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Abstract

Cardiovascular diseases are a leading contributor of health problems all over the world and

are the second leading cause of death. They are also the cause of significant economic

burden, costing billions of dollars in healthcare every year. With an aging population, the

strain on the healthcare system, both in terms of costs and care provision, is expected to

worsen.

Frequent cardiac assessment can provide essential information towards diagnosis, mon-

itoring, and treatment, which can mitigate symptoms and improve health outcomes for

people with conditions such as heart failure. This has led to increasing interest in cardiac

assessment at home. Additionally, for some populations like people with limited mobility

and older adults, long term vitals monitoring at a clinical setting is not feasible, making

at-home monitoring more viable and economical. Most devices available for cardiac mon-

itoring at home are wearables. While wearable technology can be accurate, it requires

compliance and maintenance, which is not an ideal solution for all populations. For exam-

ple, people who are not comfortable using wearables or people with a cognitive impairment

may not want or be able to use wearables, which could exclude these user types from at

home monitoring. Keeping these factors under consideration, the past decade has seen

an increased interest in the development of technologies for Ambient Assisted Living (i.e.,

smart technologies integrated into a user’s environment). These technologies have the

potential for ongoing health monitoring in an unobtrusive manner.

This thesis presents research into the development of a smart seat cushion for heart

rate monitoring. The cushion is able to calculate the heart rate of a person seated on it by

acquiring their Ballistocardiogram (BCG). BCG is a cardiovascular signal corresponding to

the displacement of the body in response to the heart pumping blood at every heartbeat.

The prototype seat cushion has load cells embedded inside it that sense the micromove-

ments of the body and translate it to an electrical signal. An analog signal conditioning

circuit amplifies and filters this signal to enhance the components corresponding to BCG

before it is converted to digital form. A pilot study was conducted with twenty participants

to acquire BCG in real-world scenarios: 1) sitting still, 2) reading, 3) using a computer,
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4) watching TV, and 5) having a conversation. Heart rate was calculated using a novel

algorithm based on Continuous Wavelet Transform by detecting the largest peaks (referred

to as the J-peaks) in the BCG. Excluding three outliers, the algorithm is able to achieve

an overall accuracy of 94.6% compared to gold standard Electrocardiography (ECG). This

accuracy is observed to be as good as or better than those of existing wearable heart rate

monitors.

The seat cushion developed in this thesis research can serve as a portable solution for

cardiac monitoring and can integrate into an ambient health monitoring system, offering

continued monitoring of heart rate while requiring no perceived effort to operate it. Future

work includes exploring different sensor configurations, machine learning based approaches

for improving J-peaks detection, and real-time monitoring of heart rate.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) is a general term for disorders of the heart and blood

vessels and are a leading contributor of health problems worldwide. According to the

World Health Organization (WHO), 17.9 million people lose their lives to CVDs every

year [1]. In Canada, 2.4 million people are living with a diagnosed cardiac condition and

ten people die every hour, making CVDs the second leading cause of death [2]. CVDs also

are a major economic burden on the healthcare system; according to the Public Health

Agency of Canada, the total direct and indirect costs due to CVDs were $21 billion in the

year 2000 alone [3]. In the United States, healthcare costs due to CVDs were estimated

at $300 billion in the year 2015 [4]. As the average of the global population continues to

rise, these numbers are expected to increase in the next few decades, which will in turn

increase the economic load on the healthcare system. It is also expected that there will be

a shortage of healthcare providers in the coming years [5], creating a situation of greater

need with a lack of available conventional support.

To address this gap, there is increasing interest in cardiac monitoring and assessment

methods in home settings. The most important step towards prediction, prevention and

treatment of CVDs is cardiac vitals monitoring, as they provide essential information about
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a person’s health condition. Long-term monitoring of heart vitals is an essential part of

ongoing care [6]. In addition to the decreasing resources and increasing financial burden on

the healthcare system, there are other factors that serve as a motivation towards cardiac

monitoring at home. For example, it is not feasible for everyone, especially older adults and

people with limited mobility, to visit a hospital or a clinical setting every time they need

their vitals assessed. Therefore, it is far more economical and feasible to perform continuous

vitals monitoring at home. Over the past decade, numerous devices and solutions have

been developed for at-home vitals monitoring, most common of those devices are wearables

[7, 8, 9]. While wearable technology can be an effective and accurate vitals monitoring

tool, they are not the ideal method for all populations. Incorrect usage, non-compliance

and instances where individuals forget to use their devices can cause wearable monitoring

methods to be ineffective. This is an especially relevant consideration for populations

such as people with a cognitive impairment or who have an aversion to using wearables

[10]. Hence, there is a gap in the area of easy-to-use, unobtrusive technologies for cardiac

monitoring at home.

To address these concerns, the primary goal of this thesis is to design and develop

a method for heart rate monitoring that is feasible, portable, cost-effective, and requires

minimal effort from the user to operate it.

1.2 Contributions of this Work

The major contributions of this work, and their potential impact on society and the field

of research are as below:

• Developed a portable and unobtrusive method for heart rate monitoring in the form

of a seat cushion. The seat cushion could be integrated into an ambient health

monitoring system and requires minimal effort from the user. The seat cushion pro-

totype is completely custom designed and developed using off-the-shelf components,

rendering the solution cost-effective.
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• Designed and implemented electronic circuits for BCG signal conditioning to improve

signal quality. The robustness of the obtained BCG is comparable to or better than

other methods posted in literature. Designed an intelligent algorithm for obtaining

heart rate from the BCG acquired through the seat cushion and demonstrated that

the results achieved by the seat cushion are promising, with accuracies comparable

to those of wearable heart rate monitoring devices.

• Obtained BCG from twenty participants during different daily-life activities and

demonstrated that the seat cushion is able to obtain clean BCG data for durations

long enough to calculate heart rate, making it a feasible device for continued remote

(i.e., in a home or other living environment) monitoring of heart rate.

1.3 Thesis Organization

This thesis is organized as follows:

A literature review of prior work done in cardiac assessment and monitoring is provided

in Chapter 2. This includes a literature review of BCG-based cardiac monitoring systems

and provides a comparison of BCG-based systems with other systems. Origins of the BCG,

its haemodynamics, and its interpretations are also provided in the chapter.

Chapter 3 presents the design and build of the prototype BCG seat cushion, including

form factor and sensor selection. Signal conditioning circuits designed and developed to

process the obtained BCG from the cushion are discussed in detail. The chapter also

includes the data acquisition systems and parameters used to obtain BCG.

Pilot testing the seat cushion design is covered in Chapter 4. This includes testing done

post-cushion development and comparisons of the BCG with ECG for validation. The

study conducted for data collection including participant demographics are also provided

in the chapter. Analysis of the BCG obtained during different activities is provided in

detail at the end of the chapter. Automatic exclusion of segments involving noise due to

movement to perform an activity is presented as well.
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Signal processing algorithms for heart rate calculation are presented in Chapter 5,

including a discussion of their design, implementation, performance evaluation, and limi-

tations.

Chapter 6 provides a summary of the thesis, noting important conclusions obtained from

the study. It discusses the performance of the seat cushion, limitations in the performance,

and provides suggestions for improvement in the prototype and signal processing algorithms

to be done in future.
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Chapter 2

Background

2.1 The World is Aging

The proportion of older adults in most countries of the world is growing rapidly. According

to the United Nations World Population Ageing Report 2015, population ageing is one of

the most important social changes of this century [11]. For the world’s population, the

number is projected to increase from 12% of people over the age of 60 to more than 22%

in the next 30 years and these numbers are even higher specifically for the more developed

countries of the world. These increasing percentages also imply that medical costs for

various diseases will also increase as older adults have a greater prevalence for morbidities

[12]. According to the United Nations World Population Ageing Report 2015, about 40%

of older adults live independently (i.e. alone or only with their spouse) [11]. Most of

the diseases or medical conditions, especially those involving chronic age-related diseases,

cognitive decline and limitations in physical activity, cause difficulties in the independent

living of the older population. According to a research done in the United States, 89% of

older adults still prefer living independently in their own homes [13]. Due to the modern

lifestyle, it is not always possible for family members to take the roles of informal caregivers

to the older adults, which was traditionally primarily the role of the family. In addition,

institutional or nursing home care has high costs and an increasing shortage of available
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staff [14]. Older adults are also among the majority of the people living with diagnosed

heart conditions, and are the population requiring continued cardiac vitals monitoring and

assessment to observe abnormal heart rhythms. The ideal paradigm would be for older

adults with heart conditions to have the choice to monitor their condition at home in a

way that is unobtrusive, fosters high levels of compliance, and does not require assistance

from others.

2.2 Current Health Monitoring Technologies

2.2.1 An overview of wearable technologies

Given the importance of cardiac vitals monitoring, and the feasibility and decreased costs

of long-term vitals monitoring at home, the last decade has seen the development and

commercialization of numerous medical devices that perform vitals monitoring. Minia-

turization in electronic devices has served as an essential factor in the development of

at-home vitals monitoring devices. Most health monitoring technologies today fall under

the umbrella of “Wearables”, namely technologies integrated into items of clothing and

accessories that can be worn on the body. Wearables have seen tremendous development

over the past two decades [9]. These technologies are increasingly supporting early diagno-

sis of diseases, prevention of chronic health conditions and improved clinical management

of neurodegenerative conditions [6]. Modern-day wearables have a wide range of applica-

tions, from measuring muscle activity [15], stress [16] and physical activity [17] to tracking

a female’s most fertile period [18]. All wearable systems incorporate some kind of sensor(s)

to acquire data followed by an application of information and communication technologies

to perform the dedicated data extraction, analysis, and representation.

The most common application of wearable devices is heart vitals monitoring. One of the

most common devices suggested by doctors to track heart rhythm is the Holter monitor,

which is a wearable monitor worn around the neck or waist. It has electrodes that need to

be attached to the skin to record ECG. Heart rate monitoring is also a feature available
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in almost every fitness band/smartwatch. However, these wearables are often obtrusive,

uncomfortable for some users, and are easy for individuals to forget to wear. This is truer

for older adults, as they have a higher prevalence of chronic illness and cognitive impairment

[19]. Recent years have seen the development of many textile-based smart clothing for vitals

monitoring [7, 20]. Finni et al. developed a pair of shorts with textile electrodes embedded

inside of them to measure muscle activity [15]. Chen et al. created smart clothing with

dry electrodes and flexible conductive fibers for vitals measurement using electrocardiogram

(ECG) acquisition [8]. Koyama et al. measured heart rate and respiration from a smart

textile; the textile was embedded on the inside of clothing, and used optical fiber sensor to

obtain the user’s photoplethysmogram (PPG) which was then used to calculate heart and

respiration rates [21]. The problems with clothing-based technologies include their cost,

complexity, discomfort and decreased reusability (as most of them are not easily washable).

They are, therefore, not yet practical, feasible alternative to wearables.

2.2.2 Ambient Assisted Living and Zero-Effort

Technologies

Keeping the factors described in the preceding sections under consideration, technology

is playing an important role in supporting independent living of older adults with the

help of Ambient Assisted Living (AAL) systems. AAL is an emerging multi-disciplinary

field aiming at applications of information and communication technologies (ICTs) for

supporting health, well-being and quality of life of the growing elderly population. One of

the most important and useful applications of AAL systems is ambient health monitoring,

which includes technologies that monitor an individual’s health using sensors integrated

in the environment, such as the individual’s home. Zero-effort technologies (ZETs) is

another concept that is relevant to the use of ambient health monitoring in the home for

older adults with chronic health conditions. ZETs are a class of technologies that are

designed to require zero or minimal explicit effort from the person using them; they seek

to support users in a way such that the users do not have to make modifications to their

daily life activities nor do they have to focus attention on the technology to attain support
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from the ZET. ZETs often employ techniques such as artificial intelligence and unobtrusive

sensors to support the autonomous and unobtrusive collection, analysis, and application

of data about users and their context [22]. An example of a ZET designed for older adults

with cognitive impairments is the COACH (Cognitive Orthosis for Assistive aCtivities in

the Home) [23]. COACH is designed to help older adults through activities of daily living.

It applies computer vision based techniques to observe a users hand-washing and takes

a designated action autonomously, based on the acquired information. Another example

of a ZET system is the HELPER (Health Evaluation and Logging Personal Emergency

Response) [24]. This technology uses artificial intelligence to ensure safety and health of

users in a certain place. It does not require the user to wear any marker and detects

adverse events (such as falls) and provides suitable assistance autonomously. Therefore,

the possibilities in the area of ZETs are numerous and ZETs could play a significant

role in overcoming the hurdles posed by wearable technologies in the applications of AAL

(including ambient health monitoring) systems for older adults.

2.3 Electrical and Mechanical Activities of the Heart

2.3.1 Electrocardiography

Electrocardiography is the recording of the electrical activity of the heart. The signal

corresponding to this electrical activity is called the Electrocardiogram (ECG). The first

practical ECG was invented by W. Einthoven in 1895 [25] and is now the most widely used

cardiovascular signal for clinical diagnosis of heart conditions.

ECG waveform and the related cardiac events

The heart has a network of groups of neurons to drive the entire cardiac cycle (Figure

2.1(a)). The activation of each neuron group generates a potential that reaches the body

surface and can be measured as part of the ECG signal. Figure 2.1(b) shows one cardiac

cycle of a typical ECG signal, with the different points (PQRST) according to standard
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ECG signal labelling. At the start of the cycle, the electrical impulse originates from the

sinoatrial (SA) node and propagates through the internodal tracts to activate the atria

(left and right atrium), resulting in the P-wave on the ECG waveform. The impulse is

delayed upon passing through the atrioventricular (AV) node, allowing the atria to become

completely depolarized and to contract and empty their contents into the ventricles. After

the AV node delay, the impulse passes through the bundle of His and throughout the

ventricular myocardium via the Purkinje fibers; this fiber network fastens the spread of

ventricular excitation to ensure ventricular depolarization, depicted by the Q-R-S complex

on the ECG waveform. Finally, the ventricular neuron network repolarizes, leading to the

T-wave on the ECG. [26]

ECG leads: The ECG is a recording representing the overall spread of electrical

activity throughout the heart. It represents comparisons in voltage detected by electrodes

at two different points on the body. The exact pattern of the electrical activity depends on

the orientation of the electrodes. This is why different waveforms representing the same

electrical activity are obtained by electrodes at different points. ECG standard consists of

12 conventional leads obtained by the placement of ten electrodes as indicated in Figure

2.2(a). In this thesis, a lead-II configuration is used. It records the difference in potential

(a) Image credits: [26] (b)

Figure 2.1: (a) Spread of cardiac excitation in the heart (b) A typical ECG waveform
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(a) (b)

Figure 2.2: (a) ECG electrodes locations (b) Twelve ECG leads

detected at RA (Right Arm) and LL (Left Leg). The electrode RL (Right Leg) acts as

a ground. Figure 2.4 shows one heartbeat segment of a lead-II ECG recorded during the

study done for this thesis.

2.3.2 Ballistocardiography

The blood moving along the vascular tree causes changes in the center of mass of the body,

every time the heart beats. In order to maintain the overall momentum, in accordance

with Newton’s third law, micro-forces are generated by the body in response to blood flow.

A Ballistocardiogram (BCG) is a cardiovascular signal corresponding to the movement of

the body in response to ejection of blood into the vessels [27]. It can be measured as a

displacement or acceleration, depending on the transducers used to obtain the signal. The

resulting signal can be seen in Figure 2.4.

BCG was first observed by J. W. Gordon in 1877, who noticed a fluctuation in the
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needle of a weighing scale due to heart beat. He proposed that these tiny fluctuations were

cause by blood ejection in the body [27]. The first scientific apparatus designed to measure

the BCG was created 62 years later by I. Starr et al. [28]. The apparatus was in the form

of a table top that measured force.

While the body movements corresponding to BCG occur in all three axes: head-to-foot

(longitudinal), dorso-ventral, and right-to-left (lateral), most studies done on the BCG

have focused only on the head-to-foot movement. This is because in non-ideal conditions,

head-to-foot movement is more significant and is easier to obtain while a person is stand-

ing or seated. Additionally, it is important to note that gravity and contact of the body

with external objects would always interfere with the BCG measurement. Any voluntary

movement exercised by the subject would also lead to noise in the BCG recording. This is

due to the very minute nature of the recoil body movements. The only ideal environment

would be in a microgravity setting. Experiments in these settings have been performed

in weightless environments, including space missions [29, 30, 31]. All experiments per-

formed in such settings have demonstrated that in microgravity, the BCG measurements

are significant in all three axes.

BCG signal interpretation: The BCG signal waveform is dependent on the method

used to acquire the signal, which has led to difficulties in interpretation of the signal [32].

Proposals have been made to standardize BCG acquisition systems and interpretation

and labelling of the various segments in the signal [33]. Figure 2.4 shows one heart-beat

segment of simultaneously acquired ECG and BCG during the study done for this thesis.

The labelling of the different points on the BCG waveform is done in accordance with

the standard longitudinal (head-to-foot) BCG as presented in [28]. There is a general

agreement on this labelling and interpretation of the BCG. The cardiac cycle (Figure

2.3) consists of alternating intervals of systole (contraction and emptying) and diastole

(relaxation and filling). The H-wave is related to the movement of the heart early in

systole, representing the forces associated with abrupt flow of blood. The I-wave is a

footward displacement, occurring early in systole; the J-wave occurs late in systole and it

has the largest amplitude in the BCG; the I and J waves are related to ventricular ejection,

and their amplitudes are directly related to the ejection velocity. The K-wave represents

11



Figure 2.3: The Cardiac Cycle

deceleration of blood flow in the descending aorta, and is a footward displacement. The

L-wave is a headward diastolic displacement and is associated with circulation forces of

the return flow of blood to the heart. [34]

2.3.3 Relationship between BCG and ECG

Figure 2.4 shows that the ECG and BCG, both being cardiovascular signals, are very

related. The ECG signal corresponds to the electrical activity of the heart during the

cardiac cycle, whereas the BCG signal corresponds to the recoil motions of the body in

response to the mechanical activity of the heart. The BCG signal lags the ECG, because

the mechanical events and the resultant changes in blood flow are brought about by the

changes in cardiac electrical activity [26]; namely, ECG is a near instantaneous detection
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Figure 2.4: ECG and BCG (head-to-toe) waveforms with the wave segments labelled

of when the cardiac fibers fire to cause the heart to contract whereas BCG detects the

resulting blood flow through the body moments later.

2.4 Literature Review of BCG-based Cardiac

Assessment Methods

Throughout the 20th century, ballistocardiography was heavily investigated and scientists

published their contributions in the field of BCG in major clinical journals. This trend

changed with the advent of ECG for cardiac assessment and because of the noisy nature,

cost and over-complicated hardware required for the BCG. Since the 1990s, however, BCG

has become a cardiovascular signal worth reexamining. This is due to rapid advance-

ment and simplicity in instrumentation technology and the development of modern signal

processing techniques. The past three decades have seen an increasing interest by the sci-

entific community towards the investigation of BCG. Many BCG-based systems for cardiac

assessment have been developed and presented in scientific and clinical publications.
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The most common method that has been used to measure BCG involves incorporating

force sensors into a device a person is able to stand on, such as a bathroom scale. Since BCG

represents the displacement of a subject’s center of mass, this displacement is converted

to units of force by the spring constant of the scale, and then to electrical voltage by the

transducing circuit. The first BCG measured on a weighing scale was done by J. Williams

in 1990 [35]. Since then, many BCG systems have been developed that acquire the BCG

in a standing position. Chang et al. developed a floor tile capable of obtaining BCG and

ECG for at-home cardiac monitoring [36]. Shin et al. measured systolic blood pressure

using BCG acquired from a weighing scale and simultaneous ECG [37]. Ashouri et al.

estimated cardiac contractility using BCG measurements from a force plate [38]. In all

studies, the BCG signals obtained were similar to those obtained by Starr et al. in 1939

[28]. BCG systems that acquire measurements in the standing position have an advantage

that the measurement is purely longitudinal (head-to-foot), but a major disadvantage is

that significant noise is introduced from the person moving or from sway to maintain their

balance. Also, the duration of measurement is very limited as a person will only be able

to stand still for a few seconds at a time at best.

Most bed-based BCG systems have either used advanced pressure sensors under the

mattress or load cells at the four corners. Mack et al. created a sleep monitoring system

that calculated heart rate and breathing rate from BCG acquired by pressure mats placed

on the mattress [39]. Choi et al. performed sleep estimation using BCG acquired from

four load cells placed under the legs of the bed [40]. Lee et al. created a physiological

signal monitoring bed for infants that acquired BCG using four single-point load cells

placed under the four corners [41]. Kortelainen et al. obtained BCG from a multi-channel

system, consisting of an array of pressure sensors embedded in the mattress [42].

There has also been work into creating wearable BCG systems, which use an accelerom-

eter as the sensor. He et al. obtained BCG using a 3-axis accelerometer housed inside a

plastic mount over the ear. Electrodes were also attached to the skin under the ear to

obtain ECG [43]. Deliere et al. measured BCG during parabolic flights to assess cardio-

vascular changes; a 3-D accelerometer was placed on the lower-back near the body’s center

of mass [44]. Wearable BCG systems have the same problems as with other wearable
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cardiac monitoring technologies, as discussed in Section 2.2.1.

Recent literature has seen progress towards methods of acquiring BCG in the seated

position by embedding sensors in a chair. Most chair-based systems have used Electrome-

chanical Film (EMFi) transducers to obtain BCG. EMFi is a permanently charged film

made of polypropylene. Changes in this permanent charge are produced when pressure is

applied on the film’s surface [45]. EMFi films require a special charge amplifier to measure

the change in charge (corresponding to the change in pressure) as a voltage. Many BCG

systems have been developed by embedding EMFi films into the back or seat of a chair

[46, 47, 48]. Some systems have made use of Polyvinylidene fluoride (PVDF) materials as

a pressure sensor for BCG measurement [49, 50]. Pinheiro et al. acquired BCG signals by

embedding EMFi films and accelerometers in the backrest and seat of a wheelchair [51].

Walter et al. embedded an EMFi film into the driver’s seat of a car for BCG measurement;

however, with the engine turned on, no useful BCG signal could be acquired, as the vibra-

tions from the engine were far greater than the BCG signal [52]. The seated position solves

the problems with standing position and is more feasible for BCG acquisition. However,

BCG systems reported in literature that obtain measurements in the seated position have

a few disadvantages. Firstly, most systems have embedded sensors inside the seat or the

back of the chair, rendering the solution not portable. Secondly, most chair-based systems

that have been able to obtain robust BCG, have used EMFi films as the sensor. EMFi

films tend to be costly and have very limited commercial availability.

From the above discussion, one approach to improve community-based vitals monitor-

ing (i.e., monitoring outside a clinical environment) is to develop a portable cushion that

can monitor heart rate while a person is sitting on it. To be practical for use in home-like

environments, the cushion should be robust, simple to use, and employ cost-effective com-

ponents. The seat cushion should also be portable, so that it can be moved from chair to

chair and does not require a user to purchase special furniture.

15



Chapter 3

Seat Cushion Prototype

3.1 Form Factor

As shown in Figure 3.1, the seat cushion prototype consists of three layers, which are

described in detail in the following subsections:

3.1.1 Polyurethane foam/casing and metal plate

The cushion was developed by modifying a commercially available ObusForme Gel Seat

Cushion. As the load cells need to be placed on a hard, solid surface to get accurate

measurements, a thin stainless-steel metal plate (300 × 300 × 0.8 mm) was placed under

the scale. The polyurethane foam from the ObusForme Gel Seat Cushion was then cut

and wrapped above and around the metallic plate and modified weighing scale. The three

layers were then housed inside the ObusForme Gel Seat Cushion’s washable polyester fabric

cover.
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(a) Exterior view (b) Layers inside the seat cushion

Figure 3.1: The portable BCG-acquiring seat cushion prototype

3.1.2 Modified weighing scale

A commercially available weighing scale (INTEY Model NY-H05) was modified by remov-

ing its internal circuitry. The scale consists of four load cells mounted on each corner

(Figure 3.2(a)). Each load-cell is a strain-gauge type with three color coded wires (blue,

white and red) and can bear loads up to 50 kg. Two pairs of wires (blue-white and white-

red) form one strain gauge. Figure 3.2(b) shows the electrical model of the load-cell. The

two strain gauges are modelled as variable resistors. Their resistance, under no load, is

the same. The load-cell is constructed in a way that the two strain gauges have opposite

strains. When a load is applied, one strain gauge (between blue and white wires) under-

goes tension and the other (between white and red wires) undergoes compression. Tension

causes a strain-gauge’s resistance to increase, whereas compression leads to a decrease in

resistance. Mounting four load-cells at the four corners helps distribute the weight evenly
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on each load-cell.

To sense the combined response of the load-cells as a voltage, the four load-cells are

connected in a wheatstone bridge configuration in a way that two sets of positive strain and

two sets of negative strain are formed. This approach has been widely used in applications

involving the use of resistive sensors to sense one signal.

In the wheatstone configuration, the two positive strain sets and the two negative

strain sets are on opposite ends of the bridge (Figure 3.2(c)). These four strain elements

are modelled as resistors (R1 to R4) as shown in the wheatstone bridge of Figure 3.2(d).

One end of the bridge is excited by 9V, and the applied force is sensed as a voltage VLC at

the other end. Using the voltage divider rule, the relation for VLC is:

VLC =
R4

R4 +R2
− R3

R3 +R1

Under no load, the bridge is in a “balanced” state, as all four strain elements have the

same resistance, leading to VLC = 0. When a force (or load) is applied on the weighing

scale, two opposite strain elements (R1 and R4) undergo tension (increase in resistance) and

the other two strain elements (R2 and R3) undergo compression (decrease in resistance).

This causes the bridge to become unbalanced, and the force signal is sensed as a differential

voltage VLC .

3.2 Analog Signal Conditioning

The differential voltage VLC from the load-cells wheatstone bridge network has a very low

amplitude. Therefore, appropriate amplification circuitry is required to get the signal into

voltage ranges measurable by data acquisition systems. While there are numerous amplifier

boards available to obtain measurements from load-cells based sensing systems, they do

not fulfill the requirements of this prototype as none of them has an on-board adjustable

analog filter or AC coupling. AC coupling is required in this case, because the signal of
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(a) (b)

(c) (d)

Figure 3.2: Schematic of the cushion’s load cell configuration. (a) Four load-cells mounted
on the bottom of the scale. (b) 3-wire load-cell’s electrical model. (c) Wheatstone bridge
connection. (d) The four strain elements from (c) modelled as variable resistances.
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interest, BCG, is not a DC signal corresponding to the body-weight, but rather a time-

varying alternating signal corresponding to cardiac function. Also, the BCG signal has a

low-frequency bandwidth, as majority of its power lies between 1 - 10 Hz [53]. Therefore,

it is important to have a signal conditioning block that is AC coupled and has appropriate

filters. Figure 3.3 shows a circuit diagram of the analog signal conditioning circuit. The

circuit can be divided into three stages described in the subsections below. The complete

circuit schematic diagram drawn using EAGLE PCB Design Software is shown in Appendix

A.1. The circuit was implemented on a printed circuit board (PCB) with connectors for

the 9V DC power source, the load-cells wheatstone bridge, and the BCG Vout voltage signal

(Figure 3.4).

3.2.1 Stage 1: AC-coupled Instrumentation Amplifier

The signal from the wheatstone bridge is connected to an Instrumentation Amplifier (In-

Amp). The In-Amp integrated circuit (IC) used in the circuit was the AD8221 by Analog

Devices, which was selected because of its excellent low-noise performance capabilities.

The AD8221 allows setting the amplifier gain using a single resistor, the value of which

Figure 3.3: The complete analog signal conditioning circuit
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can be calculated using the equation provided in the data-sheet:

RG =
49400

G− 1

The gain of the instrumentation amplifier was set to 500 V/V using a 99 ohm ± 1%

resistor, in accordance with the equation. To achieve AC coupling, an op-amp integrator

was connected as feedback to this stage. This feedback acts as a high-pass filter, with a

cut-off frequency given by:

fhp =
1

2πR2C1

R2 and C1 were set to achieve a high-pass cutoff of fhp = 0.15 Hz. In this way, the large

DC component of the load-cells signal corresponding to body-weight is suppressed while

the time-varying component corresponding to the BCG is passed.

3.2.2 Stage 2: Low-pass filter

The second stage in the analog signal conditioning circuit involves a unity-gain low-pass

filter. The filter design is of Sallen-Key type, where the low-pass cutoff frequency is given

by [54]:

flp =
1

2π
√
R3R4C2C3

The values for R3, R4, C2 and C3 were selected to obtain a low-pass cutoff frequency of flp

= 25 Hz. This value is wide enough for the BCG signal, which typically lies between 1 -

10 Hz.

3.2.3 Stage 3: Filtered signal amplification

The third stage incorporates a non-inverting Op-Amp gain stage, to further enhance the

filtered signal. Values for R5 and R6 were selected according to the gain equation

G = 1 +
R5

R6
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to achieve a gain of G = 51 V/V.

The integrator feedback, low-pass filter and non-inverting gain stages were implemented

using the AD8659 op-amp integrated circuits due to their excellent low-noise capabilities.

The overall signal conditioning circuit has a gain of 25500 V/V (88 dB) and a passband of

0.15 - 25 Hz.

The AD8221 In-Amp and the AD8659 Op-Amps used in this circuit require positive and

negative supply rails to operate. The negative voltage (−9V DC) was provided using the

MAX1044 voltage converter/inverter by Maxim Electronics. This component was chosen

because of its low quiescent current (current at no-load) and simple external components

requirements (just two capacitors).

Figure 3.4: Custom-designed and built analog signal conditioning circuit PCB and com-
ponents
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3.3 Analog to Digital Conversion

The analog voltage signal VoutBCG (corresponding to BCG) from the signal conditioning

circuit was converted to digital form by using a Data Acquisition (DAQ) system from

National Instruments (NI USB-6351). The DAQ system features a 16-bit Analog-to-Digital

converter capable of measuring voltages between ±10 V, and allows simultaneous recording

of eight differential voltage channels. NI DAQExpress software was used to interface the

DAQ system with a Windows-PC and store all acquired data for further processing.
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Chapter 4

Seat Cushion Testing

A study was conducted to collect and analyze BCG data using the prototype seat cushion.

These data were used to examine the performance of the cushion with respect to signal ro-

bustness, performance during simulated daily-life activities, and for heart rate calculation.

This chapter presents the first two while heart rate is discussed in Chapter 5.

4.1 Signal Conditioning Circuit Pretesting

The output of the analog signal conditioning circuit in terms of robustness of the obtained

BCG signals was pretested by observing BCG measured from a person seated directly on

the weighing scale (without the foam and cushion layers) by placing the modified weighing

scale directly on a flat wooden chair. The analog signal conditioning circuit described in

Section 3.2 was connected to the load-cells wheatstone bridge network, and the output

voltage (VoutBCG), corresponding to the BCG signal was recorded using the NI DAQ sys-

tem. The signal was sampled at 500 Hz, which preliminary testing showed was more than

adequate for this application.

Figure 4.1 (top) shows 15 seconds of a post analog signal conditioning BCG recording

obtained from the pretest person seated on the weighing scale. The bottom figure is
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obtained by zooming into the top figure, showing three seconds of BCG recording. It can be

observed from the figure that the prototype seat cushion was able to obtain BCG recordings

with clearly identifiable J-peaks. No data analysis was done on these data, as this pretest

was done to visually observe the quality of the BCG recordings in order to estimate the

validity of the approach and tune the circuit parameters. Different combinations of resistors

and capacitors were tried as estimated by the equations in Section 3.2 before integrating

the weighing scale into the cushion.

Figure 4.1: BCG obtained post analog signal conditioning from a person seated directly
on the weighing scale placed on a chair for (top) 15 seconds and (bottom) zoomed in to
three seconds. The J-peaks are marked with blue markers.
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4.2 Study Methods

It is already known that because the forces generated by BCG are orders of magnitude

smaller than physical movement, any voluntary movement by the subject would completely

dominate the BCG signal, leading to undetectable BCG information. However, it was hy-

pothesized that over a period of a few minutes of performing common routine-life activities,

a person has a number of periods when they are relatively still. To calculate heart rate from

the BCG, only a few seconds of BCG recording are required, which can be obtained every

time a person is relatively still. Therefore the goal of the study was to realistically emulate

real-world activities for plausible periods of time and see if BCG could be extracted from

them.

The study was designed with three objectives:

1. Collect BCG data and analyze the robustness of the obtained recordings.

2. Validate BCG recordings by comparing them with gold standard ECG.

3. Extract BCG from five different daily-life activities to investigate the feasibility of

the seat cushion for monitoring heart rate in real-world scenarios. The five activities

were:

• Sitting as still as possible.

• Watching a video on a screen.

• Reading a magazine.

• Using a computer/typing.

• Having a conversation with a person.

The methods used to conduct this study are described below; some sample data are

included in the methods section to illustrate the development of signal processing/filtering

methods.
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4.2.1 Recruitment and experiment protocol

The study proposal was submitted to and received ethics clearance from the Office of

Research Ethics (ORE # 40503) at the University of Waterloo. Recruitment was set for

20 participants, which is a sample size that is comparable to other similar studies (e.g.,

[55, 56]). The inclusion criteria for the participants was the age of 18 years, as they can

provide written consent. Participants were recruited by word of mouth and using flyers

posted in the engineering building at the University of Waterloo. Five of the six older adult

participants were recruited through the Waterloo Research in Aging Pool. Before beginning

the experiment, each participant was provided with an information letter describing the

details of the experiment. If the participant was interested in participating, they signed a

written consent form and completed a demographic form asking for their age, sex, weight

and height. The participant was then asked to sit on the seat cushion placed on a chair

(Figure 4.3) and the ECG electrodes were attached to their skin. The participant was

then asked to perform the five different activities: sitting as still as possible, reading a

book, watching a video, using a computer, and having a conversation with the researcher.

Each activity was performed for five minutes, with a break of one-to-two minutes between

activities. Simultaneous BCG and ECG were acquired during each activity. At the end

of the experiment, the ECG electrodes were detached and the participant was provided

with an appreciation letter thanking them for their participation and $10 remuneration.

Each experiment took about 1 hour. A chart outlining the various steps in the protocol is

included in Figure 4.2.

4.2.2 ECG measurement and digital filtering

Since ECG is widely used in clinical diagnosis, it served as the “gold standard” for heart rate

in this research and was acquired simultaneously with the BCG for all participants. ECG

was measured using a commercially available device (Finapres Medical Systems). Three

electrodes were attached to the participant in a lead-II configuration (Figure 4.4(b)).

For illustrative purposes, Figure 4.5(a) shows 10 seconds of BCG measurement from
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Figure 4.2: Experiment procedure

Figure 4.3: Participant seated on the cushion
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(a) (b)

Figure 4.4: (a) Finapres Medical Systems ECG capture device. (b) electrodes locations on
the body.

Participant 8 when they were sitting still on the cushion. It can be observed from the

figure that there is a significant respiration component in the recording (periodic signal

pattern repeating every 3 seconds). This is confirmed by the signal’s frequency response

(noise at 0.3 Hz), as indicated by the magnitude of its Fast Fourier Transform (FFT) in

Figure 4.5(b). The FFT was computed using the entire 10 second data segment. The FFT

also indicates the presence of noise around 60 Hz, caused by power lines. This noise is

introduced by the NI DAQ system during data acquisition and is common for these types

of applications. The FFT magnitudes corresponding to these components are marked with

dotted boxes. In order to remove these noise components to extract only the cardiac

signal and further improve signal quality, a digital bandpass filter (Butterworth, 4th order,

passband: fpb = 0.5 − 15 Hz) is applied to the BCG. The resulting signal after digital

filtering is shown in Figure 4.5(c), where it can be observed that the noise components

have been removed, leading to a clean BCG recording.

The ECG was bandpass filtered using a digital Butterworth filter (4th order) with a

passband of fpb = 0.3− 40 Hz. The overall filtering and amplification stages for the BCG
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and ECG are outlined in Figure 4.6.

BCG measurements were validated against the ground truth, ECG; two simultaneously

obtained signals from Participant 8 are plotted in Figure 4.7. The ECG R-peaks and the

BCG J-peaks are marked. As expected (from Section 2.3.3), the BCG lags the ECG.

4.2.3 BCG during activities

The BCG signal is affected by motion artifacts, requiring a person to be seated still to

acquire a clean signal; however, only a few seconds of clean BCG is required to calculate

heart rate. To isolate clean BCG, segments with motion artifacts needed to be removed.

A variance-based approach was used to do this as the variation in signal amplitude during

movement is much larger than the amplitude when a person is sitting still. Moving Win-

dowed Variance (Varmov) with a window size of one second was computed for the BCG

and a threshold equal to 1
2
mean(Varmov) was set. This threshold and the window size were

decided using trial and error. Signal segments having variance above this threshold were

discarded. Additionally, only segments having a duration of five seconds or longer were

extracted. This was done to ensure that enough beats are obtained even for heartbeats as

slow as 40 beats per minute for heart rate calculation. This method was implemented in

MATLAB for automatic exclusion. It can be seen from Figure 4.8 that the moving vari-

ance detects signal segments having significant physical movement as having much larger

variance than the rest of the signal. The moving variance was used to discard movement-

induced noisy segments of data.

30



(a)

(b)

(c)

Figure 4.5: Example of data obtained from Participant 8 showing (a) BCG, (b) Magnitude
response of the FFT showing significant noise at 0.3 Hz and 60 Hz power line noise indicated
by dotted boxes, and (c) BCG from (a) after digital bandpass filtering.
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Figure 4.6: Overall filtering and amplification stages for BCG and ECG

Figure 4.7: Simultaneous ECG (top) and BCG (bottom) recordings obtained from Partic-
ipant 8. The BCG lags the ECG.
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Figure 4.8: BCG recording from Participant 8 during the reading activity. (top): 5 minutes
of data and (bottom): moving window variance (normalized) data. The moving variance
reflects large variance for BCG segments that have significant physical movement. The red
line shows the threshold (signal segments above this threshold were discarded) set for this
signal to obtain clean BCG segments that are 5 seconds or longer in duration.

4.3 Results

4.3.1 Demographics

Table 4.1 shows the demographic details for the population. 20 participants (13 females

and 7 males) were recruited for the study. To obtain data from participants with different

ages, six older adults (65 years or older) were recruited. The youngest and oldest partic-

ipants were 23 years and 81 years old respectively. The mean and standard deviation for

participants’ age, height and weight are included in the last row.
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Table 4.1: Participant Demographics

Participant
ID

Sex Age
Height
(cm)

Weight
(kg)

1 F 41 171 61

2 F 23 163 56

3 M 34 168 59

4 F 24 160 56

5 F 23 182 72

6 M 24 178 65

7 M 24 183 75

8 M 24 180 75

9 F 27 165 56

10 F 73 160 90

11 F 22 160 49

12 M 26 183 100

13 F 27 158 65

14 M 29 178 95

15 M 43 173 128

16 F 81 168 75

17 F 75 157 65

18 F 84 167 63

19 F 75 178 72

20 F 80 159 59

mean ± std: 42.9 ± 24.2 169.5 ± 9.19 71.8 ± 18.8
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4.3.2 BCG during activities

For illustrative purposes, Figure 4.9 shows 15 seconds of BCG recordings obtained from

Participant 1 during all five activities.

Tables 4.2, 4.3, 4.4 and 4.5 show the results obtained for the four simulated activities

for all participants. The second column in each table shows the shortest segment (≥ 5

seconds) obtained when the participant was still and the third column shows the longest

segment. The fourth column shows the total number of segments (≥ 5 seconds each) and

the last column shows a sum total of all these segments, indicating the total duration (out

of 5 minutes) for which the person was sitting still (percentage in brackets).

During the Watching a Video activity (Table 4.2), on average, a participant remained

still for 88.2% of the time. This activity had the highest average. The averages were calcu-

lated to be 59.3%, 29.7% and 32.2% for the Reading, Using a Computer and Conversation

activities.
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Figure 4.9: 15 seconds of BCG recordings during the five activities for Participant 1. Blue
markers indicate visually identified J-peaks and red boxes indicate noisy segments where
the BCG signal is obliterated by movement.
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Table 4.2: Results for Watching a Video activity

Participant
ID

Shortest
Segment
(seconds)

Longest
Segment
(seconds)

Number
of

Segments

Total segments
duration (seconds)

(% of total recording
containing clean BCG)

1 9.21 65.1 9 284.41 (94.8%)

2 16.42 64.87 7 265.07 (88.3%)

3 12.62 45.46 9 264.53 (88.1%)

4 8.89 63 11 271.12 (90.3%)

5 12.06 71.43 9 256.76 (85.5%)

6 5.13 33.5 18 257.65 (85.8%)

7 5.64 70.27 9 235.38 (78.4%)

8 5.86 59.67 12 273.93 (91.3%)

9 5.08 50.18 14 213.57 (71.2%)

10 42.57 126.45 4 289.04 (96.3%)

11 5.48 79.58 11 268.69 (89.5%)

12 5.68 96.64 11 285.57 (95.2%)

13 57.34 235.25 2 292.58 (97.5%)

14 5.23 46.29 15 254.12 (84.7%)

15 9.17 65.6 8 258.92 (86.3%)

16 6.18 99.44 7 293.25 (97.7%)

17 16.35 71.33 7 289.48 (96.4%)

18 7.39 86.42 7 258.05 (86.0%)

19 7.21 70.33 9 201.22 (67.1%)

20 19.68 61.92 8 279.43 (93.1%)

mean ± std:13.15 ± 13.50 78.13 ± 42.48 9.3 ± 3.6 264.63 ± 24.90 (88.2%)
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Table 4.3: Results for Reading activity

Participant
ID

Shortest
Segment
(seconds)

Longest
Segment
(seconds)

Number
of

Segments

Total segments
duration (seconds)

(% of total recording
containing clean BCG)

1 5.02 29.12 12 148.89 (49.6%)

2 6.54 32.56 14 227.7 (75.9%)

3 10.34 58.31 6 149.52 (49.8%)

4 5.2 12.7 15 117.56 (39.2%)

5 5.21 24.7 13 162.69 (54.2%)

6 5.29 17.04 9 81.02 (27%)

7 5.53 18.24 13 135.26 (45.1%)

8 5.53 60.6 13 221.46 (73.8%)

9 5.02 50.76 14 221.12 (73.7%)

10 5.07 53.52 12 203.99 (67.9%)

11 6.36 44.18 12 227.92 (75.9%)

12 5.99 22.81 17 204.36 (68.1%)

13 7.98 47.96 11 230.38 (76.7%)

14 5.3 85.92 11 262.02 (87.3%)

15 6.16 59.66 15 225.76 (75.2%)

16 5.45 31.15 13 127.36 (42.4%)

17 5.05 26.1 15 158.15 (52.7%)

18 5.43 31.74 12 145.04 (48.3%)

19 7.12 25.03 9 107.75 (35.9%)

20 5.04 39.6 15 201.73 (67.2%)

mean ± std:5.93 ± 1.30 38.58 ± 18.64 12.5 ± 2.5 177.98 ± 50.51 (59.3%)
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Table 4.4: Results for Using a Computer activity

Participant
ID

Shortest
Segment
(seconds)

Longest
Segment
(seconds)

Number
of

Segments

Total segments
duration (seconds)

(% of total recording
containing clean BCG)

1 6 51.54 12 221.05 (73.6%)

2 5.28 13.75 10 80.47 (26.8%)

3 5.02 27.05 16 150.28 (50.1%)

4 5.77 12.61 5 36.85 (12.2%)

5 5.67 9.02 6 40.85 (13.6%)

6 5.08 10.93 7 54.93 (18.3%)

7 5.04 10.56 10 80.47 (26.8%)

8 5.56 20.81 9 91.68 (30.5%)

9 5 7.54 6 39.38 (13.1%)

10 5.55 34.19 5 65.68 (21.8%)

11 5.27 17.62 17 164.85 (54.9%)

12 5.05 14.67 7 52.74 (17.5%)

13 5.26 14.58 8 69.58 (23.2%)

14 5.19 14.6 11 97.17 (32.3%)

15 5.35 30.63 16 200.75 (66.9%)

16 7.99 18.99 9 116.21 (38.7%)

17 5.21 32.15 10 106.46 (35.4%)

18 5.14 7.64 8 49.07 (16.3%)

19 5.16 14.64 5 44.68 (14.8%)

20 5.05 8.28 3 19.74 (6.5%)

mean ± std: 5.43 ± 0.66 18.59 ± 11.28 9 ± 3.9 89.14 ± 56.17 (29.7%)
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Table 4.5: Results for Conversation activity

Participant
ID

Shortest
Segment
(seconds)

Longest
Segment
(seconds)

Number
of

Segments

Total segments
duration (seconds)

(% of total recording
containing clean BCG)

1 5.09 29.62 13 127.16 (42.3%)

2 5.86 14.01 8 65.34 (21.7%)

3 5.84 14.66 7 59.84 (19.9%)

4 5.29 9.34 5 34.95 (11.65%)

5 5.08 18.88 8 62.79 (20.9%)

6 6.06 60.08 8 133.05 (44.3%)

7 5.39 25.3 15 170.8 (56.9%)

8 5.52 18.89 13 136.93 (45.6%)

9 5.19 13.3 8 77.66 (25.8%)

10 6.16 23.69 12 123.29 (41.1%)

11 5.32 21.83 16 179.92 (59.9%)

12 5.52 12.15 12 99.59 (33.1%)

13 5.18 16.73 9 74.56 (24.8%)

14 6.63 20.6 5 55.22 (18.4%)

15 5.01 13.81 9 71.45 (23.8%)

16 5.02 16.73 13 109.85 (36.6%)

17 5.57 21.91 8 89.04 (29.6%)

18 5.68 11.12 6 46.49 (15.4%)

19 5.44 19.92 14 141.68 (47.2%)

20 5.02 33.59 8 81.25 (27.1%)

mean ± std: 5.49 ± 0.43 20.80 ± 11.11 9.8 ± 3.3 97.04 ± 41.37 (32.3%)
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4.4 Discussion

4.4.1 BCG robustness

From Figure 4.7, it can be observed that the BCG has clearly identifiable heartbeat seg-

ments including J-peaks. The visual robustness of the BCG signals (i.e., identifiable J-

peaks from the rest of the signal) obtained using the cushion are as good or better compared

to other BCG acquisition systems, such as [46, 48, 57, 58].

4.4.2 BCG during activities

Figure 4.9 shows that when the participant was seated completely still, all J-peaks are

clearly identifiable. When the participant was watching a video, there were a few segments

in the signal with significant motion artifact but most of the signal had clean BCG data.

For the reading activity, the motion artifact was quite large because turning a page while

reading generates a relatively larger movement. When the participant is using a computer,

significant noise was observed when the participant was typing on a keyboard. Finally,

during the conversation activity, significant noise was observed due to chest vibrations

caused by speaking and the participant using hand gestures during the conversation. As

Figure 4.9 also shows, there are segments when the person is still enough to detect enough

clean and robust BCG data for all activities; this was true for all participants in this

research study.

During the Watching a Video activity (Table 4.2), all participants remained seated still

for most of the time.

During the Reading activity (Table 4.3), the participants were sitting still for more

than half of the time on average. The time varies from one participant to another, as

some participants spent more time reading a certain page while others browsed through

the magazine.

For the Using a Computer activity (Table 4.4), the average was the lowest of all ac-

tivities. The variation in time during this activity was observed to be the highest. Some
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participants spent most of the time typing, which causes significant movement induced

noise compared to using a mouse while sitting at a computer.

For the Conversation activity (Table 4.5), the variation in time spent sitting still across

all participants can be attributed to different behaviors during the conversation as some

participants used hand/body gestures more often than others. The participants remained

relatively still for almost one-third of the time on average.

The results indicate that during all activities for all participants, there is a significant

number of clean signal chunks longer than 5 seconds. This suggests that the seat cushion

can be used to capture a BCG signal that can be used for continued monitoring of heart

rate.

4.5 Chapter Summary

This chapter discussed the pre-testing of the signal conditioning circuit and demonstrated

that the circuit is able to obtain robust BCG. Respiration and power-line noise in the signal

required further digital filtering of the BCG. The BCG was validated by comparing it to

the ground truth ECG. BCG data obtained during the five activities for all participants

was analyzed after automatic exclusion of noisy segments using a moving variance applied

to the signal. Results from the analysis showed that the cushion is able to obtain enough

clean BCG data in the signals for continuous heart rate monitoring.
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Chapter 5

BCG Signal Processing for

Calculating Heart Rate

Most methods of extracting heartbeat segments and detecting J-peaks from BCG reported

in literature have relied on ECG information to process the BCG data [55, 59, 60]. This is

mainly because R-peaks in the ECG are easy to detect, due to their amplitude being much

higher than the rest of the signal. J-peaks do not stand out in a BCG signal as much,

making their detection more difficult. Most methods have simply extracted heartbeat

segments in BCG by segmenting windows around the ECG R-peaks. While this approach

can give accurate heart rate information from BCG, the goal of this thesis is to not rely

on ECG and calculate heart rate information solely from the BCG signal.
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5.1 J-Peak Detection Using an Adaptive Threshold

Algorithm

5.1.1 Method

Heart rate calculation from BCG is most commonly done using J-peaks since they have

the largest amplitudes in the BCG (as described in Section 2.4). To detect J-peaks in BCG

for heart rate calculation, an adaptive threshold based algorithm inspired by [61] and [62]

was developed. The pseudocode for the algorithm is as follows:

Algorithm 1 Adaptive Threshold Algorithm for J-peak Detection

Input: bcg
Time-based threshold: dtth = 600 ms
Output: Indices of J-peaks in bcg: jpks
for first 800 ms of bcg do
a = index of largest local maxima
ath = 0.4bcg(a)
jpks(1) = a

end for
k = 2; to iterate through jpks
for all index i in bcg after 800 ms do

if bcg(i) ≥ ath AND i − a ≥ 0.9dtth AND bcg(i) is local maxima AND bcg(i) > all
bcg(i− 150ms : i+ 150ms) then
ath = 0.4bcg(i)
jpks(k) = i; k = k + 1
dth = i− a; a = i

end if
end for

The algorithm first finds the largest local maxima in the first 800 ms of the BCG

signal and labels it as the first J-peak. It then automatically sets a minimum threshold

(ath) corresponding to 40% of the amplitude of the first J-peak for the next peak. This

threshold was decided using trial and error. The algorithm then keeps resetting ath based

on every successive peaks, i.e. 40% of the previous J-peak. In addition to an amplitude
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threshold, a time-based threshold is also set because the noise components in the BCG

signal can exceed ath. The algorithm sets a minimum threshold (dtth) of 600 ms for the J-J

interval at the start and keeps updating this threshold as it finds successive peaks (i.e. dtth

is set to the time difference between the previous two J-peaks). In this way, each successive

peak is labelled as a J-peak if it fulfills all of these criteria:

• Its amplitude is at least 40% of the previous J-peak.

• The time difference between the peak and the previous J-peak is at least 90% of dtth.

• It is the largest peak in a 300 ms window centered around it.

A count of correctly labelled J-peaks in 60 seconds by the algorithm corresponds to

the heart rate. This approach differs from [61] in that it uses simple thresholds based on

successive J-J intervals and J-peak amplitudes instead of relying on rising and falling edges

of the J-wave.

ECG R-peaks detection: R-peaks in the ECG were detected using a simple peak-

detection algorithm (as they clearly stand out from the rest of the signal) where a threshold

equal to 50% of the maximum signal amplitude was set and all values above this threshold

were labelled as R-peaks.

5.1.2 Results

The first exploration of the adaptive threshold algorithm performance was done using one

minute of BCG obtained between 60-120 second portion of the Sitting Still activity for

each participant as this activity contains the most viable BCG data; namely, at the start

of the recording, some participants spent a few seconds adjusting their posture and then

remained seated still throughout the remainder of this activity. The performance of the

algorithm for J-peak detection was tested by comparing with the R-peaks of the ECG.

Table 5.1 shows the results obtained using data from all twenty subjects. The second
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column shows the total number of R-peaks in the ECG, which corresponds to the actual

heart rate, which was calculated using the method described in Section 5.1.1. A true J-

peak positive is a BCG J-peak that was identified correctly and is counted as a beat in

the heart rate calculation. The heart rate reported by the algorithm is, therefore, equal to

the number of true J-peak positives. A false J-peak positive is an incorrect peak labelled

as a J-peak by the algorithm. The fifth column shows undetected true J-peak positives,

which correspond to correct J-peaks missed by the algorithm (no correct/incorrect J-peak

detected). All of these values were obtained by visually assessing the BCG signal with

the J-peaks labelled by the algorithm. The final column shows the percentage of correctly

detected J-peaks compared to the number of ECG R-peaks.

Table 5.1 shows that the lowest and highest correct J-peak detection accuracies for the

adaptive threshold algorithm were 49.2% and 100% respectively for the sitting still activity.

Overall, the average accuracy is calculated to be 83.1% for the twenty participants.

It was observed that higher accuracy was obtained for BCG signals that were more

robust and of higher quality. Figures 5.1, 5.2 and 5.3 show BCG and ECG recordings from

Participants 6 and 8, 13 and 11, and 5 and 4 respectively. These recordings are discussed

in the next subsection.
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Table 5.1: Evaluation of Adaptive Threshold algorithm performance for the Sitting Still
activity

Participant
ID

Total
R-peaks

True
J-peak

Positives

False
J-peak

Positives

Undetected
True J-peak

Positives

% of
True J-peak

Positives

1 73 62 8 3 84.9%

2 84 78 1 5 92.8%

3 81 66 12 3 81.4%

4 69 34 29 6 49.2%

5 69 52 14 3 75.3%

6 77 77 0 0 100%

7 74 48 26 0 64.8%

8 67 67 0 0 100%

9 76 72 4 0 94.7%

10 73 70 2 1 95.8%

11 71 65 4 2 91.5%

12 73 62 8 3 84.9%

13 70 64 5 1 91.4%

14 60 56 2 2 93.3%

15 78 40 37 1 51.2%

16 58 55 3 0 94.8%

17 74 69 4 1 93.2%

18 62 43 16 3 69.3%

19 58 52 6 0 89.6%

20 63 39 22 2 61.9%

Average: 83.1%
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(a)

(b)

Figure 5.1: ECG and BCG recordings for (a) Participant 6 and (b) Participant 8. Blue
markers indicate J-peaks identified by the adaptive threshold algorithm.
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(a)

(b)

Figure 5.2: BCG and ECG recordings from (a) Participant 13 and (b) Participant 11. Blue
markers indicate J-peaks correctly identified by the adaptive threshold algorithm. Hollow
blue markers indicate correct J-peaks unidentified by the algorithm. Red markers indicate
incorrectly identified J-peaks.
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(a)

(b)

Figure 5.3: BCG and ECG recordings from (a) Participant 5 and (b) Participant 4. Blue
markers indicate J-peaks identified by the adaptive threshold algorithm and red dashed
boxes indicate indeterminable visual detection of J-peaks.
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5.1.3 Discussion

As seen in Figure 5.1, the BCG signals for Participants 6 and 8 are very robust, with the

J-peaks having amplitudes that are relatively larger than the rest of the signal around

them, making them easier to distinguish. This explains why the algorithm was able to

identify all J-peaks correctly for these two participants.

Figure 5.2 shows that the algorithm incorrectly labelled two J-peaks (red markers) in

each recording. It can be observed that correct J-peaks (hollow blue markers) for these

two segments were not robust as they did not have amplitudes much larger than the signal

around them. For Figure 5.2(b), the algorithm also missed a correct J-peak (did not label

any J-peak for that segment). The J-peak detection accuracy for these BCG recordings

were calculated to be 91.4% and 91.5% for participants 13 and 11 respectively.

For the data shown in Figure 5.3, the algorithm detects only five correct J-peaks in

10 seconds duration for participant 5 (5.3(a)) and only one for participant 4 (5.3(b))

respectively. In fact, the J-peaks in these segments are so similar to the rest of the signal

that it is difficult to identify them visually. Participant 4 (5.3(b)) had the lowest J-peak

detection accuracy of 49.2% as most of the J-peaks in the BCG do not stand out from the

rest of the signal.

The adaptive threshold algorithm for J-peak detection performs well only for BCG

signals that have robust and easily identifiable J-peaks. For BCG recordings having some

hard to identify J-peaks (such as those in Figure 5.2), the algorithm had an accuracy

between 79% and 94%. This is because as the algorithm dynamically “adapts” to the

amplitude and time-based thresholds, an incorrectly detected J-peak can set thresholds

that are insufficient for the correct detection of successive J-peaks. The algorithm does

not work for signals such as those in Figure 5.3(a).

The errors in J-peak detection can cause incorrect readings of heart rate and heart

rate variability, as the algorithm can yield an incorrect J-J interval. This can result in

abnormal heart rate values for a normal heart function and vice versa, which can lead to

incorrect conclusions in cardiac health assessment. Additionally, heart rate detection must
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be accurate for several permutations of BCG if the seat cushion approach is to be valid

in real-world contexts. As such, the adaptive threshold algorithm method is inadequate; a

more accurate method for J-peak detection is required.

5.2 J-Peak Detection Using Continuous Wavelet

Transform

5.2.1 Background

As described in the previous section, an algorithm is required that could detect J-peaks

even when their amplitudes are relatively low. A continuous wavelet transform (CWT)

based approach was selected.

CWT is a tool for analyzing localized variations of energy/frequency in a time series. It

decomposes a signal into time-frequency space, providing information of dominant frequen-

cies and how they locate in time. There are other ways of doing time-frequency analysis;

however, they were not as good a fit for this application. For example, while the classical

Fourier transform provides very accurate information about the frequency content of a

signal, it does not provide any information about how those frequencies are localized in

time. The Windowed Fourier Transform can be a tool for obtaining localized frequency

information from a signal. However, it is not an accurate and efficient method of time-

frequency localization for signals involving abrupt changes in time [63]. Wavelet analysis

works as a better tool in these situations. For signals having abrupt changes, the CWT

can provide information about when (or at what scales s of the analyzing wavelet) does a

dominant energy for a frequency(ies) exist.

The BCG is a signal that has abrupt changes in time. The wavelet transform can be a

useful tool to analyze the BCG and obtain localized information about heart beat segments

(i.e. approximately where in time the heart beat segments are located in a BCG and which

scale in the CWT will work best to obtain this information).
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A CWT can be described as follows. Let xn be a discrete time series sequence having

N number of points (n = 0, 1, 2, ..., N − 1) with equal time spacing δt. The CWT of xn,

denoted by Wn(s) is defined as:

Wn(s) =
N−1∑
n=0

xn′ψ∗
[

(n
′ − n)δt

s

]
(5.1)

where ψ∗ is the complex conjugate of ψ(η). ψ(η) is the analyzing wavelet function. The

wavelet transform is obtained by convolution of xn with scaled and translated versions

of ψ(η), as indicated by Equation 5.1 [64]. The wavelet function compresses or dilates

depending on the scale parameter s. The original unscaled wavelet function ψ(η) is often

called the “mother wavelet” in wavelet analysis.

The wavelet ψ(η) has two fundamental properties: 1) the wavelet function is limited in

time (i.e. ψ(η) has values in a certain range and zeros elsewhere) 2) the wavelet function

has zero mean [65]. Many different wavelet functions have been designed and the choice of

the wavelet varies from one analysis to another. An example of a commonly used wavelet

function is the Morlet wavelet (Figure 5.4) given by:

ψ(η) = π− 1
4 ei6ηe−

η2

2 (5.2)

Figure 5.4: Morlet wavelet of Equation 5.2
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Because a complex wavelet function is generally used in wavelet analysis, the CWT is

also complex.

A few studies on wavelet analysis on BCG and ECG have been reported in literature

[66, 67, 68]. These studies have used wavelet transform for noise cancellation in BCG

followed by template matching [66] and have used different scales of the CWT for each

subject [67], whereas this research used the same scale for all subjects, making the algorithm

completely autonomous.

5.2.2 Method

Wavelet analysis on the BCG was performed to see which scales in the CWT provide

most useful information about time localization of heartbeat segments in a BCG. The

BCG’s CWT using a Morlet wavelet (Figure 5.4) as the analyzing (or mother) wavelet was

computed. The morlet wavelet was chosen due to its similarity with the BCG waveform

and its wide use in biomedical analysis (Figure 2.4). The analysis was done using MATLAB

software, as the cwt() function in MATLAB provides built-in functionality to compute and

analyze CWTs. cwt() returns an M × N matrix corresponding to the CWT coefficients,

where M is the number of scales used to calculate the CWT and N is the number of

samples in the BCG signal. Thus, each row corresponds to the CWT coefficients obtained

using a single scale. After computation of the CWT, a scalogram of the CWT was plotted

(Figure 5.5). The scalogram shows energy for each wavelet coefficient for each scale in

time. This scalogram plot makes it easier to observe the scales that contribute to the most

energy during heartbeat segments.

From Figure 5.5 (middle), it can be observed that scales 27-31 provide the most dis-

tinguishable information about the heartbeat segments in the BCG. Out of these scales,

scale-30 worked best for all participants (using trial and error) and was selected to be used

for further processing. The magnitude plot of the CWT coefficients at scale-30 (CWT30)

is shown in Figure 5.5 (bottom).
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Figure 5.5: Application of CWT to BCG data for Participant 8. (top): 5 seconds of
BCG. (middle): Scalogram of the BCG’s CWT showing energy of CWT coefficients for all
scales. Scales 27-31 (white box) provide most distinguishable localized information about
heartbeat segments. (bottom): Magnitude plot of scale CWT30 showing repeating peaks
corresponding to heartbeats in the BCG.
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Figure 5.6: Data from from Participant 8 with (top) ECG, (middle) BCG, and (bottom)
Magnitude of scale CWT30 showing 400 ms windows centered around CWT30 peaks. The
extracted windows from the BCG are marked in orange on the BCG signal.

J-Peak Detection: The plot for CWT30 (Figure 5.5) shows that it has a repetitive

nature, with a series of peaks directly related with heartbeat segments in the corresponding

BCG signal. These peaks indicate that the maximum signal energy in the BCG lies in the

areas around these peaks. Therefore, these peaks can be used to highlight heartbeat

segments in the BCG. Figure 5.6 shows the heartbeat segments in the BCG highlighted in

orange color. These segments are obtained by extracting 400 ms windows from the BCG

signal; 400 ms window size was determined by observing that the typical BCG heartbeat

segment (from H to L wave (Figure 2.4)) for most participants was around 400 ms. Each

window was centered at the corresponding peak in the CWT30, as shown in Figure 5.6

(middle plot). An amplitude threshold equal to the mean of all heartbeat segments in

the signal was set and each peak having amplitude equal to or above this threshold was

labelled as a J-peak. A time-based threshold was also set, according to which two J-peaks
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must be at least 500 ms apart. This allows calculation of heart rates as high as 120 beats

per minute, which is well within the normal resting heart rate limit [69]. Theoretically, this

threshold can be changed to 400 ms to detect heart rates as high as 150 bpm, although this

has not been tested in this thesis work. The thresholds in this algorithm are simple and

do not need to be adaptive because the heartbeat segments containing BCG information

are already highlighted by the CWT.

Signal-to-Noise Ratio Estimation

Singnal-to-Noise ratio (SNR) is a method to gauge the strength of a desired signal compared

to that of interference noise. To analyze if the detection accuracy of the J-peak detection

algorithm is related to the SNR, SNR was computed for all twenty participants. The

method presented by [70] was used because of its mathematical simplicity and because the

method has been widely used in literature, for example [55, 70, 71]. The SNR is given by:

SNR = 2

∑N
n=1E1(n)E2(n)∑N

n=1(E1(n)− E2(n))2
(5.3)

where E1 is the sub-ensemble average of the first 10 seconds of the BCG and E2 is

the sub-ensemble average of the next 10 seconds. A sub-ensemble average is obtained by

averaging all heartbeats in the BCG in that duration. N is the total number of samples

in the sub-ensemble average.

Statistical test for comparison with adaptive threshold algorithm:

A Wilcoxon signed-rank test was used to statistically analyze the difference in accuracies

reported by the two algorithms [72]. This testing method was chosen as it is a commonly

used non-parametric test [73, 74]. A non-parametric test was required instead of a para-

metric test (e.g. paired t-test), as the data was not observed to be normally distributed

[74]. The Wilcoxon signed-rank test is analogous to the paired t-test in non-parametric

statistical procedures and can be used to detect differences between the behavior of two
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algorithms [75]. The null hypothesis that the accuracies of the two algorithms have the

same mean was tested at the 95% confidence interval.

5.2.3 Results

Figure 5.6 shows the results of wavelet analysis done on BCG from Participant 8. The

algorithm is able to detect all J-peaks correctly. Figure 5.7(a) shows ten seconds of BCG

from Participant 13. The heartbeats extracted from the BCG are highlighted in orange

and the J-peaks labelled by the CWT algorithm are marked. For comparison, the J-peaks

labelled for this signal by the adaptive threshold algorithm are also marked. Same is done

for Participants 13, 11, 5 and 4 in Figures 5.7 and 5.8. These figures align with the data

in Figures 5.2 and 5.3 presented in the previous section.

As done for the adaptive threshold algorithm in the previous section, the CWT based

algorithm for J-peak detection was applied on one minute duration of BCG (i.e., the data

from 60 to 120 s of each five minute segment) for all participants. The results obtained

are summarized in Table 5.2. The algorithm is able to achieve an average 91.4% accuracy

for J-peak detection. For 14 out of 20 participants, the accuracy is more than 90%. There

are three outliers in the data (Participants 4, 15, 20) with accuracies less than 80%. Table

5.2 also includes the estimated SNR for each participant.

A comparison between the two algorithms for each participant is shown in Figure 5.10.

The Wilcoxon signed-rank test rejected the null hypothesis at the 95% confidence interval,

with a p-value of p = 0.00019; this signifies a statistically significant difference in the

accuracy of the two algorithms.
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Table 5.2: Performance of the CWT based algorithm for J-peak detection

Participant
ID

Total
R-peaks

True
J-peak

Positives

False
J-peak

Positives

Undetected
True J-peak

Positives

% of
True J-Peak

Positives

SNR
(dB)

1 73 72 0 1 98.6% 36.3

2 84 80 2 2 95.2% 33.5

3 81 77 1 3 95% 43

4 69 46 19 4 66.6% 19.9

5 69 61 5 3 88.4% 25.7

6 77 77 0 0 100% 38.2

7 74 60 8 6 81% 26.6

8 67 67 0 0 100% 41.2

9 76 73 1 2 96% 30.7

10 73 71 1 1 97.2% 34.8

11 71 67 3 1 94.3% 26.4

12 73 71 1 1 97.2% 28.8

13 70 67 1 2 95.7% 35.5

14 60 59 0 1 98.3% 43.5

15 78 60 16 2 76.9% 19.6

16 58 56 2 0 96.5% 27.9

17 74 71 3 0 95.9% 28.8

18 62 50 11 1 80.6% 25.9

19 58 57 1 0 98.2% 37.4

20 63 48 15 0 76.1% 30.1

Mean ± std: 91.4 ± 9.4% 31.7 ± 6.9
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(a)

(b)

Figure 5.7: ECG and BCG from (a) Participant 13 and (b) Participant 11. The heartbeat
segments extracted by the CWT algorithm are highlighted in orange. J-peaks labelled by
the CWT algorithm are marked. J-peaks labelled by the adaptive threshold algorithm are
shown for comparison.
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(a)

(b)

Figure 5.8: ECG and BCG from (a) Participant 5 and (b) Participant 4. The heartbeat
segments extracted by the CWT algorithm are highlighted in orange. J-peaks labelled by
the CWT algorithm are marked. J-peaks labelled by the adaptive threshold algorithm are
shown for comparison.
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Figure 5.9: BCG and ECG from Participant 20. J-peaks labelled by the CWT algorithm
are marked.

Figure 5.10: Comparison of adaptive threshold and CWT algorithms. The last two bars
show average accuracies across all participants; lines on these two bars indicate one stan-
dard deviation.
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5.2.4 Discussion

It can be observed from Figures 5.7(a) and 5.7(b) that for some of the heartbeats in the

BCG, the J-peaks are not clearly discernible. These J-peaks’ amplitudes are relatively low

compared to their neighboring samples, which is why the adaptive threshold algorithm fails

to detect them and incorrectly labels a neighboring peak as J-peak. However, the CWT

based algorithm performs well here because it first highlights the heartbeat segments and

searches for J-peaks only in those segments. In this way, this algorithm decreases the

chance of detecting incorrect J-peaks. The accuracy of J-peak detection using CWT in

the BCG of Figure 5.7(a) was 95.7%, which shows an increase from the adaptive threshold

algorithm (91.4% accuracy).

Participant 4 had the lowest accuracy for the adaptive threshold algorithm (49.2%) as

the BCG consisted of J-peaks with amplitudes similar to the peaks around them, making

their detection hard to do. Using the CWT based algorithm (Figure 5.8(b)), the accuracy

increased to 66.6%; while this is an improvement of 17.4%, it is still the lowest across all

data.

For the three outliers (Participants 4, 15, 20) with accuracies less than 80%, the BCG

data for these participants involved J-peaks that did not stand as much compared to the

rest of the signal, leading to a low J-peak detection accuracy. This is further evident from

SNR calculations (Table 5.2). Participants 4 and 15 had a SNR of 19.9 dB and 19.6 dB

respectively, which are the lowest values across all data. On the contrary, BCG recordings

having a higher J-peak detection accuracy (e.g. Participant 6 and Participant 8) had a

much higher SNR and greater algorithm accuracy.

For Participant 20, a low J-peak detection accuracy and a comparatively high SNR

value was observed. Looking at the BCG trace for Participant 20 (Figure 5.9), it can be

observed that the signal appears visually clean, which led to a relatively higher SNR value.

The J-peaks in the signal are detectable but their amplitudes are still not relatively high

compared to the peaks around them. This can cause the algorithm to detect incorrect

J-peaks and give a low J-peak detection accuracy. Although this was observed for only

one participant, this indicates a limitation in the J-peak detection algorithm, where it
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can output inaccurate values of heart rate (and heart rate variability) even for BCG data

that has visually robust J-peaks and a high SNR. The only solution for this would be a

better J-peak detection algorithm, perhaps one that uses the amplitude variations in a

BCG heartbeat (instead of just the local maxima value) or signal pattern recognition to

detect J-peaks. This is something that needs to be addressed in future.

Comparison between Adaptive Threshold and CWT based algorithms: A

comparison between the two algorithms (Figure 5.10) shows that the J-peak detection

accuracies for all participants’ recordings was improved with the CWT based algorithm

(except for participants 6 and 8, who had 100% accuracies for both algorithms). The

largest increase in accuracy was observed for participant 15 (25.7%). Average accuracy

across all BCG recordings increased from 83.1% to 91.4% (i.e., by 8.3%). The Wilcoxon

signed-rank test yielded a significant difference in the performance of the two algorithms

by rejecting the null hypothesis, indicating that the CWT based algorithm performed

significantly better.

The CWT based algorithm performs significantly better, as it relies on heartbeat seg-

ments that are highlighted by the CWT’s scale-30; the adaptive threshold algorithm has

no such information prior to processing as it selects the largest peak as J-peak at the start

and then relies on previously detected J-peaks’ information. This increases the chances of

error in subsequent J-peaks detection.

Excluding the three outliers (participants 4, 15 and 20), the average accuracy of the

CWT algorithm is 94.6%. This is similar to that of existing commercial wearable devices,

some of which are evaluated in [76] (accuracies between 94.04% - 94.14%) and [77] (accu-

racies between 79.8% - 99.1%). These devices use photoplethysmogram (PPG) signals to

calculate heart rate.

While the detection of heartbeat segments in a BCG can be significantly increased if

the ECG R-peaks are used as a reference, this is not the goal of this research. Namely,

this research focused on calculating heart rate without the person being monitored simply

sitting down and without having to wear or attach anything. As such, ECG was only used

for ground truth and not used in J-peak detection algorithms to compute heart rate.

64



5.3 Chapter Summary

This chapter presented and discussed BCG signal processing and algorithms to calculate

heart rate. An adaptive threshold algorithm was first designed to detect J-peaks in the

BCG to calculate heart rate. Analysis of the algorithm applied on BCG data showed

that the algorithm does not perform well for BCG having J-peaks that are of similar

amplitude to the surrounding signal. A novel CWT based algorithm was then developed

that intelligently highlights heartbeat segments in the BCG, making J-peaks detection

more accurate. The accuracy for the CWT based algorithm was calculated to be 91.4%,

which shows an improvement from the adaptive threshold algorithm (83.1% accuracy).

A Wilcoxon signed-rank test resulted in a statistically significant difference between the

performance of the two algorithms. There were three outliers in the data having BCG

with mostly unidentifiable J-peaks. Two of these outliers also had the lowest SNRs of all

data. The accuracy for the CWT algorithm excluding these outliers was 94.6%, which is

comparable to that of commercial wearable heart rate monitors.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presents research to develop a seat cushion for heart rate monitoring using BCG.

The seat cushion used off-the-shelf components, including load-cells as sensors, making the

solution cost-effective. The electronic circuitry designed for signal conditioning provided

robust and clean BCG signals. BCG data during different daily-life activities was obtained

from twenty participants of different ages and weights and the results demonstrated that

the obtained data had enough duration of robust BCG to extract useful heart rate infor-

mation. An adaptive threshold based algorithm was designed to detect J-peaks from the

BCG and calculate heart rate. The algorithm reported an absolute average accuracy of

83.1% and demonstrated the need for a better algorithm. A Continuous Wavelet Trans-

form based algorithm was then developed to intelligently highlight heartbeats information

in the BCG and calculate heart rate. The algorithm showed significant improvement from

the adaptive threshold algorithm, as verified by the statistical test results, and showed

a promising accuracy (94.6% excluding three outliers) when compared to the gold stan-

dard ECG. Comparison with current health monitoring technologies demonstrated that the

cushion’s performance is as good as or better than wearable heart rate monitors. In sum-

mary, this research developed a portable and unobtrusive alternative to wearables, in the
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form of a seat cushion, that can be easily integrated into virtually any living environment,

enabling flexible long term zero-effort heart rate monitoring.

6.2 Future Work

The seat cushion has room for improvements that can be implemented as future work.

Improvements in J-peak detection algorithm can be made. This study used CWT scales

to highlight heartbeat segments in a BCG for J-peak detection. However, it would be

interesting to see if a certain scale of the CWT (Figure 5.6) can have enough information

to estimate heart rate directly from the CWT scale. This would make the algorithm faster

and would require much less computational resources, both of which will be beneficial

for real-time heart rate monitoring. Additionally, new and more intelligent algorithms

may be developed by looking into machine learning based approaches. Signal pattern

recognition might be the most appropriate method to explore in this area, by analyzing

changes in signal amplitudes throughout the BCG heartbeat and looking for patterns in

BCG heartbeats across different BCG recordings.

Since BCG corresponds to the displacement of the body caused by the change in center-

of-mass, a sensor array (instead of four load cells at the corners) could prove to be helpful.

For example, a load cell array coupled with center of mass detection could help compensate

for different postures and focus signal acquisition by enhancing the outputs from the sensors

near the center-of-mass.

For better exclusion of signal segments where the person is exerting physical movement,

an accelerometer could be embedded inside the cushion, as the accelerometer would provide

real-time information about when the user exerted a movement. This time-based informa-

tion can be used to accurately and easily highlight and discard corresponding segments in

BCG.

The seat cushion could be modified to have capacitive ECG acquisition. Capacitive

electrodes are required to sustain the zero-effort properties of the cushion as capacitive

ECG can be measured through clothing. PPG acquisition can be considered as well. ECG
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could make J-peak detection more accurate, because the ECG R-peaks, which are relatively

easier to detect, could be used to segment windows of heartbeats in the BCG. This could

also enable retrieval of other cardiac information such as blood pressure.

Following these improvements, real-time monitoring of more holistic heart health could

be implemented. This implementation could be done by employing an embedded processor

with a built-in A/D converter to acquire the analog signals and process them digitally in

real-time. Wireless data transfer and storage could also be relatively easily integrated, using

Bluetooth-Low-Energy and WiFi based methods, enabling remote real-time monitoring.
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Appendix A

Analog Signal Conditioning Circuit

Schematic
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Figure A.1: EAGLE Schematic diagram for the analog signal conditioning circuit
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Recruitment Study Material

• Information sheet for participants

• Demographic information form

• Consent form for participants
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INFORMATION SHEET FOR PARTICIPANTS 

Title of the project: Study on Monitoring of Cardiac Vitals Using 

Ballistocardiogram Signals Acquired Through a Seat Cushion 

 

Team members:   

 

Jennifer Boger, PhD   

Assistant Professor  

Department of Systems Design 

Engineering   

University of Waterloo  

Email: jboger@uwaterloo.ca 

Phone: 519-888-4567 ext. 38328 

Ahmed Raza Malik 

MASc student, 

Department of Systems Design 

Engineering, 

University of Waterloo 

Email: ahmed.r.malik@uwaterloo.ca 

You are invited to participate in a research study about a novel method of vital 

signs monitoring through a seat cushion. 

 

Purpose of the Study: 

Vital signs monitoring is an essential part of monitoring heart-related health 

conditions. For people with chronic conditions, vitals measurements often be 

performed several times a day. Current technologies used for vitals monitoring, 

such as wearables, smart fabrics and electrodes-based systems, are obtrusive and 

require the person using them to intentionally interact with them. Our team is 

developing a smart seat cushion for monitoring heart-related vitals. The cushion is 

embedded with sensors that can perform long-term vitals monitoring through 

clothing from whomever sits on it. This is done by the sensors inside the cushion 

acquiring a signal called the ballistocardiogram (BCG), which is a measure of the 

movement of your body due to blood flow.  

 

Participation criteria: 

Only adults (18 years and older) can participate in the study. 

 

Procedure: 

Should you choose to participate, you will be asked to sign the consent form. 

During the study, you will be asked to sit on a seat cushion and perform five 

activities: (1) Sit Still; (2) Read a book; (3) Watch a video; (4) Converse (talk) with 
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the researcher; and (5) Type on a keyboard. Each activity will last for about five 

minutes. 

 

Your electrocardiogram (ECG) will also be acquired. ECG is a signal that reflects 

the electrical activity of your heart. The ECG serves as a verification standard for 

the BCG. You will also have three electrodes placed on your skin to acquire ECG. 

One electrode will be placed on your right arm (near the wrist) and the other two 

electrodes will be placed on your legs (near the ankles). These are passive, 

painless sensors (i.e., they only ‘listen’ for your ECG signal, they do not deliver any 

electricity to your body).  

 

The total experiment will last about one hour. 

 

Your rights as a participant: 

Your participation is voluntary; you are free to withdraw your participation at 

any time. If for any reason you feel uncomfortable taking part, please let the 

researcher know to discuss and address your concerns. If the issue cannot 

be solved, you will be asked to withdraw from this study. You will receive full 

remuneration in case you decide to withdraw. 

 

Confidentiality:  

The data captured will be stored on a secure password-protected lab server with 

access only to the researchers. 

No identifiable information will be collected during this study so that individual 

participant's anonymity will be protected. Your name will not appear in any report, 

presentation or publication resulting from this research. The file linking name and 

participant code will be kept for a minimum of 7 years, and only the researchers 

associated with this project will have access to it. Your data may be included in a 

dataset that is open to academic researchers. Data will be de-identified (i.e. data 

such as names and identifying demographic information will be removed) prior to 

submission to the database and will be presented in aggregate form in online 

publications. This is integral to the research process as it allows other researchers 

to verify results and avoid duplicating research. 

You can request your data be removed from the study up until Feb. 1, 2019 as it is 

not possible to withdraw data once publications have been submitted to publishers. 
 

You will be provided with a feedback letter upon the completion of your participation. 

If you are interested and provide your contact information by email, you will also 

be provided with a copy of any scientific articles prepared for presentation or 

publication based on this study. 
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Remuneration： 

You will receive $10 as a remuneration for participating in the study. 

 

 

Benefits of the study: 

Participation in the study may not provide any personal benefit to you but the study 

will benefit the community. The study is on a novel method of monitoring vital signs 

using a seat cushion. Such a device can be easily integrated inside a person’s 

home or care facility to enable unobtrusive monitoring of their vital signs. 

 

Risks associated with participation: 

There is a slight chance that you may experience a mild allergic reaction or skin 

irritation to the adhesives on the ECG electrodes. In such a case, the electrodes 

will be removed immediately, a hypoallergenic swab will be used to clean the area 

and the protocol will be stopped. You will be instructed to avoid scratching and 

keep the area clean. 

In the case that you face any difficulty in sitting on the cushion in the right position, 

the researchers will assist you. 

 

Acknowledgment: 

This study is funded by the Natural Sciences and Engineering Research Council 

of Canada (NSERC). 

 

Contact Information: 

This study has been reviewed and received ethics clearance through a University 

of Waterloo Research Ethics Committee (ORE# 40503). If you have questions for 

the Committee contact the Office of Research Ethics, at 1-519-888-4567 ext. 

36005 or ore-ceo@uwaterloo.ca.  

 

For all other questions, or any questions regarding participation in this study, 

please feel free to ask the researchers. In case of additional questions at a later 

time, please contact one of the researchers, 

 

Jennifer Boger     jboger@uwaterloo.ca      Phone: 519 888-4567 x38328 

Ahmed Raza Maik  ahmed.r.malik@uwaterloo.ca       
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Demographic Information Form 
 
 

Instructions:    Please provide a response for each of the following 
questions:  
 
 
1.  What is your age?  __________         
 
2.  What is you sex? 
 
      Female    Male           
 
3.  What is your height and weight?  
 
      __________            __________        
          Height                     Weight 
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   CONSENT FORM FOR PARTICIPANTS 

Title of Project:  Study on Monitoring of Cardiac Vitals Using 

Ballistocardiogram Signals Acquired Through a Seat 

Cushion 

Research team members: 

Name Department Phone: e-mail: 

 

Jennifer Boger  

Assistant Professor 
Systems Design Engineering 

519-888-

4567 

x38328 

jboger@uwaterloo.ca  

 

Ahmed Raza Malik 

MASc 

  Student 

Systems Design Engineering  ahmed.r.malik@uwaterloo.ca 

 

 

By signing this consent form, you are not waiving your legal rights or releasing the 

investigator(s) or involved institution(s) from their legal and professional responsibilities. 

I have read the information presented in the information letter about a study being 

conducted by the research team as part of Ahmed Raza Malik’s Master thesis led by Dr. 

Jennifer Boger from Systems Design Engineering at the University of Waterloo. I have had 

the opportunity to ask any questions related to this study, to receive satisfactory answers 

to my questions, and any additional details I wanted. 

I am aware that I may withdraw my consent for any of the above statements or withdraw 

my study participation during the data collection phase of the study without penalty by 

advising the researcher. 

I am aware that my data may be included in a dataset that is open to academic 

researchers. (No identifiable information will be included in the database) 

This study has been reviewed and received ethics clearance through University of 

Waterloo Research Ethics Committee (ORE #40503). If you have questions for the 

Committee contact the Office of Research Ethics, at 1-519-888-4567 ext. 36005 or ore-

ceo@uwaterloo.ca. 
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Data use in future research  

 

Additionally, I consent for data collected in this study to be used in future research. My 

consent / non-consent to the future use of data does not impact my participation in this 

study.  

 

_______   I consent for my data to be used in future studies. 

_______   I DO NOT consent for my data to be used in future studies. 

 

Participant Name: ________________________________________ 

(Please print) 

 

Participant Signature: _____________________________________ 

 

Witness Name: __________________________________________ 

(Please print) 

 

Witness Signature: _______________________________________ 

 

Date: __________________________________________________ 
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