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Abstract

Sleep plays an important role in our life; monitoring and understanding our sleep can
support better sleep habits and therefore health and quality of life. Research has shown
that sleep is mainly regulated by people’s internal circadian rhythms. The traditional way
to infer circadian rhythm is to measure dim light melatonin or core body temperature, both
of which are impractical to monitor on a day-to-day basis. Recently, wrist temperature has
been shown to be a good alternative as it has a closer association with sleep patterns. Wrist
temperature increases when people fall asleep and decreases after people wake up. However,
there has been virtually no research on whether and how this trend will change as people
get older or have dementia. Revealing differences in wrist temperature rhythms among
healthy younger adults, healthy older adults and Older Adults with Dementia (OAWD)
could help to support a better sleep for each population.

The goal of this research is to explore the wrist temperature patterns and their un-
derlying implications for both circadian rhythms and sleep patterns for people of different
ages and cognition. Healthy younger adults (n=10), healthy older adults (n=10), and
OAWD (n=8) wore a customized wristband with a temperature sensor and a three-axis
accelerometer sensor along with a commercial wristband (Mi Band 2) for 14 days. Their
wrist temperature rhythms were analyzed and compared for the three groups and differ-
ences in daytime temperature value and variation are found. An evaluation of the Mi
Band 2 is showed decreasing accuracy for the older adult populations, especially OAWD.
Accelerometer data showed one older participant and all OAWD had frequent body move-
ments during sleep, which is pinpointed as the main cause for the poor performance of
the Mi Band 2. Four case studies are presented to show these body movements together
with their wrist temperature rhythms. As wrist temperature rhythms were not affected
by participants’ movements, this supports the usefulness of wrist temperature in more
comprehensive and accurate sleep analysis. Lastly, novel two sleep detection algorithms
are proposed; one is built solely on wrist temperature, while the other uses features from
both wrist temperature and accelerometry. While the wrist temperature alone algorithm
performed better than the Mi Band for OAWD, using both data sources showed increases
in sleep detection accuracy for all participants it was tested with. Preliminary results show
that the wrist temperature has the potential to play a valuable role in better identification
and understanding or sleep, including for people with movement-related sleep disorders.
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Chapter 1

Introduction

1.1 Motivation

Sleep is a substantial process for all human beings; however, lack of sleep and having
low sleep quality have become a worldwide epidemic. It has been shown that people
with compromised and insufficient sleep suffer from a decline in cognitive performance and
daytime neurobehavioral functions, such as decision making and memory loss [1, 2, 3].
In modern society, increasing awareness of sleep health and new technology developments
have made daily sleep tracking accessible to the public. One of the most affordable and
convenient systems is smart wristband or smartwatch. Wearing a device on the wrist can
help people track when they sleep and even their daily sleep quality. These wristbands
and smartwatches can send the collected data to a smartphone via Bluetooth and then to
the cloud so that people can easily access their sleep data as they wish.

Being able to monitor sleep every day can be useful for people to keep track of their
sleep health; however, only measuring the ”external performance” of sleep is not enough.
A common notion of good sleep is well stated by the famous old saying ”Early to bed and
early to rise makes a man healthy, wealthy and wise.” However, it should be noted that
not everyone is naturally predisposed to sleeping and waking up earlier. The optimal sleep
time and length of sleep varies considerably for different people [4].

From a modern biology perspective, sleep is a complicated biological process. [5] It is
not solely controlled by people’s willpower; people’s sleepiness is dictated by their internal
biological clock under normal conditions. Even without sleeping, the human body still
secretes melatonin and runs different biological processes that follow a 24-hour cycle. This
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cycle is called circadian rhythm, and a small region called Suprachiasmatic Nucleus (SCN)
in our brain is the main controller of the circadian rhythm. [6] Each individual has different
circadian rhythms. Interfering factors including increased stress, illness, stimulants such
as caffeine, or willpower can lead to delayed or interrupted sleep and eventually result in
a misalignment between sleep patterns and circadian rhythms.

While commercially available smart wristbands such as Fitbit Alta HR 1 can provide de-
tailed sleep monitoring and analysis, including sleep duration and estimation of deep/light
(even Rapid Eye Movement (REM)) sleep, all the commercial devices fail to monitor
people’s sleep from an internal perspective; they cannot directly measure one’s circadian
rhythms. Obtaining circadian rhythm information and detecting whether there is a mis-
alignment between daily sleep patterns and the internal rhythms could provide a more
comprehensive and individualized understanding of sleep and constitute a new, more com-
prehensive way of performing sleep monitoring.

Based on different circadian rhythms and chronotypes (i.e., the propensity to sleep
earlier or later), people can be categorized into ”night owl” for people tend to sleep late or
”morning lark” for people tend to sleep early [7]. If a ”night owl” sleeps earlier than their
natural diurnal rhythm, they might not get optimized sleep. The circadian rhythms are
partly controlled by genes, but they also change across the lifespan. For example, older
adults generally have earlier sleep onset and offset than younger adults do, which has much
to do with the phase advancement of older adults’ internal rhythms. Changes in circadian
rhythms are shown to be correlated to poor sleep performance of the older population [8].
In some special cases like shift workers, research has also shown that sleep pattern shifts
or sleep deficiency can lead to a higher probability of depression [9]. Furthermore, the
misalignment between internal biological process and real sleep patterns are shown to be
highly correlated to smoking, obesity and other negative effects [10, 11].

Many factors bring disruptions to people’s circadian rhythms and can eventually lead
to irregular sleep patterns. While maintaining the rhythmicity of the circadian system is
important, the circadian rhythm is a less-known concept to the public. This is partly due to
the difficulty of measuring gold standards of circadian phase markers, which are Dim Light
Melatonin Onset (DLMO) [12] and Core Body Temperature (CBT) [13]. DLMO requires
testing melatonin levels in people’s saliva or urine, while CBT refers to people’s rectal
temperature. Both measurements are obtrusive and costly in time and money. Recently,
wrist temperature has been proposed to be a good alternative to measure circadian rhythms
[14]. With the development of sensor technology, wrist temperature can be easily measured
with a small-sized temperature sensor worn on the inside of a wristband. Unlike CBT,

1https://www.fitbit.com/en-ca/shop/inspire
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which drops at night and reaches the lowest value during sleep, wrist temperature has
an opposite trend. Before sleep occurs, wrist temperature starts to increase, remains at
a relatively higher value during sleep, then drops drastically right after the sleep offset
[14] (an example is shown in Figure 1.1). Furthermore, the time when wrist temperature
starts to increase before the sleep onset has shown a high correlation to DLMO[15, 16].
As research has shown that wrist temperature can be a phase marker for circadian rhythm
and wrist temperature sensor can be easily integrated into a wristband, the addition of
temperature sensor to a wrist-worn band is a good candidate for improving day-to-day
monitoring sleep monitoring. The knowledge of individual circadian rhythms could enable
a deeper understanding of sleep timing and point out the potential in improving and
supporting better sleep schedules.

Figure 1.1: An example of wrist temperature pattern of one participant (Y004) from this
research over a 24 hour period.

The length of sleep duration has dropped drastically, and the incidence of nighttime
insomnia has increased 42% from 2007 to 2015 in Canada [17]. Moreover, sleep disorders are
more common in older adult and dementia populations, both of whom can experience sleep
disturbances caused by morbidity such as sleep apnea, chronic pain, and disrupted circadian
rhythms [18]. This can result in excessive daytime sleepiness as well as symptoms associated
with lack of sleep, including decreased cognitive performance, irritability, and feelings
of exhaustion [19, 20, 21]. Therefore, measuring the circadian rhythms as well as sleep
patterns of the aged and dementia populations could support better sleep management,
which in turn could benefit overall quality of life.
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1.1.1 Research objective and questions

The overreaching objective of the research presented in this thesis is to investigate how ag-
ing and dementia influence sleep patterns detected by wrist temperature and accelerometry
(actigraphy).

The research questions that guided this thesis are listed below and outlined in more
detail in Chapter 3:

• How do circadian wrist temperature patterns differ between healthy younger adults,
healthy older adults, and older adults living with dementia?

• What variables can be used to identify peoples sleep quality from their wrist tem-
perature?

• What advantages does wrist temperature have compared to monitoring sleep using
actigraphy?

1.2 Thesis Organization

The remainder of the thesis is structured as follows:

Chapter 2 provides an overview of the literature, with a focus on two aspects related to
the topic of sleep monitoring. First, the mechanism of sleep and circadian rhythm system
inside the human body are explained. Second, existing approaches to sleep monitoring
that are based on wearable sensors are be summarized.

In Chapter 3, the objectives of this study are defined and the study experiment protocol
is outlined. The demographics as well as the sleep patterns collected during experiment
are presented and discussed.

In Chapter 4 parameters extracted from wrist temperature measurements are compared
between the three groups.

Chapter 5 focuses on sleep data obtained from Mi Band 2, including some case studies
to illustrate how the addition of temperature could improve sleep monitoring accuracy.

In Chapter 6, two sleep detection algorithms are proposed and tested. In particular,
the unsupervised sleep detection algorithm that uses features of both wrist temperature
and accelerometer data is shown to be more effective in detecting sleep for people with
body movements during sleep.

4



Chapter 7 includes a general discussion of this study, including insights into why wrist
temperature rhythm and sleep patterns are different for different populations, why Mi
Band 2 failed to detect OAWD’s sleep and how wrist temperature can be utilized to build
a better sleep monitoring system in the future.

Chapter 8 summarizes the key findings and conclusions as well as provides insights
regarding future work related to sleep monitoring.
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Chapter 2

Background

2.1 Sleep and Circadian Rhythms

The SCN is located inside the brain and is what coordinates the circadian system [5]. In
daily life, environmental cues such as sunlight and mealtimes influences the SCN; the SCN
uses these cues to ”learn” external time then uses this to send temporal information via
neural signals to the body so that different biological processes can keep running. The
schematic of circadian rhythm system and its link to sleep and aging is shown in Figure
2.1. Among these biological processes, the sleep-wake cycle is the center of interest in this
study.

Circadian system coordinates the sleep-wake cycle by two means:(1) regulating the
secretion of melatonin and cortisol, (2) thermoregulation. [22] After the sun goes down
and the environment becomes darker, the photoreceptors in our eyes receive less light. A
signal is then sent to the SCN to let it know it is night outside. Once the SCN receives the
temporal information from photoreceptors, it signals the pineal gland to secrete melatonin.
With the amount of melatonin secreted increasing, people will gradually feel sleepier and
less alert. [23] The secretion of melatonin is stopped by the SCN in the morning as the
photoreceptors receive more light. Instead of melatonin, more cortisol is secreted so that
people become more active and alert. As for the thermoregulation, the SCN controls the
oscillation of CBT. As the night progresses, people feel sleepier when the CBT drops [24].
As a result of decreasing CBT, the heat loss through distal skin surfaces is more prominent,
which leads to an increase in wrist temperature. For most people, CBT will reach its lowest
point (nadir) at around 5 AM, which also happens to be the time when sleep tendency
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reaches its highest point. In the morning, CBT gradually increases thus causing distal skin
temperature to decrease. These two processes together regulate the sleep-wake cycle.

As the SCN directly coordinates the melatonin secretion and CBT oscillation, two gold
standards are commonly used in the medical fields to infer internal circadian phase: (1)
DLMO, (2) CBT nadir. [12, 25] While accurate, it is not convenient and cost-effective
to measure either DLMO or CBT. DLMO measurement requires blood, urine, or saliva
samples from people, and the analysis of melatonin can only be done in specific sleep
laboratories in hospitals. CBT usually refers to rectal temperature; its measurement in the
past requires participants to retain a constant posture and, even with the newest technology
(e.g., ingestible telemetric temperature sensor [26]), the measuring process is considered to
be unpleasant for most people. When it comes to building an ongoing sleep and circadian
rhythm monitoring system, both methods are complicated, costly, and obtrusive; hence
they are not practical for day-to-day measurements.

Figure 2.1: Schematic of the Circadian System. The circadian system influences the sleep-
wake cycle and is influenced by internal factors, such as genes, aging, as well as by external
factors, such as environmental cues.
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2.2 Prevalence of Sleep Disturbances and Problems

As people get older, they tend to have lower sleep efficiency and more fragmented sleep
according to several studies [27, 28, 29]. Compared to the younger population, older adults
have longer sleep latency and wake more often during the night. While the sleep duration
between the younger population and the older population might be comparable, the sleep
quality of older adults is reported as worse [28, 30]. Also, diagnosable sleep disorders, such
as apnea, are more common in the aged population, which can bring excessive daytime
sleepiness and eventually lead to more disturbed sleep patterns [31, 32]. As for the sleep
time preference, many people will change from a ”night owl” into a ”morning bird” as
they age [33]. As there is a tight tie between sleep and circadian rhythms, the decreasing
function of the circadian system is considered to be a key cause of the worsening of sleep
patterns and quality in the aged population [34, 35].

OAWD have overall sleep patterns that are more uneven than for normal/healthy older
adults and their sleep patterns tend to be more disturbed with more fragmented sleep
during the night and more naps or short-period sleep during the day [18, 36]. Evidence
has shown deteriorated SCN and impaired circadian systems in the OAWD population
compared to healthy older adults [37, 34]. With the progression of dementia, many OAWD
have a more sedentary lifestyle [38]. This relative lack of movement may exacerbate a deficit
in environmental cues that can promote healthy sleep. For example, light is the most potent
cue that helps to synchronize SCN. Campbell et al. have reported the bright light exposure
for community-dwelling older adults was, on average, less than 30-minute per day [39].
Lacking enough environmental cues will weaken the functioning of the circadian system,
which will cause a deterioration in sleep. Furthermore, sleeping during the daytime, in
turn, can lower the effective light exposure.

2.3 Commercially Available Wearable Sleep Monitor-

ing Systems

Recent technological advances have made wearable sleep monitoring devices much more
available and accessible to the public. Commercial smart wearable devices that can track
sleep are popular in the current market. Both high-end products like Apple Watch, Fitbit,
and lower-end ones like Mi Band 2 (used in this study) have a sleep monitoring feature.
All their sleep monitoring algorithms are based on the use of actigraphy, which estimates
sleep using data from accelerometers and gyroscopes that detect wrist movements. In

8



order to achieve more accurate sleep detection, some more expensive smartwatches can
also measure the heart rate during the night and use its variability as a feature [40, 41].
Other than actimetry sensors (i.e., 3-axis accelerometers and gyroscopes) and an optical
heart-rate sensor, light sensors in some wristbands and smartwatches are also used for sleep
detection as most people sleep in relative darkness [42, 43].

All these smart wearable devices can be paired with smartphones via Bluetooth; the
sleep-related data will be automatically transmitted to smartphones. The data can then be
processed and stored on the device and in the cloud. While the advanced digital media has
become a convenient way for people to store and access their sleep data as well as allows
for sleep quality trends to be assessed over a long period, the sleep detection accuracy of
different devices varies, and these sleep trackers’ accuracy is still questionable [44].

Due to the popularity of commercial wristbands and their low-cost, several programmable
Android Wear OS wristbands have been proposed by Samsung and Huawei. Researchers
built more advanced sleep monitoring systems based on these Android Wear smart wrist-
bands [42, 43] by using sensors such as microphones and light sensors to fuse data and
determine light/deep sleep stages. While these systems show promise for more accurate
sleep monitoring, none of their algorithms are commercially available yet.

Some bands, such as the Microsoft Band 2, have a skin temperature sensor that is used
to determine whether the user is wearing the wristband. There are also a few research-
grade devices that include a temperature sensor, such as Empatica E4 1 and GENEActiv
Sleep 2. However, none of these wristbands measure skin temperature for the sake of sleep
monitoring. Therefore, to the author’s knowledge, there is no available product in the
market that integrates wrist temperature measurement into sleep monitoring.

2.4 Justification of Wrist Temperature Monitoring

Actigraphy (i.e., measurements using accelerometer sensors) has been the most established
method to detect sleep as well as to infer the circadian rhythm [45, 46] since the last cen-
tury. It has been used in the monitoring of sleep for different populations (e.g., children
[47], adolescents [48], older adults [49]) due to its convenience for long-term continuous
monitoring compared to the traditional gold standard Polysomnography (PSG) (i.e., a
multi-parametric diagnostic tool in sleep medicine). While its convenience and accuracy
in sleep monitoring have been recognized by American Academy of Sleep Medicine [50],

1https://www.empatica.com/en-int/research/e4/
2https://www.activinsights.com/actigraphy/geneactiv-sleep/
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actigraphy for circadian rhythm related study has an obvious drawback - it does not mea-
sure circadian rhythm directly and is highly dependent on the physical health of users.
As actigraphy is based on movement, people who have impaired or irregular movement
patterns may not have accurate sleep detection using this method. For example, compared
to the normal healthy population, a significant decline can be seen in the activity level for
people who are using walkers or sitting on a wheelchair. More contrast day/night activity
can promote the circadian system health [51]; however, this activity difference might be
too small to precisely infer the circadian rhythms for people who need walking aids or have
mobility impairments.

There is a significant portion of older adults, especially people living with dementia,
who are frail and have living and moving patterns that are different from younger adults.
For example, frail older adults tend to walk or exercise much less than normal younger or
older adults. Due to changes in physical abilities, merely measuring the physical movement
rest/activity rhythms to infer their circadian system health might not be an appropriate
or accurate approach. Compared to the activity level, body temperature is less subject to
the general physical health and more directly influenced by biological circadian rhythm.
As the SCN controls the thermoregulation and the oscillation of CBT, the resulting heat
loss or gains over the skin is reflected by the variations of skin temperature [52, 14]. In
this sense, wrist temperature rhythms are intrinsically more of a direct correlation to the
circadian rhythms in the body.

While wrist temperature rhythms of older adults have been measured in the past, there
is a lack of research investigating the wrist temperature rhythms of OAWD. This literature
review only found one study that measured the proximal skin temperature and sleepiness
level of OAWD [53]. Considering OAWD have more difficulties related to sleep and that
lack of sleep can exacerbate the symptoms associated with dementia (e.g., poor memory,
irritability, disorientation, etc.), understanding their circadian rhythm and sleep better
could help support better sleep management. For all populations, better sleep management
can result in better rest, which in turn can have a positive impact on the quality of life.
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Chapter 3

Sleep Monitoring Using Wrist
Temperature Study

3.1 Objectives

As highlighted in Section 2.4, there is a lack of research regarding how wrist temperature
may be impacted by age and dementia. In addition, the accuracy of commercial wristbands
may be influenced by factors such as aging and dementia. Therefore, this thesis research
focused on two parts: (1) measuring and analyzing the wrist temperature patterns of
younger healthy adults, older healthy adults, and older adults with dementia, and (2)
exploring whether wrist temperature can augment accemetry-based sleep monitoring data
to improve sleep detection for these populations.

This thesis is guided by the following Research Questions and related sub-questions:

• Question 1: How do circadian wrist temperature patterns differ between healthy
younger adults, healthy older adults, and older adults living with dementia?

- 1.1 How does age influence wrist temperature patterns?

- 1.2 How are wrist temperature patterns different for people living with dementia
compared to healthy younger and older adults?

- 1.3 What associations can be made between wrist temperature patterns and sleep
patterns obtained from a self-reported sleep journal?

11



• Question 2: What variables can be used to identify people’s sleep quality from their
wrist temperature?

• Question 3: What advantages does wrist temperature have compared to monitoring
sleep using actigraphy?

- 3.1 How does age impact usefulness of temperature versus actigraphy?

- 3.2 How does cognition (i.e., healthy versus dementia diagnosis) impact the use-
fulness of temperature versus actigraphy?

• Question 4: How can wrist temperature be used to develop a better sleep detection
algorithm?

- 4.1 Can wrist temperature and accelerometer data be used together to more ac-
curately detect sleep?

For each research question, the respective hypothesis as well as methods to test the hy-
pothesis are listed in Table 3.1. Note several of the methods were identified and developed
as the research progressed, as is described in subsequent chapters.
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3.2 Methods

3.2.1 Participants

Participants of this study were recruited from three groups: (1) younger adults (20 - 30
years old), (2) healthy older adults (at least 65 years old who self-identified as healthy),
and (3) older adults living with dementia (at least 65 years old, have early to middle
staged dementia). All participants had to fluently understand English and individuals who
were diagnosed with severe sleep disorders were excluded. This study was granted ethics
clearance (ORE # 31860 and ORE # 40459) through the University of Waterloo Office of
Research Ethics and was conducted as stated in the approved protocols.

3.2.2 Protocol

All participants had an individual one-on-one orientation session. After providing informed
consent, younger and healthy older participants were asked to complete four questionnaires
see (Appendix A):

• (1) a demographic questionnaire

• (2) Morningness-eveningness questionnaire (MEQ) [7]

• (3) Pittsburgh Sleep Quality Index (PSQI) [54]

• (4) Epworth Sleepiness Scale (ESS) [55]

The demographic form captured the participants gender, age, height, and weight as
well as sleep-related disorders (e.g., insomnia, daytime sleepiness). MEQ is a validated
measure that determines morningness-eveningness in human circadian rhythms; PSQI is
an established subjective measurement of sleep quality; ESS is commonly used to measure
daytime sleepiness.

Participants from the dementia group were identified by the staff in the Schlegel Village
of Riverside Glen (i.e., the long-term care facility partnered with for this study). These
participants were mainly identified based on their Cognitive Performance Scale (out of 6,
higher scores indicate more severe cognitive impairment), their daily behaviors (i.e., people
who are less likely to lose the wristband during the experiment) and their sleep habits
(residents with very irregular sleep patterns were excluded). As dementia can profoundly
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impact free-recall, participants’ assent in the continuing study was obtained every visit
session. OAWD were not able to reliably self-report their sleep quality and fill out the
questionnaires. Therefore Schlegel Village staff who were familiar with the resident filled
out the demographic form on the OAWD’s behalf; the MEQ, PSQI, and ESS could not be
captured for this group. In addition, the Mini-Mental State Examination (MMSE) for the
dementia group [56] was conducted to approximate level of cognition.

 

iButton 

Temperature 

Sensor 

AX3 Axivity 

3-axis Accelerometer 

(a) The prototype wristband. (b) The Mi Band 2.

Figure 3.1: Two wristbands used in the study.

After completing the forms, all participants were introduced to the study wristbands:
(1) the custom-built wristband and (2) Mi Band 2. As seen in Figure 3.1, the custom
wristband contains an iButton DS1922L temperature sensor (Maxim, Dallas, US) and an
off-the-shelf accelerometer data logger Axivity AX3 sensor (Axivity, York, UK; 100 Hz,
± 8 g, weight: 9 g). Mi Band 2 is used for reference as a comparison of a commercial
wristbands sleep monitoring. Participants were asked to wear both wristbands on the left
wrist for 14 days and only take them off when showering.

Younger and healthy older adults were given instructions on how to operate both wrist-
bands; for the older adults living with dementia, their Personal Support Workers (PSW)
were given instructions. Healthy adult groups kept a daily sleep journal that asked when
they went to sleep, when they woke up, and subjective sleep quality (adapted from [57]).
Sleep journals for the dementia group were completed by PSW who were familiar with
them and their routines. In addition, as many OWAD exhibit excessive daytime sleepi-
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ness, working staff were asked to observe participants’ status and write down either ’1 -
awake’ or ’2 - sleeping’ on a created sheet for every half an hour. This sheet was used as
supplementary material to the sleep journal.

3.2.3 Analysis of Sleep Onset and Offset

Sleep patterns were extracted from the self-reported sleep journals of both healthy younger
and older participants. Sleep onset and offset, waking-up times, and sleep quality score
were obtained from the sleep journals for each day. Based on reported sleep onset and
offset, the sleep duration and midsleep point (i.e., the halfway point between the onset and
offset) were calculated.

While OAWD were not required to fill out a sleep journal, staff were asked to report
participants’ sleep based on their observations. In the long-term care facility worked with,
there are three shifts each day: (1) morning (6:00 to 14:00), (2) afternoon (14:00 to 22:00),
(3) evening (22:00 to 6:00). All three teams could observe the sleep of OAWD. However, the
sheet and sleep journals had significant missing data due to bad communications and shift
changes between different teams. The night team reported more detailed sleep observations
of some participants while the afternoon team reported more detailed observations for other
participants. For most participants, either their sleep onset data was missing, or their sleep
offset data were missing; often, there were no data recorded for either. It is estimated that
more than 60% of sleep onset/offset data was missing for OAWD.

In order to make up for the missing reported OAWD sleep onset/offset data, the
awake/sleeping status (only nighttime sleep was labeled) was manually labeled by looking
into the actigraphy data recorded by the wristband sensor AX3. Since accelerometer data
during sleep are characterized with a still and static signal, sleep duration was identified
by finding data periods with the least variations. The longest sleep duration was extracted
if there were multiple static data periods more than 30 minutes apart. The sleep onset,
offset, and duration were estimated using the onset, offset, and duration of the longest
data period. If static data periods were almost equally long (i.e., 22:00 to 3:00 and 4:00
to 8:00), the sleep onset and offset were estimated using the onset of the first period and
the offset of the last period (i.e., 22:00 as onset and 8:00 as offset). Sleep duration was
calculated by adding the duration of all the data periods (see Case study D002 in Section
5.3, Figure 5.4). The naps during the daytime were not included due to the difficulty of
reliably identifying whether a nap occurs or not. Furthermore, a short interview (ques-
tions are listed in Appendix B) was conducted asking staff for their overall observations
about each participant’s sleep patterns. Together with sleep journals, sheet, manual labels,
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and answers in this interview, the sleep onset, offset, duration, and mid-sleep point were
calculated.

3.3 Results

3.3.1 Demographics

Data for the MEQ, PSQI, ESS for the healthy younger and older adults are summarized in
Table 3.2. Comprehensive data can be found in Appendix C. Between the healthy younger
group and healthy older group, MEQ scores of older participants were significantly larger
than those of younger participants (p = 0.0056). For all 10 younger participants, their
scores fall into the ”intermediate” category, suggesting they are neither ”morning” nor
”evening” type. Among 10 older adults, six of them (five females and one male) appear
to be the ”moderate morning” type while the rest belong to the ”intermediate” type.
The older adult group also scored significantly higher in the PSQI than the young group
(p = 0.032). Normally, a cut-off score indicating poor sleep quality is set to be 5 and
PSQI > 5 indicates potential sleep disturbances [58]. Three younger participants in the
young group scored over 5 (Y003, Y007 and Y008) while eight older participants scored
higher than 7, with the oldest participant (age = 88) scoring 15 (see Appendix C).

Table 3.2: Participant demographics of healthy young and older adults, scores from three
questionnaires (MEQ, PSQI, and ESS). BMI was calculated based on self-reported weight
and height.

Demographics
Young Group

(n = 10)
Older Adult Group

(n = 10)

Age 24.1 ± 2.12 75 ± 6.99
Sex (% female) 60 60
BMI 23.69 ± 5.98 25.94 ± 2.95
MEQ 51.1 ± 4.09 59 ± 7.00
PSQI 5.2 ± 2.27 7.8 ± 3.19
ESS 6.8 ± 2.18 6.3 ± 2.76

The average score of ESS of the younger participants was slightly higher than that of
the older participants; however, no significant difference was found between the two groups
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(p = 0.337). The average Body Mass Index (BMI) of the older adult group was higher
than that of the younger group, however no significant difference was found (p = 0.162).

Each OAWD participant was contacted and introduced the study in private with the
help of the long-term care staff. For OAWD participants, seven were able to give their own
consent and sign the consent form; for the one participant who could not self-consent, his
power of attorney signed the consent form and assent was obtained from the participant.

Average demographic characteristics of OAWD are listed in Table 3.3; more compre-
hensive data can be found in Appendix C. The average age of OAWD was more than eight
years older than that of the healthy older adult group (83.25 yr vs 75 yr) and the average
BMI of this group was much higher than that of the healthy older adult group (29.90 vs
25.94) with no significant difference found (p = 0.103).

Table 3.3: Participant demographics for OAWD. BMI was calculated based on data from
Schlegel Village database.

Demographics
Dementia Group

(n = 8)
Age 83.25 ± 9.71
Sex (% female) 50
BMI 29.90 ± 8.34
MMSE 20 ± 2.34

For the MMSE, based on the scoring scheme from [59], seven participants fell into the
category of mild cognitive impairment (i.e., score between 18 and 23) and one participant
scored 16, which is considered to be severe cognitive impairment. Two participants were
diagnosed with obtrusive sleep apnea (D002 and D010), and one of them was diagnosed
with insomnia (D002). Four participants (D001, D003, D009, and D010 ) needed to take
medications that could influence their sleep (i.e., Citalopram and Dilantin). In addition,
two of them (D009 and D010) have Parkinson’s Diseases (PD) and had to be awakened at
approximately 3 AM to take medications to treat their PD every day. Compared to the
healthy older adult group, more participants from OAWD group reported sleep disorders
(see Appendix A Table C.2) and took medications that could affect their sleep.

3.3.2 Sleep Patterns of Healthy Younger and Older Adults

As reported in Table 3.4 and Appendix D, on average the older participants have an
earlier sleep onset (went to bed earlier) and have later sleep offset (got up later) than the
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younger participants. Thus, on average, older participants slept slightly longer (excluding
the wakening during the night) than the younger participants and had earlier midsleep
time. Also, the number of wake-ups during the night also differed between the two groups,
with the older participants reported significantly more often wakening than the younger
participants (tested with one-tailed t-test, p = 0.0007).

Self-reported sleep quality was captured using the sleep journal (see Appendix A) and is
included in Table 3.4 and Appendix D. The sleep quality was calculated by adding the scale
of three different components: sleep quality (0-8), mood (0-8), alertness (0-8). On average,
the younger participants reported a slightly higher self-reported sleep quality; however,
a t-test showed no significant differences (p = 0.196). In addition, sleep quality varied
more in the older population than in the young population. The younger participants had
generally good sleep quality; two older participants had extremely poor sleep while the
others had much better sleep quality based on their self-reported sleep quality.

Table 3.4: Sleep parameters calculated from self-reported journals by young adults and
older adults. Sleep onset, offset, duration, and midsleep are expressed in hours (hh:mm),
while wake-up times and sleep quality score have no units. Values are expressed as the
mean ± SEM. Sleep quality score ranges between 0 (low sleep quality, low alertness, low
mood) to 24 (good sleep quality, high alertness, good mood).

Sleep Parameters Young Group Elderly Group

Sleep Onset 0:32 ± 0:50 23:49 ± 0:58
Sleep Offset 7:55 ± 0:51 7:31 ± 1:14
Sleep Duration 7:22 ± 0:08 7:42 ± 0:08
Midsleep 4:14 ± 0:49 3:41 ± 1:05
Wake-up Times 0.81 ± 0.56 2.57 ± 1.21∗

Sleep Quality Score 18.39 ± 1.14 17.67 ± 2.07

Compared to self-reported sleep quality score, PSQI asks more objective questions
about the sleep timing and wakening during the night (e.g., ”how often have you had trouble
sleeping because you wake up in the middle of the night or early morning?”). People who
have lower sleep efficiency and frequent wake-ups score higher in the questionnaire. Sleep
quality score from the sleep journal, on the other hand, is a more subjective measurement.
Its range is highly dependent on how each participant feels and their subjective criteria
for good sleep quality. While each measurement stresses different parts of sleep, a weak
correlation was found between them using the Pearson correlation test (R = 0.57, p =
0.008, see Figure 3.2).
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Figure 3.2: PSQI v.s averaged sleep quality score from sleep journal. Only healthy younger
adults and older adults are included as PSQI could not be collected for OAWD.

3.3.3 Sleep Patterns of OAWD

Table 3.5 and Table 3.6 demonstrate that the sleep patterns of OAWD are different from
those of both healthy younger and older populations. Sleep timing of OAWD is very early
with an average onset as early as 21:37 and midsleep at 2:21. Sleep duration was on average
much longer than that of healthy younger and healthy older adults; this is especially true
for D001, D003, and D005 whose average night sleep duration was longer than 11 hours
during the experiment period. Furthermore, OAWD were reported to spend a longer time
in bed and have more daytime sleepiness and naps. According to PSW, all participants
took naps after breakfast and lunch.

Sleep quality of OAWD varied among the participants. According to PSWs, while some
participants were reported to sleep well, two participants (D002 and D004) were reported
to have poor sleep. Specifically, D002 had extremely bad sleep quality with score 1 out of
8. According to the PSW and D002’s self-report, the participant would not fall asleep at
all and stay up all night on some days (two sample days of D002’s data will be presented in
Section 5.3). D004 was observed to be awake multiple times during the experiment period,
and D004’s PSW thought the participant’s sleep quality was 5 out of 8.
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Table 3.5: Sleep onset, offset, midsleep and duration of older adults living with demen-
tia.Values are expressed in hours (hh:mm).

ID Sleep Onset Sleep Offset Midsleep Duration
D001 18:26 ± 0:14 6:52 ± 0:33 0:39 ± 0:18 12:25 ± 0:36
D002 23:36 ± 1:13 7:15 ± 1:22 3:25 ± 1:03 7:38 ± 2:02
D003 20:15 ± 0:33 7:49 ± 1:42 2:02 ± 0:54 11:34 ± 1:46
D004 22:49 ± 2:19 6:57 ± 0:50 2:53 ± 1:09 7:59 ± 2:37
D005 20:35 ± 0:43 7:41 ± 0:22 2:09 ± 0:26 11:03 ± 0:48
D006 22:10 ± 0:47 5:37 ± 0:59 1:54 ± 0:35 6:56 ± 1:31
D009 23:17 ± 1:53 7:20 ± 0:35 3:19 ± 0:59 8:03 ± 1:58
D010 21:48 ± 0:55 7:09 ± 0:31 2:29 ± 0:36 9:20 ± 0:53
Mean ± SEM 21:37 ± 0:34 7:05 ± 0:13 2:21 ± 0:17 9:22 ± 0:40

Table 3.6: Observed qualitative sleep patterns and sleep quality of OAWD from their
personal support workers (PSWs). A sleep quality score of 1 = worst sleep and 8 = best
sleep.

ID Sleep Patterns
Sleep

Timing

Sleep
Quality
(1 ∼ 8)

Naps

D001
No trouble falling
asleep and waking
up in the morning.

Go to bed:
6:00 ∼ 6:30
Wake up:

6:00 ∼ 6:30

8
Other than Mon/Wed/Fri,
he would take naps after
breakfast and lunch.

D002

No trouble falling
asleep. Sometimes
have trouble
waking up in
the morning.
Would wake up
at night frequently and
sometimes cannot
falls asleep at all.

Go to bed:
Not provided.

Wake up:
7 ∼ 8

1
Nap after breakfast and lunch.
Sometimes she goes to her
room for napping.
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D003

No trouble
falling asleep.
Likes to sleep
in the morning.

Go to bed:
7 ∼ 9.

Wake up:
7.

6 Nap after breakfast and lunch.

D004

Has trouble
falling asleep.
Usually is awake
when the morning
team checks him.
One PSW reported
he seemed to be
awake all the time
when she checked.

Go to bed:
9 ∼ 9:30.
Wake up:

6:30 ∼ 7:30.

5

Nap after breakfast and lunch.
He dozes on and off throughout
the day, but he is easy to be
awaken.

D005

No trouble
falling asleep
and waking up
in the morning.

Go to bed:
8.

Wake up:
7 ∼ 8.

7/8 Nap after breakfast and lunch.

D006
No trouble falling
asleep and waking
up in the morning.

Go to bed:
9:30 ∼ 10:00.

Wake up:
6:00

7

Nap and doze a lot in the afternoon.
One PSW thinks that she does not
wake up multiple times during
the night.

D009
Has no trouble
falling asleep
and waking up.

Go to bed:
9:30 ∼ 10:00.

Wake up:
8.

6

Nap both after breakfast and lunch.
At night, she takes medications
for Parkinsons Disease at between
2 to 3 AM.

D010

Has trouble
falling asleep
and waking up
in the morning.

Go to bed:
9 ∼ 10.

Wake up:
8.

6
Nap both after breakfast and lunch.
At night, he does not wake up a lot.

3.4 Discussion

According to [7], circadian types can be determined by the MEQ score. MEQ measures
subjective self-reported morning-person or evening-person tendency, with a higher score
representing a person’s circadian rhythm (biological clock) tends to peak earlier in the
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morning. Healthy older participants in this study averagely scored higher in MEQ than
younger participants, which means the older group reported having an earlier diurnal
preference (more ”morning-person”).

With regard to the accuracy of self-reported sleep, most people did not report how
long they stayed awake after they woke up at night due to a certain level of difficulty
in accurately self-reporting sleep. Therefore, the real sleep duration for healthy younger
adults and older adults might be slightly shorter than the calculated duration for the older
adults since they wake up more often at night.

As for OAWD, obtaining the sleep patterns of them was challenging. Even though staff
in the LTC helped in data collection by using a DOS sheet and filling out the sleep journal
for each participant, the quality of DOS sheet completion was not good (and not consistent
across participants), and the sleep journal had substantial missing data. Moreover, it is
difficult to tell whether someone is sleeping soundly merely by checking in every 30 minutes;
participants can stay in bed being awake but seem to be asleep. Additionally, all residents
in LTC follow a ”bedtime” policy and PSW know when residents are supposed to go to bed
at night and when they need to have breakfast. In this sense, PSW who were responsible
for recording could unintentionally report overestimated sleep.

Furthermore, sleep quality reported by PSW might not be accurate because some night
shift team members were not available when the interview was conducted. In other words,
the reported sleep quality of OAWD from PSW might be overestimated. During data
labeling, it was extremely hard to identify when the participant was sleeping or awake
from 3-axis accelerometer data (actigraphy), which mostly was because all the OAWD
participants experienced much nighttime movement and the level of activity was very
similar between day and night (more details are illustrated in Section 5). Additionally, most
participants woke up at night and stayed awake multiple times. In this case, extremely
accurate data labeling was not possible. Also, labeling daytime naps is difficult. Since a
daytime nap can be hard to detect in the data, and no reliable ground truth was obtained
to support their identification. Therefore, the daily sleep duration reported above does
not include naps. Some short wake-up periods were likely omitted, and the onset/offset
might be not accurate for some days. Thus, nighttime sleep duration of OAWD is not as
accurate as with healthy older and younger adults and might be shorter or longer than
data presented in Table 3.5. The total daily sleep duration might be longer if more detailed
daytime naps are included. Although the sleep patterns of OAWD are an approximation,
labeled sleep segments are enough to explore and categorize the sleep patterns of OAWD
and compare these results to the healthy groups.

There are many differences in high-level sleep patterns among these three groups of
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Figure 3.3: Pink bar indicates average sleep onset and offset for each group; blue bar
indicates average sleep onset and offset of most pronounced outlier (Younger: Y007, Older:
O007, Dementia: O001) in each group. Black dots indicate the average midsleep point for
each group.

participants. For the healthy population, younger participants tend to sleep later and wake
up later, and older participants tend to sleep earlier and wake up earlier. The midsleep
point of the healthy older adults is also about 30 minutes earlier than the younger group.
However, each individual has his/her own sleep preference, as well. One younger participant
(Y007) exhibited a particularily early sleep schedule, while one older participant (O007)
had a quite late sleep pattern (see Figure 3.3). For the general older population, OAWD
tended to sleep and wake up even earlier than healthy older participants and their average
midsleep point is more than 1 hour earlier. One OAWD (O001) slept as early as 18:26
on average. The findings of sleep patterns and timings are consistent with results from
[60], with OAWD having the earliest sleep patterns and the highest daytime sleepiness. It
should be noted that the average age of OAWD is eight years older than that of healthy
older adults. The early sleep timing and disrupted sleep quality of OAWD might not only
be influenced by cognitive function but also partially caused by natural (i.e., not related
to dementia) processes related to aging as well.
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3.5 Chapter Summary

Three key points can be summarised about sleep patterns of healthy younger, healthy
older, and OAWD:

• Sleep timing of the three groups were different. Healthy younger participants had the
latest sleep onset and offset, healthy older participants had a slightly earlier onset
and offset, and OAWD had the earliest onset and offset.

• More sleep disturbances were observed in the older population. Healthy older adults
woke up more during the night than younger adults. OAWD had excessive daytime
sleepiness as well as disturbed nighttime sleep.

• It was challenging to get sleep patterns of OAWD. From both self-reported and staff
reported sleep patterns, they had the worst sleep quality of the three groups.

25



Chapter 4

Features of Wrist Temperature
Rhythms

A goal of this research was to investigate how wrist temperature rhythms change with
aging and dementia. In this chapter, several indices are extracted from wrist temperature
to examine whether circadian wrist temperature patterns from different populations differ.
Additionally, a visual qualitative analysis of the correlation between wrist temperature and
sleep is presented.

4.1 Methods

Before extracting indices, any data point lower than 28 °C (i.e., participants took the
wristband off) were removed. Then the remaining temperature data were smoothed by a
median filter to reduce noise; a window size of 3 was chosen because a longer window size
generalizes temperature rhythm too much.

4.1.1 Feature Extractions

To analyze the circadian wrist temperature patterns of different groups, both parametric
analysis methods and non-parametric analysis methods were performed to extract the
following indices:

Cosinor Analysis The cosinor analysis assumes that a 24-hour circadian rhythm can
be modeled by a single cosine function (see Equation 4.1). This approach is an established
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way to analyze the circadian rhythm of many biological processes, including the rhythms
of heart rate, blood pressure, and body temperatures [61, 62, 63, 14]. Three parameters
can be extracted from the wrist temperature data and construct a cosine curve: (1) the
MESOR (a circadian rhythm-adjusted wrist temperature mean), (2) the amplitude (a
measure of half wrist temperature change over each 24-hour cycle), (3) the acrophase (a
measure of when wrist temperature reaches its highest value in a 24-hour cycle). This is
calculated using the equation:

Y (t) = M + A cos (2πt/τ + φ) + e(t), (4.1)

where M represents MESOR, A is amplitude, φ is acrophase and e(t) is estimation
error. MESOR, amplitude, and acrophase in the above function are calculated by using
the least-squares method. For each participant, the cosinor method was run on the averaged
wrist temperature rhythm over the experiment period.

Non-parametric Analysis Two metrics called inter-day stability (IS) and intra-day
variability (IV) are proposed by [64, 65] to analyze the regularity and rhythmicity of wrist
temperature rhythms. Specifically, IS has been used to measure the stability of rhythms
on several consecutive days while IV reflects the fragmentation of the rhythms. IS and IV
are calculated using Equations 4.2 and, 4.3 :

IS =
N

∑p
N=1(X̄h − X̄)2

p
∑N

i=1(Xi − X̄)2
(4.2)

IV =
N

∑N
N=2(X̄i − ¯Xi−1)

2

(N − 1)
∑N

i=1(X̄ −Xi)2
, (4.3)

where N is the total number of data points, p is the number of data points per day (p
= 288, as sampling rate is 1 sample per 5 minutes), X̄ is the mean of all data, X̄h is the
hourly mean of wrist temperature and Xi is the data point at time i. IS and IV were
calculated for each participant over their total experiment period.

Additionally, two non-parametric indices of WT were calculated: (1) the maximum
average wrist temperature of 5-hour period from 15:00 to next day’s 15:00 (M5) and the
middle time of the 5-hour period (TM5) [66]. Originally, a similar parameter, L5, was
calculated on accelerometer data and used to find the least active 5-hour period [67]. As
WT is higher during sleep, this study focused on M5 instead of L5.

Other Parameters Descriptive statistics were used to analyze wrist temperature
rhythms and sleep patterns. For the wrist temperature rhythm of each day, the mean
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and standard deviation were calculated. Based on the sleep onset and offset from the
self-reported and recreated sleep journals, the wrist temperature data were separated into
two categories (asleep and awake) and the mean and standard deviation were calculated
for both sleeping period and awake periods. In addition, the median and quartile devi-
ation of wrist temperature during sleep and awake were extracted. Finally, by subtract-
ing the average wake-time temperature from average sleep-time temperature, the average
Sleep/wake Temperature Difference (SWTD) was calculated. The index SWTD, similar to
the index amplitude from cosinor analysis, is used to measure the extent of temperature
change between sleep/wake states in this study.

4.1.2 Statistical Analysis

A t-test was used to compare the circadian rhythm and sleep indices between different
groups (young versus old; old versus OAWD), and the Pearson correlation test was used
to assess the correlations between different circadian rhythm and sleep indices calculated.
p < 0.05 was considered to be significant.

4.1.3 Qualitative Analysis of Wrist Temperature and
Sleep Quality

Currently, there is no established metric for using wrist temperature to evaluate sleep and
quantify sleep quality. Having trouble falling asleep and frequent wake-ups during sleep
suggest poor sleep quality and loose coupling of a disturbed circadian rhythm with sleep.
Since wrist temperature is very sensitive and responsive to sleep/wake states change, the
trend and stability of the temperature rhythm have correlations with sleep latency (i.e.,
how long it takes for people to fall asleep) as well as night wakening. Therefore, the average
wrist temperature is a resultant of sleep patterns for the experiment period and its shape
can provide insight into sleep quality. One wrist temperature rhythm was chosen from
each group to qualitatively analyze the association between wrist temperature and sleep
quality. Y004 was chosen for good sleep quality; O002 was chosen for poor sleep quality
among older adults; D009 was chosen for poor and interrupted sleep quality. A descriptive
analysis of the morphology of wrist temperature rhythms and their correlation with sleep
quality was conducted for three wrist temperature rhythms.
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Table 4.1: Averaged descriptive statistics of wrist temperature for three groups in °C.
Values are expressed as mean ± SD.

Healthy Young
(n = 10)

Healthy Old
(n = 10)

OAWD
(n = 8)

Mean
Sleep 34.98 ± 0.58 34.97 ± 0.32 34.66 ± 0.49
Wake 32.49 ± 0.79 32.94 ± 0.63 33.40 ± 0.97
All day 33.25 ± 0.61 33.63 ± 0.44 33.89 ± 0.80
Standard Deviation
Sleep 0.92 ± 0.19 0.97 ± 0.22 0.88 ± 0.19
Wake 1.52 ± 0.20 1.32 ± 0.21∗ 1.10 ± 0.19∗

All day 1.85 ± 0.33 1.60 ± 0.29 1.27 ± 0.33∗

Median
Sleep 35.17 ± 0.60 35.18 ± 0.32 34.76 ± 0.47∗

Wake 32.52 ± 0.90 32.93 ± 0.70 33.41 ± 1.00
Quartile Deviation
Sleep 0.61 ± 0.15 0.71 ± 0.19 0.63 ± 0.20
Wake 1.04 ± 0.16 0.91 ± 0.15∗ 0.80 ± 0.19
Sleep/wake
Difference

2.48 ± 0.83 2.04 ± 0.66 1.26 ± 0.76∗

∗p < 0.05 between groups (younger v.s. older, older v.s.
OAWD)

4.2 Results

Descriptive statistics of WT are shown in Table 4.1. Averaged wrist temperature patterns
for the healthy younger, healthy older, and OAWD participants are presented in Figure
4.1 and their rhythmic characteristics are in Table 4.2. The correlations between different
indices can be found in Table 4.3.

4.2.1 Wrist Temperature Comparison between Groups

As seen in Table 4.1, the mean and median wrist temperature during sleep is comparable
for the healthy younger group and the healthy older group. While no significant difference
was found, healthy older participants tended to have a higher mean and median wrist
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Table 4.2: Parameters from cosinor and non-parametric analysis of wrist temperature.
Values are expressed as mean ± SD.

Healthy Younger
(n = 10)

Healthy Older
(n = 10)

OAWD
(n = 8)

Cosinor Analysis
Mesor 33.34 ± 0.58 33.65 ± 0.44 33.90 ± 0.79
Amplitude 1.72 ± 0.54 1.45 ± 0.48 0.93 ± 0.55∗

Acrophase
(hh:mm)

04:06 ± 0:56 03:03 ± 1:26 ∗ 0:44 ± 2:15∗

Non-parametric Analyses
IS 0.53 ± 0.10 0.52 ± 0.15 0.32 ± 0.17∗

IV 0.40 ± 0.13 0.37 ± 0.13 0.31 ± 0.13∗

M5 35.36 ± 0.52 35.43 ± 0.18 35.19 ± 0.43
TM5 3:45 ± 0:50 3:39 ± 1:09 2:28 ± 1:19∗

∗p < 0.05 between groups (younger v.s. older, older v.s. OAWD)

Table 4.3: Correlation matrix of extracted features (IS, IV, amplitude, MESOR, M5 and
SWTD).

IV Amplitude MESOR M5 SWTD

IS -0.266
0.848
<1−11

-0.414
0.0002

0.304
0.757
< 1−9

IV 0.368 0.237 -0.196
-0.253
< 0.006

Amplitude
-0.706
<1−4 0.161

0.908
< 1−14
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temperature when they were awake. Younger participants had a higher value in wake-
time standard deviation and quartile deviation and significantly more variations of wrist
temperature during daytime than older adults.

Between two older groups, OAWD had a lower mean wrist temperature and a signif-
icantly lower median wrist temperature at night as well as a significantly higher all-day
wrist temperature compared to healthy older adults. With regard to temperature varia-
tion, OAWD had significantly lower all-day standard deviation and wake-time standard
deviation. For the variation of 24-hour wrist temperature rhythm, OAWD had the least
wrist temperature deviation for sleep, awake, and overall all-day temperatures among three
populations.

MESOR (a parameter of the cosinor analysis) is the midline of modeled cosine func-
tion for 24-hour wrist temperature rhythm. From Table 4.2 it appears that OAWD had
the highest MESOR while the healthy younger participants had the lowest MESOR. The
definition of MESOR is quite similar to all-day mean temperature; however, no signifi-
cant difference was found between groups. There was also no significant difference for M5
between groups.

Comparing all three groups, wake-time temperature standard deviation is the only
parameter that was significantly different between younger and older adults as well as
between older adults and OAWD. While other parameters, such as wake-time mean and
median wrist temperature, had no significant differences, a trend can be observed with
daytime temperature increasing as people are older and have dementia.

4.2.2 Rhythmicity of Wrist Temperature Rhythm

From Figure 4.1, OAWD have the most flattened averaged wrist temperature rhythm with
the lowest night time temperature and the highest daytime temperature. Between 11:00
to 23:00, the average wrist temperature of healthy older adults was higher than that of
younger adults but lower than that of OAWD. This temperature difference makes the wrist
temperature rhythm curve of older adults slightly flatter than that of younger adults and
stronger than that of OAWD.

Two parameters from Table 4.1 and Table 4.2 are used to show the strength of wrist
temperature rhythms and day/night temperature contrast: (1) sleep/wake temperature
difference (SWTD) and (2) amplitude calculated from cosinor analysis. OAWD had a
significantly lower SWTD and amplitude compared to healthy older adults. While there
was no significance found, healthy older adults had a lower SWTD and amplitude compared
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Figure 4.1: Average wrist temperature rhythms for younger (blue line), older participants
(orange line), and OAWD (yellow line). Plots are expressed as the mean temperature ±
SEM.

to younger adults. Additionally, a decreasing trend of day/night wrist temperature contrast
among three groups can be found in Figure 4.2.

With regard to another indicator of rhythmicity of wrist temperature rhythms, Inter-
daily Stability (IS), healthy younger and older participants showed similar stability while
OAWD had a pronounced reduction in this parameter (IS = 0.32). From Table 4.3, IS
showed a negative correlation with MESOR and a positive correlation with amplitude and
SWTD for all participants.

According to the data presented in Table 4.3, there was no significant correlation found
between IS and IV for the whole participant pool. However, within the healthy group (i.e.,
healthy younger adults and healthy older adults), from Figure 4.3, IS negatively correlates
well with IV (excluding one outlier marked in the figure, R = -0.818, p = 1.91−05). Within
OAWD, IS shows an insignificant negative correlation with IV (R = -0.59, p = 0.12).
Similarly, while there is no significant association between IV and amplitude and IV and
SWTD for all participants, a significant negative association can be found within the
healthy group and within the dementia group (see Figure 4.4). Since amplitude and SWTD
both describes the day/night temperature rhythm contrast, only the correlation between
IV and SWTD is shown in the figure. The correlation coefficient between IV and SWTD is
0.73 (p = 0.0002) and 0.80 (p = 0.016) for healthy adults and OAWD, respectively. Seen
from both Figure 4.3 and 4.4, the correlation disappeared after adding data from OAWD.
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Figure 4.2: SWTD and amplitude (from cosinor) of wrist temperature rhythms compared
across three groups.

Figure 4.3: Interdaily stability (IS) v.s. interdaily variability (IV) for 28 participants. Blue
dots denote healthy participants (n=19) and yellow diamonds denote OAWD (n=8). One
outlier (O007) is denoted using a red cross mark and is not included in R2 calculation.
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Figure 4.4: SWTD v.s. interdaily variability (IV) for 28 participants. Blue dots denote
healthy participants (n=20) and yellow diamonds denote OAWD (n=8).

Figure 4.5: Interdaily stability (IS) v.s. SWTD for all 28 participants.
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4.2.3 Phase of Wrist Temperature Rhythms

The phase of wrist temperature rhythms or the timing of wrist temperature rhythms were
measured by acrophase and TM5, which are shown in Table 4.2. For both parameters, it
can be seen that OAWD had the earliest phase, which is consistent with their early sleep
timing. Between healthy younger and older participants, while the TM5 for each group
was very close, the difference of their acrophases was more than 1 hr. Interestingly, the
time difference between TM5 and acrophase was about 30 min for the two healthy groups
but was more than 1.5 hr for OAWD. In other words, the phase measurement of wrist
temperature rhythms was not very consistent between these two parameters.

4.2.4 Visual Analysis of Wrist Temperature Rhythms

One example from each group was chosen based on the participant’s sleep quality to demon-
strate how sleep patterns and sleep quality influenced wrist temperature rhythms and are
shown in Figure 4.6. The first example, Y004, is a healthy younger adult, who had a very
consistent wrist temperature rhythm. The elevated flat temperature period during sleep is
distinct, and the temperature increase and decrease at the onset and offset of sleep are very
smooth. A square-shaped temperature plot can be observed. Y004’s PSQI score indicated
no sleep problems, and Y004’s self-reported sleep quality was the highest among younger
adults.

Compared to Y002, the exemplary temperature rhythms of O002 and D009 had no
distinct temperature plateau at night and a noticeable dip at 3 AM could be observed.
While they do have a clear temperature decrease in the morning, the temperature in-
creasing periods are not smooth and have many dips in between. The shape of these two
temperature rhythms is more triangular-like. O002’s PSQI score suggests a high possibility
of sleep problems. Additionally, O002 woke up more than two times every night and had
the second-worst self-reported sleep quality score among all twenty healthy participants.
Concerning the sleep quality of D009, even though the participant was not administered
the PSQI, D009 did not sleep very well during the period of the experiment. As can be
seen in Table 3.6, D009 took naps in the morning and in the afternoon, which is a sign of
excessive daytime sleepiness. Every night, due to Parkinson’s Disease, the participant was
woken up at 3 AM to take medications. During the last visit with D009, the participant
reported only 3 hr of sleep the previous night. In other words, the sleep pattern and sleep
quality of D009 are worse than that of O002.
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Figure 4.6: Average 14-day wrist temperature rhythm from healthy younger (Y004),
healthy older (O002), and OAWD (D009). Sleep quality score and wake-up times were
averaged for 14 days and had no units. PSQI > 5 indicates poor sleep quality. ESS < 10
indicates normal daytime sleepiness.
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4.3 Discussion

From data presented in subsection 4.2.1, 4.2.2 and 4.2.3, there is no significant difference
of wrist temperature rhythms between healthy younger adults and healthy older adults
despite the wake-time temperature variation and the phase of the rhythm (i.e., when wrist
temperature peaks at night). The increased wake-time temperature variance might be
partially explained by the experimental time for younger adults. Since they did the ex-
periment during winter and the outdoor temperature was quite cold, the skin temperature
may be lower when walking outside. Most healthy older adults them participated in the
experiment during the spring, when the outdoor temperature was higher compared to the
healthy younger adult group. As such, their daytime wrist temperature might be less af-
fected by the ambient outdoor temperature (i.e., there may be less of a difference between
average daytime and nighttime temperature). For OAWD, all of them stayed indoors for
most (if not all) of the time so that their daytime/nighttime wrist temperature was less
likely to be affected by ambient temperature. While it is true that the environmental tem-
perature varies between the indoors and outdoors, humans are endothermic homeotherms,
who tend to dress for the weather so the wrist temperature is usually only be influenced
to a small extent and the external influence does not last long.

Another factor could be the average healthier circadian system of healthy younger adults
compared to the aged population. When falling asleep and waking up, wrist temperature of
younger adults increased and decreased more compared to older adults. Wrist temperature
during sleep is comparable between three groups, except a significantly lower median sleep-
time temperature for OAWD (as reported in Chapter 3). While OAWD woke up more
during the night, short-term wakening was ignored, which could have resulted in a smaller
sleep-time median temperature.

Interestingly, disturbed sleep appears to only influence mean sleep-time temperature
marginally, and irregular sleep patterns can be better identified by looking at elevated
wake-time temperature. Healthy older adults had averagely higher wake-time wrist tem-
perature than younger adults; OAWD had an even higher average temperature. While
there is no significant correlation between ESS score and wake-time temperature, the aver-
age higher ESS score of the older group can partially be correlated to their higher average
wake-time temperature. Although ESS was not administered for OAWD, OAWD were re-
ported to have more naps throughout the day. Therefore, the increased wrist temperature
seems to reflect that OAWD have greater daytime sleepiness and more naps during the
day. These findings agree with other research that found an older population and a de-
mentia population to have higher mean wrist temperature [65, 53]. Furthermore, SWTD is
greatly influenced by wake-time temperature (see Figure 4.7). For example, more daytime
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Figure 4.7: Plots of sleep indices. (a) sleep-time temperature vs SWTD, (b) wake-time
temperature vs SWTD, and (c) all-day temperature vs SWTD. All 28 participants are
included and linear regression was used.

sleepiness and naps lead to a smaller SWTD.

Comparing healthy older adults and OAWD, the all-day temperature for the latter
is significantly higher, and OAWD’s averaged sleep-time temperature was slightly lower.
Since people spend more time awake, the increased all-day temperature for OAWD suggests
that the increased daytime temperature counteracted the decreased nighttime temperature.
These temperature differences could explain the drastic decrease in OAWD’s SWTD and
temperature amplitude and also indicate more excessive daytime sleepiness and more time
being awake at night for this group. As all OAWD in this study were reported to take naps
at least twice a day, it is then worth considering whether it is the naps that caused elevated
temperature or the elevated temperature led to excessive sleepiness of OAWD. Regardless
of the underlying mechanisms, the wrist temperature rhythm of OAWD appeared to be
less regular and less prominent than that of healthy older adults.

There are indeed minor individual differences in baseline wrist temperature (i.e., some
individuals tend to have lower/higher body temperature) and some younger participants
had worse sleep patterns than some healthy older participants (see Figure 4.8). At a
population level, the wrist temperature rhythms of older adults indicate worse sleep than
those of the healthy younger population and OAWD were sleeping worse than healthy older
adults.
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Figure 4.8: Average wrist temperature rhythms from one younger poor sleeper (Y007) and
one older good sleeper (O010).
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Regarding the analysis of wrist temperature rhythmicity, both IS and IV were originally
proposed to measure the strength of rest-activity rhythmicity for aging and Alzheimer’s
Disease populations [64]. According to [64], a higher IS value suggests a lower day-to-day
variation of wrist temperature rhythm and a stronger circadian rhythmicity [68]. Since
wrist temperature changes when sleep/wake states change, more variations suggest non-
consistent sleep/wake patterns. For those who experience disturbed sleep at night and
napping at daytime, the mean nighttime temperature would be lower and mean daytime
temperature would be higher, which results in a smaller day/night wrist temperature con-
trast. This is a key reason for the strong correlation between IS and SWTD (amplitude). A
higher IV calculated from accelerometer data indicates daytime napping and/or nighttime
arousal. However, the research presented in this thesis found that IV of wrist tempera-
ture might not be a useful metric for OAWD. As can be observed in Figure 4.3 and 4.4,
data points from the healthy populations are much less scattered than from OAWD. IV
correlates nicely with IS for the healthy younger and older populations after excluding
one outlier O007. O007 is the oldest participant in the healthy older group, who also
experienced poor sleep during the experiment (see subsection 3.3.2). In addition, IV also
appears to correlate nicely with SWTD for the healthy population. However, the correla-
tion disappeared after including the data from OAWD. While the values of IV of OAWD
do not differ significantly from those of healthy participants, the values of IS and SWTD
of OAWD are shown to be different. Comparing the temperature patterns of one healthy
younger participant (IV = 0.442) and one OAWD (IV = 0.443) with nearly identical IV
scores, it seems that IV cannot convey the fragmentation of wrist temperature variation.
From their averaged wrist temperature rhythms, which are shown in Figure 4.9, it is clear
that the younger adult has a prominent wrist temperature peak at night, whereas the
OAWD’s temperature rhythm is hard to differentiate between sleep and awake periods.

From the visual analysis of the wrist temperature rhythms presented in Figure 4.6, three
features could be used to evaluate sleep quality in the future. The first is the smoothness of
temperature increasing period. A rough temperature increasing period suggests day-to-day
sleep onset variations and long sleep latency. The second one is the smoothness of nighttime
temperature plateau. Y004, the best sleeper among the three examples, has the flattest and
stablest night time wrist temperature. The temperature plateau indicates Y004’s waken-
ing at night to be short, and this participant could get back to sleep very quickly. On
the contrary, for people who had poor sleep, such as O002 and D009, the temperature
dips reflect that they often wake up at night. Furthermore, their wrist temperature in the
second half of the night appeared to be more stable, which suggests a sounder sleep period.
The last indicative metric of overall sleep quality could be the shape of wrist temperature
rhythm. Differences in sleep patterns result in different shapes of averaged wrist tempera-
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Figure 4.9: Averaged wrist temperature rhythm for (a) younger participant (Y002) and
(b) OAWD (D002). Y002’s IV is 0.442 and one D002’s IV is 0.443.

ture rhythm, such as more square (wrist temperature pattern of Y004) or more triangular
(wrist temperature pattern of D009). Six more averaged wrist temperature rhythms from
other participants are shown in Figure 4.10 to demonstrate differences between subjects.
As seen in the figure, temperature patterns reflecting good sleep (as defined by PSQI score
and sleep quality from sleep journal or reported from PSWs) all have square-like shape
while the worst patterns are jagged and have more ill-defined, triangular-like shape. In
the future, the use and validity of these metrics would have to be examined in more depth
using a larger sample size.

The measurement of sleep quality is not straightforward because people’s subjective
definition of good sleep varies and the most accurate objective sleep quality relies on PSG
(as also reported by [69]). Definitive conclusions cannot be made with visual data analysis
and with such a small dataset; the effectiveness of the proposed three metrics above needs
further validation. What is clear from the visual analysis is that there is a close correlation
between wrist temperature and sleep. It can be envisioned how one could use averaged
wrist temperature rhythm and measuring wrist temperature provide a promising way to
evaluate the overall sleep quality. For example, the morphological analysis of averaged
7-day wrist temperature rhythm can be used to assess the sleep regularity for the past
week.

Currently, due to the scope of data analysis, only the self-reported sleep data were used
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Figure 4.10: Averaged wrist temperature rhythms for two younger participants (Y008,
Y010), two healthy older participants (O003, O007), and two OAWD (D001, D006). Y008
and Y010 had the best wrist temperature rhythm patterns with the most prominent tem-
perature peaks, O003 and D001 had good wrist temperature rhythm patterns with less
prominent temperature peaks, and O007 and D006 had the worst wrist temperature rhythm
patterns with least prominent peaks.
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for calculation of parameters related to sleep-time and wake-time, which can be inaccurate
due to their subjective nature. A machine learning algorithm based on features from wrist
temperature could be built to estimate sleep parameters that could be used to more accu-
rately compute metrics like wake-time temperature and SWTD. Additionally, the shape of
wrist temperature rhythm can be an individual biometric feature. One study has already
shown that wrist temperature rhythms can be used to predict aging [65]. More features
and functions of wrist temperature can be explored with data from a broader population
in the future.

In this study, how the wrist temperature is influenced by aging and dementia is inves-
tigated with relatively small sample size. Analyzing the wrist temperature rhythms from
three groups answers Research Questions 1, 2 and 3: (1) Aging and dementia influence
wrist temperature rhythm to be flatter, coupled with an increased daytime wrist temper-
ature and a smaller day/night temperature contrast, but the influences are marginal. (2)
Poor sleep quality with multiple night wakings can result in non-stable wrist temperature
at night, and irregular sleep patterns can be potentially be observed by the shape of wrist
temperature rhythms.

4.4 Chapter Summary

The two key points from the data presented in this chapter are:

• Sleep patterns and sleep quality are reflected in wrist temperature patterns. The
sleep timing can influence the phase of wrist temperature rhythm. Sleep quality
might influence the shape of wrist temperature rhythm and increased daytime wrist
temperature may be a good indicator of daytime sleepiness.

• Age does not appear to impact wrist temperature patterns significantly; instead, it
is the quality of sleep the person is getting that impacts wrist temperature patterns.
As such, differences in wrist temperature patterns are more likely a cause of other
factors, such as morbidity, which are more prevalent in the older adult population.
The wrist temperature data from this research supports the premise that dementia
is a morbidity that substantially impacts sleep at a circadian rhythm level.
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Chapter 5

Sleep Monitoring Using the Mi Band

Mi Band 2 is a smart wristband that monitors sleep based on its built-in three-axis ac-
celerometer sensors and gyroscopes. Research has shown that the sleep monitoring of Mi
Band on sleep duration is reliable [70] for the younger population (18 - 27 years old). Also,
Mi Band has been reported to have a high level of acceptance for the older population [71].
Therefore, the Mi Band 2 was chosen to monitor the sleep patterns of different popula-
tions in this study. In this chapter, the sleep parameters obtained from Mi Band 2 will be
compared with the temperature data and sleep journal to explore the effectiveness of this
commercial wristband on sleep monitoring for different populations.

5.1 Methods

A Mi account (i.e., an account for the mobile application Mi Fit, all the data is stored
in the Mi account) was set up for each participant specifically for this study. The Mi
Band 2 was paired with each participant’s experimental Mi account, and the sleep data
was transmitted to the account via Bluetooth. The sleep data collected by Mi Band 2 was
checked during and after the experiment. As there is no way to export sleep data from
Mi account automatically, four parameters were extracted from each participant’s account
by manually importing data into excel sheet: (1) sleep onset, (2) sleep offset, (3) wake
time (waking periods) and (4) sleep score (0-100). The data were compared to the self-
reported sleep journal for the healthy younger and healthy older participants. For OAWD,
the Mi Band data were compared to the recreated sleep journal mentioned in Section 3.2.
As participants were only asked to report the number of times when they awoke during
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the night, not the exact awake duration, only the number of night time waking periods
detected by the Mi Band were used for comparison.

The self-reported sleep journal of the healthy younger and older adults was used as
the reference and the time differences of sleep parameters (except sleep quality) from sleep
journals and Mi Band 2 were considered errors. The performance of sleep monitoring by
the Mi Band 2 was determined by the two ways: (1) detection errors (compared to sleep
parameters reported in sleep journal ), (2) the number of undetected sleep (Mi Band 2
failed to detect most OAWD’s sleep).

Pearson’s correlation coefficient was calculated to investigate whether the self-reported
sleep quality in sleep journal was correlated to the sleep score given by the Mi Band 2.
A t-test was used to check whether the sleep detection error of healthy older groups was
significantly higher than that of healthy younger adults.

5.2 Results

5.2.1 Healthy Younger and Healthy Older adults

The errors of estimated sleep parameters from Mi Band 2 for the healthy younger and
healthy older participants are summarized in Table 5.1. The average estimation error for
the older group appears to be higher than that of the younger group; however, a significance
was not detected with a t-test (p = 0.07 for onset, p = 0.06 for offset). Regarding the
estimation of sleep duration, the detection accuracy for the Mi Band 2 for the older group
is significantly worse than that for the younger group. No correlation was found between
the Mi Band 2 sleep score and the self-reported sleep score, the correlation coefficient for
younger participants and older participants is 0.24 and 0.17, respectively. In addition, Mi
Band 2 failed to detect most night waking for both groups; on average, it did not identify
0.74 wake-ups for the younger participants and 2.34 wake-ups for the older participants
every night.

While there is no significant difference in detecting sleep onset and offset for healthy
younger and healthy older adults overall, the detection error of Mi Band 2 was found to
be extremely high for two older participants. The average onset detection error for O001
(male, age = 83) was more than two hours (2:17 ± 1:07), while the offset detection for
this participant was comparatively more accurate (0:27 ± 1:01). For the other participant
O007 (female, age = 88), the participant reported experiencing sleep deprivation due to a
car accident happened to her granddaughter during the experiment period. The accident
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made O007 extremely worried and unable to fall asleep most days. Three nights of o007’s
sleep were not detected by the Mi Band 2 (these three days of data were not included in
detection error calculation). During these three days, the Mi Band did detect daily activity
(i.e., step counts) but failed to recognize any sleep. For other days, O007 reported to wake
up after midnight and went back to sleep in the early morning again. The Mi Band 2,
however, only detected wake-ups between 1 to 4 AM; it estimated 4-hours of sleep for most
days and did not capture the second period of sleep in the morning.

Table 5.1: Errors of detected sleep parameters from Mi Band 2 compared to the self-
reported sleep journal for healthy younger and healthy older adults. Wake-up times rep-
resent the number of wake-up times during the night. Values are expressed as the mean ±
SD.

Sleep Onset Error
(hh:mm)

Sleep Offset Error
(hh:mm)

Duration Error
(hh:mm)

Wake-up Times

Younger 0:39 ± 0:51 0:31 ± 0:52 0:49 ± 0:58 0.74 ± 1.26
Older 0:49 ± 0:58 0:33 ± 0:58 1:04 ± 1:17∗ 2.34 ± 1.56∗

∗p < 0.05

5.2.2 Older adults living with dementia

The sleep data of OAWD from Mi Band 2 are summarized in Table 5.2. Among the eight
OAWD participants, two of them went through 13-day monitoring and six of them went
through 14-day monitoring. One participant (D003) did not wear both wrist bands for
the last four days so only ten days of valid data were available. Regarding the accuracy
of sleep detection for the OAWD group, Mi Band 2 mostly failed in detecting their sleep.
For the total 106 days of monitoring, 28 days of data are missing. The average sleep onset
for most participants is very late and the detected sleep duration for all participants was
extremely short, with the exception of O003. Compared to other participants in OAWD,
the Mi Band 2 worked comparatively better in detection sleep for O003.

The comparison of detection error of Mi Band 2 between two older groups does not
make sense because Mi Band 2 performed considerably much better for healthy older
adults from the presented data in Table 5.1 and Table 5.2. There are two aspects that
were considered when analyzing this data. First, the Mi Band did not detect a large
portion of the OAWD’s sleep on most days. This equated to more than 50% of total sleep
data undetected by Mi Band 2, the detection errors of sleep onset and offset could not be
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accurately calculated. Only days where the Mi Band detected sleep were considered valid
data days and included in the analysis (see last column of Table 5.2). Second, as all the
OAWD followed a schedule, their bedtime was very close to the same time every night.
Assuming they fell asleep shortly after going to bed, this can be used as an approximate
sleep onset time, which can be used to examine whether the Mi Band is reporting their
sleep time at about the same time every night.

The sleep onset and offset from Mi Band 2 were averaged for valid days of data for
the OAWD. The averaged sleep onset/offset/duration from Mi Band 2 was then compared
with the averaged data from recreated sleep journal for the OAWD (i.e., the data shown
in Table 3.5). The comparison data is shown in Table 5.3. It can be seen that there are
large time differences between the averaged sleep onset and duration between the Mi Band
and sleep journal; the offset difference is less erratic.

Table 5.2: Mi Band 2 data for sleep onset, offset, duration and valid days of captured data
for OAWD. Values are expressed as mean ± SD. Valid days mean the number of days that
sleep was detected.

ID Sleep Onset Sleep Offset Duration
Valid days of data

/total days wearing the band
D001 2:41 ± 2:13 5:05 ± 1:30 2:06 ± 1:00 14/14
D002 2:59 ± 1:20 4:19 ± 1:07 1:20 ± 0:13 2/13
D003 20:56 ± 1:23 7:29 ± 1:46 10:12 ± 2:31 10/10
D004 2:18 ± 1:23 5:40 ± 0:50 2:54 ± 1:19 7/14
D005 0:33 ± 3:22 5:12 ± 2:15 3:52 ± 1:05 12/14
D006 2:08 ± 0:45 4:11 ± 0:48 1:58 ± 0:46 8/13
D009 2:34 ± 1:57 4:21 ± 1:47 1:34 ± 0:35 11/14
D010 0:40 ± 2:12 5:19 ± 2:28 4:01 ± 1:40 14/14
Mean 1:21 ± 1:52 5:12 ± 0:59 3:29 ± 2:42 -

5.3 Case Studies

To explore why the Mi Band 2 has decreased accuracy in detecting sleep of bad sleepers
(i.e., O001, O007, and all OAWD), accemetry data from the three-axis accelerometer sensor
from the prototype wristband were studied. Together with wrist temperature rhythms, four
different case studies are presented in this section. These case studies illustrate how wrist
temperature could compensate for the shortcomings of accelerometer sensors. One case
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Table 5.3: Comparison of average sleep parameters from Mi Band 2 and the recreated
sleep journal OAWD participants. Values are the absolute difference between averaged
sleep onset, offset, and duration from Mi Band 2 and those from the journal.

Sleep Onset Difference
(hh:mm)

Sleep Offset Difference
(hh:mm)

Duration Difference
(hh:mm)

D001 8:15 1:47 10:19
D002 3:23 2:56 6:18
D003 0:41 0:20 1:22
D004 3:29 1:17 5:05
D005 3:58 2:29 7:11
D006 3:58 1:26 4:58
D009 3:17 4:21 6:29
D010 2:52 1:50 5:19
Mean ± SD 3:44 ± 1:58 1:53 ± 0:50 5:52 ± 2:20

study belongs to a healthy older adult (O001), and the others are from the OAWD group
(D001, D002, and D003).

5.3.1 Case study I: O001

One-day exemplary accelerometer data together with wrist temperature data for partici-
pant O001 is shown in Figure 5.1. According to Mi Band 2, this participant was detected
falling asleep at 2:43 AM on this day. The participant experienced intensive, repetitive
wrist movements between around 0 to 3 AM coupled with elevated wrist temperature is
shown in Figure 5.1. The magnified excerpt data in the bottom of the figure shows that
the intensive movement is quite periodic and the spike occurred at approximately 15 to 30
s intervals. The Mi Band interpreted this periodic movement as the person being awake. A
close-up data can be seen in Figure 5.2. In this figure, the signals between two spikes were
quite stable and regular respiratory signals (i.e., small repetitive spikes) can be observed
as well; this suggests the person was breathing normally. The temperature data in Figure
5.1 is high and stable during the same time period, which suggests the person was asleep.
This corroborated by the respiratory data seen in Figure 5.2. The participant did not
report a night time waking during this time. Thus, the data suggests that the participant
was sleeping during the time when the periodic movement occurred. This trend was seen
in the data for O001 for every day of the study. However, due to the periodic movements
that occurred in the first half of the night, Mi Band 2 wrongly identified that period to be
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Figure 5.1: Example wrist temperature and accelerometer data for a healthy older adult
participant (O001) for (top) a 24-hour period and (bottom) magnified excerpt.

”awake” every night. This was the main cause of the Mi Band 2’s high level of error for
this participant.

5.3.2 Case study: D001

Most people who are living with dementia also have other co-morbidities [72]. An interest-
ing case study is D001, who is also a stroke survivor. Before starting data collection, it was
not known that the participant had a stroke that affected movement of their left hand and
arm. According to the protocol, both Mi Band 2 and the customized wristband were put on
the left hand for collecting data. During the first visit and check-up, which was after four
days of data collection, it was noticed that D001 could only move their right hand, so both
bands were moved to the right hand. In the second visit, the wrist temperature patterns
on D001’s two hands were found to be quite different (as shown in Figure 5.3). Therefore,
the customized wristband was put back to the left hand, and the Mi Band remained on
the right hand for the last seven days of the experiment. The change of protocol was done
to investigate whether there was a temperature pattern difference between two hands and
the Mi Band 2 might perform better on the unaffected hand.

From Figure 5.3, it can be seen that the wrist temperature rhythm for the left wrist
is more reflective of a ”good” sleep pattern (as discussed in Chapter 4); this was true for
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Figure 5.2: A close-up of 5 minutes of periodic movement accelerometer data for O001.

Figure 5.3: Example wrist temperature and accelerometer data of D001 for two consecutive
days. The left side of the figure shows the data collected on his left hand (immobile because
of a stroke) and the right figure shows the data collected on his right hand (unaffected by
stroke). Wrist temperature was moved to the same scale-level of accelerometer data for
visual presentation.
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all data collected on his left wrist. On the other hand, wrist temperature measured from
the right wrist had no distinct day/night temperature contrast and had more variability,
which made it impossible to identify the increased temperature period. As D001 cannot
move his left hand, there were very few variations in accelerometer data compared to his
right hand, which he used for most tasks. However, both of D001’s hands had intense
movement at night, and the right hand experienced more severe movement than the other
hand. From Figure 5.3, it is very hard to discern when D001 was awake or sleeping from
inspecting the accelerometer data alone.

5.3.3 Case study: D002

Participant D002 is a 68-year-old female who has diagnosed sleep apnea and insomnia.
From time-to-time, D002 reported not sleeping the whole night to PSW. For the entire
experiment, D002 was reported to wake up multiple times during sleep.

Among the eight OAWD participants, D002 had the worst Mi Band 2 detection rate
(see Table 5.2). As such, only two days of sleep data were detected. Wrist temperature and
accelerometer data from her for two days are shown in Figure 5.4. On the first day, it can be
observed from the accelerometer that she did not sleep so well (i.e., lots of more significant
movements) and her sleep was not detected by Mi Band 2 at all. The temperature data
were also highly variable with no detectable smooth periods. The next day, while D002’s
sleep was still much worse than other people’s, the Mi Band 2 detected one short sleep
episode between 1:39 to 3:12 AM; it did not catch other sleep episodes that occurred before
1 AM and after 5 AM, which were reported by the LTC staff (identified by arrow in Figure
5.4). These sleep periods can also be seen by higher, less variable temperature data during
correlating periods.

From Figure 5.4, there are no clear temperature plateaus for the first day and no distin-
guishable long, static accelerometer data period. Figure 5.5 shows a zoomed-in section of
nighttime data from the first day, which shows are multiple short static periods that sug-
gest she might be asleep. From the sleep journal recorded by the LTC staff, D002 transited
between sleep and wake states often on this day (see Table 5.4). Comparing data from
Table 5.4 and Figure 5.5, it can be seen that most short sleep periods are consistent with
reports from PSW. However, some sleep periods were overly reported, while some short
sleep periods were not captured by PSW. On the next day, D002 seemed to sleep better.
Two temperature peaks together with two relatively static accelerometer data periods can
be identified.
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Figure 5.4: Example of 48 hours of wrist temperature and accelerometer data for D002.
Shaded box on the second day highlights where Mi Band 2 recognized sleep.

Figure 5.5: A close-up of 11-hour (between 20:00 and 7:00) of accelerometer data for D002.
Eight short sleep periods that were identified by visual analysis manually are highlighted
by shaded boxes.
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Table 5.4: Recordings of 14-hour sleep/wake from DOS sheet for D002.

1 = awake, 2 = sleeping
1900 1 1930 2
2000 2 2030 2
2100 2 2130 2
2200 1 2230 1
2300 1 2330 1
2400 1 0030 1
0100 2 0130 2
0200 2 0230 2
0300 1 0330 1
0400 2 0430 2
0500 2 0530 2
0600 1 0630 1
0700 1 0730 2
0800 2 0830 2

5.3.4 Case study: D010

Participant D010 is a 68-year-old male who has diagnosed sleep apnea and Parkinson’s
Disease. Due to Parkinson’s Disease, D010 needs to be awakened at 3 AM every night to
take medications. According to the MMSE score (score = 21), D010 has only mild cognitive
impairment. An example of the participant’s wrist temperature and accelerometer data
for two consecutive days is shown in Figure 5.6. For each day, the sleep period detected by
Mi Band 2 is indicated by the shaded box. As can be seen, the wrist temperature rhythm
has a prominent peak. At around 3 AM, the wrist temperature experienced a dip on both
days, which coincided with D010’s dosing time. While the level of movement is less severe
than that of D001 and D002, Mi Band 2 only detected a small portion of sleep for D010
as well.

5.4 Discussion

There are two reasons that the exact detection accuracy of Mi Band 2 for the dementia
group can not be easily computed as well as why only the averaged sleep parameters from
Mi Band 2 and the recreated journal are compared. First, as mentioned in Section 3, it

53



Figure 5.6: Example of 48 hours of wrist temperature and accelerometer data for D010.
Shaded boxes represent where Mi Band 2 recognized sleep.

was challenging to get an accurate sleep journal for this group. The other reason is that
the Mi Band 2 did not capture sleep data for every participant (except D003) every day
in this group. According to Table 5.2, only sleep of two nights was captured for D002, the
sleep of seven nights were captured for D004 and sleep of nights were captured for D004.
Incomplete sleep data capture also occurred to other two participants (D005 and D009).

Despite the missing sleep data, the detected sleep onset, offset, and duration from Mi
Band did not match the sleep data presented in Table 3.5 either. From Table 5.3, Mi Band
2 tended to underestimate most people’s sleep while only one participant’s sleep was more
accurately captured. According to data from Mi Band 2, most participants started sleeping
pretty late and had only around 1 to 4 hours of sleep per night. Except D003, all the rest
participants woke up much earlier than reported. Furthermore, the standard deviation of
each sleep parameters is quite high for everyone. For example, the SD of D005’s sleep onset
is more than 3 hours, and the SD of his sleep offset is higher than 2 hours.

Therefore, the performance of Mi Band 2 was not consistent among the three groups. It
works reasonably well for the healthy younger adults and most of the healthy older adults,
but it did not detect most sleep of OAWD. In LTC, it is possible that the participants did
not wear the Mi Band 2 on some days. However, for most days where sleep was not detected
by the Mi Band, the band still captured their daily steps, which supports that they did
wear the Mi Band 2 at night and that it was working correctly. Therefore, missed sleep
classifications are a result of an inaccurate sleep detection algorithm for this population.
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While the algorithm behind Mi Band 2 or many other commercial wristbands is not
known, their sleep detection algorithms are mostly built based on the level of motion (other
sensors like PPG might also be used); if the movement level exceeds a certain threshold,
the user is identified to be awake. Also, it is probable that the Mi Band 2 sleep detection
algorithm is built and trained based on a healthier population (i,e., healthy younger, and
middle-aged adults). When the Mi Band 2 is used by a frail and low-mobility population,
such as the OAWD in this study, the data do not align with the training data, resulting in
misclassification. It is likely that the Mi Band failed to detect most dementia participants’
sleep because of increased periodic movement and frequent wake-ups at night, as shown in
the case studies.

From the case studies presented above, Mi Band 2 did not perform well for all the
participants mentioned. As there is substantial limb movement shown in Figure 5.1, 5.3,
5.4 and 5.6, it is not surprising that Mi Band 2 failed to detect their sleep correctly. The
limb movement presented for O001 was more periodic and it ”tricked” the Mi Band 2 into
thinking the user was still awake. Similarly, the limb movements of D001, D002, and D003
resulted in the inability to detect sleep of Mi Band 2. It is interesting to note that both
of D001’s wrists had many movements at night, even though his left (stroke-affected) arm
was relatively stationary during the daytime.

The periodic movement detected is of interest as it appears to be related to aging and
is present in all OAWD participants’ data. Post-OAWD data collection, the researcher
wore the same wristbands a day after data collection from an OAWD participant to rule
out that the periodic movement was an artifact of a dysfunctional device. There were no
similar movements in this test data. Therefore, the hand motion was indeed caused by
the participants’ involuntary movement. All OAWD participants had a much higher level
of limb movement at night than healthy participants, which is an unexpected finding of
this research. As mentioned before, the only exception is D003. An example of 48-hour
of wrist temperature and accelerometer data for her is shown in Figure 5.7. Compared to
the accelerometer data for D001, D002, and D010, the nighttime hand movement for D003
was significantly reduced. The sleep detection of Mi Band 2 for her is the most accurate in
OAWD group. Visually analyzing these OAWD’s data, it can be concluded that Mi Band
2 can lose the ability to detect sleep when the user is experiencing severe limb movement.

Wrist temperature appears to be more robust in responding sleep/wake states change
compared to the accelerometer sensor. As the case studies illustrate, when people are
sleeping, wrist temperature increases. There appears to be periodic limb movement for
many older adults, with an increased prevalence for OAWD (all of the eight participants
exhibited this). While this study was not able to identify what is the cause of this periodic
limb movement, it seems to occur when people are sleeping. It also appears that this is
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Figure 5.7: Example wrist temperature and accelerometer data of D003 for 48 hour period.

not considered by the Mi Band 2 sleep detection algorithm, causing a misclassification for
people who exhibit this movement. For all the participants in this research, D002 had the
worst sleep as well as the most irregular wrist temperature patterns. It can be observed
that D002’s temperature rhythm had no obvious high wrist temperature plateau and no
long static accelerometer period on the first day. While it is unknown why sleep of D002
was this bad, frequent wake-ups during the night may have been caused by sleep apnea, as
D002 did not wear any nasal mask for sleep apnea. Regardless, for each short sleep episode,
it appears the wrist temperature did not have enough time to rise to its highest value to
reach a stable plateau before she woke up again. This high level of sleep disruption caused
both accelerometer and wrist temperature sensor data not to perform well. For people
as such, commercial sleep monitoring wearables trained on normal sleep data may not be
useful at all.

This research supports the correlation between wrist temperature and sleep, and with
more data, it is plausible that a more advanced algorithm can be built for people like
D002. Additionally, as wrist temperature is coordinated by internal circadian system,
integrating a temperature sensor into a wearable wristband could help monitor the health
of the circadian system.

Compared to accelerometer data, the wrist temperature pattern appears to be more ro-
bust and has a higher correlation to sleep for the aging and dementia population. Among
the 28 participants in this study, only two participants had less prominent wrist tem-
perature patterns: D002 and D003. As depicted in Case Study 1 and Figure 5.7, both
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participants had irregular sleep, as shown by wrist temperature rhythms with no distinct
plateaus at night. For D002, both activity pattern and wrist temperature patterns were
not distinctive between day and night, therefore made it very hard to determine her sleep
patterns even by manually inspecting her data. For D003, while her wrist temperature pat-
tern was not as good as others’, the accelerometer data had much fewer movements than
other people during sleep. Also, it was noticed that D003 sometimes wore the wristband
quite loosely (i.e., the temperature sensor was not touching the skin well), which might
cause temperature reading to be less reliable than other people.

It is interesting to notice that the failure of Mi Band 2 indicated more than poor sleep
quality of some participants. Especially, if significant differences between wrist temperature
rhythm and activity rhythm are observed, it is quite possible that these people have sleep
disorders (e.g., restless leg syndrome). Detecting sleep accurately of older adults and
OAWD can be more meaningful than for the younger population, as they are more likely
to have sleep disorders [73]. As discussed above, wrist temperature and accelerometer data
can compensate each other in sleep monitoring. In Chapter 6, two algorithms are proposed
to detect sleep. One algorithm is purely based on the wrist temperatures while the other
utilizes features from wrist temperature and accelerometer data. The preliminary results
show that by combining two types of data, the sleep can be more accurately detected even
for data presented in case studies (O001 and D010). For an impaired sleep population like
OAWD, a new system with wrist temperature monitoring might infer more information
on sleep other than onset and offset, such as helping the diagnosis of Circadian Rhythm
Sleep-Wake Disorders [74].

The performance difference of different population makes the usefulness of commercial
wristband (or at least wristbands detect sleep based on accemetry sensors) questionable as
it is more important for the sleep-compromised population to accurately monitor sleep than
for a healthy population. Capturing all the sleep episodes for the frail geriatric population
like OAWD is essential as it could help physicians and caregivers to develop strategies for
best-supporting sleep, which may help to mitigate symptoms such as memory difficulties
and irritability. While the validity of other wearable devices remains unknown for the older
adult and dementia populations, the positive potential of including wrist temperature into
a sleep monitoring system has been shown by the data presented in this study. Analyzing
the sleep data collected by the Mi Band 2 answers Research Questions 4 and 5: Aging and
dementia negatively impacts the accuracy of the commercially available Mi Band 2 smart
wristband.
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5.5 Chapter Summary

There are three key points to related to the work presented in this chapter:

• The Mi Band 2 generally performs well for the healthy group (except O001 and O007)
and performs poorly for the OAWD group.

• A significant cause of poor performance of the Mi Band 2 is associated with the more
erratic sleep patterns of participants.

• Compared to the accelerometer data, wrist temperature is more robustly correlated
to sleep. This feature of wrist temperature could be used in sleep detection.
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Chapter 6

Algorithm Development and Testing

As can be seen in Figure 1.1 and from presented case studies in Section 5.3, wrist tem-
perature will increase during sleep regardless of body movements. The value of wrist
temperature can therefore be used as a core feature in building a sleep/wake detection
algorithm for people with any sleep disorders (e.g., restless leg syndrome). In this chapter,
two algorithms will be introduced. The first algorithm is solely based on the value of wrist
temperature while the second makes classifications based on both wrist temperature and
accelerometer data. Preliminary evaluations are provided and compared with sleep journal
and data from Mi Band 2. Preliminary results have shown promising potential of wrist
temperature and pave the way for a more scalable and accurate sleep detection algorithm.

6.1 Wrist Temperature-based Algorithm

6.1.1 Algorithm Development

According to [14], when wrist temperature reached over 34.8 °C, 90% of their tested par-
ticipants were asleep. Therefore, a rule-based sleep detection algorithm based on the value
of wrist temperature was proposed in [16] on wrist temperature rhythms. As wrist tem-
perature during sleep is higher than daytime temperature, this algorithm first extracts a
series of time when the temperature is higher than the daily mean temperature. Then,
the longest time-consecutive period in the extracted series is identified as the sleep period.
The sleep onset and offset are then estimated as the onset and offset of the identified
sleep period. The pseudo-code of this algorithm is shown in Algorithm 1. In [16], the
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algorithm was tested on the wrist temperature from 14 healthy younger adults, and the
average detection errors for the onset and offset were both below 30 minutes. The same
algorithm was used to estimate sleep of data collected in this study.

Algorithm 1: Temperature-based Estimation Algorithm

dTemperature: Orderd 288× 1 wrist temperature samples of 24 hours
Outputs : Estimated sleep onset and offset
/* Discarding wrist temperatures which are lower than 30℃ */

θ ←− Mean(dTemperature)
for i←− 0 to 288 do

if dTemperaturei > 0 then
overThrei ←− 1;

else
overThrei ←− 0;

end

end
overperiod←− FindConsecutive1Periods(overthre);
sleepDuration←− argmax(overperiod);
sleepOnset←− onset(sleepDuration);
sleepOffset←− offset(sleepDuration);

Table 6.1: Difference between reported sleep onset and offset from the WT-based algorithm
and sleep journal. The sleep journal was self-reported for healthy younger and older adults;
it was recreated for OAWD. Values are expressed as the mean ± SD.

Sleep Onset Error
(hh:mm)

Sleep Offset Error
(hh:mm)

Younger 1:21 ± 1:18 1:05 ± 1:01
Older 1:32 ± 1:40 1:24 ± 1:52
OAWD 2:38 ± 3:07 2:59 ± 3:10

6.1.2 Algorithm Evaluation

The estimated sleep onset and offset time differences for three groups from the WT-based
algorithm are presented in Table 6.1. It can be seen that the differences of onset and offset
of younger participants are the smallest while those of OAWD is the largest. It is also
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Figure 6.1: An example of wrist temperature-based sleep detection algorithm error. Only
the a second part of sleep was detected.

noteworthy that the standard deviation of errors is very prominent; the detection time
differences of participants in this study are more significant than the errors in [16].

6.1.3 Discussion

The large standard deviation of detection errors suggests that sometimes the algorithm
works very well, but it is not robust at other times. However, despite the significant
detection errors, the wrist temperature based sleep detection algorithm can perform better
than Mi Band 2 for OAWD for some cases (e.g., it is easy to detect sleep from wrist
temperature for D001). While Mi Band 2 can only detect three-hour sleep on some days,
as long as the wristband is not taken off, this algorithm can identify any long periods that
have higher wrist temperatures.

Since the algorithm tries to estimate sleep period by identifying the longest time-
consecutive high-temperature period, it can fail when the user wakes up in the middle
of the night. An example from participant (O004) is shown in Figure 6.1. In the left figure
(a), the detection errors of onset and offset are both 8 min. In the right figure (b), the
detection errors of onset and offset are 2 hr 16 min, respectively. In a case like (b), the
algorithm can only identify a part of sleep (i.e., from 2:03 to 7:38).
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The reason that the performance of this algorithm for participants in this study is worse
than results reported in [16] could be the difference in sleep patterns. Even both studies
recruited healthy younger adults, the participants in [16] were undergraduate students while
the participants of this study are mostly graduate students, their sleep might therefore be
more disturbed than undergraduate students. Also, the sampling rate and resolution of
temperature sensor in the two studies are different. In the former study, the sampling rate
(1 sample per 10 min) is lower, and resolution (0.5 °C) was higher compared to this study,
which had 1 sample per 5 min as sampling rate and 0.0625 °C as resolution. This could
have inadvertently added a ’filter’ that smoothed temperature changes at night, causing
the nighttime temperature has fewer variations and therefore a much better algorithm
performance.

While this preliminary evaluation indicates that sleep detection based solely on wrist
temperature can be accomplished to some extent, it will likely still not perform well even
if this algorithm is further optimized (i.e., improve the algorithm to identify more than
one sleep episode). Furthermore, the wrist temperature sometimes can be influenced by
ambient temperature. Therefore, an algorithm that uses features from accelerometer data
and wrist temperature together is introduced in the following section.

6.2 Wrist temperature + accelerometry-based Algo-

rithm

6.2.1 Algorithm Design

To overcome the shortcoming of using solely wrist temperature, an unsupervised machine
learning algorithm based on the combination of wrist temperature and accelerometer data
for sleep detection was proposed in my publication [75]. Data labeling can be time-
consuming; the unsupervised learning method was therefore considered first. Also, un-
supervised sleep detection using k -means has been shown to be comparable to supervised
sleep detection algorithm[76]. Therefore, the simplest unsupervised learning method k -
means algorithm was used in this study to test the validity of building an algorithm that
uses both wrist temperature and accelerometry. Five commonly used features ([42, 43, 77])
from 3-axis accelerometer data were extracted for every 30-s epoch of data: (1) root mean
squares (RMS) of three axes combined (

√
x2 + y2 + z2), (2) standard deviation of RMS,

(3-5) standard deviation of angles extracted along each axis (e.g. standard deviation of
tan−1 x√

y2+z2
). The feature matrix was then applied with a k -means algorithm to cluster
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Algorithm 2: Wrist temperature + accelerometry-based Algorithm

Input accelerometer: accelerometer data for 24-hour
Input temperature : wrist temperature data for 24-hour
Outputs : Estimated sleep onset and offset
/* Discarding wrist temperatures which are lower than 28℃ */

θ ←− Mean(wrist temperature)
featureMatrix←− extractFeatures(accelerometer data)
binarySeries←− kMeans(featureMatrix)
/* Compare the RMS of two clusters to determine which cluster

represents sleep and which cluster represents awake. */

if RMS(Cluster-1) > RMS(Cluster-0) then
Cluster1 ←→ WakeCluster, Cluster0 ⇐⇒ SleepCluster

else
Cluster0 ←→ WakeCluster, Cluster1 ⇐⇒ SleepCluster

end
binarySeries←− AssignOneToSleepCluster(SleepCluster);
/* Find any consecutive 1 periods longer than 3 minutes. */

consecutive1Periods←− FindConsecutive1Periods(binarySeries);
/* Determine if each consecutive period has a higher wrist temperature

*/

if Mean(consecutive1Periods) > θ then
consecutive1Periods←→ SleepPeriod

else
consecutive1Periods←→ WakePeriod

end
sleepOnset←− onset(sleepPeriod);
sleepOffset←− offset(sleepPeriod);
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the data into two categories (i.e., sleep and awake). Since cluster representations, ”sleep”
and ”awake”, are unknown, the label for ”sleep” and ”awake” is determined by calculating
the average RMS for each cluster. The cluster with an average smaller RMS represents
sleep and with an average larger RMS represents awake. Once the labels for ”sleep” and
”awake” was known, the consecutive series with label ”sleep” longer than 3 min (more
than six 1 s in a row) among the binary label series was identified. As some data can
be wrongly identified as asleep (e.g., people lie in bed and have fewer motions), the wrist
temperature was then used for further classification; for each identified ”sleep” series, the
corresponding average wrist temperature is calculated. The daily average wrist tempera-
ture (i.e., temperature over the past 24 hour period) was used as the threshold. The only
series with an average temperature higher than the threshold remained and classified as a
sleep period. The sleep onset was then determined by the onset and offset of the identified
sleep period. The pseudo-code of this algorithm is shown in Algorithm 2.

6.2.2 Algorithm Evaluation

Pre-processing of data can be time-consuming (i.e., prepare raw accelerometer data for
classification). As data collection with OAWD went late into the study because of ethics
and access delays and because the labeling of OAWD’s sleep data took longer than expected
(explained in Chapter 3.1), only results from four younger adults, one healthy older adult,
and one OAWD were assessed. These are presented in Table 6.2.

Table 6.2: Errors of detected sleep parameters from the WT+accelerometry algorithm and
the self-reported sleep journal for four healthy younger adults (Y001, Y002, Y003 and
Y004), one healthy older adult (O001) and one OAWD (D010). Errors are defined as
time difference in sleep parameters between algorithm estimations and sleep journal data.
Values are expressed as the mean ± SD.

Sleep onset
(hh:mm)

Sleep offset
(hh:mm)

WT + ACC Mi WT + ACC Mi
Younger 0:28 ± 0:23 0:22 ± 0:23 0:18 ± 0:43 0:19 ± 0:37
O001 0:36 ± 0:32 2:17 ± 1:10 0:09 ± 0:09 1:04 ± 1:02
D010 0:19 ± 0:06 2:51 ± 2:16 0:55 ± 0:39 2:42 ± 1:27

From Table 6.2, the average detection error of onset for the four younger adults was
comparable to the results of Mi Band 2 (onset: 0:28 ¿ 0:22, offset: 0:18 ¡ 0:19). Older adult
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O001’s data is presented as a case study in Section 5.3.1. For O001, the average sleep
onset detection error of Mi Band 2 was more than two hours, and the average offset error
was more than 60 minutes (the error for one day was more than four hours). Applying the
WT+accelerometry based algorithm appeared to reduce the detection error for him to less
than 40 minutes for sleep onset and less than 10 min for sleep offset. As for the OAWD
D001, compared to the average detection errors of Mi Band 2, the detection errors were
also significantly reduced by including wrist temperature into classification.

6.2.3 Discussion

These preliminary results have shown that the proposed algorithm had similar or slightly
better performance for younger adults compared to Mi Band 2. Furthermore, the results
of O001 and D010 suggested that this algorithm can work more robustly than the Mi Band
2 for people who might have sleep disorders.

Among these six participants, the offset detection error for D010 was most substantial,
and a high standard deviation suggested that the algorithm did not work so well for some
days. As mentioned before, the sleep data for OAWD often quite fractured; they woke up
multiple times, and their accelerometer data was not as stable as healthy people during
sleep. Even by manually identifying their sleep from accelerometer data, the recreated
sleep journal might not be accurate (e.g., exemplary data of D010 are shown in Section
5.3). Therefore, the errors can be caused by ”inaccurate ground truth”. Moreover, PSW
reported that some OAWD could play with the wristband and OAWD can be less careful
when washing hands (hand-washing can influence wrist temperature), both of which can
result in inaccurate temperature reading. In this case, the algorithm can make a wrong
classification about sleep and awake.

6.3 General Discussion Regarding Sleep Detection Al-

gorithm Development and Evaluation

Both algorithms are not fully optimized. However, from the two algorithms and preliminary
results presented above, it can be seen that wrist temperature can add value in a sleep
detection algorithm; using only wrist temperature is not as robust. However, even if
there is much movement that occurs during sleep, the wrist temperature still has a certian
pattern and remains high when the person is sleeping. The wrist temperature can also be
extremely useful when people are lying in bed with minimal movement but having trouble
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Figure 6.2: Wrist temperature and accelerometer data of participant O003 on an example
day. Two sleep onsets from sleep journal and Mi Band 2 are identified. She reported that
she spent around two hours to fall asleep, yet Mi Band 2 detected her sleep two hours
earlier.

falling asleep. An example from O003 is shown in Figure 6.2). O003 reported falling
asleep at around 0:45, and it can be seen that wrist temperature increased after 0:00. The
accelerometer-based algorithm from Mi Band 2 was able to tell whether the participant
was asleep or not, but the value of wrist temperature might. When combining features
from temperature and accelerometer data, the sleep detection algorithm appears to work
much better than Mi Band 2 for cases such as O001 and D010.

The second algorithm needs to be tested for all participants and needs further opti-
mization. In future work, more features could be extracted and tested for effectiveness
in clustering the accelerometer data. Additionally, people who are sleep disturbed may
not be able to sleep soundly for the whole night. For example, older adults and OAWD
tend to wake up multiple times during the night. Therefore the algorithm will be trained
to identify wakening and more sleep episodes (i.e., night waking and naps at daytime).
In such a cases, not only detecting sleep onset and offset is important, but identifying
night wakings can be important as well. Future development of the WT+accelerometry
approach is promising as a more sophisticated, accurate algorithm that could better meet
the needs of sleep monitoring for everyone, including frail older adults.
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6.4 Chapter Summary

Two key points from the research presented in this chapter are:

• The potential of unsupervised sleep detection algorithm based on features from com-
bined wrist temperature and accelerometry has demonstrated better performance
than accelerometry or wrist temperature alone.

• The WT+accelerometry algorithm can be further tested and optimized so that the
sleep patterns of people with sleep impairments can be better monitored.
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Chapter 7

General Discussion

Sleep patterns and sleep quality are influenced by aging and dementia. Chapter 3 showed
that high-level sleep quality varies among the three groups of participants. Generally,
younger participants had better sleep quality than healthy older participants. But some
younger adults reported worse subjective sleep quality than good sleepers in the healthy
older group. This finding suggests that sleep quality is more dependent on the specific
individual and his/her lifestyle than on age.

Younger participants tended to sleep later and had a shorter sleep duration than older
participants. Compared to younger adults who need to study and work, all older adults in
this study were retired and lived a more flexible schedule; they were likely better able to
choose their sleep timing and had more opportunity to make up sleep deprivation during
the day. With regards to OAWD, their sleep timing is comparatively quite early and
their temperature suggests they all had excessive daytime sleepiness. It is very challenging
to measure their sleep patterns and even to define their sleep onset and offset, as they
might take naps after dinner or breakfast. Living in a LTC, participants from OAWD can
more readily sleep when they want. However, due to the nature of LTC environments,
the residents will never sleep in an entirely dark environment (their doors need to be
open during the night and there are routine checks). Many OAWD either need to take
medications that can influence their sleep, or they need to be woken up at 3 AM to take
drugs. Living a less restricted lifestyle can help people follow their internal circadian
clock to sleep and to wake up. But as aging and dementia progress, the circadian system
gradually becomes less regular and stable; environmental changes, such as LTC living, may
not support better sleep habits. Also, co-morbidities could increase poor sleep patterns
and sleep quality. Therefore, it is essential to measure both circadian rhythms and sleep
patterns of people to understand the real reason behind poor sleep quality.
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In this thesis research, wrist temperature was chosen for its correlations with both cir-
cadian rhythm and sleep. The findings of wrist temperature in Chapter 4 are consistent
with sleep patterns of the three groups. Except for the phase and slightly higher wake-time
temperature, there is a minor difference in wrist temperature rhythm between younger par-
ticipants and healthy older participants.As mentioned above, the circadian system can be
more stable if living in a ”more free”, supportive environment. In fact, choosing to partici-
pate in this sleep study suggests a good health status for all non-OAWD participants. It is
a different case for OAWD. With the sleep timing to be the earliest, most OAWD also had
a very early phase of wrist temperature rhythm. Furthermore, the circadian rhythmicity
of OAWD is found to be weaker compared to healthy younger and older participants. In
addition to IS, OAWD had the least prominent SWTD, meaning that their wrist temper-
atures do not contrast between day and night. It is interesting to find that the wake-time
wrist temperature is mostly influenced by sleep patterns, which is consistent with one
other study [53]. As the contact between the temperature sensor and wrist skin was the
poorest for OAWD, this may have impacted accuracy and might have lowered the mea-
sured temperature. However, the value of SWTD is significantly determined by the high
wake-time temperature instead of sleep-time temperature, which suggests that the lower
SWTD of OAWD was not caused by poor contact of the sensor. This finding suggests that
the sleep-time wrist temperature does not vary among three groups and for people who
experience sleep disturbances, their daytime sleepiness will primarily increase. Increased
daytime sleepiness can then cause the wake-time wrist temperature to rise. Considering
that both older groups had a higher wake-time wrist temperature, this change might be
caused by natural aging and dementia can further increase wrist temperature.

For comparison and supplementing to self-reported sleep journal, the commercial wrist-
band Mi Band 2 was used to measure sleep patterns of participants. The data is presented
in Chapter 5. The experiments were first done for healthy younger adults and older adults,
and Mi Band 2 worked well except for two participants. For OAWD, Mi Band 2 failed to
identify their sleep. Four inspected case studies illustrate that the actigraphy-based sleep
monitor cannot correctly identify the sleep of OAWD. This is mainly attributed to the fact
that all the OAWD exhibited body movements during sleep; the cause for this movement
during sleep is unknown.

While higher-end commercial wristbands like Fitbit were not tested for these partici-
pants, these results question the validity of commercial wristbands for monitoring sleep.
This is particularly true for OAWD since the accelerometry-based sleep detection is used in
most commercial systems; this reseach shows that accelerometry data alone is not a good
measure of sleep for OAWD. Despite the inaccuracy of the Mi Band 2 when detecting sleep
for OAWD, the apparent cause sheds lights on another piece of knowledge; namely, if the
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commercial wristband has highly inaccurate sleep detection, the user might have a move-
ment disorder during sleep (i.e., body movements during sleep causes misidentification of
the person being awake when they are not). This ”diagnosis” function of actigraphy-based
sleep monitoring can be further strengthened by integrating a temperature sensor to the
system, as the wrist temperature’s association with sleep is regardless of the occurrence of
body movement. This type of data might then be used to support better sleep diagnosis,
management, and monitoring, including by caregivers and physicians to support better
sleep in OAWD.

To further explore the usefulness of wrist temperature in sleep monitoring, two algo-
rithms for sleep detection were presented in Chapter 6. When solely using wrist tempera-
ture as an indicator of sleep or wake, the first algorithm is not robust for people who had
irregular and fragmented sleep. When combining wrist temperature and accelerometer
data together, the validity of an unsupervised sleep detection algorithm (Algorithm 6.2)
has been demonstrated by preliminary results. The unsupervised algorithm using cluster-
ing is more suitable for sleep-impaired population, as it is not trained solely on healthy
sleepers’ data. With further algorithm development and improvement, a wearable sleep
monitoring system with accelerometer sensor and temperature sensor could not only detect
sleep for people with sleep disorders but might help discover irregular body movements.

Finally, wrist temperature has been shown to be an important element that should be
considered in future sleep monitoring systems. This research has pointed out three potential
roles of wrist temperature: (1) measuring the circadian system, (2) help to detect sleep of
irregular sleepers, and (3) help in the identification of movement-related sleep disorders.
With these roles, new sleep monitoring wearable systems with a temperature sensor can
benefit a broader population, especially frail populations such as OAWD.
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Chapter 8

Conclusions and Future Work

To conclude, the thesis answered the six Research Questions outlined in Chapter 3 as
follows :

• Answer to Research Question 1.1: At a group level, aging does influence the
circadian wrist temperature curve of healthy older adults to be flatter coupled with
marginally increased daytime wrist temperature. On average, the peak of wrist
temperature rhythm of older adults occurs earlier.

• Answer to Research Question 1.2: At a group level, dementia influences the
circadian wrist temperature curve and causes it to be even flatter than healthy older
adults. OAWD’s fragmented sleep (i.e., more night waking and daytime naps) results
in sleep-time wrist temperature to be lower, wake-time temperature to be higher, and
the amplitude of their temperature rhythm is significantly smaller.

• Answer to Research Question 2: The shape of wrist temperature rhythm is largely
influenced by sleep patterns and the stability of nighttime temperature is mostly
influenced by the amount of wakening. The shape and variability of wrist temperature
can potentially be used to evaluate sleep quality.

• Answer to Research Question 3.1 and 3.2: Aging and dementia negatively impact
the usefulness of Mi Band 2 on sleep monitoring. The poor performance of Mi Band 2
(and likely any smart wristband that uses only accelerometry data) is mostly caused
by increased body movement of users.
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• Answer to Research Question 4: Wrist temperature can be used to detect sleep.
When combined with accelerometer data, the sleep detection algorithm works much
better for people with movement-related sleep disorders compared to the Mi Band.

In addition to exploring the research questions above, this thesis research has made the
following noteworthy contributions to the field of sleep monitoring:

• Comparison of wrist temperature rhythms of three different populations (healthy
younger adults, healthy older adults, and OAWD) is concurrently investigated for the
first time. The findings in wrist temperature rhythms further support that the associ-
ation between increased daytime wrist temperature and increased daytime sleepiness
in the older adult and dementia populations.

• The usefulness of commercial actigraphy-based wristband is proven to be questionable
for the older adult and dementia populations; the addition of wrist temperature adds
an element of understanding regarding sleep patterns.

• A promising new sleep detection algorithm with wrist temperature and accelerometer
is proposed, and the preliminary results show the algorithm performs well for users
with excessive body movement during the night (i.e., O001 and D010). By inte-
grating wrist temperature, a further optimized algorithm could benefit to a broader
population than the current commercial wearable devices.

8.1 Future Work

In this research, the potentially significant role of wrist temperature in sleep monitor-
ing is highlighted. However, more work remains to be done to better understand wrist
temperature and to build a more robust sleep monitoring system. Firstly, wrist tempera-
ture rhythms of people from other populations (e.g., middle-aged population and children)
should be investigated to get a more comprehensive understanding as well as to explore
how temperature might change because of health conditions, such as obesity and cancer.
The sample size in this exploratory work is small; larger data sets would be needed to
achieve more conclusive evaluations. With the collection of more data, the association
between wrist temperature and sleep could be better understood. Secondly, more reliable
measurements of sleep like PSG need to be used and more reliable methods for capturing
ground truth should be used in future studies. By doing so, the accuracy and validity
of the sleep detection algorithm can be improved and validated with solid ground truth.
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Lastly, more sensors (e.g., gyroscopes) could be used together with a temperature sensor
to build a new sleep monitoring system for the aging and dementia population.
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Åkerstedt. Insufficient sleep predicts clinical burnout. Journal of Occupational Health
Psychology, 17 2:175–83, 2012.

[22] Steven M Reppert and David R Weaver. Coordination of circadian timing in mammals.
Nature, 418(6901):935, 2002.

[23] Han S Lee, Jennifer L Nelms, Mary Nguyen, Rae Silver, and Michael N Lehman.
The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nature
Neuroscience, 6(2):111, 2003.

[24] Clete Kushida. Encyclopedia of sleep. Academic Press, 2012.
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Appendix A

Questionnaires

• Demographic Form

• Morningness-eveningness Questionnaire (MEQ)

• Pittsburgh Sleep Quality Index (PSQI)

• Epworth Sleepiness Scale (ESS)

• Sleep Journal

• Mini-Mental State Examination (MMSE)
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Demographic Information Form 

 
 

Instructions:    Please provide a response for each of the following questions:  
 
 
1.  What is your age?  __________         
 
2.  What is you sex? 
 
      Female    Male           
 
3.  What is your height and weight?  
 
      __________            __________        
          Height                     Weight 
 
4.  Do you have any sleep-related disorder?                                       

 
Yes    No     

 

If “yes”, what type(s) of disorder do you have?  
 
➢ Trouble Falling Asleep                                                         Yes    No  

➢ Insomnia                                                                              Yes    No  

➢ Circadian Rhythms Disorder                                                Yes    No  

➢ Excessive Daytime Sleepiness                                            Yes    No  

➢ Sleep Apnea                                                                         Yes    No  

➢ Sleepwalking                                                                         Yes    No  

➢ Other (please specify):          

5.  Do you take any medications that might influence your sleep? 
 

Yes    No     
 

If “yes”, what medication(s) do you take?    __________ __________ __________ 
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MORNINGNESS-EVENINGNESS QUESTIONNAIRE (MEQ) 
 
Instructions: 
 Please read each question very carefully before answering. 
 Please answer each question as honestly as possible.  
 Answer ALL questions. 
 Each question should be answered independently of others. Do NOT go back and check your answers. 
 
1.  What time would you get up if you were entirely free to plan your day? 

 
 
5:00 – 6:30 AM 5 
6:30 – 7:45 AM 4 
7:45 – 9:45 AM 3 
9:45 – 11:00 AM 2 
11:00 AM – 12 NOON 1 
12 NOON – 5:00 AM 0 
 
 

2.  What time would you go to bed if you were entirely free to plan your evening? 
 
8:00 – 9:00 PM 5 
9:00 – 10:15 PM 4 
10:15 PM – 12:30 AM 3 
12:30 – 1:45 AM 2 
1:45 – 3:00 AM 1 
3:00 AM – 8:00 PM 0 

 
 
3.  If there is a specific time at which you have to get up in the morning, to what extent do you 

depend on being woken up by an alarm clock? 
 

Not at all dependent 4 
Slightly dependent 3 
Fairly dependent 2 
Very dependent 1 

 
 
4.  How easy do you find it to get up in the morning (when you are not woken up unexpectedly)? 
 

Not at all easy 1 
Not very easy  2 
Fairly easy  3 
Very easy  4 
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5.  How alert do you feel during the first half hour after you wake up in the morning? 
 

Not at all alert 1 
Slightly alert 2 
Fairly alert 3 
Very alert 4 

 
6.  How hungry do you feel during the first half-hour after you wake up in the morning? 
 

Not at all hungry  1 
Slightly hungry  2 
Fairly hungry  3 
Very hungry  4 

 
 
7.  During the first half-hour after you wake up in the morning, how tired do you feel? 
 

Very tired  1 
Fairly tired  2 
Fairly refreshed  3 
Very refreshed 4 

 
 
8.  If you have no commitments the next day, what time would you go to bed compared to your 

usual bedtime? 
 

Seldom or never later  4 
Less than one hour later  3 
1-2 hours later  2 
More than two hours later  1 

 
 
9.  You have decided to engage in some physical exercise. A friend suggests that you do this for one 

hour twice a week and the best time for him is between 7:00 – 8:00 am. Bearing in mind nothing 
but your own internal “clock”, how do you think you would perform? 

 
Would be in good form  4 
Would be in reasonable form  3 
Would find it difficult  2 
Would find it very difficult  1 

 
 
10. At what time of day do you feel you become tired as a result of need for sleep? 

 
8:00 – 9:00 PM 5 
9:00 – 10:15 PM 4 
10:15 PM – 12:45 AM 3 
12:45 – 2:00 AM 2 
2:00 – 3:00 AM 1 
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11. You want to be at your peak performance for a test that you know is going to be mentally 

exhausting and will last for two hours. You are entirely free to plan your day. Considering only 
your own internal “clock”, which ONE of the four testing times would you choose? 

 
8:00 AM – 10:00 AM  4 
11:00 AM – 1:00 PM  3 
3:00 PM – 5:00 PM  2 
7:00 PM – 9:00 PM  1 

 
 
12. If you got into bed at 11:00 PM, how tired would you be? 
 

Not at all tired  1 
A little tired 2 
Fairly tired 3 
Very tired 4 

 
 

13. For some reason you have gone to bed several hours later than usual, but there is no need to get 
up at any particular time the next morning. Which ONE of the following are you most likely to 
do? 

 
Will wake up at usual time, but will NOT fall back asleep 4 
Will wake up at usual time and will doze thereafter 3 
Will wake up at usual time but will fall asleep again 2 
Will NOT wake up until later than usual 1 

  
 
14. One night you have to remain awake between 4:00 – 6:00 AM in order to carry out a night 

watch. You have no commitments the next day. Which ONE of the alternatives will suite you 
best? 

 
Would NOT go to bed until watch was over 1 
Would take a nap before and sleep after 2 
Would take a good sleep before and nap after 3 
Would sleep only before watch 4 

 
 
15. You have to do two hours of hard physical work. You are entirely free to plan your day and 

considering only your own internal “clock” which ONE of the following time would you choose? 
 

 
 
 
 
 

 

8:00 AM – 10:00 AM 4 
11:00 AM – 1:00 PM 3 
3:00 PM – 5:00 PM 2 
7:00 PM – 9:00 PM 1 
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16. You have decided to engage in hard physical exercise. A friend suggests that you do this for one 
hour twice a week and the best time for him is between 10:00 – 11:00 PM. Bearing in mind 
nothing else but your own internal “clock” how well do you think you would perform? 

 
Would be in good form 1 
Would be in reasonable form 2 
Would find it difficult 3 
Would find it very difficult 4 

 
 
17. Suppose that you can choose your own work hours. Assume that you worked a FIVE hour day 

(including breaks) and that your job was interesting and paid by results). Which FIVE 
CONSECUTIVE HOURS would you select? 

 
5 hours starting between 4:00 AM and 8:00 AM 5 
5 hours starting between 8:00 AM and 9:00 AM 4 
5 hours starting between 9:00 AM and 2:00 PM 3 
5 hours starting between 2:00 PM and 5:00 PM 2 
5 hours starting between 5:00 PM and 4:00 AM 1 

 
 
18. At what time of the day do you think that you reach your “feeling best” peak? 

 
5:00 – 8:00 AM 5 
8:00 – 10:00 AM 4 
10:00 AM – 5:00 PM 3 
5:00 – 10:00 PM 2 
10:00 PM – 5:00 AM 1 

 
 
19. One hears about “morning” and “evening” types of people. Which ONE of these types do you 

consider yourself to be? 
 

Definitely a “morning” type 6 
Rather more a “morning” than an “evening” type 4 
Rather more an “evening” than a “morning” type  2 
Definitely an “evening” type 0 
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Pittsburgh Sleep Quality Index (PSQI) 

 
 

      Instructions: The following questions relate to your usual sleep habits during the past month only. Your answers  

      should indicate the most accurate reply for the majority of days and nights in the past month. Please answer          

      all questions.   
 

      1. During the past month, what time have you usually gone to bed at night? ___________________  

2. During the past month, how long (in minutes) has it usually taken you to fall asleep each night? __________ 

3. During the past month, what time have you usually gotten up in the morning?  ___________________  

4. During the past month, how many hours of actual sleep did you get at night? (This may be different than the 

number of hours you spent in bed.) ___________________  

 

5. During the past month, how often have you had  Not during  Less than  Once or  Three or more 
trouble sleeping because you…  the past  once a  twice a   times a week 
 month  week week   

a.  Cannot get to sleep within 30 minutes      

b.  Wake up in the middle of the night or early 
     morning    

    

c.  Have to get up to use the bathroom      

d.  Cannot breathe comfortably      

e.  Cough or snore loudly      

f.   Feel too cold      

g.  Feel too hot      

h.  Have bad dreams      

i.   Have pain      

j.   Other reason(s), please describe:     

     

     

6. During the past month, how often have you 
taken medicine to help you sleep (prescribed or 
“over the counter”)?   

    

7. During the past month, how often have you had      

trouble staying awake while driving, eating meals, 
or engaging in social activity? 

    

 No Only a Somewhat A very big 
 problem very slight of a problem 
 at all problem problem  

8. During the past month, how much of a problem 
has it been for you to keep up enough enthusiasm 
to get things done?                 

    

 Very  Fairly  Fairly  Very 
 good good bad bad 

9.  During the past month, how would you rate 
your sleep quality overall? 

    

     

 

 

Name:__________________________________________                         Date: ________________ 
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 No bed 
partner or 
room mate 

Partner/room 
mate in 

other room 

Partner in 
same room but 
not same bed 

Partner in 
same bed 

10.  Do you have a bed partner or room   
mate? 

    

 Not during 
the past 
month 

Less than 
once a week 

Once or twice 
a week 

Three or 
more times 

a week 
If you have a room mate or bed partner, ask 
him/her how often in the past month you have 
had: 

    

a.  Loud snoring     

b.  Long pauses between breaths while asleep     
c.  Legs twitching or jerking while you sleep       
d.  Episodes of disorientation or confusion  
     during sleep 

    

e.  Other restlessness while you sleep, please 
     describe: 
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Epworth Sleepiness Scale 

 

 
Name: ______________________________________________ Today’s date: _________________ 

 

Your age (Yrs): _______________ Your  sex (Male = M, Female = F): ________ 

 

 

How likely are you to doze off or fall asleep in the following situations, in contrast to feeling just 

tired? 

 

This refers to your usual way of life in recent times. 

 

Even if you haven’t done some of these things recently try to work out how they would have affected 

you. 

 

Use the following scale to choose the most appropriate number for each situation: 

           

0  =  would never doze 

1  =  slight chance of dozing 

2  =  moderate chance of dozing 

3  =  high chance of dozing 

 

It is important that you answer each question as best you can. 

 

Situation        Chance of Dozing (0-3) 

 

  

Sitting and reading        ________________________________________   
 

Watching TV                ________________________________________  

 

Sitting, inactive in a public place (e.g. a theatre or a meeting)    _________  

 

As a passenger in a car for an hour without a break    _________________  
 

Lying down to rest in the afternoon when circumstances permit   ________  
 

Sitting and talking to someone   __________________________________  

 

Sitting quietly after a lunch without alcohol   ________________________  
 

In a car, while stopped for a few minutes in the traffic  ________________  

 

 

 

THANK YOU FOR YOUR COOPERATION 

 

 

 M.W. Johns  1990-97 

 

 

___ 

 

___ 

 

___ 

 

___ 

 

___ 

 

___ 

 

___ 
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Date                   

 

Went to bed last night at                   

 

Attempted to fall asleep at                   

 

Minutes until fell asleep                   

 

Finally woke at                   

 

⚫ Please estimate the time, your answer do not need to be very accurate 

 

Awakened by ____ in the morning: 

 Alarm clock 

 Someone whom I asked to wake me 

 Noises  

 Just woke up naturally 

 

After falling asleep, woke up how many times during the night? 

0   1   2   3   4   5   or more 

 

Total times of wakeups at night                   

 

- Woke to use bathroom 

- Awakened by noises/child/bedpartner 

- Awakened due to discomfort or physical complaint/pain 

- Just woke 

 

Ratings: 

Sleep quality (1-8, very bad to very good): 

 

Mood on Final Wakening (1-8, very tense to very calm): 

 

Alertness on Final Wakening (1-8, very sleepy to very alert): 
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 1

 

Mini-Mental State Examination (MMSE) 
 

 
 
Patient’s Name:         Date:     
 
Instructions: Ask the questions in the order listed. Score one point for each correct 
response within each question or activity. 
 
Maximum 

Score 
Patient’s 

Score Questions 

5  “What is the year?  Season?  Date?  Day of the week?  Month?” 

5  “Where are we now: State?  County?  Town/city?  Hospital?  Floor?” 

3  

The examiner names three unrelated objects clearly and slowly, then 
asks the patient to name all three of them. The patient’s response is 
used for scoring. The examiner repeats them until patient learns all of 
them, if possible. Number of trials: ___________ 

5  
“I would like you to count backward from 100 by sevens.” (93, 86, 79, 
72, 65, …) Stop after five answers. 
Alternative: “Spell WORLD backwards.” (D-L-R-O-W) 

3  “Earlier I told you the names of three things. Can you tell me what those 
were?” 

2  Show the patient two simple objects, such as a wristwatch and a pencil, 
and ask the patient to name them. 

1  “Repeat the phrase: ‘No ifs, ands, or buts.’” 

3  “Take the paper in your right hand, fold it in half, and put it on the floor.” 
(The examiner gives the patient a piece of blank paper.) 

1  “Please read this and do what it says.” (Written instruction is “Close 
your eyes.”) 

1  “Make up and write a sentence about anything.” (This sentence must 
contain a noun and a verb.) 

1  

“Please copy this picture.” (The examiner gives the patient a blank 
piece of paper and asks him/her to draw the symbol below. All 10 
angles must be present and two must intersect.) 

 

 

 

30  TOTAL 
(Adapted from Rovner & Folstein, 1987)

Source: www.medicine.uiowa.edu/igec/tools/cognitive/MMSE.pdf Provided by NHCQF, 0106-410
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Appendix B

Questions for Personal Support
Workers

1. Do you think [participants name] has trouble falling asleep?

2. Do you think [participants name] has trouble to wake up in the morning?

3. Normally, when [participants name] goes to bed at night, wakes up in the morning?

4. Will [participants name] sleep after having breakfast/lunch?

5. From your observation, do you think [participants name] tosses and turns/wake up
multiple times at night?

6. In the daytime, do you observe [participants name] has multiple naps/has excessive
daytime sleepiness? If he/she does, when does [he or she] usually take naps? Morning
or evening?

7. Do you think [participants name] sleep is overall good or bad? (Scale: 1 to 8)

8. From your observation, do you think [participants name] is a morning person or
evening person?

9. Is [participants name] more active in the morning or in the afternoon?
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Appendix C

Comprehensive Demographics

Table C.1: Comprehensive demographic data for healthy younger and older adults.

ID Age Sex BMI MEQ PSQI ESS
Y001 23 M 18.98 55 4 4
Y002 25 M 25.41 51 5 3
Y003 23 F 22.56 45 7 6
Y004 22 F 21.57 57 5 7
Y005 22 M 31.89 52 4 11
Y006 26 F 18.48 49 4 9
Y007 25 F 36.95 56 11 8
Y008 26 M 23.92 51 6 7
Y009 28 F 17.19 51 3 7
Y010 21 F 19.92 44 3 6
O001 83 M 21.60 54 6 7
O002 66 F 31.01 62 9 4
O003 73 F 25.83 51 10 12
O004 71 M 29.52 55 3 7
O005 76 M 22.93 46 7 9
O006 83 F 27.42 68 7 7
O007 88 F 27.95 59 15 3
O008 67 F 23.48 68 9 2
O009 72 F 26.56 62 8 6
O010 71 M 23.10 65 4 6
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Table C.2: Comprehensive demographic data for OAWD.

ID Age Sex BMI MMSE PD Sleep Apnea Insomnia
Take

Medications
D001 85 M 29.45 19 X
D002 68 F 44.53 24 X X
D003 85 F 34.67 16 X
D004 97 M 22.62 19
D005 91 M 24.95 22
D006 83 F 39.64 19
D009 89 F 19.35 20 X X
D010 68 M 23.96 21 X X X
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Appendix D

Sleep Patterns

Table D.1: Sleep onset, offset, midsleep, duration, wake-up times and sleep quality score of
healthy participants. Onset, offset, midsleep, duration are expressed in hh:mm, wake-up
times and sleep quality score have no units. Values are presented as mean ± SD.

ID Onset Offset Duration Midsleep
Wake-up

Times
Sleep Quality

Score
Y001 0:09 ± 0:52 8:18 ± 1:24 8:08 ± 1:12 4:13 ± 1:00 0.86 ± 0.91 18.36 ± 1.59
Y002 1:36 ± 0:42 8:54 ± 1:14 7:17 ± 0:56 4:47 ± 1:15 1.79 ± 1.08 19.29 ± 2.71
Y003 1:17 ± 0:57 9:12 ± 1:12 7:55 ± 1:10 5:15 ± 0:55 0.29 ± 0.45 17.64 ± 1.59
Y004 23:29 ± 0:44 7:07 ± 0:36 7:37 ± 0:47 3:18 ± 0:32 1.36 ± 2.29 21.14 ± 1.96
Y005 1:24 ± 0:52 8:19 ± 0:51 6:54 ± 0:37 4:51 ± 0:48 0.13 ± 0.34 19.33 ± 1.35
Y006 1:13 ± 1:11 7:57 ± 0:32 6:44 ± 1:09 4:35 ± 0:43 1.79 ± 1.32 17.79 ± 2.24
Y007 22:56 ± 0:53 6:01 ± 1:19 7:05 ± 1:01 2:29 ± 1:00 0.71 ± 0.59 17.57 ± 2.80
Y008 0:48 ± 1:02 7:52 ± 0:52 7:04 ± 1:30 4:20 ± 0:36 0.53 ± 0.81 18 ± 2.48
Y009 0:32 ± 1:45 7:58 ± 1:17 7:26 ± 1:54 4:15 ± 1:12 1.57 ± 2.16 17.21 ± 3.72
Y010 0:02 ± 0:29 7:36 ± 0:27 7:34 ± 0:33 3:49 ± 0:23 0.13 ± 0.34 17.57 ± 3.31
O001 0:35 ± 1:05 8:07 ± 0:10 7:32 ± 1:10 4:23 ± 0:31 4.46 ± 1.00 17.5 ± 1.99
O002 23:28 ± 0:54 7:19 ± 0:46 7:50 ± 1:05 3:24 ± 0:38 2.07 ± 1.59 15.25 ± 3.53
O003 23:24 ± 0:51 7:27 ± 0:38 8:03 ± 1:09 3:26 ± 0:29 3 ± 1.56 17.64 ± 3.35
O004 0:11 ± 0:25 8:03 ± 0:43 7:51 ± 0:46 4:07 ± 0:27 2 ± 1.11 19.46 ± 2.57
O005 1:18 ± 0:38 9:24 ± 0:32 8:06 ± 0:31 5:21 ± 0:31 4.77 ± 0.80 17.62 ± 2.56
O006 23:01 ± 0:29 5:56 ± 0:42 6:55 ± 0:57 2:28 ± 0:22 2.36 ± 0.72 21.71 ± 0.96
O007 1:41 ± 1:29 9:45 ± 1:32 8:03 ± 1:48 5:43 ± 1:13 3.95 ± 1.62 14.55 ± 2.18
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O008 22:42 ± 0:23 7:01 ± 0:28 8:19 ± 0:40 2:51 ± 0:16 3.56 ± 0.98 16.36 ± 2.38
O009 22:35 ± 1:17 5:24 ± 0:46 6:48 ± 1:16 1:59 ± 0:51 1.86 ± 1.12 16.14 ± 2.07
O010 23:19 ± 0:18 6:47 ± 1:03 7:28 ± 0:57 3:03 ± 0:36 0.43 ± 0.49 20.5 ± 1.5
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