
Strong Induction in Hardware Model
Checking

by

Hari Govind V K

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical And Computer Engineering

Waterloo, Ontario, Canada, 2019

c© Hari Govind V K 2019

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Some of the text, figures and tables in this thesis are restated from our CAV 2019 paper [49].

Some of the source code for kAvy was written by Arie Gurfinkel.

iii

Abstract

Symbolic model checking is a widely used technique for automated verification of both
hardware and software systems. Unbounded SAT-based Symbolic Model Checking (SMC)
algorithms are very popular in hardware verification. The principle of strong induction
is one of the first techniques for SMC. While elegant and simple to apply, properties as
such can rarely be proven using strong induction and when they can be strengthened,
there is no effective strategy to guess the depth of induction. It has been mostly displaced
by techniques that compute inductive strengthenings based on interpolation and property
directed reachability (Pdr). In this thesis, we prove that strong induction is more concise
than induction. We then present kAvy, an SMC algorithm that effectively uses strong
induction to guide interpolation and Pdr-style incremental inductive invariant construc-
tion. Unlike pure strong induction, kAvy uses Pdr-style generalization to compute and
strengthen an inductive trace. Unlike pure Pdr, kAvy uses relative strong induction to
construct an inductive invariant. The depth of induction is adjusted dynamically by min-
imizing a proof of unsatisfiability. We have implemented kAvy within the Avy Model
Checker and evaluated it on HWMCC instances. Our results show that kAvy is more
effective than both Avy and Pdr, and that using strong induction leads to faster running
time and solving more instances. Further, on a class of benchmarks, called shift, kAvy is
orders of magnitude faster than Avy, Pdr and pure strong induction.

iv

Acknowledgements

I would like to thank Professor Arie Gurfinkel and Professor Vijay Ganesh for sharing
their expertise in the subject, availability and giving valuable advices for this research.
It goes without saying that this document would not be possible without their help and
guidence.

I would like to thank Professor Nancy Day and Professor Richard Trefler for attending
the seminar, reviewing the thesis and providing valuable feedback on both occasions.

I would like to express my gratitude to my Mother, Father, Sister and Brother for their
constant support throughout my life, especially during the Master’s.

Special thanks to Jakub Kuderski and Chunxiao (Ian) Li for their company and frequent
discussions about this research topic.

Thank God.

v

Table of Contents

List of Tables viii

List of Figures ix

Nomenclature x

1 Introduction 1

1.1 Contributions . 4

2 Background 5

2.1 SAT-based model checking . 7

2.1.1 Model checking using strong induction 8

2.1.2 Model checking using Interpolation 8

2.1.3 Incremental construction of inductive invariants 9

2.1.4 PDR . 12

2.1.5 Avy . 13

3 Separation between strong induction and induction 16

3.1 Separation between 1-induction and 2-induction 17

3.1.1 Validating certificates for strong induction and induction 19

3.1.2 PDR vs strong induction on Cxorn 20

3.2 Generalization of the counter circuit . 20

vi

4 Kavy 22

4.1 Extending a trace with strong induction 24

4.2 Searching for the maximal SEL . 29

4.3 Evalution . 31

5 Related work, Conclusions and Future work 35

References 37

vii

List of Tables

4.1 Summary of solved instances . 32

viii

List of Figures

1.1 An example system . 3

3.1 States of the counter circuit . 18

4.1 Runtime comparison on SAFE instances 31

4.2 Comparing kAvy against Avy, Pdr and vanilla 33

4.3 Comparing top-down and bottom-up . 34

ix

Nomenclature

Bad The bad state in a transision system

K(F) The set of all strong externsion levels of F

W(F) The set of all extension levels of F

Init The initial state in a transistion system

TrJF iKk Characteristic formula for SEL (i, k)

seqItp(A) A sequence interpolant of A

Tr The transistion relation in a transistion system

Tr [ϕ]NM An M -to-N -unrolling of a transision system, where ϕ holds in all inter-
mediate states

Tr [F] An unrolling of Tr such that Fi holds at step i

TrN
M An M -to-N -unrolling of a transision system. M is skipped when M = 0

F A sequence of formulas [F0, F1, . . . , FN]

F k k-suffix of F . F k = [Fk, . . . , FN]

SMC SAT-based Model Checking

x

Chapter 1

Introduction

This thesis concerns with the problem of safety: given a state transition system and a set
of bad states, check whether there exists a finite length execution path that leads to a bad
state. Functional verification of hardware circuits can be achieved by modeling hardware
circuits as state transition systems, marking undesired behaviors as bad states and solving
the problem of safety. A similar approach can be used to check equivalence between
two designs, verify software programs and many other important problems [55, 27]. The
problem has come up when designing components in nuclear power plants [66], preventing
crashes in autonomous systems [72, 37] and spacecraft [7], scheduling trains [58] and many
other areas.

There are several approaches to solve safety. Binary Decision Diagrams, abstract
interpretation, explicit state model checking, interactive theorem proving and symbolic
model checking are some [29]. Symbolic model checking techniques express the transition
system and the set of bad states in logic and exhaustively check for a counterexample or a
proof of safety. While the problem is undecidable in general, the propositional variant is
PSPACE-complete [36]. Owing to algorithmic advances and the advent of sat solvers, sat
based (unbounded) model checking algorithms (SMC) have received particular attention
in recent years [55].

safety can be established using the principle of induction. The certificate for induction
is a safe inductive invariant. An inductive invariant is a formula that is (1) satisfied by all
initial states in the transition system (base case) (2) closed under a step of transition (in-
ductive case). It is safe when it implies the negation of bad states (called property). The
problem of proving safety can be reduced to finding the right inductive strengthening of
the property.

1

safety can also be established using the principle of strong induction1. The certifi-
cate for strong induction is a safe k-inductive invariant: a generalization of an inductive
invariant that extends the base- and inductive-cases to k steps of a transition system [71].
Induction is contained within strong induction. When restricted to loop-free paths, the
property itself is a certificate for strong induction. No such claims can be made for induc-
tion.

In SMC, strong induction and induction have the same deductive power: a certificate
P for strong induction can be converted into a certificate Q for induction [41]. However,
in the worst case Q may be exponentially larger than P [17]. The first contribution of this
thesis is to construct a family of transition systems in which this behavior is observed. In
Chapter 3, we show that there are transition systems whose smallest 1-inductive certificate
is exponentially larger than the smallest strong inductive certificate.

Unlike other SMC techniques, strong induction reduces model checking to pure SAT
that does not require any additional features such as solving with assumptions [34], inter-
polation [61], resolution proofs [43], Maximal Unsatisfiable Subsets (MUS) [9], etc. It easily
integrates with existing SAT-solvers and immediately benefits from any improvements in
heuristics [57, 56], pre- and in-processing [44], and parallel solving [6]. The simplicity of
applying strong induction made it the go-to technique for SMT-based infinite-state model
checking [25, 33, 46]. In that context, it is particularly effective in combination with in-
variant synthesis [50, 38]. Moreover, for some theories, strong induction is strictly stronger
than 1-induction [46]: there are properties that are k-inductive, but have no 1-inductive
strengthening.

Despite these advantages, strong induction has mostly been displaced by techniques
based on (1)-induction. The exponential growth in size of invariants is rarely observed
in practice [63]. Furthermore, the SAT queries get very hard as k increases and usually
succeed only for rather small values of k.

Property Directed Reachability (Pdr) [20, 35] is a very successful technique that in-
crementally constructs an inductive strengthening of the property. Pdr constructs the
proof by repeatedly generating predecessors of bad states and blocking them using in-
ductive generalization. This technique of incremental invariant construction has inspired
many similar, effective, algorithms in both software [46, 28, 52] and hardware [77, 10, 40]
model checking. Avy [77] is a successful technique which uses interpolation [31] to guide
Pdr-style incremental inductive invariant construction.

1The principle of strong induction has a particular definition in mathematics. Our usage does not
conform with this definition. However, we still use the term strong induction to emphasize that the value
of k in k-induction is always dynamic

2

reg [7:0] c = 0;
always

if(c == 64)
c <= 0;

else
c <= c + 1;

end
assert property (c < 66);

Figure 1.1: An example system in verilog.

A recent work [41] shows that strong induction can be integrated in Pdr. However, [41]
argues that strong induction is hard to control in the context of Pdr since choosing a proper
value of k is difficult. A wrong choice leads to a form of state enumeration. In [41], k is
fixed to 5, and regular induction is used as soon as 5-induction fails.

In Chapter 4, we present kAvy, a novel SMC algorithm that effectively uses strong
induction to guide Pdr-style inductive invariant construction. As many state-of-the-art
SMC algorithms, kAvy iteratively constructs candidate inductive invariants for a given
safety property P . However, the construction of these candidates is driven by strong
induction. Whenever P is known to hold up to a bound N , kAvy searches for the smallest
k ≤ N + 1, such that either P or some of its strengthening is k-inductive. Once it finds
the right k and strengthening, it computes a 1-inductive strengthening.

It is convenient to think of modern SMC algorithms (e.g., Pdr and Avy), and strong
induction, as two ends of a spectrum. On the one end, modern SMC algorithms fix k
to 1 and search for a 1-inductive strengthening of P . While on the opposite end, strong
induction fixes the strengthening of P to be P itself and searches for a k such that P is
k-inductive. kAvy dynamically explores this spectrum, exploiting the interplay between
finding the right k and finding the right strengthening.

As an example, consider the system in Fig. 1.1 that counts up to 64 and resets. The
property, p : c < 66, is 2-inductive. Both Pdr and Avy iteratively guess a 1-inductive
strengthening of p. In the worst case, they require at least 64 iterations. On the other
hand, kAvy determines that p is 2-inductive after 2 iterations, computes a 1-inductive
invariant (c 6= 65) ∧ (c < 66), and terminates.

kAvy builds upon the foundations of Avy [77]. Avy first uses Bounded Model Check-
ing [13] (BMC) to prove that the property P holds up to bound N . Then, it uses a se-
quence interpolant [76] and Pdr-style inductive-generalization [20] to construct 1-inductive
strengthening candidate for P . We emphasize that using strong induction to construct 1-
inductive candidates allows kAvy to efficiently utilize many principles from Pdr and
Avy. While maintaining k-inductive candidates might seem attractive (since they may be

3

smaller), they are also much harder to generalize effectively [20].

We implemented kAvy in the Avy Model Checker, and evaluated it on the benchmarks
from the Hardware Model Checking Competition (HWMCC). Our experiments show that
kAvy significantly improves the performance of Avy and solves more examples than both
Pdr and Avy. For a specific family of examples from [53], kAvy exhibits nearly constant
time performance, compared to an exponential growth of Avy, Pdr, and strong induction
(see Figure 4.1b in Section 4.3). This further emphasizes the effectiveness of efficiently
integrating strong induction into modern SMC.

1.1 Contributions

This thesis makes the following contributions

• We provide a constructive proof of an exponential separation between the certificates
for strong induction and induction (Chapter 3)

• We propose an algorithm which uses strong induction to effectively guide interpola-
tion and Pdr-style inductive invariant generation and prove its correctness (Chap-
ter 4)

• We implement in the algorithm and evaluate it on a wide benchmark suite (Sec-
tion 4.3)

4

Chapter 2

Background

In this chapter, we present notation and background that is required for the rest of the
thesis.

safety of finite state transition systems. A symbolic finite state transition system
T is a tuple (v̄, Init ,Tr ,Bad), where v̄ is a set of Boolean state variables. A state of the
system is a complete valuation to all variables in v̄ (i.e., the set of states is {0, 1}|v̄|). We
write v̄′ = {v′ | v ∈ v̄} for the set of primed variables, used to represent the next state. Init
and Bad are formulas over v̄ denoting the set of initial states and bad states, respectively,
and Tr is a formula over v̄ ∪ v̄′, denoting the transition relation. With abuse of notation,
we use formulas and the sets of states (or transitions) that they represent interchangeably.
In addition, we sometimes use a state s to denote the formula (cube) that characterizes it.
For a formula ϕ over v̄, we use ϕ(v̄′), or ϕ′ in short, to denote the formula in which every
occurrence of v ∈ v̄ is replaced by v′ ∈ v̄′. For simplicity of presentation, we assume that
the property P = ¬Bad is true in the initial state, that is Init ⇒ P . We ignore v̄ from the
tuple (v̄, Init ,Tr ,Bad) for T if it is unimportant.

Given a formula ϕ(v̄), an M -to-N -unrolling of T , where ϕ holds in all intermediate
states is defined by the formula:

Tr [ϕ]NM =
N−1∧
i=M

ϕ(v̄i) ∧ Tr(v̄i, v̄i+1) (2.1)

We write Tr [ϕ]N when M = 0 and TrN
M when ϕ = >.

5

A transition system T is unsafe iff there exists a state s ∈ Bad s.t. s is reachable,
and is safe otherwise. Equivalently, T is unsafe iff there exists a number N such that
the following unrolling formula is satisfiable:

Init(v̄0) ∧ TrN ∧ Bad(v̄N) (2.2)

T is safe if no such N exists. Whenever T is unsafe and sN ∈ Bad is a reachable state,
the path from s0 ∈ Init to sN is called a counterexample.

Induction. safety can be established using the principle of induction. A certificate
for safety is a safe inductive invariant. An inductive invariant is a formula Inv that
satisfies initiation and is inductive:

Init(v̄)⇒ Inv(v̄) (2.3)

Inv(v̄) ∧ Tr(v̄, v̄′)⇒ Inv(v̄′) (2.4)

An inductive invariant Inv(v̄) is safe if it satisfies :

Inv(v̄)⇒ P (v̄) (2.5)

We say that a formula ϕ is inductive relative to a formula F if it satisfies initiation and
Tr [ϕ ∧ F]⇒ ϕ(v̄1).

The set of reachable states is an inductive invariant in all transition systems. Therefore,
a transition system is safe iff it admits a safe inductive invariant.

Strong Induction. According to the principle of strong induction, safety can be es-
tablished by providing a safe k-inductive invariant as a certificate. k-induction is a
generalization of the notion of an inductive invariant. A formula Inv is k-invariant in a
transition system T if it is true in the first k steps of T . That is, the following formula is
valid:

Init(v̄0) ∧ Trk ⇒

(
k∧

i=0

Inv(v̄i)

)
(2.6)

A formula Inv is a k-inductive invariant iff Inv is a (k− 1)-invariant and is inductive after
k steps of T , i.e., the following formula is valid: Tr [Inv]k ⇒ Inv(v̄k). We say that a formula
ϕ is k-inductive relative to F if it is a (k − 1)-invariant and Tr [ϕ ∧ F]k ⇒ ϕ(v̄k).

6

Compared to simple induction, k-induction strengthens the hypothesis in the induction
step: Inv is assumed to hold between steps 0 to k−1 and is established in step k. Whenever
Inv ⇒ P , we say that Inv is a safe k-inductive invariant. An inductive invariant is a
1-inductive invariant.

Theorem 1. Given a transition system T . There exists a safe 1-inductive invariant w.r.t.
T iff there exists a safe k-inductive invariant w.r.t. T .

Theorem 1 states that the strong induction principle is as complete as the induction
principle. One direction of the proof is trivial (since we can take k = 1). The other direction
has been proven in [41]. This can be strengthened further: for every k-inductive invariant
Invk there exists a 1-inductive strengthening Inv 1 such that Inv 1 ⇒ Invk. Theoretically
Inv 1 might be exponentially bigger than Invk. In practice, both invariants tend to be of
similar size.

The safety verification problem is to decide whether a transition system T is safe
or unsafe, i.e., whether there exists a safe k-inductive invariant or a counterexample.

Craig Interpolation [31]. Given a pair of inconsistent formulas (A,B) (i.e., A∧B |= ⊥),
a Craig interpolant [31] for (A,B) is a formula I such that: (a) A ⇒ I, (b) I ⇒ ¬B,
and (c) I is over variables shared between A and B. Intuitively, interpolants are over-
approximations of A which contradict B. We will see that they are useful in computing
over-approximations of reachable states.

We use an extension of Craig Interpolants to sequences, which is common in Model
Checking. Let A = [A1, . . . , AN] be a sequence of formulas such that A1 ∧ · · · ∧ AN is
unsatisfiable. A sequence interpolant I = seqItp(A) for A is a sequence of formulas
I = [I2, . . . , IN] such that (a) A1 ⇒ I2, (b) ∀1 < i < N · Ii ∧Ai ⇒ Ii+1, (c) IN ∧AN ⇒ ⊥,
and (d) Ii is over variables that are shared between the corresponding prefix and suffix of
A.

2.1 SAT-based model checking

In this section, we give a brief overview of SAT-based Model Checking algorithms: strong
induction [71], interpolation [61], Pdr [20, 35], and Avy [77]. We fix a symbolic transition
system T = (v̄, Init ,Tr ,Bad).

7

2.1.1 Model checking using strong induction

Algorithm 1 depicts model checking using the principle of strong induction. The algorithm
iteratively checks base-case (line 3) and the inductive-case (line 4) for increasing values
of k. Each successful check of the base-case establishes the absence of counterexamples
up to depth k. If the base-case fails, the satisfying assignment is a valid counterexam-
ple for the system. Spurious counterexamples to induction can occur if there are loops
that lead to Bad , but are unreachable from the initial states. Thus, for the inductive-
case, the algorithm adds unique path constraints for completeness: unique(v̄, k) ≡ ∀i, j ·
(0 ≤ i, j ≤ k ∧ i 6= j) ⇒ ¬

∧
v∈v̄ vi = vj. A simple encoding of this in CNF requires k2

clauses. Once both checks succeed for some value of k, the algorithm returns safe, indi-
cating that the property is k-inductive.

Algorithm 1: Model checking using strong induction

Input: A transition system T = (Init ,Tr ,Bad)
Output: safe/unsafe

1 k ← 1
2 repeat
3 if ¬isSat

(
Init(v̄0) ∧ Tr [¬Bad]k ∧ Bad(v̄k)

)
then

4 if ¬isSat
(
Tr [¬Bad]k ∧ unique(v̄, k) ∧ Bad(v̄k)

)
then

5 return safe

6 else
7 return unsafe

8 k ← k + 1

9 until ∞

2.1.2 Model checking using Interpolation

The sat queries in Algorithm 1 grow quadratically with k. This restricts the algorithm
to be effective only for small values of k [41]. Alternately, safety can be proven by
computing a 1-inductive strengthening of the property. Algorithm 2 uses interpolation to
construct such an inductive strengthening. The algorithm maintains an over-approximation
of reachable states and at each iteration, checks whether Bad is reachable from the over-
approximation (line 4).

8

If Bad is reachable, there is an actual counterexample of k-steps if the over-approximation
is equivalent to Init (line 9). If the over-approximation is not equivalent to Init , it admits
a spurious counterexample and the process is restarted at a larger depth (line 10).

If Bad is unreachable, the algorithm refines the computed set of over-approximations
by computing an interpolant (line 5). A fixed point is reached when the computed set
of over-approximations is closed under the transition relation. The algorithm terminates
when this happens (line 6).

Algorithm 2: Model checking using interpolation. ITP (A,B) denotes the inter-
polant of A ∧B.

Input: A transition system T = (Init ,Tr ,Bad)
Output: safe/unsafe

1 R← Init
2 k ← 1
3 repeat
4 if ¬isSat

(
R(v̄0) ∧ Tr [P]k ∧ Bad(v̄k)

)
then

// Compute interpolant

5 F ← ITP
(
R(v̄0) ∧ Tr 1

0,Trk+1
1 ∧ Bad(v̄k+1)

)
6 if F ⇒ R then return safe
7 else
8 R← R ∨ F (v̄1 \ v̄0)

9 else if R ≡ Init then return unsafe
10 else
11 R← Init
12 k ← k + 1

13 until ∞

2.1.3 Incremental construction of inductive invariants

Algorithm 2 relies on interpolation to generate the inductive invariant. However, inter-
polation algorithms are not guided by any search for inductive invariants. Thus, the
interpolant generated by subsequent calls to the algorithm could be significantly different,
delaying convergence. The underlying heuristics could favor smaller resolution proofs in
favor of smaller inductive invariants. Furthermore, the algorithm resets whenever the com-
puted candidate inductive invariant admits a spurious counterexample, leading to wasted

9

effort until the correct value of k is reached. IC3 [20]1 was the first algorithm to propose
an incremental construction of inductive invariants by guiding the underlying sat solver to
prune predecessors of Bad . The algorithm won third place in the Hardware Model Check-
ing Competition (HWMCC) in 2011, and inspired Avy, kAvy and many other algorithms
in both software and hardware model checking.

The main data-structure of Pdr and Avy is a sequence of candidate invariants, called
an inductive trace. An inductive trace, or simply a trace, is a sequence of formulas F =
[F0, . . . , FN] that satisfy the following two properties:

Init(v̄) = F0(v̄) ∀0 ≤ i < N · Fi(v̄) ∧ Tr(v̄, v̄′)⇒ Fi+1(v̄′) (2.7)

An element Fi of a trace is called a frame. The index of a frame is called a level. F is
clausal when all its elements are in CNF. For convenience, we view a frame as a set of
clauses, and assume that a trace is padded with > until the required length. The size of
F = [F0, . . . , FN] is |F | = N . For k ≤ N , we write F k = [Fk, . . . , FN] for the k-suffix of
F .

A trace F of size N is stronger than a trace G of size M iff ∀0 ≤ i ≤ min(N,M)·Fi(v̄)⇒
Gi(v̄). A trace is safe if each Fi is safe: ∀i · Fi ⇒ ¬Bad ; monotone if ∀0 ≤ i < N · Fi ⇒
Fi+1. In a monotone trace, a frame Fi over-approximates the set of states reachable in up

to i steps of the Tr . A trace is closed if ∃1 ≤ i ≤ N · Fi ⇒
(∨i−1

j=0 Fj

)
. A predecessor

sequence is a sequence of states s1, s2, . . . , sk such that ∀1 ≤ i < k · (si, si+1) ∈ Tr and
sk ∈ Bad . A safe trace of size N , blocks all N length predecessor sequences. That is,
there exists no predecessor sequence s0, s2, . . . , sN such that sN ∈ FN .

We define an unrolling formula of a trace F = [F0, . . . , FN] as follows:

Tr [F] =

|F |∧
i=0

Fi(v̄i) ∧ Tr(v̄i, v̄i+1) (2.8)

We write Tr [F k] to denote an unrolling of a k-suffix of F :

Tr [F k] =

|F |∧
i=k

Fi(v̄i) ∧ Tr(v̄i, v̄i+1) (2.9)

Intuitively, Tr [F k] is satisfiable iff there is a k-step execution of the Tr that is consistent
with the k-suffix F k. If a transition system T admits a safe trace F of size |F | = N , then
T does not have counterexamples of length less than or equal to N .

1 It was suggested to be renamed to Property Directed Reachability (Pdr) in [35]

10

Definition 1. A safe trace F , with |F | = N is extendable with respect to level 0 ≤ i ≤ N
iff there exists a safe trace G stronger than F such that |G| > N and Fi ∧ Tr ⇒ Gi+1.

G and the corresponding level i are called an extension trace and an extension level
of F , respectively. Note that all the frames after extension level are stronger in extension
trace: ∀k > i ·Gk ⇒ Fk. Both Pdr and Avy work by iteratively extending a given safe
trace F of size N to a safe trace of size N + 1.

An extension trace is not unique, but there is a largest extension level. We denote the
set of all extension levels of F by W(F). Note that the existence of an extension level i
implies that an unrolling of the i-suffix does not contain any Bad states:

Lemma 1. Let F be a safe trace. Then, i, 0 ≤ i ≤ N , is an extension level of F iff the
formula Tr [F i] ∧ Bad(v̄N+1) is unsatisfiable.

Proof. Avy (Section 2.1.5) proves the right-to-left direction by providing a method to
construct an extension trace from the unsatisfiability of Tr [F i] ∧ Bad(v̄N+1). For the
left-to-right direction, we give a proof by contradiction. Let G be an extension trace at
extension level i of F . Since G is safe up to (N + 1), Gi+1 is strong enough to block
all predecessor sequences of length (N + 1− i). We show that if Tr [F i] ∧ Bad(v̄N+1) is
satisfiable, Gi+1 admits such a predecessor sequence, there by arriving at a contradiction.

If Tr [F i]∧Bad(v̄N+1) is satisfiable, so is the weaker formula Fi∧TrN+1
i ∧Bad(v̄N+1). Let

si, si+1, . . . sN+1 be the (N + 2− i) length predecessor sequence that satisfies the weaker
formula. si satisfies Fi. Since Fi ∧ Tr ⇒ Gi+1, si+1 necessarily satisfies Gi+1. That is
si+1, si+2, . . . sN+1 is a (N + 1− i) length predecessor sequence not blocked by Gi+1. This
contradicts the claim that Gi+1 is strong enough to block any such predecessor sequence.
Hence Fi ∧ TrN+1

i ∧ Bad(v̄N+1) is unsatisfiable. Therefore the stronger formula Tr [F i] ∧
Bad(v̄N+1) is also unsatisfiable.

Notice that the unsatisfiability is caused due to Fi. Not all the frames in F i are
necessary to prove the lemma. However, as we will see, the suffix will make it easier to
construct the extension trace.

Example 1. For Fig. 1.1, F = [c = 0, c < 66] is a safe trace of size 1. The formula
Tr [F 1]∧Bad: ((c < 66) ∧ Tr ∧ (c′ ≥ 66)) is satisfiable. Therefore, there does not exist an
extension trace at level 1. Since Tr [F 0]∧Bad: ((c = 0) ∧ Tr ∧ (c′ < 66) ∧ Tr′ ∧ (c′′ ≥ 66))
is unsatisfiable, the trace is extendable at level 0. For example, a valid extension trace at
level 0 is G = [c = 0, c < 2, c < 66].

11

Both Pdr and Avy iteratively extend a safe trace either until the extension is closed
or a counterexample is found. However, they differ in how exactly the trace is extended.
In the rest of this section, we present Pdr and Avy through the lens of extension level.

2.1.4 PDR

Pdr maintains a monotone, clausal trace F with Init as the first frame (F0). The trace
F is extended by recursively computing and blocking (if possible) states that are part
of predecessor sequences (called bad states). A bad state is blocked at the largest level
possible. Algorithm 3 shows PdrBlock, the backward search procedure that identifies
and blocks predecessor sequences. PdrBlock maintains a queue of states and the levels
at which they have to be blocked. The smallest level at which blocking occurs is tracked in
order to show the construction of the extension trace. For each state s in the queue, it is
checked whether s can be blocked by the previous frame Fd−1 (line 5). If not, a predecessor
state t of s that satisfies Fd−1 is computed and added to the queue (line 7). If a predecessor
state is found at level 0, the trace is not extendable and an empty trace is returned. If
the state s is blocked at level d, PdrIndGen, is called to generate a clause that blocks s
and possibly others. The clause is then added to all the frames at levels less than or equal
to d. The procedure terminates whenever there are no more states to be blocked (or a
counterexample was found at line 4). By construction, the output trace G is an extension
trace of F at the extension level w. Once Pdr extends its trace, PdrPush is called to
check whether the clauses it learned are also true at higher levels. Pdr terminates when
the trace is closed.

PdrIndGen is a crucial optimization to Pdr. To block a predecessor s, it is enough
to learn the clause (¬s). However, such a clause is too weak: it cannot block any other
predecessors to Bad . There could be exponentially many predecessors to a single Bad
state and thus with this simple strategy, Pdr will have to learn exponentially many claus-
es: one per predecessor. Therefore, it is necessary to be able to block a generalization
of the computed predecessor state. Such a generalization must (1) block predecessor s
(2) be inductive relative to the previous frame and (3) be satisfied by all initial states . A
straightforward method to generate such a generalization is to use the unsat core from the
relative induction query (line 5) to get rid of parts of state s that are irrelevant to it being
blocked. A more aggressive strategy is to assume the generalized clause c when checking
for relative induction: Fi ∧Tr ∧ c⇒ c′ [20]. Assuming c at frame i constraints the formula
more, making it more likely to be unsat. Such an assumption is sound because Fi is just
an over-approximation of reachable states. As long as c is satisfied by all initial states, it
can be assumed in all frames.

12

Algorithm 3: PdrBlock.

Input: A transition system T = (Init ,Tr ,Bad)
Input: A safe trace F with |F | = N
Output: An extension trace G or an empty trace

1 w ← N + 1 ; G← F ; Q.push(〈Bad , N + 1〉)
2 while ¬Q.empty() do
3 〈s, d〉 ← Q.pop()
4 if d == 0 then return []
5 if isSat(Fd−1(v̄) ∧ Tr(v̄, v̄′) ∧ s(v̄′)) then
6 t← predecessor(s)
7 Q.push(t, d− 1)
8 Q.push(s, d)

9 else
10 ∀0 ≤ i ≤ d ·Gi ← (Gi ∧PdrIndGen(¬s))
11 w ← min(w, d)

12 return G

2.1.5 Avy

Avy, shown in Algorithm 4, is an alternative to Pdr that combines interpolation and recur-
sive blocking. Avy starts with a trace F , with F0 = Init , that is extended in every iteration
of the main loop. A counterexample is returned whenever F is not extendable (line 3).
Otherwise, it calls AvyExtend (Algorithm 5) to extend the trace. It then calls Pdr-
Push to check whether lemmas are true at higher frames. Avy converges when the trace
is closed.

AvyExtend extends a clausal, monotone, safe trace into a stronger clausal, monotone
trace. To generate an extension trace for [F0, . . . , FN] at level 0 ≤ k ≤ N , it is enough to
generate a sequence interpolant Ik+1, . . . , IN from the unsatisfiability of Tr [F k]∧Bad(v̄N+1)
and create a trace [F0, . . . Fk, Gk+1 . . . , GN , IN+1] by conjoining the corresponding frames:
k < j ≤ N · Gj ← Fj ∧ Ij. However, the language of the interpolants is not restricted.
Therefore, such an extension trace need not be monotone or clausal. To generate a clausal
trace, AvyExtend makes use of PdrBlock. Given a safe circuit and a clausal trace
as input, PdrBlock generates a stronger clausal trace. To make the trace monotone,
AvyExtend makes use of the following observation: given a trace [A0, . . . , Ak, Ak+1] which
is monotone until Ak, Ak+1 can be made monotone if it can be weakened to A∗k+1 ≡

13

Ak+1 ∨ Ak.

AvyExtend (Algorithm 5) extracts a sequence interpolant from the unsatisfiability
of Tr [F k] ∧ Bad(v̄N+1) (line 1). It then strengthens each element Gj+1 to the property
Pj = Gj ∨ (Gj+1 ∧ Ij+1) using PdrBlock. Note that all clauses added to frame j are also
added to all previous frames to maintain monotonicity. The loop maintains the invariant
Gj ∧ Tr ⇒ Pj. The invariant ensures that Gj+1 can be strengthened. It holds on entry
since, from the properties of a trace, Gj ∧ Tr ⇒ Gj+1 and from the properties of an
interpolant Gj ∧Tr ⇒ Ij+1. Let G∗j+1 denote the (j + 1)th frame after the execution of the
loop. Since the invariant holds at the start of the loop, G∗j+1 ⇒ Pj. Therefore, G∗j+1∧Tr ⇒
((Gj ∧ Tr) ∨ ((Gj+1 ∧ Tr) ∧ (Ij+1 ∧ Tr))), or G∗j+1 ∧ Tr ⇒ Gj+1 ∨ (Gj+2 ∨ Ij+2), there by
proving the invariant for the next iteration of the loop. After every iteration of the loop,
PdrPush is called to push the newly learned lemmas forward so that the strengthenings
in subsequent iterations are made easier.

Algorithm 4: Avy.

Input: A transition system T = (Init ,Tr ,Bad)
Output: safe/unsafe

1 F0 ← Init ; N ← 0
2 repeat
3 if isSat(Tr [F 0] ∧ Bad(v̄N+1)) then return unsafe

4 k ← max{i | ¬isSat(Tr [F i] ∧ Bad(v̄N+1))}
5 F ← AvyExtend([F0, . . . , FN], k)
6 F ← PdrPush(F)

7 if ∃1 ≤ i ≤ N · Fi ⇒
(∨i−1

j=0 Fj

)
then return safe

8 N ← N + 1

9 until ∞

14

Algorithm 5: AvyExtend.

Input: A clausal, safe trace [F0, . . . , FN]
Input: An extension level k, s.t. Tr [F k] ∧ Bad(v̄N+1) is unsatisfiable
Output: A clausal, safe, extension trace [G0, . . . , GN+1]

1 Ik+1, . . . , IN+1 ← seqItp(Tr [F k] ∧ Bad(v̄N+1))
2 G← [F0, . . . , FN ,>]
3 for j ← k to N do do
4 Pj ← Gj ∨ (Gj+1 ∧ Ij+1))

// Inv: Gj ∧ Tr ⇒ Pj

5 if j == 0 then
6 [, , Gj+1]← PdrBlock([Init , Gj+1], (Init ,Tr ,¬(Pj))

7 else
8 [, , Gj+1]← PdrBlock([Init , Gj, Gj+1], (Init ,Tr ,¬(Pj))

9 G← PdrPush(G)

15

Chapter 3

Separation between strong induction
and induction

safety can be established by using either induction or strong induction. For induction,
the certificate for safety is a 1-inductive invariant. For strong induction, the certificate
for safety is a k-inductive invariant, for some arbitrary k. For proving safety in propo-
sitional logic, induction and strong induction have the same deductive power: if a system
admits a k-inductive invariant, it also necessarily admits a 1-inductive invariant [46]. How-
ever, it is conjectured that there exists an exponential separation between the sizes of the
minimal k-inductive, and minimal 1-inductive invariants [17]. This makes it seem that gen-
erating k-inductive invariants is much more efficient that generating 1-inductive invariants.
While this is true, verifying a k-inductive invariant is as hard as generating a 1-inductive
invariant: given a proof of k-induction, we can generate a 1-inductive invariant of the same
size (see Section 4.1). In this chapter, we give a constructive proof of separation between
sizes of the minimal k-inductive invariant, and minimal 1-inductive invariant. We also
discuss various factors affecting algorithms driven by strong induction and induction.

We study the relationship between induction and strong induction by constructing a
family of transition systems parameterized by the number of variables n, such that the
minimal k-inductive invariant is of constant size whereas the minimal inductive invariant
grows exponentially with n. The size of a formula can have multiple definitions. We are
concerned with the size of a formula when written in CNF:

Definition 2. The size of a formula f , denoted by |f |, is the number of clauses in the
minimal CNF representation of f .

16

A safe transition system can have multiple safe inductive invariants. Since we want
to establish a separation, we are concerned with the minimal safe inductive invariant. Let
1-ind(T) denote the minimal safe 1-inductive invariant for the safe transition system
T . Similarly, let 2-ind(T) denote the minimal safe 2-inductive invariant for the safe
transition system T .

We first show a separation between 2-inductive invariants and 1-inductive invariants (Sec-
tion 3.1). While this is enough to prove a separation between certificates for strong induc-
tion and induction, we go one step further and generalize such systems (Section 3.2).

3.1 Separation between 1-induction and 2-induction

Let f(b1, b2, . . . , bn) be a propositional formula with variables b1, b2, . . . , bn. For simplicity,
we write fn to mean f(b1, b2, . . . , bn) and f ′n to mean fn over primed variables.

We construct a counter 1 circuit using fn as follows:

Cfn = (v̄, Initfn ,Tr fn ,Bad)

v̄ = a, b1, b2, . . . , bn

Tr fn = (fn ⇒ f ′n) ∧ (a⇒ (a′ ⇔ f ′n))

Initfn = a ∧ fn

Bad = ¬a

Figure 3.1 shows the states and transitions that the counter circuit can have. All states
of the circuit satisfy one of three formulas: Init , Bad or a∧¬fn. From a state that satisfies
a∧¬fn, the circuit can either transition to a Bad state or a non-bad state. We can see that
an initial state will always transition into another “initial” state: a state satisfying Initfn .
That is, Initfn is closed under an application of Tr fn . Therefore, the set of all reachable
states in the system is Initfn . Clearly Cfn is safe.

Lemma 2. All safe inductive invariants of the counter circuit Cfn are equivalent to Initfn.

Proof. Since Initfn is exactly the set of all reachable states, it is an inductive invariant. Let
Inv be an inductive invariant. We are going to prove that Inv ≡ Initfn . By the properties

1This circuit and its generalizations behave very similar to a ring counter. In conditions of interest, the
next state is a permutation of the previous state.

17

Initfn
a ∧ fn

a ∧ ¬fn

Bad
¬a

Figure 3.1: State diagram for the counter circuit after labelling them Initfn , Bad or a∧fn.
States satisfying Bad can transition into states in any of the three categories. However, a
state satisfying Initfn can only transition into one satisfying Initfn .

of an inductive invariant, Initfn has to be stronger than Inv , that is all initial states satisfy
Inv . We prove that all states that satisfy Inv also satisfy Initfn .

Since Inv is safe, Inv ⇒ a. That is, any state s that satisfies Inv assigns a to
true. From Tr fn , any successor state t of s must satisfy a ⇔ fn. Since Inv is closed
under application of Tr fn , t should also satisfy Inv . That is, Inv ⇒ a ⇔ fn. Therefore
Inv ⇒ a ∧ fn. Thus all states that satisfy Inv also satisfy Initfn . Therefore, Inv ≡ Initfn .

Corollary 1. | 1-ind(Cfn) | = | (a ∧ fn) |.

Thus, the size of the 1-inductive invariant is dependent on the formula fn.

Lemma 3. a is a safe 2-inductive invariant for the counter circuit Cfn.

Proof. It is clear that a satisfies initiation (Equation 2.3) and proves safety (Equation 2.5).
Therefore, a is a safe 2-inductive invariant if it is 2-inductive: a∧Tr fn ∧ a′′ ∧Tr f ′

n
⇒ a′′.

18

Note that 2-induction allows us to assume a′. We can deduce the following:

a ∧ Tr fn ⇒ (a′ ⇔ f ′n)

(a′ ⇔ f ′n) ∧ a′ ⇒ f ′n
f ′n ∧ Tr fn ⇒ f ′′n
a′ ∧ Tr fn ⇒ (a′′ ⇔ f ′′n)

(a′′ ⇔ f ′′n) ∧ f ′′n ⇒ a′′

Corollary 2. | 2-ind(Cf(n)) | = |a|.

Corollary 1 shows that the size of the minimal one inductive invariant is dependent on
the size of fn. Thus, to prove a separation, it is enough to construct a counter circuit with
a suitable fn. Let xor be the parity function xor(b1, b2, . . . , bn) =

∑
i bi mod 2. xor does

not have a small CNF representation: |xorn| = 2n−1 [73]. Thus, constructing a counter
circuit with xor gives us an exponential separation:

The minimal 1-inductive invariant is exponentially larger than the minimal 2-inductive
invariant for the counter circuit using xor:

Theorem 2. | 1-ind(Cxorn) | = 2n−1| 2-ind(Cxorn) |.

Theorem 2 uses Definition 2 for the size of a boolean formula. By choosing a different
measure for size and a different formula, the theorem can be generalized further. If we
choose a basic set of gates (called a basis), we can define the circuit size of a formula
to be the number of basis elements used to construct a circuit for the formula. Circuit
complexity tells us that there are functions whose circuits are of exponential size in any
basis with bounded fan-in [70]. That is, we can prove a much stronger result: there exists
a function f such that the circuit size of 1-ind(Cfn) is exponentially larger than that of
2-ind(Cfn). Unfortunately, such an f has not been constructed yet [68].

3.1.1 Validating certificates for strong induction and induction

1-inductive invariants and 2-inductive invariants are certificates for the safety. To verify
the certificates, we need to prove their validity . That is, we need to show that they satisfy
initiation, induction and are safe. The most common proof system used in propositional

19

logic is general resolution (or simply resolution). Thus, to compare proofs of safety, we
need to construct and compare resolution proofs for the certificates.

Consider proving the validity of the inductive step. To validate a 1-inductive invariant
Inv , it is sufficient to prove the unsatisfiability of Inv ∧ Tr ∧ ¬Inv ′. Since a ∧ xorn is
the certificate for 1-induction, validating it is equivalent to proving the unsatisfiability of
a ∧ xorn ∧ Trxorn ∧ (¬a′ ∨ xorn). This necessarily involves resolving each clause in xorn
with each clause in (xorn ∨ xor′n), leading to 2n+1 resolution steps. A constant number of
such big resolution steps are required to derive ⊥, leading to a proof size of Θ(2n).

To validate a 2-inductive invariant Inv , it is sufficient to prove the unsatisfiability of
Inv ∧ Tr ∧ Inv ′ ∧ Tr ∧ ¬Inv ′′. Since a is the 2-inductive invariant, we need to prove the
unsatisfiability of a∧Trxorn∧a′∧Trxor′n∧¬a′′. This also necessarily involves resolving each
clause in xorn with each clause in (xorn ∨ xor′n). Thus, the size of this resolution proof is
Θ(2n) as well.

For initiation, the size of proof for 1-induction is Θ(n) and that for 2-induction is Θ(1).
For safety, the size of proofs are Θ(1) in both cases.

We observe that even though the 1-inductive invariant is exponentially larger than the
2-inductive invariant, the resolution proofs for the certificates are of the same size.

3.1.2 PDR vs strong induction on Cxorn

Pdr (Section 2.1.4) constructs a 1-inductive invariant whereas strong induction (Sec-
tion 2.1.1) constructs a k-inductive invariant for arbitrary k. Since the only 1-inductive
invariant is of size Θ(2n), Pdr will make at least 2n sat queries before converging. The
size of each of these queries will also be Θ(2n). Whereas, the strong induction would only
require 3 queries (one for checking instantiation, one for checking 1-induction and one for
checking 2-induction). Each query will be of size Θ(2n). However, this need not result in
a massive difference in running times since the resolution proofs are of the same size.

3.2 Generalization of the counter circuit

In this section, we discuss how to construct systems that will separate an l-inductive
invariant from a 1-inductive invariant for an arbitrary but fixed l. We will see that the
counter circuit from previous section was an instantiation (l = 2) of a family of circuits for
which there exists a separation between certificates for induction and strong induction.

20

Let F = {f1n, f2n, . . . , fln} be a set of l formulas, each with n variables. For simplicity,
we write fjn to mean fj(b1, b2, . . . , bn) and f ′jn to mean fjn over primed variables. We
construct a counter circuit with F as follows:

CF =(v̄, InitF ,TrF ,Bad)

v̄ =a, b1, b2, . . . , bn

TrF = (f1n ⇒ f ′2n) ∧ (f2n ⇒ f ′3n) ∧ . . . ∧ (fln ⇒ f ′1n)∧
a⇒ (a′ ⇔ f ′1n)

InitF =f1n ∧ f2n ∧ . . . ∧ fln ∧ a

Bad =¬a

The set of all reachable states is InitF itself. a is an l-inductive invariant. By assuming
a to be true for l steps, the left hand side of TrF becomes true and implies a in the next
step.

An inductive invariant is InitF . Let Inv be an inductive invariant that proves safety.
We are going to prove that Inv ≡ InitF . The right to left direction is a property of any
inductive invariant. Since Inv ⇒ a, Inv ∧ TrF ⇒ a′ ⇔ f ′1n. Since inductive invariants are
closed under transition, Inv ⇒ a ⇔ f1n. From this it follows that Inv ⇒ f1n. Therefore
Inv ∧ TrF ⇒ f ′2n. By the same argument, Inv ⇒ f2n. In the same way, Inv ⇒ a ∧ f1n ∧
f2n ∧ . . . ∧ fln. Thus, all inductive invariants are equivalent to InitF . Therefore, if InitF
does not have a small CNF representation, neither does any of the 1-inductive invariants.

We can construct the formulas in F by taking a large CNF formula and splitting it
arbitrarily into l disjoint sub formulas, taking care that none of them are valid or unsat.

To summarize, this chapter showed that for the counter circuits made out of xor
functions, the minimal 1-inductive invariant is exponentially larger than the minimal 2-
inductive invariant. This proves that the certificates for 1-induction could be exponentially
larger than certificates for strong induction. Thus, in a guess-and-check approach to find
inductive invariants, using the principle of strong induction would lead to guessing smaller
invariants at no additional cost to checking.

21

Chapter 4

Kavy

In this chapter, we present kAvy, an SMC algorithm that uses the principle of strong
induction to extend an inductive trace. The chapter is structured as follows. First, we
introduce the concept of extending a trace using relative strong induction. Second, we
present kAvy and describe the details of how strong induction is used to compute an
extended trace. Third, we describe two techniques for computing maximal parameters to
apply strong induction. Unless stated otherwise, we assume that all traces are monotone.

Definition 3. A safe trace F , with |F | = N , is strongly extendable with respect to
(i, k), where 1 ≤ k ≤ i + 1 ≤ N + 1, iff there exists a safe inductive trace G stronger than
F such that |G| > N and Tr [Fi]

k ⇒ Gi+1.

We refer to the pair (i, k) as a strong extension level (SEL), and to the trace G as an
(i, k)-extension trace, or simply a strong extension trace (SET) when (i, k) is not important.
Note that for k = 1, G is just an extension trace.

Example 2. For Fig. 1.1, the trace F = [c = 0, c < 66] is strongly extendable at level 1. A
valid (1, 2)-externsion trace is G = [c = 0, (c 6= 65) ∧ (c < 66), c < 66]. Note that (c < 66)
is 2-inductive relative to F1, i.e. Tr [F1]2 ⇒ (c′′ < 66).

We write K(F) for the set of all SELs of F . We define an order on SELs by : (i1, k1) �
(i2, k2) iff (i) i1 < i2; or (ii) i1 = i2 ∧ k1 > k2. The maximal SEL is max(K(F)). Note
that the existence of a SEL (i, k) means that an unrolling of the i-suffix with Fi repeated
k times does not contain any bad states. We use TrJF iKk to denote this characteristic
formula for SEL (i, k) :

TrJF iKk =

{
Tr [Fi]

i+1
i+1−k ∧ Tr [F i+1] if 0 ≤ i < N

Tr [FN]N+1
N+1−k if i = N

(4.1)

22

Lemma 4. Let F be a safe trace, where |F | = N . Then, (i, k), 1 ≤ k ≤ i + 1 ≤ N + 1, is
an SEL of F iff the formula TrJF iKk ∧ Bad(v̄N+1) is unsatisfiable.

Proof. kAvyExtend (Algorithm 7) proves the right-to-left direction by constructing an
(i, k)-extension trace from the unsatisfiability of TrJF iKk ∧Bad(v̄N+1). We prove the left-
to-right direction using contradiction. Let G be an (i, k)-extension trace of F . Since G
is safe upto (N + 1), Gi+1 is strong enough to block all predecessor sequences of length
(N + 1− i). We show that if TrJF iKk∧Bad(v̄N+1) is satisfiable, Gi+1 admits a predecessor
sequence, there by arriving at a contradiction.

If TrJF iKk ∧ Bad(v̄N+1) is satisfiable, so is the weaker formula Tr [Fi]
i
i−k ∧ TrN+1

i ∧
Bad(v̄N+1). Let s1

i , s
2
i , . . . , s

k
i , si+1, . . . sN+1 be a sequence of states that satisfies the weaker

formula. All si’s satisfy Fi. Since Tr [Fi]
k ⇒ Gi+1, si+1 necessarily satisfies Gi+1. That is

si+1, si+2, . . . sN+1 is an (N + 1− i) length predecessor sequence not blocked by Gi+1. This
contradicts the claim that Gi+1 is strong enough to block any such predecessor sequence.
Hence Tr [Fi]

i
i−k ∧ TrN+1

i ∧ Bad(v̄N+1) is unsatisfiable. Therefore the stronger formula
TrJF iKk ∧ Bad(v̄N+1) is also unsatisfiable.

Notice that the unsatisfiability is caused due to Fi. Not all the frames in F i are
necessary. However, as we will see, the suffix will make it easier to extend the trace.

The level i in the maximal SEL (i, k) of a given trace F is greater or equal to the
maximal extension level of F :

Lemma 5. Let (i, k) = max(K(F)), then i ≥ max(W(F)).

Hence, extensions based on maximal SEL are constructed from frames at higher level
compared to extensions based on maximal extension level.

Example 3. For Fig. 1.1, the trace [c = 0, c < 66] has a maximum extension level of 0.
Since (c < 66) is 2-inductive, the trace is strongly extendable at level 1 (as was seen in
Example 2).

kAvy Algorithm

kAvy is shown in Fig. 6. It starts with an inductive trace F = [Init] and iteratively extends
F using SELs. A counterexample is returned if the trace cannot be extended (line 4).
Otherwise, kAvy computes the largest extension level (line 5) (described in Section 4.2).

23

Algorithm 6: kAvy algorithm.

Input: A transition system T = (Init ,Tr ,Bad)
Output: safe/unsafe

1 F ← [Init] ; N ← 0
2 repeat

// Invariant: F is a monotone, clausal, safe, inductive trace

3 U ← Tr [F 0] ∧ Bad(v̄N+1)
4 if isSat(U) then return unsafe

5 (i, k)← max{(i, k) | ¬isSat(TrJF iKk ∧ Bad(v̄N+1))}
6 [F0, . . . , FN+1]← kAvyExtend(F , (i, k))
7 [F0, . . . , FN+1]← PdrPush([F0, . . . , FN+1])

8 if ∃1 ≤ i ≤ N · Fi ⇒
(∨i−1

j=0 Fj

)
then return safe

9 N ← N + 1

10 until ∞

Then, it constructs a strong extension trace using kAvyExtend (line 6) (described in
Section 4.1). Finally, PdrPush is called to check whether the trace is closed. Note that
F is a monotone, clausal, safe inductive trace throughout the algorithm.

4.1 Extending a trace with strong induction

In this section, we describe the procedure kAvyExtend (shown in Algorithm 7) that,
given a trace F of size |F | = N and an (i, k) SEL of F constructs an (i, k)-extension trace
G of size |G| = N + 1. The procedure itself is fairly simple, but its proof of correctness is
complex. We first present the theoretical results that connect sequence interpolants with
strong extension traces, then the procedure, and then details of its correctness. Through
the section, we fix a trace F and its SEL (i, k).

Sequence interpolation for SEL. Let (i, k) be an SEL of F . By Lemma 4, Ψ =
TrJF iKk ∧Bad(v̄N+1) is unsatisfiable. Let A = {Ai−k+1, . . . , AN+1} be a partitioning of Ψ
defined as follows:

Aj =


Fi(v̄j) ∧ Tr(v̄j, v̄j+1) if i− k + 1 ≤ j ≤ i

Fj(v̄j) ∧ Tr(v̄j, v̄j+1) if i < j ≤ N

Bad(v̄N+1) if j = N + 1

24

Since (∧A) = Ψ, A is unsatisfiable. Let I = [Ii−k+2, . . . , IN+1] be a sequence interpolant
corresponding to A. Then, I satisfies the following properties:

Fi ∧ Tr ⇒ I ′i−k+2 ∀i− k + 2 ≤ j ≤ i · (Fi ∧ Ij) ∧ Tr ⇒ I ′j+1 (♣)

IN+1 ⇒ ¬Bad ∀i < j ≤ N · (Fj ∧ Ij) ∧ Tr ⇒ I ′j+1

Note that in (♣), both i and k are fixed — they are the (i, k)-extension level. Furthermore,
in the top row Fi is fixed as well.

The conjunction of the first k interpolants in I is k-inductive relative to the frame Fi:

Lemma 6. The formula Fi+1 ∧
(

i+1∧
m=i−k+2

Im

)
is k-inductive relative to Fi.

Proof. Since Fi and Fi+1 are consecutive frames of a trace, Fi ∧ Tr ⇒ F ′i+1. Thus, ∀i −
k + 2 ≤ j ≤ i · Tr [Fi]

j
i−k+2 ⇒ Fi+1(v̄j+1). Moreover, by (♣), Fi ∧ Tr ⇒ I ′i−k+2 and

∀i−k+2 ≤ j ≤ i+1·(Fi∧Ij)∧Tr ⇒ I ′j+1. Equivalently, ∀i−k+2 ≤ j ≤ i+1·Tr [Fi]
j
i−k+2 ⇒

Ij+1(v̄j+1). By induction over the difference between (i + 1) and (i− k + 2), we show that
Tr [Fi]

i+1
i−k+2 ⇒ (Fi+1 ∧

∧i+1
m=i−k+2 Im)(v̄i+1), which concludes the proof.

We use Lemma 6 to construct a strong extension trace G:

Lemma 7. Let G = [G0, . . . , GN+1], be an inductive trace defined as follows:

Gj =



Fj if 0 ≤ j < i− k + 2

Fj ∧
(

j∧
m=i−k+2

Im

)
if i− k + 2 ≤ j < i + 2

(Fj ∧ Ij) if i + 2 ≤ j < N + 1

IN+1 if j = (N+1)

Then, G is an (i, k)-extension trace of F (not necessarily monotone).

Proof. By Lemma 6, Gi+1 is k-inductive relative to Fi. Therefore, it is sufficient to show
that G is a safe inductive trace that is stronger than F . By definition, ∀0 ≤ j ≤ N ·Gj ⇒
Fj. By (♣), Fi ∧ Tr ⇒ I ′i−k+2 and ∀i − k + 2 ≤ j < i + 2 · (Fi ∧ Ij) ∧ Tr ⇒ I ′j+1. By

induction over j,
(

(Fi ∧
∧j

m=i−k+2 Im) ∧ Tr
)
⇒
∧j+1

m=i−k+2 I
′
m for all i− k + 2 ≤ j < i + 2.

Since F is monotone, ∀i− k + 2 ≤ j < i + 2 ·
(

(Fj ∧
∧j

m=i−k+2 Im) ∧ Tr
)
⇒
∧j+1

m=i−k+2 I
′
m

By (♣), ∀i < j ≤ N · (Fj ∧ Ij)∧Tr ⇒ I ′j+1. Again, since F is a trace, we conclude that
∀i < j < N · (Fj ∧ Ij) ∧ Tr ⇒ (Fj+1 ∧ Ij+1)′. Combining the above, Gj ∧ Tr ⇒ G′j+1 for
0 ≤ j ≤ N . Since F is safe and IN+1 ⇒ ¬Bad , then G is safe and stronger than F .

25

Lemma 7 defines an obvious procedure to construct an (i, k)-extension trace G for F .
However, such G is neither monotone nor clausal. In the rest of this section, we describe
the procedure kAvyExtend that starts with a sequence interpolant (as in Lemma 7), but
uses PdrBlock to systematically construct a safe monotone clausal extension of F .

Algorithm 7: kAvyExtend. The invariants marked † hold only when the P-
drBlock does no inductive generalization.

Input: a monotone, clausal, safe trace F of size N
Input: A strong extension level (i, k) s.t. TrJF iKk ∧ Bad(v̄N+1) is unsatisfiable
Output: a monotone, clausal, safe trace G of size N + 1

1 Ii−k+2, . . . , IN+1 ← seqItp(TrJF iKk ∧ Bad(v̄N+1))
2 G← [F0, . . . , FN ,>]
3 for j ← i− k + 1 to i do
4 Pj ← (Gj ∨ (Gi+1 ∧ Ij+1))

// Inv1: G is monotone and clausal

// Inv2: Gi ∧ Tr ⇒ Pj

// Inv
†
3 : ∀j < m ≤ (i + 1) ·Gm ≡ Fm ∧

∧j−1
`=i−k+1 (G` ∨ I`+1)

// Inv3 : ∀j < m ≤ (i + 1) ·Gm ⇒ Fm ∧
∧j−1

`=i−k+1 (G` ∨ I`+1)
5 [, , Gi+1]← PdrBlock([Init, Gi, Gi+1], (Init ,Tr ,¬Pj))

6 Pi ← (Gi ∨ (Gi+1 ∧ Ij+1))
7 if i = 0 then [, , Gi+1]← PdrBlock([Init , Gi+1], (Init ,Tr ,¬Pi))
8 else [, , Gi+1]← PdrBlock([Init , Gi, Gi+1], (Init ,Tr ,¬Pi))

// Inv
†
4: Gi+1 ≡ Fi+1 ∧

∧i
`=i−k+1 (G` ∨ I`+1)

// Inv4: Gi+1 ⇒ Fi+1 ∧
∧i

`=i−k+1 (G` ∨ I`+1)
9 for j ← i + 1 to N + 1 do

10 Pj ← Gj ∨ (Gj+1 ∧ Ij+1)
// Inv6: Gj ∧ Tr ⇒ Pj

11 [, , Gj+1]← PdrBlock([Init , Gj, Gj+1], (Init ,Tr ,¬Pj))
12 G← PdrPush(G)

// Inv
†
7: G is an (i, k)-extension trace of F

// Inv7: G is an extension trace of F
13 return G

The procedure kAvyExtend is shown in Algorithm 7. For simplicity of the presen-
tation, we assume that PdrBlock does not use inductive generalization. The invariants
marked by † rely on this assumption. We stress that the assumption is for presentation

26

only. The correctness of kAvyExtend is independent of it.

kAvyExtend starts with a sequence interpolant according to the partitioning A. The
extension trace G is initialized to F and GN+1 is initialized to > (line 2). The rest
proceeds in three phases: Phase 1 (lines 3–5) computes the prefix Gi−k+2, . . . , Gi+1 using
the first k− 1 elements of I; Phase 2 (line 8) computes Gi+1 using Ii+1; Phase 3 (lines 9–
12) computes the suffix Gi+2 using the last (N − i) elements of I. During this phase,
PdrPush (line 12) pushes clauses forward so that they can be used in the next iteration.
The correctness of the phases follows from the invariants shown in Alg. 7. We present each
phase in turn.

Recall that PdrBlock takes a trace F (that is safe up to the last frame) and a
transition system, and returns a safe strengthening of F , while ensuring that the result
is monotone and clausal. This guarantee is maintained by Algorithm 7, by requiring that
any clause added to any frame Gi of G is implicitly added to all frames below Gi.

Phase 1. By Lemma 6, the first k elements of the sequence interpolant computed at line 1
over-approximate states reachable in i + 1 steps of Tr . Phase 1 uses this to strengthen
Gi+1 using the first k elements of I. Note that in that phase, new clauses are always added
to frame Gi+1, and all frames before it!

Correctness of Phase 1 (line 5) follows from the loop invariant Inv2. It holds on loop
entry since Gi ∧ Tr ⇒ Ii−k+2 (since Gi = Fi and (♣)) and Gi ∧ Tr ⇒ Gi+1 (since G is
initially a trace). Let Gi and G∗i be the ith frame before and after execution of iteration j
of the loop, respectively. PdrBlock blocks ¬Pj at iteration j of the loop. Assume that
Inv2 holds at the beginning of the loop. Then, G∗i ⇒ Gi∧Pj since PdrBlock strengthens
Gi. Since Gj ⇒ Gi and Gi ⇒ Gi+1, this simplifies to G∗i ⇒ Gj ∨ (Gi ∧ Ij+1). Finally, since
G is a trace, Inv2 holds at the end of the iteration.

Inv2 ensures that the trace given to PdrBlock at line 5 can be made safe relative
to Pj. From the post-condition of PdrBlock, it follows that at iteration j, Gi+1 is
strengthened to G∗i+1 such that G∗i+1 ⇒ Pj and G remains a monotone clausal trace. At
the end of Phase 1, [G0, . . . , Gi+1] is a clausal monotone trace.

Interestingly, the calls to PdrBlock in this phase do not satisfy an expected pre-
condition: the frame Gi in [Init , Gi, Gi+1] might not be safe for property Pj. However, we
can see that Init ⇒ Pj and from Inv2, it is clear that Pj is inductive relative to Gi. This
is a sufficient precondition for PdrBlock.

27

Phase 2. This phase strengthens Gi+1 using the interpolant Ii+1. After Phase 2, Gi+1 is
k-inductive relative to Fi.

Phase 3. Unlike Phase 1, Gj+1 is computed at the jth iteration. Because of this, the
property Pj in this phase is slightly different than that of Phase 1. Correctness follows
from invariant Inv6 that ensures that at iteration j, Gj+1 can be made safe relative to Pj.
From the post-condition of PdrBlock, it follows that Gj+1 is strengthened to G∗j+1 such
that G∗j+1 ⇒ Pj and G is a monotone clausal trace. The invariant implies that at the end
of the loop GN+1 ⇒ GN ∨ IN+1, making G safe. Thus, at the end of the loop G is a safe
monotone clausal trace that is stronger than F . What remains is to show is that Gi+1 is
k-inductive relative to Fi.

Let ϕ be the formula from Lemma 6. Assuming that PdrBlock did no inductive
generalization, Phase 1 maintains Inv

†
3, which states that at iteration j, PdrBlock

strengthens frames {Gm}, j < m ≤ (i + 1). Inv
†
3 holds on loop entry, since initially

G = F . Let Gm, G∗m (j < m ≤ (i + 1)) be frame m at the beginning and at the end
of the loop iteration, respectively. In the loop, PdrBlock adds clauses that block ¬Pj.
Thus, G∗m ≡ Gm∧Pj. Since Gj ⇒ Gm, this simplifies to G∗m ≡ Gm∧(Gj∨Ij+1). Expanding

Gm, we get G∗m ≡ Fm ∧
∧j

`=i−k+1 (G` ∨ I`+1). Thus, Inv†3 holds at the end of the loop.

In particular, after line 8, Gi+1 ≡ Fi+1 ∧
∧i

`=i−k+1 (G` ∨ I`+1). Since ϕ⇒ Gi+1, Gi+1 is
k-inductive relative to Fi.

Theorem 3. Given a safe trace F of size N and an SEL (i, k) for F , kAvyExtend
returns a clausal monotone extension trace G of size N + 1. Furthermore, if PdrBlock
does no inductive generalization then G is an (i, k)-extension trace.

Of course, assuming that PdrBlock does no inductive generalization is not realistic.
kAvyExtend remains correct without the assumption: it returns a trace G that is a
monotone clausal extension of F . However, G might be stronger than any (i, k)-extension
of F . The invariants marked with † are then relaxed to their unmarked versions. Overall,
inductive generalization improves kAvyExtend since it is not restricted to only a k-
inductive strengthening.

Importantly, the output of kAvyExtend is a regular inductive trace. Thus, kAvyEx-
tend is a procedure to strengthen a (relatively) k-inductive certificate to a (relatively)
1-inductive certificate. Hence, after kAvyExtend, any strategy for further generalization
or trace extension from IC3, Pdr, or Avy is applicable.

28

4.2 Searching for the maximal SEL

In this section, we describe two algorithms for computing the maximal SEL. Both algo-
rithms can be used to implement line 5 of Alg. 6. They perform a guided search for group
minimal unsatisfiable subsets. They terminate when having fewer clauses would not in-
crease the SEL further. The first, called top-down, starts from the largest unrolling of the
Tr and then reduces the length of the unrolling. The second, called bottom-up, finds the
largest (regular) extension level first, and then grows it using strong induction.

Top-down SEL. A pair (i, k) is the maximal SEL iff

i = max {j | 0 ≤ j ≤ N · TrJF jKj+1 ∧ Bad(v̄N+1)⇒ ⊥}
k = min {` | 1 ≤ ` ≤ (i + 1) · TrJF iK` ∧ Bad(v̄N+1)⇒ ⊥}

Note that k depends on i. For a SEL (i, k) ∈ K(F), we refer to the formula Tr [F i] as a
suffix and to number k as the depth of induction. Thus, the search can be split into two
phases: (a) find the smallest suffix while using the maximal depth of induction allowed (for
that suffix), and (b) minimizing the depth of induction k for the value of i found in step
(a). This is captured in Alg. 8. The algorithm requires at most (N + 1) sat queries. One
downside, however, is that the formulas constructed in the first phase (line 3) are large
because the depth of induction is the maximum possible.

Algorithm 8: A top down alg. for the maximal SEL.

Input: A transition system T = (Init ,Tr ,Bad)
Input: An extendable monotone clausal safe trace F of size N
Output: max(K(F))

1 i← N
2 while i > 0 do
3 if ¬isSat(TrJF iKi+1 ∧ Bad(v̄N+1)) then break
4 i← (i− 1)

5 k ← 1
6 while k < i + 1 do
7 if ¬isSat(TrJF iKk ∧ Bad(v̄N+1)) then break
8 k ← (k + 1)

9 return (i, k)

29

Algorithm 9: A bottom up alg. for the maximal SEL.

Input: A transition system T = (Init ,Tr ,Bad)
Input: An extendable monotone clausal safe trace F of size N
Output: max(K(F))

1 j ← N
2 while j > 0 do
3 if ¬isSat(TrJF jK1 ∧ Bad(v̄N+1)) then break
4 j ← (j − 1)

5 (i, k)← (j, 1) ; j ← (j + 1) ; `← 2
6 while ` ≤ (j + 1) ∧ j ≤ N do
7 if isSat(TrJF jK` ∧ Bad(v̄N+1)) then `← (` + 1)
8 else
9 (i, k)← (j, `)

10 j ← (j + 1)

11 return (i, k)

Bottom-up SEL. Alg. 9 searches for a SEL by first finding a maximal regular extension
level (line 2) and then searching for larger SELs (lines 6 to 10). Observe that if (j, `) 6∈
K(F), then ∀p > j · (p, `) 6∈ K(F). This is used at line 7 to increase the depth of induction
once it is known that (j, `) 6∈ K(F). On the other hand, if (j, `) ∈ K(F), there might
be a larger SEL (j + 1, `). Thus, whenever a SEL (j, `) is found, it is stored in (i, k) and
the search continues (line 10). The algorithm terminates when there are no more valid
SEL candidates and returns the last valid SEL. Note that ` is incremented only when
there does not exists a larger SEL with the current value of `. Thus, for each valid level
j, if there exists SELs with level j, the algorithm is guaranteed to find the largest such
SEL. Moreover, the level is increased at every possible opportunity. Hence, at the end
(i, k) = maxK(F).

In the worst case, Alg. 9 makes at most 3N sat queries. However, compared to Alg. 8,
the queries are smaller. Moreover, the computation is incremental and can be aborted with
a sub-optimal solution after execution of line 5 or line 9. Note that at line 5, i is a regular
extension level (i.e., as in Avy), and every execution of line 9 results in a larger SEL.

30

0 50 100 150 200 250 300
Instances

0

250

500

750

1000

1250

1500

1750

Ti
m

e
ta

ke
n

(s
)

kavy
avy
pdr

(a) Safe HWMCC instances.

0 5 10 15 20 25 30
Instances

0

100

200

300

400

Ti
m

e
ta

ke
n

(s
)

kavy
avy
k-induction
pdr

(b) shift instances.

Figure 4.1: Runtime comparison on SAFE HWMCC instances (a) and shift instances (b).

4.3 Evalution

We implemented kAvy on top of the Avy Model Checker1. For line 5 of Algorithm 6 we
used Algorithm 8. We evaluated kAvy’s performance against a version of Avy [77] from
the Hardware Model Checking Competition 2017 [14], and the Pdr engine of ABC [35].
We have used the benchmarks from HWMCC’14, ’15, and ’17. Benchmarks that are not
solved by any of the solvers are excluded from the presentation. The experiments were
conducted on a cluster running Intel E5-2683 V4 CPUs at 2.1 GHz with 8GB RAM limit
and 30 minutes time limit.

The results are summarized in Table 4.1. The HWMCC has a wide variety of bench-
marks. We aggregate the results based on the competition, and also benchmark origin
(based on the name). Some named categories (e.g., intel) include benchmarks that have
not been included in any competition. The first column in Table 4.1 indicates the cate-
gory. Total is the number of all available benchmarks, ignoring duplicates. That is, if a
benchmark appeared in multiple categories, it is counted only once. Numbers in brackets
indicate the number of instances that are solved uniquely by the solver. For example,
kAvy solves 14 instances in oc8051 that are not solved by any other solver. The VBS
column indicates the Virtual Best Solver — the result of running all the three solvers in
parallel and stopping as soon as one solver terminates successfully.

Overall, kAvy solves more safe instances than both Avy and Pdr, while taking less

1All code, benchmarks, and results are available at https://arieg.bitbucket.io/avy/

31

https://arieg.bitbucket.io/avy/

Table 4.1: Summary of instances solved by each tool. Timeouts were ignored when com-
puting the time column.
BENCHMARKS kAvy Avy Pdr VBS

safe unsafe time(m) safe unsafe time(m) safe unsafe time(m) safe unsafe

HWMCC’ 17 137 (16) 38 499 128 (3) 38 406 109 (6) 40 (5) 174 150 44
HWMCC’ 15 193 (4) 84 412 191 (3) 92 (6) 597 194 (16) 67 (12) 310 218 104
HWMCC’ 14 49 27 (1) 124 58 (4) 26 258 55 (6) 19 (2) 172 64 29

intel 32 (1) 9 196 32 (1) 9 218 19 5 (1) 40 33 10
6s 73 (2) 20 157 81 (4) 21 (1) 329 67 (3) 14 51 86 21

nusmv 13 0 5 14 0 29 16 (2) 0 38 16 0
bob 30 5 21 30 6 (1) 30 30 (1) 8 (3) 32 31 9
pdt 45 1 54 45 (1) 1 57 47 (3) 1 62 49 1
oski 26 89 (1) 174 28 (2) 92 (4) 217 20 53 63 28 93

beem 10 1 49 10 2 32 20 (8) 7 (5) 133 20 7
oc8051 34 (14) 0 286 20 0 99 6 (1) 1 (1) 77 35 1
power 4 0 25 3 0 3 8 (4) 0 31 8 0
shift 5 (2) 0 1 1 0 18 3 0 1 5 0
necla 5 0 4 7 (1) 0 1 5 (1) 0 4 8 0

prodcell 0 0 0 0 1 28 0 4 (3) 2 0 4
bc57 0 0 0 0 0 0 0 4 (4) 9 0 4

Total 326 (19) 141 (1) 957 319 (8) 148 (6) 1041 304 (25) 117 (17) 567 370 167

time than Avy (we report time for solved instances, ignoring timeouts). The VBS column
shows that kAvy is a promising new strategy, significantly improving overall performance.
In the rest of this section, we analyze the results in more detail, provide detailed run-
time comparison between the tools, isolate the effect of the new k-inductive strategy and
compare the two algorithms that compute SEL.

To compare the running time, we present scatter plots comparing kAvy and Avy
(Figure 4.2a), and kAvy and Pdr (Figure 4.2c). In both figures, kAvy is at the bottom.
Points above the diagonal are better for kAvy. Compared to Avy, whenever an instance is
solved by both solvers, kAvy is often faster, sometimes by orders of magnitude. Compared
to Pdr, kAvy and Pdr perform well on very different instances. This is similar to the
observation made by the authors of the original paper that presented Avy [77]. Another
indicator of performance is the depth of convergence. This is summarized in Figure 4.2b
and Figure 4.2d. kAvy often converges much sooner than Avy. The comparison with
Pdr is less clear which is consistent with the difference in performance between the two.
To get the whole picture, Figure 4.1a presents a cactus plot that compares the running
times of the algorithms on all these benchmarks.

To isolate the effects of k-induction, we compare kAvy to a version of kAvy with
k-induction disabled, which we call vanilla. Conceptually, vanilla is similar to Avy
since it extends the trace using a 1-inductive extension trace, but its implementation is
based on kAvy. The results for the running time and the depth of convergence are shown

32

0 250 500 750 1000 1250 1500 1750

kavy

0

250

500

750

1000

1250

1500

1750

av
y

(a) kAvy vs Avy on running time

0 20 40 60 80 100 120 140

kavy

0

50

100

150

200

250

av
y

(b) kAvy vs Avy on depth

0 250 500 750 1000 1250 1500 1750

kavy

0

250

500

750

1000

1250

1500

1750

pd
r

(c) kAvy vs Pdr on running time

0 20 40 60 80 100 120 140

kavy

0

50

100

150

200
pd

r

(d) kAvy vs Pdr on depth

0 250 500 750 1000 1250 1500 1750

kavy

0

250

500

750

1000

1250

1500

1750

va
ni
lla

(e) kAvy vs vanilla on running time

0 20 40 60 80 100 120 140

kavy

0

50

100

150

200

250

va
ni
lla

(f) kAvy vs vanilla on depth

Figure 4.2: Comparing running time ((a), (c), (e)) and depth of convergence ((b), (d), (f))
of Avy, Pdr and vanilla with kAvy. kAvy is shown on the x-axis. Points above the
diagonal are better for kAvy. Only those instances that have been solved by both solvers
are shown in each plot.

33

0 250 500 750 1000 1250 1500

top-down

0

250

500

750

1000

1250

1500

1750

bo
t-u

p

(a) top-down vs bot-up

0 25 50 75 100 125 150

top-down

0

25

50

75

100

125

150

bo
t-u

p

(b) top-down vs bot-up

Figure 4.3: Comparing running time (a) and depth of convergence (b) of top-down and
bottom-up algorithms

in Figure 4.2e and Figure 4.2f, respectively. The results are very clear — using strong
extension traces significantly improves performance and has non-negligible affect on depth
of convergence.

We discovered one family of benchmarks, called shift, on which kAvy performs order-
s of magnitude better than all other techniques. The benchmarks come from encoding
bit-vector decision problem into circuits [53, 79]. The shift family corresponds to deciding
satisfiability of (x+y) = (x << 1) for two bit-vectors x and y. The family is parameterized
by bit-width. The property is k-inductive, where k is the bit-width of x. The results of
running Avy, Pdr, k-induction(Algorithm 1)2, and kAvy are shown in Figure 4.1b. Ex-
cept for kAvy, all techniques exhibit exponential behavior in the bit-width, while kAvy
remains constant. Deeper analysis indicates that kAvy finds a small inductive invariant
while exploring just two steps in the execution of the circuit. At the same time, neither in-
ductive generalization nor k-induction alone are able to consistently find the same invariant
quickly.

Searching for the maximal strong extension level is a crucial step in kAvy involving
many queries to a sat oracle. There are instances where this steps proves to be a bottleneck
in kAvy. Figure 4.3 compares kAvy implemented using top-down (Algorithm 8) and
bottom-up (Algorithm 9) search for maximal SEL. The top-down search is slightly faster
on many instances in the benchmark suite (Figure 4.3a). However, on most instances,
kAvy converges at the same depth irrespective of the algorithm used (Figure 4.3b).

2We used the k-induction engine ind in Abc [22].

34

Chapter 5

Related work, Conclusions and
Future work

Related work. kAvy builds on top of the ideas of Pdr. The use of interpolation for
generating an inductive trace is inspired by Avy. While conceptually, our algorithm is
similar to Avy, its proof of correctness is non-trivial and is significantly different from
that of Avy. We are not aware of any other work that combines interpolation with strong
induction.

There are two prior attempts enhancing Pdr-style algorithms with strong induction.
Pd-Kind [46] is an SMT-based Model Checking algorithm for infinite-state systems in-
spired by Pdr. It infers k-inductive invariants driven by the property whereas kAvy
infers 1-inductive invariants driven by k-induction. Pd-Kind uses recursive blocking with
interpolation and model-based projection to block bad states, and strong induction to
propagate (push) lemmas to next level. While the algorithm is very interesting it has not
been adapted to the SAT-based setting (i.e. SMC) which makes it impossible to compare
on HWMCC instances directly.

The closest related work is KIC3 [41]. It modifies the counterexample queue manage-
ment strategy in Pdr to utilize strong induction during blocking. The main limitation is
that the value for k must be chosen statically (k = 5 is reported for the evaluation). kAvy
also utilizes strong induction during blocking but computes the value for k dynamically.
Unfortunately, the implementation is not available publicly and we could not compare with
it directly.

35

Conclusions. Algorithms that consruct inductive invariants incrementally have displaced
those based on strong induction in hardware model checking. In this thesis, we show that
strong induction is more concise than induction. We then present kAvy— an SMC al-
gorithm that effectively uses strong induction to guide interpolation and incremental con-
struction of inductive invariants. kAvy searches both for a good inductive strengthening
and for the most effective induction depth. We have implemented kAvy on top of the Avy
Model Checker. The experimental results on HWMCC instances show that our approach
is effective.

Future work. In [46], it was suggested that proving a separation between strong induc-
tion and induction would entail new complexity results on quantifier elimination. This
might be a fruitful direction to extend the theory results from this thesis.

The inductive invariants generated by both Avy and kAvy depend on the interpolant
generated by the underlying sat solver. One way to guide the interpolant is to abstract
away parts of the transision relation before generating the interpolant. This was shown to
be effective in Avy. Preliminary experiments on kAvy also showed that under the right
abstraction, kAvy could converge at a lower depth on many benchmarks. However, the
overhead of finding a good abstraction outwieghed the benefits. Reducing this overhead is
a challenge.

One of the current limitations of kAvy is that it is not compatible with aggressive
simplifications during BMC [78]. This was a big let down especially in the 6s class of
benchmarks. Addressing this is left for future work.

The search for the maximal SEL is an overhead in kAvy. There could be benchmarks
in which this overhead outweighs its benefits. However, we have not come across such
benchmarks so far. In such cases, kAvy can choose to settle for a sub-optimal SEL as
mentioned in section 4.2. Deciding when and how much to settle for remains a challenge.

36

References

[1] IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2000,
October 30 - Novemver 5, 2000, Takamatsu, Japan. IEEE, 2000.

[2] Proceedings of 9th International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA. IEEE, 2009.

[3] Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, Oc-
tober 20-23, 2013. IEEE, 2013.

[4] Erika Ábrahám and Klaus Havelund, editors. Tools and Algorithms for the Construc-
tion and Analysis of Systems - 20th International Conference, TACAS 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings, volume 8413 of Lecture Notes
in Computer Science. Springer, 2014.

[5] Rajeev Alur and Doron A. Peled, editors. Computer Aided Verification, 16th Inter-
national Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Proceedings,
volume 3114 of Lecture Notes in Computer Science. Springer, 2004.

[6] Gilles Audemard, Jean-Marie Lagniez, Nicolas Szczepanski, and Sébastien Tabary. An
adaptive parallel SAT solver. In Principles and Practice of Constraint Programming
- 22nd International Conference, CP 2016, Toulouse, France, September 5-9, 2016,
Proceedings, pages 30–48, 2016.

[7] Julia M. Badger and Kristin Yvonne Rozier, editors. NASA Formal Methods - 11th In-
ternational Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019, Proceedings,
volume 11460 of Lecture Notes in Computer Science. Springer, 2019.

[8] Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner, and Wol-
fram Schulte, editors. Fields of Logic and Computation II - Essays Dedicated to Yuri

37

Gurevich on the Occasion of His 75th Birthday, volume 9300 of Lecture Notes in
Computer Science. Springer, 2015.

[9] Anton Belov and João Marques-Silva. MUSer2: An Efficient MUS Extractor. JSAT,
8(3/4):123–128, 2012.

[10] Ryan Berryhill, Alexander Ivrii, Neil Veira, and Andreas G. Veneris. Learning support
sets in IC3 and Quip: The good, the bad, and the ugly. In 2017 Formal Methods in
Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017, pages
140–147, 2017.

[11] Olaf Beyersdorff and Christoph M. Wintersteiger, editors. Theory and Applications
of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018,
Proceedings, volume 10929 of Lecture Notes in Computer Science. Springer, 2018.

[12] Armin Biere and Roderick Bloem, editors. Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes
in Computer Science. Springer, 2014.

[13] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbol-
ic Model Checking without BDDs. In Tools and Algorithms for Construction and
Analysis of Systems, 5th International Conference, TACAS ’99, Held as Part of the
European Joint Conferences on the Theory and Practice of Software, ETAPS’99, Am-
sterdam, The Netherlands, March 22-28, 1999, Proceedings, pages 193–207, 1999.

[14] Armin Biere, Tom van Dijk, and Keijo Heljanko. Hardware model checking competi-
tion 2017. In Stewart and Weissenbacher [74], page 9.

[15] Per Bjesse and Anna Slobodová, editors. International Conference on Formal Methods
in Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November
02, 2011. FMCAD Inc., 2011.

[16] Nikolaj Bjørner and Arie Gurfinkel, editors. 2018 Formal Methods in Computer Aided
Design, FMCAD 2018, Austin, TX, USA, October 30 - November 2, 2018. IEEE,
2018.

[17] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko.
Horn clause solvers for program verification. In Fields of Logic and Computation II -

38

Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, pages 24–51,
2015.

[18] Roderick Bloem and Natasha Sharygina, editors. Proceedings of 10th International
Conference on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano,
Switzerland, October 20-23. IEEE, 2010.

[19] Mihaela Gheorghiu Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi,
editors. NASA Formal Methods - Third International Symposium, NFM 2011, Pasade-
na, CA, USA, April 18-20, 2011. Proceedings, volume 6617 of Lecture Notes in Com-
puter Science. Springer, 2011.

[20] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In Verification,
Model Checking, and Abstract Interpretation - 12th International Conference, VMCAI
2011, Austin, TX, USA, January 23-25, 2011. Proceedings, pages 70–87, 2011.

[21] Guillaume Brat, Neha Rungta, and Arnaud Venet, editors. NASA Formal Methods,
5th International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16, 2013.
Proceedings, volume 7871 of Lecture Notes in Computer Science. Springer, 2013.

[22] Robert K. Brayton and Alan Mishchenko. ABC: An Academic Industrial-Strength
Verification Tool. In CAV, pages 24–40, 2010.

[23] Ed Brinksma and Kim Guldstrand Larsen, editors. Computer Aided Verification,
14th International Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002,
Proceedings, volume 2404 of Lecture Notes in Computer Science. Springer, 2002.

[24] Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark Dermot Ryan, editors. Mod-
eling and Verification of Parallel Processes, 4th Summer School, MOVEP 2000,
Nantes, France, June 19-23, 2000, volume 2067 of Lecture Notes in Computer Science.
Springer, 2001.

[25] Adrien Champion, Alain Mebsout, Christoph Sticksel, and Cesare Tinelli. The Kind 2
Model Checker. In Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages 510–517,
2016.

[26] Swarat Chaudhuri and Azadeh Farzan, editors. Computer Aided Verification - 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part II, volume 9780 of Lecture Notes in Computer Science. Springer, 2016.

39

[27] Alessandro Cimatti. Industrial applications of model checking. In Cassez et al. [24],
pages 153–168.

[28] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. IC3 modulo
theories via implicit predicate abstraction. In Ábrahám and Havelund [4], pages 46–61.

[29] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem, edi-
tors. Handbook of Model Checking. Springer, 2018.

[30] Rance Cleaveland, editor. Tools and Algorithms for Construction and Analysis of
Systems, 5th International Conference, TACAS ’99, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam,
The Netherlands, March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in
Computer Science. Springer, 1999.

[31] William Craig. Three uses of the herbrand-gentzen theorem in relating model theory
and proof theory. J. Symb. Log., 22(3):269–285, 1957.

[32] Nadia Creignou and Daniel Le Berre, editors. Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, volume 9710 of Lecture Notes in Computer Science. Springer, 2016.

[33] Leonardo Mendonça de Moura, Sam Owre, Harald Rueß, John M. Rushby, Natarajan
Shankar, Maria Sorea, and Ashish Tiwari. SAL 2. In Computer Aided Verification,
16th International Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004, Pro-
ceedings, pages 496–500, 2004.

[34] Niklas Eén, Alan Mishchenko, and Nina Amla. A single-instance incremental SAT
formulation of proof- and counterexample-based abstraction. In Proceedings of 10th
International Conference on Formal Methods in Computer-Aided Design, FMCAD
2010, Lugano, Switzerland, October 20-23, pages 181–188, 2010.

[35] Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient implementation of
property directed reachability. In International Conference on Formal Methods in
Computer-Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November 02,
2011, pages 125–134, 2011.

[36] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B), pages 995–1072. 1990.

40

[37] Chuchu Fan, Bolun Qi, Sayan Mitra, and Mahesh Viswanathan. Dryvr: Data-driven
verification and compositional reasoning for automotive systems. In Majumdar and
Kuncak [59], pages 441–461.

[38] Pierre-Löıc Garoche, Temesghen Kahsai, and Cesare Tinelli. Incremental invariant
generation using logic-based automatic abstract transformers. In NASA Formal Meth-
ods, 5th International Symposium, NFM 2013, Moffett Field, CA, USA, May 14-16,
2013. Proceedings, pages 139–154, 2013.

[39] Bernhard Gramlich, Dale Miller, and Uli Sattler, editors. Automated Reasoning - 6th
International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, volume 7364 of Lecture Notes in Computer Science. Springer, 2012.

[40] Arie Gurfinkel and Alexander Ivrii. Pushing to the top. In Formal Methods in
Computer-Aided Design, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015.,
pages 65–72, 2015.

[41] Arie Gurfinkel and Alexander Ivrii. K-induction without unrolling. In 2017 Formal
Methods in Computer Aided Design, FMCAD 2017, Vienna, Austria, October 2-6,
2017, pages 148–155, 2017.

[42] Hamed Hatami, Pierre McKenzie, and Valerie King, editors. Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017. ACM, 2017.

[43] Marijn Heule, Warren A. Hunt Jr., and Nathan Wetzler. Trimming while checking
clausal proofs. In Formal Methods in Computer-Aided Design, FMCAD 2013, Port-
land, OR, USA, October 20-23, 2013, pages 181–188, 2013.

[44] Matti Järvisalo, Marijn Heule, and Armin Biere. Inprocessing rules. In Automated
Reasoning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June
26-29, 2012. Proceedings, pages 355–370, 2012.

[45] Ranjit Jhala and David A. Schmidt, editors. Verification, Model Checking, and Ab-
stract Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, US-
A, January 23-25, 2011. Proceedings, volume 6538 of Lecture Notes in Computer
Science. Springer, 2011.

[46] Dejan Jovanovic and Bruno Dutertre. Property-directed k-induction. In 2016 For-
mal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA, USA,
October 3-6, 2016, pages 85–92, 2016.

41

[47] Warren A. Hunt Jr. and Steven D. Johnson, editors. Formal Methods in Computer-
Aided Design, Third International Conference, FMCAD 2000, Austin, Texas, USA,
November 1-3, 2000, Proceedings, volume 1954 of Lecture Notes in Computer Science.
Springer, 2000.

[48] Warren A. Hunt Jr. and Fabio Somenzi, editors. Computer Aided Verification, 15th In-
ternational Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings,
volume 2725 of Lecture Notes in Computer Science. Springer, 2003.

[49] Hari Govind V. K., Yakir Vizel, Vijay Ganesh, and Arie Gurfinkel. Interpolating
strong induction. CoRR, abs/1906.01583, 2019.

[50] Temesghen Kahsai, Yeting Ge, and Cesare Tinelli. Instantiation-based invariant dis-
covery. In NASA Formal Methods - Third International Symposium, NFM 2011,
Pasadena, CA, USA, April 18-20, 2011. Proceedings, pages 192–206, 2011.

[51] Roope Kaivola and Thomas Wahl, editors. Formal Methods in Computer-Aided De-
sign, FMCAD 2015, Austin, Texas, USA, September 27-30, 2015. IEEE, 2015.

[52] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. Smt-based model checking for
recursive programs. Formal Methods in System Design, 48(3):175–205, 2016.

[53] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Complexity of fixed-size bit-
vector logics. Theory Comput. Syst., 59(2):323–376, 2016.

[54] Oliver Kullmann, editor. Theory and Applications of Satisfiability Testing - SAT 2009,
12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.
Proceedings, volume 5584 of Lecture Notes in Computer Science. Springer, 2009.

[55] Robert P. Kurshan. Transfer of model checking to industrial practice. In Clarke et al.
[29], pages 763–793.

[56] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. Learning rate
based branching heuristic for SAT solvers. In Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, pages 123–140, 2016.

[57] Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay
Ganesh. Machine learning-based restart policy for CDCL SAT solvers. In Theory and
Applications of Satisfiability Testing - SAT 2018 - 21st International Conference, SAT
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July
9-12, 2018, Proceedings, pages 94–110, 2018.

42

[58] Bjørnar Luteberget, Koen Claessen, and Christian Johansen. Design-time railway
capacity verification using SAT modulo discrete event simulation. In Bjørner and
Gurfinkel [16], pages 1–9.

[59] Rupak Majumdar and Viktor Kuncak, editors. Computer Aided Verification - 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part I, volume 10426 of Lecture Notes in Computer Science. Springer, 2017.

[60] Kenneth L. McMillan. Applying SAT methods in unbounded symbolic model checking.
In Computer Aided Verification, 14th International Conference, CAV 2002,Copen-
hagen, Denmark, July 27-31, 2002, Proceedings, pages 250–264, 2002.

[61] Kenneth L. McMillan. Interpolation and SAT-Based Model Checking. In Computer
Aided Verification, 15th International Conference, CAV 2003, Boulder, CO, USA,
July 8-12, 2003, Proceedings, pages 1–13, 2003.

[62] Kenneth L. McMillan. Interpolation and model checking. In Handbook of Model
Checking., pages 421–446. 2018.

[63] Alain Mebsout and Cesare Tinelli. Proof certificates for SMT-based model checkers for
infinite-state systems. In 2016 Formal Methods in Computer-Aided Design, FMCAD
2016, Mountain View, CA, USA, October 3-6, 2016, pages 117–124, 2016.

[64] Alan Mishchenko, Michael L. Case, Robert K. Brayton, and Stephen Jang. Scal-
able and scalably-verifiable sequential synthesis. In 2008 International Conference on
Computer-Aided Design, ICCAD 2008, San Jose, CA, USA, November 10-13, 2008,
pages 234–241, 2008.

[65] Sani R. Nassif and Jaijeet S. Roychowdhury, editors. 2008 International Conference on
Computer-Aided Design, ICCAD 2008, San Jose, CA, USA, November 10-13, 2008.
IEEE Computer Society, 2008.

[66] Antti Pakonen, Topi Tahvonen, Markus Hartikainen, and Mikko Pihlanko. Practical
applications of model checking in the finnish nuclear industry. In 10th International
Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine
Interface Technologies, NPIC and HMIT 2017, volume 2, pages 1342–1352, United
States, 1 2017. American Nuclear Society ANS. Project: 113347.

[67] Ruzica Piskac and Muralidhar Talupur, editors. 2016 Formal Methods in Computer-
Aided Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016. IEEE,
2016.

43

[68] Toniann Pitassi and Robert Robere. Strongly exponential lower bounds for monotone
computation. In Hatami et al. [42], pages 1246–1255.

[69] Michel Rueher, editor. Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, September 5-9, 2016, Proceed-
ings, volume 9892 of Lecture Notes in Computer Science. Springer, 2016.

[70] Claude E Shannon. The synthesis of two-terminal switching circuits. In The Bell
System Technical Journal, pages 59–98, 1949.

[71] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking Safety Properties
Using Induction and a SAT-Solver. In Formal Methods in Computer-Aided Design,
Third International Conference, FMCAD 2000, Austin, Texas, USA, November 1-3,
2000, Proceedings, pages 108–125, 2000.

[72] Reid G. Simmons, Charles Pecheur, and Grama Srinivasan. Towards automatic verifi-
cation of autonomous systems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2000, October 30 - Novemver 5, 2000, Takamatsu, Japan
[1], pages 1410–1415.

[73] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryp-
tographic problems. In Kullmann [54], pages 244–257.

[74] Daryl Stewart and Georg Weissenbacher, editors. 2017 Formal Methods in Computer
Aided Design, FMCAD 2017, Vienna, Austria, October 2-6, 2017. IEEE, 2017.

[75] Tayssir Touili, Byron Cook, and Paul Jackson, editors. Computer Aided Verifica-
tion, 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, volume 6174 of Lecture Notes in Computer Science. Springer, 2010.

[76] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In
Proceedings of 9th International Conference on Formal Methods in Computer-Aided
Design, FMCAD 2009, 15-18 November 2009, Austin, Texas, USA, pages 1–8, 2009.

[77] Yakir Vizel and Arie Gurfinkel. Interpolating property directed reachability. In Com-
puter Aided Verification - 26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings, pages 260–276, 2014.

[78] Yakir Vizel, Arie Gurfinkel, and Sharad Malik. Fast Interpolating BMC. In Computer
Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, pages 641–657, 2015.

44

[79] Yakir Vizel, Alexander Nadel, and Sharad Malik. Solving linear arithmetic with SAT-
based model checking. In 2017 Formal Methods in Computer Aided Design, FMCAD
2017, Vienna, Austria, October 2-6, 2017, pages 47–54, 2017.

45

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Contributions

	Background
	SAT-based model checking
	Model checking using strong induction
	Model checking using Interpolation
	Incremental construction of inductive invariants
	PDR
	Avy

	Separation between strong induction and induction
	Separation between 1-induction and 2-induction
	Validating certificates for strong induction and induction
	PDR vs strong induction on Cxorn

	Generalization of the counter circuit

	Kavy
	Extending a trace with strong induction
	Searching for the maximal SEL
	Evalution

	Related work, Conclusions and Future work
	References

