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Abstract

In the standard Λ-cold dark matter (ΛCDM) cosmological model, the present-day uni-
verse contains dominant components of dark energy (Λ) and cold dark matter (CDM).
Fluctuations in the initial distribution of dark matter collapse to form dense, gravitation-
ally bound dark matter haloes, which then evolve hierarchically through repeated mergers.
Although the ΛCDM model is largely successful in describing our universe, the nature
and identity of dark matter and dark energy remain unclear. ΛCDM may have problems
describing structure on small scales, while on large scales, there are mild tensions between
different estimates of the cosmological parameters. The structural properties of individual
dark matter haloes, including their shape, spin, concentration, and substructure, are linked
to halo growth history and thus reflect the cosmological model. The goal of this thesis is to
understand how dark matter halo structural properties evolve in minor and major mergers,
and to study how halo evolution can inform cosmology.

Halo mergers can be classified as either major or minor based on the mass ratio of the
merging systems. In minor mergers, smaller subhaloes fall into larger host haloes and evolve
through tidal stripping. Predicting the evolution of subhaloes has important applications
to studies of galaxy evolution and the nature of dark matter; in particular, the dense central
regions of haloes dominate the signal from dark matter annihilation, so understanding how
these central regions evolve is important for predicting the strength of the annihilation
signal, and thus placing constraints on dark matter particle candidates. In the first part
of this thesis (Chapters 2 and 3), we develop a simple, physically motivated model of tidal
stripping that can be applied to any collisionless system to predict its structural evolution.

In the second part of the thesis (Chapters 4 and 5), we perform a large suite of simu-
lations of binary equal-mass mergers between isolated haloes with various density profiles
to study the effects of major mergers on dark matter halo properties. We find that the
axis ratios describing the 3D shapes of the merger remnants vary linearly with a scaled
dimensionless energy parameter, κ, and an angular momentum (or spin) parameter, λ.
The mass distribution is determined mainly by κ, where energetic (low-κ) encounters pro-
duce more extended remnants while mergers of strongly bound (high-κ) systems produce
compact remnants. Surprisingly, major mergers seem to be relatively ineffective at chang-
ing the central densities of haloes, and thus unlikely to explain the mean trends in the
concentration–mass–redshift relation.

Overall, Chapters 2–5 present models for how haloes evolve in mergers, including the
evolution of tidally stripped haloes in minor mergers, as well as a description for how halo
spin, shape, mass distribution, and concentration evolve in major mergers. In the final
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chapter, we discuss a potential application of this work, to develop semi-analytic models of
halo structural evolution and use these to predict how halo properties should vary with the
cosmological model. Ultimately, the structural properties of haloes could provide powerful
cosmological tests that will become feasible with the completion of next-generation surveys.
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Chapter 1

Introduction

Cosmological theory states that the universe consists of three main components; ordinary
matter, dark matter, and dark energy. Ordinary, visible, matter is baryonic; in an astro-
nomical context, this generally refers to matter made of protons and neutrons (including
bound electrons). Dark matter is a hypothetical type of matter that is needed to account
for observed gravitational effects in the universe. The final component of the universe, dark
energy, is a theoretical component needed to explain the apparent acceleration of the uni-
verse. Although baryonic matter constitutes everything from planets and stars to living
organisms, it accounts for a mere five per cent of the mass–energy content of the universe.

According to the current understanding of structure formation, early in the universe,
fluctuations in the density of dark matter collapsed to form dark matter haloes which
are connected by sheets and filaments. This created the scaffolding in which galaxies
and galaxy clusters formed. Dark matter haloes are often studied using numerical N-
body simulations of gravitationally interacting point particles. These simulations can
be used to determine the distribution, abundance and structural properties of haloes; halo
structural properties in turn reflect the energy content and growth history of the universe.
Additionally, the centres of haloes contain the densest regions of dark matter, allowing
tests of the particle nature of dark matter. Thus, understanding the formation of structure
and the evolution of dark matter haloes should provide new insights into cosmology.

The outline of this chapter is as follows: the properties and evidence for dark matter
will be reviewed in Section 1.1. Section 1.2 will outline the formation and evolution of dark
matter haloes. Since dark matter structure is generally studied using N -body simulations,
these methods will be discussed in Section 1.3. Section 1.4 will provide examples of how
dark matter haloes can be used to study cosmology. Finally, an outline of the thesis will
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be given in Section 1.5.

1.1 Dark Matter

There is surprisingly little known about dark matter, considering it is five times more
abundant than ordinary matter; for instance, it is still not clear what comprises dark
matter. However, it appears that dark matter is non-baryonic and does not interact via
the electromagnetic force. For the latter reason it is almost impossible to detect, except
through its gravitational effects on visible matter. This section will summarize the main
observational evidence for dark matter, and its known properties.

1.1.1 Historical Evidence for Dark Matter

The first evidence for dark matter was discovered nearly 100 years ago by Fritz Zwicky
(Zwicky, 1933), who found that in order to explain the velocity dispersion of the Coma
galaxy cluster, there needed to be 20 times more mass present than he was able to detect
visually. He called this invisible mass “dunkle Materie” or “dark matter”, and thus the
idea of dark matter was first introduced. The concept that the universe is filled with dark
matter regained interest in the 1970s. Starting with work by Rubin & Ford (1970), it was
eventually established that some unseen component, such as dark matter, was needed to
explain why rotation speeds in the outskirts of galaxies were unexpectedly high.

Within a spherically symmetric mass distribution, circular velocity, v, follows the rela-
tion:

v(r) =

√
GM(r)

r
, (1.1)

where M(r) is the mass contained inside radius r, and G is the gravitational constant.
Since most of the visible mass is contained in the centre of the galaxy, this indicates that
velocity should decrease as r−1/2 at large distances; however, Rubin & Ford (1970) found
no evidence of this decrease in the Andromeda galaxy. This result was strengthened a
few years later, when Roberts & Whitehurst (1975) were able to measure orbital speeds
of Andromeda to even greater distances. Subsequently, flat rotation curves were found for
numerous other galaxies, including the Milky Way (e.g. Mróz et al., 2019, and references
therein). Fig. 1.1 shows an example of a galaxy rotation curve.

In addition to the examples mentioned above, there has been plenty of other evidence
that the universe contains large amounts of dark matter. For instance, dark matter has
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Figure 1.1: Example of a galaxy rotation curve. The observed rotation curve of the galaxy
NGC 3196 (points + model fit) is compared to the curve predicted from the mass seen in
the visible disk alone. An extra dark matter component is needed to fit the observations.
Figure is from Van Albada et al. (1985).
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been invoked to explain phenomenon such as why the Milky Way and Andromeda are
approaching each other (Kahn & Woltjer, 1959), why cold flat galaxy disks are stable
(Ostriker & Peebles, 1973; Ostriker et al., 1974), and why the lensing signal of the Bullet
Cluster does not trace its luminous gas distribution (Clowe et al., 2004). Overall, there is an
overwhelming amount of evidence supporting the notion of an invisible form of matter filling
the universe. Thus, the presence of dark matter is well established, but its fundamental
nature remains to be determined.

1.1.2 The Nature of Dark Matter

Dark matter is almost certainly non-baryonic, cold, and collisionless; this section will
outline the main evidence for these assertions, and briefly introduce some likely particle
candidates. A more thorough discussion can be found in the review by Bertone et al.
(2005).

Non-Baryonic

The strongest argument for non-baryonic dark matter comes from the fact that the ex-
pected amount of baryonic matter in the universe is simply too small to account for dark
matter. As mentioned above, baryonic matter makes up only five per cent of the mass–
energy content of the universe. There are two main lines of reasoning that yield this
number. The first is from the Cosmic Microwave Background (CMB), and the second
is from the abundances of light elements observed in the universe.

The early universe was a hot and dense plasma filled with free protons, electrons and
photons. As the universe expanded, it cooled. Eventually it reached a point called recom-
bination, where protons and electrons combined to form neutral atoms. This allowed for
photon decoupling; photons ceased to interact with electrons and were free to stream
throughout the universe. This left-over radiation from the time of recombination is called
the CMB. Since the universe was nearly homogeneous at the time of recombination, the
CMB is fairly uniform, with a temperature of 2.725 K.

The temperature fluctuations of the CMB provide information on the conditions of the
early universe, which can be seen in the CMB power spectrum. This spectrum is shown in
Fig. 1.2. The x-axis shows the multipole moment, which corresponds to the angular scale on
the sky. The y-axis is a measure of the temperature fluctuations. The relationship between
the CMB power spectrum and energy content of the universe is quite complicated, but
qualitatively, the position of the first peak reflects the total energy density of the universe,
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the ratio of odd and even peaks gives the ratio of baryonic to non-baryonic matter, and
the third peak gives information on the non-baryonic density. Putting this together, the
most recent CMB results indicate that baryonic matter accounts for 4.93 ± 0.02 per cent
of the universe (Planck Collaboration et al., 2018).

Figure 1.2: Power spectrum of temperature fluctuations in the CMB. Copyright: ESA and
the Planck Collaboration.

A second, independent, measurement of the baryonic content of the universe is from
the abundances of light elements. Big Bang nucleosynthesis is the production of atoms
heavier than hydrogen (mainly helium, deuterium and lithium) that occurred shortly after
photon decoupling. By determining the abundances of these primordial atoms, it can again
be determined that the amount of baryonic matter in the universe today is five per cent
(a recent measurement is 5.0± 0.2 per cent; Cyburt et al. (2016)).

It follows that since baryonic matter contributes so little to the overall matter density
of the universe, dark matter consists of non-baryonic particles. Such particles would have
to be at most weakly interacting, to explain why they have not been detected. The most
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commonly considered particles are weakly interacting massive particles (WIMPs).
WIMP candidates can be further divided into hot, warm and cold dark matter. Hot dark
matter is very light, and moved at relativistic speeds at the time of decoupling, while
cold dark matter (CDM) is more massive, and moved much more slowly. Warm dark
matter has properties between these two extremes. Dark matter could consist of one of
these types of WIMPs, or, alternatively, it could be mixed (e.g. have both a hot and cold
component).

Cold

By the late 1980s, cosmologists were fairly convinced that dark matter must be almost
completely cold, as described in Blumenthal et al. (1984). In the CDM paradigm, growth
is hierarchical, or “bottom-up”. In hierarchical growth, smaller structures form first, and
then these merge to form larger structures. Conversely, hot dark matter forms “top-down”;
first large superclusters form, and then these fragment into smaller structures.

One of the strongest arguments for CDM also comes from the temperature fluctuations
in the CMB. These fluctuations correspond to small density perturbations early in the
universe’s history, and it is these small perturbations that give rise to the structures seen
today. At the time of photon decoupling, hot dark matter would be moving too quickly to
form these perturbations. Though it seems dark matter is likely cold, warm dark matter
is not entirely ruled out.

Collisionless

Further, dark matter appears to be collisionless, in that interactions between individual
particles are negligible, and thus they only move under a smooth gravitational potential
(a more technical discussion of collisionless systems can be found in Section 1.3.2). The
classical evidence for collisionless dark matter is from gravitational lensing results from the
Bullet Cluster (Markevitch et al., 2004), which is technically composed of two colliding
galaxy clusters. Gravitational lensing is a phenomenon where large masses act as a
lens; since mass curves space, mass can cause light to follow curved trajectories. If there is
a large mass in front of a bright object, the mass can be inferred through its lensing effect
on the background source. Gravitational lensing results indicate that the majority of the
mass present in the Bullet Cluster is invisible, as shown in Fig. 1.3. More importantly, the
dark matter appears to be located on the outskirts of the cluster, indicating it bypassed the
luminous gas during the collision. Although dark matter seems to be mainly collisionless,
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it is still possible that dark matter is somewhat self-interacting (see, e.g. Tulin et al., 2013,
for a review). If so, results from the Bullet Cluster place constraints on the cross-section
for self-interaction.

Figure 1.3: The Bullet Cluster. Red represents the hot x-ray emitting gas, and blue
is the dark matter distribution calculated from the gravitational lensing. The image is
from NASA ( from the Chandra X-ray Observatory). Credit: X-ray: NASA/CXC/CfA/
M.Markevitch et al.; Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/
D.Clowe et al. Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.

Dark Matter Candidates

In conclusion, current evidence points towards dark matter that is non-baryonic, cold, and
collisionless, although alternative models (such as warm or self-interacting dark matter)
are not entirely ruled out. There are no known particles which fit the criteria for non-
baryonic, CDM; however, extensions to the Standard Model of particle physics, notably
supersymmetry, predict particles that are viable WIMP candidates, such as neutralinos.
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Axions and sterile neutrinos are also CDM candidates. There is considerable experi-
mental effort world-wide to detect one of these theoretical particles, and thus validate the
CDM theory.

1.1.3 Dark Matter Research

The particle nature of dark matter is one of the most important questions in high-energy
physics. Current research about dark matter can be broadly categorized into four main
categories; direct and indirect detection of dark matter, production of dark matter particles,
and theoretical studies.

First, direct detection methods aim to detect WIMP particles through detectors
located on Earth. For example, the SNOLAB is an underground detector located in a nickel
mine in Sudbury, Canada. It was originally built as the Sudbury Neutrino Observatory
(SNO) to detect neutrinos, but is now actively searching for dark matter particles. Projects
such as these have not detected dark matter thus far, but place increasingly stringent
constraints on dark matter particle properties.

Alternatively, indirect detection methods attempt to detect undiscovered particles
through their interactions. For example, neutralinos can annihilate with one-another in
pairs, producing gamma rays. Scientists hope to detect evidence of these gamma rays in
regions of high dark matter density. The Fermi Large Area Telescope, for instance, is
searching for a γ-ray signal, mainly in the centre of the Milky Way, but also in nearby
galaxies, such as M31 and M33. These studies have placed increasingly strong limits on
dark matter annihilation, but to date have been unsuccessful at detecting a potential dark
matter annihilation signal (Di Mauro et al., 2019).

Another approach is production; these experiments hope to prove the existence of
theoretical particles that are dark matter candidates. Particle accelerators cause particle
collisions at very high energies, which could potentially create new particles, such as those
predicted by supersymmetry. Scientists at the world’s largest particle accelerator, the
Large Hadron Collider (LHC), are currently conducting experiments at unprecedented
energies that could potentially create new supersymmetric particles, or other theoretical
dark matter candidates (Buchmueller et al., 2017).

The final category of research, theoretical work, encompasses a wide range of stud-
ies. Theoretical particle physics has provided potential dark matter candidates, and has
predicted the energies at which they will be created. Additionally, N -body simulations
of galaxy formation provide information on how dark matter needs to behave in order to
agree with the observed structure of the universe. It is through theoretical studies that we
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obtain a deeper understanding of dark matter, and can then design experimental studies
appropriately. One example of such work is the study of dark matter halo formation.

1.2 Formation of Dark Matter Haloes

At the time of the Big Bang, the universe was hot and dense. Over time, it has expanded
and cooled. The expansion of the universe can be described using the Friedmann equation,
which assumes isotropy (the universe is the same in all directions) and homogeneity (the
universe is the same in all locations). While the Friedmann equation describes the overall
growth and fate of the universe, structure in the universe forms from density perturbations
in the early universe. Overdense regions collapse gravitationally, and form dark matter
haloes, which later provide the gravitational wells in which gas can condense to form
galaxies and galaxy clusters.

1.2.1 The Evolution of a Homogeneous Universe

The evolution of a homogeneous, isotropic universe can be described by three equations:

H(t)2 =

(
ȧ(t)

a(t)

)2

=
8πGρ(t)

3
− Kc2

a(t)2
(1.2a)

Ė(t) + 3
ȧ(t)

a(t)
(E(t) + P ) = 0 (1.2b)

P = wE(t) . (1.2c)

The first of these equations, Equation (1.2a), is called the Friedmann equation; H(t) is
the Hubble parameter and gives the rate of expansion at time t. K is the curvature
constant of the universe and has values of 1, 0 or −1 for a closed, flat or open universe,
respectively. The parameter a is the scale factor which gives a measure of the size of the
universe. The density, ρ, is also often expressed as a relative density, Ω = ρ/ρc, where
ρc = 3H2/8πG is the critical density, and corresponds to a flat universe (K = 0).

The second equation, Equation (1.2b), is called the fluid equation. Here, E = ρc2 is
the energy density and P is the pressure. Density can be expressed as a sum of radiation,
matter and dark energy components, ρ = ρr+ρm+ρDE. Each component can be described
by its equation of state, Equation (1.2c). This gives the relationship between pressure
and energy density, and each component will evolve according to its equation of state
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parameter, wi; i.e, ρ ∝ a−3(1+wi). For radiation and matter, wi = 1/3 and 0, respectively.
Observations indicate that there is also a dark energy component with w ≈ −1.

In astronomy, distance and time are often expressed in terms of redshift, z. Since
the universe is expanding, objects further away are moving faster and are thus redder
due to the Doppler effect. Additionally, since light takes a finite amount of time to reach
the Earth, objects that are further away are being observed at earlier times. There is
a simple relationship between the scale factor and redshift from cosmological expansion:
a ∝ 1/(1 + z). Therefore, Equations (1.2a)–(1.2c) often use z as the independent variable,
rather than t.

1.2.2 Density Perturbations

While the universe evolves as outlined in the previous section, the growth of structure
comes from the gravitational collapse of fluctuations in the matter density in the early
universe. Thus, the growth of structure not only depends on the content of the universe,
but also on the characteristics of the density perturbations. Density fluctuations in the
universe are often described using σ2(R), which is the variance of fluctuations on a scale
of size R. The size of fluctuations in the universe are usually characterized by σ8, which
is the root mean square fluctuations within 8 h−1 Mpc at the present day. An additional
parameter, the scalar spectral index, ns, describes how fluctuations vary with scale, where
a value of ns = 1 corresponds to scale invariant fluctuations (mathematically, it gives
the relationship between the power spectrum of the initial density fluctuations, P and
wavenumber, k: P (k) ∝ kns).

An individual density perturbation can be expressed as δ = (ρ − ρ̄)/ρ̄ where ρ̄ is the
average density; regions with δ > 0 will eventually collapse into structure. In the linear
regime (δ � 1), density perturbations evolve as:

δ̈ + 2Hδ̇ =
3

2
ΩmH

2δ , (1.3)

where Ωm = ρm/ρc is the relative matter density. In this epoch of structure formation, the
universe can be approximated as an Einstein–de Sitter universe. This is a simplified
model which assumes the universe is flat and contains only matter (this is a valid approx-
imation in early times, as dark energy is not yet important). Then, using Ω = Ωm = 1
and K = 0 and solving Friedman’s equation, this gives a(t) ∝ t2/3 and H = 2/(3t). Using
Equation (1.3), this means δ ∝ a ∝ t2/3 during the linear regime.
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1.2.3 The Cosmic Web

While structure formation can be studied analytically in the linear regime, once it becomes
non-linear, numerical simulations are needed to predict the spatial distribution of dark
matter. This section will qualitatively outline the main results of dark matter structure
growth; details of numerical simulations can be found in Section 1.3.

Due to gravitational attraction, overdense regions (δ > 0) become denser over time,
and do not expand with the overall universe; thus, the volume containing dense regions
of dark matter diminishes. Conversely, underdense regions (δ < 0) expand more rapidly
than the overall universe, and will eventually become largely empty regions called voids.
Where voids collide with each other, dark matter will form in sheets between them. When
multiple voids meet, rather than two-dimensional sheets, the dark matter is arranged into
one-dimensional filaments.

Locations where a number of filaments intersect are called nodes. Over time, matter
will drain from filaments into the nodes. These roughly spherical regions of dark matter
in nodes correspond to dark matter haloes. When smaller haloes merge along filaments
into a central halo, they may exist as substructure, and are thus known as subhaloes.
The resulting complex filamentary structure is known as the cosmic web; Fig. 1.4 shows
this final structure from a dark–matter–only simulation. Galaxies and galaxy clusters form
within these haloes, and thus trace the underlying dark matter structure.

1.2.4 Spherical Collapse

While the complex nature of structure formation requires numerical simulations, there are
some analytical models for the formation of dark matter haloes. One of the simplest of
these is the spherical collapse model. Consider an Einstein–de Sitter universe, with a
spherical overdense region with radius r, and density ρ = ρ̄(1 + δ). Then, the mass within
a sphere of radius r is M = 4πr3ρ̄(1 + δ)/3.

Solving Friedmann’s equation for this overdense region (with ρ = ρm ∝ a−3 and K = 1),
results in the parametric equations:

a =
ctTA

π
(1− cos θ)

ct =
ctTA

π
(θ − sin θ) .

(1.4)

This solution reaches a maximum at θ = π. We denote this time as, tTA, which is commonly
referred to as the turnaround time. The region then collapses at θ = 2π (t = 2 tTA).
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Figure 1.4: Example of dark matter structure, from the Millennium Simulation (Springel
et al., 2005) Credit: https://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium.
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Then, the overdensity can be expressed as:

1 + δ =
ρ

ρ̄
=

9

2

(θ − sin θ)2

(1− cos θ)3
. (1.5)

According to this calculation, at turnaround, ρ/ρ̄ ≈ 5.55. Eventually, the system collapses
to produce a spike of infinite density. However, this calculation assumes the perturbations
are spherically symmetric and that shells of mass do not cross each other. In reality, the
overdense region will not reach infinite density, but will undergo mixing and relaxation and
collapse until the system is virialized. According to the virial theorem, a system in virial
equilibrium obeys the relation:

W = −2K , (1.6)

where W is potential energy and K is kinetic energy. The final size of the halo, rvir, can be
found using energy conservation. At turnaround, the kinetic energy is zero: ETA = WTA.
Then at virialization, Evir = Wvir/2. Since mass is conserved, W ∝ 1/r, and thus rTA =
2 rvir. Therefore, the final size of the halo will be half of the turnaround radius.

In an Einstein–de Sitter universe, the background density evolves as a3 ∝ t2. Therefore,
ρ̄TA = 4ρ̄vir; i.e. the background density is four times less dense at the time of virialization
compared to turnaround. Since the virialized halo has half the radius compared to at
turnaround, the halo is eight times more dense at virialization compared to turnaround
time. Putting this together with the approximation that ρTA = 5.55ρ̄TA, the density
contrast relative to the background of a virialized halo is ∆c ≡ ρvir/ρ̄ ≈ 178. For more
realistic cosmologies this value is slightly higher, and in practice, a common definition for
the virial radius the radius in which the density is 200 times the critical density, ρc.

1.2.5 Halo Growth

Overall, halo growth can be described as an initial collapse of a density perturbation, and
then mass growth through successive mergers. Mergers are often classified as minor or
major based on the mass ratio of the two merging systems (there is not a clear cutoff,
but a mass ratio of 1:3 or 1:4 is sometimes used). In minor mergers, the two haloes are
very different sizes, and the smaller subhalo falls into the larger host halo. The host halo
is largely unaffected, and the subhalo evolves mainly through dynamical friction and
tidal stripping. Dynamical friction occurs as the subhalo travels through a distribution
of background particles in the host halo; the subhalo will create a wake behind it which
will cause drag, and thus cause the orbit to decay. Tidal stripping is due to the tidal forces
on the subhalo; since it is not in a uniform potential, material will be stripped off the
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subhalo and incorporated into the host. Eventually the subhalo may become completely
disrupted. In comparison, major mergers are mergers between haloes of similar sizes, so
both merging systems are significantly disrupted. Major mergers are thought to be one of
the main determinants of halo 3D shape.

1.3 Numerical Simulations

Most knowledge about the large-scale structure of the universe and dark matter haloes
comes from numerical simulations; many of these are N -body simulations, though to fully
account for baryonic effects, hydrodynamical simulations are often employed. Since the
universe is primarily dark matter, the simplifying assumption that, to first-order, baryonic
effects can be neglected is made throughout the thesis. Thus, techniques related to dark–
matter–only simulations will be described in this section.

1.3.1 N-Body Simulations

N -body simulations calculate how discrete particles interact gravitationally, and are often
used to model collisionless systems, such as dark matter structures. Due to computational
limitations, it is impractical to resolve individual dark matter particles. Therefore, it is
common to simulate pseudo-particles that each represent thousands to millions of solar
masses worth of dark matter.

In the case of N particles, each particle, i, should evolve according to:

d~ri
dt

= ~vi

d~vi
dt

=
~Fi
mi

,

(1.7)

where Fi is the force acting on particle i. Many numerical methods exist for the time
integration, but a common scheme is the Leap Frog scheme, which is accurate to second
order and conserves energy.

In the case of N isolated, non-relativistic particles, the force can be calculated using
Newton’s Law:

~Fi = −
∑
j 6=i

G
mimj(~ri − ~rj)
|~ri − ~rj|3

. (1.8)
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However, since each N -body particle is not in reality a point mass, this results in numerical
issues when particles get too close. Gravitational softening is a method to avoid this
problem, by modifying the gravitational force to effectively create mass smoothing. As a
simple example, the force can be calculated as:

F ∝ 1√
r2 + ε2

, (1.9)

where ε is the softening length; in practice more complicated parameterizations are often
used (e.g. Springel, 2005).

Algorithms which directly calculate the force on each particle according to Equa-
tion (1.8) are called particle-particle (PP) algorithms and the number of operations
scales as N2. These direct calculations quickly become too computationally costly to run,
and therefore approximate methods are used to reduce the number of calculations needed.
For example, in tree algorithms, particles are grouped together based on their distance
from the particle, and the force from each group calculated as a multipole expansion; this
method scales as N logN . In particle-mesh (PM) algorithms, the gravitational po-
tential is constructed over a grid from density field, and Poisson’s equation is solved using
fast Fourier transforms. This scales as N + Ngrid logNgrid, where Ngrid is the number of
grid points; a limitation to this method is that it needs a large amount of memory storage.
There are also hybrid methods, such as P3M wich uses PP for close particles and PM for
distant particles. In this thesis, we use the publicly available code gadget-2 (Springel,
2005), which utilizes a PM-Tree scheme (i.e. it uses a tree code for short range, and PM
for long range forces), and is particularly well-suited for cosmological applications.

1.3.2 Timescales for Collisionless Systems

As argued in Section 1.1.2, dark matter is collisionless. Mathematically, collisionless sys-
tems are those in which two-body collisions are negligible, and therefore the gravitational
force can be treated as a smooth density field rather than a collection of individual par-
ticles. A system is considered collisionless if the characteristic timescale on which the
system evolves is much less than the relaxation time, and direct collisions are negligible,
i.e., tcoll � trelax � tcross. Therefore, to determine whether a system can be treated as
collisionless, it is important to define these relevant time scales. Following the arguments
in Binney & Tremaine (1987), consider a system of size R with N particles each of mass
m interacting gravitationally. Each particle travels with a typical speed of v ≈ GNm/R.
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The first time scale of interest is the crossing time, tcross. This is the typical time for
a particle to cross the system, and is given by:

tcross =
R

v
. (1.10)

Secondly, the timescale for direct collisions, tcoll can be calculated as follows: the
cross section for a direct collision is σ, and the mean free path is λ = 4πR3/3Nσ. Therefore,
the number density of particles is λ/R, and thus the timescale for direct collisions is:

tcoll =
4πR2

3σ

1

N
tcross . (1.11)

For non self-interacting dark matter particles, σ is effectively zero, so direct collisions are
negligible.

Aside from direct collisions, gravitational two-body interactions are also important,
and the time scale associated with these is known as the relaxation time. Relaxation
will cause a change in particle velocities relative to that expected if the particles were
moving through a smooth distribution rather than the potential generated by individual
point particles. The relaxation time can be defined as the time such that the velocity has
changed by order of itself, i.e., dv/v ≈ 1.

To calculate the relaxation time, first consider the change in velocity a particle will ex-
perience from one interaction. Suppose this particle passes another with impact parameter
b (assume the perturbing particle is stationary, the particle of interest moves with velocity
v on a straight trajectory). Then, the force at closest approach is Gm/b2, and the time
over which it acts is approximately b/v. Therefore, the change in velocity is roughly:

dv =
Gm

bv
. (1.12)

A particle will have a number of encounters in one crossing time, and thus the next step
is to approximate the number of encounters a particle will have. The density of particles
is 3N/4πR3, and the particle of interest will sweep out a torus with radius b. The surface
area of this torus is 4π2Rb. Therefore, the number of encounters with an impact parameter
between b and b+ db is:

dn = 3π
N

R2
bdb . (1.13)

Since the particles are traveling in random directions, the sum of the individual velocity
changes, dv, will be zero. Instead, we can consider the change in the squared velocity, by
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integrating from b = bmin ≡ Gm/v2 to R. For b < bmin, the assumptions of a straight
line trajectory break down; encounters of this sort should be very rare, and thus will be
neglected in this calculation. Therefore, the change in dv2 is:

dv2 ≈
∫ R

bmin

dv2dn ≈ 10
N

v2

(
GM

r

)2

ln Λ , (1.14)

where ln Λ is called the Coulomb logarithm, and is given by ln Λ ≡ ln(R/bmin) ≈ lnN .

Finally, nrelax, which is the number of times a particle will cross the system before its
velocity changes by an order of itself is:

nrelax =
dv2

v2
=

10 lnN

N
, (1.15)

and the relaxation time is given by

trelax =
0.1N

ln(N)
tcross . (1.16)

An important concept in N -body simulations is numerical relaxation. Since N -body
simulations use massive point particles that are meant to sample a smooth continuous
density field, this results in numerical artifacts from two-body interactions. This can be
characterized by a size scale, rrelax,

rrelax =

(
t lnN

0.1N

)2/3

(Gm)1/3 ; (1.17)

structure on scales smaller than this will be affected by two-body relaxation. To resolve
smaller structures, the number of particles in the simulation needs to be increased.

1.3.3 Analyzing Simulations

Another important technical aspect of numerical simulations is how to extract information.
There is a large amount of literature on how to identify which particles belong to which
haloes (e.g. Knebe et al., 2013; Behroozi et al., 2015). Additionally, extensive work has been
done on how to robustly measure density profiles (e.g. Vera-Ciro et al., 2013; Klypin et al.,
2016), the 3D shape (e.g. Bailin & Steinmetz, 2005; Zemp et al., 2011), and concentration of
individual simulated haloes (e.g. Prada et al., 2012; Dutton & Macciò, 2014; Klypin et al.,
2016). In this thesis, all of these quantities will be measured, and detailed descriptions of
our methods can be found in the relevant chapters.
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1.4 Dark Matter Haloes as a Probe for Cosmology

The aim of this thesis is to show how the structural properties of dark matter haloes can
be used to advance the understanding of cosmology. This section first briefly outlines the
current cosmological model, gives an overview of the main types of astronomical observa-
tions and then describes some of the ways in which dark matter haloes are used to study
cosmology.

1.4.1 The Cosmological Model

The Friedmann equation, introduced in Section 1.2.1, has a number of free parameters, in-
cluding the Hubble parameter at the current time (H0) and the mass–energy content of the
universe. Additionally, to describe the characteristic density fluctuations in the universe,
an additional two parameters are needed (such as σ8 and ns, as defined in Section 1.2.2).

The current favored model of the universe is known as the ΛCDM model. Λ refers
to the fact that dark energy is described by a cosmological constant (with an equation
of state parameter of w = −1), and CDM indicates that the dark matter component is
almost entirely cold. Overall, ΛCDM can be described by six parameters; the amount of
dark energy, dark matter and baryonic matter in the universe, as well as H0, σ8 and ns.
From the most recent CMB constraints, baryonic matter makes up 5% of the mass–energy
content of the universe, and dark matter and dark energy make up the remaining 26% and
69%, while values for H0, σ8 and ns are approximately 68 km s−1 Mpc−1, 0.81 and 0.97,
respectively (Planck Collaboration et al., 2018).

While the ΛCDM model is largely successful, there are currently tensions in H0 and
σ8 values, with different methods for measuring the parameters giving conflicting values.
To reconcile these results, possible extensions to ΛCDM have been proposed including
w 6= −1, more exotic forms of dark matter, and modifications to gravity.

1.4.2 Types of Observations of Individual Haloes

Since studies of cosmology typically require astronomical observations, it is important to
understand the main types of observations used to study dark matter haloes. First, optical
observations measure the luminous matter contained within astronomical structures; the
movement of this visible structure should depend on the total mass of the system, including
dark matter. Traditional detections of dark matter were from optical results: e.g. galaxy
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rotation curves, and measurements of the velocity dispersion of galaxies within clusters.
These studies often use assumptions about the dynamical state of the system, i.e., they
assume the system is in dynamical equilibrium to calculate the total mass.

Secondly, X-ray surveys image the hot gas in the centre of galaxy clusters, which re-
side in the largest dark matter haloes. Since clusters are the only extended X-ray source in
the universe, they are very easy to detect, and these clusters reside within the largest dark
matter haloes in the universe. The main advantages to X-ray studies of clusters are that
they suffer from minimal projection effects, since X-ray emission scales as density squared,
and also that clusters follow well-defined scaling relations between their X-ray properties
and properties at other wavelengths. One of the main disadvantages is that X-ray sur-
veys have to be conducted from space, and are thus very expensive. In general, masses
inferred from X-ray observations assume hydrostatic equilibrium, and neglect magnetic
fields, turbulence, and cosmic rays.

At the millimeter wavelength, the Sunyaev-Zel’dovich (SZ) effect provides another
method to detect hot gas in clusters. The SZ effect is from the inverse Compton scattering
of photons from the CMB as they pass through the hot gas in galaxy clusters. This causes
a shift in the blackbody spectrum, which is proportional to the integrated electron pressure
along the line of sight (Sunyaev & Zeldovich, 1970). The main advantage to SZ surveys is
that they are nearly redshift independent; since the signal is coming from the CMB, there
is no cosmological dimming. Additionally, SZ-based mass estimates are less sensitive to the
details of gas dynamics than ones based on X-ray emission (Motl et al., 2005; Nagai, 2006).
Challenges in SZ studies are understanding the mass–observable relation, and quantifying
how much results are impacted by radio and IR sources (Sehgal et al., 2010). Also, the SZ
signal is linear in density, so it is more sensitive to projection effects (Shaw et al., 2008).

Finally, gravitational lensing is the bending of light rays by massive objects, as de-
scribed in Section 1.1.2. If there is a massive object located between the observer and a
background source, its mass distribution can be inferred through its lensing effect. Gravi-
tational lensing can be classified as strong or weak; in strong lensing the effect is strong
enough to split an object into multiple images, while in weak lensing there are coherent
distortions of background galaxies that can be stacked and analyzed statistically to deter-
mine the underlying mass distribution. The main advantage to lensing techniques are that
they measure the mass of the dark matter directly, requiring no assumptions about how
baryonic matter traces dark matter. Additionally, these measurements do not require any
assumptions about the dynamical state of the system.
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1.4.3 Cosmological Tests

Small Scale Structure

Small scale structure may be the best place to test the nature of dark matter. For example,
warm dark matter will disrupt low mass subhaloes (e.g. Knebe et al., 2008) while self-
interacting dark matter will produce constant-density cores, with lower central densities
(e.g. Burkert, 2000). While numerical simulations match observed large scale structure
very well, there are some discrepancies on small scales (below ∼1 Mpc) which challenge
the ΛCDM paradigm.

Overall, there are three main potential small-scale structure problems, commonly re-
ferred to as (1) the “missing satellites” problem (2) the “core–cusp” problem, and (3)
the “too–big–to–fail” problem. The missing satellite problem refers to the fact that
there are many more subhaloes predicted in numerical simulations than observed dwarf
galaxies in the Milky Way (Klypin et al., 1999; Moore et al., 1999). The core-cusp prob-
lem is that numerical simulations predict a steep inner slope in the density profile (cusp),
while many observed dark matter dominated galaxies seem to have constant density cores
(Moore, 1994). Finally, the too–big–to–fail problem is that the most massive subhaloes
in simulations are much too dense to correspond to the most-massive satellites in the Milky
Way (Flores & Primack, 1994; Boylan-Kolchin et al., 2011).

While there have been a number of suggested solutions to all these problems, it is
likely they can all be solved by including baryonic feedback in simulations (for a recent,
comprehensive review see Bullock & Boylan-Kolchin (2017)). However, it is important
to understand the origins for these discrepancies to develop concrete predictions for how
substructure varies with different types of dark matter particles.

Indirect Dark Matter Searches

As discussed in Section 1.1.3, one potential way to detect dark matter is through indirect
detection, i.e. detecting Standard Model products that arise from dark matter annihilation
or decay. Dark matter annihilation is proportional to the density of dark matter squared
and is therefore sensitive to the inhomogeneity of the particle distribution; e.g. substructure
in a halo will contribute greatly to the overall signal. Dark matter decay, on the other
hand, scales linearly with density, and therefore the contribution from substructure is
negligible. Indirect searches have already ruled out some candidates (e.g. Di Mauro et al.,
2019); however, these types of studies require accurate predictions of how dark matter is
distributed.
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Cluster Counts

Since the expansion of the universe as well as the characteristics of the density fluctua-
tions in the early universe are linked to the underlying cosmological model, dark matter
halo abundances should reflect the cosmological parameters. Ultimately, the halo mass
function, n(z), which describes the number of haloes per unit comoving volume, depends
on a combination of cosmological parameters, which is best expressed as σ8f(z) ≈ σ8Ωγ

m,
where f(z) is the growth factor and γ is the growth index. The first effort to predict dark
matter halo mass functions analytically is the work of Press & Schechter (1974), with later
extensions from Bond et al. (1991) and Sheth et al. (2001). However, since these analytic
approaches make a number of simplifying assumptions, more recent work derives estimates
of the mass function using N -body simulations (e.g. Tinker et al., 2008; Watson et al.,
2013).

1.5 Outline of Thesis

The main goal of this thesis is to develop models for the structural evolution of dark mat-
ter haloes in both minor and major mergers. First, in Chapter 2 we introduce a model
for tidally-stripped dark matter haloes, based on truncating the distribution function,
and compare it to isolated minor merger simulations. We explore this model further in
Chapter 3, by comparing to other models in the literature, and examining some of the
assumptions in more detail; further, we test universality and examine implications for the
annihilation boost factor. The next two chapters focus on dark matter halo evolution in
major mergers. In Chapter 4, we present a large suite of isolated, binary, equal-mass merg-
ers and explore changes in halo spin, size, and shape. Then, in Chapter 5, we examine how
the density profile and concentration parameter of major merger remnants depend on the
parameters of the merger, as well as implications to the annihilation boost factor. Finally,
in Chapter 6, we summarize the main findings and introduce a potential cosmological test,
using halo properties in combination with cluster counts to constrain σ8.
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Chapter 2

The Phase-Space Structure of Tidally
Stripped Haloes

2.1 Introduction

On large scales, a number of independent and complementary tests, including the spectrum
of fluctuations in the microwave background (e.g. Planck Collaboration et al., 2016), galaxy
clustering (e.g. Alam et al., 2017), and weak gravitational lensing (e.g. Kitching et al.,
2014), provide overwhelming support for the existence of dark matter. This component
dominates over regular matter by a factor of ∼ 5 (Planck Collaboration et al., 2016), and
collapsed, virialized dark matter haloes are thought to be the site of all galaxy formation
(see Frenk & White, 2012, for a review).

On smaller scales, observational tests including galaxy kinematics (e.g. Ouellette et al.,
2017; Battaglia et al., 2013)), satellite kinematics (e.g. Prada et al., 2003; Guo et al.,
2012), and weak or strong gravitational lensing (e.g. Okabe et al., 2013; Umetsu et al.,
2016), amongst others, are beginning to probe the structure of individual dark matter
haloes, placing direct constraints on their density profile and velocity structure, as well
as central concentration, shape, and substructure. For the moment, however, most of our
knowledge of these non-linear scales comes from numerical simulations, which have studied
the formation and evolution of haloes at ever increasing resolution (e.g. Diemand et al.,
2007; Springel et al., 2008; Diemand et al., 2008; Stadel et al., 2009; Gao et al., 2012).

One of the main results of these simulations has been the observation that haloes have
a universal density profile (UDP), when averaged spherically. The classic approximation
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to this profile is from the work of (Navarro et al., 1996, 1997)—NFW hereafter:

ρ(r) =
ρ0

r/rs(1 + r/rs)2
, (2.1)

where ρ0 is a characteristic density and rs is the scale radius, corresponding to the point
where the logarithmic slope is d ln ρ/d ln r = −2. This profile has no outer limit a priori;
as r goes to infinity the central potential remains finite but the mass diverges. In a
cosmological context, haloes are usually considered out to the virial radius, the radius
within which they are in approximate virial equilibrium. In practice, the virial radius can
be defined by one of several overdensity criteria, or it can be specified in terms of the
concentration parameter c ≡ rvir/rs.

More recent work at higher resolution has determined that haloes differ slightly but
systematically from the original NFW fit, and that a better approximation is the Einasto
profile (Navarro et al., 2004; Merritt et al., 2006; Gao et al., 2008):

ρ(r) = ρ−2 exp

(
− 2

α

[(
r

r−2

)α
− 1

])
, (2.2)

which contains an extra shape parameter α that seems to vary systematically with mass
and redshift (Gao et al., 2008; Dutton & Macciò, 2014; Klypin et al., 2016). In this chapter
we will consider only the simpler NFW model, although our results are easily extended to
an Einasto profile, and our initial condition code, described in the Appendix, includes the
Einasto profile as an option.

Since the discovery of the universal density profile, there has been extensive work
characterizing halo properties such as shape, concentration, spin, and substructure (see
Taylor 2011 for older references, or Klypin et al. 2016 for more recent references). Average
values for properties such as concentration are now well determined as a function of mass,
redshift, and cosmology. On the other hand, given the complexity of halo growth through
hierarchical merging in a cosmological context, idealized, isolated simulations of mergers
between pairs of haloes may be better suited to determining the physical mechanisms by
which these average trends are established. For this work, it is convenient to be able to
construct models whose density is truncated at a finite radius and/or whose mass converges
to a finite value. Prior work (e.g. Moore et al., 2004; Kazantzidis et al., 2004) has used
models with exponentially truncated NFW profiles, but there is no particular theoretical
motivation for this choice. Our initial goal at the outset of this work was to provide a better
motivated model for the initial conditions for simulations of isolated, truncated systems.

The standard theory of cosmological structure formation also predicts that haloes
should grow through repeated, hierarchical mergers, and that the cores of smaller merging
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systems should survive as tidally-stripped, self-bound substructure within galaxy, group,
and cluster haloes. In previous work, Hayashi et al. (2003) studied the evolution of halo
substructure by simulating the tidal stripping of a smaller satellite halo by a larger host
halo. They found that, independent of orbit, the density profile of the satellite halo changed
in a predictable way. This change could be described by an empirical model which only
required one additional parameter, equivalent to a tidal radius rt. Though this paper did
a thorough job of describing the profile of tidally stripped haloes, it did not determine
the exact mechanisms behind the changes. Subsequent work by Kampakoglou & Benson
(2007) showed that tidal forces acting on individual particles may explain some of the form
of the density profile of stripped systems, while Choi et al. (2009) showed that particles
become unbound based more on their energy than on their angular momentum. Despite
this work, the net effect of tidal forces on the full distribution function remains somewhat
unclear.

Observational tests of these theoretical predictions based on lensing (e.g. Grillo et al.,
2015; Jauzac et al., 2016) or internal kinematics (e.g. Ouellette et al., 2017) are still in
their infancy, but show promise given forthcoming datasets from very large surveys. Other
substructure calculations, such as the boost factor for dark matter annihilation (e.g. Ander-
halden & Diemand, 2013; Sánchez-Conde & Prada, 2014, and references therein), depend
not only on the density profile, but also on the full distribution function (DF) of dark mat-
ter in stripped systems. For these applications, and in order to understand the mechanisms
of tidal stripping fully, it would be useful to have a simple analytic model for the DF of a
tidally stripped system.

In our experiments with the truncation of distribution functions (DFs) in energy space,
we have found a simple method for realizing spatially truncated haloes whose central
regions resemble NFW profiles. In this chapter we describe the method, but also show
that the truncated systems it produces closely resemble tidally stripped subhaloes orbiting
within a larger potential. Thus our model can be used to represent either stable, isolated
systems with a finite extent (e.g. for merger simulations) or tidally stripped systems (e.g. for
substructure calculations).

The outline of this chapter is as follows: in Section 2, we describe an iterative algorithm
for generating the ICs for an isolated, spatially truncated NFW profile. In Section 2.3, we
compare this approach to an analytic model where the NFW DF is truncated in energy
and shifted, analogously to a King model. In Section 2.4 we describe our simulations of
tidal stripping of haloes on various orbits, and in Section 2.5 we compare the properties of
the stripped remnants to the analytic truncated models. Finally, in Section 2.6 we discuss
the implications of our results and summarize our main conclusions.
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2.2 Creating Truncated Initial Conditions

To simulate how a spherical dark matter halo evolves in isolation, we require a method
for generating initial conditions (ICs) for particles which collectively form a stable self-
gravitating system. Given an analytic expression for the density profile, we can integrate
this to obtain the normalized cumulative mass distribution M(< r)/Mtot, and select par-
ticles randomly from this distribution, mapping enclosed mass fraction to radius. Clearly,
profiles whose total mass Mtot diverges at large radii need to be truncated in some way.
The most common solution for cosmological haloes (e.g. Kazantzidis et al., 2004; Moore
et al., 2004; Kazantzidis et al., 2006; Peñarrubia et al., 2010) is to use the exponentially
truncated NFW profile first introduced by Springel & White (1999), although this form is
motivated more by mathematical convenience than by any physical argument.

There are two approaches to determining particle velocities (assumed in the simplest
case to be spherically symmetric and isotropic in velocity space). We can either calculate
the velocity dispersion at each radius from the Jeans equation, making the approximation
that the velocity distribution is Maxwellian (e.g. Hernquist, 1993) or, for a more accurate
model, we can draw particle energies from the full DF (e.g. Kazantzidis et al., 2004) and
convert these to velocities. We review the latter approach below, before introducing and
testing our truncation method.

2.2.1 Generating Initial Conditions from the Distribution Func-
tion

We will briefly review the main properties of the DF; a more detailed explanation can
be found in Binney & Tremaine (1987). The DF, f , describes the mass per phase-space
volume. For a spherical, isotropic, self-gravitating system, it can be written as a function of
a single variable, say a relative energy E . Given a potential Φ, we will define the (potential
and total) relative energies as Ψ = −Φ + Φ0 and E = Ψ− v2/2. The parameter Φ0 is free,
and is generally set to the value of the potential at the outer boundary of the system, such
that the f > 0 only when E > 0, while f = 0 when E ≤ 0.

A relationship between the density profile of a system and the DF can be found by
integrating f(E) over all velocities. For a spherically symmetric system:

ρ(r) = 4π

∫ Ψ(r)

0

f(E)
√

2(Ψ(r)− E)dE . (2.3)
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Equation (2.3) can be inverted (Eddington, 1916), and thus the DF can be expressed in
terms of the density:

f(E) =
1√
8π2

[∫ E
0

1√
E −Ψ

d2ρ

dΨ2
dΨ +

1√
E

(
dρ

dΨ

)
Ψ=0

]
. (2.4)

A particle at radius r then has energy E ∈ (0,Ψ(r)) with a probability proportional to
f(E)

√
Ψ(r)− E .

Given a density profile ρ, the relative potential Ψ(r) can be calculated using Poisson’s
equation, and the derivatives dρ/dΨ and d2ρ/dΨ2 can be evaluated analytically or numer-
ically. The distribution function f(E) can than be calculated for a given relative energy E
using Equation (2.4). To generate a model halo, a radius and a relative energy are selected
at random for each particle, in such a way as to reproduce the correct density profile and
distribution function. Once the radius and relative energy have been assigned, the norm of
the velocity of each particle can be calculated as v =

√
2(Ψ(r)− E). Finally, 3D position

and velocity components can be chosen at random assuming (spatial) spherical symmetry,
and isotropy in velocity space, respectively. Although these techniques are well known, for
convenience we review them in Appendix A.

2.2.2 Truncating the NFW Profile at a Finite Radius

The exponentially truncated NFW profile was first described in Springel & White (1999),
and is identical to the NFW profile within the virial radius, rvir, but is truncated exponen-
tially beyond that. How fast this decay occurs depends on the parameter rd:

ρ(r) =


ρ0r

3
s

r(rs + r)2
if r < rvir

ρ0

c(1 + c)2

(
r

rvir

)ε
exp

(
−r − rvir

rd

)
if r > rvir

, (2.5)

where the constants ρ0 and rs are as in Equation (2.1). Additionally, to ensure that the
logarithmic slope at rvir is continuous, there is the constraint:

ε = −rs + 3rvir

rs + rvir

+
rvir

rd

. (2.6)

Not only does this solution have little physical motivation, however, but it is also dis-
continuous in the second derivative of ρ(r). Since Equation (2.4) depends on this second
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derivative through the d2ρ/dΨ2 term, the DF may not be monotonically increasing for
certain choices of rd, resulting in unphysical behaviour. 1

Instead, we propose a different modification to the NFW profile. Our solution is to
consider particles as if they were sampled from an infinitely extended NFW profile, but only
choose those within some radius rcut. Particle energies are initially assigned from the DF
corresponding to the full (infinitely extended) NFW profile, as described in Section 2.2.1.
We then iteratively remove any unbound particles, using at each step of the iteration the
potential defined by the set of particles remaining.2 For a halo with rcut = 10 rs, this
process converges within 10 iterations or fewer, leaving approximately 65 per cent of the
mass within rcut bound. The final result is a system with a density profile that matches
NFW at small radii, but drops off more steeply at large radii, reaching zero density at
rcut. While this truncated profile is instantaneously self-bound, its long term stability is
unclear. We will consider this point in the next section.

2.2.3 Stability Tests

Before we test the stability of our truncated profile, we need to estimate the possible
contribution from collisional effects. These can complicate the interpretation of any N-
body simulation. Our method for determining particle ICs assumes that the particles exist
in a smooth continuous potential; each particle can be considered a Monte Carlo sampling
of this potential. However, individual particle-particle interactions lead to a gradual loss
of the initial structure, most noticeably in the dense center of the halo.

There are two time scales on which collisional effects are important. The first, the
relaxation time scale, trel, corresponds to the time which it takes a typical particle’s velocity
to change by an order of itself. The second, slower timescale is the evaporation time, tevap,
the amount of time it takes a typical particle to reach escape speed, and thus ‘evaporate’
from the system. Following the arguments from Binney & Tremaine (1987), we calculate:

trel(r) ≈ 0.1

√
N(< r)

lnN(< r)

√
r3

Gm
, and

tevap(r) ≈ 136 trel(r) ,

(2.7)

1One of the stability criteria for spherical, isotropic systems is that the DF increases monotonically with
E (Antonov, 1961); for certain choices of rd, the sign of d2ρ/dΨ2 changes at the discontinuity, resulting in
a non-mononotonic DF.

2Note Choi et al. (2007) propose an alternative, but more complicated method, truncating the initial
density profile, calculating a distribution function via Eddington inversion, recalculating the resulting
density profile, and iterating over these steps until convergence.
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where N(< r) is the number of particles within radius r. Using these formulae, we can de-
fine a ‘(central) relaxation radius’, rrel(t), and a ‘(central) evaporation radius’, revap(t), such
that trel(rrel) = t and tevap(revap) = t respectively, within which relaxation and evaporation
are important.

To verify the stability of our initial satellite halo, we evolve it in isolation with the N -
body code gadget-2 (Springel, 2005). We generate an initial NFW system with 2× 106

particles within a radius rcut = 10 rs. After iteratively removing unbound particles (as
described in Section 2.2.2), the final number of particles in the truncated system is N =
1286991. We then assign each particle a mass m such that the total satellite has mass
Msat. We simulate the evolution of the system using the softening length proposed in van
Kampen (2000), ε = 0.5rhN

−1/3, where rh is the half-mass radius. For our ICs, ε = 0.01 rs.

Fig. 2.1 shows the evolution of the density profile with time. The outer part of the
profile appears to be completely stable, with any systematic changes invisible on the scale
of the figure. The only visible change is in the region interior to revap. This is consistent
with the results of Hayashi et al. (2003), who found that the internal structure evolves
at radii where the evaporation time is close to t. (We have also confirmed the predicted
scaling of revap with particle number using lower resolution simulations.) We conclude
that this central change is a collisional effect due to finite resolution, and that our ICs are
otherwise extremely stable.

One disadvantage of our iterative unbinding method is that the resulting truncated DF
does not have a simple expression, even for cases where the original, un-truncated DF is
simple. Thus, in the next section we will consider a slightly different analytic approach,
and show that it produces remarkably similar results.

2.3 An Analytic Model for the Truncated Distribu-

tion Function

Our goal is to derive an analytic approximation for the DF of a truncated system with
a NFW or UDP-like central density profile. We will take an approach similar to the
derivation of the King model (King, 1966), truncating and lowering the DF in energy space,
as described below. For the NFW profile, this approach has been proposed previously by
Widrow & Dubinski (2005), who showed that it leads to sharply truncated density profiles
(see their Figure 1).
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Figure 2.1: Evolution of the density profile simulated in isolation. The black dashed line
shows a (non-truncated) NFW profile, and the solid black line shows the profile of our ICs
at t = 0. The coloured lines show the density profile at subsequent times, as labeled. Radii
rrel and revap at which relaxation and evaporation effects become important are shown with
vertical dotted and dashed lines, respectively. The truncated profile is completely stable
outside revap. Time is in units of

√
r3

s/GMsat, where rs is the scale radius, and Msat is the
mass of the halo.
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2.3.1 Review of the King Model

The King model is a lowered isothermal model based on the (infinitely extended) isothermal
sphere, but with a lowered relative energy E . Additionally, it subtracts a constant term
to ensure that the DF is continuous at this truncation energy. This last step results in a
more extended profile (Hunter, 1977), and presumably increases the stability of the model
(e.g. Guo & Li, 2008).

As previously, we will define relative energies Ψ = −Φ+Φ0 and E = Ψ−v2/2. Suppose
initially we choose Φ0 = 0. The DF for an isothermal sphere of velocity dispersion σ can
be written:

Fiso(Z) = F0 exp[Z] , (2.8)

where Z = E/σ2 is a dimensionless, scaled version of the relative energy. As with the NFW
profile, this DF corresponds to a profile that extends to infinity and has infinite mass.

A solution to the infinite mass problem of the isothermal sphere is to lower the relative
energy, letting Z → Z − Zt (Woolley, 1954). This produces a truncated DF of the form:

FWooley(Z) =

{
Fiso(Z − Zt) Z ≥ Zt

0 Z ≤ Zt .
(2.9)

If one uses the freedom of Φ0 to express F in terms of Z ′ = Z − Zt, the DF has the same
form as that of the infinitely extended isothermal sphere, but the density now drops to
zero at a finite radius.

This form of the DF introduces a new complication, however, as it is now discontinuous
at F (Zt). A solution to this problem is to subtract a constant term. DFs of this form are
known as King models (Michie & Bodenheimer, 1963; King, 1966):

FKing(Z) =

{
Fiso(Z − Zt)− Fiso(0) Z ≥ Zt

0 Z ≤ Zt .
(2.10)

2.3.2 Energy Truncation of a NFW Distribution Function

For mathematical convenience, we introduce the following dimensionless variables; R =
r/rs, p = ρ/ρ0, P = Ψ/(4πGρ0r

2
s ), Z = E/(4πGρ0r

2
s ) and F = (4πG)3/2r3

sρ
1/2
0 f , where

Ψ(r) = −Φ(r)+Φ0 and E = Ψ(r)−v2/2, as above. Here, the energies have been normalized
by the magnitude of the central potential of a NFW profile |ΦNFW(r = 0)| = 4πGρ0r

2
s .
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The DF for the NFW profile can be determined numerically from Equation (2.4). How-
ever, in practice, we use the analytic approximation proposed by Widrow (2000):

FNFW(Z) = F0Z
3/2(1− Z)−5/2

(
− lnZ

1− Z

)q
× exp(p1Z + p2Z

2 + p3Z
3 + p4Z

4) , (2.11)

where q = −2.7419, p1 = 0.3620, p2 = −0.5639, p3 = −0.0859, p4 = −0.4912 and F0 =
0.091968. We find that this approximation agrees with the numerically calculated DF to
within 2 per cent.

We wish to truncate the NFW DF at some truncation energy Et, or in dimensionless
form Zt = Et/(4πGρ0r

2
s ). The modified DF is then given by:

F (Z) =

{
FNFW(Z)− FNFW(Zt) Z ≥ Zt

0 Z ≤ Zt .
(2.12)

We can exploit the freedom of Φ0, picking a new value such that the relative energy is
zero on the boundary. Given this new value of Φ0, and denoting the new relative energy
variable Z ′ = Z − Zt, the DF then becomes:

F (Z ′) =

{
FNFW(Z ′ + Zt)− FNFW(Zt) Z ′ ≥ 0

0 Z ′ ≤ 0 ,
(2.13)

where Zt the truncation energy defined using the original value of Φ0.

Note that this derivation is slightly different from that of the lowered isothermal sphere
model outlined in Section 2.3.1. Comparing Equations (2.10) and (2.13), we find that
applying the latter to the isothermal sphere will recover the King model, but multiplied
by a constant term eZt .

It can be shown that the relative energy of the energy-truncated NFW profile has a
maximum value Z = 1− Zt; this corresponds to the central relative potential P (0) of the
truncated system. The final system has a finite radius, rt. Increasing the truncation energy
will decrease the central potential, the truncation radius, and the total mass of the system.

We need two more equations to describe this system. The density profile can be re-
covered from Equation (2.3), and the relative potential can be determined from Poisson’s
equation:

d2Ψ

dr2
+

2

r

dΨ

dr
= −4πGρ(Ψ) , (2.14)
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or, re-expressed in the dimensionless parameters:

d2P

dR2
+

2

R

dP

dR
= −p(P ) = −4π

∫ P

0

F (Z)
√

2(P − Z)dZ . (2.15)

The initial conditions are P (0) = 1 − Zt and dP (0)/dR = 0. Equation (2.15) can be
integrated numerically until P (Rt) = 0.

Putting all this together, the density of the truncated halo at radius R can be deter-
mined using the following steps:

1. Specify the dimensionless truncation energy Zt ∈ (0, 1).

2. Given the distribution function, calculate the potential at radius R by numerically
integrating Poisson’s equation (Equation (2.15)) with initial conditions P (0) = 1−Zt,
dP (0)/dR = 0.

3. Find the density by numerically integrating Equation (2.3).

The potential Φ(r) = −Ψ(r) + Φ0 can be recovered once the truncation radius has been
determined, since Φ0 = −GM(rt)/rt.

Finally, we note that although we have discussed the energy-truncation method specif-
ically for an NFW profile, it can be used for any density profile with a known or calculable
DF, including an Einasto profile, and could also be extended to the various theoretically
motivated models of the intrinsic halo DF (e.g. Hjorth & Williams, 2010; Pontzen & Gov-
ernato, 2013; Beraldo e Silva et al., 2014). For cored density profiles, energy truncation
will generally reduce the central density of the system significantly as the outer radius
decreases, as discussed by Widrow & Dubinski (2005) and Peñarrubia et al. (2010).

2.3.3 Properties of the Truncated Model

As we increase the truncation energy, the mass and extent of the NFW profile will decrease
progressively. Fig. 2.2 shows how the density profile changes as a function of the dimen-
sionless truncation energy Zt, relative to the original NFW profile. Note that by definition,
the density drops to zero outside the truncation radius (indicated by the vertical dashed
lines).

The relationships between the truncation energy, Zt, and the total bound mass and
truncation radius are shown in Fig. 2.3. Both the mass and the truncation radius are
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smooth, decreasing functions of the truncation energy, as expected. The polynomial fits to
the data shown (and valid over the range of the plot) are Mf ≡M(r < rt)/MNFW(r < rt) =
0.35Z2

t−1.14Zt+0.83 and rf ≡ log10(rt/rs) = −3.70Z3
t +5.93Z2

t−4.56Zt+2.01. We can also
fit the inverse relations: Zt = 0.6M2

f −1.7Mf +1.02 and Zt = 0.2r3
f −0.4r2

f −0.39rf +0.94.

Finally, we return to our original goal, to establish an analytic approximation to the DF
produced by the iterative unbinding procedure we introduced in Section 2.2. In Fig. 2.4, we
show how the ICs derived in Section 2.2 compare to the analytic energy-truncated NFW
model developed in this section. The histogram shows the ICs, the lower dashed curve
shows the result of truncating the NFW DF at the energy Et (i.e. f(E) = fNFW(E + Et)),
while the upper dotted curve shows the full model, including the shift to make f continuous
at zero: f(E) = fNFW(E + Et) − fNFW(Et). As before, the solid line shows the original
untruncated profile. Both models provide a good match to the density profile of the
ICs. As with the King model, subtracting the constant term fNFW(Et) produces a more
extended profile. We will adopt this version as our final analytic model for the DF, on the
assumption that it is slightly more stable than the model where f is discontinuous at zero.
Overall, these results suggest that an energy-truncated DF comes close to describing ICs
obtained using the method outlined in Section 2.2. In principle, ICs could therefore be
generated directly from the energy-truncated DF, although in practice our code implements
the iterative unbinding procedure.

2.4 Simulating Tidally Stripped Haloes

The very similar truncated profiles derived either by iterative unbinding in Section 2.2, or
analytically in Section 2.3, were designed to represent isolated systems of finite mass and
radial extent. We note, however, that they also look very similar to the density profiles
of tidally stripped haloes orbiting within the potential of a larger system (e.g. Hayashi
et al., 2003). To pursue this analogy, we will compare our truncated models directly
to tidally stripped haloes taken from simulations of satellite mass loss. We describe the
simulations and basic analysis below, and then compare the simulated systems to our
models in Section 2.5.

2.4.1 Simulation Parameters

Simulations of a smaller ‘satellite’ halo orbiting within the potential of a larger static ‘host’
halo were performed using the N -body code gadget-2 (Springel, 2005). This code was
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modified to contain a fixed background potential corresponding to a host halo with an
NFW profile. We use the mass and scale radius of the satellite halo (Msat and rs) as the
mass and distance units. Time is given in units tunit =

√
r3

s/GMsat, and velocity in units

of vunit =
√
GMsat/rs. The host and satellite haloes were assumed to have the same initial

density within their outer, or ‘virial’ radii, as would be the case for a merger between
two cosmological haloes at a fixed redshift. We generated initial conditions for the satellite
using our iterative unbinding algorithm with rcut = rvir = 10 rs, as described in Section 2.2.
The virial radius of the main halo scales as (Mhost/Msat)

1/3, while the scale radius of the
host was set assuming chost = 10.

The orbital parameters of infalling satellite haloes have been studied extensively in
simulations (Tormen, 1997; Ghigna et al., 1998; Vitvitska et al., 2002; Benson, 2005; Wang
et al., 2005; Zentner et al., 2005; Khochfar & Burkert, 2006; Wetzel, 2011; Jiang et al.,
2015). The parameters used in this chapter (see Table 2.1) cover the full range of energy
and angular momentum expected for cosmological mergers (e.g. Jiang et al., 2015), with the
exception of Simulations 5 and 6 which have unusually low and high energies, respectively.
This allows us to test our tidal-stripping model not only for cosmological orbits, but also
for a few more extreme cases.

We considered four different host/satellite mass ratios, Mhost/Msat = 300, 100, 50 and
10. Since the host halo was modelled as a fixed background potential, the satellite is not
subject to dynamical friction in our simulations, and we expect its specific energy and
angular momentum to be roughly conserved, even as it loses mass. The assumption that
the host halo is static becomes less physically valid for low mass ratios, where dynamical
friction plays a larger role. Nonetheless, we run a few cases at smaller mass ratios to
test the effect of a larger satellite on the evolution of the density profile. At large mass
ratios, where the satellite is small compared to the scale of the background potential, we
expect satellite evolution to become independent of mass ratio. We chose a limiting value
of Mhost/Msat = 300 for practical reasons, as the ratio of the simulation time step to the
orbital period is becoming very long at this point.

2.4.2 Locating the Satellite Remnant

We identified the satellite remnant at any given time using a method similar to the one
outlined in Tormen et al. (1997, 1998). This is also the method used in Hayashi et al. (2003).
There are two steps to this method; first the highest density peak of the particles is located
approximately by iteratively decreasing the radius R of a sphere, and re-centering it at each
step on the center of mass of the particles contained within the sphere. We decreased the
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Table 2.1: Summary of simulation parameters. Columns give (1) the simulation number
(2) the mass ratio between the host and satellite halo (3) the virial radius of the host (4) the
apocentric distance (5) the pericentric distance (6) the tangential velocity at apocenter (7)
the (radial) orbital period, (8) the circularity of the orbit, (9) the relative energy (defined
as the energy divided by the energy of a circular orbit at the virial radius) (10) the radius
of a circular orbit with the same energy divided by the virial radius.

Sim Mhost/Msat Rvir/rs ra/rs rp/rs va/vunit torb/tunit εc η Rc/Rvir

1 100 46.4 100 10 0.34 206.8 0.42 0.85 1.26
2 100 46.4 100 50 0.90 299.4 0.92 0.71 1.63
3 300 66.9 100 10 0.51 129.7 0.40 1.09 0.88
4 300 66.9 100 50 1.42 185.4 0.92 0.92 1.13
5 100 46.4 500 50 0.23 1778.5 0.47 0.24 6.14
6 300 66.9 25 10 1.50 31.48 0.82 2.29 0.26
7 50 36.8 80 5 0.19 201.6 0.30 0.86 1.24
8 50 36.8 90 15 0.37 259.7 0.58 0.76 1.48
9 10 21.5 40 10 0.30 196.8 0.71 0.88 1.19
10 10 21.5 25 10 0.42 123.2 0.85 1.14 0.82

sphere by 0.9R on each iteration, and repeated until there were fewer than 100 particles
within the sphere. We expect our results to be insensitive to this choice of final particle
number, as discussed in Tormen et al. (1997). The velocity of the satellite frame was then
calculated as the average velocity of all satellite particles within a sphere of radius rcut

(the original truncation radius of the satellite) centered on the highest density peak. The
second step of this process was to identify which subset of particles was self-bound in this
frame. This was calculated by iteratively removing unbound particles in the rest frame of
the satellite until the algorithm converged.

Finally, we found that in a few cases where the algorithm had trouble locating a self-
bound remnant (particularly at late times in Simulation 6), we were able to improve the
algorithm by first approximating the location of the satellite remnant by integrating for-
ward from the previous snapshot (assuming the satellite was a point mass orbiting in the
potential of the host), and then only considering particles within 2 rcut of this predicted
location.

Fig. 2.5 shows how the recovered satellite mass decreases with time for the ten simu-
lations. Given a bound remnant and associated satellite reference frame in each step, we
then fit the remnant’s profile to the analytic model from Section 2.3, as described below.
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2.5 Results

2.5.1 Fitting Criteria

To compare our tidally stripped satellites to the energy truncated DF model, we need a way
of determining the free parameter, Zt. We do this by normalizing our DF models, such that
their scale radii and central densities before truncation match those of the original NFW
profile from which the ICs for the simulations were derived by the iterative method. This
accounts for the fact that the initial conditions in the simulations are already truncated
at a finite radius. Zt is then chosen so that both the simulations and the models have the
same mass. We compare the analytic model to the simulations at apocenter on successive
orbits, since these are the times when we expect the satellite to be closest to equilibrium.

2.5.2 Density Profiles, Enclosed Mass, and Circular Velocity Pro-
files

The top panels of Fig. 2.6 show a comparison of the satellite density profiles from simula-
tions (points) with the energy-truncated model (solid curves), where Zt has been fixed as
described above. The thick dashed curve shows an untruncated NFW profile. We demon-
strate how the profile changes in time for Simulations 4 and 3 in the two left-most panels,
as well as how the different simulations compare in the two right-most panels. Note that
Simulation 4 and Simulations 2, 5, 8 and 9 are the orbits with the slowest mass loss, and
therefore the ones we might expect to be the most successfully described by our model.
The bottom panels of Fig. 2.6 show the relative residuals in density, (ρsim/ρmodel − 1).
These are generally less than 10 per cent for the orbits with slower mass loss, or less than
20 per cent for orbits with faster mass loss. They are largest for Simulation 6, which loses
mass extremely rapidly (see Fig. 2.5), or at late times for Simulation 3. The residuals
are generally slightly larger at large radii, where an excess relative to the model is also
visible in the top panels. Previous authors (e.g. Peñarrubia et al., 2008b, 2009, 2010, and
earlier references therein) have noted a distinct population of particles in the outer parts
of tidally stripped systems, at radii too large to have crossed the satellite in the time since
last pericentric passage. This may account for some of the excess seen here.

Fig. 2.7 and Fig. 2.8 show a comparison of the enclosed mass and circular velocity
profiles, respectively. Linestyles are as in Fig. 2.6. Here too, residuals are generally at
the 10–20 per cent level or less. The largest deviations occur in Simulation 6, which loses
mass the fastest. It should also be noted that Simulation 6 corresponds to an extreme,
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Figure 2.6: (Top panels) Density profiles of the bound satellite remnant. Simulation results
are shown with points, and the best-fit energy-truncated model is shown with lines. The
thick dashed curve shows an untruncated NFW profile, while the solid black curve shows
the initial conditions at the start of the simulation. The two left panels show the first four
orbits of Simulation 4 and Simulation 3. The two panels on the right show the profiles
after two orbits for the simulations indicated. (Bottom panels) Relative residuals in density,
(ρsim − ρmodel)/ρmodel.
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uncosmological orbit, with unusually large energy and extremely rapid mass loss, so it
is less representative of realistic halo mergers. We also note that our mass profiles and
circular velocity profiles are constrained by the condition that the stripped mass fraction
in the simulations matches the corresponding fraction in the models; a slightly different
choice of Zt would have improved the agreement at some radii (e.g. near the peak of the
circular velocity curve in Simulation 1), at the expense of a slightly worse fit close to rcut.

In general, the radius at which evaporation becomes important is not visible on the
scales of Figs. 2.6–2.8. The exception is Simulation 5, which has a very long orbital time
scale. Thus, the deficit of mass at small radii for this simulation can be attributed to
collisional effects.

2.5.3 Distribution Function and Moments of the Phase-Space
Distribution

Finally, we can attempt to compare the full DF of our simulated systems to the analytic
energy-truncated model. We note that the construction of the DF requires a frame in
which to define velocities, and a set of particles to integrate over when calculating the
potential. Thus the ‘distribution function’ of a subsystem within a larger halo is a slightly
problematic concept, relative to the usual definition for an isolated system. Here, to be
concrete, we define velocities in the mean center-of-mass frame of the self-bound remnant,
and calculate potential energies summing only over those particles that are bound.

Given this convention, the DFs for the first four orbits of Simulation 4 are shown in
Fig. 2.9. Each point represents the number of particles in a bin of normalized relative
energy Z. This was found by binning the particles in 500 equally sized bins in both radius
and velocity. The phase-space density of each bin was then calculated as the number of
particles divided by 16π2r2v2drdv. As usual, the relative energy is E = Ψ(r)− v2/2, where
Ψ(r) = −Φ(r)+Φ(rmax), and rmax is the radius of the remnant. Only bins with phase-space
volume greater than 10−5 were plotted, to avoid numerical errors resulting from dividing
by small numbers.

The solid lines show the prediction of the analytic model from Section 2.3 for compari-
son, while the dashed line shows the original (untruncated) NFW DF. Generally speaking,
there is good agreement between the tidally stripped DFs and the analytic models for
low relative energies, though it is difficult to compare the simulation to the model for
large values of Z (corresponding to particles at small radii and/or low energies), since the
phase-space volume becomes very small in this limit.
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Figure 2.7: (Top panels) Cumulative mass profiles of the bound satellite remnant. Sim-
ulation results are shown with points, and the best-fit energy-truncated model is shown
with lines. The thick dashed curve shows an untruncated NFW profile, while the solid
black curve shows the initial conditions at the start of the simulation. The two left panels
show the first four orbits of Simulation 4 and Simulation 3. The two panels on the right
show the profiles after two orbits for the simulations indicated. (Bottom panels) Relative
residuals in mass, (Msim −Mmodel)/Mmodel.
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Figure 2.8: (Top panel) Circular velocity of the bound satellite remnant as a function of
radius. Simulation results are shown with points, and the best-fit energy-truncated model
is shown with lines. The thick dashed curve shows an untruncated NFW profile, while
the solid black curve shows the initial conditions at the start of the simulation. The two
left panels show the first four orbits of Simulation 4 and Simulation 3. The two panels on
the right show the profiles after two orbits for the simulations indicated. (Bottom panels)
Relative residuals (vsim − vmodel)/vmodel.
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In Fig. 2.10 we also show the evolution of the pseudo-phase-space density for Simu-
lations 3 and 4 (top panel). As first noted by Taylor & Navarro (2001), the spherically
averaged pseudo-phase-space density, ρ/σ3, of isotropic, cosmological haloes appears to
follow a simple power law as a function of radius. The dashed line shows this power-law
for an infinitely extended NFW profile. For the truncated analytic models (solid lines), we
can calculate the velocity dispersion from the probability distribution function for veloci-
ties, P (v) ∝ f(E)v2/ρ(r). The analytic models also follow a power law out to around the
truncation radius, but with a flatter slope. The relative increase in pseudo-phase-space
density at large radii is expected, since energy truncation reduces the number of particles
with large velocities, and thus the velocity dispersion, in these regions. A similar flat-
tening of the slope has also been seen in tidally truncated subhaloes from self-consistent
cosmological simulations (Vera-Ciro et al., 2014).

Interestingly, while the simulation results (points) match the analytic models extremely
well at small radii, they deviate from them systematically at large radii. The bottom
panel shows the likely reason for this discrepancy: the tidally stripped simulations are not
isotropic in their outer regions. Plotting the anisotropy parameter β = 1−(σ2

θ +σ2
φ)/2σ2

r as
a function of radius, we see that the analytic model and simulation results in the top panel
begin to differ at radii where β is becoming significantly different from zero, suggesting
that our analytic model fails to match the outer parts of the simulations primarily because
the assumption of isotropy is no longer valid there.

To get a better sense of where the simulations differ from the models in the full phase
space, we can also bin the DF in radius and (total) velocity. Fig. 2.11 shows this 2-D
distribution for the first three orbits of Simulation 4 (top three panels), the correspond-
ing analytic models (middle panels), and the differences between the two (lower panels).
Generally speaking, there is good agreement between the models and the simulations in
this projection of the full phase space. The tidally stripped satellites show a slight excess
of particles at large radii and large velocities, and this excess may even have a caustic-like
structure to it. It seems likely that this is related to the excess component at large radii
noted by earlier authors and discussed in the previous section. Peñarrubia et al. (2009)
found that this outer material, while still bound, is on its way out of the system and is
mostly lost on the next orbit. Such non-equilibrium effects would not be captured by our
analytic truncation model. There is also a slight deficit of particles at small radii and low
velocities. Here, relaxation may play a role in scattering particle energies, and depleting
the lowest-energy orbits.
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GMsat/rs. The thick dashed curve shows an untruncated

NFW profile, while the solid black curve shows the initial conditions at the start of the
simulation. Simulation results are shown with points, and the analytic model with lines.
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2.6 Discussion and Conclusions

Dark matter haloes play a central role in the current picture of cosmological structure
formation, and their properties and evolution determine many of the broad trends in the
properties of galaxies, galaxy groups and galaxy clusters. Our understanding of halo for-
mation and evolution is still limited, however; many basic questions, such as the origin of
the universal density profile or the concentration-mass relation, have not yet been answered
fully. Progress in understanding halo properties will come from a combination of fully re-
alistic, large-volume cosmological simulations, together with simpler, idealized simulations
of individual haloes. Our original goal, in this work, was to develop a better algorithm for
generating initial conditions for the latter.

We have found through experimentation that two different approaches yield similar re-
sults: either truncating an NFW profile abruptly at some radius rcut, and then iteratively
removing unbound particles until convergence is reached, or using an analytic NFW distri-
bution function truncated at some energy and shifted such that the resulting distribution
function is continuous at E = 0. The latter technique, inspired by the King model (King,
1966) and proposed previously by Widrow & Dubinski (2005), produces almost the same
density profile as the former, and allows us to construct simple analytic models for spa-
tially finite systems whose central regions resemble NFW profiles. For generating initial
conditions in practice, we have used the first method; our tests show that these models are
extremely stable, and thus well suited to the study of isolated systems.

For either of these solutions, the density profile drops off steeply, reaching zero at
a finite truncation radius. This behaviour is familiar from numerical studies of tidally
stripped haloes, starting with (Hayashi et al., 2003). Pursuing the suggestion of a connec-
tion between the two, we have simulated the tidal evolution of satellite subhaloes in the
potential of a larger system. We find that the resulting tidally stripped remnants match
our theoretical models at the 10–20 per cent level or better in density profile, enclosed
mass and/or circular velocity profile. In phase space they also look similar, particularly
when we plot phase-space density projected in terms of radius and total velocity. Some of
the minor differences may relate to the presence of unrelaxed material close to the outer
edge of the system, as discussed by Peñarrubia et al. (2009), or to relaxation effects near
its centre. The origin and full significance of these differences will require further work to
clarify. Nonetheless, overall our analytic model provides a good first approximation to the
detailed distribution function of tidally stripped systems.

This result is actually slightly surprising. Tidal mass loss is a complex process, and
has been investigated by many authors previously, using different approaches and approx-
imations. Taylor & Babul (2001), for instance, developed a 1-D model for tidal stripping,
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calculating the average effects of tidal heating and expansion, as well as adiabatic cooling,
within spherical shells, and removing the mass outside an instantaneous tidal limit over a
timescale equal to the instantaneous (angular) orbital period, torb = 2π/ω. A limitation of
this model, in the present context, is that it did not specify the actual density profile of
the satellite at any one time, but only the net effect of heating and cooling on mass loss.
Benson et al. (2002) considered a similar model, but with several corrections, notably using
the shorter of the angular orbital period and the radial infall time R/vR as the timescale
for mass loss. They found this gives better agreement with mass loss rates from simula-
tions for very radial orbits. Analytic models of a type similar have also been developed
by several other groups (e.g. Zentner & Bullock, 2003; Oguri & Lee, 2004; van den Bosch
et al., 2005; Zentner et al., 2005).

Kampakoglou & Benson (2007) considered the problem of mass loss in more detail,
calculating the effects of heating on circular orbits more precisely using particles to sample
the distribution function in energy and angular momentum, as well as for particle orbits
of different inclination. They found that by successively heating and removing unbound
particles, they predicted a profile similar to the one seen in their simulations, at least in
the limit of weak tidal fields. This may provide the first hint that modelling mass loss in
energy space can naturally explain the profile of tidally stripped cosmological haloes.

Given that they were trying to establish simpler, semi-analytic prescriptions for tidal
mass loss, none of these approaches considered the full complexity of the problem. In
reality, the tidal boundary is non-spherical even for a spherical system on a circular orbit;
for a general orbit it is also time-varying, and the timescales for relaxation and mass removal
in the outer parts of the satellite are unfortunately very close to the orbital timescales.
Furthermore, real haloes are usually triaxial, and may have their spin partly coupled to
their orbital angular momentum. Thus a general, predictive and highly accurate model for
tidal mass loss seems a distant prospect.

Nonetheless, some simple patterns do emerge. Hayashi et al. (2003) first pointed out
that all tidally truncated NFW profiles look the same, and can be fit by a single additional
parameter; they showed that mass loss in their simulations is essentially a 1-dimensional
sequence, a result later confirmed for a wider range of profiles by Peñarrubia et al. (2010).
Our results now connect this stripping sequence to a simple cutoff and shift in the under-
lying distribution function, parameterized by an increasing truncation energy Et. Exactly
how heating, relaxation, and unbinding conspire to produce this simple result is unclear.
A hint comes from the work of Choi et al. (2009), who show that individual particles in
tidally stripped systems do or don’t become unbound based primarily on their energy,
rather than their angular momentum. Thus, a simple cut in energy may provide a fairly
accurate description of the mass-loss process.
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Producing a more detailed description of tidal mass loss will be the focus of future
work. In the interim, the models presented here provide a new, physically motivated way of
generating initial conditions for isolated haloes or tidally truncated subhaloes. Applications
include studies of tidal stream formation (e.g. Amorisco, 2015, and references therein),
disk heating (e.g. Moetazedian & Just, 2016, and references therein), mergers (e.g. Carucci
et al., 2014, and references therein), and dwarf galaxy evolution (e.g. Tomozeiu et al., 2016,
and references therein). A python code for generating ICs using our iterative method is
available on-line. Its use is described in the appendix.

Finally, we note several limitations to this work. We have studied the tidal evolution of
idealized, spherical, isotropic haloes, with an NFW density profile and corresponding DF.
Haloes in self-consistent cosmological simulations differ from this idealized case in a number
of ways. It is tempting to look to self-consistent simulations to try to understand tidal
mass loss in a more realistic situation; Springel et al. (2008), for instance, show the density
profiles of tidally truncated subhaloes resolved in the Aquarius simulations with 105 − 106

particles or more. Broadly speaking they resemble our models, with a profile similar to
field haloes (i.e. close to an NFW or Einasto profile) in the inner parts, and truncated
abruptly in the outer parts. Unfortunately, in self-consistent simulations the exact profile
and distribution function of a subhalo will depend on the group-finder used. Group-finders
use various different criteria for defining the boundary of a subhalo, producing slightly
different results (e.g. Muldrew et al. 2011; see Onions et al. 2012 for a general review).
Establishing precisely which particles are or aren’t associated with a subhalo, in a region
dominated by the background potential of the main system, is essentially impossible. Thus,
the idealized simulations presented here actually provide more reliable information about
the behaviour of stripped systems close to the tidal boundary, and may even help to
evaluate different group-finding schemes in realistic simulations.

The isotropic NFW models considered in this work do not necessarily provide the most
accurate description of cosmological haloes, either. The highest-resolution simulations in-
dicate that an Einasto profile is a better fit to the density profile (e.g. Navarro et al., 2010;
Klypin et al., 2016), but real haloes are also anisotropic, triaxial, and have more compli-
cated correlations between shape and anisotropy (e.g. Wojtak et al., 2013). There are also
several proposed models for the ‘true’ DF of dark matter haloes, based on maximizing en-
tropy under various constraints, or other arguments (e.g. Hjorth & Williams 2010; Pontzen
& Governato 2013; Beraldo e Silva et al. 2014; see Halle et al. 2019 for a discussion). Our
focus here is not on which of these theoretical models is correct, but on the generic effects of
tidal mass loss on any DF. Our analysis is general and may be applied to these theoretical
models, or to any other model with an explicit DF.

Many real systems of interest also have a separate baryonic component that is impor-
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tant, if only as a tracer of dynamics and mass loss. Various authors have considered the
density profiles and/or phase-space distributions of luminous stars within a surrounding,
tidally limited dark matter potential, and their evolution through tidal interactions (e.g.
Mashchenko & Sills, 2004, 2005a,b; Peñarrubia et al., 2008b; Sales et al., 2010; Kazantzidis
et al., 2011; Amorisco & Evans, 2011). Our focus here is simply on understanding the
phase-space evolution of the dark matter particles themselves. We leave further discussion
of the evolution of self-consistent, two-component systems to future work.
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Chapter 3

An Energy-Based Model for the
Evolution of Tidally Stripped
Systems; Universality and
Applications

3.1 Introduction

The standard theory of structure formation predicts that dark matter haloes grow through
“hierarchical” merging, in which small structures merge to form progressively larger ones.
As smaller systems merge with larger ones, they evolve through dynamical friction, mass
loss and tidal heating, and survive as self-bound structures within galaxy, group, and
cluster haloes. Isolated dark matter haloes have a nearly universal density profile (UDP),
which is commonly described in terms of the Navarro-Frenk-White (NFW) profile (Navarro
et al., 1996, 1997):

ρ(r) =
ρ0r

3
s

r(r + rs)2
, (3.1)

where ρ0 is a characteristic density and rs is the scale radius, describing the point where
the logarithmic slope is d ln ρ/d ln r = −2.

Most of the understanding of dark matter haloes comes from cosmological simulations,
though to understand the detailed physical processes involved in halo mergers, isolated
simulations are often used. Tidal stripping in minor mergers, for instance, is frequently
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studied using simulations of a satellite halo evolving within a static host halo (e.g. Hayashi
et al., 2003; Kazantzidis et al., 2004; Boylan-Kolchin & Ma, 2007; Kampakoglou & Benson,
2007; Peñarrubia et al., 2008a,b, 2009; Choi et al., 2009; Peñarrubia et al., 2010; Drakos
et al., 2017). These idealized simulations provide a way to test the physical processes which
govern subhalo evolution.

The fate of the central density of these haloes is particularly important, since visible
structures, such as galaxies, trace the central regions of haloes. Additionally, the inner
density of dark matter haloes has implications to dark matter annihilation surveys, since
the annihilation signal scales as density squared. For instance, there is some work on the
inner slopes of the earliest haloes (e.g. Ishiyama, 2014; Angulo et al., 2017; Ogiya & Hahn,
2018; Sten Delos et al., 2019), that suggests that the first objects are cuspy, with an inner
slope r−1.3. This could enhance the dark matter annihilation significantly, but it is unclear
whether these high density central regions survive merging and tidal stripping. Since
the innermost parts of haloes are difficult to resolve in simulations due to gravitational
softening, this is beyond the dynamic range of simulations. For this reason, it is important
to have a theoretical understanding of how suhaloes evolve.

Classical approaches to modelling tidally stripped haloes generally remove mass outside
of some tidal radius (e.g. Taylor & Babul, 2001; Peñarrubia et al., 2004; Just & Peñarrubia,
2005; Benson, 2005), though more detailed models of subhalo evolution also take into
account individual particle energies and angular momenta (e.g. Kampakoglou & Benson,
2007). As first pointed out by Choi et al. (2009), tidal stripping may be best described
by an outside-in process in energy space. Following this, in Chapter 2, we described a
physical model that is based on an energy truncation of a halo’s distribution function.
When applying the model to isolated simulations of NFW subhaloes, we found it matches
the stripped profile as well as the phase-space distribution quite well.

The aim of this chapter is to further examine the assumptions in our energy-truncation
model. Additionally, since our model can be applied to any collisionless system, we apply
it to other profile models to test whether it may be used as a universal model for tidally
stripped systems, and calculate its implications for the dark matter annihilation boost
factor. The structure of this chapter is as follows: in Section 3.2 we review the model
presented in Chapter 2, and then in Section 3.3 compare it to other models in the literature.
In Section 3.4 we apply the model to an NFW profile as in Chapter 2, and explore the
limitations of the model, and the validity of model assumptions. In Section 3.5 we apply the
model to a number of other profiles, to examine its universality. In Section 3.6 we explore
the implications of this model to the annihilation boost factor. Finally, we summarize the
findings of this chapter in Section 3.7.
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3.2 Review of Energy-Truncation Model

In Chapter 2, we outlined a method for truncating a spherically symmetric profile in energy
space, which we will review here. First, we provide a brief summary of the distribution
function (DF) and its properties; a more detailed description can be found in Binney &
Tremaine (1987).

3.2.1 Distribution Function

The DF, f(r, v), describes the mass per phase-space volume dr3dv3. For spherically sym-
metric, isotropic systems, the DF is only a function of the relative energy E = Ψ(r)−v2/2;
i.e. f(r, v) = f(E). The relative potential energy, Ψ(r) is defined as Ψ = −(Φ + Φ0), where
Φ0 is usually defined at the outer boundary of the system, such that f > 0 when E > 0,
and f = 0 otherwise. The DF is related to the density profile, ρ(r), as follows:

ρ(r) = 4π

∫ Ψ(r)

0

f(E)
√

2(Ψ(r)− E)dE . (3.2)

This relationship can be inverted, and the DF expressed in terms of the density profile
by using Eddington’s inversion method (Eddington, 1916):

f(E) =
1√
8π2

[∫ E
0

1√
E −Ψ

d2ρ

dΨ2
dΨ +

1√
E

(
dρ

dΨ

)
Ψ=0

]
. (3.3)

3.2.2 The Model

The model presented in Chapter 2 is created by lowering the original DF of the subhalo and
then recovering the modified density profile, analogous to how the King Model is created by
lowering the DF of an isothermal sphere (King, 1966). This method was originally proposed
in Widrow (2000) as a method to truncate NFW profiles to use as initial conditions (ICs)
in isolated simulations. In Chapter 2, we showed that it also worked well as a description
for tidally stripped haloes.

First, given the DF of the original system f0(E), the new DF is expressed as:

f(E) =

{
f0(E + ET)− f0(ET) E ≥ 0

0 E ≤ 0 ,
(3.4)
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where ET is the truncation or tidal energy. Then, the relative potential of the truncated
system can be found by solving Poisson’s equation:

d2Ψ

dr2
+

2

r

dΨ

dr
=

−16π2G

∫ Ψ(r)

0

(f0(E + ET)− f0(ET))
√

2(Ψ(r)− E)dE

Ψ(0) = Ψ0(0)− ET

dΨ(0)

dr
= 0 ,

(3.5)

Where Ψ0 is the relative potential of the original, un-truncated system. Once Ψ has
been calculated, the truncation radius, rt, is given by Ψ(rt) = 0, and the density profile
can be found from Equation (3.2).

3.3 Model Comparisons

3.3.1 Simulations

In Chapter 2 we found that our model works well for haloes which lose mass slowly, and less
well for subhaloes that are being rapidly stripped. We will use Simulations 3 and 4 from
Chapter 2, which are representative of simulations which lose mass quickly and slowly,
and refer to them as the “Fast Sim” and “Slow Sim”, respectively. These simulations
were performed using the N -body code gadget-2 (Springel, 2005), which was modified
to contain a fixed background potential corresponding to the host halo. The satellite
halo was created using the publicly available code icicle (Drakos et al., 2017). Since the
mass of NFW profiles diverges with increasing radius, particles were generated within a
specified radius, rcut, and then unbound particles were iteratively removed. The resulting
satellite is a truncated NFW profile with N = 1286991 particles, with a maximum radius
of rcut = 10 rs, where rs is the scale radius of the satellite. The host halo had a mass
Mhost/msat = 300 and a concentration of chost = 10. The orbits in the Slow and Fast Sims
have an apocenter of ra = 300 runit, and pericentres of rp = 50 runit and 10 runit, respectively,
where the radial unit runit = rs. We summarize these simulations in Table 3.1.

The bound satellite was defined as in Chapter 2. First, the centre of the satellite was
found by calculating the centre of mass in increasingly smaller spheres, as originally de-
scribed in Tormen et al. (1997). The sphere was decreased by 0.9 r/rs at each iteration,
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Table 3.1: Summary of orbital parameters. Columns give (1) the simulation name (2) the
mass ratio between the host and satellite halo (3) concentration of the host halo (4) the
apocentric distance (5) the pericentric distance (6) the tangential velocity at apocenter (7)
the (radial) orbital period

.
Simulation Mhost/Msat chost ra/runit rp/runit va/vunit torb/tunit

Slow Sim 300 10 100 50 1.42 185.4
Fast Sim 300 10 100 10 0.51 129.7

until there were fewer than 100 particles in the sphere. The velocity frame was calculated
as the average particle velocity within rcut. Finally, the energy of each particle was then
calculated in this frame (assuming a spherical potential), and unbound particles were iter-
atively removed until convergence. The resulting mass loss curves for these two simulations
are shown in Fig. 3.1, with the apocenter indicated with a vertical dashed line (calculated
as the apocenter of a point mass orbiting within the same potential). Both the Slow Sim
and Fast Sim lose most of their mass at pericentric passages.

3.3.2 Model Comparison

Here we compare our model for the effect of mass loss on the density profile to other models
in the literature; detailed descriptions of each of these models are given in Appendix B.
First, Hayashi et al. (2003) proposed a simple empirical model for tidally stripped NFW
profiles, that could be described by one parameter, the bound mass fraction. A slightly
more complicated empirical model was proposed by Peñarrubia et al. (2010), which again
only depends on the bound mass fraction. While the model proposed in Peñarrubia et al.
(2010) is more complicated than that in Hayashi et al. (2003), it is more general, and can
be used for any profile of the form:

ρ(r) =
ρ0

(r/rs)γ[1 + (r/rs)α](β−γ)/α
. (3.6)

Like the models proposed in Hayashi et al. (2003) and Peñarrubia et al. (2010), our
model is also dependent on one parameter (the tidal energy, ET, but which can be alter-
natively expressed in terms of the bound mass). However, our model has the advantages
that it is physically motivated (the tidal energy, ET, being interpreted as the maximum
energy of any bound particle in the frame of the satellite), and that it can potentially be
applied to any collisionless system. The universality of the model will be explored further
in Section 3.5.
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Figure 3.1: Bound mass fraction as a function of time. Vertical dotted lines indicate
apocenteric passages.
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To compare how well our model describes the density profile of the subhalo remnant
compared to other models, we fit the bound subhalo remnant after one orbit, at apocenter.
Apocenter was chosen since the subhalo should be roughly in equilibrium at this point;
similar results can be found in subsequent orbits (see Chapter 2). The tidal energy for
our model was calculated as in Chapter 2, by requiring that the total mass of the bound
halo was equal to that of the model. The other two models were calculated as described in
Appendix B. In all three cases, the fits were dependent on a single parameter, the bound
mass.

Fig. 3.2 shows how the tidally stripped halo simulations compare to our model, as well
as to the models presented in Hayashi et al. (2003) and Peñarrubia et al. (2010). Residuals
of the model fits are shown for the density, mass and circular velocity profiles, calculated
as (ymodel − ysimulation)/ysimulation. As in Chapter 2, our model is better at describing the
remnant from the Slow Sim compared to the Fast Sim. In the case of the Slow Sim, our
model performs very well, and agrees with the profiles better than the other two models.
For the Fast Sim, our model over-predicts the mass and density in the centre of the halo,
though the magnitude of the residuals are comparable with the other two models. The
model from Hayashi et al. (2003) tends to under-predict the central mass and density of
the central halo; this could be because in their simulations they used the local Maxwellian
approximation to generate their ICs, which can lead to artificial relaxation in the centre
of the subhalo (Kazantzidis et al., 2004). Overall, it appears that our model is at least
comparable to, if not more accurate than the models presented in Hayashi et al. (2003)
and Peñarrubia et al. (2010).

We note that since all three of these methods are dependent on the bound mass, they are
sensitive to the method used for defining bound particles. Also, bound mass calculations
include mass which is only temporarily bound, but is leaving the system. Since most of
this temporarily-bound mass is at larger radii, a more accurate fitting criteria may be to fit
the radius enclosing some fraction of the mass, or to fit the peak circular velocity. Clearly,
the details of mass loss are important, and will be the focus of future work.

3.4 Model Assumptions

Overall, our model describes the density, mass and velocity profiles of the subhalo remnants
quite well, as shown in the previous section. This suggests that subhalo evolution is
primarily an energy-based process, as proposed by Choi et al. (2009). However, we wish to
examine the physical reasons as to why this model works better in the cases where subhaloes
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Figure 3.2: Comparison of density, mass and velocity profiles of the bound satellite remnant
after one orbit to different models for the Slow Sim (left) and Fast Sim (right). Simulation
results are shown with points, and the models are shown with lines. The thick dashed
curve shows the original, untruncated NFW profile. The residuals in the fits are calculated
as (ymodel/ysimulation−1), where y is the density, mass or circular velocity profile. Our model
from Chapter 2 is described in Section 3.2, and the other models in Appendix B.

60



lose mass gradually. To do this, we first identify four main simplifying assumptions in our
model:

1. The remnant is in equilibrium.

2. The remnant is spherical.

3. The remnant is isotropic.

4. The truncation is purely energy based.

This section will focus on the “Fast” and “Slow” simulations described in 3.3.1. Our
goal is to understand why the model fits the latter better than the former, by considering
each of the model assumptions in turn.

3.4.1 Equilibrium

One assumption of our model is that the subhalo is in equilibrium at apocenter. To test
this, we identify the bound subhalo remnant at t = 2 torb, and evolve it in isolation using
gadget-2 for an additional t = 2 torb. We compare the initial subhalo to the final subhalo
in Fig. 3.3. For both the Fast and Slow simulations there is very little evolution, except at
large radii. Since differences between the Fast Sim and our model can be seen at all radii,
this suggests that the equilibrium assumption is not the reason for discrepancies between
the simulations and model.

3.4.2 Spherical Symmetry

Another assumption of our model is that the haloes are spherically symmetric. The shape
of the subhaloes were calculated as in (Dubinski & Carlberg, 1991; Drakos et al., 2019);
beginning with axis ratios s = b/a = 1 and q = c/a = 1 (where a > b > c are the
principal axes sizes), the dimensionless inertia tensor was calculated as Iij =

∑
xixj/d

2,
where d = x2

i + (xj/s)
2 + (xk/q)

2 is the ellipsoidal coordinate. The coordinates of each
particle were rotated using the eigenvectors of and the principal axis ratios s and q were
recalculated. This process was repeated until convergence, which was defined as when
s = b/a and q = c/a both had a percentage change of less than 10−3.

Fig. 3.4 shows how the shape of the subhaloes evolve in time. In both the Fast and Slow
Sims the remnants are roughly spherical at apocenter. At pericenter, the shapes become
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Figure 3.3: Evolution of subhalo density profile when removed from the fixed background
potential. The initial haloes (solid black lines) are from the subhalo after two orbits in a
fixed potential. The final profiles (dashed purple lines) are after the haloes are allowed to
evolve for an additional t = 2 torb in isolation.
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more prolate (a > b ≈ c), particularly for the Fast Sim. Since pericenter is the point at
where the majority of mass is loss, the difference between the Fast and Slow Sim might be
the subhalo shape at pericenter. For instance, Moore et al. (2004) showed prolate haloes
can lose mass at a rate several times higher than an isotropic spherical halo with the same
density profile, and conclude this is because particles on radial orbits are more vulnerable
to being stripped.

3.4.3 Isotropy

Our model also assumes that haloes are isotropic, and thus the distribution function is only
a function of the energy, E . Fig. 3.5 shows the anisotropy parameter, β = 1−(σ2

θ +σ2
φ)/2σ2

r

for the Fast and Slow Sims. The ICs (t/torb = 0) are isotropic by construction. As time
progresses, the remnants become more anisotropic, particularly at large radii. While the
Fast Sim does show more anisotropy than the Slow Sim, this is time dependent; for instance,
Slow Sim at t/torb = 5 is very similar to the Fast Sim at t/torb = 1. Since the residuals in
the model fits do not depend on the orbit number (see Chapter 2), it seems unlikely that
this is the reason for the difference between the two situations.

3.4.4 Truncation

Finally, our model assumes that particles are removes strictly based on their energy, but, as
suggested in Choi et al. (2009), there may also be a dependence on the angular momentum
of the particle. This is because particles that are on more radial orbits are more vulnerable
to being stripped when they are at apocenter.

As in Choi et al. (2009), we calculate the initial relative energy, E and circularity, η, for
each particle as E = Ψ(r)− v2/2 and η = L/Lmax. To calculate Lmax, we first determined
the radius of a circular orbit with the same energy, rE from E = Ψ(rE)− vc(rE)2/2, where
vc is the circular velocity, and then Lmax =

√
GM(rE)rE . Fig. 3.6 shows the fraction of

particles remaining in η–E space, according to their original energy and angular momentum.

From Fig. 3.6, it seems that there is a very slight angular momenta dependence, as in
Choi et al. (2009). Additionally, there may be a less abrupt truncation in the Fast Sim
case; to examine this further, we plot the histogram of original energies and of angular
momentums removed at each time step in Fig. 3.7. The slope of the histograms become
less steep at each successive orbit, but the fractional range of energies removed is roughly
constant (approximately 10 per cent for the Slow Sim, and 30 per cent for the Fast Sim).
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Figure 3.6: Fraction of remaining particles as a function of the particles’ initial circular-
ity, η, and relative energy, E , for the Slow (top) and Fast (bottom) Sims. Each column
corresponds to the number of orbits the subhalo has undergone, measured at apocenter.
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Figure 3.7: The fraction of particles remaining bound as a function of relative binding
energy, E , measured at each apocentric passage.
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Figure 3.8: Distribution in the change in energy, angular momentum, radius and velocity
of individual particles for the Slow Sim (top) and Fast Sim (bottom).

It should be noted that so far we have labeled particles by their initial energy and
angular momentum, which assumes there is no energy or momentum exchange between
particles. Therefore, in Fig. 3.8 we show the change in individual particle energies, angular
momenta, radii and velocities. Angular momenta and radii changes are roughly symmetric
about zero. The binding energy, E decreases with each orbit; this is because the mass,
and thus the total potential energy, in system is decreasing. For velocity can see two
populations in the fast simulation (i.e. there is an extra bump around ∆v = 0.6) these are
likely particles that are temporarily still bound but are leaving system. Overall, the Fast
Sim has wider distributions, indicating that there is more mixing in this case.

Fig. 3.9 shows the fraction of particles removed in η–E space, but instead of only
considering the initial energy/circularity of each particle, we recalculate these values at
each orbit. For both the Slow (top) and Fast (bottom) Sims, particles are removed mainly
based on energy, as shown previously. Each successive row then shows where these particles
were in η–E space at an orbital time earlier. Interestingly, there is still a fairly discrete slice
in each case; the removed particles simply seem to shift in E (this is due to the system losing
mass and thus potential energy), though there is a slight amount of mixing, particularly
for the Fast Sim case. Overall, Fig. 3.9 shows that tidal stripping can mainly be described
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by removing particles based on their initial energies.

3.4.5 Conclusions

While comparing the Fast and Slow Sim, we found that the Fast Sim remnants are more
prolate at pericenter, and more anisotropic than the Slow Sim remnants. Both remnants
do seem to be roughly in equilibrium at apocenter, except for a small number of particles at
large radii. The largest difference between the two simulations is that the energy truncation
is less sharp (i.e. the histogram becomes less steep, as shown in Fig. 3.7). Since the majority
of particles are removed during their pericentric passage (particularly for the Fast Sims),
mixing during an orbit will result in a less abrupt energy truncation since the instantaneous
particle energies may be altered. Therefore, deviations due to mixing are likely the main
cause of discrepancies between the energy-truncation model and simulations of rapid mass-
loss systems.

3.5 Universality

Thus far we have only applied our model to NFW systems. The purpose of this section
is to see how successful the energy truncation model is in describing the tidal evolution
of other collisionless systems. We will look at three additional profile models: Hernquist,
Einasto, and King.

3.5.1 The Profiles

Hernquist

The Hernquist profile (Hernquist, 1990) was originally used to describe spherical galaxies,
however it is also a good approximation of cosmological dark matter halo profiles. The
density profile is given by:

ρ(r) =
Mtot

2π

a

r(r + a)3
, (3.7)

where Mtot is the total mass and a is a characteristic radius (the radius at which the
enclosed mass is Mtot/4) .
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Figure 3.9: The fraction of particles removed in η–E space for the Slow Sim (top) and Fast
Sim (bottom). In each n = 1–5 row, the particles are labeled by their angular momentum
and energy n orbits earlier.
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The advantage to this model is that it has simple analytic expressions for many of its
properties, including its DF:

f(E) =
M

8
√

2π3a3v3
g

1

(1− q2)5/2
(3.8a)

×
(
3 sin−1 q + q(1− q2)1/2(1− 2q2)(8q4 − 8q2 − 3)

)
q =

√
aE
GM

(3.8b)

vg =

(
GM

a

)1/2

. (3.8c)

Einasto

The Einasto profile was first used to describe star counts in the Milky Way (Einasto, 1965).
However, it has since been argued that it is a better description of cosmological profiles
than the well-known NFW profile (e.g. Navarro et al., 2004; Gao et al., 2008; Klypin et al.,
2016). The Einasto profile has the following form:

ρ(r) = ρ−2 exp

(
− 2

α

[(
r

r−2

)α
− 1

])
, (3.9)

where α is the Einasto shape parameter and r−2 is the radius where the logarithmic slope
is −2. Compared to the NFW profile, the Einasto profile has an extra parameter, α, which
controls the inner slope of the density profile, and reflects the mass accretion history of the
halo.

King

The King model resembles an isothermal sphere at small radii, and has a finite mass within
a well-defined tidal radius. This model is typically used to describe globular clusters or
elliptical galaxies (King, 1966). The King model is derived by lowering the DF of an
isothermal sphere:

f(E) = ρ1(2πσ2)−3/2(eE/σ
2 − 1) , (3.10)

where σ is the velocity dispersion, ρ1 is a characteristic density.
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The density profile of the King model can then be calculated from the DF using Equa-
tion (3.2), which gives:

ρ(Ψ) = ρ1

[
eΨ/σ2

erf

(√
Ψ

σ

)
−
√

4Ψ

πσ2

(
1 +

2Ψ

3σ2

)]
. (3.11)

To relate the relative potential energy, to the radius of the profile, Ψ(r) can be solved
numerically using Poisson’s Equation (Equation (3.5)). There are many possible param-
eterizations of the King model, but it can be uniquely defined by the total mass, tidal
radius, rt, and a dimensionless central potential, P0 = Ψ(0)/σ2.

King models can also be characterized by a concentration parameter, cK , which depends
on the King radius r0. These quantities are defined as:

cK = log10

(
rt

r0

)
r0 =

√
9σ2

4πGρ0

.

(3.12)

where ρ0 is the central density of the halo.

3.5.2 Initial Halo Models

The ICs were created using icicle. As before, we define the mass unit to be the mass of
the satellite, munit = Msat. We define the distance unit to be runit = a for the Hernquist
model, r−2 for the Einasto models, and 0.1 rt for the King models. Then the density, time
and energy units are ρunit = munitr

−3
unit, tunit =

√
r3

unit/Gmunit and Eunit = GMsat/runit,
respectively. For the Einasto models, there is one free parameter, α; we chose values of
α = 0.15 and 0.3, as these are representative of the range found in simulations (Gao et al.,
2008). The King models also have one free parameter (this could be chosen as r0, P0 or
c). We used P0 = 3 and P0 = 12, which correspond to concentrations of cK = 0.7 and
cK = 2.7. These concentrations are typical of globular clusters and elliptical galaxies,
respectively (Binney & Tremaine, 1987). Additionally, we calculated the softening length
for each profile as ε = 0.5rhN

−1/3, as in van Kampen (2000). A summary of the IC
properties are given in Table 3.2. To check the stability of the ICs, they were evolved
for in isolation using gadget-2, as shown in Fig. 3.10; all four profiles are stable outside
runit = 0.1 at t = 1000 tunit.
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Table 3.2: Summary of the parameters used for the ICs; all satellites have a mass of
Msat = 1. The columns list (1) the name of the ICs, (2) the number of particles N , (3)
the radial unit, (4) specified profile parameters, (5) derived profile parameters, and (6) the
softening length.

Profile Name N runit IC Parameters Derived Parameters ε/runit

NFWT ≈ 1.3× 106 rs rcut = 10 runit ρ0 = 0.08 ρunit 0.01
Hernquist 106 a —– —– 0.01
EinHigh 106 r−2 αE = 0.3 ρ−2 = 0.01 ρunit 0.02
EinLow 106 r−2 αE = 0.15 ρ−2 = 0.005 ρunit 0.07

KingHigh 106 rt/10 P0 = 3 ρ1 = 0.003 ρunit, 0.01
r0 = 0.02 runit, cK = 0.7

KingLow 106 rt/10 P0 = 12 ρ1 = 0.001 ρunit, 0.01
r0 = 2.13 runit, cK = 2.7

3.5.3 Truncated Profiles

The Hernquist, Einasto and King models were truncated as described in Section 3.2.2. We
note that applying our model to a King model simply results in another King model, with
its parameters mapped as follows:

P0,T = P0 − ET/σ
2

ρ1,T = ρ1 exp(ET/σ
2)

r0,T = r0

√
ρ(P0)

ρT (P0,T)
.

(3.13)

We show the truncated profiles in Fig. 3.11, coloured by the tidal energy ET/Ψ(0).
For most of the halo models, the density profiles show a decrease in in density at all
radii, though most of this decrease is at large radii. An exception is the KingLow models;
interestingly the tidal radius, rt, increases for large values of ET/Ψ(0). Additionally, when
the density profile is very flat (as in the centre of the King models), the central density
decreases a lot, while for the cuspier profiles, the density is more conserved. This is
consistent with the results from (Peñarrubia et al., 2010). We also find that the scale
radius of the Hernquist and Einasto profiles (given by the peak of ρr2) decreases as the
halo becomes tidally stripped; this may relate to an increase in concentration, though the
virial radius is also decreasing. Further, the peak of the circular velocity curve decreases
with E/Ψ(0) for all profiles except KingLow.
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Figure 3.11: Energy truncation model described in Section 3.2.2 applied to different initial
density profiles. EinLow and EinHigh have α values of α = 0.15 and 0.3, respectively, while
KingHigh and KingLow profiles have central potentials of P0 = 12 and 3, respectively. The
relative energy, E is normalized by the relative potential of the untruncated profile at r = 0.
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3.5.4 Simulation Results

To test whether this model captures the behaviour found in simulations, we compare it
to isolated simulations of subhalo evolution. We use the same host potential and subhalo
orbits as in for the Fast and Slow Sims, as described in Section 3.3.1, and summarized in
Table 3.1. The softening lengths were assigned according to the subhalo model, as given in
Table 3.2. Additionally subhalo centres and bound particles were identified as described
in Section 3.3.1. The model was fit using the fitting criteria that the bound mass of the
simulated halo was equal to the total mass in the truncated model.

The evolution of bound mass, and tidal radii are shown in Fig. 3.12. We also include
the NFWT simulations from Section 3.3.1; since these ICs were truncated, we fit them to
the model as well. We find that the tidal energy, ET, is different for all the profiles, even
though they are on the same orbit. This is likely because the profiles have different radial
extents, and thus probing different regions of the tidal field.

We show how the density, mass and circular velocity profiles of the Slow Sim results
compare to the energy-truncated model in Fig. 3.13, at t = 1 torb and 5 torb. The model and
simulation results match very well, though there are some discrepancies at large radii; this
could be due to material that is not in equilibrium. Peñarrubia et al. (2009) found similar
trends in simulations of subhalo evolution at large radii, and concluded that though this
material is still bound, it is mostly lost on the next orbit. There is also a slight disagreement
in the circular velocity curves of the KingHigh profiles at small radii. This could be because
the inner part of this profile is sensitive to the best-fit ET, or because of numerical issues
in integrating the mass profile at small radii.

Overall, other than slight deviations at large radii, we find that our model matches
all profiles very well, supporting our assertion that the energy-truncation is universal.
Interestingly, the truncation energy, ET depends not only on the satellite orbit, but also on
the satellite model. Future work will focus on predicting how ET evolves with orbit; this
would also give a theoretical prediction of mass loss.

3.6 Applications to the Boost Factor

One potential technique for determining the identity of dark matter particles is through
dark matter annhilation. To place constraints on particle masses and interaction cross-
sections, it is important to have accurate predictions of the distribution of dark matter
within subhaloes, since dark matter annihilation signals depend not only on the host halo,
but also on substructure within the halo.
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Assuming the dark matter particles are Majorana WIMPs (weakly interacting massive
particles), the rate at which they will annihilate is given by:

R =
〈σv〉
2m2

∫
V

ρ2dV , (3.14)

where 〈σv〉 is the velocity-averaged annihilation cross section, m is mass of the dark matter
particle, ρ is the density and V is a volume.

This rate can be separated into two factors: one which depends on the particles’ funda-
mental properties, and one on the spatial distribution of particles. The particle distribution
is often described using a dimensionless quantity known as the boost factor,

B =
1

ρ̄2V

∫
ρ2dV , (3.15)

which characterizes the inhomogeneity of the particle distribution.

One common method to predict the expected observed boost factor is by considering
the boost from individual subhaloes, and then drawing from distributions of radius, infall
mass, etc. to calculate the total boost factor (e.g. Bartels & Ando, 2015; Han et al., 2016;
Okoli et al., 2018; Hütten et al., 2019). Since this method depends on the model used
for individual subhalo boost factors, we will examine how predictions from our model for
tidally stripped haloes varies from simply truncating the original profile abruptly.

Using the energy-truncation model, we calculated how the boost factor within the tidal
radius evolves for each profile; the top panel of Fig. 3.14 shows how the subhalo boost
factor, B evolves for each subhalo. Note that the Einasto and Hernquist profiles are
initially infinitely extended, so the boost factor is infinite for these at time zero. The boost
factor decreases with time for all the simulations, though remains fairly constant.

The boost factor, B, evolves due to both a change in the tidal radius (since the inte-
gration volume changes), as well as from changes in the density profile. Therefore, we also
show the ratio B/B0, where B0 is the initial un-truncated profile within the same tidal
radius (bottom panel of Fig. 3.14). Taylor & Silk (2003) showed that using fitting the sub-
halo remnants with Equation (B.1) gives B = 1.3B0, which we show as a solid black line.
We find that using our model typically results in much higher values of B/B0—overall, B
is very sensitive to the density profile; accounting for mass loss within the tidal radius can
make a factor of 10 difference between an abrupt truncation.

Compared to the Hayashi et al. (2003) value of B/B0 = 1.3 for NFW profiles, our
energy-truncation model predicts B/B0 ≈ 3. A possible explanation for this is that the
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model from Hayashi et al. (2003) is fitting the artificial drop in central density due to
numerical effects from the method used to generate their ICs (Kazantzidis et al., 2004),
resulting in a decrease in central density. In contrast, our model predicts very little mass
loss at small radii.

Overall, this demonstrates how sensitive boost factor calculations are to the assumed
subhalo mass profile. We find that there can be up to an order of magnitude increase in
boost factor predictions from our model compared to truncating the profile abruptly at a
fixed radii. Since the boost factor is dominated by the inner parts of the profiles, which
are not resolved in simulations, it is important to have physically motivated models such
as the one presented in this chapter.

3.7 Conclusions

Recently, in Chapter 2, we proposed an energy-truncation model to describe the evolution
of tidally stripped haloes, and showed it matched results from isolated simulations of
NFW subhalo evolution. In this chapter, we explored the universality and limitations of
this model. Overall, it has similar or better accuracy at predicting halo profile evolution
compared to empirical models (e.g. Hayashi et al., 2003; Peñarrubia et al., 2010), but has
the advantage of being physically motivated, allowing for a theoretical prediction of density
evolution at very small radii. Looking at the model assumptions in more detail, we have
found that most of the assumptions are justified, but there is a some mixing in energy
space, particularly in cases of rapid mass loss. It is possible that slight modifications to
the energy truncation model could account for some of this effect (e.g. allowing for a more
gradual energy cut-off).

The distinction between bound and unbound particles is another factor that could
affect how well our model describes the simulations. In this work, we simply remove all
unbound particles in a method similar to what is used in halo finders. This, however,
includes particles that are only temporarily bound. It would be interesting to explore a
more detailed model of mass loss, that could determine the timescale at which particles
are removed, and how to identify transient particles.

We also examined the universality of the energy truncation model by testing it on
various other theoretical profiles. Overall, the model does a very good job at describing
the density, mass and velocity profile evolution in all the tested cases. Additionally, our
model naturally captures the effect that more cuspy profiles conserve central density, while
cored profiles have a large decrease in central density, as described in Peñarrubia et al.
(2010).
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Finally, we showed the implications to the annihilation boost factor. Overall, we found
that the boost factor (measured within the evolving tidal radius) remains fairly constant.
A surprising result was that the boost factor is very sensitive to how the subhalo profile
is modeled; different models can result in boost factor values that differ by an order of
magnitude. For this reason, physically based models for subhalo evolution are critical for
correctly predicting density profile evolution at small radii, as these regions dominate the
signal but cannot be resolved in simulations.

While we demonstrated that subhalo evolution can be described fairly accurately by
a single parameter (such as the tidal energy, ET), it is currently unclear what determines
the value of this parameter. Likely, ET is dependent on the strength of the tidal field,
as well as the size and mass of the subhalo; predicting this parameter would also allow
for a prediction of the mass loss of the system. Subhalo mass evolution is a complicated
process, and it is often difficult to determine whether mass loss is due to physical processes
or numerical artifacts (e.g. van den Bosch et al., 2018; van den Bosch & Ogiya, 2018). For
this reason, it would be useful to have a physically based model for how mass evolves with
time, and this will be explored in future studies.

Overall, we showed that the energy-truncation model proposed in Chapter 2 works well
to describe the evolution of a wide range of collisionless models undergoing tidal stripping.
This allows for a physically based model of how density profiles evolve, which is important
for predictions of dark matter annihilation. Particularly, we showed that our model can
increase predictions of the dark matter annihilation boost factor by an order of magnitude.
Further work needs to be done to determine the effects of mixing and shape on subhalo
evolution, as well as to understand the details of mass loss.

82



Chapter 4

Major Mergers Between Dark
Matter Haloes – I. Predictions for
Size, Shape, and Spin

4.1 Introduction

There is now compelling evidence for the existence of dark matter over a vast range of
scales, from the horizon scales probed by the Cosmic Microwave Background (e.g. Planck
Collaboration et al., 2018), to the galactic and sub-galactic scales probed by local dwarf
galaxies (see e.g. McConnachie, 2012, and references therein). On large scales, dark matter
clusters into sheets and filaments; where filaments intersect, they form higher density,
roughly spherical structures termed ‘haloes’. Dark matter haloes are the exclusive sites of
galaxy, group, and cluster formation. Thus, understanding their structure and evolution
is of fundamental importance in cosmology.

Our information about halo structure and evolution comes mainly from simulations.
These have established that some halo properties, such as the spherically averaged density
profile, are approximately universal (Navarro et al., 1996, 1997), while other properties
such as shape, central concentration, or the presence of substructure, vary from system
to system. Since observational information from galaxy kinematics (e.g. Ouellette et al.,
2017), satellite kinematics (e.g. Guo et al., 2012), and weak and/or strong gravitational
lensing (e.g. Umetsu et al., 2016) is beginning to fix or constrain these individual properties
for large samples of haloes, the time is ripe to consider what the structure of individual
haloes can teach us.
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It is clear that the structure of individual haloes is closely related to their merger
history. Shape changes, for instance, have been linked to the parameters of the last major
merger (e.g. Despali et al., 2017), the remnant being elongated along the merger axis (e.g.
Macciò et al., 2007; Vera-Ciro et al., 2011). Concentration is correlated with the overall
age of a halo (e.g. Wechsler et al., 2002; Zhao et al., 2009; Wong & Taylor, 2012); the
density in the central regions reflects the background density of the universe at the time
of formation (Navarro et al., 1996, 1997; Bullock et al., 2001a), or possibly at the end of
the rapid, major-merger dominated phase of halo growth (e.g. Zhao et al., 2003). Finally,
substructure is formed from the tidally stripped cores of infalling subhaloes, and is thus
mainly determined by the recent merger history (e.g. Taylor & Babul, 2005).

Measuring the shape, concentration, and substructure of haloes may therefore provide
an opportunity to learn about individual growth histories, and the connection between
growth history and the properties of the visible galaxy or galaxies that reside within a
halo. Given a quantitative understanding of the connection between history and structure,
measurements of structural properties for large, well-defined samples may also provide new
cosmological tests (see e.g. Taylor, 2011, for a discussion). So far, observations of cluster
shape (e.g. Oguri et al., 2010) and concentration (e.g. Sereno et al., 2018) have been
shown to be consistent with the concordance cosmology established by other tests. Both
observational systematics and theoretical predictions need to be refined, however, before
these methods can be used to improve our knowledge of the cosmological parameters.

Halo growth occurs through accretion of material from the surrounding density field,
both smoothly and in a series of violent, stochastic mergers. To understand the smooth
part of the process requires cosmological simulations, in order to capture the statistics
of the density and velocity fields around the peaks where haloes form. There have been
extensive theoretical studies of halo structure in this cosmological context, though many
focus on mean trends, rather than individual cases (e.g. Navarro et al., 1997; Bullock
et al., 2001a; Zhao et al., 2003; Butsky et al., 2016; Klypin et al., 2016; Despali et al.,
2017). Mergers complicate the picture, however; sufficiently so that they have often been
studied in simpler, idealized simulations with controlled ICs (ICs; e.g. Fulton & Barnes,
2001; Boylan-Kolchin & Ma, 2004; Moore et al., 2004; McMillan et al., 2007; Vass et al.,
2009; Ogiya et al., 2016).

Even when studying major mergers using isolated simulations, there are still many
degrees of freedom (halo profile, mass ratio, shape, orbit) that can obscure which essential
parameters determine the properties of the final remnant. Therefore, in this chapter we
will start by considering the simplest case: an equal-mass merger between two isolated,
identical spherical systems, given one of various realistic density profiles, and placed on a
variety of initial orbits. This work is the first in a series; in this chapter we will introduce
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our major merger simulations and examine how the ICs determine the shape and spin
of the final remnant. In subsequent work, we will examine how other properties, such as
concentration and the detailed form of the density profile, depend on the ICs of the merger.

The outline of this chapter is as follows. In Section 4.2 we describe the initial halo
models, and verify their stability in isolation. In Section 4.3 we describe the set-up and
analysis of the merger simulations. In Section 4.4 we present our main results on shape
and spin. Finally, in Section 4.5 we discuss our conclusions, the limitations of this study,
and future work.

4.2 Halo Models

Each of our simulations follows the merger of two identical haloes. To investigate the effect
of the halo model on the shape and spin of the remnant, we consider several different initial
models, as described below.

4.2.1 Initial Conditions

We consider initial halo models with NFW (Navarro et al., 1996, 1997) and Einasto
(Einasto, 1965) profiles. The ICs (ICs) were created using the code icicle (Drakos et al.,
2017). Since the mass of an NFW profile diverges at large radii, the ICs need to be trun-
cated in order to be realized with a finite number of particles. One common approach
is to use an exponentially truncated NFW profile (hereafter denoted “NFWX”), which is
NFW within the virial radius, rvir, and then decays exponentially outside the virial radius
(Springel & White, 1999). An additional parameter rd sets how fast the decay occurs with
radius. An alternative approach to truncating an NFW profile is to generate the part
of the profile interior to some tidal radius, rt, and then iteratively remove any particles
that are unbound, given the escape speed of the truncated system. As the tidal radius
approaches infinity, systems generated in this way are equivalent to an infinitely extended
NFW profile. It has been shown that the profiles resulting from this second approach
are stable, and resemble tidally stripped NFW profiles (Drakos et al., 2017), and thus we
denote them “NFWT” profiles.

Overall, we considered six different initial profiles. Four of these profiles are NFW, but
truncated in different ways (two are NFWT and two are NFWX profiles). Two are Einasto
profiles, with αE values representative of the range found in simulations (Gao et al., 2008):
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Table 4.1: Summary of the parameters used for the ICs. The profiles are shown in Fig. 4.1.
The columns list (1) the name of the ICs, (2) the number of particles N , (3) the parameters
used to construct the ICs, (4) the relaxation time evaluated at the peak radius, trelax(rpeak)
and (5) the total internal energy of the halo, E0.

Initial conditions name N Parameters trelax(rpeak)/tunit E0/Eunit

EinLow 5× 105 αE = 0.15 610 -2.2
EinHigh 5× 105 αE = 0.3 1300 -1.2
NFWT10 ∼ 3.2× 105 rcut = 10 1100 -1.0
NFWT15 ∼ 3.5× 105 rcut = 15 1000 -1.3

NFWXSlow 5× 105 rvir = 10, rd = 2 rs 1100 -1.6
NFWXFast 5× 105 rvir = 10, rd = 0.2 rs 1200 -1.5

to explore how the inner slope affects the simulations we use an Einasto profile with a low
αE value of 0.15, and also a profile with a high αE value of 0.3.

The simulation units were chosen so that the gravitational constant, G, the peak circular
velocity, vpeak, and the radius at which the circular velocity peaks, rpeak, are all unity.

Setting G = Mpeak = rpeak = 1 produces a time unit tunit =
√
r3

peak/GMpeak, a density

unit ρunit = Mpeak/r
3
peak and an energy unit Eunit = GM2

peak/rpeak. All the haloes were
constructed initially using 5×105 particles; after removing unbound particles, the resulting
NFWT profiles then have fewer particles. The IC profiles are compared in Fig. 4.1, and
the IC parameters and properties are summarized in Table 4.1.

4.2.2 Internal Energies

The internal energy of each halo, E0, was calculated as follows:

E0 = P0 +K0 , (4.1)

where P0 and K0 are the potential and kinetic energy of the halo, respectively. These are
most generally expressed as

K0 =
N∑
i=1

mv2
i

P0 = −1

2

N∑
i,j=1

Gm2

rij
,

(4.2)
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Figure 4.1: Comparison of the density (top), enclosed mass (middle), and circular velocity
(bottom) profiles of the initial models.

87



where m is the mass of each particle and rij is the distance between particles i and j. Since
the ICs are spherically symmetric, however, at least to within the discreteness noise of the
individual particles, we can treat the mass of each particle i as being distributed over a
shell of radius ri, and write:

P0 ≈ −
Gm2

2

N∑
i=1

N(< ri)

ri
+

N∑
j=1,rj>ri

1

rj

 , (4.3)

where the two terms in parentheses give the contributions interior to and exterior to the
position of each particle i, respectively. The internal energy for each of the halo models is
listed in Table 4.1.

4.2.3 IC Stability

To verify the stability of the ICs, they were evolved in isolation using gadget-2 (Springel,
2005), with a softening length of ε = 0.02 rpeak. The stability of the ICs will be limited by
relaxation due to the limited number of particles. The characteristic relaxation time for
each profile was calculated as follows:

trel(r) = 0.1

√
N(< r)

lnN(< r)

√
r3

GM(< r)
, (4.4)

as in Binney & Tremaine (1987), and is included in Table 4.1. Fig. 4.2 illustrates the
stability of the host haloes over a time-scale of t = 300 tunit. We also tested the sensitivity
of these results to time step size and the error in the force calculations by increasing and
decreasing the gadget-2 parameters ErrTolIntAccurac and ErrTolForceAcc by
a factor of 3, but found that this did not make a noticeable difference in the stability of
the ICs.

4.3 Merger Simulations

The merger simulations were run in gadget-2 using N = 5× 105 particles per halo and a
softening length of ε = 0.02 rpeak. The centre of the remnant halo was found by calculating
the centre of mass within increasingly smaller spheres; as in (Moore et al., 2004), we found
that this was roughly equivalent to tracking the most bound particle.
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Figure 4.2: Stability of the ICs. The dashed line shows the initial profile, while black
circles show the profile at the time t = 300 tunit.
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4.3.1 Orbital Parameters

For each of the six models, we performed 30 equal-mass binary merger simulations, for a
total of 180 simulations. Simulations were analyzed in the rest frame of the first halo, the
second halo being given an initial position and velocity in this frame. We considered three
different radial separations, rsep = 2, 5 or 10 rpeak. The initial velocity was either purely
tangential or purely radial, with magnitude v0 = 0.1, 0.2, 0.6, 0.8 or 1.2 vesc, where vesc is
the escape velocity of a point mass located at rsep.

Each orbit can be described by its energy and angular momentum. The orbital energy,
Eorb, was calculated as the total energy of the system minus the internal energy of the
individual haloes, i.e.,

Eorb = P +K − 2E0 , (4.5)

where the internal energy of each halo, E0, was calculated as described in Section 4.2, and
the total potential and kinetic energies of the system were calculated as described in Bett
et al. (2010):

K =
1

2

N∑
i=1

mvi
2 ,

P =

(
N2 −N
N2

sel −Nsel

)(−Gm2

ε

)Nsel−1∑
i=1

Nsel∑
j=i+1

−W (rij/ε) .

(4.6)

Here Nsel is the number of randomly selected particles, used to approximate the entire
distribution; after experimentation we found that 5000 particles from each halo were suf-
ficient to calculate P accurately. W is the smoothing kernel used for force calculations in
gadget-2 (Springel et al., 2001),

W (x) =


16

3
x2 − 48

5
x4 + 32

5
x5 − 14

5
, 0 ≤ x ≤ 1

2

1
15x

+ 32
3
x2 − 16x2 + 48

5
x4

−32
15
x5 − 16

5
, 1

2
≤ x ≤ 1

− 1
x
, x ≥ 1 .

(4.7)

Finally, the orbital angular momentum was calculated as follows:

J =
∑
i

mri × vi , (4.8)

which was found to be equivalent to J = Mrsep × v0 to within 0.5 per cent. The energy
and angular momenta used in our simulations are shown in Fig. 4.3.
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Figure 4.3: The range of orbital energies Eorb and angular momenta J used in the sim-
ulations. Colours and symbols are as in Fig. 4.1. Open points indicate tangential initial
velocities, and filled points denote radial initial velocities. The size of the symbols indicates
the initial radial separation, rsep.
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In cosmological simulations, orbital energy is often expressed in units of the energy of
a circular orbit at the virial radius, and angular momentum is expressed in terms of the
circularity, ε, defined as the angular momentum divided by the angular momentum of a
circular orbit with the same energy, ε = J/JC(E) (Lacey & Cole, 1993). Neither of these
quantities is well defined in this context, however, since the virial radius does not have a
clear definition for isolated, non-cosmological simulations, and the definition of circularity
requires that the orbit be bound.

Overall, our simulations cover a wider range of energy and angular momentum than
would be expected in a cosmological scenario. Typically, subhaloes merging into galaxy- or
cluster-sized haloes have a broad distribution of orbital circularity with a mean of ε ≈ 0.5
(although primordial haloes may merge on more radial orbits; Ogiya et al. (2016)) while
the energies of cosmological orbits are typically close to that of a circular orbit at the virial
radius (e.g. Khochfar & Burkert, 2006; Wetzel, 2011; Jiang et al., 2015). In contrast, the
orbits in our simulations are chosen to sample the full range of physical possibilities, in
order to determine how orbital parameters affect the outcome of a merger generally. Thus
we include completely radial and completely tangential orbits, and also a broad range of
possible energies, from almost unbound to extremely tightly bound.

4.3.2 Merger Time-scale

Fig. 4.4 shows the radial separation between the merging haloes as a function of time.
At the highest relative velocity, haloes on tangential orbits had not merged by the time
t = 100 tunit, and thus were excluded from this study, such that only 174 simulations are
analyzed. For the majority of the simulations, the haloes merged very quickly (i.e. in
less than one orbit). This is broadly consistent with predicted orbital decay times due to
dynamical friction (Colpi et al., 1999):

τDF = 1.2
Jcircrcirc

(GMsat/e) log(Mhalo/Msat)
ε0.4 , (4.9)

where Jcirc is the angular momentum of a circular orbit with the same energy, ε is the
circularity (i.e. the angular momentum divided by the angular momentum of a circular orbit
of the same energy), and rcirc is the radius of a circular orbit with the same energy. Msat

and Mhalo are the masses of the satellite halo and the main system, respectively. Although
this equation cannot be applied directly to the majority of our simulations (since many of
our orbits are unbound, and because this estimate is not applicable to completely radial
orbits), it predicts decay times of less than an orbital period as the mass ratio approaches
unity.
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Figure 4.4: Radial separation between the halo centres, as a function of time. The six cases
that did not merge by t = 100 tunit (dotted lines) were excluded from subsequent analysis.
Colours indicate the initial profile model, as in Fig. 4.1. Dashed lines indicate tangential
initial velocities, and solid lines denote radial initial velocities.

We also determined how long it took for the remnant to reach virial equilibrium, after
the merger. At every time step the potential and kinetic energy, P and K, were calculated
in the frame of the first halo, using Equation (4.6). Fig. 4.5 shows an example of the time
evolution of these energies, the virial ratio, and the separation between the halo centres, in
a simulation with EinLow ICs, with orbital parameters rsep = 10 rpeak and a radial velocity
of v0 = 0.8 vesc. For this simulation, the haloes merge by t = 20 tunit, which is less than
one period of the initial orbit. The potential and kinetic energy remain constant after the
halo has merged, with a virial ratio of −P/2K ≈ 1 to good approximation. Although we
only demonstrate that virial equilibrium is reached when rsep ≈ 0 for one case, this result
holds for all the simulations in this work.

4.3.3 Shape Measurement

A halo is, in general, triaxial, with principal axes a > b > c. Prolate haloes will have
one long and two short axes, while oblate haloes will have two long and one short axes.
Following Moore et al. (2004), we calculated principal axis ratios s = b/a and q = c/a using
the iterative method described in Dubinski & Carlberg (1991). Beginning with a = b = c =
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Figure 4.5: Evolution towards equilibrium with time. The top panel shows the radial
separation between the halo centres (solid black line), as well as the potential and kinetic
energy of the entire system. The bottom panel shows the virial ratio −P/2K (dotted red
line), which should be 1 for a virialized system (solid black line).

94



−10 −5 0 5 10

Long axis (rpeak)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

In
te

rm
ed

ia
te

ax
is

(r
p
e
a
k
)

−10 −5 0 5 10

Intermediate axis (rpeak)

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

S
ho

rt
ax

is
(r
p
e
a
k
)

.

Figure 4.6: Projected isodensity contours (white lines) of the halo remnant. The measured
shape ratio is shown as by the red dashed line.

1, the eigenvalues w1 = a2, w2 = b2 and w3 = c2 were found from the dimensionless inertia
tensor Iij =

∑
xixj/d

2, where d = x2
i + (xj/s)

2 + (xk/q)
2 is the ellipsoidal coordinate. The

coordinates of each particle were then rotated using the eigenvectors of the new principal
axis, and the principal axis ratios were recalculated. This process was repeated until
convergence, which was defined as when s and q both had a relative change of less than
10−5.

In Fig. 4.6 we compare the shape measurement to the isodensity contours of the remnant
halo for a radial merger between two haloes with EinLow profiles. The haloes were initially
separated by rsep = 10 rpeak, and the second halo was given an initial velocity of v0 ≈
0.9 vpeak (this corresponds to 80 per cent of the escape speed of a point mass located at
rsep). The shape measurement agrees well with the isodensity contours. We note that since
our shapes are measured using all the halo particles, we will not catch radial variations in
halo shape, but at least in this case, radial variations do not appear to be significant.

We investigated the effect of numerical resolution on our shape measurements by con-
sidering haloes with various numbers of particles, ranging from N = 5×103 to N = 5×105.
The original softening length of ε = 0.02 rpeak for the N = 5 × 105 profile was scaled as
N−1/3. As above, we considered the case of a merger between two EinLow profiles, since
this profile has the shortest relaxation time.
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We compared shape parameters c/a and c/b, as well as the values of rpeak and vpeak.
Fig. 4.7 shows how these properties change as a function of time at each resolution. While
there are significant fluctuations in the values over time at low resolution, at the resolution
of our main set of simulations, the structural parameters are stable between t = 100 and
300 tunit.

The net effect of resolution on the final measurements (averaged over 10 snapshots
between t = 200 tunit and 300 tunit) is shown in Fig. 4.8. For each point, five different real-
izations were simulated, using different random seeds to generate the ICs. Low resolutions
tend to predict more circular haloes, but at the resolution of 5 × 105 particles per halo,
the shape parameters are determined to within 1 per cent or better. The maximum of
the circular velocity, vpeak has similar accuracy, while rpeak is more sensitive to relaxation,
and has an uncertainty of 6 per cent. We note that there is a transient period before the
haloes merge in which c/a is very small; this is because the algorithm we use for calculating
shapes takes into account the particles of both (un-merged) haloes.

We conclude that a resolution of 5 × 105 particles per halo is sufficient to study the
properties of the merger remnant. At lower resolution, numerical relaxation can artificially
increase the location of rpeak. We found that this effect could be somewhat alleviated
by decreasing the time-stepping parameter (ErrTolIntAccuracy in gadget-2), at
the cost of much slower run times. For the simulations shown in this chapter, the value
ErrTolIntAccuracy= 0.02 was used.

4.3.4 Halo Rotation

Finally, we check to see whether the halo remnants are in solid-body rotation. In the
previous section, we showed that the axis ratios stayed approximately constant with time,
after an initial transient period. This result holds for all the simulations performed in
this work. Since the merger remnants from tangential encounters should rotate due to
conservation of the initial angular momentum, we are also interested in whether they
rotate differentially, or as a solid body. We considered cases in which the remnant is
prolate (b/a < 0.8), such that the major axis has a well-defined direction, and measured
rotation by tracking changes in the orientation of the major axis.

In Fig. 4.9 we show two sample cases, chosen such that the mergers have similar energies
and angular momenta. The first is a merger between two EinHigh profiles with orbital
parameters rsep = 5 rpeak and v0 = 0.2 vesc. The second case consists of two EinLow
profiles with orbital parameters rsep = 2 rpeak and v0 = 0.8 vesc. The top two panels show
the axis ratios, while the bottom panel shows the normalized x-component of the major
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Figure 4.7: The axis ratios c/a and c/b and the structural parameters r′peak and v′peak relative
to their original values rpeak and vpeak, as a function of time, for different resolutions. The
vertical dotted lines show the time by which the two haloes had completely merged.
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Figure 4.8: The axis ratios c/a and c/b and the structural parameters r′peak and v′peak

relative to their original values rpeak and vpeak, as a function of resolution. Each point is
averaged over five realizations, while error bars show the r.m.s..
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principal axis, ax/|a|, as a measure of orientation. As in Fig. 4.7, c/a is very small in the
transient period before the haloes merge since our algorithm calculates shape based on all
the particles from both haloes.

In the first case, the halo appears to be rotating as a solid body, and there may be
some slight change in the shape ratio c/b, though the change is within the uncertainty
of the shape measurements. In the second case, there is no clear rotation. The main
difference between these two cases is that the EinLow profile is very extended, with a lot
of mass at large radii; it is possible that in this case the envelope is decoupled from the
core, explaining the irregular variation in the orientation of the major principal axis. We
conclude that the rotation of the remnants can be complicated, including both differential
and solid-body rotation. In either of the two cases, however, the long-term shape of the
remnants is well defined. We will proceed to study how this shape depends on halo profiles
and orbital parameters.

4.4 Results

Fig. 4.10 shows sample results from four different merger simulations. The top panels show
the resulting remnants (using a random subset of 103 particles), the middle panels show
the density profiles, and the bottom panels show the cumulative mass profiles. In general,
we find that the remnants are non-spherical in shape, with the radial and tangential orbits
producing prolate and oblate systems, respectively. We can compare the final density and
mass profiles (solid black lines) to those of the initial haloes (dotted green lines), scaling
the mass by a factor of 2 and the radius by a factor of 21/3, as expected if the remnant has
the same mean density as the ICs. We see some differences between the remnant and scaled
ICs; specifically, the density profile changes slightly in curvature, and there appears to be
some mass rearrangement. In general the remnant profile appears to be more extended
than the ICs, but there is also a slight increase in central density. The density profiles of
the remnants will be considered in detail in Chapter 5.

4.4.1 Scaled Energy and Angular Momentum

Changes in halo structure should presumably depend not on the total orbital energy, but on
the fraction of this energy that is available as internal energy, given momentum conservation
requires some bulk motion of the remnant. Before the merger, the total energy of the system
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Figure 4.9: The time evolution in the shape ratios c/a and c/b (top and middle panels), as
well as the x-component of the normalized major axis (bottom panel). The two examples
are mergers between two EinHigh profiles (orange dashed lines) and two EinLow profiles
(blue solid lines), chosen because they have comparable energies and angular momenta.
The vertical dotted lines show the time by which the two haloes had completely merged.
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Figure 4.10: Sample results from four merger simulations. The top row of panels shows
the state of the remnant at t = 300 tunit (in this plot we show only 103 randomly selected
particles). The particles are coloured either red or blue, depending on their initial halo.
The middle row of panels shows the density profiles, and the bottom row shows the mass
profiles. The scaled ICs and remnants are shown with dotted green lines and solid black
lines, respectively. All haloes were initially separated by rsep = 10, and given either a radial
or tangential velocity of v0 = 0.8 vesc, where vesc is the escape speed of a point mass in the
potential of the initial halo.
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is equal to the internal energy of the two initial haloes, plus the initial orbital energy:

Etot = 2E0 + Eorb . (4.10)

After the merger, the remnant will have internal energy E ′0, plus some net kinetic energy,
K ′orb; E ′tot = E ′0 + K ′orb. The net orbital kinetic energy, K ′orb, can be calculated from
conservation of momentum, K ′orb = KorbM/M ′, where Korb is the initial (orbital) kinetic
energy, M is the mass of the initial halo, and M ′ is the mass of the remnant. For an equal
mass merger, Korb = Mv2

0/2, and M/M ′ = 1/2. Thus, since Etot = E ′tot, the internal
energy of the remnant halo will be:

E ′0 = Eorb + 2E0 −
1

4
Mv2

0 . (4.11)

We found that calculating E ′0 in this way agrees to within 2 per cent with a direct calcu-
lation of the internal energy of the remnant using Equation (4.6).

In a cosmological context, encounters between haloes may be close to parabolic, with
Eorb ∼ 0 in the centre-of-mass frame. In this case, the total energy of the remnant is then
just twice the energy of the initial haloes. If the form of the density profile is conserved,
from the scaling of potential energy we expect that the size of the remnant will increase
linearly with mass, i.e. by a factor of 2 (Farouki et al., 1983). As a result, the density of the
remnant will be lower than that of the initial haloes. This evolution at constant specific
energy has been considered the baseline in previous studies of mergers (e.g. Navarro, 1989).
On the other hand, we are interested in following the evolution of shape and concentration
in mergers partly to determine how the mean density of structures evolves with time, for
instance in order to calculate the boost factor for dark matter annihilation (e.g. Okoli et al.,
2018), which scales as

∫
ρ dm. Thus, we will consider the baseline case one in which the

overall density distribution is conserved. We define ‘self-similar evolution’ to be evolution
where the relative mass fraction at any given density in a structure remains constant, and
thus the mean density and boost factor do not change.

In the case of self-similar evolution, r ∼ M1/3 and thus E0 ∝ M5/3. Thus in the self-
similar case for equal-mass mergers, the internal energy of the halo should increase by 25/3.
More generally, we can define a new parameter, the change in internal energy relative to
the change expected in self-similar evolution:

κ ≡ E ′0
E0

(
M

M ′

)5/3

, (4.12)

This parameter provides a convenient dimensionless measure of the change in internal
energy of the halo; a value of κ = 1 corresponds to a self-similar change in energy. If
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κ < 1, then the remnant is less bound than the progenitor, while if κ > 1 the remnant is
more bound.

We can also express angular momentum using a dimensionless spin parameter. The
spin parameter was originally defined by Peebles (1971) as

λ =

√
|E0||J|
GM5/2

, (4.13)

while an alternative definition commonly used in the literature was proposed by Bullock
et al. (2001b):

λB =
|J|√

2Mvirrvirvvir

. (4.14)

The second definition, λB, is equivalent to λ under the assumption of virialization and an
isothermal profile, and is often preferred in the literature since calculating mass is much
easier than calculating the full energy. However, these assumptions lead to scatter in the
expected spin (Ahn et al., 2014). Additionally, λB is not well-defined in non-cosmological
simulations, and therefore we will use λ as defined in Equation (4.13).

The expected spin parameter of the remnant can be predicted from the ICs, using
Equations (4.8) and (4.11). Comparing this to a direct calculation of the spin parameter
of the remnant, we find the two agree to within 1 per cent. The orbital parameters κ and
λ for all our simulations are shown in Fig. 4.11. We note that there are restrictions in
this parameter space in low-κ/high-λ as well as in high-κ/high-λ regions. The former is
because orbits become unbound as κ increases, while the latter is due to the amount of
free energy available.

Since ε and λ are both measures of the angular momentum of the initial orbit, they will
clearly be correlated. Fig. 4.12 compares the value of the two parameters, to clarify this
relationship. Circularities are calculated assuming the orbital energy of the second halo is
that of a point mass orbiting in the potential of the first halo. Note that circularity cannot
be calculated for the higher energy orbits (since there is no bound circular orbit with the
same energy), and therefore this plot contains only a subset of the simulations. Although
ε and λ are (positively) correlated, there is also an energy dependence in both definitions;
for the same angular momentum, spin increases with kinetic energy (and thus decreases
with increasing κ).

4.4.2 Halo Alignment

Fig. 4.13 shows the final alignment of the halo remnants. Haloes were initially separated
along the x-axis, and given an initial velocity in the x-axis (radial orbits) or in the y-axis
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Figure 4.11: Dimensionless energy and spin parameters κ and λ, for the full set of simula-
tions. Symbols are as in Fig. 4.3.
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Figure 4.12: Spin parameter of the merger remnant, λ, versus the circularity of the initial
orbit, ε. Symbols are as in Fig. 4.3.
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(tangential orbits). Fig. 4.13 demonstrates that haloes on radial orbits have their major
axis, a, aligned along the axis of the merger, x. The two other axes, b and c, lie in the y–z
plane. On the other hand, for tangential orbits, axes a and b lie in the x–y plane, while the
minor axis c points in the z direction. Clearly, the shape of the remnant is aligned with the
direction of the merger as expected from previous works (e.g. Macciò et al., 2007; Vera-Ciro
et al., 2011). Since it has been suggested that radial orbits produce prolate haloes, while
tangential orbitals produce oblate haloes (e.g. Moore et al., 2004), there seems to be a link
between halo orientation and shape. The effects of orbital parameters on halo shape will
be explored further in Section 4.4.4.

4.4.3 Net Change in Halo Size

After the merger, we expect the remnant to be larger than either of the initial haloes,
and possibly also elongated in the merger direction, at least in the case of more radial
mergers. As a profile-independent measure of size, we define the ‘radial extent’ of a system
(either the merger remnant, or an initial halo) to be the mean distance of all particles in
the halo from the centre of the system, where the latter was determined as discussed in
Section 4.3. Extents along the principal axes are defined similarly, as the mean distance
projected on each axis. In Fig. 4.14 we show the radial extent of the merger relative to
the radial extent of the ICs, as a function of κ. The size of the remnant, relative to the
ICs, depends mainly on κ, though there is also a small dependence on the initial halo
model. The EinLow simulations (squares) do not increase in size as much as the other
initial halo models for high-energy (low κ) orbits. This may be because the EinLow ICs
are very extended compared to the other models. The results go through the self-similar
expectation for an equal mass merger, r̄/r̄0 = 21/3 when κ = 1. If κ > 1 (more bound
remnants), the remnant is smaller than expected in the self-similar case, and may even have
a radial extent smaller than that of the initial haloes. If κ < 1 (less bound remnants), the
remnant is larger than expected from self-similar scaling. There is little or no dependence
on whether the orbit is radial or tangential, nor on the parameter rsep.

For κ < 1, we find that r̄/r̄0 ≈ 21/3κ−5; this might be expected since the energy of a
virialized self-similar halo scales as M2/r ∼ r5, and therefore the change in halo radius
scales as κ−5. However, as the size of the halo decreases, the dependence on κ weakens;
this may be because for these very low-energy orbits, the halo remnant is not self-similar to
the ICs. The EinLow simulations also have a weaker dependence on κ, and this may once
again indicate departures from self-similarity. We will explore the self-similarity between
initial halo models and final remnants in Chapter 5.
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Figure 4.13: Normalized x, y and z-components of the normalized principal axes a, b and
c of the remnants of halo mergers with either (top) radial or (bottom) tangential initial
velocity, at the final time. Colours and symbols are as in Fig. 4.3.
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Figure 4.14: The mean radial extent of the remnant, r̄, relative to the mean radial extent
the initial halo models, r̄0, versus the energy parameter κ. The self-similar expectations
are shown with dotted black lines. The solid gray line is when r̄/r̄0 = 21/3κ−5. Symbols
and colours are as in Fig. 4.3.

Similar trends can be found when comparing the mean extent of the remnant projected
along each of the principal axes (Fig. 4.15). Relative to the initial halo models, the size
of the remnant is largest along the major principal axis a by definition. The extent of the
halo along this axis increases slightly more than expected from self-similar scaling when
κ = 1. We might expect the intermediate axis of the remnant, b, to be larger for tangential
orbits than for radial orbits, because the orbit lies in the a–b plane; it seems, however, that
b changes by roughly the same amount in radial and tangential cases, but that the minor
axis c (perpendicular to the orbital plane) is smaller in tangential cases compared to radial
cases.

We can derive a simple theoretical prediction for the expected size of the remnants along
the major axis. In the spherical collapse model, when a cosmological overdensity collapses
and virializes, the final radius of each shell is equal to half its radius at turnaround, as
a consequence of energy conservation and the (scalar) virial theorem. By analogy, if the
merger remnants in our simulations were to conserve the virial tensor component-wise, we
might expect their extent along the major axis to be half the turnaround radius of the
initial two-halo system, rTA. Since the virial radius should also increase by a factor of 21/3

due to the extra mass in the system, however, we expect the virial radius along the longest
axis to be rvir ≈ (rTA/2)21/3 = rTA/2

2/3.
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Figure 4.15: The change in the mean extent along the three principal axes, a, b and c,
versus κ. The solid gray line is when the change in the mean extent is equal to 21/3κ−5. The
self-similar expectations are shown with the dotted black lines. Symbols and colours are
as in Fig. 4.3. The left- and right-hand panels are simulations with radial and tangential
initial velocities, respectively.
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Figure 4.16: Turnaround radius as a function of κ. Symbols and colours are as in Fig. 4.3.

To determine the turnaround radius, we calculated Porb(r) for each set of ICs by placing
the two initial haloes a distance of r apart and calculating Porb = P − 2P0, where the
total potential P and internal potential energy of each halo, P0, were calculated from
Equations (4.6) and (4.3), respectively. The turnaround radius is then the radius such
that Eorb = Porb(rTA); i.e. the radius at which there is no kinetic orbital energy. This was
determined by first smoothing Porb(r), using a Gaussian filter, and then interpolating this
smoothed potential to find rTA. Fig. 4.16 shows the turnaround radius as a function of κ.
For high-energy orbits with small κ the turnaround radius is very large, but then it goes
to zero for large κ.

To test the prediction that r′vir ≈ rTA/2
2/3 along the largest axis, we assume that the

virial radius scales as the average particle distance in the ICs, r̄0, and propose:

ā

ā0

= 2−2/3 rTA

r̄0

. (4.15)

We compare the change in all three principal axes in Fig. 4.17. We find the extent along
the largest axis, ā, does indeed scale as predicted, albeit with considerable scatter for large
values of rTA. Since rTA decreases exponentially with κ, the larger rTA values are more
sensitive to the interpolation used to estimate them, so this effect may be purely numerical.
For the low-energy orbits (high κ, low rTA), the extents along the other axes b and c behave
similarly to a, but for higher energy orbits, the change is smaller than our prediction.
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Figure 4.17: The size of the remnant versus the turnaround radius of the initial orbit. The
size of the remnant is measured by the mean extent along the three principal axes, a, b
and c, and the turnaround radius is normalized by the average radial extent of the initial
halo. Dotted lines are the prediction from Equation (4.15). Symbols and colours are as in
Fig. 4.3.
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4.4.4 Net Change in Halo Shape

The axis ratios of the merger remnants were calculated as in Section 4.3.3 and are shown
in Fig. 4.18. We emphasize that these measurements of principal axes sizes, a, b, and
c are not the same as the extent, ā, b̄, and c̄, discussed in the previous section, which
were calculated as the mean particle distance projected along the principal axes. The
top and bottom panels of Fig. 4.18 are coloured by the relative energy parameter κ and
spin parameter λ, respectively. Generally speaking, more bound remnants are also more
spherical. The shape ratio c/a depends mainly on energy, and is smaller when κ is smaller
(less bound haloes). The parameter c/b depends mainly on λ, and b/a depends on both κ
and λ. There is little or no dependence on the IC models or on the parameter rsep on the
final shape of the remnant. Spin dictates whether the final remnant is prolate or oblate
in shape; mergers on (low-spin) radial orbits produce prolate haloes with c/b ≈ 1, while
mergers on tangential (high-spin) orbits produce oblate haloes with c/b ≈ c/a. For the
largest spin values considered here, c/b ≈ c/a ≈ 0.6. Overall, these results are consistent
with the two cases considered in Moore et al. (2004).

Fig. 4.19 shows the final shape parameters, c/a (top) and c/b (bottom) of the halo
remnants as a function of κ and λ, respectively. We also show fits to the main trends:

c/a = 0.24κ+ 0.47 (4.16a)

c/b = −0.90λ+ 0.96 . (4.16b)

Alternatively, we could fit the inverse ratios a/c and b/c, since the axis c generally
grows less than a or b after the merger. Fig. 4.20 shows these ratios, along with the fits:

a/c = −0.50κ+ 1.91 (4.17a)

b/c = 1.32λ+ 1.03 . (4.17b)

In the bottom panel of Fig. 4.19, it is a bit surprising that c/b 6= 1 in some cases, even
when λ = 0. As discussed previously, by symmetry, one would expect c = b for mergers on
purely radial orbits. It seems likely that c 6= b in practice for numerical reasons arising from
the fact that the ICs are not perfectly symmetric. We expect this to be particularly true
at high energies, where the simulation is sensitive to the direction of the initial velocity.
Any noise or uncertainty in the shape measurement will result in an underestimate of c/b,
since by definition c < b, and thus c/b < 1.

One implication of Equation (4.16a) is that for a self-similar change in energy, c/a ≈ 0.7.
To understand this, we can consider a self-similar radial merger between two spherical,
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Figure 4.18: Remnant axis ratios c/a versus b/a (left) and c/a versus c/b (right), where
a > b > c. Regions of parameter space corresponding to spherical, prolate and oblate
haloes are labeled. The top panels are coloured by the relative energy parameter κ, and
the bottom panels by the spin parameter, λ. Symbols are as in Fig. 4.3.
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Figure 4.19: Remnant axis ratios c/a (top) and c/b (bottom) as a function of the relative
energy parameter κ, and the spin parameter, λ, respectively. Symbols are as in Fig. 4.3.
Fits to the average trends are given in the text; the RMS scatter with respect to each is
approximately 0.03.
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Figure 4.20: Remnant axis ratios a/c (top) and b/c (bottom) as a function of the relative
energy parameter κ, and the spin parameter, λ, respectively. Symbols are as in Fig. 4.3.
Fits to the average trends are given in the text; the RMS scatter with respect to each is
approximately 0.07 (top) and 0.04 (bottom).
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equal-mass haloes. In the self-similar case, the radius of the remnant should scale as
r′/r = 21/3. Further, we will assume that the original size of the halo is x0 along any of
the principal axes, and that only the a axis increases in size, such that a′ = βx0, b′ = x0

and c′ = x0. Then,

r′

r
= 21/3 =

√
a′2 + b′2 + c′2

a2 + b2 + c2

⇔ 22/3 =
β2 + 2

3
.

(4.18)

Solving, we find β ∼ 1.66, and thus c/a = 1/β ≈ 0.6.

This predicts an axis ratio c/a slightly smaller than the one found; on the other hand,
in the preceding derivation we assumed that all of the change in size occurred along the
major axis, whereas the previous section showed that all axes grow to some degree, not
just those in the plane of the merger.

Overall, for the range of orbital parameters we have tested, the axis ratios c/a and c/b
scale roughly linearly with κ and λ. This simple result suggests that shape changes are
relatively easy to understand, and that the details of the initial density profiles are not
important, provided the internal energies of the initial haloes are appropriately accounted
for.

4.5 Conclusions

We have performed a large number of idealized simulations of mergers between isolated
haloes with realistic density profiles, to determine what dictates the structure of the rem-
nant in major halo mergers. In this chapter, we describe our IC generation and convergence
tests, and then consider the size and shape of the final remnant, which we find is reasonably
well described by a triaxial ellipsoid with axes a > b > c. The shape of the remnant is
mainly determined by the orbital parameters of the merger, the energy and angular mo-
mentum of the orbit controlling the axis ratios c/a and c/b, respectively. The size of the
remnant depends mainly on the energy of the orbit, although there is some dependence on
the initial halo profile as well. The overall spin of the remnant is also determined by the
orbit, through conservation of angular momentum, though the remnant does not generally
rotate as a solid body. The radial separation, rsep, and the initial velocity, v0, do not have
a direct effect on the size or shape of the final halo remnants.

We can interpret our results most simply in terms of the scaled energy parameter κ
and the dimensionless spin parameter λ. The former is the net internal energy available
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to the remnant, relative to its initial energy, and normalized by the overall scaling factor
expected if the mean density is conserved while the mass doubles (cf. Equation (4.12)).
The latter follows the usual cosmological definition (Equation (4.13)). In terms of these
variables, we find that the minor-to-major axis ratio c/a scales roughly linearly with relative
energy κ. Mergers with less (negative) total energy (i.e. low values of κ, equivalent to
merging from large initial separations) produce more elongated remnants, while mergers
from smaller initial separations produce rounder remnants. For the ‘scale invariant’ value
κ = 1, mergers produce remnants with c/a ∼ 0.7, as expected from a simple analysis of
the energy available along each axis.

The minor-to-intermediate axis ratio c/b depends mainly on the angular momentum
of the original encounter, scaling roughly linearly with the spin parameter λ. High spin
mergers produce oblate, disky remnants that are almost axially symmetric. As the spin
parameter decreases, the remnants become progressively more prolate, eventually becoming
non-rotating, elongated objects in the limit of radial encounters.

These results are consistent with the previous study of Moore et al. (2004), which
found that a radial merger produced a prolate remnant, while a more circular encounter
produced a disky remnant, although we extend these results to a much wider range of ICs.
Similarily, (McMillan et al., 2007) found that more radial orbits resulted in more prolate
remnants. We find that the shape of the final remnant does not depend on the detailed
density profile of the initial halo models; this is somewhat contrary to what was found by
Fulton & Barnes (2001) and McMillan et al. (2007), who both suggest that shallow cusps
produce prolate remnants, and steep cusps produce oblate remnants. This discrepancy is
likely because even at fixed orbital energy, the scaled energy parameter κ will be different
for different ICs if they have different internal energies. We suspect that comparing their
results at the same value of κ would show no dependence of shape on the initial profile.

Interestingly, we have found that binary equal-mass mergers between spherical haloes
rarely result in remnants with shape ratios less than 0.6, while cosmological haloes typically
have shape ratio c/a < 0.7 (e.g. Jing & Suto, 2002; Allgood et al., 2006; Despali et al.,
2014; Bonamigo et al., 2015). This could be because of the intrinsic initial shape of the
density perturbations, or because multiple successive mergers often occur along the same
filament. We wish to explore this further by considering mergers between two non-spherical
haloes along their major axes. Since generating isolated ICs for non-spherical haloes is not
straightforward, we can use the remnants from the binary mergers presented in this work
as the new ICs, as proposed by Moore et al. (2004).

It should be emphasized that this work only considers equal-mass mergers, which are
relatively rare. The rate of mergers per halo decreases with mass ratio, and 1:1 mergers are
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expected to occur at a rate of approximately 0.1 mergers per unit redshift (Fakhouri et al.,
2010); non-equal-mass mergers are thus much more common. It is therefore interesting
to discuss briefly how our results are expected to extend to non-equal-mass mergers (this
will also be the focus of a future study). The parameters λ and κ defined in this work
can also be calculated for non-equal-mass mergers. Overall, we expect that the qualitative
results found here will extend to non-equal-mass major mergers. Size should scale inversely
with κ, c/a should scale with κ, and c/b should scale with λ. Additionally, the relations
derived for the change in the size a in Equation (4.15), and the prediction for c/a (κ = 1) in
Equation (4.18) can be extended to non-equal-mass mergers. This implies, however, that
the exact relationship between c/a and κ is dependent on the mass ratio of the merger. In
the limit of a very large mass ratio, the larger halo will remain unaffected by the merger,
and thus c/a ≈ 1 when κ = 1.

Overall, there are several caveats to our conclusions. The first is that our ICs represent
a great simplification of the typical cosmological situation. In a cosmological setting, haloes
are almost never completely isolated, and major mergers between single pairs of haloes are
rare. After initial experiments analyzing realistic mergers directly in their cosmological
context, we reduced our study to the simplest possible configuration, finding that even
simple mergers are complex enough to warrant separate treatment. In future work, we will
consider how these results extend to more complicated merger situations such as multiple
mergers, or smooth but anisotropic accretion, with the goal of understanding fully the
dependence of halo shape on mass and environment that has been measured in cosmological
simulations (e.g. Jing & Suto, 2002; Allgood et al., 2006; Maulbetsch et al., 2007; Despali
et al., 2014; Lee et al., 2017; Vega-Ferrero et al., 2017).

Further, to apply our results to observations, we must also account for baryonic effects.
These have been studied before in isolated mergers (Aceves & Velázquez, 2006; Kazantzidis
et al., 2006). These authors found that the shape of the final merger remnant within the
virial radius was similar, whether the merger was simulated using dark matter only, or
in full hydrodynamic simulations including baryons. More generally, some hydrodynamic
simulations find that baryons make haloes rounder at small radii (e.g. Butsky et al., 2016),
while others find that they have less effect, at least on cluster scales (e.g. Sereno et al.,
2018), so further work on this subject is needed.

Since observations are beginning to place constraints on the shapes of individual galaxy
clusters, this is an obvious area in which to pursue the development of next-generation cos-
mological tests based on structural properties. It would also be interesting to split cluster
samples by projected or 3D shape, and compare their mean galaxy content and substruc-
ture, to establish a connection between final states and past merger history, for large
numbers of systems. Shape and internal structure may also be relevant in understanding

117



the X-ray scaling relations, using the offset from the mean relations versus shape as a
probe of how cluster thermodynamics evolve after a major merger (e.g. Poole et al., 2007).
Finally, in the longer term, the structural properties of individual haloes may be used to
probe the statistics of the surrounding density field, including both the spatial anisotropy
of the region around the local density peak, and the angular momentum distribution of this
region. These properties of the density field should in turn be sensitive to non-Gaussianity
and other more subtle aspects of structure formation.

The results presented in this chapter should form the basis for a full model of how a
halo’s shape changes as it grows through mergers and accretion. Such a model may in
turn allow semi-analytic predictions of the full distribution of halo shapes as a function of
cosmological parameters. In the shorter term, we will use the ICs and analysis tools estab-
lished here to study the evolution of the density profile and the concentration parameter
in major halo mergers. This will be the subject of Chapter 5.
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Chapter 5

Major Mergers Between Dark matter
Haloes – II. Profile and
Concentration Changes

5.1 Introduction

Dark matter haloes play a central role in our current understanding of cosmological struc-
ture formation, being the site of all visible galaxy formation. While observational tests
including galaxy kinematics (e.g. Ouellette et al., 2017), satellite kinematics (e.g. Guo
et al., 2012) and weak and strong gravitational lensing (e.g. Umetsu et al., 2016) place
important constraints on halo properties, most of our detailed knowledge of halo structure
comes from numerical simulations. A remarkable property of dark matter haloes discovered
in cosmological simulations is the existence of a nearly universal density profile, regardless
of mass or cosmological model (Navarro et al., 1996, 1997), commonly approximated by
the Navarro–Frenk–White (NFW) form,

ρ(r) =
ρ0r

3
s

r(r + rs)2
, (5.1)

where ρ0 is a characteristic density and rs is the scale radius, describing the point where
the logarithmic slope is d ln ρ/d ln r = −2. Though NFW profiles are still commonly used
in the literature, dark matter halo density profiles are slightly better described by Einasto
profiles (e.g. Navarro et al., 2004; Gao et al., 2008; Klypin et al., 2016), which can be
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expressed as:

ρ(r) = ρ−2 exp

(
− 2

αE

[(
r

r−2

)αE

− 1

])
, (5.2)

where αE is the Einasto shape parameter and r−2 is the radius where the logarithmic slope
is −2.

The mean density of dark matter haloes within their outer, virial boundary scales
with the mean or critical background density at the epoch at which they are observed,
but is the same for all haloes at that epoch, independent of mass or growth history. On
the other hand, the central densities of haloes at any one epoch can vary considerably,
depending on their concentration. The concentration parameter c was originally defined
in terms of the NFW density profile as c = rvir/rs, where rvir is the virial radius. This
definition can be extended to the Einasto profile by taking rs = r−2; this definition does not
capture the effects of αE on the central density of the halo (Klypin et al., 2016), however.
An alternative, profile independent, definition of concentration is based on the ratio of the
maximum circular velocity to the virial velocity vpeak/vvir (Prada et al., 2012; Klypin et al.,
2016), which is monotonically related to the original definition of c.

For an individual halo, the evolution of the concentration parameter is linked to the
halo’s merger history (e.g. Navarro et al., 1997; Bullock et al., 2001a; van den Bosch, 2002;
Zhao et al., 2009; Wong & Taylor, 2012; Klypin et al., 2016). These previous studies
have established that haloes undergo two main phases of mass accretion. In the first, rapid
phase, the concentration parameter remains roughly constant, with a value of c ≈ 3. In the
second, slow phase, the concentration parameter grows as the virial radius increases while
the scale radius remains fixed. The increase in mass and concentration during this second
phase is mainly due to the decreasing reference density, and is therefore sometimes referred
to as pseudo-evolution (e.g. Diemer et al., 2013). Averaged over many systems, these
patterns give rise to the mean concentration–mass–redshift relation, in which concentration
generally decreases with increasing mass (e.g. Navarro et al., 1996, 1997; Jing, 2000; Bullock
et al., 2001a), except at the largest masses, where velocity-based definitions can increase
again (e.g. Klypin et al., 2016).

An important implication of previous measurements of the concentration–mass–redshift
relation is that the inner scale radius must increase as haloes grow. In cosmological sim-
ulations, the median concentration of haloes of a given mass evolves with redshift as
c ∼ c0(1 + z)−1, as first demonstrated by Bullock et al. (2001a), or possibly as c ∼ c0ρ

−1/3
c ,

(where ρc is the critical density of the universe), as pointed out by Pilipenko et al. (2017).
This would correspond to the scaling of the virial radius for an object whose mass did not
increase with redshift, that is for an isolated system surrounded by a void. Haloes never
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exist in complete isolation, however; as the virial radius increases, it will enclose more
matter, increasing both the total mass and the virial radius further. Thus, the net growth
will go as rvir ∝ (Mvir/ρc)

1/3. For concentration to scale as c ∝ ρ
−1/3
c , the scale radius must

therefore increase as M
1/3
vir as well. A similar conclusion was reached by Zhao et al. (2003),

who showed directly that rs increases during the period of rapid accretion. Provided rs

increases as M
1/3
vir , the density at or within one scale radius will remain constant, while the

density within a fixed physical radius increases.

This prediction seems puzzling given several other pieces of evidence that central density
must decrease as haloes grow. The first was discovered by Nusser & Sheth (1999), who
showed that in the absence of any rearrangement of the pre-existing material, accretion onto
the outside of a halo would produce a structure with a central density much higher than that
of haloes in cosmological simulations. A second piece of evidence comes from simulations
of the first haloes by Ishiyama (2014). Evolving these down to a final redshift of z = 32,
he found central densities that were once again much higher at fixed physical radius than
expected from extrapolations of the low-redshift concentration–mass–redshift relations; if
these densities are conserved, they would increase estimates of the boost factor by up to
two orders of magnitude (Okoli et al., 2018). From both these studies, the implication is
that there must be some mechanism that rearranges the central parts of haloes, causing the
mass distribution to expand, and decreasing the central density. Given the work of Nusser
& Sheth (1999), this mechanism must be distinct from slow accretion and associated with
periods of rapid growth; thus major mergers seem an obvious candidate.

Isolated major mergers between otherwise undisturbed systems are rare in a cosmo-
logical context, and thus the effects of major mergers are best studied through controlled
simulations of isolated systems (e.g. Boylan-Kolchin & Ma, 2004; Aceves & Velázquez,
2006; Kazantzidis et al., 2006; McMillan et al., 2007; Zemp et al., 2008; Vass et al., 2009;
Ogiya et al., 2016; Drakos et al., 2019). Most authors find that haloes are robust to major
mergers; in particular, it appears that the slope of the steepest density profile is preserved
(Boylan-Kolchin & Ma, 2004; Aceves & Velázquez, 2006; Kazantzidis et al., 2006; Zemp
et al., 2008; Vass et al., 2009), and there is also some suggestion that concentration does
not change (Kazantzidis et al., 2006). However, the simulations of Moore et al. (2004) sug-
gest that concentration can decrease in major mergers, provided the initial encounter has
sufficient angular momentum. Furthermore, the simulations of Ogiya et al. (2016) suggest
that if the inner slopes of the dark matter haloes are particularly steep (as in the case of
primordial haloes), major mergers can also cause a decrease in the inner slope (again with
some orbital dependence).

In Chapter 4, we performed a large number of isolated major merger simulations,
covering a wide range of initial halo models and orbital parameters to study how the spin,
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size, and 3D shape of merger remnants depend on the initial conditions (ICs) and the
orbital parameters describing the encounter. We showed that the spin and shape of merger
remnants depend mainly on the angular momentum and energy of the merger. In this
chapter, we will consider how the characteristic radii, density profile, and concentration
parameter depend on orbital properties and ICs. Our main goal is to determine whether
major mergers are a viable mechanism for increasing scale radius and/or decreasing central
density, and if so, under which conditions.

The outline of the chapter is as follows: in Section 5.2, we briefly review our method
for generating ICs, and the merger simulations from Chapter 4. In Section 5.3, we examine
the overall behaviour of the density profile and various characteristic radii. In Section 5.4,
we show the results of fitting analytic density profiles to the remnants, and in Section 5.5,
we consider the implications for the concentration parameter. We summarize and discuss
our results in Section 5.6.

5.2 Simulations

In this section we briefly outline the merger simulations. For a more detailed explanation
of the simulations, see Chapter 4.

5.2.1 Initial Profile Models

The halo ICs (ICs) were created using the public code icicle (Drakos et al., 2017). We
considered six different halo models. Two were NFW models truncated using an expo-
nential cut-off (NFWX), and two were NFW models truncated by iteratively removing
unbound particles outside a specified radius (NFWT). The last two models were Einasto
profiles (Ein), one with a low shape parameter αE = 0.15, and one with a high shape
parameter αE = 0.3. These values of αE span the range found in cosmological simulations
by Gao et al. (2008). The Einasto profiles were not truncated, as the total mass converges
to a finite value with increasing radius. The properties of the profiles are summarized in
Table 5.1. The simulation units were chosen so that the gravitational constant G, the peak
circular velocity, vpeak, and the radius at which the circular velocity peaks, rpeak, are all

unity. Setting G = Mpeak = rpeak = 1 produces a time unit tunit =
√
r3

peak/GMpeak, a

density unit ρunit = Mpeak/r
3
peak, and an energy unit Eunit = GM2

peak/rpeak.
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Table 5.1: Summary of IC properties. The columns list (1) the name of the IC, (2) the
number of particles N , (3) the parameters used to construct the IC, and (4) the total
internal energy of the IC, E0.

Initial condition name N Parameters E0/Eunit

EinLow 5× 105 αE = 0.15 -2.2
EinHigh 5× 105 αE = 0.3 -1.2
NFWT10 ∼ 3.2× 105 rcut = 10 -1.0
NFWT15 ∼ 3.5× 105 rcut = 15 -1.3

NFWXSlow 5× 105 rvir = 10, rd = 2 rs -1.6
NFWXFast 5× 105 rvir = 10, rd = 0.2 rs -1.5

5.2.2 Orbits

For each of the six density profiles, we simulated encounters between two identical haloes
with that profile, the first initially at rest and the second on a specific initial orbit. We
considered 29 different orbits: 15 with a purely radial (R), and 14 with a purely tangential
(T) initial velocity in the frame of the first halo. The haloes had an initial separation of
rsep = 2, 5, or 10 rpeak and an initial velocity of v0 = 0.1, 0.2, 0.6, 0.8 , or 1.2 vesc, where
vesc is the escape speed of a point mass located at rsep. For v0 = 1.2 vesc, tangential
orbits do not produce a bound remnant, so we did not simulate tangential orbits with this
highest velocity. As described in Chapter 4, the merger simulations were run in gadget-2
(Springel, 2005) using a softening length of ε = 0.02 rpeak. The centre of the remnant halo
was found by calculating the centre of mass within increasingly smaller spheres.

In Chapter 4, we found that the 3D shape of the final merger remnant depends on
the energy and angular momentum of the initial orbit. The dependence is simplest when
expressed in terms of dimensionless energy and spin parameters κ and λ:

κ =
E ′0
E0

(
M

M ′

)5/3

λ =

√
|E ′0|

GM ′5/2 |J
′| .

(5.3)

Here E ′0 and E0 are the internal energies of the remnant and of the initial halo, while M ′

and M are their respective masses. The definition of the energy parameter includes the
factor (M/M ′)5/3, since the energy scales as E0 ∝ M2/r ∝ M5/3 for ‘self-similar’ growth,
that is growth that conserves the mean density and the form of the density profile, as
explained in Chapter 4. Given this definition, κ = 1 corresponds to a final remnant that is
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self-similar to the ICs, κ < 1 indicates that the remnant is less bound than the progenitor,
and κ > 1 indicates it is more bound. The dimensionless spin parameter follows the
definition of Peebles (1969), as discussed in Chapter 4.

The range of κ and λ used is shown in Fig. 5.1. In this space, there is a natural
restriction on the spin parameter for both small and large values of κ. For small values
of κ, orbits with larger λ values become unbound, while large κ simulations correspond to
tightly bound orbits with small radial separations and velocities, so the range of λ is also
limited.

Conveniently, both κ and λ can be calculated directly from the ICs using conservation
laws. Specifically, the angular momentum J′ and internal energy E ′0 of the remnant can be
calculated given the radial separation rsep, the initial velocity v0, the orbital energy Eorb,
the internal energy of the initial halo E0 and the mass of the initial halo M :

J′ = Mrsep × v0 ,

E ′0 = Eorb + 2E0 −
1

4
Mv2

0 .
(5.4)

In Chapter 4, it was found that E ′0 and J ′ calculated in this manner agreed to a direct
calculation to within 2 per cent and 0.5 per cent, respectively.

5.3 Net Change in the Mass Distribution

In this section, we explore how the density profile changes going from the IC to the final
remnant. As in Chapter 4, the properties of the final remnant are measured at time
300 tunit, by which time it has fully relaxed.

5.3.1 General Results

In Fig. 5.2 we show the final density profiles of the remnants, compared to the initial halo
models (dashed grey lines). The density increases at any given radius for all remnants,
which is perhaps not surprising given the total mass of the system has doubled. We also
show the initial profiles with the radii scaled by 21/3 (dotted black lines); this is the scaling
expected for self-similar evolution in an equal-mass merger, since it will conserve the mean
density as the mass doubles.

The final remnants have been coloured by the relative energy parameter, κ. At small
radii, the changes in the profile compared to the scaled ICs are subtle, and the inner
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Figure 5.1: The range of orbital parameters used in the simulations. The orbital parameters
are the energy parameter κ (which expresses the change in internal energy from the ICs
to the final remnant, relative to the self-similar value for a binary merger), and the spin
parameter, λ. Open points indicate tangential initial velocities, and filled points denote
radial initial velocities. The size of the symbols corresponds to the initial radial separation,
rsep.
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slope is roughly conserved, in agreement with previous studies (Boylan-Kolchin & Ma,
2004; Aceves & Velázquez, 2006; Kazantzidis et al., 2006; Zemp et al., 2008; Vass et al.,
2009). At large radii, the changes in the density profile are more obvious, as mass has
moved outwards, relative to the scaled ICs. (Admittedly, some of this is likely due to the
artificially truncated nature of the ICs.) The panels have been divided into orbits with
radial (R) or tangential (T) initial velocities; as shown in Chapter 4, these orbits should
produce remnants with different 3D shapes. Interestingly, orbital angular momentum has
little effect on the spherically averaged density profile. There does, however, seem to be
a systematic change in the density profile with κ; remnants of low κ encounters have
more power-law like profiles (low Einasto alpha parameters), whereas remnants of high κ
encounters have more sharply truncated profiles (high Einasto alpha parameters).

Since the change in the density profile is difficult to see, particularly at small radii,
in Fig. 5.3 we also plot the enclosed mass fraction within a given radius versus the mean
density within that radius. Note that the direction of the x-axis has been reversed here,
since large densities correspond to small radii. In this plot it is clear that the mass dis-
tribution changes even at small radii. The remnants evolve in a monotonic sequence with
κ, with higher κ values producing denser remnants at all mass fractions. Again, we find
little dependence on the angular momentum of the orbit. Comparing to the ICs, the final
remnant curves lie roughly either inside or outside the IC curve, with the divide occurring
at the self-similar energy, κ = 1. Sharply truncated profiles, such as NFWXFast, produce
remnants with more diffuse outer regions, even for κ = 1. In a few instances, the remnant
curves also cross over the ICs, or over curves of higher or lower κ, but it is not clear whether
this behaviour is robust to changes in resolution.

Overall, it appears that the density profiles of the haloes evolve in a straightforward
way that is mainly dependent on κ. In general, some mass is ejected to large radii, but the
central density does not decrease significantly compared to predictions from self-similar
scaling. Surprisingly, there is little difference between the remnants produced by radial
and tangential encounters. One implication is that the spherically averaged density profile
of a remnant is unrelated to its 3D shape, as we showed in Chapter 4 that the shape of
the halo does vary with the angular momentum of the encounter.

5.3.2 Evolution of Structural Parameters

Haloes do not typically have sharp boundaries, and therefore their sizes are not well defined.
One convenient measure of the size of extended systems is the gravitational radius, which
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Figure 5.2: Density profiles of the halo remnants. The dashed grey lines show the initial
halo models, and the dotted black lines are the ICs with the radius rescaled by a factor
of 21/3, as expected for a self-similar equal-mass merger. The labels indicate the initial
halo models, as well as whether the initial velocity was tangential (T) or radial (R). The
remnants are coloured by the relative energy change, κ.
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Figure 5.3: The enclosed mass fraction within a given radius in the merger remnant, versus
the enclosed mean density within that radius. The initial haloes are shown with dotted
black lines. Labels indicate the IC model, and whether the initial velocity was purely
tangential (T) or purely radial (R). The curves are coloured by the relative energy change
κ, which indicates the change in internal energy relative to scaled ICs. Note that density
increases to the left on the horizontal axis, to match the orientation of Fig. 5.2, with larger
radii to the right.

128



is defined as:

rg ≡
GM2

|P | , (5.5)

where P is the potential energy of the system. For a virialized halo, 〈v2〉 = GM/rg. In
practice, however, the potential energy is difficult to measure. Therefore, the half-mass
radius, r1/2, the radius enclosing half the mass of the halo, is a more convenient quantity
to characterize halo size. As discussed in Binney & Tremaine (1987), r1/2 is typically
proportional to rg, and r1/2/rg can range from about 0.4 to 0.5 depending on the system’s
density profile; thus in general we can estimate that r1/2/rg ≈ 0.45 to good approximation.

For the work presented here, rg is a useful quantity since it is closely related to the
relative energy change, κ. For a virialized halo, P = 2E0, and thus rg ∝ M2/E0. Given
our previous definition of the relative energy change,

κ =
E ′0
E0

(
M

M ′

)5/3

, (5.6)

and the fact that the initial and final haloes are in virial equilibrium, we have:

r′g
rg

=
1

κ

(
M ′

M

)1/3

=
21/3

κ
. (5.7)

We verify this prediction in the left-hand panel of Fig. 5.4 by calculating the gravitational
radius directly from Equation (5.5), and find that it does indeed scale with 1/κ as expected.
This relationship shows that larger values of κ (mergers between more highly bound pairs,
where the total energy is more negative) result in less diffuse structures. The middle
panel of Fig. 5.4 shows how the change in half-mass radius varies as a function of κ.
There is a monotonically decreasing relationship between κ and r′1/2/r1/2, though it shows

more scatter than the relationship between r′g/rg and κ. The dotted lines show where

r′1/2/r1/2 = 21/3, as expected for self-similar evolution. The prediction from Equation (5.7),

assuming r1/2 is proportional to rg, is also shown (red dashed line). The solid black line is
a fit to the data, r′1/2/r1/2 = 1.2κ2 − 3.9κ+ 3.9; the RMS scatter with respect to this fit is
0.06.

We see that the simulation results go through the self-similar expectation at κ = 1.
They also agree with the prediction from Equation (5.7), except at low κ (less bound
mergers). To see why this is, in the right-hand panel of Fig. 5.4 we show r′1/2 vs r′g.
The dotted line corresponds to r1/2 ≈ 0.45rg. For the most part, the remnants obey the
expected relationship, with the exception of two points, corresponding to the simulations
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Figure 5.4: (Left) The gravitational radius as a function of the relative energy change
κ. The dotted black line is the theoretical expectation, rg ∝ 1/κ. (Middle) The relative
change in the half-mass radius, r′1/2/r1/2, as a function of the relative energy change κ. The
black dotted lines show the expected values for self-similar evolution of the density profile.
The red dashed curve is the theoretical expectation if r1/2 is proportional to rg. The solid
black line is a fit to the data, r′1/2/r1/2 = 1.2κ2 − 3.9κ+ 3.9. (Right) The half-mass radius
versus the gravitational radius. The dotted line corresponds to r1/2 = 0.45 rg. Colours and
symbols are as in Fig. 5.1.
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with the lowest κ values. This deviation from the expected relationship may indicate a
departure from self-similarity.

While rg and r1/2 are useful for describing how the size of a halo changes in a major
merger, concentration measurements typically depend on a characteristic scale radius, r−2

and the virial radius, rvir, or possibly on the peak of the circular velocity curve, vpeak and
the circular velocity at the virial radius, vvir. The scale radius, r−2 (the radius at which the
logarithmic slope of the density profile is −2), is difficult to measure accurately, since it
requires numerical differentiation; to help with this, we apply a Gaussian smoothing kernel
with a σ = 0.1 ln rpeak to the derivative of the profile d ln ρ/d ln r. We note, however, that
the resulting value of r−2 is somewhat sensitive to the degree of smoothing, and thus we
expect some scatter in the results. In the next section, we will also measure r−2 using
the more commonly employed method of profile fitting, and compare the results to those
obtained here in Appendix D.

Despite the greater scatter in the measurements, Fig. 5.5 shows a clear trend in the scale
radius with κ. Unlike rg or r1/2, however, changes in r−2 generally increase with increasing
κ, matching the self-similar prediction at κ = 1 (black dotted lines). The solid black line is
a fit to the simulation results, r′−2/r−2 = 0.80κ+ 0.38. This fit has an RMS scatter of 0.3,
although the scatter is smaller for κ < 1 and much larger for κ > 1. Interestingly, the lower
κ mergers seem to leave the scale radius, r−2, unchanged, or even decrease it slightly. This
is surprising, since these correspond to more ‘violent’ encounters with more initial kinetic
energy. Naively, these mergers might be expected to heat up the central parts of the haloes,
producing a remnant with lower central density and a larger scale radius. Fig. 5.3 shows
that while the profile of the remnant has expanded relative to the self-similar prediction,
the resulting density change is much larger at large radii than at small radii. As a result,
the scale radius does not necessarily increase, and can even decrease.

To understand why the scale radius increases with κ, while other radii decrease, in
Fig. 5.6 we plot ρr2 versus radius. The peak of the curve indicates the radius at which
r = r−2. We note several interesting features. First, the profiles become more sharply
peaked (i.e. they have higher Einasto alpha parameters) for larger values of κ. Second, the
curves are not completely smooth, but have several small variations relative to the scaled
ICs. These might appear to be noise in the density profiles, but the fact that they reoccur
at similar radii in simulations with different κ values (e.g. in the NFWT15 R or NFWXSlow
R panels) suggests that they are real features in the remnants. Similar variations can be
seen in merger remnants from e.g. McMillan et al. (2007). For very flat profiles, such as
the EinLow simulations, these features make the scale radius hard to measure and add
scatter to the measured values.
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Figure 5.5: The change in the scale radius, r′−2/r−2, as a function of the relative energy
change, κ. The dotted lines are the expectations for self-similar evolution of the density
profile. Colours and symbols are as in Fig. 5.1. The solid black line is a fit to the data,
r′−2/r−2 = 0.80κ+ 0.38.

Third, if we consider the difference between the scaled ICs (dotted black lines) and
the final remnants, we see that the largest changes in density are at, or past, the scale
radius. At small radii, the density changes less, and only ever drops ∼10 per cent below
the corresponding value for the scaled ICs. The net effect of the density changes being
larger at large radii is that while low κ simulations produce more extended profiles (see
Fig. 5.2), they actually have smaller scale radii. Conversely, very bound (high κ) remnants
have large scale radii, but are then truncated abruptly beyond this radius.

Next, we consider the virial radius, rvir. For cosmological haloes, this is formally the
radius within which the system is in virial equilibrium. Strictly speaking, this definition
only applies to systems that are accreting continuously from the surrounding density field;
there is no clear analogue of this quantity in our isolated simulations. In practice, however,
the virial radius in cosmological simulations is usually defined as the radius within which
the mean density of the halo exceeds a reference background density ρref by a factor ∆. A
common choice is ρref = ρc, the critical density, and ∆ = 200 (Navarro et al., 1996, 1997).
By analogy, we will consider two ‘virial radii’ that enclose mean densities ρ̄ = 0.1 ρunit and
0.008 ρunit. Given our choice of units, for an NFW profile these would correspond to 3 and
10 times the scale radius, respectively (or concentration parameters of c = 3 and c = 10),
in our ICs. (Given these definitions, we also note that the ‘virial mass’ within each of these
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Figure 5.6: ρr2 versus radius for the halo remnants, coloured by the relative energy change,
κ. Scale radii, r−2, are indicated with stars. The dashed grey lines show the initial halo
models, and the dotted black lines are the ICs with the radius rescaled by a factor of 21/3,
as expected for a self-similar equal-mass merger.
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radii will scale as Mvir ∝ r3
vir.) Fig. 5.7 shows the change in these radii as a function of κ.

The solid lines are fits to the data, r′vir/rvir = 0.39κ+0.87 (top) and r′vir/rvir = 0.22κ+1.02
(bottom), with an RMS scatter of 0.03 for both. Overall, the relationship between rvir

and κ is monotonic, and fairly tight, with some possible dependence on the initial profile.
As with the scale radius, the change in the virial radius increases with κ. Thus, while
the remnants produced by more energetic encounters are larger and more diffuse, a virial
radius defined in terms of enclosed density is actually smaller for these systems. We note,
however, that the slopes of the virial radius–κ relations (0.39 and 0.22, for the two density
thresholds) are both shallower than the relation for the scale radius (0.8). Thus, although
the density change relative to self-similar scaling is larger in the outer parts of the remnant
(as shown in Fig. 5.3), the relative change in size is smaller at larger radii than at smaller
radii.

Finally, we examine how the peak circular velocity, vpeak, and the corresponding radius,
rpeak, vary from the ICs to the final remnant. Fig. 5.8 shows the relative changes in rpeak

(top) and vpeak (bottom) as a function of the relative energy change, κ. The solid black
lines are fits to the data r′peak/rpeak = 0.29κ + 0.95 (top) and v′peak/vpeak = 0.46κ + 0.81
(bottom); the RMS scatter with respect to these are 0.2 and 0.04, respectively. The
relative change in peak velocity increases approximately linearly with κ. The relationship
between rpeak and κ is more complicated; here the points follow two trends. The low-energy
simulations generally produce remnants with peak radii close to those of the ICs, that is
to say smaller than the self-similar expectation, while for the high-energy simulations rpeak

generally increases linearly with κ, passing through the self-similar value at κ = 1. There
are a number of exceptions to these trends, however, notably the simulations with EinLow
profiles.

In Chapter 4, we found that the size of haloes, measured as the average particle distance
from the halo centre, decreased with κ as κ−5. The results in this chapter indicate that
while the radii rg and r1/2 also decrease (albeit as κ−1), the characteristic radii r−2, rvir, and
rpeak all increase roughly linearly with κ. Clearly the changes in the profile are complicated
and non-self-similar, suggesting that the behaviour of the concentration parameter may be
complicated. Finally, since there is a considerable literature investigating how the inner
slope of halo profiles evolve in mergers, we have also included a discussion of this point in
Appendix C.
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Figure 5.7: The change in virial radius, r′vir/rvir, as a function of the relative energy change,
κ. The two virial radii are defined in terms of enclosed mean density, as described in the
text, for densities of ρ̄ = 0.1 ρunit (top) and 0.008 ρunit (bottom). The dotted lines show
the expected values for self-similar scaling of the density profile. Colours and symbols
are as in Fig. 5.1. The solid lines are fits to the data, r′vir/rvir = 0.39κ + 0.87 (top) and
r′vir/rvir = 0.22κ+ 1.02 (bottom).
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Figure 5.8: Changes in rpeak (top) and vpeak (bottom) as a function of the relative energy
change, κ. The dotted lines show the values for self-similar scaling. Colours and symbols
are as in Fig. 5.1. The solid black lines are fits to the data r′peak/rpeak = 0.29κ+ 0.95 (top)
and v′peak/vpeak = 0.46κ+ 0.81 (bottom).
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5.4 Profile Fitting

In the previous section, we examined how the overall mass distribution and the charac-
teristic radii evolve in major mergers. In this section, we fit analytic NFW and Einasto
profiles to the remnants, and discuss how well these analytic forms describe the remnants.

5.4.1 Methods

To determine the NFW parameters (rs, ρ0) or the Einasto parameters (r−2, ρ−2, αE), we fit
the circular velocity profiles using a χ2 minimization procedure. Though previous studies
generally fit the density profile directly (e.g. Neto et al., 2007; Duffy et al., 2008; Dutton
& Macciò, 2014; Meneghetti et al., 2014), fitting the circular velocity is less susceptible to
noise, as discussed in Vera-Ciro et al. (2013).

The data were binned in logarithmic radial bins, with each bin centred on ln ri. As in
Vera-Ciro et al. (2013, 2014), we fit the profiles by minimizing

χ2 =
1

Nbins

Nbins∑
i=1

(ln v2
c − ln v2

c,i)
2 , (5.8)

where Nbins is the number of bins, vc is the circular velocity of the fitted profile at radius ri,
and vc,i is the circular velocity of the simulated halo at ri. The fit was performed between
three times the softening length and the radius at which the mean enclosed density was
ρ̄ = 0.01 ρunit. Though we present both NFW and Einasto fits, it has been shown that
concentrations from Einasto fits are more robust to variations in fitting details, such as the
radial range (Gao et al., 2008).

5.4.2 Fits to Individual Remnants

Fig. 5.9 shows the merger remnants of radial mergers with EinHigh (left) and NFWXSlow
ICs (right). Einasto profiles provide a much better description of the remnants in both
cases. This may not be surprising, given that the ICs had either Einasto or truncated
profiles. Even for the Einasto profile, however, there is a change in the αE parameter.
These results demonstrate that the profiles of the remnants are not, in general, NFW, nor
are they self-similar to the ICs.

To assess how well the haloes are fit by NFW and Einasto profiles, we show the residuals
in Fig. 5.10, in the range that the velocity profiles were fit. The remnants are coloured
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Figure 5.9: Density profile, ρ (top), ρr2 (middle), and the circular velocity curve vcirc (bot-
tom) for two example remnants. The initial ICs were either EinHigh (left) or NFWXSlow
(right), and merged on a radial orbit at a separation of 10 rpeak with an initial velocity of
0.8 vesc. The remnant and ICs are shown with solid black and dotted green lines, respec-
tively. The ICs have been scaled as expected for self-similar evolution in an equal-mass
merger; i.e., the radii and velocities have been scaled by 21/3. The best-fitting NFW (blue
dash-dotted line) and Einasto (red dashed line) profiles are also shown.
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by their relative energy parameter (where redder lines correspond to higher κ values), and
fits to the ICs are shown in black. Overall, the residual of the remnant fits are more
consistent with zero for the Einasto fits when compared to the NFW fits. The residuals
look very similar for a given relative energy for all the ICs, with the exception of the EinLow
simulations. The high-κ simulations show different trends in their residuals compared to
the low-κ simulations. Comparing the ICs to the profile fits, we can see that the Einasto
profiles are well fit with Einasto profiles, and NFWX profiles by NFW profiles, as expected.
Interestingly, the NFWT ICs have very low residuals when fit with an Einasto profile;
since these profiles resemble tidally stripped systems (Drakos et al., 2017), this shows that
Einasto profiles are a reasonable description of tidally stripped NFW profiles.

Fig. 5.11 shows the changes in the NFW parameters, ρ0 and rs, as a function of κ.
The density parameter, ρ0, has little dependence on κ, with the exception of the high-κ
simulations. The change in the scale radius, r′s/rs, generally increases with increasing κ,
as was found previously from direct fitting (cf. Fig. 5.5). Both parameters roughly match
the self-similar prediction for κ = 1 (where the dotted lines intersect). At high energies
(low-κ), it is generally found that r′s/rs < 21/3, i.e. rs is smaller than expected from self-
similar evolution. We also note that there appears to be some systematic dependence on
the initial halo model in both sets of results (as indicated by the point colour).

The lowest energy simulations (high κ values) appear to behave slightly differently from
the other simulations; the density increases more than for the other simulations, while the
trend in rs with κ is reversed at these energies. This change in behaviour may indicate that
these remnants are no longer well fit by NFW profiles. In what follows, we will generally
distinguish three groups of simulations with somewhat distinct behaviour: the EinLow
simulations, the lowest energy (highest κ) simulations, and the rest of the simulations,
which follow a simpler trend.

Similarly, the variations in the three Einasto parameters αE, ρ−2 and r−2 are shown in
Fig. 5.12. The variations in αE and ρ−2 are roughly independent of κ, although, as with the
NFW parameters, the high-κ simulations differ considerably from the others, producing
remnants with higher αE and ρ−2 values. Variations in r−2 have a stronger dependence
on κ; r−2 generally increases more for larger values of κ, though once again the high-κ
simulations deviate from the main pattern. As with the NFW profile, for all three Einasto
parameters, the main trends only roughly match the prediction for self-similar scaling when
κ = 1. This could be because the profile is not perfectly described by an Einasto model,
especially in the outer regions, and the parameter values are very sensitive to the exact
profile fit.

In summary, we find that the remnants of equal-mass binary mergers are not self-similar
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Figure 5.10: Residuals in the Einasto (left) and NFW (right) fits to the individual remnants.
The residuals are measured as the difference in ln v2

c between the remnant and the fits. The
halo remnants are coloured by the relative energy change, κ. Residuals in the fits to the
ICs are shown in black.
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to their ICs, but are fairly well described by Einasto profiles. Changes in the halo profile
depend mainly on the relative change in internal energy, κ, though there is also some
dependence on the initial model of the halo. Interestingly, the Einasto shape parameter
αE typically increases in mergers. High peaks in the density field, and/or rapidly forming
haloes, have higher values of αE (Gao et al., 2008; Ogiya et al., 2016); it is possible that
mergers have a role in producing these profiles.

5.4.3 Analytic Model of Profile Changes

Ultimately, we would like a synthetic prediction for how the profile of the remnant will
differ from that of the ICs. We can specify the relationship fully by determining the
changes in the three Einasto parameters, αE, ρ−2, and r−2, as a function of the ICs and/or
merger parameters. Clearly, we need three independent equations to predict the changes
in these three parameters. Ideally, we would use the equations for r1/2, vpeak, and rvir

derived in Section 5.3.2, since they have little dependence on the initial halo model. In
practice, however, we have found that this method does not work well, as the Einasto
parameters are very sensitive to small variations in these equations. Instead, we determine
the three Einasto parameters from profile fits to the merger remnants, and fit directly for
the dependence on κ and E0. We assume that the dependence is at most quadratic in both
variables. The resulting fits are:

α′E = (0.03κ2 − 0.06κ+ 0.06)× (5.9a)(
0.37

E2
0

E2
unit

+ 4.72
E0

Eunit

+ 13.2

)
ρ′−2

ρunit

= (0.96κ2 − 1.75κ+ 1.19)× (5.9b)(
0.46

E2
0

E2
unit

+ 1.87
E0

Eunit

+ 2.68

)
r′−2

rpeak

= (−0.11κ2 + 0.25κ+ 0.06)× (5.9c)(
−0.75

E2
0

E2
unit

− 2.79
E0

Eunit

+ 0.57

)
.

Fig. 5.13 shows how the predicted Einasto parameters compare to those derived from
profile fits to the individual remnants. The RMS scatter with respect to the fit is 0.02,
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0.06, and 0.03 for the top, middle, and bottom panels, respectively. In general, the scatter
is fairly small, except for the EinLow profiles (squares). Remnants from EinLow ICs have
low αE parameters, and most have fairly flat logarithmic slopes to their density profile, as
illustrated in Fig. 5.6; overall, these are the most massive, extended profiles with a large
fraction of their mass at large radii, possibly explaining the deviations from the general
trend. Overall, we conclude that Equations (5.9a)-(5.9c) provide a good description of the
final remnant, as a function of the ICs and the orbital parameters (specifically κ).

5.5 Implications for Concentration Changes

Having described how the profile of the remnant depends on the ICs and the merger
parameters, we will now consider the implications for the evolution of the concentration
parameter.

5.5.1 Definitions of Concentration

There are several methods for measuring concentration in simulated haloes; most commonly
concentration is defined as c = rvir/r−2, where r−2 is determined through profile fitting
and rvir is defined in terms of the enclosed mean density. However, concentration can
also be determined indirectly by measuring other properties, such as the peak circular
velocity (Prada et al., 2012; Klypin et al., 2016) or the mean density profile (Alam et al.,
2002; Diemand et al., 2007), and inverting the relationship between these properties and
the usual concentration parameter, given an assumed theoretical profile. These different
methods should all agree for NFW profiles, but can give different answers when the density
profile is not NFW.

As discussed in Prada et al. (2012) and Klypin et al. (2016), determining the concen-
tration from the ratio of the peak circular velocity to the circular velocity at the virial
radius,

R = vpeak/vvir , (5.10)

may be more justified than profile fitting, since it accounts for differences in the Einasto
shape parameter, αE, that affect the central concentration of the mass distribution. Addi-
tionally, calculating R does not require any assumption about the profile.

Since R is monotonically related to c = rvir/r−2, to convert from R to the concentration,
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Figure 5.13: Einasto parameters αE, ρ−2 and r−2 predicted by our fits (Equations (5.9a)-
(5.9c)), versus the parameters values measured from the best-fitting profile to each remnant
halo.
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cR, one can assume a profile (e.g. NFW or Einasto), and use the formula:

R =

√
cRf(xpeak)

xpeakf(cR)
, (5.11)

where f(x) is the mass profile corresponding to the specified density profile and xpeak ≡
rpeak/r−2 (Klypin et al., 2016). For convenience, we show how R and cR are related in
Appendix D.

None of the usual methods for calculating c are well defined in non-cosmological simu-
lations, however, as they use a virial radius defined in terms of a mean background density.
One approach to measuring relative changes in concentration, without needing to define a
virial radius, is to scale the profiles so that they have the same vpeak, and then scale rpeak

by the same factor (Moore et al., 2004). The concentration change can then be inferred
from ratio of the intial rpeak to the shifted remnant r′peak. Mathematically, this can be
expressed as:

c′M
cM

=
rpeak

r′peak

v′peak

vpeak

, (5.12)

where c′M is the concentration of the remnant, and cM is the concentration of the original
halo. For self-similar haloes with the same concentration, scaling the radii of the haloes
so they have the same peak circular velocity ensures they have the same virial radius
(since it accounts for the increase in mass). The radius at the peak circular velocity, rpeak

then scales as r−2 if the profile remains the same. The disadvantage to this method is
that it assumes the remnant is self-similar to the initial profile, and that the background
density remains constant. Since this definition is strongly dependent on the assumption
of self-similar evolution, and we have demonstrated major mergers are not, in general,
self-similar to the ICs, we will not use this definition to calculate concentration. However,
for completeness, we present results using this definition in Appendix D.

5.5.2 Concentration Changes

In this work, we track the net change in concentration from the ICs to the final remnant
in three ways:

1. using c = rvir/r−2, with r−2 measured directly from the logarithmic derivative of
the density profile of the remnant, as the point where d ln ρ/d ln r = −2, smoothing
with a Gaussian kernel of width σ = 0.1, while rvir is defined based on the enclosed
density, as explained in Section 5.3.2.
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2. using cEin = rvir/r−2, with values of r−2 and rvir determined by fitting an Einasto
profile to the individual merger remnant, as described in Sections 5.4.1–5.4.2.

3. using R = vpeak/vvir with vpeak and vvir determined directly from the density profile
of the individual remnant, as in Section 5.3.2.

Since the remnants are better described by Einasto profiles, we will not consider the
concentration measured from the NFW fit, cNFW, however, we provide a comparison be-
tween cEin and cNFW in Appendix D.

In Fig. 5.14 we show how the concentration parameters c (method i), cEin (method
ii), or R (method iii) change with energy. As with the changes in the Einasto param-
eters, there appears to be a dependence on the initial halo model, particularly for cEin.
Individual concentration measurements, c, which are based on direct measurements of r−2

show that concentration changes decrease with κ; high-energy (low-κ) mergers cause an
increase in concentration, while low-energy (high-κ) mergers decrease concentration. The
trends in c′Ein/cEin and R′/R are more similar to the expected result, with little change in
concentration at low-κ, and increasing at high-κ encounters . The ratio c′/c obtained from
direct measurements of the scale radius does not show the same increase in concentration
at high κ values as the ratio derived from the Einasto fits; this could be because the haloes
produced by mergers of very bound pairs are not as well approximated by the Einasto
profile. From this plot, however, it appears that the profile-independent measurement of
R′/R shows a similar increase in concentration for high-κ simulations, so it is more likely
due to the numerical difficulty with measuring c′/c directly. Finally, we note that R can
be mapped on to an equivalent (radial) concentration parameter cR; testing this inversion,
we find that while cEin and cR agree roughly, there is considerable (∼20 per cent) scatter
between the two.

Overall, the pattern of concentration changes is complicated, depending on both κ and
the initial halo model. Concentration measurements are very sensitive to the method used,
and there is considerable scatter from one method to another. Regardless of the method
used, however, we find that concentration usually increases in major mergers, except in the
case of mergers between very bound pairs and/or between haloes with low αE parameters.
It is surprising to find that high-energy major mergers rarely decrease concentration. This
is somewhat contrary to the results by Moore et al. (2004), who found that two NFW
haloes merging on a high-energy orbit with a tangential velocity produced a remnant that
was less concentrated than its progenitors. On the other hand, it is more consistent with
the results of Kazantzidis et al. (2006), as discussed further in Section 5.6.
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Figure 5.14: Net concentration change as a function of the relative energy change, κ.
The concentrations are determined using either scale radii measured directly for individual
profiles (top row), from the Einasto parameters determined from profile fitting (middle
row), or derived from the velocity ratio R = vpeak/vvir measured directly from the profile
(bottom row). The virial radii were calculated using overdensities ρ̄ = 0.1 ρunit (left) and
0.008 ρunit (right). The dashed curves indicate c′ = canalytic recovered from the fits given
in the text (Equations (5.9a)–(5.9c)), for two values of E0, as described in the following
section. Colours and symbols are as in Fig. 5.1.
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5.5.3 Analytic Model for Concentration Changes

Ultimately, we wish to predict how concentration will change in major mergers. Our results
indicate that the remnants of binary mergers are not, in general, self-similar to the ICs,
but have properties that vary systematically with the energy of the system. Rather than
determine concentration changes from direct fits to r−2, together with some arbitrary choice
of virial radius, we will use the analytic model from Section 5.4.3 to estimate how the profile
will change, and then use that to calculate the corresponding change in concentration.

Given the initial haloes, and the orbital parameters of the merger, a prediction for the
resulting Einasto remnant can be determined from the analytic predictions for the Einasto
parameters. Then, the virial radius can be calculated from solving ∆virρb = ρ̄(rvir), where
ρ̄ is the mean enclosed density of the Einasto profile. The radius of the peak circular
velocity can be found from the approximation rpeak ≈ 3.15 exp (−0.64α

1/3
E )r−2 (Klypin

et al., 2016), and vpeak and vvir from from the circular velocity profile vcirc =
√
GM/r.

In what follows, we refer to concentrations predicted by this analytic model as canalytic =
rvir/r−2 or Ranalytic = vpeak/vvir.

Fig. 5.15 compares concentration values derived from the predicted profile changes
using Equations (5.9a)-(5.9c) to concentrations measured from Einasto fits to individual
profiles, for two choices of the virial radius. On the whole the two values agree fairly well;
the RMS scatter between results and fit are 0.2 (top left), 0.5 (top right), 0.01 (bottom
left), and 0.03 (bottom right), although once again much of this comes from the EinLow
(square) simulations. From this plot it appears that the R′ prediction, R′analytic, is more
successful than the c′ prediction, c′analytic. However, once the R values are mapped back to
c (a mapping that is sensitive to the predicted profile), this is no longer the case. Overall,
the concentration predictions presented here are accurate to within approximately 10 per
cent.

5.5.4 Implications for the Boost Factor

Concentration changes have important consequences for the central densities of haloes, and
therefore the dark matter annihilation boost factor. The boost factor within a volume V
is defined as:

B =
1

ρ̄2V

∫
ρ2dV , (5.13)

where ρ is the density of the halo; (see, e.g., Okoli et al., 2018, for a discussion).
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Figure 5.15: Predictions for concentration parameter (top) and velocity ratio R (bottom)
derived from our analytic fit (Equations (5.9a)-(5.9c)), versus values measured from indi-
vidual profiles. The virial radii were calculated using overdensities ρ̄ = 0.1 ρunit (left) and
0.008 ρunit (right). Colours and symbols are as in Fig. 5.1.

150



Since this calculation can be sensitive to the inner regions of the profile, we calculate
the boost factor within the virial radius from the best-fitting Einasto profile, assuming
spherical symmetry in the remnant. Fig. 5.16 shows that the change in boost factor is
correlated with the change in concentration, as expected. We have compared these direct
calculations of the boost factor to the values obtained assuming our scaling relations for
the Einasto parameters, and find that they agree to within approximately 5 per cent .

5.6 Discussion

A number of lines of evidence suggest that major mergers play an important role in de-
termining the properties of dark matter haloes. In this chapter, we have performed over
a hundred simulations of major mergers between identical, isolated haloes with various
density profiles and initial orbits, and have tracked how the density profile of the remnant
differs from that of the initial haloes. The differences are subtle, but indicate that the
evolution from the initial to the final state is not self-similar, although the remnants are
well described by Einasto profiles. Relative to scaled ICs, the mass distributions of the
haloes are rearranged in a systematic way, with low-energy (high κ) mergers resulting in
the mass moving inwards to higher density, while high-energy (low κ) mergers result in
more extended haloes. Some halo properties depend mainly on κ (particularly the half-
mass radius and the peak circular velocity), while others also depend on the initial halo
model (e.g. the Einasto parameters αE, r−2, and ρ−2).

A surprising result of our study is that while energetic mergers produce more extended
mass distributions, they do not generally reduce the concentration parameter significantly,
and they result in an increased central density, even compared to the expectation from self-
similar scaling. In addition, although the scale radius generally increases after mergers, it
does not increase as much as expected from self-similar evolution (e.g. Fig. 5.12). This
suggests that major mergers do not fully explain the evolution of the central density or
scale radius of haloes as they grow.

Considering the evolution of the halo mass profiles in detail, we find significant rear-
rangement of the mass distribution. If we define a virial radius corresponding to the density
contour ρ̄ = 0.008 ρunit, for instance, we find that the final virial mass ranges from 1.3 to
4.1 times that of the ICs, where the expected value for self-similar evolution is 2. Previous
studies of isolated major mergers have found that about 20-50 per cent of the mass lies
outside the virial radius (e.g. Kazantzidis et al., 2006; Valluri et al., 2007; Vass et al.,
2009). Our results are consistent with these previous ones, but we have tested a much
larger range of orbital parameters, including unrealistically low-energy mergers in which
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Figure 5.16: Relation between the change in boost factor and the change in concentration
calculated as c = rvir/r−2 from the best Einasto fit. The virial radii were calculated using
overdensities ρ̄ = 0.1 ρunit (top) and 0.008 ρunit (bottom). Colours and symbols are as in
Fig. 5.1.
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the virial mass increases more than expected from self-similar evolution. The fact that
virial mass is not additive in halo mergers has important implications for semi-analytic
models of galaxy formation, as discussed in Kazantzidis et al. (2006) and Valluri et al.
(2007). Similarly, as pointed out in Okoli et al. (2018), boost factor calculations often
assume that the virial mass is additive; relaxing this assumption would affect boost factor
predictions considerably.

One of our original goals was to produce a prediction for how halo concentration changes
in major mergers. Using fits to the evolution of the three Einasto parameters shown in
Equations (5.9a)-(5.9c), we have produced predictions that match our simulation results
to 10 per cent on average. Overall, it seems that while major mergers can cause systematic
departures from self-similar evolution and corresponding changes in concentration, the
pattern is opposite to what one might naively expect, in that energetic mergers (low κ
values) increase the concentration while low-energy (tightly bound) mergers decrease it.
This is in contrast to Moore et al. (2004), who concluded (from a single example) that
high-energy mergers resulting in oblate haloes may decrease halo concentration. This
could be because they assumed self-similar evolution in their concentration measurement.
Our results are more consistent with Kazantzidis et al. (2006), who concluded that haloes
are robust to major mergers. Though they also found that the profile changes resulting
from major mergers are subtle, their fig. 8 suggests that mass moves inwards for haloes
with lower central densities, but outwards for haloes with high central density compared
to the scaled initial models. This is similar to our results, where the high-central density
EinLow haloes tended to produce remnants with decreased concentrations.

Given our results, if the central density in haloes does drop as they grow, the mechanism
for this remains unclear. This could be because we have only considered the simplest model
for major mergers; binary, equal-mass mergers of identical haloes that are spherical, non-
rotating, and lack substructure. How these results extend to more realistic mergers in a
cosmological context is also unclear; cosmological conditions are different because equal-
mass and/or isolated binary mergers are rare. Given the merger remnant takes an orbital
period or two to settle into virial equilibrium, multiple mergers staggered by some fraction
of an orbital period might lead to a decrease in central density, or substructure left by
an earlier merger may affect the evolution of a later one. We will consider the effect of
multiple mergers in future work.

In conclusion, we have explored how the density profiles and concentrations of dark
matter haloes change in equal-mass mergers. These mergers do not generally decrease the
central density or the concentration parameter, and often cause remnants to become more
concentrated. This is a puzzle, given previous results suggesting the central density must
drop as haloes grow. Therefore mergers seem unlikely to cause the evolution of halo central
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density needed to explain results from cosmological simulations, as pointed out by Okoli
et al. (2018). Our future work will explore more complicated and more realistic merger
scenarios, to see if the trends found in this chapter still hold in a cosmological setting.
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Chapter 6

Future Work

6.1 Summary of Thesis Work

The work presented in this thesis focuses on how dark matter halo properties evolve in
mergers. Dark matter haloes can be described in a number of ways, including their spheri-
cally averaged density profile, concentration, 3D shape and amount of substructure. These
properties are strongly linked to the merger histories of haloes. Although the mean trends
in the evolution of halo properties are well understood, it is less clear how individual haloes
evolve during mergers.

6.1.1 Minor Mergers

In minor mergers, smaller dark matter haloes fall into larger host haloes and lose mass
through tidal stripping; the remaining bound material may survive indefinitely as distinct
substructure within the host halo. From earlier work, such as that by Hayashi et al.
(2003), it is known how density profiles evolve during tidal stripping; material at large
radii is preferentially lost, but there is also a decrease in central density. While Hayashi
et al. (2003) showed empirically how density profiles evolve, the physical explanation for
their results was unclear. In Chapter 2 we presented a simple model for the effect of
tidal stripping on the structure of haloes, based on truncating the distribution function at
a specified energy. Overall, our model is generally more accurate at describing the halo
remnant compared to other models in the literature, and is physically motivated, rather
than empirical. Additionally, it allows for a simple description of the evolution of the full
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distribution function (i.e. both the spatial and velocity distributions) of subhaloes. This is
useful for calculations that depend upon the distribution function, such as the boost factor
for dark matter annihilation.

In Chapter 3, we examined this model further to understand the underlying physical
mechanisms, and to validate many of the assumptions in the model. Additionally, we
showed that the model appears to be universal, in that it can be applied to any collisionless
system. Density profile evolution is often modeled as a sharp truncation at the tidal radius,
with no central mass loss, or using an empirical fit to simulation data, such as from Hayashi
et al. (2003). While we found that the boost factor does not evolve much for an individual
subhalo (as calculated within the tidal radius), the method used to determine the profile
evolution can greatly effect the boost factor—in some cases by an order of magnitude. This
is because the boost factor depends strongly on the density at very small radii that cannot
easily be probed by N -body simulations.

In the work presented in this thesis, we estimated the truncation energy empirically by
fitting to the simulations. In future work, it would be useful to have a prediction for how the
truncation energy evolves with time, based on the initial subhalo and orbital properties.
Also, determining which particles are considered part of the subhalo is a complicated
problem, so looking at mass loss in more detail, and being able to determine which particles
are only transiently bound would better allow for a comparison between our model and
simulations. In the future, it would be also be interesting to apply our model to two-
component systems (such as stars embedded within a dark matter halo), and test how well
it agrees with numerical simulations.

6.1.2 Major Mergers

In addition to minor mergers, we also examined halo evolution in major mergers. Work
by, e.g. Moore et al. (2004), suggests that halo properties such as halo shape, spin and
concentration are influenced by major mergers. We investigated this in Chapters 4 and
5, and found that the shape, spin, size, and overall profile of binary merger remnants do
reflect the merger orbit, with the final outcome of the halo depending strongly on the
change in energy and the halo spin parameter.

One question is how the central density of haloes evolves during mergers. Results from
cosmological simulations suggest that halo central density should decrease as a halo grows;
this in turn implies there must be a mechanism to heat haloes, and major mergers seem an
obvious explanation. However, in Chapter 5 we found that major mergers are not effective
at decreasing the central density of haloes, and thus mechanisms for the evolution of halo
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central densities remains unclear. One possibility may be that more complicated merger
scenarios are needed to produce the expected decrease in central density with time.

Overall, this work provides predictions for how size, shape, spin, density profiles and
concentration of haloes change in major mergers; these predictions can then be used in
semi-analytic models of halo structural evolution. While we looked at a large range of
initial halo models and orbits, we only considered the simplest merger scenario of binary
equal-mass mergers. In future work, we wish to extend this to more complicated merger
scenarios, such as how haloes change in unequal mass mergers between non-spherical and/or
non-isotropic systems. Further, non-binary mergers may be needed to reproduce the trends
found in cosmological simulations.

6.1.3 Significance

Overall, this work has provided new understanding into how haloes evolve in mergers; this
has applications to studying small-scale structure problems in CDM, dark matter detection
techniques, and the development of semi-analytic models of halo evolution. Particularly,
the detection of a dark matter annihilation signal would definitively establish the existence
of dark matter. Given that the boost factor for dark matter annihilation is sensitive to the
density profiles of both the host halo and subhaloes, our work suggests that predictions of
the dark matter annihilation signal need to be revised. Additionally, given the size and
accuracy of forthcoming datasets, new cosmological tests are needed to make significant
progress on cosmological constraints. One potential application of semi-analytic models of
structural evolution is to create predictions on how halo properties vary with the amplitude
of matter fluctuations in the present-day universe, σ8; this idea will be outlined in the
following section.

6.2 A Potential Application

6.2.1 Tension in σ8

One of the most pressing questions for the ΛCDM paradigm is the origin of the tension
in measurements of the cosmological parameters H0 and σ8. The tension in σ8 is between
large-scale-structure (LSS) measurements (from e.g., cluster counts, galaxy clustering, cos-
mic shear or redshift space distortions) and Cosmic Microwave Background (CMB) mea-
surements, as summarized in Fig. 6.1. CMB results favor a higher value of σ8 compared
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to LSS measurements (0.83 versus 0.79). This tension could be due to unknown system-
atics in the LSS or CMB measurements, or due to the standard cosmological model being
incorrect.

the pdf when the difference in each of the means is zero is
used to form a 5D contour in parameter space whose
interior, when integrated, gives the confidence level of the
amount of tension [41].
There is a prima facie case that the CMB and LSS

measurements discussed in this paper are in tension, at a
level surpassing 5σ. As presented here, the measurements
of the CMB, which are dominated by large scales, are
incompatible with smaller-scale measurements, quantified
by σ8, from LSS with regards to a ΛCDM model. The fact
that there are three separate LSS measurements that are all
mildly incompatible with the CMB, but are sufficiently
compatible with each other to provide a coherent constraint
on small scales, builds confidence that this could be a real
phenomenon. In subsequent sections we investigate pos-
sible modifications to the model that would provide a
resolution to this tension.

III. INCLUSION OF NEUTRINOS

The inclusion of a neutrino component in the cosmo-
logical model can reduce the amount of power on small
scales for a given large-scale normalization, AS. This is true
both in the case of active neutrinos that correspond to the
mass eigenstates of the standard three flavors and also for a
sterile neutrino, which evades the strong bound on the
number of neutrino species from particle physics experi-
ments by not being involved in weak interactions.

A. Active neutrinos

The inclusion of active neutrinos is modeled by the
addition of a single parameter,

P
mν, assuming that this is

distributed equally amongst the three species of massive
neutrinos. This approximates a degenerate hierarchy with
m1 ¼ m2 ¼ m3 ¼

P
mν=3, which is true for large

P
mν

with respect to the mass differences of the eigenstates.

It is seen that a large
P

mν fits the data best and so
justifies using a degenerate hierarchy. Within the currently
constrained limits, such models affect structure growth
on small scales and the primary anisotropies of the CMB.
A detailed description of these effects can be found in
[42–45]; here, we present a brief description of the salient
features.
There is little difference between massive (withP
mν ≲ 0.5 eV) and massless neutrinos in terms of their

effect on prerecombination dynamics—both the back-
ground and of perturbations—since they are relativistic
at recombination in both cases. The differences that do arise
are due to the ratio of the angular diameter distance to last
scattering, DAðz#Þ, to the sound horizon at last scattering,
rsðz#Þ, which sets the angular scale of the CMB acoustic
peaks. As the mass of the neutrino increases, DAðz#Þ
decreases, last scattering appears closer and anisotropies
are shifted to larger angular scales [45]. There is a
degeneracy in the effect on the CMB primary anisotropies
between dark energy density and massive neutrinos in
flat space, in addition to a difference in the Hubble
constant, but this degeneracy is broken by several effects
including the late-time integrated-Sachs-Wolfe (ISW)
effect (see [15,46,47] for more details). The CMB primary
anisotropies are affected via the backreaction on the
metric perturbations from the stress-energy of neutrino
perturbations. The size of the effect on the CMB is
O½ð

P
mν=kBTνÞ2&ρν=ρtot where ρν is the energy density

per species of massless neutrino. For neutrino mass scales
relevant to this analysis, changes in the CMB should be
∼0.1% as found in [45] where they used

P
mν ¼ 0.37 eV.

Massive neutrinos also reduce structure growth on
small scales compared to massless neutrinos. Neutrinos
cluster on scales above their free-streaming length—for
a nonrelativistic transition in matter domination, the

FIG. 3 (color online). The putative tension between CMB and LSS measurements. The left-hand plot shows the constraint on σ8-Ωm,
where the LSSall contour (green) is as shown in Fig. 2, and PlanckþWPþ BAO (orange) and WMAPþ highLþ BAO (purple). It is
clear that there is a discrepancy with the CMB and the joint LSS constraints on this parameter combination. The right-hand plot shows
the H0-Ωm plane for the same data, where the tension is even more apparent.

TENSION BETWEEN THE POWER SPECTRUM OF DENSITY … PHYSICAL REVIEW D 91, 103508 (2015)

103508-5

Figure 6.1: Summary of the σ8 tension. Green contours show the constraints from LSS
studies. Purple and orange contours show constraints from CMB measurements combined
with Baryon Acoustic Oscillations (BAO) measurements. Figure is adapted from Battye
et al. (2015).

Clearly this tension must be resolved to accurately constrain σ8, and determine whether
ΛCDM is an adequate description of our universe. To this end, it is important to have many
independent methods for measuring σ8, to account for unknown systematics. One potential
method for constraining σ8 that will become viable with the advances in observations is
through the measurement of structural properties of galaxy clusters.
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6.2.2 Halo Properties Break Degeneracy

Though there is a degeneracy in cluster numbers between low-Ωm/high-σ8 and high-
Ωm/low-σ8 cosmologies, in the former case, dark matter haloes form earlier and thus are
older on average (Taylor, 2011). Typically, older haloes tend to be more concentrated,
have less substructure and are rounder compared to younger haloes. Since properties of
dark matter haloes are strongly linked to their age and merger history, this means that the
degeneracy in cluster counts may be broken by considering halo properties.

Information about halo structure and evolution comes mainly from N -body simulations.
These have established that some halo properties, such as the spherically averaged density
profile, are approximately universal (Navarro et al., 1996, 1997), while other properties such
as 3D shape, concentration parameter, spin, or the amount of substructure, vary between
systems. The relationship between halo age and halo properties was studied thoroughly in
(Wong & Taylor, 2012) using principal component analysis. The authors found that halo
concentration is the property that is most strongly correlated with halo age.

There have been some preliminary attempts to compare halo shape and concentration
to predictions from ΛCDM. In Oguri et al. (2010), the authors measured the halo shapes
of 18 clusters using weak-lensing results, and found that the mean halo ellipticity is in
good agreement with predictions from Jing & Suto (2002). The authors also showed
how predictions in halo shape distributions change as a function of σ8. These predictions
and their results are shown in Fig. 6.2. More recently, Sereno et al. (2018) measured halo
concentration and shape in 16 CLASH clusters using a combination of strong lensing, weak
lensing, X-ray photometry, X-ray spectroscopy, and Sunyaev-Zel’dovich (SZ) signal. Again,
this study showed that observed halo shapes and concentrations are broadly consistent
to ΛCDM predictions. Overall, though measured halo properties are in agreement with
ΛCDM, neither predictions or the observations are precise enough to make constraints.

6.2.3 Initial Tests

While it is clear that halo properties should vary systematically between “late” (low-
σ8/high-Ωm) and “early” (high-σ8/low-Ωm) cosmologies, it is not clear which properties will
give the clearest measurement, or whether observations have enough signal to differentiate
between the two cases. Therefore, we performed initial tests on numerical simulations to
determine whether this idea is feasible.

There are many candidate properties that are known to correlate with halo age, such
as concentration, shape, spin, and amount of substructure. It must also be determined
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Figure 4. The solid curves in each panel show how the Gaussian-convolved
CDM predictions (Jing & Suto 2002, see also Fig. 3) for the halo ellipticity
distribution change with halo mass (top: from Mvir = 1012 h−1 M⊙ to
1016 h−1 M⊙ with intervals of 1 dex), redshift (middle: from z = 0 to 0.8
with intervals of 0.2) and the normalization parameter of primordial density
fluctuations, σ8 (bottom: from σ8 = 0.4 to 1.2 with intervals of 0.2). In
each panel, except for varying parameter, the other parameters are fixed to
the fiducial values. The square symbols with error bars are the measured
distribution for 18 clusters shown in Fig. 3.

While we have worked mainly on a ‘clean’ subsample of 18 clusters,
all of which are well fitted by an elliptical NFW model, here we
analyse the full 25 clusters (all of which have colour information)
in order to achieve a more unbiased study on the offset issue.

Fig. 5 shows the lensing constrained distribution of the offset
amount of the cluster centre from the BCG position for the 25 clus-
ters. The distribution is computed from 10 000 Monte Carlo redistri-
butions as done in Fig. 3. First, the observed distribution generally
shows that the BCG position is close to the cluster centre con-
strained from lensing. However, the distribution also indicates a tail

Figure 5. The distribution of the physical distance between the halo cen-
tre and the BCG position from the full sample of 25 clusters, obtained
from 10 000 Monte Carlo redistributions computed as done in Fig. 3.
The solid curves show the two 2D Gaussian distributions with widths of
σ = 90 h−1 kpc and 420 h−1 kpc, respectively, where the Gaussian is given
as p(r) ∝ r exp[−r2/(2σ 2)]. The narrower Gaussian is obtained by fitting to
the measured distribution. On the other hand, the broader Gaussian models
a contribution with large offsets, motivated by the studies of Johnston et al.
(2007). The width is kept fixed to 420 h−1 kpc according to Johnston et al.
(2007, see also the text for the details), but its normalization, treated as a
free parameter, is estimated so as to best match the measured distribution.

at large offsets, although the significance is weak. To be more quan-
titative, the observed distribution is compared with a combination
of the two 2D Gaussian distributions (sold curves), each of which is
modelled as p(r) ∝ r exp[−r2/(2σ 2)] (r is the distance between the
halo centre and BCG position). This form is motivated by the study
in Johnston et al. (2007), where the cross-correlation weak-lensing
measurement between clusters and background galaxy images was
studied in great detail using the Sloan Digital Sky Survey data.
They used the BCG position as the halo centre to carry out the
stacked lensing analysis and took into account the miscentring ef-
fect of the possible BCG offset by using the 2D Gaussian form
with σ = 420 h−1 kpc. This form was chosen based on their mock
galaxy catalogues, from which they argued that clusters may be
categorized into two populations, BCG-centred and BCG-offsetted
clusters and that the projected radial offset for the latter population
can be described by the 2D Gaussian distribution. The two solid
curves in Fig. 5 show the best-fitting two 2D Gaussian distribu-
tions to the observed distribution, where the width of the broader
Gaussian function is kept fixed to σ = 420 h−1 motivated by the
study of Johnston et al. (2007). One can find that the best-fitting
curve fairly well matches the observed distribution. In addition,
the relative strength of the two 2D Gaussian distributions implies
a 10 pec cent fraction of BCG-offsetted clusters, which is again
consistent with the assumption used in Johnston et al. (2007).

While the observed distribution is broadly consistent with the
theoretical expectation, it is not clear whether the BCG offset is de-
tected significantly, given the relatively large measurement uncer-
tainties. In fact, the typical error on the mass centroid measurement
is σ ∼ 50 h−1 kpc, and there are a few clusters in the sample that
have quite large errors, σ > 100 h−1 kpc, which are non-negligible
compared to the widths of the 2D Gaussian distributions discussed
above. Thus, for more quantitative discussions on the distribution
of BCG offset, we need a larger sample of weak-lensing clusters.
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Figure 6.2: Halo ellipticity distribution measured from 18 cluster sized haloes (red boxes),
compared to ΛCDM predictions with σ8 varied from 0.4 to 1.2 in intervals of 0.2. Figure
is adapted from Oguri et al. (2010).
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which redshift, mass range, and environment should be used for cluster selection. Since
high-resolution simulations are computationally costly, it is not feasible to sample the full
parameter space through cosmological simulations. Therefore, the strategy of these initial
tests is to run a limited number of simulations to calibrate the relation between structure,
growth history and cosmology in a few cases, and then build semi-analytic extensions to
this.

In previous work, Wong & Taylor (2012) compared the age of haloes to various halo
properties. They measured age as zx, where x = M(z)/M0 is the fraction of the halo mass
formed by redshift z. They found that concentration is the best halo age indicator, but
correlates most strongly with z0.2. How this relates to the concentration of a halo observed
at redshift z = 0 remains unclear. On the other hand, halo elongation (a measure of halo
shape, where a value of 1 corresponds to spherical haloes) also correlates with age, and is
less sensitive to x. Additionally, the authors found that spin has a weak anti-correlation
with halo age, again with little x sensitivity. In addition to halo concentration, shape and
spin, the amount of halo substructure should also correlate with halo age. To examine
this, in Taylor (2011), the author generated semi-analytic models in “late” and “early”
cosmologies, where structure formed earlier or later respectively, and found a difference in
substructure fractions.

As a preliminary step, we have compared two cosmological simulations run in Gadget-
2 (Springel, 2005). The “late” cosmology had ΩM = 0.3 and σ8 = 0.8, and the “early”
cosmology had parameters ΩM = 0.25 and σ8 = 0.9. Each simulation was run with 5123

particles. Considering only haloes with masses above 5 × 1013M� (as these were deemed
to be resolved enough to measure accurate halo properties, and correspond to cluster-sized
haloes), halo concentration, elongation and spin were measured at redshift z = 0 using the
halo finder AHF (Gill et al., 2004; Knollmann & Knebe, 2009). We only see a significant
difference in the elongation parameter (a two sample K-S test gives a difference of 10 per
cent with a p-value of 0.03), whose distribution is shown in Fig. 6.3. This preliminary test
indicates that elongation may be the best way to differentiate between “early” and “late”
cosmologies, though we have only looked at redshift z = 0.

6.2.4 Upcoming Surveys

Given accurate semi-analytic models of halo evolution as a function of σ8, these models can
be applied to cluster observations, notably lensing results from Euclid and WFIRST, but
also potentially X-ray and SZ observations, to constrain σ8 and Ωm. Though individual
cluster shape measurements have large errors due to their 2D projection, averaging over
many objects allows an accurate measurement of the mean elongation of haloes.
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Figure 6.3: Preliminary results on how the distribution of halo elongation varies between
“early” (low-Ωm/high-σ8) and “late” (high-Ωm/low-σ8) cosmologies.
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Preliminary tests shown here indicate that distributions of halo elongation measured
at z = 0 differ by approximately 10 per cent in “early” and “late” cosmologies. However,
these cosmologies assumed σ8 ranged from 0.8 to 0.9. If we want independent constraints
that can detect a 0.05 difference in σ8, that means we need to be able to detect a 5 per cent
difference in elongations (distributions should vary roughly linearly with σ8—see Fig. 6.2).
In practice, observations can usually only measure projected, 2D elongation on the plane of
the sky. Uncertainties in 3D shape estimates will be largely dominated by this effect, and
we therefore expect individual elongation measurements to have uncertainties of around
50 per cent. Errors in the mean shape measurement will then equal 0.5/

√
N , where N is

the number of shape measurements. Therefore, to measure differences in σ8 of 0.05 at the
5σ level, we will require approximately 2500 clusters.

To obtain a shape measurement, the cluster needs to be detected with signal-to-noise
ratio, SNR≥ 5. Euclid is projected to detect over 2 × 105 clusters at this significance
(Sartoris et al., 2016), which is more than enough to constrain σ8 to within 0.05 at the 5σ
level, and could potentially constrain σ8 to the 0.01 level or better. Therefore, this survey
is ideal for using halo shapes to constrain cosmology.

Although we have specifically focused on constraints from lensing, multi-probe tech-
niques, as used in, e.g. Sereno et al. (2018), may be more powerful in placing constraints
on halo shapes, as they can constrain intrinsic shape and orientation without having to
make dynamical assumptions such as hydrostatic equilibrium. LSST in particular should
help provide more robust shape and mass estimates of clusters when combined with Euclid
(Rhodes et al., 2017). Further, the upcoming CMB-S4 experiment should obtain SZ signal
for approximately 105 clusters, which can be combined with Euclid weak lensing results
(Abazajian et al., 2016). With the large number of Euclid clusters, and the complemen-
tary data from other surveys, we will likely be able to use this method to measure 0.01
differences in σ8. Additionally, this approach could also be used to measure the dark en-
ergy equation of state parameter, w, since the age of haloes also depends on w. Though
upcoming results from WFIRST (Wide Field Infrared Survey Telescope) will detect fewer
haloes then Euclid, they will be detected at a much higher redshift (Doré et al., 2019), and
thus WFIRST may be useful to look for potential time variations in w.
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Appendix A

ICICLE – A Code for Generating
Isolated Initial Conditions

The authors have created a publicly available Python package, icicle (Initial Conditions
for Isolated CoLlisionless systEms), which can create stable initial conditions for spherical,
isotropic, collisionless systems with various density profiles. The code currently supports
NFW (either exponentially truncated, abruptly truncated, or truncated using the iterative
method described in Section 2.2), King, Hernquist and Einasto profiles.

A.1 Files

The main part of the program is in the code “ICICLE.py”. The content of this code
is described thoroughly in Section A.3; briefly, given a model it returns positions and
velocities of n particles within that distribution.

For each model there is an additional file named “ICs model.py”. These files contain
information about the specific model (the density profile, cumulative mass distribution,
gravitational potential and distribution function). The user can specify parameters by use
of a parameter file.
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A.2 Output

The output is written to the filename specified. The first line of the text file has the
following information: the number of particles, the mass of each particle and the value of
the gravitational constant. Subsequent lines display the particle number (indexed from 0),
the x, y and z positions, and the x, y, and z velocity components.

A.3 Positions and Velocities

In this section we outline the steps needed to select positions and velocities given an
isotropic density profile, in a manner similar to Kazantzidis et al. (2004). First, the radial
distance for each particle is selected using the cumulative mass distribution, and then a
direction for the position vector is selected assuming spherical symmetry. Next, an energy
is selected from the energy distribution. Once the position and energy of the particle have
been determined, it is straightforward to calculate the velocity of the particle. Finally, the
velocity direction is chosen isotropically.

A.3.1 Positions

The radius for each particle is chosen in such a way as to reproduce the mass distribution.
Consider a density profile where the mass within a given radius r is M(< r), and the
largest radius is rmax. The mass fraction interior to r is then:

FM(< r) =
M(< r)

M(rmax)
. (A.1)

If we choose a random variate x uniformly on the interval [0, 1], we can then set FM(< r) =
x and solve for r to find a corresponding radius. In the limit of a large number of particles,
the resulting set of radii will reproduce the desired density profile. Given a radius, we can
then choose a direction isotropically, by choosing a random point on the surface of a unit
sphere.

A.3.2 Calculating The Distribution Function

The distribution function, f(E), is given by Eddington’s formula:

f(E) =
1√
8π2

[∫ E
0

1√
E −Ψ

d2ρ

dΨ2
dΨ +

1√
E

(
dρ

dΨ

)
Ψ=0

]
. (A.2)
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Here E , Ψ and ρ are the relative energy, the relative potential and the density, respectively.
black The second, boundary term is equal to f(0) in general (since the first term evaluates
to zero when E = 0), so it vanishes for any system with f(0) = 0.

Consider the term d2ρ/dΨ2. This can be expressed as:

d2ρ

dΨ2
=

(
dΨ

dr

)−2
[

d2ρ

dr2
−
(

dΨ

dr

)−1
d2Ψ

dr2

dρ

dr

]
or, since

dΨ

dr
= −GM

r2

and
d2Ψ

dr2
=

2GM

r3
− 4πGρ

d2ρ

dΨ2
=

(
r4

G2M2

)[
d2ρ

dr2
+

(
r2

GM

)[
2GM

r3
− 4πGρ

]
dρ

dr

]
.

(A.3)

This form is more convenient in cases where ρ is an analytic function of radius, as it avoids
having to take potentially noisy numerical derivatives.

A.3.3 Choosing From the Distribution Function

The probability that a particle located at radius r has a relative energy E is proportional
to f(E)

√
Ψ− E , with a maximum energy of Emax = Ψ(r).

Thus, the cumulative distribution function (CDF) F (< E), for a particle at position r
with relative potential energy Ψ(r), is:

F (< E) =

∫ E
0
f(E)
√

Ψ− E dE∫ Ψ

0
f(E)
√

Ψ− E dE
. (A.4)

Choosing a random variate y uniformly on the interval [0, 1], we can set F (< E) = y and
solve for E to find the corresponding relative energy. In practice, we do this by linear
interpolation of a numerically determined CDF.

A.3.4 Velocities

Once a position and a relative energy have been chosen for the particle, the velocity mag-
nitude can be calculated from:

E = Ψ− 1

2
v2 . (A.5)
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Finally, a direction for the velocity vector can be chosen isotropically in the same way as
described for the positions.

A.4 Profile options and documentation

The code, a list of supported profile types, and full documentation are available as a
package, icicle, at the URL: https://github.com/ndrakos/ICICLE.
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Appendix B

Alternative Models

B.1 Hayashi et al. 2003

Hayashi et al. (2003) proposed that tidally stripped NFW haloes have the form:

ρ(r) =
ft

1 + (r/rte)3
ρNFW (r) . (B.1)

The parameters ft and rte give a measure of the reduction in central density, and an effective
tidal radius. Both of these parameters can be estimated using a single parameter—the
bound mass fraction, mbnd, of the satellite (Equations 9 and 10 in the paper):

log(rte/rs) = 1.02 + 1.38 logmbnd + 0.37(logmbnd)2

log ft = −0.007 + 0.35 logmbnd

+ 0.39(logmbnd)2 + 0.23(logmbnd)3 .

(B.2)

Since mbnd is dependent on the method used to truncate the initial NFW profile, we defined
mbnd to be the mass of the bound satellite compared to the mass of an untruncated NFW
profile within radius rcut.

B.2 Peñarrubia et al. 2010

The Peñarrubia et al. (2010) model considers density profiles of the form:

ρ(r) =
ρ0

(r/rs)γ[1 + (r/rs)α](β−γ)/α
. (B.3)
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For this chapter, we only consider NFW profiles, which have (α, β, γ) = (1, 3, 1). The
procedure for determining the evolution of the profile is outlined in the following steps.

Step 1

First, the bound mass fraction of the satellite as calculated. As before, we calculated mbnd

as the mass of the bound satellite compared to the mass of an untruncated NFW profile
within radius rcut. If ms/ms(0) ≤ 0.9, then (α, β, γ)→ (α, 5, γ).

Step 2

Secondly, vmax and rmax (the peak of the circular velocity curve and corresponding radius)
can be calculated empirically. As originally described in Peñarrubia et al. (2008b), the
evolution of various subhalo structural parameters can be described by

g(x) =
2µxη

(1 + x)µ
, (B.4)

where x ≡ ms/ms(0) is the mass fraction. In Peñarrubia et al. (2010) they showed that
for an NFW profile, the best fit parameters are (µ, η) = (0.4, 0.3) for g(x) = vmax/vmax(0),
and (µ, η) = (−0.3, 0.4) for g(x) = rmax/rmax(0).

Step 3

The scale radius, rs can be calculated from the circular velocity profile, Vc =
√
GM(r)/r,

by noting that dVc/dr(rmax) = 0. Then,

dM

dr

∣∣∣∣
r=rmax

=
M(rmax)

rmax

(B.5)

For an NFW ((α, β, γ) = (1, 3, 1)) profile:

M(r) = 4πρ0r
3
s

[
ln

(
rs + r

rs

)
− r

rs + r

]
dM(r)

dr
= 4πρ0r

3
s

r

(r + rs)2

(B.6)
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while, for a (α, β, γ) = (1, 5, 1) profile:

M(r) =
2

3
πρ0r

3
s

(r + 3rs)r
2

(r + rs)3

dM(r)

dr
= 4πρ0r

5
s

r

(r + rs)4

(B.7)

Overall, the scale radius of a stripped NFW profile is given by:

ln

(
rs + rmax

rs

)
=

r2
max

(rmax + rs)2
+

rmax

rs + rmax

for ms/ms(0) > 0.9

rs =

(
2

3
+

√
7

3

)
rmax for ms/ms(0) ≤ 0.9

(B.8)

Step 4

Finally, ρ0 can be calculated by using vmax = vcirc(rmax):

ρ0 =
v2

maxrmax

G

(
4πr3

s

[
ln

(
rs + rmax

rs

)
− rmax

rs + rmax

])−1

,

for ms/ms(0) > 0.9

ρ0 =
v2

maxrmax

G

(
2

3
πr3

s

(rmax + 3rs)r
2
max

(rmax + rs)3

)−1

,

for ms/ms(0) ≤ 0.9 .

(B.9)
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Appendix C

Inner Slope

Fig. C.1 shows changes in the inner slope, γ′/γ, calculated between r = 0.1 rpeak and
r = 0.4 rpeak. This quantity does not seem to scale in a predictable way with either the
orbital parameters or the change in internal energy. There is potentially a trend with
the initial separation of the haloes, rsep (represented by the size of the symbols). This is
consistent with the findings from Ogiya et al. (2016), who found that the change in inner
slope depends on rsep.

The relation between γ′/γ and κ is somewhat similar to that between r′peak/rpeak and
κ. Therefore, we also show the relation between γ′/γ and r′peak/rpeak in Fig. C.2. This
demonstrates a correlation between these two parameters, suggesting that the complicated
changes in rpeak may be due to a combination of mass rearrangement and evolution of the
inner slope of the remnant.
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Figure C.1: The change in the inner slope, γ′/γ, calculated between r = 0.1 rpeak and
r = 0.4 rpeak as a function of the relative energy change κ. The dotted lines are the
expectations for self-similar evolution of the density profile. Colours and symbols are as in
Fig. 5.1.
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Figure C.2: The change in the inner slope, γ′/γ, calculated between r = 0.1 rpeak and
r = 0.4 rpeak compared to the change in the radius corresponding to the peak in the
circular velocity curve r′peak/rpeak. Colours and symbols are as in Fig. 5.1.
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Appendix D

Comparison of Different
Concentration Measurements

As the traditional definition of the concentration parameter depends on the scale radius
r−2, in Fig. D.1 we compare the values measured directly from the density profile, as
explained in Section 5.3.2, to the values derived from the NFW and Einasto fits. The
Einasto fit predicts larger scale radii than the direct measurement, except in some of the
simulations with low initial radial separations, and in general there is considerable scatter
between the two sets of measurements. The values of r−2 from Einasto and NFW profile
fits are in much better agreement, except for the case of the EinLow simulations, where
the Einasto fit predicts systematically larger scale radii.

Additionally, we compare concentration measured through either NFW or Einasto fits
in Fig. D.2. The two methods roughly agree, though there is some scatter. Some of this
scatter may be from systematic errors in NFW fits; it has been shown that NFW fits over-
predict the halo concentration by 10–20 per cent for high-ν haloes (Klypin et al., 2016).
We find a similar result; although changes in concentration measured from NFW fits are
slightly lower than from Einasto fits, the actual concentration values are higher for the
NFW fits, particularly for the EinLow simulations.

Since the halo remnants presented in this study are not, in general, self-similar to the
ICs, we do not expect the relative change in concentration calculated using the method
of Moore et al. (2004), c′M/cM , to match the actual value found by profile fitting. To
demonstrate this, we compare c′M/cM to the change in concentration measured through
cEin = rvir/r−2 (calculated from the best Einasto fit) in Fig. D.3. As expected, there is a
large discrepancy between these two measurements, further emphasizing that the profile
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Figure D.1: Comparison of the scale radius measured directly from the slope of the density
profile (top), and determined from the NFW fit (bottom), to the value determined from
the Einasto fit. Dotted lines indicate a 1–1 relation. Colours and symbols are as in Fig. 5.1.
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Figure D.2: A comparison of the concentration change calculated from the NFW fit, c =
rvir/rs versus the concentrations calculated from the Einasto fit, c = rvir/r−2. The virial
radii were calculated using overdensities ρ̄ = 0.1 ρunit (top) and 0.008 ρunit (bottom). The
dotted line shows where the two definitions are equal. Colours and symbols are as in
Fig. 5.1.
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remnants do not evolve in a self-similar manner. In Fig. D.4, we also show c′M/cM as a
function of κ.

Finally, in Fig. D.5 we show the concentration, c, as a function ofR for NFW and various
Einasto profiles. To calculate f(xpeak), for Einasto profiles, we used the approximation

xpeak ≈ 3.15 exp (−0.64α
1/3
E ) (Klypin et al., 2016).
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Figure D.3: A comparison of the concentration change calculated from the Einasto fit,
cEin = rvir/r−2 versus the concentration calculated as cM (see Equation (5.12)). The
dotted line shows where the two definitions are equal. Top and bottom panels use the
overdensity of an NFW profile of concentration 3 (ρ̄ = 0.1 ρunit) and 10 (ρ̄ = 0.008 ρunit) to
calculate the virial radii, respectively. Colours and symbols are as in Fig. 5.1.
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Figure D.4: Concentration change c′M/cM as a function of the relative energy change, κ.
Colours and symbols are as in Fig. 5.1.
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Figure D.5: Relationship between R = vpeak/vvir and the concentration, c = rvir/r−2 for
an NFW profile and Einasto profiles with varying αE parameters.
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