a*a)E —p) :
And so
lv —all = ll(a*a)® — p|| < sup{|VE—1| | [f=1] <} =1 - (1-0)?,
which gives the first inequality. For the second, (1—8)z > 1—4, andso —6 < (1—8)z —1. [
Lemma 6.3.9. Let A be a unital simple purely infinite C*-algebra, T': A — M,, be a u.c.p.
map, and let ¢ : M,, — A be a *-homomorphism. Then for every € > 0 and finite F' C A,

there exists a partial isometry s € A such that s*s = ¢(1) and ||s*as — ¢(T'(a))|| < € for all
acF.

Proof. Without loss of generality, suppose that 1 € F' and that ||a|| < 1 for all a € F. Let
0 <é <min{, 55}

Let (eq,...,e,) be the standard orthonormal basis for C", and let (e;;) be the matrix
units of M,,. Define

T((ai)) =7 (Z €ij @ az‘j) = % i (T(aner, ex),

which is a state on M,,(A). Then by the correspondence between C P(M,,, A) and (M,,(A)*)+
(1.1.8), we have
a)=n Z T(ei; ® a)e;;

k=1

for all @ € A. Since M,(A) is unital, simple, purely infinite, Lemma [6.3.7] gives a non-zero
projection pg € M, (A) such that

[po(ei; ® a)po — 7(ei; ® a)pol < 0

for all a € F and 1 <1,j < n. But because A is simple and purely infinite, there exists p <
po € M,,(A) and a partial isometry s; € M, (A) such that s;s7 = p and s}s; = e11 @ ¢(e11).
For 2 < j <mn, let s; € M,(A) be the partial isometry defined by

sj = si(en ® ¢(eiy)).
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Then
s (e @ a)s; — T(en @ a)(enr @ ¢(ey;))]] <6

forallae Fand 1 <1i,j,k,l <n. Let

c=) (1 ®1)s, € My(A).

Then for a € F', we have

(e ®a)c = (Z sp(epr ® 1)) (e11 ® a) <Z(€1z ® 1)3l>

l

Therefore

Inc*(e11 ® a)c —e1; @ ¢(T'(a))|| < ”Z |55 (er ® a)s; — T(ew @ a)(en @ ¢lew))|| < no
Il

for a € F'. In particular, letting a = 1, we have that ||nc*(e;; ® 1)c —e; ® ¢(1)]| < n3s. Let
d=+vn(er1 ®1)clen @ ¢(1)) € (e11 @ 1)M,,(A)(ey; @ 1).

Then ||d*d — e11 ® ¢(1)|| < n38, hence the above lemma gives us that d(d*d)"2 (in (e;; ®
(1)) M, (A)(e11 @ ¢(1)) is a partial isometry in (ey; ® 1)M,(A)(e1; ® 1) such that

(@) (a@ad) ) = en @ o(1)
and )
ld(@d)~s —d|| < [[d°d — (en ® (1)) < n*s.

Now let s € A be the partial isometry such that d(d*d)z = e;; @ s. Then clearly s*s = ¢(1)
and
[nc*(en1 ® a)e — e ® ¢(T(a))|| < n’s,

hence
|d*(e11 ® a)d — e11 @ ¢(T'(a))]| < n3o.

Moreover, |le @ s — d|| = ||d(d*d)~2 — d|| < n36 < 1, and so ||d|| = 2. Thus

[s*as — ¢(T(a))|| = |lens ® s)*(e11 @ a)(en ® s) — e11 @ (T'(a))|
< n®6 4 2n%6 + ||d* (e ® a)d — ern — ¢(T(a))|
<3n35 +n30 =4n3s < .
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Lemma 6.3.10. Let A be a unital C*-algebra, T : M,, — A be a u.c.p. map. Then there
exists a partial isometry t € M,, ® M, ® A such that

t*t = €11 & €11 & 1 and t*(b & 1 & 1)t = €11 & €11 & T(b)

for all b € M,,.

Proof. Let x = Z” eij ® e;; € M, ® M,, and note that %x is a projection, so that z > 0.
Therefore
y=>{deT)(z) = Zezj ®@T(e;j;) € M, ® A
i,J
is positive as well. Letting y% = E” €i; ® aij, y% is self-adjoint and squares to y, so aj;, = ay;
and 2?21 aijajr = T(ey) for 1 < ik <n. Let t = Z” ei1 ® ej1 ® aj;. Then

(e @1 @ 1)t = <Z e ®ey @ aij) (Z ex1 Qe @ alk)

ij k|l

n
= E €11 ® e11 K a4k

=1
=e1 ®ep @ T (en).

It then follows that t* (b ® 1 ® 1)t = e1; ® e ® T'(b) for all b € M,,. In particular,
t't=en e @T(1) =e11 Qe @ 1.
]

Proposition 6.3.11. Let A be a unital, simple, purely infinite C*-algebra, and let p: A — A
be a unital nuclear map. Then for every € > 0, finite F' C A, there exists a non-unitary
isometry s € A such that ||s*as — p(a)|| < e for all a € F.

Proof. Since p is nuclear and unital, there exists n € N and u.c.p. maps ¢ : A — M,, v :
M, — A such that ||¢ o ¢(a) — p(a)|| < € for all @ € F. Since A is unital, simple, purely
infinite, so is M,,® M,,® A, and so there is an isometry t; € M, ®M, ®A such that tj¢; = 1 and
tit] < e;1®e;;®1. Applying the previous lemma to ¢, we have a partial isometry t, such that
tity = e11®e11®@1 and t5(b®1R1)t = e1;®e1; @1 (b) for all b € M,,. Define a *-homomorphism
7o : M, — A by identifying A with Ay = (e1; ® e1; ® 1)(M,, ® M,, ® A)(e1; ® e11 ® 4), and
letting
mo(b) = t1(b® 1 ® 1)¢7.

Let t = t1t5, which is an isometry in Ag, and identify it with an element of A, still call it ¢.
Using the previous lemma, we have that ¢ (b) = t*my(b)t for all b € M,,.

Now let p = #;¢7, which we can regard as a projection in A. Since A is purely infinite
and 1 — p # 0, there is a non-zero homomorphism m; : M,, — (1 — p)A(1 — p) defined by
m(a) = (1 — p)mo(a)(1 — p). Now let m(b) = mo(b) + m1(b), so that p(b) = t*m(b)t for all
be M,.
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Now using Lemma [6.3.9] there is a partial isometry so € A such that sjsp = 7(1) and
|s¢aso — m(p(a))|| < € for all a € F. Let s = sot, so that for all a € F,

|s*as — ¥ o g(a)|| = t*sqaset — t*w(¢(a))t|| < e.

Moreover s is an isometry since s*s = t*sjsot = t*m(1)t = p(1) = 1. We also have s§sg >
ti1t] > tt* and sisg < tit], so if it was unitary then

SpS0 = Sg88”sp < sgsotityse = w(1)ttim(1) = t4t7,
giving us that s3sy < 5350, a contradiction. O

Lemma 6.3.12. Let A be a unital C*-algebra, aq,...,a,, € A linearly independent such
that £ = span{ay,...,a,} C A is an operator system. Let

- < .
M = sup {mlax\ak\ | HZ alalH < 1}
Then for by,...,b, € A, the map W : E'— span{by, ..., b,} given by W(a;) = b;, satisfies

IWlley < 1+mM Y Jlar — b
l

and if mM ), |la; — b|| < 1, then

1
HW”Ww§<1—mM§:WM—MO :
l

Proof. Consider the space X = £5°, which is the m-dimensional space with norm || (a4, ..., am) |l =
max; |;|. Define @ : E — X by a; — e;, where (e;)]" is the standard basis for £5°. Define
R: 00 — A by R(e;) = b; —a;. Then ||Q]| = M and ||R|| < ), [|a; — b;]|. Then by Lemma
[L.LY}

IRoQlla < ml[RoQl <mM Y fla; — b

Since W(a) = a + R(Q(a)), we clearly have |[W||s < 1+ mM ). |la; — b;||. Now for any
n,a € M,(E),

W™ (@) = [lall = [[(Re Q)™ (a)]l > llall(1 — R o Qle)-
Therefore

-1
(W)~ < (1 —mM Y la; - bi||>

for all n. ]

Lemma 6.3.13. Let A be a unital C*-algebra, E C A an operator system, and let ¢ : E —
B(H) be a unital self-adjoint c¢.b. map. Then there exists a u.c.p. map ¢ : A — B(H) such

that ||[v|g — ¢llew < 2([|0][cs — 1)
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Proof. By Wittstock’s extension Theorem (|1.1.6]), there exists a c.b. map ¢y : A — B(H)
such that ¢o|p = ¢ and ||¢o|ls = ||¢||ce- Now by Lemma [4.1.21] there exists a u.c.p. map
¥ A — B(H) such that ||po — ¥l < 2(||pollee — 1) = 2(||@||ce — 1). Then it is also true that

16— Ylelle < 2(¢lle — 1)- =

Lemma 6.3.14. Let A be a unital, separable, exact C*-algebra, £ C A a finite-dimensional
operator system, and € > 0. Then for every 0 < § < 5, there exists n € N such that if By, By
are unital, separable C*-algebras and ¢ : E — By, : E — B, are u.c.p. maps such that

1. ¢ is injective;
2. |67 Yn <144, where ¢~ : ¢(F) — E;
3. B, is nuclear,
then there is a u.c.p. map n: By — By such that ||[no ¢ — ¢ <e.

Proof. Let p = 48(1_—3;)' Since A is exact, there is a nuclear embedding A C B(#H). Let
{a1,...,a,} be a basis for E such that a; = 1 and let © > 0 be small enough such that
if by,...,b, € B(H) and |la; — b,|| < p for all j = 1,...,m, then the map 7" : £ —
span{bi, ..., by} defined by T'(a;) = b; satisfies [|T7!||s < 1+ p by Lemma6.3.13]

Now since the inclusion A C B(H) is nuclear, there exists n € N and u.c.p. maps
Sl E — Mn,gQ M, — B(H) such that bj = SQ(Sl(aj)) satisfy Haj — b]H < U for all
j=1,....,m. Let T be as above for these b;’s, and let Ey, = Si(£), which is an operator
system in M,,. Define Sy : By — E by S =T 1o 52. Thus S, is unital, S5 0 S7 = idg, and
|52]lee < 14 p. Moreover, S; is u.c.p., hence self-adjoint, so therefore S is as well. Indeed,
we have Sy(S1(a})) = aj = Sa2(S1(a;))* for all j =1,...,m. It is also clear that S, is unital.

Now since B, is nuclear, there exists » € N and u.c.p. maps W1 : £ — M, , W5 : M, —
By such that ||[Wyo W) —9|| < p. Now since Ey C M,, is an operator system, the above lemma
provides a u.c.p. map @ : M,, — M, such that ||Q|g, — W70 Ss| < 2(||[W70Ss|e —1) = 2p.

Consider S; 0 ¢t : ¢(FE) — Ey C M,. Since S is u.c.p.,

Now by Lemma [1.1.10} [|¢ |, = ||¢~"|les, hence [|S; 0 ¢~ < 14 6. Now Lemma [6.3.13
again provides a w.c.p. map R : By — M, such that ||R|s,pg) — S10¢7t| < 25. Now let

n=WsoQoR: By — By. Then nis u.c.p. and

1S o VI < ISullesllo™ ln < 1+,

11y — o ¢ | < v = Wao Wi[[l6™H || + [Wall|Q © Rlsm) — Wio SaoSiog™||
< p(L+0) + [ Rlom) — S0 7|+ Qo) — Wio Sal[[Siod7!||

< p(1+08) +2p(1+6) 426

3

3
:3p(1+5)+2(5:15—§5+25
—38+15<3€+E—6
42 4 4 7
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Lemma 6.3.15. Let A be a unital C*-algebra, u € U(A),s € A an isometry with range
projection e = ss*. Then

— 1— 1— < inf +/2|s*us —v|.
lu = (eue + (1 = eju(l =)l < Inf 'v/2][s7us — vl

Proof. Notice that if v is unitary, then svs* is unitary in eAe, and
|leue — svs*|| = ||ss*uss™ — svs™|| = [|s"us — v||.
Thus [|(eue)*(eue) — e|| < 2||s*us — v||. Furthermore, we have
e = eu'ue = (eue)*(eue) + ((1 — e)ue)*((1 — e)ue),

and so

I((1 = e)ue)"((1 = e)ue)|| < 2||s"us —v|.
Therefore ||(1— e)ue|| < 1/2]s*us — v||. Similarly, since uu* = 1, we get that |leu(1 —e)|| <
V/2[[s*us — v||. Since e and 1 — e are orthogonal, it follows that

l|lu — (eue + (1 —e)u(l —e))|| = ||(1 — e)ue + eu(l — e)|| < /2||s*us —v||.
[

Lemma 6.3.16. Let A be a unital C*-algebra, s,t € A isometries in A. Let D C A be a
subalgebra which is isomorphic to Oy such that every element of D commutes with s and
t. Then there exists a unitary z € A such that whenever u,v € U(A) commute with every
element of D, then

|z*uz — v|| < 11y/max{||s*us — v||, ||t vt — u}.

Proof. Let B = D’'N A be the relative commutant. Since O, is nuclear, the *-homomorphism
pXt:0s0B — A, where p: Oy — D is an isomorphism and ¢ is the inclusion map B — A,
extends to a unique *-homomorphism 7 : Oy ® B — A such that 7(1 ® b) = b for all
b € B and 7|0, is an isomorphism between Oy are D. Now we will show that there exists
z € U(Oy ® B) such that whenever u,v € U(B),

|2(1 @ u)z* — 1 @] < 11y/max{||s*us — vl|, ||t*vt — u|}.

We will take certain compressions of 1 ®w and rearrange them. To this end, let e; = ss*, f; =
tt*, and
ex =sfis" <e; fo=tat" < fi; fy=tet” < fo
Let
pr=1—e1; pa=e—ez p3s=eo,

which are mutually orthogonal projections which sum to 1, as are

a=1—fi; 2=hH—fos s=Ffo—[f3; qu=fs.
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Let
C1 = p2sqi; C2 = pit'qe; c3 = pat™qs; ca = pstTqa,

which are partial isometries such that ¢; = s — sfy, so

car=(s—=sfi) (s—sfi) =s"s—s"sfi— fis’s+ fis’sfi=1—fi=aq

and

ccy =(s—sfi)(s—sfi)" =ss" —sfis" —sfis*+ sfis" =e — sfis" =e; — ey = po.

Moreover by similar computations, once can see that

*

J— X . o — .
CiCj = qj; CjC; = DPpj-1

for j = 2,3,4. Now let Oy = C*(s1,52), where s;, sy are isometries satisfying the Cuntz
relation. Define
2=851Rc+1Qc+55Rc+1Rcy € OyR B.

Then since cjcy = cjcs = cica = ceq = cjc, = 0 for all j # k, we have that

2z =515 ®cjcr + 1 ® chea + 5550 @ c3c3 + 1 @ cyeq + 5752 @ cjcs + 5551 @ 361
=1®(@n+etetey)=1®1,

and

22" =515 @ P2+ 1@ p1 + 5255 @ pa + 1 @ p3
=1®@ (P +p+p3) =101

Now

( )2* = 5187 ® 11 = $18] ® €1¢] = $18] R Do,
(1® )z =1® cagocs =1 ® cach = 1 @ py,
2(1 ® q3)2" = 8955 ® c3q3¢5 = 1 @ 3¢5 = S255  pa,

( )

*

=1®cqc; =1 cyc; =1 ® ps.

Now let u,v € B be unitaries and let § = max{||s*us — v||, [|[t*vt — u||}. Since sq; = pas and
po < 58%, we get

ler(qrvgr)e] — poups|| = [[p2svs™p2 — paups||
= ||pasvsps — pass uss”ps|
< v — s*us|| < 4.

Similarly, one obtains

lej(qjvg;)c; — pj—rupj—ll < |tot” —ul| <0
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for 7 = 2,3,4. But now

Z(1® (qogr + quga + q3vg3 + quvgs)) 2"
= 5157 @ c1(qvqr) ] + 1 ® ca(quuge)cy + s255 @ c3(qsvgs)cs + 1 @ ca(quvqs)cy,

so that

|z(1®v)z" =1 ul

<0+ |qivgr + g + q3vq3 + qavgs — V|| + |[prups + paups + psups — ul|
Therefore since e; = ss*,

lu = (eruer) + (1 = er)u(l — en))|| < v/2][s*us — o] < V20

by the above lemma. Since e; = stt*s*,
|leques — stut™s™|| < ||t*s*ust — u|| < ||s*us — v|| + ||[t* vt — || < 24.

Consequently,
[ — (eques + (1 — ex)u(l —e3))]| < V46

by the above lemma again. Now since e; > ey, we can compress by e; to get
lerue; — (eques + (e — es)u(er — e3))||V/46.

It then follows that
Iprupy + paups + psups — ul| < (V2 + 2)V.

Similarly since f; = tt*, fo = tss*t*, f3 = (tst)(tst)*, we repeat the above process and keep
applying the above lemma to get

v = Cfivfi+ (1 = fo)v(l = f))]l < V24,

I fivfi — (fovfo + (1 — fo)v(1 — f))|| < V46,

I f2vfz — (f3vfs + (1= fa)v(1 — f3))]| < V66,
so that

Qvg + UG + 430as + qavgs — v]| < (V2 + VA + V6)VG.

Now since § < 2, § < v/26, and so

[z (I@u)z =1 =[2(1®v)z" =1 u
<0+ |lqvgr + euge + q3vgs + qavgs — || + ||prups + paups + psups — ul|

<V + (V2 4+ VOVE+ (V2 + VA+V6)VE
= (4+3V2 +V6)V5 < 11V,

93



Lemma 6.3.17. Let A be a unital, separable, exact C*-algebra, and let B be a separable
nuclear, unital, simple, purely infinite C*-algebra. Let ¢,1 : A — B be two injective unital
*-homomorphisms. Then the homomorphisms from A to O ® B given by a — 1 ® ¢(a) and
a— 1 ®1(a) are approximately unitarily equivalent.

Proof. Let uy,...,u, € U(A) and € > 0. We will find a unitary z € Oy ® B such that
127 (1 @ ¢(uy))z" = 1@ Y(uy)l| <€

forall 1 < j < n. Let £ = span{l,uy,uj,...,u,,u’}. Then applying Lemma [6.3.14] to
¢|g, ¥|E, there are u.c.p. map S, 7 : B — B such that
1 /e\2 1 /e\2
150 6(w) — vl < 5 (15) 1T o) = el < 5 (1)
forall 7 =1,...,n. Then Lemma [6.3.11] gives isometries s, € B such that

Iso(u)s — o)l < (S)5 vt — ot < ()

for all j = 1,...,n. Then applying the above lemma, we get the desired z. O]

Theorem 6.3.18. Let A be a unital, separable, exact C*-algebra. Then any two injective
unital *-homomorphisms from A to O, are approximately unitarily equivalent.

Proof. Let ¢, : A — Oy be unital, injective *-homomorphisms. Let i : Oy ® Oy — Oy be
an isomorphism, and let 5 : Oy — Oy ® O be the map f(a) = 1®a. The pof: Oy — Oy is
approximately unitarily equivalent to o 1) by the above lemma. Hence ¢ is approximately
unitarily equivalent to o 8 o ¢, which is approximately unitarily equivalent to po 5o,
which is approximately unitarily equivalent to ). ]

6.4 Embedding Separable Exact C*-Algebras into O,

We now follow E. Kirchberg and C. Phillips original paper [19]. First, it is shown that every
unital separable exact quasidiagonal C*-algebra embeds into O,.

Lemma 6.4.1. Let A be a unital, separable, exact C*-algebra such that there is an injective
unital *-homomorphism ¢ : A = (Os)0 = I1,,02/ &, O3 = £°(03)/co(O2) with a u.c.p. lift
p:A— £*(0O,). Then there is an injective unital *-homomorphism A — Os.

Proof. Let (u,) be a sequence of unitaries in A which have dense span. Let E, C A be
the operator system defined by E, = span{l,uy,uf,...,u,,ut} C A Then C-1 C E; C
E, C ---A and U,E, = A. We will show that there is an injective *-homomorphism
¥ A— (O2) with a c.p. lift a — V(a) = (V,,(a)),, such that for all n and sufficiently large
m, Vg, is injective, and its inverse defined on V,,(E,) satisfies lim,, [|(V;n| 5 )®|| = 1 for
all £ € N.

Let a — Q(a) = (Qn(a)), be a lift of ¢ to a u.c.p. map from A to £*°(O;). Since
¢ is injective, for ever N € N, the map a — ¢n(a) = Too(Qny1(a), @ni2(a),...) is again
injective. Thus for every N,k € N, a € My(A), we have

lim [(Qy1 (@), -, QW k(@) = 6P (@) = flall.
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Now since each E, is finite-dimensional, we can inductively construct a sequence 0 = Ny <
Ny < --- of integers such that

1
HQR, 2 (@): - QN (@D = (1= 5l

for all k < m and a € My(E,,). Let o, : O2™ V™ — O, be any unital *-homomorphism.
Let V,,, : A — O3 be defined by

Vim(a) = om((Qv,n)+1(a), - - Qn,i (@),

which is u.c.p. since the @);’s are, and so

V(a) = (Vi(a), Va(a), . ..)

defined a u.c.p. map A — £>°(0,). Moreover we have that lim,, |(Vi.|z,) )®| = 1
for every fixed k,n € N. Letting £k = 1, ¢ = m,, o V is isometric, hence injective. Since
lim;(Q;(ab) —Q;(a)Q;(b)) = 0 for a,b € A, we also have that lim,, (V,(ab) —V,,(a)V,,(b)) =0
for a,b € A. Thus ® is a homomorphism with lift V' which satisfies the desired properties.

Let 6,, > 0 be such that g > d; > --- and 26,, + 1159, < 2%,1 By Lemma ,
there exists k(m) with £(0) < k(1) < --- such that if VW : E,, — Oy are u.c.p. with V'
injective, and

JVHED| <14 5,0,

then there is a u.c.p. map 7" : Oy — Oy such that |7 oV — W|| < 20,,,. With our V' above,

H((Vm|En)_1)(k(m))H <1+ Om; ”Vm(un)*vm(un) - 1” < Om; va(un)vm(un)* - 1” < Om

for all m and n < m. Using Lemma |6.3.14] again with the above approximations, we find
u.c.p. maps Sp,, Ir, : Os — Oy such that

1T © Vinl . = Vinta |5 | < 20m; 1S 0 Vinsal g, = Vinl g | < 20
For 1 < j < m, define unitaries 2 = Vm(uj)(Vm(uj)*(Vm(uj))_%. Then
|5 = Via ()| < 0
by Lemma [6.3.8] Therefore
1T (23) = 2| < 465 1Sm(@1) = 50| < 46
Then Proposition [6.3.11] gives isometries s,,, t,, € Oz such that
st sm = 25| < 50ms st — 22| < 56

for 1 < 7 < m. Lemma [6.3.16] gives unitaries z,, € Oy ® O, such that
2 (1@ 2922 = 1@ Vipyr ()| < 26, + 114/56,, < —
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forall 1 <75 <m.
Define y,, = 27 --- 2

*

1, so that y, are unitaries such that

lim y, (1 ® Vo ()

exists for all j. It follows that ¢y(a) = lim, y,(1® V,,(a))y; exists for all a € U, E,,. Further-
more, for all n,m, V,,|g, is a u.c.p. map. Thus [|1|g,|| < 1, and so we can extend ¢ to a
u.c.p. map ¢ : A = Oy ® Os. Since

lim(Vyn(ab) — Vin(a)Vin (b)) = 0

for all a € U, E,, it follows that ¢ is a homomorphism. Finally ¢ (a)|| = lim,, ||V.(a)|| =
la|| for all a € U,E,, so ¢ is isometric, hence injective. Thus ¢ : A — Oy ® O is an
injective unital *-homomorphism, and so it follows that there exists an injective unital *-
homomorphism A — O, since Oy ® O,. O

Corollary 6.4.2. Every separable quasidiagonal unital exact C*-algebra A has a unital
embedding A — O,.

Proof. Since A is separable quasidiagonal unital, we have the following commutative diagram

Han(n) —L> £OO<OQ>

/ lw lwoo

where (Mpn))n is some sequence of matrix algebras, ¢ is a unital embedding, p is a u.c.p.
lift of ¢, and 7y : €°(O2) — (O3)x is the quotient map.. Note that the map ¢ exists
since O, contains a unital copy of M for all k, and so one can construct a unital injective
homomorphism IT,, M,y — €>°(0,). If A is exact, then the above lemma implies that A has
a unital embedding into O,. O

The following definitions comes from [I4].

Definition 6.4.3. We say that a C*-algebra A is approximately injective if given finite
dimensional operator systems F; C Fy C B(H), a c.p. map ¢1 : By — A, e > 0, there exists
a c.p. map ¢ : Fs — A such that

02|, — 01| <e.
Remark 6.4.4. Let B is a C*-algebra, J <0 B be approximately injective. If
0=>BH)®J—>BH)®B—BH)®(B/J)—=0

is exact, then the Effros-Haagerup lifting theorem provides a lift for any finite-dimensional
operator system. If B is separable, we can take an increasing union of finite-dimensional
operator systems, and the approximately injective property will give us a lift since the liftable
maps are closed in point-norm.
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Lemma 6.4.5. Let A, B be unital C*-algebras where A is separable, J <1 B is an ideal which
is approximately injective, and let ¢ : A — B/J be an injective homomorphism. Let H be
a separable infinite dimensional Hilbert space, and suppose that the induced map

B ® B(H)

AQB(H)_)—JQB(’H)

extends continuously to an injective homomorphism

B ® B(H)
JRB(H)

Then there is a u.c.p. map T : A — B which lifts ¢.

¢: A B(H) —

Proof. Let p: B — B/J be the quotient map. Let By = p~'(¢(A)) C B, and let py = p|g,-
Since the min-tensor preserves inclusions,

J® B(H) C By®B(H) C B® B(H).

So the hypothesis of the lemma still holds if we replace B by By. Hence we can assume that
A= B/J and ¢ =idg/;. By the Effros-Haagerup lifting theorem, since J is approximately
injective, it suffices to show that the sequence

0—-BH)®J—=BH)®B—BH)® (B/J)—0
is exact. But this is clear from hypothesis since the map

B® B(H)

¢: A®B(H) = (B/))® BH) » Topary

is injective (and is clearly surjective). O

Lemma 6.4.6. Let G be a discrete amenable group, a : G — Aut(A) be an action of G
on a unital C*-algebra A. Let (¢,u) be a covariant representation of (A, G, ) in a unital
C*-algebra B, where ¢ is injective. Then there is an injective homomorphism ¢ : A X, , G =
Ax, G — CHG)® B determined by ¥(a) = 1 ® ¢(a) for a € A, and ¢(g) = g ® u, for
g €G.

Proof. Since GG is amenable, the full crossed product equals the reduced one, and so the
existence and uniqueness of 1) follows from the universal property of the full crossed product.
To show injectivity, let my : B — B(K) be a faithful representation of B on K, and let
A CHG) — B(*(G)) be the left regular representation. Then o = (mp ® \) o ¢ is a
representation of A x, G on H = K ® (*(G). If we can show that this representation is
unitarily equivalent to the canonical regular representation given in (2) of Definition m,
with m =m0 ¢ : B — B(K), then we will be done. Note

m(a)(§ ®g) = (m 0 ¢ 0 ag1(a)f) © dy and o (a)(§ @ dg) = ((mo 0 P(a))§) @ dy,

and
m(g) =1® Ay and 0(g) = mo(uy) ® Ay,
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since o ® A(¥(g)) =m0 @ A(g ® uy). Define V € B(K ® (2(G)) by V(€ ® 6,) = mo(uy)é @ d,
and extend by linearity and continuity. This is clearly a unitary operator. Then

Via(a)V(€ @ dy) = V7a(a)((mo(ug)§) @0 )
= V*(mo 0 ¢(a)mo(ug)S) ©
= (mo(uy)mo © ¢(a)mo(u
—7T00¢( Ha))€ @

m(a)(§ ® d,),
so that V*o(a)V = m(a). Moreover by a similar computation, V*o(g)V = 1 ® A,. Hence

T © ¢ is unitarily equivalent to the canonical regular covariant representation, and so this is
injective. Thus v must be injective. O]

))®5

Lemma 6.4.7. Let B be a unital C*-algebra, A C B which contains the identity, and let
o € Aut(A). Suppose that o is approximately inner in B, that is, there is a sequence
v1, Vg, ... of unitaries in B such that lim, v,av} = o(a) for all a € A. Let z be the standard
generator for C'(T), and let u be the canonical unitary in A x, Z which implements ¢. Then

a—1®71a,a,...); u— 2@ 78 (v, v9,...)

defines an injective homomorphism ¢ : A X, Z — CHZ) ® (B)s ~ C(T) ® (B)so, where
B . (*(B) — (B)s is the quotient map. Moreover for any unital C*-algebra C, this
homomorphism extends continuously to an injective homomorphism

(ANGZ)®C—>C(T)®(%).

Proof. We clearly have that
(v1,v9,...) - (a,a,...) - (v1,v9,...)" = (c(a),o(a),...) € co(B)
for all a € A. Thus
a— 78 (a,a,...) and u > 7 (v, 09, .. .)

define a homomorphism from A x,Z — (*(B)/co(B) = (B)s. Moreover since the first map
is injective,
a— 1@ (a,a,...)and u— 2z @ 78 (vy, v, ..

)
defines an injective *-homomorphisms from ¢ : A x, Z — C(T) ® (B)wo-
For the latter part of the lemma, first note that (Ax,Z)®C =(A®C) Xsgid. Z for
any C*-algebra C', and we clearly have

lim(v, ® 1)z(v, ® 1)* = (¢ ® id¢)(2)
for all z € A®C, as this holds for all z € A®C. Thus ¢ extends continuously to an injective
*_homomorphism

¢: (A%, Z)®C — C(T)® (B®(C)s
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Now there is a natural inclusion (*(B) ® C C (*(B ® C). Since
(B)®@C=c®B®C=c(BxC),
the inclusion of /*°(B) ® C' into (>*(B ® (') gives an injective homomorphism

(B)©C _ (B&C)
co(B)®C c(BeC)’

Then the image of ¢ is clearly contained in

C(T) & (EOO(B) ® C> |

C()(B) & C
which gives the desired extension. O]

Lemma 6.4.8. Let B be a separable nuclear unital C*-algebra, let A C B be a subalgebra
containing the identity, and let ¢ € Aut(A) be approximately inner in B. Then the *-
homomorphism A x, Z — C(T) ® (B)e from the previous lemma has a lift to a u.c.p. map
Axy,7Z — C(T) ® >°(B).

Proof. Let A" = Ax, Z,B"= C(T) @ {*(B) and J' = C(T) ® ¢o(B). Then the ideal J’ is

approximately inner since it is nuclear, and the map

B ® B(H)

A'OBH) — ToBH)

extends continuously to an injective homomorphism

B'® B(H)

é:A'@B('H)%—J/@B(H)

by the last lemma. Now applying Lemma [6.4.5| gives a u.c.p. lift of the *~homomorphism
AXeZ — C(T) ® (B)so- O

Theorem 6.4.9 (Kirchberg-Phillips Nuclear Embedding Theorem). A separable C*-algebra
A is exact if and only if A embeds into Oy. This embedding can be unital if A is.

Proof. Clearly if a C*-algebra is isomorphic to a subalgebra of O,, it is exact. Conversely,
notice that the cone Cy([0,1)) ® A is quasidiagonal. The unitization By = (Cp(R) ® A)~
is the unitization of a subalgebra of Cy([0,1)) ® A, hence it is also quasidiagonal. It will
also still be exact, as exactness passes to unitizations, A is exact, abelian C*-algebras are
exact, and exactness is preserved by the min-tensor. By Corollary there is a unital
embedding ¢ : By — O,. Let 7 € AutBy be defined by 7 = 1 ®id, where 71 (f)(z) = f(z+1),
and extending to the unitization. Let B = By X, Z, which is unital, separable exact. Let
1 = ¢ot : By — Oy, which is another unital, injective *~homomorphism. Since By is unital,
separable, exact, ¢ and ¢ are approximately unitarily equivalent by Theorem [6.3.18

Now using the embedding ¢ : By — O,, the automorphism 7 is approximately inner in

Os, and so Lemma [6.4.8 provides an injective *-homomorphism B — C(T) @ (O2)o0, which
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has a lifting to a u.c.p. map B — C(T) ® £*°(0O;). Now since C(T) is unital, separable,
quasidiagonal, and exact, Corollary gives a unital embedding C(T) — O,. Thus we
have embeddings

B — C(T) &® (OQ)OO — 02 X (OQ)OO — (02 & 02)00 — <02)007
with a u.c.p. lift given by

Now B is still exact, so there is an injective unital *-homomorphism + : B — Oy by Lemma
6.4.1l But B contains (Ch(R) ® A) %, Z ~ (Cy(R) x,, Z) @ A ~ C(T) @ K® A, this last
isomorphism coming from Corollary [I.3.7, This algebra clearly contains an isomorphic copy
Ap of A as C(T) ® K has projections. Let p € B be the identity of Ay, so

Yo : Ao = ¥(p)O2v(p)

is a unital embedding of A in vy(p)Oyy(p). Now since Ky(Os) = 0, and O, is unital, simple,
purely infinite, Ko(O3) is just the Murray von-Neumann classes of non-zero projections by
Theorem [5.2.1] it follows that [y(p)lo = [1Jo = 0. Thus there exists an isometry v € O,
such that vv* = 7(p). Therefore if Oy = C*(s1, ), where s1, so are isometries satisfying
the Cuntz relations, then vs;v* and vsev* are isometries in v(p)Osy(p) satisfying the Cuntz
relations, so v(p)O2v(p) ~ Os. So we have

A5 A —— CMIKRA —— B —— 0,,
giving the inclusion

. ’Y|A0 R

A —— A, > 7(p)O2v(p) —= 0,.

To summarize, exact C*-algebras can be characterized in several different ways.
Corollary 6.4.10. Let A be a separable C*-algebra. Then the following are equivalent.
1. There exists a nuclear embedding 7 : A — B(H).
2. For any C*-algebra B, J <1 B, we have that
0>ARJ > A®B—A®(B/J)—0
is exact.
A has Property C.
A has Property C’.
There exists a C*-subalgebra G C My, J <1 G such that A ~ G/ J.

A AN

There exists an embedding ¢ : A — O,.
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