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Abstract

Every potential benefit of quantum computers would be lost without methods to protect
the computations from error. Quantum channels provide a framework for understanding
error in quantum systems. In general, for a system of size d, a quantum channel may require
as many as ∼ d4 parameters to characterize it. We introduce the leading Kraus approxi-
mation, a simplification which reduces the number of parameters to ∼ d2, while accurately
approximating two figures of merit important to the experimentalist: the unitarity and av-
erage process fidelity. Additionally, applying the leading Kraus approximation declutters
investigations into the set of quantum channels. When applied, a natural decomposition of
channels arises, separating behaviour into coherent and decoherent contributions. We find
that eliminating the coherent contribution provides the greatest increase to the fidelity,
while decoherent processes provide a generalization of depolarizing channels.
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Chapter 1

Introduction

1.1 Introduction

Given a pair of six-sided dice, there is an obvious probabilistic algorithm available for
approaching any problem whose solution lies between 2 and 12. Unfortunately, this protocol
is not much use to us if, in computing 3 + 4, we roll our dice and receive 10. Though there
is an extended capacity to our dice — we have access to 10 more solutions than if each
die stored only one number — we also extend our space of erroneous solutions. Such a
probabilistic computing scheme necessitates research into devising algorithms which will
produce correct outcomes with as high a likelihood as possible.

This trade-off between capacity and uncertainty characterizes the difference between
probabilistic and deterministic classical computing schemes. Quantum mechanics, inher-
ently non-deterministic, gives rise to a form of computing in which probabilities serve in key
roles. Quantum computing can, at first pass, be viewed as similar to classical probabilistic
computing. However, quantum computations seek to manipulate a subtler resource than
classical probabilistic computing has access to: the amplitudes of quantum states; those
complex parameters whose lengths correspond to the probabilities of classical computing,
and whose directions are hidden from classical control. Quantum algorithms labour to tune
these amplitudes appropriately [30, 25] while quantum error correction seeks to repair them
[2, 10].

In the background, ever present, noise threatens to try its hand at amplitude manip-
ulation; decohering states and ruining computations. We can investigate noise processes
through the mathematics of quantum channels. These maps may rely on ∼ d4 para-
maters, where d is the dimension of our system (which, in turn, is typically of the form
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d = 2N , where N is the number of qubits). Quickly then, analyses of these channels re-
quire of us massive resources. This work investigates a method of simplifying the study
of quantum channels, reducing the number of required parameters to ∼ d2. Our proposed
leading Kraus approximation will be shown (under modest assumptions) to closely
approximate several figures of merit of quantum channels which are of importance to the
experimentalist.

The remainder of this chapter is dedicated to reviewing some preliminaries from the
field of quantum computing. Chapter 2 presents the mathematical formulation of quan-
tum channels, several of their representations, and two quantities which can be used to
investigate the channels, viz. the fidelity and unitarity. In chapter 3 we develop the lead-
ing Kraus approximation and explore its capabilities and consequences. We conclude by
outlining future directions that the leading Kraus approximation can take us in, and in
particular, consider how the leading Kraus approximation can be utilized in combination
with known protocols to extend their capabilities.

1.2 Quantum States and Operators

The main player on the stage of quantum mechanics is the quantum state — that object
which captures the condition of a given quantum system. The worlds of these quantum
characters are known as Hilbert Spaces — vector spaces endowed with inner products,
and closed under the limit of Cauchy sequences of their elements. We will denote Hilbert
spaces by H and the states within by |ψ〉 ∈ H. The vector space structure of Hilbert spaces
gives us closure under linear combinations of states:

α |ψ〉+ β |φ〉 ∈ H , ∀α, β ∈ C , ∀ |ψ〉 , |φ〉 ∈ H. (1.1)

The inner product on our space will be denoted with bra-ket notation: 〈ψ|φ〉 ≡ 〈|ψ〉 , |φ〉〉.

The vector space structure also allows us to form bases, {|xi〉}, in which we can expand
any given state: |y〉 =

∑
i αi |xi〉. We can always choose an orthonormal basis, in which

〈xi|xj〉 = δij =

{
1, if i = j

0, if i 6= j
. (1.2)

The coefficients in expansions of quantum mechanical states,
∑

i αi |ψi〉, are known as am-
plitudes. We impose a particular restriction on our quantum states: 〈ψ|ψ〉 =

∑
i |αi|2 = 1.
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Physically, we interpret the |αi|2’s as probabilities that we associate with the correspond-
ing states, |xi〉. The normalization condition on our states then simply assures that our
probabilities sum to 1.

We also will concern ourselves with manipulations of our quantum states. Such ma-
nipulations will be linear maps from H → H, called quantum operators. In particular,
those manipulations which are physical should send normalized states to normalized states.
We require of any quantum operator, A : H → H,

〈ψ|A†A|ψ〉 = 〈ψ|ψ〉 , ∀ |ψ〉 ∈ H. (1.3)

We will denote an n-dimensional Hilbert space by Hn. One of the most useful results
for the study of Hilbert spaces, is that any finite dimensional Hilbert space, Hn, may
be represented by an n-dimensional complex vector space, V n, with the states in Hn

corresponding to vectors in V n. Given a finite-dimensional Hilbert space, Hn, we pick
an ordered orthonormal basis, {|xi〉}ni=1. We then map each element of the basis to a
corresponding elementary vector in V n: |xi〉 → ei, where the elementary vectors are
given by:

e1 ≡


1
0
...
0

 , e2 ≡


0
1
...
0

 , . . . , en ≡


0
0
...
1

 . (1.4)

We can then map any state in the Hilbert space to a corresponding vector in an n-
dimensional complex vector space, by extending the mapping linearly:

|ψ〉 =
∑
i

αi |xi〉 →
∑
i

αiei (1.5)

If we represent |ψ〉 by a vector, ψ ∈ Cn, then the dual vector, 〈ψ|, is represented by ψ†,
where † denotes the conjugate transpose. This is consistent with the notion of the inner
product:

〈ψ|φ〉 → ψ†φ. (1.6)

Similarly, we can represent linear operators T : Hn → Hm by m× n matrices,
MT : Cn → Cm, whose components are determined by

〈xi|T |xj〉 → eTi (MT )ej. (1.7)
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We will only be considering finite dimensional spaces in what follows. Because of
this, we will transfer our attention from considering the more abstract ideas of states and
operators, to the concrete forms of vectors and matrices. For ease of notation, we shall
denote vectors in our complex vector space with the bra-ket notation of the states. In
particular, the elementary vectors will be denoted as ei ≡ |i〉. The set {|i〉}ni=1, for an
n-dimensional complex vector space, is called the canonical basis. We will often write
the outer-product of canonical basis elements as elementary matrices: Eij ≡ |i〉 〈j|. We
will denote the space of d× d complex matrices as Md(C).

Note: We can use the canonical basis to acquire the columns and elements of a matrix,
A:

• A |i〉 is the ith column of the matrix, A, written, |ai〉.

• 〈i|A|j〉 is the i-jth element of A (ith row, jth column), written, aij. If we wish to be
more explicit, we will write (A)ij, instead.

Due to the importance that vectors and matrices play in what follows, we shall review
some important results of linear algebra in the remainder of this chapter.

1.3 Matrices

Let {|xi〉} be any orthonormal basis. We can express the identity matrix through these
vectors as:

I =
∑
i

|xi〉 〈xi| . (1.8)

We can show that the above relation holds, as follows: Since {|xi〉} is an orthonormal basis,
we can write any vector in terms of it: |y〉 =

∑
i yi |xi〉. And so

(
∑
i

|xi〉 〈xi|) |y〉 =
∑
i,j

yj |xi〉 〈xi|xj〉 =
∑
j

yj |xj〉 = |y〉 ∀ |y〉 . (1.9)

It is thus the identity transformation. In fact the reverse holds as well:
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Theorem 1.3.1
Let {|xi〉} be a set of normalized vectors. Then

I =
∑
i

|xi〉 〈xi| (1.10)

iff {|xi〉} is an orthonormal basis.

Proof. We have already shown one direction. On the other hand, if we have a set of
normalized vectors, {|xi〉}, such that I =

∑
i |xi〉 〈xi|, then

1 = 〈xj|xj〉 = 〈xj|I|xj〉 = 〈xj|xj〉2 +
∑
i 6=j

|〈xi|xj〉|2. (1.11)

So
0 =

∑
i 6=j

|〈xi|xj〉|2. (1.12)

So each inner product must be 0. Thus {|xi〉} will be an orthonormal set. We can write
any vector in terms of this set, using

|y〉 = I |y〉 =
∑
i

|xi〉 〈xi|yi〉 ≡
∑
i

αi |xi〉 . (1.13)

So the set spans the space. Finally, if there exist some coefficients, αi such that
∑

i αi |xi〉 =
0, we have

〈xj|
∑
i

αi |xi〉 = αj = 〈xj| 0 = 0, ∀j. (1.14)

So all of the coefficients are 0. Thus the vectors in the set are linearly independent. Taking
all of these results together, {|xi〉} forms a basis. �

Equation 1.10 can be used to make a number of proofs very clean, by inserting it into
different locations. We can see some examples of this, looking at the idea of the trace of a
matrix:

Definition 1 (Trace)
The trace of a matrix, A, is defined to be

Tr(A) =
∑
i

〈i|A|i〉 ∈ C, (1.15)

where {|i〉} is the canonical basis.
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The following properties of the trace can be quickly proven:

1. Tr(A |y〉 〈x|) = 〈x|A|y〉

Proof.

Tr(A |y〉 〈x|) =
∑
i

〈i|A|y〉 〈x|i〉 = 〈x|
∑
i

|i〉 〈i|A|y〉 = 〈x|A|y〉

. �

2. Tr(AB) = Tr(BA)

Proof.

Tr(AB) =
∑
i

〈i|AB|i〉 =
∑
ij

〈i|A|j〉 〈j|B|i〉 =
∑
ij

〈j|B|i〉 〈i|A|j〉

=
∑
j

〈j|BA|j〉 = Tr(BA).

�

3. Tr(
∑

i αiAi) =
∑

i αiTr(Ai)

Proof.

Tr(
∑
i

αiAi) =
∑
j

〈j|
∑
i

αiAi|j〉 =
∑
i

αi
∑
j

〈j|Ai|j〉 =
∑
i

αiTr(Ai).

�

Now let {|φi〉} be any orthonormal basis of vectors.∑
i

〈φi|A|φi〉 = Tr(
∑
i

A |φi〉 〈φi|)

= Tr(AI)

= Tr(A).

(1.16)

Thus the trace is basis independent. We should note that the trace of a matrix is also
equal to the sum of its eigenvalues: Tr(A) =

∑
i λA,i.

We point out three types of matrices which are of particular interest to us.
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Definition 2 (3 Types of Matrices)
A matrix, H, such that H† = H is called Hermitian.
A matrix, U , such that UU † = U †U = I is called unitary.
A matrix, A, such that A†A = AA† is called normal.

Note: Both unitary and Hermitian matrices are also normal matrices.

Unitary matrices correspond to the operations through which we manipulate our states.
Consider equation 1.3. Taking |ψ〉 = |m〉 + i |n〉, where |m〉 6= |n〉 are elementary vectors,
we have

(〈m| − i 〈n|)A†A(|m〉+ i |n〉) = (〈m| − i 〈n|)(|m〉+ i |n〉) = 2. (1.17)

But this is also equal to

〈m|A†A|m〉+ 〈n|A†A|n〉+ i( 〈m|A†A|n〉 − 〈n|A†A|m〉)
= 〈m|m〉+ 〈n|n〉+ i( 〈m|A†A|n〉 − 〈n|A†A|m〉)
= 2 + i( 〈m|A†A|n〉 − 〈n|A†A|m〉).

(1.18)

Thus 〈m|A†A|n〉 = 〈n|A†A|m〉. But

2 = (〈m|+ 〈n|)A†A(|m〉+ |n〉) = 2 + 〈m|A†A|n〉+ 〈n|A†A|m〉 . (1.19)

So 〈m|A†A|n〉 = −〈n|A†A|m〉. Thus the off-diagonal terms of A†A are 0. And of course
the diagonal terms are 〈m|A†A|m〉 = 1. So A†A = I. This, in turn, implies AA† = I, since
A†A = I implies det(A) det

(
A†
)

= det(I) = 1. So det(A) 6= 0. Thus A has an inverse and
so

A(A†A) = A =⇒ AA†AA−1 = AA† = I. (1.20)

On the other hand, unitary matrices will preserve the norms of all vectors: 〈x|U †U |x〉 =
〈x|I|x〉 = 〈x|x〉. Thus the manipulations we perform on our states are precisely the
unitary operations. We tend to call these unitary manipulations quantum gates when
we intentionally apply them in a quantum computing scheme. However, they can also
be applied unintentionally, by noise. These noisy processes will occupy our attention in
chapters 2 and 3.

Normal matrices are, equivalently, those matrices which can be unitarily diagonalized.
For this reason, normal matrices are also known as unitarily diagonalizable matrices.
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Theorem 1.3.2 (Spectral Theorem)
A matrix, A, is normal iff it can be written in the form

A = UDU †, (1.21)

with D, a diagonal matrix whose diagonal entries are equal to the eigenvalues of A,
and U , a unitary matrix with columns equal to the corresponding eigenvectors.

On the other hand, for any unitary, U , and diagonal matrix, D, UDU † has eigen-
values equal to the diagonal elements of D, and eigenvectors equal to the columns of
U .

We can alternatively write the spectral decomposition using the eigenvalues and eigenvec-
tors of A:

A =
∑
ij

U |i〉 〈i|D|j〉 〈j|U † =
∑
i

λi |ûi〉 〈ûi| . (1.22)

Note: We write |û〉 to signify that the columns of the unitary matrix are normalized. In
fact, the columns of a unitary matrix are orthonormal:

〈ûi|ûj〉 = 〈i|UU †|j〉 = δij. (1.23)

Furthermore, by taking D = I, we have

I = UIU † =
∑
i

|ûi〉 〈ûi| . (1.24)

Thus from theorem 1.3.1, we know that the columns of U (the eigenvectors of A) form an
orthonormal basis.

The spectral decomposition is a very useful tool in linear algebraic investigations. Un-
fortunately, not every matrix is normal. To get around this, for any matrix, A, we can
consider the Hermitian matrices AA† and A†A. Performing the spectral decomposition on
these matrices gives us

AA† = UD1U
†

A†A = V D2V
†.

(1.25)

It can be shown that the eigenvalues of AA† and A†A are the same. The two decompositions
in equation 1.25 can be “pulled apart” to perform a decomposition of A called the singular
value decomposition:
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Theorem 1.3.3 (Singular Value Decomposition)
Let A be an n×m matrix. There exist unitary matrices, U (n× n), V (m×m), and
a rectangular diagonal matrix, Σ, such that

A = UΣV †. (1.26)

The diagonal elements of Σ are the singular values of A. The set of the singular
values of A is denoted σ(A) ≡ {σi}. For any A, we have

σi ∈ R≥0 , ∀i. (1.27)

Since A†A = V ΣU †UΣTV † = V ΣΣTV † and ΣΣT is diagonal, with non-zero entries
equal to the diagonal entries of Σ, squared, by theorem 1.3.2 the singular values of A are
the positive square roots of the eigenvalues of A†A. This leads us to the idea of the square
root of a matrix.

Definition 3 (Square Root of a Matrix)
Given a diagonal matrix, D, we define the (positive) square root of D to be a diagonal
matrix, whose entries are the (positive) square roots of the entries of D:

D =

d1

. . .

dn

→ √D =


√
d1

. . . √
dn

 . (1.28)

More generally, given a normal matrix, A, with spectral decomposition A = UDU †, we
define its square root to be: √

A = U
√
DU †. (1.29)

Thus the eigenvalues of
√
A†A are the singular values of A. We give this matrix a

special notation:

Definition 4
Given a matrix, A, the absolute value of that matrix is

|A| ≡
√
A†A. (1.30)

We see that for any Hermitian matrix, H = UDU †, we have |H| =
√
H2 = U

√
D2U †,

and so the singular values are the absolute values of the eigenvalues (noting that the
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eigenvalues of a Hermitian matrix are real, since λ = 〈x|H|x〉 = 〈x|H†|x〉 = 〈x|H|x〉∗ =
λ∗, using normalized eigenvector, |x〉). For any Hermitian matrix whose eigenvalues are all
non-negative, the singular values and eigenvalues match.

Definition 5 (Positive Semi-Definite Matrix)
A matrix is called positive semi-definite (PSD) if it is Hermitian and all of its eigen-
values are non-negative. We denote this by A ≥ 0.

For any A, |A| is PSD. If A is PSD, then |A| = A. The absolute value has one other
major appearance that we will be interested in — the polar decomposition:

Theorem 1.3.4 (Polar Decomposition of a Matrix)
Every matrix, A, can be written as

A = UP, (1.31)

where U is a unitary matrix, and P = |A| is PSD.

This breakdown of matrices is similar to the polar decomposition of complex numbers:
z = |z|eiφ. Such a decomposition allows us to separate two kinds of behaviour of complex
numbers – angular and radial. We will return to this idea in chapter 3, when we develop a
polar decomposition of quantum channels, separating coherent and decoherent behaviour.

Up until now, we have focused on viewing quantum states as vectors, |ψ〉. It is often
more useful to view them as matrices, as it elevates us into a new regime, wherein we
develop the faculties to tackle new questions.

1.4 Density Matrices

In physical applications, there is always a level of uncertainty as to which state our system
is in. Perhaps we had meant to prepare our system in an initial state, |ψ〉, but due
to inaccuraries in the experimental setup, we had some probability, p2 of preparing the
system in the state |φ〉. We would express the state of our system as a density matrix:

ρ = (1− p2) |ψ〉 〈ψ|+ p2 |φ〉 〈φ| . (1.32)

In fact, we define density matrices to be of this form:
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Definition 6 (Density Matrix)
A density matrix is any matrix of the form

ρ = p1 |ψ1〉 〈ψ1|+ . . .+ pm |ψm〉 〈ψm| , (1.33)

where m ∈ Z, {|ψi〉} are quantum states, and {pi} are probabilities: i.e. pi ∈ R≥0, ∀i and∑
i pi = 1.

Since the pi in the above definition are real, and (|ψ〉 〈ψ|)† = |ψ〉 〈ψ|, ∀ |ψ〉, it imme-
diately follows that all density matrices are Hermitian: ρ† = ρ. Furthermore, we can see
that Tr(ρ) =

∑
i pi 〈ψi|ψi〉 =

∑
i pi = 1, since states are normalized. Finally, consider any

eigenvalue, λ, of a density matrix, with normalized eigenvector |x〉. We have

λ = 〈x|ρ|x〉
= 〈x|(p1 |ψ1〉 〈ψ1|+ . . .+ pm |ψm〉 〈ψm|)|x〉

=
∑
i

pi|〈x|ψi〉|2

≥ 0.

(1.34)

So every eigenvalue of a density matrix is non-negative. Thus density matrix are positive
semi-definite (since they are Hermitian). Density matrices are sometimes defined by the
above three properties:

1. ρ† = ρ.

2. Tr(ρ) = 1.

3. λi ≥ 0, ∀i.

Any matrix which satisfies these properties can be spectrally decomposed, and so would
be of the form

ρ =
∑
i

λi |xi〉 〈xi| , (1.35)

where
∑

i λi = Tr(ρ) = 1, and {|xi〉} are orthonormal, giving us something satisfying
definition 6. So we see that the formulations are equivalent.

In both the spectral decomposition and definition 6, density matrices have the form∑
i pi |ψi〉 〈ψi|. The only difference is whether or not the {|ψi〉} are orthonormal. For the
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sake of ease, whenever we want to expand a density matrix in terms of state vectors, we
will use the spectral decomposition.

Density matrices in which all of the probabilities are 0 except for one – ρ = |ψ〉 〈ψ| –
are called pure states. The general form of a density matrix, à la equation 1.33, is called
a mixed state. We might suspect that at the opposite end of the spectrum from a pure
state, is one in which all events have equal probability. Recalling that a sum over any
orthonormal basis brings us to the identity, we arrive at

ρ =
∑
i

1

d
|ψi〉 〈ψi| =

1

d
I. (1.36)

This is known as a maximally mixed state. Recall that we can manipulate quantum
states through operators: U |ψ〉. The appropriate promotion of this concept to the density
matrix formalism is unitary conjugation: UρU † =

∑
i piU |ψi〉 〈ψi|U †. In the next chapter

we will develop a method for expressing the idea that there can be uncertainty in which
operation we are performing on a state, as well. Just as density matrices encapsulate
the idea of not being certain as to which pure state a quantum mechanical system is in,
quantum channels will make rigorous the idea of being unsure as to which operation we
are applying to our quantum system.

1.5 Tensor Product

Another way to elevate the quantum franchise we have developed thus far is to introduce
a way to stitch different quantum systems together. If we have two quantum systems, HA

and HB, we can study them independently, but we would also like a way to allow them to
interact. What we grab is the tensor product, HA ⊗ HB. A common way that tensor
products appear in quantum computing is in the coupling of the environment to a system
of interest: the Hilbert space of the total system would be Henvironment ⊗Hsystem.

The elements of a tensor space are of the form
∑

ij aij |xi〉 ⊗ |yj〉, where |xi〉 ∈ HA and
|yj〉 ∈ HB ∀i, j. We can also form tensor products of matrix spaces: Md1(C)⊗Md2(C). If
the eigenvalues of the matrices A and B are {λA,i}mi=1 and {λB,j}nj=1, with corresponding
eigenvectors {|xA,i〉}, and {|xB,j〉}, the eigenvalues of the tensor product, A ⊗ B, are
{λA,i λB,j}i=m,j=ni=1,j=1 , with eigenvectors {|xA,i〉 ⊗ |xB,j〉}.

Viewing eigenvalues as probabilities and states as events, it follows that λA,i λB,j de-
scribes the probability of event |xA,i〉⊗|xB,j〉. Then ρA⊗ρB must describe two independent
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random variables. Or, from the perspective of quantum physics, two independent (non-
interacting) quantum states (since the probabilities factor). In general, elements of the
tensor space will be of the form

∑
ijkl aijklEij ⊗ Ekl, and thus will describe interacting

systems.

We list a quick result about tensor products before moving on. Using the fact that the
eigenvalues of A⊗B, are {λA,i λB,j}, we have

Tr(A⊗B) =
∑
ij

λA,i λB,j

=
∑
i

λA,i
∑
j

λB,j

= Tr(A)Tr(B).

(1.37)

We can also define the partial trace of a tensor product:

Definition 7 (Partial Trace)
Given a tensor product, A1 ⊗ . . .⊗ An, the i-th partial trace is

Tri(A1 ⊗ . . .⊗ An) = Tr(Ai)A1 ⊗ . . .⊗ Ai−1 ⊗ Ai+1 ⊗ . . .⊗ An. (1.38)

We quickly make note of the rules of tensor manipulations:

α(|x〉 ⊗ |y〉) = (α |x〉)⊗ |y〉 = |x〉 ⊗ (α |y〉). (1.39a)

(A⊗B)(|x〉 ⊗ |y〉) = A |x〉 ⊗B |y〉 . (1.39b)

α(A⊗B) = (αA)⊗B = A⊗ (αB). (1.39c)

A⊗ (B + C) = A⊗B + A⊗ C. (1.39d)

(A+B)⊗ C = A⊗ C +B ⊗ C (1.39e)

(A⊗B)(C ⊗D) = AC ⊗BD. (1.39f)

(A⊗B)† = A† ⊗B†. (1.39g)

For all α ∈ C, |xi〉 ∈ Hd1 and |yj〉 ∈ Hd2 , and matrices A,B,C in the appropriate Mn(C).
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1.6 Vectorization

We shall find as we move forward, that we can get a lot of mileage out of the idea of
transforming a matrix into a vector, by stacking its columns one on top of the other:

(
a b
c d

)
→


a
c
b
d

 . (1.40)

We formalize this with the following definition.

Definition 8 (Vectorization)
Write a given matrix, A, in terms of the canonical basis: A =

∑
ij aij |i〉 〈j|. Then the

vectorization of this matrix is:

|A〉 =
∑
ij

aij |j〉 ⊗ |i〉 . (1.41)

In particular, |i〉 〈j| → |j〉 ⊗ |i〉. Given a outer product of vectors, |x〉 〈y| we have:

|x〉 〈y| =
∑
ij

xiyj |i〉 〈j|

Vectorize→
∑
ij

xiyj |j〉 ⊗ |i〉

=
∑
j

yj |j〉 ⊗
∑
i

xi |i〉

= |y〉 ⊗ |x〉 .

(1.42)

With the above relation and the following two lemmas, we shall be able to take the vec-
torization of any matrix, with ease.

Lemma 1.6.1
Vectorization is a linear map.

Proof.

|αA+ βB〉 =
∑
ij

(αA+ βB)ij |j〉 ⊗ |i〉

=
∑
ij

α(A)ij |j〉 ⊗ |i〉+
∑
ij

β(B)ij |j〉 ⊗ |i〉

= α |A〉+ β |B〉 .

(1.43)
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Lemma 1.6.2
Given three matrices, A,B,C, the vectorization of the product, ABC, is

|ABC〉 = (CT ⊗ A) |B〉 . (1.44)

Proof.

|ABC〉 =
∑
i

∑
j

(ABC)ij |j〉 ⊗ |i〉

=
∑
ijkl

〈i|A |k〉 〈k|B |l〉 〈l|C |j〉 |j〉 ⊗ |i〉

=
∑
ijkl

〈k|B |l〉 |j〉 〈j|CT |l〉 ⊗ |i〉 〈i|A |k〉

=
∑
kl

BklC
T |l〉 ⊗ A |k〉

= (CT ⊗ A) |B〉

(1.45)

�

Recall that the concept of normalization for density matrices (Tr(ρ) = 1) differs from
that of states (〈ψ|ψ〉 = 1). In transforming from a matrix to a vector, we may find that
we need to renormalize:

A→ 1√
〈A|A〉

|A〉 . (1.46)

For instance, taking the maximally mixed state,

1

d
I =

1

d

∑
i

|i〉 〈i| , (1.47)

and performing vectorization, leads to an un-normalized state, as 〈I/d|I/d〉 = 1/d 6= 1.
The properly normalized state,

1√
d
|I〉 =

1√
d

∑
i

|i〉 ⊗ |i〉 , (1.48)
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is known as a maximally entangled state. It will come into play in chapter 2.

Translating from matrices to vectors also reveals a natural inner product on the space
of matrices:

〈A|B〉 =
∑
ijkl

a∗ijbkl(〈j| ⊗ 〈i|)(|l〉 ⊗ |k〉)

=
∑
ij

a∗ijbij =
∑
ij

〈j|A† |i〉 〈i|B |j〉

= Tr(A†B).

(1.49)

We call Tr(A†B) the Hilbert-Schmidt inner product of A and B. This inner product
provides us a simple way of formulating orthonormal bases of matrices, which will be useful
in the next chapter. We define the Frobenius norm to be ‖A‖F ≡

√
〈A|A〉.
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Chapter 2

Quantum Channels

2.1 Theoretical Framework

In chapter 1, we considered manipulations of quantum states: A |x〉. We imposed the
restriction 〈x|A†A|x〉 = 〈x|x〉 ∀ |x〉, and arrived at the set of unitary matrices. We then
promoted states to density matrices, to allow us to consider uncertainty in our states. The
action of unitary matrices became conjugation, and we found that we could manipulate
our states as UρU †. However, the set of maps which preserve density matrices contains
much more than just these conjugations. The general maps we will be concerned with are
called quantum channels, and they will allow us to expand our range of investigation.
We will be free to study situations in which we are not completely certain as to how our
states are being manipulated, and we will be afforded a perfect regime for studying noise.

The natural way to view quantum channels is as linear maps from the set of quantum
states to itself. It will turn out to be easier to extend our scope a bit, however, and
formulate channels as maps from the set of d × d complex matrices to itself, instead:
A : Md(C)→Md(C).

Recall, in section 1.4 we listed three properties defining density matrices. If we are to
preserve the set of quantum states by our channels, then those defining properties must be
preserved. This leads to the following constraints:

1. Trace preservation: Tr(A(ρ)) = Tr(ρ) ∀ρ ∈Md(C).

2. Positivity preservation: A(ρ) is positive semi-definite ∀ρ ≥ 0.
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The preservation of positivity turns out to not be a strong enough requirement for
quantum channels, when we consider physical implications. Consider a tensor space,
Menv(C) ⊗ Msys(C). It is completely possible for our channel to only act on Msys(C),
and leave the other subsystem alone: I ⊗ A. In such a situation, we should still map
density matrices to density matrices. Thus we make the following requirement:

Definition 9 (K-Positivity)
A map, A : Md(C)→Md(C), is called positive if A(M) ≥ 0,∀M ≥ 0.
Let Ik denote the k × k identity matrix. A is k-positive if Ik ⊗ A is positive. A map is
completely positive if it is k-positive ∀k.

By the physical argument above, all quantum channels must be completely positive.

Note: If we have a quantum channel on a tensor space, A : Menv(C) ⊗ Msys(C) →
Menv(C) ⊗ Msys(C), we can define a “reduced map” on one of the tensor factors, say
A|sys : Msys(C) → Msys(C), as follows: For any matrix, ρS ∈ Msys(C), there exists a
matrix, ρES ∈ Menv(C) ⊗Msys(C), such that Tr1(ρES) = ρS. In fact, such a ρES is not
unique: Eii ⊗ ρS works for any i, for example. We can define maps,

A|sys : Hsys → Hsys

A|sys(ρS) ≡ Tr1(A(ρES)), ∀ρS ∈ Hsys,
(2.1)

by selecting ρES for each ρS.

It is not at all assured that A|sys will be completely positive for a given choice of
ρES. Positive but not completely positive maps arise on these reduced systems when
sufficient correlations are present between the sytem and environment [5]. Such positive,
not completely positive, reduced maps can be considered physical manipulations on the
system, and are well worth studying. However, they are not considered quantum channels,
and we will not consider them here. By definition, quantum channels must be completely
positive.

Complete positivity implies 1-positivity, which means 1⊗A = A is a positive map. So
we can drop the positivity condition, in place of complete positivity.

Note: If A is trace preserving, then so is In ⊗A, ∀n. For if A =
∑

ijkl aijklEij ⊗ Ekl is a
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general state in Mn(C)⊗Md(C), then

Tr(In ⊗A(
∑
ijkl

aijklEij ⊗ Ekl)) = Tr(
∑
ijkl

aijklEij ⊗A(Ekl))

=
∑
ijkl

aijklTr(Eij)Tr(A(Ekl))

=
∑
ijkl

aijklTr(Eij)Tr(Ekl)

= Tr(A).

(2.2)

So there are no additional conditions required with respect to trace preservation, when
considering tensor spaces. Thus the appropriate set of conditions, defining the set of
quantum channels, is the following:

Definition 10 (Quantum Channels)
A quantum channel is a linear map, A : Md(C) → Md(C) that is completely positive
and trace preserving. Such maps are also called CPTP maps.

We can now begin to explore the set of quantum channels. Unfortunately, while the
CPTP condition is intuitive, it provides few footholds for investigation. By representing
our quantum channels by matrices, or sets of matrices, we will find them easier to study.

2.2 Representations of Quantum Channels

There are many ways of expressing quantum channels in terms of matrices. We shall review
three here, which will prove most useful to us: the Kraus representation, the Choi matrix,
and the Liouville representation.

2.2.1 Kraus representation

Perhaps the most common way of expressing the action of a quantum channel is through
the Kraus representation:
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Theorem 2.2.1 (Kraus Representation)
A map A : Md(C) → Md(C) is completely positive iff there exists a set of matrices
{Aj} (the Kraus operators of A) such that

A(ρ) =
∑
j

AjρA
†
j , ∀ρ ∈Md(C). (2.3)

Furthermore, A is trace preserving iff∑
j

A†jAj = I. (2.4)

Proof. See [27]. �

From trace preservation, quantum channels with only a single Kraus operator are uni-
tary conjugations, UρU †, in which the system is manipulated in a reversible fashion. The
actions of quantum channels with more than one Kraus operator are not completely re-
versible.

If A and B have Kraus operators {Ai} and {Bj} then the composition AB has Kraus
operators {AiBj}:

AB(ρ) = A(B(ρ)) =
∑
i

∑
j

AiBjρB
†
jA
†
i . (2.5)

This is a simple way of producing Kraus operators for compositions, but the size of the
set of Kraus operators it produces grows quickly. There is often a smaller set of Kraus
operators available (it can be shown that for any channel A : Md(C)→Md(C) there exists
a set of Kraus operators of size ≤ d2). The set of Kraus operators for a given quantum
channel is not unique — given a set of Kraus operators, {Aj}, for a channel, A, we can
create a new set of Kraus operators, describing the same channel, from an appropriate
linear combination of the {Aj}. On the other hand, every set of Kraus operators for the
channel A can be written in this way:
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Theorem 2.2.2 (Kraus Freedom)
Let {Ai}mi=1 and {Bi}nj=1 be sets of Kraus operators for quantum channels A and B,
respectively. Extend the smaller set with zero-matrices, so that the sets have the same
size. Then A = B iff there exists a max{m,n} ×max{m,n} unitary matrix, U , with
entries ujk, such that

Aj =
∑
k

ujkBk. (2.6)

Proof. See [27]. �

We see then that there is a degree of freedom available in our choice of Kraus operators.
In chapter 3, we will repeatedly use a particular choice of Kraus operators, known as the
canonical Kraus operators, for every quantum channel we encounter. In order to arrive
at these Kraus operators, we introduce the Choi matrix.

2.2.2 Choi Matrix

Definition 11 (Choi Matrix)
The Choi matrix of a quantum channel, A : Md(C)→Md(C), is defined to be the d2×d2

matrix,

iA ≡ I ⊗A(|I〉 〈I|) =
∑
ij

Eij ⊗A(Eij). (2.7)

It may not be obvious from the definition, but the Choi matrix does a fantastic job of
capturing all of the information about a quantum channel that we are interested in (and
more!). Consider the following theorem:

Theorem 2.2.3 (Choi Characterization)
Let A : Md(C)→Md(C) be a linear map. The Choi matrix, iA is positive semi-definite
iff A is completely positive, and Tr2(iA) = I iff A is trace preserving.

Proof. We prove the trace preservation part of the theorem and refer to [6] for the complete
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positivity.

Tr2(iA) =
∑
ij

Eij ⊗ Tr(A(Eij))

=
∑
ijkn

|i〉 〈j| 〈n|Ak |i〉 〈j|A†k |n〉

=
∑
ijkn

|i〉 〈i|ATk |n〉 〈n|A∗k |j〉 〈j|

= (
∑
k

A†kAk)
T

(2.8)

By theorem 2.2.1 A is trace preserving iff Tr2(iA)T =
∑

k A
†
kAk = I which is

iff Tr2(iA) = I. �

Since the Choi matrix is PSD for any quantum channel, we can perform a spectral
decomposition, iA =

∑
j λj |âj〉 〈âj|. If we unvectorize

√
λj |âj〉, we receive a d×d matrix,

Aj. It turns out that the set of matrices, {Aj}, is a set of Kraus operators for the channel
A [6]. These are known as the canonical Kraus operators for A. Taking the inner
product of the Kraus operators, we see

Tr(A†iAj) =
√
λiλj 〈âi|âj〉 = δij

√
λiλj. (2.9)

Thus the canonical Kraus operators are orthogonal and have squared norms equal to the
corresponding eigenvalue: Tr(A†iAi) = ‖Ai‖2

F = λi. Noting that Tr(iA) = Tr(I) = d,
we can interpret each λi/d as the probability of the i-th canonical Kraus operator being
applied.

2.2.3 Liouville Representation

While the Choi matrix captures many characteristics of quantum channels, and provides the
groundwork for the theory we develop in chapter 3, it fails at recognizing the composition of
channels in an intuitive way: iAiB 6= iAB. We would like to have a channel representation
which extends channel composition to matrix multiplication. This is the representation we
create here.

Let {Mi} be a basis of n×n matrices which is orthonormal under the Hilbert-Schmidt
inner product. For instance, we could take the set of elementary matrices, {Eij}:

〈Eij|Ekl〉 = Tr(E†ijEkl) = Tr(|j〉 〈i|k〉 〈l|) = δikδjl. (2.10)
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We will write our intended representation of the channelA, as A . It is called the Liouville
representation. We will define our representation through a very simple requirement:

A |M〉 = |A(M)〉 , ∀M ∈Md(C). (2.11)

With this requirement in place, it is easy to see that the product of the Liouville represen-
tations of two channels is just the representation of the composition of the channels:

A B =
∑
j

A B |Mj〉 〈Mj|

=
∑
j

A |B(Mj〉) 〈Mj|

=
∑
j

|AB(Mj)〉 〈Mj|

=
∑
j

AB |Mj〉 〈Mj|

= AB .

(2.12)

Where in the first and final line we used the fact that
∑

j |Mj〉 〈Mj| = I since {Mi} (and
thus {|Mi〉}) is an orthonormal basis.

Thus we arrive at a representation which neatly captures the action of quantum chan-
nels. If we enforce equation 2.11 on an orthonormal basis of matrices, we can extend
linearly so that 2.11 holds for all vectorized matrices.

If A |Mi〉 = |A(Mi)〉 for an orthonormal basis of matrices, {Mi}, then

A |ρ〉 = A

∣∣∣∣∣∑
i

piMi

〉
=
∑
i

pi A |Mi〉 =

∣∣∣∣∣∑
i

piA(Mi)

〉
= |A(ρ)〉 , ∀ρ. (2.13)

Assuming there exists a representation, A , such that 2.11 is satisfied for some orthonormal
basis of matrices, {Mi}, we would have:

A =
∑
i

A |Mi〉 〈Mi| =
∑
i

|A(Mi)〉 〈Mi| (2.14)

On the other hand, we can see that if we just take this equation to be the definition of the
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Liouville representation, then

A |M〉 =
∑
i

|A(Mi)〉 〈Mi|
∑
j

mj |Mj〉 =
∑
j

mj |A(Mj)〉

=

∣∣∣∣∣A(
∑
j

mjMj)

〉
= |A(M)〉 ∀M ∈Md(C).

(2.15)

Thus this is an appropriate definition.

Definition 12 (Liouville Representation of a Quantum Channel)
Let {Mi} be a basis of n × n matrices, orthonormal with respect to the Hilbert-Schmidt
inner product. The Liouville representation of a quantum channel, A, with respect to
this basis is:

A ≡
∑
i

|A(Mi)〉 〈Mi| . (2.16)

Note: This representation, f(A) = A , is well-defined, since if A = B then |A(Mj)〉 =

|B(Mj)〉 ∀j, so the representations will be the same. It is also injective, since if A = B ,
then by the defining property of the representation, equation 2.11,

|A(ρ)〉 = A |ρ〉 = B |ρ〉 = |B(ρ)〉
=⇒ A(ρ) = B(ρ), ∀ρ.

(2.17)

However, it is not surjective. Consider the vectorizations of the elementary matrices,
{|Eij〉}. They form an orthonormal basis, and so we can consider them in definition 12.

We can pluck out the first element of A with

〈E11| A |E11〉 = 〈E11|
∑
ij

|A(Eij)〉 〈Eij|E11〉

= 〈E11|A(E11)〉

= Tr(|1〉 〈1|
∑
k

Ak |1〉 〈1|A†k)

=
∑
k

| 〈1|Ak|1〉|2

(2.18)

Thus the first entry in A , with respect to the elementary basis, must be non-negative,
preventing surjectivity. Of course, this is just one choice of basis in definition 12. However,
we can show that the Liouville representation of any channel is independent of the basis
of matrices, {Mi}, that we pick:
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Let A M and A N be the representation of A with respect to two orthonormal bases,
{Mi} and {Ni}.

〈Eij| A M |Ekl〉 = 〈Eij|A(Ekl)〉 = 〈Eij| A N |Ekl〉 ,∀i, j, k, l. (2.19)

The vectorized elementary matrices pick out each element of the representations. So we
must have A M = A N . Because of this, we will consider the simplest orthonormal
basis — the elementary matrices — in order arrive at an explicit form for the Liouville
representation.

A =
∑
ij

|A(Eij)〉 〈Eij| =
∑
ijk

∣∣∣AkEijA†k〉 〈Eij|
=
∑
ijk

A∗k ⊗ Ak |Eij〉 〈Eij|

=
∑
ijk

A∗k ⊗ Ak |j〉 ⊗ |i〉 (〈j| ⊗ 〈i|)

=
∑
k

A∗k ⊗ Ak.

(2.20)

In the above equations, we picked some set of Kraus operators {Ak} for the quantum
channel, A. But the Liouville representation of a channel will also be independent of
whichever set of Kraus operators we choose to represent our channel, since by definition
12, the Liouville representation can be written purely in terms of the action of the channel.

Given a channel, A, with Kraus operators {Ai}, we define the conjugate channel,
A†, to have Kraus operators {A†i}. Then we see

A† =
∑
k

(A†k)
∗ ⊗ A†k = (

∑
k

A∗k ⊗ Ak)† = A
†
. (2.21)

We might be interested in what happens when we perform the Hilbert-Schmidt inner
product on the Liouville representation of channels:〈

A
∣∣∣ B 〉 = Tr( A

†
B ) =

∑
jk

Tr
(
(A∗j ⊗ Aj)†(B∗k ⊗Bk)

)
=
∑
jk

∣∣∣Tr
(
A†jBk

)∣∣∣2 (2.22)
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We can investigate this inner product from both the perspective of the Liouville representa-
tion and the Kraus representation. Moreover, if we write the vectorization of the Liouville
representation as: ∣∣∣ A 〉 =

∑
ij

|Eij〉 ⊗ |A(Eij)〉 (2.23)

there is a clear relationship to the Choi matrix. We have〈
A
∣∣∣ B 〉 =

∑
ijkl

〈Eij|Ekl〉 〈A(Eij)|B(Ekl)〉

=
∑
ijkl

Tr(E†ijEkl ⊗A(Eij)
†B(Ekl))

= 〈iA|iB〉 .

(2.24)

So we see that this object, this inner product of quantum channel representations, appears,
regardless of which of the three representations we choose to use. It may then be something
worth investigating. We shall see that it will play a key role in what follows. We begin by
discussing its relationship to two figures of merit for quantum channels: the fidelity and
the unitarity.

2.3 Fidelity and Unitarity

In any given quantum computing algorithm, we expect to be able to perform specific
operations on our quantum states. In practice, there is always some probability that we
will perform an operation incorrectly, leading to an inappropriate state. We can measure
the level of accuracy in our quantum applications using the concept of the fidelity. Given
two pure states, |ψ〉 and |φ〉, the fidelity between the states is defined to be |〈ψ|φ〉|. The
fidelity provides us with information about how closely related two states are, and thus
can be used to measure the accuracy of our computations. The fidelity between two pure
states can be extended to a measure of fidelity between general states. However, we will
be more interested in pursuing a notion of fidelity related to quantum channels. One way
of comparing quantum channels is by comparing their outputs upon acting on the same
input state. This leads to the concept of M-fidelities.

Definition 13 (M-Fidelity)
Let A and B be quantum channels. For any M ∈Md(C), the M-fidelity is

fM(A,B) =
〈A(M)|B(M)〉
||M ||22

. (2.25)
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Obviously, monitoring the action of channels on a single matrix won’t provide us with
a well-rounded picture. It makes more sense to study the M-fidelities over a collection of
matrices. Consider any basis of matrices, {Mi}, orthonormal under the Hilbert-Schmidt
inner product. As we have seen, the vectorization of these matrices then becomes an
orthonormal basis of vectors. And so, averaging over this collection, we have

E(fMi
(A,B)) =

∑
i

1

d2
fMi

(A,B) =
1

d2

∑
i

〈A(Mi)|B(Mi)〉
||Mi||22

=
1

d2

∑
i

〈Mi| A
†
B |Mi〉

=
1

d2
Tr( A

†
B )

=
1

d2
〈iA|iB〉 .

(2.26)

This average — this weighted overlap between Choi matrices — is related to the entan-
glement fidelity, originally studied by Schumacher [29]:

Fe(A, |ψEN〉) ≡ 〈ψEN |I ⊗A(|ψEN〉 〈ψEN |)|ψEN〉 . (2.27)

where |ψEN〉 is an entangled state.

This quantity was later considered by Nielsen, restricting to the case where |ψEN〉 =
|I〉 /
√
d (the maximally entangled state) [26]:

Fe(A) ≡ 1

d
〈I|I ⊗A(

1

d
|I〉 〈I|)|I〉 =

1

d2
〈I|iA|I〉

=
1

d2
Tr(iA |I〉 〈I|)

=
1

d2
〈iA|iI〉 .

(2.28)

Though he considered only one particular entangled state, Nielsen referred to Fe(A) as the
entanglement fidelity of A. For our part, we will be considering (Nielsen) entanglement
fidelities of the form Fe(B†A).

Definition 14 (Entanglement Fidelity)
Let A and B be quantum channels. We define the entanglement fidelity between A
and B to be

Φ(A,B) ≡ Fe(B†A) =
1

d2
〈iA|iB〉 . (2.29)
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To see that the final equality holds in the above equation, note that

Fe(B†A) =
1

d2
〈I|I ⊗ B†A(|I〉 〈I|)|I〉

=
1

d2
〈I|I ⊗ B†(iA)|I〉

=
1

d2
Tr(I ⊗ B†(iA) |I〉 〈I|)

=
1

d2
Tr(
∑
k

(I ⊗B†k)iA(I ⊗Bk) |I〉 〈I|)

=
1

d2
Tr(iA

∑
k

(I ⊗Bk) |I〉 〈I| (I ⊗B†k)

=
1

d2
Tr(iAiB)

=
1

d2
〈iA|iB〉 ,

(2.30)

where, in the final line, we used the fact that Choi matrices of quantum channels are
positive semi-definite and thus Hermitian.

As we have expressed, there have been several definitions of entanglement fidelity over
the years. In this work, we will use the term “entanglement fidelity” to refer to the
two-variable function Φ(A,B) = (1/d2) 〈iA|iB〉, in definition 14. Since the entanglement
fidelity is a real number (equation 2.22), and the Hilbert-Schmidt inner product is conju-
gated under a swap of its elements, we have that the entanglement fidelity is symmetric in
its arguments:

Φ(A,B) = Φ(B,A). (2.31)

Also Φ(AB, C) = Tr( AB
†
C )/d2 = Tr( B

†
A
†
C )/d2. So

Φ(AB, C) = Φ(A, CB†) = Φ(B,A†C) = Φ(BC†,A†) = Φ(ABC†, I). (2.32)

It will prove useful to have a term available to describe one argument of the entanglement
fidelity, when the other is fixed.

Definition 15 (Target of a Channel)
Let A and B be quantum channels. In considering the entanglement fidelity, Φ(A,B), we
refer to B as the target of A (and vice-versa).
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If, as we’ve stated, we interpret unitary channels as ideally performed operations, and
channels with a larger number of Kraus operators as more noisy processess, then it follows
that we would be interested in finding a way to determine how “far away” a given channel
is from a unitary one. If we try to apply the gate U , but, due to uncertainty, apply a
channel A, then we consider the entanglement fidelity Φ(A,U). This quantity is related
to the average process fidelity (a common measure of fidelity for quantum channels),
as shown in [26], by:

F (A,U) =
dΦ(A,U) + 1

d+ 1
. (2.33)

The average process fidelity is a useful measure of a quantum process’ performance.
It can be estimated experimentally, using well-known techniques like randomized bench-
marking [11, 8, 19, 22, 23, 24] and direct fidelity estimation [15, 7]. Since it is completely
captured through the entanglement fidelity, our investigation of Φ(A,U) is not without its
practical benefits.

2.3.1 Unitarity

A second quantum process measure that we are interested in, is the entanglement fidelity
between a channel and itself: Φ(A,A) = Φ(A†A, I). In the case of a unitary channel, the
composition U †U = I = UU †. However, for more general channels, this does not hold.
Thus, determining how close the channel A†A is to the identity tells us something about
how reversible our operation is. It turns out that Φ(A,A) is related to the concept of the
unitarity of the channel, A, defined in [31]:

u(A) =
d2Φ(A,A)− 1

d2 − 1
, (2.34)

which, (as the name implies) is a measure of how close a given channel is to a unitary
one. Since Φ(A,A) only depends on A, for ease of notation we will usually write it as the
single-variable function, Υ(A) ≡ Φ(A,A).

Note: We will sometimes refer to Υ(A) as the unitarity of A and Φ(A,U) as the fidelity,
when no confusion will arise.
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2.4 Depolarizing Channels

Before moving on to the development of the leading Kraus approximation, we would like
to look at a particular class of quantum channels, known as depolarizing channels:

Dp(M) = pM + (1− p)Tr(M)I/d. (2.35)

In the next chapter, when we explore the concept of decoherent behaviour, at length,
depolarizing channels should always be in the back of our minds. In some sense, the
problem of defining decoherent behaviour is based on the idea of generalizing depolarizing
channels.

The Choi matrix of such a channel is

iD =
∑
ij

Eij ⊗ (pEij + (1− p)δijI/d)

= p |I〉 〈I|+ (1− p)
∑
i

Eii ⊗ I/d

= p |I〉 〈I|+ (1− p)
d

I ⊗ I.

(2.36)

Taking the inner product of Choi matrices, we have〈
iDp

∣∣iA〉 = Tr(iDpiA)

= Tr(p |I〉 〈I|iA +
(1− p)
d

iA)

= pTr(
∑
ijkl

EijEkl ⊗ EijA(Ekl)) + (1− p).

= p
∑
ij

Tr(EijA(Eji)) + (1− p)

= p
∑
ijk

〈j|Ak|j〉 〈i|A†k|i〉+ (1− p)

= p
∑
k

|Tr(Ak)|2 + (1− p).

(2.37)

Dividing by d2, we arrive at an expression for the entanglement fidelity: Φ(D,A) =
pΦ(A, I) + (1 − p)/d2. This is a neat result. The second term corresponds to a loss
of information: (1− p) is the probability that any state is mapped to I/d. It is interesting
that there actually is some amount of information that is preserved in this term; (1−p)/d2
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decreases quickly as the size of the system is increased (as more information is lost), but
it is non-zero. The information that is preserved comes from the trace-preservation of Dp
and A. This term is also independent of the target channel, A; trace preservation is the
best we can do to preserve/recover information from this term. On the other hand, the
first term does allow us recovery, and in fact we will recover the most information when
our target channel is the identity. In chapter 3, we will see that the largest fidelity for any
(wide sense equable) decoherent channel is approximately obtained with an identity target
channel.

We arrive at a fidelity of Φ(D, I) = p + (1 − p)/d2, and unitarity, Υ(D) = p2 + (1 −
p)(1 + p)/d2. We see that Φ(D, I) ≈ p ≈

√
Υ(D). A quadratic relationship appears

between the unitarity and fidelity. Interestingly, in a way, this relationship transcends
depolarizing channels. In chapter 3, we will see that any decoherent channel satisfying a
few conditions will have such a quadratic relationship between its fidelity and unitarity.
As a final result, consider a sequence of depolarizing channels, with depolarizing constants,
pi: Di(M) = piM + (1− pi)Tr(M)I/d.

D2D1(M) = D2(p1M + (1− p1)Tr(M)I/d)

= p2p1M + (1− p2)p1Tr(M)I/d+ p2(1− p1)Tr(M)I/d

+ (1− p1)(1− p2)Tr(M)I/d

= p2p1M + (p1 − p1p2 + p2 − p1p2 + 1− p1 − p2 + p1p2)Tr(M)I/d

= p2p1M + (1− p2p1)Tr(M)I/d.

(2.38)

Turtling down, we find

Dm . . .D1(M) =
∏
i

piM + (1−
∏
i

pi)Tr(M)I/d. (2.39)

Thus the product of a set of depolarization channels is a depolarization channel whose
depolarization constant is the product of those in the composition. And so we find a level
of structure in the set of depolarizing channels — closure under composition. In the final
section of chapter 3, we will extend this result to the closure of the set of decoherence-
limited channels. Furthermore, we find

Φ(Dm . . .D1, I) =
∏
i

pi +
1

d2
(1−

∏
i

pi) ≈
∏
i

pi ≈
∏
i

Φ(Di, I). (2.40)

We will see something very similar in theorem 3.6.2.
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Chapter 3

The Leading Kraus Approximation

We are now prepared to develop the leading Kraus approximation. Recall that given any
channel, A, the eigenvectors of the Choi matrix, iA, provide an orthonormal set of Kraus
operators. These canonical Kraus operators will be the only Kraus operators we shall use,
moving forward. And so from here on in, “Kraus operator” should be read “canonical
Kraus operator”, unless otherwise specified.

Definition 16 (Leading Kraus Approximation)
Given a channel, A, order the Kraus operators using the Frobenius norm:

‖A1‖F ≥ ‖A2‖F ≥ . . . ‖Ad2‖F ≥ 0. (3.1)

We call A1 the leading Kraus operator of A.
The leading Kraus approximation (LKA) of A is:

A◦(ρ) ≡ A1ρA
†
1 , ∀ρ ∈Md(C). (3.2)

Since we will be using the canonical Kraus operators, we can alternatively write equation
3.1 in terms of the eigenvalues of the Choi matrix, iA:

λA,1 ≥ λA,2 ≥ . . . ≥ λA,d2 . (3.3)

Note: The LKA is a completely positive channel, but it is trace preserving iff A is a
unitary channel. Thus performing the LKA will not preserve the physicality of most
channels. However, as we shall see, the leading Kraus operator closely describes the average
behaviour of the full channel.
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It is possible to construct channels in which the leading Kraus operator is not unique.
In what follows, we would like to be able to speak of the leading Kraus operator for
each channel. There is a simple condition which we can enforce, which will eliminate
the possibility of degeneracy in our leading Kraus operators. To arrive at the required
condition, we consider the entanglement fidelity, Φ(A,B). Expanding the Choi matrices
into their spectral decompositions, iA =

∑
j λA,j |âj〉 〈âj|, we have:

Φ(A,B) =
1

d2
Tr(iAiB)

=
1

d2
Tr(
∑
jk

λA,jλB,k

∣∣∣âj〉〈âj∣∣∣b̂k〉〈b̂k∣∣∣)
=

1

d2

∑
jk

λA,jλB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2.
(3.4)

We can then upper bound the entanglement fidelity by upper bounding each eigenvalue of
iA by λA,1:

Φ(A,B) =
1

d2

∑
jk

λA,jλB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2
≤ λA,1

d2

∑
jk

λB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2
=
λA,1
d2

∑
k

λB,k

〈
b̂k

∣∣∣b̂k〉
= λA,1/d.

(3.5)

In the third line we used the fact that the eigenvectors of the Choi matrix iA form an
orthonormal basis, and thus their outer-product sums to the identity.

Since the entanglement fidelity is symmetric, we also have Φ(A,B) ≤ λB,1/d. Thus
by enforcing Φ(A,B) > 1/2, we have λA,1, λB,1 > d/2. Knowing that the eigenvalues of
Choi matrices are non-negative and sum to d for quantum channels, we will have a unique
largest eigenvalue of the Choi matrices of both A and B (and thus unique leading Kraus
operators) if Φ(A,B) > 1/2.

So given a channel, A, all we need is for Φ(A,B) > 1/2 for some B. Later on in
this chapter, we will see that it will be useful for us to require the entanglement fidelity to
surpass 1/2 for two different channels —A and U — as this will allow us to draw conclusions
about the unitarity and fidelity, respectively. Before proceeding to those results, we present
a lemma which will be very useful in the proof of theorem 3.1.1.
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Lemma 3.0.1
Let {pi}ni=1 and {qi}ni=1 be probability distributions:∑

i

pi =
∑
i

qi = 1 ; pi, qi ≥ 0 , ∀i. (3.6)

If
∑

i piqi > 1/2 then {pi} and {qi} have unique largest elements, pmax and qmax, which
occur at the same index.

Proof. By symmetry, we can just frame everything in terms of {pi}. If pmax ≤ 1/2, we
have ∑

j

pjqj ≤ pmax

∑
j

qj = pmax ≤ 1/2. (3.7)

Thus for
∑

i piqi > 1/2 to occur, pmax > 1/2 and so there is a unique largest element of
{pi}. Wlog, say that p1 = pmax.

Let pmax = 1/2 + εp with 0 < εp ≤ 1/2. Assume qmax 6= q1. Then we must have
0 ≤ q1 ≤ 1/2. So we can write q1 = 1/2− εq with 0 ≤ εq ≤ 1/2. Then∑

j

pjqj = pmaxq1 +
∑
j 6=1

pjqj

≤ pmaxq1 + (
∑
j 6=1

pj)(
∑
j 6=1

qj)

= pmaxq1 + (1− pmax)(1− q1)

= 2pmaxq1 + 1− pmax − q1

= 2(1/4 + (1/2)εp − (1/2)εq − εpεq) + 1− 1/2− εp − 1/2 + εq

= 1/2− 2εpεq

≤ 1/2.

(3.8)

So by contradiction, the maximum terms of {pi} and {qi}must occur on the same index. �

Note: The form for the entanglement fidelity is Φ(A,B) = (1/d2)
∑

jk λA,jλB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2.

We also have ∑
j

λA,j
d

= 1. (3.9a)
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1

d

∑
j

∑
k

λB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2 =
1

d

∑
k

λB,k

〈
b̂k

∣∣∣∑
j

∣∣∣âj〉〈âj∣∣∣b̂k〉
=

1

d

∑
k

λB,k

〈
b̂k

∣∣∣b̂k〉
= 1.

(3.9b)

So the entanglement fidelity is the product of two probability distributions: {λA,i/d} and

{
∑

k λB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2/d}.
Note: We use the term “probability distribution”, quite liberally here, to refer to a set of
non-negative values that sum to one, even if those values do not necessarily correspond to
probabilities of particular events; much like the use of the term “probability” in “probability
vector”, which is just a vector of non-negative entries which sum to one. Of course, as we
have already established, the distribution {λA,i/d} can be thought of as the probabilities
of the corresponding canonical Kraus operators being applied in the action of the channel
A.

By the above lemma, as long as the entanglement fidelity is greater than 1/2, the largest

terms of the two distributions will have matching indices. And so
∑

k λB,k

∣∣∣〈â1

∣∣∣b̂k〉∣∣∣2 will

be the largest inner product term. This leads to

Φ(A,B) =
1

d2

∑
jk

λA,jλB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2
≤ 1

d2

∑
jk

λA,jλB,k

∣∣∣〈â1

∣∣∣b̂k〉∣∣∣2
=

1

d

∑
k

λB,k

∣∣∣〈â1

∣∣∣b̂k〉∣∣∣2,
(3.10)

which will be useful in proving the next theorem.
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3.1 Preliminary Results

Theorem 3.1.1
Let A and B be quantum channels with Φ(A,B) > 1/2. Then

0 ≤ Φ(A,B)− λA,1
d2
〈â1|iB|â1〉 ≤ (1−Υ(A))(1− Φ(A,B)). (3.11)

Or in terms of the Kraus operators,

0 ≤ Φ(A,B)−
∑
k

∣∣∣∣∣Tr(A†1Bk)

d

∣∣∣∣∣
2

≤ (1−Υ(A))(1− Φ(A,B)). (3.12)

Proof.

Φ(A,B)− λA,1
d2

∑
k

λB,k

∣∣∣〈â1

∣∣∣b̂k〉∣∣∣2 =
1

d2

∑
j 6=1

∑
k

λA,jλB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2
≤ 1

d2
(
∑
j 6=1

λA,j)(
∑
j 6=1

∑
k

λB,k

∣∣∣〈âj∣∣∣b̂k〉∣∣∣2)

= (1− λA,1
d

)(1− 1

d

∑
k

λB,k

∣∣∣〈â1

∣∣∣b̂k〉∣∣∣2)

≤ (1−Υ(A))(1− Φ(A,B)).

(3.13)

Where, in the last line, we used equations 3.5 and 3.10. �

Two results immediately follow, providing physical intuition for the above theorem,
restricting to the cases of the unitarity and average process fidelity.

Corollary 3.1.1
Let A be a quantum channel with Υ(A) > 1/2. Then

0 ≤ Υ(A)−
(
λA,1
d

)2

≤ (1−Υ(A))2 (3.14)

Proof. Using theorem 3.1.1 and the fact that

λA,1
d2
〈â1|iA|â1〉 =

λA,1
d2

∑
k

λA,k|〈â1|âk〉|2 = (
λA,1
d

)2
(3.15)
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Corollary 3.1.2
Let A and U be quantum channels with Φ(A,U) > 1/2. Then

0 ≤ Φ(A,U)− λA,1
d
|〈â1|û〉|2 ≤ (1−Υ(A))(1− Φ(A,U)). (3.16)

Proof. Recall that unitary channels only have a single Kraus operator. So iU must have
only one non-zero eigenvalue, which is equal to d. Thus,

λA,1
d2
〈â1|iU |â1〉 =

λA,1
d2

d|〈â1|û〉|2 =
λA,1
d
|〈â1|û〉|2. (3.17)

�

Note: As we continue through this chapter, we will find many upper bounds of the form
(1 − X)2 showing up in our results. In the literature, fidelities over 0.9 are typically
discussed [20, 14, 1]. As such, these upper bounds will be quite small, and the leading
Kraus operator will provide a good approximation for the quantities of interest.

We can see that with modest assumptions on our channel, the leading Kraus operator
will capture the majority of the unitarity and fidelity. We view the leading Kraus operator
as accounting for most of the average behaviour of our (non-catastrophic) channels, while
the other operators provide corrections. With our pair of corollaries as inspiration, we
define the class of channels that we will continue to work with for the remainder of this
chapter.

Definition 17 (Non-Catastrophic Channels)
A quantum channel, A, is called non-catastrophic if

Υ(A) > 1/2 (3.18a)

and
Φ(A,U) > 1/2, (3.18b)

for some U , called the target of A.

We next seek the behaviour of the leading Kraus approximation under compositions of
channels. Given a block of composed channels, A1A2 . . .An, if we take the leading Kraus
operator of each channel and compose them, A◦1A◦2 . . .A◦n, how much of the unitarity and
fidelity will be captured? What additional assumptions will we need to make about our
channels? This is the topic of the next section.
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3.2 Composition Results

Let us first introduce some notation to simplify the upcoming results:

Definition 18 (Composition Notation)
Let {Ai}mi=1 be a set of matrices. We define:

Am:1 ≡ AmAm−1 . . .A1 (3.19)

and
A◦m:1 ≡ A◦mA◦m−1 . . .A◦1. (3.20)

That is, A◦m:1 is the composition of the leading Kraus operators of A1, . . . ,Am, NOT the
leading Kraus operator of the composition.

If we are able to obtain results on the behaviour of leading Kraus operators, with re-
spect to compositions, we will be provided some understanding of the evolution of quantum
channels; viewing composition as discrete time evolution. Using theorem 3.1.1, we imme-
diately have results involving the leading Kraus operator of a composition. Unfortunately,
it is not immediately obvious, given information about the composed channels, what the
leading Kraus operator of the composition is. When a channel is composed with a uni-
tary channel, UA, the canonical Kraus operators will just be {UAi}, where {Ai} are the
canonical Kraus operators of A. This can be seen through:

iUA =
∑
ij

Eijk ⊗ UAkEijA†kU
†

= (I ⊗ U)iA(I ⊗ U)†.

(3.21)

Since I⊗U is unitary, iUA has the same eigenvalues as iA, with eigenvectors (I⊗U) |âi〉 =
|Uâi〉. Thus the canonical Kraus operators will be the unvectorized

√
λA,i |Uâi〉 : i.e.

{UAi}, with LKO, UA1.

Similarly,

iAU =
∑
k

(I ⊗ Ak)iU(I ⊗ Ak)†

=
∑
k

(I ⊗ Ak)d |û〉 〈û| (I ⊗ Ak)†

=
∑
k

d |Akû〉 〈Akû| ,

(3.22)
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where û = U/
√
d. Noting that 〈Aiû|Ajû〉 = Tr(UA†iAjU

†)/d = (λA,i/d)δij, we see that the
eigenvalues of iAU are λA,i, with normalized eigenvectors

|Aiû〉√
〈Aiû|Aiû〉

=

√
d√
λA,i
|Aiû〉 = |âiU〉 . (3.23)

So the canonical Kraus operators are {AiU}, with LKO, A1U .

In general, however, the leading Kraus operators of compositions of channels cannot be
easily found from the LKOs of the composed terms: (Am:1)◦ 6= A◦m:1. With a bit of work,
however, we can arrive at a pair of useful theorems.

Note: The proofs for the remaining results in this chapter are much more involved than
the ones we have thus far encountered. We shall state the remaining results without proof
(except for a quick result in theorem 3.2.1) and direct the reader to [3] for their derivations,
as we do not believe that we can provide any additional insight by presenting the proofs
here.

Theorem 3.2.1 (LKA - Composition Unitarity)
Consider m non-catastrophic channels, Ai, and suppose that Am:1 is also non-
catastrophic. Then

0 ≤ Υ(Am:1)−Υ(A◦m:1) ≤ (1−Υ(Am:1))2 ≤ (1−Υ(A◦m:1))2. (3.24)

Proof. The first and final inequality arise from the fact that each term in the sum
Υ(Am:1) =

∑
i1...im

|Tr(Am,im . . . A1,i1)|2/d2 is non-negative and Υ(A◦m:1) contains only one
of these terms.

�
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Theorem 3.2.2 (LKA - Composition Fidelity)
Consider m non-catastrophic channels Ai with respective unitary targets Ui and suppose
that the composition Am:1 is also non-catastrophic. Then,

0 ≤ Φ(Am:1,Um:1)− Φ(A◦m:1,Um:1) <
1

2

(
m∑
i=1

(1−Υ(A◦i ))

)2

+ (1− Φ(A◦m:1,Um:1))
m∑
i=1

(1−Υ(A◦i )) ,

(3.25)

and

0 ≤ Φ(Am:1,Um:1)− Φ(A◦m:1,Um:1) <
1

2

(
m∑
i=1

(1−Υ(Ai))

)2

+ (1− Φ(Am:1,Um:1))
m∑
i=1

(1−Υ(Ai)) + H.O.

(3.26)

Note: We use “H.O.” to denote higher order terms.

For sufficiently well-behaved (non-catastrophic) channels, the utility of the leading Kraus
operator persists beyond the channel itself. If we view composition as a discrete time
evolution,

A(tn) = An:1, (3.27)

where each channel inches the state further in time, then the leading Kraus operators are
the principle actors, and we view their action like tracing the path of the center of mass.

We would like to press forward from discrete time evolution to the continuous. However,
before we do, we would like to leverage the leading Kraus approximation to derive a
decomposition for non-catastrophic channels. This decomposition will give rise to a notion
of decoherent channels, the generalization of depolarizing channels we mentioned in chapter
2. We shall find that our definition of decoherent channels fits in nicely with well-known
ideas in the study of the Lindblad equation [21, 16], an equation describing the evolution
of quantum states in time.
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3.3 Decoherent Channels

Definition 19 (Decoherent Channels)
A non-catastrophic channel is called decoherent if its Leading Kraus operator is positive
semi-definite.

Definition 20 (Polar Decomposition of Channels)
Let A be a non-catastrophic channel. We can decompose A as

A = UD. (3.28a)

A = D′U . (3.28b)

Where the Kraus operator of U is the unitary part of the polar decomposition of the LKO:
A1 = UP . The Kraus operators of D are {U †Ai} and the Kraus operators of D′ are {AiU †}.

D◦(ρ) = |A1|ρ|A1|†. (3.29a)

D′◦(ρ) = U |A1|U †ρU |A1|†U †. (3.29b)

Note: D and D′ are completely positive, simply through having Kraus operators. Trace
preservation holds by:∑

i

(U †Ai)
†U †Ai =

∑
i

A†iAi = I = UIU † =
∑
i

(AiU
†)†AiU

†. (3.30)

Let us consider the types of errors we could expect in a realistic implementation of a
quantum algorithm. As a simple sorting, we can divide our channels based on whether or
not they can be repaired through unitary action. Any unitary error can be removed simply
by applying the inverse: U †U = I. Theorem 3.5.2 and theorem 3.8.1 (which we will see
later) tell us that this is, in some sense, all there is to be said about unitary reparation —
fidelities are maximized by removing the unitary components from polar decompositions.

Unitary errors are also called coherent errors. These appear when we find ourselves
having mishandled our quantum system (leading to the application of an incorrect gate),
but we haven’t introduced any additional uncertainty; if we find our mistake, we can
correct it. Decoherent errors on the other hand, correspond to irreversible losses of
information. This was the type of behaviour we saw for depolarizing channels, in section
2.4: Φ(Dp,A) = pΦ(A, I) + (1 − p)/d2. There is no unitary we can apply to correct the
fidelity of our channel. In fact the greatest fidelity we can achieve is by simply letting
A = I. We shall see other behaviours of decoherent channels, analogous to those of
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depolarizing channels, in theorem 3.5.2, in which we find Φ(D, I) ≈
√

Υ(D), and theorem
3.6.2, which gives Φ(Dm:1, I) ≈

∏
i Φ(Di, I), for depolarizing channels, {Di}. Our polar

decomposition, then, splits the behaviour of a (non-catastrophic) quantum channel into
coherent and decoherent contributions, both intuitive.

3.4 The Lindblad Equation

We let our state depend on time: ρ(t). An infinitesimal progression in time can be seen as
arising from a quantum channel:

ρ(t+ dt) =
∑
k

Ak(t, dt)ρ(t)A†k(t, dt). (3.31)

We won’t prove it here, but any invertible matrix can be written as an exponential of some
other matrix, where

eA ≡
∑
n

1

n!
(A)n. (3.32)

For the proof, see for instance [17]. Any small perturbation will transform a singular
matrix into an invertible one, so we shall assume that our Kraus operators will remain
non-singular, and we write A1(t) = exp(B(t)). Since dt is infinitesimal, we write

A1(t, dt) = exp(−iH(t)dt− P (t)dt)

= I − iH(t)dt− P (t)dt+O(dt2),
(3.33)

where H(t) is Hermitian for all t, and we define P (t)dt ≡ −B(t)dt− iH(t)dt.

Since the channel, A(t), will be trace preserving at all times, we have

I =
∑
k

A†k(t, dt)Ak(t, dt)

= A1(t, dt)†A1(t, dt) +
∑
k 6=1

A†k(t, dt)Ak(t, dt)

= I − iH(t)dt+ iH(t)dt− 2P (t)dt+
∑
k 6=1

A†k(t, dt)Ak(t, dt) +O(dt2).

(3.34)

So

P (t)dt =
1

2

∑
k 6=1

A†k(t, dt)Ak(t, dt) +O(dt2). (3.35)
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On the left hand side we have something scaling as dt. The higher order terms on the
right hand side are order dt2, so the linear, dt, terms must be in the sum. So this implies
that the non-leading Kraus operators must all be order

√
dt. Furthermore, we see P (t) is

positive-semidefinite at all times (justifying the notation).

ρ(t+ dt)− ρ(t) =
∑
k

Ak(t, dt)ρ(t)A†k(t, dt)− ρ(t)

= (I − iH(t)dt− P (t)dt+O(dt2))ρ(t)(I + iH(t)dt− P (t)dt+O(dt2))

+
∑
k 6=1

Ak(t, dt)ρ(t)A†k(t, dt)− ρ(t)

= ρ(t)− iH(t)ρ(t)dt+ iρ(t)H(t)dt− P (t)ρ(t)dt− ρ(t)P (t)dt

+
∑
k 6=1

Ak(t, dt)ρ(t)A†k(t, dt)− ρ(t) +O(dt2)

= −i[H(t), ρ(t)]dt− {P (t), ρ(t)}dt+
∑
k 6=1

Ak(t, dt)ρ(t)A†k(t, dt) +O(dt2)

(3.36)

where [A,B] = AB−BA and {A,B} = AB+BA are the commutator and anticommutator,
respectively.

“Dividing” by dt and sending dt→ 0, gives us

dρ

dt
= −i[H(t), ρ(t)]− 1

2

{∑
k 6=1

L†k(t)Lk(t), ρ(t)

}
+
∑
k 6=1

Lk(t)ρ(t)L†k(t), (3.37)

where

Lk(t) ≡ lim
dt→0

Ak(t, dt)√
dt

(3.38)

are the Lindblad operators and

P (t) =
1

2

∑
k 6=1

L†k(t)Lk(t). (3.39)

Equation 3.37 is the Lindblad equation.

Using the orthonormality of the canonical Kraus operators and equation 3.33, we have

0 = Tr(A†1(t, dt)Ak 6=1(t, dt))

= Tr(Ak 6=1(t, dt)) + dt
[
iTr(H(t)Ak 6=1(t, dt))− Tr(P (t)Ak 6=1(t, dt))

]
+O(dt2

√
dt).

(3.40)
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Dividing through by
√
dt and taking the limit as t→ 0 (noting that the trace is a continuous

function) we arrive at
Tr(Lk(t)) = 0, ∀k 6= 1. (3.41)

Note: It is through the canonical Kraus operators that we have been able to force the
Lindblad operators to have zero trace at all times. If we had chosen a different set of Kraus
operators, equation 3.41 would not hold.

Taking a closer look at the Lindblad equation, we examine each of the three terms:

dρ

dt
= −i[H(t), ρ(t)]︸ ︷︷ ︸

1

− 1

2

{∑
k 6=1

L†k(t)Lk(t), ρ(t)

}
︸ ︷︷ ︸

2

+
∑
k 6=1

Lk(t)ρ(t)L†k(t)︸ ︷︷ ︸
3

. (3.42)

The first term in this equation corresponds to coherent behaviour. This might be
easier to see once we note that exp(iH) is unitary, for any Hermitian matrix, H. In the
absence of P (t), then, equation 3.33 tells us that A1 will be unitary. The second and third
terms correspond to decoherent behaviour, and are often referred to as the relaxation or
decoherent part of the Lindbladian [18, 12].

Looking at equation 3.33 and taking the conjugate transpose, we have

A†1(t, dt) = I + iH(t)dt− P (t)dt+O(dt2). (3.43)

So for A1 = A†1, we need

2iH(t)dt = 0 +O(dt2) =⇒ H(t) = 0. (3.44)

From equation 3.35,

I − P (t)dt+O(dt2) =
1

2
I +

1

2
(I −

∑
k 6=1

A†k(t, dt)Ak(t, dt)) +O(dt2)

=
1

2
(I + A†1(t, dt)A1(t, dt)) +O(dt2),

(3.45)

which is positive semi-definite (up to order dt2). So for instantaneous Kraus operators, we
have

exp (−iH(t)dt− P (t)dt) ≥ 0⇔ H(t) = 0. (3.46)
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Thus our notion of a decoherent channel occurs iff H(t) = 0 for all t, in which case we
would have

dρ

dt
= −1

2

{∑
k 6=1

L†k(t)Lk(t), ρ(t)

}
+
∑
k 6=1

Lk(t)ρ(t)L†k(t). (3.47)

i.e. just the decoherent part of the Lindblad equation, as interpreted by previous literature.
Moreover, if we use the leading Kraus approximaton, the last term drops out and we have

dρ

dt
= −{P (t), ρ(t)}. (3.48)

Such a simple equation can be used to generate decoherent evolution.

Thus our definition of decoherent channels harmonizes well with notions already estab-
lished in the literature, at least in the limit of instantaneous operators. As we carry on,
we will find that our definition is reasonable even outside of this limit.

3.5 Bitter Channels

We introduced the non-catastrophic condition in section 3.1 in order to remove patholog-
ical behaviour from our quantum channels. This condition allowed us to derive several
theorems, showcasing how leading Kraus operators capture the fidelity and unitarity of
channels and their compositions. Unfortunately, this condition is still loose enough to al-
low several problematic noise scenarios. We shall explore two of these scenarios here, and
implement a method to avoid them.

In realistic noise scenarios, we expect there to be a fair degree of homogeneity in the
action of the noise. That is to say, we do not expect a realistic noise process to treat one
state of our system extremely poorly, while leaving everything else untouched. N.B. this is
a very different statement from requiring that our channels act homogeneously on qubits.
Adding or removing a single qubit from a system changes the dimension by a factor of 2.
A channel focused on one qubit, leaving everything else untouched, could easily influence
“half” of the states (in the sense of influencing half of the states in a basis, revealing an
influence on half of the dimensions of the space). For instance, for an N qubit system,
consider the basis {|x1〉 ⊗ . . .⊗ |xN〉}, where

|xi〉 = |1〉 =

(
1
0

)
or |xi〉 = |2〉 =

(
0
1

)
, ∀i. (3.49)
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(a) ρ. (b) A(ρ).
A1 =

∑
i 6=1 |i〉 〈i|.

(c) U(ρ).
U =

∑
i 6=1 |i〉 〈i| − |1〉 〈1|.

Figure 3.1: A visualization of the action of bitter channels on a density matrix. The black
and blue squares represent entries of the density matrix, ρ, being sent to 0 and being
shifted by a phase of −1, respectively.

We can consider the unitary

U = Z ⊗ I ⊗ . . .⊗ I ; Z =

(
1 0
0 −1

)
, (3.50)

acting as Z only on the first qubit. If we act the channel U on our basis, then anything
of the form |1x2 . . . xN〉, will be left untouched, while the states |2x2 . . . xN〉 will pick up a
minus sign.

In this way, the channel U is influencing half of the space of pure states, while only
affecting one qubit. This is a far cry from the issue that we are confronting: a channel acting
poorly on one basis state out of d many. Such a behaviour — precise and antagonistic —
would be spiteful in a person; revealing a grudge. We will call such things bitter channels.

As an example, consider a leading Kraus operator, A1 =
∑

i 6=1 |i〉 〈i|. We can fill out
the channel with a second Kraus operator, A2 = |1〉 〈1|. Calculating the fidelity, we have
Φ(A, I) = Υ(A) = (|Tr(A1)|2 + |Tr(A2)|2)/d2 = ((d−1)2 + 1)/d2 = (1−2/d+ 2/d2). For a
large enough system, such a channel will be non-catastrophic. Yet this is a very unrealistic
noise scenario, with A(ρ) =

∑
ij 6=1 ρij |i〉 〈j|+ρ11 |1〉 〈1|, completely killing off the coherence

between the state |1〉 〈1| and every other (see figure 3.1b). Similarly, consider a unitary
channel, U , with Kraus operator U =

∑
i 6=1 |i〉 〈i| − |1〉 〈1|. All unitary channels are non-

catastrophic. However based on physical intuition, we might choose to discount this state
— it tunes the phase of one canonical basis state, while leaving the others alone (figure
3.1c). This type of manipulation could be achieved intentionally, but it is unlikely to be
found occurring in background noise.
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The way we eliminate such scenarios is by restricting the variance of the eigenvalues of
the operators. As we saw in section 1.3, every normal matrix gives rise to an orthonormal
basis of eigenvectors. Let A be normal with eigenvectors {|xi〉}. We can write the action
of A on any state as A |y〉 =

∑
i yiA |xi〉 =

∑
i yiλi |xi〉. To achieve relative homogeneity of

the action of the operator, we enforce that homogeneity on the eigenvalues. If we enforce
too much homogeneity, we will restrict ourselves to only studying the identity channel.
Luckily, very little homogeneity will be necessary for our purposes. With that said, let us
define our bitter channels.

3.5.1 Bitter Dephasers

Definition 21 (Bitter Dephasers)
Let D be a non-catastrophic decoherent channel, with canonical Kraus operators {Mi}.
Consider the eigenvalues of the leading Kraus operator of D: {λi(M1)}. D is called a
bitter dephaser if one of these eigenvalues deviates from the average much more than
the average deviates from one:

1− Ei[λi(M1)] = 1− Tr(M1)

d
� |Ei [λi(M1)]− λj(M1)| , (3.51)

for some λj.

We should clarify the sense in which we intend to use “�” here. Consider the trace
preservation condition:

∑
iA
†
iAi = I. Let |x〉 be a normalized eigenvector of A†jAj, with

corresponding eigenvalue λ. Then

〈x|
∑
i

A†iAi|x〉 = λ+ (terms ≥ 0) = 1. (3.52)

So every eigenvalue of each A†jAj must be ≤ 1. So the square roots of the these eigenvalues
(the singular values of every Aj) are between 0 and 1. It follows that the expectation
value of the singular values of any Kraus operator will be between 0 and 1. The quantities
appearing in equation 3.51 will then be between 0 and 1 as well (since we are considering
the leading Kraus operator of a decoherent channel in definition 21, it will be positive-
semidefinite, and thus its singular values and eigenvalues are the same). As such, we say
x� y in the sense of equation 3.51 iff y/x� 0 in an absolute sense; e.g. y/x > 10.

What is the intuition of definition 21? Using the leading Kraus approximation, we can
relate the average of the eigenvalues of the leading Kraus operator to the fidelity of the
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channel:

Φ(D, I) ≈ Φ(D◦, I) =
|Tr(M1)|2

d2
=

(
Tr(M1)

d

)2

= Ei[λi(M1)]2. (3.53)

So the left hand side of equation 3.51 relates to the infidelity of the channel (though it is
not quite the same thing). Since the eigenvalues of matrices tell us about those matrices’
actions on vectors, the right hand side of equation 3.51 talks about the inhomogeneity of
the action of the channel. Definition 21 thus essentially asks whether the inhomogeneity
is much worse than the infidelity, and if so, it labels the channel “bitter”.

For those channels with low fidelities, the left hand side of equation 3.51 will be closer
to 1. Since the right hand side is bounded above by 1, it becomes less likely for the channel
to be a bitter dephaser. For instance, if the fidelity is 0.5, the left hand side of equation
3.51 becomes 1−

√
0.5 ≈ 0.29. Thus for the channel to be bitter, we would need something

like
|Ei [λi(M1)]− λj(M1)|

1− Ei [λi(M1)]
≈ 3.4 |Ei [λi(M1)]− λj(M1)| > 10, (3.54)

requiring a large discrepancy between λj and the average. In fact, since all of the eigenvalues
of the leading Kraus operator are between 0 and 1, it’s impossible to even satisfy this
inequality. One might choose to consider “�” in equation 3.51 to correspond to, say
y/x > 3, as opposed to y/x > 10, allowing these low-fidelity bitter dephasers, but in any
case, we see that lower-fidelity channels will rarely be bitter.

On the other hand, for a fidelity of 0.95, we would need

39.5 |Ei [λi(M1)]− λj(M1)| > 10, (3.55)

requiring a much lower inhomogeneity in the action of the channel for the channel to be
considered bitter. As a mnemonic, we say we expect more from higher fidelity channels,
and so we are quicker to call them bitter.

Consider again A1 =
∑

i 6=1 |i〉 〈i|. It is Hermitian with singular values 0, 1, . . . , 1. Ex-
amining 3.51, we have

1

d
= 1− d− 1

d
� d− 1

d
− 0 = 1− 1

d
, (3.56)

since d− 1 > 10 for N ≥ 4 (d = 2N). Thus the channel is a bitter dephaser for even small
system sizes.
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3.5.2 Bitter Unitaries

We now consider the unitary case. We would like an analogous definition to that of
definition 21. The entanglement fidelity involves the absolute value of the trace of products
of Kraus operators. Thus we are free to add phases of our liking onto Kraus operators when
we only care about the entanglement fidelity. In particular, we can choose a phase such
that the trace of U becomes real and non-negative: if Tr(U) = reiφ then consider e−iφU .
Or, in other words,

Definition 22
Let U be a unitary matrix. Define the corresponding mean-semi-positive (MSP) unitary,
Uy, to be

Uy ≡ Tr(U)∗

|Tr(U)|
U. (3.57)

Note: The notation y is meant to invoke the idea of turning the trace of U (as a complex
number) onto the non-negative real axis. A mean-semi-positive unitary should not be
confused with a positive semi-definite unitary; since all of the eigenvalues of a unitary
matrix have norm 1, a PSD unitary would have all eigenvalues equal to 1, and thus, from
the spectral decomposition, U = V IV † = I. So the only PSD unitary is the identity. On
the other hand, all of the Pauli matrices are mean-semi-positive.

Since the trace of a matrix is the sum of its eigenvalues, and thus the sum of the real
and imaginary parts of each eigenvalue, the imaginary parts of the eigenvalues of a mean-
semi-positive matrix must go to zero when averaged out: Tr(U)y =

∑
iR(λyi )+i

∑
i I(λyi )

∈ R =⇒
∑

i I(λyi ) = 0. When we consider the distance between an eigenvalue and the
average of Uy, in the definition of bitter unitaries, we will only be concerned with the real
parts of the eigenvalues, because their imaginary parts do not contribute to the average.

Definition 23 (Bitter Unitaries)
Consider a unitary channel, U , with corresponding unitary U , and mean-semi-positive
counterpart Uy. Let {λyi } be the eigenvalues of Uy. We call U bitter, if

1− Ei[R(λyi )] = 1− Tr(Uy)

d
�
∣∣Ei[R(λyi )]− R(λyj )

∣∣, (3.58)

for some λyj .

We use “�” in the same sense as for the bitter dephaser case, since the eigenvalues of
unitary matrices will sit on the unit circle and thus their real parts will have magnitude
≤ 1.
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Consider the polar decomposition, A1 = U |A1|, of the leading Kraus operator of A. We
can apply our pair of bitter conditions to the two components of the decomposition of A1

(correspondingly, to the coherent and decoherent parts of A), to assure good behaviour.

3.5.3 Equablity

Definition 24 (Equable Quantum Channels)
A non-catastrophic quantum channel, A = UD, is called equable if both U and D are not
bitter.

From the last section we see that, by design, equable channels will be free from certain
unrealistic behaviours; we built our definitions of bitter channels specifically to eliminate
them. It turns out though, that a weaker restriction upon our channels will be sufficient
to derive some useful results. We frame our restriction in terms of two constants.

Definition 25 (Wide Sense Equable (WSE) Channels)
Let A be a non-catastrophic quantum channel with leading Kraus operator A1, with polar
decomposition A1 = U |A1|.

We define the WSE decoherence constant of A, γD(A), as:

γD(A) ≡ SDev[σi(A1)]

E[1− σi(A1)]
, (3.59)

where SDev denotes the standard deviation.

Similarly, we define the WSE coherence constant γU(A) to be:

γU(A) ≡ SDev[R(λi(U
y))]

E[1− R(λi(Uy))]
. (3.60)

A is said to be wide sense equable if

γD(A)� 1/
√
E[1− σi(A)] , (3.61)

and
γU(A)� 1/

√
E[1− R(λi(A))] . (3.62)

Wide sense equability loosens up the restraints on our channels quite a bit; as the size
of our system increases, wilder behaviour is permitted. Even so, we stand to gain quite a
bit by envoking WSE. Consider first the unitarity of a composition of channels:
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Theorem 3.5.1
Consider m non-catastrophic channels Ai. Then Υ(Am:1) has the following properties:

(Quasi-monotonicity)

Υ(Am:1) ≤ min
i

Υ(Ai) + (1−Υ(Am:1))2.

(Quasi-additivity)

1−Υ(Am:1) ≤
m∑
i=1

(1−Υ(Ai)) + 2
m∑
i=1

(1−Υ(Ai))2 + H.O.

(3.63)

These inequalities are almost saturated by bitter channels. If we introduce the WSE
decoherence constants (letting γD be the largest), we obtain:∣∣∣∣∣Υ(Am:1)−

∏
i

Υ(Ai)

∣∣∣∣∣ ≤
m∑
i=1

(1−Υ(Ai))2 + (1−Υ(Am:1))2

+
4γ2

D∏
i

√
Υ(A◦i )

(
1−

∏
i

√
Υ(A◦i )

)2

+ H.O. ,

(3.64)

which guarantees quasi-multiplicativity of Υ when the errors are WSE.

Let us take apart each of these three results, one at a time. Quasi-monotonicity tells us
that when we compose a series of (non-catastrophic) channels together, the unitarity will
be (approximately) bounded by the unitarity of the weakest channel. Considering the
unitarity to be a measure of certainty in our operations, we say that we can only be as
confident as we are in our worst channel.

In viewing quasi-subadditivity, we note that if Υ(A) describes the coherent behaviour of
a channel, then 1−Υ(A) is a measure of the incoherent. Quasi-additivity tells us that the
incoherent behaviour of a composition of non-catastrophic channels will not expand much
faster than linearly. Thus a reasonable amount of coherent behaviour will be preserved
through each composition.

In the case of WSE channels, quasi-multiplicity points to a level of independence be-
tween the channels. The unitarity of a composition is (roughly) independent of the or-
der of the channels composed, and there is no significant “cross term” denoting chan-
nel interactions. Since the entanglement fidelity is always between 0 and 1, we have
that

∏
i Υ(Ai) ≤ min(Υ(Ai)). Thus quasi-multiplicativity is a tighter bound than quasi-

monotonicity.
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Recalling the relationship between Υ(A) and the unitarity in equation 2.34, it follows
that

u(Am:1) ≈ d2
∏m

i=1 Υ(Ai)− 1

d2 − 1
(3.65)

for WSE channels.

Theorem 3.5.2
Consider a non-catastrophic channel, A, with polar decomposition A = VD and unitary
target U . Then, the maximal unitary correction of A (in terms of Φ) is approximately

bounded by the interval
[
Υ(A),

√
Υ(A)

]
:

max
W∈SU(d)

Φ(W ◦A,U) ≤
√

Υ(A) + (1−Υ(A))2 + H.O. ,

max
W∈SU(d)

Φ(W ◦A,U) ≥ Υ(A)− (1−Υ(A))2 .
(3.66a)

Moreover, if we introduce the WSE decoherence constant, γD, we obtain:

max
W∈SU(d)

Φ(W ◦A,U) ≥
√

Υ(A)− (1−Υ(A))2 − γ2
D

(
1−

√
Υ(A)

)2

. (3.67)

If the error attached to A is WSE, then the interval virtually collapses and
max

W∈SU(d)
Φ(WA,U) ≈

√
Υ(A).

A quasi-maximal choice of unitary correction is W = UV†.

This theorem is our first taste of the idea that all that can be corrected in a channel is
the unitary component: Φ(WA,U) = Φ(UV†VD,U) = Φ(D, I). We will see this theme
recapitulated several more times in this work. Moreover, this theorem also tells us that
Φ(D, I) ≈

√
Υ(D) (for WSE channels), relating back to the behaviour of depolarizing

channels, just as we would like.

Translating the above result into terms of the average fidelity and unitary, we have

max
V ∈SU(d)

F (VA,U) ≈
√

(d2 − 1)u(A) + 1 + 1

d+ 1
. (3.68)

We next apply WSE to investigate decoherent channels.
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3.6 WSE and Decoherent Channels

Theorem 3.6.1
Consider m non-catastrophic decoherent channels Di and any non-catastrophic unitary
channel U . Then,

(Quasi-monotonicity)

Φ(UDm:1, I) ≤ min
i

Φ(Di, I) +
1

2

(
m∑
i=1

(1−Υ(D◦i ))

)2

+ (1− Φ(U ◦ D◦m:1, I))
m∑
i=1

(1−Υ(D◦i )) .

(3.69a)

(Quasi-subadditivity)

1− Φ(UDm:1, I) ≤ (1− Φ(U , I)) +
m∑
i=1

(1− Φ(Di, I))

+ (1− Φ(U , I))2 +
m∑
i=1

(1− Φ(D◦i , I))2

+
m∑
i=1

(1− Φ(Di, I))(1−Υ(Di)).

(3.69b)

If we enforce the WSE condition we arrive at:
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Theorem 3.6.2
Consider m non-catastrophic, decoherent channels Di (with target I) with largest WSE
decoherence constant, γD. Then, Φ(Dm:1, I) is bounded as follows:

(Quasi-multiplicativity):∣∣∣∣∣Φ(Dm:1, I)−
m∏
i=1

Φ(Di, I)

∣∣∣∣∣ ≤
[

1

2

(
m∑
i=1

(1−Υ(D◦i ))

)2

+ (1− Φ(D◦m:1, I))
m∑
i=1

(1−Υ(D◦i )) +
m∑
i=1

(1−Υ(Di)) (1− Φ(Di, I))

+
γ2
D∏m

i=1

√
Φ(D◦i , I)

(
1−

m∏
i=1

√
Φ(D◦i , I)

)2 ]
+ H.O.

(3.70)

If the channels are WSE, Φ(Dm:1, I) is essentially multiplicative.

We see we have arrived at a set of results analogous to those of theorem 3.5.1, relating
to the entanglement fidelity rather than to the unitarity. Moreover, the quasi-multiplicity
relationship, Φ(Dm:1, I) ≈

∏
i Φ(Di, I) harkens back to equation 2.40.

The quasi-monotonicity of our channels lets us know that a composition of (non-
catastrophic) decoherent channels cannot be substantially corrected by any unitary chan-
nel. Taking this result with theorem 3.5.2, we suspect that there is little coherent buildup
in a composition of decoherent channels (analogous to the fact that compositions of de-
polarizing channels remain depolarizing). The quasi-multiplicativity expresses a level of
independence in WSE decoherent channels. From theorem 3.5.1 we were already afforded
a level of independence in any WSE channel composition. However, that independence
was from the unitarity, whereas this second independence is from the fidelity. This im-
plies that decoherent WSE channels may be “even more” independent than others. Again,
this makes sense as a generalization of depolarizing channels, since from equation 2.39, we
see that depolarizing channels commute, and their unitarities and fidelities are essentially
multiplicative.

Using the correspondence between the entanglement fidelity and average process fidelity,
we arrive at:

F (Dm:1, I) ≈ d
∏m

i=1 Φ(Di) + 1

d+ 1
. (3.71)
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3.7 The Coherence Level

Consider, further, the consequences of appending a coherent operation to end of our deco-
herent composition:

Theorem 3.7.1
Consider m non-catastrophic, decoherent error channels Di (with target I). Let γD be
the largest of their WSE decoherence constants. Moreover, consider a non-catastrophic
unitary error channel, U , with WSE coherence constant, γU . Then, Φ(UDm:1, I) is
bounded as follows:∣∣∣∣∣Φ(UDm:1, I)− Φ(U , I)

m∏
i=1

Φ(Di, I)

∣∣∣∣∣ ≤
[

1

2

(
m∑
i=1

(1−Υ(D◦i ))

)2

+ (1− Φ(UD◦m:1, I))
m∑
i=1

(1−Υ(D◦i )) +
m∑
i=1

(1−Υ(Di)) (1− Φ(Di, I))

+
γ2
D∏m

i=1 Φ(D◦i , I)

(
1−

m∏
i=1

√
Φ(D◦i , I)

)2

+ 2
γDγU∏m

i=1

√
Φ(D◦i , I)

(
1−

m∏
i=1

√
Φ(D◦i , I)

)(
1−

√
Φ(U , I)

)]
+ H.O.

(3.72)

If the errors are WSE, then Φ(UDm:1, I) is essentially multiplicative:
Φ(UDm:1, I) ≈ Φ(U , I)

∏
i Φ(Di, I).

Consider the case m = 1. Let A be a channel with target U and polar decomposition
VD. W := U †V is a unitary channel. Thus by theorem 3.7.1 we have

Φ(A,U) = Φ(WD, I) ≈ Φ(W , I)Φ(D, I) = Φ(V ,U)Φ(D, I) ≈ Φ(V ,U)
√

Υ(A) . (3.73)

Breaking this down, we can approximate the entanglement fidelity as being composed of
two parts: Φ(V ,U), a coherent contribution, from the unitary part of the channel, A, and
Φ(D, I) ≈

√
Υ(A), a decoherent one. Again, we see a level of independence appearing

between channels; this time between the coherent and decoherent parts of A. Keeping in
mind the independence between (WSE) decoherent channels, the full result of 3.7.1 (for a
general composition length) is almost expected.
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At this point, we shall reformulate some of our results in terms of the infidelity
(r(A,U) ≡ 1 − F (A,U)), as such language is often used in randomized benchmarking
literature. Translating into terms of the infidelity gives us (up to O(r2)):

r(A,U) ≈ r(V ,U)︸ ︷︷ ︸
Coherent infidelity

+ r(D, I)︸ ︷︷ ︸
Decoherent infidelity

≡ rcoh + rdecoh, (3.74)

where, by theorem 3.6.1, rdecoh is not substantially correctable by any composition, and
can be computed through the square root of the unitarity (theorem 3.5.2). We have

rdecoh =
d−

√
(d2 − 1)u(A) + 1

d+ 1
+O(r2). (3.75)

On the other hand, rcoh can be corrected through the proper unitary inversion.

Using the above decomposition, we can easily define the level of coherent behaviour in
a (WSE) channel:

Definition 26 (Coherence Level)
Let A be a non-catastrophic WSE quantum channel. The coherence level of A is

rcoh

r
≡ 1−

d−
√

(d2 − 1)u(A) + 1

(d+ 1)r(A,U)
+O(r) . (3.76)

The decoherence level of A is

rdecoh

r
≡ 1− rcoh

r
. (3.77)

A similar notion of decoherence level was presented in [13, 32] under the names “in-
coherent error” and “incoherence”, respectively. In those works, rdecoh is shown to be the
smallest infidelity achievable through unitary correction. In [13], equation 3.74 was de-
rived, but only for the case of one qubit. Our results extend those previously found and
place them within a new context of WSE channels.

Next, consider theorem 3.7.1 for a general circuit depth. We shall find that we can
provide bounds on the best and worst case fidelity of a correction.

3.8 Worst and Best Case Fidelity Correction

Consider m channels, Ai, with targets, Ui, and polar decompositions, DiVi. By using these
decompositions and inserting identity channels appropriately into the composition, we can
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express Am:1 as:

Am:1 = Vm:1(Vm:1)†DmVm:1 . . . (V2:1)V†1D1V1 = Vm:1D′m:1 , (3.78)

with D′k := (Vk:1)†DkVk:1. Each D′k has leading Kraus operator, Vk:1Ak,1V
†
k:1, where Vk:1 =

Vk . . . V1 and Ak,1 is the leading Kraus operator of Dk. The leading Kraus operator of each
D′k is then PSD, and so each D′k is decoherent. Furthermore, Φ(D′k, I) = Φ(Dk, I) for all
k, by the cylic property of the trace.

This means that:

Φ(Am:1,Um:1) = Φ(Vm:1D′m:1,Um:1)

≈ Φ(Vm:1,Um:1)
m∏
i=1

Φ(D′i, I)

= Φ(Vm:1,Um:1)
m∏
i=1

Φ(Di, I)

≈ Φ(Vm:1,Um:1)
m∏
i=1

√
Υ(Ai) .

(3.79)

And so we see that the fidelity of any composition of realistic channels can be factored into
coherent and decoherent contributions. Knowing that we can only correct the coherent
part of the composition, we arrive at:
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Theorem 3.8.1
Consider m non-catastrophic channels Ai with respective unitary targets Ui and polar
decompositions Ai = ViDi. Let the largest WSE decoherence constant be γD. Then the
maximal unitary correction of the composition, Am:1, is bounded as follows:

max
W∈SU(d)

Φ(WAm:1,Um:1)−
m∏
i=1

√
Υ(Ai) ≤

[
5

4

(
m∑
i=1

(1−Υ(Ai))

)2

+
m∑
i=1

(1−Υ(Ai))2

+

(
m∑
i=1

(1−Υ(Ai))

)(
1−

m∏
i=1

√
Υ(Ai)

)
+

2γ2
D∏m

i=1 Υ(A◦i )

(
1−

m∏
i=1

√
Υ(A◦i )

)2 ]
+ H.O.

(3.80a)

max
W∈SU(d)

Φ(WAm:1,Um:1)−
m∏
i=1

√
Υ(Ai) ≥

[
− γ2

D

m∑
i=1

(
1−

√
Υ(A◦i )

)2

−
m∑
i=1

(1−Υ(Ai))
2− γ2

D∏m
i=1

√
Υ(A◦i )

(
1−

m∏
i=1

√
Υ(A◦i )

)2 ]
+ H.O.

(3.80b)

For WSE errors, the maximal unitary correction of the composition, Am:1, is essentially∏m
i=1

√
Υ(Ai). A quasi-optimal choice of unitary correction is W = Um:1(Vm:1)†.

Or, in terms of the average gate fidelity,

max
W∈SU(d)

F (W ◦Am:1,Um:1) ≈ d
∏m

i=1 Φ(Di, I) + 1

d+ 1
≈
d
∏m

i=1

√
Υ(Ai) + 1

d+ 1
. (3.81)

We are also in a position to determine the worst possible corrected fidelity. In [4] the
following inequality was found:

Φ(Vm:1,Um:1) ≥ cos2

(
m∑
i=1

arccos
(√

Φ(Vi,Ui)
))

. (3.82)

This inequality is saturated in even dimensions, by commuting unitary errors of the form(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
⊗ Id/2. (3.83)
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For the odd dimensional case, we have the saturated bound

Φ(Vm:1,Um:1) ≥

(d− 1) cos

(∑m
i=1 arccos

(
d
√

Φ(Vi,Ui)−1

d−1

))
+ 1

d


2

, (3.84)

computed using the result for the even dimensional case and applying the phase freedom
in Φ(A,B) to fix an eigenvalue and reduce the dimension.

By using Φ(Vi,Ui) ≈ Φ(Ai,Ui)/
√

Υ(Ai) with the above result, we can arrive at quasi-
bounds for the fidelity (in the WSE regime):

For even dimensions:

cos2

(
m∑
i=1

arccos

(√
Φ(Ai,Ui)√

Υ(Ai)

))
m∏
i=1

√
Υ(Ai) / Φ(Am:1,Um:1) /

m∏
i=1

√
Υ(Ai) ; (3.85a)

For odd dimensions:
(d− 1) cos

∑m
i=1 arccos

d

√
Φ(Ai,Ui)√

Υ(Ai)
−1

d−1

+ 1

d



2

m∏
i=1

√
Υ(Ai) / Φ(Am:1,Um:1)

/
m∏
i=1

√
Υ(Ai) .

(3.85b)

The sum of arccos terms is similar to the so-called coherence angles investigated in
[4]. Their sum can be interpreted as a coherent buildup. In the case of a decoherent
composition, we expect no coherent buildup, and indeed from theorem 3.8.1 we see that
the sum of arccos terms go to 0 (mod 2π).

3.9 Decoherence-limited Channels

We have already explored the behaviour of compositions of purely decoherent channels,
culminating in theorem 3.8.1. The behaviour that we found should be preserved if we add
in a sufficiently small amount of coherence to our channels.
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Definition 27 (Decoherence limited channels)
Let A be a non-catastrophic WSE channel, such that

Φ(A,U) =
√

Υ(A) +O(r(A,U)2), (3.86)

for some target, U . Then A is called a decoherence-limited channel.

In particular, any channel with sufficiently small coherence level — rcoh = O(r(A,U)2)
— will be decoherence-limited, since equation 3.74 holds up to order r(A,U)2, and so

r(A,U) = rdecoh + rcoh +O(r(A,U)2) = rdecoh +O(r(A,U)2). (3.87)

Translating back into the fidelity gives equation 3.86.

Consider a sequence of decoherence-limited channels, {Ai}mi=1. Since we have only a
small amount of coherence, the arguments in the cosine terms in equation 3.85 must be
small. We can thus Taylor expand the cosine:

cos2(x) = (1− x2

2
+ . . .)2 ≈ 1− x2. (3.88)

So equation 3.85 reduces to

(1− x2)
m∏
i=1

√
Υ(Ai) / Φ(Am:1,Um:1) /

m∏
i=1

√
Υ(Ai), (3.89)

where x is the appropriate argument in the even and odd dimensional cases. Since each
channel is decoherence-limited, we have

Φ(Ai,Ui)√
Υ(Ai)

= 1 +
O(r(Ai,Ui)2)√

Υ(Ai)
. (3.90)

However, we are working with non-catastrophic channels, giving us Υ(Ai) > 1/2. Thus
the O(r2)/

√
Υ(Ai) above will never be larger than

√
2O(r2), and so we consider this to be

O(r2).

Next we note that √
1 + x2 = 1 +

x2

2
+ . . . (3.91)

And so √
Φ(Ai,Ui)√

Υ(Ai)
= 1 +

1

2
O(r(Ai,Ui)2) = 1 +O(r(Ai,Ui)2). (3.92)
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Finally, expanding arccosine, we have

arccos(1− x) =
√

2x+
(2x)3/2

24
+ . . . ; x ≥ 0. (3.93)

And so the sum over arccosine terms reduces to

m∑
i=1

arccos

(√
Φ(Ai,Ui)√

Υ(Ai)

)
=

m∑
i=1

O(r(Ai,Ui)). (3.94)

A similar analysis holds for the argument of the arccosine term in the odd dimensional
case. Thus equation 3.89 is transformed into

(1−

(∑
i

O(r(Ai,Ui))

)2

)
m∏
i=1

√
Υ(Ai) / Φ(Am:1,Um:1) /

m∏
i=1

√
Υ(Ai). (3.95)

We can express the infidelities in terms of their coherent and decoherent components. Since
each of our channels is decoherence-limited, the coherent contribution is order r2, so we
can see the above sum,

∑
iO(ri), as a sum of decoherent terms,

∑
iO(rdecoh,i). Then using

the fact that decoherent fidelities factor (theorem 3.6.2) and 1−
∑

i ri ≈ (1−r1) . . . (1−rm)
for small r, we have that∑

i

O(rdecoh,i) = O(1− Φdecoh,1 . . .Φdecoh,m) = O(1− Φdecoh,m:1) = O(rdecoh,m:1). (3.96)

Thus for WSE channels,
∑

iO(r(Ai,Ui)) = O(rdecoh(Am:1,Um:1)). So we have

(1−O(rdecoh(Am:1,Um:1)2)
m∏
i=1

√
Υ(Ai) / Φ(Am:1,Um:1) /

m∏
i=1

√
Υ(Ai). (3.97)

0 ≤
m∏
i=1

√
Υ(Ai) ≤ 1, ∀m, so it can be absorbed into the order. Also since r ≈ rdecoh +rcoh,

O(rdecoh) = O(r). Since the inequalities hold up to order r2, we must have

m∏
i=1

√
Υ(Ai) +O(r(Am:1,Um:1)2) ≤ Φ(Am:1,Um:1) ≤

m∏
i=1

√
Υ(Ai) +O(r(Am:1,Um:1)2)

(3.98)
And so the coherent behaviour of the composition is bounded to be order r2 — the com-
position is decoherence limited.
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This result allows us passage into studying the structure of a subset of decoherent
channels. In general, decoherent channels are not preserved under composition: there
can be some level of coherent behaviour which develops as they are composed. However,
restricting our attention to WSE decoherence-limited channels, we are afforded closure.
This is reminiscent of the closure of the set of depolarizing channels.
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Chapter 4

Conclusions and Future Directions

In this work we have developed the leading Kraus approximation for quantum channels.
Though this approximation generally produces non-physical channels, we have shown that
for a particular class of channels (non-catastrophic), the approximate channel will provide
accurate estimations for the fidelity and unitarity of the full channel. We have also intro-
duced the notion of wide sense equability, and have argued that realistic noise scenarios
will satisfy both the non-catastrophic and wide sense equable conditions.

The leading Kraus approximation led us to a simple decomposition of quantum channels
into coherent and decoherent components. We proceeded to investigate decoherent and co-
herent channels under non-catastrophic and wide sense equable conditions. In particular,
it was found that decoherent channels, as we have defined them, fit in well with ideas well-
established in the literature, and are shown to generalize results for depolarizing channels:
the quasi-multiplicativity of their fidelities, their uncorrectability, and the quadratic rela-
tionship between their fidelities and unitarities. Defining “decoherence-limited” channels,
we were able to generalize the closure under composition of depolarizing channels to this
subset of decoherent channels.

The leading Kraus approximation declutters the Kraus representations of quantum
channels, and makes investigations into them more intuitive; removing superfluous infor-
mation, to uncover approaches which may have been obscured when viewing the channels
in their full scope. This technique can be a springboard for developing new results. It
can also be useful in revisiting old work. We can apply the LKA in combination with
well-established protocols and see if the simplifications it allows (for realistic channels) can
provide insight into building extensions of those protocols. For instance, because equation
3.79 partitions the average fidelity of a composition of (WSE) channels into coherent and
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decoherent contributions, we should be able to use estimates of the decoherence level (ob-
tained from the unitarity) and the full fidelity of a channel, in order to pinpoint its level of
coherence. This type of coherence level estimation could be implemented as an extension
of a randomized benchmarking protocol.

From more of a structural standpoint, now that we have put in place additional classes
of channels — viz. WSE, extremal, decoherent, and decoherence-limited channels — it
would worthwhile to explore these forms through topological or algebraic means.
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