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ABSTRACT 

 

A stochastic framework for soil-structure interaction and constitutive modelling is 

investigated in this thesis and developed to account for uncertainties in material 

properties and loading conditions.  

 

The development of a one-dimensional Stochastic Finite Element Method (SFEM) for 

foundation problems is used as a starting point to describe the statistical behaviour of 

shallow and deep foundations at a local scale, where spatial variability exists. The 

Winkler model is adopted, and three sets of loading and boundary conditions are 

analyzed. A 1-D Karhunen-Loeve (KL) expansion is used to propagate the uncertainties 

in the material properties or loading conditions of each case. An exponential covariance 

structure is assumed for its applications in geophysics and in earthquake engineering. A 

different series representation known as the Polynomial Chaos expansion (PCE) is used 

to represent the random response since the covariance structure of the response is not 

known a priori. The method is combined with the Finite Element method (FEM) and used 

to solve three foundation problems. The accuracy and computational efficiency of the 

methodology for different orders of expansion is then compared with the Monte Carlo 

method.  

 

Thereafter, a similar problem is tackled for random inputs with a 2-D random field. A 2-

D Karhunen-Loeve expansion is used and incorporated in the analytical solution of a 2-

parameter continuum pile. Because of the analytical nature of the solution, and due to the 
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non-linearity that arises as a result of the spectral decomposition of the soil properties, the 

representation of the response using the PCE is dropped to give way to an iterative 

solution. The results of the mean response for two examples taken from Basu and 

Salgado, 2008 are presented and compared to the deterministic solution.  

 

The uncertainties in material properties and loading conditions are then propagated at the 

constitutive level. A new methodology, the Fokker-Plank-Kolmogorov equation (FPKE), 

is adopted. The FPKE transforms the stochastic continuity equation of non-linear 

constitutive laws to second order linear deterministic partial differential equations. The 

one-dimensional development of the FPKE is undertaken and validated for a linear elastic 

shear model and linear elastic-plastic Von Mises model. Finally, the FPKE is extended to 

a three-dimensional framework and validated for a 3-D linear elastic model.  
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CHAPTER 1. 

STOCHASTICITY IN SOIL-STRUCTURE SYSTEMS 

1.1 Introduction 

The literature pertaining to uncertainty in Geotechnical Engineering is one, which is 

filled with platitudes. Perhaps the most unforgiving among them is the fact that in order 

to fully ascertain the soil properties at a particular site, it would have to be excavated in 

its entirety. However, there would no longer be anything to rest a structure on (Fenton, 

1999). The inherent variability that exists in soil properties is largely due to the unique 

attributes that every individual soil particle (for instance their shape, origin, or history) 

possesses. In addition to its intrinsic variability, two major sources that contribute to its 

heterogeneity are measurement errors and transformation uncertainties (Phoon and 

Kulhawy, 1999). 

 

Figure 1.1: Uncertainty in soil property estimates (source: Kulhawy 1992, p.101) 
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Moreover, this heterogeneity presents itself at various scales of description. We can break 

down the scale of variation into two parts: A large scale where the soil properties are 

considered piece-wise homogeneous and a smaller scale, where the soil properties are 

spatially random (Sudret, 2014) The former depicts well-defined soil strata where within 

each layer the mean soil properties can be reported. In the second case, because of the 

unique attributes of each particle, additional information such as the correlation structure 

of the soil is required.  

 

The limitations of deterministic designs given the scarcity of available data create the 

need for methods amenable to the intrinsic randomness of soil. More importantly, there is 

a need to cater for the scale effects mentioned earlier. Scaling effects include, but are not 

limited to, problems with aliasing. As a result, early studies on the problem of 

geotechnical variability were mostly focused on the characterization of soil heterogeneity 

and the modelling of random fields (Vanmarcke, 1983; Jaska et al., 1997). Since the 

development of mathematical techniques such as geostatistics and random field theory, 

the emphasis has shifted towards advanced numerical methods that simulate the highly 

nonlinear properties of soil and provide insights in the response of soil-structure systems.   
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Figure 1.2: Example of aliasing in CPT data. a) Tip resistance. b) Sleeve friction (Source: Data from USGS 

	

Geotechnical problems as we know them are for the most part presented as deterministic 

problems with the issue of uncertainty being circumvented by means of reliability factors. 

However in design, those factors give little if any information about the nature of the 

process being investigated. They are empirical in nature and thus fail to describe the 

fundamental behaviour of the system. With the increasing demand for sound reliability-

based design, more realistic and robust probabilistic analyses of soil models are desirable. 

 

1.2 Context of the Study 

Beset with statistical uncertainties, the probabilistic treatment of soil has been the focus 

of researchers for a long time (Vanmarcke ,1977; Baecher and Ingra, 1981; Fenton, 1999; 

Rackwitz, 2001; Popescu, 2005). Recently, with the significant increase in computational 
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power and the advancement of numerical analysis, more realistic soil models, which take 

into account the spatial variability of the material, have received more attention. The 

development of various methods dealing with the intrinsic randomness of soil has also 

enabled the considerable progress of risk and reliability assessment of geotechnical 

projects. In this section, we will review the contributions of several researchers in 

identifying and estimating random soil properties along with the mathematical tools 

developed to propagate these uncertainties throughout different soil models. We refer to 

the task of estimating and identifying random properties as being of descriptive nature 

while referring to the propagation of uncertainties as being of inferential nature.  

 

In the practice of geotechnical engineering, like in many other engineering disciplines, 

field tests and laboratory tests are essential for reliable and economical designs. However, 

there can only be so much data gathered to characterize a site. Therefore some degree of 

uncertainty will always subsist. The objective of descriptive techniques is to best describe 

the data available to minimize any risks of the design failing. A common descriptive 

technique for the analysis of a data set is the use of a regression with a best-fit 

polynomial to interpolate the data. However, a regressive analysis only provides the trend 

function and the residuals are often assumed uncorrelated. Such an assumption does not 

hold for geological data when field tests are carried out in the vicinity of each other.  

 

In order to better understand the behaviour of the random soil properties, its correlation 

structure is required. This structure can be obtained from the autocovariance function of 

the residuals off the trend. A well-known method for the estimation of the autocovariance 
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function is the method of moments. The method of moments is quite straightforward but 

suffers from accuracy when the sample size is small. A lesser-known method is the 

Maximum Likelihood technique (ML) applied to field data (DeGroot & Baecher 1993). 

DeGroot and Baecher showed the method could estimate the spatial trends, measurement 

of noise and the autocovariance structure about spatial trends and be in good agreement 

with asymptotic theory (large sample theory) despite smaller sample sizes.  

 

The idea that soil could be modeled as a random field paved the way to numerous 

researches, not only in the development of descriptive techniques but also in the 

development of inferential statistics to simulate soil properties at different sites. In fact, 

the work done to capture the many disparate sources of uncertainties fostered the research 

on inferential statistics for the purpose of extrapolating soil properties to sites, which 

lacked data for meaningful statistical analyses. The study on the characterization of 

geotechnical variability done by Phoon and Kulhawy (Phoon and Kulhawy 1999) 

formalized the output of descriptive techniques in the form of the coefficient of variation 

(COV) and scale of fluctuation, which provided a starting point for the propagation of 

uncertainties at different locations. 

 

One very popular and powerful method that introduces uncertainty in soil models is the 

Monte Carlo simulation method. Monte Carlo simulations are based on repeated random 

sampling and the law of large numbers to solve any problem having a probabilistic 

interpretation (Wikipedia Monte Carlo method). While Monte Carlo simulations are 

typically used to model random variables, with the use of auto-regressive filters or local 
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average subdivision, they can effectively be used to model random fields (Griffiths et al., 

2002; Fenton and Griffiths, 2002; Fenton and Vanmarcke, 1990). Although easy to use, 

the Monte Carlo method has one main downside, which is its computational efficiency 

(in particular for large-scale probabilistic simulations). 

 

As we journey into the random field modelling of soil, we differentiate the methodologies 

developed with respect to the results that they produce (Sudret and Der Kiureghian 2000). 

We classify these methods in three categories, namely perturbation methods, structural 

reliability methods and stochastic finite element methods. In the first category, the aim is 

to obtain the first two statistical moments (mean, variance and correlation coefficients) of 

the response. This is accomplished by representing the properties of the soil using a 

Taylor series expansion about the mean values of the random functions (Baecher and 

Ingra, 1981; Phoon et al., 1990). In the second class of approaches, the focus is on 

evaluating the probability of failure of the system. A prescribed threshold known as a 

limit state function is defined based upon which failure can be interpreted. In 

geotechnical engineering, methods like FOSM (first-order second-moment methods) 

have been employed by researchers (Phoon et al., 1990; Mellah et al., 2000; Eloseily et al 

2002). Finally the last category, stochastic finite element methods developed by Ghanem 

and Spanos in 1991 (Ghanem and Spanos, 1991) consist of representing the soil 

properties over a discretized domain using a series expansion similar to the perturbation 

method and expanding the response of the system in its random inputs onto a basis of the 

probability space known as the Polynomial Chaos basis. 
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Each of the methodologies described above have successfully been implemented in the 

probabilistic treatment of soil and have proven viable in their own respect. However, 

aside from the Monte Carlo method, only the use of the stochastic finite element method 

has been applied to nonlinear constitutive laws. Since it is well known that soil exhibits 

non-linear elastic and elasto-plastic behaviour, the need for a mathematical framework 

that accounts for this nonlinearity without the limitations of the Monte Carlo method was 

imperative. It was not until very recently with the work of Kallol (Kallol et al, 2007) that 

the latter could be incorporated in probabilistic models of soil. This was made possible 

through the contributions of M.L Kavvass who developed the Eulerian-Lagrangian 

Fokker-Plank equation for the ensemble average of hydrologic processes. (Kavvas 2003). 

It is the work of Ghanem and Spanos on the stochastic finite element method and that of 

Kallol and Kavvass on probabilistic constitutive rate equations that inspired the current 

research. 

 

1.3 Motivation for the Study 

The motivation for the work presented in this thesis is threefold: Firstly, there is a need 

for a better framework which accounts for the variability of soil properties and this can 

only be accomplished through the study of soil-structure interaction as a stochastic 

process and by taking the nonlinear behaviour of soil into consideration. Secondly, it is 

compelling to capitalize on the progress of computers’ processing power while refraining 

from computationally expensive methods such as the Monte Carlo method. Finally, this 

research is motivated by the fundamental question of how impactful the elasto-plastic 

behaviour of soil is on the degree of uncertainty of the system.  
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1.4 Scope of the Study 

This thesis is comprised of six chapters with the bulk of the author’s technical (original) 

work spanning chapter three to five. The first two chapters serve as premise to the current 

research and the last chapter offers concluding remarks to the study undertaken in this 

thesis.   

 

Chapter 1 provides a review of the literature by dissecting the work done by previous 

researchers in the identification and estimation of uncertainty in soil properties and their 

propagation in complex soil models. It also provides the motivation and the scope of the 

study.   

 

Chapter 2 introduces the reader to the mathematical concepts and formulations used 

throughout this thesis. It contains a review of random variables and stochastic processes. 

It also introduces the reader to some basic continuum mechanics, and touches on the 

subject of elasticity and plasticity, which is used in subsequent sections of this thesis.  

 

The third chapter entails the development of the stochastic finite element method in one-

dimension with numerical examples in geotechnical problems. The chapter begins with 

the representation of random fields using the Karhunen-Loeve expansion and its 

incorporation in the classical finite element formulation. This is known as a spectral 

approach. In subsequent sections, the construction of the Polynomial Chaos basis is 

illustrated and applied to represent the response function. 
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The fourth chapter makes use of the Karhunen-Loeve expansion introduced in the third 

chapter, and extends it to a two-dimensional random field. The latter is then used in the 

stochastic analysis of a two-parameter continuum pile model.  

 

Chapter 5 presents the derivation of the Eulerian-Lagrangian Fokker-Plank equation and 

the development of the probabilistic elastic-plastic constitutive equation in one and three 

dimensions respectively. Subsequent sections of the chapter provide numerical examples 

and validations for one-dimensional elastic and elastic-plastic constitutive models. A 

numerical example is also given for a three-dimension elastic constitutive model.  

 

Chapter 6 probes into future studies and, as mentioned previously, provides a conclusion 

to the research undertaken.  
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CHAPTER 2. 

FUNDAMENTALS 

2.1 Introduction 

In this chapter, the reader is introduced to the fundamental mathematical concepts and 

formulations used throughout this thesis. The materials presented in the subsequent 

sections of this chapter have been curated to offer the reader with the basic tools to 

understand and reproduce the results of analyses carried out in later chapters. This 

chapter is by no means complete in terms of the larger spectrum of mathematical theories 

involved in the current study. The concepts pertaining to random variables and stochastic 

processes depicted in this chapter were borrowed from the “Stochastic Processes in the 

Physical Sciences” course notes authored by Professor Zoran Miskovic (Miskobic, Z, 

2015) and concepts relating to continuum mechanics and elastic-plastic materials were 

borrowed from the “Mechanics of Continua” course notes authored by Professor Michael 

Worswick (Worswick, M, n.d) with some excerpts obtained from Professor Cliff 

Butcher’s lecture notes (Butcher, C, n.d). 

 

2.2 Review of Random Variables 

2.2.1 Basic definitions 

We start by providing some basic definitions pertinent to the following section: 
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Probabilistic experiment: An experiment which is specified by its outcomes ω ∈Ω  (Ω is 

the set of all possible outcomes) and by a distribution of probabilities P{ε} of occurrence 

of various events (denoted by ε) ε ⊆Ω . 

 

Sample space: The sample space Ω is the set of all possible outcomes. 

 

Probabilistic event: An event ε is a realization of an outcome. 

 

Random variable: A random variable (rv) is a function 		 X :Ω!"  which assigns a 

numerical value X(ω) to each outcome ω, i.e X :ω ! X ω( ) . 

 

2.2.2 Probability distribution functions 

Given a rv X, the cumulative distribution function (cdf) 		 FX :!"! is defined by  

FX x( ) = P X ≤ x{ }  (2.1) 

where {X≤x} is an event such that random variable X takes a value less than or equal to x. 

This event can be mathematically represented as ω ∈Ω : X ω( ) ≤ x{ } . 

 

The cumulative distribution function FX has the following properties: 

• FX is a non-decreasing and bounded function of 	 x∈! , such that FX(-∞) = 0 and 

Fx(+∞) = 1. This implies: 

		P x1 ≤ X ≤ x2{ }= FX x2( )−FX x1( )  (2.2) 
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• FX(x) is continuous from the right, FX(x+0) = FX(x), whereas from the left we 

have FX(x) – FX(x-0) = P{X = x}. 

• X can be discrete, continuous, or a combination of both. If X is discrete, it has a  

probability mass function (pmf), as a result FX is a staircase function of x with 

jumps pn at points xn.  

		pn = P X = xn{ }= FX xn( )−FX xn −0( )≥0  (2.3) 

• If X is continuous, then FX can be written as integral as follows: 

		
FX x( ) = fX x '( )dx '

−∞

x

∫  (2.4) 

Which brings us to the probability density function (pdf), some integrable (in the 

Riemann sense) function on  ! . 

 

The probability density function fX has the following properties: 

• If fX is piecewise continuous, then taking the limit 		Δx→0+ gives: 

		
P x ≤ X ≤ x +Δx{ }≡ FX x +Δx( )−FX x( ) = fX x '( )dx '

x

x+Δx

∫  (2.5) 

• This implies that FX(x) is a continuous and piecewise differentiable function, such 

that 

	

dFX x( )
dx

= fX x( )  (2.6) 

• When X is a continuous rv, then P{X = x} = 0, and for infinitesimally small dx we 

have: 

	
P x ≤ X ≤ x +dx{ }= fX x( )dx  (2.7) 
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• Because of the properties of FX, fX is non-negative (fX ≥ 0) and the following is 

true: 

		
fX x( )dx =1

−∞

+∞

∫  (2.8) 

We now want to know what happens to the probability density function fX when X is a 

discrete rv. Since FX is not continuous when X is discrete, fX does not exist in the sense of 

ordinary functions. However, we can use the Stieltjes integral to bypass this issue. Before 

proceeding, the reader is encouraged to refer to APPENDIX A for a brief review of the 

Stieltjes Integral.  

 

• When X is a discrete rv, then we can use the Stieltjes integral and write the cdf as 

follows: 

		
FX x( ) = dFX x '( )

−∞

x

∫  (2.9) 

In the above representation of the cdf, we can think of the integrand as being the product 

fX(x).dx in which case we would need to use the Dirac delta function to write fX(x) since it 

does not exist in the sense of ordinary functions. 

	
fX x( ) = pnδ x − xn( )

n
∑  (2.10) 

The Dirac delta function also comes in handy to represent a sure, or deterministic, 

variable X which takes a ‘sharp” value x0, such that 

		P X = x0{ }=1  (2.11) 

so that we can express its pdf as: 
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		fX x( ) =δ x − x0( )  (2.12) 

For example we can represent the stress on a body whose material properties are random 

as a random process. However at time t = 0, before the body experiences any 

deformation (IC: Initial Condition), the stress is a “sure” variable and can be represented 

using the Dirac delta function. Alternatively, when dealing with numerical solutions, one 

can approximate the Dirac delta function using a normal distribution with infinitesimal 

variance such as to avoid dealing with infinity in the solution.  

 

Figure 2.1: PDF of Initial stress evaluated by the Dirac Delta and approximated by a Gaussian function 
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2.2.3 Examples of random variables 

In this section, we illustrate examples of random variables for discrete and continuous 

cases respectively by providing geotechnical engineering applications where applicable.  

 

Examples of discrete rv: 

1. Binomial 

For a random variable to be modeled as a Binomial rv, the following assumptions 

must hold: 

i. There can only be two outcomes (success or failure) from the random 

experiment (trial). 

ii. The probability of success is the same for each trial. 

iii. The outcome of each trial is independent from each other. 

iv. The number of trials to be conducted is finite. 

 

For an experiment with probability of success p in each trial, and N number of 

trials, the probability of getting n number of successes among N trials is given by 

the probability mass function (pmf): 

		
pn =

N
n

⎛

⎝⎜
⎞

⎠⎟
pn 1− p( )N−n           for n = 0,1,…,N (2.13) 

Example: 

The number of boulders encountered during a soil boring. There are only two 

outcomes, either there is a boulder or not, both independent from each other 

(Maity, R, n.d). 
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2. Geometric 

For a geometric rv, the same assumptions for a Binomial distribution hold with 

the exception that this time we are looking at the probability that the first success 

occurs on the nth trial. This probability is given by the pmf:  

		pn = 1− p( )n−1 p           for n = 0,1,2,…, (2.14) 

Example: 

The probability that a structure fails due to the design earthquake intensity being 

exceeded for the first time on the third year after the structure is built.    

 

3. Poisson 

For a discrete rv to be modeled as a Poisson process, the following assumptions 

must hold true: 

i. A probabilistic event can occur at any point in time or space. 

ii. The number of occurrences of that event in a given time or space 

interval must be independent from another event in any other non-

overlapping time or space intervals. 

iii. The probability of occurrence of an event in a small interval Δt is 

given by λΔt, where λ is defined as the mean rate of occurrence of the 

event. 

iv. The probability of more than one occurrence of an event in the small 

interval Δt is negligible. 

 

The probability of n occurrences in time t is given by the pmf: 
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pn = e

−λt
λt( )n
n!              for n = 0,1,2,… (2.15) 

Example: 

o The number of earthquakes within a given period 

o The number of occurrences of boulders within a soil mass 

 

Examples of continuous rv: 

1. Uniform 

If a random variable X is uniformly distributed over the interval [a, b], then it has 

probability density function (pdf): 

		

fX x( ) =
1
b−a

, 	a≤ x ≤b

0,	Otherwise

⎧

⎨
⎪

⎩
⎪

 (2.16) 

Uniform random variables are not common in geotechnical engineering but one 

can imagine an example where given an interval, the probability of occurrence 

within that interval is the same for any other occurrences similar to the results of a 

tossed die.  

 

2. Exponential 

An exponential rv is characterized by the strictly positive parameter λ (λ>0) 

analogous to the mean rate occurrence λ in a Poisson process. An exponentially 

distributed rv X has the following pdf: 

		
fX t( ) = λe−λt , 	t ≥0

0,	Otherwise
⎧
⎨
⎪

⎩⎪
 (2.17) 
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Example: 

In geotechnical engineering as in other engineering disciplines, exponential rvs 

are extensively used to model the lifetimes of systems. 

 

3. Normal (Gaussian) 

Normal or Gaussian random variables are the most commonly encountered rvs in 

any discipline, thus earning their name. This is mostly a result of the central limit 

theorem, which establishes that when a large number of independent random 

variables are added, their properly normalized sum tends toward a normal 

distribution (Wikipedia Central Limit Theorem). A normal rv is characterized by 

its mean value, µ and standard deviation, σ and has the following pdf: 

		
fX x( ) = 1

σ 2π
exp −

x − µ( )2
2σ 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

        for 	 x∈!  (2.18) 

Example: 

Most of the examples presented in this thesis are based on the assumptions that 

our random variable is normally distributed. For instance, we can postulate that 

the shear modulus of a soil at a specific depth is normally distributed.  

 

2.2.4 Multi-dimensional random variables 

A multi-dimensional random variable X: 	 Ω!"
N , where X = (X1, X2,…, XN), is 

characterized by the joint cdf and pdf. The following equation relates the joint cdf and pdf 

of a two-dimensional rv: 
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FXY x , y( ) = P X ≤ x∩Y ≤ y{ }= fXY x ', y '( )dy 'dx '

−∞

y+0

∫
−∞

x+0

∫  (2.19) 

if we now let X and Y be jointly continuous, we have the following: 

		
fXY x , y( ) = ∂2FXY x , y( )

∂x∂ y 	 (2.20)
 

and
 

		P x ≤ X ≤ x +dx∩ y ≤Y ≤ y +dy{ }= fXY x , y( )dxdy 	 (2.21) 

Let us now assume that X and Y are independent. Two rv’s X and Y are said to be 

independent if and only if (iff) fXY(x,y) = fX(x)fY(y). 

 

Alternatively, if X and Y are dependent, we require their conditional cdf and pdf. The 

conditional cdf is given by: 

		

FX|Y x | y( ) =
∂FXY x , y( )

∂ y
dFY y( )
dy

 (2.22) 

We know the definitions of fY(y) = 
	

dFY y( )
dy

and fX|Y(x|y) = 
		
∂FX|Y x | y( )

∂x
. We can therefore 

differentiate the above equation with respect to x and substitute our two definitions to 

obtain the so-called Bayes’ relation: 

		
fX|Y x | y( ) = fXY x , y( )

fY y( )  (2.23) 

which can be interpreted as: 

		P x ≤ X ≤ x +dx |Y = y{ }= fX|Y x | y( )dx  (2.24) 
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2.2.5 Statistical moments 

The average or expectation value of a function h:  !"! of a rv X (discrete or 

continuous) with pdf f where f employs the Dirac delta definition for the discrete case, is 

given by: 

	
h X( ) ≡ E h X( )⎡⎣ ⎤⎦ = h x( ) f x( )dx

−∞

+∞

∫  (2.25) 

The above definition is also known as the first moment of a function of a random 

variable. Moments are used in various fields of mathematics as a way to measure the 

shape of a function. In mechanics, the reader should be familiar with the zeroth moment 

of a general body or its total mass. The ratio of the first moment of a general body to its 

total mass on the other hand gives the center of mass, and the second moment is the 

rotational inertia.  

 

In statistics, the first moment of a random variable as mentioned before is the mean. The 

second moment is the variance and the third and fourth moments are the skewness and 

kurtosis respectively. We represent the m-th moment of a random variable X as follows: 

	
Xm ≡ µm = x − c( )m f x( )dx

−∞

+∞

∫  (2.26) 

In the above expression, c is a value about which the moment is calculated1. 

 

We now define the variance of X as: 

																																																								
1	It should be noted that statistical moments can be calculated about different values c, and in statistics we 
are mostly interested in raw moments (c = 0) and central moments (c = <X>). The mean of X is the first 
raw moment, and the variance of X is the second central moment. Skewness and kurtosis are also central 
moments but normalized with respect to the standard deviation raised to the power of their respective 
moment order (σm). 
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σ 2 ≡Var X⎡⎣ ⎤⎦ ≡ X 2 = X − X( )2 = X 2 − X

2
= µ2 − µ

2  (2.27) 

and the standard deviation as: 

	
σ = Var X⎡⎣ ⎤⎦  (2.28) 

 

In addition, some useful properties of the above operations are provided below: 

1. E X +Y⎡⎣ ⎤⎦ = E X⎡⎣ ⎤⎦+E Y⎡⎣ ⎤⎦ ≡ X +Y = X + Y  (2.29-a) 

2. 	
E cX⎡⎣ ⎤⎦ = c ⋅E X⎡⎣ ⎤⎦ ≡ cX = c X          c = const  (2.29-b) 

3. 	
Var X + c⎡⎣ ⎤⎦ =Var X⎡⎣ ⎤⎦                         c = const (2.29-c) 

4. 		Var cX⎡⎣ ⎤⎦ = c
2Var X⎡⎣ ⎤⎦                          c = const (2.29-d) 

 

Of interest also is the moment generating function2, 		 G :!"!  of the rv X.  The moment 

generating function, as suggested by its name is used to obtain higher order moments. G 

is defined by: 

		G k( ) = exp ikX( )  (2.30) 

and can be expanded using an infinite series as follows: 

		
G k( ) = ik( )m

m! µm
m=0

+∞

∑  (2.31) 

As a result, the m-th statistical moment can be found using the following equation: 

																																																								

2 G(k) is the fourier transform of the pdf f(x), so that : 
		
f x( ) = 2π( )−1 e− ikxG k( )dk

−∞

+∞

∫  
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µm = i

−m dmG(k)
dkm

k=0

 (2.32) 

An alternative to moments in statistics is cumulants κm. One can use moments to 

determine cumulants or vice versa. Once more the moment generating function, G is used 

to define the cumulants κm of X via the expansion: 

		
lnG k( ) = ik( )m

m! κm
m=1

+∞

∑  (2.33) 

For a multi-dimensional rv X =(X1, X2,…,XN), the moment generating function, G is given 

by: 

		 GN !k( )≡GN k1 ,...,kN( ) = exp i
!
k
!
X( ) = ... ei !k!x fN !x( )dNx∫∫  (2.34) 

 where the pdf fN(x) 		≡ fN x1 ,...,xN( ) . 

 

We can then find the first and second moments of X as follows: 

		 
Xn = ... xn fN !x( )∫∫ dN

!
x = −i

∂GN !
k( )

∂kn
!
k=0

 (2.35-a) 

		 
XmXn = ... xmxn fN !x( )dN

!
x =∫∫ −

∂2GN !
k( )

∂km∂kn
!
k=0

 for 1 ≤ m, n ≤ N (2.35-b) 

		 XmXn ≡ Xm ,Xn ≡Cov Xm ,Xn⎡⎣ ⎤⎦ = Xm − Xm( ) Xn − Xn( ) = XmXn − Xm Xn   (2.35-c) 

where the second central moment (last definition above) form the covariance matrix. 
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With the above definitions, we can now talk about correlation and independence. We say 

that two rv’s are uncorrelated iff 		 XY =0 . It then naturally follows that two rv’s that 

are uncorrelated are independent. The assumption that rv’s or stochastic processes are 

independent will be prominent in this thesis since independent rv’s have neat properties 

which simplify a lot of the algebraic manipulations performed in later sections. Below are 

some useful properties of independent rv’s. 

1. 	
E XY⎡⎣ ⎤⎦ = E X⎡⎣ ⎤⎦E Y⎡⎣ ⎤⎦ ≡ XY = X Y  (2.36-a) 

2. 	
Var X +Y⎡⎣ ⎤⎦ =Var X⎡⎣ ⎤⎦+Var Y⎡⎣ ⎤⎦  (2.36-b) 

Let the rv Y be the sum of N mutually uncorrelated and independent rv’s Xn, then 

3. 
		
Y = Xn

n=1

N

∑  (2.36-c) 

4. 
		
Y 2 = Xn

2

n=1

N

∑  (2.36-d) 

5. 
		
GY k( ) = GXn k( )

n=1

N

∏  (2.36-e) 

 

2.3 Basic Concepts of Stochastic Processes 

2.3.1 Basic definitions 

In line with the previous section, we start with some basic definitions to ease the reader 

into the topic. 
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Stochastic process: A stochastic process (sp) is a function of two variables X(ω,t), where 

ω is the outcome of a probabilistic experiment ω ∈Ω ,  and t is a variable of known value 

	 t ∈! , often time or space.  

 

A sp can also be thought of as an ensemble or family of functions Xω(t), one for each 

outcome ω. In a way, a sp is a collection of rv’s which fall in a range known as states of 

the sp dictated by the distribution of probabilities 	
P ω ∈ε{ } for various events ε ⊆Ω . For 

instance, we can think of the diameter of a sewing thread along its length to be a sp due to 

very small fluctuations or errors made by the machine as it spins the fibers into a single 

yarn. In the example of the thread, the random variable is the diameter, and the “sure” 

variable is the length along which the diameter is random. 

 

Figure 2.2: Electron microscope image of cotton sewing thread (Source: P Warren, R Ball, and R 

Goldstein/Phys. Rec. Lett.) 
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In soil, we can conceptualize some properties such as the shear modulus to be a stochastic 

process. This is based on the assumption that the shear modulus is spatially random.  

 

Statistical ensemble: A statistical ensemble (ensemble) can be thought of as the set of all 

possible states that a system could be in. In other words, a statistical ensemble is a 

probability distribution for the state of the system (Gibbs, J, 2015). 

 

Realization: A realization of a stochastic process is the function Xω(t) when ω is fixed. It 

is also known as a sample function.  

 

2.3.2 Probability distributions 

Similar to a random variable, we define the cdf of a sp X(t) as: 

		FX x ,t( ) = P X t( )≤ x{ }  (2.37) 

where the only difference with a rv is the added dimension of the “sure” variable t. 

 

The relationship between the cdf of a continuous-state sp and its pdf is given by: 

		
FX x ,t( ) = fX x ',t( )dx '

−∞

x+0

∫  (2.38) 

We can now define the pdf of continuous-state or discrete-state sp as: 

		
fX x ,t( ) = ∂FX x ,t( )

∂x
 (2.39) 

It goes without saying that in the case of a discrete-state sp, special care should be taken 

by using the Dirac delta function. The Dirac delta function can once more be used to 
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represent a deterministic sp i.e a known function of t for example X(t) = ϕ(t). Then the 

pdf reads: 

		fX x ,t( ) =δ x −φ t( )( )  (2.40) 

Let us now introduce multi-dimensional sp’s. The nth order cdf of X(t) with 	t ∈I  is 

defined by the joint cdf of n rv’s X(t1), X(t2),…,X(tn) where t is chosen arbitrarily from a 

closed interval I. 

		Fn x1 ,t1;x2 ,t2;...;xn ,tn( ) = P X t1( )≤ x1 ,X t2( )≤ x2 ,...,X tn( )≤ xn{ }  (2.41) 

The nth order pdf of the multi-dimensional sp X(t) is defined by: 

		
fn x1 ,t1;x2 ,t2;...;xn ,tn( ) = ∂nFn x1 ,t1;x2 ,t2;...;xn ,tn( )

∂x1∂x2...∂xn
≥0  (2.42) 

In addition to the properties of the cdf and pdf of a rv, we note that the cdf and pdf of 

multi-dimensional sp’s satisfy symmetry and compatibility conditions. 

 

For the symmetry condition, Fn and fn do not change when two pairs (xk, tk) and (xl, tl) are 

interchanged. For example: 

		F2 x1 ,t1;x2 ,t2( ) = F2 x2 ,t2;x1 ,t1( )  (2.43) 

For the compatibility condition, when the sp takes on infinite values, we have the 

following cdf: 

		Fn x1 ,t1;x2 ,t2;...;xn−1 ,tn−1;+∞,tn( ) = Fn−1 x1 ,t1;x2 ,t2;...;xn−1 ,tn−1( )  (2.44) 

such that the pdf satisfies compatibility as follows: 

		
fn x1 ,t1;x2 ,t2;...;xn−1 ,tn−1;xn ,tn( )dxn = fn−1 x1 ,t1;x2 ,t2;...;xn−1 ,tn−1( )

−∞

+∞

∫  (2.45) 
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2.3.3 Statistical moments 

We will now define the moments of a sp X(t). 

• The mean of a sp is given by: 

		
µ(t)≡ X t( ) = xf1 x ,t( )dx

−∞

+∞

∫  (2.46) 

• The auto-correlation function of a sp is given by: 

		
B t1 ,t2( )≡ X t1( )X t2( ) = x1x2 f2 x1 ,t1;x2 ,t2( )dx1dx2

−∞

+∞

∫
−∞

+∞

∫  (2.47) 

• The auto-covariance function of a sp is given by: 

		C t1 ,t2( )≡ X t1( )X t2( ) = X t1( )− µ t1( )⎡⎣ ⎤⎦ X t2( )− µ t2( )⎡⎣ ⎤⎦ = B t1 ,t2( )− µ t1( )µ t2( )  (2.48) 

 

2.3.4 Example of stochastic processes 

Here we provide some examples of stochastic processes with an emphasis on continuous-

state processes only. However before proceeding, a few more definitions are in order.  

 

Gaussian process: A sp is called a Gaussian or normal sp, if its moment generating 

function for a finite set of points {t1, t2,…, tn} and rv’s X(t1), X(t2),…, X(tn) is given by: 

		 
Gn k1 ,t1;...;kn ,tn( ) = exp i

!
kT
!
x − 12 !k

TC
!
k

⎛
⎝⎜

⎞
⎠⎟

 (2.49) 

where kT = (k1,…,kn), 		 !x
T = X t1( ) ,..., X tn( )( )  and elements of covariance matrix C, 

	
cmn = X tm( )X tn( )  all depend on t1, t2,…,tn. 

Stationary process: There are two kinds of stationary processes:  
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1. Strict-sense stationary: A sp is strict-sense stationary iff  

		Fn x1 ,t1 +τ ;x2 ,t2 +τ ;...;xn ,tn +τ( ) = Fn x1 ,t1;x2 ,t2;...;xn ,tn( )  for any n, τ and set of t. 

This implies that f1 is independent of time i.e f1(x1,t1) = f1(x1) and f2 depends on 

the time difference i.e f2(x1,t1;x2,t2). 

2. Wide-sense stationary: A sp is called wide-sense stationary iff µ(t) = µ = const 

and B(t1, t2) = B(t2 – t1) = B(t1 – t2). 

 

Homogeneous process: A non-stationary sp can be one of two homogeneous processes or 

both simultaneously: 

1. Spatially homogeneous: The transition probability3 depends on the difference 

between x1 and x2. 

		
f11 x2 ,t2 x1 ,t1( ) = f11 x2 − x1 ,t2 0,t1( )  (2.50) 

2. Temporally homogeneous: The transition probability depends on the time 

difference. 

		
f11 x2 ,t2 x1 ,t1( ) = f11 x2 ,t2 −t1 x1 ,0( )   for t2 > t1 (2.51) 

If a sp is homogeneous in time and in space, the transition probability can be 

written as: 

		
f11 x2 ,t2 x1 ,t1( ) = f11 x2 − x1 ,t2 −t1 0,0( )         for t2 > t1 (2.52) 

																																																								
3	The transition probability is another name given to the conditional pdf f1|1(x2,t2|x1,t1) of a sp X(t) which 

can be obtained using the Bayesian relation: 

		
f11 x2 ,t2 x1 ,t1( ) = f2 x2 ,t2;x1 ,t1( )

f1 x1 ,t1( )  
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In passing, a non-trivial concept, which should be mentioned, is the ergodic theorem. The 

ergodic theorem tells us that the mean µ of a stationary process can in fact be obtained 

from only one realization of X(ω,t) provided that X(ω,t) is available for a sufficiently 

long interval of time . This concept is of capital importance in later sections as we assume 

that soil properties modeled as sp’s are in fact ergodic. It should be noted nonetheless that 

this assumption has not formally been checked since the procedures involved are 

impractical for general sp’s.  

 

Stochastic processes can also be classified based on memory 

a) Purely random processes: Purely random processes hold no memory such that 

their pdf’s read: 

		fn x1 ,t1;x2 ,t2;...;xn ,tn( ) = f1 x1 ,t1( ) f1 x2 ,t2( )... f xn ,tn( )  (2.53-a) 

b) Markov process: Markov processes depend on the one occurrence at tn-1 of the sp 

prior to the present time such that the entire process is defined by f1 and f1|1 

		
f1n−1 xn ,tn xn−1 ,tn−1;...;x1 ,t1( ) = f11 xn ,tn xn−1 ,tn−1( )  (2.53-b) 

c) Processes with stationary-independent increments (sii): These processes belong to 

a special class of Markovian processes in which the increments of a sp depend on 

the corresponding time difference.  

		X ti( )− X ti−1( ) = ΔX ti −ti−1( )  (2.53-c) 

SP’s with sii are homogeneous in both time and space. 

 

We are now ready to look at examples of continuous-state sp’s. 
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a) Wiener process (Wp) also known as Wiener-Lévy process, or Diffusion process, or 

Brownian motion.  

An sp is considered a Wp iff the following holds true: 

i. X(0) = 0 

ii. It has sii 

iii. For every t > 0, X(t) ~ N(0,1) i.e X(t) is a normal (Gaussian) rv with zero 

mean and variance t, with first-order pdf: 

		
f1 x ,t( ) = 1

2πt
e
− x

2

2t  (2.54) 

Because a Wp has sii, it is non-stationary and is homogeneous in time and 

space. Also noteworthy, is the fact that a Wp is Markovian.  

 

b) Ornstein-Uhlenbeck process (OUp) 

A OUp has the following properties: 

i. It is stationary 

ii. It is Markovian 

iii. It is Gaussian 

The OUp is completely defined by the first-order pdf: 

		
f1 x( ) = 1

2π
e
− x

2

2  (2.55-a) 

and the transition probability for t2 > t1: 

		

f11 x2 ,t2 x1 ,t1( ) = f11 x2 ,t2 −t1 x1 ,0( ) = 1
2π 1−e−2 t2−t1( )( )

e

x2−x1e
− t2−t1( )⎛

⎝⎜
⎞
⎠⎟
2

2 1−e−2 t2−t1( )⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

(2.55-b) 
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2.4 Rudiments of Stochastic Calculus 

2.4.1 Convergence of a random sequence 

Consider a random sequence (rs) {Xn}, let it be a converging sequence, then we can say 

that {Xn} converges in the mean square (ms) or it converges in probability (ip). 

 

Mean-square converging: We say that the rs {Xn} converges in the ms to X if 

		
lim
n→∞

X − Xn( )2 =0  (2.56) 

 

In probability converging: We say that the rs {Xn} converges ip to X if 

		limn→∞
P X − Xn ≥ ε{ }=0  (2.57) 

holds for any ε > 0, no matter how small. 

 

A noteworthy implication of the ms convergence is the ip convergence, which is a result 

of a theorem that can be proven using the Chebyshev’s inequality (not provided here). 

 

2.4.2 Continuity 

The sp X(t) is said to be ms continuous if 

		
lim
h→0

X t +h( )− X t( )⎡⎣ ⎤⎦
2

=0  (2.58) 

Another way to check if X(t) is ms continuous is through the following theorem: 
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If the auto-correlation function B(t1,t2) is continuous (in the ordinary sense) at (t1,t2) = 

(t,t), then the sp is ms continuous at t. The proof of the theorem follows from: 

		
X t +h( )− X t( )⎡⎣ ⎤⎦

2
= B t +h,t +h( )−2B t +h,t( )+B t ,t( )  (2.59) 

2.4.3 Differentiability 

The sp X(t) is ms differentiable if, given any sequence of (deterministic) numbers {hn} 

that convergences to zero, the following rs converges in the ms to a rv 	 
!X t( )  called the 

derivative of X(t). 

	

X t +hn( )− X t( )
hn

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (2.60) 

Moreover, 	 
!X t( ) is a ms continuous sp with its moments given by: 

	 
!X t( ) = d

dt
X t( ) 	 (2.61) 

and 

		 
!X t1( ) !X t2( ) =

∂2B t1 ,t2( )
∂t1∂t2

 (2.62) 

 

2.4.4 Integrability 

We say that the integral 

	
φ t( )

a

b

∫ X t( )dt  (2.63) 

where ϕ(t) is an ordinary (deterministic) function and X(t) is a sp, exists in the ms, iff the 

rs of partial sums 
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Sn = φ t j

*( )X t j
*( )Δt j

j=1

n

∑  (2.64) 

where 		Δt j ≡ t j −t j−1 , converges in the ms to a unique rv Y for any partition  

		a= t0 < t1 < ...< tn−1 < tn = b  (2.65) 

with tj-1 ≤ t*j ≤ tj, and any two numbers a and b. 

 

2.4.5 Fokker-Plank-Kolmogorov Equation (Diffusion Equation) 

An account of a diffusion process is the famous Brownian motion investigated by Robert 

Brown in 1827 (Brown, R, 1828) but originally discovered by Jan IngenHousz in 1785, 

who too often is not credited for his discovery. Albert Einstein later in 1905 (Einstein, A, 

1905) gave the very first quantitative description of Brownian motion. Meanwhile, the 

same year Albert Einstein published two other papers on completely different topics, one 

on the Photo-electric Effect and the other on the Special Theory of Relativity. These three 

papers have influenced many researches across the board of STEM fields, including this 

research, and have deservedly earned him the Nobel Prize. In 1908, Paul Langevin 

(Lnagevin, p, 1908) provided a different interpretation of Brownian motion, which 

idealizes a particle in a “noisy” surrounding medium. Langevin’s equation for the 

position of a particle can be written as follows: 

		
dX t( )
dt

= a X t( ) ,t( )+b X t( ) ,t( )Γ t( )  (2.66) 

where Γ(t) is the Gaussian white noise (GWN), and a and b are known as the drift and 

diffusion coefficient respectively. From these contributions emerged the work of 

Kolmogorov (1931) who derived a pair of differential equations known as the Forward-
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Kolmogorov Equation and the Backward-Kolmogorov Equation describing the evolution 

of the probability distribution of a Markov process. Focusing on continuous-time 

processes, Fokker (1914) and Plank (1917) derived the equivalent differential equation 

for the evolution of the first-order pdf of diffusion with drift. The general form of the 

Fokker-Plank-Kolmogov (FPK) equation is the second-order PDE of parabolic type given 

by: 

		
∂ f x ,t( )

∂t
= − ∂

∂x
a1 x( ) f x ,t( )⎡⎣ ⎤⎦+

∂2

∂x2
a2 x( ) f x ,t( )⎡⎣ ⎤⎦  (2.67) 

In the above equation the coefficients a1(x) and a2(x) are the drift and diffusion 

coefficient respectively. Although revolutionary, the papers published by Einstein and 

Langevin on Brownian motion only observed the phenomenon on  “coarse” time scales, 

which are observation times that are much longer than the auto-correlation times (10-8s). 

It was not until G.E Uhlenbeck and L.S Ornstein in 1930, that Brownian motion was 

studied at a fine time scale (10-12s). In the above equation, we say that t is at the limit of 

equilibrium with the fine time scale; hence a1 and a2 contain microscopic information. 

When a1(x) = υd and a2(x) = 2D, the PDE of the diffusion process with drift is satisfied 

by the pdf: 

		
f x ,t( ) = 1

2 πDt
exp −

x −υdt( )2
4Dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (2.68) 

 

It is interesting to note the FPKE is deterministic. It can therefore be solved using 

conventional numerical approximations such as the finite-difference method or the finite-
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element method. If we differentiate the FPKE above by making use of the product rule, 

we obtain: 

		

∂ f x ,t( )
∂t

= −a1 x( )∂ f x ,t( )
∂x

− f x ,t( )∂a1 x( )
∂x

+a2 x( )∂
2 f x ,t( )
∂x2

+2
∂ f x ,t( )

∂x
∂a2 x( )
∂x

+ f x ,t( )∂
2a2 x( )
∂x2

 (2.69) 

 

which when rearranged gives us: 

		

∂ f x ,t( )
∂t

= f x ,t( ) ∂2a2 x( )
∂x2

−
∂a1 x( )
∂x

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+
∂ f x ,t( )

∂x
2
∂a2 x( )
∂x

−a1 x( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+
∂2 f x ,t( )

∂x2
a2 x( )    (2.70) 

We use a simple central difference (finite difference) scheme with a homogeneous 

discretization of space for good measure. 

		

∂ f i x ,t( )
∂t

= f i−1( ) x ,t( ) a1
i( ) x( )
2Δx +

a2
i( ) x( )
Δx2

− 1
Δx

∂a2
i( )

∂x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− f i( ) x ,t( ) ∂a1

i( )

∂x
+2
a2
i( ) x( )
Δx2

−
∂a2

i( ) x( )
∂x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ f i+1( ) x ,t( ) −
a1
i( ) x( )
2Δx +

a2
i( ) x( )
Δx2

+ 1
Δx

∂a2
i( )

∂x

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   (2.71) 

 

2.5 Basic Concepts of Continuum Mechanics 

Thus far we have been acquainted with stochastic processes which when investigated at a 

“fine” time scale, requires the application of “statistical mechanics”. Such tools allow us 

to establish contact with the microscopic world. Looking at the bigger picture, 

Continuum mechanics, allow us to represent the mechanical behaviour of materials at a 

macroscopic scale.  
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2.5.1 Soil as a continuum 

	

Figure 2.3 A Representative Elemental Volume (REV) of Soil (Source: Basu, D, 2006) 

	

Given the size of soil particles, they are clearly discrete in nature, however, if a 

representative volume is considered, then we can assume the soil to be continuous.  This 

minimum volume within which soil is considered continuous is called the representative 

elemental volume (REV). The definition of a REV diverges slightly from that of a 

continuous volume in its definition of density where conventionally, density in a 

continuum is defined as: 

		
ρ = lim

ΔV→0

ΔM
ΔV

 (2.72) 

while for a REV, the following modification was proposed by Davis and Selvadurai in 

1996 (Davis and Selvadurai, 1996) about the definition of density: 

		
ρ = lim

ΔV→ΔV0

ΔM
ΔV

 (2.73) 

where ΔV0 is the REV.  
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A REV must respect the following conditions to be applied to soil (Basu, D, 2006): 

1. The REV must contain a sufficient number of soil particles (thousands) so that it 

can be representative of the soil properties. 

2. The REV must be significantly smaller than the volume of soil under 

consideration. 

 

2.5.2 Tensors 

In general, a tensor is a mathematical object whose components are characterized by a 

magnitude and direction and which can be generalized in multiple dimensions. For 

example, a vector is a first-order tensor. The properties of a tensor are also independent 

of the reference frame.  This is important in the development of invariant tensors. We 

now illustrate important second-order tensors and operations on them. 

	

Second-Order Tensor: A second order tensor simply put is a vector-valued function. It is 

a function that takes an independent vector as input and returns a dependent vector as 

output. A second-order tensor can be represented by a 3x3 matrix and has nine 

components (3n, n = 2 for a second-order tensor). A recurring second-order tensor in this 

thesis is the stress tensor, σij. Due to equilibrium, the stress tensor is given by a symmetric 

matrix. 

		

σ ij =

σ 11 σ 12 σ 13

σ 21 σ 22 σ 23

σ 31 σ 32 σ 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

σ 11 σ 21 σ 31

σ 12 σ 22 σ 32

σ 13 σ 23 σ 33

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=σ ji  (2.74)	
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where the off-diagonal elements are the shear components and can be interchanged with 

their mirrored counterparts along the diagonal. The shears are equal to preserve rotational 

equilibrium.  

 

The index notation used in equation 2.74 is known as Einstein notation. A rule of thumb 

is that repeated indices are considered “dummy” indices as they vanish to create the 

summation of tensor elements. The remaining indices are called “free” indices and 

typically indicate the order of a tensor. 

 

Let λ be a scalar and ni be a vector relating the second-order tensor σij by the equation: 

		σ ijnj −λni =0  (2.75) 

We can factor the above equation by making use of the Kronecker delta as follows: 

		 σ ij −λδ ij( )nj =0  (2.76) 

The Kronecker delta can also be used as a contraction4 on the second-order tensor s.t: 

		tr σ ij( ) =σ ijδ ij =σ ii =σ 11 +σ 22 +σ 33  (2.77) 

The above operation is also known as the trace of a second-order tensor. When the trace 

of a stress tensor is taken, the resulting tensor is a scalar known as the hydrostatic 

pressure (volumetric tensor). If σij represents the stress state of a saturated soil REV, then 

tr(σij) gives the pore-water pressure acting on the REV. 

 

																																																								
4 The word contraction is used in the sense that the order of the tensor is lowered 
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The volumetric stress however does not give us any information about the shear 

components. We therefore introduce the deviatoric tensor sij, which gives us more 

information about the deformation. 

		

sij =σ ij −σ hyd =σ ij −
tr σ ij( )
3 =

σ 11 −σ hyd σ 12 σ 13

σ 21 σ 22 −σ hyd σ 23

σ 13 σ 23 σ 33 −σ hyd

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (2.78) 

 

We are now interested in the transformation of second-order tensors. The rotation of a 

point represented by a vector vj, is achieved through the dot product of the transformation 

matrix Rij with the vector vj.  

		vi
' = Rijv j  (2.79) 

For a second-order tensor, two transformations are required such that: 

		σ ij
' = Rikσ klRlj = R ⋅σ ⋅RT  (2.80) 

Up until now, the dot product operation has been employed. We now introduce the reader 

to the dyad operator (⊗ ). Unlike a contraction, the dyadic product of two tensors 

increases the order of the latter. For example, see the dyadic product between two vectors 

followed by the same operation between two second-order tensors: 

	
Cij = Ai⊗Bj = aibj  (2.81-a) 

	
Cijkl = Aij ⊗Bkl = aijbkl  (2.81-b) 

Fourth-Order Tensor: A Fourth-order tensor can be obtained from the dyadic product of 

two second-order tensors. They are conceptually harder to grasp from a physical point of 

view but are nonetheless very popular in rate constitutive equations. A famous example 
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of a fourth order tensor is the fourth-order linear elastic tensor that relates stress to strain 

via a double contraction as shown in equation 2.82.  

		σ ij = Lijkl :εkl  (2.82) 

There are eighty-one independent elements each related to the combination of one of nine 

elements of the stress tensor and one of nine elements of the strain tensor. The fourth-

order elastic tensor can be expressed in terms of the elastic modulus E, and Poisson’s 

ratio υ as: 

		L
el = λ δ ⊗δ( )+2G1 4s( )  (2.83) 

where G is the shear modulus given by: 
		
G = E

2 1+υ( ) , and K is the bulk modulus given 

by: 
		
K = E

3 1−2υ( ) with Lame’s constant 		λ = K −2G3 . 

 

We also encounter the symmetric part of the fourth-order unit tensor 1(4s), which can be 

obtained by first writing 1(4) as: 

		1
4( ) =δ ikδ jl  (2.84) 

and from which the symmetric and anti-symmetric part can be extracted as follows: 

		
1 4s( ) = 12 δ ikδ jl +δ ilδ jk( )  (2.85-a) 

		
1 4a( ) = 12 δ ikδ jl −δ ilδ jk( )  (2.85-b) 
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Another useful quantity is the invariant of a tensor. Invariants are independent from the 

material frame and are often used throughout continuum mechanics to uniquely define 

tensors. There are three invariants I1, I2 and I3 enumerated below: 

1. I1 = tr(σij) (2.86-a) 

2. I2 = ½[[tr(σij)]2 – tr(σ2
ij)] (2.86-b) 

3. I3 = det(σij) (2.86-c) 

 

A different set of invariants known as the deviatoric invariants J1, J2 and J3 are also 

extensively used in continuum mechanics. They are given by: 

1. J1 = tr(sij) = 0 (2.87-a) 

2. J2 = -½sijsji (2.87-b) 

3. J3 = det(sij) (2.87-c) 

 

The Von Mises equivalent stress for instance which we will introduce more formally later 

is a function of the second deviatoric invariant of stress.  

		
σ eq

vm = 3
2 s : s =

3
2 sijs ji = 3J2  (2.88) 

 

2.5.3 Derivatives of Tensors 

The derivative of a scalar function f with a tensor argument A with respect to another 

tensor in general produces a tensor of equal or higher order. For example, the derivative 

of a scalar with a second-order tensor produces a second-order tensor. The derivative of 
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the equivalent stress (a scalar) with respect to stress (2nd order tensor) gives the Normal, 

which is another second-order tensor.  

		
Nij =

∂σ eq

∂σ ij

= scalar
2ndOrder =2

ndOrder  (2.89) 

That is equally true for the derivative of a second-order tensor with respect to a second 

order tensor, which produces a fourth-order tensor. 

		
Cijkl =

∂F Aij( )
∂Akl

= 2
ndOrder
2ndOrder = 4

thOrder  (2.90) 

We now introduce the Del operator (∇ ), which is defined as: 

	
∇ = ∂

∂x j

⎛

⎝
⎜

⎞

⎠
⎟ ej  (2.91) 

And which can be treated as a vector with elements j = 1,2,3 and ej is a basis vector. The 

Del operator is used to define three very important operations known as the gradient, 

divergence and curl. 

 

1. The gradient of a scalar valued function ϕ is the tensorial product of the Del 

operator with ϕ.  

 

		
∇φ = ∂φ

∂xi
ei =φ,iei  (2.92) 

When applied to a vector u, the gradient is given by the dyadic product of the Del 

operator with the vector u. 

	
∇u=∇⊗u= ∂

∂xi
ei⊗uje j =

∂uj
∂xi

ei⊗ej  (2.93) 
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2. The divergence of a tensor is given by the inner product of the Del operator with 

the tensor. In other words, we apply a contraction on the gradient of the tensor. 

		
∇⋅u= ∂

∂xi
ei ⋅uje j =

∂uj
∂xi

ei ⋅ej =uj ,iδ ij =ui ,i  (2.94) 

3. The curl of a tensor is the cross product of the Del operator with the tensor: 

∇×u = ∂
∂xi

ei ×uje j =
∂uj
∂xi

ei ×e j = ε ijk
∂uj
∂xi

ek  (2.95) 

 

2.6 Elastic-Plastic Materials 

With the language of tensors formally introduced, we now cross the final chasm in the 

understanding of soil as an elastic-plastic material.  

 

Under the action of external loads, an object deforms up to a threshold point known as its 

yield point. We define the elastic and plastic behaviour of a material based on its yield 

strength.  If the material has not yet yielded, we say that it is in the elastic region and 

hence behaves as such. On the contrary, if an object has yielded, it behaves as a plastic 

material.  

 

Elastic deformation is conservative in the sense that the strain energy of the system is 

recovered upon release of loading. The process is also compressible since the material’s 

volume can change unless its Poisson ratio is 0.5. As a result, an elastic material regains 

its shape when it is unloaded. On the other hand, plastic deformation is non-conservative. 



	 44	

It is incompressible and since the volume of a plastic material must be conserved, plastic 

deformation is irreversible.  

 

2.6.1 Stress-strain idealizations 

To understand plasticity, it is important to first understand three concepts: 

1. Yield function 

2. Hardening rule 

3. Flow rule 

A series of idealized stress-strain curves are provided below for the purpose of 

developing equations pertaining to the concepts listed above. Theses idealizations are 

also simplifications made to capture the behaviour of materials under certain conditions.  

	 

Figure 2.4: Stress-strain curve of material undergoing a uniaxial tensile test (Source: ME 620 course notes) 

Figure 2.4 shows at which point the above three concepts take place. If we were to look 

at an object with no elastic deformation, or in other words an object that yields 

instantaneously, we can idealize the material as Rigid-Perfectly Plastic which does not 
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allow for the development of stress with further deformation or Rigid-plastic where the 

stress is a non-linear function of strain. 

 

Figure 2.5: Stress-strain curves for Rigid Perfectly Plastic and Rigid Plastic materials (Source: ME 620 course 

notes) 

Figure 2.5 can also represent the stress-strain curve of large plastic flow problems. When 

problems only involve small strains, an Elastic-Perfectly Plastic or Elastic-Plastic model 

can be adopted as shown in figure 2.6. 

 

Figure 2.6: Stress-strain curves for Elastic Perfectly Plastic and Elastic Plastic materials (Source: ME 620 course 

notes) 

The problems tackled in this thesis are limited to small-strain problems. We therefore 

turn our attention to the Elastic-Plastic model.  
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2.6.2 Yield function 

Let us begin by defining a yield criterion. There are a few important theories that are used 

to define yield criteria, among which we will list only some important ones.  

 

Maximum Normal Stress Theory: The maximum normal stress theory tells us that 

yielding occurs when the largest principle stress becomes equal to or greater than the 

yield stress of the material. 

		maxσ i ≥ σ y               i=1,2,3 (2.96) 

For a two-dimensional stress state, the yield function is given by the contour formed in 

the σ-space, where a point in the shaded region behaves as an elastic material. 

 

Figure 2.7: Yield function of Maximum Normal stress Theory (Source: ME 620 course notes) 

	

Maximum Shear Stress Theory: The maximum shear stress theory establishes that 

yielding occurs when the maximum shear stress reaches a value equal or greater to that 

the maximum shear strength of a material. 

		
τmax ≥

σ y

2  (2.97) 
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This criterion is also known as the Tresca criterion depicted graphically below: 

 

Figure 2.8: Yield function of Maximum Shear Stress Theory (Tresca) (Source: ME 620 course notes) 

	

Shear or Distortion Energy Theory: The distortion energy theory states that a material 

yields when its distortion energy per unit volume is equal or greater than its distortion 

energy at yield. The Von Mises equivalent stress is an example of the distortion energy 

theory. 

		
1
2 σ 1 −σ 2( )2 + σ 2 −σ 3( )2 + σ 3 −σ 1( )2⎡
⎣⎢

⎤
⎦⎥
= 3

2σ 'ijσ 'ij =σ eff ≥σ y  (2.98) 

As shown in the equation 2.98, the equivalent stress is independent of hydrostatic 

stresses. The yield function is represented graphically in figure 2.9: 
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Figure 2.9: Yield function of Distortion Energy Theory (Von Mises) (Source: ME 620 course notes) 

	

Other Yield Functions: There are many other yield functions, which have been proposed 

to describe the behaviour of different materials. One class of yield functions that we will 

focus on in particular are pressure sensitive yield functions suitable for soils. For example 

the Mohr-Coulomb yield function or the Drucker-Prager yield function or the Modified 

Cam-Clay.  

 

Figure 2.10: Yield function of pressure sensitive material (Source: ME 620 course notes) 

	

A yield function is therefore a way to express a yield criterion.  

 

2.6.3 Hardening rule 

When a material’s yield stress increases, we say it hardens. The hardening process causes 

the contours of the yield function to shift right or to expand as depicted by figure 2.11.  
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Figure 2.11: Hardening a)Isotropic hardening, b) Kinematic hardening. (Source: www.sharcnet.ca) 

	

There are two commonly used hardening rules: 

1. Work hardening: In work hardening, the flow stress is a function of the plastic 

work done Wpl. 

	
σ = f W pl( )  (2.99) 

In one dimension, we have the total plastic work done on a body given by: 

		 
Wpl = σ !εpl dt

0

t

∫  (2.100) 

2. Strain hardening: In strain hardening, the flow stress is a function of the 

“effective plastic strain” 	
εpl . 

	
σ = f εpl( )  (2.101) 

where 
		 
εpl = ε

i

pl dt
0

t

∫ and 
		 
ε
i

= 2
3 !ε ij

pl !ε ij
pl⎡

⎣
⎢

⎤

⎦
⎥

1
2
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2.6.4 Flow rule 

In Plasticity theory, the plastic flow of a material is used to describe its plastic behaviour. 

We know that plastic flow occurs along the maximum shear planes. This implies that 

there exists a relationship between plastic strain increments and the current stress. We can 

now introduce the functional g(σij) known as the plastic-potential which relates the 

plastic strain increment to the current stress by: 

	
dε ij

pl =
∂g σ ij( )
∂σ ij

dλ  (2.102) 

where dλ is a scalar known as the plastic multiplier. There are two assumptions for the 

Flow rule: 

1. Associated Flow Rule: When Associated Flow Rule (AFR) also known as 

normality rule is assumed, the plastic strain increment vector is normal to the 

yield surface. 

	
dε ij

pl = ∂ f
∂σ ij

dλ  (2.103) 

2. Non-Associated Flow Rule: When Non-Associated Flow rule is assumed, then the 

plastic strain increment vector is normal to the plastic potential as in equation 

2.102 

 

 

A graphical representation of the two flow rules is provided in figure 2.12. 
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Figure 2.12: a) Associated Flow Rule b) Non-Associated Flow Rule (Source: ME 620 course notes) 
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CHAPTER 3. 

ONE-DIMENSIONAL STOCHASTIC FINITE ELEMENT 

METHOD IN FOUNDATION PROBLEMS 

3.1 Introduction 

The problem at hand is that of material heterogeneity and uncertainty in loading 

conditions. In soil, heterogeneity presents itself in two forms: on a large scale, the soil 

exhibits similar properties within a region delineated by the soil stratigraphy. The soil 

properties are then said to be piecewise homogeneous for defined regions or soil layers 

(Sudret, 2014). On a smaller scale, the soil properties also possess local spatial variability 

due to the presence of other types of soil grains. Given the unpredictability of 

geotechnical problems, it becomes clear that the treatment of the latter calls for 

probabilistic models. 

 

Current norms in the construction industry, more specifically in the limit state design of 

structures, impose the use of load factors and material strength factors to achieve the 

desired level of reliability. Load factors account for uncertainties in loading conditions 

while material strength factors account for variability in the material properties. In the 

design of geotechnical structures, however, the use of reliability factors induces high-

costs. The crude treatment of uncertainties through their amalgamation into reliability 

factors yields over-conservative designs. 
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An alternate methodology tailored to problems subject to high levels of uncertainty is 

therefore necessary. There are numerous methods reported in the literature that are used 

to analyze systems with uncertainties. The perturbation method was used in the 80s and 

90s (Baecher and Ingra, 1981; Phoon et al 1990), then came First/Second order reliability 

methods (FORM/SORM), which were used to compute the probability of failure of a 

system with respect to a performance criteria (Ditlevsen and Madsen, 1996). In the late 

90s the popular Monte Carlo method was adapted for geotechnical problems under the 

name of Random Finite Element Analysis or RFEM (Griffiths and Fenton, 1999). The 

RFEM remained mainstream despite being computationally demanding until the 

emergence of the Stochastic Finite Element Method (SFEM) (Ghanem and Spanos, 1991) 

 

The SFEM is used in this chapter for its performance, where the random soil properties 

are modeled as random fields using the spectral decomposition of their covariance 

function and the random response of the soil-structure system is represented using a 

Polynomial Chaos Expansion as polynomial series in the input variables. Early 

applications of SFEM in geotechnics can be found in the literature (Ghanem and Brzkala, 

1996; Sudret and Der Kiureghian, 2000; Ghiocel and Ghanem, 2002; Clouteau and 

Lafargue, 2003; Sudret et al, 2004; Sudret et al, 2006; Berveiller et al, 2006). 

 

3.2 Analysis 

The SFEM is applied to three cases of Winkler foundations. The configuration of each 

beam is given below. 
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Figure 3.1: a) Case 1: Uniformly loaded free-end beam on an elastic foundation, b) Case 2: Laterally loaded pile 

on an elastic foundation, fixed at one end, c) Case 3: Axially loaded pile on an elastic foundation, fixed at one end 

	

3.2.1 Problem Definition 

In practice, site-specific index and classification tests are performed on the soil mass to 

obtain a rough estimate of its mechanical properties. Despite the availability of site-

specific data, the range within which soil properties vary remain significant as suggested 

by the table below (Lee et al, 1983).  
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Table 3.1: Typical range for the coefficient of variation of different soil properties a) Lacasse and Nadim (1996), 

b) Lumb (1974)	

a) Soil property Soil type pdf Mean COV 
(%) 

Cone resistance 
Sandy Clay LN - - 

Clay N/LN - - 

Undrained shear strength 

Clay (triaxial) LN - 5-20 
Clay (Index 

Su) LN - 10-35 

Clayey silt N - 10-30 
Ratio Su/σ'v0 Clay N/LN - 5-15 
Plastic limit Clay N 0.13-0.23 3-20 
Liquid limit Clay N 0.30-0.80 3-20 

Submerged unit weight All soils N 5 - 11 
(kN/m3) 0-10 

Friction angle Sand N - 2-5 

Void ratio, porosity, initial void ratio All soils N - 7-30 

Over consolidation ratio Clay N/LN - 10-35 

     
b) Soil property     

Density All soils   5-10 
Voids ratio All soils   15-30 
Permebility All soils   200-300 

Compressibility All soils   25-30 

Undrained cohesion (clays) All soils   20-50 

Tangent of angle of shearing resistance 
(sands) All soils   5-15 

Coefficient of consolidation All soils     25-50 

 

In each of the above cases, the spatially random parameters are identified and defined 

using a random field. Numerous methods of discretizing random fields exist, among 

which we will consider the Karhunen-Loeve (KL) expansion over the EOLE (Expansion 

optimal linear estimation) method and the OLE (Optimal linear estimataion) method. 
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3.2.2 Random fields 

We can interpret the Karhunen-Loeve expansion as the representation of a stochastic 

process using an infinite linear combination of orthogonal functions as shown in figure 

3.2, similar to the Fourier series representation of a function on a bounded interval as 

shown in figure 3.3. 

 

 

Figure 3.2: Spectral representation of a stochastic process 

 

 

Figure 3.3: Fourier series representation of a Heaviside function (Source: Maple Worksheets on Fourier series) 
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Let 	
S x( )  be a random process, a function of position x over the domain L. We now 

introduce	
S x( )as the mean of the random process 	

S x( )  and C(x1,x2) as the covariance 

function associated with positions x1 and x2. It can be shown that C(x1,x2)  is symmetric, 

bounded and positive definite, hence it has spectral decomposition (P.D Spanos, 

R.Ghanem 1989): 

		
C x1 ,x2( ) = λnφn x1( )φn x2( )

n=0

∞

∑  (3.1) 

Where 	λn and 	φn  are the eigen-values and eigen-functions respectively. 

 

The existence of such a spectral decomposition follows from the general theorem of 

Khlinchin (Wierner-Khlinchin) on the integral representation of the correlation function 

(see Stationary stochastic process) (Wiener, 1964). This shows that any stationary 

process can be regarded as the superposition of mutually uncorrelated harmonic 

oscillations of various frequencies and with random phases and amplitudes. 

 

The eigen-values and eigen-functions are obtained by solving the integral equation: 

		
C x1 ,x2( )φn x1( )dx2 = λnφn x1( )

L
∫  (3.2) 

Because of the symmetry and positive-definiteness (Loeve, 1977) of the covariance 

kernel, the eigen-functions form a complete orthogonal set, which satisfies: 

	
φn

L
∫ x( )φm x( )dx =δnm  (3.3) 

From the above definitions, we can now write the process 	
ΔS x( )  

as follows: 
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S x( ) = S x( )+ΔS x( )  (3.4) 

In which 	
ΔS x( )  denotes a process with zero mean and covariance function C(x1,x2). 

 

The process 	
ΔS x( )  can be expanded in terms of	λn and 	φn as follows: 

		
ΔS x( ) = tn λnφn x( )

n=1

∞

∑  (3.5) 

Where 	tn  is a random coefficient independent of x. We can obtain 	tn  by multiplying 

both sides of equation 3.5 by 		ΔS x2( )  and by taking the expectation on both sides.   

		
C x1 ,x2( ) = ΔS x1( )ΔS x2( ) = tntm λnλmφn x1( )φm x2( )

m=0

∞

∑
n=0

∞

∑  (3.6) 

Making use of the orthogonal property of the set of eigen-functions 
	
φn x( ){ } , we multiply 

the above equation by 		φk x1( )  and integrate over the domain of the problem. 

		
C x1 ,x2( )

L
∫ φk x2( )dx2 = λkφk x1( ) = tntk λnλk

n=0

∞

∑ φn x1( )  (3.7) 

Once more exploiting the orthogonal property of 
	
φn x( ){ } , the following equation is 

obtained: 

		
λk φk x( )φl x( )dx = λkφk x( ) = tntk λnλkφn x( )

n=0

∞

∑
L
∫  (3.8) 

Which can be rewritten as: 

	
λkδkl = λkλl tktl  (3.9) 

From equation 3.9, the correlation of the random coefficient 	tn reads: 



	 59	

	
tktl =δkl  (3.10) 

Hence, the random process S(x) can be rewritten as: 

		
S x( ) = S x( )+ tn λnφn x( )

n=1

∞

∑  (3.11) 

with an explicit equation for 	tn  given by: 

		
tn =

1
λn

S x( )φn x( )
L
∫ dx  (3.12) 

The Karhunen-Loeve expansion is known to converge in the mean square sense for any 

distribution of 	
S x( ) . Moreover, if 	

S x( )  is a Gaussian process, the series can be shown to 

be also converging (Loeve, 1977), in which case the vector of random coefficients 

formed 	
tn{ } , is a vector of zero-mean uncorrelated Gaussian random variables. The 

Wiener process is an exemplification of such real centered stochastic process. It should be 

noted that for any distribution of 	
S x( ) , the probability distribution of 	tn can be estimated 

by using the explicit equation 3.12 and any quadrature technique which uses linear 

interpolations of values of the integrands at discrete points of the integration interval. 

 

Truncating the expansion at the Mth term gives: 

		
S x( ) = S x( )+ tn λnφn x( )

n=1

M

∑  (3.13)
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3.2.3 Exponential covariance 

We will now apply the orthogonal expansion derived in the previous section to the 

exponential covariance function defined by the following equation: 

		C x ,x2( ) =σ S
2e−c x−x2  (3.14) 

Where 	σ S  is the standard deviation of the random process and the parameter c is related 

to the correlation length in that it is the inverse of the latter. In Monte Carlo simulations, 

the correlation length is accounted for through auto-regressive filters. The choice of this 

covariance kernel is rooted in its applications in geophysics and in earthquake 

engineering as it can be traced back to a first-order Markovian process (Vanmarcke, 

1983). 

 

It now becomes a matter of solving the Fredholm integral problem below to represent 

	
S x( )  into its spectral decomposition. 

		
σ S

2 e−c x−x2φ x2( )dx2 = λφ x( )
−a

+a

∫  (3.15) 

By making use of the symmetrical properties of the kernel, equation 3.15 can be written 

as: 

		
σ S

2 e−c x '−x2( )φ x2( )dx2 +σ S
2 ec x '−x2( )φ x2( )dx2 = λφ x '( )
x

+a

∫
−a

x

∫     (3.16) 

We differentiate equation 3.16 with respect to x’ and rearrange it to obtain: 

		
λφ ' x '( ) = −cσ S

2 e−c x '−x2( )φ x2( )dx2 + cσ S
2 ec x '−x2( )φ x2( )dx2
x

+a

∫
−a

x

∫     (3.17) 

Differentiating once more with respect to x’, we obtain: 



	 61	

		
−cσ S

2 d
dx ' e−c x '−x2( )φ x2( )dx2

−a

x

∫
⎛

⎝
⎜

⎞

⎠
⎟ = −cσ S

2 e−c x−x '( )φ x '( )−e−c x+a( )φ −a( )⋅0− c e−c x−x2( )φ x2( )dx2
−a

x

∫
⎛

⎝
⎜

⎞

⎠
⎟     (3.18-a) 

		
cσ S

2 d
dx ' ec x '−x2( )φ x2( )dx2

x

+a

∫
⎛

⎝
⎜

⎞

⎠
⎟ = cσ S

2 ec x−a( )φ a( )⋅0−ec x−x '( )φ x '( )+ c ec x−x2( )φ x2( )dx2
x

a

∫
⎛

⎝
⎜

⎞

⎠
⎟        (3.18-b) 

Combining equations 3.18-a and 3.18-b, we obtain: 

		
−cσ S

2e−c x '−x( )φ x( )− cσ S
2ec x '−x( )φ x( )+σ S

2c2 e−c x '−x2( )φ x2( )dx2 + ec x '−x2( )φ x2( )dx2
x

a

∫
−a

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= λφ '' x '( )    (3.19) 

Letting 		x '→ x and 		σ S
2 =1  

		−2cφ x( )+ c2λφ x( ) = λφ '' x( )       (3.20) 

Which when rearranged reads: 

		 −2c + c
2λn( )φn x( ) = λnφn '' x( )  (3.21) 

The solution to the differential equation can be found in the work of Van Trees (Van 

Trees, 1968) on signal detection and estimation. The eigen-function and eigen-value for 

the exponential covariance function reported is: 

		

φn x( ) = cos ωnx( )
a+

sin 2ωna( )
2ωn

 (3.22-a) 

		
λn =

2σ S
2c

ωn
2 + c2

 (3.22-b)
 

for n odd, and 

		

φn
* x( ) = cos ωn

*x( )
a+

sin 2ωn
*a( )

2ωn
*

 (3.23-a) 
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λn =

2σ S
2c

ωn
*2 + c2

 (3.23-b) 

for n even. 

In which 	ωn  and 		ωn
*  are solutions to the following transcendental equations: 

		c −ωn tan ωna( ) =0  (3.24-a) 

		ωn
* + c tan ωn

*a( ) =0  (3.24-b) 

The figures below show the first four eigen-functions for c = 1 and the dependency of the 

eigen-values on the inverse of the correlation length.  

    
 

 

Figure 3.4: a) First four eigen-functions, b) First four eigen-values for different values of c 

	

3.2.4 Error estimation in input random field 

The present section touches upon the utility of the exponential kernel for the Karhunen-

Loeve expansion and the error introduced by truncating higher order terms in the series. 



	 63	

The error referred here is the variance error over the discretization domain and is defined 

as follows: 

		
Var S x( )− Ŝ x( )⎡⎣ ⎤⎦ =σ S

2 x( )− λiφi
2 x( )

i=0

M

∑  (3.25) 

The more terms in the series the lower the mean error over the support [-a,a]. Higher 

order terms nonetheless come at the cost of more computational power and time. We will 

later see that the order of expansion of the input variable greatly impacts the size of the 

global linear system that needs to be solved.  The mean error of the input random process 

is presented below for six orders of expansion. 

 

Figure 3.5: Variance error of input random field for six orders of expansion 
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A few observations can be made from the above figure.  

• The mean error over the discretization domain decreases with increasing order of 

expansions. 

• The interior points of the discretization domain display a smaller error than points 

at the boundaries of the domain. 

• The error function converges with higher order terms; hence the difference 

between two consecutive error functions with increasing orders of expansion i.e 

the Mth term decreases. This makes the impact of more terms beyond a certain 

point negligible.  

3.2.5 Polynomial Chaos Expansion 

Thus far we have provided the mathematical tools to represent the random processes, 

which are the input to our engineering problem using a Karhunen-Loeve expansion. We 

are now interested in representing the response of our problem as a stochastic process, 

which this time, is expanded using a convergent series belonging to the Hilbert space of 

random functions. The reasoning behind using a different expansion to represent the 

response of our computational model is embedded in the fact that it is not evident that the 

response has the same covariance function as its random input. The absence of this 

information thereof prompts the need for another representation, one which can do 

without the knowledge a priori of the covariance function.  

Recall our random process 	
S x( ) . We now assume a denumerable set of random 

variables 		 Si ,i =1...N{ }with independent components i.e with joint distribution given by 

the product of N marginal distributions 
		
fsi{ }

i=1

N
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fS x( ) = fSi xi( )xiDSii=1

N

∏  (3.26) 

where 
	
DSi is the support of 	Si . 

The set 
	
Si x( ){ } forms an orthogonal basis in the Hilbert space H. Since we now operate 

in the Hilbert space; we make use of the notation 	
Z j to denote the finite set of random 

variables. It is assumed that the response of our computational model has a finite 

variance and can therefore be expanded as: 

		
U = ujZ j

J=0

∞

∑  (3.27) 

We will use the Polynomial Chaos Expansion (PCE) in which the basis terms 
		
Z j{ }

j=0

∞
are 

multivariate orthonormal polynomials in the input vector S such that 	
Z j =ψ j S( ) . To 

obtain the family of orthogonal polynomials, it is of paramount importance that the inner 

product of any two orthogonal functions satisfies axioms of orthogonality in the manner 

presented below. 

		
π j

i( ) ,π k
i( )

i
= E π j

i( ) Si( )π k
i( ) Si( )⎡

⎣⎢
⎤
⎦⎥ = π j

i( )
DSi

∫ x( )π k
i( ) x( ) fSi x( )dx = ajiδ jk

 (3.28) 

where subscript k denotes the order of the polynomial, 	
δ jk is the kronecker symbol equal 

to 1 when j = k and 0 otherwise, and 	
aj
i  corresponds to the squared norm of 	

π j
i( )

 

		
aj
i = π j

i( )
i

2
= π j

i( ) ,π j
i( )

i
 (3.29) 

The Gram-Schmidt orthogonalization procedure is then applied to the canonical family of 

monomials {1, x, x2,…}, and the orthogonal functions are normalized as follows: 
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ψ j

(i ) =
π j
(i )

aj
i
			i =1,...,N , j∈!  (3.30) 

The family of functions to which the complete set of orthogonal polynomials belongs 

depends on the distribution of S. Table 3.2 provides examples of various distributions of 

S and their corresponding orthogonal functions.   

Table 3.2: Family of Orthogonal functions for different distributions of S 

Distribution of S Orthogonal Function family Support of S 
Gaussian Hermite polynomials (-∞, ∞) 
Uniform Legendre polynomials [-1,1] 
Gamma Laguerre polynomials [0,∞) 

Beta Jacobi polynomials [a,b] 
 

We note that the PC 		ψ j
(i )  constructed thus far is univariate. To obtain multivariate 

polynomials, one can take the tensor product of univariate orthonormal polynomials in a 

similar fashion higher order shape functions are built. This is accomplished with the help 

of tuples α , 	 α ∈!M also known as multi-indices in which α consists of ordered lists of 

integers. The definition of ψα in terms of the multi-index α is then given by:  

		
ψ

α x( ) = ψα i

i( ) xi( )
i=1

N

∏  (3.31)
 

We demonstrate the tensor product of two univariate chaos polynomials and its 

corresponding multi-index α in figure 3.6. 
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Figure 3.6: a) Basis of multivariate Polynomial Chaos for M=2, p=3 b) Graphical representation of bivariate 

tensor product (Source: Alexanderian, A, 2013) 

	

We can now write our response as follows: 

	 
U = uαψα S( )

α∈!M
∑  (3.32)

 

Figure 3.7 shows the multivariate orthogonal polynomials for a Gaussian distribution. 
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Figure 3.7: Polynomial Chaos functions (Normalized multivariate Hermite polynomials) of order 3 and 

dimension 2 

3.2.6 Truncation scheme 

From the representation of the mechanical response, U, it is computationally appealing to 

truncate the infinite series to a finite number of terms. In this light, the aim is to find an 

acceptable number of terms such that the representation offers an accurate depiction of 

the random response. Since we have a series, which consists of polynomials, it is natural 
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to consider a truncated series of all polynomials up to a specific degree. Let’s define the 

total degree of a multivariate polynomial ψα by: 

		
α = α i

i=1

M

∑  (3.33) 

The standard truncation scheme involves choosing all polynomials such that α is smaller 

than a given p, which leads us to having a combination of p polynomials chosen from 

M+p possibilities. M is the number of independent components of the input random 

vector (number of basis random variables used in higher order terms of the KL 

expansion) and p is the order of the Polynomial Chaos. Therefore the number of terms P 

in the series is given by: 

		
P =

M + p
p

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=
M + p( )!
M!p!  (3.34) 

In practical applications, the polynomial degree p is in the range of 3-5. Increasing the 

value of M results in a better resolution of the input random fields. Moreover, due to the 

rate at which P increases for higher values of M, say M>10, a new complication known 

as the curse of dimensionality becomes apparent. Table 3.3 shows the size P of the 

polynomial basis for different values of M and p. 

Table 3.3: Total number of terms in the Polynomial Chaos Expansion for varying values M and p 

M                p 1 2 3 

1 2 3 4 
2 3 6 10 
3 4 10 20 
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3.2.7 Stochastic Finite Element Formulation 

In this section, we will be following the standard energy formulation introduced by 

Zienckiewicz and Cheung (1977) applied to a general solid body undergoing 

deformation. In developing the Finite Element Formulation, we will also account for the 

variability of the material properties, and the uncertainty in the loads applied. Finally we 

will represent the random nodal displacement in the l2 space.  

 

Let a solid body with domain L in R have material property 		S x ,ξ( ) , 	x∈L . Furthermore, 

let a set p of random external forces be exerted on part of the domain 	
Lp ⊆ L . Applying 

the finite element method and thus discretizing the domain L into “m” finite elements of 

length le, the internal energy stored in each element is given by: 

		
V e = 12 σ eε e dle

le
∫  (3.35) 

Where 	σ
e  and 	ε

e
 are stress and strain on the element. 

 

Given the constitutive equations dictating the material behaviour, the internal energy 

stored within an element can be rewritten in terms of the displacement experienced by the 

element due to an external force.  

		
V e = 12 ue{ }T Be x( )⎡⎣ ⎤⎦

T
Se x ,ξ( )⎡⎣ ⎤⎦

le
∫ Be x( )⎡⎣ ⎤⎦dx ue{ }  (3.36) 
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Where 
	
ue{ }  is the vector of nodal displacements, 

	
Be x( )⎡⎣ ⎤⎦  is the strain-displacement 

matrix, 		 S
e x ,ξ( )⎡⎣ ⎤⎦  is the random material property and the superscript “e” denotes 

calculations performed over the domain of an element. 

Let us now formulate the internal energy of the system as the sum of the contributions of 

every individual element.  

		
V = V e =

e=1

m

∑ 1
2 ue{ }T Be x( )⎡⎣ ⎤⎦

T
Se x ,ξ( )⎡⎣ ⎤⎦

le
∫ Be x( )⎡⎣ ⎤⎦dx ue{ }

e=1

m

∑  (3.37) 

In line with the standard energy formulation, we now define the external work done on an 

element as: 

	
W e = ue{ }T p{ }  (3.38) 

In a similar fashion to obtaining the total internal energy, we seek to obtain the total 

external work done by summing up the contributions of every element: 

		
W = We

e=1

m

∑ = U{ }T P{ }  (3.39) 

Using the principle of conservation of energy and minimizing the potential energy leads 

to: 

		

∂ V −W( )
∂ U{ } =0  (3.40) 

Defining the stiffness matrix of an element as: 

		
K e⎡⎣ ⎤⎦ = Be x( )⎡⎣ ⎤⎦

T
Se x ,ξ( )⎡⎣ ⎤⎦ B

e x( )⎡⎣ ⎤⎦dx
le
∫  (3.41) 

We can then define the global stiffness matrix as: 
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K⎡⎣ ⎤⎦ =⊕ K e⎡⎣ ⎤⎦  (3.42) 

Substituting [K] in our expression for the residual of the potential energy, we end up with 

the famous finite element formulation in its compact form shown below: 

	
K⎡⎣ ⎤⎦ U{ }= P{ }  

We will now express the random material property as its deterministic and stochastic 

part. 

		S x ,ξ( ) = S ⋅X x ,ξ( )  (3.43) 

Where 	S  is the deterministic constitutive matrix,		X x ,ξ( )  is the random field function of 

the position vector x 

 

We represent 		X x ,ξ( )  using the Karhunen-Loeve expansion up to M terms: 

		
X x ,ξ( ) =1+ tk λkφk x( )

k=1

M

∑  (3.44) 

where 	λk  and 	φk  are real positive eigen-values and complete orthogonal eigen-functions 

of the covariance kernel. 

 

Substituting equation 3.36, 3.37 and 3.40 into 3.38 yields: 

		
K0 + Kktk ξ( )

k=1

M

∑⎡

⎣
⎢

⎤

⎦
⎥⋅U ξ( ) = Fi  (3.45) 

where 
		
K0 =⊕ Be x( )⎡⎣ ⎤⎦

T
S e x( )⎡⎣ ⎤⎦ B

e x( )⎡⎣ ⎤⎦dx
le
∫ , and

	
Kk =⊕ λk φk x( ) Be x( )⎡⎣ ⎤⎦

le
∫

T
Be x( )⎡⎣ ⎤⎦dx         
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It is assumed that the force and the nodal displacements are Gaussian processes. Hence 

	tk  is a standard normal variable and the parameter ξ  is used to differentiate random 

parameters from deterministic ones. The subscript “i” was also added for instances of 

non-deterministic forces. 		 Fi =
!0 for i > 0 represents the case of deterministic loading. 

 

We proceed by expanding the vector of nodal displacements as follows: 

		
U ξ( ) = U jψ j

j=0

P

∑ ξ( )  (3.46) 

Recall that 	
ψ j ξ( ) are Polynomial Chaos functions also known as Wiener Chaos 

satisfying the following properties: 

	ψ 0 ≡1  (3.47-a) 

		E ψ j
⎡⎣ ⎤⎦ =0  (3.47-b) 

		E ψ j ξ( )ψ k ξ( )⎡⎣ ⎤⎦ =0  (3.47-c) 

Due to the truncation scheme adopted, the residual after substituting equation 3.46 in 3.45 

reads: 

		
εM ,P = Kk ⋅U jtk ξ( )

j=0

P−1

∑
k=0

M

∑ ⋅ψ ξ( )−Fi  (3.48) 

In order to find the best approximation of the exact solution 	
U ξ( )  in the Hilbert space of 

random functions, spanned by the complete set of orthonormal functions
		
ψ j{ }

j=1

P−1
, the 

residual is minimized in a mean square sense. Such a minimization is akin to having the 
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residual be orthogonal to the space spanned by the polynomial functions 
		
ψ j{ }

j=1

P−1
. In other 

words we have the inner product of the residual and the Polynomial Chaos functions 

satisfy: 

		E εM ,P ⋅ψ j
⎡⎣ ⎤⎦ =0		j=0,...P-1  (3.49) 

As a result, equation 3.48 can be rewritten as: 

		
ckjiKk ⋅U j = Fi

j=0

P−1

∑
k=1

M

∑  (3.50) 

Where 
	
ckji = E tkψ jψ i

⎡⎣ ⎤⎦  and 	
Fi = E ψ iF⎡⎣ ⎤⎦  

This mean square minimization is also known as the regression method. Since the 

computational model i.e the finite element model is essentially unaltered in finding the 

coefficients cijk, the method is said to be non-intrusive. 

 

The final form of the equation as shown above contains P-1 vectors of size N where N is 

equal to the total number of degrees of freedom of the system (# of nodes x dof/node) for 

	
U j  and a stiffness matrix that is cast as a linear system of size 	NP ×NP . A visual 

representation of the global linear system for M = 2 and different degrees of the 

Polynomial Chaos is shown in figure 3.8. 
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Figure 3.8: Sparse global linear system for a) M=2, p=1, b) M=2, p=2, c) M=2,p=3 

	

From the derivation of the mechanical response, it comes to no surprise that the global 

linear system is symmetric. This is a result of the orthogonal property of the Polynomial 

Chaoses. What is less evident from our system of equations is the resulting sparse matrix. 

The coefficients formed from the expectation of the product of orthogonal functions 

effectively yield numerous zero values. We interpret the off-diagonal values of the global 

stiffness matrix as the white noise introduced in the system. On the other hand, the 

diagonal values of the matrix represent the mean properties of the system. Increasing the 

polynomial order “p” therefore not only increases the size of the global matrix but also 

introduces higher order noise terms in our model. 

 

3.3 Validation and Results 

In the given non-intrusive method, the computational model, and the uncertainty 

propagation stand alone as individual engines. This implies that the solutions to our 

problems are highly dependent upon the validity of the computational model regardless 

of the uncertainties introduced. In this section, the computational model, and the 

stochastic finite element method is validated for each case.  
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3.3.1 Deterministic Finite Element validation 

As a primer, we validate the finite element code developed for the three pile problems. In 

each case, the pile is idealized using a Winkler model, which establishes a linear 

relationship between the force on the foundation and the resulting deflection. We verify 

the accuracy of the numerical solution by using the mean parameters as input to our 

models and we compare the FEM solution of each case to their analytical counterparts 

where applicable.   

 

Case 1: 

Case 1 entails a beam resting on an elastic foundation and subjected to a uniform load 

acting along its entire length. This configuration depicts the well-known uniform beam 

on Winkler foundation whose governing equation is given by: 

		
EI d

4u
dx4

+ku= q  (3.51)
 

where EI is the beam’s bending rigidity, k is the spring stiffness and q is a uniform load. 

We are now interested in applying the Finite element method to the above equation. This 

is accomplished by transforming the governing ordinary differential equation (ODE) into 

its weak form. To obtain the weak form of the above equation, we integrate the weighted 

residual of equation 3.51 over the domain L as follows:  

		
d2We
dx2

⋅EI ⋅d
2u
dx2

+We ⋅k ⋅u
⎛

⎝⎜
⎞

⎠⎟0

L

∫ dx = We ⋅qdx +M * dWe
dx

x=L

+ S *We
x=L

0

L

∫  (3.52) 

where We is a weight function and M* and S* are the moment and shear acting at the end 

of the beam. In case 1, M* = 0 kNm and S* = 0 kN. 

Since we are dealing with a beam with free-ends, the boundary conditions are given by: 
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M

x=0
= EI d

2u
dx2

x=0

=0  (3.53-a) 

		
M

x=L
= EI d

2u
dx2

x=L

=0  (3.53-b) 

Using Galerkin’s method, we substitute the weight function and response function with 

C3 shape functions and obtain the following system of linear equations: 

		
⊕
e

d2Ni x( )
dx2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
EI

d2Nj x( )
dx2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+Ni x( )kN j x( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
dx

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
ui

xi

xi+1

∫
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=⊕

e
Ni x( )qdx

xi

xi+1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 (3.54) 

where the shape functions Ni are cubic Hermite polynomials with Le representing the 

length of an element, xi+1-xi. 

		

N =

1
Le
2x3 −3x2Le +Le3( )

1
Le
3 x3Le −2x2Le2 + xLe3( )
1
Le
3 −2x3 +3x2Le( )
1
Le
3 x3Le − x

2Le
2( )

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪

 (3.55) 

To validate the FEA solution to case 1, we use the closed form solution derived by 

M.Hetenyi in 1946 (Hetenyi, 1946). The particular closed-form used is one which was 

originally derived for symmetrically placed uniformly distributed loading on free-end 

beams.  
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Figure 3.9: Response of a free-end beam on elastic foundation under a uniformly distributed load (Source: 

Hetenyi, 1946) 

 

The deflection line for portion A-C (x<a) is given by: 

		

yA−C =
q
k

1
Sinh λl( )+ sin λl( ) Cosh λx( )cos λx( ) Cosh λa( )sin λ l −a( )( )⎡

⎣
⎡
⎣⎢

−Sinh λa( )cos λ l −a( )( )+ cos λa( )Sinh λ l −a( )( )− sin λa( )Cosh λ l −a( )( )⎤⎦
+ Cosh λx( )sin λx( )+Sinh λx( )cos λx( )( ) sin λa( )Sinh λ l −a( )( )−Sinh λa( )sin λ l −a( )( )⎡

⎣
⎤
⎦
⎤
⎦⎥

 (3.56) 

The deflection line for portion C-D is given by: 

		
yC−D = yA−C⎡⎣ ⎤⎦ X>0

+ q
k
1−Cosh λ x −a( )( )cos λ x −a( )( )⎡
⎣

⎤
⎦  (3.57) 

where 
		
λ = k

4EI
4 and to mimic case 1 loading condition, we set a = 0, such that c = l/2. 

The mean parameters used in the deterministic finite element model and Hetenyi’s 

solution are shown in table 3.4. 

Table 3.4: Deterministic properties of soil and beam for validation of case 1 

Beam and Soil Parameters for Model Validation 
EI [Nm2] 8.33E+07 
k [N/m3] 6.00E+05 

q [N] -5.00E+04 
l [m] 8 

n 200 
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Figure 3.10 shows the displacement of case 1 using the FE solution versus Hetenyi’s 

closed-form solution. 

 

Figure 3.10: Deterministic deflection of case 1 

	

It is clear that the FE solution is in good agreement with Hetenyi’s solution with 

0.000013% error at the beam’s ends and 0.00098% error at the beam’s mid-span. 

 

Case 2: 

Case 2 is a laterally loaded beam fixed at one end and resting on an elastic foundation. 

Once more a Winkler model is adopted with the following governing equation: 

		
EI d

4u
dx4

+ku= Pδ x( )  (3.58) 

where δ(x) is the Kronecker delta function which assumes a value of 1 at x = 0 and P is a 

point load applied at the free end of the beam. 
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Similarly to case 1, the weak form of the governing ODE can be obtained by integrating 

the weighted-residual of equation 3.58. We note that the stiffness matrix formed from the 

integration on the left hand side of the discretized weak form remains unchanged from 

equation 3.54. Only the forcing vector changes as follows: 

		
f e = Pδ x( )Ni x( )dx

xi

xi+1

∫  (3.59-a) 

	
F =⊕

e
f e  (3.59-b) 

 

The closed-form solution is taken from Hetenyi’s analysis of a cantilever beam resting on 

elastic foundation. 

 

Figure 3.11: Response of Cantilevered beam under a point load (Source: Hetenyi, 1946) 

	

The deflection line is given by: 

		
y = 2Pλ

k
Sinh λx( )cos λx '( )Cosh λl( )− sin λx( )Cosh λx '( )cos λl( )

Cosh2 λl( )+ cos2 λl( )  (3.60) 

The beam and soil parameters used for case 2 are the same as those used in case 1 as 

shown in table 3.5: 
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Table 3.5: Deterministic properties of soil and beam for validation of case 2 

Beam and Soil Parameters for Model Validation 
EI [Nm2] 8.33E+07 
k [N/m3] 6.00E+05 

P [N] -5.00E+04 
l [m] 8 

n 200 
 

Figure 3.12 shows the deflection of case 2 using the FE solution vs Hetenyi’s closed-

form solution. 

 

Figure 3.12: Deterministic deflection of case 2 

	

The result of the FE solution remains in good agreement with that of Hetenyi’s solution 

with 4.28E-07% error at the free end.  
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Case 3: 

In case 3 we have an axially loaded column fixed at one end and with springs providing 

resistance against the applied vertical force. The governing equation of case 3 is given 

by: 

		
AE d

2u
dx2

−ku=0  (3.61) 

with the following boundary conditions: 

		
−AE du

dx
x=0

= P  (3.62-a) 

		u x=L
=u* =0  (3.62-b) 

where AE is the axial rigidity of the column, P is a vertical load applied at the free-end 

and k is still the spring stiffness. 

 

This time the weak form of the governing ODE is given by: 

		
− dWe

dx
⋅AE ⋅du

dx
+We ⋅k ⋅u+We ⋅p

⎡

⎣
⎢

⎤

⎦
⎥

0

L

∫ dx +We ⋅P
x=0

=0  (3.63) 

where We are weight functions and p = 0 when no uniform load is applied.  

 

Using Galerkin’s method and substituting the weight and response functions in the 

equation above with C1 shape functions, we obtain: 

		
⊕
e

−
dNi x( )
dx

AE
dN j x( )
dx

+Ni x( )kN j x( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
dx

xi

xi+1

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ue − Ni x( )pdx

xi

xi+1

∫
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
−P =0  (3.64) 
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We choose the shape functions Ni to be linear Lagrange functions with Le once more 

representing the length of an element. 

		

N =
1− x

Le
x
Le

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 (3.65) 

For case 3, equation 3.61 was solved analytically and the following deflection was 

obtained: 

		

y =
−P

AE
λ +λe2λL

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
eλx +

P
AE( )e2λL

λ +λe2λL

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
e−λx  (3.66) 

The column and soil parameters used for the validation of case 3 are summarized in the 

table 3.6: 

Table 3.6: Deterministic properties of soil and beam for validation of case 3 

Column and Soil Parameters for Model Validation 
AE [N] 7.45E+08 

k [N/m3] 6.00E+04 
P [N] -5.00E+05 
l [m] 8 

n 200 
 

Figure 5.13 shows the deflection of case 3 using the FE solution vs the developed 

analytical solution. 
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Figure 3.13: Deterministic deflection of case 3 

	

The FE solution in case 3 is remarkably close to the exact solution. We note an error of 

10-8 % at the free-end. 
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3.3.2 Solution Algorithm 

All the components to solve the three cases with random beam and soil parameters have 

now been presented. In this section we present a flow diagram of the implementation of 

the Stochastic Finite Element method. Spatially random parameters in each case have 

their random fields represented using a Karhunen-Loeve expansion and the response 

function is represented using a Polynomial Chaos expansion. For each case, the spatially 

random parameters are assumed to have an exponential covariance structure and are 

assumed to be Gaussian processes. This method originally developed by Ghanem and 

Spanos, (1991) boasts a fast computational time compared to the Monte Carlo method 

and an accurate probabilistic depiction of simple models.  

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Flowchart of implementation of SFEM 
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Figure 3.14: Flowchart of implementation of SFEM (Continued) 
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Figure 3.14: Flowchart of implementation of SFEM (Continued) 
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3.3.3 Numerical implementation 

Having confirmed the validity of the Finite Element code developed, the Stochastic Finite 

element method laid out previously is now applied to our three cases. The accuracy of the 

results obtained with the Stochastic Finite Element method for each case is checked 

against a Monte Carlo simulation and the efficiency of each approach compared in terms 

of their respective runtime.  

Case 1: 

 

Figure 3.15: KL expansion of random fields vs random sampling for Monte Carlo for Case 1 

Force  

Beam properties

Soil properties
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In figure 3.15, we see the random realizations of each random parameters of case 1 

using the KL expansion versus using a random sampling method for a Monte Carlo 

simulation. We automatically note the difference in the smoothness of the realizations of 

each method. The kinks and fluctuations in the KL representation are controlled by the 

order of the expansion and the correlation length. Using a series approximation such as 

the KL expansion, a bandwidth the size of the variance becomes apparent with sufficient 

number of realizations. On the other hand, a random sampling at each discretized node 

generates a triangular or saw tooth like realization with more outliers. We draw the 

reader’s attention to the fact that if the material properties and the load are assumed to be 

ergodic, the mean can be obtained from a single realization. This becomes accurate for a 

discretized domain with a mesh much smaller than that of the correlation length and with 

enough terms in the series expansion. The addition of more terms in the series 

compensate for a larger sample size. Table 3.7 summarizes the statistical properties of 

each of the random parameters. 

Table 3.7: Statistical moments of soil and pile properties for Case 1   

Beam and Soil Statistical parameters 
COV = 6% 

<EI> [Nm2] 8.33E+07 
Std.dev[EI] [Nm2] 4.99E+06 

COV = 20% 
<k> [N/m3] 6.00E+05 

Std.dev[k] [N/m3] 1.20E+05 
COV = 2% 

<q> [N] -5.00E+04 
Std.dev[q] [N] 1.00E+03 
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Case 2: 

For case 2, the same assumptions are made with regards to the KL expansion and a 

random sampling method is again used as benchmark for comparison purposes.  

 

 

Figure 3.16: KL expansion of random fields vs random sampling for Monte Carlo for Case 2 

	

In case 2 since we are dealing with a point load, only the beam properties and the soil 

properties display spatial variation. Table 3.8 summarizes the statistical properties of 

each of the random parameters for case 2.  

 

 

 

Beam properties

Soil properties



	 91	

Table 3.8: Statistical moments of soil and pile properties for Case 2 

Beam and Soil Statistical parameters 
COV = 6% 

<EI> [Nm2] 8.33E+07 
Std.dev[EI] [Nm2] 4.99E+06 

COV = 20% 
<k> [N/m3] 6.00E+05 

Std.dev[k] [N/m3] 1.20E+05 
 

It should be noted that the correlation length of each of the parameters can be accounted 

for in the random sampling method through the use of an auto-regressive filter.  

 

Case 3: 

In case 3, it is the column’s axial rigidity and the spring’s stiffness that exhibit spatial 

variability. The figure 3.17 shows the random fields of case 3. 
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Figure 3.17: KL expansion of random fields vs random sampling for Monte Carlo for Case 3 

 

Table 3.9 summarizes the statistical properties of axial rigidity of pile and the soil 

stiffness for Case 3. 

Table 3.9: Statistical moments of soil and pile properties for Case 3 

Column and Soil Statistical parameters 
COV = 6% 

<AE> [N] 7.45E+08 
Std.dev[EI] [Nm2] 4.47E+07 

COV = 20% 
<k> [N/m3] 6.00E+05 

Std.dev[k] [N/m3] 1.20E+05 
 

Column properties

Soil properties
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3.3.4 Response statistics 

Using the results of the SFEM, it is now possible to provide a statistical description for 

the three cases introduced at the beginning of this chapter. The first and second statistical 

moments, which are the mean and variance, are easily obtained from the orthonormality 

of the polynomial basis. The mean is in fact the first term of the response expansion: 

		
E U ξ( )⎡⎣ ⎤⎦ = E U jψ j

j=0

P−1

∑⎡
⎣
⎢

⎤

⎦
⎥ =U0  (3.67) 

The variance on the other hand is given by the sum of the squared coefficients of the 

expansion written as: 

		
Var U ξ( )⎡⎣ ⎤⎦ = E U ξ( )−U0( )2⎡

⎣⎢
⎤
⎦⎥
= U j

2

j=1

P−1

∑  (3.68) 

The applications of SFEM in geotechnical problems are numerous. It gives its user an 

insight in the fundamental causes of variability in the response of soil-structure 

interactions and by extension the mechanics at play. But the strength of the SFEM lies in 

its computational efficiency. With a ten term (P = 10) PCE, more specifically a random 

input expanded up to the second term and Polynomial Chaos of order 3, the SFEM 

executed at a speed eighteen times (18X) faster than the RFEM for Case 1. The 

performance of the SFEM was nine times (9X) faster for Case 2 and twenty-seven times 

(27X) faster for Case 3. The figures below show the statistics of the piles. 
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Figure 3.18: SFEM Mean vs MC Mean for deflection of Case 1, 2 and 3          

Figure 3.19: SFEM pdf vs MC pdf of umax for Case 1, 2 and 3 
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Looking at the statistics of the response in each case, we note a few noticeable 

differences. The most prevalent disparity is in the magnitudes of the standard deviation 

for each case. While it is obvious that the case with the most uncertainty is expected to 

yield the response with the highest standard deviation, it is not apparent which system 

would behave more unpredictably if the variance of the input variable were not known a 

priori. From the results obtained, it is clear that case 1 presents the highest degree of 

randomness. This can be attributed to the fact that the uniformly distributed load applied 

along the pile’s length is itself spatially random, thus introducing an additional element of 

variability to the problem. However, investigating case 2 and 3, it is not evident why their 

standard deviations would differ by magnitudes of the order of 102. In both cases, the 

same properties were assumed random with the same coefficients of variation. The 

loading condition for each case, however, differs drastically in that case 2 has a lateral 

load acting at the pile’s head while in case 3, a vertical load is applied at the pile’s head. 

Such behaviour suggests that the orientation of the line of action of the force impacts the 

variance of the response. This can be explained from the standpoint of the alignment of 

fibers in a material. Given the slenderness of the body under investigation, it is clear that 

the action of a force collinear to the longer face of the pile will have a lesser impact on 

the response’s variability. The random material property at each node averages out over 

longer spans thus making the problem in a way more deterministic. 

 

Also of interest is the accuracy of the mean obtained by the SFEM compared to the 

RFEM, which relies on Monte Carlo simulations with large sample sizes.  In each case, 

the results of the SFEM with inputs expanded up to two terms and chaos polynomial of 
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order three is in good agreement with results from the Monte Carlo simulations. The 

SFEM mean of each case is within one standard deviation from its RFEM counterpart. 

Case 2 in particular shows almost identical response statistics as that of the RFEM. Once 

more, we suspect the mechanics at play affects the statistical behaviour of the system. In 

both cases 2 and 3 the slight difference in the means could be associated with the number 

of random nodes under the direct or indirect action of a force. Although this time the 

orientations of the line of action of the forces are perpendicular to each other, all the 

“random” nodes are under the direct action of a force. Unlike in case 2 where only the 

first node is subjected to a force.  

 

We are now interested in knowing the influence of increasing the order of the Polynomial 

Chaos on the mean of the response.  Intuitively we expect to see the convergence of the 

mean function in the mean square (Rahman, 2017). The proof is provided below: 

 

Proof: Let X := (X1,…,XN)T : 		 Ω,F( )→ !N ,BN( ) ,N ∈" , be an 	 !N -valued Gaussian 

random vector with zero mean; symmetric, positive definite covariance matrix CX and 

multivariate probability density function ϕX(x;CX).  

 

 if , 		 u x( )∈L2 !N ,BN ,φXdx( )  then the expansion of u(x) can be written as: 

		 
u x( )∼ projlu x( )

l∈N0

∑       (3.69) 

where 		 projlu x( ):L2 !N ,BN ,φXdx( )→ν l
N denotes the projection operator and 	ν l

N  is a 

polynomial subspace spanned by the multivariate Hermite polynomials Hj. 
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		 ν l
N = span Hj : j = l , j∈!0

N{ } ,0≤ l <∞      (3.70) 

Since standardization only rescales the Hermite polynomials, the Standardized 

Polynomial Chaos Ψj(x;Cx) also spans 	ν l
N . From the definition of the random vector X, 

the sequence 
		 
ψ j X ;CX( ){ }

j∈!0
N

is a basis of L2(Ω,F,P) hence inheriting the properties of the 

basis of 		 L
2 !N ,BN ,φxdx( ) . As a result, the expansion of u(X) can be rewritten as: 

		 
u X( )∼ ajψ j X ;CX( )

j∈"0
N

∑       (3.71) 

where aj are coefficients to be determined. But from the definition of Ψj(x;CX), the 

polynomials formed from the orthogonal sum of Polynomial Chaos: 

		 
⊕
l∈N0
span ψ j x;CX( ): j = l , j∈!0

N{ }=ΠN      (3.72) 

 is dense in 		 L
2 !N ,BN ,φxdx( ) . Hence the expansion of u(X) has Bessel’s inequality: 

		 
E ajψ j X ;CX( )

j∈!0
N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2

≤ E u2 X( )⎡⎣ ⎤⎦      (3.73) 

  

Thus proving that the PCE of u(X) converges in the mean square or L2. 

  

We can also demonstrate this convergence inductively by varying the order of the 

Polynomial Chaos for the solution of one of the cases. Figure 3.20 shows the mean 

response of case 1 for increasing order of the PCE. 
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Figure 3.20: Mean deflection of Case 1 for polynomial order p=1, p=2, and p=3 

	

From figure 3.20, we can see the mean response of higher order Polynomial Chaos 

converging to the Monte Carlo mean. The result of the Monte Carlo simulation is 

regarded as more accurate from the law of large numbers but the computational 

advantage that the SFEM possesses surmounts this slight discrepancy in accuracy. 

Nonetheless, the curse of dimensionality remains an issue as the total number of 

polynomials P rapidly increases with higher values of M, and p. Interestingly, despite the 

much larger systems generated from higher order polynomials, the Monte Carlo remains 

the most computationally expensive method.  
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Furthermore, a sensitivity analysis is carried out by varying the coefficient of variation 

(COV) of each random process and evaluating the variance of the response at the point of 

maximum deflection. The initial COV of each random process is doubled, and then 

tripled while keeping the COVs of the other parameters unchanged. In doing so, we note 

that in the first two cases, varying the COV of the soil stiffness, k results in the highest 

uncertainty in the response. Once more, we are reminded of the importance of treating 

soil as a stochastic material. In case 3, the variance of the response is the most sensitive 

to changes in the COV of the pile’s axial rigidity.  

	 

Figure 3.21: Sensitivity analysis of random parameters for Case 1, 2 and 3 

	 

Figure 3.22: Variance function for increasing COV of k for Case 1, 2 and 3 

	

Having identified the soil stiffness, k as the most sensitive parameter, the variance of the 

response as a function of the foundation’s length is investigated for increasing COV of k. 

The results shown in figure 3.22 are remarkably different from each other.  Increasing the 

COV of a sensitive parameter significantly impacts the variance of the response. Case 1, 
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and 2 are prime examples. Case 3 to the contrary shows little variability in its response. 

What is even more striking is how revelatory the variance functions are in indicating the 

mechanical behaviour of the system. What the variance function is effectively showing us 

is an analogous depiction of the pile’s potential energy. We note in case 1, that the 

variance is minimum at the mid-span, while in case 2, the minimum variance is reported 

at the fixed end of the pile. Case 3, has perhaps the most interesting variance function. It 

has a minimum at the fixed end and another one approximately 5.2m from the fixed end. 

Intuitively, the distance between the minima alludes to the effective length of a column. 

In theory, we can obtain the effective length from the product of the unsupported length 

of the pile, L and a parameter K whose value depends on the support conditions at both 

ends of the pile. In practice we assume the pile head to be free, thus √2/2 ≤ K ≤ 2. 

However, the unsupported distance L is less than the pile’s length, and depends on the 

soil stiffness.  

 

3.4 Summary 

The Stochastic Finite Element method was used to analyze three piles of different 

configurations and a statistical description of the three cases was provided. In the first 

part of the chapter, the mathematical tools required to implement the stochastic finite 

element method was presented. The derivation of the Karhunen-Loeve expansion in one-

dimension was shown and its implementation in the representation of pile-soil random 

fields illustrated. The PCE basis used to represent the random response was then 

constructed and implemented in the Finite Element Method. The results of each case 

were verified against a Monte Carlo simulation. The results in all three cases were in 
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good agreement with the Monte Carlo simulations and the computational efficiency of 

both schemes in terms of their runtimes was compared. The second part of the chapter 

presented the results of the statistical moments calculated for each case and provided an 

interpretation of those results from a mechanical perspective. Two themes in particular 

were tackled: 1) the impact of the orientation of the loads on the variance of the solution. 

2) The impact of the number of nodes under the direct action of a load on the mean of the 

response. For the purpose of these statistical inferences, the probability distribution 

functions of the maximum deflection of each case were plotted and compared to 

histograms generated from the Monte Carlo simulations.  In addition, the mean, and 

standard variations as functions of the pile’s length were generated using both methods 

after which they were compared to each other.  The performance and accuracy of the 

SFEM was investigated for different orders of Polynomial Chaos. We demonstrated via 

mathematical proof and inductively that with increasing orders of PCE, the mean 

response converges to a unique solution, which seems very close to the Monte Carlo 

mean of a very large sample size.  To conclude, a sensitivity analysis was conducted 

where the variance of the response at the maximum deflection and the variance function 

of each case were analyzed for different values of COV. The analysis showed that the soil 

parameter, k was the most sensitive for case 1 and 2, and the axial rigidity, AE was the 

most sensitive for case 3.  After which, the analysis revealed that the variance function 

provides insights into a system mechanical behaviour. 
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CHAPTER 4. 

STOCHASTIC ANALYSIS OF A TWO-PARAMETER 

CONTINUUM PILE MODEL USING THE KARHUNEN-

LOEVE EXPANSION 

	

4.1 Introduction 

In the face of considerable limitations, which the one-parameter Winkler model (Winkler, 

1867) suffers from, a two-parameter model originally developed by Vlasov and Leont’ev 

(1966) for a beam on elastic foundation and later modified by Vallabhan and Das (1991) 

is investigated with spatially random parameters. This time around, a two-dimensional 

random field is generated with random fluctuations about a mean plane in a Cartesian 

coordinate system. Several accounts of two-parameter continuum models exist in the 

geomechanic literature, but seldom are of stochastic nature. Griffiths et al (2013) 

performed a reliability analysis on Winkler models, but their analysis was limited to the 

consideration of only one random parameter represented using a one-dimensional random 

field. In this chapter, a two-dimensional KL expansion developed for plates by Ghanem 

and Spanos (1990) is used to represent the random processes of a two-parameter 

continuum pile model. 

 

The biggest drawback of the Winkler model is that the springs used to model the soil are 

not connected with one another when in reality in a soil continuum, adjacent REV’s 
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interact with each other. This interaction, known as the shear resistance, plays an 

important role in the mechanical behaviour of laterally loaded piles. It is also the property 

which typically exhibits the largest coefficient of variation (COV). The compressive 

resistance of the soil on the other hand exhibits variability, but of order significantly 

lower than the shear resistance as a function of its location. This is the case in general for 

soil; the horizontal scale of fluctuation is higher than the vertical scale of fluctuation 

(Phoon and Kulhawy, 1999). 

 

In this chapter we do not use the SFEM method due to the complexity of the problem, 

effectively making the methodology computationally expensive. Instead, a two 

dimensional random field for each random parameter is generated with the help of the K-

L expansion and the model is solved using an iterative scheme along with a closed-form 

solution. The governing equation for the two-parameter model is derived using the 

variational principles of mechanics and the random material properties are introduced in 

the formulation as series representations (all assumed to have an exponential covariance 

structure) of two variables x, and y using the KL expansion. 

 

Haldar and Basu (2013) performed similar analyses on free-end beams on elastic 

foundations. They discretized the soil in the x and z direction by using a grid with 

elements of equal lengths and widths. Each element was assigned a value of soil Young’s 

modulus sampled from a distribution. Thereafter, they performed a Monte Carlo 

simulation akin to the analysis done in Chapter 3 and compared their results with the 
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deterministic solution. In this chapter also, we compare the mean results of our stochastic 

method to the deterministic solution. 

4.2 Analysis 

4.2.1 Problem definition 

A pile having a rectangular cross-section and subjected to a horizontal force Fa and a 

moment Ma at its head is analyzed using a continuum approach. The latter is embedded in 

a soil deposit of n layers with each layer assumed to span an infinitely large distance in 

the x-y Cartesian coordinate system. The soil medium within each layer is assumed to 

have random properties mimicking real field conditions.  

	 

Figure 4.1: A Laterally loaded rectangular pile in a layered elastic medium (Source: Basu and Salgado, 2008) 
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4.2.2 Random fields 

Recall the integral equation 3.2 for the eigen-values and eigen-functions problem solved 

in Chapter 3 for the spectral decomposition of a one-dimensional input random field. 

Analogously, we now introduce the covariance function C(x1,x2;y1,y2) for the spectral 

decomposition of a two-dimensional random field. 

		
λn fn x1 , y1( ) = C x1 , y1;x2 , y2( ) fn x2 , y2( )dx1dy1

Ω
∫  (4.1) 

The kernel of C(x1,x2;y1,y2) has an exponential structure given by: 

		C x1 ,x2; y1 , y2( ) =σ 1
2σ 2

2e
−
x1− y1
l1

−
x2− y2
l2  (4.2) 

where l1 and l2 are correlation lengths between x1 and y1 and x2 and y2 respectively. σ1 

and σ2 are the standard deviation of the process in the 1 and 2 directions. Once more, λn 

and fn are the eigen-values and eigen-functions obtained after solving equation 4.1. 

 

Assuming the eigen-functions fn(x,y) can be expressed as the product of separable 

functions such that: 

		fn x1 ,x2( ) = fi 1( ) x1( ) f j 2( ) x2( )  (4.3) 

and the eigenvalues λn can be expressed in a similar fashion s.t: 

		λn = λi
1( )λ j

2( )  (4.4) 

We can now substitute equations 4.2 through 4.4 into equation 4.1 and obtain: 

		
λi

1( )λ j
2( ) fi

1( ) x1( ) f j 2( ) x2( ) =σ 1
2σ 2

2 e
−
x1− y1
l1

−
x2− y2
l2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

−
lx2

2

lx2
2

∫
−
lx1

2

lx1
2

∫ fi
1( ) y1( ) f j 2( ) y2( )dy1dy2

 (4.5) 

 



	 106	

The above equation can be re-arranged and split into two equations by comparing the left-

hand side (LHS) to the right-hand side (RHS) of the equation. 

λi
1( ) fi

1( ) x1( ) =σ1
2 e−c1 x1− y1 fi

1( ) y1( )dy1
−
lx1

2

lx1
2

∫
 (4.6) 

and 

		
λ j

2( ) f j
2( ) x2( ) =σ 2

2 e−c2 x2− y2 f j
2( ) y2( )dy2

−
lx2

2

lx2
2

∫
 (4.7) 

where c1 = 1/l1 and c2 = 1/l2. 

Hence, the solution to equation 4.5 is the product of the individual solutions of the above 

two equations introduced previously as Fredholm integral equations. In order to solve 

these two integral equations, we repeat the steps taken in section 3.2.3 and obtain two 

ODEs of the form: 

		 −2c + c
2λk( ) fk x( ) = λk fk '' x( )  (4.8) 

Solving the first integral equation, we obtain the following eigenvalues and normalized 

eigen-functions: 

		
λi

1( ) =
2σ 1

2c1
ω i

2 + c1( )  (4.9) 

and 

		

fi
1( ) x( ) = cos ω i x( )

a+
sin 2ω ia( )
2ω i

 (4.10) 

for i odd, and 



	 107	

		

fi
1( ) x( ) = cos ω i x( )

a−
sin 2ω ia( )
2ω i

 (4.11) 

for i even. 

where ωi are solutions to the following transcendental equations: 

		c1 −ω i tan ω ia( ) =0     for i odd (4.12) 

and 

		ω i + c1 tan ω ia( ) =0    for i even (4.13) 

Note: The domain is [-a, a]. Therefore here a = lx1/2. 

The solution to equation 4.7 is identical to that of equation 4.6 with subscripts and 

superscripts changed accordingly. We obtain the complete set of normalized eigen-

functions by permuting the subscripts of equation 4.3 as follows: 

		
fn x , y( ) = 1

2
fi
1( ) x( ) f j 2( ) y( )+ f j 1( ) x( ) fi 2( ) y( )⎡

⎣⎢
⎤
⎦⎥  (4.14) 

Assuming that within every soil layer, the Young’s modulus of soil Es and the soil’s 

Poisson’s ratio υs are spatially random, the KL representation of these random processes 

can be written as: 

		
Es x , y( ) = Es + ti λi

Es fi
Es x , y( )

i=1

∞

∑  (4.15-a)
 

		
υs x , y( ) =υs + ti λi

υs fi
υs x , y( )

i=1

∞

∑  (4.15-b)
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where ti is a standard normal random variable i.e  ti~N(0,1),  λi’s are the eigen-values, fi’s 

are the eigen-functions and the leading term of each of the above equation represents the 

random processes’ mean values. Truncating each series after M terms produces: 

		
Es x , y( ) = Es + ti λi

Es fi
Es x , y( )

i=1

M

∑  (4.16-a)
 

		
υs x , y( ) =υs + ti λi

υs fi
υs x , y( )

i=1

M

∑  (4.16-b)
 

As more terms are considered in the expansion, undulations of realizations of Es and υs 

become more pronounced. These undulations are characterized by the addition of noise 

more specifically Gaussian White Noise (GWN) into the random field. Figure 4.2 shows 

the realization of a random process with increasing orders of expansion. 
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Figure 4.2: 2-D KL representation of an arbitrary process λ with µ=100, and σ=1 for 6 orders of expansion 

	

4.2.3 Pile-soil potential energy 

The governing equation of the pile-soil system is derived using the principle of virtual 

work. We first obtain the total potential energy of the system given by: 

	Π=U −V  (4.17) 

where U is the internal energy of the system and V is the external work done on the 

system. Assuming no work is dissipated, and by considering the strain density energy of 

the continuous soil medium we get: 

		
Π= 12EpIp

d2u
dz2

⎛

⎝⎜
⎞

⎠⎟

2

dz + 12 σ ijε ij dΩ−Fau z=0
+Ma

du
dz

z=0Ω
∫

0

Lp

∫  (4.18) 
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where u is the lateral pile displacement; σij and εij are the stress and strain tensors in the 

soil; Ω is the soil domain surrounding the pile (excluding the volume Lp x 2a x 2b) and 

spanning infinitely large distances in the x-y plane and in the z-direction. In the 

expression for the total potential energy of the pile-soil system, the first term represents 

the internal potential energy of the pile, the second term represents the internal potential 

energy of the continuous soil medium and the remaining two terms are the sum of the 

external work done on the system. 

 

4.2.4 Stress-strain-displacement relationships 

In the derivation of the total potential energy, we note that no constitutive law was 

assumed. This is made possible due to the fact that the principle of virtual work used to 

obtain the potential energy applies to any constitutive law. Let us now define a 

displacement field for the soil continuum. 

 

Figure 4.3: Displacements in soil mass with convention used for positive directions (Source: Basu, 2006) 
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ux =u z( )φx x( )φ y y( )  (4.19-a) 

		uy =0  (4.19-b) 

		uz =0  (4.19-c) 

We introduce the dimensionless soil displacement functions ϕx and ϕy each representing 

the displacement of the soil medium in the x and y direction respectively. We assign a 

range of values to functions ϕx and ϕy such that at the pile interface they assume a value 

of 1 with a horizontal asymptote at y = 0 as the function decays.  

 

We now want to relate the strains to the displacements within our soil continuum. Using 

the Cauchy strain tensor as the measure of strain, the relationship between strain and 

displacement is given by: 

		

ε xx
ε yy
ε zz
ε xy
ε xz
ε yz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−
∂ux
∂x

−
∂uy
∂ y

−
∂uz
∂z

−12
∂ux
∂ y

+
∂uy
∂x

⎛

⎝
⎜

⎞

⎠
⎟

−12
∂ux
∂z

+
∂uz
∂x

⎛

⎝⎜
⎞

⎠⎟

−12
∂uy
∂z

+
∂uz
∂ y

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

−u z( )dφx x( )
dx

φ y y( )
0
0

−12u z( )φ x( )dφ y y( )
dx

−12
du z( )
dz

φx x( )φ y y( )
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (4.20) 

Assuming the elastic constitutive law for plain strain condition, the stress-strain 

relationship is given by: 
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σ xx

σ yy

σ zz

τ xy
τ xz
τ yz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

λs x , y ,θ( )+2Gs x , y ,θ( ) λs x , y ,θ( ) λs x , y ,θ( ) 0 0 0
λs x , y ,θ( ) λs x , y ,θ( )+2Gs x , y ,θ( ) λs x , y ,θ( ) 0 0 0
λs x , y ,θ( ) λs x , y ,θ( ) λs x , y ,θ( )+2Gs x , y ,θ( ) 0 0 0

0 0 0 2Gs x , y ,θ( ) 0 0
0 0 0 0 2Gs x , y ,θ( ) 0
0 0 0 0 2Gs x , y ,θ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⋅

ε xx
ε yy
ε zz
ε xy
ε xz
ε yz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  

 (4.21) 

Substituting equation 4.20 and 4.21 in the equation for the strain energy density of soil: 

		
UD ,soil =

1
2σ ijε ij =

1
2 σ xxε xx +σ yyε yy +2τ xyε xy +2τ xzε xz +2τ yzε yz( )  (4.22-a) 

		
= 12 λs x , y ,θ( )+2GS x , y ,θ( )( )u2 dφx

dx
⎛

⎝⎜
⎞

⎠⎟

2

φ y
2 +Gs x , y ,θ( )u2φx2

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

+Gs x , y ,θ( ) du
dz

⎛
⎝⎜

⎞
⎠⎟

2

φx
2φ y

2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

 (4.22-b) 

where λs(x,y,θ) and Gs(x,y,θ) are Lame’s constants which are assumed to be spatially 

random processes as a result of their dependency on the Young’s modulus and Poisson’s 

ratio of the soil. The random nature of the material properties is denoted by θ, and while 

this distinction is an important one, for the sake of clarity the θ will be dropped here 

onwards. The Lame’s constants in terms of the soil’s modulus Es and Poisson’s ratio υs 

can be expressed as: 

		
λs x , y( ) = Es x , y( )υs x , y( )

1+υs x , y( )( ) 1−2υs x , y( )( )  (4.23) 

		
Gs x , y( ) = Es x , y( )

2 1+υs x , y( )( )  (4.24) 

Substituting equation 4.22-b into equation 4.18 we finally get: 
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Π= 12EpIp
d2u
dz2

⎛

⎝⎜
⎞

⎠⎟0

Lp

∫
2

dz + 12 λs x , y( )+2Gs x , y( )( )u2 dφx
dx

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢Ω
∫

2

φ y
2 +Gs x , y( )u2φx2

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

+Gs x , y( ) du
dz

⎛
⎝⎜

⎞
⎠⎟

2

φx
2φ y

2
⎤

⎦
⎥
⎥
dΩ−Fau z=0

+Ma

du
dz

z=0    

(4.25)

 

 

4.2.5 Principle of minimum potential energy 

The principle of minimum potential energy states that a body undergoing deformation 

reaches equilibrium when its total potential energy minimizes locally (Reddy, 2007). This 

is derived as a special case of the principle of virtual work for an elastic system under the 

action of conservative forces. This can be mathematically interpreted as δΠ = 0. 

Therefore, taking the first variation of the total potential energy of the pile-soil system 

gives: 

		

EpIp
d2u
dz2

δ d2u
dz2

⎛

⎝⎜
⎞

⎠⎟0

Lp

∫ dz + λs x , y( )+2Gs x , y( )( )uδu dφx
dx

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢Ω
∫

2

φ y
2

+ λs x , y( )+2Gs x , y( )( )u2 dφx
dx

⎛

⎝⎜
⎞

⎠⎟
δ
dφx
dx

⎛

⎝⎜
⎞

⎠⎟
φ y
2 + λs x , y( )+2Gs x , y( )( )u2 dφx

dx
⎛

⎝⎜
⎞

⎠⎟

2

φ yδφ y

+Gs x , y( )uδuφx2
dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

+Gs x , y( )u2φxδφx
dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

+Gs x , y( )u2φx2
dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟δ

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

+Gs x , y( ) du
dz

⎛
⎝⎜

⎞
⎠⎟
δ du
dz

⎛
⎝⎜

⎞
⎠⎟
φx
2φ y

2 +Gs x , y( ) du
dz

⎛
⎝⎜

⎞
⎠⎟

2

φxδφxφ y
2 +Gs x , y( ) du

dz
⎛
⎝⎜

⎞
⎠⎟

2

φx
2φ yδφ y

⎤

⎦
⎥
⎥
dΩ

−Faδu z=0
+Maδ

du
dz

⎛
⎝⎜

⎞
⎠⎟
z=0

=0
    

(4.26)

 

Since the first variation of ϕx, ϕy and u are all independent from one another, they must all 

be individually equal to zero to satisfy the principle of minimum potential energy δΠ = 0. 

We can therefore collect the terms associated with each independent variation over their 

respective domains to obtain the governing differential equations of the soil-pile system.  
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4.2.6 Soil displacement 

First let us consider the variation on ϕx. We collect all the terms associated with δϕx and 

δ(dϕx/dx). 

		

λs x , y( )+2Gs x , y( )( )u2 dφxdx φ y
2δ

dφx
dz

⎛

⎝⎜
⎞

⎠⎟
+

⎡

⎣
⎢
⎢Ω
∫ Gs x , y( )u2φx

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

δφx

+G s x , y( ) du
dz

⎛
⎝⎜

⎞
⎠⎟

2

φxφ y
2δφx

⎤

⎦
⎥
⎥
dΩ=0

  

(4.27)

 

Equation 4.27 can be rewritten with the soil domain divided into the X, Y and Z sub-

domains as follows: 

		

u2 φ y
2 λs x , y( )+2Gs x , y( )( )dφxdxX
∫

Y
∫

Z
∫ δ

dφx
dx

⎛

⎝⎜
⎞

⎠⎟
dxdydz

+ u2
dφ y

dx

⎛

⎝
⎜

⎞

⎠
⎟

Y
∫

Z
∫

2

Gs x , y( )φxδφx dx
X
∫ dydz

+ du
dz

⎛
⎝⎜

⎞
⎠⎟Z

∫
2

φ y
2 Gs x , y( )φxδφx dx
X
∫ dy

Y
∫ dz =0

 (4.28) 

Performing integration by parts on the first term and simplifying the above equation we 

get: 

		

−ms1
py
1( ) x( )d

2φx
dx

+ py
2( ) x( )dφxdx

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+φx ms1

qy
1( ) x( )+nspy3( ) x( )⎡

⎣⎢
⎤
⎦⎥

⎛

⎝
⎜

⎞

⎠
⎟δφx dx

X
∫

+ms1
py
1( ) x( )dφxdx δφx

X

=0
 (4.29) 

where 

		
ms1

= u2dz
Z
∫  (4.30-a) 
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ns =

du
dz

⎛
⎝⎜

⎞
⎠⎟

2

dz
Z
∫  (4.30-a) 

		
py
1( ) x( ) = φ y

2 λs x , y( )+2Gs x , y( )( )dy
Y
∫  (4.30-c) 

		
py
2( ) x( ) = φ y

2 d λs x , y( )+2Gs x , y( )( )
dx

dy
Y
∫  (4.30-d) 

		
py
3( ) x( ) = φ y

2Gs x , y( )dy
Y
∫  (4.30-e) 

		
qy
3( ) x( ) = dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2

Gs x , y( )dy
Y
∫  (4.30-f) 

But since the function ϕx is known and takes a value of 1 at x = ±a and 0 at x = ±∞, the 

variation at the boundary is zero, δϕx = 0. Incidentally, the integral expression has to 

equal zero. Since δϕx is not known a priori for points not located on the boundary, the 

optimal function ϕx must be found such that the potential energy is minimized; this is 

interpreted mathematically as δϕx ≠ 0. Hence to satisfy equation 4.29, the following must 

be true: 

		
−ms1

py
1( ) x( )d

2φx
dx2

+ py
2( ) x( )dφxdx

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+φx ms1

qy
1( ) x( )+nspy3( ) x( )⎡

⎣⎢
⎤
⎦⎥ =0  (4.31) 

Rearranging and simplifying the above equation, the following governing differential 

equation is obtained for ϕx: 

		

d2φx
dx2

−
py
2( )

py
1( )
dφx
dx

− 1
ms1
py
1( ) ms1

qy
1( ) +nspy

3( )( )φx =0  (4.32) 
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Before attempting to solve the differential equation obtained for ϕx, the same procedures 

are repeated for the unknown displacement ϕy. The variation on ϕy is considered and all 

the terms associated with δϕy and δ(dϕy/dy) are collected: 

		

λs x , y( )+2Gs x , y( )( )u2 dφx
dx

⎛

⎝⎜
⎞

⎠⎟

2

φ yδφ y +Gs x , y( )u2φx2
dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟δ

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢Ω
∫

+Gs x , y( ) du
dz

⎛
⎝⎜

⎞
⎠⎟

2

φx
2φ yδφ y

⎤

⎦
⎥
⎥
dΩ=0

 (4.33) 

Integrating the first term by parts, and simplifying the above equation yields: 

		

−ms1
px
1( ) y( )d

2φ y

dy2
+ px

2( ) y( )dφ y

dy

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+φ y ms1

qx
1( ) y( )+nspx1( ) y( )⎡

⎣⎢
⎤
⎦⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
δφ y dy

Y
∫

+ms1
px
1( ) y( ) dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟δφ y

Y

=0
 (4.34) 

where: 

		
px
1( ) y( ) = φx

2Gs x , y( )dx
X
∫  (4.35-a) 

		
px
2( ) y( ) = φx

2 d Gs x , y( )( )
dy

dx
X
∫  (4.35-b) 

		
qx
1( ) y( ) = dφx

dx
⎛

⎝⎜
⎞

⎠⎟X
∫

2

λs x , y( )+2Gs x , y( )( )dx  (4.35-c) 

It should be obvious by now that the integral equation obtained for ϕx and ϕy are similar 

but not identical. They are both subjected to the same conditions and are in fact 

symmetrical functions as a result of the problem’s axisymmetric nature. On the other 

hand, a pile embedded in sloping ground would effectively produce two different 
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equations for the soil displacement. The governing ODE of the soil displacement in the y-

direction, ϕy is therefore given by: 

		

d2φ y

dy2
+
px
2( )

px
1( )
dφ y

dy
− 1
ms1
px
1( ) ms1

qy
1( ) +nspx

1( )( )φ y =0  (4.36) 

Going back to equation 4.32, the finite difference method can be implemented to solve 

the ODE. Discretizing equation 4.32 and using a central difference scheme, the following 

equation in terms of ϕx is obtained: 

		

φx
i+1( ) −2φx

i( ) +φx
i−1( )

Δx2
−

py
1( ) i+1( ) − py

1( ) i−1( )

2Δxpy
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

φx
i+1( ) −φx

i−1( )

2Δx
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− 1
ms1
py
1( ) i( ) ms1

qy
1( ) i( ) +nspy

3( ) i( )( )φxi( ) =0    (4.37) 

Similarly, discretizing equation 4.36 and using a central difference scheme, the following 

equation in terms of ϕy is obtained: 

		

φ y
i+1( ) −2φ y

i( ) +φ y
i−1( )

Δy2
−

px
1( ) i+1( ) − px

1( ) i−1( )

2Δypx
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

φ y
i+1( ) −φ y

i−1( )

2Δy
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
− 1
ms1
px
1( ) i( ) ms1

qx
1( ) i( ) +nspx

1( ) i( )( )φ y
i( ) =0    (4.38) 

From equation 4.37, and equation 4.38, a system of N simultaneous equations is produced 

where “N” is the number of nodes used in the uniform discretization scheme adopted, “i” 

represents the ith node and Δx and Δy are the element lengths in the x and y direction 

respectively. Rearranging equations 4.37 and 4.38, we get: 

		

φx
i−1( ) 1

Δx2
+ 1
2Δx

py
1( ) i+1( ) − py

1( ) i−1( )

2Δxpy
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
+φx

i( ) −2
Δx2

− 1
ms1
py
1( ) i( ) ms1

qy
1( ) i( ) +nspy

3( ) i( )( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+φx
i+1( ) 1

Δx2
+ 1
2Δx

py
1( ) i+1( ) − py

1( ) i−1( )

2Δxpy
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=0

    (4.39) 

and 
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φ y
i−1( ) 1

Δy2
+ 1
2Δy

px
1( ) i+1( ) − px

1( ) i−1( )

2Δypx
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+φ y

i( ) −2
Δy2

− 1
ms1
px
1( ) i( ) ms1

qx
1( ) i( ) +nspx

1( ) i( )( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+φ y
i+1( ) 1

Δy2
+ 1
2Δy

px
1( ) i+1( ) − px

1( ) i−1( )

2Δypx
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=0

 (4.40) 

which can be recast as matrix equations having the form: 

	
K⎡⎣ ⎤⎦ φ{ }= F{ }      (4.41) 

where [K] is a tri-diagonal matrix of size (N-2) x (N-2), {ϕ} is a vector of unknown 

displacement and {F} is the right-hand side vector. The systems of equations have the 

following boundary conditions: 

		φx
1( ) =φ y

1( ) =1  (4.42) 

		φx
N( ) =φ y

N( ) =0  (4.43) 

Hence we have the following K and F entries for ϕx: 

		
K j , j−1 =

1
Δx2

+ 1
2Δx

py
1( ) j+1( ) − py

1( ) j−1( )

2Δxpy
1( ) j( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.44-a) 

		
K j , j = −

2
Δx2

− 1
ms1
py
1( ) j( ) ms1

qy
1( ) j( ) +nspy

3( ) j( )( )  (4.44-b) 

		
K j , j+1 =

1
Δx2

− 1
2Δx

py
1( ) j+1( ) − py

1( ) j−1( )

2Δxpy
1( ) j( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.44-c) 

		
F2 = −

1
Δx2

+
py
1( ) 3( ) − py

1( ) 1( )

2Δxpy
1( ) 2( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.44-d) 

		Fj =0   j>2 (4.44-e) 
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and the following K and F entries for ϕy: 

		
Ki ,i−1 =

1
Δy2

− 1
2Δy

px
1( ) i+1( ) − px

1( ) i−1( )

2Δypx
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.45-a) 

		
Ki ,i = −

2
Δy2

− 1
ms1
px
1( ) j( ) ms1

qx
1( ) i( ) +nspx

1( ) i( )( )  (4.45-b) 

		
Ki ,i+1 =

1
Δy2

+ 1
2Δy

px
1( ) i+1( ) − px

1( ) i−1( )

2Δypx
1( ) i( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.45-c) 

		
F2 = −

1
Δy2

−
px
1( ) 3( ) − px

1( ) 1( )

2Δypx
1( ) 2( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (4.45-d) 

		Fi =0   i>2 (4.45-e) 

Imposing the essential boundary conditions from equations 4.42 and 4.43, the first and 

last row of the unknown vector ϕ and right-hand side vector F are deleted. Consequently, 

the first and last row and column of the tri-diagonal matrix are removed hence producing 

the following matrix equation: 

		

K11 K12 0 . . 0
K21 K22 K23 0 . 0
. K23 K33 K34 . 0
. . . . . .
. . 0 KN−1N−2 KN−1N−1 KN−1N

0 . . 0 KNN−1 KNN

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

φ 1( )

φ 2( )

.

.
φ N−1( )

φ N( )

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

=

F 1( )

F 2( )

.

.
F N−1( )

F N( )

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪

 (4.46) 

Since the equations of the soil displacement are coupled with the pile displacement u, and 

its derivative u’, an initial guess for the unknown ϕ’s is necessary. The pile displacement 

is then solved using the initial guess and the solution of the pile displacement is fed 

iteratively into the equations of the soil displacement until convergence is observed. The 



	 120	

convergence criteria used are 
		
1
N

φx
j+1 −φx

j ≤10−5

j=1

N−1

∑ and 
		
1
N

φ y
i+1 −φ y

i ≤10−5

i=1

N−1

∑ . The rate of 

convergence is reliant upon the discretization scheme and the choice of ϕ as initial guess. 

Although the functions ϕx and ϕy are not known a priori, their behaviour follows a 

monotonic decreasing curve. A good initial guess could be a linear function with negative 

slope spanning the X or Y domain of the problem.  As for the discretization scheme, 

higher accuracy in the solution can be attained with smaller elements at the expense of 

computational speed. We elaborate on the discretization scheme in section 4.4 when we 

present the reader with the spectral decomposition of the random processes in two-

dimensions in the solution of the continuum pile. 

 

4.2.7 Pile deflection 

We now turn our attention to the variation of the function u. We collect all the terms 

associated with δu and δ(du/dx) from equation 4.26 and set their sum to zero: 

		

EpIp
0

Lp

∫
d2u
dz2

δ d2u
dz2

⎛

⎝⎜
⎞

⎠⎟
dz + λs x , y( )+2Gs x , y( )( )uδu dφx

dx
⎛

⎝⎜
⎞

⎠⎟

2

φ y
2 +Gs x , y( )uδuφx2

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢Ω
∫

+Gs x , y( ) du
dz

⎛
⎝⎜

⎞
⎠⎟
δ du
dz

⎛
⎝⎜

⎞
⎠⎟
φx
2φ y

2 ⎤

⎦
⎥dΩ−Faδ w z=0

+Maδ
du
dz

⎛
⎝⎜

⎞
⎠⎟
z=0

=0

   (4.47) 

Integrating the terms containing δ(d2u/dz2) and δ(du/dz) we get: 
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EpIp
d4u
dz4

− Gs x , y( )φx2φ y
2 d2u
dz2

dxdy + λs x , y( )+2Gs x , y( )( ) dφx
dx

⎛

⎝⎜
⎞

⎠⎟

2

φ y
2 +Gs x , y( )φx2

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥X

∫
Y
∫

X
∫

Y
∫ udxdy

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
δudz

0

Lp

∫

+ −Gs x , y( )φx2φ y
2 d2u
dz2

+ λs x , y( )+2Gs x , y( )( ) dφx
dx

⎛

⎝⎜
⎞

⎠⎟

2

φ y
2 +Gs x , y( )φx2

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
u

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
δudxdydz

X
∫

Y
∫

Lp

∞

∫

− EpIp
d2u
dz2

−Ma

⎡

⎣
⎢

⎤

⎦
⎥δ

du
dz

⎛
⎝⎜

⎞
⎠⎟
z=0

+EpIp
d2u
dz2

δ du
dz

⎛
⎝⎜

⎞
⎠⎟
z=Lp

+ EpIp
d3u
dz3

− Gs x , y( )φx2φ y
2

X
∫

du
dz

⎛
⎝⎜

⎞
⎠⎟
dxdy −Fa

Y
∫

⎡

⎣
⎢

⎤

⎦
⎥δu z=0

− EpIp
d3u
dz3

− Gs x , y( )φx2φ y
2

X
∫

du
dz

⎛
⎝⎜

⎞
⎠⎟
dxdy

Y
∫

⎡

⎣
⎢

⎤

⎦
⎥δu z=Lp

+ Gs x , y( )φx2φ y
2 du
dz

⎛
⎝⎜

⎞
⎠⎟Y

∫
X
∫ dxdyδu

z=∞

=0

	 	(4.48)	

Delineating the soil layers with n subdivisions of the pile-length and letting the (n+1)th 

layer extend to infinity from the bottom of the pile. 

		

EpIp
d4ui
dz4

− Gsi x , y( )φx2φ y
2 d

2ui
dz2

dxdy + λsi x , y( )+2Gsi x , y( )( ) dφx
dx

⎛

⎝⎜
⎞

⎠⎟

2

φ y
2 +Gsi x , y( )φx2

dφ y

dy

⎛

⎝
⎜

⎞

⎠
⎟

2⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
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   (4.49) 

Considering the function u in the domain 0≤ z ≤ Lp, the variation δu ≠ 0 since u is not 

known a priori. Therefore, to satisfy the principle of minimum potential energy δΠ = 0 

we have: 
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 (4.50) 

From which the pile’s governing ODE can be extracted: 
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d4ui
dz4
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d2ui
dz2

+kiui =0  (4.51) 

where 
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The terms ti and ki encompass the resistance provided by the soil against the motion of 

the pile subjected to a force and moment at its head. One can recognize the similarities 

between the parameter ki in the 2-parameter continuum model and the spring stiffness k 

in the Winkler model. Analogous to the parameter k from the Winkler model, ki accounts 

for the compressive resistance of the soil. The parameter ti, in contrast accounts for the 

shear resistance in the soil.  It is evident from the above equations that ti and ki are scalar 

values having a representative value at the ith layer. In order to capture the actual 
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dependency of these parameters with respect to depth, the layers can be further 

discretized into smaller strips of soil with each strip assigned different mean values of the 

soil properties with depth.  

 

We now consider the function u in the domain Lp ≤ z < ∞. Setting all the terms associated 

with the variation δu and δ(du/dz) in the domain Lp ≤ z < ∞ to zero to satisfy δΠ = 0 

yields: 
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   (4.53) 

Equation 4.53 can be further simplified by incorporating the boundary conditions of the 

pile such that at z = ∞, the displacement due to the pile is zero. This gives the following 

ODE for the displacement due to the pile deflection beyond its base.  

−2tn+1EpIp
d2un+1
dz2

+kn+1EpIpun+1 =0    (4.54) 
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The solution to the ODE gives the displacement due to the pile at depths extending 

beyond the pile length of free-end piles. Alternatively, for piles fixed at the bottom, the 

displacement un = 0 can be prescribed at z = Lp. 

 

4.3 Closed-form solution for pile deflection 

Since we are dealing with a fourth order ODE for the pile deflection in the domain 0≤ z ≤ 

Lp, the following general solution is assumed: 

		ui z( ) =C1i( )Φ1 +C2
i( )Φ2 +C3

i( )Φ3 +C4
i( )Φ4  (4.55) 

where C1
(i). C2

(i), C3
(i) and C4

(i) are integration constants for the ith layer and Φ1, Φ2, Φ3 

and Φ4 are the individual solutions of the ODE. The integration constants can be obtained 

by ensuring boundary conditions are respected and continuity at every layer interface is 

maintained. The individual solutions on the other hand can be obtained using 

conventional methods of solving ordinary differential equations such as the method of 

initial parameters. In fact Basu (2006) obtained analytical solutions for short piles and 

long piles embedded in a multi-layered soil deposit. Recall that ti and ki are scalar values; 

hence the ODE can be categorized as linear with constant coefficients. This allows us to 

assume a general solution of the form u(z) = emz. Had we been dealing with variable 

coefficients, the solution could take the form of Bessel functions or non-exponential 

functions. Differentiating u(z) and substituting it in the general solution given by equation 

4.55, we get the auxiliary equation: 

		m
4 −2tim2 +ki =0  (4.56) 

whose solution is given by: 
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		m= ± ti ± ti
2 −ki  (4.57) 

Looking at the above equation, three cases are apparent. 

1. 		ki > ti
2  (4.58-a) 

2. 		ki < ti
2  (4.58-b) 

3. 		ki = ti
2  (4.58-c) 

We worry about the first two cases, as case 3 occurs under very stringent conditions, 

which are mostly inconceivable. Case 1 produces complex values for m of the form a+ib. 

Substituting this form back into our solution for m yields the following two equations in 

terms of the constants a and b: 		a
2 +b2 = ti  and 		2ab= ki −ti

2 . For ki < ti
2, m is a real 

number and can be readily solved using equation 4.57. Table 4.1 below compiled by 

Basu and Salgado (2008) shows the individual solutions Φ1, Φ2, Φ3 and Φ4. 
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Table 4.1: Functions of the general solution given in equation 4.55 (Source: Basu and Salgado, 2008) 

	

Relative	
magnitudes	
of	k	and	t	

Constants	
Derivatives	of	
individual	

solutions	of	pile	
deflection	

Individual	solutions	of	pile	deflection	

a	 b	 Φ1	 Φ2	 Φ3	 Φ4	

k	>	t2	 √[(1/2)(√k+t)]	 √[(1/2)(√k-t)]	

Φ	 Sinh(az)cos(bz)	 Cosh(az)cos(bz)	 Cosh(az)sin(bz)	 Sinh(az)sin(bz)	
Φ'	 aΦ1	-	bΦ4	 aΦ1	-	bΦ3	 aΦ4	+	bΦ2	 aΦ3	+	bΦ1	

Φ''	 (a2	-	b2)Φ1	-	
2abΦ3	

(a2	-	b2)Φ2	-	
2abΦ4	

(a2	-	b2)Φ3	+	
2abΦ1	

(a2	-	b2)Φ4	+	
2abΦ2	

Φ'''	 a(a2-3b2)Φ2	+	
b(b2-	3a2)Φ4	

a(a2-3b2)Φ1	+	
b(b2-	3a2)Φ3	

a(a2-3b2)Φ4	-	
b(b2-	3a2)Φ2	

a(a2-3b2)Φ3	-	
b(b2-	3a2)Φ1	

	 	 	 	 	 	 	 	

k	<	t2	 √[t	+	√(t2	-	k)]	 √[t	-	√(t2	-	k)]	

Φ	 Sinh(az)	 Cosh(az)	 Sinh(bz)	 Cosh(bz)	
Φ'	 aΦ2	 aΦ1	 bΦ4	 bΦ3	
Φ''	 a2Φ1	 a2Φ2	 b2Φ3	 b2Φ4	
Φ'''	 a3Φ2	 a3Φ1	 b3Φ4	 b3Φ3	
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Inasmuch as the soil strata are well defined, the unknowns C1
(i), C2

(i), C3
(i) and C4

(i) can be 

obtained by satisfying the boundary conditions and by ensuring continuity is not violated 

at every soil layer interface. The reader should be familiar with the different types of 

boundary conditions; namely Dirichlet, Neumann or Mixed boundary conditions. Starting 

at the pile’s head, two boundary conditions are imposed; firstly the applied load 

(Neumann), which can also be a prescribed deflection (Dirichlet), and secondly the 

applied moment (Neumann), which can be given as a prescribed rotation (Dirichlet). At 

the pile’s base, we require the residual shear force exerted by the pile to balance out the 

shear resistance provided by the (n+1)th soil layer. This is mathematically expressed by 

equation 4.59-n. Alternatively, the base could be made to replicate a fixed support 

boundary condition. Good engineering judgment is required before making such an 

assumption as a fixed-support means that the bottom of the pile now carries moment. We 

illustrate the system of equations generated from continuity and the boundary conditions 

at the head and base of the pile for a 3-layered soil deposit.  

 

		
M1 z=H0

=Ma ; 
		
S1 z=H0

= Fa  (4.59-a) 

		C1
1( )Φ31 H0( )+C21( )Φ32 H0( )+C31( )Φ33 H0( )+C41( )Φ34 H0( ) =Ma  (4.59-b) 

		C1
1( )Φ41 H0( )+C21( )Φ42 H0( )+C31( )Φ43 H0( )+C41( )Φ44 H0( ) = Fa  (4.59-c) 

		
u1 z=H1

=u2 z=H1
; 
		
θ1 z=H1

=θ2 z=H1
; 
		
M1 z=H1

=M2 z=H1
; 
		
S1 z=H1

= S2 z=H1
 (4.59-d) 

C1
2( )Φ31 H2( )+C22( )Φ32 H2( )+C32( )Φ33 H2( )+C42( )Φ34 H2( )−C13( )Φ31 H2( )−C23( )Φ32 H2( )−C33( )Φ33 H2( )−C43( )Φ34 H2( ) =0  (4.59-e) 

C1
1( )Φ21 H1( )+C21( )Φ22 H1( )+C31( )Φ23 H1( )+C41( )Φ24 H1( )−C12( )Φ21 H1( )−C22( )Φ22 H1( )−C32( )Φ23 H1( )−C42( )Φ24 H1( ) =0  (4.59-f) 

C1
1( )Φ31 H1( )+C21( )Φ32 H1( )+C31( )Φ33 H1( )+C41( )Φ34 H1( )−C12( )Φ31 H1( )−C22( )Φ32 H1( )−C32( )Φ33 H1( )−C42( )Φ34 H1( ) =0  (4.59-g) 
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C1
1( )Φ41 H1( )+C21( )Φ42 H1( )+C31( )Φ43 H1( )+C41( )Φ44 H1( )−C12( )Φ41 H1( )−C22( )Φ42 H1( )−C32( )Φ43 H1( )−C42( )Φ44 H1( ) =0  (4.59-h) 

		
u2 z=H2

=u3 z=H2
; 
		
θ2 z=H2

=θ3 z=H2
; 
		
M2 z=H2

=M3 z=H2
; 
		
S2 z=H2

= S3 z=H2
 (4.59-i) 

		C1
2( )Φ11 H2( )+C22( )Φ12 H2( )+C32( )Φ13 H2( )+C42( )Φ14 H2( )−C13( )Φ11 H2( )−C23( )Φ12 H2( )−C33( )Φ13 H2( )−C43( )Φ14 H2( ) =0  (4.59-j) 

		C1
2( )Φ21 H2( )+C22( )Φ22 H2( )+C32( )Φ23 H2( )+C42( )Φ24 H2( )−C13( )Φ21 H2( )−C23( )Φ22 H2( )−C33( )Φ23 H2( )−C43( )Φ24 H2( ) =0  (4.59-k) 

		C1
2( )Φ31 H2( )+C22( )Φ32 H2( )+C32( )Φ33 H2( )+C42( )Φ34 H2( )−C13( )Φ31 H2( )−C23( )Φ32 H2( )−C33( )Φ33 H2( )−C43( )Φ34 H2( ) =0  (4.59-l) 

		C1
2( )Φ41 H2( )+C22( )Φ42 H2( )+C32( )Φ43 H2( )+C42( )Φ44 H2( )−C13( )Φ41 H2( )−C23( )Φ42 H2( )−C33( )Φ43 H2( )−C43( )Φ44 H2( ) =0   (4.59-m) 

		
M3 z=H3

=0 ; 
		
S3 z=H3

= 2kntnζun  (4.59-n) 

		C1
3( )Φ31 H3( )+C23( )Φ32 H3( )+C33( )Φ33 H3( )+C43( )Φ34 H3( ) =0  (4.59-o) 

		C1
3( )Φ31 H3( )+C23( )Φ32 H3( )+C33( )Φ33 H3( )+C43( )Φ34 H3( ) = 2kntnζun  (4.59-p) 

The above equations can be recast as a matrix equation and solved simultaneously. The 

matrix form of the equation is given by: 

	
Φ⎡⎣ ⎤⎦ C{ }= R{ }  (4.60) 

where the entries of the matrix [Φ] are the individual solutions and their derivatives 

evaluated at the soil interface such that the first subscript ‘i’ denoting the ith row of the 

matrix is also the (i-1)th derivative of the jth individual solution at the jth column i.e 

 		Φij =Φ j
i−1( )  for i < 4. For i = 4, 		Φ4 j =Φ j

3( ) −2tiΦ j
1( ) , where “i” this time corresponds to 

the ith layer. {C} is the vector of unknowns C1
(i). C2

(i), C3
(i) and C4

(i) and {R} is the right-

hand side vector consisting of mostly zeros. The values Hi corresponds to the depth of the 

soil interface from the surface, z = 0 and ζ = tn+1/tn. 
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4.4 Solution Algorithm 

The solution to this chapter’s problem consists of three main parts, notably the pair of soil 

displacement functions ϕx and ϕy and the pile deflection, u. Knowledge of at least two out 

of these three unknown functions is necessary to solve the problem. Since we know 

approximately the behaviour of the soil profile, we start with initial guesses of ϕx and ϕy. 

We assume a linear function starting from a value of 1 at one edge of the pile to zero at 

some distance x or y sufficiently far such that no boundary effects are taken into 

consideration. Values of the soil’s modulus and Poisson ratio are then generated using the 

2D KL expansion. From the spectral decomposition of these soil properties we then 

compute Lame’s constants as functions of the space variables x and y. The statistical 

properties of the soil Young’s modulus and Poisson’s ratio as a function of space for each 

layer are passed to a subroutine that generates these parameters’ random fields. Figure 

4.4 shows how the spatially random soil properties map over the soil domain.  
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Figure 4.4: 2-D Random field of soil properties spanning problem domain 

Evidently, several iterations are required, for which the values of ti and ki are computed 

numerically. A trapezoidal rule is used for the numerical integration of ti and ki. 

Thereafter, the system of equations formed from the pile differential equation is 

simultaneously solved. From the pile deflection, the soil-displacement functions can be 

computed and used as new guesses in the next iteration. The convergence criteria used 

are 
		
1
N

φx
j+1 −φx

j ≤10−5

j=1

N−1

∑ and 
		
1
N

φ y
i+1 −φ y

i ≤10−5

i=1

N−1

∑ where N is the number of nodes in the 

discretization scheme of the finite difference method employed to solve the soil 

displacement functions. The flowchart shown in figure 4.5 lays out the implementation of 

a two-dimensional KL expansion in the analysis of a two-parameter continuum model of 

a pile.  
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Figure 4.5: Flowchart of stochastic analysis of 2-parameter continuum pile 
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4.5 Numerical Examples 

In this section, we apply the developed method to two examples of laterally loaded piles 

embedded in a multilayered soil, which were previously analyzed, by Basu and Salgado 

(2008). In the first example, we consider a pile subjected to a lateral load of 300kN 

embedded in a four-layer soil profile with the thickness of each layer given by Hi = 2m, 

H2 = 5m, H3 = 8m and the last layer extending to an infinitely large depth. The mean 

soil’s Young’s modulus of each layer is: Es1 = 20MPa, Es2 = 35MPa, Es3 = 50MPa and 

Es4 = 80Mpa respectively. The mean soil’s Poisson ratio of each layer is:  υs1 = 0.35, υs2 

= 0.25, υs3 = 0.20 and υs4 = 0.15 respectively. The pile has a cross-sectional area of 0.5m 

x 0.5m and is 25m long with a Young’s modulus, Ep = 25 x 106kPa. The soil’s statistical 

properties are summarized in table 4.2.  

Table 4.2 Statistical moments of soil properties for example 1 

Soil	Layer,	i	 1	 2	 3	 4	
Soil	Statistical	parameters	in	the	x-direction	

<Es,i>	[kPa]	 2.00E+04	 3.50E+04	 5.00E+04	 8.00E+04	
σEs,I	[kPa]	 2.20E+02	 2.30E+02	 2.00E+02	 2.10E+02	
<νs,i>	 0.35	 0.25	 0.2	 0.15	
σν,I	 1.10E-02	 1.20E-02	 1.10E-02	 9.50E-03	

Soil	Statistical	parameters	in	the	y-direction	
<Es,i>	[kPa]	 2.00E+04	 3.50E+04	 5.00E+04	 8.00E+04	
σEs,I	[kPa]	 2.50E+02	 2.40E+02	 2.30E+02	 2.20E+02	
<νs,i>	 0.35	 0.25	 0.2	 0.15	
σν,I	 8.00E-03	 5.00E-03	 4.50E-03	 4.00E-03	
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Figure 4.6: Mean pile deflection for example 1 

 

Figure 4.7: Mean pile rotation for example 1 
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Figure 4.8: Mean pile moment for example 1 

 

Figure 4.9: Mean pile shear for example 1 
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A few observations can be made from the results: firstly we note that close to points at 

which boundary conditions are in effect, the mean result converges to the deterministic 

solution. This makes sense as the boundary conditions are imposed and are thus known 

(deterministic). Noteworthy also is a deterministic length, Ldet so to speak in the range 

15m<Z<25m, where the mean response and the deterministic solution are almost 

identical. We suspect that this deterministic length is in fact, the critical length of the pile. 

The critical length of a pile is essentially a threshold length such that any additional pile 

length does not have any impact on the lateral pile response. From this definition, a new 

definition with respect to the pile’s random behaviour can be postulated. If the critical 

length delineates the pile into two parts, one where the lateral beam response is not 

impacted and the other where changes in the response do occur; it can be said from a 

statistical point of view that one part is deterministic, while the other is probabilistic. A 

better depiction of this phenomenon can be captured looking at the variance of the pile’s 

response with respect to its length.  

 

The second observation, which we can make, is that the difference between the mean 

response and the deterministic solution of the pile is larger for the moment and shear than 

the pile deflection and rotation. This is attributed to transformation errors mentioned in 

Chapter 1 of this thesis. Because the rotation, moment and shear of the pile are obtained 

from its deflected shape, the accuracy of the former heavily relies on the accuracy of the 

pile deflection. The reader is therefore advised to tread carefully when reporting the shear 

or moment of the pile. Higher orders of expansions are recommended and as we will see 

special care should be given to piles of significant lengths. 
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In the second example, we consider a much longer pile of length 40m, with a cross-

sectional area of 2.8m x 0.8m and a Young’s modulus, Ep = 25 x 106kPa. The pile is 

embedded in a four-layer soil deposit having thicknesses, H1 = 1.5m, H2 = 3.5m, H3 = 

8.5m and the last layer extending far beyond the pile’s base. The mean soil’s Young’s 

modulus are: Es1 = 20MPa, Es2 = 25MPa, Es3 = 40MPa, and Es4 = 80MPa respectively. 

The mean soil’s Poisson ratio are: υs1 = 0.35, υs2 = 0.30, υs3 = 0.25 and υs4 = 0.20 

respectively. A load of 3000kN is applied at the top of the pile parallel to the x-axis along 

the cross-section longer dimension (a = 1.4m). The soil’s statistical properties are 

summarized in table 4.3. 

Table 4.3: Statistical moments of soil properties for example 2 

Soil	Layer,	i	 1	 2	 3	 4	
Soil	Statistical	parameters	in	the	x-direction	

<Es,i>	[kPa]	 2.00E+04	 2.50E+04	 4.00E+04	 8.00E+04	
σEs,I	[kPa]	 2.20E+02	 2.30E+02	 2.00E+02	 2.10E+02	
<νs,i>	 0.35	 0.30	 0.25	 0.20	
σν,I	 1.10E-02	 1.20E-02	 1.10E-02	 9.50E-03	

Soil	Statistical	parameters	in	the	y-direction	
<Es,i>	[kPa]	 2.00E+04	 2.50E+04	 4.00E+04	 8.00E+04	
σEs,I	[kPa]	 2.50E+02	 2.40E+02	 2.30E+02	 2.20E+02	
<νs,i>	 0.35	 0.30	 0.25	 0.20	
σν,I	 8.00E-03	 5.00E-03	 4.50E-03	 4.00E-03	
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Figure 4.10: Mean pile deflection for example 2 

 

Figure 4.11: Mean pile rotation for example 2 
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Figure 4.12: Mean pile moment for example 2 

 

Figure 4.13: Mean pile shear for example 2 
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In the second example, we note a larger difference between the mean responses and the 

deterministic solutions. This is a result of the higher slenderness ratio of the pile in 

example 2. When subjected to a constant load, the potential energy of the pile increases 

with length. From a physical point of view, this makes sense since longer piles take 

longer to reach equilibrium. This translates to a response having a larger variance, which 

aligns with the theory of stability for a one-dimensional beam. Hence, the statistical 

results of our analyses support the mechanical behaviour the system.  

4.6 Summary 

A stochastic method in which a rectangular pile subjected to a lateral force and embedded 

in multiple soil layers each having spatially random properties is developed in Chapter 4. 

The random properties of each soil layer are represented using a 2-dimensional 

Karhunen-Loeve expansion. The soil’s Young’s modulus and the Poisson’s ratio are 

assumed to be spatially random with exponential covariance. Thereafter, an analytical 

solution for the pile deflection involving the soil displacement is developed using 

variational principles. The random soil properties are introduced in the governing 

differential equations and an iterative solution is devised. An initial guess for the 

functions ϕx and ϕy is required, after which the pile’s deflection is calculated. Using the 

pile’s deflection, new values of ϕx and ϕy are calculated. This process is repeated until the 

absolute sum of the difference between the averages of two consecutive iterations of ϕx 

and ϕy converges. Two examples are considered, from which statistical inferences are 

made. In the first example a 25m long pile embedded in four layers of soil is analyzed. 

The mean deflection is in close agreement with the deterministic solution. The rotation, 

moment, and shear are also produced. Greater disparities are noted in the mean response 
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of these values. A second example involving a 40m long pile embedded in a four-layer 

soil is analyzed. In this example, the mean response shows less agreement with the 

deterministic solution. This increase in disparity is attributed to the longer slenderness 

ratio of the pile.  
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CHAPTER 5.  

TIME EVOLUTION OF STOCHASTIC CONSTITUTIVE 

MODELS 

5.1 Introduction 

In addition to the foregoing analyses, let us now closely examine the evolution of 

probabilistic constitutive models across time. In this chapter, elastic and elasto-plastic 

constitutive models with random material properties are analyzed by way of the Fokker-

Plank-Kolmogorov equation (FPKE). This approach, which was inspired by the work of 

many great scientists on Brownian motion, was first adapted to the field of civil 

engineering in 2003 by Kavvas (2003) for the purpose of investigating nonlinear 

hydrologic processes. In his work, Kavvas demonstrated that the conservation equations 

of hydrologic processes governed by non-linear PDEs could be transformed into linear 

deterministic PDEs whose solutions are the probability density functions of the 

hydrologic systems. Recognizing the similarities between non-linear conservation 

equations of hydrologic systems and non-linear constitutive equations, Kallol et al (2007) 

adapted the methodology to the probabilistic study of stress-strain behaviour of elastic 

and elasto-plastic materials.  

 

Although in practice we could use the KL expansion introduced in Chapter 3 to propagate 

uncertainties in the material properties of non-linear constitutive models, the method 

suffers from “closure problems”, where the computation of higher-order moments are 
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required to solve for lower-order moments. Moreover, as we have seen, the KL 

expansion, like perturbation methods, tends to underestimate the variability in the 

response of mechanical systems when large coefficients of variations for the input 

properties are assumed. And while it is the preferred method over Monte Carlo 

simulations for its computational efficiency, the constitutive model assumed undoubtedly 

impacts the accuracy of the method. 

 

The goal of introducing uncertainties at the constitutive level is to have the full picture. 

The influence of material fluctuations on the stress-strain behaviour as we will see cannot 

be ignored. This is especially true for complicated non-linear material constitutive laws 

as is the case for soil models. Therefore, to truly encompass all sources of uncertainties, 

and provide a complete probabilistic framework, the evolution of stress must be treated as 

a random process.  

 

As we delve into the preliminary work done by Kavvas (2003) on the development of a 

Eulerian-Lagrangian FPKE for non-linear hydrologic systems, we draw parallels between 

conservation equations of hydrologic systems and constitutive equations of elastic and 

elasto-plastic models. The methodology is developed for one-dimensional and three-

dimensional classes of problems using Kallol’s framework (2007). In the first class of 

problems, a linear elastic shear constitutive model along with a Von Mises model is 

considered. To conclude, we then apply the methodology to a 3-dimensional hypo-elastic 

model.  
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5.2 Analysis 

In this section, we present the mathematical derivation of the FPKE for a general 

constitutive law. The equations are derived in a one-dimensional framework and 

extended to a three-dimension framework with two numerical examples provided for 

each framework. Elastic and elasto-plastic constitutive models are considered and their 

solutions using the FPKE are compared to Monte Carlo simulations. The method’s 

performance and limitations are addressed and a discussion of the results is provided at 

the end of the chapter.  

 

5.2.1 Probabilistic constitutive laws in one-dimension 

More than a century has passed since Albert Einstein’s paper on the theory of Brownian 

motion, and it has been several decades since the derivation of the Fokker-Planck-

Kolmogorov Equation (Fokker, 1914; Planck, 1917; Kolmogorov, 1931), yet here we are 

still reaping the fruits of the labor of exceptional researchers. In appreciation for their 

work, a brief historical account is given on the development of the one-dimensional 

Fokker-Planck equation and how it made its way to Kavvas’ analysis of hydrological 

systems to ultimately be employed by Kallol in the analysis of probabilistic constitutive 

models.   

 

Starting with the derivation of the Fokker-Plank equation for a Brownian particle, let us 

consider a general Langevin equation for the dynamics of a particle in a “noisy” 

surrounding medium.  
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dX t( )
dt

=ν X t( ) ,t( )+Γ t( )  (5.1) 

which can simply be written as: 

		
dX t( )
dt

=η x ,ν ,t( )  (5.2) 

where 	
X t( )  is the random position of a particle at time t, 		ν X t( ) ,t( )  is a general friction 

term, and 	
Γ t( )  is the Gaussian White Noise (GWN) with the following properties: 

		 Γ t( ) =0  (5.3-a) 

		 Γ t1( )Γ t2( ) = aδ t2 −t1( )  (5.3-b) 

Because the GWN, 	
Γ t( )  is a stochastic variable, 		η x ,ν ,t( ) will be different for each 

realization of 	
Γ t( ) . However, these changes happen almost instantaneously and are very 

hard to observe. What is in fact observed is the average motion of the particle. We 

therefore introduce the following probability measure, which is the average of 		η x ,ν ,t( )
over all the realizations of Γ. 

P X t( ) ,t( ) = η X t( ) ,t( )
Γ

 (5.4) 

Enforcing continuity in the phase-space of X(t) such that probability is conserved, we 

have the following equation: 

		
∂
∂t
η X t( ) ,t( )+ ∂

∂X
⋅ dX
dt

η X t( ) ,t( )⎡

⎣
⎢

⎤

⎦
⎥ =0  (5.5) 

Substituting the above equation, and the probability density into Langevin’s equation 

yields the second order PDE known as the Diffusion equation: 
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∂
∂t
P X t( ) ,t( ) = − ∂

∂X
ν X t( )( )P X t( ) ,t( )( )+ 12

∂
∂X

⋅a⋅ ∂
∂X

P X t( ) ,t( )  (5.6) 

Without going into details, we will now go over Kavvas’ derivation of the same equation 

for a probabilistic hydrologic system. This exercise will bring forth the similarities 

between the dynamical behaviour of a Brownian particle and an upscaled hydrologic 

system. It is worth mentioning that the probabilistic nature of Kavvas’ problem is rooted 

in the upscaling of non-linear hydrologic systems. Those problems have been tackled by 

means of ensemble averaging point-location conservation equations. In his paper, 

Kavvas’ defines a system of point-scale hydrologic conservation equations by the 

following equation: 

		 
∂
!
H x ,t( )
∂t

=
!
η
!
H ,
!
A,
!
f ;x ,t( )  (5.7) 

where 	 !
H  is a state vector containing all the state variables from the hydrologic system, 	 !

A

is tensor of all other parameters in the hydrologic system and 
	 !
f  is the forcing vector. The 

resemblance of equation 5.2 with equation 5.7 is flagrant. We note that just like X, H can 

be thought of as a point in a phase-space whose evolution is continuous in time, like the 

velocity of the Brownian particle. Equation 5.7 is therefore our Langevin’s equivalent 

equation. Since the evolution of 	 !
H  at large scales entails fluctuations akin to the GWN, 

we can define a phase density ρ for the state variables 	 !
H  after which we can express the 

continuity mathematically as follows:  

		 

∂ρ
!
H x ,t( ) ,t( )
∂t

= − ∂
∂Hi

ηi !
H x ,t( ) ,

!
A x ,t( ) ,

!
f x ,t( )⎡⎣ ⎤⎦⋅ρ !

H x ,t( ) ,t⎡⎣ ⎤⎦  (5.8) 
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The above equation is none but Kubo’s stochastic Liouville equation (Kubo 1963). 

Taking the expectation (average) on both sides and using the equivalence

		 P !H x ,t( ) ,t( )≡ ρ
!
H x ,t( ) ,t( ) , we eventually obtain the FPKE. We will go in more details 

shortly when deriving the FPKE for a general constitutive law.  

 

From Brownian motion to flow in hydrologic systems, the types of differential equations 

that we have dealt with thus far all have one thing in common: they represent the 

evolution of one or more state parameters in a medium of fluctuating variables.  Another 

common denominator among these differential equations is their non-linear 

characteristics, which as we will see is not a necessary condition for the application of the 

FPKE but rather an incentive as one of the greatest strength of the FPKE is that it 

linearizes non-linear PDEs. We will also see that the FPKE can be equally applied to 

linear ODEs such as an elastic constitutive rate equation. Having introduced the basic 

concepts of the FPKE, we shall now take an in-depth look at its derivation with regards to 

a general constitutive rate equation defined by: 

		
dσ ij xt ,t( )

dt
= Dijkl xt ,t( )dεkl xt ,t( )

dt
 (5.9) 

where Dijkl represents the material stiffness and can be either elastic, or elasto-plastic 

such that: 

		
Dijkl =

Dijkl
el ,					when	f 	<	0∨ f =0∧df <0( )
Dijkl
ep , 																						when	f =0∨df =0

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (5.10) 
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and 
	
Dijkl
ep = Dijkl

el − Dijkl
pl , where the symbol ‘

 
i ’ in this equation is the Macauley bracket 

(not to be mistaken with the inner product or expectation operator) which takes the value 

	
Dijkl
pl if plasticity is in effect, and 0 otherwise; ‘f’ is the yield function and depends on the 

stress tensor σij, as well as internal variables q* and the direction of their evolution r*. 

Essentially, the mathematical expression on the right representing the conditions for 

yielding dictates the form of Dijkl (linear or non-linear). In the latter case, Dijkl becomes a 

function of the plastic surface, and the yield surface, which are themselves functions of 

the stress tensor, and internal variables. We can therefore amalgamate all the independent 

variables, which the stiffness tensor Dijkl depends upon into a general tensor βijkl and 

generalize equation 5.9 further as follows: 

		
dσ ij xt ,t( )

dt
= βijkl σ ij ,Dijklel ,q*,r*;xt ,t( )dεkl xt ,t( )

dt
 (5.11) 

Evident from the index notation, the above equation is a 3-D description of the material 

constitutive rate equation. The number of indices denotes the order of each tensor, and 

the repeated indices on the right-hand side of the equation imply the double summation 

over the indices k and l respectively. This can be interpreted as a double contraction of 

the fourth order tensor βijkl with the second-order strain rate tensor. Shifting our view to a 

one-dimensional framework, we rewrite equation 5.11 in the following manner: 

		
dσ xt ,t( )
dt

= β σ ,Del ,q,r;xt ,t( )dε xt ,t( )
dt

 (5.12) 

It is now a matter of introducing uncertainties into the one-dimensional constitutive rate 

equation. This can be accomplished in three different ways: the material properties can be 

assumed to be random; the forcing function can be random, or it can be a combination of 
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both. Random material properties yield differential equations with stochastic coefficients 

while random forcing functions yield differential equations with stochastic forcing. 

Without loss of generality, let us assume the material properties and the forcing function 

to be random. We are therefore left with an equation whose right hand-side is stochastic, 

and represented by the function η: 

		
η σ ,Del ,q,r ,ε ;xt ,t( ) = β σ ,Del ,q,r;xt ,t( )dε xt ,t( )

dt
 (5.13) 

such that we now have the following equation: 

		
∂σ xt ,t( )

∂t
=η σ ,Del ,q,r ,ε ;xt ,t( )  (5.14) 

with initial conditions: 

		σ x ,0( ) =σ 0  (5.15) 

In the above form, the constitutive rate equation bears overwhelming similarity with the 

conservation equations of hydrologic systems and the equation of the velocity of a 

Brownian particle. The stress state can therefore be idealized as a point in the σ-space, 

where the above equation represents the velocity of that point provided that at time t0, the 

point is located at σ0 in the σ-space. Given the stochastic nature of σ, several trajectories 

are possible. These seemingly aleatory trajectories, when analyzed in a unit volume of the 

phase-space (σ-space) give rise to a phase density ρ of σ(x,t). Enforcing continuity of the 

phase density, which is tantamount to the conservation of the points σ in the phase-space 

(σ-space), the Kubo’s stochastic Liouville equation is obtained (Kubo, 1963): 

		
∂ρ σ x ,t( ) ,t( )

∂t
= − ∂

∂σ
η σ x ,t( ) ,Del x( ) ,q x( ) ,r x( ) ,ε x ,t( )⎡⎣ ⎤⎦⋅ρ σ x ,t( ) ,t⎡⎣ ⎤⎦  (5.16) 

having initial condition: 
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	ρ σ ,0( ) =δ σ −σ 0( )  (5.17) 

where δ is the Dirac delta function, and the equation above signifies that at time t0, σ 

takes on a “sure” value of σ0. This is the probabilistic restatement of the initial condition 

given in equation 5.15. 

Using Van Kampen’s Lemma, the probability density function reads: 

		P σ ,t( ) = ρ σ ,t( )  (5.18) 

where this time the ‘
 
i ’  implies the expectation operation on the phase density. Van 

Kampen’s Lemma is reminiscing of the observable probability introduced for the 

evolution of a Brownian particle. Taking the ensemble average of the stochastic 

differential equation 5.16 yields:  

		

∂ ρ σ xt ,t( ) ,t( )
∂t

=

− ∂
∂σ

η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( )⎡
⎣⎢{

− dτCOV0 η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( );⎡
⎣

0

t

∫
∂η σ xt−τ ,t −τ( ) ,Del xt−τ( ) ,q xt−τ( ) ,r xt−τ( )ε xt−τ ,t −τ( )( )

∂σ

⎤

⎦

⎥
⎥

⎤

⎦

⎥
⎥
ρ σ xt ,t( ) ,t( )

⎫
⎬
⎪

⎭⎪

+ ∂
∂σ

dτCOV0 η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( );⎡
⎣

0

t

∫
⎡

⎣
⎢
⎢

⎧
⎨
⎪

⎩⎪

η σ xt−τ ,t −τ( ) ,Del xt−τ( ) ,q xt−τ( ) ,r xt−τ( ) ,ε xt−τ ,t −τ( )( )⎤⎦⎤⎦⎥
∂ ρ σ xt ,t( ) ,t( )

∂σ

⎫
⎬
⎪

⎭⎪

 (5.19) 
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The derivation follows that of Kavvas and Karakas (Kavvas et al 2003) and is shown in 

Appendix B of this thesis. Equation 5.19 is exact to second order i.e up to order of the 

covariance of η in time where COV0 is the time ordered covariance function given by: 

		COV0 η x ,t1( ) ,η x ,t2( )⎡⎣ ⎤⎦ = η x ,t1( )η x ,t2( ) − η x ,t1( ) ⋅ η x ,t2( )  (5.20) 

Substituting the probability density function 		P σ x ,t( ) ,t( )≡ ρ σ x ,t( ) ,t( ) into equation 

5.19 and rearranging, a linear second order parabolic PDE also known as the FPKE is 

obtained: 

		

∂P σ xt ,t( ) ,t( )
∂t

=

− ∂
∂σ

η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( ){⎡⎣⎢
+ dτCOV0

∂η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( )
∂σ

;
⎡

⎣

⎢
⎢0

t

∫

η σ xt−τ ,t −τ( ) ,Del xt−τ( ) ,q xt−τ( ) ,r xt−τ( ) ,ε xt−τ ,t −τ( )( )⎤⎦}P σ xt ,t( ) ,t( )⎤⎦⎥
+ ∂2

∂σ 2 dτCOV0 η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( );⎡
⎣

0

t

∫
⎧
⎨
⎪

⎩⎪

⎡

⎣
⎢
⎢

η σ xt−τ ,t −τ( ) ,Del xt−τ( ) ,q xt−τ( ) ,r xt−τ( ) ,ε xt−τ ,t −τ( )( )⎤⎦}P σ xt ,t( ) ,t( )⎤⎦⎥

 (5.21) 

which is exact to second order. Taking a closer look at equation 5.14, we note that the 

non-linear constitutive rate equation has effectively been transformed into a linear second 

order PDE whose solution is the probability density function of the stress at different 

times t. Specifying the boundary and initial conditions suffice to solve the above linear 

PDE in a straightforward manner.  
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Another remark worth mentioning is the fact that equation 5.21 is a mixed Eulerian-

Lagrangian equation. This comes to no surprise given its origins in hydrological systems 

describing fluid flow. We can accurately describe the behaviour of the system at a 

reference position xt analogous to the visualization of water as it passes a fixed point 

while the observer sits on the bank of a river. Ideally, we would also like a Lagrangian 

description, like the motion of water from the perspective of someone sitting and drifting 

in a boat. In the above equation, using small strain theory, a mixed Eulerian-lagrangian 

description can be provided. The behaviour of the system at a position xt-τ can be found 

using the strain rate through the following relationship: 

	 
dε = !ετ =

xt − xt−τ
xt

 (5.22) 

After solving for the probability density function P(σ(t),t), the statistical moments can be 

found by the expectation operation. 

• The mean is given by: 

	
σ t( ) = σ t( )P σ t( )( )dσ t( )

−∞

+∞

∫  (5.23) 

• The variance is given by: 

		
σ t( )2 − σ t( ) 2

= σ t( )2P σ t( )( )dσ t( )
−∞

+∞

∫ − σ t( )P σ t( )( )dσ t( )
−∞

+∞

∫
⎛

⎝
⎜

⎞

⎠
⎟

2

 (5.24) 

• The auto-correlation function is given by: 

		
σ t1( )σ t2( ) = σ t1( )σ t2( )P2 σ t1( ) ,t1;σ t2( ) ,t2( )

−∞

+∞

∫ dσ t1( )dσ t2( )
−∞

+∞

∫  (5.25) 

• The auto-covariance function is given by: 
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		 σ t1( )σ t2( ) = σ t1( )σ t2( ) − σ t1( ) σ t2( )  (5.26) 

Note that the stochastic differential equations can be solved by other means, which are 

not covered in this thesis. One way is to employ Itô or Stratonovich calculus. We mention 

it here in passing as these methods are the pillars of Stochastic Differential Equations 

(SDEs). It is in the readers’ best interest to refer to Van Kampen’s Stochastic Processes in 

Physics and Chemistry (Kampen, 2011), or Gardiner’s Handbook of Stochastic Methods 

for Physics, Chemistry, and the Natural Sciences (Gardiner, 2004) for more information. 

 

5.2.2 Solution Algorithm for 1-D Development 

The general solution of linear second-order parabolic PDEs are well documented and can 

be found in any books on PDEs. We will use a numerical approximation to solve the 

FPKE. For the sake of simplicity, we use a finite difference scheme, more specifically the 

central difference method in which the derivatives of the probability density function are 

approximated as follows: 

		
∂P
∂σ

= P
i+1( ) −P i( )

2Δσ  (5.27) 

		
∂2P
∂σ 2 =

P i+1( ) −2P i( ) +P i−1( )

Δσ 2  (5.28) 

where the superscript represents the location of a node in the discretized σ-space and Δσ 

is the distance between two consecutive nodes in an equidistance discretization. We can 

rewrite equation 5.21 in a more compact form as shown below: 

		
∂P σ t( ) ,t( )

∂t
= − ∂

∂σ
P σ t( ) ,t( )N1{ }+ ∂2

∂σ 2 P σ t( ) ,t( )N2{ }  (5.29) 
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Factoring the above equation further we obtain: 

		

∂P σ t( ) ,t( )
∂t

= − ∂
∂σ

P σ t( ) ,t( )N1 −
∂
∂σ

P σ t( ) ,t( )N2{ }⎡

⎣
⎢

⎤

⎦
⎥  (5.30-a) 

= − ∂ζ
∂σ

 (5.30-b) 

where N1 and N2 are coefficients of the FPKE having the following equations: 

		

N1 = η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( ){
+ dτCOV0

∂η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( )
∂σ

;
⎡

⎣

⎢
⎢0

t

∫

η σ xt−τ ,t −τ( ) ,Del xt−τ( ) ,q xt−τ( ) ,r xt−τ( ) ,ε xt−τ ,t −τ( )( )⎤⎦}
 (5.31-a) 

		

N2 = dτCOV0 η σ xt ,t( ) ,Del xt( ) ,q xt( ) ,r xt( ) ,ε xt ,t( )( );⎡
⎣

0

t

∫
⎧
⎨
⎪

⎩⎪

⎡

⎣
⎢
⎢

η σ xt−τ ,t −τ( ) ,Del xt−τ( ) ,q xt−τ( ) ,r xt−τ( ) ,ε xt−τ ,t −τ( )( )⎤⎦}
 (5.31-b) 

Notice the similarity with the Diffusion equation i.e equation 5.6. The coefficients of the 

equation are analogous to the diffusive and advective coefficients. Furthermore, one can 

say that ∂ζ
∂σ

 is the probability flux. This is because the probability density is the state 

variable, and equation 5.29 describes the continuity of the probability density. Using the 

product rule on the right-hand side of equation 5.30-a yields: 

		
∂P
∂t

= − P
∂N1
∂σ

+N1
∂P
∂σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+ ∂
∂σ

P
∂N2
∂σ

+N2
∂P
∂σ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (5.32-a) 

		
= −P

∂N1
∂σ

−N1
∂P
∂σ

+P
∂2N2
∂σ 2 +2∂P∂N2

∂σ 2 +N2
∂2p
∂σ 2  (5.32-b) 
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= P

∂2N2
∂σ 2 −

∂N1
∂σ

⎛

⎝
⎜

⎞

⎠
⎟ +

∂P
∂σ

2∂N2
∂σ

−N1
⎛

⎝⎜
⎞

⎠⎟
+ ∂2P
∂σ 2 N2  (5.32-c) 

Substituting equations 5.27 and 5.28 of the central difference scheme into the above 

equation we get: 

		

∂P i( )

∂t
= P i−1( ) N1

i( )

2Δσ +
N2

i( )

Δσ
− 1
Δσ

∂N2
i( )

∂σ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−P i( ) ∂N1

i( )

∂σ
+
2N2

i( )
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∂2N2

i( )
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⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+P i+1( ) −
N1

i( )

2Δσ +
N2

i( )
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1
Δσ

∂N2
i( )

∂σ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (5.33) 

The final pieces needed to solve the system of simultaneous equations generated from the 

finite difference method are the boundary and initial conditions. In order to solve the 

second order PDE, two boundary conditions are necessary. Since the probability density 

within the system is conserved, we expect no leaking to occur at the boundary and 

therefore reflective barriers are used as boundary conditions. This is expressed 

mathematically as follows: 

		ζ σ ,t( )
σ =±∞

=0  (5.34) 

As for the initial condition, the latter can be prescribed deterministically through the use 

of the Dirac delta function or stochastically via a Normal PDF.  In the former case, the 

PDF assumes the Dirac Delta function at time t = 0. Therefore, the initial condition (I.C) 

is interpreted as a peak located at a starting value of stress σ0 such that P(σ,0) = δ(σ0). 

Substituting the boundary and initial conditions in the system of simultaneous equations, 

the probability density will propagate through diffusion and advection controlled by 

parameters of the constitutive law being used. 

 



	 155	

5.2.3 Probabilistic linear elastic shear constitute law 

Using the methodology developed for a general 1-D constitutive law, let’s look into the 

stochastic behaviour of a point being sheared. For linear elastic shear behaviour, the 

constitutive rate equation reads: 

		
dσ 12
dt

=G
dε12
dt

 (5.35) 

where the shear modulus G, of the material and the strain rate dε12/dt are both assumed to 

be random. And from our assumption, we can now utilize η having the definition: 

		
η =G

dε12
dt

 (5.36) 

Substituting equation 5.36 into the FPKE given in equation 5.21, the resulting PDE for 

the probabilistic behaviour of a 1-D point location scale linear elastic shear model is 

obtained: 

		

∂P σ 12 t( ) ,t( )
∂t

= − ∂
∂σ 12

G
dε12 t( )
dt

⎧
⎨
⎪

⎩⎪

⎡

⎣

⎢
⎢

+ dτCOV0
∂

∂σ 12
G
dε12 t( )
dt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫
⎫
⎬
⎪

⎭⎪
P σ 12 t( ) ,t( )

⎤

⎦

⎥
⎥

+ ∂2

∂σ 12
2 dτCOV0 G

dε12 t( )
dt

;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
P σ 12 t( ) ,t( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (5.37) 

Turning our attention to the first coefficient, we note that the random process η is 

independent of the shear stress σ12. The first term of the covariance is therefore zero, and 

the covariance of zero with another random process is also zero. Hence, equation 5.37 

can be simplified to the following equation: 
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∂P σ 12 t( ) ,t( )
∂t

= − ∂
∂σ 12

G
dε12 t( )
dt

P σ 12 t( ) ,t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ∂2

∂σ 12
2 dτCOV0 G

dε12 t( )
dt

;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
P σ 12 t( ) ,t( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (5.38) 

The above equation can be readily solved under appropriate boundary and initial 

conditions. If we are given the initial conditions, P(σ12,0) = δ(σ0) and assume a reflective 

barrier at the boundaries such that ζ(-∞,t) = 0 and ζ(∞,t) = 0, then the derived form of the 

FPKE will give the time evolution of the probability density function of the shear stress. 

This is accomplished by substituting in the diffusion and advection coefficient, which is 

evaluated from the statistical properties of our random processes. We shall look into a 

numerical example to demonstrate the methodology and observe the evolution of shear 

stress and its probability with time.  

 

5.2.4 Numerical example of linear elastic shear behaviour 

The following example was taken from Kallol’s dissertation (Kallol, 2007) for 

verification purposes. In this example, a constant strain rate dε12/dt of 0.054/s is assumed 

hence making the integrals present in the estimation of the diffusive and advective 

coefficient easy to compute. Moreover, it should be specified that the constant strain rate 

essentially acts as an intermediate parameter between time and stress, which makes the 

problem pseudo-time dependent. The selection of the strain rate can be arbitrary, and a 

relationship between the probability density function of stress and strain can be 

established; one in which strain is the independent variable. We shall also limit the 

domain size of the problem to [-0.1 0.1] MPa for practical purposes and computational 
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efficiency. While in reality the domain ranges from -∞ to +∞, for small deformations, the 

shear stress is not expected to go beyond [-0.1 0.1]. Finally, we prescribe a value of σ12 = 

0 at t = 0 as initial condition. The use of the Dirac delta function can prove challenging 

in Matlab©. We therefore approximate the Dirac Delta function using a Gaussian 

function with zero mean and very small standard deviation of the order of 10-4MPa.  

 

Figure 5.1: Probability distribution of initial stress at t=0 for linear shear elastic model 

 

This comes at the cost of introducing a slight error of the magnitude of the variance of the 

I.C initially, but the error rapidly vanishes as the probability density of stress evolves 

with time.  

 

Assuming the shear modulus has a mean of 2.5MPa and a standard deviation of 

0.707MPa, the advection coefficient is calculated as follows: 
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N1 = G

dε12
dt

 (5.39) 

Since the strain-rate is known and deterministic, we can move it out of the expectation 

operator, and the following equation is obtained: 

		
N1 =

dε12
dt

G  (5.40-a) 

		N1 =2⋅ 0.054( )⋅ 2.5( )MPa/s (5.40-b) 

where the multiplier of magnitude 2 is from the compatibility of strain. The diffusion 

coefficient on the other hand is obtained as follows: 

		
N2 = dτCOV0 G

dε12 t( )
dt

;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫  (5.41) 

We start by evaluating the covariance term on the right: 

		
COV0 G

dε12 t( )
dt

;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= G

dε12 t( )
dt

⋅G
dε12 t −τ( )

dt
− G

dε12 t( )
dt

⋅ G
dε12 t −τ( )

dt
        (5.42-a) 

		

lim
τ →0

COV0 G
dε12 t( )
dt

;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= G

dε12 t( )
dt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

− G
dε12 t( )
dt

2

=Var G
dε12 t( )
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
           (5.42-b) 

Once more, because the strain rate is deterministic, it can be moved out of the variance 

operator such that N2 reads: 

		
N2 = τ 0

t
⋅Var G

dε12 t( )
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= t ⋅

dε12 t( )
dt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

⋅Var G⎡⎣ ⎤⎦  (5.43-a) 

		N2 = t ⋅ 2×0.054( )2 0.7072( ) =0.0058t (MPa/s)2 (5.43-b) 

The result of the FPKE is shown in figure 5.2. We see from the contours of the 

probability density function that as time progresses, the pdf flattens out while moving at a 
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slope given by the shear modulus. A Monte Carlo simulation is performed with a sample 

size of n = 1000, and the solution of both approaches are compared. 

 

Figure 5.2: Evolutionary probability distribution of stress for a linear shear elastic model using FPKE 

 

Figure 5.3: Evolutionary probability distribution of stress for a linear shear elastic model using MC 
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At first glance, the pdf obtained from the FPKE seems to be in good agreement with the 

PDF obtained from the Monte Carlo simulations. The progression of the pdfs follows 

similar paths and has a similar spread. The difference between both figures can be 

narrowed down at t = 0. This is due to the use of a Gaussian function to approximate the 

Dirac delta function for the initial condition of the FPKE.  This is even more discernable 

looking at the stress-time plot of the linear elastic shear constitutive model. Figure 5.4 

below shows the probabilistic stress-time plot of the linear elastic shear constitutive 

model using both the FPKE solution and the Monte Carlo simulation. 

 

Figure 5.4: Stress-time plot of linear shear elastic model for FPKE vs MC. 

 

In figure 5.4, we can see that the mean shear stress produced by both methods are the 

same. The standard deviation of the shear stress for t < 0.0.001 however is slightly over-

estimated for the solution of the FPKE. Decreasing the standard deviation of the initial 

condition, and refining the mesh size of the domain can minimize this error.  
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5.2.5 Probabilistic Von Mises associative elastic-plastic constitutive law 

In this section, the FPKE is applied to a linear elastic-plastic constitutive model. Elastic-

plastic materials require that we define three important parameters:  

1. Yield criterion 

2. Hardening rule 

3. Flow rule 

And because we are dealing with random processes, a probabilistic definition of each of 

these parameters is necessary.  

 

Starting with the yield criterion, a material is said to be within the elastic limit if under 

the action of external loads, the stress experienced by the material has not exceeded its 

yield strength. When the stress experienced by the material exceeds its yield strength, the 

material undergoes permanent deformation, and behaves as a plastic material.  

 

The Von Mises constitutive law follows from the Shear Energy Theory, which states that 

a material yields when its distortion energy per unit volume is equal or greater than its 

distortion energy at yield. This yield criterion can be rewritten for a 1-D Von Mises 

model as follows: 

		f = J2 −Cu =0  (5.44) 

where f is the yield function or yield surface, J2 is the second invariant of the deviatoric 

stress tensor Sij, and Cu is the shear strength of the material. Figure 5.5 shows the yield 

surface of a Von Mises model.  
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Figure 5.5: Yield function of Von Mises model (Source: ME 620 course notes) 

 

Note: The deviatoric stress tensor is the anti-symmetric part of the stress tensor given by: 

		
Sij =σ ij −

δ ijσ kk

3 , and the second invariant of Sij, 
		
J2 =

1
2SijSij . 

 

Given the yield function we can now write the rate constitutive law for the Von Mises 

shear model: 

		

dσ 12
dt

=
Gel
dε12
dt

,	when	f <0∨ f =0∧df <0( )
Gep

dε12
dt

,	when	f =0∨df =0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 (5.45) 

From the above equation, the Von Mises shear constitutive model has two probabilistic 

equations. The first equation relating the rate of stress to the rate of strain in the pre-yield 

elastic region i.e f < 0 ∨ (f = 0 ∧ df < 0, and the second equation relating the rate of 

stress to the rate of strain in the post-yield elastic-plastic region, i.e f = 0 ∨ df = 0. As a 

result, two FPKEs are generated. In order to solve these two FPKEs, a mean yield 

criterion must be defined. Recognizing that f is also a random process due to its 
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dependence on the shear stress, the yield function f takes a range of values. This is why it 

is necessary to restate the above equation in a probabilistic sense by introducing a mean 

yield criterion. Doing so allows us to know when to use the elastic FPKE and when to use 

the elastic-plastic FPKE. The constitutive rate equation can now be written as: 

		

dσ 12
dt

=
Gel
dε12
dt

,	when	 f <0∨ f =0∧d f <0( )
Gep

dε12
dt

,	when	 f =0∨d f =0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

 (5.46) 

Moving on to the hardening rule, we assume isotropic linear hardening. This necessitates 

that the yield surface of the material expands linearly as shown in figure 5.6: 

 

Figure 5.6: Linear hardening of Von-Mises model (Source: Yung-Li Lee, 2012) 

 

Last but not least, we assume an associated flow rule i.e we assume that the plastic 

potential function is the same as the yield function. This allows us to write: 

	

∂ f
∂σ ij

= ∂U
∂σ ij

 (5.47) 

where U is the plastic potential.  
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With this information, we can obtain an equation for the elasto-plastic shear modulus 

Gep. The derivation of the shear modulus is not shown here but for the reader’s 

information, because we are dealing with random material properties and random forcing, 

the stress tensor, its invariants and their derivatives are also random, and any 

differentiation with respect to a random process as shown in equation 5.47 cannot be 

carried out in an ordinary sense. To circumvent this issue, differentiation is carried out 

with respect to deterministic values of σ12 such that the differentiation is performed in an 

ordinary sense to obtain an equation for Gep. In this respect, the definition of the Gep is 

not fully probabilistic. Alternatively, the differentiation can be performed using Itô 

calculus (not covered in this thesis). The equation for the elastic plastic shear modulus for 

deterministic σ12 is given by: 

		

Gep =G− G2

G+ 1
3

′Cu

 (5.48) 

where Cu’ is the rate of evolution of the shear strength Cu. 

 

Putting everything together, and substituting the rate constitutive equation into the 

general FPK equation we can finally write the two FPKE for a 1-Dimensional Von Mises 

associative shear model. 

1. Pre-yield elastic region: 		when	 f <0∨ f =0∧d f <0( )  

		

∂P σ 12 t( ) ,t( )
∂t

= − ∂
∂σ 12

G
dε12 t( )
dt

P σ 12 t( ) ,t( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+ ∂2

∂σ 12
2 dτCOV0 G

dε12 t( )
dt

;G
dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
P σ 12 t( ) ,t( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (5.49) 
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2. Post-yield elastic-plastic region: 		when	 f =0∨d f =0  

		

∂P σ 12 t( ) ,t( )
∂t

= − ∂
∂σ 12

Gep t( )dε12 t( )
dt

P σ 12 t( ) ,t( )
⎧
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⎣

⎢
⎢
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⎜⎜

⎞

⎠
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⎢
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⎦
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⎫
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⎭⎪
P σ 12 t( ) ,t( )

⎤

⎦

⎥
⎥0

t

∫

+ ∂2
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⎢
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⎩⎪

⎫
⎬
⎪
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P σ 12 t( ) ,t( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 (5.50) 

Once more, the above two equations can be readily solved under appropriate boundary 

and initial conditions. Assuming a similar I.C and B.C as the linear elastic shear 

constitutive model, we find the evolution of shear stress and its probability with time by 

plugging in the diffusion and advection coefficient. A numerical example is presented 

where the statistical properties of a Von Mises constitutive model are provided.  

 

5.2.6 Numerical example of linear elastic-plastic shear behaviour 

For this example we will use the same strain rate dε12/dt of 0.054/s as the linear elastic 

shear example. We also impose the same boundary and initial conditions as before with 

the size of the domain of the problem restricted to [-0.1 0.1] MPa for practical purposes 

and an initial stress of of σ12 = 0 at t = 0. The initial condition is approximated using a 

Gaussian function with zero mean and standard deviation of the order of 10-4MPa as 

shown in the figure below.  
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Figure 5.7: Probability distribution of initial stress at t=0 for linear shear elastic model 

	

Assuming the shear modulus has a mean of 2.5MPa and a standard deviation of 

0.707MPa, the advection coefficient for the pre-yield FPKE is calculated as follows: 

		
N1 = G

dε12
dt

 (5.51) 

Since the strain-rate is known, we can move it out of the expectation operator, and the 

following equation is obtained: 

		
N1 =

dε12
dt

G  (5.52-a) 

		N1 =2⋅ 0.054( )⋅ 2.5( )MPa/s (5.52-b) 

where the multiplier of magnitude 2 is from the compatibility of strain. The diffusion 

coefficient for the pre-yield FPKE on the other hand is obtained as follows: 
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N2 = τ 0

t
⋅Var G

dε12 t( )
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= t ⋅

dε12 t( )
dt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

⋅Var G⎡⎣ ⎤⎦  (5.53-a) 

		N2 = t ⋅ 2×0.054( )2 0.7072( ) =0.0058t (MPa/s)2 (5.53-b) 

For the post-yield advection coefficient, let’s considerer a deterministic shear strength Cu 

of 6.36 x 10-4 MPa and a rate of evolution of shear strength with plastic strain Cu’ having 

a sure value of 0.5MPa. The post-yield advection coefficient is given by: 

		
N1 = Gep t( )dε12 t( )

dt
+ dτCOV0

∂
∂σ 12

Gep t( )dε12 t( )
dt

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
;Gep t −τ( )dε12 t −τ( )

dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫  

 (5.54) 

From equation 5.48, Gep is independent of σ12, therefore the second term on the right can 

dropped as a result of the zero covariance term. The post-yield advection coefficient can 

then be written as: 

N1 = Gep t( )dε12 t( )
dt

=
dε12 t( )
dt

Gep t( )

=
dε12 t( )
dt

G − G2

G + 1
3
Cu′

=
dε12 t( )
dt

G − G2

G + 1
3
Cu′

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.55-a) 
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=
dε12 t( )
dt

G − G2 1
G+ 1

3
Cu′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (5.55-b) 

We can find the second moment of G, 		 G
2  on the right using the equation of the 

variance as follows: 

		 G
2 =Var G⎡⎣ ⎤⎦+ G

2
 (5.56) 

and we can obtain the expectation of a reciprocal process 

		

1
G+ 1

3
Cu′

, using a Taylor 

series approximation about the mean of the process. The Taylor series of a reciprocal 

process E(1/X) expanded around E(X) up to second order is given below: 

		 

E 1
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⎥ ! E

1
E X⎡⎣ ⎤⎦

− 1
E X⎡⎣ ⎤⎦

2 X −E X⎡⎣ ⎤⎦( )+ 1
E X⎡⎣ ⎤⎦

3 X −E X⎡⎣ ⎤⎦( )2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= 1
E X⎡⎣ ⎤⎦

+ 1
E X⎡⎣ ⎤⎦

3Var X⎡⎣ ⎤⎦

 (5.57) 

Substituting the process X by G + Cu’/√3, we get: 

		

1
G+ 1

3
Cu′

= 1

G+ 1
3
Cu′

+ 1

G+ 1
3
Cu′

3Var G+
1
3
Cu′

⎡

⎣
⎢

⎤

⎦
⎥  (5.58) 

Therefore, the post-yield advection coefficient is given by: 
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G − Var G⎡⎣ ⎤⎦+ G
2⎛

⎝
⎞
⎠

1

G+ 1
3
Cu′

+ 1

G+ 1
3
Cu′

3Var G+
1
3
Cu′

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (5.59) 

The post-yield diffusion coefficient on the other hand can be obtained as follows: 

		

N2 = t
dε12
dt

⎛

⎝⎜
⎞

⎠⎟

2

Var G− G2

G+ 1
3
Cu′

⎡
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⎥
⎥

 (5.60) 

The variance term on the right can be further expanded using the same equation as 

before: 

		

Var G− G2

G+ 1
3
Cu′

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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3
Cu′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠
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⎟
⎟
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3
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 (5.61) 

We square the bracketed term in the first inner product, and get the following: 

		

G− G2

G+ 1
3
Cu′

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

2

= G2 −2 G3 1
G+ 1

3
Cu′

+ G4 1

G2 +
2GCu′
3

+
Cu′

2

3

(5.62) 

We note that we are now confronted with the evaluation of higher moments to obtain the 

post-yield diffusion coefficient. To compute these moments, the characteristic function or 

the moment generating function can be invoked.  For Gaussian processes, higher-order 

moments can be obtained using the following equation: 

		
Xm = m!

m−2l( )!2l l!µ
m−2lσ 2l

l=0

m
2

⎡

⎣
⎢

⎤

⎦
⎥

∑ for m even (5.63) 
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It should be noted that for Gaussian processes, higher order cumulants are described 

using the first and second cumulants only. This is because κm = 0 for m ≥ 3. Therefore we 

have the following equations for the third and forth moment of G: 

		

G3 = κ 3 +3µ2µ1 +2µ13

=3Var G⎡⎣ ⎤⎦⋅ G +2 G 3  (5.64) 

and 

		

G4 = 4!
4−2l( )!2l ⋅l!µ

4−2l ⋅σ 2l

l=0

2

∑

= 4!4! G
4

Var G⎡⎣ ⎤⎦( )0 + 4!
2⋅2! G

2
Var G⎡⎣ ⎤⎦+

4!
4 ⋅2 G

0
Var G⎡⎣ ⎤⎦( )2

 (5.65) 

The reciprocal processes 

		

1
G+ 1

3
Cu′

 and 

		

1

G2 +
2GCu′
3

+
Cu′

2

3

 are approximated 

using a Taylor series expansion about the mean of the process following the same steps 

undertaken for the evaluation of the post-yield advection coefficient.  

 

Substituting equations 5.61 through 5.65 into the equation for the post-yield diffusion 

coefficient, we get a value for post-yield N2 after which we can simulate the evolution of 

stress for a 1-D Von Mises shear model.  

 

The results of the simulation are shown below, and the solution of the FPKE is compared 

to a Monte Carlo simulation with sample size n = 1000.  
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Figure 5.8: Evolutionary probability distribution of stress for a Von-Mises model using FPKE 

   

Figure 5.9: Evolutionary probability distribution of stress for a Von-Mises model using MC 

We note a similar trend where the probability density flattens out as the shear stress 

progresses. In the solution of the FPKE, an initial error is introduced at time t = 0 due to 
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the approximation of the initial condition by a Gaussian function. The pdf obtained from 

the FPKE is smoother than the Monte Carlo simulations, and shows good agreement with 

its results. This is confirmed by looking at the stress-time plots of the solution of both 

methods as shown in figure 5.10. Some disparity is visible around the yield stress of the 

material. We suspect that this difference comes from the fact that in the FPKE, the mean 

shear stress reaches the mean yield strength a fraction of a millisecond before the Monte 

Carlo simulation. As soon as the post-yield constitutive law is in effect, the error is 

exaggerated as a result of this lag. Looking at the pre-yield behaviour of the stress-time 

plot, the disparity between the standard deviation of the FPKE solution and the MC 

solution decreases up to the yield point. Subsequently it can be seen that the standard 

deviation of the FPKE stays in good agreement until t = 0.005 where the standard 

deviation of the MC solution starts to increase at a higher rate and diverges from the 

FPKE solution. There is but a slight overestimation seen in the standard deviation of the 

MC solution from the time the material yields to t = 0.006. Presumably this disparity is 

again mostly due to the small lag between both methods in shifting from the pre-yield to 

post-yield constitutive law.    
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Figure 5.10: Stress-time plot of Von-Mises model for FPKE vs MC. 

	

5.2.7 Probabilistic constitutive laws in three-dimension 

In the previous section, the derived one-dimensional FPKE was applied to two 

constitutive models. It performed well, and gave results in close agreement with the 

Monte Carlo method. The Monte Carlo’s runtime paled in comparison with that of the 

new probabilistic constitutive framework. In this section, we extend the derivation 

undertaken in section 5.2.1 to three-dimension. Recall equation 5.11, the general form of 

a three-dimensional elastic-plastic constitutive rate equation: 

		
dσ ij xt ,t( )

dt
= Dijkl

ep σ ij ,Dijklel , f ,U ,q*,r*;xt ,t( )dεkl xt ,t( )
dt

 (5.66) 

For the sake of simplicity, let Dijkl be a tensor denoting the random material parameters: 

		Dijkl = Dijkl
el , f ,U ,q*,r *⎡⎣ ⎤⎦  (5.67) 
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Now let the right-hand side be denoted by the random operator tensor, ηij 

		
dσ ij x ,t( )

dt
=ηij σ ij ,Dijkl ,εkl ;x ,t( )  (5.68) 

and let the above rate equation have the following initial condition: 

		σ ij x ,0( ) =σ ij0
 (5.69) 

The above mathematical expression can be interpreted as a tensor representing the initial 

stress state of a point at time t = 0. The tensor contains 9 elements, each representing the 

state of stress on a surface in a given direction. Referring to figure 2.3, the REV can be 

thought of as a point at an initial state, in a 3-D framework and having a trajectory in the 

phase-space constituting all its possible states. Each trajectory corresponds to the 

transformation of the nine states contained by the stress tensor of a point. If we consider a 

cloud of points initially concentrated at time t = 0, having a phase density ρ(σij,0); the 

trajectory of the cloud progresses in accordance to some constitutive laws which forms a 

stochastic differential equation whose ensemble average can be obtained. The 

conservation of these points in the σ-space can be expressed by the continuity of the 

phase density also known as Kubo’s stochastic Liouville equation. This stochastic 

continuity equation for a 3-D stress tensor is given by: 

		

∂ρ σ ij x ,t( ) ,t( )
∂t

= − ∂
∂σmn

ηmn σmn x ,t( ) ,Dmnpq x( ) ,εpq x ,t( )( )ρ σ ij x ,t( ) ,t( )
   (5.70) 

with initial condition, 

		ρ σ ij ,0( ) =δ σ ij −σ ij0( )       (5.71) 
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where equation 5.71 is a probabilistic restatement of the initial condition, with δ(.) being 

the Dirac delta function and σij0, the initial stress tensor at time t = 0.  The linear PDE for 

the ensemble average form of equation 5.70 is then obtained using Van Kampen’s 

Lemma: 

		 ρ σ ij ,t( ) = P σ ij ,t( )       (5.72) 

where <.> is the expectation operation, and P(σij,t) is the evolutionary probability density 

of the stress tensor σij. Therefore performing the expectation operation on both sides of 

equation 5.70, the ensemble average form of  the stochastic continuity equation reads: 

		

∂ ρ σ ij xt ,t( ) ,t( )
∂t

= − ∂
∂σmn

ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( ){⎡⎣⎢
− dτ
0

t

∫ COV0 ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( );⎡
⎣

∂ηab σ ab xt−τ ,t −τ( ) ,Dabcd xt−τ( ) ,εcd xt−τ ,t −τ( )( )
∂σ ab

⎤

⎦

⎥
⎥

⎫
⎬
⎪

⎭⎪
ρ σ ij xt ,t( ) ,t( )

⎤

⎦

⎥
⎥
⎥

+ ∂
∂σmn

dτCOV0 ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( )⎡
⎣

0

t

∫
⎧
⎨
⎪

⎩⎪

⎡

⎣
⎢
⎢

;

η ab σ ab xt−τ ,t −τ( ) ,Dabcd xt−τ( ) ,εcd xt−τ ,t −τ( )( )⎤⎦}
∂ ρ σ ij xt ,t( ) ,t( )

∂σ ab

⎤

⎦

⎥
⎥
⎥

 
            

(5.73) 

 

Equation 5.73 is exact to second order (α2τc) , with the time ordered covariance function 

COV0 given by: 

		COV0 ηmn x ,t1( ) ,ηab x ,t2( )⎡⎣ ⎤⎦ = ηmn x ,t1( )ηab x ,t2( ) − ηmn x ,t1( ) ⋅ ηab x ,t2( )     (5.74) 
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Substituting equation 5.72 into equation 5.74, and rearranging the terms of equation 5.73, 

the three-dimensional Eulerian-Lagrandian form of the Fokker-Plank-Kolmogorov 

equation (FPKE) is obtained: 

		

∂P σ ij xt ,t( ) ,t( )
∂t

= ∂
∂σmn

ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( ){⎡⎣⎢
+ dτCOV0

∂ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( )
∂σ ab

⎡

⎣

⎢
⎢

;
0

t

∫

η ab σ ab xt−τ ,t −τ( ) ,Dabcd xt−τ( ) ,εcd xt−τ ,t −τ( )( )⎤⎦}P σ ij xt ,t( ) ,t( )⎤⎦
+ ∂2

∂σmn ∂σ ab

dτ COV0 ηmn σmn xt−τ ,t −τ( ) ,Dabcd xt−τ( ) ,εcd xt−τ ,t −τ( )( )⎡
⎣

⎤
⎦⎥}P σ ij xt ,t( ) ,t( )

0

t

∫
⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎡

⎣
⎢
⎢

 (5.75) 

 

Equation 5.75 is a second order linear PDE whose solution is the tensor-valued pdf of the 

stress tensor σij. 

 

5.2.8 Solution Algorithm for 3-D Development 

The solution of the 3-D form of the FPKE can be obtained once more by using a 

numerical approximation. For the sake of practicality, the same central difference scheme 

used in section 5.2.2 is applied for the approximation of the time-dependent pdf of the 

stress tensor σij. The 3-D form of the FPKE is therefore be written as: 

		

∂P i( )

∂t
= P i−1( ) Nmn

2( ),i

Δσmn
2 +

Nmn
1( ),i

Δσmn

− 1
Δσmn

∂Nmn
2( ),i

∂σ ab

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
−P i( ) −

∂2Nmn
2( ),i

∂σmn ∂σ ab

+
2Nmn

2( ),i

Δσmn
2 +

∂Nmn
1( ),i

∂σmn

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+P i+1( ) Nmn
2( ),i

Δσmn
2 −

Nmn
1( ),i

Δσmn

+ 1
Δσmn

∂Nmn
2( ),i

∂σ ab

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 (5.76) 
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where N(1)
mn and N(2)

mn are the advective and diffusive tensors given by: 

		

Nmn
1( ) = ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( ) + dτCOV0

∂ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( )
∂σ ab

;
⎡

⎣

⎢
⎢0

t

∫

ηab σ ab xt−τ ,t −τ( ) ,Dabcd xt−τ( ) ,εcd xt−τ ,t −τ( )( )⎤⎦
 (5.77-a) 

		
Nmn

2( ) = dτCOV0 ηmn σmn xt ,t( ) ,Dmnrs xt( ) ,εrs xt ,t( )( );ηab σ ab xt−τ ,t −τ( ) ,Dabcd xt−τ( ) ,εcd xt−τ ,t −τ( )( )⎡
⎣

⎤
⎦

0

t

∫  (5.77-b) 

 

5.2.9 Three-dimensional probabilistic linear elastic constitutive law 

In the following subsection, we shall apply the FPKE to a 3-D linear elastic constitutive 

rate equation. The latter is defined by: 

		
dσ ij

dt
= Lijkl :

dεkl
dt       (5.78)

 

where Lijkl is the fourth order linear elastic tensor given by: 

		Lijkl ≡ L
el = λ δ ⊗δ( )+2G1 4s( )

      (5.79)
 

and  

          	

δ =
1 0 0
0 1 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  
(5.80) 

    

 

Given the Young’s modulus E, and Poisson’s ratio, ν, the shear modulus, G, bulk 

modulus, K and Lame’s constant λ can be obtained: 

		
G = E

2 1+ν( )                (5.81-a)
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K = E

3 1−2ν( )               (5.81-b)
 

		
λ = K − 2G3                (5.81-c)

 

In the above definition, the shear modulus G is again assumed to be random. Rewriting 

the right-hand side using the stochastic operator ηij, the stochastic differential equation 

describing the evolution of the stress tensor σij reads: 

		
dσ ij

dt
=ηij σ ij ,Lijkl ,εkl ;x ,t( )

      (5.82)
 

where ηij is given by: 

		
ηij σ ij ,Lijkl ,εkl ;x ,t( ) = Lijkl : dεkldt       (5.83)

 

Substituting ηij explicitly from equation 5.83, the advective and diffusive tensor can be 

computed at every time-step. The advective and diffusive coefficients have 9 components 

in a three-dimensional framework. These components can be computed in a 

straightforward manner using equation 5.77-a and 5.77-b. For deterministic strain rate, 

dεkl/dt we have: 

             		

Nij
1( ) = Lijkl :

dεkl
dt

= Lijkl :
dεkl
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= λ δ ⊗δ( )+2G1 4s( ) : dεkl
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= λ δ ⊗δ( )+2 G 1 4s( )⎡
⎣⎢

⎤
⎦⎥ :
dεkl
dt  

(5.84) 
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Nij
2( ) = dτVAR Lijkl :

dεkl
dt

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

t

∫

= t Lijkl :
dεkl
dt

⎛

⎝⎜
⎞

⎠⎟

2

− Lijkl :
dεkl
dt

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

(5.85) 

   

 

Fortunately, for the linear elastic constitutive model, only three cases need to be 

considered, since all the other combinations yield 0. 

 

Case 1: i=j=k=l 

		
Lijkl =

4G
3 +K

               (5.86-a)
 

Case 2: i=j∧k=l 

		
Lijkl = K − 2G3                (5.86-b)

 

Case 3: i=k∧j=l 

		Lijkl =2G                (5.87-c)
 

5.2.10 Numerical example for 3-D linear elastic behaviour 

To validate the 3-D linear elastic constitutive model, an element is stretched in the 33 

direction such that the deformation gradient F is given by: 

		

F t( ) =
1 0 0
0 1 0
0 0 1+α t( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, 		 !α = cons tant      (5-88) 

The constitutive model is given by the following stress-strain relationship: 
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		σ ij = Lijkl :εkl        (5-89)
 

where Lijkl is the fourth order elastic tensor, σ is the true or Cauchy stress tensor, and ε is 

the true strain tensor. The fourth order elastic tensor can be computed for given values of 

the Young’s modulus E, and Poisson’s ratio, ν as shown in equation 5.79. Alternatively, 

Lijkl can be computed from the shear modulus, G, and the bulk modulus, K. Assuming a 

mean shear modulus, <G> = 82,000MPa, and a COV of 5%, the uncertainty in the shear 

modulus can be propagated at the constitutive level using the FPKE. It should be 

mentioned that in theory, the method requires that the stress domain spans [-∞,+∞], but 

for a much faster execution, the stress domain is limited to [-200 +200]MPa. The domain 

boundaries were chosen after performing a deterministic stress-strain integration of the 

constitutive model.  

 

An important part of constitutive rate equations is the objectivity of the stress tensor. 

Objective rates are used to keep the stress objective under rotation, as is the case when 

integrating stress within a hypo-elastic framework (simple shear). For such cases, the 

Hughes-Winget algorithm (Hughes and Winget, 1980) with the Jaumann rate can be 

used. A better objective rate for hypo-elastic constitutive models is the Logarithmic rate.   

For the Jaumann rate, the equation of the rotation tensor is given by: 

		
ΛΔ
HW = Λn+1Λn

T ≈ I − 12Wn+ 12

⎛
⎝⎜

⎞
⎠⎟

−1

I + 12Wn+ 12

⎛
⎝⎜

⎞
⎠⎟     (5-90)

 

The objective stress update then reads: 

		σ n+1 = ΛΔ
HWσ n ΛΔ

HW( )T +L :Dn+ 12      (5-91)
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where D, and W are the symmetric and anti-symmetric part of the deformation gradient F. 

The solution is second order accurate. Assuming a constant increment  !α = Δt/200, and a 

time-step, Δt = 5 x10-5s, the evolution of the mean stress tensor σij is calculated and 

compared to the deterministic solution shown in figure 5.11. 

 

Figure 5.11: Stress-time plots of 3-D linear elastic model for deterministic vs FPKE solution 

  

5.3 Summary 

A methodology for introducing uncertainty at the constitutive scale is developed for a 

general non-linear constitutive rate equation with random material properties and random 

forcing. In this new method, the stochastic differential equation describing the evolution 

of stress of a material is transformed from a non-linear stochastic PDE to a linear second 
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order deterministic PDE. This linear second order PDE known as the Fokker-Plank-

Equation is then solved using a numerical approximation to obtain the evolutionary 

probability density function of the stress. The advantage of the FPKE is that it linearizes 

the non-linear PDE of the constitutive rate equation. Moreover when compared to the 

Monte Carlo method, the application of the FPKE is computationally more efficient. The 

method however requires appropriate boundary conditions and that the initial condition 

be stated from a probabilistic point of view. This is accomplished through the use of the 

Dirac delta function. However, to avoid singularity at the initial time t0, a Gaussian 

function must be used to approximate the Dirac delta function.  This approximation 

introduces an error of the order of the Gaussian function’s standard deviation.  Therefore, 

to minimize this initial error, a very small standard deviation should be used. In doing so, 

special care should be taken in discretizing the stress domain. To capture this sharp value 

of the probability density at time t0, the discretization of stress should be extremely fine. 

This can as a result increase the runtime of the numerical approximation. It is therefore 

up to the user to choose an adequate step size Δσ such that the initial error is within 

reason, and the runtime remains faster than the Monte Carlo method.  It should also be 

mentioned that that the time-step Δt must change according to the step size Δσ to ensure 

convergence. A convergence study is not carried out in this work, and is left to the reader 

to accomplish. The methodology is developed for one-dimensional and three-dimensional 

constitutive laws. Two examples are provided for the 1-D development. A linear shear 

elastic model and a linear elastic-plastic shear model are analyzed. Both examples show 

good agreement with the Monte Carlo simulation. The contours of the evolutionary pdf 

for both examples are provided.  Finally, a 3-D linear elastic constitutive example is 
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provided in which the mean solution of the stress states is compared to the deterministic 

solution. 
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CHAPTER 6.  

CONCLUSIONS AND FUTURE WORK 

	

This thesis and the work it contains can be summed up by quoting Carl Freidrich Gauss 

who said, “I have had my result a long time: but I do not yet know how I am to arrive to 

them”.  As per the introductory chapter, over the years, the statistical treatment of 

engineering problems has gained more popularity. This trend began as a result of 

increased computational power but also in an attempt to make risk-averse decisions. In 

the geotechnical engineering field especially, a probabilistic framework in which 

uncertainties can be accounted for accurately can prove valuable.  The goal of this 

research was therefore to provide a framework in which better reliability-based designs 

were possible at no extra computational cost. In addition, a probabilistic description of 

soil-structure interactions could more realistically unveil the mechanics at play. To this 

end, the work undertaken by researchers over the past decades in the geotechnical 

engineering field, and the work done by mathematicians in statistics over the past century 

was dissected.  

 

In Chapter 1, a background of the research is provided. The literature on descriptive 

techniques for estimating random properties and inferential techniques for propagating 

these random properties is reviewed. The motivation for the study and an outline of the 

thesis is also presented. The reader is exposed from the beginning to the various 

challenges faced by geotechnical engineers due to the inherent variability of soil 
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properties. This variability is categorized based on a scale of description. Two cases are 

presented: in the first case the soil properties are considered piece-wise homogeneous and 

in the second case the soil properties are considered spatially random. For spatially 

random properties, the notion of random fields is introduced. It is revealed that the major 

sources, which contribute to soil’s heterogeneity, are measurement errors and 

transformation uncertainties. One issue, which arises as a result of these sources of 

uncertainty, is aliasing.  

 

In Chapter 2, a review of numerous concepts ranging from the theory of probability and 

stochastic processes, to the theory of plasticity and continuum mechanics is provided. 

Starting with a review of random variables, a formal definition for a probabilistic 

experiment, and a random variable is given. From these definitions and more, the 

probability density function of a random variable is formulated. The mathematical 

operations involving the probability density function are also described in the same sub-

section. The use of the Dirac delta function for the representation of deterministic 

parameters is shown and several examples of random variables with application in 

geotechnical engineering are given. Furthermore, the computation of statistical moments 

is exemplified. Thereafter, a review of stochastic processes is offered. A statistical 

ensemble is defined and operations related to the pdf of a sp is shown. Continuity, 

differentiability, and integrability of a sp are defined before finally introducing the 

Fokker-Plank-Kolmogorov equation. Chapter 2 concludes with a review of continuum 

mechanics and the theory of plasticity. The yield function, hardening rule, and flow rule 

are explained with the help of various idealizations of stress-strain curves. 
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The mathematical tools learned in Chapter 2 are utilized in Chapter 3 for the 

implementation of the Stochastic Finite Element method in the analysis of three different 

foundations. The derivation of the Karhunen-Loeve expansion in one-dimension is shown 

and its implementation in the representation of random fields is illustrated. Subsequently 

the PCE basis is constructed to represent the random response of each foundation. A 

different series representation (PCE) is used for the response since the covariance 

structure of the response is not known a priori. A solution algorithm for the one-

dimensional analysis of piles using the SFEM is devised and the methodology is applied 

to three cases: 1) A uniformly loaded beam on an elastic foundation with free ends; 2) A 

laterally loaded pile on an elastic foundation that is fixed at one end; 3) An axially loaded 

pile on an elastic foundation that is fixed at one end. The results of each case were 

verified against a Monte Carlo simulation. The results showed good agreement with the 

Monte Carlo simulations. The performance of the SFEM, however, proved more 

computationally efficient with little disparity in its statistical moments compared to the 

Monte Carlo method.  It is determined that the orientation of the load has an impact on 

the variance of the response. The rationale given is that for a slender object, as is the case 

for a pile, the action of a force collinear to the longer face of the object has a lesser 

impact on the response’s variability. In other words, the random material properties at 

each node average out over longer spans. The convergence of the SFEM method is 

shown mathematically and inductively. A sensitivity analysis is also carried out and 

reveals that the soil stiffness is the most sensitive parameter for the first two cases. In the 

third case, it is revealed that axial rigidity of the column is the most sensitive parameter. 
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The variance function of each case is generated at the end of the chapter and reveals 

similarities with a pile’s potential energy function.  

 

The successful implementation of the SFEM for the one-dimensional analysis of 

foundations prompted the development of an analogous method, which would effectively 

integrate the representation of random fields with the analytical solution of a 2-parameter 

continuum pile. In Chapter 4, a pile having a rectangular cross-section and subjected to a 

horizontal force Fa and a moment Ma at its head is analyzed using a continuum approach. 

The pile is embedded in a multi-layered soil whose properties are modeled using a two-

dimensional Karhunen-Loeve expansion. Because of the analytical nature of the solution, 

and due to the non-linearity that arises as a result of the spectral representation of the soil 

properties, the representation of the response using the PCE is dropped to give way to an 

iterative solution. Two numerical examples taken from Basu and Salgado (2008) are 

presented, and the results of the stochastic analysis of these two problems with spatially 

random soil Young’s modulus and Poisson’s ratio are compared with their respective 

deterministic solution. In the first example, a 25m long pile embedded in four soil layers 

is laterally loaded with a force of magnitude 300kN. Two observations are made: Firstly, 

a portion of the response, starting from the pile’s base to some length Ldet converges to 

the deterministic response.  This is referred in Chapter 4 as a deterministic length 

analogous to a pile’s critical length. The second observation that is made is that the 

disparity between the mean and deterministic solution for the shear and bending moment 

of the pile is greater. This is attributed to transformation errors. A second example is 

presented in which a 40m long pile embedded in four layers and laterally loaded with a 
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force of magnitude 3000kN is analyzed. It is shown that the length of the pile 

significantly impacts the mean response. The disparity between the mean and the 

deterministic solution increases. It is therefore concluded that longer flexible piles have 

more unpredictable responses.   

 

In Chapter 5, a new methodology, where uncertainties are propagated at the constitutive 

level, is investigated. This new methodology, the FPKE, transforms the stochastic 

continuity equation of a constitutive rate equation into a linear second-order PDE whose 

solution is the time-dependent probability density function of the stress tensor. The 

solution for a general one-dimensional constitutive rate equation is derived and two 

numerical examples are given. In the first numerical example, a linear shear elastic model 

is analyzed using the FPKE and the results are compared to Monte Carlo simulations. 

The results showed good agreement with the Monte Carlo simulations, and with the 

maximum difference in the two methods being at t = 0 due to the approximation of the 

initial conditions using a Gaussian function. Once more, the Monte Carlo simulation is 

outperformed by the candidate method in terms of computational efficiency and hence in 

terms of run-time. The evolution of the pdf of stress is shown to widen, suggesting that 

the resulting stress becomes more unpredictable over time. In the second numerical 

example, a linear elastic-plastic shear constitutive model is analyzed using the Von Mises 

yield criterion. A similar progression is observed within the elastic region. In the plastic 

region however, the variance appears to remain constant over time. This suggests that 

with plastic deformation, less uncertainty is introduced in the stress tensor. Finally, the 

methodology is extended to a 3-D framework, and a linear elastic constitutive model is 
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analyzed. For the 3-D example, the result of the FPKE is compared to the deterministic 

solution.  

 

The problems tackled in this thesis are solved in order of difficulty with the aim of 

improving on existing methods and integrating them together to obtain a complete 

probabilistic framework for geotechnical problems. The development of the one-

dimensional SFEM for foundation problems is used as a starting point to describe the 

statistical behaviour of a problem at a local scale, where spatial variability exists. A 

similar problem is tackled with the added difficulty of having a two-dimensional random 

field. We note that compared to the SFEM, the use of the KL expansion alone yields 

results in good agreement with the analytical deterministic solution. However, further 

validations are required for such problems. A Monte Carlo simulation was not conducted 

due to time constraints and should be performed to verify the accuracy of the mean 

response for the 2-parameter continuum pile. Moreover, the future work should verify the 

results of the proposed method with a two-dimensional SFEM of the 2-parameter 

continuum pile. As a final comparison, the responses of the proposed method for both the 

one-dimensional SFEM of piles and the stochastic analysis of a 2-parameter continuum 

pile should be checked against experimental results. Another aspect that is not explored 

in this thesis is the response for random fields having different covariance structures. 

Future work should investigate covariance structures to see how it compares with 

experimental results and the deterministic solution. A parametric study could also be 

carried out, where the effects of varying the correlation length of the input variables 

could be studied. The final layer of complexity added to the probabilistic framework 
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proposed in this thesis is the propagation of uncertainty at the constitutive level. This is 

accomplished using the FPKE and verified for two simple models: a linear shear elastic 

model, and a linear elastic-plastic Von Mises model. The FPKE remains to be tested on 

more complicated three-dimensional constitutive models of soil, such as the Modified 

Cam-Clay model. It is therefore a good candidate for future research. Finally it is my 

hope to integrate a general two-dimensional SFEM with the FPKE of a two-dimensional 

or three-dimensional plane-strain soil constitutive model. Such a complete framework has 

been used for one-dimensional problems with one-dimensional constitutive models such 

as the Von Mises and Drucker-Prager model by Kallol (Kallol, 2007), but has yet been 

implemented in a two-dimensional or even three-dimensional setting. There are many 

more avenues to explore such as the applicability of such methods for large deformation 

problems, which remain to be verified. The challenges are endless and the opportunities 

are bestowed upon all of us to seize. 
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APPENDIX A 

	

The Stieltjes Integral 

Let Δ be a partition of an interval [a,b] by a set {x0, x1,…, xn} with a=x0 < x1 < …<xn =b 

and let ||Δ||=max(x1-x0,…, xn – xn-1). 

 

We define the Stieltjes integral of ϕ(x) with respect to F(x) from a to b as follows:: 

		
φ x( ).dF x( )

a

b

∫ =
Δ →0
n→∞

lim φ xi
*( ). F xi( )−F xi−1( )⎡⎣ ⎤⎦

i=1

n

∑  (A1.1) 

where xi-1 ≤ x*i ≤ xi for I = 1, 2,…,n 

 

Given the above the definition, we have the following corollaries: 

• If ϕ(x) is continuous and F(x) is non-decreasing (or non-increasing)  on [a,b] then 

the Stieltjes integral exist. 

• If ϕ(x) and F’(x) are continuous on [a,b] then we have an equivalency with the 

Riemann integral: 

		
φ x( ).dF x( ) = φ x( ).F ' x( )dx

a

b

∫
a

b

∫  (←Ordinary Riemann) (A1.2) 

• If F(x) is a step function with jumps hj at points lj, 		l j ∈ a,b⎡⎣ ⎤⎦  and ϕ(x) is 

continuous on [a,b] then we have: 
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φ x( ).dF x( ) = hj

j
∑

a

b

∫ .φ l j( )  (A1.3) 

Note that some properties of the Stieltjes integrals are analogous to those of Riemann 

integrals for example the integration by parts: 

		
φ x( )dF x( ) =φ b( ).F b( )−φ a( ).F a( )− F x( ).dφ x( )

a

b

∫
a

b

∫  (A1.4) 
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APPENDIX B 

 

Derivation of FPKE: Ensemble average form of Kubo Stochastic Liouville 

Equation 

 

The derivation of the FPKE for constitutive rate equations follows Kallol’s derivation 

(2007), which was adapted from Kavvas and Karakas (Kavvas and Karakas, 1996) 

derivation of the same equation for hydrologic processes.  

 

Starting with Kubo’s stochastic Liouville equation, we have: 

		
∂ρ σ x ,t( ) ,t( )

∂t
= − ∂

∂σ
η σ x ,t( ) ,Del x( ) ,q x( ) ,r x( ) ,ε x ,t( )⎡⎣ ⎤⎦⋅ρ σ x ,t( ) ,t⎡⎣ ⎤⎦  (A2.1)

 

Rewriting the above equation in the operator form leads to the following equation: 

	
∂ρ
∂t

= −∇⋅η −η⋅∇( )ρ  (A2.2) 

where ∇⋅η  is the divergence of  η, and the above equation is a result of the product rule. 

Let us now introduce a time-space varying sure operator, A0(σ(x,t),t) given by: 

		A0 σ x ,t( ) ,t( ) = − η ⋅∇−∇⋅ η  (A2.3) 

and a time-space non-stationary stochastic operator, αA1(x,t) given by: 

		αA1 σ x ,t( ) ,t( ) = −η+ η( )⋅∇+∇⋅ −η+ η( )  (A2.4) 
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where •  is the expectation (average) operator and α is the root mean square of the 

fluctuations of the random operator on the right-hand side of equation A2.1. Substituting 

equations A2.3 and A2.4 into A2.2 gives: 

		
∂ρ
∂t

= A0 σ x ,t( ) ,t( )+αA1 σ x ,t( ) ,t( )⎡
⎣

⎤
⎦ρ  (A2.5) 

The above equation represents the stochastic differential equation of a general 

constitutive rate equation in the operator form. Using Van Kampen’s approach, we can 

obtain the deterministic operator differential equation for the mean of the phase density. 

This is achieved by making interaction substitution. However to do so, we must first 

define the chronologically ordered exponential, 	 exp
! """

 of an integral equation. 

		 
exp
! """

B τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ =1+ dτ1 dτ2... dτmB τ1( )B τ2( )...B τm( )

0

τm−1

∫
0

τ1

∫
0

t

∫
1

∞

∑  (A2.6) 

where B(τ) is an arbitrary time-dependent function, and in the exponential series above, 

the arguments within each integral are ordered in time. Hence, we can rewrite the phase 

density as follows: 

		 
ρ σ x ,t( ) ,t( ) = exp

! """
A0 σ x ,τ( ) ,τ( )dτ

0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ1 σ x ,t( )( )  (A2.7) 

Substituting equation xx.xx into yy.yy, the following equation is obtained: 

		 

dρ1 σ x ,t( ) ,t( )
dt

=

exp
! """

A0 σ x ,τ( )τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

αA1 σ x ,t( ) ,t( )exp
! """

A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ1 σ x ,t( ) ,t( )

 

 (A2.8) 



	 204	

where the inverse in the above equation is simply: 

		 
exp
! """

A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= exp
" #""

− A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟  (A2.9) 

Equation A2.8 can be further simplified by representing the non-commutative operator 

inside the bracket using θ. Therefore equation A2.8 becomes: 

		
dρ1 σ x ,t( ) ,t( )

dt
=αθ σ x ,t( ) ,t( )ρ1 σ x ,t( ) ,t( )  (A2.10) 

In the literature, Van Kampen obtained the following ensemble average form for the 

stochastic continuity equation: 

		

d ρ1 σ x ,t( ) ,t( )
dt

=

α θ σ x ,t( ) ,t( ) +α 2 dτ θ σ x ,t( ) ,t( )⋅θ σ x ,t −τ( ) ,t −τ( )
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ρ1 σ x ,t( ) ,t( )

 

 (A2.11) 

where •  is the time-ordered second cumulant. By comparing equation A2.8 to 

A2.10, θ can be expressed explicitly as follows: 

		 
θ = exp
! """

− A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ A1 σ x ,t( ) ,t( )exp

! """
A0 σ x ,τ( ) ,τ( )dτ

0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟  (A2.12) 

Substituting equation A2.12 into A2.11 produces: 
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d
dt

exp
! "!!

− A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( )⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

αexp
! "!!

− A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ A1 σ x ,t( ) ,t( ) exp

# !!!
A0 σ x ,τ( ) ,τ( )dτ

0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

+α 2 ds exp
! "!!

− A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ A1 σ x ,t( ) ,t( )

0

t

∫

exp
# !!!

A0 σ x ,τ( ) ,τ( )dτ
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ exp
! "!!

− A0 σ x ,τ( ) ,τ( )dτ
0

t−s

∫
⎛

⎝
⎜

⎞

⎠
⎟

A1 σ x ,t − s( ) ,t − s( )exp
# !!!

A0 σ x ,τ( ) ,τ( )dτ
0

t−s

∫
⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦

⎥
⎥
ρ1 σ x ,t( ) ,t( )

 (A2.13) 

Working out the above and making use of the time-ordered exponential characteristics, 

equation A2.13 reduces to: 

		 

∂ ρ σ x ,t( ) ,t( )
∂t

= A0 σ x ,t( ) ,t( ) ρ σ x ,t( ) ,t( ) +α 2 ds
0

t

∫ A1 σ x ,t( ) ,t( )

exp
! """

A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ A1 σ x ,t − s( ) ,t − s( )

exp
" #""

− A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( )

 (A2.14) 

We shall now focus on the last term of the right-hand side of equation A2.14. 

Substituting A0 from equation A2.3 into the latter, we obtain: 

		 

exp
! "!!

− A0 σ x ,τ( ) ,τ( )
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( ) =

exp
! "!!

− dτ −
∂ η σ x ,τ( ) ,τ( )

∂σ
− η σ x ,τ( ) ,τ( ) ∂

∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥t−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ρ σ x ,t( ) ,t( )

 (A2.15) 
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Recognizing that the time ordered exponential of two time dependent functions has the 

following property: 

		 

exp
! "!!

dτ Z τ( )+Y τ( )( )
0

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ =

exp
! "!!

dτ
0

t

∫ exp
! "!!

dsZ s( )
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Y τ( )exp

# !!!
− dsZ s( )
0

τ

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜

⎞

⎠
⎟ exp
! "!!

dτZ τ( )
0

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (A2.16) 

We can rewrite equation A2.15 using the above property: 

		 

exp
! "!!

− A0 σ x ,τ( ) ,τ( )
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( ) =

exp
! "!!

dτ η σ x ,τ( ) ,τ( ) ∂
∂σt−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ exp
! "!!

dτ
∂ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ρ σ x ,t( ) ,t( )
 (A2.17) 

Now shifting our focus to the non-stationary stochastic operator, αA1(x,t) given in 

equation A2.4, one can write: 

		
αA1 σ x ,t( ) ,t( ) = ∂ η σ x ,t( ) ,t( ) −η σ x ,t( ) ,t( )

∂σ
+ η σ x ,t( ) ,t( ) −η σ x ,t( ) ,t( )⎡
⎣⎢

⎤
⎦⎥
∂
∂σ

 

 (A2.18) 

Making use of the commutation and product properties of the Lie operator in equation 

A2.14, the following equation is obtained: 
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exp
! """

A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟αA1 σ x ,t − s( ) ,t − s( )exp" #"" − A0 σ x ,τ( ) ,τ( )dτ

t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( )

=
∂ η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( ) −η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
ρ σ x ,t( ) ,t( )

+ η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( ) −η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )⎡
⎣⎢

⎤
⎦⎥

exp
! """

− dτ
∂ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∂
∂σ

exp
" #""

dτ
t−s

t

∫
∂η σ x ,τ( ) ,τ( )

∂σ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
ρ σ x ,t( ) ,t( )

+ η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( ) −η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x ,t − s( )⎡
⎣⎢

⎤
⎦⎥

ρ σ x ,t( ) ,t( )
∂σ

 

 (A2.19) 

where, 

		 
exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x = exp
! """

− dτ η σ x ,t( ) ,t( ) ∂
∂xt−s

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
x  (A2.20) 

Now focusing on the operand related to αA1(σ(x,t),t) in the second additive term of 

equation A2.19, the following equation is obtained: 

		 

α 2 ds A1 σ x ,t( ) ,t( )exp
! """

A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

0

t

∫

A1 σ x ,t − s( ) ,t − s( ) exp
" #""

− A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( )

= ds αA1 σ x ,t( ) ,t( )
0

t

∫ exp
! """

A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟

αA1 σ x ,t − s( ) ,t − s( ) exp
" #""

− A0 σ x ,τ( ) ,τ( )dτ
t−s

t

∫
⎛

⎝
⎜

⎞

⎠
⎟ ρ σ x ,t( ) ,t( )

 (A2.21) 

Performing the inner products within the integral on the right-hand side of the above 

equation produces: 
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= ds COV0
∂η σ x ,t( ) ,t( )

∂σ
;
∂η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪0

t

∫

+COV0 η σ x ,t( ) ,t( );∂
2η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
∂σ 2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎫

⎬
⎪

⎭
⎪

ρ σ x ,t( ) ,t( )

+ ds COV0
∂η σ x ,t( ) ,t( )

∂σ
;η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪0

t

∫

+COV0 η σ x ,t( ) ,t( );∂η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎫

⎬
⎪

⎭
⎪
⋅

exp
! """

− dτ
∂ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∂
∂σ

exp
" #""

dτ
t−s

t

∫
∂ η σ x ,τ( ) ,τ( )

∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ρ σ x ,t( ) ,t( )

+ COV0 η σ x ,t( ) ,t( );η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )⎡
⎣⎢

⎤
⎦⎥0

t

∫ ⋅

∂
∂σ

exp
! """

− dτ
t−s

t

∫
∂ η σ x ,τ( ) ,τ( )

∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎧

⎨
⎪

⎩
⎪

∂
∂σ

exp
" #""

dτ
∂ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+exp
! """

− dτ
∂ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∂2

∂σ 2 exp
" #""

dτ
∂ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎫

⎬
⎪

⎭
⎪

ρ σ x ,t( ) ,t( )

+ ds COV0
∂η σ x ,t( ) ,t( )

∂σ
;η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪0

t

∫

+COV0 η σ x ,t( ) ,t( );∂η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎫

⎬
⎪

⎭
⎪

∂ ρ σ x ,t( ) ,t( )
∂σ

+ ds
0

t

∫ COV0 η σ x ,t( ) ,t( );∂η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )
∂σ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∂ ρ σ x ,t( ) ,t( )
∂σ

+ dsCOV0 η σ x ,t( ) ,t( );η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x ,t − s( )⎡
⎣⎢

⎤
⎦⎥0

t

∫ ⋅

exp
! """

− dτ
∂σ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
exp
" #""

dτ
∂σ η σ x ,τ( ) ,τ( )

∂σt−s

t

∫
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

∂ ρ σ x ,t( ) ,t( )
∂σ

+ dsCOV0 η σ x ,t( ) ,t( );η exp
! """

σ x ,t( ) ,t⎡⎣ ⎤⎦x;t − s( )⎡
⎣⎢

⎤
⎦⎥0

t

∫
∂2 ρ σ x ,t( ) ,t( )

∂σ 2

 (A2.22) 



	 209	

In general, the value of the root mean square, α is very small (α<<1). We can therefore 

neglect higher order terms whose magnitude is of the order of α2τc, where τc is the 

correlation length of the stochastic operator A1(σ(x,t),t). Furthermore, the first additive 

term on the right-hand side of equation A.2.21 can be written as follows: 

		
A0 σ x ,t( ) ,t( ) ρ x ,t( ) ,t = −

∂ η σ x ,t( ) ,t( ) ρ σ x ,t( ) ,t( )
∂σ

 (A2.23) 

Eliminating higher order terms found in the second, and third integral, along with 

arguments of the sixth integral of equation A2.22 and substituting the additive term given 

in equation A2.23, we finally obtain the deterministic PDE representing the ensemble 

average of the stochastic continuity equation for a general constitutive rate equation. 

		

∂ ρ σ x ,t( ) ,t( )
∂t

=

∂
∂σ

η σ x ,t( ) ,t( ) + COV0 η σ x ,t( ) ,t( );∂η σ x ,t −τ( ) ,t −τ( )
∂σ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥0

t

∫
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
ρ σ x ,t( ) ,t( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+ ∂
∂σ

dτCOV0 η σ x ,t( ) ,t( );η σ x ,t −τ( ) ,t −τ( )⎡
⎣

⎤
⎦

00

t

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

∂ ρ σ x ,t( ) ,t( )
∂σ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

 (A2.24) 

 

	


