
Local Reasoning for Parameterized
First Order Protocols

by

Rylo Ashmore

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Rylo Ashmore 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

First Order Logic (FOL) is a powerful reasoning tool for program verification. Recent
work on Ivy shows that FOL is well suited for verification of parameterized distributed
systems. However, specifying many natural objects, such as a ring topology, in FOL is un-
expectedly inconvenient. We present a framework based on FOL for specifying distributed
multi-process protocols in a process-local manner together with an implicit network topol-
ogy. In the specification framework, we provide an auto-active analysis technique to reason
about the protocols locally, in a process-modular way. Our goal is to mirror the way de-
signers often describe and reason about protocols. By hiding the topology behind the FOL
structure, we simplify the modelling, but complicate the reasoning. To deal with that, we
use an oracle for the topology to develop a sound and relatively complete proof rule that
reduces reasoning about the implicit topology back to pure FOL. This completely avoids
the need to axiomatize the topology. Using the rule, we establish a property that reduces
verification to a fixed number of processes bounded by the size of local neighbourhoods.
We show how to use the framework on a few examples, including leader elections on rings
and trees.

iii

Acknowledgements

First, I offer enormous thanks to my professional collaborators. Most importantly,
my co-supervisors, Arie Gurfinkel and Richard Trefler offered guidance and motivation to
make this work as rigorous as possible. Without this, there is no way this work would have
been completed. I also offer gratitude to Oded Padon and Sharon Shoham for helping
understand how Ivy works, and reviewing some of my work within Ivy. I am further
grateful to the readers of this thesis, Grant Weddell and Derek Rayside.

Second, I thank my parents, Linda and Gerry Ashmore, for their continuing support
thoughout my studies. Their support was invaluable to continuing studies in service of this
thesis.

Thirdly, I present my gratefulness for the friends that I have met while at Waterloo,
as well as those who maintained strong relationships from my undergraduate experience.
While all of them are deeply appreciated, I make a special note for Ben Roque and Steph
McIntyre, who accompanied me on a break from school for a road trip.

I would further like to acknowledge the work of the many lecturers and professors I
have served as a TA for while at Waterloo. I greatly value the opportunity to hold office
hours and help teach other students, and it is quite interesting seeing how many different
ways core concepts can be expressed and permuted.

Finally, I acknowledge that this thesis is funded in part by a Cheriton scholarship.

iv

Table of Contents

List of Figures vii

1 Introduction 1

2 Background 4

2.1 FOL syntax and semantics. 4

2.2 FOL modulo structures . 5

2.3 First Order Transition Systems. 5

3 First Order Protocols 8

3.1 Network Topology . 8

3.2 Example: Red-Black Rings . 9

3.3 FOP Definition . 10

4 Local Reasoning 14

4.1 Verifying FO-Protocols using First Order Logic 14

4.2 Soundness and Completeness . 17

4.2.1 Soundness. 17

4.2.2 Small model property. 18

4.2.3 Relative Completeness. 18

v

5 Case Studies 21

5.1 Example: Leader Election Ring Protocol 21

5.2 Leader Election Tree Protocol . 23

5.2.1 Modelling of Tree Leader Election 24

5.2.2 Verification of Tree Leader Election 26

5.2.3 Sanity Checks . 28

6 Conclusion 31

6.1 Related Work . 31

6.2 Conclusion . 32

References 33

APPENDICES 36

A symbols 37

B Ivy Code 42

B.1 Red-Black Rings Example Protocol . 42

B.2 Ring Leader Election . 45

B.3 Tree Leader Election . 48

C btw Ring 52

C.1 Finite Models and Ring Axioms . 52

vi

List of Figures

1.1 A description of a unidirectional ring in FOL as presented by Ivy [20]. . . . 2

3.1 An example of a topology and a protocol. 9

3.2 A FO-protocol description of the system from Fig. 3.1. 12

3.3 An FOTS of the protocol in Fig. 3.2. 12

4.1 Characteristics χRed(∅, q) and χRed(Mod(p), q) for the RBR topology. . . . 16

4.2 The verification conditions VCRed for the red process invariant. 16

5.1 A model of the Leader Election protocol as a FO-protocol. 22

5.2 Local inductive invariant Invlead(x, y, z) for Leader Election from Fig. 5.1. . 23

5.3 A leader election protocol over trees. We use ∃p′ 6= p′′ to denote there exist
two distinct elements p′, p′′, and ∃!p′· to denote that there exists one unique
element satisfying the property. 24

5.4 A pair of example states of the tree protocol. 25

vii

Chapter 1

Introduction

Auto-active[10] and automated verification engines are now commonly used to analyze the
behavior of safety- and system-critical multi-process distributed systems. Applying the
analysis techniques early in the design cycle has the added advantage that any errors or
bugs found are less costly to fix than if one waits until the system is deployed. There-
fore, it is typical to seek a proof of safety for parametric designs, where the number of
participating program components is not yet determined, but the inter-process commun-
ciation fits a given pattern, as is common in routing or communication protocols, and
other distributed systems.

Recently, Ivy [20] has been introduced as a novel auto-active verification technique (in
the style of Dafny [10]) for reasoning about parameterized systems. Ivy models protocols
in First Order Logic (FOL). The verification conditions are compiled (with user help) to a
decidable fragment of FOL, called Effectively Propositional Reasoning (EPR) [21]. Ivy is
automatic in the sense that the verification engineer only provides an inductive invariant.
Furthermore, unlike Dafny, it guarantees that the verification is never stuck inside the
decision procedure (verification conditions are decidable).

In representing a protocol in Ivy, an engineer must formally specify the entire protocol,
including the topology. For instance, in verifying the leader election on a unidirectional
ring, Ivy requires an explicit axiomatization of the ring topology, as shown in Fig. 1.1.
The predicate btw(x, y, z) means that a process y is between processes x and z in the ring;
similarly, next(a, b) means that b is an immediate neighbour of a on the ring. All (finite)
rings satisfy the axioms in Fig. 1.1. The converse is not true in general. For instance, take
the rationals Q and let btw(x, y, z) be defined as x < y < z ∨ y < z < x ∨ z < x < y.
All axioms of btw are satisfied, but the only consistent interpretation of next is an empty

1

∀x, y, z · btw(x, y, z)⇒ btw(y, z, x)

∀w, x, y, z · btw(w, x, y) ∧ btw(w, y, z)⇒ btw(w, x, z)

∀w, x, y · btw(w, x, y)⇒ ¬btw(w, y, x)

∀w, x, y · distinct(w, x, y)⇒ (btw(w, x, y) ∨ btw(w, y, x))

∀a, b · (next(a, b) ⇐⇒ ∀x · x 6= a ∧ x 6= b⇒ btw(a, b, x))

Figure 1.1: A description of a unidirectional ring in FOL as presented by Ivy [20].

set. This satisfies all the axioms, but does not define a ring. For the axioms in Fig. 1.1,
all finite models of btw and next describe rings, as shown in Appendix C. This is not an
issue for Ivy, since infinite models do not need to be considered for EPR. Such reasoning is
non-trivial and is a burden on the verification engineer1. As another example, we were not
able to come up with an axiomatization of rings of alternating red and black nodes (shown
in Fig. 3.1a) within EPR. In general, a complete axiomatization of the topology might be
hard to construct.

In this paper, we propose to address this problem by specifying the topology inde-
pendently of process behaviour. We present a framework which separates the two and
provides a clean way to express the topology. We then specify our transitions locally, as
this is a natural and common way to define protocols. Once these preliminaries are done,
we provide a process-local proof rule to verify properties of the system. To generate the
proof rule, we offload topological knowledge to an oracle that can answer questions about
the topology. Finally, we prove various properties of the proof rule.

In summary, the thesis makes the following contributions. First, in Sec. 3, we show
how to model protocols locally in FOL. This is an alternative to the global modelling used
in Ivy. Second, in Sec. 4.1, we show a proof rule with verification conditions (VC) in FOL,
which are often in EPR. When the VC is in EPR, this gives an engineer a mechanical check
of inductiveness. This allows reasoning about topology without axiomatizing it. Third,
in Sec. 4.2, we show that our proof rule (a) satisfies a small model property, and (b) is
relatively complete. The first guarantees the verification can be done on small process
domains; the second ensures that our proof rule is relatively expressive.

We illustrate our approach on a few examples. First, as a running example, motivated
by [17], is a protocol on rings of alternating red and black nodes. These rings globally have

1The proof given is by hand, a full formal proof verified by machine would be an even greater burden.

2

only rotational symmetry, however, they have substantial local symmetry [12, 16, 17]. This
symmetry consists of two equivalence classes, one of red nodes, and one of black nodes.
Second, in Sec. 5.1, we consider a modified version of the leader election protocol from Ivy
[20]. This is of particular interest, since the local symmetry of [12, 16, 17] has not been
applied to leader election. We thus extend [12, 16, 17] by both allowing more symmetries
and infinite-state systems. Finally, we outline and verify a leader electin protocol on
undirected binary trees motivated by [6]

3

Chapter 2

Background

This section will establish the basic ideas and notation needed in the rest of this work. In
particular, we define the language of First Order Logic in Section 2.1 and append it with
structures in Section 2.2. Finally, in Section 2.3, we define transition systems, building up
to a definition of first-order transition systems and their specifications.

2.1 FOL syntax and semantics.

We assume some familiarity with the standard concepts of many sorted First Order Logic
(FOL). A signature Σ consists of sorted predicates, functions, and constants. Terms are
variables, constants, or (recursively) k-ary functions applied to k other terms of the correct
sort. For every k-ary predicate P and k terms t1, . . . , tk of the appropriate sort for P , the
formula P (t1, . . . , tk) is an atomic well-formed formula (wff). The full set of wffs are the
boolean combinations of wffs and quantified (universally or existentially) wffs. Namely, if
ψ and ϕ are wffs, then so are (ψ ∧ ϕ), (ψ ∨ ϕ),(¬ψ), (ψ ⇒ ϕ),(ψ ⇐⇒ ϕ), (∀x · ψ), and
(∃x · ψ). A parse tree places the most recently used connective or quantifier at top, and
sub-formulae underneath. Suppose the wff ψ has a parse tree as a subgraph of ϕ’s parse
tree. Then we say ψ is in the scope of ϕ. A variable x in an atomic formula ψ is bound
if ψ is in the scope of a quantifier of x. A variable not bound is free. A wff with no free
variables is called a sentence. For convenience, we often drop unnecessary parenthesis, and
use > to denote true and ⊥ to denote false.

An FOL interpretation I over a domain D assigns every k-ary predicate P a sort-
appropriate semantic interpretation I(P) : Dk → {T, F}; to every k-ary function f a sort-
appropriate interpretation I(f) : Dk → D, and to every constant c an element I(c) ∈ D.

4

Given an interpretation I and a sentence ψ, then either ψ is true in I (denoted, I |= ψ),
or ψ is false in I (denoted I 6|= ψ). The definition of the models relation is defined on the
structure of the formula as usual, for example, I |= (ϕ ∧ ψ) iff I |= ϕ and I |= ψ. We
write |= ϕ if for every interpretation I, I |= ϕ.

We write I(Σ′) to denote a restriction of an interpretation I to a signature Σ′ ⊆ Σ.
Given disjoint signatures Σ,Σ′ and corresponding interpretations I, I ′ over a fixed domain
D, we define I ⊕ I ′ to be an interpretation of Σ ∪ Σ′ over domain D defined such that
(I ⊕ I ′)(t) = I(t) if t ∈ Σ, and (I ⊕ I ′)(t) = I ′(t) if t ∈ Σ′. Given interpretation I and
sub-domain D′ ⊆ D of sort S, where D′ contains all constants of sort S, we let I(D′) be
the interpretation where the sort S is restricted to domain D′, and all other sorts remain
the same.

2.2 FOL modulo structures

We use an extension of FOL to describe structures, namely graphs. In this case, the signa-
ture Σ is extended with some pre-defined functions and predicates, and the interpretations
are restricted to particular intended interpretations of these additions to the signature. We
identify a structure class C with its signature ΣC and an intended interpretation. We write
FOLC for First Order Logic over the structure class C. Common examples are FOL over
strings, FOL over trees, and other finite structures.

A structure S = (D, I) is an intended interpretation I for structural predicates/functions
ΣC over an intended domain D. A set of structures is denoted C. The syntax of FOLC is
given by the syntax for FOL with signature Σ]ΣC (where Σ is an arbitrary disjoint signa-
ture). For semantics, any FOL interpretation I over domain D (with structure (D, IC) ∈ C)
of signature Σ leads to an FOLC interpretation I ⊕ IC of the signature Σ] ΣC. We write
|=C ϕ iff every FOLC interpretation I satisfies I |= ϕ. For our purposes, we further in-
troduce a process sort Proc and require the intended domain D to be exactly the set of
Proc-sorted elements, so that we put our intended structure on the processes.

2.3 First Order Transition Systems.

We use First Order Transitions Systems from Ivy [20, 19]. While the original definition
was restricted to the EPR fragment of FOL, we do not require this. A transition system
is a tuple Tr = (S, S0, R), where S is a set of states, S0 ⊆ S is a set of initial states, and

5

R ⊆ S × S is a transition relation. A trace π is a (finite or infinite) sequence of states
π = s0 · · · si · · · such that s0 ∈ S0 and for every 0 ≤ i < |π|, (si, si+1) ∈ R, where |π|
denotes the length of π, or ∞ if π is infinite. A transition system may be augmented with
a set B ⊆ S of bad states. The system is safe iff all traces contain no bad states. A set
of states I is inductive iff S0 ⊆ I and if s ∈ I and (s, s′) ∈ R, then s′ ∈ I. Showing the
existence of an inductive set I that is disjoint from bad set B suffices to show a transition
system is safe.

A First-Order Transition System Specification (FOTSS) is a tuple (Σ, ϕ0, τ) where Σ is
an FOL signature, ϕ0 is a sentence over Σ and τ is a sentence over Σ]Σ′, where] denotes
disjoint union and Σ′ = {t′ | t ∈ Σ}. The semantics of a FOTSS are given by First Order
Transition Systems (FOTS). Let D be a fixed domain. A FOTSS (Σ, ϕ0, τ) defines a FOTS
over D as follows: S = {I | I is an FOL interpretation over D}, S0 = {I ∈ S | I |= ϕ0},
and R = {(I1, I2) ∈ S × S | I1 ⊕ I ′2 |= τ}, where I ′2 interprets Σ′. We may augment a
FOTSS with a FOL sentence Bad , giving bad states in the FOTS by I ∈ B iff I � Bad .
A FOTSS is safe if all of its corresponding FOTS are safe, and is unsafe otherwise. That
is, a FOTSS is unsafe if there exists at least one FOTS corresponding to it that has at
least one execution that reaches a bad state. A common way to show a FOTSS is safe is
to give a formula Inv such that |= ϕ0 ⇒ Inv and |= Inv ∧ τ ⇒ Inv ′. Then for any FOTS
over domain D, the set I ⊆ S given by I = {I ∈ S | I |= Inv} is an inductive set, and
|= Inv ⇒ ¬Bad then suffices to show that the state sets I, B in the FOTS are disjoint.
Finding an invariant Inv satisfying the three conditions above proves the system safe.

Example 2.3.1. Consider the following FOTSS:

Σ , {Even,+, 1, var} ϕ0 , Even(var)

τ , (var′ = (var + 1) + 1) ∧ Unch(Even,+, 1) Bad , ¬Even(var)

where Unch(Even,+, 1) means that Even, +, and 1 have identical interpretations in the
pre- and post-states of τ .

Our intention is to model a program that starts with an even number in a variable
var and increments var by 2 at every transition. It is an error if var ever becomes odd.
A natural invariant to conjecture is Inv , Even(var). However, since the signature is
uninterpreted, the FOTSS does not model our intention.

For example, let D = {0, 1, 2}, I0(Even) = {1, 2}, I0(1) = 1, I0(+)(a, b) = a + b
mod 3, and I0(var) = 1. Thus, I0 |= ϕ0. Let I1 be the same as I0, except I1(var) = 0.
Then, I0 ⊕ I ′1 |= τ and I1 |= Bad . Thus, this FOTSS is unsafe.

6

One way to explicate our intention in Example 2.3.1 is to axiomatize the uninterpreted
functions and relations in FOL as part of ϕ0 and τ . Another alternative is to restrict their
interpretation to a particular structure. This is the approach we take in this paper. We
define a First-Order (relative to C) Transition System Specification (FOCTSS).

We need to be able to talk about the structural objects in ΣC, and so we require that
every FOCTSS (Σ, ϕ0, τ) be an FOTSS with ΣC ⊆ Σ. Once we have these structural
objects, any structure (D, IC) ∈ C gives a FOCTS with states I where I(ΣC) = IC, initial
states I where I |= ϕ0, transitions (I1, I2) where I1 ⊕ I ′2 |= τ , and bad states I for
which I |= Bad . Essentially, FOCTSS/FOCTS are the same as FOTSS/FOTS, except
we have pre-emptively chosen some C. Then, all Σ are restricted to contain ΣC and all
interpretations I are restricted to interpret ΣC according to some structure in C.

7

Chapter 3

First Order Protocols

We introduce the notion of a First-Order Protocol (FOP) to simplify and restrict specifi-
cations in a FOTSS. We choose restrictions to make our protocols asynchronous compo-
sitions of processes over static network topologies. Each process description is relative to
its process neighbourhood. For example, a process operating on a ring has access to its
immediate left and right neighbours, and transitions are restricted to these processes. This
simplifies the modelling.

3.1 Network Topology

We begin with formalizing the concept of a network topology. As a running example,
consider a Red-Black-Ring (RBR) topology, whose instance with 4 processes is shown in
Fig. 3.1a. Processes are connected in a ring of alternating Red and Black processes. Each
process is connected to two neighbours using two links, labelled left and right , respectively.
From the example it is clear how to extend this topology to rings of arbitrary (even) size.

To formalize this, we assume that there is a unique sort Proc for processes. Define
ΣC = ΣCE] ΣCT to be a topological signature, where ΣCE is a set of unary Proc-sorted
functions and ΣCT is a set of distinct k-ary Proc-sorted predicates. Functions (sometimes
predicates) in ΣCE correspond to communication edges, such as left and right in our example.
Predicates in ΣCT correspond to classes of processes, such as Red and Black in our example.
For simplicity, we assume that all classes have the same arity k. We often omit k from
the signature when it is contextually clear. We are now ready to define the concept of a
network topology:

8

p2
0 p2

1

p2
2p2

3

Black

Red

(a) Red-Black-Ring of 4 process. Dashed ar-
rows are right , and solid are left .

Init : var ← null

Tr : black ⇒ right .var ← r

red⇒ right .var ← b

Bad : red ∧ var = b

(b) A simple protocol over Red-Black-Ring
topology.

Figure 3.1: An example of a topology and a protocol.

Definition 3.1.1. A network topology C over a topological signature ΣC is a collection of
directed graphs G = (V,E) augmented with an edge labelling dir : E → ΣCE and k-node
labelling kind : V k → ΣCT . Given a node p in a graph G = (V,E) from a network topology
C, the neighbourhood of p is defined as nbd(p) = {p} ∪ {q | (p, q) ∈ E}. A network is
deterministic if for every distinct pair q, r ∈ nbd(p) \ {p}, dir(p, q) 6= dir(p, r). That is,
each neighbour of p corresponds to a distinct name in ΣE. If network topology C has any
non-deterministic network G ∈ C, then C is non-deterministic.

Given a deterministic network G ∈ C, the intended interpretation of a predicate P ∈ ΣCT
is the set of all nodes in the network topology labelled by P , and the intended interpretation
of a function f ∈ ΣCE is such that f(p) = q if an edge (p, q) is labelled by f and f(p) = p,
otherwise.

Given a non-deterministic network G ∈ C, the intended interpretation of a predicate
ΣCT is the same as the deterministic case. The main difference is that P ∈ ΣCE are treated
as relations rather than functions. Namely, for P ∈ ΣCE, we have P (p, q) iff dir(p, q) = P

Each graphG in a network topology C provides a possible intended interpretation for the
sort of processes Proc, and the edge and node labelling provide the intended interpretation
for predicates and functions in ΣC.

3.2 Example: Red-Black Rings

Example 3.2.1. For our running example, consider the protocol informally shown in
Fig. 3.1b described by a set of guarded commands. The protocol is intended to be executed
on the RBR topology shown in Fig. 3.1a. Initially, all processes start with their state

9

variable var set to a special constant null. Then, at each step, a non-deterministically
chosen process, sends a color to its right. Every black process sends a red color r, and
every red process sends a black color b. It is bad if a Red process ever gets a black color.

To formalize the topology, for each n > 1, let Gn = (Vn, En), where Vn = {pni |
0 ≤ i < 2n}, and En = {(pni , pnj) | |i − j| mod 2n = 1}. The edge labelling is given by
dir(pni , p

n
j) = right if j = (i+1) mod n and left if j = (i−1) mod n. Processes have colour

kind(pni) = Red if i is even, and Black if i is odd. Finally, we define RBR = {Gn | n ≥ 2}
as the class of Red-Black Rings (RBR).

Note that any set of graphs G with an upper bound on the out-degree of any vertex can
be given a finite labelling according to the above definition. Further, if G has unbounded
out-degree, an engineer may analyze a bounded sub-class G ′ ⊂ G of the network topology.

3.3 FOP Definition

Once we have specified the topology, we want to establish how processes transition. We
define the syntax and semantics of a protocol.

A protocol signature Σ is a disjoint union of a topological signature ΣC, a state signature
ΣS, and a background signature ΣB. Recall that all functions and relations in ΣC are of sort
Proc. All elements of ΣS have arity of at least 1 with the first and only the first argument of
sort Proc. Elements of ΣB do not allow arguments of sort Proc at all. Intuitively, elements
of ΣC describe how processes are connected, elements of ΣS describe the current state of
some process, and elements of ΣB provide background theories, such as laws of arithmetic
or uninterpreted functions.

For an interpretation I, and a set of processes P ⊆ I(Proc), we write I(ΣS)(P) for
the interpretation I(ΣS) restricted to processes in P . Similarly, we may retain topological
knowledge and simply write I(P)1. Intuitively, we look only at the states of P and ignore
the states of all other processes.

Definition 3.3.1. A First-Order Protocol (FO-protocol) is a tuple P = (Σ, Init(~p),
Mod(p),TrLoc(p), C), where Σ is a protocol signature; Init(~p) is a formula with k free

1These definitions require no constants be in Σ, but we have already asserted that all elements of ΣC

have arity at least min(k, 2), ΣS have arity greater than or equal to one, and ΣB cannot contain process-
sorted elements; thus constants are already dis-allowed for k ≥ 1. The k = 0 case is pathological, however,
since invariants will not quantify over any processes anyways.

10

variables ~p of sort Proc; Mod(p) is a set of terms {t(p) | t ∈ dir(E)} ∪ {p}; TrLoc(p) is
a formula over the signature Σ ∪ Σ′ with free process variable p, and C is a deterministic
network topology. Furthermore, Init(~p) is of the form

∧
P∈ΣC

T
(P (~p)⇒ InitP (~p)), and each

InitP is a formula over Σ \ΣC (an initial state described without reference to topology for
each relevant topological class); and terms of sort Proc occurring in TrLoc(p) are a subset
of Mod(p).

For non-deterministic networks, Mod(p) is not defined. Rather, the restriction on TrLoc
is the following: If Proc-sorted term t appears in TrLoc, then it must be (at some higher
level) of the form ∃t · P (p, t) ∧ ϕ(t) for some P ∈ ΣCE. Namely, we non-deterministically
choose a process t which satisfies an edge of type P and resolve the transition ϕ.

Note that the semantic local neighbourhood nbd(p) and the set of syntactic terms
in Mod(p) have been connected. Namely, for every edge (p, q) ∈ E, there is a term
t(p) ∈ Mod(p) to refer to q, and for every term t(p) ∈ Mod(p), we will refer to some
process in the neighbourhood of p.

A formal description of our running example is given in Figure 3.2 as a FO-protocol.
We define the signature including ΣC = {left , right ,Red ,Black}, the initial states Init(p) in
the restricted form, and modification set Mod(p), where we allow processes to only write to
their local neighbourhood. Next, we specify two kinds of transitions, a red tr and a black
tb transition. Each writes to their right neighbour the colour they expect that process
to be. Each process p does not change the var states of p, left(p) ∈ Mod(p). Finally, we
specify our local transitions TrLoc(p) by allowing each of the sub-transitions. Note that all
process-sorted terms in TrLoc(p) are in Mod(p) = {left(p), p, right(p)}, and we are allowed
to call on topological predicates in TrLoc, finishing our specification.

The semantics of a protocol P are given by a FOCTSS as shown in Fig. 3.3. The
protocol signature Σ is the same in the FOCTSS as in the FOP. Initially, ϕ0 requires
that all k-tuples of a given topology satisfy a topology-specific initial state. Second, to
take a transition τ , some process takes a local transition TrLoc(p) modifying states of
processes that can be described using the terms in Mod(p). Frame(p), Unch(y) guarantee
that the transition does not affect local state of processes that are outside of Mod(p).
Finally, UnMod makes all functions and predicates in the background signature retain
their interpretation during the transition. Overall, this describes a general multiprocess
asynchronous protocol.

For non-deterministic network topologies, Frame(p) , UnMod ∧∀y ·
∧

P∈ΣC
E
¬P (p, y)⇒

Unch(y), since Mod(p) is undefined.

11

Const = {null/0, r/0, b/0} Func = {left/1, right/1, var/1}
Pred = {Red/1, Black/1,=/2} Σ = (Const,Func,Pred)

Init(p) = (Red(p)⇒ var(p) = null) ∧ (Black(p)⇒ var(p) = null)

Mod(p) = {p, right(p), left(p)}
tr(p) = var′(right(p)) = b ∧ var′(p) = var(p) ∧ var′(left(p)) = var(left(p))

tb(p) = var′(right(p)) = r ∧ var′(p) = var(p) ∧ var′(left(p)) = var(left(p))

TrLoc(p) = (Red(p)⇒ tr(p)) ∧ (Black(p)⇒ tb(p))

Figure 3.2: A FO-protocol description of the system from Fig. 3.1.

ϕ0 , ∀~p · Init(~p) τ , ∃p · TrLoc(p) ∧ Frame(p)
Frame(p) , UnMod ∧ (∀y · y 6∈Mod(p)⇒ Unch(y)))

Unch(y) ,

(∧
P∈PredS

∀~v · P (y,~v) ⇐⇒ P ′(y,~v)

)
∧

(∧
f∈FuncS

∀~v · f(y,~v) = f ′(y,~v)

)

UnMod ,

(∧
P∈PredB

∀~v · P (~v) ⇐⇒ P ′(~v)

)
∧

(∧
f∈FuncB

∀~v · f(~v) = f ′(~v)

)

Figure 3.3: An FOTS of the protocol in Fig. 3.2.

This definition of a FO-protocol places some added structure on the notion of FOTSS.
It restricts how transition systems can be specified, which might seem like a drawback.
On the contrary, the added structure provides two benefits. First, it removes the need for
axiomatizing the network topology, since the topology is given semantically by C. Second,
the system guarantees that we model asynchronous composition of processes with local
transitions – a common framework for specifying and reasoning about protocols.

To show safety of such a system, we will be concerned with invariants which only discuss
a few processes, say Inv(~p) where ~p = p1, . . . , pk. Then our FO-invariants will be of the
form ∀~p ·Inv(~p), and substituting ϕ0 into our background, we find a natural check for when

12

a given formula is inductive:

InvOk(Inv) , ((∀~p · Init(~p))⇒ (∀~p · Inv(~p))) ∧ (((∀~p · Inv(~p)) ∧ τ)⇒ (∀~p · Inv ′(~p)))

Indeed, by unpacking definitions, one sees that |=C InvOk means that every state on any
trace of a FOCTS satisfies ∀~p · Inv(~p), and thus it suffices to check that |=C ∀~p · Inv(~p)⇒
¬Bad to prove safety. We, however, will focus on the task of verifying a candidate formula
as inductive or not.

To decide if a candidate is inductive or not requires reasoning in FOLC. However,
reasoning about FOL extended with an arbitrary topology is difficult (or undecidable in
general). We would like to reduce the verification problem to pure FOL. One solution is to
axiomatize the topology in FOL – this is the approach taken by Ivy[20]. Another approach
is to use properties of the topology to reduce reasoning about FO-protocols to FOL. This is
similar to the use of topology to reduce reasoning about parameterized finite-state systems
to reasoning about finite combinations of finite-state systems in [16]. In the next section,
we show how this approach can be extended to FO-protocols.

13

Chapter 4

Local Reasoning

In this section, we present a technique for reducing verification of FO-protocols over a given
network topology C to a decision problem in pure FOL. We assume that we are given a

(modular) inductive invariant ∀~q · Inv(~q) of the form
(
∀~q ·

∧
Top∈ΣC

T
Top(~q)⇒ InvTop(~q)

)
.

That is, Inv has a local inductive invariant InvTop(~q) for each topological class Top.

Given a First-Order Protocol and candidate invariant, we want to know if |=C InvOk .
But deciding this is hard, and so we show that deciding validity of InvOk can be done
in pure FOL using modular verification conditions in the style of Owicki-Gries [18] and
Paramaterized Compositional Model Checking [16].

4.1 Verifying FO-Protocols using First Order Logic

The input to our procedure is a formula InvTop over signature ΣB]ΣS for each topological
class Top ∈ ΣCT . The VC is a conjunction of sentences ensuring that for each tuple of
processes ~q in a topological class Top, InvTop(~q) is true initially, is stable under a transition
of one process in ~q, and is stable under interference by any other process p whose execution
might affect some qi ∈ ~q. If the VC is FOL-valid, an inductive invariant has been found.
If not, there will be a local violation to inductiveness, which may correspond to a global
violation.

Formally, VC (Inv) is a conjunction of statements of the following two forms:

∀~q · (CrossInitTop(~q)⇒ InvTop(~q)) (4.1)

∀p, ~q · ((CrossInvTop(Mod(p), ~q) ∧ τ)⇒ Inv ′Top(~q)) (4.2)

14

Statements of form (4.1) require that every local neighbourhood of ~q that satisfies all
appropriate initial states also satisfies ~q’s invariant. Statements of form (4.2) capture
both transitions where p = qi for some i, or process p acts and modifies qi ∈ nbd(p),
since p is quantified universally. All that remains is to formally construct the statements
CrossInit ,CrossInv . In order to do so, we construct a local characteristic formula χTop(A, ~q)
of a process ~q (satisfying Top(~q)) and neighbourhood A for each topological class Top ∈ ΣCT .
Intuitively, we aim for χ(A, ~q) to encode the available local neighbourhoods of processes in
A and ~q in C.

Let χTop(A, ~q) be the strongest formula that satisfies |=C ∀~q · Top(~q) ⇒ χTop(A, ~q),
subject to the following syntactic restrictions. A formula is a candidate for χTop(A, ~q) when
it is (1) over signature ΣCT ∪ΣCE ∪ {=}, (2) contains only terms A∪ {qi | qi ∈ ~q}, and (3) is
in CNF and all literals from ΣCT appear in positive form. The syntactic restrictions are to
capture when elements of A, ~q satisfy various topological notions given by signature ΣCE∪{=
}. We also never force some processes to be outside of some topological class. Intuitively,
χ is a formula that captures all topological knowledge derivable from the topology given
that we know that Top(~q) holds. For instance, in RBR, we have χRed(∅, q) = Red(q), while
expanding this for A = {left(p), p, right(p)} results in the following formula. We drop some
trivial statements and convert away from CNF for readability. For instance, left , right are
inverse functions.

χRed({left(p), p, right(p)}, q) = Red(q) ∧ distinct(left(p), p, right(p))∧
((Red(left(p)) ∧ Black(p) ∧ Red(right(p)) ∧ p 6= q)∨
(Black(left(p)) ∧ Red(p) ∧ Black(right(p)) ∧ distinct(left(p), right(p), q)))

These characteristics are illustrated in Figure 4.1. When we just look at χRed(∅, q),
we find q is red. However, if we expand our local reasoning to the characteristic
χRed(Mod(p), q), we find that there are two options given by RBR. One option is p is
red, and q = p is optional (dotted lines), while q 6= left(p), right(p). Alternatively, p is
black, and q 6= p, but q could be left(p), right(p), or neither.

Once we have χTop(A, ~q), we can define our statements CrossInitTop , CrossInvTop .
First, CrossInitTop(~q) is obtained from χTop(∅, ~q) by replacing every instance of Topi(~q)
with InitTopi

(~q). We build our interference constraints in a similar way. We construct
CrossInvTop(~q) by modifying χTop(Mod(p), ~q)1. Namely, we obtain CrossInvTop(Mod(p), ~q)
from χTop(Mod(p), ~q) by replacing every instance of Topi(~q) with (Topi(~q) ∧ InvTopi

(~q)).

1For non-deterministic topologies, an engineer may make terms for each element of a local neighbour-
hood and explicitly tell an engine to assume they are connected by the relevant edge type, then using the
explicitly named terms instead of Mod(p).

15

pq l(p)

r(p) q

p l(p)

r(p) q

Black

Red

Figure 4.1: Characteristics χRed(∅, q) and χRed(Mod(p), q) for the RBR topology.

∀p · Initred(p)⇒ Inv red(p) (4.3)
∀p, q · (Red(q) ∧ Inv red(q) ∧ Red(left(p)) ∧ Inv red(left(p))∧
Black(p) ∧ Inv black(p) ∧ Red(right(p)) ∧ Inv red(right(p))∧

p 6= q ∧ distinct(left(p), p, right(p)))⇒ Inv ′red(q) (4.4)

∀p, q · (Red(q) ∧ Inv red(q) ∧ Black(left(p)) ∧ Inv black(left(p))∧
Red(p) ∧ Inv red(p) ∧ Black(right(p)) ∧ Inv black(right(p))∧

distinct(left(p), right(p), q) ∧ distinct(left(p), p, right(p)))⇒ Inv ′red(q) (4.5)

V CP,1(Inv red , Inv black) , (4.3) ∧ (4.4) ∧ (4.5) (4.6)

Figure 4.2: The verification conditions VCRed for the red process invariant.

Example 4.1.1. The VC generated by the RBR topology may be partitioned into VCRed

and VCBlack , each consisting of the statements whose conclusions are InvRed , Inv ′Red and
Inv black , Inv ′black , respectively. VCRed is shown in Fig. 4.2. The conditions for VCBlack are
symmetric. One can check that

Inv red(p) , var(p) 6= b Inv black(p) , >

is an inductive invariant for the protocol in Fig. 3.1.

In practice, the role of the χ-computing oracle can be filled by a verification engineer. A
description of local neighbourhoods starts by allowing all possible neighbourhoods. Then,
an engineer may dismiss local configurations that cannot occur on the topology as they
occur.

16

4.2 Soundness and Completeness

In this section, we present soundness and relative completeness of our verification procedure
from Section 4.1.

4.2.1 Soundness.

To show soundness, we present a model-theoretic argument to show that whenever the
verification condition from Section 4.1 is valid in FOL, then the condition InvOk is valid
in FOL extended with the given topology C.

Theorem 4.2.1. Given a FO-protocol P and a local invariant per topological class
InvTop1

(~p), . . . , InvTopn
(~p), if � V C(Inv), then �C InvOk(Inv).

Proof. Assume |= V C(Inv). We show that InvOk(Inv) is valid in FOLC by showing that
any pair of FOLC interpretations I and I ′ satisfy V C(Inv) as FOL interpretations, and
this is strong enough to guarantee I ⊕ I ′ |= InvOk(Inv), and thus I ⊕ I ′ |=C InvOk(Inv).

Let I, I ′ be FOLC interpretations over some G = (V,E) ∈ C. Then I ⊕ I ′ |= V C(Inv)
because V C(Inv) is valid and I ⊕ I ′ is an FOL interpretation.

We first show that I |= (∀~p · Init(~p)⇒ ∀~p · Inv(~p)). Suppose that I � ∀~p · Init(~p). Let ~p
be an aribtrary tuple in G. If I |= ¬Topi(~p) for every Topi ∈ ΣT , then Inv(~p) follows vacu-
ously. Otherwise, suppose I |= Topi(~p). Then by definition of χ, we obtain I |= χTopi

(∅, ~p)
since I is a C interpretation, so I |= Topi(~p) ⇒ χTopi

(∅, ~p). Since I |= ∀~p · Init(~p), this
gives us that I |= CrossInit(~p) (for any Topj(~p

′) in χTopi
(∅, ~p), find that Init(~p′), and thus

Topj(~p
′) implies InitTopj

(~p′), giving CrossInit). Since I |= CrossInitTopi
(~p) and I |= V C,

we get I |= CrossInitTopi
(~p)⇒ InvTopi

(~p), finally giving us I |= InvTopi
(~p), as desired.

Second, we show that I ⊕ I ′ |= (∀~p · Inv(~p)) ∧ τ ⇒ (∀~p · Inv(~p)). Suppose that
I |= ∀~p · Inv(~p) and I ⊕ I ′ |= TrLoc(p) ∧ Frame(p) for some p ∈ V . We show
that I ′ |= ∀~q · Inv ′(~q). Let ~q ∈ V k be an arbitrary process tuple. If I ′ 6|= Topi(~q)
for all 1 ≤ i ≤ n, then I ′ |= Inv ′(~q) vacuously. Suppose I ′ |= Topi(~q) for some
Topi ∈ ΣT . Then since I is a C interpretation, I |= Topi(~q) ⇒ χTopi

(Mod(p), ~q), and so
I |= χTopi

(Mod(p), ~q). Again by instantiating ∀~p·Inv(~p) on terms in Mod(p), ~q, we may ob-
tain that I |= CrossInv(Mod(p), ~q). Combined, we have I ⊕I ′ |= CrossInv(Mod(p), ~q)∧ τ .
Applying V C finally gives InvTopi

(~q). Thus both conjuncts of InvOk(Inv) are satisfied,
giving our result.

17

Intuitively, the correctness of Theorem 4.2.1 follows from the fact that any interpreta-
tion under FOLC is also an interpretation under FOL, and all preconditions generated for
VC are true under any FOLC interpretation.

4.2.2 Small model property.

Checking validity of universally quantified statements in FOL is in the fragment EPR, and
thus we obtain a result saying that we only need to consider models of a given size. This
means that a FOL solver needs to only reason about finitely many elements of sort Proc.
It further means that topologies such as RBR may be difficult to compile to EPR in Ivy,
but our methodology guarantees our verifications will be in EPR.

Theorem 4.2.2. If |= V C(Inv) for all process domains of size at most |Mod(p)|+ k, then
|=C InvOk(Inv).

Proof. By contrapositive, suppose 6�C InvOk(Inv). Then, by Theorem 4.2.1, 6|= V C(Inv).
Let I ⊕ I ′ be a falsifying interpretation. It contains an assignment to Mod(p) and ~q, or to
~p that makes at least one statement in V C(Inv) false. Then I ⊕ I ′(Mod(p)∪ ~q) or I(~p) is
also a counter-model to V C(Inv), but with at most |Mod(p)|+k elements of sort Proc.

4.2.3 Relative Completeness.

We show that our method is relatively complete for local invariants that satisfy the com-
pletability condition. Let ϕ(~p) be a formula of the form

∧n
i=1(Topi(~p) ⇒ ϕTopi

(~p)) with
ϕTopi

(~p) over the signature ΣS ∪ΣB. Intuitively, ϕ(~p) is completable if every interpretation
I that satisfies ∀~p ·ϕ(~p) and is consistent with some C-interpretation IG can be extended to
a full C-interpretation that satisfies ∀~p·ϕ(~p). Formally, ϕ is completable relative to topology
C iff for every interpretation I with domain U ⊆ V for G = (V,E) ∈ C with an intended
interpretation IG such that (I] IG)(U) |= ∀~p ·ϕ(~p), there exists an interpretation J with
domain V s.t. (J] IG) |= ∀~p · ϕ and I(U) = J (U). To obtain relative completeness, we
use a lemma for when a FOL interpretation can be lifted to a C interpretation.

Lemma 4.2.1. If FOL interpretation I of signature ΣC satisfies I |= χTop(A, ~q), then there
exists a C interpretation J of the same signature with J |= χTop(A, ~q) and I |= ti = tj iff
J |= ti = tj for terms ti, tj ∈ A ∪ ~q.

18

Proof. Let I |= χTop(A, ~q). Let ϕ(A, ~q) be the conjunction of all atomic formulae over the
signature {=} and statements ¬Topj(~q

′) that is true of elements of A, ~q in interpretation
I. If no C interpretation J |= Top(~q) ∧ ϕ(A, ~q), then we can add the clause ¬ϕ(A, ~q)
to χTop(A, ~q), thus strengthening it (this is stronger since I |= Top(~q), 6|= ¬ϕ(A, ~q), and
is true of every interpretation modelling Top(~q)). However, this violates the assumptions
that χTop is as strong as possible. Thus, some J |= Top(~q) ∧ ϕ(A, ~q). Note that J
already satisfies ti = tj iff I satisfies ti = tj since every statement of =, 6= is included in
ϕ(A, ~q). Finally, since J is a C interpretation and J |= Top(~q), then J |= χTop(A, ~q) by
definition.

Theorem 4.2.3. Given an FO-protocol P , if |=C InvOk(Inv) and both Inv(~p) and Init(~p)
are completable relative to C, then |= V C(Inv).

Proof. By contra-positive, we show that given a completable local invariant Inv(~p), if
V C(Inv) is falsifiable in FOL, then InvOk(Inv) is falsifiable in FOLC. Suppose V C(Inv)
is not valid, and let I ⊕ I ′ by such that I ⊕ I ′ 6|= V C(Inv). We consider two cases – a
violation initially or inductively.

Case 1: Initialization: For some processes ~p = (p1, . . . , pk) and 1 ≤ i ≤ |ΣCT |,
I |= CrossInitTopi

(~p) and I 6|= InvTopi
(~p). Modify I(ΣT) for every ~q so that Topj(~q) is

interpreted to be true iff InitTopj
(~q) is true. Noting that all initial conditions are outside of

the signature ΣCT , we observe that this is done without loss of generality. Since our construc-
tion maintains Topi(~q) ⇒ InitTopi

(~q) for all ~q ⊆ {pi}k, we maintain I |= CrossInitTopi
(~p).

Thus we conclude now that I |= χTopi
(∅, ~p). Applying Lemma 4.2.1 to I(ΣC), we get a

C interpretation J |= χTopi
(∅, ~pC). Since this model has the same equalities of terms ~pC

in J as ~p in I, we may copy the states I(ΣS)(pi) to J (ΣS)(pCi). Set J (ΣB) = I(ΣB).
Since Init is completable by assumption, we complete J (ΣS ∪ ΣB)(~p) to J (ΣS ∪ ΣB),
completing our construction of J interpreting ΣC ∪ ΣS ∪ ΣB. Note that J |= ∀~p · Init(~p),
but J |= Topi(~p

C) ∧ ¬InvTopi
(~pC), thus showing that InvOk(Inv) is falsifable in FOLC.

Case 2: Inductiveness: For some p, ~q, and 1 ≤ i ≤ |ΣCT |, we have I |=
CrossInvTopi

(Mod(p), ~q), (I ⊕ I ′) |= TrLoc(p) ∧ Frame(p), and I ′ 6|= InvTopi
(~q). By

construction, |= CrossInv(Mod(p), ~q) ⇒ χTopi
(Mod(p), ~q). Applying Lemma 4.2.1 to

I(ΣC) |= χTopi
(Mod(p), ~q), we get a C interpretation of ΣCT , J |= χTopi

(Mod(pC), ~qC).
We extend this to a full model J ⊕ J ′ of signature ΣC ∪ ΣS ∪ ΣB, and its primed copy.
We set J ′(ΣC) = J (ΣC). Then, since J and I, and J ′ and I ′ share equalties across
terms in Mod(p) ∪ ~q and Mod(pC) ∪ ~qC, we can lift states from terms t ∈ Mod(p) ∪ ~q

19

by J (ΣS ∪ ΣB)(tC) , I(ΣS ∪ ΣB)(t) and J ′(Σ′S)(tC) , I ′(Σ′S)(t). Since Inv is com-
pletable, we complete J (ΣS ∪ΣB)(Mod(pC ∪ ~qC) to J (ΣS ∪ΣB) and clone the completion
to J ′(ΣS ∪ ΣB)(V \ (Mod(pC) ∪ ~qC)). Overall, this completes the interpretation J ⊕ J ′.

Note that J |= ∀~p · Inv(~p) by construction. Similarly, J ⊕J ′ |= τ since I ⊕ I ′ |= τ(p)
and Mod(p) terms are lifted directly from I and I ′ to J and J ′. Finally, J ′ |= ¬Inv ′Topi

(~q)
since J ′(ΣS) is lifted directly from I ′(ΣS ∪ΣB), which is the language of invariants. Thus,
we have shown that InvOk(Inv) is falsifiable in FOLC in this case as well.

How restrictive is the requirement of completability? Intuitively, suppose a protocol is
very restrictive about how processes interact. Then the system is likely sufficiently intricate
that trying to reason locally may be difficult independant of our FOL methodology. For
instance, the invariant we later find for leader election is not completable. However, if
equivalence classes are small, then most reasonable formulae satisfy the completability
condition.

Theorem 4.2.4. If InvTopi
(p) is satisfiable over any domain for each 1 ≤ i ≤ n and

topological predicates are of arity k = 1, then Inv(p) is completable.

Proof. Let Inv i(p) be satisfiable for each 1 ≤ i ≤ n. Then let I(V ′) be an interpretation
of ΣB] ΣS over domain V ′ ⊆ V for G = (V,E) ∈ C, such that I(V ′) |= ∀p · Inv(p). Let
p ∈ V \ V ′, suppose IG |= Topi(p) for some 1 ≤ i ≤ n. Then choose J (p) |= InvTopi

(p)
since InvTopi

(p) is satisfiable. Otherwise, if IG 6|= Topi(p) for all 1 ≤ i ≤ n, then J (p) is
chosen arbitrarily. In either case, J |= Inv(p). Make this construction for each p ∈ V \V ′.
Finally, for p ∈ V ′, define J (p) = I(p). Then J completes the partial interpretation
I.

Theorem 4.2.4 can be generalized to the case where the topological kinds ΣT are non-
overlapping, and individually completable, where by individually completable, we mean
that if Top(~p) and process states of ~p′ ⊂ ~p are given, then there is a way to satisfy Inv(~p)
without changing the states of ~p′.

20

Chapter 5

Case Studies

We proceed to illustrate our technique on two full-scale protocols; leader election on both
rings and trees. Leader election on rings is used to demonstrate the usefulness of Ivy[20],
although we modify the protocol slightly for our use. Leader election on trees provides a
fresh topology which demonstrates that we are not simply using the same axiomatization
found in Ivy.

5.1 Example: Leader Election Ring Protocol

In this section, we illustrate our approach by applying it to the well-known leader election
protocol [4]. This is essentially the same protocol used to illustrate Ivy in [20]. The goal
of the protocol is to choose a unique leader on a ring. Each process sends messages to its
neighbour on one side and receives messages from a neighbour on the other side. Initially,
all processes start with distinct identifiers, id , that are totally ordered. Processes pass ids
around the ring and declare themselves the leader if they ever receive their own id .

We implement this behaviour by providing each process a comparison variable comp.
Processes then pass the maximum between id and comp to the next process’s comp variable.
A process whose id and comp have the same value is the leader. The desired safety property
is that there is never more than one leader in the protocol.

In [20], the protocol is modelled by a global transition system. The system maintains a
bag of messages for each process. At each step, a currently waiting message is selected and
processed according to the program of the protocol (or a fresh message is generated). The

21

Const , {0/0} Func , {next/1, id/1, comp/1} Pred , {≤/2,=/2, btw /3} C , BT W
Σ , (Const,Func,Pred) LO0(≤) , LO(≤) ∧ ∀x · 0 ≤ x Mod(p) , {p, next(p)}

Init(p) , (LO0(≤) ∧ btw(x, y, z)⇒ (distinct(id(x), id(y), id(z)) ∧ 0 < id(x) ∧ comp(x) = 0))

τ1(p) , (id(p) ≤ comp(p)⇒ (comp ′(next(p)) = comp(p)))

τ2(p) , (comp(p) ≤ id(p)⇒ (comp ′(next(p)) = id(p)))

TrLoc(p) , (id(p) = id ′(p) ∧ comp(p) = comp ′(p) ∧ id ′(next(p)) = id(next(p)) ∧ τ1(p) ∧ τ2(p))

Figure 5.1: A model of the Leader Election protocol as a FO-protocol.

network topology is axiomatized, as shown in Section 1. Here, we present a local model of
the protocol and verify it locally.

Network topology. The leader election protocol operates on a ring of size at least 3.
For n ≥ 3, let Gn = (Vn, En), where Vn = {pni | 0 ≤ i < n} and En = {(pni , pnj) | 0 ≤ i <
n, j = i + 1 mod n}. Let ΣE = {next} and ΣT = {btw}, where btw is a ternary relation
such that btw(pni , p

n
j , p

n
k) iff i < j < k, j < k < i, or k < i < j. Finally, the network

topology is BT W = {Gn | n ≥ 3}. Note that while BT W can be axiomatized in FOL
(for finite models), we do not require such an axiomatization. The definition is purely
semantic, no theorem prover sees it.

A formal specification of the leader election as an FO-protocol is shown in Fig. 5.1, where
LO(≤) is an axiomatization of total order from [20], and x < y stands for x ≤ y ∧ x 6= y.
The model follows closely the informal description of the protocol given above. The safety
property is ¬Bad, where Bad = ∃x, y, z ·btw(x, y, z)∧ id(x) = comp(x)∧ id(y) = comp(y).
That is, a bad state is reached when two processes that participate in the btw relation are
both leaders.

A local invariant Invlead based on the invariant from [20] is shown in Fig. 5.2. The
invariant first says if an id passes from y to x through z, then it must witness id(y) ≥ id(z)
to do so. Second, the invariant says that if a process is a leader, then it has a maximum
id. Finally, the invariant asserts our safety property.

This invariant was found interactively with Ivy by seeking local violations to the invari-
ant. Our protocol’s btw is uninterpreted, while Ivy’s btw is explicitly axiomatized. The
inductive check assumes that the processes p, next(p), ~q all satisfy a finite instantiation of

22

(btw(x, y, z) ∧ id(y) = comp(x))⇒ (id(z) ≤ id(y))

(btw(x, y, z) ∧ id(x) = comp(x))⇒ (id(y) ≤ id(x) ∧ id(z) ≤ id(x))

(btw(x, y, z) ∧ id(x) = comp(x) ∧ id(y) = comp(y))⇒ x = y

Figure 5.2: Local inductive invariant Invlead(x, y, z) for Leader Election from Fig. 5.1.

the ring axioms (this could be done by the developer as needed if an axiomatization is
unknown, and this is guaranteed to terminate as there are finitely many relevant terms),
and btw(~q). Once the invariants are provided, the check of inductiveness is mechanical1.
Overall, this presents a natural way to model protocols for engineers that reason locally.

An uncompletable invariant The invariant for the leader election is not completable.
To see this, we present a partial interpretation I over {p3

0, p
3
2} ⊆ V3 from G3 with no

extension. We choose I(≤) to be ≤ over N, as intended. Then we choose I(id) to map
p3

0 7→ 1 and p3
2 7→ 2. We also choose I(comp) to map p3

0 7→ 0 and p3
2 7→ 1. Since no tuple

satisfies btw, this vacuously satisfies all invariants thus far. Let J be a BT W interpretation
agreeing on p3

0, p
3
2. Consider n = id(p3

1). We know id(p3
1) 6= 0, 1, 2 since we require distinct

ids across the new btw relation. But we also have id(p3
0) = comp(p3

2) and thus to satisfy
Inv we must have 1 = id(p3

2) ≥ id(p3
1) = n. Thus we seek an n ∈ N such that 1 ≥ n, but

n 6= 0, 1, which cannot exist. Thus Inv is uncompletable.

5.2 Leader Election Tree Protocol

As a second protocol, we analyze another system designed to elect a leader in a network.
We assume as a pre-requisite that a set of processes are arranged in some undirected tree.
The protocol is then described in pseudo-code in Figure 5.3. In words, when a process
is scheduled, it will count how many of it’s edges remain undirected (clearly, initally all
of them). If there are more than one, the process executes a skip command. If there is
exactly one, it directs that edge away from itself, forming a parent relation. If there are
no undirected edges and the process has an outgoing parent relation, it executes a skip

1Ivy verifications for the examples presented here can be found in Appendix B, or
github.com/ashmorer/fopExamples contains both global and local verifications.

23

Init : var ← null

Tr : ∃p′ 6= p′′ · undir(p, p′) ∧ undir(p, p′′)⇒ skip

∃!p′ · undir(p, p′)⇒ parent(p, p′)← >
¬∃p′ · undir(p, p′) ∧ ∃p′ · parent(p, p′)⇒ skip

¬∃p′ · undir(p, p′) ∧ ¬∃p′ · parent(p, p′)⇒ leader ← >
Bad : ∃p, p′ · leader(p) ∧ leader(p′) ∧ p 6= p′

Figure 5.3: A leader election protocol over trees. We use ∃p′ 6= p′′ to denote there exist two
distinct elements p′, p′′, and ∃!p′· to denote that there exists one unique element satisfying
the property.

command. Finally, if there are no undirected edges and there is no outgoing parent relation,
the process declares itself the leader. Two example states of the protocol are presented in
Figure 5.4 Intuitively, each directed edge should be viewed as a parent relation, and the
protocol builds a directed tree from the bottom-up. Only when the tree is finished being
directed does some node have all edges incident to it directed to it, and there is indeed an
unambiguous root (leader) of the tree. Because we require bounded neighbourhoods, we
will assume all nodes are degree 3 or less, thus allowing for binary trees.

5.2.1 Modelling of Tree Leader Election

We first define a FOP of this system. Because all edges are treated the same, we use a non-
deterministic FOP. First, the topology chosen is T REE3 = {(V,E) | |E| = |V | − 1,∀v ∈
V · 1 ≤ d(v) ≤ 3, (V,E) is a connected undirected graph}. Note that 1 ≤ d(v) for all v
means we are disallowing the singleton tree. We annotate the graphs with edge(x, y) iff
{x, y} ∈ E, and btw(x, y, z) if y is on the x, z-path. We introduce two state relations
parent(x, y), leader(x) to complete the signature for when edges are directed, and when a
process declares itself the leader. We use one further helper predicate, ancestor(x, y) to de-
note the transitive closure of parent(x, y). Notationally, we write ~p, ~q to denote {p1, p2, p3}
and {q1, q2, q3}, respectively. We let Mod(p) = {p} ∪ ~p denote up to three processes (they
may be aliasing as one another), each satisfying edge(p, pi) for pi ∈ ~p. Finally, we must
define Init(~q),TrLoc(p).

24

p0 p1

p2p3

p4

(a) Example state of tree protocol. Note that
p0, p1, p3 will all skip if scheduled, while p2, p4

will write p1 as their parent if scheduled.

p0 p1

p2p3

p4

(b) Following Figure 5.4a, if the next three pro-
cesses scheduled are p4, p1, and then p2, then
the protocol will elect process p2 as the leader.

Figure 5.4: A pair of example states of the tree protocol.

Initbtw(q1, q2, q3) ,
3∧

i,j=1

(¬parent(qi, qj) ∧ ¬leader(qi))

τleader(p) ,

(
3∧

i=1

parent(pi, p)

)
⇐⇒ leader ′(p)

τparent(p, pi) ,Unch(parent(pi, p))∧
(parent ′(p, pi)⇒ τancestor(p, pi))∧
(¬parent ′(p, pi)⇒ Unch(ancestor , p, pi))∧

(

(
¬parent(pi, p) ∧

∧
j 6=i

(pi = pj ∨ parent(pj, p))

)
⇐⇒

parent ′(p, pi))

τancestor(p, pi) ,∀x, y · ancestor ′(x, y) ⇐⇒
(ancestor(x, y) ∨ (x = p ∧ ancestor(pi, y))∨

(ancestor(x, p) ∧ y = pi) ∧ (x = p ∧ y = pi))

TrLoc(p) ,τleader(p, p1, p2, p3) ∧
3∧

i=1

edge(p, pi)

3∨
i=1

τparent(p, pi) ∧ ∧
pj 6=pi

Unch(parent(p, pj), parent(pj, p))


25

Initially, we require no parent relations, nor leaders. For transitions, τleader sets leader ′

to be true iff it is the parent of all incident processes. The τparent transition sets a parent
relation from p to pi iff it doesn’t already point the other way, and pi is the only choice
for p to make. The transition also calls τancestor to update the ancestor predicate to be the
transitive closure when the new edge is added (if it is added). Finally, the overall local
transition calls the leader transition τleader , and non-deterministically chooses τparent(p, pi)
for some pi ∈ ~p, and updates its parent relation. Meanwhile, the pj 6= pi are not changed.

Note that one part of our system is not local, namely τancestor . If p gains pi as a parent,
then all descendants of p will gain pi as an ancestor, regardless of how local to p they are.
However, this is acceptable since any counter-example to induction (CTI) in the global
protocol will still appear only on terms p, ~p, ~q. Therefore, a CTI will occur as well when
this transition’s quantification is just instantiated on p, ~p, ~q, and thus our verification will
still be sound.

5.2.2 Verification of Tree Leader Election

We wish to investigate whether or not this FOP satisfies our safety property: ∀x, y ·
(leader(x) ∧ leader(y))⇒ x = y. In order to do this, we seek an invariant and investigate
if the following VC’s are valid.

∀~q · CrossInitbtw(~q)⇒ Inv btw(~q) (5.1)

∀p, ~p, ~q · (CrossInv btw(p, ~p, ~q) ∧ τ(p, ~p))⇒ Inv ′btw(~q) (5.2)

In order to make CrossInit ,CrossInv , we construct a sufficiently strong χbtw in a few
ways. We first use global axioms to be instantiated on the objects p, ~p, ~q. We then provide
some local assumptions particular to the objects p, ~p, ~q. First, we list our global axioms.

∀x, y·edge(x, y)⇒ edge(y, x)

∀x, y, z·btw(x, y, z)⇒ btw(z, y, x)

∀x, y, z·btw(x, y, z)⇒ distinct(x, y, z)

∀w, x, y, z·(btw(w, x, y) ∧ btw(w, y, z))⇒ (btw(w, x, z) ∧ btw(x, y, z))

∀x, y, z·(edge(x, y) ∧ edge(y, z) ∧ x 6= z)⇒ btw(x, y, z)

∀w, x, y, z·(edge(w, x) ∧ btw(x, y, z) ∧ w 6= y)⇒ btw(w, y, z)

26

For notation, we will use x0 · · · xn to denote distinct({xi}, and there is a
x0, xn-path that includes the elements x0, . . . , xn in exactly that order. For the first two,
both the edge, btw relations are symmetric (as our networks are undirected). Axiom three
asserts that btw disallows duplicates. Next, we claim that two sub-path w x y and
w y z imply that a w x y z path exists, and thus btw(w, x, z), btw(x, y, z)
must both hold. Fifth, two (x, y), (y, z) edges with x 6= z forces the x, z path to go through
y, thus btw(x, y, z). Finally, if x y z and w is in the local neighbourhood of x, then
we have one of three cases: (1) w x y z, (2) x w y z, (3) x w = y z.
When we also assume w 6= y, we disallow case (3), and in both cases (1) and (2), we have
btw(x, y, z), the only conclusion we assert.

Secondly, we make the following local assumptions:

∧
pi∈~p

edge(p, pi)

∀y ·

∨
pi∈~p

(btw(p, pi, y) ∨ pi = y)

 ∨ y = p

btw(~q)

First, we assume the terms pi are indeed incident to p. Secondly, we assume that any
process y is either p, one of the pi, or down one branch of the pi (when we view process
p as a root). Finally, we make the obvious assumption that the ~q processes we wish to
observe satisfy btw(~q).

Finally, we will check the following invariants:

∀x, y·(leader(x) ∧ leader(y))⇒ x = y

∀x, y·ancestor(x, y)⇒ ¬ancestor(y, x)

∀x, y·leader(x)⇒ ¬ancestor(x, y)

∀x, y, z·(btw(x, y, z) ∧ ancestor(y, z))⇒ ancestor(x, y)

∀x, y, z·(ancestor(x, y) ∧ ancestor(y, z))⇒ ancestor(x, z)

∀x, y·parent(x, y)⇒ ancestor(x, y)

∀x, y·(ancestor(x, y) ∧ edge(x, y))⇒ parent(x, y)

∀x, y·(leader(x) ∧ edge(y, x))⇒ parent(y, x)

∀x, y, z·(ancestor(x, z) ∧ btw(x, y, z))⇒ (ancestor(x, y) ∧ ancestor(y, z))

27

First, we assert our safety property, that no two processes can be leaders. Next, we
assert that the ancestor relation is one-directional. Third, no leader has any ancestors.
Fourth, if y has z as an ancestor, and y is between x, z, then x must have y as an ancestor
already. This is because y should not set a parent until ancestor(x, y) holds. Next we assert
that ancestor is transitive. The next two say that parent forms a base case of ancestor .
Next-to-last, a leader is a parent to it’s local neighbourhood. Finally, if ancestor(x, z),
then ancestor holds from x to any internal node, and ancestor also holds from any internal
node to z.

5.2.3 Sanity Checks

Throughout the process of creating the model and verification of the tree leader election,
it can be easy for an engineer to accidentally assume ⊥ (false) in the model. This results
in vacuously verifying safety of the protocol. In order to convince ourselves that we have
actually modelled and verified the protocol correctly, we discuss a few sanity checks one can
take to check that the model is indeed correct. We broadly use two techniques; minimizing
the inputs to verification, and modifying the model with intentional bugs.

First, we minimize the inputs to verification. There are two main locations where we
make assumptions; Inv preconditions and χTop topological assertions. By removing parts
of each and seeing if the file still verifies, we can reduce the verification to a minimal
set of topological assumptions χTop and pre-conditions in Inv . If not many topological
assumptions are needed, but an engineer suspects the network topology is necessary for
correctness of the protocol, then this may suggest a flaw in the verification. Similarly, if
not many state pre-conditions need to be assumed (and checked in post-conditions), the
state may not be terribly relevant to the correctness of the protocol, which suggests that
assumptions on the topology may be excessively strong.

Second, we re-model the system with intentional bugs, while not changing our local
assumptions for the network topology, nor the invariant found. The simplest way to modify
the transitions is to change TrLoc(p) , >. In Ivy, this is equivalent to running a P (~x) := ∗;
command for all state predicates P . This says that during every transition, all processes
arbitrarily change state. More complex intentional bugs may be added, but they are model-
dependant. We outline a few example bugs intentionally introduced in the leader election
on tree protocols.

First, in τparent , we check that ¬parent(pi, p) holds before we write parent ′(p, pi). If we
remove this check, it results in two errors (this matches our intuition, as without this, the
protocol may correctly elect a leader p, and then have a root node p fire the τparent(p, pi)

28

action, adding an extra parent node from p to pi, thus causing two directions of parent ,
potentially causing the pi node to also declare itself a leader.

Second, in modifying τparent , we may remove the check that all pj 6= pi point to p.
This also leads fails, since internal nodes without parent relations may start setting parent
relations, rather than building up from the bottom of the tree. It is trivial then to construct
sub-paths of the form u→ v ← x→ y ← z to, which will easily lead to both v, y considering
themself leaders.

Our final informed modification is to update ancestor not as the transitive closure
of parent , but backwards, as if we were trying to define descendant . Consider a state
where parent(x, y) ∧ ancestor(x, y) holds. Our invariants remain unchanged, so this is an
acceptable pre-condition for a transition. Then, if we schedule x to re-write its parent
relation, it will do so, but it will also introduce an ancestor(y, x) relation, thus violating
our invariant that ancestor is anti-symmetric. This is needed, since, as discussed above,
we need our directed edges to only go in one direction.

The three bugs described again did indeed result in Ivy coming up with counter-
models, as did the simpler modifications of setting any one of the state predicates
(parent , ancestor , leader) to arbitrarily change. Some other arbitrary modifications to the
transition definition were considered as well, but still verified the protocol. These changes
tend to fall into two sets: (a) systems that would not be live, but still retain safety, or (b)
remove redundant checks for our particular verification method.

An example of the first case is if τparent is modified so that we require
∧

j 6=i parent(pj, p),
without allowing the option of pi = pj. Essentially, we only write parent(p, pi) when p is the
parent of all of its neighbours (before, it was all neighbours minus one). This may initially
seem like it will trigger bad states, since if parent(p, pi) requires parent(pi, p), then we will
result in bi-directional parent relations. However, this system will actually never make
progress, as some parent relation must exist before writing any further parent relations.
Unfortunately for this system, no such initial parent relations exist. Fortunately for our
model, a system that makes no progress is inherently safe. Unfortunately for our sanity,
we are reminded that we have no guarantee of liveness for our model.

The second case is really a modelling quirk of how we choose to model our system
within Ivy. In particular, we break our system down into individual local actions such as
setParent(n1 , n2), trLoc(p, p1 , p2 , p3), trC (p, p1 , p2 , p3 , q1 , q2 , q3). The first two corre-
spond to τparent(p, pi),TrLoc(p), and the third corresponds to our inductive V C check (as
we take a transition in network topology C). As such, we assume that edge(p, pi) holds for
i ∈ {1, 2, 3} in trC , but then also check that edge(n1, n2) when we reach the setParent
action. In both places it is appropriate to assume, since it should be a pre-condition to

29

setParent , and it is a derived consequence in χTop . However, taken all together, they do
result in redundant assumptions. Indeed, if we remove both of these, we result in a model
that fails.

Overall, increasing our confidence in the model requires an intimate knowledge of the
intent of the protocol. This allows an engineer to be able to make meaningful predictions
about which modifications will affect the system’s behaviour in which ways.

30

Chapter 6

Conclusion

6.1 Related Work

Finite-state parameterized verification is undecidable[2]. We have shown how analysis
techniques for parametric distributed systems composed of components running on locally
symmetric topologies, introduced in [12, 13, 14, 16, 17], can be generalized and applied
within a First Order Logic based theorem proving engine.

We based our description of leader election on Ivy’s [20]. However, the analysis carried
out in Ivy [20] is global, while the analysis given in this thesis is local, where the local
structures reason about triples of processes in the ring.

There has been extensive work on proving properties of parametric, distributed proto-
cols. In particular the work in [1] offers an alternative approach to parametric program
analysis based on “views”. In that work, cut off points are calculated during program anal-
ysis. As another example, in [12, 16, 17] the “cut-offs” are based on the program topology
and the local structural symmetries amongst the nodes of the process interconnection net-
works.

The notion of a “cutoff” proof of safety for a parametric family of programs was first
introduced by [7]. For example, in [7], if a ring of 3 processes satisfies a parametric property
then the property must hold for all rings with at least three nodes. The technique used
here is somewhat different; rather than needing to check a ring of 3 processes, we check all
pseudo-rings of a given size.

Local symmetry reduction for multi-process networks and parametric families of net-
works generalizes work on “global” symmetry reduction introduced by [8] and [5]. Lo-

31

cal symmetry is, in general, an abstraction technique that can offer exponentially more
reduction than global symmetry. In particular, ring structures are globaly rotationally
symmetric, but for isomorphic processes may be fully-locally symmetric [16, 17].

Recent work [22] has focused on modular reasoning in the proof or analysis of distributed
systems. In the current work, the modularity in the proof is driven by a natural modularity
in the program structures. In particular, for programs of several processes proofs are
structured by modules that are local to a neighborhood of one or more processes [12, 16, 17].

6.2 Conclusion

We have presented a framework for specifying protocols in a process-local manner with
topology factored out. We show that verification is reducible to FOL with an oracle to
answer local questions about the topology. This reduction results in a decidable VC when
the background theories are decidable. This cleanly separates the reasoning about the
topology from that of the states of the processes.

Many open questions remain. Further work may investigate our methodology on other
protocols and topologies, implement oracles for common topologies, and explore com-
plexity of the generated characteristic formulae. Finally, we restricted ourselves to static
topologies of bounded degree. Handling dynamic or unbounded topologies, for example
in the AODV protocol [15], is left open.

32

References

[1] Parosh Abdulla, Frédéric Haziza, and Lukáš Hoĺık. Parameterized verification through
view abstraction. International Journal on Software Tools for Technology Transfer,
18(5):495–516, Oct 2016.

[2] K R Apt and D C Kozen. Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett., 22(6):307–309, May 1986.

[3] Krzysztof R. Apt and Dexter Kozen. Limits for automatic verification of finite-state
concurrent systems. Inf. Process. Lett., 22(6):307–309, 1986.

[4] Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM, 22(5):281–
283, May 1979.

[5] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des., 9(1-2):77–104, August 1996.

[6] Marco Devillers, W. O. David Griffioen, Judi Romijn, and Frits W. Vaandrager. Ver-
ification of a leader election protocol: Formal methods applied to IEEE 1394. Formal
Methods in System Design, 16(3):307–320, 2000.

[7] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In Proceedings of the
22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’95, pages 85–94, New York, NY, USA, 1995. ACM.

[8] E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Form. Methods
Syst. Des., 9(1-2):105–131, August 1996.

[9] Arie Gurfinkel, Sharon Shoham, and Yuri Meshman. Smt-based verification of parame-
terized systems. In Proceedings of the 24th ACM SIGSOFT International Symposium

33

on Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November
13-18, 2016, pages 338–348, 2016.

[10] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correct-
ness. In Proceedings of the 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg,
2010. Springer-Verlag.

[11] K. Rustan M. Leino and Micha Moskal. Usable auto-active verification, 2010.

[12] Kedar S. Namjoshi and Richard J. Trefler. Local symmetry and compositional verifica-
tion. In Verification, Model Checking, and Abstract Interpretation - 13th International
Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceedings,
pages 348–362, 2012.

[13] Kedar S. Namjoshi and Richard J. Trefler. Uncovering symmetries in irregular process
networks. In Verification, Model Checking, and Abstract Interpretation, 14th Inter-
national Conference, VMCAI 2013, Rome, Italy, January 20-22, 2013. Proceedings,
pages 496–514, 2013.

[14] Kedar S. Namjoshi and Richard J. Trefler. Analysis of dynamic process networks.
In Tools and Algorithms for the Construction and Analysis of Systems - 21st Inter-
national Conference, TACAS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015.
Proceedings, pages 164–178, 2015.

[15] Kedar S. Namjoshi and Richard J. Trefler. Loop freedom in aodvv2. In Formal
Techniques for Distributed Objects, Components, and Systems - 35th IFIP WG 6.1
International Conference, FORTE 2015, Held as Part of the 10th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec 2015, Grenoble,
France, June 2-4, 2015, Proceedings, pages 98–112, 2015.

[16] Kedar S. Namjoshi and Richard J. Trefler. Parameterized compositional model check-
ing. In Tools and Algorithms for the Construction and Analysis of Systems - 22nd
International Conference, TACAS 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, pages 589–606, 2016.

[17] Kedar S. Namjoshi and Richard J. Trefler. Symmetry reduction for the local mu-
calculus. In Tools and Algorithms for the Construction and Analysis of Systems -

34

24th International Conference, TACAS 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, Part II, pages 379–395, 2018.

[18] Susan S. Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[19] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv,
and Sharon Shoham. Reducing liveness to safety in first-order logic. PACMPL,
2(POPL):26:1–26:33, 2018.

[20] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham.
Ivy: safety verification by interactive generalization. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 614–630, 2016.

[21] Ruzica Piskac, Leonardo Mendonça de Moura, and Nikolaj Bjørner. Deciding effec-
tively propositional logic using DPLL and substitution sets. J. Autom. Reasoning,
44(4):401–424, 2010.

[22] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv,
Sharon Shoham, James R. Wilcox, and Doug Woos. Modularity for decidability of de-
ductive verification with applications to distributed systems. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, pages 662–677, New York, NY, USA, 2018. ACM.

35

APPENDICES

36

Appendix A

Glossary of Symbols and Terms

Bad - A FOL formula capturing which interpretations of a FOTSS are unsafe.

BT W - The topological class of unidirectional rings over signature Σ = {btw , next}.

btw - A trinary predicate where btw(x, y, z) denotes that x, y, z are distinct, and
there is an x, z path passing through y with no repetitions.

B - A set of states of a transition system denoting bad states to not be reached.

C - A symbol denoting an arbitrary network topology class. This will consist of a
set of FO-labelled graphs.

CrossInitTop - A FOL formula capturing when a local neighbourhood of some pro-
cesses ~q (satisfying Top) satisfies all relevant initial conditions.

CrossInvTop - A FOL formula capturing when a local neighbourhood of some pro-
cesses ~q (satisfying Top) satisfies all relevant invariants.

dir - Part of the FOL labelling of first-order graphs. This maps every edge in a
given graph to a FO function or predicate in the signature.

distinct - A shorthand predicate denoting that all arguments are distinct.

D - A domain of a FOL interpretation.

37

EPR - Effectively Propositional Reasoning (also known as the Bernays-Schönfinkel
class), a decidable fragment of FOL.

FOLC - FOL with a semantic restriction on the objects in ΣC.

FOL - First Order Logic, an underlying language throughout this paper. It con-
sists of predicates, functions, relations, the connectives ¬,∧,∨,→,↔, and the quantifiers
∀x·,∃x·.

FOCTSS - First Order (relative to topology C) Transition System Specification. A
protocol specification relative to a topology. Given a domain to execute on (from C),
obtain a FOCTS.

FOCTS - First Order (relative to topology C) Transition System. Given a FOCTSS and
a graph in C, one obtains a FOCTS (fundamentally a transition system) with semantics
given by the FOCTSS.

FOP - First Order Protocol. A tuple (Σ, Init(~p),Mod(p),TrLoc(p), C) containing
signature Σ, local initial states Init(~p), modification set Mod(p), local transition relation
TrLoc(p), and network topology C. Semantics are given by a FOCTSS built from the
FOP.

FOTSS - First Order Transition System Specification. A specification for how to
generate a transition system given an arbitrary first order domain.

FOTS - First Order Transition Sytem. A transition system generated from a FOTSS
given a domain.

Frame - A predicate macro denoting that every process out of a local set is un-
modified.

G - A graph (typically for this context a graph augmented with a FO-labelling
from some topology class C).

Init - A FOL formula capturing the local initial conditions for a FOP.

InvOk - A FOLC formula whose validity directly corresponds to the inductiveness

38

of a proposed local invariant.

InvTop - A (proposed) local invariant for the topological kind Top.

Inv - A FOL formula capturing an invariant, a set of states which (if verified)
overapproximate the reachable state space. We often seek inductive invariants. May be
local or global, depending on context.

I - A set of states overapproximating the reachable state space of a transition sys-
tem (also often is inductive).

I,J - Symbols denoting arbitrary FOL interpretations. Often when J is used, it
is a FOLC interpretation built from I.

kind - Part of the FOL labelling of first-order graphs. This maps some k-tuples in
a given graph to a FO term in the signature.

Mod - A set of syntactic terms representing the local neighbourhood of a given
process.

nbd - A set of (semantic) processes representing the local neighbourhood of a given
process.

Proc - A sort of FOP’s version of FOL representing which universe elements are
processes.

p, ~p, pC - A process, a tuple of processes (often a triple in our examples), a process
further specified to belong to a graph of C

RBR - A topological class of rings of alternating red and black nodes. This class
has the signature ΣRBR = {Red ,Black , left , right}.

R - A relation over states of a transition system denoting which states are allowed
to transition where.

skip - A symbol representing that a program semantics should be to leave all vari-
ables unchanged.

39

S0 - A set of initial states of a transition system.

S - A set of states for a transition system.

Top - A symbol representing an arbitrary topological kind.

Transition System - A tuple of (S, S0, R) with state set S, initial states S0, and
transition relation R.

T REE3 - A topological class of undirected trees with at least one edge and maxi-
mum degree less than or equal to three. This captures non-trivial undirected binary trees.

TrLoc - A FOL formula capturing the transition of a process modifying its local
neighbourhood.

Unch - A FOL shorthand denoting that all processes contained as arguments should retain
the same semantics as the previous state.

UnMod - A FOL shorthand denoting that all predicates and functions contained as
arguments should retain the same semantics as the previous state.

VC - Short for Verification Conditions, a set of formulae whose validity implies the
inductiveness of an invariant or safety of a system.

π - A path of a transition system, π = s0 . . . si . . . for some sequence of states (si).
May be finite or infinite.

ΣC - A signature of a network topology class. It decomposes into two objects,
ΣCE] ΣCT , respectively, the edge labellings and topological kind labellings, of the topology
C.

Σ - A signature of FOL. A set of functions, predicates, and terms.

τ - A FOL formula capturing a global transition relation. Sometimes τ(p) is used
to denote a local transition occuring with TrLoc(p) ∧ Frame(p).

ϕ0 - A FOL formula capturing the set of global initial states.

40

χTop(A, ~q) - A FOL formula intuitively expressing what is derivable about A, ~q given that
Top(~q) holds. The common cases are A = ∅ and A = Mod(p).

∅ - The empty set, a set consisting of no elements.

|=C - The models symbol, but with all interpreations restricted to be those allowed
in FOLC.

|= - The models symbol. Writing I |= ϕ means that interpretation I evaluates
FOL formula ϕ to be true. Writing |= ϕ means all FOL I satisfy I |= ϕ.

⊕ - A symbol used to denote the merging of two non-conflicting FOL interpreta-
tions.

] - A symbol denoting disjoint union of two sets.

41

Appendix B

Ivy Code for Verifying FOPs

B.1 Red-Black Rings Example Protocol

This appendix section contains the code for verifying the example RBR protocol locally.

#lang ivy1.7

type node

type colour = {0,r,b}

axiom 0~=r & 0~=b & r~=b

#Give colours to the processes

relation black(X:node)

relation red(X:node)

#define left/right

individual left(X:node) : node

individual right(X:node): node

#give var field to r/b nodes

individual var1(X:node) : colour

42

after init

{

var1(X) := 0;

}

action t(n1:node,n2:node) = {

assume right(n1)=n2;

if(black(n1))

{

var1(n2) := r

}

else

{

var1(n2) := b

}

}

action trRed(p:node, q:node) =

{

#limit ourselves to small models

assume N=p | N=left(p) | N=right(p) | N=q;

assume red(N) <-> ~black(N);

assume red(p) -> black(right(p));

assume red(q);

call t(p,right(p));

}

action trBlack(p:node, q:node) =

{

#limit ourselves to small models

assume N=p | N=left(p) | N=right(p) | N=q;

assume red(N) <-> ~black(N);

assume red(p) -> black(right(p));

assume black(q);

call t(p,right(p));

}

43

export trRed

export trBlack

#Safety property

conjecture [safety] red(X) -> var1(X)~=b

44

B.2 Ring Leader Election

This appendix section contains the code for verifying leader election on rings locally.

#lang ivy1.7

#axiomatize total order for ids

module total_order(r) =

{

axiom r(X,X) #reflexivity

axiom r(X,Y) & r(Y,Z) -> r(X,Z) #transitivity

axiom r(X,Y) & r(Y,X) -> X = Y #anti-symmetry

axiom r(X,Y) | r(Y,X) #total order

axiom r(0,X) #minimal element 0

}

type node

type id

#Put nodes on an uninterpreted ring

individual next(X:node) : node

relation btw(X:node, Y:node, Z:node)

relation le(X:id, Y:id)

instantiate total_order(le)

#Get personal id idn and comparison id comp.

individual idn(X:node) : id

individual comp(X:node): id

axiom idn(X) ~= 0

#unique id’s

axiom idn(X)=idn(Y) -> X=Y

after init

{

comp(X) := 0;

}

45

action trLoc(n1:node,n2:node) = {

assume next(n1)=n2;

if le(idn(n1),comp(n1))

{

#id(n)<=comp(n1), pass comp(n1)

comp(n2) := comp(n1);

}

else

{

#id(n1)>comp(n1), pass idn(n1)

comp(n2) := idn(n1);

}

}

action trC(p:node, q1:node, q2:node, q3:node) =

{

#limit ourselves to small models

assume N=p|N=next(p)|N=q1|N=q2|N=q3;

#finite instantiation of ring axioms

assume ((W=p|W=next(p)|W=q1|W=q2|W=q3) &

(X=p|X=next(p)|X=q1|X=q2|X=q3) &

(Y=p|Y=next(p)|Y=q1|Y=q2|Y=q3) &

(Z=p|Z=next(p)|Z=q1|Z=q2|Z=q3)) ->

((btw(X,Y,Z) -> btw(Y,Z,X)) &

(btw(X,Y,Z) -> ~btw(X,Z,Y)) &

((X~=Y & X~=Z & Y~=Z) -> (btw(X,Y,Z) | btw(X,Z,Y))) &

((btw(W,X,Y) & btw(W,Y,Z)) -> btw(W,X,Z)));

#next axiom instantiated on p,next(p),qi

assume q1~=p & q1~=next(p) -> btw(p,next(p),q1);

assume q2~=p & q2~=next(p) -> btw(p,next(p),q2);

assume q3~=p & q3~=next(p) -> btw(p,next(p),q3);

assume btw(q1,q2,q3);

call trLoc(p,next(p));

}

46

export trC

The safety property

conjecture [safety] btw(X,Y,Z) -> ((comp(X) = idn(X) & comp(Y) = idn(Y)) -> X = Y)

#helper invariants

conjecture [maxId] btw(X,Y,Z) -> (comp(X) = idn(X) -> (le(idn(Y),idn(X)) & le(idn(Z),idn(X))))

conjecture [bypass] btw(X,Y,Z) -> (idn(X)=comp(Z) -> le(idn(Y),idn(X)))

47

B.3 Tree Leader Election

Below is the code for the core verification of the leader election on tree topologies, as well
as the modification structure used for sanity testing.

#lang ivy 1.7

type node

true iff there is an edge between X and Y

relation edge(X:node, Y:node)

edge is symmetric and has no self-loops

axiom edge(X,Y) -> edge(Y,X)

axiom ~edge(X, X)

true iff the edge between X and Y is directed X -> Y (Y is X’s parent)

relation parent(X:node, Y:node)

true iff the direction of all the parent relations on the X,Y-path is X --> Y

(X has Y as an ancestor)

relation ancestor(X:node, Y:node)

true if X is a leader

relation leader(X:node)

true if (a) distinct(X, Y, Z) , and (b) Y is on the unique path between X and Z

relation btw(X:node, Y:node, Z:node)

#btw is symmetric

axiom (btw(X,Y,Z) -> btw(Z,Y,X))

axiom btw(X,Y,Z) -> (X~=Y & X~=Z & Y~=Z)

#axiom btw(X,Y,Z) -> ~btw(X,Z,Y)

#axiom btw(X,Y,Z) -> ~edge(X,Z)

axiom (btw(W,X,Y) & btw(W,Y,Z)) -> (btw(W,X,Z) & btw(X,Y,Z))

axiom (edge(X,Y) & edge(Y,Z) & X~=Z) -> btw(X,Y,Z)

axiom (edge(W,X) & btw(X,Y,Z) & W~=Y) -> btw(W,Y,Z)

#either WXYZ or XWYZ, either way, WYZ holds

48

after init

{

assume ~parent(X,Y);

assume ~ancestor(X, Y);

assume ~leader(X);

}

action setLeader(p:node) = {

if forall Z:node . (edge(p, Z) -> parent(Z, p))

{

leader(p) := true;

}

}

action setParent(n1:node, n2:node) =

{

assume edge(n1, n2) & n1 ~= n2;

#if n2 could be n1’s parent and has n2 is n1’s unambiguous choice for parent.

if ~parent(n2, n1) & forall X:node . (X ~= n2 -> (edge(X, n1) -> parent(X, n1)))

{

parent(n1, n2) := true;

ancestor(X,Y) := ancestor(X,Y) | (ancestor(X,n1) & Y=n2) |

(X=n1 & ancestor(n2, Y)) | (X=n1 & Y=n2);

}

}

#this action is a bug if it is any of the following single modifications are made:

#n1~=n2 not assumed -> OK

#edge(n1, n2) not assumed -> OK

#~parent(n2, n1) not checked -> 2 errors

#edge(X, n1) -> parent(X, n1) for n2 as well -> OK

#no edge(X, n1) check -> OK

#parent(X, n1) replaced by true -> 1 fail

#parent(X, n1) replaced by parent(n1, X) -> OK

#parent(n1,n2) := *; -> 2 fails

#ancestor updated backwards -> 5 fails

49

action setParentBug(n1:node, n2:node) =

{

assume edge(n1, n2) & n1~=n2;

if ~parent(n2, n1) & forall X:node . (X~=n2 -> (edge(X, n1) -> parent(X, n1)))

{

parent(n1, n2) := true;

ancestor(X,Y) := ancestor(X,Y) | (ancestor(X,n1) & Y=n2) |

(X=n1 & ancestor(n2, Y)) | (X=n1 & Y=n2);

#ancestor(X,Y) := ancestor(X,Y) | (ancestor(X,n2) & Y=n1) |

(X=n2 & ancestor(n1, Y)) | (X=n2 & Y=n1);

}

}

action trLoc(p:node, p1:node, p2:node, p3:node) =

{

call setLeader(p);

if *

{

if *

{

#call setParent(p, p1);

call setParentBug(p, p1);

}

else

{

call setParent(p, p2);

}

}

else

{

call setParent(p, p3);

}

}

action trLocBad(p:node, p1:node, p2:node, p3:node) =

{

#all commented -> OK

#Each line alone generates 3, 7, 3 fails respectively

50

#all together, 9 fails

parent(X, Y) := *;

ancestor(X, Y) := *;

leader(X) := *;

}

action trC(p:node, p1:node, p2:node, p3:node, q1:node, q2:node, q3:node) = {

#local neighbourhood of p

assume edge(p, p1) & edge(p, p2) & edge(p, p3);

#all processes y are in neighbourhood of p, or

are on p1, p2, or p3 branch of tree.

assume (btw(p,p1,Y) | btw(p,p2,Y) | btw(p,p3,Y) | Y=p1 | Y=p2 | Y=p3 | Y = p);

#observing neighbourhood q1,q2,q3 satisfying btw

assume btw(q1,q2,q3);

call trLoc(p,p1,p2,p3);

}

export trC

conjecture [safety] (leader(X) & leader(Y)) -> X=Y

#helpers

conjecture [oneDir] ancestor(X,Y) -> ~ancestor(Y,X)

conjecture [leadNoFollow] leader(X) -> ~ancestor(X,Y)

conjecture [ancBtw] (btw(X,Y,Z) & ancestor(Y,Z)) -> ancestor(X,Y)

conjecture [trans] (ancestor(X,Y) & ancestor(Y,Z)) -> ancestor(X,Z)

conjecture [parentAncestor] parent(X,Y) -> ancestor(X,Y)

conjecture [parentEdge] (ancestor(X,Y) & edge(X,Y)) -> parent(X,Y)

conjecture [leadLeads] (leader(X) & edge(Y,X)) -> parent(Y,X)

conjecture [ancBtw2] (ancestor(X,Z) & btw(X,Y,Z)) -> (ancestor(X,Y) & ancestor(Y,Z))

51

Appendix C

Axiomatization Proofs

C.1 Finite Models and Ring Axioms

Let Ring be the conjunction of the ring axioms given in Figure 1.1.

Theorem C.1.1. Let I |= Ring and I have a finite domain D. Define the graph G =
(D,E), where (u, v) ∈ E iff I |= next(u, v). Then G is a ring graph.

Targeting this theorem, we first work through a lemma asserting that if I |= Ring , then
btw(x, y, z) is only ever satisfied by distinct elements, namely that ∀a, b, c : btw(a, b, c) →
a 6= b ∧ a 6= c ∧ b 6= c

Proof. Let a, b, c ∈ D and I � btw(a, b, c). Suppose for contradiction that two elements are
the same. Case a = b: Apply axiom one twice for btw(c, a, b). Case a = c: Apply axiom
one once for btw(b, c, a). Case b = c: Conclude btw(a, b, c).

In any of the above cases, we write btw(x, y, y) for the two duplicate values. Then we
apply axiom three to get ¬btw(x, y, y), a contradiction. Thus no duplicates may exist, and
all three are distinct.

And now, the main proof:

Proof. We first show that every node has out-degree at least one. Then we show that every
node has out-degree at most one. Finally, we show that the graph is connected.

52

Let D, I be a finite domain and interpretation and I |= Ring . As a temporary goal, we
will show that ∀a.∃b.next(a, b). Let a ∈ D. If |D| = 1, then next(a, a) is vacuously true
since there are no x to violate the condition. Similarly, |D| = 2 vacuously has next(a, b)
and next(b, a) for the two elements.

Let a ∈ D and 2 < |D| < ∞. Since there are at least three elements, choose distinct
b0, b1. Since they are distinct, the fourth axiom gives btw(a, b0, b1)∨btw(a, b1, b0). Renaming
b0, b1 without loss of generality, we assume btw(a, b1, b0).

Let bi satisfy btw(a, bi+1, bi) for distinct a, bi, bi+1. Suppose there exists x such that
x 6= a ∧ x 6= bi+1 ∧ ¬btw(a, bi+1, x). Then a, bi+1, x are all distinct, so we observe
that btw(a, bi+1, x) ∨ btw(a, x, bi+1). Since one has already been ruled out, we conclude
btw(a, x, bi+1). Set bi+2 := x. Then btw(a, bi+2, bi+1) is satisfied, and must thus have
distinct values.

Iterate the process above so long as there exists such an x. Does such a process ter-
minate? If so, we have guaranteed existence of a b such that next(a, b). If not, we obtain
a sequence bi such that btw(a, bi+1, bi) for all i in the sequence. Thus there must be some
bj = bk for j < k since we have an infinite sequence over a finite domain D.

btw(a, bj+1, bj)

btw(a, bj+2, bj+1)

btw(a, bj+2, bj)

Iterating this argument, we eventually find out that

btw(a, bk, bj)

But from our lemma, we then know that bk 6= bj, contrary to our earlier conclusion. Ergo,
the process must terminate.

We have thus established the claim ∀a : ∃b : next(a, b). We next seek to establish
uniqueness. Namely, we aim to show ∀a, b, c : next(a, b) ∧ next(a, c)→ b = c.

Let a, b, c ∈ D and next(a, b) ∧ next(a, c). Suppose for contradiction that b 6= c. Then
by axiom 4, we conlcude btw(a, b, c) ∨ btw(a, c, b).

Suppose btw(a, b, c). We know next(a, c). Thus ∀x : x 6= a ∧ x 6= c → btw(a, c, x).
Instantiating x = b, we satisfy the LHS of the implication, thus btw(a, c, b) But axiom
three then says ¬btw(a, b, c) against our initial assumption.

53

Suppose btw(a, c, b). A similar argument on next(a, b) gives a contradiction. Thus
either case leads to a contradiction and we conclude that b = c.

Thus given a, there exists a unique successor. We now claim that the graph is connected,
so that for every u, v ∈ D, there exists a sequence ui such that u0 = u, un = v, and
I � next(ui, ui+1) for all i ∈ {0, . . . , n− 1}.

If |D| = 1, we have next(a, a) vacuously true, thus have a cycle. Further, |D| = 2 is triv-
ial to solve, (btw(x, y, z) always false since duplicates not allowed, and next(a, b), next(b, a)
is a cycle) , so we assume |D| > 2.

Let u, v ∈ D and |D| > 2. Since |D| > 2, choose third distinct element x. Then
btw(u, x, v) ∨ btw(u, v, x). If next(u, v), then we have a trivial path. Suppose ¬next(u, v).
Then consider next(u,w). We have ∀x.x 6= u ∧ x 6= w → btw(u,w, x). Instantiate with
x = v. Then we get btw(u,w, v).

We now claim that if btw(a, b, c) ∧ next(a, b), then there exists an a, c path. Suppose
that btw(a, b, c) ∧ next(a, b). Then set b0 = b. Note that the following property holds for
n = 0.

Property: if btw(a, bn, c), for all i ∈ [0, n], the bi are distinct values in D, then there
exists an a, bn-path, and for all i ∈ [0, n − 1], btw(a, bi, bi+1). Consider the successor
of bn, say next(bn, bn+1). If bn = c or bn+1 = c, we have our a, c path. Else, we ob-
serve that next(bn, bn+1) can be instantiated with x = c to get btw(bn, bn+1, c). Note that
btw(a, bn−1, bn) gives us btw(a, bn+1, c), our first condition. Our initial assumption by axiom
1 also gives btw(bn, c, a). Thus we conclude that (by axiom 2) btw(bn, bn+1, a). Reapplying
axiom 1, we get btw(a, bn, bn+1). If bn+1 = bj for some j ∈ [0, n− 1], then we get a contra-
diction since we have already derived btw(a, bj, bj+1), btw(a, bj+1, bj+2), . . . , btw(a, bn−1, bn),
which by applying axiom 2 many times over, gives btw(a, bj, bn). Then we also have
btw(a, bn+1, bn), which contradicts axiom 3. Hence the new bi is distinct from all the
others, our second condition. By construction of bn+1, we easily have an a, bn+1 path, and
we derived btw(a, bn, bn+1) along the way. Thus our induction holds.

We generate a sequence of bi with the above properties. If we never have bi = c, then
we have an infinite sequence of distinct values, but we have a finite domain. Ergo, this
cannot happen, and there must be some bi = c. This completes the proof.

Suppose G = (V,E) is the induced graph where V = D and E = {(a, b)|next(a, b)}.
Suppose G is connected and ∀v ∈ V : d(v) = 1. Then G is a cycle.

54

	List of Figures
	Introduction
	Background
	FOL syntax and semantics.
	FOL modulo structures
	First Order Transition Systems.

	First Order Protocols
	Network Topology
	Example: Red-Black Rings
	FOP Definition

	Local Reasoning
	Verifying FO-Protocols using First Order Logic
	Soundness and Completeness
	Soundness.
	Small model property.
	Relative Completeness.

	Case Studies
	Example: Leader Election Ring Protocol
	Leader Election Tree Protocol
	Modelling of Tree Leader Election
	Verification of Tree Leader Election
	Sanity Checks

	Conclusion
	Related Work
	Conclusion

	References
	APPENDICES
	symbols
	Ivy Code
	Red-Black Rings Example Protocol
	Ring Leader Election
	Tree Leader Election

	btw Ring
	Finite Models and Ring Axioms

