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Abstract

Childhood absence epilepsy (CAE) is an idiopathic neurological disorder affecting rough-
ly 2-8 children per 100,000 children worldwide. It is characterized by absence seizures, or
short lapses in consciousness, and the appearance of slow wave discharge (SWD) patterns
on an electroencephalogram (EEG). With the cause of onset and recovery still unknown,
much research has been conducted in order to determine the set of genes responsible for
this disorder. Experimental animal models and mathematical models of neural networks
have so far suggested the thalamocortical network as the site of seizure initiation, and the
CACNA1H gene as a promoter of SWD patterns in the brain. In this thesis, we develop a
mathematical model of part of the thalamocortical network, comprised of thalamic reticu-
lar (RE) and thalamocortical (TC) neurons. We then use this model to study the effects of
previously suggested CAE factors, such as the CACNA1H gene mutation, GABAA synapse
conductance and T-type Ca2+ channel conductance, on the formation of SWD patterns in
the network. We find a link between a decreased GABAA conductance and increased SWD
activity in our network, as well as the dependence of SWD activity on the interactions be-
tween the multiple factors of our study. Our results imply that CAE and SWD activity
may have a multifactorial cause, and that the thalamus may not be solely responsible for
the generation and propagation of SWDs in the thalamocortical network.
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for ḡGABAA

= 0.06, 0.08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Comparing IGABAA
and RE-TC bursting, for the 58% τH(V ) (gg = 0.1335) 102

5.8 Comparing IGABAA
and RE-TC bursting, for the 33% τH(V ) (gg = 0.049) . 103

5.9 Response of RE-TC model to variations in IT conductance and TC initial
conditions for ḡGABAA
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Chapter 1

Introduction

Childhood absence epilepsy (CAE) is a neurological condition affecting roughly 2-8 chil-
dren per 100,000 children, worldwide. It is characterized by absence seizures, or short
lapses in consciousness, and the appearance of slow wave discharge (SWD) patterns on
an electroencephalogram (EEG). CAE typically appears in individuals around the ages
of 3 to 8 years old, and has a spontaneous recovery rate of about 70% [13]. With the
cause of onset and recovery still unknown, much research has been conducted in order to
determine the set of genes responsible for this disorder. Experimental animal models and
mathematical models of neural networks have so far suggested a particular subnetwork of
the brain, called the thalamocortical network, as the site of seizure initiation [67], and the
CACNA1H gene as a promoter of SWD patterns in the brain [13]. Here, we aim to develop
a basic mathematical model of part of the thalamocortical network, based on Destexhe’s
1994 [22] and 1996 models [21], and consider the effects of suggested CAE factors, such
as the CACNA1H gene defect, GABAA synapse conductance, and T-Type Ca2+ channel
conductance, on the model.

1.1 Outline of Thesis

In Chapter 2 we look at the biological background necessary to study childhood absence
epilepsy and mathematical models of neural networks. This starts with a review of the
basic structure and electrophysiology of neurons, and then moves into the roles of various
neurons and regions of the brain. From there, we review general information on epilepsies,
and then discuss childhood absence epilepsy in more detail. We focus on the slow wave
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discharges that characterize the disorder, as well as the causes and genes of the disorder,
and the GAERS model that is often used to study it. In Chapter 3 we focus on the
mathematical modelling used to study childhood absence epilepsy. We discuss how the
electrical component of neurons is used to develop mathematical models, with a focus on the
well-known Hodgkin-Huxley model. We also give a literature review for three papers related
to modelling genetic defects in absence epilepsies, and describe two modelling programs
specifically used for biological systems. Chapter 4 looks at the development of the RE
and TC models, first as individual cell models and then as a paired network. We discuss
the currents and synapses involved, as well as perform tests to ensure our modelled cells
demonstrate the typical behaviour of real cells. In Chapter 5 we test for the effects of
the CACNA1H gene mutation, GABAA synapse and T-type Ca2+ channel conductance on
slow wave discharge formation in our network model. Chapter 6 summarizes the results of
this thesis, and discusses its limitations and directions for future work.
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Chapter 2

Biological Background

At the base of all human neurological disorders is the activity between the billions of
neurons in the brain [36]. How these neurons interact with each other shapes how we act
as humans, and it is the intricacy of the neural components that impacts the brain as a
whole. Here, we review the basic cellular architecture and general information regarding
neurons and the brain, and then discuss the biology of different types of epilepsy, focusing
on childhood absence epilepsy.

2.1 Neurons

Neurons are a type of eukaryotic cell, and so contain a specific set of cellular structures. Like
other eukaryotic cells, a neuron contains a cellular membrane, comprised of hydrophobic
fatty molecules, which separates the cell’s interior components from its surrounding envi-
ronment. Situated within this membrane are embedded proteins, which are responsible for
a number of cellular activities such as transporting molecules into and out of the cell, and
transmitting signals to and from nearby cells. Within the cell are a number of internal
structures called organelles, which each perform various cellular functions. As typically
the largest of these organelles, the nucleus holds most of the cellular DNA.

At the next level of neuron architecture are the four basic regions that make up the
neuron, which include the cell body, the dendrites, the axon and the axon terminals. The
cell body is the control centre of the neuron, as it contains the nucleus and is the location
of synthesis for the majority of the proteins in the cell. The dendrites, which protrude
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from the cell body, are responsible for receiving chemical signals from surrounding neurons
and then converting them into electrical impulses which are carried into the cell. These
electrical impulses, if large enough, can create an action potential, or a sudden change in
voltage caused by ions moving across the cell membrane. These impulses would then be
carried down the axon towards the axon terminals [57, Chapter 21]. The axon, tube-like
in shape, can range in length from a few millimetres to more than a metre in humans [72,
Chapter 1], and can transport an action potential through to the terminals in just a few
milliseconds [57, Chapter 21]. It is the axon terminals at the end of the axon that form the
connections, or synapses, with other cells, allowing for signalling to and from neighbouring
cells [57, Chapter 21]. Figure 2.1 shows an illustration of a neuron.

Figure 2.1: Illustration of a neuron.

As mentioned, action potentials, also known as spikes, are the mechanism by which
neurons transmit signals from one neighbouring cell to another, and as such, they are a
fundamental aspect of neurons. They rely on the electrical activity in neurons, which
itself is dependent on the opening and closing of ion channels, the membrane-embedded
transport proteins, within the cell. Specifically, it is the successive opening and closing of
sodium (Na+) and then potassium (K+) channels that generate and propagate an action
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potential down the axon of a neuron [57, Chapter 21].

Much of our research here relies on the generation of action potentials and tracking
the change in voltage across the cell. Before discussing the electrophysiology of action
potentials, we first look at the basics mechanisms behind the phenomenon; ion channels
and synapses.

2.1.1 Channels

Within and around the cell are a variety of ions, primarily sodium (Na+), potassium (K+)
and chloride (Cl-). The dynamic difference in ion concentration between the inside and
the outside of the cell is referred to as the concentration gradient, which causes the ions
to flow from an area of high concentration to an area of low concentration. As the ions
are charged, either positively or negatively, there is an additional force which affects the
movement of the ions. When both of these factors are balanced, an equilibrium is achieved.
The ion channels within the cell membrane allow for this equilibrium to be reached, as they
allow for the various ions to enter and exit the cell [33, Chapter 1].

In terms of their basic properties, ion channels can come in two forms; gated and
nongated. Nongated channels are never closed and allow ions to pass through them freely,
whereas gated channels typically only allow one type of ion to move through and can open
and close by different means [33, Chapter 1]. Voltage-gated channels are responsible for
action potential dynamics, and are activated by the voltage of the membrane. Ligand-gated
and signal-gated channels, on the other hand, respond to molecular signals that bind to
the channel proteins, and are often involved in the transmission of signals between cells
[57, Chapter 21].

For the voltage-dependent gates, typically there are activation and inactivation gates
which open and close at different rates and in different scenarios. For example, in the
fast Na+ channel, at resting membrane potential the activation gate is closed and the
inactivation gate is open. When the cell becomes depolarized enough, the activation gate
opens, and when the cell becomes more depolarized, the inactivation gate closes. This
is an important aspect of generating action potentials, as when both gates are open due
to the first depolarization, Na+ ions flow into the cell, and when the cell becomes more
depolarized, the inactivation gate closes and the channel no longer allows Na+ ions to flow
through it. However, not all channels have two gates. The delayed rectifier K+ channel
only has one gate for activation, for example.

Oftentimes it is the particular ion that is allowed to pass through that classifies the
channel. And, as the flow of ions is referred to as a current, many of these channels cor-
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respond to different currents, which each affect the cell in a different way. For example,
the specific K+ and Na+ ion channels that are responsible for action potential dynamics,
correspond to the fast transient sodium current and the delayed rectifier potassium cur-
rent. Many types of channels and related currents exist, with a few other examples being
the potassium leak current, the low-threshold calcium current and the calcium-dependent
potassium current [33, Chapter 1]. Each of these currents, and more, will be described in
Chapter 4, where we detail the currents included in our mathematical models.

2.1.2 Synapses

Synaptic dynamics are what allows individual neurons to communicate and connect with
neighbouring cells. The basic idea is that chemical signals are passed through the synapse,
or space, between two neurons from a presynaptic cell to a postsynaptic cell, which then
elicits a response in the receiving cell. These dynamics rely on a number of intracellular
factors, and can generate very different responses in a cell depending on these factors.

Specifically, the process of signal transmission starts when an action potential trav-
els through a neuron and reaches the terminating regions of the axon called the synaptic
terminals. Within these regions are calcium channels, which release calcium as they be-
come depolarized from the action potential. Specific calcium binding proteins are then
activated by this release of calcium, and then bind to vesicles containing molecules called
neurotransmitters. This binding enables the vesicles to release the neurotransmitters into
the synaptic cleft. Once released, the transmitter, or chemical signals, travels through the
synapse between the cells and binds to receptors on the receiving cell. This binding then
opens channels in the postsynaptic cell. Depending on the specific transmitter that is sent,
it can elicit an excitatory (promoting action potential formation) or inhibitory (impeding
action potential formation) response in the postsynaptic cell [33, Chapter 7].

Of course, this is only a generalized description of the synaptic dynamics. The dynamics
of this process can become more intricate. For example, presynaptic stimulation can lead
to more vesicles of transmitter occurring at synaptic terminals, which can cause more
transmitter release on successive presynaptic spikes. This event is called facilitation, or
potentiation. In a similar way, if a presynaptic neuron has had multiple spikes, it can lead
to a decrease in the amount of transmitter released on successive spikes, which may require
time to recover from. This event is called depression. As such, it is difficult to accurately
predict how much transmitter is released and received by the postsynaptic neuron in each
spike [33, Chapter 7].

In terms of specific transmitters that are sent between neurons, two of the main trans-
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mitters are glutamate and gamma-aminobutyric acid (GABA). Glutamate transmitters
activate AMPA/kainate receptors and NMDA receptors, which lead to excitation in post-
synaptic cells. In particular, the AMPA/kainate receptors are very fast and can show
strong depression, whereas the NMDA receptors are associated with long-term potentia-
tion of synapses. The GABA transmitters are the principal inhibitory neurotransmitter
in the cortex, and these activate GABAA and GABAB receptors in postsynaptic cells.
GABAA synapses are associated with fast inhibition, whereas GABAB synapses have re-
sponses that are often slow to activate and long-lasting. This is due to the indirect binding
of transmitter to the GABAB receptors. In this case, the transmitter instead binds to a
receptor protein, which then activates an intracellular protein complex called a G-protein.
This G-protein then activates a potassium channel, which hyperpolarizes the postsynaptic
cell [33, Chapter 7].

The AMPA/kainate, NMDA, GABAA and GABAB synapses represent different types
of chemical connections between neurons, however non-chemical connections exist as well.
These are called gap, or electrical, junctions. These junctions differ from the chemical
synapses in that they don’t require an action potential in order to communicate with
other cells. Regardless of the cells’ behaviour, the gap junctions keep the cells in direct
communication with other neurons [33, Chapter 7].

In order to represent these synaptic dynamics, kinetic activation schemes are often
used. The AMPA/kainate, NMDA and GABAA synaptic dynamics can be represented as
the following first-order activation scheme,

C + T
α−⇀↽−
β
O (2.1)

Here, C and O represent the closed and open states of the channel, T represents the
transmitter that binds to the channel receptors, and α and β are the forward and backward
rate constants.

The GABAB dynamics can be represented by the following kinetic scheme,

R0 + T −⇀↽− R (2.2)

R +G0 −⇀↽− RG→ R +G (2.3)

G→ G0 (2.4)

C + 4G −⇀↽− O (2.5)
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Again, the process described here refers to the transmitter (T ) binding to the receptor (R0)
and then activating it (R). The G-protein is catalyzed by R to transition from its inactive
form (G0) to its activated form (G). From here, G binds to and opens the potassium
channel on four independent binding sites [21].

2.1.3 Electrophysiology

Having discussed the basic physiological features of neurons, we now look at the basic
electrophysiological properties. To start, every neuron has a voltage associated with it,
which is due to the imbalance of charge between the inside and the outside of the cell.
The difference in voltage between the inside and the outside of the cell is referred to as
the membrane potential. When the neuron is at rest, that is, the ions in and around the
cell are at an equilibrium, the resulting membrane potential is referred to as the resting
potential, which typically has a value of around −70 mV in most neurons [33, Chapter 1].

There are many factors that affect a neuron’s membrane potential, with the main one
being the outward and inward currents to the cell. When a positive ion leaves the neuron, or
a negative ion enters the cell, this creates an outward current, which causes the membrane
potential to become more negative, hyperpolarizing the cell. In a similar way, a negative
ion leaving the cell or a positive ion entering the cell creates an inward current which raises
the membrane potential, depolarizing the cell [33, Chapter 1].

The electrical activity behind action potentials is caused by the opening and closing
of certain sodium and potassium channels within the cell membrane. Specifically, when
the neuron is at rest, most Na+ channels are closed, meaning the membrane potential is
mostly determined by the concentration of K+ ions. When the neuron is stimulated in a
way that depolarizes the cell, raising the membrane potential above some threshold, called
the activation threshold, it opens the Na+ channels. This allows an influx of Na+ ions
into the cell. This influx of positive ions depolarizes the cell further, causing more Na+

channels to open, and therefore more Na+ ions to enter the cell, and the process continues
[33, Chapter 1].

As the Na+ channels are transient and remain open for only a short time, they eventually
close, stopping the influx of Na+ ions into the cell. The depolarization of the cell, however,
also causes K+ channels to open, allowing K+ ions to exit the cell. Once the Na+ channels
close, the efflux of K+ ions hyperpolarizes the cell and lowers its membrane potential past
the resting potential. When the K+ channels finally close, the efflux of K+ ions stops.
From here, the membrane potential gradually rises and returns to its resting potential, as
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the Na+ and K+ pumps push the ions back across the cellular membrane, allowing the cell
to achieve its equilibrium. This process of opening and closing channels occurs along the
axon of the neuron, and is how an action potential is “carried” along the axon and to the
axon terminals [33, Chapter 1]. Figure 2.2 visualizes this process.

Figure 2.2: Schematic of an action potential.

2.1.4 Types of Neurons

Neurons, although structurally similar, can be classified into a number of groups based on
their functions in the nervous system. As the role of a neuron is to transmit signals and
communicate information, they can be divided up into groups based on how they transmit
these signals and where they transmit the signals to [57, Chapter 21].

For example, three types of classifications of neurons include the following; sensory neu-
rons, motor neurons and interneurons. Sensory neurons translate environmental stimuli,
such as sound, odours, light, etc., into electrical signals, which are then translated into
chemical signals and transmitted to nearby neurons. Interneurons translate these chemical
signals into electrical signals again, and transmit them to neighbouring neurons. The neu-
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rons that receive these signals can be motor neurons, which initiate a response in muscles,
or other neurons, such as those that initiate a response in gland cells [57, Chapter 21].

In addition to these types of neurons, there are also inhibitory and excitatory labels that
apply to neurons based on their chemical synapses. Neurons that secrete excitatory neu-
rotransmitters at synapses, meaning they facilitate action potentials in their post-synaptic
cells, are regarded as excitatory neurons. Similarly labelled, inhibitory neurons are those
that secrete inhibitory neurotransmitters at synapses and impede the generation of action
potentials in post-synaptic cells [57, Chapter 21]. In terms of the neurons we worked with
for our part of the thalamocortical network, we considered the inhibitory thalamic reticular
(RE) neuron, and the excitatory thalamocortical (TC) neuron.

2.1.5 Regions of the Brain

In order to understand the roles of neurons on a larger scale, we next look at the human
brain and some of its structural components. Made up of billions of neurons [36], the
brain is a very complex organ that is organized into various divisions, and comprised of a
number of smaller substructures. Our research on childhood absence epilepsy focuses on
the thalamocortical network between the thalamus and the cortex, and so here we discuss
the relevant regions. Figure 2.3 shows a diagram of the brain and the locations of these
relevant components.

To start, the brain is bilaterally arranged into two hemispheres; the right hemisphere
and the left. The distinction between the two comes from a deep groove in the cortex
(outer layer) that starts at the front of the head and runs all the way to the back. Each
hemisphere of the brain is responsible for a specific set of functions, which can vary from
person to person, and various nerve tracts connect the two sides [1, Chapter 2].

The cortex, as mentioned, is the outer layer of the brain and has many regional and
physical divisions which are each responsible for a variety of functions. Regionally, the cor-
tex is divided into the two hemispheres, which are then each divided in four lobes known as
the frontal, parietal, temporal and occipital lobes. Within each of these regions, the cortex
is physically organized into sections based on the bulges (gyri) and grooves (sulci) of the
cortex, which again are each responsible for different functions. The precentral gyrus and
the postcentral gyrus, for example, are the sites of the primary motor area and the primary
somatosensory area, respectively. As such, they are responsible for conscious movement, as
well as receiving sensory information from different parts of the body, respectively. Other
divisions of the cortex are believed to hold a number of other responsibilities, such as those
related to language, long-term memory, focus, visual functions and more [1, Chapter 2].
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The thalamus, located at the centre of the brain and consisting of two oval masses,
is responsible for sorting sensory information and relaying it to the cortex. The types of
sensory information it receives comes from our hearing, sight, taste and touch, as well
as sensations of pain, pressure and temperature. It is also responsible for relaying nerve
impulses that initiate voluntary movement [1, Chapter 2].

The thalamocortical network is then a network that connects the thalamus and the
cortex. It is comprised of neurons from the cerebral cortex, the dorsal thalamus and the
reticular thalamus. The cortex and dorsal thalamus communicate via reciprocal excitatory
projections that are responsible for managing activities such as motor control and sensory
processing. The thalamic reticular nucleus (TRN) consists of only neurons with the in-
hibitory GABA transmitters, and shares in the information sent between the two regions.
Specifically, it receives its sensory information indirectly, from the dorsal thalamic relay
neurons, and then directs its output within the thalamus to dorsal neurons. As such, it can
sense activity from the network, and then influence network behaviour through inhibition
in the thalamus [41]. As mentioned, this network is believed to play a role in childhood
absence epilepsy, and our research focuses on the thalamic part of this network. In the
next section, we explore the topic of epilepsy and look at the biology of this disorder and
specifically that of childhood absence epilepsy.
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Figure 2.3: Diagram of the brain, modified from Dr. Johannes Sobotta’s 1908 diagram,
published in Atlas and Text-book of Human Anatomy Volume III Vascular System, Lym-
phatic system, Nervous system and Sense Organs, by W. B. Saunders company, Philadel-
phia, 1914 [75]. (Public Domain)

2.2 Epilepsy

Epilepsy is a neurological disorder affecting around 50 million people worldwide, or about
1% of the world’s population. Generally speaking, it describes an increased predisposition
to seizures in individuals, however due to the variety of causes and symptoms, it is better
thought of as a collection of disorders rather than as a single disorder [88]. The International
League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) have
defined epilepsy as,

“A disorder of the brain characterized by an enduring predisposition to gen-
erate seizures and by the neurobiological, cognitive, psychological, and social
consequences of this condition.” [34]

For seizures, this was described by the organizations as,

“A transient occurrence of signs and/or symptoms due to abnormal excessive
or synchronous neural activity in the brain.” [34]
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2.2.1 General Information on Epilepsies

There are a number of different types of epilepsy, classified based on the cause and the
type of seizure observed. To start, epileptic seizures can fall into one of two main cate-
gories; generalized or focal, with the difference being the location of origin of the seizure.
Generalized seizures are believed to be caused by connected neural networks from both
hemispheres of the brain, whereas focal seizures are thought to be caused by networks in
only one hemisphere. From here, generalized seizures are then classified into myoclonic,
atonic, tonic, tonic-clonic, and absence seizures [88]. Myoclonic seizures are characterized
by short, sudden jerking movements, caused by muscular contractions [80], while atonic
seizures involve a sudden, brief loss in muscle tone often causing falls [35]. Tonic seizures
involve the stiffening of the body [35], and tonic-clonic seizures involve a succession of
stiffening and then jerking of extremities [13]. Absence seizures on the other hand are
characterized by a sudden, short impairment of consciousness [13]. The seizures can then
be categorized as genetic, structural/metabolic or unknown, based on their principle cause.
Oftentimes, the type of epilepsy may be determined in an individual based on characteris-
tics such as the age of occurrence, the frequency and type of seizure activity and patterns
recorded by an electroencephalogram (EEG), defined in Section 2.2.3 [88].

Remission and prognosis of the disorder depends heavily on the form of the epilepsy.
For individuals with epilepsy, the disorder can either spontaneously dissipate or persist
throughout their life. For cases where the epilepsy persists, often the seizures can be
controlled with anti-epileptic drugs, however medication is not always effective. When
seizures cannot be controlled with medication, surgical treatment can be used to help
with the frequency and severity of the seizures. In many of these cases epilepsy can
drastically affect the quality of one’s life, and although symptoms can often be controlled
with medication, the condition still has a high mortality rate [88].

Research has been conducted to attempt to determine the specific causes of different
epilepsies, and to develop and improve available treatments for patients. This research
includes studies on animal models as well as developing and testing computational and
mathematical models.

2.2.2 Childhood Absence Epilepsy

Childhood absence epilepsy is a type of generalized epilepsy characterized by the presence
of absence seizures. It is idiopathic, meaning it arises spontaneously in individuals with
an unknown specified cause. It is believed to have a multifactorial genetic cause, however
the specific genes responsible for inducing CAE are still unknown [13].
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Although not as common as other forms of epilepsy, childhood absence epilepsy still
affects a number of individuals. The incidence rate of CAE is around 2-8 children per
100,000 children under the age of 16, and it accounts for about 2-10% of all epilepsies in
children. Typically, the seizures start around the ages of 3 to 8 years old and can occur
multiple times a day, up to 200 incidents per day. Around 70% of individuals with CAE
show spontaneous recovery, usually during adolescence, and so the disorder has a mostly
benign prognosis [13].

In terms of the absence seizures, these are characterized by a distinct set of physical
and electrophysiological symptoms. Physically, absence seizures are described as a sudden,
short impairment of consciousness with no response to environmental stimuli or memory
of events during the seizure. In many individuals this can be accompanied by twitching or
other automatisms involving the eyes or limbs. For the electrophysiological symptoms, the
disorder is characterized by spontaneous spike and slow-wave discharges (SWDs) recorded
on an EEG. These SWDs typically have a frequency of 3 Hz, with a range of 2.5 to 4 Hz,
and last for about 10 seconds, with a range of 4 to 20 seconds [13].

2.2.3 Slow Wave Discharges (SWDs)

To understand SWDs, it is important to first understand the tool that records this activity;
the electroencephalogram. In 1994, Binnie and Prior described the EEG as,

“A spatiotemporal average of synchronous postsynaptic potentials arising in
radially oriented pyramidal cells in cortical gyri over the cerebral convexity.”
[5]

In other words, an EEG is a tool that measures the average electrical activity, or spiking
activity, in the brain, coming mostly from the excitatory neurons (pyramidal cells) in the
cortex and its connected networks.

A slow-wave discharge, or a spike wave discharge, is an oscillatory pattern observed on
an EEG during an absence seizure, consisting of an alternation of spikes and slow waves
[67]. The “spike” phase of a SWD occurs when the cells in the network spike at the same
time and display mostly synchronous bursting, while the “wave” phase corresponds to a
silence, or lack of neuronal activity in the cells [18]. SWDs are a network pattern, and are
characterized by a frequency of 2.5-4 Hz [13].

It is believed that the thalamocortical network plays a role in the generation and prop-
agation of these SWDs [67]. Figure 2.4 shows a hand-drawn illustration of the shape of a
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typical SWD pattern that would be observed on an EEG. For an actual EEG recording
showing a typical SWD pattern, we refer you to Figure 1 from Sinclair and Unwala’s 2007
paper on childhood absence epilepsy [74].

Figure 2.4: Hand-drawn illustration of a typical SWD pattern observed on an EEG during
an absence seizure.

2.2.4 Causes and Genes Implicated in Childhood Absence
Epilepsy

One of the reasons childhood absence epilepsy is believed to be a genetic disorder is that it
is often prevalent in multiple members of the same family. It has previously been reported
that it has a 16-45% positive family history rate, with 33% of first-degree relatives and
70-85% of monozygotic twins sharing this condition. In one family with a history of CAE,
there may be a certain genetic mutation discovered that is believed to lead to the SWDs
that are characteristic of CAE, yet this particular mutation may be absent in the DNA
of another family with CAE [13]. As such, determining the specific set of genes and
mutations responsible for the general case of CAE is difficult, and it is currently believed
that a number of genetic mutations together may be responsible.

One example of a mutation linked to CAE is a single nucleotide polymorphism (SNP)
mutation in the GABRG2 gene, associated with the GABAA synapses. From experimental
studies in 2001, Wallace et al. believed this mutation may increase the hyperexcitability of
the thalamocortical network, by reducing the GABA-mediated inhibition between certain
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neurons in the circuit. However, they found that this mutation was not present in all
studied individuals with CAE, and therefore couldn’t be classified as a sole cause to the
disorder [13, 86]. Another example is a mutation in the CACNA1A gene. This mutation,
associated with Ca2+ channel function, is believed to result in a 70-100% depletion in the
evoked current [13]. However, due to studies by Jouvenceau et al in 2001, which associ-
ated this gene mutation with other neurological conditions such as ataxia, the CACNA1A
mutation is believed to contribute to a unified phenotype of absence seizures and ataxia,
and not solely CAE [47].

As such, the issue of determining the specific genes responsible for CAE persists, and
research is still being conducted in order to solve this problem. In Section 3.2, we review a
few other genes that are believed to be linked to CAE, such as the NIPA2 gene, involved
in magnesium transport, and the CACNA1H gene, associated with Ca2+ channels.

As for where the SWDs are initiated, much research has pointed to the thalamocortical
loop, and specifically the somatosensory cortex, as the source of generation [15]. Early stud-
ies found patterns of increased activity in thalamocortical regions during absence seizures.
Specifically, in 1995, patterns of thalamic hyperactivity were found in individuals with
long-lasting CAE [71], and in 2001, hypermetabolism was found to occur in thalamic and
cortical regions during seizure activity for children with CAE [44]. In 2002, experimental
studies by Meeran et al. suggested the somatosensory cortex as the site of SWD initiation,
with the thalamus aiding in propagating and amplifying the SWD activity [61]. Since then,
further experiments on rat models of absence epilepsy, such as those by Karpova et al. in
2005 [48], Polack et al. in 2007 [68] and Polack et al. in 2009 [69], have also agreed with
this cortical focus theory.

The types of neurons that initiate SWDs is still unclear, however it is currently believed
that the deep-layer pyramidal neurons in the somatosensory cortex may be a root cause.
Studies on GAERS (specific rat models of absence epilepsy) by Polack et al. in 2007 show
that these neurons initiate the bursting of other neurons in the somatosensory cortex as
well as in distant cortical areas, and that they display oscillations before and between
seizure activity that convert to an epileptic pattern [68]. It was also shown in 2016 that
these pyramidal neurons show an increased firing rate and a more sustained depolarization
between seizure activity when compared with control neurons in GAERS, leading to an
increased ability to form and lead seizure activity [87]. However, research is still being
conducted in order to confirm the exact root of absence seizure initiation.
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2.2.5 Genetic Absence Epilepsy Rats from Strasbourg

As neurological disorders can be difficult to ethically study on humans, animal models
then become useful in order to study and better understand such disorders. As mentioned,
epilepsy is one of these disorders that use animal models to carry out experimental studies.
Here, we discuss the development and history of a specific type of animal model, the
genetic absence epilepsy rats from Strasbourg (GAERS), which has produced a number of
contributions to this field of research.

The development of absence epilepsy animal models started with species such as ro-
dents, primates and cats, which were injected with chemical compounds such as penicillin
and GABA agonists, in order to induce seizure activity. These models provided some in-
sight into the neurological disorder, however the results were limited. Due to the forced
induction of the seizures and resulting lack of recurrence in seizure activity, the animal
models did not fit closely with the human condition. This then led to the development of
the genetic absence epilepsy rats from Strasbourg, or GAERS, which today is still recog-
nized as one of the most validated and predictive models for the disorder [16].

To give a bit of background on these rat models, the genetic absence epilepsy rats
from Strasbourg were developed in Strasbourg, France, in 1982. The strain was created by
interbreeding pairs of rats that were believed to have absence epilepsy, until a strain resulted
where 100% of rats tested positive for the condition (after 3-4 generations). This strain
displayed the characteristic features of absence epilepsies, with the slow wave discharges
and behavioural arrests [16].

In contrast to the induced animal models, the genetic rat models displayed more sim-
ilarities to the human condition. In terms of SWDs, the rats displayed a frequency of
neuronal oscillations slightly higher than that observed in humans (3 Hz in humans vs 5-10
Hz in rats), however this was not considered a limitation as rats typically have different
neuronal frequencies than primates [16]. Another useful feature of the GAERS model is
that the level of vigilance was shown to affect the occurrence of absence seizures in the
same way as humans. Specifically, the majority of SWDs occur in both species during
quiet wakefulness (drowsiness) as well as in transitioning between wakefulness and slow
wave sleep (deep sleep) and vice versa [53].

With these similarities to the human condition, and being a genetic model, GAERS
have allowed researchers to better understand the mechanisms and genetics behind absence
epilepsy and childhood absence epilepsy. Specifically, results have suggested that absence
epilepsy has a dominant transmission, as the breeding between an epileptic and a non-
epileptic rat, during the development of the GAERS strain, led to more than 95% of the
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progeny showing SWDs after six months. They also found that the transmission of the
disorder is autosomal, and not related to gender, nor is it related to a single gene, implying
a multifactorial cause [16]. As will be further discussed in Section 3.2, recent studies on
GAERS have suggested some specific gene mutations that may contribute to CAE, such
as the CACNA1H mutation, associated with Ca2+ channels [70].

Currently, strains of GAERS are being kept in cities such as Grenoble, Paris, Melbourne,
Istanbul and Cardiff in order to carry out further studies related to absence epilepsies [16].
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Chapter 3

Mathematical Modelling

In this chapter we look at different topics regarding using mathematical models to represent
neurons and networks in the brain. We start by discussing the basics of modelling neurons,
and then review modelling literature related to childhood absence epilepsy. We finish the
chapter with an overview of two modelling programs often used for biological systems.

3.1 General Modelling

Here, we look at the general method for representing neurons as mathematical models.
We start by discussing the equivalent circuit, which describes the electrophysiology of
neurons as a basic electric circuit, and then discuss how to model channels and synapses
as mathematical equations. After this, we look at different methods of measuring the
electrical properties of neurons, and review the well-known Hodgkin-Huxley model.

3.1.1 Equivalent Circuit

The activity in an electric circuit is often used to describe the electrophysiology of neurons.
Specifically, it is the capacitance, the resistance and the battery in circuits that correspond
to several components in neurons that affect their electrical activity. Here, we describe the
similarities in the two systems [77, Chapter 10].

To start, capacitance describes the ability of an item to store and separate an electric
charge. The capacitor of a circuit consists of two conducting regions of opposite charges,
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separated by a material that is non-conductive. When an electric charge builds up in one
region, creating an electric field, the capacitor induces a charge in the other region, creating
a current in the process. In neurons, it is the cellular membrane that acts as a capacitor,
as it is able to hold and separate a charge from the intracellular and extracellular solutions
[14]. In both systems, the current created by the capacitor can be expressed mathematically
as the following equation,

I = C
dV

dt
(3.1)

Here, I represents the current, C represents the capacitance, and dV
dt

represents the change
in voltage with respect to time [14].

In electrical circuits, the resistance describes the property to impede the flow of the
current, and so resistors are the components that slow down the current flow. From Ohm’s
Law, which states that an electrical current is proportional to the voltage divided by the
resistance, the quantity of current that passes through a resistor is expressed as,

I =
V

R
(3.2)

With I again representing the current, R representing the resistance and V representing
the voltage [14].

In terms of neurons, the ion channels act as resistors, as they control the passing of
ions across the membrane. Conversely, one can use conductance, which is the reciprocal of
resistance, to describe the ability and ease of a component to pass current through it. To
put this into context, when more ion channels are open, more ions can pass through the
membrane, meaning there is an increase in the conductance of the current, and a decrease
in the resistance [14]. In many conductance-based models, the current from ion channels
is represented as,

I = g(V − Er) (3.3)

Where, g represents the conductance of the channel, Er is the reversal potential (discussed
next) and V − Er is the driving force [33, Chapter 1].

In circuits, there is a difference in charge between the two sides of a battery, where one
side is positive and the other is negative. This creates the voltage necessary for the flow
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of the current [14]. In neurons, the concentration gradient, which describes the movement
of ions from a region of high concentration to a region of low concentration, acts as the
battery. Er, or the reversal potential, is the potential created by the battery, and accounts
for the difference between the intracellular and extracellular concentrations [33, Chapter
1]. A more detailed description of the reversal potential is given in Section 3.4.

Together, these three components; the capacitance, the resistance and the battery,
describe the electrical properties and roles of the cellular membrane, the ion channels and
the reversal potential in neurons. In the next section, we look in more detail at how to
model these ion channels.

3.1.2 Modelling Channels

The basic conductance-based model for gated ion channels is given by the following,

Ij = ḡmqns(V − Ej) (3.4)

Where Ij represents the respective current, ḡ represents the maximum conductance of
the channels, m and n are the gating variables, q and s are the number of independent
components of the channels corresponding to the gating variables, V is the membrane
potential and Ej is the reversal potential, or Nernst potential, for the specific ion [33,
Chapter 1].

Gating Variables

The membrane-embedded proteins, representing the resistors of an electrical circuit,
control the passage of ions across the cell membrane. As previously mentioned, many of
these proteins have activation and inactivation gates that can open and close depending
on the voltage of the cell. This opening and closing can be represented by the following
kinetic scheme,

C
α(V )−−−⇀↽−−−
β(V )

O (3.5)

C and O represent the closed and open states, respectively, while α(V ) and β(V ) represent
the rate constants at which the gates change from closed to open and vice versa, respectively
[33, Chapter 1].

To represent this gating as a variable, the following equation is used,
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dm

dt
= α(V )(1−m)− β(V )m (3.6)

Where, m represents the fraction of open gates and so 1 − m represents the fraction of
closed gates. In many cases, this equation is rewritten as,

dm

dt
= (m∞(V )−m)/τ(V ) (3.7)

where,

m∞(V ) =
α(V )

α(V ) + β(V )
and τ(V ) =

1

α(V ) + β(V )
(3.8)

For a fixed V , m∞(V ) is the steady state solution to Equation 3.7, and τ(V ) is the time
constant which determines the rate at which the solution approaches m∞(V ). m∞(V )
is sigmoidal in shape and is often represented by a Boltzmann function (Equation 3.9),
however the shape of τ(V ) is less standardized. The solution, m(t), of Equation 3.7 remains
between the values of 0 and 1. Experimental data can be used to fit either the α(V ) and
β(V ) or the m∞(V ) and τ(V ) functions [33, Chapter 1]. For the Boltzmann sigmoid
equation, given below, V50 represents half of the maximum voltage and k represents the
slope factor.

I(V ) =
1

1 + exp[−(V−V50)
k

]
(3.9)

The exponents on the gating variables, q and s in Equation 3.4, help to more accurately
calculate the probability of a channel opening or closing. The value of these parameters
correspond to the number of independent components of the channel. For example, the
K+ channel has four independent, identical components, and so the probability that the
channel is open is expressed as m4. The values for the expressions of many well-known
currents have been determined by experimental data. Specifically, the values for the fast
Na+ and delayed rectifier K+ channels were determined by Hodgkin and Huxley (see Section
3.1.5).
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Reversal Potential

The reversal potential, or Nernst potential, of an ion describes the membrane potential
at which this particular ion is at an equilibrium across the membrane, and the chemical
and electrical forces are equal and opposite [33, Chapter 1]. As mentioned, it depends on
the difference of the intracellular and extracellular concentrations of the particular ion, and
can be calculated as follows,

Ej = −RT
zF

ln
[j]in
[j]out

(3.10)

Here, Ej is the ion’s Nernst Potential, R is the gas constant (8.314 Jmol−1◦K−1), T
is the absolute temperature (◦K), z is the valence of the ion, F is Faraday’s constant
(96 485 ◦Cmol−1), and [j]in and [j]out are the specific ion concentrations inside and outside
of the cell. For many cells and ions, this value is well-known. The derivation of this formula
can be found in Ermentrout and Terman’s 2010 book [33, Chapter 1].

Maximal Conductance

The maximum conductance, ḡ, describes the ability of the channel to pass ions through
itself, and is typically given in units of S or mS per unit area. To obtain a value for ḡ,
typically experimental data is necessary in order to fit the parameter, however today there
are currently many established values for channel conductance that are able to be used
[33, Chapter 1].

Temperature Factor

A factor that is often considered when modelling ion channels is the temperature factor.
Ion channels are sensitive to temperature, and so the higher the temperature an exper-
iment is performed at, the faster the channels will switch between the open and closed
states. In particular, the rate at which a channel switches states depends exponentially on
temperature. To ensure consistency among experimental data that is collected at different
temperatures, oftentimes an adjustment factor will be incorporated into the activation and
inactivation equations of the channels.

The temperature factor is of the form,

θ = Q
(T−Texp)/10
10 (3.11)
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Here, T −Texp is the difference between the standard temperature of the model and the
temperature that the experimental data was collected at. Q10 is the ratio of the rates for
a 10 ◦C increase in temperature, and often has a value of 3. In Chapter 4, we incorporate
a temperature factor into some of our modelled channels.

3.1.3 Modelling Synapses

In terms of modelling the synaptic currents, there are a number of ways to do this, de-
pending on the type of synapse being modelled. The basic model however, is given as,

Isyn = g(t)(Vpost − Esyn) (3.12)

Where g(t) represents the synaptic conductance, Vpost represents the voltage of the post-
synaptic cell and Esyn represents the reversal potential associated with the particular type
of synapse [33, Chapter 1].

The conductance of synaptic currents depends on the voltage of the presynaptic cell, and
therefore can be modelled in a variety of ways. One such method considers the conductance
as a sum of specific functions that each depend on the spiking times of the presynaptic
neuron, requiring the tracking of the spiking times of the cell, and defining the functions
to sum [33, Chapter 1].

A simpler method considers the conductance as a product of a constant multiplied by
a time-dependent function that represents the fraction of open channels. In this method,
the conductance is then represented as,

g(t) = ḡs(t) (3.13)

Where the function of open channels, s(t), satisfies the following different equation,

ds

dt
= ar[T ](1− s)− ads (3.14)

Here, s represents the fraction of open channels, ar represents the rise rate of the
synaptic conductance and ad represents the decay. [T ] represents the concentration of
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transmitter released by the presynaptic neuron, and is modelled by the following equation
[33, Chapter 1],

[T ](Vpre) =
Tmax

1 + exp[−(Vpre−VT )

Kp
]

(3.15)

Here, Vpre is the voltage of the presynaptic neuron, Tmax is the maximal concentration of
transmitter in the synaptic cleft, VT is the value for which the function is half-activated,
and Kp gives the steepness of the function. From a paper published by Destexhe et al. in
1994, the suggested values for the equation are Tmax = 1 mM, VT = 2, and Kp = 5 mV
[26].

It is also possible to include a delay term in this version of the model to represent the
time it takes for an action potential to pass through the presynaptic neuron and arrive at
the receptors of the postsynaptic neuron. This delay can be modelled as Vpre(t − tdelay)
which would replace Vpre(t) in the above equation [33, Chapter 1].

This model for synaptic currents works for the AMPA/kainate, NMDA and GABAA

synapses described previously, however the GABAB synapse requires a slightly different
model due to the indirect binding of the transmitter to the receptors [33, Chapter 1]. The
model for GABAB synapses can be described by the following equations,

IGABAB
= ḡGABAB

gn

Kd + gn
(V − EK) (3.16)

dr

dt
= ar[T ](1− r)− brr (3.17)

dg

dt
= K3r −K4g (3.18)

Here, r(t) represents the receptor, g(t) represents the concentration of activated G-protein,
Kd is the dissociation constant of the binding of the G-protein to the potassium channels,
and ar, br, K3 and K4 are the rate constants [21]. The transmitter concentration, [T ], is
modelled in the same way as the AMPA/kainate, NMDA and GABAA synaptic currents.

3.1.4 Measurement Methods

In order to experimentally determine the electrical properties of neurons, there are two
main methods that are used. Here we discuss the general details of the voltage-clamp and
the patch-clamp techniques.
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Voltage-Clamp Technique

The voltage-clamp technique was developed by Kenneth Cole and George Marmont
in 1949, and involves measuring the flow of current through a specific area of the cell’s
membrane [39]. The basis of this technique involves holding the membrane potential of a
neuron at a steady value by injecting a current of appropriate strength and direction into
the axon of the cell [33, Chapter 1]. The membrane potential can then be changed in a
stepwise way, and held at that potential after each step-change. This is typically done by
inserting two electrodes into the axon, with one recording the membrane potential, and
the other applying the current to change the potential [39]. This method can also be used
with the space-clamp restriction, which uses a conductive wire inserted along the axon
of the neuron to force the total current of the cell to be spatially uniform [33, Chapter
1]. Hodgkin and Huxley used a version of the voltage-clamp technique to develop their
well-known model, described in Section 3.1.5 [39].

Patch-Clamp Technique

The patch-clamp technique was developed by Bert Sakmann and Erwin Neher (winners
of the Nobel Prize in Physiology or Medicine in 1991) in 1976, and has since gone through
many upgrades and modifications. The original method, however, involved using glass
microelectrodes to isolate a patch of a cell’s membrane from the extracellular solution,
in order to measure the current flowing through that patch. Specifically, it is able to
measure the current at the whole-cell or individual channel level. In order to obtain these
measurements, the glass microelectrode is filled with a solution of electrolytes, and is
pressed against the surface of the cell membrane. A high-resistance seal is then created by
applying a small suction to the cell membrane, and the current measurements can then be
taken [4].

3.1.5 The Hodgkin Huxley Model

In 1952, after a number of years of working together on various projects, Alan Hodgkin and
Andrew Huxley published the first mathematical model of the currents involved in action
potential generation, which is now known as the Hodgkin-Huxley Model. This model was
not only the first quantitative description of action potential dynamics, but it laid the
foundation for future electrophysiological research to come. Having had such a big impact
on the scientific community, their research earned them the Nobel Prize in Physiology or
Medicine in 1963, and has since led to other Nobel Prize-winning research, such as that by
Erwin Neher and Bert Sakmann in 1991, concerning the functions of ion channels in cells
[73].
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The Hodkgin-Huxley Model itself is a conductance-based model, and was derived based
on voltage-clamp data from the giant axon in squid. It models the membrane potential
using three currents, and is comprised of only four differential equations. The model tracks
the voltage of the cell with respect to time, and accounts for the membrane capacitance,
as well as the conductance and activation kinetics of each of the channels. The model is
represented by the following equations [33, Chapter 1],

cM
dV

dt
= −ḡNam3h(V − ENa)− ḡKn4(V − EK)− ḡL(V − EL) (3.19)

dn

dt
= αn(V )(1− n)− βn(V )n (3.20)

dm

dt
= αm(V )(1−m)− βm(V )m (3.21)

dh

dt
= αh(V )(1− h)− βh(V )h (3.22)

Here, cM represents the specific membrane capacitance, which is the capacitance per
square centimeter of the membrane, and is approximately 1 µF/cm2 in most cells. The
three terms represent each of the sodium, potassium and leak currents in that order, and
are modelled in the same way as described in Section 3.1.2 [33, Chapter 1].

In terms of finding specific parameters and expressions in this model, Hodgkin and
Huxley used a version of the voltage-clamp technique on the squid giant axon to obtain
data which allowed them to derive expressions and values for their model. Specifically,
they found the exponents for the gating variable parameters in this way, along with the
following parameter values and equations [33, Chapter 1],

Parameters : ḡNa = 120 mS/cm3, ḡK = 36 mS/cm3, ḡL = 0.3 mS/cm3, ENa = 50 mV, EK =
−77 mV, EL = −54.4 mV.

αn(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10)) (3.23)

βn(V ) = 0.125 exp(−(V + 65)/80) (3.24)

αm(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10)) (3.25)

βm(V ) = 4 exp(−(V + 65)/18) (3.26)

αh(V ) = 0.07 exp(−(V + 65)/20) (3.27)

βh(V ) = 1/(1 + exp(−(V + 35)/10)) (3.28)
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As mentioned, the Hodgkin-Huxley model is one of the most ground-breaking and
well-known models describing neuron dynamics. Many known models use these dynamics,
including our own described in this thesis.

3.2 Modelling Literature

As childhood absence epilepsy is a neurological disorder with an intricate, unknown set
of causes, much research has been conducted in order to determine the set of factors
responsible. Recently, with the advancement of technology, many mathematical models are
being combined with experimental approaches in order to better understand this disorder.
Here, we look at three papers related to modelling genetic defects in relation to CAE. First,
we look at the work of Knox et al. in 2018 [50], who studied the paired effects of T-type Ca2+

channels and GABAA synapses on the thalamocortical network. We then look at the work
of Vitko et al. in 2005 [85], who used experimental and computational approaches to test
the effects of multiple mutations in the CACNA1H gene on firing patterns in CAE. Finally,
we look at research by Xie et al. in 2014, who also used a combination of experimental and
computational methods to analyze the effects of a mutation in a magnesium transporter
gene, NIPA2, on CAE.

3.2.1 ‘Modeling Pathogenesis and Treatment Response in
Childhood Absence Epilepsy,’ Knox et al. (2018)

In 2018, Knox et al. published the results of their studies which looked at how T-type
Ca2+ channels and cortical excitability affect the progression and treatment of childhood
absence epilepsy. Specifically, they looked at the effects of paired changes of the T-type
Ca2+ channels and the cortical GABAA synapses on the thalamocortical network, as well
as predicted possible clinical implications of a T-type Ca2+ channel variant, P640L. In
order to do this, they worked with a previously published computational model of the
thalamocortical network, developed by Destexhe in 1998 [18]. Knox et al. chose to work
with this model as it was developed to study the effects of GABAB receptors on spike and
wave oscillations, and it contained detailed T-type Ca2+ channel modelling, which fit their
interests.

The model itself is a conductance-based model, comprised of four different types of cells;
cortical pyramidal neurons (PY), cortical inhibitory neurons (IN), thalamic relay neurons
(TC) and thalamic reticular nucleus neurons (RE). Each cell was modelled as a single
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compartment model and was comprised of three to five intrinsic currents, depending on
the cell type, which were modelled in the typical Hodgkin-Huxley fashion. Each of the cell
types contained the leak current (ILeak) as well as the fast sodium and potassium currents
(INa, IK). The PY neuron contained an extra cortical M current (IM), whereas the RE
neuron contained the low-threshold Ca2+ current (IT ), and the TC neuron contained the
IT current plus the hyperpolarization-activated current (IH).

In terms of the layout of the network, the model was set up as four one-dimensional lay-
ers of 100 cells, with each layer corresponding to one of the four cell types. For connections
between the cortex and thalamus, each cell connected to 20 other cells that were adjacent
to the equivalent neuron in the other layer, whereas within the thalamic and cortical layers,
each cell connected to 10 adjacent cells. The AMPA and GABAA synapses were modelled
as a 2-state kinetic scheme (Equation 2.1), and the GABAB synapses were modelled as
a nonlinear scheme where G proteins are activated and modulate potassium channel cur-
rents (Equations 2.2 to 2.5). This is similar to the standard methods of modelling these
synapses, described in Section 3.1.3 (Equations 3.12 and 3.16 to 3.18, respectively). The
parameters chosen for the network were based on previous fittings to experimental voltage
clamp data, which are described in more detail in their paper.

As mentioned, Knox et al. were interested in the effects of changes in the T-type Ca2+

channels paired with changes in cortical excitability on the thalamocortical network. To
model an increased cortical excitability, they decreased the conductance of the inhibitory
GABAA currents in the PY neurons, and to model changes in the T-type Ca2+ channels,
they altered the conductance, steady state voltage shift and inactivation time for the IT
current of the RE neurons. Specifically, for a range of values of cortical GABAA conduc-
tance (0-100% of their original value), they held two of the IT parameters at their original
values and then increased and decreased the third parameter incrementally for roughly 15-
20 simulations. With this, they found that spontaneous oscillations occurred every 30-40
seconds, due to the spontaneous bursting in the TC neurons. To study this further, they
then applied a 100 ms stimulus to the network, between the spontaneous oscillations and
after the network had returned to rest, using various current pulses on different groups of
cells (700 nA into 5 PY neurons and 20 PY neurons; −100 nA into 5 TC neurons and 20
TC neurons).

With this, they observed that the stimulation-activated oscillations were found to have
either a spindle pattern (8-10 Hz), a spike and wave pattern (2-4 Hz), or a transitional
pattern of the two (see Figure 4.1 for a diagram comparing the two patterns). Each of
these patterns lasted only 2-3 seconds due to the IH current in the TC cells. Their main
result was that an increased IT conductance and/or inactivation time, paired with an
increased cortical excitability (i.e., decreased GABAA conductance), could cause spindle
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oscillations in the network to transition to spike and wave discharges. They also found
that for the upper extreme values of the IT conductance and activation time (over 300%
of the original parameter value), some disorganized patterns of spike and wave oscillations
eventually ceased, and with the lower extremes for these values, oscillations could not occur
in the network. Further, they found that spike and wave discharges did not occur for shifts
in steady state voltage activation and inactivation curves, however they did occur in the
network even when the IT and GABAA currents were absent.

They then used these results to look at possible clinical implications of a P640L T-type
channel variant, which was previously linked to a decreased response to ethosuximide, an
antiepileptic drug, in CAE patients. Here, they found that their model coincided with
these results. Specifically, when modelling the effects of ethosuximide, there was a larger
parameter space where SWDs converted to spindle oscillations, for the original T-type
Ca2+ channels, than for the P640L channel variants. This implied the P640L variant may
cause a decreased response to the drug.

The results from Knox et al. are consistent with CAE having a multigenetic cause,
linking changes in T-type Ca2+ and GABAA currents to SWDs. Further, that SWDs may
also be caused by factors other than RE T-type channels (e.g., a large enough stimulation
to the network). They suggest that their model and results serve as a good starting point
for further research into the importance of ion channel electrophysiology in CAE.

3.2.2 ‘Functional Characterization and Neuronal Modelling of
the Effects of Childhood Absence Epilepsy Variants of
CACNA1H , a T-type Calcium Channel,’ Vitko et
al. (2005)

In 2005, Vitko et al. published a paper detailing the results of their experiments dealing
with single nucleotide polymorphisms (SNPs) of the CACNA1H gene that were found
in CAE patients. They worked with 12 of the CACNA1H SNPs, and introduced these
mutations into the human Cav3.2 channel to observe their biophysical properties and to
observe whether they affected channel gating. They then used this data in conjunction
with computational modelling to predict the channel mutations’ effects on neuron firing in
the thalamic circuit.

In order to obtain the biophysical data, they used a mutated human Cav3.2 complemen-
tary DNA (cDNA) strand to transfect human embryonic kidney-293 cells, which were then
used for whole-cell configuration of the patch-clamp technique. As for their computational
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models, they used conductance-based models of neurons in the thalamic circuit (thalamic
reticular (RE) and thalamocortical (TC) neurons), based on previously developed models
by Destexhe et al. in 1996 [24] and in 1998 [28]. These models were chosen as they contained
detailed modelling of T-channel functions. Vitko et al. used multi-compartment models for
the cells, which are models that use multiple compartments which are electrically coupled
to represent the spatial geometry of a cell [33, Chapter 2]. Their models use Hodgkin-
Huxley-type equations, and Vitko et al. fit their data using well-known equations such
as the Goldman-Hodgkin-Katz equation for the activation kinetics, and the Boltzmann
equation for the steady-state inactivation kinetics. As for the model parameters, they used
their experimental data from the mutated human Cav3.2 channel as the parameters for
the T-channels in the RE and TC models.

For their model set-up, based on their corresponding online model published on Mod-
elDB, it appears they used a number of variations of the 1998 RE cell model in order to
represent each of the different SNPs associated with the Cav3.2 gene, as well as the original
non-mutated gene [28]. In their online file, they specifically show the models for the C456S
and R788C mutants. In each of these separate SNP variations of the RE model, they
considered the cell as being comprised of one, three, eight and 80 compartments. Each cell
contained the INa, IK , and IT currents, as well as a Ca2+ pump, and a mechanism for a
single-electrode voltage-clamp.

From their experimental results, they found that five of the 12 CACNA1H SNPs af-
fected the voltage dependence of channel activation kinetics, six of the SNPs affected the
inactivation kinetics, and 11 affected the transitions between the open, closed and inacti-
vated states of the channels. From their computational models, they found that seven of
the SNPs were predicted to increase firing activity in neurons, with three of these SNPs
predicted to induce oscillations at a similar frequency to those produced during absence
seizures. On the other hand, they also found that three of the SNPs were predicted to
decrease firing activity in the neurons. In terms of their RE-TC network model, they
found that after implementing the SNPs into the RE cells, the ability of the network
to create spindle oscillations was not affected by most of the SNP mutations. However,
for the C456S SNP, this created spontaneous oscillations that led to more frequent and
longer-lasting spindles.

From their findings, Vitko et al. suggest that since Cav3.2 SNPs can increase the firing
patterns of cells, mutations in this channel gene may be a cause of the spike-and-wave
discharges that occur in the thalamocortical network during absence seizures. However,
because of the discrepancies in their findings, they believe that the CACNA1H gene may
play only partial role in childhood absence epilepsy, and that other gene mutations may
be responsible as well.

31



3.2.3 ‘Functional Study of NIPA2 Mutations Identified from
the Patients with Childhood Absence Epilepsy,’ Xie et
al. (2014)

As childhood absence epilepsy is believed to be a multifactorial genetic condition, with
genes such as the CACNA1H mutation already addressed, Xie et al. decided to study
the NIPA2 gene mutation and its relation to the disorder. Their 2014 paper details their
experimental and computational approaches to study the effects of the NIPA2 mutation
on intracellular Mg2+ concentrations, and how a decrease in this concentration may af-
fect the hyperexcitability of the thalamocortical network. They used techniques such as
immunofluorescence labeling, MTT metabolic rate detection, inductively coupled plasma-
optical emission spectroscopy (ICP-OES) and computational modelling for their experi-
ments.

In terms of the gene itself, they reference a previous study where three mutations in
the NIPA2 gene were found within a population of CAE patients [46]. NIPA2 belongs
to the NIPA family of proteins, which function as magnesium (Mg2+) transporters. The
NIPA2 gene itself is specifically responsible for transferring extracellular Mg2+ into the
cytoplasm of cells. Based on previous studies which found that NIPA1 mutations may
hinder the transport of the proteins within the cell to the extracellular membrane [6], Xie
et al. hypothesized that mutations in the NIPA2 gene may also have similar effects. Xie et
al. predict that with less transport to the extracellular membrane, there may be an increase
in the number of NIPA2 proteins in the cell, leading to a decrease in the intracellular Mg2+

concentration.

In terms of childhood absence epilepsy, Xie et al. note that NMDA receptors are involved
in excitatory synaptic transmissions within the thalamocortical network, and are affected
by the Mg2+ concentrations of the cell. Specifically, the activation of the NDMA receptor
channels is partially blocked by intracellular Mg2+. As such, Xie et al. hypothesized that a
decrease in the intracellular Mg2+ concentration may affect NMDA receptor function and
therefore affect the hyperexcitability of the thalamocortical network.

For their experimental studies, they used neuron cultures from Sprague-Dawley rats
(another type of experimental rat model), and transfected them to obtain the NIPA2
mutation. They used immunofluorescence to study the localization of the NIPA2 proteins,
MTT metabolic rate detection to measure the viability of the mutated cells and the ICP-
OES to measure the intracellular and extracellular Mg2+.

As for the computational modelling, they modified a previously developed model of
an NMDA receptor by Destexhe et al. in 1994 [25, 26], which presented a kinetic method
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for modelling synaptic transmissions. As Destexhe’s model accounted for the blocking of
NMDA receptors by extracellular Mg2+, Xie et al. implemented an additional term in the
model to account for the blocking by intracellular Mg2+ as well. The model they used
is a conductance-based model, assumed to be for general neurons in the thalamocortical
network. Their model includes the NMDA synapse, a calcium pump, the fast sodium and
potassium currents and possibly the high threshold Ca2+ current, although it is unclear
whether the authors included this last current. It is also assumed that their simulations
are of a two-cell network.

Their experimental studies showed that NIPA2 mutations led to a decrease in the in-
tracellular Mg2+ concentration of the cells, although the transfected neurons’ viability were
not affected. From their computational approach, they found that with a low intracellular
Mg2+ concentration, representing the result of a NIPA2 mutation, there was an increase in
the amplitude of the post-synaptic potential during bursting, implying the mutation may
increase the NMDA-related synaptic currents. In conclusion, they suggest that this study
could give insights for further exploration of the pathogenesis and treatment development
for childhood absence epilepsy.

3.3 Modelling Programs

Mathematical models are typically run and evaluated using different kinds of computer
programs. As a variety of programs exist, the choice of program depends on what one
wants to accomplish with their model, as well as individual preference. NEURON is used
for many well-known models, including those by Destexhe et al. in 1994 [22] and in 1996
[21] that we based our model on, however we chose to use the program, XPPAUT. Here,
we discuss these two programs.

3.3.1 NEURON

NEURON is a computer program designed to simulate models of neurons. Many computa-
tional neuroscience models are run using NEURON, including the model for the thalamic
reticular network by Destexhe et al. in 1994 [22], and the model for the thalamocortical
and thalamic reticular network also published by Destexhe et al. in 1996 [21]. NEURON
was created by Michael Hines, Ted Carnevale and John W. Moore, where the latter, in-
terestingly enough, along with Toshio Narahashi, discovered that tetrodotoxin, the lethal
toxin found in pufferfish, is a blocker of sodium channels [64]. The program is coded in
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the programming language, C, and has the useful features where one can specify neuron
properties, as well as control the simulation and graph the results [38].

The basic idea behind NEURON is that it divides the cable equation, representing the
cell or network of cells, into a set of connected sections. These connected sections, which can
take the form of any kind of branched tree, together represent the total area of membrane
that contains all channels and mechanisms relevant to determining the membrane potential
of the cell, or cells, involved. The sections are then divided into subsections of equal
length, where the area of each subsection is determined based on the placement of a node
at the centre of each subsection, plus an additional node at the distal end of each section.
NEURON is then able to calculate each section’s circuit parameters based on the positions
of these nodes. This differs from many other neuron simulation programs, where it is left
to the user to not only decide how to divide the cable into a number of sections, but also
how to calculate the parameters in each section [38].

In terms of computations, either the implicit Backward Euler method of integration,
or an integration method similar to the Crank and Nicholson method can be selected
to compute the membrane voltage [11]. For modelling specific membrane mechanisms,
NEURON incorporates the high-level model description language, NMODL, which allows
users to define the mechanism in a simple way [51]. For example, chemical reactions can
be implemented using arrows to define the reactions between the components. This is
unlike the program XPPAUT, described in the next section, which requires using standard
mathematical equations to represent various processes. Along with chemical reactions, this
system also allows for other membrane mechanisms such as kinetic schemes, the Hodgkin-
Huxley equations, voltage clamp processes and more, to be easily defined by the user. The
program also has the benefit of a unit checking feature.

3.3.2 XPPAUT

Often, one can model the processes present in a neuron using a system of ordinary differ-
ential equations. This usually starts with a principal equation representing the change in
intracellular potential with respect to time, and follows with equations representing spe-
cific ion channels as well as their gating variables [59]. Other cellular mechanisms, such as
intracellular calcium dynamics, receptor-mediated synapses and transmitter concentration
can be represented by differential equations as well. Together, the system of ODEs should
represent the properties of interest in the cell.

One can then use a numerical tool to simulate and solve the system of ODEs. For
our models we chose the computer program, XPPAUT (or XPP), which was developed by
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Bard Ermentrout. This program was based on the program, PHASEPLANE, developed by
Ermentrout and John Rinzel. The program allows one to simulate, animate and analyze
dynamical systems using a user-friendly interface. Not only does XPP feature a number of
different solvers for a variety of systems (e.g., stiff and nonstiff systems, discrete systems,
stochastic systems, etc.), but it also includes tools to perform a variety of other tasks as
well. Some examples of these are stability analysis, computation of nullclines and vector
fields, statistical analyses, computation of one-dimensional invariant manifolds and more.
As its name suggests, XPP also has a linked feature to the bifurcation package, AUTO,
written by Eusebius Doedel, where users can perform bifurcation analyses and compute
fixed points, limit cycles, equilibria and other points of interest[31, 32].

For our neuron models, we mostly used XPPAUT to track the membrane potential and
different currents of the cells with respect to time, and analyzed the resulting graphs and
data points. For our simulations, we used a step size (Dt) of 0.01, and the Runge-Kutta
method of integration.
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Chapter 4

Cell Models

For this thesis, we aimed to develop a mathematical model of part of the thalamocortical
network in order to study its role in childhood absence epilepsy. To do this, we mod-
elled both an individual thalamic reticular (RE) and thalamocortical (TC) neuron, and
then combined these to create the RE-TC thalamic network. We then altered certain
components of the model, including synaptic and ionic current conductances, as well as
inactivation rates for certain channels, in order to test their effects on the occurrence of
slow-wave discharges. The development and results of our modelled network are presented
in these next two chapters.

4.1 RE Cell Model

Thalamic reticular (RE) neurons are known to have oscillatory and intrinsic bursting prop-
erties, leading to spindle wave oscillations in networks. These spindle waves, which are often
observed during the first stages of the sleep cycle, consist of alternating waxing and waning
oscillations of about 7 to 14 Hz. Studies from 1945 by Morison and Bassett [62] and from
1987 by Steriade et al. [78] suggested the thalamus as the generator of these synchronized
oscillations, and that clusters of RE neurons can generate spindle rhythmicity on their own.
Similar to the SWD pattern, spindle oscillations describe a type of network activity and
are illustrated in Figure 4.1, along with an illustration of a SWD pattern, for comparison.
For an actual EEG recording showing a typical spindle pattern, we refer you to Figure 1
from Contreras et al.’s 1997 paper on spindle oscillations in the cortex and thalamus [9].
Figure 4.14 shows an illustration of waxing and waning oscillations.
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Figure 4.1: Hand-drawn illustrations of typical SWD and spindle oscillation patterns that
would be observed on an EEG.

In order to study this rhythmicity of RE neurons, Destexhe et al. presented a model
of the RE neuron in 1994 [22]. From this model, they found that the intrinsic bursting
properties of the modelled RE cells are a result of two calcium-activated currents and
a low-threshold calcium current, and that synchronized oscillations can result from the
presence of many GABAA synapses between cells.

Our RE neuron model was largely based on this 1994 model by Destexhe et al., with
some adjustments made according to another model presented by Destexhe et al. in 1996
[21]. The focus of the 1994 model was to study the oscillatory and intrinsic bursting
properties of RE cells [22], while the 1996 model focused on synchronized oscillations and
propagating waves in a RE-TC network [21]. An online version of the 1994 model is
available in the online database for computational neuroscience models, ModelDB [22].

The Model

Destexhe et al. implemented their 1994 model using NEURON as a single compartment
model with a surface area of 1000µm2, and the intrinsic currents were modelled using
Hodgkin-Huxley kinetics. The equation for the membrane potential with respect to time
is given as the following differential equation,
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CmV̇ = −IL − IT − IK[Ca] − ICAN − INa − IK − IGABAA
− IAMPA − IGAP (4.1)

Where Cm represents the specific capacitance of the membrane (1µF/cm2), V represents
the membrane potential (mV), and t represents the time (ms). The intrinsic currents
(mA/cm2) are the leak current (IL), the low-threshold Ca2+ current (IT ), the fast Na+

and K+ currents (INa and IK), and the GABAA and AMPA synapses. It is noted that the
GABAA and AMPA synapses are only considered when the RE cell is paired with another
RE cell or TC cell, respectively, and the Gap junction is only considered in networks of
RE cells.

Originally our model included a Ca2+-dependent K+ current (IK[Ca]) and a Ca2+-
dependent nonspecific cation current (ICAN), like the 1994 model, however we removed
these to better fit the 1996 version of the RE model presented by Destexhe et al. [21]. Des-
texhe et al. note that although these currents have an effect on individual cell behaviour,
they do not have significant influence on network behaviour, and so they removed them for
simplicity. As such, we also removed these currents for simplicity in our network models.
The equations for these currents, however, are still presented in this section. It is also
noted that although there are other currents present in RE neurons, the intrinsic currents
mentioned here should account for the main properties observed in RE neurons [22].

Unless otherwise specified, the equations were based on the model presented by Des-
texhe et al. in 1994, and kinetics were assumed to be at a temperature of 36 ◦C [22]. The
GABAA and AMPA synapses were derived based on the model presented by Destexhe et
al. in 1996 [21].

IL: The Leak Current

The leak current accounts for the passive movement of ions across the cell membrane
through nongated channels [33, Chapter 1]. It was modelled based on the formulation
presented by Destexhe et al. in 1994, as given here.

Parameters : gL = 0.05 mS/cm2, EL = −78 mV

IL = gL(V − EL) (4.2)
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IT : The Low-threshold Ca2+ Current

The low-threshold Ca2+ current mediates the rebound burst response observed in RE
neurons [22]. The current is described as “low-threshold”, since its activation threshold is
more negative than other thresholds. Typically, this threshold is around −55 mV, which
is 15 mV lower than the threshold for Na+ spikes [40]. The current was characterized by
voltage-clamp methods in RE cells of rats obtained by Huguenard and Prince in 1992 [43].
The activation function and time constants were said to be obtained from experimental
results, given by J. Huguenard via personal communication. It is also noted that the
calcium reversal potential was calculated by the Nernst relation, however the RE model
on ModelDB uses a value of 120 mV, and so we used this value as well.

Parameters : ḡCar = 1.75 mS/cm2, ECa = 120 mV

IT = ḡCarm
2h(V − ECa) (4.3)

ṁ = − 1

τm(V )
(m−m∞(V )) (4.4)

ḣ = − 1

τh(V )
(h− h∞(V )) (4.5)

m∞(V ) =
1

1 + exp[−(V+52)
7.4

]
(4.6)

τm(V ) = 0.44 +
0.15

exp[V+27
10

] + exp[−(V+102)
15

]
(4.7)

h∞(V ) =
1

1 + exp[V+80
5

]
(4.8)

τh(V ) = 22.7 +
0.27

exp[V+48
4

] + exp[−(V+407)
50

]
(4.9)

INa and IK: The Fast Na+ and K+ Currents

These currents, responsible for the generation of action potentials [33, Chapter 1], were
modelled based on kinetics from a model of hippocampal pyramidal cells presented by
Traub and Miles in 1991 [82]. A voltage shift of −55 mV was used to account for the
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different convention used by Traub and Miles, where they shifted their voltage variable so
that the resting membrane potential was 0 mV [83].

Parameters : ḡNa = 100 mS/cm2, ENa = 50 mV, ḡK = 10 mS/cm2, EK = −95 mV, Vtraub =
−55 mV

INa = ḡNam
3h(V − ENa) (4.10)

IK = ḡKn
4(V − EK) (4.11)

ṁ = αm(V )(1−m)− βmm (4.12)

ḣ = αh(V )(1− h)− βhh (4.13)

ṅ = αn(V )(1− n)− βnn (4.14)

αm =
0.32(13− (V − Vtraub))
exp[13−(V−Vtraub)

4
]− 1

(4.15)

βm =
0.28((V − Vtraub)− 40)

exp[ (V−Vtraub)−40
5

]− 1
(4.16)

αh = 0.128 exp[
17− (V − Vtraub)

18
] (4.17)

βh =
4

exp[40−(V−Vtraub)
5

] + 1
(4.18)

αn =
0.32(15− (V − Vtraub))
exp[15−(V−Vtraub)

5
]− 1

(4.19)

βn = 0.5 exp[
10− (V − Vtraub)

40
] (4.20)

IK[Ca]: The Ca2+-Dependent K+ Current

The slow Ca2+-dependent K+ current mediates an afterhyperpolarization (AHP) after
each burst in RE cells [22]. The current was modelled based on the dynamics of channel
opening via Ca2+ binding, and activation parameters were chosen to match data from in
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vitro experiments on rats performed by Avanzini et al. in 1989 [2] and in vivo experiments
on cats by Contreras et al. in 1993 [10] and Mulle et al. in 1986 [63]. The activation kinetics
corresponded to a temperature of 22 ◦C, and so an adjustment factor was included.

Parameters : ḡK[Ca] = 10 mS/cm2, EK = −95 mV, n = 2, α = 48 ms−1mM−2, β =
0.03 ms−1, tadj = 3(36−22)/10 = 4.655

IK[Ca] = ḡK[Ca]m
2(V − EK) (4.21)

ṁ = − 1

τm([Ca]i)
(m−m∞([Ca]i))tadj (4.22)

m∞([Ca]i) =
α[Ca]ni

α[Ca]ni + β
(4.23)

τm(V ) =
1

α[Ca]ni + β
(4.24)

ICAN : The Ca2+-Dependent Nonspecific Cation Current

This current mediates afterdepolarizations (ADPs) in RE cells [22]. Destexhe et al. men-
tion that no data for the voltage dependence of ICAN was available when they were devel-
oping their model, and so the model assumed the same activation kinetics as IK[Ca], but
slower. Here, m was determined by Equations 4.22 - 4.24, but with different values for α
and β.

Parameters : ḡCAN = 0.25 mS/cm2, ECAN = −20 mV, n = 2, α = 20 ms−1mM−2, β =
0.002 ms−1, tadj = 3(36−22)/10 = 4.655

ICAN = ḡCANm
2(V − ECAN) (4.25)

IGABAA
: The GABAA Synaptic Current

As described in more detail in Section 2.1.2, the synaptic currents regulate the trans-
mission of signals between cells. Here, the GABAA current represents the transmission
of signals from one RE cell to another RE cell. The model for this current presented by
Destexhe et al. in 1996 was developed based on whole cell recorded synaptic currents in
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hippocampal neurons, from Otis and Mody in 1992 [66], Otis et al. in 1993 [65], and Xiang
et al. in 1992 [89].

For modelling the transmitter concentration, Destexhe et al. used a model that re-
quired tracking the spiking times of the cells. In order to simplify our model we used the
formulation given by Ermentrout and Terman [33, Chapter 1], which is also detailed in
Section 2.1.2. In the 1996 paper, α was set to 20 ms−1mM−1, β to 0.16 ms−1 and EGABA
to −85 mV, however the model on ModelDB used the values presented below, which we
also used in our model.

We also included a unit conversion factor, KRE, to account for the difference in how
NEURON and XPPAUT implement synapses. For example, the maximal synaptic conduc-
tances given in the NEURON model are in µS, whereas our XPPAUT model uses mS/cm2.
This conversion factor was included in each of the synaptic currents in our models, and was
calculated as Equation 4.28 for the RE cell using the surface area of the cell, 14 300 µm2,
from Destexhe’s 1996 model [21].

Parameters : KRE = 6.993 006 mS/µScm2, EGABAA
= −80 mV, α = 10.5 ms−1mM−1, β =

0.166 ms−1, Cmax = 0.5 mM, Vtry = 2, Kp = 5 mV

IGABAA
= rKRE ḡGABAA

(V − EGABAA
) (4.26)

ṙ = α
Cmax

1 + exp[−(Vpre−Vtry)
Kp

]
(1− r)− (βr) (4.27)

KRE =
10−3mS

1µS
· 1

1.43 · 104(10−4cm)2
=

10mS

1.43µScm2
=

6.993006mS

1µScm2
(4.28)

The conductance, ḡGABAA
(µS), varies depending on which cells are involved in the

network, and will be discussed further in Sections 4.4 and 4.5.

IAMPA: The AMPA Synaptic Current

Here, the AMPA current represents the transmission of signals from TC cells to RE
cells. The AMPA synaptic current was modelled in the same way as the GABAA synaptic
currents, with many of the same parameters. The surface area conversion factor was also
included here.
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Parameters : KRE = 6.993 006 mS/µScm2, EAMPA = 0 mV, α = 0.94 ms−1mM−1, β =
0.18 ms−1, Cmax = 0.5 mM, Vtry = 2, Kp = 5 mV

IAMPA = rKRE ḡAMPA(V − EAMPA) (4.29)

Similarly, ḡAMPA (µS) varies depending on which cells are involved in the synaptic
connections, and will be discussed more in Section 4.5.

IGAP : The Gap Junctions

Gap junctions, representing the electrical synapses between cells, were only included
in the RE networks. Although not presented in Destexhe et al.’s 1994 model, studies by
Landisman et al. in 2002 [52], Lee et al. in 2014 [54] and Zolnik and Connors in 2016 [91]
detail the existence of gap junctions between neurons in the thalamic reticular nucleus. As
such, we included these junctions in our model. The gap junction was modelled as the sum
of electrical inputs into the present cell, as presented here.

Parameters : ḡGAP = 0.0005 mS/cm2, n = the number of cells connecting to the present
cell

IGAP =
n∑
i=1

ḡGAP (V − Vi) (4.30)

Intracellular Calcium Dynamics

The intracellular calcium dynamics were simply modelled as the combination of the
entry of calcium into the cell via the IT current, its removal by an active pump and an
equilibrium term. The equilibrium term was not included in the 1994 paper by Destexhe
et al., however it was included in the model on ModelDB.

The first term includes a unit conversion factor k, along with Faraday’s constant F ,
and the depth of a shell around the membrane for which calcium enters into, d. This shell
accounts for the region near the membrane where calcium interacts with the channels.
The second term includes rate constants acquired from a Michaelis Menton approximation
of the calcium pump, KT and Kd, and the final term includes the steady state calcium
value, Cainf , and the time constant for calcium removal, τr. The parameters were chosen
to fit experimental data from voltage clamp techniques on rodent and cat thalamocortical
neurons [59, 20].
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Parameters : k = 10 µA/cm2, d = 1 µm, F = 96 485.332 ◦Cmol−1, KT = 0.0001 mM/ms−1,
Kd = 0.0001 mM, Cainf = 0.000 24 mM, τr = 100 ms

˙[Ca]i = − k

2Fd
IT −

KT [Ca]i
[Ca]i +Kd

+
Cainf − [Ca]i

τr
(4.31)

As mentioned, our RE neuron model does not include the IK[Ca] and ICAN currents,
and so in this version of the model the intracellular calcium dynamics are not used.

4.2 TC Cell Model

When paired with RE neurons, thalamocortical (TC) neurons are believed to aid in the
generation, propagation and termination of spindle waves. Specifically, it is the intrinsic
and synaptic properties of the cells, such as the level of membrane potential and the
bursting properties of thalamic cells, that are believed to cause this [21].

In 1996, Destehe et al. developed a model to study the role of the RE-TC interactions
in the generation of these spindles. From previous experimental results by Steriade et al. in
1993 [79] and Kim et al. in 1995 [49], Destexhe et al. proposed that spindle waves could
be initiated by spontaneous spikes in either the TC or RE neuron, which would evoke
either an AMPA-mediated excitatory response in RE cells or a GABA-mediated inhibitory
response in TC cells, respectively. This would then evoke the appropriate response in the
other cell and start a cycle. They also showed that along with the intrinsic and synaptic
properties mentioned above, the hyperpolarization-activated current, IH , plays a role in
the generation and termination of these spindle waves [21].

We initially considered three different papers for our model, and developed one prior to
the model presented here. The first model developed was based on a paper by McCormick
and Huguenard in 1992 [59], which included additional currents such as the persistent
depolarization-activated Na+ current (INap), the high-threshold Ca2+ current (IL; note
the same notation as our leak current), the Ca2+-activated K+ current (IC), the transient
and depolarization-activated K+ current (IA), the slowly inactivating and depolarization-
activated K+ current (IK2), the Na+ leak current (INaleak), and excluded the potassium
current (IK).

We initially chose this, as it appeared to have the most animal-consistent data, with the
majority of the currents based on data from rats. However, there were many complications
with this model and we could not get the model to function as expected. Specifically, when
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implementing the equations given in their paper, we were not able to reproduce the results
in their paper nor behaviour that is typical of TC neurons. As there was no published code
to refer to, we decided to pursue other options. We then considered a model presented by
Destexhe et al. in 1993 [20], yet there were far fewer currents incorporated than what we
were looking for.

After these attempts, we decided to develop our model based on the model presented by
Destexhe et al. in 1996 [21], with some adjustments made according to a model presented
by Huguenard and McCormick in 1992 [42]. The alterations to this model were due to
issues with modelling the hyperpolarization-activated current, IH , and will be discussed
later. An online version of the 1996 model by Destexhe et al. is presented on the website,
ModelDB [21].

The Model

Destexhe et al. implemented their 1996 model using NEURON as a single compart-
ment model with a surface area of approximately 29 000µm2. The intrinsic currents were
modelled using Hodgkin-Huxley kinetics. The equation for the membrane potential with
respect to time is given as the following differential equation,

CmV̇ = −IL − IT − IH − IKL − INa − IK − IGABAA
− IGABAB

(4.32)

Here, Cm represents the specific capacity of the membrane (1 µF/cm2), V represents the
membrane potential (mV), and t represents the time (ms). The intrinsic currents (mA/cm2)
are the leak current (IL), the low-threshold Ca2+ current (IT ), the hyperpolarization-
activated current (IH), the leak potassium current (IKL), the fast Na+ and K+ currents
(INa and IK), and the GABAA and GABAB synapses, with the latter two currents only
considered when the TC cell is paired with another RE cell.

It is noted that although a potassium A current (IA) is observed in TC cells, Destexhe
et al. did not incorporate the current in their model. Instead, they added a positive shift in
action potential threshold, to mimic the delay in spike generation during bursting activity
caused by the IA current. In their paper, they have a positive shift of 20 mV, however
we used a positive shift of 30 mV. This is accounted for in the Traub-convention shift
parameter in the INa and IK equations.

Destexhe et al. also note that their model was modified from previous models presented
by Destexhe et al. in 1993 [20], Huguenard and McCormick in 1992 [42] and by McCormick
and Huguenard in 1992 [59]. They also note that they only considered the currents believed
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to be necessary for generating the spindle and bicuculline-induced synchronized oscillations
[21].

Similar to the RE model, to account for the difference in how NEURON and XPPAUT
implement synapses, we included a unit conversion factor for the synaptic currents. The
TC surface area conversion factor was calculated as equation 4.33 using the surface area
of the cell, 29 000µm2, from Destexhe’s 1996 model [21].

KTC =
10−3mS

1µS
· 1

2.9 · 104(10−4cm)2
=

10mS

2.9µScm2
=

3.448275mS

1µScm2
(4.33)

Unless otherwise specified, the equations were based on the models presented by Des-
texhe et al. in 1996 [21] and in their online model [21], and kinetics are assumed to be at
a temperature of 36 ◦C.

IL: The Leak Current

The leak current is given as the following equation,

Parameters : gL = 0.01 mS/cm2, EL = −70 mV

IL = gL(V − EL) (4.34)

IT : The Low-threshold Ca2+ Current

The kinetics of the low-threshold Ca2+ current were developed based on the model
presented by Huguenard and McCormick in 1992 [42], who based their model on data from
voltage-clamp recordings of thalamic neurons in rats, collected by Huguenard and Prince in
1992 [43]. Unlike in the RE model, here the steady state value was used for the activation
variable, m, rather than a first-order equation. The inactivation kinetics were fit to data
collected at a temperature of 24 ◦C, and so a temperature adjustment factor was included.
According to the ModelDB file, a shift of 2 was incorporated in the activation kinetics to
account for a screening charge [21]. The reversal potential was calculated as shown below,
where k is a unit conversion factor, T is the temperature, R is the universal gas constant,
F is the Faraday constant and [Ca]o and [Ca]i are the Ca2+ concentrations outside and
inside of the cell, respectively.

Parameters : gT = 2 mS/cm2, tadj = 3(36−24)/10 = 3.73719, k = 1000 mV/V, R = 8.314 51
Jmol−1◦K−1, T = 309.15 ◦K, F = 96 485.332 ◦Cmol−1, [Ca]o = 0.000 24 mM, [Ca]i = 2 mM
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IT = ḡTm∞(V )2h(V − ECa) (4.35)

ECa = k
RT

2F
log

[Ca]o
[Ca]i

(4.36)

ḣ =
1

τh(V )
(h∞(V )− h)tadj (4.37)

m∞(V ) =
1

1 + exp[−((V+2)+57)
6.2

]
(4.38)

h∞(V ) =
1

1 + exp[ (V+2)+81
4

]
(4.39)

τh(V ) = 30.8 +
211.4 + exp[ (V+2)+113.2

5
]

1 + exp[ (V+2)+84
3.2

]
(4.40)

IH : The Hyperpolarization-Activated Cation Current

The hyperpolarization-activated cation current is dependent on the voltage and intra-
cellular calcium in TC cells, and is believed to be responsible for the waning phase of
spindle oscillations [21]. Destexhe et al. modelled this current using a single-variable ki-
netic scheme, where calcium influences the voltage dependence and conductance via the
indirect binding of Ca2+ to a regulating protein.

For us, there were complications when attempting to model the current in this way. We
were unable to understand how NEURON implemented its kinetic reactions into differential
equations, and the 1996 paper gave only the kinetic schemes for the current and not
the differential equations representing these schemes. Our implementation of the kinetic
reactions into mathematical equations did not produce the desired results, and in many
cases our model crashed when running the simulations.

As such, we modelled the IH current based on the formulation presented by Hugue-
nard and McCormick in 1992 [42], which used a standard Hodgkin-Huxley approach. In
Huguenard and McCormick’s 1992 paper, the IH current was derived based on voltage-
clamp recordings of in vitro guinea pig dorsal lateral geniculate relay neurons, obtained by
McCormick and Pape in 1990 [60].

47



Parameters : ḡH = 0.01 mS/cm2, EH = −40 mV

IH = ḡhm(V − Eh) (4.41)

ṁ =
1

τm(V )
(m∞(V )−m) (4.42)

m∞(V ) =
1

1 + exp[V+75
5.5

]
(4.43)

τm(V ) =
1

exp[−14.59− (0.086V )] + exp[−1.87 + 0.0701V ]
(4.44)

IKL: The Potassium Leak Cation Current

The potassium leak current is responsible for the passive movement of potassium across
the cell membrane. This current was developed to fit data from guinea pig thalamocortical
relay neurons in vitro, as described by McCormick and Huguenard in 1992 [59]. Originally,
Destexhe et al. used a conductance of 4 nS, however we converted the value to account for
the cell’s surface area by implementing our TC conversion factor, KTC .

Parameters : gKL = 0.013 793 mS/cm2, EKL = −100 mV

IKL = gKL(V − EKL) (4.45)

INa and IK: The Fast Na+ and K+ Currents

As with the RE cell, these currents were modelled based on the kinetic equations by
Traub and Miles in 1991 [82]. A voltage shift of −25 mV is used in the activation and time
constant equations to account for both the different convention used by Traub and Miles,
as well as the positive shift of 30 mV to mimic the absent IA current.

Parameters : gNa = 90 mS/cm2, ENa = 50 mV, gK = 10 mS/cm2, EK = −100 mV, Vtraub =
−25 mV

INa = ḡNam
3h(V − ENa) (4.46)

IK = ḡKn
4(V − EK) (4.47)
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IGABAA
: The GABAA Synaptic Current

The GABAA synaptic currents were modelled in the same way as the RE cell (Equations
4.26 and 4.27). Here, the GABAA current represents the transmission of signals from the
RE cells to the TC cells. The only difference in the equations from the RE model is the
surface area conversion factor, KTC = 3.448 275 mS/µScm2.

IGABAB
: The GABAB Synaptic Current

Here, the GABAB currents represent the transmission of signals from the RE cells to the
TC cells. These synaptic currents were also based on whole cell recorded synaptic currents
in hippocampal neurons, from the references listed in the GABAA synaptic currents section
in the RE cells. The details for the modelling of GABAB synapses are included in Section
2.1.2. The transmitter concentration was modelled in the same way as for the GABAA

and AMPA synapses, based on Ermentrout and Terman [33, Chapter 1], and is included
directly in the activated receptor equation, Ṙ.

Parameters : KTC = 3.448 275 mS/µScm2, EGABAB
= −95 mV, Kd = 100 µM4, K1 =

0.5 mM−1ms−1, K2 = 0.0012 ms−1, K3 = 0.18 ms−1, K4 = 0.034 ms−1, Cmax = 0.5 mM,
Vtry = 2, Kp = 5 mV,

IGABAB
= KTC ḡGABAB

G4

G4 +Kd

(V − EGABAB
) (4.48)

Ṙ = K1
Cmax

1 + exp[−(Vpre−Vtry)
Kp

]
(1−R)−K2R (4.49)

Ġ = K3R−K4G (4.50)

The conductance, ḡGABAB
(µS), also varies depending on which cells are involved in the

network, and will be discussed more in Section 4.5.

4.3 Individual Cell Tests

To ensure each of our models displayed the correct electrophysiological properties as the
cells they represent, we ran a number of simulation-based tests using the program XP-
PAUT. These tests determined the resting potential as well as the response of the models
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when injected with a current of varying strengths and polarizations. We also tested for
the effects of each ionic current on the models, and tested the intrinsic bursting properties
of the TC model. We also looked at the RE cell model’s dynamics when arranged in a
network of only RE cells.

4.3.1 RE Cell

Injected Current

We considered the response of an individual RE cell in the following situations: with no
external stimuli; with a depolarizing current of 2 µA/cm2 applied for 100 ms between 50 ms
and 150 ms; and with a hyperpolarizing current of −1 µA/cm2 applied for 100 ms between
50 ms and 150 ms. We first considered the model without the IK[Ca] and ICAN currents,
referred to as the reduced model, and then considered the model which includes these two
currents, referred to as the full model. The initial condition for the membrane potential
was set to −74 mV. Figure 4.2 gives a visual representation of the full and reduced RE
cell models, and the intrinsic currents involved in each. Figures 4.3 and 4.4 illustrate the
results of the tests, and Figures 4.5 and 4.6 display the traces for each of the currents in the
models during these tests. As a note, we found that implementing a step size of 0.01 in our
simulations (as mentioned in Section 3.3.2) was sufficient to resolve the spikes produced
by our models.

(a) (b)

Figure 4.2: Visual representations of the reduced and full RE cell models. (a): Reduced
RE model. (b): Full RE model.
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(a) (b)

Figure 4.3: Individual RE cell (reduced) with external stimuli (mV vs ms). (a): With no
input. (b): With 2 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace).

(a) (b)

Figure 4.4: Individual RE cell (full) with external stimuli (mV vs ms). (a): With no input.
(b): With 2 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace).
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For the most part, both the reduced and full models gave similar results. Without
any external stimuli, the RE cells remained at resting potential around −74 mV. While
applying the depolarizing input, the cells produced a series of spikes and then returned to
resting potential when the current was removed. When the negative current was applied,
the reduced model became hyperpolarized until the current was removed, and then pro-
duced a rebound burst followed by a single spike before returning to resting potential. The
full model responded to the negative current by producing a rebound train of bursts, due
to the extra activity from the IK[Ca] and ICAN currents.

In both of these cases, the results correspond to typical RE cell behaviour, where
bursts are only produced when cells are elicited with external stimuli and otherwise remain
quiescent at around−70 mV [22]. The low-threshold Ca2+ current (IT ), which is responsible
for rebound burst responses in RE cells [22], is known to activate when the membrane
potential becomes adequately hyperpolarized [7]. As such, the response of our model to
the hyperpolarizing current also makes sense.
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Figure 4.5: Current traces for the reduced RE cell (µA/cm2 vs ms). Note the change in
scale of the vertical axis for each row of diagrams.
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Figure 4.6: Current traces for the full RE cell (µA/cm2 vs ms). Note the change in scale
of the vertical axis for each row of diagrams.
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Effect of Each Current

Next, we studied the effects of the intrinsic currents on the RE cell, by only considering
certain currents in our model at a time. For each combination of currents considered, we
tested the model in the same way as before, by applying the same temporary depolariz-
ing and hyperpolarizing inputs. Specifically, we implemented currents of 2µA/cm2 and
−1 µA/cm2, for 100 ms, applied between 50 ms and 150 ms in each case. Table 4.1 summa-
rizes the results of these tests for each combination of currents considered. The following
paragraphs give a more detailed description of the results of these tests, and Figures 4.7
to 4.10 illustrate the results. As a note, Table 4.1 includes a summary for the full and
reduced models, however we exclude the details and figures of these results here, as they
are presented under the Injected Current heading in Section 4.3.1.

Table 4.1: Summary of the Effects of Each Current on the RE Membrane Potential

Figure Currents Positive Input Negative Input

Fig. 4.7 IL Passive rise, then rest Passive fall, then rest

Fig. 4.8 IL, INa, IK Spiking, then rest Passive fall, then rest

Fig. 4.3 IL, INa, IK, IT Spiking, then rest Passive fall, then re-
bound burst and rest

Fig. 4.9 IL, INa, IK, IT,
IK[Ca]

Spiking, then rest Passive fall, then re-
bound oscillating bursts

Fig. 4.10 IL, INa, IK, IT,
ICAN

Spiking, then rest Passive fall, then re-
bound tail of spikes that
decrease in frequency,
then rest

Fig. 4.4 IL, INa, IK, IT,
IK[Ca], ICAN

Spiking, then rest Passive fall, then re-
bound train of bursts and
then rest

The model with only IL showed typical results for a cell with only passive currents
(Figure 4.7). Without external stimuli, the cell reached resting potential at a slightly lower
value of −78 mV, and with the depolarizing and hyperpolarizing inputs, the membrane
potential increased and decreased respectively. When INa and IK were added (Figure
4.8), the cell had a similar resting potential as the IL model, and it responded to the
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hyperpolarizing input in the same way. With the depolarizing input the cell produced a
series of spikes before returning to resting potential. This coincides with the idea behind
the Hodgkin-Huxley model (Section 3.1.5), implying that the INa and IK currents are
necessary in order to generate action potentials in our model.

When IT and IK[Ca] were added (Figure 4.9), without external stimuli, the cell stayed
at the typical RE resting membrane potential of −74 mV. With the positive input, the
cell responded with a train of spikes, and with the negative input, the cell responded with
rebound oscillating bursts. The interactions between the two currents would explain this
behaviour, as IK[Ca] is responsible for afterhyperpolarizations after each burst in RE cells,
and IT has a lower activation threshold and mediates the rebound burst response in the
cells. Specifically, in response to the applied negative input, the IT current evokes a rebound
burst, while IK[Ca] then lowers the membrane potential in response to this burst, which
again activates the IT current and another burst is produced, and the cycle continues. As
such, our results here appear to make sense, and coincide with the results presented in
Figure 2 (a) of Destexhe et al.’s 1994 paper [22].

For the model with IT and ICAN , and without IK[Ca] (Figure 4.10), the response of the
model at rest and with a positive input was similar to the previous model, however the
response to the negative input was different. Instead of oscillating bursts, there is a tail
of spikes which eventually decreases in frequency and then terminates as the cell returns
to resting potential. Our results here are similar to those presented in Figure 2 (d) of
Destexhe et al.’s 1994 paper [22]. Their results showed that when ICAN was implemented
with a larger conductance value, in order to make the current dominate, a tail of spikes
occurred in response to a hyperpolarizing input, which also eventually decreased in spike
frequency before terminating.
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(a) (b)

Figure 4.7: Individual RE cell, only IL included (mV vs ms). (a): With no input. (b):
With 2 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace)

(a) (b)

Figure 4.8: Individual RE cell, only IL, INa and IK included (mV vs ms). (a): With no
input. (b): With 2µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace)
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(a) (b)

Figure 4.9: Individual RE cell, only IL, INa, IK , IT and IK[Ca] included (mV vs ms). (a):
With no input. (b): With 2 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace)

(a) (b)

Figure 4.10: Individual RE cell, only IL, INa, IK , IT and ICAN included (mV vs ms). (a):
With no input. (b): With 2 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace)
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4.3.2 TC Cell

Injected Current

Our TC model was tested in much the same way. We considered an individual TC
neuron with no external stimuli, with a depolarizing current of 3 µA/cm2, applied for 100 ms
between 50 ms and 150 ms, and with a hyperpolarizing current of −1 µA/cm2, applied for
100 ms between 50 ms and 150 ms. Figure 4.11 gives a visual representation of the TC cell
model, and the intrinsic currents involved. Figure 4.12 illustrates the results, and Figure
4.13 shows the traces for each of the currents in the model during the tests.

Figure 4.11: Visual representation of the TC cell model.

With no external stimuli, the cell displayed spontaneous bursting. While applying
the depolarizing current, the cell produced a train of spikes and then returned to resting
potential where it resumed spontaneous bursting. With the applied negative current, the
cell became hyperpolarized and upon removal of the current produced a rebound burst
before returning to spontaneous bursting.

Our model displayed many similar properties to typical TC cells. Destexhe et al. note
in their 1996 paper [21] that due to the IT and IH currents, TC cells have the ability
to generate either spontaneous oscillations, or produce rebound burst firing after a brief
hyperpolarization. Both the spontaneous oscillations and the hyperpolarization-activated
rebound burst firing properties are observed in our model. In addition, results from De-
schenes et al. in 1984 [17] and Jahnsen and Llinás in 1984 [45], showed that guinea pig and
rat TC neurons display trains of action potentials in response to depolarization, which is
also displayed in our model.
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(a) (b)

(c)

Figure 4.12: Individual TC cell with external stimuli (mV vs ms). (a): With no input.
(b): With 3 µA/cm2 input. (c): With −1 µA/cm2 input.
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Figure 4.13: Current traces for the TC cell (µA/cm2 vs ms). Note the change in scale of
the vertical axis for each row of diagrams.
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Intrinsic Bursting Property

Waxing and waning is a type of oscillatory bursting pattern, where cells exhibit periods
of bursts, with the amplitude of the bursts oscillating throughout the period. Figure 4.14
shows an illustration of the shape of waxing and waning bursts, compared with the shape
of regular continuous bursting. In Destexhe et al.’s 1996 model, the waxing and waning
behaviour was the default model for their TC cells, however they found that their cells
were also able to exhibit delta oscillations as well as a rest state [21].

Figure 4.14: Waxing and waning oscillations vs continuous bursting.

Destexhe et al. mention that the mechanisms behind the waxing and waning property
are due to the interactions between the IT and IH currents. Specifically, they note that
when a TC cell repetitively bursts, the IT current is activated and allows more calcium
to enter the cell. IH is enhanced by intracellular calcium, and depolarizes the cell when
enhanced. With the increase in intracellular calcium due to the IT current, the IH current
depolarizes the cell, and when depolarized enough, the cell ceases further rebound bursting
activity and returns to rest. It is in this way that the waxing and waning behaviour is
observed [21].

In their model, Destexhe et al. include calcium dynamics in their IH current, however
as mentioned in Section 4.2, there were complications with modelling our IH current in
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this way, and so we chose a non-calcium-dependent model for the current. As such, our
model could not produce the waxing and waning oscillations, and instead we observed
spontaneous oscillating bursts as our default mode.

However, Destexhe et al. found that the ability of the cell to switch between its waxing
and waning, delta oscillations and rest states depended on the conductances of the IT
and IH currents, and this was a property we wanted to test in our model. Specifically,
they showed that with a fixed IT conductance (ḡT ), starting the IH conductance (ḡH) at
0.005 mS/cm2 led to delta oscillations (a frequency of 1-4Hz) in the model, while increasing
ḡH to 0.02 mS/cm2 resulted in waxing and waning oscillations. Further increasing ḡH to
0.025 mS/cm2 then led to a rest state with no activity.

For our model, replacing the waxing and waning property with oscillating bursts, we
found similar results but with slightly different values of ḡH , as illustrated in Figure 4.15.
With our model, holding ḡT at 2 mS/cm2 and setting ḡH to 0.02 mS/cm2 still resulted in
some bursting activity. For the TC cell to reach a rest state, ḡH had to be increased to
around 0.22 to 0.025 mS/cm2. In terms of the delta oscillations, we also observed this
pattern with our TC cell when ḡH was very small (e.g., 1e-6mS/cm2).
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(a) (b)

(c)

Figure 4.15: Intrinsic bursting properties of TC cells (mV vs ms). IT conductance (ḡT )
was held constant at 2 mS/cm2, while IH conductance (ḡH) was varied. (a): ḡH =
0.025 mS/cm2, leading to a rest state. (b): ḡH = 0.015 mS/cm2, leading to oscillatory
bursts. (c): ḡH = 1e-6mS/cm2, leading to delta oscillations.

The potassium leak current (IKL) was also found to have a strong impact on the cell’s
ability to produce spontaneous bursting. Originally, these previous tests were conducted
with an incorrect IKL conductance value of 0.000 137 93 mS/cm2, rather than 0.013 793 mS/cm2,
illustrated in Figure 4.16. With this much lower value, the cell was not able to display
spontaneous bursting, however, the responses to the depolarizing and hyperpolarizing cur-
rents were similar. This result makes sense, as the main role of IKL is to lower the resting
potential of the cell. With a smaller IKL conductance, the membrane potential does not
become low enough for the IT current to be activated, and therefore no oscillating bursting
occurs.

The other noted difference with our model is that while a typical in vitro guinea pig TC
neuron holds a resting membrane potential of −63 mV [59], our model appears to reach a
lower resting potential closer to −80 mV. This may also be due to the difference in our IH
equations.
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(a) (b)

Figure 4.16: Consequence of incorrect gKL on TC cell (mV vs ms). gKL =
0.000 137 93 mS/cm2 instead of gKL = 0.013 793 mS/cm2 (a): With no input. (b): With
3 µA/cm2 input (blue trace), and −1 µA/cm2 input (black trace).

Effect of Each Current

We then analyzed the effects of each current on the model, by again only considering
certain currents in the model at a time. For each combination of currents considered, we
tested the response of the model in the same way as the RE cell, with 100 ms currents of
3 µA/cm2 and −1 µA/cm2, applied between 50 ms and 150 ms. Table 4.2 summarizes the
results of these tests for each combination of currents considered. The following paragraphs
detail the results of these tests, and Figures 4.17 through 4.20 illustrate the results. Again,
the results for the full TC model are presented in Table 4.2, however the details and
illustrations for these results are given under the Injected Current heading, in Section
4.3.2.

For the model with only the passive currents, IL and IKL (Figure 4.17), the cell re-
sponded as expected. Without external stimuli, the cell reached a resting potential of
around −87 mV, and with the depolarizing and hyperpolarizing inputs the membrane po-
tential increased and decreased respectively. When INa and IK were added (Figure 4.18),
the cell’s response at rest and to the hyperpolarizing input were similar to the passive
model. Similar to the RE model, the cell produced a train of spikes in response to the
depolarizing input, again implying the necessity of the INa and IK currents in order to
generate action potentials.

With the addition of the IH current (Figure 4.19), the cell had a resting membrane
potential that gradually rose to about −75 mV over time. The response to the negative
input was that there was a depolarizing sag, where the cell did not hyperpolarize as much
as when IH was not included, and that the cell also returned to the −75 mV equilibrium
faster than with the positive input. For the model with the IT current instead of the IH
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Table 4.2: Summary of the Effects of Each Current on the TC Membrane Potential

Figure Currents Positive Input Negative Input

Fig. 4.17 IL, IKL Passive rise, then rest Passive fall, then rest

Fig. 4.18 IL, IKL, INa, IK Spiking, then rest Passive fall, then rest

Fig. 4.19 IL, IKL, INa, IK,
IH

Spiking, then rest Passive fall with depolar-
izing sag, then rest

Fig. 4.20 IL, IKL, INa, IK,
IT

Spiking, then oscillating
bursts

Passive fall, then oscillat-
ing bursts

Fig. 4.12 IL, IKL, INa, IK,
IH, IT

Spiking, then oscillating
bursts

Passive fall with depo-
larizing sag, then a re-
bound burst and oscillat-
ing bursts

current (Figure 4.20), oscillatory bursting occurred without any external stimuli. With the
negative input, the cell hyperpolarized and then returned to equilibrium where it started
its oscillatory bursts, and with the positive input the cell reacted with a train of spikes,
and then eventually returned to resting potential and displayed the same bursting pattern
after the input was removed.

These results coincide with the results from McCormick and Huguenard in 1992, where
they note a depolarizing sag that occurs after hyperpolarization, as a result of the IH
current [59], as can be seen in Figure 4.19. Our results also coincide with the work done
by McCormick and Pape in 1990 [60] and by Soltesz et al. in 1991 [76], which showed that
the IH and IT currents in TC cells control most of the electrophysiological properties.

66



(a) (b)

Figure 4.17: Individual TC cell, only IL and IKL included (mV vs ms). (a): With no input.
(b): With 3 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace).

(a) (b)

Figure 4.18: Individual TC cell, only IL, IKL, INa and IK included (mV vs ms). (a): With
no input. (b): With 3µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace).

67



(a) (b)

Figure 4.19: Individual TC cell, only IL, IKL, IK , INa and IH (mV vs ms). (a): With no
input. (b): With 3 µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace).

(a) (b)

Figure 4.20: Individual TC cell, with only IL, IKL, IK , INa and IT (mV vs ms). (a): With
no input. (b): With 3µA/cm2 input (blue trace) and −1 µA/cm2 input (black trace).
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4.4 Separate Network Models

With both our RE and TC models matching the main characteristics of the studied ex-
perimental cells, the next step was to set up networks of the RE cells in order to test their
network properties. Destexhe et al. analyzed different sized RE networks in their 1994
paper [22], and here we follow their analysis with various two-cell and five-cell network
models. For both sized networks, we considered different arrangements for the GABAA

synapses between the cells. This included considering when there was a GABAA synapse
connecting each cell to itself in order to mimic self-inhibition. In our networks, we labelled
the RE cells as RE0, RE1, RE2, RE3 and RE4, for convenience.

In their 1996 paper [21], Destexhe et al. did not consider networks of TC cells, and so
we did not consider these networks here. This makes sense, as in the full RE-TC network
there are no synapses between the TC cells.

4.4.1 RE Cell (2 Cells)

To follow the analysis made by Destexhe et al. in 1994 [22], we first set up two networks
of two RE cells connected via GABAA synapses. Unlike the 1994 model, we included gap
junctions between the cells. The first model considers the cells connected to each other
without an additional GABAA synapse to itself, and the second considers the extra self-
inhibition for each cell. Here, we included the IK[Ca] and ICAN currents, as Destexhe et
al. noted them to be necessary to account for the intrinsic properties of an RE cell network
[22].

For the two-cell networks, Destexhe et al. note in their online model [22] that a random
current pulse was inserted into each neuron in both networks. Specifically, the inputs had a
fixed duration of 200 ms, a random amplitude between 0 and −0.5 (presumably µA/cm2),
and a random time point of application. The values for the amplitude and the time point of
application were generated by a computerized random generator from uniform distributions
over the respective ranges. The total GABAA conductance (ḡGABAA

) for one cell in the
network was set to 1µS, and so we used 100 mS/cm2, as the surface area of our cell is
assumed to be 1000 µm2 ( 1µS

1000µm2 = 100mS
cm2 ).

For the network without self-inhibition, the cells displayed alternating multiple bursts,
as shown in Figure 4.21, similar to the results of Destexhe et al. in 1994 [22]. These results
make sense, as while one cell is bursting it is inhibiting the other cell via the GABAA

synapse, and so once the bursting in the first cell stops, the second cell starts to burst.
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This was also noted by Destexhe et al. [22]. For the network with self-inhibition, when only
one pulse was input into the network, (−1 µA/cm2 into RE0 between 50 - 150 ms), only
a single spike was produced by each cell before both reached and then stayed at resting
potential (not pictured). We then input a random pulse into both cells (Figure 4.22), and
as a result there was more spiking activity, however there was still no oscillatory bursts. We
tried a variety of inputs into the network, each varying in strength, polarization and time
point of application, however we could not get the model to produce oscillating activity.
We are unsure of why this is the case, however it could be a result of the difference in our
GABAA synapse model. Perhaps modelling the synapse in the same way as Destexhe et
al., where the spiking time is tracked, might produce the desired oscillating behaviour in
the network.

(a) RE Cell 0 (b) RE Cell 1

Figure 4.21: Two connected RE cells without self-inhibition (mV vs ms). In both cells
ḡGABAA

= 100 mS/cm2 and V0 = −74 mV. −1 µA/cm2 input applied to RE0 between
50-150 ms, and no input applied to RE1.

(a) RE Cell 0 (b) RE Cell 1

Figure 4.22: Two connected RE cells with self-inhibition (mV vs ms). In both cells ḡGABAA

= 50 mS/cm2 and V0 = −74 mV. −1 µA/cm2 input applied to RE0 between 50-150 ms,
and −1 µA/cm2 input applied to RE 1 between 1000-1100 ms
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4.4.2 RE Cell (5 Cells)

Next, we attempted to recreate the 5-cell network presented by Destexhe et al. in their 1994
paper [22]. As performed by Destexhe et al., we considered four different arrangements for
the connections between a ring of five cells, which included: only neighbouring connections;
neighbouring connections plus self-inhibition; connections to all other cells excluding itself;
and connections to all other cells including itself. For each of these set ups, we tested the
response of the network when first injected with a current of −1 µA/cm2 into RE0, between
50 and 150 ms, and then when each cell was injected with a random current pulse of 100 ms
and each had a different initial voltage. The total GABAA conductance (ḡGABAA

) for one
cell was set to 100 µS/cm2, and so we used an equal division of that value depending on
how many connections were in the network. Figures 4.23 through 4.30 illustrate these
results.

For the network of only connected neighbours, we can see from Figure 4.23 that when
RE0 first bursts, it inhibits its neighbours, RE1 and RE4, which both start to burst once
RE0 has stopped bursting. As such, RE0, as well as RE1 and RE4 appear to alternate
with their bursting. RE2 and RE3 have only a single spike, which makes sense since they
are inhibiting each other while they’re both bursting, resulting in fewer spikes. In Figure
4.24, with the multiple inputs to the network, the network shows more of an equal spiking
pattern between the cells, due to the extra stimulation.

With the self-inhibition included in this network and only one input (Figure 4.25), the
cells respond with a single burst rather than a train of spikes and have much less activity,
which coincides with the extra inhibition on each cell. With the multiple inputs (Figure
4.26), there is more spiking activity, due to the extra inputs, however there is no clear
pattern of oscillations between the cells, as Destexhe et al. presented in their paper [22].
This again could be due to the difference in how we modelled our GABAA synapses.

When each cell was connected to every other cell except itself, we see very little spiking
activity when there is only one input to the network (Figure 4.27), and slightly more
activity with multiple inputs (Figure 4.28). Our results do not perfectly match those by
Destexhe et al. in 1994 [22], as there is no pattern of oscillations, however we still see the
rebound activity from the cells as one bursts, and in some spots less spiking activity due to
the extra inhibition from all the cells. This could again be due to our differences with our
GABAA synapses. For the fully connected network (Figures 4.29 and 4.30), we see results
similar to the previous case, but with less spiking activity. As there is another factor of
inhibition put on each cell, it would make sense to expect fewer spikes. Again, this could
be due to the differences in our modelling.
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Although our model does not present the exact results of the model produced by Des-
texhe et al. [22], we have shown that it does include many of the intrinsic properties that
are found in RE cell networks. This includes oscillatory bursts in a two-cell network, and
rebound bursting due to inhibition. We were not able to resolve why our RE network
did not produce the results of Destexhe et al.’s model, however this characteristic was not
relevant in our main RE-TC network and so we did not pursue it further.

Figure 4.23: Five RE cells, connected via neighbours only (1 input) (mV vs ms). In all cells
ḡGABAA

= 50 mS/cm2 and V0 = −74 mV. One input applied to the network; −1 µA/cm2

to RE0 between 50-150 ms.
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Figure 4.24: Five RE cells, connected via neighbours only (5 inputs) (mV vs ms). In all
cells ḡGABAA

= 50 mS/cm2. Inputs (µA/cm2): RE0 = −1 (50-150 ms), RE1 = −0.5 (1500-
1600 ms), RE2 = −0.5 (1200-1300 ms), RE3 = −1 (750-850 ms), RE4 = −1 (2500-2600
ms). Initial Conditions (mV): RE0 = −74, RE1 = −68, RE2 = −71, RE3 = −70, RE4
= −69.
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Figure 4.25: Five RE cells, connected via neighbours and with self connections (1 input)
(mV vs ms). In all cells ḡGABAA

= 33 mS/cm2 and V0 =−74 mV. One input into RE0 of
−1 µA/cm2, between 50-150 ms.
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Figure 4.26: Five RE cells, connected via neighbours and with self connections (5 inputs)
(mV vs ms). In all cells ḡGABAA

= 33 mS/cm2. Inputs (µA/cm2): RE0 = −1 (50-150 ms),
RE1 = −0.5 (1500-1600 ms), RE2 = −0.5 (1200-1300 ms), RE3 = −1 (750-850 ms), RE4
= −1 (2500-2600 ms). Initial Conditions (mV): RE0 = −74, RE1 = −68, RE2 = −71,
RE3 = −70, RE4 = −69.

75



Figure 4.27: Five RE cells all connected without self connections (1 input) (mV vs ms).
In all cells ḡGABAA

= 25 mS/cm2 and V0 = −74 mV. One input into RE0 of −1 µA/cm2

between 50-150 ms.
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Figure 4.28: Five RE cells all connected without self connections (5 inputs) (mV vs ms).
In all cells ḡGABAA

= 25 mS/cm2. Inputs (µA/cm2): RE0 = −1 (50-150 ms), RE1 = −0.5
(1500-1600 ms), RE2 = −0.5 (1200-1300 ms), RE3 = −1 (750-850 ms), RE4 = −1 (2500-
2600 ms). Initial Conditions (mV): RE0 = −74, RE1 = −68, RE2 = −71, RE3 = −70,
RE4 = −69.
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Figure 4.29: Five RE cells, all connected with self connections (1 input) (mV vs ms). In
all cells ḡGABAA

= 20 mS/cm2 and all V0= −74 mV. One input into RE0 of −1 µA/cm2

between 50-150 ms.
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Figure 4.30: Five RE cells, all connected with self connections (5 inputs) (mV vs ms). In
all cells ḡGABAA

= 20 mS/cm2. Inputs (µA/cm2): RE0 = −1 (50-150 ms), RE1 = −0.5
(1500-1600 ms), RE2 = −0.5 (1200-1300 ms), RE3 = −1 (750-850 ms), RE4 = −1 (2500-
2600 ms). Initial Conditions (mV): RE0 = −74, RE1 = −68, RE2 = −71, RE3 = −70,
RE4 = −69.

79



4.5 RE-TC Network (4 Cells)

As we are interested in studying the thalamocortical network in relation to childhood
absence epilepsy, the next step was to create and set up a network of RE and TC cells.

We were interested in creating a network that could produce mostly alternating bursting
between the TC cells, representing normal brain activity, but then switch to synchronous
bursting, representing the SWD patterns observed on an EEG during absence seizures. To
determine if our network held these properties, as well as the intrinsic properties of a real
thalamocortical network, we set up and tested our RE-TC network in the same way as
Destexhe et al. in 1996 [21]. Their model, although not directly related to SWDs, produced
alternating bursts between the TC cells, which collectively burst at the same frequency
as the RE cells. As such, we attempted to replicate their model by creating a four-cell
model and implementing the same parameters in order to produce this activity. When
this was observed, we injected the network with different pulses and observed the effects
of incorporating the IK[Ca] and ICAN currents back into the model.

In terms of why the thalamocortical network initiates this oscillatory behaviour, Des-
texhe et al. proposed an explanation based on experimental results by Steriade et al. in
1993 [79] and Kim et al. in 1995 [49]. They suggested that these oscillations occur as a
result of the reciprocal interactions between the RE and TC cells. Specifically, the bursting
in TC cells evokes an AMPA-mediated excitatory response in RE cells as the IT current is
activated, which then evokes a GABA-mediated inhibitory response in the TC cells as the
IT current is deinactivated, creating a cycle of bursting between the two cell types [21].
They also proposed that the hyperpolarization-activated current, IH , plays a role in the
generation and termination of these oscillations [21].

Model Set Up

As mentioned, we set up a four-cell network in the same way as Destexhe et al. in 1996
[21], consisting of two RE cells and two TC cells, illustrated in Figure 4.31. The RE cells
are connected to each other via a GABAA synapse, and receive input from each TC cell
via an AMPA synapse. The TC cells are not connected to each other, but receive input
from each RE cell via both a GABAA and GABAB synapse. Destexhe et al. noted that
with a smaller network of only one RE and one TC cell, each burst from the RE cell was
followed by a TC burst. However, they note that during spindle oscillations a TC cell
should produce a rebound burst after two or three RE bursts. Due to this, and trying to
match other intrinsic properties of the thalamocortical network, such as the blocking of
GABA synapse conductances not affecting the network’s oscillations, Destexhe et al. chose
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to work with a four-cell model [21]. For our model, we labelled our RE cells as RE0 and
RE1, and our TC cells as TC0 and TC1, for convenience.

For this setup, Desetexhe et al. used the set of parameters listed in Table 4.3 to produce
the desired alternating bursting pattern between the TC cells, as displayed in Figure 7 of
their 1996 paper [21]. It is assumed that the two TC cells have an initial membrane
potential of −68 mV and the RE cells have −74 mV.

However, these exact values did not give us the desired results. In order to achieve
the alternating bursting between the TC cells, we found that apart from the synaptic
conductances, the two TC cells needed to have the same set of intrinsic parameter values,
specifically ḡH and ḡT . The parameter values and initial conditions that we used for the two
TC cells are given in Table 4.4. As a side note, because we included the two surface area
conversion factors in our model for the synapses, we could implement the same numerical
values given in the paper for the GABAA, GABAB and AMPA synapse conductances. For
gKL, we converted these as shown below.

Figure 4.31: RE-TC 4-cell network set up

Table 4.3: Original Parameter Values

Param Value Param Value

To REs ḡAMPA 0.2 µS ḡGABAA
0.2 µS

To TCs ḡGABAA
0.02µS ḡGABAB

0.04µS
TC0 ḡH 0.025 mS

cm2 gKL 5 nS (0.017241375 mS
cm2 )

TC1 ḡH 0.015 mS
cm2 gKL 3 nS (0.010344825 mS

cm2 )
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Table 4.4: Our Altered Parameter Values

Param Value Param Value Param Value

To REs ḡAMPA 0.2 µS ḡGABAA
0.2 µS

To TCs ḡGABAA
0.02µS ḡGABAB

0.04µS
TC0 ḡH 0.010 mS

cm2 gKL 4 nS (0.013793 mS
cm2 ) IC −70 mV

TC1 ḡH 0.010 mS
cm2 gKL 4 nS (0.013793 mS

cm2 ) IC −67 mV

To expand on this, we varied our model’s parameter values and found that when the
two TC cells had differing sets of parameter values like the 1996 model, alternate bursting
between the TC cells could not be observed (Figure 4.32 (a)). Instead, one TC cell showed
continuous bursting at the same frequency as the RE cells, while the other TC cell was
inhibited for the entire duration. This was true for multiple combinations of differing ḡH
and gKL parameter values, and regardless of the initial conditions used for the TC cells.

Figure 4.32 (b) shows the results of the model when incorporating the parameter values
from Table 4.4. Here, the desired behaviour is achieved, as the TC cells burst opposite each
other and collectively burst at the same frequency as the RE cells. Figure 4.32 (c) shows
the network when incorporating the parameter values from Table 4.4, but with different
initial conditions for the cells’ membrane potentials. Here, TC0 is set to −70 mV and TC1
is set to −68 mV.

Additionally, there is a difference in the shapes of the bursts between our model and
the 1996 model. The small inhibited reactions that occur in between alternating bursts
in the TC cells, for example, at approximately 1500 ms for TC0 in Figure 4.32 (b), are
much larger than the reactions between the alternating bursts in Destexhe et al.’s 1996
paper (See Figure 7, [21]). In Destexhe’s model, these inhibited spikes are more like small
depolarizations, rather than sub-threshold spikes, as observed in our model. However, this
could possibly be due to our different IH model, as the IH and IT currents are believed to
be responsible for the main bursting properties in TC cells. The main bursts in both our
RE and TC cells do appear to have mostly the same shape as those in the 1996 model,
and the slight variations could be due to the difference in modelling.

Across each type of bursting pattern in Figure 4.32; alternating, inhibited and syn-
chronous, the frequency of the bursts appears to be consistent, with a response from a TC
cell occurring in conjunction with each response of the RE cells, every 500 ms or so. This
does not fit the property that Destexhe et al. found with their 1996 model, where the TC
cells would respond every two to three bursts from the RE cells, however our model does
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display the main intrinsic bursting properties.

(a) (b)

(c)

Figure 4.32: Response of 4-cell RE-TC model (reduced) to different parameter values (mV
vs ms). (a): Using Table 4.3 parameter values. (b): Using Table 4.4 parameter values.
(c): Using Table 4.4 parameter values, with TC0 and TC1 ICs set to −70 mV and −68 mV
(respectively) instead of −70 mV and −67 mV.

Comparing Networks with the Reduced and Full RE Model

To observe the effects of incorporating the IK[Ca] and ICAN currents back into the model,
we tested the four-cell network in the same way as above. Implementing the parameter
values from Table 4.3 again led to one TC cell constantly bursting while the other was
constantly inhibited (Figure 4.33 (a)). Using the parameter values from Table 4.4 also led
to one TC cell constantly spiking while the other was constantly inhibited (Figure 4.33
(b)). Using Table 4.4 parameters and changing the TC ICs to −70 mV and −68 mV as
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before, again led to synchronous bursting (Figure 4.33 (c)). These results are very similar
to the reduced model (without IK[Ca] and ICAN), except that alternating bursting did not
occur.

(a) (b)

(c)

Figure 4.33: Response of 4-cell RE-TC model (full) to different parameter values (mV vs
ms). (a): Using Table 4.3 parameter values. (b): Using Table 4.4 parameter values. (c):
Using Table 4.4 parameter values, with TC0 and TC1 ICs set to −70 mV and −68 mV
(respectively) instead of −70 mV and −67 mV.

With this model, there was also a difference in the shape of the bursts by the RE cells,
when compared to the network with the reduced RE model. Figure 4.34 gives a side-by-side
comparison of an RE and TC cell from Figure 4.32 (c) and Figure 4.33 (c), as well as a zoom
of a single burst from both the RE and TC cells in each of these network simulations. From
this comparison, we can see that unlike the single burst from the reduced RE network, the
full RE network produces a burst followed by a train of spikes. These extra spikes lead to
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extra inhibited responses in the TC cells, whereas in the reduced RE network there was
only a single response from the TC cells. As the IK[Ca] and ICAN are responsible for AHPs
and ADPs in RE cells [22], this extra after-bursting activity is understandable.

It is also noted that for the network with the reduced RE model, the bursting frequency
was greater than for the network with the full RE model. Specifically, per 4000 ms there
were 5-6 bursts by each of the RE and TC cells in the reduced RE network, whereas the
full RE network had 4 bursts by each of the cells. This makes sense as there is more spiking
activity occurring after each burst in the RE cells of the full RE network.

To further compare the full and reduced models, with and without IK[Ca] and ICAN
respectively, we observed the response of each model when implementing various pairs of
ICs for the TC cells, and various current inputs into one TC cell between 50ms to 150ms.
Specifically, the pairs of TC ICs considered were: -68,-68; -67,-71; -67,-70; -66,-70; and
-68,-66 (mV). The various input strengths were: -1, -0.5, 0, 0.5, and 1 (µA/cm2). We
set gKL to 0.013 793 mS/cm2 and ḡH to 0.01 mS/cm2 in both TC cells, and used the same
synapse parameters from Tables 4.3 and 4.4. Table 4.5 organizes the results.

Table 4.5: Comparing the Reduced and Full Models

Reduced Model Full Model

No Input Alternating bursting (with
specific ICs), otherwise syn-
chronous bursting.

One cell bursts while other is
inhibited (with specific ICs),
otherwise synchronous burst-
ing.

Negative Input Synchronous bursting. Synchronous bursting.

Positive Input Alternating bursting (with
specific ICs), otherwise one
cell bursts while other is
inhibited.

One cell bursts while other is
inhibited.

Based on these tests, the main difference in bursting activity between the two cells ap-
pears to be that the alternating bursting in the reduced model is replaced by the inhibition
of one TC cell in the full model. Regardless, we continued to use the reduced model to
coincide with the model and results produced by Destexhe et al. in 1996 [21].
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(a)

(b)

Figure 4.34: Comparison of RE bursting in the network with the reduced RE model, and
the network with the full RE model (mV vs ms). (a): Two cells from Figure 4.32 (c)
(reduced RE model). (b): Two cells from Figure 4.33 (c) (full RE model).
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Effects of Initial Conditions on the Network

One thing we noticed with our RE-TC network is that the occurrence of either alter-
nating or synchronous bursting between the TC cells is largely dependent on the initial
conditions (ICs) that the membrane potential is set to in each TC cell. For example, as
shown in Figure 4.32 (a) and (c), changing only the initial conditions from −70 mV and
−67 mV to −70 mV and −68 mV led to synchronous bursting as opposed to alternating
bursting.

To better understand this relationship between the type of bursting and the ICs of
the TC cells, we tested the network for each combination of TC ICs between −60 mV
and −70 mV, as these are typical resting membrane potentials of TC cells. From the
results shown in Figure 4.35, where A represents alternating bursting and S represents
synchronous bursting, it appears that when the ICs are similar to each other synchronous
bursting occurs between the TC cells, whereas with very different ICs alternating bursting
happens. For example, the IC pair of −66 mV and −65 mV lead to synchronous bursting,
while −60 mV and −70 mV lead to alternating bursting.

This is an interesting result, as it implies the synchronous bursting pattern in our
model is reliant on the present membrane potential in TC cells. This makes sense, as
during synchronous bursting the cells are producing the same behaviour, i.e., giving the
same responses at the same time. So, with ICs that are more similar, the cells are more
likely to produce this synchronous bursting.

To test this idea further, we examined the model in the following way. For various pairs
of ICs that were known to lead to either alternating or synchronous bursting, we injected
current pulses of various strengths into TC0 after 3000 ms, in order to see whether the
network could switch behaviour. A portion of the results are shown in Table 4.6.

The general trend appeared to be that if the cell started with synchronous bursting,
then after the input at 3000 ms, the behaviour switched to one TC cell being inhibited.
If the network started with alternating bursting between the TC cells, then typically it
would remain with this pattern, with a few exceptions occurring with a 1µA/cm2 input
where it would switch to TC1 being inhibited. It is also noted that the burst frequency
observed during each of these simulations were similar, with two to three bursts occurring
per 1000 ms. This implies that temporary inputs to change the membrane potential of the
model’s cells can cause one of the TC cells to stop bursting, however it doesn’t affect the
network’s ability to switch between alternating and synchronous bursting.

Overall, observing this trend with the initial conditions, and especially the results from
Figure 4.35, would allow us to compare the effects of possible CAE factors on our network
behaviour. Specifically, we can use these results to see if different factors, such as the
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CACNA1H mutation, might increase or decrease the prevalence of synchronous bursting
in the network. This, along with other tests, will be discussed in the next chapter.

Figure 4.35: Response of RE-TC model to variations in TC initial conditions. A represents
alternating bursting and S represents synchronous bursting between the TC cells.
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Table 4.6: Effects of Various Temporary Inputs (3000 ms to 3100 ms) on the Occurrence of
Alternating or Synchronous Bursting

TC0 & TC1 ICs Response Before Input Response After Input

TC0: −1 µA/cm2

-68, -68 Synchronous TC1 inhibited
-67, -70 Alternating Alternating
-66, -70 Alternating Alternating
-68, -66 Synchronous TC1 inhibited

TC0: −0.5 µA/cm2

-68, -68 Synchronous TC1 inhibited
-67, -70 Alternating Alternating
-66, -70 Alternating Alternating
-68, -66 Synchronous TC1 inhibited

TC0: 0.5 µA/cm2

-68, -68 Synchronous TC1 inhibited
-67, -70 Alternating Alternating
-66, -70 Alternating Alternating
-68, -66 Synchronous TC1 inhibited

TC0: 1 µA/cm2

-68, -68 Synchronous TC1 inhibited
-67, -70 Alternating TC1 inhibited
-66, -70 Alternating TC1 inhibited
-68, -66 Synchronous TC1 inhibited
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Chapter 5

Model Application to Childhood
Absence Epilepsy

With our RE-TC thalamic network developed, we then turned our attention to using
this model to study possible causes and factors behind childhood absence epilepsy. In this
section, we first consider the effects of the GABAA synaptic conductances on the occurrence
of SWD spiking patterns, by altering the value of ḡGABAA

in the synapse models going to
the TC cells. We then look at the effects of the CACNA1H gene defect on the network,
by altering the time constant of inactivation equation, τH(V ) in our low-threshold Ca2+

currents (IT ) of the RE cells. We conclude with an analysis of the effects of the RE’s IT
conductance on the network, by altering the gT values in the RE cell model.

5.1 GABAA

As discussed in Section 3.2, the effects of a decrease in function of the GABAA synapses are
believed to hold a role in the generation of the slow wave discharges observed in absence
epilepsies. Specifically, in 2018 Knox et al. showed that with decreased cortical GABAA

conductances, and an increased IT conductance, spindle oscillations could be changed to
oscillations of slow wave discharges [50]. Before this, in 2011 Crunelli et al. also suggested
that the transition to spike and wave discharges in the thalamus/thalamocortical network
may be due to a decreased function in GABAA receptors [12]. Further, studies by Maljevic
et al. in 2006 suggested that a genetic mutation in the α1 subunit of the GABAA receptor,
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found in mouse models of absence epilepsies, may lead to a decrease in GABAA conductance
[58].

With this being said, we decided to test the effects of the GABAA currents going from
the RE cells to the TC cells, on the behaviour of our network. For each value of the TC’s
GABAA conductance (ḡGABAA

= 0.02, 0.04, 0.06 and 0.08), we tested the network in the
same way as when testing the ICs in Section 4.5; by observing the response of the network
for each combination of ICs between −60 mV and −70 mV. In doing this, we were able to
produce visual representations of how often synchronous bursting occurred in comparison
to alternating bursting, and compare the prevalence of the synchronous bursting across the
different values of ḡGABAA

.

Figure 5.1 shows the results of this, where A again represents alternating bursting in
the network, S represents synchronous bursting, and D represents the cases where one cell
is inhibited while the other is bursting. As shown in Figure 5.1, and listed in Table 5.1,
the general trend appears to be that as ḡGABAA

is decreased from 0.08 through to 0.02,
the prevalence of synchronous bursting increases, with the exception being at ḡGABAA

=
0.06. For this specific value, Figure 5.1 shows that for IC combinations closer to -70mV,
alternating bursting is more prevalent than with ḡGABAA

= 0.08, however for combinations
around −65 mV and lower, the original trend still holds. As it is the synchronous bursting
in the network that corresponds to SWDs on an EEG, our results imply that the GABAA

synapses may have an effect on the generation of childhood absence epilepsy, coinciding
with the results discussed above. Specifically, that with a lower GABAA conductance in a
network, SWDs may be more prevalent.

As mentioned earlier, the GABAA synapses are inhibitory, with the RE cells in the
network inhibiting the TC cells. A decrease in the synapse conductance and a resulting
decrease in function implies a possible reduced ability to inhibit the TC cells. With less
inhibition, the TC cells could spike more freely, resulting in synchronous bursting where
both TC cells spike at the same frequency as the RE cells, as opposed to every second
spike being inhibited in the alternating bursting. As such, our results here make sense.

Table 5.1: Percentage of Synchronous Bursting Cases w.r.t. ḡGABAA
. Each percentage is

based on the 121-simulation tests from Figure 5.1.

ḡGABAA
(µS)

0.02 0.04 0.06 0.08

48.8% 37.2% 25.6% 30.6%
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Figure 5.1: Response of RE-TC model to variations in ḡGABAA
values and TC initial con-

ditions. A represents alternating bursting and S represents synchronous bursting between
the TC cells. D represents one TC cell bursting while the other TC cell is inhibited.
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5.2 CACNA1H Mutation

Next, we looked at the effects of a gene mutation that is believed to be one of the multiple
genetic factors involved in childhood absence epilepsy. Specifically, we expanded on results
from Powell et al. in 2009 [70], which studied the relationship between a mutation in
the T-type Ca2+ channel gene, CACNA1H (or Cav3.2), and the occurrence of absence
seizures in GAERS. For us, in order to test the effects of this genetic defect on our network
model, we derived an appropriate alteration of an inactivation time constant parameter
in our network that would mimic the effects of the CACNA1H mutation in GAERS, and
implemented it in both an individual RE cell as well as our RE-TC network.

To justify why they targeted the CACNA1H gene in their 2009 paper, Powell et al. ref-
erence a number of studies that have implied the importance of T-type Ca2+ channels in
absence epilepsies. Specifically, they point to work by Tsakiridou et al. in 1995 [84], and
Talley et al. in 2000 [81], which showed that in the thalamic reticular nucleus of GAERS,
there is an increase in T-type Ca2+ channel function, as well as in the expression of mRNA
for the Cav3.2 gene. Also, they reference work by Chen et al. in 2003 [8], Liang et al. in
2006 [55] and 2007 [56], and Heron et al. in 2007 [37], which showed that mutations in the
CACNA1H gene were found in patients with juvenile absence epilepsy as well as childhood
absence epilepsy.

In terms of the CACNA1H mutation itself, Powell et al. describe it as a homozygous,
missense mutation in GAERS, occurring in exon 24 of the CACNA1H gene [70]. Without
going into too much detail, this means that a change in a single nucleotide base, in this
case from guanine (G) to cytosine (C) [70], occurs at a specific coding location on both
copies of the gene, changing the compositional structure of the gene. From their experi-
mental studies on GAERS, Powell et al. found a number of results implicating a connection
between absence seizures and this mutation. Specifically, they found that the number of
rats experiencing seizures was greater for the group of rats with the mutation (gcm) than
for the group without the mutation (control), and that the gcm rats spent more time in
seizure activity than the control rats. Further, they found that the gcm rats had a much
shorter time period between seizures than the control rats, and that the number of seizures
occurring was greater for the gcm rats than for the control rats [70].

To model this mutation in our network, we used another part of Powell et al.’s study
which used in vitro testing to observe the effects of the mutation on the Cav3.2 channels in
human embryonic kidney cells. These tests found that the channels with the mutation held
a much faster recovery from inactivation rate than the channels without the mutation. The
specific values given by Powell et al. were 745.0 ± 32.2 for the control channels, compared
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with 436.8 ± 37.6 for the gcm channels, with the units assumed to be in ms. [70].

Although this is limited data, we used this difference of 42% to alter our inactivation
time constant equation, τH(V ), in the low-threshold Ca2+ currents (IT ) of the RE cells, to
mimic this increased rate. In our model, the inactivation and recovery from inactivation are
both represented by the variable, h (see Equations 4.3 and 4.5). As such, the appropriate
time constant to modify was the τH(V ) equation (Equation 4.9). We used the computed
value of τH(V) at −110 mV as a comparison point, and came up with an altered τH equation
that would result in values 58% of the original equation. This was achieved by replacing
the 0.27 coefficient in the original equation (Equation 5.1), with 0.1335 in the new equation
(Equation 5.2). We also created a further-altered τH equation to give values 33% of the
original, and this was achieved with a coefficient of 0.049, as shown in Equation 5.3. Figure
5.2 illustrates the curves for the three τH equations. In our model, we set the altered
coefficient as a parameter, gg, in order to simplify comparing the three equations.

τh(V ) = 22.7 +
0.27

exp[V+48
4

] + exp[−(V+407)
50

]
(5.1)

τh(V ) = 22.7 +
0.1335

exp[V+48
4

] + exp[−(V+407)
50

]
(5.2)

τh(V ) = 22.7 +
0.049

exp[V+48
4

] + exp[−(V+407)
50

]
(5.3)

We first tested the effects of these altered τH equations on the individual RE cell by
implementing a short current pulse of −1 µA/cm2 and 1µA/cm2 into the reduced model
between 50 and 150 ms, for each of the three altered τH equations. The results of comparing
the original τH equation (gg=0.27) and the 58% τH equation (gg=0.1335) are shown in
Figure 5.3. When implementing the 58% τH equation, the model reacted slightly quicker
to the stimuli than with the original τH equation. With the negative input, the model
also returned to rest quicker than it did with the original τH equation. For the 33% τH
equation, the results were almost identical, and so they are not shown.

We then tested the full model, with the IK[Ca] and ICAN currents, in the same way,
with the results shown in Figure 5.4. The main difference here was that with the negative
input, the RE cell took almost twice as long to cease bursting with the 58% τH equation
than with the original. However, in both the reduced and full models, the cells responded
quicker to the inputs when the CACNA1H mutation was implemented.
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Figure 5.2: Inactivation time constant equations (τH) for IT in RE cell. Black: original
equation (gg = 0.27), Blue: 58% equation (gg = 0.1335). Red: 33% equation (gg = 0.049)
(graph created using Desmos.com.)
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Figure 5.3: Response of individual RE cell (reduced) to varying the τH equation of IT (mV
vs ms).
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Figure 5.4: Response of individual RE cell (full) to varying the τH equation of IT (mV vs
ms).
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To observe the effects of the increased inactivation recovery rate on our RE-TC network,
we tested our model in the same way as with the GABAA conductance, in Section 5.1.
For each value of the TC’s GABAA conductance (ḡGABAA

= 0.02, 0.04, 0.06 and 0.08), we
implemented each of our τH equations (gg = 0.27, 0.1335 and 0.049), and observed the
response of the network for each combination of the TC cells’ IC’s between −60 mV and
−70 mV. This resulted in 12 graphs that allowed us to visually observe the patterns of
synchronous and alternating bursting prevalence in the model with respect to the values of
ḡGABAA

and the τH equations. Figures 5.5 and 5.6 displays these 12 graphs for comparison,
and Table 5.2 lists the number of synchronous bursting cases for each combination.

From these results, it appears that apart from ḡGABAA
= 0.04, the net change as τH is

decreased from 0.27 to 0.049, is that the occurrence of synchronous bursting either increases
slightly or stays the same. Figures 5.5 and 5.6 show that although the net change stayed
the same for some values of ḡGABAA

, there was some switching between alternating and
synchronous bursting for some pairs of IC’s. Although these results are not significant
enough to conclude that a reduced τH equation in the IT currents increases the occurrence
of SWDs, it does imply that it has some effect on it. It is possible that with a larger
effect on the individual RE cells, such as from implementing a more intricate method to
represent the CACNA1H mutation, a larger effect on the network might be seen.

Table 5.2: Percentage of Synchronous Bursting Cases w.r.t. ḡGABAA
and τH . Each per-

centage is based on the 121-simulation tests from Figures 5.5 and 5.6.

gg (τH(V ))
0.27 (Original) 0.1335 (58%) 0.049 (33%)

ḡGABAA
(µS)

0.02 48.8% 47.1% 48.8%
0.04 37.2% 37.2% 35.5%
0.06 25.6% 27.3% 28.9%
0.08 30.6% 30.6% 30.6%
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Figure 5.5: Response of RE-TC model to variations in τH(V ) and TC initial conditions
for ḡGABAA

= 0.02, 0.04. A represents alternating bursting and S represents synchronous
bursting between the TC cells. D represents one TC cell bursting while the other TC cell
is inhibited.
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Figure 5.6: Response of RE-TC model to variations in τH(V ) and TC initial conditions
for ḡGABAA

= 0.06, 0.08. A represents alternating bursting and S represents synchronous
bursting between the TC cells.
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To better understand the effects of the altered τH equations on the network, we com-
pared the bursting of a RE cell and a TC cell in each of the networks, with the original, 58%
and 33% τH equations. We also plotted and compared the GABAA current (from RE to
TC) vs time for each of the τH equations, as this current depends on the activity of the RE
cells. We used the results from Figures 5.5 and 5.6 to choose specific parameters and ICs
so that alternating bursting would occur with the original τH equation, and synchronous
bursting would occur with the altered τH equation.

Figure 5.7 shows the comparisons between the original τH equation and the 58% τH
equation. For the network with the original τH , the burst frequency in the RE cell was 13
bursts per 8000 ms, whereas with the 58% τH the RE burst frequency was 11 bursts per
8000 ms. An effect was also seen in the comparison of the GABAA currents, where the
current displayed a slightly larger amplitude with the 58% τH than with the original τH .

For the comparison with the 33% τH equation (Figure 5.8), the burst frequency of the
RE cells also decreased with the altered τH . With the original τH , there were again 13
bursts per 8000 ms, and with the 33% τH there were 11 bursts per 8000 ms. In comparing
the GABAA current, the 33% τH model displayed only a slightly higher amplitude in
current than the model with the original τH .

Although only a small change in cell behaviour was observed, these results do show an
increase in GABAA synaptic activity when the altered τH equations are implemented. This,
paired with our other results, again implies that the increased inactivation recovery rate
from the CACNA1H mutation has some direct effect on the occurrence of synchronous
bursting and thus slow wave discharges in the network. As the data we based our τH
alteration on was limited, our results give a general idea of the effects of the increased
inactivation recovery rate on the occurrence of the SWDs associated with childhood absence
epilepsy.
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Figure 5.7: Comparing IGABAA
and RE-TC bursting, for the 58% τH(V ) (gg = 0.1335)

(mV vs ms). Top: IGABAA
vs Time. Four images : RE and TC cell bursting (mV vs ms).

Other Parameters : ḡGABAB
= 0.04, ḡGABAA

= 0.06. Initial Conditions : TC0 = −69 mV,
TC1 = −68 mV.

102



Figure 5.8: Comparing IGABAA
and RE-TC bursting, for the 33% τH(V ) (gg = 0.049) (mV

vs ms). Top: IGABAA
vs Time. Four images : RE and TC cell bursting (mV vs ms). Other

Parameters : ḡGABAB
= 0.04, ḡGABAA

= 0.06. Initial Conditions : TC0 = −68 mV, TC1 =
−67 mV.
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5.3 T-Type Ca2+ Channel Conductance

In Section 5.2, we looked at the effects of altering the inactivation time constant equation
in the IT currents of the RE cells. However, we were also interested in studying the general
effects of the T-type Ca2+ channels on the network. Previous studies have suggested that
the T-type Ca2+ channels in the thalamocortical network may play a role in the generation
of childhood absence epilepsy. As mentioned, in 2005 Vitko et al. studied the effects of the
T-type channel gating on thalamic firing [85], and studies by Knox et al. in 2018 looked at
the effects of GABAA synapse and T-type Ca2+ channel conductances on thalamocortical
network activity. As such, we use our RE-TC network model to study the effects of the IT
conductance on the network behaviour.

In the same way as before, we tested the effects of the IT current by changing the
conductance in the RE cells (ḡCar), and observing the response of the network at different
levels of ḡGABAA

, and for each combination of TC ICs between −70 mV and −60 mV. We
considered values of 0.1 µS/cm2, 1.75µS/cm2 (original), and 2 µS/cm2, for the IT conduc-
tance. We chose not to consider values greater than than 2 µS/cm2 for ḡCar, as these values
led to the TC cells producing a single spike, before becoming inhibited for the remainder
of the simulation. We chose 0.1 µS/cm2 as it was felt that this value was small enough
to test the effects of a very minimal IT conductance. Figures 5.9 and 5.10 display the 12
resulting graphs for these tests, and Table 5.3 lists the number of synchronous bursting
cases for each combination of parameter values.

For each value of ḡCar, it appeared that as ḡGABAA
was increased from 0.02 through

to 0.08, the occurrence of synchronous bursting decreased, with the exception being at
ḡGABAA

=0.06 with ḡcar = 1.75. We can also see that for ḡGABAA
values of 0.04 and 0.06, as

ḡCar is increased from 0.1 to 2, the occurrence of synchronous bursting increases, and the
opposite is true for the more extreme ḡGABAA

values of 0.02 and 0.08. With exceptions, the
general trend of our results here does agree with the results from Knox et al. in 2017 [50].
Specifically, that increased IT and decreased cortical GABAA functions can lead to SWDs.
Although our results here are not significant, they do imply the T-type Ca2+ channels
could play a role in generating SWDs, especially when considered with other factors.
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Figure 5.9: Response of RE-TC model to variations in IT conductance and TC initial
conditions for ḡGABAA

= 0.02, 0.04. A represents alternating bursting and S represents
synchronous bursting between the TC cells. D represents one TC cell bursting while the
other TC cell is inhibited.
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Figure 5.10: Response of RE-TC model to variations in IT conductance and TC initial
conditions for ḡGABAA

= 0.06, 0.08. A represents alternating bursting and S represents
synchronous bursting between the TC cells.
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Table 5.3: Percentage of Synchronous Bursting Cases w.r.t. ḡGABAA
and ḡCar. Each

percentage is based on the 121-simulation tests from Figures 5.9 and 5.10.

ḡCar (µS/cm2)
0.1 1.75 2

ḡGABAA
(µS)

0.02 52.1% 48.8% 47.1%
0.04 25.6% 37.2% 37.2%
0.06 22.3% 25.6% 31.4%
0.08 20.7% 30.6% 27.3%

Overall, each of the three factors we studied so far in this section have produced some
SWD-generating effects on our RE-TC network model. Our results here further support
the findings in previous studies that showed a link between each the GABAA synapses, the
CACNA1H mutation and the T-type Ca2+ channels, and childhood absence epilepsy. Our
results also further support the idea that multiple factors together are responsible for the
disorder. In the next section, we increase the size of our network to eight cells in order to
determine whether our results hold for larger networks.

5.4 8-Cell Network

Before considering a larger network model, we first summarize the results of our four-cell
model. We found that with different pairs of initial conditions for the two TC cells, the
response of the network varied between alternating and synchronous bursting. Expanding
on this property, we also found that changing the GABAA conductance between the RE
and TC cells from 0.02 through to 0.08 resulted in a general decrease in the prevalence
of synchronous bursting in the network. Further, we saw that altering the inactivation
recovery rate in the IT currents of the RE cells, as well as changing the IT conductance
in the RE cells, also influenced whether the network produced alternating or synchronous
bursting. With this, our next step was to develop an eight-cell network in order to de-
termine whether our previous results were valid for larger network models. Here, we also
observed what effects more diverse combinations of TC ICs had on the model.

As mentioned, we created our eight-cell model in the same way as our four-cell model.
Specifically, each RE cell was connected to every other RE cell via GABAA synapses, each
RE cell received input from each of the TC cells via AMPA synapses, and each TC cell
received input from each RE cell via GABAA and GABAB synapses. The cells’ parameters
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were kept the same, holding the IT conductance and the τH equation at their original
values, with ḡCar = 1.75 and gg = 0.27. The synaptic conductances were an exception,
which were altered according to the number of corresponding connections in the network;
ḡAMPA = 0.1, ḡGABAA

= 0.067 (to RE cells), ḡGABAB
= 0.02, and ḡGABAA

= 0.01, 0.02,
0.03 and 0.04 (to TC cells).

Comparing Results from the 4- and 8-Cell Models

To determine whether our results from our four-cell model hold for larger networks,
we tested our network in the following way. For the subset of TC ICs that observed the
most changes between synchronous and alternating bursting when changing ḡGABAA

, we
observed the response of our eight-cell network at these pairs of ICs for each value of
ḡGABAA

. We separated our four TC cells into two pairs, and assigned one IC value to
each pair. We considered ḡGABA = 0.01, 0.02, 0.03, 0.04, as these values correspond to
the original change in GABAA conductance with the four-cell model. The specific ICs
considered were −64 mV through to −68 mV.

Figure 5.11 shows a comparison of the subset of ICs for both the eight-cell and four-cell
networks at each of the corresponding ḡGABAA

values. As shown, there is no difference in
response of the network between the two models. We also tested this subset of ICs for
changes in the τH equation, as before, and also found no difference between the eight- and
four-cell models (not pictured). With no difference at all, it is implied that our previous
results will hold for larger networks.
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Figure 5.11: Response of 8-cell vs 4-cell RE-TC model to variations in ḡGABAA
and TC cell

initial conditions. A represents alternating bursting and S represents synchronous bursting
between the TC cells. Note that there is no difference between the two.
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Effects of Differing TC IC Combinations

Having only used combinations of two ICs for the TC cells in our four-cell model, here
we considered the effects of implementing different combinations of ICs for the TC cells.
We considered only the sensitive subset of TC ICs (−64 mV to −68 mV), and started by
considering the five combinations where all four ICs were different. From there, we then
looked at the cases where three ICs were the same with only one IC different, and then
considered only a couple of cases where two TC ICs were the same and the other two differ-
ent. It is also noted that since each TC cell is connected in the same manner as every other
TC cell, the assignment of which IC to which cell is not important. Here, we considered it
synchronous bursting if all four TC cells spiked together, and alternating bursting if two
subsets of cells spiked opposite of each other. Figures 5.12 to 5.14 illustrate the results,
with S representing synchronous bursting and A representing alternating bursting. The
numbers in the parentheses represent which cells were bursting opposite each other, i.e., (0
- 123) indicates TC0 was bursting opposite TC1, TC2 and TC3. It is also noted that the
bursting frequency was the same in each of the cases, as was the amplitude of the spikes,
with six to seven bursts per 4000 ms and an amplitude of approximately 45 mV.

Figure 5.12: Response of 8-cell RE-TC model to variations in TC initial conditions (all dif-
ferent). A represents alternating bursting and S represents synchronous bursting between
the TC cells.

As shown in Figure 5.12, when all four TC ICs were different, the network was more
likely to produce alternating bursting. This coincides with our previous results from the
four-cell model, where for pairs of similar or identical ICs, synchronous bursting occurred,
and for pairs that were very different, alternating bursting resulted. It is also noted that
in some cases there was one cell that spiked opposite of the other three, and in other cases
two cells spiked opposite of the other two. The reason for this is unclear, as there is not
a distinct pattern as to which sets of ICs or ḡGABAA

values cause the 1-3 bursting and the
2-2 bursting in this case.
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For the simulations with three identical ICs and one different (Figure 5.13), we see the
same trend in the results. When the difference between the two IC values is large, at least
2 to 3 mV, alternating bursting occurs, whereas synchronous bursting occurs otherwise.
It is also noted that unlike the previous simulations with all different IC’s, in each situa-
tion where alternating bursting occurred, it was the cell with the different IC that spiked
opposite of the other three.

As for the cases with only two different (Figure 5.14), the same trend appears. For the
most part, when the three values of IC’s are close to each other, the network responds with
synchronous bursting, and when there is a large difference between at least two of the IC
values, alternating bursting occurs. It also appears that for the lower values of ḡGABAA

(0.01 and 0.02) it is more likely that synchronous bursting will occur, and for larger values
(0.03 and 0.04) the network tends to respond with alternating bursting, even for the same
combination of IC’s.

Overall, the general trend appears to be that the cell, or set of cells, that differs the
most in value from the others, bursts opposite of the other cells. However, this pattern
does not hold over every simulation. Also, in some cases, with higher values of ḡGABAA

,
there are more alternating bursting cases than synchronous bursting cases.

With all of this considered, it appears that the results from our eight-cell model coincide
with those from our four-cell model. Specifically, our tests regarding the effects of ḡGABAA

and τH on the network, comparing the network behaviour for the same subset of TC ICs,
showed the exact same results. With our tests of differing ICs and ḡGABAA

, we saw that
for some combinations of ICs, with a larger ḡGABAA

, less synchronous bursting occurred,
which was a general trend observed in Section 5.1. As such, it is implied that our four-cell
model can be expanded in size, and the effects on the network should not change.
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Figure 5.13: Response of 8-cell RE-TC model to variations in TC initial conditions (3
same). A represents alternating bursting and S represents synchronous bursting between
the TC cells.
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Figure 5.14: Response of 8-cell RE-TC model to variations in TC initial conditions (2
same). A represents alternating bursting and S represents synchronous bursting between
the TC cells.
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Chapter 6

Conclusions

We started the development of our RE-TC network model by creating a RE cell model
based on the model presented by Destexhe et al. in 1994 [22]. Our RE model displayed
typical RE cell behaviour, including the ability to create a rebound burst in response to
hyperpolarizing input. We then created networks of two and five RE cells, and saw that
our RE cells were able to inhibit one another, as well as respond to inhibition. Our results
here were not exactly the same as those by Destexhe et al., however this could be due to
the difference in how our GABAA synapses were modelled. We developed the model for the
TC cell based on Destexhe et al.’s model from 1996 [21]. Due to the absence of calcium-
dependence in our IH current, our model was not able to produce waxing and waning
oscillations, however it did display spontaneous oscillations, a rest state, delta oscillations
and the ability to produce rebound bursts from hyperpolarizations.

After combining our two models to produce the RE-TC network, we were able to
determine a set of parameters that could produce both alternating bursting as well as
synchronous bursting between the TC cells in the network. We were interested in this,
as alternating bursting represented ‘healthy’, non-seizure activity in the network, whereas
synchronous bursting was representative of absence seizure and SWD activity. Once this
was achieved, we tested the GABAA synapse conductance, the CACNA1H mutation and
the IT conductance on the network, to observe how these factors affected the ability of the
network to switch between alternating and synchronous activity.

With the initial conditions, we found that when the TC ICs were similar in value,
synchronous bursting occurred, whereas with initial conditions that were farther apart,
alternating bursting occurred. This result made sense, as similar parameter values should
lead to similar activity in the cells, which in this case would be bursting in synchrony. We
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tested the effects of the GABAA (from RE to TC) synapse on the network, by altering the
value of the conductance, and found that as the conductance was increased, the prevalence
of synchronous bursting in the network decreased. This result also made sense, as with
increased function of the GABAA currents, the RE cells could inhibit the TC cells more,
leading to a decrease in TC bursting activity.

We also implemented the CACNA1H mutation in the network, by altering the inac-
tivation time constant equation in the IT current of the RE cells, and found that this
mutation had only a small effect on the network. Specifically, only when ḡGABA was 0.06
(µS) did we see any significant changes in the prevalence of synchronous bursting in the
network. One explanation for this is in the way we implemented the mutation. We altered
our τH equation in a simplistic way, by altering the coefficient of the equation based on
two values that were presented in one study. Perhaps if we considered the results from
multiple studies, and consolidated them into a more intricate method of implementing the
mutation, our network might have produced more significant results.

We tested the effects of the T-type Ca2+ channel by altering the value of the IT con-
ductance. Here, we found more variation in the prevalence of synchronous bursting across
the levels of factors being considered, than we did with the CACNA1H mutation. For
some values of ḡGABA, as the IT conductance was increased, the prevalence of synchronous
bursting increased, and for each value of IT conductance, as ḡGABA was decreased, the
synchronous bursting mostly decreased as well. As other studies (Knox et al., 2018 [50])
showed a definitive trend between SWD activity and the interactions of IT conductance
and GABAA conductance, the lack of this trend in our results may be due to the simplicity
of our model. Specifically, in Knox et al.’s study, neurons from the cortex and thalamus
were considered in their model, however we only considered neurons from the thalamus.
Perhaps if we included cortical neurons, allowing for extra excitatory and inhibitory ac-
tivity between the neurons we currently have, a more conclusive result might have been
observed. Expanding on this idea, it is possible that many of our results here, regarding
the GABAA conductance, the IT conductance and especially the CACNA1H mutation,
could have been more definitive with the inclusion of the cortical neurons in our model.

Since we did not observe any significant changes in synchronous/SWD patterns when
testing our thalamic model of the thalamocortical network, we conclude that the thalamus
may not be solely responsible for SWD activity. Further, as we did not observe the ability
of our network to switch to synchronous bursting from alternating bursting within the same
simulation, this implies that the thalamus part of the thalamocortical network may not be
responsible for the initiation of SWDs. Both of these results coincide with previous studies
that have suggested that both the thalamus and the cortex are involved the propagation
of SWDs. Not only this, but that a region of the thalamocortical network other than the
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thalamus (perhaps the somatosensory cortex) may be the source of SWD initiation [61].

Overall, our results here imply the same general conclusion as many other studies that
have addressed the causes of childhood absence epilepsy. That is, that the disorder is not
likely to be caused by one particular gene or factor, but by multiple factors together [13].
As we saw, the prevalence of synchronous bursting, or SWD activity, in our network relied
on the interactions of multiple factors, and not just one in particular. Although our results
indicated the possibility of the CACNA1H gene, the GABAA synapses and the T-type
Ca2+ channels, as part of the cause of CAE, further studies are still needed in order to
determine the specific set of genes and causes responsible for the disorder.

6.1 Future Directions

As mentioned, further research is required in order to determine the causes of childhood
absence epilepsy. Expanding on our model and results presented here, one approach that
could be taken would be to implement the CACNA1H mutation in a more detailed manner.
As discussed, examining the results from multiple studies of this gene might allow for a more
intricate method of implementation, which could give more significant and determinant
results.

In a similar way, one could implement the NIPA2 mutation, discussed in Section 3.2,
into the network. This mutation is involved with magnesium transport, and so is believed
to possibly affect NMDA receptors in the thalamocortical network. This approach would
require more work, however, as currently our network does not include NMDA synapses.
However, with a less simplistic model of the thalamocortical network, the implementation
of this genetic mutation might provide some useful results.

In saying this, implementing more cell types into our network to create a full, or
partially-full, model of the thalamocortical network, would be useful for obtaining more
accurate results when testing certain factors and genetic defects in relation to CAE. At
a minimum, cell types from the cortex, such as cortical pyramidal and cortical inhibitory
neurons, would allow for a general idea of how the thalamocortical network behaves as a
whole in response to testing certain factors. Ideally, a better representative model of the
thalamocortical network would allow for the specific set of genes responsible for CAE to
be determined, however much work would still be required in order to achieve this.
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Appendix A

RE Model for XPPAUT

#Initialize

init v=-74

init Cai = 0.00024

dV/dt = (1/cm)*(-Ina -Ik -Il - It - Ikca - Ican + Iapp + i*H)

#Parameters

par cm=1

par gbarna=100, gbark=10, Ena=50

par gl=0.05, El=-78

par gbarca=1.75, Eca=120

par gbarkca=10, Ek=-95, n=2, a=48, b=0.03

par gbarcan=0.25, Ecan=-20, nn=2, aa=20, bb=0.002

par d=1

par KT=0.0001, KD=0.0001

par cainf=0.00024, taur=100, k=10

#eqn for ta1 = 3^((36-22)/10)=4.6555367

par ta1=4.6555367

par j=-55

number F=96485.332

#Intracellular Calcium Dynamics
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dCai/dt=(-k*It)/(2*F*d)+(-KT*Cai)/(Cai+KD)+(cainf-Cai)/taur

#Fast Na+ and K+ currents: Ina and Ik

Ina=gbarna*(mn^3)*(hn)*(V-Ena)

Ik=gbark*(nk^4)*(V-Ek)

am(V)=0.32*(13-(V-j))/(exp((13-(V-j))/4)-1)

bm(V)=0.28*((V-j)-40)/(exp(((V-j)-40)/5)-1)

ah(V)=0.128*(exp((17-(V-j))/18))

bh(V)=4/(exp((40-(V-j))/5)+1)

an(V)=0.032*(15-(V-j))/(exp((15-(V-j))/5)-1)

bn(V)=0.5*exp((10-(V-j))/40)

mninf(V)=am(V)/(am(V)+bm(V))

taomn(V)=1/(am(V)+bm(V))

hninf(V)=ah(V)/(ah(v)+bh(v))

taohn(V)=1/(ah(V)+bh(V))

nkinf(V)=an(V)/(an(V)+bn(V))

taonk(V)=1/(an(V)+bn(V))

dmn/dt=((am(V)*(1-mn))-(bm(V)*mn))

dnk/dt=((an(V)*(1-nk))-(bn(V)*nk))

dhn/dt=((ah(V)*(1-hn))-(bh(V)*hn))

#Leak current: Il

Il=gl*(V-El)

#Low-threshold Ca2+ current: It

It=gbarca*(mt^2)*(ht)*(V-Eca)

dmt/dt=(-1/taomt(V))*(mt-mtinf(V))

dht/dt=(-1/taoht(V))*(ht-htinf(V))

mtinf(V)=1/(1+exp(-(V+52)/7.4))

taomt(V)=0.44+(0.15/(exp((V+27)/10)+exp(-(V+102)/15)))

htinf(V)= 1/(1+exp((V+80)/5))

taoht(V)=22.7+(gg/(exp((V+48)/4)+exp(-(V+407)/50)))

par gg=0.27
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#Ca-dependent K current: Ikca

Ikca=gbarkca*(mm^2)*(V-Ek)

dmm/dt=(-1/taomm(Cai))*(mm-mminf(Cai))*ta1

mminf(Cai)=(a*(Cai^n))/((a*(Cai^n))+b)

taomm(Cai)=1/((a*(Cai^n))+b)

#Ca-dependent nonspecific cation current: Ican

Ican=gbarcan*(mc^2)*(V-Ecan)

dmc/dt=(-1/taomc(Cai))*(mc-mcinf(Cai))*ta1

mcinf(Cai)=(aa*(Cai^nn))/((aa*(Cai^nn))+bb)

taomc(Cai)=1/((aa*(Cai^nn))+bb)

#Use heav() to create specific length pulse

H=(heav(t-50)-heav(t-150))

par i=0, Iapp=0

#Create aux equations to track currents

aux IIna=Ina

aux IIk=Ik

aux IIl=Il

aux IIt=It

aux IIkca=Ikca

aux IIcan=Ican

@ total=4000, bound=1000000, dt=01, xhi=4000, yhi=60, ylo=-120,

maxstor=2000000

done
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Appendix B

TC Model for XPPAUT

#Initialize

init v=-68

init cai=0.00024

dV/dt=(1/cm)*(-oL*Il-ot*It-oh*Ih-okl*Ikl-ona*Ina-ok*Ik+Iapp+i*H)

#Parameters

par ol=1, ot=1, oh=1, okl=1, ona=1, ok=1

par cm=1

par d=1, taur=5, cainf=0.00024

par gl=0.01, El=-70

par gt=2, caot=2, cait=0.00024

par gh=0.01, Eh=-40

par cac=0.002, k2=0.0004, Pc=0.01, k4=0.001

par nca=4, nexp=1, ginc=2, taum=20

par gkl=0.013793, Ekl=-100

par vtraub=-25

par gna=90, Ena=50

par gk=10, Ek=-100

par i=0, Iapp=0

# equation for ta1=3^((36-24)/10)

par ta1=3.73719
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number R=8.31451, F=96485.332, Temp=309.15

#Intracellular calcium dynamics

dcai/dt=(-10*It/(2*F*d))+((cainf-cai)/taur)

#Leak current: Il

Il=gl*(V-El)

#Low-threshold Ca2+ current: It

It=gt*(mtinf(V)^2)*ht*(V-Eca)

dht/dt=(ta1)*(htinf(V)-ht)/taoht(V)

Eca=(1000)*(R*Temp)/(2*F)*(log(caot/cait))

mtinf(V)=1/(1+exp(-((V+2)+57)/6.2))

htinf(V)=1/(1+exp((V+2)+81)/4)

taoht(V)=30.8+((211.4+exp(((V+2)+113.2)/5))/(1+exp(((V+2)+84)/3.2)))

#Hyperpolarization-activated cation current: Ih

Ih=gh*mh*(V-Eh)

dmh/dt=(mhinf(V)-mh)/taomh(V)

mhinf(V)=(1/(1+exp((V+75)/5.5)))

taomh(V)=1/(exp(-14.59-(0.086*V))+exp(-1.87+(0.0701*V)))

#Leak potassium current: Ikl

Ikl=gkl*(V-Ekl)

#Fast Na+ current: Ina

Ina=gna*(mn^3)*hn*(V-Ena)

dmn/dt=(mninf(V)-mn)/taomn(V)

dhn/dt=(hninf(V)-hn)/taohn(V)

mninf(V)=amn(V)/(amn(V)+bmn(V))

taomn(V)=1/(amn(V)+bmn(V))

hninf(V)=ahn(V)/(ahn(V)+bhn(V))

taohn(V)=1/(ahn(V)+bhn(V))

amn(V)=(0.32*(13-(V-vtraub)))/(exp((13-(V-vtraub))/4)-1)
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bmn(V)=(0.28*((V-vtraub)-40))/(exp(((V-vtraub)-40)/5)-1)

ahn(V)=0.128*exp((17-(V-vtraub))/18)

bhn(V)=4/(exp((40-(V-vtraub))/5)+1)

#Fast K+ current: Ik

Ik=gk*(nk^4)*(V-Ek)

dnk/dt=(nkinf(V)-nk)/taonk(V)

nkinf(V)=ank(V)/(ank(V)+bnk(V))

taonk(V)=1/(ank(V)+bnk(V))

ank(V)=(0.032*(15-(V-vtraub)))/(exp((15-(V-vtraub))/5)-1)

bnk(V)=0.5*exp((10-(V-vtraub))/40)

#Use heav() to create specific length pulse

H=(heav(t-50)-heav(t-150))

#Create aux equations to track currents

aux IIl=Il

aux IIt=It

aux IIh=Ih

aux IIkl=Ikl

aux IIna=Ina

aux IIk=Ik

@ total=500,bound=1000000,dt=.01,xhi=750,yhi=60,ylo=-120

,maxstor=2000000

done
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Appendix C

RE 5-Cell Network Model for
XPPAUT

C.1 RE 5-Cell Network, Connections to All Other

Cells Without Self-Connections

#Notes:

# ’special k=mmult(n,m,w,u)’ will return a vector ’k’ of length m, defined

as the sum of the products from 0 to n-1, of w(i+nj)*u(i). w is the table

file included below, r is a variable created in the file (in this case,

the synapse/gap variable).

# matrix/table file is an adjacency matrix representing which cells are

connected to which. use this file to change the connections in the

network.

# need to have the matrix/table file included in the same folder as this

file.

#Don’t recompute the random tables every time a parameter is changed

@ autoeval=0

#Read in Matrix/Table file

table w wall-E5.tab
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#Multiply synapses by weights (for gaba)

special syngab=mmult(5,5,w,r0)

#for gap

special syngap=mmult(5,5,w,V0)

#Initialize

init v[0..4]=-74

init Cai[0..4]=0.00024

#RE cells membrane potential equations

v[0..4]’=(1/cm)*(-Ina[j] -Ik[j] -Il[j] - It[j] - Ikca[j] - Ican[j] +

Iapp[j] + i[j]*H[j] - Igaba[j] - Igap[j])

#Parameters

par cm = 1

par gbarna = 100, gbark = 10, Ena = 50

par gl = 0.05, El = -78

par gbarca = 1.75

par gbarkca = 10, Ek = -95, n = 2, a = 48, b = 0.03

par gbarcan = 0.25, Ecan = -20, nn = 2, aa = 20, bb = 0.002

par F = 96489, d = 1

par KT = 0.0001, KD = 0.0001

par k = 10

par jj = -55

par cainf = 0.00024, taur = 100

par Eca = 120

#eqn for ta1 = 3^((36-22)/10)=4.6555367

par ta1=4.6555367

par Iapp[0..4]=0

#Intracellular calcium dynamics

dCai[0..4]/dt = (-k*It[j])/(2*F*d)

+ (-KT*Cai[j])/(Cai[j]+KD) + (cainf-Cai[j])/taur

#Fast Na+ and K+ currents: Ina and Ik

Ina[0..4] = gbarna*(mn[j]^3)*(hn[j])*(V[j]-Ena)

Ik[0..4] = gbark*(nk[j]^4)*(V[j]-Ek)
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am(V) = 0.32*(13-(V-jj))/(exp((13-(V-jj))/4)-1)

bm(V) = 0.28*((V-jj)-40)/(exp(((V-jj)-40)/5)-1)

ah(V) = 0.128*(exp((17-(V-jj))/18))

bh(V) = 4/(exp((40-(V-jj))/5)+1)

an(V) = 0.032*(15-(V-jj))/(exp((15-(V-jj))/5)-1)

bn(V) = 0.5*exp((10-(V-jj))/40)

dmn[0..4]/dt = ((am(V[j])*(1-mn[j])) - (bm(V[j])*mn[j]))

dnk[0..4]/dt = ((an(V[j])*(1-nk[j])) - (bn(V[j])*nk[j]))

dhn[0..4]/dt = ((ah(V[j])*(1-hn[j])) - (bh(V[j])*hn[j]))

#Leak current: Il

Il[0..4] = gl*(V[j]-El)

#Low-threshold Ca current: It

It[0..4] = gbarca*(mt[j]^2)*(ht[j])*(V[j]-Eca)

dmt[0..4]/dt = (-1/taomt(V[j]))*(mt[j] - mtinf(V[j]))

dht[0..4]/dt = (-1/taoht(V[j]))*(ht[j] - htinf(V[j]))

mtinf(V) = 1/(1+exp(-(V+52)/7.4))

taomt(V) = 0.44 + (0.15/(exp((V+27)/10) + exp(-(V+102)/15)))

htinf(V) = 1/(1+exp((V+80)/5))

taoht(V) = 22.7 + (0.27/(exp((V+48)/4) + exp(-(V+407)/50)))

#Ca-dependent K current: Ikca

Ikca[0..4] = gbarkca*(mm[j]^2)*(V[j]-Ek)

dmm[0..4]/dt = (-1/taomm(Cai[j]))*(mm[j] - mminf(Cai[j]))*ta1

mminf(Cai) = (a*(Cai^n))/((a*(Cai^n))+b)

taomm(Cai) = 1/((a*(Cai^n))+b)

#Ca-dependent nonspecific cation current: Ican

Ican[0..4]=gbarcan*(mc[j]^2)*(V[j]-Ecan)

dmc[0..4]/dt=(-1/taomc(Cai[j]))*(mc[j] - mcinf(Cai[j]))*ta1

mcinf(Cai) = (aa*(Cai^nn))/((aa*(Cai^nn))+bb)
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taomc(Cai) = 1/((aa*(Cai^nn))+bb)

#Use heav() to create specific length pulse

H0=(heav(t-h0s)-heav(t-h0f))

H1=(heav(t-h1s)-heav(t-h1f))

H2=(heav(t-h2s)-heav(t-h2f))

H3=(heav(t-h3s)-heav(t-h3f))

H4=(heav(t-h4s)-heav(t-h4f))

par i[0..4] = 0

par h0s=50, h0f=150

par h1s=50, h1f=150

par h2s=50, h2f=150

par h3s=50, h3f=150

par h4s=50, h4f=150

###Gaba

#use r in the special/mmult function

Igaba[0..4] = (syngab([j]))*gbargaba*(V[j]-Egaba)

dr[0..4]/dt = (alpha*((Cmax)/(1+exp(-(V[j]-VT)/Kp)))*(1-r[j]))

- (beta*r[j])

par Egaba = -80, gbargaba = 1, alpha = 0.53, beta = 0.184

par Cmax = 1, VT = 2, Kp = 5

#Gap

Igap[0..4]=4*gbargap*V[j]-gbargap*syngap([j])

par gbargap = 0.0005

###create aux equations to track currents

aux IIna[0..4] = Ina[j]

aux IIk[0..4] = Ik[j]

aux IIl[0..4] = Il[j]

aux IIt[0..4] = It[j]

aux IIkca[0..4] = Ikca[j]

aux IIcan[0..4] = Ican[j]

aux IIgaba0 = Igaba0
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aux IIgap1 = Igap1

@ total=4000,bound=100000,dt=.01,xhi=4000,yhi=60,ylo=-120,

maxstor=200000

done

C.2 Corresponding Table File for Synaptic

Conductances

#Note: To include self-connections, change all matrix/table elements to

"1". This file is run with a ".tab" extension.

#Adjacency Matrix/Table

24

0

24

0

1

1

1

1

1

0

1

1

1

1

1

0

1

1

1

1

1

0

1
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1

1

1

1

0
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Appendix D

RE-TC Network Model for XPPAUT

###TC CELL###

#Initialize

init Vt0=-68

init Vt1=-68

init cait[0..1]=0.00024

dVt0/dt=(1/cm)*(-Ilt0-Itt0-Iht0-Iklt0-Inat0-Ikt0

-Igabat00-Igabat01-Igabab00-Igabab01+Iappt0+it0*Ht0)

dVt1/dt=(1/cm)*(-Ilt1-Itt1-Iht1-Iklt1-Inat1-Ikt1

-Igabat10-Igabat11-Igabab10-Igabab11+Iappt1+it1*Ht1)

#TC Parameters

par cm=1

par d=1, taurt=5, cainft=0.00024

par glt=0.01, Elt=-70

par gtt=2, caott=2, caitt=0.00024

par ght0=0.01, ght1=0.01, Eht=-40

par cac=0.002, k2=0.0004, Pc=0.01, k4=0.001

par nca=4, nexp=1, ginc=2, taum=20

par gklt0=0.013793, gklt1=0.013793, Eklt=-100

par vtraub=-25
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par gnat=90, Enat=50

par gkt=10, Ekt=-100

par it[0..1]=0

par Iappt[0..1]=0

#formula for ta1t ta1t=3^((36-24)/10)

par ta1t=3.73719

number R=8.31451, F=96485.332, Temp=309.15

#Intracellular calcium dynamics

dcait[0..1]/dt=(-10*Itt[j]/(2*F*d))+((cainft-cait[j])/taurt)

#Leak current: Il

Ilt[0..1]=glt*(Vt[j]-Elt)

#Low-threshold Ca2+ current: It

Itt[0..1]=gtt*(mtinft(Vt[j])^2)*htt[j]*(Vt[j]-Ecat)

dhtt[0..1]/dt=(ta1t)*(htinft(Vt[j])-htt[j])/taohtt(Vt[j])

Ecat=(1000)*(R*Temp)/(2*F)*(log(caott/caitt))

mtinft(V)=1/(1+exp(-((V+2)+57)/6.2))

htinft(V)=1/(1+exp((V+2)+81)/4)

taohtt(V)=30.8+((211.4+exp(((V+2)+113.2)/5))/(1+exp(((V+2)+84)/3.2)))

#Hyperpolarization-activated cation current: Ih

Iht[0..1]=ght[j]*mht[j]*(Vt[j]-Eht)

dmht[0..1]/dt=(mhinf(Vt[j])-mht[j])/taomh(Vt[j])

mhinf(V)=(1/(1+exp((V+75)/5.5)))

taomh(V)=1/(exp(-14.59-(0.086*V))+exp(-1.87+(0.0701*V)))

#Leak potassium current: Ikl

Iklt[0..1]=gklt[j]*(Vt[j]-Eklt)

#Fast Na+ current: Na

Inat[0..1]=gnat*(mnt[j]^3)*hnt[j]*(Vt[j]-Enat)

dmnt[0..1]/dt=(mninft(Vt[j])-mnt[j])/taomnt(Vt[j])

dhnt[0..1]/dt=(hninft(Vt[j])-hnt[j])/taohnt(Vt[j])
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mninft(Vt)=amnt(Vt)/(amnt(Vt)+bmnt(Vt))

taomnt(Vt)=1/(amnt(Vt)+bmnt(Vt))

hninft(Vt)=ahnt(Vt)/(ahnt(Vt)+bhnt(Vt))

taohnt(Vt)=1/(ahnt(Vt)+bhnt(Vt))

amnt(Vt)=(0.32*(13-(Vt-vtraub)))/(exp((13-(Vt-vtraub))/4)-1)

bmnt(Vt)=(0.28*((Vt-vtraub)-40))/(exp(((Vt-vtraub)-40)/5)-1)

ahnt(Vt)=0.128*exp((17-(Vt-vtraub))/18)

bhnt(Vt)=4/(exp((40-(Vt-vtraub))/5)+1)

#Fast K+ current: Ik

Ikt[0..1]=gkt*(nkt[j]^4)*(Vt[j]-Ekt)

dnkt[0..1]/dt=(nkinft(Vt[j])-nkt[j])/taonkt(Vt[j])

nkinft(Vt)=ankt(Vt)/(ankt(Vt)+bnkt(Vt))

taonkt(Vt)=1/(ankt(Vt)+bnkt(Vt))

ankt(Vt)=(0.032*(15-(Vt-vtraub)))/(exp((15-(Vt-vtraub))/5)-1)

bnkt(Vt)=0.5*exp((10-(Vt-vtraub))/40)

#Use heav() to create specific length pulse

Ht0=(heav(t-ht0s)-heav(t-ht0f))

Ht1=(heav(t-ht1s)-heav(t-ht1f))

par ht0s=50, ht0f=150

par ht1s=50, ht1f=150

# Create aux equations to track currents

aux IIlt[0..1]=Ilt[j]

aux IItt[0..1]=Itt[j]

aux IIht[0..1]=Iht[j]

aux IIklt[0..1]=Iklt[j]

aux IInat[0..1]=Inat[j]

aux IIkt[0..1]=Ikt[j]

###RE CELL###
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#Initialize

init Vr0=-74

init Vr1=-74

init caiR[0..1]=0.00024

dVr0/dt=(1/cm)*(-Inar0-Ikr0-Ilr0-Itr0+Iappr0+ir0*Hr0-Igabar0

-Iampa00-Iampa01)

dVr1/dt=(1/cm)*(-Inar1-Ikr1-Ilr1-Itr1+Iappr1+ir1*Hr1-Igabar1

-Iampa10-Iampa11)

#RE Parameters

par gnar=100, gkr=10, Enar=50

par glr=0.05, Elr=-78

par gcar=1.75, Ecar=120

par gkcar=10, Ekr=-95

par n=2, a=48, b=0.03

par gcanr=0.25, Ecanr=-20

par nn=2, aa=20, bb=0.002

par KT=0.0001, KD=0.0001

par cainfr=0.00024, taurr=100, k=10

par jj = -55

par ir[0..1]=0

par Iappr[0..1]=0

#eqn for ta1r = 3^((36-22)/10)=4.6555367

par ta1r=4.6555367

#Intracellular calcium dynamics

dCair[0..1]/dt = (-k*Itr[j])/(2*F*d)+(-KT*Cair[j])/(Cair[j]+KD)

+(cainfr-Cair[j])/taurr

#Fast Na+ and K+ currents: Ina and Ik

Inar[0..1]=gnar*(mnr[j]^3)*(hnr[j])*(Vr[j]-Enar)

Ikr[0..1]=gkr*(nkr[j]^4)*(Vr[j]-Ekr)

dmnr[0..1]/dt=(mninfr(Vr[j])-mnr[j])/taomnr(Vr[j])

dhnr[0..1]/dt=(hninfr(Vr[j])-hnr[j])/taohnr(Vr[j])
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dnkr[0..1]/dt=(nkinfr(Vr[j])-nkr[j])/taonkr(Vr[j])

amr(V)=0.32*(13-(V-jj))/(exp((13-(V-jj))/4)-1)

bmr(V)=0.28*((V-jj)-40)/(exp(((V-jj)-40)/5)-1)

ahr(V)=0.128*(exp((17-(V-jj))/18))

bhr(V)=4/(exp((40-(V-jj))/5)+1)

anr(V)=0.032*(15-(V-jj))/(exp((15-(V-jj))/5)-1)

bnr(V)=0.5*exp((10-(V-jj))/40)

mninfr(V) = amr(V)/(amr(V)+bmr(V))

taomnr(V) = 1/(amr(V)+bmr(V))

hninfr(V) = ahr(V)/(ahr(v)+bhr(v))

taohnr(V) = 1/(ahr(V)+bhr(V))

nkinfr(V) = anr(V)/(anr(V)+bnr(V))

taonkr(V) = 1/(anr(V)+bnr(V))

#Leak current: Il

Ilr[0..1]=glr*(Vr[j]-Elr)

#Low-threshold Ca+ current: It

Itr[0..1]=gcar*(mtr[j]^2)*(htr[j])*(Vr[j]-Ecar)

dmtr[0..1]/dt=(-1/taomtr(Vr[j]))*(mtr[j]-mtinfr(Vr[j]))

dhtr[0..1]/dt=(-1/taohtr(Vr[j]))*(htr[j]-htinfr(Vr[j]))

mtinfr(V)=1/(1+exp(-(V+52)/7.4))

taomtr(V)=0.44+(0.15/(exp((V+27)/10)+exp(-(V+102)/15)))

htinfr(V)=1/(1+exp((V+80)/5))

taohtr(V)=22.7+(gg/(exp((V+48)/4)+exp(-(V+407)/50)))

par gg=0.27

##Ca-dependent K current: Ikca

#Ikcar[0..1]=gkcar*(mmr[j]^2)*(Vr[j]-Ekr)

#dmmr[0..1]/dt=(-1/taommr(Cair[j]))*(mmr[j]-mminfr(Cair[j]))*ta1r

#mminfr(Cai)=(a*(Cai^n))/((a*(Cai^n))+b)

#taommr(Cai)=1/((a*(Cai^n))+b)

##Ca-dependent nonspecific cation current: Ican
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#Icanr[0..1]=gcanr*(mcr[j]^2)*(Vr[j]-Ecanr)

#dmcr[0..1]/dt=(-1/taomcr(Cair[j]))*(mcr[j]-mcinfr(Cair[j]))*ta1r

#mcinfr(Cair)=(aa*(Cair^nn))/((aa*(Cair^nn))+bb)

#taomcr(Cair)=1/((aa*(Cair^nn))+bb)

#Use heav() to create specific length pulse

Hr0=(heav(t-hr0s)-heav(t-hr0f))

Hr1=(heav(t-hr1s)-heav(t-hr1f))

par hr0s=50, hr0f=150

par hr1s=50, hr1f=150

#Create aux equations to track currents

aux IInar[0..1]=Inar[j]

aux IIkr[0..1]=Ikr[j]

aux IIlr[0..1]=Ilr[j]

aux IItr[0..1]=Itr[j]

#aux IIkcar[0..1]=Ikcar[j]

#aux IIcanr[0..1]=Icanr[j]

aux IIgabar[0..1]=Igabar[j]

aux IIgabat00=Igabat00

aux IIgabat01=Igabat01

aux IIgabat10=Igabat10

aux IIgabat11=Igabat11

###Synapses###

#Synpatic conversion factors:

par KTC=3.448275

par KRE=6.993006

##RE CELL Synapses##

#AMPA

Iampa00=rt0*KRE*gampa*(Vr0-Eampa)

Iampa01=rt1*KRE*gampa*(Vr0-Eampa)

Iampa10=rt0*KRE*gampa*(Vr1-Eampa)
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Iampa11=rt1*KRE*gampa*(Vr1-Eampa)

drt0/dt=(alphar*((Cmax)/(1+exp(-(Vt0-VTry)/Kp)))*(1-rt0))-(betar*rt0)

drt1/dt=(alphar*((Cmax)/(1+exp(-(Vt1-VTry)/Kp)))*(1-rt1))-(betar*rt1)

par Eampa=0, gampa=0.2, alphar=0.94, betar=0.18

#GABAr

Igabar0=rr1*KRE*ggabar*(Vr0-Egaba)

Igabar1=rr0*KRE*ggabar*(Vr1-Egaba)

drr0/dt=(alphat*((Cmax)/(1+exp(-(Vr0-VTry)/Kp)))*(1-rr0))-(betat*rr0)

drr1/dt=(alphat*((Cmax)/(1+exp(-(Vr1-VTry)/Kp)))*(1-rr1))-(betat*rr1)

par Egaba=-80, ggabar=0.2, alphat=10.5, betat=0.166

par Cmax=0.5, Vtry=2, Kp=5

##TC CELL Synapses##

#GabaB

Igabab00=ggabab*KTC*((g0^4)/((g0^4)+Kdd))*(Vt0-Egb)

Igabab01=ggabab*KTC*((g1^4)/((g1^4)+Kdd))*(Vt0-Egb)

Igabab10=ggabab*KTC*((g0^4)/((g0^4)+Kdd))*(Vt1-Egb)

Igabab11=ggabab*KTC*((g1^4)/((g1^4)+Kdd))*(Vt1-Egb)

dg0/dt=(K33*rb0)-(K44*g0)

drb0/dt=(K11*((Cmax)/(1+exp(-(Vr0-Vtry)/Kp)))*(1-rb0))-(K22*rb0)

dg1/dt=(K33*rb1)-(K44*g1)

drb1/dt=(K11*((Cmax)/(1+exp(-(Vr1-Vtry)/Kp)))*(1-rb1))-(K22*rb1)

par Egb=-95, ggabab=0.04

par K11=0.5, K22=0.0012, K33=0.18, K44=0.034, Kdd=100

#GabaA

Igabat00=ra1*ggabat*KTC*(Vt0-Egaba)

Igabat01=ra0*ggabat*KTC*(Vt0-Egaba)

Igabat10=ra1*ggabat*KTC*(Vt1-Egaba)

Igabat11=ra0*ggabat*KTC*(Vt1-Egaba)
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dra0/dt=(alphat*((Cmax)/(1+exp(-(Vr0-VTry)/Kp)))*(1-ra0))-(betat*ra0)

dra1/dt=(alphat*((Cmax)/(1+exp(-(Vr1-VTry)/Kp)))*(1-ra1))-(betat*ra1)

par ggabat=0.02

@ total=4000,bound=1000000,dt=.01,xhi=4000,yhi=60,ylo=-120,

maxstor=2000000

done
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