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Abstract

Stratified turbulence is affected by buoyancy forces that suppress vertical motion, result-
ing in a horizontally-layered structure with quasi-two-dimensional vortices. The Prandtl
number Pr quantifies the relative strengths of viscosity and buoyancy diffusivity, which
damp small-scale fluctuations in velocity and buoyancy at different microscales. Direct
numerical simulations (DNS) must resolve the smallest flow features, requiring very high
resolution if Pr is large. In most oceanic and atmospheric flows, Pr > 1; e.g. Pr = 7 in
heat-stratified water, and Pr = 700 in salt-stratified water. To reduce the computational
demand in simulations of ocean flows and lab experiments of stratified turbulence, Pr = 1
is often assumed, possibly introducing discrepancies between the DNS and real geophysi-
cal stratified turbulence. In this thesis, we explore how stratified turbulence is affected by
varying Pr. DNS of homogeneous forced stratified turbulence with a fixed viscosity and
Pr = 0.7, 1, 2, 4, and 8 are performed for different stratification strengths by changing
the buoyancy frequency N , for a range of Froude numbers Frh from 0.009 to 0.1, and
buoyancy Reynolds numbers Reb from 0.5 to 32. Energy spectra, buoyancy flux spectra,
spectral energy flux, and snapshots of physical space fields are compared as Pr increases to
explore scale-specific Pr-sensitivity. Probability density functions and statistical moments
of velocity component and temperature derivative fields are also compared to the Pr = 1
findings. Small-scale Pr-dependence was found in the kinetic energy spectra that extended
further upscale as stratification increased. The potential energy and potential energy flux
exhibited more prominent Pr-sensitivity, extending into the large horizontal scales for some
stratifications. Interestingly, the kinetic energy flux exhibited no Pr-dependence at small
scales. The buoyancy flux was most sensitive to Pr in the small scales, except for the most
strongly stratified case, which notably had Reb < 1. As Pr increased, all spectra showed a
pattern of diminishing increase, suggesting eventual convergence to a limiting spectra shape
at large but finite Pr. The spectra in the most strongly stratified case, where Reb < 1, were
very different from the rest, suggesting regime-dependence of Pr-sensitivity (i.e. whether
Reb < 1, or Reb > 1). The probability density functions and statistical moments for Pr
different from 1 were consistent with previous work for Pr = 1. Increasing Pr significantly
affected the temperature derivative fields while the velocity component derivative fields
were mostly unchanged. These findings suggest that, for DNS of stratified turbulence in
fluids with Pr > 1, the assumption of Pr = 1 does not produce realistic results: the Pr-
sensitivity at intermediate, and in some cases, large horizontal scales must be considered
for accurate stratified turbulence DNS, though the excessive computational demand can
be prohibitive.

iii



Acknowledgements

Thank you to Michael Waite for his supervision, patience, and guidance. The comple-
tion of this work is owed to Mike’s availability, quick feedback, and regular meetings that
helped keep me on track. I’m grateful to have learned so much over the past 2 years –
thank you for taking me on as a graduate student!

Thank you to Marek Stastna and Francis Poulin for their time spent reviewing my work
and for their ideas on extending this research.

Thanks also to Tom Russell and Cathy Christie at Queen’s University for helping me
return to UW.

I would not have made it this far without my officemates (in no particular order): Chris-
tian Barna, Josh Thompson, Tim Dockhorn, Rishi Chakraborty, and unofficial officemate
Stan Zonov. Thank you guys for your friendship and good humour – the office won’t be
the same after you all move on!

To the past and present fluids lab members and to my other AMATH peers, thank you
for your help along the way.

Thank you to Jeremy Roth for helping me find my strength over the past year, and
also to the rest of the team for keeping a fun and positive atmosphere.

Eric Silva, thanks for the support from afar!

Ken Chadwick, thank you for your endless love.

This work was enabled in part by the computing resources provided by SHARCNET
and Compute Canada.

iv



Dedication

To Lola, Lolo, and my good boy Shadow.

v



Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Stratified turbulence and the Prandtl number . . . . . . . . . . . . . . . . 1

1.1.1 The energy cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Characteristic scales and numbers . . . . . . . . . . . . . . . . . . . 3

1.1.3 Previous results in stratified turbulence . . . . . . . . . . . . . . . . 6

1.2 Stratification and isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Format of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Methodology 10

2.1 Equations and model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 The Boussinesq equations . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Energy budget equations . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Physical space field derivatives, probability density functions, and statistics 16

vi



3 Results 19

3.1 Overview of Pr = 1 cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Overview of the N = 0.3, Pr = 1 case . . . . . . . . . . . . . . . . . 19

3.1.2 N -dependence for Pr = 1 . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Pr-dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Energy spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Buoyancy flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.3 Spectral flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.4 Physical space fields . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Statistics and isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Resolution and Reb . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Velocity derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.3 Temperature derivatives . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Conclusions 64

References 68

vii



List of Tables

2.1 Simulation parameters, nondimensional numbers, and wavenumbers for all
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Slopes from linear regression analysis of kinetic and potential energy spectra
in Figs. 3.8 and 3.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.075. 44

3.3 Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.075. . . . . . . . 44

3.4 Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.15. 45

3.5 Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.15. . . . . . . . . 45

3.6 Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.3. 46

3.7 Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.3. . . . . . . . . . 46

3.8 Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.6. 47

3.9 Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.6. . . . . . . . . . 47

viii



List of Figures

3.1 Energy spectra and time series for run C1: Pr = 1, N = 0.3. Left column:
time series of (a) kinetic and potential energy and (c) energy dissipation.
Right column: kinetic and potential energy spectra in terms of (b) horizontal
and (d) vertical wavenumber. Characteristic wavenumbers kb, kO, and kd
are denoted with vertical solid lines, and reference slopes are given by dashed
lines. Note that kθ is coincident with kd for Pr = 1. . . . . . . . . . . . . . 20

3.2 Top row: vertical slices (x, z) at y = 0 of (a) x-component velocity u and
(b) y-component vorticity ωy. Bottom row: horizontal slices (x, y) at z = 0
of (c) x-component velocity u and (d) z-component vorticity ωz. All fields
are computed at the end of run C1. . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Temperature fluctuation dissipation field, 2κ ∂θ
∂xj

∂θ
∂xj

: (a) isosurfaces of 5% of

the maximum value, (b) vertical slice (x, z) at y = 0. All fields are computed
at the end of run C1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 (a,b): Spectra for kinetic and potential energy transfer terms and buoyancy
flux for run C1. Spectra are multiplied by wavenumber to preserve area
under the curve for linear-log axes. (c,d): Spectral energy fluxes plotted for
run C1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Top row: vertical slices (x, z) at y = 0 of y-component vorticity. Bottom
row: horizontal slices (x, y) at z = 0 of z-component vorticity. Pr = 1 for
(a,e) N = 0.075, (b,f) N = 0.15, (c,g) N = 0.3, and (d,h) N = 0.6. The
same colourmap is used as in Fig. 3.2 with the range modified for visibility
across N . The colourmap range shared by the vertical slices is different from
the range shared by the horizontal slices. . . . . . . . . . . . . . . . . . . . 26

ix



3.6 Top row: vertical slices (x, z) at y = 0 of θ. Bottom row: horizontal slices
(x, y) at z = 0 of θ. Pr = 1 for (a,e) N = 0.075, (b,f) N = 0.15, (c,g)
N = 0.3, and (d,h) N = 0.6. The same colourmap is used as in Fig. 3.2
with the range modified for visibility across N . The colourmap range shared
by the vertical slices is different from the range shared by the horizontal slices. 27

3.7 Energy spectra in terms of horizontal and vertical wavenumbers for Pr = 1
at different N . Black dashed lines are k

−5/3
h and k−3v reference lines. Vertical

dash-dotted lines are buoyancy scales corresponding to N colours. The
average kd and kθ are the same for Pr = 1. . . . . . . . . . . . . . . . . . . 29

3.8 Kinetic energy spectra in terms of horizontal and vertical wavenumbers.
From top to bottom the rows are N = 0.075, 0.15, 0.3, 0.6. Black dashed
lines are k

−5/3
h and k−3v reference lines. Vertical dash-dotted lines are kθ

corresponding to Pr colours. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.9 Potential energy spectra in terms of horizontal and vertical wavenumbers.
From top to bottom the rows are N = 0.075, 0.15, 0.3, 0.6. Black dashed
lines are k

−5/3
h and k−3v reference lines. Vertical dash-dotted lines are kθ

corresponding to Pr colours. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Buoyancy flux spectra multiplied by wavenumber to preserve area under the
curve for linear-log axes. From top to bottom the rows are N = 0.075, 0.15,
0.3, and 0.6. Horizontal (left) and vertical (right) wavenumber spectra are
shown. Vertical dash-dotted lines are kθ corresponding to Pr colours. . . . 35

3.11 Spectral kinetic energy flux, as in equation (2.12). From top to bottom
the rows are N = 0.075, 0.15, 0.3, and 0.6. Horizontal (left) and vertical
(right) wavenumber spectra are shown. Vertical dash-dotted lines are kθ
corresponding to Pr colours. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.12 Spectral potential energy flux, as in equation (2.13). From top to bottom
the rows are N = 0.075, 0.15, 0.3, and 0.6. Horizontal (left) and vertical
(right) wavenumber spectra are shown. Vertical dash-dotted lines are kθ
corresponding to Pr colours. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 Top row: vertical slices (x, z) at y = 0 of θ. Bottom row: horizontal slices
(x, y) at z = 0 of θ. Fixed N = 0.3 for (a,e) Pr = 1, (b,f) Pr = 2, (c,g)
Pr = 4, and (d,h) Pr = 8. The same colourmap is used as in Fig. 3.2 with
the range modified for visibility across Pr. The colourmap range shared by
the vertical slices is different from the range shared by the horizontal slices. 41

x



3.14 Vertical slices (x, z) at y = 0 of 2κ ∂θ
∂xj

∂θ
∂xj

. Fixed N = 0.3 for (a) Pr = 1,

(b) Pr = 2, (c) Pr = 4, (d) Pr = 8. The same colourmap is used for all
panels as in Fig. 3.3(b), with the range modified for visibility across Pr. . . 42

3.15 Velocity derivative p.d.f.s (u1,1) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.16 Velocity derivative p.d.f.s (u1,3) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.17 Velocity derivative p.d.f.s (u3,1) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.18 Velocity derivative p.d.f.s (u3,3) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.19 Velocity derivative p.d.f.s for N=0.075 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.20 Velocity derivative p.d.f.s for N=0.15 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.21 Velocity derivative p.d.f.s for N=0.3 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.22 Velocity derivative p.d.f.s for N=0.6 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.23 Temperature derivative p.d.f.s θ,1 with (a)N=0.075, (b)N=0.15, (c)N=0.3,
and (d) N=0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.24 Temperature derivative p.d.f.s θ,3 with (a)N=0.075, (b)N=0.15, (c)N=0.3,
and (d) N=0.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.25 Temperature derivative p.d.f.s for N=0.075 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.26 Temperature derivative p.d.f.s for N=0.15 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.27 Temperature derivative p.d.f.s for N=0.3 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.28 Temperature derivative p.d.f.s for N=0.6 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xi



Chapter 1

Introduction

1.1 Stratified turbulence and the Prandtl number

In the turbulent flows of the atmosphere and ocean, buoyancy forces and stable strati-
fication restrict vertical motion. At sufficiently small scales, the effects due to rotation
are minor: stratification dominates these scales while Coriolis forces are weak [Riley and
Lindborg, 2013]. Fluid velocities in stratified turbulence are approximately horizontal and
layers containing quasi-two-dimensional vortices develop [Waite, 2014], along with grav-
ity waves [Staquet and Sommeria, 2002]. At very small scales, fluctuations of variable
fields (e.g. velocity, vorticity, density, temperature, etc.) are smoothed out by viscosity
and buoyancy diffusivity, which typically occur at different inner scales. Direct numerical
simulations (DNS) of stratified turbulence require that the smallest features are resolved,
necessitating adequately fine grid spacing. The computational cost for these DNS is often
reduced by assuming the two smoothing processes to be equally strong, but is done at the
expense of misrepresenting the two disparate inner scales.

The relative strength of viscosity and buoyancy diffusivity is quantified by the dimen-
sionless Prandtl number

Pr ≡ ν/κ, (1.1)

for kinematic viscosity ν and thermal diffusivity κ, with temperature as the buoyancy-
influenced scalar. Typical values for Pr are 0.7 for heat in air and 7 for heat in water; for
salinity in water the analogous Schmidt number for ratio of viscosity to mass diffusivity is
about 700. We use Pr in this thesis to refer to this ratio. Using large Pr values for DNS
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is computationally expensive: since buoyancy diffusivity can be several times weaker than
viscous diffusion, the smallest temperature fluctuations can be reduced to extremely small
scales, demanding high spatial resolution. By setting Pr = 1, the equally strong viscous
dissipation and buoyancy diffusivity forces the two inner scales to coincide, relaxing the
need for high resolution. Stratified turbulence dynamics could be sensitive to Pr, but the
Pr 6= 1 problem has not been studied in depth for these types of flows. In this paper,
we investigate the effect of varying Pr in numerical simulations of homogeneous stratified
turbulence and evaluate the soundness of the Pr = 1 approximation.

1.1.1 The energy cascade

Some preliminary concepts from classical turbulence theory are briefly introduced here,
following from Kundu et al. [2012] and Davidson [2015]. Richardson [1922] proposed that
in turbulent flows, the kinetic energy follows a cascade from large to small eddies (or
vortices) until it is destroyed by viscous dissipation. Turbulence is characterized by a large
Reynolds number,

Re = ul/ν, (1.2)

where u is a large-scale velocity and l is the large eddy length scale. The Reynolds number
measures the relative strength of inertial forces to viscous forces. Energy-containing eddies
of size l are not significantly affected by viscosity in high-Re turbulence, since ul/ν � 1.
These large eddies transfer their energy to slightly smaller eddies through vortex stretching
and tilting, which in turn pass energy to smaller eddies, and so on until the eddies are small
enough that viscous effects become important. The kinetic energy is then dissipated at a
rate εk, for which a good approximation is [Taylor, 1935]

εk ∼ u3/l. (1.3)

The inertial subrange describes the range of length scales where this cascade takes place,
driven only by inertial forces. In homogeneous, statistically stationary turbulence, this
energy cascade rate is constant and equal to εk.

The kinetic and potential energy can be studied in terms of their spectra (i.e. as a

function of three-dimensional wavevectors ~k) to identify scale-specific contributions to the

energy. That is, the kinetic energy KE over a sphere of radius k = |~k| can be expressed
as [Wyngaard, 2010]

KE =

∫ ∞
0

EK(k) dk, (1.4)
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where EK(k) is its three-dimensional spectrum, and likewise for potential energy PE,

PE =

∫ ∞
0

EP (k) dk, (1.5)

with its three-dimensional spectrum EP (k). Based on dimensional analysis, Kolmogorov
[1941] predicted the form of the kinetic energy spectrum in the inertial subrange to be

EK ∼ ε
2/3
k k−5/3, (1.6)

in which the spectrum depends only on εk and wavenumber k. Similarly, for the spectrum
of the potential energy, Obukhov [1949] and Corrsin [1951] proposed the form

EP ∼
εp

ε
1/3
k

k−5/3, (1.7)

where εp is the potential energy dissipation rate. With these scaling arguments, log-log
plots of EK(k) and EP (k) are expected to have a slope of -5/3 in the inertial range.
Downscale of the inertial range, corresponding to larger k, the spectrum would steepen
significantly as the energy at small scales is destroyed by viscous dissipation.

The spectral fluxes ΠK(k) and ΠP (k) of kinetic and potential energy respectively mea-
sure the rate at which energy is transferred through wavenumber k [Lindborg, 2006, David-
son, 2015]. A positive spectral flux corresponds to the forward cascade of energy from small
k to large k, which is from large length scales to small length scales. In an inertial sub-
range, both ΠK(k) and ΠP (k) exhibit positive plateau. More details on the spectral flux
follow in Secs. 2.1.3 and 3.2.3.

1.1.2 Characteristic scales and numbers

Stratified turbulence is characterized by several length scales and dimensionless numbers,
which we begin to review here [Riley and Lelong, 2000, Riley and Lindborg, 2013, Davidson,
2013]. The Kolmogorov microscale

kd ≡ (εk/ν
3)1/4, (1.8)

is the inner scale of velocity fluctuations where kinetic energy is viscously dissipated into
heat [Kolmogorov, 1941]. Analogous to the viscous dissipation scale, the temperature
fluctuations, θ, have inner scale [Corrsin, 1951, Tennekes and Lumley, 1972]

kθ ≡ (εk/κ
3)1/4, (1.9)
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for thermal diffusion. There is also the Batchelor scale for the inner scale that describes
passive scalar fluctuations [Batchelor, 1959, Davidson, 2015]

kB ≡ (εk/νκ
2)1/4. (1.10)

These two inner temperature scales are related by

kθ/kB = (ν/κ)1/4 = Pr1/4. (1.11)

Depending on the size of Pr, either kθ or kB describes the dissipation scale for potential
energy. When Pr . 1, kθ is most applicable, and when Pr � 1, kB is most applicable
[Wyngaard, 2010, Gotoh and Yeung, 2013]; we will focus on kθ as the inner temperature
scale. When Pr > 1, we have that kθ > kd, meaning that viscosity will begin to destroy
velocity fluctuations at a scale where buoyancy diffusivity will not yet be effective. This
subrange k ∈ [kd, kθ] is referred to as the viscous-convective subrange. If Pr � 1, theory
suggests that in the viscous-convective subrange, the potential energy spectrum has the
form

EP ∼ εp(εk/ν)−1/2k−1, (1.12)

as predicted by Batchelor [1959]. In the opposite case when Pr < 1, buoyancy diffusivity
will act on small scales where viscous effects are not yet significant, and the subrange
k ∈ [kθ, kd] is called the inertial-diffusive subrange [Wyngaard, 2010]. In the atmosphere,
these inner scales typically correspond to lengths on the order of millimeters.

The buoyancy frequency N characterizes stratification strength: for temperature strat-
ification,

N2 ≡ g

θ0
β, (1.13)

where g is gravitational acceleration, θ0 is a reference temperature, and β is the back-
ground potential temperature gradient [Kundu et al., 2012]. The diffusion of temperature
fluctuations can be related to the potential energy dissipation rate by

2κ
∂θ

∂xj

∂θ

∂xj
=
εp
N
. (1.14)

The potential temperature fluctuations θ refers to a fluid particle’s change in temper-
ature following an adiabatic displacement to a reference pressure [Tritton, 1988, Kundu
et al., 2012]; in this thesis, we make the Boussinesq approximation (Sec. 2.1.1) for which
temperature and potential temperature are equivalent [Tritton, 1988].
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The Pr 6= 1 problem in strongly stratified turbulence becomes complicated by the
horizontally-layered flow. In stratified turbulence, the quasi-two-dimensional vortices be-
come thinner with stronger stratification [Billant and Chomaz, 2001], introducing addi-
tional small scales that must be adequately resolved in DNS. The horizontal Froude num-
ber

Frh = U/NLh, (1.15)

for rms velocity U and horizontal length scale Lh, is a dimensionless number that quantifies
stratification strength in stratified turbulence [Billant and Chomaz, 2001, Brethouwer et al.,
2007]. While turbulence is characterized by a large Reynolds number

Re = ULh/ν, (1.16)

(the same definition as in equation (1.2) but with the horizontal length scale) stratified
turbulence can fall into one of two regimes depending on its buoyancy Reynolds number
[Brethouwer et al., 2007, Waite, 2014]

Reb = ReFr2h. (1.17)

For typical troposphere values U ∼ 1 ms−1, Lh ∼ 100 km, N ∼ 10−2 s−1, and ν ∼
10−5 m2s−1, these dimensionless numbers are approximately Frh ∼ 10−3, Re ∼ 1010, and
Reb ∼ 104 [Waite, 2013]. From the approximation in (1.3), these values give a correspond-
ing εk ∼ 10−5 m2s−3 (similar to dissipation values in the stratosphere [Dewan, 1997]).

Stratified turbulence also has the buoyancy scale

kb ≡ N/U, (1.18)

and Ozmidov scale

kO ≡ (N3/εk)
1/2, (1.19)

which characterize different small-scale processes in the flow. The thickness of the hori-
zontal layers in stratified turbulence, and thus the largest vertical overturning scale corre-
sponds to kb [Carnevale et al., 2001, Billant and Chomaz, 2001, Waite and Bartello, 2004].
The Ozmidov scale is the largest scale for which the flow resembles small-scale three-
dimensional isotropic turbulence [Ozmidov, 1965]. Whether kO is upscale or downscale of
the dissipation range depends on the regime of stratified turbulence, such that

kd/kO ∼ Re
3/4
b , (1.20)

using the assumption that εk ∼ U3/Lh [Lindborg, 2006, Maffioli and Davidson, 2016].
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1.1.3 Previous results in stratified turbulence

Past investigations that used the Pr = 1 approximation revealed important properties of
stratified turbulence and confirmed various scaling arguments. Stratified turbulence has
two regimes: on the scale of the thickness of the quasi-two-dimensional vortices, viscosity
may be weak enough that small eddies may emerge and the layers are turbulently coupled
(characterized by Reb > 1), or viscosity may be strong enough that the layers are non-
turbulent and become viscously coupled (characterized by Reb < 1) [Riley and de Bruyn
Kops, 2003, Brethouwer et al., 2007]. Within the horizontal layers, Kelvin-Helmholtz (KH)
instabilities emerge when Reb & 1 and break down into small-scale turbulence [Lilly, 1983,
Riley and de Bruyn Kops, 2003, Laval et al., 2003, Brethouwer et al., 2007, Waite, 2011].
The kinetic and potential energy spectra in terms of horizontal wavenumber kh and vertical
wavenumber kv have been extensively examined in studies with stratified turbulence sim-
ulations. Forced simulation results have shown the horizontal kinetic and potential energy
spectra to exhibit k

−5/3
h scaling [Lindborg, 2006, Brethouwer et al., 2007, Almalkie and de

Bruyn Kops, 2012]. In some instances, there is a noticeable bump at kh ∼ kb due to KH
instabilities [Laval et al., 2003, Brethouwer et al., 2007, Waite, 2011]. Scaling arguments
have suggested k−3v scaling for the vertical kinetic and potential energy spectra for a lim-
ited range of wavenumbers [Billant and Chomaz, 2001, Lindborg, 2006]; simulations have
exhibited similarly steep vertical spectra past kb [Waite and Bartello, 2004, Brethouwer
et al., 2007, Almalkie and de Bruyn Kops, 2012]. The behaviour of vertical spectra is
scale-dependent: at large horizontal scales, agreement with k−3v scaling was shown for both
kinetic and potential energy, but for different ranges of wavenumbers in simulations forced
at large scales [Maffioli, 2017]. Decaying simulations also supported the horizontal k

−5/3
h

scaling for kinetic and potential energy found in forced simulations [Bartello and Tobias,
2013, Maffioli and Davidson, 2016], and were not influenced by stratification strength for
large Re [Lindborg, 2006, Bartello and Tobias, 2013]. The conversion from potential to
kinetic energy can be quantified by the buoyancy flux term in the energy budget [Hol-
loway, 1988, Waite, 2014]. In the buoyancy flux spectrum, restratification describes the
small-scale subrange with positive buoyancy flux, where potential energy is converted to
vertical kinetic energy, restratifying the flow [Holloway, 1988].

Stratified turbulence with Pr > 1 has not been as well-studied as the Pr = 1 case, but
previous studies have analyzed such simulations with some compromises in other simulation
parameters. A recent study which compared Pr = 7 and Pr = 700 DNS of decaying strati-
fied turbulence revealed Pr-dependence in the energy spectra [Okino and Hanazaki, 2017].
The Pr = 700 potential energy spectra initially exhibited k−1 scaling at large wavenumbers
(as predicted in the viscous-convective subrange for passive scalars [Batchelor, 1959]), and
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by the final decay period, a flat spectrum developed in the dissipation range. However, the
initial Reynolds number in this study was necessarily small (Re = 50) to accommodate
the very large Pr, limiting the extent of the inertial range; while small-scale changes due
to Pr have been identified, it is also of interest to determine any possible Pr-dependence
upscale of the dissipation range. An older study which performed DNS of stably stratified
homogeneous turbulent shear flow concluded higher-Pr flows were more likely to exhibit
counter-gradient heat flux (i.e. restratification [Holloway, 1988]) in the vertical direction,
but their moderate Re limits its applicability to geophysical flows [Gerz et al., 1989]. An-
other study where DNS of density-stratified turbulent wakes were performed for Pr = 0.2,
1, and 7 concluded that using the Pr = 1 assumption for the Pr = 7 case was reasonable,
though the grid spacing was four times the smallest length scale of the flow [de Stadler
et al., 2010]. The Pr = 7 case induced small-scale changes with little influence on the
wake’s large-scale features, and the differences between the Pr = 1 and Pr = 7 cases were
small compared to the substantial difference in computational costs.

Since varying Pr affects the relative strengths of small-scale processes, we anticipate
that most Pr-induced changes will occur around the small viscous dissipation and buoy-
ancy diffusion scales. If the viscosity is held fixed while Pr is increased, we would also
predict that changes in the temperature and potential energy are more exaggerated than
in the velocity and kinetic energy. Further, for fixed viscosity, the dissipation of potential
energy (or of temperature fluctuations, as in equation (1.14)) is expected to be especially
Pr-sensitive as kθ is modified. Equation (1.20) expresses a scale separation in stratified
turbulence in terms of the characteristic Reb, forecasting that sensitivity to Pr may de-
pend on the regime of stratified turbulence. As a small-scale phenomenon involving the
flow’s potential energy, restratification is another candidate for Pr-dependence. Due to
the complicated dependence of buoyancy flux on the stratification strength, varying Pr
may also affect the restratification range in regime-specific ways [Lucas et al., 2017].

1.2 Stratification and isotropy

In de Bruyn Kops [2015], four DNS were performed (one homogeneous isotropic bench-
mark, and three of axisymmetric forced homogeneous turbulence with different stratifica-
tion strengths) to investigate the extent to which strongly stratified turbulence satisfies
classical scaling arguments by Kolmogorov, Obukhov, and Corrsin (KOC scaling), and for
their agreement with related theory on local isotropy, the lognormal model for energy dis-
sipation, structure functions of velocity and scalar fields, local dissipation rates, internal
intermittency, and velocity and scalar exponents of internal intermittency. In this thesis,
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we consider the dependence of these local isotropy results on Pr.

Excluding the isotropic benchmark case, stratification strength was increased by de-
creasing Frh to obtain values of Frh = 1.0, 0.52, and 0.26, with associated values of Reb =
220, 48, and 13, respectively. The stratified simulations in de Bruyn Kops [2015] all used
the Pr = 1 simplification and were resolved on cuboid domains with 8192 × 8192 × 4096
grid points. The buoyancy Reynolds numbers span a value of 30: this was intentional, due
to the hypotheses that flows must have Reb ≈ 30 so that active turbulence forms [Gibson,
1980, de Bruyn Kops, 2015].

KOC scaling refers to the classical scaling arguments in Kolmogorov [1941], Obukhov
[1941a,b, 1949], Corrsin [1951], Kolmogorov [1962], Obukhov [1962]. Two principal assump-
tions common to KOC scaling hypotheses are adequate scale separation and local isotropy.
Adequate scale separation, desirable for studying strongly stratified turbulence DNS, is
related to a large Reb as noted above in equation (1.20). One indicator of anisotropy is the
skewness of the scalar (e.g. temperature) derivatives: nonzero skewness of scalar derivatives
parallel to the mean gradient (e.g. the vertical direction in these stratified flows) indicate
scalar anisotropy at small scales [Gibson et al., 1970]. Stratified turbulence by definition
has a mean scalar gradient so that local isotropy cannot be satisfied. However, isotropic
homogeneous turbulence with a mean gradient in a scalar still manages to exhibit KOC
scaling in that scalar, despite its anisotropic local scalar derivatives [Almalkie and de Bruyn
Kops, 2012, de Bruyn Kops, 2015]. Specific to simulations in de Bruyn Kops [2015], KOC
scaling was observed only in the case with weakest stratification, Frh = 1.0, correspond-
ing to the case with the largest Reb = 220. However, these observations were made with
Pr = 1, so these results might not reflect the outcome of unequal viscous and thermal
diffusivity processes. To extend this study, physical space fields and their derivatives are
analyzed with the same approach as de Bruyn Kops [2015], but for simulations with Pr =
0.7, 1, 2, and 4 and stratification strengths N = 0.075, 0.15, 0.3, and 0.6. Probability
density functions and statistical moments are analyzed for these simulations to explore the
possible effect of Pr on their measures of isotropy.

1.3 Format of thesis

This thesis includes findings from (a) the main investigation of Pr-dependence in strati-
fied turbulence spectra and physical fields, and (b) the results of an earlier project that
expanded on the study reviewed in Sec. 1.2 by de Bruyn Kops [2015], by using Pr 6= 1
simulations on a smaller scale. The same simulations for Pr = 0.7, 1, 2, and 4 are used
in both parts, but the Pr = 8 simulations had not been performed until after project (b)
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was completed. Ultimately, both parts explore the open question of Pr-dependence in
stratified turbulence. The choices of Pr and N span a range of Reb so that the Reb = 1
stratified turbulence regime transition may also be studied. In Chapter 2, the numerical
model, equations, and setup of simulations are explained. In Chapter 3, the simulation
results are analyzed in terms of scale-specific observations of Pr-dependence in the energy
spectra, buoyancy flux spectra, spectral energy flux, and snapshots of physical space fields.
Conclusions, discussion, and future work are given in Chapter 4.
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Chapter 2

Methodology

2.1 Equations and model

2.1.1 The Boussinesq equations

For the stratified turbulence simulations presented here, the governing equations are the
uniformly stratified Boussinesq equations on an f -plane in three dimensions:

D~u

Dt
+ f~z × ~u = −∇p+ αθẑ + ~Fu + ν∇2~u, (2.1)

Dθ

Dt
+ βw = Fb + κ∇2θ, (2.2)

∇ · ~u = 0, (2.3)

where ~u is velocity, f is the Coriolis parameter, p is pressure scaled by a reference density, θ
is the potential temperature fluctuation (or negative density fluctuation), ~Fu is the velocity
forcing, Fb is the temperature forcing, ν is viscosity, κ is diffusivity, α is thermal expansivity,
and β is the background potential temperature gradient [Herring and Métais, 1989].

The Boussinesq approximation is described in introductory fluids textbooks, e.g. Chap-
ter 14 in Tritton [1988] and Chapter 4 in Kundu et al. [2012], and is commonly used for
geophysical flows. Provided that θ is sufficiently small, it appears only in the second term
on the right hand side of equation (2.1) to reflect that the fluctuations are most important
in their contributions to the buoyancy force [Davidson, 2013]. Other than for the buoy-
ancy force, density fluctuations are ignored and the fluid is treated as incompressible. For
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the Boussinesq approximation to hold, it is assumed that the Mach number of the flow
is small, frequencies are slow compared to the acoustic frequency, and vertical scales are
smaller than the density scale height [Kundu et al., 2012]. A small Mach number (the
ratio of U to the speed of sound in the medium) limits fluid velocities such that the density
variations induced by velocity divergence are negligible. Pressure variations attributed
to propagating sound waves may be neglected if the frequencies of small perturbations
are slow compared to the fluid’s acoustic frequency. A small vertical scale ensures that
hydrostatic changes in pressure do not cause significant changes in density. Small-scale
geophysical turbulence satisfies all of these assumptions.

To simplify the problem of studying geophysical flows for a rotating Earth, we can
consider the tangent plane at a particular latitude and use a Cartesian coordinate system,
provided that the horizontal length scales are much smaller than Earth’s radius [Kundu
et al., 2012]. Further, the f -plane model assumes that f , which accounts for rotation
of the Earth, is a constant value that does not change with latitude. This assumption
requires that the time and length scales are not very long (several weeks, or thousands
of kilometers) [Kundu et al., 2012]. Rotational effects can optionally be considered in
this setup, but for the simulations presented here the effects of rotation and the term in
equation (2.1) including f will be ignored.

2.1.2 Numerical method

The DNS code computes the fluid velocity by first solving for vorticity (~ω = ∇× ~u) from
the vorticity formulation of (2.1):

∂~ω

∂t
= ∇× (~u× ~ω) + α

 ∂θ/∂y
−∂θ/∂x

0

+ ~Fω + ν∇2~ω, (2.4)

and (2.2), then inverting the result for ~u. This inversion assumes no mean velocity. In this
formulation, the second term on the right hand side of (2.4) corresponds to the baroclinic

generation of vorticity, and ~Fω = ∇× ~Fu is the vorticity forcing.

The spectral transform method is used on a triply periodic domain to solve the uni-
formly stratified Boussinesq equations (2.2), (2.3), and (2.4). The domain is a cube of size
L×L×L and grid size n×n×n in both the physical and Fourier domains where ~u, ~ω, and
θ are stored. Nonlinear terms are computed in the physical domain, and spatial derivatives
are computed in the Fourier domain, and a Fast Fourier Transform is used to go between
domains [Frigo and Johnson, 2005]. Third-order Adams-Bashforth time stepping is used
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with constant time step ∆t, and viscous and diffusive terms use a Crank-Nicolson scheme
[Durran, 2010]. Aliasing issues are countered by a less restrictive wavenumber truncation
than the 2/3 rule, which is known to eliminate all aliasing error [Durran, 2010]. Previous
DNS studies have used wavenumber truncations as high as 15/16, which still managed to
remove the dominant aliasing error [Riley and de Bruyn Kops, 2003]. In the following
simulations, the Fourier coefficients are spherically truncated at a maximum wavenumber
kmax = (n

2
)(8

9
) = 4n/9. The effective resolution is then ∆x = ∆y = ∆z = 9L/8n with

wavenumber spacing ∆kx = ∆ky = ∆kz = 2π/L. This model has been used in numerous
studies of stratified turbulence, e.g. Waite [2011, 2017], Lang and Waite [2019].

2.1.3 Energy budget equations

The equations for the kinetic and potential energy budget for each wavevector ~k are:

∂EK
∂t

(~k) = TK(~k) +B(~k)−DK(~k) + F (~k), (2.5)

∂EP
∂t

(~k) = TP (~k)−B(~k)−DP (~k). (2.6)

The first terms on the right hand side of (2.5)-(2.6),

TK(~k) ≡ −Im
∑

~k+~p+~q=0

Pijm(~k)ûj(~p)ûm(~q)ûi(~k), (2.7)

TP (~k) ≡ −α
β

Im

(
kj

∑
~k+~p+~q=0

θ̂(~k)θ̂(~p)ûj(~q)

)
, (2.8)

are the nonlinear kinetic and potential energy transfer respectively, using standard projec-
tion operator Pijm [Rose and Sulem, 1978]. The buoyancy flux, B, is

B(~k) ≡ αRe
(
θ̂(~k)ŵ∗(~k)

)
, (2.9)

the kinetic and potential energy dissipation are

DK(~k) ≡ 2νk2EK(~k), (2.10)

DP (~k) ≡ 2κk2EP (~k), (2.11)

and F is the forcing. Horizontal and vertical components of (2.5)-(2.6) are found by

summing over all wavevectors ~k for particular kh or kv.
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The buoyancy flux B is the cross spectrum of buoyancy and vertical velocity, and can be
interpreted as the transfer of potential to kinetic energy [Holloway, 1988, Waite, 2014]. To
justify restratification, Holloway [1988] suggested that the downscale transfer of potential
energy to small scales was more efficient than for kinetic energy, leading to a tendency
for more potential energy than kinetic energy to accumulate at small scales. Oppositely,
more kinetic energy would accumulate at large scales than potential energy, and so these
imbalances drive the conversion of kinetic to potential energy at large scales (B < 0) and
potential to kinetic energy at small scales (B > 0, restratification).

The transfer terms represent the conservative transfer of potential and kinetic energy
to different wavenumbers. Since they are conservative, the spectral fluxes of kinetic and
potential energy are obtained from the transfer terms as

ΠK(k) = −
∫ k

0

TK(k) dk, (2.12)

ΠP (k) = −
∫ k

0

TP (k) dk. (2.13)

As conserved quantities, the transfer terms satisfy∫ ∞
0

TK(k) dk = 0 and

∫ ∞
0

TP (k) dk = 0, (2.14)

which also manifest as ΠK = 0 and ΠP = 0 at kmax.

2.2 Simulation setup

The parameter values, nondimensional numbers, and wavenumbers for all simulations pre-
sented here are given in Table 2.1. These simulations are performed on cubic domains of
size L = 2π with n = 1536 grid points in each direction. The total integration length across
all simulations is 500 time units and the time step is ∆t = 0.00625. Energy time series,
energy dissipation time series, energy spectra, and energy transfer spectra are output every
10 time units in each simulation.

The horizontal and vertical kinetic energy spectra are [Waite and Bartello, 2004]

EK(kh)δ =
1

2

∑
~k′∈Ih(kh)

|~̂u(~k′)|2, (2.15)

EK(kv)δ =
1

2

∑
~k′∈Iv(kv)

|~̂u(~k′)|2, (2.16)
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Run N Pr Frh Re Reb εk(×10−6) εp(×10−6) kd kθ kmax/kd kmax/kθ kO kb
A0 0.075 0.7 0.0911 3310 27.5 1.85 1.02 181 138 3.77 4.92 15 5
A1 0.075 1 0.0947 3197 28.7 1.93 0.977 183 183 3.73 3.73 15 5
A2 0.075 2 0.0983 3094 29.9 2.02 0.863 185 311 3.69 2.19 14 5
A3 0.075 4 0.103 2941 31.2 2.11 0.788 187 528 3.65 1.29 14 5
A4 0.075 8 0.106 2839 31.7 2.14 0.713 188 892 3.64 0.76 14 5

B0 0.15 0.7 0.0402 4304 6.94 1.87 1.03 181 139 3.76 4.91 42 9
B1 0.15 1 0.0420 4130 7.28 1.97 0.920 184 184 3.71 3.71 41 8
B2 0.15 2 0.0452 3877 7.92 2.14 0.763 188 315 3.64 2.16 40 8
B3 0.15 4 0.0479 3658 8.38 2.26 0.627 190 538 3.59 1.27 39 8
B4 0.15 8 0.0499 3491 8.71 2.35 0.529 192 914 3.55 0.75 38 8

C0 0.3 0.7 0.0191 5279 1.93 2.09 1.03 186 143 3.66 4.78 114 16
C1 0.3 1 0.0201 5041 2.03 2.19 0.908 189 189 3.61 3.61 111 16
C2 0.3 2 0.0218 4670 2.22 2.40 0.688 193 325 3.53 2.10 106 16
C3 0.3 4 0.0233 4381 2.37 2.56 0.514 196 555 3.48 1.23 103 16
C4 0.3 8 0.0244 4179 2.49 2.69 0.384 199 945 3.43 0.72 100 16

D0 0.6 0.7 0.00896 6737 0.541 2.34 0.888 192 147 3.56 4.65 304 29
D1 0.6 1 0.00935 6485 0.567 2.45 0.780 194 194 3.52 3.52 297 29
D2 0.6 2 0.0101 6045 0.613 2.65 0.571 198 333 3.45 2.05 286 29
D3 0.6 4 0.0107 5674 0.654 2.82 0.394 201 569 3.39 1.20 277 29
D4 0.6 8 0.0112 5423 0.684 2.95 0.263 203 967 3.35 0.71 270 29

Table 2.1: Simulation parameters, nondimensional numbers, and wavenumbers for all sim-
ulations. The run label letter A/B/C/D indicates a common buoyancy frequency. The
run label number 0/1/2/3/4 indicates a common Prandtl number. All simulations have
the same viscosity, resolution, and maximum wavenumber: ν = 1.2 × 10−5, n = 1536,
kmax = 682.
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where

Ih(kh) = {~k′ | kh − δ/2 ≤ k′h < kh + δ/2}, (2.17)

Iv(kv) = {~k′ | kv − δ/2 ≤ |k′v| < kv + δ/2}, (2.18)

δ = 2π/L, and ~̂u corresponds to the velocity in the Fourier domain. For n = 1536
gridpoints, the spectra are computed for kh ∈ [0, 964] and kv ∈ [0, 682]. The additional kh
components come from corner regions outside the circle of radius kmax = 682 in a horizontal
plane. The horizontal and vertical potential energy spectra are similarly defined.

The time series are used for the calculated values in Table 2.1, based on values for εk and
εp averaged over the last 200 simulation time units. The length scale used in Frh and Re is
computed from Lh = U3/εk, where U is the root mean square velocity (as in [Brethouwer
et al., 2007]). Velocity, vorticity, and temperature fields in physical space are output at
equidistant times over the integration length (either 5 or 9 output times depending on the
case). With this setup, the last performed simulation was run D4, which took 78.06 hours
on 768 processors on Cedar.

Large-scale vortical modes are randomly forced by directly forcing rotational velocity in
these strongly stratified simulations [Waite and Bartello, 2004, Lindborg, 2006, Brethouwer
et al., 2007]. Gravity waves are not directly forced. Time dependence of the forcing follows
an AR(1) red noise process with a set decorrelation time scale τ [Waite, 2017],

G(~k, tn) = α̃G(~k, tn−1) + β̃g(~k, n), (2.19)

for a random complex number g(~k, n). The random number’s real and imaginary parts
follow a Gaussian distribution with a mean of 0 and variance of 1. The coefficients in
equation (2.19) satisfy

α̃ = exp(−∆t/τ), (2.20)

β̃2 = 1− α̃2. (2.21)

A specified forcing amplitude multiplies G(~k, tn) and is applied to modes in the spherical
shell k ∈ [3, 5], with the decorrelation time scale set to 10 time steps. The simulations are
initialized with a prescribed kinetic and potential energy at a chosen wavenumber k = 3.
Damping is applied to the kh = 0 modes to prevent the accumulation of energy in vertically
sheared horizontal flow [Smith and Waleffe, 2002]. More details on the code used for these
simulations can be found in past studies [Waite, 2011, 2017].

The first set of simulations has a fixed buoyancy frequency N , and separate trials for
each Prandtl number. This approach was repeated for a total of 4 stratification strengths
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and 5 Prandtl numbers, resulting in 20 simulations at the same resolution with Pr = 0.7,
1, 2, 4, and 8 (runs with labels 0, 1, 2, 3, and 4 respectively) and N = 0.075, 0.15, 0.3,
and 0.6 (runs with labels A, B, C, and D respectively). The values for N were chosen to
give a range of Frh, and values for Reb of O(1) and larger. The most strongly stratified
cases have Frh ≈ 0.01; for a lab experiment setup where U = 10−2 ms−1 and Lh = 2 m,
this Frh corresponds to a 2.5% change in density over a depth of 1 meter (or 1.25% if
Lv = 0.5 m in the setup, for example). For every run, the kinematic viscosity is set to
be the same: ν = 1.2 × 10−5. The resolution n = 1536 ensures that the Kolmogorov
scale is well resolved (kmax/kd ≈ 3), and that kθ is resolved (kmax/kθ > 1) except for
when Pr = 8. The simulations with Pr = 8 are slightly underresolved compared to
the others, with kmax/kθ ≈ 0.7, but these results are still included for comparison and
may still be considered DNS since kmax/kθ ∼ 1 [Moin and Mahesh, 1998]. In addition
to studying dependence on Pr, these parameter values explore both regimes of strongly
stratified turbulence, Reb < 1 and Reb > 1.

2.3 Physical space field derivatives, probability den-

sity functions, and statistics

For the investigation into local isotropy and comparison with de Bruyn Kops [2015], deriva-
tives of the temperature and velocity component fields are calculated in MATLAB, mak-
ing use of the Fourier transform and its inverse, fftn, and ifftn. For each simulation,
derivatives in the x-, y-, and z-direction are computed for θ and for each component of
~u = (u1, u2, u3). The velocity component derivative fields are denoted ui,j for the derivative
with respect to j of the ith velocity component (x = 1, y = 2, and z = 3).

Probability density functions (p.d.f.s) of the temperature and velocity component fields
are approximated and plotted using MATLAB’s ksdensity instead of histogram. The
result of this is a smoother line plot than if histogram were used. Due to the lower
resolution in these simulations versus the ones in de Bruyn Kops [2015], p.d.f.s that were
generated from histogram were fairly rough and difficult to compare.

The variance σ2, skewness S, and kurtosis K of the derivative fields are calculated with
built-in MATLAB functions var, skewness, and kurtosis. These statistical moments,
or statistics, are often used in studies of turbulent flows and their use is discussed in
introductory fluid mechanics and turbulence textbooks, e.g. Chapter 6 in Tennekes and
Lumley [1972], Chapters 7 and 13 in Wyngaard [2010], Chapter 12 in [Kundu et al.,
2012], and Chapter 5 in Davidson [2015]. The variance quantifies how far spread out the
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distribution is from its mean (or average) value. The skewness is a measure of symmetry in
the distribution about its mean. If the distribution tends to have more frequent instances
of values less than the mean, S is negative. The kurtosis, or flatness factor, is a measure
of how outlier-prone a distribution is, where K = 3 for a Gaussian distribution. These are
calculated in MATLAB as

σ2 =
1

n− 1

n∑
i=1

(xi − x)2, (2.22)

S =

1

n

∑n
i=1(xi − x)3( 1

n

∑n
i=1(xi − x)2

)3/2 , (2.23)

K =

1

n

∑n
i=1(xi − x)4( 1

n

∑n
i=1(xi − x)2

)2 , (2.24)

for a set of data ~x = {xi} with n data points (which is 15363 with our resolution) and a
mean of x (which is 0 in our analysis).

The velocity and temperature fields in de Bruyn Kops [2015] were analyzed for their
isotropy by identifying distinguishable groups in their statistics. In their isotropic bench-
mark case, velocity statistics markedly fell into either the longitudinal or transverse group.
For the velocity, the longitudinal derivatives were u1,1, u2,2, and u3,3, and the transverse
derivatives were the remaining u1,2, u1,3, u2,1, u2,3, u3,1, and u3,2. Temperature deriva-
tives were considered horizontal (θ,1 and θ,2) or vertical (θ,3). The stratified simulations,
like ours, were axisymmetric and homogeneous. By axisymmetric it is meant that the
statistics are independent of direction on a horizontal plane (e.g. derivatives in the x- and
y-directions would have the same statistics). Due to axisymmetry, the velocity derivatives
would have 5 statistically independent derivatives corresponding to the groups

u1,1, u2,2; u1,2, u2,1; u3,3; u1,3, u2,3; u3,1, u3,2.

The first two groups come from interchangeability of 1 and 2 in the longitudinal and
transverse derivatives respectively. Similarly, the fourth group pairs the z-derivatives of
the x- and y-components together, and the fifth group pairs the x- and y-derivatives of
the z-components together. However, their low Reb (strongly stratified) case suggested 3
distinct groups

u1,1, u2,2, u3,3; u1,2, u2,1, u3,1, u3,2; u1,3, u2,3.
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Higher Reb (weaker stratification) suggested 2 groups, expected of the turbulently-coupled-
layers regime being more similar to the isotropic case.

To obtain ensemble-averaged data, time averaging of the p.d.f.s is done over the sec-
ond half of simulation time, roughly corresponding to the same simulation time interval
mentioned in 2.2, which include the last 5 output NetCDF files in each simulation (the
simulations analyzed in comparison with de Bruyn Kops [2015] used 9 output times for
physical space fields).

For each of u1, u2, u3, and θ, the computations for every simulation follow:

1. Read the last 5 NetCDF output files (ncread) and compute the (·),1, (·),2, and (·),3
derivatives, resulting in 5 sets of 3 derivative directions,

2. For each derivative direction, combine the data from all 5 output times into a single
array (e.g. create u31 that will include u3,1 data from the 5 NetCDF files),

3. Compute histogram data with ksdensity, then time-average by scaling frequency
data by 1/5,

4. Plot p.d.f.s and compute statistics of the now time-averaged data.
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Chapter 3

Results

In Chapter 3 we analyze kinetic and potential energy spectra, spectral budget terms, and
physical space fields of the simulations. We start with Pr = 1, first focusing on the N = 0.3
case (Sec. 3.1.1), then we look at the effect of varying N for the Pr = 1 cases (Sec. 3.1.2).
Next, in Sec. 3.2 we analyze the spectra and snapshots for Pr-dependence. Finally, in
Sec. 3.3, p.d.f.s and statistics for each simulation are studied to determine how Pr affects
isotropy in the velocity component and temperature fields.

3.1 Overview of Pr = 1 cases

3.1.1 Overview of the N = 0.3, Pr = 1 case

We start with an overview of the Pr = 1 case with intermediate stratification N = 0.3 (run
C1). Time series of kinetic and potential energy and dissipation are plotted in Fig. 3.1(a,c).
The energy and dissipation rates increase for the first 200 time units until the flow develops
into statistically stationary turbulence, after which these quantities equilibrate. The energy
and dissipation plots are fairly steady for t ∈ [300, 500], which is chosen as the time
averaging interval. Stationarity at these times is observed for all the simulations, so the
same time averaging interval is used for all cases.

Horizontal and vertical wavenumber spectra are plotted in Fig. 3.1(b,d) (the full wavenum-
ber energy spectra are omitted as they closely resemble the vertical spectra). Spikes in the
kinetic energy spectra for small wavenumbers are a consequence of the large-scale forcing
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Figure 3.1: Energy spectra and time series for run C1: Pr = 1, N = 0.3. Left column:
time series of (a) kinetic and potential energy and (c) energy dissipation. Right column:
kinetic and potential energy spectra in terms of (b) horizontal and (d) vertical wavenum-
ber. Characteristic wavenumbers kb, kO, and kd are denoted with vertical solid lines, and
reference slopes are given by dashed lines. Note that kθ is coincident with kd for Pr = 1.
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for k ∈ [3, 5]. For Pr = 1, kd and kθ (label omitted) are coincident. Beyond the forcing in-

terval, the horizontal spectra are close to the expected k
−5/3
h scaling law for approximately

one decade [Lindborg, 2006]. The vertical kinetic energy spectrum is flat out to kb, while
the potential energy spectrum is peaked at kb. Beyond kb, the vertical spectra steepens
to approximately k−3v . Due to the modest Reb = 2.03 in this case, there is only a small
separation between the Ozmidov and dissipation scales. Since Pr = 1, the kinetic and
potential energy are expected to behave similarly at very small scales as both momentum-
and buoyancy-diffusive scales are equivalent; indeed, in the dissipation range beyond kd
(or kθ), the spectra are nearly the same.

Figure 3.2 shows vertical and horizontal slices of horizontal velocity and vorticity at the
end of the simulation. With Reb = 2.03 and Frh = 0.019, run C1 is in the strongly stratified
and slightly viscous regime where the flow is arranged into layers of pancake eddies. This
run is only slightly past the Reb = 1 transition from viscously to turbulently coupled layers.
In Fig. 3.2(a,b), the layerwise arrangement and intermittent small-scale Kelvin-Helmholtz
(KH) instabilities can be seen clearly in the vertical slices of the velocity and y-component
vorticity fields. The buoyancy wavenumber kb = 16 for run C1 is approximately the number
of layers in the flow. The horizontal slices of velocity and z-component vorticity fields in
Fig. 3.2(c,d) clearly show the signature of the large-scale vortical forcing. In addition,
small horizontal scales associated with KH billows are visible in Fig. 3.2(d).

The temperature fluctuation dissipation field (equation (1.14)) is shown in Fig. 3.3.
Run C1 has few regions that are highly θ-dissipative, and in Fig. 3.3(a) the θ-dissipative
regions resemble small quasi-horizontal features in contrast with the intermittent worms
expected in unstratified homogeneous 3D turbulence [Burgers, 1948, Siggia, 1981, Ishihara
et al., 2013]. These dissipative regions also appear to be arranged in horizontal layers
(Fig. 3.3(b)) as in the vertical slices of u and ωy in Fig. 3.2(a,b).

We now consider the spectral budget for run C1. The spectra of TK , TP , and B
from the energy budget (2.5)-(2.6) are plotted for run C1 in Fig. 3.4(a,b). Since these
spectra are obtained by time averaging over the stationary interval, the dissipation spectra
can be obtained as a residual: e.g. DK(k) ≈ TK(k) + B(k) outside the forcing interval.
The horizontal and vertical spectral budgets are similar at large scales; the shape of the
spectra at small wavenumbers is primarily influenced by the large-scale forcing. In the
forcing interval, there is substantial transfer of the injected kinetic energy out of the forced
wavenumbers, as indicated by large negative spikes in TK(kh) and TK(kv). The potential
energy budget terms TP (kh), TP (kv), B(kh) and B(kv) are very small and negative in this
range, indicating that, while there is no direct forcing of potential energy, there is some
conversion of the remaining injected kinetic energy to potential energy.
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Figure 3.2: Top row: vertical slices (x, z) at y = 0 of (a) x-component velocity u and (b)
y-component vorticity ωy. Bottom row: horizontal slices (x, y) at z = 0 of (c) x-component
velocity u and (d) z-component vorticity ωz. All fields are computed at the end of run C1.
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Figure 3.3: Temperature fluctuation dissipation field, 2κ ∂θ
∂xj

∂θ
∂xj

: (a) isosurfaces of 5% of

the maximum value, (b) vertical slice (x, z) at y = 0. All fields are computed at the end
of run C1.
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Figure 3.4: (a,b): Spectra for kinetic and potential energy transfer terms and buoyancy
flux for run C1. Spectra are multiplied by wavenumber to preserve area under the curve
for linear-log axes. (c,d): Spectral energy fluxes plotted for run C1.
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In the horizontal spectral budget, downscale of the forcing interval, TK(kh) is positive
and has a small peak at kb. Some of the kinetic energy deposited at these wavenumbers
is converted to potential energy, as indicated by the negative buoyancy flux in this range.
Indeed, between the forcing interval and kb, TP (kh) and B(kh), both of which are negative,
increase to near zero. Comparing the energy budget terms in this range reveals that
much of the energy going into these horizontal scales is lost to dissipation: dissipation at
large and intermediate horizontal scales can occur at large Re through the vertical part of
the dissipation term, which is restricted to small vertical scales but not necessarily small
horizontal scales, since Reb is not very large in this case. Dissipation at small wavenumbers
disrupts the formation of a distinguishable true inertial subrange, which will be apparent
in the spectral energy flux.

At kb, TP (kh) and B(kh) exhibit negative peaks coinciding with TK(kh)’s positive peak,
but are much smaller in comparison. Overturning from the formation, instability, and
breakdown of horizontal layers characteristically occurs at the buoyancy scale, so some
conversion of kinetic to potential energy is expected at kb, as seen in Holloway [1988],
Waite [2011, 2014].

The vertical spectral budget shows different behaviour between the forcing interval and
the buoyancy scale. At kb, TK(kv) has a prominent positive peak while TP (kv) and B(kv)
have negative peaks, and they are all comparable in magnitude indicating a smaller energy
loss to dissipation than in the horizontal spectral budget. It is clear that in the vertical
spectral budget, the overturning occurring at kb is far more efficient at converting kinetic
energy to potential energy than the horizontal.

Downscale of kb and into the dissipation range, the horizontal and vertical spectral
budgets behave similarly again. Between kb and kO, all of TP (kh), TP (kv), B(kh) and
B(kv) increase to positive spectral peaks. At length scales below the buoyancy scale,
buoyancy-driven processes dominate and large amounts of potential energy are expended
to restratify the flow. Past kO, viscous dissipation and buoyancy diffusion take over as
TK(kh), TK(kv), TP (kh), TP (kv), B(kh), and B(kv) decrease to zero.

The spectral energy fluxes ΠK and ΠP are shown in Fig. 3.4(c,d). While the fluxes
are positive beyond the forcing scale, consistent with a downscale transfer of kinetic and
potential energy, they do not exhibit discernable wavenumber ranges where downscale
energy flux is constant. However, since TP (kh) is almost zero for a short wavenumber
interval, there is more of a range of constant flux in potential than kinetic energy. The
absence of a long inertial subrange is not unexpected, given the modest Re and Reb of this
case [Brethouwer et al., 2007]. Beyond the forcing interval, ΠK(kh) and ΠK(kv) exhibit
a large positive peak at larger wavenumbers. Dissipation at these large scales reduces
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the available energy for downscale transfer, inhibiting the development of a true inertial
subrange.

The spectral fluxes for potential energy are smaller than the kinetic spectral fluxes at
small horizontal and vertical wavenumbers, as the extreme negative spikes in TK(kh) and
TK(kv) are directly caused by the large-scale forcing of kinetic energy. However, beyond the
buoyancy scale, the kinetic and potential fluxes converge. The horizontal spectral fluxes
in run C1 are small compared to the vertical spectral fluxes; this tends to depend on N ,
and will be further discussed in §3.2.3.

3.1.2 N-dependence for Pr = 1

Figure 3.5: Top row: vertical slices (x, z) at y = 0 of y-component vorticity. Bottom row:
horizontal slices (x, y) at z = 0 of z-component vorticity. Pr = 1 for (a,e) N = 0.075,
(b,f) N = 0.15, (c,g) N = 0.3, and (d,h) N = 0.6. The same colourmap is used as in
Fig. 3.2 with the range modified for visibility across N . The colourmap range shared by
the vertical slices is different from the range shared by the horizontal slices.

With fixed Pr = 1, increasing N from 0.075 to 0.6 decreases Reb from 28.7 to 0.567, and
Frh from 0.0947 to 0.00935. Through the vertical slices in panels (a)-(d) of Figs. 3.5 and
3.6, we observe the transition in regimes from nearly isotropic small and intermediate scales
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Figure 3.6: Top row: vertical slices (x, z) at y = 0 of θ. Bottom row: horizontal slices
(x, y) at z = 0 of θ. Pr = 1 for (a,e) N = 0.075, (b,f) N = 0.15, (c,g) N = 0.3, and (d,h)
N = 0.6. The same colourmap is used as in Fig. 3.2 with the range modified for visibility
across N . The colourmap range shared by the vertical slices is different from the range
shared by the horizontal slices.
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to horizontally-layered flow in the vorticity and temperature fluctuation fields. Obvious
layers are not visible in the vorticity field at the weakest stratification N = 0.075; the
vertical temperature field slice in Fig. 3.6(a) better shows the slight anisotropy at Reb =
28.7. At intermediate stratifications N = 0.15 and 0.3, KH instabilities are visible within
recognizable horizontal layers in both the vorticity and temperature fields. Increasing N
reduces the thickness of these layers, corresponding to an increase in kb. For the strongest
stratification N = 0.6, overturning is restricted to very small vertical scales and only a few
instabilities are visible in Figs. 3.5,3.6(d).

The horizontal slices in panels (e)-(h) of Figs. 3.5 and 3.6 show the loss of small scale
features, as the small scales become less turbulent with greater N . This loss of small
features can be attributed to kO growing from 15 to 297 between N = 0.075 and 0.6 while
kd is only slightly increased. At lower N , the flow resembles small scale isotropic turbulence
for a wider wavenumber range k ∈ [kO, kd], so the loss of small-scale features at N = 0.6
is in line with greater anisotropy. At N = 0.6, signatures of KH billows are still visible
in the horizontal slices Figs. 3.5,3.6(h). These panels also exhibit the least extreme values
in temperature and vorticity: as the horizontal layers are reduced to vertical scales near
kd (and kθ in the case of Pr = 1), fluctuations in these fields are eliminated by viscous
dissipation and buoyancy diffusivity.

The kinetic and potential energy spectra for Pr = 1 at each N are plotted in Fig. 3.7
in terms of horizontal and vertical wavenumber. For the horizontal kinetic energy spectra
in Fig. 3.7(a), the N = 0.075, 0.15, and 0.3 cases are very similar. Slightly more kinetic

energy is found at large scales for larger N , and these cases show agreement with the k
−5/3
h

scaling law for about a decade after the forcing interval. The vertical kinetic energy spectra
in Fig. 3.7(b) are also affected by N . As kb increases with N , these spectra are relatively
flat for a longer range of small wavenumbers, but eventually converge at kv ≈ 100. Limited
agreement with k−3v scaling is observed at the three lowest stratifications.

The horizontal potential energy spectra for N = 0.075, 0.15, and 0.3 follow the same
patterns as the kinetic energy, but with marginally more N -dependence at intermediate
and large kh. Downscale of kb, the spectra steepen more for larger N but eventually
converge far into the dissipation range. More potential energy is found at intermediate to
large kh at weaker stratification which is consistent with more small scale overturning in
the temperature field. The vertical potential energy spectra peak at their respective kb,
and exhibit similar dependence on N as in the vertical kinetic energy spectra.

In all panels, the N = 0.6 spectra have a distinct shape compared to the lower three
stratifications. Since Reb = 0.6 < 1, the cascade to small horizontal scales is suppressed
and there is a consequent steepening of the horizontal spectra (e.g. [Brethouwer et al., 2007,
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Waite, 2014]). The steepening of the N = 0.6 horizontal spectra at small wavenumbers is

severe enough that there is little k
−5/3
h scaling law agreement just downscale of the forcing.

Similarly, the steepening from kb onwards causes the N = 0.6 vertical spectra to deviate
from k−3v scaling. Except in Fig. 3.7(b), the N = 0.6 case does not converge to the other
three cases until the end of the wavenumber range. Strong stratification will restrict vertical
advection, which greatly reduces the potential energy found at small vertical length scales.

3.2 Pr-dependence

3.2.1 Energy spectra

We now examine the effects of varying Pr in fixed-N groups, starting with the kinetic and
potential energy spectra. For all values of N , the horizontal and vertical kinetic energy
spectra, shown in Fig. 3.8, do not appear to be significantly affected by Pr. As in Fig. 3.1,
spikes at small wavenumbers are from the large-scale forcing, and the vertical spectra are
flat until kb. For N = 0.075, 0.15, and 0.3, the horizontal spectra follow the k

−5/3
h scaling

law just after the forcing interval for about one decade as in run C1 (see Table 3.1). The
N = 0.6 spectra are steeper than those at lower N , with a more pronounced bump at kb
[Waite, 2014]. Similarly, the k−3v scaling law for vertical wavenumber spectra is observed for
about one decade for all groups except N = 0.6. Beyond these short scaling law intervals,
both the horizontal and vertical spectra shallow slightly when Pr is increased (Table 3.1).
Larger-Pr simulations contain more kinetic energy at small scales since buoyancy-induced
velocity fluctuations can persist as kθ increases. As a result of the spectra shallowing, the
k
−5/3
h and k−3v scaling laws extend to slightly smaller scales.

As stratification increases, the dependence on Pr extends to smaller wavenumbers. For
example, the horizontal kinetic energy spectra for different Pr start to diverge at kh ≈ 50
for N = 0.075 and kh ≈ 20 for N = 0.3 in Figs. 3.8(a) and 3.8(e) respectively. Only for the
horizontal spectra with N = 0.6 (Fig. 3.8(g)) do the spectra for each Pr separate shortly
after the forcing interval, and at a wavenumber smaller than kb.

The potential energy spectra in Fig. 3.9 show similar but more pronounced changes
as Pr is varied. Both horizontal and vertical spectra exhibit the same shallowing with
increased Pr at large wavenumbers as in the kinetic energy spectra (Table 3.1). In the
horizontal spectra, the shallowing that results from increasing Pr again lengthens the
wavenumber range for which there is agreement with k

−5/3
h scaling. Increasing N increases

the average kb, where peaks in vertical spectra are observed. As in run C1, this differs
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Figure 3.8: Kinetic energy spectra in terms of horizontal and vertical wavenumbers. From
top to bottom the rows are N = 0.075, 0.15, 0.3, 0.6. Black dashed lines are k

−5/3
h and k−3v

reference lines. Vertical dash-dotted lines are kθ corresponding to Pr colours.
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Run N Pr KE(kh) KE(kv) PE(kh) PE(kv)
A0 0.075 0.7 -2.04 -2.43 -1.98 -2.21
A1 0.075 1 -2.01 -2.41 -1.84 -2.07
A2 0.075 2 -1.97 -2.39 -1.67 -1.90
A3 0.075 4 -1.95 -2.36 -1.55 -1.77
A4 0.075 8 -1.93 -2.35 -1.47 -1.69

B0 0.15 0.7 -2.09 -2.79 -2.20 -2.59
B1 0.15 1 -2.04 -2.76 -2.07 -2.43
B2 0.15 2 -1.96 -2.70 -1.87 -2.20
B3 0.15 4 -1.92 -2.66 -1.75 -2.07
B4 0.15 8 -1.89 -2.64 -1.67 -1.98

C0 0.3 0.7 -2.35 -4.07 -2.51 -3.91
C1 0.3 1 -2.26 -3.97 -2.35 -3.53
C2 0.3 2 -2.13 -3.82 -2.13 -3.00
C3 0.3 4 -2.05 -3.70 -1.98 -2.67
C4 0.3 8 -2.00 -3.62 -1.89 -2.47

D0 0.6 0.7 -2.92 -5.85 -2.46 -5.86
D1 0.6 1 -2.76 -5.63 -2.31 -5.26
D2 0.6 2 -2.55 -5.26 -2.13 -4.33
D3 0.6 4 -2.43 -4.97 -2.02 -3.69
D4 0.6 8 -2.38 -4.77 -1.96 -3.27

Table 3.1: Slopes from linear regression analysis of kinetic and potential energy spectra in
Figs. 3.8 and 3.9. For horizontal spectra, the linear regression is performed over kh ∈ [6, 60]
except for N = 0.6, where kh ∈ [6, 29] is used. For vertical spectra, the wavenumber
interval is one decade starting at kb; i.e. kv ∈ [6, 60], [8, 80], [16, 160] for N = 0.075, 0.15, 0.3
respectively. The vertical spectra for N = 0.6 uses kv ∈ [29, 200] since the average kd ≈ 198.
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from the kinetic energy spectra which are flat until kb. In the vertical spectra for N =
0.075, 0.15, and 0.3, the shallowing from larger Pr causes the spectra to stray from the
k−3v scaling law downscale of kb.

A similar trend as the kinetic energy spectra is observed for theN = 0.6 potential energy
spectra (Fig. 3.9(g,h)): here, both the horizontal and vertical spectra visibly separate just
after the forcing interval and before kb. The separation occurs at a noticeably smaller
wavenumber for the horizontal spectra than the vertical, as in the kinetic energy case. All
simulations with N = 0.6 have Reb < 1; horizontal scales between the forcing interval and
the buoyancy scale would be sensitive to Pr because of the instabilities that form between
the layers of quasi-horizontal vortices. Figure 3.9(g) for N = 0.6 also shows a break in the

horizontal spectra at kb, after which each curve steepens beyond k
−5/3
h .

For each increase in Pr, there appears to be less of a change in the shape of the
spectra, and this behaviour is observed at all N . Excluding Pr = 0.7, each jump in Pr
is from doubling the previous Pr, but the shallowing or separation between successive
curves slightly decreases, as evident in Table 3.1. For instance, at the average kd = 193
for N = 0.3, between Pr = 1 and Pr = 2 the horizontal kinetic energy increases by 67%
compared to a 38% increase from Pr = 4 to Pr = 8. The vertical potential energy for
the same N and kd increases by 310% between Pr = 1 and Pr = 2 compared to a 76%
increase from Pr = 4 to Pr = 8. Simulations where Pr is much greater than 8 may be
expected to continue exhibiting less of a change in the potential energy spectra shape as
Pr is increased. That is, the diminishing increase and shallowing of spectra at larger Pr
may become so inappreciable that these higher-Pr spectra converge to a shape not vastly
different from the Pr = 8 case. This convergence may hold as long as Pr is not extremely
large: for very large Pr ∼ O(103) in decaying turbulence simulations, buoyant scalars
have been shown to behave as passive scalars (i.e. potential energy spectra proportional to
k−1), and plateaus (∝ k0) eventually develop in the potential energy spectra [Okino and
Hanazaki, 2017].

3.2.2 Buoyancy flux

Buoyancy flux spectra are shown in Fig. 3.10 at different Pr in fixed-N groups as in §3.2.1
for the energy spectra. Overall, an increase in buoyancy flux is observed in all cases as
Pr is increased. The increase in buoyancy flux is most significant at large horizontal and
vertical wavenumbers, where restratification occurs, and is amplified at greater N . The
one exception to this trend is for the strongest stratification (Fig. 3.10(g)), where the
increased buoyancy flux is greatest at small horizontal and large vertical wavenumbers.
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Figure 3.10: Buoyancy flux spectra multiplied by wavenumber to preserve area under the
curve for linear-log axes. From top to bottom the rows are N = 0.075, 0.15, 0.3, and 0.6.
Horizontal (left) and vertical (right) wavenumber spectra are shown. Vertical dash-dotted
lines are kθ corresponding to Pr colours.
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Additionally, at N = 0.6, the horizontal buoyancy flux is positive for a short wavenumber
range before kb, as well as at larger (restratifying) wavenumbers, for Pr = 2, 4, and 8. It
makes sense that a greater amount of potential energy is converted to kinetic energy as
Pr is increased: there is more potential energy available at large wavenumbers for either
nonlinear transfer or conversion to kinetic energy when buoyancy diffusivity is weakened
(Fig. 3.9). Restratification is less suppressed for less intense turbulence [Holloway, 1988];
indeed, for these simulations, increasing Pr at a fixed N is associated with a decrease in
Re.

The right column of Fig. 3.10 shows restratification to consistently take place at small
vertical scales downscale of kb. Due to the tendency towards isotropy at small scales,
this positive spectral bump is also observed in the horizontal buoyancy flux spectra at a
comparable kh range, at least for N = 0.075, 0.15, and 0.3. The N = 0.6 case is different.
All these simulations have Reb < 1; as a result, there is no small-scale isotropy, and these
small vertical scales are associated with large horizontal scales by viscously coupled layers.
In this regime of stratified turbulence, it is reasonable that the buoyancy flux at large
horizontal scales is heavily affected by Pr, since buoyancy diffusion at small vertical scales
can characteristically occur between these layers. Fig. 3.10(g) also reveals that the Pr-
dependence of buoyancy flux is sensitive enough at large horizontal scales to even decide
the direction of kinetic-to-potential energy conversion. Buoyancy diffusion can become
weak enough at a sufficiently large Pr so that at large horizontal scales, enough surplus
potential energy may be made available for a positive buoyancy flux.

The dependence on Pr seems to be decreasing with increasing Pr, as seen in the energy
spectra. For example, the separation between the buoyancy flux spectra in the Pr = 4
and Pr = 8 cases is noticeably smaller than for preceding Pr increments. This suggests
convergence of the buoyancy flux spectra at large Pr (even moreso than for the energy
spectra).

3.2.3 Spectral flux

The spectral energy fluxes ΠK and ΠP are shown in Figs. 3.11 and 3.12, respectively. The
spectral flux for kinetic energy is not significantly affected by varying Pr, especially for the
vertical wavenumber spectra (Fig. 3.11, right column). For the intermediate stratifications
N = 0.15 and 0.3, while there is a slight increase in flux with increasing Pr, the fluxes at
each Pr are scarcely distinguishable between the forcing interval and dissipation range in
both horizontal and vertical spectra.

The N = 0.6 case is different, and shows a greater dependence of ΠK(kh) and ΠK(kv)
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Figure 3.11: Spectral kinetic energy flux, as in equation (2.12). From top to bottom the
rows are N = 0.075, 0.15, 0.3, and 0.6. Horizontal (left) and vertical (right) wavenumber
spectra are shown. Vertical dash-dotted lines are kθ corresponding to Pr colours.
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Figure 3.12: Spectral potential energy flux, as in equation (2.13). From top to bottom the
rows are N = 0.075, 0.15, 0.3, and 0.6. Horizontal (left) and vertical (right) wavenumber
spectra are shown. Vertical dash-dotted lines are kθ corresponding to Pr colours.
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on Pr. The horizontal flux ΠK(kh) changes with Pr at large horizontal scales (Fig. 3.11),
and is the only case where the fluxes are negative for a short wavenumber range. At very
small horizontal wavenumbers, upscale transfer and accumulation of energy at large scales
would appear as positive TK(kh) at small kh, corresponding to the energy contained in
vertically sheared horizontal layers when Reb < 1. Downscale of the forcing interval, the
Pr-dependence of ΠK(kh), while more apparent than at lower stratifications, is still minor.
From the buoyancy flux in 3.10(g), less kinetic energy is lost by conversion to potential
energy at greater Pr, slightly increasing the available kinetic energy for downscale transfer.
The vertical flux ΠK(kv) for N = 0.6 is the closest to displaying a (short) constant flux
range. Otherwise, varying Pr has little effect on ΠK(kv).

The impact of Pr on the potential energy spectral flux is more pronounced than for the
kinetic flux (Fig. 3.12). In all cases, increasing Pr increases the potential energy spectral
flux. From Fig. 3.9, an increase in potential energy is found with larger Pr, but for a
limited wavenumber range. In the horizontal flux ΠP (kh) for cases N = 0.075, 0.15, and
0.3, the most significant change is at intermediate-to-high wavenumbers, but the large
horizontal scales are still minimally affected. The N = 0.075 case shows Pr-dependence
only for kh > kb, but for more strongly stratified cases, the Pr-dependence extends up
to the forcing interval. The termination of forward potential energy flux adjusts with Pr
as expected, and more potential energy is made accessible for downscale transfer at large
horizontal scales, since buoyancy diffusion acts on a shorter range of associated vertical
scales.

The vertical spectral fluxes are almost unaffected by Pr upscale of kb in all but the most
strongly stratified case. This is to be expected of stratified turbulence, as the buoyancy
scale characterizes the horizontal layer thickness and largest vertical overturning scale; the
processes responsible for potential energy transfer should be limited by kb.

Both the horizontal and vertical potential energy fluxes are far smaller for N = 0.6 than
the three weaker stratifications. Notably, for N = 0.6, the influence of Pr on the horizontal
and vertical spectra persist for almost the entire wavenumber range. In the vertical flux,
Pr-dependence of the potential energy flux even occurs at vertical scales larger than the
layer thickness as the flow becomes more anisotropic with Reb < 1. A change in ΠP would
be expected when buoyancy diffusivity is weakened, but the influence of Pr extends upscale
past the dissipation range in Fig. 3.12. The potential energy spectral fluxes are closer to
exhibiting ranges of constant flux than for kinetic energy, but Re may still be too small
for a discernable inertial range.

Again, as in the buoyancy flux spectra and energy spectra, the difference in both
spectral energy fluxes between Pr = 4 and Pr = 8 is noticeably smaller than the preceding
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increases of Pr. As Pr increases, ΠK and ΠK may also be expected to converge to limiting
curves.

3.2.4 Physical space fields

Lastly, slices of physical space fields are examined for fixed N = 0.3 as Pr is increased
(Pr = 0.7 is excluded as it is similar to the Pr = 1 case). Since they have fixed N ,
these runs have a similar Reb ≈ 2; the only noticeable change in the velocity, vorticity,
and temperature fluctuation fields is that smaller scale features emerge as Pr increases.
The changes are subtle, but close inspection of the θ field slices in Fig. 3.13 reveal the
finer structures that are able to persist with larger Pr. This trend is also observed in the
velocity and vorticity fields, so only the temperature and its dissipation field are shown in
Figs. 3.13 and 3.14.

Vertical slices of the temperature fluctuation dissipation field are plotted in Fig. 3.14
for Pr = 1, 2, 4, and 8. The dissipative regions follow the horizontal layers, including the
small-scale overturning and instabilities. At smaller Pr, a bigger portion of the domain is
θ-dissipative and with greater intensity, since a wider range of small scales is accessible to
the stronger buoyancy diffusivity. Dissipation also occurs at larger scales for smaller Pr
due to a slightly smaller kd. The dissipative regions at Pr = 8 are limited to extremely
fine scales, which is in agreement with the largest kθ for N = 0.3. Although kmax/kθ < 1
for the Pr = 8 simulations, dissipation- and diffusion- scale activity is still accounted for
in these physical space fields. Larger-Pr simulations are expected to exhibit even smaller
scale details in their physical fields, but will require higher resolution than n = 1536 used
here.

3.3 Statistics and isotropy

3.3.1 Resolution and Reb

We now look at the Pr-dependence of local isotropy through p.d.f.s and statistics of the
velocity component and temperature derivative fields. The results of Pr-dependence among
our simulations are then compared to those in de Bruyn Kops [2015] where the simulations
had much larger Re and Reb, but used Pr = 1.

There is a large difference in the resolutions of our simulations to those in de Bruyn
Kops [2015]. The stratified runs in de Bruyn Kops [2015] are resolved on 8192×8192×4096
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Figure 3.13: Top row: vertical slices (x, z) at y = 0 of θ. Bottom row: horizontal slices
(x, y) at z = 0 of θ. Fixed N = 0.3 for (a,e) Pr = 1, (b,f) Pr = 2, (c,g) Pr = 4, and (d,h)
Pr = 8. The same colourmap is used as in Fig. 3.2 with the range modified for visibility
across Pr. The colourmap range shared by the vertical slices is different from the range
shared by the horizontal slices.
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Figure 3.14: Vertical slices (x, z) at y = 0 of 2κ ∂θ
∂xj

∂θ
∂xj

. Fixed N = 0.3 for (a) Pr = 1,

(b) Pr = 2, (c) Pr = 4, (d) Pr = 8. The same colourmap is used for all panels as in
Fig. 3.3(b), with the range modified for visibility across Pr.
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grid points while the resolution here is 1536×1536×1536, which is around 80 times smaller.
Dissipative scales are well resolved in each of de Bruyn Kops [2015]’s stratified runs, where
kmax/kd ≈ 3; while our kmax/kd is also around 3, due to various Pr in our simulations,
kmax/kθ ranges from about 1.2 to 5 (Table 2.1), which are still adequately resolved. Cubic
domains are used here while the vertical outer direction (where 4096 points are used) in
de Bruyn Kops [2015] varies with Froude number.

The resolution difference might have important consequences. In de Bruyn Kops [2015]
it is stated that adequate scale separation is required for simulation results comparable
to theory. The relevant scale separation in stratified turbulence simulations is related to
the buoyancy Reynolds number, apparent in the form Reb = (kd/kO)4/3. The simulations
presented here manage to achieve Reb from 0.7 to 31.2, but the range is much smaller
compared to Reb = 13 to 220 in de Bruyn Kops [2015]. As such, our simulations may suffer
from the same difficulties of the Reb = 13 and 48 runs in de Bruyn Kops [2015] (e.g. poorer
agreement with KOC scaling, local isotropy, local intermittency theory, etc. compared
to Reb = 220). Since we only examine p.d.f.s and statistics of the derivative fields, the
comparatively small resolution might produce inaccurate results because of the smaller
sample size in every case.

All velocity and temperature field p.d.f.s are shown in Figs. 3.15-3.28. Tables 3.2, 3.4,
3.6, and 3.8 contain all moment data on velocity derivatives while Tables 3.3, 3.5, 3.7, and
3.9 contain all moment data on temperature derivatives. To review, the observations of the
moments and p.d.f.s in de Bruyn Kops [2015] for Pr = 1 were that (1) velocity derivatives
p.d.f. shapes depart from the isotropic benchmark as stratification strength is increased:
in the strongest cases, u1,3 becomes similar to the isotropic case while u3,1 develops a
sharp peak near zero, and (2) stratification tends to increase all scalar derivative kurtoses;
vertical derivatives of the scalar were larger than horizontal derivatives. Our simulations
at each Pr were consistent with these stratification-dependent results in de Bruyn Kops
[2015]; below, the results will focus on Pr-dependence in the p.d.f.s and statistics.
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Run u1,1 u2,2 u3,3 u1,2 u1,3 u2,1 u2,3 u3,1 u3,2
A0 0.0091 0.0092 0.0110 0.0168 0.0260 0.0162 0.0257 0.0173 0.0176
A1 0.0096 0.0096 0.0116 0.0173 0.0267 0.0171 0.0267 0.0187 0.0190

σ2 A2 0.0100 0.0100 0.0123 0.0179 0.0275 0.0178 0.0275 0.0204 0.0206
A3 0.0103 0.0103 0.0129 0.0183 0.0281 0.0181 0.0279 0.0219 0.0219

A0 -0.5583 -0.5649 -0.4599 0.0191 -0.0082 0.0131 -0.0277 -0.0230 0.0113
A1 -0.5560 -0.5480 -0.4576 0.0052 0.0015 0.0277 -0.0747 -0.0012 0.0375

S A2 -0.5513 -0.5410 -0.4508 0.0149 0.0097 0.0441 -0.0302 0.0048 0.0127
A3 -0.5333 -0.5304 -0.4504 -0.0236 -0.0226 0.0106 -0.0299 -0.0027 0.0121

A0 6.7318 6.7496 5.9988 9.8065 8.0542 9.7921 8.2244 9.9002 9.8656
A1 6.5532 6.5648 5.8310 9.4334 7.9550 9.6222 8.0920 9.3985 9.6277

K A2 6.4161 6.3711 5.7009 9.3721 7.8746 9.4072 7.9517 8.9769 8.9766
A3 6.1834 6.1710 5.5809 8.8887 7.8276 8.9057 7.8783 8.4862 8.4153

Table 3.2: Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.075.

Run θ,1 θ,2 θ,3
A0 0.0159 0.0163 0.0256
A1 0.0223 0.0227 0.0346

σ2 A2 0.0411 0.0415 0.0609
A3 0.0759 0.0763 0.1081

A0 0.0634 -0.0042 1.4835
A1 0.0328 -0.1063 1.3712

S A2 -0.0032 -0.0208 1.1609
A3 0.0005 -0.0172 0.8699

A0 15.1719 15.1223 13.0020
A1 16.3245 16.4094 13.8050

K A2 19.7576 19.4123 16.4443
A3 20.9514 20.7440 18.0925

Table 3.3: Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.075.
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Run u1,1 u2,2 u3,3 u1,2 u1,3 u2,1 u2,3 u3,1 u3,2
B0 0.0083 0.0083 0.0117 0.0133 0.0376 0.0133 0.0377 0.0146 0.0145
B1 0.0088 0.0088 0.0125 0.0140 0.0385 0.0138 0.0384 0.0159 0.0159

σ2 B2 0.0096 0.0096 0.0139 0.0152 0.0403 0.0150 0.0402 0.0184 0.0185
B3 0.0102 0.0103 0.0150 0.0160 0.0414 0.0158 0.0416 0.0206 0.0207

B0 -0.6256 -0.6242 -0.3379 0.0119 0.0085 0.0566 0.0068 -0.0007 0.0115
B1 -0.6207 -0.6133 -0.3297 0.0040 0.0140 0.0519 -0.0102 -0.0039 0.0035

S B2 -0.6259 -0.5979 -0.3156 0.0364 0.0083 0.0381 -0.0258 0.0041 0.0040
B3 -0.6068 -0.6036 -0.3000 0.0260 0.0049 0.0224 -0.0064 -0.0052 -0.0019

B0 8.7727 8.6898 6.9122 13.1036 7.0222 13.2204 6.9558 14.2824 13.9475
B1 8.4003 8.3641 6.6841 12.6449 6.9901 12.3717 6.9460 12.9558 13.0473

K B2 8.1846 8.0502 6.5058 12.1622 6.9818 12.0207 6.9560 12.5014 12.3554
B3 7.8498 7.8734 6.3768 11.5775 7.0059 11.2681 6.9277 11.4995 11.5417

Table 3.4: Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.15.

Run θ,1 θ,2 θ,3
B0 0.0128 0.0128 0.0360
B1 0.0166 0.0169 0.0456

σ2 B2 0.0285 0.0289 0.0723
B3 0.0497 0.0501 0.1175

B0 -0.0145 -0.0129 1.4260
B1 -0.0158 0.0178 1.4985

S B2 0.0449 -0.0442 1.5334
B3 0.0107 -0.0736 1.4020

B0 18.0630 17.6504 10.0816
B1 18.8581 19.3523 11.3806

K B2 26.3386 25.1690 14.7348
B3 29.1204 28.9173 18.1033

Table 3.5: Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.15.
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Run u1,1 u2,2 u3,3 u1,2 u1,3 u2,1 u2,3 u3,1 u3,2
C0 0.0054 0.0054 0.0086 0.0079 0.0649 0.0073 0.0629 0.0072 0.0075
C1 0.0060 0.0060 0.0097 0.0086 0.0664 0.0081 0.0646 0.0086 0.0087

σ2 C2 0.0071 0.0071 0.0117 0.0099 0.0698 0.0093 0.0686 0.0109 0.0110
C3 0.0079 0.0080 0.0133 0.0110 0.0719 0.0104 0.0708 0.0129 0.0132

C0 -0.8537 -0.8373 -0.1394 -0.1876 0.0068 0.0873 -0.0232 -0.0522 0.0185
C1 -0.8402 -0.8125 -0.1259 -0.1278 0.0046 0.0498 -0.0252 0.0044 -0.0211

S C2 -0.8161 -0.7872 -0.1184 -0.1028 0.0031 0.0543 -0.0199 -0.0087 0.0006
C3 -0.7711 -0.7797 -0.1188 -0.1234 0.0030 0.0224 -0.0137 0.0076 -0.0133

C0 16.3664 16.3058 11.6563 25.7567 6.0566 24.0127 5.8659 34.7644 36.8724
C1 15.3797 15.0442 10.7445 24.7708 6.1397 23.1483 5.9223 30.6398 29.8842

K C2 14.4911 14.1859 10.1062 24.2949 6.2722 21.3554 6.0131 27.2880 28.7539
C3 13.2774 13.6789 9.6516 21.5470 6.3150 20.1179 6.1853 24.7725 25.9838

Table 3.6: Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.3.

Run θ,1 θ,2 θ,3
C0 0.0070 0.0073 0.0475
C1 0.0092 0.0094 0.0591

σ2 C2 0.0146 0.0150 0.0886
C3 0.0233 0.0240 0.1298

C0 -0.0281 -0.0209 1.0286
C1 0.0198 0.0087 1.1558

S C2 0.0140 -0.0379 1.4221
C3 0.0661 0.0028 1.6062

C0 25.6128 28.0372 6.9086
C1 29.8049 31.6684 7.8276

K C2 42.6660 47.1741 11.0269
C3 55.7695 59.2872 14.6095

Table 3.7: Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.3.
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Run u1,1 u2,2 u3,3 u1,2 u1,3 u2,1 u2,3 u3,1 u3,2
D0 0.0015 0.0015 0.0019 0.0028 0.0878 0.0027 0.0846 0.0009 0.0008
D1 0.0018 0.0017 0.0024 0.0030 0.0908 0.0029 0.0876 0.0013 0.0012

σ2 D2 0.0023 0.0023 0.0035 0.0035 0.0957 0.0034 0.0931 0.0021 0.0021
D3 0.0027 0.0028 0.0044 0.0040 0.0998 0.0038 0.0972 0.0028 0.0028

D0 -0.9951 -0.9288 0.2655 0.1545 -0.0044 -0.1538 -0.0581 -0.0884 0.5370
D1 -1.0296 -0.9968 0.2346 0.1773 -0.0015 -0.1104 -0.0502 -0.1411 0.1857

S D2 -1.0175 -0.9864 0.1416 0.0786 -0.0046 -0.1570 -0.0503 -0.0782 0.0655
D3 -1.0175 -0.9455 0.0945 0.0270 -0.0024 -0.0722 -0.0483 0.0645 -0.0227

D0 26.2281 23.2829 33.6454 17.3488 5.0816 23.6842 4.9327 267.5192 172.5735
D1 28.6352 25.2961 32.1450 20.7005 5.0999 26.7093 4.9516 215.0309 148.3986

K D2 28.4126 26.3294 26.8929 25.0506 5.1940 31.2766 5.0771 156.5756 117.8833
D3 27.2736 26.2379 23.7782 26.8933 5.2434 31.8050 5.1662 119.0278 99.8968

Table 3.8: Variance σ2, skewness S, and kurtosis K of velocity derivatives for N = 0.6.

Run θ,1 θ,2 θ,3
D0 0.0015 0.0015 0.0442
D1 0.0021 0.0020 0.0551

σ2 D2 0.0034 0.0034 0.0796
D3 0.0050 0.0051 0.1078

D0 -0.2581 0.0634 0.4533
D1 -0.3896 0.0316 0.5314

S D2 -0.2954 -0.1107 0.7052
D3 -0.3500 -0.1141 0.8934

D0 63.8036 44.5879 4.8271
D1 79.3574 67.7154 5.3414

K D2 119.7340 93.1336 6.7255
D3 158.8522 124.7120 8.6415

Table 3.9: Variance σ2, skewness S, and kurtosis K of θ,j for N = 0.6.
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Figure 3.15: Velocity derivative p.d.f.s (u1,1) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6.
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Figure 3.16: Velocity derivative p.d.f.s (u1,3) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6.

49



Figure 3.17: Velocity derivative p.d.f.s (u3,1) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6.
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Figure 3.18: Velocity derivative p.d.f.s (u3,3) with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6.
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Figure 3.19: Velocity derivative p.d.f.s for N=0.075 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4.
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Figure 3.20: Velocity derivative p.d.f.s for N=0.15 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4.
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Figure 3.21: Velocity derivative p.d.f.s for N=0.3 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4.
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Figure 3.22: Velocity derivative p.d.f.s for N=0.6 with (a) Pr=0.7, (b) Pr=1, (c) Pr=2,
and (d) Pr=4.
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Figure 3.23: Temperature derivative p.d.f.s θ,1 with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6.
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Figure 3.24: Temperature derivative p.d.f.s θ,3 with (a) N=0.075, (b) N=0.15, (c) N=0.3,
and (d) N=0.6.
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Figure 3.25: Temperature derivative p.d.f.s for N=0.075 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4.
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Figure 3.26: Temperature derivative p.d.f.s for N=0.15 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4.
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Figure 3.27: Temperature derivative p.d.f.s for N=0.3 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4.
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Figure 3.28: Temperature derivative p.d.f.s for N=0.6 with (a) Pr=0.7, (b) Pr=1, (c)
Pr=2, and (d) Pr=4.
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3.3.2 Velocity derivatives

Figures 3.15-3.18 show the effect of Pr on the velocity derivative p.d.f.s in each case of N .
Figures 3.19-3.22 show the velocity derivative p.d.f.s at a fixed N for each Pr to compare
the shapes of ui,j within each simulation. The effect of increased stratification can be seen
going from Fig. 3.19 to Fig. 3.22.

When Pr is increased, there are very small changes in the velocity derivative p.d.f.s
(Figs. 3.15-3.18). The difference is minimal, but upon very close inspection the peaks
lower with increased Pr, particularly in u3,1 and u3,3 (Figs. 3.17 and 3.18 respectively).
This corresponds to the probability of near-zero velocity derivatives decreasing, and can
be attributed to weaker thermal diffusivity acting to damp extreme values of velocity.

In Figs. 3.19-3.22, the two distinct groups of transverse (u1,3 and u3,1) versus longi-
tudinal (u1,1 and u3,3) velocity derivative p.d.f. groups are visible, as is the loss of this
distinction at stronger stratification (N = 0.3 and 0.6) where u1,3 is differently-shaped
than the three other derivatives. Going from panels (a)-(d) in these figures, the distinction
between the two p.d.f. groups does not appear to change with Pr. This is reasonable, as
the flows stay in the same regime of stratified turbulence even with different Pr: Reb and
Frh are approximately constant so there should be no expected change. The visible dif-
ference between transverse versus longitudinal derivative groups are reasonable, given the
characteristically quasi-two-dimensional flow in both regimes of strongly stratified flow.

The statistical moments seem to be affected minimally, as in the p.d.f.s, with changes in
Pr (Tables 3.2, 3.4, 3.6, and 3.8). Regarding measures of isotropy, there are no noticeable
changes when increasing Pr based on the velocity derivatives. That is, the similarity within
the longitudinal or transverse derivative groups do not seem to be affected with changes
in Pr. Specifically, the identification of 2 variance groups (longitudinal versus transverse)
at weak stratification versus the 3 variance groups at strong stratification as in de Bruyn
Kops [2015]. In the longitudinal group, the ratios of variances u3,3/u1,1 and u3,3/u2,2 are
almost unchanged with increased Pr and u3,3 is always the largest of the three.

The skewnesses and kurtoses do not appear to change significantly with Pr, though
there is a clear difference between longitudinal derivatives u3,3 and the u1,1 and u2,2 pair
in both measurements. There are no identifiable patterns in skewness or kurtosis when
Pr is changed. The symmetry of the velocity derivative distributions and proneness to
outliers is seemingly unchanged whether viscosity or buoyancy diffusivity is the dominant
damping process. Although the kinetic energy spectra in Sec. 3.2.1 showed sensitivity to
Pr at small scales, this did not result in any enhanced isotropy in the velocity component
derivatives.
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3.3.3 Temperature derivatives

Figures 3.23-3.24 show the effect of Pr on the temperature derivative p.d.f.s in each case
of N . Figures 3.25-3.28 show the temperature derivative p.d.f.s at a fixed N for each Pr
to compare the shapes of θ,j within each simulation. The effect of increased stratification
can be seen going from Fig. 3.25 to Fig. 3.28.

It should be expected that the behaviours of the velocity and temperature fields will be
far different once Pr takes on value different from 1. When Pr is increased, there is a sig-
nificant change in all the temperature derivative p.d.f.s (Figs. 3.23-3.24): the p.d.f. shapes
appear to flatten as their peaks lower and tails become much heavier, which is reflected
in the kurtoses of all scalar derivatives increasing appreciably (Tables 3.3, 3.5, 3.7, and
3.9). This is also seen in fixed stratification strength groups (Figs. 3.25-3.28) where all
the p.d.f.s appear to flatten in the same way as above. The peaks of the p.d.f.s drop but
are still grouped in terms of horizontal (θ,1, θ,2) and vertical derivatives (θ,3). At fixed
stratification strength, the p.d.f.s maintain the difference in probability of near-zero values
as Pr is changed. Figure 3.24 show that the temperature derivatives take on more extreme
values with lower N – this could be interpreted as less effective damping of the scalar so
that larger fluctuations are more frequent. It is also shown that the temperature deriva-
tives take on more extreme values with lower N , which can be interpreted as less effective
damping of the scalar, permitting more frequent and larger fluctuations in temperature.

The moments of the temperature derivatives very much depend on Pr, as shown in
Tables 3.3, 3.5, 3.7 and 3.9. There are significant changes in variances and kurtoses as Pr
is increased, as expected from the p.d.f.s above. The variances show that vertical scalar
derivatives will tend to take on more extreme values than horizontal derivatives. This is
expected, since vertical derivatives are dominant when pancake eddies shear against each
other in stratified turbulence. Higher Pr, however, seems to have a negligible effect on the
difference between these horizontal and vertical variances (approximately the same ratios
θ,3/θ,1 and θ,3/θ,2 are maintained).

The nonzero skewnesses of scalar derivatives parallel to the mean gradient still iden-
tify anisotropy at small scales, as expected for stratified flows [Gibson et al., 1970, de
Bruyn Kops, 2015]. However, there is no identifiable pattern in the change in isotropy
in terms of statistical interchangeability observed in the statistical moments (nor in the
values themselves when increasing Pr).

63



Chapter 4

Conclusions

Direct numerical simulations of stratified turbulence were performed to study the effect of
varying Pr and to investigate the soundness of the commonly used Pr = 1 simplification.
The simulations presented here employed random forcing of large-scale vortical modes on
cubic domains. A fixed viscosity and a set of N were chosen to obtain a range of Reb and
Frh as Pr was varied. Spectra of kinetic energy, potential energy, buoyancy flux, kinetic
energy flux, and potential energy flux were examined in fixed-N groups to identify scale-
specific results dependent on Pr. Snapshots of the velocity, vorticity, and temperature
fluctuation and dissipation fields in physical space were also visualized for a qualitative
analysis of Pr-dependence.

When varying Pr, changes were naturally expected at very small scales, which is con-
sistent with the change in kθ (kd was nearly unchanged by Pr due to the fixed viscosity).
Indeed, the most obvious Pr-dependence in the kinetic and potential energy spectra was
found at large wavenumbers, where the potential, and perhaps surprisingly, kinetic energy
grew with Pr. The increase in energy can be explained by larger Pr permitting a wider
wavenumber range of temperature fluctuations, possibly excited by enhanced inter-layer
instabilities, which influence both kinetic and potential energy before viscous dissipation
or buoyancy diffusion can occur. Since kd was not changed much by Pr, the spectra of
kinetic energy (and kinetic energy flux) were much less affected than potential energy (and
potential energy flux). Subtle changes in the physical fields were found for different Pr,
except of course in the temperature fluctuation dissipation field (Fig. 3.14). This was not
unexpected, as Reb was only slightly changed for a fixed N , so no change to the transition
between stratified turbulence regimes was incurred by varying Pr.

Surprisingly, Pr-dependence was found upscale of the dissipation range in most of the
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examined spectra. In some cases, this even extended upscale into the large-scale forcing
interval, particularly in the horizontal wavenumber spectrum. Intermediate-to-large-scale
Pr-dependence was visible more in the potential energy than kinetic energy spectra. In the
spectral kinetic energy flux, Pr-dependence was peculiar in that it only applied to kh and kv
between the forcing interval and the dissipation range, where an inertial range could have
existed if Re and/or Reb were larger in these simulations. The spectral potential energy
flux was extremely sensitive to Pr for most of the wavenumber range. The buoyancy flux
spectra showed the strongest sensitivity to Pr in the restratification range just before kd
and kθ, but also exhibited some N -dependence. Following the description by Holloway
[1988], it could be that for large Pr, the increased abundance of potential energy at these
small scales even further amplifies the conversion back to kinetic energy.

Among all the examined spectra, the N = 0.6 cases were very different from the three
weaker stratifications. The simulations with N = 0.6 were the only cases in the Reb < 1
regime; some of these observed differences may be consequences of the flow’s transition
to viscously coupled non-turbulent layers. Breaks in the horizontal kinetic and potential
energy spectra occurred at kb associated with the suppression of the downscale energy
cascade in this regime. The horizontal buoyancy flux spectra in Fig. 3.10(g) showed that
the forcing scales were most affected by Pr, rather than the restratification range. In the
spectral energy fluxes, N = 0.6 was unique in that ΠK(kh) was affected by Pr only at
intermediate-to-large scales, and both ΠP (kh) and ΠP (kv) showed Pr-dependence for most
of the wavenumber range. The N = 0.6 cases also exhibited negative horizontal kinetic
energy flux at large scales, implying an upscale transfer of energy when stratification is
especially strong. None of ΠK(kh), ΠK(kv), ΠP (kh), nor ΠP (kv) displayed any discernable
range of constant flux at any N (except possibly ΠK(kv) at N = 0.6). The development
of a true inertial range may have been hindered by the small Re and especially Reb.

Given the impact of Pr upscale of the dissipation range, the Pr = 1 simplification
for modelling realistic Pr > 1 flows appears to be unrealistic. Depending on N , Pr
was shown to affect the examined spectra with varied severity and at unexpected scales.
In particular, the spectral potential energy flux was especially sensitive to Pr, and was
affected over more of its wavenumber range. For any investigation that might be reliant
on accurately measured potential energy transfer, special care should be taken by properly
computing these quantities with the appropriate Pr if possible.

The exhibited shallowing of energy spectra with increasing Pr was consistent with
the results in Okino and Hanazaki [2017]. Further, in all the examined quantities it was
suggested there could be convergence to a limiting spectra shape as Pr increases, as there
was a declining growth in each spectra with larger Pr. That is, for Pr larger than 8 (but
not extremely large as in Okino and Hanazaki [2017]), and for large scales down to about
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kd, it is expected that these examined spectra could converge to a shape not too different
from the Pr = 8 case. Since varying Pr result in different kθ, it may only be at larger scales
that convergence is possible. The kinetic energy and spectral kinetic energy flux did not
exhibit major dependence on Pr, so using Pr = 1 may be acceptable for those instances
when large-scale kinetic energy is the main focus. However, the potential energy, buoyancy
flux, and spectral potential energy flux might not exhibit similarly close convergence until
a much larger Pr > 8. Performing simulations with an accurate Pr may be crucial to
reliably study these quantities if Pr is not extremely large.

The work in de Bruyn Kops [2015] analyzed strongly stratified turbulence simulations
with Pr = 1 to investigate their agreement with classical KOC scaling arguments, local
isotropy theory, local dissipation rates, and local intermittency theory. The analysis of
velocity and temperature derivative p.d.f.s and moments for local isotropy (specifically,
Sec. 3 in de Bruyn Kops [2015]) was extended upon here by studying simulations with Pr
different from 1.

As demonstrated in Sec. 3.3.1, changing Pr affected the temperature derivative p.d.f.s
and statistics more than the velocity derivatives which were comparatively unchanged.
Larger Pr resulted in the flattening of temperature p.d.f.s, corresponding to more outlier-
prone temperature derivatives in both horizontal and vertical directions. Considering de
Bruyn Kops [2015]’s comparison of stratification’s effect on temperature versus velocity
derivative fields, it was found that changing Pr produced the opposite outcome. While
a change in stratification strength produced major effects on the velocity derivatives and
minor effects on the temperature derivatives, changing Pr resulted in major effects on
the temperature derivatives and minor effects on the velocity derivatives. Although the
temperature statistics were significantly changed with Pr, there was no identifiable change
in isotropy in either the temperature or velocity derivatives.

Additional simulations with Pr > 8 should be considered to further explore the extent
of the predicted convergence in all of the observed spectra, but would demand a higher
resolution than n = 1536 used here. While this resolution was sufficient to bring about
detectable changes between the Pr = 4 and Pr = 8 cases, the Pr = 8 simulations had
kmax/kθ ≈ 0.7. A wider range of Reb as well as larger-Re simulations would allow for
cases with identifiable inertial ranges to be studied. It may be of interest to explore
any effects due to Pr on constant flux ranges, and to also see how restratification in
the buoyancy flux spectra might change with more diverse cases. However, the original
challenge still remains: attainable values of Pr, Re, and Reb will be limited by the available
computational resources. For example, to perform a simulation with Pr = 100 with this
setup, it is estimated that a resolution of n ≈ 9700 would be needed for kmax/kθ ≈ 0.7,
and kmax/kθ = 1 would need n ≈ 14000.
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For the work on p.d.f.s, statistics, and isotropy in particular, in order to properly
compare Pr 6= 1 results to the findings in de Bruyn Kops [2015], a higher resolution than
8192 × 8192 × 4096 would be needed to accommodate values of Reb as large as theirs.
Longer integration lengths and more frequent physical field output files in each simulation
could have made for improved time-averaged results. Another inconsistency with de Bruyn
Kops [2015] was that the p.d.f.s were not normalized in the same way. Their p.d.f.s were
possibly normalized by the standard deviation, but normalization by both the mean and
standard deviation were mentioned in each plot’s caption. For a more complete comparison
to the model paper, the rest of the topics in de Bruyn Kops [2015] could have been explored
for Pr-dependence, e.g. Kolmogorov-Obukhov-Corrsin scaling, local dissipation rates and
suitability of the lognormal model, internal intermittency and its coefficients.

Future work on Pr-dependence of stratified turbulence could include the effects of ro-
tation, which were neglected here. Based on the exhibited Pr-dependence of the buoyancy
flux, the effect of Pr on mixing efficiency may be an interesting extension of the work
here. Exploring the very small scales and looking into possible changes in intermittency
due to Pr is also of interest. The forced simulations presented here were varied in a limited
way (only N and Pr were changed), but the code which produced them has many options
to investigate stratified turbulence with different configurations. For example, one option
could be to force fields other than the large vortical modes as shown here (e.g. velocity
or temperature, possibly forcing large-scale gravity waves), or modify some of the other
forcing parameters.
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