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Abstract 

Non-invasive Brain-Computer Interfaces (BCIs) based on steady-state visual evoked 

potential (SSVEP) responses are the most widely used BCI. SSVEP are responses elicited in 

the visual cortex when a user gazes at an object flickering at a certain frequency. In this thesis, 

we investigate different BCI system design parameters for enhancing the detection of SSVEP 

such as change in inter-stimulus distance (ISD), EEG channels, detection algorithms and 

training methodologies.  

Closely placed SSVEP stimuli compete for neural representations. This influences the 

performance and limits the flexibility of the stimulus interface. In this thesis, we study the 

influence of changing ISD on the decoding performance of an SSVEP BCI. We propose: (i) a 

user-specific channel selection method and (ii) using complex spectrum features as input to a 

convolutional neural network (C-CNN) to overcome this challenge. We also evaluate the 

proposed C-CNN method in a user-independent (UI) training scenario as this will lead to a 

minimal calibration system and provide the ability to run inference in a plug-and-play mode. 

The proposed methods were evaluated on a 7-class SSVEP dataset collected on 21 healthy 

participants (Dataset 1). The UI method was also assessed on a publicly available 12-class 

dataset collected on 10 healthy participants (Dataset 2). We compared the proposed methods 

with canonical correlation analysis (CCA) and CNN classification using magnitude spectrum 

features (M-CNN). 

We demonstrated that the user-specific channel set (UC) is robust to change in ISD 

(viewing angles of 5.24ᵒ, 8.53ᵒ, and 12.23ᵒ) compared to the classic 3-channel set (3C - O1, O2, 

Oz) and 6-channel set (6C - PO3, PO4, POz, O1, O2, Oz). A significant improvement in 

accuracy of over 5% (p=0.001) and a reduction in variation of 56% (p=0.035) was achieved 

across ISDs using the UC set compared to the 3C set and 6C set. 
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Secondly, the proposed C-CNN method obtained a significantly higher classification 

accuracy across ISDs and window lengths compared to M-CNN and CCA. The average 

accuracy of the C-CNN increased by over 12.8% compared to CCA and an increase of over 

6.5% compared to the M-CNN for the closest ISD across all window lengths was achieved.  

Thirdly, the C-CNN method achieved the highest accuracy in both UD and UI training 

scenarios on both 7-class and 12-class SSVEP Datasets. The overall accuracies of the different 

methods for 1 s window length for Dataset 1 were: CCA: 69.1±10.8%, UI-M-CNN: 

73.5±16.1%, UI-C-CNN: 81.6±12.3%, UD-M-CNN: 87.8±7.6% and UD-C-CNN: 92.5±5%. 

And for Dataset 2 were: CCA: 62.7±21.5%, UI-M-CNN: 70.5±22%, UI-C-CNN: 81.6±18%, 

UD-M-CNN: 82.8±16.7%, and UD-C-CNN: 92.3±11.1%. 

In summary, using the complex spectrum features, the C-CNN likely learned to use both 

frequency and phase related information to classify SSVEP responses. Therefore, the CNN can 

be trained independent of the ISD resulting in a model that generalizes to other ISDs. This 

suggests that the proposed methods are robust to changes in inter-stimulus distance for SSVEP 

detection and provides increased flexibility for user interface design of SSVEP BCIs for 

commercial applications. Finally, the UI method provides a virtually calibration free approach 

to SSVEP BCI.  
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Chapter 1 

Introduction 

1.1 Brain-Computer Interfaces (BCI) 

Brain-computer interfaces (BCIs) provide a direct pathway between the human brain and 

an external device for communication and control without the need of the conventional 

neuromuscular system [4]. BCIs can be especially useful for people with severe disabilities 

where the central nervous system is intact, but are unable to communicate due to damage in 

the peripheral nervous system or musculoskeletal system. In this case, a BCI can bypass the 

damaged pathways in order to provide the user with the ability to communicate or interact 

effectively with their surroundings. BCIs provide novel possibilities for neurorehabilitation for 

people with neurological disease such as stroke, amyotrophic lateral sclerosis (ALS) or 

paralysis [5]–[7]. A BCI system has the ability to capture, analyze and decode changes in the 

brain activity of the user, and translate them into useful commands to control/interact with an 

external entity. Figure 1.1 illustrates the five consecutive stages in a BCI system: signal 

acquisition, pre-processing, feature extraction, classification and control interface or 

application.  

 

Figure 1.1 Stages in a Brain-Computer Interface system 
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 Signal Acquisition 

There are different methods used to record and monitor brain activity [8]. Brain imaging 

techniques such as functional magnetic resonance imaging (fMRI) and functional near-infrared 

spectroscopy (fNIRS) can be used to monitor changes in metabolism known to be associated 

with changes in brain activity at specific parts of the brain. The neuronal activity can also be 

recorded and monitored by measuring the changes in the electrical activity of the brain with 

invasive techniques such as: intra-cortically with an array of electrodes or single electrodes, 

subdural from the cortex (also known as Electrocorticography or ECoG), or non-invasively i.e. 

directly from the scalp of the user (Electroencephalography or EEG). Another non-invasive 

method is based on measuring the magnetic activity by means of magnetic induction known as 

Magnetoencephalography (MEG). BCIs based on EEG are popular as they have the following 

desirable properties: non-invasiveness, high portability, high temporal resolution, ease of use, 

low-cost and few risks to users. The first attempt to develop an EEG based BCI system was by 

Vidal et. al. [9]. An EEG recording system consists of electrodes, amplifiers, analog-to-digital 

 

Figure 1.2 The International 10-20 system for EEG [68] 
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converters and a signal acquisition device. The EEG system measures the potential difference 

between a signal electrode and a reference electrode. An additional ground electrode is used to 

measure the differential voltage between the signal electrode and the reference electrode. These 

electrodes are usually coated with silver-chloride (AgCl) and a conductive gel is used to 

maintain good electrode-scalp contact (impedance usually between 1 k𝛺 and 10 k𝛺). The 

electrodes are commonly placed at locations on the scalp based on the International 10-20 

system (see Figure 1.2).  

 BCI Modalities 

There are two categories of BCIs: (i) endogenous or exogenous BCIs [10] and (ii) 

synchronous or asynchronous BCIs. Endogenous BCIs allows the user to voluntarily modulate 

his/her neuronal activity based on intention. The BCI is based on spontaneously generated 

brain patterns. For example: Motor Imagery (MI BCI) [11] – the user imagines a motor 

movement such as moving the right hand/left hand or imagines lifting up the ankle (ankle 

dorsiflexion) [12]. These imagined movements elicit distinct responses in the EEG which can 

be detected and translated into a BCI command. Other types of endogenous BCIs include: Slow 

cortical potentials (SCP) based BCI, imagined tactile responses based BCI, etc. Exogenous 

BCIs are based on responses elicited due to an external stimulus. These responses are generated 

when the user focuses his/her attention on a stimulus which is associated with a BCI command. 

Examples include P300 BCI, steady-state visual evoked potentials (SSVEP) based BCIs, 

steady-state motion visual evoked potential (SSMVEP) BCIs [13], etc. Exogenous BCIs do not 

require extensive user training compared to endogenous BCIs. Furthermore, BCIs that require 

the user to have some control over their peripheral nerves and muscles (e.g. gaze control of the 

eyes) are called Dependent BCIs. BCIs that completely rely on volitional control and do not 

require the user to have peripheral control are called Independent BCIs. For example, SSVEP 

BCIs that depend on the user’s ability to fixate and focus on an external stimulus are called 

Dependent BCIs. Independent SSVEP BCIs based on user’s covert attention [14], [5], [6] have 
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been proposed, but have lower performance compared to the former case. Synchronous and 

asynchronous BCIs are classified based on the input signal processing modality. Synchronous 

BCIs analyze the signals at pre-determined time windows and are usually tied to a cue. 

Therefore, the user is only allowed to send commands during these time periods and the signals 

outside the window are ignored.  On the other hand, asynchronous BCIs continuously monitor 

and analyze the changes in the neuronal activity and offers a more natural mode of interaction 

[8]. P300 BCIs are tied to a cue/trigger corresponding to the stimulus and are therefore termed 

synchronous BCI. MI and SSVEP based BCIs do not necessarily need a cue/trigger and are 

examples of asynchronous BCIs [15]. 

 Feature Extraction  

The performance of a BCI is mainly influenced by the feature extraction and detection 

algorithm used to analyze and decode the neural responses. Most responses manifest as 

changes in the oscillatory activity of EEG and hence for BCI applications these features have 

been of primary interest. Many feature extraction algorithms have been proposed and studied 

in the literature. Most commonly used features are based on the changes in the power of the 

EEG signal at different frequency bands and time point features [16]. The power spectral 

density (PSD) is one such tool that allows capturing these changes. Changes in signal power 

arise due to different types of events. A decrease in the power of the signal due to an event is 

called event-related desynchronization (ERD) and an increase in power is called an event-

related synchronization (ERS). For example, imagination or execution of a motor action leads 

to an ERD in the EEG between 8 Hz and 12 Hz (alpha band) over the primary motor cortex 

and an ERS in the beta band (12 Hz – 26 Hz). Other features for BCIs include band power 

values, event-related potentials (ERPs), magnitude spectrum features based on Fast Fourier 

Transform (FFT), time-frequency features (spectrogram) etc. Band-power features can be used 

to develop a simple two-state BCI switch. For example, an increase in the band power in the 

alpha band can be observed in the EEG recorded over the occipital region of the cortex due to 
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eye closure. This power is higher compared to the eyes open condition and can be exploited to 

develop a BCI switch [17]. Feature extraction steps for BCIs usually involve a 

calibration/training stage to extract the features and are further used to train a machine learning 

model or classifier to detect the corresponding brain states.  

 Classification 

Supervised classification algorithms such as Linear Discriminant Analysis (LDA) and 

Support Vector Machines (SVM) are most often used in BCI applications [16]. A majority of 

MI-based BCIs have been shown to achieve high decoding performances with these 

techniques. Statistical learning methods such as Canonical Correlation Analysis (CCA) [18], 

[19] and its variants such as Filter bank CCA (FBCCA) [20], Individual Template-CCA (IT-

CCA) [21], Combined-CCA [22], Combined-tCCA or Adaptive Combined CCA (A3C) [23] 

and Task-Related Components Analysis (TRCA) [24] have been used for SSVEP BCIs. Some 

of these methods have been evaluated in this thesis for comparison. Recently there has been 

increased interest in the application of neural networks and deep learning based algorithms to 

improve the overall classification performances of EEG based BCIs [25] [26], [27].  

A simple feedforward neural network consists of an input layer, a hidden layer and an 

output layer with a number of nodes. In this network, the information from the data/features 

flows uni-directionally from the input to the hidden to the output layer. The goal of the neural 

network is to approximate some function that maps the input to a category/label. The network 

learns the value of the parameters that best approximate the function. The overall length of the 

chain of layers gives the depth of the model giving rise to the name deep learning [28].  

Deep learning algorithms are a subset of machine learning algorithms in which the model 

is trained to learn both the features and the classifier directly from the data. Compared to 

classical machine learning algorithms that require a sophisticated feature extraction step as 

input to a classifier, deep learning methods offer the advantage of automatic feature extraction 



 

 6 

 

directly from the raw EEG data or in the transform domain of the EEG. A recent survey on 

deep learning for EEG indicated that 43% of studies used a specific type of deep learning 

algorithm known as the Convolutional Neural Network (CNN) for classification tasks [27]. 

CNNs are useful in cases where the data consists of a grid-like topology. For example: (i) EEG 

data - consists of a number of EEG channels and samples/time-series data, and (ii) Image data 

- consists of a 2-D grid of pixels. Recent studies showed that CNNs can significantly improve 

the classification performance in different types of BCI tasks such as motor imagery, P300 and 

movement-related cortical potentials (MRCP) [29] and SSVEP [30]–[33]. All these methods 

involve some form of calibration that requires the collection of training data to develop a 

classifier model and use the trained model in a real-time scenario. In addition to this, the user 

of a BCI system also requires training to regulate and elicit certain types of brain responses in 

order to use the system. This training is usually delivered through the means of neurofeedback 

[34]. The time required for a user to become trained varies depending on the BCI task. This is 

 

Figure 1.3 BCI Paradigms comparing training time and information transfer rate [34] 
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illustrated in Figure 1.3 [35] . Therefore, this challenge has to be considered while developing 

practical BCI applications.  

Inter-subject variability is another challenge that has been reported in the BCI literature. 

This has been documented as “BCI illiteracy” in which it is estimated that 15% - 30% of the 

users cannot attain effective control with a BCI [36], [37]. To minimize the inter-subject 

variability and illiteracy problem, user-customized and user-dependent BCI designs have been 

proposed wherein the system parameters are calibrated for each individual user [37]. This has 

been shown as an effective solution to mitigate the effects of inter-subject variability [17]. 

More recently, BCI paradigms such as P300 and SSVEP have been considered as potential 

candidates to develop calibration-free or user-independent BCIs as they have consistent 

responses across most human subjects [38]. Compared to P300 BCIs which are synchronous 

in nature, SSVEP BCIs can operate asynchronously. SSVEP BCI has the properties of high 

signal-to-noise ratio, low participant training time, reduced number of EEG channels and high 

information transfer rate (ITR). In the next section, an overview of SSVEP BCI is provided 

and some of the challenges are explained. 

1.2 Steady-State Visual Evoked Potentials (SSVEP) 

When a user is presented with a visual stimulus, the light arrives at the photoreceptors in 

the retina and reach the retinal ganglion cells. The action potentials generated here propagate 

through the optic nerves to the visual cortex and other regions of the brain. These action 

potentials arise as a response to the visual stimulus  [39]. Steady-state visual evoked potentials 

are responses elicited when a user focuses his/her attention on a repetitive visual stimulus (a 

light source) flickering at frequencies higher than 6 Hz [40]. These are periodic responses 

prominently observed in the occipital and occipito-parietal areas of the cortex. SSVEP 

responses appear as an increase in the amplitude of the signal at the fundamental frequency 

and its harmonics for the corresponding stimulus attended by the user. An example of the 
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magnitude spectrum of a typical SSVEP response averaged over eight trials is shown in Figure 

1.4 (a) when the user was focusing on a stimulus with a frequency 9.961 Hz. Figure 1.4 (b) 

illustrates an example of the spectrogram of four consecutive trials of SSVEP signals at 

frequencies 9.961 Hz, 10.84 Hz, 11.87 Hz and 9.375 Hz collected over the channel Oz. 

Therefore, by analyzing the dominant frequency response in the EEG, the stimulus attended to 

by the user can be identified.  

 

Figure 1.4. (a) Magnitude spectrum of the SSVEP averaged over 8 trials when the user was 

focusing on a stimulus with frequency 9.961 Hz. (b) Spectrogram of the first four trials of 

SSVEP on channel Oz. 
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 One of the commonly raised points of criticism for SSVEP BCIs is that they require 

shifting of the gaze from one visual stimulus to the other for control, and therefore, an eye-

tracking system could track the gaze and achieve similar control. This has been studied in the 

literature under visual attention paradigms which have shown that humans have the ability to 

shift attention without shifting gaze. Some studies have shown that shifting gaze is not required 

for SSVEP BCIs, although doing this enhances the performance [14], [5], [6]. In [38], the 

authors discuss that although an eye-tracker could detect where a person is looking, it cannot 

determine if they are actively engaged in attending to the visual target. This could be achieved 

with sophisticated mechanisms and calibration of the tracker. Whereas, if there are multiple 

stimuli present in the same gaze direction, an SSVEP BCI could possibly be used to determine 

the visual target of interest [5].  

The characteristics of the SSVEP response are influenced by the stimulus design 

parameters such as: frequency, color, shape and inter-stimulus distance (ISD). Based on the 

signal-to-noise-ratio (SNR), the flicker frequencies can be divided into three bands: (i) low-

frequency – 5 Hz to 29 Hz (centered at 15 Hz), (ii) mid-frequency – 29 Hz to 37 Hz (centered 

at 31 Hz) and (iii) high-frequency – 37 Hz to 45 Hz (centered at 41 Hz) [41]. The low-band 

has been shown to produce higher SSVEP responses, in particular in the alpha band [41], [42]. 

Compared to other colors, a white color stimulus has been shown to elicit higher responses in 

SSVEP [43] [44]. Change in ISD has been shown to have a positive correlation with the 

performance of an SSVEP BCI. Closely placed SSVEP stimuli compete for neural 

representations leading to the effect of competing stimuli [39], [45], [1]. This challenge has 

been addressed in this thesis and has been detailed further in Section 1.3. 

The visual stimulus presentation plays an important role in SSVEP BCIs [46]. These 

stimuli can be presented either through a set of blinking light emitting diodes (LEDs), on a 

computer screen (LCD displays) [47], or on virtual/augmented reality (VR/AR) displays [48]. 

LEDs have been shown to provide higher SSVEP responses compared to stimuli presented on 
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a computer screen. But presenting the stimuli on an LCD/digital display offers the flexibility 

to easily configure the stimulus parameters such as frequency, shape, size, color, and inter-

stimulus distance (ISD). Conventionally, the number of frequencies that can be presented on a 

computer monitor was limited by the screen refresh rate and therefore the frequencies that 

could be realized were factors of the refresh rate. In the conventional approach, the number of 

frames in each cycle remains constant. To produce a 10 Hz flicker, the frame sequence reverses 

between a black frame and a white frame every three frames on a screen with a refresh rate of 

60 Hz. Based on this principle, the possible flicker frequencies that could be presented were: 

6 Hz, 7.5 Hz, 8.57 Hz, 10 Hz, etc. In [42], the authors identified that the usable frequencies in 

the alpha band using this approach would only provide 8.57 Hz, 10 Hz and 12 Hz. Realizing a 

multiclass SSVEP with a frequency implementation based on factors of the refresh rate 

becomes challenging. As a solution to this problem, the authors proposed a novel frame based 

technique that allows realizing many flicker frequencies on an LCD monitor and overcomes 

the challenge of using the conventional method [42]. Furthermore, the authors showed that by 

approximating the presentation rate using a variable number of frames in each cycle, it was 

possible to realize 16 flicker frequencies between 9 Hz and 12.75 Hz with a frequency 

resolution of 0.25 Hz. Other studies have proved this as an effective method to generate visual 

flicker frequencies [39], [49]. This method has been used in this thesis to generate the visual 

flicker frequencies explained in Section 2.1. 

Some of the other parameters that influence the performance of an SSVEP BCI system 

are the number of channels [50], feature extraction, detection algorithms and training methods. 

Increasing the number of EEG channels often leads to better classification performance in BCIs 

due to a higher number of features available for processing and classification. But this often 

leads to a cumbersome and long setup with many electrodes attached to the scalp of the user. 

In this thesis, we have selected six electrode locations in the occipital and parieto-occipital 
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regions of the cortex to study the SSVEP responses. We also propose to use three channels 

among the six for ease of use and reduced setup time.  

Several feature extraction and classification methods have been proposed for SSVEP 

processing. These methods can be classified into three broad categories: calibration free, user-

dependent and user-independent methods [51]. Algorithms that are calibration free do not 

require any training data from the user and the system essentially becomes a plug-and-play 

type of interface for the user. One of the earliest methods in this category involves identifying 

the maximum of the sum of harmonics among the different stimulation frequencies calculated 

from the PSD of the SSVEP signal [52]. The most widely used calibration-free technique for 

SSVEP BCIs is CCA [18], [19]. CCA is a multivariable statistical technique that allows finding 

the underlying correlation between two sets of random variables. In the case of SSVEP, one 

variable is the SSVEP signal and the other is a set of sinusoidal reference templates. This 

method is commonly used as the baseline algorithm for SSVEP classification performance. 

This is explained in detail in Section 3.2. 

User-dependent (UD) methods involve the collection of training data from each user and 

a model is developed based on user-specific features. As highlighted earlier, this method of 

user-based customization has been shown to overcome the inter-subject variability in BCIs. 

The UD methods developed for SSVEP classification have been extensions of the CCA 

algorithm. The most widely used UD methods are: Combination method-CCA [22], Individual 

Template and CCA (IT-CCA) [21]. And more recently proposed Task Related Components 

Analysis (TRCA) [24]. 

The user-independent (UI) methods involve the development of a model based on data 

collected from multiple users. This model is developed such that it can be applied to an unseen 

user, thereby virtually becoming calibration-free for the unseen user. There has been an 

increased interest to develop UI algorithms to improve the overall decoding performance of 

the SSVEP BCIs. Some of the UI methods developed are: Filter-Bank CCA (FBCCA) [20], 
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LASSO [53], Combined-tCCA and Adaptive Combined CCA (A3C) [23]. Figure 1.5 

illustrates the UD and UI based training scenarios. Development of a UI CNN classification 

for SSVEP is one of the goals of this thesis and has been detailed in Section 1.3.2. 

There has been a rising interest to apply deep learning algorithms for detection in SSVEP 

BCIs. CNNs have been the most frequently used deep learning technique for SSVEP BCIs. 

These methods have been proven to provide significant improvement in performance 

compared to traditional techniques [30]–[33], [54]. In, [30], [31], [33] the time domain SSVEP 

signals were transformed into the frequency domain before providing as input to the CNN for 

classification. In [30], the FFT was applied to the SSVEP signals and this representation of the 

signal was provided as input to the CNN. This was done as SSVEP responses usually manifest 

as an increase in amplitude at frequencies corresponding to the targeted stimulus. In [33], a 

similar frequency domain transformation was applied as input to a CNN to SSMVEP BCI to 

distinguish between Intentional Control (IC) and No Control (NC) state in an asynchronous 

mode. Next, CCA was used to classify the SSMVEP targets. The magnitude spectrum based 

approach along with the CNN was shown to outperform the traditional approaches such as 

CCA-threshold based method and CCA-KNN method. Similarly, FFT based transformation 

was applied to extract the magnitude spectrum of the SSVEP data in [30] and [31]. 

               

Figure 1.5. A diagram representing the User-Dependent (UD) and User-Independent (UI) 

training scenarios. 
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Furthermore, in [31], the authors showed that this method along with CNN classifier 

outperformed LASSO in decoding the SSVEP targets.  

On the other hand, studies have attempted to provide the time domain SSVEP directly as 

input to a CNN for classification [32], [55]. When comparing the CNNs using time-domain 

inputs, a CNN using frequency-domain inputs would have a similar but relatively simple 

network structure, which means a relatively reduced number of trainable parameters and 

reduced computational complexity. One of the highly desirable properties for any deep 

learning based approach is to have a generic and simple architecture that works across multiple 

datasets. Challenges arise when using time domain as input to a CNN. The dimension of the 

time domain data is directly dependent on the sampling rate of the EEG acquisition system. 

Therefore, a CNN architecture developed based on this approach can vary significantly for 

each system. When there is a mismatch in the sampling rate, an up sampling or down sampling 

step maybe required before running inference on the developed model, and this could lead to 

loss of information. Another parameter that influences the model is the window length of the 

time domain data as this impacts the ITR of the system. When the window length changes, the 

input layer of the CNN is required to be modified. Therefore, we can address these challenges 

by fixing the resolution of the FFT and provide the frequency domain input to the CNN. 

Furthermore, all earlier studies using CNN for SSVEP classification were exclusively based 

on the magnitude spectrum of FFT and did not consider the phase related information [30], 

[31]. Using the phase information in SSVEP has been shown to improve the overall accuracy 

of the system [56], [57]. In this thesis, we propose a method to use the complex FFT 

representation directly as input to the CNN. This approach combines the real and imaginary 

parts of the FFT before providing as input to the CNN thus both the amplitude and phase related 

information in SSVEP can be extracted and used for decoding the targets. The proposed 

method has been explained in detail in Section 4.2.2.  
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In this thesis, we have addressed the challenge of competing stimuli and the development 

of a user-independent SSVEP BCI system. The following sections explain these challenges in 

detail and outline the solutions proposed in this thesis. 

1.3 Motivation 

 Effect of Competing Stimuli 

In SSVEP BCI, it is common to have multiple visual stimuli displayed simultaneously 

on a screen. When these stimuli are placed in close proximity within the visual field, all the 

stimuli elicit SSVEP. Selective visual attention has been shown as a property arising due to 

slow, competitive interactions that work in parallel across the visual field. Thus, objects in the 

visual field compete for limited visual processing capacity and control behavior [58]. 

Therefore, closely placed SSVEP stimuli compete for neural representations leading to the 

effect of competing stimuli [39], [45]. This effect has an influence on the resultant SSVEP 

response and on the performance of the BCI [39], [45], where a positive correlation was found 

between the overall accuracy and ISD. The findings in [45] were based on features extracted 

from the PSD on channels O1, O2 and Oz with SVM classifier. The authors suggested that 

further studies were needed to investigate better classification algorithms that would enhance 

the SSVEP decoding performance in the presence of significant competing stimuli. The authors 

also speculated that using electrode sites in the occipitoparietal region and classification 

methods like CCA could also influence the overall performance.  

 In this thesis, we studied the influence of changing ISD on the decoding performance of 

an SSVEP BCI. It is important to study this influence, because it limits the flexibility of the 

stimulus interface design for SSVEP BCIs by imposing a constraint on the acceptable inter-

stimulus distance (ISD). As a consequence this limits the range of applicability of SSVEP for 

practical applications. Moreover, with increased interest in displaying SSVEP targets on a 
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virtual/augmented reality interface [48] [59], this type of analysis would be beneficial as the 

visual stimuli would tend to be very closely spaced. Another limitation that has been addressed 

in this thesis is the required number of EEG channels. Two types of analyses were performed 

to investigate the effects of using certain EEG channels and classification algorithms due to 

change in ISD; outlined in Sections 1.4.1 and 1.4.2 respectively. The next Section details the 

need for a UI training method for SSVEP-BCIs. 

 User Independent BCI 

UI BCIs provide great potential in many application scenarios where user-customized 

calibration is not feasible. These BCIs usually require no calibration or are pre-calibrated using 

minimal training data collected from multiple users and are able to run in a plug-and-play mode 

for the new unseen user. The SSVEP BCI modality elicits neuronal responses that are 

consistent across users and are most favourable for developing UI BCIs.  

Due to the increasing number of studies using CNNs for SSVEP classification, it is 

necessary to evaluate and understand how CNNs perform in a UI training modality. Several 

studies using CNNs for SSVEP detection have reported the results for UD training. On the 

contrary, [32] was one of the earliest studies to evaluate a CNN based on UI training procedure 

for SSVEP BCI. The authors provided the pre-processed time domain SSVEP signal as input 

to the CNN and showed the ability of the CNN to classify twelve SSVEP targets among ten 

participants in a UI training scenario. Moreover, they showed that the network used the phase 

related information that aided in improved classification accuracy. Several of these studies 

have independently reported UD and UI based training results of CNN for SSVEP, but to our 

knowledge, only a few have compared the performances between the two approaches. In [51], 

the authors surveyed a number of training methods for SSVEP and highlighted that there was 

a glaring gap in the literature for a lack of comparative studies between UD and UI based 

training for SSVEP BCIs. Therefore, in this thesis, we have addressed this gap by providing a 
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comparison of UD and UI training of CNN as part of Study III. Specifically, we compare the 

performance of different feature extraction methods with CNN for SSVEP classification.  

1.4 Thesis Outline 

The overall aim of this thesis is to study the influence of certain system design parameters 

on the decoding performance of an SSVEP BCI. Specifically we explore the effect of change 

in inter-stimulus distance (ISD) or competing stimuli and user-independent training of an 

SSVEP BCI. The remainder of the thesis is organized as follows: Chapter 2 describes the 

experimental protocol, stimulus design and data collection procedure. Chapters 3, 4 and 5 detail 

the analysis performed to address the challenges highlighted in this thesis. Chapter 6 provides 

a summary of the thesis and directions for future work. The analysis presented in Chapters 3, 

4 and 5 are briefly described here:  

 Study I 

In Chapter 3, we investigate the challenges arising due to change in inter-stimulus 

distance. A user-specific channel selection method is proposed to enhance the overall decoding 

performance of SSVEP BCI under influence of competing stimuli. Specifically, we assess the 

decoding performance using the CCA classification algorithm against variable ISD.  

 Study II 

In Chapter 4, we investigate if the decoding performance can be improved in the presence 

of competing stimuli based on a novel detection algorithm. The Convolutional Neural Network 

(CNN) algorithm and two types of feature extraction methods were assessed for their 

robustness against variable ISD. We constrained the analysis to the classic 3-channel set used 

in the SSVEP literature i.e. O1, O2 and Oz. These results were compared with CCA as the 

baseline algorithm. This method used user-specific data for training and testing. 
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 Study III 

In Chapter 5, the proposed CNN architecture in Study II and the two types of feature 

extraction methods are evaluated and compared in UD and UI based training scenarios. We 

have also addressed a challenge related to reproducibility in deep learning based methods for 

BCIs reported in [26]. The authors provided guidelines to improve repeatability such as: clearly 

describing the architecture, providing a clear description of the data used, use of existing public 

datasets where possible and evaluating the performance with baseline. Therefore, the 

comparison of the proposed CNN and feature extraction methods were performed under both 

UD and UI training scenarios. CCA was used as the baseline algorithm. We have also 

performed this analysis on two datasets: (i) Dataset 1 - a seven class SSVEP dataset with 21 

participants recorded in our lab and (ii) Dataset 2 - an existing twelve class SSVEP public 

dataset with 10 participants, which has been used by many earlier studies [22], [23], [32].   
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Chapter 2  

Experiment 

The seven class SSVEP dataset collected for this thesis was used in all the three studies 

listed in the outline (Section 1.4). Henceforth, this will be referred to as Dataset 1. The 

following sections describe the participant recruitment, experimental setup, SSVEP stimulus 

design, and data collection procedure for Dataset 1.  

2.1 Participants 

Twenty-one healthy adults (6 Females and 15 Males, aged 19-28 years) with normal or 

corrected-to-normal vision volunteered for the experiment. The experiment was approved by 

the Office of Research Ethics of the University of Waterloo (ORE # 31850). Written informed 

consent was signed by each participant before starting the experiment.  

2.2 Experimental Setup  

 Stimulus Design 

A total of seven stimuli were presented on an LCD display containing a refresh rate of 

60 Hz. Each stimulus was associated with the following flicker frequencies: 8.42 Hz, 9.37 Hz, 

9.96 Hz, 10.84 Hz, 11.87 Hz, 13.40 Hz and 14.87 Hz as illustrated in Figure 2.1. These 

frequencies were chosen based on prior studies in SSVEP [42], [60], as they have been shown 

to elicit higher amplitudes of SSVEP responses across most human subjects. For this 

experiment, the flicker frequencies were implemented based on the frequency generation 
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techniques proposed in [61] and [49]. A sequence of ones and zeros were generated using this 

technique. A white frame and a black frame was displayed for a one and a zero in the sequence, 

respectively, resulting in a flicker pattern at the desired frequency. All stimuli were white in 

color and were chosen based on [43]. Circular targets have been shown to elicit higher 

responses compared to square [44]. Therefore, all stimuli were circular in shape.  

To evaluate the effects of change in inter-stimulus distance (ISD), three different stimuli 

configurations were used (S1, S2 and S3), which are illustrated in Figure 2.2. The ISDs are 

represented in units of viewing angles. The viewing angles are measured as a function of the 

distance between the centres of each stimulus and the eyes of the participant. One stimulus was 

placed at the centre of the screen and was aligned to the centre of the field-of-view of the 

   

Figure 2.2. Stimulus Configurations - S1, S2, and S3. 

 

Figure 2.1 SSVEP stimulus design and flicker frequencies 

 



 

 20 

 

participant. Six surrounding stimuli were placed concentrically around the central stimulus. 

The viewing angles of the peripheral stimuli were 5.24ᵒ, 8.53ᵒ, and 12.23ᵒ (0.6 m between the 

eyes of the participant and the monitor). These are referred to as S1, S2 and S3 respectively. 

The flickering stimuli have been designed and implemented in C++ on the OpenViBE platform 

[62]. 

 Data Acquisition and Experimental Protocol 

2.2.2.1 Data Acquisition 

The EEG signals from each participant was acquired using the g.USBamp and 

Gammabox (g.tec Guger Technologies, Austria) wet electrode (g.Scarabeo) system with a 

sampling rate of 1200 Hz. Six active electrodes were used to record the EEG from the occipital 

and occipito-parietal areas according to the International 10-20 system. The electrodes O1, O2, 

Oz, PO3, POz and PO4 were used, FPz was used as the ground, and an electrode on the right 

ear lobe was used as the reference. The apparatus and electrode montage used for this 

experiment are shown in Figure 2.3. 

  

Figure 2.3. Data Acquisition hardware illustrating the EEG cap with the g.Scarabeo electrodes, 

the g.GammaBox driver and g.USBAmp Amplifier. 10-20 system based electrode montage 

depicting O1, O2, Oz, PO3, POz, PO4. 
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2.2.2.2 Experimental Protocol 

At the beginning of each trial, the participant was directed by a visual cue (inverted 

yellow triangle above the stimulus) to gaze at a specific stimulus. This cuing period was 2 s. 

A stimulation period of 6 s followed the cue period, during which the participant would focus 

on the targeted stimulus on screen for the entire duration. A 4 s break was provided before the 

start of the next trial. All seven flashing stimuli were presented simultaneously in every trial. 

One run consisted of 56 stimulus presentations. Each of the seven stimuli were presented eight 

times during the entire run. A total of three runs were performed, one for each stimulus 

configuration. Several minutes of resting period was provided between runs. The stimulus 

presentation sequence was randomized. For each participant, the order of the three runs was 

randomized. In addition, they were asked to avoid eye blinks or any sudden jerky movements 

during each trial. The experimental protocol is illustrated in Figure 2.4. The experimental 

protocol was designed in OpenViBE. All data were recorded, stored in the GDF format and 

was analyzed offline using MATLAB.  

  

 

Figure 2.4. Experimental Protocol illustrating the 2 s cue period, 6 s stimulation period and 4 s 

break period for two consecutive trials. 
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Chapter 3  

Study I – User-Specific Channel Selection 

In this study, a user-specific channel selection algorithm is proposed to overcome the 

effects of the competing stimuli in SSVEP BCI and is robust in performance [1]. This was 

studied under the three different stimuli configurations or ISDs. 

3.1 Pre-Processing 

All the signals were filtered using a 4th order Butterworth band-pass filter between 1 Hz 

and 40 Hz as this band consisted of the required SSVEP information. This step ensures that the 

noise due to DC drift and any high frequency noise were removed from the signal. The SSVEP 

data between 0.5 s and 3.5 s of each trial was used in the analysis. All six-channels were used 

for this analysis.  

3.2 Canonical Correlation Analysis (CCA) 

CCA is a multivariate statistical technique used to find the underlying correlation 

between two sets of multidimensional variables. It can be defined as the problem of finding 

two sets of basis vectors, one for 𝑥 and the other for 𝑦, such that the correlations between the 

projections of the variables onto these basis vectors are mutually maximized [63]. Prior studies 

have shown that CCA can produce superior performance in detecting SSVEP responses in 

EEG [18], [19]. And most widely used as a baseline classification method for SSVEP detection 

[18], [20]–[22], [51], [64]. CCA is based on linear transformations. Consider the linear 

transformations 𝑥 = 𝑋𝑇𝑤𝑥 and 𝑦 = 𝑌𝑇𝑤𝑦, where 𝑋 refers to the multi-channel EEG data and 

𝑌 refers to a set of reference signals of the same length as 𝑋. The objective of CCA was to find 

the projection vectors 𝑤𝑥 and 𝑤𝑦 that maximize the correlation between 𝑥 and 𝑦 by solving:  



 

 23 

 

𝜌(𝑥, 𝑦) = 𝑚𝑎𝑥
E[𝑥𝑦]

√E[𝑥2]E[𝑦2]
= 𝑚𝑎𝑥𝑤𝑥,𝑤𝑦

E[𝑤𝑥
𝑇𝑋𝑌𝑇𝑤𝑦]

√E[𝑤𝑥
𝑇𝑋𝑋𝑇𝑤𝑥]E[𝑤𝑦

𝑇𝑌𝑌𝑇𝑤𝑦]

. 
(3.1) 

𝑌𝑛 = 

[
 
 
 
 
 

𝑠𝑖𝑛(2𝜋𝑓𝑛𝑡) 

𝑐𝑜𝑠(2𝜋𝑓𝑛𝑡)
.
.

𝑠𝑖𝑛(2𝜋𝑁ℎ𝑓𝑛𝑡)

𝑐𝑜𝑠(2𝜋𝑁ℎ𝑓𝑛𝑡)]
 
 
 
 
 

, 𝑡 = [
1

𝑓𝑠
,
2

𝑓𝑠
, . . . ,

𝑁𝑠

𝑓𝑠
], (3.2) 

The reference signals 𝑌𝑛 were defined as (3.2), where 𝑌𝑛 ∈ ℝ2𝑁ℎ×𝑁𝑠, 𝑓𝑛 was the 

stimulation frequency, 𝑓𝑠 was the sampling frequency, 𝑁𝑠 was the number of samples, and 𝑁ℎ 

was the number of harmonics. In this analysis, 𝑁ℎ = 2. The maximum of 𝜌 with respect to 𝑤𝑥 

and 𝑤𝑦 was the maximum correlation. The canonical features 𝜌𝑓𝑖, where i =1, 2, …, K were 

extracted for each segment of the EEG data and the output class C for a given segment was 

determined as: C = argmax (𝜌𝑓𝑖). K denotes the total number of classes. The CCA code 

implementation is provided in Appendix A.3. 

3.3 Channel Selection Algorithm 

To investigate the influence of change in ISDs on the SSVEP classification performance 

different three-channel combinations were explored. Three channel combinations were chosen 

as this was ideal for ease of setup. The objective was to identify a three-channel set that 

provided an improvement in the overall classification accuracy and had the least amount of 

variation across different stimuli configurations; thereby being robust to the effect of 

competing stimuli. Therefore, a channel selection method was performed for each participant 

to find the three-channel set (among the six channels selected for this analysis) that satisfied 

the above conditions. The channel selection code implementation is provided in Appendix A.2. 
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There are 20 different three-channel combinations among the six channels (PO3, PO4, 

POz, O1, O2, Oz). First, the average accuracies 𝐴𝑐
𝑝 for each channel combination 𝑐 ∈ {1,20}, 

across the three stimuli configurations, were calculated for each participant, defined as: 

𝐴𝑐
𝑝

=
1

3
∑(𝑎𝑖

𝑝,𝑐
)

3

𝑖=1

, (3.3) 

where 𝑎𝑖
𝑝,𝑐

 denotes the accuracy for the ith stimuli configuration for the pth participant and cth 

channel combination. CCA was used to compute the accuracy 𝑎𝑖
𝑝,𝑐

 for every 𝑐. Next, all the 

three-channel combinations 𝐴1 
𝑝

to 𝐴20 
𝑝 were ranked in the descending order based on the average 

accuracies 𝐴𝑐
𝑝
, and the top 20% were selected, resulting in four candidates of user-specific 

channel combinations, i.e., |𝑐| = 4. Finally, from these candidates, the best three-channel set 

was chosen as the one with the least amount of variation 𝑣𝑐
𝑝
 in performance across the three 

stimuli configurations. The performance variation 𝑣𝑐
𝑝
 across different stimuli configurations 

was measured as the difference between the maximum and minimum accuracy for a given 

channel combination for each participant. This is defined as: 

𝑣𝑐
𝑝

= 𝑀𝑎𝑥(𝑎1
𝑝,𝑐

, 𝑎2
𝑝,𝑐

, 𝑎3
𝑝,𝑐

) − 𝑀𝑖𝑛(𝑎1
𝑝,𝑐

, 𝑎2
𝑝,𝑐

, 𝑎3
𝑝,𝑐

) (3.4) 

3.4 Statistical Analysis 

The SSVEP decoding performances between the classical 3-channel set (3C), 6-channel 

set (6C) and user-specific channel set (UC) were compared. 3C consisted of O1, O2 and Oz, 

the 6C consisted of PO3, PO4, POz, O1, O2 and Oz, and UC was the best three-channel set 

derived from the proposed method. The mixed-effect model ANOVA was designed as follows: 

the response variable was the classification accuracy, the participant was a random factor, the 

fixed factors were channel set with three levels: 3C, 6C and UC; and stimuli configurations 
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(S1, S2 and S3). The null hypothesis was that the mean classification accuracies were same for 

all channel sets. The secondary hypothesis was that the stimulus configuration or ISD had no 

effect on SSVEP decoding accuracy. A confidence interval of 95% was used.  

The SSVEP decoding performance varies considerably across the different ISDs. 

Therefore, to investigate if this variation across the three ISDs was affected by the choice of 

the channel set, a mixed-effect model ANOVA was performed. The 𝑣𝑖
𝑝
, variation in accuracy 

across ISDs was the response variable. The participant was a random factor and the channel 

set was a fixed factor with three levels 3C, 6C and UC. The significance level was set as 

α=0.05.  

3.5 Results 

A user-specific channel selection method robust to change in ISD was proposed in this 

thesis. The UC set selected based on the proposed methodology for each participant is 

summarized in Table 3.1. The average classification accuracies and average variation across 

different ISDs using the UC sets were compared with the 3C Set (O1, O2, Oz) and 6C (PO3, 

Table 3.1 The selected user-specific channel set 

Participants UC Channels Participants UC Channels 

S01 PO3-O1-Oz S12 PO4-O1-O2 

S02 PO3-Oz-O2 S13 PO4-O1-Oz 

S03 PO3-PO4-Oz S14 PO4-O1-Oz 

S04 PO3-Oz-O2 S15 PO4-O1-O2 

S05 PO3-O1-Oz S16 PO4-POz-O2 

S06 PO4-Oz-O2 S17 POz-O1-Oz 

S07 PO4-O1-Oz S18 PO4-Oz-O2 

S08 PO4-O1-Oz S19 POz-O1-Oz 

S09 PO4-Oz-O2 S20 PO3-PO4-Oz 

S10 PO4-O1-Oz S21 POz-O1-O2 

S11 O1-Oz-O2   
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PO4, POz, O1, O2, Oz). Figure 3.1 presents the average classification accuracies across all 

participants for each channel set and stimulus configuration S1, S2 and S3. The results obtained 

for the 3C set are consistent with those in the literature that suggested that an increase in ISD 

lead to an increase in SSVEP decoding performance. The 6C set also showed a similar result 

in general, where the overall performance increases with increasing ISD. Compared to the 3C 

and 6C sets, the UC set improved the overall performance for all ISDs, particularly for S1. 

The mixed-effect model ANOVA revealed that the interaction between the ISD and the 

channel set had a significant effect on the classification accuracy (p=0.006). There was a 

significant effect of the channel set on the classification accuracy (p<0.001). Post-hoc 

comparison with Bonferroni correction found that the UC set produced a significantly better 

accuracy than the classic 3C set (p<0.001) and marginal significance than the 6C set (p=0.056). 

Specifically, there was a significant improvement in accuracy for S1 with the UC: 92.34±7.5% 

compared to 3C:86.10±8.2% (p<0.001). There was no significant difference between: UC vs. 

3C for S2 and S3 (p=1), and UC vs. 6C for S2 and S3 (p=1). There was no significant difference 

between the classic 3C set and 6C set (p=0.188).  

 

Figure 3.1. Average classification accuracies across all participants for each channel set and 

stimulus configuration. 
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Figure 3.2 illustrates the average variation in performance between the 3C set, 6C set 

and the UC set. Evidently, the UC set showed the least variation in performance. The mixed-

effect ANOVA revealed that the channel set had a significant effect on the performance 

variation across different ISDs (p<0.001). Post-hoc comparison with Bonferroni correction 

suggested that UC set produced significantly smaller variation in performance than 3C 

(p=0.035) and marginally smaller variation compared to 6C (p=0.053). Therefore, it can be 

concluded that the proposed user-specific channels selection can provide more robust SSVEP 

decoding accuracy when the ISD between the SSVEP stimuli varies.  

3.6 Observations and Discussions 

 The results from the proposed channel selection method suggested that the UC set 

improved the CCA-based SSVEP decoding performance compared to the classic 3C set and 

6C set setups, particularly for the spatially dense ISD (S1). Figure 3.3 shows the relative 

frequency of the most commonly selected channels across participants. It can be observed that 

the channel Oz was selected for 80% of the participants along with PO4 and O1 selected for 

60% of the participants respectively. The three-channel combination PO4, O1, Oz was selected 

in 5 participants out of the 21. Another observation was that in 95% of the participants the 

selected channels were a combination of both occipital and occipito-parietal electrodes. The 

 

Figure 3.2. Average variation in performance across all participants for each channel set. 
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average accuracy across ISDs increased by 5% using the UC set (94.5%) compared to the 3C 

set (89.5%). The largest improvement was observed in the S1 which has significant effect of 

competing stimuli. It is interesting to note that there is no significant difference in performance 

between the UC and 6C set. This implies that with a reduced channel set of only 3 channels an 

improved performance can be achieved compared to using 6 channels. These results suggest 

that the UC set significantly reduced the effect of change in ISD. The average variation in 

performance reduced by 56% with the UC set compared to the classic 3C set (3C – 0.095 and 

UC – 0.041).  

Therefore, the simple channel selection method allows a high level of SSVEP decoding 

performance and enhanced robustness against change in ISD. This provides enhanced 

flexibility in stimuli design and user-interface design for practical SSVEP applications. The 

proposed channel selection method requires only 3 s of data from each stimulus. This also 

provides a reduced amount of time for calibration (approximately 20 minutes of recording).   

 

Figure 3.3. Most frequently selected channels across participants  
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Chapter 4  

Study II – CNN Robust to Change in ISD 

In this study, we propose a Convolutional Neural Network (CNN) based classification 

scheme to enhance the overall SSVEP decoding performance in the presence of competing 

stimuli. Additionally, we investigate if the CNN is robust in performance to change in ISD 

with a reduced and fixed channel set. 

4.1 Pre-Processing 

All the signals were filtered using a 4th order Butterworth band-pass filter between 1 Hz 

and 40 Hz. The classical three channels set O1, O2 and Oz, most widely used in SSVEP BCIs, 

were used for this analysis. A data augmentation step was performed in addition to temporal 

filtering. Each 6 s trial was segmented based on sliding windows with different data lengths: 

0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, 3 s, and with a step size of 100 ms to increase the number of training 

epochs for the CNN.  

4.2 Feature Extraction Methods 

In this section, two types of feature extraction methods are detailed. Both methods 

transform the time domain EEG data into the frequency domain. The first method transforms 

the EEG data into the magnitude spectrum representation. The next method (proposed in this 

thesis) involves transforming the EEG signal into the complex spectrum representation. Both 

methods are particularly used as a feature extraction step applied to the EEG data before being 

fed as input to the CNN for classification.  
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 Magnitude Spectrum Features 

CNN has been used by prior studies for SSVEP classification [30], [31], [33]. These 

studies have used the magnitude spectrum features as input to the CNN. In the current analysis, 

this method is evaluated and compared with the proposed method (Section 4.2.2) for their ability 

to generalize and decode the SSVEP stimuli across different ISDs. In this method, the pre-

processed time-domain EEG segments 𝑥(𝑛) were transformed into the frequency domain 𝑋(𝑘) 

computed by the Fast Fourier Transform (FFT). This resulted in a sequence of complex numbers 

𝑅𝑒(𝑋(𝑘))+𝑗𝐼𝑚(𝑋(𝑘)), from which the magnitude spectrum was calculated: |𝑋(𝑘)| = 

√𝑅𝑒(𝑋(𝑘))2 + 𝐼𝑚(𝑋(𝑘))2. The frequency resolution of the FFT was fixed as 0.2930 Hz and 

the frequency components between 3 Hz and 35 Hz were selected. As a result, the length of the 

FFT transformed signal was 𝑁𝑓𝑐 = 110. The resultant feature vector computed along each 

channel were stacked together to form a matrix with dimensions 𝑁𝑐ℎ × 𝑁𝑓𝑐, where 𝑁𝑐ℎ was the 

number of channels and 𝑁𝑓𝑐 was the number of frequency components. Finally, this was 

provided as input to the CNN. In this analysis, we refer to this approach as the M-CNN method. 

An example of the input 𝐼𝑀−𝐶𝑁𝑁 for three EEG channels O1, O2 and Oz is defined as:  

𝐼𝑀−𝐶𝑁𝑁 = [

|𝐹𝐹𝑇(𝑥𝑂1)|

|𝐹𝐹𝑇(𝑥𝑂𝑧)|

|𝐹𝐹𝑇(𝑥𝑂2)|
] (4.1) 

This approach considers only the magnitude of the signals at different frequencies, but 

ignores the phase related information. Earlier studies in SSVEP have shown that the phase of 

the SSVEP signal contains significant information and provides improved decoding 

performance for SSVEP based BCI [32]. Therefore, in the next section, we propose a method 

that helps retain the phase related information from the complex spectrum representation of the 

SSVEP signals. 
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 Complex Spectrum Features 

The complex FFT representation was used to derive both magnitude and phase related 

information of a signal. First, the input time-domain signal was transformed into the complex 

FFT representation using the standard FFT with a resolution of 0.2930 Hz. Next, the frequency 

components of the real part and the imaginary part along each channel were extracted between 

3 Hz and 35 Hz resulting in two vectors of length 110 each. These two vectors were 

concatenated into a single feature vector as: I = 𝑅𝑒(𝑋)||Im(X), where the first half contained 

the real part and the second half contained the imaginary part of the complex FFT resulting in 

a vector of length 220. The resultant feature vector was stacked together to form a matrix with 

dimensions 𝑁𝑐ℎ × 𝑁𝑓𝑐, where 𝑁𝑓𝑐 = 220. This approach of using the complex FFT as input to 

the CNN is referred to as the C-CNN method. An example of the input 𝐼𝐶−𝐶𝑁𝑁 is defined as:   

𝐼𝐶−𝐶𝑁𝑁 = [

𝑅𝑒{𝐹𝐹𝑇(𝑥𝑂1)}, 𝐼𝑚{𝐹𝐹𝑇(𝑥𝑂1)}

𝑅𝑒{𝐹𝐹𝑇(𝑥𝑂𝑧)
}, 𝐼𝑚{𝐹𝐹𝑇(𝑥𝑂𝑧)

}

𝑅𝑒{𝐹𝐹𝑇(𝑥𝑂2)}, 𝐼𝑚{𝐹𝐹𝑇(𝑥𝑂2)}
] (4.2) 

4.3 Convolutional Neural Network (CNN) 

 Network Architecture 

The CNN architecture used in this analysis was inspired by the one proposed in [30]. 

Figure 4.1 illustrates the CNN architecture used in this analysis [2]. The CNN consists of four 

main layers, an input layer, two convolutional layers, and a fully connected output layer. The 

features extracted in the previous step were provided as input to the CNN. The input layer of 

the CNN, 𝐼𝑝.𝑗 , had dimensions 𝑁𝑐ℎ × 𝑁𝑓𝑐 , where 1 ≤ 𝑝 ≤ 𝑁𝑐ℎ and 1 ≤ 𝑗 ≤ 𝑁𝑓𝑐. This was 
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followed by the convolutional layer Conv_1 was designed based on the spatial filtering concept. 

The kernel dimensions of 𝑁𝑐ℎ × 1 were used for this layer and performed 1D convolutions 

across the channel dimension (𝑁𝑐ℎ) of the input. The objective for this layer was to learn 

representations as a result of applying different weights to each channel in the input. The number 

of feature maps in the Conv_1 layer was 2 ∗ 𝑁𝑐ℎ with dimensions 1 × 𝑁𝑓𝑐. The Conv_2 layer 

was designed to operate on the spectral representation dimension (𝑁𝑓𝑐) of the previous layer. 

The kernel dimension for this layer was 1 × 10. The number of feature maps in this layer 

were 2 ∗ 𝑁𝑐ℎ. As a result of the convolution, the feature maps in this layer had the dimensions 

equal to 1 × (𝑁𝑓𝑐 − 10 + 1). Batch normalization was performed on the outputs of layers 

Conv_1 and Conv_2. Batch normalization has been shown to reduce the internal covariance 

within input samples resulting in the samples having zero mean and unit variance [65]. The 

rectified linear unit (ReLU) (4.4) was used as the activation function. To prevent overfitting, 

Dropout was added to the network as a regularization technique. Dropout and batch 

normalization have been shown to improve the generalization performance and training speed 

of neural networks [33], [65]. The number of units in the output layer (K) were kept equal to 

the number of SSVEP classes in the input data. The output layer was equipped with the softmax 

 

Figure 4.1. Convolutional Neural Network Architecture 
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function to output the probability that a given input segment belonged to a particular class. The 

following section details the network learning procedure. The style of notation is similar to the 

one used in [30]. 

 Network Learning  

A unit in the network is defined by 𝑥𝑘
𝑙 (𝑝) where 𝑙 is the layer, 𝑘 is the feature map and 

𝑝 is the position of the unit in the feature map. Therefore, the output of a specific unit is defined 

as: 

𝑥𝑘
𝑙 (𝑝) = 𝑓(𝐵𝑁(𝜎𝑘

𝑙(𝑝))), (4.3) 

where 𝑓 is the ReLU activation function defined as: 

𝑓(𝜎) = 𝑚𝑎𝑥(𝜎, 0). (4.4) 

𝜎𝑘
𝑙(𝑝) represents the scalar product of a set of input units and the weight connections between 

these units and the 𝑝th unit in map 𝑘 and layer 𝑙. 𝐵𝑁 represents the batch-normalization step. 

This will be explained in the subsequent sections. The computations performed by each layer 

are described as follows. The Conv_1 layer performs the following operation: 

𝜎𝑘
1(𝑝) = ∑𝐼𝑝,𝑗𝑤𝑘

1(𝑗) + 𝑏𝑘
1

𝑁𝑐ℎ

𝑗=1

 (4.5) 

where 𝑤𝑘
1(𝑗) is a set of weights with 1 ≤ 𝑗 ≤ 𝑁𝑐ℎ and  𝑏𝑘

1  is a bias. k indexes the feature map 

with 1 ≤ 𝑘 ≤ 2 ∗ 𝑁𝑐ℎ. In this layer, there are a total of 2 ∗ 𝑁𝑐ℎ feature maps and the size of the 

convolution kernel is  𝑁𝑐ℎ × 1. The output of each 𝜎𝑘
1 is a 1 × 𝑁𝑓𝑐 vector, where 𝑁𝑓𝑐 denotes 
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the samples in the frequency domain. Next, batch normalization (BN) is performed on this 

output and passed through the ReLU activation function.  

𝑥𝑘
1 = 𝑓(𝐵𝑁(𝜎𝑘

1) (4.6) 

The output of Conv_1 layer, 𝑥𝑘
1 , is fed as input to Conv_2 layer.  

𝜎𝑘
2(𝑝) = ∑ ∑𝑥𝑖

1(𝑝 + 𝑗 − 1)𝑤𝑖
2(𝑗) + 𝑏𝑘

2

10

𝑗=1

2∗𝑁𝑐ℎ

𝑖=1

 (4.7) 

This layer is similar to Conv_1, the output of each 𝜎𝑘
2 is a 1 × (𝑁𝑓𝑐 − 10 + 1) vector. BN and 

ReLU are applied to this output respectively. The output layer performs the following 

operation: 

𝜎3(𝑝) = ∑ ∑ 𝑥𝑘
2𝑤𝑘

3(𝑖) + 𝑏𝑘
3

𝑁𝑓𝑐−10+1

𝑖=1

2∗𝑁𝑐ℎ

𝑘=1

 (4.8) 

The softmax function is used as the activation function at the output layer: 

𝑆 =
exp (𝑥𝑝

3)

∑ exp (𝑥𝑗
3)𝐾

𝑗=1

 (4.9) 

The output 𝑆 is a vector of length 𝐾 and each element in this vector corresponds to a probability 

score that a given sample belonged to a particular class.  
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 Training Parameters 

The weights of the CNN were initialized based on a Gaussian distribution ~𝑁(0,0.01). 

The network was trained using the backpropagation technique by minimizing the categorical 

cross-entropy loss 𝐿: 

𝐿𝑖 = ∑ 𝑡𝑖,𝑗𝑙𝑜𝑔(𝑆𝑖,𝑗)

𝐾

𝑗=1

 (4.10) 

where 𝑡𝑖,𝑗 is the ground truth probability score and 𝑆𝑖,𝑗 is the predicted probability score for 

the 𝑖th training example and 𝑗th class. The stochastic gradient descent with momentum was used 

as the optimization algorithm to train the network. A grid search was employed as the hyper-

parameter search strategy to find the best training parameters. The search space was defined as 

follows: Learning Rate (𝛼 ) ∶ {10−3, 2 × 10−3, 5 × 10−3, 10−2, 10−1},  Mini Batch size 

(𝐵) ∶  2𝑏;  𝑏 𝜖 {5, 6, 7, 8, 9, 10}, Dropout Ratio (𝐷) ∶ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5} , L2 

Regularization (𝐿) ∶ {10−4, 5 × 10−4, 10−3, 5 × 10−3}, Number of Epochs (𝐸 ) ∶

{20, 30, 40, 50, 60}, and the ones that led to the best average accuracy across all participants 

were chosen. The hyper-parameter optimization was performed for both pipelines (M-CNN and 

C-CNN), separately. Within each pipeline, the same hyper-parameters were used for all 

participants and window sizes. The MATLAB Deep Learning Toolbox was used to implement 

the CNN and an example of the CNN code implementation is provided in Appendix A.1. 

 ISD Independent Training Procedure 

The M-CNN and C-CNN methods were used in two scenarios. The first scenario 

involved training the CNN with the objective that it can generalize across different ISDs and 

can perform inference independent of the ISD. The second scenario involved comparing user-

independent and user-dependent training of the CNN model (Section 5.2). The respective 

training procedures are explained in the following sections. 
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The M-CNN and C-CNN methods were evaluated in an offline manner. The objective 

of the analysis was to investigate whether model parameters learned on one ISD can generalize 

across other ISDs and sessions. Therefore, three cases were assessed. Case 1: CNN trained on 

S1 and tested on S2 and S3; Case 2: CNN trained on S2 and tested on S1 and S3; and Case 3: 

CNN trained on S3 and tested on S1 and S2. For all cases, data (S1, S2 and S3) from the same 

participant was used for training and validation. As a result, for each stimulus configuration, 

two test-set accuracies were computed, and the mean accuracy was calculated for each 

participant. For example, test-set accuracy for S1 was calculated from Case 2 and Case 3, and 

the mean of the two test accuracies was calculated. This training procedure was performed 

separately for each window size W. 

4.4 Statistical Analysis 

In this analysis, the performance of M-CNN and C-CNN were evaluated for their ability 

to classify the SSVEP and generalize across different ISDs. Both methods were compared with 

CCA as the baseline. The accuracies were calculated for each stimulus configuration and the 

overall performance was analysed using a mixed-effect model ANOVA. The classification 

accuracy was the response variable. The participant was a random factor, the window length 

(W) was a random factor with six levels (W=[0.5 s, 3 s]), the ISD was a fixed factor with three 

levels (S1, S2 and S3); the classification algorithm was a fixed factor with three levels (CCA, 

M-CNN and C-CNN). The null hypothesis was that the average classification accuracies were 

the same for all algorithms. The secondary hypothesis was that the ISD has no effect on the 

performance. The significance level was set as α=0.05 for all analyses with adjusted p-values 

reported for post-hoc analyses. 
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4.5 Results 

 The objective of the analysis of the CNN based methods in this experiment was to 

investigate whether the CNN model parameters learned on one ISD can generalize across other 

ISDs and sessions. Figure 4.2 presents the average classification accuracy across all 

participants for the different classification methods (CCA, M-CNN and C-CNN), and ISDs S1, 

S2 and S3, for data lengths of W = {0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, 3 s}. The C-CNN outperformed 

M-CNN and CCA for all ISDs. The mixed-effect model ANOVA revealed a significant 

difference between all three algorithms and ISDs (p<0.001). There was a significant interaction 

between the classification algorithm and ISD (p=0.002). Post-hoc comparisons with 

Bonferroni simultaneous comparisons indicated that the C-CNN and M-CNN obtained a 

significantly higher accuracy on average than CCA across all ISDs (C-CNN: 92.3% vs. CCA: 

80.9%; p<0.001 and M-CNN: 85.4% vs. CCA: 80.9%; p=0.009). Further analysis was 

performed to compare the improvement in performance between classification algorithms 

 

Figure 4.2. Comparison of the average accuracies across all participants for the different 

classification methods and data lengths of W = {0.5 s, 1 s, 1.5 s, 2 s, 2.5 s, 3 s} for inter-stimulus 

distances: S1, S2, S3. The vertical line overlaying each bar indicates the variance across 

participants. 
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across different window lengths and ISDs. Figure 4.3 presents this comparison. There was a 

significant improvement in performance between M-CNN vs. CCA for W = [0.5 s -1.5 s] (0.001 

≤ p ≤ 0.010). For W ≥ 2 s, there was no significant difference in performance (p ≥ 0.59). The 

comparison between C-CNN and CCA revealed significant improvement in performance 

across all window lengths (p ≤ 0.002). It is also evident from Figure 4.3, an increase of over 

12.81% can be observed on average for the closest ISD (S1) and for W ≤ 2 s. Between C-CNN 

vs. M-CNN, the C-CNN was significantly higher for W = [0.5 s – 2 s] (p ≤ 0.009) and was not 

significant for W ≥ 2.5 s (0.054 ≤ p ≤ 0.088).  

4.6 Observations and Discussions 

This analysis measured the performances of two types of feature extraction methods and 

CNN-based classification with the following objective: to enhance the decoding performance 

of an SSVEP-based BCI in the presence of competing stimuli with variable ISDs. The 

performance was compared with the CCA as the baseline method. The presented results 

indicated that the C-CNN is robust in decoding SSVEP across different ISDs and achieved the 

highest performance compared to M-CNN and CCA based methods. The average accuracy of 

 

Figure 4.3 Comparing the percentage improvement across algorithms and ISDs. ‘>’ operator 

indicates that the classification accuracy of the algorithm on the left of the operator was greater 

than the algorithm on the right of the operator. 
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the C-CNN increased by over 12.8% compared to CCA and an increase of over 6.5% compared 

to the M-CNN for the closest ISD (S1) across all window lengths. S1 is the most challenging 

case with the most significant completing stimuli. The results also revealed that the proposed 

C-CNN method achieved significant improvements at shorter window lengths. This is 

particularly suitable for BCIs that require a higher ITR leading to faster detection rate.  

From the results, it can be observed that the proposed CNN model with the complex 

spectrum features as input can be trained independent of the ISD. This results in a model that 

can generalize to new ISDs and sessions that were not seen in the training data. Furthermore, 

these results are suitable for practical applications as it is feasible to implement a calibration 

method with the ISD as discussed in Case 1. For example, a model can be trained with the 

calibration data obtained from visual interfaces with the closely spaced stimulus (smaller 

ISDs), and the model can run inference on interfaces with larger ISDs. These are particularly 

favorable for SSVEP based BCI applications developed on virtual reality or augmented reality 

interfaces where the on-screen stimuli would be very closely spaced. Therefore, from an 

interface design perspective, the proposed model provides more flexibility. For example, the 

application can be easily modified with a simple software update to accommodate newly 

configured stimulus distances and retain the same CNN model weights for inference. 
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Chapter 5  

Study III – Comparing UD and UI Training of CNN 

In this study, the UD and UI based training of CNN were compared. The following 

analysis was performed on the S1 ISD of the 7-class SSVEP dataset (Dataset 1) as this was the 

configuration with significant competing stimuli. A 12-class SSVEP public Dataset (Dataset 

2) was also used to evaluate the performance of the proposed CNN methods for their ability to 

generalize to other datasets. The analysis presented in this section are portions presented in 

manuscript D (Statement of Contributions). 

5.1 12-Class SSVEP Public Dataset 

An offline SSVEP dataset was downloaded from a public repository [22]. This dataset 

was collected on ten healthy volunteers and was used in many earlier studies [22], [23], [32]. 

All participants were seated in a comfortable chair at 0.6 meters from an LCD monitor in a 

dim room. Twelve flickering stimuli were displayed on the screen with the following flicker 

frequencies: 9.25 Hz, 9.75 Hz, 10.25 Hz, 10.75 Hz, 11.25 Hz, 11.75 Hz, 12.25 Hz, 12.75 Hz, 

13.25 Hz, 13.75 Hz, 14.25 Hz, and 14.75 Hz. The stimuli were 6 cm x 6 cm squares that were 

arranged in a 4x3 grid and represented a numeric keypad. 

The BioSemi ActiveTwo EEG (Biosemi B.V., Netherlands) system with a sampling rate 

of 2048 Hz was used to acquire the EEG data. Eight active electrodes were placed over the 

occipito-parietal areas. At the beginning of each trial, the participant was directed by a red 

square cue to gaze at a specific stimulus. This cuing period was 1 s. A stimulation period of 4 

s was followed by the cue period and the participant was asked to focus on the targeted stimulus 

for the entire duration. One block consisted of 12 trials with one trial for each of the 12 stimuli 



 

 41 

 

on the screen presented in random order. A total of 15 blocks were presented leading to a total 

of 180 trials. 

 Pre-processing 

Dataset 1 was pre-processed as discussed in Section 4.1. The signals from Dataset 2 were 

pre-processed based on [22] and [32]. All eight channels were used from this dataset. Temporal 

filtering was performed using a 4th order Butterworth band-pass filter between 6 Hz and 80 Hz. 

Each 4-second trial was divided into 1 s non-overlapping segments as per [32]. 

5.2 Training Procedure 

The M-CNN and C-CNN methods discussed in Chapter 4 were evaluated in two training 

scenarios in this Section. A user-dependent training and a user-independent training scenario 

were evaluated. The respective training procedures are explained in the following sections. 

The training parameters were selected based on the same strategy as discussed in Section 4.3.3. 

 User-Dependent Training Procedure 

A user-dependent model (M-CNN or C-CNN) was developed as follows: data from a 

single participant was used to train a model and was validated using the same participant’s data. 

To achieve this, a 10-fold cross-validation procedure was performed. Pre-processing was 

carried out on all trials of a single participant using different window lengths (W) and both 

magnitude and complex spectrum features were extracted. Ten non-overlapping parts were 

generated from the pre-processed epochs and for each window length, the CNN was trained 

separately on nine parts and validated on the one remaining part. This method was carried out 

for Dataset 1. Similarly, Dataset 2 was split based on 10-fold cross-validation procedure on the 

1 s segments of the epochs. For the purpose of direct comparison with earlier studies [22], [32], 

no other window length was used because 1 s was the window length used in those studies. The 
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methods using UD training and magnitude spectrum features were referred to as UD-M-CNN 

and using UD training with complex spectrum features were called UD-C-CNN. The total 

number of 1 s segments in the training fold were: 2470 (Dataset 1) and 648 (Dataset 2) and 

testing fold were 274 (Dataset 1) and 72 (Dataset 2) respectively. The final parameters of the 

network were chosen as: 𝛼 =  10−3, 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =  0.9 , 𝐷 =  0.25, 𝐿 =  10−4, 𝐸 =  40, 

𝐵 =  256  (Dataset 1), and 𝐸 =  50, 𝐵 =  64  (Dataset 2). 

 User-Independent Training Procedure 

A User-Independent (UI) training procedure based on the magnitude and complex 

spectrum features (M-CNN and C-CNN) is proposed in this thesis. As mentioned previously, 

the UI training provides the ability for a model to be used in a plug-and-play mode. This means 

the model is trained on a pooled dataset containing multiple participants and can classify the 

data of an unseen user, leading to a calibration-free system. To achieve this, a leave-one-

participant-out validation was used. If a given dataset contains N participants, then the model 

was trained on the data of N-1 participants and tested on the data of the unseen participant. This 

procedure was performed individually for both types of features (M-CNN and C-CNN) and for 

every W. For example, the total number of 1 s segments in the training folds were: 54880 

(Dataset 1) and 6480 (Dataset 2), and testing folds were 2744 (Dataset 1) and 720 (Dataset 2) 

respectively. The parameters that resulted in the highest average accuracy across all participants 

were selected. These methods were referred to as UI-M-CNN and UI-C-CNN respectively. The 

final parameters of the network for Dataset 1 were chosen as: 𝛼 = 10−3, 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =

 0.9 , 𝐿 =  10−4, 𝐷 =  0.25, 𝐸 =  50, 𝐵 =  1024  (C-CNN), and 𝐵 =  512  (M-CNN). For 

Dataset 2, 𝛼 =  10−3, 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 =  0.9 , 𝐷 =  0.25, 𝐸 =  50, 𝐵 = 256 , 𝐿 =  10−3 (M-

CNN) and 𝐿 =  5 × 10−3 (C-CNN). 
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5.3 Statistical Analysis 

In this analysis, statistical tests were performed to compare the performances of the UD 

and UI based training methods with the baseline CCA method. A mixed-effect model ANOVA 

was used to evaluate the classification methods. These were evaluated on both datasets, Dataset 

1 and Dataset 2. The overall accuracy of each method was the metric of interest. Therefore, the 

response variable was the classification accuracy. The window length (W) was a random factor 

with six levels (W=[0.5 s, 3 s]), the participant was a random factor, and the classification 

algorithm was a fixed factor with five levels (CCA, UD-M-CNN, UD-C-CNN, UI-M-CNN, 

UI-C-CNN) respectively (Dataset 1). The null hypothesis was that the classification accuracy 

was the same for all classification algorithms. A 95% confidence interval was used for 

comparison and analysis. The same statistical analysis was performed on both datasets with 

slight modifications for Dataset 2, the window length was fixed as W = 1 s for the purpose of 

comparison with previous studies using Dataset 2. Therefore, it was not considered as a factor. 

5.4 Results 

 Dataset 1 

Figure 5.1 illustrates the classification accuracies across 21 participants for Dataset 1 of 

all the methods at different window lengths. The algorithms can be ordered from highest to 

lowest classification accuracy as follows: UD-C-CNN, UD-M-CNN, UI-C-CNN, UI-M-CNN 

and CCA. The UI-C-CNN achieved higher accuracies than UI-M-CNN and CCA among the 

UI methods. Similarly, the UD-C-CNN achieved higher accuracies than UD-M-CNN and CCA 

among the UD methods. The mixed-effect model ANOVA revealed a significant difference 

between all the classification algorithms (p<0.001). Post-hoc comparisons with Bonferroni 

simultaneous tests indicated that there was a significant improvement in performance using 
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UD-M-CNN, UD-C-CNN, and UI-C-CNN when compared to CCA (p<0.001). There was a 

significant difference between UI-M-CNN and UI-C-CNN (p<0.001). There was no significant 

difference between UI-M-CNN and CCA (p=0.729). There was no significant difference 

between UD-M-CNN and UD-C-CNN (p=0.386). Further analysis was performed to compare 

between the UD and UI methods based on each feature extraction technique; all comparisons 

were statistically significant: UI-C-CNN vs. UD-C-CNN (p<0.001), UI-M-CNN vs. UD-M-

CNN (p<0.001), UD-C-CNN vs. UI-M-CNN (p<0.001), UD-M-CNN vs. UI-C-CNN 

(p=0.002). These results indicate that the proposed C-CNN method outperformed the M-CNN 

method in both UI and UD training scenarios. One advantage is that even when the C-CNN 

was used in the UI training scenario, it performed similarly to M-CNN used in the UD training 

scenario.  

The interactions between window lengths and the different classification methods 

revealed that across all window lengths, both the UD methods outperformed CCA (p<=0.001). 

Comparing the UI methods, UI-C-CNN provided significant improvement than CCA for 

 

Figure 5.1. Dataset 1 - Comparison of the accuracies across all participants for the different 

classification methods for data lengths of W = {0.5s, 1s, 1.5s, 2s, 2.5s, 3s}. The vertical bars 

indicate the variance among the participants at each W. 
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W=[0.5 s, 2 s] (0.004<=p<0.016). Across all windows, UD-M-CNN was significantly better 

than UI-M-CNN (p<=0.002). There  was a significant difference in accuracy at lower windows 

from 0.5 s – 1.5 s between UD-C-CNN and UI-C-CNN (0.003<=p<0.029). The overall 

accuracies of the different methods for 1 s window length were: CCA: 69.1±10.8%, UI-M-

CNN: 73.5±16.1%, UI-C-CNN: 81.6±12.3%, UD-M-CNN: 87.8±7.6% and UD-C-CNN: 

92.5±5%. It can be inferred that both the UD training based methods have outperformed the 

UI training based methods and CCA. In particular, the C-CNN method achieves the highest 

accuracies in both training scenarios. 

 Dataset 2 

Figure 5.2 summarizes the accuracies of all the classification methods for Dataset 2 

across 10 participants for the W=1 s. It can be inferred that the UD-C-CNN method achieves 

the highest accuracy of 92.3±11.1%. Among both training scenarios, the UD methods 

outperform the UI methods and CCA, as expected. The average accuracies of the different 

 

Figure 5.2. Dataset 2 - Comparison of the average accuracies across all participants for the 

different classification methods for data lengths of W = 1 s. The vertical line overlaying each bar 

indicates the variance among all participants in each method. 
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methods for data length of 1 s were: CCA: 62.7±21.5%, UI-M-CNN: 70.5±22%, UI-C-CNN: 

81.6±18%, UD-M-CNN: 82.8±16.7%, and UD-C-CNN: 92.3±11.1%. 

The mixed-effect model ANOVA revealed a significant difference between all the 

classification methods (p<0.001). Post-hoc Bonferroni simultaneous comparison was 

performed to compare the different algorithms. The UD-C-CNN, UD-M-CNN and UI-C-CNN 

significantly outperformed CCA (p<0.001). There was no significant difference between UI-

M-CNN and CCA. There was a significant difference between UI-M-CNN and UI-C-CNN 

(p=0.016). There was marginal significance between UD-M-CNN and UD-C-CNN (p=0.054). 

Further analysis was carried out to compare between the UD and UI methods based on each 

feature extraction techniques: UI-M-CNN vs. UD-M-CNN (p=0.006), UI-C-CNN vs. UD-C-

CNN (p=0.020), UD-C-CNN vs. UI-M-CNN (p<0.001). The difference between UD-M-CNN 

vs. UI-C-CNN (p=1) was not significant.  

 Computational Load Analysis 

A computational load analysis was performed on both types of CNN models. The 

MATLAB Deep Learning Toolbox was used to implement the CNN and was trained on an 

Intel Core i5-8400 CPU @ 2.80 GHz and 8 GB RAM. The total number of trainable parameters 

for the Dataset 1 were: UD-M-CNN and UI-M-CNN = 4663. And for UD-C-CNN and UI-C-

CNN = 9283. The overall training time to train 1 s segments were: UD-M-CNN: 6 s, UD-C-

CNN: 12 seconds, UI-M-CNN: 3 min. 20 s and UI-C-CNN: 7 min. 17 s. For Dataset 2, the 

total number of trainable parameters were: UD-M-CNN and UI-M-CNN = 22188. And for 

UD-C-CNN and UI-C-CNN = 43308. The overall training time to train 1 s segments were: 

UD-M-CNN: 6 s, UD-C-CNN: 10 s, UI-M-CNN: 53 s and UI-C-CNN: 1 min. 50 s; the number 

of training samples was 6480. 
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5.5 Observations and Discussions 

It can be observed from the results that the UD method outperforms the UI methods. An 

interesting observation was that the C-CNN methods performed better than the other methods 

in both UD and UI training scenarios. The UI-C-CNN achieved similar performance compared 

to the UD-M-CNN method and achieved higher accuracy than the UI-M-CNN method. To 

understand this further, we investigated the results of UI-M-CNN and UI-C-CNN by 

visualizing the learned features representations of the CNN on both datasets. The t-Stochastic 

Neighborhood embedding (t-SNE) technique was used to visualize the features [66]. This 

method has been widely used for the purpose of feature visualization. It enables the 

visualization of high-dimensional features into 2 or 3 dimensions [23], [32], [67]. Therefore, 

we visualized the features extracted from the input layer, the Conv_1_ReLU and the 

Conv_2_ReLU layers. For both datasets, the magnitude and complex spectrum features of 1 s 

long SSVEP segments were visualized.  

 Dataset 1 

Figure 5.3 (a-f) illustrates the features extracted at different layers of the network for a 

participant’s SSVEP data unseen by the classifier.  (a-c) illustrate the features of the UI-M-

CNN and (d-f) illustrate the features of the UI-C-CNN methods respectively. This was 

achieved by training the CNN on the datasets of N-1 participants and forward propagating the 

data of the unseen participant through the pre-trained network. As a result, the features were 

extracted at the output of each layer. In the illustration, each data point represents a 1 s segment 

of a single trial of SSVEP. The clusters are colored based on the class label. As we progress 

into the deeper layers of then network, we observe more and more clustered representations. 

The clustering in (c) and (f) represent the outputs of the Conv_2_Relu of M-CNN and 

Conv_2_ReLU of C-CNN. From the results of the C-CNN, a better class separation and 

clustering can be observed compared to M-CNN. This result is likely the outcome of using the 
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complex representation of the inputs. Therefore, seven unique classes corresponding to the 

seven flicker frequencies have been learned by the CNN and has the ability to cluster the 

unseen participant’s data into these classes. The overlap between clusters is reduced in C-CNN 

when compared to M-CNN. The classification accuracies confirm these findings for all 

window lengths where the UI-C-CNN outperforms the UI-M-CNN. Therefore, as a result of 

combining the real and imaginary parts of the complex FFT, the C-CNN leads to better overall 

 

           (a)             (b)        (c) 

 

                       (d)             (e)         (f) 

Figure 5.3. Dataset 1 - (Top) Feature Visualization of an unseen participant using t-SNE – UI-

M-CNN. (Bottom) Feature Visualization of an unseen participant using t-SNE – UI-C-CNN. (a) 

Input magnitude spectrum features (Left). (b) Output of Conv_1_ReLU Layer of M-CNN 

(Middle). (c) Output of the Conv_2_ReLU layer of M-CNN (Right). (d) Input complex spectrum 

features (Left). (e) Output of Conv_1_ReLU Layer of C-CNN (Middle). (f) Output of the 

Conv_2_ReLU layer of C-CNN (Right). 
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separation and achieves higher classification accuracy when compared to the magnitude 

spectrum features.  

 Dataset 2 

Figure 5.4 provides a visualization of the data of all participants on Dataset 2, extracted 

at the output of the Conv_2_ReLU layer for UI-M-CNN and UI-C-CNN. At the output of this 

layer of UI-C-CNN, clear separation between classes and distinct clusters can be observed 

compared to UI-M-CNN. This type of class separation aids in achieving better classification 

accuracy. In [32], the authors provided time domain features, extracted on Dataset 2, as input 

to a CNN and showed that their proposed CNN was able to capture within-class clusters. In 

the analysis presented in this thesis, we observed a similar within-class separation learned by 

the UI-C-CNN when using complex spectrum features which is a lighter CNN architecture. 

These are illustrated in Figure 5.4. Figure 5.4 (c) illustrates an example of the trials belonging 

to the 12.25 Hz class. Four distinct clusters can be identified within this class. Subsequent 

analysis found that these clusters actually correspond to the four non-overlapping 1 s segments 

 

Figure 5.4. Dataset 2 - Feature Visualization of all participants using t-SNE. (a) Output of the 

Conv_2_ReLU layer of UI-M-CNN (Left). (b) Output of the Conv_2_ReLU layer of UI-C-CNN 

(Middle). (c) Segment level clustering for SSVEP Class 12.25 Hz of UI-C-CNN (Right). 
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of the 4 s trials of the class belonging to 12.25 Hz data. These four clusters were colored 

according to the segment label. As a result, a segment level clustering was observed in the 

representations learned by the CNN, i.e. all the 1 s segments were clustered into four groups 

as follows: 0s - 1s, 1s - 2s, 2s - 3s and 3s - 4s. This separation could be due to the existence of 

phase related information within the segments and the C-CNN has likely learned to extract the 

phase and amplitude related information directly from the complex representation of the input. 

These findings are consistent with the results reported in [32]. From these results, it is evident 

that the proposed UI-C-CNN method can improve the overall SSVEP decoding performance 

significantly. The five methods that were presented in this thesis were CCA, UD-M-CNN, UD-

C-CNN, UI-M-CNN, and UI-C-CNN. The results achieved on Dataset 2 were compared with 

other studies in the literature that have reported their findings based on this dataset. This was 

motivated by the recommendation of a recent study [16]. The authors reported that a vast 

majority of published studies based on deep learning for EEG based BCIs did not compare the 

proposed techniques to state-of-the-art methods or they performed biased comparisons. 

Therefore, we have attempted to address this issue by comparing our methods with other 

techniques proposed in the literature. Therefore we compared two UD and two UI methods as 

identified in [51] with the five methods used in this thesis. The combination method [22] and 

Independent Template based CCA (IT-CCA)  [21] were selected among the UD methods. The 

Compact-CNN [32] and the Combined-tCCA [23] methods were selected among the UI 

methods. All these methods were tested by the respective studies and they reported the results 

for the 1 s data. Figure 5.5 presents the classification accuracies of the calibration-free CCA, 

UD and UI training methods presented in this thesis along with the values reported in the 

literature. Compared to UI methods and CCA, the UD methods achieve a higher performance. 

The proposed UD-C-CNN (92.3±11.1%) outperforms UD-M-CNN (82.8±16.7%), IT-CCA 

(81.2±18.84%) and CCA (62.7±21.5%), but has similar performance compared to the 

Combination method (92.8±10.22). Among the UI methods, the proposed UI-C-CNN 
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(81.6±18%) achieved the highest performance compared to UI-M-CNN (70.5±22%), 

Compact-CNN (79±15%), Combined-tCCA (75±24%) and CCA (62.7±21.5%).  

In summary, this analysis investigated the performance of the proposed CNN methods 

in both the UI and UD training scenarios. The proposed C-CNN method was compared with 

the magnitude spectrum features (M-CNN) and CCA. Across all W, the C-CNN outperformed 

both M-CNN and CCA in both UI and UD training scenarios. As expected, the UD methods 

achieved higher performance than the UI methods. The UD-C-CNN and UI-C-CNN ranked 

highest among each training category respectively. It is interesting to note that the UI-C-CNN 

performed similarly to the UD-M-CNN. The results on Dataset 2 were consistent with the ones 

reported other studies. This was confirmed by the feature visualization step which indicated 

that C-CNN likely learned phase related information from the SSVEP data. Moreover, UI-C-

CNN also achieved highest accuracy among tested UI methods on the public dataset 

performing similarly to the Combined method, which was the best SSVEP decoder in [22].  

  

 

Figure 5.5. Comparing the UD and UI methods on Dataset 2 for 1 s window length with other 

methods as reported in the literature. *Values used directly from the respective studies. 
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Chapter 6 

Conclusions and Future Work 

Three types of analyses were presented in this thesis with the objective of enhancing the 

decoding performance of an SSVEP BCI. Various system design parameters such as stimulus 

design, EEG channel selection, detection algorithms and training scenarios were explored. 

Two main goals were achieved in this thesis: (i) enhance the performance under variable ISD 

through channel selection and through a novel classification algorithm, the C-CNN (ii) 

development of a UI training method. 

The first analysis revealed that the performance of the user-specific three channel set 

outperformed the classic 3-channel set and 6-channel sets. Simultaneously, these user-specific 

channels were shown to be less variable against changing ISD. Next, a novel method, C-CNN 

was proposed in which the complex spectrum of the SSVEP was provided as input to a CNN. 

This method outperformed the M-CNN method and CCA classification, and has the ability to 

generalize across new ISDs and sessions. Both these methods prove to be robust under the 

influence of competing stimuli. In the former case, it is required to collect calibration data of 

20 minutes for selecting the best EEG channels for each user. Whereas in the latter case, 

calibration data of just 12 minutes is required to calibrate the detection algorithm with fixed 

set of EEG channels (O1, O2 and Oz). Therefore, the proposed methods achieved an enhanced 

decoding performance of SSVEP under the influence of competing stimuli and provides an 

improved flexibility for SSVEP stimulus interface design. 

A comparative analysis was carried out between UD and UI training scenarios. This was 

done to inform whether the cost of calibration would be borne by the user (in case of UD 

training) or by the developer of the BCI (in case of UI training). From the analysis we observe 

that there is a trade-off between achieving a high classification accuracy and the cost of 
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collecting calibration data. For the developer, if the priority was to achieve higher performance, 

then UD methods offer the best accuracy compared to UI and calibration-free methods. But 

this means each user must undergo a calibration session, and this could possibly lead to poor 

user-compliance. On the contrary, if the developer of the system invests in collecting 

calibration data from multiple users, then the UI-C-CNN method proposed in this thesis offers 

a good balance between performance and cost of calibration.  

A combined advantage of high accuracy of the UD training scheme and simultaneously 

having a low calibration cost can be achieved by using transfer learning based methods. This 

can be explored in a future study where a model can be developed with multiple participants’ 

data and by collecting minimal calibration data from the unseen user, the pre-trained model 

can be fine-tuned. Furthermore, online adaptation strategies can be explored for improving the 

overall performance of the BCI. In this thesis, the UD and UI methods were evaluated on two 

datasets consisting of 21 participants and 10 participants each. We recommend that a future 

study explores the number of users required to build a sufficiently accurate UI model. All the 

analyses presented in this thesis have been performed in an offline manner, therefore 

subsequent studies must be carried out to validate the methods in an online scenario. 

In summary, the proposed methods are suitable candidates for SSVEP-based BCIs. They 

provide an improved performance under effects of competing stimuli and also in both user-

dependent and user-independent training scenarios.
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Appendix A 

MATLAB Scripts 

A.1 Convolutional Neural Network MATLAB Implementation 

 %Convolutional Neural Network Definition 

 

 %Input Layer 

 layers = [imageInputLayer([size(Train_data,1) size(Train_data,2) 1]) 

 %Conv_1 Layer 

   convolution2dLayer([Nch,1],2*Nch) 

          batchNormalizationLayer 

          reluLayer 

          dropoutLayer(0.25) 

 %Conv_2 Layer 

          convolution2dLayer([1,10],2*Nch) 

          batchNormalizationLayer 

          reluLayer 

          dropoutLayer(0.25) 

 %Output Layer 

          fullyConnectedLayer(K) 

          softmaxLayer 

          classificationLayer]; 

 

 % CNN Training Parameters 

          options = trainingOptions('sgdm', ... 

              'MaxEpochs',40,... 

              'MiniBatchSize', 256,... 

              'InitialLearnRate',0.001, ... 

              'Verbose',1, ... 

              'VerboseFrequency',10, ... 

              'ValidationFrequency',10, ... 

              'Plots','none','ExecutionEnvironment','cpu'); 

 

% Train the Network 

           net = trainNetwork(train_data, train_lab, layers, options); 



 

 63 

 

A.2 User-Specific Channel Selection Method Implementation 

%User Specific Channel Selection Method 

clc; 

clear all; 

close all; 

 

%Iterating through S1, S2 and S3 

for configData = 1:3 

 

%Loading the gdf file using Biosig Toolbox 

[data, metaInfo] = sload(strcat('Data/P1_Data/P1_',num2str(configData),'*')); 

metaInfo.Label = extractBefore(metaInfo.Label,' '); 

%Flicker frequencies of the Stimuli 

freqBands = [8.423,9.375,9.961,10.84,11.87,13.4,14.87]; 

 

%Enter the number of channel combinations 

numChanCombo = 3; 

sampleRate = metaInfo.SampleRate; 

numChannels = metaInfo.NS; 

data = data(:, 1:numChannels); % selection of channels 

 

%Bandpass filtering between 1Hz and 40Hz 

order = 4; 

lowFreq = 1* (2/sampleRate); 

highFreq = 40 * (2/sampleRate); 

[B, A] = butter(order, [lowFreq, highFreq]); 

signal = filter(B, A, data); 

 

%Epoch range to compute the CCA results 

epochRange = [0.5,3.5]; 

%Time indexes for plotting (samples) 

trialTimeIdx = (round(sampleRate*epochRange(1))+1):round(sampleRate*epochRange(2)); 

 

stimCodes = [33025, 33026, 33027, 33028, 33029, 33030, 33024]; 

numClasses = size(stimCodes, 2); 

 

class1StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(1)))+1); 

class2StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(2)))+1); 
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class3StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(3)))+1); 

class4StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(4)))+1); 

class5StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(5)))+1); 

class6StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(6)))+1); 

class7StartTime = metaInfo.EVENT.POS(find(ismember(metaInfo.EVENT.TYP, stimCodes(7)))+1); 

 

for epochID=1:length(class1StartTime) 

    class1Epoches(:,:,epochID) = signal(class1StartTime(epochID)+trialTimeIdx,:,:); 

end 

for epochID=1:length(class2StartTime) 

    class2Epoches(:,:,epochID) = signal(class2StartTime(epochID)+trialTimeIdx,:,:); 

end 

for epochID=1:length(class3StartTime) 

    class3Epoches(:,:,epochID) = signal(class3StartTime(epochID)+trialTimeIdx,:,:); 

end 

for epochID=1:length(class4StartTime) 

    class4Epoches(:,:,epochID) = signal(class4StartTime(epochID)+trialTimeIdx,:,:); 

end 

for epochID=1:length(class5StartTime) 

    class5Epoches(:,:,epochID) = signal(class5StartTime(epochID)+trialTimeIdx,:,:); 

end 

for epochID=1:length(class6StartTime) 

    class6Epoches(:,:,epochID) = signal(class6StartTime(epochID)+trialTimeIdx,:,:); 

end 

for epochID=1:length(class7StartTime) 

    class7Epoches(:,:,epochID) = signal(class7StartTime(epochID)+trialTimeIdx,:,:); 

end 

%PO3 POz PO4 O1 Oz O2 

channelsCombo = combnk([6 7 8 11 12 13],numChanCombo); 

accuracy=[]; 

 

for indexI=1:length(channelsCombo) 

               allTrials = cat(3,class1Epoches,class2Epoches,class3Epoches,class4Epoches,class5Epoches,class6Epoches,class7Epoches); 

               labels = 

[ones(1,length(class1StartTime)),2*ones(1,length(class2StartTime)),3*ones(1,length(class3StartTime)),4*ones(1,length(class4StartTime)),

5*ones(1,length(class5StartTime)),6*ones(1,length(class6StartTime)),7*ones(1,length(class7StartTime))]; 

        for epochID=1:size(allTrials,3) 

 %Compute CCA Coefficients 

       r_coeff=computeCCA(allTrials(:,channelsCombo(indexI,:),epochID),sampleRate,freqBands); 

            [R ind] = sort(r_coeff,'descend'); 
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            result(epochID,1)=ind(1); 

        end 

        Cmat = confusionmat(result,labels); 

        accuracy = [accuracy,trace(Cmat)/(sum(sum(Cmat)))]; 

 

end 

accuracyFinal(:,configData) = accuracy'; 

end 

 

%Channel Selection Algorithm 

meanAcc = mean(accuracyFinal,2); 

variationAcc = max(accuracyFinal,[],2)-min(accuracyFinal,[],2); 

variationAcc = round(variationAcc,4); 

 

%Sort the accuracies in descending order 

[sortedAcc chanAccInd] = sort(meanAcc,'descend'); 

 

%Pick the top 20% based on accuracies 

percToSelect = round(0.2*length(chanAccInd)); 

topFour = chanAccInd(1:percToSelect,:); 

 

%Pick the top four variances 

topFourVar = variationAcc(topFour,:); 

topFourAcc = sortedAcc(topFour); 

 

%Sort in ascending order the variances 

[sortedVar leastChangeInd] = sort(topFourVar); 

 

%sortedVar(1,1) contains the least variation 

varOccurence = histc(sortedVar,sortedVar(1,1)); 

 

if varOccurence > 1 

    multipleIdx = find(sortedVar(1,1)==topFourVar); 

    preSelection = find(max(sortedAcc(multipleIdx))==sortedAcc(multipleIdx)); 

    tempIdx = chanAccInd(multipleIdx); 

    selecChannel = tempIdx(preSelection); 

else 

    multipleIdx = find(sortedVar(1,1)==topFourVar); 

    selecChannel = chanAccInd(multipleIdx); 

end 
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%Display the selected User-Specific Channel Set and corresponding Accuracies 

bestChan = channelsCombo(selecChannel,:); 

finalChanSelection = [metaInfo.Label{bestChan(1,1)},metaInfo.Label{bestChan(1,2)},metaInfo.Label{bestChan(1,3)}] 

finalAcc = accuracyFinal(selecChannel,:) 
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A.3 Canonical Correlation Analysis (CCA) MATLAB 

Implementation 

% Canonical Correlation Analysis (CCA) 

function rmax=computeCCA(data,sampleRate,stimFreq) 

dataLen = length(data); 

timeAxis = (1/sampleRate:1/sampleRate:dataLen/sampleRate)'; 

numberTargets=length(stimFreq); 

 

%Collect the values 

rmax=zeros(1,numberTargets); 

 

for classNum=1:numberTargets 

        freq=2*pi*stimFreq(classNum)*timeAxis; 

        %Harmonics 

        freqSet=[freq,freq*2]; 

        cosRef=cos(freqSet); 

        sinRef=sin(freqSet); 

        %Apply CCA 

        [Wx,Wy,r1,U,V] = canoncorr(data,[cosRef,sinRef]); 

        rmax(classNum) = rmax(classNum)+max(r1); 

end 
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Appendix B 

Individual Participants Results 

B.1 Study I - User-Specific Channel Selection Results 

Table B.1 User-Specific channel selection accuracies (%) for individual participants. 

Improvements in accuracy for UC set compared to 3C or 6C set highlighted in grey 

 3C-Set   6C-Set   UC-Set  

 S1 S2 S3 S1 S2 S3 S1 S2 S3 

S01 94.64 98.21 98.21 96.43 98.21 94.64 94.64 98.21 98.21 

S02 91.07 96.43 100.00 96.43 96.43 100.00 96.43 96.43 96.43 

S03 71.43 91.07 87.50 87.50 91.07 89.29 91.07 92.86 92.86 

S04 91.07 100.00 98.21 94.64 100.00 98.21 98.21 100.00 98.21 

S05 85.71 89.29 96.43 83.93 89.29 91.07 94.64 96.43 96.43 

S06 85.71 100.00 100.00 92.86 100.00 100.00 94.64 98.21 100.00 

S07 98.21 98.21 96.43 96.43 96.43 94.64 98.21 98.21 98.21 

S08 80.36 91.07 89.29 91.07 87.50 89.29 94.64 91.07 91.07 

S09 83.93 98.21 98.21 85.71 92.86 92.86 87.50 92.86 94.64 

S10 98.21 98.21 98.21 94.64 100.00 100.00 98.21 100.00 100.00 

S11 85.71 92.86 92.86 94.64 82.14 89.29 85.71 92.86 92.86 

S12 83.93 94.64 92.86 89.29 98.21 96.43 96.43 96.43 100.00 

S13 80.36 78.57 75.00 75.00 66.07 73.21 80.36 83.93 78.57 

S14 94.64 94.64 96.43 100.00 98.21 100.00 100.00 98.21 100.00 

S15 87.50 87.50 92.86 87.50 87.50 94.64 92.86 91.07 94.64 

S16 94.64 100.00 98.21 100.00 100.00 98.21 100.00 100.00 100.00 

S17 83.93 82.14 92.86 82.14 83.93 92.86 89.29 89.29 92.86 

S18 78.57 94.64 92.86 96.43 96.43 98.21 94.64 94.64 92.86 

S19 78.57 96.43 100.00 82.14 96.43 100.00 82.14 96.43 100.00 

S20 92.86 98.21 96.43 100.00 98.21 98.21 100.00 98.21 98.21 

S21 66.07 82.14 80.36 67.86 87.50 91.07 69.64 80.36 83.93 

Average 86.05 93.45 93.96 90.22 92.69 94.39 92.35 94.56 95.24 
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B.2 Study II - Results of CNN Robust to Change in ISD 

 

Table B.2 Comparing the accuracies (%) for individual participants of CCA, M-CNN and C-CNN 

across different ISDs for 1 s window length (O1-O2-Oz). 

 CCA   M-CNN   C-CNN  

 S1 S2 S3 S1 S2 S3 S1 S2 S3 

S01 66.96 82.89 80.28 88.08 97.08 95.61 89.61 96.94 96.76 

S02 68.30 80.92 83.37 65.60 76.77 72.23 82.38 92.35 92.00 

S03 62.87 76.38 77.01 76.35 83.58 80.34 91.71 96.23 91.67 

S04 83.44 93.08 91.56 95.74 99.36 98.71 96.81 99.45 99.18 

S05 62.09 68.56 69.35 82.78 86.52 87.10 86.32 90.03 90.03 

S06 68.08 88.95 91.22 87.90 98.27 98.72 85.70 97.38 98.47 

S07 80.69 84.49 88.28 87.26 89.25 91.62 91.51 93.09 96.05 

S08 68.42 71.17 76.38 82.43 81.47 86.04 86.35 84.46 87.37 

S09 58.85 74.78 72.32 50.87 57.89 61.22 74.33 87.48 86.24 

S10 84.15 87.57 92.86 94.30 96.48 98.87 97.50 98.51 98.89 

S11 61.42 62.46 67.97 81.10 71.74 77.77 91.67 85.17 90.62 

S12 69.68 79.69 81.25 71.99 77.30 81.87 89.47 93.44 95.99 

S13 57.18 50.89 54.32 68.11 61.95 69.55 75.98 64.18 72.65 

S14 81.58 76.75 76.38 93.70 89.83 89.30 96.45 93.26 92.62 

S15 75.04 74.59 78.79 77.81 79.14 82.31 89.32 90.62 93.42 

S16 85.57 94.05 88.36 94.11 99.00 98.47 95.70 99.14 98.78 

S17 74.70 77.27 76.23 80.56 79.76 80.43 88.47 92.71 90.63 

S18 59.08 73.29 70.94 55.47 68.15 64.43 78.10 90.03 84.77 

S19 58.93 80.84 81.66 59.60 77.72 78.02 67.18 85.20 85.11 

S20 80.77 86.01 87.28 88.78 92.00 92.42 89.12 93.09 93.84 

S21 43.45 66.00 55.88 63.96 84.64 79.94 63.68 84.82 79.30 

Average 69.11 77.65 78.17 78.40 83.23 84.05 86.06 90.84 91.16 

 



 

 70 

 

B.3 Study III - Dataset 1 – UD vs. UI Comparison 

  

Table B.3 Dataset 1 - Individual accuracies (%) comparing UD and UI methods of 1 s 

window length and ISD S1 (O1-O2-Oz) 

 CCA UI-M-CNN UI-C-CNN UD-M-CNN UD-C-CNN 

S01 66.96 77.62 81.60 94.20 95.08 

S02 68.30 59.62 79.26 81.60 90.20 

S03 62.87 71.47 89.32 86.33 95.95 

S04 83.44 95.19 94.21 97.96 98.61 

S05 62.09 78.86 85.35 88.88 91.04 

S06 68.08 89.40 89.47 94.46 94.17 

S07 80.69 85.90 90.20 92.17 96.03 

S08 68.42 84.29 87.57 89.51 91.00 

S09 58.85 43.19 63.12 73.03 86.30 

S10 84.15 94.21 97.56 96.68 99.02 

S11 61.42 73.32 85.20 89.91 94.39 

S12 69.68 65.09 85.35 85.35 94.61 

S13 57.18 67.13 72.05 83.20 86.41 

S14 81.58 88.78 93.40 97.08 97.63 

S15 75.04 69.06 75.62 85.97 92.78 

S16 85.57 95.59 94.90 96.94 98.36 

S17 74.70 73.76 88.08 86.44 94.79 

S18 59.08 46.98 64.36 71.10 87.39 

S19 58.93 55.39 61.19 76.97 81.38 

S20 80.77 84.66 86.04 95.26 95.59 

S21 43.45 44.31 50.66 81.71 82.18 

Average 69.11 73.51 81.64 87.85 92.52 

 



 

 71 

 

B.4 Study III - Dataset 2 – UD vs. UI Comparison 

 

 

Table B.4 Dataset 2 - Individual accuracies (%) comparing UD and UI methods of 1 s 

window length (8 Channels in dataset) 

 CCA UI-M-CNN UI-C-CNN UD-M-CNN UD-C-CNN 

S01 27.64 36.67 61.39 65.56 80.42 

S02 27.22 20.69 36.53 40.42 63.19 

S03 58.75 67.50 76.94 82.92 96.81 

S04 79.72 88.75 94.58 91.25 98.61 

S05 51.81 83.75 87.64 94.58 99.72 

S06 86.25 86.11 93.89 95.83 99.72 

S07 66.39 76.67 87.36 89.31 95.42 

S08 96.11 96.25 97.64 97.78 99.44 

S09 67.78 74.17 93.33 90.00 97.92 

S10 65.28 75.14 86.39 80.14 92.08 

Average 62.69 70.57 81.57 82.78 92.33 

 


