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Abstract 

The design of multi-material lightweight vehicle (MMLV) structures incorporating structural 

adhesive joining requires advanced CAE supported by material characterization and 

computational model validation at the component level. In this thesis, tailored hot stamped 

(THS) ultra-high strength steel (UHSS) hat sections were joined using structural epoxy adhesive 

and tested under quasi-static and dynamic loading rates. The experiments were modelled 

numerically using an existing adhesive model with a cohesive zone method (CZM) formulation 

that was previously validated at the coupon level. The objectives of this study were two-fold: (i) 

to assess the performance of adhesive-only joints for UHSS structures; and (ii) to validate the 

CZM of the adhesive at the structural level. 

Three configurations of hot stamped Usibor® 1500-AS hat sections with varying strength and 

ductility (martensitic, soft flange, and three zone) were joined to form closed tubular structures 

(tubes) using a two-part toughened epoxy adhesive (IRSA 07333, 3M) applied to the flanges, 

with a bond line thickness of 0.178mm (0.007"). A custom fixture was used to secure the hat 

sections while oven-curing the adhesive (80°C for 30 minutes). The tubes were loaded in three-

point bend, axial crush, and a novel Mode I opening (Caiman) configuration. Numerical models 

of the experiments were solved using an explicit dynamic finite element code (LS-DYNA R7.1.2). 

For validation of the adhesive model at the structural level, the simulated experiments were 

assessed based on global metrics such as overall loading response, peak load, energy 

absorption, displacement to failure, visual deformation mode. Where possible, crack extension 

along the adhesive joint was measured and compared to the model response.  

In general, all the experiments for various test conditions exhibited good repeatability in 

loading response and deformation pattern. One exception was the three-point bend 

experiments, which demonstrated an asymmetric deformation mode that considerably 

increased displacement to failure. While the models had difficulty in predicting displacement to 

failure, the predicted peak loads were in good agreement (7.14%). The axial crush models had 

good agreement in predicted deformation pattern, peak load (11.5%), and energy absorption 

(7.65%), but over predicted energy absorption of dynamic three zone model due to excessive 

oscillation. The Caiman models correlated well with the experiments (within 5%) and provided a 

controlled Mode I loading for model validation of predicting crack extension. 

This work demonstrated that THS UHSS joined with structural adhesives can achieve consistent 

loading response in support of model validation, and that surface preparation and specimen 

manufacture were critical factors in reducing test variability. One limitation with this study was 

that it proved difficult to assess the performance of the adhesive model when the response was 

dominated by the metal components, since the accuracy of the overall response could be 

limited by the fidelity of the steel constitutive model. With the exception of a few cases, the 

CZM adhesive model was able to predict the structural response of bonded components within 

16%, based on kinetics and kinematics measured in the experimental tests.  
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Chapter 1 Introduction 

A major driver of innovation in the automotive industry is the mandate to meet ever increasing 

standards for fuel efficiency, such as the corporate average fuel economy (CAFE) target of 54.5 

mpg by the year 2025, without compromising overall vehicle safety (U.S. Department of 

Transportation, 2012). For multi-material lightweight vehicle (MMLV) structures, these 

requirements have led to consideration of the use of advanced materials such as hot stamped 

ultra-high strength steel, aluminum, magnesium, and composites (U.S. Department of Energy, 

2015). An example of this is the body-in-white (the assembled sheet metal components of the 

vehicle structure) of the 2014 Audi A8 (Figure 1.1), in which different materials are strategically 

distributed in the structure to maximize crashworthiness while minimizing weight. 

 

Figure 1.1: The body-in-white of the 2014 Audi A8, demonstrating the strategic use of 

different materials in a lightweight, crash-optimized structure (ArcelorMittal USA, 2014) 

The 2014 Audi A8 
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The growing demand for light weight structures has sparked the development of advanced 

joining techniques for dissimilar materials (Chastel and Passemard, 2014). One such technique 

is the use of structural adhesives, which has demonstrated a wide array of potential benefits 

owing to the continuous nature of adhesive joints, including: a large stress-bearing area to 

reduce stress concentrations and improve joint stiffness; a physical barrier to prevent galvanic 

corrosion between dissimilar materials; sealing the structure for improved weather resistance; 

and improved noise, vibration, and harshness (NVH) performance for cabin comfort (He, 2011; 

Symietz, 2005). In light of these structural and sealing properties, the adhesives have seen 

increased use in joining automotive structures (Marzi et al., 2009).  Evidence of this growth can 

be found in vehicles such as the 2015 Ford F-150, which used three times the amount of 

adhesive compared to the previous model (Hagerty and Ramsey, 2014). The 2018 Honda 

Accord used structural adhesives extensively to increase body torsional and bending rigidity by 

32 and 24 %, respectively, improving dynamic performance and ride quality over the previous 

model (Honda Canada, 2017). In addition, adhesive bonding technologies enabled the “carbon 

core” construction technique in the 2016 BMW 7-series sedan, in which carbon fiber reinforced 

polymer composites were bonded to an ultra-high strength steel and aluminum chassis to 

create a body-in-white with high strength and rigidity, while maintaining light weight and low 

center of gravity (Benevento, 2016).  

While aluminum, magnesium, and composite materials are important candidates for use in 

achieving lightweight structures, the material cost of steel is considerably lower and ultra high 

strength steel (UHSS) components can be achieved through the manufacturing process of hot 

stamping (Mori et al., 2017). In the hot stamping process, steel blanks are pre-heated for 
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austenization, then hot formed and quenched between cooled dies in a single process, to 

produce components with a fully martensitic microstructure, exceeding 1500 MPa in strength 

(Liu et al., 2011; Vaissiere, Laurent, and Reinhardt, 2002). In addition, different microstructures 

(bainite, ferrite, and pearlite) can be achieved by reducing the cooling rate through the use of 

heated tooling. By controlling the cooling rate throughout the tooling, components with 

tailored properties (a strategic distribution of microstructures) can be achieved by a 

combination of heated and cooled regions within the tooling in a process known as tailored hot 

stamping (THS) (Merklein et al., 2016). Therefore, the use of hot stamped UHSS will be a critical 

component of any MMLV structure. However, one challenge facing the use of hot stamped 

UHSS components in MMLVs is the difficulty in joining them with other materials through 

traditional methods such as welding or mechanical fasteners involving deformation, due to 

their high strength (Chastel and Passemard, 2014). 

Experimental testing in vehicle development cycles can be time and resource intensive, and 

therefore the finite element (FE) method is widely used analysis and design tool for assessing 

vehicle structures (He, 2011; da Silva and Campilho, 2012). As a result, widespread adoption of 

adhesive joining in vehicle structures requires improved predictive capabilities of FE software to 

aid CAE engineers in design and analysis of bonded components (Gowda et al., 2017), with a 

primary requirement being the characterization of adhesives for use in numerical models (Deb 

et al., 2016; Gowda et al., 2017). To accurately predict the behavior of adhesive joints in the FE 

environment, the material model must possess the required mechanical properties (e.g. 

stiffness and strength) as well as the fracture toughness of the adhesive in Mode I and Mode II 

loading (May et al., 2015). These properties are often determined by a variety of coupon level 
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tests (da Silva and Campilho, 2012) and the subsequent model validation at the coupon level 

involves simulating the tests used to obtain the model parameters or by simulating another 

coupon test and comparing against an independent set of experimental data. For validation at 

the structural level however, no existing study in the literature investigated the validation of a 

cohesive zone adhesive model derived from material testing, at the component level that 

involved a wide variety of structural tests at both quasi-static and dynamic deformation rates. 

In addition, no studies have addressed the adhesive joining of UHSS components to the 

author’s knowledge.  

 

1.1 Objectives, Approach and Outline 

The primary objective of this thesis was to validate an existing rate-dependent adhesive model 

based on the cohesive zone modelling (CZM) formulation (Watson et al., 2018), previously 

developed from material testing and validated at the coupon level, at the structural level by 

applying it to a range of modes of loading and varying loading rates. To achieve this objective, 

adhesively joined hat sections of UHSS (Usibor® 1500-AS) were subjected to three loading 

scenarios: three-point bend, creating shear (Mode II) loading along the neutral axis of the 

double-hat section tubes, and mimicking the lateral loading of B-pillar components; axial crush, 

creating a complex mixed mode loading often experienced within critical energy absorption 

components at the front of a vehicle; and an adhesively bonded variant of the Caiman test 

(O’Keefe, 2018) creating Mode I opening at the adhesive joint. Three-point bend and axial crush 

experiments were tested under quasi-static and dynamic conditions, while the Caiman test 

specimens were evaluated under quasi-static conditions. Finite element models of the 
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experiments were created and solved in a commercial finite element code (LS-DYNA R7.1.2, 

LSTC) to assess the ability of the adhesive model (Watson et al., 2018) in describing the 

response and failure of the structures. 

This thesis is organized by background knowledge of adhesives properties, numerical modelling 

of adhesives, structural testing of bonded components, the THS process, modelling of THS 

process, and structural testing of THS components. Followed by experimental testing of bonded 

UHSS tubes in Chapter 3, detailing the test conditions, sample preparation, and test setup. 

Chapter 4 outlines the numerical modelling methods used in this work, including the material 

models of the UHSS and the adhesive, as well as boundary conditions. Chapters 5 and 6 present 

the experimental and numerical modelling results with discussion, respectively. Chapter 7 

wraps up the thesis with conclusions and recommendations for future work.  
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Chapter 2 Background 

2.1 Adhesives 

Adhesives are substances capable of joining different parts together by means of a chemical 

bond between the parts, and are widely used in many industries (Landrock and Ebnesajjad, 

2008). Although adhesives have been used throughout human history, derived in ancient times 

primarily from plant or animal sources (Adhesives & Sealants, 2015), modern adhesives were 

only developed in the last century with advancements in organic chemistry and polymerization 

processes (Landrock and Ebnesajjad, 2008). There currently exist a wide range of adhesives for 

a large variety of applications, and while there is no universally recognized classification, some 

general categories include alloy, elastomeric, film and tape, hot-melt, rubber-based, water-

based, thermoplastic, thermosetting and more (Landrock and Ebnesajjad, 2008). Examples of 

commonly used adhesives include cyanoacrylates, polyamides, polyurethanes, silicone, epoxies 

to name a few. Many different types of adhesives are used in the automotive industry, such as 

anaerobic adhesives for thread locking mechanical fasteners (Landrock and Ebnesajjad, 2008), 

and structural adhesives for load bearing applications are often based on epoxies, acrylics, 

urethanes, and cyanoacrylates (3M, 2012). In general, epoxies can be formulated to have the 

best overall properties for metal bonding, with the right combination of strength, toughness, 

flexibility, as well as temperature resistance (3M, 2012), and will therefore be the focus of this 

background section.  
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2.1.1 Epoxy Adhesives 

Epoxy adhesives are classified as thermosetting polymers and are the most commonly used 

adhesive due to their versatility in formulating to a wide range of specifications to meet various 

bonding requirements in automotive, aerospace, construction, and more (Landrock and 

Ebnesajjad, 2008; Petrie, 2006). They are often used as a single part system, requiring high heat 

for curing, or a two-part system with resins and hardeners that can cure at room temperature 

(Landrock and Ebnesajjad, 2008). In addition, epoxy adhesives form strong bonds between 

most materials, and can be engineered to develop specific properties through the use of 

hardeners, resins, resins, modifiers, and fillers, making them an excellent choice for a wide 

range of structural applications (Landrock and Ebnesajjad, 2008). Epoxies are inherently brittle 

(Yahyaie et al., 2013) and are often toughened by the inclusion of reactive liquid rubbers 

(elastomeric additives) in order to introduce rubber particle precipitates as a second phase (Yee 

and Pearson, 1986).  

 

2.1.2 Surface Preparation 

The formation of a strong adhesive joint may require treatments of the bonding surfaces, 

depending on the materials being joined. Surface treatment methods generally involve 

increasing the adhesive contact area by roughening the surface and cleaning the adherend to 

remove any potential contaminates (Landrock and Ebnesajjad, 2008).  

Surface roughening techniques found in the literature include mechanical abrasion, chemical 

etching, electromechanical treatments, and laser texturing (Landrock and Ebnesajjad, 2008). 

Most have demonstrated that, in general, adhesive joint strength increases with increasing 
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surface roughness for metallic adherends (Lonardo and Bruzzone, 1989; Budhe et al., 2015). 

Although more sophisticated techniques such as laser treatment can enhance the bond 

strength relative to mechanical abrasion methods (Zhang, Yue, and Man, 1997), the latter 

includes processes such as grit blasting, which has been demonstrated in certain cases to be 

effective in treating metallic surfaces with a corrosion resistant coating while being simple and 

economical (Liao et al., 2017; Liu et al., 2017) 

Solvents that are often used to clean adherend surfaces include methyl ethyl ketone, acetone, 

and methanol (Landrock and Ebnesajjad, 2008). 

 

2.1.3 Adhesive Joint Failure Modes 

Bonded systems can fail either cohesively, in which cracks grow entirely within the adhesively 

layer, or adhesively (commonly referred as interfacial failure), in which the cracks grow along an 

adhesive-to-adherend interface thereby causing debonding (Figure 2.1) (Landrock and 

Ebnesajjad, 2008). In material testing of adhesives to construct a constitutive model, it is often 

desirable to have the bonded samples fail cohesively, as this ensures the full strength of the 

adhesive is achieved in the joint, rather than interfacial failure in which the lower interface 

strength dominates the joint strength. Therefore, a properly treated surface should maximize 

the likelihood of achieving cohesive failure to ensure that the maximum strength of the 

adhesive is achieved during testing.  
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Figure 2.1: Failure modes of an adhesive joint (Steiner, 2011) 

 

2.2 Adhesive Material Properties 

An adhesive joint can experience several stress states (Figure 2.2), and while typical loading 

conditions often involve a combination of these states, coupon level tests for material 

characterization aim to produce a singular stress state to measure specific properties (Landrock 

and Ebnesajjad, 2008; Watson et al., 2018). The stress states, and therefore the measured 

material properties, of an adhesive are dependent on the mode of loading to which the joint is 

subjected (Figure 2.3), described as tension (Mode I), in-plane shear (Mode II), and a less 

commonly encountered out-of-plane shear (Mode III). 

 

Figure 2.2: Stress states of an adhesive joint (Shields, 1984) 
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Figure 2.3: Modes of loading in an adhesive joint (Chaves et al., 2014) 

The properties of an adhesive required for material models often include the Young’s modulus, 

the tensile and shear strengths, and the fracture toughness (more specifically the energy 

release rate) in Mode I and Mode II (May et al., 2015). Acquisition of this data requires an 

abundance of tests to be carried out, including bulk adhesive testing, fracture characterization 

tests, and coupon level tests for tensile and shear response (May et al., 2015).  

 

2.2.1 Mode I Mechanical Property Characterization 

Traditionally, the Mode I critical energy release rate (GIC) of an adhesive is obtained from 

standardized mechanical tests, namely double cantilever beam (DCB) (ISO 25217, 2009) and 

tapered double cantilever beam (TDCB) (ASTM D3433-99, 2014). In both tests, two bonded 

beams are loaded in tension until crack propagation is observed in the joint, and the Irwin-Kies 

equation (Ripling, Mostovoy, and Patrick, 1964) can be used to calculate the critical energy 

release rate. However, to fully define a traction separation response in Mode I, additional 

testing is required to obtain the peak traction and initial stiffness, which is often done by 
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conducting butt-joint testing. Moreover, to accurately describe the adhesive behavior over a 

wide range of loading scenarios, high rate testing is required to develop a strain rate-dependent 

material model. This poses a challenge for the DCB and TDCB tests since the standardized 

specimens have a high mass and can therefore potentially introduce inertial effects when 

loaded at a higher velocity (Watson et al., 2018).  

To address these challenges, Dastjerdi, Tan, and Barthelat (2013) proposed a method to directly 

measure the Mode I traction-separation response with a single test, using a rigid double 

cantilever beam (RDCB) geometry. This technique was initially applied to measure the traction-

separation response of soft biological adhesives (Dastjerdi et al., 2012), then later adapted to 

structural adhesives (Watson et al., 2018). To satisfy the rigid adherend assumption, the 

material was chosen to be steel, which had significantly higher stiffness than the adhesive, with 

a geometry corresponding to a large second moment of area. Moreover, to minimize inertial 

effects for future dynamic testing, the geometry of the test samples was specifically designed to 

minimize mass while maximizing bending stiffness. The analysis conducted by Dasterdi (Figure 

2.4), assumed that the adherends would rotate about the far end of the sample away from the 

loading pins, such that the entire joint was in tension.  
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Figure 2.4: Analysis of RDCB developed by Dastjerdi, showing the dimensions (a), load 

applied (b), and free body diagram (c) (Watson et al., 2018) 

Early FE analysis by Watson et al. (2018), however, discovered that part of the joint was in 

compression. Therefore, the analysis was modified such that the center of rotation was 

arbitrarily displaced a distance μ from the far end of the sample away from the loading pin 

(Figure 2.5). Given a set of load point opening displacement and experimental force-

displacement data, an expression was derived to solve for μ and to generate the corresponding 

Mode I traction-separation response of the adhesive.  

 

Figure 2.5: Enhanced RDCB analysis (a), sample kinematics (b), and free body diagram (c) 

(Watson et al., 2018) 
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2.2.2 Mode II Mechanical Property Characterization 

The Mode II critical energy release rate (GIIC) is generally obtained by conducting the end notch 

flexure (ENF), end-loaded split (ELS) or the four-point end-notched flexure (4ENF) test (Cricrì, 

2018). The ELS test is reported to have a source of variability due to the need to clamp down an 

edge of the specimen, thereby increasing the complexity of data reduction, while the 4ENF 

involves a complex setup and the results are affected by proper compliance calibration as well 

as friction (Schuecker and Davidson, 2000; da Silva and Campilho, 2012). Hence, the ENF is one 

of the most commonly used tests for obtaining the Mode II fracture properties and has been 

used by Alfredsson, Biel, and Salimi (2015), Arrese et al. (2019), and Fernandes et al. (2015) 

with success. However, the ENF is still susceptible to unstable crack growth if the specimen 

dimensions were not accurately selected. Moreover, similar to Mode I characterization, the 

shear strength of the adhesive needs to be obtained through additional tests, usually the single- 

or thick-adherend lap shear, making this process time and resource intensive. While single-lap 

shear is the most commonly used joint configuration due to its simplicity in design and 

manufacture, the rotation of the joint (Figure 2.6) during loading induces peel stress that can 

affect the accuracy of shear strength characterization (Kelly, 2004). The thick-adherend lap 

shear test reduces bending of the adherends, thereby reducing mixed mode loading, and can 

therefore produce better shear data (Boqaileh, 2015). 
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Figure 2.6: Undeformed and deformed single-lap joint, demonstrating the rotation of the 

joint due to the bending of adherends, inducing peel stress in the joint (Kelly, 2004) 

 

To overcome these limitations, bonded shear samples, based on a modified geometry of the 

thick-adherend lap shear, were fabricated and tested to obtain the force-displacement 

response in shear loading for various strain rates (Watson et al., 2018). In addition, the joint 

deformation and crack propagation were optically tracked so that a full Mode II traction-

separation response could be defined with a single test, bypassing the traditional fracture 

characterization tests (Watson et al., 2018). 

 

2.3 Numerical Modelling of Adhesive Joints 

The FE method is the most widely used numerical method for analysis of bonded adhesive 

joints and is built on the concept of discretizing a body into many elements (da Silva and 

Campilho, 2012). This technique was first pioneered by Hrennikoff (1941) and Courant (1943). 

Further advancements were made with the rapid development of computing power and the 

extensive use of the technique in the aerospace industry, and now the FE method is a critical 

component of many engineering analyses (da Silva and Campilho, 2012). Adhesive joints can be 
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represented numerically by tiebreak contacts, cohesive elements, and continuum solid 

elements (Dogan et al., 2012; Trimino and Cronin, 2016) (Figure 2.7).  

             

Figure 2.7: Element types to numerically represent an adhesive joint include tiebreak (left) 

cohesive element (center) and solid continuum elements (right) (LSTC, 2012) 

 

Typically, an adhesive joint can be most accurately represented by a large number of solid 

elements, often requiring multiple layers of elements through the thickness of the joint 

(Boqaileh, 2015). However, this approach can be cost prohibitive as it is time and resource 

intensive computationally (Zachariah, 2006). Alternatively, tiebreak contacts can be used to 

represent an adhesive joint with minimal computational resources (Trimiño, 2012). In simple 

terms, a tiebreak contact can be conceived as springs joining nodes on one body to nodes on an 

adjacent body. Tiebreak contacts share the same behavior as other common types of contact 

definitions under compressive loads, but could be defined with a failure criterion in tension to 

simulate separation of the joined surfaces (Zachariah, 2006). Although tiebreak contacts are 

simple and efficient numerical implementations, they are known to have numerical instabilities 

commonly referred to as “unzipping” (Trimiño and Cronin, 2016). Unzipping is a phenomenon 

in which a large portion of the load is held by the first element in a crack front, and once the 

element deleted due to a failure criterion, the load is immediately released and passed onto the 

next element, which will likely cause it to fail and delete as well, resulting in a rapid non-
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physical crack propagation behavior (Trimiño, 2012). While this issue can be addressed with the 

addition of damage criteria to promote gradual unloading during failure, tiebreak contacts 

generally lack the inclusion of strain-rate effects, making them unsuitable for impact 

simulations (Trimiño and Cronin, 2016). More recently, cohesive zone modelling (CZM) was 

developed to address the limitations of the tiebreak contact (da Silva and Campilho, 2012), and 

is capable of capturing the elastic behavior of the joint as well as the damage accumulation 

process by means of a traction-separation law (Marzi et al., 2009). Although the CZM is a more 

comprehensive approach compared to the tiebreak method, requiring additional material 

properties, it has been shown to be capable of producing accurate results when compared to 

solid element implementations while being more computationally efficient (Trimiño and Cronin, 

2016). As such, the CZM is widely used in the analysis of bonded joints (da Silva and Campilho, 

2012). 

 

2.3.1 Cohesive Zone Modelling 

The CZM technique uses both material strength and energy parameters to simulate the 

material response, damage accumulation, and material fracture process (da Silva and Campilho, 

2012). CZM can be applied in the local approach (Figure 2.8), where cohesive elements 

represent a zero volume path (i.e. a surface) where damage may accumulate, usually between 

the adhesive and the adherend, and the constitutive behavior of the adhesive is simulated by 

solid elements (da Silva and Campilho, 2012). This is useful for numerically modelling the 

interfacial (adhesive) failure that occurs during the debonding of the adherend from the 

adhesive. Alternatively, CZM can be applied in the continuum approach (Figure 2.8), whereby a 
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single layer of cohesive elements models the equivalent response of the entire adhesive joint, 

including damage accumulation (da Silva and Campilho, 2012). This approach is computationally 

efficient due to its inherent simplicity, while being capable of predicting material response in 

Mode I and Mode II loading, provided that the CZM law parameters are thoroughly and 

accurately calibrated (Watson et al., 2018). Therefore, this technique has been widely used in 

the damage modelling of bonded joints. A study was done by Campilho, de Moura, and 

Domingues (2005) comparing the two CZM approaches in modelling the response of a plastic 

wedge-opened double-cantilever beam test. They noted that although the simpler continuum 

approach underestimated the bond toughness, for most applications, where thin adhesive 

layers made of tough or moderately tough epoxies were used, the approach provides 

reasonably good results while minimizing computational cost. 

 

Figure 2.8: (a) Local approach of CZM, with adhesive and adherend solid elements joined 

by zero thickness cohesive elements and (b) continuum approach of CZM, where cohesive 

elements represent the adhesive itself and its thickness (da Silva and Campilho, 2012) 
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CZM simulate the loading of an adhesive joint and the subsequent progressive unloading, due 

to material damage, through the use of traction-separation laws (da Silva and Campilho, 2012). 

The traction-separation (stress-displacement) response (Figure 2.9) of adhesive joints are often 

trapezoidal or bilinear (triangular shape) (da Silva and Campilho, 2012). To properly select the 

appropriate response to use, Campilho et al. (2013) investigated the effect of cohesive law 

shape in predicting the loading response of a single-lap joint bonded with a brittle and a ductile 

adhesive. They concluded that cohesive law shapes have a significant effect on joints bonded 

with ductile adhesives, noting that the trapezoidal response better described the damage 

accumulation (plastic flow) process. On the other hand, the cohesive law shape had a minimal 

effect on predicting the response of brittle adhesives.  

 

Figure 2.9: Examples of cohesive traction-separation law shape (Watson et al., 2018) 

 

Regardless of the cohesive law shape, the basic formulation of the CZM approach is such that 

the traction-separation load curves (TSLC) (Figure 2.10) in Mode I and II are defined by the 

material stiffness prior to onset of damage, peak tractions T and S at the onset of damage 
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accumulation, and critical energy release rates GI
C and GII

C (area under traction-separation 

curve) (Watson et al., 2018; LSTC, 2012). Based on these definitions, the maximum separation 

(displacement to failure) δI
F and δII

F for a CZM is given by: 

  
  

  
 

       
          

  
   
 

       
 

where ATSLC is the area under a normalized traction-separation curve. In general, each mode of 

loading requires its own traction-separation curve, and while a mixed-mode response (Figure 

2.11) can be modeled, the exact “mode-mixity” formulation is dependent on the specific 

constitutive model being used.  

 

Figure 2.10: An arbitrary normalized traction-separation law and the parameters required 

to define it (LSTC, 2012) 

Mode I Mode II 
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Figure 2.11: Visualization of a full traction-separation law, including mixed-mode response 

(LSTC, 2012) 

 

The material model used in this work was implemented in LS-DYNA as MAT_240, which utilized 

a tri-linear elastic-ideally plastic traction-separation law (Figure 2.12) and accounted for strain 

rate effects. In addition to the usual CZM parameters, the ratio of plastic deformation to the 

total deformation (area under flat region over the total area under tri-linear curve) needed to 

be determined in order to define the precise shape of the cohesive law (Marzi et al., 2009, 

Watson et al., 2018). 
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Figure 2.12: Parameters defining precise shape of a tri-linear traction-separation law 

(LSTC, 2012) 

 

2.4 Testing and Numerical Modelling of Adhesively Joined Structures 

In addition to experimentally studying the impact response of adhesively joined structures, it is 

of critical importance to develop numerical models capable of predicting their impact response. 

An extensive study conducted by Lanzerath and Pasligh (2014) investigated an adhesive 

modelling approach incorporating both cohesive elements and simplified contact definitions. 

The model was first calibrated in a single element simulation, assuming only cohesive failure, 

then the same model was used to simulate coupon tests, component tests, substructures and 

eventually a full vehicle, after which the predictions were compared to experimental data. 

However, the experiments were primarily focused on utilizing weld bonding (hybrid joints 

comprising adhesives and spot welds) to reduce the total number of spot welds in 

representative or actual automotive components, while maintaining or surpassing the 

performance of purely spot welded components in energy absorption. Furthermore, there was 

limited information on the adhesive characterization process, and the adhesive-only 
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component level validation lacked different test modes before proceeding to larger scale 

testing with weld bonding.  

A study conducted by May et al. (2015) investigated the characterization of an adhesive to 

develop a fully rate-dependent model using an extended CZM formulation, then validating the 

model at the component level by simulating a T-joint impact test (Figure 2.13) as well as a T-

peel test.  

 

Figure 2.13: T-joint impact directions (left), and resulting deformation during frontal 

impact (center) and side impact (right) (May et al. 2015) 

 

Normally, constant strain rate is assumed upon damage initiation, and the traction-separation 

law is fixed throughout the entire damage accumulation process. This assumption may not 

always be valid, and therefore the authors extended the traditional CZM formulation to 

continuously update the shape of the traction-separation curves. While both the extended and 

traditional CZM formulated models were in good agreement with the T-joint experiments, the 

extended formulation performed noticeably better (5-10%) in the T-peel test. However, the 

authors noted that this was due to relatively high variation in local strain rate in a T-peel 
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adhesive joint and could not conclude if the extended formulation would universally perform 

better in other load cases. In addition, while the T-joint had the versatility of testing two modes 

of loading in a single geometry, the loading was primarily isolated to the adhesive joint, as 

opposed to the combined deformation response (adhesive and adherend) of a bonded 

structure representative of an automotive component.  

Other studies that focused on the systematic development and validation of an adhesive model 

at the component level included an investigation by Yang et al. (2012) in which a simplified FE 

model was developed for toughened adhesive joints, that was validated at the coupon level 

with single lap shear (SLS), double lap shear (DLS), and coach peel (CP) specimens and then at 

the structural level with dynamic axial impact on a hexagonal tube. A single part, heat-curing, 

crash-toughed epoxy adhesive was cast into bulk dog bone samples that were tested at quasi-

static and dynamic rates to obtain the stress-strain response of the adhesive under uniaxial 

tension at various strain rates. A modified isotropic elasto-plasticity model (*MAT_SPOTWELD) 

was used to model the adhesive response in a finite element code (LS-DYNA 971), in which the 

stress-strain response was simplified to bilinear curves with the Young’s Modulus and yield 

strength defined as functions of effective strain rate. However, the adhesive model was based 

on a von Mises failure criterion such that the shear response was linked to the tensile response, 

which was generally applicable to metals but could be inaccurate for many polymeric materials 

(Trimiño and Cronin, 2016). Moreover, the authors omitted a damage law in the adhesive 

model, since the material failure strain was far smaller than the steel adherends used (DP600 

and DP780) and it was assumed that the joint softening due to damage would be a negligible in 

the overall structural response. The component level validation of a double-hat hexagonal tube 
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(Figure 2.14), with a 0.25 mm bond line thickness modeled with a single layer of solid elements, 

axially impacted by a 276 kg rigid wall travelling at 10.15 m/s resulted in good correlation in 

terms of force-displacement, energy absorption, and deformation pattern. Despite the good 

correlation, this simplified model had limited versatility since the lack of damage law based on 

the assumption of relatively small failure strain of the adhesive may not be applicable to a wide 

range of adherend materials, particularly UHSS. 

 

Figure 2.14: Dimensions and numerical setup of bonded tube (top), measured vs. simulated 

force and energy-displacement response of axial impact (bottom) (Yang et al. 2012) 

 

Another study similar to the current work was conducted by Gowda et al. (2017), in which 

development and validation of an adhesive model was done at the coupon level before 

simulating a dynamic axial compression experiment using a drop tower to impact adhesively 

bonded double-hat section tubes. A general purpose epoxy-based adhesive (Araldite AV198, 
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Huntsman) with a hardener (HV998) was modeled using MAT_024 (PIECEWISE LINEAR 

PLASTICITY) and a single layer of solid elements with a von Mises yield criterion in LS-DYNA. An 

existing curve describing the post-yield stress versus effective plastic strain behavior was 

digitized and assigned to the material model, and the Cowper-Symonds parameters describing 

the strain rate effect were obtained from a similar epoxy-based adhesive. The resulting 

simulation of single lap shear and T-peel tests demonstrated good correlation with the 

experiments. For validation at the structural level, double-hat section tubes made of mild steel 

were joined with a bond line thickness of 0.3mm and axially compressed with a 134 kg impactor 

at a velocity of 4.3 m/s. The predicted force-displacement response (Figure 2.15) was in good 

agreement with the experiment, and the predicted peak load, mean load, and energy absorbed 

were all within 5% of experimentally measured values. Similar to the study by Yang et al. (2012), 

the limitations of the study by Gowda et al. (2017) included use of von Mises yield criterion and 

lack of damage law in the adhesive model. 

 

Figure 2.15: Comparison of measured and simulated force-displacement response for 

bonded tubes under axial impact (left), and comparison of deformed specimen and 

predicted deformation (Gowda et al. 2017) 
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In a study by Trimiño and Cronin (2014), dynamic axial impact of sub-scale adhesively joined 

double-hat section tubes made of DP800 steel were investigated. The objective of the study 

was to evaluate the application of the non-direct similitude (NDS) technique to bonded 

structures, in which scaled up numerical models of the tubes under axial impact were validated 

against experimentally tested sub-scaled tubes. An inherent limitation of the study was the 

equipment, in which the drop tower used for the dynamic axial impact lacked sufficient amount 

of energy to generate multiple folds in the tube. The NDS calculations also did not account for 

the adhesive layer, and while it was found to be acceptable in this particular specimen 

geometry, the authors noted that there may be cases where a second material had a more 

significant role in the overall structural response. A key outcome of the study was the 

demonstration that CZM elements provided a good representation of adhesive joints. A follow-

on study (Boqaileh, 2015) drew a similar conclusion, whereby adhesive joint represented with 

cohesive elements using bulk material and coupon-level test data was able to efficiently predict 

structural response and failure of bonded joints.  

Although a multitude of studies can be found in the literature regarding impact testing of 

adhesively joined structures, most are focused on benchmarking the crashworthiness of 

bonded structures relative to other joining methods (Peroni, Avalle, and Belingardi, 2009; Lee, 

Kim, and Oh, 2006, or even hybrid joining methods involving adhesives (Mcgregor, Seeds, and 

Nardini, 1990; Deb et. al, 2016; Gowda et al., 2018). Few studies have been found that 

addressed the adhesive bonding of UHSS components. There is also a lack of published research 

considering three-point bending (lateral impact) of adhesively joined double-hat section tubes. 

The one study conducted by Gowda et al. (2018) investigated impact response of double-hat 
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section tubes when they were joined with adhesive, spot welds, and weld bonding (Figure 2.16). 

However, this study was mainly focused on benchmarking the different types of joining 

methods, and did not characterize or model the adhesively bonded structures subjected to 

loading. Of the studies that focused on adhesive modelling and component level validation, the 

adhesive model properties were often not derived from thorough material testing or lacked 

damage mechanics formulations due to simplifications, or that different types of component 

level experiments at different strain rates were omitted (Steidler, Bonde, Ljungquist, 2003; 

Lanzerath, Nowack, Mestres, 2009). 

 

Figure 2.16: Double-hat section joined with spot welds only (top), adhesively only (middle), 

and weld bonded (bottom) (Gowda et al., 2018) 
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2.5 Tailored Hot Stamping of Boron Steel 

The motivation for the development of hot stamping was initially to produce steel sheet 

components with a fully martensitic microstructure, allowing ultra-high strength parts of 

complex geometry to be formed at elevated temperatures. Performing this operation at room 

temperature would be impossible due to the low ductility of martensite. To this end, steel 

blanks are heated to austenization temperatures before hot forming with chilled dies, since a 

high cooling rate is required to produce a martensitic microstructure. It was later discovered 

that by altering the temperature of the forming tooling, different cooling rates could be 

achieved resulting in different microstructures in the as-formed part (Liu et al., 2011), as seen 

from the continuous cooling transformation (CCT) diagram in Figure 2.17 (Bardelcik et al., 2010). 

While any steel sheets with high quenchability can be hot stamped, the 22MnB5 boron steel 

(commercially referred to as Usibor®1500-AS) manufactured by ArcelorMittal is a commonly 

used steel grade for hot stamping due to their high quenchability (Mori et al., 2017). In the as-

received condition, Usibor® 1500-AS has an aluminum-silicon (Al-Si) intermetallic coating to 

provide corrosion protection, and to prevent oxidation and decarburization during the hot 

stamping process (Eller et al., 2014). While this Al-Si coating also provides enhanced weldability 

of the hot stamped components (Mori et al., 2017), the coating may result in interfacial failure 

within adhesive joints and removal was recommended prior to adhesively joining components 

(Liao et al., 2017; Liu et al., 2017). 
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Figure 2.17: A continuous cooling transformation diagram for Usibor® 1500-AS (George, 

2011) 

 

The process of tailoring a component by controlling the temperature at different regions of the 

tooling to obtain different properties for specific functions is known as In-Die Heating (IDH) 

Tailoring. For a given automotive component, a more ductile region can be obtained by heating 

that specific portion of the tooling and maintaining the desired temperature. This achieves a 

lower cooling rate, which results in more formation of bainite and ferrite.  In areas where 

intrusion resistance is critical, the same component can have regions of high strength 

martensite, accomplished by a high cooling rate maintained with water channels through those 

regions of the tooling. The primary advantage of THS is the ability to produce components with 

variable hardness distribution to optimize for crash performance and passenger safety.  
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2.5.1 Numerical Modelling of Tailored Hot Stamping of Usibor® 1500-AS 

Before these modern hot stamped components can be fully exploited for their potential, it was 

critical to develop reliable predictive models to accurately capture their crash response (Eller et 

al., 2014). To accomplish this, the distribution of material properties throughout the part must 

be accurately predicted, therefore complex forming simulations (Figure 2.18) were developed 

to model the decomposition of austenite into bainite, ferrite, or martensite. One such model 

was developed by Åkerström, Bergman, and Oldenburg (2007) and implemented in LS-DYNA 

commercial finite element software, which had been shown to be able to predict the final 

phase composition and micro-hardness distribution of the formed component to reasonable 

degree of accuracy. Using a modified version of the Åkerström model, Omer et al. (2017) 

developed a methodology to numerically model the THS process, which was divided into four 

sequential stages: transfer, forming, quenching, and cooling. Each stage involved an 

independent simulation and the output of the previous simulation was fed into the next. Each 

of the four stages utilized a coupled thermo-mechanical solver, in which the mechanical solver 

determined the strains, stresses, and deformation in each element, while the thermal solver 

determined temperature profiles and heat flow in each node and element. The mechanical 

solver also received thermal properties from the thermal solver, which were then used to 

calculate thermal stresses and strains, as well as to predict micro-hardness in the part based on 

cooling rates. The final material properties of the steel were developed based on the predicted 

micro-hardness.  
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Figure 2.18: Stages of the THS process in the numerical model 

To characterize a constitutive material model for the predicted tailored microstructures, 

Bardelcik et al. (2012) used a phenomenological approach by assuming a Voce hardening model 

and that the coefficients are functions of the micro-hardness (Vickers hardness). This model 

was referred to as the Tailored Crash Model (TCM). While the flow stress responses predicted 

by TCM for different micro-hardnesses at different strain rates are in good agreement with the 

experiments (Figure 2.19), this model alone is insufficient in accurately predicting the 

deformation of a component. The ability to predict initiation of cracks is also important in 
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complex loading conditions found in crash events, therefore the fracture behavior must be 

characterized and accounted for in the material model as well. The Generalized Incremental 

Stress State Dependent Damage Model (GISSMO) (Haufe et al., 2010) is a commonly used 

phenomenological damage (fracture) model that uses Equation (1) to define damage by a scalar 

damage variable D. Equation (1) consists of a user defined damage exponent n, the plastic 

strain at failure (εf) as defined by a set of fracture loci, and the equivalent plastic strain (εp). ten 

Kortenarr (2016) characterized a set of fracture loci for Usibor® 1500-AS various tailor hot 

stamped conditions (Figure 2.20). A regularization scheme could also be specified within 

GISSMO to scale the fracture curves according to element size, since the rate of plastic strain 

accumulation is mesh dependent.  

    (
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Figure 2.19: Comparison between predicted (solid line) and measured (dotted line) flow 

stress curves for various Vickers hardness and strain rates (Bardelcik et al. 2012) 
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Figure 2.20: Fracture loci corresponding to different quench conditions (ten Kortenarr, 

2016) 

 

2.5.2 Testing and Numerical Modelling of Tailored Hot Stamped Usibor® 1500-AS Tubes 

Using the aforementioned characterization and constitutive modelling methodologies, Omer et 

al. (2017) modeled the THS process to produce numerical models of hat sections with a fully 

martensitic microstructure as well as an axially tailored model (called three zone) with graded 

distribution of Vickers hardness (Figure 2.21). 

 

Figure 2.21: Vickers hardness distribution for each condition as predicted by the forming 

model developed by Omer (2014) 
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The final output of the THS model from the cooling stage was then fed into a remapping 

program developed by George (2011). The program read in the properties of each element 

from the final model, then outputted a hat section model with the elements sorted into five 

bins based on its Vickers hardness value (Omer et al., 2017). The material model of each bin 

was determined by its weighted average Vickers hardness, in which flow stress curves at 

various strain rates were generated based on the Voce hardening model by Bardelcik et al. 

(2012) and applied to all the elements within each bin. The final binned fully martensitic hat 

section is shown in Figure 2.22, and the final binned three zone hat section with examples of 

flow stress curves is shown in Figure 2.23. Omer et al. (2017) implemented these flow stress 

curves into a piecewise linear plasticity material model in LS-DYNA (*MAT_024) with a von 

Mises yield criterion in his investigation of forming, impact testing, and numerical modelling of 

tailored axial crush members, which is of particular interest to the current work due to its 

relevance.  

 

Figure 2.22: Fully martensitic hat section model and bin distribution by Omer et al. (2017) 
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Figure 2.23: Three zone hat section model and bin distribution by Omer et al. (2017), 

including flow stress curves for various material bins  

 

Using a similar approach, Prajogo (2015) investigated the effect of tailoring the flange of a hat 

section, spot welded to a full or split backing plate, on its impact response in a three-point bend 

test. Prajogo (2015) demonstrated that by softening the flanges of hat sections through IDH, 

the extent of fracture observed in the part could be reduced. Using the same forming and 

material modelling approach as Omer et al. (2017), Prajogo (2015) developed impact 

simulations that correlated well with the experiments, using the tailored flange hat section 

model (called soft flange) shown in Figure 2.24. However, in the context of loading an adhesive 

joint in a bonded structure in shear (Mode II) for the purpose of the current work, the backing 

plate specimen geometry was not ideal since it did not position the joint at the neutral axis. 
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Figure 2.24: Soft flange hat section model and bin distribution by Prajogo (2015) 

 

O’Keeffe (2018) developed a novel Mode I opening test called the “Caiman” and used it to 

characterize weld group failure in partially spot welded Usibor® 1500-AS double-hat section 

tubes (Figure 2.25). The crosshead displacement loads the spot weld joints in tension (Figure 

2.26), causing a crack to form and propagate progressively due to weld failure. In addition to a 

dynamic mixed-mode loading scenario provided by an axial crush test, the Caiman could be an 

effective test in providing a controlled and highly repeatable structural testing data for model 

validation, particularly for investigation of predicting adhesive joint crack propagation. 
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Figure 2.25: Fabrication drawings for Caiman specimens (O’Keeffe, 2018) 

 

Figure 2.26: Schematic and fixturing of the Caiman test (O’Keeffe, 2018) 
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While a wealth of studies has investigated THS experimentally and numerically, the method of 

joining and assembling the components was primarily spot welding. With the rapid emergence 

of adhesive joining as a promising candidate in achieve multi-material lightweight vehicles, it is 

important to investigate the effect of tailoring the base metal on the impact response of 

adhesively joined structures. Furthermore, it is critical to develop and validate a robust 

adhesive model capable of accurately predicting the joint behavior and failure in complex 

loading scenarios at the structural level.  
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Chapter 3 Experimental Testing of Bonded UHSS Tubes 

3.1 Overview of Experimental Programme 

The focus of this work was to assess the adhesive model, previously developed by Watson et al. 

(2018) based on testing of adhesive material and coupon-level adhesive joints, at the structural 

level. In the current study, the structure-level assessment was performed by measuring the 

mechanical response of adhesively joined double-hat section tubes and comparing them 

against numerical model predictions. A key objective of this thesis was to quantitatively 

evaluate the accuracy of the numerical model in predicting the impact behavior of adhesively 

joined structures, subjected to different modes of loading, tailoring configurations, and loading 

rates.  

To achieve this objective, a combination of three different modes of loading (Figure 3.1), three 

tailoring configurations (of the metal adherend) (Figure 3.2), and two loading rates (quasi-static 

and dynamic, or QS and DM) were conducted on adhesively joined hat sections made of 

Usibor® 1500-AS UHSS (Table 3.1).  

   

Figure 3.1: Modes of loading induced by the experiments, namely Mode II in three-point 

bend (left), mixed-mode in axial crush (centre), and Mode I in Caiman (right) 
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Figure 3.2: Nominal geometry of hat sections and tailoring configuration (Omer, 2014; 

Prajogo, 2015) 

 

The specimen geometry involved two hat sections adhesively joined together at the flanges to 

form a tube (Figure 3.2). Although the hat sections were formed according to the procedure 

outlined by Omer (2014), Prajogo (2015) and O’Keeffe (2018), the blanks used to form the hat 

sections in this study were 20 mm wider. This change was made to increase the total flange 

surface area for adhesive bonding. While the majority of specimens were grit blasted (GB) prior 

to bonding to maximize joint strength, two test conditions used as-formed (AF) (no surface 

preparation) specimens to evaluate the effect of surface preparation on the loading response. 

Three-point bend (3P), axial crush (AX), and Caiman (CM) tests were conducted to measure the 

loading response of the adhesively joined specimens in shear (Mode II), mixed loading (Modes I 

and II), and tension (Mode I opening), respectively (Figure 3.2). The tailoring configurations 
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were achieved during forming of the hat sections through tailored hot stamping. A detailed 

description of the forming tooling can be found in section 3.2, and the forming process of the 

hat sections is described in section 3.3. The nominal cross section dimensions of the formed hat 

sections and a visualization of all the tailoring configurations are shown in Figure 3.3. The 

tailoring configurations included: (i) fully martensitic (non-tailored) (FM) specimens that were 

fabricated using full quenching of the hat section; (ii) so-called “soft flange” (SF) specimens in 

which the die sections adjacent to the flanges were heated to 600°C; and, (iii) so-called “three 

zone” (3Z) specimens in which the tooling surfaces contacting the flanges and the middle of the 

C-channel were heated to 400°C and the end of the C-channel first impacted by the sled were 

heated to 700°C.  

Table 3.1: Structural component test matrix. Note that “FM” (fully martensitic) refers to a 

fully quenched, non-Tailored condition. 

 

 

The goal of tailoring the hat sections was to better allow the test samples to achieve the 

desired mode of loading during each of the test modes. For example, a stable collapse via local 

folding pattern involving mixed mode loading of the adhesive joint was desired in axial crush 

Surface Preparation Test Mode Tailoring Configuration Loading Rate Test Designation Test Repeats

Grit Blast 3 Point Bend Fully Martensitic Quasi-static QS-3P-FM-GB 3

Grit Blast 3 Point Bend Fully Martensitic Dynamic DM-3P-FM-GB 3

Grit Blast 3 Point Bend Soft Flange Quasi-static QS-3P-SF-GB 3

Grit Blast 3 Point Bend Soft Flange Dynamic DM-3P-FM-GB 3

Grit Blast Axial Crush Fully Martensitic Quasi-static QS-AX-FM-GB 3

Grit Blast Axial Crush Fully Martensitic Dynamic DM-AX-FM-GB 3

Grit Blast Axial Crush 3 Zone Quasi-static QS-AX-3Z-GB 3

Grit Blast Axial Crush 3 Zone Dynamic DM-AX-3Z-GB 3

Grit Blast Caiman Fully Martensitic Quasi-static QS-CM-FM-GB 3

Grit Blast Caiman Soft Flange Quasi-static QS-CM-SF-GB 3

As-formed 3 Point Bend Fully Martensitic Quasi-static QS-3P-FM-AF 3

As-formed Axial Crush 3 Zone Quasi-static QS-AX-3Z-AF 3
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experiments. In a similar loading scenario with spot welded tubes, Omer et al. (2017) reported 

that a three zone tailored tube had significantly more consistent deformation behavior than the 

fully martensitic tubes, and were the least prone to buckling. The low ductility of a martensitic 

microstructure may prohibit a stable collapse by encouraging a more global buckling 

deformation mode, causing extensive metal fracture as well as rapid debonding of the adhesive 

joint. On the other hand, having a gradual transition of soft to hard zone could assist in 

triggering a folding pattern early on, and help to maintain it throughout the experiment, 

allowing any cracks in the adhesive joint to propagate progressively.  

After forming, the hat sections were prepped for bonding into the double-hat section test 

specimen tube geometry following the procedure described in Section 3.5. The tubes were then 

tested using the quasi-static setups described in Section 3.6 and the dynamic setups in Section 

3.7. The force-displacement response was recorded from the experiments and used to validate 

the numerical models, along with the general deformation patterns, which will be discussed in 

detail in Chapters 5 and 6.  

 

3.2 Description of Forming Tooling 

Three different configurations of tooling were used to form the fully martensitic, soft flange, 

and three zone hat sections. 

The three zone hat sections were formed using the three zone tailored in-die heating tooling 

(Figure 3.3) (Omer et al. 2017). The tooling was divided into major sections separated by an air 

gap of 3.2 mm: heated sections corresponding to the soft zone(s) of the formed parts, and 
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water-cooled sections corresponding to the hardened martensitic zone in the formed parts. A 

steady state temperature of 12 °C was maintained in the cooled punch and die with chilled 

water circulated through the tooling. The heated section was subdivided into two zones 

separated by an air gap of 2 mm that allowed the soft zone to be graded due to independently 

controlled temperature zones. Heat was provided by 3/4" diameter cartridge heaters supplying 

550 W at 600 V, and the temperature in the heated section was held constant using PID 

controllers. 

 

Figure 3.3: Male punch and the corresponding female die used to form the three zone hat 

sections, detailing the heated and cooled regions (Omer, 2014) 



44 
 

To account for differences in expansion of tooling due to different temperature targets, the 

cooled punch and die were designed to allow for easy insertion of shims. As illustrated in Figure 

3.4 and 3.5, the cooled punch and die were attached to the bottom and top plates using four 

screws that were on the “visible” side when the tooling was in the press. Furthermore, four 

cutouts were present in the cooled punch block where levers could be inserted to lift the punch, 

allowing the insertion of shims. However, while both the heated and cooled punch/die were 

leveled with one another at room temperature, two ridges were created between different 

heating control zones of the tooling. Feeler gauges were used to measure the height of the 

ridges, which were found to be 0.016” in the die and 0.006” in the punch for the 400 °C zone, 

an 0.023” in the die and 0.026” in the punch for the 700°C zone. Due to a limitation on the 

design of mounting and wiring for the 400°C zone die and punch, they are very difficult to shim. 

This meant that only one ridge between different zones could be removed by either shimming 

the cooled die and punch to align with the 400°C or 700°C, while the other ridge will remain. 

Therefore, a decision was made to shim the cooled die and punch to align with the 400°C zone, 

leaving a ridge between the 400°C zone and the 700°C zone, as illustrated in Figure 3.6.  

 

Figure 3.4: The mounting and cut-out location on the male punch used during shim 

insertion 
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Figure 3.5: The mounting location of the female die, no cutout required since die is 

suspended 

 

Figure 3.6: Representation of the side profile of the tooling once it is heated, showing the 

misalignment between the heated zones and the cooled punch aligning to the 400 °C zone 

Similar to the three zone tooling, the soft flange tooling (Figure 3.7) consisted of three major 

components, namely the die, binder (and blank holder), and punch. Instead of dividing each 

major component into different heating zones to obtain lengthwise tailored hat sections, the 

heaters were arranged such that only the binder and blank holder were heated to 600°C and 

held constant with PID controllers. Chilled water was pumped through the die cavity and the 

punch to maintain a steady state temperature of 25°C. As seen in the schematic, an air gap of 2 

mm was incorporated into the tooling to insulate the chilled region of the die from the heated 
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flange region. Heating was supplied with 16 (8 on each side) 700W cartridge heaters at 600V in 

both the blank holder and the binder.  The heaters in the blank holder were 76.2 mm long while 

the ones in the binder were 101.6 mm long. The heating circuit was setup such that there were 

4 control zones in the top and bottom halves of the tooling. Similar to the three zone die 

tooling, 12.7 mm thick panels of ZIRCAL-95 were used to insulate the heated parts of the soft 

flange tooling.  

 

Figure 3.7: Schematic of the tooling used to form soft flange hat sections, where the entire 

punch and die are water cooled, while binder and blank holder are heated 

 

3.3 THS Process Parameters for Forming Hat Sections 

The hat sections used in this work were formed from blanks of Usibor® 1500 AS measuring 220 

mm x 590 mm (Figure 3.8). The blanks were water jet cut, and two tabs were incorporated on 

either end for alignment during the forming process. The longer tab contained an oval slot, 

while the other shorter tab contained a triangular slot, both of which fit onto designated pins 

incorporated in the forming tooling. In addition, the tabs act as a gripping point when the 

transfer mechanism moves the blank from the furnace to the tooling, while also making it much 
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easier to remove the formed hat section from the female die at the completion of the forming 

process. 

 

 

Figure 3.8: Dimensions and photograph of the blank used for all experiments 

The THS process used to create the hat sections was performed on a hydraulic forming press 

manufactured by Macrodyne Technologies Inc. (Figure 3.9). The press contained a 900-ton main 

cylindrical actuator, as well as four other small cylinders, called kickers, which were capable of 

generating 60 tons of force at a higher speed. Only the kickers were required to apply the 

forming tonnage for all forming cycles. 

The THS process was divided into five stages: austenization, transfer, forming, quenching, and 

cooling. The blanks were first autstenized using a furnace, manufactured by Deltech Inc, located 
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adjacent to the press. To ensure the blanks were evenly heated throughout, the oven contained 

three control zones, one at the front, one in the middle, and one at the back. Located in front of 

the press was an automated pneumatic transfer mechanism that transferred the heated blanks 

from the furnace to the forming tooling, where It was formed and quenched. Grips were 

mounted on the transfer rail to clamp the heated blanks. To minimize heat loss of the blank to 

the grips during the transfer process, an insulator was used on the grip surface and the grips 

contacted the blanks at the very edge of the tab.  

 

Figure 3.9: Forming setup, including components of the press, the furnance, and the 

transfer mechanism 

 

The transfer mechanism positioned the blank over the punch, where the tab cut-outs were 

aligned with pins on the binder, after which the forming process was initiated. During forming, 

the male punch remained stationary while the female die descends onto the blank, forming the 

hat section geometry. The binder was positioned initially around the stationary punch and was 

Hat Section Die 

Furnace 
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mounted on twelve nitrogen gas spring cylinders that each exerted a constant pressure of 6.895 

MPa (1000 psi). With a cylinder diameter of 23mm, the resulting total force the binder exerted 

against the die was 34.4 kN. Once the forming cycle ended and the press was returned to the 

home position, the hat sections were manually removed from the press and placed on racks to 

be air cooled.  

In summary, the specific stages of the THS process were as follows: 

1) The blank was austenized in a furnace at 930°C for six minutes. 

2) The blank was then transferred into the die set using the pneumatic transfer 

mechanism (taking approximately 10.5 s), where the tab cut-outs were aligned with 

the pins on the tooling. 

3) The blank was then formed. 

4) The formed part was quenched in the tooling for 4 s at 60 tons of force. 

5) The formed hat section was removed from the female die and allowed to air cool. 

 

3.4 Micro-Hardness Measurements on As-Formed Parts 

Micro-hardness measurements were performed on as-formed hat sections. The measurements 

were performed on smaller sections along the length of the hat section (Figure 3.10) and were 

taken on the flange, side wall, and the top surface for each of the three tailoring configurations. 

Five sections were taken from each three zone hat sections, while only three sections were 

taken from each of the martensitic and soft flange hat sections, since the three zone hat 

sections had more distinct hardness zones along the length. Two hat sections each were 
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selected at random for measurement from the martensitic and soft flange conditions, while 

three were selected from the three zone hat sections, due to the higher complexity of the 

three-zone tailoring configuration. All sections were initially cut to 60 mm in length with an 

abrasive saw.  Figure 3.11 shows an example of a three zone hat section prior to and after 

cutting with an adhesive saw.  

 

Figure 3.10: Outline of  the bulk sections cut for hardness testing 

 

Figure 3.11: An example of three zone hat section before cutting, and the sections after 

cutting 
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A wet saw was then used to cut the bulk sections into small strips measuring 10 mm x 20 mm to 

be mounted in epoxy. The final strips were taken from the centre of each section, which meant 

that there was a buffer spacing of 30 mm between each side of the surface where hardness 

measurements were taken and where the abrasive saw cut was made. This spacing ensured 

that the area heated by the saw blade did not reach too far into the centre, and that the 

measured hardness was representative of the as-formed hat sections. A coolant was used with 

the wet saw to minimize the local temperature increase on the surface where hardness 

measurements will be taken. Three strips, which corresponded to one region of a hat section, 

were cast in a single mount, which were polished with silicon carbide (SiC) paper in the order of 

320, 500, 800, 1200, 2400, and 4000 grit.  

A Wilson Hardness VICKERS 402 MVD tester, was used to make the hardness measurements. A 

load of 1000g was used to make pyramid indents into the polished metallic surface, then a 

built-in microscope and measurement system was used to measure the diagonals to calculate 

the Vickers hardness. The Vickers hardness measurements served as a method to verify that 

the physical formed hat sections had the correct hardness distribution according to their 

tailoring configurations. The hardness data could also be used to compare the hat sections 

formed in this work to the hat sections formed by Omer (2014) (Figure 3.12) for axial crush 

testing and Prajogo (2015) for three-point bend testing. For the fully martensitic and three zone 

hat sections, Omer’s (2014) original data on the measured Vickers hardness and the predicted 

hardness, based on the forming model, were obtained and plotted for a more in-depth 

comparison.  Note that the current samples had fewer data points since the hardness 

measurements were only taken at key sections along the length of the hat sections, as opposed 
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to taken at set intervals along the entire length. Therefore, the data was presented as a linear 

curve fit, such that a straight line was plotted between the measured data points. Since 

Prajogo’s (2015) original measured Vickers hardness data of the soft flange hat sections and the 

predicted hardness were unavailable, the standard deviation of the current soft flange data was 

plotted as the upper and lower bounds to indicate the spread of the measurements.  The 

measured vs. predicted Vickers hardness for the soft flange hat sections as presented in 

Prajogo’s (2015) study is shown in Figure 3.13.
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Figure 3.12: Vickers hardness measured in the current work for the flange, side wall, and top surface, plotted along the length 

of the hat section for all three tailoring configurations 
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Figure 3.13: Vickers hardness measured by Prajogo (2015) for soft flange hat sections 

 

3.5 Preparation and Bonding Procedure of Formed Parts 

3.5.1 Preparation of Final Hat Section Geometry Prior to Bonding 

After the hat sections were formed, samples to be tested in axial crush and Caiman had their 

tabs cut off, and additional machining was required to prepare the samples for testing. As-

formed three-point bend samples did not require any further preparations to finalize geometry.  

To control the initiation of folding in the axial crush specimens, a fold initiator (dimple) was 

formed 65 mm (Figure 3.14) from the top end of the hat section (the 700 °C end for three zone 

hat sections) at a depth of 4 mm (Omer, 2014). The dimple serves as a fold initiator to promote 

progressive folding during the axial crush experiments. A punch measuring 25 mm x 10 mm 

with a fillet radius of 5 mm on all its edges was used to form the dimple on a hydraulic hand 

press.  
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Figure 3.14: The fold initiator (dimple) on an axial crush hat section 

 

To further minimize the likelihood of global buckling in any of the axial crush experiments, all 

axial crush hat sections were cut down to a length of 490 mm (Omer, 2014). The last step of 

preparation for axial crush hat sections prior to bonding was to drill 12.7 mm diameter holes at 

either end using a carbide drill bit. The holes were used to locate the tube in the axial crush 

fixture.  

The hat sections to be tested in Caiman experiments were prepared according to O’Keeffe’s 

(2018) drawings (Figure 2.25, Section 2.5.2). 

 

6.5mm 

490 mm 



56 
 

3.5.2 Surface Preparation for Bonding 

An important goal of this research was to achieve cohesive failure in the adhesive. Thus, careful 

preparation of the adherend surface was performed to maximize the joint strength between 

the adhesive and the adherend. An investigation by Liao et al. (2016) into surface treatment 

methods to maximize the strength of single lap shear experiments found that a combination of 

grit blasting of the adherend surface to increase roughness, followed by cleaning the surface 

with methyl ethyl ketone (MEK) immediately prior to application of adhesive achieved 

consistent cohesive failure with the highest joint strength and lowest variability. In addition to 

roughening the metal surface, another function of grit blasting was that it removed the Al-Si-Fe 

intermetallic coating that was present on the as-received Usibor® 1500-AS material, which has 

been shown to increase likelihood of interfacial failure (decrease joint strength and increase 

variability) (Liao et al., 2016). It was also shown in the investigation that cleaning with acetone 

produced similar results to MEK, while being a safer and less expensive chemical to work with. 

Therefore, all hat sections were grit blasted with 60 grit aluminum oxide and then cleaned with 

acetone prior to bonding, with the exception of the tests that specifically used the as-formed 

condition to assess intermetallic coating strength (Table 3.1, Section 3.1) that were only 

cleaned with acetone prior to bonding.  

 

3.5.3 Initial Bonding Procedure with Square Shims 

An adhesive bond line thickness of 0.178 mm (0.007”) was used for all experimental specimens 

following the manufacturers recommendations, and brass shims were used to maintain the 

bond line thickness while the flanges were clamped down for curing. Initially, the first few tubes 
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that were bonded for quasi-static three-point bending were grit blasted, cleaned with MEK, and 

then strips of brass shims 25 mm wide were placed on each end and each side of the flanges 

while the adhesive was being applied (Figure 3.15). The adhesive was only applied and spread 

on one hat section for each tube, while the other hat section with a bare surface was placed 

over the first.  

 

Figure 3.15: Bonding of an early sample, where the rectangular shims are at the ends of the 

flange 

 

A preliminary fixture using five C-clamps, as determined to be optimal in ensuring uniform 

adhesive coverage based on a wettability study, and 0.5” thick steel bars were used to secure 

the flanges (Figure 3.16) while they cured in a convection oven at 80 °C for thirty minutes. The 

steel bars were used to evenly distribute the load applied by the C-clamps, while also closing 

the gaps that exist between the as-formed hat sections due to warpage after hot-stamping. 

Warpage was only noticeable in tailored components, in which the three zone samples form a 

gap between the flanges when the hat sections were placed in a double-hat configuration, 

measuring up to 5 mm (Figure 3.17). In addition, the side walls of the three zone samples curve 

inwards near the heated 700 °C end, creating a gap between the flanges when the hat sections 
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were placed next to one another, measuring up to 7 mm. This gap introduced considerable 

residual stresses (tension) in the adhesive joint and its effect will be discussed in Chapter 5. 

While the soft flange samples sit relatively flat against a flat surface (no bowing in flange), the 

side walls curve inward towards the center, then curve back out towards the other end of the 

hat section (Figure 3.18). This curvature produced a gap between the flanges when the hat 

sections were placed next to one another, measuring up to 10 mm.  

 

Figure 3.16: C-clamps used to secure the flange prior to curing the assembly in the oven 

 

Figure 3.17: Gap between three zone flanges in a double-hat configuration (left and centre), 

and gap between three zone flanges when placed side by side (right) 
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Figure 3.18: Gap between flanges of soft flange samples when placed side by side 

 

After the first few quasi-static experiments with tubes that were bonded with the procedure 

outlined above, it was observed in the failure surface that there were areas of minimal adhesive 

coverage along the flange.  This was indicative of an excessive amount of adhesive being forced 

out of the bond line as the flanges were clamped down, and therefore an alternative shimming 

method was needed to better distribute the clamping force across the bond line. Figure 3.19 

shows examples of early test results for quasi-static three-point bend and axial crush, where 

areas of minimal adhesive coverage were highlighted.  
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Figure 3.19: Failure surface of early quasi-static fully martensitic three-point bend (left) 

and axial crush (right), showing inconsistent adhesive coverage 

 

3.5.4 Improved Bonding Procedure with Circular Shims 

An alternative shimming method was devised using 7/16” circular shims distributed along the 

length of the flange, with the C-clamps aligned to the shims. This method was first tested in a 

numerical model comparing the loading responses of assemblies with strips of shims in each 

corner against those with circular shims distributed along the length. It was found that the 

discontinuity in the adhesive joint did not contribute to noticeable differences in the loading 

response. Therefore, the circular shimming method was used for all the remaining specimens, 

which showed a significant improvement in the quality of the adhesive joints. The revised 

bonding procedure began with grit blasting of hat sections, followed by adhering the circular 

shims to the flanges with a fast acting ethyl cyanoacrylate adhesive (Elmer’s Products Inc., 

2015), and lastly cleaning the flange surfaces with acetone. Another minor change that was 

made to the bonding methodology was to apply adhesive to flanges of both hat sections 
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instead of only one. This change was made to ensure that a thin layer of adhesive was evenly 

distributed throughout the entire bonding surface (on both sets of flanges) prior to assembling, 

which added an additional layer of confidence than only relying on the clamps and steel bars to 

spread the adhesive. Figure 3.20 shows an example of a three-point bend specimen being 

bonded with the circular shim methodology.  

 

Figure 3.20: Improved shimming technique, where circular shims are used to distribute 

clamping forces more evenly for uniform adhesive coverage 

 

The exact layout of how the circular shims were distributed varied depending on the intended 

experimental configuration (Figure 3.21). Note that the specimen length for three-point bend 

and Caiman configurations were 590 mm, but only 490 mm for axial crush, as explained in 

Section 3.5. For three-point bending, the center of the tube lengthwise was where the majority 

of deformation was undergoing, and there it was thought to be best to avoid disrupting the 
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adhesive joint in this critical region. A region of 110 mm (5 mm wider than the diameter of the 

punch on each side) in the center of the adhesive joint was left undisrupted. Although the 

optimal number of clamps was determined to be five as previously stated, a decision was made 

to use six to have an even three clamps on either side of the undisrupted region, which were 

spaced 80 mm apart. For the axial crush specimens, a similar concept was applied in leaving the 

critical or more sensitive region undisrupted, which in this case would be the region around the 

fold initiator. The first and last (fifth) shims were located at 15 mm and 40 mm from the top 

(near the fold initiator end) and bottom respectively. This positioning was adopted so that the 

shims at the ends would be located within the clamped regions of the test specimens, as 

described Section 3.6. The second shim was placed 105 mm after the first (totalling 120 mm 

from the end of the tube closest to the fold initiator), giving the fold initiator about 50 mm of 

undisrupted adhesive joint on either side, then all subsequent shims were spaced 110 mm 

apart. Lastly, for the Caiman specimens, the adhesive joint only spanned about 334 mm (83.5 

mm x 4) on the end of the tube that was not clamped into the fixture. This geometry was 

adopted to mimic the same lever arm length of roughly 255.8 mm used by O’Keeffe (2018). 

Within the 334 mm joint, three circular shims were used, spaced equally at 83.5 mm. 
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Figure 3.21: Diagram outlining the circular shim distribution for different types of 

experiments, all dimensions in millimeters 

 

3.6 Experimental Setup for Quasi-Static Tests 

3.6.1 Quasi-static Three-Point Bend Setup 

The quasi-static three-point bend experiments were performed in a 496 kN hydraulic load 

frame operating under closed-loop displacement control. A crosshead velocity of 1.016 mm/s 

(0.04 in/s) was used for the three-point bend experiments, corresponding to a nominal strain 

rate of 0.01 s-1 for a tube height of 101.6 mm (measured from one top section to the other in 

double-hat cross section). A sampling rate of four points per second was used for the three-

point bend experiments. 

The setup for the three-point bend experiments (Figure 3.22) used an indentor of 100 mm 

diameter mounted to the hydraulic actuator and two cylindrical supports of 50 mm diameter 
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spaced 375 mm apart. Both the indentor and supports were lined with two sheets of Teflon film; 

in which the first sheet was taped to the metallic surface, and the second sheet rested freely on 

the first sheet with a thin layer of petroleum jelly-based lubricant (Vaseline) between them. The 

Teflon sheet and lubricant prevented contact between metallic surfaces and minimized friction 

during the test, which would allow relative motion between the top hat and the indentor so 

that the hat sections could deform freely. This setup was used for all quasi-static three-point 

bend experiments.  

 

Figure 3.22: Quasi-static three point bend experimental setup 

 

3.6.2 Quasi-static Axial Crush Setup 

The first quasi-static axial crush experiments (fully martensitic grit blasted condition) were 

performed on the same 496 kN hydraulic load frame as all the quasi-static three-point bend 

experiments. The hydraulic load frame was operating under close-looped displacement control, 

with a sampling rate of four points per second. The crosshead velocity for the axial crush 

experiments was 0.508 mm/s (0.02 in/s), which corresponded to a nominal strain rate of 0.001 

s-1 for a tube length of 490 mm. 
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The setup for the quasi-static axial crush experiments (Figure 3.23) included top bosses and 

clamps measuring 25.4 mm thick, while the bottom bosses and clamps were 50.8 mm thick, 

which corresponded to an effective tube length of 413.8 mm while secured in the fixture. The 

bottom clamps and bosses were mounted to a base plate that was clamped down and secured 

to the table. Shown in detail in Figure 3.24, both the top and bottom fixtures include an outer 

boss and sliding inner clamp for one hat section, and an inner boss and sliding outer clamp for 

the other hat section. For safety reasons, the entire setup was enclosed by three plexiglass 

panels and a steel half pipe.  

 

Figure 3.23: Quasi-static fully martensitic grit-blasted axial crush setup on the 496 kN 

hydraulic load frame 

 

Figure 3.24: Clamps and bosses used to secure the specimens during the axial crush 

experiments 
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The sliding inner clamp was secured to the base plate with two screws, and the fixed inner boss 

was secured with four screws. Both the sliding outer clamp and fixed outer boss were secured 

to the based plate with six screws. The top outer clamp and boss each have a through-hole to 

allow one screw to secure the outer pieces with the inner clamp and boss, while the bottom 

fixtures have two through-holes on each side. All screws used for fixturing were M10 in size. 

It was observed during the first axial crush experiments with grit blasted fully martensitic tubes 

that the hydraulic piston on the 496 kN load frame exhibited a considerable degree of lateral 

loading and rotation due to the deformation of the specimen. To avoid potential equipment 

damage and to ensure a more repeatable boundary condition at the point of load application, 

the balance of the axial crush experiments, namely grit blasted three zone and as formed three 

zone tubes, were conducted on a 623 kN, four-post hydraulic press (Figure 3.25). This press 

incorporated improved lateral support via four guiding posts in the corners. Note that the same 

mounting fixtures were used in all of the axial crush experiments to keep the boundary 

conditions as similar as possible. 
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Figure 3.25: Quasi-static axial crush experiment setup on the 623 kN four-post hydraulic 

load frame 

 

3.6.3 Quasi-static Caiman Setup 

The setup for the quasi-static Caiman experiments is shown in Figure 3.26. The specimens were 

tested using in an MTS Criterion Model 45 tensile frame, with a 100 kN load cell. The adhesive 

Caiman specimens were mounted into the test frame to be pulled apart, inducing a progressive 

splitting of the joint due to Mode I failure of the adhesive. Following the investigation by 
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O’Keeffe (2018), Figure 3.27 shows the fixtures and boundary conditions in detail. The tooling 

consisted of inner and outer bosses that clamped each half of the tube with two screws, while 

the clevises displaced the inner bosses via the dashed 19.05 mm diameter pins. The top 

crosshead clevis was threaded into the load cell while the bottom fixed clevis was clamped by 

the knurled grips on the MTS frame. Two cameras, one on each side, were used to continuously 

capture images of the deformation, which were synchronized to the force and displacement 

data via VIC SNAP 2009. 

 

Figure 3.26: Quasi-static Caiman setup on the MTS frame (left) and the fixtures (right) 
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Figure 3.27: Detailed cross section of a specimen secured in the fixture (O’keefe, 2018) (left) 

and an adhesive Caiman test in progress (right) 

 

An upward displacement rate of 50 mm/min was used for all quasi-static Caiman tests, resulting 

in Mode I loading on the adhesive joint (Figure 3.28). It was observed during the experiments 

that there was initially a rapid propagation of adhesive failure along the length of the specimen, 

which slowed significantly as the failure front propagated towards the end of the bond line. The 

experiments ran for approximately 105 s for a total crosshead displacement of 87.5 mm, which 

was sufficient to capture most of the bond line failure. 
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Figure 3.28: Start of Caiman test (top), onset of crack propagation (middle), crack 

propagation slowing and stabilizing (bottom) 
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3.7 Experimental Setup for Dynamic Impact Tests 

3.7.1 Dynamic Three-Point Bend Setup 

The dynamic three-point bend experiments were conducted using an impact sled manufactured 

by Seattle Safety. The same fixtures used in the quasi-static experiments were used for dynamic 

experiments as well. The two supports were mounted vertically on the crash wall and the 

indentor was mounted to the load cells attached to the impact sled (Figure 3.29). An adaptor 

plate was used to mount the indentor to a load cell pack comprising two 120 kN Kistler Quartz 

Force Link (model#9371B) load cells. A 19.05 mm thick wooden plate was added between the 

indentor and the adaptor plate to act as a damper, reducing noise in the loading data. The total 

mass of the sled was 870 kg (855 kg base sled and 15 kg total from indentor and load cells) and 

an impact velocity of 7.5 m/s (27 km/h) was used for all three-point bend dynamic experiments. 

Two Plascore 5052 honeycomb packs with a crush strength of 3.69 MPa (535 psi) measuring 

150 mm by 150 mm with a length of 200 mm each were mounted side by side beneath the 

three-point bend test specimen to rapidly decelerate and stop the sled after a specified free 

crush length. The free crush (Figure 3.30), as defined by the distance starting when the indentor 

first makes contact with the part to when the sled contacts the honeycomb to be quickly 

stopped, was roughly 55 mm.  

Load cells and accelerometers were used to measure force during the dynamic experiments. 

Two 120 kN capacity piezoelectric load cells were mounted on the sled behind the indentor to 

measure the force exerted onto the specimen, whereby the total force applied was equal to the 

sum of forces measured by each individual cell. The load cell data was acquired with a sampling 
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rate of 10,000 points per second. Two accelerometers, with a sampling rate of 10,000 points 

per second, were mounted on the back of the impact sled, one on each side. The deceleration 

experienced by the sled during impact was measured and displacement was calculated by 

double-integrating the deceleration data obtained from the accelerometers. No software 

filtering was applied to the final data.  

 

Figure 3.29: Dynamic three-point bend experimental setup, showing the mounted specimen, 

honeycomb packs, and cameras 

 

Figure 3.30: Sled and impactor brought in contact with the specimen to demonstrate 

distance of free crush zone 
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Two high-speed Photron SA4/5 digital cameras were used to record the impact experiments 

with a frame rate of 5000 frames per second. One camera was mounted above the specimen 

while the other was mounted on the side. The piezoelectric load cells and accelerometer data 

acquisition systems were in sync with the high-speed cameras and were activated by a laser 

trigger located on the rails of the sled (Figure 3.31). As the sled traveled past the trigger during 

a dynamic impact test, the cameras and data acquisition systems were turned on for two 

seconds, which was sufficient to capture the impact event.  

 

Figure 3.31: Impact sled with impactor mounted on two load cells (left) and laser trigger 

along the rail (right) 

 

For the dynamic three-point bend of fully martensitic tubes, two 12.5 mm wooden inserts were 

placed within the tube, aligned with the location of the two support fixtures. The goal of the 

inserts was primarily to prevent an asymmetric deformation mode from occurring. However, it 

was observed that one of the fully martensitic tests still exhibited asymmetric deformation, and 
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therefore the inserts were not used for any other three-point bend tests, quasi-static or 

dynamic. While this made it difficult to compare the loading response of the fully martensitic 

specimens to the soft flange ones, the wooden inserts were included in the fully martensitic 

dynamic three-point bend model to accurately represent the boundary conditions so that the 

model validation case was on comparable terms. 

 

3.7.2 Dynamic Axial Crush Setup 

The dynamic axial crush experiments were conducted on the same impact sled as the dynamic 

three-point bend (Figure 3.32). The same fixtures used in the quasi-static axial crush 

experiments are used for the dynamic experiments as well, where the 63.5 mm thick base plate 

was mounted onto three Kistler Quartz Force Link (model #9371B) 120 kN capacity piezoelectric 

load cells that are mounted to the wall in a triangular pattern. The load cells measured the 

force, at a sampling rate of 10,000 points per second, exerted by the sled onto the specimen 

whereby the total force is the sum of the individual forces measured by each load cell. No 

software filtering was applied to the final data. 

A 19.05 mm thick wooden plate is mounted to the top fixture (the end further away from the 

wall) to act as a damper when the sled contacts the specimen, reducing noise in the acquired 

force and acceleration data. This wooden plate was confined within the cutout of another 19.05 

mm thick wooden board that was mounted at the center of the sled when the sled came into 

contact with the specimen. This was done to minimize lateral movement of the specimen 
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during the dynamic impact experiment. The total mass of the sled was 900 kg (855 kg of base 

sled plus 45 kg of standoff plates) and an initial velocity of 10 m/s was used.  

Plascore 5052 honeycomb packs were used for the dynamic axial crush experiments, in which 

two packs of honeycomb were mounted on the wall; one on each side of the specimen. Each 

stack contained two blocks of honeycomb, measuring 140 mm x 140 mm and 160 mm x 160 

mm with a length of 200 mm, configured in a pyramid pattern where the larger block is near 

the wall and the smaller block is stacked against it. The size difference ensures that the blocks 

engage with (dig in to) one another during impact, as opposed to buckling against each other. 

 

Figure 3.32: Dynamic axial crush experiment setup, showing the mounted specimen, 

honeycomb stack, the wooden plate and standoff steel plates on the sled 

 

One end of each honeycomb pack was mounted against a standoff from the wall while a stack 

of two steel spacer plates was mounted on each side of the sled to contact the other end of the 

honeycomb packs (Figure 3.33). The standoffs and spacers were used to achieve a free crush 
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distance of about 145 mm, which was the distance starting when the sled first contacted the 

specimen to when the sled contacted the honeycomb packs.  

 

Figure 3.33: The sled brought into contact with the mounted specimen, to demonstrate 

distance of free crush zone 

 

The dynamic axial crush experiments used the same camera setup (two high-speed cameras at 

5000 frames per second, one on top the other on the side) and the same data acquisition 

systems (load cells and accelerometers onboard the sled) as the dynamic three-point bend 

experiments.   
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Chapter 4 Numerical Modelling of Impact Experiments 

4.1 Double-Hat Section Tube Models 

The hat section finite element models used in this work were extended from the hat section 

models developed by Omer et al. (2017), Prajogo (2015), and O’Keeffe (2018). As mentioned in 

Section 3.1, the blanks used to form the hat sections in this thesis were similar to previous 

studies, but were 20 mm wider in order to produce parts with wider flanges to increase the 

adhesive bond area. To address this change, the flanges of the previous hat section finite 

element models were extended by approximately 10 mm on each side (4 rows of elements). 

This extension significantly simplified the process to make the models readily usable, and was 

considered acceptable since the elements along the length-wise edges of the flanges for all 

three hat section models were in the same material bin. 

For all simulations, the tubes were modeled with fully integrated shell elements (Type 16 in LS-

DYNA) of 2.5 mm element size, and seven points of integration through thickness. A piecewise 

linear plasticity material model in LS-DYNA (*MAT_024) with a von Mises yield criterion was 

used for each bin of Usibor® 1500-AS, with flow stress curves at various strain rates obtained 

from Omer et al. (2017) and Prajogo (2015). 

For the martensitic axial crush models, both quasi-static and dynamic, a Generalized 

Incremental Stress-Strain Model (GISSMO) was applied to predict the considerable amounts of 

steel failure observed during the experiments. This fracture model defines damage as a 

function of equivalent plastic strain, plastic strain at failure as defined by a fracture locus, and a 

user defined exponent. The fracture locus (Figure 4.1) used in this thesis was obtained from 
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experiments conducted by Ten Kortenaar (2016) and modified with V-Bend test data from 

Abedini (Tummers et al., 2018). No fracture model was assigned to any other tube models since 

those specimens did not exhibit significant cracking in their experiments.  

 

Figure 4.1: Stress triaxiality curve for the fully martensitic microstructure (Ten Kortenaar, 

2016; Abedini, 2018) 

 

4.2 Tube Model Creation, Hardness Distribution, and Geometrical Dimensions 

As mentioned in Section 3.5.3, the physical hat sections exhibited warpage, particularly the 

tailored hat sections. The final outputs of the hat section models from the numerical THS 

process predicted warpage from spring back of the part while it was air cooled. For the purpose 

of this thesis, a separate intermediate simulation had to be run to flatten out the flanges of the 

hat section models due to the fact that a flat flange surface was important for defining a 



79 
 

constant bond line thickness. Once the flanges of the hat sections were flattened, the final 

bonded tube models were assembled in the HyperMesh commercial software (Altair), in which 

the outputs of the intermediate simulations were mirrored to create two hat sections. Note 

that the residual stress-strain histories of the steel were not carried over from the output of 

THS model to the intermediate simulation in which the flanges were flattened, nor from the 

intermediate simulation to the final tube models. This simplification to neglect the warpage and 

the resulting residual stresses induced in the bonded structure was a limitation of this study.  

Additionally, for the axial crush simulations, a fold initiator was incorporated by displacing 

specific nodes in the tube to represent the physical deformed geometry. A limitation of this 

method was that the fold initiator did not include the forming history. 

The fold initiator was introduced by moving nodes 4 mm deep at 65 mm from the top end of 

the hat section model (Figure 4.2). This approach greatly simplified the model creation process, 

and although it fails to consider local work hardening and thinning, the dimple still provided the 

necessary geometric discontinuity needed to control folding initiation.  
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Figure 4.2: A three zone tube model showing the fold initiator, introduced by moving nodes 

 

As shown in Figure 3.12 (Section 3.4), there were some noticeable differences between the 

physical hardness data of formed hat sections in this thesis and the hardness predicted by 

Omer et al. (2017). In particular, the difference at the top surface for the 700 °C heated end 

(where the fold initiator was located) was approximately 10%. Note that the Vickers hardness 

at the fold initiator (at a position mark of 525 mm shown in Figure 3.12) was obtained by 

linearly interpolating between hardness data points at 560 mm and 440 mm. This difference 

could affect the predicted loading response since the deformation pattern was established 

early on during the crush or impact event. By visual inspection, it could be identified that the 

fold initiator elements and the surrounding elements on the top face were of material bin 2 

(weighted average Vickers hardness 270.1; Figure 4.1; Figure 2.23), while the physical hardness 

data collected for this thesis suggested that the elements in that area should be closer to 

material bin 1 (weighted average Vickers hardness 209.0). Therefore, a modified three zone 
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model (Figure 4.3) was created by manually mapping the distribution of bins corresponding to 

the physical hardness as close as possible without changing the material properties of the bins. 

According to the physical hardness data, elements roughly in the first 150 mm from the heated 

end of the hat section should all be in material bin 1 (red). However, this led to an abrupt 

change from a section of bin 1 elements to a section of bin 2 elements, with a considerable 

difference in hardness and flow stress properties, which could again interfere with the fold 

initiation. Hence, an intermediate material bin 1.5 was introduced, starting at 125 mm from the 

heated end and spanning 50 mm. The flow stress curves in this bin were linearly interpolated 

between material bins 1 and 2. The loading response and deformation pattern of the three 

zone model by Omer et al. (2017) and the modified three zone model based on physical 

hardness data will be compared in detail in Chapter 6. 

 

Figure 4.3: Modified three zone hat section finite element model, in which bins were 

mapped according to physical hardness data, and an intermediate material bin was 

introduced. Material properties in all other bins remained the same and were obtained 

from Omer et al. (2017) 

 



82 
 

Another critical factor in obtaining accurate numerical results was in the basic geometry of the 

parts. Considering the numerical models of the hat sections with extended flanges were not 

derived from the forming simulations (Omer, 2014), as well as unavoidable minute changes to 

the forming condition due to age of tooling, it was possible that there may be dimensional 

differences between the current model and the physical hat section. These differences may 

contribute to inaccuracies in the predicted response of the bonded tubes. Figure 4.4 and 4.5 

detail the dimensions measured on the physical hat section and the corresponding values in the 

numerical models. Note that the measurements were taken at both ends of the hat section for 

all tailoring configurations, and that the physical top and bottom radii were measured with 

radius gauges in 0.5 mm increments 
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Figure 4.4: Detailed dimensions of the fully martensitic and soft flange hat sections 

① ② ③ ④ ⑤ ⑥ ⑦

146.0 50.0 7.5 8.5 1.20 1.17 1.21

146.0 50.0 7.5 8.5 1.22 1.19 1.22

146.0 50.0 7.5 8.5 1.22 1.20 1.22

146.0 50.0 7.5 8.5 1.20 1.18 1.21

145.0 50.0 7.5 8.5 1.19 1.17 1.20

146.0 50.0 7.5 8.5 1.21 1.19 1.22

Specimen Avg. 145.8 50.0 7.5 8.5 1.21 1.18 1.21

Model 147.7 48.9 7.9 8.4 1.19 1.16 1.21

% Difference -1.3 2.2 -5.1 1.2 1.7 2.5 0.4

Martensitic Hat Measurements

Specimen 1

Specimen 2

Specimen 3

① ② ③ ④ ⑤ ⑥ ⑦

151.0 49.0 7.5 8.5 1.20 1.15 1.20

151.0 50.0 7.5 8.5 1.22 1.17 1.22

151.0 49.0 7.5 8.5 1.21 1.15 1.21

152.0 49.0 7.5 8.5 1.22 1.18 1.22

151.0 49.0 7.5 8.5 1.21 1.16 1.21

152.0 50.0 7.5 8.5 1.22 1.19 1.22

Specimen Avg. 151.3 49.3 7.5 8.5 1.21 1.17 1.21

Model 152.9 47.4 7.8 8.4 1.19 1.17 1.22

% Difference -1.0 4.1 -4.3 1.2 1.6 -0.1 -0.7

Specimen 2

Specimen 3

600°C Soft Flange Hat Measurements

Specimen 1
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Figure 4.5: Detailed dimensions of the three zone hat sections 

 

For the fully martensitic hat sections, all seven numerically predicted dimensions (Omer, 2014) 

were within 5% deviation from the physical samples. Similarly, for the 600°C soft flange hat 

① ② ③ ④ ⑤ ⑥ ⑦

Specimen 1 142.0 50.0 8.0 8.5 1.19 1.20 1.21

Specimen 2 142.0 50.0 7.5 8.5 1.18 1.18 1.17

Specimen 3 142.0 50.0 7.5 8.5 1.17 1.17 1.16

Specimen Avg. 142.0 50.0 7.7 8.5 1.18 1.18 1.18

Model 152.4 48.0 7.9 8.3 1.21 1.15 1.21

% Difference -6.8 4.2 -3.0 2.4 -2.6 3.3 -2.8

Three Zone Top (Heated, Softened End) Dimensions

① ② ③ ④ ⑤ ⑥ ⑦

Specimen 1 146.0 51.0 7.5 8.5 1.19 1.17 1.20

Specimen 2 146.0 51.0 7.5 8.5 1.22 1.19 1.21

Specimen 3 147.0 51.0 7.5 8.5 1.22 1.18 1.22

Specimen Avg. 146.3 51.0 7.5 8.5 1.21 1.18 1.21

Model 145.1 49.0 7.6 8.0 1.19 1.19 1.21

% Difference 0.8 4.1 -1.3 6.3 1.5 -0.4 -0.3

Three Zone Bottom (Cooled, Hardened End) Dimensions
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sections, the numerically predicted dimensions were in good agreement with the physical 

dimensions, with the highest being the top radius at 4.3%. On the other hand, higher deviation 

was observed for the three zone hat sections, as was expected due to the complexity of the 

tooling and the lack of complete contact between the part to the tooling as outlined in Section 

3.2. For the heated 700°C end, which was also designated as the top end of the hat section, the 

largest deviation was the physical width (dimension 1) at 6.8% lower than the numerical value. 

This was likely caused by the protrusion of the heated tooling, causing more of the blank to be 

drawn in and having a more complete contact, resulting in reduced width in the physical 

formed part. For the cooled end, designated as the bottom end of the hat section, the largest 

deviation was in the bottom radius (dimension 4) at 6.3%. Once again, due to the protrusion of 

the heated tooling, the cooled end was not in complete contact with the tooling, and was likely 

tilted upward toward the heated end. This, coupled with the measurement inaccuracies 

associated with the radius gauges, were the likely cause of the large deviation.    

Preliminary simulations using Omer’s (2014) hat section models with the flanges extended (all 

dimensions unchanged except the width) revealed two general trends regarding different test 

modes: the axial crush simulations often over predicted the stiffness of the initial loading 

response as well as the peak force; and the displacement-to-failure in fully martensitic three-

point bend simulations were often over predicted. While the lower measured stiffness of the 

axial crush experiments was mainly a result of test equipment compliance (detailed in Section 

6.2.1), the higher width of the hat section model provided more cross sectional surface area 

and thus leading to higher peak force. At 1.3% difference, amending the width of the fully 

martensitic hat section likely would not have contributed to much improvement, and was 
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therefore left unchanged. At 6.8%, it was much more impactful to amend the width of the three 

zone hat sections. However, the dimensional measurements were only taken at the ends of the 

hat sections, and thus the precise width profile along the length of the hat section was 

unknown, making it difficult to amend the width of the three zone hat sections due to its 

complex width profile. Therefore, to simplify the hat section model creation process, this 

dimension was left unchanged and was a limitation of the current study. On the other hand, the 

height (dimension 2) of the fully martensitic hat section model was identified to be easy to 

amend since there was less variation in the height profile. An increased side wall height could 

potentially reduce the predicted displacement-to-failure, since the increased second moment 

of area adds more overall rigidity to the structure, allowing the adhesive to bear more of the 

load. Therefore, the height of fully martensitic tube models was raised by 1 mm by extending 

the side walls in HyperMorph commercial software (Altair). 

 

4.3 CZM Modelling of an Adhesive Joint 

The adhesive joint was represented by a single layer of solid cohesive elements with a thickness 

of 0.178 mm (0.007”), corresponding to the physical thickness of the adhesive joint. A gap of 

0.6 mm existed between the adhesive solid cohesive elements and flange shell elements to 

account for the assigned thickness of the shell elements (Figure 4.6).  
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Figure 4.6: Bonded tube model, showing the single layer of solid cohesive elements 

representing the adhesive layer 

 

Once assembled, the bonded tube model was imported into LS-DYNA, where the single layer of 

solid cohesive elements was assigned a four-point cohesive element formulation (ELFORM 19). 

A CZM material model (*MAT_240) was used to define the properties of the adhesive (Table 

4.1), as measured from coupon-level RDCB and bonded shear samples (Watson et al., 2018). 

Since the layer of solid cohesive elements had a thickness corresponding to that of the physical 

bond line, there was a gap between the adhesive elements and the flange elements due to shell 

thickness and nodes being at the mid-plane. An offset tied contact 

(*TIED_SHELL_EDGE_TO_SURFACE_CONSTRAINED_OFFSET) was used in LS-DYNA to define the 

connection between the adhesive and the flanges to account for shell thickness. 
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Table 4.1: Material properties and cohesive zone parameters used in the adhesive model 

(Watson et al., 2018) 

Adhesive Model Parameters Value Units 

Density – RO 1.200e-09 ton/mm3 

Young’s Modulus – EMOD 1560 MPa 
Shear Modulus – GMOD 615.9 MPa 

Mode I Critical Energy Release Rate – GIC, 0 3.055 kJ/m2 
Mode II Critical Energy Release Rate – GIIC, 0  12.00 kJ/m2 

Mode I Yield Stress – T0 39.97 MPa 

Mode II Yield Stress – S0 25.57 MPa 
Mode I Ratio of Plastic to Total Area – FG1 0.1312  

Mode II Ratio of Plastic to Total Area – FG2 0.9000  
 

4.4 Boundary Conditions and Contact – Quasi-static Test Simulations 

To model the reduced physical length of the tube for axial crush tests, approximately 100 mm 

of elements were deleted from the model (40 rows of elements), both for the fully martensitic 

and three zone models. For the three zone axial crush models, the elements were deleted from 

the martensitic end of the tube, corresponding to the material removed from the tubes for the 

physical experiments. To simulate the fixtures (Figure 4.7) clamping the ends of the tube, the 

tube nodes within the fixtures were constrained to the fixture 

(*CONSTRAINED_EXTRA_NODES_SET in LS-DYNA). The constraint may result in a slightly stiffer 

response as it eliminates compliance in the fixtures, but should suffice as an accurate 

representation of the boundary conditions since the portion of the tube within the fixture 

exhibited no deformation during the experiments. The fixtures were modelled according to 

their physical dimensions. 
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Figure 4.7: Top and bottom fixture used in axial crush models 

 

The bottom fixture was constrained in all degrees of motion, while the top fixture was only 

allowed translation in the z-axis at a prescribed velocity of 0.5 mm/s (Figure 4.8), following the 

crosshead velocity used in the experiment. The bosses and clamps used in the axial crush 

simulations were modeled using 2.5 mm hexahedral elements and treated as rigid. The top 

fixture was only allowed translation in the z-axis, while the bottom fixture was fixed in all 

degrees of freedom. Elastic properties of steel were assigned to the fixtures. General contact 

was established between all parts (fixtures and tube model), with a coefficient of friction of 0.4 

(*AUTOMATIC_SINGLE_SURFACE in LS-DYNA).  
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Figure 4.8: Quasi-static axial crush model setup, with prescribed constant velocity on the 

top fixture 

 

For the three-point bend models, the rigid supports were fixed in all degrees of freedom and 

were placed 375 mm apart center-to-center. The indentor was only allowed translation in the y-

axis at a prescribed velocity of 1 mm/s (Figure 4.9), following the crosshead speed used in the 

experiment (0.04 in/s). The indentor and supports used in the three-point bend simulations 

were modeled as rigid materials using 2.5 mm Belytschko-Tsay shell elements with seven 

integration points through the thickness. The indentor was only allowed translation in the y-axis 

and the supports, also modeled as rigid, were fixed in all degrees of freedom. General contact 

was defined between all parts using *AUTOMATIC_SINGLE_SURFACE in LS-DYNA, with a 

coefficient of friction of 0.4.  
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Figure 4.9: Quasi-static three-point bend model setup, with prescribed velocity on the 

indentor 

 

For the Caiman models, only the inner boss and pins were modeled and the outer clamp was 

omitted (Figure 4.10). Both the inner boss and pins were modeled as rigid bodies with 

properties of steel. To model the boundary condition of  the front portion of the tube being 

rigidly constrained in the fixture assembly, the nodes of the tube within the confinement of the 

fixtures were constrained to the inner boss (*CONSTRAINED_EXTRA_NODES_SET in LS-DYNA).  

Note that no holes were modeled in the tube, and contact was only defined between the pin 

and the boss, and between the boss and the tube to avoid contact interactions between the pin 

and the tube. In the experiments, the portion of the tube near the hole was secured in the 

fixtures, and the geometric discontinuity had little to no impact on the loading response of the 

specimen. Therefore, the simplification of omitting the holes in the model should suffice as an 
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accurate representation of the boundary conditions. Both inner bosses were free in all degrees 

of motion, while the bottom pin is constrained in all directions, and the top pin was only 

allowed translation in the vertical (y-axis) direction at a prescribed velocity of 0.833 mm/s. 

General contact was defined between all parts using *AUTOMATIC_SINGLE_SURFACE in LS-

DYNA, with a coefficient of friction of 0.4. 

 

Figure 4.10: Quasi-static Caiman model setup, with prescribed velocity on the top pin.  

 

Note that the prescribed velocities for all quasi-static simulations matched the crosshead 

velocity used in the respective experiments, and therefore no velocity (time) scaling was used. 

Instead, in order to maintain a reasonable runtime, all quasi-static simulations used selective 

mass scaling (DT2MS in LS-DYNA) that added mass to elements with small time steps to achieve 

a specified time step of 1x10-5 s. This time step was determined by increasing the minimum 

time step by an order of magnitude starting from 1x10-7 s (roughly the time step with no mass 

scaling) until the total runtime of the simulation was reduced to about 40 hours. There should 
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be little to no inertial effects affecting the outcome of the simulations, since the prescribed 

velocities were very low. The validity of this assumption was verified by comparing quasi-static 

axial crush simulations with and without mass scaling and minimal differences were observed. 

 

4.5 Boundary Conditions – Dynamic Impact Test Simulations 

The dynamic boundary conditions for the axial crush and three-point bend models were similar 

to the quasi-static models (Figure 4.11). However, the crash sled mass was modeled by 

incorporating a rigid impacting plate (Figure 4.11) made of shell elements with a translational 

mass of 900 kg. The initial velocity of the plate was 10.5 m/s, as per experimental conditions. 

For the three-point bend models, the indentor was modeled with shell elements with a 

translational mass of 870 kg and an initial velocity of 7.5 m/s. It should be noted that the 

honeycomb crush arrestors used to decelerate the sled in the physical experiments were not 

modeled in either test simulation. Therefore, only the impact response up to the free crush 

displacement (145 mm for axial crush, 55 mm for three-point bend) will be compared against 

the experiment.  
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Figure 4.11: Dynamic axial crush model setup (left) and dynamic three-point bend model 

setup (right) 

 

As mentioned in the experimental setup of dynamic three-point bend experiments in Section 

3.7.1, the fully martensitic model also included the two 12.5 mm thick wooden inserts to 

accurately reflect the physical boundary conditions (Figure 4.12). The wooden insert was made 

of solid elements and assigned an elastic material model with generic properties of cedar soft 

plywood as an approximation (Green, Winandy, and Kretschmann, 1999) (Table 4.2). 
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Figure 4.12: Fully martensitic dynamic three-point bend model, with half of the top hat 

section hidden to show one of the inserts  

Table 4.2: Approximation of mechanical properties of wooden insert (Green, Winandy, and 

Kretschmann, 1999) 

Wood Insert Material Properties Value Units 

Density – RO 4.000e-10 ton/mm3 

Young’s Modulus – EMOD 10000 MPa 
Poisson’s Ratio – PR 0.4000  
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Chapter 5 Experimental Results and Discussion 

This chapter presents the results of the three sets of experiments comprising the three-point 

bend, axial crush and Caiman tests. Both static and dynamic results are presented for each. 

Note that the model predictions and comparison with experiment are presented in Chapter 6. 

 

5.1 Three-Point Bend Experiments 

5.1.1 Quasi-Static Three-Point Bend Experiments 

Quasi-static three point tests were conducted under four test conditions: 1.8 mm thick QS-3P-

FM-GB, 1.2 mm thick QS-3P-FM-GB, 1.2 mm thick QS-3P-FM-AF, and 1.2 mm thick QS-3P-SF-GB. 

These correspond to fully martensitic (FM) or soft flange (SF) tailored conditions, bonded in an 

as-formed (AF) or grit blasted (GB) condition. Note that some tests on 1.8 mm thick material 

were undertaken at the start of the experimental program due to material availability, and that 

all subsequent test specimens had a thickness of 1.2 mm. 

The 1.8 mm thick QS-3P-FM-GB specimens reached an average peak force of 78.8 kN at an 

average displacement-to-failure of 28.2 mm (Figure 5.1). The 1.2 mm thick QS-3P-FM-GB 

specimens reached an average peak force of 34.0 kN, but had a large variability in 

displacement-to-failure (Figure 5.2). The 1.2 mm thick QS-3P-FM-GB-01 test had a similar 

displacement-to-failure as all the 1.8 mm tests, and displayed a similar symmetric deformation 

mode where the side walls were crushed equally without any out-of-plane movement. In 

contrast, the 1.2mm thick QS-3P-FM-GB-02 and QS-3P-FM-GB-03 tests displayed an asymmetric 

deformation mode, in which one of the side walls was crushed preferentially over the other, 
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and the top hat section would rotate out of plane (Figure 5.3). This deformation mode 

significantly delayed the failure of the adhesive joint and the separation of the flange, and 

therefore increased the total displacement at failure. The 1.2 mm thick QS-3P-FM-GB 

specimens were the first tests undertaken and used an early method of joining with rectangular 

shims at the ends of the tube to achieve the bond line thickness, which resulted in inconsistent 

adhesive coverage across the bond line as mentioned in Section 2.5. Despite this, the failure 

surface was primarily cohesive.  

 

Figure 5.1: Force displacement response of 1.8 mm thick QS-3P-FM-GB tests, in which all 

the tests exhibited symmetric deformation 
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Figure 5.2: Force-displacement response of 1.2 mm thick QS-3P-FM-GB tests, where QS-

3P-FM-GB-01 demonstrated symmetric deformation while QS-3P-FM-GB-02 and QS-3P-

FM-GB-03 demonstrated asymmetric deformation 

 

Figure 5.3: Front and side view of a symmetric deformation in quasi-static three-point 

bend (top), and that of an asymmetric deformation (bottom) 

 

Symmetric Deformation 

Asymmetric Deformation 
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Three test repeats were conducted for the 1.2 mm thick QS-3P-FM-AF condition. The average 

peak force attained by these specimens was 25.3 kN (Figure 5.4). QS-3P-FM-AF-01 and QS-3P-

FM-AF-02 deformed symmetrically, while QS-3P-FM-AF-03 deformed asymmetrically, leading to 

a lower peak force and higher displacement to failure. The QS-3P-FM-AF specimens were one of 

the first tests to be bonded with the circular shim method, which distributed the clamping force 

much more uniformly, resulting in consistent coverage of adhesive across the entire bond line. 

Although much of the flange separation was a result of interfacial failure (Figure 5.5), it can be 

seen that when the patches of adhesive on opposing flanges were “pieced” together, full 

adhesive coverage was achieved on the joint.  

 

Figure 5.4: Force-displacement response of 1.2 mm thick QS-3P-FM-AF tests, in which QS-

3P-FM-AF-01 and QS-3P-FM-AF-02 demonstrated symmetric deformation while QS-3P-

FM-AF-03 demonstrated asymmetric deformation 
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Figure 5.5: Failure surface of 1.2 mm thick QS-3P-FM-AF test, showing interfacial failure, 

but also the uniform adhesive coverage due to the improved circular shimming technique 

 

Three test repeats were conducted for the 1.2 mm thick QS-3P-SF-GB condition. An average 

peak force of 23.1 kN was attained by these samples (Figure 5.6). An interesting behavior 

unique to the soft flange specimens was that the flanges did not abruptly separate compared to 

the martensitic specimens due to minimal adhesive failure at maximum piston displacement. 

Only a small amount of cohesive failure was observed at the inside edge of the flange, at the 

ends of the tubes. Note that for all previous quasi-static three-point bend tests, the test was 

terminated when one or both of the adhesive joints at the flanges separated. Since no flange 

separation occurred for the soft flange tests (Figure 5.7), the test was terminated at a stroke 

length of roughly 177.8mm (7 inches) to prevent the top hat section from contacting the piston. 

The observable failure surface appeared to be cohesive failure and had good adhesive coverage. 
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Figure 5.6: Force-displacement response of 1.2 mm thick QS-3P-SF-GB tests, in which QS-

3P-SF-GB-01 and QS-3P-SF-GB-02 experienced symmetric deformation while QS-3P-SF-

GB-03 demonstrated asymmetric deformation 

 

Figure 5.7: End of indentor stroke during a 1.2 mm QS-3P-SF-GB test, showing that 

adhesive failure is minimal and only at the inner edges of the flange at the ends of the tube 

 

Comparing the loading response of 1.8 mm thick QS-3Z-FM-GB, 1.2 mm thick QS-3Z-FM-GB, 1.2 

mm thick QS-3Z-FM-AF, and 1.2 mm thick QS-3Z-SF-GB tests (Figure 5.8), it could be seen that 
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all the 1.8 mm thick specimens failed under symmetric deformation and had more consistent 

response compared to the 1.2 mm thick specimens. While it could be difficult to establish the 

root cause with only a few test repeats, the asymmetric deformation mode was likely a result of 

the thinner material being inherently less geometrically stable, since none of the 1.8 mm tests 

exhibited this deformation mode, while four of the nine 1.2 mm tests deformed asymmetrically. 

Comparing the as-formed and grit blasted surfaces for the fully martensitic specimens revealed 

roughly a 34% increase in joint strength when the flanges were grit blasted. The soft flange 

specimens exhibited minimal adhesive failure and lower peak force than the fully martensitic 

specimens with similar surface preparation, since the work done by the piston largely 

contributed to plastic deformation of the steel tube. 

 

Figure 5.8: Comparison of loading responses of 1.8 mm thick QS-3P-FM-GB, 1.2 mm thick 

QS-3P-FM-GB, 1.2 mm thick QS-3P-FM-AF tests, and 1.2 mm thick QS-3P-SF-GB 
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5.1.2 Dynamic Three-Point Bend Experiments 

Three test repeats were conducted for the 1.2 mm DM-3P-FM-GB condition. Note again that no 

software filtering was applied to the load cell and accelerometer data acquisition system. Figure 

5.9 shows the individual and average unfiltered forces measured by the two sled-mounted load 

cells and the corresponding energy absorbed by the tube. Although the overall force- and 

energy-displacement crush responses were consistent across all three tests, the physical 

deformation mode of the third test differed from the first two. A symmetric crushing mode was 

observed for the first two tests (Figure 5.10), whereas the third test demonstrated an 

asymmetric crush response (Figures 5.11). In both crush modes, however, separation of the 

flange(s) occurred at the same time as the sled came into contact with the honeycomb, which 

occurred at the end of the specimen free crush distance. This explained that the peak force of 

all three tests being coincident with the honeycomb contact as shown in the force displacement 

plots, since the honeycomb provided a much larger deceleration to the sled compared to the 

tubes. The failure surfaces were primarily cohesive failure and had good coverage. Note again 

that wooden inserts were placed inside the tube for the DM-3P-FM-GB experiments only. The 

inserts did not prevent an asymmetric crush mode as initially intended, which was evident in 

DM-3P-FM-GB-03, and were therefore removed for all subsequent dynamic three-point testing.  



104 
 

 

Figure 5.9: Loading response and energy absorbed by DM-3P-FM-GB specimens 

   

   

Figure 5.10: Symmetric deformation mode in DM-3P-FM-GB-01 and DM-3P-FM-GB-02, 

showing flange separating just after indentor contacts the flange, coinciding with sled 

contacting honeycomb 

Honeycomb Contact 

Indentor Contacts Flange Joint Failure Initiation Flange Separation 

DM-3P-FM-GB-03 
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Figure 5.11: Asymmetric deformation mode in DM-3P-FM-GB-03 

 

Three test repeats were conducted for the DM-3P-SF-GB condition. Note that due to a load cell 

malfunction, no usable data was collected during the DM-3P-SF-GB-01 test, and only one of the 

two load cells collected data in the DM-3P-SF-GB-02 and DM-3P-SF-GB-03 tests. For these tests, 

the load measured by the functioning load cell was doubled assuming that the functioning load 

cell measured roughly half the total force. The average SF curves shown in Figure 5.12 was 

averaged between the second and third tests. Although each of the two load cells may not 

necessarily measure precisely half the total force, the assumption was verified against 

accelerometer data and was generally in good agreement. The unfiltered force-displacement 

loading response (Figure 5.12) for both tests were similar, as well as the physical deformation 

mode. Immediately upon impact, the tube as whole began to globally deform at the side wall 

radii such that the height of the entire tube decreased while the width increased (Figure 5.13). 

This is in contrast with the fully martensitic tests, where the deformation was primarily local 

Indentor Contacts Top Flange Specimen Rotation and Joint Failure Top Flange Separation 
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beneath the indentor. As the test progressed and the indentor approached the flange; however, 

the deformation shifted from global collapsing of the tube to localized bending of the specimen, 

inducing plastic deformation of the steel towards the center of tube, while the outer ends were 

relieved of the elastic deformation (Figure 5.13). The adhesive joint did not fail up to the 

maximum deformation occurring during the test. Minimal adhesive failure was observed in the 

inner edges of the flange at the ends of the tube, similar to the QS-3P-SF-GB experiments. The 

observable failure surface appeared to cohesive failure and had good adhesive coverage.  

 

Figure 5.12: Loading response and energy absorbed by DM-3P-SF-GB specimens 

Honeycomb Contact 
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Figure 5.13: Deformation mode of DM-3P-SF-GB, starting with a global collpase of the 

tube (left), then bending once the indentor contacts the flange (center), but the flange still 

holds together at the end of the test (right) 

 

Comparing the loading response of DM-3Z-FM-GB and DM-3P-SF-GB tests (Figure 5.14), it could 

be seen that the fully martensitic specimens attained a slightly higher force at the initial peak 

just before 10 mm of displacement. While the measured force during the soft flange tests 

decreased after this initial peak, the fully martensitic specimens experienced a second peak 

force around 30 mm of displacement that was considerably higher than the initial. Although the 

wooden inserts did not prevent an asymmetric deformation mode as originally intended, the 

added rigidity was likely the cause of the fully martensitic specimens to exhibit a second peak 

force. As a result of this second peak, the fully martensitic specimens absorbed significantly 

more energy than the soft flange specimens. 

Global Collapse Transition to Bending Flange Intact at End of Test 
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Figure 5.14: Comparison of average force and energy displacement response for DM-3P-

FM-GB and DM-3P-SF-GB specimens 

 

5.2 Axial Crush Experiments 

5.2.1 Quasi-static Axial Crush Experiments 

Three test repeats were conducted for the 1.2 mm QS-AX-FM-GB condition. The average peak 

force attained was 260.1 kN and the average energy absorbed was 8.5 kJ. Figure 5.15 below 

shows the force and energy displacement plots for each individual tests as well as the average. 

Of the three tests, only the QS-AX-FM-GB-01 test developed a folding (local) deformation mode 

at the fold initiator (Figure 5.16). The adhesive joint adjacent to the fold initiator failed as the 

fold developed, but the crack in the adhesive joint did not propagate much further down the 

tube until a second fold initiated. As the second fold developed, the adhesive joint crack 

propagated through to the rest of the tube. A local folding deformation mode meant that the 

Honeycomb Contact 
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crack propagation of the adhesive joint was more controlled and did not extend much ahead of 

the actual crush zone. In contrast, the QS-AX-FM-GB-02 and the QS-AX-FM-GB-03 test both 

experienced adhesive failure near the middle of tube that quickly propagated throughout the 

adhesive bond line, resulting in a global buckling deformation mode (Figure 5.17). Despite 

different deformation modes, extensive tearing and fracture was observed for all tubes, as was 

expected for this strong, but brittle martensitic material condition. The QS-AX-FM-GB tests 

were also one of the earlier tests undertaken that were bonded with the earlier rectangular 

shim methodology. As such, the failure surface was primarily cohesive but coverage was not 

uniform.  

 

Figure 5.15: Loading response and energy absorbed by QS-AX-FM-GB specimens 

QS-AX-FM-GB-01 
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Figure 5.16: Folding (local) deformation mode as observed in QS-AX-FM-GB-01, where 

separation of flange is controlled 

          

Figure 5.17: Buckling (global) deformation mode in QS-AX-FM-GB-02 and QS-AX-FM-

GB-03, in which the specimens exhibited extensive adhesive failure leading to total flange 

separation  
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Three test repeats were conducted for the QS-AX-3Z-GB (three zone tailored) condition, for 

which the average peak force attained was 147.8 kN and average energy absorbed at 120 mm 

of displacement was 7.3 kJ (Figure 5.18). The fold initiator triggered a local folding deformation 

mode for all three tubes and continued through the end of the piston stroke of 250 mm (Figure 

5.19). Also seen in Figure 5.19, the crack propagation of the adhesive joint was controlled, and 

most of the flange remained intact below the crush zone. Due to the softening of the in-die 

heated 400°C and 700°C zones, the upper half of the tube was much easier to deform plastically 

without fracture, and only a small degree of fracture was observed in the second sample due to 

an unusual folding pattern. The unusual folding pattern was caused by a slight slippage in the 

top fixture, such that the upper portion of the tube, where folds had already developed, was 

displaced off center axis relative to the bottom fixture. As the deformation progressed, the side 

of the tube opposite to where the upper half of the tube leaned towards was pushed out, as 

opposed to being folded in. Eventually, the bulge exhibited metal fracture towards the end of 

the test due to a tight fold. As a result of the flanges being largely held together throughout the 

length of the flange for all specimens (Figure 5.20), it was difficult to assess much of the failure 

surface, but cohesive failure was observed for the areas that could be seen. Joint failure was 

cohesive and adhesive coverage was good. 
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Figure 5.18: Loading response and energy absorbed by QS-AX-3Z-GB specimens 

 

Figure 5.19: QS-AX-3Z-GB specimens demonstrating folding deformation during quasi-

static axial crush experiment, with very minimal flange separation 
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Figure 5.20: Final deformed state of QS-AX-3Z-GB specimens, note that the bulge with 

metal failure in QS-AX-3Z-GB-02 was caused by fixture slippage 

 

Three test repeats were conducted for the QS-AX-3Z-AF condition, in which the average peak 

force attained was 142.3 kN and the average energy absorbed was 6.4 kJ (Figure 5.21). The 

reduction in the overall joint strength due to bonding the as-formed surfaces can be seen in 

Figure 5.22, in which although the fold initiator triggered a fold, the extent of adhesive failure 

was much larger than that observed in any of the QS-AX-3Z-GB specimens. The crack opening 

then grew rapidly throughout the length of the flange, and eventually the local folding 

deformation mode transitioned to a global buckling mode. The crack propagation was largely 

the result of interfacial failure of the adhesive joint, as was expected for this surface 

preparation condition (Figure 5.23). Failure surface was largely interfacial but the adhesive 

coverage was good. 

Bulge with metal failure 

in QS-AX-3Z-GB-02 
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Figure 5.21: Loading response and energy absorbed by QS-AX-3Z-AF specimens 

 

Figure 5.22: Deformation mode of QS-AX-3Z-AF specimens, initiating with folding then 

transitioning to global buckling due to extensive flange separation 
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Figure 5.23: Final deformed state of QS-AX-3Z-AF specimens, showing extensive flange 

separation and interfacial adhesive failure 

 

Comparing the loading response of QS-AX-FM-GB, QS-AX-3Z-GB tests, and QS-AX-3Z-AF tests 

(Figure 5.24), it could be seen that the fully martensitic specimens attained the highest peak 

force and energy absorption. However, the three zone specimens exhibited little to no metal 

fracture, and the overall deformation pattern was more controlled with consistent 

development of folds. In particular, the grit blasted three zone specimens also exhibited the 

least amount of adhesive failure and flange separation. Comparing the as-formed to the grit 

blasted surface for the three zone specimens, it could be seen that having grit blasted flanges 

resulted in a 3.9% increase in peak force, and 14.1% increase in energy absorbed. 
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Figure 5.24: Comparison of average loading response and energy absorption of QS-AX-

FM-GB, QS-AX-3Z-GB, and QS-AX-3Z-AF tests 

 

5.2.2 Dynamic Axial Crush Experiments 

Three test repeats were conducted for the 1.2 mm DM-AX-FM-GB condition. Note again that no 

software filtering was applied to the load cell and accelerometer data acquisition system. All 

three specimens experienced folding at the start of the impact, but only the third specimen was 

able to sustain the folding deformation mode continuously until the end of the experiment. The 

force displacement crush responses of the tubes are summarized in Figure 5.25. After the first 

one or two folds, the DM-AX-FM-GB-01 and DM-AX-FM-GB-02 tests experienced a high degree 

of adhesive failure, where the crack opening of the joint propagated well beyond the actual 

crush zone of the steel (Figure 5.26). This rapid unzipping of the adhesive joint resembled that 

of a mode I opening type test, where the initial crushed and folded section of the tube behaved 
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like a wedge pushing the separated top and bottom hat sections further apart, causing more 

adhesive failure and extensive fracture of the steel. As the bottom portion of the tube (the end 

mounted on the wall) buckled outwards, the initial crushed and folded portion was torn off 

from the rest of the tube, effectively splitting the tube in two lengthwise. On the other hand, 

even after the DM-AX-FM-GB-03 specimen developed three folds, the crack propagation of the 

adhesive joint was kept in control (Figure 5.27). The difference in energy absorbed by the test 

specimens could be explained by the difference in the observed crush response, where the DM-

AX-FM-GB-03 specimen absorbed 10% more energy than DM-AX-FM-GB-01, and 27% more 

than DM-AX-FM-GB-02, at 200 mm of displacement. The failure surface was primarily cohesive 

and adhesive coverage was good. 

 

Figure 5.25: DM-AX loading response and energy absorbed by FM specimens 

Honeycomb Contact 
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Figure 5.26: Global buckling deformation mode in DM-AX-FM-GB-01, showing fold 

initiation (left), and rapid crack propagation (center and right) 

 

Figure 5.27: Local folding deformation mode in the DM-AX-FM-GB-03, showing initiation 

(left), and stable collapse with continual development of folds (center and right) 

 

Three test repeats were conducted for the DM-AX-3Z-GB condition to investigate how a graded 

soft zone affected the loading response of an adhesively bonded ultra-high strength steel tube. 
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Figure 5.28 shows the individual and average force and energy against displacement plots for 

the dynamic three zone experiments. One area of considerable difference between the three 

zone and fully martensitic hat sections was the extent of warpage, specifically that the three 

zone hats had a larger gap a third of the way from the heated end of the hat section lengthwise 

when laid flat on a surface. This is illustrated in detail in Section 3.2. During the bonding process 

where flanges were clamped down, the larger gap inadvertently introduced a higher amount of 

residual stresses in the metal and higher pre-tension on the adhesive joint compared to the 

fully martensitic tubes. The main concern with the residual stresses and pre-tension was that 

the deformation mode would favor a global buckling response due to an earlier than expected 

adhesive joint failure. This was observed with the DM-AX-3Z-GB-01 test, (Figure 5.29). It can be 

seen that immediately upon impact (at 1 ms), the flange area, where the large gap was, 

experienced extensive adhesive failure that rapidly propagated along the entire length of the 

joint. Although a fold was initiated, the pre-mature joint failure initiated a global buckling 

deformation mode that drove the top and bottom hat sections away from the centre axis. In 

contrast, DM-AX-3Z-GB-02 and DM-AX-3Z-GB-03 tests managed to trigger a folding deformation 

pattern that was maintained throughout the test, due to the absence of extensive adhesive 

joint failure (Figure 5.30). The failure surface was primarily cohesive and adhesive coverage was 

good. 
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Figure 5.28: Loading response and energy absorbed by DM-AX-3Z-GB specimens 

 

Figure 5.29: Global deformation in DM-AX-3Z-GB-01, showing initiation at the point of 

highest residual stress (left), and rapid crack propagation and flange separation (center 

and right) 

Honeycomb Contact 
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Figure 5.30: Stable and controlled collapse in DM-AX-3Z-GB-03, showing fold initiation at 

the indent (left), and extensive fold development (center and right) 

 

Comparing the loading response of DM-AX-FM-GB and DM-AX-3Z-GB tests (Figure 5.31), it 

could be seen that the fully martensitic specimens attained considerably higher peak force and 

energy absorption. However, the three zone specimens exhibited little to no metal fracture, 

and the overall deformation pattern was more controlled and consistent; however, extensive 

cohesive failure was seen in all of the dynamic axial crush specimens.  
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Figure 5.31: Comparison of average force and energy displacement response for DM-AX-

FM-GB and DM-AX-3Z-GB experiments 

 

5.3 Caiman Experiments 

Three test repeats each were conducted for the 1.2mm QS-CM-FM-GB condition and QS-CM-

SF-GB condition. Figure 5.32 below summarizes the individual and average forces for each of 

the two test conditions, and Figure 5.33 summarizes the individual and average energy 

absorbed.  

Honeycomb Contact 
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Figure 5.32: Comparison of loading responses of QS-CM-FM-GB and QS-CM-SF-GB 

specimens 

 

Figure 5.33: Comparison of energy absorbed by QS-CM-FM-GB and QS-CM-SF-GB 

specimens 
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Overall, there was no noticeable difference in the progressive adhesive joint failure (Figure 

5.34), and the force vs. displacement loading response between fully martensitic and soft 

flange specimens varied mostly by displacement to peak force. Soft flange tubes reached an 

average peak force of 3.0 kN at a displacement of 31.7 mm, while the fully martensitic tubes 

reached an average peak force of 2.9 kN at an earlier displacement of 24.4 mm. For energy vs. 

displacement response, the soft flange tubes absorbed an energy of 60.5 J at 50 mm of 

displacement, while the fully martensitic tubes absorbed a lower energy of 47.3 J at the same 

displacement. Another distinction between the two test conditions was that the force and 

energy for the fully martensitic samples were somewhat more consistent than the soft flange 

samples. Upon inspecting the failure surface of the adhesive joints, the cause of the 

inconsistency in the soft flange samples was thought to be due to observed areas of unbonded 

adhesive. Due to the warpage of the soft flange hat sections, where the flange and side walls 

curve inwards toward the middle of the hat section lengthwise, the inside edge of the flange 

near the center of the hat section will be further away from the steel clamping bars and thus 

would not be clamped down as much as other areas along the flange. This resulted in some of 

the adhesive at the inside edge of the bottom flange not being in complete contact with 

adhesive on the inside edge of the top flange. Therefore, the adhesives simply cured in the 

oven, without fully mating the top and bottom flanges in those particular areas. These patches 

of unbonded adhesive can be seen in Figure 5.35 in varying sizes between the different 

specimens. Note that QS-CM-SF-GB-01 with the smallest unbonded patch corresponded to the 

highest peak force, while QS-CM-SF-GB-02 with the largest patch corresponded to the lowest 

peak force. In contrast, a uniform and full coverage of adhesive was observed for all the fully 
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martensitic samples with cohesive failure (Figure 5.36). The failure surface was cohesive and 

adhesive coverage was excellent. 

 

Figure 5.34: Crack propagation and flange separation in the Caiman experiment 

 

Figure 5.35: Areas of unbonded adhesive due to the curvature of soft flange hat sections, 

making it difficult to fully clamp down the center along the length of the tube 

 

Figure 5.36: Failure surface of fully martensitic Caiman samples, showing consistent and 

uniform adhesive coverage  
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Chapter 6 Numerical Modelling Results and Discussion 

6.1 Three Point Bend Numerical Models 

6.1.1 Quasi-Static Three-Point Bend Models 

The 1.8 mm thick QS-3P-FM-GB experiments all demonstrated a stable symmetric crush mode, 

where the flanges abruptly separated at the end, which was captured by the numerical model. 

The predicted response was in good agreement with the experimentally measured response 

during the initial load up phase (Figure 6.1). Although the model predicted a lower peak force 

(9.47%) and earlier displacement-to-failure (11.9%), the flanges separated abruptly similar to 

what was observed in the experiments.  

 

Figure 6.1: Comparison between force-displacement response of 1.8mm thick QS-3P-FM-

GB experiments and simulation 
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The 1.2 mm thick QS-3P-FM-GB numerical model, on the other hand, was only able to capture 

the loading pattern up to the peak force, but not the abrupt flange separation until much later. 

Recall that only the QS-3P-FM-GB-01 test experienced a symmetric deformation mode, which 

was observed in the model was well. However, the adhesive joint in that particular test failed at 

roughly 30 mm of cross head displacement (Figure 6.2), whereas modeled joint did not fail until 

about 48 mm of displacement. Recall from Section 4.2 that Considering that none of the 1.8 

mm thick tests experienced asymmetric failure and that the adhesive model predicted the joint 

failure reasonably well in the 1.8 mm thick model, the delayed failure in the 1.2 mm thick 

model may be attributed to the inherent reduced structural stability associated with the 

thinner metal adherend, which may have affected the stress distribution within the joint.   

 

Figure 6.2: Comparison between force-displacement response of 1.2 mm thick QS-3P-FM-

GB experiments and simulation 
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The adhesive joint of the 1.2 mm thick QS-3P-SF-GB experiments all stayed intact, with only 

minor adhesive failure near the inside edge of the flange on the ends of the tube. This minor 

adhesive failure was predicted by the numerical model (Figure 6.4), in which the adhesive joint, 

represented by the single layer black cohesive elements, had eroded near the inside edge of the 

flange. The predicted force-displacement response also correlated well with the experimental 

results in the load up, peak force, and post peak (Figure 6.3). 

 

Figure 6.3: Comparison between force-displacement response of 1.2 mm thick QS-3P-SF-

GB experiments and simulation 
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Figure 6.4: QS-3P-SF-GB simulation, showing the area where adhesive failure is predicted 

at the inner edge of the flange at the ends of the tube 

 

Overall, for the quasi-static three-point bend models, the challenge for the adhesive model was 

in predicting the displacement-to-failure of the adhesive joint. Even with the height of the fully 

martensitic tubes increased to match the experimentally measured dimension, the 

displacement-to-failure was only reduced by 2 mm (an improvement of roughly 4%). While the 

predicted displacement-to-failure for the 1.8 mm thick model was 11.9% more than the 

experiments, this metric could not be used to assess the 1.2 mm thick model since those 

experiments had different modes of deformation (fully martensitic) or no failure at all (soft 

flange). Similarly, the different modes of deformation made it unsuitable to compare the 

energy absorption. Therefore, only the peak force of the model was validated against the 

Intact Cohesive Elements 

Eroded Cohesive Elements 
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experimentally measured values for 1.2 mm thick QS-3P-FM-GB and 1.2 mm thick QS-3P-SF-GB 

tests (Figure 6.5).  

 

Figure 6.5: Comparison of peak forces of 1.2 mm thick QS-3P-FM-GB and 1.2 mm thick 

QS-3P-SF-GB experiments vs. their respective models 

 

6.1.2 Dynamic Three-Point Bend Models 

Figure 6.6 shows the loading response and energy absorbed by DM-3P-FM-GB specimens. Note 

again that wooden inserts were used only in this particular configuration of three-point bend 

test, and was modeled as a deformable solid with elastic material properties and generic 

mechanical properties of soft woods (Table 4.2, Section 4.5). The numerical model predicted 

flange separation at 39 mm of sled displacement, which was earlier than what was observed in 

the experiment, occurring when the sled came into contact with the honeycomb packs (Figure 

6.7). The model correlated well with the experiment during the initial loading but under-

predicted the peak force (10.8%), and as a result, the energy absorption was also under-

predicted (15.9%).  
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Figure 6.6: Average force and energy-displacement response of DM-3P-FM-GB experiment 

vs. simulation 

Honeycomb Contact 
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Figure 6.7: DM-3P-FM-GB experiment vs. simulation, in which early flange separation was 

predicted by the model (top), and comparison at the same indentor displacement between 

the model (middle) and the experiment (bottom) 

 

The loading response and energy absorbed by the DM-3P-SF-GB specimen is shown in Figure 

6.8. Note again that the experimental force was averaged between DM-3P-SF-GB-02 and DM-

3P-SF-GB-03 only, as both of the load cell channels malfunctioned during the DM-3P-SF-GB-01 

test, and that these two test plots were obtained by doubling the measured forces of the sole 

functioning load cell channel. Similar to what was observed in the experiment, the model 

predicted that most of the flange would stay intact and that only a small degree of joint failure 

would be observed on the inner edge of the flange at the ends of the tube. The measured force 
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was in reasonable agreement (16.0%) while the energy absorbed correlated well with the 

experiments (2.95%).  

 

Figure 6.8: Average force and energy-displacement response of DM-3P-SF-GB experiments 

vs. simulation 

 

Contrary to the 1.2 mm thick QS-3P-FM-GB simulation, the DM-3P-FM-GB simulation predicted 

an earlier displacement-to-failure compared to the experiments. The average displacement-to-

failure over three DM-3P-FM-GB tests was 50.0 mm (standard deviation 3.43 mm), which was 

22.1% more than the value predicted by the model. This was likely due to incorrect dimensions 

of the wooden insert models, since they were crudely cut from a piece of plywood to roughly fit 

inside the tube, which is a limitation of the current study. Overall, the predicted deformation 

pattern for both the DM-3P-FM-GB and the DM-3P-SF-GB tests were in good agreement with 

the experiments, and the loading response correlated reasonably well (Figure 6.9). 

Honeycomb Contact 
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Figure 6.9: Comparison of peak forces (left) and energy absorptions (right) of DM-3P-FM-

GB and DM-3P-SF-GB experiments vs. their respective models 

 

6.2 Axial Crush Numerical Models 

6.2.1 Quasi-Static Axial Crush Models 

The predicted loading response and energy absorbed by the QS-AX-FM-GB specimens is shown 

in Figure 6.10. At 300 kN, the predicted peak force was greater than the measured peak force, 

and the model also predicted a stiffer response, that could be attributed to the build up of 

compliance in the equipment during testing. Based on the experimental peak force, 

displacement-to-peak force, and approximate cross sectional area of the tube, the Young’s 

Modulus was calculated to be lower than that of steel (200 GPa), and approximately 3 mm of 

total compliance was present in the equipment. An asymmetric fold developed roughly a third 

of the way up from the bottom of the tube (Figure 6.11), whereas two tubes experienced global 

buckling deformation, and one tube experienced folding that initiated from the dimple. 

Extensive adhesive joint failure due to rapid crack propagation was predicted by the model and 

was also observed in the experiments. 
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Figure 6.10: Average force and energy displacement response of QS-AX-FM-GB 

experiments vs. simulation 

           

Figure 6.11: QS-AX-FM-GB model deformation, showing the development of an 

asymmetric fold away from the initiator (left) and the extensive base metal fracture as the 

experiment progressed (right) 
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The predicted loading response and energy absorbed by the QS-AX-3Z-GB specimens is shown 

in Figure 6.12 below. The peak force was noticeably over predicted but the overall predicted 

energy absorption was similar over 100 mm of displacement. The stiffer loading response 

predicted by the model could likely be accounted for by the fact that the experimental 

measurements are subjected to compliance in the machinery. Visually, the deformation was 

initiated by an asymmetric fold, where the dimple is folded in on one side, but the fold on the 

other side was offset vertically, as seen in Figure 6.14.  Also, as the simulation progressed 

extensive adhesive failure was predicted, and the deformation shifts towards global buckling. 

This did not match symmetric folding deformation observed in the experiments, and it was 

suspected that it could be due to the hardness mapping of the model did not correspond to the 

physical sample’s distribution. Therefore, another model was made with a revised mapping of 

bins along the tube, in which the material properties of each bin was unchanged, that matched 

the physically measured hardness data as much as possible (detailed in Section 4.1). Shown in 

Figure 6.14, the revised mapping sorted all elements in the top 125 mm of the tube into bin one 

(red elements, softest), followed by a “transition bin” with new material properties that were 

interpolated between bins one and two that covered the next 50 mm of the tube, followed by 

bin two for all elements in the next 100 mm, and the rest of the tube was unchanged. The idea 

was to ensure the top portion of the tube (near the fold initiator) matches the measured 

physical hardness distribution as closely as possible, while minimizing numerical artifacts such 

as a sharp transition from bin one directly to bin two, hence introducing an intermediate bin. 

The resulting peak force from the new model now correlates better with the experiment, but 

slightly more energy was absorbed (Figure 6.13). This was likely due to the proper symmetric 
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fold initiation predicted by the new model, in which the adhesive failure and flange separation 

was kept well under control throughout the simulation, thus leading to higher energy 

absorption.  

 

Figure 6.12: Average force and energy displacement response of QS-AX-3Z-GB 

experiments vs. simulation (Omer’s (2014) predicted hardness distribution) 
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Figure 6.13: Average force and energy displacement response of QS-AX-3Z-GB 

experiments vs. simulation (Remapped zones corresponding to physical hardness 

distribution) 
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Figure 6.14: Deformation mode of QS-AX-3Z-GB model with Omer’s (2014) predicted 

hardness (top row) and that of manually assigned hardness mapping corresponding to the 

measured values in the current work (bottom row), showing much improved folding 

pattern 

 

Overall, the predicted peak force and energy absorbed by the QS-AX-FM-GB and QS-AX-3Z-GB 

tests were in reasonable agreement with the experiments (Figure 6.15). The predicted 

deformation pattern of the QS-AX-FM-GB test differed from what was observed in the 

experiments, in that no physical specimens initiated deformation from the bottom portion of 

the tube. The exact cause of the predicted deformation was unknown. On the other hand, the 
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predicted deformation of the QS-AX-3Z-GB tests was in better agreement with the experiments 

once the tubes were manually assigned a hardness mapping representative of the hardness 

measurements collected in this work. In addition, the new hardness mapping reduced the 

predicted peak force, improving the percentage difference between the model and the 

experiment from 23.5% to 12.9%.  

      

Figure 6.15: Comparison of peak forces (left) and energy absorptions (right) of QS-AX-

FM-GB and QS-AX-SF-GB experiments vs. their respective models 

 

As outlined in Section 4.3, selective mass scaling with a minimum time step of 1x10-5 s was used 

in all quasi-static simulations in order to keep the simulation time to within about 40 hours, 

Figure 6.16 demonstrates that this scaling had very little effect on the loading response of the 

quasi-static three zone axial crush models as an example. 
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Figure 6.16: Loading response up to shortly after post peak force of Omer’s (2014) 

predicted hardness distribution model (left) and revised physical hardness distribution 

model (right) for the quasi-static three zone simulations 

 

6.2.2 Dynamic Axial Crush Models 

The loading response and energy absorbed by the DM-AX-FM-GB specimens is shown in Figure 

6.17. The predicted peak force, at roughly 520 kN, was lower than the measured peak force, at 

roughly 600 kN, however the initial loading and subsequent rapid reduction in force was well 

captured by the model. The predicted energy absorption also correlated well with the 

experiments, coming in at about 14.1 kJ compared to the measured value of 14.8 kJ upon 

honeycomb contact. However, all three tests demonstrated an initial folding deformation at the 

indent, while the model predicted a folding deformation half way along the tube, where the 

joint failed and the flange separated (Figure 6.18). As the first fold collapsed, the adhesive joint 

failure rapidly propagated further along the tube, and the fully martensitic steel experienced 

extensive fracture along the fold, effectively shearing the tube into two halves and the top half 

started to slide over the bottom half. The inability of the steel model to capture the folding 

initiation at the indent may be due to the omission of work hardening and plastic deformation 

effects, since the indent was made by simply displacing the nodes.  
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Figure 6.17: Average force and energy-displacement response of DM-AX-FM-GB 

experiments vs. simulation 

                     

Figure 6.18: DM-AX-FM-GB model, showing adhesive failure initiation at the center of the 

tube (left) and extensive metal fracture due to global buckling deformation (right) 

 

Honeycomb Contact 
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The loading response and energy absorbed by the DM-AX-3Z-GB specimen is shown in Figure 

6.19. The predicted peak force correlates well with the measured peak force. However, a 

smaller initial peak is predicted and is shown to have a higher stiffness than what was measured 

in the experiment. Following the peak, the numerical model exhibited a high degree of noise 

and oscillation in the force displacement response, which was likely due to the complex 

continuous folding pattern of the tube causing issues with the contact algorithm. This noise led 

to a considerably higher predicted energy absorption compared to the experimentally 

measured value. While the indents successfully triggered a local folding deformation pattern, 

the crack propagated away from the crush zone much more rapidly than what was observed in 

the experiment (Figure 6.20). This rapid propagation impeded the flange from folding and 

interlocking as the crush zone proceeded along the tube, but did not prevent the other areas of 

the tube to develop folds. For comparison, the tube model with a 50 mm transition zone was 

also simulated under the same conditions, which demonstrated a deformation pattern that 

matched the experiments much more closely, where the crack propagation and flange 

separation were kept well under control.  
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Figure 6.19: Average force and energy-displacement response of DM-AX-3Z-GB 

experiments vs. simulation 

Honeycomb Contact 
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Figure 6.20: DM-AX-3Z-GB model Deformation mode with Omer’s (2014) predicted 

hardness (top row) and that of manually assigned hardness mapping corresponding to the 

measured values in the current work (middle row), showing a deformation pattern that 

correlates much better with the experiment (bottom row) 

 

Overall, the predicted peak forces and energy absorption of the DM-AX-FM-GB and the DM-AX-

3Z-GB models were in good agreement with the experiments (Figure 6.21). The exception was 

the predicted energy absorption of the DM-AX-3Z-GB model, which was 66.9% higher than the 

measured value. The large difference was a result of the excessive oscillation (noise) in the 

predicted force-displacement response, which was likely caused by contact algorithm issues as 

a result of a tight continuous folding deformation pattern. As such, the predicted deformation 

pattern of the DM-AX-3Z-GB model with re-mapped hardness profile correlated well with the 
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experiments. However, the DM-AX-FM-GB model could not predict the deformation pattern 

observed in the experiments, in which deformation was initiated at the fold initiator, and was 

likely due to the lack of inclusion of forming history when the initiator was created.  

      

Figure 6.21: Comparison of peak forces (left) and energy absorptions (right) of DM-AX-

FM-GB and DM-AX-SF-GB experiments vs. their respective models 

 

6.3 Caiman Numerical Models 

The loading response comparison between the experiment and the numerical model is shown 

in Figure 6.22 for QS-CM-FM-GB tests, and in Figure 6.23 for QS-CM-SF-GB tests. The fully 

martensitic model was able to accurately predict the response from the initial loading and up to 

the peak force, but experienced a reduction in force slightly earlier and also more gradually 

than the experiment. The soft flange model predicted a stiffer response during the initial 

loading but reached a similar peak force, and it also unloaded more gradually compared to the 

experiment. These small discrepancies in the loading response may be attributed to the 

inability of the steel material model to accurately capture the elastic deformation behavior of 

the tube, especially with a complex geometry such as the soft flange tube due to warpage, and 

not necessarily due to the adhesive model.  
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Figure 6.22: Average force-displacement response of QS-CM-FM-GB experiments vs. 

simulation 

 

Figure 6.23: Average force-displacement response of QS-CM-SF-GB experiments vs. 

simulation 
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To further validate the adhesive material model, a local metric can be used to assess the 

cohesive model in its ability to predict the joint behavior more directly. The first local metric 

selected was tracking the crack propagation, or the unzipping of the adhesive joint along the 

bond line, and plotting it against the pin displacement (MTS crosshead displacement). This was 

done by importing the experimental test videos and the simulation videos generated by LS-

DYNA into a free desktop application called Tracker, and following the location of the crack tip 

after each video frame as it travels along the tube. Figure 6.24 shows an example of an 

experimental test video being tracked, where the red and pink dots represent the crack tip 

opening and the bright blue dots represent the crack propagation. Length calibration was done 

by assigning the length of the bond line to the corresponding length in the video. Note that the 

pin displacement was obtained from video synced MTS data, not from tracking.  The results of 

tracking the martensitic and soft flange experiments and simulation are shown in Figure 6.25.  

 

Figure 6.24: Example of a tracked Caiman experiment footage, showing the distance 

corresponding to crack propagation, crack tip opening, and MTS pin displacement 
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Figure 6.25: Crack length vs. pin displacement response for fully martensitic and soft 

flange Caiman tests, showing the common theme of earlier predicted crack initiation and 

less rapid propagation 

 

It could be seen that the fully martensitic model predicted the crack propagating roughly 2 mm 

of pin displacement earlier than what was observed in the experiments, which demonstrated 

consistent results over three tests. Once the propagation began, the adhesive joint elements 

also failed more gradually than the experiments, but eventually leveling out after about 25 mm 

of pin displacement to match the rate of propagation in the experiments. Similarly, the soft 

flange model predicted propagation starting at the same pin displacement as the fully 

martensitic model, but was even more gradual than the fully martensitic model. The crack 

propagation in soft flange experiments started at roughly 18 mm of pin displacement, which is 

considerably later than at 14 mm as predicted by the model. The experiments also 

demonstrated several cycles of loading and unloading that resulted in a step-wise pattern in the 

force-displacement response, which was not captured by the model. Despite the differences 

near the initial rapid unzipping of the adhesive joint, the numerical model eventually matches 

well with the experimental rate of propagation after roughly 35 mm of pin displacement. The 

discrepancies between the experiments and the simulation at the initial rapid unloading phase 
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may be attributed to the fact that the steel adherend may be dominating the initial loading 

response, and the steel model was not adequately describing the loading and deformation 

behavior of the tube. In addition, the rate of propagation was directly related to the pin 

displacement at which propagation starts, i.e. the later the starting pin displacement, the more 

elastic energy is stored, and the more rapid the crack propagates. Therefore, a second local 

metric was chosen, where the crack propagation was plotted against the tracked vertical crack 

tip opening, thereby eliminating the consideration of when the propagation started and also 

minimizing the effect of the base metal adherend on the rate of crack propagation. As shown in 

Figure 6.26, by choosing a metric that assessed the behavior of the adhesive joint and the 

cohesive model as directly as possible, the predicted responses were able to correlate well with 

the experimental results. Note that only one test from each of fully martensitic and soft flange 

tests were tracked for this metric, since the previous results have shown that there was a high 

consistency between each test.  

 

Figure 6.26: Crack propagation vs. tip opening response for fully martensitic and soft 

flange Caiman tests, showing better correlation between model and simulation with a 

metric that minimizes effect of base metal adherend deformation 
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Overall, the Caiman models were in excellent agreement with the experiments in terms of the 

loading response (Figure 6.27), deformation pattern, and crack propagation behavior. Looking 

at the tracking of crack length vs. pin displacement (Figure 6.25) for the fully martensitic 

specimens and model, a 2 mm difference in onset of crack initiation corresponded to 

approximately 12.5% off of the experimentally observed value. This difference was likely due to 

small differences in the predicted elastic deformation of the unbonded tube section, which 

could be caused by limitations of the steel constitutive model, or geometric differences 

between the model and the specimens, or both. Similarly, the tracking of crack length vs. pin 

displacement (Figure 6.25) for the soft flange specimens and model further suggest 

inadequacies in the steel model, in which the step-wise crack propagation behavior was not 

predicted.  

     

Figure 6.27: Comparison of peak forces (left) and energy absorptions (right) of QS-CM-

FM-GB and QS-CM-SF-GB experiments vs. their respective models 
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Chapter 7 Conclusions and Recommendations 

7.1 Conclusions 

The following conclusions can be drawn from the experiments conducted in this research: 

1. Surface preparation was identified to be a critical factor in ensuring cohesive failure. As-

formed surfaces could experience interfacial failure, leading to lower joint strength and 

ultimately lower peak force and energy absorption.  

2. The novel shimming technique developed to bond structures enabled uniform adhesive 

coverage and consistent bond line thickness throughout the flange. This technique could 

potentially be adapted to hybrid joints involving mechanical fasteners and adhesives. 

3. Structural adhesive (IRSA 07333, 3M) can be used to join tailor hot stamped ultra-high 

strength steel and achieve consistent loading response, provided that proper steps for 

surface preparation are performed. 

4. Despite physically using a wider blank, the measured Vicker’s hardness of fully 

martensitic and soft flange hat sections agreed with Omer (2014) and Prajogo’s (2015) 

models respectively (within 10% difference) (Figure 3.12). On the other hand, the 

formed three zone hat sections developed distinct differences from Omer’s (2014) 

model, in which the averaged percentage difference across the hat section was 11.2%, 

with the highest difference of 24.2% on the side wall at the center of the 400 °C section 

(365 mm mark from the martensitic end). Another notable difference of 19.2% was 

located at the top surface of the 700°C section (where the fold initiator was). This area 

was critical in establishing the crush or impact pattern, and the difference resulted in 
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higher predicted peak force in the quasi-static axial crush, and less stable deformation 

mode in the dynamic axial crush experiment 

The following conclusions can be drawn from the numerical models of the conducted 

experiments: 

5. Due to the complexity of the forming operation as well the formulation of the numerical 

model, the three zone samples had a different hardness distribution compared to 

Omer’s (2014) model. This led to differences in the loading response and the 

deformation pattern, which was corrected by modifying the three zone model to more 

reflect the measured physical hardness distribution. 

6. In the three-point bend simulations, the CZM adhesive model was able to capture the 

abrupt joint failure in the 1.8 mm model at a similar displacement as observed in the 

experiment, but predicted the same failure in the 1.2 mm model at a much later 

displacement. The exact cause of this delay in predicted displacement-to-failure was 

uncertain, however it was suspected that the piecewise linear plasticity model of the 

base metal adherend was not accurately describing the deformation behavior of the 

physical part, therefore altering the transfer of load to the adhesive joint.  

7. The three zone axial crush models demonstrated the importance of having an accurate 

mapping of hardness profile (and thus the correct flow stress curves) on the loading 

response and deformation pattern of the specimens. 

8. The loading response of the Caiman models was in excellent agreement with the 

experiments, and the Caiman tracking results demonstrate that the CZM adhesive 

model could predict crack extension behavior with good accuracy. 
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9. Overall, the predicted global loading response correlated well with the measured 

response for all experiments in the initial load up and to peak force. With a few 

exceptions, the CZM adhesive model was able to predict the structural response of 

bonded components within 16%, based on kinetics and kinematics measured in the 

experimental tests. 

 

7.2 Recommendations for Future Research 

1. For future research, the three zone die should be modified such that shimming is 

possible for both heated zones to ensure a uniform contact across the entire hat section 

during forming and quenching. This will develop more pronounced individual zones of 

the hat section, which may improve their impact response 

2. With respect to the bonding procedure, the recommendation for future research of 

similar geometry is to develop a more user-friendly bonding fixture such that the steel 

bars can be tightened with clamps that are driven simultaneously on each side of the 

flange. By applying a uniform force across the entire steel bar as opposed to at a 

singular point with the c-clamps, the adhesive will spread more evenly and consistently. 

In addition to better joint quality, another benefit with this method is an increased 

throughput by reducing bonding time.  

3. It can also be worthwhile to develop another simple fixture for measuring the force 

required to flatten the warpage in the flange due to hot forming. This value can be used 

in numerical models to accurately represent residual stresses in the joint.  
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4. Another recommendation for improving experimental consistency is to machine out 

inserts that structurally support the three-point bend specimens to encourage bending 

without excessive collapse of the top hat section. The inserts should be made out of a 

material with readily available properties so that they can be accurately modeled in a FE 

simulation.  

5. For the numerical models of tailored specimens, systematic error could be minimized by 

running the wider blank used in this work through a forming simulation similar to Omer 

(2014) and Prajogo’s (2015) work to obtain a hardness distribution and geometric 

dimensions more representative of the physical hat sections produced. While the 

manual remapping performed on the three zone axial crush model was a simple solution 

with good results, the hat section models produced by the forming model may contain 

more fidelity for a wider range of loading scenarios.  

6. An area of potential improvement for axial crush models is to model the formation of 

the fold initiators, rather than repositioning the nodes to create the fold imitator 

geometry without the corresponding forming history. With the inclusion of the forming 

history, the model may better predict the initiation and the continual deformation 

pattern of the bonded tube during an axial crush event.  

7. Lastly, although the element size of 2.5 mm is in accordance with automotive norms, it 

could be beneficial to perform a mesh refinement study to obtain the grid convergence 

index for the current models.  
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