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Abstract

Low-power, high-speed neural networks are critical for providing deployable embedded AI
applications at the edge. We describe a Xilinx FPGA implementation of Neural Engineering
Framework (NEF) networks with online learning that outperforms mobile Nvidia GPU
implementations by an order of magnitude or more. Specifically, we provide an embedded
Python-capable PYNQ FPGA implementation supported with a Xilinx Vivado High-Level
Synthesis (HLS) workflow that allows sub-millisecond implementation of adaptive neural
networks with low-latency, direct I/O access to the physical world. The outcome of this
work is NengoFPGA1, a seamless and user-friendly extension to the neural compiler Python
package Nengo. To reduce memory requirements and improve performance we tune the
precision of the different intermediate variables in the code to achieve competitive absolute
accuracy against slower and larger floating-point reference designs. The online learning
component of the neural network exploits immediate feedback to adjust the network weights
to best support a given arithmetic precision. As the space of possible design configurations
of such quantized networks is vast and is subject to a target accuracy constraint, we use
the Hyperopt hyper-parameter tuning tool instead of manual search to find Pareto optimal
designs. Specifically, we are able to generate the optimized designs in under 500 short
iterations of Vivado HLS C synthesis before running the complete Vivado place-and-route
phase on that subset, a much longer process not conducive to rapid exploration. For neural
network populations of 64–4096 neurons and 1–8 representational dimensions our optimized
FPGA implementation generated by Hyperopt has a speedup of 10–484× over a competing
cuBLAS implementation on the Jetson TX1 GPU while using 2.4–9.5× less power. Our
speedups are a result of HLS-specific reformulation (15× improvement), precision adaptation
(3× improvement), and low-latency direct I/O access (1000× improvement).

1https://www.nengo.ai/nengo-fpga/
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Chapter 1

Introduction

As the end of Moore’s law (Moore, 1965) and Dennard scaling (Dennard et al., 1999)
inevitably approaches, the semiconductor industry faces increasing technical and physical
challenges in the manufacturing and fabrication of viable chips. Simultaneously, the machine
learning revolution is creating a need for more powerful processing hardware that can train
and evaluate sophisticated neural networks. FPGAs provide a configurable computing
substrate that allow us to gracefully adapt to the end of Moore’s law by configuring our
hardware resources specifically for our computing tasks as needed. In particular, they are
a great match for machine learning tasks as they provide parallel access to thousands of
processing (DSP) and memory (RAM) blocks as well as direct connections to external I/O.

Machine learning (ML) developers commonly use Python as their development envi-
ronment. Many popular packages such as Tensorflow (Abadi et al., 2015), Keras (Chollet
et al., 2015), Nengo (Bekolay et al., 2014), and others are built around Python, and retain
widespread use in the community. On the hardware side, ML developers have embraced
GPUs for training and inference. This has been made possible by the availability of opti-
mized GPU libraries, high-level CUDA (Nickolls et al., 2016) or OpenCL (Khronos OpenCL
Working Group et al.) programming environments, and ease of integration with Python.
FPGAs have high potential in terms of performance and efficiency; however, they have been
seen as exotic devices that have a steep learning curve for software programming because
they use low-level languages like VHDL or Verilog. To help address the productivity gap,
FPGAs now allow programming using C/C++ with High-Level Synthesis (HLS) compil-
ers. Furthermore, Xilinx has also introduced PYNQ, a Python environment for accessing
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FPGA hardware on Zynq FPGA devices. The PYNQ environment has a clean Application
Programming Interface (API) for configuration of the FPGA, data movement using Direct
Memory Access (DMA), interfacing with GPIO, and more. An IEEE survey places Python
and C++ as the top two programming languages (Cass, 2018) and a combination of HLS and
PYNQ marries these two languages creating a more attractive starting point for software
developers.

FPGAs offer significant advantages over GPUs in terms of latency, power use, and
configurability. These features are particularly critical in power-limited, edge of the network
deployments, for instance in IoT, mobile, or real-time applications. As a result, there have
been many projects that aim to marry ML and embedded FPGAs. Most projects focus
primarily on convolutional or deep networks (e.g. Hao and Quigley 2017; Nakahara et al.
2019; Noronha et al. 2018; Wang and van Schaik 2018; Aydonat et al. 2017). There are
also several projects that try to create more general frameworks (e.g. Yinger et al. 2017;
Abdelfattah et al. 2018; Umuroglu et al. 2017, 2018). There also exist projects that explore
more detailed and biologically plausible implementations (e.g. Carlos Moctezuma et al.
2015) and some even target the Neural Engineering Framework (NEF) (e.g. Berzish et al.
2016; Corradi et al. 2014; Wang et al. 2014a) as this work does. The goal of this work is to
merge these focuses into a single project: a flexible framework for implementing biologically
plausible NEF-style networks on FPGA1.

We present an optimized FPGA backend that integrates HLS-generated hardware
wrapped in PYNQ APIs with the Nengo (Bekolay et al., 2014) neural network development
framework. Nengo is a Python package for simulating spiking and non-spiking, large-scale
neural networks with unique support for the Neural Engineering Framework (NEF) (Elia-
smith and Anderson, 2003). Nengo includes a graphical interface to help visualize network
topologies and inspect real-time represented values in the model. It is flexible and can
implement traditional deep learning, vision, and motor control applications but goes beyond
that to include working memory, hierarchical reinforcement learning, inductive reasoning,
and planning. In fact, the world’s largest functional brain model, Spaun (Eliasmith et al.,
2012; Choo, 2018), was built using Nengo. This 6.5-million neuron model demonstrates
the rich range of capabilities of the framework. Nengo currently supports CPU, GPU,
specialized neuromorphic chips (Mundy et al., 2015; Voelker et al., 2017; GitHub:nengo-loihi,
2019), and other backends. With this work Nengo is now able to target PYNQ FPGA

1Currently we do not support convolutional or deep networks, but this is planned for future work (see
Section 5.2)
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boards using a new FPGA backend, NengoFPGA, integrated seamlessly into the traditional
Nengo workflow (Morcos et al., 2019). We can run Nengo directly on the System on a Chip
(SoC) device by leveraging the ARM processor adjacent to the Zynq FPGA but we go one
step further and include infrastructure to run directly from a PC host. NengoFPGA will
automatically handle connection and communication with the FPGA device on the same
local network allowing users to explore and develop NengoFPGA in the same environment
as they would use standard Nengo. This allows developers to enjoy a fully featured Nengo
system with access to PC resources and subsystems while still allowing FPGA acceleration
with only a ≈ 24% overhead to NengoFPGA pipeline.

In summary:

• We develop a seamless FPGA backend for Nengo to realize low-power, low-
latency embedded systems that use neural network structures with online
learning. With direct I/O access we acheive sub-microsecond evaluation of
small networks and with a system including a PC and an ARM CPU as hosts
we still maintain real-time performance within the widely accepted 1ms time
envelop.

• We use an HLS description of the neural networks that is parametric and
flexible enough to cover a range of implementation possibilities.

• We reformulate the parallelism in the software description in order to overcome
the limitations of Vivado HLS and expose dataflow and pipeline parallelism.
This reformulation leads to 15× performance improvement.

• We reduce the precision of the arithmetic operations using Hyperopt (Bergstra
et al., 2015) to automatically find optimal parameters for the design. Notably,
the included online learning allows the network to continuously adjust the
network weights to perform the desired function within the constraint of
the chosen bit precision. This reduced precision implementation leads to an
overall 50× improvement over the original implementation.

• We demonstrate fully embedded performance by bypassing the PC and ARM
hosts and directly integrate sensors and actuators with the adaptive neural
network architecture over GPIO which erases data movement delays and
improves performance by three orders of magnitude.

3



Chapter 2

Background

2.1 The Neural Engineering Framework

This section introduces the Neural Engineering Framework (NEF) (Eliasmith and Anderson,
2003). The NEF provides methods for implementing spiking or non-spiking, dynamic neural
computations in arbitrary vector spaces. It allows for flexibility in low-level details such as the
neuron model or method of adaptation and yet promotes higher-level abstract descriptions of
algorithms and topologies at the same time. In addition to arbitrary feedforward networks,
the NEF lends itself to biologically plausible cognitive architectures (Eliasmith, 2013) and
the control and modelling of dynamical systems. This makes it uniquely well suited to
online, real-time, and recurrent networks, which differs from the contemporary focus of
backpropagation-trained networks and inference engines. The NEF is built on the principles
of representation, transformation, and dynamics. For the purposes of this work, we focus
on the first two principles, representation and transformation.

2.1.1 Principle 1: Representation

A key aspect of Principle 1 is akin to that of population coding wherein a population, or
ensemble of neurons as we call it, collectively represent some real value based on the various
distributions of activities given an input stimulus.
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Given a D-dimensional time-varying signal, x ∈ RD, defined in “state-space” as an input,
we map it to an N -dimensional representation in “neuron-space”. We call this mapping from
state-space to neuron-space encoding and call the resultant neuronal representation the
activity, a ∈ RN . Each vector element in this neuronal activity representation corresponds to
the activity, ai, of a single neuron, each of which contributes to the collective representation
of the real input value. This encoding step can be expressed as follows:

ai = G[αi (ei · x) + bi] with i ∈ {1, . . . , N} (2.1)

where

• ai is the activity of the ith neuron in the ensemble;

• G is the non-linear transfer function of the neuron model, which in the
case of this work is the Rectified Linear Unit (ReLU) simply defined as
G[v] = max(0, v);

• αi > 0 is the gain term corresponding to the ith neuron in the ensemble;

• ei ∈ RD is the ith row of the encoder matrix, E ∈ RN×D, that defines the
distribution of activity given a stimulus for each neuron in the ensemble;

• x ∈ RD is the state-space input; and

• bi is the bias term that accounts for background activity in the ith neuron in
the ensemble.

The neuron activity, ai, is then mapped back to state-space resulting in a D-dimensional
output vector, y ∈ RD. This mapping from neuron-space back to state-space is called
decoding and can be expressed as follows:

yj = dj · a with j ∈ {1, . . . , D} (2.2)

where

• yj is the jth element of the state-space output, y ∈ RD;

• dj ∈ RN is the jth row of the decoder matrix, D ∈ RD×N , that linearly maps
the given activity in neuron-space back to state-space; and
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• a ∈ RN is the vector all neuron activities.

The encoders, E, and bias, b, are randomly generated and the decoders, D, can be
analytically obtained by least-squares optimization of the representational error, ||x− y||,
across the domain of x in state-space.

2.1.2 Principle 2: Transformation

The first principle of the NEF, representation, allows us to recreate inputs using a neuron-
space representation but does not lend itself to any interesting computation in that basic
form. Principle 2, on the other hand, describes methods with which to compute arbitrary
functions. The encoding and decoding methodologies described in Equations 2.1 & 2.2
remain unchanged; however, the values of the decoders,D, are modified and it is this updated
decoder matrix that allows the computation. Instead of minimizing the representational
error, ||x−y||, more generally, we can find decoders that represent an arbitrary linear or non-
linear function, f(x), by minimizing ||f(x)− y||. Furthermore, the output dimensionality
of this arbitrary function need not match the dimensionality of the input. More concretely,
given x ∈ RDin and y ∈ RDout , Din need not equal Dout.

The decoders may also be initialized to non-optimal, arbitrary values that are updated
in real-time using online learning according to a particular learning rule. In the case of this
work we employ the Prescribed Error Sensitivity (PES) (Bekolay et al., 2013) learning rule
which updates the decoders each step by:

∆D = −kErrx · a (2.3)

where

• ∆D ∈ RD×N is the prescribed change to the decoders for this step through
the network;

• k is the scalar learning rate that controls how quickly the system will adapt;

• Errx ∈ RD is the error signal for the given system which can be calculated
(i.e. ||f(x) − y||), but can also be provided directly by an external source;
and
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• a ∈ RN is the vector all neuron activities.

The neural network developer must choose a reasonable value for the learning rate, k,
that 1) does not overshoot too far and oscillate, while 2) converging quickly enough to adapt
to system changes in real-time. The neural activity, a, is included in the decoder update
in Equation 2.3 to allow decoders to be selectively updated. Only those neurons with a
non-zero activity are contributing to the representation of the given input and consequently
only those neurons contributing to the current representation need updating while neurons
not involved are left unaffected.

2.1.3 Comparison to Deep Networks

In order to help understand NEF networks we will compare them to the more ubiquitous
Deep Neural Networks (DNNs). Consider Figure 2.1 that compares typical DNN topologies
to NEF topologies. Figure 2.1a shows a D-dimensional state-space input being projected
to N neurons in neuron-space through weights w1 then fully connected to a second layer of
N neurons by w2 and finally projected back to a D-dimensional state-space output by w3.
The NEF topology in Figure 2.1b similarly takes a D-dimensional input and produces a
D-dimensional output, both in state-space. However, instead of using a large weight matrix
(w2 ∈ RN×N) to connect the two layers of neurons, the NEF splits this into two smaller
matrices and moves back to a D-dimensional state-space representation between the layers.
Typically we have N � D so this method has two notable benefits:

1. The NEF saves memory since storing enc,decT ∈ RD×N is fewer elements
than w ∈ RN×N .

2. The NEF saves on bandwidth since we are now only transmitting a D-
dimensional vector between layers instead of a N -dimensional vector.

The NEF also allows the encoders matrix to be randomly generated in contrast to con-
ventional networks in which weight initialization can have significant repercussions (Thimm
and Fiesler, 1997). Of course, with random encoders the onus is placed on the decoder
matrix to produce coherent values. The decoders can be solved by conventional methods,
such as backpropagation, but can also be analytically solved or trained online during
inference as mentioned in Section 2.1.2.
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w1

[DxN ]

w2

[NxN ]

w3

[NxD]

(a) Typical DNN Topology

enc1
[DxN ]

dec1
[NxD]

enc2
[DxN ]

dec2
[NxD]

(b) NEF Topology

Figure 2.1: A visual comparison between typical DNN and NEF topologies. In this example, both
topologies accept some input at the top of dimensionality D and pass through two layers of N
neurons each. Then a D-dimensional output is produced at the bottom.

2.2 Nengo

Nengo (Bekolay et al., 2014) is a source available Python framework that enables high-level
description, debugging, visualization, analysis, and deployment of neural networks. It is
actively used and developed with 24 contributors, 423 stars, and 125 forks on github1 at
the time of writing2. While alternative frameworks exist for simulating large-scale neural
models or cognitive phenomena with various levels of biological plausibility, Nengo has a
proven track record modelling dynamic, real-time, and large-scale behaviours (Bekolay et al.,
2014). By decoupling network description and simulation, Nengo is also agnostic to the

1https://github.com/nengo/nengo
2July 26, 2019
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backend implementation and allows the user to target several hardware backends including
CPUs and GPUs by leveraging PyOpenCL (Klöckner et al., 2012); various neuromorphic
hardware with custom backends; and now FPGAs (with this work). Figure 2.2 illustrates
the decoupled architecture of Nengo at a high level, albeit with some backends omitted to
avoid unnecessary clutter.

Figure 2.2: Architecture of the Nengo ecosystem showing the separation of the frontend description
using Nengo core and multiple backends that execute on different hardware.

* Graphic adapted from Nengo Documentation (https://www.nengo.ai/documentation/)

In addition, this decoupling allows frontend add-ons. The deep learning extension of
Nengo, NengoDL (Rasmussen, 2018), allows the integration of external network description
from TensorFlow (Abadi et al., 2015) for example. The Nengo ecosystem also seamlessly
integrates into the interactive Jupyter Notebook (Kluyver et al., 2016) system to facilitate
explanation and exploration networks and topologies. In that vein, a key feature of
Nengo is the optional integrated Graphical User Interface (GUI) that helps to develop and
visualize computations. Figure 2.3 shows how the GUI displays a simple learning network
including ensembles of neurons, connections, and real-time values from the simulation. The
implementation described in this paper encompasses the pre ensemble seen in Figure 2.3
as well as the learning rule implemented on the pre–post connection. That is to say we
accept an input (stim) that is represented internally (pre) then passed through the pre–post
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connection weights to produce an output. The error signal that drives the decoder update
for online learning is also consumed on the FPGA (green dashed line).

Figure 2.3: The Nengo GUI displaying an adaptive model with neural ensembles pre, post, and
error ; and with input stim, which is a sine wave. Black solid lines show connections and the green
dashed line represents the error signal used by the learning rule to updates the decoders. The plots
show the represented value on the vertical axis and the simulation time on the horizontal axis.

2.3 Neuromorphic Computing

Typically when we think of computers, and computing in general, we imagine the typical von
Neumann architecture which is the basis of nearly all modern computing and a technology
upon which we rely. Our world is becoming increasingly data-driven and emergent research
into machine learning and neural networks increases the demand on compute resources.
This increased demand coupled with the eventual demise of Dennard scaling (Dennard et al.,
1999) and Moore’s law (Moore, 1965) has left the traditional von Neumann architecture
hard pressed to cope going forward. It is estimated that the human brain, in all it’s
computational majesty, consumes only ≈20W of power compared to the 100’s of watts
required for modern CPUs and GPUs. Thus, researchers began development of compute
platforms inspired by biology. This biologically inspired computing, to whatever extent it
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may resemble biology, is dubbed neuromorphic computing. Beyond computational efficiency,
there are several other driving factors for the development of neuromorphic hardware
ranging from fault tolerance in computation to better understanding of neuroscience and
biological computation (Schuman et al., 2017).

Modern, high-performance neuromorphic computing is still very much in it’s infancy
across both research and commercial sectors but the idea of these compute platforms
is not new. In fact, the term neuromorphic computing was coined back in 1990 (Mead,
1990) in reference to a Very Large Scale Integration (VLSI) machine that used analog
components to mimic a neural system. Today the term has broadened slightly to encompass
both biologically inspired architectures as well as architectures driven by the demands of
artificial neural networks (ANN) such as Google’s Tensor Processing Unit (TPU) (Jouppi,
2016). Google has recently made their TPU technology available via the Coral Development
board (Cass, 2019). Unfortunately, there was not enough time to evaluate this technology
during this thesis work and similarly, it is not immediately obvious whether this ANN
inspired processor is conducive to the more biologically plausible architecture of the NEF
used in this work.

There are currently some more biologically inspired neuromorphic devices in existence
leveraging various analog, digital, or mixed technologies, but none of these are readily
available at the time of writing. There are some academically backed neuromorphic
devices, such as SpiNNaker (Furber et al., 2014) from the University of Manchester or
Braindrop (Neckar et al., 2019) from Stanford University, as well as some industry developed
devices, such as IBM’s TrueNorth (Merolla et al., 2014) and Intel’s Loihi (Davies et al.,
2018). Even if you are lucky enough to have access to one of these devices they are not
easy to use. These devices, by definition, do not conform to the traditional von Neumann
style of sequential instruction processing so it is not obvious how to program these devices
with our current software paradigm. These devices all have their own unique API; however,
many of them have also been connected to Nengo (Mundy et al., 2015; Voelker et al.,
2017; GitHub:nengo-loihi, 2019; Fischl et al., 2018) as it provides separation between the
frontend network description and the backend hardware implementation. These devices
are not easily available for comparison as mentioned and moreover many of these systems
employ different compute models which are not conducive to direct comparisons either. For
example, Loihi and TrueNorth or both event-driven (asynchronous) systems that largely
operate on synaptic events at the neuron granularity instead of the abstracted state-space
ensemble granularity at which we operate.
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The evolving nature of neuromorphic computing in conjunction with the multiple
driving facets in the field has led us to explore implementation on the reconfigurable
FPGA. An FPGA implementation is much more cost effective to implement than ASIC
devices and furthermore, allows for reconfigurability whether it be minor tweaks for testing
and optimization or entirely new implementations as new research develops. FPGAs also
have the advantage of being readily available off-the-shelf devices and are (relatively) cost
effective. As the Nengo software project grows in popularity and continues to support a
wide array of different hardware backends, it seems like an obvious choice as a frontend
connection to the FPGA architecture we develop in this work.

2.4 High-Level Synthesis

Custom hardware platforms, including FPGAs and ASICs, provide vast potential for
high-performance and low-power computing; however, the development of these custom
hardware platforms is time intensive and costly. Hardware designs are typically done using
a Hardware Description Language (HDL), such as Verilog or VHDL, at the register transfer
level (RTL). This approach offers the designer impeccable control over hardware resources
and timing but is tedious in terms of code development and requires designers to have
in-depth knowledge of hardware components. In order to mitigate the challenges associated
with hardware development using HDL, researchers and industry alike began to develop
what is known as High-Level Synthesis (HLS).

In much the same way software programming languages such as C and C++ offer
a more user-friendly layer of abstraction on top of bare assembly language for CPU
programming, HLS languages and compilers offer a more user-friendly layer on top of bare
HDL for FPGA and/or ASIC programming. There are various approaches from academia,
such as LegUp (Canis et al., 2011) and Chisel (Bachrach et al., 2012), as well as vendor
developed systems, such as Xilinx’s Vivado HLS (Feist, 2012) and Intel’s (formerly Altera’s)
FPGA SDK for OpenCL (Czajkowski et al., 2012). These 4 examples all extend existing
general purpose programming languages, namely C/C++ (LegUp and Vivado HLS), Scala
(Chisel), and OpenCL (Intel’s FPGA SDK); though many other approaches exist using
domain specific languages or creating a new language altogether (Nane et al., 2016). By
extending existing programming languages, these HLS frameworks begin to cater not to
hardware programmers specifically, but to the overwhelmingly more numerous software
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programmers (Bureau of Labor Statistics, 2016). Furthermore, these language extension
frameworks are able to make use of existing libraries and tools.

The use of HLS for hardware development effectively relaxes the requirements of
hardware developers: it is possible for software developers to foray into hardware more
easily and even for experienced hardware developers this workflow can reduce development
time. These benefits, of course, come with a cost. Trading-off the verbosity and complexity
of the typical HDL design flow in favour of HLS inherently relinquishes some control to the
compiler and therefore it is likely that HLS-built application will underperform as well as
consume more hardware resources. This resource and performance cost can be lessened
by optimizations and creative code structure specific to the particular framework, target
hardware, and application (Huang et al., 2013). Unfortunately, to effectively optimize HLS
designs, the developer once again requires knowledge of hardware components as well as
framework specific experience and knowledge by which to convince the compiler to create
certain hardware structures.

The use of HLS workflows as they are at the time of writing allow rapid development of
functional hardware designs, though achieving good performance still requires some domain
specific knowledge. It is important to note that HLS is very much in it’s infancy and if we
consider the development of higher level programming languages as precedent, the future is
bright for HLS (Cong et al., 2011). Consider the effort and development that went into
moving from assembly level programming to the C programming language. It took years of
development and skepticism (Ritchie, 1993) and yet today trade-offs of using a C compiler
instead of directly programming in assembly are rarely considered because the performance
of modern day C compilers is tremendous.

2.5 PYNQ

The Python productivity for Zynq (PYNQ) framework is Xilinx’s foray into reducing the
development effort needed for creating a usable FPGA accelerator and integrating it into
various applications. PYNQ targets the Xilinx Zynq family of chips which are all System
on a Chip (SoC) devices. These Zynq SoC devices pair FPGAs with multi-core ARM
processors in order to provide a flexible, deployable platform. FPGA development is in and
of itself an esoteric process with comparatively few accomplished developers (Bureau of
Labor Statistics, 2016), but even if you are provided with a working hardware design there
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is still much effort to be sunk into creating an interface. Integrating FPGA hardware into
an application requires low-level embedded design which has been traditionally done using
C or C++ languages. A 2018 survey of programming languages done by IEEE claims
that Python has (marginally) surpassed C/C++ as the top programming language for the
second year in a row (Cass, 2018). As such, it is fitting that Xilinx is marrying FPGA
development with Python.

The overarching goal of the PYNQ project is to align hardware development with the
more streamlined software development process. Instead of creating new designs for each
new application, hardware developers can instead begin to create libraries. These hardware
libraries, or overlays, can be loaded much like software libraries and then the PYNQ
API (Xilinx, 2019c) can be used to easily interface with the FPGA via Python. Necessarily,
these hardware libraries will still require development by an experienced hardware developer,
but perhaps with an accessible Python API and attractive framework this new paradigm
will be adopted more readily. The Python API provides pre-built functionality for many
common use cases, including data movement and I/O interfacing, and has many example
applications available (e.g. Corradi 2018; Xilinx 2019b). PYNQ is also designed to work
with Jupyter Notebooks which may further entice developers as they can easily share
implementations embedded within the descriptive and visual Jupyter environment.
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Chapter 3

NengoFPGA

3.1 FPGA Architecture

All work done for this implementation used Vivado and Vivado HLS version 2016.1 and
was evaluated on a PYNQ-Z1 device using the PYNQ API version 2.1.

In this section, we describe the design and engineering of NengoFPGA, a new FPGA
backend for Nengo. This work presents a limited proof of concept implementation wherein a
single ensemble of neurons with online learning is evaluated on the FPGA and the remainder
of the network is evaluated on the host CPU as normal. As such, connectivity and synapses
beyond the input and output of the single ensemble and the error signal for the contained
learning rule are not implemented in hardware.

The foundations of the NEF approach to representation and transformation shown in
Equations 2.1, 2.2, and 2.3 are embodied in the basic sketch shown in Figure 3.1. Note
that there is a slight modification from Equation 2.1: to save memory and computation,
instead of storing both the encoders and gain separately we instead pre-compute the scaled
encoders, E′, where each row of the encoder matrix, ei, is scaled by the corresponding gain
term, αi.

First we discuss at a high-level the parameterization of the design in Section 3.1.1 then
we move to a lower level as we discuss the evolution of the architecture in Section 3.1.2.
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Figure 3.1: High-Level diagram of dataflow in the Neural Engineering Framework (NEF) network
evaluation. We consume inputs (x), perform matrix-vector multiplication with the scaled encoders
(E′), add the bias (b) to the result and generate the activity (a) vector. The result (y) is generated
through another matrix-vector multiplication with the decoders (D). The scaled encoder matrix is
generated randomly, while the decoder matrix is trained and updated by the online Prescribed Error
Sensitivity (PES) learning rule.

Section 3.1.3 discusses the implementation of fixed-point data types and Section 3.1.4
discusses our method for automatically optimizing fixed-point hyper-parameters.

3.1.1 Design Parametrization

To support the use of NengoFPGA in various embedded scenarios, we first target run-time
parametrization of the design. We identify the model size parameters as the primary factors
that determine the neural network configuration. We leave the number of neurons, N ,
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and the input and output dimensionality, Din and Dout, as parameters. We also leave the
learning rate, k, as a parameter to tailor the hardware to specific applications, including
those without learning (i.e. k = 0). Full on-chip storage is used in embedded contexts
to eliminate external memory accesses during operation and to enable rapid response to
real-time events from the outside world. Although the model size parameters we identified
are easily implemented at run-time, the weight matrices, E′ and D, and the bias vector, b,
associated with those parameters must be stored on chip and require their memory sizes
to be fixed at compile-time (not run-time). Although N , Din, and Dout remain run-time
parameters, we must choose maximum values for each of these at compile-time in order to
allocate on-chip memory. Another compile-time parameter that dictates parallelism in the
compute pipeline is extracted as well and is labelled UFAC , or unroll factor. Since these
compile-time parameters dictate the architecture of the run-time parametrized hardware,
we call these hyper-parameters.

This leaves us with a set of run-time parameters:

• number of neurons, N ;

• input dimensionality, Din;

• output dimensionality, Dout; and

• learning rate, k.

As well as a set of compile-time hyper-parameters:

• maximum input or output dimensionality, Dmax, used to allocate memory for
the input and output vectors (x and y respectively);

• maximum number of neurons, Nmax, used to allocate memory for the bias
vector (b);

• maximum weight matrix size, NDmax, used to allocate memory for the scaled
encoders and decoder matrices (E′ and D respectively); and

• the unroll factor, UFAC , used to determine the degree of parallelism in the
compute pipeline.

Note that NDmax need not equal Nmax × Dmax. This allows additional flexibility at
run-time in cases where we choose large N and small D or vice versa. For example, say
we set Dmax = 1k and N = 16k. If we set NDmax = Nmax × Dmax = 16M we create
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an unreasonable resource demand while underusing this memory in most cases. Now
if we instead set NDmax = 32k for example, we could feasibly achieve this by setting
Dmax = 8 and N = 4k and imposing these conservative limits. Instead we choose to have
NDmax 6= Nmax×Dmax, say NDmax = 32k, Dmax = 1k, and N = 16k, which allows flexibility
to choose larger dimensionalities while still abiding to our memory budget. Furthermore,
by choosing these values independently we make more efficient use of the memory allocated
for weights as there are multiple (N , D) combinations that fill the memory instead of the
single (Nmax, Dmax) pair.

The compile-time hyper-parametrization allows for rapid design-space exploration as
well as easily tunable implementations that target particular applications. Typically we
choose Dmax, Nmax, and NDmax to fill the entire chip, unless area or resources are reserved
for auxiliary functions. However, these values are related to the last hyper-parameter,
UFAC . Necessarily, having more parallel compute pipelines requires more resources for
evaluation, but indirectly, as we increase the number of parallel pipelines (UFAC ), it is
necessary to replicate the input and output vectors by the same factor in order to service
each pipeline. This overhead is visually displayed in Figure 3.2.

The real flexibility of the design stems from the run-time parameters. The ability to
set model parameters, such as number of neurons or dimensionality, as well as neuron
characteristics, such as encoders and bias, at run-time allows a single compiled design to be
used in multiple applications. In order to efficiently load all of these values into on-chip
memory, we employ a run-once initialization and then allow the hardware to run without
host interaction henceforth1. The implementation is split into two distinct steps: 1) Loading
parameters and 2) Evaluation. This is summarized at a high level in Algorithm 3.1.

3.1.2 HLS Formulation

A simple and naive implementation of the NEF is shown in Algorithm 3.2 and consists at
its core of two matrix multiplies: 1) encoding the input as neural activity; and 2) decoding
the neural activity to create the output.

Efficient, scalable parallelization of the NEF equations is the primary role of the HLS
description. While the parallelism potential is abundant in the matrix-vector operations, it
is not trivial to harness this parallelism for several reasons, including:

1Assuming I/O is connected directly to the FPGA via GPIO or another interface.
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Figure 3.2: High-Level diagram of dataflow in the parallel network evaluation. The encoders (E′),
bias (b), and decoders (D) are partitioned across the UFAC parallel compute pipelines. In order to
service the parallel pipelines, the input (x) is replicated for each parallel channel. Similarly, multiple
output channels are required to read the partial results from each channel (ypart).

Algorithm 3.1: Load–evaluate workflow of the FPGA implementation where LOAD is done once
on initialization and the else condition is the evaluation that receives an input and an error and
produces an output every step.

1 if LOAD then
2 Store parameters on chip
3 else
4 Read input and error
5 Encode input → neural activity
6 Decode neural activity → output
7 Write output
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• A trick used to pack compute resources is batching. However, in our case
batching presents a challenge due to the temporal dimension of the NEF. The
NEF (and this implementation) is geared towards dynamic systems whose
inputs vary and may not be known ahead of time (i.e. for batching). Similarly,
this work employs online learning which has a temporal feedback dependency.

• The encode and decode loop topologies are inverted. Loops overN are followed
by Din for encode, while loops over Dout are followed by N for decode. Due
to this structure, we cannot trivially partition the full encode–decode pipeline
across the same dimension. To maximize the extent of parallelism for both
the encode and decode computations, we aim to split the tasks across the
N neurons. This is because in typical NEF formulations N � Din and
N � Dout.

• The decode step from Equation 2.2 requires a contribution from each neuron
to create the output, y. Thus, in order to parallelize across N , we have to
restructure our code. The nested loops of the decode step are inverted and a
partial result, yk, is generated in each parallel section. After the decode step,
the partial results are then accumulated into the single output, y =

∑
k y

part
k .

• Each parallel section is allocated an independent portion of the encoder, E′,
and decoder, D, weights. However, the input, x, and error signal, Errx,
must be shared between threads.

• Having parametric loop bounds (i.e. N , Din, and Dout) presents challenges
regarding loop unrolling and partitioning since the problem structure is not
static.

We start with our basic sketch of the implementation shown in Algorithm 3.2 and
discuss incremental strategies used to address these parallelization challenges.

Though there is some overhead associated with the LOAD step in Algorithm 3.1, this is a
run-once process so it is the evaluation time for one pass through the computation flow
in Figure 3.1 that should be minimized to allow the system to respond to real-time signal
characteristics for a large number of neurons and dimensions. Recall, we start with fixed
values for scaled encoders (E′) and bias (b) elements which are selected at random. The
input (x), activity (a), and output (y) quantities vary with each timestep. The decoder
matrix (D) is also updated once per timestep using the PES rule and replaces conventional
backpropagation with an online learning approach. When interfacing with sensors and
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Algorithm 3.2: A basic sketch of the NEF implementation without consideration for hardware or
HLS structure or limitations.
1 for i < N do // Encode
2 ai = bi
3 for j < Din do
4 ai += xj ∗ esij
5 ai = G(ai) // ReLU

6 for j < Dout do // Decode
7 for i < N do
8 yj += ai ∗ dji
9 dji += −k ∗ Errxj ∗ ai // Learning

actuators, the acquisition of inputs and projection of outputs may present additional time
penalties on various platforms, but for this analysis we assume I/O presents zero latency and
focus on the compute pipeline alone. Before exploring the evolution of our HLS description,
we do a quick back-of-the-envelope calculation to estimate the required number of cycles
given Din inputs, N neurons, and Dout outputs.

Cycle estimations are referring to Algorithm 3.2. If we consider only the core encode
and decode steps on lines 4 & 8 we require:

(Din +Dout)×N (3.1)

We are using 32 bit floating-point numbers, so to be conservative we allow 3 cycles for both
of these load-compute-store operations:

[(Din +Dout)×N ]× 3 (3.2)

Now consider the addition of the bias term on line 2 and the evaluation of the Rectified
Linear (ReLU) transfer function on line 5 for each neuron. We arrive at:

[(Din +Dout)×N ]× 3 + (2×N) (3.3)
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Finally we account for the online learning update using the PES rule on line 9. This is an
additional load-compute-store operation inside our decode loop, so we increment our inner
parentheses (alongside the original decode step) and conclude with:

[(Din + 2×Dout)×N ]× 3 + (2×N) (3.4)

For the subsequent discussion regarding performance, we consistently compile designs
with Nmax = 4k, Dmax = 8, and NDmax = 32k for simplicity and we use N = 200 and
Din = Dout = 2 for all cycle count comparisons. Plugging these into Equation 3.4, we
should expect the evaluation of one timestep to take ≈ 4000 cycles.

For the first-pass HLS implementation the two decode loops are perfectly nested and
are automatically flattened and pipelined having an initiation interval (II ) of 6. Due to the
addition of bias and the application of the ReLU transfer function, the encode loops are
not perfectly nested and therefore are not flattened and pipelined automatically. The inner
encode loop over Din is pipelined and has II = 5. The outer loop can only be pipelined if
the inner loop is fully unrolled, but in our case we have a variable loop bound, and thus the
execution of the inner loop is not known at compile-time and cannot be properly unrolled.
Consequently, the outer encode loop over N cannot be pipelined as the internal workload is
unknown and this contributes notably to the poor initial performance. As a result, this
naive design requires 6026 cycles which is much worse than our estimate of only 4000 cycles.

To overcome the limits of the HLS compilation, we have to supply additional information
to the compiler as explored by Huang et al. (2013). We perform the following optimizations
guided by the need to describe HLS code with care:

1. Restructuring of the decode loops to match the encode structure which favours
parallelization over N as it is the larger dimension and contains the most
parallelism.

2. Unroll-friendly description of the design with an explicit third loop level that
the compiler can recognize as parallelizable.

3. Dataflow concurrency directives (i.e. pragmas) attached to the proper loop
bodies.
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Restructuring

As observed earlier, maximum parallelism is available over the N neurons. This suggests
the need to reformulate the decode loops accordingly. In the first restructuring step, the
nested decode loops are inverted as seen in Algorithm 3.3. We do not fuse the outer encode
and decode loops over N to ensure the inner loops are fully optimized in isolation. With
the restructured loops, we also introduce a local activity value, aloc, on line 6 to better
exploit data reuse. Since we are using the simple Rectified Linear neuron model, we move
G into the decode loop as a ternary operation (i.e. aloc > 0 ? aloc:0) on line 6 to simplify
the encode loop. After these modifications the performance of the encode step remains
unchanged, still unable to be fully pipelined, but the fully pipelined decode step improves
two-fold, now boasting an II = 3, with the addition of data reuse over ai. Overall, this
improves the performance of the design which now requires 4829 cycles.

Algorithm 3.3: A sketch of the NEF implementation with the decode step restructured to more
closely match the structure of the encode step. The decode loops are inverted and the ReLU transfer
function is moved inside the decode loop.

1 for i < N do // Encode
2 ai = bi
3 for j < Din do
4 ai += xj ∗ esij

5 for i < N do // Restructured decode
6 aloc = G(ai) // ReLU inline
7 for j < Dout do
8 yj += aloc ∗ dji
9 dji += −k ∗ Errxj ∗ aloc // Learning

Explicit Parallelization

Once the outer loops have been harmonized and both the encode and decode steps begin
with loops over N , it may seem tempting to simply apply the UNROLL pragma followed
by DATAFLOW to evaluate the unrolled loop copies in parallel. However, Vivado HLS was
not able to correctly identify the independence of the parallel sections and produced
sequential hardware while still using the larger resource cost associated with the dataflow
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framework. To overcome this limitation, we factor out an explicit outer loop for unrolling
to make the parallelism more obvious to the compiler. This loop for unroll factor, UFAC ,
is introduced as shown in Algorithm 3.4 and explicitly partitions the encode and decode
loops across their N -dimension. The use of the UNROLL pragma in this new loop now
successfully creates multiple pipelines. This alone was not sufficient to improve performance
though. Using the ARRAY_PARTITION pragma, the network weights, E′ and D, required
by each parallel section were partitioned along their N -dimension. Unfortunately, even
with the additional outer loop and this pragma, the compiler was still unable to recognize
the independence of the partitioned data and did not allow concurrent memory access.
The weights and biases instead had to be explicitly partitioned using an extra dimension
in the array structure, much the same way the loops required an additional layer to be
unrolled. For example, the N ×Din scaled encoder matrix, enc[N][D], is reshaped and
becomes enc[UFAC][N/UFAC][D]). Finally, this three-dimensional structure along with the
ARRAY_PARTITION pragma was understood by the compiler for concurrent access. To keep
each parallel section supplied with data, the input, x, and error signal, Errx, must be
replicated UFAC times – one for each parallel section.

Algorithm 3.4: A sketch of the NEF implementation that has been restructured for parallelism by
explicitly partitioning the work over the N neurons using an additional outer loop. Consequently,
additional logic is required to accumulate the partial results of each partition.

1 for k < UFAC do // Explicit partitioning
2 for i < d N

UFAC e do // Encode
3 ai = bki
4 for j < Din do
5 ai += xkj ∗ esij

6 for i < d N
UFAC e do // Restructured decode

7 aloc = G(ai) // ReLU inline
8 for j < Dout do
9 ypartkj += aloc ∗ dji // Partial result

10 dji += −k ∗ Errxkj
∗ aloc // Learning

11 for j < Dout do // Accumulate partial results
12 yj = 0

13 for k < UFAC do
14 yj += ypartkj
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Having explicitly described the parallelism manually, we must similarly handle edge
cases explicitly as the compiler is not responsible for the parallel structure in this case.
We add extra logic to handle the cases when UFAC is not a factor of N by zero-padding
arrays and computing loop bounds as the ceiling i < d N

UFAC
e. The output, y, requires a

contribution from each neuron as seen in Equation 2.2 and therefore by partitioning along
the N -dimension, each parallel section now creates a partial result for the output, ypart.
These partial results must then be handled explicitly and so an additional accumulator loop
is added as seen in Algorithm 3.4. Luckily, the inner loop over UFAC has a known bound
at compile-time allowing the accumulator loop to be automatically pipelined. Figure 3.3
shows the computation schematic of this partitioned design.
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Figure 3.3: High-Level diagram of dataflow in the parallel network evaluation. The encoders (E′),
bias (b), and decoders (D) are partitioned across the UFAC parallel compute pipelines. In order to
service the parallel pipelines, the input (x) is replicated for each parallel channel. Similarly, multiple
output channels are required to read the partial results from each channel (ypart) which are then
accumulated into a single coherent output (y).
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When compiled with UFAC = 122 the performance of the encode and decode loops
does not change, staying with II = 5 and II = 3 respectively. However, we do see 12
instances of each loop that handle a portion of the work, albeit sequentially. Without the
strategic addition of the DATAFLOW pragma the compiler is unable to run the parallel sections
concurrently. We are now poised to take advantage of the parallel problem description,
however at this stage we maintain largely sequential performance while still paying the
overhead of multiple processors, the accumulator loop, the input replication, and the
additional control logic to handle the same. This leaves us still requiring a total of 4817

cycles at this stage.

Dataflow

We now have the layout for the parallel design ready and the challenge remains to convince
the compiler to use concurrent dataflow execution. The DATAFLOW pragma optimization
attempts to run all blocks within a module or loop concurrently using dataflow analysis
to identify dependencies. Unfortunately, adding this pragma to the outer UFAC loop was
unsuccessful. It appears as though the scope of the DATAFLOW pragma was poorly enforced
and the compiler encountered difficulties integrating dataflow within the main compute
body with the surrounding support logic. To rectify this, the main compute body (i.e. the
outer loop over UFAC ) was moved into its own separate function. Although the code
description had not changed beyond the addition of the function abstraction, this was
enough to appease the compiler and dataflow was successfully applied within this new
compute function. Variable scope also plays an important role it turns out. The final
modification that successfully created parallel, concurrent hardware was to declare the
activities vector, a, within this new compute function as opposed to declaring it along with
the other memory structures with broader file scope.

Upon examining the HLS reports we find that the compiler has generated UFAC copies
of separate encode and decode processors. The two encode loops have been successfully
flattened and pipelined in each processor showing an II = 6. Previously the encode inner
loop had an II = 5 but the outer loop was not pipelined. Successfully merging the two
loops and fully pipelining the encode step is therefore worth the cost of a reduced II in this
case. The decode processors maintain their pipelined execution with an II = 3.

2This value is chosen as UFAC = 12 is the largest factor used to successfully compile the final floating-
point design.
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The parallel hardware was successfully compiled with UFAC = 12. These improvements
have progressed from the original 6026 cycles using a naive approach to the current design
which shows an improvement of 15× requiring only 387 cycles! A comparison of resource
usage and required cycles is summarized in Table 3.1.

Stage Cycles
Resource Usage (%)
BRAM DSP LUT

Basic 6026 51 5 5
Restructured 4829 52 5 5
Explicit Parallelsim (UFAC = 12) 4817 90 22 35
Dataflow (UFAC = 12) 387 98 98 81

Table 3.1: Summary of performance and resource usage during the evolution of the HLS code
description.

Overall, the HLS optimization process was a tedious journey. The tools are still in their
infancy and so it is expected to face some challenges with the compiler, but some of this
creative code description can and should be built into the compiler. The two biggest sticking
points were the scope of the DATAFLOW pragma and the inability of the compiler to recognize
independent data partitions. It was necessary to add a function level abstraction to get
the dataflow optimization implemented on a subset of the code. I imagine the DATAFLOW
pragma should be able to automatically figure out the largest possible scope to which it
can be successfully applied, or at the very least should be able to properly recognize loop
scope instead of function scope. Furthermore, it was necessary to add an explicit outer
loop for parallelism as well as an explicit extra dimension for array partitioning. The HLS
tools should be able to understand directives to unroll compute pipelines and partition
data without explicitly adding extra dimensions to the problem.

Direct I/O Access

In addition to HLS optimizations, direct I/O access is achieved by adding ports of appropriate
width to the module with no protocol. Physical pins from the board package are then
connected directly to the module with an XDC file. NengoFPGA can use this strategy
to connect to on-board peripherals or the physical world using GPIO pins and by doing
so, forego any latency associated with data transfer through the host. This presents
the opportunity for vast performance improvement in end-to-end applications as will be
discussed in Section 3.2.1.

27



3.1.3 Fixed-point Design

Floating-point numbers support representation of numerical quantities with high dynamic
range, but neural network operations are often amenable to reduced fixed-point precision
with little, if any, loss in accuracy (Nakahara et al., 2019; Umuroglu et al., 2017). For our
NEF implementation we make use of the Xilinx ap_fixed library to define our fixed-point
types. We use multiple independent fixed-point data types for different regions of the
compute pipeline. This gives us more resolution to select the required precision efficiently
as dictated by the different stages of computation. We identify 7 different fixed-point data
types to be used in the design:

• DATA_T_PORT – used as the data type on the external interfaces. The AXI
and DMA controllers on the interface require word sizes to be powers of 2, so
this type was separated in order to allow more freedom when selecting the
remaining precisions.

• DATA_T_K – used for the learning rate parameter, k. The learning rate is, for
all intents and purposes, always less than 1 which allows us to easily restrict
the number of integer bits thus reducing the search space.

• DATA_T_IN – used to store the input vector, x.

• DATA_T_ERR – used to store the error vector, Errx.

• DATA_T_DEC – used to store the decoder weights, D.

• DATA_T_ENC – used to store the scaled encoder weights, E′, as well as the
bias vector, b.

• DATA_T_RES – used internally to represent intermediate results as well as the
activity vector, a.

Furthermore, to ensure accurate scaling of the quantities as run-time parameters change
(N , Din, Dout, and k), we introduce a new hyper-parameter, K_SHIFT, that normalizes the
values depending on the learning rate, k. The learning rate that is stored on-chip is shifted
left by K_SHIFT bits and this shifted value is used throughout the computation. The output
produced from the timestep evaluation is then shifted back right to recover the original
signal magnitude. The proper selection of this scaling parameter reduces the number of
fractional bits required (Jacob et al., 2017b) and leads to a leaner, more flexible design.
However some small values may still be unavoidably quantized to zero depending on the
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selected precision.

The switch to fixed-point representation further reduces the cycle count by promoting a
more efficient use of resources and allowing an unroll factor of 28 (UFAC = 28). This leads
to over 3× improvement compared to the floating-point design: down to 114 cycles from
387. Notice that we see an improvement in hardware efficiency with the new fixed-point
design beyond the linear speedup due to moving from UFAC = 12 to UFAC = 28. This
result is achieved with the P4-C set of fixed-point hyper-parameters found in Table A6.

Choosing these new fixed-point hyper-parameters presents a challenge in and of itself
as the design space is quite large. Each ap_fixed data type we define has four template
arguments:

1. Total number of word bits.

2. Portion thereof that are integer bits.

3. Rounding strategy.

4. Overflow strategy.

Let’s assume we’ve fixed the rounding and overflow strategies for all of our data types.
This leaves us with two free precision hyper-parameters per data type. Both the word bit
and integer bit options accept (somewhat) arbitrary integer arguments, for simplicity let’s
assume for each we give a range of 30 (i.e. 2–32 bits). Assuming we define 7 distinct data
types, each with two free hyper-parameters with 30 possible values each, this gives us on
the order of 3014 ≈ 1020 different design possibilities which is intractable for a brute-force
search. As a result, a more efficient strategy was developed and is discussed in Section 3.1.4.

3.1.4 Parameter Tuning

We use a hyper-parameter tuning package called Hyperopt developed by Bergstra et al.
(2015) to automate the design space exploration process and discover the optimized hyper-
parameter assignments quickly. Hyperopt determines an optimal design for the given
constraints and also logs all progress, thereby: 1) showing convergence trends to determine
how many trials are required; 2) making it possible to iterate on the search space, cost
function, or simulation; and 3) making it possible to extract the Pareto optimal points for
the given formulation.
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Each fixed-point data type is defined by a number of integer and fraction bits, rounding
approach, and overflow handling technique. The Vivado HLS ap_fixed type encapsulates
all these specifications into a C++ template. We make an intuitive pre-selection of the
rounding and overflow modes for our types to reduce the search space. For data storage
(weights and bias) and transmission variables (inputs and outputs), we round towards +∞,
and saturate the overflow values. For internal arithmetic, we use truncation of small values
below the least significant bit and wrapping on overflow to improve computation speed,
albeit at the cost of accuracy and safety if we go beyond our dynamic range. This leaves
us with the number of integer and word bits as free parameters and a design space size
on the order of 1020, as noted in Section 3.1.3. It may be possible to employ Hyperopt
directly with the remaining vast design space; however, to improve convergence time we
take a hierarchical approach which sets some initial bounds before applying Hyperopt to
the problem.

Initial Bounding

In addition to fixing the rounding and overflow strategies we make two more simplifications
before beginning the process of investigating the design space. First, we fix DATA_T_K using
32 word bits and 1 integer bit. The learning rate is a run-time parameter that is stored in
a 32 bit register and so we select 32 word bits as they are available regardless. We also
know the learning rate will typically be less than one, so we allocate nearly the entire
representation as fractional bits. Next we fix the DATA_T_PORT type. We use the Xilinx
provided DMA controller (Xilinx, 2019a) which operates on AXI Stream data types and
restricts the data width to be a power of 2. This port data type is also used by multiple
other data types in order to load parameters during the run-once initialization to exchange
I/O during the evaluation of each timestep. Therefore this data type must be large enough
to accommodate each type it services. We set 64 word bits and 16 integer bits. This reduce
the design space by directly removing two more free hyper-parameters, but simultaneously
this sets an upper bound to the number of word bits used by all data types serviced by the
external interface, which is all types except the internal DATA_T_RES type.

To compute some rough bounds for the remaining search space, we initially evaluate
the floating-point design as reference. Then we set each type to a large 64-bit fixed-point
representation and select each fixed-point type individually for inspection to avoid the large
combinatorial space. In each inspection, we sweep the candidate’s fixed-point precision
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(integer and fraction bits) from high (64 bits) to low (1 bit) in a grid search and observe
when accuracy deviates from the reference floating-point design. We define accuracy in
terms of the overall algorithm goal where we aim to minimize the absolute representational
error Errx = |x − y|. We use the HLS implementation of an adaptive controller that
learns to represent a sinusoid as the test case for evaluating error. The sinusoidal input
effectively covers the domain of our input, x ∈ {−1, . . . , 1}. We also fix the learning
rate, k = 10−5, for all trials. Our floating-point reference design defines the reference
error, Errfloat

x . We expect our fixed-point solution error, Errfixed
x , to be no worse than

the reference floating-point solution given the same set of network weights. For each set
of parameters, we identify the smallest precision where the floating-point error exceeds
fixed-point error, Errfloat

x ≥ Errfixed
x .

Optimization

Once our initial bounds are set, we perform the optimization using a given cost function.
The HLS code that evaluates error is repurposed to also return the cost metrics (resources,
and scheduled cycle counts) through a single step of the HLS C-synthesis compilation that
generates RTL code. We do not run the expensive place-and-route phase at this point to
speed up the search. The fastest design was found using the cost function that minimizes
the error–cycles product (i.e. Errx ∗ cycles), but other cost functions produced competitive
results more quickly. We also use the cost function that minimizes the error–resource
product (i.e. Errx ∗ resources), where the resource cost is the maximum percentage of
LUTs, DSPs, and BRAMs used. For this optimization we lock the unroll factor at 1
(UFAC = 1). The minimization of resources is proportional to overall cycle count since
resource usage determines the degree of parallelism that is possible (i.e. UFAC ). Thus
this error–resource cost function produces designs balanced in accuracy and performance
indirectly. In addition, using UFAC = 1 reduces the effort required by the HLS compiler for
C-synthesis, which allows Hyperopt to run 3–4× faster than minimizing cycles directly while
simultaneously reducing the size of the search space by omitting the UFAC hyper-parameter.
This improvement in convergence time only incurs a small performance penalty as will be
discussed in Section 4.2.
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Usage

The high-level Hyperopt configuration is show in Figure 3.4. The Hyperopt minimization
algorithm used for this optimization was the default Tree-of-Parzen-Estimators (TPE)
algorithm (Bergstra et al., 2011). Hyperopt exploration is configured in a Python script
containing the structure of the problem in terms of search space and cost function. Hyperopt
is then connected to a shell script that invokes the HLS C-synthesis and runs the adaptive
controller accuracy test. The C-synthesis returns the estimated resource usage as well as
estimated cycle counts for the given trial and the adaptive controller simulation returns our
error metric. These values feedback to the Python script and the Hyperopt system iterates
based on these metrics.

Hyperopt

Python

HLS

synth

sim

Trial
config

Accuracy,
Cycles,

Resources

Figure 3.4: High-level workflow of the Hyperopt optimization process.

The most challenging part of configuring the Hyperopt system was choosing an appro-
priate cost function, though Hyperopt itself is robust and easily integrated with black box
systems. In our case, optimizing for performance against resources was well defined but
still offered a range of possible cost functions, it’s possible for less well defined targets that
the process of designing an effective cost function becomes a more involved process in and
of itself. In any case, the Hyperopt system provides a high-level of abstraction in which it
is easy to explore different cost functions and design spaces relatively quickly with ease.
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3.1.5 Copy Protection

Since this work was developed in cooperation with Applied Brain Research3, provisions were
made for the commercialization process. Copy protection can be built into the compiled
designs by locking execution to a particular device. Each Xilinx device has a unique read-
only ID called the Device DNA. Each design is compiled with a reference value, whether
it be an explicit Device DNA or a known function thereof, and during the run-once LOAD
phase the Device DNA is compared to the reference value. Based on the result of this
comparison, the valid_id flag is set which then gates the evaluation phase of the design as
seen in Algorithm 3.5. This has minimal impact on performance as we only add a single bit
check for the evaluation phase and have the fetching and comparison logic only run once on
initialization. The Device DNA is retrieved using the publicly available IP core developed
alongside the main body of this work (Morcos, 2019).

Algorithm 3.5: Load–evaluate workflow of the FPGA implementation with the additional copy
protection step. The Device DNA is read once during the LOAD phase and is compared to a reference
value in order to set the valid_id flag which gates execution.

1 if LOAD then
2 Read device DNA and set valid_id
3 Store parameters on chip
4 else if valid_id then
5 Read input and error
6 Encode input → neural activity
7 Decode neural activity → output
8 Write output
9 else

10 Do nothing

3.2 Interface

The core Nengo framework is directly integrated with the NengoFPGA Python pack-
age (Morcos et al., 2019) to seamlessly connect standard Nengo models directly to the
FPGA backend. There are two modes by which to drive the FPGA implementation:

3https://appliedbrainresearch.com/
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1. Via the on-chip ARM host.

2. Via a remote PC host.

In mode 1 we make use of the ARM processor packaged with the FPGA in the PYNQ
SoC to drive the implementation and this will be discussed further in Section 3.2.1. For
ease of use, we also add the ability to integrate the FPGA accelerator into Nengo models
running remotely on a PC host. We call the PC the superhost in this context as we still rely
on the ARM core as a local host and need to differentiate the two host systems. Mode 2 is
discussed further in Section 3.2.2.

3.2.1 Direct ARM Host

As noted in the Statement of Contributions, this NengoFPGA software interface was
refactored and cleaned up with assistance from Daniel Rasmussen and Trevor Bekolay.

In the most basic form, we implement the NengoFPGA backend split across the ARM
CPU, and the FPGA fabric of the PYNQ-Z1 SoC. To use this environment, the neural
network is first described using a typical Nengo network description. This model is run
directly on the ARM host and the NengoFPGA extension uses the PYNQ API to load the
network weight matrices to the FPGA’s on-chip RAMs once at the start of a simulation.
The PYNQ API makes use of the ubiquitous AXI protocol to stream data between the host
and FPGA. This system-level description is diagrammed in Figure 3.5. Once initialized, the
FPGA core can either receive inputs from the ARM CPU or directly from the environment
over GPIO and similarly, can transmit outputs to the ARM or to the GPIO pins. Using the
GPIO interface for both inputs and outputs effectively removes the ARM processor from
the evaluation loop and therefore allows the FPGA to run independently for maximum
performance. In this configuration, the ARM is only required to begin execution on the
FPGA, but may have varied level of involvement depending on the application. If I/O
is connected via the ARM each step, performance becomes limited by the AXI DMA
transfer between the ARM and FPGA. Even small networks cannot improve beyond a step
evaluation time of 715µs compared to a fully independent design using GPIO that can
operate over 1000× faster at a sub-microsecond step time of 0.678µs (for N = 64).

In this configuration we run Nengo directly on the PYNQ device creating a self-contained
implementation, requiring only a terminal connection to initialize and begin the execution
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Figure 3.5: System level view of the NengoFPGA design using the ARM host. Nengo models are
defined by Python code running on the ARM CPU and interact with the FPGA accelerator over
AXI. The FPGA fabric interfaces directly with the external inputs and outputs over GPIO.

of a neural network. This self-contained mode is useful for certain embedded or edge
applications as well as debugging and profiling the implementation. For a cleaner, more
familiar experience, users are able to drive the FPGA implementation from their PC.
Moreover, there are some additional consideration when running Nengo models directly on
the ARM CPU which will be discussed in Section 3.2.3.

3.2.2 Remote PC Superhost

As noted in the Statement of Contributions, this extended superhost software interface was
largely implemented by Xuan Choo.

In order to provide a more comfortable user experience, the NengoFPGA backend was
extended to be run from a PC on the same network as the PYNQ device. Figure 3.6
shows the remote PC superhost interacting with the ARM on the PYNQ device. In
this configuration, the Nengo model is run on the PC and the NengoFPGA backend
communicates with the ARM host which in turn interfaces with the FPGA. Now that
Nengo is run on the PC, we no longer require Nengo on the ARM processor and the ARM
host interface is replaced by a simple script that makes use of local network connections to
communicate with the PC superhost and uses the PYNQ API to communicate with the
FPGA. On the superhost, NengoFPGA automatically opens an SSH connection with the
PYNQ-Z1 and uses this connection to remotely send commands to begin execution. SSH
is similarly leveraged to transfer model parameters to the ARM and subsequently to the
FPGA. Once the device side has been initialized via SSH, the connection remains open and
logs debugging information as well as monitoring for any errors or warnings that may arise.
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In a separate thread, NengoFPGA opens a UDP socket connected to the ARM and it is
this UDP socket that is used to transmit and receive data during the execution.

Python
Host Script
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FPGA
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Actuator

AXI
DMA
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Python
Nengo model
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Figure 3.6: System level view of the NengoFPGA design using a PC superhost. Nengo models
are defined by Python code running on a PC on the same network. The ARM CPU acts as an
intermediary interacting with the FPGA accelerator over AXI and the PC over SSH and UDP socket.
The FPGA fabric interfaces directly with the external inputs and outputs over GPIO.

Although the remote superhost is convenient, there is unavoidably a slight performance
drop due to the extension in the execution loop. It is for this reason the lightweight UDP
protocol was chosen, to minimize the performance drop. When the ARM processor is in
the loop, the loop time sits around 715µs, as noted in Section 3.2.1. When the superhost is
brought into the loop, we get a loop time around 947µs depending on the model size and
the complexity of any additional Nengo code running on the PC. Although we see ≈ 20%
reduction in performance, we still meet our real-time goal of 1ms step time in our Nengo
simulation.

Another benefit of using the remote superhost is the multi-device capability. The
interface is written in such a way that multiple PYNQ devices on the same local network
can be easily integrated into a single Nengo network marshalled by the superhost. This is
visualized in Figure 3.7 and allows multiple portions of the Nengo model to be accelerated
in parallel with independent FPGA evaluations.

3.2.3 Interface Considerations

Beyond the aforementioned convenience–performance trade-off associated with using the
superhost configuration, there are some other things to be aware of as well.

When initializing a Nengo network, the Nengo build system will analytically solve
the decoder matrix given the randomly generated encoders and any desired function as
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Figure 3.7: System level view of the NengoFPGA design using a PC superhost connected to
multiple FPGA devices on the same network.

explained in Section 2.1. As the size of the weight matrices increases (i.e. N , Din, and Dout

increase), the complexity of solving the decoders grows super-linearly, as we are effectively
doing a matrix inversion, and thus larger models increasingly tax available resources. In
addition to having lower computational throughput, the embedded ARM processor also
has limited memory available for computation (512MB in the case of the PYNQ-Z1) so
solving for large decoder matrices on the ARM processor will, at the very least, be slower
than solving the same on a full scale CPU and may, in fact, fail entirely if we run out of
memory. For this reason, care should be taken when running large models directly from
the ARM. On the other hand, if the decoders are manually set instead of calculated, then
there is no issue as the remaining initialization steps are far less taxing computationally.

Currently the FPGA implementation supports a single ensemble of adaptive neurons
and so it is likely there are some remaining portions of the Nengo model that are being
run on the CPU, whether it be the ARM host or a PC superhost. Since the ARM has
reduced performance compared to full scale CPUs, increasingly complex Nengo models run
on the ARM may begin to impact performance and thus for large complex models it is
recommended the superhost configuration be used such that the CPU component does not
stall the evaluation. Furthermore, using the superhost configuration allows multiple FPGA
accelerators to be integrated into a single model distributing the work further.
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3.3 Using NengoFPGA

This section will introduce the basic Nengo integration, but full documentation for the
NengoFPGA Python package4 and the source code for the frontend interface5 is available
online. This section is heavily based on the usage documentation for NengoFPGA.

3.3.1 Converting from Nengo to NengoFPGA

Networks and models are described using the traditional Nengo workflow and a single
ensemble, including PES learning, can be replaced with an FPGA ensemble using the
FpgaPesEnsembleNetwork class. For example, consider the following example of a learned
communication channel built with standard Nengo:

import nengo
import numpy as np

def input_func(t):
return [np.sin(t * 2*np.pi), np.cos(t * 2*np.pi)]

with nengo.Network () as model:

# Input stimulus
input_node = nengo.Node(input_func)

# "Pre" ensemble of neurons , and connection from the input
pre = nengo.Ensemble(50 , 2)
nengo.Connection(input_node , pre)

# "Post" ensemble of neurons , and connection from "Pre"
post = nengo.Ensemble(50, 2)
conn = nengo.Connection(pre , post)

# Create an ensemble for the error signal
# Error = actual - target = "post" - input
error = nengo.Ensemble(50 , 2)
nengo.Connection(post , error)

4https://www.nengo.ai/nengo-fpga/
5https://github.com/nengo/nengo-fpga
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nengo.Connection(input_node , error , transform=-1)

# Add the learning rule on the pre -post connection
conn.learning_rule_type = nengo.PES(learning_rate=1e-4)

# Connect the error into the learning rule
nengo.Connection(error , conn.learning_rule)

The Nengo code above creates two neural ensembles, pre and post, and forms a PES-
learning connection between these two ensembles. The weights of this connection are
modulated by an error signal computed by a third neural ensemble (error). NengoFPGA
can be used to replace the pre ensemble with an ensemble that will run on the FPGA.
Converting the Nengo model above into a NengoFPGA model proceeds in three steps:

1. Replacing the desired neural ensemble with and FPGA ensemble.

2. Making the appropriate connections to and from the FPGA ensemble.

3. If desired (i.e. if learning is required), making the connections to and from
an error-computing neural ensemble.

To use the FPGA ensemble, first import the FpgaPesEnsembleNetwork class:

from nengo_fpga.networks import FpgaPesEnsembleNetwork

In the original Nengo code above, the pre ensemble is to be replaced by the FPGA ensem-
ble. The standard Nengo code is replaced with the FpgaPesEnsembleNetwork class. Since
learning is desired in the above model, the learning rule definition on the pre–post connection
(conn.learning_rule_type =nengo.PES(learning_rate=1e-4)) has been removed and
rolled into the FpgaPesEnsembleNetwork constructor.

# "Pre" ensemble & learning rule
ens_fpga = FpgaPesEnsembleNetwork(’pynq’, n_neurons=50,

dimensions=2,
learning_rate=1e-4)

Notice that the ens_fpga ensemble maintains the same arguments as the original pre
ensemble and the learning rule which it encompasses – 50 neurons, 2 dimensions, and a
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learning rate of 1e-4. The ens_fpga has an additional argument, in this case ’pynq’, which
specifies the desired FPGA device6. With the FPGA ensemble created, the connections
to and from the original pre ensemble will have to be updated with the slightly modified
FPGA versions:

# Connection from input to "pre" (FPGA) ensemble
nengo.Connection(input_node , ens_fpga.input) # Note the added ’.

input’

# Connection from "pre" (FPGA) to "post" ensemble
nengo.Connection(ens_fpga.output , post) # Note the added ’.output

’

The NengoFPGA connections are very similar to the original Nengo connections with
the exception that they use the interfaces of the FpgaPesEnsembleNetwork object. The
ens_fpga.input and ens_fpga.output replace the input and output of the original pre
ensemble. In the original Nengo model, a neural ensemble was used to compute the error
signal that drives the PES learning rule. Using NengoFPGA, this neural ensemble is still
needed, and the only change required is to modify the connections from this error ensemble
to the FPGA ensemble:

# Create an ensemble for the error signal
# Error = actual - target = "post" - input
error = nengo.Ensemble(50 , 2) # Remains unchanged
nengo.Connection(post , error) # Remains unchanged
nengo.Connection(input_node , error , transform=-1) # Remains

unchanged

# Connect the error into the learning rule
nengo.Connection(error , ens_fpga.error) # Note the added ’.error’

Note that in the NengoFPGA code, the learning_rule_type definition of the pre–post
connection has been removed as this is declared as part of the FpgaPesEnsembleNetwork
object. Altogether the NengoFPGA version of the learned communication channel would
look something like this:

6This is an arbitrary designation defined by the user to relate a set of device parameters (e.g. IP address)
to a physical device available to the NengoFPGA system
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import nengo
import numpy as np

from nengo_fpga.networks import FpgaPesEnsembleNetwork

def input_func(t):
return [np.sin(t * 2*np.pi), np.cos(t * 2*np.pi)]

with nengo.Network () as model:

# Input stimulus
input_node = nengo.Node(input_func)

# "Pre" ensemble of neurons , and connection from the input
ens_fpga = FpgaPesEnsembleNetwork(’pynq’, n_neurons=50,

dimensions=2,
learning_rate=1e-4)

nengo.Connection(input_node , ens_fpga.input) # Note the added
’.input ’

# "Post" ensemble of neurons , and connection from "Pre"
post = nengo.Ensemble(50, 2)
conn = nengo.Connection(ens_fpga.output , post) # Note the

added ’.output ’

# Create an ensemble for the error signal
# Error = actual - target = "post" - input
error = nengo.Ensemble(50 , 2)
nengo.Connection(post , error)
nengo.Connection(input_node , error , transform=-1)

# Connect the error into the learning rule
nengo.Connection(error , ens_fpga.error) # Note the added ’.

error’

3.3.2 Basic Simulation

When run via the superhost, NengoFPGA is designed to work with the integrated Nengo GUI.
Choose a Python file to run that uses the FpgaPesEnsembleNetwork and simply indicate
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to the GUI that we desire the NengoFPGA backend: nengo <my_file> -b nengo_fpga.
If you do not wish to use the GUI, or are running directly from the ARM host, then we
can use NengoFPGA in scripting mode. Simply replace the standard Nengo simulator with
the NengoFPGA version:

import nengo
import nengo_fpga

with nengo.Network () as model:

# Your network description ...
# Including an FpgaPesEnsembleNetwork

with nengo_fpga.Simulator(model) as sim:
sim.run(1)
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Chapter 4

Results & Discussion

In this section, we evaluate the performance, resource usage, and error behaviour of
our NengoFPGA implementation. Section 4.1 highlights the evolution of the HLS code
description then Section 4.2 takes a closer look at the hyper-parameter optimization process.
Finally, Section 4.3 compares performance to the Jetson TX1 GPU and Section 4.4 explains
the end-to-end system characteristics.

4.1 Impact of HLS Code Description

High-Level Synthesis tools like Vivado HLS offer a convenient way to express your design
and communicate optimization intent. Through various parallelism-centric reformulations,
described in Section 3.1.2, we took a sample design at Din = 2, Dout = 2, and N = 200

and sped it up over 15× while only using 2× more resources moving from the initial naive
approach (“Baseline”) to the fully parallel design in floating-point (“Dataflow”). As shown in
Figure 4.1, the bulk of the speed up comes from successfully parallelizing the computation
across the N dimension and making use of dataflow pipelining. The simple restructuring
alone managed to improve performance nearly 20% while maintaining the same resource
usage. This is testament to the state of the HLS tools wherein their infancy does not allow
them to intelligently extract problem structure automatically. The use of fixed-point types
permits an over 2× improvement in unroll factor, from UFAC = 12 to UFAC = 28, and
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reduces cycle count further by over 4× when given the same resource budget (the entire
chip). This is an overall improvement of over 50× in the compute pipeline.

Figure 4.1: Performance improvements due to incremental, cumulative optimizations of HLS code.
Baseline is the naive approach, Restructured has the decode loop inverted, Dataflow includes pipeline
and dataflow pragmas, Unroll is unrolled with UFAC = 12, and Fixed-Point is the fixed-point
design unrolled with UFAC = 28

4.2 Parameter Tuning with Hyperopt

As discussed earlier in Section 3.1.4, a brute-force exploration of the fixed-point precision
design space is intractable. Hyperopt can help quickly search this design space if we first
bound the possible range of parameter values. This section will explore the evaluation of the
Pareto optimal designs discovered by Hyperopt as well as the convergence and performance
of Hyperopt itself. More information about Hyperopt and the Pareto optimal designs can
be found in Appendix A.
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4.2.1 Initial Bounding

Two clear categories of fixed-point types emerged from the initial bounding experiments:

1. Those dependent on the number of integer bits.

2. Those dependent on the number of fractional bits.

Figures 4.2 & 4.3 show results from this isolated grid search for DATA_T_ENC and
DATA_T_ERR; for clarity, the word bits axis is truncated to 38 bits instead of showing the full
64 bit range. Similar plots are generated for all candidate data types but not shown here.
The error value displayed is the mean absolute error over the final 500 simulation timesteps.
In Figure 4.2, we show the effect of varying the encoder type’s (DATA_T_ENC) precision.
The diagonal cut off indicates infeasible combinations where integer bits exceed total word
bits. This is an example of a data type that depends on the number of integer bits, as
illustrated by the horizontal gradation. We see that as we increase integer bits above 7
and, necessarily, word bits above 8, we are able to achieve very low error. For reference,
floating-point error value for this design is 6.68e−3. Similarly, Figure 4.3 illustrates the
effect of precision selection of the error signal data type (DATA_T_ERR). Here, the diagonal
gradations show that most of the accuracy improvement is tied to having high precision
representation of small quantities, i.e. at least 17–18 fractional bits.

To further explore the effects of varying precision on the overall system accuracy, we
take a closer look at the time series error trend for the DATA_T_ERR type compared to the
floating-point reference. Recall, a sinusoid is used as input to the simulation from which
these error values were collected and the decoders are initialized as zeros (i.e. default output
is zero for all stimuli). Figure 4.4 depicts the representational breakdown as we reduce the
number of fractional bits in the data type. We start with a known good precision with
37 word bits and 4 integer bits (P10 in Table A6) and observe that this representation,
being sufficient, exactly follows the floating-point reference. Next, we fix the number of
integer bits at 4 and move horizontally across the accuracy transition diagonal observed in
Figure 4.3. First we observe that the convergence rate is not effected by the varied precision
as all curves settle after 2 input periods. However, the steady-state error displays notable
differences as we reduce the number of available fractional bits. Second, we can observe
that the quantization becomes apparent as the precision is reduced.

The curve with 23 word bits is closely follows the floating point and high-precision
fixed-point trend and thus approaches the limit of useful bits for this applications. The
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Figure 4.2: Grid search varying the precision of the DATA_T_ENC type as compared to the floating-
point (FP) reference. Here we observe that the accuracy relies largely on the number of integer bits
allocated to this data type.
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Figure 4.3: Grid search varying the precision of the DATA_T_ERR type as compared to the floating-
point (FP) reference. Here we observe that the accuracy relies largely on the number of fractional
bits allocated to this data type.
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curves with 21 & 22 word bits happen to be coincident, which is an interesting artifact of
this particular set of encoders and learning. these curves are almost able to represent the
error to a useful degree: it begins by closely following the floating-point trend, but once
the representation improves we notice that this precision is not able to represent the small
error signal which drives the adaptation and therefore the system ceases to learn. The two
curves with 19 and 20 word bits display similar issues, albeit with a worse steady-state gap
as the precision is further reduced. These two curves also show some higher order ringing
during the first two periods before settling at their respective steady-state errors. Finally,
the curve with only 18 word bits is entirely incapable of adaptation at this precision as
displayed by the full amplitude sinusoidal error.
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Figure 4.4: Overall error trends for DATA_T_ERR with 4 integer bits and varied fractional bits as
the simulation learns a sinusoidal input. The curves are labelled as word_bits/integer_bits.

To further confirm that DATA_T_ERR is dependent on the number of fractional bits, we
plot error trends for various precisions along the diagonal observed in Figure 4.3 (i.e. constant
fractional bits and increased integer bits). Notice how all precisions plotted in Figure 4.5
adhere to the same trend therefore confirming that the additional integer bits are not useful
for this particular data type.
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Figure 4.5: Overall error trends for DATA_T_ERR with 15 fractional bits and varied integer bits as
the simulation learns a sinusoidal input. The curves are labelled as word_bits/integer_bits.

4.2.2 Sensitivity of Precision to Design Parameters

The error signal, Errx, is extremely sensitive to design parameters such as the number of
neurons, N . This suggests that the Hyperopt tool will give different results for different
neural network configurations. For example, Figure 4.6 shows the parameters optimized for
one N cannot simply be transferred to another value of N . The distributed representation
in neuron-space is such that as N increases, the average magnitude of the decoder decreases.
This results in different optimal choices of precision for different N . Consequently, we
define a general fixed-point design that uses the largest observed integer and fractional
bits required over the design space, in this case from N = 64 to N = 4096. This design
performs well over all values of N considered as seen in Figure 4.6.

In general, as the number of neurons increases we will require more fractional bits for
the encoders and decoders. Since the neurons create a distributed representation, having
more neurons leads to each neuron activity contributing less to the overall state-space
representation and as such the encoders and decoders compensate by realizing smaller
values. Consequently this also requires additional precision for the intermediate arithmetic
as well.
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Figure 4.6: Representational error of designs optimized using different values of N in the Hyperopt
simulation compared to a general fixed-point solution and a floating-point solution.

4.2.3 Hyperopt Convergence Rate

Hyperopt is fundamentally limited by the speed of the HLS tools as the C-synthesis is the
critical path in the optimization loop. The frontend HLS passes must be run to produce
resource and cycle count estimates. As shown in Figure 4.7, the best observed configuration
(lowest cost) is reached after ≈ 1500 trials, which takes ≈ 12 hours to run on an Intel
i7-6700K CPU. However, it takes less than ≈ 500 trials, or about 4 hours, to get within
99% of the best design. Thus, Hyperopt is a tractable approach for optimizing design
parameters with Vivado HLS in the loop, requiring only a few hours of trials.

4.2.4 Hyperopt Design Optimization

Starting from the optimized parallel dataflow HLS implementation, and the bounded
parameter ranges, we begin the Hyperopt optimizations. We choose the error–cycles
product as the cost function, subject to a resource threshold. Designs above the resource
threshold are not discarded, but rather aggressively penalized so Hyperopt will learn to
stay below the threshold. The thresholds used were 100% for BRAMs and LUTs and 120%
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Figure 4.7: Normalized convergence of cost minimization for Hyperopt trials. This is a best-so-far
trend and therefore will be monotonically decreasing.

for DSPs. The DSP threshold is higher since it is observed that Vivado can successfully
compile designs in this range by making use of abundant LUTs to the handle additional
fixed-point arithmetic requirement. This Hyperopt run produced 5 Pareto optimal designs
(see Table A3), of which 1 is infeasible (too many resources) and 3 are slow but require few
resources. The final design of the 5 (P4-C) is the fastest design discovered by Hyperopt
across all runs.

The error–resource product cost function generated 11 Pareto optimal designs (see
Table A2) 3–4× faster than the error–cycles minimization, and all of which are feasible
and competitive in performance. The error–resources minimization is analyzed herein as it
produces multiple good designs, better illustrating the possible solution space. Figure 4.8
shows the resulting error and resource cost combinations of each trial as a datapoint on the
plot. As expected, smaller designs tend to have higher error than larger designs. However,
a large number of design configurations are clearly dominated by those along the Pareto
optimal curve, which are shown in Figure 4.9 in more detail. The final optimized designs
for the various cost functions use precisions between 8–26 word bits for most data types
with the exception of the error signal which uses between 37–48 word bits. These designs
offer comparable accuracy against slower and larger floating-point designs and in some
cases beat the floating-point solution in accuracy as some fixed-point types have more
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precision than the 24 bit floating-point mantissa. In fact, there are a number of fixed-point
designs highlighted in the lower left quadrant of Figure 4.8 that are strictly better than the
floating-point reference.
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Figure 4.8: The Pareto optimal front resulting from Hyperopt trials minimizing the error–resource
product. The shaded region in the lower left quadrant highlights designs that are strictly better than
the floating-point baseline.

4.2.5 Pareto Optimal Designs

Referring to Figure 4.9, We observe that there is little difference in resource usage between
designs of the error–resource optimization. These designs were discovered by minimizing
resource usage with UFAC = 1 and are then manually unrolled to maximize replication
and deliver high performance. All of these Pareto optimal designs are unrolled to a factor
of 24 (UFAC = 24) and therefore have the same cycle count. The optimal design from
the error–cycles minimization (labelled Cycles) is unrolled to a factor of 28 (UFAC = 28)
resulting in slightly higher performance while the floating-point design is limited to an
unroll factor of 12 (UFAC = 12). The general fixed-point solution using the largest integer
and fraction bit configurations from the Pareto optimal designs can only be unrolled to a
factor of 20 (UFAC = 20).
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We now take a closer look at the results presented in Figure 4.9. The reduced BRAM
usage in design P1 indicates reduced precision in the larger encoder and decoder memory
structures that results in high error. The reduced DSP usage in design P2 indicates reduced
precision throughout the arithmetic which also leads to reduced accuracy. Designs P3–P8
all have similar resource usage, however designs P3 and P4 appear to be using precision
ineffectively as they boast larger error compared to designs P5–P8. Designs P9–P11 begin to
show diminishing returns as they use far more resources without a significant improvement
in accuracy. The P4-C cycles design has comparably high resource usage and similar error,
but is justified in its resource usage with increased performance. The floating-point design
also uses comparable resources but it has half the parallelism as the Pareto optimal designs
and therefore much worse performance. The general fixed-point design is resource heavy and
has an error slightly worse than the floating-point design, which illustrates the shortcomings
of fixed-point arithmetic for flexible, general purpose applications having large dynamic
ranges. Despite the slightly reduced accuracy, the general fixed-point design still vastly
outperforms the floating-point design (as noted in Figure 4.10).
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Figure 4.9: Resource usage and error trade-offs for the error–resource Pareto optimal designs
(UFAC = 24) compared to the error–cycles optimal design (UFAC = 28), the general fixed-point
(UFAC = 20), and the floating-point solution (UFAC = 12). N = 200, Din = Dout = 2.
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4.2.6 Floating-point vs. Fixed-Point

We now compare the performance of floating-point and fixed-point implementations on
the FPGA after design optimization. Due to its large memory footprint, the floating-point
design is limited to half the network size of the fixed-point design (i.e. NDfloat = 2∗NDfix).
The complexity of the floating-point operations saturates the DSPs of the PYNQ board
at an unroll factor of 12. In contrast, the fixed-point designs require fewer bits to store
the network weights, and are able to effectively take advantage of both DSP and LUTs for
arithmetic to support an unroll factor up to 28. The one dimensional trials in Figure 4.10
demonstrate that runtimes scale poorly for floating-point designs while the fixed-point
solutions are faster by 4–5×. Furthermore, the general fixed-point design takes more
resources (while staying within chip capacity), but it is only marginally slower than the
fastest discovered design. Figure 4.11 shows that this scaling trend continues into higher
dimensionality, in this case 8 dimensions.
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Figure 4.10: Comparing the scaling of execution times of a floating-point design, a general fixed-
point design, and two differently optimized fixed-point designs with 1 representational dimension.
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Figure 4.11: Comparing the scaling of execution times of a floating-point design, a general fixed-
point design, and two differently optimized fixed-point designs with 8 representational dimension.

4.3 Comparison with Jetson TX1 GPU

The Jetson TX1 is not the latest embedded GPU, however, it uses 20 nm technology and
the PYNQ-Z1 board uses an FPGA with 28 nm technology making the TX1 a reasonable
comparison. We developed an optimized CUDA implementation of our NEF test network
for the TX1 in order to compare performance with PYNQ. The NEF computations are
composed of common matrix algebra primitives that map to highly optimized cuBLAS
library calls. A small subset of the functions, including the neural model G and the feedback
error calculation Errx = |f(x)− y|, are written in CUDA and optimized directly. Since
Nengo operates on I/O signals that cannot directly interface to the GPU core, these signals
must be copied over requiring frequent host-device transfers every timestep. Coupled with
the relatively small size of the problem, the I/O heavy nature of the computation puts the
GPU at a disadvantage compared to the FPGA.

The performance of the GPU compared to the FPGA is summarized in Figures 4.12 & 4.13.
As expected, it shows that the FPGA is faster by 10–484×, and is simultaneously more
power efficient using 2.4–9.5× less dynamic power than the GPU. As the problem size grows,
the cost of I/O is amortized over the computation improving the efficiency of the GPU
hardware. Thus, the FPGA speedups are highest ≈484× for the smaller neural networks,
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but drop to ≈10× for the larger sizes. When scaling out to larger models accommodated by
the fixed-point precision’s small footprint, we see the FPGA continuing to beat the GPU
with numbers in this range for models up to the tested 32 dimensions (1k neurons) and 32k
neurons (1 dimension). We have NDmax = 32k, so models larger in both N and D are still
infeasible at the highest performing unroll factor. The FPGA also consistently uses less
dynamic power, using only 0.4–0.5W of dynamic power while the GPU uses a wider range
of 1.2–3.8W. Both devices use ARM cores and therefore have similar static power draws of
2.6W (for the GPU) and 2.5W (for the FPGA).
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Figure 4.12: Jetson TX1 performance normalized against performance of the best P4-C FPGA
design which is 10–484× faster depending on network size.

4.3.1 Practical Application of NengoFPGA

Although the size of networks that can be run with NengoFPGA is limited by on-chip
memory, there are many useful applications well within our capacity. For example:
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Figure 4.13: Jetson TX1 dynamic power use normalized against performance of the best P4-C
FPGA design which is 2.4–9.5× more power efficient depending on network size.

Adaptive Motor Control

A population of 3000 neurons with 6 representational dimensions can form the basis of an
efficient adaptive motor controller as shown by DeWolf et al. (2016). NengoFPGA can
evaluate a model this size in under 31µs. Figure 4.14 highlights this performance against
the Jetson GPU.

Many Body Control

As few as 500 neurons can adapt to a randomly generated 15-joint body simulation as
shown by Stewart et al. (2015). NengoFPGA can evaluate 500 neurons with Din = 30

(position and velocity for each of the 15 simple joints) in under 24µs. Figure 4.15 highlights
this performance against the Jetson GPU.
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(a) FPGA performance for an adaptive controller (b) Adaptive control graphic

Figure 4.14: Highlighting the speedup of the FPGA over the Jetson TX1 in a possible adaptive
controller application. Adaptive control graphic from DeWolf et al. (2016)
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Figure 4.15: Highlighting the speedup of the FPGA over the Jetson TX1 in a possible many body
control application.

* Arm graphic from Google images (https://www.kisspng.com/png-robotic-arm-clip-art-gears-art-629780/)

Adaptive PID Controller

We also test NengoFPGA as an adaptive PID controller for an inverted pendulum in a
simulated Python environment using 1000 neurons and 1 dimension. The fixed-point design
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has an evaluation time under 4µs and has a competitive RMSE of 5.66e−3 compared to
5.45e−3 for the floating-point reference design. Figure 4.16 highlights this performance
against the Jetson GPU.
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Figure 4.16: Highlighting the speedup of the FPGA over the Jetson TX1 in a possible inverted
pendulum control application.

* Pendulum graphic from Wikipedia (https://en.wikipedia.org/wiki/Inverted_pendulum#/media/File:Cart-pendulum.svg)

4.4 System Profiling

The standard Nengo timestep is 1ms and therefore we must evaluate a full loop within this
millisecond time budget in order to remain real-time. Figure 4.17 Show a diagram of the
full system with timing data for each leg of the trip. First a test system is created that
sends dummy UDP packets between the PC superhost and the ARM host. Three trials
were done with this minimal test system and for each 10k UDP packets were transferred
and the time per packet averaged over the run. This simple UDP transfer takes 379µs
according to this test. Note that this test was conducted using wired Ethernet connections
across a local network via an off the shelf router (Asus RT-N56U) and this timing delay may
vary greatly depending on the network configuration. Next the same dummy UDP packets
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were transferred, but this time using a Nengo model to send and receive data. The UDP
socket used for input and output communication between the PC superhost and the ARM
host is built into a Nengo process and therefore the delay introduced by Nengo is negligible
(2µs), unless the Nengo model running on the PC is large and computationally intensive,
at which point this may become the system bottleneck. While exploring the speedup of
direct I/O (i.e. GPIO) compared to using a DMA engine via the ARM host it was noted
that the overhead for a DMA transfer is a constant 715µs and similarly, we discover that
for a network in which N = 200 and Din = Dout = 2 the hardware computation alone takes
a negligible amount of time (≈ 1µs).

The full end-to-end system test reported an elapsed time of 947µs on average for our
simple test network. Note that this elapsed time is not simply the sum of all parts as the
components are pipelined and some delays are hidden and dominated by certain components.
For example, the hardware execution time is entirely hidden by the overhead of the DMA
transfer. and similarly a portion of the UDP transfer overlaps with the DMA transfer as
data is pipelined between the host and superhost.

Python
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ARM CPU
HLS NEF

Core

FPGA
AXI
DMA

PC Superhost PYNQ-Z1

Python
socket

Python
Nengo model

SSH
UDP

Full System: 947µs

Nengo Delay: 2µs UDP xfer: 379µs DMA xfer: 715µs

Figure 4.17: System level view of the full NengoFPGA implementation showing timing for each
segment of the end-to-end system for the example network with N = 200 and Din = Dout = 2.

Thus, the extension to the superhost configuration does add non-negligible time delay
but still remains within our real-time budget of 1ms. Similarly, if we consider that using the
ARM host to furnish data in the direct host configuration can be no better than 715µs, the
superhost configuration is only ≈ 24% slower at 947µs timing but allows for a full Nengo
development environment with which to incorporate multiple FPGAs or subsystems.
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Chapter 5

Conclusion & Future Works

5.1 Conclusion

The use of embedded Python-capable PYNQ FPGA boards offers a promising solution to the
heavy workload computing required by the machine learning revolution. Using High-Level
Synthesis in conjunction with the PYNQ Python API helps make FPGA programming
more accessible. Moreover, NengoFPGA makes this flexible hardware accelerator accessible
through the familiar Nengo ecosystem directly from a PC with no esoteric hardware
knowledge required from the user.

We have shown how a structured HLS approach tailored to the given hardware can be
used to exploit the parallelism of the problem reducing the cycles required to evaluate a
neural network by 15×. Furthermore, we showed that the fixed-point hyper-parameters can
be optimized automatically using Hyperopt for cost functions comprising of resource usage,
accuracy, and cycle count to further reduce required evaluation cycles by an additional 3×
— an overall improvement of over 50×. In addition, the reduced precision of the fixed-point
representation allows larger models, with up to 32k neurons, to be stored on chip while
still outperforming the floating-point counterpart, which can only support 16k neurons.
Using direct I/O access improves performance 1000× compared to a design limited by the
ARM DMA engine, from a step time of 715µs to 0.678µs. We also demonstrated that our
FPGA implementation outperforms the Jetson TX1 GPU by 10–484× for neural network
populations of 64–4096 neurons and 1–8 representational dimensions while using 2.4–9.5×
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less power. In fact, the FPGA continues to beat the GPU with numbers in this range when
scaling to models of 32 dimensions (1k neurons) and 32k neurons (1 dimension)1.

5.2 Future Work

This project is the first step in creating a fully featured FPGA backend for the Nengo
ecosystem. Beyond low-power, low-cost embedded scenarios, we plan to extend this work to
larger FPGAs to address larger cloud and edge computing workloads as well. Some possible
directions for future development include:

• scaling to larger FPGAs;

• implementing more Nengo classes such as neuron models and synapses;

• adding dedicated hardware accelerators; and

• supporting convolutions.

5.2.1 Larger FPGAs

The current design on the small PYNQ-Z1 device implements a single adaptive population
of neurons. In order to create a fully featured and independent Nengo backend we will
need to scale this up to include multiple neural ensembles as well as other objects. Some
preliminary work has been done which tiles the current single population design multiple
times and adds a simple ring communication network between the ensemble processors
and the I/O interfaces. This has been functionally implemented at reduced scale on the
PYNQ-Z1, but much work is needed to bring the design into an accurate state and scale
up to larger Xilinx devices.

In another venture, this time using an Intel Aria10 device, a proof of concept design has
been developed including an ensemble processor, as well as a generic matrix multiply block
and a scalar multiply block. This preliminary design is able to accept an entire Nengo model
which is then partitioned into these 3 compute categories. The system then constructs the

1Recall, NDmax = 32k and so models cannot be larger in both N and D
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dataflow graph and evaluates the Nengo model across these 3 processor types. Currently,
the implementation is quite inefficient having one of each processor type, each of which is
naively implemented and requires optimization.

There is much work to be done, but this work and these two forays into scaled hardware
are promising starts.

5.2.2 More Functionality

The current implementation only supports Rectified Linear Units (ReLU) as the neuron
model and the Prescribed Error Sensitivity (PES) learning rule. However there are a plethora
different neuron models and learning rules of varying complexity and detail that would
be interesting to accelerate in hardware. In addition, there are many operations beyond
the ensemble processor presented in this thesis. There is ample opportunity to implement
various support blocks, such as direct matrix-matrix multiplies or scalar multiplies, and
other neural blocks such as different synaptic filters. As the design is scaled to larger
devices, adding more specialized blocks such as these should help improve performance and
avoid adding complexity to generic processors. Similarly, having on-chip communication
between blocks opens up possible computation during communication and interesting fanin
and fanout considerations.

Another exciting opportunity would be to create a generic, run-time programmable
GPIO interface. Currently any GPIO interaction require a custom compiled design to
appropriately handle specific I/O.

5.2.3 Hardware Accelerators

The FPGA implementation is in and of itself a hardware accelerator; however there
are opportunities to optimize specific functions even further. Currently the design is
implemented using High-Level Synthesis (HLS) which is great for flexibility and design
effort, but does sacrifice some performance. There could be dedicated, hand optimized
RTL blocks dropped into the critical path (e.g. matrix multipliers or neuron models).

There is also work underway to embed a hardware Random Number Generator (RNG)
based of the work of Thomas and Luk (2013). Since NEF encoders can be randomly
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generated, the idea is to use a repeatable RNG to generate the encoders on-the-fly each
cycle and save the large N ×D memory footprint. In such an implementation, a random
sequence of encoders is repeatably generated for each timestep which places the onus on the
decoders to produce a sensible output value. The decoders could be initialized randomly
as well and we could rely on the online learning to converge to a solution. Conversely, a
software simulated RNG could be implemented as part of the build process in order to
generate would be encoders and analytically solve decoders from there.

5.2.4 Convolutions

Finally, it would be great to also support Convolutional Neural Networks (CNN) in order
to deliver a more well rounded platform. The NEF implementation is exciting and well
suited to dynamic, real-time applications, but there is significant research and industrial
interest in around CNNs.
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Appendix A

Fixed-Point Precisions

A.1 Hyperopt Search Space

Table A1 outlines the search space bounds used in the hyper-parameter optimization.

Hyper-Parameter Low High

DATA_T_IN
Word Bits 4 28
Integer Bits 1 8

DATA_T_ERR
Word Bits 19 48
Integer Bits 1 16

DATA_T_DEC
Word Bits 12 32
Integer Bits 1 16

DATA_T_ENC
Word Bits 7 32
Integer Bits 7 16

DATA_T_RES
Word Bits 10 48
Integer Bits 10 18

K_SHIFT 8 14
UFAC 1 28

Table A1: Search space bounds for Hyperopt runs. All parameters are integers and bounds are
shown for a closed interval.
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A.2 Pareto Optimal Designs

This section will list the Pareto optimal results discovered by Hyperopt as discussed in
Sections 3.1.4 & 4.2.

• Table A2 shows results for the cost function that minimizes the error–resource
product and uses UFAC = 1, N = 200 andDin = Dout = 1 for the simulations.

• Table A3 shows results for the cost function that minimizes the error–cycles
product, subject to a resource constraint, and uses N = 200 and Din =

Dout = 2 for the simulations leaving UFAC as a free parameter.

• Table A4 shows results for the cost function that minimizes the error–resource
product and uses UFAC = 1, N = 64 and Din = Dout = 1 for the simulations.

• Table A5 shows results for the cost function that minimizes the error–resource
product and uses UFAC = 1, N = 4096 and Din = Dout = 1 for the
simulations.

Label
Data Type Precisions (word_bits, integer_bits)

Error UFAC Resource %
DATA_T_IN DATA_T_ERR DATA_T_DEC DATA_T_ENC DATA_T_RES K_SHIFT

P1 19, 8 42, 11 13, 3 8, 7 16, 16 14 0.129511 1 17
P2 13, 8 40, 10 12, 2 10, 10 17, 16 14 0.014077 1 18
P3 22, 8 47, 12 12, 2 11, 11 16, 16 14 0.008085 1 19
P4 19, 8 43, 11 14, 2 11, 11 16, 16 14 0.003843 1 20
P5 20, 8 44, 9 15, 2 11, 11 18, 16 14 0.003385 1 21
P6 20, 8 46, 11 15, 2 11, 11 18, 16 14 0.003385 1 21
P7 20, 8 47, 12 15, 2 11, 11 18, 16 14 0.003385 1 21
P8 20, 8 48, 13 15, 2 11, 11 18, 16 14 0.003385 1 21
P9 20, 8 46, 13 16, 2 11, 11 20, 16 14 0.003364 1 22
P10 17, 6 37, 4 16, 2 11, 11 27, 7 14 0.003359 1 23
P11 25, 5 37, 15 15, 2 13, 11 26, 16 14 0.003344 1 24

Table A2: List of Pareto optimal fixed-point precisions extracted by Hyperopt by minimizing the
error–resource product. We use UFAC = 1 and set N = 200 and Din = Dout = 1 for the simulations.
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Label
Data Type Precisions (word_bits, integer_bits)

Error UFAC Resource %
DATA_T_IN DATA_T_ERR DATA_T_DEC DATA_T_ENC DATA_T_RES K_SHIFT

P1-C 19, 17 23, 1 25, 12 12, 11 22, 17 14 0.003336 20 85
P2-C 16, 6 24, 2 23, 10 16, 11 22, 17 14 0.003315 2 32
P3-C 16, 6 23, 1 25, 12 13, 11 19, 17 14 0.003346 20 85
P4-C 11, 2 24, 2 25, 9 23, 11 17, 17 14 0.003433 28 100
P5-C 13, 1 23, 1 20, 7 24, 11 19, 16 14 0.003433 24 130

Table A3: List of Pareto optimal fixed-point precisions extracted by Hyperopt by minimizing the
required cycles subject to a resource constraint. We set N = 200 and Din = Dout = 1 for the
simulations and leav UFAC as a free parameter.

Label
Data Type Precisions (word_bits, integer_bits)

Error UFAC Resource %
DATA_T_IN DATA_T_ERR DATA_T_DEC DATA_T_ENC DATA_T_RES K_SHIFT

P1-64 27, 2 40, 16 17, 2 10, 10 19, 16 10 0.006600 1 22
P2-64 22, 4 38, 16 18, 4 23, 10 22, 18 11 0.006599 1 34
P3-64 21, 1 46, 8 13, 1 10, 10 15, 13 12 0.007035 1 19
P4-64 21, 4 46, 7 12, 1 10, 10 15, 16 12 0.009562 1 18
P5-64 12, 2 43, 3 14, 1 10, 10 17, 14 12 0.006608 1 20
P6-64 16, 2 45, 3 12, 1 9, 9 17, 14 14 0.394523 1 17
P7-64 15, 2 23, 2 15, 2 10, 10 17, 14 12 0.006570 1 55

Table A4: List of Pareto optimal fixed-point precisions extracted by Hyperopt by minimizing the
error–resource product. We use UFAC = 1 and set N = 64 and Din = Dout = 1 for the simulations.

Label
Data Type Precisions (word_bits, integer_bits)

Error UFAC Resource %
DATA_T_IN DATA_T_ERR DATA_T_DEC DATA_T_ENC DATA_T_RES K_SHIFT

P1-4k 19, 3 40, 14 31, 12 11, 10 26, 16 14 0.004306 1 33
P2-4k 20, 3 42, 14 15, 13 10, 10 25, 16 14 0.636612 1 21
P3-4k 17, 4 40, 13 12, 12 9, 9 25, 14 14 0.636612 1 18
P4-4k 28, 7 48, 1 21, 5 9, 9 19, 17 14 0.022840 1 24
P5-4k 25, 8 46, 2 20, 3 12, 10 24, 17 14 0.004463 1 26
P6-4k 23, 8 31, 1 16, 1 14, 10 27, 17 14 0.007443 1 25
P7-4k 22, 8 29, 1 19, 1 15, 10 26, 17 14 0.004353 1 28
P8-4k 21, 8 29, 1 19, 1 16, 10 29, 17 14 0.004345 1 30
P9-4k 22, 8 30, 2 20, 2 13, 10 26, 17 14 0.004353 1 27

Table A5: List of Pareto optimal fixed-point precisions extracted by Hyperopt by minimizing
the error–resource product. We use UFAC = 1 and set N = 4096 and Din = Dout = 1 for the
simulations.
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A.3 Selected Fixed-Point Designs

Table A6 shows selected best designs for our application from the sets of Pareto optimal
designs.

Label
Data Type Precisions (word_bits, integer_bits)

Error UFAC Resource %
DATA_T_IN DATA_T_ERR DATA_T_DEC DATA_T_ENC DATA_T_RES K_SHIFT

P10 17, 6 37, 4 16, 2 11, 11 27, 7 14 0.003359 24 98
P4-C 11, 2 24, 2 25, 9 23, 11 17, 17 14 0.003433 28 100
P1-64 27, 2 40, 16 17, 2 10, 10 19, 16 10 0.006600 24 94
P5-4k 25, 8 46, 2 20, 3 12, 10 24, 17 14 0.004463 24 100
General 25, 8 48, 4 20, 3 13, 11 27, 17 13 0.010830 20 85

Table A6: Selected fixed-point designs from the Pareto optimal sets.
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Appendix B

Power & Performance Data

For both the FPGA and the GPU power measurements were taken using the P3 P4455
plug-in Power Monitor. Devices were warmed up by running several networks before
beginning measurements. The static power was noted before and after evaluation runs,
then averaged and subtracted from the total power to arrive at dynamic power numbers for
the entire device.

B.1 Jetson TX1 Power & Performance

The static power of the Jetson TX1 board was discovered to be 2.6W. The values in
Table B1 were collected by observing power and step time values over 1 million evaluation
steps.

B.2 FPGA Power & Performance

The static power of the PYNQ-Z1 board was measured to be 2.5W. The values in Table B2
were collected by observing power and step time values over 1 million evaluation steps.
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Dimensions Neurons
Mean Step
Time (us)

Mean Total
Power (W)

Mean Dynamic
Power (W)

1
64 328.304 6.4 3.8
512 456.582 5.7 3.1
4096 938.075 3.8 1.2

2
64 319.022 6.4 3.8
512 456.625 5.9 3.3
4096 1085.20 3.8 1.2

4
64 331.768 6.4 3.8
512 385.472 6.0 3.4
4096 676.593 4.2 1.6

8
64 320.431 6.4 3.8
512 381.833 6.1 3.5
4096 517.866 4.9 2.3

Table B1: Power and performance data collected from the Jetson TX1 GPU device.

Dimensions Neurons
Mean Step
Time (us)

Mean Total
Power (W)

Mean Dynamic
Power (W)

1
64 0.68 2.9 0.4
512 1.96 2.9 0.4
4096 12.20 2.9 0.4

2
64 0.82 3.0 0.5
512 2.74 3.0 0.5
4096 18.10 3.0 0.5

4
64 1.10 3.0 0.5
512 4.30 3.0 0.5
4096 29.90 3.0 0.5

8
64 1.66 3.0 0.5
512 7.42 3.0 0.5
4096 53.50 3.0 0.5

Table B2: Power and performance data collected from the PYNQ-Z1 FPGA device.
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