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Abstract 

Memristor devices as the alternative to the next-generation non-volatile memory devices has 

been widely studied recently due to its advantages of simple structure, fast switching speed, low 

power consumption. Among all the different materials that demonstrate the potential of resistive 

switching behavior, memristor devices based on TiO2 has attracted particular attention considering 

its richness in switching mechanism associated with wide range of phases. Furthermore, one-

dimensional (1D) nanomaterial based memristor devices demonstrate promising potential 

considering about its advantages of confinement of electron transport in individual nanowires, 

enabling precision engineering of electrical performance for stable and reliable memristor devices, 

high integration density potential, etc.  

In this research, we propose the use of facile hydrothermal methods to synthesize TiO2 

nanowires for the fabrication of memristor devices. Three different types of devices were 

fabricated, i.e., based on TiO2 nanowire networks on Ti foil, TiO2 nanorod arrays grown on 

fluorine-doped tin oxide (FTO) substrate, and single TiO2 and titanate nanowire directly 

synthesized from TiO2 nanoparticles. The corresponding devices demonstrated promising resistive 

switching performance respectively and were further used for multilevel memory storage and more 

importantly, the emulation of artificial synapses for the application of neuromorphic computing. 

The corresponding switching mechanisms were explored and it was found that the oxygen 

vacancies in TiO2 nanowires during the hydrothermal process play an important role in the 

switching and charge transport mechanism. This work will improve the understanding of 

engineering the electrical performance of TiO2 based memristive devices and provide insights into 

the switching mechanism in 1D nanomaterial based memristive devices.  

 

Keywords: memristor, TiO2, one-dimensional nanomaterial, hydrothermal method, synapse 

emulation 

  



iv 

 

Acknowledgements 

Throughout this four-year long PhD journey, I have received tremendous help from different 

people, without whom it is impossible to finish this PhD program.  

I would like to thank my supervisors Prof. Norman Y. Zhou and Prof. Walter W. Duley for 

their guidance, instructions, encouragement, motivations and support throughout the whole PhD 

program. Great thanks are also given to Prof. Kevin Musselman for his fruitful discussion, helpful 

suggestions and introduction to other research groups for collaboration on my research. I want to 

express my appreciation to all my colleagues and friends who supported me in my research and 

life in different ways in different phases of this journey: Dr. Paola Russo, Dr. Ehsan Marzbanrad, 

Dr. Dulal Saha, Dr. Peng Peng, Dr. Robert Liang, Dr. Zhen Jiao, Dr. Luchan Lin, Dr. Daozhi Shen, 

Dr. Boyd Panton, Dr. Andrew Michael, Dr. Ran Peng, Dr. Joyce Koo, Dr. Lifang Hu, Dr. Bo Zhao, 

Dr. Di Xu, Brett Sherren, Pablo Enrique, Amirali Shamsolhodael, Viet Huong Nguyen, Dr. David 

Muñoz-Rojas, Moritz Futscher, Dr. Bruno Ehrler, Jiayun Feng, Zhuang Hui, Shubham Ranjan, Dr. 

Sumei Wang, Dr. Bai Sun, Dr. Xiaonan Wang and Qian Sun.  

I would like to thank all of my colleagues in the Centre for Advanced Materials Joining (CAMJ) 

with whom I have a pleasant time during my doctoral studies. I would like to thank Richard Barber 

and Dr. Czang-Ho Lee for their support in Giga-to-Nanoelectronics (G2N) Lab for the access to 

different instruments that are essential for my research. I also would like to thank the Waterloo 

Institute of Nanotechnology (WIN) for supporting my work. I am grateful for Carmen Andrei and 

Travis Casagrande at the Canadian Center for Electron Microscopy (CCEM) in McMaster 

University for the support with transmission electron microscopy and focused-ion-beam 

characterization. 

My warmest thanks to my wife Xunyan Yan, who, although 12,600 km apart, always supports, 

encourages and loves me in my daily life. Particular thanks to Jiajia, our first kid, who gives me 

great strength to overcome all difficulties throughout my life.  

I also want to thank my family (father, parents-in-law, brother, sister-in-law) for their endless 

love and encouragement throughout my life in University of Waterloo.   



v 

 

Dedication 

 

 

 

To my family 

  



vi 

 

Table of Contents 

Examining Committee Membership ............................................................................................... ii 

Author’s declaration....................................................................................................................... iii 

Statement of Contributions .............................................................................................................. i 

Abstract .......................................................................................................................................... iii 

Acknowledgements ........................................................................................................................ iv 

Dedication ....................................................................................................................................... v 

List of Figures ................................................................................................................................. x 

List of Tables ............................................................................................................................. xxiv 

List of Abbreviations, Symbols and Nomenclature .................................................................... xxv 

Chapter 1. Introduction ................................................................................................................... 1 

1.1. Background ...................................................................................................................... 1 

1.2. Objectives ......................................................................................................................... 2 

1.3. Organization of the thesis ................................................................................................. 2 

Chapter 2. Literature Review .......................................................................................................... 4 

2.1. Memristive devices and ReRAM devices ............................................................................ 4 

2.1.1. What are memristor/memristive devices? ..................................................................... 4 

2.1.2. What are ReRAM devices? ........................................................................................... 4 

2.1.3. Characteristic parameters of ReRAM devices .............................................................. 7 

2.1.4. Summary of resistive switching mechanism................................................................. 9 

2.1.4.1. Cation migration---Electrochemical Metallization Memory (ECM) ..................... 9 

2.1.4.2. Anion migration---Valence Change Memory (VCM) ......................................... 12 

2.1.4.3. Charge trapping and Detrapping .......................................................................... 17 

2.1.4.4. Thermochemical reaction (TCM) ........................................................................ 17 

2.1.5 Applications of memristive devices ............................................................................. 19 



vii 

 

2.1.5.1. Multilevel memory for data storage ..................................................................... 19 

2.1.5.2. Logic calculation .................................................................................................. 20 

2.1.5.3. Neuromorphic computing .................................................................................... 21 

2.2. 1D TiO2 nanomaterial based memristive devices .............................................................. 28 

2.2.1. TiO2 based memristive devices ................................................................................... 28 

2.2.2. 1D TiO2 nanomaterial based memristive devices ....................................................... 29 

2.2.2.1 1D nanomaterial based memristive devices .......................................................... 29 

2.2.2.2 1D TiO2 nanomaterials based memristive devices ............................................... 32 

2.3. Hydrothermal synthesized TiO2 nanowires and memristive devices ................................ 33 

2.4. Summary ............................................................................................................................ 35 

Chapter 3. Resistive Switching Memory of TiO2 Nanowire Networks Grown on Ti Foil by a Single 

Hydrothermal Method195 ............................................................................................................... 37 

3.1. Overview ............................................................................................................................ 37 

3.2. Introduction ........................................................................................................................ 37 

3.3. Materials and Methods ....................................................................................................... 38 

3.4. Results and Discussion ...................................................................................................... 39 

3.4.1. Characterization of TiO2 nanowire networks ............................................................. 39 

3.4.2. Electrical performance evaluation .............................................................................. 41 

3.4.2.1. Resistive switching characteristics ...................................................................... 41 

3.4.2.2. Switching Mechanism Analysis ........................................................................... 44 

3.4.2.3. Endurance and Retention Study ........................................................................... 48 

3.5. Conclusions ........................................................................................................................ 49 

Chapter 4. Reliable and Low-Power Multilevel Resistive Switching in TiO2 Nanorod Arrays 

Structured with a TiOx Seed Layer217 ........................................................................................... 50 

4.1. Overview ............................................................................................................................ 50 

4.2. Introduction ........................................................................................................................ 50 



viii 

 

4.3. Experimental Section ......................................................................................................... 52 

4.3.1. TiO2 NRA synthesis and device fabrication ............................................................... 52 

4.3.2. Characterization .......................................................................................................... 53 

4.4. Results and Discussion ...................................................................................................... 54 

4.4.1. Materials Characterization .......................................................................................... 54 

4.4.1.1. SEM and TEM ..................................................................................................... 54 

4.4.1.2. GIXRD ................................................................................................................. 56 

4.4.1.3. XPS ...................................................................................................................... 57 

4.4.2. Electrical Characterization .......................................................................................... 59 

4.4.2.1. Resistive switching behavior ............................................................................... 59 

4.4.2.2. Endurance and retention Study ............................................................................ 63 

4.4.2.3. Switching mechanism study ................................................................................ 64 

4.4.2.4. Multilevel memory behavior................................................................................ 68 

4.5. Conclusions ........................................................................................................................ 71 

Chapter 5. Oxygen Vacancy Migration/Diffusion Induced Synaptic Plasticity in a Single Titanate 

Nanobelt246 .................................................................................................................................... 73 

5.1. Overview ............................................................................................................................ 73 

5.2. Introduction ........................................................................................................................ 73 

5.3. Experimental Section ......................................................................................................... 75 

5.3.1. Synthesis of sodium and hydrogen titanate nanobelts ................................................ 75 

5.3.2. Device fabrication and characterization ...................................................................... 76 

5.3.3. Material characterization ............................................................................................ 76 

5.4. Results and Discussion ...................................................................................................... 76 

5.4.1. Material Characterization ............................................................................................ 76 

5.4.2. Synaptic performance ................................................................................................. 79 



ix 

 

5.4.2.1. Excitatory postsynaptic current............................................................................ 79 

5.4.2.2. Short term plasticity ............................................................................................. 82 

5.4.2.3. Potentiation and depression ................................................................................. 85 

5.4.2.4. Learning and forgetting response......................................................................... 89 

5.4.3. Kinetic mechanism...................................................................................................... 94 

5.5. Conclusions ........................................................................................................................ 98 

Chapter 6. Threshold Switching in Single TiO2 Nanobelt Device Emulating an Artificial 

Nociceptor ..................................................................................................................................... 99 

6.1. Overview ............................................................................................................................ 99 

6.2. Introduction ........................................................................................................................ 99 

6.3. Experimental Section ....................................................................................................... 102 

6.3.1. Synthesis of TiO2 nanobelts ...................................................................................... 102 

6.3.2. Device fabrication and characterization .................................................................... 102 

6.3.3. Material characterization .......................................................................................... 103 

6.4. Results and Discussion .................................................................................................... 103 

6.4.1. I-V sweeping performance and mechanism study .................................................... 103 

6.4.1.1 I-V sweeping performance .................................................................................. 103 

6.4.1.2 Charge transport mechanism ............................................................................... 113 

6.4.2. Artificial nociceptor performance ............................................................................. 119 

6.4.2.1. Threshold dynamics ........................................................................................... 119 

6.4.2.2. Nociceptor features ............................................................................................ 122 

6.5. Conclusions .......................................................................................................................... 124 

Chapter 7. Conclusions and Outlook .......................................................................................... 126 

Letters of Copyright permission ................................................................................................. 130 

Reference .................................................................................................................................... 154 



x 

 

List of Figures 

Figure 1. Schematic diagram of MIM structure in ReRAM devices, in which M' and M'' denote 

the metal electrode and I denote the insulator (switching layer). ................................................... 6 

Figure 2. An example of the non-volatile Pt/Ta2O5-x/TaO2-x/Pt ReRAM devices, (a) Scanning 

electron microscopy image of a 30-nm crossbar arrays of devices with the inset showing a 

magnified single device, (b) Transmission electron microscopy cross-section of a 30-nm crossbar 

cell. The insulating Ta2O5-x layer can be seen along with the TaO2-x base layer, with a total 

thickness of 30 nm. Adapted with permission52. Copyright 2011, Nature Publishing Group. ....... 6 

Figure 3. Sketches for classification of resistive switching, (a) Unipolar switching, and (b) bipolar 

switching. (CC: compliance current). Adapted with permission51. Copyright 2007, Nature 

Publishing Group. ........................................................................................................................... 7 

Figure 4. Schematic current-voltage characteristic of ECM devices and corresponding mechanism, 

in which active electrode (Ag, Cu, etc.) contributes to the resistive switching. Voltage is applied 

to the Ag electrode while Pt electrode is grounded. In the initial stage, no Ag ions is in the insulator 

layer (A); when under positive applied voltage to the active electrode, an oxidation reaction occurs 

at the active electrode/insulating layer interface. Then, the injected Cu or Ag ions migrate within 

the electric field through the insulating layer (B), At the inert electrode/insulating layer interface 

another electron-transfer reaction occurs. The Cu/Ag ions are reduced, and a Cu/Ag filament starts 

to grow towards the anode after having formed a stable Cu/Ag nucleus (C). The bridging between 

the anode and cathode with Cu/Ag filament switches the device from HRS to LRS. While the 

rupture of the filament with a negative voltage switches the device from HRS to LRS. Adapted 

with permission37. Copyright 2015, Wiley-VCH. ........................................................................ 10 

Figure 5. Demonstration of the switching mechanism in ECM devices. (a) Schematic design of 

the in-situ experiment set-up. (b) In-situ current-voltage (I-V) response. (c)-(f), Cross-sectional 

STEM images obtained after the voltage applications of 0, -0.4, -0.8, and +0.4 V, respectively. (g)-

(j) Black-and-white images converted from the raw STEM images of (c)-(f), respectively. Adapted 

with permission59. Copyright, 2011, Wiley-VCH. ....................................................................... 11 

Figure 6. In-situ TEM observation of conductive filament growth in vertical Ag/a-Si/W memories. 

(a) Experiment set-up. The Ag/a-Si/W resistive memory device was fabricated on a W probe in 

TEM, scale bar, 100 nm. (b) I-t characteristic recorded during the forming process at a voltage of 

12 V. (c-g) TEM images of the devices corresponding to data points c-g in (b) recorded during the 



xi 

 

forming process. Scale bar, 20 nm. It could be seen the filament formation in (g) from the top Ag 

towards W electrode. Adapted with permission60. Copyright 2012, Nature Publishing Group. .. 12 

Figure 7. Schematic current-voltage characteristic of VCM devices and corresponding 

mechanisms, in which the defects of insulating layer (vacancies, interstitials, etc.) are responsible 

for the resistive switching. Both active and bottom (right) electrode are inert. When a negative 

voltage is applied to left electrode, oxygen vacancies migrate towards this electrode (B). Hence, 

the insulating region between the sub-stoichiometric well-conducting filament and the active 

electrode becomes conducting and the VCM cell switches to the LRS (C). By reversing the 

voltage-polarity oxygen vacancies are pushed back from the active electrode (D) and finally the 

HRS is reestablished (A). Adapted with permission37. Copyright 2015, Wiley-VCH. ................ 13 

Figure 8. Schematic diagram of the experimental scanning probe set-up in the TEM chamber, (b) 

High resolution TEM image of structure after the electroforming process. (c) Selected area electron 

diffraction and (d) fast Fourier transformed micrograph of the Magnéli phase. Adapted with 

permission61. Copyright 2010, Nature Publishing Group. ............................................................ 14 

Figure 9. Voltage-induced morphology evolution in the TaO2-x layer. (a-c) Cross-sectional 

HAADF-STEM images showing the structural evolution after the set (a), reset (b) and breakdown 

(c) operations. Bright area: Ta-rich phase (conducting paths) and dark area: non-conducting 

clusters. Inset shows the atomic resolution STEM images exhibiting the individual Ta atoms (green 

circles). (d-f) Pseudocolour maps converted from the raw images of a-c, respectively. Yellow: Ta-

rich phase (conducting paths), blue: non-conducting clusters. Bright and yellow regions in (a-f) 

are regarded as conductive percolation paths. Scale bar, 3 nm. Adapted with permission63. 

Copyright 2013, Nature Publishing Group. .................................................................................. 15 

Figure 10. Schematic diagram of for the transport mechanism of charge trapping and detrapping 

process. (a) Nearly empty traps, (b) thermally generated carrier conduction, (c) traps partially filled 

and (d) fully filled traps, the device is transitioned from HRS to LRS at (d). The CeO2 quantum 

dots function as the trap centers. Reprinted with permission76. Copyright 2013) American 

Chemical Society. ......................................................................................................................... 17 

Figure 11. Schematic diagram for filamentary channels in TCM devices and corresponding 

unipolar resistive switching characteristics. RS: resistive switching, TE, top electrode. BE, bottom 

electrode. Adapted from Reference82. ........................................................................................... 18 



xii 

 

Figure 12. In-situ TEM observation of the evolution of the conductive filaments during forming 

the subsequent reset process of a Pt/ZnO/Pt cell. (a-d) A series of TEM images corresponding to 

the data points a-d in (f). The white dashed lines in (b-d) highlight the filament. (e) TEM image 

obtained after the reset process. (f) The corresponding I-V curve of forming (blue) and subsequent 

reset (red) process. Adapted with permission83. Copyright 2013, American Chemical Society. . 19 

Figure 13. Multilevel memory storage of a WOx resistive switching memory device with high 

endurance performance, adapted from Reference84. ..................................................................... 20 

Figure 14. Illustration of material implication logic operation by a memristor device. Adapted 

with permission7. Copyright 2010, Nature Publishing Group. ..................................................... 21 

Figure 15. The interaction between presynaptic neuron and postsynaptic neuron. Adapted from 

Reference104. ................................................................................................................................. 23 

Figure 16. Ag2S based devices showing short-term plasticity and long-term potentiation, 

depending on the input-pulse repetition time. (a) Schematic diagram of a Ag2S synapse and the 

signal transmission of a biological synapse. Application of input pulses causes the precipitation of 

Ag atoms from the Ag2S electrode, resulting in the formation of a Ag atomic bridge between the 

Ag2S electrode and a counter metal electrode. When the precipitated Ag atoms do not form a bridge, 

the synapses work as the STP. After an atomic bridge is formed, it works as LTP. (b) Experimental 

demonstration of the STP and LTP by recording the change in conductance of the synapse when 

the input pulses were applied with a relative long intervals of T=20 s and (c) T=2 s. Adapted with 

permission11. Copyright 2011, Nature Publishing Group. ............................................................ 25 

Figure 17. Summary of configuration and devices for the heterosynaptic emulation based on 

memristive devices. (a) Schematic illustration of two-terminal plasticity (homosynaptic) and (b) 

heterosynaptic plasticity. (c) SEM image of the device on the substrate, in which the Ag clusters 

between the pre and post electrodes can be modulated by the application of bias on the MOD 

electrode. (a)-(c) are adapted with permission115. Copyright 2015, Wiley-VCH. (d) A schematic 

illustration of a different device based on the metal oxide sandwich memristor devices with a side 

electrode functioning as the modulatory electrodes. Adapted with permission116. Copyright 2017, 

Wiley-VCH. (e) Schematic diagram showing the synaptic interactions enabled by the diffusion of 

plasticity-related proteins (PRP) among multiple synapse. Specifically, PRPs are generated in the 

postsynaptic terminal of synapse 1 and can diffuse to the synapses 2, 3, 4 through the dendrite. 

Depending on the difference among diffusion, synaptic behavior among these synapses can be 



xiii 

 

different. (f) five terminal MoS2 devices, in which the distribution of conductive ions at the 

terminals such as Electrode A, B, C and D can be controlled separately and lead to the potential 

heterosynaptic emulation possibilities, inset, SEM image of the fabricated MoS2 devices. (e) and 

(f) are adapted with permission120. Copyright 2018, Nature Publishing Group. (g) Six terminal 

MoS2 devices, in which any two of the inner electrodes (1, 2, 3, 4) can be controlled by the outside 

electrodes (5 and 6). Adapted with permission118. Copyright 2018, Nature Publishing Group. .. 26 

Figure 18. Natural image processing using the memristor crossbar structures. (a) SEM image of 

the fabricated memristor array. Upper right inset: magnified SEM image of the crossbar. Scale bar, 

3 m. Lower left inset: memristor chip integrated on the test board after wire-bonding process. (b) 

A 3232 chequerboard pattern programmed into the memristor array and subsequently read back 

using the hardware system in (a). (c) Original 120120 image. The image is divided into non-

overlapping 44 patches for processing. (d) A 44 patch from the original image. (e) The 

experimentally reconstructed patch from the 1632 memristor crossbar using the locally 

competitive algorithm and an offline-learned dictionary based on “winner-take-all” approach. (f) 

Membrane potentials of the neurons as a function of iteration number during the locally 

competitive algorithm analysis. The red horizontal line marks the threshold parameter . (g) 

Experimentally reconstructed image based on the reconstructed patches. Adapted with 

permission126. Copyright 2017, Nature Publishing Group. .......................................................... 27 

Figure 19. (a) Typical I-V sweeping results of individual MgO/Co3O4 nanowire device, inset, 

SEM image of the nanowire device. (b) Switching endurance performance up to 108 cycles. 

Adapted with permission146. Copyright 2010, American Chemical Society. ............................... 30 

Figure 20. (a) SEM image of Cu/Zn2SnO4/Pd device, (b) I-V characteristic bipolar resistive 

switching behavior, and (c) EDX Cu elemental mapping results for the device in the ON (LRS) 

state of (a) which demonstrated uniform Cu distribution on the nanowire. Adapted with 

permission178. Copyright 2012, Royal Society of Chemistry. ...................................................... 31 

Figure 21. Schematic illustration of conducting paths and the transport mechanism that explain 

the properties of invariant set and reset voltages against different distances between electrodes. (a) 

Demonstration that oxygen vacancy filament connects to the gold core in the center of nanowire 

because the distance between two electrodes is much larger than the thickness of the Ga2O3 shell 

thickness. (b) Indication that the oxygen vacancy channel can link to the gold core due to the 

smaller diameter compared to the distance. (c) I-V characteristic of a single gold-in Ga2O3 core-



xiv 

 

shell nanowire with different distances between electrode and the inset is the SET chip image. 

Theses set and reset voltages are almost the same with different distances. Adapted with 

permission179. Copyright 2012, American Chemical Society. ...................................................... 31 

Figure 22. Simulation of electric field distribution around the femtosecond laser irradiated TiO2 

nanowire-Au electrode bridging structure at a polarized laser wavelength of 800 nm. The color 

scale indicates the magnitude of the generated electric field. (b) SEM images of bridged TiO2-Au 

structure after fs laser irradiation. Inset shows magnified joints and the presence of spot welding. 

(c) Memory level profiles for femtosecond laser irradiated TiO2-Au memory units. Repeatable 

memory behavior with selectable levels is displayed. Adapted with permission148. Copyright 2016, 

Wiley-VCH. .................................................................................................................................. 33 

Figure 23. Hydrothermal grown TiO2 nanowire (nanorod) arrays on different substrates, (a) Ti 

foil, adapted with permission192. Copyright 2008, American Institute of Physics. (b) Si substrate, 

adapted with permission193. Copyright 2010, AIP Publishing LLC. (c) graphene nanosheets (inset, 

cross-sectional view of the as-grown TiO2-graphene-TiO2 heterostructures), adapted with 

permission194. Copyright 2011, Wiley-VCH. (d) FTO glass substrate. Adapted with permission191. 

Copyright 2009, American Chemical Society. ............................................................................. 35 

Figure 24. Schematic diagram of the fabrication process for TiO2 nanowire network based device 

on Ti foil. ...................................................................................................................................... 39 

Figure 25. Characterization of TiO2 nanowires, (a) Top view SEM image (inset, statistical 

summary of diameters of ~100 nanowires), (b) HRTEM image, yellow arrows indicate the 

crystalline defects (inset, TEM image of TiO2 nanowires), (c) Raman spectrum, (d) XRD results, 

(e) Ti 2p XPS spectrum and (f) O 1s XPS spectrum .................................................................... 41 

Figure 26. I-V characteristic curve of the Al/TiO2 nanowire networks/Ti device (left inset, 

schematic diagram of interfaces in the device in the pristine state. Right inset, optical photo of an 

actual fabricated device on Ti foil) ............................................................................................... 42 

Figure 27. I-V characteristic curve of the Al/TiO2 nanowire networks/Ti device under different 

voltages ......................................................................................................................................... 44 

Figure 28. Schematic illustration of (a) SET and (b) RESET process of the Al/TiO2 nanowire 

networks/Ti device ........................................................................................................................ 45 



xv 

 

Figure 29. I-V characteristic curves of the Al/TiO2 nanowire networks/Ti device with different 

thicknesses of the nanowire layers via the control of the hydrothermal growth time, (a) 4 h growth 

time, (b) 12 h growth time, (c) 16 h growth time and (d) 24 h growth time................................. 46 

Figure 30. I-V characteristic curves under positive (a) and negative (b) sweeping voltages on a 

double-logarithmic scale ............................................................................................................... 47 

Figure 31. (a) Endurance and (b) retention performance of the Al/TiO2 nanowire networks/Ti 

device ............................................................................................................................................ 48 

Figure 32. Schematic diagram of the fabrication process of TiO2 NRA with seed layer, top right: 

optical photo for a fabricated TiO2 NRA based device with Al top electrode. ............................ 53 

Figure 33. Morphology of TiO2 NRAs prepared with a seed layer (a) low magnification top-view 

SEM image, (b) high magnification top-view SEM image (inset: 70o tilted cross-sectional view), 

(c) TEM image of a single TiO2 nanorod, (d) HRTEM image of a TiO2 nanorod (inset: SAED 

pattern of the same nanorod). ........................................................................................................ 55 

Figure 34. SEM images of TiO2 NRA prepared without a seed layer, (a) Low magnification, (b) 

High magnification (inset, 70o cross-sectional view). Even though there seems a thin continuous 

layer at the base of the nanorod arrays, this thin layer did not engineer the orientation compared 

with the pre-applied seed layer on the surface of FTO substrate. ................................................. 55 

Figure 35. GIXRD characterization of the seed layer, TiO2 NRAs prepared with and without a 

seed layer ...................................................................................................................................... 56 

Figure 36. XPS spectra of TiO2 NRA prepared with a seed layer: (a) survey, (b) Ti 2p and (c) O 

1s ................................................................................................................................................... 58 

Figure 37. XPS spectra of TiOx seed layer: (a) survey, (b) Ti 2p and (c) O 1s ........................... 58 

Figure 38. XPS spectra of TiO2 NRA prepared without a seed layer: (a) survey, (b) Ti 2p and (c) 

O 1s ............................................................................................................................................... 59 

Figure 39. I-V curves of (a) Al/TiO2 NRA/TiOx layer/FTO device and (b) Al/TiO2 NRA/FTO 

device for 100 successive cycles (for each figure, left inset: I-V curve for a typical cycle and right 

inset: schematic design of the device) .......................................................................................... 60 

Figure 40. Endurance study of Al/TiO2 NRA/FTO device under voltage sweeping ................... 62 

Figure 41. Cell uniformity performance check by examining the current response at specific read 

voltage for different cells (a) Al/TiO2 NRA/FTO devices and (b) Al/TiO2 NRA/TiOx layer/FTO 

device. (The standard deviations are from the summary of 10 repeated I-V sweeping cycles). For 



xvi 

 

the Al/TiO2 NRA/FTO devices, the ON/OFF ratio is relatively small, which is difficult to 

distinguish between two different resistance states in the application of ReRAM devices. 

Furthermore, the big variation in current response among different cells (for example, the LRS 

current response for cell No.2 is in the same range of the HRS current response for cell Nos. 8-10) 

also make the Al/TiO2 NRA/FTO devices not suitable for the ReRAM devices in the electronic 

industry. Comparatively speaking, the Al/TiO2 NRA/TiOx layer/FTO devices displayed a better 

cell uniformity of the electrical performance in terms of the relatively stable and low HRS current 

and larger ON/OFF ratios. Even though there is a variation in the LRS current response among 

different cells, all the ON/OFF ratios are big enough for distinguishing from two different states.

....................................................................................................................................................... 62 

Figure 42. (a) Endurance and (b) retention performance of Al/TiO2 NRA/TiOx layer/FTO device

....................................................................................................................................................... 63 

Figure 43. Cumulative probability curve for LRS and HRS resistances of Al/TiO2 NRA/TiOx 

layer/FTO device for ~550 cycles ................................................................................................. 64 

Figure 44. Log-log I-V response for the Al/TiO2 NRA/TiOx layer/FTO device, (a) Positive region 

and (b) Negative region ................................................................................................................ 66 

Figure 45. Log-log I-V curves of (a) LRS and (b) HRS at different temperatures, (c) ON/OFF ratio 

vs. temperature, (d) Linear fit for LRS resistance, (e) ln(I) vs. 1000/T and corresponding fits at 

specific read voltages and (f) activation energy ΔE = Ec – Etrap calculated from the slopes in (e) 

plotted as a function of V. The standard deviations for (c), (d) and (e) are from the statistical 

average of 15 repeatable cycles. All measurements were carried out under ambient atmospheric 

conditions. ..................................................................................................................................... 67 

Figure 46. Schematic representation of the switching mechanism in fabricated Al/TiO2 NRA/TiOx 

layer/FTO device, (a) cross-sectional design, (b) pristine state, (c) positive bias, 0→VTFL, traps are 

partially filled, (d) positive bias, VTFL→4 V→0 V, traps are fully filled, the device has transitioned 

from HRS to LRS.......................................................................................................................... 68 

Figure 47. (a) I-V curve for Al/TiO2 NRA/TiOx layer/FTO device under different SET voltages 

and (b) demonstration of 4-level memory performance under cyclic voltage sweeping .............. 69 

Figure 48. (a) I-V curves of Al/TiO2 NRA/TiOx layer/FTO device at different SET voltages and 

(b) demonstration of 6-level memory response in cyclic voltage sweeping ................................. 69 



xvii 

 

Figure 49. Log-log I-V curves for Al/TiO2 NRA/TiOx layer/FTO device at different SET voltages 

(a) Vset=2 V, (b)Vset=3 V, (c) Vset=4 V, (d)Vset=5 V, (e) Vset=6 V ............................................... 70 

Figure 50. Slope of I-V curve of Al/TiO2 NRA/TiOx layer/FTO devices in the region with V>VTFL 

for different SET voltages (average of 10 cycles at each SET voltage). The I-V curve in this region 

is found to have a slope of 1/θ based on SCLC theory where θ is =1/(1+Nt/Nc(exp(-q(Va-

VTFL)/KT)). Then ln(1/θ )-1 is inversely proportional to the applied SET voltage. For our device, 

the VTFL is small and nearly constant (~1 V) for different SET voltages (Va), so different SET 

voltages all result in sharply increasing current with the slope decreasing at higher SET voltage. 

These properties confirm that current flow in fabricated Al/TiO2 NRA/TiOx layer/FTO devices is 

controlled by a SCLC mechanism. ............................................................................................... 71 

Figure 51. Material characterization of H2Ti3O7 nanobelts, (a) SEM image, inset shows a 

magnified view of the selected region. These images reveal that the nanobelts have a rectangular 

cross-section with a width of 50-200 nm and a length of several m. (b) TEM image, (c) HRTEM 

image (arrows point out defects in the crystalline structure), (d) O1s XPS spectra. The peak at 

532.5 eV is attributed to oxygen vacancies (concentration ~26.33%), while the small shoulder at 

534.2 eV is attributed to the OH- group in the H2Ti3O7 nanobelts (concentration ~ 2.95%). The 

strongest peak arises from oxygen in the lattice. (e) Ti 2p XPS spectra, (f) XRD characterization 

of H2Ti3O7 nanobelts and their characteristic peaks indexed from the JCPDS database (No. 47-

0561). Some characteristic peaks of H2Ti3O7 are indicated with arrows. .................................... 77 

Figure 52. Comparison of contact geometry for nanowire vs. nanobelt. (a) Scanning TEM (STEM) 

image of a representative nanobelt and (b) its corresponding line-scan obtained from electron 

energy loss spectroscopy. This indicates that the nanobelt has a width of ~230 nm and a height of 

~55 nm, with a width-to-height ratio of 4.2:1. These dimensions are consistent with a quasi-

rectangular cross-section. (c) Schematic diagram showing the contact morphology at the Au 

electrodes for nanowire vs. nanobelt structures. ........................................................................... 78 

Figure 53. EPSC response, (a) schematic of a synapse, (b) schematic of the nanobelt device for 

the synaptic response study and SEM image of nanobelt device, (c) EPSC performance for a series 

of 50 ms pulses with amplitudes 8, 10, 12, 15, 18 and 20 V, respectively, (d) summary of EPSCs 

and the corresponding calculated energy consumption, where the average currents and 

corresponding standard deviation are calculated from the current responses over 2000 cycles as 



xviii 

 

shown in (f), (e) EPSC during 10 cycles of EPSC excited as in (c), the interval period among 

adjacent cycles is 20 s. (f) EPSC evolution over 2000 cycles with pulse amplitudes as in (c). ... 81 

Figure 54. Short-term plasticity response. (a) Current enhancement for 10 consecutive, identical 

8 V pulses. PPF and PTP are defined as shown, (b-c) Relationship between gained weight (%) for 

PPF and PTP vs. the time interval between two consecutive pulses. The fitted exponential curves 

y=A1×exp(−x/t1)+y0 are shown. For the PPF, A1=0.625, t1=0.499 s, y0=0.053 while for PTP, 

A1=4.722, t1=0.707 s, y0=0.124, (d-f) Accumulating current response on excitation with 100 

identical consecutive pulses plotted vs. (d) time interval between pulses (50 ms duration, 20 V 

pulse), (e) pulse duration (50 ms interval, 20 V pulse), and (f) pulse amplitude (pulse duration and 

interval are 50 ms). ....................................................................................................................... 84 

Figure 55. Current accumulation vs. number of identical consecutive 10 V pulses. The pulse 

duration, T, is as shown. ............................................................................................................... 84 

Figure 56. Evolution of the potentiation response on application of up to 2200 identical pulses. 

The pulse duration for each pulse is as indicated. Pulse amplitude is 10 V. ................................ 85 

Figure 57. Potentiation and depression response. (a) 100, +20 V 100 ms pulses followed by 100, 

−10 V 100 ms pulses. The test was repeated for 10 cycles. Current was measured by a 2 V, 100 

ms read pulse immediately after each potentiation and depression pulse. (b) Expanded view of the 

highlighted segment in (a). (c) Test over 50, 000 pulses with 50 potentiation and 50 depression 

pulses as before. The response in the last 5 cycles is shown. (d) Test carried out to illustrate the 

large number of potentiation and depression states. Each cycle involved 2200, +10 V, 100 ms 

pulses followed by 2200, −6 V, 100 ms pulses. P and D indicate potentiation and depression, 

respectively. .................................................................................................................................. 86 

Figure 58. Potentiation and depression response. (a) 10 cycles of potentiation and depression 

response for 100 consecutive, 100 ms, +20 V pulses followed by 100 consecutive, 100 ms, −10 V 

pulses. A 2 V read voltage was applied after each pulse to obtain the current, (b) Expanded view 

of the area (A) in (a) demonstrating current potentiation. (c) Expanded view of the area (B) in (a) 

demonstrating current depression. ................................................................................................ 87 

Figure 59. Potentiation/depression characteristics and current response for up to 50,000 pulses 

illustrating the robustness of the system and (b-f) demonstrated expanded view in selected region 

(B-F) in (a). P and D in (b-f) indicate potentiation and depression, respectively. ........................ 87 



xix 

 

Figure 60. Current response for 2200 positive (+10 V) and negative (−6 V) pulses with identical 

durations of 100 ms, respectively. ................................................................................................ 88 

Figure 61. Nonlinear transmission characteristic of single positive and negative sweeping 

behavior. (a) I-V characteristics of the single nanobelt device at positive sweeping voltages (0 to 

10 V then back to 0 V). (b) I-V characteristics of the single nanobelt device at negative sweeping 

voltages (0 to −5 V then back to 0 V). (c) The curve of current response from (a) and (b) versus 

time. 4 cycles of potentiation and depression by sweeping voltage is demonstrated. (d) The 

conductance variation of the device with the sweeping cycles in (c). Reproducible potentiation (P) 

and depression (D) can be observed. ............................................................................................ 88 

Figure 62. Potentiation and quasi-depression response for different negative pulse amplitudes (a-

c) 100 consecutive 20 V, 100 ms pulses followed by 100 consecutive −15 V, 100 ms pulses. (d-e) 

100 consecutive 20 V 100 ms pulses followed by 100 consecutive −20 V, 100 ms pulses. All the 

pulses have a duty cycle of 50%. The current responses in (b) (c) (e) and (f) are extracted after 

each pulse at a 2 V read voltage. ................................................................................................... 89 

Figure 63. Learning and forgetting response and STP-to-LTP transition induced by repeated 

stimulation. (a) Learning and forgetting curve with 50, 500 ms, 20 V pulses. Current during 

relaxation was read at 2 V. (b) Current decay curve and its fit to the equation of I=I0+Ae-t/τ, where 

I0=1.16 nA, A=20.9 nA and τ is 25.64 s. (c) Current decay behavior with the number of pulses up 

to 400 and (d) time constant summary up to 400 pulses............................................................... 91 

Figure 64. Material characterization of Na2Ti3O7 nanobelts. (a) SEM image, (b) TEM image, (c) 

HRTEM image (arrows point out defects in the crystalline structure), (d) Ti 2p XPS spectrum (e) 

O1s XPS spectrum. The peak at 532.52 eV is attributed to oxygen vacancies (concentration ~ 

25.00%), while the small shoulder at 535.3 eV is attributed to the OH- group in the Na2Ti3O7 

nanobelts (concentration ~ 8.12%). The strongest peak arises from oxygen in the lattice 

(concentration ~ 66.89%). (f) Na 1s XPS spectrum. .................................................................... 92 

Figure 65. EPSC performance in a single Na2Ti3O7 nanobelt device. (a) SEM image of the device. 

(b) EPSC response with a series of 12, 16, 18 and 20 V pulses 100 ms long pulses. (c) The current 

response for different pulse amplitudes and calculated energy consumption. The calculated energy 

consumption is 630 pJ at a voltage of 12 V. (d) Summary of EPSC over more than 150 cycles with 

different pulse amplitudes. Variation in the current response for the 12 V pulse can be attributed 

to a low signal-to-noise ratio in the low current measurement. .................................................... 92 



xx 

 

Figure 66. Current accumulation and potentiation/depression response in a single Na2Ti3O7 

nanobelt device. (a) Current obtained under excitation with consecutive, identical, +20 V, 300 ms 

pulses. The total number of pulses is 75. (b) Potentiation and depression response over 5 cycles.  

Each cycle consists of 100 identical +20 V, 300 ms, pulses followed by 100 identical −10 V, 300 

ms, pulses. (c) Detailed view for the selected region (A) for the current potentiation in (b). (d) 

Detailed view for the selected region (B) for the current depression in (b). ................................ 93 

Figure 67. Spike rate-dependent synaptic plasticity of single Na2Ti3O7 nanobelt devices under 

excitation with positive/negative pulses. (a) Evolution of current accumulation during 10 

consecutive, +20 V, 400 ms, pulses, (b) current response vs. number of pulses with different 

positive pulse durations................................................................................................................. 94 

Figure 68. Synaptic mechanism study. (a) Temperature dependence of the current decay following 

excitation with 50 consecutive +20 V, 500 ms, pulses. The current was read at 2 V, (b) Plot of 

ln(1/τ) vs. 1000/T showing exponential dependence. The linear fit from Equation 3 is shown and 

implies that the diffusion activation energy is E=0.33 eV. ........................................................... 96 

Figure 69. I-V curve for the electrical contact at the interfaces between Au electrodes and the 

H2Ti3O7 nanobelt. ......................................................................................................................... 96 

Figure 70. I-V curves for the volatile rectification behavior of single H2Ti3O7 nanobelt device. The 

original I-V curve is obtained by sweeping from −5 to +5 V. The positive rectification curve is 

obtained by sweeping from −5 V to +5 V immediately after the positive sweeping from 0 to 10 V. 

Similarly, the negative rectification curve is obtained by sweeping from −5 V to +5 V immediately 

after the negative sweeping from 0 to −10 V. The sweeping speed is 50 mV s-1. ........................ 97 

Figure 71. Plot of ln(1/τ) vs. 1000/T and linear fit from Equation 3 in main text for (a) single 

Na2Ti3O7 and (b) single TiO2 nanobelt devices from temperature dependence of current decay 

behavior following excitation with 100 consecutive +20 V, 500 ms, pulses. The calculated 

diffusion activation energy are E=0.41 eV and E=0.42 eV, respectively. .................................... 97 

Figure 72. Schematic of the synaptic response mechanism. (a) In the initial state oxygen vacancies 

are distributed randomly throughout the nanobelt, and a Schottky barrier is formed at each 

Au/nanobelt interface. (b) With applied positive electric field, the accumulation of oxygen 

vacancies at the left interface of the Au/nanobelt leads to a reduction in the strength of the Schottky 

barrier, increasing the conductivity of the device. Back diffusion of these defects in response to 



xxi 

 

the concentration gradient would recover the Schottky barrier, leading to a decrease in the current 

response......................................................................................................................................... 98 

Figure 73. Material characterization of TiO2 nanobelts and the architecture of a TiO2 nanobelt 

device (a) SEM image, (b) HRTEM image with void defects highlighted in red, (c) O 1s XPS 

spectrum, (d) Low-magnification SEM image of Pt-Pt electrodes fabricated on the SiO2 wafer, (e) 

High magnification SEM image for a typical pair of interdigitated Pt-Pt electrodes, (f) SEM image 

of a typical TiO2 nanobelt device on paired electrodes. ............................................................. 104 

Figure 74. Threshold switching sweeping performance for single TiO2 nanobelt devices. (a) 

Sweeping performance at 20 V at a constant sweeping rate of 0.1 V/s plotted on a linear scale, (b) 

corresponding I-V curve plotted on a semi-logarithmic scale. (c) LRS/HRS ratio for the device at 

the reading voltage of 3 V over 80 sweeping cycles in (b). (d) Sweeping voltage dependent 

performance and summary of LRS/HRS ratio at the reading voltage of 3V. (e) Statistical summary 

for the LRS/HRS ratio among 26 devices having identical geometries. (f) Endurance performance 

for 10,000 cycles at room temperature. The inset shows one cycle of the applied pulses, where the 

2 V, 50 ms and -2 V, 50 ms pulses are used as read pulses. The device did not fail during the 

measurement, showing a high degree of robustness. .................................................................. 106 

Figure 75. I-V sweeping performance for the single TiO2 nanobelt device at different sweeping 

voltages. At low sweeping range such as 2 V ((a) and (d)), the device demonstrated a typical 

charging and discharging cyclic voltammetry curves of a capacitor with a series resistor. However, 

at higher bias such as 6 V ((b) and (e)) and 10V ((c) and (f)), the volatile threshold switching 

performance is observed with the capacitive contribution from low bias. Inset of each figure shows 

the equivalent circuit of the devices at different sweeping voltages. ......................................... 108 

Figure 76. Sweeping behavior for Pt-TiO2 nanobelt-Pt device under sweeping voltages at (a) 2 V, 

(b) 3 V, (c) 4 V, (d) 5 V, (e) 6 V. (f) 8 V, (g) 10 V, (h) 15 V and (i) 20 V in a linear scale. ..... 109 

Figure 77. Sweeping behavior for Pt-TiO2 nanobelt-Pt device under sweeping voltages at (a) 2 V, 

(b) 3 V, (c) 4 V, (d) 5 V, (e) 6 V. (f) 8 V, (g) 10 V, (h) 15 V and (i) 20 V in a semi-logarithmic 

scale............................................................................................................................................. 110 

Figure 78. I-V sweeping performance for TiO2 nanobelt on paired Au-Au electrode, (a) line scale 

and (b) semi-logarithm sale, and on paired Ti-Ti electrodes, (c) line scale and (d) semi-logarithm 

sale. The sweeping rate is 0.1 V/s for both measurement. .......................................................... 111 



xxii 

 

Figure 79.Transition from a capacitor behavior to a memristor with a capacitive contribution for 

single TiO2 nanobelt device on paired Au-Au electrodes. .......................................................... 112 

Figure 80. I-V sweeping performance for TiO2 nanobelt on paired Pt-Pt electrodes with different 

concentration of defect by further annealing the obtained TiO2 nanobelts at 700 oC for 2 h. (a) 

TEM and (b) HRTEM characterization of nanobelts, (c) I-V sweeping performance, a highly 

insulating capacitive performance is obtained for the TiO2 nanobelt device with very few defects

..................................................................................................................................................... 112 

Figure 81. Charge transport mechanism for a single TiO2 nanobelt device. (a) Temperature 

dependent sweeping performance at temperatures from 293 K to 353 K. A constant sweeping rate 

of 0.1 V/s is used for all the measurements. Four stages associated with application of a bias are 

highlighted for fitting with different equations. (b) ln(J/T2) as a function of inverse temperature 

(1/T) for voltages in Stage I. (c) ln(R) as a function of temperature (T-1/4) at different low voltages 

in Stage I. (d) ln(J) as a function of inverse electric field (1/E) at different temperatures for voltages 

in Stage II. (e) ln(J) as a function of inverse electric field (1/E) at different temperatures for 

different voltages in Stage III. (f) ln(J/T2) as a function of inverse temperature (1/T) in Stage IV at 

different temperature. Five sweeping cycles were obtained at each temperature and average values 

and standard deviations were calculated correspondingly. (g) Schematic diagram of DOS 

distribution of pure TiO2 vs TiO2 containing defects. (h) Schematic band diagram for the TiO2 

nanobelt device at zero bias. (i-l) Schematic band diagram for the TiO2 nanobelt device in Stage I, 

II, III and IV, respectively........................................................................................................... 117 

Figure 82. Charge transport mechanism study for a single TiO2 nanobelt device. (a) ln(J/T2) as a 

function of square root of the electric field (E1/2) at various temperatures in Stage I. (b) ln(J/T2) as 

a function of square root of the electric field (E1/2) at various temperatures in Stage IV. All the 

measurement is the same as described in Figure 81. .................................................................. 118 

Figure 83. Thermal admittance spectroscopy characterization for TiO2 nanobelt devices. (a) 

Capacitance and (b) loss spectra measured in the dark at 0 V with an AC perturbation of 50 mV. 

(c) Arrhenius plot of the observed thermal emission rates as a function of temperature. The linear 

fit shown in red reveals the activation energy and the attempt-to-escape frequency. (d) Density of 

trap states (DOS) at different temperatures as a function of the demarcation energy Eꞷ. .......... 118 

Figure 84. Sweeping rate dependent I-V performance for single TiO2 nanobelt device on paired 

Au-Au electrodes. ....................................................................................................................... 119 



xxiii 

 

Figure 85. Threshold dynamics of the single TiO2 nanobelt devices emulating a nociceptor. (a) 

Schematic of neuron transmission for a nociceptor. (b) Schematic diagram for threshold switching 

in the device. The threshold value will determine the output current response, below which, no or 

insignificant current response is detected. (c) Response of the single TiO2 nanobelt device to single 

pulses with different amplitudes from 3 V to 10 V. (d) Response of the single TiO2 nanobelt device 

to number of pulses at various pulse amplitude. ......................................................................... 121 

Figure 86. Response of the single TiO2 nanobelt device to a single 5 V pulse with different 

durations. ..................................................................................................................................... 122 

Figure 87. Nociceptive behavior. (a) No adaptation response, different voltage amplitudes for the 

devices to reach the saturation state. (b) Relaxation response, 50 ms 10 V EPSC transient current 

over 4 cycles, current is read at 2 V, (c) Temperature dependent current transient behavior read at 

2 V after the 50 ms 10 V was applied, inset, activation energy from analysis of transient current at 

different temperatures. (d) Schematic diagram of the allodynia and hyperalgesia features with 

increasing stimuli intensity in normal (uninjured) and damaged (injured) conditions. (e) Current 

response for a train of pulses from 3 V to 7 V (50 ms) after the stimulation of high amplitude pulses 

(15 V and 20 V pulse, 50 ms), showing allodynia and hyperalgesia characteristics. (f) Current 

response to a train of pulses from 3 V to 7 V (50 ms) after the stimulation of high amplitude pulse 

(15 V 50 ms pulse) with different time interval, showing allodynia and hyperalgesia characteristics.

..................................................................................................................................................... 124 

Figure 88. Proposed nanowire crossbar structure for the integration of nanowire devices for the 

practical application in neuromorphic computing ...................................................................... 129 

 

  



xxiv 

 

List of Tables 

Table 1. Fractional percentage of oxygen (O 1s) states in samples (%) ...................................... 59 

  



xxv 

 

List of Abbreviations, Symbols and Nomenclature 

1D  One-dimensional 

Ec, Ev  Energy level at the conduction band minima and valence band maximum,  

Etrap  Energy level of electron traps  

EF  Fermi level 

Va, Vset, VTFL Applied voltage, SET voltage, Trap-filled limited voltage  

DOS  Density of states 

ECM  Electrochemical Metallization Memory  

EDS  Energy disperse X-ray spectroscopy 

EELS  Electron energy loss spectroscopy 

EPSC   Excitatory Current Response 

 (FE)SEM (Field-emission) scanning electron microscopy  

FRAM  Ferroelectric Random-Access Memory  

FTO  Fluorine doped tin oxide 

HRS  High resistance state  

(HR)TEM (High-resolution) Transmission Electron Microscopy 

(GI)XRD (Grazing Incidence) X-ray diffraction 

I-V curves Current-voltage curves 

LRS  Low resistance state 

LTP  Long-term potentiation 

MIM   Metal-Insulator-Metal structure  

MRAM Magnetic Random-Access Memory  

NRA  Nanorod arrays 

PPF  Paired-pulse potentiation 

PRAM  Phase-change Random Access Memory  

PTP  Post-tetanic potentiation  

RAM  Random Access Memory 

ReRAM Resistive switching Random Access Memory 



xxvi 

 

SAED  Selected-area electron diffraction 

SCLC  Space-Charge-Limited Current  

STP  Short-term potentiation  

TAT  Trap-Assisted Tunneling  

TCM  Thermochemical Reaction Memory 

VCM  Valence Change Memory  

VRH  Variable Range Hopping  

XPS  X-ray photoelectron spectroscopy 

XRD  X-ray diffraction 



1 

 

Chapter 1. Introduction  

1.1. Background  

In recent years, memristive or resistive switching random access memory (ReRAM) devices 

based on metal-semiconductor or insulator-metal structures are gaining wide attention for the 

applications of non-volatile memory devices1-4, logic circuits5-8 and neuromorphic computing9-13 

due to the advantages of simple two-terminal structure, fast switching speed, high density and low 

power consumption, etc14-19. During the last decade, a wide range of materials have been proposed 

for the potential applications of non-volatile memory devices, such as binary transition metal 

oxides, perovskite-type complex transition metal oxides, large band gap high-k dielectrics, carbon 

based materials, organic materials, etc18. However, despite great efforts in exploring the nature of 

the switching mechanism, many details and the contribution of different factors in memristive 

devices are still completely unknown20.  

Furthermore, compared with the commonly used thin film nanomaterials, memristive devices 

based on one-dimensional (1D) nanomaterials demonstrate promising advantages such as confined 

structure for conductive filament formation and rupture, potential of being integrated into high-

density devices, etc. High-quality electrical performance of fabricated memristive devices together 

with good stability and reproducibility can be realized21. In terms of the applications of non-

volatile memory, to compete with complementary metal oxide semiconductor field effect 

transistors in conventional memory and logic circuits, the newly proposed memristive devices 

should satisfy the requirements of electroforming-free, low-power consumption, good retention 

and endurance performance, distinguishable resistance states and the potential to display 

multilevel memory performance22. However, a cost-effective way to fabricate 1D nanomaterial 

based memristive devices that satisfy the requirements for the applications is still lacking. 

Hydrothermal synthesis of metal oxide nanowires has been widely used in the application of 

sensing23-25, dye-sensitized solar cells26, 27, supercapacitor28, field emission29, etc. But research on 

memristive devices fabricated using hydrothermal-grown nanowires and their corresponding 

switching mechanisms are still lacking. Furthermore, considering the surface to volume ratio of 

1D nanomaterial, the defects on the surface would have a crucial effect on the electrical 

performance. It would therefore be interesting to study the effect of the surface defects on the 

resistive switching behavior for 1D nanomaterial based memristive devices via different ways.   
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1.2. Objectives 

The objective of the research program to date has been to examine the resistive switching 

performance, application in memory and artificial synapse applications and corresponding 

switching mechanism based on 1D TiO2 nanomaterials synthesized by hydrothermal methods. 

Three different of nanowire configuration are explored for the memristor device fabrication and 

characterization, i.e., TiO2 nanowire networks, TiO2 nanorod arrays, and a single TiO2 nanowire. 

The main objectives are: 

(1) Synthesis and characterization of TiO2 nanowire networks on Ti foil by a single 

hydrothermal process, characterization of obtained Al/TiO2 nanowire networks/Ti foil 

ReRAM devices and study its corresponding switching mechanism,  

(2) Resistive switching performance study of TiO2 nanorod arrays (NRAs) based ReRAM 

devices on fluorine doped tin oxide (FTO) glass substrate by a hydrothermal method. 

Improvement of the resistive switching performance of TiO2 NRA based ReRAM device 

via the introduction of a seed layer and exploring its corresponding switching mechanism,  

(3) Study the feasibility of using a single TiO2 nanobelt and its precursors during the 

hydrothermal process for the application of memory device and artificial synapse 

emulation for the application of neuromorphic computing.  

(4) Explore and propose the switching mechanism of 1D nanomaterial based memristive 

devices, rational design investigation of 1D nanomaterial based memristive devices that 

could be used as resistive switching memories and artificial synapse that satisfy different 

requirements.  

1.3. Organization of the thesis 

The research focused on 1D TiO2 nanomaterial based memristive devices for the applications 

of non-volatile memory devices and artificial synapse and the corresponding switching mechanism. 

The proposal is organized as follows: 

• Chapter 1 is an introduction describing the background and objectives of this work.  

• Chapter 2 covers the literature review of memristive devices focusing on its main electrical 

characterization parameters and a brief summary of switching mechanism. Furthermore, 

previous studies of memristive devices based 1D nanomaterial with different methods 

including hydrothermal methods would be discussed as well.  
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• Chapter 3 presents the study of low-power resistive switching memory based on TiO2 

nanowire networks on a Ti foil by a single hydrothermal method. A switching mechanism 

based on the migration of oxygen vacancies is proposed.  

• Chapter 4 presents the study of the resistive switching memory performance based on TiO2 

NRAs on FTO substrate. The study proposed that the introduction of a seed layer on the surface 

of FTO substrate would significantly improve the electrical performance of the obtained 

ReRAM devices which demonstrated low-power bipolar multilevel memory behavior. The 

switching mechanism of the obtained devices is controlled by space-charge-limited current 

(SCLC) in which the oxygen vacancies in the seed layer and the individual nanorods function 

as trap centers. 

• Chapter 5 presents the study of the precursors of the TiO2 nanobelts during the hydrothermal 

process, that are Na2Ti3O7 and H2Ti3O7 nanobelts for the memristive performance and the 

potential artificial synapse emulation for the neuromorphic computing applications.  

• Chapter 6 further study the charge transport mechanism in the single TiO2 nanobelt device 

and propose a unique voltage-dependent threshold switching mechanism for the emulation of 

artificial nociceptor devices.  

• Chapter 7 summarizes the research conclusion based on the above chapters and proposes the 

future work.  
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Chapter 2. Literature Review 

The focus of this chapter is to provide the literature review of the recent development of 

memristive devices, resistive switching random access memory (ReRAM) and the summary of 

switching mechanisms. Electrical performance and characterization of TiO2 nanomaterial based 

memristive devices are also summarized.  

2.1. Memristive devices and ReRAM devices 

2.1.1. What are memristor/memristive devices?  

Memristor, or memristive device was suggested as the fourth elemental circuit unit 

theoretically by Chua in 1970s30, 31. Even though its experimental history can go back two 

centuries32, it has not received much attention afterwards until the link between the experimental 

resistive switching device base on nanoscale TiO2 and the memristor concept was established in 

2008 by Strukov et al. in Hwelett Packard33. Ever since, the interest in resistive switching devices 

dramatically increased in recent years. The research in the past decade has demonstrated that 

memristors promise to be disruptive in electronics for the high speed, high scalability, low power 

consumption, and compatibility with complementary metal-oxide semiconductor. Therefore, 

memristor devices can be exploited for the next generation of non-volatile memory devices1-4, 

logic operations or analog circuits5-8 and the emulation of synaptic dynamics by functioning as the 

fundamental element for the realization of artificial neural networks, promising for neuromorphic 

computing applications9-13. A class of memristor devices used in memory application is often 

called resistive random access memory (ReRAM).  

2.1.2. What are ReRAM devices? 

With the critical dimension downscaling to 5 nm to 2021 in the semiconductor industry as 

demonstrated by the latest International Roadmap for Devices and Systems (IRDS 2018), the 

memory devices are faced with great opportunities and challenges. Conventional silicon-based 

flash memories, consisting of a metal-oxide-semiconductor field-effect transistor with an 

additional floating gate in each cell are reaching their miniaturization limit in the near future, not 

only for technical reasons, but also for physical limitations such as large leakage currents16. 

Furthermore, the silicon-based memories are also suffering from their own disadvantages. 

Therefore, novel types of non-volatile memories which could satisfy the requirement of fast 
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operation speed, good endurance and retention performance, and low power consumption are 

greatly demanded. In recent years, mainly four types of random access memories (RAM) have 

been proposed: ferroelectric RAMs (FRAMs)34, magnetic RAMs (MRAMs)35, phase-change 

RAMs (PRAMs)36 and resistive switching RAMs (ReRAMs)20. Among these different types, 

ReRAM has been gaining a wide attention as the next-generation non-volatile memory devices 

due to its advantages of simple metal-insulator-metal (MIM) structure, fast operation speed, robust 

retention and endurance performance, promising scalability potentials and multilevel data storage 

capability15, 20, 37. Furthermore, resistive switching in thin film devices may enable functional 

scaling of logic and memory circuits beyond the limits of complementary metal-oxide-

semiconductors. A resistive switching memory cell in a ReRAM is generally built by a capacitor-

like MIM structure, in which an insulating or resistive layer 'I' is sandwiched between two 

conductors 'M', as demonstrated in Figure 1. Resistive switching occurs when the device could be 

electrically switched between at least two different resistance states: a high resistance state (HRS) 

and a low resistance state (LRS). The resistance values at a certain reading voltage is different 

when the resistive switching occurs, and HRS, by definition, refers to the state with the high 

resistance values. Similarly, LRS refers to the state with the low resistance values. By applying 

either a voltage or a current to a cell, reversible switching between the LRS and HRS can be 

achieved. Once switched, the cell retains the particular resistance state level for a long time. One 

example of the nanoscale crossbar for non-volatile memory devices can be seen in Figure 238. The 

I-V sweeping performance of ReRAM devices is a typical characteristic feature of memristor 

devices, i.e., its I-V sweeping performance is pinched to zero when the voltage drop across the 

origin point 39, 40 It should be noted that ReRAM devices is only a typical example of memristive 

devices.  

The materials used for ReRAM devices can be classified into five types18: (1) binary transition 

metal oxides, e.g., TiO2, Cr2O3, CuOx, FeOx, WO3, Ta2O5, NiO, etc., (2) Perovskite-type complex 

transition metal oxides, e.g., (Ba, Sr)TiO3, Pb(ZrxTi1-x)O3, BiFeO3, etc., (3) Large band gap high-

k dielectrics, e.g. Al2O3, SiO2, and Gd2O3, (4) Carbon based materials, e.g., graphene oxide41-43, 

amorphous carbon materials44, etc., (5) emerging organic and bio-materials, such as poly(methyl 

methacrylate) (PMMA)45 and silk protein46. Combination of these materials is also used for 

different functional devices47-50.  
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Two schemes of resistive switching types in ReRAM devices are generally observed, unipolar 

and bipolar with respect to the electrically polarity required for the resistive switching to occur 51. 

Switching is unipolar when the procedure does not depend on the polarity of the voltage and 

current signal. A system in its HRS (OFF state) is switched by a threshold voltage into the LRS 

(ON state) as sketched in Figure 3(a). In contrast, the characteristic is called bipolar when the set 

to an ON state occurs at one voltage polarity and then reset to the OFF state on reversed voltage 

polarity, as demonstrated in Figure 3(b).  

 

Figure 1. Schematic diagram of MIM structure in ReRAM devices, in which M' and M'' denote the metal electrode 

and I denote the insulator (switching layer). 

 

Figure 2. An example of the non-volatile Pt/Ta2O5-x/TaO2-x/Pt ReRAM devices, (a) Scanning electron microscopy 

image of a 30-nm crossbar arrays of devices with the inset showing a magnified single device, (b) Transmission 

electron microscopy cross-section of a 30-nm crossbar cell. The insulating Ta2O5-x layer can be seen along with the 

TaO2-x base layer, with a total thickness of 30 nm. Adapted with permission52. Copyright 2011, Nature Publishing 

Group.   
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Figure 3. Sketches for classification of resistive switching, (a) Unipolar switching, and (b) bipolar switching. (CC: 

compliance current). Adapted with permission51. Copyright 2007, Nature Publishing Group.   

2.1.3. Characteristic parameters of ReRAM devices  

As a future candidate for the next-generation non-volatile memory devices, the ReRAM 

devices should satisfy several performance requirements to replace Flash memory and dynamic 

RAM (DRAM) devices. There are a number of characteristic parameters and requirements for 

ReRAM devices: 

(1) Resistance ratio: A typical large ON/OFF ratio>10 is generally required for ReRAM devices 

to distinguish from different states and allow for small and highly efficient sense amplifiers 

and, hence, reasonably cost-effective ReRAM chips. Furthermore, to realize the high-density 

data storage, the multi-level memory performance of ReRAM devices is highly demanded. 

This would require distinguishable ratios at the read voltage among different states53.  

(2) Endurance: Endurance denotes how many write cycles with alternating SET and RESET 

process can be performed until the ON or OFF states falls out of the predefined acceptance 

window. Contemporary Flash memory show a maximum number of write cycles between 103 

and 107, depending on the type. Through careful design, a high endurance up to 1012 cycles is 

achieved in Ta2O5-x/TaO2-x devices52.  

(3) Retention: Retention is the ability of a memory cell to keep stored information if the cell is not 

addressed. A data retention time of >10 years is demanded for universal non-volatile memories 

devices. Furthermore, the retention time should be checked under elevated temperature 

condition (85oC). Normally, the retention of the current proposed ReRAM devices is in the 
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range of 103 to 106 s. Further extrapolated retention for different states in actual studies has 

demonstrated to satisfy this requirement.  

(4) Write and read operation: write voltage should be in the range of a few hundred mV (not lower, 

in order to be compatible with scaled CMOS) to a few V. The length of the write voltage pulses 

is typically <30ns. This allows for a competition with DRAM devices and outperforms Flash, 

which has a programming speed of some 10 μs. Currently, a 5 ns switching speed has already 

been achieved in Ag/Mn:ZnO/Pt memory devices54. An even faster switching speed as low as 

~100 ps has also been demonstrated for tantalum pentoxide based  ReRAM devices, which is 

very promising for non-volatile memory devices as well as other high speed circuit 

applications55. In terms of read operation, read voltages need to be significantly smaller than 

write voltages in order to prevent an unintentional write during the read operation.  

(5) Multilevel memory potential: The potential of multilevel memory performance of ReRAM 

memory devices is highly demanded for high-density information data storage. Furthermore, 

distinguishable resistance states among each level is also required. Typically, four or five level 

memory performance could be generally achieved for most of the proposed devices56, 57. 

Further increasing the number of the levels poses great difficulties58.  

(6) Scalability and power consumption: To realize the high-density non-volatile memory as well 

as emerging applications in logic operation and neuromorphic devices, the power consumption 

of the ReRAM devices should be very low to compete with the complementary metal oxide 

memory and logic circuits22. But this is very challenging to achieve currently. Furthermore, 

the high-density storage for the future development of memory devices would require a small 

feature size as well as eliminating the sneak current. All these requirements are very 

challenging for current ReRAM devices to achieve simultaneously. With the development of 

e-beam lithography, a 10×10 nm2 crossbar structure has already been achieved in Hf/HfOx 

devices with a low energy consumption4. Furthermore, a low power consumption with the 

programming current as low as 10-10 A and <10-12 A for SET and RESET switching, 

respectively has also been achieved in Pt/NbOx/TiOy/NbOx/TiN stack devices22.  

It should be noted even though one or several above-mentioned requirements have already 

been achieved for some devices, there is still lacking realizations of devices to achieve all of the 

requirements. Further studies are highly demanded for the achievement of excellent low power 

consumption, good uniformity and reliability, high scalability prospects, robust retention and 
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endurance, distinguishable resistance states and potential to demonstrate multilevel memory 

performance for the next-generation non-volatile memory devices. 

2.1.4. Summary of resistive switching mechanism  

2.1.4.1. Cation migration---Electrochemical Metallization Memory (ECM)  

Depending on the driving force, interface reaction, ionic transport for the resistive switching, 

the switching mechanism of memristive devices can be primarily divided into thermal, electrical 

and ion-migration induced resistive switching. Ion migration mechanism could be further 

subdivided into cation-migration cells, which are based on the electrochemical growth and 

dissolution of metallic filaments, and anion-migration cells, in which electronically conducting 

paths of sub-oxides are formed and removed by local redox processes51. However, the mechanism 

of memristive devices, for example the nature of filament formation and their growth dynamics 

are still under debate nowadays and the following paragraphs provide a brief summary of current 

research status.  

In cation-based memristive devices, active electrodes, such as Ag and Cu are responsible for 

the resistive switching process. This kind of switching mechanism of memristive devices is called 

electrochemical metallization memory (ECM). As demonstrated in Figure 4, the initial stage of the 

device is HRS, with no reaction of Ag (Figure 4(A)). When the positive voltage is applied to the 

top Ag electrode, an oxidation reaction occurs at the Ag/insulating layer interface (Figure 4(B)). 

The obtained Ag ions (cations) would migrate towards to the bottom inert electrode (Pt in our case) 

and reduce to Ag atoms (Figure 4(C)). The accumulation of the Ag atoms from the bottom towards 

top electrode would finally bridge the two electrodes, switching the device from HRS to LRS. It 

should be noted that the corresponding current response is very steep and quickly reaches the 

compliance current, which is used for preventing the device from permanent breakdown (Figure 

4(D)). The negative voltage would induce the rupture of the filament by repelling the Ag atoms 

back to Pt electrode and switches the device from LRS to HRS again (Figure 4(E)).  
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Figure 4. Schematic current-voltage characteristic of ECM devices and corresponding mechanism, in which active 

electrode (Ag, Cu, etc.) contributes to the resistive switching. Voltage is applied to the Ag electrode while Pt 

electrode is grounded. In the initial stage, no Ag ions is in the insulator layer (A); when under positive applied 

voltage to the active electrode, an oxidation reaction occurs at the active electrode/insulating layer interface. Then, 

the injected Cu or Ag ions migrate within the electric field through the insulating layer (B), At the inert 

electrode/insulating layer interface another electron-transfer reaction occurs. The Cu/Ag ions are reduced, and a 

Cu/Ag filament starts to grow towards the anode after having formed a stable Cu/Ag nucleus (C). The bridging 

between the anode and cathode with Cu/Ag filament switches the device from HRS to LRS. While the rupture of the 

filament with a negative voltage switches the device from HRS to LRS. Adapted with permission37. Copyright 2015, 

Wiley-VCH.  

To investigate the resistive switching mechanism of ECM device, Choi et al. investigated the 

current response and the microstructure morphology change of Cu/GeTe layer/Pt-Ir device by in-

situ transmission electron microscopy (TEM), as demonstrated in Figure 559. It could be observed 

that multiple nano-filaments (with a diameter of ~5 nm) formed under the negative voltage (Figure 

5(d), and these filaments become strengthened when a further -0.8 V voltage was applied (Figure 

5(e)). The current response increased with the increase of the negative voltage, suggesting that 

these filaments serve as conducting paths. The observation of the filament formation and rupture 

is in agreement with the proposed ECM mechanism as demonstrated in Figure 4. 
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Figure 5. Demonstration of the switching mechanism in ECM devices. (a) Schematic design of the in-situ 

experiment set-up. (b) In-situ current-voltage (I-V) response. (c)-(f), Cross-sectional STEM images obtained after 

the voltage applications of 0, -0.4, -0.8, and +0.4 V, respectively. (g)-(j) Black-and-white images converted from the 

raw STEM images of (c)-(f), respectively. Adapted with permission59. Copyright, 2011, Wiley-VCH.  

However, the migration of active ions in the insulating layer highly depends on mobility of 

cations in the dielectric layer. Yang et al. demonstrated an in-situ measurement of the 

Ag/amorphous Si/W structure in which the Ag ions migrate towards the W electrode at a much 

slower rate, which leads to the reduction of the Ag atoms inside of the dielectric layer in contrast 

to the W/dielectric interface60. The result would be the filament formation from the Ag electrode 

towards the W electrode, as shown in Figure 6. This process will lead to a dramatic current 

response increase as demonstrated in Figure 6(b). In comparison, Yang et al. also showed that the 

filament formation agrees with the demonstration in Figures 4 and 5 (bottom W electrode towards 

Ag top electrode) when the dielectric layer changed from amorphous Si to SiO2. 
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Figure 6. In-situ TEM observation of conductive filament growth in vertical Ag/a-Si/W memories. (a) Experiment 

set-up. The Ag/a-Si/W resistive memory device was fabricated on a W probe in TEM, scale bar, 100 nm. (b) I-t 

characteristic recorded during the forming process at a voltage of 12 V. (c-g) TEM images of the devices 

corresponding to data points c-g in (b) recorded during the forming process. Scale bar, 20 nm. It could be seen the 

filament formation in (g) from the top Ag towards W electrode. Adapted with permission60. Copyright 2012, Nature 

Publishing Group.  

2.1.4.2. Anion migration---Valence Change Memory (VCM) 

In anion-migration based memristive devices, the resistive switching mechanism is mostly 

based on the migration of anions (defects in the insulating layer). Typically, oxygen vacancies in 

N-type metal oxide material (such as TiO2, ZnO, etc.) and metal vacancies or interstitials in P-type 

metal oxide materials (such as NiO, CuO, etc.) are generated or rearranged in the switching layer. 

Correspondingly, the material of the filament is different from the original switching layer in terms 

of the electronic properties, the so-called valence change memory. Take ZrO2 as an example, as 

shown in Figure 7. Positive charged oxygen vacancies would rearrange into a filament (or a plug). 

In the OFF state (Figure 7(A)), the filament consists of n-type oxide and a potential barrier in front 

of the left electrode. By applying a negative voltage, oxygen vacancies from the plug part of the 

filament are attracted into the barrier (Figure 7(B)), which results in a significant decrease of the 

barrier height and width due to a local reduction process, which turns the cell into the ON-state 

(LRS) (Figure 7(C)). For the RESET process, a positive voltage is applied to the active interface 

which repels the oxygen vacancies (Figure 7(D)), leading to a local re-oxidation, and turns the cell 

into the OFF state (HRS) again.  
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Figure 7. Schematic current-voltage characteristic of VCM devices and corresponding mechanisms, in which the 

defects of insulating layer (vacancies, interstitials, etc.) are responsible for the resistive switching. Both active and 

bottom (right) electrode are inert. When a negative voltage is applied to left electrode, oxygen vacancies migrate 

towards this electrode (B). Hence, the insulating region between the sub-stoichiometric well-conducting filament 

and the active electrode becomes conducting and the VCM cell switches to the LRS (C). By reversing the voltage-

polarity oxygen vacancies are pushed back from the active electrode (D) and finally the HRS is reestablished (A). 

Adapted with permission37. Copyright 2015, Wiley-VCH. 

The conducting channels in metal oxide responsible for the resistive switching behavior were 

first demonstrated by Kwon, D.H. et al., in which the Magnéli phase of TiO2 was identified from 

cross-sectional high resolution TEM in combination with its corresponding selected area electron 

diffraction pattern and fast Fourier transformed images (Figure 8)61. The conical structure of Ti4O7 

nano-filament with the diameter of 15 and 3 nm at the cathode and anode interfaces respectively 

is bridging top and bottom electrodes. Due to its high conductivity nature, the bridged Ti4O7 nano-

filament would switch the device to ON state. The formation of the Magnéli phase in TiO2 under 

electric field is believed to be the generation of oxygen vacancies as the first step, following by 

the rearrangement of these oxygen vacancies until a certain critical density reached, leading to the 

formation of the ordered structure (Magnéli phase). In theory, surpassing the limit that sustains the 
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original crystal structure would result in the local phase transformation into the metallic Magnéli 

phase in the Ti-O system62.  

 

Figure 8. Schematic diagram of the experimental scanning probe set-up in the TEM chamber, (b) High resolution 

TEM image of structure after the electroforming process. (c) Selected area electron diffraction and (d) fast Fourier 

transformed micrograph of the Magnéli phase. Adapted with permission61. Copyright 2010, Nature Publishing 

Group.  

Park et al. further demonstrated the observation and identification of conductive channels in 

the tantalum oxide based memristive devices (Pt/SiO2/Ta2O5-x/TaO2-x/Pt) via in-situ TEM 

characterization techniques63. Each resistance state (set, reset and breakdown) was confirmed with 

the in-situ current-voltage measurement. Figure 9 demonstrated the microstructure morphology 

evolution of the switching TaO2-x layer under different states of the resistive devices. The cross-

sectional high-angle annular dark-field (HAADF) scanning TEM (STEM) images clearly 

demonstrated the voltage–induced variations in Ta-rich areas during SET (Figure 9a), RESET 

(Figure 9b) and breakdown (Figure 9c) operations. The converted color images from the Figure 

9a-c further displayed the conductive paths in the switching layer in Figure 9d-f. The metallic 

TaO1-x phase (yellow region) was confirmed by electron energy loss spectroscopy (EELS) analyses. 

At the SET state, we could observe large conductive clusters that were clearly percolated into the 

switching TaO2-x layer, as demonstrated in Figure 9a and 9d. After RESET switching, the 

conductive clusters in the TaO2-x layer became smaller and their percolation paths were partially 
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interrupted (Figure 9b and 9e). After the breakdown operations, the areas of conductive clusters 

significantly increased because of almost-filled Ta-rich clusters (Figure 9c and 9f).   

 

Figure 9. Voltage-induced morphology evolution in the TaO2-x layer. (a-c) Cross-sectional HAADF-STEM images 

showing the structural evolution after the set (a), reset (b) and breakdown (c) operations. Bright area: Ta-rich phase 

(conducting paths) and dark area: non-conducting clusters. Inset shows the atomic resolution STEM images 

exhibiting the individual Ta atoms (green circles). (d-f) Pseudocolour maps converted from the raw images of a-c, 

respectively. Yellow: Ta-rich phase (conducting paths), blue: non-conducting clusters. Bright and yellow regions in 

(a-f) are regarded as conductive percolation paths. Scale bar, 3 nm. Adapted with permission63. Copyright 2013, 

Nature Publishing Group.  

Moreover, for metal oxides which contain different types of defects, the involvement of theses 

defects in resistive switching performance has not been excluded. Wedig A. et al. demonstrated 

that there is a bridge between ECM and VCM in HfO2, TiO2 and Ta2O5 materials considering the 

migration of both cations and anions. Cations such as Hf, Ti and Ta ions would form metallic 

filaments and participate in the resistive switching process64, 65. These cations are mobile under 

electric field and can participate in the resistive switching process in competition with the 

commonly thought migration of oxygen vacancies in VCM devices. This suggests that the 

migration of metallic cations (ECM) and migration of anions (oxygen vacancies) can be possible 

to occur simultaneously in some resistive switching systems considering that both cations and 



16 

 

anions are mobile. A complete transition from VCM to ECM is also realized by interface 

engineering64, 66. The dual effects of anions and cations is also reported theoretically to be crucial 

in resistive switching behavior of p-type metal oxides67.  

However, in spite of the various materials with similar structures demonstrating similar I-V 

response, the exact nature of the filament formation and rupture and its driving forces are still now 

under discussion and differs from material-to-material. The reason for the rupture of the filament 

is still unknown as different researchers proposed different models for their explanations. Other 

factors, such as concentration of defects in the switching layer, the effect of Joule heating, and 

crystallinity of the switching layer make resistive switching mechanism of VCM ReRAM devices 

even more complicated. The direct evidences of the identity of the mobile species in the switching 

oxides are still lacking17. These factors severely hinder the optimization of the performance of the 

devices and further applications.  

Besides these factors, two other factors should also be considered in terms of the electrical 

performance of VCM based ReRAM devices: work function and oxygen affinity of the active 

electrode18. In theory, the difference between the work function of the electrode and the Fermi 

level of the metal oxide to a large extent would determine the contact resistance, which could 

display a rectifying characteristic (Schottky contact) when the difference is big while displaying a 

linear response when the different is negligible (Ohmic contact). In reality, the surface states at the 

metal/semiconductor interface will play an important role in determining the contact state behavior. 

The analysis of the meta/metal oxide interface by taking into consideration of the work function 

as well as the effect of the surface states should be carefully combined to lead to a convincing 

conclusion of the contact property. Furthermore, the oxygen affinity of the active electrode also 

plays a crucial role in the switching mechanism. Interface engineering of the metal/metal oxide 

was shown to engineer the resistive switching performance of obtained devices68. The metal 

electrode that has a high oxygen affinity would lead to an additional depletion of oxygen ions in 

the adjacent oxide near the interface and hence, an additional decrease of the barrier supporting 

the low contact resistance. The interface between electrode and metal oxide should be taken into 

consideration for the engineering of the performance69. The typical example is the Ti electrode on 

the surface of TiO2 to generate more oxygen vacancies70. In contrast, some other types of metal 

electrode such as Al would generate an interfacial insulating layer on the surface of the metal oxide, 
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which would function as reservoir of oxygen vacancies and engineer the resistive switching 

performance71, 72.  

2.1.4.3. Charge trapping and Detrapping 

Another model for the resistive switching performance is based on the physical perspective of 

electron transport process. In the switching process, the electric field induced the trapping and 

detrapping of carriers, mostly electrons in the system are responsible for the resistive switching 

behavior of the devices. Compared with the migration of oxygen vacancies which need higher 

current (over ~A), the charge trapping and detrapping could be more likely to happen for the low 

current resistive switching22. The sources of the trap centers can be the defects of the switching 

materials  (mostly, oxygen vacanices47, 73-75), additional charge traps such as quantum dots76, 

imbedded nanoparticle layer77 and stacked graphene layers49. Typical examples of the I-V curves 

can be fit by a Poole-Frenkel (P-F) conduction mechanism78, hopping, and a space-charge limited 

conduction (SCLC) mechanism79-81. A schematic illustration of the charge trapping induced 

resistive switching performance is shown in Figure 1076.  

 

Figure 10. Schematic diagram of for the transport mechanism of charge trapping and detrapping process. (a) Nearly 

empty traps, (b) thermally generated carrier conduction, (c) traps partially filled and (d) fully filled traps, the device 

is transitioned from HRS to LRS at (d). The CeO2 quantum dots function as the trap centers. Reprinted with 

permission76. Copyright 2013) American Chemical Society.  

2.1.4.4. Thermochemical reaction (TCM) 

In thermochemical reaction-dominated memristive devices, the forming and set process 

correspond to the thermal decomposition of the storage media and consequent formation of the 
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conductive filaments. This corresponds to the large voltage that is applied to the pristine devices 

and switches the device from HRS to LRS. The reset process is triggered by thermal melting of 

the existing conductive filaments by sweeping the relatively lower voltage. The schematic design 

is shown in Figure 11.  

 

Figure 11. Schematic diagram for filamentary channels in TCM devices and corresponding unipolar resistive 

switching characteristics. RS: resistive switching, TE, top electrode. BE, bottom electrode. Adapted from 

Reference82. 

Chen et al. demonstrated that the conductive filament in a Pt/ZnO/Pt device is composed of 

Zn-dominated ZnO1-x by in-situ TEM as shown in Figure 1283. Figure 12(a)-(d) displayed the 

evolution of the conductive filament, growing from the cathode to the anode during the forming 

process. When large concentrations of oxygen vacancies gather at the cathode, the zinc atoms 

rearrange their position/structure from ZnO to crystalline Zn-dominated ZnO1-x. Meanwhile the 

reset process would rupture the filament by migration of the neighboring oxygen ions (Figure 

12(e)). The migration of oxygen ions leads to the conversion between Zn-dominated ZnO1-x and 

ZnO, which result in the resistive switching behavior. The corresponding unipolar I-V curve is 

shown in Figure 12(f)83.  

It should be noted that although different switching mechanisms have been proposed for the 

ReRAM devices, there is still controversy about the nature of the switching performance. Even for 

the same type of switching material, the electrical performance of the device also is interpreted 

differently by different researchers. Our understanding of the nature of the resistive switching is 

still far from comprehensive. Further study of the mechanism of the switching performance of 

memristive devices is highly required for the engineering and optimization of the performance and 

future applications.  
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Figure 12. In-situ TEM observation of the evolution of the conductive filaments during forming the subsequent 

reset process of a Pt/ZnO/Pt cell. (a-d) A series of TEM images corresponding to the data points a-d in (f). The white 

dashed lines in (b-d) highlight the filament. (e) TEM image obtained after the reset process. (f) The corresponding I-

V curve of forming (blue) and subsequent reset (red) process. Adapted with permission83. Copyright 2013, American 

Chemical Society.  

2.1.5 Applications of memristive devices  

2.1.5.1. Multilevel memory for data storage 

A multilevel operation is highly desired for next-generation non-volatile memory devices for 

the application of data storage, and device scalability. Resistive switching devices utilizing the 

resistance change rather than charge storage have attracted consideration as potential alternatives 

to conventional charge-based memory devices such as flash memory. Unlike binary state devices, 

multilevel resistive switching requires relatively well defined and distinguishable resistive states, 

as well as long retention behavior for each state. In practice it is really challenging to achieve a 

high number of resistance states. A wide range of materials have demonstrated stable multilevel 

memory operation performance49, 58, 84-87. For example, a 3 bit/cell operation is achieved by WOx 

resistive switching devices with high endurance performance84 as shown in Figure 13. Another 

research of a graphene oxide thin film device with Ti top electrode demonstrated 4-level storage 

capabilities, with ultrafast switching speed and high flexibility property85.  
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Figure 13. Multilevel memory storage of a WOx resistive switching memory device with high endurance 

performance, adapted from Reference84. 

2.1.5.2. Logic calculation 

By utilizing the resistance change and its nonvolatile characteristic, memristor devices have 

also been used for the Boolean operation7 and further logic computing6, 88, 89. Moreover, a 

memristor device provides the unique characteristic of logic-in-memory operation, capable of 

constructing an in-memory computation system by merging the function of memory and arithmetic 

logic unit, which are separated in the conventional von Neumann architecture89. J Borgehetti et al. 

firstly demonstrated that the memristive device can enable material implication, a fundamental 

Boolean logic operation on two variables p and q, as shown in Figure 147. Linn E. et al. further 

demonstrated that the passive crossbar memristor devices could demonstrate 14 of 16 Boolean 

functions in a single bipolar resistive switching or complementary resistive switching cell unit90. 

Xu et al. further demonstrated that all the 16 Boolean logic functions can be achieved by diode-

integrated single unipolar memristor devices89. Furthermore, to eliminate the effect of sneaking 

current path for the crossbar memristor devices, some other types of memristive structures such as 

complementary resistive switching performance5, or connected with a transistor to form a 1T1R91, 

a selector device to form a 1S1R92 1, 93 and a diode device to form a 1D1R94, 95 structures are also 

proposed for the logic computing operation.  
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Figure 14. Illustration of material implication logic operation by a memristor device. Adapted with permission7. 

Copyright 2010, Nature Publishing Group.  

2.1.5.3. Neuromorphic computing   

The development of artificial neural networks that could rival their biological counterparts is 

very promising and highly desired, especially for the era of Big Data. Compared to conventional 

digital computers designed from the von Neumann configuration in which the arithmetic/logic 

units and memory units are separated, the configuration of brain outperform digital computers due 

to its dramatically different configuration, which could simultaneously operate the arithmetic 

calculation and memory without the burden of data transmission. The key to the high efficiency of 

biological systems is the mass connectivity between neurons that offers parallel processing 

power10. The mammalian including human brains outperforms computers in many computational 

tasks, such as recognizing a complex image much faster and with better fidelity, and yet consumes 

a tiny fraction of energy used by computers to do this.96 Indeed, the research on artificial neural 

networks could be dated back to the 1950s97-99, where small networks of neurons and functional 

properties were explored. However, the progress of artificial neural networks has been less 

remarkable compared with the progress on digital computers due to (1) the difficulty in realizing 

the device limited by the computer fabrication and (2) the difficulty in accurately modeling the 
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neural networks100. In recently years, driven by the advanced integration electronics fabrication 

process with nanometer scaling being feasible and highly desired demand to process huge data and 

information, the research on the neural networks or artificial intelligence, both theoretically and 

experimentally, are gaining a wide attention around the world.    

Implementing neuromorphic computing in hardware would be a great boost for applications 

involving complex processes such as image processing and pattern recognition. The key 

component for the neural networks is the artificial neurons and the synapses where the synapses 

connect the pre-neurons and the post neurons, as shown in Figure 15. Synapses are elemental to 

information propagation in the central nervous system in the brain as well as body. In most neurons, 

the presynaptic sites are located either on a dendrite or on the cell body and the human brain is 

estimated to contain ~1014-1015 synapses100. Synapses dominate the architecture of the brain and 

are responsible for massive parallelism, structure plasticity and robustness of the brain. They are 

also biological computations that underlie perception and learning. The signal transmission in the 

chemical synapses is mediated by endogenous messenger chemicals, known as neurotransmitters. 

In brief, the information flow arrives at the axon terminal as an action potential. This action 

potential triggers the release of a neurotransmitter from a vesicle, whereupon the neurotransmitter 

binds to a receptor on ion channels, and ions cross the membrane through open channels. This 

influx of ion produces a synaptic potential in the postsynaptic neuron. When the integrated or total 

sum of the synaptic potential channels exceeds its threshold, the postsynaptic neuron will fire an 

action potential, i.e. the neuron responds or conveys information to its connecting neurons and the 

process continues. After the transmission, the subsequent spontaneous decay of ion concentration 

at the axon terminal will lead to the presynaptic neuron returning to the previous state.101, 102 The 

synaptic weight between two neurons can therefore be precisely adjusted by the ionic flow through 

them. This dynamic process is at the root of information processing and memory in the brain. A 

solid state device that can accurately emulate the functions and plasticity of biological synapses in 

a chemical synapse will therefore be the most important building block of brain-inspired 

computation systems103. 
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Figure 15. The interaction between presynaptic neuron and postsynaptic neuron. Adapted from Reference104. 

Due to the impressive development of integrated circuits, researchers firstly used traditional 

semiconductor devices, mostly transistors to emulate the biosynaptic behaviors, which comes at 

the expense of requiring massively parallel logic cells and switching cells to be constructed, 

leading to large areas circuits, low efficiency and low speed operation, and high costs.105 

Furthermore, the down-scaling of semiconductor transistors is approaching its physical limits, 

which push researchers to seek for alternative devices that can emulate the behaviors of biosynapse.  

A memristor, as a two-terminal device, bears striking resemblance to the synapse. Indeed, the 

resistance change of a memristor device can be adjusted by the flow of charge through it, making 

the device perfect to mimic the dynamics of a biological synapse and also is far more advantageous 

than transistors due to its simple structures, high switching speed and ability to allow the integrated 

network to develop complex emergent behaviors. The research of making use of memristor devices 

for the emulation of biosynapses has seen great progress in the past decade. The research of 

memristor for the application of neuromorphic computing can be classified as two different aspects: 

(1) examining new materials, configuration of memristor devices for the emulation of 

multifunction for the artificial synapse and (2) integration of memristor devices to artificial neural 

networks for practical applications.  

As to the first aspect, great progress has been achieved for the emulation of biosynapses. For 

example, the formation of Ag conductive filaments controlled by the applied bias in the Ag2S 

atomic switches can emulate the learning behavior of the human brain.106 Furthermore, the same 

research group demonstrated that the precise control of the Ag filament in the Ag2S system 
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resembles the short-term plasticity (STP) and long-term potentiation (LTP), key features for the 

biological synapses, as shown in Figure 16.11 Similar behavior is also observed for the valence 

change memory, where the oxygen vacancies based filaments can also be precisely adjusted by the 

repeated pulses, leading to the transition from short-term memory to long-term memory107. 

Furthermore, the inner mechanism of the conductive filament formation and rupture is controlled 

by the ionic migration and diffusion, which can further be used for mimicking the learning and 

forgetting, relearning, and reinforcement learning behavior105, 108. Kuzum et al. demonstrated 

firstly the memristors devices can undergo Hebbian learning, a fundamental learning rule in the 

human brain10. It was further theoretically demonstrated that the second-order memristor, which 

take into consideration of not only the conductance of the memristor device, but also the internal 

dynamics such as accumulated heat, is required to emulate the timing-controlled Ca2+ dynamics 

including frequency-dependent plasticity and timing-based plasiticy109. Therefore, by the inner 

timing mechanism of the memristor devices, the performance of the device can be controlled by 

the history of the previous performance, this can lead to the paired pulse potentiation (PPF) and 

paired pulse depression (PPD)110 and metaplasticity111-114 . Based on the controlled ion migration 

by electric field and inner diffusion mechanism, researchers used external or multiterminal 

electrodes to modulate the synaptic behavior, leading to the emulation of heterosynaptic behavior, 

providing great potential for the emulation of biosynapses in the human brain115-120. A summary 

of the configuration for the heterosynaptic emulation is shown in Figure 17.  Furthermore, for 

mimicking the human brain, the energy consumption per synaptic event should be in the sub-pJ or 

even in the fJ energy range, which were achieved by metal oxide thin film based memristor 

devices121 and also in an organic nanowire based memristive device122.  
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Figure 16. Ag2S based devices showing short-term plasticity and long-term potentiation, depending on the input-

pulse repetition time. (a) Schematic diagram of a Ag2S synapse and the signal transmission of a biological synapse. 

Application of input pulses causes the precipitation of Ag atoms from the Ag2S electrode, resulting in the formation 

of a Ag atomic bridge between the Ag2S electrode and a counter metal electrode. When the precipitated Ag atoms 

do not form a bridge, the synapses work as the STP. After an atomic bridge is formed, it works as LTP. (b) 

Experimental demonstration of the STP and LTP by recording the change in conductance of the synapse when the 

input pulses were applied with a relative long intervals of T=20 s and (c) T=2 s. Adapted with permission11. 

Copyright 2011, Nature Publishing Group.  
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Figure 17. Summary of configuration and devices for the heterosynaptic emulation based on memristive devices. (a) 

Schematic illustration of two-terminal plasticity (homosynaptic) and (b) heterosynaptic plasticity. (c) SEM image of 

the device on the substrate, in which the Ag clusters between the pre and post electrodes can be modulated by the 

application of bias on the MOD electrode. (a)-(c) are adapted with permission115. Copyright 2015, Wiley-VCH. (d) 

A schematic illustration of a different device based on the metal oxide sandwich memristor devices with a side 

electrode functioning as the modulatory electrodes. Adapted with permission116. Copyright 2017, Wiley-VCH. (e) 

Schematic diagram showing the synaptic interactions enabled by the diffusion of plasticity-related proteins (PRP) 

among multiple synapse. Specifically, PRPs are generated in the postsynaptic terminal of synapse 1 and can diffuse 

to the synapses 2, 3, 4 through the dendrite. Depending on the difference among diffusion, synaptic behavior among 

these synapses can be different. (f) five terminal MoS2 devices, in which the distribution of conductive ions at the 

terminals such as Electrode A, B, C and D can be controlled separately and lead to the potential heterosynaptic 

emulation possibilities, inset, SEM image of the fabricated MoS2 devices. (e) and (f) are adapted with permission120. 

Copyright 2018, Nature Publishing Group. (g) Six terminal MoS2 devices, in which any two of the inner electrodes 

(1, 2, 3, 4) can be controlled by the outside electrodes (5 and 6). Adapted with permission118. Copyright 2018, 

Nature Publishing Group.  

As to the second aspect, the practical application of memristive devices are used for certain 

artificial neural networks. These applications are normally based on mature materials and process 

such as the widely studied TiO2 based memristive devices. By the fabrication of crossbar 

memristive devices, certain functions have been reported, including pattern and face 

classification,123-125 sparse coding126, multilayer perceptron network,127 coincidence detection128, 

different learning behavior such as unsupervised learning129, 130, self-adaptive learning131, etc. A 
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typical example for the use of crossbar memristive device for the application of face classification 

is shown in Figure 18.  

 

Figure 18. Natural image processing using the memristor crossbar structures. (a) SEM image of the fabricated 

memristor array. Upper right inset: magnified SEM image of the crossbar. Scale bar, 3 m. Lower left inset: 

memristor chip integrated on the test board after wire-bonding process. (b) A 3232 chequerboard pattern 

programmed into the memristor array and subsequently read back using the hardware system in (a). (c) Original 

120120 image. The image is divided into non-overlapping 44 patches for processing. (d) A 44 patch from the 

original image. (e) The experimentally reconstructed patch from the 1632 memristor crossbar using the locally 

competitive algorithm and an offline-learned dictionary based on “winner-take-all” approach. (f) Membrane 

potentials of the neurons as a function of iteration number during the locally competitive algorithm analysis. The red 

horizontal line marks the threshold parameter . (g) Experimentally reconstructed image based on the reconstructed 

patches. Adapted with permission126. Copyright 2017, Nature Publishing Group.  
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2.2. 1D TiO2 nanomaterial based memristive devices 

2.2.1. TiO2 based memristive devices  

Among different nanomaterials that display resistive switching performance, TiO2 

nanomaterial-based memristive devices have been widely studied due to its ease of fabrication68, 

132 and its ability to demonstrate both unipolar133, 134 and bipolar73, 135, 136 resistive switching 

behavior. Furthermore, realization of the first memristor based on TiO2 further promoted the wide 

study in different types of TiO2 material based resistive switching behavior33. However, as to the 

switching mechanism based on TiO2 materials, various experimental and theoretical mechanisms 

are observed and proposed. Both unipolar resistive switching61 and bipolar137 resistive switching 

performance in VCM device have been observed in in-situ TEM studies, which suggest the 

migration of oxygen vacancies to form conductive filament plays a crucial role. The typical 

example is shown in Figure 8, in which a Magnéli phase of conical TiO2 filament is formed after 

the electroforming process. The formation of the different phase from TiO2 is related to the 

electrically-induced modification of the local oxygen content along filamentary structures and the 

corresponding modulation of the electronic properties associated with the occupation of the 3d-

state at the neighboring Ti atoms138. Furthermore, different resistive switching mechanisms of 

TiO2 based ReRAM devices have also been reported, including ECM in Ag/TiO2/Mo-doped In2O3 

structure139, VCM in Pt/TiO2/Pt in which oxygen vacancies migration formed conductive 

filaments137, 140, charge trapping and detrapping in which oxygen vacancies of TiO2 function as 

trap centers71, 73, 75, 80, 141. The diversity of the resistive switching mechanisms in TiO2 based 

materials is ascribed to the rich chemical nature of TiO2 containing different phases composed of 

TinO2n-1 (n=3, 4, 5…) and relative easy oxygen vacancy migration in the TiO2 matrix142. Recently, 

it was found in the planar Pt/TiO2/Pt structure via in-situ TEM observation, the dissociation of Pt 

atoms deriving from the interaction between Pt and oxygen-deficient TiO2 would lead to the 

formation of Pt filament bridging the anode and cathode, causing the electroforming process. Even 

though the migration of oxygen vacancies is also playing a role in this system, the experiment 

demonstrates that the anode electrode such as Pt is not as inert as normally assumed140. 

Furthermore, the oxygen affinity of the metal electrode and the interaction between the metal 

electrode and TiO2 are found to be important in the resistive switching performance as well143. 

Cation of TiO2 (Ti ions) are also found to be involved in resistive switching performance in some 
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systems64. These different switching mechanisms from experimental observation as well as 

resistive switching behavior make the nature of the switching mechanism of TiO2 based ReRAM 

devices still unknown.   

2.2.2. 1D TiO2 nanomaterial based memristive devices 

2.2.2.1 1D nanomaterial based memristive devices  

In comparison with thin films, the introduction of nanowires (nanorods) in memristive devices 

offers structural advantages that are expected to improve the performance of memristive devices. 

Nanowire-based devices can be fabricated using a bottom-up approach, rendering a promising and 

reliable candidates for going beyond the scaling limitations of the top-down approach by standard 

photolithography process144. Furthermore, during resistive switching operation, nanowires will 

facilitate the formation of straight conduction paths that enhance carrier transport21. This is in 

contrast to the branched conducting filaments that normally occur in structures based on thin 

films145. As a result, high-quality memristor performance together with good stability and 

reproducibility can be realized21. In addition, the confined structure of nanowires enable the precise 

engineering of the conductive paths (channels) as well as the metal/semiconductor barriers via the 

application of biases, leading to the potential in multilevel memory performance, which offers 

much promise for high-density data storage in non-volatile memory devices146-149. For example, K 

Nagashima et al. demonstrated by using a single Co3O4 nanowire, a multistate bipolar resistive 

switching performance with endurance up to 108 cycles can be achieved, as shown in Figure 19.146 

Furthermore, the large specific surface area and the surface defects of the of nanowires would 

make a difference in terms of the electron transport from thin film based devices150.  
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Figure 19. (a) Typical I-V sweeping results of individual MgO/Co3O4 nanowire device, inset, SEM image of the 

nanowire device. (b) Switching endurance performance up to 108 cycles. Adapted with permission146. Copyright 

2010, American Chemical Society.  

Many different nanowire-based ReRAM devices have been reported, including single 

nanowire based ReRAM devices such as TiO2
148, 149, 151, 152, ZnO153, 154, ZnO/TiO2 nanowire155, 

NiO156, CuOx
157, 158, VO2

159, WO3
160, 161, Ag2S

162, 163, Co3O4
146, carbon nanotubes164 and nanowire-

array based ReRAM devices such as: TiO2
165-168, alpha Fe2O3

169, ZnO21, 76, 170, 171, BiMnO3
172, 

NiO/Pt 147, Cu2O
173, Ag2S

174, ZnO/TiO2 composites175. It should be noted that the switching 

mechanism of nanowire-based ReRAM devices might be different from conventionally thin film-

based devices due to the morphology difference. For example, for the case of ZnO nanowire with 

active electrodes, it is experimentally demonstrated and theoretically studied that the Cu adatoms 

from the active electrode would form a conductive channel on the surface of nanowires and thus a 

percolation path for the electron transport, leading to the transition from HRS to LRS176, 177. Similar 

experimental observation was obtained for Zn2SnO4 nanowire based ReRAM devices with Cu 

electrode from energy disperse X-ray spectroscopy (EDX) elemental mapping in STEM, as 

demonstrated in Figure 20178. However, this surface-dominated switching is not feasible for gold-

in-Ga2O3 core-shell nanowire based ReRAM devices, which shows invariable SET and RESET 

voltages regardless of the length of nanowires, which is attributed to the electron transport through 

the conducting paths formed at the Ga2O3 shell layer and Au metal core, as demonstrated in Figure 

21179.  
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Figure 20. (a) SEM image of Cu/Zn2SnO4/Pd device, (b) I-V characteristic bipolar resistive switching behavior, and 

(c) EDX Cu elemental mapping results for the device in the ON (LRS) state of (a) which demonstrated uniform Cu 

distribution on the nanowire. Adapted with permission178. Copyright 2012, Royal Society of Chemistry.  

 

Figure 21. Schematic illustration of conducting paths and the transport mechanism that explain the properties of 

invariant set and reset voltages against different distances between electrodes. (a) Demonstration that oxygen 

vacancy filament connects to the gold core in the center of nanowire because the distance between two electrodes is 

much larger than the thickness of the Ga2O3 shell thickness. (b) Indication that the oxygen vacancy channel can link 

to the gold core due to the smaller diameter compared to the distance. (c) I-V characteristic of a single gold-in Ga2O3 

core-shell nanowire with different distances between electrode and the inset is the SET chip image. Theses set and 

reset voltages are almost the same with different distances. Adapted with permission179. Copyright 2012, American 

Chemical Society.  
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2.2.2.2 1D TiO2 nanomaterials based memristive devices  

Various types of TiO2 nanomaterials have demonstrated resistive switching behavior. The most 

commonly studied is the TiO2 thin film based memristive devices and different switching 

mechanism have been studied2, 68, 180-186. Furthermore, solution-processed TiO2 layer from sol-gel 

method also displayed reproducible resistive switching performance187, 188. Recently, Schmidt et 

al. studied the resistive switching performance of single TiO2 nanoparticle using a conductive Pt 

tip, and it was found the crystalline shell of the individual nanoparticle is crucial for the resistive 

switching performance189. But realization of individual nanoparticle-based memristive devices is 

currently not feasible due to the complexity and cost of the fabrication process. Comparatively 

speaking, little research on 1D TiO2 nanomaterials based memristive devices for different 

applications has been reported.  

O’Kelly et al. first demonstrated the realization of a single TiO2 nanowire based memristive 

device. It was shown that a single nanowire based memristor device is capable of displaying 

multilevel memory performance149. Furthermore, ternary synaptic plasticity performance of single 

nanowire based devices was also realized by Hong et al., indicating great potential for the single 

TiO2 nanowire as the building block for neuromorphic computing151. However, the demonstration 

of the memristive performance and synaptic plasticity both required a long electroforming process 

at high voltage even up to 200 V, which is not suitable for real applications. Furthermore, Lin et 

al. showed that the femtosecond laser irradiation on the single TiO2 nanowire based device would 

result in improved controllable multilevel memory performance, as demonstrated in Figure 22148. 

The femtosecond laser irradiation would engineer the oxygen vacancy distribution locally at the 

TiO2/Au interface via plasmonic-enhanced optical absorption, which leads to the stable multilevel 

memory performance without the conventionally required electroforming process. But the current 

fabrication process which includes time-consuming e-beam lithography and the variability from 

different samples are the concerns for single-nanowire based memristive devices. 



33 

 

 

Figure 22. Simulation of electric field distribution around the femtosecond laser irradiated TiO2 nanowire-Au 

electrode bridging structure at a polarized laser wavelength of 800 nm. The color scale indicates the magnitude of 

the generated electric field. (b) SEM images of bridged TiO2-Au structure after fs laser irradiation. Inset shows 

magnified joints and the presence of spot welding. (c) Memory level profiles for femtosecond laser irradiated TiO2-

Au memory units. Repeatable memory behavior with selectable levels is displayed. Adapted with permission148. 

Copyright 2016, Wiley-VCH.  

2.3. Hydrothermal synthesized TiO2 nanowires and memristive devices 

The hydrothermal method to obtain well-aligned nanowire arrays is easier compared with 

costly ways to get a TiO2 thin film (by sputtering or atomic layer deposition process) as well as 

the individual nanowires. This widely used method to obtain nanowires and the corresponding 

memristive devices provide the possibility to control the electrical performance via the 

morphology and the properties of the nanowires, such as the electrolyte of the solution, the growth 

period of the hydrothermal process, etc. Moreover, the wide suitability of hydrothermal-growth of 

different metal oxide nanowire arrays on various substrates provided great potential of engineering 

the performance of obtained memristive devices21, 172, 190. These nanowire array based memristive 

devices also displayed unique characteristics such as light-controlled resistive switching 

behavior169 and hydrophobic performance21, 171 In the case of TiO2, the growth of TiO2 nanowire 

(nanorod) arrays on different substrates via hydrothermal process, including fluorine-doped tin 
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oxide (FTO) substrate191, Ti foil192, Si substrate193, graphene sheets194, etc. has been reported, as 

demonstrated in Figure 23. The key for the successful growth of nanorod arrays is the nucleation 

sites supplied by the substrate such as FTO and Ti or other pre-applied nucleation sites by 

depositing a seed layer on the substrate such as graphene and Si substrates. TiO2 nanowire arrays 

have been applied in sensing23-25, dye-sensitized solar cells26, 27, supercapacitor28 and field 

emission29. Recently, TiO2 nanowire arrays, grown on bare FTO substrates by a hydrothermal 

process, have been reported showing resistive switching behavior166-168. The FTO substrate 

provides nucleation sites for the growth of the nanowire arrays and functions as the bottom 

electrode at the same time for the device. The I-V characteristic curve displayed reproducible 

resistive switching performance. However, the result showed that the realization of resistive 

switching behavior required a forming process168 or displayed high-amplitude current response166-

168, which is not promising for the low-power consumption requirement for the future non-volatile 

memory devices. Whether these nanowire arrays-based devices could demonstrate multilevel 

memory were not studied either. Further optimization of the nanowire arrays should be performed 

for the application of resistive switching memory devices. 
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Figure 23. Hydrothermal grown TiO2 nanowire (nanorod) arrays on different substrates, (a) Ti foil, adapted with 

permission192. Copyright 2008, American Institute of Physics. (b) Si substrate, adapted with permission193. 

Copyright 2010, AIP Publishing LLC. (c) graphene nanosheets (inset, cross-sectional view of the as-grown TiO2-

graphene-TiO2 heterostructures), adapted with permission194. Copyright 2011, Wiley-VCH. (d) FTO glass substrate. 

Adapted with permission191. Copyright 2009, American Chemical Society.  

2.4. Summary 

Memristive devices have been receiving increasing attention in the past decade due to their 

great promise for next-generation non-volatile memory devices. Even though many types of 

materials demonstrated resistive switching performance, there is still a lack of materials (or 

combination of materials) to satisfy all the requirements for the application in future non-volatile 

memory devices. Furthermore, it was demonstrated that 1D nanomaterial based memristive 

devices would be advantageous compared with thin films. But an easy way to fabricate nanowire 

based memristive devices is still lacking to satisfy the requirements such as excellent low-current 

response, good uniformity and reliability, distinguishable resistance states and potential to display 

multilevel memory performance for the next-generation memory devices. TiO2 based memristive 

devices are promising for memristive devices and it is possible to engineer the resistive switching 
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performance via different phases, morphology and stoichiometry of TiO2. The goal of this research 

is to fabricate 1D TiO2 nanowire based memristive devices via hydrothermal method and study 

their electrical performance and corresponding mechanism. Furthermore, different ways to 

engineer the electrical performance is studied to provide a better understanding of the nature of the 

resistive switching behavior.  
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Chapter 3. Resistive Switching Memory of TiO2 Nanowire Networks Grown on 

Ti Foil by a Single Hydrothermal Method195 

3.1. Overview 

The resistive switching characteristics of TiO2 nanowire networks directly grown on Ti foil by 

a single-step hydrothermal technique are discussed in this chapter. The Ti foil serves as the supply 

of Ti atoms for growth of the TiO2 nanowires, making the preparation straightforward. It also acts 

as a bottom electrode for the device. A top Al electrode was fabricated by e-beam evaporation 

process. The Al/TiO2 nanowire networks/Ti device fabricated in this way displayed a highly 

repeatable and electroforming-free (intrinsic) bipolar resistive behavior with retention for more 

than 104 s and an OFF/ON ratio of approximately 70. The switching mechanism of this Al/TiO2 

nanowire networks/Ti device is suggested to arise from the migration of oxygen vacancies under 

applied electric field. This provided a facile way to obtain metal oxide nanowire-based ReRAM 

device in the future. 

3.2. Introduction  

ReRAM devices utilizing an electric-field-induced resistance switching phenomena has 

attracted great attention for next-generation non-volatile memory due to its advantages of simple 

sandwich structure of metal/insulator/metal, high storage density and fast operation speed68, 153. 

Among different metal oxide materials that demonstrate potential for ReRAM, including NiO196, 

197, TiO2
33, 68, 70, ZnO153, 171, 198, VO2

199, Ta2O5
52, 200, CuO157, WO3

201, etc. TiO2 nanomaterial-based 

memory has been widely studied due to its ease of fabrication 68, 132 and its ability to demonstrate 

both unipolar133, 134 and bipolar73, 135, 136 resistive switching behavior. Compared to TiO2 thin films 

used for ReRAM70, 135, 136, 202, 203, few studies based on 1D TiO2 nanomaterials for ReRAM have 

been reported. It was recently shown that a single TiO2 nanowire-based resistive switching device 

demonstrated multi-level memory behavior148, 149. But the fabrication process of Au electrodes 

bridging a single nanowire required costly and time-consuming electron-beam lithography. 

Therefore, a facile way to fabricate TiO2 nanowire-based ReRAM is required. Furthermore, TiO2 

nanorod168, 204 and nanotube165 arrays grown on FTO glass substrate by hydrothermal synthesis 

were also employed in resistive switching memory devices, however transparent conductive glass 

was required as a substrate. It was recently reported that TiO2 nanowire networks could be grown 



38 

 

directly on a  Ti foil via a hydrothermal method24, 192, 205, 206 or oxidation process207, 208 and the 

applications of these nanowires in dye-sensitized solar cells205, 206 and field emission207 were 

investigated. But the suitability of these TiO2 nanowires for ReRAM devices and the 

corresponding switching mechanism have not been reported yet.  

In this chapter, TiO2 nanowire networks were directly grown on Ti foil by a hydrothermal 

method and their resistive switching behavior was investigated. Since the Ti foil serves both as the 

source of Ti during the synthesis of the TiO2 nanowire, as well as a bottom electrode for the device, 

preparation of the device is straightforward, cost-effective and highly reproducible. Notably, the 

electrical contact between the nanowires and the bottom metal substrate is ensured. According to 

the current-voltage (I-V) measurements of the fabricated Al/TiO2 nanowire networks/Ti device, a 

switching mechanism based on the migration of oxygen vacancies is proposed. The reliability of 

the fabricated device was examined by studying its retention and endurance performance.  

3.3. Materials and Methods 

The synthesis process of TiO2 nanowire networks on Ti foil is demonstrated in Figure 24.192, 

205. Briefly, a piece of Ti foil (99.9%) with a dimension of 1.5 cm×3.0 cm×0.127 mm (Sigma 

Aldrich) was ultrasonically cleaned in acetone, isopropanol and Milli-Q water for 10 minutes in 

sequence and then placed against the wall of a 125 mL Teflon-lined stainless steel autoclave filled 

with 40 mL of 1 M NaOH aqueous solution. Then, the sealed autoclave was put into an oven at a 

temperature of 220 oC for 20 h. Next the Ti foil covered with nanowires was taken out of the 

autoclave and immersed in 50 mL of 0.6 M HCl solution for one hour to exchange Na+ with H+. 

Finally the foil was annealed inside a furnace at 500 oC for 3 h in air to transform the H2Ti2O5∙H2O 

nanowires to anatase nanowires. The color of the foil turned white after the calcination process.  

During device fabrication, the top electrode was prepared by depositing an Al layer with a 

thickness of 150 nm through a shadow mask having circular holes (1 mm in diameter) using e-

beam evaporation process (Intelvac e-beam evaporation system). The pressure was < 410-6 Torr 

and the deposition rate was 1Å/s. Electrical measurements were performed with a Keithley 2602A 

source-meter at ambient conditions. The bias voltage was applied to the top Al electrode and the 

Ti foil was grounded during electrical measurement.  

For characterization of the TiO2 nanowires, a field-emission scanning electron microscope 

(FESEM, LEO-1550) was used to check the surface morphology. Transmission electron 
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microscopy (TEM) (JEOL 2010F) was used to examine the structure and crystalline defects of 

TiO2 nanowires. X-ray diffraction analysis (XRD, PANalytical X’pert PRO MRD) and Raman 

analysis (Reinshaw micro-Raman spectrometer) were used to identify the crystal structure and 

phase. Furthermore, X-ray photoelectron spectroscopy (XPS) measurement (Thermo VG 

Scientific ESCLab 250) was carried out to examine the surface chemical states of the nanowires. 

 

Figure 24. Schematic diagram of the fabrication process for TiO2 nanowire network based device on Ti foil.  

3.4. Results and Discussion  

3.4.1. Characterization of TiO2 nanowire networks 

The SEM image illustrated in Figure 25(a) demonstrated a network of TiO2 nanowires with 

lengths of several micrometers from the top view. The statistical summary of the whole SEM areas 

showed that the nanowires have an average diameter of 26±4 nm. The uniformity of the diameter 

of the nanowires indicated that the growth occurred predominantly through epitaxial addition of 

growth units to the tips205. During the hydrothermal process, the TiO2 nanowires grow 

perpendicularly to the substrate first and then the tips of nanowires appear to bend and stick 

together to form a network of nanowires205. Therefore, the top Al electrode, as deposited, makes 

heterogeneous contact with the nanowires and the I-V characteristics then reflect the average 

contact with a large number of individual nanowires. TEM image of the TiO2 nanowires (Figure 

25(b)) showed the (101) plane of anatase in addition to many crystalline defects. These defects 

could have a significant effect on the resistive switching behavior of the fabricated devices as 

discussed later in this chapter. 

A room temperature Raman spectrum of TiO2 nanowires in Figure 25(c) showed peaks at 141, 

194, 395, 512 and 634 cm-1. These peaks are characteristic of the anatase phase. The peaks at 141, 

194 and 634 cm-1 are assigned to the Eg modes while the other two peaks at 512 and 395 cm-1 are 



40 

 

assigned to the B1g modes in TiO2
209. The XRD characterization results in Figure 25(d) further 

confirmed the phase of the TiO2 nanowires, as the peaks of (101), (112) and (200) planes of anatase 

in agreement with the standard spectrum (JCPDS No. 21-1272). It should be noted that one of the 

anatase peaks at 38.57o overlapped with the peaks of the Ti foil (JCPDS No. 44-1294). 

Moreover, the surface chemical states of the TiO2 nanowires were analyzed by XPS. Figure 

25(e) showed peaks at binding energies of 459.4 and 465.1 eV, which can be assigned to Ti 2p3/2 

and 2p1/2, respectively. These are typical XPS spectra of Ti4+ in TiO2. The signal from Ti3+ was 

too small to be detected. Furthermore, two Gaussian peaks were observed in the fit to the O 1s 

spectrum (Figure 25(f)). The binding energy at 529.66 eV is assigned to the O2- bond in TiO2 while 

the binding energy at 531.33 eV can be attributed to oxygen vacancies in TiO2
165. XPS scans show 

that the synthesized TiO2 nanowires contain locally distributed oxygen vacancies, in agreement 

with the HRTEM result in Figure 25(b). 
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Figure 25. Characterization of TiO2 nanowires, (a) Top view SEM image (inset, statistical summary of diameters of 

~100 nanowires), (b) HRTEM image, yellow arrows indicate the crystalline defects (inset, TEM image of TiO2 

nanowires), (c) Raman spectrum, (d) XRD results, (e) Ti 2p XPS spectrum and (f) O 1s XPS spectrum 

3.4.2. Electrical performance evaluation  

3.4.2.1. Resistive switching characteristics 

The resistive switching behavior was examined by applying the voltage as follows:  0 V→−10 

V→0 V→10 V→0 V with a sweeping rate of 0.1 V/s. The I-V characteristic curve illustrated in 

Figure 26 demonstrated a typical bipolar switching behavior. The Al/TiO2 nanowire networks/Ti 

device was initially in the high resistance state (HRS). During the application of the negative sweep 
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from 0 to −10 V, the negative current increased gradually and the device switched to low resistance 

state (LRS, ON state) (SET process). The device maintained the LRS during the forward voltage 

sweep but switched back to the HRS during the voltage sweep back from 10 V to 0 V (RESET 

process). Notably, the resistive switching behavior is obtained without an initial electroforming 

process, which was normally required for devices consisting of TiO2 thin films61, 70, 210. This is 

expected to be due to the high concentration of defects (oxygen vacancies) in the TiO2 nanowires 

after the synthesis process, as seen in the HRTEM image in Figure 24(b) and the O 1s XPS 

spectrum in Figure 24(f). Intrinsic resistive switching behavior has also been observed with metal 

oxide materials containing a large defect concentration without the electroforming process157, 211, 

212. However, some devices require forming treatments, such as hydrogen annealing170 and Ar+ 

irradiation213 to generate an oxygen vacancy layer to enable or enhance the resistive switching 

characteristics. This forming-free characteristic is attractive for ReRAM since it would simplify 

the memory operation and enable higher density memory devices20.  

 

Figure 26. I-V characteristic curve of the Al/TiO2 nanowire networks/Ti device (left inset, schematic diagram of 

interfaces in the device in the pristine state. Right inset, optical photo of an actual fabricated device on Ti foil) 

It should be noted that this resistive switching behavior is quite different from Ref.134, which 

showed that Ti/TiO2 film/Al structures displayed linear I-V characteristic curves due to the Ohmic-

Ohmic contact combination. The difference is expected to be ascribed to the reactions at the 
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Ti/TiO2 and Al/TiO2 interfaces during the synthesis of the TiO2 nanowire networks and the 

deposition of Al layer. Generally, the Ti layer is regarded as a chemically reactive contact that will 

reduce the TiO2 and create a locally high concentration of oxygen vacancies near the Ti/TiO2 

interface135, 143, 214. The formation reaction of oxygen vacancies is expressed in the Kröger-Vink 

notation18 as 

𝑂𝑂
∙∙ → 𝑉𝑂

∙∙ + 2𝑒− +
1

2
𝑂2     Eq.(1) 

where, 𝑂𝑂
∙∙  is the oxygen on the TiO2 lattice and 𝑉𝑂

∙∙ is a positively charged oxygen vacancy. The 

generation of oxygen vacancies near the interface between Ti and TiO2 nanowires is enhanced 

during the calcination process due to an increase in the diffusion of Ti atoms into the TiO2 layer at 

high temperature. Therefore, a non-stoichiometric TiO2-x (x>0) layer with a high concentration of 

oxygen vacancies would be formed between the Ti foil and TiO2 nanowires. Oxygen vacancies in 

TiO2 act as n-type dopants with shallow donor states below the conduction band and would 

transform the insulating metal oxide into an electrically conductive semiconductor33, 70. In addition, 

oxygen vacancies in TiO2 exhibit higher mobility than metal interstitials at room temperature, so 

that the number of oxygen vacancies in TiO2 are expected to dominate resistive switching behavior 

132. The distribution of oxygen vacancies in the TiO2 nanowire layer is expected to be uniform 

above the Ti/TiO2 interface170. On the other hand, during the deposition of the Al layer, the high 

oxygen affinity of Al results in Al reacting with TiO2, forming an interfacial insulating Al-Ti-O 

layer68, 71-73. Consequently oxygen vacancies are expected to be generated underneath the 

interfacial layer according to Eq.(1), although a much smaller concentration of vacancies is 

expected compared to the Ti/TiO2 interface70. These interfaces in the pristine state are illustrated 

schematically in the inset of Figure 27. The different concentrations of oxygen vacancies 

distributed at the Al/TiO2 interface and Ti/TiO2 interface result in asymmetric barriers for charge 

transport, which plays an important role in the switching behavior of the device.  

Furthermore, Figure 27 showed I-V characteristic curves under different sweeping voltages 

displayed similar bipolar resistive switching behavior in spite of difference in the achieved SET 

and RESET currents. These results highlight the repeatability of the Al/TiO2 nanowire networks/Ti 

device. Asymmetrical or self-rectifying resistive switching can be seen in both Figures. 26 and 27. 

The origin of this self-rectifying property can be attributed to effect of the Al-Ti-O layer on the 

migration of oxygen vacancies as discussed in the next section.  
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Figure 27. I-V characteristic curve of the Al/TiO2 nanowire networks/Ti device under different voltages 

3.4.2.2. Switching Mechanism Analysis 

Based on the discussed I-V characteristic results, the resistive switching mechanism of the 

Al/TiO2 nanowire networks/Ti device is proposed. As explained, the concentration of oxygen 

vacancies at the Al/TiO2 interface and Ti/TiO2 interface is different. These oxygen vacancies are 

mobile under external electrical field215. When the Al top electrode is under a negative bias, the 

oxygen vacancies in the pristine state (Figure 28(b)) migrate towards the top electrode, forming 

pathways with high electrical conductivity. It is expected that the geometry of the confined TiO2 

nanowire provides a large surface area and a direct pathway for the migration of oxygen vacancies 

for stable switching behavior157. Simultaneously, electrons would be injected from the Al electrode 

and drift to the bottom Ti electrode. Once one or more conductive pathways are formed from the 

top electrode to bottom electrode, the device is switched ON, as illustrated in Figure 28(a). 

Moreover, some oxygen vacancies may accumulate at the Al-Ti-O layer, which functions as an 

insulating layer to inhibit out-diffusion of oxygen71. This insulating layer may play an important 

role in the switching behavior since the formation and dissociation of this layer is expected to be 

closely related to the migration of oxygen vacancies under electric field 68, 72. Under negative bias, 

the migration of oxygen vacancies to the Al electrode may result in the partial dissolution of this 
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insulating layer, whereas this layer would be widened when the Al top layer is under a positive 

bias.  

In the RESET process, the oxygen vacancies in the TiO2 matrix are repelled towards the bottom 

electrode, leading to the recovery of a higher concentration of oxygen vacancies near the Ti bottom 

layer, and widening of the Al-Ti-O layer as oxygen vacancies drift away from this layer70. The 

presence of a potential barrier in the Al/Al-Ti-O interfacial layer would suppress electron tunneling 

through the interface and inhibit the formation of conducting channels. Conversely, as oxygen 

vacancies migrate to the top Al electrode under an applied negative bias, the interfacial layer begins 

to thin, increasing the probability of electron tunneling and enhancing the formation of conductive 

channels. As a result, the final current flowing at +10 V is much less than that at −10 V.  This is 

characteristic of asymmetrical or self-rectifying resistive switching behavior, as seen in Figures 26 

and 27. To verify the source of the self-rectifying performance, an identical device was measured 

without the top electrode, that is, the probe tip (which is made of tungsten) is directly in contact 

with the top surface of the TiO2 nanowire layer. The bipolar resistive switching performance 

existed for the device as well, but no self-rectifying feature was observed.  

 

Figure 28. Schematic illustration of (a) SET and (b) RESET process of the Al/TiO2 nanowire networks/Ti device 

Further insight into the role of the Al-Ti-O interfacial layer on the resistive switching 

performance can be obtained by investigating the effect of the thickness of the TiO2 nanowire 

network. This thickness can be varied by changing the hydrothermal growth time. The effect of 

different growth times (different thickness) on the I-V characteristics is illustrated in Figure 29. 

These data can be compared with those in Figure 26 which was obtained for a hydrothermal growth 



46 

 

time of 20 h. A self-rectifying resistive switching response is also observed for growth time of 4, 

12 and 16 h in addition to 20 h, and the rectification ratio diminishes as the growth time is increased. 

As discussed, the interfacial Al-Ti-O layer plays an important role in determining the asymmetrical 

response. The relative effect of this component increases with decreasing thickness of the TiO2 

nanowire layer so that an increase in growth time to 24 h results in bipolar resistive switching with 

no obvious self-rectifying feature. The data in Figure 29(a) suggests that self-rectifying resistive 

switching of our Al/TiO2 nanowire networks/Ti could, after further optimization, be used to 

mitigate sneak-current issues in the crossbar-based integration system for ReRAM devices198. 

 

Figure 29. I-V characteristic curves of the Al/TiO2 nanowire networks/Ti device with different thicknesses of the 

nanowire layers via the control of the hydrothermal growth time, (a) 4 h growth time, (b) 12 h growth time, (c) 16 h 

growth time and (d) 24 h growth time 

In order to understand the conduction mechanism of the fabricated Al/TiO2 nanowire 

networks/Ti device, the I-V curves in Figure 26 were fitted on a double-logarithmic scale, as shown 

in Figure 30. The overall curve is in good agreement with the trap-associated SCLC theory71, 73, 
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157. For the positive sweeping (Figure 30(a)), the LRS follows an Ohmic conduction with a slope 

of ~1, consistent with the presence of conductive pathways formed by the migration of oxygen 

vacancies in the device after the SET process170. The I-V characteristics in the HRS consist of three 

regions: the Ohmic region (I~V) with a slope of ~1 at low bias, the Child’s square law region (I~V2) 

with a slope of 2.44 at higher bias and a region with rapidly changing current near the RESET 

point (slope: 4.23). The higher slope (>2) compared with the Child’s law in which the current is 

proportional to the square of the voltage might be due to the expected variation in thickness of the 

insulating Al-Ti-O layer. This large slope can also be found in similar ReRAM devices in which 

Al acts as an electrode71, 73, 216. 

The I-V characteristic curve for the negative voltage in Figure 30(b) also demonstrated SCLC-

like behavior but the fitted slope values in different regions are generally larger than those under 

positive voltage sweeping. This could be due to the concentration gradient of oxygen vacancies 

that exists in the pristine state (high concentration of vacancies at the bottom Ti/TiO2 interface and 

low concentration underneath the Al-Ti-O layer), which would lead to diffusion of these oxygen 

vacancies. The diffusion combined with the drift of the oxygen vacancies under an applied 

negative bias could lead to accelerated migration of vacancies, resulting in higher slopes when 

transitioning from the HRS to LRS, as compared to the transition from LRS to HRS under positive 

sweeping. Furthermore, dissociation of the insulating Al-Ti-O layer due to migration of oxygen 

vacancies under negative bias also decreases the overall resistance of the device, which would 

contribute to higher values of the slopes. This SCLC-like behavior for both positive and negative 

sweeping voltages can also be found with increasing sweeping cycles of the device.  

 

Figure 30. I-V characteristic curves under positive (a) and negative (b) sweeping voltages on a double-logarithmic 

scale 
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The above analysis indicates that Al/TiO2 nanowire networks/Ti device as fabricated exhibit a 

similar I-V response and switching mechanism as that seen in devices using a uniform TiO2 layer 

coated with an Al electrode. Such devices are fabricated by time-consuming and costly reactive 

sputtering73 or plasma-enhanced atomic layer deposition68, 71, 72, 80, 216 processes. Therefore, our 

results indicate that the TiO2 nanowire networks grown on Ti foil by a single-step hydrothermal 

process have potential in the application of ReRAM devices. 

3.4.2.3. Endurance and Retention Study 

To determine the electrical stability of the fabricated Al/TiO2 nanowire networks/Ti device, an 

endurance study was performed by applying a cycling sweeping process. The results illustrated in 

Figure 31(a) showed that the resistance for the OFF state remained stable beyond 60 cycles, while 

the resistance for the ON state underwent a fluctuation. Nevertheless, the calculated OFF/ON 

resistance ratio is around 70, large enough to serve as a feasible memory element in ReRAM. 

Study of endurance under pulsed operation is planned for future work, together with 

characterization of the device in relation to stability. Furthermore, a data retention test was 

performed by examining the resistance change with a reading voltage of 1 V for a long period of 

time after switching the device to ON and OFF states at −10 V and 10 V, respectively. The 

retention results for the ON and OFF states in Figure 31(b) demonstrated no remarkable 

degradation up to 104 s with a high resistance ratio, confirming the non-volatile nature of the device. 

The endurance and retention results emphasized good stability of the fabricated Al/TiO2 nanowire 

networks/Ti device for future use as ReRAM. 

 

Figure 31. (a) Endurance and (b) retention performance of the Al/TiO2 nanowire networks/Ti device 
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3.5. Conclusions  

In summary, forming-free bipolar resistive switching behavior was successfully demonstrated 

in TiO2 nanowire networks directly grown on Ti foil by a one-step hydrothermal process. The 

prepared Al/TiO2 nanowire networks/Ti device exhibited reproducible and stable electrical 

performance with a high OFF/ON ratio that persisted for up to 104 s. The interaction of Ti foil with 

the TiO2 nanowires during the synthesis process results in the generation of large density of oxygen 

vacancies at the Ti/TiO2 interface, which is likely responsible for the forming-free resistive 

switching behavior without the requirement of electroforming process. The low amplitude of both 

SET and RESET currents together with distinguishable ratios are promising for the low-power 

ReRAM devices. The switching mechanism of the device is proposed to be the migration of 

oxygen vacancies under electric field. These results provide an easy way to prepare nanowire-

based ReRAM devices with good electrical performance.  

However, the resistive switching characteristic for the TiO2 nanowire networks on Ti foil shows 

some variation of cell-to-cell behavior. Though all the fabricated Al-TiO2 nanowire network-Ti 

foil devices shows similar bipolar resistive switching behavior, the resistance ratio among these 

devices have a wide distribution from 20 to 100. One possible cause might be non-uniform layer 

distribution after the Al deposition since the random TiO2 nanowire networks can possess certain 

dimensions of holes. This can intrinsically leads to the difference in the electrical performance of 

the fabricated device.  
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Chapter 4. Reliable and Low-Power Multilevel Resistive Switching in TiO2 

Nanorod Arrays Structured with a TiOx Seed Layer217 

4.1. Overview 

The electrical performance of TiO2 nanorod array (NRA) based resistive switching memory 

devices is examined in this chapter. The formation of a seed layer on the FTO glass substrate after 

treatment in TiCl4 solution, before the growth of TiO2 NRAs on the FTO substrate via a 

hydrothermal process, is shown to significantly improve the resistive switching performance of 

the resulting TiO2 NRA-based device. As fabricated, the Al/TiO2 NRA/TiOx layer/FTO device 

displayed electroforming-free bipolar resistive switching behavior while maintaining a stable 

ON/OFF ratio for more than 500 direct sweeping cycles over a retention period of 3×104 s. 

Meanwhile, the programming current as low as ~10-8 A and 10-10 A for low resistance state and 

high resistance state respectively makes the fabricated devices suitable for low-power memristor 

applications. The TiOx precursor seed layer not only promotes the uniform and preferred growth 

of TiO2 nanorods on the FTO substrate, but also functions as an additional source layer of trap 

centers due to its oxygen deficient composition. Our data suggests that the primary conduction 

mechanism in these devices arises from trap-mediated SCLC. Multilevel memory performance in 

this new device is achieved by varying the SET voltage. The origin of this effect is also discussed.  

4.2. Introduction  

1D nanomaterials, especially those involving semiconducting and metal oxide nanowires 

(nanorods), have recently gained much interest for different nanoelectronic and optoelectronic 

applications due to their unique physical and chemical behaviors inherently different from the 

parent bulk as well as thin film materials. Through careful design and controlled synthesis, 

nanowires will provide the building blocks for new systems of unique photonic and electronic 

devices218, 219. Furthermore, the incorporation of nanowires into complex functional units via layer-

by-layer assembly220 and nanojoining221 will enable the creation of smaller devices exhibiting 

novel functionality.  

A new type of nanodevice, resistive switching random access memory (ReRAM) is now 

becoming of interest for next-generation non-volatile memory devices due to its simple structure, 

promising switching speed as well as excellent scalability16. Such devices represent a practical 
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application of the fourth circuit element: the memristor33. In comparison with thin films, the 

introduction of nanowires (nanorods) in ReRAM devices offers structural advantages that are 

expected to improve the performance of memristive devices. For example, during resistive 

switching operation, nanowires will facilitate the formation of straight conduction paths that 

enhance carrier transport21. This is in contrast to the branched conducting filaments that normally 

occur in structures based on thin films145. As a result, high-quality memristor performance together 

with good stability and reproducibility can be realized21. In addition, the confined structure of 

nanowires enable the precise engineering of the conductive paths (channels) as well as the 

metal/semiconductor barriers via the application of biases, leading to multilevel memory 

performance146-149, which offers much promise for high-density data storage in non-volatile 

memory devices.  

Many different kinds of 1D semiconductor nanomaterials were proposed for ReRAM devices, 

including TiO2,
148, 149, 168 Si/a-Si core-shell nanowires,222 ZnO,68, 162, 170, 171 CuOx

157, 158, Co3O4,
146 

WO3,
161 NiO196, 197, Ag2S

162 and NiO/Pt nanowire arrays147. Much interest has been devoted to 

TiO2 which has been widely studied as a typical metal oxide material exhibiting resistive switching 

due to its intrinsic variety of possible crystal phases and the associated richness of switching 

dynamics132. However, compared with the widely studied TiO2 thin film for ReRAM devices, there 

has been little research on 1D TiO2 nanomaterials148, 149, 168. It was reported that a single TiO2 

nanowire-based heterojunction can exhibit multilevel memory performance, but the realization of 

resistive switching required a prolonged (20 min) high voltage forming process, which is not 

desirable for device operation149. In another study, a similar Au-TiO2 nanowire-Au heterostructure 

was processed with femtosecond laser irradiation to engineer the distribution of oxygen vacancies, 

and this resulted in improved controllable multilevel memory performance148. However, nanowire-

based ReRAM devices from single nanowires are not economic due to the cost and complexity of 

the e-beam lithographic process required to fabricate the electrodes bridging the individual 

nanowires. Therefore, it is important to find simple cost-effective ways to obtain nanowire based 

ReRAM devices which combine excellent low-current response, good uniformity and reliability, 

distinguishable resistance states and potential to display multilevel memory performance as 

required for the next-generation non-volatile memory devices.  

The hydrothermal method to obtain well-aligned nanorod arrays (NRAs) is easier compared 

with costly ways to get a TiO2 thin film (by sputtering or atomic layer deposition) as well as the 
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individual nanowires. This commonly used method to obtain nanowires provided the possibility 

to control the electrical performance of the corresponding ReRAM devices via the morphology 

and the properties of the nanowires, such as the electrolyte of the solution, the growth period of 

the hydrothermal process, etc. Moreover, the wide suitability of hydrothermal-growth of metal 

oxide nanowire arrays on different substrates provided great potential of engineering the 

performance of obtained ReRAM devices from the interface perspective21, 172, 190. Recently, TiO2 

NRAs, grown on bare FTO substrates by a hydrothermal process, have been reported showing 

resistive switching behavior168. The FTO substrate provides nucleation sites for the growth of the 

NRAs and functions as the bottom electrode for the device. However, once again, the result showed 

that the realization of resistive switching behavior required a forming process and displayed high-

amplitude current response168. The possibility that TiO2 NRAs-based ReRAM devices can be used 

for multilevel memory devices and mechanisms related to this property in such devices have yet 

to be reported. 

In this chapter, an electroforming-free low-power multilevel bipolar resistive switching 

behavior in TiO2 NRAs on FTO glass substrates was proposed. The key to obtaining these 

properties is TiCl4 treatment of the FTO substrate to create an oxygen deficient TiOx seed layer on 

the substrate before the hydrothermal process. This seed layer ensures the preferential growth of a 

uniform, vertically oriented TiO2 NRAs structure on the substrate. The improved NRA 

morphology results in a significant improvement in stability, controllability of the resistive 

switching performance, as well as enabling bias-engineering of multilevel memory. Furthermore, 

the resistive switching characteristics of this new device is compared with that of a unit formulated 

without the TiOx seed layer and the difference in switching mechanisms in such structures are also 

suggested.  

4.3. Experimental Section 

4.3.1. TiO2 NRA synthesis and device fabrication  

The synthesis process of TiO2 NRAs on a FTO glass substrate incorporating a seed layer is 

illustrated in Figure 32223-225. In the first step, the FTO substrate (40 mm×20 mm×2 mm, 12~15 

ῼ/□) after thoroughly cleaning in acetone, isopropanol and MilliQ water for 15 minutes was 

immersed for 30 min in a 0.15 M TiCl4 solution at 70 oC and then underwent heat treatment at 550 

oC for an additional 30 min. This generated a seed layer on the surface of the FTO substrate. The 
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seeded-FTO substrate was then placed against the wall of the Teflon-sealed autoclave containing 

a solution of 30 mL H2O, 30 mL concentrated hydrogen chloride aqueous solution and 1.0 mL 

titanium butoxide. This was held at a temperature of 150 oC for 20 h. The resulting TiO2 NRAs 

were rinsed with water and dried with nitrogen gas, and was further annealed in air at 550 oC for 

3 h, after which it was ready for materials characterization and device fabrication. For comparison, 

the same procedure was used to produce the TiO2 NRAs on a bare FTO substrate without the initial 

treatment in TiCl4 solution. For device fabrication, an upper Al layer with a thickness of 50~100 

nm was deposited on the top surface of the TiO2 NRAs by e-beam evaporation process with a 

shadow mask. The diameter of the top electrode was 1 mm.  

 

Figure 32. Schematic diagram of the fabrication process of TiO2 NRA with seed layer, top right: optical photo for a 

fabricated TiO2 NRA based device with Al top electrode.  

4.3.2. Characterization 

The morphology of the TiO2 NRAs was examined by scanning electron microscopy (SEM, 

LEO-1550). Transmission electron microscopy (TEM) and high resolution transmission electron 

microscopy (HRTEM, JEOL 2000) operation was carried out at an acceleration voltage of 200 kV. 

X-ray diffraction analysis (XRD, PANalytical X’pert PRO MRD) in grazing incidence (GIXRD) 

mode was used for the phase and crystal structure analysis of the TiO2 materials. Surface chemical 

states in the seed layer and TiO2 NRAs were examined by X-ray photoelectron spectroscopy (XPS, 

Thermo-VG Scientific ESCALab 250). Electrical characterization of the prepared devices was 

performed with a Keithley 2602A source-meter. The bias voltage was applied to the top Al 

electrode and the FTO layer was grounded under ambient conditions. 
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4.4. Results and Discussion 

4.4.1. Materials Characterization  

4.4.1.1. SEM and TEM 

Figures 33(a) and (b) show SEM images of the top of TiO2 NRAs on a seeded FTO substrate. 

A well-defined and compact NRA with tetragonal crystallographic planes is observed. This is in 

contrast to the TiO2 NRAs grown on bare FTO substrates, which have poor vertical orientation 

and intersecting nanorods (Figure 34). In photovoltaic applications, such as dye-sensitized solar 

cells, a seed layer would normally be introduced to prevent occasional electrical shorting due to 

direct contact between the redox electrolyte and FTO layer223, 224. In this present study, we adopt 

this method to improve the performance of TiO2 NRA-based ReRAM devices. By immersing the 

FTO substrate into a TiCl4 solution, a seed layer with a thickness of ~20 nm is typically deposited 

on the surface223. The seed layer is expected to promote the nucleation of nanorods on the FTO 

substrate, leading to well-defined dense NRAs with a preferred growth direction normal to the 

substrate224, 226. Preferential growth normal to the surface, and the formation of well separated 

nanorods, should restrict electron transport to individual nanorods minimizing cross-talk between 

adjacent nanorods. The Al top electrode deposited by e-beam evaporation fabricated on top of the 

NRAs would cover the top tip of the nanorod considering the thickness of 100 nm compared to 

the height of the NRAs. Due to the high compact nature of the NRAs with the seed layer, it would 

be difficult for these Al deposit to fall through the gap of the NRAs and cause the short-circuit 

failure of the fabricated devices.  

The average height of the nanorods in the TiO2 NRA is ~ 3 m as calculated from a tilted 

cross-sectional view of the NRAs (inset in Figure 33(b)). Figure 33(c) shows a TEM image of an 

individual nanorod. The length of this nanorod has been truncated because of the preparation 

technique. The HRTEM and inset selected-area electron diffraction (SAED) pattern of the TiO2 

NRAs displayed in Figure 33(d) confirmed that the individual nanorod was single crystals. The 

HRTEM image shows a (110) inter-planar distance of 0.32 nm, suggesting that the preferred 

growth of the rutile TiO2 nanorods occurs along the [001] crystal orientation, which is in agreement 

with NRAs synthesized elsewhere26
.  
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Figure 33. Morphology of TiO2 NRAs prepared with a seed layer (a) low magnification top-view SEM image, (b) 

high magnification top-view SEM image (inset: 70o tilted cross-sectional view), (c) TEM image of a single TiO2 

nanorod, (d) HRTEM image of a TiO2 nanorod (inset: SAED pattern of the same nanorod). 

 

Figure 34. SEM images of TiO2 NRA prepared without a seed layer, (a) Low magnification, (b) High magnification 

(inset, 70o cross-sectional view). Even though there seems a thin continuous layer at the base of the nanorod arrays, 

this thin layer did not engineer the orientation compared with the pre-applied seed layer on the surface of FTO 

substrate. 
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4.4.1.2. GIXRD 

Figure 35 shows typical GIXRD characterization of the seed layer and the TiO2 NRAs with 

and without the seed layer, respectively. It is evident that the seed layer after the annealing process 

is in the anatase phase (JCPDS file No. 21-1245), while the TiO2 NRA appears as a pure tetragonal 

rutile phase (JCPDS file No. 21-1276) which is consistent with the HRTEM and SAED results in 

Figure 33(d). This is in agreement with the observation of rutile TiO2 NRA on FTO substrates 

typically used for solar cells223, 224. Unlike the bare FTO substrate, the TiO2 seed layer facilitates 

the epitaxial nucleation and growth of TiO2 nanorods considering the decreased surface roughness 

of the seeded-FTO films after the treatment in TiCl4 solution224. This leads to the enhancement of 

density and vertical growth of the nanorod array normal to the substrate. Furthermore, the 

crystallographic phase of obtained TiO2 nanorods is not dependent on the phase of the seed layer, 

as researchers have demonstrated that both rutile227 and anatase seed layers194, 228, 229 lead to the 

growth of rutile nanorod arrays. The enhanced ratio of the intensities of the (002) to (101) XRD 

peaks in the TiO2 NRA with a seed layer compared to the ratio of the NRA without a seed layer is 

suggestive of enhanced growth along the [001] direction perpendicular to the substrate230, 231. This 

preferred growth direction is also in agreement with the TEM results.  

 

Figure 35. GIXRD characterization of the seed layer, TiO2 NRAs prepared with and without a seed layer 
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4.4.1.3. XPS 

Additional information regarding the surface states of the TiO2 NRAs grown on the seed layer 

was obtained by XPS. The survey spectrum (Figure 36(a)) confirms the existence of C, Ti and O 

elements where the C atoms can be ascribed to a small concentration of carbon-based contaminants. 

High-resolution XPS spectra and their Gaussian deconvolution peak fittings of Ti 2p and O 1s are 

given in Figure 36(b) and Figure 36(c), respectively. The Ti 2p peaks at 464.18 eV and 458.50 eV 

can be attributed to Ti 2p2/1 and 2p3/2, respectively. The peak separation is calculated to be ~5.7 

eV, which suggests the existence of Ti4+ oxidation states in the TiO2 NRA232. A very weak peak 

centered at 457.28 eV can be attributed to Ti3+ states, which might originate from the reduction of 

Ti4+ by free electrons donated by oxygen vacancies233. The O 1s spectrum are fitted by two 

Gaussian peaks (Figure 36c). The peak at the lower binding energy is attributed to the Ti-O bonds 

while the peak at the higher binding energy is related with oxygen vacancies in the TiO2 materials. 

This suggests that TiO2 nanorods as-synthesized contain a low concentration of oxygen vacancies. 

These defects are expected to play an important role in the ReRAM devices fabricated from 

synthetic TiO2 nanorod structures.  

An analysis of surface states in the seed layer and in the TiO2 NRA without the seed layer 

(Figures 37 and 38), can be used to find the proportion of individual oxygen chemical states in 

each component. The resulting percentages are summarized in Table 1. We find that the oxygen 

vacancy concentration in the TiO2 NRA incorporating a seed layer is much smaller than that 

observed in the seed layer itself and the TiO2 NRA formed without the seed layer. This indicates 

that TiO2 NRAs grown on the seed layer are less electrically conductive. The reason for the 

difference in oxygen vacancies for NRAs grown with and without seed layer is under further 

investigation. One possible explanation is the post-annealing process for reducing the 

concentration of oxygen vacancies in both NRAs. The NRAs prepared with the seed layer have a 

more compact morphology and smaller diameter (correspondingly higher surface areas), leading 

to a further reduction in oxygen vacancies concentration under the same annealing condition. This 

difference of concentration influences the initial resistance state of as fabricated ReRAM devices 

(see Section 4.4.2). As the fraction of oxygen vacancies in the seed layer exceeds 30%, this layer 

is highly oxygen deficient. In our discussion, the seed layer will be denoted as TiOx where x<2. It 

should be noted that an additional small shoulder on the O 1s state was occasionally observed in 

some TiO2 NRA samples. This peak can be attributed to the presence of surface hydroxyl groups 
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(-OH) (Figure 38). The effect of residual surface -OH on the resistive switching behavior is 

expected to be negligible since the dominating mechanism for TiO2 based ReRAM devices is 

known to arise from oxygen vacancies234.  

 

Figure 36. XPS spectra of TiO2 NRA prepared with a seed layer: (a) survey, (b) Ti 2p and (c) O 1s 

 

Figure 37. XPS spectra of TiOx seed layer: (a) survey, (b) Ti 2p and (c) O 1s 
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Figure 38. XPS spectra of TiO2 NRA prepared without a seed layer: (a) survey, (b) Ti 2p and (c) O 1s 

 

Table 1. Fractional percentage of oxygen (O 1s) states in samples (%) 

Samples O2-(TiO2) O*(TiO2-x, oxygen vacancies) Others (OH, etc.) 

Seed layer 66.45 33.55 --- 

TiO2 NRA without a seed layer 77.80 21.03 1.17 

TiO2 NRA with a seed layer 89.02 10.98 --- 

 

4.4.2. Electrical Characterization  

4.4.2.1. Resistive switching behavior 

Figure 39 is a record of the resistive switching behavior over 100 successive cycles in TiO2 

NRA based ReRAM devices as prepared with and without a seed layer. Both devices display 

prototypical bipolar resistive switching characteristic. As shown in Figure 39(a), when the voltage 

sweeps from 0 to +4 V in the Al/TiO2 NRA/TiOx layer/FTO device, the device switches from the 

high resistance state (HRS) to the low resistance state (LRS) and a non-volatile ‘ON’ state was 

obtained (SET process). The LRS remained after negative voltage was applied until the negative 

voltage is high enough to switch the device from LRS to HRS and an ‘OFF’ state was achieved 

(RESET process). The resistive switching performance of the Al/TiO2 NRA/FTO device is similar, 

but the polarity of the ON/OFF transition is reversed (Figure 39(b)). It is important to note that the 
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resistive switching behavior in both devices was obtained without the usual electroforming 

process168. These results are also consistent with the behavior of single ~6m-long TiO2 nanowire-

based multilevel memory devices previously studied in our group, which demonstrated intrinsic 

(forming-free) resistive switching characteristics attributed to the existed oxygen vacancies in the 

individual nanowire148. This forming-free property, related to the introduction of oxygen vacancies 

in the switching layer, is desirable for ReRAM in the electronic industry as it simplifies operation 

and enables high density memory devices20.  

 

Figure 39. I-V curves of (a) Al/TiO2 NRA/TiOx layer/FTO device and (b) Al/TiO2 NRA/FTO device for 100 

successive cycles (for each figure, left inset: I-V curve for a typical cycle and right inset: schematic design of the 

device) 

To be noted, although Al was used as the top electrode, the I-V performance of the present 

Al/TiO2 NRA/TiOx layer/FTO device was not the same as that of other TiO2 thin film devices 

using Al as the top electrode68, 72, 235. In thin film devices, the interaction between Al and TiO2 to 

form an insulating Al-Ti-O layer which functions as a source of oxygen ions improves the resistive 

switching behavior. In our fabricated Al/TiO2 NRA/TiOx layer/FTO device, the Al layer is 

expected to enhance performance compared to devices using the Pt168 electrodes because of its 

oxygen affinity and ability to form an interfacial Al-Ti-O layer. However, the switching 

mechanism in the current devices is dominated by the TiO2 NRAs since the thickness of the Al-

Ti-O layer is likely 3~5 nm68, which is much less than the height of the TiO2 NRAs (~3 μm). As a 

result, the resistance of an Al-Ti-O layer will be much smaller than the total resistance of the TiO2 

NRA layer. This hypothesis is confirmed by the polarity at which the device transitions from the 

HRS to LRS. This polarity is opposite to the negative polarity required for thin film TiO2 devices 

with an Al top electrode in which the interfacial Al-Ti-O layer is expected to be crucial in 
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determining the resistive switching behavior75, 80, 195. In addition, the smooth change of the I-V 

curves of both devices indicates that the switching mechanism in our devices is likely dominated 

by uniformly distributed valence states or space charge at the interface rather than the formation 

and rupture of filament in response to electric field80, 236.  

Other differences are also apparent in the properties of devices prepared with and without the 

TiOx seed layer. For example, the current amplitude in the Al/TiO2 NRA/TiOx layer/FTO device 

is approximately one order of magnitude less than that of the device prepared without a seed layer, 

indicating that the Al/TiO2 NRA/TiOx layer/FTO device is more insulating. This suggests that the 

higher concentration of oxygen vacancies observed in the TiO2 NRAs in the absence of a seed 

layer makes the device more electrically conductive. Due to the large difference between the 

thickness of the seed layer (~20 nm) and the height of the nanorods, the resistance of the seed layer 

is small compared to that of the NRAs and the electrical performance can then be dominantly 

ascribed to the TiO2 NRAs. Variations in the concentration of oxygen vacancies in the nanorods 

in the two types of device may also be responsible for differences between the initial states in 

resistive switching operations, in which the fabricated Al/TiO2 NRA/TiOx layer/FTO device starts 

from the HRS under sweeping operations, while the initial condition for Al/TiO2 NRA/FTO 

devices is the LRS. This behavior is indicated by the arrows in Figure 39.  

I-V curves under cyclic voltage sweeping show that the bipolar resistive switching response in 

Al/TiO2 NRA/TiOx layer/FTO devices is more stable and repeatable while maintaining a relatively 

high ON/OFF ratio (>20). Stable electrical performance can be associated with the compact, fine 

surface morphology of the TiO2 NRAs grown on the seed layer. TiO2 nanorods constrain current 

flow along their longitudinal axis due to their small cross section. This leads to the formation of 

direct conduction paths for electrons and the minimization of interactions between channels in 

adjacent nanorods. Such structures also facilitate the deposition of compact Al electrodes. To 

illustrate this point, the resistive switching behavior of Al/TiO2 NRA/FTO devices is characterized 

by high fluctuation and a small ON/OFF ratio, as demonstrated in Figure 40. Both of these 

properties are not desirable for industrial applications of ReRAM devices in the electronic 

industry20. It is important to note that the higher cell uniformity in these Al/TiO2 NRA/TiOx 

layer/FTO devices with distinguishable resistance states ensure that they are promising as a 

candidate for non-volatile ReRAM devices, as demonstrated in Figure 41. From the above analysis, 
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it can be concluded that the introduction of a TiOx seed layer can significantly improve the resistive 

switching performance of the TiO2 NRA based ReRAM devices.  

 

Figure 40. Endurance study of Al/TiO2 NRA/FTO device under voltage sweeping 

 

Figure 41. Cell uniformity performance check by examining the current response at specific read voltage for 

different cells (a) Al/TiO2 NRA/FTO devices and (b) Al/TiO2 NRA/TiOx layer/FTO device. (The standard 

deviations are from the summary of 10 repeated I-V sweeping cycles). For the Al/TiO2 NRA/FTO devices, the 

ON/OFF ratio is relatively small, which is difficult to distinguish between two different resistance states in the 

application of ReRAM devices. Furthermore, the big variation in current response among different cells (for 

example, the LRS current response for cell No.2 is in the same range of the HRS current response for cell Nos. 8-10) 

also make the Al/TiO2 NRA/FTO devices not suitable for the ReRAM devices in the electronic industry. 

Comparatively speaking, the Al/TiO2 NRA/TiOx layer/FTO devices displayed a better cell uniformity of the 

electrical performance in terms of the relatively stable and low HRS current and larger ON/OFF ratios. Even though 

there is a variation in the LRS current response among different cells, all the ON/OFF ratios are big enough for 

distinguishing from two different states. 
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4.4.2.2. Endurance and retention Study 

The endurance performance of the fabricated Al/TiO2 NRA/TiOx layer/FTO device is given in 

Figure 42(a) by direct-current cyclic sweeping operations. It was found that this new device 

maintains a high stable ON/OFF ratio (>20) over at least 500 cycles. This ratio is sufficient to 

distinguish different states in potential ReRAM devices. The cumulative probability curve of both 

LRS and HRS resistances illustrated that the distribution of LRS and HRS resistances is in the 

range of 1.3×108 Ω and ~5.3×109 Ω, respectively, with very good cycle-to-cycle uniformity as 

demonstrated by the cumulative probability curve in Figure 43. The coefficient of variations for 

LRS and HRS resistances (defined as the standard deviation of the measured resistance divided by 

the mean values) for more than 500 cycles are 0.04 and 0.15, respectively, suggesting promising 

stable resistive switching performance. It is also apparent that the low current amplitude (<10-8 and 

10-10A for LRS and HRS read at 0.5 V, respectively) during resistive switching is very promising 

with respect to low operating power and heat generation requirements for emerging applications 

of memristor devices such as logic and neuromorphic devices22, 237. Furthermore, data retention of 

the Al/TiO2 NRA/TiOx layer/FTO device was studied by probing the current changes in the OFF 

and ON state for a long period of time. As seen in Figure 42(b), a well-defined ON/OFF ratio, 

showing only limited fluctuations, was obtained in the device for more than 3×104 s. Robust 

endurance, low operating power, together with long retention time is indicative of the high 

reliability and non-volatile nature of these fabricated Al/TiO2 NRA/TiOx layer/FTO devices.  

 

Figure 42. (a) Endurance and (b) retention performance of Al/TiO2 NRA/TiOx layer/FTO device 
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Figure 43. Cumulative probability curve for LRS and HRS resistances of Al/TiO2 NRA/TiOx layer/FTO device for 

~550 cycles 

4.4.2.3. Switching mechanism study 

The conduction mechanism in the Al/TiO2 NRA/TiOx layer/FTO device can be obtained from 

an analysis of the I-V characteristic curves shown on a log-log scale in Figure 44. Under positive 

bias, the Schottky barrier at the FTO/TiOx interface limits the electron transport and the device is 

initially in the HRS, given the difference between the work function of the FTO substrate (4.7 eV) 

and the ideal Fermi level of TiO2 (4.2 eV)238. The I-V characteristic for the HRS consists of three 

different regions, the Ohmic region (I∝V) which is dominated by thermally generated free carriers, 

the Child’s law region (I∝V2), where traps are being filled by electrons, and the trap-filled-limit 

region including a threshold voltage (VTFL) and steep current rise. The VTFL in our device is ~1 V, 

which corresponds to the voltage at which all traps are filled by electrons, after which the electrons 

flow through the conduction band, switching the device from HRS to LRS. This behavior can be 

easily understood from the trap-controlled SCLC mechanism, in which the oxygen vacancies serve 

as electron traps that would form/rupture electron transport channels135. Oxygen vacancies are 

present in the individual nanorods as well as in the TiOx seed layer due to its high oxygen 

deficiency. As the voltage sweeps from +4 V to 0 V, the I-V curve first has a slope of ~1.62 as the 

traps remain filled. A slope of 1.62 instead of 2, as expected for a space charge limited current, 

can be attributed to trapping in the interfacial layer formed in the vicinity of the Al electrode during 

the metal deposition process71. Migration of oxygen vacancies in the nanorods as well as in the 
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TiOx seed layer would also play a role in the deviation of slopes42, 73. When the voltage approaches 

zero, the slope decreases to ~1, as the injection of carriers is reduced and Ohmic conduction 

dominates.  

During the RESET process (Figure 44(b)), the Al electrode is negatively biased, and electrons 

start to be injected from this layer towards bottom FTO electrode. The slope of the I-V curve is 

~1.0 when the bias voltage is less than −0.4 V. As the voltage becomes more negative, the slope 

initially decreases before increasing to >2.0. This suggests that the traps associated with oxygen 

vacancies remain filled. As the voltage sweeps from −4 V to 0 V, the slope of the curve first 

decreases from ~3 to ~2 as the voltage approaches −0.4 V. The slope then becomes ~1 at lower 

negative voltage down to 0 V, indicating that the current arises from free carriers. This behavior 

suggests that electrons are released from all of the traps at ~ −0.4 V and the device re-transitions 

from the LRS to HRS.  

As to the switching mechanism of the TiO2 NRA device without the seed layer, due to the 

higher concentration of oxygen vacancies in the NRAs, the device shows a higher conductivity 

compared to the TiO2 NRA device with the seed layer. Furthermore, the I-V performance did not 

fit with the SCLC conduction mechanism, suggesting a different switching mechanism. We 

propose that the high concentration of oxygen vacancies on the surface of NRA render these 

smaller distance among these defects, therefore leading to a higher probability of electron hopping 

pathways. Upon the application of positive electric field on the Al electrode, electrons hop from 

various defects from the FTO electrode to the Al electrode. Meanwhile, some of the oxygen 

vacancies on the surface will trap the electrons, reducing the hopping probability. Therefore, when 

we sweep from 4 V to 0 V, the device will shows smaller conductivity, leading to the transition 

from LRS to HRS (as indicated in the arrows in Figure 39(b)). Vice versa, a negative electric field 

promote the electrons to hop from Al electrode, and at the same time, detrapping some of the 

oxygen vacancies. This process can lead to the transition from HRS to LRS.   
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Figure 44. Log-log I-V response for the Al/TiO2 NRA/TiOx layer/FTO device, (a) Positive region and (b) Negative 

region 

Further understanding of the conduction mechanism in fabricated Al/TiO2 NRA/TiOx 

layer/FTO devices can be obtained by the I-V response at different temperatures (Figure 45(a) and 

45(b)). The resulting temperature-dependent ON/OFF ratio is shown in Figure 45(c). It can be seen 

that the LRS resistance decreases as the temperature decreases. In addition, the LRS resistance at 

a 0.5 V read voltage increases linearly with temperature, as shown in Figure 45(d). This indicates 

an Ohmic behavior under LRS as evidenced by a slope of ~1 under low read voltages in Figure 

45(a). In contrast, the current response in the HRS at different temperatures is more complicated 

(Figure 45(b)). The HRS current is controlled with the SCLC mechanism over a range of 

temperature,74 as illustrated in Figure 45(b). To identify the physical mechanism, the Child’s Law 

current response at different temperatures is plotted as ln(I) vs. 1000/T in Figure 45(e). Based on 

the SCLC theory, the current in the Child’s Law region can be expressed as: 

𝐼 =
9

8
𝐴𝜀𝜇𝜃

𝑉𝑎
2

𝑑3
            Eq.(2) 
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𝑁𝑡
exp⁡[

−(𝐸𝑐−𝐸𝑡𝑟𝑎𝑝)

𝐾𝑇
]      Eq.(3) 

This solution is based on the assumption that the electrons traps (oxygen vacancies in our case) 

are restricted to a single discrete energy level (Etrap). In the equations, A is the effective area for 

the conduction channels,  is the mobility,  and d are the permittivity and thickness of the oxide 

layer, respectively. Furthermore, Va is the applied voltage, Ec is the energy at the conduction band 

minima, Nc the effective density of states in the conduction band at temperature T, Nt the total trap 

density and K is the Boltzmann’s constant. 

From Eq.(2) and Eq.(3), the current response ln(I) in this region is a linear function of 1000/T, 

with a slope –(Ec–Etrap)/1000k. Arrhenius plots of measured data at different read voltages are 
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given in Figure 45(e). The activation energy calculated from these data at different read voltages 

is, ΔE = Ec – Etrap = 0.18~0.20 eV (Figure 45(f)). Thus energy levels associated with these traps 

are more shallow than trap levels arising from oxygen vacancies in bulk TiO2, which are 

theoretically calculated to lie 0.8~1.0 eV below the conduction band74, 239, 240. This difference in 

trap levels might be attributed to the proximity of the surface in the high surface-to-volume ratio 

of nanorods and the role of the surface in reducing the energy for vacancy formation. Furthermore, 

the diffusion of defects from inside the nanorod to the surface will also increase the surface defect 

density241. Similar reports about the ZnO nanowire arrays showed much higher photocurrent 

response compared with the thin film under the same thickness condition, mainly due to the 

increasing of self-induced surface defects242. The overall effect is that the trap states of the oxygen 

vacancies are expected to be shallower below the conduction band, compared to those in TiO2 thin 

films. Research about the relationship between the surface defects of nanorods and the 

corresponding resistive switching performance is ongoing. 

 

Figure 45. Log-log I-V curves of (a) LRS and (b) HRS at different temperatures, (c) ON/OFF ratio vs. temperature, 

(d) Linear fit for LRS resistance, (e) ln(I) vs. 1000/T and corresponding fits at specific read voltages and (f) 

activation energy ΔE = Ec – Etrap calculated from the slopes in (e) plotted as a function of V. The standard deviations 

for (c), (d) and (e) are from the statistical average of 15 repeatable cycles. All measurements were carried out under 

ambient atmospheric conditions. 

A tentative model of the switching mechanism for an Al/TiO2 NRA/TiOx layer/FTO device is 

schematically illustrated in Figure 46. In its pristine state, the device possesses a limited 
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concentration of oxygen vacancies at the FTO/TiOx interface as well as in the NRAs (Figure 46(b)). 

These oxygen vacancies yield a series of electron traps as shown below the TiO2 conduction band. 

The traps are gradually filled with electrons when a forward bias is applied to the Al electrode. 

Figure 46(c) corresponds to the forward region below the VTFL. After all of these traps are filled 

the current abruptly increases as the device transitions from HRS to LRS (Figure 46(d))211. 

Significant detrapping of these oxygen vacancies occurs when a high negative voltage is applied 

on the top Al electrode, which would switch the device back from LRS to HRS.  

 

Figure 46. Schematic representation of the switching mechanism in fabricated Al/TiO2 NRA/TiOx layer/FTO 

device, (a) cross-sectional design, (b) pristine state, (c) positive bias, 0→VTFL, traps are partially filled, (d) positive 

bias, VTFL→4 V→0 V, traps are fully filled, the device has transitioned from HRS to LRS 

4.4.2.4. Multilevel memory behavior 

The potential for obtaining multilevel memory in the TiO2 NRA based device was studied by 

applying different SET voltages while keeping the RESET voltage at −4 V. Figure 47 shows well-

defined differences in LRS current under cyclic sweeping operations, such that a 4-level memory 

may be feasible while maintaining a nearly constant HRS current (Read @0.5 V). The 4-level 

memory performance was measured to be stable for 80 cycles, and the measurements indicate that 

this behavior can be extended to more cycles given the very small variation in current in each level 

(Figure 47(b)). It was also found that a 6-level memory can be achievable using SET voltages of 

5 and 6 V, even though the current response for higher voltage is not as distinguishable as for 

lower SET voltages, as demonstrated in Figure 48. Furthermore, the current response of LRS for 
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each level is still below 10-7 A under different SET voltages, suggesting significant potentials for 

low-power ReRAM devices. Overall, this indicates that the TiO2 NRAs grown on a seed layer are 

very promising in multilevel memory devices. The multilevel memory performance for Al/TiO2 

NRA/FTO device is not achievable due to its poor reliability.  

 

Figure 47. (a) I-V curve for Al/TiO2 NRA/TiOx layer/FTO device under different SET voltages and (b) 

demonstration of 4-level memory performance under cyclic voltage sweeping 

 

Figure 48. (a) I-V curves of Al/TiO2 NRA/TiOx layer/FTO device at different SET voltages and (b) demonstration 

of 6-level memory response in cyclic voltage sweeping 

Though some metal oxide nanomaterials exhibit multilevel memory performance, the origin 

of multilevel memory is still controversial. It has been suggested that multilevel memory can be 

obtained by engineering of the size of conductive filaments (more generally, conduction paths) as 

determined by the accumulation of ions or defects controlled by the compliance current57, 243, 

maximum voltages56 and a series of applied voltages148. Different ionic charge traps or 

intermediate energy states below the valence band within the oxide layer have also been 

suggested.244 Modification of the effective barrier height and narrowing of the depletion layer have 
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also been proposed to engineer a range of ON/OFF ratios234 or different levels of current 

amplification149. In the current work, the origin of the multilevel memory performance in the 

fabricated devices has been studied by examining the I-V characteristics at different SET voltages 

on a log-log scale (Figure 49). This shows that the switching mechanism in the devices under all 

five SET voltages arises from SCLC245. Changes in the slope of the current for V > VTFL with SET 

voltage are also described via SCLC theory, as shown in Figure 5038. It can then be concluded that 

the accumulation of oxygen vacancies and size engineering of conductive paths or filaments can 

be excluded as the origin of a multilevel memory in the present device. For V > VTFL, all available 

traps would have been filled and the injection carriers are mainly contributed by the increase in 

free electrons. Since higher applied voltages (Va) would result in a larger number of free electrons, 

higher LRS current at the same low read voltages could be expected considering that the slopes 

for the LRS current response are approximately the same under different SET voltages. This could 

be the reason for the multilevel memory performance in our devices. Further studies on the 

dependence of I-V characteristic on pad size, and the effect of the height of the TiO2 nanorod array 

on the multilevel memory response are being undertaken to clarify the switching mechanism in 

these Al/TiO2 NRA/TiOx layer/FTO devices.  

 

Figure 49. Log-log I-V curves for Al/TiO2 NRA/TiOx layer/FTO device at different SET voltages (a) Vset=2 V, 

(b)Vset=3 V, (c) Vset=4 V, (d)Vset=5 V, (e) Vset=6 V 
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Figure 50. Slope of I-V curve of Al/TiO2 NRA/TiOx layer/FTO devices in the region with V>VTFL for different SET 

voltages (average of 10 cycles at each SET voltage). The I-V curve in this region is found to have a slope of 1/θ 

based on SCLC theory where θ is =1/(1+Nt/Nc(exp(-q(Va-VTFL)/KT)). Then ln(1/θ )-1 is inversely proportional to 

the applied SET voltage. For our device, the VTFL is small and nearly constant (~1 V) for different SET voltages (Va), 

so different SET voltages all result in sharply increasing current with the slope decreasing at higher SET voltage. 

These properties confirm that current flow in fabricated Al/TiO2 NRA/TiOx layer/FTO devices is controlled by a 

SCLC mechanism. 

4.5. Conclusions 

In this chapter, it was demonstrated the improved resistive switching performance in the 

devices based on TiO2 NRAs on a FTO substrate by the introduction of a seed layer. The TiOx 

seed layer on the surface of the FTO substrate enhances the vertical growth of TiO2 NRAs normal 

to the substrate, leading to compact and fine nanorod morphology. Meanwhile, the concentration 

of oxygen vacancies of obtained NRAs is lower compared with NRAs prepared without the seed 

layer. The obtained Al/TiO2 NRA/TiOx layer/FTO devices exhibit a stable forming-free bipolar 

resistive switching behavior and maintain a higher ON/OFF ratio with lower switching currents 

under voltage sweeping over 500 cycles. The retention period is found to exceed 3×104 s. 

Switching in as-fabricated devices is controlled by a trap-mediated SCLC mechanism in which the 

existed oxygen vacancies in nanorods as well as in the seed layer function as trap centers. 

Furthermore, a multi-level memory feature of the device, each dominated by SCLC current flow, 
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is obtained in response to variations in the SET voltage. Such forming-free non-volatile multilevel 

resistive switching properties, low power operation, combined with robust endurance and retention, 

make Al/TiO2 NRA/TiOx layer/FTO devices promising candidates for future non-volatile ReRAM 

devices.   
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Chapter 5. Oxygen Vacancy Migration/Diffusion Induced Synaptic Plasticity in 

a Single Titanate Nanobelt246  

5.1. Overview 

Neuromorphic computational systems that emulate biological synapses in the human brain are 

fundamental in the development of artificial intelligence protocols beyond the standard von 

Neumann architecture. Such systems require new types of building blocks such as memristor that 

access a quasi-continuous and wide range of conductive states, which is still an obstacle for the 

realization of high-efficiency and large-capacity learning in neuromorphic simulation. Here, we 

introduce hydrogen and sodium titanate nanobelts, the intermediate products of hydrothermally-

synthesis of TiO2 nanobelts, to emulate the synaptic behavior. Devices incorporating a single 

titanate nanobelt demonstrate robust and reliable synaptic functions, including excitatory 

postsynaptic current, paired pulse facilitation, short term plasticity, potentiation and depression as 

well as learning-forgetting behavior. In particular, the gradual modulation of conductive states in 

the single nanobelt device can be achieved by a large number of identical pulses. The mechanism 

for synaptic functionality of the titanate nanobelt device is attributed to the competition between 

an electric field driven migration of oxygen vacancies and a thermally induced spontaneous 

diffusion. These results provide insight into the potential use of titanate nanobelts in synaptic 

applications requiring continuously addressable states coupled with high processing efficiency. 

5.2. Introduction  

The ability of human brain to perform high-level parallel information processing while 

consuming ultralow power, demonstrates that the brain has a superior architecture compared to 

that of less efficient conventional von Neumann systems where memory and processing units are 

physically separated.96, 247 The synapse is a basic element of the human brain and provides the 

functional interneuron link through which information is transmitted in the neural networks.100 

Synapses are considered the most important functional units involving learning and memory 

response in the human brain.122, 248 Most notably, the synaptic transmission that relates the signal 

delivered from a presynaptic neuron to the resulting signal produced in a postsynaptic neuron is 

plastic and results in the potentiation and depression of short-term or long-term synaptic strength, 

enabling synaptic computation249, 250 or learning/memory109, 251 in the brain. A significant recent 
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development is that memristive or resistive switching memory devices based on a variety of new 

materials such as Ag2S, perovskite, organic PEDOT:PSS, Ag ion doped dielectric films11, 13, 106, 115, 

252, 253 and field effect transistor (FET) devices254-256 have been used as building blocks with similar 

physical (e.g., plastic) response to mimic biological synaptic functions. Two-terminal memristive 

devices, which have been used in imaging and facial recognition in neuromorphic computing,123-

125 have several advantages compared to the FET configuration. These include reduced complexity 

of the device structure and fabrication process, as well as lower energy consumption.10 In practice, 

conductance in a biological synapse is modulated by the exchange of Ca2+ or Na+ ions between 

the membrane and the synaptic junction in response to an action potential, whereas conductance 

in a memristive device is controlled by the migration of metallic ions11, 13 or oxygen 

ions/vacancies257 on application of a sweeping voltage or pulse. The use of memristor in 

neuromorphic computing applications requires a non-abrupt switching mechanism, i.e., the 

continuous modulation of conduction, analogous memory functionality and repeatable response.112 

This can be achieved by considering the internal dynamic of ion migration in memristor device, 

the so-called second-order memristor109, 258, and several intriguing synaptic functions such as 

synaptic metaplasticity111 and triplet spike-timing dependent plasticity (STDP)259 have been 

achieved based on the second-order memristive system. The availability of memristive devices 

with excellent performance such as multi-conductive states and timing dependent plasticity, as 

required for the simulation of important synaptic responses such as learning, potentiation and 

depression, is therefore key to the development of neuromorphic systems.260  

Nanowires or nanobelts are promising as building blocks for bottom-up fabrication in 

nanoelectronics. In particular, the study of artificial synaptic behavior based on individual 1D TiO2 

nanowires/nanobelts devices suggest that oxygen vacancies in the TiO2, and the migration of these 

vacancies under an applied electric field, are responsible for resistive switching and the 

accompanying synaptic response151, 261. One of the most widely-used way to synthesize TiO2 

nanowires is the hydrothermal process262. In a typical hydrothermal synthesis of TiO2 nanobelts 

from precursor nanoparticles such as commercial P25 nanoparticles, the first step involves the 

conversion of nanoparticles to sodium titanate nanobelts (Na2Ti3O7). These are then converted to 

hydrogen titanate (H2Ti3O7) in an ionic exchange process before finally becoming TiO2 nanobelts 

during the annealing process.263 Na2Ti3O7 and H2Ti3O7 nanobelts each have a layered crystalline 

structure consisting of octahedral [TiO6] units as in TiO2 nanobelts262, 264 and exhibit similar 
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characteristics to TiO2 nanobelts in applications such as gas sensing,262 energy storage,265, 266 

photocatalysis233, 267 and field emission.268, 269 This suggests that the presence and migration of 

oxygen vacancies, is an important factor in all of these three materials267, 270, 271. However, the 

study of these intermediate products have largely been ignored for different applications compared 

to the well-studied TiO2 nanobelts. It would be more cost-effective and green if these intermediate 

nanobelts can be used in memristive synaptic devices since several more steps are needed to obtain 

TiO2 nanobelts from these intermediate materials in hydrothermal process. Therefore, a study of 

synaptic response in Na2Ti3O7 and H2Ti3O7 nanobelts is then of interest as this expands the 

research to titanate in addition to materials based on titanium metal oxide materials. It also enables 

a comparison of conduction mechanisms in all three materials in relation to their intrinsic 

properties.  

In this research, we examined the synaptic response of Na2Ti3O7 and H2Ti3O7 nanobelts, the 

intermediate products of hydrothermally-synthesized TiO2 nanobelts. Several synaptic functions, 

analogous to those seen in biological systems, are achieved in individual H2Ti3O7 nanobelt devices. 

These functions include an excitatory postsynaptic current (EPSC), paired pulse facilitation (PPF), 

short-term plasticity, potentiation and depression as well as learning-forgetting response. The 

mechanism involved in the synaptic response can be associated with a competition between the 

migration of oxygen vacancies driven by the electric field and subsequent spontaneous diffusion 

due to the resulting gradient in vacancy concentration. Individual Na2Ti3O7 nanobelt devices also 

exhibit similar characteristics but carry smaller currents under similar excitation conditions.  

5.3. Experimental Section 

5.3.1. Synthesis of sodium and hydrogen titanate nanobelts 

Sodium and hydrogen titanate nanobelts were synthesized from the hydrothermal process of 

TiO2 nanobelts as reported previously148, 263. Typically, P25 (2 gram) Aeroxide TM (Sigma Aldrich, 

Canada) was dissolved in NaOH alkaline solution (60 mL, 10 M) and then poured into a Teflon-

lined stainless steel autoclave (125 mL, Parr Instruments). The autoclave was kept in a furnace at 

a temperature of 190 oC for 72 h. After cooling down the autoclave naturally, the suspended 

nanobelts were taken out and washed with ultrapure water. Sodium titanate (Na2Ti3O7) nanobelts 

were obtained after this process. Hydrogen titanate (H2Ti3O7) nanobelts could be obtained through 

an ionic exchange process for 12 h by transferring the Na2Ti3O7 nanobelts into a beaker containing 
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HCl solution (400 mL, 0.1 mol). The Na2Ti3O7 and H2Ti3O7 nanobelts were dried separately in a 

furnace at 80 oC for 8 h to obtain powders. Finally, nanobelt (0.5 mg) from powders was dispersed 

in acetone (20 mL) for device fabrication. 

5.3.2. Device fabrication and characterization  

The 4 m gap Au electrodes were pre-fabricated on a SiO2 wafer by standard photolithography 

and a lift-off process. The diluted nanobelt solution was drop-cast on the Au electrodes and dried 

in air. Devices with bridged nanobelts were examined with an Olympus BX51 optical microscope 

prior to electrical characterization. The electrical performance of single-nanobelt devices was 

evaluated using an Agilent B2985A Electrometer/High Resistance Meter and a home-made probe 

station. One end of the two electrodes was grounded and all the voltages were applied from the 

other end throughout the entire measurement.  

5.3.3. Material characterization  

Scanning electron microscope (SEM) (ZEISS LEO 1550) and transmission electron 

microscopy (TEM) (JEOL 2010F) were used to examine the microstructure of the nanobelts and 

configuration of the devices. Stoichiometry of the nanobelts was identified from X-ray diffraction 

(XRD, PANalytical X’pert PRO MRD). The bonding states of elemental sodium, titanium and 

oxygen in the nanobelts were examined by X-ray photoelectron spectroscopy (Thermo-VG 

Scientific ESCALab 250). 

5.4. Results and Discussion  

5.4.1. Material Characterization  

Figure 51 demonstrates the material characterization results of as-synthesized H2Ti3O7 

nanobelts. The nanobelts have a characteristic rectangular cross section, as indicated by the inset 

magnified SEM images in Figure 51(a). The width of the nanobelt, as imaged in SEM and TEM 

scans, is typically 50-200 nm (Figures 51(a) and 51(b)). A scanning TEM (STEM) image of a 

representative nanobelt and its corresponding line-scan obtained from electron energy loss 

spectroscopy indicate that the nanobelt has a width-to-height ratio of 4.2:1, consistent with a quasi-

rectangular cross-section. (Figure 52). This geometry ensures good electrical contact with the Au 

electrode. The high resolution TEM (HRTEM) image (Figure 51(c)) of the nanobelt demonstrate 

a large concentration of void defects (indicated with arrows) with the measured interplanar spacing 
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being ~0.20 nm, corresponding to the (204) plane of the H2Ti3O7 crystal. Theses defects could be 

the existence of oxygen vacancies in the nanobelts, which is further confirmed by the Gaussian 

devolution peak of the O 1s spectrum centered at 532.5 eV (Figure 51(d) and 51(e)). The overall 

stoichiometry of nanobelts is H2Ti3O7 as determined from the characteristic peaks by XRD 

measurement (Figure 51(f)).  

 

Figure 51. Material characterization of H2Ti3O7 nanobelts, (a) SEM image, inset shows a magnified view of the 

selected region. These images reveal that the nanobelts have a rectangular cross-section with a width of 50-200 nm 

and a length of several m. (b) TEM image, (c) HRTEM image (arrows point out defects in the crystalline 

structure), (d) O1s XPS spectra. The peak at 532.5 eV is attributed to oxygen vacancies (concentration ~26.33%), 

while the small shoulder at 534.2 eV is attributed to the OH- group in the H2Ti3O7 nanobelts (concentration ~ 

2.95%). The strongest peak arises from oxygen in the lattice. (e) Ti 2p XPS spectra, (f) XRD characterization of 

H2Ti3O7 nanobelts and their characteristic peaks indexed from the JCPDS database (No. 47-0561). Some 

characteristic peaks of H2Ti3O7 are indicated with arrows. 
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Figure 52. Comparison of contact geometry for nanowire vs. nanobelt. (a) Scanning TEM (STEM) image of a 

representative nanobelt and (b) its corresponding line-scan obtained from electron energy loss spectroscopy. This 

indicates that the nanobelt has a width of ~230 nm and a height of ~55 nm, with a width-to-height ratio of 4.2:1. 

These dimensions are consistent with a quasi-rectangular cross-section. (c) Schematic diagram showing the contact 

morphology at the Au electrodes for nanowire vs. nanobelt structures. 
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5.4.2. Synaptic performance 

5.4.2.1. Excitatory postsynaptic current  

A schematic representation of the chemical pathways during transmission in a biological 

synapse is shown in Figure 53(a). The transmission of information between neurons involves the 

release of a neurotransmitter from the presynaptic terminal, followed by diffusion across the cleft 

and binding to postsynaptic receptors.255 Neurotransmitters are contained in synaptic vesicles that 

cluster near the cell membrane in the axon terminal of the presynaptic neuron. Once an action 

potential propagates along the presynaptic axon and reaches the axon terminal, voltage-gated 

calcium (Ca2+) channels are activated and allow the flow of Ca2+ ions into the presynaptic terminal. 

This triggers fusion of the synaptic vesicle to the plasma membrane, resulting in the release of 

neurotransmitters in the synaptic cleft. These neurotransmitters dock with receptors on the 

postsynaptic neuron, triggering further molecular reactions that ultimately change the membrane 

potential of the postsynaptic neuron, generating a postsynaptic current.122  

Figure 53(b) is a schematic representation of an artificial synapse as it occurs in a single 

nanobelt device, and the inset SEM image demonstrates the device consisting of two Au electrodes 

separated by a 4 µm gap bridged with a single H2Ti3O7 nanobelt. Under external stimulus, spikes 

or action potentials in the presynaptic neuron (left electrode) are transmitted through the synapse 

(nanobelt) to the postsynaptic neuron (right electrode). This generates an excitatory postsynaptic 

current (EPSC). To simulate this excitatory response in our device, a series of 50 ms presynaptic 

pulses with amplitudes of 8, 10, 12, 15, 18 and 20 V were applied to one of the Au electrodes. 

These pulses were well separated in time (~4 s). The EPSC response of the device under this 

excitation regime is as shown in Figure 53(c).  It can be seen that the peak value of the EPSC 

increases from 0.53 nA to 4.45 nA as the amplitude of the presynaptic pulses increases from 8 V 

to 20 V. This type of EPSC response is similar to that observed in biological excitatory synapses.122 

The energy introduced into the device for a single pulse is Econ = Iavg  t  V, where Iavg is the 

average EPSC, t is the pulse duration and V is the pulse amplitude. Calculated values of Econ are 

shown in Figure 53(d). The smallest energy consumption is estimated to be 212 pJ for the 8 V 

pulse. This power consumption could be further lowered by reducing the pulse duration to < 50 

ms. 

After the spike, the current in single nanobelt device assume its baseline value. When the 

interval between pulses is much longer than the pulse duration (e.g. 4~5 second interval vs. 50 ms 
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duration), the EPSC induced by a given pulse does not affect the EPSC produced by the next 

spike.11, 122 Under these excitation conditions, the device exhibits a highly reproducible and 

controllable multilevel current response (Figure 53(e)). The multilevel performance was tested up 

to 2000 cycles as shown in Figure 53(f). These data demonstrate a discrete, well separated current 

response, indicating that the multilevel conductive states of the single H2Ti3O7 nanobelt device are 

highly robust. 
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Figure 53. EPSC response, (a) schematic of a synapse, (b) schematic of the nanobelt device for the synaptic 

response study and SEM image of nanobelt device, (c) EPSC performance for a series of 50 ms pulses with 

amplitudes 8, 10, 12, 15, 18 and 20 V, respectively, (d) summary of EPSCs and the corresponding calculated energy 

consumption, where the average currents and corresponding standard deviation are calculated from the current 
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responses over 2000 cycles as shown in (f), (e) EPSC during 10 cycles of EPSC excited as in (c), the interval period 

among adjacent cycles is 20 s. (f) EPSC evolution over 2000 cycles with pulse amplitudes as in (c). 

5.4.2.2. Short term plasticity  

Synaptic plasticity, defined as the change in the synaptic strength in response to external 

stimuli over time, is considered to be the foundation for learning and memory in the human 

brain.100 In general, when two identical spikes arrive in rapid succession, the EPSC for the second 

spike is enhanced if the time interval between the spikes is short enough that carriers cannot relax 

to their initial equilibrium state between spikes, as illustrated schematically in Figure 53(b). This 

then leads to short-term synaptic enhancement or potentiation.272 This response was successfully 

simulated in the present nanobelt device by applying two and ten consecutive identical +8 V pulses 

with inter-pulse intervals ranging from 100 to 3000 ms. Figure 54(a) shows a typical example of 

short-term potentiation obtained at an inter-pulse interval of 500 ms. The amount of synaptic 

gained weight for two and ten equal pre-synaptic pulses was calculated as a function of the interval 

period as a way of mimicking neural paired-pulse facilitation (PPF) and post-tetanic potentiation 

(PTP) responses in a biological system. PPF measures the conductance increase that occurs on 

application of two consecutive presynaptic pulses, while PTP quantifies the increase in response 

for a given number of spikes. The plasticity of the device can be described according to the PPF 

and PTP index models257, 272 

PPF= (I2-I1)/ I1100%                (1) 

PTP= (I10-I1)/ I1100%                                (2) 

In Equation (1) and (2), I1, I2 and I10 correspond to the current of the first, second and tenth pulse, 

respectively. From Figures 54(b) and 54(c), the amplitudes of the EPSC in the second (PPF) and 

tenth (PTP) pulses are 53% and 436% higher, respectively, compared to the EPSC from the first 

pulse at an inter-pulse interval of 100 ms. The high PTP index suggests the possibility that the 

nanobelt device may act as a dynamic high-pass filter.254 The enhancement ratio is found to 

decrease with increasing inter-pulse time interval. This effect is also known as spike rate-

dependent plasticity (SRDP), whereby higher spike frequency leads to a larger increase in gained 

synaptic weight. Fitting of the PPF and PTP curves shows that the device plasticity decays 

exponentially vs. inter-pulse time interval.272 In biological systems, a certain time interval is 

needed for the residual Ca2+ concentration to relax to their equilibrium level after an action 

potential is terminated. When another identical stimulus follows shortly after the initial stimulus, 
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a net increase in the synaptic response will occur, as in PPF. When many stimuli are applied and 

the inter-pulse interval is short, the synaptic transmission is progressively enhanced, as in PTP.   

Figures 54(d)-(f) show the enhancement in the current response during the application of 100 

consecutive pulses. The duration, interval period and peak voltage per pulse are all seen to affect 

the overall current amplitude.14, 50 This potentiation behavior in the nanobelt device mimics the 

synaptic release of neurotransmitters in vesicles in response to a series of action potentials in which 

the frequency, duration as well as amplitude of action potentials can stimulate a larger number of 

neurotransmitters, and thus a higher current response.255 As can be seen in Figures 54(d)-(f), the 

accumulation of the current response does not scale linearly with an increase in the number of 

pulses. This suggests that more conductive states could be achieved using shorter pulse duration 

and lower pulse amplitude, as this would inhibit saturation, i.e., slowing the increase in synaptic 

weight. By extending the number of identical low amplitude (10 V) pulses up to 1000 and using a 

variety of pulse durations, the current response can be gradually increased as shown in Figure 55. 

A two order of magnitude change in current accumulation was achieved through >1000 steps. It is 

apparent that the current continues to increase throughout the steps, but that the rate of increase is 

reduced as the number of pulses increases. More than 2000 modulation states can be achieved by 

applying a series of identical 50 and 100 ms, 10 V pulses, respectively (Figure 56). A gradual 

increase in current response is particularly important if the device is to mimic the analog nature of 

the synaptic weight change,103 effective neural regulation and adaptive learning in neuromorphic 

computation.121 With more resistance states, better learning efficiency and a greater capacity for 

an effective neuromorphic computing response is possible.121, 260 This indicates that H2Ti3O7 

nanobelts may be an attractive candidate for achieving high-efficiency learning in neuromorphic 

computing. 



84 

 

 

Figure 54. Short-term plasticity response. (a) Current enhancement for 10 consecutive, identical 8 V pulses. PPF 

and PTP are defined as shown, (b-c) Relationship between gained weight (%) for PPF and PTP vs. the time interval 

between two consecutive pulses. The fitted exponential curves y=A1×exp(−x/t1)+y0 are shown. For the PPF, 

A1=0.625, t1=0.499 s, y0=0.053 while for PTP, A1=4.722, t1=0.707 s, y0=0.124, (d-f) Accumulating current response 

on excitation with 100 identical consecutive pulses plotted vs. (d) time interval between pulses (50 ms duration, 20 

V pulse), (e) pulse duration (50 ms interval, 20 V pulse), and (f) pulse amplitude (pulse duration and interval are 50 

ms). 

 

Figure 55. Current accumulation vs. number of identical consecutive 10 V pulses. The pulse duration, T, is as 

shown. 
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Figure 56. Evolution of the potentiation response on application of up to 2200 identical pulses. The pulse duration 

for each pulse is as indicated. Pulse amplitude is 10 V. 

5.4.2.3. Potentiation and depression  

In a system designed to implement artificial synapses, modulation of conductance can be used 

to emulate the effect of potentiation and depression on synaptic weight. This simulates the 

strengthening and weakening of pre- and post-synaptic neurons. To replicate this response, 100 

consecutive +20 V, 100 ms, pulses followed by 100 consecutive −10 V, 100 ms, pulses were 

applied to the system. The resulting current response was read at 2 V and showed a reproducible 

potentiation and depression response as summarized in Figure 57(a) and (b). The pulse peak 

current in this test is given in Figure 58. The read-out current increases firstly in response to the 

positive input pulses, demonstrating potentiation. Subsequent negative pulses cause the current to 

decrease, resulting in depression of the response. The robustness of the potentiation and depression 

response was confirmed by a test involving 50 potentiation and 50 depression states for 5,000 

cycles (a total of 50,000 pulses) as shown in Figure 57 and Figure 59. To test whether a larger 

number of potentiation and depression states are possible, the conductance was measured during 

application of >2000, +10 V/−6 V 100 ms pulse cycles (Figure 57d). In the region of potentiation, 

the conductance of the device increases and eventually becomes saturated. In the depression region, 

the conductance rapidly decreases during the first 300 pulses, and then remains essentially constant 

on the additional negative pulses. The latter effect might be due to the limited migration of oxygen 

vacancies on application of low electric-field −6 V pulse after the device has been returned to its 

initial state. The current response vs. time in this experiment is shown in Figure 60. This suggests 
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that a single nanobelt device can be used to combine a large number of potentiation and depression 

states in a simple structure. Moreover, the potentiation and depression response can also be 

generated in the H2Ti3O7 nanobelt device by sweeping voltages (Figure 60). On the application of 

consecutive positive and negative sweeping voltages, the current amplitude first continuously 

increases (Figure 61(a)) and then decreases (Figure 61(b)). The cyclic current response vs. time 

and the corresponding conductance at the peak voltage are shown in Figures 61(c) and 61(d). It is 

also demonstrated in Figure 57 that depression is faster than potentiation in the H2Ti3O7 nanobelt 

device. With higher amplitude negative pulses (e.g., −15 V and −20 V rather than −10 V), fewer 

negative pulses are sufficient to drive the current back to its original value (Figure 62). After the 

current returns to the baseline level, additional negative pulses contribute to the generation of 

higher current when the device is excited with opposite polarity pulses.260, 273 

 

Figure 57. Potentiation and depression response. (a) 100, +20 V 100 ms pulses followed by 100, −10 V 100 ms 

pulses. The test was repeated for 10 cycles. Current was measured by a 2 V, 100 ms read pulse immediately after 

each potentiation and depression pulse. (b) Expanded view of the highlighted segment in (a). (c) Test over 50, 000 

pulses with 50 potentiation and 50 depression pulses as before. The response in the last 5 cycles is shown. (d) Test 
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carried out to illustrate the large number of potentiation and depression states. Each cycle involved 2200, +10 V, 

100 ms pulses followed by 2200, −6 V, 100 ms pulses. P and D indicate potentiation and depression, respectively. 

 

Figure 58. Potentiation and depression response. (a) 10 cycles of potentiation and depression response for 100 

consecutive, 100 ms, +20 V pulses followed by 100 consecutive, 100 ms, −10 V pulses. A 2 V read voltage was 

applied after each pulse to obtain the current, (b) Expanded view of the area (A) in (a) demonstrating current 

potentiation. (c) Expanded view of the area (B) in (a) demonstrating current depression. 

 

Figure 59. Potentiation/depression characteristics and current response for up to 50,000 pulses illustrating the 

robustness of the system and (b-f) demonstrated expanded view in selected region (B-F) in (a). P and D in (b-f) 

indicate potentiation and depression, respectively. 
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Figure 60. Current response for 2200 positive (+10 V) and negative (−6 V) pulses with identical durations of 100 

ms, respectively. 

 

 

Figure 61. Nonlinear transmission characteristic of single positive and negative sweeping behavior. (a) I-V 

characteristics of the single nanobelt device at positive sweeping voltages (0 to 10 V then back to 0 V). (b) I-V 
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characteristics of the single nanobelt device at negative sweeping voltages (0 to −5 V then back to 0 V). (c) The 

curve of current response from (a) and (b) versus time. 4 cycles of potentiation and depression by sweeping voltage 

is demonstrated. (d) The conductance variation of the device with the sweeping cycles in (c). Reproducible 

potentiation (P) and depression (D) can be observed. 

 

Figure 62. Potentiation and quasi-depression response for different negative pulse amplitudes (a-c) 100 consecutive 

20 V, 100 ms pulses followed by 100 consecutive −15 V, 100 ms pulses. (d-e) 100 consecutive 20 V 100 ms pulses 

followed by 100 consecutive −20 V, 100 ms pulses. All the pulses have a duty cycle of 50%. The current responses 

in (b) (c) (e) and (f) are extracted after each pulse at a 2 V read voltage. 

5.4.2.4. Learning and forgetting response 

We have also investigated the current accumulation and decay properties in these single 

H2Ti3O7 nanobelt devices to replicate the learning/forgetting response of human memory. 

Potentiation after application of a number of identical 500 ms pulses simulates the learning process, 

while forgetting can be simulated by following the subsequent decay of the current response. As 

before, the readout voltage was +2 V. The resulting potentiation and decay curve is shown in 

Figure 63(a). When the exciting pulses are removed, the declining current is well described by an 

exponential decay, that is I=I0+Ae-t/τ, where I0 is the steady state current, t is time, A is a pre-factor, 

and τ is a time constant, which indicates the forgetting rate (Figure 63(b)). The spontaneous decay 

of current in the present device is analogous to the loss of memory or forgetting curve in a human 

brain.108, 274 We further studied the relaxation process of the device subject to a different number 

of applied pulses.  It is shown in Figure 63(c) that, by increasing the number of pulses to 400, the 

remaining normalized synaptic weight at 100 s increases from <3% for 5 pulses to around 42%. 
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Significantly, it is found that the time increases by a factor of 10 for the synaptic weight to decrease 

to 5% when the number of pulse is 400 (~ 625 s) compared to that observed when the pulse number 

is 5 (~ 59 s). Meanwhile, the time constant increases with the increasing of number of pulses as 

demonstrated in Figure 63(d). This suggests the potential for a transition from short-term 

potentiation (STP) to long-term potentiation (LTP) in the single nanobelt device by repeated 

stimulation.11 This enhancement in stability induced by the repeated application of input pulses 

resembles the increase in synaptic strength through frequent stimulation by action potentials found 

in biological neural systems.11, 275 

Several important synaptic responses such as EPSC, SRDP and potentiation and depression 

response have also been measured in a single Na2Ti3O7 device (Figures 64-67). In each case, the 

response is similar to that in the H2Ti3O7 nanobelt devices except that the current amplitudes are 

different indicating the larger resistivity of the Na2Ti3O7 nanobelt. These results show that H2Ti3O7 

and Na2Ti3O7 nanobelts, appearing as intermediate products in the formulation of TiO2 nanobelts 

by hydrothermal synthesis, are suitable for synaptic functionality emulation. 
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Figure 63. Learning and forgetting response and STP-to-LTP transition induced by repeated stimulation. (a) 

Learning and forgetting curve with 50, 500 ms, 20 V pulses. Current during relaxation was read at 2 V. (b) Current 

decay curve and its fit to the equation of I=I0+Ae-t/τ, where I0=1.16 nA, A=20.9 nA and τ is 25.64 s. (c) Current 

decay behavior with the number of pulses up to 400 and (d) time constant summary up to 400 pulses. 

 



92 

 

Figure 64. Material characterization of Na2Ti3O7 nanobelts. (a) SEM image, (b) TEM image, (c) HRTEM image 

(arrows point out defects in the crystalline structure), (d) Ti 2p XPS spectrum (e) O1s XPS spectrum. The peak at 

532.52 eV is attributed to oxygen vacancies (concentration ~ 25.00%), while the small shoulder at 535.3 eV is 

attributed to the OH- group in the Na2Ti3O7 nanobelts (concentration ~ 8.12%). The strongest peak arises from 

oxygen in the lattice (concentration ~ 66.89%). (f) Na 1s XPS spectrum. 

 

Figure 65. EPSC performance in a single Na2Ti3O7 nanobelt device. (a) SEM image of the device. (b) EPSC 

response with a series of 12, 16, 18 and 20 V pulses 100 ms long pulses. (c) The current response for different pulse 

amplitudes and calculated energy consumption. The calculated energy consumption is 630 pJ at a voltage of 12 V. 

(d) Summary of EPSC over more than 150 cycles with different pulse amplitudes. Variation in the current response 

for the 12 V pulse can be attributed to a low signal-to-noise ratio in the low current measurement. 



93 

 

 

Figure 66. Current accumulation and potentiation/depression response in a single Na2Ti3O7 nanobelt device. (a) 

Current obtained under excitation with consecutive, identical, +20 V, 300 ms pulses. The total number of pulses is 

75. (b) Potentiation and depression response over 5 cycles.  Each cycle consists of 100 identical +20 V, 300 ms, 

pulses followed by 100 identical −10 V, 300 ms, pulses. (c) Detailed view for the selected region (A) for the current 

potentiation in (b). (d) Detailed view for the selected region (B) for the current depression in (b). 
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Figure 67. Spike rate-dependent synaptic plasticity of single Na2Ti3O7 nanobelt devices under excitation with 

positive/negative pulses. (a) Evolution of current accumulation during 10 consecutive, +20 V, 400 ms, pulses, (b) 

current response vs. number of pulses with different positive pulse durations. 

5.4.3. Kinetic mechanism  

Similar to the analysis in single TiO2 nanowire device148, 261, it is suggested that the oxygen 

vacancies in the titanate nanobelts could be very important in abovementioned synaptic 

performance. To examine the role of oxygen vacancies on the synaptic response of single H2Ti3O7 

nanobelt devices, the temperature dependent time decay of the current (read at 2 V) after excitation 

with 50 identical, +20 V, 500 ms pulses (same as Figure 63(a)) is shown in Figure 68. Figure 68(a) 

indicates that the current decays more rapidly at higher temperature. This is consistent with the 

thermally activated diffusion of oxygen vacancies subject to an activation energy, E. 60, 63 The 

process is described by Equation 3 where the time constant τ, is temperature dependent, k is the 

Boltzmann constant, T is the absolute temperature and A0 is the pre-exponential rate constant,12 

𝐴0 + 𝑙𝑛
1

𝜏(𝑇)
=

𝐸

𝑘𝑇
                 (3) 

A plot of ln(1/τ(T)) as a function of 1000/T is shown in Figure 68(b) and yields E = 0.33 eV. This 

suggests a direct relation between the oxygen vacancy diffusion and forgetting/relaxation response 

behavior in Figure 63. Furthermore, the contact properties of the Au/nanobelt junction have been 

determined by examining its current response under a direct voltage sweep from −15 V to 15 V. It 

was found that the I-V curve is nearly symmetrical implying that the device can be described by 

the model of back-to-back Schottky barriers in series with a resistor.276, 277 (Figure 69). Under these 

conditions, oxygen vacancies would migrate towards one end of the Au/nanobelt interface under 

the applied electric field. This will lower the Schottky barrier at this interface, resulting in a 

rectifying-like I-V curve.105 To confirm this assumption, we measured the I-V curves directly after 

sweeping from 0 to 10 V and found a positive rectification response. Similarly, a reverse 

rectification characteristic is produced immediately after application of a 0 to −10 V sweep voltage 

(Figure 70). 

We have also investigated the temperature dependent current decay process in single TiO2 and 

Na2Ti3O7 nanobelt devices and have calculated the activation energies for diffusion using Equation 

(3). The resulting activation energies for TiO2 and Na2Ti3O7 nanobelt devices are 0.42 eV and 0.41 

eV, respectively (Figure 71). Similar values of the activation energy in all three types of nanobelt 

device suggest a common diffusion mechanism. The primary diffusion mechanism in all three 
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types of nanobelt device can then be attributed to oxygen vacancies although the diffusion of H+ 

and Na+ ions might play a limited role on H2Ti3O7 and Na2Ti3O7 nanobelts.  

The low activation energies for diffusion in these three types of nanobelt device compared to 

those found for many other oxides can be attributed to the geometrical effect of the 

nanowire/nanobelt structure. A recent theoretical report shows that a higher concentration of 

oxygen vacancies exists near and on the surface of ZnO nanowires. This facilitates the diffusion 

of oxygen vacancies in the nanowire structure compared to that occurring in bulk ZnO because of 

the lower activation energy associated with surface defects.278 This conclusion is supported by a 

recent study of oxygen diffusion in sputtered TiO2 films which shows that the activation energy 

for diffusion in the thin film is of 1.05 eV.279 Theoretical studies of migration of oxygen vacancies 

along different plane directions in bulk TiO2 also imply activation energies of 0.69-1.75 eV.280 

These values are consistent with the relatively low activation energies derived from our study of 

diffusion in single nanobelt devices.  

The electrical characteristics of these nanobelt devices are then described by back-to-back 

Schottky barriers whose properties are determined by the migration and diffusion of oxygen 

vacancies. In the absence of a bias, symmetrical Schottky barriers are formed at each junction 

between the nanobelt and an Au electrode (Figure 72(a)). When an electric field is applied by 

biasing the device, oxygen vacancies distributed within the nanobelt migrate and accumulate at 

one of the Au/nanobelt interfaces resulting in a reduction of the effective Schottky barrier.70, 143, 

149, 151 This facilitates the injection of electrons from the Au electrode into the semiconductor 

nanobelt, enhancing current flow in the forward direction.281 The resistance of the device therefore 

decreases when oxygen vacancies accumulate at this end. Meanwhile, the corresponding increase 

in the density of defects at this end of the nanobelt gives rise to a concentration gradient. This 

gradient drives a diffusive flow of vacancies in an opposite direction to the electric field (Figure 

72(b)). As diffusion is thermally activated and has an activation energy, E, relaxation of the current 

following excitation in the forward direction is temperature dependent. The dynamic competition 

between these two mechanisms leads to different synaptic functions. As the number of pulses 

increases, these effects begin to cancel each other so that the current does not continue to grow at 

the same rate. The equilibrium established between migration and diffusion also results in current 

saturation as the number of pulses is increased. If the bias is reversed immediately after a positive 

voltage pulse, the electric field accelerates the flow of vacancies arising from diffusion and speeds 
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up the overall depression response. This is also the reason for faster depression behavior than 

potentiation in the single nanobelt device. After a small number of negative voltage pulses, the 

device returns to its initial state and the Schottky barrier is re-established. Because of the identical 

nature of the Schottky barriers at each Au/nanobelt interface, the application of additional voltage 

pulses in the negative direction results in a similar response as that seen in the positive direction. 

 

Figure 68. Synaptic mechanism study. (a) Temperature dependence of the current decay following excitation with 

50 consecutive +20 V, 500 ms, pulses. The current was read at 2 V, (b) Plot of ln(1/τ) vs. 1000/T showing 

exponential dependence. The linear fit from Equation 3 is shown and implies that the diffusion activation energy is 

E=0.33 eV. 

 

Figure 69. I-V curve for the electrical contact at the interfaces between Au electrodes and the H2Ti3O7 nanobelt. 
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Figure 70. I-V curves for the volatile rectification behavior of single H2Ti3O7 nanobelt device. The original I-V 

curve is obtained by sweeping from −5 to +5 V. The positive rectification curve is obtained by sweeping from −5 V 

to +5 V immediately after the positive sweeping from 0 to 10 V. Similarly, the negative rectification curve is 

obtained by sweeping from −5 V to +5 V immediately after the negative sweeping from 0 to −10 V. The sweeping 

speed is 50 mV s-1. 

 

Figure 71. Plot of ln(1/τ) vs. 1000/T and linear fit from Equation 3 in main text for (a) single Na2Ti3O7 and (b) 

single TiO2 nanobelt devices from temperature dependence of current decay behavior following excitation with 100 

consecutive +20 V, 500 ms, pulses. The calculated diffusion activation energy are E=0.41 eV and E=0.42 eV, 

respectively. 
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Figure 72. Schematic of the synaptic response mechanism. (a) In the initial state oxygen vacancies are distributed 

randomly throughout the nanobelt, and a Schottky barrier is formed at each Au/nanobelt interface. (b) With applied 

positive electric field, the accumulation of oxygen vacancies at the left interface of the Au/nanobelt leads to a 

reduction in the strength of the Schottky barrier, increasing the conductivity of the device. Back diffusion of these 

defects in response to the concentration gradient would recover the Schottky barrier, leading to a decrease in the 

current response. 

5.5. Conclusions 

The synaptic properties of memristor devices based on single H2Ti3O7 and Na2Ti3O7 nanobelts 

have been investigated. Excellent synaptic functionalities including the EPSC, short-term 

plasticity, potentiation and depression as well as learning-forgetting responses, have been 

successfully demonstrated in a single nanobelt device. The gradual modulation in conductance 

with a large number of identical pulses is also realized. The synaptic response are shown to derive 

from the modulation of a Schottky barrier at the electrode/nanobelt interface due to migration of 

oxygen vacancies driven by an applied electric field, and moderated by thermal diffusion in 

response to a gradient in defect concentration. Such intriguing properties of synaptic devices based 

on individual H2Ti3O7 and Na2Ti3O7 nanobelts, similar to the TiO2 nanobelts, not only show that 

these materials have a promising future in neuromorphic computing applications, but also suggest 

an alternative direction for material selection for synaptic functionality emulation study.  
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Chapter 6. Threshold Switching in Single TiO2 Nanobelt Device Emulating an 

Artificial Nociceptor 

6.1. Overview 

Electronic devices that can simulate the dynamics of neurotransmission in the human body are 

of great interest for the development of artificial intelligence in modern information technology. 

In this chapter, an artificial nociceptor realized by a single TiO2 nanobelt device with a unique 

capacitive-coupled threshold switching behavior is demonstrated. Via thermal admittance 

spectroscopy and temperature dependent sweeping study, the properties of the nanobelt devices 

are determined by Schottky emission at low bias and by defect assisted quantum tunneling at high 

bias subject to a threshold voltage. The low activation energy associated with dynamic electron 

trapping gives rise to a voltage-dependent volatile threshold switching behavior. This threshold 

switching behavior allows the emulation of several characteristic features of a nociceptor, a critical 

type of sensory neuron in the human body, including “threshold”, “relaxation”, “no adaptation”, 

“allodynia” and “hyperalgesia” behaviors, essential for the realization of electronic sensory 

receptors that detect noxious stimuli and signal rapid warning to the central nervous system. One-

dimensional metal oxide nanobelt devices of this type yield multifunctional nociceptor 

performance that is fundamental for applications in artificial intelligence systems, representing a 

key step in the realization of neural integrated devices via a bottom-up approach.  

6.2. Introduction  

The development of artificial neural networks that can emulate their biological counterparts is 

very promising and highly desired, especially in the era of Big Data.96, 282 Compared to 

conventional digital computers designed according to the von Neumann configuration, in which 

the arithmetic/logic units and memory units are separated, the brain outperforms digital computers 

due to its dramatically different configuration, in which arithmetic calculation and memory operate 

simultaneously without the burden of data transmission. Hardware implementation of 

neuromorphic systems has attracted much interest due to the great potential inherent in machine 

learning at low power consumption. Conventional systems based on complementary metal-oxide 

semiconductor (CMOS) devices have been used for the emulation of synaptic behaviors,283, 284 but 

these transistor devices bear little phenomenological similarity to the biological synapse105 and the 
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realization of neuromorphic computing systems by traditional transistor devices requires the 

construction of large-scale parallel logic and switching cells. This is accompanied by high power 

consumption, complex structural configurations and intrinsic difficulty in scaling down to meet 

the needs of future nanoelectronic devices. Solid state devices that can accurately emulate the 

functions and plasticity of biological synapses will be the most important basic building blocks in 

brain-inspired computation systems.103 

The memristor as a two-terminal device, bears a striking resemblance to the biological synapse. 

Indeed, the resistance of a memristor is adjusted by the flow of charge through it, making the 

device ideal for mimicking the dynamics of biological synapses. Memristor is also more 

advantageous compared to transistors due to their simple structure, high switching speed and easy 

integration into the networks required in the development of complex emergent behaviors. The 

functionality offered by a single memristor device can be used to replace up to 10 transistors on a 

chip,30 making it ideal for data storage, neuromorphic applications and large-scale integration. Ion 

drift memristors have been widely studied as examples of systems that enable emulation of 

biological synapses. They exhibit a wide range of useful properties, including provision of a high 

number of resistance states, together with the ultrafast switching speeds that are important for 

neuromorphic computing applications such as pattern and face classification,123-125 and sparse 

coding.126 However, the nonvolatile nature of these devices make them biologically unrealistic, 

which severely limit the realization of various synaptic functions.13, 285 It has also been 

demonstrated theoretically that a second-order memristor which takes into consideration both the 

conductance of the memristor device and its internal dynamics such as heat dissipation or mobility 

decay, is required to emulate the timing-controlled Ca2+ dynamics including frequency-dependent 

plasticity and timing-based plasiticy.109 

Recently, artificial synaptic devices based on volatile threshold switching, such as diffusive 

memristive devices,13, 286-288 oxygen vacancy based devices,289 a graphene/MoS2 

heterojunctions290 as well as bio-membrane based devices285 are gaining increasing attention due 

to their resemblance of Ca2+ dynamics in biological synapses. In biological synapses, synaptic 

plasticity are regulated by Ca2+ dynamics and information gathered by various sensory organs in 

the human body are transduced into electrical impulses, which are then processed by an elaborate 

and intricate network of neurons through the release of neurotransmitters within the human brain. 

The rise and subsequent spontaneous decay of Ca2+ concentration at the axon terminal caused by 
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electrical neuronal stimuli (action potentials) regulates the release of these neurotransmitters into 

the synaptic cleft. During the release of the neurotransmitters, the Ca2+ gated channel will not open 

until the action potential is higher than a threshold value. When the integrated or total sum of the 

synaptic potential exceeds its threshold, the postsynaptic neuron will fire an action potential, i.e. 

the neuron responds or conveys information to its connecting neurons and the process continues. 

After transmission, the subsequent spontaneous decay of ion concentration at the axon terminal 

returns the presynaptic neuron to its previous state.101, 102, 291 This process is at the root of 

information processing and memory in the brain. Thus, simulating the role of Ca2+ dynamics is 

key to the realization of bio-realistic artificial synapses. In volatile threshold switching devices, 

the abrupt change of current response that occurs upon exceeding a threshold voltage is also quite 

similar to the actual neurotransmission process. Spontaneous decay of the current response after 

applying the threshold voltage without the need for a reset circuit is similar to the decay of ion 

concentration after the release of neurotransmitter in a neuron.292 Relaxation to the original rest 

state after switching to the low resistance state provides an internal timing mechanism and allows 

the device to naturally emulate the rate- and timing-dependent synaptic effects in a bio-realistic 

fashion. Due to these advantages, the threshold switching behavior is highly suited to the emulation 

of brain activity in detecting the threshold level in a decision-making process.291 An example for 

the emulation would be the initiation of an escape from potential threats that involve an artificial 

nociceptor, which is a type of neuron that requires a certain threshold action potential for triggering 

an active response to pain stimulation.293-295 

Threshold switching devices for neuromorphic computing applications are normally based on 

the formation and dissolution of conductive filaments, including Ag filaments or nano-clusters104, 

296-301 and oxygen vacancies.302-304 It is found that by tuning the compliance current, a transition 

from threshold switching to nonvolatile memory performance can be achieved due to the inherent 

thermal stability of the conductive filaments.286, 290, 296, 298, 305-307 However, the abrupt nature of 

traditional threshold switching performance makes it unsuitable for potentiation and depression 

emulation of synaptic computation. This occurs because the relatively abrupt SET process for the 

filament formation in these threshold switching devices makes it difficult to implement gradual 

weight changes, as required in neuromorphic applications, where non-abrupt analog-like switching 

transitions and a wide dynamic range of conductance states are preferred.117 
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In this work, we report that a fundamentally different threshold switching behavior can be 

achieved in a single TiO2 nanobelt device. A symmetrical voltage-dependent threshold switching 

behavior is obtained, controlled by a transition from Schottky emission at low bias to trap assisted 

quantum tunneling at higher bias. We also find that the presence of defects on the nanobelt is 

associated with a low activation energy for electron transport, together with dynamic charge 

trapping/detrapping, leading to a volatile threshold switching behavior instead of the nonvolatile 

performance observed in corresponding thin film devices. Significantly, the threshold switching 

performance of this new device facilitates the emulation of a nociceptor, including aspects of 

“threshold dynamics”, “relaxation”, “no adaptation”, and “allodynia and hyperalgesia” behavior. 

Using thermal admittance spectroscopy and temperature-dependent sweeping, the charge transport 

mechanism of the nanobelt device has been systematically studied. These results demonstrate that 

an individual nanobelt device can be utilized as a reliable building block for the realization of 

artificial sensory systems based on nanostructures grown with a bottom-to-top approach. This 

represents an essential milestone on the way to realizing nanowire based artificial neural networks. 

6.3. Experimental Section 

6.3.1. Synthesis of TiO2 nanobelts 

TiO2 nanobelts were synthesized via a hydrothermal process from TiO2 nanoparticles246. 

Typically, 0.75 g commercial TiO2 nanoparticles, P25 (Sigma Aldrich, Canada) was dissolved in 

10M sodium hydroxide alkaline solution (60 mL) and then was poured into a Teflon-lined 

stainless-steel autoclave (capacity: 125 mL, Parr Instruments). The autoclave was kept in a furnace 

at a temperature of 250 oC for 24h. The suspended nanobelts were taken out from the autoclave 

after being cooled down naturally and were washed with ultrapure water. The obtained nanobelts 

were immersed in 0.1 M HCl solution for 12 h for ionic exchange. Afterwards, the solution was 

filtered and the obtained residues were then dried in a furnace at 80 oC for 8 h to obtain the nanobelt 

powders. Finally, the obtained powder was annealed at 700oC for 2h to obtain the anatase TiO2 

nanobelts. For the device fabrication, the TiO2 nanobelts were harvested by sonication 0.5 mg in 

pure acetone solution before the device fabrication. 

6.3.2. Device fabrication and characterization  

Pt electrodes are fabricated on a SiO2/Si substrate with standard photolithography and lift-off 

process. To fabricate the TiO2 nanobelt device, electrodes are firstly rinsed with acetone, 
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isopropanol and ultrapure water, respectively and dried with flowing nitrogen gas. The devices are 

treated in an oxygen plasma machine (Tergeo Series, PIE Scientific) at a power of 75 W for 40 s 

to lead to a hydrophilic nature of the surface of the electrode. Diluted solution of TiO2 nanobelts 

are then drop-cast on Pt electrodes and dried in air. Samples with bridged TiO2 nanobelt on the 

electrodes are located using optical microscopy before electrical characterization. 

6.3.3. Material characterization  

The morphology and device of TiO2 nanobelts were characterized by scanning electron 

microscopy (SEM, LEO 1530). Oxygen chemical states of TiO2 nanobelts were examined by X-

ray photoelectron spectroscopy (XPS, Thermo-VG Scientific ESCALab 250). Transmission 

electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM, FEI 

Titan 80-300 LB) are used to characterize the nanobelts at the voltage of 300 kV. Electrical 

performance of the single nanowire devices was evaluated using K4200A semiconductor 

parameter analyzer equipped with a probe station (MPI TS150). Thermal admittance spectroscopy 

characterization were performed at a pressure below 210-6 mbar in the dark using a commercially 

available deep level transient spectroscopy (DLTS) system from Semetrol. The sample was held 

constant for 10 min to ensure the thermal equilibrium at different temperatures before the 

measurements. 

6.4. Results and Discussion  

6.4.1. I-V sweeping performance and mechanism study 

6.4.1.1 I-V sweeping performance 

Uniform TiO2 nanobelts were obtained via a hydrothermal process followed by thermal 

annealing at 700 oC for 2 h (Materials and Methods).148, 246 Typically, these nanobelts have a width 

of 50-200 nm, thickness of 15-50 nm and length in the range of 5-20 m, as shown in the scanning 

electron microscopy (SEM) image (Figure 73(a)). High resolution transmission electron 

microscopy (HRTEM) characterization of one TiO2 nanobelt confirms the single crystalline nature 

with a wide distribution of void defects as highlighted in Figure 73(b). The oxygen 1s X-ray 

photoelectron spectroscopy (XPS) spectrum of the nanobelts shows the existence of defect oxygen 

peaks centered at 531.28 eV and 533.18 eV, corresponding to oxygen vacancies (20.25%) and 

hydroxide groups (7.98%), respectively (Figure 73(c)). Pt electrodes were fabricated via a standard 
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photolithography process on a Si/SiO2 wafer. The distance between adjacent electrodes is 1 m 

(Figure 73(d) and 73(e)). Afterwards, the diluted TiO2 nanobelt solution was deposited on the 

electrodes. Individual nanobelts were located for further electrical characterization (Figure 73(f)).  

 

Figure 73. Material characterization of TiO2 nanobelts and the architecture of a TiO2 nanobelt device (a) SEM 

image, (b) HRTEM image with void defects highlighted in red, (c) O 1s XPS spectrum, (d) Low-magnification SEM 

image of Pt-Pt electrodes fabricated on the SiO2 wafer, (e) High magnification SEM image for a typical pair of 

interdigitated Pt-Pt electrodes, (f) SEM image of a typical TiO2 nanobelt device on paired electrodes. 

Figures 74(a) and 74(b) show the I-V sweeping performance of the single TiO2 nanobelt device 

on Pt-Pt electrodes at a constant sweep rate of 0.1V/s on linear and semi-logarithmic scales, 

respectively. A symmetrical hysteresis curve is observed in Figure 74(a), implying resistive 

switching behavior. As shown in Figure 74(b), when the voltage is less than 3V, the device is 

initially in a highly insulating state with currents in the sub-pA range. At a higher voltage, the 

current response abruptly increases with the increase of electric field, changing from an insulating 

state (high resistance state, HRS) to a voltage dependent conductive state (low resistance state, 

LRS). When sweeping back from 20V to 0V, the current spontaneously relaxes to its baseline 

value as indicated by the arrows and numbers in both Figures 74(a) and 74(b). This is a typical 

feature of volatile switching behavior. The devices also demonstrate symmetrical behavior for the 

range of negative voltage sweeping, implying threshold switching behavior for both polarities. 

This is significantly different from the nonvolatile memory behavior observed in the widely-

studied Pt-TiO2 thin film-Pt sandwich devices, which can maintain their resistance state.33, 70, 141 

In contrast to most other reported threshold switching behaviors based on the filament formation 
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and rupture of Ag ions296-300 or oxygen vacancies,302-304 the present TiO2 nanobelt devices 

demonstrate a threshold switching performance without the need for a compliance current, as 

normally required for filament-based threshold switching devices in both/either SET or RESET 

processes to avoid permanent breakdown. This helps to avoid some limitations imposed on the 

scaling down of these devices as integration of other electronic components such as a transistor 

are normally required to restrict the working current in this type of configuration.308 The 

continuous current change, which can facilitate the adjustable weight changes desired in 

neuromorphic computing, implies that the mechanism is different from abrupt filament formation 

and rupture observed in other reported threshold switching devices. The symmetrical threshold 

switching behavior in the single TiO2 nanobelt device could also be used as a selector for solving 

the sneak path problem in crossbar architectures.104  

The single nanobelt device shows reproducible performance with a resistance ratio up to 

1.3104 for a sweeping range of 20 V (Figure 74(c)). This LRS/HRS ratio is dependent on the 

sweeping voltage, as shown in Figure 74(d), which could provide potential for the precise 

resistance state to be tuned by the applied electric field. A statistical summary of 26 devices with 

identical geometry fabricated on a single chip was obtained and the results showed a logarithmic 

normal distribution of the resistance ratio (Figure 74(e)). The device-to-device variation could be 

attributed to the difference between contact areas of individual nanobelts on the electrodes. It is 

also found that the as-fabricated TiO2 nanobelt devices are characterized by a highly repeatable 

and symmetrical switching behavior when excited with bipolar pulses over 10,000 cycles. This 

shows that these devices are highly robust (Figure 74(f)). 
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Figure 74. Threshold switching sweeping performance for single TiO2 nanobelt devices. (a) Sweeping performance 

at 20 V at a constant sweeping rate of 0.1 V/s plotted on a linear scale, (b) corresponding I-V curve plotted on a 

semi-logarithmic scale. (c) LRS/HRS ratio for the device at the reading voltage of 3 V over 80 sweeping cycles in 

(b). (d) Sweeping voltage dependent performance and summary of LRS/HRS ratio at the reading voltage of 3V. (e) 

Statistical summary for the LRS/HRS ratio among 26 devices having identical geometries. (f) Endurance 

performance for 10,000 cycles at room temperature. The inset shows one cycle of the applied pulses, where the 2 V, 

50 ms and -2 V, 50 ms pulses are used as read pulses. The device did not fail during the measurement, showing a 

high degree of robustness.  

To further explore this threshold switching behavior, the sweeping performance under different 

voltages for a constant sweep rate of 0.1 V/s has been evaluated as shown in Figure 75. The full 

range of sweeping behavior can be found in Figures 76 and 77. It can be seen that, at a small 

sweeping bias such as 2 V, the single nanobelt device responds with the charging and discharging 

cyclic voltammetry curves of a capacitor-resistor circuit(Figures 75(a) and 75(d)).309 This 

characteristic likely arises due to the Schottky barrier created between the electrode and the 

nanobelt. When the bias exceeds 3 V, the device exhibits a symmetric resistive switching 

performance at high bias while the contribution of the capacitive response remained at low bias 

(Figures 75(b) and 75(e), Figures 76(c) and 77(c)). This implies that the single TiO2 nanobelt 

device changes from a capacitive behavior to a capacitive-coupled memristor behavior when the 

sweeping bias exceeds 3 V. The capacitive-coupled memristive effect has been previously reported 

in the case of nonvolatile memory devices,309 but,  to the best of our knowledge, this is the first 

time that this characteristic has been reported in volatile threshold switching devices. Further 
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increasing the sweeping bias up to 10 V (Figures 75(c) and 75(f)) and 20 V (Figures 76(i) and 

77(i)) will lead to an increased current for the resistive switching behavior, but the devices still 

have a small capacitive contribution at low bias. This is why the I-V curve of the TiO2 nanobelt 

device is not pinched to zero, in great contrast to the zero-crossing behavior typically observed in 

memristive devices. In our devices, since no redox reactions have occurred, the capacitive effect 

remains during switching. This property is unique and is quite different from the characteristics of 

other threshold switching devices, in which the filament formation and rupture leads to memristive 

behavior with a zero-crossing feature and abrupt change between resistance states.  

The high aspect ratio of the nanobelt implies that the performance of the single nanobelt device 

can be susceptible to the presence of surface trapping sites.310 This would result in an I-V behavior 

that could be independent of the electrodes. To test this possibility, we fabricated single TiO2 

nanobelt devices on different electrodes. As shown in Figure 78, the devices constructed with Au-

Au and Ti-Ti electrodes both demonstrated similar volatile threshold switching characteristics, 

differing only in current amplitude compared to the device using Pt-Pt electrodes. With Ti 

electrodes, the theoretical difference between the Ti work function (4.33 eV) and the TiO2 Fermi 

level (4.2 eV) is small enough to lead to an Ohmic contact. Nevertheless, the sweeping 

performance is similar to that observed for the Pt and Au electrodes, indicating that at least, partial 

Fermi level pinning311-316 may be occurring due to the surface-dominating nature of the TiO2 

nanobelts. A similar transition from a capacitive behavior to a capacitive-coupled memristive 

behavior is observed for the device with Au-Au electrodes (Figure 79).  

It should be noted that the defects in the TiO2 nanobelts are critical for obtaining a resistive 

switching response.221 We tested this by further annealing the as-deposited TiO2 nanobelts for 2h 

at 700 oC. Nanobelts subject to this treatment are almost perfectly single-crystalline as evident 

from HRTEM (Figures 80(a) and 80(b)). However, such devices exist in a highly insulating 

capacitive state up to a sweeping voltage of 40 V (Figure 80(c)). This suggests that the defects in 

the TiO2 nanobelts are critical to produce resistive switching behavior.  
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Figure 75. I-V sweeping performance for the single TiO2 nanobelt device at different sweeping voltages. At low 

sweeping range such as 2 V ((a) and (d)), the device demonstrated a typical charging and discharging cyclic 

voltammetry curves of a capacitor with a series resistor. However, at higher bias such as 6 V ((b) and (e)) and 10V 

((c) and (f)), the volatile threshold switching performance is observed with the capacitive contribution from low 

bias. Inset of each figure shows the equivalent circuit of the devices at different sweeping voltages. 
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Figure 76. Sweeping behavior for Pt-TiO2 nanobelt-Pt device under sweeping voltages at (a) 2 V, (b) 3 V, (c) 4 V, 

(d) 5 V, (e) 6 V. (f) 8 V, (g) 10 V, (h) 15 V and (i) 20 V in a linear scale. 
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Figure 77. Sweeping behavior for Pt-TiO2 nanobelt-Pt device under sweeping voltages at (a) 2 V, (b) 3 V, (c) 4 V, 

(d) 5 V, (e) 6 V. (f) 8 V, (g) 10 V, (h) 15 V and (i) 20 V in a semi-logarithmic scale. 
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Figure 78. I-V sweeping performance for TiO2 nanobelt on paired Au-Au electrode, (a) line scale and (b) semi-

logarithm sale, and on paired Ti-Ti electrodes, (c) line scale and (d) semi-logarithm sale. The sweeping rate is 0.1 

V/s for both measurement. 
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Figure 79.Transition from a capacitor behavior to a memristor with a capacitive contribution for single TiO2 

nanobelt device on paired Au-Au electrodes. 

 

Figure 80. I-V sweeping performance for TiO2 nanobelt on paired Pt-Pt electrodes with different concentration of 

defect by further annealing the obtained TiO2 nanobelts at 700 oC for 2 h. (a) TEM and (b) HRTEM characterization 

of nanobelts, (c) I-V sweeping performance, a highly insulating capacitive performance is obtained for the TiO2 

nanobelt device with very few defects 
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6.4.1.2 Charge transport mechanism 

To study the charge transport behavior of these TiO2 nanobelt devices, the I-V sweeping 

performance is examined at different temperatures, as shown in Figure 81. With increasing 

temperatures, the current response increases significantly, implying a temperature-related charge 

transport mechanism in the single TiO2 nanobelt devices (Figure 81(a)). Due to the symmetrical 

behavior of the current response, only the current under forward voltages is fitted with possible 

charge transport equations at different stages that are divided by threshold voltage, Vth. In Stage I, 

the linear slope dependence of ln(J/T2) with 1/T implies the introduction of a Schottky barrier. The 

typical Schottky emission equation is expressed as317 

𝐽 = 𝐴∗𝑇2𝑒𝑥𝑝 [
−𝑞(∅𝐵−√𝑞𝐸/4𝜋𝜀𝑟𝜀0)

𝑘𝑇
]                    (1)  

where, J is the current density, A* is the effective Richardson constant in the dielectric material, q 

is electron charge, k is Boltzmann’s constant, T is the absolute temperature, E is the electric field, 

∅𝐵  is the barrier height, εr is the optical dielectric constant, and ε0 is the permittivity of the 

dielectric material in vacuum. From this equation, a Schottky plot of ln(J/T2) versus 1/T at different 

voltages and ln(J/T2) versus E1/2 at different temperatures should be linear, as confirmed in Figures 

81(b) and 82(a). In Stage I, an effective Schottky barrier must be formed at the interface between 

the Pt electrodes and the TiO2 nanobelt layer. An effective Schottky barrier height of ∅𝐵−𝐼 = 

0.80±0.04 eV is obtained from the intercept of the ln(J/T2)-E1/2 curve. This barrier is smaller than 

the theoretical barrier (1.2 eV) obtained from the difference between the Pt work function (5.2 eV) 

and the TiO2 electron affinity (4.0 eV)318. The lower effective Schottky barrier obtained from the 

fit could be due to the existence of electron traps at surface defects that promote the injected 

electron transfer from the electrode. This phenomenon has been widely explored in one-

dimensional semiconductor nanomaterial-based devices.277, 310, 319, 320  

Furthermore, due to the highly defective nature of the TiO2 nanobelts, oxygen vacancies or 

hydroxide groups on the surface function as localized charge-carrier centers providing paths for 

injected electrons to hop from one localized site to another when an external electric field is applied. 

At low electric field in Stage I, the temperature dependence of the resistance of the TiO2 nanobelt 

device can be described using a Mott-variable range hopping (VRH) conduction mechanism 

according to the equation276 

𝑅 = 𝑅0𝑒𝑥𝑝⁡((
𝑇0

𝑇
)
1

4)                   (2) 
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where T0 and R0 are constants determined by the material. From this equation, the device resistance, 

ln(R), is proportional to 1/T1/4, as evident in Figure 81(c). This suggests that the injected electrons 

from the electrode can hop to a range of different localized states at the Pt/TiO2 interface, where a 

high concentration of defects is present.  

At Stage II, the current response is best fitted with the trap assisted tunneling (TAT) equation321 

𝐽 = 𝐴𝑒𝑥𝑝(
−8𝜋√2𝑞𝑚∗

3ℎ𝐸
∅𝑇
3/2

)                            (3) 

Where, A is a constant, T is the trap energy level with respect to the conduction band edge of the 

oxide, m* is the electron effective mass in the dielectric material, and h is Planck’s constant. We 

use m*=1.0m0 (where m0 is the mass of an electron) as an estimate of the trap energy level in our 

device.322, 323 From equation 3, we obtain a linear relationship between ln(J) and 1/E with a slope 

dependent on the effective trap energy level, T, as given in Figure 81(d). The derived trap energy 

state is ∅𝑇−𝐼𝐼 =⁡35.3±2.7 meV for stage II. Trap assisted tunneling typically occurs when the 

electrons tunnel through a thin highly defective dielectric layer promoted by defects. In the present 

system, the surface defects at the Pt/TiO2 interface are likely to function as trap centers that 

promote injected electron tunneling from the electrode to the conduction band of the TiO2 nanobelt. 

The properties of the trapping states in the TiO2 nanobelt device has also been examined using 

thermal admittance spectroscopy.324 The technique consists of calculating the derivative of the 

junction capacitance with respect to the angular frequency of the small voltage perturbation (50 

mV) applied to the devices by varying the temperature. Defect states within the bandgap contribute 

to the junction capacitance depending on their energy and spatial location. For the present device, 

in the transition from low to high frequency, a step capacitance accompanied by a loss peak is 

observed near the frequency νmax  (Figures 83(a) and 83(b)). Analysis of these data yields an 

activation energy⁡𝛥𝐸 of 38±2 meV and an attempt-to-escape frequency of 2.6 x 104 s-1 at 300 K. 

The activation energy 𝛥𝐸 is defined as the difference between the defect state energy 𝐸𝑇 and the 

conduction band energy 𝛥𝐸 as 𝛥𝐸 = 𝐸𝐶 − 𝐸𝑇 or the difference between the defect state energy 𝐸𝑇 

and valence band energy 𝐸𝑉 as⁡𝛥𝐸 = 𝐸𝑇 − 𝐸𝑉 for hole traps, respectively. In the present devices, 

only the electron traps are considered due to the N-type semiconductor nature for TiO2. The 

inferred trap depth is much shallower than that of oxygen vacancies in defect states below the 

conduction band in TiO2 (Figure 83(c)).325, 326 But it is in the same range as that obtained from the 

TAT fit for Stage II, suggesting that surface defects are critical in determining the charge transport 
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behavior of the TiO2 nanobelt devices. The density of states (DOS) can also be obtained as shown 

in Figure 83(d), and shows a Gaussian peak centered at the fitted activation energy at different 

temperatures. The full width at half maximum of the DOS is estimated to be 29 meV. 

The TAT equation also applies in the high voltage range in Stage III in the low resistance state. 

Here, the data gives a much smaller slope for the fitted equation (Figure 81(e)). The trap energy 

level derived from this fit is ∅𝑇−𝐼𝐼𝐼 =⁡14.7±0.5 meV for Stage III. This suggests that the hysteresis 

behavior is probably due to the difference in the effective trap energy. When sweeping from 0 to 

10 V, TAT occurs and some of the traps are occupied by charge trapping, leading to the reduction 

of number of TAT paths. On sweeping back from 10 V to 0 V, traps in deeper levels might already 

be filled and some shallower traps could be involved in the charge transport mechanism, leading 

to a shallower derived trap energy. Thus it is suggested that from Stage II to Stage III, this 

nonequilibrium trapping dynamics by the surface states of the TiO2 nanobelts lead to the difference 

in the current response from the same trap assisted tunneling mechanism, leading to observed 

hysteresis in current,310 i.e., resistive switching behavior. This assumption is also supported by the 

sweeping voltage dependent hysteresis behavior shown in Figures 74(d) and Figures 75-77. The 

application of a larger electric field allows further trapping of electrons by available trap states, 

correspondingly increasing the hysteresis effect and therefore resulting in a higher LRS/HRS ratio. 

This nonequilibrium dynamic trapping behavior is further supported by sweeping-rate I-V 

performance of the device, as shown in Figure 84, where a higher sweeping rate leads to a decrease 

of the hysteresis effect due to the limited timescale for  charge trapping.     

In Stage IV, the I-V response can be fit with the Schottky emission equation, as shown in 

Figure 81(f) and Figure 82(b). At this stage, the effective Schottky barrier is estimated to be 

∅𝐵−𝐼𝑉 = 0.67±0.03 eV. The small variation in the value of the derived Schottky barrier in the 

Stages IV and Stage I is likely caused by charge trapping as well as changes in the available trap 

density in response to the electric field.  

Overall, it is proposed that the switching mechanism of the single TiO2 nanobelt device can be 

described by dynamic nonequilibrium charge trapping process that modulate the Schottky barrier 

profile as well as the quantum trap assisted tunneling process. The existence of defects in TiO2 

nanobelts causes tailoring of the DOS compared to that of pure TiO2 (Figure 81(g)).327 Many of 

these available trap sites at the Pt/TiO2 interface are likely empty initially, which makes the pristine 

device remain in HRS due to the Schottky barrier at zero bias (Figure 81(h)). In this regime, charge 
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transport is dominated by Schottky emission at low forward electric field in Stage I (Figure 81(i)) 

and hopping of electrons to various localized trap sites occurs. When a sufficiently high positive 

voltage is applied to the electrode causing the trap level to be pulled down to below the Fermi 

energy level, the trap sites start to be filled by electron injection from the Pt electrode. The 

available trap states at the Pt/TiO2 interface leads to a defect promoted (or trap-assisted) tunneling 

response in Stage II (Figure 81(j)). Meanwhile, the dynamic electron trapping causes the 

modulation of trap-assisted tunneling process, leading to the hysteresis response in Stage III 

(Figure 81(k)). The accumulated electron trapping under applied electric field could possibly 

causes the effective Schottky barrier to be lowered in Stage IV, in which the spontaneous charge 

detrapping occurred, making the device return to the initial state (Figure 81(l)).    
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Figure 81. Charge transport mechanism for a single TiO2 nanobelt device. (a) Temperature dependent sweeping 

performance at temperatures from 293 K to 353 K. A constant sweeping rate of 0.1 V/s is used for all the 

measurements. Four stages associated with application of a bias are highlighted for fitting with different equations. 

(b) ln(J/T2) as a function of inverse temperature (1/T) for voltages in Stage I. (c) ln(R) as a function of temperature 

(T-1/4) at different low voltages in Stage I. (d) ln(J) as a function of inverse electric field (1/E) at different 

temperatures for voltages in Stage II. (e) ln(J) as a function of inverse electric field (1/E) at different temperatures 

for different voltages in Stage III. (f) ln(J/T2) as a function of inverse temperature (1/T) in Stage IV at different 

temperature. Five sweeping cycles were obtained at each temperature and average values and standard deviations 

were calculated correspondingly. (g) Schematic diagram of DOS distribution of pure TiO2 vs TiO2 containing 

defects. (h) Schematic band diagram for the TiO2 nanobelt device at zero bias. (i-l) Schematic band diagram for the 

TiO2 nanobelt device in Stage I, II, III and IV, respectively.    
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Figure 82. Charge transport mechanism study for a single TiO2 nanobelt device. (a) ln(J/T2) as a function of square 

root of the electric field (E1/2) at various temperatures in Stage I. (b) ln(J/T2) as a function of square root of the 

electric field (E1/2) at various temperatures in Stage IV. All the measurement is the same as described in Figure 81. 

 

Figure 83. Thermal admittance spectroscopy characterization for TiO2 nanobelt devices. (a) Capacitance and (b) 

loss spectra measured in the dark at 0 V with an AC perturbation of 50 mV. (c) Arrhenius plot of the observed 
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thermal emission rates as a function of temperature. The linear fit shown in red reveals the activation energy and the 

attempt-to-escape frequency. (d) Density of trap states (DOS) at different temperatures as a function of the 

demarcation energy Eꞷ. 

 

Figure 84. Sweeping rate dependent I-V performance for single TiO2 nanobelt device on paired Au-Au electrodes. 

6.4.2. Artificial nociceptor performance 

6.4.2.1. Threshold dynamics 

Previously, we demonstrated that the devices based on a single titanate nanobelt could be used 

for emulation of key features of an artificial synapse, including excitatory postsynaptic current 

(EPSC), paired pulse facilitation, short-term plasticity, potentiation and depression, etc.246 As a 

continuation of this work, we show that such threshold switching performance in a single TiO2 

nanobelt device can be used for the emulation of artificial nociceptor devices.293-295, 328 A 

nociceptor is a critical and special sensory neuron receptor whose role is to detect a variety of 

noxious stimuli generated by different types of stimuli such as mechanical, thermal, electrical, 

optical, etc. The response of the nociceptor is to rapidly transmit pain signals to the central nervous 

system to initiate a motor response in the human body to avoid potential damage to the organism. 

It not only possesses the threshold switching and relaxation dynamics that occur for 

neurotransmission in normal neurons when exposed to noxious stimuli, but also demonstrates its 

characteristic features such as “No adaptation”, “Allodynia” and “Hyperalgesia” upon repeated 

stimuli and excessive intensive stimuli, respectively. Figure 85(a) is a schematic diagram of the 

neuron transmission process in a nociceptor. Various types of noxious stimuli that are detected at 

the periphery terminal can activate the receptor complexes via a receptor potential to initiate an 

action potential that will be transmitted along the length of axons to the dorsal horn of the spinal 

cord.329, 330 When a defined depolarization threshold for the presynaptic membrane is reached, 
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voltage-gated sodium channels are activated, and an action potential is generated. Afterwards, 

potassium channels are opened to repolarize the presynaptic membrane, leading to the closing of 

the sodium channel gate. This will allow the sodium channel to return to a closed resting. An action 

potential travels along the axon to the presynaptic terminals, triggering the release of 

neurotransmitters to the postsynaptic terminal in the spinal cord through the voltage-gated calcium 

channels.  

Similarly, in the threshold switching devices, the devices will not be switched to the conductive 

state if the input voltage is below a certain value (Figure 85(b)). In our TiO2 nanobelt device, the 

threshold voltage determines the electric field that leads to the trapping of injected electrons. For 

voltages less than this value, only passive resistance occurs. Upon removal of the voltage, a 

relaxation process returns the TiO2 nanobelt device to its initial state due to the spontaneously 

detrapping process, similar to the process when action potential returns to the resting state in the 

nociceptor. In the neuron transmission in a nociceptor, the triggering of the action potential is 

highly dependent on the intensity, duration and the number of stimuli. To simulate this property, 

we used different numbers of electrical pulses having various amplitudes and pulse width (Figure 

85(c) and Figure 85(d)). We set the threshold current as 110-10 A, below which the stimuli is not 

considered as effective for the artificial nociceptor. With a single electrical pulse of 50 ms width, 

the device was found not to be switched on until the pulse amplitude reached 6V. Further increase 

of the amplitude to 10 V resulted in a larger output current (Figure 85(c)). This is consistent with 

the increase of response intensity corresponding to a higher concentration of Na+ and Ca2+ residue 

leading to a larger action potential in the nociceptor. With a fixed pulse amplitude (in this case 5 

V), we observed that a sufficiently long pulse width (400 ms) was necessary to reach the threshold 

value for the device and a further increase in pulse length led to a larger output current (Figure 86). 

As to the effect of pulse number, different numbers of 50 ms pulses with amplitudes of 4 V, 4.5 V 

and 5 V were applied. It was shown that a much higher number of pulses (20 pulses) is needed for 

the 4 V pulse to reach the threshold current value compared to the 5 V pulse (4 pulses) (Figure 

85(d)).  
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Figure 85. Threshold dynamics of the single TiO2 nanobelt devices emulating a nociceptor. (a) Schematic of neuron 

transmission for a nociceptor. (b) Schematic diagram for threshold switching in the device. The threshold value will 

determine the output current response, below which, no or insignificant current response is detected. (c) Response of 

the single TiO2 nanobelt device to single pulses with different amplitudes from 3 V to 10 V. (d) Response of the 

single TiO2 nanobelt device to number of pulses at various pulse amplitude. 
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Figure 86. Response of the single TiO2 nanobelt device to a single 5 V pulse with different durations. 

6.4.2.2. Nociceptor features  

Other different characteristics of a nociceptor have been evaluated for the TiO2 nanobelt 

devices, as shown in Figure 87. As revealed in the charge transport mechanism study, defect 

centers in the TiO2 nanobelt function as electron traps. Therefore, with the applied bias, it is 

expected that the increase in the conductivity of the nanobelt device upon application of pulses 

will gradually slows down (as more traps are filled) until it reaches saturation, indicating a dynamic 

equilibrium is achieved under repeated stimuli. To test this hypothesis, a number of pulses 

amplitudes of 10 V, 15 V and 20 V were applied to the devices and the resulting current response 

is shown in Figure 87(a). The generated current increases gradually after each pulse, suggesting 

that electrons injected by the applied pulses are gradually filling the available trap states and in 

turn facilitating smoother conduction for subsequent pulses. It was also observed that the current 

increases until saturation, indicating that the present devices can be used for the emulation of the 

“no adaptation” feature of nociceptors, in which the neuron will not adapt to further repeated 

noxious stimuli as the sensitivity of the nociceptor gradually reduces upon exposure to external 

stimuli for a prolonged time.293 Pulses with higher amplitude yield a higher saturation current. 

Saturation may occur due to an equilibrium between the trap-filling rate determined by the 

electrical field and the spontaneously occurring trap-emptying rate. In this case, more trap states 

will be filled at equilibrium when the pulse amplitude is higher (larger electric field), such that 

conduction will be facilitated and the saturation current is higher.  

After the stimuli are removed, the nociceptor starts the relaxation process and finally recovers 

its initial uninjured state. This relaxation behavior is examined in the single TiO2 nanobelt device 

by applying a single pulse and recording the transient current at a reading voltage.  As can be seen 
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in Figure 87(b), a single 50 ms 10 V pulse leads to an EPSC. The transient current recorded at a 2 

V reading voltage shows relaxation to the original high-resistance state after a defined period. This 

response is similar to the relaxation behavior in nociceptors whereby the neuron relaxes back to 

the initial state upon the removal of the noxious stimuli. During this time, detrapping of electrons 

from defects in the TiO2 nanobelts could recover the initial high resistance state with a Schottky 

barrier at the Pt/TiO2 interface. A fit to the temperature-dependent current relaxation curves yields 

an activation energy of 0.27 eV.246 This can be associated with the activation energy for the release 

of electrons from trap centers (Figure 87(c)). 

A nociceptor will show an enhanced response at a reduced threshold after injury, known as 

“Allodynia” and “Hyperalgesia”. This is illustrated schematically in Figure 87(d).293-295 To 

demonstrate these allodynia and hyperalgesia properties, a pulse with relatively high amplitude 

(15 V or 20 V) is used to generate an injured condition. The measured current response at an 

injured condition and uninjured conditions as a function of applied voltage is shown in Figure 

87(e). Before the application of the 20 V 50 ms pulse on the TiO2 nanobelt device, the “uninjured” 

nociceptor device initially has low current responses. This changes significantly in the “injured” 

nociceptor device. The injured nociceptor devices have a higher output current response, while the 

threshold voltage shifts to lower values. This demonstrates that a smaller threshold voltage is 

required to switch on a more seriously injured device, successfully emulating the “allodynia” and 

“hyperalgesia” properties of a nociceptor. To reveal the variation of this response with time, a 

sequence of input pulses was applied at different interval times after the application of the injury 

pulse (Figure 87(f)). We can see that as the time interval increased, the current response to the 

input pulse decreases and is expected to relaxed to the initial state when the device is not damaged, 

revealing the relaxation and recovery property over time for the nociceptor, as previously outlined 

in Figures 87(b) and 87(c). Similarly, the TiO2 nanobelt device demonstrated “allodynia” and 

“hyperalgesia” behavior under different time interval. This can be attributed to the fact that the 

original, high-amplitude pulse partly filling up the traps resulting in an increase in the conductivity 

of the device. Before it relaxes to the initial state due to the charge detrapping processes, further 

application of pulses would result in an enhanced current response as well as the threshold value 

being reached at lower pulse amplitude. Furthermore, detrapping of electrons after the application 

of the pulses is a spontaneous process resulting in a gradual relaxation over time, suggesting that 

“injured” nociceptor devices can eventually recover from the injured state. It is evident from the 
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above analysis that all five features of a nociceptor, notably “threshold”, “relaxation”, “no 

adaptation”, “allodynia” and “hyperalgesia” can be realized in a single TiO2 nanobelt device.  

 

Figure 87. Nociceptive behavior. (a) No adaptation response, different voltage amplitudes for the devices to reach 

the saturation state. (b) Relaxation response, 50 ms 10 V EPSC transient current over 4 cycles, current is read at 2 V, 

(c) Temperature dependent current transient behavior read at 2 V after the 50 ms 10 V was applied, inset, activation 

energy from analysis of transient current at different temperatures. (d) Schematic diagram of the allodynia and 

hyperalgesia features with increasing stimuli intensity in normal (uninjured) and damaged (injured) conditions. (e) 

Current response for a train of pulses from 3 V to 7 V (50 ms) after the stimulation of high amplitude pulses (15 V 

and 20 V pulse, 50 ms), showing allodynia and hyperalgesia characteristics. (f) Current response to a train of pulses 

from 3 V to 7 V (50 ms) after the stimulation of high amplitude pulse (15 V 50 ms pulse) with different time 

interval, showing allodynia and hyperalgesia characteristics. 

6.5. Conclusions 

We have presented a unique threshold switching behavior based on a single TiO2 nanobelt 

device. Current flows in the TiO2 nanobelt device in response to a Schottky limited process at low 

bias to defect assisted quantum tunneling process at high bias, together with dynamic charge 

trapping/detrapping with shallow trap energy levels at different stages. As a result, a volatile 

voltage-dependent threshold switching performance is obtained and is used to mimic all key 

features of a nociceptor including “threshold”, “relaxation”, “no adaptation”, “allodynia” and 

“hyperalgesia”. These results demonstrate that a single one-dimensional metal oxide nanomaterial 

can be used as a building block for the realization of artificial receptor devices in place of complex 
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circuits, paving the way for the realization of nanowire or nanobelt based artificial neural networks 

via a bottom-up approach.  
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Chapter 7. Conclusions and Outlook 

The research focused on 1D TiO2 nanomaterial based memristive devices for the applications 

of non-volatile memory and artificial synapse and the corresponding switching mechanism. Three 

types of one dimensional TiO2 nanomaterials, i.e., TiO2 nanowire networks on Ti foil, TiO2 

nanorod arrays on FTO substrate and single TiO2 nanobelt and its precursor nanobelts are studied. 

These studies provide a thorough study on one dimensional nanomaterial based memristor devices 

and its application in neuromorphic applications, paving the way for the integration of one-

dimensional material for the future application via a bottom-up approach. The detailed conclusions 

for the research are as follows:  

(1) For the study of TiO2 nanowires on the Ti foil, a forming-free bipolar resistive switching 

behavior was successfully demonstrated in TiO2 nanowire networks directly grown on Ti 

foil by a one-step hydrothermal process. The prepared Al/TiO2 nanowire networks/Ti 

device exhibited reproducible and stable electrical performance with a high OFF/ON ratio 

that persisted for up to 104 s. The interaction of Ti foil with the TiO2 nanowires during the 

synthesis process results in the generation of large density of oxygen vacancies at the 

Ti/TiO2 interface, which is likely responsible for the forming-free resistive switching 

behavior. The low amplitude of both SET and RESET currents together with 

distinguishable ratios are promising for the low-power ReRAM devices. The switching 

mechanism of the device is proposed to be the migration of oxygen vacancies under electric 

field.  

(2) For the study of TiO2 nanorod arrays on the FTO substrate, an improved resistive switching 

performance is obtained in the devices based on TiO2 NRAs on a FTO substrate by the 

introduction of a seed layer. The TiOx seed layer on the surface of the FTO substrate 

enhances the vertical growth of TiO2 NRAs normal to the substrate, leading to compact 

and fine nanorod morphology. Meanwhile, the concentration of oxygen vacancies of 

obtained NRAs is lower compared with NRAs prepared without the seed layer. The 

obtained Al/TiO2 NRA/TiOx layer/FTO devices exhibit a stable forming-free bipolar 

resistive switching behavior and maintain a higher ON/OFF ratio with lower switching 

currents under voltage sweeping over 500 cycles. The retention period is found to exceed 

3×104 s. Switching in as-fabricated devices is controlled by a trap-mediated SCLC 

mechanism in which the existed oxygen vacancies in nanorods as well as in the seed layer 
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function as trap centers. Furthermore, a multi-level memory feature of the device, each 

dominated by SCLC current flow, is obtained in response to variations in the SET voltage. 

Such forming-free non-volatile multilevel resistive switching properties, low power 

operation, combined with robust endurance and retention, make Al/TiO2 NRA/TiOx 

layer/FTO devices promising candidates for future non-volatile ReRAM devices.   

(3) For the study of single TiO2 nanobelt and its precursor nanobelt during the hydrothermal 

process, synaptic properties of memristor devices based on single TiO2, H2Ti3O7 and 

Na2Ti3O7 nanobelts have been investigated. Excellent synaptic functionalities including 

the EPSC, short-term plasticity, potentiation and depression as well as learning-forgetting 

responses, have been successfully demonstrated in a single nanobelt device. The gradual 

modulation in conductance with a large number of identical pulses is also realized. Such 

intriguing properties of synaptic devices based on individual H2Ti3O7 and Na2Ti3O7 

nanobelts, similar to the TiO2 nanobelts, not only show that these materials have a 

promising future in neuromorphic computing applications, but also suggest an alternative 

direction for material selection for synaptic functionality emulation study.  

(4) To further study the charge transport mechanism of the single TiO2 nanobelt based devices, 

we studied and proposed a model of a unique capacitive coupled threshold switching 

performance. Furthermore, the threshold switching behavior of the single TiO2 nanobelt 

devices allow the emulation of several key features of artificial nociceptor devices, 

including “threshold”, “relaxation”, “no adaptation”, “allodynia” and “hyperalgesia” 

behaviors, promising for the artificial receptor systems in the artificial intelligence. In 

summary, one-dimensional metal oxide nanobelt devices of this type yield multifunctional 

nociceptor performance that is fundamental for applications in artificial intelligence 

systems, representing a key step in the realization of neural integrated devices via a bottom-

up approach.  

As to the future work, there are some experiments on one dimensional nanomaterial-based 

devices that can be done to improve the understanding of the resistive switching mechanism and 

further improve the resistive switching performance such as higher ON/OFF ratio, better 

endurance performance, and improved artificial synaptic behaviors. The detailed research for the 

future is listed as follows:  
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(1) It has demonstrated in all of these three types of one dimensional TiO2 materials, the 

surface defects on the materials, i.e., oxygen vacancies play an important role in the charge 

transport behavior as well as the resistive switching mechanism. Further experiments can 

be done to tune the concentration of oxygen vacancies in the TiO2 nanowires by further 

annealing at different temperatures and study how the change of concentration of oxygen 

vacancies will affect the resistive switching performance and corresponding resistive 

switching mechanism. Furthermore, how to characterize the surface defects in the one-

dimensional TiO2 nanomaterials and relate these defects to its electrical performance is still 

a challenge to overcome.  

(2) For the case of memristor devices based on TiO2 nanowire networks on Ti foil and TiO2 

nanorod arrays on FTO substrate, only Al was used for the top electrode. A list of other 

promising electrodes, such as Pt, Ti, Cr could be considered to give a better understanding 

of the charge transport behavior of the devices and potentially, improved performance.  

(3) For the case of single TiO2 nanobelt device, we studied the resistive switching performance 

based on same type of electrodes on both ends. Further study can be performed to change 

the type of electrode on one end and study the performance on dissimilar electrodes. 

Furthermore, whether we can achieve non-volatile memory performance with single TiO2 

nanobelt device is still an important concern. The performance on dissimilar electrodes 

such as Pt and Ag electrode combination could be tested.  

(4) Furthermore, in the research program, we only studied the two-terminal resistive switching 

behavior based on TiO2 nanowires. Further study, more specifically, on single TiO2 

nanobelt devices, can be done to fabricate the multi-terminal devices, which can be used 

for the emulation of heterosynaptic behavior. For example, a back gated TiO2 nanobelt 

based transistor can be fabricated on the degenerated Si wafer and a third terminal can be 

used for the performance modulation of artificial synapse.  

(5) In the research program, we only studied the performance of individual devices. However, 

for the study of neuromorphic computing, it is more important to integrate individual 

devices together for the practical application of memristive devices. This can be achieved 

by assembling the single TiO2 nanobelts as well as metal nanowires into stacked nano-

crossbar structure as demonstrated in Figure 88 with typical nanowire alignment methods 

such as fluidic flowing, electrophoretic alignment, etc. Electrodes can be fabricated 
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similarly on the end of the nanobelt. The resistive switching behavior would be expected 

to occur at the metal/semiconductor interface upon the application of electric field. This 

can be used for the study of neuromorphic computing application with one-dimensional 

nanomaterials.  

 

Figure 88. Proposed nanowire crossbar structure for the integration of nanowire devices for the practical application 

in neuromorphic computing 
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