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Abstract

Survival analysis plays an important role in many fields, such as cancer research, clinical
trials, epidemiological studies, actuarial science, and so on. A large body of methods on
analyzing survival data have been developed. However, many important problems have
still not been fully explored. In this thesis, we focus on the analysis of survival data with
complex features.

In Chapter 1, we review relevant topics including survival analysis, the measurement
error model, the graphical model, and variable selection.

Graphical models are useful in characterizing the dependence structure of variables.
They have been commonly used for analysis of high-dimensional data, including genetic
data and data with network structures. Many estimation procedures have been developed
under various graphical models with a stringent assumption that the associated variables
must be measured precisely. In applications, this assumption, however, is often unrealistic
and mismeasurement in variables is usually presented in data. In Chapter 2, we investi-
gate the high-dimensional graphical model with error-prone variables. We propose valid
estimation procedures to account for measurement error effects. Theoretical results are
established for the proposed methods and numerical studies are reported to assess the
performance of our proposed methods.

In Chapter 3, we consider survival analysis with network structures and measurement
error in covariates. In survival data analysis, the Cox proportional hazards (PH) model
is perhaps the most widely used model to feature the dependence of survival times on
covariates. While many inference methods have been developed under such a model or
its variants, those models are not adequate for handling data with complex structured co-
variates. High-dimensional survival data often entail several features: (1) many covariates
are inactive in explaining the survival information, (2) active covariates are associated in
a network structure, and (3) some covariates are error-contaminated. To hand such kinds
of survival data, we propose graphical proportional hazards measurement error models,
and develop inferential procedures for the parameters of interest. Our proposed models
significantly enlarge the scope of the usual Cox PH model and have great flexibility in
characterizing survival data. Theoretical results are established to justify the proposed
methods. Numerical studies are conducted to assess the performance of the proposed
methods.

In Chapter 4, we focus on sufficient dimension reduction for high-dimensional survival
data with covariate measurement error. Sufficient dimension reduction (SDR) is an impor-
tant tool in regression analysis which reduces the dimension of covariates without losing
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predictive information. Several methods have been proposed to handle data with either
censoring in the response or measurement error in covariates. However, little research
is available to deal with data having these two features simultaneously. Moreover, the
analysis becomes more challenging when data contain ultrahigh-dimensional covariates. In
Chapter 4, we examine this problem. We start with considering the cumulative distribu-
tion function in regular settings and propose a valid SDR method to incorporate the effects
of both censored data and covariates measurement error. Next, we extend the proposed
method to handle ultrahigh-dimensional data. Theoretical results of the proposed methods
are established. Numerical studies are reported to assess the performance of the proposed
methods.

In Chapter 5, we slightly switch our attention to examine sampling issues concerning
survival data. Specifically, we discuss survival analysis for left-truncated and right-censored
data with covariate measurement error. Many methods have been developed for analyzing
survival data which commonly involve right-censoring. These methods, however, are chal-
lenged by complex features pertinent to the data collection as well as the nature of data
themselves. Typically, biased samples caused by left-truncation or length-biased sampling
and measurement error are often accompanying with survival analysis. While such data
frequently arise in practice, little work has been available in the literature. In Chapter 5,
we study this important problem and explore valid inference methods for handling left-
truncated and right-censored survival data with measurement error under the widely used
Cox model. We exploit a flexible estimator for the survival model parameters which does
not require specification of the baseline hazard function. To improve the efficiency, we fur-
ther develop an augmented non-parametric maximum likelihood estimator. We establish
asymptotic results for the proposed estimators and examine the efficiency and robustness
issues of the proposed estimators. The proposed methods enjoy appealing features that the
distributions of the covariates and of the truncation times are left unspecified. Numerical
studies are reported to assess the performance of the proposed methods.

In Chapter 6, we study outstanding issues on model selection and model averaging for
survival data with measurement error. Model selection plays a critical role in statistical
inference and a vast literature has been devoted to this topic. Despite extensive research
attention on model selection, research gaps still remain. An important but unexplored
problem concerns model selection for truncated and censored data with measurement error.
Although analysis of left-truncated and right-censored (LTRC) data has received extensive
interests in survival analysis, there has been no research on model selection for LTRC data,
let alone LTRC data involving with measurement error. In Chapter 6, we take up this
important problem and develop inferential procedures to handle model selection for LTRC
data with measurement error in covariates. Our development employs the local model
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misspecification framework and emphasizes the use of the focus information criterion (FIC).
We develop valid estimators using the model averaging scheme and establish theoretical
results to justify the validity of our methods. Numerical studies are conducted to assess
the performance of the proposed methods.

Finally, Chapter 7 summarizes the thesis with discussions.
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Chapter 1

Introduction

In this chapter, we review relevant topics for the thesis, including survival analysis, mea-
surement error models, graphical models, and variable selection.

1.1 Survival Data Analysis

1.1.1 Cox Model with Right-Censoring

For i = 1, · · · , n, let Ti be the failure time and Ci be the censoring time. Let f(t) and
S(t) denote the density function and the survivor function of Ti, respectively. Let fC(t)
and SC(t) denote the density function and the survivor function of Ci, respectively. Let Xi

denote the covariate vector of dimension p for a subject i. We assume that the {Ti, Ci, Xi}
are independent for i = 1, · · · , n. Let Yi = min{Ti, Ci} and ∆i = I (Ti ≤ Ci), where I(·) is
the indicator function. The observed data consist of {(yi, δi, xi) : i = 1, · · · , n}, where the
(yi, δi, xi) are realization values for (Yi,∆i, Xi).

Let Ni(t) = I (Yi ≤ t, δi = 1) denote the number of the observed failures for the ith
subject up to and including time t, and let Ri(t) = I(Yi ≥ t) indicate whether or not the
ith subject is at risk of failure at time t.

In survival analysis, suitable assumptions are often imposed to describe various cen-
soring mechanisms. These assumptions include independent random censoring, Type I
censoring, Type II censoring, and non-informative censoring (Lawless 2003, Section 2.2.1).
In this thesis, we mainly consider the independent random censoring which means that Ti
and Ci are independent, given the covariate Xi.
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The Cox proportional hazards (PH) model is widely used to study the relationship
between the failure time and the covariates. This model is formulated as

λ(t|Xi = xi) = λ0(t) exp
(
x>i β

)
, (1.1)

where λ0(·) is the unspecified baseline hazard function, and β is the p-dimensional unknown
parameter.

Based on model (1.1), the partial likelihood (Cox 1972; Lawless 2003, Section 7.1.1) is
given by

L(β) =
n∏
i=1


exp

(
x>i β

)
n∑
j=1

exp
(
x>j β

)
I (yi < yj)


δi

,

and an estimator of β is obtained as β̂ = argmax
β

L(β), or equivalently, by solving U(β) = 0

for β, where

U(β) =
∂ logL(β)

∂β
=

n∑
i=1

∫ τ

0

xi −
n∑
j=1

xj exp
(
x>j β

)
Rj (u)

n∑
j=1

exp
(
x>j β

)
Rj (u)

 dNi(u) (1.2)

is the partial likelihood score function.

1.1.2 Left-Truncation

The time from the onset of an initiating event to the disease event (or failure) is usually
of interest in epidemiological and biomedical research. In the prevalent cohort sampling
design, individuals can be recruited in the study if the failure time is larger than the time
of recruitment. In other words, individuals might not be observed because they experience
the failure event before the time of recruitment. Such a phenomenon caused by delayed
entry is called the left-truncation and tends to produce a biased sample. Meanwhile, right-
censoring may appear to those individuals who are recruited in the study, as described in
Section 1.1.1.

To be more specific, let ui and ri denote, respectively, the calendar time of the initiating
event and the failure event of a subject i with ui < ri. Let ξ be the calendar time of the
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recruitment with ui < ξ < ri. Let T̃i = ri − ui be the failure time and let Ãi = ξ − ui
denote the truncation time. Let f(t) and S(t) be the density function and the survivor

function of T̃i, respectively. A subject i can be recruited to the study only when T̃i ≥ Ãi.
Based on such selection criterion, we denote Ti and Ai, respectively, the observed failure
time and truncation time of a subject i who is recruited in the study. It is known that
for i = 1, · · · , n, the joint distribution (Ti, Ai) has the same distribution as (T̃i, Ãi) given

T̃i ≥ Ãi, i.e., (Ti, Ai)
d
= (T̃i, Ãi)|T̃i ≥ Ãi (Huang et al. 2012; Huang and Qin 2013).

For these recruited subjects, either the failure event or the censoring happens. For
i = 1, · · · , n, let Ci denote the censoring time after the recruitment and therefore Ci + Ai
is the total censoring time for a subject i. Similar to the notation in Section 1.1.1, let
Yi = min{Ti, Ai + Ci} and ∆i = I(Ti ≤ Ai + Ci). Figure 1.1 gives an illustration of the
relationship among those defined variables. We assume that {Yi, Ai,∆i} are independent
and identically distributed for i = 1, · · · , n. Therefore, we have data {(yi, ai, δi) : i =
1, · · · , n}, where (yi, ai, δi) are realization values for (Yi, Ai,∆i).

For the development of the estimation, Lawless (2003, Section 2.4.1) considered the
likelihood function

L =
n∏
i=1

{f(yi)}δi {S(yi)}1−δi

S(ai)
.

Figure 1.1: Schematic depiction of LTRC

1.2 Measurement Error Model

In many applications, we may not always have accurate measurements. Instead, the vari-
ables are usually collected with error. In this section, we introduce some measurement
error models for continuous covariates and misclassification models for discrete covariates.

3



1.2.1 Modelling Measurement Error with Continuous Variables

In practice, measurement error in covariates usually arises due to various reasons. For
i = 1, · · · , n, let Xi be the p-dimensional true covariate with mean µX and covariance
matrix ΣX , and let X∗i denote the surrogate, or observed covariate, of Xi with mean µX∗
and covariance matrix ΣX∗ . If Xi and X∗i are continuous, then the relationship between
Xi and X∗i may be described by the following measurement error models (Yi 2017, Section
2.6):

• Classical Additive Model
X∗i = Xi + εi, (1.3)

where εi is independent of Xi, and the εi are independent and identically distributed
with mean zero and covariance matrix Σε.

• Berkson Model

Xi = X∗i + εi,

where εi is independent of Xi, and the εi are independent and identically distributed
with mean zero and covariance matrix Σε.

• Multiplicative Model
X∗i = Xiεi,

where εi is independent of Xi, and the εi are independent and identically distributed
with mean one and covariance matrix Σε.

In some applications, Σε is assumed to be known. However, it is usually unknown in
practice. To give a valid estimate of Σε, we usually need additional information to feature
the measurement error process. In the following, we introduce two scenarios to estimate
Σε.

Scenario I: Repeated measurements
Since we have repeated measurements, then the measurement error model (1.3) be-
comes

X∗ij = Xi + εij
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for i = 1, · · · , n and j = 1, · · · , ni, where the X∗ij represent the jth repeated mea-
surement of Xi, the εij ∼ N (0,Σε) and are independent of Xi. It is easily seen that
Σε can be estimated by

Σ̂ε =

n∑
i=1

ni∑
j=1

(
X∗ij − X̄∗i

) (
X∗ij − X̄∗i

)>
n∑
i=1

(ni − 1)
,

where X̄∗i = 1
ni

ni∑
j=1

X∗ij.

Scenario II: Validation data
Suppose that M is the subject set for the main study containing n subjects and V
is the subject set for the external validation study containing m subjects. Assume
that M and V do not overlap. Therefore, the available data contain measurements
{(ti, ci, δi, x∗i ) : i ∈M} from the main study and {(xi, x∗i ) : i ∈ V} from the validation
sample. Hence, for the measurement error model, we have

X∗i = Xi + εi

for i ∈M∪ V , where the εi ∼ N (0,Σε) and are independent of Xi.

Since

var(X∗i ) = E {var(X∗i |Xi)}+ var {E(X∗i |Xi)}
= E (Σε) + var(Xi)

= Σε + ΣX ,

therefore, Σε can be estimated by

Σ̂ε = Σ̂X∗ − Σ̂X ,

where Σ̂X∗ = 1
|V|
∑
i∈V

(
X∗i − X̄∗i

) (
X∗i − X̄∗i

)>
and Σ̂X = 1

|V|
∑
i∈V

(
Xi − X̄i

) (
Xi − X̄i

)>
,

and X̄∗i = 1
|V|
∑
i∈V

X∗i .

1.2.2 Modelling Misclassification with Discrete Variables

When both Xi and X∗i are discrete, (mis)classification probabilities are frequently used to
characterize the relationship of Xi and X∗i , given by

P (X∗i = x∗|Xi = x) (1.4)
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for x∗ and x which represent all possible values of X∗i and Xi, respectively. In situa-
tions where Xi, X

∗
i ∈ {0, 1}, (1.4) gives pi00 = P (X∗i = 0|Xi = 0) and pi11 = P (X∗i =

1|Xi = 1), which are often called specificity and sensitivity, respectively, as well as pi01 =
P (X∗i = 0|Xi = 1) and pi10 = P (X∗i = 1|Xi = 0).

To see the relationship between Xi and X∗i more closely, we express pi00, pi01, pi10, and
pi11 in the matrix form.

First, we note that

P (X∗i = 0) =
1∑
j=0

P (X∗i = 0, Xi = j)

=
1∑
j=0

P (X∗i = 0|Xi = j)P (Xi = j)

=
1∑
j=0

pi0jP (Xi = j).

Similarly, we have

P (X∗i = 1) =
1∑
j=0

pi1jP (Xi = j).

Therefore, we have (
P (X∗i = 0)
P (X∗i = 1)

)
= Pi

(
P (Xi = 0)
P (Xi = 1)

)
, (1.5)

where Pi =

(
pi00 pi01

pi10 pi11

)
.

By (1.5), we determine X∗i = 0 or 1 by the probability P (X∗i = j) with j = 0, 1. To
ease notation, we let MC [P] (Xi) denote the misclassification operator indicated by (1.5),
i.e., (1.5) is notationally written as

X∗i = MC [P] (Xi).

Such a misclassification operator was used by Carroll et al. (2006, p.125) and Küchenhoff
et al. (2006) for a misclassified binary variable.

Meanwhile, consistent with Carroll et al. (2006, p.125), we assume that Pi has the
spectral decomposition. That is, there exists a diagonal matrix Di and the corresponding
matrix of eigenvectors Ωi, such that Pi = ΩiDiΩ

−1
i .
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1.3 Graphical Model

In this section, we review some basics for graphical models. We first introduce the concept
of graph and then describe some graphical models. Finally, we outline several commonly
used methods concerning the graph theory.

1.3.1 Basic Concepts

Let V be the set of vertices and let E ⊂ V × V denote the set of edges. A graph is usually
expressed as G = (V,E). There are two types of graph, including an undirected graph
and a directed graph. Figure 1.2 illustrates the concept of a graph which is constructed by
nodes and edges. The main difference between an undirected graph and a directed graph
is that the undirected graph only considers the relationship/pairwise dependence between
any two nodes by using edges, while in the directed graph, an arrow is added to edges.
The directed graph emphasizes that the ordering of the variables is taken into account and
the relationship between any two nodes is not reversible (e.g., i→ j cannot imply j → i).

The left panel of Figure 1.2 is an undirected graph with V = {1, 2, 3, 4, 5} and E =
{(1, 2), (1, 5), (2, 3), (2, 4), (3, 4), (4, 5)}. On the other hand, the directed graph (shown by
the right panel of Figure 1.2) shows not only the network structure of nodes but also the
direction between two different nodes. For the applications, undirected graphs are usually
applied to the study of network structures in biological data or the social network studies,
while directed graphs are frequently applied for causal inference (Edwards 2000, Chapter
8). In this thesis, our discussion focuses on undirected graphs; the detailed descriptions of
directed graphs can be found in Edwards (2000, Chapter 7).

1.3.2 Model Formulation

In this subsection, we introduce the model with the graphical structure incorporated. Let
X = (X1, · · · , Xp)

> where p is a positive integer. Suppose that Xs is a binary random
variable for s ∈ V , then we have

Pθ (x1, · · · , xp) = exp

∑
s∈V

θsxs +
∑

(s,t)∈E

θstxsxt − A (Θ)

 , (1.6)

where Θ = [θst] denotes a p× p symmetric matrix, θst is the parameter associated with the
pairwise dependence between Xs and Xt, and A(Θ) is the normalizing constant. Model
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Figure 1.2: Graphical structures. The left graph is undirected; the right graph is directed.

(1.6) is called the Ising model (Ravikumar et al. 2010). In model (1.6), the parameter θs
for s ∈ V describes the main effects, while θst for (s, t) ∈ E conveys the information of the
pairwise dependence between variables Xs and Xt, and Xs and Xt are said to be dependent
if θst 6= 0. We assume that θst = θts for s 6= t in the undirected graphical structure.

On the other hand, suppose that X follows the Gaussian distribution with mean µ and
covariance Σ. The distribution of X is written as

Pµ,Σ(x) =
1

(2π)p/2det(Σ)
exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}
. (1.7)

In order to express (1.7) by the graphical model as shown in (1.6), we do the re-parametrization
by letting Σ = Θ−1 and µ = −Θ−1γ, yielding

Pγ,Θ(x) = exp

∑
s∈V

γsxs −
1

2

∑
(s,t)∈E

θstxsxt − A (Θ)

 , (1.8)

where γ ∈ Rp, Θ ∈ Rp×p, and A (Θ) = −1
2

log det
(

Θ
2π

)
, so that

∫
Pγ,Θ(x)dx = 1. The

model (1.8) is called the Gaussian graphical model (Hastie et al. 2015, p.245).

In addition to the well-known Ising model and the Gaussian graphical model, some
extensions are available. The first extended model is the mixed graphical model (Lee and
Hastie 2015; Hastie et al. 2015, p.259). Let XC denote the p-dimensional continuous ran-
dom vector and let XD be the q-dimensional discrete random vector. The mixed graphical
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model is formulated by

PΘ(xC, xD) = exp

(
p∑
s=1

p∑
t=1

βstxC,sxC,t +

p∑
t=1

αtxC,t

+

p∑
s=1

q∑
j=1

ρsj(xD,j)xC,s +

q∑
j=1

q∑
r=1

ψrj(xD,r, xD,j)

)
, (1.9)

where Θ represents a set of parameters {{βst} , {αs} , {ρsj} , {ψrj}}. Different from the
graphical model which contains either all continuous variables (e.g., the Gaussian graphical
model) or all discrete variables (e.g., the Ising model), the model (1.9) extends the pairwise
dependence for the continuous and discrete variables.

The second extension is the the graphical model via the exponential family distribution
(Yang et al. 2015). The graphical model is formulated by

Pβ,Θ(x) = exp

∑
r∈V

βrB(xr) +
∑

(s,t)∈E

θstB(xs)B(xt) +
∑
r∈V

C(xr)− A(β,Θ)

 , (1.10)

where β = (β1, · · · βp)> is the p-dimensional parameter vector, Θ = [θst] is a non-diagonal
p×p symmetric matrix, and B(·) and C(·) are given functions. The function A(β,Θ) is the
normalizing constant which makes (1.10) integrated as 1; it is also called the log-partition
function, given by

A(β,Θ) = log

∫
exp

∑
r∈V

βrB(xr) +
∑

(s,t)∈E

θstB(xs)B(xt) +
∑
r∈V

C(xr)

 dx.

The graphical model (1.10) gives a broad class of models which essentially cover basic
exponential family distributions. For example, if B(X) = X

σ
and C(X) = −X2

2σ2 where σ
is a positive constant, then (1.10) reduces to (1.8). If B(X) = X and C(X) = 0 with
X ∈ {0, 1}, then (1.10) reduces to (1.6). Furthermore, taking B(X) = −X and C(X) = 0
with X ∈ [0,∞) yields the exponential graphical model distribution

P(x) = exp

(
−

p∑
s=1

θsxs +

p∑
s=1

p∑
t=1

θstxsxt + A(Θ)

)
,

provided that θs > 0 and θst ≥ 0. In addition, replacing B(X) and C(X) in (1.10),
respectively, by X and − log(X!) gives the Poisson graphical model

P(x) = exp

[
p∑
s=1

{θsxs − log(xs!)}+

p∑
s=1

p∑
t=1

θstxsxt + A(Θ)

]
,
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provided that θst ≤ 0.

1.3.3 Existing Methods

As described in Section 1.3.2, the main interest of the graphical model is to estimate Θ.
However, the main challenge is that the underlying graph structure is unknown, and the
parameter Θ is sparse and contains zero entries.

A useful method of estimating Θ is the graphical lasso (Friedman et al. 2008). The key
idea of the graphical lasso is to construct the penalized likelihood function based on (1.8)
and the LASSO penalty function. The detailed algorithm can be found in Friedman et al.
(2008) and Hastie et al. (2015, Section 9.3). However, the graphical lasso method mainly
focus on the Gaussian graphical model, and the method based on the other models is not
fully explored.

Alternatively, the conditional inference, or the neighbourhood-based likelihood, is a more
flexible method which can be used for any distribution function. It was first proposed by
Meinshausen and Bühlmann (2006). The application of the conditional inference on the
Ising model was presented by Ravikumar et al. (2010). In the following presentation, we
take the Gaussian graphical model (1.8) as an example. The detailed inference procedure
is also available in Hastie et al. (2015, Section 9.4). The basic idea is shown in Figure 1.3.

Figure 1.3: Visualization of the conditional inference

Without loss of generality, as shown in Figure 1.3, we fix a node s, and define the
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neighbourhood set

N (s) = {t ∈ V : (s, t) ∈ E} . (1.11)

To estimate the neighbourhood set of s, it suffices to study the inference of Xs|XV \{s}.
Since the random vector X follows a multivariate Gaussian and is generated by (1.8), then
Xs|XV \{s} is also Gaussian (Hastie et al. 2015, p.255). By some algebra, we have

P
(
Xs|XV \{s}; θ

∗
s

)
∝ exp

−
Xs −

∑
t∈V \{s}

θ∗stXt

2 . (1.12)

Let θ∗s =
(
θ∗s1, · · · , θ∗s(s−1), θ

∗
s(s+1), · · · , θ∗sp

)
. Then the estimator θ̂∗s is given by

θ̂∗s = argmin
θ∗s


n∑
i=1

X(i)
s −

∑
t∈V \{s}

θ∗stX
(i)
t

2

+ λ ‖θ∗s‖1

 , (1.13)

where ‖θ∗s‖1 =
∑

t∈V \{s}
|θ∗st| and λ is a tuning parameter.

Finally, the estimated neighbourhood set is given by

N̂ (s) =
{
t ∈ V : θ̂∗st 6= 0

}
. (1.14)

By repeating the procedure (1.13) for all s ∈ V , we have θ̂∗s and N̂ (s) for s ∈ V .

In practice, based on the penalized likelihood approach (1.13), θ̂st is not usually equal

to θ̂ts. Meinshausen and Bühlmann (2006) and Hastie et al. (2015, p.255) presented the

AND/OR rule to determine the estimated edge set Ê. For any two different nodes s and

t, the AND rule allows (s, t) ∈ Ê if both s ∈ N̂ (t) and t ∈ N̂ (s) hold, while the OR rule

declares (s, t) ∈ Ê if either s ∈ N̂ (t) OR t ∈ N̂ (s) is true.

1.4 Variable Selection and Dimension Reduction

In this section, we discuss several methods for variable selection and dimension reduction.
For variable selection, we first review some classical methods for regression analysis, and
then introduce the focus information criterion proposed by Claeskens and Hjort (2003) and
Hjort and Claeskens (2003). After that, we discuss the penalized regression where different
types of penalty functions were considered. Moreover, analysis of ultrahigh-dimensional
data will also be introduced. Finally, we describe a basic idea of dimension reduction.
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1.4.1 Classical Criteria

For the problems of selecting variables, there are several useful methods and are fully de-
scribed in the classical linear regression analysis, including the Akaike information criterion
(AIC) (Akaike 1973), the Bayesian information criterion (BIC) (Schwarz 1978), Mallow’s
Cp (Mallow 1973), and so on. In this section, we mainly review AIC and BIC.

Suppose that `(β) is the log-likelihood function of β, and let Xi = (Xi1, · · · , Xip) denote
the p-dimensional vector of covariates for i = 1, · · · , n. Let S be the set of all possible
combinations of the components of X with |S| = 2p. We call S ∈ S a candidate model.
Based on a candidate model S, we have the corresponding log-likelihood function `S(β),

and the estimator of β based on the candidate model S is given by β̂S = argmax
β

`S(β).

The AIC is defined as

AIC(S) = 2`S(β̂S)− 2dim(S),

where dim(S) is the number of elements in the set S. AIC can be viewed as a penalized log-
likelihood criterion to balance the goodness of fit and the number of estimated parameters.
The optimal candidate model is determined by the highest AIC score.

An alternative approach is BIC, which is formulated by

BIC(S) = 2`S(β̂S)− log(n)dim(S).

The best candidate model is determined by the highest BIC score. Different from the
AIC method, the penalty term in BIC involves the sample size, and it conveys a stronger
penalty for complexity, especially when n ≥ 8 (e.g., Claeskens and Hjort 2008, p.70).

1.4.2 Focus Information Criterion

In survival analysis, sometimes we are interested in certain specific quantities such as the
hazards ratio or the survivor function. Here we call such ‘specific quantity’ the focus
parameter, and denote it by µ.

It is expected that the focus parameter µ is usually the function of the initial parameter
β. A crucial issue is to determine the variables which are informative for estimating µ.
As introduced in Section 1.4.1, some methods, such as AIC or BIC, can be used to select
variables. However, the best candidate model determined by AIC or BIC may not be the
best model for a given focus parameter µ.
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To overcome this, Claeskens and Hjort (2003) proposed a new variable selection method,
called the focus information criterion (FIC). The key idea of FIC is to determine the
best candidate model by selecting the minimizer of the mean squared error (MSE) of the
estimator µ̂ of µ. The following steps summarize the procedure based on the FIC. The
detailed description can be found in Claeskens and Hjort (2003) and Claeskens and Hjort
(2008, Chapter 6).

Step 1 : Let `S(β) be the log-likelihood function based on a candidate model S ∈ S, and

let β̂S denote the maximum likelihood estimator (MLE) of β based on a candidate
model.

Step 2 : Based on the likelihood theory, one can develop the asymptotic distribution of
the estimator β̂S.

Step 3 : Since the focus parameter µ is the function of parameter β, then by the invariance
property of MLE, the estimator of µ based on a candidate model S is given by
µ̂S = µ(β̂S). Furthermore, by Step 2, we also develop the asymptotic distribution of
the estimator µ̂S for all S ∈ S. Let bias(µ̂S) and var(µ̂S) denote the bias and the
variance of µ̂S, respectively.

Step 4 : Based on a candidate model S, the MSE of µ̂S is given by MSE(µ̂S) = {bias(µ̂S)}2+
var(µ̂S).

Step 5 : The candidate model S∗ which minimizes MSE(µ̂S) is the best candidate model
for the focus parameter.

1.4.3 Penalized Regression

Different from AIC or BIC, we introduce the penalized likelihood method where the penalty
term is a function of the parameter. Let ρ(β) denote the penalty function, then the general
form of the penalized likelihood function is given by

`(β) + λ

p∑
i=1

ρ(βi),

where λ is called the tuning parameter. Useful penalty functions are as follows.

• Adaptive LASSO (Zou 2006): ρ(βi) = wi |βi|, where wi is a weight.
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• LASSO (Tibshirani 1996): ρ(βi) = |βi|.

• SCAD (Fan and Li 2001): ρ′(t) = I(t ≤ λ) + (aλ−t)+

(a−1)λ
I(t ≥ λ) for t > 0, where

(x)+ = max{x, 0} and a > 2 is a fixed parameter.

• MCP (Zhang 2010): ρ′(t) = (aλ−t)+

aλ
for t > 0, where a > 1 is a fixed parameter.

• SICA (Lv and Fan 2009): ρ(t) = (a+1)t
a+t

for t > 0, where a > 0 is a fixed parameter.

The LASSO method with the `1 penalty is the earliest approach among penalty func-
tions. As pointed by Tibshirani (1996), the LASSO method achieves to shrink non-
informative parameters to zero and to obtain the estimators for those informative pa-
rameters simultaneously. However, as discussed in Zou (2006), the LASSO shrinkage may
produce biased estimates, and some necessary conditions should be imposed. To over-
come this problems, Zou (2006) proposed the adaptive LASSO by adding weights in the
`1 penalty. Different from the LASSO method, the SCAD, MCP, and SICA methods are
based on the non-convex penalty functions, and they still achieve the oracle properties.

1.4.4 Ultrahigh-Dimensional Statistical Analysis and Feature
Screening

In high-dimensional statistical analysis, since not all variables are informative, then it
is necessary to select important variables. However, even though a number of variable
selection methods have been discussed in Section 1.4.3, those methods are restricted to the
case where the dimension of variables p is smaller than the sample size n, i.e., p < n. In
applications, such as gene expression data, proteomics studies, and biomedical imaging, we
usually encounter the ultrahigh-dimensional data in the sense that the dimension p is greater
than the sample size n, i.e., p� n. It is difficult to apply the methods in Section 1.4.3 to
analyze the ultrahigh-dimensional data due to the inaccuracy of estimation and the highly
computational cost.

To overcome this problem, Fan and Lv (2008) considered linear regression models and
proposed a feature screening method that is based on correlation learning, called sure
independence screening, to reduce dimensionality from high to a moderate scale that is
below the sample size. Similar idea was extended to different models. For example, Fan
and Song (2010) developed sure independent screening method in generalized linear models.
In survival analysis, Fan et al. (2010) developed feature screening method based on the Cox
model. Song et al. (2014) proposed rank based independent screening for high-dimensional
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survival data. Yan et al. (2017) studied the Spearman rank correlation screening for
censored data.

1.4.5 Sufficient Dimension Reduction

Different from selecting informative variables in previous subsections, in this subsection,
we aim to introduce sufficient dimension reduction (SDR) which is useful in reducing the
dimension of covariates but not losing predictive information of covariates when developing
non-parametric models.

Let T ∈ R be the univariate response and let X denote the p-dimensional vector of
covariates. The spirit of SDR is to find a p× d basis matrix B such that

T ⊥⊥ X|B>X,

where “⊥⊥” stands for the statistical independence and d is usually called the structure
dimension which is unknown. To estimate B and d, a number of methods has been pro-
posed, including the inverse regression (Li 1991; Li and Wang 2007; Zhu et al. 2010), the
minimum average variance estimation (Zhu and Zeng 2006; Xia 2007; Wang and Xia 2008;
Yin and Li 2011), and the semiparametric framework (Ma and Zhu 2012, 2013). When B
is obtained, then the subsequent analysis can be based on the lower dimensional variables
{T,B>X} without losing information.

1.5 Thesis Topics and Outline of the Thesis

Although a large number of methods have been available for survival analysis (e.g., Kalfleisch
and Prentice 2002; Lawless 2003; Cook and Lawless 2018), research gaps still remain. Many
problems in survival analysis with complex features in data have not been explored. We
now list important problems of our interest and give detailed descriptions in the following
subsections:

• Graphical models with error-prone variables: bias analysis and valid inference
methods.

• Analysis of noisy survival data under graphical proportional hazards measurement
error models.
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• Sufficient dimension reduction for analysis of high-dimensional survival data with
error-prone variables.

• Semiparametric methods for left-truncated and right-censored survival data with
covariate measurement error.

• Model selection and model averaging for analysis of truncated and censored data
with measurement error.

This thesis consists of seven chapters. The remainder of the thesis is organized as
follows. In Chapter 2, we focus on the high-dimensional analysis of (mixture) graphical
model with mismeasurement. We propose the simulation-based conditional inference to
derive the estimators and determine the graphical structure. We also point out that the
estimated graphical structure based on the error-prone variables would not recover the
underlying true graphical structure if we do not correct the error effect appropriately.

In Chapter 3, we study high-dimensional statistical inference for survival analysis. Dif-
ferent from the usual variable selection problem in survival analysis, we consider joint mod-
eling of the survival response and the graphically structured covariates, which allows us to
explore the informative main effects and the pairwise dependence among the covariates.
Meanwhile, we also consider the measurement error and misclassification in covariates. We
propose the simulation-based three-stage procedure to correct error effects, determine the
informative variables, obtain the pairwise graphical structure, and derive the estimators
simultaneously.

In Chapter 4, we investigate the sufficient dimension reduction problem with survival
data and covariate measurement error as well as ultrahigh-dimension. We develop the semi-
parametric estimation procedure which does not require usual assumptions imposed in the
past literature. We also propose feature screening method with the effects of censored re-
sponses and covariate measurement error taken into account and extend the semiparametric
estimation method to deal with ultrahigh-dimensional sufficient dimension reduction.

In Chapter 5, we consider the survival analysis with left-truncated and right-censored
data subject to covariate measurement error. We first discuss the corrected conditional
likelihood approach which was outlined by Yi and Lawless (2007). To improve the ef-
ficiency of the estimator, we propose the augmented pseudo-likelihood method. For the
measurement error model, we consider two different scenario where the parameters in the
measurement error model can be known or unknown.

In Chapter 6, we are interested in the focus parameter based on left-truncated and
right-censored survival data with covariate measurement error. Instead of directly using
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AIC or BIC to determine the candidate model for the focus parameter, we provide the
valid inferential procedure, which allows us to determine the suitable and best candidate
model for any focus parameter.

Finally, the thesis is concluded with a discussion in Chapter 7.

1.6 Background and Literature Review for Each Topic

1.6.1 Graphical Models with Error-Prone Variables

In the era of Big Data, high-dimensional data become more accessible than before and
frequently arise from many areas, including genomic studies, cancer research, and medical
health record frameworks. Understanding the association structure, or the network struc-
ture of variables, is often of prime interest. To characterize such dependence structures
of variables, graphical models are commonly used. For example, the Ising model and the
Gaussian graphical model are two popular models to describe association structures for
binary and continuous variables, respectively. Many inference methods have been pro-
posed for those models. To name a few, Ravikumar et al. (2010) proposed an inferential
procedure to estimate the graph for the Ising model. Yuan and Lin (2007) considered the
Gaussian graphical model and adopted an interior point optimization method to obtain
the network structure. Friedman et al. (2008) proposed the graphical lasso to select the
variables and estimate the model parameters. The Gaussian graphical model with complex
features, such as latent variables, was also explored by Zhou et al. (2009), Ravikumar et
al. (2011), Sun and Li (2012), Tan et al. (2016), Dalal and Rajarantam (2017), and Fan
et al. (2017), among many others.

Extensions of the Gaussian graphical model and the Ising model have also been ex-
plored in the literature. The exponential family graphical model, which treats the Ising
and Gaussian graphical models as special cases, was developed by Yang et al. (2015).
Mixed graphical models were proposed to handle the settings where the variables contain
both continuous and discrete variables. For example, Lee and Hastie (2015) discussed the
pseudo-likelihood method to deal with the mixture of the Gaussian graphical model and
the Ising model. Cheng et al. (2017) proposed the group lasso to conduct inferences under
the mixed graphical models. Chen et al. (2015) and Zhang et al. (2017) studied mixed
graphical models via the exponential family distribution.

Even though analysis of graphical models has been widely explored, research gaps
still remain. A typical feature that is left unattended to is about measurement error in
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variables, which usually appears in applications. For example, in biological studies, protein
signaling networks play a central role in the etiology of many diseases. A major challenge,
commented by Bandara (2009), is due to measurement noise which primarily attributes
large uncertainty of parameter estimation. It was observed that the misleading results may
be produced if measurement error effects are ignored.

Concerning regression analysis, research on measurement error has attracted extensive
attention. It has been well understood that ignoring measurement error effects often yields
seriously biased and misleading results (e.g., Carroll et al. 2006; Yi 2017). A large body of
research papers have been available in the literature to address measurement error effects
for different settings (e.g., Carroll 1989; Carroll et al. 1996; Carroll et al. 2004; Carroll
et al. 2007; Carroll et al. 2009; Yi et al. 2015; Yi and He 2017; Yi et al. 2019). For
detailed discussions, see monographs Biemer et al. (1991), Buonaccorsi (2010), Fuller
(1987), Gustafson (2004), Carroll et al. (2006), and Yi (2017).

While there has been great attention on measurement error on regression analysis, there
has been little work investigating measurement error effects on graphical model analysis,
an area that has proven useful for featuring complex association structures among the
variables. Driven by this, we consider this important problem and explore Graphical models
with Error-prone Measurement (GEM) in Chapter 2. We consider undirected graphical
models which are described by the exponential family distribution. We investigate the
asymptotic biases of the naive method which disregards measurement error effects. We
examine all the three scenarios of mismeasurement: (1) all the error-prone variables are
continuous, (2) all the error-prone variables are discrete, and (3) error-prone variables
include both continuous and discrete variables. Furthermore, we develop valid inference
procedures to address mismeasurement effects. We establish theoretical results for the
proposed methods. To the best of our knowledge, there has been no research to explore
this problem.

1.6.2 Analysis of Noisy Survival Data with Graphical Propor-
tional Hazards Measurement Error Models

Survival analysis has been proven useful in many areas including cancer research, clinical
trials, epidemiological studies, actuarial science, and so on. A large body of methods have
been developed for various survival models. Among them, methods concerning the Cox
proportional hazards (PH) model have attracted the most research attention. Comprehen-
sive discussion on those methods can be found in Kalbfleisch and Prentice (2002), Lawless
(2003), and the references therein.
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While the Cox proportional hazards model has been widely used, this model and its
extensions are inadequate for handling data with complex features. In the era of Big Data,
high-dimensional survival data become available and such data entail new features that
traditional survival data do not possess: (1) many covariates are inactive in explaining the
survival information, (2) active covariates are associated in a network structure, and (3)
some covariates are error-contaminated.

To handle the first feature of survival data with high-dimensional covariates, several
methods have also been developed based on the Cox PH model. For example, Fan and
Li (2002) used the SCAD penalty function to select important variables for the Cox PH
model. Cai et al. (2005) considered variable selection with multivariate failure time data.
Zhang et al. (2007) developed the adaptive lasso method for the Cox PH model. Yan
and Huang (2012) explored the adaptive group lasso for the Cox regression model with
time-varying coefficients. Huang et al. (2013) studied the penalized partial likelihood with
the L1-penalty for the Cox model. Li and Ma (2013) discussed analysis of survival data
with high-dimensional genetic covariates.

Regarding survival data with error-prone covariates, many inference methods have been
developed for the Cox PH models with error-contaminated covariates since the seminal pa-
per by Prentice (1982). For instance, Nakamura (1992) developed an approximate corrected
partial likelihood method. Huang and Wang (2000) proposed a nonparametric approach
for settings with repeated measurements for mismeasured covariates. Xie et al. (2001) ex-
plored a least squares method to calibrate the induced hazard function. Song and Huang
(2005) presented a conditional score approach for estimation of the model parameters. Yi
and Lawless (2007) developed a weakly parametric approach to correct for measurement
error effects based on the likelihood formulation. Wang et al. (1997), Wang (1999), Shaw
and Prentice (2012) and Zhao and Prentice (2014) considered the regression calibration
method to address measurement error for the Cox PH model. Detailed discussion on this
topic can be found in Yi (2017, Chapter 3).

While available methods address certain features of high-dimensional survival data,
none of them incorporate network structured covariates into modeling and analyzing sur-
vival data. Furthermore, there have no methods dealing with all the three features alto-
gether, even though data with such features arise commonly in applications. To fill this
gap, we propose graphical proportional hazards measurement error models in Chapter 3.
Our models extend the scope of the conventional Cox PH model and accommodate network
structures of covariates. We utilize the formulation of graphical models (Ravikumar et al.
2010; Lee and Hastie 2015) and consider a broad variety of covariates which follow the
exponential family distribution (Yang et al. 2015), extending the commonly used models
including the Gaussian graphical model (e.g., Yuan and Lin 2007; Friedman et al. 2008;
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Sun and Li 2012; Wang 2015; Tan et al. 2016; Dalal and Rajarantam 2017) and the Ising
model (e.g., Ravikumar et al. 2010). Regarding covariate mismeasurement, we consider
general settings where both continuous covariates and discrete covariates may be subject
to measurement error. We establish the theoretical results to justify the validity of the
proposed method.

1.6.3 Sufficient Dimension Reduction for High-Dimensional Sur-
vival Data with Error-Prone Variables

Survival analysis has been proven useful in many areas including cancer research, clinical
trials, epidemiological studies, actuarial science, and so on. A primary interest in survival
analysis is to study the association between survival times and covariates of interests. Many
parametric or semiparametric survival models are proposed for survival analysis, including
the Cox proportional hazards model (Cox 1972), the proportional odds model (Bennett
1983), the additive hazards model (Lin and Ying 1994), and the accelerated failure-time
model (Cox and Oakes 1984). Although those models are useful in applications, they
may still be inadequate to handle real problems due to the lack of the knowledge of the
suitability of a particular model. Motivated by this, non-parametric regression models
are employed in applications. Non-parametric models offer the flexibility of modeling and
protect us against the risk of model misspecification. However, such models are hampered
by the high dimension of covariates. To offer a flexible yet parsimonious model formulation,
sufficient dimension reduction (SDR) become useful in reducing the dimension of covariates
but not losing predictive information of covariates.

For uncensored data, various methods have been proposed to reduce the dimension of
covariates, including the inverse regression (Li 1991; Li and Wang 2007; Zhu et al. 2010),
the minimum average variance estimation (Zhu and Zeng 2006; Xia 2007; Wang and Xia
2008; Yin and Li 2011), and the semiparametric framework (Ma and Zhu 2012, 2013);
some details can be found in Cook (1998) and Li (2018).

For right-censored survival data, a number of methods have also been developed for
dimension reduction. To name a few, Li et al. (1999) examined the sliced inverse regres-
sion method to estimate the central space (CS) of dimension reduction directions. Xia
et al. (2010) considered semiparametric models and proposed the minimum average vari-
ance estimation using the inverse censoring weighting scheme. Lue et al. (2011) explored
the spline method and principal Hessian directions (PHD) approach. Lu and Li (2011)
discussed the sliced inverse regression with inverse probability weights and implemented
the variable selection approach for sparse data with a large dimension. Nadkarni et al.
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(2011) developed a minimum discrepancy approach using the inverse censoring weighting
method to build a inverse regression estimator and applied the bootstrapping method to
estimate the structural dimension. Zhao and Zhou (2014) examined sufficient dimension
reduction using marginal regression models to analyze recurrent event data. Zhao et al.
(2017) developed the multi-index model using the martingale approach.

While those methods are useful for different settings, they are inapplicable for error-
contaminated data, an ubiquitous feature in applications. As noted by Carroll and Li
(1992), when covariates are subject to measurement error, misleading results are often
yielded if measurement error effects are ignored when performing sufficient dimension re-
duction. To address measurement error effects in the SDR framework, Carroll and Li
(1992) proposed the “corrected” covariates for the implementation of sliced inverse regres-
sion. Li and Yin (2007) established the invariance law for correcting measurement error
effects. Zhang et al. (2014) developed the cumulative slicing estimation method using
the “corrected” covariates, which extended the development of Zhu et al. (2010). In the
presence of both censored data and measurement error in covariates, however, there has
been no available work, to the best of our knowledge.

Another limitation of most available methods in the SDR framework lies in the assump-
tion that the dimension (p) of covariates is smaller than the sample size (n), i.e., p < n.
In practice, however, high-dimensional data have become more accessible than ever, and
the p � n problem is an important yet challenging topic that deserves careful research.
It is not trivial to directly apply conventional SDR methods to estimate the CS when the
dimension p is higher than the sample size n, partly because the covariance matrix of the
covariates X, say ΣX , is usually singular due to p� n.

To analyze data with p � n, feature screening is typically applied before perform-
ing standard analysis. Different feature screening methods have been proposed for vary-
ing settings. For example, Zhu et al. (2011) proposed model-free feature screening for
ultrahigh-dimensional data. Li et al. (2012) developed the distance correlation approach
for feature screening. Yu et al. (2013) proposed the Dantzig selection approach with the
sliced inverse regression. Yin and Hilafu (2015) and Hilafu and Yin (2017) studied the
dimension reduction framework for p� n through the sequential method. However, these
approaches apply only to the data with complete responses and precisely measured co-
variates. Even though limited research has been directed to perform feature screening for
censored responses (e.g., Song et al. 2014; Yan et al. 2017; Chen et al. 2019), little work
has been available to deal with sufficient dimension reduction in the concurrent presence
of censored responses, covariate measurement error, and ultrahigh-dimensional covariates.

Driven by the lack of methods for handling such data, we develop methods for han-
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dling dimension reduction for censored data with covariate measurement error as well as
ultrahigh-dimension in Chapter 4. We consider the single-index conditional distribution
model which covers many useful survival models, and based on them, we develop the semi-
parametric estimation procedure. Our method does not require usual assumptions such as
linearity and constant variance conditions that are imposed by other authors for a similar
problem (e.g., Li 1991). Our method employs the “corrected” covariates to correct for
measurement error effects and applies the conditional expectation scheme to remove the
bias caused by censoring. To handle the ultrahigh-dimensional SDR problem, we propose
a two-stage procedure, where in the first stage, we develop model-free feature screening
method with the effects of censored responses and covariate measurement error taken into
account, and in the second stage, we extend the semiparametric estimation method to
build the single-index conditional distribution model. Theoretical results of the proposed
methods are established accordingly.

1.6.4 Left-Truncated and Right-Censored Survival Data with Co-
variate Measurement Error

Survival analysis has been proven useful in many areas including cancer research, clinical
trials, epidemiological studies, actuarial science, and so on. A large body of methods
have been developed under various survival models. Among them, methods on the Cox
proportional hazard model have attracted the most research attention. Comprehensive
discussion on those methods can be found in Kalbfleisch and Prentice (2002), Lawless
(2003), and the references therein.

Those methods, however, break down when data have complex features pertinent to
the data collection and the natures of variables. Typically, simultaneous presence of biased
samples caused by left-truncation or length-biased sampling and measurement error in co-
variates pose considerable challenges in survival analysis. Focusing on measurement error
only, a large number of research papers have emerged since Prentice (1982). To name a few,
Nakamura (1992) developed an approximate corrected partial likelihood method which was
extended by Buzas (1998) and Hu and Lin (2002). Huang and Wang (2000) proposed a
nonparametric approach for settings with repeated measurements for mismeasured covari-
ates. Xie et al. (2001) explored a least squares method to calibrate the induced hazard
function. Song and Huang (2005) presented a conditional score approach for estimation of
the model parameters. Other approaches include Augustin (2004), Greene and Cai (2004),
Li and Ryan (2006), Küchenoff, Bender and Langner (2007), and the references therein. A
review on this topic was given by Yi (2017, Chapter 3).
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On the other hand, left-truncation is a common characteristic of survival studies which
arises when study subjects do not enter the study at the same time. In the presence of
left-truncation, individuals with shorter survival times are less likely to be recruited in
the study, thus resulting in a biased sample. Sizable methods have been available for
analyzing such data. For instance, Qin and Shen (2010) proposed the weighted estimating
equation approach. Qin et al. (2011) described an EM algorithm for estimation involving
infinite dimensional parameters. Huang et al. (2012) examined a profile likelihood method
for parameter estimation for which the distribution of the truncation time was restricted
as a uniform distribution. Wu et al. (2018) proposed a pairwise likelihood method of
handling left-truncated data. With joint modeling of longitudinal covariates and survival
outcomes, Su and Wang (2012) proposed a semiparametric method to handle the feature
of left-truncation.

While there have been methods of dealing with survival data with different features, to
the best of our knowledge, no systematic methods have been available for handling the those
features simultaneously (Yi and Lawless 2007). In Chapter 5, we consider this important
problem and develop inference methods for analysis of left-truncated right-censored survival
data with measurement error. To delineate the survival process, we employ the most widely
used framework - the Cox proportional hazards model; to postulate the measurement error
process, we extend the classical additive model, the model most popularly considered in
the literature of measurement error models, to facilitate measurement error that is induced
from both a systematic way and a random manner. We exploit a flexible estimator for
the survival model parameters which does not require specification of the baseline hazard
function. To improve the efficiency, we further develop an augmented non-parametric
maximum likelihood estimator. We establish asymptotic results for the proposed estimators
and examine the issues of efficiency and model misspecifications. While the proposed
methods generalize the scope of existing work on survival data, the extensions turn out
neither trivial nor straightforward. The proposed methods enjoy appealing features that
the distributions of the true covariates and of the truncation times are left unspecified, and
they are easy to implement.

Our work is partially motivated by the Worcester Heart Attack Study (WHAS500)
data (Hosmer et al. 2008) which involve left-truncation and right-censoring data. Data
were collected over thirteen 1-year periods beginning in 1975 and extending in 2001 on
all patients with acute myocardial infarction (MI) admitted to hospitals in the Worcester,
Massachusetts Standard Metropolitan Statistical Area. Basically, three types of time are
recorded: time of the hospital admission, time of the hospital discharge, and time of the last
follow-up (which is either death or censoring time). The total follow-up length is defined
as the time gap between the hospital admission and the last follow-up, and the hospital
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stay time is defined as the time length between the hospital admission and the hospital
discharge. Data can only be collected for those individuals whose total follow-up length is
larger than the hospital stay time, creating left-truncation (e.g., Kalbfleisch and Prentice
2002, Section 1.3; Lawless 2003, Section 2.4). It is interesting to study how the risk factors
are associated with the survival times after the patients are discharged from the hospital.
To conduct sensible analyses, it is imperative to account for possible measurement error
effects that are induced from error-prone covariates.

1.6.5 Model Selection and Model Averaging for Analysis of Trun-
cated and Censored Data with Measurement Error

Model selection plays an important role in statistical inference, and various model selec-
tion criteria have been proposed, including the Akaike information criterion (AIC) (Akaike,
1973), Bayesian information criterion (BIC) (Schwarz, 1978), Cross Validation, and Mal-
low’s Cp (Mallow, 1973). To incorporate the feature of the quantity of interest, Claeskens
and Hjort (2003) proposed the focus information criterion (FIC) for model selection. Sev-
eral extensions of the FIC method have been developed for distinct settings. For example,
Claeskens and Carroll (2007) studied the FIC method for the partially linear model. Zhang
and Liang (2011) implemented the FIC method to generalized additive partial linear mod-
els. Xu et al. (2014) discussed the FIC method based on weighted composite quantile
regression.

While those extensions branch out the scope of the FIC method, they are not applicable
to handle many practical problem. Typically, those methods fails to handle truncated and
censored data with measurement error, which arise ubiquitously from many areas including
clinical trials, epidemiological studies, actuarial science, and so on.

In analysis of censored data or survival data, some methods have been proposed for
variable selection for different survival models. For example, Liang and Zou (2008) studied
the AIC strategy on the accelerated lifetime model. Fan and Li (2002) proposed the
penalized log-partial likelihood function for the Cox model. Hjort and Claeskens (2006)
considered the Cox model with right censored data. Wang et al. (2015) examined the FIC
method for panel count data. Du et al. (2017) discussed the development of the quantile
regression with right-censoring.

Model selection with survival data is significantly challenged by other features which are
commonly possessed by practical data. Typically, survival data with both left-truncation
and covariate measurement error are quite common in applications. However, little work
has been available to address these two features simultaneously as noted by Yi and Lawless
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(2007) and Yi (2017), while addressing either measurement error or biased sampling has
attracted extensive attention in survival analysis. Regarding survival data with covariate
measurement error, there have been many methods in the literature (e.g., Prentice 1982,
Nakamura 1992, Yi 2017, Chapter 3). Concerning biased sampling, left-truncation is a
common source which usually arises when a subject dies before the recruitment of study
subjects. Different methods have been proposed to account for biased sampling effects; see,
for example, Qin and Shen (2010), Huang et al. (2012), Wu et al. (2017), among others.

Although many methods have been available to address some specific features of data
(such as measurement error and/or left-truncation) and/or model building, there has been,
to the best of our knowledge, no research on dealing with all these issues simultaneously.
In Chapter 6, we investigate this important topic and develop valid inference methods
which simultaneously accommodate measurement error effects and sampling issues as well
as model building for censored survival data. Our model selection development takes the
local model misspecification framework (Claeskens and Hjort 2003; Hjort and Claeskens
2003) and specifically focuses on the FIC criterion.

We further explore estimation of the model parameters for conducting post-selection
inference. Traditional statistical analysis often first builds the model by selecting important
variables and then, based on the model, carries out statistical inferences. This procedure,
however, as pointed out by Clyde and George (2004) and Wang et al. (2009), among
others, ignores the uncertainty induced from the variable selection process, thus producing
estimators with invalid characterization of the associated variability. To circumvent this
issue, we take one step back by not producing an estimator from a singlely selected model
from a class of candidates, but instead, we average a set of candidate models with suitable
weights attached, and then produce an estimator of the model parameter accordingly.
We establish the asymptotic properties for the proposed estimator. Our development
extends the scope of the usual model averaging strategy that has been used frequently
under different selection criteria. For example, Hansen (2008) considered least square
estimation with the Mallow criterion. Model averaging based on the jackknife (or cross-
validation) criterion was discussed by Hansen and Racine (2012). From the Bayesian
perspective, Raftery et al. (1997) proposed Bayesian model averaging for linear regression
models. Hoeting et al. (1999) summarized techniques of Bayesian model averaging (BMA)
and their applications to settings with generalized linear models or survival models. With
the FIC selection criterion, many authors explored the model averaging techniques; see
Claeskens and Hjort (2003), Claeskens and Carroll (2007), Hjort and Claeskens (2003),
Hjort and Claeskens (2006), Wang et al. (2012), Wang et al. (2016), and Zhang and Liang
(2011).
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Chapter 2

Graphical Models with Error-Prone
Variables: Bias Analysis and Valid
Inference Methods

2.1 Notation and Models

2.1.1 The Graphical Model

Let X = (X1, · · · , Xp)
> be a p-dimensional random vector. We use a graph, denoted as

G = (V,E), to describe the relationship among the components of X, where V = {1, · · · , p}
includes all the indices of random variables and V × V contains all the pairs of indices in
V . A random variable Xr is called a vertex of the graph G if r ∈ V ; a pair of random
variables {Xr, Xs} is called an edge of the graph G if (r, s) ∈ E ⊂ V × V .

To characterize the distribution of a random vector X, we consider the graphical model
with the exponential family distribution,

P (X;θ,Θ) = exp

∑
r∈V

θrB(Xr) +
∑

(s,t)∈E

θstB(Xs)B(Xt) +
∑
r∈V

C(Xr)− A(θ,Θ)

 , (2.1)

where θ = (θ1, · · · θp)> is a p-dimensional vector of parameters, Θ = [θst] is a p × p
symmetric matrix with zero diagonal elements, and B(·) and C(·) are given functions. The
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function A(θ,Θ) is the normalizing constant, also called the log-partition function, which
makes (2.1) be integrated as 1:

A(θ,Θ) = log

∫
exp

∑
r∈V

θrB(Xr) +
∑

(s,t)∈E

θstB(Xs)B(Xt) +
∑
r∈V

C(Xr)

 dX.

Formulation (2.1) gives a broad class of models which essentially can cover any distri-

butions. For example, if for r ∈ V , we set B(Xr) = Xr
σr

and C(Xr) = −X2
r

2σ2
r

with σr being a

positive constant, then (2.1) is proportional to

exp

∑
r∈V

1

σr
θrXr +

∑
(s,t)∈E

1

σrσt
θstXsXt −

∑
r∈V

X2
r

2σ2
r

 , (2.2)

yielding the well-known Gaussian graphical model (Friedman et al. 2008, Hastie et al.
2015, Lee and Hastie 2015). If we constraint θr to be 0 for all r ∈ V and let B(X) = X
and C(X) = 0 with X ∈ {0, 1}, then (2.1) reduces to

exp

 ∑
(s,t)∈E

θstXsXt − A(Θ)

 , (2.3)

which is the Ising model without the singleton for the simplicity (Ravikumar et al. 2010).
The structure (2.1) was discussed by Yang et al. (2015) and Chen et al. (2015) in detail.

For every r ∈ V , let XV \{r} denote the (p− 1)-dimensional subvector of X with its rth

component deleted, i.e., XV \{r} = (X1, · · ·Xr−1, Xr+1, · · · , Xp)
>. Define the neighbourhood

of r:

N (r) = {t ∈ V \ {r} : (r, t) ∈ E}, (2.4)

which is the set containing all the indices of random variables Xt that are dependent on
Xr. By Proposition 1 in Yang et al. (2015), the conditional distribution of Xr given XV \{r}
can be expressed as

P
(
Xr|XV \{r}

)
= exp

θrXr +Xr

∑
t∈N (r)

θrtXt + C(Xr)−D

θr +
∑
t∈N (r)

θrtXt

 , (2.5)

where D(·) is the normalizing constant ensuring the integration of the right-hand side (2.5)
equal to one.
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2.1.2 Measurement Error and Misclassification

In many applications, random variables are often subject to mismeasurement. Let X∗

denote the observed or surrogate version of X. To emphasize the type of the random
vector, we use XC (or XD) to replace X if all components of X are continuous (or discrete);

when X contains both discrete and continuous components, we write X =
(
XC>, XD>)>

where XC and XD are the subvectors of continuous and discrete components, respectively.
Similarly, we use X∗C and X∗D to express the surrogate vector X∗. In the following, we
describe different ways of modeling the relationship between X∗C and XC as well as the
relationship between X∗D and XD.

We start with the case where X contains both continuous and discrete subvectors, i.e.,

X =
(
XC>, XD>)>. The classical additive measurement error model (Carroll et al. 2006,

Chapter 1; Yi 2017, Chapter 2) is assumed to describe the relationship between X∗C and
XC:

X∗C = XC + ε, (2.6)

where ε is independent of X as well as X∗D, and ε ∼ N(0,Σε) with covariance matrix Σε.
To highlight the idea, Σε is assumed known for now.

To feature the relationship between X∗D and XD, we first write the vectors of all
possible values of XD as x(1), x(2), · · · , x(m), where m is a positive integer. Assume that

P
(
X∗D = x(k)

∣∣XD = x(l), X
C
)

= P
(
X∗D = x(k)

∣∣XD = x(l)

)
. (2.7)

Let

pkl = P
(
X∗D = x(k)|XD = x(l)

)
(2.8)

be the (mis)classification probability for k, l = 1, · · · ,m, and define the m × m (mis)
classification matrix

P = [pkl]m×m (2.9)

with element (k, l) given by (2.8) for k, l = 1, · · · ,m.

28



Noting that

P
(
X∗D = x(k)

)
=

m∑
l=1

P
(
X∗D = x(k), X

D = x(l)

)
=

m∑
l=1

P
(
X∗D = x(k)|XD = x(l)

)
P
(
XD = x(l)

)
=

m∑
l=1

pklP
(
XD = x(l)

)
for all k = 1, · · · ,m, or equivalently, the matrix expression P

(
X∗D = x(1)

)
...

P
(
X∗D = x(m)

)
 = P

 P
(
XD = x(1)

)
...

P
(
XD = x(m)

)
 , (2.10)

we obtain the constraints for the surrogate X∗D and the true vector XD. To ease no-
tation, we let MC [P] (XD) denote the misclassification operator and write (2.10) as
X∗D = MC [P] (XD). This expression extends the misclassification operator used by Car-
roll et al. (2006, p.125) and Küchenhoff et al. (2006) who considered a misclassified binary
random variable.

To highlight the idea, in the following development we assume that P is known; in
the last section we discuss the setting where P is unknown. Consistent with Carroll et al.
(2006, p.125), suppose that P has the spectral decomposition P = ΩDΩ−1, where D is a
diagonal matrix of eigenvalues of P and Ω is the corresponding matrix of eigenvectors.

In the case where X contains only continuous variables, then only model (2.6) is im-
posed to describe the relationship between X∗ and X where the independence requirement
is altered to be the independence between ε and X. When X includes only discrete com-
ponents, then only model (2.8) is needed and the assumption (2.7) disappears.

2.2 Impact of Naive Analysis

In the presence of measurement error or misclassification, it is important to study the im-
pact of ignoring such a feature. That is, if we carry out by replacing the true measurement
for X with its surrogate value X∗, then how does the resulting estimator behavior? To
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answer this question, we consider a naive analysis which disregards the difference between
X∗ and X.

For r ∈ V , let θ(r) =
(
θr, θ

>
\r

)>
with θ\r =

(
θr1, · · · , θr(r−1), θr(r+1), · · · , θrp

)>
. For

i = 1, · · · , n, the naive log likelihood function is determined by

`nv(θ(r)) = − 1

n

n∑
i=1

log
{
P
(
X∗r

(i)|X∗(i)V \{r}
)}

, (2.11)

where P
(
X∗r

(i)|X∗(i)V \{r}
)

is determined by (2.5) with X replaced by X∗, i.e.,

P
(
X∗r |X∗V \{r}

)
= exp

θrX∗r +X∗r
∑
t∈N (r)

θrtX
∗
t + C(X∗r )−D

θr +
∑
t∈N (r)

θrtX
∗
t

 .

To carry out variable selection for the variables associated with the parameter vector
θ\r, we implement the lasso penalty function for θ\r (Tibshirani 1996) and obtain the naive
estimator of θ(r):

θ̂nv(r) = argmin
θ(r)

{
`nv(θ(r)) + λn

∥∥θ\r∥∥1

}
, (2.12)

where λn is the tuning parameter and∥∥θ\r∥∥1
=
∑
j 6=r

|θrj| . (2.13)

Now we discuss the asymptotic bias of the naive estimator θ̂nv(r) for r ∈ V . For a vector
a with elements ai’s, let ‖a‖∞ denote the infinity norm defined as max

i
|ai|. For r ∈ V , define

Dr = E
{
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
andQr = E

{(
X

(i)>
V \{r}X

(i)>

V \{r}

)
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
,

and let Σε;\r be the covariance matrix Σε with the rth row and the rth column deleted.

Theorem 2.2.1 Assume that regularity conditions in Section 3.1 of Yang et al. (2015)
hold. Then for any r ∈ V , there exist constants α̃ ∈ (0, 1) and ρ̃ > 0 such that∥∥∥θ̂nv(r)− θ0(r)

∥∥∥
∞
≥

{
‖Qr‖∞ +

∥∥Σε;\rDr
∥∥
∞

}−1
(∥∥∥∥∂`nv (θ0)

∂θ

∥∥∥∥
∞
− λnα̃

4 (2− α̃)
− 2λn

)
−
{

1 + ‖Qr‖−1
∞
∥∥Σε;\rDr

∥∥
∞

}−1
5ρ̃λn.
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Theorem 2.2.1 indicates that the naive estimator θ̂nv(r) is not close to the true parameter

θ0(r) in the infinity norm since a lower bound of
∥∥∥θ̂nv(r)− θ0(r)

∥∥∥
∞

is positive, provided

that the tuning parameter λn is smaller than
{

16−7α̃
4(2−α̃)

+ 5ρ̃ ‖Qr‖∞
}−1 ∥∥∥∂`nv(θ0)

∂θ

∥∥∥
∞

, as shown

in Appendix A.3. This suggests that the estimated graph generally differs from the true
graph. In Section 2.5 we also carry out simulation studies which confirm the theoretical
result in Theorem 2.2.1. Consequently, it is imperative to correct for the measurement
error effects in order to obtain valid results. In the following two sections we develop
inferential procedures which account for measurement error effects.

2.3 Correction Method with Either Continuous or Dis-

crete Variables but not Both

In this section, we consider cases where X contains either all continuous or all discrete ran-
dom variables, i.e., X = XC or X = XD. To address mismeasurement effects, we develop
a simulation-based three-stage neighbourhood-set likelihood method. The basic idea is to
first depict how the bias induced from mismeasurement in the variables is related to the
degree of mismeasurement, and then use this relation to extrapolate it to the case without
mismeasurement. Such an idea has the similarity to the simulation-extrapolation (SIMEX)
approach proposed by Cook and Stefanski (1994) and the misclassification SIMEX (MC-
SIMEX) method considered by Küchenhoff et al. (2006). However, the development here
is more complex in technical details and the establishment of theoretical results is a lot
more challenging.

2.3.1 Inferential Procedures

Stage 1 : Simulation
Let B be a given positive integer and let Z = {ζ0, ζ1, · · · , ζM} be a sequence of pre-
specified values with 0 = ζ0 < ζ1 < · · · < ζM , where M is a positive integer, and ζM
is a prespecified positive number such as 1.

For a given subject i with i = 1, · · · , n and b = 1, · · · , B, if the random vector X
is continuous with X = XC, then we generate U

(i)
b from N(0,Σε), and define W

(i)
b (ζ)

as

W
(i)
b (ζ) = X∗C(i) +

√
ζU

(i)
b (2.14)
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for every ζ ∈ Z. If the random vector X is discrete with X = XD, then we generate
W

(i)
b (ζ) by

W
(i)
b (ζ) = MC[Pζ ]

(
X∗D(i)

)
(2.15)

for every ζ ∈ Z, where Pζ = ΩDζΩ−1.

Stage 2 : Selection
For r ∈ V , replacing X in (2.5) by W

(i)
b (ζ) gives

P
(
W

(i)
b,r (ζ)

∣∣∣W (i)
b,V \{r} (ζ)

)
= exp

θrW (i)
b,r (ζ) +W

(i)
b,r (ζ)

∑
t∈N (r)

θrtW
(i)
b,t (ζ) (2.16)

+ C
(
W

(i)
b,r (ζ)

)
−D

θr +
∑
t∈N (r)

θrtW
(i)
b,r (ζ)

 ,

and hence, the log-likelihood based on (2.16) is given by

`b,ζ (θ(r)) = − 1

n

n∑
i=1

{
P
(
W

(i)
b,r (ζ)

∣∣∣W (i)
b,V \{r} (ζ)

)}
. (2.17)

Then for the given b and ζ, we calculate

θ̂ (r; ζ, b) = argmin
θ(r)

{
`b,ζ (θ(r)) + λn

∥∥θ\r∥∥1

}
(2.18)

and hence, we define

θ̂ (r; ζ) =
1

B

B∑
b=1

θ̂ (r; ζ, b) . (2.19)

Stage 3 : Extrapolation
Grouping the estimators obtained from (2.19), we obtain the sequence

Sr =
{(
ζ, θ̂ (r; ζ)

)
: ζ ∈ Z

}
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for each r ∈ V . Then we regress θ̂(r; ζ) over ζ by fitting a model

θ̂ (r; ζ) = G (ζ,Γ) + δ (2.20)

to the sequence Sr, where G(·, ·) is a regression function, Γ is the vector of associated
parameters, and δ is the noise term. Parameter Γ can be estimated by applying the
least squares method to the sequence Sr; and we let Γ̂ denote the resulting estimates
of Γ.

Finally, we extrapolate model (2.20) by letting ζ = −1 and calculate the predicted
vector

θ̂(r) = G(−1, Γ̂). (2.21)

To obtain the estimator of Θ, one may consider to repeat the same procedures for r ∈
V . However, this procedure contains a flaw since Θ is a symmetric matrix with θrt =
θtr for t 6= r, but θ̂rt is not necessarily equal to θ̂tr for t 6= r. To obtain a reasonable
estimate of Θ, one may apply the AND or OR rule proposed by Meinshausen and
Bühlmann (2006). Corresponding to the elements of θ(r) defined before (2.11), we

write θ̂(r) as
(
θ̂r, θ̂

>
\r

)>
with θ̂\r =

(
θ̂r1, · · · , θ̂r(r−1), θ̂r(r+1), · · · , θ̂rp

)>
. Then the

estimated neighbourhood of r is given by N̂ (r) =
{
t ∈ V \ {r} : θ̂rt 6= 0

}
. For any

two different nodes r and t, the AND rule declares that (r, t) belongs to the estimated

edge set Ê if both r ∈ N̂ (t) and t ∈ N̂ (r) hold, while the OR rule allows (r, t) ∈ Ê
if either r ∈ N̂ (t) or t ∈ N̂ (r). In this chapter, we use the AND rule.

In implementing the proposed method, choosing sensible tuning parameters is critical.
Suggested by Wang et al. (2007), BIC tends to perform well in general, especially in the
setting with a penalized likelihood function. Here we employ the BIC approach to select
the tuning parameter λn. Specifically, we let θ̂(r; ζ, b, λn) denote the estimator obtained
from (2.18) by spelling out the dependence on the tuning parameter. For the given b and
ζ, define

BIC (λn) = 2n`b,ζ

(
θ̂(r; ζ, b, λn)

)
+ log(n)× df

(
θ̂(r; ζ, b, λn)

)
, (2.22)

where df
(
θ̂(r; ζ, b, λn)

)
represents the number of non-zero elements in θ̂(r; ζ, b, λn). The

optimal tuning parameter λn, denoted by λ̂n, is determined by minimizing (2.22) within

suitable ranges of λn. As a result, the estimator of θ(r) is determined by θ̂(r; ζ, b) =

θ̂(r; ζ, b, λ̂n).
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2.3.2 Theoretical Results

Here we establish theoretical results to justify the validity of the proposed method in
Section 2.3.1.

For any r ∈ V , similar to the notation θ(r) in Section 2.2, let θ0(r) =
(
θ0;r, θ

>
0;\r

)>
denote the true value of the parameter θ(r), where

θ0;\r =
(
θ0;r1, · · · , θ0;r(r−1), θ0;r(r+1), · · · , θ0;rp

)>
is the true value of θ\r. Let Sr = {t ∈ V \ {r} : θrt 6= 0} denote the set indexing nonzero
elements of θ\r and let Scr be its complement. Write dr = |Sr|. Let θ0;Sr = (θ0;rt : t ∈ Sr)
denote the subvector of θ0;\r containing nonzero elements. Then we write

θ0(r) =
(
θ0;r, θ

>
0;Sr , θ

>
0;Scr

)>
.

Similarly, let θ̂Sr =
(
θ̂rt : t ∈ Sr

)
denote the subvector of θ̂\r containing nonzero estimates,

and we write estimator (2.21) as θ̂(r) =
(
θ̂r, θ̂

>
Sr , θ̂

>
Scr

)>
.

Let ∇αf (α) = ∂f(α)
∂α

and ∇2
αf (α) = ∂2f(α)

∂α∂α>
denote the operators of differentiating

the function f(α) with respect to α. For the log likelihood function (2.17), let Q =
∇2
θ(r)`b,ζ(θ0(r)). Write

Q =

(
QSrSr QSrScr
QScrSr QScrScr

)
as the block matrix of Q with QSrSr = ∇2

θSr (r)`b,ζ(θ0(r)), QScrScr = ∇2
θScr (r)`b,ζ(θ0(r)), QSrScr =

∇θScr (r)

{
∇θSr (r)`b,ζ(θ0(r))

}
, and QScrSr = Q>SrScr .

Let G ′(ζ,Γ) = ∂G(ζ,Γ)
∂Γ

and GΓ = (G ′(ζ,Γ) : ζ ∈ Z). For a given constant a, let sign(a)
be the sign function which takes value +1 if a > 0, value −1 if a < 0, and 0 otherwise.
For a vector (or a matrix) A, sign(A) is defined to be the vector (or the matrix) whose
element corresponding to the element a of A is sign(a).

Theorem 2.3.1 Under regularity conditions (A1)-(A5) in Appendix A.1, we have the fol-
lowing results:

34



(a) Sparsity recovery:
For every node r ∈ V , the estimated neighbourhood set is equal to the true neighbour-
hood, i.e.,

N̂ (r) = N (r),

with a large probability.

(b) Boundness of the estimator:

For r ∈ V , let θ0;Sr(r) =
(
θ0;r, θ

>
0;Sr

)>
denote the true value for the subvector of

nonzero parameters associated with r, and let θ̂Sr(r) =
(
θ̂r, θ̂

>
Sr

)>
denote its estimator

obtained based on (2.21). For the infinity norm, we have

∥∥∥θ̂Sr(r)− θ0;Sr(r)
∥∥∥
∞
≤ A6d

3
2
r λn
ρ1

with a large probability, where A =
∥∥∥G ′(−1,Γ)

(
G>Γ GΓ

)−1 G>Γ
∥∥∥

1
.

(c) Sign recovery:

sign
(
θ̂Sr(r)

)
= sign (θ0;Sr(r))

with a large probability.

Theorem 2.3.1 (a) shows that the estimated neighbourhood set is equal to the true
neighbourhood set with a large probability for any node r ∈ V , hence suggesting that the
estimated graph is equal to the true graphical structure with a large probability. Specifi-
cally, based on the definition of the neighbourhood set, the edge set is given by

E = {(s, r) : s, t ∈ V } =
⋃
r∈V

{(s, r) : s ∈ N (r)}.

In addition, the estimated edge set is determined by

Ê =
⋃
r∈V

{(s, r) : s ∈ N̂ (r)}.

Theorem 2.3.1 (a) indicates that there is a constant αr close to one such that

P{N̂ (r) = N (r)} > αr.
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Then we have

P (Ê = E) = P

(⋃
r∈V

{(s, r) : s ∈ N̂ (r)} =
⋃
r∈V

{(s, r) : s ∈ N (r)}

)
≥ max

r∈V
P
(
{(s, r) : s ∈ N̂ (r)} = {(s, r) : s ∈ N (r)}

)
> max

r∈V
αr,

which is lower bounded by a constant close to one due to the assumption that the number
of nodes of the considered graphical models is fixed. Regarding the subvector of nonzero
parameters, Theorem 2.3.1 (b) offers an upper bound for the difference between its estima-
tor and the true value, and Theorem 2.3.1 (c) says that with a high probability, the sign
of the estimator is the same as the sign of the true parameter value.

2.4 Inference of Mixed Graphical Model with Both

Measurement Error and Misclassification

In this section, we consider a general case with X =
(
XC>, XD>)> subject to mismeasure-

ment, where XC is a pC-dimensional continuous random vector and XD is a pD-dimensional

discrete random vector. The observed surrogate vector X∗ =
(
X∗C>, X∗D>

)>
is described

by the models (2.6) and (2.10).

2.4.1 Model and Method

To show the nature of the variables in X, let VC and VD denote the sets containing all the
indices of continuous and discrete random variables, respectively. Let EC and ED represent
the sets of edges restricted to the pairs of the indices in VC and VD, respectively, and let
ECD denote the set of heterogeneous edges for the pairs of the indices in VC and VD, i.e.,
ECD =

{
(r, t′) : r ∈ VC, t

′ ∈ VD, and XC
r and XD

t′ are dependent
}

. For r ∈ VC, let

NC(r) = {t ∈ VC : (r, t) ∈ EC}

be the homogeneous neighbourhood of r containing all the indices of continuous random
variables XC

t that are dependent on XC
r , and let

NCD(r) = {t′ ∈ VD : (r, t′) ∈ ECD}
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be the heterogeneous neighbourhood of r containing all the indices of discrete random
variables XD

t′ that are dependent on XC
r .

For r′ ∈ VD, define

ND(r′) = {t′ ∈ VD : (r′, t′) ∈ ED}
and

NDC(r′) = {t ∈ VC : (t, r′) ∈ ECD} .

Then the mixed graphical model, derived from (2.1), is formed as

P
(
XC, XD

)
= exp

∑
r∈VC

θC
r X

C
r +

∑
(r,t)∈EC

θC
rtX

C
r X

C
t

+
∑

(r,t′)∈ECD

θCD
rt′ X

C
r X

D
t′ +

∑
r′∈VD

θD
r′X

D
r′ +

∑
(r′,t′)∈ED

θD
r′t′X

D
r′X

D
t′

+
∑
r∈VC

C(XC
r ) +

∑
r′∈VD

C(XD
r′ )− Amix(θ,Θ)

}
, (2.23)

where Amix(θ,Θ) is the normalizing constant of (2.23); θC
r and θD

r′ are the parameters
corresponding to XC

r and XD
r′ for r ∈ VC and r′ ∈ VD, respectively; θC

rt and θD
r′t′ are the

parameters indicating the pairwise dependence of the variables in EC and ED; and θCD
rt′ is the

parameter showing the pairwise dependence of (XC
r , X

D
t′ ) for r ∈ VC and t′ ∈ VD. Different

from the setting in Chen et al. (2015), our setting can clearly detect the homogeneous
edges and heterogeneous edges.

Generalizing the methods of Section 2.3, we propose the simulation-based three-stage
neighbourhood likelihood method to correct for mismeasurement effects on estimation of
the mixed graphical model.

Stage 1 : Simulation
Given B, Z = {ζ0, · · · , ζM}, and M as defined in Stage 1 of Section 2.3.1, we generate
the working data WC

b
(i) (ζ) and WD

b
(i) (ζ) by (2.14) and (2.15), respectively.

Stage 2 : Estimation
For any r ∈ VC and r′ ∈ VD, we define

θC
\r =

(
θC
r1, · · · , θC

r(r−1), θ
C
r(r+1), · · · , θC

rpC

)>
,

θD
\r′ =

(
θD
r′1, · · · , θD

r′(r′−1), θ
D
r′(r′+1), · · · , θD

r′pD

)>
, (2.24)

θCD
r =

(
θCD
r1 , · · · , θCD

rpD

)>
, and θDC

r′ =
(
θCD

1r′ , · · · , θCD
pCr′

)>
.
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Now we describe estimators separately according to the nature of the variables. Sim-
ilar to (2.5), for subject i = 1, · · · , n, we first calculate

P
(
W

C(i)
b,r (ζ)

∣∣∣WC(i)
b,VC\{r} (ζ) ,W

D(i)
b (ζ)

)
= exp

{
W

C(i)
b,r (ζ) ηC(i) −D(ηC(i))

}
(2.25)

with ηC(i) = θC
r +

∑
t∈NC(r)

θC
rtW

C(i)
b,t (ζ)+

∑
t′∈VD

θCD
rt′ W

D(i)
b,t′ (ζ). Then we find the estimators,

based on (2.25),(
θ̂C
r (ζ, b), θ̂C

\r(ζ, b), θ̂
CD
r (ζ, b)

)
= argmin(

θC
r ,θ

C
\r,θ

CD
r

)
[
−1

n

n∑
i=1

log
{
P
(
W

C(i)
b,r (ζ)

∣∣∣WC(i)
b,VC\{r} (ζ) ,WD

b
(i) (ζ)

)}
+λn1

∥∥θC
\r
∥∥

1
+ λn2

∥∥θCD
r

∥∥
1

]
, (2.26)

where λn1 and λn2 are tuning parameters.

Next, by analogy, for subject i = 1, · · · , n, we calculate

P
(
W

D(i)
b,r′ (ζ)

∣∣∣WD(i)
b,VD\{r′} (ζ) ,W

C(i)
b (ζ)

)
= exp

{
W

D(i)
b,r′ (ζ) ηD(i) −D(ηD(i))

}
(2.27)

with ηD(i) = θD
r′ +

∑
t′∈ND(r′)

θD
r′t′W

D(i)
b,t′ (ζ) +

∑
t∈VC

θDC
r′t W

C(i)
b,t (ζ). Then we find the estima-

tors, using (2.27),(
θ̂D
r′(ζ, b), θ̂

D
\r′(ζ, b), θ̂

DC
r′ (ζ, b)

)
= argmin(

θD
r′ ,θ

D
\r′ ,θ

DC
r′

)
[
−1

n

n∑
i=1

log
{
P
(
W

D(i)
b,r′ (ζ)

∣∣∣WD(i)
b,VD\{r′} (ζ) ,WC

b
(i) (ζ)

)}
+λn3

∥∥θD
\r′
∥∥

1
+ λn2

∥∥θDC
r′

∥∥
1

]
, (2.28)

where λn2 and λn3 are tuning parameters.
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Finally, we calculate

θ̂C
r (ζ) =

1

B

B∑
b=1

θ̂C
r (ζ, b), (2.29a)

θ̂D
r′(ζ) =

1

B

B∑
b=1

θ̂D
r′(ζ, b), (2.29b)

θ̂C
\r(ζ) =

1

B

B∑
b=1

θ̂C
\r(ζ, b), (2.29c)

θ̂D
\r′(ζ) =

1

B

B∑
b=1

θ̂D
\r′(ζ, b), (2.29d)

θ̂CD
r (ζ) =

1

B

B∑
b=1

θ̂CD
r (ζ, b), and (2.29e)

θ̂DC
r′ (ζ) =

1

B

B∑
b=1

θ̂DC
r′ (ζ, b). (2.29f)

Stage 3 : Extrapolation
Similar to Stage 3 in Section 2.3.1, we fit a regression model each of the six sequences
obtained from (2.29a) − (2.29f), and extrapolate each model to ζ = −1 and then

obtain the estimators θ̂C
r , θ̂D

r′ , θ̂
C
\r, θ̂

D
\r′ , θ̂

CD
r and θ̂DC

r′ .

Similar to the discussion in Section 2.3.1, we note that the vectors θCD
r and θDC

r′

in (2.26) and (2.28) share the same parameter θCD
rr′ with r 6= r′, but the preceding

procedure does not necessarily yield identical estimator θ̂CD
rr′ in θ̂CD

r and θ̂DC
r′ . To

deal with this discrepancy, we can apply the AND or OR rule to determine the
estimators and the estimated graph. Furthermore, for (r, t) ∈ EC, (r′, t′) ∈ ED,
and (r, t′) ∈ ECD, the estimated neighbourhood sets for NC(r), ND(r′), NCD(r) and

NDC(r′) are given by N̂C(r) =
{
t ∈ VC : θ̂C

rt 6= 0
}

, N̂D(r′) =
{
t′ ∈ VD : θ̂D

r′t′ 6= 0
}

,

N̂CD(r) =
{
t′ ∈ VD : θ̂CD

rt′ 6= 0
}

, and N̂DC(r′) =
{
t ∈ VC : θ̂CD

tr′ 6= 0
}

, respectively.
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2.4.2 Theoretical Results

In this subsection, we establish theoretical results for the estimators proposed in Sec-

tion 2.4.1. For r ∈ VC and r′ ∈ VD, we write θC(r) =
(
θC
r , θ

C>
\r , θ

CD>
r

)>
and θD(r′) =(

θD
r′ , θ

D>
\r′ , θ

DC>
r′

)>
for the parameters defined in (2.24), and we write their true values anal-

ogously as θ0;C(r) =
(
θC

0;r, θ
C>
0;\r, θ

CD>
0;r

)>
and θ0;D(r′) =

(
θD

0;r′ , θ
D>
0;\r′ , θ

DC>
0;r′

)>
. We also write

their estimators constructed in Section 2.4.1 analogously as θ̂C(r) =
(
θ̂C
r , θ̂

C>
\r , θ̂

CD>
r

)>
and

θ̂D(r′) =
(
θ̂D
r′ , θ̂

D>
\r′ , θ̂

DC>
r′

)>
.

For r ∈ VC, let SC,r(VC) =
{
t ∈ VC : θC

rt 6= 0
}

and SC,r(VD) =
{
t′ ∈ VD : θCD

rt′ 6= 0
}

.
Similarly, for r′ ∈ VD, define SD,r′(VD) = {t′ ∈ VD : θD

r′t′ 6= 0} and SD,r′(VC) = {t ∈ VC :
θDC
tr′ 6= 0}. We further define SC,r = SC,r(VC) ∪ SC,r(VD) and SD,r′ = SD,r′(VD) ∪ SD,r′(VC),

and write dC,r = |SC,r| and dD,r′ = |SD,r′ |. For r ∈ VC, let θ0;SC,r
= (θC

0;rt, θ
CD
0;rt′ : t ∈

SC,r(VC) and t′ ∈ SC,r(VD))> denote the column subvector of
(
θC>

0;\r, θ
CD>
0;r

)>
containing

nonzero elements, and hence θ0;C(r) can be also written as
(
θC

0;r, θ
>
0;SC,r

, θ>0;ScC,r

)>
. By

analogy, for r′ ∈ VD, let θ0;SD,r′
=
(
θD

0;r′t′ , θ
CD
0;tr′ : t ∈ SD,r′(VC) and t′ ∈ SD,r′(VD)

)>
be the

column subvector of
(
θD>

0;\r′ , θ
DC>
0;r′

)>
containing nonzero elements, and θ0;D(r′) can then be

re-written as θ0;D(r′) =
(
θD

0;r′ , θ
>
0;SD,r′

, θ>0;Sc
D,r′

)>
.

Similarly, for r ∈ VC, let θ̂SC,r
=
(
θ̂C
rt, θ̂

CD
rt′ : t ∈ SC,r(VC) and t′ ∈ SC,r(VD)

)>
denote the

column subvector of (θ̂C>
\r , θ̂

CD>
r )> containing nonzero estimates; and for r′ ∈ VD, let θ̂SD,r′

=(
θ̂D
r′t′ , θ̂

DC
tr′ : t ∈ SD,r′(VC) and t′ ∈ SD,r′(VD)

)>
be the column subvector of (θ̂D>

\r′ , θ̂
DC>
r′ )>

containing nonzero elements. Therefore, the two estimators θ̂C(r) and θ̂D(r′) can also

be written as θ̂C(r) =
(
θ̂C
r , θ̂

>
SC,r

, θ̂>ScC,r

)>
and θ̂D(r′) =

(
θ̂D
r′ , θ̂

>
SD,r′

, θ̂>Sc
D,r′

)>
, respectively.

Theorem 2.4.1 Under regularity conditions (A1) − (A6) in Appendix A.1 and given
r ∈ VC and r′ ∈ VD, the following properties hold:

(a) Sparsity recovery: for the homogeneous-neighbourhood,

N̂C(r) = NC(r) and N̂D(r′) = ND(r′)
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with a large probability; and for the heterogeneous-neighbourhood,

N̂CD(r) = NCD(r) and N̂DC(r′) = NDC(r′)

with a large probability;

(b) Boundness of the estimators:

For r ∈ VC, let θ0;C,SC,r(r) =
(
θC0;r, θ

>
0;SC,r

)>
denote the true value for the subvector of

nonzero parameters associated with r, and let θ̂C;SC,r(r) =
(
θ̂Cr , θ̂

>
SC,r

)>
denote its es-

timator. For r′ ∈ VD, let θ0;D,SD,r′ (r
′) =

(
θD0;r′ , θ

>
0;SD,r′

)>
denote the true value for the

subvector of nonzero parameters associated with r′, and let θ̂D;SD,r′ (r
′) =

(
θ̂Dr′ , θ̂

>
SD,r′

)>
denote its estimator. Then for the infinity norm, we have∥∥∥θ̂C;SC,r(r)− θ0;C,SC,r(r)

∥∥∥
∞
≤

6
√
dC,rλn

ρ1

and ∥∥∥θ̂D;SD,r′ (r
′)− θ0;D,SD,r′ (r

′)
∥∥∥
∞
≤

6
√
dD,r′λn

ρ1

with large probabilities.

(c) Sign recovery:

sign
(
θ̂C;SC,r(r)

)
= sign

(
θ0;C,SC,r(r)

)
and sign

(
θ̂D;SD,r′ (r

′)
)

= sign
(
θ0;D,SD,r′ (r

′)
)

with large probabilities.

The proof of the theorem is given in Appendix A.5.

2.5 Numerical Studies

In this section, we conduct numerical studies to assess the performance of the proposed
estimators for a variety of settings. We first design the simulation settings and then
present the simulation results. Finally, the proposed method is implemented to analyze a
real dataset.
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Figure 2.1: The left-hand-side structure is a Lattice and the right-hand-side structure is a
Hub.

2.5.1 Model Settings

Let Θ0 be the p×p matrix which is specified to have the network structure, a lattice or a hub
structure, as shown in Figure 2.1. Let X denote the p-dimensional random vector which
follows the exponential family distribution (2.1), where the continuous random vector XC

assumes the structure (2.2), and the discrete random vector XD assumes the form (2.3).
Moreover, let pC be the dimension of XC and let pD be the dimension of XD.

For the measurement error process, we consider the following three scenarios:

Scenario 1: Only continuous variables are subject to measurement error
In this scenario, all error-prone random variables are continuous, i.e., X = XC, and
they assume the classical additive measurement error model

X∗C = XC + ε, (2.30)

where ε is independent of XC, ε ∼ N(0,Σε), and Σε is a p × p diagonal matrix
with entries σ2

ε , with σ2
ε set as 0.152, 0.52 or 0.752 to reflect increasing degrees of

measurement error.

Scenario 2: Only binary variables are subject to misclassification
In this scenario, all the error-contaminated random variables are considered to be
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binary, taking value 1 or −1, i.e., X = XD. In contrast to the misclassification
probabilities defined by (2.8), we consider that

pll = P
(
X∗D = x(l)|XD = x(l)

)
(2.31)

assumes a common value, say π, for l = 1, · · · ,m, where m = 2p, representing the
cardinality of the set {−1, 1}p. Thus, the misclassification matrix (2.9) is the m×m
matrix

P =


π 1− π 0 0 · · · 0 0 0

1
2
(1− π) π 1

2
(1− π) 0 · · · 0 0 0

0 1
2
(1− π) π 1

2
(1− π) · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 0 1− π π

 ,

where we set π = 0.7, 0.8, or 0.9 to reflect different degrees of misclassification.

Scenario 3: Both measurement error and misclassification exist
In this scenario, we examine the case where both continuous and discrete random
variables are subject to mismeasurement by combining Scenarios 1 and 2 with addi-
tional assumptions that ε in (2.30) is independent of X∗D and (2.7) holds. Consistent

with the notation in Section 2.4.1, let X =
(
XC>, XD>)> be the vector of the true

random vectors and let X∗ =
(
X∗C

>
, X∗D

>
)>

denote the surrogate random vectors

with dimension p = pC + pD.

In implementing the proposed methods, we set B = 500 and partition the interval [0, 2]
into subintervals with the equal width 0.25 so the resulting cutpoints are set as the values
of ζ. We take the regression functions G(·, ·) in (2.20) to be the quadratic function, as sug-
gested by Carroll et al. (2006, p.126). In each setting, we consider different combinations
of the sample size n and the dimension of X. In Scenario 1, we set (n, pC) = (400, 20),
(400, 100), or (200, 400); in Scenario 2 we examine (n, pD) = (400, 20), (400, 15), or (15, 20);
and in Scenario 3 we set (n, pC, pD) = (400, 10, 10), (400, 90, 10), or (200, 280, 20). We per-
form 500 simulations for each setting.
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2.5.2 Simulation Results

We examine the accuracy of the estimator of Θ by employing the L1-norm and the Frobe-
nius norm, respectively, given by

‖∆Θ‖1 = max
j

∑
i

∣∣∣Θ̂ij −Θ0,ij

∣∣∣
and

‖∆Θ‖F =

√∑
i

∑
j

∣∣∣Θ̂ij −Θ0,ij

∣∣∣2,
where ∆Θ = Θ̂−Θ0.

To examine the accuracy of variable selection for the graphical structure, we examine
the specificity (Spe) and the sensitivity (Sen) for the estimator Θ̂. The specificity is defined
as the proportion of zero coefficients that are correctly estimated to be zero, and the
sensitivity is defined as the proportion of non-zero coefficients that are correctly estimated
to be non-zero. The simulation results of both the naive and the proposed methods are
reported in Tables 2.1-2.3. As a reference for comparisons, we also use the true values of
X for the estimation, and denote this method as “true”.

It is apparent that the naive method yields seriously biased results. The values of the
L1-norm and the Frobenius norm are noticeably large whereas the specificities are small
for various settings. Although the sensitivities are all good for Scenario 1, they tend to be
far off value 1 in Scenarios 2 and 3. As the degree of mismeasurement increases, the bias
incurred in the naive method becomes more substantial.

On the contrary, the proposed method obviously outperforms the naive method. The
values of the L1-norm and the Frobenius norm are fairly small, and the specificities and
the sensitivities are high for all the three scenarios. As expected, the good performance of
the proposed method deteriorates as mismeasurement becomes more severe.

2.5.3 Analysis of Cell-Signalling Data

We implement the proposed method to analyze the cell-signalling data which were dis-
cussed by Sachs et al. (2005). This dataset contains p = 11 proteins and n = 7466
cells. For a given cell, 11 proteins are dyed by different colors using phosphorylation. The
amount of dyed proteins can be measured by flow cytometry (a technique that measures
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the amount of proteins in a population of cells), so here X represents the amount of a
specific protein in one cell. According to Sachs et al. (2005), the cell signaling is a commu-
nication process that controls cell activities. When an external signal (e.g., growth factor)
binds to its specific cell surface receptor, the activated receptor will interact with signaling
proteins inside cell, which triggers a cascade of information flow or signalling pathway. The
signaling pathway involves chemical, physical or locational modifications of protein-protein
interaction, which leads to a specific cell response such as inducing the transcription and
translation to produce certain proteins. It is important to understand the relationship
among various signaling proteins/molecules by investigating signaling pathways and the
dependence structure of proteins.

To this end, several authors analyzed the data with different approaches. Sachs et
al. (2003) fitted a directed acyclic graph (DAG) to the data, and Friedman et al. (2008)
implemented the graphical lasso method (GLASSO) to estimate the network structure of
the proteins. However, those methods do not address the effects due to mismeasurement,
a common phenomenon that is common with the measurement of cell signaling, as pointed
out by Bandara et al. (2009) and Yörük et al. (2011).

In our analysis here, we address the feature of mismeasurement and apply the proposed
method to analyze this dataset containing error-prone continuous variables. Since the
dataset has no additional information such as repeated measurements or validation data for
quantifying the degree of measurement error, we conduct sensitivity analyses to investigate
how the analysis results are affected by different magnitudes of measurement error. To be
precise, let Σ be the sample covariance matrix and we consider Σ+Σe to be the covariance
matrix Σε for the measurement error model (2.6), where Σe is the diagonal matrix with
diagonal elements being a common value σ2

e . We specifically consider σ2
e = 0.152, 0.52 and

0.752, representing an increasing degree of measurement error. The estimated networks
are displayed in Figure 2.2. In comparison, we also examine the naive analysis discussed
in Section 2.2, and the result is displayed in Figure 2.3.

Figure 2.2 demonstrates that the estimation of the network structure is clearly influ-
enced by the degree of measurement error. Although only one edge is differently identified
by incorporating σ2

e = 0.152 or 0.502 (i.e., pakts473 is connected with pjnk or praf), the
differences between the settings with σ2

e = 0.502 and 0.752 are more noticeable. Three
extra edges (i.e., P38 and plcg; PKC and plcg; PKA and p44.42) are identified with the
measurement error degree increased from σ2

e = 0.502 to 0.752, which also include the edges
identified for the setting with σ2

e = 0.152. On the other hand, the naive method produces
a more complex network structure and the result is clearly different from the proposed
method which accounts for the measurement error effects. The naive method indicates
more connected variables than the method which corrects for different magnitudes of mea-
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surement error. These studies demonstrate that in the presence of measurement error in
the variables, ignoring such a feature may produce spurious correlation structures among
the variables.

praf

pmek

plcg

PIP2

PIP3

p44.42pakts473

PKA

PKC

P38

pjnk

praf

pmek

plcg

PIP2

PIP3

p44.42pakts473

PKA

PKC

P38

pjnk

praf

pmek

plcg

PIP2

PIP3

p44.42pakts473

PKA

PKC

P38

pjnk

σ2
e = 0.152 σ2

e = 0.502 σ2
e = 0.752

Figure 2.2: Graphical structures of 11 proteins with different degrees of mismeasurement
in cell-signalling data.
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Figure 2.3: Graphical structure of 11 proteins with ignorance of mismeasurement in cell-
signalling data.
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Table 2.1: Simulation results for the estimators of Θ based on Scenario 1

Model (n, pC) σε Method Estimator of Θ0

‖∆Θ‖1 ‖∆Θ‖F Spe Sen

Lattice (400, 20) 0.15 naive 2.773 17.986 0.533 1.000

corrected 1.691 2.021 0.988 1.000

0.50 naive 2.711 15.833 0.207 1.000

corrected 1.741 3.768 1.000 1.000

0.75 naive 3.111 15.653 0.071 1.000

corrected 1.956 3.318 0.988 1.000

true 1.316 1.954 1.000 1.000

(400, 100) 0.15 naive 2.555 86.625 0.749 1.000

corrected 0.822 6.061 1.000 1.000

0.50 naive 3.434 90.056 0.237 1.000

corrected 1.064 7.320 0.995 1.000

0.75 naive 3.911 96.357 0.094 1.000

corrected 1.549 14.247 0.995 1.000

true 0.664 4.924 1.000 1.000

(200, 400) 0.15 naive 4.895 106.474 0.298 1.000

corrected 1.234 34.828 1.000 0.996

0.50 naive 8.243 521.504 0.082 0.903

corrected 2.072 56.988 0.999 0.993

0.75 naive 11.209 621.102 0.030 1.000

corrected 1.908 106.474 0.998 0.956

true 0.586 1.954 1.000 1.000

Hub (400, 20) 0.15 naive 4.857 10.375 0.637 1.000

corrected 1.933 2.448 1.000 0.944

0.50 naive 4.678 9.716 0.357 1.000

corrected 1.354 0.799 1.000 1.000

0.75 naive 4.574 10.173 0.110 1.000

corrected 1.209 0.674 1.000 1.000

true 1.651 1.207 1.000 1.000

(400, 100) 0.15 naive 9.108 43.036 0.735 1.000

corrected 2.259 3.183 1.000 1.000

0.50 naive 9.671 47.410 0.432 1.000

corrected 2.366 3.477 1.000 1.000

0.75 naive 9.676 49.876 0.163 1.000

corrected 2.659 3.146 0.998 1.000

true 1.677 1.364 1.000 1.000

(200, 400) 0.15 naive 10.179 206.529 0.433 1.000

corrected 2.735 15.989 0.999 0.995

0.50 naive 12.633 261.196 0.165 1.000

corrected 3.280 27.334 0.998 0.989

0.75 naive 15.659 332.615 0.041 1.000

corrected 3.581 31.680 0.997 0.955

true 0.206 7.686 1.000 1.000
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Table 2.2: Simulation results for the estimators of Θ based on Scenario 2

Model (n, pD) π Method Estimator of Θ0

‖∆Θ‖1 ‖∆Θ‖F Spe Sen

Lattice (400, 20) 0.70 naive 2.856 27.741 0.876 0.871

corrected 1.586 6.607 0.988 0.974

0.80 naive 2.571 23.328 0.840 0.868

corrected 1.606 5.473 1.000 0.974

0.90 naive 2.447 21.853 0.858 0.889

corrected 1.564 5.129 0.994 0.972

true 0.879 3.335 1.000 0.996

(400, 15) 0.70 naive 2.670 19.047 0.779 0.681

corrected 1.981 12.111 1.000 0.912

0.80 naive 2.843 17.959 0.823 0.727

corrected 2.338 10.231 1.000 0954

0.90 naive 2.469 15.573 0.856 0.743

corrected 1.590 7.038 1.000 0.909

true 0.885 2.105 1.000 0.964

(15, 20) 0.70 naive 7.769 64.859 0.083 1.000

corrected 6.034 49.371 0.922 0.952

0.80 naive 5.313 55.756 0.143 1.000

corrected 5.130 25.334 0.944 0.903

0.90 naive 5.017 54.200 0.159 1.000

corrected 4.130 21.670 0.968 0.968

true 1.760 4.999 0.986 0.973

Hub (400, 20) 0.70 naive 6.781 15.941 0.676 0.844

corrected 3.648 4.281 0.961 0.911

0.80 naive 7.013 15.918 0.692 0.833

corrected 2.971 4.205 0.967 0.956

0.90 naive 5.059 10.779 0.720 0.904

corrected 1.615 1.074 1.000 1.000

true 1.510 0.977 1.000 1.000

(400, 15) 0.70 naive 4.511 11.085 0.628 0.846

corrected 2.100 4.8000 0.920 0.906

0.80 naive 4.572 11.818 0.668 0.615

corrected 1.903 3.955 0.930 0.923

0.90 naive 3.879 8.063 0.658 1.000

corrected 1.611 1.833 1.000 1.000

true 0.996 0.661 1.000 1.000

(15, 20) 0.70 naive 13.580 71.308 0.050 1.000

corrected 7.356 36.161 0.918 0.944

0.80 naive 10.354 43.816 0.054 1.000

corrected 7.653 26.891 0.938 0.933

0.90 naive 9.406 36.304 0.055 1.000

corrected 4.973 18.947 0.929 0.954

true 2.931 4.650 0.996 0.961
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Table 2.3: Simulation results for the estimators of Θ based on Scenario 3

Model (n, pC, pD) (σε, π) Method Estimator of Θ0

‖∆Θ‖1 ‖∆Θ‖F Spe Sen

Lattice (400, 10, 10) (0.15, 0.9) naive 1.878 10.671 0.811 0.839

corrected 1.111 3.787 0.982 0.939

(0.50, 0.8) naive 1.921 11.277 0.746 0.806

corrected 1.630 5.264 0.952 0.942

(0.75, 0.7) naive 2.305 11.869 0.686 0.839

corrected 1.692 6.218 0.953 0.967

true 0.853 2.210 1.000 0.977

(400, 90, 10) (0.15, 0.9) naive 1.893 53.422 0.718 0.744

corrected 1.685 18.655 0.998 0.928

(0.50, 0.8) naive 2.110 64.900 0.646 0.744

corrected 1.800 18.708 0.993 0.928

(0.75, 0.7) naive 2.266 58.259 0.581 0.739

corrected 1.812 23.935 0.987 0.933

true 1.200 9.068 1.000 0.965

(200, 280, 20) (0.15, 0.9) naive 2.538 131.564 0.581 0.866

corrected 1.914 50.116 0.994 0.958

(0.50, 0.8) naive 5.223 174.617 0.278 0.872

corrected 3.767 110.748 0.967 0.958

(0.75, 0.7) naive 5.991 169.521 0.260 0.879

corrected 4.136 118.195 0.959 0.956

true 0.971 16.218 0.999 0.958

Hub (400, 10, 10) (0.15, 0.9) naive 3.397 5.098 0.599 1.000

corrected 1.142 1.200 0.945 1.000

(0.50, 0.8) naive 5.190 8.414 0.500 0.667

corrected 2.301 4.042 0.941 0.956

(0.75, 0.7) naive 5.351 11.984 0.439 1.000

corrected 2.266 7.578 0.959 0.944

true 0.468 0.755 1.000 0.984

(400, 90, 10) (0.15, 0.9) naive 9.670 27.398 0.769 0.705

corrected 5.447 14.104 0.992 0.947

(0.50, 0.8) naive 10.235 35.899 0.628 0.716

corrected 7.811 24.237 0.958 0.947

(0.75, 0.7) naive 12.733 60.029 0.673 0.715

corrected 7.274 29.614 0.921 0.953

true 3.337 11.003 0.998 0.973

(200, 280, 20) (0.15, 0.9) naive 9.401 83.764 0.401 1.000

corrected 4.585 32.320 0.987 1.000

(0.50, 0.8) naive 13.650 132.395 0.206 0.875

corrected 11.254 117.863 0.957 0.977

(0.75, 0.7) naive 11.708 159.760 0.176 1.000

corrected 6.257 120.503 0.951 0.996

true 1.101 1.694 0.999 1.000

49



Chapter 3

Analysis of Noisy Survival Data
under Graphical Proportional
Hazards Measurement Error Models

3.1 Notation and Model Setup

3.1.1 The Graphical Model

Let X = (X1, · · · , Xp)
> be a p-dimensional covariates. We use the graph to describe the

relationship among the components of X. We call each component of X as a vertex and
use a line segment, called an edge, to connect two associated components. Specifically, the
graph is defined as G = (V,E), where V is the set of vertices with |V | = p and E ⊂ V ×V is
the set of edges. We now use the exponential family distribution to describe the graphical
structure of X. The graphical model is formed as

P (X; β,Θ) = exp

∑
r∈V

βrB(Xr) +
∑

(s,ν)∈E

θsνB(Xs)B(Xν) +
∑
r∈V

C(Xr)− A(β,Θ)

 , (3.1)

where β = (β1, · · · βp)> is the p-dimensional parameter vector, Θ = [θsν ] is a non-diagonal
p × p symmetric matrix, and B(·) and C(·) are given functions. The function A(β,Θ) is
normalizing constant which makes (3.1) be integrated as 1.

Formulation (3.1) gives the broad class of models which essentially can cover any distri-
butions. For example, if B(X) = X

σ
and C(X) = −X2

2σ2 where σ is a positive constant, then
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(3.1) yields the well-known Gaussian graphical model (Friedman et al. 2008; Hastie et al.
2015). If B(X) = X and C(X) = 0 with X ∈ {0, 1}, then (3.1) reduces to the Ising model
without the singleton for the simplicity (Ravikumar et al. 2010). The structure (3.1) was
discussed by Yang et al. (2015) in detail.

3.1.2 The Cox Model

For an individual, let T̃ and C̃ be the failure time and the censoring time, respectively,

and let δ = I
(
T̃ 6 C̃

)
be the censoring indicator. Let T = min

{
T̃ , C̃

}
and let X

be a p-dimensional random vector of covariates. In standard survival analysis, the Cox
proportional hazard (PH) model (Cox, 1972) is often employed with the hazard function
specified as

λ(t|X) = λ0(t) exp {g (X;α)} , (3.2)

where λ0(·) is the unspecified baseline hazard function, and g (X;α) is the link function
of the linear predictor with the covariate vector X and the unknown parameter α. For
instance, g (X;α) = α>X is a common choice.

Model (3.2) is perhaps the most widely used model for handling survival data. However,
there is a limitation. The covariates appear equally in the model formulation, and the
possible dependence structures of the covariates are not incorporated. The covariate vector
X may possess complex association or network structures, and their effects on the survival
process cannot be appropriately described if such structures are not accommodated in
modeling and/or estimation procedures. To deal with such settings, we describe X using
the graphical model and assume that X follows a distribution specified by (3.1); to link the
survival time with the covariates, we extend (3.2) with the structure of (3.1) accommodated.

One approach is to set exp {g(X;α)} in (3.2) to include the terms of X in P (X; β,Θ)
determined by (3.1), where α is the parameter vector consisting of the elements of β and
Θ. This immediately yields a generalized Cox PH model

λ(t|X) = λ∗0(t) exp

∑
r∈V

βrB(Xr) +
∑

(s,ν)∈E

θsνB(Xs)B(Xν) +
∑
r∈V

C(Xr)

 , (3.3)

where λ∗0(t) is the baseline hazard function; and B(·), C(·), the βr, and the θsν are defined
as in (3.1). One may equivalently re-write (3.3) as

λ(t|X) = λ0(t) exp

{∑
r∈V

βrB(Xr) +
∑

(s,ν)∈E
θsνB(Xs)B(Xν) +

∑
r∈V

C(Xr)− A (β,Θ)

}
, (3.4)
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where λ0(t) is treated as a baseline hazard function that differs from λ∗0(t) by a constant
factor exp{A(β,Θ)}, and the function A (·) is used to make the exponential function in
(3.4) be identical to P (X; β,Θ) in (3.1).

While (3.3) and (3.4) can both equivalently describe a generalized Cox PH model with
graphic structures of covariates X reflected, using (3.4) may be more convenient due to
the probability nature of (3.1). As a result, we use (3.4) for the following development.

Without loss of general interest, we take B(Xr) as the linear function B(Xr) = Xr for
r ∈ V in (3.4) although other forms can be specified for the function B (·). Since C(Xr)
does not contain information of parameters β and Θ, sometimes, it is more convenient to
express (3.4) as

λ(t|X) ∝ λ0(t) exp

∑
r∈V

βrXr +
∑

(s,ν)∈E

θsνXsXν − A (β,Θ)

 , (3.5)

where parameter βr reflects marginal effects of the covariate Xr, and θsν is the parameter
to determine the dependence structure of two covariates Xs and Xν . Model (3.5) can be
viewed as an extension of the usual Cox PH model by adding all the pairwise interaction
terms of the covariate variables.

Inference about the parameters β and Θ may proceed with the partial likelihood
method. To see this, consider a random sample of n subjects and we use the same
symbols as before with subscript i added to the corresponding quantities for subject i.
Let Ni(t) = I (Ti < t, δi = 1) and Yi(t) = I (Ti > t). Given the model (3.5) with right-
censoring, we construct the log partial likelihood

` (β,Θ) =
n∑
i=1

∫ ∑
r∈V

X(i)
r βr +

∑
(s,ν)∈E

X(i)
s X(i)

ν θsν

 (3.6)

− log


n∑
j=1

exp

∑
r∈V

X(i)
r βr +

∑
(s,ν)∈E

X(i)
s X(i)

ν θsν

Yj(t)


 dNi(t).

3.1.3 Measurement Error and Misclassification

In practice, covariates, either continuous or discrete, are often subject to mismeasurement.
That is, we may encounter measurement error in continuous covariates or misclassification
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in discrete covariates. Suppose that X is written as X =
(
X>C , X

>
D

)>
where XC is the sub-

vector consisting of continuous components and XD is the subvector consisting of discrete
components. Let pC and pD denote the dimension of XC and XD, respectively. Let X∗

denote the observed or surrogate version of X, and we write X∗ =
(
X∗C
>, X∗D

>)> where

X∗C
> and X∗D

> are the observed versions of XC and XD, respectively, and p = pC + pD.
The true covariates X and its surrogate X∗ are linked by the following models.

Conditional on {XC, XD, X
∗
D}, X∗C follows the classical additive measurement error

model (Carroll et al. 2006; Yi 2017)

X∗C = XC + ε, (3.7)

where ε is independent of
{
X,X∗D, T̃ , C̃

}
, and ε ∼ N(0,Σε) with covariance matrix Σε.

In terms of the subvector XD of discrete components, we let x(1), x(2), · · · , and x(m)

denote all the possible values of XD. We assume that P
(
X∗D = x(k)|XD = x(l), XC

)
=

P
(
X∗D = x(k)|XD = x(l)

)
for k, l = 1, · · · ,m, and let pkl = P

(
X∗D = x(k)|XD = x(l)

)
be the

(mis)classification probability for k, l = 1, · · · ,m (Yi 2017, p.71, Chapter 2). For ease of
exposition, we define the m×m (mis)classification matrix P = [pkl] whose element (k, l) is

given by pkl for l, k = 1, · · · ,m. In addition, we have P
(
X∗D = x(k)

)
=

m∑
l=1

pklP
(
XD = x(l)

)
for all k = 1, · · · ,m, leading to the matrix expression P

(
X∗D = x(1)

)
...

P
(
X∗D = x(m)

)
 = P

 P
(
XD = x(1)

)
...

P
(
XD = x(m)

)
 . (3.8)

Therefore, the surrogate vector X∗D can be generated from the true covariate vector XD

through (3.8). To ease notation, we let MC [P] (XD) denote the misclassification operator
indicated by (3.8) and notationally write (3.8) as X∗D = MC [P] (XD). Such a misclassifi-
cation operator was used by Carroll et al. (2006, p.125) and Küchenhoff et al. (2006) for
a misclassified binary variable. To highlight the key idea, we assume that Σε and P are
known for now. In addition, as discussed in Carroll et al. (2006, p.125), we assume that P
has the spectral decomposition P = ΩDΩ−1, where D is the diagonal matrix with diagonal
elements being the eigenvalues of P, and Ω is the corresponding matrix of eigenvectors.

3.2 The Methodology

We consider the case where X is subject to mismeasurement, as described in Section 3.1.3,
and some components of X are unimportant in the model (3.5). To conduct valid inference,
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we need to not only correct for the mismeasurement effects, but also select important
covariate variables.

3.2.1 Inferential Procedures

To address mismeasurement effects and select active covariate variables simultaneously, we
develop a simulation-based three-stage procedure.

Stage 1 : Simulation
Let B be a given positive integer and let Z = {ζ0, ζ1, · · · , ζM} be a sequence of pre-
specified values with 0 = ζ0 < ζ1 < · · · < ζM , where M is a positive integer, and ζM
is a prespecified positive number such as ζM = 1.

For a given subject i with i = 1, · · · , n and b = 1, · · · , B, we generate U
(i)
b from

N(0,Σε). Then for vector X∗C
(i) and we define W

(i)
C,b (ζ) as

W
(i)
C,b(ζ) = X∗C

(i) +
√
ζU

(i)
b (3.9)

for every ζ ∈ Z. For the discrete vector X
(i)
D , we generate W

(i)
D,b(ζ) by the operator

W
(i)
D,b(ζ) = MC

[
Pζ
]
X∗D

(i), (3.10)

where Pζ = ΩDζΩ−1. Let W
(i)
b (ζ) =

(
W

(i)
C,b

>
(ζ),W

(i)
D,b

>
(ζ)
)>

and we call W
(i)
b (ζ) the

working data for any b = 1, · · · , B, ζ ∈ Z and i = 1, · · · , n.

Stage 2 : Selection
Let `b,ζ (β,Θ) denote the partial likelihood function (3.6) with X(i) replaced by

W
(i)
b (ζ), which is given by

`b,ζ (β,Θ)

= −
n∑
i=1

∫ ∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

 (3.11)

− log


n∑
j=1

exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

Yj(t)


 dNi(t).
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To do the variable selection, we propose to use different penalty functions for β and
Θ and implement the adaptive lasso procedure. The penalty function for β is given
by

ρ1 (β) =
∑
r∈V

wr |βr| , (3.12)

where w = (w1, · · · , wp) is the vector of weights. As suggested by Zou (2006), the
weight can be set as wr = |βr|−γ1 for any γ1 > 0 and r ∈ V . For the parameter Θ
associated with graphical structure, the penalty function is given by

ρ2 (Θ) =
∑
ν 6=s

vsν |θsν | , (3.13)

where the weight vsν can be set as vsν = |θsν |−γ2 for some γ2 > 0. To find a value
of vsν , we may first obtain a consistent estimate of Θ and then take the weight as

v̂sν =
∣∣∣θ̂sν∣∣∣−γ2

.

As a result, for the given b and ζ, the proposed estimator is given by(
β̂b(ζ), Θ̂b(ζ)

)
= argmin

β,Θ
{`b,ζ (β,Θ) + λn1ρ1 (β) + λn2ρ2 (Θ)} , (3.14)

where λn1 and λn2 are the tuning parameters associated with (3.12) and (3.13),
respectively. Moreover, we define

β̂(ζ) =
1

B

B∑
b=1

β̂b(ζ) and Θ̂(ζ) =
1

B

B∑
b=1

Θ̂b(ζ). (3.15)

Stage 3 : Extrapolation

For the two sequences
{(
ζ, β̂(ζ)

)
: ζ ∈ Z

}
and

{(
ζ, Θ̂(ζ)

)
: ζ ∈ Z

}
obtained from

(3.15), we fit a regression model to each of the two sequences

β̂(ζ) = ϕ1 (ζ; Γ1) + ε1 and Θ̂(ζ) = ϕ2 (ζ; Γ2) + ε2, (3.16)

where ϕ1(·; ·) and ϕ2(·; ·) are the user-specific regression functions, Γ1 and Γ2 are the
associated parameters, and ε1 and ε2 are the noise terms. Parameters Γ1 and Γ2 can
be estimated by the least square method; and we let Γ̂1 and Γ̂2 denote the resulting
estimates of Γ1 and Γ2, respectively.
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Finally, we calculate the predicted values

β̂ = ϕ1

(
−1; Γ̂1

)
and Θ̂ = ϕ2

(
−1; Γ̂2

)
(3.17)

and take β̂ as the estimator of β. Note that Θ is a symmetric matrix, i.e., θsν = θνs
for s 6= ν, but θ̂sν is usually not equal to θ̂νs for s 6= ν. Hence, to obtain a reasonable
estimate of Θ, we apply the AND rule proposed by Meinshausen and Bühlmann
(2006) so that θ̂sν = θ̂νs = max{θ̂sν , θ̂νs}.

The key idea of the proposed three-stage procedure is to use simulated surrogate mea-
surements to delineate the patterns of different degrees of measurement error on inference
results. The first and third stages generalize the simulation-extrapolation (SIMEX) method
(Cook and Stefanski 1994) and the MC-SIMEX method (Küchenhoff et al. 2006) which are
respectively applicable to error-contaminated continuous and discrete covariates. Our steps
embrace a more general setting where error-prone covariates are a mixture of continuous
and discrete covariates. Different from the conventional graphical model framework which
focuses on either continuous random variables or discrete random variables, we allow both
continuous and discrete random variables to be accommodated and they may be subject
to mismeasurement.

The second stage of the proposed method undertakes the selection of important vari-
ables for settings with different magnitudes of mismeasurement. Although we adopt the
adaptive lasso (Zou 2006) which was developed for variable selection in the absence of mea-
surement error, it is imperative to address the impact of measurement error on variable
selection in this step.

3.2.2 Implementation Algorithm

To implement the three-stage procedure described in Section 3.2.1, we apply the coordinate-
descent approach (e.g., Ravikumar et al. 2010; Yang et al. 2015). For the given b =
1, · · · , B and ζ ∈ Z, we carry out the following steps:

Step 1 : Choose an initial value of Θ, and denote it as Θ̂(0).

Step 2 : Given Θ̂(k−1) with k = 1, 2, · · · , update β by finding

β̂(k) = argmin
β

{
`b,ζ

(
β
∣∣∣Θ̂(k−1)

)
+ λn1ρ1(β)

}
. (3.18)
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Step 3 : Given β̂(k) with k = 1, 2, · · · , update Θ̂ by finding

Θ̂(k) = argmin
Θ

{
`b,ζ

(
Θ
∣∣∣β̂(k)

)
+ λn2ρ2(Θ)

}
. (3.19)

Step 4 : Repeat Steps 2 and 3 until convergence, and let β̂b(ζ) and Θ̂b(ζ), respectively,

denote the limit of β̂(k) and Θ̂(k) as k →∞.

The implementation of the proposed procedure requires starts with an initial value
of Θ. Although our numerical experience does not suggest sensitivity of the results to a
specific choice of an initial value, a reasonably chosen initial value of Θ is often helpful for
the implementation. Since Θ is mainly used to indicate the pairwise relationship among
the covariate components, so intuitively, an initial value of Θ can be set as the covariance
matrix of covariate with the diagonal elements replaced by zeros, i.e., setting. Θ̂(0) =
cov(Wb(ζ)) − diag {cov(Wb(ζ))}, where diag(A) represents the diagonal matrix of A for
any square matrix A.

In implementing the proposed method, choosing sensible tuning parameters is critical.
Suggested by Wang et al. (2007), BIC tends to outperform among those procedures,
especially in the setting with a penalized likelihood function. Consequently, we employ the
BIC approach to select the tuning parameters λn1 and λn2.

3.2.3 Estimation of the Cumulative Baseline Hazards Function

Estimation of the estimator of Λ0(·) can be carried out after the model parameters β and

Θ are obtained as described in Sections 3.2.1 and 3.2.2. For j ∈ V and (s, ν) ∈ E, let β̂j
and θ̂sν denote the corresponding elements of β̂ and Θ̂ which are determined by (3.17).

Define Ŝ1 =
{
j ∈ V : β̂j 6= 0

}
, Ŝ2 =

{
(s, ν) ∈ E : θ̂sν 6= 0

}
, and N̂ = Ŝ1 ∪ Ŝ2. Let β̂S1

and Θ̂S2 denote the subvector of β̂ and submatrix of Θ̂ which contain informative variables
and dependent pairs in S1 and S2, respectively.

For the data generated at Stage 1 in Section 3.2.1, for b = 1, · · · , B and ζ ∈ Z, we
calculate

Λ̂N̂ ,0(t; b, ζ) =

∫ t

0

n∑
i=1

dNi(u)

n∑
i=1

g
(
W

(i)
b (ζ); β̂S1 , Θ̂S2

)
Yi(u)

(3.20)
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for a given time t, where

g
(
W

(i)
b (ζ); β̂S1 , Θ̂S2

)
= exp

 ∑
r∈V ∩Ŝ1

W
(i)
b,r (ζ)β̂r +

∑
(s,ν)∈E∩Ŝ2

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θ̂sν

 .

Taking averaging on (3.20) with respect to b gives

Λ̂N̂ ,0(t; ζ) =
1

B

B∑
b=1

Λ̂N̂ ,0(t; b, ζ) for ζ ∈ Z, (3.21)

where t is a given time. Then the estimate of Λ0(t) at a given time point t ∈ [0, τ ] can be
obtained by adapting Stage 3 in Section 3.2.1.

3.3 Theoretical Results

Let ∇αf (α) = ∂f(α)
∂α

and ∇2
αf (α) = ∂2f(α)

∂α∂α>
denote the operators of differentiating the

function f(α) with respect to α. Define

Uβ;b,ζ (β,Θ) = ∇β`b,ζ (β,Θ) and UΘ;b,ζ (β,Θ) = ∇Θ`b,ζ (β,Θ) . (3.22)

By the arguments of Carroll et al. (2006, p.126), we have that

W
(i)
C,b(ζ) ∼ N

(
X

(i)
C , (1 + ζ)Σε

)
and W

(i)
D,b(ζ) = MC[P1+ζ ]

(
X

(i)
D

)
.

When ζ → −1, W
(i)
C,b(ζ) and W

(i)
D,b(ζ) are respectively close to X

(i)
C and X

(i)
D in the sense

that (1 + ζ)Σε is close to zero and P1+ζ is close to the identity matrix. Then similar to the
derivations of Lawless (2003, p.351), we can show that

E {Uβ;b,ζ(β,Θ)} = 0 and E {UΘ;b,ζ(β,Θ)} = 0. (3.23)

We now further define

Iβ;b,ζ (β,Θ) = ∇2
β`b,ζ (β,Θ) and IΘ;b,ζ (β,Θ) = ∇2

Θ`b,ζ (β,Θ) . (3.24)

Let

Gb,ζ (u; β,Θ) =
n∑
i=1

exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

Yi(u), (3.25)
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and write G
(1)
β;b,ζ (u; β,Θ) = ∇βGb,ζ (u; β,Θ) and G

(1)
Θ;b,ζ (u; β,Θ) = ∇ΘGb,ζ (u; β,Θ).

Let β0 and Θ0 denote true values of β and Θ. We first present the consistency of the

proposed estimator
(
β̂>, vec(Θ̂)>

)>
, where vec(·) stands for the column vectorization of a

matrix. For a vector a, we write ‖a‖2
2 = a>a.

Theorem 3.3.1 Under regularity conditions (C1) − (C9) in Appendix B.1, we have that∥∥∥∥(β̂>, vec(Θ̂)>
)>
−
(
β>0 , vec (Θ0)>

)>∥∥∥∥
2

= Op

(
1√
n

)
.

Next, we discuss the property of recovery which demonstrate how the selected variables
can reflect the underlying true structure. Let

S1 = {r ∈ V : βr 6= 0} , S2 = {(s, ν) ∈ E : θsν 6= 0} ,

dβ = |S1|, and dΘ = |S2|. Let N = S1 ∪S2 denote the set containing the truly informative
variables and the dependent pairs. For a given constant a, let sign(a) be the sign function
which takes value +1 if a > 0, value −1 if a < 0, and 0 otherwise. For a vector (or a matrix)
A, sign(A) is defined to be the vector (or the matrix) whose element corresponding to the
element a of A is sign(a). In Appendix B.4, we prove the following results.

Theorem 3.3.2 Under regularity conditions in Appendix B.1, the following properties
hold:

(a) (Sparsity recovery): P
(
N̂ = N

)
→ 1 as n→∞.

(b) (Sign recovery): sign(β̂) = sign(β0) and sign(Θ̂) = sign(Θ0) with a large probability.

Theorem 3.3.2 (a) basically says that those informative variables and dependent pairs
of the covariate components can be selected consistently. Theorem 3.3.2 (b) shows that
the sign of the estimators is always identical to the sign of the true parameters. We call it
‘sign edge recovery’ if both (a) and (b) hold (Ravikumar et al. 2010).

Next, we establish the asymptotic distribution for the corresponding estimators. Let
β0;S1 and Θ0;S2 denote the subvector of β0 and submatrix of Θ0, respectively. For (3.16),

we write ϕΓj ,j =
∂ϕj(Z;Γj)

∂Γj
for j = 1, 2. Furthermore, we write ϕ′Γ =

(
ϕΓ1,1 0

0 ϕΓ2,2

)
and
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ϕ′(−1; Γ) =

(
∂ϕ1(−1;Γ1)

∂Γ1
0

0 ∂ϕ2(−1;Γ2)
∂Γ2

)
. Define

Φ0(c, d) =
(
c>, d>

)( U
V

)
+

1

2

(
c>, d>

)( Iβ,S1;Z (β0;S1 ,Θ0;S2) 0
0 IΘ,S2;Z (β0;S1 ,Θ0;S2)

)(
c
d

)
,

where U and V are random variables having normal distributions N (0,Σβ) and N (0,ΣΘ),
respectively. Let

MVN = argmin
c,d

ϕ′ (−1; Γ)
(
ϕ′>Γ ϕ

′
Γ

)−1
ϕ′>Γ Φ0(c, d). (3.26)

Theorem 3.3.3 (Asymptotic Normality) Suppose that λn1n
−1/2 → 0 and λn2n

−1/2 → 0
as n→∞. Then under regularity conditions in Appendix B.1, we have that as n→∞,

√
n
(
β̂S1 − β0;S1 , vec

(
Θ̂S2

)
− vec (Θ0;S2)

)
d−→MVN.

Finally, we discuss the asymptotic property for the estimator of the cumulative baseline
hazard function Λ̂N̂ ,0(t). Define

Gb,ζ (u; β0;S1 ,Θ0;S2) = E

Yi(u) exp

 ∑
r∈V ∩S1

W
(i)
b,r (ζ)β0r +

∑
(s,ν)∈E∩S2

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θ0sν

 ,

G(1)
β;b,ζ (u; β0;S1 ,Θ0;S2)

= E

Yi(u)
{
W

(i)
b;S1

(ζ)
}

exp

 ∑
r∈V ∩S1

W
(i)
b,r (ζ)β0r +

∑
(s,ν)∈E∩S2

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θ0sν


 ,

and

G(1)
Θ;b,ζ (u; β0;S1 ,Θ0;S2) = E

[
Yi(u)

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν

}

× exp

 ∑
r∈V ∩S1

W
(i)
b,r (ζ)β0r +

∑
(s,ν)∈E∩S2

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θ0sν


 .
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Let ϕ′Λ(ζ; ΓΛ) = ∂ϕΛ(ζ;ΓΛ)
∂ΓΛ

and define ϕ′Γ,Λ = (ϕ′Λ(ζ; ΓΛ) : ζ ∈ Z). Let

Wi(t; b, ζ) =

∫ t

0


n∑
i=1

{
dNi(u)− g

(
W

(i)
b (ζ); β0;S1 ,Θ0;S2

)
Yi(t)dΛ0(u)

}
Gb,ζ (u; β0;S1 ,Θ0;S2)

 ,

then Wi(t; ζ) = 1
B

B∑
b=1

Wi(t; b, ζ) and Wi(t;Z) = (Wi(t; ζ) : ζ ∈ Z).

Define

Wi(t) = ϕ′Λ(−1,ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,ΛWi(t;Z).

Let W(t) be the Gaussian process with mean zero and covariance E {Wi(t)Wi(s)}.

Define

Fβ;b,ζ (t; β0;S1 ,Θ0;S2) =

∫ t

0

E {dNi(u)} G(1)
β;b,ζ (u; β0;S1 ,Θ0;S2)

{Gb,ζ (u; β0;S1 ,Θ0;S2)}2 and

FΘ;b,ζ (t; β0;S1 ,Θ0;S2) =

∫ t

0

E {dNi(u)} G(1)
Θ;b,ζ (u; β0;S1 ,Θ0;S2)

{Gb,ζ (u; β0;S1 ,Θ0;S2)}2 .

Theorem 3.3.4 Under regularity conditions in Appendix B.1, we have that as n→∞,

√
n
{

Λ̂N̂ ,0(t)− Λ0(t)
}

d−→ W(t) + ϕ′Γ,Λ(−1; ΓΛ(t))
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,Λ

(
Fβ;Z (t; β0;S1 ,Θ0;S2)
FΘ;Z (t; β0;S1 ,Θ0;S2)

)>
×MVN.

3.4 Numerical Studies

In this section, we conduct numerical studies to assess the performance of the proposed
estimators for a variety of settings, and also implement the methods to analyze a real
dataset.
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3.4.1 Model Settings

We use model (3.1) to generate the p-dimensional true covariate X where the p-dimensional

parameter β0 is given by β0 =

1, · · · , 1︸ ︷︷ ︸
[ p4 ]

,−1, · · · ,−1︸ ︷︷ ︸
[ p4 ]

, 0, · · · , 0︸ ︷︷ ︸
1−2[ p4 ]

. The (p2−p)-dimensional

parameter Θ0 is specified to have the network structure, the lattice or hub structure, as
shown in Figure 3.1.

Figure 3.1: The left-hand-side structure is a Lattice with p = 25 and the right-hand-side structure is a
Hub with p = 17.

Once X is generated, we use (3.5) with the baseline hazard function λ0(t) = 2t to
generate the failure time T by letting

T =

√√√√√− exp

∑
r∈V

β0rXr +
∑

(s,ν)∈E

θ0sνXsXν +
∑
r∈V

C(Xr)− A (β0,Θ0)

 log (1− U),

where U is simulated from the uniform distribution U(0, 1). Let C be the censoring time
generated from the uniform distribution U(0, c), where c is a constant that is chosen to
yield about 50% censoring rate.

For surrogate measurements, we consider the following three scenarios.

Scenario I: Only continuous covariates are subject to measurement error
In this scenario, all error-prone covariates are continuous with X = XC. We consider
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the measurement error model (3.7) where ε ∼ N(0,Σε), Σε is a p× p diagonal matrix
with entries σ2

ε . Here we let σ2
ε = 0.152, 0.52 and 0.752 to reflect increasing degrees

of measurement error in XC.

Scenario II: Only binary covariates are subject to misclassification
In this scenario, all the error-contaminated covariates are considered to be binary take
value 1 or −1. That is, using the notation in Section 3.1.3, we have X = XD and
p = pD. We consider that pll = P

(
X∗D = x(l)|XD = x(l)

)
assumes a common value,

say π, l = 1, · · · ,m where m = 2p representing the cardinality of the set {−1, 1}p,
and we set π = 0.2, 0.5, or 0.8 to reflect different degrees of misclassification.

Scenario III: Both measurement error and misclassification in covariates
In this scenario, we examine the case where both continuous and discrete covariates
are subject to mismeasurement by combining Scenarios I and II. Consistent with the

notation in Section 3.1.3, X =
(
X>C , X

>
D

)>
is the vector of the true covariates and

X∗ =
(
X∗C
>, X∗D

>)> is the vector of surrogate covariates, we have X∗C and X∗D are
independently generated by Scenarios I and II, respectively, and the dimension of XC

and XC is pC and pD, respectively.

In implementing the proposed method, we set B = 500 and partition the interval [0, 2]
into subintervals with the equal width 0.25 with the resulting cutpoints set as the values of
ζ. We take the regression functions ϕ1(·) and ϕ2(·) in (3.16) to be the quadratic polynomial
functions, as suggested in Carroll et al. (2006, p.126). In each setting, we set the sample
size n = 400 and examine different dimensions of X. In Scenario I, we set p = pC = 10 or
50; in Scenario II we examine p = pD = 10 or 15; and in Scenario III we set p = pC+pD = 10
or 50 with (pC, pD) = (5, 5) and (40, 10). We perform 500 simulations for each setting.

3.4.2 Simulation Results

To assess the performance of the estimator of β, we report several measures, the L1-norm

‖∆β‖1 =
∑
i

∣∣∣β̂i − β0,i

∣∣∣
the L2-norm

‖∆β‖2 =

√∑
i

(
β̂i − β0,i

)2

,
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where ∆β = β̂−β0. In addition, we calculate the number of the correctly selected variables
(#CS) and the number of the falsely excluded variables (#FE).

To examine the accuracy of the estimator of Θ, we employ the L1-norm and the Frobe-
nius norm, respectively, given by

‖∆Θ‖1 = max
j

∑
i

∣∣∣Θ̂ij −Θ0,ij

∣∣∣ and ‖∆Θ‖F =

√∑
i

∑
j

∣∣∣Θ̂ij −Θ0,ij

∣∣∣2,
where ∆Θ = Θ̂−Θ0.

We also examine the specificity (Spe) and the sensitivity (Sen), where the specificity
is defined as the proportion of zero coefficients that were correctly estimated to be zero,
and the sensitivity is defined as the proportion of non-zero coefficients that were correctly
estimated to be non-zero.

For Scenarios I, II, and III, we compare the performance of the estimators obtained
from applying the proposed method to the surrogate covariates as opposed to the esti-
mators obtained from fitting the data with the true covariate measurements. We use the
adaptive lasso with the penalty functions (3.12) and (3.13) as well as the lasso method. In
comparison, we also examine the naive estimators of β and Θ which are derived by directly
implementing the observed covariates X∗i in (3.6).

In Tables 3.1- 3.3, we report the numerical results of our proposed method and the
naive approach as well as those obtained from the true covariate measurements. It is clear
and expected that the results obtained from using the true covariate measurements are
the best with the smallest norms under all settings. Regarding the performance on the
true measurements of the lasso and the adaptive lasso, the adaptive lasso tends to slightly
outperform the lasso in terms of the specificity and the finite sample biases, indicated by
the norms. In terms of correctly selecting variables, the lasso method performs better
than the adaptive lasso. Both methods perform equally well in terms of falsely excluding
variables and sensitivity, producing nearly perfect results.

The same patterns are observed for data with different degrees of measurement error
and/or different network structures in covariates. The simulation results also demon-
strate the impact of measurement error on inferential procedures. The performance of the
proposed method would deteriorate as measurement error becomes more substantial. Fur-
thermore, it is revealed that the naive method performs unsatisfactorily, with considerable
finite sample biases produced and unreliable variable selection and exclusion results.
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3.4.3 Analysis of NKI Breast Cancer Data

In this section, we implement our proposed method to analyze the breast cancer data
collected by the Netherlands Cancer Institute (NKI) (van de Vijver et al. 2002). Tumors
from 295 women with breast cancer were collected from the fresh-frozen-tissue bank of
the Netherlands Cancer Institute. Tumors of those patients were primarily invasive breast
cancer carcinoma that were about 5 cm in diameter. Patients at diagnosis were 52 years or
younger and the diagnosis was done from 1984 to 1995. Of all those patients, 79 patients
died before the study ended, yielding approximately the 73.2% censoring rate.

With those patients, about 25000 gene expressions were also collected. Presented by van
de Vijver et al. (2002, p. 2002), among all the gene expressions, 70 genes with previously
determined average profiles are useful for tumor diagnosis. Therefore, in our analysis here,
we focus on those 70 genes with good prognosis and study their relationship with survival
times.

Our goal is to select and estimate those gene expressions which are associated with the
tumor development, where incorporating the network structure of those gene expressions
is of particular interest. Consistent with He and Yi (2009), we treat log intensity as the
covariates and implement the joint model (3.5) to analyze data. Since this dataset contains
no information to characterize the degree of measurement error that is accompanying with
the gene expressions, here we conduct sensitivity analyses to investigate the measurement
error effects on analysis results. Specifically, let Σ be the covariance matrix of the gene
expressions. For sensitivity analyses, we consider Σ+Σe to be the covariance matrix for the
measurement error model (3.7), where Σe is the diagonal matrix with diagonal elements
being a common value σ2

e , which is specified as σ2
e = 0.152, 0.502, or 0.752 to feature a

setting with minor, moderate or severe measurement error. In addition, for the penalty
function, we examine both lasso and adaptive lasso. The analysis results are summarized in
Table 3.4. It is observed that the lasso method select more variables than the adaptive lasso
method for each setting with a given degree of measurement error. The variables selected
by the adaptive lasso method are a subset of those selected by the lasso method for each
scenario. The selection results obtained from the lasso method tend to vary more noticeably
than those produced from the adaptive lasso. The variables selected by the adaptive lasso
method seem to be fairly insensitive to the change of the measurement error degrees we
consider. Furthermore, the results produced from the naive method with different penalty
functions differ from those obtained from the proposed method with measurement error
effects accounted for. Regarding the estimation results for Θ, we display the gene network
results in Figures 3.2 and 3.3, where we observe that the lasso method gives more complex
association network than the adaptive lasso method.
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Figure 3.2: Graphical structures of 70 good prognosis genes in NKI Breast Cancer Data
obtained from different measurement error degrees imposed: from top to bottom corre-
sponds to σ2

e = 0.152, 0.52 or 0.752. The left and right columns are, respectively, obtained
from the lasso and adaptive lasso methods.
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Figure 3.3: Graphical structures of 70 good prognosis genes in NKI Breast Cancer Data
obtained from the naive method which ignores mismeasurement in covariates. The left and
right figures are, respectively, obtained from the lasso and adaptive lasso methods.
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Chapter 4

Sufficient Dimension Reduction for
Analysis of High-Dimensional
Survival Data with Error-Prone
Variables

4.1 Preliminaries

In this section, we introduce the preliminaries of sufficient dimension reduction (SDR),
survival analysis, and measurement error models.

4.1.1 SDR and Conditional Distribution

Let T ∈ R be the univariate response, and let X be the p-dimensional vector of covariates,
where p is often a large positive integer. The spirit of sufficient dimension reduction (SDR)
is to find a p× d matrix B = (β1, · · · , βd) such that

T ⊥⊥ X|B>X, (4.1)

where “⊥⊥” stands for the statistical independence, and βj is a p-dimensional vector for
j = 1, · · · , d. Here d can be viewed as the dimension of the reduced covariates and is
smaller than p, and B is often called a basis.
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Let S(B) represent the SDR subspace which is spanned by the column vectors of B.
Cook (1994) showed that the intersection of all such S(B) exists. Consequently, such an
intersection is called the central subspace (CS) for the regression of T on X. Let ST |X
denote the CS with the structural dimension d = dim(ST |X) which is usually unknown. If
B is obtained, then the subsequent analysis can be based on the lower dimensional variables
{T,B>X} without losing information.

We now consider the cumulative distribution function of T given X = x:

FT |X(t|x) = F (t, B>x), (4.2)

where FT |X(t|x) , P (T ≤ t|X = x) and F (·, ·) is an unknown nonnegative function. Let
FT |X(t|x) = 1−FT |X(t|x) denote the survivor function of T givenX. Then the (conditional)
hazards function of T , given X = x, is given by

λ(t|x) =
d
dx
FT |X(t|x)

FT |X(t|x)
, (4.3)

which is uniquely determined by (4.2). This suggests that (4.2) can be broadly used to
describe any survival models. The following examples give some commonly used survival
models.

Example 1 If F (t, B>x) = 1 − exp
{
−t2 exp

(
B>x

)}
, then λ (t|x) = 2t exp

(
B>x

)
is the

Cox proportional hazard model with the baseline hazards function λ0(t) = 2t (Cox
1972).

Example 2 If F (t, B>x) =
exp(t−B>x)

1+exp(t−B>x)
, then (4.2) gives the proportional odds model

(Bennett 1983).

Example 3 If F (t, B>x) = 1−exp
{
−
(
t2 + tB>x

)}
, then FT |X (t|x) = exp

{
−
(
t2 + tB>x

)}
and, equivalently, λ (t|x) = 2t + B>x, which is the additive hazards model with the
baseline hazards function λ0(t) = 2t (Lin and Ying 1994).

4.1.2 Survival Data with Measurement Error

Let the response T represent the survival time for a subject. We consider the setting where
T is associated with a p-dimensional covariate X where p is large. We are interested in
finding the CS, ST |X , to study the relationship between the survival time T and covariates
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X. In survival analysis, T is usually incomplete due to the presence of the censoring time
for a subject, denoted as C. Let Y = min{T,C} and ∆ = I(T ≤ C), where I(·) is the
indicator function. Directly implementing the SDR methods on the observed variable Y
and X is equivalent to studying SY |X , which is generally not equal to ST |X . With the non-
informative censoring time, Xia et al. (2010) pointed out that the CS for the regression of
Y on X is the direct sum of the CS for the regressions of T on X and that of C on X, which
means that SY |X = ST |X + SC|X =

{
v1 + v2 : v1 ∈ ST |X ,v2 ∈ SC|X

}
and ST |X ∩SC|X = φ.

This shows that SY |X is not equal to ST |X in general, suggesting that using the existing
dimension reduction methods to the response Y only yields the estimator of SY |X instead
of ST |X , the quality of primary interest.

On top of the issue of censoring, another challenge is posed by that covariates X are
commonly error-contaminated. Ignoring measurement error in inferential procedures can
yield seriously biased results. To feature this, let X∗ denote the surrogate, or observed
covariate, of X. Let ΣX∗ and ΣX be the covariance matrices of X∗ and X, respectively.
We consider the measurement error model (Carroll and Li 1992; Li and Yin 2007; Zhang
et al. 2014)

X∗ = γ + ΓX + ε, (4.4)

where ε is independent of {X,T,C}, ε ∼ N(0,Σε), γ is an s-dimensional vector of pa-
rameters, and Γ is an s × p matrix of parameters which may be known or unknown. As
discussed in Carroll and Li (1992), Li and Yin (2007) and Zhang et al. (2014), we may
consider

U = LX∗ (4.5)

as the “corrected” covariates in terms of X∗, where

L = cov(X,X∗)Σ−1
X∗ = ΣXΓ>Σ−1

X∗ . (4.6)

This “corrected” covariate U can be used to study the CS ST |X , as shown by the following
proposition given by Li and Yin (2007).

Proposition 4.1.1 (Li and Yin 2007)
Suppose that X follows a normal distribution with mean µX and covariance matrix ΣX ,
and model (4.4) is assumed. Then ST |X = ST |U with U = LX∗.

Proposition 4.1.1 is a general invariance law in the sense that replacing X by U still
preserves the CS ST |X ; it applies to the setting in Section 4.1.1 as well. Moreover, this
proposition basically shows that for a matrix B,

T ⊥⊥ X|B>X ⇐⇒ T ⊥⊥ U |B>U, (4.7)
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where “⇐⇒” means the equivalence between the two statements.

4.1.3 Determination of “Corrected” Covariates

Suppose that we have a sample of n subjects and that for i = 1, · · · , n, {Yi,∆i, Xi} has
the same distribution as {Y,∆, X} and {yi, δi, xi} represents realizations of {Yi,∆i, Xi}.
Let τ denote a finite value which is no smaller than the maximum survival times in the
sample. Suppose that for i = 1, · · · , n, (X∗i , Xi) has the same distribution as (X∗, X) and
let (x∗i , xi) denote the realizations of (X∗i , Xi).

Note that model (4.4) yields ΣX∗ = ΓΣXΓ> + Σε, and that ΣX∗ can be estimated

by its empirical estimator based on the available measurements of X∗, given by Σ̂X∗ =
1
n

n∑
i=1

(
X∗i − X̄∗i

) (
X∗i − X̄∗i

)>
with X̄∗i = 1

n

n∑
i=1

X∗i . To estimate L, we need only to handle

Σε and Γ. Consequently, we consider the following three scenarios.

Scenario I : Both Σε and Γ are known.

In this scenario, L is determined by (4.6), which allows us to directly calculate the
“corrected” covariates U using (4.5).

Scenario II : Γ is known, Σε is unknown, and repeated measurements of X are available.

Suppose that two repeated measurements of X, {X∗ir : r = 1, 2; i ∈ R}, are collected
for additional m subjects, where R denotes the index set for those subjects. Consis-
tent with Carroll and Li (1992), we take Γ to be Ip×p for ease of discussions. Then
the measurement error model based on repeated measurements is given by

X∗ir = γ +Xi + εir (4.8)

for i ∈ R and r = 1, 2, where εir ∼ N (0,Σε) and εir is independent of {Xi, Ti, Ci}.
In this case,

ΣX∗ = var(X∗ir)

= var {E(X∗ir|Xi)}+ E {var(X∗ir|Xi)}
= ΣX + Σε. (4.9)

Noting that for every i ∈ R, Σε and ΣX can be, respectively, expressed by

Σε =
1

2
var (X∗i1 −X∗i2) (4.10)
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and

ΣX =
1

4
var (X∗i1 +X∗i2)− 1

2
Σε

=
1

4
{var (X∗i1 +X∗i2)− var (X∗i1 −X∗i2)} .

Therefore, by (4.9), we have

ΣX∗ =
1

4
{var (X∗i1 +X∗i2)− var (X∗i1 −X∗i2)} , (4.11)

and by (4.6), we have

L = (ΣX∗ − Σε) Σ−1
X∗

which can be estimated by

L̂ =
(

Σ̂X∗ − Σ̂ε

)
Σ̂−1
X∗ (4.12)

with Σ̂ε and Σ̂X∗ being empirical estimators of (4.10) and (4.11), respectively.

Scenario III : Both Σε and Γ are unknown and validation data are available.

Suppose thatM is the set of n subjects for the main study and V is the set of m sub-
jects for the external validation study. That is,M and V do not overlap, the available
data for the main study and the validation sample are {(ti, ci, δi, x∗i ) : i ∈M} and
{(xi, x∗i ) : i ∈ V}, respectively. Hence, the measurement error model (4.4) gives that

X∗i = γ + ΓXi + εi

for i ∈ M ∪ V , where εi ∼ N (0,Σε) and εi is independent of {(Xi, Ti, Ci)} for
i ∈M∪ V .

Let µX = E(Xi) and µX∗ = E(X∗i ). Then using the validation data {(xi, x∗i ) :
i ∈ V}, we estimate µX and µX∗ by µ̂X = 1

m

∑
i∈V

xi and µ̂X∗ = 1
m

∑
i∈V

x∗i , respectively.

Then a consistent estimate of cov(Xi, X
∗
i ) is given by

̂cov(Xi, X∗i ) =
1

m

∑
i∈V

(xi − µ̂X) (x∗i − µ̂X∗)
> ,

and hence, by (4.6), L can be estimated by

L̂ = ̂cov(Xi, X∗i )Σ̂−1
X∗ .
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Once the estimator L̂ is obtained by either repeated measurements or validation data
in Scenarios II or III, we adjust the surrogate covariate X∗i by Ûi = L̂X∗i and let ûi denote

a realization of Ûi.

4.2 Methodology

In this section, we consider the model (4.2) and propose an estimation method to handle
data with both right-censoring and mismeasurement. To be more specific, we first apply
(4.5) to correct the measurement error effects and also adjust for the censoring effects due
to censored responses; next, we propose valid inferential procedures to estimate B and
d without imposing additional conditions, such as the linearity condition (e.g., Li 1991)
which is commonly used in the conventional SDR methods.

Before we present the details of our proposed method, we make a few comments here.

• Although Li and Yin (2007) provided a method to correct for measurement error
effects in dimension reduction, their approach mainly focused on establishing the
validity of U = LX∗ (given by (4.5)) instead of focusing on the estimation of the pa-
rameter B. Furthermore, their approach was directed to handling complete responses
but not censored responses caused by right-censoring.

• The idea of using U = LX∗ in (4.5) to correct for measurement error effects was also
considered in the dimension reduction frameworks by other authors such as Carroll
and Li (1992) and Zhang et al. (2014). However, their settings were still targeted to
complete responses instead of censored responses caused by right-censoring. More-
over, their approaches employed “sliced inverse regression” or “cumulative slicing
estimation”, which typically requires the so-called linearity condition.

• While our development here has relevance to existing work, the problem we consider
has an additional feature that the response is subject to censoring, which significantly
complicates the development of estimation procedures as well as the establishment of
theoretical results. Moreover, we develop a semiparametric inference approach which
requires minimal model assumptions (e.g., the “linearity condition” imposed by Li
(1991) is not needed in our procedures).
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4.2.1 Method Setup and Correction of Measurement Error

For t > 0, let NT (t) = I (T ≤ t) be the indicator function of T . Then (4.2) is equivalently
expressed as

E {NT (t)|X} = F
(
t, B>x

)
. (4.13)

If T is fully observed and there is no censoring, then the following proposition, stated by
Wang and Xia (2008) and proved by Zeng and Zhu (2010), can be used to connect (4.1)
and (4.2).

Proposition 4.2.1 For any matrix B, “T ⊥⊥ X|B>X” is equivalent to

“P (T ≤ t|X = x) = P
(
T ≤ t|B>X = B>x

)
for any t ∈ R1 and X ∈ Rp.′′

Proposition 4.2.1 shows that the central space of T is closely related to the central mean
space of I(T ≤ t). Combining Propositions 4.1.1 and 4.2.1 yields

T ⊥⊥ U |B>U ⇐⇒ E {NT (t)|U} = E
{
NT (t)|B>U

}
(4.14)

for any t > 0. Equation (4.14) shows that the measurement error effects can be corrected
for by using (4.5); then the usual dimension reduction techniques may be employed to
derive estimators of B.

In survival analysis, however, T is usually incomplete due to censoring; we have only
(Y,∆) as described in Section 4.1.1. Conventional methods for sufficient dimension re-
duction are not valid any more in this case (e.g., Xia et al. 2010; Lu and Li 2011). To
accommodate censored responses, one may proceed with the inverse weighted scheme. For
any given y > 0, let NY (y) = I (Y ≤ y) be the random indicator variable. For given y > 0
and U = u,

E

{
∆I (Y ≤ y)

P (C ≥ Y |U = u)

∣∣∣∣U = u

}
= E

{
I (T ≤ C) I (Y ≤ y)

P (C ≥ Y |U = u)

∣∣∣∣U = u

}
= E

[
E

{
I (T ≤ C) I (T ≤ y)

P (C ≥ T |U = u)

∣∣∣∣∆ = 1, U = u

}∣∣∣∣U = u

]
= E {I (T ≤ y)|U = u}
= E {NT (y)|U = u} . (4.15)

The identity (4.15) allows us to study the expectation E {NT (y)|U} for the survival
time T by using the observed time Y , where the inverse weight P (C ≥ Y |U = u) is imposed
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to correct for the censoring effect. A similar strategy of (4.15) was used by Xia et al. (2010)
and Lu and Li (2011). However, the main drawback of (4.15) lies in the requirement of
P (C ≥ Y |U = u) which is basically unknown; P (C ≥ Y |U = u) involves U , which in turn
involves B, the target of our primary interest. Although in principle, it is possible to
employ non-parametric methods, such as the local linear estimation (Xia et al. 2010) or
the Kaplan-Meier estimator (Lu and Li 2011) to estimate P (C ≥ Y |U = u), the resulting
inferential procedures are complex and the results are often not efficient.

Driven by these concerns, we explore a different inference method. First, we present
the following proposition whose proof is given in Appendix C.3.1.

Proposition 4.2.2

E {NT (y)|U} = E {NY (y)|∆ = 1, U}
= E

{
NY (y)|∆ = 1, B>U

}
for y > 0.

Proposition 4.2.2 shows that the observed measurement Y can be used to develop the
regression model by conditioning on ∆ = 1. This property gives us a simple and more
straightforward basis for the following development, which is based on the regression model

F (y, u) = E {NY (y)|∆ = 1, U = u} (4.16)

for given y > 0 and u.

4.2.2 Estimation Procedures

As noted by Ma and Zhu (2013), the basis matrix B is not unique even though ST |U is;
for any full rank d× d matrix A, BA may generate the same column space as B does. In
order to uniquely map CS to a basis matrix, Ma and Zhu (2013) suggested to consider the
decomposition B = (B>u , B

>
l )> for any p × d matrix B with rank d, where Bu is a d × d

matrix whose inverse B−1
u exists, and Bl is a (p− d)× d matrix. With this decomposition

for B, setting A = B−1
u gives that

BB−1
u = (Id×d, B

>
l B

−1
u )>. (4.17)

This suggests that for any p × d matrix B of rank d, by (4.17), it suffices to consider
B>l B

−1
u , a (p− d)× d matrix which can be of any form. As a result, by (4.17), we consider

the set of all p× d matrices of the form

B =
(
Id×d, C

>)> (4.18)
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with C being a (p− d)× d matrix with (p− d)d unknown parameters. Estimation of B is
equivalent to estimation of C.

To estimate (4.16), we implement the kernel estimation, yielding the estimator

F̂
(
y,B>u

)
=

n∑
i=1

∆iI (Yi ≤ y)Kh
(
B>Ui −B>u

)
n∑
i=1

∆iKh (B>Ui −B>u)
, (4.19)

where Kh(u) =
d∏
j=1

1
h
K
(uj
h

)
, h is a positive bandwidth, and K (v) is a qth-order kernel

function with
∫
K(v)dv = 1,

∫
vkK(v)dv = 0 for k = 1, · · · , q − 1,

∫
vqK(v)dv < ∞, and

q is a positive constant.

With the estimator of F (·, ·) by (4.19), we use the cross-validation (CV) criterion to
construct the CV value

CV (B, d, h) =
1

n

n∑
i=1

∫ τ

0

{
I (Yi ≤ y)− F̂ (−i)(y,B>Ui)

}2

dF̂Y (y), (4.20)

where F̂Y (·) is the empirical distribution function of Yi and F̂ (−i)(y,B>u) is the estimator
of (4.19) with the ith subject being deleted. The estimator of (B, d, h) can be derived by
minimizing (4.20), i.e, (

B̂, d̂, ĥ
)

= argmin
B,d,h

CV (B, d, h) . (4.21)

4.2.3 Computational Algorithm

The implementation of the minimization problem (4.21) can be realized by the following
computational algorithm.

Step 1: For d = 0, calculate

CV [0] =
1

n

n∑
i=1

∫ τ

0

I (Yi ≤ y)−

n∑
i=1

∆iI(Yi ≤ y)

n∑
i=1

δi


2

dF̂Y (y).
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Step 2: For any given d ≥ 1, let
(
B̂d, ĥd

)
denote the estimators which are obtained by

minimizing (4.20): (
B̂d, ĥd

)
= argmin

B,h
CV (B, d, h) .

Let CV [d] = CV
(
B̂d, d, ĥd

)
.

Step 3: Continue Step 2 until d = d̂ with CV [d̂ + 1] > CV [d̂]. As a result, the final

estimators are
(
B̂, d̂, ĥ

)
=
(
B̂d̂, d̂, ĥd̂

)
.

4.3 Theoretical Results

Let vec(·) denote the vectorization operation that stacks the columns of a matrix, and
let ‖ · ‖ represent the Frobenius norm of a matrix. Define a⊗2 = aa> for any vector

a. To emphasize the involvement of the estimator L̂, we write Ûi = L̂X∗i as defined in
Section 4.1.3. For any function f(α), let ∇j

αf(α) denote the jth order derivative of the
function f(·) with respect to α. Let B0 and d0 denote the true values of the parameter and
its structural dimension, respectively. Let h0 be the optimal bandwidth. We first present
the consistency of the estimators (B̂, d̂, ĥ) whose proof is placed in Appendix C.4.1.

Theorem 4.3.1 Under regularity conditions in Appendix C.1, for any η > 0, as n→∞,

B̂
p−→ B0 and P

(
d̂ = d0,

∣∣∣∣∣ ĥh0

− 1

∣∣∣∣∣ < η

)
→ 1.

For l = 0, 1 and j = 0, 1, 2, let

F̂(j)
l,B,L(y, u) =

1

n

n∑
i=1

∆i {I(Yi ≤ y)}l∇j
vec(B)K

(
B>Ui − u

)
(4.22)

and

F̂(j)

l,B,L̂
(y, u) =

1

n

n∑
i=1

∆i {I(Yi ≤ y)}l∇j
vec(B)K

(
B>Ûi − u

)
. (4.23)
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Furthermore, let fB>U(B>u) denote the density function of B>U , and define

F(j)
l,B,L(y, u) = ∇j

vec(B)

{
F (y,B>u)

}l
E(∆i)E

{
(Ui − u)⊗j

∣∣∣B>Ui = B>u
}
fB>U(B>u),

and

F̃(j)
i,l,B,L(y, u) = ∆i {I (Yi ≤ y)}l∇j

vec(B)K
(
B>Ui − u

)
− F(j)

l,B,L(y, u)

for j = 0, 1, 2 and l = 0, 1. Define

ζ
(0)
i,B0

(y, u) =
1∑
l=0

F̃(0)
i,l,B,L(y, u)

{
−F

(
y,B>0 u

)}1−l

F0,B,L

(
y,B>0 u

) . (4.24)

Theorem 4.3.2 Under regularity conditions in Appendix C.1, then

sup
y,u

∣∣∣∣∣F̂ (y, B̂>u)− F (y,B>0 u)− 1

n

n∑
i=1

ζ
(0)
i,B0

(y, u)

∣∣∣∣∣ = Op

(
1√
n

)
.

The proof of Theorem 4.3.2 is deferred to Appendix C.4.2.

Finally, we present the asymptotic distribution of the estimator B̂. Define

F (0)(y, u) =
F(1)

1,B,L(y, u)

F(0)
0,B,L(y, u)

, (4.25)

F (1)(y, u) =
1∑
l=0

{−F (y, u)}l F(1)
1−l,B,L(y, u)

F(0)
0,B,L(y, u)

, (4.26)

and

F (2)(y, u) =
1∑

l1=0

1∑
l2=0

2l1

{
−F(2−l1)

0,B,L (y, u)

F(0)
0,B,L(y, u)

}l1+l2 (F({2−l1}{1−l2})
1,B,L (y, u)

F(0)
0,B,L(y, u)

)
.

Let

U(B0) =

∫ τ

0

{
I (Yi ≤ y)− F (0)(y,B>0 Ui)

}
F (1)(y,B>0 Ui)dFY (y)
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and

A = 2E

(∫ τ

0

[{
F (1)

(
y,B>0 Ui

)}⊗2 − F (2)
(
y,B>0 Ui

) {
I (Yi ≤ y)− F (0)

(
y,B>0 Ui

)}]
dFY (y)

)
.

We define

T (B0) = E

[∫ τ

0

{
F (1)(y,B>0 Ui)

}⊗2
dFY (y)

]
ΣX∗ .

Theorem 4.3.3 Suppose that regularity conditions in Appendix C.1 holds.

(a) Assume that L is known, then as n→∞,

√
n
{

vec(B̂)− vec(B0)
}

d−→ N
(
0,A−1BA−1

)
,

where B = E {U⊗2(B0)}.

(b) Assume that L is unknown and estimated based on either repeated measurements or

validation data. Let Φi be
{

(X∗i1 −X∗i2) (X∗i1 −X∗i2)> − 2Σε

}
if L is estimated based

on repeated measurements, and let Φi be
{

(Xi − µX) (X∗i − µX∗)
> − ΣXX∗

}
if L is

estimated from validation data. Then as n→∞,

√
n
{

vec(B̂)− vec(B0)
}

d−→ N
(
0,A−1

L BLA
−1
L

)
,

where AL = A and BL = E
[
{U(B0) + T (B0)Φi}⊗2].

4.4 SDR with Ultrahigh-Dimensional Covariates

In this section, we explore the SDR with ultrahigh-dimensional covariates. We first propose
a valid feature screening method to deal with ultrahigh-dimensional censored data with
measurement error. In the second step, we develop estimation procedures for parameter
B and the structural dimension d based on the selected covariates.
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4.4.1 Review of the Distance Correlation Method

To start, we briefly review the distance correlation (DC) method proposed by Székely et
al. (2007).

Suppose µ and ν are random vectors with the characteristic functions φµ(·) and φν(·),
respectively, and let φµ,ν(·) be the joint characteristic function of µ and ν. For any complex
function φ(·), let ‖φ(·)‖2 = φ(·)φ̄(·), where φ̄(·) is the conjugate of φ(·). The distance
covariance between µ and ν is defined as

dcov(µ, ν) =

∫
Rdµ+dν

‖φµ,ν(r, s)− φµ(r)φν(s)‖2w(r, s)drds, (4.27)

where dµ and dν are dimensions of µ and ν, respectively, and

w(r, s) =
{
cdµcdν ‖r‖

1+dµ
dµ
‖s‖1+dν

dν

}−1

(4.28)

with cd = π(1+d)/2/Γ{(1 + d)/2} and ‖a‖d is the Euclidean norm of any vector a ∈ Rd.
Consequently, the DC between µ and ν is defined as

dcorr(µ, ν) =
dcov(µ, ν)√

dcov(µ, µ)dcov(ν, ν)
. (4.29)

Székely et al. (2007) showed that random vectors µ and ν are independent if and only
if dcorr(µ, ν) = 0. This property will be used in an analogeous way to Li et al. (2012) to
develop a feature screening procedure and identify covariates associated with the response.

Next, we describe estimation of dcorr(µ, ν) using sample data. Suppose that {(µi, νi) :
i = 1, · · · , n} is a random sample and has the same distribution of (µ, ν). Note that by
Székely et al. (2007), dcov(µ, ν) can be expressed as

dcov(µ, ν) = J1 + J2 − 2J3,

where

J1 = E
(
‖µ− µ̃‖dµ ‖ν − ν̃‖dν

)
,

J2 = E
(
‖µ− µ̃‖dµ

)
E
(
‖ν − ν̃‖dν

)
,

J3 = E
{
E
(
‖µ− µ̃‖dµ

∣∣∣µ)E (‖ν − ν̃‖dν ∣∣ ν)} ,
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and (µ̃, ν̃) is an independent copy of (µ, ν). Then Jk with k = 1, 2, 3 can be estimated by
(Székely et al. 2007)

Ĵ1 =
1

n2

n∑
i=1

n∑
j=1

‖µi − µj‖dµ ‖νi − νj‖dν ,

Ĵ2 =
1

n2

n∑
i=1

n∑
j=1

‖µi − µj‖dµ
1

n2

n∑
i=1

n∑
j=1

‖νi − νj‖dν ,

Ĵ3 =
1

n3

n∑
i=1

n∑
j=1

n∑
l=1

‖µi − µl‖dµ ‖νj − νl‖dν .

As a result, dcov(µ, ν) is estimated by d̂cov(µ, ν) = Ĵ1 + Ĵ2 − 2Ĵ3, and thus, (4.29) can be
estimated by

d̂corr(µ, ν) =
d̂cov(µ, ν)√

d̂cov(µ, µ)d̂cov(ν, ν)

.

4.4.2 Ultrahigh-Dimensional Setting and Feature Selection

To present the idea for the proposed feature screening procedure with measurement error
in X, we start with a simpler setting by pretending that X were precisely measured and
no censoring exists with Y = T . Let

I = {k : Xk is dependent on the survival time T ∈ [0, τ ]}

denote the active set which contains all relevant covariates for the response T with |I| =
p̃ < n, and let Ic be the complement of I which contains all irrelevant covariates for the
response T .

Let XI = {Xk : k ∈ I} denote the vector containing all the active covariates, and let
XIc = {Xk : k ∈ Ic} be the vector containing all the irrelevant covariates. By definition,

T ⊥⊥ X|XI or T ⊥⊥ XIc|XI . (4.30)

For k = 1, · · · , p and j = 1, · · · , d, let βkj denote the kth component in the vector βj

defined in Section 4.1.1 above (4.1). (4.1) and (4.30) indicate that
d∑
j=1

|βkj| > 0 for k ∈ I
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and
d∑
j=1

|βkj| = 0 for k ∈ Ic. Equivalently, if k ∈ I, then T must depend on Xk through

at least one of the d linear combinations of βj for j = 1, · · · , d; if k ∈ Ic, then no linear
combinations contain k (Yu et al. 2016). As a result, based on those covariates in I, it
suffices to consider the SDR problem with

T ⊥⊥ XI |B>I XI ,

where BI is the p̃× d matrix, and ST |X ⊆ S (BI).

We now need only to estimate the active set I. To address the features of both censored
responses and measurement error in covariates, we need to modify the DC method described
in Section 4.4.1 to determine the active set I.

Modified Censored Responses:

Since Y and T are not necessarily identical due to censoring, we consider a modified version
of Y (Buckley and James 1979):

Y ∗ = ∆Y + (1−∆)E (T |∆ = 0) , (4.31)

which satisfies E(Y ∗) = E(T ) (Miller 1981, p.151).

To calculate Y ∗ in (4.31), we need to estimate E (T |∆ = 0). Now we fix Y at Y = y.
By Condition (C1) in Appendix C.1 and the spirit of a “Buckley-James-type estimator”
(e.g., Buckley and James 1979; Susarla et al. 1984), E(T |∆ = 0, Y = y) can be re-written
as

E (T |∆ = 0, Y = y) = E (T |τ > T > y, Y = y)

=

∫ τ

y

t
fT (t)

P (τ > T > y, Y = y)
dt

=

∫ τ

y

tfT (t)

1− FT (y)
dt

=
1

1− FT (y)

[
{τ − yFT (y)} −

∫ τ

y

FT (t)dt

]
, (4.32)

where fT (·) and FT (·) are the probability density function and cumulative distribution
function of T , respectively, and τ is defined in Section 4.1.3.
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Let G(y) = P (C ≥ y) for y > 0. Note that by derivations similar to (4.15), we can
show that

FT (y) = E {I (T ≤ y)} = E

{
∆I (Y ≤ y)

G(Y )

}
,

suggesting that FT (·) can be estimated by

F̂T (y) =
1

n

n∑
i=1

∆i

Ĝ(Yi)
I (Yi ≤ y) , (4.33)

where Ĝ(y) is the Kaplan-Meier estimator ofG(y). As a result, the estimator of E (T |∆ = 0),

denoted as Ê (T |∆ = 0), is determined by (4.32) with FT (y) replaced by (4.33), and thus,
by (4.31), we have an approximate version of Y ∗:

Ỹ ∗ = ∆Y + (1−∆)Ê (T |∆ = 0) .

Feature Screening in the Presence of Measurement Error:

Since our error-prone correction in developing feature screening involves exponential func-
tions, it is generally difficult to recover the function in terms of X if we consider measure-
ment error model (4.4) with a general matrix Γ. However, under the measurement error
model (4.4) with γ = 0 and Γ being the identity matrix, i.e.,

X∗ = X + ε, (4.34)

it is possible to develop a feature screening method.

Following the spirit of the DC method, let

ωk = dcorr (Y ∗, Xk) (4.35)

denote the DC based on Y ∗ and the k unobserved covariate Xk for k = 1, · · · , p. Now
we derive the relationship between Y ∗ and the surrogate covariate X∗. Let φY ∗(r) =
E {exp (irY ∗)} denote the characteristic function of Y ∗, where i is a complex number with
i2 = −1. Define

φX∗k (s) = E {exp (isX∗k)} exp

(
1

2
s2σε,kk

)
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and

φY ∗,X∗k (r, s) = E {exp (irY ∗ + isX∗k)} exp

(
1

2
s2σε,kk

)
for k = 1, · · · , p, where σε,kk is the kth diagonal entry of Σε. According to (4.27), the
modified distance covariance between Y ∗ and X∗k is defined as

dcov∗(Y ∗, X∗k) =

∫
R1+1

∥∥φY ∗,X∗(r, s)− φY ∗(r)φX∗k (s)
∥∥2
w∗(r, s)drds,

where w∗(r, s) is determined by (4.28) with dµ = dν = 1, and thus, the modified (or
corrected) DC between Y ∗ and X∗k is given by

dcorr∗(Y ∗, X∗k) =
dcov∗(Y ∗, X∗k)√

dcov∗(Y ∗, Y ∗)dcov∗(X∗k , X
∗
k)
. (4.36)

As a result, to select the active features for the surrogate covariates, we consider

ω∗k = dcorr∗ (Y ∗, X∗k) (4.37)

for k = 1, · · · , p, and the corresponding estimator is

ω̂∗k = d̂corr∗
(
Ỹ ∗, X∗k

)
=

d̂cov∗(Ỹ ∗, X∗k)√
d̂cov∗(Ỹ ∗, Ỹ ∗)d̂cov∗(X∗k , X

∗
k)

,

where d̂cov∗(Y ∗, X∗k) = Ĵ∗1 + Ĵ∗2 − 2Ĵ∗3 with

Ĵ∗1 =
1

2n2σε,kk

n∑
i=1

n∑
j=1

∥∥∥Ỹ ∗i − Ỹ ∗j ∥∥∥
1

∥∥X∗k,i −X∗k,j∥∥1
,

Ĵ∗2 =
1

n2

n∑
i=1

n∑
j=1

∥∥∥Ỹ ∗i − Ỹ ∗j ∥∥∥
1

1

2n2σε,kk

n∑
i=1

n∑
j=1

∥∥X∗k,i −X∗k,j∥∥1
,

Ĵ∗3 =
1

2n3σε,kk

n∑
i=1

n∑
j=1

n∑
l=1

∥∥∥Ỹ ∗i − Ỹ ∗l ∥∥∥
1

∥∥X∗k,j −X∗k,l∥∥1
,

and X∗k,i is the kth component of X∗i for ith subject.
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As suggested by Li et al. (2012), let the threshold value be cn−ζ for some constants c
and ζ, then the estimated active set is given by

Î =
{
k : ω̂∗k ≥ cn−ζ , k = 1, · · · , p

}
. (4.38)

In practice, as suggested in Yan et al. (2017), Chen et al. (2019) and among others, we

can specify the size of the active set I to be p̃ =
[

n
log(n)

]
, where [·] stands for the floor

function.

When the active set is determined, then for a subject i = 1, · · · , n, the measurement
error model (4.34) based on the active set I is given by

X∗i,I = Xi,I + εi,I , (4.39)

where εi,I ∼ N (0,ΣεI) with p̃×p̃ covariance matrix ΣεI , and X∗i,I and Xi,I are, respectively,
p̃-dimensional vectors of the observed and unobserved covariates based on the active set I
for i = 1, · · · , n.

Since the dimension of X∗i,I is reduced to be p̃ < n, then ΣXIX
∗
I

= cov(Xi,I , X
∗
i,I) and

ΣX∗I
= var(X∗i,I) are invertible. Therefore, the “corrected” covariate based on the active

set is proposed to be

Ui,I = LIX
∗
i,I (4.40)

for i = 1, · · · , n, where LI = ΣXIX
∗
I
Σ−1
X∗I

.

Analogeous to the discussion in Section 4.1.3, we discuss the estimation of LI by the
three scenarios. When LI is known, then we can directly calculate the “corrected” covari-
ates Ui,I by (4.40). When LI is unknown and repeated measurements are available, then
similar to the discussion of Scenario II in Section 4.1.3, we estimate LI by

L̂I =
(

Σ̂X∗I
− Σ̂εI

)
Σ̂−1
X∗I
,

where Σ̂X∗I
and Σ̂εI are empirical estimators of ΣX∗I

and ΣεI , respectively. Finally, when
LI is unknown and validation data are available, then similar to the discussion of Scenario
III in Section 4.1.3, LI can be estimated by

L̂I = Σ̂XIX
∗
I
Σ̂−1
X∗I
,

where Σ̂−1
X∗I

= 1
m

m∑
i=1

(
x∗i,I − x̄∗I

) (
x∗i,I − x̄∗I

)>
and Σ̂XIX

∗
I

= 1
m

m∑
i=1

(xi,I − x̄I)
(
x∗i,I − x̄∗I

)>
with x̄I = 1

m

m∑
i=1

xi,I and x̄∗I = 1
m

m∑
i=1

x∗i,I .
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4.4.3 Estimation of (BI , hI , dI)

With the feature screening which reduces Xi to Xi,I , let BI , hI , and dI denote the param-
eter, bandwidth, and structure dimension based on the active set I, respectively. Since
the “corrected” covariates based on the active set I is obtained in (4.40), we follow the
similar procedures in Section 4.2 to determine the estimators of (BI , hI , dI). Specifically,
replacing Ui in (4.19) by (4.40) gives

F̂I
(
y,B>I u

)
=

n∑
i=1

δiI (Yi ≤ y)Kh
(
B>I Ui,I −B>I u

)
n∑
i=1

δiKh
(
B>I Ui,I −B>I u

) . (4.41)

Then the CV value based on the active set I is given by

CVI (BI , dI , hI) =
1

n

n∑
i=1

∫ τ

0

{
I (Yi ≤ y)− F̂ (−i)

I (y,B>I Ui,I)
}2

dF̂Y (y), (4.42)

where F̂Y (·) is the empirical distribution function of Yi and F̂
(−i)
I (y,B>I Ui,I) is the estimator

of (4.41) with the ith subject being deleted.

Therefore, the estimators of (BI , dI , hI) can be derived by minimizing (4.42):(
B̂I , d̂I , ĥI

)
= argmin

BI ,dI ,hI

CVI (BI , dI , hI) . (4.43)

The computational algorithm in Section 4.2.3 can be applied to the minimization problem
(4.43).

4.4.4 Theoretical Results

We first show the validity of feature selection criterion (4.37) in the sense that active
features can be selected based on either X∗i or Xi.

Theorem 4.4.1 Active features based on X∗ and X are the same. That is,

dcorr∗ (Y ∗, X∗k) > 0⇐⇒ dcorr (Y ∗, Xk) > 0

or

dcorr∗ (Y ∗, X∗k) = 0⇐⇒ dcorr (Y ∗, Xk) = 0.
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Theorem 4.4.1 indicates that the selected variables X∗k based on (4.37) are equal to the
true active variables Xk. For the estimated active set (4.38), we have the following result.

Theorem 4.4.2 Under regularity conditions (C6) and (C7) in Appendix C.1, as n→∞,

P
(
I ⊆ Î

)
→ 1.

Theorem 4.4.2 ensures that the important covariates which are associated with the response
are not to be screened out with the probability approaching one as the sample size goes to
infinity. This property is also called the “sure screening property” by authors such as Fan
and Lv (2008) and Li et al. (2012) for the context without measurement error.

Next, we describe the theoretical result of the estimator (4.43), whose proof is similar
to the derivation in Section 4.3.

Let

UI(B0) =

∫ τ

0

{
I (Yi ≤ y)− F (0)(y,B>0 Ui,I)

}
F (1)(y,B>0 Ui,I)dFY (y)

and

AI = 2E

(∫ τ

0

[{
F (1)

(
y,B>0 Ui,I

)}⊗2

−F (2)
(
y,B>0 Ui,I

) {
I (Yi ≤ y)− F (0)

(
y,B>0 Ui,I

)}]
dFY (y)

)
.

Define

TI(B0) = E

[∫ τ

0

{
F (1)(y,B>0 Ui,I)

}⊗2
dFY (y)

]
ΣX∗I

.

Theorem 4.4.3 Suppose that regularity conditions in Appendix C.1 hold.

(a) Let η∗ be any positive number. Then as n→∞,

B̂I
p−→ B0 and P

(
d̂I = d0,

∣∣∣∣∣ ĥIh0

− 1

∣∣∣∣∣ < η∗

)
→ 1.

(b) Assume that LI is known. Then as n→∞,

√
n
{

vec(B̂I)− vec(B0)
}

d−→ N
(
0,A−1

I BIA
−1
I
)
,

where BI = E
{
U⊗2
I (B0)

}
.

95



(c) Assume that LI is unknown and estimated based on either repeated measurements or

validation data. Let Φi,I be
(
X∗i1,I −X∗i2,I

) (
X∗i1,I −X∗i2,I

)>− 2ΣεI if LI is estimated

based on repeated measurements, and let Φi,I be (Xi,I − µXI)
(
X∗i,I − µX∗I

)>−ΣXIX
∗
I

if LI is estimated from validation data. Then as n→∞,

√
n
{

vec(B̂I)− vec(B0)
}

d−→ N
(
0,A−1

I;LBI;LA−1
I;L

)
,

where AI;L = AI and BI;L = E
[
{UI(B0) + TI(B0)Φi,I}⊗2].

4.5 Numerical Studies

In this section, we conduct simulation studies to assess the performance of the proposed
estimators for a variety of settings. We first design the simulation settings and then present
the simulation results. Finally, the methods are implemented to analyze two real datasets.

4.5.1 Simulation Studies

Let B0 = (β10, β20) be the true value of the p × d0 matrix with d0 = 2, where β10 =
(1, 0, 1, 0, 0, · · · , 0)> and β20 = (0, 1, 0, 1, 0, · · · , 0)> are p×1 vectors with only two elements
being 1. We consider cases with p = 10 or 1000. The p-dimensional covariates X is
generated from the multivariate normal distribution N(0,ΣX), where ΣX is the covariance
matrix with diagonal entries being one and non-diagonal entries being 0.4.

Given the covariates X and B0, we use three models, the proportional hazards (PH),
proportional odds (PO), and additive hazards (AH) models, to generate survival times.
Specifically, the corresponding cumulative distribution functions F (·, ·) are formulated,
respectively, as

FPH(t, B>0 X) = 1− exp
[
−t2 exp

{(
X>β10

)2
+ 2

(
X>β20

)}]
,

FPO(t, B>0 X) =
exp

[
t−
{(
X>β10

)2
+ 2

(
X>β20

)}]
1 + exp

[
t−
{

(X>β10)2 + 2 (X>β20)
}] ,

and

FAH(t, B>0 X) = 1− exp
[
−
{
t2 + t

{(
X>β10

)2
+ 2

(
X>β20

)}}]
.
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Let U be generated from the uniform distribution U(0, 1). Then survival times T based on
the PH and PO models can be generated from

T =

√
exp

{
− (X>β10)2 − 2 (X>β20)

}
log (1− U)

and

T = log
{

(1 + U)−1 − 1
}

+
{(
X>β10

)2
+ 2

(
X>β20

)}
,

respectively, and survival times T based on the AH model can be obtained by solving the
following equation

T 2 + T
{(
X>β10

)2
+ 2

(
X>β20

)}
+ log (1− U) = 0.

Let C be the censoring time generated from the uniform distribution U(0, c), where c is
a constant that is chosen to yield about 50% censoring rate. Consequently, we calculate
Y = min{T,C} and ∆ = I (T ≤ C).

For the measurement error model, we take (4.34) with εi following the normal distri-
bution N(0,Σε), where Σε is a diagonal matrix with diagonal entry being σ2

ε = 0.152, 0.52,
or 0.752. Furthermore, we consider three scenarios described in Section 4.1.3. If Σε is
unknown, then the following two scenarios are considered as additional information:

Scenario 1: Validation data

For i = 1, · · · ,m with m = 100, Xi and εi are again be independently generated from
N(0,ΣX) and N(0,Σε), respectively, and X∗i is generated from

X∗i = Xi + εi

for i = 1, · · · ,m.

Scenario 2: Repeated measurements

For i = 1, · · · ,m with m = 100 and r = 1, 2, Xi and εir are again be independently
generated from N(0,ΣX) and N(0,Σε), respectively, and X∗ir is generated from

X∗ir = Xi + εir

for i = 1, · · · ,m and r = 1, 2.
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Let {(Yi,∆i, X
∗
i ) : i = 1, · · · , n} denote the sample with size n = 200, 300, or 400. We

repeat computations 500 times for each setting.

To assess the accuracy of the estimator of B, we consider the Frobenius norm

‖∆B‖ =

√√√√ p∑
j=1

d∑
k=1

∣∣∣B̂ij −B0,ij

∣∣∣2
for ∆B = B̂ − B0. To examine the performance of the estimator of F (·), we consider the
mean integrand squared error (MISE)

MISE(F̂ ) =
1

n

n∑
i=1

∫ τ

0

{
F̂
(
y, B̂>ui

)
− F (y,B>0 ui)

}2

dF̂Y (y).

For each setting, we calculate the proportions of d̂ for 500 times simulation, given by

1

500

500∑
k=1

I
(
d̂k = d

)
for d = 0, 1, 2, 3, · · · ,

and determine the estimated dimension as the largest proportion.

For the case with p = 10, we implement the proposed method in Section 4.2 directly
to the dataset, while for the case with p = 1000, we first use the feature screening method
to screen the variables, and then estimate B and d using the method in Section 4.4.3. We
compare the performance of the proposed methods with the naive estimators of F (·) and
B, which are derived by directly implementing the observed covariates X∗i in (4.19) and
(4.20). As a reference for comparisons, we also use the true values of X for the estimation,
and denote this method as “true”.

The results for p = 10 with the three scenarios are reported in Tables 4.1-4.3, and the
results for p = 1000 with the three scenarios are summarized in Tables 4.4-4.6. In terms of
estimation of B and F (·), the naive method produces biased results, and the finite sample
bias increases as the degree of measurement error increases; the proposed methods greatly
outperform the naive approach, yielding results that are fairly close to those produced
from the reference method by using the true measurements of the covariates. Agreeing
with the phenomenon we observed in the literature of measurement error models, the
standard errors associated with the proposed methods are larger than those obtained from
the naive method, which is the price paid to correct biases induced from the measurement
error in covariates. While the differences for estimation of h and d are not very striking
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between the naive method and our proposed methods, our approaches perform better than
the naive approach.

In summary, in the presence of measurement error, the naive method yields unsatisfac-
tory results. The proposed methods successfully correct the measurement error effects for
various settings.

4.5.2 Analysis of ACTG 175 Dataset

We implement the proposed method to analyze the AIDS Clinical Trials Group (ACTG)
175 data which were discussed by Hammer et al. (1996). The ACTG 175 study was a
double-blind randomized clinical trial which evaluated the HIV treatment effects. The
dataset is available in R package “speff2trial”. The dataset contains measurements
on 26 variables for 2139 individuals; these variables are age, wtkg, hemo, homo, drugs,
karnof, oprior, z30, zprior, preanti, race, gender, str2, strat, symptom, treat,
offtrt, cd40, cd420, cd496, r, cd80, cd820, cens, days and arms. Since the variable
cd496 contains missing values and r is its missing indicator, so we remove those two
variables. In addition, we remove variables zprior and treat due to that zprior is the
constant 1 for all subjects and treat indicates whether or not the subject received the
zidovudine treatment, overlapping with arms. As a result, in addition to the survival time
days and the censoring indicator cens, we have p = 20 covariates in the dataset where
CD4 is error-prone. The censoring rate of this dataset is approximately 75.6%.

Fourty-four subjects were measured once for the CD4 counts at the baseline, while
2095 subjects had two replicated baseline measurements of CD4 counts. As discussed in
Yi (2017, Section 3.6.4), let X denote log(CD4 count + 1). To implement the proposed
method, we consider the measurement error model (4.8) due to the availability of repeated
measurements. Consequently, based on the discussion of Scenario II in Section 4.1.3, the
estimates of Σε and ΣX∗ are given by Σ̂ε = 0.035 and Σ̂X∗ = 0.114, respectively, yielding
L̂ = 0.693 as indicated by (4.12). In this study, we consider the entire data with error

correction by L̂. In addition to X, let Z denote the vector of the remaining 19 covariates.

Consequently, we let U =
(
L̂X, Z>

)>
denote a 20-dimensional vector of covariates to be

implemented with the proposed methods.

The naive method and the proposed method give d̂ = 2, suggesting that there are
two directions in the central space, say β1 and β2. We first present the scatter plots of
the survival time Yi and β̂>k Ui with k = 1, 2 in Figure 4.1. The naive method and the
proposed method show similar patterns but the scatter plot based on naive method seems
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more variable than that of the proposed method. We also examine the estimated functions
1 − F̂ (·) for subjects i = 1, 7 and 23, and the curves are displayed in Figure 4.2. It is
seen that the estimated curves based on the naive and the proposed methods have similar
patterns.

4.5.3 Analysis of NKI Breast Cancer Data

We now implement our proposed method to analyze the breast cancer data collected by
the Netherlands Cancer Institute (NKI) (van de Vijver et al. 2002). Tumor information
from 295 women with breast cancer was collected from the fresh-frozen-tissue bank of the
Netherlands Cancer Institute. Tumors of those patients were primarily invasive breast
cancer carcinoma that were about 5 cm in diameter. Patients at diagnosis were 52 years or
younger and the diagnosis was done from 1984 to 1995. Of all those patients, 79 patients
died before the study ended, yielding approximately the 73.2% censoring rate. For each
tumor of a patient, about 25000 gene expressions were collected.

Since measurement error in gene expressions is a typical feature (Rocke and Durbin
2001), it is imperative take into account of the measurement error effects when estimating
active set I and the central space. We treat the log intensities of gene expression values
as the covariates and implement the proposed method in Section 4.4 to analyze the data.
Because this dataset contains no information to characterize the degree of measurement
error that is accompanying with the gene expressions, here we conduct sensitivity analyses
to investigate the measurement error effects on analysis results. Let Σ be the covariance
matrix of the gene expressions. For sensitivity analyses, we consider Σ + Σe to be the
covariance matrix for the measurement error model (4.39), where Σe is the diagonal matrix
with diagonal elements being a common value σ2

e , which is specified as σ2
e = 0.152, 0.552,

or 0.752 to feature increasing degrees of measurement error in those gene expressions.

We first use (4.37) to determine an estimated active set Î which contains p̃ =
[

79
log(79)

]
=

18 response-associated gene expressions, including NM 016359, NM 003748, AA555029 RC,
AL080059, AL137718, NM 020974, NM 002073, NM 004994, NM 003875, NM 015984, X05610,
NM 006931, NM 002916, NM 001282, Contig2399 RC, NM 018354, NM 003862, and NM 000599.
Based on an estimated active set Î and the proposed method in Section 4.4.3, the struc-
tural dimension d is suggested to be d̂I = 1, and the estimate B̂I = β̂1 of a basis BI is
obtained to be one direction in the central space. In addition, we apply the naive method
to analyze the data. In Figure 4.3, we display four scatter plots of Y and β>1 X which are
obtained from the proposed method with different degrees of measurement error assumed,
together with the naive method. The results obtained from the proposed method with dif-
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ferent degrees of measurement error show similar patterns of curves, but the curve based
on the naive method tends to be linear.
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Figure 4.1: Scatter plots of survival time Y and β>j U with j = 1, 2. The left panel is
β>1 U and the right panel is β>2 U . The first row with black boxes (�) is obtained from the
naive approach, and the second row with red triangles (4) is obtained from the proposed
method.
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Chapter 5

Semiparametric Methods for
Left-Truncated and Right-Censored
Survival Data with Covariate
Measurement Error

5.1 Notation and Model

For an individual in the target disease population, let ξ be the calendar time of the recruit-
ment (e.g., the recruitment starts right at the hospital discharge) and let u and r denote
the calendar time of the initiating event (e.g., hospital admission) and the failure event

(e.g., death), respectively, where u < r, and u < ξ < r. Let T̃ = r − u be the failure

time (e.g., the time length between the hospital admission and the failure), Ã = ξ − u be
the truncation time (e.g., the time length between the hospital admission and the hospi-

tal discharge). Let X̃ and Z̃ be the associated covariates of dimensions p × 1 and q × 1,

respectively, and write Ṽ = (X̃>, Z̃>)>. Let h(a) be the probability density function of

Ã which is unknown, and H(a) =
∫ a

0
h(u)du be the corresponding distribution function.

Let f(t) and S(t) be the density function and the survivor function of the failure time T̃ ,
respectively.

Consistent with the notation considered by Wu et al. (2018) and Chen (2019a), for an

individual with T̃ ≥ Ã, we let (A, T, V ) denote
(
Ã, T̃ , Ṽ

)
to indicate such an individual is

eligible for the recruitment so that measuring (A, T, V ) is possible. If T̃ < Ã, then such an
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individual is not included in the study to contribute any information. We define C as the
censoring time for a recruited subject. Let Y = min{T,A + C} be the observed time and
let ∆ = I(T ≤ A + C) be the indicator of a failure event. Figure 1.1 gives an illustration
of the relationship among those variables.

5.1.1 Cox Model and Inference

Suppose we have a sample of n subjects where for i = 1, · · · , n, (Yi, Ai,∆i, Vi) has the
same distribution as (Y,A,∆, V ), and (yi, ai, δi, vi) represents realizations of (Yi, Ai,∆i, Vi).

Consider the Cox model for survival times T̃ with the hazard function

λ(t|vi) = λ0(t) exp(v>i β),

where λ0 (·) is the unknown baseline hazards function, and β is the vector of parameters
of primary interest.

Let

LC =
n∏
i=1

f(yi|vi)δiS(yi|vi)1−δi

S(ai|vi)
(5.1)

be the conditional likelihood of Yi, given Vi = vi and Ai = ai, and let

LM =
n∏
i=1

S(ai|vi)dH(ai)∫∞
0
S(α|vi)dH(α)

(5.2)

be the marginal likelihood of Ai, given Vi = vi, where S(t|vi) = exp
{
−Λ0(t)exp

(
v>i β

)}
,

and Λ0(t) =
∫ t

0
λ0(u)du is the cumulative baseline hazards function.

Inference about β is then carried out by maximizing the likelihood function

L ∝ LC × LM =
n∏
i=1

f(yi|vi)δiS(yi|vi)1−δidH(ai)∫∞
0
S(α|vi)dH(α)

(5.3)

with respect to the model parameters.
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5.1.2 Measurement Error Model

In practice, covariates are often subject to measurement error. For i = 1, · · · , n, suppose
that Xi is measured with error with an observed value or surrogate X∗i , and that Zi is
precisely observed. We first consider the classical additive measurement error model

X∗i = Xi + εi, (5.4)

where εi is independent of {Xi, Zi, Ci, Ai, Ti}, and εi ∼ N(0,Σε) with covariance matrix
Σε. Thus, the moment generation function of εi is given by m(t) = exp(1

2
t>Σεt), and

E
{

exp
(
t>X∗i

)}
= m(t) exp (t>Xi).

Model (5.4) has been widely used in the literature (e.g., Carroll et al. 2006; Yi 2017).

In contrast to measurement error model (5.4), we also consider a more flexible model
where X∗i and Xi are characterized by

X∗i = Xi + Σεα + εi, (5.5)

where εi is characterized in (5.4). Model (5.5) describes a situation where X∗i and Xi

are different not only by a random amount εi but also systematically by a fixed amount
indicated by Σεα. Different values of α show various degrees of systematic differences
between Xi and X∗i . When α = 0, (5.5) recovers (5.4). Thus, model (5.5) covers a broader
class of settings than (5.4) does and also embraces (5.4) as a special case.

In the following two sections, we develop estimation methods with measurement error
effects accounted for, where the measurement error model is given by (5.5). To highlight
the idea, we assume the parameters in (5.5) are known. Let W ∗

i = X∗i − Σεα. Then

E(W ∗
i |Xi) = E(X∗i − Σεα|Xi) = Xi (5.6)

and

E

{
exp

(
t>W ∗

i −
1

2
t>Σεt

)∣∣∣∣Xi

}
= exp

(
t>Xi

)
. (5.7)

5.2 Conditional Profile-Likelihood Method

5.2.1 Estimation Method

We begin with a simple perspective by examining the conditional likelihood LC , determined
by (5.1), which allows us to ignore modeling of the truncation times. Let `C = logLC .

113



Since `C contains the Xi whose measurements are unavailable, we want to modify `C to be
a new function, say `∗C , of the observed measurements and the model parameters so that
its conditional expectation equals to `C :

E(`∗C |X,Z,C,A,T) = `C , (5.8)

where the expectation is taken with respective to the conditional distribution of W given
{X,Z,C,A,T}, where X = {X1, · · · , Xn}, Z = {Z1, · · · , Zn}, C = {C1, · · · , Cn}, A =
{A1, · · · , An}, T = {T1, · · · , Tn}, and W = {X∗1 , · · · , X∗n}. Such a strategy is useful in
yielding an unbiased estimating function and is sometimes called the “corrected” likelihood
method or the insertion correction approach (e.g., Nakamura 1992; Yi and Lawless 2007;
Yi 2017, Chapter 2).

Noticing that the Xi appear in `C in linear and exponential forms, we define

`∗C =
n∑
i=1

[
δi log λ0(yi) + δi(w

∗
i
>βx + z>i βz)

−{Λ0(yi)− Λ0(ai)} exp(w∗i
>βx + z>i βz) {m(βx)}−1

]
, (5.9)

where w∗i and zi represent realizations of W ∗
i and Zi, respectively. It is easily seen that `∗C

satisfies (5.8).

To use (5.9) to derive an estimator of (βx, βz), we need to deal with the baseline hazard
function λ0 (·) and its cumulative function Λ0 (·). We discretize Λ0 (·) so that λ0 (·) has
a nonzero value if t = yi for i = 1, ..., n; otherwise, λ0(t) = 0. Let λi denote λ0(yi) for

i = 1, ..., n. Then Λ0(t) is taken as
n∑
i=1

I(yi 6 t)λi. Given βx and βz, we solve
∂`∗C
∂λi

= 0 for

i = 1, ..., n, which leads to an estimator of λi, given by

λ̂i =
δi

n∑
k=1

I(ak ≤ yi ≤ yk) exp
(
w∗k
>βx + z>k βz

)
{m(βx)}−1

for i = 1, ..., n; (5.10)

and the corresponding estimate of the cumulative baseline hazards function:

Λ̂0(t) =
n∑
i=1

I(yi ≤ t)λ̂i . (5.11)

Plugging (5.10) and (5.11) into (5.9) gives the function

̂̀∗
C =

n∑
i=1

[
δi log λ̂i + δi(w

∗
i
>βx + z>i βz)

−
{

Λ̂0(yi)− Λ̂0(ai)
}

exp(w∗i
>βx + z>i βz) {m(βx)}−1

]
. (5.12)
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An estimator of β, called the conditional estimator of β, is then obtained by maximizinĝ̀∗
C :

β̂ = argmax
β

̂̀∗
C . (5.13)

5.2.2 Asymptotic Results

Let β0 = (β>x0, β
>
z0)> denote the true value of β and let Θ denote the parameter space

of β. Consistent with others such as Huang et al. (2012), we assume that T̃i has a fi-

nite maximal support τ , where τ = sup
{
t : P (T̃i ≤ t) < 1

}
< ∞, implying that τ is

also a maximal support of truncation time. Let Ni(t) = ∆iI(Yi ≤ t) be the counting

process of the observed failure events for subject i. Let V ∗i =
(
W ∗
i
>, Z>i

)>
. Define

S(k)(u, β) = n−1
n∑
i=1

v∗⊗ki exp(v∗>i β)I(ai ≤ u ≤ yi) for k = 0, 1, 2, where a⊗2 means aa>

for the column vector a . Let S(k)(u, β) = E
[
V ∗⊗ki exp(V ∗>i β)I(Ai ≤ u ≤ Yi)

]
be the

expectation of S(k)(u, β). Using these symbols, we express (5.11) as

Λ̂0(t) =

∫ t

0

n∑
i=1

dNi(u)

n∑
i=1

exp(v∗>i β)I(ai ≤ u ≤ yi) {m(βx)}−1
. (5.14)

The following theorems, whose proofs are included in Appendix D.3, establish the
asymptotic properties of Λ̂0(t) and β̂.

Theorem 5.2.1 Under regularity conditions in Appendix D.1, we have that as n→∞,

sup
β∈Θ,t∈[0,τ ]

|Λ̂0(t)− Λ0(t)| a.s.−→ 0,

where Λ0(t) =
∫ t

0

{
S(0)(u, β)

}−1
m(βx)dP (∆i = 1, Yi ≤ u).

Theorem 5.2.2 Under regularity conditions given in Appendix D.1, the estimator β̂ ob-
tained from (5.13) has the following asymptotic properties:

(1) β̂
p−→ β0 as n→∞;

115



(2)
√
n
(
β̂ − β0

)
d−→ N(0,A−1

P BPA
−1
P ) as n→∞,

where

AP =

∫ τ

0

[{
S(2)(u, β0)

S(0)(u, β0)
−
(
S(1)(u, β0)

S(0)(u, β0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dE {Ni(u)} , (5.15)

BP = E

[∫ τ

0

{(
V ∗i −

S(1)(u, β0)

S(0)(u, β0)

)
+

(
Σεβx0

0q

)}
dNi(u)

−
∫ τ

0

exp (V ∗>i β0)I(Ai ≤ u ≤ Yi)

S(0)(u, β0)

{
V ∗i −

S(1)(u, β0)

S(0)(u, β0)

}
dE {Ni(u)}

]⊗2

,

0p×q represents a p× q matrix with all entries 0, and 0p stands for a p× 1 vector with all
entries 0.

5.3 Augmented Pseudo-Likelihood Method

Estimator β̂ obtained by (5.13) can be inefficient since it uses only the conditional likelihood
LC with the marginal likelihood LM ignored, as shown by the likelihood (5.3) formulated

in Section 5.1.1. Now we develop an augmented estimator to improve the efficiency of β̂
given by (5.13). The basic idea, driven by the form of the likelihood (5.3), is to include
the marginal likelihood LM for the truncation times in the estimation procedure.

5.3.1 Estimation Method

In addition to containing the distribution function H(·) of Ã, the marginal likelihood LM
in (5.2) involves the unobserved covariate Xi. We first construct a modified version of LM
to address the measurement error effects.

Let µX and ΣX be the mean vector and variance-covariance matrix of Xi, respectively.
Let W ∗

i = X∗i −Σεα as in (5.6), then model (5.5) gives that W ∗
i = Xi+εi with εi ∼ N (0,Σε),

yielding that

E(Xi|W ∗
i = w∗i ) = µX + (ΣW ∗ − Σε)

>Σ−1
W ∗(w

∗
i − µW ∗), (5.16)
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where µW ∗ and ΣW ∗ represent the mean and covariance matrix of W ∗
i , respectively; we let

x̃RC,i denote (5.16) for ease of notation. Using the method of moments, (5.16) is estimated
by

x̂i = µ̂W ∗ +
(

Σ̂W ∗ − Σε

)>
Σ̂−1
W ∗(w

∗
i − µ̂W ∗) (5.17)

with µ̂W ∗ = 1
n

n∑
i=1

w∗i and Σ̂W ∗ = 1
n−1

n∑
i=1

(w∗i − µ̂W ∗)(w∗i − µ̂W ∗)>.

As a result, replacing vi =
(
x>i , z

>
i

)>
with

(
x̂>i , z

>
i

)>
in likelihood function (5.2) gives

L∗M =
n∏
i=1

S(ai|x̂i, zi)dH(ai)∫∞
0
S(α|x̂i, zi)dH(α)

, (5.18)

where S(ai|x̂i, zi) = exp
{
−Λ0(ai) exp

(
x̂>i βx + z>i βz

)}
.

To use (5.18) for inference about β, we next estimate the distribution function H(·).
Directly applying the kernel estimation (Silverman 1978) to the observed truncation times
to estimate dH(·) is not suitable way since the observed truncation times form a biased
sample. Instead, we use the nonparametric maximum likelihood estimator (NPMLE) (e.g.,

Wang 1991) to estimate the distribution function of Ã. For a fixed parameter β, the
NPMLE of H(a) in (5.18) is given by

Ĥ(a) =

(
n∑
i=1

1

Ŝ(ai|x̂i, zi)

)−1 n∑
i=1

I(ai ≤ a)

Ŝ(ai|x̂i, zi)
, (5.19)

where Ŝ(ai|x̂i, zi) = exp
{
−Λ̂0(ai) exp

(
x̂>i β̂x + z>i β̂z

)}
, and Λ̂0(·) and β̂ are consistent

estimators of Λ0(·) and β, respectively, proposed in Section 5.2.

Then replacing H(a) by Ĥ(a) in (5.18) gives L̂∗M ; let ̂̀∗M = log L̂∗M , which is given by

̂̀∗
M =

n∑
i=1

log
{
dĤ(ai)

}
−

n∑
i=1

Λ̂0(ai) exp
(
x̂>i βx + z>i βz

)
−

n∑
i=1

log

[∫ ∞
0

exp
{
−Λ̂0(α) exp

(
x̂>i βx + z>i βz

)}
dĤ(α)

]
. (5.20)

Finally, we consider the pseudo-likelihood function

̂̀∗ = ̂̀∗
C + ̂̀∗M ; (5.21)
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maximizing ̂̀∗ with respect to β gives an estimator of β:

β̃ = argmax
β

(̂̀∗C + ̂̀∗M), (5.22)

which is called a pseudo-likelihood estimator of β.

5.3.2 Asymptotic Results

Let

µ (x̃RC,i, zi) =

∫ τ

0

exp
{
−Λ0(u) exp(x̃>RC,iβx0 + z>i βz0)

}
dH(u). (5.23)

Let N (t) = P (∆i = 1, Yi ≤ t), S(ξ|x̃RC, z) = exp
{
−Λ0(ξ) exp(x̃>RCβx0 + z>βz0)

}
, and

ψi(β0|x̃RC, z) =

∫ τ

0

∫ τ

0

S(ξ|x̃RC, z)

{
dNi(u)

S(0)(u, β0)

−
dN (u) exp

(
w∗i
>βx0 + z>i βz0

)
I(ai ≤ u ≤ yi)

{S(0)(u, β0)}2

}
m(βx0)

× exp
(
x̃>RCβx0 + z>βz0

)
dH(ξ) + op (1) . (5.24)

Let G(a, v̂) denote the joint distribution of Ai and V̂i where V̂i =
(
X̃>RC,i, Z

>
i

)>
. Define

Ψ (x∗i , x̃RC,i, zi, ai, yi)

=

∫ τ

0

{
v∗i −

S(1)(u, β0)

S(0)(u, β0)
+

(
Σεβx0

0q

)}
dNi(u)

−
∫ τ

0

exp
(
v∗>i β0

)
I(ai ≤ u ≤ yi)

S(0)(u, β0)

(
v∗i −

S(1)(u, β0)

S(0)(u, β0)

)
dE {Ni(u)}

−

[∫ ∞
−∞

∫ τ

0

∂

∂β

{
dNi(u)

S(0)(u, β0)
−
dN (u) exp

(
v∗>i β0

)
I(ai ≤ u ≤ yi)

S(0)(u, β0)2

}
m(βx0)

× exp
(
v̂>β0

)
I(u ≤ a ≤ τ)

]
dG(a, v̂)

+

[∫ ∞
−∞

∫ τ

0

{
1

µ (x̃RC, z)

∂

∂β
ψi(β0|x̃RC, z)

−∂µ (x̃RC, z)

∂β

1

µ2 (x̃RC, z)
ψi(β0|x̃RC, z)

}
dG(a, v̂)

]
− ∂

∂β
Λ0(ai) exp

(
v̂>i β0

)
− 1

µ (x̃RC,i, zi)

∂

∂β
µ (x̃RC,i, zi) , (5.25)
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and

AM = E

[
∂2

∂β∂β>
Λ0(Ai) exp

(
V̂ >i β0

)

+
{
µ
(
X̃RC,i, Zi

)}−2

µ
(
X̃RC,i, Zi

) ∂ {µ(X̃RC,i, Zi

)}2

∂β∂β>

−

∂µ
(
X̃RC,i, Zi

)
∂β

⊗2

 . (5.26)

The following theorem shows the asymptotic results of β̃; the proof is placed in Ap-
pendix D.4.1.

Theorem 5.3.1 Under regularity conditions given in Appendix D.1, estimator β̃ obtained
from (5.22) has the following properties:

(1) β̃
p−→ β0 as n→∞;

(2)
√
n
(
β̃ − β0

)
d−→ N(0,A−1BA−1) as n→∞;

where B = E(Ψ⊗2
i ) with Ψi = Ψ

(
X∗i , X̃RC,i, Zi, Ai, Yi

)
, and A = AP + AM with AP and

AM determined by (5.15) and (5.26), respectively.

The following theorem compares the efficiency between the estimators β̂ and β̃ whose
proof is given in Appendix D.4.2.

Theorem 5.3.2 Under regularity conditions given in Appendix D.1, the estimator β̃ ob-
tained from (5.22) is more efficient than the estimator β̂ determined by (5.13). That is,

var
(
β̂
)
− var

(
β̃
)

is a positive definite matrix.
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5.4 Inference with Main/Validation Data

5.4.1 Estimation of Parameters for Measurement Error Model

In practice, the covariance matrix Σε and parameter α for the measurement error model
(5.5) are often unknown, and they need to be estimated from additional data sources. First,
we comment that model (5.5) and model (5.4) have different requirements of data sources
in order to estimate associated model parameters. The availability of additional data for
estimation of parameters associated with (5.4) does not necessarily ensure estimability of
parameters for model (5.5). To see this, suppose we have replicates of Xi with the Wij

being the ni repeated measurements for j = 1, · · · , ni and i = 1, · · · , n. Such data are
sufficient for estimation covariance matrix Σε if they follow model (5.4):

Wij = Xi + εij,

where the εij are independent of {Xi, Zi, Ci, Ai, Ti} and follow a distribution with mean
zero and covariance matrix Σε. Using the method of moments, we estimate Σε by

Σ̂ε =

n∑
i=1

ni∑
j=1

(
Wij − W̄i·

) (
Wij − W̄i·

)>
n∑
i=1

(ni − 1)
, (5.27)

where W̄i· =
1
ni

ni∑
j=1

Wij. However, if the replicates Wij follow model (5.5) instead, i.e.,

Wij = Xi + Σεα + εij,

then covariance Σε can still be estimated by (5.27), but parameter α is not estimable using
the replicate Wij.

To estimate the parameters in model (5.5), we assume the availability of a validation
sample. LetM and V denote the subject sets for the main study and the external validation
study containing n and m subjects, respectively, whereM and V do not overlap. That is,
the available data contain measurements {(yi, ai, δi, x∗i , zi) : i ∈M} from the main study
and {(x∗i , zi, xi) : i ∈ V} from the validation sample. Hence, for the measurement error
model, we have

X∗i = Xi + Σεα + εi
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for i ∈ M ∪ V , where the εi are independent and identically distributed with mean zero
and unknown covariance matrix Σε, and are independent of {Xi, Zi, Ci, Ai, Ti}. We assume
that lim

n→∞
m
n

exists and is greater than 0, and let ρ denote this limit.

Estimation of α and Σε can be carried out using the least square regression method.
Write γ = Σεα and define

Q (γ) =
∑
i∈V

‖X∗i −Xi − γ‖2
2 (5.28)

where ‖v‖2
2 = v>v for a column vector v. Then solving

∂Q

∂γ
= 0

for γ yields

γ̂ =
1

m

(∑
i∈V

X∗i −
∑
i∈V

Xi

)
. (5.29)

For i ∈ V , let ei = X∗i −Xi − γ̂ be the residual. Since E
(
e>i ei

)
= m−1

m
Σε for i ∈ V , we

obtain that E

(∑
i∈V

e>i ei

)
= (m− 1) Σε, which yields the unbiased estimator of Σε:

Σ̂ε =
1

m− 1

∑
i∈V

e>i ei. (5.30)

Finally, since α = Σ−1
ε γ, we obtain an estimator of α:

α̂ = Σ̂−1
ε γ̂.

5.4.2 Two-Stage Estimation of Parameter for Survival Model

To estimate the parameter β, we carry out a two-stage estimation procedure. At the first
stage, we use (5.29) and (5.30) to, respectively, estimate γ and Σε for the measurement
error model, as described in Section 5.4.1. At the second stage, we estimate β using a
modified version of (5.12) or (5.21), given by

̂̀∗
val = ̂̀∗

val,C + ̂̀∗val,M , (5.31)
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where ̂̀∗val,C and ̂̀∗val,M are, respectively, ̂̀∗C and ̂̀∗M with the parameters of the measurement
error model (5.5) replaced by their estimates obtained in the first stage. That is,

̂̀∗
val,C =

∑
i∈M

[
δi log λ̂i + δi

{
(x∗i − γ̂)>βx + z>i βz

}
−
{

Λ̂0(yi)− Λ̂0(ai)
}

exp
{

(x∗i − γ̂)>βx + z>i βz
}
{m̂(βx)}−1

]
(5.32)

and

̂̀∗
val,M =

∑
i∈M

log
{
dĤval(ai)

}
−

n∑
i=1

Λ̂0(ai) exp
(
x̂>val,iβx + z>i βz

)
−
∑
i∈M

log

[∫ ∞
0

exp
{
−Λ̂0(α) exp

(
x̂>val,iβx + z>i βz

)}
dĤval(α)

]
,

where m̂(βx) = exp
(

1
2
β>x Σ̂εβx

)
, x̂val,i = µ̂W ∗ +

(
Σ̂W ∗ − Σ̂ε

)>
Σ̂−1
W ∗(w

∗
i − µ̂W ∗), and

Ĥval(a) =

(
n∑
i=1

1

Ŝ(ai|x̂val,i, zi)

)−1 n∑
i=1

I(ai ≤ a)

Ŝ(ai|x̂val,i, zi)
.

By analogy to (5.13) and (5.22), two estimators of β can then be obtained by maximizing
(5.32) and the pseudo-likelihood (5.31), respectively. That is,

β̂val = argmax
β

̂̀∗
val,C , (5.33)

and
β̃val = argmax

β
(̂̀∗val,C + ̂̀∗val,M) (5.34)

are two estimators of β.

5.4.3 Asymptotic Properties

We now explore the asymptotic results for the two estimators of β described in Section 5.4.2;
the proofs are placed in Appendix D.5.
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Let ζi be the indicator whether or not subject i belongs to the validation sample V ,
i.e., ζi = 1 if i ∈M and ζi = 0 if i ∈ V . Let

Φ (x∗i , x̃RC,i, zi, yi, ai) =

∫ τ

0

{
v∗i −

S(1)(u, β0)

S(0)(u, β0)
+

(
Σεβx0

0q

)}
dNi(u)

−
∫ τ

0

exp
(
v∗>i β0

)
I(ai ≤ u ≤ yi)

S(0)(u, β0)

(
v∗i −

S(1)(u, β0)

S(0)(u, β0)

)
dE {Ni(u)} .

Define

Bval1,i =
√

1 + ρζiΦ
(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+

√
1 + ρ

ρ
E {Ni(τ)} (1− ζi)

×
[{(

−1
0

)
+

1

S(0) (u; β0)

∂S(1) (u; β0)

∂γ

}
(X∗i −Xi)

+
mβx
m− 1

{
εiε
>
i − (m− 1)Σε

}]
. (5.35)

Let

Eval,1 = E

[
∂

∂β

∫ τ

0

dN (u)
1

{S(0)(u; β0)}2

∂S(0)(u; β0)

∂γ

×m(βx0) exp
{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ Ai ≤ τ)

]
,

ΨM1

(
x∗i , X̃RC,i, zi, yi, ai

)
=

∂

∂β

[∫ ∞
−∞

∫ τ

0

{
dNi(u)

S(0)(u, β0)
−
dN (u) exp

(
v∗>i β0

)
I(ai ≤ u ≤ yi)

{S(0)(u, β0)}2

}
m(βx0)

× exp
(
v̂>β0

)
I(u ≤ a ≤ τ)

]
dG(a, v̂),

and

ϕval,i =

[√
1 + ρ

ρ
(X∗i −Xi)

∫ τ

0

∫ τ

0

−

{
S(ν|x̃RC, z)

dN (t)

{S(0)(t; β0)}2

∂S(0)(t; β0)

∂γ
m(βx0)

× exp
(
x̃>RCβx0 + z>βz0

)
dH(ν)

}
+
√

1 + ρψi(β0|x̃RC, z)
]
.
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Define

Bval2,i = −
√

1 + ρζiΨM1

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+

√
1 + ρ

ρ
Eval,1(1− ζi)(X∗i −Xi), (5.36)

Bval3,i =

[∫ ∞
−∞

∫ τ

0

{
1

µ (x̃RC, z)

∂

∂β
ϕval,i −

∂µ (x̃RC, z)

∂β

1

µ2 (x̃RC, z)
ϕval,i

}]
dG(a, v̂),

and

ŨM,val,i = − ∂

∂β
Λ0(Ai) exp

(
V̂ >i βx0

)
− 1

µ
(
X̃RC,i, Zi

) ∂µ
(
X̃RC,i, Zi

)
∂β

.

Theorem 5.4.1 Under regularity conditions in Appendix D.1, we have that as n→∞,

(1) β̂val
p−→ β0;

(2)
√
n
(
β̂val − β0

)
d−→ N

(
0,A−1

P,valBP,valA
−1
P,val

)
,

where BP,val = E
{

(Bval1,i)⊗2}, and

AP,val =

∫ τ

0

[{
S(2)(u, β0)

S(0)(u, β0)
−
(
S(1)(u, β0)

S(0)(u, β0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dE {Ni(u)} . (5.37)

Theorem 5.4.2 Under regularity conditions in Appendix D.1, we have that as n→∞,

(1) β̃val
p−→ β0;

(2)
√
n
(
β̃val − β0

)
d−→ N

(
0,A−1

valBvalA
−1
val

)
,

where

Bval = E

{(
Bval1,i + Bval2,i + Bval3,i +

√
1 + ρζiŨM,val,i

)⊗2
}

; (5.38)
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Aval =

∫ τ

0

[{
S(2)(u, β0)

S(0)(u, β0)
−
(
S(1)(u, β0)

S(0)(u, β0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dE {Ni(u)}

+E

[
∂2

∂β∂β>
Λ0(Ai) exp

(
V̂ >i β0

)

+
{
µ
(
X̃RC,i, Zi

)}−2

µ
(
X̃RC,i, Zi

) ∂ {µ(X̃RC,i, Zi

)}2

∂β∂β>

−

∂µ
(
X̃RC,i, Zi

)
∂β

⊗2

 . (5.39)

Theorems 5.4.1 and 5.4.2 establish the asymptotic results for the two estimators β̂val
and β̃val. These results offer the basis of conducting inference about β such as calculating
confidence intervals or performing hypothesis testing. While both β̂val and β̃val are consis-
tent estimators of β, their efficiencies are different, as shown in the following theorem.

Theorem 5.4.3 Under regularity conditions given in Appendix D.1, the estimator β̃val
obtained from (5.34) is more efficient than the estimator β̂val determined by (5.33). That

is, var
(
β̂val

)
− var

(
β̃val

)
is a positive definite matrix.

5.5 Numerical Studies

We conduct simulation studies to assess the finite sample performance of the proposed
estimators under a variety of settings.

5.5.1 Design Setup

We consider the setting where the baseline hazards function is set as λ0(t) = 2t and

the truncation time Ã is generated from the exponential distribution with mean 10. Let
β0 = (βx0, βz0)> be the true parameters where we set β0 = (0.3, 1)>. We consider a scenario

where Ṽ = (X̃, Z̃)> are generated from a bivariate normal distribution with mean zero and
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variance-covariance matrix Σ, which is set as

(
4 0.5

0.5 36

)
. Given λ0(t), (X̃, Z̃)> and β0,

the failure time T̃ is generated from the model:

λ
(
T̃ |X̃, Z̃

)
= 2T̃ exp

(
X̃βx0 + Z̃βz0

)
.

That is, T̃ is set as

√
− exp

(
X̃βx0 + Z̃βz0

)
log(1− U), where U is simulated from the

uniform distribution U(0, 1). For the measurement error process, we consider model (5.5)
with error ε ∼ N (0,Σε), where variance Σε is taken as 0.01, 0.5, and 0.75, respectively, and

α is set as 0 or 100. Therefore, the observed data (A, T, V ) is collected from (Ã, T̃ , Ṽ ) by

conditioning on that T̃ ≥ Ã. We repeatedly generate data these steps we obtain a sample
of a required size n = 200.

We consider three censoring rates, say 0%, 25%, and 50%, and let the censoring time C
be generated from the uniform distribution U(0, c), where c is determined by a given
censoring rate. Consequently, Y and ∆ are determined by Y = min {T,A+ C} and
∆ = I (T ≤ A+ C). 1000 simulations are run for each parameter setting. In Sections 5.5.2
and 5.5.3 we apply the estimation methods in Sections 5.2 and 5.3 with the parameters of

the measurement error model (5.5) assumed known. Let β̂ =
(
β̂x, β̂z

)
denote the estimator

derived from (5.13), and let β̃ =
(
β̃x, β̃z

)
stand for the estimator derived from (5.22).

5.5.2 Performance of Proposed Estimators: α and Σε are Known

We report the biases of estimates, the standard error (S.E.), and the mean squared errors
(MSE) under the two measurement error models. The results for the classical measurement
error model (i.e., model (5.5) with α = 0) are reported in Table 5.1, and the results for
model (5.5) with α = 100 are displayed in Table 5.2.

First, the censoring rate and measurement degree have noticeable impact on each es-
timation methods. As expected, biases and variance estimates increase as the censoring
rate increases. When the measurement degree increases, inference results obtained from
the corrected conditional profile likelihood method and the proposed method degrade, and
the impact of the measurement error degrees seems more obvious on the conditional profile
likelihood approach than our proposed method.

Within a setting with a given censoring rate and a measurement error degree, the three
methods perform differently. The naive method performs the worst and the proposed
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method performs the best. The naive method produces considerable finite sample biases
with coverage rates of 95% confidence intervals significantly departing from the nominal
level. Both the conditional profile likelihood approach and the proposed method output
satisfactory estimates with small finite sample biases and reasonable coverage rates of 95%
confidence intervals. Compared to the variance estimates produced by the naive approach,
the two methods which account for measurement error effects yield larger variance esti-
mates, and this is the price paid to remove biases in point estimators. This phenomenon
is typical in the literature of measurement error models. However, mean squared errors
produced by those two methods tend to be a lot smaller than those obtained from the naive
method. Finally, we see that the proposed method is more efficient than the conditional
profile likelihood method, which is evident from the comparisons of variance estimates for
these two methods. These results confirm theoretical result established by Theorem 5.3.2.

5.5.3 Assessment of Misspecification of Measurement Error Model

We now study the performance of our estimators when the measurement error model is
misspecified. Specifically, we consider two scenarios. In Scenario 1, the measurement error
model (5.4) is used to generate data, but we use model (5.5) to fit the data; in Scenario
2, we use (5.5) with α = 100 as the measurement error model to generate data, but we
use model (5.4) to fit the data. We report the average of biases, average of S.E. and mean

squared errors (MSE) for estimators β̂ and β̃, respectively, obtained from (5.13) and (5.22).
The results are displayed in Table 5.3 for Scenario 1 and Table 5.4 for Scenario 2.

Shown in Table 5.3, under Scenario 1 finite sample biases are comparable to those
reported in Table 5.1. In addition, S.E.s and MSEs are very close to those obtained from
the situation where the fitting model is correctly used. These results are not surprising
since the model we used to generate the data is nested in the model we used to fit the
data. On the other hand, in Scenario 2 where the model used to fit data differs from
the model for generating data, i.e., model misspecification is present, biased results are
produced, which is evident from Table 5.4. This simulation study also shows that with
model misspecification considered here, the proposed method performs better than the
corrected conditional likelihood approach.

5.5.4 Performance with Validation Data

In this subsection, we evaluate the performance of the proposed method in Section 5.4 for
situations where the main study and the validation study are available; the data from the
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main study are generated as in Section 5.5.1, and the external validation data with size
|V| = 100 are also generated independently following the procedure in Section 5.5.1, where
the true parameter values of the measurement error model (5.5) are α = 100 and Σε =
0.010, 0.500, or 0.750, respectively, corresponding to increasing degrees of measurement
error.

We first apply the estimation procedure described in Section 5.4.1 to estimate α and
Σε. Corresponding to Σε = 0.010, 0.500, and 0.750, we obtain estimates of Σε: Σ̂ε = 0.010,
0.497, and 0.743, respectively, with the corresponding standard errors 0.001, 0.035 and
0.051; and the corresponding estimates of α are 100.746, 101.154 and 101.492, with the
associated standard errors 7.062, 7.029, 7.030, respectively. Then we analyze the data from
the main study using the estimators β̂val and β̃val derived by (5.33) and (5.34), respectively,
and present the results in Table 5.5. The results uncover similar findings to those revealed
in Section 5.5.2 and demonstrate satisfactory finite sample performance of the proposed
estimators β̂val and β̃val. The results also confirm that β̃val is more efficient than β̂val.

5.5.5 Analysis of Worcester Heart Attack Study

In this section, we apply the proposed methods to analyze the data arising from the
Worcester Heart Attack Study (WHAS500), which are described in Section 1.6.4. Discussed
by Hosmer et al. (2008), a survival time was defined as the time since a subject was
admitted to the hospital. We are interested in studying survival times of patients who
were discharged alive from the hospital. Hence, a selection criterion was imposed that
only those subjects who were discharged alive were eligible to be included in the analysis.
That is, individuals were not enrolled in the analysis if they died before discharging from
the hospital, hence left truncation occurs. With such a criterion, a sample of size 461 was
available. In addition, without imposing such a selection criterion, the sample size in the
“original” dataset is 500, yielding a low proportion of truncation 1 − 461

500
= 7.8%. In this

data set, the censoring rate is 61.8%. To be more specific, the total length of follow-up
(lenfol) is the last event time (i.e., Yi = min (Ti, Ci)), the length of hospital stay (los) is
the truncation time (i.e., Ai), and the vital status at last follow-up (fstat) is δi. In our
analysis, the covariates include the body mass index (BMI) and the initial heart rate (HR)
of a patient. Since BMI is subject to measurement error (e.g., Rothman 2008), we let W
denote BMI and consider the measurement error model (5.5). Let Z denote HR.

In this data set, there is no additional data source, such as a validation subsample or
replicated measurements which is often required to describe the measurement error process
(e.g., Carroll et al. 2006; Yi 2017). To get around this and understand the impact of
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measurement error on estimation, we carry out sensitivity analyses. That is, given a range
of values for Σε and α, we estimate β using β̂ and β̃ via (5.13) and (5.22), respectively; and
we want to assess how sensitive the results are to different degrees of measurement error.
The results for α = 0 and 100 are shown in Figures 5.1 and 5.2. Interestingly, under model
(5.5) with α = 100, the two methods reveals different results. It is seen that while β̃ and

β̂ are fairly close in values, β̃ is much stabler than β̂. For example, β̃x and β̃z are fairly
unchanged as Σε > 0.6 and Σε < 0.4; on the contrary, β̂x has a decreasing trend while β̂z
is fluctuated as Σε changes. Relative to the differences between β̃x and β̂x, β̂z and β̃z are
close to each other and both estimators are more stable than the estimators of βx.

In Table 5.7, we further report the point estimates (EST), the standard errors and

p-values for the estimators β̂ and β̃ for the cases with Σε = 0.147, 0.526 and 0.858, re-
spectively, corresponding to minor, moderate and large measurement error. All the point
estimates produced by the two approaches are fairly close as observed from Figures 5.1
and 5.2. For each given method, the results are fairly stable, regardless of the degree of
measurement error. The conditional profile likelihood method finds no evidence to support
the significance of BMI and HR no matter what value α is specified for model (5.5). The

variance estimates of β̃z produced by the proposed method in Section 5.3 are noticeably
affected by the degree of systematic error, i.e., the value of α in model (5.5), and as a result,
the significance of HR is suggested differently by the proposed method in Section 5.3 under
different measurement error models.

5.6 Length-Biased Sampling Data with Measurement

Error

5.6.1 Length-Biased Sampling

In the foregoing development, we leave the distribution of left-truncation Ã discussed in
Section 5.1 unspecified. If we impose certain assumptions on Ã, the preceding develop-
ment carry through and the new results can then generalize existing work. For instance,
considered by Wang (1991) and De Uña-Alvarez (2004), suppose the incidence of disease
onset follows a stationary Poisson distribution, then the truncation time follows a uniform
distribution. Under this situation, the survival time in the prevalent cohort has a length-
biased sampling distribution, because the probability of a survival time is proportional to
the length of survival time (e.g., Huang and Qin 2011; Huang et al. 2012).
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Consistent with Huang et al. (2012), assume the following conditions for the calendar
time of the initial event:

(A1) The variable (T̃ , Ṽ ) is independent of u, where u is the time of the occurance of the
disease incidence.

(A2) Disease incidence occurs over calendar time at a constant rate.

Then given V = v, the conditional density function of (T,A) is

f (t|v)∫∞
0
αf(α|v)dα

(Lancaster 1990; Huang et al. 2012), and the survival time T has a length-biased condi-
tional density function:

tf (t|v)∫∞
0
αf(α|v)dα

.

Let Ci be the censoring time for subject i. Then we have Yi = min{Ti, Ai + Ci} and
∆i = min{Ti, Ai +Ci}. Noting that

∫∞
0
αf(α|v)dα =

∫∞
0
S (α|v) dα, by Assumptions (A1)

and (A2) and the independent censoringship, the likelihood function of (Yi, Ai,∆i) given
Vi can be constructed as

LLB ∝
n∏
i=1

f(yi|vi)δiS(yi|vi)1−δi∫∞
0
S(α|vi)dα

, (5.40)

which can be decomposed as the product of

LC,LB =
n∏
i=1

f(yi|vi)δiS(yi|vi)1−δi

S(ai|vi)

and

LM,LB =
n∏
i=1

S(ai|vi)∫∞
0
S(α|vi)dα

.

Compared with the likelihood function (5.3), the likelihood function (5.40) does not
involve the estimation procedure of density function h(a), which can be thought of as a de-
generate version of (5.3), agreeing with the standard view that the length-biased sampling
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is regarded as a special case of the LTRC data (e.g., Asgharian et al. 2002; Qin and Shen
2010). To develop estimating procedures using (5.40), we need only to deal with Λ0(·)
and β but not h(·) as (5.3). In the absence of covariate measurement error, many authors
developed methods to handle length-biased data. For example, Qin and Shen (2010) pro-
posed the weighted estimating equation approach, and Huang and Qin (2012) explored a
pseudo-profile likelihood method. Here, we further accommodate the feature of covariate
measurement error for length-biased data and develop a valid inference method.

5.6.2 Estimation of Parameters for Survival Data

From the decomposition of (5.40), we can see that the conditional likelihood LC,LB is the

same as those of (5.3). Hence, the estimator of the conditional likelihood, β̂LB, can be

derived from (5.13). To emphasize the different setting, let ̂̀∗C,LB denote the corrected
conditional log likelihood under the length-biased sampling, which leads to an estimator
of β:

β̂LB = argmax
β

̂̀∗
C,LB. (5.41)

On the other hand, for the marginal likelihood LM,LB, there is no density function h(·), so
we simply apply the regression calibration (5.17) to replace the error-prone covariate Xi.

Hence, the corrected marginal log likelihood, ̂̀∗M,LB, has a similar form to (5.20) except for
the estimate of H(·). As a result, an estimator of β is given by

β̃LB = argmax
β

(̂̀∗C,LB + ̂̀∗M,LB). (5.42)
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5.6.3 Asymptotic Results

Let µLB (x̃RC,i, zi) =
∫ τ

0
exp

{
−Λ0(u) exp(x̃>RC,iβx0 + z>i βz0)

}
du be the function of (x̃RC,i, zi).

Define

ΨLB (x∗i , x̃RC,i, zi, yi, ai)

=

∫ τ

0

{
v∗i −

S(1)(u, β0)

S(0)(u, β0)
+

(
Σεβx0

0q

)}
dNi(u)

−
∫ τ

0

exp
(
v∗>i β0

)
I(ai ≤ u ≤ yi)

S(0)(u, β0)

(
v∗i −

S(1)(u, β0)

S(0)(u, β0)

)
dE {Ni(u)}

−

[∫ ∞
−∞

∫ τ

0

∂

∂β

{
dNi(u)

S(0)(u, β0)
+
dN (u) exp

(
v∗>i β0

)
I(ai ≤ u ≤ yi)

S(0)(u, β0)2

}
m(βx0)

× exp
(
v̂>β0

)
I(u ≤ a ≤ τ)dG(a, v̂)

]
+

[∫ ∞
−∞

∫ τ

0

{
1

µLB (x̃RC, z)

∂

∂β
ψLB,i(β0|x̃RC, z)

−∂µLB (x̃RC, z)

∂β

1

µ2
LB (x̃RC, z)

ψLB,i(β0|x̃RC, z)

}
dG(a, v̂)

]
− ∂

∂β
Λ0(ai) exp

(
v̂>i β0

)
− 1

µLB (x̃RC,i, zi)

∂µLB (x̃RC,i, zi)

∂β
,

where ψLB,i(β0|x̃RC, z) is similarly defined by (5.24) with the integral relative to dH(·)
removed, i.e.,

ψLB,i(β0|x̃RC, z) =

∫ τ

0

∫ τ

0

S(ξ|x̃RC, z)

{
dNi(u)

S(0)(u, β0)

−
dN (u) exp

(
w∗i
>βx0 + z>i βz0

)
I(ai ≤ u ≤ yi)

{S(0)(u, β0)}2

}
m(βx0)

× exp
(
x̃>RCβx0 + z>βz0

)
dξ + op (1) .

We now establish the following results whose proof is deferred to Appendix D.6.

Theorem 5.6.1 Under regularity conditions given in Appendix D.1, we have that n→∞,

(1) β̃LB
p−→ β0;
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(2)
√
n
(
β̃LB − β0

)
d−→ N(0,A−1

LBBLBA
−1
LB),

where BLB = E(Ψ⊗2
LB,i) with ΨLB,i = ΨLB

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
, and

ALB

=

∫ τ

0

[{
S(2)(u, β0)

S(0)(u, β0)
−
(
S(1)(u, β0)

S(0)(u, β0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dE {Ni(u)}

+E

[
∂2

∂β∂β>
Λ0(Ai) exp

(
V̂ >i β0

)

+
{
µLB

(
X̃RC,i, Zi

)}−2

µLB
(
X̃RC,i, Zi

) ∂ {µLB (X̃RC,i, Zi

)}2

∂β∂β>

−

∂µLB
(
X̃RC,i, Zi

)
∂β

⊗2

 .

5.6.4 Simulation Study

To show the numerical performance of estimator β̃LB in contrast to β̃ which is obtained by
(5.22), we conduct a simulation study using the setting in Section 5.5.1 with the distribution
of truncation times taken as the uniform distribution UNIF[0, 1] and α is set as 0. In

addition to β̃LB from (5.42), we also report the performance of the naive estimator and

β̂LB determined by (5.41). The results are reported in Table 5.6.

Simulation results show that for different Σε and censoring rates, our proposed meth-
ods yield satisfactory results, and β̃LB is more efficient than β̂LB. The naive estimator
incurs considerable biases. The results in Table 5.6 are comparable with those reported in
Section 5.5.
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Figure 5.1: The estimator of βx versus variance Σε for sensitivity analysis. Solid line is a
curve of β̃x from the proposed pseudo-likelihood estimator (5.22); dash line is a curve of

β̂x from the conditional likelihood estimator (5.13). Left panel is α = 0 and right panel is
α = 100.
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Figure 5.2: The estimator of βz versus variance Σε for sensitivity analysis. Solid line is a
curve of β̃z from the proposed pseudo-likelihood estimator (5.22); dash line is a curve of

β̂z from the conditional likelihood estimator (5.13). Left panel is α = 0 and right panel is
α = 100.
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Table 5.1: Simulation results under measurement error model (5.5) with α = 0

Σε cr Method Estimator of βx Estimator of βz

Bias S.E. MVE MSE CP (%) Bias S.E. MVE MSE CP (%)
0.01 0% Naive -0.104 0.041 0.036 0.013 20.2 0.114 0.068 0.049 0.014 60.8

Conditional
(
β̂
)

0.006 0.068 0.063 0.005 94.0 0.027 0.106 0.105 0.012 92.9

Full
(
β̃
)

0.010 0.063 0.062 0.004 94.4 0.029 0.098 0.097 0.010 94.1

25 % Naive 0.118 0.035 0.023 0.015 18.0 0.106 0.062 0.032 0.012 52.1

Conditional
(
β̂
)

0.002 0.047 0.047 0.002 95.3 0.018 0.076 0.076 0.006 94.9

Full
(
β̃
)

0.003 0.046 0.045 0.002 94.6 0.018 0.075 0.071 0.006 93.3

50% Naive 0.108 0.051 0.033 0.016 8.7 0.150 0.069 0.043 0.025 33.7

Conditional
(
β̂
)

0.002 0.061 0.058 0.004 94.2 0.017 0.098 0.095 0.010 93.0

Full
(
β̃
)

0.007 0.057 0.055 0.003 93.6 0.027 0.097 0.093 0.010 93.3

0.5 0% Naive 0.124 0.039 0.019 0.018 6.2 0.133 0.061 0.052 0.019 45.1

Conditional
(
β̂
)

0.024 0.052 0.048 0.003 93.2 0.026 0.076 0.071 0.006 94.6

Full
(
β̃
)

0.001 0.045 0.043 0.002 96.9 0.017 0.067 0.057 0.005 95.4

25 % Naive 0.124 0.043 0.035 0.018 7.9 0.132 0.066 0.056 0.019 55.2

Conditional
(
β̂
)

0.026 0.058 0.055 0.004 93.9 0.025 0.083 0.080 0.008 93.7

Full
(
β̃
)

0.003 0.054 0.046 0.002 94.6 0.015 0.082 0.079 0.007 94.0

50% Naive 0.132 0.053 0.032 0.023 10.1 0.142 0.073 0.043 0.023 25.1

Conditional
(
β̂
)

0.031 0.072 0.068 0.006 93.4 0.033 0.100 0.099 0.011 93.6

Full
(
β̃
)

0.007 0.057 0.054 0.003 94.4 0.026 0.077 0.075 0.009 96.0

0.75 0% Naive 0.115 0.038 0.037 0.016 10.6 0.112 0.053 0.052 0.014 37.5

Conditional
(
β̂
)

0.040 0.057 0.056 0.005 93.8 0.036 0.078 0.077 0.007 93.0

Full
(
β̃
)

-0.018 0.053 0.041 0.002 95.0 -0.001 0.066 0.064 0.004 94.6

25 % Naive 0.126 0.042 0.035 0.020 8.2 0.126 0.061 0.059 0.018 43.0

Conditional
(
β̂
)

0.042 0.067 0.064 0.006 93.9 0.044 0.090 0.088 0.010 93.7

Full
(
β̃
)

-0.015 0.055 0.048 0.003 94.4 0.003 0.077 0.073 0.006 94.2

50% Naive 0.135 0.047 0.044 0.020 10.7 0.135 0.056 0.051 0.021 22.4

Conditional
(
β̂
)

0.040 0.094 0.080 0.008 93.2 0.045 0.106 0.084 0.013 95.0

Full
(
β̃
)

-0.013 0.058 0.055 0.003 97.4 0.009 0.088 0.080 0.008 95.8
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Table 5.2: Simulation results under measurement error model (5.5) with α = 100

Σε cr Method Estimator of βx Estimator of βz

Bias S.E. MVE MSE CP (%) Bias S.E. MVE MSE CP (%)
0.01 0% Naive -0.109 0.040 0.034 0.014 55.4 0.112 0.065 0.052 0.017 57.2

Conditional
(
β̂
)

0.002 0.043 0.041 0.002 93.8 0.007 0.068 0.066 0.005 93.6

Full
(
β̃
)

-0.001 0.042 0.040 0.001 94.5 0.007 0.061 0.053 0.004 94.5

25% Naive 0.120 0.038 0.031 0.016 45.0 0.123 0.046 0.044 0.017 55.6

Conditional
(
β̂
)

-0.003 0.050 0.047 0.002 94.6 0.010 0.075 0.074 0.006 93.2

Full
(
β̃
)

0.002 0.047 0.047 0.002 93.0 0.010 0.074 0.055 0.006 94.2

50% Naive 0.112 0.056 0.045 0.016 60.4 0.125 0.037 0.035 0.017 47.0

Conditional
(
β̂
)

0.005 0.064 0.057 0.004 94.6 0.013 0.097 0.084 0.010 93.2

Full
(
β̃
)

0.004 0.057 0.050 0.003 94.7 0.021 0.081 0.080 0.007 93.7

0.5 0% Naive -0.115 0.041 0.038 0.015 55.8 -0.101 0.064 0.037 0.014 52.0

Conditional
(
β̂
)

0.028 0.048 0.047 0.003 93.4 0.028 0.074 0.070 0.006 93.0

Full
(
β̃
)

0.002 0.046 0.041 0.002 95.0 0.012 0.071 0.053 0.005 96.0

25% Naive -0.115 0.048 0.046 0.019 51.0 -0.117 0.040 0.035 0.015 45.6

Conditional
(
β̂
)

0.029 0.057 0.054 0.004 93.6 0.027 0.086 0.083 0.008 93.4

Full
(
β̃
)

0.005 0.055 0.047 0.002 95.2 0.017 0.080 0.078 0.007 95.4

50% Naive 0.129 0.046 0.044 0.019 52.2 0.141 0.094 0.032 0.029 37.4

Conditional
(
β̂
)

0.034 0.067 0.065 0.006 93.2 0.036 0.111 0.095 0.014 91.0

Full
(
β̃
)

0.010 0.057 0.053 0.003 96.0 0.030 0.097 0.094 0.010 93.2

0.75 0% Naive 0.116 0.037 0.037 0.015 37.3 0.118 0.050 0.032 0.016 29.2

Conditional
(
β̂
)

0.043 0.061 0.055 0.005 93.2 0.042 0.083 0.076 0.009 92.6

Full
(
β̃
)

-0.018 0.041 0.040 0.002 94.0 -0.001 0.067 0.054 0.004 95.8

25% Naive -0.111 0.050 0.049 0.015 56.2 0.151 0.077 0.041 0.029 44.0

Conditional
(
β̂
)

0.035 0.065 0.062 0.005 93.0 0.034 0.089 0.085 0.009 93.2

Full
(
β̃
)

-0.021 0.058 0.056 0.003 94.6 -0.003 0.080 0.071 0.006 93.2

50% Naive 0.126 0.055 0.048 0.019 59.0 0.165 0.085 0.079 0.035 25.4

Conditional
(
β̂
)

0.048 0.080 0.076 0.009 92.6 0.050 0.103 0.103 0.012 94.0

Full
(
β̃
)

-0.012 0.060 0.056 0.003 97.0 0.012 0.089 0.082 0.007 94.0
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Table 5.3: Simulation results with misspecified measurement error model under Scenario 1

Σε cr Method Estimator of βx Estimator of βz

Bias S.E. MVE MSE CP (%) Bias S.E. MVE MSE CP (%)

0.01 0% Conditional
(
β̂
)

0.003 0.043 0.041 0.002 92.2 0.014 0.071 0.066 0.005 93.8

Full
(
β̃
)

0.004 0.042 0.040 0.002 93.2 0.014 0.069 0.054 0.005 94.4

25% Conditional
(
β̂
)

0.003 0.050 0.047 0.003 92.2 0.023 0.080 0.075 0.007 92.8

Full
(
β̃
)

0.006 0.049 0.046 0.002 92.0 0.024 0.076 0.056 0.007 93.4

50% Conditional
(
β̂
)

0.008 0.062 0.057 0.004 92.6 0.027 0.095 0.089 0.009 92.8

Full
(
β̃
)

0.010 0.057 0.054 0.003 95.4 0.026 0.089 0.083 0.009 93.8

0.5 0% Conditional
(
β̂
)

0.027 0.050 0.047 0.003 91.6 0.026 0.073 0.070 0.006 94.0

Full
(
β̃
)

0.001 0.047 0.043 0.002 93.4 0.012 0.069 0.066 0.005 94.0

25% Conditional
(
β̂
)

0.026 0.058 0.054 0.004 91.0 0.028 0.080 0.079 0.007 93.8

Full
(
β̃
)

0.002 0.054 0.046 0.002 95.4 0.015 0.073 0.057 0.006 94.4

50% Conditional
(
β̂
)

0.024 0.068 0.064 0.005 92.8 0.034 0.104 0.096 0.012 91.8

Full
(
β̃
)

0.003 0.057 0.055 0.003 95.8 0.027 0.098 0.094 0.010 93.6

0.75 0% Conditional
(
β̂
)

0.044 0.055 0.055 0.005 90.4 0.045 0.078 0.076 0.008 92.0

Full
(
β̃
)

-0.017 0.052 0.049 0.002 94.0 0.001 0.068 0.064 0.005 93.4

25% Conditional
(
β̂
)

0.040 0.066 0.062 0.006 91.8 0.044 0.090 0.085 0.010 92.6

Full
(
β̃
)

-0.019 0.052 0.049 0.003 93.6 0.004 0.079 0.076 0.006 93.8

50% Conditional
(
β̂
)

0.044 0.083 0.075 0.009 92.0 0.039 0.111 0.102 0.014 93.4

Full
(
β̃
)

-0.012 0.058 0.055 0.003 96.0 0.005 0.090 0.088 0.008 95.0
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Table 5.4: Simulation results with misspecified measurement error model under Scenario 2

Σε cr Method Estimator of βx Estimator of βz

Bias S.E. MVE MSE CP (%) Bias S.E. MVE MSE CP (%)

0.01 0% Conditional
(
β̂
)

0.041 0.056 0.044 0.005 78.4 0.057 0.076 0.064 0.009 53.2

Full
(
β̃
)

0.038 0.044 0.043 0.003 86.6 0.060 0.071 0.060 0.009 85.0

25% Conditional
(
β̂
)

0.050 0.049 0.047 0.005 80.0 0.069 0.076 0.075 0.010 87.8

Full
(
β̃
)

0.048 0.049 0.046 0.005 82.6 0.069 0.075 0.074 0.010 87.6

50% Conditional
(
β̂
)

0.060 0.062 0.058 0.007 83.0 0.103 0.096 0.091 0.019 82.0

Full
(
β̃
)

0.061 0.061 0.056 0.007 72.0 0.101 0.092 0.090 0.019 80.6

0.5 0% Conditional
(
β̂
)

0.075 0.052 0.047 0.008 63.8 0.077 0.072 0.070 0.011 83.6

Full
(
β̃
)

0.033 0.048 0.043 0.003 90.4 0.053 0.070 0.065 0.008 87.8

25% Conditional
(
β̂
)

0.079 0.054 0.053 0.009 70.4 0.082 0.082 0.079 0.013 84.8

Full
(
β̃
)

0.040 0.048 0.045 0.004 91.4 0.070 0.080 0.075 0.012 85.6

50% Conditional
(
β̂
)

0.084 0.067 0.065 0.011 78.8 0.166 0.111 0.096 0.040 61.4

Full
(
β̃
)

0.049 0.056 0.056 0.006 77.8 0.100 0.098 0.095 0.020 64.8

0.75 0% Conditional
(
β̂
)

0.089 0.061 0.055 0.012 63.2 0.089 0.076 0.076 0.014 82.0

Full
(
β̃
)

-0.049 0.050 0.042 0.004 80.4 0.059 0.067 0.061 0.008 88.0

25% Conditional
(
β̂
)

0.093 0.066 0.062 0.013 70.0 0.093 0.088 0.085 0.016 83.8

Full
(
β̃
)

-0.050 0.050 0.047 0.005 82.4 0.067 0.074 0.072 0.011 87.8

50% Conditional
(
β̂
)

0.098 0.080 0.076 0.016 77.2 0.101 0.103 0.103 0.021 89.0

Full
(
β̃
)

0.053 0.055 0.045 0.006 78.2 0.090 0.089 0.087 0.016 87.8
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Table 5.5: Simulation results under measurement error model (5.5) with α = 100 in the
presence of validation data

Σε cr Method Estimator of βx Estimator of βz

Bias S.E. MVE MSE CP (%) Bias S.E. MVE MSE CP (%)
0.01 0% Naive 0.069 0.033 0.030 0.006 12.5 0.107 0.045 0.045 0.013 15.4

Conditional
(
β̂val

)
0.003 0.043 0.041 0.002 93.8 0.017 0.070 0.066 0.005 93.6

Full
(
β̃val

)
0.004 0.042 0.040 0.002 93.4 0.016 0.068 0.065 0.005 94.2

25% Naive 0.061 0.039 0.037 0.005 16.4 0.094 0.048 0.045 0.011 17.9

Conditional
(
β̂val

)
-0.003 0.050 0.047 0.003 92.6 0.008 0.075 0.074 0.006 94.2

Full
(
β̃val

)
0.002 0.045 0.043 0.002 95.6 0.015 0.074 0.055 0.006 94.2

50% Naive 0.117 0.040 0.040 0.015 15.0 0.106 0.050 0.048 0.014 11.2

Conditional
(
β̂val

)
0.009 0.064 0.057 0.004 91.2 0.013 0.097 0.089 0.010 93.2

Full
(
β̃val

)
0.005 0.057 0.057 0.003 97.0 0.019 0.090 0.085 0.008 92.4

0.5 0% Naive 0.145 0.020 0.021 0.022 3.4 -0.067 0.058 0.008 0.056 43.8

Conditional
(
β̂val

)
0.028 0.048 0.047 0.003 93.4 0.027 0.073 0.070 0.006 93.0

Full
(
β̃val

)
0.002 0.041 0.037 0.002 95.0 0.012 0.071 0.069 0.005 95.4

25% Naive 0.147 0.025 0.022 0.022 8.8 -0.103 0.060 0.059 0.014 58.0

Conditional
(
β̂val

)
0.029 0.057 0.054 0.004 93.6 0.027 0.086 0.080 0.008 93.6

Full
(
β̃val

)
0.005 0.047 0.045 0.002 95.0 0.017 0.080 0.078 0.007 95.4

50% Naive 0.142 0.046 0.040 0.022 24.4 -0.190 0.059 0.057 0.040 36.4

Conditional
(
β̂val

)
0.033 0.066 0.065 0.006 93.4 0.035 0.111 0.095 0.014 91.0

Full
(
β̃val

)
0.010 0.057 0.053 0.003 95.8 0.029 0.097 0.094 0.010 93.2

0.75 0% Naive -0.133 0.026 0.023 0.018 8.2 -0.113 0.053 0.053 0.016 46.0

Conditional
(
β̂val

)
0.042 0.061 0.055 0.006 93.2 0.041 0.083 0.076 0.009 92.8

Full
(
β̃val

)
-0.017 0.051 0.041 0.002 97.6 -0.001 0.067 0.054 0.004 94.0

25% Naive -0.137 0.025 0.024 0.019 10.6 -0.147 0.058 0.054 0.025 33.2

Conditional
(
β̂val

)
0.035 0.065 0.062 0.006 92.0 0.033 0.089 0.085 0.009 92.8

Full
(
β̃val

)
-0.021 0.047 0.057 0.002 93.8 -0.003 0.078 0.078 0.006 95.6

50% Naive -0.144 0.032 0.034 0.022 18.6 -0.239 0.055 0.051 0.060 18.4

Conditional
(
β̂val

)
0.048 0.080 0.076 0.009 92.6 0.050 0.103 0.103 0.013 94.2

Full
(
β̃val

)
-0.012 0.053 0.064 0.003 95.0 0.012 0.085 0.082 0.007 94.8
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Table 5.6: Simulation results with length-biased sampling

Σε cr Method Estimator of βx Estimator of βz

Bias S.E. MVE MSE CP (%) Bias S.E. MVE MSE CP (%)
0.01 0% Naive 0.085 0.037 0.018 0.010 19.4 0.084 0.055 0.053 0.008 66.1

Conditional
(
β̂LB

)
0.000 0.044 0.041 0.002 93.4 0.007 0.071 0.071 0.005 93.6

Full
(
β̃LB

)
-0.000 0.041 0.040 0.002 94.8 0.007 0.071 0.069 0.005 93.2

25% Naive 0.094 0.042 0.018 0.012 14.1 0.094 0.056 0.052 0.011 57.2

Conditional
(
β̂LB

)
0.003 0.057 0.054 0.003 93.0 0.009 0.093 0.090 0.009 94.4

Full
(
β̃LB

)
0.006 0.051 0.050 0.003 94.0 0.010 0.092 0.088 0.009 94.4

50% Naive 0.112 0.051 0.023 0.018 12.7 0.116 0.072 0.046 0.016 38.7

Conditional
(
β̂LB

)
0.002 0.081 0.077 0.007 93.0 0.025 0.136 0.126 0.019 93.6

Full
(
β̃LB

)
0.003 0.067 0.060 0.005 94.0 0.020 0.116 0.114 0.014 94.4

0.5 0% Naive 0.090 0.027 0.017 0.011 13.6 0.098 0.054 0.051 0.011 66.1

Conditional
(
β̂LB

)
0.029 0.048 0.047 0.003 93.6 0.030 0.075 0.073 0.007 93.0

Full
(
β̃LB

)
-0.000 0.038 0.036 0.001 97.0 0.004 0.071 0.069 0.005 96.0

25% Naive 0.100 0.041 0.029 0.013 11.8 0.108 0.056 0.053 0.013 54.1

Conditional
(
β̂LB

)
0.024 0.065 0.062 0.005 93.2 0.036 0.098 0.094 0.011 94.2

Full
(
β̃LB

)
-0.002 0.050 0.049 0.002 95.4 0.008 0.089 0.084 0.008 94.6

50% Naive 0.108 0.051 0.024 0.017 11.7 0.116 0.069 0.047 0.016 40.8

Conditional
(
β̂LB

)
0.036 0.096 0.090 0.010 93.6 0.051 0.140 0.136 0.022 94.0

Full
(
β̃LB

)
0.006 0.068 0.061 0.005 94.2 0.015 0.118 0.113 0.014 95.0

0.75 0% Naive 0.108 0.026 0.018 0.014 9.1 0.113 0.054 0.047 0.014 53.5

Conditional
(
β̂LB

)
0.044 0.056 0.056 0.005 92.4 0.044 0.087 0.079 0.010 92.0

Full
(
β̃LB

)
-0.019 0.037 0.037 0.002 95.4 -0.011 0.072 0.070 0.005 93.0

25% Naive 0.116 0.041 0.021 0.016 6.6 0.126 0.054 0.054 0.018 43.4

Conditional
(
β̂LB

)
0.042 0.073 0.073 0.007 93.4 0.045 0.105 0.102 0.013 94.6

Full
(
β̃LB

)
-0.017 0.046 0.038 0.002 95.0 -0.011 0.085 0.084 0.007 94.2

50% Naive 0.115 0.049 0.023 0.017 8.4 0.123 0.063 0.047 0.017 34.5

Conditional
(
β̂LB

)
0.065 0.128 0.121 0.021 93.8 0.081 0.176 0.168 0.038 94.2

Full
(
β̃LB

)
-0.008 0.067 0.066 0.005 94.0 0.004 0.119 0.113 0.014 96.4
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Table 5.7: Sensitivity analyses result of Worcester Heart Attack Study Data

Estimator β̂ Estimator β̃

α Σε EST S.E p-value EST S.E p-value

0 0.147 βx -0.098 0.081 0.229 -0.096 0.041 0.024
βz 0.016 0.018 0.201 0.016 0.017 0.398

0.526 βx -0.099 0.084 0.232 -0.096 0.042 0.025
βz 0.016 0.018 0.202 0.016 0.017 0.401

0.858 βx -0.101 0.085 0.235 -0.096 0.044 0.029
βz 0.016 0.018 0.203 0.016 0.017 0.401

100 0.147 βx -0.092 0.063 0.149 -0.092 0.019 2e-06
βz 0.016 0.011 0.123 0.016 0.003 4e-07

0.526 βx -0.093 0.065 0.150 -0.092 0.020 3e-06
βz 0.016 0.011 0.123 0.016 0.003 4e-07

0.858 βx -0.095 0.066 0.152 -0.092 0.020 4e-06
βz 0.016 0.011 0.124 0.016 0.003 4e-07
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Chapter 6

Model Selection and Model
Averaging for Analysis of Truncated
and Censored Data with
Measurement Error

6.1 Notation and Model

In this chapter, we adopt similar notation which has been defined in Chapter 5. Specifically,

as defined in Section 5.1, let T̃ , Ã, and Ṽ =
(
X̃>, Z̃>

)>
denote the failure time, the

truncation time, and the (p + q)-dimensional vector of covariates, respectively. Based on

the discussion in Section 5.1, for an individual with T̃ ≥ Ã, we let (A, T, V ) with V =(
X>, Z>

)>
denote

(
Ã, T̃ , Ṽ

)
to indicate such an individual is eligible for the recruitment

so that measuring (A, T, V ) is possible. If T̃ < Ã, then such an individual is not included in
the study to contribute any information. We define C as the censoring time for a recruited
subject. Let Y = min{T,A + C} be the observed time and let ∆ = I(T ≤ A + C) be the
indicator of a failure event. Figure 1.1 gives an illustration of the relationship among those
variables.
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6.1.1 Cox Model and Inference

Suppose that we have a sample of n subjects and that for i = 1, · · · , n, (Yi, Ai,∆i, Vi) has
the same distribution as (Y,A,∆, V ) and (yi, ai, δi, vi) represents realizations of (Yi, Ai,∆i, Vi).

Consider the Cox model for survival times T̃ whose hazard function is modeled as

λ(t|vi) = λ0(t) exp(v>i β), (6.1)

where λ0 (·) is an unknown baseline hazards function, and β is the vector of the parameters
that are of interest.

Let Λ0(t) =
∫ t

0
λ0(u)du be the cumulative baseline hazards function. Let F(t|vi) =

exp
{
−Λ0(t)exp

(
v>i β

)}
denote the survivor function of T̃ given the covariates and let

f(t|vi) = − d
dt
F(t|vi).

By Assumptions (C5) and (C6) in Appendix E.1, the likelihood function is given by

L ∝
n∏
i=1

f(yi|vi)δiF(yi|vi)1−δidH(ai)∫∞
0
F(u|vi)dH(u)

,

which can be equivalently re-written as the product of the conditional likelihood

LC =
n∏
i=1

f(yi|vi)δiF(yi|vi)1−δi

F(ai|vi)
(6.2)

and the marginal likelihood

LM =
n∏
i=1

F(ai|vi)dH(ai)∫∞
0
F(u|vi)dH(u)

. (6.3)

Discussion on this can be found in Wang et al. (1993), Huang et al. (2012) and Chen
(2019). In principle, estimation of the model parameters may proceed with maximizing
L ∝ LC × LM with respect to the model parameters.

6.1.2 Framework of Submodels

In specifying the model (6.1) we include all the covariates in the model without discretion;
irrelevant or unimportant covariates may be included in the model. To feature this, we
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consider a framework initiated by Hjort and Claeskens (2006), the so-called local model
misspecification framework.

Let Zi represent the vector of important covariates that are always being included in the
model, and let Xi represent the vector of covariates which may be subject to exclusion when
building a model. Write Xi = (Xi1, . . . , Xip)

> and Zi = (Zi1, . . . , Ziq)
>. Let β = (β>x , β

>
z )>

be a vector with dimension d = p + q, where βx is the parameter vector for which we
are unsure whether or not all of its components should be included in the model and βz
is the parameter vector which should be used in the model. Let the true value of β be

represented by β0 =
(
η>√
n
, β>z0

)>
, where η is a parameter, and η√

n
represents the degree of

the departure of the corresponding model from the null model β0 = (0, βz0) (Wang et al.,
2012; Wang et al. 2015).

Let S be the class of all subsets of {1, 2, · · · , p} which are increasingly ordered. For any
S ∈ S, let |S| denote the number of the elements in S. If |S| = 0, then we say that the set

S is null ; if |S| = p, then such S is called the full set. Let βS =
(
β>x,S, β

>
z,S

)>
denote the

parameter vector for the candidate model which corresponds to the covariates indexed by
S, with βx,S being an |S|-subvector of βx. Although covariate Zi is always included in the
model, the subscript S in βz,S is used to emphasize that this is the parameter under the
candidate model associated with S.

We now define a projection operator. For any S, let πS be an |S|×p matrix with element
0 or 1; in each row there is one and only one element which takes value 1 and in each column
there is at most one element taking value 1. More specifically, if S =

(
j1, j2, · · · , j|S|

)
with

1 6 j1 < j2 < · · · < j|S| 6 p, then the (k, jk) element of πS takes value 1 for k = 1, · · · , |S|;

other elements of πS take value 0. Let ΠS =

(
πS 0|S|×q

0q×p Iq×q

)
, where 0p×q is the p × q

matrix with entries zero, and Iq×q is the q × q identity matrix. Then applying ΠS to(
X>i , Z

>
i

)>
gives us the (|S|+ q)× 1 vector, ΠS

(
X>i , Z

>
i

)>
, which includes the covariates

in the candidate model S.

6.1.3 Measurement Error Model

In practice, covariates are often subject to measurement error. Suppose that covariate Xi

is measured with error, and X∗i is an observed value, or surrogate, of Xi. Suppose that
covariate Zi is precisely observed. We consider the widely considered measurement error
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model
X∗i = Xi + εi, (6.4)

where εi is independent of all other variables (e.g., Carroll et al. 2006; Yi 2017), and
εi ∼ N(0,Σε) with covariance matrix Σε. To highlight the idea, we assume that Σε is
known for now. Thus, the moment generation function of εi is m(t) = exp(1

2
t>Σεt), and

E
{

exp
(
t>X∗i

)}
= m(t) exp (t>Xi).

6.2 Methodology for the Correction of Measurement

Error Effects

6.2.1 Correction for Conditional Log-Likelihood Function

For any candidate model S, let LC,S denote the derived conditional likelihood function,
which, similar to the expression of LC in (6.2), leads to the conditional log-likelihood
function

`C,S =
n∑
i=1

[
δi log λ0(yi) + δi

{
(πSxi)

>βx + z>i βz
}

−{Λ0(yi)− Λ0(ai)} exp
{

(πSxi)
>βx + z>i βz

}]
,

showing that (πSXi)
>βx and exp

{
(πSXi)

>βx
}

are the only terms involving error-prone
covariates.

To correct for the measurement error effects, we first manipulate the measurement error
model (6.4) as

πSX
∗
i = πSXi + πSεi, (6.5)

where πSεi ∼ N
(
0, πSΣεπ

>
S

)
, yielding the moment generating function

mS(t) = E
{

exp
(
t>πSεi

)}
= exp

(
1

2
t>πSΣεπ

>
S t

)
.

Consequently,
E (πSX

∗
i |Xi) = πSXi (6.6)
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and

E

{
exp

(
β>x,SπSX

∗
i −

β>x,SπSΣεπ
>
S βx,S

2

)∣∣∣∣∣Xi

}
= exp

(
β>x,SπSXi

)
. (6.7)

Define

`∗C,S =
n∑
i=1

[
δi log λ0(yi) + δi

(
(πSx

∗
i )
> βx,S + z>i βz,S

)
− {Λ0(yi)− Λ0(ai)} exp

{
(πSx

∗
i )
> βx,S + z>i βz,S −

β>x,SπSΣεπ
>
S βx,S

2

}]
. (6.8)

Then combining (6.6) and (6.7) yields that

E
(
`∗C,S|Xi, Zi

)
= `C,S;

this property ensures that working with the function `∗C,S allows us to recover the infor-
mation carried by `C,S; `∗C,S is computable since all the relevant variables have available
measurements but `C,S is not due to its dependence on X.

Furthermore, with (β>x,S, β
>
z,S)> fixed, maximizing (6.8) with respect to λ0(yi), we derive

the estimated cumulative baseline function as

Λ̂0,S(t) =

∫ t

0

1
n

n∑
i=1

dNi(u)

m−1
S (βx,S)G

(0)
S (u, βx,S, βz,S)

, (6.9)

where Ni(u) = I (Yi 6 u), Yi(u) = I (Ai 6 u 6 Yi), and

G
(0)
S (u, βx,S, βz,S) =

1

n

n∑
i=1

Yi(u) exp
{

(πSx
∗
i )
> βx,S + z>i βz,S

}
. (6.10)

Finally, combining (6.9) and (6.8), we define

̂̀∗
C,S =

n∑
i=1

[
δi log λ̂0,S(yi) + δi

(
(πSx

∗
i )
> βx,S + z>i βz,S

)
−

(
Λ̂0,S(yi)− Λ̂0,S(ai)

)
exp

{
(πSx

∗
i )
> βx,S + z>i βz,S −

β>x,SπSΣεπ
>
S βx,S

2

}]
, (6.11)

on which the inference is based, as discussed in the following subsection.
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6.2.2 Augmented Pseudo-Likelihood Estimation

Similarly, the formulation of the marginal likelihood (6.3) for the candidate model S is

LM,S =
n∏
i=1

F(ai|πSxi, zi)dH(ai)∫∞
0
F(α|πSxi, zi)dH(α)

, (6.12)

where F(ai|πSxi, zi) = exp
[
−Λ0(ai) exp

{
(πSxi)

>βx,S + z>i βz,S
}]

. Noting that the marginal
likelihood (6.12) involves the unobserved covariate Xi, we now construct a modified version
of (6.12) to address the measurement error effects.

Let µX and ΣX be the mean vector and variance-covariance matrix of Xi, respectively.
Let X∗iS = πSX

∗
i as in (6.6), then model (6.5) gives that X∗iS = πSXi + πSεi with πSεi ∼

N
(
0, πSΣεπ

>
S

)
, yielding that

E(πSXi|X∗i,S = x∗i,S) = πSµX +
(
ΣX∗S

− Σε,S

)>
Σ−1
X∗S

(x∗i,S − µX∗S), (6.13)

where Σε,S = πSΣεπ
>
S , and µX∗S and ΣX∗S

represent the mean and covariance matrix of X∗i,S,
respectively.

We let x̃i,S denote (6.13) for ease of notation. Using the method of moments, (6.13) is
estimated by

x̂i,S = µ̂X∗S +
(

Σ̂X∗S
− Σε,S

)>
Σ−1
X∗S

(
x∗i,S − µ̂X∗S

)
(6.14)

with µ̂X∗S = 1
n

n∑
i=1

x∗i,S and Σ̂X∗S
= 1

n−1

n∑
i=1

(x∗i,S − µ̂X∗S)(x∗i,S − µ̂X∗S)>.

As a result, replacing πSxi with x̂i,S in likelihood function (6.12) gives

L∗M,S =
n∏
i=1

F(ai|x̂i,S, zi)dH(ai)∫∞
0
F(α|x̂i,S, zi)dH(α)

, (6.15)

where F(ai|x̂i,S, zi) = exp
{
−Λ0(ai) exp

(
x̂>i,Sβx,S + z>i βz,S

)}
.

To use (6.15) for inference about β, we need to estimate the distribution function H(·).
Directly applying the kernel estimation (Silverman 1978) to the observed truncation times
to estimate dH(·) is not suitable since the observed truncation times form a biased sample.
Instead, we use the nonparametric maximum likelihood estimator (NPMLE) (e.g., Wang

1991) to estimate the distribution function H(·) of Ã.
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For a fixed parameter β, the NPMLE of H(a) based on a candidate model S in (6.15)
is given by

ĤS(a) =

(
n∑
i=1

1

F̂(ai|x̂i,S, zi)

)−1 n∑
i=1

I(ai ≤ a)

F̂(ai|x̂i,S, zi)
,

where F̂(ai|x̂i,S, zi) = exp
{
−Λ̂0,S(ai) exp

(
x̂>i,Sβ̂x,CS + z>i β̂z,CS

)}
, Λ̂0,S(·) is given by (6.9),

and β̂CS =
(
β̂>x,CS, β̂

>
z,CS

)>
is determined by β̂CS = argmax

β

̂̀∗
C,S.

Then replacing H(a) in (6.15) with ĤS(a) gives the L̂∗M,S, and letting ̂̀∗M,S = log
(
L̂∗M,S

)
gives

̂̀∗
M,S =

n∑
i=1

log
{
dĤS(ai)

}
−

n∑
i=1

Λ̂0,S(ai) exp
(
x̂>i,Sβx + z>i βz

)
−

n∑
i=1

log

[∫ ∞
0

exp
{
−Λ̂0,S(α) exp

(
x̂>i,Sβx + z>i βz

)}
dĤS(α)

]
. (6.16)

Finally, the model parameter βS for the candidate model S can be estimated by

β̂S =
(
β̂>x,S, β̂

>
z,S

)>
= argmax

βS

(̂̀∗C,S + ̂̀∗M,S).

Immediately, when |S| = p, i.e., all the variables {Xi, Zi} are included in the model, we
have that πS = Ip×p and hence πSX

∗
i = X∗i , and therefore, (6.11) and (6.16), respectively,

become

̂̀∗
C =

n∑
i=1

[
δi log λ̂0(yi) + δi

(
x∗i
>βx + z>i βz

)
−
{

Λ̂0(yi)− Λ̂0(ai)
}

exp

{
x∗i
>βx + z>i βz −

β>x Σεβx
2

}]
, (6.17)

and

̂̀∗
M =

n∑
i=1

log
{
dĤ(ai)

}
−

n∑
i=1

Λ̂0(ai) exp
(
x̂>i βx + z>i βz

)
−

n∑
i=1

log

[∫ ∞
0

exp
{
−Λ̂0(α) exp

(
x̂>i βx + z>i βz

)}
dĤ(α)

]
, (6.18)
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where

Ĥ(a) =

(
n∑
i=1

1

F̂(ai|x̂i, zi)

)−1 n∑
i=1

I(ai ≤ a)

F̂(ai|x̂i, zi)
,

Λ̂0(t) =

∫ t

0

1
n

n∑
i=1

dNi(u)

m−1(βx)G(0) (u, βx, βz)
(6.19)

with

G(0) (u, βx, βz) =
1

n

n∑
i=1

Yi(u) exp

{(
x∗i
>, z>i

)( βx
βz

)}
, (6.20)

and

x̂i = µ̂X∗ +
(

Σ̂X∗ − Σε

)>
Σ−1
X∗ (x∗i − µ̂X∗) (6.21)

with µ̂X∗ = 1
n

n∑
i=1

x∗i and Σ̂X∗ = 1
n−1

n∑
i=1

(x∗i − µ̂X∗)(x∗i − µ̂X∗)>. Consequently, the estimator

of β based on the full dataset is

β̂full =
(
β̂>x,full, β̂

>
z,full

)>
= argmax

β

(̂̀∗
C + ̂̀∗M) .

6.3 Focused Information Criterion and Model Aver-

aging

In this section, we first examine the asymptotic properties for the estimators derived from
different candidate models. We then define the focus parameter and base on it to introduce
the selection criterion for a suitable model. Finally, we establish large sample properties
of model averaging estimators.
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6.3.1 Asymptotic Results for A Candidate Model

Given a candidate model S, we define

`∗P,S =
n∑
i=1

[
δi

{
(πSx

∗
i )
> βx,S + z>i βz,S

}
+

1

2
δi log {mS(βx,S)}

−δi log

{
n∑
j=1

exp
(

(πSx
∗
i )
> βx,S + z>i βz,S

)
I(aj ≤ yi ≤ yj)

}]
, (6.22)

which is related to `∗C,S in (6.8) so that `∗C,S − `∗P,S is free of β. We let `∗R,S denote this
difference, i.e., `∗C,S = `∗P,S + `∗R,S; the relevant detail is available in Wang et al. (1993).
Similarly, the partial log-likelihood function under the full model can be derived as

`∗P =
n∑
i=1

[
δi

{
x∗i
>βx + z>i βz

}
+

1

2
δi log {m(βx)}

−δi log

{
n∑
j=1

exp
(
x∗i
>βx + z>i βz

)
I(aj ≤ yi ≤ yj)

}]
, (6.23)

which is related to (6.17) in that their difference is free of β.

Let UP (βx, βz) =
∂`∗P
∂β

, UM(βx, βz) =
∂ ̂̀∗M
∂β

, UP,S(βx, βz) =
∂`∗P,S
∂β

and UM,S(βx, βz) =
∂ ̂̀∗M,S
∂β

be pseudo-score functions, where `∗P , ̂̀∗M , `∗P,S and ̂̀∗M,S are determined by (6.23), (6.18),
(6.22) and (6.16), respectively. The following two lemmas present the relationship between
the candidate model S and the full model.

Lemma 6.3.1 For any candidate model S, let ΣX∗S
be the covariance matrix of X∗S and

let ΣX∗ be the covariance matrix of X∗. Then

π>S Σ−1
X∗S
πS = Σ−1

X∗ .

Lemma 6.3.2 Under regularity conditions in Appendix E.1, the following results hold for
any candidate model S,

(a) UP,S (0, βz0) = ΠSUP (0, βz0);

(b) UM,S (0, βz0) = ΠSUM (0, βz0).
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These two lemmas are useful for providing the following asymptotic results. In particular,
Lemma 6.3.2 describes the connection of the pseudo-score functions under candidate model
S and the full model; the pseudo-score function under the candidate model S can be
expressed as the product of the projection matrix ΠS and the pseudo-score functions under
the full model. Thus, Lemma 6.3.2 allows us to focus on deriving the asymptotic results
for the full model (i.e., Theorem 6.3.1 (a)); the asymptotic results for the candidate model
S (i.e., Theorem 6.3.1 (b)) can then be immediately derived from Lemma 6.3.2.

Theorem 6.3.1 Under regularity conditions in Appendix E.1, we have that as n→∞,

(a) under the full model,

√
n

(
β̂x,full

β̂z,full − βz0

)
d−→ N

((
η
0

)
, A−1BA−1

)
;

(b) under the candidate model S,

√
n

(
β̂x,S

β̂z,S − βz0

)
d−→ N

(
A−1
S ΠSA

(
η
0

)
, A−1

S BSA
−1
S

)
,

where A, B, AS and BS are defined in Appendix E.2.3.

Theorem 6.3.2 Under regularity conditions in Appendix E.1, we have that under the
candidate model S, as n→∞,

√
n
{

Λ̂0,S (t)− Λ0 (t)
}

d−→ V(t)−
(
Fx,S(t)
Fz(t)

)>
WS + Fx(t)

>η,

where V(t), Fx,S(t),Fx(t) and Fz(t) are given in Appendix E.2.4, η is the parameter defined
in Section 6.1.2, and WS represents a random variable whose distribution is identical to
the limiting distribution described in Theorem 6.3.1 (b).

6.3.2 Focused Parameter and Asymptotic Results

Rather than examining the model parameters individually, in applications we are often
interested in their combined forms or functions of those parameters. To facilitate such
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settings, we let µ = µ (βx, βz,Λ0(·)) be a scalar function of parameter β =
(
β>x , β

>
z

)>
and

function Λ0 (t). The new parameter µ plays the role of using a simple scalar measure to
express certain combined information of the original multi-dimensional parameters; it is
called the focus parameter (Claeskens and Hjort 2003, 2008; Hjort and Claeskens 2006).
The choice of the function µ(·) is often driven by the nature of individual problems (to

be discussed in Section 6.3.3). In contrast to the notation β0 = ( η
>
√
n
, β>z0) defined in Sec-

tion 6.1.2, we let µtrue = µ
(

η√
n
, βz0,Λ0(·)

)
denote the true value of the focus parameter µ.

By the invariance property of the maximum likelihood estimator, µ̂S = µ
(
β̂x,S, β̂z,S, Λ̂0(·)

)
can be taken as the estimated focus parameter corresponding to the candidate model S.
We comment that although the density function h(·) of left truncation time is unknown,
we do not include it when defining the focus parameter.

For A and B in Theorem 6.3.1, we express them as block matrices according to the

dimension of the covariates Xi and Zi: A =

(
Axx Axz
Azx Azz

)
and B =

(
Bxx Bxz

Bzx Bzz

)
. Let

A−1 =

(
Axx Axz

Azx Azz

)
denote the inverse matrix of A. We now present the asymptotic

properties of the focus parameters whose proof is placed in Appendix E.2.5.

Theorem 6.3.3 Assume that the conditions in Theorem 6.3.1 hold and consider the can-
didate model S.

(a) if the focus parameter µ = µ (βx, βz) is the function of parameter β alone, then as
n→∞,

√
n (µ̂S − µtrue)

d−→
(
∂µ

∂βz

)>
A−1
zzM + ω>

{
η − (Axx)1/2HS(Axx)−1/2U

}
;

(b) if the focus parameter µ = µ (βx, βz,Λ0(t)) is the function of parameter β and cumu-
lative baseline hazard function, then as n→∞,

√
n (µ̂S − µtrue)

d−→ ∂µ

∂Λ0

V(t) +

(
∂µ

∂βz
+

∂µ

∂Λ0

Fz(t)

)>
A−1
zzM

+ (ω + κ)>
{
η − (Axx)1/2HS(Axx)−1/2U

}
,

where HS = (Axx)−1/2π>S
{
πS(Axx)−1π>S

}−1
πS(Axx)−1/2, ω = ∂µ

∂βx
−A>zxA−1

zz
∂µ
∂βz

, κ = ∂µ
∂Λ0

Fx(t)−
A>zxA

−1
zz

∂µ
∂Λ0

Fz(t), U = η+W, W = AxxJ −AxxAxzA−1
zzM , and M and J are random vari-

ables having the distributions N (0, Bzz) and N (0, Bxx), respectively.
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6.3.3 Practical Settings and Focus Information Criterion

In this subsection, we illustrate the choice of the focus parameters using examples which
are pertinent to the hazard ratio and the survivor function, the quantities commonly used
in survival analysis. We further use these examples to present the focus information crite-
rion (FIC) for model selection.

Setting 1: The hazard ratio.
Under the Cox model (6.1), the hazard ratio for V = v0 to V = v0 + 1d is

λ (t|v0 + 1d)

λ (t|v0)
= exp

(
1>d β

)
,

where 1d is the d-dimensional unit vector with d = p + q, and v0 is a value of V . In this
case, the focus parameter can be taken as

µ = µ (β) = exp
(
1>d β

)
. (6.24)

The focus parameter µ gives us a single-valued measure which describes the change of
the hazard function if every covariate is changed by 1 unit. We now discuss the FIC based
on the focus parameter (6.24). The main idea of the FIC is to first work out the mean
squared error (MSE) for the estimator of the focus parameter derived from each candidate
model, and then determine the final model by the smallest MSE. To use Theorem 6.3.3 (a)
for this purpose, we present the following lemma.

Lemma 6.3.3 Under the conditions in Appendix E.1, we have

W ∼ N (0, σxx) ,

where W is given in Theorem 6.3.3 (b), and σxx is the asymptotic covariance matrix of

β̂x,full in Theorem 6.3.1 (a) whose expression is left in Appendix E.2.7.

Combining Theorem 6.3.3 (a) and Lemma 6.3.3 gives the bias and the variance of µ̂S:

µ̂S − µtrue = ω>
{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η

and

var (µ̂S) =

(
∂µ

∂βz

)>
A−1
zz BzzA

−1
zz

(
∂µ

∂βz

)
+ ω>(Axx)1/2HS(Axx)−1/2σxx(A

xx)−1/2HS(Axx)1/2ω.
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Let ΦS = (Axx)1/2HS(Axx)−1/2. Then the MSE of µ̂S is derived as

E
[
(µ̂S − µtrue)2] =

(
∂µ

∂βz

)>
A−1
zz BzzA

−1
zz

(
∂µ

∂βz

)
+ω>

{
(Ip×p − ΦS) ηη> (Ip×p − ΦS)> + ΦSσxxΦ

>
S

}
ω. (6.25)

The first term of (6.25) does not depend on the candidate model S, so to make the com-
parison among different candidate models be focused, we drop this term and simply let the
second term of (6.25) reflect the MSE of µ̂S; we then define

FICS = ω>
{

(Ip×p − ΦS) ηη> (Ip×p − ΦS)> + ΦSσxxΦ
>
S

}
ω (6.26)

to be the focus information criterion (FIC) for model S and the focus parameter (6.24).

To use (6.26), ηη> needs to be estimated. By Theorem 6.3.1 and Lemma 6.3.3,
√
nβ̂x,full = η̂ ∼ N(η, σxx), thus E

(
nβ̂x,fullβ̂

>
x,full

)
= σxx+ηη

>, suggesting that nβ̂x,fullβ̂
>
x,full−

σ̂xx is an asymptotically unbiased estimator of ηη>. Consequently, the FICs in (6.26) is
estimated by

F̂ ICS = ω̂>1

{(
Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

>
x,full − σ̂xx

)(
Ip×p − Φ̂S

)>
+ Φ̂Sσ̂xxΦ̂

>
S

}
ω̂1, (6.27)

where Φ̂S = Â
−1/2
xx ĤSÂ

1/2
xx , ω̂1 = ∂µ(β̂S)

∂βx
− Â>zxÂ−1

zz
∂µ(β̂S)
∂βz

and σ̂xx is the estimated asymptotic

covariance matrix of β̂x,full.

Setting 2: Covariate effects either βx or βz but not both.
In contrast to the hazard ratio, sometimes our interest focuses on either βx or βz but not
both. When we are interested in βx alone, the focus parameter is set as µ = βx and when
βz is of prime interest, we take µ as βz.

Similar to the derivations for Setting 1, we derive that the estimated FIC for µ = βx
under the candidate model S is given by

F̂ ICS = 1>p

{(
Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

>
x,full − σ̂xx

)(
Ip×p − Φ̂S

)>
+ Φ̂Sσ̂xxΦ̂

>
S

}
1p,

and

F̂ ICS =
(
Â>zxÂ

−1
zz 1q

)>{(
Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

>
x,full − σ̂xx

)(
Ip×p − Φ̂S

)>
+Φ̂Sσ̂xxΦ̂

>
S

}(
Â>zxÂ

−1
zz 1q

)
,
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for µ = βz under the candidate model S.

Setting 3: The cumulative baseline hazard function.
In some applications, as discussed by Hjort and Claeskens (2006), the cumulative baseline
hazard function Λ0 (·) is of prime interest, and in this case the focus parameter µ is set as
Λ0(t0) for some time point, say t0, of interest.

Applying Theorem 6.3.3 (b) with ω = 0 and κ = Fx (t0)− A>zxA−1
zz Fz(t0), we can work

out the MSE of µ̂S for the candidate model S. Similar to (6.27), the FIC for µ under the
candidate model S is estimated by

F̂ ICS = κ̂>2

{(
Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

>
x,full − σ̂xx

)(
Ip×p − Φ̂S

)>
+ Φ̂Sσ̂xxΦ̂

>
S

}
κ̂2, (6.28)

where κ̂2 =
∂µ(Λ̂0,S(t0))

∂Λ0
F̂x(t0) − Â>zxÂ

−1
zz

∂µ(Λ̂0,S(t0))

∂Λ0
F̂z(t0), and Φ̂S and σ̂xx are the same as

described in Setting 1.

Setting 4: The survivor function.
Under the Cox model (6.1), the survivor function

F (t|v) = exp
{
−Λ0 (t) exp

(
v>β

)}
is a semi-parametric function since it involves both parameter β and the unspecified func-
tion Λ0 (·). In applications, we are often interested in the survival information at certain
time point, say t0. In this situation, we take the focus parameter to be

µ = µ (β,Λ0(t0)) = exp
{
−Λ0 (t0) exp

(
v>0 β

)}
for some given covariate value v0.

Again, Theorem 6.3.3 (b) can be used to derive the MSE of µ̂S. Specifically, the bias
and the MSE of µ̂S are

µ̂S − µtrue = (ω + κ)>
{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η

and

E
[
(µ̂S − µtrue)2] =

(
∂µ

∂βz
+

∂µ

∂Λ0

Fz(t0)

)>
A−1
zz BzzA

−1
zz

(
∂µ

∂βz
+

∂µ

∂Λ0

Fz(t0)

)
+ (ω + κ)>

{
(Ip×p − ΦS) ηη> (Ip×p − ΦS)> + ΦSσxxΦ

>
S

}
(ω + κ) ,
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respectively. Similar to the discussion for (6.27), we drop those quantities which are unre-
lated to S and replace ηη> by its asymptotically unbiased estimator, and then we obtain
an estimate of the FIC for the candidate model S:

F̂ ICS = (ω̂3 + κ̂3)>
{(

Ip×p − Φ̂S

)(
nβ̂x,fullβ̂

>
x,full − σ̂xx

)(
Ip×p − Φ̂S

)>
+Φ̂Sσ̂xxΦ̂

>
S

}
(ω̂3 + κ̂3) , (6.29)

where Φ̂S and σ̂xx are the same as described in Setting 1, κ̂3 =
∂µ(β̂S ,Λ̂0,S(t0))

∂Λ0
F̂x(t0) −

Â>zxÂ
−1
zz

∂µ(β̂S ,Λ̂0,S(t0))

∂Λ0
F̂z(t0), and ω̂3 =

∂µ(β̂S),Λ̂0,S(t0))

∂βx
− Â>zxÂ−1

zz
∂µ(β̂S),Λ̂0,S(t0))

∂βz
.

These settings cover the scenarios we usually encounter in survival analysis. Different
FIC measures are used to reflect different focuses on the performance of various candidate
models. The basic principle is to determine the final model based on the smallest MSE,

or equivalently, the smallest F̂ ICS among all the candidate models S. It is expected that
with different focus parameters, the resultant final models are usually different from each
other.

Alternatively, using AIC or BIC to select the variables for the different focus parameters
is also discussed by some authors, e.g., Claeskens and Hjort (2003), Hjort and Claeskens
(2006), and Wang et al. (2012), among others. For the candidate model S, the AIC and
BIC are defined as

AICS = 2
{̂̀∗

C,S(β̂S) + ̂̀∗M,S(β̂S)
}
− 2|S|

and

BICS = 2
{̂̀∗

C,S(β̂S) + ̂̀∗M,S(β̂S)
}
− log(n)|S|,

respectively. The final models are selected by choosing the maximizer of AICS and BICS,
respectively. Apparently, the best candidate model resulted from using AICS or BICS
is the same regardless of different forms of the focus parameters, since both criteria are
based on the likelihood function instead of the focus parameters. On the contrary, the FIC
method allows us to select the most suitable model with our focus of interest capitalized
on. We will numerically compare the performance among AIC, BIC and FIC by simulation
studies in Section 6.4.
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6.3.4 Frequentist Model Averaging

The preceding development suggests that differently best candidate models can be yielded
from different selection criteria with different focus parameters. As discussed by Clyde and
George (2004) and Wang et al. (2009), conducting parameter estimation using a specifically
selected model is not ideal since the associated uncertainty is ignored. To circumvent this
issue, we employ the frequentist model averaging (FMA) method to construct an estimator
of µ. The idea is to use the estimators derived from different candidate models to work
out a suitable linear combination of them, given by

µ̂ave =
∑
S∈S

w(S|η̂)µ̂S,

where µ̂S is the estimator of µ derived from the candidate model S, η̂ =
√
nβ̂x,full, w(S|η̂),

to be discussed at the end of this section, is a positive random weight which corresponds
to the candidate model S and is data-driven (Claeskens and Hjort 2008, p.195), and all
the weights are constrained by

∑
S∈S

w(S|η̂) = 1. Based on Theorem 6.3.3, we derive the

asymptotic distributions of µ̂ave.

Theorem 6.3.4 Under regularity conditions in Appendix E.1,

(a) if the focus parameter µ = µ (βx, βz) is the function of parameter βx and βz alone, then
as n→∞,

√
n (µ̂ave − µtrue)

d−→
(
∂µ

∂βz

)>
A−1
zzM + ω>

{
U −

∑
S∈S

w(S|U)(Axx)1/2HS(Axx)−1/2U

}
;

(b) if the focus parameter µ = µ (βx, βz,Λ0(t)) is the function of parameter β and the
cumulative baseline hazard function, then as n→∞,

√
n (µ̂ave − µtrue)

d−→ ∂µ

∂Λ0

V(t) +

{
∂µ

∂βz
+

∂µ

∂Λ0

Fz(t)

}>
A−1
zzM

+ (ω + κ)>
{
U −

∑
S∈S

w(S|U)(Axx)1/2HS(Axx)−1/2U

}
,

where w(S|U) represents the weight to which w(S|η̂) converges in distribution.
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Several conventional choices of the weights w(S|η̂) are available. For instance, using
the AIC, Buckland et al. (1997) suggested the so-called smooth AIC weight which is
proportional to exp

(
1
2
AICS

)
, given by

waic,S =
exp

(
1
2
AICS

)∑
S′∈S

exp
(

1
2
AICS′

) , (6.30)

where AICS is the AIC score for the candidate model S. Claeskens and Hjort (2008)
suggested to replace AICS in (6.30) by ∆AIC,S

= AICS −max
S′∈S

AICS′ to avoid the numeric

problem that the denominator of (6.30) can be quite close to zero, a phenomenon that we
also observed in our numerical studies, i.e., the weight is

waic,S =
exp

(
1
2
∆AIC,S

)
∑
S′∈S

exp
(

1
2
∆AIC,S′

) . (6.31)

In contrast, we can use the following weight

wbic,S =
exp

(
1
2
∆BIC,S

)
∑
S′∈S

exp
(

1
2
∆BIC,S′

) , (6.32)

and call it the smooth BIC weight. Similarly, with the FIC, the weight is defined as

wfic,S =
exp

(
1
2

FICS

(ω̂−κ̂)>σ̂xx(ω̂−κ̂)

)
∑
S′∈S

exp
(

1
2

FICS′
(ω̂−κ̂)>σ̂xx(ω̂−κ̂)

) , (6.33)

as suggested by Hjort and Claeskens (2006) and Claeskens and Hjort (2008).

6.4 Numerical Studies

In this section, we first conduct simulation studies to assess the performance of the proposed
estimators, and then implement the methods to analyze a real dataset.
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6.4.1 Simulation Studies

For each setting, we run 500 simulations. We examine the cases with the sample size
n = 100 and n = 200, respectively. For the covariates, we generate X̃ from N (06,ΣX) and

Z̃ from N (02,ΣZ) independently, where

ΣX =


1 0.2 · · · 0.2

0.2 1 · · · 0.2
...

...
. . .

...
0.2 0.2 · · · 1


6×6

and ΣZ =

(
1 0.1

0.1 1

)
2×2

.

The goal here is to select the important variables in X̃ and always retain the covariate
Z̃ in the models. Consequently, for the variable selection, there are 26 = 64 candidate
models.

The survival time is generated using model (6.1) where the baseline hazard function is
set as λ0 (t) = 2t. More specifically, the failure time is generated by

T̃ =

√
− exp

(
X̃>βx0 + Z̃>βz0

)
log (1− U),

where U is simulated from the uniform distribution U(0, 1), and the true parameter β0 =(
β>x0, β

>
z0

)>
is set as βx0 = η√

n
and βz0 = (0.6, 0.6)>. We consider three cases with

(1) η = (0, 0, 0, 0, 0, 0)> , (2) η = (1, 1, 1, 0, 0, 0)> , and (3) η = (1, 1, 1, 1, 1, 1)> .

Case (1) gives a null model, Case (2) indicates that some covariates are not included in
the true model, and Case (3) says that the full model contains all the covariates.

Let the truncation time Ã be generated from the exponential distribution with mean
10. The observed data (A, T, V ) are then obtained from (Ã, T̃ , Ṽ ) using the condition

T̃ ≥ Ã. Independently repeat this data simulation step n times to generate a sample of
size n. The censoring variable C is generated from the uniform distribution U(0, c) where
c is a constant that is chosen to yield about 50% censoring rate. Consequently, Y and ∆
are determined by Y = min {T,A+ C} and ∆ = I (T ≤ A+ C). Therefore, (Yi, Ai,∆i, Vi)
with i = 1, · · · , n is the sample with size n in the dataset.

Consistent with Section 6.1.2, Xi is the error-prone covariates and X∗i is the observed
variable which is generated from

X∗i = Xi + εi,
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where εi ∼ N (06,Σε), and Σε is a diagonal matrix whose diagonal elements are all specified
as 0.1 or 0.5.

For the focus parameter, we consider three forms, given by

(a) µ10 (β) = exp
(
1>6 β

)
, (b) µ20 (Λ0) = Λ0(1), and

(c) µ30 (β,Λ0) = exp
{
−Λ0(1) exp

(
1>6 β

)}
,

respectively.

Our interest is to select variables based on different forms of focus parameters using the
proposed FIC method. As comparisons, we also apply AIC or BIC to select variables, then
use the plug-in method to obtain estimates of the focus parameters. For each simulation
setting and different focus parameters, we first estimate the parameters and determine
the best model by different selection criteria, AIC, BIC and FIC. Then we compute the
estimated focus parameter using the best selected model. Let µ̂j denote the resulting
estimated focus parameter for simulation j, where j = 1, · · · , 500; and we compute the

square root mean squared error (RMSE) as

√
500−1

500∑
j=1

(µ̂j − µ0)2, which is used to report

the accuracy of the estimated focus parameters. In contrast, we also report the results
obtained from the naive method which ignores the measurement error in covariates. The
results for the sample size n = 100 are reported in Table 6.1 and the results with n = 200
are summarized in Table 6.2. Furthermore, model averaging estimators with weights (6.31),
(6.32) and (6.33) are also investigated, and the results are displayed under the headings
sAIC, sBIC, and sFIC in Tables 6.1 and 6.2.

As expected, the RMSEs for the proposed estimators are smaller than those for the naive
estimators regardless of the selection criteria; and the differences become more noticeable
as measurement error is more substantial. No matter what estimation method is, either
the naive approach or the proposed approach, RMSEs using FIC tends to result in smaller
RMSEs than using AIC or BIC under our simulation settings. Furthermore, the model
averaging estimators, sAIC, sBIC and sFIC, are comparable to their counterparts, AIC,
BIC and FIC, respectively, and sFIC outperforms both sAIC and sBIC under the settings
we consider.

6.4.2 Analysis of Worcester Heart Attack Study Data

In this section, we use our methods to analyze the data arising from the Worcester Heart
Attack Study (WHAS500). Data were collected over thirteen 1-year periods beginning in
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1975 and extending in 2001 on all patients with acute myocardial infarction (MI) admit-
ted to hospitals in the Worcester, Massachusetts Standard Metropolitan Statistical Area.
Discussed by Hosmer et al. (2008), a survival time was defined as the time since a subject
was admitted to the hospital. We are interested in studying survival times of patients who
were discharged alive from the hospital. Hence, a selection criterion was imposed that
only those subjects who were discharged alive were eligible to be included in the analysis.
That is, individuals were not enrolled in the analysis if they died before discharging from
the hospital, hence left truncation occurs. With such a criterion, a sample of size 461 was
available. In this data set, the censoring rate is 61.8%.

The following covariates are included in our analysis: initial heart rate (X1), initial sys-
tolic blood pressure (X2), initial diastolic blood pressure (X3), body mass index (X4), age
(Z1) and gender (Z2), and we let β = (βx1 , βx2 , βx3 , βx4 , βz1 , βz2)> denote the vector of the
corresponding parameters formed by model (6.1). Covariates X1, X2, X3 and X4 are error-
prone due to the reasons including inaccurate measurement devices and/or procedures, the
biological variability, and temporal variations. Using the notation in Section 6.1.2, we have
p = 4 and q = 2, thus, the number of all possible candidate models is 2p = 16. Similar to
the settings in Section 6.4.1, we discuss three focus parameters: the hazard ratio (µ1) with
coefficient 16, the cumulative baseline hazard function (µ2) at time t0, and the survivor
function (µ3) at time t0 with coefficients being empirical means of variables, where t0 is
the median of all the observed values Yi. Our goal is to select important variables from X1

to X4 for different focus parameters, with Z1 and Z2 always retained.

We first present the estimators of β under the full model using both the proposed
approach discussed in Sections 6.2.1 and 6.2.2, and the naive approach which ignores
measurement error. Since this dataset contains no additional information, such as repeated
measurement or validation data, for the characterization of the measurement error process,
we conduct sensitivity analyses to investigate the measurement error effects. Specifically,
let Σ be the sample covariance matrix, and for sensitivity analyses we consider Σ + Σe to
be the covariance matrix for the measurement error model (6.4), where Σe is the diagonal
matrix with diagonal elements being a common value σ2

e ∈ [0, 1]. The estimation results
are shown in Figure 6.1. We can see that as the degree of measurement error changes, the
patterns of β̂xj(j = 1, 2, 3, 4) are fluctuated while β̂z1 and β̂z2 are fairly stable .

To examine the proposed estimators more closely, we focus on σ2
e = 0.12, 0.52 and 12

which represent a minor, moderate and substantial measurement error effect, respectively.
Table 6.3 summarizes the estimates, the standard errors (SE) and the p-values of both the
proposed and the naive methods. As expected, SEs of the naive estimator are generally
smaller than those of the proposed estimator. Both the naive and the proposed methods
suggest all the covariates are significant, regardless of measurement error degrees.
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Next, we report the variable selection results based on AIC, BIC, and FIC for the three
focus parameters discussed in Section 6.4.1 and present the best five candidate models in
Table 6.4. Here we use a label, such as “134” to represent that the variables X1, X3, and
X4 selected for the model. First, we observe that the best model selected by AIC contains
more variables than those by BIC. It is interesting to see that selection results by the naive
approach and the proposed approach are similar. Secondly, we report the FIC results for
different focus parameters. The FIC approach results in the relatively more parsimonious
models, regardless of using both the proposed method or the naive method. In addition,
we can see that with a given focus parameter, the variable selection results change as σ2

e

changes. Variables are differently selected if using different criteria. For example, initial
heart rate (X1) and initial diastolic blood pressure (X3) are frequently selected by both the
AIC and the BIC; while initial systolic blood pressure (X2), initial diastolic blood pressure
(X3) and body mass index (X4) are frequently selected by the FIC approach with different
focus parameters.

Finally, in Table 6.5 we summarize the results for the estimates of the focus parameters
based on the best models and for the model averaging estimators. We can see that the
estimated focus parameters by the proposed approach and the naive approach are different
even the best candidate models are the same under some specific criteria. The proposed
approach yields different estimates of the focus parameters when the measurement error
degree σ2

e varies.
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Figure 6.1: Sensitivity of the estimates obtained for Worcester Heart Attack Study Data.
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Table 6.1: Simulation results: RMSE of the estimators for focus parameters with n = 100

Method σε β0 AIC BIC FIC sAIC sBIC sFIC

Proposed 0.1 µ1 (1) 1.576 1.657 1.118 1.287 1.422 1.156

(2) 1.794 1.527 1.374 1.747 1.261 1.102

(3) 2.158 1.789 1.406 1.906 1.393 1.392

µ2 (1) 0.287 0.267 0.268 0.280 0.236 0.229

(2) 0.286 0.285 0.272 0.256 0.235 0.231

(3) 0.262 0.262 0.254 0.261 0.242 0.226

µ3 (1) 0.056 0.056 0.048 0.052 0.054 0.046

(2) 0.036 0.036 0.032 0.033 0.035 0.032

(3) 0.022 0.022 0.020 0.020 0.022 0.014

0.5 µ1 (1) 1.330 1.343 0.889 1.147 1.126 0.929

(2) 1.882 1.696 1.326 1.276 1.562 1.062

(3) 1.910 1.774 1.471 1.407 1.665 1.373

µ2 (1) 0.304 0.297 0.290 0.297 0.255 0.224

(2) 0.365 0.365 0.290 0.320 0.280 0.259

(3) 0.305 0.306 0.302 0296 0.254 0.247

µ3 (1) 0.052 0.052 0.046 0.047 0.050 0.045

(2) 0.033 0.033 0.032 0.033 0.033 0.032

(3) 0.017 0.017 0.010 0.020 0.020 0.010

Naive 0.1 µ1 (1) 2.130 1.892 1.744 2.101 1.755 1.697

(2) 1.920 2.426 1.629 1.840 2.004 1.587

(3) 2.894 2.256 1.843 2.779 1.805 1.623

µ2 (1) 0.306 0.306 0.283 0.333 0.260 0.244

(2) 0.330 0.329 0.309 0.303 0.267 0.258

(3) 0.317 0.296 0.305 0.296 0.267 0.259

µ3 (1) 0.073 0.073 0.066 0.071 0.072 0.066

(2) 0.062 0.062 0.055 0.058 0.056 0.053

(3) 0.063 0.063 0.047 0.056 0.060 0.046

0.5 µ1 (1) 1.952 1.768 1.567 1.764 1.519 1.408

(2) 2.357 1.857 1.478 2.162 1.621 1.335

(3) 2.329 2.014 1.605 2.196 1.817 1.420

µ2 (1) 0.370 0.340 0.311 0.341 0.289 0.277

(2) 0.417 0.417 0.328 0.381 0.322 0.302

(3) 0.381 0.340 0.349 0.340 0.283 0.281

µ3 (1) 0.067 0.067 0.057 0.064 0.065 0.055

(2) 0.081 0.081 0.048 0.076 0.081 0.047

(3) 0.046 0.046 0.041 0.045 0.046 0.041
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Table 6.2: Simulation results: RMSE of the estimators for focus parameters with n = 200

Method σε β0 AIC BIC FIC sAIC sBIC sFIC

Proposed 0.1 µ1 (1) 0.825 0.747 0.727 0.757 0.718 0.686

(2) 1.156 0.942 0.724 0.973 0.862 0.723

(3) 1.708 1.477 1.183 1.494 1.356 1.178

µ2 (1) 0.210 0.210 0.169 0.208 0.192 0.153

(2) 0.188 0.180 0.160 0.180 0.167 0.147

(3) 0.191 0.190 0.171 0.185 0.173 0.152

µ3 (1) 0.032 0.032 0.026 0.030 0.030 0.025

(2) 0.017 0.017 0.014 0.014 0.017 0.014

(3) 0.025 0.025 0.014 0.022 0.025 0.017

0.5 µ1 (1) 0.798 0.768 0.637 0.736 0.713 0.667

(2) 0.952 0.917 0.817 0.744 0.837 0.733

(3) 1.317 1.303 1.288 1.250 1.282 1.228

µ2 (1) 0.234 0.234 0.179 0.234 0.203 0.156

(2) 0.203 0.203 0.161 0.203 0.176 0.177

(3) 0.201 0.201 0.168 0.205 0.184 0.157

µ3 (1) 0.028 0.028 0.022 0.026 0.028 0.020

(2) 0.017 0.017 0.026 0.017 0.017 0.014

(3) 0.010 0.010 0.010 0.010 0.010 0.010

Naive 0.1 µ1 (1) 1.276 1.175 1.138 1.180 1.128 1.082

(2) 1.829 1.187 1.122 1.398 1.494 1.037

(3) 2.605 1.943 1.249 2.173 1.831 1.249

µ2 (1) 0.293 0.276 0.193 0.276 0.241 0.175

(2) 0.224 0.205 0.185 0.205 0.189 0.184

(3) 0.216 0.214 0.197 0.214 0.192 0.184

µ3 (1) 0.036 0.036 0.032 0.033 0.033 0.030

(2) 0.035 0.035 0.030 0.032 0.032 0.030

(3) 0.037 0.036 0.033 0.035 0.035 0.028

0.5 µ1 (1) 1.301 1.205 1.197 1.247 1.133 1.107

(2) 1.214 1.238 0.985 0.932 0.936 0.822

(3) 1.902 1.431 1.354 1.551 1.338 1.321

µ2 (1) 0.293 0.276 0.193 0.276 0.242 0.175

(2) 0.298 0.268 0.196 0.268 0.235 0.196

(3) 0.251 0.235 0.187 0.235 0.214 0.179

µ3 (1) 0.044 0.044 0.040 0.042 0.044 0.039

(2) 0.044 0.044 0.039 0.042 0.041 0.039

(3) 0.041 0.041 0.032 0.040 0.041 0.030
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Table 6.3: Sensitivity analyses for Worcester Heart Attack Study Data: estimation results

Method Variable Estimate SE p-value
Proposed (σ2

e = 0.12) Initial Heart Rate (X1) 1.538 0.157 1.169e-22
Initial Systolic Blood Pressure (X2) 1.570 0.074 6.765e-100
Initial Diastolic Blood Pressure (X3) -1.448 0.174 8.661e-17

Body Mass Index (X4) -3.297 0.011 0.000
Age (Z1) 0.039 0.013 0.003

Gender (Z2) -0.521 0.242 0.031
Proposed (σ2

e = 0.52) Initial Heart Rate (X1) 1.444 0.120 2.374e-33
Initial Systolic Blood Pressure (X2) 1.250 0.104 2.816e-33
Initial Diastolic Blood Pressure (X3) -1.405 0.179 4.188e-15

Body Mass Index (X4) -1.370 0.011 0.000
Age (Z1) 0.070 0.017 3.828e-05

Gender (Z2) -0.247 0.124 0.046
Proposed (σ2

e = 12) Initial Heart Rate (X1) 1.933 0.122 1.540e-56
Initial Systolic Blood Pressure (X2) 1.102 0.062 1.120e-70
Initial Diastolic Blood Pressure (X3) -1.382 0.152 9.714e-20

Body Mass Index (X4) -2.091 0.016 0.000
Age (Z1) 0.049 0.018 0.006

Gender (Z2) -0.577 0.149 0.000
Naive Initial Heart Rate (X1) 0.894 0.110 4.391e-16

Initial Systolic Blood Pressure (X2) 0.326 0.047 4.029e-12
Initial Diastolic Blood Pressure (X3) -0.834 0.109 1.988e-14

Body Mass Index (X4) -1.694 0.010 0.000
Age (Z1) 0.054 0.007 1.217e-14

Gender (Z2) -0.379 0.116 0.001
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Table 6.5: Sensitivity analyses for Worcester Heart Attack Study Data: estimates of the
focus parameters

µ Method AIC sAIC BIC sBIC FIC sFIC
µ1 Proposed (σ2

e = 0.12) 0.720 0.626 0.257 0.166 0.444 0.347
Proposed (σ2

e = 0.52) 0.772 0.626 0.327 0.351 0.459 0.352
Proposed (σ2

e = 12) 0.781 0.671 0.377 0.327 0.463 0.357
Naive 0.496 0.692 0.496 0.958 0.245 0.660

µ2 Proposed (σ2
e = 0.12) 0.031 0.051 0.025 0.084 0.037 0.102

Proposed (σ2
e = 0.52) 0.044 0.052 0.015 0.053 0.039 0.104

Proposed (σ2
e = 12) 0.037 0.040 0.036 0.079 0.045 0.109

Naive 0.018 0.011 0.018 0.008 0.007 0.007
µ3 Proposed (σ2

e = 0.12) 0.887 0.886 0.656 0.883 0.469 0.681
Proposed (σ2

e = 0.52) 0.664 0.721 0.659 0.765 0.496 0.698
Proposed (σ2

e = 12) 0.683 0.692 0.684 0.732 0.539 0.815
Naive 0.603 0.552 0.603 0.452 0.461 0.407

169



Chapter 7

Summary and Discussion

In this section, we present the summaries for the previous chapters.

Chapter 2 :
In Chapter 2, we discuss the analysis of graphical models with mismeasurement in
variables. We consider three scenarios where error-contaminated variables are only
discrete, or continuous, or mixed with both types. We employ the exponential family
distribution to facilitate the joint distribution of the variables, which gives a broad
class of models useful for many applications. To understand the mismeasurement
effects, we derive a lower bound of the asymptotic bias. To correct for the mismea-
surement effects, we propose a simulation-based method to derive valid estimation
of graphs. The theoretical and the numerical results demonstrate that the proposed
methods perform satisfactorily and that the naive analysis commonly yields mislead-
ing results.

To highlight the key ideas, we focus our attention on estimation of the network
structure and assume the parameters for the mismeasurement models (2.6) and (2.10)
to be known. Such an assumption is typically feasible in two circumstances: (i)
prior studies provide the information on the degree of mismeasurement, and (ii) we
are interested in conducting sensitivity analyses to understand how mismeasurement
effects may affect inference results.

In situations where the parameters for the mismeasurement models (2.6) and (2.10)
must be estimated, we may utilize the information carried with additional data
sources such as repeated measurements or validation subsamples. For instance, with
the availability of repeated measurements, estimation of misclassification probabili-
ties can proceed in the same manner that discussed by Yi and He (2017, Section 4),
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and Σε for the measurement error model (2.6) can be estimated by

Σ̂ε =

n∑
i=1

ni∑
j=1

(
X∗C(ij) − X̄∗C(i)

) (
X∗C(ij) − X̄∗C(i)

)>
n∑
i=1

(ni − 1)
,

where X∗C(ij) denotes the jth replicate of XC(i) with j = 1, · · · , ni, ni is the number

of the replicates for subject i, and X̄∗C(i) = n−1
i

ni∑
j=1

X∗C(ij) for i = 1, · · · , n. When

validation data are available, one may adapt the discussion of Yi et al. (2015, 2019)
to incorporate estimation of the parameters for the mismeasurement models (2.6)
and (2.10) into inferential procedures.

Chapter 3 :
While high-dimensional survival data become more accessible and methods of vari-
able selection for survival data have been developed, we still face the challenges in-
duced from survival data with network structured covariates subject to measurement
error. Handling such data does not only require more complex modeling but also
involve more complicated technical derivations of theoretical results. In Chapter 3,
we explore this important problem and propose graphical proportional hazards mea-
surement error models to accommodate high-dimensional survival data with both the
network structure and measurement error. We utilize exponential family graphical
models to characterize covariate network structures and examine mismeasurement
in both continuous and discrete covariates. Our developed inferential methods are
justified theoretically, and their finite sample performance is demonstrated to be
satisfactory through simulation studies.

Although the development is based on the Cox regression model, extensions to other
survival models, such as the accelerated failure time model, the additive hazards
model, and transformation models, are possible. The development can be carried
out in the same manner with suitable modifications with the partial likelihood score
functions replaced by unbiased estimating functions.

Chapter 4 :
Sufficient dimension reduction (SDR) is a useful tool in regression models, which
mainly reduces the dimension of variables without losing information of variables.
Even though many inference methods have been developed, research gaps still exist.
Censored responses and mismeasurement in covariates are ubiquitous and need to be
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properly addressed in survival analysis. In Chapter 4, we deal with high-dimensional
censored data with measurement error using cumulative distribution models which
cover frequently used models in survival analysis. We propose valid inferential proce-
dures to correct the measurement error and estimate the central space. Our developed
inferential methods are justified theoretically, and their finite sample performance is
demonstrated to be satisfactory through simulation studies.

Several possible extensions are worth exploring. For example, as presented by Li
and Yin (2007), the condition of the normal distribution for the covariates X is
required when replacing X∗ by U , and only such a condition makes the invariance
law hold. However, if X does not follow the normal distribution, it is unclear whether
or not the invariance law still holds. In Chapter 4, we mainly focus on the case
where the covariate X is continuous. If the covariate is discrete, then applying the
proposed feature screening method can obtain the active set, but how to correct the
measurement error for the discrete variables in the SDR method is still unknown. It
is interesting to explore these important research topics.

Chapter 5 :
Although survival analysis has proven useful and many methods have been developed
for analyzing survival data with individual features, there has been little work of
addressing these features simultaneously in inferential procedures, as noted by Yi
and Lawless (2007). In Chapter 5, we develop two estimation methods to handle
left-truncated right-censored survival data with measurement error in covariates. We
establish asymptotic results for the proposed methods rigorously and explore the
issues of robustness and efficiency of the proposed methods. We further demonstrate
satisfactory finite sample performance of our methods using simulation studies.

The proposed methods can also accommodate length-biased survival data with co-
variate measurement error. Length-biased data arise commonly from many fields
including epidemiological studies, cancer research, and etiology studies, and many
methods have been developed for analysis of such data. However, the validity of
these methods is limited due to the key assumption that data must be accurately col-
lected. In application, measurements of the variables usually are error-contaminated.
Accommodating the feature of measurement error, our proposed methods generalize
the scope of usual methods of handling length-biased survival data.

Chapter 6 :
Left-truncated and right-censored data arise commonly from studies of survival in-
formation. Analysis of such survival data is further complicated by other common
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features. Typically, error-prone covariates and the presence of unimportant covari-
ates make the analysis more difficult than without these features. In Chapter 6,
we develop estimation methods using the FIC criterion to handle left-truncated and
right-censored survival data with measurement error in covariates. We implement the
model averaging technique to derive more efficient estimators of the focus parame-
ters and establish asymptotic results of the proposed estimators. Numerical studies
confirm the satisfactory performance of our proposed methods.

Although our development is carried out for the useful focus parameters described in
Section 6.3.3, the scope of our methods is broad. For instance, if the focus parameters
are percentiles (e.g., median), one can adapt the development here to accommodate
such settings. In our development here, we focus on the case where continuous
covariates are subject to measurement error. In some applications, discrete covariates
may be subject to measurement error, or there is a mix of error-prone discrete and
continuous covariates, it is interesting to further extend our methods to address such
problems, and this is our future work.

Two general comments raised by a committee member are (a) if the dimension of pa-
rameter is allowed to diverge with the sample size, and (b) if there is the rate of convergence
in the theoretical results. The development in this thesis does not consider this two is-
sues. Instead, a fixed dimension p is considered in this thesis. Undoubtedly, it will also be
interesting to consider such a problem by allowing p approaches ∞ as n→∞.

This thesis focuses on developing valid estimation procedures with the emphasis of
establishing asymptotic results of the developed estimators, including the consistency and
asymptotic distributions. Establishing the convergence rate is worth being explored in the
future along the same lines of the current development.
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Bandara, S., Schlöder, J. P., Eils, R., Bock, H. G., and Meyer, T. (2009). Optimal experi-
mental design for parameter estimation of a cell signaling model. PLoS Computational
Biology, 5, e1000558. doi:10.1371/journal.pcbi.1000558

Bennett, S. (1983). Analysis of survival data by the proportional odds model. Statistics
in Medicine, 2, 273-277.

Bertrand, A., Legrand, C., Carroll, R. J., De Meester, C., and Van Keilegom, I. (2017).
Inference in a survival cure model with mismeasured covariates using a simulation-
extrapolation approach. Biometrika, 104, 31-50.

174



Biemer, P. P., Groves, R. M., Lyberg, L. E., Mathiowetz, N. A., and Sudman, S. (1991).
Measurement Error in Surveys. John Wiley & Sons, Inc., Hoboken, New Jersey.

Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). Model selection: an integral
part of inference. Biometrics, 53, 603-618.

Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66,
429-436.

Buonaccorsi, J. P. (2010). Measurement Error: Models, Methods, and Applications. Chap-
man & Hall/CRC.

Buzas, J. F. (1998). Unbiased scores in proportional hazards regression with covariate
measurement error. Journal of Statistical Planning and Inference, 67, 247-257.

Cai, J., Fan, J., Li, R., and Zhou, H. (2005). Variable selection for multivariate failure
time data. Biometrika, 92, 303-316.

Carroll, R. J. (1989). Covariance analysis in generalized linear measurement error models.
Statistics in Medicine, 8, 1075-1093.

Carroll, R. J., Delaigle, A., and Hall, P. (2007). Nonparametric regression estimation from
data contaminated by a mixture of Berkson and classical errors. Journal of the Royal
Statistical Society, Series B, 69, 859-878.

Carroll, R. J., Delaigle, A., and Hall, P. (2009). Nonparametric prediction in measurement
error models (with discussion). Journal of the American Statistical Association, 104,
993-1014.

Carroll, R. J., Knickerbocker, R. K., and Wang, C. Y. (1995). Dimension reduction in a
semiparametric regression model with errors in covariates. The Annals of Statistics,
23, 161-181.
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Székely, G. J., Rizzo, M. L., and Bakirov, N. K. (2007). Measuring and testing dependence
by correlation of distances. The Annals of Statistics, 35, 2769-2794.

Tan, K. M., Ning, Y., Witten, D. M., and Liu, H. (2016). Replicates in high dimensions,
with applications to latent variable graphical models. Biometrika, 103, 761-777.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, 58, 267-288.

Tsai, W. Y., Jewell, N. P., and Wang, M. C. (1987). A note on the product-limit estimator
under right censoring and left truncation. Biometrika, 74, 883-886.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Pro-
cesses. Springer, New York.

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, New
York.

van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A.M., Voskuil, D.
W., Schreiber, G.J., Peterse, J.L., Roberts, C., Marton, M.J., Parrish, M., Atsma, D.,
Witteveen, A., Glas, A., Delahaye, L., van der Velde, T., Bartelink, H., Rodenhuis, S.,
Rutgers, E.T., Friend, S.H., and Bernards, R. (2002). A gene-expression signature as
a predictor of survival in breast cancer. The New England Journal of Medicine, 347,
1999-2009.

184



Wang, C. Y., Hsu, L., Feng, Z. D., and Prentice, R. L. (1997). Regression calibration in
failure time regression. Biometrics, 53, 131-145.

Wang, C. Y. (1999). Robust sandwich covariance estimation for regression calibration
estimator in Cox regression with measurement error. Statistics and Probability Letters,
45, 371-378.

Wang, H., Chen, X., and Flournoy, N. (2016). The focused information criterion for
varying-coefficient partially linear measurement error models. Statistical Papers, 57,
99-113.

Wang, H., Li, R., and Tsai, C. (2007). Tuning parameter selectors for the smoothly clipped
absolute deviation method. Biometrika, 94, 553-568.

Wang, H., Li, Y., and Sun, J. (2015). Focused and model average estimation for regression
analysis of panel count data. Scandinavian Journal of Statistics, 42, 732-745.

Wang, H. and Xia, Y. (2008). Sliced regression for dimension reduction. Journal of the
American Statistical Association, 103, 811-821.

Wang, H., Zhang, X., and Zou, G. (2009). Frequentist model averaging estimation: A
review. Journal of Systems Science and Complexity, 22, 732-748.

Wang, H., Zou, G., and Wan, A. T. K. (2012). Model averaging for varying-coefficient
partially linear measurement error models. Electronic Journal of Statistics, 6, 1017-
1039.

Wang, J. (2015). Joint estimation of sparse multivariate regression and conditional graph-
ical models. Statistica Sinica, 25, 831-851.

Wang, M.-C. (1991). Nonparametric estimation from cross-sectional survival data. Journal
of the American Statistical Association, 86, 130-143.

Wang, M.-C. (1996). Hazards regression analysis for length-biased data. Biometrika , 83,
343-354.

Wang, M.-C., Brookmeyer, R., and Jewell, N. P. (1993). Statistical models for prevalent
cohort data. Biometrics, 49, 1-11.

Wu, F., Kim, S., Qin, J., Saran, R., and Li, Y. (2018). A pairwise likelihood augmented
Cox estimator for left-truncated data. Biometrics, 74, 100-108.

185



Xia, Y. (2007). A constructive approach to the estimation of dimension reduction direc-
tions. The Annals of Statistics, 35, 2654-2690.

Xia, Y., Zhang, D., and Xu, J. (2010). Dimension reduction and semiparametric estimation
of survival models. Journal of the American Statistical Association, 105, 278-290.

Xie, S. H., Wang, C. Y., and Prentice, R. L. (2001). A risk set calibration method for
failure time regression by using a covariate reliability sample. Journal of the Royal
Statistical Society, Series B, 63, 855-870.

Xu, G., Wang, S., and Huang, J. Z. (2014). Focused information criterion and model
averaging based on weighted composite quantile regression. Scandinavian Journal of
Statistics, 41, 365-381.

Yan, J. and Huang, J. (2012). Model selection for Cox models with time-varying coeffi-
cients, Biometrics, 68, 419-428.

Yan, X., Tang, N., and Zhao, X. (2017). The Spearman rank correlation screening for
ultrahigh dimensional censored data. arXiv:1702.02708v1

Yang, E., Baker, Y., Ravikumar, P., Allen, G. I., and Liu, Z. (2014). Mixed graphical
models via exponential families. Journal of Machine Learning Research, 33, 1042-1050.

Yang, E., Ravikumar, P., Allen, G. I., and Liu, Z. (2015). Graphical models via univariate
exponential family distribution. Journal of Machine Learning Research, 16, 3813-3847.

Yang, L., Fang, Y., Wang, J., and Shao, Y. (2017). Variable selection for partially linear
models via learning gradients. Electronic Journal of Statistics, 11, 2907-2930.

Yi, G. Y. (2017). Statistical Analysis with Measurement Error and Misclassification: Strat-
egy, Method and Application. Springer, New York.

Yi, G. Y. and He, W. (2017). Analysis of case-control data with interacting misclas-
sified covariates. Journal of Statistical Distributions and Application, 4:16. DOI:
10.1186/s40488-017-0069-0

Yi, G. Y. and Lawless, J. F. (2007). A corrected likelihood method for the proportional
hazards model with covariates subject to measurement error. Journal of Statistical
Planning and Inference, 137, 1816-1828.

186



Yi, G. Y. and Lawless, J. F. (2012). Likelihood-based and marginal inference methods
for recurrent event data with covariate measurement error. The Canadian Journal of
Statistics, 40, 530-549.

Yi, G. Y., Ma, Y., and Carroll, R. J. (2012). A functional generalized method of moments
approach for longitudinal studies with missing responses and covariate measurement
error. Biometrika, 99, 151-165.

Yi, G. Y., Ma, Y., Spiegelman, D., and Carroll, R. J. (2015). Functional and structural
methods with mixed measurement error and misclassification in covariates. Journal of
the American Statistical Association, 110, 681-696.

Yi, G. Y., Yan, Y., Liao, X., and Spiegelman, D. (2019). Parametric regression analysis
with covariate misclassification in main study/validation study designs. The Interna-
tional Journal of Biostatistics, 15. DOI: 10.1515/ijb-2017-0002

Yin, X. and Hilafu, H. (2015). Sequential sufficient dimension reduction for large p, small
n problems. Journal of the Royal Statistical Society, Series B, 77, 879-892.

Yin, X. and Li, B. (2011). Sufficient dimension reduction based on an ensemble of minimum
average variance estimators. The Annals of Statistics, 39, 3392-3416.

Yörük, E., Ochs, M. F., Geman, D., and Younes, L. (2011). A comprehensive statistical
model for cell signaling and protein activity inference. IEEE/ACM Trans Comput Biol
Bioinform, 8, 592-606.

Yu, Z., Zhu, L., Peng, H., and Zhu, L. (2013). Dimension reduction and predictor selection
in semiparametric models. Biometrika, 100, 641-654.

Yu, Z., Dong, Y., and Shao, J. (2016). On marginal sliced inverse regression for ultrahigh
dimensional model-free feature selection. The Annals of Statistics, 44, 2594-2623.

Yuan, M. and Lin, Yi. (2007). Model selection and estimation in the Gaussian graphical
model. Biometrika, 94, 19-35

Zeng, P., and Zhu, Y. (2010). An integral transform method for estimating the central
mean and central subspaces. Journal of Multivariate Analysis, 101, 271-290.

Zhang, C. - H. (2010). Nearly unbiased variable selection under minimax concave penalty.
The Annals of Statistics, 28, 894-942.

187



Zhang, H. H. and Lu, W. (2007). Adaptive Lasso for Cox’s proportional hazards model.
Biometrika, 94, 691-703.

Zhang, J., Zhu, L., and Zhu, L. (2014). Surrogate dimension reduction in measurement
error regressions. Statistica Sinica, 24, 1341-1363.

Zhang, X. and Liang, H. (2011). Focused information criterion and model averaging for
generalized additive partial linear models. The Annals of Statistics, 39, 174-200.

Zhang, Y., Ouyang, Z., and Zhao, H. (2017). A statistical framework for data integration
through graphical models with application to cancer genomics. Annals of Applied
Statistics, 11, 161-184.

Zhao, G., Ma, Y., and Lu, W. (2017). Efficient estimation for dimension reduction with
censored data. arXiv:1710.05377.

Zhao, S. and Prentice, R. L. (2014). Covariate measurement error correction methods in
mediation analysis with failure time data. Biometrics, 70, 835-844.

Zhao, X. and Zhou, X. (2014). Sufficient dimension reduction on marginal regression for
gaps of recurrent events. Journal of Multivariate Analysis, 127, 56-71.
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Appendix A

Proofs for the Results in Chapter 2

A.1 Regularity Conditions

(A1) There exists a positive number α ∈ (0, 1) such that∥∥QScrSr (Q−1
SrSr

)∥∥
∞ ≤ 1− α.

(A2) There exists ρ1 > 0 such that the smallest eigenvalue Λmin(QSrSr) > ρ1. Besides, there

also exists ρ2 < ∞ such that Λmax

(
n∑
i=1

W
(i)
b (ζ)W

(i)>

b (ζ)

)
< ρ2 for all b = 1, · · · , B

and ζ ∈ Z, where W
(i)
b (ζ) =

(
W

(i)
b,r (ζ),W

(i)
b,V \{r}(ζ)

)
.

(A3) The function D(·) is third-order differentiable, and there exist η1 and η2 such that
|D′′(y)| < η1 and |D′′′(y)| < η2 for every y.

(A4) The extrapolation function is theoretically exact.

(A5) For every b = 1, · · · , B, ζ ∈ Z and node r = 1, · · · , p, there exist common κ1, κ2

such that

(i) E {Wb,r(ζ)} < κ1,

(ii) E {Wb,r(ζ)2 − (1 + ζ)Σε;r,r} < κ2, where Σε;r,r is entry (r, r) in Σε.

(A6) Denote λn = λn1 = λn2 and λn = λn3 = λn2.
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Here we briefly comment assumptions described above. Assumptions (A1) and (A2) are
also called mutual incoherence and dependency condition, respectively. Those two con-
ditions are frequently assumed in the neighbourhood approach (e.g., Meinshausen and
Bühlmann, 2006; Ravikumar et al., 2010; Yang et al., 2015; Chen et al. 2015). (A4) is
a regular condition in SIMEX method. We make bound condition on the expectation of
the working data in (A5). Specifically, (i) implies E {Wb,r(ζ)} = E {E (Wb,r(ζ)|Xr)} =
E (Xr) < κ1; (ii) yields E {E (Wb,r(ζ)2|Xr)} = E {X2

r + (1 + ζ)Σε;r,r − (1 + ζ)Σε;r,r} =
E (X2

r ) < κ2. The implication of those two conditions matches conditions in Yang et al.
(2015) and Chen et al. (2015). Assumption (A6) is frequently used in mixed graphical
model (e.g., Lee and Hastie 2015; Wang et al. 2015).

A.2 Technical Lemmas

In this section, we mainly present some lemmas which will be used in the proof of the main
theorems.

Lemma A.2.1 Let Xi, i = 1, · · · , n, be the i.i.d. random variables. Define X̄ = 1
n

n∑
i=1

Xi.

Suppose that E {exp(aXi)} exists and is free of the index i for a > 0, then for any δ > 0,

P
(
X̄ > δ

)
≤ exp (n log [E {exp(aXi)}])

exp (naδ)
. (A.1)

Proof:

Let X =
n∑
i=1

Xi, then by the Markov’s inequality, for any a > 0, we have

P
(
X̄ > δ

)
= P (X > nδ)

≤ E {exp (aX)}
exp (naδ)

=

E

{
n∏
i=1

exp (aXi)

}
exp (naδ)

. (A.2)
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Noting that E

{
n∏
i=1

exp (aXi)

}
in (A.2) can be written as

E

{
n∏
i=1

exp (aXi)

}
=

n∏
i=1

E {exp (aXi)}

= exp

(
log

[
n∏
i=1

E {exp (aXi)}

])

= exp

(
n∑
i=1

log [E {exp (aXi)}]

)
= exp (n log [E {exp (aXi)}]) . (A.3)

As a result, combining (A.2) and (A.3) gives (A.1). �

Lemma A.2.2 Under regularity conditions (A1) - (A4), we have

P

(∥∥∇θ(r)`b,ζ(θ(r))
∥∥
∞ >

α

2− α
λn
4

)
< 2 exp {exp(c1p

′)− c2n+ (1 + ζ)Σε;r,t}

+2 exp

(
−3

2
κ2 log(p)

)
.

Proof:

Noting that ∇θ(r)`b,ζ(θ(r)) =
(
∇θr`b,ζ(θ(r)),∇θ\r`

>
b,ζ(θ(r))

)>
. Then according to the defi-

nition (2.17), we have

∇θr`b,ζ(θ(r)) = − 1

n

n∑
i=1

U (i)
r

and

∇θ\r`b,ζ(θ(r)) =

(
− 1

n

n∑
i=1

U
(i)
t : t ∈ V \ {r}

)
,

where

U (i)
r =

{
W

(i)
b,r (ζ)−D′

(
θr +W

(i)>
b,V \{r}(ζ)θ\r

)}
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and

U
(i)
t = W

(i)
b,r (ζ)W

(i)
b,t (ζ)−W (i)

b,t (ζ)D′
(
θr +W

(i)>
b,V \{r}(ζ)θ\r

)
.

for any node t ∈ V \{r}. To show the desired result, we focus X on the continuous random
vector and divide the remaining proof into three steps.
Step 1: Examine U

(i)
t and show that

E
{

exp
(
aU

(i)
t

)∣∣∣X(i)
V \{r}

}
≈ exp

{
a2

2

(
X(i)
r

)2
D′′
(
θr + vaX

(i)
t +X

(i)
V \{r}θ\r

)}
× exp {(1 + ζ)Σε;r,t}

for some constant a, where Σε;r,t is the (r, t) entry of Σε.

For any constant a, we have

E
{

exp
(
aU

(i)
t

)∣∣∣X(i)
V \{r}

}
= E

(
exp

[
a
{
W

(i)
b,r (ζ)W

(i)
b,t (ζ)−W (i)

b,t (ζ)D′
(
θr +W

(i)>
b,V \{r}(ζ)θ\r

)}]∣∣∣X(i)
V \{r}

)
= E

{
E
(

exp
[
a
{
W

(i)
b,r (ζ)W

(i)
b,t (ζ) (A.4)

− W
(i)
b,t (ζ)D′

(
θr +W

(i)>
b,V \{r}(ζ)θ\r

)}]∣∣∣X(i)
r , X

(i)
V \{r}

)∣∣∣X(i)
V \{r}

}
.

(A.5)

Since W
(i)
b (ζ)|X(i) ∼ N

(
X(i), (1 + ζ)Σε

)
, then for any r, t ∈ V and r 6= t, we have

E
{
W

(i)
b,r (ζ)

∣∣∣X(i)
r

}
= X

(i)
r and cov

{
W

(i)
b,r (ζ),W

(i)
b,t (ζ)

∣∣∣X(i)
}

= (1 + ζ)Σε;r,t, where Σε;r,t is

the (r, t) entry of Σε. Then E
{
W

(i)
b,r (ζ)W

(i)
b,t (ζ)

∣∣∣X(i)
}

= X
(i)
r X

(i)
t + (1 + ζ)Σε;r,t. Therefore,

we have an approximation

E
(

exp
[
a
{
W

(i)
b,r (ζ)W

(i)
b,t (ζ)−W (i)

b,t (ζ)D′
(
θr +W

(i)>
b,V \{r}(ζ)θ\r

)}]∣∣∣X(i)
r , X

(i)
V \{r}

)
≈ exp

[
a
{
X(i)
r X

(i)
t + (1 + ζ)Σε;r,t −X(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}]
,
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and (A.4) becomes

E
{

exp
(
aU

(i)
t

)∣∣∣X(i)
V \{r}

}
≈ E

(
exp

[
a
{
X(i)
r X

(i)
t + (1 + ζ)Σε;r,t −X(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}]∣∣∣X(i)
V \{r}

)
=

∫
exp

{
aX(i)

r X
(i)
t + (1 + ζ)Σε;r,t

}
P
(
X(i)
r |X

(i)
V \{r}

)
dX(i)

r

× exp
{
−aX(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}
=

∫ [
exp

{
aX(i)

r X
(i)
t + (1 + ζ)Σε;r,t

}
× exp

{
θrX

(i)
r +X(i)

r X
(i)>
V \{r}θ\r + C(X(i)

r )−D
(
θr +X

(i)>
V \{r}θ\r

)}
× exp

{
−aX(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}]
dX(i)

r

=

∫ [
exp

{
θrX

(i)
r + (1 + ζ)Σε;r,t +X(i)

r

(
X

(i)>
V \{r}θ\r + aX

(i)
t

)
+C(X(i)

r )−D
(
θr +X

(i)>
V \{r}θ\r

)}
× exp

{
−aX(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}]
dX(i)

r , (A.6)

where the second step is due to the implementation of (2.5). Furthermore, by adding and

subtracting an additional term D
(
θr + aX

(i)
t +X

(i)>
V \{r}θ\r

)
, (A.6) can be written as

E
{

exp
(
aU

(i)
t

)∣∣∣X(i)
V \{r}

}
≈

∫
exp

{
θrX

(i)
r +X(i)

r

(
X

(i)>
V \{r}θ\r + aX

(i)
t

)
+C(X(i)

r )−D
(
θr + aX

(i)
t +X

(i)>
V \{r}θ\r

)}
dX(i)

r

× exp
{
D
(
θr + aX

(i)
t +X

(i)>
V \{r}θ\r

)
−D

(
θr +X

(i)>
V \{r}θ\r

)}
× exp

{
−aX(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}
× exp {(1 + ζ)Σε;r,t}

= exp
{
D
(
θr + aX

(i)
t +X

(i)>
V \{r}θ\r

)
−D

(
θr +X

(i)>
V \{r}θ\r

)}
× exp

{
−aX(i)

t D′
(
θr +X

(i)>
V \{r}θ\r

)}
× exp {(1 + ζ)Σε;r,t}

= exp

{
a2

2

(
X(i)
r

)2
D′′
(
θr + vaX

(i)
t +X

(i)>
V \{r}θ\r

)}
× exp {(1 + ζ)Σε;r,t} (A.7)
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where the second step holds since the integration is one, and the third step is due to the

second order Taylor series expansion on D
(
θr + aX

(i)
t +X

(i)>
V \{r}θ\r

)
around a = 0 and

v ∈ (0, 1).

Step 2: Examine 1
n

n∑
i=1

U
(i)
t and show that

P

(∣∣∣∣ 1
n

n∑
i=1

U
(i)
t

∣∣∣∣ > α
2−α

λn
4

∣∣∣∣ E1, E2

)
< 2 exp

{
− n

2η1κ2

(
α

2−α
λn
4

)2
+ (1 + ζ)Σε;r,t

}
, (A.8)

where E1 =

{
max
i,r

X
(i)
r ≤ 4 log p′

}
and E2 =

{
max
t∈V

1
n

n∑
i=1

(
X

(i)
t

)2

≤ κ2

}
.

By the derivations of Proposition 3 and Lemma 9 in Yang et al. (2015), we have
P (Ec1) ≤ c1p

′ and P (Ec2) ≤ exp (−c2n) for some constants c1 and c2, where Ec1 and Ec2 are
complement sets of E1 and E2, respectively. Therefore, by condition (A3) and any δ > 0,
applying Lemma A.2.1 gives

P

(∣∣∣∣∣ 1n
n∑
i=1

U
(i)
t

∣∣∣∣∣ > δ

∣∣∣∣∣ E1, E2

)
< 2 exp

{
n

(
η1κ2a

2

2
− δa

)
+ (1 + ζ)Σε;r,t

}
,

and specifying a = δ
η1κ2

yields

P

(∣∣∣∣∣ 1n
n∑
i=1

U
(i)
t

∣∣∣∣∣ > δ

∣∣∣∣∣ E1, E2

)
< 2 exp

{
− nδ2

2η1κ2

+ (1 + ζ)Σε;r,t

}
.

Finally, specifying δ = α
2−α

λn
4

gives (A.8).

Step 3: Examine U
(i)
r and show

P

(∣∣∣∣∣ 1n
n∑
i=1

U (i)
r

∣∣∣∣∣ > α

2− α
λn
4

∣∣∣∣∣ E1, E2

)
< 2 exp

{
− 3n

4η1

(
α

2− α
λn
4

)2
}
. (A.9)

Indeed, by the derivations similar to Step 1, we can show that for any constant ã,

E
{

exp
(
ãU (i)

r

)∣∣X(i)
V \{r}

}
≈ exp

{
− ã

2

2
D′′
(

(ṽã+ θr) +X
(i)>
V \r θ\r

)}
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for some constant ṽ ∈ (0, 1). Then for some constant δ̃, by the derivations similar to Step

2 with Condition (A3) and ã replaced by δ̃
η1

, we can show that

P

(∣∣∣∣∣ 1n
n∑
i=1

U (i)
r

∣∣∣∣∣ > δ̃

∣∣∣∣∣ E1, E2

)
< 2 exp

{
−3nδ̃2

4η1

}
. (A.10)

Finally, replacing δ̃ by α
2−α

λn
4

gives (A.9).

Step 4: Examine ∇θ(r)`b,ζ(θ(r)) and show the final result.

Recall that ∇θ(r)`b,ζ(θ(r)) =
(
∇θr`b,ζ(θ(r)),∇θ\r`

>
b,ζ(θ(r))

)>
. Then by (A.8) and (A.9),

we have

P

(∥∥∇θ(r)`b,ζ(θ(r))
∥∥
∞ >

α

2− α
λn
4

∣∣∣∣ E1, E2

)
< 2 exp

{
− n

2η1κ2

(
α

2− α
λn
4

)2

+ log p+ (1 + ζ)Σε;r,t

}

+2 exp

{
− 3n

4η1

(
α

2− α
λn
4

)2
}
.

As a result, provided that λn >
√

32η1κ2 log(p)
n

(
2−α
α

)
, we have

P

(
‖∇`b,ζ(θ(r))‖∞ >

α

2− α
λn
4

)
< 2 exp {exp(c1p

′)− c2n+ (1 + ζ)Σε;r,t}

+2 exp

(
−3

2
κ2 log(p)

)
,

which holds due to the inequality P (A) ≤ P (Ec1) + P (Ec2) + P (A| E1, E2) for an event A
(Yang et al. 2015, p.29). �

Lemma A.2.3 Let θ̂ (r; ζ, b) =
(
θ̂>Sr (r; ζ, b) , θ̂>Scr (ζ, b)

)>
with

θ̂Sr (r; ζ, b) =
(
θ̂r (ζ, b) , θ̂>Sr (ζ, b)

)>
.

Under regularity conditions (A1) - (A4), we have∥∥∥θ̂Sr(r; ζ, b)− θ0;Sr(r)
∥∥∥

2
≤ 6
√
drλn
ρ1

. (A.11)
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Proof:

By the definition of Scr , we have

θ̂ (r; ζ, b) =
(
θ̂>Sr (r; ζ, b) , θ̂>Scr (ζ, b)

)>
=
(
θ̂>Sr (r; ζ, b) , 0>(p−dr−1)

)>
,

where 0d stands for the d-dimensional zero vector. According, we write the true value of

θ(r) as θ0 (r) =
(
θ>0;Sr (r) , θ>0;Scr

)>
=
(
θ>0;Sr (r) , 0>(p−dr−1)

)>
with θ0;Sr(r) =

(
θ0;r, θ

>
0;Sr

)>
.

Claim: For ζ ∈ Z and b = 1, · · · , B, let ûSr = θ̂Sr(r; ζ, b)− θ0;Sr(r). Show that

‖ûSr‖2 ≤
6
√
drλn
ρ1

. (A.12)

We define the function Φ : Rdr+1 → R by

Φ(u) = `b,ζ (θ0;Sr(r) + u)− `b,ζ (θ0;Sr(r)) + λn
(
‖θ0;Sr + u‖1 − ‖θ0;Sr‖1

)
, (A.13)

where we express any parameter value θSr(r) by u+ θ0;Sr(r).

Note that Φ(u) is a convex function since `b,ζ(·) defined in (2.17) and the lasso function
‖·‖1 defined in (2.13) are both convex functions. Similar to the derivations for Lemma of
Ravikumar et al. (2010), to show (A.12), it suffices to show that

Φ(u) > 0 for any u with ‖u‖2 = B, (A.14)

where B = 6
√
drλn
ρ1

.

By the second order Taylor series expansion on `b,ζ (θ0;Sr(r) + u)− `b,ζ (θ0;Sr(r)) around
u = 0, (A.13) becomes

Φ(u) = T1 + T2 + T3, (A.15)

where

T1 = ∇θSr (r)`b,ζ (θ0;Sr(r))u; (A.16a)

T2 =
1

2
u>∇2

θSr (r)`b,ζ (θ0;Sr(r) + vu)u; (A.16b)

T3 = λn
(
‖θ0;Sr + u‖1 − ‖θ0;Sr‖1

)
, (A.16c)
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and v is some constant in (0, 1).

We first specify B in (A.14) by Mλn
√
dr for some M > 0. The remaining task is to

individually examine T1, T2 and T3 for their bound when ‖u‖2 = Mλn
√
dr. We proceed

with the following four steps.

Step 1: Show that

‖T1‖1 <
(λn
√
dr)

2

4
M for ‖u‖2 =Mλn

√
dr. (A.17)

For the first term T1 in (A.15), by the result in Lemma A.2.2, we have

‖T1‖1 =
∥∥∇θSr (r)`b,ζ (θ0;Sr(r))u

∥∥
1

≤
∥∥∇θSr (r)`b,ζ (θ0;Sr(r))

∥∥
∞ ‖u‖1

≤
∥∥∇θ(r)`b,ζ (θ0;Sr(r))

∥∥
∞

√
dr ‖u‖2

<
(λn
√
dr)

2

4
M.

Step 2: Show that

T2 ≥
ρ1(λn

√
dr)

2M2

2
for ‖u‖2 =Mλn

√
dr. (A.18)

Note that ∇2
θSr (r)`b,ζ (θ0;Sr(r) + vu) can be expressed as

∇2
θSr (r)`b,ζ (θ0;Sr(r) + vu)

=
n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′
(
θ0r +W

(i)>
b,V \{r} (ζ) (θ0;Sr + vu)

)
. (A.19)

Then applying the Taylor series expansion on D′′ (·) around θ0;Sr = 0, then (A.19) can be
re-written as

∇2
θSr (r)`b,ζ (θ0;Sr(r) + vu) =

n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′
(
θ0r +W

(i)>
b,V \{r} (ζ) θ0;Sr

)
+

n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′′ (η̄)
(
vuW

(i)
b,V \{r} (ζ)

)
,
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where η̄ lies on the “line segment” between θ0;Sr and θ0;Sr + vu. Then by conditions (A2),
(A3), and (A5), we have

T2 = u>∇2
θSr (r)`b,ζ (θ0;Sr(r) + vu)u

≥ min
u:‖u‖2=B

[
u>

{
n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′
(
θ0r +W

(i)
b,V \{r} (ζ) θ0;Sr

)}
u

]

+ min
u:‖u‖2=B

[
u>

{
n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′′ (η̄)
(
vuW

(i)>
b,V \{r} (ζ)

)}
u

]
≥ B2Λmin(QSrSr)

− max
u:‖u‖2=B

[
u>

{
n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′′ (η̄)
(
vuW

(i)
b,V \{r} (ζ)

)}
u

]
≥ B2ρ1 − B3ρ2η2κ1

≥ ρ1(λn
√
dr)

2M2

2
.

Step 3: Show that

T3 ≥ −(λn
√
dr)

2M2 for ‖u‖2 =Mλn
√
dr. (A.20)

Finally, for the last term T3 in (A.15), applying the triangle inequality gives

‖θ0;Sr‖1 = ‖θ0;Sr + u− u‖1 ≤ ‖θ0;Sr + u‖1 + ‖u‖1,

which implies

‖θ0;Sr + u‖1 − ‖θ0;Sr‖1 ≥ −‖u‖1.

Therefore, we have

T3 = λn (‖θ0;Sr + u‖1 − ‖θ0;Sr‖1) ≥ −(λn
√
dr)

2M2.

Step 4: Establish (A.12).

Therefore, combining (A.17), (A.18), and (A.20) with (A.15) gives

Φ(u) ≥ (λn
√
dr)

2M
(
−1

4
+
ρ1

4
M− 1

)
. (A.21)
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To ensure the right-hand-side of (A.21) be bounded below by zero, we must have

−1

4
+
ρ1

4
M− 1 > 0,

which is equivalent to M > 5
ρ1

. We take M∗ = 6
ρ1

, and thus, B∗ = M∗λn
√
dr = 6

√
drλn
ρ1

and (A.14) holds. As a result, (A.12) is shown. �

Lemma A.2.4 Let

Rn =
{
∇2
θ(r)`b,ζ

(
θ̄
)
−∇2

θ(r)`b,ζ (θ0(r))
}{

θ̂(r; ζ, b)− θ0(r)
}
, (A.22)

where θ̄ lies on the “line segment” between θ̂(r; ζ, b) and θ0(r). Then under regularity
conditions (A1) - (A4), we have

‖Rn‖∞ ≤
72η1ρ2drλ

2
n

ρ2
1

.

Proof:

Since ∇2
θ(r)`b,ζ (θ(r)) =

n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)D′′
(
θr +W

(i)>
b,V \{r} (ζ) θ\r

)
, then

∇2
θ(r)`b,ζ

(
θ̄
)
−∇2

θ(r)`b,ζ (θ0(r))

=
n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)
{
D′′
(
θr +W

(i)>
b,V \{r} (ζ) θ̄

)
−D′′

(
θr +W

(i)>
b,V \{r} (ζ) θ\r

)}
.

By conditions (A2) and (A3), the maximum eigenvalue of ∇2
θ(r)`b,ζ

(
θ̄
)
−∇2

θ(r)`b,ζ (θ0(r)) is

Λmax

{
∇2
θ(r)`b,ζ

(
θ̄
)
−∇2

θ(r)`b,ζ (θ0(r))
}

= max
ξ:‖ξ‖2=1

ξ>
{
∇2
θ(r)`b,ζ

(
θ̄
)
−∇2

θ(r)`b,ζ (θ0(r))
}
ξ

≤ max
ξ:‖ξ‖2=1

ξ>

(
n∑
i=1

W
(i)
b,V \{r} (ζ)W

(i)>

b,V \{r} (ζ)

)
ξ

×ξ>
∣∣∣D′′ (θr +W

(i)>
b,V \{r} (ζ) θ̄

)
−D′′

(
θr +W

(i)>
b,V \{r} (ζ) θ\r

)∣∣∣ ξ
≤ 2η1ρ2. (A.23)
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As a result, by Lemma A.2.3 and (A.23), we have

‖Rn‖1 ≤ ‖Rn‖2
2

≤ Λmax

{
∇2
θ(r)`b,ζ

(
θ̄
)
−∇2

θ(r)`b,ζ (θ0(r))
}
×
∥∥∥θ̂(r; ζ, b)− θ0(r)

∥∥∥2

2

≤ 2η1ρ2

(
6
√
drλn
ρ1

)2

=
72η1ρ2drλ

2
n

ρ2
1

,

and thus the proof is completed. �

A.3 Proof of Theorem 2.2.1

In contrast to the naive log likelihood function, we first consider the log likelihood function
based on true random variables:

`(θ(r)) = − 1

n

n∑
i=1

log
{
P
(
Xr|XV \{r}

)}
,

where P
(
Xr|XV \{r}

)
is defined in (2.5). Similar to (2.12), the estimator based on true

random variables is given by

θ̃(r) = argmin
θ(r)

{
`(θ(r)) + λn

∥∥θ\r∥∥1

}
(A.24)

with θ̃(r) =
(
θ̃r, θ̃

>
\r

)>
. To ease the notation, let θ̃, θ̂nv, θ and θ0 denote θ̃(r), θ̂nv(r), θ(r)

and θ0(r), respectively.

Let θ̃rt denote the tth component in θ̃\r. Let z̃ =
(
z̃r, z̃

>
\r

)>
be a p-dimensional vector

with the tth component in z̃\r being z̃t = sign
(
θ̃rt

)
if θ̃rt 6= 0 and |z̃t| ≤ 1 otherwise,

while z̃r, corresponding to θr, is set to zero since the nodewise term θr is not penalized in
(A.24). In addition, let ẑnv denote a p-dimensional vector which is defined similar to z̃ but

corresponds to θ̂nv. Then by the KKT conditions, we have

∂`nv

(
θ̂nv

)
∂θ

+ λnẑnv = 0 (A.25)
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and

∂`
(
θ̃
)

∂θ
+ λnz̃ = 0. (A.26)

By the first order Taylor series expansion on
∂`nv(θ̂nv)

∂θ
and

∂`(θ̃)
∂θ

around θ0, we have

∂`nv

(
θ̂nv

)
∂θ

≈ ∂`nv (θ0)

∂θ
+
∂2`nv (θ0)

∂θ∂θ>

(
θ̂nv − θ0

)
(A.27)

and

∂`
(
θ̃
)

∂θ
≈ ∂` (θ0)

∂θ
+
∂2` (θ0)

∂θ∂θ>

(
θ̃ − θ0

)
(A.28)

Combining (A.27) and (A.28) yields

∂`nv

(
θ̂nv

)
∂θ

−
∂`
(
θ̃
)

∂θ
≈

(
∂`nv (θ0)

∂θ
− ∂` (θ0)

∂θ

)
+
∂2`nv (θ0)

∂θ∂θ>
θ̂nv −

∂2` (θ0)

∂θ∂θ>
θ̃

−
(
∂2`nv (θ0)

∂θ∂θ>
− ∂2` (θ0)

∂θ∂θ>

)
θ0 (A.29)

The second order derivative of `nv(θ0) and `(θ0) can be, respectively, expressed as

∂2`nv (θ0)

∂θ∂θ>
=

1

n

n∑
i=1

X∗
(i)

V \{r}X
∗(i)>
V \{r}D

′′
(
θ0;r +X∗

(i)>

V \{r}θ0;\r

)
and

∂2` (θ0)

∂θ∂θ>
=

1

n

n∑
i=1

X
(i)
V \{r}X

(i)>
V \{r}D

′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)
.

Since X∗
(i)

V \{r}

∣∣X(i) ∼ N
(
X

(i)
V \{r},Σε;\r

)
, where Σε;\r is the covariance matrix Σε with

deleted rth row and rth column. As a result, we have E
(
X∗

(i)

V \{r}X
∗(i)>
V \{r}

)
= X

(i)
V \{r}X

(i)>

V \{r}+

Σε;\r. Hence, we have approximations

E

(
∂2`nv (θ0)

∂θ∂θ>

∣∣∣∣XV \{r}

)
≈ 1

n

n∑
i=1

{(
X

(i)
V \{r}X

(i)>

V \{r} + Σε;\r

)
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
(A.30)
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and

E

(
∂2` (θ0)

∂θ∂θ>

∣∣∣∣XV \{r}

)
≈ 1

n

n∑
i=1

{(
X

(i)
V \{r}X

(i)>

V \{r}

)
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
. (A.31)

Therefore, by the Law of Large Numbers with (A.30) and (A.31), we have that as n→∞,

∂2`nv (θ0)

∂θ∂θ>
p−→ Qnv and

∂2` (θ0)

∂θ∂θ>
p−→ Qr, (A.32)

where

Qnv = E
{(
X

(i)
V \{r}X

(i)>

V \{r} + Σε;\r

)
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
(A.33)

and

Qr = E
{(
X

(i)
V \{r}X

(i)>

V \{r}

)
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
. (A.34)

Then the relationship between (A.33) and (A.34) is determined by

Qnv = Qr + Σε;\rDr, (A.35)

where Dr = E
{
D′′
(
θ0;r +X

(i)>
V \{r}θ0;\r

)}
. On the other hand, by (A.25) and (A.26), we

have

∂`nv

(
θ̂nv

)
∂θ

−
∂`
(
θ̃
)

∂θ
= −λn (ẑnv − z̃) . (A.36)

Thus, combining (A.32), (A.35), and (A.36) with (A.29) gives

−λn (ẑnv − z̃) ≈
(
∂`nv (θ0)

∂θ
− ∂` (θ0)

∂θ

)
+
(
Qr + Σε;\rDr

)
θ̂nv −Qrθ̃ − Σε;\rDrθ0

=

(
∂`nv (θ0)

∂θ
− ∂` (θ0)

∂θ

)
+Qr

(
θ̂nv − θ̃

)
+ Σε;\rDr

(
θ̂nv − θ0

)
.(A.37)

By the triangle inequality, ‖ẑnv − z̃‖∞ ≤ ‖ẑnv‖∞ + ‖z̃‖∞ < 2. Besides, by (A.37), we
have∥∥∥∥∂`nv (θ0)

∂θ
− ∂` (θ0)

∂θ

∥∥∥∥
∞
≤ 2λn + ‖Qr‖∞

∥∥∥θ̂nv − θ̃∥∥∥
∞

+
∥∥Σε;\rDr

∥∥
∞

∥∥∥θ̂nv − θ0

∥∥∥
∞
, (A.38)
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and thus rearranging (A.38) gives∥∥∥θ̂nv − θ̃∥∥∥
∞
≥ ‖Qr‖−1

∞

(∥∥∥∥∂`nv (θ0)

∂θ
− ∂` (θ0)

∂θ

∥∥∥∥
∞
− 2λn

)
−‖Qr‖−1

∞

∥∥Σε;\rDr
∥∥
∞

∥∥∥θ̂nv − θ0

∥∥∥
∞
. (A.39)

Noting that based on true random variables, Lemmas 9 and 10 in Yang et al. (2015)
show that there exist some constants α̃ ∈ (0, 1) and ρ̃ > 0, such that∥∥∥∥∂` (θ0)

∂θ

∥∥∥∥
∞
≤ λnα̃

4 (2− α̃)
(A.40)

and ∥∥∥θ̃ − θ0

∥∥∥
∞
≤ 5ρ̃λn (A.41)

with large probabilities.

Finally, applying the triangle inequality on
∥∥∥θ̂nv − θ0

∥∥∥
∞

, we have∥∥∥θ̂nv − θ0

∥∥∥
∞
≥

∥∥∥θ̂nv − θ̃∥∥∥
∞
−
∥∥∥θ̃ − θ0

∥∥∥
∞
,

and thus, implementing (A.39), (A.40) and (A.41) gives∥∥∥θ̂nv − θ0

∥∥∥
∞
≥ ‖Qr‖−1

∞

(∥∥∥∥∂`nv (θ0)

∂θ

∥∥∥∥
∞
− λnα̃

4 (2− α̃)
− 2λn

)
−‖Qr‖−1

∞

∥∥Σε;\rDr
∥∥
∞

∥∥∥θ̂nv − θ0

∥∥∥
∞
− 5ρ̃λn.

Consequently, we have∥∥∥θ̂nv − θ0

∥∥∥
∞
≥

{
1 + ‖Qr‖−1

∞
∥∥Σε;\rDr

∥∥
∞

}−1 ‖Qr‖−1
∞

(∥∥∥∥∂`nv (θ0)

∂θ

∥∥∥∥
∞
− λnα̃

4 (2− α̃)
− 2λn

)
−
{

1 + ‖Qr‖−1
∞
∥∥Σε;\rDr

∥∥
∞

}−1
5ρ̃λn

=
{
‖Qr‖∞ +

∥∥Σε;\rDr
∥∥
∞

}−1
(∥∥∥∥∂`nv (θ0)

∂θ

∥∥∥∥
∞
− λnα̃

4 (2− α̃)
− 2λn

)
−
{

1 + ‖Qr‖−1
∞
∥∥Σε;\rDr

∥∥
∞

}−1
5ρ̃λn. (A.42)
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To ensure that
∥∥∥θ̂nv − θ0

∥∥∥
∞

is bounded below by a positive constant, we must have that

the right-hand side in (A.42) is larger than zero, yielding that

λn <

{
16− 7α̃

4(2− α̃)
+ 5ρ̃ ‖Qr‖∞

}−1 ∥∥∥∥∂`nv(θ0)

∂θ

∥∥∥∥
∞
. (A.43)

As a result, provided (A.43), the right-hand side of (A.42) is larger than zero. Thus, desired
inequality is obtained, and the proof is completed. �

A.4 Proof of Theorem 2.3.1

A.4.1 Proof of Part (a)

The following derivations consist of three parts.

Step 1: Let θ̂rt(ζ, b) denote the tth component of θ̂\r(ζ, b). Examine

N̂b(r; ζ) =
{
t ∈ V \ {r} : θ̂rt(ζ, b) 6= 0

}
and show that

N̂b(r; ζ) = N (r) (A.44)

with a large probability, where N (r) is the neighbourhood defined in (2.4).

In the proof of Lemma A.2.3, we write θ̂ (r; ζ, b) =
(
θ̂>Sr (r; ζ, b) , θ̂>Scr (ζ, b)

)>
with

θ̂Sr (r; ζ, b) =
(
θ̂r (ζ, b) , θ̂>Sr (ζ, b)

)>
. Let ẑ =

(
ẑr, ẑ

>
\r

)>
be a p-dimensional vector with

the tth component in ẑ\r being ẑt = sign
(
θ̂rt(ζ, b)

)
if θ̂rt(ζ, b) 6= 0 and |ẑt| ≤ 1 otherwise,

while ẑr, corresponding to θr, is set to zero since the nodewise term θr is not penalized in
(2.18). To show the sparsity recovery, we consider the primal dual witness (PDW) method
(e.g., Hastie et al. 2015, p.307). The strategy of the PDW method is to

(i) θ̂Scr (ζ, b) = 0p−dr−1 and θ̂Sr(r; ζ, b) = argmin
θSr (r)

{`b,ζ (θ(r)) + λn ‖θSr‖1};

(ii) write ẑ =
(
ẑ>Sr , ẑ

>
Scr

)>
corresponding to the components of θ̂Sr(r; ζ, b) and θ̂Scr (ζ, b);
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(iii) show that ∥∥ẑScr∥∥∞ < 1. (A.45)

Indeed, as discussed in Lemma 11.2 of Hastie et al. (2015, p.307), if (A.45) is true,

then θ̂(r; ζ, b) =
(
θ̂>Sr(r; ζ, b), 0

>
p−dr−1

)>
is an optimal solution of (2.18), and thus, (A.44)

holds with a large probability (e.g., Hastie et al. 2015, Theorem 11.3). So, the remaining
task is to show (A.45).

By the KKT conditions, we have

∇θ(r)`b,ζ

(
θ̂(r; ζ, b)

)
+ λnẑ = 0. (A.46)

Adding −∇θ(r)`b,ζ (θ0(r)) to the both sides of (A.46) gives

∇θ(r)`b,ζ

(
θ̂(r; ζ, b)

)
−∇θ(r)`b,ζ (θ0(r)) = −λnẑ −∇θ(r)`b,ζ (θ0(r)) . (A.47)

By the Mean Value Theorem (MVT), there exists θ̄ which lies on the “line segment”

between θ̂(r; ζ, b) and θ0(r), such that

∇2
θ(r)`b,ζ

(
θ̄
){

θ̂(r; ζ, b)− θ0(r)
}

= −λnẑ −∇θ(r)`b,ζ (θ0(r)) .

Adding ∇2
θ(r)`b,ζ (θ0(r))

{
θ̂(r; ζ, b)− θ0(r)

}
to both sides of (A.47) yields

∇2
θ(r)`b,ζ (θ0(r))

{
θ̂(r; ζ, b)− θ0(r)

}
= −λnẑ −∇θ(r)`b,ζ (θ0(r))−

[
∇2
θ(r)`b,ζ

(
θ̄
){

θ̂(r; ζ, b)− θ0(r)
}

−∇2
θ(r)`b,ζ (θ0(r))

{
θ̂(r; ζ, b)− θ0(r)

}]
, −λnẑ − V −Rn, (A.48)

where Rn is defined (A.22), and V = ∇θ(r)`b,ζ (θ0(r)).

Let V =
(
V >Sr , V

>
Scr

)>
and Rn =

(
R>nSr , V

>
nScr

)>
Now, by (A.48) and (i), we have(

QSrSr QSrScr
QScrSr QScrScr

)(
θ̂Sr(r; ζ, b)− θ0;Sr(r)

0

)
= −λn

(
ẑSr
ẑScr

)
−
(
VSr
VScr

)
−
(
RnSr
RnScr

)
,
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and it implies that

QSrSr

{
θ̂Sr(r; ζ, b)− θ0;Sr(r)

}
= λnẑSr − VSr −RnSr , (A.49a)

QScrSr

{
θ̂Sr(r; ζ, b)− θ0;Sr(r)

}
= λnẑScr − VScr −RnScr . (A.49b)

Combining (A.49a) and (A.49b) yields

QScrSrQ
−1
SrSr (−λnẑSr − VSr −RnSr) = −λnẑScr − VScr −RnScr (A.50)

and thus our target ẑScr can be expressed as

ẑScr =
1

λn

{
QScrSrQ

−1
SrSr (λnẑSr + VSr +RnSr)− VScr −RnScr

}
. (A.51)

We now show (A.45). Given

λn <
ρ2

1

288η1ρ2dr
, (A.52)

then (A.51) gives that

‖ẑScr‖∞ ≤ 1

λn

(∥∥QScrSrQ−1
SrSr

∥∥
∞ ‖λnẑSr + VSr +RnSr‖∞ +

∥∥VScr∥∥∞ +
∥∥VnScr∥∥∞)

≤ 1

λn

{∥∥QScrSrQ−1
SrSr

∥∥
∞ (λn ‖ẑSr‖∞ + ‖VS‖∞ + ‖RnSr‖∞) +

∥∥VScr∥∥∞ +
∥∥RnScr

∥∥
∞

}
≤ 1

λn

{∥∥QScrSrQ−1
SrSr

∥∥
∞ (λn ‖ẑSr‖∞ + ‖V ‖∞ + ‖Rn‖∞) + ‖V ‖∞ + ‖Rn‖∞

}
≤ 1

λn

{
(1− α)

(
λn +

αλn
8− 4α

+
72η1ρ2drλ

2
n

ρ2
1

)
+

αλn
8− 4α

+
72η1ρ2drλ

2
n

ρ2
1

}
= (1− α) + (2− α)

(
α

8− 4α
+

α

8− 4α

)
= (1− α) +

α

2

= 1− α

2
≤ 1,

where the third step is due to that ‖VSr‖∞ ≤ ‖V ‖∞,
∥∥VScr∥∥∞ ≤ ‖V ‖∞, ‖RnSr‖∞ ≤

‖Rn‖∞ and ‖RnSrc‖∞ ≤ ‖Rn‖∞, the fourth step comes from Condition (A1), Lemmas A.2.2
and A.2.4, and ‖ẑSr‖∞ ≤ 1 by the construction of ẑSr , and the fifth step is due to (A.52).
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Hence, by PDW approach, we have (A.44) for every b = 1, · · · , B and ζ ∈ Z with a
large probability.

Step 2: Let θ̂rt(ζ) = 1
B

B∑
b=1

θ̂rt(ζ, b) and N̂ (r; ζ) =
{
t ∈ V \ {r} : θ̂rt(ζ) 6= 0

}
. Show that

N̂ (r; ζ) = N (r) (A.53)

with a large probability.

Since θ̂(r; ζ) = 1
B

B∑
b=1

θ̂(r; ζ, b) and B is a fixed finite number, it implies that θ̂rt(ζ) 6= 0

as θ̂rt(ζ, b) 6= 0. Then by (A.44), we have (A.53) with a large probability.

Step 3: Establish the desired result.

Finally, since θ̂(r; ζ)
p−→ θ̂(r) as ζ → −1, then N̂ (r; ζ)

p−→ N̂ (r). As a result, by

(A.53), we conclude that N̂ (r) = N (r) with a large probability and ζ → −1. �

A.4.2 Proof of Part (b)

By Lemma A.2.3 and the fact that ‖ · ‖∞ ≤ ‖ · ‖2, we have∥∥∥θ̂Sr(r; ζ, b)− θ0;Sr(r)
∥∥∥
∞
≤ 6
√
drλn
ρ1

.

By the definition similar to (2.19), we have θ̂Sr(r; ζ) = 1
B

B∑
b=1

θ̂Sr(r; ζ, b) for a fixed number

B. Then for any ζ ∈ Z, we have∥∥∥θ̂Sr(r; ζ)− θ0;Sr(r)
∥∥∥
∞

=

∥∥∥∥∥ 1

B

B∑
b=1

{
θ̂Sr(r; ζ, b)− θ0;Sr(r)

}∥∥∥∥∥
∞

≤ 1

B

B∑
b=1

∥∥∥θ̂Sr(r; ζ, b)− θ0;Sr(r)
∥∥∥
∞

<
1

B

B∑
b=1

(
6
√
drλn
ρ1

)
=

6
√
drλn
ρ1

. (A.54)
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Let θ̂Sr(r;Z) =
(
θ̂Sr(r; ζ) : ζ ∈ Z

)
and θ0;Sr(r;Z) = (θ0;Sr(r) : ζ ∈ Z). Since (A.54)

holds for all ζ ∈ Z, then we have∥∥∥θ̂Sr(r;Z)− θ0;Sr(r;Z)
∥∥∥
∞
<

6d
3
2
r λn
ρ1

. (A.55)

Let R(Γ) = θ̂Sr(r;Z)−G(Z,Γ). By the least squares method, the estimator Γ̂ is obtained
by solving

G>ΓR(Γ) = 0.

Then we have

G>Γ
{
θ̂Sr(r;Z)− θ0;Sr(r;Z)

}
= G>Γ

{
G(Z, Γ̂)− G(Z,Γ)

}
= G>Γ GΓ

(
Γ̂− Γ

)
+ op(1), (A.56)

where the second equality is due to the Mean Value Theorem with respect to Γ and
consistency of the least squares estimator. (A.56) further gives(

Γ̂− Γ
)

=
(
G>Γ GΓ

)−1 G>Γ
{
θ̂Sr(r;Z)− θ0;Sr(r;Z)

}
+ op(1). (A.57)

Furthermore, since θ̂Sr(r) = G(−1, Γ̂), then

θ̂Sr(r)− θ0;Sr(r) = G(−1, Γ̂)− G(−1,Γ)

= G ′(−1,Γ)
(

Γ̂− Γ
)
. (A.58)

As a result, combining (A.55) and (A.57) with (A.58) yields∥∥∥θ̂Sr(r)− θ0;Sr(r)
∥∥∥
∞

=
∥∥∥G ′(−1,Γ)

(
Γ̂− Γ

)∥∥∥
∞

=
∥∥∥G ′(−1,Γ)

(
G>Γ GΓ

)−1 G>Γ
{
θ̂Sr(r;Z)− θ0;Sr(r;Z)

}∥∥∥
∞

≤
∥∥∥G ′(−1,Γ)

(
G>Γ GΓ

)−1 G>Γ
∥∥∥

1

∥∥∥{θ̂Sr(r;Z)− θ0;Sr(r;Z)
}∥∥∥
∞

≤
∥∥∥G ′(−1,Γ)

(
G>Γ GΓ

)−1 G>Γ
∥∥∥

1

6d
3
2
r λn
ρ1

, A6d
3
2
r λn
ρ1

.

Hence, we complete the proof. �
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A.4.3 Proof of Part (c)

As discussed in Ravikumar et al. (2010, p. 1301), to show the correctness of sign recovery,

i.e., sign
(
θ̂Sr(r)

)
= sign (θSr(r)), it suffices to check the boundness of

∥∥∥θ̂Sr(r)− θSr(r)∥∥∥
∞

.

Since Theorem 2.3.1 (b) holds, then by the fact that ‖a‖∞ < ‖a‖2 for every nonzero vector
a, we directly obtain the desired result. �

A.5 Proof of Theorem 2.4.1

Let

`C;b,ζ (θC(r)) = − 1

n

n∑
i=1

log
{
P
(
W

C(i)
b,r (ζ)

∣∣∣WC(i)
b,VC\{r} (ζ) ,W

D(i)
b (ζ)

)}
and

`D;b,ζ (θD(r′)) = − 1

n

n∑
i=1

log
{
P
(
W

D(i)
b,r′ (ζ)

∣∣∣WD(i)
b,VD\{r′} (ζ) ,W

C(i)
b (ζ)

)}
.

Similar to the derivations in proof of Lemma A.2.2, there exists a constant α ∈ (0, 1), such
that ∥∥∇θC(r)`C;b,ζ (θC(r))

∥∥
∞ ≤

α

2− α
λn
4

(A.59)

and ∥∥∇θD(r′)`D;b,ζ (θD(r′))
∥∥
∞ ≤

α

2− α
λn
4

(A.60)

with large probabilities.

In addition, let θ̂C(r; ζ, b) and θ̂D(r′; ζ, b) denote the estimators determined by (2.26)

and (2.28), respectively. According to two sets SC,r and SD,r′ , we write θ̂C(r; ζ, b) =(
θ̂C
r (ζ, b), θ̂>C;SC,r

(ζ, b), θ̂>C;ScC,r
(ζ, b)

)>
and θ̂D(r′; ζ, b) =

(
θ̂D
r′(ζ, b), θ̂

>
D;SD,r′

(ζ, b), θ̂>D;Sc
D,r′

(ζ, b)
)>

,

where θ̂C;SC,r
(ζ, b) and θ̂D;SD,r′

(ζ, b) are subvectors of(
θ̂C>
r (ζ, b), θ̂C>

\r (ζ, b)
)>

and
(
θ̂D>
r′ (ζ, b), θ̂D>

\r′ (ζ, b)
)>
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containing nonzero elements, respectively.

Let

θ̂C;SC,r
(r; ζ, b) =

(
θ̂C
r (ζ, b), θ̂>C;SC,r

(ζ, b)
)>

and θ̂D;SD,r′
(r′; ζ, b) =

(
θ̂D
r′(ζ, b), θ̂

>
D;SD,r′

(ζ, b)
)>

.

Then similar to the derivations in proof of Lemma A.2.3, we can show that∥∥∥θ̂C;SC,r
(r; ζ, b)− θ0;C,SC,r

(r)
∥∥∥

2
≤

6
√
dC,rλn

ρ1

(A.61)

and ∥∥∥θ̂D;SD,r′
(r′; ζ, b)− θ0;D,SD,r′

(r′)
∥∥∥

2
≤

6
√
dD,r′λn

ρ1

. (A.62)

Finally, let

Rn;C =
{
∇2
θC(r)`C;b,ζ

(
θ̄C

)
−∇2

θC(r)`C;b,ζ (θ0;C(r))
}{

θ̂C(r; ζ, b)− θ0;C(r)
}

and

Rn;D =
{
∇2
θD(r′)`D;b,ζ

(
θ̄D

)
−∇2

θD(r′)`D;b,ζ (θ0;D(r′))
}{

θ̂D(r′; ζ, b)− θ0;D(r′)
}
,

where θ̄C lies on the “line segment” between θ̂C(r; ζ, b) and θ0;C(r) and θ̄D lies on the “line

segment” between θ̂D(r′; ζ, b) and θ0;D(r′). Then by the derivations similar to proof of
Lemma A.2.4, we have

‖Rn;C‖∞ ≤
72η1ρ2dC,rλ

2
n

ρ2
1

and ‖Rn;D‖∞ ≤
72η1ρ2dD,r′λ

2
n

ρ2
1

. (A.63)

A.5.1 Proof of Part (a)

We first examine the neibourhood sets associated with r ∈ VC. Let θ̂C,k denote the kth

component in θ̂C(r; ζ, b) and let ẑC be a p-dimensional vector with kth component being

ẑC,k = sign(θ̂C,k) if θ̂C,k 6= 0 and |ẑC,k| ≤ 1 otherwise. According to the PDW strategy in
Appendix A.4.1,
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(i) we define θ̂C;ScC,r(ζ, b) = 0p−dC,r−1 and

θ̂C;SC,r
(r; ζ, b) = argmin

θC;SC,r
(r)

{
`C;b,ζ (θC(r)) + λn

(∥∥θC
\r
∥∥

1
+
∥∥θCD

r

∥∥
1

)}
;

(ii) write ẑC =
(
ẑ>C;SC,r

, ẑ>C;ScC,r

)>
corresponding to the components of θ̂C;SC,r

(r; ζ, b) and

θ̂C;ScC,r(ζ, b) = 0p−dC,r−1;

(iii) by the similar derivations in Appendix A.4.1 and results (A.59), (A.61), and (A.63),
we can show that ∥∥∥ẑC;ScC,r

∥∥∥
∞
≤ 1.

Therefore, by the derivations similar to Steps 2 and 3 in Appendix A.4.1, we can show that

N̂C(r) = NC(r) and N̂CD(r) = NCD(r)

with a large probability.

We next examine the neibourhood sets associated with r′ ∈ VD. Let θ̂C,k′ denote the

k′th component in θ̂D(r′; ζ, b) and let ẑD be a p-dimensional vector with k′th component

being ẑD,k′ = sign(θ̂D,k′) if θ̂D,k′ 6= 0 and |ẑD,k′ | ≤ 1 otherwise. According to the PDW
strategy in Appendix A.4.1,

(i) we define θ̂D;Sc
D,r′

(ζ, b) = 0p−dD,r′−1 and

θ̂D;SD,r′
(r; ζ, b) = argmin

θD;SD,r′
(r′)

{
`D;b,ζ (θD(r′)) + λn

(∥∥θD
\r′
∥∥

1
+
∥∥θDC

r′

∥∥
1

)}
;

(ii) write ẑD =
(
ẑ>D;SD,r′

, ẑ>D;Sc
D,r′

)>
corresponding to the components of θ̂D;SD,r′

(r′; ζ, b)

and θ̂D;Sc
D,r′

(ζ, b) = 0p−dD,r′−1;

(iii) by the similar derivations in Appendix A.4.1 and results (A.60), (A.62), and (A.63),
we can show that ∥∥∥ẑD;Sc

D,r′

∥∥∥
∞
≤ 1.

Therefore, by the derivations similar to Steps 2 and 3 in Appendix A.4.1, we can show that

N̂D(r′) = ND(r′) and N̂DC(r′) = NDC(r′)

with a large probability.
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A.5.2 Proof of Part (b)

Let θC;SC,r
(r; ζ) = 1

B

B∑
b=1

θC;SC,r
(r; ζ, b) and θD;SD,r′

(r′; ζ) = 1
B

B∑
b=1

θD;SD,r′
(r′; ζ, b). Then by

(A.61) and (A.62), we have that for every ζ ∈ Z,∥∥∥θ̂C;SC,r
(r; ζ)− θ0;C,SC,r

(r)
∥∥∥

2
≤

6
√
dC,rλn

ρ1

and ∥∥∥θ̂D;SD,r′
(r′; ζ)− θ0;D,SD,r′

(r′)
∥∥∥

2
≤

6
√
dD,r′λn

ρ1

,

respectively. Finally, let ζ → −1, we obtain∥∥∥θ̂C;SC,r
(r)− θ0;C,SC,r

(r)
∥∥∥

2
≤

6
√
dC,rλn

ρ1

(A.64)

and ∥∥∥θ̂D;SD,r′
(r′)− θ0;D,SD,r′

(r′)
∥∥∥

2
≤

6
√
dD,r′λn

ρ1

. (A.65)

A.5.3 Proof of Part (c)

Similar to the derivations in Appendix A.4.3, (A.64) and (A.65) indicate that both∥∥∥θ̂C;SC,r
(r)− θ0;C,SC,r

(r)
∥∥∥
∞

and
∥∥∥θ̂D;SD,r′

(r′)− θ0;D,SD,r′
(r′)
∥∥∥
∞

are bounded. As a result, the sign recovery is shown. �
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Appendix B

Proofs for the Results in Chapter 3

B.1 Regularity Conditions

(C1) P (Yi(τ) = 1) > 0, where τ is an upper bound of failure times which is assumed to
be finite.

(C2)
∫ τ

0
λ0(t)dt <∞.

(C3) The {Ni(t), Yi(t), X
∗
i } are independent and identically distributed for i = 1, · · · , n.

(C4) Censoring time is non-informative. That is, the failure time and the censoring time
are independent, given the covariate.

(C5) There exists γ1, γ2, such that E(Xr) < γ1 and E(X2
r ) < γ2, where Xr is the rth

element of X. Furthermore, E(XsXν) is also bounded for any s 6= ν.

(C6) There exist η1 and η2, such that Λmin

(
n∑
j=1

XjX
>
j

)
> η1 and Λmax

(
n∑
j=1

XjX
>
j

)
< η2,

where Λmax (A) is the maximum eigenvalue of the matrix A.

(C7) E {Iβ;b,ζ(β,Θ)} and E {IΘ;b,ζ(β,Θ)} are positive definite matrices for every β and Θ.
Moreover, there exist κ1 and κ2 such that

Λmin {Iβ;b,ζ(β,Θ)} > κ1 and Λmin {IΘ;b,ζ(β,Θ)} > κ2,

where Λmin (A) represents the minimum eigenvalue of the matrix A, and Iβ;b,ζ(·) and
IΘ;b,ζ(·) are given in (3.24).
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(C8) There exists a positive number α ∈ (0, 1) such that∥∥Iβ,Sc1S1;b,ζ (β0,Θ0) I−1
β,S1S1;b,ζ (β0,Θ0)

∥∥
∞ ≤ 1− α

and ∥∥IΘ,Sc2S2;b,ζ (β0,Θ0) I−1
Θ,S2S2;b,ζ (β0,Θ0)

∥∥
∞ ≤ 1− α,

where S1 and S2 are defined in Section 3.3, Sck is the complement of Sk with k = 1, 2,
Iβ,S1S1;b,ζ (β0,Θ0) and Iβ,Sc1S1;b,ζ (β0,Θ0) are dβ × dβ and (p− dβ)× dβ sub-matrices of
Iβ;b,ζ (β0,Θ0), respectively, and IΘ,S2S2;b,ζ (β0,Θ0) and IΘ,Sc2S2;b,ζ (β0,Θ0) are dΘ × dΘ

and (p2 − p− dΘ)× dΘ sub-matrices of IΘ;b,ζ (β0,Θ0), respectively.

(C9) The extrapolant function is assumed known and is differentially continuous.

Conditions (C1) to (C4) are regular assumptions in survival analysis for the establishment
of the asymptotic properties (e.g., Andersen and Gill 1982). Conditions (C5) and (C6)
come from the requirements for covariates in the graphical model theory (e.g., Chen et al.
2015; Yang et al. 2015). Condition (C7) ensures the information matrices to be positive
definite. Condition (C8), also called mutual incoherence, is often assumed for variable
selection (Yang et al. 2015). Condition (C9) is the a requirement for the SIMEX method
(Carroll et al. 2006, Chapter 5).

B.2 Some Lemmas

In this section, we present key lemmas to be used in the proofs of the theorems. First, we let
Uβ,S1;b,ζ(β,Θ) and Uβ,Sc1 ;b,ζ(β,Θ) be the sub-vectors of Uβ;b,ζ(β,Θ), defined by (3.22), which

are indexed by S1 and Sc1, respectively. That is, Uβ,S1;b,ζ(β,Θ) =
(
U

(j)
β;b,ζ(β,Θ) : j ∈ S1

)
and

Uβ,Sc1 ;b,ζ(β,Θ) =
(
U

(j)
β;b,ζ(β,Θ) : j ∈ Sc1

)
, where U

(j)
β;b,ζ(β,Θ) is the jth element of Uβ;b,ζ(β,Θ).

Next, we let UΘ,S2;b,ζ(β,Θ) and UΘ,Sc2 ;b,ζ(β,Θ) be the sub-vectors of UΘ;b,ζ(β,Θ), de-
fined by (3.22), which are indexed by S2 and Sc2, respectively. That is, UΘ,S2;b,ζ(β,Θ) =(
U

(j)
Θ;b,ζ(β,Θ) : j ∈ S2

)
and UΘ,Sc2 ;b,ζ(β,Θ) =

(
U

(j)
Θ;b,ζ(β,Θ) : j ∈ Sc2

)
, where U

(j)
Θ;b,ζ(β,Θ) is

the jth element of UΘ;b,ζ(β,Θ).

In the first two lemmas, we establish bounds for the score functions, respectively, cor-
respond to β and Θ.
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Lemma B.2.1 Under Conditions (C3) and (C5) in Appendix B.1, we have

P

(
‖Uβ,S1;b,ζ(β,Θ)‖∞ >

α

2− α
λn1

4

)
≤ dβ

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
;

P

(∥∥Uβ,Sc1 ;b,ζ(β,Θ)
∥∥
∞ >

αλn1

4

)
≤ (p− dβ)

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
,

where c1 is a positive constant, ‖a‖∞ is the infinity norm defined as max
i
|ai| for a vec-

tor a with elements ai’s, λn1 is the tuning parameter in (3.14), and dβ is defined after
Theorem 3.3.1 in Section 3.3.

Proof:

The proof consists of the following four steps.

Step 1: Show that
G

(1)
β;b,ζ(u;β,Θ)

Gb,ζ(u;β,Θ)
=
G(1)
β;b,ζ(u;β,Θ)

Gb,ζ(u;β,Θ)
+ op(1).

Let

Gb,ζ (u; β,Θ) = E

Yi(u) exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,t (ζ)θsν

 (B.1)

denote the expectation of each term in Gb,ζ(u; β,Θ). Differentiating (3.25) with respect to
β yields

G
(1)
β;b,ζ (u; β,Θ) =

n∑
i=1

[
Yi(u)

{
W

(i)
b (ζ)

}
exp

(∑
r∈V

W
(i)
b,r (ζ)βr

+
∑

(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

 . (B.2)

Let

G(1)
β;b,ζ (u; β,Θ) = E

Yi(u)
{
W

(i)
b (ζ)

}
exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,t (ζ)θsν

 .
(B.3)
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Now we examine the asymptotic behavior of Gb,ζ(u; β,Θ) and G
(1)
β;b,ζ (u; β,Θ).

Since {Ni(t) : t ∈ [0, τ ]} and {Yi(t) : t ∈ [0, τ ]} are Glivenko-Cantelli classes (van der
Vaart and Wellner 1996, Example 2.4.2), then by the Glivenko-Cantelli Theorem (Resnick
2013, Theorem 7.5.2), we have that as n→∞,

1

n

n∑
i=1

dNi(t)
a.s.−→ dN(u), (B.4)

1

n
Gb,ζ (t; β,Θ)

a.s.−→ Gb,ζ (t; β,Θ) , (B.5)

and

1

n
G

(1)
β;b,ζ (t; β,Θ)

a.s.−→ G(1)
β;b,ζ (t; β,Θ) (B.6)

uniformly for t ∈ [0, τ ], thus,

G
(1)
β;b,ζ (t; β,Θ)

Gb,ζ (t; β,Θ)

a.s.−→
G(1)
β;b,ζ (t; β,Θ)

Gb,ζ (t; β,Θ)
(B.7)

uniformly for t ∈ [0, τ ], where N(t) = E {Ni(t)}.

For any t > 0, (B.4) and (B.7) are written as

dN̄(t) = dN(t) + op(1) (B.8)

and

G
(1)
β;b,ζ (t; β,Θ)

Gb,ζ (t; β,Θ)
=
G(1)
β;b,ζ (t; β,Θ)

Gb,ζ (t; β,Θ)
+ op(1), (B.9)

where dN̄(t) = 1
n

n∑
i=1

dNi(t).

Step 2: Examine Uβ;b,ζ (β,Θ) given in (3.22) to show that

Uβ;b,ζ(β,Θ) =
1

n

n∑
i=1

Uβ,i + op(1).

217



Differentiating `b,ζ (β,Θ) in (3.11) with respect to β gives

Uβ;b,ζ (β,Θ) =
−1

n

n∑
i=1

∫ {
W

(i)
b (ζ)−

G
(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dNi(u). (B.10)

Adding and subtracting common terms each related to (B.8) or (B.9), we write (B.10) as

Uβ;b,ζ (β,Θ) =
−1

n

n∑
i=1

∫
W

(i)
b (ζ)dNi(u) +

∫ {
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN̄(u)

−
∫ {

G
(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN(u) +

∫ {
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN(u)

−
∫ {G(1)

β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN(u) +

∫ {G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN(u)

−
∫ {G(1)

β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN̄(u) +

∫ {G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN̄(u)

=
−1

n

n∑
i=1

∫
W

(i)
b (ζ)dNi(u)

+

∫ G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

{
dN̄(u)− dN(u)

}
+

∫
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
dN(u)

+

∫ {
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}{
dN̄(u)− dN(u)

}
=
−1

n

n∑
i=1

∫
W

(i)
b (ζ)dNi(u)

+

∫ G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

{
dN̄(u)− dN(u)

}
+

∫
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
dN(u) + op(1)

=
−1

n

n∑
i=1

∫ {
W

(i)
b (ζ)−

G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dNi(u)

+

∫ {
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN(u) + op(1), (B.11)

where the second step is due to the combinations of terms, and the third step comes from
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that
∫ {G

(1)
β;b,ζ(u;β,Θ)

Gb,ζ(u;β,Θ)
− G

(1)
β;b,ζ(u;β,Θ)

Gb,ζ(u;β,Θ)

}{
dN̄(u)− dN(u)

}
= op(1) which is due to (B.8) and

(B.9).

Examining the last integral in (B.11) gives that∫ {
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dN(u)

=

∫ {
G

(1)
β;b,ζ (u; β,Θ)Gb,ζ (u; β,Θ)−Gb,ζ (u; β,Θ)G(1)

β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)Gb,ζ (u; β,Θ)

}
dN(u)

=
1

n

∫ [
G

(1)
β;b,ζ (u; β,Θ)Gb,ζ (u; β,Θ)−Gb,ζ (u; β,Θ)G(1)

β;b,ζ (u; β,Θ)

{Gb,ζ (u; β,Θ)}2

]
dN(u) + op(1)

=
1

n

n∑
i=1

∫ 
Yi(u) exp

(∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

)
Gb,ζ (u; β,Θ)

×

{
W

(i)
b (ζ)−

G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}]
dN(u) + op(1), (B.12)

where the second equality is due to (B.5) and the last step is by (3.25) and (B.2).

Combining (B.11) and (B.12), we obtain that

Uβ;b,ζ(β,Θ) =
1

n

n∑
i=1

Uβ,i + op(1), (B.13)

which, by Condition (C3), (3.23) and (B.9), is an i.i.d. sum of random variables with mean
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zero , where

Uβ,i =

∫
−

{
W

(i)
b (ζ)−

G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dNi(u)

−
∫ 

Yi(u) exp

(∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

)
Gb,ζ (u; β,Θ)

×

{
W

(i)
b (ζ)−

G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}]
dN(u). (B.14)

Step 3: We examine the bound of U
(j)
β;b,ζ(β,Θ), the jth entry of Uβ;b,ζ(β,Θ) in (B.13), and

show that there exist positive constants L and c1 such that

P
(∣∣∣U (j)

β;b,ζ(β,Θ)
∣∣∣ ≥ D

)
< 2 exp

(
−n2D2

L2

)
+ c1p

−2 for any D > 0. (B.15)

Let E =

{
max
i,j

∣∣∣W (i)
b,j (ζ)

∣∣∣ ≤ 4 log(p)

}
. Following the similar derivations for Proposition

4 of Yang et al. (2015), we can show that there exists a positive constant c1, such that

P (E) ≥ 1− c1p
−2. (B.16)

Finally, to show (B.15), we need Hoeffding’s inequality which is included here for com-
pleteness.

Proposition B.2.1 (Hoeffding’s inequality)
Let Zi, i = 1, · · · , n, be the i.i.d. random variables with the support [ai, bi] where ai and bi

are finite numbers for i = 1, · · · , n. Let Z̄ = 1
n

n∑
i=1

Zi. Then for any D > 0,

P
(∣∣Z̄ − E(Z̄)

∣∣ ≥ D
)
≤ 2 exp

− n2D2

n∑
i=1

(bi − ai)2

 .
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For j = 1, · · · , p, we write U
(j)
β;b,ζ(β,Θ) as 1

n

n∑
i=1

U
(j)
β,i , with U

(j)
β,i representing the jth entry

of Uβ,i in (B.14). (B.16) shows that W
(i)
b,j (ζ) is bounded for all i, j, b, and ζ with a high

probability, which suggests that by (B.14) conditional on the event E ,
∣∣∣U (j)

β,i

∣∣∣ < L for some

constant L > 0.

By (3.23), E
{
U

(j)
β;b,ζ(β,Θ)

}
= 0. Then by Hoeffding’s inequality with replacing Z̄ and

E
(
Z̄
)

by U
(j)
β;b,ζ(β,Θ) and E

{
U

(j)
β;b,ζ(β,Θ)

}
, respectively, we have that for any D > 0,

P
(∣∣∣U (j)

β;b,ζ(β,Θ)
∣∣∣ ≥ D

∣∣∣ E) < 2 exp

(
−n2D2

L2

)
. (B.17)

Combining (B.16) and (B.17), we obtain that for any D > 0,

P
(∣∣∣U (j)

β;b,ζ(β,Θ)
∣∣∣ ≥ D

)
≤ P

(∣∣∣U (j)
β;b,ζ(β,Θ)

∣∣∣ ≥ D
∣∣∣ E)+ P (Ec)

< 2 exp

(
−n2D2

L2

)
+ c1p

−2.

Step 4: We examine Uβ,S1;b,ζ(β,Θ) and Uβ,Sc1 ;b,ζ(β,Θ), defined in Lemma B.2.1, and show
that

P

(
‖Uβ,S1;b,ζ(β,Θ)‖∞ >

α

2− α
λn1

4

)
≤ dβ

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
;

P

(∥∥Uβ,Sc1 ;b,ζ(β,Θ)
∥∥
∞ >

αλn1

4

)
≤ (p− dβ)

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
.

First, for any constant α in (0, 1), we have that

P

(
‖Uβ,S1;b,ζ(β,Θ)‖∞ >

α

2− α
λn1

4

)
≤

∑
j∈S1

P

(∣∣∣U (j)
β;b,ζ(β,Θ)

∣∣∣ > α

2− α
λn1

4

)
≤

∑
j∈S1

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
= dβ

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
,
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where the first step is due to the fact that ‖a‖∞ ≤ ‖a‖1 for a vector a, the second step
applies (B.15) and that 0 < α

2−α < 1, and the last step is due to the definition dβ = |S1|,
Similarly,

P

(∥∥Uβ,Sc1 ;b,ζ(β,Θ)
∥∥
∞ >

αλn1

4

)
≤

∑
j∈Sc1

P

(∣∣∣U (j)
β;b,ζ(β,Θ)

∣∣∣ > αλn1

4

)

≤
∑
j∈Sc1

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}

= (p− dβ)

{
2 exp

(
−1

L2
n2λ2

n1

)
+ c1p

−2

}
,

where the second step is due to (B.15) and 0 < α < 1. Thus, the proof of Lemma B.2.1
completes. �

Lemma B.2.2 Under Conditions (C3) and (C5) in Appendix B.1, we have

P

(
‖UΘ,S2;b,ζ(β,Θ)‖∞ >

α

2− α
λn2

4

)
≤ dΘ

{
2 exp

(
−1

L2
n2λ2

n2

)
+ c1p

−2

}
;

P

(∥∥UΘ,Sc2 ;b,ζ(β,Θ)
∥∥
∞ >

αλn2

4

)
≤

(
p2 − p− dΘ

){
2 exp

(
−1

L2
n2λ2

n2

)
+ c1p

−2

}
,

where c1 is a positive constant, λn2 is the tuning parameter in (3.14), and dΘ is defined
after Theorem 3.3.1 in Section 3.3.

Proof:

The proof of Lemma B.2.2 follows the steps similar to those for Lemma B.2.1; the only
differences are caused from differentiating with respect to different parameters β and Θ.
For completeness, here we outline key steps.

Let
(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν

= vec
(
W

(i)
b (ζ)W

(i)
b

>
(ζ)− diag

{
W

(i)
b (ζ)W

(i)
b

>
(ζ)
})

. Differ-

entiating (3.25) with respect to Θ yields

G
(1)
Θ;b,ζ (u; β,Θ) =

n∑
i=1

[
Yi(u)

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν

}
(B.18)

× exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν


 .
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Let

G(1)
Θ;b,ζ (u; β,Θ) = E

[
Yi(u)

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν

}

× exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν


 .

. Then similar to (B.9), we can show that

G
(1)
Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
=
G(1)

Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
+ op(1). (B.19)

On the other hand, differentiating `b,ζ(β,Θ) in (3.11) with respect to Θ gives

UΘ;b,ζ(β,Θ) = −
n∑
i=1

∫ {(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν
−
G

(1)
Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dNi(u). (B.20)

By the similar derivations for (B.11) and (B.12), we can show that

UΘ;b,ζ(β,Θ) =
1

n

n∑
i=1

UΘ,i + op(1), (B.21)

which, by Condition (C3), (3.23) and (B.19), is an i.i.d. sum of random variables with
mean zero, where

UΘ,i =

∫ {(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν
−
G(1)

Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}
dNi(u)

−
∫ 

Yi(u) exp

(∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν

)
Gb,ζ (u; β,Θ)

×

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν
−
G(1)

Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

}]
dN(u). (B.22)

For j = 1, · · · , p2 − p, let U
(j)
Θ;b,ζ(β,Θ) denote the jth entry of the (p2 − p)-dimensional

vector UΘ;b,ζ(β,Θ) in (B.21). We write U
(j)
Θ;b,ζ(β,Θ) as 1

n

n∑
i=1

U
(j)
Θ,i, with U

(j)
Θ,i representing the
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jth entry of UΘ,i in (B.22). Similar to the argument in Step 3 of the proof in Lemma B.2.1,

we have that in the presence of E ,
∣∣∣U (j)

Θ,i

∣∣∣ < L for some constant L > 0.

Since by (3.23), E
{
U

(j)
Θ;b,ζ(β,Θ)

}
= 0, then by Hoeffding’s inequality in Proposition

B.1 with replacing Z̄ and E
(
Z̄
)

by U
(j)
Θ;b,ζ(β,Θ) and E

{
U

(j)
Θ;b,ζ(β,Θ)

}
, respectively, we have

that for any D > 0,

P
(∣∣∣U (j)

Θ;b,ζ(β,Θ)
∣∣∣ ≥ D

)
≤ P

({∣∣∣U (j)
Θ;b,ζ(β,Θ)

∣∣∣ ≥ D
}
∩ E

)
+ P (Ec)

< 2 exp

(
−n2D2

L2

)
+ c1p

−2. (B.23)

As a result, for any constant α in (0, 1), we have that

P

(
‖UΘ,S2;b,ζ(β,Θ)‖∞ >

α

2− α
λn2

4

)
≤

|S2|∑
j=1

P

(∣∣∣U (j)
Θ;b,ζ(β,Θ)

∣∣∣ > α

2− α
λn2

4

)

≤
|S2|∑
j=1

{
2 exp

(
−1

L2
n2λ2

n2

)
+ c1p

−2

}
= dΘ

{
2 exp

(
−1

L2
n2λ2

n2

)
+ c1p

−2

}
,

where the second step applies (B.23) and that 0 < α
2−α < 1, and the last step is due to the

definition dΘ = |S2|.

Similarly,

P

(∥∥UΘ,Sc2 ;b,ζ(β,Θ)
∥∥
∞ >

αλn2

4

)
≤
|Sc2|∑
j=1

P

(∣∣∣U (j)
Θ;b,ζ(β,Θ)

∣∣∣ > αλn2

4

)

≤
|Sc2|∑
j=1

{
2 exp

(
−1

L2
n2λ2

n2

)
+ c1p

−2

}
=

(
p2 − p− dΘ

){
2 exp

(
−1

L2
n2λ2

n2

)
+ c1p

−2

}
.
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Therefore, the proof of Lemma B.2.2 completes. �

Next, we consider the differences between the parameters and their estimators and
establish their upper bounds.

Lemma B.2.3 Under regularity conditions in Appendix B.1, we have that

∥∥∥β̂S1 − β0;S1

∥∥∥
2
≤ λn1

√
dβ

1

κ1

1 + 2

(∑
r∈S1

w2
r

)1/2
 (B.24)

and

∥∥∥vec
(

Θ̂S2

)
− vec (Θ0;S2)

∥∥∥
2
≤ λn2

√
dΘ

1

κ2

1 + 2

(∑
s 6=ν

v2
sν

)2
 , (B.25)

where ‖·‖2 represents the L2-norm, κ1 and κ2 are defined in Condition (C7), λn1 and λn2

are defined in (3.14), and wr and vsν are defined in (3.12) and (3.13), respectively.

Proof of (B.24):

For β̂b(ζ) defined by (3.14), we write β̂b(ζ) =
(
β̂>b;S1

(ζ), β̂>b;Sc1(ζ)
)>

=
(
β̂>b;S1

(ζ), 0>(p−dβ)

)>
,

and accordingly, we write the true value of β as β0 =
(
β>0;S1

, β>0;Sc1

)>
=
(
β>0;S1

, 0>(p−dβ)

)>
,

where 0b stands for the b-dimensional zero vector.
Part 1: For ζ ∈ Z and b = 1, · · · , B, let ûβ(b, ζ) = β̂b;S1(ζ)− β0;S1. Show that

‖ûβ(b, ζ)‖2 < λn1

√
dβ

1

κ1

1 + 2

(∑
r∈S1

w2
r

)1/2
 . (B.26)

We note that by the coordinate-descent method, once Θ is given, then β̂b(ζ) can be

obtained by (3.18). In this sense, when implementing (3.14) for obtaining β̂b(ζ), we fix
Θ = Θ0 and consider the difference related to (3.14)

Ψβ(u) = {`b,ζ (β0;S1 + u,Θ0)− `b,ζ (β0;S1 ,Θ0)}+ λn1 {ρ1 (β0;S1 + u)− ρ1 (β0;S1)} , (B.27)
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where we express any parameter value βS1 as β0;S1 + u.

Note that Ψβ(u) is a convex function since `b,ζ(β,Θ) defined in (3.11) and ρ1(·) defined
in (3.12) are both convex functions. Similar to the derivations for Lemma 3 of Ravikumar
et al. (2010), to show (B.26), it suffices to show that

Ψβ(u) > 0 for any u with ‖u‖2 = B, (B.28)

where B = λn1

√
dβ

1
κ1

{
1 + 2

(∑
r∈S1

w2
r

)1/2
}

.

To see why this is true, we apply the argument of contradiction. Suppose (B.28) is true
but ‖ûβ(b, ζ)‖2 > B. Then there exists a constant ξ ∈ (0, 1) such that ‖ξûβ(b, ζ)‖2 = B.
By (B.28), Ψβ (ξûβ(b, ζ)) > 0, i.e.,

Ψβ

(
ξûβ(b, ζ) + (1− ξ)0dβ

)
> 0. (B.29)

By (3.14) and (3.18), ûβ(b, ζ) minimizes (B.27). Because Ψβ(0dβ) = 0, we obtain that
Ψβ (ûβ(b, ζ)) < 0. Since Ψβ (u) is a convex function, we have that

Ψβ

(
ξûβ(b, ζ) + (1− ξ)0dβ

)
≤ ξΨβ (ûβ(b, ζ)) + (1− ξ)Ψβ

(
0dβ
)

= ξΨβ (ûβ(b, ζ))

≤ 0,

thus, contradicting (B.29).

As a result, in the following development, we need only to show (B.28) by the following
two steps.
Step 1: Show that for any M > 0, if ‖u‖2 =

√
dβλn1M, then

Ψβ(u) >
(
λn1

√
dβ

)2

M

−1

4
+
κ1

2
M−

(∑
r∈S1

w2
r

)1/2
 . (B.30)

Examining the first difference of (B.27) using the second order Taylor series expansion
of `b,ζ(β0;S1 + u,Θ0) around u = 0dβ , we have

`b,ζ (β0;S1 + u,Θ0)− `b,ζ (β0;S1 ,Θ0)

= Uβ;b,ζ (β0;S1 ,Θ0)u+
1

2
u>Iβ;b,ζ (β0;S1 + ku,Θ0)u,
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where k is some constant in (0, 1), and Uβ;b,ζ(·) and Iβ;b,ζ(·) are defined in (3.22) and (3.24),
respectively. Then (B.27) is written as

Ψβ(u) = T1 + T2 + T3, (B.31)

where

T1 = Uβ;b,ζ (β0;S1 ,Θ0)u; (B.32a)

T2 =
1

2
u>Iβ;b,ζ (β0;S1 + ku,Θ0)u; (B.32b)

T3 = λn1 {ρ1 (β0;S1 + u)− ρ1 (β0;S1)} . (B.32c)

The remaining task is to individually examine T1, T2 and T3 for their bounds when
‖u‖2 =

√
dβλn1M. We proceed with the following three steps.

Step 1.1: Show that

‖T1‖1 <
1

4

(√
dβλn1

)2

M for ‖u‖2 =
√
dβλn1M. (B.33)

By taking the L1-norm, (B.32a) becomes

‖T1‖1 = ‖Uβ;b,ζ (β0;S1 ,Θ0)u‖1

≤ ‖Uβ;b,ζ (β0;S1 ,Θ0)‖∞ ‖u‖1

≤
(
‖Uβ,S1;b,ζ (β0;S1 ,Θ0)‖∞ +

∥∥Uβ,Sc1 ;b,ζ (β0;S1 ,Θ0)
∥∥
∞

)√
dβ ‖u‖2

<
3α− α2

1− α
λn1

4

√
dβB

<
1

4

(√
dβλn1

)2

M,

where the second inequality is due to that Uβ,S1;b,ζ (β0;S1 ,Θ0) and Uβ,S1;b,ζ

(
β0;Sc1 ,Θ0

)
are

sub-vectors of Uβ;b,ζ (β0;S1 ,Θ0), the third inequality is due to Lemma B.2.1 and the Cauchy-
Schwarz inequality on ‖u‖1, and the fourth inequality is due to B =

√
dβλn1M and

0 < α < 1.
Step 1.2: Show that

T2 >
1

2
κ1

(√
dβλn1

)2

M2 for ‖u‖2 =
√
dβλn1M. (B.34)

227



Since Iβ;b,ζ (β0;S1 ,Θ0) is a positive definite matrix and Λmin (Iβ;b,ζ (β0;S1 ,Θ0)) > κ1 by
Condition (C7), then we have that for any u with ‖u‖2 =

√
dβλn1M,

T2 =
1

2
u>Iβ;b,ζ (β0;S1 + ku,Θ0)u

≥ min
u:‖u‖2=

√
dβλn1M

{
1

2
u>Iβ;b,ζ (β0;S1 + ku,Θ0)u

}
>

1

2
κ1

(√
dβλn1

)2

M2.

Step 1.3: Show that

T3 ≥ −
(√

dβλn1

)2
(∑
r∈S1

w2
r

)1/2

M for ‖u‖2 =
√
dβλn1M. (B.35)

For r ∈ S1, let zr = wrur and β̃0r = wrβ0r, where ur and β0r represent the rth
component of u and β0, respectively. Then by (3.12), we have

ρ1 (β0;S1 + u)− ρ1 (β0;S1) =
∑
r∈S1

wr |β0r + ur| −
∑
r∈V S1

wr |β0r|

=
∑
r∈S1

∣∣∣β̃0r + zr

∣∣∣−∑
r∈S1

∣∣∣β̃0r

∣∣∣
≥ −

∑
r∈S1

|zr|

= −‖z‖1

≥ −
√
dβ ‖z‖2

2

= −
√
dβ
∑
r∈S1

z2
r , (B.36)

where the third step is due to the triangle inequality, and the second last step is due to
the Cauchy-Schwarz inequality.
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Furthermore, by the Cauchy-Schwarz inequality, we have∑
r∈S1

z2
r =

∑
r∈S1

w2
ru

2
r

≤

(∑
r∈S1

w2
r

)1/2(∑
r∈S1

u2
r

)1/2

=

(∑
r∈S1

w2
r

)1/2

‖u‖2 . (B.37)

Therefore, combining (B.32c), (B.36) and (B.37), we obtain that for any u with ‖u‖2 =√
dβλn1M,

T3 = λn1 {ρ1 (β0;S1 + u)− ρ1 (β0;S1)}

≥ −λn1

√
dβ

(∑
r∈S1

w2
r

)1/2

‖u‖2

= −
(√

dβλn1

)2
(∑
r∈S1

w2
r

)1/2

M.

Combining (B.31), (B.33), (B.34) and (B.35) gives (B.30).
Step 2: Show (B.28).

To ensure the right-hand-side of (B.30) be bounded below by zero, we must have

−1

4
+
κ1

2
M−

(∑
r∈S1

w2
r

)1/2

> 0,

which is equivalent to requiring

M >
1

κ1

1

2
+ 2

(∑
r∈S1

w2
r

)1/2
 . (B.38)

Hence, setting M∗ = 1
κ1

{
1 + 2

(∑
r∈S1

w2
r

)1/2
}

, the right-hand-side of (B.38), we see

that B∗ =
√
dβλn1M∗ and that (B.28) holds. Therefore, (B.26) is shown.
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Part 2: Show (B.24).

By (3.15) and (B.26), we obtain that∥∥∥β̂S1(ζ)− β0;S1

∥∥∥
2
≤ 1

B

B∑
b=1

∥∥∥β̂b;S1(ζ)− β0;S1

∥∥∥
2

< λn1

√
dβ

1

κ1

1 + 2

(∑
r∈S1

w2
r

)1/2
 , (B.39)

and let ζ → −1, (B.39) becomes

∥∥∥β̂S1 − β0;S1

∥∥∥
2
≤ λn1

√
dβ

1

κ1

1 + 2

(∑
r∈S1

w2
r

)1/2
 .

Proof of (B.25):

Let vec
(

Θ̂b(ζ)
)

=

(
vec
(

Θ̂b;S2(ζ)
)>

, vec
(

Θ̂b;Sc2(ζ)
)>)>

=

(
vec
(

Θ̂b;S2(ζ)
)>

, 0>(p2−p−dΘ)

)>
and vec (Θ0) =

(
vec (Θ0;S2)> , vec

(
Θ0;Sc2

)>)>
=
(

vec (Θ0;S2)> , 0>(p2−p−dΘ)

)>
.

Similar to the proof of (B.24), we now fix β = β0, and consider the difference related
to (3.14)

ΨΘ(v) = `b,ζ (β0, vec (Θ0;S2) + v)− `b,ζ (β0, vec (Θ0;S2))

+λn2 {ρ2 (vec (Θ0;S2) + v)− ρ2 (vec (Θ0;S2))} ,

for where we write vec (ΘS2) as vec (Θ0;S2) + v. The main purpose is to find the bound for

v̂Θ(b, ζ) = vec
(

Θ̂b;S2(ζ)
)
− vec (Θ0;S2).

By the similar derivations to the proof of (B.24), we obtain

∥∥∥vec
(

Θ̂b;S2(ζ)
)
− vec (Θ0;S2)

∥∥∥
2
< λn2

√
dΘ

1

κ2

1 + 2

(∑
s 6=ν

v2
sν

)2
 .

Therefore, taking average with respect to b and taking ζ = −1 gives the desired result,
(B.25). �
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Lemma B.2.4 Let

Rn;β =
{
Iβ;b,ζ

(
β̄,Θ0

)
− Iβ;b,ζ (β0,Θ0)

}(
β̂b(ζ)− β0

)
with β̄ being a vector which lies on the “line segment” between β̂b(ζ) and β0, and let

Rn;Θ =
{
IΘ;b,ζ

(
β0, Θ̄

)
− IΘ;b,ζ (β0,Θ0)

}{
vec(Θ̂b(ζ))− vec(Θ0)

}
with Θ̄ being a matrix whose vectorization vec(Θ̄) lies on the “line segment” between between

vec(Θ̂b(ζ)) and vec(Θ0). Then under regularity conditions in Appendix B.1, we have

‖Rn;β‖∞ <
α

2− α
λn1

4
(B.40)

and

‖Rn;Θ‖∞ <
α

2− α
λn2

4
. (B.41)

Proof of (B.40):

The proof consists of the following two steps.
Step 1: Show that

P

(∥∥Iβ;b,ζ

(
β̄,Θ0

)
− Iβ;b,ζ (β0,Θ0)

∥∥
∞ >

α

2− α

(
M∗

β

)−1

4

1

dβ

∣∣∣∣∣ E
)
< 2n exp

(
−n
4L2

)
.

First, we write

Iβ;b,ζ

(
β̄,Θ0

)
− Iβ;b,ζ (β0,Θ0)

=
n∑
i=1

∫ G
(2)
β;b,ζ

(
u; β̄,Θ0

)
Gb,ζ

(
u; β̄,Θ0

) −(G(1)
β;b,ζ

(
u; β̄,Θ0

)
Gb,ζ

(
u; β̄,Θ0

) )⊗2
 dNi(u)

−
n∑
i=1

∫ G
(2)
β;b,ζ (u; β0,Θ0)

Gb,ζ (u; β0,Θ0)
−

(
G

(1)
β;b,ζ (u; β0,Θ0)

Gb,ζ (u; β0,Θ0)

)⊗2
 dNi(u)

,
n∑
i=1

T3i −
n∑
i=1

T4i, (B.42)
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where G
(2)
β;b,ζ (u; β,Θ) = ∇2

βGb,ζ (u; β,Θ) and a⊗2 = aa> for any nonzero vector a. Let

G(2)
β;b,ζ (u; β,Θ)

= E

Yi(u)
{
W

(i)
b (ζ)

}⊗2

exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,t (ζ)θsν

 .(B.43)

By the derivation similar to (B.6), we have that as n→∞,

1

n
G

(2)
β;b,ζ (u; β,Θ)

a.s.−→ G(2)
β;b,ζ (u; β,Θ) (B.44)

uniformly in u ∈ [0, τ ]. By (B.5), (B.6), and (B.44), we have that as n→∞,

sup
u∈[0,τ ]

∣∣∣∣∣G
(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−
G(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

∣∣∣∣∣→ 0

and

sup
u∈[0,τ ]

∣∣∣∣∣∣
(
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2

−

(
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2
∣∣∣∣∣∣→ 0.

Then there are some constants K2, K3 > 0, such that

sup
u∈[0,τ ]

∣∣∣∣∣G
(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−
G(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

∣∣∣∣∣ < K2 (B.45a)

sup
u∈[0,τ ]

∣∣∣∣∣∣
(
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2

−

(
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2
∣∣∣∣∣∣ < K3. (B.45b)
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Combining (B.45a) and (B.45b) gives

sup
u∈[0,τ ]

∣∣∣∣∣∣
G

(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−

(
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2


−

G
(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−

(
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2

∣∣∣∣∣∣

≤ sup
u∈[0,τ ]

∣∣∣∣∣G
(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−
G(2)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

∣∣∣∣∣
+ sup

u∈[0,τ ]

∣∣∣∣∣∣
(
G

(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2

−

(
G(1)
β;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2
∣∣∣∣∣∣

< K2 +K3 , K1. (B.46)

Since the result (B.46) satisfies the requirement of the proof in Lemma A.3 of Lin and Lv
(2013), then by the derivations similar to Lemma A.3 of Lin and Lv (2013), we can show
that E(Tki) < C1n

−1/2 for a positive constant C1 and k = 3, 4.

Hence, by Theorem 9 in Massart (2000), we have

P

{
|Tki| > C1n

−1/2

(
1

2
+
D

2

) ∣∣∣∣ E} < exp

(
−D2

4L2

)
(B.47)

for k = 3, 4. Hence, by (B.47), we have

P
{
|T3i − T4i| > C ′n−1/2 (1 +D)

∣∣ E} ≤ 2P

{
|T3i| > C ′n−1/2

(
1

2
+
D

2

) ∣∣∣∣ E}
< 2 exp

(
−D2

4L2

)
. (B.48)

Finally, by (B.48), we can show that

P

(∥∥Iβ;b,ζ

(
β̄,Θ0

)
− Iβ;b,ζ (β0,Θ0)

∥∥
∞ >

α

2− α

(
M∗

β

)−1

4

1

dβ

∣∣∣∣∣ E
)

≤
n∑
i=1

P

(
|T3i − T4i| >

α

2− α

(
M∗

β

)−1

4

1

dβ

∣∣∣∣∣ E
)

< 2n exp

(
−n
4L2

)
. (B.49)
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Step 2: Examine ‖Rn;β‖∞, the infinity norm of Rn;β, and show (B.40).

By the definition of Rn;β in Lemma B.2.4, the bound of ‖Rn;β‖∞ can be determined by

‖Rn;β‖∞ ≤
∥∥Iβ;b,ζ

(
β̄,Θ0

)
− Iβ;b,ζ (β0,Θ0)

∥∥
∞

∥∥∥β̂b(ζ)− β0

∥∥∥
1

≤
∥∥Iβ;b,ζ

(
β̄,Θ0

)
− Iβ;b,ζ (β0,Θ0)

∥∥
∞

√
dβ

∥∥∥β̂b(ζ)− β0

∥∥∥
2

<
α

2− α
λn1

4
,

where the second step is due to the Cauchy-Schwarz inequality, and the third step is due
to (B.26) and (B.49).

Proof of (B.41):

This proof is similar to the proof of (B.40) except for the consideration of IΘ;b,ζ (·, ·).
Specifically, write IΘ;b,ζ

(
β0, Θ̄

)
− IΘ;b,ζ (β0,Θ0) as

IΘ;b,ζ

(
β0, Θ̄

)
− IΘ;b,ζ (β0,Θ0)

=
n∑
i=1

∫ G
(2)
Θ;b,ζ

(
u; β0, Θ̄

)
Gb,ζ

(
u; β0, Θ̄

) −(G(1)
Θ;b,ζ

(
u; β0, Θ̄

)
Gb,ζ

(
u; β0, Θ̄

) )⊗2
 dNi(u)

−
n∑
i=1

∫ G
(2)
Θ;b,ζ (u; β0,Θ0)

Gb,ζ (u; β0,Θ0)
−

(
G

(1)
Θ;b,ζ (u; β0,Θ0)

Gb,ζ (u; β0,Θ0)

)⊗2
 dNi(u),

where G
(2)
Θ;b,ζ (u; β,Θ) = ∇2

ΘGb,ζ (u; β,Θ). Let

G(2)
Θ;b,ζ (u; β,Θ) = E

[
Yi(u)

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)⊗2

s 6=ν

}

× exp

∑
r∈V

W
(i)
b,r (ζ)βr +

∑
(s,ν)∈E

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θsν


 .

.

By the Glivenko-Cantelli Theorem (e.g., Resnick 2013, Theorem 7.5.2), we have that
as n→∞,

1

n
G

(2)
Θ;b,ζ (u; β,Θ)

a.s.−→ G(2)
Θ;b,ζ (u; β,Θ)
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uniformly in u ∈ [0, τ ]. By the derivation similar to (B.46), we can show that

sup
u∈[0,τ ]

∣∣∣∣∣∣
G

(2)
Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−

(
G

(1)
Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2


−

G
(2)
Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)
−

(
G(1)

Θ;b,ζ (u; β,Θ)

Gb,ζ (u; β,Θ)

)⊗2

∣∣∣∣∣∣

< K∗2

for some constant K∗2 > 0. As a result, by the derivations similar to (B.49), we have

P

(∥∥IΘ;b,ζ

(
β0, Θ̄

)
− IΘ;b,ζ (β0,Θ0)

∥∥
∞ >

α

2− α
(M∗

Θ)−1

4

1

dΘ

∣∣∣∣∣ E
)

< 2n exp

(
−n
4L2

)
,

where M∗
Θ = 1

κ2

1 + 2

(∑
s6=ν

v2
sν

)1/2
. Therefore, we conclude that

‖Rn;Θ‖∞ ≤
∥∥IΘ;b,ζ

(
β0, Θ̄

)
− IΘ;b,ζ (β0,Θ0)

∥∥
∞

∥∥∥vec(Θ̂b(ζ))− vec(Θ0)
∥∥∥

1

<
α

2− α
λn2

4
,

and thus (B.41) follows. �

B.3 Proof of Theorem 3.3.1

To show Theorem 3.3.1, our strategy is first to derive the result for given b and ζ. We
then use the equations (3.15) to establish the results for β̂(ζ) and Θ̂(ζ). Finally, under
Condition (C9), we extrapolate the estimators and obtain the desired result. The proof
consists of the following three steps.
Step 1: We claim that∥∥∥∥∥

(
β̂b(ζ)>, vec

(
Θ̂b(ζ)

)>)>
−
(
β>0 , vec (Θ0)>

)>∥∥∥∥∥
2

= Op

(
1√
n

)
. (B.50)
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Let

ψb,ζ (β,Θ) = `b,ζ (β,Θ) + λn1ρ1(β) + λn2ρ2(Θ). (B.51)

To show (B.50), as described in Fan and Li (2001, 2002), it suffices to prove that for any

1 > ε > 0 and constant B̃ > 0,

P

{
inf
‖U‖=B̃

ψb,ζ

(
β0 +

un√
n
, vec (Θ0) +

vn√
n

)
> ψb,ζ (β0, vec (Θ0))

}
> 1− ε, (B.52)

where U =
(
u>n , v

>
n

)>
, un =

√
n
(
β̂b(ζ)− β0

)
, and vn =

√
n
(

vec
(

Θ̂b(ζ)
)
− vec (Θ0)

)
.

We now write

ψb,ζ

(
β0 +

un√
n
, vec (Θ0) +

vn√
n

)
− ψb,ζ (β0, vec (Θ0)) = J1 + J2 + J3, (B.53)

where

J1 = `b,ζ

(
β0 +

un√
n
, vec (Θ0) +

vn√
n

)
− `b,ζ (β0, vec (Θ0)) ; (B.54a)

J2 = λn1

{
ρ1

(
β0 +

un√
n

)
− ρ1 (β0)

}
; (B.54b)

J3 = λn2

{
ρ2

(
vec (Θ0) +

vn√
n

)
− ρ2 (vec (Θ0))

}
. (B.54c)

Step 1.1: Show that

J1 > 0. (B.55)

In (B.54a), adding and subtracting an additional term gives

J1 = `b,ζ

(
β0 +

un√
n
, vec (Θ0) +

vn√
n

)
− `b,ζ

(
β0, vec (Θ0) +

vn√
n

)
+`b,ζ

(
β0, vec (Θ0) +

vn√
n

)
− `b,ζ (β0, vec (Θ0)) ,

236



and using the second order Taylor series expansion yields

J1 =
u>n√
n
Uβ;b,ζ

(
β0, vec (Θ0) +

vn√
n

)
+

1

2!

u>n√
n
Iβ;b,ζ

(
β0 +

h1un√
n
, vec (Θ0) +

vn√
n

)
un√
n

+
v>n√
n
UΘ;b,ζ (β0, vec (Θ0)) +

1

2!

v>n√
n
IΘ;b,ζ

(
β0, vec (Θ0) +

h2vn√
n

)
vn√
n

=

{
u>n√
n
Uβ;b,ζ

(
β0, vec (Θ0) +

vn√
n

)
+
v>n√
n
UΘ;b,ζ (β0, vec (Θ0))

}
+

{
1

2!

u>n√
n
Iβ;b,ζ

(
β0 +

h1un√
n
, vec (Θ0) +

vn√
n

)
un√
n

+
1

2!

v>n√
n
IΘ;b,ζ

(
β0, vec (Θ0) +

h2vn√
n

)
vn√
n

}
, J1,1 + J1,2, (B.56)

where h1, h2 ∈ (0, 1), and the second step is obtained by combining the first order terms
and the second order terms, respectively.

By (3.23), we have E {Uβ;b,ζ (β0, vec (Θ0))} = 0 and E {UΘ;b,ζ (β0, vec (Θ0))} = 0, which
implies that

1

n
Uβ;b,ζ (β0, vec (Θ0)) = Op

(
1√
n

)
(B.57)

and

1

n
UΘ;b,ζ (β0, vec (Θ0)) = Op

(
1√
n

)
. (B.58)

Multiplying
√
nu>n and

√
nv>n to (B.57) and (B.58), respectively, gives

u>n√
n
Uβ;b,ζ (β0, vec (Θ0)) = u>n Op(1); (B.59a)

v>n√
n
UΘ;b,ζ (β0, vec (Θ0)) = v>n Op(1). (B.59b)

Note that vec (Θ0) + vn√
n

approaches vec (Θ0) in probability as n → ∞. Therefore, the

order of J1,1 is B̃, if ‖U‖ = B̃.
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On the other hand, by the Law of Large Numbers, we have that as n→∞,

1

n
Iβ;b,ζ

(
β0 +

h1un√
n
, vec (Θ0) +

vn√
n

)
p−→ Iβ;b,ζ (β0,Θ0) ;

1

n
IΘ;b,ζ

(
β0, vec (Θ0) +

h2vn√
n

)
p−→ IΘ;b,ζ (β0,Θ0) ,

where IΘ;b,ζ (·) and IΘ;b,ζ (·) are defined in (3.24),

Iβ;b,ζ (β0,Θ0) = E

{
1

n
Iβ;b,ζ (β0, vec (Θ0))

}
and

IΘ;b,ζ (β0,Θ0) = E

{
1

n
IΘ;b,ζ (β0, vec (Θ0))

}
.

Therefore, we can equivalently write

1

n
Iβ;b,ζ

(
β0 +

h1un√
n
, vec (Θ0) +

vn√
n

)
= Iβ;b,ζ (β0,Θ0) + op(1); (B.60a)

1

n
IΘ;b,ζ

(
β0, vec (Θ0) +

h2vn√
n

)
= IΘ;b,ζ (β0,Θ0) + op(1). (B.60b)

As a result, we have

J1,2 =
1

2
u>n {Iβ;b,ζ (β0,Θ0) + op(1)}un +

1

2
v>n {IΘ;b,ζ (β0,Θ0) + op(1)} vn. (B.61)

Note that the event E defined in Step 3 of the proof of Lemma B.2.1 restricts us to
consider bounded W

(i)
b (ζ), thus, Gb,ζ (u; β,Θ), G(1)

β;b,ζ (u; β,Θ) and G(2)
β;b,ζ (u; β,Θ), defined in

(B.1), (B.3) and (B.43), respectively, are bounded, showing that by (B.60a) and (B.42),
Iβ;b,ζ (β0,Θ0) is bounded elementwisely. Similarly, IΘ;b,ζ (β0,Θ0) is bounded elementwisely.

Therefore, (B.61) shows that the order of J1,2 is B̃2 if ‖U‖ = B̃.

In addition, by Condition (C7), both Iβ;b,ζ(·, ·) and IΘ;b,ζ(·, ·) are positive definite ma-
trices, so for any non-zero vectors u and v and by (B.60a) and (B.60b), we obtain that

J1,2 > 0. (B.62)

As a result, by (B.59a), (B.59b) and (B.61) together with (B.56), we conclude that when

B̃ is sufficiently large, J1,2 dominates J1,1, and (B.62) ensures that J1 is bounded below by

238



a positive constant. Thus, J1 > 0 when if ‖U‖ = B̃ for a sufficiently large B̃.
Step 1.2: Show that

J2 = op(1) as
λn1√
n
→ 0. (B.63)

.

For ρ1(·) in (B.54b), we have

ρ1

(
β0 +

un√
n

)
− ρ1 (β0) =

∑
r∈S1

wr

∣∣∣∣β0r +
unr√
n

∣∣∣∣−∑
r∈S1

wr |β0r|

=
∑
r∈S1

wr

(∣∣∣∣β0r +
unr√
n

∣∣∣∣− |β0r|
)

=
∑
r∈S1

wr

{
β0r

|β0r|
unr√
n

+ op

(
1√
n

)}
=

1√
n

∑
r∈S1

{sign (β0r)unrwr + op(1)} ,

where the third step is because of the Taylor series expansion of
∣∣∣β0r + unr√

n

∣∣∣ around unr = 0.

Then by the similar derivations of Lemma 3 in Lee and Liu (2012), as λn1√
n
→ 0, we have

λn1

{
ρ1

(
β0 +

un√
n

)
− ρ1 (β0)

}
= op(1),

i.e., (B.63) follows.
Step 1.3: Show that

J3 = op(1) as
λn2√
n
→ 0. (B.64)

For ρ2(·) in (B.54b), we have

ρ2

(
vec (Θ0) +

vn√
n

)
− ρ2 (vec (Θ0)) =

∑
(s,ν)∈S2

∣∣∣∣θ0sν +
vn,sν√
n

∣∣∣∣− ∑
(s,ν)∈S2

|θ0sν |

=
1√
n

∑
(s,ν)∈S2

{sign (θ0sν) vn,sν + op(1)} .
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Hence, as λn2√
n
→ 0, we have

λn2

{
ρ2

(
vec (Θ0) +

vn√
n

)
− ρ2 (vec (Θ0))

}
= op(1),

i.e., (B.64) follows.

Therefore, together with (B.53), (B.55), (B.63) and (B.64), for sufficiently large B̃ and

‖U‖2 = B̃, we have

ψb,ζ

(
β0 +

un√
n
, vec (Θ0) +

vn√
n

)
− ψb,ζ (β0, vec (Θ0)) > 0. (B.65)

Therefore, as described by Fan and Li (2001, 2002), under ‖U‖2 = B̃, (B.65) implies that
(B.52) holds. Consequently, the result (B.50) is shown.

Step 2: Taking average on (B.50) with respect to b.

By the formulation of the SIMEX algorithm, for any given ζ ∈ Z, we have

β̂(ζ) =
1

B

B∑
b=1

β̂b(ζ) and vec
(

Θ̂(ζ)
)

=
1

B

B∑
b=1

vec
(

Θ̂b(ζ)
)
.

Hence, (B.50) gives that∥∥∥∥∥
(
β̂(ζ)>, vec

(
Θ̂(ζ)

)>)>
−
(
β>0 , vec (Θ0)>

)>∥∥∥∥∥
2

2

=

∥∥∥∥∥ 1

B

B∑
b=1

{(
β̂b(ζ)>, vec

(
Θ̂b(ζ)

)>)>
−
(
β>0 , vec (Θ0)>

)>}∥∥∥∥∥
2

2

≤ 1

B

B∑
b=1

∥∥∥∥∥
(
β̂b(ζ)>, vec

(
Θ̂b(ζ)

)>)>
−
(
β>0 , vec (Θ0)>

)>∥∥∥∥∥
2

2

= Op

(
1

n

)
, (B.66)

where the last step is due to (B.50).
Step 3: Establish the final result.
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Let ζ → −1 on (B.66) gives∥∥∥(β̂>, vec(Θ̂)>
)
−
(
β>0 , vec (Θ0)>

)∥∥∥
2

= Op

(
1√
n

)
,

and thus the proof completes. �

B.4 Proof of Theorem 3.3.2

B.4.1 Proof of Part (a)

In this part, we first study the property of the estimator of β, and then examine the
estimator of Θ. Finally, combining those two results yields the desired theorem.
Part 1: Inference for Ŝ1

The following derivations consist of three steps.

Step 1: Examine Ŝ1(b, ζ) =
{
j : the jth entry of β̂b(ζ) is non-zero

}
and show that

Ŝ1(b, ζ) = S1 (B.67)

with a large probability.

In the proof of Lemma B.2.3, we define β̂b(ζ) =
(
β̂>b;S1

(ζ), β̂>b;Sc1(ζ)
)>

and β0 =
(
β>0;S1

, β>0;Sc1

)>
,

and let β̂b,r(ζ) denote the rth component of β̂b(ζ). Let ẑ be the p-dimensional vector with

the rth component being ẑr = sign
(
β̂b,r(ζ)

)
if β̂b,r(ζ) 6= 0 and |ẑr| ≤ 1 otherwise. To show

the sparsity recovery, we consider the primal dual witness (PDW) method (e.g., Hastie et
al. 2015, p.307). The strategy of the PDW method is to

(i) set β̂b;Sc1(ζ) = 0(p−dβ) and β̂b;S1(ζ) = argmin
βS1

{`b,ζ (βS1 ,Θ0) + λn1ρ1 (βS1)};

(ii) write ẑ =
(
ẑ>S1
, ẑ>Sc1

)>
corresponding to the components of β̂b;S1(ζ) and β̂b;Sc1(ζ);

(iii) then show that ∥∥ẑSc1∥∥∞ < 1. (B.68)
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Indeed, as discussed in Lemma 11.2 of Hastie et al. (2015, p.307), if (B.68) is true,

then β̂b(ζ) =
(
β̂>b;S1

(ζ), 0>(p−dβ)

)>
is an optimal solution of (3.14), and thus, (B.67) holds

with a large probability (e.g., Hastie et al. 2015, Theorem 11.3). So the remaining task is
to show (B.68).

By the KKT conditions and Theorem 3.3.1, we have

Uβ;b,ζ

(
β̂b(ζ),Θ0

)
+ λn1ẑ = 0. (B.69)

Adding −Uβ;b,ζ (β0,Θ0) to the both sides of (B.69) gives

Uβ;b,ζ

(
β̂b(ζ),Θ0

)
− Uβ;b,ζ (β0,Θ0) = −λn1ẑ − Uβ;b,ζ (β0,Θ0) . (B.70)

Applying the Mean Valued Theorem to the left-hand side of (B.70), we obtain that

Iβ;b,ζ

(
β,Θ0

) (
β̂b(ζ)− β0

)
= −λn1ẑ − Uβ;b,ζ (β0,Θ0) , (B.71)

where β is a vector which lies on the “line segment” between β̂b(ζ) and β0.

Adding Iβ;b,ζ (β0,Θ0)
(
β̂b(ζ)− β0

)
to the both sides of (B.71) yields

Iβ;b,ζ (β0,Θ0)
(
β̂b(ζ)− β0

)
= −λn1ẑ − Uβ;b,ζ (β0,Θ0)−Rn;β, (B.72)

where Rn;β is defined in Lemma B.2.4.

We write Rn;β =
(
R>n,S1;β, R

>
n,Sc1 ;β

)>
according to the components of S1 and Sc1. (i) of

the PDW method indicates that β̂b(ζ) =
(
β̂>b;S1

(ζ), 0>(p−dβ)

)>
and β0 =

(
β>0;S1

, 0>(p−dβ)

)>
,

and thus, by the matrix algebra, (B.72) can be written as

Iβ,S1S1;b,ζ (β0,Θ0)
(
β̂b;S1(ζ)− β0;S1

)
= −Uβ,S1;b,ζ (β0,Θ0)− λn1ẑS1 −Rn,S1;β;(B.73a)

Iβ,Sc1S1;b,ζ (β0,Θ0)
(
β̂b;S1(ζ)− β0;S1

)
= −Uβ,Sc1 ;b,ζ (β0,Θ0)− λn1ẑSc1 −Rn,Sc1 ;β.(B.73b)

For ease of notation, let Iβ,S1S1;b,ζ and Iβ,Sc1S1;b,ζ denote Iβ,S1S1;b,ζ (β0,Θ0) and Iβ,Sc1S1;b,ζ (β0,Θ0),
respectively. Combining (B.73a) and (B.73b) gives

Iβ,Sc1S1;b,ζI
−1
β,S1S1;b,ζ {Uβ,S1;b,ζ(β0,Θ0) + λn1ẑS1 +Rn,S1;β}

= Uβ,Sc1 ;b,ζ(β0,Θ0) + λn1ẑSc1 +Rn,Sc1 ;β, (B.74)
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yielding that

ẑSc1 =
1

λn1

[
Iβ,Sc1S1;b,ζI

−1
β,S1S1;b,ζ {Uβ,S1;b,ζ(β0,Θ0) + λn1ẑS1 +Rn,S1;β}

]
− 1

λn1

{
Uβ,Sc1 ;b,ζ(β0,Θ0) +Rn,Sc1 ;β

}
. (B.75)

Now we are ready to show (B.68). (B.75) gives that∥∥ẑSc1∥∥∞ ≤ 1

λn1

∥∥Iβ,Sc1S1;b,ζI
−1
β,S1S1;b,ζ (Uβ,S1;b,ζ(β0,Θ0) + λn1ẑS1 +Rn,S1;β)

∥∥
∞

+
1

λn1

∥∥Uβ,Sc1 ;b,ζ(β0,Θ0) +Rn,Sc1 ;β

∥∥
∞

≤ 1

λn1

∥∥Iβ,Sc1S1;b,ζI
−1
β,S1S1;b,ζ

∥∥
∞

(
‖Uβ,S1;b,ζ(β0,Θ0)‖∞ + λn1 ‖ẑS1‖∞ + ‖Rn,S1;β‖∞

)
+

1

λn1

(∥∥Uβ,Sc1 ;b,ζ(β0,Θ0)
∥∥
∞ +

∥∥Rn,Sc1 ;β

∥∥
∞

)
≤ 1

λn1

(1− α)
(
‖Uβ,S1;b,ζ(β0,Θ0)‖∞ + λn1 + ‖Rn,S1;β‖∞

)
+

1

λn1

(∥∥Uβ,Sc1 ;b,ζ(β0,Θ0)
∥∥
∞ +

∥∥Rn,Sc1 ;β

∥∥
∞

)
≤ (1− α) +

1

λn1

(1− α) ‖Uβ,S1;b,ζ(β0,Θ0)‖∞

+
1

λn1

∥∥Uβ,Sc1 ;b,ζ(β0,Θ0)
∥∥
∞ +

1

λn1

(2− α) ‖Rn;β‖∞

< 1− α +
α

4
+
α

4
+
α

4

= 1− α

4
< 1,

where the third step is because Condition (C8) and ‖ẑS1‖∞ ≤ 1 by the construction of
ẑS1 , the fourth step is due to that ‖Rn,S1;β‖∞ ≤ ‖Rn;β‖∞ and

∥∥Rn,Sc1 ;β

∥∥
∞ ≤ ‖Rn;β‖∞, the

second last step comes from Lemmas B.2.1 and B.2.4. Hence, we have Ŝ1 (b, ζ) = S1 for
every b = 1, · · · , B and ζ ∈ Z with a large probability.
Step 2:

Let Ŝ1 (ζ) =
{
j ∈ V : β̂j (ζ) 6= 0

}
. By (3.15) and (B.67), we have that Ŝ1 (ζ) = S1 (ζ)

with a large probability.
Step 3:
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Finally, since β̂(ζ)
p−→ β̂ as ζ → −1, then Ŝ1(ζ)

p−→ Ŝ1. As a result, Ŝ1 = S1 with a
large probability and ζ → −1.

Part 2: Inference for Ŝ2

The proof of this part follows similar to that for Part 1; the only differences here are
to replace the quantities for β in Part 1 with the corresponding versions for Θ, as outlined
in the following three steps.

Step 1: Examine Ŝ2(b, ζ) =
{

(s, ν) : entry (s, ν) of Θ̂b(ζ) is non-zero
}

and show that

Ŝ2(b, ζ) = S2

with a large probability.

In the proof of Lemma B.2.3, we define

vec
(

Θ̂b(ζ)
)

=

(
vec
(

Θ̂b;S2(ζ)
)>

, vec
(

Θ̂b;Sc2(ζ)
)>)>

,

and let Θ̂b,sν(ζ) denote the component (s, ν) of Θ̂b(ζ). Let µ̂ be the (p2 − p)-dimensional

vector with the sνth component being µ̂sν = sign
(

Θ̂b,sν(ζ)
)

if Θ̂b,sν(ζ) 6= 0 and |µ̂sν | ≤ 1

otherwise. To show the sparsity recovery, we consider the primal dual witness (PDW)
method (e.g., Hastie et al. 2015, p.307). The strategy of the PDW method is to

(i) set vec
(

Θ̂b;Sc2(ζ)
)

= 0(p2−p−dΘ) and

vec
(

Θ̂b;S2(ζ)
)

= argmin
ΘS2

{`b,ζ (β0,ΘS2) + λn2ρ2 (ΘS2)} ;

(ii) write µ̂ =
(
µ̂>S2

, µ̂>Sc2

)>
corresponding to the components of vec

(
Θ̂b;S2(ζ)

)
and

vec
(

Θ̂b;Sc2(ζ)
)

;

(iii) then show that ∥∥µ̂Sc2∥∥∞ < 1.
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By the derivation similar to (B.74), we have

IΘ,Sc2S2;b,ζI
−1
Θ,S2S2;b,ζ {UΘ,S2;b,ζ(β0,Θ0) + λn2µ̂S2 +Rn,S2;Θ}

= UΘ,Sc2 ;b,ζ(β0,Θ0) + λn2µ̂Sc2 +Rn,Sc2 ;Θ,

yielding that

µ̂Sc2 =
1

λn2

[
IΘ,Sc2S2;b,ζI

−1
Θ,S2S2;b,ζ {UΘ,S2;b,ζ(β0,Θ0) + λn2µ̂S2 +Rn,S2;Θ}

]
− 1

λn2

{
UΘ,Sc2 ;b,ζ(β0,Θ0) +Rn,Sc2 ;Θ

}
and

∥∥µ̂Sc2∥∥∞ < 1. As a result, we have Ŝ2 (b, ζ) = S2 for every b = 1, · · · , B and ζ ∈ Z
with a large probability.
Step 2:

Let Ŝ2 (ζ) =
{

(s, ν) ∈ E : Θ̂sν (ζ) 6= 0
}

, then we have Ŝ2 (ζ) = S2 (ζ) with a large

probability by the relationship (3.15) and the result in Step 2.
Step 3:

Finally, since Θ̂(ζ)
p−→ Θ̂ as ζ → −1, then Ŝ2(ζ)

p−→ Ŝ2. As a result, Ŝ2 = S2 with a
large probability and ζ → −1.

Part 3: Inference for N̂

Since Ŝ1 = S1 and Ŝ2 = S2 with a large probability. Then by the definition of N̂ and
N , we conclude that N̂ = N with a large probability.

B.4.2 Proof of Part (b)

To show the sign recovery, as described in Ravikumar et al. (2010, p.1301), it suffices to

prove that
∥∥∥β̂S1 − β0;S1

∥∥∥
∞

and
∥∥∥vec(Θ̂S2)− vec(Θ0,S2)

∥∥∥
∞

are bounded. Noting that∥∥∥β̂S1 − β0;S1

∥∥∥
∞
≤

∥∥∥β̂S1 − β0;S1

∥∥∥
2

and ∥∥∥vec(Θ̂S2)− vec(Θ0,S2)
∥∥∥
∞
≤

∥∥∥vec(Θ̂S2)− vec(Θ0,S2)
∥∥∥

2
,

then Lemma B.2.3 shows that
∥∥∥β̂S1 − β0;S1

∥∥∥
∞

and
∥∥∥vec(Θ̂S2)− vec(Θ0,S2)

∥∥∥
∞

are bounded.�
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B.5 Proof of Theorem 3.3.3

Define

Φb,ζ (ũ, ṽ) = ψb,ζ

(
β0 +

ũ√
n
, vec(Θ0) +

ṽ√
n

)
− ψb,ζ (β0, vec(Θ0)) , (B.76)

where ψb,ζ (·, ·) is defined in (B.51), and β0 + ũ√
n

and vec(Θ0) + ṽ√
n
, respectively, express

parameter values of β and vec(Θ) that are of interest.

As derived in Appendix B.3, un =
√
n
(
β̂b(ζ)− β0

)
and vn =

√
n
(

vec
(

Θ̂b(ζ)
)
− vec(Θ0)

)
satisfy

(un, vn)> = argmin
ũ,ṽ

Φb,ζ(ũ, ṽ). (B.77)

Recall that S1 = {j ∈ V : βj 6= 0}, S2 = {(s, ν) ∈ E : θsν 6= 0}. By Theorem 3.3.2 (a),

we have β̂Sc1 = 0 and Θ̂Sc2 = 0. Therefore, we can express un =
(
ĉ>b (ζ), 0>(p−dβ)

)>
and

vn =
(
d̂>b (ζ), 0>(p2−p−dΘ)

)>
, where

ĉb(ζ) =
√
n
(
β̂b,S1(ζ)− β0;S1

)
and d̂b(ζ) =

√
n
{

vec(Θ̂b,S2(ζ))− vec(Θ0;S2)
}
. (B.78)

Furthermore, let parameter values βS1 and vec(ΘS2) be expressed as β0;S1+ c√
n

and vec(Θ0;S2)+
d√
n
, respectively. Then (B.77) is re-written as(

ĉb(ζ), d̂b(ζ)
)

= argmin
c,d

Φb,ζ (c, d) . (B.79)

To show Theorem 3.3.3, we proceed with the following four steps.
Step 1: Show that

Φb,ζ(c, d) =
c>√
n

n∑
i=1

ω
(i)
β;b,ζ (β0;S1 ,Θ0;S2) +

d>√
n

n∑
i=1

ω
(i)
Θ;b,ζ (β0;S1 ,Θ0;S2)

+
1

2
c>Iβ,S1;b,ζ (β0;S1 ,Θ0;S2) c+

1

2
d>IΘ,S2;b,ζ (β0;S1 ,Θ0;S2) d+ op(1),

(B.80)
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where similar to the structures of (B.14) and (B.22), we define

ω
(i)
β;b,ζ (β0;S1 ,Θ0;S2) =

∫ τ

0

−

{
W

(i)
b (ζ)−

G(1)
β;b,ζ(t; β0;S1 ,Θ0;S2)

Gb,ζ(t; β0;S1 ,Θ0;S2)

}
dNi(t)

−
∫ τ

0


Yi(t) exp

(∑
r∈S1

W
(i)
b,r (ζ)β0r +

∑
(s,ν)∈S2

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θ0sν

)
Gb,ζ(t; β0;S1 ,Θ0;S2)

×

{
W

(i)
b (ζ)−

G(1)
β;b,ζ(t; β0;S1 ,Θ0;S2)

Gb,ζ(t; β0;S1 ,Θ0;S2)

}]
dN(t)

and

ω
(i)
Θ;b,ζ (β0;S1 ,Θ0;S2) =

∫ τ

0

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν
−
G(1)

Θ;b,ζ(t; β0;S1 ,Θ0;S2)

Gb,ζ(t; β0;S1 ,Θ0;S2)

}
dNi(t)

−
∫ τ

0


Yi(t) exp

(∑
r∈S1

W
(i)
b,r (ζ)β0r +

∑
(s,ν)∈S2

W
(i)
b,s (ζ)W

(i)
b,ν (ζ)θ0sν

)
Gb,ζ(t; β0;S1 ,Θ0;S2)

×

{(
W

(i)
b,s (ζ)W

(i)
b,ν (ζ)

)
s 6=ν
−
G(1)

Θ;b,ζ(t; β0;S1 ,Θ0;S2)

Gb,ζ(t; β0;S1 ,Θ0;S2)

}]
dN(t).

First, we write

Φb,ζ (c, d) = V1 + V2 + V3, (B.81)

where

V1 = `b,ζ

(
β0;S1 +

c√
n
,Θ0;S2 +

d√
n

)
− `b,ζ (β0;S1 ,Θ0;S2) ; (B.82a)

V2 = λn1

{
ρ1

(
β0;S1 +

c√
n

)
− ρ1 (β0;S1)

}
; (B.82b)

V3 = λn2

{
ρ2

(
Θ0;S2 +

d√
n

)
− ρ2 (Θ0;S2)

}
. (B.82c)
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We now examine V1, V2 and V3 in the following three steps.
Step 1.1: Show that

V1 =
c>√
n

n∑
i=1

ω
(i)
β;b,ζ (β0;S1 ,Θ0;S2) +

d>√
n

n∑
i=1

ω
(i)
Θ;b,ζ (β0;S1 ,Θ0;S2)

+
1

2
c>Iβ,S1;b,ζ (β0;S1 ,Θ0;S2) c+

1

2
d>IΘ,S2;b,ζ (β0;S1 ,Θ0;S2) d+ op(1). (B.83)

By the second order Taylor series expansion, (B.82a) becomes

V1 =
c>√
n
Uβ,S1;b,ζ (β0;S1 ,Θ0;S2) +

1

2!

c>√
n
Iβ,S1;b,ζ (β0;S1 ,Θ0;S2)

c√
n

+
d>√
n
UΘ,S2;b,ζ (β0;S1 ,Θ0;S2) +

1

2!

d>√
n
IΘ,S2;b,ζ (β0;S1 ,Θ0;S2)

d√
n
. (B.84)

By the similar derivations of (B.60a) and (B.60b), we have

1

n
Iβ,S1;b,ζ (β0;S1 ,Θ0;S2) = Iβ,S1;b,ζ (β0;S1 ,Θ0;S2) + op(1) (B.85)

and

1

n
IΘ,S2;b,ζ (β0;S1 ,Θ0;S2) = IΘ,S2;b,ζ (β0;S1 ,Θ0;S2) + op(1). (B.86)

On the other hand, by the derivations similar to (B.14) and (B.22), we have

1√
n
Uβ,S1;b,ζ (β0;S1 ,Θ0;S2) =

1√
n

n∑
i=1

ω
(i)
β;b,ζ (β0;S2 ,Θ0;S2) + op(1) (B.87)

and

1√
n
UΘ,S2;b,ζ (β0;S2 ,Θ0;S2) =

1√
n

n∑
i=1

ω
(i)
Θ;b,ζ (β0;S2 ,Θ0;S2) + op(1), (B.88)

Therefore, combining (B.85), (B.86), (B.87) and (B.88) with (B.84) gives (B.83).

Step 1.2: Show that

V2 = op(1). (B.89)
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Indeed,

V2 = λn1

{
ρ1

(
β0;S1 +

c√
n

)
− ρ1 (β0;S1)

}
= λn1

∑
r∈S1

(
wr

∣∣∣∣βr0 +
cr√
n

∣∣∣∣− wr |βr0|)
= λn1

∑
r∈S1

(
wrsign (βr0)

cr√
n

+ o(1)

)
=

λn1√
n

∑
r∈S1

(sign (βr0)wrcr + o(1)) .

By the derivations similar to (B.63) in Appendix B.3 yields (B.89) as λn1√
n
→ 0.

Step 1.3: Show that

V3 = op(1). (B.90)

Finally, by the derivations similar to (B.82b), we have that as λn2√
n
→ 0,

λn2

{
ρ2

(
Θ0;S2 +

d√
n

)
− ρ2 (Θ0;S2)

}
= op(1),

and thus (B.90) holds.

Therefore, combining (B.83), (B.89) and (B.90) with (B.81) gives (B.80).

Step 2: Let Φζ (c, d) = 1
B

B∑
b=1

Φb,ζ (c, d), where Φb,ζ (c, d) is given by (B.80). Now we exam-

ine the minimum of Φζ (c, d).

Indeed, Φζ (c, d) can be expressed as

Φζ (c, d) =
c>√
n

n∑
i=1

ω
(i)
β;ζ (β0;S1 ,Θ0;S2) +

d>√
n

n∑
i=1

ω
(i)
Θ;ζ (β0;S1 ,Θ0;S2)

+
1

2
c>Iβ,S1;ζ (β0;S1 ,Θ0;S2) c+

1

2
d>IΘ,S2;ζ (β0;S1 ,Θ0;S2) d+ op(1),
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where

ω
(i)
β;ζ (β0;S1 ,Θ0;S2) =

1

B

B∑
b=1

ω
(i)
β;b,ζ (β0;S1 ,Θ0;S2) ,

ω
(i)
Θ;ζ (β0;S1 ,Θ0;S2) =

1

B

B∑
b=1

ω
(i)
Θ;b,ζ (β0;S1 ,Θ0;S2) ,

Iβ,S1;ζ(β0;S1 ,Θ0;S2) =
1

B

B∑
b=1

Iβ,S1;b,ζ(β0;S1 ,Θ0;S2), and

IΘ,S2;ζ(β0;S1 ,Θ0;S2) =
1

B

B∑
b=1

IΘ,S2;b,ζ(β0;S1 ,Θ0;S2).

Recall that ĉb(ζ) =
√
n
(
β̂b,S1(ζ)− β0;S1

)
and d̂b(ζ) =

√
n
{

vec(Θ̂b,S2(ζ))− vec(Θ0;S2)
}

,

which are defined in (B.78). Similar to the definition in (3.15), we define(
ĉ(ζ), d̂(ζ)

)
=

1

B

B∑
b=1

(
ĉb(ζ), d̂b(ζ)

)
.

Therefore, according to (B.79), we have(
ĉ(ζ), d̂(ζ)

)
= argmin

c,d

{
1

B

B∑
b=1

Φb,ζ (c, d)

}
= argmin

c,d
Φζ (c, d) .

Step 3: Show that as n→∞,

√
n
(
β̂S1(Z)− β0;S1(Z), vec

(
Θ̂S2(Z)

)
− vec (Θ0;S2(Z))

)
d−→ argmin

c,d
Φ0(c, d),

where

Φ0(c, d) =
(
c>, d>

)( U
V

)
+

1

2

(
c>, d>

)( Iβ,S1;Z (β0;S1 ,Θ0;S2) 0
0 IΘ,S2;Z (β0;S1 ,Θ0;S2)

)(
c
d

)
.

(B.91)
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Let ĉ (Z) =
√
n
(
β̂S1(Z)− β0;S1(Z)

)
and d̂ (Z) =

√
n
(

vec
(

Θ̂S2(Z)
)
− vec (Θ0;S2(Z))

)
.

Write (
ĉ (Z) , d̂ (Z)

)
= vec

{(
ĉ (ζ) , d̂ (ζ)

)
: ζ ∈ Z

}
. (B.92)

We define

ω
(i)
β,Z (β0;S1 ,Θ0;S2) = vec

{
ω

(i)
β;ζ (β0;S1 ,Θ0;S2) : ζ ∈ Z

}
,

ω
(i)
Θ,Z (β0;S1 ,Θ0;S2) = vec

{
ω

(i)
Θ;ζ (β0;S1 ,Θ0;S2) : ζ ∈ Z

}
,

Iβ,S1;Z (β0;S1 ,Θ0;S2) = diag {Iβ,S1;ζ (β0;S1 ,Θ0;S2) : ζ ∈ Z} , (B.93)

and

IΘ,S2;Z (β0;S1 ,Θ0;S2) = diag {IΘ,S2;ζ (β0;S1 ,Θ0;S2) : ζ ∈ Z} . (B.94)

Write

1√
n
Uβ,S1;Z (β0;S1 ,Θ0;S2) =

1√
n

n∑
i=1

ω
(i)
β,Z (β0;S1 ,Θ0;S2) + op(1)

and

1√
n
UΘ,S2;Z (β0;S1 ,Θ0;S2) =

1√
n

n∑
i=1

ω
(i)
Θ,Z (β0;S1 ,Θ0;S2) + op(1).

Define

ΦZ(c, d) =
c√
n
Uβ,S1;Z (β0;S1 ,Θ0;S2) +

d√
n
UΘ,S2;Z (β0;S1 ,Θ0;S2)

+
1

2
c>Iβ,S1;Z (β0;S1 ,Θ0;S2) c+

1

2
d>IΘ,S2;Z (β0;S1 ,Θ0;S2) d+ op(1). (B.95)

By the derivations similar to Section 3 of Carroll et al. (1996), we have that as n→∞,

1√
n
Uβ,S1;Z (β0;S1 ,Θ0;S2)

d−→ U (B.96a)

1√
n
UΘ,S2;Z (β0;S1 ,Θ0;S2)

d−→ V , (B.96b)
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where U is a random variable having the distribution N (0,Σβ), V is a random variable
having the distribution N (0,ΣΘ),

Σβ = cov
{
ω

(i)
β;Z (β0;S1 ,Θ0;S2)

}
, and ΣΘ = cov

{
ω

(i)
Θ;Z (β0;S1 ,Θ0;S2)

}
.

Hence, combining (B.93), (B.94), (B.96a), (B.96b), and (B.95) yields that as n→∞,

ΦZ (c, d)
d−→ c>U + d>V +

1

2
c>Iβ,S1;Z (β0;S1 ,Θ0;S2) c+

1

2
d>IΘ,S2;Z (β0;S1 ,Θ0;S2) d

= Φ0(c, d),

where Φ0(·, ·) is given in (B.91).

On the other hand, by the argmin continuous mapping theorem (Kim and Pollard 1990;
Huang et al. 2014), we have that as n→∞,

argmin
c,d

ΦZ (c, d)
d−→ argmin

c,d
Φ0 (c, d) , (B.97)

and together with (B.97) and the fact that
(
ĉn(Z), d̂n(Z)

)
= argmin

c,d
ΦZ (c, d), we have

that as n→∞,

√
n
(
β̂S1(Z)− β0,S1(Z), vec

(
Θ̂S2(Z)

)
− vec (ΘS2,0(Z))

)
d−→ argmin

c,d
Φ0(c, d). (B.98)

Step 4: Establish the result in Theorem 3.3.3.

Finally, we need to extrapolate the estimators from (B.98). Let Rβ(Γ1) = β̂S1(Z) −
ϕ1(Z; Γ1) and RΘ(Γ2) = vec

(
Θ̂S2(Z)

)
−ϕ2(Z; Γ2). Applying the least squares method to

(3.16), Γ̂1 and Γ̂2 can be obtained by solving

ϕ>Γ1,1
Rβ(Γ1) = 0 (B.99)

and

ϕ>Γ2,2
RΘ(Γ2) = 0, (B.100)

respectively, where ϕΓj ,j = ∂
∂Γj

ϕj (Z; Γj) with j = 1, 2.

By (B.99), we have

ϕ>Γ1,1

{
β̂S1(Z)− βS1(Z)

}
= ϕ>Γ1,1

{
ϕ1

(
Z; Γ̂1

)
− ϕ1 (Z; Γ1)

}
. (B.101)
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Multiplying
√
n on both sides of (B.101) gives

ϕ>Γ1,1

√
n
{
β̂S1(Z)− βS1(Z)

}
= ϕ>Γ1,1

√
n
{
ϕ1

(
Z; Γ̂1

)
− ϕ1 (Z; Γ1)

}
. (B.102)

For the right-hand-side of (B.102), applying the Mean Value Theorem, there exists Γ∗

which lies on the “line segment” between Γ̂1 and Γ1, such that

√
n
{
ϕ1

(
Z; Γ̂1

)
− ϕ1 (Z; Γ1)

}
=
√
n

{
∂

∂Γ1

ϕ1(Z,Γ∗)
(

Γ̂1 − Γ1

)}
=
√
n

{
∂

∂Γ1

ϕ1(Z,Γ1)
(

Γ̂1 − Γ1

)
+ op(1)

(
Γ̂1 − Γ1

)}
=
√
n

{
∂

∂Γ1

ϕ1(Z,Γ1)
(

Γ̂1 − Γ1

)
+ op(n

−1/2)

}
= ϕΓ1,1

√
n
(

Γ̂1 − Γ1

)
+ op(1), (B.103)

where the third and fourth steps are due to that Γ̂1 is a consistent estimator. Therefore,
combining (B.102) and (B.103) gives

ϕ>Γ1,1

√
n
{
β̂S1(Z)− βS1(Z)

}
= ϕ>Γ1,1

ϕΓ1,1

√
n
(

Γ̂1 − Γ1

)
+ op(1). (B.104)

Thus, we can derive

√
n
(

Γ̂1 − Γ1

)
=
(
ϕ>Γ1,1

ϕΓ1,1

)−1
ϕ>Γ1,1

√
n
{
β̂S1(Z)− βS1(Z)

}
+ op(1). (B.105)

On the other hand, by (B.100), we first have

ϕ>Γ2,2

{
vec
(

Θ̂S2(Z)
)
− vec (ΘS2(Z))

}
= ϕ>Γ2,2

{
ϕ2

(
Z; Γ̂2

)
− ϕ2 (Z; Γ2)

}
, (B.106)

then similar to the derivations for (B.104), we obtain that

ϕ>Γ2,2

√
n
{

vec
(

Θ̂S2(Z)
)
− vec (ΘS2(Z))

}
=
(
ϕ>Γ2,2

ϕΓ2,2

)√
n
(

Γ̂2 − Γ2

)
+ op(1),

which gives

√
n
(

Γ̂2 − Γ2

)
=

(
ϕ>Γ2,2

ϕΓ2,2

)−1
ϕ>Γ2,2

√
n
{

vec
(

Θ̂S2(Z)
)
− vec (ΘS2(Z))

}
+ op(1) (B.107)
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by derivations similar to those for (B.105).

Recall that

ĉ(Z) =
√
n
{
β̂S1(Z)− βS1(Z)

}
and

d̂(Z) =
√
n
{

vec
(

Θ̂S2(Z)
)
− vec (ΘS2(Z))

}
given by (B.92), and let Γ =

(
Γ>1 ,Γ

>
2

)>
. By (B.105) and (B.107), we further have

√
n
(

Γ̂− Γ
)

=

( (
ϕ>Γ1,1

ϕΓ1,1

)−1
ϕ>Γ1,1

ĉ(Z)(
ϕ>Γ2,2

ϕΓ2,2

)−1
ϕ>Γ2,2

d̂(Z)

)

=

( (
ϕ>Γ1,1

ϕΓ1,1

)−1
0

0
(
ϕ>Γ2,2

ϕΓ2,2

)−1

)(
ϕ>Γ1,1

0
0 ϕ>Γ2,2

)(
ĉ(Z)

d̂(Z)

)
,

(
ϕ′>Γ ϕ

′
Γ

)−1
ϕ′>Γ

(
ĉ(Z)

d̂(Z)

)
, (B.108)

where ϕ′Γ =

(
ϕΓ1,1 0

0 ϕΓ2,2

)
.

Therefore, combining (B.98) and (B.108) yields that as n→∞,

√
n
(

Γ̂− Γ
)

d−→ argmin
c,d

(
ϕ′>Γ ϕ

′
Γ

)−1
ϕ′>Γ Φ0(c, d). (B.109)

Write

(
β̂S1

vec
(

Θ̂S2

) ) =

(
ϕ1(−1; Γ̂1)

ϕ2(−1; Γ̂2)

)
, ϕ(−1; Γ̂). Then

(
ĉ

d̂

)
,
√
n

(
β̂S1 − β0;S1

vec
(

Θ̂S2

)
− vec (Θ0;S2)

)
=
√
n
{
ϕ(−1; Γ̂)− ϕ(−1; Γ)

}
= ϕ′(−1; Γ)

√
n
(

Γ̂− Γ
)

+ op(1), (B.110)
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where ϕ′(−1; Γ) =

(
∂ϕ1(−1;Γ1)

∂Γ1
0

0 ∂ϕ2(−1;Γ2)
∂Γ2

)
, and the third equality is due to the Mean

Value Theorem, consistency of the estimator and the derivations similar to those for
(B.103).

Therefore,combining (B.109) and (B.110) and applying the delta method, we have that
as n→∞,

√
n
(
β̂S1 − β0;S1 , vec

(
Θ̂S2

)
− vec (Θ0;S2)

)
d−→ argmin

c,d
ϕ′ (−1; Γ)

(
ϕ′>Γ ϕ

′
Γ

)−1
ϕ′>Γ Φ0(c, d),

and the proof completes. �

B.6 Proof of Theorem 3.3.4

We write

√
n
{

Λ̂N̂ ,0(t; b, ζ)− Λ0(t)
}

=
√
n


∫ t

0

n∑
i=1

dNi(u)

n∑
i=1

g
(
W

(i)
b (ζ); β̂S1 , Θ̂S2

)
Yi(u)

−
∫ t

0

dΛ0(u)


= W1(t; b, ζ) +W2(t; b, ζ), (B.111)

where

W1(t; b, ζ) =
√
n


∫ t

0

n∑
i=1

dNi(u)

n∑
i=1

g(W
(i)
b (ζ); β̂S1 , Θ̂S2)Yi(u)

−
∫ t

0

n∑
i=1

dNi(u)

n∑
i=1

g(W
(i)
b (ζ); β0;S1 ,Θ0;S2)Yi(u)

 (B.112)

and

W2(t; b, ζ) =
√
n


∫ t

0

n∑
i=1

dNi(u)

n∑
i=1

g(W
(i)
b (ζ); β0;S1 ,Θ0;S2)Yi(u)

−
∫ t

0

dΛ0(u)

 . (B.113)
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Step 1: Examine (B.112) and show that

W1(t; b, ζ) =
√
n

(
Fβ;b,ζ (t; β0;S1 ,Θ0;S2)
FΘ;b,ζ (t; β0;S1 ,Θ0;S2)

)>(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)
.

Let Gb,ζ

(
u; β̂S1 , Θ̂S2

)
=

n∑
i=1

g
(
W

(i)
b (ζ); β̂S1 , Θ̂S2

)
Yi(u) where g

(
W

(i)
b (ζ); β̂S1 , Θ̂S2

)
is

defined in Section 3.2.3. Applying the Taylor series expansion for Gb,ζ

(
u; β̂S1 , Θ̂S2

)
around

(β0;S1 ,Θ0;S2) yields

1

Gb,ζ

(
u; β̂S1 , Θ̂S2

) − 1

Gb,ζ (u; β0;S1 ,Θ0;S2)

=
1

{Gb,ζ (u; β0;S1 ,Θ0;S2)}2

(
G

(1)
β;b,ζ (u; β0;S1 ,Θ0;S2)

G
(1)
Θ;b,ζ (u; β0;S1 ,Θ0;S2)

)>(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)

+op

(
1√
n

)
.

Then (B.112) becomes

W1(t; b, ζ)

=
√
n

∫ t

0

n∑
i=1

dNi(u)

{Gb,ζ (u; β0;S1 ,Θ0;S2)}2

(
G

(1)
β;b,ζ (u; β0;S1 ,Θ0;S2)

G
(1)
Θ;b,ζ (u; β0;S1 ,Θ0;S2)

)>(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)
+op (1)

=

∫ t

0

n∑
i=1

dNi(u)

{Gb,ζ (u; β0;S1 ,Θ0;S2)}2

(
G

(1)
β;b,ζ (u; β0;S1 ,Θ0;S2)

G
(1)
Θ;b,ζ (u; β0;S1 ,Θ0;S2)

)>
√
n

(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)
+op (1) .

(B.114)

Since

1

n

n∑
i=1

dNi(u)
a.s.−→ dE {Ni(u)}
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uniformly at u as n→∞. Therefore, as n→∞,

∫ t

0

n∑
i=1

dNi(u)

{Gb,ζ (u; β0;S1 ,Θ0;S2)}2

(
G

(1)
β;b,ζ (u; β0;S1 ,Θ0;S2)

G
(1)
Θ;b,ζ (u; β0;S1 ,Θ0;S2)

)>
a.s.−→

(
Fβ;b,ζ (t; β0;S1 ,Θ0;S2)
FΘ;b,ζ (t; β0;S1 ,Θ0;S2)

)>
,

(B.115)

where

Fβ;b,ζ (t; β0;S1 ,Θ0;S2) =

∫ t

0

dE {Ni(u)} G(1)
β;b,ζ (u, β0;S1 ,Θ0;S2)

{Gb,ζ (u, β0;S1 ,Θ0;S2)}2

and

FΘ;b,ζ (t; β0;S1 ,Θ0;S2) =

∫ t

0

dE {Ni(u)} G(1)
Θ;b,ζ (u, β0;S1 ,Θ0;S2)

{Gb,ζ (u, β0;S1 ,Θ0;S2)}2 .

Therefore, combining (B.114) and (B.115) gives

W1(t; b, ζ) =
√
n

(
Fβ;b,ζ (t; β0;S1 ,Θ0;S2)
FΘ;b,ζ (t; β0;S1 ,Θ0;S2)

)>(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)
. (B.116)

Taking average on (B.116) with respect to b yields

W1(t; ζ) =
1

B

B∑
b=1

W1(t; b, ζ)

=
√
n

(
Fβ;ζ (t; β0;S1 ,Θ0;S2)
FΘ;ζ (t; β0;S1 ,Θ0;S2)

)>(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)
+ op(1)

,
√
nF(t; ζ) + op(1), (B.117)

where

Fβ;ζ (t; β0;S1 ,Θ0;S2) =
1

B

B∑
b=1

Fβ;b,ζ (t; β0;S1 ,Θ0;S2)

and

FΘ;ζ (t; β0;S1 ,Θ0;S2) =
1

B

B∑
b=1

FΘ;b,ζ (t; β0;S1 ,Θ0;S2) .
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Step 2: Examine (B.113).

Since

W2(t; b, ζ) =
√
n

∫ t

0


n∑
i=1

{
dNi(u)− g

(
W

(i)
b (ζ); β0;S1 ,Θ0;S2

)
Yi(u)dΛ0(u)

}
n∑
i=1

g
(
W

(i)
b (ζ); β0;S1 ,Θ0;S2

)
Yi(u)



=
1√
n

∫ t

0


n∑
i=1

{
dNi(u)− g

(
W

(i)
b (ζ); β0;S1 ,Θ0;S2

)
Yi(u)dΛ0(u)

}
Gb,ζ (u; β0;S1 ,Θ0;S2)

+ op(1)

,
1√
n

n∑
i=1

Wi(t; b, ζ) + op(1). (B.118)

Taking average of (B.118) with respect to b gives

W2(t; ζ) =
1√
n

n∑
i=1

Wi(t; ζ) + op(1), (B.119)

where Wi(t; ζ) = 1
B

B∑
b=1

Wi(t; b, ζ).

Step 3: Establish the result in Theorem 3.3.4.

Combining (B.117) and (B.119) yields

√
n
{

Λ̂N̂ ,0(t; ζ)− Λ0(t)
}

=
1√
n

n∑
i=1

{F(t; ζ) + Wi(t; ζ)}+ op(1). (B.120)

Suppose that ϕΛ(ζ; ΓΛ) is a regression function, and ΓΛ is the associated parameter.

Let RΛ(ΓΛ) = Λ̂N̂ ,0(t;Z) − ϕΛ(Z; ΓΛ) for a given time point t, and let Γ̂Λ denote the
solution of

ϕ′>Γ,ΛRΛ(ΓΛ) = 0.
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Similar to the derivations for (B.105), we have

√
n
{

Γ̂Λ − ΓΛ

}
=

(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,Λ
√
n
{

Λ̂N̂ ,0(t;Z)− Λ0(t)
}

=
1√
n

n∑
i=1

(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,Λ {F(t;Z) + Wi(t;Z)}+ op(1). (B.121)

Finally, applying the delta method to (B.121) and taking ζ = −1 as the extrapolation
gives

√
n
{

Λ̂N̂ ,0(t)− Λ0(t)
}

=
1√
n

n∑
i=1

ϕ′Λ(−1; ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,Λ {F(t;Z) + Wi(t;Z)}+ op(1)

=
1√
n

n∑
i=1

ϕ′Λ(−1; ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,ΛF(t;Z)

+
1√
n

n∑
i=1

ϕ′Λ(−1; ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,ΛWi(t;Z) + op(1)

, A(t) + B(t) + op(1). (B.122)

Noting that ϕ′Λ(−1; ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,ΛF(t;Z) is free of index i, then by the definition

of F(·) in (B.117), A(t) can be re-written as

A(t) =
√
nϕ′Λ(−1; ΓΛ)

(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1

×ϕ′>Γ,Λ
(
Fβ;Z (t; β0;S1 ,Θ0;S2)
FΘ;Z (t; β0;S1 ,Θ0;S2)

)>(
β̂S1 − β0;S1

vec(Θ̂S2)− vec(Θ0;S2)

)
+ op(1).

Thus, when n→∞,

A(t)
d−→ ϕ′Λ(−1; ΓΛ)

(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,Λ

(
Fβ;Z (t; β0;S1 ,Θ0;S2)
FΘ;Z (t; β0;S1 ,Θ0;S2)

)>
× argmin

c,d
ϕ′ (−1; Γ)

(
ϕ′>Γ ϕ

′
Γ

)−1
ϕ′>Γ Φ0(c, d). (B.123)
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Let Wi(t) = ϕ′Λ(−1; ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,ΛWi(t;Z). Since Wi(t; ζ) are i.i.d. with mean

zero due to Condition (C5), so by the Central Limit Theorem, when n→∞,

B(t) =
1√
n

n∑
i=1

Wi(t) + op(1)

d−→ W(t), (B.124)

whereW(t) is a Gaussian process with mean zero and covariance E {Wi(t)Wi(s)}. There-
fore, combining (B.123) and (B.124) with (B.122) gives that as n→∞,

√
n
{

Λ̂N̂ ,0(t)− Λ0(t)
}

d−→ W(t) + ϕ′Λ(−1; ΓΛ)
(
ϕ′>Γ,Λϕ

′
Γ,Λ

)−1
ϕ′>Γ,Λ

(
Fβ;Z (t; β0;S1 ,Θ0;S2)
FΘ;Z (t; β0;S1 ,Θ0;S2)

)>
× argmin

c,d
ϕ′ (−1; Γ)

(
ϕ′>Γ ϕ

′
Γ

)−1
ϕ′>Γ Φ0(c, d).

�

260



Appendix C

Proofs for the Results in Chapter 4

C.1 Regularity Conditions

(C1) P (Ri(τ) = 1) > 0, where Ri(t) = I{Yi > t} and τ is an upper bound of survival
times which is assumed to be finite.

(C2) Censoring time is non-informative. That is, the survival time and the censoring time
are independent

(C3) The {I(Yi ≤ t), X∗i } are independent and identically distributed for i = 1, · · · , n.

(C4) The bandwidth h falls in the interval Hκ;n = [hln
−κ, hun

−κ] for some constants hl
and hu and κ ∈ (1/(4q), 1/max{2d+ 2, d+ 4}).

(C5) A is nonsingular.

(C6) Both X and Y satisfy the subexponential tail probability uniformly in p. That is,
there exists a positive constant s0 such that for all 0 < s ≤ 2s0,

sup
p

max
1≤k≤p

E
{

exp
(
s‖Xk‖2

1

)}
<∞ and E

{
exp

(
s‖Y ‖2

1

)}
<∞.

(C7) The minimum DC of active predictors satisfies

min
k∈I

ω∗k ≥ 2cn−ξ

for some constants c > 0 and 0 ≤ ξ < 1/2.
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Conditions (C1) to (C3) are regular assumptions in survival analysis for the establishment
of the asymptotic properties (e.g., Andersen and Gill 1982). Conditions (C4) is a constraint

for bandwidth and is used to establish the
√
n-consistency of B̂ (Huang and Chiang 2017).

Condition (C5) indicates that A is a positive definite matrix and is used to establish the

asymptotic distribution of B̂. Conditions (C6) and (C7) come from the requirement for
the feature selection (e.g., Li et al. 2012).

C.2 Technical Lemmas

Based on definitions in (4.22) and (4.23), we further define

F̃(j)
l,B,L(y, u) = F̂(j)

l,B,L(y,B>u)− F(j)
l,B,L(y, u) (C.1)

and

F̃(j)

l,B,L̂
(y, u) = F̂(j)

l,B,L̂
(y,B>u)− F(j)

l,B,L(y, u) (C.2)

for l = 0, 1 and j = 0, 1, 2. In particular, we let F̃l,B,L(y, u) = F̃(0)
l,B,L(y, u), F̂l,B,L(y, u) =

F̂(0)
l,B,L(y, u), and Fl,B,L(y, u) = F(0)

l,B,L(y, u) for l = 0, 1.

Furthermore, we define

F̃ (j)(y, u) = F̂ (j)(y,B>u)− F (j)(y, u) (C.3)

for j = 0, 1, where F̂ (j)(y,B>u) = ∇j
vec(B)F̂ (y,B>u), and F (j)(y, u) with j = 0 and 1 are

defined in (4.25) and (4.26), respectively. In particular, when j = 0, we have F̂ (0)(y,B>u) =

F̂ (y,B>u) and F (0)(y, u) = F (y, u). As a result, let F̃ (y, u) = F̃ (0)(y, u) if j = 0. Noting

that F̂ (j)(y,B>u) involves the measurement error correction L, so here we add the subscript
in (C.3) to emphasize the involvement of L. That is, if L is known, then we re-write (C.3)
by

F̃
(j)
B,L(y, u) = F̂

(j)
B,L(y,B>u)− F (j)

B,L(y, u);

if L is unknown and is estimated by L̂, then we express (C.3) by

F̃
(j)

B,L̂
(y, u) = F̂

(j)

B,L̂
(y,B>u)− F (j)

B,L(y, u).

In the following two lemmas, we present the convergence rates of (C.1) and (C.3).
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Lemma C.2.1 Suppose that regularity conditions in Appendix C.1 holds. For j = 0, 1, 2
and l = 0, 1, if L is known, then

sup
y,u,B

∥∥∥F̃(j)
l,B,L(y, u)

∥∥∥ = O (hq) + o

(
log(n)√
nhj+d

)
(C.4)

almost surely (a.s.); if L is unknown and L̂ is the estimator of L, then

sup
y,u,B

∥∥∥F̃(j)

l,B,L̂
(y, u)

∥∥∥ = o

(
p log(m)√

m

)
+O (hq) + o

(
log(n)√
nhj+d

)
a.s.. (C.5)

Proof:

We first show (C.4). Since {I(Yi ≤ y) : y ≥ 0},
{
K(B>Ui − u) : B ∈ Rp×d} and {(Ui −

u)⊗j : j = 0, 1, 2} are the Vapnik-C̆ervonenkis (VC) classes by Giné and Guillou (2002,
p.911) and Lemma 2.4 in Pakes and Pollard (1989). Besides, Lemma 2.12 in Pakes and
Pollard (1989) implies that those three classes are Euclidean, and thus, Lemma 2.14 in

Pakes and Pollard (1989) indicates that
{
δi {I(Yi ≤ y)}l∇j

vec(B)K
(
B>Ûi − u

)
: y, u,B

}
is

also a Euclidean. As a result, by Theorem II.37 in Pollard (1984) and derivations similar
to Giné and Guillou (2002), we have

F̂(j)
l,B,L(y,B>u)− E

{
F̂(j)
l,B,L(y,B>u)

}
= o

(
log(n)√
nhj+d

)
a.s. (C.6)

and

E
{
F̂(j)
l,B,L(y,B>u)

}
− F(j)

l,B,L(y,B>u) = O (hq) a.s. (C.7)

for l = 0, 1 and j = 0, 1, 2. Therefore, combining (C.6) and (C.7) gives (C.4).

We next show (C.5). Since L̂ is involved, then we consider

F̂(j)

l,B,L̂
(y, u)− F̂(j)

l,B,L(y, u)

=
1

n

n∑
i=1

[
δi {I(Yi ≤ y)}l∇j

vec(B)

{
K
(
B>Ûi − u

)
−K

(
B>Ui − u

)}]
=

1

n

n∑
i=1

[
δi {I(Yi ≤ y)}l∇j

vec(B)

{
∇1
LK
(
B>Ui − u

)}] (
L̂− L

)
.
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Since L̂ is estimated by either repeated measurements of validation sample, by the similar
derivations of Theorem 1 in Zhang et al. (2014), we have

L̂− L = o

(
p log(m)√

m

)
.

As the result, we have

sup
y,u,B

∥∥∥F̂(j)

l,B,L̂
(y, u)− F̂(j)

l,B,L(y, u)
∥∥∥ = o

(
p log(m)√

m

)
,

and combining the result (C.4) gives the desired result of (C.5). �

Let ζ
(0)
i,B0

(y, u) be as defined in (4.24). In addition, define

ζ
(1)
i,B0

(y, u) =
1∑

j,l=0

{
F̃(j)
i,l,B,L(y, u)

(−1)1+lF1−l,B,L(y,B>u)

F3−l
0,B,L(y,B>u)

(C.8)

×

(
1∑

l′=0

(l + l′ − 2)Fl′1−l′,B,L(u,B>u)Fl′l′,B,L(y,B>u)F1
l′,B,L(y,B>u)

)1−j
 .

Lemma C.2.2 Suppose that regularity conditions in Appendix C.1 holds. For j = 0, 1, if
L is known, then

sup
y,u,B

∥∥∥∥∥F̃ (j)
B,L(y, u)− 1

n

n∑
i=1

ζ
(j)
i,B(y, u)

∥∥∥∥∥ = op

(
1√
n

)
a.s.; (C.9)

if L is unknown and L̂ is the estimator, then

sup
y,u,B

∥∥∥∥∥F̃ (j)

B,L̂
(y, u)− 1

n

n∑
i=1

ζ
(j)
i,B(y, u)

∥∥∥∥∥ = op

(
1√
n

)
+ op

(
1√
m

)
a.s.. (C.10)
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Proof:

For j = 0, by expressions (4.19) and (4.22), we observe that

F̃B,L(y, u) = F̂B,L(y,B>u)− FB,L(y, u)

=
F̂1,B,L(y,B>u)

F̂0,B,L(y,B>u)
− F1,B,L(y, u)

F0,B,L(y, u)

=
F̂1,B,L(y,B>u)F0,B,L(y, u)− F̂0,B,L(y, u)F1,B,L(y, u)

F̂0,B,L(y,B>u)F0,B,L(y, u)

=
F0,B,L(y, u)

{
F̂1,B,L(y,B>u)− F1,B,L(y,B>u)

}
F̂0,B,L(y,B>u)F0,B,L(y, u)

−
F1,B,L(y, u)

{
F̂0,B,L(y,B>u)− F0,B,L(y,B>u)

}
F̂0,B,L(y,B>u)F0,B,L(y, u)

=
F̃1,B,L(y,B>u)

F̂0,B,L(y,B>u)
− F (y, u)F̃0,B,L(y,B>u)

F̂0,B,L(y,B>u)
, (C.11)

where the fourth equality is due to adding and subtracting an additional term F0,B,L(y, u)
× F1,B,L(y, u), the fifth equality comes from (C.1) with j = 0 and l = 0, 1.

Moreover, applying the Taylor series expansion on
{
F̂0,B,L(y,B>u)

}−1

gives

1

F̂0,B,L(y,B>u)
=

1

F0,B,L(y,B>u)
− F̃0,B,L(y,B>u)

F2
0,B,L(y,B>u)

+
2
{
F̃0,B,L(y,B>u)

}2

F̂∗30,B,L(y,B>u)
, (C.12)

where F̂∗0,B,L(y,B>u) is between F̂0,B,L(y,B>u) and F0,B,L(y,B>u). Combining (C.11) with
(C.12) and applying Lemma C.2.1 give

F̃
(0)
B,L(y, u) =

1

n

n∑
i=1

ζ
(0)
i,B(y, u)−

F̃(0)
0,B,L(y, u)F̃(0)

1,B,L(y, u)

F2
0,B,L(y,B>u)

+
2F̃1,B,L(y,B>u)

{
F̃(0)

0,B,L(y, u)
}2

F̂∗30,B,L(y,B>u)
, (C.13)

where ζ
(0)
i,B(y, u) is given by (4.24).
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By Lemma C.2.1, we have

sup
y,u,B

∥∥∥∥∥∥∥
F̃(0)

0,B,L(y, u)F̃(0)
1,B,L(y, u)

F2
0,B,L(y,B>u)

−
2F̃1,B,L(y,B>u)

{
F̃(0)

0,B,L(y, u)
}2

F̂∗30,B,L(y,B>u)

∥∥∥∥∥∥∥ = op

(
1√
n

)
a.s..

(C.14)

Therefore, combining with (C.13) and (C.14) gives (C.9) with j = 0. Similar procedure
gives (C.9) with j = 1.

We next discuss the derivation of (C.10). Since

F̃
(j)

B,L̂
(y, u) = F̂

(j)

B,L̂
(y,B>u)− F (j)

B,L(y, u)

=
(
F̂

(j)

B,L̂
(y,B>u)− F̂ (j)

B,L(y,B>u)
)

+
(
F̂

(j)
B,L(y,B>u)− F (j)

B,L(y, u)
)

=
(
F̂

(j)

B,L̂
(y,B>u)− F̂ (j)

B,L(y,B>u)
)

+ F̃
(j)
B,L(y, u) (C.15)

for j = 0, 1. The second term of (C.15) is derived, so the remaining target is the first term

of (C.15). By the Taylor series expansion on F̂
(j)

B,L̂
(y, u) with respect to L gives

F̂
(j)

B,L̂
(y,B>u)− F̂ (j)

B,L(y,B>u) =
(
∇1
LF̂

(j)
B,L(y,B>u)

)(
L̂− L

)
for j = 0, 1. By the result in Lemma C.2.1, we have

sup
y,u,B

∥∥∥F̂ (j)

B,L̂
(y,B>u)− F̂ (j)

B,L(y,B>u)
∥∥∥ = op

(
1√
m

)
. (C.16)

Consequently, combining (C.16) and (C.9) with (C.15) gives (C.10). �

Let

σ2
0 = E

{∥∥I (Yi ≤ y)− F (y,B>0 Ui)
∥∥2
}

b2
0(B) = E

{∥∥F (y,B>0 Ui)− F (y,B>Ui)
∥∥2
}

BB(y, u) =

∫
vqK(v)dv

q!
(dhq)

1∑
l=0

{−F (y, u)}1−l∇qF0,B,L(y, u)

F0,B,L (y, u)

VB(y, u) =

(∫
K(v)dv

)d
F (y, u) {1− F (y, u)}

nhdfB>U(u)
.
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In addition, define

AMISEB(h) = E
{
B2
B(y,B>u) + VB(y,B>u)

}
and

ECV (B, d, h) =

{
σ2

0 + AMISEB(h) if ST |U ⊆ S(B)
σ2

0 + b2
0(B) + AMISEB(h) if ST |U 6⊆ S(B).

In the next lemma, we examine the behavior of the CV value.

Lemma C.2.3 Under regularity conditions in Appendix C.1, if ST |U ⊆ S(B), then

sup
B,d,h

|CV (B, d, h)− ECV (B, d, h)|
AMISEB(h)

= op(1) a.s.; (C.17)

if ST |U 6⊆ S(B), then

sup
B,d,h

|CV (B, d, h)− ECV (B, d, h)|
b0(B)AMISEB(h)

= Op(1) a.s.. (C.18)

Proof:

Let

E1;i,Yj = I (Yi ≤ y)− F (Yj, B
>
0 Ui),

E2;i,Yj = F (Yj, B
>
0 Ui)− F (Yj, B

>Ui),

E3;i,Yj = F (Yj, B
>Ui)− F̂ (−i)(Yj, B

>Ui),

and

E4;i,Yj = F̂ (−i)(Yj, B
>Ui)− F̂ (−i)(Yj, B

>Ûi).

Then the cross-validation criterion (4.20) can be decomposed by

CV (B, d, h) =
1

n2

n∑
i,j=1

E2
1;i,Yj

+
1

n2

n∑
i,j=1

E2
2;i,Yj

+
1

n2

n∑
i,j=1

E2
3;i,Yj

+
1

n2

n∑
i,j=1

E2
4;i,Yj

+
1

n2

n∑
i,j=1

E1;i,YjE2;i,Yj +
1

n2

n∑
i,j=1

E1;i,YjE3;i,Yj +
1

n2

n∑
i,j=1

E1;i,YjE4;i,Yj

+
1

n2

n∑
i,j=1

E2;i,YjE3;i,Yj +
1

n2

n∑
i,j=1

E2;i,YjE4;i,Yj +
1

n2

n∑
i,j=1

E3;i,YjE4;i,Yj

, S1 + S2 + S3 + S4 +R1 +R2 +R3 +R4 +R5 +R6. (C.19)
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To study the uniform consistency of CV (B, d, h) and ECV (B, d, h), we consider the
following two scenarios.
Case 1: ST |U ⊆ S(B).
In this case, we have F (y,B>0 u) = F (y,B>u) (e.g., Huang and Chiang 2017). Thus, we
immediately have

S2 = R1 = R4 = R5 = 0.

Since S1 is the form of U-statistic, then applying the convergence property of U-statistic
(e.g., van der Vaart 1998, Chapter 12) gives that as n→∞,

S1
p−→ σ2

0. (C.20)

By Lemmas C.2.1 and C.2.2, S3 can be expressed as

S3 =

{
1

n2(n− 1)2

∑
i 6=j1 6=j2

n∑
k=1

ζj1,B
(
Yk, B

>Ui
)
ζj2,B

(
Yk, B

>Ui
)

+
1

n2(n− 1)2

∑
i 6=j

n∑
k=1

ζ2
j,B

(
Yk, B

>Ui
)}
{1 + op(1)}

, {K1(B) +K2(B)} {1 + op(1)} . (C.21)

Since the class {ζj1,B (y, u)} is Euclidean (Pakes and Pollard 1989, Theorems 2.13 and
2.14), then by the derivations similar to Theorem of Huang and Chiang (2017), we can
show that

sup
B

∣∣K1(B)− E
{
B2
B

(
Yk, B

>Ui
)}∣∣ = op(1) a.s. (C.22)

and

sup
B

∣∣K2(B)− E
{
VB
(
Yk, B

>Ui
)}∣∣ = op(1) a.s.. (C.23)

As a result, by (C.22) and (C.23), we have

sup
B
|S3 − AMISEB(h)| = op

(
dh2q +

1

nhd

)
. (C.24)
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On the other hand, for the parameter corresponding to measurement error model, if L
is known, then S4 = R3 = R6 = 0. If L is unknown and L̂ is the corresponding estimator,
then

S4 =
1

n

n∑
i=1

∫ {
F̂ (−i) (y,B>Ui)− F̂ (−i)

(
y,B>Ûi

)}2

dFY (y)

=
1

n

n∑
i=1

∫ {
∇1
LF̂

(−i) (y,B>Ui)}2

dFY (y)
(
L̂− L

)2

. (C.25)

As shown in Li and Yin (2007), L̂ is the estimator of L with
√
m-rate. It means that

L̂− L = Op

(
1√
m

)
. As a result, applying Lemma C.2.1 gives S4 = op(1).

For R3 and R6, similar to the derivations, we have sup
B
|R3| = sup

B
|R6| = op(1). Com-

bining all results (C.20) - (C.25) with (C.19), we have

CV (B, d, h) = σ2
0 + S3 + op(1)

= σ2
0 + S3 − AMISE(h) + AMISEB(h) + op(1)

= ECV (B, d, h) + {S3 − AMISEB(h)}+ op(1),

where ECV (B, d, h) = σ2
0 +AMISEB(h). Consequently, by (C.24) and similar derivation

of Proposition 2 in Huang and Chiang (2017) that AMISEB(h) = O
(
dh2q + 1

nhd

)
, we have

sup
d,B,h

∣∣∣∣CV (B, d, h)− ECV (B, d, h)

AMISEB(h)

∣∣∣∣ = o(1) a.s..

Case 2: ST |U 6⊆ S(B).
In this case, the derivations of S1, S3, R2, R3, and R6 can be determined in Case 1, but S2,
R1, R4, and R5 do not equal zero. The main goal in this case is to discuss those remaining
parts.

Noting that by Theorem 3.1 in Arcones and Giné (1993), we have that

sup
B

∣∣S2 − b2
0(B)

∣∣ = o(1) a.s.,

which is equivalent to

sup
B

∣∣∣∣ S2

b2
0(B)

− 1

∣∣∣∣ = o(1) a.s.. (C.26)
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Besides, by the CauchySchwarz inequality, we have R2
1 ≤ S1S2. Then dividing b0(B) on

both sides and applying (C.20) and (C.26) yield

sup
B

|R1|
b0(B)

= Op

(
1√
n

)
.

Furthermore, by the Cauchy-Schwarz inequality again, Lemma C.2.1 and (C.26), we have

sup
B

|R4|
b0(B)

= O (hq) + op

(
log(n)√
nhd

)
and

sup
B

|R5|
b0(B)

= o

(
p log(m)√

m

)
.

Consequently, combining those results with (C.19) yields

sup
B,d,h

|CV (B, d, h)− ECV (B, d, h)|
b0(B)AMISE(h)

= Op(1) a.s.,

where ECV (B, h) = σ2
0 + b2

0(B) + AMISE(h). �

C.3 Proofs of Proposition in Section 4.2

C.3.1 Proof of Proposition 4.2.2

We first observe that

E {I (Y ≤ t) |∆ = 1, T, U} = P (Y ≤ t|∆ = 1, T, U)

=
P (Y ≤ t,∆ = 1|T, U)

P (∆ = 1|T, U)

=
P (T ≤ t, T ≤ C|T, U)

P (T ≤ C|T, U)

= P (T ≤ t|U) . (C.27)
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On the other hand, we can express P (T ≤ t|U) by

P (T ≤ t|U) = E {I (T ≤ t) |U}

= E

{
∆I (Y ≤ t)

P (T ≤ C|U)

∣∣∣∣U}
=

P (∆ = 1, Y ≤ t|U)

P (T ≤ C|U)

= P (∆ = 1, Y ≤ t|∆ = 1, U)

= E {∆I (Y ≤ t) |∆ = 1, U} . (C.28)

Consequently, using (C.27) and (C.28) gives

E {I (Y ≤ t) |∆ = 1, U}
= E [E {I (Y ≤ t) |∆ = 1, T, U}|∆ = 1, U ]

= E [E {∆I (Y ≤ t) |∆ = 1, U}|∆ = 1, U ]

= E {∆I (Y ≤ t) |∆ = 1, U}
= P (T ≤ t|U) , (C.29)

which yields the desired result. �

C.4 Proofs of Theorems in Section 4.3

C.4.1 Proof of Theorem 4.3.1

Note that L̂ is the consistent estimator in the sense that L̂ = L + op(1), then we have

Ûi = Ui + op(1). Hence, in the remaining proof, we focus on Ui. In addition, we separate

this proof to two steps. In step 1, we discuss the consistency of B̂, and then discuss the
asymptotic performances of ĥ and d̂ in Step 2.

Step 1: The consistency of B̂.

Let B̂ denote the the minimizer of CV (B, d0, h0) with d = d0 and h = h0. Then we
have

P
{
CV

(
B̂, d0, h0

)
< CV (B0, d0, h0)

}
= 1. (C.30)
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Let DCV (B, d0, h0) = |CV (B, d0, h0)− ECV (B, d0, h0)|. For every ε > 0, we further have{
CV

(
B̂, d0, h0

)
< CV (B0, d0, h0)

}
=

{
b2

0(B̂) < ε, b2
0(B̂) > ε,CV

(
B̂, d0, h0

)
< CV (B0, d0, h0)

}
⊆

{
b2

0(B̂) < ε
}
∪
{
b2

0(B̂) > ε,DCV
(
B̂, d0, h0

)
+DCV (B0, d0, h0)

> ECV
(
B̂d0, h0

)
− ECV (B0, d0, h0)

}
. (C.31)

By (C.30) and (C.31), we have

1 ≤ P
{
b2

0(B̂) < ε
}

+P
{
b2

0(B̂) > ε,DCV
(
B̂, d0, h0

)
+DCV (B0, d0, h0)

> ECV
(
B̂, d0, h0

)
− ECV (B0, d0, h0)

}
. (C.32)

For the second term of (C.32), we further have

P
{
b2

0(B̂) > ε,DCV
(
B̂, d0, h0

)
+DCV (B0, d0, h0)

> ECV
(
B̂, d0, h0

)
− ECV (B0, d0, h0)

}
= P

b2
0(B̂) > ε,

DCV
(
B̂, d0, h0

)
b0(B̂)

+
DCV (B0, d0, h0)

b0(B̂)

>
ECV

(
B̂, d0, h0

)
b0(B̂)

− ECV (B0, d0, h0)

b0(B̂)


≤ P

b2
0(B̂) > ε,

DCV
(
B̂, d0, h0

)
b0(B̂)

+
DCV (B0, d0, h0)√

ε

>
ECV

(
B̂, d0, h0

)
√
ε

− ECV (B0, d0, h0)√
ε

 , (C.33)

where the last step is due to b−1
0 (B̂) < ε−1/2.
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Since b2
0(B̂) > ε > 0 implies ST |U 6⊆ S(B), then ECV (B, d, h) = σ2

0 + b2
0(B) +

AMISE(h). Therefore, (C.33) becomes

P
{
b2

0(B̂) > ε,DCV
(
B̂, d0, h0

)
+DCV (B0, d0, h0)

> ECV
(
B̂, d0, h0

)
− ECV (B0, d0, h0)

}
≤ P

{
b2

0(B̂) > ε,Op

{
AMISEB̂(h)

}
+ op {AMISEB0(h)}

>
√
ε+

AMISEB̂(h)− AMISEB0(h)√
ε

}
→ P

{
b2

0(B̂) > ε, 0 >
√
ε
}

= 0 (C.34)

as n → ∞, where the first step is due to (C.17) and (C.18), and the second step is due
to both Op {AMISEB0(h)} → 0 and op {AMISEB0(h)} → 0. As a result, by (C.32), we
have that as n→∞,

P
{
b2

0(B̂) < ε
}
→ 1. (C.35)

Therefore, by (C.35), we have that as n→∞,

B̂
p−→ B0.

Step 2: The asymptotic performance of
(
d̂, ĥ
)

.

Let ε = inf
B:d<d0

b2
0(B) in (C.35), we can observe that

P

{
b2

0(B̂) < inf
B:d<d0

b2
0(B)

}
≤ P

{
b2

0(B̂) < inf
B:d<d0

b2
0(B), d < d0

}
+ P

{
b2

0(B̂) < inf
B:d<d0

b2
0(B), d ≥ d0

}
≤ P {d ≥ d0}
≤ 1.

Combining (C.35) gives that as n→∞,

P {d ≥ d0} → 1. (C.36)
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Furthermore, define

W1 =

{
b2

0(B̂) <
log(n)

n
, d̂ = d0,

∣∣∣∣∣ ĥh0

− 1

∣∣∣∣∣ < η

}

W2 =

{
b2

0(B̂) ≥ log(n)

n

}
W3 =

{
d̂ < d0

}
W4 =

{
b2

0(B̂) <
log(n)

n
, d̂ ≥ d0,

∣∣∣∣∣ ĥh0

− 1

∣∣∣∣∣ ≥ η

}

W5 =

{
b2

0(B̂) <
log(n)

n
, d̂ > d0,

∣∣∣∣∣ ĥh0

− 1

∣∣∣∣∣ < η

}
and

WCV =
{
DCV

(
B̂, d0, h0

)
+DCV (B0, d0, h0) > ECV

(
B̂, d0, h0

)
− ECV (B0, d0, h0)

}
.

Similar to the procedure and the decomposition of (C.30) and (C.31), we have

1 ≤ P (W1) +
5∑

k=2

P (Wk ∩WCV ) . (C.37)

For k = 2, applying (C.35) with ε = log(n)
n

gives that as n→∞,

0 < P (W2 ∩WCV ) ≤ P (W2)→ 0. (C.38)

For k = 3, applying (C.36) gives that as n→∞,

0 < P (W3 ∩WCV ) ≤ P (W3)→ 0. (C.39)

For k = 4, we have that as n→∞,

P (W4 ∩WCV )→ 0. (C.40)

For k = 5, we have that as n→∞,

P (W5 ∩WCV )→ 0. (C.41)

Therefore, combining (C.38)-(C.41) with (C.37) yields that as n→∞,

P

{
b2

0(B̂) <
log(n)

n
, d̂ = d0,

∣∣∣∣∣ ĥh0

− 1

∣∣∣∣∣ < η

}
→ 1,

and we conclude that
(
d̂, ĥ
)

are consistent estimators. �
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C.4.2 Proof of Theorem 4.3.2

Note that L̂ is the consistent estimator in the sense that L̂ = L + op(1), then we have

Ûi = Ui + op(1). Hence, in the remaining proof, we focus on Ui.

By adding and subtracting an additional term F̂
(
y,B>0 u

)
, we have

F̂
(
y, B̂>u

)
− F (y,B>0 u) =

{
F̂
(
y, B̂>u

)
− F̂

(
y,B>0 u

)}
+
{
F̂
(
y,B>0 u

)
− F (y,B>0 u)

}
, A1 + A2. (C.42)

For A1, applying the first order Taylor series expansion at B0 gives

A1 = F̂ (1)
(
y,B>0 u

) (
B̂ −B0

)
=

{
F̂ (1)

(
y,B>0 u

)
− F (1)

(
y,B>0 u

)}(
B̂ −B0

)
+ F (1)

(
y,B>0 u

) (
B̂ −B0

)
= op(1), (C.43)

where the third equality is due to Lemma C.2.1 and Theorem 4.3.1. On the other hand,
applying Lemma C.2.2 with j = 0 for A2 gives

sup
y,u

∣∣∣∣∣F̂ (y,B>0 u)− F (y,B>0 u)− 1

n

n∑
i=1

ζ
(0)
i,B0

(y, u)

∣∣∣∣∣ = Op

(
1√
n

)
. (C.44)

Finally, combining (C.43) and (C.44) with (C.42) gives the desired result in Theo-
rem 4.3.2. �

C.4.3 Proof of Theorem 4.3.3

Let B̂ denote the minimizer of CV (B, d0, h0) with d = d0 and h = h0 and satisfy

∇1
vec(B)CV (B̂, d0, hd0) = 0. Then by the first order Taylor series expansion, we have

0 = ∇1
vec(B)CV (B̂, d0, h0)

= ∇1
vec(B)CV (B0, d0, h0) +∇2

vec(B)CV (B∗, d0, h0)
{

vec(B̂)− vec(B0)
}
,

where B∗ is between B̂ and B0. Equivalently, we have

√
n
{

vec(B̂)− vec(B0)
}

=
{
∇2

vec(B)CV (B∗, d0, h0)
}−1√

n∇1
vec(B)CV (B0, d0, h0). (C.45)
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We first discuss the asymptotic result of ∇2
vec(B)CV (B∗, d0, h0). By the result in The-

orem 4.3.1, we have B∗
p−→ B0 as n → ∞. By simple calculations, ∇2

vec(B)CV (B0, d0, h0)
can be written as

∇2
vec(B)CV (B0, d0, h0) =

2

n

n∑
i=1

∫ τ

0

[{
∇1

vec(B)F̂
(−i) (y,B>0 Ui)}⊗2

− ∇2
vec(B)F̂

(−i) (y,B>0 Ui){I (Yi ≤ y)− F̂ (−i) (y,B>0 Ui)}] dF̂Y (y).

By Lemma C.2.1 and the Law of Large Numbers, we have that as n→∞,

∇2
vec(B)CV (B0, d0, h0)

p−→ A, (C.46)

where

A = 2E

(∫ τ

0

[{
F (1)

(
y,B>0 Ui

)}⊗2 − F (2)
(
y,B>0 Ui

) {
I (Yi ≤ y)− F

(
y,B>0 Ui

)}]
dFY (y)

)
.

On the other hand, if L is known, then ∇1
vec(B)CV (B0, d0, h0) can be expressed as

∇1
vec(B)CV (B0, d0, h0)

=
2

n

n∑
i=1

∫ τ

0

{
I (Yi ≤ y)− F̂ (−i)(y,B>0 Ui)

}{
−∇1

vec(B)F̂
(−i)(y,B>0 Ui)

}
dF̂Y (y)

=
2

n

n∑
i=1

∫ τ

0

[{
I (Yi ≤ y)− F (y,B>0 u) + F (y,B>0 u)− F̂ (−i)(y,B>0 Ui)

}
×
{
−∇1

vec(B)F̂
(−i)(y,B>0 Ui) + F (1)(y,B>0 u)− F (1)(y,B>0 u)

}]
dF̂Y (y)

= − 2

n

n∑
i=1

∫ τ

0

E1;iyF
(1)(y, Ui)dF̂Y (y) +

2

n

n∑
i=1

∫ τ

0

E3;iyF
(1)(y, Ui)dF̂Y (y)

− 2

n

n∑
i=1

∫ τ

0

E1;iy

{
∇1

vec(B)F̂
(−i)(y,B>0 Ui)− F (1)(y, Ui)

}
dF̂Y (y),

where the second equality comes from adding and subtracting additional terms F (y,B>0 u)
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and F (1)(y,B>0 u), and the last step is due to

2

n

n∑
i=1

∫ τ

0

{
F̂ (−i)(y,B>0 Ui)− F (y,B>0 u)

}{
∇1

vec(B)F̂
(−i)(y,B>0 Ui)− F (1)(y, Ui)

}
dF̂Y (y)

=
1

n
∇1

vec(B)

n∑
i=1

∫ τ

0

{
F̂ (−i)(y,B>0 Ui)− F (y,B>0 u)

}2

dF̂Y (y)

= 0.

By the result in Lemma C.2.2, ∇1
vec(B)CV (B0, d0, h0) can be further written as

∇1
vec(B)CV (B0, d0, h0)

= − 2

n2

∑
i 6=j

E1;iyF
(1)(Yj, Ui) +

2

n2(n− 1)

∑
i 6=j 6=k

F (1)(Yj, Ui)ζ
(0)
j,B(Yk, Ui)

− 2

n2(n− 1)

∑
i 6=j 6=k

E1;iyζ
(1)
j,B(Yk, Ui) + op

(
1√
n

)
, T1 + T2 + T3 + op

(
1√
n

)
. (C.47)

For T1, applying the convergence property of U-statistic in Hoeffding (1948), we have that
as n→∞,

√
nT1

d−→ N (0,B) , (C.48)

where B = E {U⊗2(B0)} with

U(B0) =

∫ τ

0

{
I (Yi ≤ y)− F (y,B>0 Ui)

}
F (1)(y, Ui)dFY (y). (C.49)

Since T2 and T3 contain ζ
(0)
i,B0

(y, u) and ζ
(1)
i,B0

(y, u) in (4.24) and (C.8), respectively, and

involve F̃(j)
i,l,B0,L

(y, u) with j = 0, 1. Then by Lemma C.2.1, we can show that

√
nTk

p−→ 0 for k = 2, 3. (C.50)

Consequently, combining (C.48) and (C.50) with (C.47), we have that as n→∞,

∇1
vec(B)CV (B0, d0, h0)

d−→ N (0,B) . (C.51)
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Finally, combining (C.46) and (C.51) with (C.45) gives that as n→∞,

√
n
{

vec(B̂)− vec(B0)
}

d−→ N
(
0,A−1BA−1

)
.

If L is unknown and L̂ is the estimator, then ∇1
vec(B)CV (B0, d0, h0) can be written as

√
n∇1

vec(B)CV (B0, d0, h0) =
√
nT1 +

√
nT2 +

√
nT2 +

√
nT4 + op(1), (C.52)

where
√
nTk with k = 1, 2, 3 have been derived in (C.48) and (C.50), and T4 is

T4 =
2

n

n∑
i=1

∫ τ

0

E4;iyF
(1)(y,B>0 Ui)dF̂Y (y)

=
2

n

n∑
i=1

∫ τ

0

{
F̂ (−i)(y,B>0 Ui)− F̂ (−i)(y,B>0 Ûi)

}
F (1)(y,B>0 Ui)dF̂Y (y)

= − 2

n

n∑
i=1

∫ τ

0

{
∇1

vec(B0)F̂
(−i)(y,B>0 Ui)

}
F (1)(y,B>0 Ui)dF̂Y (y)

(
L̂− L

)
. (C.53)

If L̂ is determined by repeated measurements, then

L̂− L =
(
I − Σ̂εΣ̂

−1
X∗

)
−
(
I − ΣεΣ

−1
X∗

)
= −

(
Σ̂εΣ̂

−1
X∗ − ΣεΣ

−1
X∗

)
= −Σ−1

X∗

(
Σ̂ε − Σε

)
= −Σ−1

X∗
1

2m

m∑
i=1

{
(x∗i1 − x∗i2) (x∗i1 − x∗i2)> − 2Σε

}
+ op(1),

and if L̂ is obtained by validation data, then

L̂− L = ̂cov(Xi, X∗i )Σ̂−1
X∗ − cov(Xi, X

∗
i )Σ−1

X∗

= −Σ−1
X∗

{
̂cov(Xi, X∗i )− cov(Xi, X

∗
i )
}

= −Σ−1
X∗

1

m

m∑
i=1

{
(xi − µX) (x∗i − µX∗)

> − ΣXX∗

}
+ op(1),

where ΣXX∗ = cov(Xi, X
∗
i ).
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Applying the result in Lemma C.2.1 and combining (C.53) with the expression of L̂−L
gives

√
nT4 =

√
n

m

m∑
i=1

T (B0)Φi + op(1), (C.54)

where

T (B0) = E

[∫ τ

0

{
F (1)(y,B>0 Ui)

}⊗2
dFY (y)

]
ΣX∗

and

Φi =

{
(x∗i1 − x∗i2) (x∗i1 − x∗i2)> − 2Σε, based on repeated measurements;

(xi − µX) (x∗i − µX∗)
> − ΣXX∗ , based on validation data.

Therefore, combining results (C.48), (C.50), and (C.54) with (C.53) gives that as n→∞,

∇1
vec(B)CV (B0, d0, h0)

d−→ N (0,BL) , (C.55)

where BL = E
[
{U(B0) + T (B0)Φi}⊗2]. As a result, by the Slusky Theorem on (C.46) and

(C.55), we have that as n→∞,

√
n
{

vec(B̂)− vec(B0)
}

d−→ N
(
0,A−1

L BLA
−1
L

)
,

where AL = A. �

C.5 Proofs of Theorems in Section 4.4

C.5.1 Proof of Theorem 4.4.1

We first consider dcov (Y ∗, Xk) and dcov∗ (Y ∗, X∗k). Note that the former formulation is
based on the true covariates X, while the latter formulation is based on the surrogate
covariates X∗.

Since the error term ε follows normal distribution N(0,Σε), then the characteristic
function of kth entry of ε is given by

E {exp (isεk)} = exp

(
−1

2
s2σε,kk

)
(C.56)
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for k = 1, · · · , p. By the direct computation, we have

φX∗k (s) = E {exp (isX∗k)} exp

(
1

2
s2σε,kk

)
= E {exp (isXk)}E {exp (isεk)} exp

(
1

2
s2σε,kk

)
= E {exp (isX)} , (C.57)

where the second equality is due to the independence of X and ε, and the last equality is
due to (C.56).

In addition, we can also derive

φY ∗,X∗k (r, s) = E {exp (irY ∗ + isX∗k)} exp

(
1

2
s2σε,kk

)
= E {exp (irY ∗ + isXk)}E {exp (isεk)} exp

(
1

2
s2σε,kk

)
= E {exp (irY ∗ + isXk)} , (C.58)

where the second equality is due to the independence of ε and X, Y , and the last equality
again comes from (C.56). As a result, combining (C.57) and (C.58) with dcov∗ (Y ∗, X∗k)
gives the same expression of dcov (Y ∗, Xk).

The equivalence of dcov∗ (X∗k , X
∗
k) and dcov (Xk, Xk) holds by the similar derivations.

Therefore, we conclude that dcorr (Y ∗, Xk) and dcorr∗ (Y ∗, X∗k) are equivalent in the sense
that dcorr (Y ∗, Xk) > 0 if and only if dcorr∗ (Y ∗, X∗k) > 0. Consequently, the same active
features can be determined for X∗ and X. �

C.5.2 Proof of Theorem 4.4.2

Under Condition (C7) in Appendix C.1 and the similar derivations of Theorem 1 in Li et
al. (2012) with replacing X by X∗ gives

P

(
max
1≤k≤p

|ω̂∗k − ω∗k| ≥ cn−ζ
)
≤ O

{
exp

(
−c1n

(1−2c2)/3
)}
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for some positive constants c1 and c2. Let E =

{
max
k∈I
|ω̂∗k − ω∗k| ≤ cn−ζ

}
, and we have

E ⊆
{
I ⊆ Î

}
. As a result, we can obtain

P
(
I ⊆ Î

)
≥ P (E)

= 1− P (Ec)

≥ 1− |I|P
(

max
1≤k≤p

|ω̂∗k − ω∗k| ≥ cn−ζ
)

≥ 1− |I|O
{

exp
(
−c1n

(1−2c2)/3
)}
. (C.59)

By (C.59), when n→∞, we have

P
(
I ⊆ Î

)
→ 1,

which completes the proof. �
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Appendix D

Proofs for the Results in Chapter 5

D.1 Regularity Conditions

(C1) Θ is a compact set, and the true parameter value β0 is an interior point of Θ.

(C2)
∫ τ

0
λ0(t)dt <∞, where τ is the finite maximum support of the failure time.

(C3) The {Ni(t), Yi(t), Zi, Xi} are independent and identically distributed for i = 1, · · · , n.

(C4) The covariates Zi and Xi are bounded.

(C5) Conditional on Ṽi,
(
T̃i, Ṽi

)
are independent of Ãi.

(C6) Censoring time Ci is non-informative. That is, the failure time Ti and the censoring
time Ci are independent, given the covariates {Zi, Xi}.

(C7) Define

κP = E

(∫ τ

0

[
V ∗>i β +

1

2
β>x Σεβx − log

{
E
(
exp(V ∗>i β)I(Ai ≤ u ≤ Yi)

)}]
dNi(u)

)
and assume that β0 is the unique maximizer of κP . Define

κ = E

(∫ τ

0

[
V ∗>i β +

1

2
β>x Σεβx − log

{
E
(
exp(V ∗>i β)I(Ai ≤ u ≤ Yi)

)}]
dNi(u)

+
[
log {dH(Ai)} − Λ0(Ai) exp

(
V̂ >i β

)
− log

{∫ τ

0

exp
{
−Λ0(u) exp(X̃>RC,iβx + Z>i βz)

}
dH(u)

}])
,
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and assume that β0 is the unique maximizer of κ.

(C8) Both E
(
− ∂2 ̂̀∗

P

∂β∂β>

)
and E

(
− ∂2 ̂̀∗

M

∂β∂β>

)
are positive definite matrices.

Condition (C1) is a basic condition that is used to derive the maximizer of the target
function. (C2) to (C6) are standard conditions for survival analysis, which allow us to
obtain the sum of i.i.d. random variables and hence to derive the asymptotic properties of
the estimators. Condition (C7) is used to establish the consistency of the estimators β̂ and

β̃, respectively, given in Theorems 5.2.2 and 5.3.1. The requirement of positive definite
matrices in Condition (C8) is standard which ensures asymptotic covariance matrices of̂̀∗
P and ̂̀∗M meaningful.

D.2 Preliminary Results

In this Appendix, we present the lemmas that are useful for proving the theorems.

Lemma D.2.1 Let

L∗P =
n∏
i=1

{m(βx)}δi

 exp
(
v∗>i β

)
n∑
j=1

exp
(
v∗>j β

)
I(aj ≤ yi ≤ yj)


δi

and

L∗R =
n∏
i=1

[
λ0(yi)

n∑
j=1

exp
(
v∗>j β

)
{m(βx)}−1 I(aj ≤ yi ≤ yj)

]δi

× exp

[
−
∫
λ0(u)

n∑
j=1

exp
(
v∗>j β

)
{m(βx)}−1 I(aj ≤ u ≤ yj)du

]
.

Then

(1) L∗C = L∗P × L∗R;

(2) L∗R is ancillary which does not convey the information of β.
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Proof:

Let L∗C = exp (`∗C) where `∗C is given by (5.9), and let

Ui =

[
n∑
j=1

exp
(
v∗>j β

)
{m(βx)}−1 I(aj ≤ yi ≤ yj)

]δi
.

Then L∗C can be written as

L∗C =
n∏
i=1

{
λ0(yi) exp

(
v∗>i β

)}δi exp
[
−Λ0(yi) exp

(
v∗>i β

)
{m(βx)}−1]

exp
[
−Λ0(ai) exp

(
v∗>i β

)
{m(βx)}−1]

=
n∏
i=1

{
λ0(yi) exp

(
v∗>i β

)}δi
Ui

×
n∏
i=1

Ui exp
[
−Λ0(yi) exp

(
v∗>i β

)
{m(βx)}−1]

exp
[
−Λ0(ai) exp

(
v∗>i β

)
{m(βx)}−1]

= L∗P × L∗R.

Analogous to the derivations of Wang et al. (1993), we can show that L∗R is ancillary
which does not convey the information of β, and hence, it is sufficient to obtain the esti-
mator of β by maximizing L∗P , or equivalently, deriving an estimator of β from log(L∗C) is
equivalent to deriving an estimator from using log(L∗P ) alone. �

Let

̂̀∗
P =

n∑
i=1

[
δi
{
v∗>i β

}
+

1

2
δiβ
>
x Σεβx − δi log

{
n∑
j=1

exp(v∗>j β)I(aj ≤ yi ≤ yj)

}]
(D.1)

and L̂∗P = exp
(̂̀∗

P

)
. Let L̂∗C = exp

(̂̀∗
C

)
where ̂̀∗C is given (5.12). By Lemma D.2.1,

inference based on ̂̀∗C = log L̂∗C is equivalent to that based on ̂̀∗P = log(L̂∗P ), given by

̂̀∗
P =

n∑
i=1

∫ τ

0

[
v∗>i β +

1

2
β>x Σεβx − log

{
n∑
j=1

exp(v∗>j β)I(aj ≤ u ≤ yj)

}]
dNi(u);

this expression was also derived by Lawless (2003, p.351).

Hence, in the maximization of (5.22), using ̂̀∗C + ̂̀∗
M to perform inference about β is

equivalent to using ̂̀∗ = ̂̀∗
P + ̂̀∗M . Corresponding to ̂̀∗P and ̂̀∗M , we let

˜̀∗
P =

n∑
i=1

∫ τ

0

[
v∗>i β +

1

2
β>x Σεβx − log

{
E
(
exp(V ∗>i β)I(Ai ≤ u ≤ Yi)

)}]
dNi(u)
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and

˜̀∗
M =

n∑
i=1

[
log {dH(ai)} − Λ0(ai) exp

(
v̂>i β

)
− log

{∫ τ

0

exp
{
−Λo(u) exp(x̃>RC,iβx + z>i βz)

}
dH(u)

}]
,

where x̃RC,i is defined in (5.16). Define ˜̀∗ = ˜̀∗
P + ˜̀∗M .

Lemma D.2.2 Under regularity conditions in Appendix D.1,

sup
β∈Θ,t∈[0,τ ]

∣∣∣Λ̂0(t)− Λ0(t)
∣∣∣ a.s.−→ 0 as n→∞.

Proof:

By (5.14) and the definition of Λ0(t), we need only to show that

sup
β∈Θ,t∈[0,τ ]

∣∣∣∣∣∣∣∣
∫ t

0

1
n

n∑
i=1

dNi(u)

{m(βx)}−1 S(0)(u, β)
−
∫ t

0

dP (∆i = 1, Yi ≤ u)

{m(βx)}−1 S(0)(u, β)

∣∣∣∣∣∣∣∣
a.s.−→ 0 as n→∞. (D.2)

Since two sets of indicator functions {I(Ai ≤ t ≤ Yi) : t ∈ [0, τ ]} and {I(Yi ≤ t) : t ∈ [0, τ ]}
are Glivanko-Cantelli classes (van der Vaart and Wellner 1996, Example 2.4.2; van der
Vaart 1998, Example 19.6), so are {V ∗⊗ki exp

(
V ∗>i β

)
{m(βx)}−1 I(Ai ≤ t ≤ Yi) : β ∈

Θ, t ∈ [0, τ ]} and {∆iI(Yi ≤ t) : t ∈ [0, τ ]}. Hence, we have that as n→∞,

1

n

n∑
i=1

∆iI(Yi ≤ t)
a.s.−→ E {∆iI(Yi ≤ t)}

= P (∆i = 1, Yi ≤ t) (D.3)

and

S(k)(u, β)
a.s.−→ S(k)(u, β) (D.4)

for k = 0, 1, 2 and for all β ∈ Θ and t ∈ [0, τ ]. Combining (D.3) and (D.4) gives that as
n→∞,

1
n

n∑
i=1

dNi(t)

{m(βx)}−1 S(0)(t, β)

a.s.−→ dP (∆i = 1, Yi ≤ t)

{m(βx)}−1 S(0)(t, β)

for all β ∈ Θ and t ∈ [0, τ ]. Therefore, taking integration gives (D.2). �

285



Lemma D.2.3 Under regularity conditions in Appendix D.1,

sup
β∈Θ,t∈[0,τ ]

∣∣∣∣ 1n ̂̀∗ − 1

n
˜̀∗∣∣∣∣ a.s.−→ 0 as n→∞.

Proof:

Claim 1: sup
β∈Θ

∣∣∣ 1
n
̂̀∗
P − 1

n
˜̀∗
P

∣∣∣ a.s.−→ as n→∞.

Since
{

exp(V ∗>j β)I(Aj ≤ u ≤ Yj) : β ∈ Θ, u ∈ [0, τ ]
}

is a Glivenko-Cantelli class (e.g., van
der Vaart and Wellner 1996, Example 2.4.2), and log(·) is a continuous and monotone
function. Hence, we have that as n→∞,

log
{
S(0)(u, β)

} a.s.−→ log
{
S(0)(u, β)

}
uniformly for all β ∈ Θ and t ∈ [0, τ ] (Huang et al. 2012). Hence, we conclude that
n→∞,

sup
β∈Θ

∣∣∣∣ 1n ̂̀∗P − 1

n
˜̀∗
P

∣∣∣∣ a.s.−→ 0.

Claim 2: sup
β∈Θ

∣∣∣ 1
n
̂̀∗
M − 1

n
˜̀∗
M

∣∣∣ a.s.−→ as n→∞.

Since µ̂W ∗ = µW ∗ + op(1) and Σ̂W ∗ = ΣW ∗ + op(1), we obtain that X̂i = X̃RC,i + op(1)

by the Law of Large Numbers, where X̃RC,i = E (Xi|W ∗
i ) is defined by (5.16). Then by

Lemma D.2.2, we conclude that as n→∞,

exp
{
−Λ̂0(u) exp

(
X̂>i βx + Z>i βz

)}
a.s.−→ exp

{
−Λ0(u) exp

(
X̃>RC,iβx + Z>i βz

)}
. (D.5)

In addition, by the similar result in Lemma 4.2 of Wang (1991), Ĥ(a) is strongly consistent
estimate of H(a) for each a. Then we have that as n→∞,

n∑
i=1

log

∫ τ

0

exp
{
−Λ̂0(u) exp(X̂>i βx + Z>i βz)

}
dĤ(u)

a.s.−→
n∑
i=1

log

∫ τ

0

exp
{
−Λ0(u) exp(X̃>RC,iβx + Z>i βz)

}
dH(u). (D.6)

Using the similar derivations in Huang et al. (2012), we have that as n→∞,

sup
β∈Θ

n−1

n∑
i=1

{
Λ̂0(Ai)− Λ0(Ai)

}
exp(V̂ >i β)

a.s.−→ 0. (D.7)
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Hence, combining (D.5), (D.6) and (D.7) gives

sup
β∈Θ

∣∣∣∣ 1n ̂̀∗M − 1

n
˜̀∗
M

∣∣∣∣ a.s.−→ 0 as n→∞.

Therefore, combining Claim 1 and Claim 2 yields the result of Lemma D.2.3. �

We also present Theorem 5.7 of van der Vaart (1998) here as the following lemma which
will be used in subsequent proof.

Lemma D.2.4 Let Mn(·) be random functions and let M(·) be a real-valued function of
θ. Let θ0 be the true value of θ. Suppose that for any ε > 0,

sup
θ∈Θ
|Mn(θ)−M(θ)| p−→ 0;

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0);

where d(θ, θ0) = ‖θ − θ0‖ is the Euclidean distance between θ and θ0. Then any sequence

of estimators θ̂n with Mn(θ̂n) ≥Mn(θ0)− op(1) converges in probability to θ0.

D.3 Proofs of the Theorems in Section 5.2

D.3.1 Proof of Theorem 5.2.1

The uniformly consistency of Λ̂0(t) comes from Lemma D.2.2. �

D.3.2 Proof of Theorem 5.2.2

Proof of Theorem 5.2.2 (1):

By Conditions (C3) and (C4), ˜̀∗P is the sum of i.i.d. random functions. Then by (C7) and
the Law of Large Numbers, we have that as n→∞,

1

n
˜̀∗
P

p−→ κP

for every β. By Claim 1 in Lemma D.2.3, we have that as n→∞,

sup
β∈Θ,t∈[0,τ ]

∣∣∣n−1̂̀∗
P − κP

∣∣∣ a.s.−→ 0.
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Therefore, by Lemma D.2.4, we have that as n→∞,

β̂
p−→ β0. (D.8)

Proof of Theorem 5.2.2 (2):

Since ̂̀∗P =
n∑
i=1

∫ τ
0

[
v∗>i β + 1

2
β>x Σεβx − log

{
S(0)(u, β)

}]
dNi(u), taking the derivative of ̂̀∗P

with respect of β gives that

UP (β) ,
∂ ̂̀∗P
∂β

=
n∑
i=1

∫ τ

0

{
v∗i +

(
Σεβx
0q

)
− S(1)(u, β)

S(0)(u, β)

}
dNi(u). (D.9)

Since β̂ is the estimator satisfying UP (β̂) = 0 and β̂ is the consistent estimator of β by

(D.8), to show the asymptotic distribution of β̂, we consider the Taylor series expansion of

UP (β̂) around the true parameter β0:

0 = UP (β̂) = UP (β0) +
∂UP (β0)

∂β
(β̂ − β0) + op

(
1√
n

)
, (D.10)

yielding that

√
n(β̂ − β0) = −

(
1

n

∂UP (β0)

∂β

)−1

× 1√
n
UP (β0) + op(1). (D.11)

To work out the asymptotic distribution of
√
n
(
β̂ − β0

)
, it suffices to determine the

asymptotic behavior of ∂UP (β0)
∂β

and UP (·). To this end, we proceed with the following two
steps.

Step 1: To examine the convergence of ∂UP (β0)
∂β

, we first note that {Ni(t) : t ∈ [0, τ ]} is a

Glivenko-Cantelli class (van der Vaart and Wellner 1996, Example 2.4.2), which gives
that as n→∞,

1

n

n∑
i=1

dNi(t)
a.s.−→ dE {Ni(t)}
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uniformly (van der Vaart 1998, Theorem 19.1). Then by (D.9) and the Uniform Law
of Large Numbers, we have that as n→∞,

−1

n

∂UP (β0)

∂β

=
1

n

n∑
i=1

∫ τ

0

[{
S(2)(u, β0)

S(0)(u, β0)
−
(
S(1)(u, β0)

S(0)(u, β0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dNi(u)

p−→ AP , (D.12)

where AP is given by (5.15).

Step 2: To determine the asymptotic distribution of UP (β0), we sort out the leading term
of UP (β0) which can be expressed as a sum of i.i.d. random variables. By the similar
derivations for Theorem 2.1 of Lin and Wei (1989), we express

1√
n
UP (β0) =

1√
n

n∑
i=1

Φ
(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+ op(1), (D.13)

where

Φ
(
X∗i , X̃RC,i, Zi, Yi, Ai

)
(D.14)

=

∫ τ

0

{
V ∗i −

S(1)(u, β0)

S(0)(u, β0)
+

(
Σεβx0

0q

)}
dNi(u)

−
∫ τ

0

exp
(
V ∗>i β0

)
I(Ai ≤ u ≤ Yi)

S(0)(u, β0)

(
V ∗i −

S(1)(u, β0)

S(0)(u, β0)

)
dE {Ni(u)} .

(D.15)

Since the Φ
(
X∗i , X̃RC,i, Zi, Yi, Ai

)
are i.i.d. random functions, applying the Central

Limit Theorem yields that as n→∞,

1√
n
UP (β0)

d−→ N (0,BP ) , (D.16)

where BP = E
(
Φ⊗2
i

)
and Φi = Φ

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
.

Finally, combining (D.12) and (D.16) with (D.11) and applying the Slutsky’s Theorem,
we conclude that as n→∞,

√
n(β̂ − β0)

d−→ N
(
0,A−1

P BPA
−1
P

)
.

�
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D.4 Proofs of the Theorems in Section 5.3

The derivations in this appendix are in principle analogous to those of Appendix D.3.
However, the technical details are a lot more complex than those of Appendix D.3, because
no infinite dimensional parameters are involved with the key estimating function UP (β) in
Appendix D.3 while such parameters are contained in the estimating function considered
here.

D.4.1 Proof of Theorem 5.3.1

Proof of Theorem 5.3.1 (1):

The proof is the same as that of Theorem 5.2.2 (2) except that ̂̀∗P and κP are replaced bŷ̀∗ and κ, respectively.

Proof of Theorem 5.3.1 (2):

To find the asymptotic distribution of β̃, we note that β̃ solves U(β) = 0, where

U(β) =
∂ ̂̀∗
∂β

=
∂ ̂̀∗P
∂β

+
∂ ̂̀∗M
∂β

. (D.17)

Considering the Taylor series expansion of U(β̃) around β0 gives that

0 = U(β̃) = U(β0) +
∂U(β0)

∂β
(β̃ − β0) + op

(
1√
n

)
, (D.18)

or equivalently,

√
n(β̃ − β0) = −

(
1

n

∂U(β0)

∂β

)−1(
1√
n
U(β0)

)
+ op(1).

Analogous to the examination of (D.11) in Appendix D.3.2, we proceed with the fol-

lowing two steps, separately examining ∂U(β0)
∂β

and U(β0). By (D.17), we note that the

main difficulty here is caused by the involvement of the term UM(β) =
∂ ̂̀∗M
∂β

, while
∂ ̂̀∗P
∂β

is
examined in Appendix D.3.2.

Step 1: To show the convergence of ∂U(β0)
∂β

, we first define

µ̂(x̂i, zi) =

∫ τ

0

exp
{
−Λ̂0(u) exp(x̂>i βx0 + z>i βz0)

}
dĤ(u), (D.19)
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and we let µ̂i denote µ̂(x̂i, zi) for ease of notation. By Theorem 5.2.1 and (D.5), we

conclude that µ̂i
p−→ µi as n→∞, where

µi = µ(x̃RC,i, zi) =

∫ τ

0

exp
{
−Λ0(u) exp(x̃>RC,iβx0 + z>i βz0)

}
dH(u).

Noting that

∂UM(β0)

∂β
= −

n∑
i=1

∂2

∂β∂β>
Λ̂0(ai) exp

(
x̂>i βx0 + z>i βz0

)
−

n∑
i=1

{
1

µ̂i

∂2µ̂i
∂β∂β>

− 1

µ̂2
i

(
∂µ̂i
∂β

)⊗2
}
,

we obtain, by Theorem 5.2.2 and the Law of Large Numbers, that as n→∞,

−1

n

∂U(β0)

∂β

p−→ A, (D.20)

where A = AP +AM , and AP and AM are given by (5.15) and (5.26), respectively.

Step 2: We now derive the asymptotic distribution of 1√
n
U(β0). Since a sum of i.i.d. ran-

dom variables of
∂ ̂̀∗P
∂β

is established in (D.13) of Appendix D.3.2, it remains to examine

UM(β0) =
∂ ̂̀∗M
∂β

by (D.17). To this end, we make an important comment. Different

from the partial likelihood score function UP (β) which involves the parameter β only,
UM(·) involves not only the parameter β but also the infinite dimensional parameter
Λ0(·). The goal here is to sort out the key term in UM (β0) which can be expressed
as a sum of i.i.d. random functions.

Define

ŨM(β0) = −
n∑
i=1

∂

∂β
Λ0(ai) exp

(
v̂>i β0

)
−

n∑
i=1

1

µ i

∂µi
∂β

, −
n∑
i=1

UM,i,

and write the difference between UM(β0) and ŨM(β0) as

1√
n

{
UM(β0)− ŨM(β0)

}
= U1 + U2, (D.21)
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where

U1 = − 1√
n

n∑
i=1

∂

∂β

{
Λ̂0(ai)− Λ0(ai)

}
exp

(
v̂>i β0

)
(D.22)

and

U2 = − 1√
n

n∑
i=1

{
1

µ̂i

∂µ̂i
∂β
− 1

µi

∂µi
∂β

}
. (D.23)

We first examine U1. Recall thatN (t) = P (∆i = 1, Yi ≤ t) and let dN̄(t) = 1
n

n∑
i=1

dNi(t).

Then

U1

= − 1√
n

n∑
j=1

∂

∂β

{
Λ̂0(aj)− Λ0(aj)

}
exp

(
v̂>j β0

)
= − 1√

n

n∑
j=1

∫ τ

0

∂

∂β

{
dN̄(u)

S(0)(u, β0)
− dN (u)

S(0)(u, β0)

}
m(βx0) exp

(
v̂>j β0

)
I(u ≤ aj ≤ τ)

= − 1√
n

n∑
j=1

∫ τ

0

∂

∂β

{
dN̄(u)− dN (u)

S(0)(u, β0)
+
dN (u)S(0)(u, β0)− dN̄(u)S(0)(u, β0)

S(0)(u, β0)S(0)(u, β0)

}
×m(βx0) exp

(
v̂>j β0

)
I(u ≤ aj ≤ τ)

= − 1√
n

n∑
j=1

∫ τ

0

∂

∂β

[
dN̄(u)− dN (u)

S(0)(u, β0)
+

dN (u)

{S(0)(u, β0)}2

{
S(0)(u, β0)− S(0)(u, β0)

}]
×m(βx0) exp

(
v̂>j β0

)
I(u ≤ aj ≤ τ) + op(1)

= − 1√
n

n∑
j=1

∫ τ

0

∂

∂β

[
dN̄(u)

S(0)(u, β0)
− dN (u)S(0)(u, β0)

{S(0)(u, β0)}2

]
m(βx0) exp

(
v̂>j β0

)
×I(u ≤ aj ≤ τ) + op(1). (D.24)

In addition, since 1
n

n∑
j=1

exp
(
V̂ >j β0

)
I(u ≤ Aj ≤ τ) is an average of i.i.d. random

variables due to Conditions (C3), (C4), and (C5), we have that by the Law of Large
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Numbers, as n→∞,

1

n

n∑
j=1

exp
(
V̂ >j β0

)
I(u ≤ Aj ≤ τ)

p−→ E
{

exp
(
V̂ >j β0

)
I(u ≤ Aj ≤ τ)

}
=

∫ ∞
−∞

∫ τ

0

{
exp

(
v̂>β0

)
I(u ≤ a ≤ τ)

}
dG(a, v̂),

or we write (e.g., Jiang 2010, p.61)

1

n

n∑
j=1

exp
(
V̂ >j β0

)
I(u ≤ Aj ≤ τ) =

∫ ∞
−∞

∫ τ

0

{
exp

(
v̂>β0

)
I(u ≤ a ≤ τ)

}
dG(a, v̂)

+Op

(
1√
n

)
. (D.25)

Therefore, combining (D.24) and (D.25) gives

U1 = −
√
n
∂

∂β

[∫ ∞
−∞

∫ τ

0

{
dN̄(u)

S(0)(u, β0)
− dN (u)S(0)(u, β0)

{S(0)(u, β0)}2

}
m(βx0)

× exp
(
v̂>β0

)
I(u ≤ a ≤ τ)dG(a, v̂)

]
+ op(1)

= − 1√
n

n∑
i=1

∂

∂β

[∫ ∞
−∞

∫ τ

0

{
dNi(u)

S(0)(u, β0)
−
dN (u) exp

(
v∗>i β0

)
I(ai ≤ u ≤ yi)

{S(0)(u, β0)}2

}
× m(βx0) exp

(
v̂>β0

)
I(u ≤ a ≤ τ)

]
dG(a, v̂) + op(1)

, − 1√
n

n∑
i=1

Ψ1 (x∗i , x̃RC,i, zi, yi, ai) . (D.26)

Next, we examine U2. By analogy with the derivations of (D.25), (D.23) can be
re-written as

U2 =
1√
n

n∑
j=1

(
1

µ̂j

∂µ̂j
∂β
− 1

µj

∂µj
∂β

)

=
√
n

1

n

n∑
j=1

(
1

µ̂j

∂µ̂j
∂β
− 1

µj

∂µj
∂β

)
=
√
n

∫ ∞
−∞

∫ τ

0

(
1

µ̂

∂µ̂

∂β
− 1

µ

∂µ

∂β

)
dG(a, v̂) + op(1), (D.27)
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where µ̂ = µ̂(x̂, z) and µ = µ(x̃RC, z).

We now express
√
n(µ̂− µ) as a sum of i.i.d. random functions. Since

√
n(µ̂− µ) =

√
n

[∫ τ

0

exp
{
−Λ̂0(u) exp(x̂>βx0 + z>βz0)

}
dĤ(u)

−
∫ τ

0

exp
{
−Λ0(u) exp(x̃>RCβx0 + z>βz0)

}
dH(u)

]
=
√
n

∫ τ

0

[
exp

{
−Λ̂0(u) exp(x̃>RCβx0 + z>βz0)

}
− exp

{
−Λ0(u) exp(x̃>RCβx0 + z>βz0)

}]
dH(u) + op(1), (D.28)

where the second equality is due to X̂j = X̃RC,j + op(1) and Ĥ(u) = H(u) + op(1)
(e.g., Wang 1991).

Next, we examine the integrand of (D.28) with x̃RC,j and zj replaced by the corre-
sponding random variables. Applying the Taylor series expansion to

exp
{
−Λ̂0(u) exp(X̃>RC,jβx0 + Z>j βz0)

}
with respect to Λ0(·), we obtain that

exp
{
−Λ̂0(u) exp(X̃>RC,jβx0 + Z>j βz0)

}
− exp

{
−Λ0(u) exp(X̃>RC,jβx0 + Z>j βz0)

}
= − exp

{
−Λ0(u) exp(X̃>RC,jβx0 + Z>j βz0)

}{
Λ̂0(u)− Λ0(u)

}
× exp

(
X̃>RC,jβx0 + Z>j βz0

)
+ op

(
1√
n

)
. (D.29)

By the similar derivation in (D.24), we have{
Λ̂0(τ)− Λ0(τ)

}
=

1

n

n∑
i=1

∫ τ

0

{
dNi(u)

S(0)(u, β0)
−
dN (u) exp

(
w∗i
>βx0 + z>i βz0

)
I(Ai ≤ u ≤ Yi)

{S(0)(u, β0)}2

}
m(βx0)

+op(1). (D.30)

Combining (D.29) and (D.30) with (D.28) gives

√
n (µ̂− µ) =

1√
n

n∑
i=1

ψi(β0|x̃RC, z) + op (1) , (D.31)
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where ψi(β0|x̃RC, z) is given by (5.24), and S(ξ|x̃RC, z) = exp{−Λ0(ξ) exp(x̃>RCβx0 +
z>βz0)}.
Therefore, combining (D.31) and (D.27) yields

U2 =
1√
n

n∑
j=1

(
1

µ̂j

∂µ̂j
∂β
− 1

µj

∂µj
∂β

)
=
√
n

∫ ∞
−∞

∫ τ

0

(
1

µ̂

∂µ̂

∂β
− 1

µ

∂µ̂

∂β
+

1

µ

∂µ̂

∂β
− 1

µ

∂µ

∂β

)
dG(a, v̂) + op(1)

=
√
n

∫ ∞
−∞

∫ τ

0

{
∂µ̂

∂β

(
1

µ̂
− 1

µ

)
+

1

µ

(
∂µ̂

∂β
− ∂µ

∂β

)}
dG(a, v̂) + op(1)

=
√
n

∫ ∞
−∞

∫ τ

0

{
1

µ

(
∂µ̂

∂β
− ∂µ

∂β

)
− ∂µ̂

∂β

(
µ̂− µ
µ̂µ

)}
dG(a, v̂) + op(1)

=
√
n

∫ ∞
−∞

∫ τ

0

{
1

µ

(
∂µ̂

∂β
− ∂µ

∂β

)
− ∂µ

∂β

(
µ̂− µ
µ2

)}
dG(a, v̂) + op(1)

=
√
n

∫ ∞
−∞

∫ τ

0

{
1

µ

∂

∂β
(µ̂− µ)− ∂µ

∂β

1

µ2
(µ̂− µ)

}
dG(a, v̂) + op(1)

=
1√
n

n∑
i=1

[∫ ∞
−∞

∫ τ

0

{
1

µ

∂

∂β
ψi(β0|x̃RC, z)−

∂µ

∂β

1

µ2
ψi(β0|x̃RC, z)

}]
dG(a, v̂)

+op(1)

,
1√
n

n∑
i=1

Ψ2 (x∗i , x̃RC,i, zi, yi, ai) . (D.32)

Finally, combining (D.13), (D.21), (D.26) and (D.32) gives that

1√
n
U(β0) =

1√
n
{UP (β0) + UM(β0)} =

1√
n

n∑
i=1

Ψ
(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+ op(1),

where

Ψ
(
X∗i , X̃RC,i, Zi, Yi, Ai

)
= Φ

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
−Ψ1

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+Ψ2

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
− UM,i,

shown as in (5.25).
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By the Central Limit Theorem, we have that as n→∞,

1√
n
U(β0)

d−→ N (0,B) , (D.33)

where B = E
{

Ψ⊗2
(
X∗i , X̃RC,i, Zi, Ai, Yi

)}
. Therefore, using (D.20) and (D.33) and

applying the Slutsky’s Theorem yields that as n→∞,

√
n(β̃ − β)

d−→ N
(
0,A−1BA−1

)
.

�

D.4.2 Proof of Theorem 5.3.2

By Theorems 5.2.2 and 5.3.1, to prove that β̃ is more efficient than β̂, it suffices to show
that for any non-zero column vector t,

t>
(
A−1
P BPA

−1
P −A

−1BA−1
)
t > 0.

Condition (C8) gives thatAM = A−AP is positive definite, which yields thatA−1
P −A−1

is positive definite.

Let

a =

∫ τ

0

{
v∗i −

S(1)(u, β0)

S(0)(u, β0)
+

(
Σεβx0

0q

)}
dNi(u)

−
∫ τ

0

exp
(
V ∗>i β0

)
I(Ai ≤ u ≤ Yi)

S(0)(u, β0)

{
V ∗i −

S(1)(u, β0)

S(0)(u, β0)

}
dE {Ni(u)}

and

b =

{∫ ∞
−∞

∫ τ

0

∂

∂β

[
dNi(u)

S(0)(u, β0)
−
dN (u) exp

(
V ∗>i β0

)
I(Ai ≤ u ≤ Yi)

{S(0)(u, β0)}2

]
m(βx0)

× exp
(
v̂>β0

)
I(u ≤ a ≤ τ)dG(a, v̂)

}
−
[∫ ∞
−∞

∫ τ

0

{
1

µ

∂

∂β
ψi(β0|x̃RC, z)−

∂µ̂

∂β

1

µ2
ψi(β0|x̃RC, z)

}
dG(a, v̂)

]
+
∂

∂β
Λ0(Ai) exp

(
V̂ >i β0

)
+

1

µi

∂

∂β
µi.
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Define BP = E
(
aa>

)
, B = E

{
(a− b) (a− b)>

}
and BM = E

(
ab> + ba> − bb>

)
. Then

it is immediate that B = BP −BM . Representing the asymptotic covariance matrix related
to UP (·) in (D.9), BP is a positive definite matrix. Since B is the asymptotic covariance
matrix related to the function U(·) in (D.17), B is a positive definite matrix. Hence, for
any vector t, t>Bt = t> (BP − BM) t > 0, or equivalently, t>BP t− t>BM t > 0.

Finally, for any t 6= 0,

t>
{
A−1
P BPA

−1
P −A

−1BA−1
}
t

= t>
{
A−1
P BPA

−1
P −A

−1 (BP − BM)A−1
}
t

= t>
{
A−1
P BPA

−1
P −A

−1BPA−1 +A−1BMA−1
}
t

> t>
{(
A−1
P −A

−1
)> BP (A−1

P −A
−1
)

+A−1BMA−1
}
t

> 0,

where the last inequality comes from the fact that
(
A−1
P −A−1

)> BP (A−1
P −A−1

)
is a

positive definite matrix. Hence, the conclusion follows. �

D.5 Proofs of the Theorems in Section 5.4

The proofs in this appendix are more complicated than those derivations of Appendices D.3
and D.4, because the parameters in the measurement error model have to be estimated
from validation data and the induced variability must be incorporated when establishing
asymptotic results.

D.5.1 Proof of Theorem 5.4.1

Proof of Theorem 5.4.1 (1):

Since γ̂ is a consistent estimator of γ, consistency of β̂val can be established following the
proof of Theorem 5.2.2 (1) in Appendix D.3.
Proof of Theorem 5.4.1 (2):

To derive the asymptotic distribution of β̂val, we begin with examining the estimator γ̂.
By the Taylor series expansion of (5.28) with respect to γ, we obtain that

√
n (γ̂ − γ) =

√
n

m

∑
i∈V

(X∗i −Xi) + op(1). (D.34)
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Next, we define

̂̀∗
P,val =

n∑
i=1

∫ τ

0

[
ṽ∗i
>β +

1

2
β>x Σ̂εβx − log

{
n∑
j=1

exp(ṽ∗j
>β)I(aj ≤ u ≤ yj)

}]
dNi(u)(D.35)

and ṽ∗i =
(

(x∗i − γ̂)> , z>i

)>
. Similar to Lemma D.2.1, we can show that ̂̀∗C,val = ̂̀∗

P,val +̂̀∗
R,val and that ̂̀∗R,val is ancillary, and thus inference about β based on ̂̀∗C,val is equivalent

to that based on ̂̀∗P,val.
Let UP,val(β) =

∂ ̂̀∗P,val
∂β

. Since β̂val solves UP,val (β) = 0, then by the Taylor series

expansion of UP,val(β) around β0, we have that

√
n
(
β̂val − β0

)
= −

{
1

n

∂

∂β
UP,val (β0)

}−1

× 1√
n
UP,val (β0) + op(1). (D.36)

Analogous to the derivation of (D.9) in Appendix D.3.2, we proceed with the following
two steps by examining ∂

∂β
UP,val(β0) and UP,val(β0), respectively. The main difference here

is the involvement of estimators in measurement error model.
Step 1: By the consistency of γ̂, we have γ̂ = γ + op(1). By the similar derivations of
(D.12), we have that as n→∞,

−1

n

∂

∂β
UP,val (β0)

p−→ AP,val, (D.37)

where AP,val is determined by (5.37).

Step 2: By (D.35) and that UP,val (β) =
∂ ̂̀∗P,val
∂β

, we have that

1√
n
UP,val (β0) =

1√
n

∑
i∈M

∫ τ

0

{(
x∗i − γ̂
zi

)
+ Σ̂εβx0 −

Ŝ(1) (u; β0)

Ŝ(0) (u; β0)

}
dNi(u), (D.38)

where

Ŝ(k)(u; β0) =
1

n

∑
i∈M

(
x∗i − γ̂
zi

)⊗k
exp

{(
x∗i − γ̂
zi

)>(
βx0

βz0

)
I (ai ≤ u ≤ yi)

}

for k = 0, 1.
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Since (D.38) involves the estimators γ̂ and Σ̂ε, so by adding and subtracting γ and Σε,
(D.38) can be re-written as

1√
n
UP,val (β0)

=
1√
n

∑
i∈M

∫ τ

0

[
−
(
γ̂ − γ

0

)
+
(

Σ̂ε − Σε

)
βx0 −

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}]
dNi(u)

+
1√
n

∑
i∈M

∫ τ

0

{(
x∗i − γ
zi

)
+ Σεβx0 −

S(1) (u; β0)

S(0) (u; β0)

}
dNi(u)

=
1√
n

∑
i∈M

∫ τ

0

[
−
(
γ̂ − γ

0

)
+
(

Σ̂ε − Σε

)
βx0 −

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}]
dNi(u)

+
1√
n

∑
i∈M

Φ (x∗i , x̃RC,i, zi, yi, ai) + op(1)

=
1√
n

∑
i∈M

∫ τ

0

[
−
(
γ̂ − γ

0

)
+
(

Σ̂ε − Σε

)
βx0 −

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}]
dNi(u)

+

√
1 + ρ√
m+ n

∑
i∈M∪V

ζiΦ (x∗i , x̃RC,i, zi, yi, ai) + op(1), (D.39)

where Φ (x∗i , x̃RC,i, zi, yi, ai) is given by (D.14), and ζi is a indicator that ζi = 1 if i ∈ M
and ζi = 0 if i ∈ V .

We now examine the integral in (D.39), which is done by evaluating each term in the
integrand separately.

Since

1√
n

∑
i∈M

∫ τ

0

−
(
γ̂ − γ

0

)
dNi(u)

= −
√
n× 1

n

∑
i∈M

∫ τ

0

dNi(u)×
(
γ̂ − γ

0

)
= −E {Ni(τ)} ×

√
n

(
γ̂ − γ

0

)
+ op(1), (D.40)
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by (D.34), we re-write (D.40) as

1√
n

∑
i∈M

∫ τ

0

−
(
γ̂ − γ

0

)
dNi(u)

= −
√
n

m

∑
i∈V

E {Ni(τ)}
(
X∗i −Xi

0

)
+ op(1)

= −
√

1 + ρ

ρ

1√
n+m

∑
i∈M∪V

(1− ζi)E {Ni(τ)}
(
X∗i −Xi

0

)
+ op(1). (D.41)

We next derive 1√
n

∑
i∈M

∫ τ
0

(
Σ̂ε − Σε

)
βx0dNi(u) as follows:

1√
n

∑
i∈M

∫ τ

0

(
Σ̂ε − Σε

)
βx0dNi(u)

=
(

Σ̂ε − Σε

)
βx0

1√
n

∑
i∈M

Ni(τ)

=
√
n
(

Σ̂ε − Σε

)
βx0

[
1

n

∑
i∈M

Ni(τ)− E {Ni(τ)}

]
+
√
n
(

Σ̂ε − Σε

)
βx0E {Ni(τ)}

=
√
nE {Ni(τ)}

{
1

m− 1

∑
i∈V

(X∗i −Xi − γ̂) (X∗i −Xi − γ̂)> − Σε

}
βx0 + op(1)

=
√
nE {Ni(τ)}

{
1

m− 1

∑
i∈V

(X∗i −Xi − γ) (X∗i −Xi − γ)> − Σε

}
βx0 + op(1)

=
E {Ni(τ)}
m− 1

√
n
∑
i∈V

{
εiε
>
i − (m− 1)Σε

}
βx0 + op(1)

=
mE {Ni(τ)}

m− 1

√
1 + ρ

ρ

1√
n+m

∑
i∈M∪V

(1− ζi)
{
εiε
>
i − (m− 1)Σε

}
βx0

+op(1), (D.42)

where the third equality is due to
√
n
(

Σ̂ε − Σε

)
βx0

[
1
n

∑
i∈M

Ni(τ)− E {Ni(τ)}
]

= op(1),

and the fourth equality is due to the consistency of γ̂.
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Finally,

1√
n

∑
i∈M

∫ τ

0

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}
dNi(u)

=
√
n

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}[
1

n

∑
i∈M

Ni(τ)− E {Ni(τ)}

]

+
√
n

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}
E {Ni(τ)}

=
√
n

{
Ŝ(1) (u; β0)

Ŝ(0) (u; β0)
− S(1) (u; β0)

S(0) (u; β0)

}
E {Ni(τ)}+ op(1)

= E {Ni(τ)}
√
n

{
Ŝ(1) (u; β0)− S(1) (u; β0)

S(0) (u; β0)

}
+ op(1)

=
E {Ni(τ)}
S(0) (u; β0)

∂S(1) (u; β0)

∂γ

√
n (γ̂ − γ) + op(1)

=
E {Ni(τ)}
S(0) (u; β0)

∂S(1) (u; β0)

∂γ

√
n (γ̂ − γ) + op(1)

=
E {Ni(τ)}
S(0) (u; β0)

∂S(1) (u; β0)

∂γ

√
n

m

∑
i∈V

(X∗i −Xi) + op(1)

=
E {Ni(τ)}
S(0) (u; β0)

∂S(1) (u; β0)

∂γ

√
1 + ρ

ρ

1√
n+m

∑
i∈M∪V

(1− ζi) (X∗i −Xi) + op(1), (D.43)

where the second equality is due to
√
n
{
Ŝ(1)(u;β0)

Ŝ(0)(u;β0)
− S(1)(u;β0)

S(0)(u;β0)

}[
1
n

∑
i∈M

Ni(τ)− E {Ni(τ)}
]

=

op(1), the third equality is due to the consistency of γ̂, and the fourth equality comes from
applying the Mean Value Theorem to S(1)(u; β0) with respect to γ.

As a consequence, we combine (D.39), (D.41), (D.42), and (D.43) and obtain that

1√
n
UP,val(β0) =

1√
m+ n

∑
i∈M∪V

Bval1,i + op(1), (D.44)

where Bval1,i is given by (5.35).

By the Central Limit Theorem, we conclude that as n→∞,

1√
n
UP,val(β0)

d−→ N (0,BP,val) , (D.45)
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where BP,val = E
{

(Bval1,i)⊗2}.

Finally, combining (D.36), (D.37) and (D.45) and applying the Slutsky’s Theorem, we
have that as n→∞,

√
n
(
β̂ − β0

)
d−→ N

(
0,A−1

P,valBP,valA
−1
P,val

)
.

�

D.5.2 Proof of Theorem 5.4.2

Proof of Theorem 5.4.2 (1):
This can be done by following the proof of Theorem 5.3.1 in Appendix D.4.
Proof of Theorem 5.4.2 (2) :

Let UP,val(β) =
∂ ̂̀∗P,val
∂β

, UM,val(β) =
∂ ̂̀∗M,val
∂β

, and Uval(β) = UP,val(β) + UM,val(β). Since

β̃val solves Uval (β) = 0, then by the Taylor series expansion of Uval(β) around β0, we have

√
n
(
β̃val − β0

)
= −

{
1

n

∂

∂β
Uval (β0)

}−1

× 1√
n
Uval (β0) + op(1). (D.46)

Analogous to the proof of Theorem 5.4.1 (2) in Appendix D.5.1, we now examine the
asymptotic behaviours of ∂

∂β
Uval (β0) and Uval (β0).

First, by the derivations of (D.20) and (D.37), we have that as n→∞,

−1

n

∂

∂β
Uval (β0)

p−→ Aval, (D.47)

where Aval is given by (5.39). So the remaining part is to examine Uval(β0). The additional
difficulty here is to deal with UM,val(β0) that is involved in Uval(β0) since the derivation of
UP,val(β) is done in Appendix D.5.1.

To study UM,val(β), similar to the idea of (D.21), we define

ŨM,val(β0) = −
∑
i∈M

∂

∂β
Λ0(Ai) exp

(
V̂ >i βx0

)
−
∑
i∈M

1

µval,i

∂µval,i
∂β

= −
∑
i∈M

ŨM,val,i (D.48)

302



and write

1√
n

∑
i∈M

{
UM,val(β0)− ŨM,val(β0)

}
= Uval,1(β0) + Uval,2(β0), (D.49)

where

Uval,1(β0) =
−1√
n

∑
i∈M

∂

∂β
Λ̂0(Ai) exp

{
X̂>i βx0 + Z>i βz0

}
+

1√
n

∑
i∈M

∂

∂β
Λ0(Ai) exp

{
X̃>RC,iβx0 + Z>i βz0

}
,

Uval,2(β0) = − 1√
n

∑
i∈M

{
1

µ̂val,i

∂µ̂val,i
∂β

− 1

µval,i

∂µval,i
∂β

}
,

µ̂val,i = µ̂(x̂val,i, zi) =

∫ τ

0

exp
{
−Λ̂0(u) exp

(
x̂>val,iβx0 + z>i βz0

)}
dĤval(u),

and µval,i = µ(x̃RC,i, zi).

Now we carry out the following steps to examine each term of (D.49).
Step 1: We first analyze Uval,1(β0).
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By the similar derivations of (D.21) and (D.22), we express

Uval,1(β0) =
−1√
n

∑
i∈M

∂

∂β
Λ̂0(Ai) exp

{
X̂>i βx0 + Z>i βz0

}
+

1√
n

∑
i∈M

∂

∂β
Λ0(Ai) exp

{
X̃>RC,iβx0 + Z>i βz0

}
=
−1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN̄(u)

Ŝ(0)(u; β0)
m(βx0) exp

{
X̂>i βx0 + Z>i βz0

}
I(u ≤ ai ≤ τ)

+
1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN (u)

S(0)(u; β0)
m(βx0) exp

{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ ai ≤ τ)

= −

[
1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN̄(u)

Ŝ(0)(u; β0)
exp

{
X̂>i βx0 + Z>i βz0

}
I(u ≤ ai ≤ τ)

− 1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN̄(u)

S(0)(u; β0)
exp

{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ ai ≤ τ)

]
m(βx0)

−

[
1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN̄(u)

S(0)(u; β0)
exp

{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ ai ≤ τ)

− 1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN (u)

S(0)(u; β0)
exp

{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ ai ≤ τ)

]
m(βx0)

, T1 + T2. (D.50)
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For T1 in (D.50), we have

T1 =
−1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN̄(u)

{
1

Ŝ(0)(u; β0)
− 1

S(0)(u; β0)

}
m(βx0)

× exp
{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ Ai ≤ τ) + op(1)

=
−1√
n

∑
i∈M

∂

∂β

∫ τ

0

dN̄(u)
−1

{S(0)(u; β0)}2

∂S(0)(u; β0)

∂γ
(γ̂ − γ)m(βx0)

× exp
{
X̃>RC,iβx0 + Z>i βz0

}
I(u ≤ Ai ≤ τ) + op(1)

=
1

n

∑
i∈M

∂

∂β

∫ τ

0

dN (u)
1

{S(0)(u; β0)}2

∂S(0)(u; β0)

∂γ
m(βx0) exp

{
X̃>RC,iβx0 + Z>i βz0

}
×I(u ≤ Ai ≤ τ)

√
n (γ̂ − γ) + op(1)

= E

[
∂

∂β

∫ τ

0

dN (u)
1

{S(0)(u; β0)}2

∂S(0)(u; β0)

∂γ
m(βx0) exp

{
X̃>RC,iβx0 + Z>i βz0

}
×I(u ≤ Ai ≤ τ)]

√
n

m

∑
i∈V

(X∗i −Xi) + op(1)

, Eval,1
1√

m+ n

√
1 + ρ

ρ

∑
i∈M∪V

(1− ζi)(X∗i −Xi) + op(1), (D.51)

where the first equality comes from using the Mean Value Theorem on S(0)(u; β) with
respect to γ, the third equality is by (D.34), and the Law of Large Numbers.

T2 in (D.50) is exactly the form in (D.24). Therefore, we directly have

T2 = − 1√
n

∑
i∈M

∂

∂β

[∫ ∞
−∞

∫ τ

0

{
dNi(u)

S(0)(u, β0)
−
dN (u) exp

(
V ∗>i β0

)
I(Ai ≤ u ≤ Yi)

{S(0)(u, β0)}2

}
m(βx0)

× exp
(
v̂>β0

)
I(u ≤ a ≤ τ)

]
dG(a, v̂) + op(1)

, − 1√
n

∑
i∈M

ΨM1

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+ op(1)

=
−1√
n+m

√
1 + ρ

∑
i∈M∪V

ζiΨM1

(
X∗i , X̃RC,i, Zi, Yi, Ai

)
+ op(1). (D.52)
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Therefore, combining (D.50), (D.51), and (D.52) gives

Uval,1(β0) =
1√

n+m

∑
i∈M∪V

Bval2,i + op(1), (D.53)

where Bval2,i is given by (5.36).
Step 2: We next examine Uval,2(β0).

Similar to the derivations in (D.27), we have

Uval,2(β0) =
1√
n

∑
i∈M

(
1

µ̂val,i

∂µ̂val,i
∂β

− 1

µval,i

∂µval,i
∂β

)
=
√
n

∫ ∞
−∞

∫ τ

0

(
1

µ̂val

∂µ̂val
∂β
− 1

µval

∂µval
∂β

)
dG(a, v̂) + op(1). (D.54)

Similar to the derivations of Theorem 5.3.1 (2) in Appendix D.4, we first derive
√
n(µ̂val−

µval), where µ̂val = µ̂(x̂val, z) and µval = µ(x̃RC, z).

Note that

√
n(µ̂val − µval) =

√
n

∫ τ

0

[
exp

{
−Λ̂0(u) exp(x̃>RCβx0 + z>βz0)

}
− exp

{
−Λ0(u) exp(x̃>RCβx0 + z>βz0)

}]
dH(u) + op(1). (D.55)

On the other hand, the difference Λ̂0(τ)− Λ0(τ) can be expressed as

Λ̂0(τ)− Λ0(τ)

=

∫ τ

0

{
dN̄(t)

Ŝ(0)(t; β0)
− dN (t)

S(0)(t; β0)

}
m(βx0)

=

∫ τ

0

{
dN̄(t)

Ŝ(0)(t; β0)
− dN̄(t)

S(0)(t; β0)

}
m(βx0) +

∫ τ

0

{
dN̄(t)

S(0)(t; β0)
− dN (t)

S(0)(t; β0)

}
m(βx0)

, A+B. (D.56)

By the Mean Value Theorem on S(0)(t; β) with respect to γ in A, we have

A =

∫ τ

0

−dN̄(t)

{S(0)(t; β0)}2

{
∂S(0)(t; β0)

∂γ

}
m(βx0) (γ̂ − γ)

=

∫ τ

0

−dN (t)

{S(0)(t; β0)}2

{
∂S(0)(t; β0)

∂γ

}
m(βx0) (γ̂ − γ) + op(1)

, A (γ̂ − γ) + op(1). (D.57)
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Moreover, B in (D.56) is equal to (D.30), so we obtain that

B =
1

n

∑
i∈M

∫ τ

0

[
dNi(t)

S(0)(t; β0)
−
dN (t) exp

{
(X∗i − γ)>βx0 + Z>i βz0

}
I(Ai ≤ u ≤ Yi)

{S(0)(t; β0)}2

]
×m(βx0)

,
1

n

∑
i∈M

Bi + op(1). (D.58)

Therefore, combining (D.57) and (D.58) with (D.56) yields

Λ̂0(τ)− Λ0(τ) =

{
A (γ̂ − γ) +

1

n

∑
i∈M

Bi

}
+ op(1). (D.59)

Applying the Taylor series expansion to exp
{
−Λ̂0(u) exp

(
X̃>RCβx0 + Z>βz0

)}
with

respect to Λ0(·) gives

exp
{
−Λ̂0(u) exp

(
X̃>RCβx0 + Z>βz0

)}
− exp

{
−Λ0(u) exp

(
X̃>RCβx0 + Z>βz0

)}
= − exp

{
−Λ0(u) exp

(
X̃>RCβx0 + Z>βz0

)}{
Λ̂0(u)− Λ0(u)

}
× exp

(
X̃>RCβx0 + Z>βz0

)
+ op

(
1√
n

)
. (D.60)

Therefore, combining (D.59) and (D.60) with (D.55) yields

√
n (µ̂val − µval) =

√
n

∫ τ

0

S(ν|x̃RC, z)

{
A (γ̂ − γ) +

1

n

∑
i∈M

Bi

}
exp

(
x̃>RCβx0 + z>βz0

)
×dH(ν) + op(1)

=

√
n

m

∑
i∈V

(X∗i −Xi)

∫ τ

0

S(ν|x̃RC, z)A exp
(
x̃>RCβx0 + z>βz0

)
dH(ν)

+
1√
n

∑
i∈M

ψi(β0|x̃RC, z) + op(1)

=
1√

n+m

∑
i∈M∪V

[√
1 + ρ

ρ
(X∗i −Xi)

∫ τ

0

{S(ν|x̃RC, z)A

× exp
(
x̃>RCβx0 + z>βz0

)
dH(ν)

}
+
√

1 + ρψi(β0|x̃RC, z)
]

+ op(1)

,
1√

n+m

∑
i∈M∪V

ϕval,i + op(1). (D.61)
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Similar to the derivations for (D.32), combining (D.54) and (D.61) gives

Uval,2(β0) =
√
n

∫ ∞
−∞

∫ τ

0

(
1

µ̂val

∂µ̂val
∂β
− 1

µval

∂µ̂val
∂β

+
1

µval

∂µ̂val
∂β
− 1

µval

∂µval
∂β

)
dG(a, v̂)

+op(1)

=
√
n

∫ ∞
−∞

∫ τ

0

{
1

µval

∂

∂β
(µ̂val − µval)−

∂µval
∂β

1

µ2
val

(µ̂val − µval)
}
dG(a, v̂)

+op(1)

=
1√

n+m

∑
i∈M∪V

[∫ ∞
−∞

∫ τ

0

{
1

µval

∂

∂β
ϕval,i −

∂µval
∂β

1

µ2
val

ϕval,i

}]
dG(a, v̂)

+op(1)

,
1√

n+m

∑
i∈M∪V

Bval3,i + op(1). (D.62)

To summarize, combining (D.44), (D.48), (D.49), (D.53) and (D.62) yields

1√
n
Uval(β0) =

1√
n+m

∑
i∈M∪V

(
Bval1,i + Bval2,i + Bval3,i +

√
1 + ρζiŨM,val,i

)
+ op(1).

Finally, by the Central Limit Theorem, we have that as n→∞,

1√
n
Uval(β0)

d−→ N (0,Bval) , (D.63)

where Bval is given by (5.38). Therefore, combining (D.47) and (D.63) with (D.46) and
applying the Slutsky’s Theorem give that as n→∞,

√
n
(
β̃val − β0

)
d−→ N

(
0,A−1

valBvalA
−1
val

)
.

�

D.5.3 Proof of Theorem 5.4.3

This is done by the similar derivations in Appendix D.4.2. �
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D.6 Proofs of the Theorems in Section 5.6

D.6.1 Proof of Theorem 5.6.1

Proof of Theorem 5.6.1 (1):
The proof of this theorem is similar to the proof of Theorem 5.3.1 (1) except for the
inference of function dH(a).
Proof of Theorem 5.6.1 (2):
The proof of this theorem can be done by modifying the proof of Theorem 5.3.1 (2) and
that of Huang et al. (2012) who developed asymptotic normality under the length-biased
sampling setting. �
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Appendix E

Proofs for the Results in Chapter 6

E.1 Regularity Conditions

(C1) Θ is a compact set, and the true parameter value β0 is an interior point of Θ.

(C2)
∫ τ

0
λ0(t)dt <∞, where τ is the finite maximum support of the failure time.

(C3) The {Ni(t), Yi(t), Zi, X
∗
i } are independent and identically distributed for i = 1, · · · , n.

(C4) The covariates Z and X∗ are bounded.

(C5) Conditional on Ṽ ,
(
T̃ , C, Ṽ

)
are independent of Ã.

(C6) Censoring time is non-informative. That is, the failure time and the censoring time
are independent, given the covariate.

Condition (C1) is the basic condition that is used to the derivation of the maximizer from
the target function. (C2) to (C6) are standard conditions for survival analysis, which
allows us to obtain the sum of i.i.d. random variables and hence to derive the asymptotic
properties of the estimators.

310



E.2 Proofs for the Results in Section 6.3

E.2.1 Proof of Lemma 6.3.1

For any given candidate model S, we have that

ΣX∗S
= E

{(
X∗S − µX∗S

) (
X∗S − µX∗S

)>}
= E

{
(πSX

∗ − πSµX∗) (πSX
∗ − πSµX∗)>

}
= πSE

{
(X∗ − µX∗) (X∗ − µX∗)>

}
π>S

= πSΣX∗π
>
S ,

which yields that I|S|×|S| = ΣX∗S
·Σ−1

X∗S
= πSΣX∗π

>
S ·Σ−1

X∗S
, provided Σ−1

X∗S
exists. Multiplying

πS on both sides gives

πSΣX∗π
>
S · Σ−1

X∗S
πS = πS

or πS

(
ΣX∗π

>
S · Σ−1

X∗S
πS − I|S|×|S|

)
= 0, which implies that

ΣX∗π
>
S · Σ−1

X∗S
πS = I|S|×|S|,

or equivalently,

π>S · Σ−1
X∗S
πS = Σ−1

X∗ ,

and this proof is completed. �

E.2.2 Proof of Lemma 6.3.2

Proof of (a):
First, for any candidate model S, we denote

G
(1)
S (u, βx, βz) =

1

n

n∑
i=1

ΠS

(
x∗i
zi

)
Yi(u) exp

{(
(πSx

∗
i )
>, z>i

)( βx
βz

)}
. (E.1)
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Let

G(1) (u, βx, βz) =

(
G

(1)
x (u, βx, βz)

G
(1)
z (u, βx, βz)

)
, (E.2)

where (
G

(1)
x (u, βx, βz)

G
(1)
z (u, βx, βz)

)
,

1

n

n∑
i=1

(
x∗i
zi

)
Yi(u) exp

{(
x∗i
>, z>i

)( βx
βz

)}
,

and

G(2) (u, βx, βz) =
1

n

n∑
i=1

(
x∗i
zi

)⊗2

Yi(u) exp

{(
x∗i
>, z>i

)( βx
βz

)}
, (E.3)

where a⊗2 = aa> for any vector a.

Then setting (βx, βz) = (0, βz) gives

G
(1)
S (u, 0, βz) =

1

n

n∑
i=1

ΠS

(
x∗i
zi

)
Yi(u) exp

{(
(πSx

∗
i )
>, z>i

)( 0
βz

)}
=

1

n
ΠS

n∑
i=1

(
x∗i
zi

)
Yi(u) exp

{(
x∗i
>, z>i

)( 0
βz

)}
= ΠSG

(1) (u, 0, βz) .

Similarly, from (6.10) and (6.20), one has

G
(0)
S (u, 0, βz) =

1

n

n∑
i=1

Yi(u) exp
{

(πSx
∗
i )
> 0 + z>i βz

}
=

1

n

n∑
i=1

Yi(u) exp
(
z>i βz

)
=

1

n

n∑
i=1

Yi(u) exp
(
x∗i
>0 + z>i βz

)
= G(0) (u, 0, βz) .

Therefore, for any βz and j = 0, 1, we have

G
(j)
S (u, 0, βz) = Π⊗jS G(j) (u, 0, βz) , (E.4)
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where A⊗0 = Ip×p and A⊗1 = A for any matrix A.

Consequently, direct calculations show that

UP,S (βx,S, βz,S) =
∂

∂βS
`∗P,S (βS)

=
n∑
i=1

∫ τ

0

{
ΠS

(
x∗i
zi

)
+

(
πSΣεπ

>
S βx,S

0

)
− G

(1)
S (u, βx,S, βz,S)

G
(0)
S (u, βx,S, βz,S)

}
dNi (u) ,

and

UP (βx, βz) =
∂

∂β
`∗P (β)

=
n∑
i=1

∫ τ

0

{(
x∗i
zi

)
+

(
Σεβx

0

)
− G(1) (u, βx, βz)

G(0) (u, βx, βz)

}
dNi (u) . (E.5)

Thus, plugging in
(
β>x , β

>
z

)>
=
(
0>, β>z0

)>
and

(
β>x,S, β

>
z,S

)>
=
(
0>, β>z0

)>
to UP,S (βx,S, βz,S)

and UP (βx, βz), respectively, gives

UP,S (0, βz0) = ΠSUP (0, βz0) .

Proof of (b):
We first show the relationship between x̂i,S and x̂i, the quantities defined by (6.14) and
(6.21) in Section 6.2.2. Applying X∗S = πSX

∗ to (6.14), we have

x̂i,S = πSµ̂X∗ +
(
I|S|×|S| − πSΣεπ

>
S Σ̂−1

X∗S

) (
x∗i,S − µ̂X∗S

)
= πSµ̂X∗ +

(
I|S|×|S| − πSΣεπ

>
S Σ̂−1

X∗S

)
πS (x∗i − µ̂X∗)

= πSµ̂X∗ +
(
πS − πSΣεπ

>
S Σ̂−1

X∗S
πS

)
(x∗i − µ̂X∗)

= πS

{
µ̂X∗ +

(
Ip×p − Σεπ

>
S Σ̂−1

X∗S
πS

)
(x∗i − µ̂X∗)

}
= πS

{
µ̂X∗ +

(
Ip×p − ΣεΣ̂

−1
X∗

)
(x∗i − µ̂X∗)

}
= πS

{
µ̂X∗ +

(
Σ̂X∗ − Σε

)>
Σ̂−1
X∗ (x∗i − µ̂X∗)

}
= πSx̂i,
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where the second identity is due to µ̂X∗S = πSµ̂X∗ , and the third last step is due to
Lemma 6.3.1.

To prove UM,S (0, βz0) = ΠSUM (0, βz0), we first examine the partial derivative of ̂̀∗M,S.

Note that we can express ̂̀∗M,S = ̂̀∗
M1,S − ̂̀∗M2,S, where

̂̀∗
M1,S =

n∑
i=1

[
log
{
dĤS(ai)

}
− Λ̂0,S(ai) exp

(
x̂>i,Sβx + z>i βz

)]
,

and

̂̀∗
M2,S =

n∑
i=1

log

∫ τ

0

exp
{
−Λ̂0,S(u) exp

(
x̂>i,Sβx + z T

i βz
)}
dĤS(u).

Let A =

(
πSΣεπ

>
S 0|S|×q

0q×|S| 0q×q

)
and βS =

(
βx,S
βz,S

)
. Then direct calculations give us

UM1,S (βx,S, βz,S)

=
∂

∂βS
̂̀∗
M1,S (βS)

=
∂

∂βS

(
n∑
i=1

[
log
{
dĤS(ai)

}
− Λ̂0,S(ai) exp

(
x̂>i,Sβx,S + z>i βz,S

)])

= −
n∑
i=1

∂

∂βS

{
Λ̂0,S(ai) exp

(
x̂>i,Sβx,S + z>i βz,S

)}

= −
n∑
i=1

∂

∂βS


∫ ai

0

1
n

n∑
j=1

dNj(u)

m−1
S (βx,S)G

(0)
S (u, βx,S, βz,S)

exp
(
x̂>i,Sβx,S + z>i βz,S

)
where the fourth equality is due to the estimator (6.9). Note that

∂m−1
S (βx,S)

∂βS
=

∂

∂βS
exp

(
−1

2
β>x,SπSΣεπ

>
S βx,S

)
=

∂

∂βS
exp

(
−1

2
β>S AβS

)
= −AβSm

−1
S (βx,S) ,

where mS (βx,S) is defined by exp
(

1
2
β>x,SπSΣεπ

>
S βx,S

)
in Section 6.2.1.
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Then plugging in βx,S = 0 and βz,S = βz0 to UM1,S (βx,S, βz,S) gives

UM1,S (0, βz0) = −
n∑
i=1

∫ ai

0

1
n

n∑
j=1

dNj (u) ΠSG
(1) (u, 0, βz0)

{G(0) (u, 0, βz0)}2 exp
{
z>i βz0

}

+Λ̂0 (ai) ΠS

(
x̂i
zi

)
exp

{
z>i βz0

}]
= ΠSUM1 (u, 0, βz0) ,

where the last step is due to (E.4) and that m−1
S (0) = 1.

Similarly, we examine UM2,S (βx,S, βz,S) = ∂
∂β
̂̀∗
M2,S and plug in βx,S = 0 and βz,S = βz0

to UM2,S and apply Lemma 6.3.1, yielding

UM2,S (0, βz0) =
1∫ τ

0
exp

{
−Λ̂0 (u) exp

(
z>i βz0

)}
dĤS(u)

×
∫ τ

0

exp
{
−Λ̂0 (u) exp

(
z>i βz0

)}{
ΠS

(
∂

∂β
Λ̂0 (u)

)
exp

(
z>i βz0

)
+ Λ̂0 (u) ΠS

(
x̂i
zi

)
exp

(
z>i βz0

)}
dĤS(u)

= ΠS
∂

∂β
log

∫ τ

0

exp
{
−Λ̂0 (u) exp

(
x̂>i βx + z>i βz

)}
dĤS(u)

∣∣∣∣
βx=0,βz=βz0

= ΠSUM2 (u, 0, βz0) .

Thus, we complete the proof. �

E.2.3 Proof of Theorem 6.3.1

Proof of (a): The proof consists of the following two steps.
Step 1:

Let UP (βx, βz) =
∂`∗P
∂β

, UM(βx, βz) =
∂ ̂̀∗M
∂β

and U(βx, βz) = UP (βx, βz) + UM(βx, βz),

where β =
(
β>x , β

>
z

)>
, and `∗P and ̂̀∗M are given by (6.23) and (6.18), respectively. Ap-

plying the Taylor expansion of U
(
β̂x, β̂z

)
and U

(
η√
n
, βz0

)
around

(
β>x , β

>
z

)>
=
(
0, β>z0

)>
,
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respectively, gives

0 = U
(
β̂x, β̂z

)
= U (0, βz0) +

∂U (0, βz0)

∂β>

(
β̂x − 0

β̂z − βz0

)
+ op

(
1√
n

)
(E.6)

and

U

(
η√
n
, βz0

)
= U (0, βz0) +

∂U (0, βz0)

∂β>

( η√
n

0

)
+ op

(
1√
n

)
. (E.7)

Combining (E.6) and (E.7) gives

0 = U

(
η√
n
, βz0

)
+
∂U (0, βz0)

∂β>

(
β̂x

β̂z − βz0

)
− ∂U (0, βz0)

∂β>

( η√
n

0

)
+ op

(
1√
n

)
, (E.8)

and re-scaling (E.8) yields

√
n

(
β̂x

β̂z − βz0

)
=

{
−1

n

∂U (0, βz0)

∂β>

}−1
1√
n
U

(
η√
n
, βz0

)
+

(
η
0

)
+ op (1) . (E.9)

Let

ζ̂∗i (βx, βz) =

∫ τ

0

exp
{
−Λ̂0 (u) exp

(
x̂>i βx + z>i βz

)}
dĤ (u) . (E.10)

Since µ̂X∗ = µX + op(1) and Σ̂X∗ = ΣX∗ + op(1), we obtain that X̂i = X̃RC,i + op(1) by the
Law of Large Numbers, where

X̃RC,i = E (Xi|X∗i )

= µX + (ΣX∗ − Σε)
>Σ−1

X∗ (X∗i − µX∗) .

Since the indicator functions

{I(A ≤ t ≤ Y ) : t ∈ [0, τ ]} and {I(Y ≤ t) : t ∈ [0, τ ]}

are Glivanko-Cantelli classes (van der Vaart and Wellner 1996, Example 2.4.2), by Uni-
formly Strong Law of Large Numbers, we have that as n→∞,

G(k)(u, βx, βz)
a.s.−→ G(k)(u, βx, βz)
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uniformly at u, where

G(k)(u, βx, βz) = E

{(
X∗

Z

)⊗k
exp(X∗>βx + Z>βz)I(A ≤ u ≤ Y )

}
(E.11)

for k = 0, 1, 2. By the similar proof of Theorem 5.2.1, we have that as n→∞,

sup
β∈Θ, t∈[0,τ ]

|Λ̂0(t)− Λ∗0(t)| a.s.−→ 0, (E.12)

where

Λ∗0(t) =

∫ t

0

dP (∆ = 1, Y ≤ u)

m−1 (βx0)G(0)(u, βx0, βz0)
. (E.13)

In addition, by the similar derivations of Lemma 4.2 in Wang (1991), we have that as
n→∞,

Ĥ(u)
a.s.−→ H(u) (E.14)

uniformly. Combining (E.12) and (E.14) yields that as n→∞,

ζ̂∗i (βx, βz)
a.s.−→ ζ∗i (βx, βz) ,

where

ζ∗i (βx, βz) =

∫ τ

0

exp
{
−Λ∗0 (u) exp

(
x̃>RC,iβx + z>i βz

)}
dH (u) .

Noting that by (E.5) and UM =
∂ ̂̀∗M
∂β

together with (6.18), we obtain that

−1

n

∂U (0, βz0)

∂β

=
−1

n

(
∂UP (0, βz0)

∂β
+
∂UM (0, βz0)

∂β

)
=
−1

n

∂

∂β

n∑
i=1

∫ τ

0

{(
x∗i
zi

)
+

(
Σεβx

0

)
− G(1) (u, βx, βz)

G(0) (u, βx, βz)

}
dNi (u)

∣∣∣∣∣
(βx,βz)=(0,βz0)

+
1

n

∂

∂β

n∑
i=1

∂

∂β

{
Λ̂0(ai) exp

(
x̂>i βx + z>i βz

)}∣∣∣∣∣
(βx,βz)=(0,βz0)

+
1

n

∂

∂β

n∑
i=1

∂
∂β

[∫ τ
0

exp
{
−Λ̂0(u) exp

(
x̂>i βx + z>i βz

)}
dĤ(u)

]
∫ τ

0
exp

{
−Λ̂0(u) exp

(
x̂>i βx + z>i βz

)}
dĤ(u)

∣∣∣∣∣∣
(βx,βz)=(0,βz0).

(E.15)
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Then exchanging the order of differentiation and summation and plugging (E.10) to (E.15)
with (βx, βz) evaluated at (0, βz0), yields

−1

n

∂U (0, βz0)

∂β

=
1

n

n∑
i=1

∫ τ

0

[{
G(2)(u, 0, βz0)

G(0)(u, 0, βz0)
−
(
G(1)(u, 0, βz0)

G(0)(u, 0, βz0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dNi(u)

+
1

n

n∑
i=1

∂2

∂β∂β>

{
Λ̂0(ai) exp

(
x̂>i 0 + z>i βz0

)}

+
1

n

n∑
i=1

 1

ζ̂∗i

∂2ζ̂∗i
∂β∂β>

− 1

(ζ̂∗i )2

(
∂ζ̂∗i
∂β

)⊗2
 ,

where G(k+1)(u, βx, βz) = ∂
∂β
G(k)(u, βx, βz) for k = 0, 1, and ζ̂∗i = ζ̂∗i (0, βz0).

We conclude that by the Law of Large Numbers, as n→∞,

−1

n

∂U (0, βz0)

∂β

p−→ A, (E.16)

where

A =

∫ τ

0

[{
G(2)(u, 0, βz0)

G(0)(u, 0, βz0)
−
(
G(1)(u, 0, βz0)

G(0)(u, 0, βz0)

)⊗2
}
−
(

Σε 0p×q
0q×p 0q×q

)]
dE {Ni(u)}

+E

{
∂2

∂β∂β>
Λ∗0(A) exp

(
X̃>RC0 + Z>βz0

)
+ (ζ∗)−2

(
ζ∗
∂(ζ∗)2

∂2β
−
(
∂ζ∗

∂β

)⊗2
)}

with G(k) (·) is given by (E.11) for k = 0, 1, 2, and

ζ∗ =

∫ τ

0

exp
{
−Λ∗0 (u) exp

(
x̃>RC0 + z>βz0

)}
dH (u) .

Step 2:

Since U
(

η√
n
, βz0

)
contains the sample size n, it cannot be directly expressed as a sum

of i.i.d. random functions. We now want to re-express it in order to derive a sum of i.i.d.

random functions. Since exp
(
x∗> η√

n

)
= x∗>η√

n
+Op (1), then by (6.20) and (E.2),

G(j)

(
u,

η√
n
, βz

)
=

1√
n
G̃(j) (u, η, βz) +Op (1) for j = 0, 1, (E.17)
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where

G̃(j) (u, η, βz) =
1

n

n∑
i=1

(
x∗i
zi

)⊗j
Yi(u) exp

(
z>i βz

)
x∗i
> (E.18)

which is a sum of i.i.d. random variables for j = 0, 1.

Combining (E.17) and U
(

η√
n
, βz0

)
gives

1√
n
U

(
η√
n
, βz0

)
=

1√
n
Ũ (η, βz0) + op(1), (E.19)

where

Ũ (η, βz0) = ŨP (η, βz0) + ŨM (η, βz0) , (E.20)

ŨP (η, βz0) =
n∑
i=1

∫ τ

0

{(
x∗i
zi

)
+

(
Σεη
0

)
− G̃(1) (u, η, βz)

G̃(0) (u, η, βz)

}
dNi (u)

and

ŨM (η, βz0) = −
n∑
i=1

∂

∂β


∫ ai

0

1
n

n∑
j=1

dNj(u)

(η>Σεη)−1G̃(0) (u, η, βz0)
exp

(
z>i βz

)
x̂>i η


−

n∑
i=1

∂

∂β
log

∫ τ

0

exp
{
−Λ̂0(u) exp

(
z>i βz0

)
x̂>i η

}
dĤ(u). (E.21)

(E.19) suggests that to study the asymptotic behavior of 1√
n
U
(

η√
n
, βz0

)
, it suffices to study

1√
n
Ũ (η, βz0) by expressing it as a sum of i.i.d. random functions. To this end, by (E.20),

we separately examine ŨP (η, βz0) and ŨM (η, βz0). First, using the arguments similar to
the derivations in Theorem 2.1 of Lin and Wei (1989), we derive

1√
n
ŨP (η, βz0) =

1√
n

n∑
i=1

Ψ1i + op(1), (E.22)
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where

Ψ1i =

∫ τ

0

{(
x∗i
zi

)
− G̃

(1)(u, η, βz0)

G̃(0)(u, η, βz0)
+

(
Σεη
0q

)}
dNi(u)

−
∫ τ

0

exp
(
z>i βz

)
x∗i
>ηI(Ai ≤ u ≤ Yi)

G̃(0)(u, η, βz0)

{(
x∗i
zi

)
− G̃

(1)(u, η, βz0)

G̃(0)(u, η, βz0)

}
dE {Ni(u)}

(E.23)

with

G̃(j)(u, η, βz0) = E

{(
X∗

Z

)⊗j
Y (u) exp

(
Z>βz

)
X∗>η

}
for j = 0, 1.

Next, we examine ŨM (η, βz0). Let

ζ (x̃RC, z) =

∫ τ

0

exp
{
−Λ∗0(u) exp(z>βz0)x̃>RCη

}
dH(u), (E.24)

X̃RC = µX + (ΣX∗ − Σε)
>Σ−1

X∗ (X∗ − µX∗)

and

ζ̂ (x̂, z) =

∫ τ

0

exp
{
−Λ̂0(u) exp(z>βz0)x̂>η

}
dĤ(u). (E.25)

To derive a sum of i.i.d. random functions and study the asymptotic behavior of ŨM (η, βz0),
we further define

Ũ∗M (η, βz0) = −
n∑
i=1

∂

∂β
Λ∗0(ai) exp

(
z>i βz0

)
x̃>RC,iη −

n∑
i=1

1

ζ (x̃RC,i, zi)

∂ζ (x̃RC,i, zi)

∂β
. (E.26)

Then by (E.21) and (E.26), the difference between ŨM and Ũ∗M can be written as

1√
n

{
ŨM − Ũ∗M

}
= Ũ1 + Ũ2, (E.27)

where

Ũ1 = − 1√
n

n∑
i=1

∂

∂β

{
Λ̂0(ai)− Λ∗0(ai)

}
exp

(
z>i βz0

)
x̃>RC,iη
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and

Ũ2 = − 1√
n

n∑
i=1

{
1

ζ̂ (x̂i, zi)

∂ζ̂ (x̂i, zi)

∂β
− 1

ζ (x̃RC,i, zi)

∂ζ (x̃RC,i, zi)

∂β

}
. (E.28)

To study the asymptotic behaviour of (E.27), we examine Ũ1 and Ũ2 individually. First,

let N (t) = P (∆ = 1, Y ≤ t) and dN̄(t) = 1
n

n∑
i=1

dNi(t). Then by (6.19) and (E.13),

Ũ1 = − 1√
n

n∑
i=1

∂

∂β

{
Λ̂0(ai)− Λ∗0(ai)

}
exp

(
z>i βz0

)
x̃>RC,iη

= − 1√
n

n∑
i=1

∫ τ

0

∂

∂β

{
dN̄(u)

G̃(0)(u, η, βz0)
− dN (u)

G̃(0)(u, η, βz0)

}(
η>Σεη

)
exp

(
z>i βz0

)
×x̃>RC,iηI(u ≤ ai ≤ τ)

= − 1√
n

n∑
i=1

∫ τ

0

∂

∂β

{
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)
+
dN (u)G̃(0)(u, η, βz0)− dN̄(u)G̃(0)(u, η, βz0)

G̃(0)(u, η, βz0)G̃(0)(u, η, βz0)

}
×
(
η>Σεη

)
exp

(
z>i βz0

)
x̃>RC,iηI(u ≤ ai ≤ τ). (E.29)

Since 1
n

n∑
i=1

exp
(
z>i βz0

)
x̃>RC,iηI(u ≤ ai ≤ τ) is an average of i.i.d. random variables due

to Conditions (C3), (C4) and (C5). Then by the Law of Large Numbers, we have that as
n→∞,

1

n

n∑
i=1

exp
(
z>i βz0

)
x̃>RC,iηI(u ≤ ai ≤ τ)

p−→ E
{

exp
(
Z>βz0

)
X̃>RCηI(u ≤ A ≤ τ)

}
=

∫ ∞
−∞

∫ τ

0

exp
(
z>βz0

)
x̃>RCηI(u ≤ a ≤ τ)dQ(a, v̂),

i.e.,

1

n

n∑
i=1

exp
(
z>i βz0

)
x̃>RC,iηI(u ≤ ai ≤ τ)

=

∫ ∞
−∞

∫ τ

0

exp
(
z>βz0

)
x̃>RC,iηI(u ≤ a ≤ τ)dQ(a, v̂) +Op

(
1√
n

)
(E.30)
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(e.g., Jiang 2010, p.61), where Q(a, v̂) is the joint density function of (A, V̂ ) with V̂ =(
X̃RC, Z

)
.

Then plugging (E.30) into (E.29) gives

Ũ1

= −
√
n

∫ ∞
−∞

∫ τ

0

∂

∂β

{
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)
+
dN (u)G̃(0)(u, η, βz0)− dN̄(u)G̃(0)(u, η, βz0)

G̃(0)(u, η, βz0)G̃(0)(u, η, βz0)

}
×
(
η>Σεη

)
exp

(
z>βz0

)
x̃>RCηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1), (E.31)

where the order term is determined by
√
n× op(1)×Op

(
1√
n

)
= op(1).

Furthermore, noting that by the Uniformly Strong Law of Large Numbers,

dN̄(t)
a.s.−→ dN (t)

and

G̃(0)(u, η, βz0)
a.s.−→ G̃(0)(u, η, βz0)

uniformly as n→∞. That is,

dN̄(t) = dN (t) + op(1) (E.32)

and

G̃(0)(u, η, βz0) = G̃(0)(u, η, βz0) + op(1). (E.33)

Then we obtain that

Ũ1 = −
√
n

∫ ∞
−∞

∫ τ

0

∂

∂β

{
dN̄(u)− dN (u)

G̃(0)(u, η, βz0)
+
dN (u)G̃(0)(u, η, βz0)− dN̄(u)G̃(0)(u, η, βz0)

G̃(0)(u, η, βz0)G̃(0)(u, η, βz0)

}
×
(
η>Σεη

)
exp

(
z>βz0

)
x̃>RCηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1)

= −
√
n

∫ ∞
−∞

∫ τ

0

∂

∂β

dN̄(u)− dN (u)

G̃(0)(u, η, βz0)
+

dN (u){
G̃(0)(u, η, βz0)

}2

{
G̃(0)(u, η, βz0)

−G̃(0)(u, η, βz0)
}]
×
(
η>Σεη

)
exp

(
z>βz0

)
x̃>RCηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1),
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where we apply (E.32) and (E.33) to the numerator and denominator of the second term,
respectively. Then by definition of dN̄(t) and (E.18), we obtain that

Ũ1 = −
√
n

∫ ∞
−∞

∫ τ

0

∂

∂β

 dN̄(u)

G̃(0)(u, η, βz0)
− dN (u)G̃(0)(u, η, βz0){

G̃(0)(u, η, βz0)
}2

(η>Σεη
)

× exp
(
z>βz0

)
x̃>RCηI(u ≤ a ≤ τ)dQ(a, v̂) + op(1)

= − 1√
n

n∑
i=1

∂

∂β

∫ ∞
−∞

∫ τ

0

 dNi(u)

G̃(0)(u, η, βz0)
−
dN (u) exp

(
z>i βz0

)
x∗i
>ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2


×
(
η>Σεη

)
exp

(
z>βz0

)
x̃>RCηI(u ≤ a ≤ τ)

]
dQ(a, v̂) + op(1). (E.34)

We next examine Ũ2. To do so, we first derive the asymptotic result of

√
n
{
ζ̂ (x̂, z)− ζ (x̃RC, z)

}
.

Since µ̂X∗ = µX + op(1) and Σ̂X∗ = ΣX∗ + op(1), we obtain that X̂i = X̃RC,i + op(1) by the
Law of Large Numbers. Hence,

−Λ̂0(u) exp(z>βz0)x̂>η + Λ∗0(u) exp(z>βz0)x̃>RCη

= −
{

Λ̂0(u)− Λ∗0(u)
}

exp
(
z>βz0

)
x̃>RCη + op(1)

=
−1

n

n∑
i=1

∫ τ

0

 dNi(u)

G̃(0)(u, η, βz0)
−
dN (u) exp

(
z>i βz0

)
x∗i
>ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2


×
(
η>Σεη

)
exp

(
z>βz0

)
x̃>RCη + op(1), (E.35)

where the last equality is due to the expression of Λ̂0(u)− Λ∗0(u) in (E.29).

Applying the Taylor expansion to exp
{
−Λ̂0(u) exp

(
z>βz0

)
x̃>RCη

}
with respect to Λ0(·)
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yields

exp
{
−Λ̂0(u) exp

(
z>βz0

)
x̃>RCη

}
− exp

{
−Λ∗0(u) exp

(
z>βz0

)
x̃>RCη

}
= − exp

{
−Λ∗0(u) exp

(
z>βz0

)
x̃>RCη

}{
Λ̂0(u)− Λ∗0(u)

}
exp

(
z>βz0

)
x̃>RCη + op

(
1√
n

)
= exp

{
−Λ∗0(u) exp

(
z>βz0

)
x̃>RCη

}
× 1

n

n∑
i=1

∫ τ

0

 dNi(u)

G̃(0)(u, η, βz0)
−
dN (u) exp

(
z>i βz0

)
x∗i
>ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

(η>Σεη
)

× exp
(
z>βz0

)
x̃>RCη + op

(
1√
n

)
= S(u, η, βz0|x̃RC, z)

× 1

n

n∑
i=1

∫ τ

0

 dNi(u)

G̃(0)(u, η, βz0)
−
dN (u) exp

(
z>i βz0

)
x∗i
>ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

(η>Σεη
)

× exp
(
z>βz0

)
x̃>RCη + op

(
1√
n

)
, (E.36)

where the second equality is due to (E.35), and

S(u, η, βz0|x̃RC, z) = exp
{
−Λ∗0(u) exp

(
z>βz0

)
x̃>RCη

}
.

Finally, using (E.24) and (E.25) in combination with (E.14) and (E.36), we obtain that

√
n
{
ζ̂(x̂, z)− ζ(x̃RC, z)

}
=

1√
n

n∑
i=1

ψi(η, βz0|x̃RC, z) + op (1) , (E.37)

where

ψi(η, βz0|x̃RC, z)

=

∫ τ

0

∫ τ

0

h(ξ)S(ξ, η, βz0|x̃RC, z)

{
dNi(u)

G̃(0)(u, η, βz0)

−
dN (u) exp

(
z>i βz0

)
x∗i
>ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2

× (η>Σεη
)

exp
(
z>βz0

)
x̃>RCηdξ.
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Then by (E.28) and similar to the derivations of (E.31), we obtain that

Ũ2 =
−1√
n

n∑
j=1

{
1

ζ̂(x̂j, zj)

∂ζ̂(x̂j, zj)

∂β
− 1

ζ(x̃RC,j, zj)

∂ζ(x̃RC,j, zj)

∂β

}

= −
√
n× 1

n

n∑
j=1

{
1

ζ̂(x̂j, zj)

∂ζ̂(x̂j, zj)

∂β
− 1

ζ(x̃RC,j, zj)

∂ζ(x̃RC,j, zj)

∂β

}

= −
√
n

∫ ∞
−∞

∫ τ

0

{
1

ζ̂(x̂, z)

∂ζ̂(x̂, z)

∂β
− 1

ζ(x̃RC, z)

∂ζ(x̃RC, z)

∂β

}
dQ(a, v̂) + op(1). (E.38)

To sort out a sum of i.i.d. random functions from (E.38), we add and subtract the term
1

ζ(x̃RC,z)
∂ζ̂(x̂,z)
∂β

and then regroup the differences, yielding

Ũ2 = −
√
n

∫ ∞
−∞

∫ τ

0

{
1

ζ̂(x̂, z)

∂ζ̂(x̂, z)

∂β
− 1

ζ(x̃RC, z)

∂ζ̂(x̂, z)

∂β
+

1

ζ(x̃RC, z)

∂ζ̂(x̂, z)

∂β

− 1

ζ(x̃RC, z)

∂ζ(x̃RC, z)

∂β

}
dQ(a, v̂) + op(1)

= −
√
n

∫ ∞
−∞

∫ τ

0

[
1

ζ(x̃RC, z)

{
∂ζ̂(x̂, z)

∂β
− ∂ζ(x̃RC, z)

∂β

}

−∂ζ̂(x̂, z)

∂β

{
ζ̂(x̂, z)− ζ(x̃RC, z)

ζ̂(x̂, z)ζ(x̃RC, z)

}]
dQ(a, v̂) + op(1)

= − 1√
n

n∑
i=1

[∫ ∞
−∞

∫ τ

0

{
1

ζ(x̃RC, z)

∂

∂β
ψi(η, βz0|x̃RC, z)

−∂ζ(x̃RC, z)

∂β

1

ζ2(x̃RC, z)
ψi(η, βz0|x̃RC, z)

}]
dQ(a, v̂) + op(1), (E.39)

where the second equality is due to ζ̂ (x̂, z) = ζ (x̃RC, z) + op(1), and the last step is due to
(E.37).

Combining (E.27), (E.34) and (E.39) gives

1√
n
ŨM (η, βz0) =

1√
n

n∑
i=1

Ψ2i + op(1), (E.40)
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where

Ψ2i = −

∫ ∞
−∞

∫ τ

0

∂

∂β

 dNi(u)

G̃(0)(u, η, βz0)
−
dN (u) exp

(
z>i βz

)
x∗i
>ηI(ai ≤ u ≤ yi){

G̃(0)(u, η, βz0)
}2


× (η>Σεη) exp

(
z>βz

)
x̃>RCηI(u ≤ a ≤ τ)

]
dQ(a, v̂)

−
[∫ ∞
−∞

∫ τ

0

{
1

ζ (x̃RC, z)

∂

∂β
ψi(η, βz0|x̃RC, z)

−∂ζ (x̃RC, z)

∂β

1

ζ2 (x̃RC, z)
ψi(η, βz0|x̃RC, z)

}
dQ(a, v̂)

]
− ∂

∂β
Λ∗0(ai) exp

(
z>i βz

)
x̃>RC,iη −

1

ζ (x̃RC,i, zi)

∂

∂β
ζ (x̃RC,i, zi) . (E.41)

Therefore, using (E.19), (E.20), (E.22) and (E.40) and applying the Central Limit Theorem,
we obtain that as n→∞,

1√
n
U

(
η√
n
, βz0

)
d−→ N (0,B) , (E.42)

where B = E(Ψ⊗2
i ) with Ψi = Ψ1i + Ψ2i, and Ψ1i and Ψ2i are given by (E.23) and (E.41),

respectively.

Finally, applying Slutsky’s Theorem in combination with (E.9), (E.16) and (E.42), we
obtain that as n→∞,

√
n

(
β̂x

β̂x − βz0

)
d−→ N

((
η
0

)
,A−1BA−1

)
.

Proof of (b):

We first re-scale (E.7), which gives

1√
n
U (0, βz0) =

1√
n
U

(
η√
n
, βz0

)
− 1

n

∂U (0, βz0)

∂β>

(
η
0

)
+ op (1) . (E.43)

Combining (E.16), (E.42) and (E.43) and applying Slutsky’s Theorem, we obtain that as
n→∞,

1√
n
U (0, βz0)

d−→ N

(
A
(
η
0

)
,B
)
. (E.44)
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Now we consider any candidate model S. Applying the Taylor expansion to US(β̂x,S, β̂z,S)
around (0, βz0) gives

0 = US

(
β̂x,S, β̂z,S

)
= US (0, βz0) +

∂US (0, βz0)

∂β>

(
β̂x,S

β̂z,S − βz0

)
+ op

(
1√
n

)
,

yielding that

√
n

(
β̂x,S

β̂z,S − βz0

)
= −

(
1

n

∂US (0, βz0)

∂β>

)−1
1√
n
US (0, βz0) + op (1)

= −
(

1

n

∂US (0, βz0)

∂β>

)−1
1√
n

ΠSU (0, βz0) + op (1)

d−→ A−1
S ΠSN

(
A
(
η
0

)
,B
)

as n→∞,

where the second identity is from Lemma 6.3.2 and the third step is due to (E.44). Thus,

√
n

(
β̂x,S

β̂z,S − βz0

)
d−→ N

(
A−1
S ΠSA

(
η
0

)
,A−1

S BSA
−1
S

)
as n→∞,

where BS = ΠSBΠ>S . �

E.2.4 Proof of Theorem 6.3.2

The proof consists of the following three steps.
Step 1:

For a given candidate model S, by (6.9), we have

√
n
{

Λ̂0,S(t)− Λ0(t)
}

=
√
n


∫ t

0

1
n

n∑
i=1

dNi(u)

m−1
S (β̂x,S)G

(0)
S

(
u, β̂x,S, β̂z,S

) − Λ0(t)

 = A+B,

where

A =
√
n


∫ t

0

1
n

n∑
i=1

dNi(u)

m−1
S (β̂x,S)G

(0)
S

(
u, β̂x,S, β̂z,S

) − ∫ t

0

1
n

n∑
i=1

dNi(u)

m−1( η√
n
)G(0)

(
u, η√

n
, βz0

)
 (E.45)
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and

B =
√
n


∫ t

0

1
n

n∑
i=1

dNi(u)

m−1( η√
n
)G(0)

(
u, η√

n
, βz0

) − Λ0(t)

 .

Step 2:

We first examine A. Applying the Taylor expansion to
mS(β̂x,S)

G
(0)
S (u,β̂x,S ,β̂z,S)

and
m( η√

n
)

G(0)
(
u, η√

n
,βz0

) ,

respectively, around (0, βz0), we have

mS(β̂x,S)

G
(0)
S

(
u, β̂x,S, β̂z,S

)
=

1

G
(0)
S (u, 0, βz0)

− 1{
G

(0)
S (u, 0, βz0)

}2

(
G

(1)
x,S (u, 0, βz0)

G
(1)
z,S (u, 0, βz0)

)>(
β̂x,S

β̂z,S − βz0

)

+op

(
1√
n

)
(E.46)

and

m( η√
n
)

G(0)
(
u, η√

n
, βz0

) =
1

G(0) (u, 0, βz0)
− G

(1)
x (u, 0, βz0)

{G(0) (u, 0, βz0)}2

η√
n

+ op

(
1√
n

)
, (E.47)

where

G
(1)
x,S(u, βx,S, βz,S) =

∂

∂βx,S
G

(0)
S (u, βx,S, βz,S)

and

G
(1)
z,S(u, βx,S, βz,S) =

∂

∂βz,S
G

(0)
S (u, βx,S, βz,S).

Since (E.4) with j = 0 gives G
(0)
S (u, 0, βz0) = G(0) (u, 0, βz0), so we combine (E.46) and
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(E.47) and obtain that

mS(β̂x,S)

G
(0)
S

(
u, β̂x,S, β̂z,S

) − m( η√
n
)

G(0)
(
u, η√

n
, βz0

)
=

−1{
G

(0)
S (u, 0, βz0)

}2

(
G

(1)
x,S (u, 0, βz0)

G
(1)
z,S (u, 0, βz0)

)>(
β̂x,S

β̂z,S − βz0

)

+
G

(1)
x (u, 0, βz0)

{G(0) (u, 0, βz0)}2

η√
n

+ op

(
1√
n

)
.

Hence, applying (E.45) gives that

A = −
∫ t

0

1
n

n∑
i=1

dNi(u){
G

(0)
S (u, 0, βz0)

}2

(
G

(1)
x,S (u, 0, βz0)

G
(1)
z,S (u, 0, βz0)

)>
√
n

(
β̂x,S

β̂z,S − βz0

)

+

∫ t

0

1
n

n∑
i=1

dNi(u)G
(1)
x (u, 0, βz0)

{G(0) (u, 0, βz0)}2 η + op(1). (E.48)

Now we examine the terms in (E.48) separately. Since {Yi(t) : t ∈ [0, τ ]} and {Ni(t) :
t ∈ [0, τ ]} are Glivenko-Cantelli class (van der Vaart and Wellner 1996, Theorems 2.4.1
and 2.7.5), then we have as that n→∞,

1

n

n∑
i=1

dNi(t)
a.s.−→ E {dNi(t)} ,

and

G
(k)
S (t, 0, βz0)

a.s.−→ G(k)
S (t, 0, βz0) for k = 0, 1

uniformly at t, where G
(0)
S (·) and G

(1)
S (·) are given by (6.10) and (E.1), respectively, and

G(k)
S (u, βx, βz) = E

{(
πSX

∗

Z

)⊗k
exp((πSX

∗)>βx + Z>βz)I(A ≤ u ≤ Y )

}
.
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Therefore, as n→∞,

∫ t

0

1
n

n∑
i=1

dNi(u){
G

(0)
S (u, 0, βz0)

}2

(
G

(1)
x,S (u, 0, βz0)

G
(1)
z,S (u, 0, βz0)

)>
a.s.−→

(
Fx,S(t)
Fz(t)

)>
(E.49)

uniformly at t, where

Fx,S(t) =

∫ t

0

E(dNi(u))G(1)
x,S (u, 0, βz0){

G(0)
S (u, 0, βz0)

}2

and

Fz(t) =

∫ t

0

E(dNi(u))G(1)
z (u, 0, βz0)

{G(0) (u, 0, βz0)}2 .

Regarding the term
√
n

(
β̂x,S

β̂z,S − βz0

)
in (E.48), we apply Theorem 6.3.1 (b) and

let WS be a random vector whose distribution is the same as the limiting distribution of

√
n

(
β̂x,S

β̂z,S − βz0

)
, i.e.,

√
n

(
β̂x,S

β̂z,S − βz0

)
d−→ WS as n→∞. (E.50)

Then applying Slutsky’s Theorem to (E.48) in combination with (E.49) and (E.50), we
have that as n→∞,

A
d−→ −

(
Fx,S(t)
Fz(t)

)>
WS + Fx(t)

>η. (E.51)

Step 3:

Finally, we examine the asymptotic behavior of B. Noting that exp
(
η>Σεη
n

)
= η>Σεη

n
+

O(1) and 1
n

= o
(

1√
n

)
, by the arguments similar to Appendix A.4 of Lin et al. (2000), we
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have

B =
√
n

∫ t

0


m( η√

n
) 1
n

n∑
i=1

dNi(u)

G(0)
(
u, η√

n
, βz0

) − dΛ0(u)


=
√
n

∫ t

0


η>Σεη√

n
1
n

n∑
i=1

dNi(u)

1√
n
G̃(0) (u, η, βz0)

− dΛ0(u)

+ op(1)

=
√
n

∫ t

0


η>Σεη

1
n

n∑
i=1

dNi(u)

G̃(0) (u, η, βz0)
− dΛ0(u)

+ op(1)

=
1√
n

∫ t

0


n∑
i=1

η>ΣεηdNi(u)−
n∑
i=1

Yi(u) exp
(
z>i βz0

)
(x∗i
>η)dΛ0(t)

G̃(0) (u, η, βz0)

+ op(1)

=
1√
n

∫ t

0


n∑
i=1

{
η>ΣεηdNi(u)− Yi(u) exp

(
z>i βz0

)
(x∗i
>η)dΛ0(u)

}
G̃(0) (u, η, βz0)

+ op(1)

=
1√
n

n∑
i=1

∫ t

0

{
η>ΣεηdNi(u)− Yi(u) exp

(
z>i βz0

)
(x∗i
>η)dΛ0(u)

G̃(0) (u, η, βz0)

}
+ op(1)

,
1√
n

n∑
i=1

Φi(t) + op(1),

where the second equality is due to (E.17) and m( η√
n
) = η>Σεη√

n
+O(1), the fourth equality

is due to (E.18), and the fifth equality is due to (E.33).

By (E.32) and (E.33), E

(
1
n

n∑
i=1

Φi(t)

)
= 0. Then by Condition (C3), the Φi(t) are i.i.d.

with mean zero, and hence, by the Central Limit Theorem, we conclude that

B
d−→ V(t) as n→∞, (E.52)
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where V(t) is the Gaussian process with mean zero and covariance function E {Φi(t)Φi(s)}.
Finally, combining (E.51) and (E.52) gives that as n→∞,

√
n
(

Λ̂0,S(t)− Λ0(t)
)

d−→ V(t)−
(
Fx,S(t)
Fz(t)

)>
WS + Fx(t)

>η,

which completes the proof. �

E.2.5 Proof of Theorem 6.3.3

For ease of exposition, we simply write ∂µ(0,βz0)
∂βx,S

and ∂µ(0,βz0)
∂βz,S

as ∂µ
∂βx,S

and ∂µ
∂βz,S

, respectively.

Proof of (a):
The proof consists of the following two steps.
Step 1:

Let

(
J
M

)
be a random vector whose distribution is N (0,B), where J is a p × 1

random vector and M is a q × 1 random vector. Define

(
JS
M

)
= ΠS

(
J
M

)
. Then(

JS
M

)
is a random vector whose distribution is N (0,BS). Let

WS =

(
CS
DS

)
= A−1

S

{
ΠSA

(
η
0

)
+

(
JS
M

)}
(E.53)

be a random vector whose distribution is the asymptotic distribution of
√
n

(
β̂x,S

β̂z,S − βz0

)
,

where CS and DS, respectively, have the distribution identical to the asymptotic distribu-
tions of

√
nβ̂x,S and

√
n(β̂z,S − βz0).

Furthermore, we express A as

A =

(
Axx Axz
Azx Azz

)
by making the block matrices Axx, Axz, Azx and Azz be of dimensions p× p, p× q, q × p
and q × q, respectively. Similarly, the inverse matrix of A, AS and A−1

S are expressed as

A−1 =

(
Axx Axz

Azx Azz

)
,

(
AxxS AxzS
AzxS AzzS

)
and

(
AxxS AxzS

AzxS AzzS

)
, respectively.

332



Consequently, by (E.53), we write

CS =
(
AxxSπSAxx + AxzSAzx

)
η + AxxSJS + AxzSM (E.54)

and

DS =
(
AzxSπSAxx + AzzSAzx

)
η + AzxSπSJ + AzzSM.

To continue the proof, we need the following lemma.

Lemma E.2.1 Under regularity conditions in Appendix E.1, we have

AS = ΠSAΠ>S ,

where A and AS are the asymptotic covariances matrices in Theorem 6.3.1.

By Lemma E.2.1, we have

AxxS =
(
AxxS − AxzSA−1

zzSAzxS
)−1

=
(
πSAxxπ

>
S − πSAxzA−1

zz Azxπ
>
S

)−1

=
{
πS
(
Axx − AxzA−1

zz Azx
)
π>S
}−1

=
{
πS(Axx)−1π>S

}−1
(E.55)

and

AxzS = −AxxSAxzSA−1
zzS

= −AxxSAxzSA−1
zzS. (E.56)

Then combining (E.54), (E.55) and (E.56) gives

CS =
(
AxxSπSAxx − AxxSAxzSA−1

zzSAzx
)
η + AxxSJS − AxxSAxzSA−1

zzSM

= AxxSπS
(
Axx − AxzA−1

zzSAzx
)
η + AxxSJS − AxxSAxzSA−1

zzSM

= AxxSπS(Axx)−1η + AxxSπSJ − AxxSπSAxzA−1
zzM

= AxxSπS(Axx)−1
(
η + AxxJ − AxxAxzA−1

zzM
)

, AxxSπS(Axx)−1 (η +W) , (E.57)

where the third equality is due to JS = πSJ and Axx = (Axx − AxzA−1
zz Azx)

−1
,

W = AxxJ − AxxAxzA−1
zzM, (E.58)
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and (Axx)−1 stands for the inverse of matrix Axx.

Similarly,

AzzS =
{
Azz − Azxπ>S

(
πSAxxπ

>
S

)−1
πSAxz

}−1

=
(
Azz − AzxA−1

xxAxz
)−1

= Azz, (E.59)

and

AzxS = −AzzSAzxSA−1
xxS

= −AzzAzxπ>SA−1
xxS. (E.60)

Thus, using (E.59) and (E.60), and direct calculations give

DS = A−1
zz Azx

{
Ip×p − π>SAxxSπS (Axx)−1} η + A−1

zzM − A−1
zz Azxπ

>
S

(
πSAxxπ

>
S

)−1
πSJ

+A−1
zz Azxπ

>
S (AxxS)−1 πSAxzA

−1
zzM

= A−1
zz Azx

[
Ip×p − (Axx)1/2(Axx)−1/2π>S

{
πS(Axx)−1π>S

}−1
πS(Axx)−1/2(Axx)−1/2

]
η

+A−1
zzM − A−1

zz Azxπ
>
S

{
πS(Axx)−1π>S

}−1
πS
(
J − AxzA−1

zzM
)

= A−1
zz Azx

[
Ip×p − (Axx)1/2(Axx)−1/2π>S

{
πS(Axx)−1π>S

}−1
πS(Axx)−1/2(Axx)−1/2

]
η

+A−1
zzM −

[
A−1
zz Azx(A

xx)1/2(Axx)−1/2π>S
{
πS(Axx)−1π>S

}−1

×πS(Axx)−1/2(Axx)−1/2
{
AxxJ − AxxAxzA−1

zzM
}]

, A−1
zz Azx

{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η + A−1

zzM

−A−1
zz Azx(A

xx)1/2HS(Axx)−1/2W , (E.61)

where the second equality is due to (E.55), and

HS = (Axx)−1/2π>S
{
πS(Axx)−1π>S

}−1
πS(Axx)−1/2.

Step 2:

Applying the Taylor expansion to µ̂S and µtrue around (0, βz0), respectively, gives

µ̂S − µ (0, βz0) =

(
∂µ

∂βx,S

)>
β̂x,S +

(
∂µ

∂βz,S

)> (
β̂z,S − βz0

)
+ op

(
1√
n

)
, (E.62)
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and

µtrue − µ (0, βz0) =

(
∂µ

∂βx

)>
η√
n

+ op

(
1√
n

)
. (E.63)

Combining (E.62) and (E.63) gives

√
n (µ̂S − µtrue)

=

(
∂µ

∂βx,S

)>√
nβ̂x,S +

(
∂µ

∂βz,S

)>√
n(β̂z,S − βz0)−

(
∂µ

∂βx

)>
η + op (1)

d−→
(

∂µ

∂βx,S

)>
CS +

(
∂µ

∂βz,S

)>
DS −

(
∂µ

∂βx

)>
η as n→∞. (E.64)

Then plugging in expressions (E.57) and (E.61) to (E.64) and applying ∂µ
∂βx,S

= πS
∂µ
∂βx

and
∂µ
∂βz,S

= ∂µ
∂βz

yield that as n→∞,

√
n (µ̂S − µtrue)

d−→
(

∂µ

∂βx,S

)>
CS +

(
∂µ

∂βz,S

)>
DS −

(
∂µ

∂βx

)>
η

=

(
πS

∂µ

∂βx

)>
CS +

(
∂µ

∂βz

)>
DS −

(
∂µ

∂βx

)>
η

=

(
πS

∂µ

∂βx

)>
AxxSπS(Axx)−1 (η +W)

+

(
∂µ

∂βz

)>
A−1
zz Azx

{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η +

(
∂µ

∂βz

)>
A−1
zzM

−
(
∂µ

∂βz

)>
A−1
zz Azx(A

xx)1/2HS(Axx)−1/2W −
(
∂µ

∂βx

)>
η

=

(
∂µ

∂βx

)> {
(Axx)1/2HS(Axx)−1/2

}
(η +W)

+

(
∂µ

∂βz

)>
A−1
zz Azx

{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η +

(
∂µ

∂βz

)>
A−1
zzM

−
(
∂µ

∂βz

)>
A−1
zz Azx(A

xx)1/2HS(Axx)−1/2W −
(
∂µ

∂βx

)>
η. (E.65)
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where (E.57) and (E.61) are used in the third equality, and the last equality is obtained by
using the formulation of HS. Then combining common terms together, the last expression
of (E.65) can be re-written as(

∂µ

∂βz

)>
A−1
zzM −

(
∂µ

∂βx

)> {
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η

+

(
∂µ

∂βz

)>
A−1
zz Azx

{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η

+

(
∂µ

∂βx

)> {
(Axx)1/2HS(Axx)−1/2

}
W

−
(
∂µ

∂βz

)>
A−1
zz Azx

{
(Axx)1/2HS(Axx)−1/2

}
W

=

(
∂µ

∂βz

)>
A−1
zzM

+

(
∂µ

∂βx
− A>zxA−1

zz

∂µ

∂βz

)> [{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
η

−
{
Ip×p − (Axx)1/2HS(Axx)−1/2

}
W
]

,

(
∂µ

∂βz

)>
A−1
zzM + ω>

{
η − (Axx)1/2HS(Axx)−1/2U

}
,

where ω = ∂µ
∂βx
− A>zxA−1

zz
∂µ
∂βz

and U = η +W , which completes the proof.

Proof of (b):

The proof for (b) is similar to that of (a); the only difference is to include Λ0(·) and its
estimator in the derivations, and we view Λ0(·) as a parameter in the same way as we do
for βx and βz in (a). In this case, the Taylor expansion becomes

µ̂S − µtrue =

(
∂µ

∂βx,S

)>
β̂x,S +

(
∂µ

∂βz,S

)> (
β̂z,S − βz0

)
(E.66)

+
∂µ

∂Λ0

(
Λ̂0,S − Λ0

)
−
(
∂µ

∂βx

)>
η√
n

+ op

(
1√
n

)
.

Multiplying
√
n on both sides and plugging in the results of Theorems 6.3.1 and 6.3.2
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to (E.66) give that as n→∞,
√
n (µ̂S − µtrue)

d−→
(

∂µ

∂βx,S

)>
CS +

(
∂µ

∂βz,S

)>
DS

+
∂µ

∂Λ0

[
V(t)− {Fx,S(t)}>CS − {Fz(t)}>DS + {Fx(t)}> η

]
−
(
∂µ

∂βx

)>
η

=
∂µ

∂Λ0

V(t) +

{
∂µ

∂βx,S
− ∂µ

∂Λ0

Fx,S(t)

}>
CS +

{
∂µ

∂βz
− ∂µ

∂Λ0

Fz(t)

}>
DS

−
{
∂µ

∂βx
+

∂µ

∂Λ0

Fx(t)

}>
η.

Similar to the proof of (a), we derive that as n→∞,

√
n (µ̂S − µtrue)

d−→ ∂µ

∂Λ0

V(t) +

{
∂µ

∂βz
− ∂µ

∂Λ0

Fz(t)

}>
A−1
zzM

+ (ω + κ)>
{
η − (Axx)1/2HS(Axx)−1/2U

}
,

where ω = ∂µ
∂βx
− A>zxA

−1
zz

∂µ
∂βz

and κ = ∂µ
∂Λ0

Fx(t) − A>zxA
−1
zz

∂µ
∂Λ0

Fz(t), which completes the
proof.

�

E.2.6 Proof of Theorem 6.3.4

Proof of (a):

Recall that µ̂ave =
∑
S∈S

w(S|η̂)µ̂S with weights w(S|η̂) satisfying conditions in Sec-

tion 6.3.4. Since η̂ =
√
nβ̂x, then by Theorem 6.3.1 (a), we have that as n→∞,

η̂ =
√
nβ̂x,full

= (Ip×p, 0)
√
n

(
β̂x,full

β̂z,full − βz0

)
d−→ (Ip×p, 0)

{(
η
0

)
+A−1

(
J
M

)}
= η +W
= U . (E.67)
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Therefore, let w(S|U) denote the weight to which w(S|η̂) converges.

Then by the result of Theorem 6.3.3 (a) and (E.67), we have that as n→∞,

√
n (µ̂ave − µtrue) =

∑
S∈S

w(S|η̂)
{√

n (µ̂S − µtrue)
}

d−→
∑
S∈S

w(S|U)

[(
∂µ

∂βz

)>
A−1
zzM + ω>

{
U − (Axx)1/2HS(Axx)−1/2U

}]

=

(
∂µ

∂βz

)>
A−1
zzM + ω>

{
U −

∑
S∈S

w(S|U)(Axx)1/2HS(Axx)−1/2U

}
.

Proof of (b):

Similar to (a), using µ̂ave =
∑
S∈S

w(S|η̂)µ̂S with
∑
S∈S

w(S|η̂) = 1 and applying Theo-

rem 6.3.3 (b) give that as n→∞,

√
n (µ̂ave − µtrue) =

∑
S∈S

w(S|η̂)
{√

n (µ̂S − µtrue)
}

d−→
∑
S∈S

w(S|U)

[
∂µ

∂Λ0

V(t) +

{
∂µ

∂βz
+

∂µ

∂Λ0

Fz(t)

}>
A−1
zzM

+ (ω + κ)>
{
U − (Axx)1/2HS(Axx)−1/2U

}]
=

∂µ

∂Λ0

V(t) +

{
∂µ

∂βz
+

∂µ

∂Λ0

Fz(t)

}>
A−1
zzM

+ (ω + κ)>
{
U −

∑
S∈S

w(S|U)(Axx)1/2HS(Axx)−1/2U

}
.

Therefore, the proof of Theorem 6.3.4 is completed. �

E.2.7 Proof of Lemma 6.3.3

By an argument similar to (E.56), we have Axz = −AxxAxzA−1
zz , or equivalently,

(Axx)−1Axz = −AxzA−1
zz .
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We re-write (E.58) as

W = AxxJ − AxxAxzA−1
zzM

= Axx
(
J − AxzA−1

zzM
)

= Axx
{
J + (Axx)−1AxzM

}
. (E.68)

Write B as the block matrix

(
Bxx Bxz

Bzx Bzz

)
where Bxx, Bxz, Bzx and Bzz of dimensions

p × p, p × q, q × p and q × q, respectively. Noting that A−1 is a symmetric matrix, then
(Axx)> = Axx, (Axz)> = Azx, (Azx)> = Axz and (Azz)> = Azz. From (E.68), the variance
of W can be expressed as

var (W) = Axxvar
{
J + (Axx)−1AxzM

}
Axx

= Axxvar (J)Axx + Axx(Axx)−1Axzvar (M)Azx(Axx)−1Axx

+Axxcov
{
J, (Axx)−1AxzM

}
Axx + Axxcov

{
(Axx)−1AxzM,J

}
Axx

= AxxBxxA
xx + AxzBzzA

zx

+AxxBxzA
zx(Axx)−1Axx + Axx(Axx)−1AxzBzxA

xx

= AxxBxxA
xx + AxzBzzA

zx + AxzBzxA
xx + AxxBxzA

zx.

On the other hand, directly calculations give

A−1BA−1 =

(
Axx Axz

Azx Azz

)(
Bxx Bxz

Bzx Bzz

)(
Axx Axz

Azx Azz

)
=

(
AxxBxx + AxzBzx AxxBxz + AxzBzz

Azx Azz

)(
Axx Axz

Azx Azz

)
leading to the upper left block matrix σxx = AxxBxxA

xx + AxzBzxA
xx + AxxBxzA

zx +
AxzBzzA

zx, which is var (W); the proof is then completed. �
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