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Abstract

This dissertation sets out to examine some fundamental open questions in quantum physics
regarding quantum-classical correspondence in regular versus chaotic systems. Specifically,
we study these questions using approaches in quantum information science in an experi-
mentally realized textbook model of quantum chaos - the quantum kicked top (QKT).

The effect of classical chaos on the generation of entanglement in spin systems has been
a field of active research for a couple of decades. Whether high entanglement in these
systems is a hallmark of chaos or not remains a widely debated topic. We explain the
connection between entanglement and chaos in spin systems and resolve previous conflicting
results. The previous studies have mostly drawn conclusions from numerical work on
a few initial states in regular versus chaotic regions. We instead focus on stable and
unstable periodic orbits because chaos emerges around unstable periodic orbits. We first
propose a new set of criteria for determining whether quantum evolution will correspond
to the classical trajectory in a localized manner at stable periodic orbits in periodically
driven systems. These criteria can be used to calculate the quantum numbers that will
lead to quantum-classical correspondence even in a deep quantum regime, and thus to
quantify the well-known Bohr correspondence principle. Next, we analytically show a
direct connection between entanglement generation and a measure of delocalization of
a quantum state in spin systems. More concretely, we describe a method to calculate
an upper bound on entanglement generation in any bipartition of spin systems, where
the upper bound is a function of trace distance between the evolved state and the most
localized classical-like separable states. This method along with our criteria for localized
evolution enables us to explain the behaviour of entanglement in both deep quantum and
semiclassical regimes for regular as well as chaotic regions. Hence, our analysis resolves
the long-standing debates regarding the connection between classical chaos and quantum
entanglement in deep quantum and semiclassical regimes.

In addition to the study of entanglement, we perform the first study of nonlocality,
and the effect of chaos on its generation in the QKT. Since nonlocality and entanglement
are inequivalent quantum resources, the effect of chaos on nonlocality merits an explicit
study. Violations of Bell inequalities in the presence of spacelike separation among the
subsystems imply nonlocality - meaning nonlocal correlations between subsystems of the
total spin system. We show that the QKT evolution can lead to states that violate mul-
tiqubit Bell inequalities and hence provides a deterministic method to prepare nonlocal
quantum states. Our numerical results suggest a correlation between delocalized evolution
of a pure quantum state and generation of nonlocality in the quantum state. We further
demonstrate that dynamical tunnelling - a classically forbidden phenomenon - in the QKT
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leads to the generation of Greenberger-Horne-Zeilinger (GHZ)-like states for even numbers
of qubits. We analytically prove that these states are maximally nonlocal. On the other
hand, we numerically show that any reduced state of the QKT obtained by tracing out
a subsystem of the total spin system does not violate Bell inequalities. We provide an
analytical explanation of the numerical results for 2−qubit reduced states by formulating
and proving two general theorems regarding 2−qubit Bell inequalities. These theorems im-
ply that any 2−qubit mixed state having a symmetric extension or symmetric purification
cannot violate the Clauser-Horne-Shimony-Holt inequality. This highlights fundamental
connections between two important and distinct concepts in quantum information science
- Bell inequalities and symmetric extension of quantum states.

Apart from providing deeper insights into the fundamental questions of quantum-
classical correspondence and new approaches to analyze quantum chaos, the methods de-
veloped in this thesis can be used to design quantum systems that can efficiently generate
entanglement and nonlocality. Thus, our results could have interesting applications in
quantum computing and quantum information science.
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Chapter 1

Introduction

Classical chaos and quantum physics mark two important discoveries in physics in the twen-
tieth century, among major discoveries like special and general relativity. Understanding
the intersection of two different theories can sometimes be natural as in the case of special
relativity and general relativity. On the other hand, it can be extremely challenging as in
the case of quantum theory and general relativity. The intersection of quantum physics
and classical physics lie somewhere between these two extremes. Although a lot has been
done and understood about this quantum-classical correspondence for classically regular
systems, it remains poorly understood for chaotic systems.

In this thesis, we explore the quantum-classical correspondence using approaches in-
spired by quantum information science. We explore information-theoretic measures such as
entanglement and nonlocality in periodically driven spin systems. Specifically, we illustrate
our studies in the quantum kicked top - a textbook model of quantum chaos.

1.1 Classical and Quantum Physics

Hamilton’s equations of motion are the standard method for studying the classical dynam-
ics of any system. The classical dynamics of a system with n degrees of freedom is described
using trajectories in a 2n-dimensional phase space - a multidimensional space whose axes
are generalized coordinates and their corresponding conjugate momenta. Hamiltonian sys-
tems can be broadly classified into integrable and non-integrable systems [1]. Systems that
have n independent constants of motion are called integrable systems while those with less
than n independent constants of motion are non-integrable. The dynamics of integrable
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systems is restricted to an n−dimensional surface in the 2n−dimensional phase space. In
contrast, non-integrable systems explore more areas of the phase space due to the lack of
enough symmetries [1]. Let us consider as an example the harmonic oscillator. Its Hamil-

tonian is given by H = p2

2m
+ 1

2
mω2x2. It is a system with one degree of freedom. The

phase space of a harmonic oscillator is the 2−dimensional space whose axes are x and p.
The energy of the harmonic oscillator is a constant of motion. Hence, it is an integrable
system as the number of independent constants of motion equals the number of degrees of
freedom.

One of the most surprising properties often exhibited by non-integrable systems is
unpredictability in the evolution due to exponential sensitivity to initial conditions. This
property is known as chaos, popularly known as the ‘butterfly effect’. The seeds for the
discovery of chaos were sown by Henri Poincare in the late nineteenth century when he
proved that the 3−body problem with mutual gravitational attraction can exhibit unstable
aperiodic motion [2]. Later in 1945, Mary Cartwright and John Littlewood discovered
chaotic behaviour in the solutions of a nonlinear differential equation [3]. However, it was
only after the advent of computers and the work of a meteorologist, Edward Lorenz, in 1963
that chaotic phenomena began to be recognized and studied widely. Lorenz was modelling
convection in the atmosphere on a computer when he realized that very small differences
in the initial conditions led to significant differences in the evolution of the system that
can render the evolution unpredictable [4]. It is indeed surprising that even very simple
systems like double pendulums and driven simple pendulums can display unpredictable
behavior [5, 1].

Chaos is a property of nonlinear systems and it is characterized by positive Lyapunov
exponents. To understand the definition of Lyapunov exponents, let us consider the evolu-
tion of two initial vectors in the 2n−dimensional phase space, X0 and Y0 = X0+∆X0 [1].
X0 and Y0 evolve to Xt and Yt respectively in time t. The evolution of the displacement,
∆Xt leads to the definition of Lyapunov exponents. Let

dt(X0,Y0) = |∆Xt| =
√

∆Xt ·∆Xt. (1.1)

The classical Lyapunov exponent is given by

λ(X0) = lim
t→∞

lim
d0→0

1

t
ln

(
dt(X0,Y0)

d0(X0,Y0)

)
. (1.2)

A strictly positive λ(X0) signifies that the difference between the evolution of X0 and any
neighboring point grows exponentially. A system is called globally chaotic if λ is positive
for all initial states in the phase space.

2



Another characterization of classical chaos is via the Kolmogorov-Sinai entropy (KS
entropy) [1]. It is known to be equivalent to the sum of positive Lyapunov exponents of a
system. Thus a strictly positive value of KS entropy signifies chaos in the system [6].

Observations of a few phenomena that could not be explained using classical physics
led to the advent of quantum physics in the beginning of the twentieth century [7]. Unlike
the evolution of phase space variables in classical physics, the quantum theory of any
system describes wave functions evolving according to the linear Schrodinger equation [8].
The variables of classical physics are replaced by observables in quantum physics that are
Hermitian operators in the relevant Hilbert space. One of the striking distinctions between
classical and quantum physics is Heisenberg’s uncertainty principle. According to this
principle, the values of conjugate variables of any particle, say position and momentum,
cannot be simultaneously determined to arbitrary precision. This prohibits any description
of quantum physics in terms of trajectories in the phase space without invoking strong
or weak measurements [9, 10, 11]. Moreover, the linearity of the Schrodinger equation
prohibits any exponential divergence in the evolution of the wave functions, quite unlike
the possibility of exponential divergence of trajectories in the classical physics. Unitarity
further constrains the distance between any two initial wave functions to remain constant
throughout the evolution (〈ψ0|U †t Ut|ψ1〉 = 〈ψ0|ψ1〉 for all t).

There are striking differences in the formulation and description of classical and quan-
tum physics. Thus devising a correspondence principle that can explain all possible classical
behaviors in appropriate limits is very difficult. Though a few candidate approaches have
been proposed, all of them are known to break down, particularly for chaotic systems. We
review the quantum-classical correspondence in the next section briefly.

1.2 Quantum-Classical Correspondence

Quantum theory successfully explained many phenomena that were incomprehensible using
classical physics, such as the stability of atoms, the photoelectric effect and black-body
radiation to name a few. Nevertheless, a complete theory should merge with the old theory
in appropriate limits wherever the old theory is applicable. This requires the predictions
of quantum physics to merge with the predictions of classical physics in the classical limit
– including chaotic phenomena.

However, limited success has been achieved in this regard. The correspondence prin-
ciples formulated so far are known to break down for chaotic systems. For example, the
Ehrenfest correspondence principle proposes a correspondence in the quantum evolution of
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observables and classical trajectories up to Ehrenfest time scales (tEh) wherever classical
physics holds true [12]. The tEh was initially assumed to be extremely large in the limit
of large quantum numbers. However, it was later on shown to be very small for chaotic
systems even in the macroscopic limit of large quantum numbers. tchaotic

Eh ≈ 1
λ

ln A0

~ where
A0 is characteristic action of the system and λ is the classical Lyapunov exponent defined
in (1.2) [13]. For instance, consider the case of Hyperion - a moon of Saturn - which is a
weakly chaotic system [14]. tEh for Hyperion, calculated using 1

λ
ln A0

~ , was shown to be
of the order of 20 years which is much smaller than the age of solar systems [13]. This
breakdown of correspondence principles for chaotic systems calls for a more rigorous study
of quantum-classical correspondence.

Another line of research has focused on finding signatures of classical dynamics, par-
ticularly chaos, in the study of quantum physics. Researchers have focused on identifying
properties in the quantum realm that can distinguish the underlying regular versus chaotic
classical dynamics of the system. Examples include level statistics [15], fidelity decay
[16, 17], hypersensitivity to perturbations [18], scarring of eigenfunctions [19], and out-of-
time-order correlators (OTOCs) [20]. However, these examples suffer from limitations too,
as we shall now discuss.

1.2.1 Signatures of quantum-classical correspondence

Level statistics

The statistics of energy levels of a quantum system has been known to be a predom-
inant signature of chaos in the underlying classical system for decades [15]. Let P (s)
denote the nearest neighbor energy level spacing distribution. P (s) is known to exhibit
level clustering for regular systems. Thus these systems display Poissonian level statistics,
P (s) ∼ exp (−s). On the other hand, P (s) is known to exhibit level repulsion as well as
resistance to level crossings for chaotic systems. Thus these systems display Wigner-Dyson
level statistics, P (s) ∼ sβ (for s→ 0) where β can take values 1, 2 and 4 depending on the
symmetries of the system [15].

Nevertheless, there exist exceptions to this relationship between classical dynamics and
quantum level statistics. For example, the kicked rotor is known to exhibit global chaos for
strong enough kicking strengths. However, it does not display level repulsion owing to its
dynamical localization property in the quantum realm [15]. On the other hand, systems like
pseudointegrable polygonal billiards display level repulsion to some extent although they
do not display classical chaos [21, 22]. Thus, quantum level statistics cannot be considered
a universal indicator of regular versus chaotic dynamics at the classical level.
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Fidelity decay

In closed quantum systems that do not interact with an environment or a detector, quantum
states evolve unitarily according to the Schrodinger equation. Thus, the overlap of two
different initial quantum states remains constant under time evolution. So using this
measure, quantum states cannot exhibit exponential divergence in their evolution even for
chaotic systems. However, a perturbation in the Hamiltonian instead of the quantum state
can lead to exponential sensitivity. Peres used this criterion to propose fidelity decay as a
signature for quantum-classical correspondence [16]. The quantum fidelity F is defined to
be the overlap of two states evolved from the same initial state: the first state evolves with
the Hamiltonian, H0, and the second evolves with a perturbed Hamiltonian, Hε = H0 +εV ,

F (|ψ(t)〉, |ψε(t)〉) = |〈ψ(0)|U †sys(t)U
ε
sys(t)|ψ(0)〉|. (1.3)

Here Usys and U ε
sys are the time evolution unitary operators corresponding to the unper-

turbed and the perturbed Hamiltonian respectively. Based on numerical evidence, Peres
initially conjectured that the quantum fidelity will remain close to one for classically reg-
ular dynamics, and will decay significantly for classically chaotic dynamics [16]. However,
further research provided evidence that classically regular systems and systems with mixed
phase space can show a variety of behaviours of the fidelity decay, including faster than
exponential decay [23, 24]. Also, the fidelity decay was shown to be dependent on the
characteristics of the perturbation rather than the unperturbed Hamiltonian [17]. These
results make it challenging to use fidelity decay as a universal indicator of the underlying
classical dynamics.

Out-of-Time-Order Correlators (OTOCs)

A positive Lyapunov exponent is a well-defined characterization of classical chaos. Quan-
tum chaos lacks such a characterization. Out-of-Time-Order Correlators (OTOCs) were
recently proposed as a promising candidate for quantum Lyapunov exponent analogous
to the classical Lyapunov exponent [20]. OTOCs have begun to be widely recognized
as the quantum Lyapunov exponent in the literature though their validity remains to be
rigorously analyzed and proved. We briefly review OTOCs here.

Let us consider the operator Ĉ(t) given by

Ĉ(t) = −[x̂(t), p̂(0)]2. (1.4)

The operator Ĉ(t) is related to a four-point correlator function given the arguments in the
commutator in (1.4) are unitary operators at distinct times [25]. Thus Ĉ(t) is known as
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OTOC. Expanding the commutator (1.4) using a test function f gives

[x̂(t), p̂(0)]f = −i~
(
x̂(t)

∂f

∂x̂(0)
− ∂x̂(t)f

∂x̂(0)

)
= i~f

∂x̂(t)

∂x̂(0)
.

This simple calculation of the commutator [x̂(t), p̂(0)] leads to the following result:

[x̂(t), p̂(0)] = i~
∂x̂(t)

∂x̂(0)
. (1.5)

Equation (1.5) simplifies (1.4) as follows:

Ĉ(t) = ~2

(
∂x̂(t)

∂x̂(0)

)2

. (1.6)

Taking the expectation value of Ĉ(t) with respect to any quantum state |ψ〉 yields

C(t) = ~2

〈(
∂x̂(t)

∂x̂(0)

)2
〉
. (1.7)

Classically,
(
∂x̂(t)
∂x̂(0)

)
≈
(

∆x(t)
∆x(0)

)
. Exploiting the definition of classical Lyapunov exponent λ

in (1.2), we get (
∆x(t)

∆x(0)

)2

≡ exp (2λt) (1.8)

in appropriate limits. Drawing analogy from the above equations, the out-of-time-ordered
correlator C(t) is conjectured to exhibit exponential growth up to Ehrenfest time scales
for classically chaotic systems. The rate of exponential growth captured by the quantum
Lyapunov exponent, λ̃q, can be extracted from the following:

C(t) ∝ exp (2λ̃qt). (1.9)

Though λ̃q seems to be a convincing quantum analog to the classical Lyapunov exponent,
it has been shown to be unequal in magnitude to the classical Lyapunov exponent for the
case of the classically chaotic kicked rotor [26]. Further, it has also been shown to have
positive value for the case of classically non-chaotic billiards [27]. Thus, it remains unclear
whether OTOCs can be the quantum analog of classical Lyapunov exponents as claimed
in the literature.
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We can safely conclude that the quest to find a well-defined characterization or signature
of quantum chaos continues to be an open problem. There have been several attempts to
identify signatures of quantum chaos in the dynamics of quantum entanglement. We review
this aspect in the next section.

1.3 Quantum Information-Theoretic Measures

Quantum properties such as quantum superposition, quantum entanglement, quantum
steering and nonlocal correlations have revolutionized our understanding of physical phe-
nomena, especially at the microscopic level. Can these quantum properties be used to gain
any insight into the question of quantum-classical correspondence? Specifically, can the
study of evolution of these properties for a given Hamiltonian give any insight into the
underlying classical dynamics of the corresponding Hamiltonian? These questions have
gained a lot of attention in the context of quantum entanglement [28, 29, 30].

Additionally, harnessing these quantum properties could have applications in numerous
technologies, such as quantum teleportation, quantum cryptography and quantum commu-
nication [31, 32]. Thus preparation of quantum states with useful quantum properties is an
important task. Can such quantum states be efficiently prepared using quantum chaotic
Hamiltonians?

In the light of these questions, the purpose of this thesis is to study quantum en-
tanglement and nonlocality in the model quantum kicked top (QKT). In the following
subsections, we review quantum entanglement, its relationship with classical dynamics,
and nonlocality.

1.3.1 Quantum entanglement

“The whole is greater than the sum of its parts.”
- Aristotle

Suppose we are given a system of two particles, A and B. According to classical physics,
we can gain full knowledge about the joint state of AB by knowing the state of individual
particles A and B. Quantum mechanically, this is no longer true in general. Quantum
entanglement is a purely quantum property that prohibits us from knowing everything
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about the joint state of two particles just from the complete knowledge of individual par-
ticles. Mathematically, a quantum state ρAB shared between parties A and B is said to be
entangled if it cannot be written in the following form:

ρAB =
n∑
i=1

piρ
A ⊗ ρB (1.10)

where pi’s are non-negative real numbers and obey
n∑
i=1

pi = 1, ρA ∈ HA (the Hilbert space

corresponding to subsystem A) and ρB ∈ HB [33].

When ρAB is a pure state (ρAB ≡ |ψAB〉〈ψAB|), the Schmidt decomposition can be
used to determine whether a state is entangled or not [33]. Let |ψAB〉 ∈ HAB be a pure
state. Let dim(HA) = dA and dim(HB) = dB, so dim(HAB) = dAdB. Then there exists an
orthonormal basis {|iA〉} ∈ HA and {|iB〉} ∈ HB, such that

|ψAB〉 =
d∑
i=1

λi|iA〉|iB〉 (1.11)

where d = min (dA, dB), and λi’s are non-negative real numbers called Schmidt co-efficients
which satisfy

∑
i

λ2
i = 1. The number of strictly positive λi’s in (1.11) for any |ψAB〉 is called

its Schmidt rank. A pure state |ψAB〉 is entangled iff its Schmidt rank is strictly greater
than 1.

The resource theories of entanglement need entanglement measures in order to quantify
entanglement in any given quantum state. A few well-known entanglement measures are
entanglement cost, entanglement of formation and distillable entanglement [31]. In this
thesis, we study entanglement in bipartite pure states. A natural measure of entanglement
in bipartite pure states is the von Neumann entropy of its reduced states,

Entanglement(|ψAB〉) = S(ρA) ≡ S(ρB) (1.12)

where S(ρ) = −Tr (ρ log2 ρ) =
∑
l

λl, λl’s are the eigenvalues of ρ. ρA and ρB in (1.12) are

obtained by tracing out subsystem B and A respectively from the quantum state |ψAB〉.
The distillable entanglement and entanglement cost for any |ψAB〉 is equal to the von
Neumann entropy of its reduced states [34, 31].

We explore the generation of entanglement in quantum states which are evolving accord-
ing to a given Hamiltonian. We also explore the relationship of entanglement generation
to the underlying classical dynamics of the Hamiltonian.
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Entanglement as a signature of chaos

The relationship between dynamical entanglement and the underlying classical dynamics of
the system was first investigated in [35] a couple of decades ago. This study was motivated
by the work of Zurek and Paz about restoring quantum-classical correspondence in chaotic
systems using decoherence [36]. In a series of numerical investigations of the N-atom
Jaynes-Cummings model coupled to a radiation field [35, 37, 38], the authors concluded two
things. First, the rate of entanglement generation (related to the decoherence rate) is much
faster for initial quantum states centered in the chaotic region as opposed to initial quantum
states centered in the regular region of the classical phase space (with exceptions [37]).
Second, the entanglement evolution depicts notable partial recoherences for initial quantum
states centered in the regular region. These studies initiated a host of investigations into
the relationship between entanglement and chaos in other models, such as, coupled kicked
tops [39, 40, 41, 42, 43], coupled standard map [44], coupled Duffing oscillators [45], kicked
Harper model [46], Dicke model [47], coupled quartic oscillators [48], and coupled kicked
rotors [49]. All these studies in various models led to the generic understanding that the
presence of chaos in the classical system leads to enhanced entanglement in the quantum
counterpart. In the semiclassical regime and for initial quantum states centered in the
chaotic sea, the rate of entanglement generation is high and often increases exponentially
fast. The entanglement levels saturate to a value close to the maximum possible value,
and exhibit small fluctuations as the system continues to evolve. In [28], the exponential
growth of entanglement was analytically shown to be limited by the classical Lyapunov
exponent of the underlying classical subsystems in the short time regime in a weakly
coupled two-particle system. The saturation level of entanglement generation has been
analytically derived using random matrix theory (RMT) for coupled systems [40, 50, 43,
51, 52]. This holds because RMT is well-known to describe the statistical properties of
chaotic Hamiltonians given that the random matrix ensemble and the Hamiltonian share
the same symmetry class [15].

A few noteworthy points are:

(a) Most of the aforementioned studies investigated the relationship of entanglement to
the underlying classical dynamics in coupled systems where the individual systems
were taken to be chaotic or regular. The strength of the coupling parameter adds
another degree of freedom to the problem under investigation. Finding a general
connection between entanglement and chaos becomes more difficult in the presence
of added degrees of freedom.

(b) A few of the systems investigated are infinite-dimensional and their numerical studies
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lead to truncation errors. These errors may build up in chaotic systems since chaos
is sensitive to very small deviations.

(c) Though there is a broad understanding of entanglement behaviour in chaotic systems,
there is still a lack of understanding of entanglement dynamics in regular systems. It
has been noted that regular systems can exhibit maximal entanglement for specific
initial states in some systems. Additionally, the initial rate of entanglement genera-
tion in regular systems can be as high as in chaotic systems for specific initial states
[37, 53]. So neither the rate nor the magnitude of entanglement generation can be
considered as a hallmark or signature of chaos in quantum systems. This leads us
to the question of whether there is any universal difference between entanglement
generation in regular versus chaotic systems.

The relationship between entanglement and classical dynamics has been studied in a
textbook model of quantum chaos, the quantum kicked top (QKT). This model does not
suffer from issues (a) and (b) above. It is a finite-dimensional model whose classical limit
exhibits different kinds of classical dynamics including chaos (see Sec. 2.2 for details). We
can study entanglement in the internal degrees of freedom of the QKT, thus eliminating
the need of coupling to another particle to study entanglement (Sec. 2.3). Dynamical
entanglement in the QKT and its relationship to regular and chaotic dynamics has been
investigated both numerically and analytically in theoretical studies [54, 55, 53, 56, 57, 58,
59] as well as experimentally [29, 30, 60]. In [54, 55], the authors concluded that there
is a rapid growth of bipartite entanglement in the chaotic region compared to the regular
region in the semiclassical regime on the basis of numerical studies. On the other hand,
they did not observe a significant difference in the growth rate of entanglement in the deep
quantum regime in regular versus chaotic regions, and they attributed it to the small size of
the Hilbert space in the deep quantum regime. They also observed collapses and revivals in
the entanglement evolution for regular regions but not for chaotic regions. The numerical
observations in the deep quantum regime were verified experimentally for the first time in
[29] in a QKT with j = 3 (≡ 6-qubit QKT). It was also shown that the time-averaged
entanglement (for a finite number of time periods) in regular regions is smaller than in
chaotic regions even in the deep quantum regime.

This surprising result in the deep quantum regime led to a series of further investi-
gations to study whether high entanglement was a hallmark of chaos in the QKT even
in the deep quantum regime [53, 61, 62, 56, 57, 58, 59]. In [53], Lombardi et. al con-
cluded that “the entanglement of the quantum top depends on the specific details of the
dynamics of the classical top rather than depending universally on the global properties
of the classical regime”. In a comment on this paper, Madhok [61] claimed that there
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exists is a correlation between dynamically generated time-averaged entanglement with
the classical phase space structures though in a coarse grained manner. This claim was
based on some numerical analysis and arguments using the RMT. In a subsequent reply
[62], Lombardi et. al mentioned that though the arguments presented in [61] seem logical,
it remains to be shown that they hold generically. On the basis of additional numerics,
the authors remained firm on their initial conclusions in [53]. These works were followed
by another experimental study of entanglement in a QKT with j = 3/2 (≡ 3-qubit QKT)
[30]. From the experimental results, the authors claimed that the initial states in regular
regions lead to low time-averaged entanglement, and the initial states in chaotic regions
lead to high time-averaged entanglement even in a very deep quantum regime [30]. Adding
to the existing debates, Ruebeck et. al studied infinite time-averaged entanglement (which
they refer as SQ) in [56] for a QKT with j = 1 (≡ 2-qubit QKT). This paper concluded
that classical regular dynamics corresponds to either high or low value of SQ, and classical
chaotic dynamics corresponds to intermediate values of SQ. This literature survey makes
it clear that the relationship between entanglement generation and classical dynamics of
the underlying system is very unclear even in a specific model, the QKT. We resolve these
existing debates in Chapter 4 of this thesis.

1.3.2 Nonlocality

The study of the relationship between chaos and entanglement naturally leads us to the
question of the relationship between chaos and other quantum properties such as nonlocal
correlations. Surprisingly, the relationship between the classical dynamics and nonlocal
correlations has not been investigated in the literature so far except in [63].

In order to understand nonlocality, let us suppose Alice and Bob share a 2−qubit
quantum state |ψAB〉 = 1√

2

(
|00〉+ |11〉

)
. They perform a measurement on their respective

qubits. The measurement results are found to be correlated even with a spacelike sepa-
ration between them. The correlations shared between Alice and Bob in such a scenario
cannot be explained using any local hidden variable model [32]. Thus, quantum states
with such correlations either violate the assumptions of locality or realism. In this thesis,
we refer to violations of Bell inequalities as nonlocality for convenience, (although this
label includes violations of either assumption of locality or realism [64, 65, 66]). When
Einstein and his colleagues, Podolsky and Rosen, first described these correlations in a
thought experiment in 1935, they termed it as ‘spooky action at a distance’ [66]. It was
later realized that though these correlations are spooky in nature but there is no ‘action
at a distance’. In 1964, John Bell proposed a simple test using an inequality to test the
existence of nonlocal correlations [67]. The quantum states that violate this inequality
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in the presence of spacelike separation between the particles exhibit nonlocal correlations.
The existence of nonlocal correlations has been proved experimentally [68] though it is still
difficult to fathom the concept of nonlocality since it is highly counterintuitive. Nonlo-
cality is a useful resource in applications such as quantum key distribution and quantum
communication protocols [32]. Further, experimental measurement of nonlocality requires
only local measurements on the quantum state as opposed to full state tomography for
measuring entanglement. Thus, theoretical results on nonlocality are more easily exper-
imentally verifiable once the optimal measurement operators are known. We explore the
existence of nonlocal correlations in the quantum kicked top in chapter 5 of this thesis.

1.4 Overview

This thesis first investigates the much studied relationship between chaos and entanglement
using quantum-classical correspondence, and then undertakes a new study investigating
the relationship between chaos and nonlocality. We illustrate our studies in a periodically
driven spin system, the quantum kicked top (QKT), which is a textbook model of quantum
chaos.

In chapter 2, we briefly describe the model QKT. We derive its classical equations
of motion and then study a few fixed points and periodic orbits using these equations
of motion. We analyze their stability and bifurcations. We review the derivation of the
unitary operator for one time period of the QKT. We further review how a system whose
Hamiltonian commutes with the squared angular momentum operator can be considered
as a symmetric multi-qubit system. Thus, the QKT has a multi-qubit representation,
which paves the path to the study of quantum correlations among its qubits. Additionally,
we review spin coherent states which are the most classical-like quantum states, and the
Husimi quasi-probability distribution function used for the study of quantum dynamics in
phase space.

Chapter 3 deals with the study of quantum-classical correspondence in periodically
driven systems. We propose a set of criteria for localized evolution of initial spin coherent
states centered at stable periodic orbits in such systems. Further, we use these criteria
to identify quantum signatures of classical bifurcations even in a deep quantum regime.
We illustrate these results at the fixed points and periodic orbits in the QKT described in
chapter 2.

Chapter 4 presents a systematic analysis of the debates in the literature concerning
the relationship between entanglement and chaos. We begin by presenting a framework to
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obtain a tight upper bound on entanglement generation in spin systems. This framework
explains the mechanism of entanglement generation in these systems. We demonstrate
that the upper bound gives a good estimate of entanglement in the QKT for regular as
well as chaotic initial states. Using this framework and the criteria for quantum-classical
correspondence at stable periodic orbits proposed in chapter 3, we resolve the previous
conflicting results in the literature.

In chapter 5, we undertake a study of nonlocality in the QKT. We first review the
generalizations of Bell inequality, Clauser-Horne-Shimony-Holt (CHSH) inequality and
Svetlichny’s inequality for 2−qubit and N−qubit states respectively. Their violations
imply the presence of nonlocal correlations in the respective quantum states. While the
2−qubit and 3−qubit subsystems of the QKT do not violate Bell-type inequalities, the
pure state evolving according to the QKT Hamiltonian often does violate Bell-type in-
equalities. We analytically prove that the 2−qubit subsystems of the QKT cannot violate
Bell-type inequalities. We further show that dynamical tunnelling in the QKT leads to
generation of GHZ-like states for even number of qubits. These GHZ-like states exhibit
maximal violation of Svetlichny’s inequality analogous to the GHZ states. Our numerical
studies provide preliminary evidence suggesting that a delocalized evolution in the phase
space leads to generation of multipartite nonlocality in the multi-qubit pure state. Since
classical chaos leads to a delocalized quantum evolution within a very short time, chaos
may lead to generation of multipartite nonlocality in the multi-qubit pure states in general.

In chapter 6, we summarize the results in this thesis and provide an outlook for future
work.
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Chapter 2

The Model: Quantum Kicked Top

This chapter is partially based on Kumari and Ghose [69].

The quantum kicked top (QKT) model was first introduced by Haake, Kus and Scharf
in 1987 [70]. It is a paradigmatic model for the study of quantum chaos. It is a finite-
dimensional model. Thus, there are no truncation errors in the quantum mechanical study
of this system. The QKT has been widely studied in the context of quantum chaos and
quantum information [71, 72, 18, 39, 73, 54, 41, 74, 55, 43, 53, 75, 76, 77, 57, 58, 59]. It
was first experimentally realized in a system of Caesium atoms [29] and then subsequently
in other systems such as superconducting circuits [30], NMR [60] and Bose-Einstein con-
densate [78].

The QKT is a time-dependent periodic system governed by the Hamiltonian [70]

H = ~
κ

2j
J2
z

∞∑
n=−∞

δ(t− nτ) + ~
p

τ
Jy (2.1)

where Jx, Jy and Jz are total angular momentum operators satisfying [Ji, Jj] = i~εijkJk, κ
and p are parameters.

A brief outline of the chapter is as follows. In Sec. 2.1, we first calculate the unitary
operator for one time period for the QKT in order to study its quantum dynamics. In
Sec. 2.2.1, we find the classical equations of motion for the kicked top using Hamilton’s
equations of motion. In Sec. 2.2.2, we study a select few periodic orbits of the classical
kicked top and their bifurcations. In Sec. 2.3, we illustrate how the QKT can be considered
as a multi-qubit system. In Sec. 2.4, we review the spin coherent states which are taken as
initial quantum states to study the quantum dynamics of the QKT. In Sec. 2.5, we review
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the Husimi quasi-probability distribution function and its use in visualizing the quantum
dynamics of the QKT in phase space.

2.1 Quantum Dynamics

The square of the angular momentum operator commutes with the Hamiltonian of the
QKT ([H, J2] = 0). Thus, the eigenvalues of J2, j(j + 1)~2 (and hence j) are constants of
motion of the QKT. The Hilbert space spanned by the QKT is (2j + 1)-dimensional.

2.1.1 Floquet operator

Periodically driven systems are in general referred to as Floquet systems. We study the
stroboscopic time evolution of the QKT, that is, evolution from one kick to another kick.
Kicks are provided by the δ(t− nτ) term in the Hamiltonian (2.1). The δ function can be
approximated by a pulse (a top-hat function) of width and height equal to ∆τ and 1/∆τ
respectively in the limit ∆τ → 0. Thus, the Hamiltonian (2.1) of the kicked top can be
written as

H = ~ p
τ
Jy, nτ < t < (n+ 1)τ −∆τ

~ p
τ
Jy + ~ κ

2j∆τ
J2
z , (n+ 1)τ −∆τ < t < (n+ 1)τ (2.2)

in the limit ∆τ → 0. The Floquet time evolution operator for one time period, τ , can be
calculated as follows:

U = lim
∆τ→0

U(τ, τ −∆τ)U(τ −∆τ, 0)

= lim
∆τ→0

exp

(
− i

~

∫ τ

τ−∆τ

(
~
p

τ
Jy + ~

κ

2j∆τ
J2
z

)
dt

)
exp

(
− i

~

∫ τ−∆τ

0

(
~
p

τ
Jy

)
dt

)

= lim
∆τ→0

exp

(
−i

(
p

τ
Jy∆τ +

κ

2j
J2
z

))
exp

(
−i
p

τ
Jy (τ −∆τ)

)
= exp

(
−i

κ

2j
J2
z

)
exp

(
−ipJy

)
(2.3)

Given any initial quantum state |ψ(0)〉, the subsequent states |ψ(n)〉 after n kicks are
obtained via applying the Floquet operator, U , n times on |ψ(0)〉 as in |ψ(n)〉 = Un|ψ(0)〉.
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2.2 Classical Dynamics of the Kicked Top

The quantum dynamics of a system can approach classical behaviour in the limit of A0

~ →∞
where A0 is characteristic action of the system. For the kicked top, A0 ∼ j~ where j is
the magnitude of the angular momentum which is a conserved quantity for this system.
Hence, a classical analog of the kicked top is obtained in the limit j → ∞ [79, 70]. The
classical equations of motion for the kicked top can be obtained by writing the Heisenberg
equations of motion for the angular momentum operators, Jx, Jy and Jz, and then taking
the limit j → ∞ [70, 15]. Here, we derive the same result using the classical Hamilton
equations of motion.

2.2.1 Classical equation of motion

We know that the classical angular momentum vector, ~J , is the cross product of position
and momentum vectors, that is,

~J = ~r × ~p, (2.4)

with individual components being

Jx = ypz − zpy,
Jy = zpx − xpz,
Jz = xpy − ypx. (2.5)

Substituting (2.5) in the Hamiltonian (2.1)

H =
κ

2j
(xpy − ypx)2

∞∑
n=−∞

δ(t− nτ) +
p

τ
(zpx − xpz). (2.6)
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Using Hamilton’s equations of motion, q̇i = ∂H
∂pi

and ṗi = −∂H
∂qi

, we obtain

ẋ =− κ

j
yJz

∞∑
n=−∞

δ(t− nτ) +
p

τ
z, (2.7a)

ṗx =− κ

j
pyJz

∞∑
n=−∞

δ(t− nτ) +
p

τ
pz, (2.7b)

ẏ =
κ

j
xJz

∞∑
n=−∞

δ(t− nτ), (2.7c)

ṗy =
κ

j
pxJz

∞∑
n=−∞

δ(t− nτ), (2.7d)

ż =− p

τ
x, (2.7e)

ṗz =− p

τ
px. (2.7f)

Thus, the classical equation of motion for the components of the angular momentum
vector will be

J̇x = ẏpz + yṗy − żpy − zṗy

= −κ
j
JyJz

∞∑
n=−∞

δ(t− nτ) +
p

τ
Jz, (2.8a)

J̇y = żpx + zṗx − ẋpz − xṗz

=
κ

j
JxJz

∞∑
n=−∞

δ(t− nτ), (2.8b)

J̇x = ẋpy + xṗy − ẏpx − yṗx
= −p

τ
Jx. (2.8c)
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Substituting X = Jx/j, Y = Jy/j and Z = Jz/j in (2.8a)-(2.8c), we get

Ẋ = −κY Z
∞∑

n=−∞

δ(t− nτ) +
p

τ
Z, (2.9a)

Ẏ = κXZ
∞∑

n=−∞

δ(t− nτ), (2.9b)

Ż = −p
τ
X. (2.9c)

We obtain the stroboscopic classical equation of motion for the kicked top by integrating
(2.9a)-(2.9c) for one time period, τ , in the interval [ε, τ + ε] with the initial condition
(Xn, Yn, Zn). This is done by integrating the equations first in the time interval lim

ε→0
[ε, τ−ε],

followed by integrating in the time interval lim
ε→0

[τ − ε, τ + ε]. The equations (2.9a)-(2.9c) in

the time interval lim
ε→0

[ε, τ − ε] take the form

Ẋ =
p

τ
Z, (2.10a)

Ẏ = 0, (2.10b)

Ż = −p
τ
X. (2.10c)

Let [X(τ − ε), Y (τ − ε), Z(τ − ε)] = [X̃n, Ỹn, Z̃n]. Integration of (2.10a)-(2.10c) in the time
interval lim

ε→0
[ε, τ − ε] yields

X̃n = Xn cos p+ Zn sin p, (2.11a)

Ỹn = Yn, (2.11b)

Z̃n = Zn cos p−Xn sin p. (2.11c)

The equations (2.9a)-(2.9c) in the time interval lim
ε→0

[τ − ε, τ + ε] take the form

Ẋ = −κY Zδ(t− τ), (2.12a)

Ẏ = κXZδ(t− τ), (2.12b)

Ż = 0. (2.12c)
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The solution to the equations (2.12a)-(2.12c) in the time interval lim
ε→0

[τ − ε, τ + ε] is given

by

X(t) = X̃n cos
(
κZ̃nfH(t− τ)

)
− Ỹn sin

(
κZ̃nfH(t− τ)

)
, (2.13a)

Y (t) = Ỹn cos
(
κZ̃nfH(t− τ)

)
+ X̃n sin

(
κZ̃nfH(t− τ)

)
, (2.13b)

Z(t) = Z̃n (2.13c)

where fH(t− τ) is the heaviside function whose value is 0 for t < τ , and 1 for t ≥ τ . This
yields

Xn+1 = X̃n cos
(
κZ̃n

)
− Ỹn sin

(
κZ̃n

)
, (2.14a)

Yn+1 = Ỹn cos
(
κZ̃n

)
+ X̃n sin

(
κZ̃n

)
, (2.14b)

Zn+1 = Z̃n (2.14c)

where [Xn+1, Yn+1, Zn+1] = lim
ε→0

[X(τ + ε), Y (τ + ε), Z(τ + ε)]. Equations (2.11a)-(2.11c)

together with (2.14a)-(2.14c) constitute the stroboscopic classical equations of motion for
the kicked top. For p = π/2, these equations reduce to

Xn+1 = Zn cos (κXn) + Yn sin (κXn), (2.15a)

Yn+1 = Yn cos (κXn)− Zn sin (κXn), (2.15b)

Zn+1 = −Xn. (2.15c)

We refer to the (2.15a)-(2.15c) as the F -map such that

[Xn+1, Yn+1, Zn+1] = F [Xn, Yn, Zn].

Following standard practise in the literature, we fix p = π/2 henceforth in this thesis unless
otherwise mentioned.

Since j is a constant of motion of the QKT, the magnitude of the angular momentum
vector does not change upon evolution with the kicked top Hamiltonian. As evident from
the classical equation of motion for the kicked top, each time period consists of a linear
rotation of the angular momentum vector by angle p about the y axis followed by a non-
linear rotation about the z axis. The amount of this nonlinear rotation during the kick
is proportional to the z-component of the angular momentum vector. This nonlinearity is
essential for the kicked top to exhibit chaotic behavior.
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Figure 2.1: Classical stroboscopic phase space of the kicked top for four different values of
the parameter κ, with τ = 1.0, p = π

2
. θ and φ are plotted after each kick for 1064 initial

conditions, each initial condition being evolved for 150 kicks.

The kicked top exhibits regular, chaotic, as well as mixed phase space behaviour de-
pending on the value of the parameter, κ. For κ = 0, the kicked top is an integrable system
as the kicking term in the Hamiltonian vanishes. The classical phase space is dominated
by regular islands for small values of κ and by a chaotic sea for larger values of κ (ap-
proximately beyond κ = 4.4). Tuning the value of the parameter κ leads to chaos in the
kicked top, and thus κ is known as the chaoticity parameter. The classical stroboscopic
map or kick-to-kick evolution (in polar co-ordinates) for a range of initial conditions with
four different values of κ is shown in Fig. 2.1.
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2.2.2 Fixed points, periodic orbits and classical bifurcations

In this subsection, we analyze some classical fixed points, period-2 and period-4 orbits
together with their stability as the parameter κ is varied. As mentioned earlier, the classical
map for one time period is denoted by F . Solutions of the equation, F n(X, Y, Z) =
(X, Y, Z), leads to fixed points (corresponding to n = 1) and period−n orbits of the kicked
top. Table 2.1 lists some of these fixed points and periodic orbits of the kicked top. Any
classical state (X, Y, Z) satisfies the normalization condition X2+Y 2+Z2 = 1. The variable
x0 in FP1, FP2 and P2A in Table 2.1 is obtained from the normalization condition,

2x2
0 +

[x0 sin (κx0)]2

[1− cos (κx0)]2
= 1. (2.16)

Next, we study the stability of the fixed points and periodic orbits listed in Table 2.1.
To study the stability of a period-n orbit, we calculate the eigenvalues, λi, of the Jacobian
of the classical map F n at the period-n point [80]. If |λi| ≤ 1 for all possible values of i,
then the period-n orbit is stable, otherwise it is unstable.

FP1 and FP2 are fixed points for all values of κ. The eigenvalues of the Jacobian at FP1

are

{
1,
κ+
√
κ2 − 4

2
,
κ−
√
κ2 − 4

2

}
. Clearly, for κ > 2, the eigenvalue,

κ+
√
κ2 − 4

2
> 1.

Thus, this fixed point loses stability at κ = 2, which implies that κ = 2 is a bifurcation
point.

At κ = 2, FP1 gives rise to two stable fixed points: FP3 and FP4. FP2 bifurcate to a
period-2 orbit, P2A. FP3, FP4 and P2A lose stability at κ =

√
2π (Fig. 2.2) and give rise

to four stable period-2 orbits: P2B, P2C , P2D and P2E. These four period-2 orbits lose
stability at κ ≈ 4.8725 (Fig. 2.2). There exists a period-4 orbit, P4, at all values of κ. It
loses its stability at κ = π (Fig. 2.2). Figure 2.3 shows the bifurcation diagram for the
mentioned periodic orbits, explicitly showing the bifurcation points κ = 2, π,

√
2π, 4.8725.

2.3 QKT as an N=2j Multiqubit System

Any system whose Hamiltonian commutes with the square of the angular momentum
operator as in

[H, J2] = 0 (2.17)

preserves the angular momentum of a quantum state upon evolution. The angular momen-
tum can be either of the following: spin angular momentum, orbital angular momentum, or
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FP1 = (0, 1, 0)
FP2 = (0,−1, 0)

FP3 =

(
x0,

x0 sin (κx0)

(1− cos (κx0))
,−x0

)
FP4 =

(
−x0,

x0 sin (κx0)

(1− cos (κx0))
, x0

)
P2A =

(
x0,−

x0 sin (κx0)

(1− cos (κx0))
, x0

)
↔
(
−x0,−

x0 sin (κx0)

(1− cos (κx0))
,−x0

)
P4 = (1, 0, 0)→ (0, 0,−1)→ (−1, 0, 0)→ (0, 0, 1)→ (1, 0, 0)

P2B =

π
κ
,

√
1− 2

(
π

κ

)2

,
π

κ

↔
−π

κ
,−

√
1− 2

(
π

κ

)2

,−π
κ


P2C =

−π
κ
,

√
1− 2

(
π

κ

)2

,
π

κ

↔
−π

κ
,−

√
1− 2

(
π

κ

)2

,
π

κ


P2D =

π
κ
,

√
1− 2

(
π

κ

)2

,−π
κ

↔
π
κ
,−

√
1− 2

(
π

κ

)2

,−π
κ


P2E =

π
κ
,−

√
1− 2

(
π

κ

)2

,
π

κ

↔
−π

κ
,

√
1− 2

(
π

κ

)2

,−π
κ


Table 2.1: Fixed points and periodic orbits of the kicked top [in the form (X, Y, Z)].
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Figure 2.2: (a) Largest eigenvalue of the Jacobian matrix of F at FP1 as a function of κ
showing loss of stability of FP1 at κ = 2. (b) Largest eigenvalue of the Jacobian matrix
of F at FP3 as a function of κ showing loss of stability of FP3 at κ =

√
2π. (c) Largest

eigenvalue of the Jacobian matrix of F 2 at P2B as a function of κ showing loss of stability
of P2B at κ ≈ 4.8725. (d) Largest eigenvalue of the Jacobian matrix of F 4 at P4 as a
function of κ showing loss of stability of P4 at κ = π. Vertical dashed lines in the four
plots represent the bifurcation parameter value at which loss of stability occurs.
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Figure 2.3: Classical bifurcation diagram (a) θ vs κ, (b) φ vs κ. All solid lines represent
stable fixed points and periodic orbits. Dashed lines represent unstable fixed points and
periodic orbits. Dashed dotted vertical lines represent bifurcation parameter values. The
same color in different solid lines indicate that they are different points of the same periodic
orbit.
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total angular momentum. Further, any quantum state with spin j can be considered as an
N = 2j qubit state lying in the symmetric subspace of 2j qubits. This can be understood in
the following way. The Hilbert space of 2j qubits is 22j-dimensional. However, the dimen-
sion of the symmetric subspace of these 2j qubits (symmetric under pair exchange) is only
2j + 1-dimensional [81, 82]. The value of the collective spin of any quantum state in this
symmetric subspace of the 2j qubits is j. This (2j+1)-dimensional symmetric subspace of
j qubits is spanned by the eigenstates of J2 and Jz, |j,m〉, where m = {−j,−j − 1, ....j},
called the Dicke basis. The quantum states in this subspace evolve only in this subspace
under the Hamiltonians which preserve the collective spin of the state. Thus, systems
whose Hamiltonian commutes with the square of the angular momentum operator can be
considered as an N = 2j multiqubit system. j is the total angular momentum of N = 2j
spin−1/2 qubits in such systems.

Since (2.17) holds for the QKT Hamiltonian, the QKT can be considered as an N = 2j
multiqubit system [54]. The spin-j operators in terms of Pauli matrices of individual qubits
are given by

Jα =
1

2

2j∑
i=1

σiα, α ∈ {x, y, z}, (2.18)

where σiα implies σα operation on ith qubit and identity operation on rest of the qubits.
Using (2.18) and (2.1), the 2j−qubit Hamiltonian of the QKT is given by

H = ~
κ

8j

2j +

2j∑
i,k=1

i 6=k

σiz ⊗ σkz


∞∑

n=−∞

δ(t− nτ) + ~
p

2τ

2j∑
i=1

σiy. (2.19)

For instance, the Hamiltonian of the 3−qubit QKT is given by

H = ~
κ

12

(
3 + 2 (σz ⊗ σz ⊗ 1 + σz ⊗ 1⊗ σz + 1⊗ σz ⊗ σz)

)∑
n

δ(t− nτ)

+~
p

2τ

(
σy ⊗ 1⊗ 1 + 1⊗ σy ⊗ 1 + 1⊗ 1⊗ σy

)
(2.20)

2.4 Initial State: Spin Coherent State (SCS)

Coherent states are minimum-uncertainty states as they saturate the Heisenberg’s un-
certainty relation, ∆x∆p ≥ ~/2 [83]. For spin systems, the minimum-uncertainty states
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correspond to the so-called spin coherent states (SCSs) [84, 85], which satisfy the analogous
relation

∆Ji∆Jk =
~
2
|∆Jl| (2.21)

where i, k and l are permutations of x, y and z, and ∆Jl =
√
〈J2

l 〉 − 〈Jl〉2. In addition,
the uncertainties in the operators have a symmetric distribution. Asymmetry in the un-
certainties of the operators lead to spin squeezed states. These spin squeezed states may
be highly quantum mechanical in nature as they can display entanglement in the corre-
sponding multi-qubit representation unlike the spin coherent states [86].

Just like coherent states can be prepared by applying a displacement operator to the
vacuum states, SCSs can be prepared by applying a rotation operator to the |j, j〉 state.
Given any point (θ, φ) in the classical phase space, we can construct SCS|j; θ, φ〉 by applying
the rotation operator R(θ, φ) = exp [iθ(Jx sinφ− Jy cosφ)] on the state |j, j〉, that is,

|j; θ, φ〉 = R(θ, φ)|j, j〉 ≡ exp [iθ(Jx sinφ− Jy cosφ)]|j, j〉. (2.22)

This yields a minimum uncertainty state centered on the point (θ, φ). That is, the ex-
pectation value of the angular momentum of this state is (j sin θ cosφ, j sin θ sinφ, j cos θ).
The normalized variance of this state is (〈J2〉 − 〈J〉2)/(j(j + 1)) = 1/(j + 1) which is also
the minimum attainable value by a quantum state of angular momentum j [79]. Thus, for
larger j values, the SCS becomes highly localized at the point (θ, φ) in the phase space. In
the classical limit of the system j →∞ (as explained in Sec. 2.2), the normalized variance,
and hence the uncertainty of the SCS tends to zero. Thus, an SCS approximates a classical
angular momentum state in the classical limit. In this sense, the SCSs are classical-like
quantum states.

As explained in Sec. 2.3, a quantum state with spin angular momentum j, and corre-
sponding SCS|j; θ, φ〉, can be regarded as a 2j−qubit system. The 2j−qubit representation
of SCS|j; θ, φ〉 is given as

SCS|j; θ, φ〉 = |θ, φ〉⊗2j (2.23)

where

|θ, φ〉 = cos

(
θ

2

)
|0〉+ exp (iφ) sin

(
θ

2

)
|1〉 (2.24)

is the representation of a qubit on the Bloch sphere.
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Figure 2.4: Plot of Husimi phase space distribution (without the factor 2j+1
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in (2.25))
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2.5 Husimi Phase Space Distribution

Classical dynamics is usually studied using trajectories in phase space, which is a 2n−
dimensional space for a system with n degrees of freedom. In order to study quantum-
classical correspondence for any classical trajectory, it is desirable to faithfully represent
quantum states as functions over phase space. Two of the widely used phase space dis-
tribution functions for quantum mechanics are: (a) the Wigner distribution function, and
(b) the Husimi distribution function [87, 88, 8]. The desirable properties of a quantum
phase space distribution include the following: (i) it should be nonnegative, (ii) the re-
duced marginal distributions for position and momentum should coincide with the usual
position and momentum probability distribution respectively. Neither the Husimi nor the
Wigner distribution functions satisfy both these properties. While the Wigner distribution
function can take negative values, the Husimi distribution function does not yield correct
reduced marginal distributions.

In the study of quantum-classical correspondence of the kicked top (in the next chapter),
our aim is to find footprints of classical dynamics in the quantum evolution. Since we
are interested in the overall probability distribution in the phase space rather than the
reduced marginal distribution, we choose the Husimi distribution function over the Wigner
distribution function for this study. Moreover, the study of the Husimi distribution function
for large j values is computationally efficient as compared to the Wigner distribution
function. Hence the Husimi distribution facilitates the numerical study of QKT in the
semiclassical limit.

Given any angular momentum quantum state ρ, the Husimi distribution is given by

Q(θ, φ) =
2j + 1

4π
〈θ, φ|ρ|θ, φ〉, (2.25)

which is equal to 2j+1
4π
|〈θ, φ|ψ〉|2 for pure states. In Fig. 2.4, we illustrate the Husimi phase

space distribution of a few SCSs that was described in the previous section.

2.6 Summary

In this chapter, we studied various aspects of the model kicked top. First, we studied the
classical dynamics of the kicked top. We derived the classical equation of motion for one
time period for the kicked top using the Hamilton’s equation of motion. We analyzed a few
fixed points and periodic orbits of the classical kicked top together with their stability. We
identified the bifurcation parameters for the classical bifurcations of these periodic orbits.
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Furthermore, we reviewed a few things required for the quantum mechanical study of
the kicked top. We derived the Floquet operator - the unitary operator for one time period
- for the kicked top to study its quantum dynamics. We described how the quantum kicked
top can be understood as a multiqubit system. Hence, one can study quantum correlations
among the qubits in the system. We reviewed the spin coherent states which are the most
classical-like quantum states, and thus will be used as initial quantum states in further
chapters. We also reviewed Husimi distribution function which we use to study quantum
dynamics of the kicked top in the phase space in the next chapter.
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Chapter 3

Quantum-Classical Correspondence
in Periodically Driven Systems

This chapter is based on Kumari and Ghose [69].

Quantum-classical correspondence and quantum-to-classical transition, especially for
chaotic systems, remains a partially understood subject even after a century of analysing
quantum mechanics. According to the correspondence principle, the predictions of quan-
tum physics should agree with the predictions of classical physics in appropriate limits
wherever classical physics is applicable. There are multiple ways in which the correspon-
dence principle has been formulated. These include Bohr correspondence principle [89],
Ehrenfest’s theorem [90], and Liouville correspondence [91, 92], with each having its own
subtleties [93, 94, 95]. According to Bohr, quantum-classical correspondence is attained
in the limit of large quantum numbers (or when ~ → 0 relative to the phase space of
the dynamics). According to Ehrenfest’s theorem, the evolution of expectation values of
observables in a quantum system should coincide with the corresponding classical evolu-
tion until a time known as Ehrenfest’s time (tEH) that depends on the system dynamics.
While tEH is large for regular systems in the semiclassical regime, it can be very small
for chaotic systems even in the semiclassical limit as described in Sec. 1.2 [96, 36, 97].
Thus, quantum-classical correspondence breaks down for chaotic systems much earlier
than for regular systems. A few ways have been proposed to reconcile the breakdown of
the correspondence principle in chaotic systems. These include, for example, the effect of
decoherence [36], and the application of continuous but sufficiently weak measurements [9].

Quantum-classical correspondence for systems with mixed phase space are notoriously
more difficult to study than completely regular and completely chaotic systems. Fully
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regular systems can be understood via the Hamilton-Jacobi formulation [98] and fully
chaotic systems are well described by random matrix theory [15]. On the other hand,
systems with a mixed phase space do not have a universal tool for their study. In this
chapter, we explore the quantum-classical correspondence in periodically driven systems
(which are commonly known as Floquet systems) focusing specifically on systems with a
mixed phase space. The correspondence principles stated above are said to hold in the
semiclassical regime. The semiclassical versus deep quantum regime is generally quantified
using the magnitude of quantum numbers or the effective Planck’s constant (~eff = ~

A0

where A0 is the characteristic action of the system). However, the transition between these
two regimes does not happen at a well defined sharp value but smoothly as one changes
the magnitude of quantum numbers. This leads us to the following questions:

• What is the magnitude of the quantum numbers at which the correspondence will be
first observed?

• How does the correspondence depend on the structure of the classical phase space,
for example, the existence of fixed points and periodic orbits? This question is more
relevant to regular systems and systems with a mixed phase space where any initial
state evolves only within a subset of the phase space unlike fully chaotic systems.

In order to develop an understanding for these open problems, we explore the following
question: when does the quantum dynamics corresponding to an initial coherent state in
the regular region follow the classical evolution to the same initial state? We address this
question in the vicinity of classical fixed points and periodic orbits of Floquet systems.
Our proposed conjecture for the same helps us in quantifying the magnitude of quantum
numbers for which quantum-classical correspondence will be first observed - which we
refer to as ‘quantification of Bohr correspondence principle’. We illustrate our method of
quantification in the model quantum kicked top (QKT) studied in chapter 2.

This chapter is organized as follows. In Sec. 3.1, we describe our criteria for the
quantification of Bohr correspondence principle in Floquet systems. In Sec. 3.2, we apply
our criteria to the QKT. We show that when the criteria are satisfied, quantum-classical
correspondence is evident even in a deep quantum regime. In Sec. 3.3, we use our criteria
to identify new quantum signatures of classical bifurcations in the kicked top dynamics, in
a deep quantum regime as well as in the semiclassical regime. In Sec. 3.4, we summarize
the results presented in this chapter.
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3.1 Proposed Quantification of Bohr Correspondence

Principle

According to the famous Bohr correspondence principle, quantum-classical correspondence
is attained in the limit of large quantum numbers. One of the ways to observe the quantum-
classical correspondence is by tracking the similarity between the quantum and classical
dynamics in the phase space (when the initial quantum state corresponds to a minimum-
uncertainty coherent state centered at the classical initial state). Our goal is to quantify
how large the quantum numbers needs to be to observe similarity in the classical and
quantum dynamics. We conjecture a set of criteria for observing quantum-classical corre-
spondence near classical periodic orbits in periodically driven systems. We propose that
the quantum dynamics in the vicinity of any stable classical period-n orbit for such systems
will be similar to the classical dynamics when:

1. the coherent states centered on all the n points in the period-n orbit are (almost)
orthogonal to each other .

2. the coherent states centered on multiple periodic orbits that are related by the sym-
metries of the system are (almost) orthogonal to each other.

The existence of symmetries in the system may lead to quantum mechanical phenom-
ena between the periodic orbits related by these symmetries, such as dynamical tunneling
[99, 100]. If so, then the conditions described above will not be sufficient to ensure corre-
spondence in a deeply quantum regime.

The two proposed criteria above can be understood in the following way. The classi-
cal states are distinguishable points in phase space. The classical dynamics evolves in a
localized manner among these classical states in the phase space given the initial classi-
cal state is a point in the classical phase space. At the quantum level, distinguishability
between quantum states is associated with their mutual orthogonality. Let us consider a
periodically driven system with at least one stable period-n orbit in the classical phase
space. Consider the quantum dynamics of the same system with the initial state being a
coherent state localized at one of the points in a stable period-n orbit. We would expect
the quantum dynamics to be similar to the classical dynamics if the quantum state evolves
in a localized manner similar to the classical evolution. Coherent states are states with
minimum uncertainty. Thus, there would be a localized evolution if at any time in the
evolution, the quantum state has high overlap with a coherent state centered at one of the
classical points of the period-n orbit and negligible overlap with coherent states centered
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on the rest of the points of the period-n orbit. This can be assured if the set of coherent
states centered at the points of a period-n orbit form an (almost) orthogonal set. However,
if this is a nonorthogonal set, then high survival probability at any classical point may still
allow a significant amount of survival probability at other classical points in the period-n
orbit as well, and thus may generally cause a departure from classical dynamics.

For spin systems, the coherent states in the criteria would correspond to SCSs (Sec.
2.4). The overlap between any two SCSs, say SCS|j; θ, φ〉 and SCS|j; θ0, φ0〉, is given by

|〈j; θ, φ|j; θ0, φ0〉| =

(
cos

[
χ(θφ, θ0φ0)

2

])2j

, (3.1)

where χ(θφ, θ0φ0) is the angle between the direction vectors, (θ, φ) and (θ0, φ0) on the unit
sphere, S2 [53]. Thus, (3.1) is a handy tool to calculate the orthogonality of the SCSs
for our quantification criteria. It is interesting to note that given any SCS, |j; θ, φ〉, there
is only one SCS which has zero overlap with it irrespective of the value of j. This SCS
corresponds to the antipodal point of (θ, φ), that is (π − θ, π + φ). So we can never have
exact orthogonality for periodic orbits of periodicity greater than 2 as required by the
proposed criteria. However, given any set of n direction vectors, {(θk, φk)}nk=1, and an
ε > 0, one can always find a value of j, say jε, such that for j ≥ jε, |〈j; θk, φk|j; θl, φl〉| ≤ ε
(∀k, l ∈ {1, 2..., n}). The time for which a correspondence will be observed between the
classical and quantum dynamics depends on the value of ε. The smaller the value of ε,
the larger the time for which correspondence will be observed. The exact dependence of
this time on the value of ε has not been pursued in this thesis and has been left for future
investigation. We illustrate our conjecture in the kicked top in the next section.

3.2 Illustration of Proposed Criteria in the QKT

As the kicked top is a periodically driven system, our proposed criteria applies to the fixed
points and periodic orbits in this system. In Sec. 2.2.2, we showed the existence of a
few fixed points and periodic orbits in this system. We also analyzed their stability and
bifurcations as the chaoticity parameter, κ, is increased (keeping the parameter p = π/2
fixed). In this section, we illustrate our quantification criteria in the kicked top for stable
periodic orbits in different regimes of κ. We employ the Husimi phase space distribution
(Sec. 2.5) to study the quantum-classical correspondence here. For unitary evolution
of pure states, it is given by Q(θ, φ) = 2j+1

4π
|〈θ, φ|ψ〉|2. We plot the Husimi distribution

function without the constant 2j+1
4π

, that is, |〈θ, φ|ψ〉|2 in this section. We have shown
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Figure 3.1: Evolution of the Husimi phase space distribution of an SCS centered on FP1

[(θ, φ) = (π
2
, π

2
)] for three different j values with κ = 1.5. Like the classical dynamics, the

quantum dynamics remains localized at FP1, even in a deeply quantum regime, except for
j = 2 when dynamical tunneling to FP2 occurs.

quantum-classical correspondence or its breakdown via a pictorial representation of the
evolving quantum state using the Husimi phase space. It can be rigorously studied by
analyzing the maximum overlap of the evolving state with respect to the set of SCSs,

OSCS(|ψ(t)〉) = max
SCS
|〈SCS|ψ(t)〉|. (3.2)

Given any |ψ(t)〉 = U(t)|ψ(0)〉, if OSCS(|ψ(t)〉) remains close to 1, then |ψ(0)〉 evolves in a
localized manner in the Husimi phase space. On the other hand, if OSCS(|ψ(t)〉) remains
close to 0, then |ψ(0)〉 delocalizes or spreads in the Husimi phase space upon evolution.
Localized and delocalized evolution can also be defined in terms of trace distance which is
another distance based measure between quantum states discussed in Chapter 4.
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Figure 3.2: Evolution of the Husimi phase space distribution of an SCS centered on a point
in P4 ((θ, φ) =

(
π
2
, 0
)
) for 2 different j values with κ = 1.5. For j = 6 (first row), the

quantum dynamics does not correspond to the classical dynamics, but for j = 20, there is
clear correspondence.

3.2.1 κ < 2

For κ < 2, there exists two stable fixed points, FP1 and FP2, and a stable period-4 orbit,
P4 (Table 2.1). Let us first analyze the criteria for the fixed points. In (θ, φ) notation,
FP1 =

(
π
2
, π

2

)
, and FP2 =

(
π
2
,−π

2

)
. The SCSs centered on FP1 and FP2 are orthogonal

to each other for all j values. Thus, we observe correspondence between the classical and
quantum dynamics at these fixed points, FP1 and FP2, for almost all j values, including
a low quantum number, j = 1, as illustrated in Fig. 3.1. However, in this deep quantum
regime, there is the possibility of dynamical tunneling since FP1 and FP2 are related by
a symmetry of the square of the kicked top map for p = π

2
, that is rotation by angle π

around the x-axis [70, 71]. This dynamical tunneling between the two fixed points, can be
observed for some small values of j (for example j = 2 in Fig. 3.1) but as the value of j is
increased further, the correspondence is recovered.

In contrast, the SCSs centered on the four points in the P4 orbit are not orthogonal
to each other for very small j values. In (θ, φ) notation, the P4 orbit is

(
π
2
, 0
)
→ (π, 0)→(

π
2
, π
)
→ (0, 0). From (3.1), the overlap between the spin coherent states at any two

consecutive points in this period-4 orbit is given by
(

1√
2

)2j

, which is of the order 10−7 for

j = 20, and ≈ 0.156 for j = 6. Thus, for j values . 20, we do not see quantum-classical
correspondence if we start at any one of the period-4 points, but we do see correspondence
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Figure 3.3: Evolution of the Husimi phase space distribution of an SCS centered on a point
in P2A for two different j values with κ = 2.5. For j = 10 (top row), the quantum-classical
correspondence is weak compared to j = 40.

for large enough j values & 20 up to relevant time scales, as illustrated in Fig. 3.2.

3.2.2 2 < κ < π

In the range, 2 < κ < π, we have two more fixed points, FP3 and FP4, and a period-2
orbit, P2A, in addition to the ones present for κ < 2, as explained in Sec. 2.2.2. FP1

and FP2 are unstable in this range while all others are stable. FP3, FP4 and P2A are
functions of κ (Table 2.1 ). For κ = 2.5, the overlap between the SCSs centered on the
two points in P2A is on the order of 10−4 for j = 10, and on the order of 10−14 for j = 40.
Correspondingly, we see in Fig. 3.3 that for j = 40, the quantum dynamics follows the
classical dynamics more closely, compared to j = 10.

3.3 Applications of Criteria: Quantum Signatures of

Classical Bifurcations

Given our new criteria for quantum-classical correspondence, we would ideally like to use it
to identify classical bifurcation behavior (as shown in Fig. 2.3) in the quantum dynamics.
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Figure 3.4: (a) Survival probability of an SCS initially centered on FP1 (in Table 2.1),
averaged over 50 kicks as a function of j and κ. The horizontal line depicts the classical
bifurcation. Darker color represents higher survival probability in this plot. (b) Survival
probability of an SCS initially centered on FP1, averaged over 200 kicks for j = 2000 as a
function of κ. The vertical dashed line represents the point of classical bifurcation.

To do so, we first define a measure of quantum dynamics that we can use to explore
bifurcations.

The survival probability of a quantum state, |ψ(0)〉, at time t, evolving according to a
unitary operator, U(t) is given by |〈ψ(0)|ψ(t)〉|2, where |ψ(t)〉 = U(t)|ψ(0)〉. We analyze
here the time-averaged survival probability of quantum states of the kicked top centered
on any point of a classical period-n orbit, where n ≥ 1.

1. Given a classical fixed point, we compute the quantity,

S(L) =
1

L

L∑
l=1

|〈ψ(0)|ψ(l)〉|2, (3.3)

for some L, where |ψ(l)〉 = U l|ψ(0)〉, and |ψ(0)〉 is the SCS centered on the classical
fixed point. Here, U is the unitary operator for one time period of the Floquet
system.

2. Given any classical period-n orbit, if F denotes the classical map, then each of the n
points of the period-n orbit will be a fixed point of the map, F n. Thus, we study the
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Figure 3.5: (a) Survival probability of SCS initially centered on P2A (in Table 2.1), av-
eraged over 50 kicks as a function of j and κ. The horizontal line depicts the classical
bifurcation, and the dashed curve represents the j value for a given κ at which the overlap
between the two SCSs corresponding to P2A is ≤ 10−10. Darker color represents higher
survival probability in this plot. (b) Survival probability of SCS initially centered on P2A
averaged over 100 kicks for j = 1000 as a function of κ. The vertical dashed line represents
the point of classical bifurcation.

survival probability of an SCS centered on any point of a classical period-n orbit using
the unitary operator, Un, instead of U . For a classical period-n orbit, we compute
the quantity

S(L) =
1

L

L∑
l=1

|〈ψ(0)|ψ(nl)〉|2, (3.4)

for some L, where |ψ(nl)〉 = Unl|ψ(0)〉, and |ψ(0)〉 is the SCS centered at any point
of the classical period-n orbit.

We have plotted the survival probabilities corresponding to FP1, P2A and P4 of Table
2.1 in Figs. 3.4, 3.5 and 3.6 respectively. Each figure consists of two plots, one illustrating
signatures of bifurcation in the deep quantum regime, and the other in the semiclassical
regime. The classical bifurcation of FP1, P2A and P4 was studied in Sec. 2.2.2. It was
shown that FP1 becomes unstable and bifurcates at κ = 2, P2A becomes unstable and
bifurcates at κ =

√
2π, and P4 becomes unstable at κ = π.
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(a) Analysis of FP1 (Fig. 3.4): We see clear signatures of classical bifurcation of FP1

at κ = 2 in the survival probability plots in Fig. 3.4 in a deep quantum regime as well
as the semiclassical regime. The quantum state remains localized at the fixed point prior
to bifurcation (because the fixed point is stable prior to bifurcation) and gets delocalized
after bifurcation.

(b) Analysis of P2A (Fig. 3.5): In Fig. 3.5 (a), the classical bifurcation point (solid
horizontal line) is easy to identify in the survival probability plot. Above this line, the
survival probability is small, indicating that bifurcation has occurred. Below the horizontal
line, however, there is some structure in the behavior of the survival probability. This can
be understood in the following way. The two points associated with the period-2 orbit,
P2A (Table 2.1), are κ-dependent. Thus, the j value at which the two SCSs centered at
these two points are orthogonal to each other is also κ-dependent. The dashed curve in
Fig. 3.5(a) represents the j value at which the overlap between the two aforementioned
SCSs is less than 10−10 for the corresponding κ values. Below this curve, we see small
survival probability. This is because of mixing of the quantum dynamics between the two
SCSs because they are not orthogonal to each other. Hence for j values below the dashed
curve the quantum dynamics does not mimic the corresponding classical dynamics in the
period-2 orbit. Above the dashed curve, the quantum and classical dynamics should track,
so there should be high survival probability (darker regions in the plot) below the classical
bifurcation (solid line), and low survival probability above the bifurcation line. However
there are also some lighter regions of low probability below the bifurcation line. One of
the reasons for this is the quantum phenomenon of dynamical tunneling. Both the points
of P2A are fixed points for the square of the classical map of the kicked top, thus allowing
for dynamical tunneling between the two in addition to the period-2 motion between the
two points.

In Fig. 3.5(b), for j = 1000 (semiclassical regime), the bifurcation at κ =
√

2π is
clearly visible. The initial dip in the curve close to κ = 2 is because of non-zero overlap
between the two aforementioned SCSs for κ very close to 2. We also see a surprising dip
in the survival probability around κ = 3.7 though the P2A orbit is still stable. Further
investigation of the classical phase space of the kicked top near this value of κ reveals
that a period-6 orbit arises near this period-2 orbit around κ = 3.62. This period-6 orbit
breaks off to the chaotic sea near κ = 3.68, which results in the period-2 island in the
phase space becoming smaller around κ = 3.68. Thus, the wave packet centered at the
period-2 orbit delocalizes to some extent in the phase space around κ = 3.68. The size
of the period-2 island increases again beyond κ = 3.72 which results in a higher survival
probability beyond κ = 3.72 until bifurcation occurs. Dynamical tunnelling also occurs
around κ = 3.7 to some extent, though the sum of the survival probability at the two
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Figure 3.6: (a) Survival probability (3.4) of SCS initially centered on P4 (in Table 2.1),
averaged over 50 kicks as a function of j and κ. The horizontal line depicts the classical
bifurcation, and the vertical dashed line represents the j value at which the overlap between
any two of the four SCSs corresponding to P4 is ≤ 10−8. Darker color represents higher
survival probability in this plot. (b) Survival probability (3.4) of SCS initially centered
on P4 averaged over 50 kicks for j = 1000 as a function of κ. The vertical dashed line
represents the point of classical bifurcation.

points of the periodic orbit is not very close to 1 because of delocalization. These two
points explain the dip at κ = 3.7 in Fig. 3.5(b). As κ increases, we clearly observe very
small survival probability after the classical bifurcation point in the deep quantum regime
as well as the semiclassical regime.

(c) Analysis of P4 (Fig. 3.6): The overlap between each pair of the four points associated
with the period-4 orbit, P4 (Table 2.1), is less than 10−8 for j ≥ 27. As explained for P2A,
mixing of dynamics can happen in P4 for small j values. For larger j compared to the
critical value of j, we observe a clear signature of bifurcation in the survival probability
plots.

We also note some general observations about the signatures of classical bifurcations
in the quantum dynamics. The quantum dynamics changes smoothly with the classical
bifurcations, unlike the classical dynamics that shows a sudden change. When any local
bifurcation occurs that gives rise to new fixed points or periodic orbits, these new orbits
are usually close to each other in the classical phase space, due to which the corresponding
coherent states are not orthogonal to each other. As the bifurcation parameter (external
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control parameter) is varied, these new orbits get further apart which decreases the overlap
between the corresponding coherent states. Eventually, they may become orthogonal at
which point the correspondence between classical and quantum dynamics near these orbits
is restored (as long as other bifurcations do not occur prior to it). Alternatively, one could
have increased the quantum number keeping the value of the external control parame-
ter fixed. This explains why the quantum dynamics is affected smoothly by a classical
bifurcation which gives rise to new fixed points or periodic orbits.

3.4 Summary

Quantum-classical correspondence for chaotic systems and for systems with a mixed phase
space has remained a long-standing open question. Periodic orbits, and their stability
and bifurcations play an important role in the transition from regular to chaotic behavior.
Thus, gaining insight into quantum-classical correspondence in the vicinity of periodic
orbits, and understanding the role of stability of periodic orbits and bifurcations on the
quantum-classical correspondence is of vital importance. We have proposed criteria under
which coherent states, which are the most classical states in quantum, evolve in close
conjunction with classical dynamics for Floquet systems. These criteria can be used to find
the magnitude of quantum numbers for which we observe a localized evolution of initial
coherent states (spin coherent states in the case of spin systems) near stable periodic orbits
in Floquet systems. Thus, our criteria helps us to quantify Bohr correspondence principle.
Further, we illustrate these criteria in the model quantum kicked top. We note that in
some situations quantum and classical dynamics may correspond even if our conditions are
not met, but in general this will not be the case. Our studies of the kicked top seemed to
indicate that such exceptions are not common. Additionally, our analysis shows that the
survival probability of quantum states centered on the periodic orbits exhibits signatures of
classical bifurcations, given the aforementioned criteria are satisfied. In the next chapter,
we provide another application of our criteria. Whether high entanglement is a signature
of chaos, specifically in a deep quantum regime, has been debated for a couple of decades.
We use the criteria to explain when a system generates high versus low entanglement, and
thus resolve the debates in the literature.
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Chapter 4

Untangling Entanglement and Chaos
using Fannes-Audenaert Inequality

This chapter is based on Kumari and Ghose [101].

Classical chaos is a well-defined property of nonlinear deterministic dynamical systems
and is characterized by exponential instability due to sensitivity to initial conditions. On
the other hand, entanglement is a purely quantum property. The relationship between the
two has intrigued physicists for a couple of decades. We have explored the state of the art
of this inquiry in the literature in Sec. 1.3.

Whether high entanglement can be considered as a hallmark of chaos has remained
unclear even in a specific model such as the quantum kicked top [55, 29, 53, 61, 62, 30, 56].
In this chapter, we explain the puzzling connection between chaos and entanglement gener-
ation in spin systems. We provide a relationship between entanglement and trace distance
with respect to spin coherent states. We untangle the much debated relationship between
chaos and entanglement by making use of an intuitive picture provided by trace distance.
We first provide a framework to determine an upper bound on the entanglement dynam-
ics in any spin system with a constant angular momentum value j (symmetric multiqubit
systems). Our framework helps to identify when the bound will remain low and limit the
entanglement generated. We show that this is the case when the quantum states remain
close to minimum-uncertainty classical-like spin-coherent states (SCSs). The bound grows
as the distance between the quantum and classical states increases. Thus entanglement is
associated with nonclassical dynamics and the breakdown of quantum-classical correspon-
dence. This applies to both regular and chaotic systems.
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We illustrate our framework and upper bound in the model quantum kicked top (QKT)
system. We show that our bound provides a very good estimate of the entanglement gener-
ated in both regular and chaotic regions. We also analyze regular versus chaotic dynamics
in the deep quantum and semiclassical regime, and show that entanglement remains low in
regular regions only in a semiclassical regime. Our analysis resolves previous debates about
the relationship between entanglement and chaos especially in a deep quantum regime cor-
responding to low quantum numbers. Furthermore, our framework can be used to obtain
a computationally efficient loose bound on entanglement.

This chapter is organized as follows. In Sec. 4.1, we describe the Fannes-Audenaert
inequality for the von Neumann entropy. We further introduce a framework to find an
upper bound on entanglement in bipartite pure states using this inequality. The framework
involves an arbitrary choice of pure state. In Sec. 4.2, we propose two choices of the pure
state in the framework for spin systems. In Sec. 4.3, we illustrate that the upper bound
obtained from the proposed framework, with our choice of pure states, provides a very good
estimate of the entanglement in the model QKT. We also describe how this framework helps
in reconciling the debates in the literature about the relationship between classical chaos
and quantum entanglement. In Sec. 4.4, we summarize the results and some important
characteristics of our proposed framework.

4.1 Finding an Upper Bound on Entanglement in Bi-

partite Systems

In this section, we provide a framework for obtaining an upper bound on entanglement
in any pure bipartite state. Entanglement in any bipartite pure state can be exactly
calculated using the von Neumann entropy, and this framework does not aim to provide
an easier method to calculate entanglement. Rather, this framework helps us understand
the mechanism of generation of entanglement in such systems and its relationship to the
underlying classical dynamics of the system.

In 1973, M. Fannes proved an inequality for von Neumann entropy [102] in order to
show that this entropy function is continuous. Consider two quantum states, ρ and σ,
which belong to a Hilbert space of dimension d < ∞. Let D(ρ, σ) be the trace distance
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between ρ and σ,

D(ρ, σ) =
1

2
||ρ− σ||1

=
1

2

d∑
i=1

|λi|, (4.1)

where λi’s are the eigenvalues of (ρ− σ). According to the Fannes’ inequality, given that
D(ρ, σ) ≤ 1/e, then [33]

|S(ρ)− S(σ)| ≤ D(ρ, σ) log2 d+ η(D(ρ, σ)), (4.2)

where η(x) ≡ −x log x.

In 2007, KM Audenaert presented a generalized version of the Fannes’ inequality, which
is valid for the entire range of trace distance, D(ρ, σ) ∈ [0, 1], rather than being restricted to
the range [0, 1/e] [103]. This generalized version is known as Fannes-Audenaert inequality
for von Neumann entropy, and is given by

|S(ρ)− S(σ)| ≤ D(ρ, σ)log2(d− 1) + h(D(ρ, σ)), (4.3)

where h(x) is the binary entropy function,

h(x) = −xlog2(x)− (1− x)log2(1− x). (4.4)

Using the Fannes-Audenaert inequality, we provide a framework to find an upper bound
on entanglement in any bipartite pure state. Given any bipartite pure quantum state |ψRS〉
belonging to a Hilbert space of dimension dRdS, the entanglement in |ψRS〉 is given by the
von Neumann entropy of the reduced state of either subsystem, that is, S(ρR) or S(ρS).
We consider

E(|ψRS〉) = S(ρR). (4.5)

Further, consider any pure state, |φ〉, which belong to the Hilbert space of the subsystem
R. The von Neumann entropy of any pure state is zero. Hence S(|φ〉〈φ|) = 0. Using this
in the Fannes-Audenaert inequality, we get

S(ρR) ≤ D(ρR, |φ〉〈φ|)log2(dR − 1) + h(D(ρR, |φ〉〈φ|)). (4.6)

Thus, we get an upper bound on the entanglement in the bipartite pure state |ψRS〉 de-
scribed by the inequality

E(|ψRS〉) ≤ D(ρR, |φ〉〈φ|)log2(dR − 1) + h(D(ρR, |φ〉〈φ|)), (4.7)
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where |φ〉 is any pure state in the Hilbert space of the subsystem R. A good choice
of the state |φ〉 in (4.7) will lead to a tight upper bound for E(|ψRS〉). The inequality
would follow along similar lines with the choice of subsystem S instead of subsystem R in
this framework. In this chapter, for convenience, we choose the subsystem with smaller
dimension for obtaining the upper bound on entanglement.

4.2 Approximation of Entanglement in Spin Systems

using the Upper Bound

In this section, we use the framework provided in the previous section to obtain a good
estimate of entanglement in spin systems. We propose two physically relevant choices for
the state |φ〉 in (4.7), which gives us a tight upper bound as we will show in the QKT
model.

Let us consider the systems whose Hamiltonians commute with the square of the total
angular momentum operator J2, that is,

[H, J2] = 0.

As we discussed in Chapter 2, the angular momentum value j of a quantum state remains
invariant under evolution with such Hamiltonians. Examples include Lipkin-Meshkov-Glick
(LMG) model Hamiltonians [104, 105] and the QKT [70]. Such systems can be considered
as N = 2j multi-qubit systems evolving under its symmetric subspace as explained in Sec.
2.3. One can study entanglement in such systems in any bipartition of the N qubits, say
m:(N −m) bipartition where m ∈ {1, ..N − 1}.

Our goal is to study the relationship between generation of entanglement in spin system
and its corresponding classical dynamics. Specifically, given the initial quantum state is
chosen to be any spin coherent state (SCS) described in Sec. 2.4, we study the entanglement
between qubits in the evolving state and its relationship with the regular versus chaotic
nature of the corresponding classical dynamics. As explained in 2.4, the SCS|j, θ, φ〉 is a
product state of 2j spin-1/2 qubits (2.23) where the state of each qubit is |θ, φ〉 (2.24).

Consider an initial SCS that has evolved with the system Hamiltonian to the state
|ψ(t)〉 after a time t. We propose two choices of state |φ〉 in (4.7) to find an upper bound
on entanglement in an m:(N −m) bipartition of |ψ(t)〉.

1. Let
(〈Jx〉, 〈Jy〉, 〈Jz〉) = (j sin Θev cos Φev, j sin Θev sin Φev, j cos Θev),
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where the expectation value of the angular momentum operators is with respect to
|ψ(t)〉. The first choice of state |φ〉, say |φ1〉, is the m-qubit reduced state of the SCS
localized in the direction (Θev,Φev), that is,

|φ1〉 = TrN-m SCS|j; Θev,Φev〉 ≡ |Θev,Φev〉⊗m (4.8)

where |Θev,Φev〉 is the state of a qubit (2.24).

2. Consider the classical evolution of the initial state for time t which yields the classical
state (Jx(t), Jy(t), Jz(t)). Let

(Jx(t), Jy(t), Jz(t)) = (j sin Θcl cos Φcl, j sin Θcl sin Φcl, j cos Θcl)

The second choice of state |φ〉, say |φ2〉, is the m-qubit reduced state of the SCS
localized in the direction (Θcl,Φcl), that is,

|φ2〉 = TrN-m SCS|j; Θcl,Φcl〉 ≡ |Θcl,Φcl〉⊗m. (4.9)

|φ1〉 and |φ2〉 are clearly product states and thus their von Neumann entropy is zero. Let
ρm(t) be the m-qubit reduced state of |ψ(t)〉, that is,

ρm(t) = TrN−m |ψ(t)〉. (4.10)

Let Dre be the minimum of

(a) the trace distance between ρm(t) and |φ1〉〈φ1|,

(b) the trace distance between ρm(t) and |φ2〉〈φ2|,

that is,
Dre = min(D(ρm(t), |φ1〉〈φ1|), D(ρm(t), |φ2〉〈φ2|)). (4.11)

The entanglement in the m:(N −m) bipartition of |ψ(t)〉 is given by S(ρm(t)). Using Dre

in (4.7), we get an upper bound on S(ρm(t)),

S(ρm(t)) ≤ Drelog2(d− 1) + h(Dre). (4.12)

Here, d is the dimension of ρm(t) (which can be less than 2m owing to the symmetries
of the state). Furthermore, the trace distance is non-increasing under partial trace [33].
This implies that
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(a) D(ρm(t), |φ1〉〈φ1|) ≤ D(|ψ(t)〉, SCS|j; Θev,Φev〉) ≡ Dev, and

(b) D(ρm(t), |φ2〉〈φ2|) ≤ D(|ψ(t)〉, SCS|j; Θcl,Φcl〉) ≡ Dcl.

Also, the RHS in the inequality in (4.12) is a monotonically increasing function of Dre

up to a critical value Dcr given by

Dcr ≤ 1− 1/d. (4.13)

Thus, for Dev ≤ (1 − 1/d), Devlog2(d − 1) + h(Dev) will serve as a loose bound on en-
tanglement in (4.12) in the bipartition m:(N − m) for all possible values of m. Hence,
our framework can be used to obtain a computationally efficient but loose bound to the
entanglement. This loose bound is numerically inexpensive to calculate for any m:(N−m)
bipartition in comparison to the von Neumann entropy and the RHS bound in (4.12).

The bound on entanglement in (4.12) demonstrates that the generation of entanglement
in any system depends on the trace distance between relevant states. When the state
remains close to the minimum uncertainty classical-like SCS, the entanglement remains
low. As the trace distance from these SCS grows, the second and higher-order cumulants
in the evolving state grow, leading to a divergence from classicality. This illustrates how a
divergence from classicality is associated with the generation of entanglement. In the case
of chaotic systems, the states do not remain close to SCS, even in the semiclassical regime.
Thus, the bound goes to a maximum for chaotic systems.

We can understand the physical motivation of choosing the two SCSs described above
from the Ehrenfest correspondence principle, which examines when the expectation val-
ues of observables obey the classical equations of motion. Let us consider the initial
state, (X(0), Y (0), Z(0)) and the corresponding SCS|j; θ(0), φ(0)〉. The classical state
(X(0), Y (0), Z(0)) evolves via the classical equation of motion to the state (X(t), Y (t), Z(t))
in a time t. The quantum state SCS|j; θ(0), φ(0)〉 evolves to |ψ(t)〉 via the Schrodinger
equation in a time t. According to the Ehrenfest correspondence principle,

(〈X〉|ψ(t)〉, 〈Y 〉|ψ(t)〉, 〈Z〉|ψ(t)〉) ≈ (X(t), Y (t), Z(t))

up to Ehrenfest’s time scale. The first choice, SCS|j; Θev,Φev), is the quantum state
localized in the direction (〈X〉|ψ(t)〉, 〈Y 〉|ψ(t)〉, 〈Z〉|ψ(t)〉). The second choice, SCS|j; Θcl,Φcl〉,
is the quantum state localized in the direction (X(t), Y (t), Z(t)).
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Figure 4.1: Classical stroboscopic map for the kicked top showing a mixed phase space of
regular (blue) islands in a chaotic (red) sea. P1, P2 and P3 are 3 points corresponding to
(θ, φ) = (2.1, 0.9), (1.5, 1.5) and (2.25, 0.75) respectively. κ = 3, p = π/2, and τ = 1.

4.3 Entanglement in the QKT

In this section, we apply the framework proposed in the previous section to the model
QKT. We illustrate that the upper bound on entanglement given in (4.12) is a tight bound
and hence a good estimator of entanglement in the QKT. Furthermore, we show how this
framework is useful in resolving the debates in the literature about the relationship between
entanglement and classical chaos.

We study 1:(N −1) and 2:(N −2) partition entanglement in the QKT (where N = 2j),
measured by S(ρA) and S(ρAA) respectively. Since the qubits are indistinguishable in the
QKT, we use the notation ρAA for any two-qubit reduced state of the QKT. ρAA lies in
the j = 1 symmetric subspace and thus has dimension d = 3 instead of 4. We consider the
evolution of an initial SCS |j; θ, φ〉, and compute S(ρA), S(ρAA), and the corresponding
upper bounds using (4.12). We study this in the deep quantum regime as well as in the
semiclassical regime for an initial state in the regular region (point P1 in Fig. 4.1) and an
initial state in the chaotic region (point P2 in Fig. 4.1). Figure 4.2 shows the evolution
for P1, and Fig. 4.3 shows the evolution for P2. In both the figures, we observe that the
entanglement in the QKT almost saturates the upper bound on entanglement calculated
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Figure 4.2: Evolution of QKT entanglement and the upper bound in (4.12) for an initial
state in the regular region, P1 in Fig. 4.1. (a) 2:(N − 2) entanglement for j = 4, (b)
2:(N−2) entanglement for j = 200, (c) 1:(N−1) entanglement for j = 4, and (d) 1:(N−1)
entanglement for j = 200. The upper bound on entanglement is almost saturated by the
entanglement generated in the kicked top.
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Figure 4.3: Evolution of QKT entanglement and the upper bound in (4.12) for an initial
state in the chaotic region, P2 in Fig. 4.1. (a) 2:(N − 2) entanglement for j = 4, (b)
2:(N−2) entanglement for j = 200, (c) 1:(N−1) entanglement for j = 4, and (d) 1:(N−1)
entanglement for j = 200. The upper bound on entanglement is almost saturated by the
entanglement generated in the kicked top.
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Figure 4.4: Comparison of the upper bounds on entanglement using |φ1〉 (4.8) and |φ2〉
(4.9) for |φ〉 in (4.7) for an initial state in the regular region, P3 in Fig. 4.1 for j =
100. (a) Left column: Evolution of exact 2:(N − 2) QKT entanglement versus the upper
bound on entanglement using |φ1〉. (b) Middle column: Evolution of exact 2:(N − 2)
QKT entanglement versus the upper bound on entanglement using |φ2〉. Right column:
Evolution of exact 2:(N − 2) QKT entanglement versus the upper bound on entanglement
in (4.12) using the state, |φ1〉 or |φ2〉, whichever has minimum trace distance with ρAA(t).
It also shows the long term evolution of QKT entanglement and the upper bound in (4.12).

using (4.12). Thus, our upper bound provides a very good estimate for the 1:(N − 1)
and 2:(N − 2) partition entanglement in the QKT both in the deep quantum regime as
well as the semiclassical regime irrespective of the underlying classical behavior (regular or
chaotic).

Figure 4.4 shows the comparison of the upper bounds (for 2:(N − 2) entanglement)
using both the choices of |φ〉 in (4.7), that is |φ1〉 and |φ2〉, for the initial state P3 in Fig.
4.1. We observe that the choice |φ1〉 generally provides a good upper bound, but combining
both the choices indeed provides a better upper bound, which results in a good estimate
of the actual entanglement in the QKT. The long-time evolution (Fig. 4.4(c)) results in a
small deviation between the upper bound and the actual entanglement. Nevertheless, the
deviation is not large, and the upper bound remains a good estimate of the entanglement.
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Figure 4.5: Maximum 2:(N − 2) partition entanglement over 5000 kicks in the kicked top
(a) as a function of κ where the initial state is centered at fixed point, FP1, which loses
stability at κ = 2, (b) as a function of κ where the initial state is centered at a period-4
orbit, P4, which loses stability at κ = π, and (c) as a function of initial condition (θ, φ)
where θ = 2.25 is fixed and φ is varied, κ = 3. The vertical dotted dashed lines in panels
(a) and (b) depicts the κ value at which bifurcation leads to loss of stability of these orbits.
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Reconciling the debates in the literature

We now explore the connections between chaos and entanglement in periodically driven
(Floquet) spin systems. Though several previous studies have explored whether entangle-
ment exhibits signatures of chaos, there is a still a lack of consensus about this question,
even in a specific model such as the QKT. In this model, entanglement was shown to display
signatures of chaos in numerical and experimental studies even in a very deep quantum
regime such as j = 3/2, 3 and, 4 [54, 55, 29, 30]. While these studies showed higher time-
averaged entanglement in chaotic regions compared to regular regions, Lombardi et.al.
[53, 62] found instances of initial states in regular regions that also led to generation of
high entanglement. On the other hand, Ruebeck et. al [56] correlated classical regular
dynamics with low or high time-averaged entanglement, and chaos with medium level of
entanglement in the deepest possible quantum regime of the QKT, j = 1. These studies
suggest that the relationship between entanglement and classical dynamics is largely de-
bated in the regular regions. The effect of chaos on the generation of entanglement can be
untangled only when the effect of regular dynamics on the generation of entanglement is
well understood. Hence, we clarify the connection between entanglement and chaos by ex-
plaining the dynamics in the regular regions and then comparing it to the more well-studied
chaotic case, in both quantum and semiclassical regimes. By considering the divergence of
the quantum states from SCSs in regular versus chaotic regions, we resolve these seemingly
conflicting studies.

Our analysis shows that in the deep quantum regime where j is small, the upper
bound on the entanglement can be large in both regular and chaotic regions, whereas in
a semiclassical regime with higher j, the bound on entanglement remains lower in regular
regions near stable periodic orbits than in chaotic regions (see Figs. 2 and 3). We first
discuss the deep quantum regime where j is very small. In Chapter 3, we presented
criteria for determining the magnitude of the quantum number j at which quantum-classical
correspondence will be observed near stable classical periodic orbits. The criteria require
that the SCSs centered on all the points in a periodic orbit be almost orthogonal to each
other (overlap of order roughly less than 10−10) in order to observe a correspondence
between the classical and the quantum dynamics near the periodic orbits on time scales
sufficiently long compared to the dynamics. When these criteria are satisfied near stable
classical periodic orbits, the evolved states remain close to the SCSs, and thus the bound
on entanglement in (4.12) remains small.

However, in a deep quantum regime, our criteria for quantum-classical correspondence
are typically violated. The states diverge from the SCSs and this results in a higher upper
bound on entanglement in (4.12) in both regular and chaotic regions. For example, the
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period-4 orbit, P4, violates the criteria for j . 20 (Sec. 3.2.1), where P4 is (1, 0, 0) →
(0, 0,−1) → (−1, 0, 0) → (0, 0, 1) → (1, 0, 0) [(·, ·, ·) refers to the classical coordinates
(X, Y, Z), refer Table 2.1]. Thus the states do not remain close to SCSs and entanglement
can be large even close to the regular periodic orbit. In [56], the high entanglement regions
identified in the QKT for j = 1 are precisely the regions in the vicinity of the period-4
orbit. Our discussion above explains why high entanglement in these regular regions of the
kicked top was observed in a deep quantum regime in [56].

While large entanglement can be generated in both regular and chaotic regions in
the deep quantum regime, the situation changes in the semiclassical regime of large j.
In general, a regular region in Floquet systems consists of stable periodic orbits, while
chaotic regions emerge around the unstable periodic orbits. The criteria for quantum and
classical-like states to remain close are satisfied in regular regions but not in chaotic regions
in the semiclassical regime. In the QKT, consider the fixed point, FP1 (0, 1, 0), and the
period-4 orbit, P4, which lose stability at κ = 2 and π respectively 2.2.2. Figures 4.5(a)
and 4.5(b) show that when these orbits are stable, they exhibit very low entanglement
for high j values corresponding to the semiclassical limit. In Fig. 4.5(c), the maximum
2:(N − 2) entanglement over 5000 kicks is plotted for a range of initial conditions (θ, φ).
The maximum entanglement remains very low in regular regions for j = 500 but not for
j = 50, while chaotic regions always exhibit high entanglement. The same characteristics
are seen in Figs. 4.2 and 4.3.

4.4 Summary

We have presented a general framework to obtain an upper bound on the entanglement
in any bipartition of a spin system that preserves the collective angular momentum value
j of any initial quantum state. Our framework shows that entanglement generation is
associated with a divergence from minimum-uncertainty classical-like spin coherent states
(SCSs) as measured by the trace distance. We illustrated in the quantum kicked top (QKT)
model that our upper bound estimates the entanglement extremely well in regular as well
as chaotic regions for j values in the deep quantum regime as well as the semiclassical
regime. This demonstrates that the magnitude of entanglement generation can be inferred
from the trace distance between the evolved state and the SCSs. This trace distance, in
turn, can be inferred from the localized versus delocalized evolution of the system in the
Husimi phase space. Our criteria in Chapter 3 for quantum-classical correspondence in
periodically driven systems can be used to determine the quantum numbers for which the
evolution is localized versus delocalized. Thus, our framework combined with the afore-
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mentioned criteria provides a clear and more nuanced understanding of the relationship
between entanglement generation and the underlying classical dynamics, compared to pre-
vious studies.

By relating entanglement to the trace distance, our work provides insight and intuition
about the quantum-classical connection. It shows that entanglement, a purely quantum
phenomenon, grows when the quantum evolution diverges from nearby classical evolution
as measured by the trace distance. Thus as the distance between quantum and classical
evolution grows, quantum properties like entanglement grow as one might expect. Our
analysis makes this argument clear and more quantitative, and explains previous seemingly
contradicting results about chaos and entanglement.

Our approach and framework has many interesting characteristics.

(a) This framework is very useful for systems with mixed phase space, which are in
general difficult to deal with.

(b) Whereas past studies have often focused on the linear entropy, which is an approx-
imation of the von Neumann entropy to measure entanglement, our bound applies
directly to the von Neumann entropy.

(c) Our framework can be used to estimate the entanglement for any bipartition of the
system.

(d) While any pure state of dimension d in place of ρSCS
m would provide an upper bound

on the entanglement in the relevant bipartition, our chosen SCSs provide a very good
estimate of the actual entanglement. These states are chosen without any optimiza-
tion and with physical motivation from the Ehrenfest correspondence principle. The
particular choice of SCS is not critical in chaotic regions since they generate near
to maximal entanglement and hence a large upper bound. However, the choice of
SCS is significant in regular regions to obtain a tight bound in order to tease out the
differences between regular and chaotic behavior.

Our approach also provides a way to efficiently estimate a loose upper bound for en-
tanglement in spin systems and is thus of interest for experiments, where entanglement is
challenging to measure. Our results not only provide insights into the fundamental connec-
tions between chaos and entanglement, but are also relevant for applications in condensed
matter and quantum computing.
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Chapter 5

Nonlocal Correlations in the QKT

This chapter is based on Kumari, Ghose and Mann [106, 107].

In the previous chapters, we studied the quantum dynamics in the quantum kicked
top (QKT) in comparison to its classical dynamics. Furthermore, we studied how classical
dynamics affects the generation of quantum entanglement in the QKT. In this chapter,
we study nonlocality in the QKT. The relationship between nonlocal correlations and the
classical dynamics of any system has not received much attention in the literature, un-
like quantum entanglement. Since nonlocality and entanglement are inequivalent quantum
correlations [108], a separate study is required to understand the relationship between the
classical dynamics of any collective spin system and the generation of nonlocality in that
system. It is important to note here that only a multi-qubit QKT can generate nonlo-
cal quantum states. A QKT with a single spin-j cannot be nonlocal because nonlocal
correlations can only be defined with respect to different particles or subsystems. In this
chapter, we study nonlocality in a multi-qubit QKT governed by the multi-qubit Hamil-
tonian (2.19). Since there is a correspondence between the multi-qubit representation
for symmetric states and the collective spin representation, both of them have been used
interchangeably in the text.

The Clauser-Horne-Shimony-Holt (CHSH) inequality and Svetlichny inequality are well
known generalizations of Bell inequalities whose violation by any quantum state implies
the existence of nonlocal correlations in that quantum state [32]. In this chapter, we first
numerically investigate bipartite nonlocal correlations using the CHSH correlation function
in

(a) 2-qubit pure states for j = 1 QKT, and
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(b) 2-qubit reduced states of the QKT for j ≥ 3/2.

Furthermore, we also study multipartite nonlocal correlations using Svetlichny correlation
function in

(a) 3-qubit and 4-qubit pure states for j = 3/2 and j = 2 QKT respectively, and

(b) 3-qubit reduced states of the QKT for j ≥ 2.

Our studies show that the pure states for j = 1, 3/2 and 2, the QKT often exhibit
nonlocal correlations. On the other hand, we observe that the 2-qubit and 3-qubit reduced
states of the QKT do not violate the CHSH inequality and Svetlichny inequality respec-
tively. We also analytically prove that any 2-qubit reduced state of multiqubit symmetric
pure states cannot violate the CHSH inequality. We further show that dynamical tun-
nelling in the QKT leads to generation of multiqubit Greenberger-Horne-Zeilinger (GHZ)-
like states. These GHZ-like states belong to a general class of states that we refer to as
N-qubit antipodal GHZ states. We analytically prove that these states violate the N-qubit
Svetlichny’s inequality maximally.

We numerically and analytically explore two aspects of nonlocality in this chapter -
nonlocality in the reduced states, and nonlocality in the pure states of the QKT. First,
we review the Bell inequalities, namely the CHSH inequality and Svetlichny inequality for
2−qubit states and N−qubit states respectively in Sec. 5.1. We begin our analysis of
nonlocality in the QKT in Sec. 5.2 where we numerically show that the pure states in
the QKT often violate the Bell inequalities while the reduced states do not violate them.
Sections 5.3 and 5.4 focuses on developing an analytical understanding of the numerical
results in Sec. 5.2 for the reduced states of the QKT. In Sec. 5.3, we review symmetric
extension of quantum states - a concept that is required for the next section, in which we
formulate and prove two theorems related to the CHSH inequality. These theorems prove
that any 2−qubit mixed state which has a symmetric extension or a symmetric purification
cannot violate the CHSH inequality, and hence explain the numerical results in section 5.2.
Next, we pursue a better understanding of nonlocality in the pure states of the QKT in
Secs. 5.5 and 5.6. In Sec. 5.5, we numerically show that dynamical tunnelling in the QKT
can lead to generation of GHZ-like states. In Sec. 5.6, we show that these GHZ-like states
belong to a larger class of states that we define as N−qubit antipodal GHZ states. We
further analytically prove that this class of states exhibits maximal nonlocal correlations.
In Sec. 5.7, we briefly summarize and discuss the results.
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5.1 Bell Inequalities

Bell inequalities are the most famous identifier and quantifier of nonlocal correlations in
quantum states [32]. Specifically, the CHSH (Clauser-Horne-Shimony-Holt) inequality is
a Bell inequality for 2−qubit states [109]. Svetlichny inequalities generalize the CHSH
inequality to N−qubit states for any N > 2 [110].

5.1.1 CHSH inequality

The CHSH correlation function for a 2-qubit quantum state, ρ, is written as:

CHSH(ρ) = max
A1,A2,B1,B2

Tr
(
(A1B1 + A1B2 + A2B1 − A2B2)ρ

)
(5.1)

where A1 and A2 are operators acting on the first qubit of ρ, and B1 and B2 are operators
acting on the second qubit of ρ. These operators have eigenvalues +1 and −1. For any
2-qubit state ρ, the CHSH correlation function (5.1) can be written analytically [109] as

CHSH(ρ) = 2
√
u+ v (5.2)

where u and v are the largest and the second largest eigenvalues of the 3 × 3 matrix
T̃ = T TT , whose entries are

Tij = Tr
(
(σi ⊗ σj)ρ

)
, (5.3)

with σi, σj being the Pauli matrices. Note that (5.2) does not need any optimization over
the set of operators. The CHSH inequality is given by

CHSH(ρ) ≤ 2. (5.4)

Violation of (5.4) by any 2-qubit state implies that it cannot be described by any local
hidden variable (LHV) model and hence exhibits nonlocal correlations. The normalized
CHSH correlation function is

CHSH(ρ) =
√
u+ v (5.5)

and CHSH(ρ) > 1 implies the existence of nonlocal correlations in ρ. Thus, the normalized
CHSH inequality is given by

CHSH(ρ) ≤ 1. (5.6)
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5.1.2 Svetlichny inequality

Svetlichny inequality is a Bell-type inequality for multi-qubit states. Its violation by any
quantum state implies the existence of genuine multipartite nonlocal correlations. For
N-qubit states, the Svetlichny operator is given by [110, 111]

SN =
∑
I

νt(I)A
(1)
i1
.......A

(N)
iN
, (5.7)

where I is the sequence {i1, i2, ....., iN} (where ik ∈ {1, 2}), t(I) is the number of times 2
appears in the sequence I, νt(I) is the sequence (−1)t(I)∗(t(I)−1)/2, and Aik ’s are dichotomic
observables with eigenvalues +1 and −1. For instance, the Svetlichny operator for 3−qubit
and 4−qubit states are respectively given by

S3 = A
(1)
1 A

(2)
1 A

(3)
1 + A

(1)
1 A

(2)
1 A

(3)
2 + A

(1)
1 A

(2)
2 A

(3)
1 − A

(1)
1 A

(2)
2 A

(3)
2

+A
(1)
2 A

(2)
1 A

(3)
1 − A

(1)
2 A

(2)
1 A

(3)
2 − A

(1)
2 A

(2)
2 A

(3)
1 − A

(1)
2 A

(2)
2 A

(3)
2

and

S4 = A
(1)
1 A

(2)
1 A

(3)
1 A

(4)
1 + A
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(2)
1 A

(3)
1 A

(4)
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(2)
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where Ak is the dichotomic observable corresponding to the kth qubit. For any quantum
state |ψ〉, Svetlichny’s inequality is given by

|〈SN〉|ψ〉| ≤ 2N−1. (5.8)

The normalized version of the Svetlichny operator (5.7) corresponds to

S̄N =
1

2N−1
SN (5.9)

and so violation of the inequality

max |〈S̄N〉|ψ〉| ≤ 1, (5.10)

by any N-qubit quantum state implies that it has genuine N−qubit nonlocality. The
maximum possible violation |〈S̄N〉|ψ〉| =

√
2.

Unlike the CHSH inequality, an analytic formula for Svetlichny inequality is not known
for general N-qubit states but only for a very few states [112, 113].
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5.2 Nonlocality Generation in the QKT

In this section, we investigate numerically whether the states generated by the QKT Hamil-
tonian exhibit nonlocal correlations. We study this using the normalized Bell inequalities
summarized in the previous section. If the value of the normalized Bell correlation func-
tion for any quantum state is greater than 1, then there exists nonlocal correlations in that
quantum state.

First, we study the nonlocal correlations in the 2−qubit reduced states for j ≥ 3/2 QKT
using the normalized CHSH correlation function (5.5). Our numerical study indicates there
is no violation of the normalized CHSH inequality (5.6) by these states. As an example,
we illustrate the evolution of the normalized CHSH correlation function for the 2−qubit
reduced states of j = 10 QKT in Figs. 5.1(a) and (b) for the SCS centered at the fixed
point FP1 (refer Table 2.1). Our results in Sec. 5.4 explains these numerical observations
where we prove that any 2−qubit state having a symmetric extension cannot violate the
CHSH inequality. The notion of symmetric extension of quantum states is reviewed in 5.3.

We also study nonlocal correlations in the 3−qubit reduced states for j ≥ 2 QKT using
the normalized Svetlichny correlation function (5.9). We do not observe any violation of
the normalized Svetlichny inequality (5.10) by these states. In Figs. 5.1(c) and (d), we
illustrate the evolution of the normalized Svetlichny correlation function for the 3−qubit
reduced states of j = 10 QKT for the SCS centered at the fixed point FP1.

Next, we study the nonlocal correlations in the pure states evolving unitarily with the
QKT Hamiltonian for j = 1, 1.5 and 2 (corresponding to 2−qubit, 3−qubit and 4−qubit
QKT respectively). Our study shows that these pure states often exhibit nonlocal corre-
lations. In Fig. 5.2, we illustrate the results for an initial state corresponding to the SCS
centered at FP1. Recall from Sec. 2.2.2 that FP1 is a fixed point which is stable for κ ≤ 2
and unstable for κ > 2. Figures 5.2(b), (d) and (f) show that there are significant violations
of the normalized Bell inequalities by the evolving states (though with a lot of fluctuations)
when FP1 is unstable. Hence, they exhibit significant nonlocal correlations (multipartite
for j = 1.5 and 2) . Instability of the fixed point ensures chaos in its vicinity in the classical
phase space. Thus, these results suggest that chaos may generate multipartite nonlocal
correlations in spin systems.

Figures 5.2(a), (c) and (d) correspond to the evolution of stable FP1. Stability of the
fixed point ensures regular behavior in its vicinity in the classical phase space. As we have
seen in chapter 4, the study of quantum correlations corresponding to regular classical
dynamics is much more nuanced than the chaotic dynamics, especially in a deep quantum
regime (which corresponds to small j values in the case of the QKT). The behavior of Bell
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Figure 5.1: Evolution of normalized CHSH and Svetlichny correlation functions for 2−qubit
and 3−qubit reduced states respectively for j=10 QKT for κ = 1 and 3. Initial state:
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correlation functions in Figs. 5.2(a), (c) and (d) can be better understood by analyzing the
quantum dynamics of the initial state as done in Sec. 3.2.1. An SCS centered at stable FP1

exhibits localized evolution for j = 1 and j = 1.5. Figure 5.2(a) shows that there is a small
amount of nonlocal correlation in the j = 1 evolving state but no nonlocal correlations
in the j = 1.5 evolving state. On the other hand, there is dynamical tunnelling between
FP1 and FP2 for j = 2 (as shown in Fig. 3.1 in Sec. 3.2.1, and to be shown in Sec. 5.5).
This leads to the evolution of the initial state to a GHZ-like state that exhibits maximal
nonlocal correlations. Thus we see a growth of the 4−qubit Svetlichny correlation function
in Fig. 5.2(e) in a small time interval. Evolution for a longer time shows maximal violation
for stable FP1 for j = 2 (Fig. 5.4).

We illustrated in Fig. 5.2 that an initial SCS centered on FP1 can lead to generation of
nonlocal states. Furthermore, we show that evolution of any initial SCS, |j; θ, φ〉, typically
leads to generation of nonlocal states in the QKT. We illustrate this for j = 1 (2-qubit)
and j = 3

2
(3-qubit) in Fig. 5.3 for two different values of the chaoticity parameter, κ. We

plot the time-averaged nonlocal correlations as a function of initial conditions (|j; θ, φ〉)
for j = 1 and j = 3/2. The time-averaged nonlocal correlations for the j = 1 QKT is
measured using the normalized CHSH correlation function (5.5) and averaged over 500
kicks. We observe that all initial states generate nonlocal correlations on average for the
j = 1 QKT (left column in Fig. 5.3). The time-averaged nonlocal correlations for the
j = 3/2 QKT is measured using the normalized Svetlichny correlation function (5.9) for 3
qubits. We time-average over 25 kicks and observe that most of the initial states generate
nonlocal correlations on average for the j = 3/2 QKT (middle column in Fig. 5.3). We
also plot the classical stroboscopic phase space of the kicked top in the right column of
Fig. 5.3. We observe a correspondence between the classical phase space structures and
the time-averaged nonlocal correlation plots, similar to the time-averaged entanglement
as shown in the literature [54, 30, 56]. Thus we conclude that the QKT is a generator of
nonlocal correlations including genuine multipartite nonlocal correlations for the case of
j ≥ 3/2.

5.3 Symmetric Extension of Quantum States

Numerical results in the previous section suggest that the reduced states of the QKT cannot
violate the CHSH and Svetlichny’s inequalities. We prove this analytically for the CHSH
inequality in the next section. Before doing so, in this section we review the concept of
symmetric extension of quantum states which is required for the proof.

Any 2-qudit quantum state ρAB is said to have a symmetric extension if there exists
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Figure 5.3: Top row: κ = 1.5, Bottom row: κ = 2.6. Left Column: Time-averaged nonlocal
correlations, measured using normalized CHSH correlation function (5.5), as a function of
initial conditions for j = 1 QKT. Middle column: Time-averaged nonlocal correlations,
measured using the normalized Svetlichny correlation function (5.9), as a function of initial
conditions for j = 3/2 QKT. Right column: Classical stroboscopic phase space of kicked
top. The color value represents the time-averaged 〈CHSH〉|ψ〉 and the time-averaged 〈S̄3〉|ψ〉
in left and middle columns respectively.
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a 3-qudit state ρABB′ such that tracing over the qudit B or B′ yields the same quantum
state [114], that is,

ρAB ≡ ρAB′ . (5.11)

Since the quantum states ρAB and ρAB′ belong to different Hilbert spaces, therefore we
have an ‘equivalent’ sign in (5.11). Any 2-qubit state ρAB exhibits a symmetric extension
if and only if the following condition holds for that quantum state

Tr ρ2
B ≥ Tr ρ2

AB − 4
√

det(ρAB), (5.12)

where TrA ρAB = ρB [114].

Furthermore, a 2-qubit symmetric state ρAA is said to have a symmetric purification if
there exists an N−qubit pure symmetric state |ψ〉 such that

TrN−2(|ψ〉) = ρAA. (5.13)

In the QKT, the qubits in the quantum states are indistinguishable (since the quantum
states lie in the symmetric subspace of N = 2j qubits). Thus, any 2-qubit reduced state
of the QKT for j ≥ 3/2 naturally has a symmetric purification (which is the pure state
|ψ〉 from which (N − 2) qubits have been traced out to obtain the 2-qubit reduced state).
Further, the 3-qubit reduced state of |ψ〉 is a symmetric extension of the 2-qubit reduced
state of |ψ〉.

In the next section, we study the connections between Bell inequalities and symmetric
extensions. Using the notion of symmetric extension and the symmetric extendibility
criteria (5.12), we prove that any 2-qubit reduced states having a symmetric purification
cannot violate the CHSH inequality.

5.4 Nonlocality of 2-qubit Reduced States of Multi-

qubit Symmetric Pure States

In this section, we analytically prove that the 2-qubit reduced states of the QKT for j ≥ 3/2
cannot violate the CHSH inequality (5.4). We prove this in two ways from the formulation
of two different theorems.

In the first theorem, we prove that any 2-qubit symmetric state that has an N-qubit
symmetric purification for N ≥ 3 cannot violate the CHSH inequality. It is important
to note here that in general, a 2-qubit symmetric state, ρAA, may not have a symmetric
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purification. In this section, we denote by %AA those 2-qubit symmetric states that have a
symmetric purification in order to distinguish these states from general 2-qubit symmetric
states. Since symmetric purification guarantees the existence of symmetric extension, so
%AA will satisfy the symmetric extendibility criterion in (5.12)

Tr (%2
A) ≥ Tr (%2

AA)− 4
√

det(%AA). (5.14)

Since %AA belongs to the j = 1 subspace of 2-qubit states, they span only the 3-dimensional
subspace of 2-qubit states. Thus, rank(%AA) ≤ 3, and hence

det(%AA) = 0.

Consequently (5.14) becomes
Tr (%2

A) ≥ Tr (%2
AA). (5.15)

We briefly recapitulate the properties of %AA [115]. Any 2-qubit symmetric state ρAA
takes the following form

ρAA =


v+ x∗+ x∗+ u∗

x+ w y∗ x∗−
x+ y w x∗−
u x− x− v−

 (5.16)

in the basis {|00〉, |01〉, |10〉, |11〉}. Now if ρAA has an N-qubit symmetric purification (for
N ≥ 3), that is, ρAA ≡ %AA, then the matrix components are written as

v± =
N2 − 2N + 4〈J2

z 〉 ± 4〈Jz〉(N − 1)

4N(N − 1)
,

x± =
(N − 1)〈J+〉 ± 〈[J+, Jz]+〉

2N(N − 1)
,

w =
N2 − 4〈J2

z 〉
4N(N − 1)

,

y =
2〈J2

x + J2
y 〉 −N

2N(N − 1)
=
N2 − 4〈J2

z 〉
4N(N − 1)

= w,

u =
〈J2

+〉
N(N − 1)

(5.17)

where the expectation values are with respect to the N-qubit pure state, which is the
symmetric purification of %AA. We now demonstrate that %AA does not violate the CHSH
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inequality (5.4).

Theorem 1: Any 2-qubit symmetric state having a symmetric purification does not vio-
late the CHSH inequality, that is, CHSH(%AA) ≤ 2, where the matrix elements of %AA are
defined in (5.16) and (5.17).

Proof : For the 2-qubit state in (5.16), the T matrix defined in (5.3) is

T =

2(w + Re(u)) 2Im(u) 2Re(x+ − x−)
2Im(u) 2(w − Re(u)) 2Im(x+ − x−)

2Re(x+ − x−) 2Im(x+ − x−) 1− 4w

 (5.18)

It is clear that T is a symmetric matrix, and it is straightforward to show that its eigenvalues
λ1, λ2 and λ3 are real. Sorting them in order such that

λ2
1 ≤ λ2

2 ≤ λ2
3, (5.19)

we find that

CHSH(%AA) = 2
√
λ2

2 + λ2
3 (5.20)

using the definition of CHSH(ρ) in (5.2). Furthermore T in (5.18) has unit trace and so

λ1 + λ2 + λ3 = 1. (5.21)

Squaring both sides of this equation yields, after some simplification

λ2
1 + λ2

2 + λ2
3 = 1− 2(λ1λ2 + λ2λ3 + λ1λ3). (5.22)

From the properties of 3× 3 matrices,

λ1λ2 + λ2λ3 + λ1λ3 = Sum of all 2× 2 principal minors

=

∣∣∣∣∣T11 T12

T21 T22

∣∣∣∣∣+

∣∣∣∣∣T22 T23

T32 T33

∣∣∣∣∣+

∣∣∣∣∣T11 T13

T31 T33

∣∣∣∣∣ . (5.23)

Since T is a symmetric matrix for %AA, (5.23) becomes

λ1λ2 + λ2λ3 + λ1λ3 = T11T22 + T22T33 + T11T33 − T 2
12 − T 2

23 − T 2
13. (5.24)

Substituting matrix elements of T from (5.18) in (5.24), we get

λ1λ2 + λ2λ3 + λ1λ3 = 4(w − 3w2 − |u|2 − |x+ − x−|2). (5.25)
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Using (5.15), we have

Tr (%2
A)− Tr (%2

AA) ≥ 0. (5.26)

Now,

Tr (%AA) = 1 = v+ + v− + 2w,

%A =

[
v+ + w x∗+ + x∗−
x+ + x− v− + w

]
,

Tr (%2
AA) = v2

+ + v2
− + 2|u|2 + 4(|x+|2 + |x−|2 + w2),

Tr (%2
A) = (v+ + w)2 + (v− + w)2 + 2|x+ + x−|2. (5.27)

Using (5.27) in (5.26), we get

w(v+ + v−)− |x+ − x−|2 − w2 − |u|2 ≥ 0. (5.28)

Equation (5.28) implies

−w2 − |u|2 − |x+ − x−|2 ≥ −w(v+ + v−)

⇒ w − 3w2 − |u|2 − |x+ − x−|2 ≥ w − 2w2 − w(v+ + v−)

= w(1− v+ − v−)− 2w2

= w × 2w − 2w2 = 0 (using Tr(%AA) = 1)

⇒ w − 3w2 − |u|2 − |x+ − x−|2 ≥ 0. (5.29)

Using (5.29) in (5.25), we get

λ1λ2 + λ2λ3 + λ1λ3 ≥ 0. (5.30)

Using (5.30) in (5.22), we get

λ2
1 + λ2

2 + λ2
3 = 1− 2(λ1λ2 + λ2λ3 + λ1λ3) ≤ 1. (5.31)

Using (5.31) in (5.20) proves the result, namely CHSH(%AA) ≤ 2. �

Since the 2-qubit reduced states of the QKT have a symmetric purification for sure, it
follows directly from theorem 1 that they cannot violate the CHSH inequality (5.4).

The second theorem that we formulate and prove is a more general theorem that holds
for any 2-qubit state. The CHSH correlation functions (5.1) have been proven to be
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monogamous [116, 117]. Specifically, this monogamy property says that if ρABC is any
3-qubit state such that ρAB, ρBC and ρAC are its three 2-qubit reduced density matrices,
then at most only one of these can violate the CHSH inequality. For example,

CHSH(ρAB) > 2⇒ CHSH(ρBC) ≤ 2 and CHSH(ρAC) ≤ 2. (5.32)

Using this monogamy relation we prove the following theorem.

Theorem 2 : Any 2-qubit state that violates the CHSH inequality cannot possess a
symmetric extension.

Proof : We will prove the theorem by contradiction. Let ρAB be any two-qubit state
for which CHSH(ρAB) > 2.

Suppose there exists a symmetric extension of ρAB, which is ρABC . Then either of the
following holds true:

ρBC ≡ TrA (ρABC) = ρAB or ρAC ≡ TrB (ρABC) = ρAB,

(5.33)

and so if ρAB violates the CHSH inequality, either ρBC or ρAC will also violate it, in con-
tradiction with the monogamy relation of (5.32). �

Theorem 2 can be rephrased to conclude that any 2-qubit quantum state that has a
symmetric extension cannot violate the CHSH inequality. Since the 2-qubit reduced states
of the QKT have a symmetric extension (as explained in Sec. 5.3), they cannot violate the
CHSH inequality.

5.5 Dynamical Tunnelling as a Generator of GHZ-like

States

In this section, we explore another dynamical aspect of the QKT, that is, dynamical
tunnelling. We show that dynamical tunnelling in the QKT leads to generation of 4−qubit
multipartite nonlocal states that violate the corresponding Svetlichny inequality (5.10).
We also show that dynamical tunnelling in the QKT leads to the generation of N−qubit
GHZ like states for even values of N . In the next section, we will analytically prove that
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these N−qubit GHZ like states exhibits maximal violation of the corresponding N -qubit
Svetlichny inequality.

Dynamical tunnelling is a quantum phenomenon in which quantum states tunnel be-
tween disconnected regions in the classical phase space between which classical dynamics is
forbidden [100]. A chaotic sea may serve as a dynamical barrier for the classical evolution.
Dynamical tunnelling in the QKT was first studied in [71] and was later experimentally
observed [29].

Here we illustrate dynamical tunnelling between a few fixed points, and among different
points of periodic orbits in the QKT. Our study shows that dynamical tunnelling can
generate N-qubit GHZ states for appropriately chosen initial states and parameter values
in the QKT Hamiltonian.

5.5.1 Fixed points

Let us consider the fixed points, FP1 ((X, Y, Z) = (0, 1, 0)) and FP2 ((X, Y, Z) = (0,−1, 0))
listed in table 2.1. We had showed there that they are stable for κ ≤ 2. In terms of (θ, φ),
FP1 corresponds to (π

2
, π

2
), and FP2 corresponds to (π

2
,−π

2
).

Dynamical tunnelling between the SCS |2; π
2
, π

2
〉 and the SCS |2; π

2
,−π

2
〉 has been shown

to occur for κ0 � 1 on the timescale of Tt ≈ 128π
κ30

via the 4-qubit GHZ-like state [58]

|ψy4〉 =
1√
2

(
|+〉⊗4

y − i|−〉⊗4
y

)
, (5.34)

where |+〉y and |−〉y are eigenstates of the Pauli matrix σy corresponding to the eigenvalues
+1 and -1 respectively. For κ = 0.1 the tunnelling time Tt ≈ 402124 kicks [58]. Here,
we show that even for larger κ values, dynamical tunnelling takes place via states very
close to the state in (5.34) on a very small timescale. The timescales for tunnelling for
κ & 1 are realizable in experiments. Thus, GHZ-like states exhibiting maximal multipartite
nonlocality and entanglement can be generated using the QKT.

In Fig. 5.4, we illustrate dynamical tunnelling between FP1 and FP2 for four different
values of κ. We find that the tunnelling time, Tt, corresponding to κ = 1.25, 1.5, 1.75 and
2 are 207, 113, 64 and 47 kicks respectively. We observe that the fidelity of the evolved
state with the GHZ-like state in (5.34) (the blue curves in Fig. 5.4) is maximized after a
number of kicks ≈ Tt

2
.

Given that dynamical tunnelling occurs between FP1 and FP2, we study genuine mul-
tipartite quantum correlations in the evolving state using the maximum violation of the
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Figure 5.4: Illustration of dynamical tunnelling of the SCS |2;π/2, π/2〉 to the SCS
|2;π/2,−π/2〉 via the GHZ-like state in (5.34) upon evolution with the QKT Hamiltonian
for different κ values. The nonlocal correlations in the evolving state quantified using the
normalized Svetlichny correlation function (5.9) are also plotted. (a) κ = 1.25 in top-left,
(b) κ = 1.5 in bottom-left, (c) κ = 1.75 in top-right, and (d) κ = 2 in bottom-right.
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Figure 5.5: Illustration of dynamical tunnelling of the SCS |2;π/2, 0〉 to the SCS |2;π/2, π〉
via the GHZ-like state in (5.35) upon evolution with the QKT Hamiltonian for different κ
values. The number of kicks corresponds to the U4 map. The nonlocal correlations in the
evolving state quantified using the normalized Svetlichny correlation function (5.9) is also
plotted. (a) κ = 0.1 in top-left, (b) κ = 0.25 in bottom-left, (c) κ = 0.35 in top-right, and
(d) κ = 0.5 in bottom-right.

normalized Svetlichny correlation function (5.9) (the green curves in Fig. 5.4). We study
the maximal violation by the evolved state numerically using optimization in Mathematica.
In Fig. 5.4, we observe that the maximal violation during the evolution does correspond
to a value very close to maximal nonlocal correlations (which is

√
2).

5.5.2 Period-4 orbit

As illustrated in previous chapters, the classical kicked top exhibits a period-4 orbit in the
X-Z plane: (1, 0, 0) → (0, 0,−1) → (−1, 0, 0) → (0, 0, 1) → (1, 0, 0), where (·, ·, ·) refers to
(X, Y, Z). These four points of the period-4 orbit will be fixed points of the fourth power
of the classical kicked top evolution map. Quantum mechanically, we study the evolution
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Figure 5.6: Illustration of dynamical tunnelling of the SCS |j; π/2, 0〉 to the SCS |j; π/2, π〉
via the GHZ-like state in (5.35) upon evolution with the QKT Hamiltonian for different j
values. κ = 0.1. The number of kicks corresponds to U4 map. (a) j = 3 in top-left, (b)
j = 4 in bottom-left, (c) j = 6 in top-right, and (d) j = 9 in bottom-right.
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of the SCS corresponding to these points with the U4 map, where U corresponds to the
unitary operator in (2.3). We find that for small and positive values of the chaoticity
parameter, κ, and positive integer j values, dynamical tunnelling occurs between (a) the
SCS |j; π/2, 0〉 and the SCS |j; π/2, π〉 if the initial state is either of these two SCSs, and
(b) the SCS |j; 0, 0〉 and the SCS |j; π, π〉 if the initial state is either of these two SCSs.

The dynamical tunnelling between |j; π/2, 0〉 (≡ |+〉⊗2j
x ) and |j; π/2, π〉 (≡ |−〉⊗2j

x )
happens via the 2j-qubit GHZ-like state:

|ψx2j〉 =
1√
2

(
|+〉⊗2j

x − i|−〉⊗2j
x

)
, (5.35)

where |+〉x and |−〉x are eigenstates of the Pauli matrix σx corresponding to the eigenvalues
+1 and -1 respectively. Likewise the dynamical tunnelling between |j; 0, 0〉 and |j; π, π〉
happens via the 2j-qubit GHZ-like state:

|ψz2j〉 =
1√
2

(
|0〉⊗2j − i|1〉⊗2j

)
. (5.36)

This dynamical tunnelling is predominant up to j values approximately equal to 20 for
κ = 0.1. Thus, one can generate GHZ-like states of even numbers of qubits (up to a
significant number) from product states using the QKT Hamiltonian and its period-4 orbit.

In Fig. 5.5, we illustrate the dynamical tunnelling between (1, 0, 0) (which we refer to as
P4x1) and (−1, 0, 0) (which we refer to as P4x2) for j = 2 and four different values of κ. We
see that the tunnelling times Tt

2
to the GHZ-like state (5.35) (the blue curves in Fig. 5.5)

for j = 2 are 31, 13, 9 and 6 kicks for κ = 0.1, 0.25, 0.35 and 0.5 respectively. The fidelity
of the state at Tt

2
with the GHZ-like state (5.35) is very close to 1 but not equal to 1. We

also observe that the normalized nonlocal correlation value (the green curves in Fig. 5.5)
is close to

√
2 but not exactly equal to

√
2 for these states. They are 1.4132, 1.4086, 1.4141

and 1.3995 respectively for these κ values.

Further, we illustrate dynamical tunnelling between the SCS |j; π/2, 0〉 and the SCS
|j; π/2, π〉 for higher j values in Fig. 5.6. We observe that at half the tunnelling time,
Tt
2

, the fidelity of the evolved state with the GHZ-like state in (5.35) is very close to 1.
Dynamical tunnelling seems to be a smoother process for smaller values of κ as compared
to larger ones. This can be seen by comparing Fig. 5.4 with Figs. 5.5 and 5.6, and may be
due to the fact that the phase space of the QKT is predominantly regular for small values
of κ.

In the next section, we analytically prove that the GHZ-like states in (5.35) belong to
a class of N-qubit antipodal GHZ states which exhibit maximal nonlocal correlation for
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all integer values of N ≥ 2. Thus, we can generate GHZ-like states for any even number
of qubits, which exhibit maximal nonlocal correlations, using the QKT Hamiltonian and
specific initial product states.

5.6 Maximal Nonlocal Correlations in N-qubit An-

tipodal GHZ States

In [110], it was shown that the N-qubit GHZ states,

GHZ|ψN〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
(5.37)

violate Svetlichny’s inequality maximally, that is,

max|〈S̄N〉GHZ|ψN 〉| =
√

2. (5.38)

In subsection 5.6.1, we prove that nonlocal correlations in the quantum state (5.37)
remain invariant with an arbitrary relative phase difference between the two terms in that
state. In subsection 5.6.2, we prove that a coherent superposition of N−qubit antipodal
states, |θ, φ〉N and |π − θ, π + φ〉N , with equal probabilities also exhibit maximal nonlocal
correlations analogous to the N-qubit GHZ states.

5.6.1 Nonlocal correlations in GHZ states with a relative phase
difference

Let us consider an N-qubit GHZ state with a relative phase difference, γ, between the two
terms.

|ψγN〉 =
1√
2

(
|0〉⊗N + exp (iγ)|1〉⊗N

)
. (5.39)

Here, we analytically prove that the relative phase difference does not affect nonlocal cor-
relations. We prove this by showing that there exists a set of measurement operators that
violate the Svetlichny’s inequality maximally for states in (5.39) (∀γ and N ≥ 2). The proof
follows along the same lines as for γ = 0 [110]. Our aim is to compute max |〈ψγN |SN |ψ

γ
N〉|

where SN is given in (5.7). For this, let us first compute 〈ψγN |A
(1)
i1
.......A

(N)
iN
|ψγN〉, where

Akl = sin βkl cosαkl σx + sin βkl sinαkl σy + cos βkl σz.
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Using (5.7), we get

〈ψγN |SN |ψ
γ
N〉 =

∑
I

νt(I)〈ψγN |A
(1)
i1
.......A

(N)
iN
|ψγN〉. (5.40)

Since

Akl |0〉 = cos βkl |0〉+ sin βkl exp (iαkl )|1〉
Akl |1〉 = sin βkl exp (−iαkl )|0〉 − cos βkl |1〉,

this respectively implies

A
(1)
i1
.......A

(N)
iN
|0〉⊗N =

N
⊗
k=1

(
cos βkik |0〉+ sin βkik exp (iαkik)|1〉

)
=

N

Π
k=1

(
cos βkik

)
|0〉⊗N +

N

Π
k=1

(
sin βkik

)
exp (i

N∑
l=1

αlil)|1〉
⊗N

+...(cross terms)...

and

A
(1)
i1
.......A

(N)
iN
|1〉⊗N =

N
⊗
k=1

(
sin βkik exp (−iαkik)|0〉 − cos βkik |1〉

)
=

N

Π
k=1

(
sin βkik

)
exp (−i

N∑
l=1

αlil)|0〉
⊗N −

N

Π
k=1

(
cos βkik

)
|1〉⊗N

+...(cross terms)...

Noting that all cross terms are orthogonal to |ψγN〉 we obtain

〈ψγN |A
(1)
i1
.......A

(N)
iN
|ψγN〉 =

1

2
exp (iγ) exp (−i

N∑
l=1

αlil)
N

Π
k=1

(
sin βkik

)
+

1

2
exp (−iγ) exp (i

N∑
l=1

αlil)
N

Π
k=1

(
sin βkik

)

= cos

−γ +
N∑
k=1

αkik

 N

Π
l=1

sin βlil .

This straightforward calculation yields

〈ψγN |A
(1)
i1
....A

(N)
iN
|ψγN〉 = cos

−γ +
N∑
k=1

αkik

 N

Π
l=1

sin βlil (5.41)
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and so |ψγN〉 will exhibit maximum violation of the N−qubit Svetlichny inequality if there

exists a choice of measurement angles, αlil and βlil , such that the value of 〈ψγN |A
(1)
i1
....A

(N)
iN
|ψγN〉

for all possible {i1, i2, ...., iN} is νt(I)/
√

2, where νt(I) (a sequence consisting of +1 and −1) is
defined above in Sec. 5.1.2. There are 2N possibilities of the sequence {i1, i2, ...., iN} which
will then yield the sum in the Svetlichny correlation function (5.7) as 2N−1

√
2 (implying

maximal violation of Svetlichny’s inequality in (5.8)).

We now illustrate that such a choice of measurement angles exists. Choosing βlil = π
2

for all possible values of i and l, we get

〈ψγN |A
(1)
i1
....A

(N)
iN
|ψγN〉 = cos

−γ +
N∑
k=1

αkik

. (5.42)

For the following choice of the measurement angles, αkik :

α1
1 = −π

4
+ γ, α1

2 =
π

4
+ γ,

αk1 = 0, and αk2 =
π

2
∀k ∈ {2, 3, ...., N}. (5.43)

we obtain

〈ψγN |SN |ψ
γ
N〉 =

∑
I

νt(I)〈ψγN |A
(1)
i1
.......A

(N)
iN
|ψγN〉

=
∑
I

νt(I) cos

(
−π

4
+ t(I)

π

2

)
=

∑
I

νt(I)

(
νt(I)√

2

)
= 2N−1

√
2. (5.44)

demonstrating that |ψγN〉 violates Svetlichny’s inequality (5.8) maximally. One specific
choice of measurement operators that yields maximum violation is:

Akik = cosαkikσx + sinαkikσy,

where αkik ’s are as in (5.43).
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5.6.2 Nonlocal correlations in N-qubit antipodal GHZ states

The N−qubit GHZ state is a superposition of |0〉⊗N and |1〉⊗N . In the Dicke basis, |0〉⊗N =
|N/2, N/2〉 ≡ SCS|N/2; 0, 0〉 and |1〉⊗N = |N/2,−N/2〉 ≡ SCS|N/2;π, π〉. The direction
vectors (0, 0) and (π, π) are antipodal to each other. Generalizing the N−qubit GHZ state
to a superposition of two SCSs localized in arbitrary antipodal directions, we get

|ψθφN 〉 =
1√
2

(
|θ, φ〉⊗N + exp (iγ)|π − θ, π + φ〉⊗N

)
(5.45)

where |θ, φ〉 is the representation of a qubit (2.24) on the Bloch sphere. We define these
states as N−qubit antipodal GHZ states. The GHZ-like states generated from dynamical
tunnelling in the QKT (mentioned in (5.34) and (5.35)) belong to this class of states for
specific values of N and (θ, φ). In this subsection, we prove that these states violate
Svetlichny’s inequality (5.8) maximally, and thus exhibit maximal multipartite nonlocal
correlations.

The Bloch representation of the qubit can be written as

|θ, φ〉 = exp

(
iθ

2

(
σx sinφ− σy cosφ

))
|0〉 ≡ V |0〉, (5.46)

where V is the unitary operator corresponding to one qubit

V = exp

(
iθ

2

(
σx sinφ− σy cosφ

))
. (5.47)

Moreover

V |1〉 = − exp (−iφ)|π − θ, π + φ〉
⇒ |π − θ, π + φ〉 = exp

(
i(π + φ)

)
V |1〉 (5.48)

and so

|ψθφN 〉 =
1√
2

(
|θ, φ〉⊗N + exp (iγ)|π − θ, π + φ〉⊗N

)
= V ⊗N

1√
2

(
|0〉⊗N + exp

(
i
(
γ +N (π + φ)

))
|1〉⊗N

)
= V ⊗N |ψγ+N(π+φ)

N 〉. (5.49)

Thus, the state |ψθφN 〉 (5.45) can be obtained by applying local unitary transformations,
V , on each of the qubit in the N−qubit GHZ state with a relative phase difference (γ +
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N(π+φ)) in (5.39). Now, we proved in Sec. 5.6.1 that N−qubit GHZ states with arbitrary
relative phase difference violate Svetlichny’s inequality maximally. Thus,

2N−1
√

2 = max〈ψγ+N(π+φ)
N |SN |ψγ+N(π+φ)

N 〉

= max〈ψθφN |V
⊗NSN

(
V †
)⊗N
|ψθφN 〉

= max
∑
I

νt(I)〈ψθφN |V
⊗N
(
A

(1)
i1
.......A

(N)
iN

)(
V †
)⊗N
|ψθφN 〉

= max
∑
I

νt(I)〈ψθφN |
N
⊗
k=1

V A
(k)
ik
V †|ψθφN 〉

= max
∑
I

νt(I)〈ψθφN |
N
⊗
k=1

A
′(k)
ik
|ψθφN 〉

= max〈ψθφN |SN |ψ
θφ
N 〉. (5.50)

This proves that the N−qubit antipodal GHZ states, |ψθφN 〉, violate Svetlichny’s inequality

maximally for measurement operators A
′(k)
ik

= V A
(k)
ik
V † = cosαkikV σxV

† + sinαkikV σyV
†

(where αkik ’s are as in (5.43)). Thus, we have identified a class of states that exhibit maximal
multipartite nonlocal correlations analogous to GHZ states. We have also identified the
measurement operators that will lead to a maximal violation of the Svetlichny’s inequality
by these states.

Through the calculations in (5.50), we have essentially shown that the maximum value
of Svetlichny’s correlation function for any quantum state remains invariant under local
unitary transformation of individual qubits. Furthermore, the GHZ-like state in (5.39)
with a relative phase difference can be obtained from the GHZ state in (5.37) by applying
a local unitary operator equivalent to a phase gate with phase γ to any of the qubits in
the GHZ state. Hence, maximal violation of Svetlichny’s inequality by GHZ-like states
in (5.39) follows in a straightforward manner using invariance of max〈SN〉 under local
unitary transformations. However, the detailed proof in Sec. 5.6.1 helps us to easily
identify the measurement operators for these states that leads to maximal violation of
Svetlichny inequality.

5.7 Summary

We have explored the nonlocal quantum correlations in the quantum kicked top model using
Bell inequalities. Our numerical analysis showed that while the 2-qubit and 3-qubit reduced
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states of the kicked top do not exhibit any nonlocal correlation, the pure states obtained
from unitary evolution exhibit multipartite nonlocal correlations. Furthermore, we have
analytically proved that any 2-qubit mixed state which has a symmetric purification cannot
violate the CHSH inequality. We have also proved that any 2-qubit state that has a
symmetric extension cannot violate the CHSH inequality. These theorems provide an
analytical understanding of the numerical results related to the 2-qubit reduced states in
the QKT.

Next we showed that dynamical tunnelling in the quantum kicked top between classical
fixed points and periodic orbits of the kicked top leads to generation of nonlocal correlations
and N−qubit GHZ-like states for even values of N . We have further showed that these
GHZ-like states belong to a larger class of states that we refer to asN−qubit antipodal GHZ
states. We have analytically proven that these states exhibit maximal nonlocal correlations
analogous to the GHZ states itself. We have also identified the set of measurement operators
that lead to maximal violation of Svetlichny’s inequality for these states.

Our results indicate that classically chaotic dynamics can generate multipartite nonlocal
correlations in addition to multipartite entanglement. The QKT provides a deterministic
method for the preparation of nonlocal states. This may be helpful in devising schemes
to prepare quantum states with nonlocal correlations for tasks in quantum information
processing. Our numerical results suggest that a delocalized evolution of the pure state,
either due to chaos or quantum effects like dynamical tunnelling, plays a critical role in
the generation of nonlocality. Developing an analytical understanding for this, analogous
to the methods we developed for understanding entanglement, would be a fruitful area for
future work. Our methods in analytical proofs may further be used to find classes of states
that exhibit maximal nonlocal correlations. Our work shows that the distinct concepts of
nonlocality and symmetric extensions are intrinsically linked and provides motivation for
future studies of monogamy of nonlocality.
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Chapter 6

Summary and Outlook

This thesis aimed at understanding the relationship between the quantum properties of a
system and its underlying regular versus chaotic classical dynamics. Specifically, the goals
of this thesis were twofold. The first goal was to understand and resolve the debates in the
literature regarding the relationship between classical chaos and quantum entanglement.
The second goal was to study the relationship between classical chaos and nonlocal corre-
lations. We summarize here our results that helped us achieve the two goals individually,
providing an outlook to our work as well as future directions.

Classical chaos and quantum entanglement

We have provided a new and systematic approach to solve the long-standing debates re-
garding the relationship between chaos and entanglement in spin systems. By proposing
a framework to find an upper bound on entanglement, we have shown that entanglement
generation is directly related to the trace distance of a system from classical-like spin co-
herent states. This helps us to explain why the behaviour of entanglement is different for
regular versus chaotic systems in semiclassical and deep quantum regimes. To calculate the
relevant trace distance in the proposed framework, one needs to track the quantum evo-
lution of the system and compare it to classical-like spin coherent states. We have shown
three different possibilities. If the system is chaotic, then the trace distance between the
states typically grows quickly in both quantum and semiclassical regimes leading to the
generation of large entanglement. If the system is regular and in the semiclassical regime,
then the trace distance can remain small for long times which restricts the growth of en-
tanglement to large values. If the system is regular and in the deep quantum regime, then
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the trace distance can also grow quickly implying the possibility of generation of large
entanglement.

By focusing on regular dynamics rather than the more widely studied chaotic dynam-
ics, we gained new insight into correspondence in both regular and chaotic regimes. A
deeper analysis of the regular systems in a deep quantum regime led us to design a set
of criteria for quantifying the well-known Bohr correspondence principle for periodically
driven systems. These criteria can be used to calculate the quantum numbers for which
the quantum evolution tracks the classical trajectory at stable periodic orbits. It pro-
vides a simple quantitative method to figure out the conditions when the quantum and
classical-like states remain close, thus limiting the entanglement generated to low values.
These criteria are satisfied by regular systems in a semiclassical regime but typically not
in a deep quantum regime. This justifies the magnitude of entanglement generated in the
corresponding regimes. Thus, our framework for finding an upper bound on entanglement
together with these criteria helped us understand and resolve the existing debates in the
literature regarding the connections between entanglement and chaos. Moreover, our crite-
ria for the quantification of Bohr correspondence principle helped us identify new quantum
signatures of classical bifurcations even in a deep quantum regime. We have illustrated
all our aforementioned results in an experimentally realized, textbook model of quantum
chaos - the quantum kicked top (QKT).

Our approaches are general and widely applicable, and give deep insights into the
mechanism of generation of entanglement in spin systems. By shifting the question of
understanding the generation of entanglement to the evolution of trace distance, our work
provides insight and intuition about the fundamental question of quantum-classical con-
nection that is of general interest to the community. This may also be useful in experiments
where trace distance can be measured rather than entanglement. These methods provide a
new approach to analyzing quantum chaos and designing systems that can efficiently gen-
erate entanglement. Thus, our work is relevant for applications in quantum information
processing and condensed matter physics.

Classical chaos and nonlocality

We have presented the first study to show that a chaotic system can generate bipartite
and genuine multipartite nonlocality. Though the relationship between entanglement and
chaos has received significant attention in the literature, the relationship between non-
locality and chaos has remained largely unexplored. Since entanglement and nonlocality
are inequivalent quantum resources, an explicit study of nonlocality in chaotic systems is
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worth exploring to understand the connections between chaos and nonlocality. In order to
investigate this connection, we performed a detailed investigation of nonlocal correlations
in the QKT model using well-known generalizations of Bell inequalities - the Clauser-
Horne-Shimony-Holt (CHSH) inequality for 2-qubit states, and Svetlichny’s inequality for
N-qubit states. While the reduced states of the QKT did not show any violation, the pure
states did exhibit significant violation for 2−qubit, 3−qubit and 4−qubit QKT. This im-
plies generation of genuine multipartite nonlocality in the 3−qubit and 4−qubit QKT. A
deeper analysis of the numerical results for the reduced states led us to formulate general
theorems that showcase fundamental connections between Bell inequalities and symmetric
extensions of quantum states.

Our study of the relationship between entanglement and chaos provided us with a guide
to choosing the appropriate quantum states for the study of quantum-classical connection
in a deep quantum regime. With the appropriate choice of initial states, we observed that
localized evolution either led to no violation or small amounts of violation of the Bell in-
equalities by the pure states of the QKT. On the other hand, delocalized evolution, either
due to chaos or quantum phenomena like dynamical tunnelling, led to significant viola-
tion of the Bell inequalities. These observations raise important questions about the role
of delocalized evolution in the generation of nonlocality. Moreover, we have identified dy-
namical tunnelling between fixed points and periodic orbits of the kicked top as a generator
of maximally nonlocal GHZ-like states for even number of qubits. Thus our investigation of
nonlocality in the chaotic model, the QKT, indicates that chaos can generate multipartite
nonlocal correlations in addition to multipartite entanglement.

The results we have obtained for nonlocality in a chaotic system have laid the ground-
work for future research into the connections between classical chaos and nonlocality. We
have presented preliminary evidence that chaotic maps generate significant multipartite
nonlocality. A natural progression of our work is to analyze nonlocal correlations in the
eigenstates of random matrices since they are excellent statistical tools to study the prop-
erties of chaotic maps. Moreover, insights into the important question regarding the role
of delocalized evolution in the generation of nonlocality can be gained by first exploring
inequalities for Bell correlation functions analogous to the Fannes-type inequality for von
Neumann entropy. These inequalities can be further used to develop a framework analo-
gous to the one we have formulated for the case of entanglement in order to find an upper or
lower bound on nonlocality. These studies would establish quantum chaos as a generator of
nonlocal correlations in addition to quantum entanglement, and thus a potential resource
for quantum computing. The work in this thesis thus opens up new avenues for theoretical
and experimental studies of quantum chaos that can lead to fundamental insights as well
as practical applications in the future.
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