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Abstract

Let G be a graph and (V1, . . . , Vm) be a vertex partition of G. An independent transver-
sal (IT) of G with respect to (V1, . . . , Vm) is an independent set {v1, . . . , vm} in G such
that vi ∈ Vi for each i ∈ {1, . . . ,m}.

There exist various theorems that give sufficient conditions for the existence of ITs.
These theorems have been used to solve problems in graph theory (e.g. list colouring,
strong colouring, delay edge colouring, circular colouring, various graph partitioning and
special independent set problems), hypergraphs (e.g. hypergraph matching), group theory
(e.g. generators in linear groups), and theoretical computer science (e.g. job scheduling and
other resource allocation problems). However, the proofs of the existence theorems that
give the best possible bounds do not provide efficient algorithms for finding an IT. In this
thesis, we give poly-time algorithms for finding an IT under certain conditions and some
applications, while weakening the original theorems only slightly. We also give efficient
poly-time algorithms for finding partial ITs and ITs of large weight in vertex-weighted
graphs, as well as an application of these weighted results.
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Chapter 1

Introduction

Let G be a graph and let (V1, . . . , Vm) be a vertex partition of G. A set of vertices (or
edges) is independent if no two of its elements are adjacent. An independent transversal
(IT) of G with respect to (V1, . . . , Vm) is an independent set {v1, . . . , vm} in G such that
vi ∈ Vi for each i. A partial independent transversal (PIT) of G with respect to (V1, . . . , Vm)
is an independent set M in G such that no two vertices of M are in the same vertex class.
This is a very general notion, and many combinatorial problems can be formulated by
asking if a given graph with a given vertex partition has an IT (e.g. the SAT problem, see
[52]). It follows that determining whether a given graph and vertex partition has an IT is
NP-complete.

While we cannot expect an efficient characterisation of precisely which vertex-partitioned
graphs have an IT (unless P = NP ), there are various known results that give sufficient
conditions for the existence of an IT. One of the most easily stated and most frequently
applied is a result of Haxell from [48, 49] involving the size of the vertex classes in terms
of the maximum degree of G (see Theorem 2.3). In particular, it shows that as long as
the classes have size at least 2∆(G), where ∆(G) denotes the maximum degree of G, G
is guaranteed to have an IT with respect to the vertex partition. This answers a question
first introduced in 1975 by Bollobás, Erdős and Szemerédi in [21]. A construction of Szabó
and Tardos [91] has also shown that the result of Haxell is best possible for every maximum
degree.

Another more general existence result, also due to Haxell [48, 49], uses a notion of
domination to give a sufficient condition for the existence of an IT (see Theorem 2.4). We
say that a subset D ⊆ V (G) dominates a subgraph W of G if for all w ∈ V (W ), there
exists uw ∈ E(G) for some u ∈ D. (This definition of domination is quite often referred to
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as strong domination or total domination, but since it is the only notion of domination that
we will refer to in this thesis, we will use the simpler term.) This general result (often in
the form of the maximum degree case) has been applied to obtain many results in various
fields, including graph theory (e.g. list colouring [49], strong colouring [50, 3], delay edge
colouring [8], circular colouring [57, 58], various graph partitioning and special independent
set problems [9, 53, 61, 26]), hypergraphs (e.g. hypergraph matching [48, 69, 11, 12]), group
theory (e.g. generators in linear groups [23]), and theoretical computer science (e.g. job
scheduling and other resource allocation problems [14, 15]).

Unfortunately, the proofs of these two results are not algorithmic and so do not provide
a method of finding ITs efficiently. For certain applications, it is enough to know that
class sizes of c∆(G) guarantee an IT for some constant c. In these cases, one could obtain
algorithmic versions using (for example) the algorithmic Lovász Local Lemma (LLL) (see
[17, 78, 79]). However, for many other applications, having the best possible value of the
constant c is important. This raises the question of how much the hypotheses of these
two existence results need to be strengthened in order to guarantee that an IT can be
found efficiently. Such results would give algorithmic proofs of these applications with the
constants being as close as possible to their optimal values.

Most of the known results on this question have focused on the maximum degree result
and are randomised algorithms obtained as applications of algorithmic versions of the LLL
or its lopsided variant. These include algorithms that use the original algorithm of Beck [17]
and its improvements (see e.g. [10, 76, 27, 89, 20]) as well as the resampling algorithm of
Moser and Tardos [78] and its improvements (see e.g. [65, 81, 66, 45, 1, 44]. The current
best result for polynomial expected time is due to Harris [42] with the lower bound on the
class size being 4∆(G)− 1. Deterministic algorithms based on derandomising the Moser-
Tardos algorithm have also been studied, but they require the class size be C∆ for some
large constant C in order to find an IT efficiently [35, 43].

Recently, a new algorithmic approach that does not rely on the LLL has been introduced
by Annamalai [11, 13]. This new approach was developed as a method for finding perfect
matchings in r-uniform bipartite hypergraphs (see Section 4.1), which has applications
to the restricted max-min fair allocation problem. It is an example of an algorithmic
version of an application of the domination existence result of Haxell to hypergraphs (see
Theorem 4.4).

In the first main result of this thesis, we address the algorithmic IT question for a large
class of graphs, called r-claw-free graphs, without using the LLL or any of its variants.
A graph G with vertex partition (V1, . . . , Vm) is said to be r-claw-free with respect to
(V1, . . . , Vm) if no vertex of G has r independent neighbours in distinct vertex classes. Our

2



work leads to algorithmic versions of both the maximum degree and domination existence
results, with only a slight strengthening of the hypotheses. We then use these algorithms
on some applications previously solved by the non-algorithmic existence results to get
algorithmic versions of these applications. Our main algorithm, called FindITorBD (which
finds an IT or two sets B and D with certain properties), incorporates some key ideas from
Annamalai’s work in [11] as well as from the original proofs of [48, 49].

Aharoni, Berger, and Ziv [3] gave a generalisation of the IT existence theorems of [48, 49]
to (partial) ITs in vertex-weighted graphs. Their work could be viewed as an analogue of
the theory of weighted matchings in graphs. Their proofs are based on [48, 49] and again
are not algorithmic. Our second main result of this thesis is to give an algorithmic version
of their result, called FindWeightPIT. It uses ideas from [3] and relies on FindITorBD as
a subroutine.

The degree of the runtime of FindITorBD is dependent on r, or on ∆ in the max-
imum degree case. Hence our algorithms are only efficient when r (or ∆) is constant.
To address this limitation, our last main result in this thesis develops a randomised algo-
rithm, called FindWeightIT, that is efficient even when the maximum degree is unbounded.
FindWeightIT incorporates FindWeightPIT as a subroutine. We demonstrate the use of
FindWeightIT by giving an application to finding strong colourings and fractional strong
colourings of graphs efficiently.

This thesis is organised as follows. In Chapter 2, we give a more thorough presentation
of the known results related to ITs. In particular, we discuss the history of existence
results for ITs (Section 2.2) as well as the algorithmic results (Section 2.3) in more detail.
This includes formally stating the results in [48, 49] (Theorems 2.3 and 2.4). We also
present an exponential time algorithm based on the original proofs of Theorem 2.4 and
some modifications of it based on several key notions introduced by Annamalai in [11, 13].
We also include a section providing the notation used throughout this thesis (Section 2.1).

In Chapter 3, we prove the first main result of this thesis (Theorem 3.1). In particular,
we provide the algorithm FindITorBD and prove that FindITorBD efficiently finds an IT
in an r-claw-free graph, providing an algorithmic version of Theorem 2.4. The algorithm
FindITorBD also proves an algorithmic version of Theorem 2.3 (Corollary 3.2).

In Chapter 4, we apply the algorithm FindITorBD to some applications of Theorems 2.3
and 2.4. In particular, we look at some known results in graph colourings, graph parti-
tionings, and hypergraph matchings. This includes results due to Annamalai [11, 13]
(Section 4.1); Kaiser, Král, and Škrekovski [57] (Section 4.2); King [61] (Section 4.3);
Aharoni, Berger, and Ziv [3] (Section 4.4); and Alon, Ding, Oporowski, and Vertigan [9]
(Section 4.5). We present modifications of these results that make them algorithmic.
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In Chapter 5, we prove the second main result of this thesis (Theorem 5.5). In partic-
ular, we provide the algorithm FindWeightPIT and prove that FindWeightPIT efficiently
finds a PIT of weight at least τ r,εw in an r-claw-free vertex-weighted graph, where τ r,εw is a
parameter of vertex-weighted graphs (see Section 5.2). This proves an algorithmic version
of Theorem 5.2, the generalisation of Theorem 2.4 due to Aharoni, Berger, and Ziv from [3].

In Chapter 6, we prove the final main result of this thesis (Theorem 6.10). In particular,
we provide the randomised algorithm FindWeightIT that finds an IT in vertex-weighted
graphs of maximum degree ∆ in expected polynomial time, where this runtime does not
depend on ∆. We then apply FindWeightIT to find strong colourings and fractional strong
colourings of graphs efficiently. These applications use ideas from the applications of
Theorem 5.2 presented in [3].

The results in Chapters 3 and 5 are joint work with my supervisor Penny Haxell. The
content of Chapter 6 is joint work with David Harris and Penny Haxell. The rest of this
thesis is my own unaided work.
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Chapter 2

Background

In this chapter, we discuss the main definitions and known results that will be referred to
throughout this thesis. This includes an overview of results concerning the existence of
independent transversals (ITs), both algorithmic and non-algorithmic. In particular, we
will introduce two non-algorithmic results due to Haxell [48, 49] (Theorems 2.3 and 2.4).
We will see algorithmic versions of these results in Chapter 3 as well as algorithmic versions
of results that used Theorems 2.3 and 2.4 in Chapter 4. In Section 2.3, we discuss the
previously known algorithmic results for determining the existence of ITs in a graph. This
includes results derived from algorithmic versions of the Lovász Local Lemma (LLL) as
well as the new result of Annamalai [11, 12, 13] that helped us develop our algorithm.

This chapter is organised as follows. In Section 2.1, we review the graph theory terms
and notation used throughout this thesis. In Section 2.2, we provide some key definitions
and a history of (non-algorithmic) results relating to ITs. We conclude in Section 2.3 with
a discussion of the previous algorithmic results relating to ITs.

2.1 Notation

In this section, we provide a brief overview of some terms and notation used throughout
this thesis. Some non-standard definitions and notation will appear later in the thesis when
needed. For all other terms and notation, we refer the reader to Diestel’s graph theory
text [28].

Let G be a graph. We denote the vertex set of G by V (G) and the edge set of G by
E(G). The maximum degree of G is denoted ∆(G).
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For a vertex v ∈ V (G), we denote the set of neighbours of v by N(v) and the degree of
v by deg(v). For a subgraph H of G and vertex v ∈ V (G), we write NH(v) to denote the
set of neighbours of v in H and degH(v) to denote the degree of v in H.

Suppose U ⊆ V (G). The graph induced by U is denoted G[U ]. Recall from Chapter 1
that U dominates a subgraph H of G if for all v ∈ V (H), there exists some u ∈ U such that
uv ∈ E(G). This definition of domination is quite often referred to as strong domination or
total domination. However, since it is the only notion of domination that we will discuss,
we use the simpler term.

Let (V1, . . . , Vm) be a vertex partition of G. For any subset B ⊆ {V1, . . . , Vm}, let GB
denote the subgraph of G whose vertex set is the union of the vertex classes in B and whose
edge set consists of all edges vivj ∈ E(G) where vi ∈ Vi, vj ∈ Vj, and Vi, Vj ∈ B are distinct

classes. Specifically, GB = G

[ ⋃
Vi∈B

Vi

]
− {uv ∈ E(G) : u, v ∈ Vi, Vi ∈ B}. Let Vclass(v)

denote the vertex class that contains v. The set of vertex classes containing vertices of
U ⊆ V (G) is given by Vclass(U) = {Vclass(v) : v ∈ U}.

An n-star is the complete bipartite graph K1,n. We call the vertex of degree n the
centre of the star and the other vertices of the graph the leaves of the star. When n = 1,
we designate one vertex as the centre and the other as a leaf. Note that the 3-star is
sometimes referred to as the claw graph. We will use this definition of an n-star to define
a constellation in Definition 2.5 of Section 2.2.

We use the notation poly(x) to denote a polynomial in x and poly(x, y) to denote a
polynomial in x and y. We will use this notation throughout this thesis to describe the
runtimes of various algorithms.

2.2 Independent Transversals

In this section, we discuss independent transversals (ITs). Recall the following definition
from Chapter 1.

Definition 2.1. Let G be a graph and (V1, . . . , Vm) be a vertex partition of G. An indepen-
dent transversal (IT) of G with respect to (V1, . . . , Vm) is an independent set {v1, . . . , vm}
in G such that vi ∈ Vi for each i ∈ {1, . . . ,m}.

We have the following generalisation of Definition 2.1.
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Definition 2.2. Let G be a graph and (V1, . . . , Vm) be a vertex partition of G. A partial
independent transversal (PIT) of G with respect to (V1, . . . , Vm) is an independent set M
in G such that no two vertices in M are in the same vertex class.

Thus an IT is a PIT that contains a vertex from every vertex class.

Many combinatorial problems can be formulated by asking if a given graph and ver-
tex partition has an IT. For example, ITs have appeared in the context of hypergraph
matchings [48, 11, 12], graph colourings [57, 3], list colourings [49], graph partitioning
and special independent set problems [9, 53, 61], and job scheduling and other resource
allocation problems [14, 15]. However, the problem of determining whether a given graph
and vertex partition has an IT is NP-complete. This can be shown by reductions to it
from SAT (see e.g. [52]) or from the decision problem for perfect matchings in 3-uniform
3-partite hypergraph with parts of equal size. The latter is one of Karp’s 21 NP-complete
problems [59].

Although we cannot expect an efficient characterisation of precisely which vertex-
partitioned graphs have an IT (unless P = NP ), there are various known results that
give sufficient conditions for the existence of an IT (e.g. [5, 34, 48, 49, 10, 20]). Fur-
thermore, some of these results have algorithmic versions, mostly relying on algorithmic
versions of the Lovász Local Lemma (LLL), that can in expected polynomial time return
an IT given a graph G and vertex partition (V1, . . . , Vm) (see [25, 13, 42, 47, 35, 43]). We
will discuss these algorithmic versions and the LLL in more detail in Section 2.3. For the
remainder of this section, we will focus on one of the most commonly applied sufficient
conditions for the existence of an IT. The proof of this result does not give an efficient
algorithm for finding an IT.

Given a graph and vertex partition, it is natural to ask how large the vertex classes need
to be, in terms of the maximum degree, to guarantee the existence of an IT. This question
was first introduced and studied in 1975 by Bollobás, Erdős and Szemerédi [21]. Further
progress on this bound was made by many authors, including Alon [5], Fellows [34], and
Haxell [49]. For a graph G with maximum degree ∆, Alon [5] showed, using the LLL, that
an IT exists if each vertex class has size at least 25∆. Fellows [34] independently proved a
bound of 16∆. This bound was later improved to 2e∆ using the LLL (see e.g. Alon and
Spencer [10]) and to 2∆ by Haxell [48, 49] using a combinatorial argument.

Several authors also found constructions for graphs and vertex partitions where the
vertex classes had a particular size in terms of the maximum degree and no IT existed.
Work on this lower bound includes results of Jin [56], Yuster [95], and Alon [7]. In 2006,
Szabó and Tardos [91] gave constructions for every ∆ in which there is a graph G of
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maximum degree ∆ and a vertex partition where every class has size 2∆− 1, but G has no
IT with respect to the partition. Because of this, the following result of Haxell from [48, 49]
is known to be best possible for every ∆.

Theorem 2.3 ([48, 49]). Let G be a graph with maximum degree ∆. Then for any vertex
partition (V1, . . . , Vm) of G where |Vi| ≥ 2∆ for each i, there exists an IT of G.

Theorem 2.3 is an immediate consequence of a more general statement described in
terms of domination. Recall that a subset D ⊆ V (G) dominates a subgraph W of G if for
all w ∈ V (W ), there exists some u ∈ D such that uw ∈ E(G). Also, recall that for B a
subset of the set of vertex classes in the partition, the graph GB is given by

GB = G

[ ⋃
Vi∈B

Vi

]
−{uv ∈ E(G) : u, v ∈ Vi, Vi ∈ B}. The general theorem of Haxell from [49]

(which easily follows from the argument in [48]) is stated as Theorem 2.4.

Theorem 2.4 ([48, 49]). Let G be a graph with a vertex partition (V1, . . . , Vm). Suppose
that, for each B ⊆ {V1, . . . , Vm}, the subgraph GB is not dominated in GB by any set of
size at most 2(|B| − 1). Then G has an IT.

It is easy to see that Theorem 2.4 implies Theorem 2.3. This is because the union of
|B| vertex classes in G contains a total of at least 2∆|B| vertices. Thus GB cannot be
dominated by 2|B| − 2 vertices whose degree is at most ∆.

The proof of Theorem 2.4 also provides some insight into the structure of one pos-
sible dominating set for GB, for some B ⊆ {V1, . . . , Vm}, when G does not have an IT.
Specifically, if G does not have an IT, then there exists B ⊆ {V1, . . . , Vm} such that GB is
dominated by the vertex set of a constellation for B.

Definition 2.5. Let G be a vertex-partitioned graph and let B be a set of vertex classes in
that partition. A constellation for B is an induced subgraph K of GB, whose components
are stars each containing a centre and a non-empty set of leaves distinct from the centre,
and such that the set of all leaves of K, denoted Leaf(K), forms an IT of |B| − 1 vertex
classes of B.

Figure 2.1 shows an example of a constellation. Note that if K is a constellation for B,
then |V (K)| ≤ 2(|B| − 1).

The proof of Theorem 2.4 implies the following result.
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Figure 2.1: A constellation K for the set B of classes enclosed by the dotted border. Each
circle represents a vertex class. The centres of the stars appear in black and the leaves
appear in red.

Theorem 2.6. Let G be a graph with a vertex partition (V1, . . . , Vm). Then at least one of
the following holds:

1. G has an IT with respect to (V1, . . . , Vm),

2. there is a set B of vertex classes and constellation K for B such that V (K) dominates
GB and |V (K)| ≤ 2(|B| − 1),

Recall from Chapter 1 that the proofs of Theorems 2.3 and 2.4 are not algorithmic.
In Chapter 3, we will present an algorithm that, for a large family of graphs, is able to
efficiently find either an IT or a set B of vertex classes with a small dominating set that
contains a constellation. This algorithm, called FindITorBD, applies to graphs that are
r-claw-free.

Definition 2.7. A graph G with vertex partition (V1, . . . , Vm) is said to be r-claw-free with
respect to (V1, . . . , Vm) if no vertex of G has r independent neighbours in distinct vertex
classes.

Note that graphs with maximum degree ∆ are (∆ + 1)-claw-free.

We will discuss some applications of FindITorBD in Chapter 4, to problems in which
r (or ∆) is constant. However, the runtime of FindITorBD is exponential in r (see Sec-
tion 3.4). In Section 6.4, we will see a randomised algorithm, called FindWeightIT, that
overcomes this limitation for graphs with maximum degree ∆, and how FindWeightIT
provides algorithmic results for a more general class of problems.
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2.3 Algorithmic IT Results

In Section 2.2, we discussed some known results for the existence of an IT for a given graph
and vertex partition. In this section, we discuss the known algorithmic results that, given
a graph and vertex partition, find an IT in the graph.

Most of the known algorithmic results have focused on finding an IT in graphs with
maximum degree ∆ under stronger vertex class size constraints than Theorem 2.3. Of these
results, most have been obtained as applications of algorithmic versions of the Lovász Local
Lemma (LLL) or its lopsided variant. In particular, these algorithmic constructions give an
IT under the condition that the vertex classes have size at least c∆, where c is a constant
strictly larger than 2.

The LLL, first proved by Erdős and Lovász [32], is a powerful probabilistic tool that can
be used to show that a certain event holds with positive probability. In particular, it is well
known that if a large number of events are independent (i.e. the occurrence of one does not
affect the occurrence of another) and each occurs with probability less than 1, then there
is a positive probability that none of the events occur. The LLL allows the independence
condition to be relaxed slightly so that if the events are “mostly” independent and are not
“too likely” to occur, then there is a positive probability that none of the events occur.
The symmetric case of the LLL is the following.

Theorem 2.8 (Lovász Local Lemma (LLL); Symmetric [88]). Let A1, . . . , An be events in
an arbitrary probability space. Suppose that each event Ai is mutually independent of all
but at most d of the other events and that Pr[Ai] ≤ p for all 1 ≤ i ≤ n. If ep(d + 1) ≤ 1,

then Pr

[
n∧
i=1

Ai

]
> 0.

The first algorithmic proof of the LLL was due to Beck [17]. With somewhat more
restrictive assumptions, Beck was able to efficiently find a particular type of 2-colouring of
hypergraphs. Some improvements to this technique were made by Alon [10], Molloy and
Reed [76], Czumaj and Scheideler [27], Srinivasan [89], and Bissacot, Fernández, Procacci
and Scoppola [20].

In 2009, Moser and Tardos [79] introduced a new algorithmic proof for the LLL that
used resampling. This new proof technique was much simpler than Beck’s and is applicable
to almost all applications of the LLL. In particular, Moser and Tardos proved the following.

Theorem 2.9 (Moser-Tardos Algorithm [79]). There is a randomised algorithm which
takes as input a probability space Ω in k independent variables X1, . . . , Xk along with a
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collection B of “bad” events B in that space such that each event B ∈ B is a Boolean
function of a subset of the variables Var(B). If the algorithm terminates, it returns a
configuration X = (X1, . . . , Xk) for which all B ∈ B are false.

If for inputs Ω and B there are parameters p, d ≥ 0 such that epd ≤ 1 and such that
each B ∈ B has probability at most p and there are at most d bad events B′ ∈ B such that
Var(B)∩Var(B′) 6= ∅, then the algorithm terminates with probability one and the expected
runtime is polynomial in |B| and k.

As Theorem 2.9 states, the algorithm of Moser and Tardos (or Moser-Tardos algorithm)
converts the LLL to an efficient randomised algorithm. It has since been improved by
several authors (see e.g. [65, 81, 66, 45, 1, 44]). Before discussing how the Moser-Tardos
algorithm has been applied to the problem of finding ITs, we state some more properties
of the Moser-Tardos algorithm that will be useful in the proof of our randomised algorithm
in Chapter 6.

The Moser-Tardos algorithm is a randomised process which terminates with probability
one in some configuration X. This configuration X can be regarded as a random variable,
and we call the distribution on X the MT-distribution. The MT-distribution was first anal-
ysed by Haeupler, Saha, and Srinivasan in [39]. Additional bounds on the MT-distribution
were shown by Harris and Srinivasan in [46]. One such bound from [46] is the following.

Theorem 2.10 ([46]). Suppose Ω and B satisfy the conditions of Theorem 2.9. Let E be an
event in the probability space Ω which is a Boolean function of a subset of variables Var(E).
Suppose that there are r bad events B ∈ B with the property that Var(E) ∩ Var(B) 6= ∅.
Then, the probability that event E holds in the MT-distribution is at most eepr PrΩ(E).

We will use these properties to devise a “degree-splitting” algorithm in Section 6.3.

In terms of finding ITs efficiently, using the Moser-Tardos approach (and the work of
Bissacot et al. [20] and Pegden [81]), Harris and Srinivasan [47] gave a randomised algorithm
that finds an IT in expected time O(m∆) in vertex-partitioned graphs with m classes of
size 4∆. The current best result for polynomial expected time is due to Harris [42] who
improved the bound on the class size to 4∆− 1.

Deterministic algorithms to find ITs based on derandomizing the Moser-Tardos algo-
rithm have also been studied, but they require the class sizes to be C∆ for some large
constant C in order to find an IT efficiently [35, 43]. Some of these deterministic algo-
rithms are also known to be parallelisable [25, 43].

More recently, an algorithmic result due to Annamalai [11, 13] has provided a new
method for finding ITs efficiently without using the LLL. While studying problems related
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to the restricted max-min fair allocation problem (or Santa Claus problem), Annamalai [11,
13] proved an algorithmic version of Theorem 3.1 for the specific case of matchings in
bipartite hypergraphs. We discuss this result and how it follows as a consequence of our
main theorem (Theorem 3.1) in Section 4.1. For now, we will discuss the main ideas of
Annamalai’s algorithm that we will use in our own algorithm. To do so, consider the
following sketch of the proof of Theorem 2.4.

Sketch of the proof of Theorem 2.4: Let M be a PIT and A be a vertex class such that
A ∩M = ∅. We aim to alter M until it can be augmented by a vertex in A.

We build a “tree-like structure” T (which we describe as a vertex set inducing a forest
of stars) as follows. Choose x1 ∈ A and set T = {x1}. If degM(x1) = 0, then improve M
by adding x1 to M , and stop. Otherwise add NM(x1) to T . Let T = Vclass(T ).

In the general ith step: it can easily be shown that |T | ≤ 2(|T | − 1). This is because
T can be treated as the vertex set of a tree-like structure where Vi, Vj ∈ T are adjacent if
some xi ∈ Vi is adjacent in M to some yj ∈ Vj. By construction, this T has |T | − 1 edges,
each of which corresponds to at most 2 vertices of T . Thus by assumption the subgraph
GT of G induced by

⋃
Vi∈T

Vi is not dominated by T . Therefore there exists a vertex of GT

that is not adjacent to any vertex in T . Choose such a vertex xi arbitrarily.

If degM(xi) = 0, then improve M by adding xi to M and removing (if it exists) the
M -vertex y in Vclass(xi). This forms a new PIT M , and is an improvement in the following
sense: it reduces degM(xj) where y was added to T because it was in NM(xj) in an earlier
step. Truncate T to {x1} ∪NM(x1) ∪ · · · ∪ {xj} ∪NM(xj).

Otherwise, add xi and NM(xi) to T . Thus |T | increases by degM(xi) > 0 and |T |
increases by degM(xi) + 1, which maintains |T | ≤ 2(|T | − 1). See Figure 2.2 for T (the set
of vertices shown) and Vclass(T ) (the set of classes enclosed by the dotted border). Note
that T is a constellation for T whose centres are given by the xi and whose leaves are given
by the NM(xi).

At each step we either grow T or reduce degM(xj) for some j, until the current M can
be extended to include a vertex of A. Therefore progress can be measured by a signature
vector

(degM(x1), . . . , degM(xt),∞).

Note that this signature vector has at most |M | + 1 ≤ m entries since each NM(xi) is
a nonempty subset of M and all such sets are mutually disjoint. Each step reduces the
lexicographic order of the signature vector. Thus the process terminates, and so we succeed
in extending M to a larger PIT and eventually to an IT.
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x1 x3

x2 x4 x7 x5

x6 x8 x9 x10

Figure 2.2: T after the 10th step. The classes enclosed by the dotted border form T .

The drawback of the above procedure is that the number of signature vectors (and
hence the number of steps) could potentially be as large as (r− 1)m when G is r-claw-free.
To make this approach into an efficient algorithm, we use Annamalai’s idea from [11, 13]
of a “lazy update,” which essentially amounts to performing updates in “clusters” (large
subsets of vertices) rather than for individual vertices (which change the degM(xi) only
one at a time). In particular, we make the following three modifications to the algorithm
of the proof sketch.

1. Maintain layers: at each growth step, instead of choosing xi arbitrarily, choose it to
be a vertex in a class at smallest possible “distance” from the root class A, similar
to a breadth-first search. Vertices xi that are added into classes at the same distance
from A are in the same layer.

2. Update in “clusters”: instead of updating M when a single xi satisfies degM(xi) = 0,
update only when at least a positive proportion µ of an entire layer satisfies
degM(x) = 0. Discard later layers.

3. Rebuild layers in “clusters”: after an update, add new vertices xi to a layer of T only
if doing so would add a µ proportion of that layer. Then discard later layers.

We will see these steps in more detail in Chapter 3. However, we give a basic overview
of the benefits of these modifications here.

A consequence of maintaining layers is that the vertices in GT that do not have a
neighbour in T tend to “pile up” towards the bottom layer of T . This is because we try
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to add undominated vertices to the structure as soon as they appear. This results in the
set of vertices of T associated with the bottom layer having size a positive proportion ρ
of |T |. This implies that the total number of layers is always logarithmic in m since with
each new layer, the total size of T increases by a fixed factor larger than one.

Updating in clusters and rebuilding layers in clusters allows for a different signature
vector to be used. In particular, the new signature vector will measure the sizes of layers
rather than degrees of individual vertices degM(xi). It will have two entries per layer: the
first is essentially −blog xc where x is the number of vertices xi associated with that layer,
and the second is essentially blog yc where y is the total size of their neighbourhoods in M
(which is also the size of the layer). Updating M in a cluster (Modification 2) decreases the
value of y for a layer by a positive proportion. Rebuilding a layer in a cluster (Modification
3) increases the value of x for a layer by a positive proportion. Hence (with suitably chosen
bases for the logarithms) these updates always decrease the relevant entry by an integer
amount. Therefore, as in the proof of Theorem 2.4, each update decreases the signature
vector lexicographically.

Since the length of the signature vector is proportional to the number of layers, as noted
above this is logarithmic in m. The entries are also of the order logm. While this gives a
very significant improvement over the signature vector from the proof of Theorem 2.4, it
still does not quite give a polynomial number of signature vectors. However, as in [11, 13]
it can be shown with a suitable alteration to the suggested signature vector, each signature
vector can be associated with a subset of integers from 1 to x, where x is of order logm.
It then follows that the number of signature vectors, and hence the number of steps in the
algorithm, is poly(m).

As mentioned before, similar modifications were used by Annamalai [11, 13] only in
the context of efficiently finding perfect matchings in bipartite hypergraphs. In Chapter 3,
we will use the above modifications to prove an algorithmic version of Theorem 2.4 for
r-claw-free graphs. This will allow us to improve the best known algorithmic versions of
Theorem 2.3 to requiring classes of size at least 2∆ + 1, which is 1 away from being best
possible.
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Chapter 3

The Algorithm FindITorBD

In this chapter, we prove the first main result (Theorem 3.1) of this thesis. It is an
algorithmic version of Theorem 2.4 (in a form similar to Theorem 2.6) for r-claw-free
graphs. In particular, we provide an algorithm, called FindITorBD, for r-claw-free graphs
that efficiently finds either an IT or a set of vertex classes dominated by a small set
of vertices. We refer the reader to Section 2.2 for the definition of r-claw-free graphs
(Definition 2.7) and constellations (Definition 2.5).

Theorem 3.1. There exists an algorithm FindITorBD that takes as input any graph G
with vertex partition (V1, . . . , Vm) such that G is r-claw-free with respect to (V1, . . . , Vm)
and finds either:

1. an IT in G, or

2. a non-empty set B of vertex classes and a set D of vertices of G such that D dominates
GB in G and |D| < (2 + ε)(|B| − 1). Moreover D contains V (K) for a constellation
K for some B0 ⊇ B, where |D \ V (K)| < ε(|B| − 1).

The runtime is O(|V (G)|f(r,ε)), which for fixed r and ε, is poly(|V (G)|).

We remark that for fixed r, it is possible to adjust the algorithm FindITorBD to return
either outcome (1), outcome (2), or a set of r + 1 vertices S such that there exists v ∈ S
for which S \ {v} ⊆ N(v) is an independent set of vertices in distinct vertex classes. This
last outcome shows that G is not r-claw-free with respect to the provided vertex partition.
However, we will not consider this generalisation.
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Recall from Theorem 2.4, that for any graph G and vertex partition (V1, . . . , Vm), it is
possible for both an IT with respect to (V1, . . . , Vm), as well as a set B of vertex classes
where V (K) for a constellation K for B dominates GB, to exist simultaneously. In such
instances, the algorithm FindITorBD will terminate after providing only one of outcomes
(1) and (2) of Theorem 3.1. However, for certain pairs of graphs and vertex partitions, it can
be shown that outcome (2) of Theorem 3.1 never occurs, thus ensuring that FindITorBD
always returns an IT on such inputs.

For example, consider a graph with maximum degree ∆. From Section 2.2, we know
that any graph with maximum degree ∆ is (∆ + 1)-claw-free with respect to any partition.
Let G be a graph with maximum degree ∆ and (V1, . . . , Vm) a vertex partition such that
|Vi| ≥ 2∆ + 1 for each i. Then for r = ∆ + 1 and ε = 1

∆
, outcome (2) of Theorem 3.1

would imply that there exists a non-empty set B of vertex classes and a set D of vertices
of G such that D dominates GB in G and |D| <

(
2 + 1

∆

)
(|B| − 1). Since the maximum

degree in G is ∆, D can dominate a subgraph on at most ∆|D| vertices. Hence

|V (GB)| ≤ ∆|D| < ∆

(
2 +

1

∆

)
(|B| − 1) = (2∆ + 1)(|B| − 1).

This is a contradiction since every vertex class has size at least 2∆ + 1 and so
|V (GB)| ≥ (2∆ + 1)|B|. This gives the following algorithmic version of Theorem 2.3.

Corollary 3.2. The algorithm FindITorBD on inputs G with maximum degree ∆ and
vertex partition (V1, . . . , Vm) such that |Vi| ≥ 2∆ + 1 for each i will return an IT in G.
The runtime is O(|V (G)|f(∆)), which for fixed ∆, is poly(|V (G)|).

We will see more examples of graphs and vertex partition pairs for which FindITorBD
will never return outcome (2) in Chapter 4.

The proof of Theorem 3.1 will use the proof of Theorem 2.4 (as sketched in Section 2.3)
as well as the modifications discussed in Section 2.3. The main idea is to “grow” a PIT
using a “tree-like” structure until either you find an IT or the vertex classes in the tree are
“too dominated” to grow, in which case you can find a set of vertex classes in the tree that
have a small dominating set. To show that this process completes in polynomial time for
fixed r and ε, we use a similar signature to that of Annamalai [11, 13] (see Section 3.4).

As mentioned in Chapter 1, the results in this chapter are joint work with Penny Haxell.
The content of this chapter constitutes the main result of our joint paper [38].

This chapter is organised as follows. In Section 3.1, we introduce the terms and new
notation used throughout the chapter. In Section 3.2, we present and discuss the three
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subroutines that are used by FindITorBD. We begin the analysis of FindITorBD in Sec-
tion 3.3 by analysing the main subroutine of FindITorBD, called GrowTransversal. In
Section 3.4, we define the signature vector used to prove that GrowTransversal terminates
in polynomial time when r and ε are fixed. We conclude in Section 3.5 by providing the
algorithm FindITorBD and using the results of earlier sections to prove Theorem 3.1.

3.1 Preliminaries

In this section we introduce the terminology and notation used throughout this chapter.
Much of the terminology follows that of Annamalai from [11, 13]. For terms and notation
not defined in this section, we refer the reader to Section 2.1 and [28].

For the remainder of this chapter, let G be a graph and let (V1, . . . , Vm) be a vertex
partition of G such that G is r-claw-free with respect to (V1, . . . , Vm). Since the case m = 1
is trivial, we assume from now on that m ≥ 2.

We claim that we may also assume that each vertex class Vi is an independent set of
vertices. To see this, let F be the set of edges uv ∈ E(G) such that Vclass(u) = Vclass(v)
and let G′ = G−F . As every edge uv ∈ E(G) such that Vclass(u) 6= Vclass(v) is in E(G′),
it is clear that a set M is an IT of G′ if and only if it is an IT of G. Also, recall from
Section 2.1 that GB does not include any edges between vertices in the same vertex class
in B. Thus GB = G′B for all B ⊆ {V1, . . . , V,}. Hence we assume without loss of generality
that each vertex class is an independent set of vertices.

For a PIT M of G, note that any isolated vertex v in a vertex class where
Vclass(v) ∩M = ∅ can be added to M to create a larger PIT. Thus, we may remove the
vertex classes from (V1, . . . , Vm) that contain at least one isolated vertex and consider the
induced subgraph of the remaining vertex classes as G under the partition formed by the
remaining classes. Moreover, any subset B of the remaining vertex classes and set D of
vertices satisfying outcome (2) of Theorem 3.1 under the new graph and vertex partition
will still satisfy the conditions of outcome (2) for G and (V1, . . . , Vm). Hence we assume
without loss of generality that G does not contain an isolated vertex. Furthermore, we
may assume that r ≥ 2 (a graph is 1-claw-free if every vertex has no neighbour).

For the definitions that follow, let M be a PIT of G.

Definition 3.3. A vertex u blocks a vertex v if u ∈M and uv ∈ E(G).

Definition 3.4. A vertex v is immediately addable with respect to M if v /∈M and it has
no vertices in V (G) blocking it. For W ⊆ V (G), IM(W ) denotes the set of vertices in W
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that are immediately addable with respect to M . Thus

IM(W ) = {v ∈ W \M : M ∪ {v} is an independent set}.

Definition 3.5. Let A be a vertex class in the vertex partition of G that does not contain
a vertex in M . An alternating tree T with respect to M and A is a structure that consists
of some vertices X ∪ Y with X ⊆ V (G) \M and Y ⊆M and some edges xy where x ∈ X
and y ∈ Y that satisfy the following properties:

(T1) The edges of T are all of the edges in G[X ∪M ].

(T2) Every vertex of Y has degree 1 in T .

(T3) Identifying the vertices of T in the same vertex class produces a tree T (T ) whose
vertices are Vclass(X ∪ Y ).

(T4) The root of T is the vertex class A.

Figure 3.1 provides an example of an alternating tree.

AL0

L1

L2

L3

Figure 3.1: An alternating tree T for a PIT M and vertex class A. The circles are vertex
classes of T and vertex classes in the same layer of T are enclosed with a dotted border.
The vertices in X are shown in black and the vertices in Y are shown in red.

Note that property (T1) implies that X is an independent set since every edge of T is
of the form xy for x ∈ X and y ∈ Y (note X ∩ Y = ∅). Also, property (T2) implies that
the connected components of T are stars whose leaves are in Y and whose centres are in
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X. Moreover, it follows that for vertex classes Vi and Vj in T with Vi the “parent” of Vj
in T (T ), then Vj must contain a vertex, say yj ∈ M , and T contains a unique edge xiyj
with xi ∈ Vi \M . It therefore follows that the subgraph of G induced by the vertices in
(X ∪ Y ) \ IM(X) is a constellation for Vclass(Y ) ∪ {A} (see Definition 2.5).

The vertex classes of T (which are Vclass(X ∪ Y )) can be partitioned into layers by
distance from the root as follows. Let Li be the set of vertex classes of T in layer i, with
L0 = {A}. For each i ≥ 1, let Xi be the vertices in X in vertex classes of Li−1 and let Yi
be the vertices in Y in vertex classes of Li. Hence the edges xy with x ∈ Xi and y ∈ Yi
join a vertex from a vertex class in Li−1 to a vertex from a vertex class in Li. We also
define X0 = ∅ and Y0 = ∅.

Figure 3.1 also shows the layers of the alternating tree, as well as shows the vertices in
Xi and Yi in different colours.

We now describe how to construct the next layer of an alternating tree. Suppose
we are given an alternating tree T with layers L0, . . . , L` for some ` ≥ 0. Then L`+1,
X`+1, and Y`+1 are built as follows. For each vertex xi in the union of the classes in L`,
we add xi to X`+1 and NM(xi) to Y`+1 if doing so preserves (T1)-(T4). To make this
process deterministic, we use a vertex order v1, . . . , vn (where n = |V (G)|) so that for each
i = 1, . . . , n, if Vclass(vi) ∈ L`, vi /∈ V (T ), and V (T )∪ {vi} is an independent set, then we
add vi to X`+1 and to T . Then for every edge viy with y ∈M , we add y to Y`+1 and to T .
Note that any such y is in a new vertex class, which we add to L`+1 and to T . The final
sets L`+1, X`+1, and Y`+1 after vn has been tested satisfy the definitions provided above
for i = `+ 1.

Let T be an alternating tree of G with respect to M and a vertex class A and let `
be the index of the final layer of T . For all 0 ≤ j ≤ `, we define X≤j to be the union

of the Xi for 0 ≤ i ≤ j, i.e. X≤j =
j⋃
i=0

Xi. Similarly, we define Y≤j =
j⋃
i=0

Yi. Note that

Vclass(Y≤`)∪{A} is the set of vertex classes of T , i.e. Vclass(Y≤`)∪{A} =
⋃̀
i=0

Li. It follows

from Definitions 3.5 and 2.5 that the subgraph of G induced by (X≤` ∪ Y≤`) \ IM(X≤`) is
a constellation for Vclass(Y≤`) ∪ {A} (see Figures 2.1 and 3.1).

The algorithm FindITorBD uses alternating trees as the “tree-like structure” described
in the sketch of the proof of Theorem 2.4 (found in Section 2.3). Recall from Section 2.3
that the three changes FindITorBD makes to the algorithm of the sketch were to maintain
layers, perform updates to M in clusters, and rebuild layers in clusters after an update
occurs. From the description of how the next layer of an alternating tree is constructed,
it is clear that alternating trees maintain layers. For the other two modifications, we will
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need to define certain properties an alternating tree may have. These are defined in terms
of fixed parameters U and µ (which are defined in Definition 3.8). Before giving these
properties, we introduce two more definitions.

Definition 3.6. Let T be an alternating tree of G with respect to M and a vertex class
A, ` be the index of the final layer of T , and X, Y ⊆ V (G) be from a partially built layer
` + 1. A vertex v in a class in L` is addable for X, Y , and T if v /∈ V (T ) ∪ X ∪ Y ,
|Vclass(v) ∩ X| < U , and there does not exist a vertex u ∈ V (T ) ∪ X ∪ Y such that
uv ∈ E(G).

Definition 3.7. Layer i is collapsible if IM(Xi) > µ|Xi|.

We now introduce the following properties an alternating tree may have with respect
to fixed parameters U and µ.

(P1) For each i, we have that |Xi ∩ Vj| ≤ U for each Vj ∈ Li−1.

(P2) For each i, layer i is not collapsible (i.e. |IM(Xi)| ≤ µ|Xi|).

(P3) For each i there are fewer than µ|Xi| addable vertices with respect to Xi, Yi, and T .

Property (P1) means that instead of adding every vertex of X in a vertex class in Li−1

that preserves all of the properties of an alternating tree to Xi, we only permit ourselves
to add a limited amount. Specifically, we add at most U vertices of X per vertex class in
Li−1 to Xi. By limiting the number of vertices in Xi a vertex class may contain, we are
able to give bounds on the size of certain sets of vertices. This allows us to show some of
the properties of outcome (2) of Theorem 3.1 on B and D hold as well as prove that the
runtime of FindITorBD is polynomial in |V (G)| when r and ε are fixed.

Property (P2) is used to determine when an update of M should be performed and when
a layer should be rebuilt. Specifically, when layer ` is constructed, if |IM(X`)| > µ|X`|,
then we have a significant number of immediately addable vertices in X`. We will see that
we can make a significant enough update to M that Y` decreases by a positive proportion.
This decreases the signature vector lexicographically. Hence we will update M and adjust
the alternating tree accordingly.

Property (P3) ensures that after a modification is made to M , we check each layer i
of the tree to see if Xi can be increased by µ|Xi| vertices while maintaining properties
(T1)-(T4) and (P1). If so, then we can rebuild layer i so that Xi is significantly larger.
This will decrease the signature vector lexicographically. Hence we will rebuild layer i and
remove all later layers from our tree.
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We will show that at the start and end of each iteration of GrowTransversal (which
is a subroutine of FindITorBD), the structure T satisfies properties (T1)-(T4) as well as
(P1)-(P3) in Section 3.3.

Along with the fixed parameters U and µ, there is a third fixed parameter, called ρ, that
GrowTransversal will use. The values of U , µ, and ρ are chosen in advance and depend
only on the inputs r and ε. The following notion formalises a suitable choice for these
values.

Definition 3.8. The tuple (U, µ, ρ) of positive real numbers is feasible for (r, ε), where
r ≥ 2 and ε > 0, if the following hold:

1. (2 + ε)
[
1− 1

U

(
1+µU
1−µ + ρ

)]
>
(

2+µ(r+2)+ρ(r+1)
1−µ

)
,

2. ε
[
1− 1

U

(
1+µU
1−µ + ρ

)]
> µ(r+4)+ρ(r+2)

1−µ , and

3. U − µρ > ρ.

Note that when r and ε are fixed, U , µ, and ρ are also fixed constants. As an example,
(U, µ, ρ) =

(
10r
ε
, ε

10r
, ε

10r

)
is feasible for (r, ε) when r ≥ 2 and 0 < ε < 1. We do not make

an attempt here to choose the constants in a way that optimises the running time.

3.2 Subroutines of FindITorBD

Let G and (V1, . . . , Vm) be a graph and vertex partition such that:

(A1) m ≥ 2 and r ≥ 2,

(A2) G is r-claw free with respect to (V1, . . . , Vm),

(A3) Each Vi is an independent set of vertices, and

(A4) G does not contain an isolated vertex.

(See Section 3.1 for explanations as to why we can assume (A1)-(A4) hold.) We will also
assume that the vertices of G have been assigned an ordering v1, . . . , vn, where |V (G)| = n.

Let M be a PIT in G with respect to (V1, . . . , Vm) and let A be a vertex class that does
not contain a vertex in M . The main idea of FindITorBD will be to perform a series of
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modifications to M that will allow us to augment M with a vertex in A. If we are not
successful, then we will find a subset of classes (based on an alternating tree of G) that
has a small dominating set.

We hold off on presenting the algorithm FindITorBD until Section 3.5. Instead, we
present the subroutines that FindITorBD will use to perform these modifications. In the
following subsections, we describe three algorithms that are used by FindITorBD. The first
two algorithms, called BuildLayer (Section 3.2.1) and SuperposedBuild (Section 3.2.2),
are used as subroutines in the third algorithm, called GrowTransversal (Section 3.2.3).
GrowTransversal appears as the main subroutine of FindITorBD.

For the remainder of Section 3.2, let T be an alternating tree of G with respect to M
and A. Let U , µ, and ρ be fixed and chosen in advance so that (U, µ, ρ) is feasible for
(r, ε) (see Definition 3.8). Also, we will refer to properties (T1)-(T4) of Definition 3.5 and
(P1)-(P3) from Section 3.1.

3.2.1 The subroutine BuildLayer

BuildLayer is a subroutine in the main algorithm for augmenting M that helps construct
new layers for T . The function takes as inputs an alternating tree T that satisfies property
(P1), the index ` of the final layer in T , and two sets X and Y of vertices which are X`+1

and Y`+1 for a “partially built” layer `+ 1 that also satisfies property (P1). It then creates
a new layer ` + 1 by augmenting X and Y and returning the resulting pair X ′ and Y ′

together with Vclass(Y ), which will be X`+1, Y`+1, and L`+1 respectively in an alternating
tree that satisfies (P1) whose final layer is indexed by `+ 1.

We give the algorithm BuildLayer in 3.2.1. Note that the conditions in line 6 can be
rewritten as vi is addable for X ′, Y ′, and T .

Claim 3.9. Let T , `, X, and Y be the inputs and X ′, Y ′, and L′ be the outputs of
BuildLayer. The structure T ′ with vertex set V (T ) ∪X ′ ∪ Y ′ and edge set
E(G[V (T ) ∪X ′ ∪M ]) is an alternating tree with layers L0, . . . , L`, L

′ that satisfies (P1).

Proof: The proof is by induction on |X ′ \X|. As T is an alternating tree satisfying (P1) by
the conditions on the input, the claim holds when |X ′ \X| = 0 (which necessarily implies
|Y ′ \ Y | = 0).

Suppose T ′ with V (T ′) = V (T ) ∪ X ′ ∪ Y ′ and E(T ′) = E(G[V (T ) ∪ X ′ ∪M ]) is an
alternating tree satisfying (P1). It suffices to show that adding an addable vertex v for X ′,
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3.2.1 BuildLayer

Input: An alternating tree T that satisfies (P1), the index ` of the final layer in T , and
two sets X and Y of vertices which are X`+1 and Y`+1 for a partially built layer ` + 1
that satisfies (P1).

Output: The sets X`+1, Y`+1, and L`+1 for an alternating tree that satisfies (P1).
1: function BuildLayer(T, `,X, Y )
2: X ′ := X
3: Y ′ := Y
4: L′ := Vclass(Y )
5: for i = 1, . . . , n do
6: if Vclass(vi) ∈ L`, vi /∈ V (T )∪X ′ ∪ Y ′, viu /∈ E(G) for all u ∈ V (T )∪X ′ ∪ Y ′,

and |Vclass(vi) ∩X ′| < U then
7: X ′ := X ′ ∪ {vi}
8: Y ′ := Y ′ ∪ {y ∈M : viy ∈ E(G)}
9: L′ := Vclass(Y ′)

10: return X ′, Y ′, L′

Y ′, and T (as well as NM(v)) to T ′ preserves this. We begin by verifying the structure is
an alternating tree. (See Definition 3.5.)

Let v be an addable vertex for X ′, Y ′, and T . If ` = 0, then T consists only of L0 and so
v being addable for X ′, Y ′, and T means that Vclass(v) = A. As A∩M = ∅, we therefore
have v ∈ V (G) \M and vu /∈ E(G) for all u ∈ X ′ ∪ Y ′ (recall X0 = ∅ and Y0 = ∅). Thus
NM(v)∩Y ′ = ∅ and so the edge set of the graph induced by X ′∪Y ′∪{v}∪NM(v) consists
only of the edges in G[X ′∪{v}∪M ]. Hence (T1) is satisfied. Furthermore, NM(v)∩Y ′ = ∅
and T ′ being an alternating tree means that every vertex of Y ′ still has degree 1 in the
new structure. Every vertex of NM(v) also has degree 1 since M is an independent set.
Thus every vertex of Y ′ ∪ NM(v) has degree 1 in the structure and so (T2) is satisfied.
Identifying the vertices in the same vertex class produces a star whose centre is A and
whose leaves are the elements of Vclass(Y ′∪NM(v)), hence (T3) is also satisfied. The root
is still clearly A as it is the only vertex class that does not contain a vertex in M , so (T4)
also holds. Therefore the structure formed by adding v and NM(v) to T ′ is an alternating
tree. Moreover, since v is addable for X ′, Y ′, and T , there are fewer than U vertices in
X ′ ∩Vclass(v) = X ′ ∩A. Hence |(X ′ ∪{v})∩A| ≤ U and |X ′ ∩Vi| = 1 for all other vertex
classes Vi in the structure. Thus (P1) is also satisfied.

Now suppose ` ≥ 1. Then Vclass(v) ∈ L` and v /∈ V (T ′). Hence v ∈ V (G) \M since
Vclass(v) ∩M ⊆ V (T ′). Also, vu /∈ E(G) for all u ∈ V (T ′) since v is addable for X ′,
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Y ′, and T . Hence NM(v) ∩ Y = ∅ and so E(G[V (T ′) ∪ {v} ∪NM(v)]) consists only of the
edges in G[V (T ′) ∪ {v} ∪M ]. Hence (T1) is satisfied. Furthermore, NM(v) ∩ V (T ′) = ∅
since v is not adjacent to any u ∈ V (T ′). Since T ′ an alternating tree, every vertex of Y ′

still has degree 1 in the new structure and every vertex of NM(v) also has degree 1 since
M is an independent set. Thus every vertex of Y ′ ∪ NM(v) has degree 1 in the structure
and so (T2) is satisfied. Identifying the vertices in the same vertex class produces a tree
since the only added vertex classes are those of Vclass(NM(v)), which are all adjacent to
Vclass(v) (which is a vertex of T (T ′) since Vclass(v) ∈ L`). Hence (T3) is also satisfied.
The root is still clearly A as it is the only vertex class that does not contain a vertex in
M , so (T4) also holds. Therefore the structure formed by adding v and NM(v) to T ′ is
an alternating tree. Moreover, since v is addable for X ′, Y ′, and T , there are fewer than
U vertices in (V (T ′) \M) ∩ Vclass(v). Hence |((V (T ′) \M) ∪ {v}) ∩ Vclass(v)| ≤ U and
|(V (T ′) \M) ∩ Vi| ≤ U for all other vertex classes Vi in the structure. Thus (P1) is also
satisfied.

This concludes the proof.

3.2.2 The subroutine SuperposedBuild

SuperposedBuild is a subroutine in the main algorithm for augmenting M that, after a
modification of M occurs in the algorithm, modifies T so that it remains an alternating tree
with respect to the new PIT M and A as well as satisfies (P1) and (P3). SuperposedBuild
possibly augments T by adding some vertices that are no longer blocked due to the mod-
ification of M . The function takes as input an alternating tree T that satisfies (P1) and
the index ` of the final layer of T . It then performs some tests on the layers of T , to see
if any Xi could be substantially enlarged, and returns a possibly modified alternating tree
T ′ that satisfies (P1) and (P3) as well as the index `′ of the final layer of T ′. We give the
algorithm SuperposedBuild in 3.2.2.

Note that SuperposedBuild performs BuildLayer on every layer of T . This may seem
strange as SuperposedBuild is only used when the main algorithm for augmenting M
(GrowTransversal) modifies the vertices in M in some vertex classes in L`. However, the
reason SuperposedBuild must perform BuildLayer on every layer and not just layer ` is to
ensure the output T ′ satisfies property (P3). We can see this in the following example.

We give an example for how a modification to layer ` can affect a layer i < ` when
layer i had been modified previously. Recall X ′ and Y ′ replace Xi and Yi only when
|X ′| ≥ (1 + µ)|Xi|. Let x1 and x2 be vertices in vertex classes of Li−1 that are not in
V (T ) and that share neighbours y ∈ Yi and w ∈ Y`. Suppose that during an iteration in
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3.2.2 SuperposedBuild

Input: An alternating tree T that satisfies (P1) and the index ` of the final layer of T .
Output: An alternating tree T ′ that satisfies (P1) and (P3) and the index `′ of the final

layer of T ′.
1: function SuperposedBuild(T, `)
2: for i = 1, . . . , ` do
3: Ti := the alternating tree with layers L0, . . . , Li−1

4: (X ′, Y ′, L′) := BuildLayer(Ti, i− 1, Xi, Yi)
5: if |X ′| ≥ (1 + µ)|Xi| then
6: Xi := X ′

7: Yi := Y ′

8: Li := L′

9: T ′ := the alternating tree with layers L0, . . . , Li
10: return T ′, i

11: return T, `

GrowTransversal, a modification to M in layer i removes y from M ∩ Yi and that doing
so makes x1 and x2 addable for Xi, Yi \ {y}, and Ti, where Ti is the alternating tree with
layers L0, . . . , Li−1. Since w ∈ NM(x1) ∩ NM(x2), BuildLayer(Ti, i − 1, Xi, Yi \ {y}) can
only add one of x1 and x2 to X ′. If the resulting output X ′ satisfies |X ′| < (1 + µ)|Xi|,
then SuperposedBuild leaves Xi unchanged and GrowTransversal continues its sequence
of building layers and modifying M . Hence neither x1 nor x2 is in the alternating tree
(note that this is why w can appear in Y`). Now suppose a modification to layer ` removes
w from M ∩ Y`. Again, x1 and x2 are addable for Xi, Yi \ {y}, and Ti. However, now
adding x1 to X ′ does not prevent x2 from being added to X ′. This increases the size of
the output X ′ returned by BuildLayer(Ti, i − 1, Xi, Yi \ {y}), which makes it possible for
|X ′| ≥ (1 + µ)|Xi| after this modification. Therefore, to maintain property (P3), every
layer must be checked after any modification to M .

Claim 3.10. The structure T ′ returned by SuperposedBuild(T, `) is an alternating tree
that satisfies properties (P1) and (P3) whose final layer is indexed by `′.

Proof: Let T be an alternating tree that satisfies (P1) and let ` be the index of the final
layer of T . We show that the output T ′ of SuperposedBuild(T, `) is an alternating tree
that satisfies properties (P1) and (P3) and `′ is the index of its final layer.

Suppose that for each i, BuildLayer(Ti, i− 1, Xi, Yi) returns an X ′ where
|X ′| < (1 + µ)|Xi|. Then SuperposedBuild returns T and `, the index of its final layer.
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Hence the output satisfies (P1) be assumption. It satisfies (P3) because each X ′ is a union
of Xi and some addable vertices for Xi, Yi, and Ti. Therefore |X ′| < (1 + µ)|Xi| means
that there are fewer than µ|Xi| vertices v ∈ V (G) \ (M ∪Xi) such that v is not blocked,
Vclass(v) ∈ Li−1, and |Vclass(v) ∩Xi| < U .

Now suppose BuildLayer(Ti, i − 1, Xi, Yi) returns an X ′ where |X ′| ≥ (1 + µ)|Xi| for
some i. Then the outputs X ′, Y ′, and L′ returned by BuildLayer replace Xi, Yi and Li
respectively. By Claim 3.9, the structure T ′ formed by adding X ′, Y ′, and L′ to Ti is
an alternating tree T ′ with layers L0, . . . , Li−1, L

′ that satisfies (P1). As SuperposedBuild
outputs T ′ and i (which is the index of the final layer of T ′), we therefore know that it
outputs an alternating tree satisfying (P1). The alternating tree satisfies (P3) because for
SuperposedBuild to perform BuildLayer(Ti, i− 1, Xi, Yi), it performed
BuildLayer(Tj, j − 1, Xj, Yj) for all 1 ≤ j < i and did not stop. Hence the condition
|X ′| ≥ (1 + µ)|Xj| was not satisfied for any 1 ≤ j < i. Moreover,
(X ′, Y ′, L′) = BuildLayer(Ti, i− 1, Xi, Yi), so BuildLayer(Ti, i− 1, X ′, Y ′) would not return
a larger tree (see BuildLayer). Hence |X ′| < (1 + µ)|X ′| and so (P3) holds.

This concludes the proof.

3.2.3 The subroutine GrowTransversal

GrowTransversal is the main algorithm for augmenting M . It takes as inputs M and a
vertex class A and performs a series of modifications to M until either a vertex in A is
added to M or an iteration constructs a layer i with too small an Xi relative to the size
of T . When GrowTransversal terminates, it returns the final PIT M ′, a graph T , and an
integer `. If GrowTransversal terminates due to an iteration constructing a layer i with at
most ρ|Y≤i−1| vertices in Xi, then T is an alternating tree with respect to M ′ and A that
satisfies properties (P1)-(P3) whose final layer is indexed by i. Otherwise, GrowTransversal
returns a PIT M ′ containing a vertex in A (with |M ′| = |M |+ 1), an empty graph T , and
0. If the output of GrowTransversal has i > 0, we will show in the next section that T
contains a subset B of vertex classes whose vertices are dominated by a set of fewer than
(2 + ε)|B| vertices with the properties stated in outcome (2) of Theorem 3.1. We give the
algorithm GrowTransversal in 3.2.3.

GrowTransversal begins by initialising the alternating tree T with respect to M and
A as well as its number of layers `. While A does not contain a vertex in the PIT M ′,
the algorithm repeats a building layer operation (line 6) followed by a loop of collapsing
operations (lines 12-24) that modify M ′ when enough immediately addable vertices with
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3.2.3 GrowTransversal

Input: A PIT M and a vertex class A that does not contain a vertex in M .
Output: Either a PIT M ′, an alternating tree T with respect to M ′ and A satisfying

properties (P1)-(P3), and `+1 the index of the final layer of T , or a PIT M ′ containing
a vertex in each of Vclass(M) ∪ {A}, an empty graph, and 0.

1: function GrowTransversal(M,A)
2: Initialise X0 = ∅, Y0 = ∅, L0 = {A}, M ′ := M .
3: T := the alternating tree with layer L0

4: ` := 0
5: while A ∩M ′ = ∅ do
6: (X`+1, Y`+1, L`+1) := BuildLayer(T, `, ∅, ∅)
7: T := the alternating tree with layers L0, . . . , L`+1

8: if |X`+1| ≤ ρ|Y≤`| then
9: return (M ′, T, `+ 1)
10: else
11: ` := `+ 1
12: while |IM ′(X`)| > µ|X`| do
13: if ` = 1 then
14: M ′ := M ′ ∪ {u} for u ∈ IM ′(X1) of smallest index.
15: T := ∅
16: return (M ′, T, 0)
17: else
18: for i = 1, . . . , n do
19: if vi ∈ Y`−1 and IM ′(X`) ∩ Vclass(vi) 6= ∅ then
20: M ′ := (M ′\{vi})∪{u} for u ∈ IM ′(X`)∩Vclass(vi) of smallest

index.
21: Y`−1 := Y`−1 \ {vi}
22: L`−1 := L`−1 \ Vclass(vi)

23: T ′ := the alternating tree with layers L0, . . . , L`−1

24: (T, `) := SuperposedBuild(T ′, `− 1)
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respect to M ′ are present in the newly constructed layer. Figure 3.2 shows an example of
one collapse operation (lines 19-22).

L`

(a)

L`

(b)

L`

(c)

L`−1

(d)

L`−1

(e)

Figure 3.2: An example of an iteration of the loop of collapsing operations, where layer
` > 1 is collapsed. The relevant part of alternating tree T at the start of the iteration is
shown in (a). Images (b) and (c) together show one iteration of the for loop that changes
M ′, Y`−1, and L`−1. Specifically, (b) shows T after M ′ and Y`−1 are modified and (c) shows
the same section at the end of the iteration of the for loop. The result of the for loop (i.e.
T ′) is shown in (d) and this section in the final alternating tree after SuperposedBuild is
applied is shown in (e).

Note that performing one collapse operation may result in other vertices in the vertex
classes of earlier layers becoming addable with respect to the new M ′. Hence one collapse
operation can lead to a sequence of collapse operations. It remains to show that after
one iteration of the while loop of collapsing operations completes, the structure T is an
alternating tree that satisfies properties (P1)-(P3) or the empty graph (which only occurs
when lines 13-16 are implemented).

Claim 3.11. Suppose that at the start of the while loop of collapsing operations, T is an
alternating tree with respect to M ′ and A whose final layer is indexed by ` and satisfies
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property (P1) for all layers and property (P2) for all but possibly layer `. Then after the
while loop completes, the structure T is either an alternating tree with respect to (a possibly
different) M ′ and A that satisfies properties (P1)-(P3) or the empty graph.

Proof: Let T be an alternating tree with respect to M ′ and A that satisfies property (P1)
for all layers and property (P2) for all but possibly layer `, where ` is the index of the
final layer of T . If lines 13-16 are implemented, then T is set to the empty graph and the
algorithm terminates. Otherwise, ` > 1 and X` contains more than µ|X`| vertices in vertex
classes of L`−1 that are immediately addable vertices with respect to M ′.

Each vertex class in L`−1 contains exactly one vertex in Y`−1 (since M ′ is a PIT
and Y`−1 ⊆ M). Thus lines 19-22 exchange exactly two vertices per Vj ∈ L`−1 where
|Vj ∩ IM ′(X`)| ≥ 1. As each vertex u ∈ IM ′(X`) is immediately addable with respect to
M ′ and the vertex vi ∈ M ′ is removed from M when the vertex u of smallest index in
IM ′(X`) ∩ Vclass(vi) is added to M ′, M ′ remains a PIT. Moreover, Vclass(vi) is removed
from L`−1, and so the structure T ′ is a subgraph of T . Hence T ′ satisfies properties (T2)-
(T4) since T satisfies them. Also, since each u ∈ X` is not adjacent to any V (T ) \ Y` by
construction, we have (T1) holds (any new edge to M ′ would be to a vertex in X`). Thus
T ′ is an alternating tree with respect to the new M ′ and A.

As we have not changed the number of vertices in any vertex class in
`−1⋃
i=0

Li by line 22, we

know T ′ is an alternating tree satisfying (P1) since T satisfied (P1). Hence by Claim 3.10,
the output T of SuperposedBuild(T ′, `− 1) is an alternating tree satisfying (P1) and (P3).
Therefore each iteration of the while loop ends with T being an alternating tree with
respect to M ′ and A that satisfies (P1) and (P3) (unless lines 13-16 are implemented).

Let T and M ′ be the alternating tree and PIT at the completion of the while loop of
collapse operations. Note that each layer 0 ≤ i < ` is left unchanged by the while loop.
This is because the BuildLayer operation for layer i in the algorithm SuperposedBuild is
the only operation applied to layer i. As SuperposedBuild removes all layers after the one
it adjusts and the while loop of collapse operations does not add layers to the tree, we
can therefore conclude that |IM ′(Xi)| remains unchanged for all 0 ≤ i < `. Since the loop
continues until |IM ′(X`)| ≤ µ|X`|, we can conclude (P2) holds for T .

This concludes the proof.

Claim 3.12. At the start of any iteration of the main while loop of GrowTransversal, T
is an alternating tree with respect to M ′ and A that satisfies properties (P1)-(P3).

Proof: For the first iteration of the while loop, the statement holds trivially as T is an
alternating tree with respect to M ′ = M and A that contains no vertices. We show that,
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given an iteration of the while loop starts with an alternating tree T with respect to M ′

and A that satisfies properties (P1)-(P3), it ends with an alternating tree T ′ with respect
to a (possibly different) M ′ and A or terminates.

Let T be an alternating tree with respect to M ′ and A that satisfies properties (P1)-(P3)
and let ` be the index of the final layer of T . Then by Claim 3.9, the structure T ′ formed
by adding X`+1, Y`+1, and L`+1 to T is an alternating tree that satisfies (P1). Moreover
BuildLayer does not affect the vertices in layers L0, . . . , L`, and so |IM ′(Xi)| ≤ µ|Xi| for
all 0 ≤ i ≤ `. If lines 8-9 are implemented, the while loop terminates. Thus suppose they
are not implemented.

If |IM ′(X`+1)| ≤ µ|X`+1|, then T ′ satisfies (P2) and the loop of collapsing operations is
not performed. Hence (P3) follows from T ′ satisfying (P1) and (P2) together with the fact
that BuildLayer constructs the entire layer. Therefore T ′ satisfies (P1)-(P3). Now suppose
|IM ′(X`+1)| > µ|X`+1|. Then by Claim 3.10, the output T ′ (and M ′) at the end of the
loop of collapsing operations is an alternating tree with respect to M ′ and A that satisfies
properties (P1)-(P3). This concludes the proof.

Note that in GrowTransversal, the PIT M ′ is only changed during iterations of the
loop of collapsing operations. Moreover, a vertex in A can only be added to M ′ if ` = 1
at the start of an iteration of this loop. This is because A ∈ L0 and for ` 6= 1, the vertices
vi have Vclass(vi) ∈ Lj for some j ≥ 1. Hence A ∩M ′ = ∅ throughout the main while
loop unless lines 13-16 are performed, which terminates the loop. Thus GrowTransversal
returns either a PIT M ′ and an alternating tree T with respect to M ′ and A whose final
layer is indexed by i > 0, or GrowTransversal returns a PIT M ′ with A ∩M ′ 6= ∅ and an
empty graph T (with index 0).

We will show in the next section that given an alternating tree T with respect to M
and A such that |X`+1| ≤ ρ|Y≤`|, where `+1 is the index of the final layer of T , there exists
some set B of the vertex classes in T such that GB is dominated by a set D of vertices
with the properties stated in outcome (2) of Theorem 3.1. Our analysis will provide a
specific B and its corresponding D given that GrowTransversal returns (M,T, ` + 1) for
some `+ 1 > 0.

3.3 Analysis of GrowTransversal

Recall from Section 3.2 that we assume G is an r-claw-free graph with respect to vertex
partition (V1, . . . , Vm), each vertex class Vi is an independent set of vertices, r ≥ 2, and

30



ε > 0 (i.e. assume (A1)-(A4)). We also assume that U , µ, and ρ are fixed such that
(U, µ, ρ) is feasible for (r, ε). Also, note that the algorithms in Section 3.2 assume that
the vertices of the graph G have been assigned some arbitrary but fixed ordering, and the
vertices are processed by our algorithms subject to this ordering.

In this section, we prove that when BuildLayer constructs a layer `+ 1 where
|X`+1| ≤ ρ|Y≤`|, we can give a set B of vertex classes and set D of vertices that satisfy the
conditions of outcome (2) of Theorem 3.1. To do so, we first give some consequences of
the alternating trees in GrowTransversal satisfying properties (P1)-(P3).

Lemma 3.13. Let T be the alternating tree with respect to PIT M ′ and vertex class A at
the start of some iteration of the main while loop in GrowTransversal. Then the layers of
T are not collapsible and |Yi| ≥ (1− µ)|Xi| for each i 6= 0.

Proof: The proof is by induction on the number of iterations of the main while loop in
GrowTransversal. In the first iteration, T is the alternating tree with respect to M ′ = M
and A with X0 = ∅, Y0 = ∅, and L0 = {A}. Hence |IM ′(X0)| = |X0| = 0 and so layer 0 is
not collapsible (see Definition 3.7). Also, there is no layer i in T for which i 6= 0 and so
the conditions hold.

Let T be the alternating tree with respect to PIT M ′ and vertex class A at the start
of some iteration of the main while loop and let ` be the index of the final layer of T .
Suppose the layers of T are not collapsible and |Yi| ≥ (1−µ)|Xi| for each layer i 6= 0 in T .
We show that the alternating tree T ′ at the end of iteration satisfies these two properties
as well. (Note that T ′ is also the alternating tree at the start of the next iteration of the
main while loop.)

During this iteration, note that layer `+ 1 is constructed. If GrowTransversal does not
terminate and layer `+ 1 is not collapsible, then the first property holds for T ′ since none
of the earlier layers are modified.

If GrowTransversal does not terminate and layer ` + 1 is collapsible, let T ′ be the
alternating tree with respect to M ′ at the end of the loop of collapsing operations and let
`′ be the index of the final layer of T ′. Unless the algorithm terminates, `′ ≥ 1.

Each iteration of this loop reduces the number of layers in the tree, but does not modify
any layer j with 0 ≤ j < `′. Thus layer j of T ′ is not collapsible for all 0 ≤ j < `′ since it is
also layer j of T . Layer `′ of T ′ may be different than layer `′ of T , however the condition
of the loop of collapsing operations implies that layer `′ is not collapsible (since `′ is the
final layer of T ′ when the loop completes). Hence none of the layers in T ′ are collapsible
(unless the algorithm terminates during the iteration).
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To show the second property holds for T ′, recall that Yi contains all of the blocking
vertices of all of the vertices in Xi by (T1) and every vertex in Yi is adjacent to exactly
one vertex in Xi by (T2). Thus, there are at most |Yi| vertices in Xi \ IM ′(Xi) and at most
µ|Xi| vertices in IM ′(Xi) (since (P2) holds) for each i = 1, . . . , `′. Hence |Xi| ≤ |Yi|+µ|Xi|
for each i ∈ {1, . . . , `′}.

Lemma 3.14. Let T be the alternating tree with respect to PIT M ′ and vertex class A at
the start of some iteration of the main while loop in GrowTransversal and let ` be the index
of the final layer of T . Then for each i 6= 0,

(X ′i, Y
′
i , L

′
i) := BuildLayer(Ti, i− 1, Xi, Yi)

satisfies |X ′i| < (1 + µ)|Xi|, where Ti is the alternating tree with respect to M ′ and A with
layers L0, . . . , Li−1.

Proof: Consider layer i of T for some i 6= 0. Note that the vertex sets Xi and Yi
were either constructed during an implementation of BuildLayer or an implementation
of SuperposedBuild in some previous iteration of the main while loop of GrowTransversal.
In either case, an (additional) application of BuildLayer(Ti, i−1, Xi, Yi) could not increase
the size of Xi since both BuildLayer and SuperposedBuild created Xi to be as large as
possible with respect to M ′ during its construction.

Suppose no layer built between the iteration that constructed layer i of T and the
current iteration is collapsible. Then the loop of collapsing operations is never performed,
and so BuildLayer(Ti, i − 1, Xi, Yi) would return X ′i = Xi, Y

′
i = Yi, and L′i = Li. Hence

|X ′i| < (1 + µ)|Xi|.
Now suppose some layer built between the iteration that constructed layer i of T and

the current iteration was collapsible. Note that the index of the collapsible layer must
be greater than i as otherwise Li would be discarded. Thus, for each j ≥ i + 1 such
that layer j is collapsible, SuperposedBuild performs BuildLayer on layer i to try to aug-
ment Xi by at least a µ proportion of its size. However, since Li is a layer in T at the
start of the current iteration, SuperposedBuild does not succeed in changing Xi. Hence
BuildLayer(Ti, i− 1, Xi, Yi) does not increase the number of vertices in Xi by µ|Xi|, and
so |X ′i| < (1 + µ)|Xi|.

Lemma 3.15. Suppose M ′, T , and `+1 are the outputs of GrowTransversal with `+1 > 0.
Then

|Y ′≤` \ Y≤`| < µ(r − 1)|X≤`|,
where Y ′0 = ∅ and all other Y ′i are given by (X ′i, Y

′
i , L

′
i) := BuildLayer(Ti, i− 1, Xi, Yi) for

Ti the alternating tree with respect to M ′ and A with layers L0, . . . , Li−1.
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Proof: Let v ∈ Y ′≤` \ Y≤`. Then by definition v ∈M , and hence v blocks its neighbours. If
uv ∈ E(G) for any u ∈ Xi such that 0 ≤ i ≤ `, v blocks u and so v would be included in Yi
(see BuildLayer). This implies v ∈ Y≤`, which is a contradiction. Therefore N(v)∩X≤` = ∅.
However, v ∈ Y ′i \Yi for some 1 ≤ i ≤ ` and, by the construction of X ′i and Y ′i , v is adjacent
to exactly one u ∈ X ′i (see BuildLayer). Thus v has a neighbour in X ′i \Xi and so v has a
neighbour in X ′≤` \X≤`.

Note that for each 1 ≤ i ≤ `, Y ′i is a set of independent vertices in distinct vertex
classes. As G is r-claw-free, each vertex of X ′i has at most r−1 independent neighbours in
different vertex classes. By Lemma 3.14, |X ′i \Xi| < (1 + µ)|Xi| − |Xi| = µ|Xi| since layer
i is a layer of the alternating tree at the start of the iteration in which GrowTransversal
terminates (recall i < `+ 1). Hence |X ′≤` \X≤`| < µ|X≤`|, and so

|Y ′≤` \ Y≤`| ≤ (r − 1)|X ′≤` \X≤`| < µ(r − 1)|X≤`|.

We are now ready to prove the main result of this section.

Lemma 3.16. Suppose M ′, T , and `+1 are the outputs of GrowTransversal with `+1 > 0.
Then

B = (Vclass(Y≤`) \ U) \

(⋃̀
i=1

Vclass(X ′i \Xi)

)
and

D = X ′≤` ∪ Y ′≤` ∪X`+1 ∪ Y`+1 ∪ S

satisfy the conditions of outcome (2) of Theorem 3.1, where

• U ⊆ Vclass(Y≤`) is the set of vertex classes Vj such that |Vj ∩X≤`+1| = U ,

• (X ′i, Y
′
i , L

′
i) = BuildLayer(Ti, i − 1, Xi, Yi) for each 1 ≤ i ≤ ` with Ti being the

alternating tree with respect to M ′ and A with layers L0, . . . , Li−1,

• W = X ′≤` ∪ Y ′≤` ∪X`+1 ∪ Y`+1, and

• S is the set of all u ∈ V (G) for which u ∈ N(v) for some v ∈ IM ′(W ) and u has the
smallest index amongst the vertices in N(v).

Proof: Let T , M ′, A, B, U , X ′i, Y
′
i , Ti, W , and S be as defined in the lemma statement.

Define B0 = Vclass(Y≤`) ∪ {A} and note B ⊆ B0. We will show D contains the vertex set
of a constellation for B0 (Claim 3.17), D dominates GB (Claim 3.18), |D| < (2+ ε)(|B|−1)
(Claim 3.22), and |D \ V (K)| < ε(|B| − 1) (Claim 3.23).
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Claim 3.17. K = G [(X≤` ∪ Y≤`) \ IM(X≤`)] is a constellation for B0.

Proof: As T is an alternating tree with respect to M ′ and A, it is clear T` is an alternating
tree with respect to M ′ and A with vertex set X≤` ∪ Y≤`. Hence K is a constellation for
B0 = Vclass(Y≤`) ∪ {A} (see discussion after Definition 3.5).

Clearly V (K) ⊆ D since Xi ⊆ X ′i and Yi ⊆ Y ′i by construction (see BuildLayer).

Claim 3.18. The set W ∪ S dominates GB.

Proof: Let B =
⋃
Vi∈B

Vi. We show W ∪ S dominates GB by showing W dominates

G[B \ IM ′(W )] and S dominates G[IM ′(W )].

Let u ∈ B \ IM ′(W ). Note that by the choice of B, we know B does not contain a
vertex class in Vclass(X ′i \ Xi) for any 1 ≤ i ≤ `. As X0 = ∅, we therefore have that
u /∈ X ′≤` \X≤`.

Suppose u ∈ W \ IM ′(W ). Then u ∈ (X≤`+1 ∪ Y ′≤` ∪ Y`+1) \ IM ′(W ). If u ∈ Y ′i for
some i ∈ {1, . . . , `}, then the construction of (X ′i, Y

′
i , L

′
i) and (Xi, Yi, Li) by BuildLayer

implies that u has a neighbour v in X ′i (see BuildLayer), which means v ∈ W . Similarly,
if u ∈ Y`+1, then u has a neighbour v in X`+1. If u ∈ Xi for some i ∈ {1, . . . , ` + 1}, then
since u /∈ IM ′(W ), u has a neighbour v that blocks u. By the construction of Xi and Yi in
GrowTransversal, v ∈ Yi and so v ∈ W . Therefore, every u ∈ W \ IM ′(W ) has a neighbour
in W . Thus we may assume u ∈ B \ (W ∪ IM ′(W )).

Note that each vertex class in B has at most one vertex in M ′ and that these vertices
are in Y ′≤`. Thus u /∈M ′. Since Vclass(u) ∈ B, let i be the layer of T such that Vclass(u) ∈
Li−1.

Suppose i < `+1 and u has no neighbours in X ′≤i∪Y ′≤i. As B contains no vertex classes
in U , Vclass(u) contains fewer than U vertices in Xi. Furthermore, Vclass(u) contains no
vertices in X ′i \ Xi. Thus by Definition 3.6, u is an addable vertex for Xi, Yi, and Ti.
Hence BuildLayer(Ti, i − 1, Xi, Yi) would not stop until either u is added to X ′i or u has
a neighbour in X ′i ∪ Y ′i . As u ∈ B \ (W ∪ IM ′(W )) and X ′i ⊆ W , we know that u /∈ X ′i.
Therefore u has a neighbour in X ′i ∪ Y ′i .

Now suppose i = `+ 1 and u has no neighbours in W . Then again Vclass(u) contains
fewer than U vertices in Xi and Vclass(u) contains no vertices in X ′i \Xi. Thus by Defi-
nition 3.6, u is an addable vertex for X`+1, Y`+1, and T`+1. Hence BuildLayer(T`+1, `, ∅, ∅)
would not stop until either u is added to X`+1 or u has a neighbour in X`+1 ∪ Y`+1. As
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u ∈ B\(W ∪IM ′(W )) and X`+1 ⊆ W , we know that u /∈ X`+1. Therefore u has a neighbour
in X`+1 ∪ Y`+1.

Thus W dominates G[B \ IM ′(W )]. For u ∈ IM ′(W ), note that |N(u)| ≥ 1 by (A4). As
the neighbour v ∈ N(u) with the smallest index in the ordering is in S, clearly S dominates
G[IM ′(W )]. Thus W ∪ S dominates GB.

To bound |D| and |D \ V (K)|, we break the calculations into a few steps. Let

Q = (X ′≤` \X≤`) ∪ (Y ′≤` \ Y≤`) ∪X`+1 ∪ Y`+1 ∪ S.

Note that D = X≤` ∪ Y≤` ∪ Q and D \ V (K) = Q ∪ IM(X≤`). We therefore begin our
calculations by bounding |B| − 1 (Claim 3.19), |S| (Claim 3.20) and |Q| (Claim 3.21).
With these claims and Lemma 3.15, we can then bound |D| (Claim 3.22) and |D \ V (K)|
(Claim 3.23).

Claim 3.19. We have

|B| − 1 ≥
[
1− 1

U

(
1 + µU

1− µ
+ ρ

)]
|Y≤`|.

Proof: Note that the vertex classes in B are the vertex classes of T that do not contain
U vertices in X≤`+1 and do not contain any addable vertices for Xi, Yi, and Ti for all
1 ≤ i ≤ `. We use these facts to bound |B| from below as follows.

Recall that |Vclass(Y≤`) ∪ {A}| = |Y≤`| + 1. It is clear that |U| ≤ |X≤`+1|
U

. By
Lemma 3.14, |X ′i| < (1+µ)|Xi| for each i ∈ {1, . . . , `}. As Xi ⊆ X ′i, this implies that there
are at most µ|Xi| vertices in X ′i\Xi. Thus |Vclass(X ′i\Xi)| ≤ µ|Xi| for all 1 ≤ i ≤ ` and so∑̀
i=1

|Vclass(X ′i\Xi)| ≤ µ|X≤`|. Also by Lemma 3.13, |X≤`| ≤ 1
1−µ |Y≤`|. As GrowTransversal

terminates with `+ 1 > 0, we know from the algorithm that |X`+1| ≤ ρ|Y≤`|. Therefore,
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|B| ≥ |Vclass(Y≤`) ∪ {A}| − |U| −

∣∣∣∣∣⋃̀
i=1

Vclass(X ′i \Xi)

∣∣∣∣∣
≥ |Vclass(Y≤`)| −

1

U
|X≤`+1| − µ|X≤`|

= (|Y≤`|+ 1)−
(

1

U
|X≤`|+

1

U
|X`+1|+ µ|X≤`|

)
≥ |Y≤`|+ 1−

[(
1

U
+ µ

)
|X≤`|+

ρ

U
|Y≤`|

]
≥ |Y≤`|+ 1−

[(
1

U
+ µ

)(
1

1− µ

)
|Y≤`|+

ρ

U
|Y≤`|

]
= 1 +

[
1− 1

U

(
1 + µU

1− µ
+ ρ

)]
|Y≤`|.

Claim 3.20. We have |S| ≤ |IM ′(W )| < 2µ+ρ
1−µ |Y≤`|.

Proof: As S contains the neighbour with the smallest index in the ordering for each
v ∈ IM ′(W ), we have |S| ≤ |IM ′(W )|. By Lemma 3.14, |X ′≤`| < (1 + µ)|X≤`| and so
|X ′≤` \X≤`| < µ|X≤`|. Also, by definition, IM ′(W ) ⊆ X ′≤` ∪ X`+1 (see Definition 3.4).
Thus,

|IM ′(W )| = |IM ′(X ′≤` ∪X`+1)|
= |IM ′(X ′≤`)|+ |IM ′(X`+1)|
≤ |IM ′(X≤`)|+ |IM ′(X ′≤` \X≤`)|+ |X`+1|
< µ|X≤`|+ µ|X≤`|+ |X`+1|
= 2µ|X≤`|+ |X`+1|.

Recall that |X≤`| ≤ 1
1−µ |Y≤`| by Lemma 3.13. Since `+ 1 > 0, we know that

|X`+1| ≤ ρ|Y≤`| (see GrowTransversal). Thus we obtain

|IM ′(W )| < 2µ

1− µ
|Y≤`|+ ρ|Y≤`|,

from which the claim follows.

Claim 3.21. We have

|Q| < µ(r + 2) + ρ(r + 1)

1− µ
|Y≤`|.
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Proof: Since G is r-claw-free we know that |Y`+1| ≤ (r − 1)|X`+1|. Also, since ` + 1 > 0,
we know that |X`+1| ≤ ρ|Y≤`| and therefore |Y`+1| ≤ ρ(r − 1)|Y≤`|. We bound each of
the remaining three summands below using (respectively) Lemma 3.14, Claim 3.15, and
Claim 3.20, to obtain

|Q| ≤ |X ′≤` \X≤`|+ |Y ′≤` \ Y≤`|+ |X`+1|+ |Y`+1|+ |S|

≤ µ|X≤`|+ µ(r − 1)|X≤`|+ ρ|Y≤`|+ ρ(r − 1)|Y≤`|+
2µ+ ρ

1− µ
|Y≤`|

= µr|X≤`|+ ρr|Y≤`|+
2µ+ ρ

1− µ
|Y≤`|

< µr|X≤`|+
2µ+ ρ(r + 1)

1− µ
|Y≤`|.

Since |X≤`| ≤ 1
1−µ |Y≤`| by Lemma 3.13, we conclude |Q| < µ(r+2)+ρ(r+1)

1−µ |Y≤`|.

We can now bound |D| and |D \ V (K)|.

Claim 3.22. We have |D| < (2 + ε)(|B| − 1).

Proof: Claim 3.21 and Lemma 3.13 combine to give

|D| = |X≤` ∪ Y≤` ∪Q|

<

(
1

1− µ
+ 1 +

µ(r + 2) + ρ(r + 1)

1− µ

)
|Y≤`|

<

(
2 + µ(r + 2) + ρ(r + 1)

1− µ

)
|Y≤`|.

Thus by Claim 3.19 and Condition (1) of Definition 3.8 (feasibility of (U, µ, ρ)),

(2 + ε)(|B| − 1) ≥ (2 + ε)

[
1− 1

U

(
1 + µU

1− µ
+ ρ

)]
|Y≤`|

>

(
2 + µ(r + 2) + ρ(r + 1)

1− µ

)
|Y≤`|

> |D|.

Claim 3.23. We have |D \ V (K)| < ε(|B| − 1).
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Proof: To bound |D \ V (K)| using Claim 3.21, note that IM ′(X≤`) ⊆ IM ′(W ). Thus
Claim 3.20 implies that

|D \ V (K)| = |Q ∪ IM ′(X≤`)|

<
µ(r + 2) + ρ(r + 1)

1− µ
|Y≤`|+

2µ+ ρ

1− µ
|Y≤`|

=
µ(r + 4) + ρ(r + 2)

1− µ
|Y≤`|.

Using Claim 3.19 again, and Condition (2) of Definition 3.8, we find that

ε(|B| − 1) ≥ ε

[
1− 1

U

(
1 + µU

1− µ
+ ρ

)]
|Y≤`|

>
µ(r + 4) + ρ(r + 2)

1− µ
|Y≤`|

> |D \ V (K)|.

This completes the proof of Lemma 3.16.

Note that by Lemma 3.16, if the size of the layer constructed at the beginning of an
iteration of the main while loop of GrowTransversal is too small (less than a ρ proportion
of the number of classes already in the tree), then GrowTransversal has found a set of
vertex classes with a small dominating set satisfying the desired properties of outcome (2)
of Theorem 3.1. Thus, it will be important for the proof of the runtime of FindITorBD
to bound the number of layers an alternating tree in an iteration of GrowTransversal can
have. We show that this is c log(m) (and give this c) in Lemma 3.24.

Lemma 3.24. Suppose (U, µ, ρ) is feasible for (r, ε). The number of layers in the alter-
nating tree T with respect to PIT M ′ and vertex class A maintained during the execution
of GrowTransversal is always bounded by c log(m), where c = 1

log[1+ρ(1−µ)]
.

Proof: Suppose T is an alternating tree with respect to M ′ and A at the beginning of some
iteration of the main while loop in GrowTransversal and let ` be the index of the final layer
of T . Consider any layer i where 1 ≤ i ≤ `. By Lemma 3.13, |Yi| > (1 − µ)|Xi|. Since
GrowTransversal did not terminate in the iteration in which layer i was constructed, we
know that

|Yi| > (1− µ)|Xi| > ρ(1− µ)|Y≤i−1|.
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Therefore, since |Y1| ≥ 1, we find m ≥ |Y≤`| =
∑̀
i=0

|Yi| > [1 + ρ(1− µ)]`. Thus the number

of layers at any moment of the algorithm is bounded above by logm
log[1+ρ(1−µ)]

. As µ and ρ are

fixed parameters, this is c log(m) for c = 1
log[1+ρ(1−µ)]

.

3.4 Signature Vectors

We begin this section by defining the signature vector of an alternating tree. Recall that
U , µ, and ρ are fixed parameters such that (U, µ, ρ) is feasible for (r, ε). We will use
these signature vectors to prove that GrowTransversal terminates after a polynomial in m
number of iterations where the degree is a function of r and ε.

Definition 3.25. Let T be an alternating tree with respect to PIT M and vertex class A
and let ` be the index of the final layer of T . The signature of layer i is defined to be

(s2i−1, s2i) =

(
−
⌊

logb
ρ−i

(1− µ)i−1
|Xi|

⌋
,

⌊
logb

ρ−i

(1− µ)i
|Yi|
⌋)

,

where b = U
U−µρ . The signature vector of T is s = (s1, s2, . . . , s2`−1, s2`,∞).

The above definition for the signature of a layer i is chosen so that the lexicographic
value of the signature vector decreases whenever |Xi| increases significantly (see Lemma 3.26
subcase 2.2) as well as decreases whenever |Yi| decreases significantly (Lemma 3.26 subcase

2.1). The factors of ρ−i

(1−µ)i−1 and ρ−i

(1−µ)i
exist to ensure that the coordinates of the signature

vector are non-decreasing in absolute value, which we will show in Lemma 3.27.

We begin by showing that the lexicographic value of the signature vector decreases
during each iteration of GrowTransversal.

Lemma 3.26. The lexicographic value of the signature vector reduces across each iteration
of the main while loop of GrowTransversal unless the algorithm terminates during that
iteration.

Proof: Let T be the alternating tree with respect to PIT M ′ and vertex class A at the
start of some iteration of the main while loop of GrowTransversal and let ` be the index
of the final layer of T . Let s = (s1, . . . , s2`,∞) be the signature vector of T . There are two
cases.

Case 1. No collapse operation occurs in this iteration, i.e. |IM ′(X`+1)| ≤ µ|X`+1|.
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Then the only modification to T in this iteration is a new layer ` + 1 is added to T .
The new signature vector for T is therefore s′ = (s′1, . . . , s

′
2`+2,∞) where s′i = si for all

1 ≤ i ≤ 2` and (s′2`+1, s
′
2`+2) is the signature of layer ` + 1. Hence the lexicographic value

is reduced.

Case 2. At least one collapse operation occurs in this iteration, i.e.
|IM ′(X`+1)| > µ|X`+1|.

Then the iteration contains a loop of collapsing operations. Let T ′ be the alternating
tree with respect to M ′ and A at the start of the last iteration of this loop of collapsing
operations and let `′ be the index of the final layer of T ′. If `′ = 1, then |IM ′(X1)| > µ|X1|
and the algorithm terminates. Hence we may assume `′ > 1.

Let T ∗ be the alternating tree with respect to M ′ and A at the end of this last iteration,
i.e. (T ∗, `∗) is the output of SuperposedBuild(T ′`′ , `

′ − 1), where T ′`′ is the alternating tree
with layers L0, . . . , L`′−1 after the modifications to M ′ are performed. There are two cases.

Subcase 2.1. We have T ∗ = T ′`′ .

Then SuperposedBuild makes no modifications to T ′`′ . Thus the only layer of T ′ modified
during this last iteration is layer `′−1 (see GrowTransversal). Moreover, layers L0, . . . , L`′−2

of T ′ are the same layers as T (see SuperposedBuild). Therefore the signature vector
s′ = (s′1, . . . , s

′
2`′−2,∞) of T ∗ satisfies s′i = si for all 1 ≤ i ≤ 2`′ − 4 and

(s′2`′−3, s
′
2`′−2) =

(
−
⌊

logb
ρ−(`′−1)

(1− µ)`′−2
|X ′`′−1|

⌋
,

⌊
logb

ρ−(`′−1)

(1− µ)`′−1
|Y ′`′−1|

⌋)
.

As the modifications performed in the final iteration before SuperposedBuild is applied
do not modify vertices of layer `′−1 not in M , X`′−1 is not modified and so X ′`′−1 = X`′−1.

Note that each vertex class containing a vertex in IM ′(X`) must contain a vertex in Y`−1.
Since a vertex class contains at most U vertices in X`, there are at least µ

U
|X`| blocking ver-

tices in Y`−1 that are not in T ′`′ because of the modifications to M ′. Since GrowTransversal
did not terminate when layer `′ was constructed initially, we have |X ′`| > ρ|Y≤`′−1| ≥ ρ|Y`′−1|
and so

|Y ′`′−1| ≤ |Y`′−1| −
µ

U
|X ′`| <

(
1− µρ

U

)
|Y`′−1|.
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Therefore,

logb
ρ−(`′−1)

(1− µ)`′−1
|Y ′`′−1| < logb

ρ−(`′−1)

(1− µ)`′−1

(
1− µρ

U

)
|Y`′−1|

≤ logb

(
1− µρ

U

)
+ logb

ρ−(`′−1)

(1− µ)`′−1
|Y`′−1|

≤ logb

(
U − µρ
U

)
+ logb

ρ−(`′−1)

(1− µ)`′−1
|Y`′−1|

= −1 + logb
ρ−(`′−1)

(1− µ)`′−1
|Y`′−1|.

Hence s′2`′−3 = s2`′−3 and s′2`′−2 < s2`′−2, so the lexicographic value of the signature vector
is reduced.

Subcase 2.2. We have T ∗ 6= T ′`′ .

Then SuperposedBuild makes a modification to some layer `∗ of T ′`′ . Hence
|X ′`∗ | ≥ (1 + µ)|X`∗|.

As (U, µ, ρ) is feasible, ρ ≤ U − µρ. Hence U
U−µρ = 1 + µρ

U−µρ ≤ 1 + µ. Thus,

logb
ρ−`

∗

(1− µ)`∗−1
|X ′`∗| ≥ logb

ρ−`
∗

(1− µ)`∗−1
(1 + µ)|X`∗|

= logb (1 + µ) + logb
ρ−`

∗

(1− µ)`∗−1
|X`∗|

≥ 1 + logb
ρ−`

∗

(1− µ)`∗−1
|X`∗ |,

and so s′2`∗−1 < s2`∗−1. Since SuperposedBuild and the loop of collapsing operations do not
modify layers L0, . . . , L`∗−1, we see that s′i = si for all 1 ≤ i ≤ 2`∗−2. Hence the signature
vector of T ∗ is (s′1, . . . , s

′
2`∗−1, s

′
2`∗ ,∞). Thus the lexicographic value of the signature vector

is reduced.

Lemma 3.27. The coordinates of the signature vector are non-decreasing in absolute value
at the beginning of each iteration of the main while loop of GrowTransversal.

Proof: Let T be the alternating tree with respect to PIT M ′ and vertex class A at the
start of some iteration of the main while loop of GrowTransversal and let ` be the index
of the final layer of T . Let s = (s1, . . . , s2`,∞) be the signature vector of T .
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Consider layer i for some 1 ≤ i ≤ `. Since |Yi| ≥ (1− µ)|Xi| by Lemma 3.13,

|s2i−1| =
⌊

logb
ρ−i

(1− µ)i−1
|Xi|

⌋
≤
⌊

logb
ρ−i

(1− µ)i
|Yi|
⌋

= |s2i|.

Hence the coordinates of the signature vector for a layer of T are non-decreasing in absolute
value. Now consider layers i and i+ 1 for some 0 ≤ i ≤ `− 1. As GrowTransversal did not
terminate when layer i+ 1 was constructed initially, we have |Xi+1| ≥ ρ|Yi| and so

|s2i| =
⌊

logb
ρ−i

(1− µ)i
|Yi|
⌋
≤
⌊

logb
ρ−(i+1)

(1− µ)i
|Xi+1|

⌋
= |s2i+1|.

Thus consecutive coordinates of the signature vector for different layers of T are also
non-decreasing in absolute value. Hence the coordinates of the signature vector of T are
non-decreasing in absolute value.

We may now use Lemmas 3.26 and 3.27 to bound the total number of possible signature
vectors.

Lemma 3.28. Let T be the alternating tree with respect to PIT M ′ and vertex class A
at the start of some iteration of the main while loop of GrowTransversal and let ` be the
index of the final layer of T . The number of possible signature vectors for T is bounded by
mf(r,ε).

Proof: For each layer of T , the signature vector of T contains two coordinates. Thus by
Lemma 3.24, the signature vector of T has at most 2c logm coordinates, where
c = 1

log[1+ρ(1−µ)]
. Also, by Lemma 3.27, the coordinates are non-decreasing in absolute value

and so the absolute value of the final (finite) coordinate is an upper bound on the absolute
value of each coordinate in the signature vector. By Definition 3.25, the final coordinate is⌊
logb

([
ρ−`

(1−µ)`

]
|Y`|
)⌋

. As ` ≤ c log(m) (by Lemma 3.24) and |Y`| ≤ m, the absolute value

of each coordinate of the signature vector is bounded above by

logb

[
ρ−c log(m)

(1− µ)c log(m)
|Yc log(m)|

]
≤ logb

[
ρ−c log(m)

(1− µ)c log(m)
(m)

]
= logbm+ logb ρ

−c log(m) − logb(1− µ)c log(m)

= logbm− c[logb(ρ)] log(m)− c[logb(1− µ)] log(m)

=

[
1

log(b)
− c[logb(ρ)]− c[logb(1− µ)]

]
log(m).
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Let R =
[

1
log(b)

− c[logb(ρ)]− c[logb(1− µ)]
]

and note that R is fixed and depends only on

r and ε (since b and c depend only on U , µ, and ρ, which in turn depend only on r and ε).

To each signature vector s = (s1, s2, . . . , s2`−1, s2`,∞), we associate the vector

s+ = (s1 − 1, s2 + 2, . . . , s2`−1 − (2`− 1), s2` + 2`,∞).

The final coordinate of s+ is at most R logm+2` ≤ (R+2c) logm. Since the coordinates of
s are non-decreasing in absolute value (and considering the sign pattern), the coordinates of
s+ are strictly increasing in absolute value. Thus each vector s+ corresponds to a distinct
subset of the set {1, . . . , b(R + 2c) logmc}. Hence the total number of vectors s+ (and
therefore the total number of signature vectors) is at most 2(R+2c) logm.

It is easy to verify that 2(R+2c) logm is mf(r,ε) for some function f of r and ε, which
completes the proof.

The idea of the penultimate paragraph in the proof of Lemma 3.28 was suggested by
a referee of [13] (see [12, 13].) Although one can find the exact function f needed for
any choice of feasible (U, µ, ρ), the function is very large and does not have a “simple”
interpretation. We therefore do not specify f . However, note that for fixed r and ε, mf(r,ε)

is polynomial in m (with a very large degree).

3.5 The Algorithm FindITorBD and the Proof of The-

orem 3.1

With the results of Sections 3.3 and 3.4, we are ready to state FindITorBD and prove
Theorem 3.1.

Let FindITorBD be the algorithm defined in 3.5.1. Note that the sets U and S are as
defined in Lemma 3.16.

Although not necessary for proving Theorem 3.1, the set L returned by FindITorBD
will be used by our algorithm FindWeightPIT in Chapter 5. We therefore ignore the set L
for the time being, other than to say that L = Leaf(K) for the constellation K for B0 ⊇ B
with V (K) ⊆ D.

We now prove Theorem 3.1.
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3.5.1 FindITorBD

Input: A graph G and vertex partition (V1, . . . , Vm) satisfying (A1)-(A4).
Output: Either an IT M of G with respect to (V1, . . . , Vm), or a set B of vertex classes

and set D of vertices satisfying outcome (2) of Theorem 3.1, together with the set L
of leaves in the constellation contained in D.

1: function FindITorBD(G;V1, . . . , Vm)
2: Initialise M := ∅.
3: for i = 1, . . . ,m do
4: if Vi ∩M = ∅ then
5: (M,T, `+ 1) := GrowTransversal(M,Vi)
6: if `+ 1 > 0 then
7: for j = 1, . . . , ` do
8: (X ′j, Y

′
j , L

′
j) := BuildLayer(Tj, j − 1, Xj, Yj)

9: B := (Vclass(Y≤`) \ U) \
(⋃̀
i=1

Vclass(X ′i \Xi)

)
10: D := X ′≤` ∪ Y ′≤` ∪X`+1 ∪ Y`+1 ∪ S.
11: L := Y ′≤` ∪ Y`+1

12: return B, D, and L and terminate.

13: return M
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Proof of Theorem 3.1: By Lemma 3.26, every iteration of GrowTransversal reduces the
lexicographic value of the signature vector of an alternating tree T with respect to a PIT M ′

and vertex class A. Furthermore, Lemma 3.28 implies that the number of such signature
vectors is bounded by mf(r,ε). Thus GrowTransversal terminates after at most mf(r,ε)

iterations. Moreover, it is clear that the algorithms BuildLayer and SuperposedBuild can
be implemented in time O(|V (G)|3) for fixed r and ε. Hence, when r and ε are fixed, each
iteration of GrowTransversal can be implemented in time O(|V (G)|4). As GrowTransversal
is implemented at most m times in FindITorBD and the other steps of FindITorBD take
an additional O(|V (G)|4) operations, the runtime of FindITorBD is

O(|V (G)|4) +m
[
mf(r,ε)O(|V (G)|4)

]
,

which is poly(|V (G)|) for fixed r and ε. It remains to show that FindITorBD returns one
of the two stated outcomes.

Note that FindITorBD starts with M = ∅ and runs GrowTransversal on at most m
vertex classes. At the end of each of these iterations of GrowTransversal, the PIT M covers
one more vertex class than the PIT at the start of the iteration. Also, the PIT at the end
of one iteration of GrowTransversal is the initial PIT of the next iteration.

Suppose FindITorBD terminates during iteration i of the main loop of FindITorBD.
Then Vi ∩M = ∅ and GrowTransversal(M,Vi) returns (M ′, T, ` + 1) for some alternating
tree T with respect to PIT M ′ and vertex class Vi. Hence by Lemma 3.16, the sets B
and D have the properties stated in outcome (2) of Theorem 3.1. (The sets B and D are
defined by FindITorBD to be the same as in the statement of Lemma 3.16.)

Suppose FindITorBD does not terminate during any iteration of the main loop of
FindITorBD. Then `+ 1 = 0 and so GrowTransversal(M,Vi) returns a PIT M ′ containing
a vertex in each of Vclass(M) ∪ {Vi}. Hence at the end of iteration m, every vertex class
contains a vertex in the final PIT M . Hence M is an IT of G and so FindITorBD returns
an IT in G.

Recall from Lemma 3.28 that the number of signature vectors for T is bounded by
mf(r,ε). Thus the degree of the runtime of FindITorBD depends on r and ε as well. In
particular, this means that the degree of the runtime of FindITorBD depends on ∆ in the
case of Corollary 3.2. Hence FindITorBD is only efficient when the parameters r and ε (or
∆) are fixed.

In Chapter 4, we will explore some problems where the parameters r and ε are constant.
This allows us to use FindITorBD to introduce new efficient algorithmic results for these
problems. However, there are other applications where the parameters r and ε are not
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constant, such as problems where the maximum degree of the graphs is unbounded. We
will give a new randomised algorithm that overcomes the dependence on ∆ in the case of
Corollary 3.2 as well as an application of this algorithm to fractional strong colourings in
Chapter 6.
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Chapter 4

Applications

As mentioned in Chapter 1, Theorem 2.4 has been applied to a variety of problems. In
this chapter, we will look at some known results in graph colourings, graph partitionings,
and hypergraph matchings which have applied Theorem 2.4. In particular, we will look at
results due to Annamalai [11, 13]; Kaiser, Král, and Škrekovski [57]; King [61]; Aharoni,
Berger, and Ziv [3]; and Alon, Ding, Oporowski, and Vertigan [9]. We aim to present
modifications to these results that make them algorithmic. Outlines of some of these
modifications appear in [38].

We are not the first to present algorithmic versions of applications of Theorem 2.4.
Annamalai [11, 13] provided an algorithm that found perfect matchings in bipartite r-
uniform hypergraphs. Our algorithm FindITorBD is a generalisation of this algorithm,
which we will show in Section 4.1.

All of the results presented in this chapter are modifications of the results of other
authors. As such, we will focus on presenting the changes necessary to make the original
results algorithmic. The interested reader may find more detailed information on the
runtimes for these algorithmic results in the appendices.

This chapter is organised as follows. In Section 4.1, we discuss the hypergraph matching
result of Annamalai [11, 13] and how it follows from Theorem 3.1. In Section 4.2, we modify
the proof of a circular colouring result due to Kaiser, Král, and Škrekovski [57] to make
their result fully algorithmic. In Section 4.3, we present a fully algorithmic proof of a result
due to King [61] which finds an independent set meeting every maximum clique in a graph.
In Section 4.4, we modify the proof of a strong colouring result due to Aharoni, Berger,
and Ziv [3] to prove a slightly weaker algorithmic version of their result. In Section 4.5,
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we present algorithmic versions of two results of Alon, Ding, Oporowski, and Vertigan [9]
that find vertex and edge colourings that induce small monochromatic components.

4.1 Hypergraph Matchings

In this section, we will discuss the result of Annamalai in more detail. Annamalai [11,
13] was the first to present an algorithmic version of an application of Theorem 2.4. In
particular, he provided an algorithmic result for a hypergraph version of Hall’s Theorem
for bipartite graphs. The equivalent non-algorithmic result is due to Haxell [48].

We aim to show that Annamalai’s result can be derived using FindITorBD. Before
doing so, we introduce the following notions for hypergraphs.

A hypergraph is r-uniform if every edge in the hypergraph contains exactly r vertices.
For the remainder of this section, we will only consider hypergraphs that are r-uniform for
some r ≥ 2. We have the following notion for a “bipartite” hypergraph.

Definition 4.1. An r-uniform bipartite hypergraph H = (A,B,E) is a hypergraph on a ver-
tex set that is partitioned into two sets A and B such that |e ∩ A| = 1 and |e ∩B| = r − 1
for each edge e ∈ E.

A hypergraph is a bipartite hypergraph if it is an r-uniform bipartite hypergraph for
some r.

Let H = (A,B,E) be a bipartite hypergraph. We define a matching and cover of H as
follows.

Definition 4.2. A matching in H is a subset M ⊆ E of pairwise disjoint edges of H. A
matching M is perfect if it saturates A, i.e. |M | = |A|.

Definition 4.3. Let F ⊆ E. A subset T ⊆ B is a B-cover of F if |e ∩ T | 6= ∅ for every
e ∈ F . The smallest cardinality of a B-cover of F is denoted by τB(F ).

For a subset S ⊆ A, let ES be the set of edges in H incident to S, i.e.

ES = {e ∈ E : |e ∩ S| = 1}.

The following generalisation of Hall’s Theorem due to Haxell [48] provides a condition
under which H admits a perfect matching.
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Theorem 4.4 ([48]). Let H = (A,B,E) be an r-uniform bipartite hypergraph. If for all
S ⊆ A,

τB(ES) > (2r − 3)(|S| − 1),

then H admits a perfect matching.

Note that when r = 2, Theorem 4.4 is (the nontrivial direction of) Hall’s Theorem. It
was shown in [48] that Theorem 4.4 is best possible for every r. Furthermore, Theorem 4.4
is a special case of Theorem 2.4. This can be seen as follows.

Given an r-uniform bipartite hypergraph H = (A,B,E), construct an auxiliary graph
GH with vertex set E, in which vertices e and f are adjacent if and only if e ∩ f ∩B 6= ∅.
Consider the vertex partition of GH given by assigning e and f to the same vertex class
if and only if e ∩ f ∩ A 6= ∅. We index the vertex classes by A. Thus, a set M ⊆ E is a
perfect matching of H if and only if M ⊆ V (GH) is an IT of GH .

By Theorem 2.4 applied to GH , if H does not have a perfect matching, then there exists
a subset B of vertex classes (indexed by a set S(B) ⊆ A) such that (GH)B is dominated
by V (K) for a constellation K for B. Thus T =

⋃
e∈V (K)

(e ∩ B) is a set of vertices of H

that form a B-cover of ES(B). Claim 4.5 then gives an immediate contradiction to the
assumption of Theorem 4.4, thus completing the proof.

Claim 4.5. Let B be a subset of the vertex classes of GH and K be a constellation for B.
Then, ∣∣∣∣∣∣

⋃
e∈V (K)

(e ∩B)

∣∣∣∣∣∣ ≤ (2r − 3)(|S(B)| − 1).

Proof: Each component C of K corresponds to a set of edges of H, consisting of the centre
eC of the star C and a nonempty set LC of leaves, all of which intersect eC in B. Hence
the total number of vertices of B contained in {eC} ∪ LC is at most (r − 1) + (r − 2)|LC |.
By definition,

⋃
C

LC is an IT of |B| − 1 classes of B, which implies that K has at most

|S(B)| − 1 components, and that
∑
C

|LC | = |S(B)| − 1. Therefore,∣∣∣∣∣∣
⋃

e∈V (K)

(e ∩B)

∣∣∣∣∣∣ ≤
∑
C

(r − 1 + (r − 2)|LC |)

≤ (r − 1)(|S(B)| − 1) + (r − 2)(|S(B)| − 1)

= (2r − 3)(|S(B)| − 1),
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where the sum is over all components C of K.

Annamalai [11, 13] proved the following algorithmic version of Theorem 4.4.

Theorem 4.6 ([11, 13]). There exists an algorithm that finds for fixed r ≥ 2 and ε > 0,
in time polynomial in the size of the input, a perfect matching in r-uniform bipartite hy-
pergraphs H = (A,B,E) satisfying

τB(ES) > (2r − 3 + ε)(|S| − 1)

for all S ⊆ A.

We now show that Theorem 3.1 is a generalisation of Theorem 4.6. Note that for
every r-uniform bipartite hypergraph H = (A,B,E), the graph GH is r-claw-free with
respect to any partition. This follows from the facts that the neighbours of e which form
an independent set in GH must contain distinct vertices of e ∩ B and |e ∩ B| = r − 1.
Thus for fixed r and ε, an algorithm A that takes as input H = (A,B,E), finds GH , and
applies FindITorBD for r′ = r and ε′ = ε

r−1
to GH and any vertex partition of GH is a

polynomial-time algorithm that finds for each input H = (A,B,E) either:

(1) an IT in GH (which is a perfect matching in H), or

(2) a set B of vertex classes and a set D of vertices of GH such that D dominates (GH)B
in GH and |D| < (2 + ε′)(|B| − 1). Moreover D contains V (K) for a constellation K
for some B0 ⊇ B, where |D \ V (K)| < ε′(|B| − 1).

If (1) is the outcome for every input H, then A is the algorithm in Theorem 4.6.
Therefore, suppose (2) holds for some input H. Then D is a set of edges of H such that
every edge of ES(B) intersects T =

⋃
e∈D

(e ∩B). For u = |D \ V (K)| it is clear that

∣∣∣∣∣∣
⋃

e∈D\V (K)

(e ∩B)

∣∣∣∣∣∣ ≤ u(r − 1).

We now estimate

∣∣∣∣∣ ⋃
e∈V (K)

(e ∩B)

∣∣∣∣∣. As in the proof of Claim 4.5, for each component

C of the constellation K, the number of vertices of B contained in {eC} ∪ LC is at most
(r− 1) + (r− 2)|LC | = 1 + (r− 2)|V (C)|. Each component of K has at least two vertices,
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so the number of components is at most |V (K)|
2

= |D|−u
2

. Since |D| < (2 + ε′)(|B| − 1), we
have ∣∣∣∣∣∣

⋃
e∈V (K)

(e ∩B)

∣∣∣∣∣∣ ≤
∑
C

(1 + (r − 2)|V (C)|)

≤ |V (K)|/2 + (r − 2)|V (K)|
= (2r − 3) |V (K)|

2

= (2r − 3) |D|−u
2

< (2r − 3)
(
1 + ε′

2

)
(|B| − 1)− u

(
r − 3

2

)
,

where again the sum is over all components C of K. Therefore,

|T | < u(r − 1) + (2r − 3)
(
1 + ε′

2

)
(|B| − 1)− u

(
r − 3

2

)
= u

2
+
[
2r − 3 + ε′

(
r − 3

2

)]
(|B| − 1)

< [2r − 3 + ε′(r − 1)](|B| − 1)

= (2r − 3 + ε)(|B| − 1),

where the last line holds because u < ε′(|B| − 1) and ε′ = ε
r−1

. This contradicts the
assumption that τB(ES) > (2r− 3 + ε)(|S| − 1) for S = S(B). Hence only (1) occurs, thus
proving Theorem 4.6.

4.2 Circular Edge Colourings

In this section, we discuss some modifications that can be made to a result by Kaiser,
Král, and Škrekovski [57] (stated as Theorem 4.8 in Section 4.2.1) to make their result
fully algorithmic. In particular, we will provide an algorithm that, given a cubic bridgeless
graph G with girth at least f(p), will return a proper circular (3p+ 1)/p-edge-colouring of
G in polynomial time, where f is the same function of p as the original Kaiser, Král, and
Škrekovski result. We therefore present a fully algorithmic proof of their result.

This section is organised as follows. We begin with a brief discussion of circular colour-
ings and their relation to Jaeger and Swart’s Girth conjecture [55]. In Section 4.2.1, we
discuss the result of Kaiser, Král, and Škrekovski [57]. This includes necessary definitions
in Section 4.2.1.1, an outline of the colouring in Section 4.2.1.2, and the algorithm in
Section 4.2.1.3. We conclude in Section 4.2.2 with another algorithmic proof of a result
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from [57] for the case p = 2. However, this result does not provide the best known bound
on the girth when p = 2. The best bound, due to Král, Máčajová, Mazák, and Sereni [68],
also has an algorithmic proof, so our discussion of this second result from [57] will be brief.

Circular colourings of graphs were introduced in 1988 by Vince [92] under the name
“star colourings”. We define circular p/q-edge-colourings as follows.

Definition 4.7. A proper circular p/q-edge-colouring of a graph G is a colouring of the
edges of G with colours in {0, . . . , p− 1} such that the difference modulo p of the colours
assigned to two adjacent edges is not in {−(q − 1),−(q − 2), . . . , q − 1}. The circular
chromatic index of G is given by

χ′c(G) = inf
{
p
q

: there is a proper circular p/q-edge-colouring of G
}
.

Figure 4.1 gives two examples of a proper circular 10/3-edge-colouring.

6

0

6

3 0 3

0

6

0

(a)

9

3

7

5 8 4

2

6

1

(b)

Figure 4.1: Two proper circular 10/3-edge-colourings of the same graph.

It is well known that for all graphs G, the infimum in the definition of χ′c(G) is always
obtained (see [22, 92]). Hence we may think of χ′c(G) as the smallest ratio p

q
for which

there is a proper circular p/q-edge-colouring of G. Furthermore, it can be shown that
χ′(G)− 1 < χ′c(G) ≤ χ′(G), where χ′(G) is the edge chromatic number of G (see [92, 96]).
Thus for all graphs G, χ′(G) = dχ′c(G)e. It is also easy to see that for each p and q such
that χ′c(G) ≤ p

q
, there is a proper circular p/q-edge-colouring of G. The interested reader

may find more results on circular colourings in the surveys by Zhu [96, 97].

For the remainder of Section 4.2, we will be interested in graphs which are both cubic
and bridgeless. Note that for a cubic bridgeless graph G, we have that 2 < χ′c(G) ≤ 4 since
3 ≤ χ′(G) ≤ 4 by Vizing’s theorem. However, it can be shown that χ′c(G) = 3 if and only
if χ(G) = 3, where χ(G) is the chromatic number of G (see [90]). Hence 3 ≤ χ′c(G) ≤ 4.
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Cubic bridgeless graphs for which χ′(G) = 4 are referred to as snarks. It was conjectured
by Jaeger and Swart [55] that there exists a number g such that each snark has girth at
most g. This conjecture is known as the Girth conjecture. It was disproved by Kochol [64]
through the construction of cyclically 5-edge-connected snarks with arbitrarily large girth.
However, Kaiser, Král, and Škrekovski [57] showed that the Girth conjecture “almost
holds” for circular edge-colourings, i.e. for every ε > 0, there exists an integer g such that
each cubic bridgeless graph G with girth at least g has χ′c(G) ≤ 3 + ε. This result is best
possible for every g; there is a snark S with girth at least g and χ′c(S) 6= 3 [57].

4.2.1 Circular (3p+ 1)/p-edge-colourings

Our work in this section is based on the following result of Kaiser, Král, and Škrekovski [57].

Theorem 4.8 ([57]). Let p ∈ N with p ≥ 2 and G be a cubic bridgeless graph with girth

g ≥ f(p) =

{
2(2p)2p−2 if p ≥ 2 is even

2(2p)2p if p ≥ 3 is odd.

Then G admits a proper circular (3p+ 1)/p-edge-colouring.

Theorem 4.8 almost implies the Girth conjecture for circular edge-colourings as follows.
For any ε > 0, choose an integer p > 0 such that 1

p
≤ ε. Then for any cubic bridgeless

graph G whose girth is at least f(p), G has a proper circular (3p + 1)/p-edge-colouring.
As 3p+1

p
= 3 + 1

p
≤ 3 + ε, this implies χ′c(G) ≤ 3 + ε for all cubic bridgeless graphs G with

girth at least f(p).

The proof of Theorem 4.8 relies on a particular auxiliary graph H that is constructed
using G, p, and a fixed 1-factor F of G. Kaiser, Král, and Škrekovski proved that H has
an IT using Theorem 2.4. Then, given such an IT, they explicitly provided the required
proper circular (3p+1)/p-edge-colouring of G. Thus, to make their result fully algorithmic,
all that is necessary is to find an IT in the graph H. We instead will use the same technique
and colouring for a subgraph G′ of H to prove Corollary 4.9. Both G′ and H are defined
in Section 4.2.1.2.

Corollary 4.9. There exists an algorithm CircularP that for integers p ≥ 2, takes as input
any cubic bridgeless graph G with girth

g ≥ f(p) =

{
2(2p)2p−2 if p ≥ 2 is even

2(2p)2p if p ≥ 3 is odd,
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and finds a proper circular (3p + 1)/p-edge-colouring of G. For fixed p, the runtime is
poly(|V (G)|).

Note that the function f(p) in Corollary 4.9 is the same as in Theorem 4.8. Thus no
weakening of the constraints in Theorem 4.8 is necessary to make the result algorithmic.

We prove Corollary 4.9 in Section 4.2.1.3. To do so, we require several definitions
provided in Section 4.2.1.1 and the colouring provided in Section 4.2.1.2.

4.2.1.1 Definitions

We now define some necessary structures for the proof of Corollary 4.9. These definitions
may also be found in [57]. For all of the definitions, we will assume G is a cubic bridgeless
graph with girth g, F is a fixed 1-factor of G, and k is always an integer in {1, . . . , g}. Note
that such an F exists for G by Petersen’s theorem (see, for ex., [28]). Moreover G− F is
a collection of cycles.

Definition 4.10. A k-segment of G is a k-tuple (v1, . . . , vk) of vertices vi ∈ V (G) for which
there is a cycle C in G− F such that v1v2 . . . vk is a path in C.

As the cycles of G are not oriented, we consider (v1, v2, . . . , vk) and (vk, vk−1, . . . , v1) to
be the same k-segment of G.

Definition 4.11. Define GF,k to be the graph whose vertices are the k-segments of G and
two k-segments (v1, . . . , vk) and (w1, . . . , wk) are adjacent in GF,k if there exist
i, j ∈ {1, . . . , k} such that viwj ∈ F .

Note that each vertex of G is contained in at most k of the k-segments. Furthermore,
each vertex of G is incident with a unique edge in F and so has a unique neighbour that
is incident with the same edge in F . Thus the maximum degree of GF,k is at most k2.

Let n be the number of cycles in G − F and let C1, . . . , Cn be these cycles. For each
i ∈ {1, . . . , n}, let Vi be the set of all k-segments whose vertices are in cycle Ci. Thus
(V1, . . . , Vn) is a vertex partition of GF,k and |Vi| = |Ci| ≥ g for each i ∈ {1, . . . , n}.

Definition 4.12. Let r ∈ N. A system of r-independent k-segments is a set {s1, . . . , sn}
of k-segments such that si ∈ Vi for each i and the distance in GF,k between each pair si, sj
with i 6= j is at least r + 1.
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From Definition 4.12, it is clear that a system of 1-independent k-segments is an IT of
GF,k with respect to (V1, . . . , Vn). In general, a system of r-independent k-segments is an
IT of (GF,k)

r with respect to (V1, . . . , Vn), where (GF,k)
r is the rth power of GF,k. The rth

power of a graph G is a graph defined on V (G) so that two vertices are adjacent if and
only if the distance between them in G is at most r.

For the next definition, let p ≥ 2 be an integer and assume g ≥ f(p), where f(p) is as
defined in Theorem 4.8 (and Corollary 4.9).

Definition 4.13. An octopus is a subgraph of G with the following structure, which we
define algorithmically. First, let C be a cycle of G− F and let Q = v1v2 . . . v2p be a path
on 2p vertices in C. Define P(1) = {Q}.

We construct P(2) from P(1) as follows. First, for each vi ∈ V (Q), let vFi be the
neighbour of vi such that viv

F
i ∈ F . Then, if p is even, let P (vi) = u1 . . . u2p−3 be the

path in G − F on 2p − 3 vertices such that up−1 = vFi . Otherwise, p is odd and so let
P (vi) = u1 . . . u2p−1 be the path in G − F on 2p − 1 vertices such that up = vFi . Define
P(2) to be the set of all paths P (vi) for which vi ∈ V (Q), i.e. P(2) = {P (vi) : vi ∈ V (Q)}.
Note that each path in P(2) is a path on 2p + 5 − 4(2) vertices when p is even and is a
path on 2p+ 7− 4(2) vertices if p is odd.

Now, assume P(`) has been constructed for some 2 ≤ ` ≤
⌈
p
2

⌉
and that all the paths

in P(`) are on k vertices, where

k =

{
2p+ 5− 4` if p is even

2p+ 7− 4` if p is odd.

We construct P(`+ 1) from P(`) as follows. First, for each path Q ∈ P(`), let
Q = vQ,1 . . . vQ,k. Then for each vQ,i ∈ V (Q), we have vFQ,i as the neighbour of vQ,i such

that vQ,iv
F
Q,i ∈ F . For each i 6=

⌈
k
2

⌉
, define P (vQ,i) = u1 . . . uk−4 to be the path in G − F

on k − 4 vertices such that uj = vFQ,i for j =
⌈
k−4

2

⌉
. Define P(` + 1) to be the set of all

paths P (vQ,i) such that Q ∈ P(`) and i 6=
⌈
k
2

⌉
, i.e.

P(`+ 1) =
{
P (vQ,i) : Q ∈ P(`), i 6=

⌈
k
2

⌉}
.

Note that these paths have k − 4 vertices, which is 2p + 5− 4(` + 1) or 2p + 7− 4(` + 1)
vertices if p is even or odd respectively. Moreover, for ` =

⌈
p
2

⌉
, the paths in P(` + 1)

contain 2p + 5− 4
(
p
2

+ 1
)

= 1 vertex if p is even and 2p + 7− 4
(
p+1

2
+ 1
)

= 1 vertex if p
is odd. Hence we do not construct P(`) for any ` >

⌈
p
2

⌉
+ 1.
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We define the octopus to be the structure formed by the union of the vertices in the

paths in
dp/2e+1⋃
`=1

P(`) together with every edge of G that is incident to at least one of these

vertices. (Note that for an edge incident with exactly one vertex in this union, the endpoint
not in this union is not considered to be in the octopus.)

Figure 4.2 gives an example of an octopus.

v1 v2 v3 v4 v5 v6

C

Figure 4.2: The octopus with head (v1, v2, v3, v4, v5, v6). The inner edges of the octopus
have solid lines and the contact edges have dashed lines. The dotted edge represents the
remainder of head cycle C, which is not part of the octopus.

We refer to the cycle C in Definition 4.13 as the head cycle and the 2p-segment
(v1, . . . , v2p) as the head of the octopus.

For each ` ∈
{

1, . . . ,
⌈
p
2

⌉
+ 1
}

, we say that P(`) contains the set of paths in level ` of
the octopus and refer to the paths in P(`) as blocks. Edges that are in a block are called
inner edges and edges of G−F that are not inner edges but are adjacent to an inner edge
are called contact edges. We say that a contact edge is adjacent to block B if it is adjacent
to an inner edge of B.

Note that for ` ≥ 2, the centre vertex of each block in P(`) is incident with the same
edge of F as some vertex in a block in P(` − 1). Given a block A ∈ P(`), the edge of F
between a vertex in A and a vertex in some B ∈ P(`− 1) is called an input edge and the
edges of F between a vertex in A and a vertex in some B ∈ P(` + 1) are called output
edges. Hence an output edge of level ` is an input edge of level `+ 1.

Before discussing the colouring, it is important to note that no octopus is self-intersecting,
i.e. no vertex in the octopus appears in two distinct blocks of the octopus. If it did, then
the octopus contains a vertex v in distinct blocks A and B. By the construction in Def-
inition 4.13, it is clear that the octopus contains a path PA from its head h to A and a
path PB from h to B. As v ∈ A ∩B, this implies that the subgraph h ∪ PA ∪ PB ∪A ∪B
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contains a cycle. However, the maximum length of such a cycle is less than

|V (h)| · |E(PA ∪ PB)| = 2p
[
2
(⌈

p
2

⌉
+ 1
)]

=

{
2p2 + 4p if p is even

2p2 + 6p if p is odd.

Since 2p2 + 4p < 2(2p)2p−2 and 2p2 + 6p < 2(2p)2p for p ≥ 2, this contradicts g being the
girth of G. Hence the subgraph induced by the vertices of the octopus must be acyclic and
so no vertex appears in multiple blocks.

4.2.1.2 The Colouring Technique

In this section, we discuss the technique our algorithm will use to colour the graph G. It
relies on the following result of Kaiser, Král, and Škrekovski from [57].

Lemma 4.14 ([57]). Suppose c is a partial proper circular (3p + 1)/p-edge-colouring of
G and o is an octopus in G such that c colours the contact edges of o by p and 2p so
that each pair of contact edges adjacent to the same block receive opposite colours and c
does not colour any of the inner edges of o. Then c can be extended to a proper circular
(3p+ 1)/p-edge-colouring of o.

The exact colouring used to prove Lemma 4.14 can be found in Appendix A.1. For our
purposes, it is enough to know that, given a partial proper circular (3p+1)/p-edge-colouring
satisfying the hypotheses of Lemma 4.14, the edges of an octopus o can be coloured in such
a way that maintains the proper circular (3p+ 1)/p-edge-colouring.

Let G be a cubic bridgeless graph with girth g ≥ f(p) for f(p) as in Corollary 4.9 and
F be a fixed 1-factor of G. Suppose O is a set of disjoint octopi in G. If the edges of
G − F that are not inner edges of the octopi of O can be 2-coloured with the colours p
and 2p such that contact edges adjacent to the same block (for each block of each octopus
o ∈ O) receive distinct colours, we can extend the partial colouring to a proper circular
(3p+ 1)/p-edge-colouring of all of G by applying Lemma 4.14 to each o ∈ O. It therefore
remains to find such a set of octopi O so that G − F can be coloured in such a manner.
To do so, we will use an IT of an auxiliary graph G′.

Let C1, . . . , Cn be the cycles of G − F and for each i ∈ {1, . . . , n}, let Vi be the set of
all 2p-segments whose vertices are in cycle Ci. We define GF,2p as in Definition 4.11 for
k = 2p and define (GF,2p)

p−1 and (GF,2p)
p to be the (p − 1)th and pth power, respectively,

of GF,2p.
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Let S ⊆ {1, . . . , n} be the set of indices such that i ∈ S if and only if |V (Ci)| is odd.
Define

H =

{
(GF,2p)

p−1 if p is even

(GF,2p)
p if p is odd.

Let G′ be the subgraph of H induced by the 2p-segments in the odd cycles of G− F , i.e.

G′ = H

[⋃
i∈S

Vi

]
.

Let (V ′1 , . . . , V
′
m) be the vertex partition of G′ whose classes are also vertex classes in

(V1, . . . , Vn), so for each j ∈ {1, . . . ,m}, we have V ′j = Vi for some i ∈ {1, . . . , n}. Recall
that |Vi| = |Ci| ≥ g ≥ f(p).

Claim 4.15. For fixed p, an IT M of G′ with respect to (V ′1 , . . . , V
′
m) can be found in time

poly(|V (G′)|).

Proof: We aim to use Corollary 3.2. To do so, we require the maximum degree of G′ as
well as |V ′i | for all i ∈ {1, . . . ,m}. We will determine these values by cases involving the
parity of p using the following application of the Binomial theorem:

k∑
i=0

[(2p)2 − 1]i =
1− [(2p)2 − 1]k+1

1− [(2p)2 − 1]

=
[(2p)2 − 1]k+1 − 1

[(2p)2 − 1]− 1

< [(2p)2 − 1]k

< (2p)2k.

Note that the inequalities hold because p ≥ 2. Hence [(2p)2 − 1]− 1 ≥ [16− 1]− 1 > 1
and [(2p)2 − 1]k+1 − 1 > [(2p)2 − 1]k+1, which implies the first inequality, as well as
(2p)2 − 1 ≥ 16− 1 > 0, which implies the second inequality (ak < bk for 0 < a < b).

Case 1. p is even.

By assumption, the girth of G is at least 2(2p)2(p−1) and |V ′i | is odd, so
|V ′i | ≥ 2(2p)2(p−1) + 1 for all i ∈ {1, . . . ,m}. It therefore remains to show that the maxi-
mum degree ∆ of G′ is at most (2p)2(p−1).
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Recall from the discussion after Definition 4.11 that the maximum degree of GF,2p is at
most (2p)2. Hence the power graph (GF,2p)

p−1 has maximum degree at most

[
(2p)2

] p−2∑
i=0

[
(2p)2 − 1

]i
< [(2p)2][(2p)2(p−2)] = (2p)2(p−1).

As G′ is a subgraph of H = (GF,2p)
p−1, we have ∆ ≤ (2p)2(p−1) and |V ′i | ≥ 2∆ + 1.

Case 2. p is odd.

The girth of G is at least 2(2p)2p and, as in Case 1, |V ′i | ≥ 2(2p)2p + 1 for all
i ∈ {1, . . . ,m}. It remains to show that the maximum degree ∆ of G′ is at most (2p)2p.

As the maximum degree of GF,2p is at most (2p)2, the power graph (GF,2p)
p has maxi-

mum degree at most

[
(2p)2

] p−1∑
i=0

[
(2p)2 − 1

]i
< [(2p)2][(2p)2(p−1) = (2p)2p.

Since G′ is a subgraph of H = (GF,2p)
p, we have ∆ ≤ (2p)2p and |V ′i | ≥ 2∆ + 1.

In both Case 1 and Case 2, G′ is a graph with maximum degree ∆ and the vertex parti-
tion (V ′1 , . . . , V

′
m) of G′ satisfies |V ′i | ≥ 2∆+1 for each i. Hence for fixed p, by Corollary 3.2,

an IT M of G′ with respect to (V ′1 , . . . , V
′
m) can be found in time poly(|V (G′)|).

We choose O to be the set of octopi o such that the head of o is in M . By the
discussion after Definition 4.12, we know that M is a system of (p − 1)-independent or

p-independent 2p-segments of GF,2p

[⋃
i∈S

Vi

]
with respect to (V ′1 , . . . , V

′
m) when p is even or

odd, respectively. Hence O is a set of octopi such that:

(O1) The head cycle of each octopus o ∈ O is odd.

(O2) Each odd cycle of G− F is the head cycle of exactly one o ∈ O.

(O3) The heads of any two octopi in O are at distance at least p in GF,2p if p is even and
at distance at least p+ 1 in GF,2p if p is odd.

Property (O3) implies the following.

Claim 4.16. The octopi of O are vertex-disjoint.
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Proof: Suppose not. Let o1 and o2 be two octopi in O that share a common vertex v.

By Definition 4.13, the edge e ∈ F incident with v (as well as its other endpoint) is
always in any octopus that contains v. Thus e is an edge of both o1 and o2 and so there
is a path from the head of o1 to the head of o2 using only edges in the octopi. Therefore
an upper bound on the distance between the heads of o1 and o2 occurs when e is assumed
to be an edge between level

⌈
p
2

⌉
and level

⌈
p
2

⌉
+ 1 in both octopi. But then the distance

between the head of o1 and head of o2 is at most p
2

+
(
p
2
− 1
)

= p − 1 if p is even and at

most p+1
2

+
(
p+1

2
− 1
)

= p if p is odd. Both contradict (O3), and so the octopi of O are
vertex-disjoint.

In addition to being vertex-disjoint, consider the set IH of inner edges of the heads of
the octopi in O. The graph G∗ = G− (F ∪ IH) consists only of the even cycles of G− F
and a set of even paths, one for each odd cycle of G− F . Thus G∗ is bipartite and so G∗

can be 2-coloured with colours p and 2p. By applying such a 2-colouring to the edges of
G that are not inner edges of the octopi in O, we obtain the desired partial colouring of
G that can be extended to the inner edges of the octopi in O. The only edges that are
uncoloured will be edges in F that are not in the octopi in O. Such edges are necessarily
adjacent to edges that are coloured p and 2p (from the 2-colouring) and so may be coloured
0 to obtain a proper circular (3p+ 1)/p-edge-colouring of all of G.

In the next section, we present an algorithm that uses a partial 2-colouring of G − F
and an IT of G′ to extend the partial colouring to the edges of the octopi in O using the
colouring of Claim 4.14. It then assigns the remaining edges of F the colour 0 to complete
the proper circular (3p+ 1)/p-edge-colouring. We will show that all of these steps can be
accomplished in time poly(|V (G)|).

4.2.1.3 Proof of Corollary 4.9

We now present an algorithm that uses the technique outlined in Section 4.2.1.2 to colour
the graph G. The graphs G′ and G∗ as well as the sets S and O are as defined in Sec-
tion 4.2.1.2. Let CircularP be an algorithm that takes as input a cubic bridgeless graph G
with girth g ≥ f(p) and performs the following steps:

1. Find a 1-factor F of G.

2. Form ordered lists of vertices Vi such that each Vi is a unique cycle in G−F and the
vertices are stored in Vi in cyclic order.
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3. Find an IT M of G′ with respect to the vertex partition associated with the vertex
classes in S.

4. Find a 2-colouring c of G∗ with colours p and 2p.

5. Determine the set of edges in the octopi of O and remove the colours c assigned to
these edges.

6. Colour the edges of the octopi in O as in Claim 4.14.

7. Colour the remaining uncoloured edges 0.

8. Return the colouring.

We will show that such an algorithm returns a proper circular (3p+1)/p-edge-colouring
of G (Lemma 4.17). The proof that CircularP runs in time poly(|V (G)|) for fixed p can
be found in Appendix A.2.

Lemma 4.17. Let p ≥ 2 be given. The algorithm CircularP takes as input any cubic
bridgeless graph G with girth

g ≥ f(p) =

{
2(2p)2p−2 if p ≥ 2 is even

2(2p)2p if p ≥ 3 is odd,

and returns a proper circular (3p+ 1)/p-edge-colouring of G.

Proof: As G is cubic and bridgeless, G has a 1-factor F by Petersen’s theorem. Thus it is
possible to find cycles C1, . . . , Cn of G − F and define the sets of 2p-segments V1, . . . , Vn
for these cycles. From this, the set S of indices for which |V (Ci)| is odd can be determined
(recall |V (Ci)| = |Vi|) and so the subgraph G′ is well-defined. Let {V ′1 , . . . , V ′m} be the
subset of vertex classes in {V1, . . . , Vn} whose indices are in S.

By applying FindITorBD (for ∆ = ∆(G′)) on inputs G′ and (V ′1 , . . . , V
′
m), we find an IT

M of G′ in time poly(|V (G′)|) when p is fixed (recall ∆(G′) is determined by p). Given this
M , the set of octopi O whose heads are in M is uniquely determined by Definition 4.13.
By removing the edges of F and the set IH of inner edges of the heads of the octopi in
O, the resulting graph G∗ is bipartite and so can be 2-coloured with colours p and 2p.
CircularP then checks the inner edges of the octopi in O and removes the colours assigned
to these edges. The result is a partial colouring c′ of G− F where the contact edges of all
octopi in O are coloured with p and 2p.
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Recall that the head of each octopus in O contains an odd number of edges. Hence
for each octopus in O, the head of the octopus is adjacent to one contact edge coloured
p and another coloured 2p by c′ (the head cycle is odd and the head has 2p − 1 edges).
Furthermore, each block of an octopus has an even number of edges. Hence for each
octopus in O, each block of the octopus is also adjacent to one contact edge coloured p and
another coloured 2p by c′. Thus c′ satisfies the conditions of Claim 4.14 for each o ∈ O.
Moreover, since the octopi of O are vertex-disjoint (Claim 4.16), extending c′ to colour
the octopi in any set O′ ⊆ O results in a colouring that still satisfies the conditions of
Claim 4.14 for each o ∈ O \O′. Hence by repeatedly applying the colouring of Claim 4.14
to each octopus in O, c′ can be extended to a proper circular (3p+ 1)/p-edge-colouring of
G− (F \ I), where I is the set of inner edges of the octopi in O.

Note that for an edge uv ∈ F \ I, we have that u and v are not in any octopus
in O. Also, c′ colours the edges of G − (F ∪ I) either p or 2p in such a way that G∗

(= G− (F ∪ IH)) is properly 2-coloured. Thus u is incident with an edge coloured p and
an edge coloured 2p in G− F and the same holds for v. Colouring the edges of F \ I with
0 maintains the proper circular (3p + 1)/p-edge-colouring, so CircularP returns a proper
circular (3p+ 1)/p-edge-colouring of G.

Corollary 4.9 follows from Lemma 4.17 and Lemma A.6 in Appendix A.2.

4.2.2 Circular 7/2-edge-colourings when g ≥ 16

In this section, we discuss a different approach for p = 2, which is the smallest interesting
case of (3p + 1)/p-edge-colourings (since p = 1 is equivalent to finding a 4-edge-colouring
of cubic graph G).

When p = 2, Corollary 4.9 states that CircularP takes as an input any bridgeless cubic
graph with girth g ≥ f(2) = 2(4)2(1) = 32 and returns a proper circular 7/2-edge-colouring
of G. Kaiser, Král, and Škrekovski [57] showed a different technique that found such
colourings for any cubic bridgeless graph with girth g ≥ 14. This result is not best possible
as it has been shown by Král, Máčajová, Mazák, and Sereni [68] that every cubic bridgeless
graph with girth at least 6 has a proper circular 7/2-edge-colouring. Moreover, the proof
of the girth 6 result is algorithmic.

Even though it is not the best known algorithmic result when p = 2, we briefly outline
a modification of the technique from [57] that gives the following algorithmic result.
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Corollary 4.18. There is an algorithm that takes as input any cubic bridgeless graph G
with girth g ≥ 16 and returns, in time poly(|V (G)|), a proper circular 7/2-edge-colouring
of G.

As in [57], we use the auxiliary graph GF,±. Let G be a cubic bridgeless graph and F
be a fixed 1-factor of G. For each 4-segment (α, β, γ, δ) of a cycle C in G − F , let GF,±
contain two vertices v±(α, β, γ, δ) and v∓(α, β, γ, δ). The vertex v±(α, β, γ, δ) represents
the requirement that the edges of F incident with α and β are assigned “+” and the edges
of F incident with γ and δ are assigned “−.” Similarly, the vertex v∓(α, β, γ, δ) represents
the requirement that the edges of F incident with α and β are assigned “−” and the edges
of F incident with γ and δ are assigned “+.” Two vertices of GF,± are adjacent in GF,± if
their corresponding requirements contradict each other.

From the above construction, it is clear that GF,± has 2|V (G)| vertices and is 16-regular.
Let G′ be the subgraph of GF,± induced by the vertices derived from the 4-segments of odd
cycles of G − F . Then |V ′i | ≥ 2(17) = 34 for each set V ′i consisting of the vertices of G′

that are derived from the vertices of cycle Ci in G−F (recall girth g ≥ 16 and Ci is odd).
As the maximum degree of G′ is at most 16, we have 2∆(G′) + 1 = 33 < 34 and so an IT
M of G′ with respect to (V ′1 , . . . , V

′
m), where m is the number of odd cycles in G− F , can

be found in time poly(|V (G′)|).
For each vertex in M , assign the appropriate sign to the corresponding edges of F in G.

Then, for each unsigned edge in F , assign it the sign “+.” We now colour the edges of G
as follows. For each e ∈ F , colour e with 6 if e is “+” and 0 otherwise. For each even cycle
Ci of G−F , 2-colour the edges of Ci with colours 2 and 4. For each odd cycle Ci of G−F ,
let (v1, v2, v3, v4) be the 4-segment of Ci in M . Colour v1v2 with 1, v2v3 with 3, and v3v4

with 5. Then, colour the remaining edges of Ci cyclically by alternating between colours
2 and 4, starting at the uncoloured edge incident with v3v4. The result is a colouring of G
that is clearly a proper circular 7/2-edge-colouring.

Since the above colouring can be applied in time O(|V (G)|), it suffices to show that G′

and the assignment of signs to edges in F can be found in time poly(|V (G)|). As a better
algorithmic result is known, we merely state the runtimes of these tasks and omit their
proofs. However, we note that FindITorBD is a subroutine of Sign.

Claim 4.19. There is an algorithm MakeGFPM that takes as inputs a cubic bridgeless
graph G with girth g and a 1-factor F of G and returns, in time O(|V (G)|), the graph
GF,±.

Lemma 4.20. There exists an algorithm Sign that takes as input a cubic bridgeless graph G
with girth g ≥ 16 and returns, in time poly(|V (G)|), a 1-factor F of G and an assignment
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of “+” and “−” to the edges of F such that for every odd cycle C of G − F , C contains
a 4-segment (v1, v2, v3, v4) where v1, v2 are incident with edges assigned “+” and v3, v4 are
incident with edges assigned “−.”

4.3 Hitting All Maximum Cliques with an Indepen-

dent Set

In this section, we discuss some modifications that can be made to a result by King [61]
(stated as Theorem 4.22) to find independent sets that meet every maximum clique in a
graph. In particular, we will provide an algorithm that, given a graph G with clique number
ω(G) > 2

3
(∆(G) + 1), will return, in polynomial time for fixed ∆(G), an independent set

meeting every maximum clique. Note that a set U meets (or hits) a graphG if U∩V (G) 6= ∅.

This section is organised as follows. We begin with a brief history of the problem of
finding an independent set that meets every maximum clique in the graph and how it
relates to Reed’s conjecture. Next, we prove an algorithmic version of a lemma from [61]
(Lemma 4.24) as well as a new corollary of Theorem 3.1 (Corollary 4.25). Finally, we use
this new corollary and the original proof of Theorem 4.22 from [61] to make Theorem 4.22
fully algorithmic (Corollary 4.23).

The problem of finding an independent set that meets every maximum clique in a graph
is often related to vertex colouring problems. This is because such a set can be assigned its
own colour class, which reduces the size of the maximum clique in the graph induced by
the set of uncoloured vertices. Thus, finding such independent sets efficiently can lead to
finding colourings of certain types of graphs in polynomial time, such as perfect graphs [85].
A graph G is perfect if for each induced subgraph H of G, the clique number is equal to the
chromatic number (i.e. ω(H) = χ(H)). Some examples of perfect graphs include bipartite
graphs, chordal graphs, line graphs of bipartite graphs, and complements of all of these.

In addition to vertex colouring problems, finding an independent set that meets every
maximum clique has also been used to approach the following conjecture due to Reed [86].

Conjecture 4.21 (Reed’s Conjecture). For any graph G, χ(G) ≤
⌈

1
2
(∆(G) + 1 + ω(G))

⌉
.

Reed’s conjecture has been verified for several families of graphs, including line graphs [63],
quasi-line graphs [62, 60], claw-free graphs [60], and graphs with disconnected comple-
ments [83].
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It is well known that any minimum counterexample G to Reed’s conjecture does not
contain an independent set M that meets every maximum clique. This is because such a
G would contain a maximal independent set M ′ that meets every maximum clique. Hence⌈

1
2
(∆(G−M ′) + 1 + ω(G−M ′))

⌉
+ 1 ≤

⌈
1
2
(∆(G) + 1 + ω(G))

⌉
.

Since M ′ is an independent set, χ(G) ≤ χ(G −M ′) + 1 and so the minimality of G is
contradicted.

Rabern [84] showed that for graphs G with ω(G) ≥ 3
4
(∆(G) + 1), the graph G con-

tains an independent set that meets every maximum clique. The following result, due to
King [61], is best possible for this form, i.e. the quantity 2

3
(∆(G) + 1) can’t be improved

(see e.g. [67]).

Theorem 4.22 ([61]). If a graph G satisfies ω(G) > 2
3
(∆(G) + 1), then G contains an

independent set that meets every maximum clique.

To prove Theorem 4.22, King used a corollary of Theorem 2.4 that finds an IT in
a graph and vertex partition where there is a k such that each vertex v has at most
min{k, |Vclass(v)| − k} neighbours outside Vclass(v). He used this result to find an IT
in a particular auxiliary graph, called a clique graph (Definition 4.26), with respect to a
certain partition. For a particular choice of k, this IT of the clique graph gives the desired
hitting set in the original graph. The choice of k used by King (which we use as well) is
based on results of Hajnal [40] and Kostochka [67] which ensure that each component of
the clique graph is sufficiently large and the intersection of the cliques in a component of
the clique graph is also sufficiently large.

In this section, we use the same ideas to prove the following algorithmic result.

Corollary 4.23. There exists an algorithm HitCliques that takes as input any graph G
with maximum degree ∆ and ω(G) > 2

3
(∆ + 1) and returns, in time poly(|V (G)|) for fixed

∆, an independent set that meets every maximum clique in G.

Note that no weakening of the constraints in Theorem 4.22 is necessary to make the
result algorithmic.

To prove Corollary 4.23, we require a modification of the corollary of Theorem 2.4 used
by King in [61], which we state in Lemma 4.24. We use this modification because the proof
of the original corollary is not algorithmic, but our proof of Lemma 4.24 is algorithmic and
uses Theorem 3.1.
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Lemma 4.24. Let k be a positive integer and let G be a graph with vertex partition
(V1, . . . , Vm). If for every i and every v ∈ Vi, the vertex v has at most min{k− 1, |Vi| − k}
neighbours outside Vi, then G has an IT.

Recall that the corollary from [61] has a slightly stronger statement, with
min{k − 1, |Vi| − k} replaced by min{k, |Vi| − k}. The algorithmic proof of Lemma 4.24 is
as follows.

Proof: We may assume each Vi is independent for the same reasons given at the start of
Section 3.1. Thus each vertex of G has at most k − 1 neighbours, so we have that G is
k-claw-free.

Let ε = 1
k−1

. We apply FindITorBD of Theorem 3.1 with r = k and ε to inputs G and
(V1, . . . , Vm). As k is fixed, the running time of FindITorBD is poly(|V (G)|), where the
degree of the polynomial depends only on k (since r and ε depend only on k). We obtain
either:

1. an IT of G, or

2. a set B of vertex classes and a set D of vertices of G such that D dominates GB in
G and |D| < (2 + ε)(|B| − 1). Moreover D contains V (K) for a constellation K for
some B0 ⊇ B, where |D \ V (K)| < ε(|B| − 1).

To prove the statement, we must show that for every G and (V1, . . . , Vm), outcome
(2) never occurs. Suppose for the sake of contradiction that (2) holds for some G and
(V1, . . . , Vm). Recall from Definition 2.5 that Leaf(K) forms an IT of |B0|−1 vertex classes
of B0 and from the algorithm of FindITorBD (see Section 3.5) that FindITorBD returns
L = Leaf(K) ⊆ D. Hence D contains a set Y ⊆ L that forms an IT of a set B′ ⊆ B of
vertex classes where |B′| ≥ |B| − 1.

Since D dominates GB, we know∑
v∈D

deg(v) ≥
∑
Vi∈B

|Vi| ≥
∑
Vi∈B′

|Vi|.

Since Y is an IT of B′, we have that |Y | ≥ |B| − 1 and so

|D \ Y | < (1 + ε)(|B| − 1).

66



For any vertex v ∈ D \ Y , we know deg(v) ≤ k − 1. Also, for any vertex v ∈ Y , we have
deg(v) ≤ |Vclass(v)| − k. Hence,∑

v∈D

deg(v) ≤ (k − 1)|D \ Y |+
∑
v∈Y

deg(v)

< (k − 1)[(1 + ε)(|B| − 1)] +
∑
Vi∈B′

(|Vi| − k)

≤ ε(k − 1)(|B| − 1)− (|B| − 1) +
∑
Vi∈B′

[(|Vi| − k) + k]

=
∑
Vi∈B′

|Vi|.

This is a contradiction and so outcome (2) never occurs. This completes the proof.

From the proof of Lemma 4.24, we obtain Corollary 4.25. Note that the algorithm of
Corollary 4.25 is the algorithm FindITorBD of Theorem 3.1 for r = k and ε = 1

k−1
on the

inputs G and (V1, . . . , Vm).

Corollary 4.25. FindITorBD for r = k and ε = 1
k−1

finds, in time poly(|V (G)|) for fixed
k, an IT in any graph G with vertex partition (V1, . . . , Vm) such that for each i and each
v ∈ Vi, the vertex v has at most min{k − 1, |Vi| − k} neighbours outside Vi.

We are now ready to discuss the clique graph G(C) of graph G.

Definition 4.26. Let G be a graph and C be the set of maximum cliques in G. The clique
graph G(C) of G is defined as follows. For each clique C ∈ C, there is a vertex vC in G(C).
Two vertices vC and vD of G(C) are adjacent if C and D intersect in G.

For each component i of G(C), let Ci denote the set of all cliques C ∈ C such that vC is
in component i of G(C). Let Vi be the set of vertices in V (G) in the mutual intersection of
the cliques in Ci. Hence each maximum clique C of G necessarily contains every vertex in
Vi for some unique i (i.e. C does not contain vertices in Vi and Vj for i 6= j). Suppose there

are m components of G(C). Then we have that an IT M of G′ = G

[
m⋃
i=1

Vi

]
with respect

to (V1, . . . , Vm) is an independent set of vertices that meets every maximum clique in G.
(Note that M being an IT implies Vi 6= ∅ for all 1 ≤ i ≤ m.) Thus to prove Corollary 4.23,
it suffices to show that G′ and (V1, . . . , Vm) satisfy Corollary 4.25 for an appropriate choice
of k.

To establish this choice of k, we require the following two results due to Hajnal [40]
and Kostochka [67].
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Lemma 4.27 ([40]). Let G be a graph and C1, . . . , Cr be a collection of maximum cliques
in G. Then ∣∣∣∣∣

r⋂
i=1

V (Ci)

∣∣∣∣∣+

∣∣∣∣∣
r⋃
i=1

V (Ci)

∣∣∣∣∣ ≥ 2ω(G).

Lemma 4.28 ([67]). Let G be a graph with maximum degree ∆ and ω(G) > 2
3
(∆ + 1). Let

C be the set of maximum cliques in G. Then for each component i of G(C),∣∣∣∣∣ ⋂
C∈Ci

V (C)

∣∣∣∣∣ ≥ 2ω(G)− (∆ + 1).

Claim 4.29. (V1, . . . , Vm) is a vertex partition of G′ such that for each i and v ∈ Vi, the
vertex v has at most

min
{

1
3
(∆ + 1)− 1, |Vi| − 1

3
(∆ + 1)

}
neighbours outside Vi.

Proof: For each i ∈ {1, . . . ,m}, let Ui be the union of the vertex sets of the cliques in Ci,
i.e. Ui =

⋃
C∈Ci

V (C). Since ω(G) > 2
3
(∆ + 1), it is clear that |Ui| > 2

3
(∆ + 1) as each Ui

contains the vertex set of at least one maximum clique. Because each v ∈ Vi is necessarily
adjacent to every u ∈ Ui (excluding itself), this implies that v has at most 1

3
(∆ + 1) − 1

neighbours in G′ outside of Vi.

By Lemma 4.28, we have

|Vi| > 2
[

2
3
(∆ + 1)

]
− (∆ + 1) = 1

3
(∆ + 1).

Also, by Lemma 4.27, we have

|Vi|+ |Ui| > 2
[

2
3
(∆ + 1)

]
,

and so
|Vi| − 1

3
(∆ + 1) > ∆ + 1− |Ui|.

Thus each v ∈ Vi has fewer than |Vi| − 1
3
(∆ + 1) neighbours in G′ outside of Vi. This

completes the proof.

From Claim 4.29, we see that G′ and (V1, . . . , Vm) satisfy the degree conditions of
Corollary 4.25 for k = ∆+1

3
. Unfortunately, this choice of k is not guaranteed to be an

integer. However, it is easy to show that k =
⌈

∆+1
3

⌉
will also satisfy the degree conditions.
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Claim 4.30. (V1, . . . , Vm) is a vertex partition of G′ such that for each i and v ∈ Vi, the
vertex v has at most

min
{⌈

∆+1
3

⌉
− 1, |Vi| −

⌈
∆+1

3

⌉}
neighbours outside Vi.

Proof: By Claim 4.29, we have that for each i and v ∈ Vi, the vertex v has at most
min

{
1
3
(∆ + 1)− 1, |Vi| − 1

3
(∆ + 1)

}
neighbours outside Vi. Thus it suffices to show that

1
3
(∆+1) can be replaced by the integer

⌈
∆+1

3

⌉
without decreasing the number of neighbours

v is permitted to have outside Vi. We do so by analysing the cases of ∆ mod 3.

Case 1. ∆ ≡ 0 mod 3.

Then
1

3
(∆ + 1)− 1 =

∆

3
− 2

3
,

and

|Vi| −
1

3
(∆ + 1) = |Vi| −

∆

3
− 1

3
.

As v can only have an integer number of neighbours, v has at most ∆
3
− 1 or |Vi| − ∆

3
− 1

neighbours outside Vi. Since
⌈

∆+1
3

⌉
= ∆

3
+ 1, we have

⌈
∆+1

3

⌉
− 1 = ∆

3
and

|Vi| −
⌈

∆+1
3

⌉
= |Vi| − ∆

3
− 1. Hence v has at most min

{⌈
∆+1

3

⌉
− 1, |Vi| −

⌈
∆+1

3

⌉}
neigh-

bours outside Vi.

Case 2. ∆ ≡ 1 mod 3.

Then
1

3
(∆ + 1)− 1 =

∆− 1

3
− 1

3
,

and

|Vi| −
1

3
(∆ + 1) = |Vi| −

∆− 1

3
− 2

3
.

As v can only have an integer number of neighbours, v has at most ∆−1
3
−1 or |Vi| − ∆−1

3
− 1

neighbours outside Vi. Since
⌈

∆+1
3

⌉
= ∆−1

3
+ 1, we have

⌈
∆+1

3

⌉
− 1 = ∆−1

3
and

|Vi| −
⌈

∆+1
3

⌉
= |Vi| − ∆−1

3
− 1. Hence v has at most min

{⌈
∆+1

3

⌉
− 1, |Vi| −

⌈
∆+1

3

⌉}
neigh-

bours outside Vi.

Case 3. ∆ ≡ 2 mod 3.

Then
1

3
(∆ + 1)− 1 =

∆ + 1

3
− 1,
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and

|Vi| −
1

3
(∆ + 1) = |Vi| −

∆ + 1

3
.

Since
⌈

∆+1
3

⌉
= ∆+1

3
, we have

⌈
∆+1

3

⌉
− 1 = ∆+1

3
− 1 and |Vi| −

⌈
∆+1

3

⌉
= |Vi| − ∆+1

3
. Hence

v has at most min
{⌈

∆+1
3

⌉
− 1, |Vi| −

⌈
∆+1

3

⌉}
neighbours outside Vi.

We now have all of the required ingredients to prove Corollary 4.23. Let HitCliques be
the algorithm defined in 4.3.1.

4.3.1 HitCliques

Input: A graph G with ω(G) > 2
3
(∆(G) + 1).

Output: An independent set M that meets every maximum clique in G.
1: function HitCliques(G)
2: C := MaximumCliques(G)
3: G(C) := MakeCliqueGraph(G, C)
4: V := CliqueIntersect(G,G(C))
5: G′ := MakeG’(G,V)

6: k :=
⌈

∆(G)+1
3

⌉
7: M := FindITorBD(G′;V) for r = k and ε = 1

k−1
.

8: return M

The subroutines used by HitCliques perform the necessary tasks outlined in the dis-
cussion after Definition 4.26. In particular, MaximumCliques will find the set C of all
maximum cliques in G. This can be accomplished by first finding all maximal cliques in
the graph and then restricting the set to those of maximum size. For fixed ∆(G), it is
known that the set of maximal cliques can be found in time O(|V (G)|) and that there
are at most O(|V (G)|) maximal cliques (see Appendix B). Given G and C, the subroutine
MakeCliqueGraph will construct the clique graph G(C).

CliqueIntersect is an algorithm that, given a graph G and its clique graph G(C), will
return a set V of lists Vi of vertices of G such that each component i of G(C) has a unique
Vi and each Vi contains all of the vertices that are in every clique C ∈ Ci. Given this
vertex partition V and G, MakeG’ creates the graph G′ induced by the vertices in the
union of lists in V . This choice of G′ and V satisfy the conditions of Corollary 4.25 with

k =
⌈

∆(G)+1
3

⌉
(Claim 4.30). Thus FindITorBD for this k returns an independent set M

that hits all maximum cliques in G.
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For fixed ∆(G), the majority of the runtime of HitCliques is spent implementing
FindITorBD, which takes poly(|V (G′)|) = poly(|V (G)|). We refer the reader to Ap-
pendix B to verify the runtime of the other subroutines, which are also poly(|V (G)|) for
fixed ∆(G).

4.4 Strong Colourings

In this section, we discuss a result of Aharoni, Berger, and Ziv [3], which we state in
Theorem 4.33. In particular, we will show that a slight strengthening of the constraints
of Theorem 4.33 leads to an algorithmic version of the result (see Corollary 4.34). Since
the original result of Aharoni, Berger, and Ziv uses Theorem 2.3, this slightly weaker
algorithmic result is due to the stronger constraints in Corollary 3.2. We will see that a
difference of 1 in the constraints of Theorem 4.33 is all that is required to make the result
algorithmic (just as with Corollary 3.2).

This section is organised as follows. We begin with a brief discussion of strong colourings
(defined in Definition 6.12) and the result of Aharoni, Berger, and Ziv [3]. We then
present a theorem from [3] (Theorem 4.35) that is a corollary of Theorem 2.4 and prove
an algorithmic version of this theorem (Corollary 4.36). Using this algorithmic result and
the original proof of Theorem 4.33, we prove Corollary 4.34.

We begin with some definitions. For these definitions, let k and n be positive integers,
G be a graph on n vertices, and V = (V1, . . . , Vm) be a vertex partition of G such that
|Vi| ≤ k for all i.

Definition 4.31. A graph G is strongly k-colourable with respect to V if there is a k-vertex
colouring of G such that for each Vi, each colour is assigned to at most one vertex of Vi.

We call a k-colouring that shows G is strongly k-colourable with respect to a given
partition a strong k-colouring of G. Similarly, a partial k-colouring of G is a partial strong
k-colouring if for each colour, each vertex class contains at most one vertex assigned that
colour. Note that the vertex classes can contain any number of vertices that are not
assigned a colour in a partial strong k-colouring.

Definition 4.32. A graph G is strongly k-colourable if for every vertex partition V of G
into classes of size at most k, G is strongly k-colourable with respect to V . The strong
chromatic number of a graph G, denoted sχ(G), is the minimum k such that G is strongly
k-colourable.

71



The notion of a strong chromatic number was introduced independently by Alon [5] and
Fellows [34]. It has since been widely studied [36, 77, 50, 16, 3, 72, 51]. The best known
general bound for sχ(G) in terms of its maximum degree is sχ(G) ≤ 3∆(G)−1, which was
proved by Haxell [50]. (See also [51] for an asymptotically better bound due to Haxell.)
However, it is conjectured (see e.g. [3]) that the correct general bound in sχ(G) ≤ 2∆(G).
If true, this would be the best possible general bound [91].

Using a nice simplification of the proof in [50], Aharoni, Berger, and Ziv [3] proved the
following.

Theorem 4.33 ([3]). Every graph G with maximum degree ∆ satisfies sχ(G) ≤ 3∆.

In this section, we will prove the following algorithmic result.

Corollary 4.34. There exists an algorithm StrongColour that takes as input any graph G
with maximum degree ∆ and vertex partition (V1, . . . , Vm) where |Vi| ≤ 3∆ + 1 for each i,
and finds, in time poly(|V (G)|) for fixed ∆, a strong (3∆ + 1)-colouring of G with respect
to (V1, . . . , Vm).

Note that Corollary 4.34 implies that every graph G with maximum degree ∆ satisfies
sχ(G) ≤ 3∆ + 1. This is because for any such graph G, StrongColour will return a strong
(3∆ + 1)-colouring of G so long as the provided vertex partition (V1, . . . , Vm) satisfies
|Vi| ≤ 3∆ + 1 for each i. Hence G is strongly (3∆ + 1)-colourable with respect to every
vertex partition of G into classes of size at most 3∆ + 1. Thus Corollary 4.34 is a slightly
weaker algorithmic version of Theorem 4.33.

To prove Corollary 4.34, we will use the same techniques Aharoni, Berger, and Ziv used
to prove Theorem 4.33 in [3]. The main idea of this technique is to increase the size of
a colour class α by taking an uncoloured vertex v such that α is missing on Vclass(v).
We then find an IT containing v and assign every vertex in this IT the colour α. Some
adjustments are needed for the colouring to remain a strong colouring, but this is the main
idea of the technique. Thus, we require some notion for when we can find an IT containing
a specified vertex. This leads to the following slight strengthening of Theorem 2.3 from [3].

Theorem 4.35 ([3]). Let G be a graph with maximum degree ∆. Then in any vertex
partition (V1, . . . , Vm) of G where |Vi| ≥ 2∆, for each vertex v ∈ V (G) there exists an IT
of G containing v.

Theorem 4.35 follows immediately from Theorem 2.4 applied to G with vertex partition
({v}, V2, . . . , Vm), assuming without loss of generality that v ∈ V1. Thus, by applying
Theorem 3.1 instead of Theorem 2.4, we obtain the following slightly stronger version of
Corollary 3.2.
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Corollary 4.36. There exists an algorithm that takes as input any graph G with maxi-
mum degree ∆, vertex partition (V1, . . . , Vm) such that |Vi| ≥ 2∆ + 1 for each i, and any
v ∈ V (G), and finds, in time poly(|V (G)|) for fixed ∆, an IT in G that contains v.

Proof: Let G be a graph with maximum degree ∆, (V1, . . . , Vm) a vertex partition of G such
that |Vi| ≥ 2∆ + 1 for each i, and v ∈ V (G). Without loss of generality, assume v ∈ V1.

Define G′ = G

[
{v} ∪

(
m⋃
i=2

Vi

)]
and consider the vertex partition ({v}, V2, . . . , Vm) of

G′. As G′ is a subgraph of G, the maximum degree ∆′ of G′ is at most ∆ and so G′ is
(∆+1)-claw-free with respect to ({v}, V2, . . . , Vm). Taking ε = 1

∆
, we have that FindITorBD

returns either an IT of G′ (which necessarily includes v) or a set B of vertex classes and a
set D of vertices of G′ such that D dominates G′B in G′ and |D| < (2 + ε)(|B| − 1).

Claim 4.37. FindITorBD(G′; {v}, V2, . . . , Vm) always returns an IT of G′.

Proof: Suppose not. Let B be the set of vertex classes and D the set of vertices returned
by FindITorBD. As ∆′ ≤ ∆, we have that D dominates at most

∆′|D| < ∆
(
2 + 1

∆

)
(|B| − 1) = (2∆ + 1)(|B| − 1)

vertices. However, GB contains at least (2∆ + 1)|B| vertices, which contradicts D domi-
nating GB. Hence no such B and D exist, so FindITorBD always returns an IT of G′.

Let M be the IT of G′ returned by FindITorBD. Since each vertex class of the partition
of G′ is a subset of a vertex class in the partition of G, M is also an IT in G. Moreover, M
clearly contains v. For fixed ∆, determining G′ and the appropriate vertex partition takes
time O(|V (G)|), so finding M takes time poly(|V (G)|) (since |V (G′)| ≤ |V (G)| and ∆ is
fixed).

We now prove Corollary 4.34 using the proof of Theorem 4.33 and Corollary 4.36.
Let StrongColour be the algorithm defined in 4.4.1. We will discuss what each of the
subroutines do later.

The vector c only has entries in {0, . . . , 3∆ + 1}. We think of c as a colouring of V (G)
such that each v ∈ V (G) is assigned colour c(v), with c(v) = 0 indicating that the vertex
v is uncoloured. We prove that the returned vector c is a strong (3∆ + 1)-colouring in
Lemma 4.38.

Before discussing each subroutine individually, we give an outline of the re-colouring
process in the while loop. This process is identical to the technique used by Aharoni,
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4.4.1 StrongColour

Input: A graph G with maximum degree ∆ and a vertex partition (V1, . . . , Vm) where
|Vi| ≤ 3∆ + 1 for each 1 ≤ i ≤ m.

Output: A strong (3∆ + 1)-colouring of G with respect to (V1, . . . , Vm).
1: function StrongColour(G;V1, . . . , Vm)
2: for all v ∈ V (G) do c(v) := 0

3: while there is a vertex v such that c(v) = 0 do
4: Choose a vertex v such that c(v) = 0.
5: Choose a colour α missing on Vclass(v).
6: (W,V ′1 , . . . , V

′
m) := RemoveColoured(G; c;α;V1, . . . , Vm)

7: V := {V ′i : Vi 6= Vclass(v)}

8: G′ := G

[
{v} ∪

( ⋃
V ′j∈V

V ′j

)]
9: M := FindITorBD(G′; {v},V) for r = ∆ + 1 and ε = 1

∆
.

10: c := ReColour(c;α;M ;W ;V1, . . . , Vm)

11: return c

Berger, and Ziv in [3] to prove Theorem 4.33. Let G be a graph with maximum degree
∆ and (V1, . . . , Vm) a vertex partition such that |Vi| ≤ 3∆ + 1 for all i. By adding some
isolated vertices to G and the vertex classes, we may assume |Vi| = 3∆ + 1 for each i.

Let c be a partial strong (3∆ + 1)-colouring of G and let v ∈ V (G) be a vertex not
coloured by c. Without loss of generality, we may assume v ∈ V1. As |V1| = 3∆ + 1, there
must be at least one colour missing on V1. Let α be such a colour. Define W to be the
set of all vertices coloured α by c. For each Vi containing a vertex wi ∈ W , let V ′i ⊆ Vi
be the set of vertices that are not assigned a colour that appears on N(wi). (Note that 0
is not a “colour.”) For all other Vi, let V ′i = Vi. As the maximum degree of G is ∆, at
most ∆ vertices are removed from Vi to obtain V ′i . Thus |V ′i | ≥ 2∆ + 1 for all i. Hence

by Corollary 4.36, we can find an IT M containing v in the graph G′ = G

[
m⋃
i=1

V ′i

]
with

respect to vertex partition (V ′1 , . . . , V
′
m).

Let ui = M ∩Vi for each i, noting that u1 = v. By re-colouring each wi ∈ W with c(ui)

and (re-)colouring each ui with α, we have a new colouring c′. As M ⊆
m⋃
i=1

V ′i , no vertex

adjacent to wi is coloured c(ui) by c′ and so c′ is a proper colouring. Also, the number of
vertices coloured by c′ is greater than the number coloured by c. This is because no step of
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this process decreases the total number of coloured vertices (colours are only re-assigned
or traded) and c′(v) = α but c(v) = 0.

The subroutines RemoveColoured and ReColour perform the operations their names
suggest. RemoveColoured returns the set W of vertices coloured α and the subsets V ′i ⊆ Vi
of vertices not assigned a colour that appears on the neighbourhood N(wi) of wi ∈ W ∩Vi.
ReColour performs the colouring modification outlined in the proceeding paragraph.

We are now ready to prove Lemma 4.38.

Lemma 4.38. StrongColour returns a strong (3∆ + 1)-colouring.

Proof: Consider an iteration of the while loop. Let c be the colouring at the start of the
iteration and c′ be the colouring at the end of the iteration. We show that if c is a partial
strong (3∆ + 1)-colouring, then so is c′.

Suppose Vi is a vertex class and w ∈ Vi is a vertex such that c(w) = α. By the choice of
V ′i , it is known that for u ∈M ∩ Vi, the colour c(u) is not assigned to any neighbour of w.
Thus setting c′(w) = c(u) maintains a proper colouring of G. We claim that re-assigning
u the colour α maintains the colouring. This is because any w′ ∈ N(u) with c(w′) = α is
a vertex that will have c′(w′) = c(u′), where u′ ∈ M ∩ Vclass(w′). Thus the only vertices
that are coloured α by c′ are the vertices in M , which is an independent set. This re-
assignment also implies that if c is a colouring such that no two vertices in the same class
are assigned the same colour, then no two vertices in the same vertex class are assigned
the same colour under c′. Hence c′ is a partial strong (3∆ + 1)-colouring if c is a partial
strong (3∆ + 1)-colouring.

Note that for every vertex class Vi that contains a vertex w such that c(w) = α,
switching c(w) and c(u), where u ∈ M ∩ Vi, does not change the number of vertices in Vi
that are not coloured. In vertex classes Vi where c did not assign any vertex the colour
α, there are two possibilities. First, if the vertex u ∈ M ∩ Vi has c(u) 6= 0, the number
of vertices in Vi that are not coloured remains unchanged. Otherwise, u ∈ M ∩ Vi has
c(u) = 0 and so c′(u) = α implies the number of uncoloured vertices in Vi decreases by 1.
Since the vertex chosen as v is in the latter category, the number of uncoloured vertices
decreases by at least 1 during the iteration. Thus StrongColour will eventually terminate
and every vertex is assigned some non-zero colour by c′. As StrongColour starts with an
empty colouring c, which is trivially a partial strong (3∆ + 1)-colouring, StrongColour will
return a strong (3∆ + 1)-colouring of G.

It remains to show that StrongColour runs in time poly(|V (G)|) for fixed ∆. As with
CircularP and HitCliques, the majority of the runtime of StrongColour is due to implement-
ing FindITorBD, which completes in time poly(|V (G′)|) = poly(|V (G)|) for fixed ∆. The

75



interested reader can find a discussion of the runtimes of the other steps of StrongColour
in Appendix C.

We will revisit the problem of finding strong colourings algorithmically in Chapter 6
when we discuss randomised algorithms.

4.5 Bounded Size Monochromatic Components

In this section, we discuss algorithmic versions of two results on colourings with small
monochromatic components due to Alon, Ding, Oporowski, and Vertigan [9], which we
state in Theorems 4.40 and 4.41. As with the result of Aharoni, Berger, and Ziv discussed
in Section 4.4, we will show that a slight strengthening of the constraints in Theorems 4.40
and 4.41 will lead to algorithmic versions of these results (see Corollaries 4.51 and 4.54).

This section is organised as follows. We begin by defining monochromatic components
(see Definition 4.39) and a brief discussion of known results related to colourings with small
monochromatic components. We then present a lemma from [9] (Lemma 4.42) that follows
from Theorem 2.3 and prove an algorithmic version of the lemma (Corollary 4.43). Using
Corollary 4.43 and the original proofs of Theorems 4.40 and 4.41, we prove Corollaries 4.51
and 4.54.

Before providing a formal definition of a monochromatic component, consider the fol-
lowing interpretation of vertex and edge colourings. Let G be a graph. We can interpret
a vertex partition (V1, . . . , Vm) of G as a collection (G1, . . . , Gm) of vertex-disjoint induced

subgraphs Gi of G such that V (Gi) = Vi for each i. Note that although
m⋃
i=1

E(Gi) ⊆ E(G),

it is not usually the case that
m⋃
i=1

E(Gi) = E(G) since there can be edges in G whose

endpoints are in different Vi. Thus a proper k-vertex colouring of G is a vertex parti-
tion (G1, . . . , Gk) of G where each Gi is an edgeless graph. Similarly, we can interpret an
edge partition (E1, . . . , Em) of G as a collection (G1, . . . , Gm) of edge-disjoint subgraphs

Gi such that
m⋃
i=1

E(Gi) = E(G). Hence a proper k-edge colouring of G is an edge partition

(G1, . . . , Gk) where each Gi is a matching. Therefore, we can interpret any vertex or edge
partition as a vertex or edge colouring respectively. This leads to the following definition.

Definition 4.39. Let (G1, . . . , Gm) be a vertex (or edge) partition of a graph G. A
subgraph H of G is a monochromatic component of G if H is a component of some Gi.
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By Definition 4.39, the monochromatic components of G in a proper k-vertex colouring
of G contain only one vertex. Similarly, the monochromatic components of G in a proper
k-edge colouring of G contain at most one edge. (Isolated vertices are still monochromatic
components of Gi.) By allowing for larger monochromatic components, we obtain a natural
relaxation of proper vertex and edge colourings.

Colourings that allow for monochromatic components of a bounded size are sometimes
referred to as clustered colourings. Much work has been done for clustered colourings [9, 53,
30, 18, 19, 70, 33, 74, 71]. In particular, for 2-vertex colourings of graphs G with maximum
degree ∆, it is known that the maximum size c of the monochromatic components of G
satisfy c = 2 when ∆ = 3 [9], c = 6 when ∆ = 4 [53], and c < 20000 when ∆ = 5 [53].
See [94] for a survey by Wood on clustered colourings.

In this section, we will focus on the following two results of Alon, Ding, Oporowski, and
Vertigan from [9]. Both results provide a colouring of a graph G with maximum degree ∆
so that the monochromatic components have size bounded by a function in ∆.

Theorem 4.40 ([9]). Every graph with maximum degree ∆ can be
⌈

∆+2
3

⌉
-vertex coloured

so that every monochromatic component has at most

f(∆) =


1 if ∆ = 0

2 if ∆ = 1, 2

12∆2 − 36∆ + 9 if ∆ ≥ 3

vertices.

Theorem 4.41 ([9]). Every loopless graph G with maximum degree ∆ can be
⌈

∆+1
2

⌉
-edge

coloured such that every monochromatic component has at most

g(∆) =


0 if ∆ = 0

1 if ∆ = 1

60∆− 63 if ∆ ≥ 2

edges.

The proofs of Theorems 4.40 and 4.41 use the following lemma from [9].

Lemma 4.42 ([9]). Let d ≥ 3 and r ≥ 1 be integers and let G be a graph with maximum
degree ∆(G) ≤ d. Let (A,B) be a vertex partition of G and let (B1, . . . , Bm) be a partition
of B. Suppose:
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(i) ∆(G[A]) ≤ 1,

(ii) ∆(G[B]) ≤ d− 2,

(iii) each G[Bi] is either a cycle or a path, and

(iv) for each i ∈ {1, . . . ,m} and v ∈ Bi with degG[Bi]
(v) = 2, there are at most r compo-

nents of G[A] that contain neighbours of v.

Then there is a set M ⊆ B such that every component of G[Bi \M ] for each i ∈ {1, . . . ,m}
and every component of G[A ∪M ] has at most

K = (12r + 6)d− (18r + 27)

vertices.

Figure 4.3 gives an example of such a vertex partition (A,B) with partition (B1, B2, B3)
of B.

A B

B1

B2
B3

Figure 4.3: A vertex partition (A,B) of a graph G satisfying the conditions of Lemma 4.42
for d = 5 and r = 2.

The proof of Lemma 4.42 uses the choice of K and Theorem 2.3 to find an IT of a
particular auxiliary graph. This IT is the desired set M that makes the lemma hold. For
an algorithmic version of Lemma 4.42, we only require a slight weakening of the value of
K. Specifically, we increase to K = (12r + 6)d − (18r + 24). This leads to the following
result.
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Corollary 4.43. There exists an algorithm SmallComponents that for d ≥ 3 and r ≥ 1,
takes as inputs any graph G with maximum degree ∆(G) ≤ d, a vertex partition (A,B) of
G, and a partition (B1, . . . , Bm) of B such that:

(i) ∆(G[A]) ≤ 1,

(ii) ∆(G[B]) ≤ d− 2,

(iii) each G[Bi] is either a cycle or a path, and

(iv) for each i ∈ {1, . . . ,m} and each v ∈ Bi with degG[Bi]
(v) = 2, there are at most r

components of G[A] that contain neighbours of v.

For fixed d and r, it returns in time poly(|V (G)|), a set M ⊆ B such that every component
of G[Bi \M ] for each i ∈ {1, . . . ,m} and every component of G[A ∪M ] has at most

K = (12r + 6)d− (18r + 24)

vertices.

We will prove Corollary 4.43 as follows. Let SmallComponents be the algorithm defined
in 4.5.1.

The first subroutine of SmallComponents, called Order, arranges the vertices of Bi of
degree 2 in G[Bi] in the order of their appearance in the path or cycle of G[Bi], returning
this set as B′i. The next subroutine, called SmallerParts, uses the ordering of B′i to make
ordered lists B′i,j of size exactly 2k + 1 (which are returned in the set B′i) and (a possibly
empty) list B∗i of size at most 2k (which is not included in B′i). The union of the elements
in the B′i,j is returned as B′′i . The subroutine MakeG’ creates the graph G′ whose vertex set
is V and whose edge set consists only of edges uv such that either u and v are neighbours
of vertices in the same component of G[A] or uv ∈ E(G) with Vclass(u) 6= Vclass(v). Thus
B′ is a vertex partition of G′ whose vertex classes are the B′i,j for the B′i with |B′i| > K.

Proposition 4.44. FindITorBD(G′,B′) always returns an IT M of G′ with respect to B′.

Proof: Let G be the graph with maximum degree ∆ ≤ d, (A,B) the vertex partition, and
(B1, . . . , Bm) the partition of B given as inputs to SmallComponents. For each component
C of G[A], let N∗(C) denote the set of vertices in B that are adjacent to vertices in C, i.e.
N∗(C) =

⋃
v∈V (C)

(N(v) ∩B).
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4.5.1 SmallComponents

Input: A graph G with maximum degree ∆(G) ≤ d, a vertex partition (A,B), and a
partition (B1, . . . , Bm) of B satisfying the conditions of Corollary 4.43 for some d ≥ 3
and r ≥ 1.

Output: A set M ⊆ B such that every component of G[Bi \M ] for each i ∈ {1, . . . ,m}
and every component of G[A ∪M ] has at most (12r + 6)d− (18r + 24) vertices.

1: function SmallComponents(G;A;B;B1, . . . , Bm)
2: K := (12r + 6)d− (18r + 24)
3: k := (2r + 1)d− (3r + 4)
4: for i such that |Bi| > K do
5: B′i := Order(G,Bi)
6: (B′i, B′′i ) := SmallerParts(2k + 1, B′i)

7: V :=
⋃

|B′i|>K
B′′i

8: B′ :=
⋃

|B′i|>K
B′i

9: G′ := MakeG’(V ;G;A;B1, . . . , Bm)
10: M := FindITorBD(G′;B′) for r = k + 1 and ε = 1

k
.

11: return M
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Claim 4.45. For each component C of G[A], we have |N∗(C)| ≤ 2(d− 1).

Proof: Let C be a component of G[A]. By (i), ∆(G[A]) ≤ 1 and so |V (C)| ≤ 2. Thus
|N∗(C)| ≤ ∆ if |V (C)| = 1 and |N∗(C)| ≤ 2∆− 2 if |V (C)| = 2. Since ∆ ≤ d and d ≥ 3,
we have that |N∗(C)| ≤ 2(d− 1) in either case.

Claim 4.46. |B′i| ≥ 2k + 1 for all i such that |Bi| > K.

Proof: By (iii), G[Bi] is either a path or a cycle. As Order(G,Bi) returns B′i, the ordered
set of vertices of degree 2 in G[Bi], we have |B′i| ≥ |Bi| − 2 > K − 2.

Recall that k = (2r + 1)d− (3r + 4). Since d ≥ 3 and r ≥ 1, we have that k > 0 and

K − (2k + 1) = (8r + 4)d− (12r + 16)− 1 ≥ 12r − 5 > 0.

Thus K > 2k + 1 > 0. Hence |B′i| ≥ K − 1 ≥ 2k + 1 for each i such that |Bi| > K.

By Claim 4.46, |B′i| ≥ 2k + 1 for all i such that |Bi| > K. Thus B′i contains at least
one B′i,j, and so B′i is non-empty for all i such that |Bi| > K.

Let V =
⋃

|Bi|>K
B′′i and B′ =

⋃
|Bi|>K

B′i. The graph G′ returned by MakeG’ has vertex set

V and edge set consisting of all edges uv such that either u, v ∈ N∗(C) for some component
C of G[A] (type 1) or uv ∈ E(G) with Vclass(u) 6= Vclass(v) (type 2).

Claim 4.47. ∆(G′) ≤ k.

Proof: Consider a vertex v ∈ V . By (iv), v ∈ N∗(C) for at most r components C of G[A].
Thus by Claim 4.45, v has at most r[|N∗(C)| − 1] = r(2d − 3) neighbours via edges of
type 1. Also, since v ∈ B′i for some i such that |Bi| > K, we know that degG[Bi]

(v) = 2.
By (ii), degG[B](v) ≤ d− 2 and so v has at most (d− 2)− 2 = d− 4 neighbours via edges
of type 2. Thus

∆(G′) ≤ r(2d− 3) + (d− 4) = (2r + 1)d− (3r + 4) = k.

By the definition of the B′i, we have that each vertex class B′i,j of B′ has size exactly
2k+ 1. Hence by Corollary 3.2, FindITorBD returns an IT M of G′ with respect to B′.

By Proposition 4.44, SmallComponents always returns an IT of G′, which is a set
M ⊆ B. It remains to show that the M returned by SmallComponents satisfies the
desired conditions (Lemma 4.48) and completes in time poly(|V (G)|) for fixed d and r. We
prove Lemma 4.48 now and discuss the runtime of SmallComponents in Appendix D.1.
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Lemma 4.48. The set M returned by SmallComponents is a subset of B such that every
component of G[A ∪M ] and every component of G[Bi \M ] for each i ∈ {1, . . . ,m} has at
most K vertices.

Proof: Let G be the graph with maximum degree ∆ ≤ d, (A,B) the vertex partition, and
(B1, . . . , Bm) the partition of B given as inputs to SmallComponents and suppose they
satisfy the conditions of Corollary 4.43. Let M be the set returned by SmallComponents.
For each component C of G[A], we again use N∗(C) to denote the set of vertices in B that
are adjacent to vertices in C, so N∗(C) =

⋃
v∈V (C)

(N(v) ∩B).

Claim 4.49. Every component of G[A ∪M ] has fewer than K vertices.

Proof: Note that E(G′) contains all edges of types 1 and 2, so any edge of G[M ] is an
edge of G[Bi] for some i where |Bi| > K. Hence (iii) implies that the components of G[M ]
contain at most two vertices. (Note that at least one neighbour in G of v ∈ M is in the
same B′i,j as v.) Furthermore, since M is an IT of G′ (Proposition 4.44), the edges of
type 1 imply that for each component C of G[A], we have |N∗(C) ∩M | ≤ 1. Hence the
components of G[A ∪M ] have at most two vertices in M , which are vertices in the same
B′i but different B′i,j and whose neighbours in A are in different components of G[A]. Each
vertex in M is adjacent to at most r components of G[A] by (iv). By (i), the components
of G[A] each have at most two vertices. Thus the components of G[A ∪M ] have size at
most 2[1 + r(2)] = 4r + 2. As d ≥ 3 and r ≥ 1, we have

K − (4r + 2) ≥ 14r − 8 > 0.

Hence every component of G[A ∪M ] has fewer than K vertices.

Claim 4.50. Every component of G[Bi \M ] has size at most K.

Proof: For Bi such that |Bi| ≤ K, it is clear that any component of G[Bi \M ] has size at
most |Bi \M | = |Bi| ≤ K. Thus we must show the statement holds for Bi where |Bi| > K.
Note that for these Bi, the components of G[Bi \M ] are paths. Thus for a component P
of G[Bi \M ], either both ends of P are adjacent in G to a vertex in M or only one end of
P is adjacent in G to a vertex in M . The latter only occurs when G[Bi] is a path.

Let P be a component ofG[Bi\M ]. Suppose both ends of P are adjacent inG to vertices
in M . Let u and v be these vertices in M and let B′i,a = Vclass(u) and B′i,b = Vclass(v)
be their classes in B′. As M is an IT with respect to B′, there cannot exist a vertex class
B′i,j ∈ B′ such that the vertices in B′i,j occur between the vertices of B′i,a and B′i,b in the
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ordering of B′i. However, it is possible for the vertices of B∗i to occur between the vertices
of B′i,a and B′i,b in the path/cycle order of G[Bi]. Thus there are at most 2k vertices of Bi

between the vertices in B′i,a and vertices in B′i,b in G[Bi]. Since u, v ∈ B′i,a ∪B′i,b,

|V (P )| ≤ (|B′i,a| − 1) + |B∗i |+ (|B′i,b| − 1)

≤ [(2k + 1)− 1] + 2k + [(2k + 1)− 1]

= 6k

= (12r + 6)d− (18r + 24)

= K.

Suppose only one end of P is adjacent to a vertex in M and let v be that vertex in
M . Then G[Bi] is a path and P contains an end x of G[Bi]. Let B′i,a = Vclass(v) in B′.
As M is an IT with respect to B′, there cannot exist a vertex class B′i,j ∈ B′ such that
the vertices in B′i,j occur between the vertices of B′i,a and x in the path order of G[Bi].
However, it is possible for the vertices of B∗i to occur between the vertices of B′i,a and x in
the path order of G[Bi]. Thus there are at most 2k vertices of Bi between the vertices in
B′i,a and x in G[Bi]. Hence,

|V (P )| ≤ (|B′i,a| − 1) + |B∗i |+ 1

≤ [(2k + 1)− 1] + 2k + 1

= 4k + 1

< K.

Hence every component of G[Bi \M ] has size at most K.

The result follows from Proposition 4.44 and Claims 4.49 and 4.50.

Hence Corollary 4.43 follows from Lemma 4.48 and Lemma D.4 in Appendix D.1.

We now use Corollary 4.43 to prove some algorithmic results. These results are slightly
weaker than the non-algorithmic Theorems 4.40 and 4.41. Again, we leave the discussion
of the runtimes of these algorithms to Appendices D.2 and D.3.

Corollary 4.51. There exists an algorithm BoundedVert that takes as inputs any graph G
with maximum degree ∆ and, for fixed ∆ ≥ 3, returns in time poly(|V (G)|) a

⌈
∆+2

3

⌉
-vertex

colouring of G such that the monochromatic components have size at most
K = 12∆2 − 36∆ + 12.
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4.5.2 BoundedVert

Input: A graph G with maximum degree ∆ ≥ 3.
Output: A

⌈
∆+2

3

⌉
-vertex colouring of G such that the monochromatic components have

size at most K = 12∆2 − 36∆ + 12.
1: function BoundedVert(G)
2: h :=

⌈
∆+2

3

⌉
3: (A,B) := DegreePartition(G; 1,∆− 2) for ` = 2.
4: (B1, . . . , Bh−1) := DegreePartition(G[B]; 2, 2, 2, ..., 2) for ` = h− 1.
5: for i = 1, . . . , h− 1 do
6: Ci := Components(G;Bi)

7: C :=
h−1⋃
i=1

Ci
8: M := SmallComponents(G;A;B; C) for d = ∆ and r = ∆− 2.
9: for i = 1, . . . , h− 1 do
10: for all v ∈ Bi \M do
11: c(v) := i

12: for all v ∈ A ∪M do
13: c(v) := h

14: return c
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Let BoundedVert be the algorithm defined in D.2.1.

The subroutine DegreePartition is based on the following theorem due to Lovász [73].

Theorem 4.52 ([73]). Let G be a graph and let n1, . . . , n` be nonnegative integers such
that n1 + n2 + · · ·+ n` ≥ ∆(G)− `+ 1. Then V (G) can be partitioned into sets V1, . . . , V`
such that ∆(G[Vi]) ≤ ni for all 1 ≤ i ≤ `.

In Corollary 4.51, we have ∆ ≤ 3h − 2. Hence for G, n1 = 1, n2 = ∆ − 2, and ` = 2,
Theorem 4.52 implies that there is a partition (A,B) where ∆(G[A]) ≤ 1 and ∆(G[B]) ≤
∆ − 2. Moreover, for G[B], ni = 2 for all 1 ≤ i ≤ h − 1, and ` = h − 1, Theorem 4.52
implies that there is a vertex partition (B1, . . . , Bh−1) such that ∆(G[Bi]) ≤ 2 for each i.
The original proof of Theorem 4.52 is algorithmic, which is shown in Appendix D.2. We
therefore take DegreePartition to be this algorithm that finds the partition of Theorem 4.52
in polynomial time.

The subroutine Components of BoundedVert returns the set of all vertex sets of the
components of G[Bi]. We now show that the c returned by BoundedVert is an h-vertex
colouring with monochromatic components of size at most K (Claim 4.53).

Claim 4.53. BoundedVert returns an h-vertex colouring of G with monochromatic com-
ponents of size at most K.

Proof: Note that for d = ∆ and r = ∆− 2, we have that the K of Corollary 4.43 is

K = (12r + 6)d− (18r + 24)

= [12(∆− 2) + 6]∆− [18(∆− 2) + 24]

= 12∆2 − 36∆ + 12.

Thus, assuming the hypotheses are satisfied, Corollary 4.43 implies that the set M returned
by SmallComponents makes the components of G[Bi \M ] and G[A∪M ] have size at most
K = 12∆2 − 36∆ + 12. Since c assigns the vertices in A ∪M the same unique colour and
a different unique colour for vertices in each Bi, the colouring c returned by BoundedVert
is an h-vertex colouring with the desired properties. It therefore remains to show that for
d = ∆ and r = ∆−2, this choice of G, (A,B), and partition C of B satisfies the hypotheses
of Corollary 4.43.

First, note the following properties of the vertex partitions (A,B) ofG and (B1, . . . , Bh−1)
of G[B] due to DegreePartition:

(DP1) ∆(G[A]) ≤ 1,
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(DP2) ∆(G[B]) ≤ ∆− 2, and

(DP3) ∆(G[Bi]) ≤ 2 for each i ∈ {1, . . . , h− 1}.

Properties (DP1)-(DP3) clearly follow from the choice of bounds in DegreePartition
used to define (A,B) and (B1, . . . , Bh−1). Furthermore, as G[Bi] ≤ 2 for all 1 ≤ i ≤ h− 1,
each component of G[Bi] must be a path or a cycle. Thus, using Components to partition
each Bi into classes Bi,j such that each Bi,j is the vertex set of a component of G[Bi] will
produce a partition Ci of Bi. The union of all the partitions Ci is then a partition C of B
satisfying condition (iii) of Corollary 4.43. Hence conditions (i)-(iii) are satisfied by vertex
partition (A,B) of G and the partition C of B. It remains to show that this choice of A,
B, and C also satisfies condition (iv) of Corollary 4.43.

Let Bi,j ∈ C. As ∆(G) = ∆, clearly each v ∈ Bi,j with degG[Bi,j ]
(v) = 2 has at most

∆−2 neighbours in A. Thus for each Bi,j ∈ C and each v ∈ Bi,j with degG[Bi,j ]
(v) = 2, there

are at most ∆− 2 components of G[A] that contain neighbours of v. Hence condition (iv)
is satisfied for r = ∆−2 and so (G;A;B; C) satisfies the hypotheses of Corollary 4.43 when
d = ∆ and r = ∆− 2.

The proof of Corollary 4.51 follows from Claim 4.53 and Claim D.10 in Appendix D.2.

We now continue with an algorithmic version of Theorem 4.41. Note that for a graph
G and set S ⊆ E(G), the graph induced by S, denoted G[S], is the subgraph of G with
edge set S and whose vertex set consists of all the endpoints of the edges in S.

Corollary 4.54. There exists an algorithm BoundedEdge that takes as inputs any loopless
graph G with maximum degree ∆ and, for fixed ∆ ≥ 3, returns in time poly(|E(G)|) a⌈

∆+1
2

⌉
-edge colouring of G such that the monochromatic components have size at most

K = 60∆− 60.

As with Corollary 4.51, we will use SmallComponents to prove Corollary 4.54. In
particular, we will use SmallComponents on the line graph L(G) of G (after finding the
necessary partitions) to get our desired colouring.

Let BoundedEdge be the algorithm defined in D.3.1.

The subroutines TwoPartition and TwoFactor are based on the following lemmas
from [9].

Lemma 4.55 ([9]). Let ` be an integer and G be a loopless graph with ∆(G) ≤ 2`. Then
there exists an edge partition (E1, . . . , E`) such that ∆(G[Ei]) ≤ 2 for all i.
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4.5.3 BoundedEdge

Input: A loopless graph G with maximum degree ∆ ≥ 3.
Output: A

⌈
∆+1

2

⌉
-edge colouring of G such that the monochromatic components have

size at most K = 60∆− 60.
1: function BoundedEdge(G)
2: h :=

⌈
∆+1

2

⌉
3: (A,B) := TwoPartition(G)
4: (B1, . . . , Bh−1) := TwoFactor(G[B], h− 1)
5: H := LineGraph(G)
6: for i = 1, . . . , h− 1 do
7: Ci := Components(H;Bi)

8: C :=
h−1⋃
i=1

Ci
9: M := SmallComponents(H;A;B; C) for d = 4h− 4 and r = 2.
10: for i = 1, . . . , h− 1 do
11: for all e ∈ Bi \M do
12: c(e) := i

13: for all e ∈ A ∪M do
14: c(e) := h

15: return c
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Lemma 4.56 ([9]). Every loopless graph G has a set A ⊆ E(G) such that ∆(G− A) < ∆(G)
and each component of G(A) is a path containing at most two edges.

Lemmas 4.55 and 4.56 are both reformulations of a theorem due to Petersen [82], which
is proved via Euler tours. As Euler tours can be found efficiently, the original proofs of
Lemmas 4.55 and 4.56 are algorithmic. The details of these algorithms (TwoFactor for
Lemma 4.55 and TwoPartition for Lemma 4.56) can be found in Appendix D.3.

Finally, the subroutine LineGraph returns the line graph L(G) of G. We are now ready
to show that the c returned by BoundedEdge is an h-edge colouring with monochromatic
components of size at most K (Claim 4.57).

Claim 4.57. BoundedEdge returns an h-edge colouring of G with monochromatic compo-
nents of size at most K.

Proof: Note that for d = 4h− 4 and r = 2, we have that the K of Corollary 4.43 is

K = (12r + 6)d− (18r + 24)

= [12(2) + 6](4h− 4)− [18(2) + 24]

= 120h− 120− 60

= 120

⌈
∆ + 1

2

⌉
− 180.

For even ∆, this K is 60∆−60 and for odd ∆ it is 60∆−120. Hence K ≤ 60∆−60. Thus,
assuming the hypotheses are satisfied, Corollary 4.43 implies that the set M returned by
SmallComponents makes the components of H[Bi \M ] and H[A ∪M ] have size at most
K = 60∆− 60.

Note that for each S ⊆ E(G), G[S] is connected if and only if H[S] is connected. Hence
for each i ∈ {1, . . . , h − 1}, every component of G[Bi \M ] is a component of H[Bi,j \M ]
for some Bi,j ∈ C. Also, every component of H[A ∪ M ] is a component of G[A ∪ M ].
Therefore the components of G[Bi \M ] and G[A∪M ] contain at most 60∆− 60 edges for
all i ∈ {1, . . . , h− 1}.

Since c assigns the vertices in A∪M the same unique colour and a different unique colour
for vertices in each Bi, the colouring c returned by BoundedEdge is an h-edge colouring
with the desired properties. It therefore remains to show that for d = 4h − 4 and r = 2,
this choice of H, (A,B), and partition C of B satisfies the hypotheses of Corollary 4.43.

First, note the following properties of edge partition (A,B) and (B1, . . . , Bh−1) due to
TwoPartition, TwoFactor, and h:
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(EP1) ∆(G− A) < ∆,

(EP2) ∆(G[B]) ≤ 2(h− 1),

(EP3) each component of G[A] is a path with at most two edges, and

(EP4) ∆(G[Bi]) ≤ 2 for each i ∈ {1, . . . , h− 1}.

Properties (EP1) and (EP3) hold by the conditions on A returned by TwoPartition. Prop-
erty (EP4) holds by the condition on the Bi returned by TwoFactor. We show (EP2) holds
for G[B] as follows. Note that every vertex in G has degree at most ∆ − 1 in G − A
(by (EP1)). As (A,B) is an edge partition of G, this implies that each endpoint of an
edge e ∈ B has degree at most ∆ − 1 in G[B] = G − A. Thus ∆(G[B]) ≤ ∆ − 1 and
2(h−1) = 2

(⌈
∆+1

2

⌉
− 1
)
≥ ∆−1. Hence (EP2) holds. We now show that these properties

imply the hypotheses of Corollary 4.43.

By (EP3), each edge in A is in a component with at most one other edge in G[A].
Thus ∆(H[A]) ≤ 1 and so condition (i) of Corollary 4.43 holds. By (EP2), each vertex
v ∈ V (G) is incident with at most 2(h − 1) edges in B. Thus each edge in B containing
v is adjacent in H to at most 2(h − 1) − 1 = 2h − 3 other edges of G that contain
v as an endpoint. Each edge in B has exactly two endpoints (recall G is loopless), so
∆(H[B]) ≤ 2(2h− 3) = 4h− 6 = d− 2. Hence condition (ii) of Corollary 4.43 also holds.

By (EP4), each component of G[Bi] is a cycle or path in G and so its corresponding
component in H = L(G) is also a cycle or path. Thus, using Components to partition
each Bi into classes Bi,j such that each Bi,j is the vertex set of a component of H[Bi] will
produce a partition Ci of Bi. The union of all the partitions Ci is then a partition C of B
satisfying condition (iii) of Corollary 4.43.

For condition (iv) of Corollary 4.43, note that H is a line graph and so H is K1,3-free.
Hence each e ∈ B is adjacent in H to vertices of at most two components of H[A]. Thus
for each Bi,j ∈ C and each e ∈ Bi,j with degH[Bi,j ]

(e) = 2, there are at most 2 components
of H[A] that contain neighbours of e. Therefore H, A, B, and C satisfy all of the conditions
of Corollary 4.43 for d = 4h− 4 and r = 2.

The proof of Corollary 4.54 follows from Claim 4.57 and Claim D.13 in Appendix D.3.
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Chapter 5

Independent Transversals in
Weighted Graphs

In this chapter, we consider the problem of finding an IT in vertex-weighted graphs. In
particular, we will discuss finding a PIT with large (but not necessarily maximum) weight
τ , where the value of τ depends on the weight function on the graph. The problem of finding
ITs in vertex-weighted graphs was first studied by Aharoni, Berger, and Ziv in [3]. Their
work generalised Theorem 2.4 to vertex-weighted graphs, in a way similar to that in which
the theory of matchings in weighted graphs generalises Hall’s theorem. Their main theorem
is stated as Theorem 5.2, which we discuss in Section 5.1. As with Theorem 2.4, the proof
of Theorem 5.2 is not algorithmic. We aim to generalise FindITorBD from Theorem 3.1
to vertex-weighted graphs in order to prove an algorithmic version of Theorem 5.2. As
mentioned in Chapter 1, the new results in this chapter are joint work with Penny Haxell.

In Section 5.2, we introduce our new generalised algorithm, called FindWeightPIT,
for efficiently finding PITs of weight at least τ r,εw , where τ r,εw is a parameter of vertex-
weighted graphs that is defined in Section 5.2. FindWeightPIT uses the LP formulation
of the problem studied by Aharoni, Berger, and Ziv in [3]. This new formulation, which
is different but equivalent to that in [3], is presented in Section 5.2 and was suggested by
David Harris [41]. We will see some applications of FindWeightPIT (via the randomised
algorithm FindWeightIT) in Chapter 6.

This chapter is organised as follows. In Section 5.1, we discuss the work of Aharoni,
Berger, and Ziv from [3]. We state Theorem 5.2 as it was presented in [3]. In Section 5.2, we
restate Theorem 5.2 using the LP formulation and introduce our algorithm FindWeightPIT.
We prove the correctness of FindWeightPIT in Section 5.3.
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5.1 A Generalisation of Theorem 2.4

In this section, we discuss the work of Aharoni, Berger, and Ziv in [3]. We begin with some
notation. For any set S, subset U ⊆ S, and function F : S → R, we write F (U) =

∑
x∈U

F (x)

and |F | = F (S).

Let G be a graph with vertex partition (V1, . . . , Vm) and w a weight function
w : V (G)→ R+. We have the following important definition.

Definition 5.1. A pair of non-negative functions g : {V1, . . . , Vm} → R+ and f : V (G)→ R+

is w-dominating if for every v ∈ V (G),

g(Vclass(v)) + f(N(v)) ≥ w(v).

We write |(g, f)| = |g|+ |f |
2

.

Let τw = min{|(g, f)| : (g, f) is w-dominating} and let νw be the maximum total weight
of a PIT in G with respect to (V1, . . . , Vm). For every i ∈ {1, . . . ,m}, let
ti = max{w(v) : Vclass(v) = Vi}. Aharoni, Berger, and Ziv proved the following.

Theorem 5.2 ([3]). For G a graph with vertex partition (V1, . . . , Vm) and w a weight
function w : V (G)→ R+, we have τw ≤ νw. Furthermore, it is possible to find a dominating
pair of functions (g, f) of weight at most νw such that for all v ∈ V (G), f(v) + g(Vi) ≤ ti,
where Vi = Vclass(v). If all weights w(v) are integral, then g and f can also be assumed
to be integral.

We remark that the existence of a dominating pair of functions satisfying the condition
f(v) + g(Vi) ≤ ti for all v ∈ V (G) is unnecessary for proving τw ≤ νw. Thus an equivalent
condition will not be present in the LP formulation of τw presented in Section 5.2. However,
the condition is necessary for Aharoni, Berger, and Ziv’s proof from [3] that Theorem 2.4
follows from Theorem 5.2. We present this proof in the following claim. Note that the
support of a function f : X → {0, 1} is the subset {x ∈ X : f(x) = 1}.

Claim 5.3 ([3]). Theorem 2.4 follows from Theorem 5.2.

Proof: Let G be a graph with vertex partition (V1, . . . , Vm). Define weight function
w : V (G)→ R+ by w(v) = 1 for all v ∈ V (G).

Suppose there does not exist an IT in G with respect to (V1, . . . , Vm). Then νw < m.
By Theorem 5.2, there exists an integer-valued dominating pair of functions (g, f) such
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that |(g, f)| ≤ νw < m. Furthermore, we claim we can find such a dominating pair with g
and f both having codomain {0, 1}. This is because ti = max{w(v) : Vclass(v) = Vi} = 1
for all 1 ≤ i ≤ m in Theorem 5.2 implies that f(v) + g(Vclass(v)) ≤ 1 for all v ∈ V (G).
As g and f are both integer-valued functions into the non-negative real numbers, we have
that the codomain of both f and g is {0, 1}.

Let B = {Vi : g(Vi) = 0}. As (g, f) is w-dominating, g(Vclass(v))+f(N(v)) ≥ w(v) = 1
for all v ∈

⋃
Vi∈B

Vi. Hence f(N(v)) ≥ 1 for all v ∈
⋃
Vi∈B

Vi. This implies that every vertex v

where Vclass(v) ∈ B has at least one neighbour u such that f(u) = 1. Thus the support of
f dominates GB. Furthermore, since for all v ∈ V (G) we know that f(v)+g(Vclass(v)) ≤ 1,
we have that g(Vclass(v)) = 0 for all v in the support of f . Hence the support of f is
contained in V (GB).

As |(g, f)| < m, we have that |g|+ |f |
2
≤ m− 1. Hence

|f | ≤ 2(m− 1− |g|) = 2[m− 1− (m− |B|)] = 2(|B| − 1).

Thus there exists a set B of vertex classes that is dominated by a set of size at most
2(|B| − 1) (namely the vertices in the support of f). This proves Theorem 2.4.

5.2 The Algorithm FindWeightPIT

In this section, we present an algorithm, called FindWeightPIT, that proves an algorithmic
version of Theorem 5.2, which we state in Theorem 5.5. Before doing so, we consider a
different definition of τw, which is formulated in terms of the dual LP of the formulation
presented in Section 5.1.

Let G be a graph, (V1, . . . , Vm) a vertex partition of G, and w a weight function
w : V (G)→ R. Let Pw be the following LP and let τw be the largest objective function
value to Pw.
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max
∑

v∈V (G)

w(v)γv

subject to
∑

u∈N(v)

γu ≤ 1
2

∀v ∈ V (G)

∑
v∈Vi

γv ≤ 1 ∀i ∈ {1, . . . ,m}

0 ≤ γv ≤ 1 ∀v ∈ v(G).

We claim that for w : V (G) → R+ the optimal value of Pw is the same as the value
of τw in Section 5.1. Recall that in Section 5.1, τw is defined to be the minimum value

of
m∑
i=1

g(Vi) +
∑

v∈V (G)

f(v)
2

amongst the w-dominating pairs (g, f). Also, recall that (g, f) is

w-dominating if for all v ∈ V (G), g(Vclass(v)) + f(N(v)) ≥ w(v). Thus by duality, this
value of τw is also the maximum value of

∑
v∈V (G)

w(v)γv for some vector γ that is subject

to the constraints
∑
v∈Vi

γv ≤ 1 for each i ∈ {1, . . . ,m} and
∑

u∈N(v)

γu ≤ 1
2

for each v ∈ V (G).

Hence the new definition of τw is simply the optimal solution to the dual LP formulation
of what was presented in Section 5.1.

Using this new formulation of τw, Theorem 5.2 yields the following.

Theorem 5.4 ([3]). For any graph G, vertex partition (V1, . . . , Vm), and weight function
w : V (G)→ R+, there exists a PIT of G of weight at least τw.

As mentioned before, the proof of Theorem 5.2 (and therefore Theorem 5.4) is not
fully algorithmic. To make the result fully algorithmic for r-claw-free graphs, we require a
slight modification to the choice of τw, which we call τ r,εw . Let r ∈ N and 0 < ε < 1

r
. Let

G be a graph, (V1, . . . , Vm) a vertex partition such that G is r-claw-free with respect to
(V1, . . . , Vm), and w a weight function w : V (G)→ R. Let Pr,εw be the following LP and let
τ r,εw be the largest objective function value to Pr,εw .
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max
∑

v∈V (G)

w(v)γv

subject to
∑

u∈N(v)

γu ≤ 1−rε
2+ε

∀v ∈ V (G)

∑
v∈Vi

γv ≤ 1 ∀i ∈ {1, . . . ,m}

0 ≤ γv ≤ 1 ∀v ∈ v(G).

For a subset U ⊆ V (G), let w(U) =
∑
v∈U

w(v). We define |w| =
∑

v∈V (G)

|w(v)|, and

so −|w| ≤ w(V (G)) ≤ |w|. Using these definitions and τ r,εw , we obtain the following
algorithmic result.

Theorem 5.5. There exists an algorithm FindWeightPIT that takes as inputs any graph
G, vertex partition (V1, . . . , Vm) such that G is r-claw-free with respect to (V1, . . . , Vm),
and weight function w : V (G) → Z and, for fixed r ≥ 1 and 0 < ε < 1

r
, finds, in time

poly(|V (G)|, |w|), a PIT M in G of weight at least τ r,εw .

Note that FindWeightPIT is a pseudo-polynomial time algorithm as it takes roughly
log2(|w|) bits to write |w|. It is possible to remove this dependence on |w|, however doing
so weakens the conclusion slightly. In particular, instead of finding a PIT of weight at least

τ r,εw , we find a PIT of weight at least (1 − η)τ r,εw in time poly
(
|V (G)|, 1

η

)
for some input

parameter η > 0 (and fixed r ≥ 1 and 0 < ε < 1
r
). We will see this in Section 6.1 where

we discuss some algorithmic consequences of FindWeightPIT.

From the definition of τ r,εw , it is clear that Theorem 5.5 is an algorithmic version of
Theorem 5.4 for r-claw-free graphs and integer weight functions w. In Chapter 6, we
will introduce a randomised algorithm that uses FindWeightPIT to give another algorith-
mic version of Theorem 5.4. This randomised algorithm will be useful for proving some
fractional strong colouring results, which are also discussed in Chapter 6.

Before presenting the algorithm FindITorBD, we give some intuition for the algorithm.
FindITorBD first restricts itself to the induced subgraph G′ of the input G whose vertex
set consists only of the vertices v with w(v) > 0 and w(v) ≥ w(u) for all u ∈ Vclass(v)
(i.e. the vertices of positive weight that have maximum weight within their vertex class).
We then apply FindITorBD to G′ and the vertex partition W formed by restricting the
input partition to the vertices in G′. If this returns an IT, then we are done as this IT has
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weight at least τ r,εw (Lemma 5.11). Otherwise, we will use the vertex set D returned by
FindITorBD to decrease the weights of the vertices in G to get a new weight function w′.
We then recursively apply FindWeightPIT to the original input graph and partition, but
with the new weight function w′. After some modifications to the resulting set M , it can
be shown that we obtain a PIT (Lemma 5.7) of weight at least τ r,εw (Lemma 5.11).

We now present the algorithm FindWeightPIT. We hold off on proving that
FindWeightPIT satisfies Theorem 5.5 until Section 5.3. Let FindWeightPIT be the algo-
rithm defined in 5.2.1.

5.2.1 FindWeightPIT

Input: A graph G, vertex partition (V1, . . . , Vm), and weight function w : V (G)→ Z with
parameters r and ε.

Output: A PIT M of weight at least τ r,εw .
1: function FindWeightPIT(G;w;V1, . . . , Vm)
2: V := {Vi : max{w(v) : Vclass(v) = Vi} > 0}
3: for all Vi ∈ V do
4: Wi := {v ∈ Vi : w(v) = max{w(u) : u ∈ Vi}}
5: W := {Wi : Vi ∈ V}

6: G′ := G

[ ⋃
Vi∈V

Wi

]
7: Apply FindITorBD(G′;W) with parameters r and ε.
8: if FindITorBD(G′;W) returns an IT M ′ then
9: M := M ′

10: else FindITorBD(G′;W) returns B ⊆ W , D ⊆ V (G′), and L = Leaf(K) ⊆ D.
11: for all v ∈ V (G) do
12: w′(v) := max{0, w(v)− |N(v) ∩D|}
13: M := FindWeightPIT(G;w′;V1, . . . , Vm) with parameters r and ε.
14: Y := {v ∈ L : Vclass(v) ∈ B, |N(v) ∩D| = 1}
15: while there is some v ∈ Y \M with N(v) ∩M = ∅ do
16: Choose any such v ∈ Y \M .
17: M := (M ∪ {v}) \ {b ∈M : Vclass(b) = Vclass(v)}
18: return M

In the next section, we will analyse FindWeightPIT to show that it satisfies Theo-
rem 5.5.
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5.3 Analysing FindWeightPIT

In this section, we analyse FindWeightPIT and show that it returns a PIT of weight at
least τ r,εw in time poly(|V (G)|, |w|) for fixed r ≥ 1 and 0 < ε < 1

r
. We begin our analysis

with a few definitions. For each 1 ≤ i ≤ m, let twi = max{w(v) : v ∈ Vi}. Define the index

Ind(G;w;V1, . . . , Vm) to be Ind(G;w;V1, . . . , Vm) =
m∑
i=1

max{0, twi }.

Proposition 5.6. We have

Ind(G;w′;V1, . . . , Vm) < Ind(G;w;V1, . . . , Vm).

Proof: Recall that w′ is only defined when |w| > 0 and FindITorBD(G′,W) returns a set
B ⊆ W of vertex classes, set D ⊆ V (G′) of vertices where D dominates G′B, and the PIT
L = Leaf(K) for the constellation K for B0 ⊇ B with V (K) ⊆ D (see FindITorBD in
Section 3.5). Furthermore, from the choice of vertices in the Wi, we know that for all
v ∈ V (G′), w(v) = twi > 0, where Vi = Vclass(v).

As D dominates G′B, for each vertex v ∈ Wi such that Wi ∈ B, we have N(v) ∩D 6= ∅.
Hence w′(v) ≤ w(v)− 1 for all such v. Since w(v) = twi , this implies that

tw
′

i = max{w′(u) : u ∈ Vi} ≤ max{w(u) : u ∈ Vi} − 1 < twi .

Thus tw
′

i < twi for all Vi such that Wi ∈ B. As B 6= ∅, this implies

Ind(G;w′;V1, . . . , Vm) =
m∑
i=1

tw
′

i <
m∑
i=1

twi = Ind(G;w;V1, . . . , Vm).

Lemma 5.7. The set M returned by FindWeightPIT is a PIT of G with respect to
(V1, . . . , Vm).

Proof: If FindITorBD(G′;W) returns an IT, then M is defined to be the IT returned by
FindITorBD. Since G′ is an induced subgraph of G and the Wi are subsets of the vertex
classes Vi, this set M is a PIT of G with respect to (V1, . . . , Vm).

Suppose FindITorBD(G′;W) returns a set B of vertex classes, a set D of vertices,
and a set L of vertices where L = Leaf(K) for the constellation K for B0 ⊇ B with
V (K) ∈ D. Then FindWeightPIT is recursively applied to obtain a PIT M of G with
respect to (V1, . . . , Vm). By Proposition 5.6 and induction on the index, we know that M
is a PIT.
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The set M remains a partial transversal throughout the while loop of FindWeightPIT
because the loop adds a vertex v ∈ Y \ M to M and removes the vertex b of M with
Vclass(b) = Vclass(v) (if it exists). To check that M is independent, note that each time
M is modified in the loop, the new vertex v satisfies N(v) ∩M = ∅. Thus M is a PIT of
G with respect to (V1, . . . , Vm).

By Lemma 5.7, FindWeightPIT always returns a PIT. Before analysing the weight of
this PIT, we need a few more propositions.

Proposition 5.8. The value of w′(M) does not decrease during any iteration of the while
loop in FindWeightPIT.

Proof: Let v be the vertex chosen in an iteration of the while loop. By the definition of
Y , we know that v has exactly one neighbour in D and v ∈ Wi for Vi = Vclass(v). Hence
w′(v) = w(v)− 1 = twi − 1. As Wi ∈ W , we have twi > 0 and so twi − 1 ≥ 0.

Let b ∈ M be the vertex of M such that Vclass(b) = Vclass(v) (if it exists). If b does
not exist, then clearly w′(M) does not decrease in this iteration because w′(v) ≥ 0. If b
exists, then Vclass(b) = Vclass(v) = Vi.

Suppose b ∈ Wi. By the definition of Y , we have Wi ∈ B, and so b ∈ V (G′B). Since
D dominates G′B, this means that b has at least one neighbour in D, which implies that
w′(b) ≤ w(b)− 1 ≤ twi − 1.

Now suppose b /∈ Wi. Then b ∈ Vi \Wi and so w(b) < twi . Hence w′(b) ≤ w(b) ≤ twi − 1.

In either case, adding vertex v to M increases w′(M) by w′(v) = twi −1, while removing
b decreases w′(M) by w′(b) ≤ twi − 1. Hence the statement holds.

Proposition 5.9. Suppose FindITorBD(G′;W) returns B, D, and L instead of an IT M .
Then the output M of FindWeightPIT satisfies∑

v∈M

|N(v) ∩D| > (1− rε)(|B| − 1).

Proof: Let Y = {v ∈ L : Vclass(v) ∈ B, |N(v) ∩D| = 1} (as in FindWeightPIT). Because
of the termination condition of the while loop in FindWeightPIT, we know that that each
vertex v ∈ Y \M has an edge to some vertex u ∈ M . Since Y ⊆ Leaf(K), we know that
Y is independent and so u ∈ M \ Y . This implies that there are at least |Y \M | edges
from M \ Y to Y \M . Since Y ⊆ D, this in turn shows that

∑
v∈M\Y

|N(v) ∩D| ≥ |Y \M |.
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Next, consider some vertex v ∈ M ∩ Y . Since D dominates G′B and Y ⊆ V (G′B),
there is at least one vertex in N(v) ∩ D, and hence |N(v) ∩ D| ≥ 1. This implies that∑
v∈M∩Y

|N(v) ∩D| ≥
∑

v∈M∩Y
1 = |M ∩ Y |.

We therefore have that∑
v∈M

|N(v) ∩D| =
∑

v∈M\Y

|N(v) ∩D|+
∑

v∈M∩Y

|N(v) ∩D| ≥ |Y \M |+ |Y ∩M | = |Y |.

To complete the proof, it suffices to show that |Y | > (1− rε)(|B| − 1). We have

|Y | ≥ |Leaf(K)| − |{v ∈ Leaf(K) : Wi(v) /∈ B or |N(v) ∩D| 6= 1}|,

where Wi(v) denotes the vertex class Wi ∈ W such that Vclass(v) = Vi.

By Theorem 3.1, K is a constellation for some B0 ⊇ B and thus |Leaf(K)| = |B0| − 1.
Since Leaf(K) is a PIT, the set {v ∈ Leaf(K) : Wi(v) /∈ B} has size at most |B0| − |B|.

Each vertex in Leaf(K) has exactly one neighbour in K. Thus, if y ∈ Leaf(K) has more
than one neighbour in D, then it has a neighbour in J = D \ V (K). (Since D dominates
G′B, it must have at least one neighbour in D.) Theorem 3.1 ensures that |J | < ε(|B| − 1).
Since G is r-claw-free, there are fewer than rε(|B| − 1) edges from J to Leaf(K). Thus,
there are fewer than rε(|B| − 1) vertices v ∈ Leaf(K) with |N(v) ∩D| 6= 1.

Hence,

|Y | > (|B0| − 1)− (|B0| − |B|)− rε(|B| − 1) = (1− rε)(|B| − 1).

Proposition 5.10. Suppose FindITorBD(G′;W) returns B, D, and L instead of an IT
M . Let γ be an optimal solution in Pr,εw and let w′ be as defined in FindWeightPIT. Then

τ r,εw′ ≥

 ∑
v∈V (G)

w(v)γv

− (1− rε)(|B| − 1).
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Proof: Recall that
∑

u∈N(v)

γu ≤ 1−rε
2+ε

for all v ∈ V (G) and |D| < (2 + ε)(|B| − 1). Hence,

τ r,εw′ ≥
∑

v∈V (G)

w′(v)γv

≥
∑

v∈V (G)

w(v)γv −
∑

v∈V (G)

|N(v) ∩D|γv

=
∑

v∈V (G)

w(v)γv −
∑
v∈D

∑
u∈N(v)

γu

≥
∑

v∈V (G)

w(v)γv −
∑
v∈D

1− rε
2 + ε

=

 ∑
v∈V (G)

w(v)γv

− (1− rε)|D|
2 + ε

≥

 ∑
v∈V (G)

w(v)γv

− (1− rε)(|B| − 1).

Lemma 5.11. Let M be the PIT returned by FindWeightPIT(G;w;V1, . . . , Vm). Then
w(M) ≥ τ r,εw .

Proof: We prove the statement by induction on Ind(G;w;V1, . . . , Vm).

For Ind(G;w;V1, . . . , Vm) = 0, FindWeightPIT returns M = ∅ as its PIT. Hence
w(M) = 0. However, Ind(G;w;V1, . . . , Vm) = 0 implies that w(v) ≤ 0 for all v ∈ V (G)
and so τ r,εw = 0 for every solution γ. Thus w(M) = τ r,εw = 0.

For the inductive step, suppose Ind(G;w;V1, . . . , Vm) > 0. We have

Wi = {v ∈ Vi : w(v) = twi } for all Vi ∈ V , W := {Wi : Vi ∈ V}, and G′ = G

[ ⋃
Wi∈W

Wi

]
.

FindWeightPIT runs FindITorBD on inputs G′ and W , which results in two cases.

Case 1. FindITorBD returns an IT M ′.

For any optimal solution γ in Pr,εw , the constraint
∑
v∈Vi

γv ≤ 1 implies that

∑
v∈Vi

w(v)γv ≤
∑
v∈Vi

twi γv ≤ twi .
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Hence

τ r,εw =
∑

v∈V (G)

w(v)γv =
m∑
i=1

∑
v∈Vi

w(v)γv ≤
m∑
i=1

twi = w(M ′).

Thus M ′ is a PIT of G of weight at least τ r,εw . As FindWeightPIT(G;w;V1, . . . , Vm) returns
M = M ′ in this case, FindWeightPIT returns a PIT M with w(M) ≥ τ r,εw .

Case 2. FindITorBD returns B, D, and L.

Then D dominates G′B and D contains the vertices of some constellation K for B0,
where B ⊆ B0 ⊆ W .

Let w′ be the weight function as defined in FindWeightPIT. Then by Lemma 5.7, the
recursive call FindWeightPIT(G;w′;V1, . . . , Vm) returns a PIT M and the final set M is
also a PIT. By Proposition 5.6, Ind(G;w′, V1, . . . , Vm) < Ind(G;w;V1, . . . , Vm). Hence by
the induction hypothesis, w′(M) ≥ τ r,εw′ . By Proposition 5.8, the value of w′(M) does not
decrease during the while loop in FindWeightPIT. Thus the final output M also satisfies
w′(M) ≥ τ r,εw′ .

By the definition of w′ and Proposition 5.9, we have

w(M)− w′(M) =
∑
v∈M

[w(v)− w′(v)] =
∑
v∈M

|N(v) ∩D| > (1− rε)(|B| − 1).

Also, by Proposition 5.10, τ r,εw′ ≥

[ ∑
v∈V (G)

w(v)γv

]
−(1−rε)(|B|−1) for any optimal solution

γ in Pr,εw . Hence,

w(M) > w′(M) + (1− rε)(|B| − 1)

≥ τ r,εw′ + (1− rε)(|B| − 1)

≥

 ∑
v∈V (G)

w(v)γv

− (1− rε)(|B| − 1)

+ (1− rε)(|B| − 1)

=
∑

v∈V (G)

w(v)γv

= τ r,εw .

As FindWeightPIT returns this M , it returns a PIT M with w(M) ≥ τ r,εw .

By Lemmas 5.7 and 5.11, we have shown FindWeightPIT returns a PIT M of weight
at least τ r,εw . It remains to show that for fixed r and ε, FindWeightPIT runs in time
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poly(|V (G)|, |w|). As the runtime of FindITorBD typically dominates the runtime of all
other steps in a recursive call of FindWeightPIT, we make no effort to minimise the runtime
of these other steps.

Lemma 5.12. For fixed r and ε, FindWeightPIT terminates in time poly(|V (G)|, |w|).

Proof: Let q(n, x) denote the maximum runtime of FindWeightPIT on input graphs G with
n vertices and weight function w where |w| = x. Let G, (V1, . . . , Vm), and w be the given
inputs. We prove the result by induction on |w| (recall w is an integer weight function and
|w| ≥ 0).

For |w| = 0, V = ∅ and soW = ∅ andG′ is the empty graph. Hence FindITorBD(G′;W)
returns M = ∅ in time poly(|V (G′)|) = O(1). Determining V = ∅ takes time O(|V (G)|)
and the other lines take an additional O(1) operations (since the sets are empty). Hence
q(|V (G)|, 0) = O(|V (G)|).

Now suppose |w| > 0. Determining the classes in V can be accomplished by for each
Vi, checking the weight of each v ∈ Vi until a v ∈ Vi is found such that w(v) > 0. Then
Vi is added to V and the next vertex class is tested. This takes time O(|V (G)|). The
sets Wi can be found by finding the largest weight assigned to a vertex in Vi and then
adding every v ∈ Vi with that weight to Wi. Hence finding all of the Wi takes time
|V| · O(|V (G)|) = O(|V (G)|2). Determining the graph G′ can also be found using W in
time O(|V (G)|2). Thus the initialising steps of FindWeightPIT can be implemented in
time O(|V (G)|2).

Recall from Theorem 3.1 that FindITorBD on an r-claw-free graph H with vertex
partition (U1, . . . , Un) runs in time poly(|V (H)|) for fixed r and ε. Let p denote this
polynomial. As V (G′) ⊆ V (G) and Wi ⊆ Vi for each Wi ∈ W , G′ is r-claw-free with
respect to W and so FindITorBD(G′,W) completes in time p(|V (G′)|) ≤ p(|V (G)|).

Determining if FindITorBD returns an IT M or a set B of vertex classes and sets D
and L of vertices takes time O(1) (determine the number of vectors in the output). If
FindITorBD returns an IT M , returning M takes time |V (G)| and so FindWeightPIT
ends after an additional O(|V (G)|) operations. Thus FindWeightPIT completes in time
O(|V (G)|2) + p(|V (G)|), which is poly(|V (G)|) and therefore poly(|V (G)|, |w|).

Suppose FindITorBD returns B , D, and L. Determining the number of neighbours in
D of a vertex v and then w′(v) for each v ∈ V (G) takes time O(|V (G)| · |D|) = O(|V (G)|2).
Defining the set Y takes another |L| ·O(|B|+O(|V (G)|2)) = O(|V (G)|3) operations. The
while loop of FindWeightPIT has at most |Y | ≤ |V (G)| iterations and each iteration can
be implemented in time O(|V (G)|). Thus the final PIT M is returned after an additional
O(|V (G)|3) operations. This leads to the following claim.
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Claim 5.13. q(|V (G)|, |w|) ≤ q(|V (G)|, |w| − 1) + p(|V (G)|) +O(|V (G)|3).

Proof: By construction, every vertex in D has a neighbour in D and w(v) > 0 for all
v ∈ D ⊆ V (G′). As D 6= ∅, we have

|w′| ≤ |w| − |D| ≤ |w| − 1.

Hence the recursive application of FindWeightPIT takes time

q(|V (G)|, |w′|) ≤ q(|V (G)|, |w| − 1).

From the discussion above, implementing FindITorBD(G′,W) takes time p(|V (G)|) and
implementing the remaining lines takes time O(|V (G)|3). Thus FindWeightPIT on inputs
G, w, and (V1, . . . , Vm) completes in time

q(|V (G)|, |w| − 1) + p(|V (G)|) +O(|V (G)|3).

Therefore q(|V (G)|, |w|) = O(|w| · [p(|V (G)|) + |V (G)|3]), and so the lemma holds.

Theorem 5.5 follows from Lemmas 5.7, 5.11, and 5.12.
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Chapter 6

A Randomised Algorithm and Strong
Colourings

In this chapter, we introduce a new randomised algorithm, called FindWeightIT, for graphs
with maximum degree ∆, where ∆ can vary freely (Theorem 6.10). This is different from
the previous algorithms whose runtimes are exponential in ∆, making them only effi-
cient when ∆ is fixed. We prove Theorem 6.10 using FindWeightPIT and an algorith-
mic version of the the Lovász Local Lemma (LLL) due to Moser and Tardos [79]. Unlike
FindWeightPIT, the runtime of FindWeightIT is not limited by a dependence on ∆. More-
over, FindWeightIT returns an IT of certain weight rather than a PIT.

We also apply FindWeightIT to the problem of finding strong colourings and fractional
strong colourings (formally defined in Section 6.4) in graphs. These applications were
studied by Aharoni, Berger, and Ziv in [3] as an application of Theorem 5.2. Recall
from Section 4.4 that the general bound on the strong chromatic number of a graph G is
conjectured to be 2∆(G) (see e.g. [3]). Aharoni, Berger, and Ziv [3] used ITs in weighted
graphs to show that the fractional version of this conjectured bound holds (Theorem 6.13).
We prove an algorithmic version of this result (Theorem 6.14), with asymptotically the
same upper bound. We also give an algorithm using FindWeightIT that finds a strong
colouring of a graph G using (3 + ε)∆(G) colours, where ε > 0 is fixed (Theorem 6.16).
This result generalises a similar result from Section 4.4 since ∆(G) can be unbounded,
however this new algorithm uses FindWeightIT and so is not deterministic.

As mentioned in Chapter 1, the new algorithms and algorithmic results discussed in
this chapter are joint work with David Harris and Penny Haxell. Modified versions of these
algorithms can be found in [37].
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This chapter is organised as follows. In Section 6.1, we derive some algorithmic conse-
quences of FindWeightPIT that will lead to FindWeightIT and the proof of Theorem 6.10.
In Section 6.2, we use the LLL to develop some degree reduction results that allow us
to remove the condition that ∆(G) be constant. This will require some of the proper-
ties of the Moser-Tardos algorithm discussed in Section 2.3. We prove Theorem 6.10 in
Section 6.3. In Section 6.4, we discuss Theorem 6.13 of Aharoni, Berger, and Ziv [3] and
prove an algorithmic version (Theorem 6.14) of it using Theorem 6.10. We prove some
immediate consequences (Corollaries 6.15 and 6.16) of Theorem 6.10 for strong colourings
in Section 6.5.

6.1 Algorithmic Consequences of FindWeightPIT

This section contains some algorithmic consequences of FindWeightPIT. The algorithm
FindWeightPIT can be found in 5.2.1 in Section 5.2.

Recall that FindWeightPIT takes as inputs a graph G, a vertex partition V such that
G is r-claw-free with respect to V , and a weight function w : V (G)→ Z. It returns a PIT
M in G of weight at least τ r,εw in time poly(|V (G)|, |w|) for fixed r and 0 < ε < 1

r
, where

|w| =
∑

v∈V (G)

|w(v)|. (The LP Pr,εw defining τ r,εw can also be found in Section 5.2.)

We begin with the following analogue of Corollary 3.2 for vertex-weighted graphs with
integral weights.

Proposition 6.1. There exists an algorithm A1 that takes as inputs any graph G, ver-
tex partition (V1, . . . , Vm) such that |Vi| = b > 2∆(G) for each i, and weight function

w : V (G)→ Z≥0, and finds an IT in G of weight at least w(V (G))
b

. For fixed b, the runtime
is poly(|V (G)|, |w|).

Proof: Let the algorithm A1 be as defined in 6.1.1.

We show that M is an IT with w(M) ≥ w(V (G))
b

and that for fixed b, the runtime is
poly(|V (G)|, |w|). To do so, we must verify G, (V1, . . . , Vm), and w′ are valid inputs for
FindWeightPIT with parameters r =

⌈
b
2

⌉
+ 1 and ε = 1

b2
.

As b > 2∆(G), clearly G is r-claw-free with respect to any vertex partition. Also, the
vector γ defined by γv = 1

b
for each v ∈ V (G) is feasible for Pr,εw . This is because |Vi| = b

for each i and ∑
u∈N(v)

γu =
deg(v)

b
≤
⌈
b
2

⌉
− 1

b
≤

1−
(⌈

b
2

⌉
+ 1
) (

1
b2

)
2 +

(
1
b2

) =
1− rε
2 + ε

.
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6.1.1 A1

Input: A graph G, vertex partition (V1, . . . , Vm) such that |Vi| = b > 2∆(G) for each i,
and weight function w : V (G)→ Z≥0 with parameter b.

Output: An IT M of weight at least w(V (G))
b

.
1: function A1(G;w;V1, . . . , Vm)
2: r :=

⌈
b
2

⌉
+ 1

3: ε := 1
b2

4: for all v ∈ V (G) do
5: w′(v) := w(v) +m|w|
6: M := FindWeightPIT(G;w′;V1, . . . , Vm) with parameters r and ε.
7: return M

For the weight function w′ : V (G)→ Z≥0 defined by w′(v) = w(v)+m|w|, FindWeightPIT

for r and ε returns a PIT M of weight at least τ r,εw′ ≥
w′(V (G))

b
in time poly(|V (G)|, |w′|) by

Theorem 5.5. Note that |w′| = poly(|V (G)|, |w|).

We claim that M is an IT. Suppose M were not an IT. Then |M | < m and so

w′(M) ≤ (m− 1) (max{w′(u) : u ∈ V (G)}) ≤ (m− 1)(|w|+m|w|) = (m2 − 1)|w|.

On the other hand, every vertex class has size b and so |V (G)| = mb. Thus,

w′(M) ≥ w′(V (G))

b
=
w(V (G))

b
+mb

(
m|w|
b

)
≥ |w|

b
+m2|w| ≥ m2|w|.

This is a contradiction and so M is an IT.

Since M is an IT, we have w(M) = w′(M)−m(m|w|). Also,

w′(M) ≥ w′(V (G))
b

= w(V (G))
b

+m2|w|. Thus w(M) ≥ w(V (G))
b

as desired, and so A1 is the
desired algorithm.

The next lemma removes the runtime dependence on |w| in Lemma 6.1, but weakens
the conclusion slightly. We note that the algorithm A2 of Lemma 6.2 takes as input a
real-valued weight function. To be rigorous, this weight function should be discretised to
some finite precision, which would make A2 have some dependence on the number of bits
of precision used. However, we ignore such numerical issues for simplicity of exposition.

Lemma 6.2. There exists an algorithm A2 that takes as inputs any η > 0, graph G,
vertex partition (V1, . . . , Vm) such that |Vi| = b > 2∆(G) for each i, and weight function
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w : V (G) → R≥0, and finds an IT in G of weight at least (1 − η)w(V (G))
b

. For fixed b, the

runtime is poly
(
|V (G)|, 1

η

)
.

Proof: Let the algorithm A2 be as defined in 6.1.2.

6.1.2 A2

Input: A parameter η > 0, graph G, vertex partition (V1, . . . , Vm) such that
|Vi| = b > 2∆(G) for each i, and weight function w : V (G) → R≥0 with parameter
b.

Output: An IT M of weight at least (1− η)w(V (G))
b

.
1: function A2(G; η;w;V1, . . . , Vm)
2: if w(V (G)) = 0 then
3: M := A1(G;w;V1, . . . , Vm) with parameter b.
4: else
5: α := |V (G)|

ηw(V (G))

6: for all v ∈ V (G) do
7: w′(v) := bαw(v)c
8: M := A1(G;w′;V1, . . . , Vm) with parameter b.

9: return M

We show that M is an IT with w(M) ≥ (1−η)w(V (G))
b

and that for fixed b, the runtime

is poly
(
|V (G)|, 1

η

)
. To do so, we must verify G, (V1, . . . , Vm), and w′ are valid inputs for

A1 with parameter b.

If w(V (G)) = 0, then w(v) = 0 for all vertices v. Hence w : V (G) → Z≥0 is integral

and so we can apply A1 directly to get an IT of weight at least w(V (G))
b

> (1 − η)w(V (G))
b

.
For fixed b, the runtime is poly(|V (G)|) since |w| = 0. Thus we may assume w(V (G)) > 0.

Let α = |V (G)|
ηw(V (G))

and w′ : V (G) → Z≥0 be defined by w′(v) = bαw(v)c. Then ap-

plying A1 for b to (G;w′;V1, . . . , Vm) returns an IT M of weight at least w′(V (G))
b

. As

|w′| ≤ αw(V (G)) = |V (G)|
η

, the runtime of A1 is poly(|V (G)|, 1
η
).

It remains to show M has the desired weight. We have

w′(V (G)) =
∑

v∈V (G)

bαw(v)c >
∑

v∈V (G)

(αw(v)− 1) = αw(V (G))− |V (G)|.
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Thus,

w(M) =
∑
v∈M

w(v) ≥
∑
v∈M

w′(v)

α
=
w′(M)

α
≥ w′(V (G))

bα
≥ (1− η)

w(V (G))

b
.

The final step to reach Theorem 6.10 will be to remove the requirement that b is a
fixed constant in Lemma 6.2. To do so, we will need an algorithm that, given a vertex-
partitioned weighted graph G, is able to efficiently find a subgraph H of G such that the
degree, vertex class size, and total weight of the vertices is reduced (see Lemma 6.3). We
will see this algorithm in Section 6.3, as well as the remainder of the proof of Theorem 6.10.
Note that this algorithm uses the properties of the Moser-Tardos algorithm [79] discussed
in Section 2.3.

6.2 Degree Reduction Using LLL

In this section, we discuss some results that use the LLL to select a constant-sized piece
of each vertex class Vi, such that the subgraph of G induced on all the pieces is an appro-
priately “scaled-down model of G.” We then apply Lemma 6.2 in this model, in which the
maximum degree (and thus b) is constant, to find an IT. This is another important step
for defining the randomised algorithm FindWeightIT.

In the following lemma, we introduce a “degree-splitting” algorithm. This algorithm
uses the Moser-Tardos algorithm (Theorem 2.9) to take a weighted vertex-partitioned graph
and reduce the maximum degree, vertex class size, and sum of the vertex weights by a factor
of approximately 1

2
. Applying this algorithm log ∆(G) times results in a scaled-down model

of G that has constant degree.

Lemma 6.3. There is a randomised algorithm A3 that takes as input a graph G, a vertex
partition (V1, . . . , Vm) such that |Vi| = b for each i, a real-valued parameter ∆̂ ≥ 5000
such that ∆(G) ≤ ∆̂ and 2∆̂ ≤ b ≤ 3∆̂, and a weight function w : V (G) → R≥0. It
generates a subset V ′ ⊆ V (G) such that the induced subgraph G[V ′] has maximum degree

at most t = ∆̂
2

+ 10

(√
∆̂ log ∆̂

)
, |Vi ∩ V ′| = b′ =

⌈
b
2

⌉
for each vertex class Vi, and

w(V ′)
b′
≥ w(V (G))

b
(1− ∆̂−10). The expected runtime is poly(|V (G)|).

Proof: Let the algorithm A3 be as defined in 6.2.1.
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6.2.1 A3

Input: A graph G, vertex partition (V1, . . . , Vm) such that |Vi| = b for each i, a real-valued
parameter ∆̂ ≥ 5000 such that ∆(G) ≤ ∆̂ and 2∆̂ ≤ b ≤ 3∆̂, and weight function
w : V (G)→ R≥0.

Output: An subset V ′ ⊆ V (G) satisfying the conditions of Lemma 6.3.
1: function A3(G; ∆̂;w;V1, . . . , Vm)
2: b′ :=

⌈
b
2

⌉
3: t := ∆̂

2
+ 10

(√
∆̂ log ∆̂

)
4: for i = 1, . . . ,m do
5: Xi := a random variable whose distribution is to select at random a subset
V ′i ⊆ Vi of size exactly b′.

6: for all v ∈ V (G) do
7: Bv := the bad event that v has more than t neighbours in {v ∈ Xi : 1 ≤ i ≤ m}.
8: Ω := the probability space in variables X1, . . . , Xm

9: B := {Bv : v ∈ V (G)}
10: V ′ := ∅
11: while w(V ′) < b′w(V (G))

b
(1− ∆̂−10) do

12: V ′ := Moser-Tardos(Ω,B)

13: return V ′
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Note that A3 repeatedly uses the Moser-Tardos algorithm, and so we must show this
choice of Ω and B satisfies Theorem 2.9 for some parameters p, d ≥ 0. We begin by
determining these parameters p and d.

Consider some vertex v and bad event Bv. This bad event Bv is affected by the choice
of Xi for each Vi such that Vi = Vclass(u) for some u ∈ N(v). Each choice of Xi, in turn,
affects Bw for any vertex w with a neighbour in Vi. In total, Bv can affect at most b∆(G)2

other vertices. Thus the conditions that b ≤ 3∆̂ and ∆(G) ≤ ∆̂ ensure that this is at most
3∆̂3. Hence d = 3∆̂3 will suffice.

We now examine the probability of event Bv. For N(v) = {y1, . . . , yk}, the degree of v

in V ′ is the sum Y =
k∑
i=1

Yi, where Yi is the indicator that yi ∈ V ′. It is not hard to see that

the random variables Yi are negatively correlated, and that Y has mean µ = kb′

b
≤ ∆̂

2
+ ∆̂

b
.

Hence the condition that b ≥ 2∆̂ ensures that this is at most µ̂ = ∆̂+1
2

.

We use Chernoff’s bound, which applies to sums of negatively correlated random vari-
ables (see [80]), to compute the probability Y ≥ t. Note that µ̂ is an upper bound on the

true mean µ of Y and that t represents a multiplicative deviation of δ = t
µ̂
−1 =

20
√

∆̂ log ∆̂−1

∆̂+1

over the value µ̂. Simple analysis shows that 0 < δ < 1 for ∆̂ ≥ 5000, so we can use the
simplified form of Chernoff’s bound (Lemma 3 in [75])

Pr(Y ≥ µ̂(1 + δ)) ≤ e−µ̂δ
2/3.

Simple analysis again shows that for ∆̂ ≥ 5000, this is at most e−66 log ∆̂. Hence, overall,
the bad event Bv has probability at most ∆̂−66. Thus p = ∆̂−66 will suffice.

Let p = ∆̂−66 and d = 3∆̂3. Then epd ≤ 1 and so the parameters p and d are valid for
use in Theorem 2.9. Hence the Moser-Tardos algorithm generates, in expected polynomial
time, a configuration avoiding all such bad events Bv. This configuration is a vertex set
V ′ such that G[V ′] has ∆(G[V ′]) ≤ t. Furthermore, by construction the vertex classes
restricted to the vertices in V ′ all have size exactly b′.

By Theorem 2.10, for any vertex class Vi and fixed set Ui ⊆ Vi, the probability of an
event Xi = Ui in the MT-distribution is at most eepr times its probability in the original
probability space Ω, where r is the number of bad-events affecting event Xi = Ui. The
original sampling probability is 1

( bb′)
from the uniform distribution. The number of events

affecting Xi is at most r = 3∆̂3. Thus,

Pr(Xi = Ui) ≤
e3∆̂3·e∆̂−66(

b
b′

) .
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Simple analysis shows that for ∆̂ ≥ 5000, we have e3∆̂3·e∆̂−66 ≤ 1 + ∆̂−11. Since
E[w(Xi)] ≤ w(Vi) with probability one, we therefore have

E[w(Xi)] = w(Vi)−
∑
Ui⊆Vi
|Ui|=b′

Pr(Xi = Ui)w(Vi \ Ui)

≥ w(Vi)−
1 + ∆̂−11(

b
b′

) ∑
Ui⊆Vi
|Ui|=b′

w(Vi \ Ui)

= w(Vi)−
1 + ∆̂−11(

b
b′

) ∑
u∈Vi

w(u)
∑
Ui⊆Vi
|Ui|=b′
u/∈Ui

1

= w(Vi)−
1 + ∆̂−11(

b
b′

) w(Vi)
(
b−1
b′

)
= w(Vi)

(
1− (1− b′

b
)(1 + ∆̂−11)

)
≥ w(Vi)(

b′

b
− ∆̂−11).

Summing over all vertex classes Vi (and noting that b′

b
≥ 1

2
), this gives

E[w(V ′)] ≥ w(V (G))( b
b′
− ∆̂−11) ≥ b′w(V (G))

b
(1− 2∆̂−11).

Since w(V ′) ≤ w(V (G)), the number of iterations of the while loop in A3 is
O(∆̂10) = poly(|V (G)|). Initialising each variable and running the Moser-Tardos algorithm
clearly takes expected runtime poly(|V (G)|), and so the statement holds.

The next lemma removes the runtime dependence on ∆̂ in Lemma 6.3, but requires
slightly stronger conditions.

Lemma 6.4. There is a randomised algorithm A4 that takes as input a parameter 0 < ε < 1,
a graph G, a vertex partition (V1, . . . , Vm) such that for some b ≥ (2 + ε)∆(G) |Vi| = b for
each i, and a weight function w : V (G)→ R≥0. It generates an IT M of G with

w(M) ≥ w(V (G))

b
(1− ε2).

For fixed ε, the expected runtime is poly(|V (G)|).
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6.2.2 A4

Input: A parameter 0 < ε < 1, graph G, vertex partition (V1, . . . , Vm) such that
|Vi| = b ≥ (2 + ε)∆(G) for each i, and weight function w : V (G)→ R≥0.

Output: An IT M of weight at least w(V (G))
b

(1− ε2).
1: function A4(G; ε;w;V1, . . . , Vm)
2: ∆̂ := b

2+ε

3: C := a sufficiently large constant

4: t := max
{

0,
⌊
log2

∆̂ε9

C

⌋}
5: Initialise G0 := G, ∆̂0 := ∆̂, and b0 := b.
6: for i = 1, . . . , t do
7: V ′i := A3(Gi−1; ∆̂i−1;w;V1, . . . , Vm)
8: Vi := the vertex partition induced by restricting the vertex classes to vertices

in V ′i .
9: Gi := G[V ′i ]

10: bi :=
⌈
bi−1

2

⌉
11: ∆̂i := ∆̂i

2
+ 10

√
∆̂i log ∆̂i

12: M := A2(Gt;
ε2

2
;w;Vt)

13: return M
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Proof: Let the algorithm A4 be as defined in 6.2.2.

Note that A4 repeatedly applies A3 for t = max
{

0,
⌊
log2

∆̂ε9

C

⌋}
rounds, where C is a

constant to be specified later. This generates a series of graphs Gi for i = 0, . . . , t. After
this process completes, it applies A2 to Gt to get the desired IT M . We therefore must
check the preconditions are satisfied for every iteration of A3 as well as for the application
of A2.

As we apply A3, we must ensure that each graph Gi has vertex classes of size exactly bi
and maximum degree bounded by a parameter ∆̂i. Let Wi = w(V (Gi)). The parameters
bi, ∆̂i, and Wi are given initially by

b0 = b, ∆̂0 = ∆̂ = b
2+ε

, W0 = w(V (G)),

and, assuming the preconditions of Lemma 6.3 remained satisfied, later by

bi+1 =
⌈
bi
2

⌉
, ∆̂i+1 = ∆̂i

2
+ 10

√
∆̂i log ∆̂i,

Wi+1

bi+1
≥ Wi

bi
(1− ∆̂−10

i ).

We now verify that the preconditions are satisfied, starting with estimating ∆̂i.

Claim 6.5. C
ε9
≤ ∆̂i ≤ ∆̂2−i + (∆̂2−i)2/3 for all i.

Proof: It is clear that ∆̂i ≥ ∆̂2−i. By our choice of t, we therefore have that ∆̂i ≥ C
ε9

for
all i. It remains to show the upper bound. We do so by induction on i.

For i = 0, it is clearly true that ∆̂ ≤ ∆̂ + ∆̂2/3. For the inductive step, by definition
we have

∆̂i+1 =
∆̂i

2
+ 10

√
∆̂i log ∆̂i.

As ∆̂i ≥ ∆̂2−i ≥ C (since 0 < ε < 1), for C sufficiently large we have ∆̂i ≤ 21−i∆̂. Thus,
by the induction hypothesis,

∆̂i+1 ≤ ∆̂2−i−1 +
(∆̂2−i)2/3

2
+ 10

√
21−i∆̂ log(21−i∆̂)

≤ ∆̂2−i−1 + (∆̂2−i−1)2/3 − 0.1(∆̂2−i)2/3 + 10

√
21−i∆̂ log(21−i∆̂).

Since ∆̂2−i ≥ C for all i, for C sufficiently large, the above bound is at most
∆̂2−i−1 + (∆̂2−i−1)2/3. Hence the upper bound holds.
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By Claim 6.5, ∆̂i ≥ C
ε9
≥ 2 for all i. It remains to show that 2∆̂i ≤ bi ≤ 3∆̂i for i < t.

Claim 6.6. 2∆̂i < bi ≤ 3∆̂i for all i < t.

Proof: We show that the upper bound and lower bound are maintained separately. The
proof of the upper bound is by induction on i. For i = 0, the bound holds by the choice of
∆̂0.

Note that

bi+1

∆̂i+1

≤
bi+1

2

∆̂i

2
+ 10

√
∆̂i log ∆̂i

=
bi + 1

∆̂i + 20

√
∆̂i log ∆̂i

≤ bi

∆̂i

≤ 3,

where the second inequality holds because ∆̂i ≥ C and C is sufficiently large. Hence
bi+1 ≤ 3∆̂i+1.

For the lower bound, note that bi ≥ 2−ib for all i. Since i ≤ t, we have ∆̂2−i ≥ ∆̂2−t ≥
C
ε9

. Thus the upper bound in Claim 6.5 implies that ∆̂i ≤ ∆̂i2
−1
(
1 + C

ε9

)−1/3
. Hence,

bi − 2∆̂i ≥ 2−ib− 2

(
2−i∆̂

(
1 +

ε3

C1/3

))
= 2−i

(
b− 2∆̂− 2ε3∆̂

C1/3

)
= 2−i

(
ε3∆̂− ε3∆̂

C1/3

)
.

This is positive as C > 1 and so bi > 2∆̂i for all i.

Since ∆̂i ≥ C
ε9
≥ C for i ≤ t, by choosing C ≥ 5000 we also ensure that ∆̂i ≥ 5000 as

well. Thus by Claims 6.5 and 6.6, the preconditions of A3 are satisfied for all t iterations
and for fixed ε, each iteration takes expected time poly(|V (G)|).

We now show that for η = ε2

2
and Gt, the preconditions of A2 are met. Let G′ = Gt.

Note that ∆̂t ≥ ∆(G′). As bt > 2∆̂t, we therefore have that bt > 2∆(G′). By Claim 6.5
and our choice of t, we have

∆(G′) ≤ ∆̂t ≤ 21−t∆̂ ≤ 4C

ε9
.

As bt ≤ 3∆̂t, we have bt ≤ poly(1
ε
). By our choice of η, for fixed ε we have that the runtime

of A2 is poly(|V (G′)|), which is poly(|V (G)|).
It remains to analyse the weight Wt = w(V (G′)). We have

Wt

bt
≥ w(V (G))

b

t∏
i=0

(1− ∆̂−10
i ) ≥ w(V (G))

b

t∏
i=0

e−∆̂−10
i /2 =

w(V (G))

b
e−

t∑
i=0

∆̂−10
i

2 .
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As ∆̂i ≥ ∆̂2−i for each i, the sum is bounded by 2(2−t∆̂)−10. By the choice of t, this is at
most 2(C

ε9
)−10, which is at most ε2

10
for C ≥ 2. Since ε < 1, we have

Wt

bt
≥ w(V (G))

b
e−ε

2/10 ≥ w(V (G))

b

(
1− ε2

2

)
.

Thus, by Lemma 6.2, A2 on inputs G′ and η returns an IT M of weight

w(M) ≥ w(V (Gt))

bt
(1− η) ≥ w(V (G))

b

(
1− ε2

2

)(
1− ε2

2

)
≥ w(V (G))

b

(
1− ε2

)
.

This concludes the proof as A4 returns this M .

With Lemma 6.4, we are able prove some algorithmic versions of Theorem 5.2, including
Theorem 6.10, in Section 6.3.

6.3 The Randomised Algorithm FindWeightIT

In this section, we give a randomised algorithm, called FindWeightIT, that finds ITs in
vertex-weighted graphs G in expected polynomial time, where this runtime does not de-
pend on ∆(G) (Theorem 6.10). This allows us to find ITs in graphs with unbounded
maximum degree, unlike FindWeightPIT and A2 which, for graphs with maximum degree
∆, both have runtimes that depend on ∆ being fixed (recall that b in Lemma 6.2 satisfies
b > 2∆(G) = 2∆).

We begin by defining another LP. Let G be a graph, (V1, . . . , Vm) a vertex partition of
G, w : V (G) → R a weight function, and δ ∈ R≥0 a parameter. We define Pδw to be the
following LP and τ δw to be the largest objective value to Pδw.

max
∑

v∈V (G)

w(v)γv

subject to
∑

u∈N(v)

γu ≤ δ ∀v ∈ V (G)

∑
v∈Vi

γv = 1 ∀i ∈ {1, . . . ,m}

0 ≤ γv ≤ 1 ∀v ∈ v(G).
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If this LP is not feasible, we define Pδw = ∅ and τ δw = −∞.

Note that Pδw is very similar to Pw and Pr,εw from Section 5.2. However, the bound
on

∑
u∈N(v)

γu is determined by a parameter δ instead of being a constant 1
2

(see Pw) or

determined by parameters r and ε (see Pr,εw ). Moreover, Pδw requires
∑
v∈Vi

γv to be 1 rather

than at most 1.

Lemma 6.4 leads to the following result, which is an algorithmic version of Theorem 5.2.

Proposition 6.7. There exists a randomised algorithm A5 which takes as inputs a parame-
ter 0 < ε < 1

2
, a graph G, a vertex partition (V1, . . . , Vm), a weight function w : V (G)→ R≥0,

and a vector γ in the polytope Pδw where δ = 1
2
− ε, and returns an IT M of G with

w(M) ≥ (1− 2ε2)
∑

v∈V (G)

γvw(v).

For fixed ε, the expected runtime is poly(|V (G)|).

Before proving Proposition 6.7, we discuss how it compares to Theorem 5.4 and The-
orem 5.5 from Chapter 5. (Recall Theorem 5.4 is the LP formulation of Theorem 5.2.)
Recall that Theorem 5.4 states that there exists a PIT of weight at least τw =

∑
v∈V (G)

γvw(v)

and Pw has the condition
∑

u∈N(v)

γu ≤ 1
2

for all v ∈ V (G). Thus, Proposition 6.7 shows

that we can find (in expected polynomial time for fixed ε) an IT of G at some cost to
the weight of the IT. However, A5 is more applicable than the deterministic algorithm
FindWeightPIT of Theorem 5.5 as the conditions of Pδw do not depend on r. Hence there
is no requirement that the graphs G be r-claw-free.

We now prove Proposition 6.7.

Proof of 6.7: Let the algorithm A5 be as defined in 6.3.1.

The subroutine BlowUp takes as inputs a graph G, vector γ, and parameter ε and
“blows-up” G with independent sets into a graph G′ as follows. For each vertex v ∈ V (G),

BlowUp creates dtγve new vertices in V (G′) where t =
⌈
|V (G)|
ε3

⌉
. The map f : V (G′)→ V (G)

is defined by setting f(u) to be the unique vertex v ∈ V (G) such that u is created from
v ∈ V (G). The edge set E(G′) is the set {u1u2 : f(u1)f(u2) ∈ E(G)}. For U ⊆ V (G′),
we write f(U) = {f(u) : u ∈ U}. Thus (V ′1 , . . . , V

′
m) is the vertex partition of G′ where

V ′i = f−1(Vi) and w′ is the weight function defined by w′(u) = w(f(u)).
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6.3.1 A5

Input: A parameter 0 < ε < 1
2
, graph G, vertex partition (V1, . . . , Vm), weight function

w : V (G)→ R≥0, and vector γ in the polytope Pδw where δ = 1
2
− ε.

Output: An IT M of weight at least (1− 2ε2)
∑

v∈V (G)

γvw(v).

1: function A5(G; ε; γ;w;V1, . . . , Vm)
2: δ := 1

2
− ε

3: (G′, f) := BlowUp(G; γ; ε)
4: for v ∈ V (G′) do
5: w′(v) := w(f(v))

6: for i = 1, . . . ,m do
7: V ′i := {v ∈ V (G′) : f(v) ∈ Vi}
8: V ∗i := the set of t vertices of V ′i of largest weight

9: G∗ := G

[
m⋃
i=1

V ∗i

]
10: ε′ := ε

1−ε
11: M := A4(G∗; ε′;w′;V ∗1 , . . . , V

∗
m)

12: return f(M)

Consider some vertex u ∈ V (G′) with f(u) = v ∈ V (G). Since γ satisfies Pδw, we have

deg(u) =
∑

x∈N(v)

dtγxe ≤
∑

x∈N(v)

(tγx + 1) ≤ |V (G)|+ t
∑

x∈N(v)

γx ≤ |V (G)|+ tδ.

Similarly, the size of each vertex class V ′i satisfies

|V ′i | =
∑
x∈Vi

dtγxe ≤
∑
x∈Vi

(tγx + 1) ≤ |V (G)|+ t,

and
|V ′i | =

∑
x∈Vi

dtγxe ≥
∑
x∈Vi

tγx = t.

Thus discarding the lowest-weight |V ′i | − t vertices from each vertex class V ′i is well-
defined and the resulting vertex classes V ∗i have size exactly b = t. Hence G∗ is well-defined
and has vertex partition (V ∗1 , . . . , V

∗
m) with |V ∗i | = b for each i. Moreover, since vertices

were only discarded, we have ∆(G∗) ≤ ∆(G′) ≤ |V (G)|+ tδ.
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For ε′ = ε
1−ε > 0 and ε < 1

2
, we have

b

∆(G∗)
≥ t

|V (G)|+ tδ
=

1
|V (G)|
t

+ δ
≥ 1

ε3 + (1
2
− ε)

≥ 1
1
2
− ε

2

= 2(1 + ε′).

By applying A4 on inputs ε′, G∗, (V ∗1 , . . . , V
∗
m), and w′, we get an IT M of G∗ with

w′(M∗) ≥ w′(V (G∗))
b

(1 − (ε′)2). The corresponding set f(M) is an IT of G with weight
w(f(M)) = w′(M).

Because the vertex classes V ′i originally had size at most |V (G)| + t, discarding the

excess vertices from each V ′i reduces the weight by a factor of at most |V (G)|
|V (G)|+t , and so

w′(V (G∗)) ≥
(

t
|V (G)|+t

)
w′(V (G′)). Thus,

w′(V (G′)) =
∑

u∈V (G′)

w′(u) =
∑

v∈V (G)

dtγvew(v) ≥ t
∑

v∈V (G)

γvw(v).

We therefore have

w(M) ≥ w′(V (G∗))

b
(1− (ε′)2) ≥ t

|V (G)|+ t
(1− (ε′)2)

∑
v∈V (G)

γvw(v).

By our choice of t, we have |V (G)|
t
≤ ε3. Simple calculations then show that the above

is at least (1− 2ε2)
∑

v∈V (G)

γvw(v).

For fixed ε, we know t ≤ poly(|V (G)|) and so |V (G∗)| ≤ poly(|V (G)|). Furthermore, ε′

is fixed. Hence the runtime of A4 and of the overall algorithm A5, is poly(|V (G)|).

We finish by removing the undesired factor of (1− 2ε2).

Theorem 6.8. There exists a randomised algorithm A6 which takes as inputs a parameter
0 < δ < 1

2
, a graph G, vertex partition (V1, . . . , Vm), and weight function w : V (G) → R

where Pδw 6= ∅ and returns an IT M of G with w(M) ≥ τ δw. For fixed δ, the expected
runtime is poly(|V (G)|).

Proof: Let the algorithm A6 be as defined in 6.3.2.

The algorithmA6 aims to applyA5 to a subgraph of G under a different weight function.
It begins by initialising ε finding a γ ∈ Pδw with

∑
v∈V (G)

γvw(v) = τ δw. Note that this
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6.3.2 A6

Input: A parameter 0 < δ < 1
2
, graph G, vertex partition (V1, . . . , Vm), weight function

w : V (G)→ R where Pδw 6= ∅.
Output: An IT M of weight at least τ δw.
1: function A6(G; δ;w;V1, . . . , Vm)
2: ε := 1

2
− δ

3: γ := an optimal solution to Pδw
4: for i = 1, . . . ,m do
5: Sort the vertices of Vi by non-increasing order of weight and label them
vi,1, . . . , vi,ti for ti = |Vi|.

6: si := smallest index such that
si∑
k=1

γi,k ≥ 1− ε (where γi,k is the entry for vi,k)

7: V ′i := {vi,1, . . . , vi,si}

8: G′ := G

[
m⋃
i=1

V ′i

]
9: for all v ∈ V (G′) do
10: w′(v) := w(v)− w(vi,si) where v ∈ V ′i

11: γ′i,j :=


γi,j
1−ε if j < si

1−

si−1∑
k=1

γi,k

1−ε if j = si

(where γ′i,j is the entry for v = vi,j in γ′)

12: ε′ := ε
2−2ε

13: M := A5(G′; ε′; γ′;w′;V ′1 , . . . , V
′
m)

14: return M

118



takes poly(|V (G)|) time since Pδw has poly(|V (G)|) constraints. It then sorts the vertices
in each vertex class in non-increasing order of weight and labels the vertices in Vi with
vi,1, vi,2, . . . , vi,ti so that w(vi,1) ≥ w(vi,2) ≥ · · · ≥ w(vi,ti). Also, we use γi,j to denote the
entry for vertex vi,j in γ.

Since
∑
v∈Vi

γv = 1, each Vi has a smallest index si such that

si∑
k=1

γi,k ≥ 1− ε.

Thus the induced subgraph G′ of G obtained by removing from each Vi all of the vertices
vi,j with j > si is well defined, as are the subsets V ′i = Vi ∩ V (G′) and weight function
w′ : V (G′) → R≥0 defined by w′(v) = w(v) − w(vi,si) where v ∈ V ′i . (By the sorted order
of the vertices, we have w(v) ≥ w(vi,si) for each vertex v ∈ V (G′) with v ∈ V ′i .)

Let γ′ ∈ [0, 1]V (G′) be the vector given by

γ′i,j =


γi,j
1−ε if j < si

1−

si−1∑
k=1

γi,k

1−ε if j = si,

where γ′i,j denotes the entry for vertex vi,j in γ′. Note that γ′i,si ≥ 0 by the choice of si.

Claim 6.9. γ′ ∈ Pδ′w′, where δ′ =
1
2
−ε

1−ε .

Proof: The constraint
si∑
k=1

γ′i,k = 1 for each i ∈ {1, . . . ,m} follows from the definition of

γ′i,si . For the constraint on the neighbourhood of a vertex u, note that for all i, j, we have

γ′i,j ≤
γi,j

1− ε
.
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This is clear for j < si. To see it holds for j = si, note that

γ′i,j
γi,j

=

1− ε−
si−1∑
k=1

γi,k

(1− ε)γi,si

=

1− ε−
si∑
k=1

γi,k + γi,si

(1− ε)γi,si
≤ γi,si

(1− ε)γi,si
=

1

1− ε
.

Since γ′i,j ≤
γi,j
1−ε and γ ∈ Pδw, we therefore have that γ′ ∈ Pδ′w′ .

Simple analysis shows that δ′ = 1
2
− ε′ for ε′ = ε

2−2ε
and that 0 < ε′ < 1

2
(recall ε < 1

2
).

Thus by Proposition 6.7, A5 on inputs ε′, G′, (V ′1 , . . . , V
′
m), γ′, and w′ returns an IT M of

G′ with

w′(M) ≥ (1− 2(ε′)2)
∑

v∈V (G′)

γ′vw
′(v) =

1− 2(ε′)2

1− ε

m∑
i=1

si−1∑
j=1

γi,j(w(vi,j)− w(vi,si)),

where we omit the summand j = si since w′(vi,si) = 0. For fixed δ, we know δ′ is fixed and
so A5 runs in expected time poly(|V (G′|), which is poly(|V (G)|).

Since ε < 1
2
, we have 1−2(ε′)2

1−ε = 2−4ε+ε2

2(1−ε)3 ≥ 1, and so

w′(M) ≥
m∑
i=1

si−1∑
j=1

γi,j(w(vi,j)− w(vi,si)). Since M is an IT of G′, M is an IT of G and

w(M) =
m∑
i=1

∑
v∈M∩Vi

w′(v) + w(vi,si)

= w′(M) +
m∑
i=1

w(vi,si)

≥
m∑
i=1

(
w(vi,si) +

si−1∑
j=1

γi,j(w(vi,j)− w(vi,si))

)

=
m∑
i=1

(
w(vi,si) +

ti∑
j=1

γi,j(w(vi,j)− w(vi,si))−
ti∑

j=si

γi,j(w(vi,j)− w(vi,si))

)
.
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Since
ti∑
j=1

γi,j = 1 and
m∑
i=1

ti∑
j=1

γi,jw(vi,j) = τ δw, this is equal to

τ δw −
m∑
i=1

ti∑
j=si

γi,j(w(vi,j)− w(vi,si)).

As w(vi,j) ≤ w(vi,si) for j > si, this is at least τ δw. Since each step of A6 runs in
time poly(|V (G)|) or expected time poly(|V (G)|) for fixed δ, the entire algorithm runs in
expected time poly(|V (G)|) for fixed δ.

As a simple corollary of Theorem 6.8, we obtain Theorem 6.10.

Theorem 6.10. There exists a randomised algorithm FindWeightIT which takes as inputs
a parameter 0 < ε < 1, a graph G, a vertex partition (V1, . . . , Vm) such that |Vi| = b ≥
(2 + ε)∆(G) for each i, and a weight function w : V (G) → R, and finds an IT in G with

weight at least w(V (G))
b

. For fixed ε, the expected runtime is poly(|V (G)|).

Proof: Let the algorithm FindWeightIT be as defined in 6.3.3.

6.3.3 FindWeightIT

Input: A parameter 0 < ε < 1, graph G, vertex partition (V1, . . . , Vm) such that
|Vi| = b ≥ (2 + ε)∆(G) for each i, and a weight function w : V (G)→ R.

Output: An IT M of weight at least w(V (G))
b

.
1: function FindWeightIT(G; ε;w;V1, . . . , Vm)
2: M := A6

(
G; 1

2+ε
;w;V1, . . . , Vm

)
3: return M

The algorithm FindWeightIT simply applies A6 to G, (V1, . . . , Vm), w, and δ = 1
2+ε

.

Clearly 0 < δ < 1
2
, so the statement holds by Theorem 6.8 assuming τ δw ≥

w(V (G))
b

. It
therefore suffices to show this.

Note that γv = 1
b

is a solution to Pδw since for every vertex v,∑
u∈N(v)

γu =
∑

u∈N(v)

1

b
≤ ∆(G)

b
≤ 1

2 + ε
= δ.

Also, for each Vi, ∑
v∈Vi

γv =
∑
v∈Vi

1

b
= 1.
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Thus τ δw ≥
∑
v

γvw(v) = w(V (G))
b

.

As a corollary of Theorem 6.10, we can also find a randomised algorithm that takes
as inputs a parameter 0 < δ < 1

2
, a graph G, vertex partition (V1, . . . , Vm), and weight

function w : V (G) → R and finds a PIT in G with weight at least τ δw. For fixed δ, the
expected runtime is poly(|V (G)|). This shows another analogue of Theorem 5.2.

6.4 Fractional Strong Colourings

In this section, we discuss an application of FindWeightIT from Theorem 6.10. We begin
by discussing the relationship between weighted ITs and fractional strong colourings. This
relationship was also studied by Aharoni, Berger, and Ziv [3], and we will discuss their
results in this section. First, we formally define fractional strong colourings.

Definition 6.11. Let G be a graph and V a vertex partition of G with classes of size b.
A fractional strong colouring (of G with respect to V) is a function f that assigns to each
IT M of G a real number 0 ≤ f(M) ≤ 1, such that:

1. for every v ∈ V (G), we have
∑
M3v

f(M) ≥ 1, and

2.
∑
M

f(M) ≤ b.

Note that if such an f exists, both inequalities in Definition 6.11 must hold with equality.
Furthermore, if f(M) ∈ {0, 1} for each IT M , then f is a strong colouring of G with respect
to (V1, . . . , Vm) (see Definition 6.12 in Section 4.4).

Definition 6.12. A graphG is fractionally strongly b-colourable if for every vertex partition
V of G into classes of size b, G has a fractional strong colouring with respect to V .

As mentioned in the introduction of this chapter (as well as in Section 4.4), it has
been conjectured (see [3]) that the strong chromatic number is bounded above by ∆(G)
for every graph G. In [3], Aharoni, Berger, and Ziv proved the fractional version of the
strong colouring conjecture, which we state in Theorem 6.13.

Theorem 6.13 ([3]). Every graph G is fractionally strongly 2∆(G)-colourable.
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However, the proof of Theorem 6.13 is not fully algorithmic. In this section, we prove
the following algorithmic statement.

Theorem 6.14. There exists a randomised algorithm FindManyITs that takes as in-
put parameters 0 < ε, η < 1, a graph G, and a vertex partition (V1, . . . , Vm) such that
|Vi| = b ≥ (2 + ε)∆(G) for all i. It returns a collection M of ITs of G such that each

v ∈ V (G) is in at least (1−η)|M|
b

and at most (1+η)|M|
b

of the elements of M. For fixed ε,
the expected runtime is poly(|V (G)|, 1

η
).

Theorem 6.14 can be viewed as an algorithmic approximation to fractional strong
colouring as follows. Let 0 < ε, η < 1, G be a graph, and (V1, . . . , Vm) be a vertex partition
such that |Vi| = b ≥ (2 + ε)∆(G) for each i. Apply FindManyITs to obtain a collectionM
of ITs of G. Let f(M) = b

|M| for each M ∈ M and f(M) = 0 for all other ITs M . This
would give:

1. for every v ∈ V (G), 1− η ≤
∑
M3v

f(M) ≤ 1 + η, and

2.
∑
M

f(M) = b.

Hence f is an approximation of a fractional strong colouring.

We now prove Theorem 6.14, using FindWeightIT from Theorem 6.10.

Proof of Theorem 6.14: Let the algorithm FindManyITs be as defined in 6.4.1.

By Theorem 6.10, for fixed ε each iteration of this procedure runs in expected time
poly(|V (G)|) and the number of iterations is t ≤ poly(|V (G)|, 1

η
).

Fix v ∈ V (G) and let j denote the number of distinct i for which v ∈ Mi. We need
to verify that j is close to t

b
. To see this, note that wt+1(V (G)) ≥ wt+1(v) ≥ (1 + α)t−j.

However, we have w1(V (G)) = bm and for each 1 ≤ i ≤ t, we have

wi+1(V (G)) = (1 + α)wi(V (G))− αwi(Mi)

≤ (1 + α)wi(V (G))− αwi(V (G))

b

= wi(V (G))
(

1 + α− α

b

)
.

Thus wt+1(V (G)) ≤ |V (G)|
(
1 + α− α

b

)t
. Hence

(1 + α)t−j ≤ wt+1(V (G)) ≤ |V (G)|
(

1 + α− α

b

)t
.
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6.4.1 FindManyITs

Input: A graph G, parameters 0 < ε, η < 1, and vertex partition (V1, . . . , Vm) such that
|Vi| = b ≥ (2 + ε)∆(G) for each i.

Output: A collection M of ITs of G.
1: function FindManyITs(G; ε; η;V1, . . . , Vm)
2: α := η

2b

3: t :=
⌈

2b2 log |V (G)|
αη

⌉
4: Initialise w1(v) := 1 for each v ∈ V (G).
5: for i = 1, . . . , t do
6: Mi := FindWeightIT(G; ε;wi;V1, . . . , Vm)
7: for all v ∈ V (G) do

8: wi+1(v) :=

{
wi(v) if v ∈Mi

(1 + α)wi(v) if v /∈Mi.

9: returnM = {M1, . . . ,Mt}

After cross-multiplying and using the bound (1 + x) ≤ ex, we have that

1 ≤ (1 + α)j|V (G)|
(

1− α

b(1 + α)

)t
≤ |V (G)|eαj−

αt
b(1+α) .

Taking logarithms, this implies that j
t
≥ 1

b(1+α)
− log |V (G)|

αt
. By choice of α and t, we have

1
1+α
≥ 1− α = 1− η

2b
and log |V (G)|

αt
≤ η

2b2
. Therefore,

j

t
≥

1− η
2b

b
− η

2b2
=

1− η
b

b
≥ 1− η

b
,

as claimed.

To show the upper bound on j, note that the other b− 1 vertices in Vclass(v) appear
in total t − j times, which implies that one of the vertices appears at most t−j

b−1
times.

However, we have already shown that each vertex appears at least t(1−η/b)
b

times. Thus

t− j
b− 1

≥ t(1− η/b)
b

,

which further implies that
j

t
≤ bη + b− η

b2
≤ 1 + η

b
.
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6.5 Strong Colourings

In this section, we discuss the implications of Theorem 6.10 to strong colourings. To review
the definition of strong colouring and discussion of results related to strong colouring, we
refer the reader to Section 4.4. We include only a brief review of the necessary results of [3]
here.

The proof of Aharoni, Berger, and Ziv in [3] showed that the strong chromatic number
sχ(G) satisfies sχ(G) ≤ 3∆(G) using Theorem 4.35, a modification of Theorem 2.3. Re-
call that Theorem 4.35 gives a sufficient condition for the existence of an IT containing a
specified vertex. In Section 4.4, we proved Corollary 4.36, an algorithmic version of The-
orem 4.35, using Theorem 3.1. We now use Theorem 6.10 to prove a different algorithmic
version of Theorem 4.35, stated as Corollary 6.15.

Corollary 6.15. There exists a randomised algorithm RandITv that takes as input a
parameter 0 < ε < 1, graph G, vertex partition (V1, . . . , Vm) with |Vi| ≥ (2 + ε)∆(G) for
each i, and an arbitrary v ∈ V (G), and finds an IT in G that contains v. For fixed ε, the
expected runtime of RandITv is poly(|V (G)|).

Proof: Let the algorithm RandITv be as defined in 6.5.1.

The algorithm RandITv uses FindWeightIT on a subgraph of G using a special weight
function to ensure v is in the set M returned by FindWeightIT. We begin by verifying
that G′, ε, w, and (V ′1 , . . . , V

′
m) are valid inputs for FindWeightIT before explaining why v

is necessarily in M .

Note that for each vertex class Vi, V
′
i is a subset of Vi such that |V ′i | = b. Moreover,

v ∈ V ′j for Vj = Vclass(v).

For the weight function w on V (G′) given by w(v) = 1 and w(u) = 0 for all u 6= v, we
claim that τ δw > 0 for δ = 1

2+ε
. To see this, note that setting γu = 1

b
for each u ∈ V ′i defines

a feasible solution to Pδw and has
∑

u∈V (G′)

γuw(u) = γv = 1
b
.

Thus by Theorem 6.10, FindWeightIT on inputs ε, G′, (V ′1 , . . . , V
′
m), and w generates

an IT M with w(M) ≥ τ δw > 0 in expected time poly(|V (G)|) for fixed ε. Since v is the
only vertex with non-zero weight, we therefore have v ∈M .

As seen in Section 4.4, Corollary 4.36 led to an algorithmic result for strong colouring.
Corollary 6.15 also gives an algorithmic result for strong colouring, which is the following.

125



6.5.1 RandITv

Input: A parameter 0 < ε < 1, graph G, vertex partition (V1, . . . , Vm) such that
|Vi| ≥ (2 + ε)∆(G) for each i, and vertex v.

Output: An IT of G that contains v.
1: function RandITv(G; ε; v;V1, . . . , Vm)
2: b := d(2 + ε)∆e
3: for i = 1, . . . ,m do
4: if v ∈ Vi then
5: V ′i := a subset of Vi containing v with size b
6: else
7: V ′i := a subset of Vi of size b

8: G′ :=

[
m⋃
i=1

V ′i

]
9: for u ∈ V (G′) do
10: if u = v then
11: w(u) := 1
12: else
13: w(u) := 0

14: M := FindWeightIT (G′; ε;w;V ′1 , . . . , V
′
m)

15: return M
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Corollary 6.16. There exists a randomised algorithm RandStrongColour that takes as
input a parameter 0 < ε < 1, a graph G and a vertex partition (V1, . . . , Vm) such that
|Vi| = b ≥ (3 + ε)∆(G), and returns a strong b-colouring of G with respect to (V1, . . . , Vm).
For fixed ε, the expected runtime of RandStrongColour is poly(|V (G)|).

Similar to the proof of Corollary 4.34, the proof of Theorem 6.16 uses the same technique
as the proof of Theorem 4.33 from [3] with Corollary 6.15 instead of Theorem 4.35. Since
we give a detailed description of this colouring technique in Section 4.4, we omit the
description here.

Proof: Let RandStrongColour be as defined in 6.5.2.

6.5.2 RandStrongColour

Input: A graph G, parameter 0 < ε < 1, and a vertex partition (V1, . . . , Vm) where
|Vi| = b ≥ (3 + ε)∆(G) for each i.

Output: A strong b-colouring of G with respect to (V1, . . . , Vm).
1: function RandStrongColour(G; ε;V1, . . . , Vm)
2: for all v ∈ V (G) do c(v) := 0

3: while there is a vertex v such that c(v) = 0 do
4: Choose a vertex v such that c(v) = 0.
5: Choose a colour α missing on Vclass(v).
6: (W,V ′1 , . . . , V

′
m) := RemoveColoured(G; c;α;V1, . . . , Vm)

7: G′ := G

[
m⋃
i=1

V ′i

]
8: M := RandITv(G′; ε; v;V ′1 , . . . , V

′
m)

9: c := ReColour(c;α;M ;W ;V1, . . . , Vm)

10: return c

Note that RandStrongColour is the same algorithm as StrongColour in 4.4.1, but with

colours in {1, . . . , b}, G′ = G

[
m⋃
i=1

V ′i

]
, and M := RandITv(G′; ε; v;V ′1 , . . . , V

′
m) instead of

colours in {1, . . . , 3∆ + 1}, G′ = G

[
{v} ∪

(⋃
j 6=i

V ′j

)]
, and

M := FindITorBD(G′; {v}, V ′1 , . . . , V ′i−1, V
′
i+1, . . . , Vm). All other steps are the same.

Note that this change to G′ does not drastically affect the number of operations needed
to find G′ (still O(|V (G)|2)). Thus it suffices to show that G′ and (V ′1 , . . . , V

′
m) satisfy the

conditions for RandITv.
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Recall that RemoveColoured in StrongColour (and therefore in RandStrongColour)
removes at most ∆(G) vertices from each vertex class (namely the vertices sharing a colour
with the neighbours of the vertex coloured α in the class). As the vertex classes of the
vertex partition of G have size b ≥ (3 + ε)∆(G), we have that the resulting vertex classes
have size b − ∆(G) ≥ (2 + ε)∆(G). By taking the graph induced on these vertex classes
(G′) and the vertex v, we have that RandITv returns an IT containing v. For fixed ε, the
expected runtime is poly(|V (G)|).

As these are the only changes, RandStrongColour returns a strong b-colouring of G in
expected time poly(|V (G)|) for fixed ε.
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Chapter 7

Concluding Remarks and Future
Work

In this thesis, we introduced three new algorithms that find ITs (or PITs) efficiently in
large classes of graphs. The first algorithm, called FindITorBD, was used to prove Theo-
rem 3.1 and Corollary 3.2. These two results are algorithmic versions of the domination
(Theorem 2.4) and maximum degree (Theorem 2.3) existence results of [48, 49], which
are known to be best possible existence results of their type. Moreover, Theorem 3.1 and
Corollary 3.2 require only a slight strengthening of the hypotheses of Theorems 2.4 and 2.3.

While the runtime of FindITorBD is polynomial in the number of vertices, it is expo-
nential in the parameters r and ε used to define FindITorBD. Thus FindITorBD is only
efficient when r and ε are fixed. The dependence on ε seems unavoidable, however we are
not certain of the nature or even the necessity of the dependence on r. The requirement
that the input graph G be r-claw-free was needed because of our choice of signature vector.
It is an interesting open question whether this condition is essential. If the dependence
on r could be avoided or if the condition on G being r-claw-free could be substantially
weakened, then algorithmic versions of more applications of Theorems 2.4 and 2.3 would
be possible (see e.g. [44]).

The second algorithm, called FindWeightPIT, efficiently finds PITs of weight at least
τ r,εw , where τ r,εw is a parameter of vertex-weighted graphs (see Section 5.2). FindWeightPIT
was used to prove Theorem 5.5, an algorithmic version of a result of Aharoni, Berger,
and Ziv from [3] (Theorem 5.2). Theorem 5.2 generalises Theorem 2.4 to vertex-weighted
graphs, similar to the way the theory of weighted matchings generalising Hall’s theorem
(see Claim 5.3 in Section 5.1). The main application of FindWeightPIT given in this thesis
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was to the strong colouring problem (via FindWeightIT), but we expect there are other
applications of FindWeightPIT to other problems for vertex-weighted graphs.

The last algorithm, called FindWeightIT, finds ITs of weight at least w(V (G))
b

in vertex-
weighted graphs G that are partitioned into classes of size b ≥ (2 + ε)∆(G). FindWeightIT
can also be used to find PITs with weight at least (τ ′)δw, where (τ ′)δw is the largest objec-
tive value to (P ′)δw, the LP obtained by replacing the constraint

∑
v∈Vi

γv = 1 in Pδw with∑
v∈Vi

γv ≤ 1. This proves a different algorithmic version of Theorem 5.2.

Unlike FindITorBD and FindWeightPIT, the algorithm FindWeightIT is a randomised
algorithm. Hence FindWeightIT runs in expected polynomial time. The benefit of the
randomisation in FindWeightIT is that we are able to remove the dependence of the run-
time on ∆(G) from FindWeightPIT by using an algorithmic version of the LLL. Thus
FindWeightIT can be applied to graphs where ∆(G) is unbounded, whereas the determin-
istic algorithms FindITorBD and FindWeightPIT cannot.

The fact that FindWeightIT can find both weighted ITs and PITs algorithmically opens
the door to randomised algorithms for various applications of Theorem 2.3 in weighted
graphs. However, FindWeightIT cannot be applied to applications that use Theorem 2.4
and not Theorem 2.3 (such as those in Section 4.3). It would be interesting to explore if
other randomisation techniques can be used to develop a randomised algorithm for Theo-
rem 2.4. This would in turn create randomised algorithmic results for more applications
of FindITorBD.

In Chapters 4 and 6, we presented algorithmic proofs of some applications of Theo-
rems 2.4 and 2.3. In particular, we proved algorithmic versions of results for matchings in
bipartite hypergraphs (Section 4.1), circular edge-colourings (Section 4.2), hitting sets for
maximum cliques (Section 4.3), strong colourings (Sections 4.4 and 6.5), fractional strong
colourings (Section 6.4), and colourings with bounded sized monochromatic components
(Section 4.5). However, Theorems 4 and 6 have been used in many other areas, and we
expect there will be many more interesting applications.

A longer-term goal would be to find an algorithm based on the topological proofs of
Theorems 2.4 and 2.3. These topological proofs use the notion of topological connectedness
(see [2]). There are other criteria that guarantee the existence of an IT for which only a
topological proof is known (see [4, 2]). These other criteria also have many applications, so
an algorithm based on the topological proof of Theorems 2.4 and 2.3 may also be useful.
This, however, would require a very different approach than the work done in this thesis.
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that pairwise generate a linear group. Journal of Combinatorial Theory, Series A,
115(3):442 – 465, 2008.

[24] R. Brooks. On colouring the nodes of a network. Mathematical Proceedings of the
Cambridge Philosophical Society, 37(2):194–197, 1941.

132



[25] K. Chandrasekaran, N. Goyal, and B. Haeupler. Deterministic algorithms for the
Lovász local lemma. SIAM Journal on Computing, 42(6):2132–2155, 2013.

[26] D. Christofides, K. Edwards, and A. King. A note on hitting maximum and maximal
cliques with a stable set. Journal of Graph Theory, 73(3):354–360, 2013.

[27] A. Czumaj and C. Scheideler. Coloring non-uniform hypergraphs: A new algorithmic
approach to the general Lovász local lemma. Random Structures and Algorithms,
17(3-4):213–237, 2000.

[28] R. Diestel. Graph Theory. Springer, 4th edition, 2010.

[29] K. Diks and P. Stanczyk. Perfect matching for biconnected cubic graphs in O(n log2 n)
time. In SOFSEM 2010: Theory and Practice of Computer Science, volume 5901 of
Lecture Notes in Computer Science, pages 321–333, 2010.

[30] K. Edwards and G. Farr. On monochromatic component size for improper colourings.
Discrete Applied Mathematics, 148(1):89–105, 2005.

[31] D. Eppstein, M. Löffler, and D. Strash. Listing all maximal cliques in sparse graphs
in near-optimal time. In ISAAC 2010: Algorithms and Computation, volume 6506 of
Lecture Notes in Computer Science, pages 403–414, 2010.
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Appendix A

Circular Colouring Details

In this appendix, we include some of the details omitted from Section 4.2.1. In particular,
we provide the colouring of an octopus (due to Kaiser, Král, and Škrekovski) from [57] in
Appendix A.1. We also provide a more detailed analysis of the runtime of the various tasks
of CircularP in Appendix A.2. We refer the reader to Section 4.2.1.1 for all definitions and
terms used in this appendix.

A.1 An Outline of the Colouring

In this section, we provide Kaiser, Král, and Škrekovski’s method to colour the blocks of an
octopus. As we are only concerned with making Kaiser, Král, and Škrekovski’s result fully
algorithmic, we include only the actual colouring technique. The proof of the correctness
of this colouring can be found in [57].

Assume that G is a cubic bridgeless graph with girth g ≥ f(p) for f(p) as in Corol-
lary 4.9, F is a fixed 1-factor of G, and o is an octopus with a 2p-segment as its head.

Claim A.1 ([57]). Suppose a block B of an octopus contains at least 4k+1 vertices and has
its input edge coloured k or 3p− k for some 0 ≤ k ≤

⌈
p
2

⌉
− 1. Then any partial colouring

that colours one contact edge adjacent to B with p and the other contact edge with 2p can
be extended to the inner edges and output edges of B.

The extension of the partial colouring of Lemma A.1 is as follows. If k = 0, start at the
contact edge coloured p and colour the inner edges of B by alternating between 2p and p,
starting with the colour 2p. Next, colour every output edge of B with 0.
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If k ≥ 1, let Q be the path on 4k + 1 vertices in B whose centre vertex is incident
with the input edge of B. If Q 6= B, colour the inner edges of B between the contact edge
coloured 2p and Q by alternating between p and 2p, starting with the edge adjacent to the
contact edge and colouring it p. Then, colour the inner edges of B between the contact
edge coloured p and Q by alternating between p and 2p, starting with the edge adjacent
to the contact edge and colouring it 2p. Next, colour the output edges of B that are not
incident with a vertex in Q with 0.

We now colour Q and the output edges incident with vertices in Q in one of two ways.
If the input edge of B is coloured k, colour the edges of Q starting with the edge adjacent
to the edge coloured p as follows:

2p+ 1, p+ 1, 2p+ 2, p+ 2, . . . , 2p+ k, p+ k,

2p+ k, p+ (k − 1), 2p+ (k − 1), p+ (k − 2), . . . , 2p+ 1, p.

Starting with the output edge that is incident with the end of Q that is incident with edges
coloured p and 2p+ 1, colour the output edges of B incident with vertices in Q as follows:

0, 0, 1, 1, . . . , k − 1, k − 1,

k − 1, k − 1, k − 2, k − 2, . . . , 0, 0.

Figure A.1 depicts this colouring.

2p+ 1 p+ 1 2p+ 2 p+ 2 2p+ k p+ k 2p+ k p+ k − 1 2p+ k − 1 p+ k − 2 2p+ 1 p

0 0 1 1 2 k − 1 k − 1

k

k − 1 k − 1 k − 2 k − 2 1 0 0

p 2p

Figure A.1: The colouring of block B when the input edge is coloured k.

If the input edge of B is coloured 3p− k, colour the edges of Q starting with the edge
adjacent to the edge coloured 2p as follows:

p− 1, 2p− 1, p− 2, 2p− 2, . . . , p− k, 2p− k,

p− k, 2p− (k − 1), p− (k − 1), 2p− (k − 2), . . . , p− 1, 2p.

Starting with the output edge that is incident with the end of Q that is incident with edges
coloured 2p and p− 1, colour the output edges of B incident with vertices in Q as follows:

3p, 3p, 3p− 1, 3p− 1, . . . , 3p− (k − 1), 3p− (k − 1),
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p− 1 2p− 1 p− 2 2p− 2 p− k 2p− k p− k 2p− k + 1 p− k + 1 2p− k + 2 p− 1 2p

3p 3p 3p− 1 3p− 1 3p− 2 3p− k + 1 3p− k + 1

3p− k

3p− k + 1 3p− k + 1 3p− k + 2 3p− k + 2 3p− 1 3p 3p

2p p

Figure A.2: The colouring of block B when the input edge is coloured 3p− k.

3p− (k − 1), 3p− (k − 1), 3p− (k − 2), 3p− (k − 2), . . . , 3p, 3p.

Figure A.2 depicts this colouring.

It is easy to check that the above colourings extend the partial colouring to a proper
circular (3p + 1)/p-edge-colouring of B for any k ∈ {0, . . . ,

⌈
p
2

⌉
− 1}. Also, it is clear that

this extension avoids the colours k, . . . , 3p− k if k ≥ 1 and avoids the colours 1, . . . , 3p− 1
if k = 0 on the output edges of B.

Note that for ` ≥ 2, if p is even, then

2p+ 5− 4` = 4
(
p
2

+ 1− `
)

+ 1,

and if p is odd, then
2p+ 7− 4` = 4

(
p+1

2
+ 1− `

)
+ 1.

Hence for each ` ≥ 2, the blocks in P(`) contain 4
(⌈

p
2

⌉
+ 1− `

)
+ 1 vertices. We now use

this to show that the colouring of Claim A.1 will extend the partial colouring to all of the
inner edges of octopus o, thus proving Lemma 4.14 (restated in Lemma A.2).

Lemma A.2 ([57]). Suppose c is a partial proper circular (3p + 1)/p-edge-colouring of
G and o is an octopus in G such that c colours the contact edges of o by p and 2p so
that each pair of contact edges adjacent to the same block receive opposite colours and c
does not colour any of the inner edges of o. Then c can be extended to a proper circular
(3p+ 1)/p-edge-colouring of o.

The extension of the partial colouring is as follows. We first extend c to the head of o
and then continue by, for each 2 ≤ ` ≤

⌈
p
2

⌉
+ 1, extending the colouring of all blocks of

P(`− 1) to a colouring of all blocks of P(`) using the colouring of Claim A.1.

Starting with the edge adjacent to the contact edge coloured p, colour the inner edges
of the head as follows:

2p+ 1, p+ 1, 2p+ 2, p+ 2, . . . ,
⌊

5p
2

⌋
,
⌊

3p
2

⌋
,⌊

p
2

⌋
,
⌊

3p
2

⌋
+ 1,

⌊
p
2

⌋
+ 1,

⌊
3p
2

⌋
+ 2,

⌊
p
2

⌋
+ 2, . . . , p− 2, 2p− 1, p− 1.
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Then, starting with the edge of F incident with the end of the head that is incident with
edges coloured p and 2p+1, colour the 2p edges of F incident with the vertices of the head
as follows:

0, 0, 1, 1, . . . ,
⌊
p
2

⌋
− 1,

⌊
p
2

⌋
− 1,⌊

5p
2

⌋
+ 1,

⌊
5p
2

⌋
+ 1,

⌊
5p
2

⌋
+ 2,

⌊
5p
2

⌋
+ 2, . . . , 3p, 3p.

Figure A.3 depicts this colouring.

2p+ 1 p+ 1 2p+ 2 p+ 2
⌊

5p
2

⌋ ⌊
3p
2

⌋ ⌊
p
2

⌋ ⌊
3p
2

⌋
+ 1

⌊
p
2

⌋
+ 1

⌊
3p
2

⌋
+ 2

⌊
p
2

⌋
+ 2 p− 2 2p− 1 p− 1

0 0 1 1 2
⌊
p
2

⌋
− 1

⌊
p
2

⌋
− 1

⌊
5p
2

⌋
+ 1

⌊
5p
2

⌋
+ 1

⌊
5p
2

⌋
+ 2

⌊
5p
2

⌋
+ 2

⌊
5p
2

⌋
+ 3

⌊
5p
2

⌋
+ 3 3p− 1 3p− 1 3p 3p

p 2p

Figure A.3: The colouring of the head of octopus o.

For every block B of the octopus, c colours one contact edge adjacent to B with p and
the other contact edge 2p. Also, the blocks in P(2) contain 4

(⌈
p
2

⌉
− 1
)

+ 1 vertices and
the above colouring colours the input edge of any block in P(2) either k or 3p−k for some
0 ≤ k ≤

⌈
p
2

⌉
− 1. Thus the colouring of Claim A.1 extends the colouring of the head to all

of the blocks in P(2). The output edges of the blocks avoid colours
⌈
p
2

⌉
− 1, . . . ,

⌊
5p
2

⌋
+ 1

and so are coloured either k or 3p− k for some 0 ≤ k ≤
⌈
p
2

⌉
− 2.

For each 2 ≤ ` ≤
⌈
p
2

⌉
, the colouring of the blocks in P(`) by Claim A.1 avoids the

colours
⌈
p
2

⌉
+ 1 − `, . . . ,

⌊
5p
2

⌋
− 1 + ` on their output edges. These output edges are the

input edges of the blocks in P(` + 1) and the blocks in P(` + 1) have 4
(⌈

p
2

⌉
− `
)

+ 1
vertices. Thus the colouring of Claim A.1 extends the current colouring to each block in
P(` + 1). By applying the colouring of Claim A.1 to every block of P(`) for every level
` ∈

{
2, . . . ,

⌈
p
2

⌉}
(in order of level), the result is an extension of c to include a proper

circular (3p+ 1)/p-edge-colouring of o.

Thus a partial colouring of G can be extended to octopus o if it colours the contact
edges of o with p and 2p so that contact edges adjacent to the same block receive distinct
colours, which proves Lemma 4.14.

A.2 The Runtime of CircularP

In this section, we verify that for fixed p ≥ 2, the algorithm CircularP of Section 4.2.1.3
runs in time poly(V (G)). We therefore assume p is fixed. Recall that CircularP is an
algorithm that takes as input a cubic bridgeless graph G with girth g ≥ f(p) and performs
the following steps:
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1. Find a 1-factor F of G.

2. Form ordered lists of vertices Vi such that each Vi is a unique cycle in G−F and the
vertices are stored in Vi in cyclic order.

3. Find an IT M of G′ with respect to the vertex partition associated with the vertex
classes in S.

4. Find a 2-colouring c of G∗ with colours p and 2p.

5. Determine the set of edges in the octopi of O and remove the colours c assigned to
these edges.

6. Colour the edges of the octopi in O as in Claim 4.14.

7. Colour the remaining uncoloured edges 0.

8. Return the colouring.

Note that G′, G∗, S, and O are defined in Section 4.2.1.2.

In the next few claims, we analyse the runtime of various tasks performed by CircularP.
We put these claims together to prove the runtime of CircularP in Lemma A.6, which com-
pletes the proof of Corollary 4.9. For algorithms whose procedures are simple routines, we
omit the proofs of their runtimes. Instead, we give a brief outline of what these proce-
dures entail so as to give some intuition for the provided runtimes. Since the runtime of
FindITorBD will dominate the runtime of all other subroutines in CircularP, we make no
effort to minimise the runtime of these other algorithms.

Claim A.3. There is an algorithm CyclePartition that takes as inputs a cubic bridgeless
graph G and a 1-factor F of G and returns, in time O(|V (G)|), a set V of lists Vi such
that:

(i) each Vi is the vertex set of a unique cycle in G− F ,

(ii) each cycle of G− F has a list Vi associated with it, and

(iii) for each Vi, the vertices are stored in cyclic order.

Given the graph G and 1-factor F as adjacency lists, the adjacency list of G − F can
be found in O(|V (G)|) operations. CyclePartition then chooses a vertex v not already
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assigned to a list and adds it to a new list Vi. It then appends the first vertex u of the
adjacency list of v that is not already in Vi to Vi and repeats this appending operation with
u as v until no such vertex exists in the adjacency list of v. Next, CyclePartition chooses
a new vertex not already assigned to a list and adds it to a new list Vi+1. The process
continues until every vertex is contained in some list. As this procedure is simple given the
adjacency lists, it can be easily implemented in time O(|V (G)|) and so we omit the details
of its runtime.

Claim A.4. There is an algorithm MakeGFK that takes as inputs a cubic bridgeless graph
G with girth g, a 1-factor F of G, and an integer k ∈ {1, . . . , g} and returns, in time
O(|V (G)|), the graph GF,k.

The algorithm MakeGFK is a bit technical. First, MakeGFK invokes CyclePartition on
inputs G and F to obtain the set V of ordered lists of vertices in G−F . Then, MakeGFK
creates an adjacency list E that stores u in the list for v if v is incident with the same
edge in F as a vertex in the k-segment that starts with vertex u. (Note that the k-segment
starting at u is easy to determine given the list of V containing u.) Next, MakeGFK creates
an adjacency list E ′ that stores u in the list for v if u is in the list of w in E for some w
in the k-segment starting at v. (Again, the k-segment starting at v is easy to determine.)
This results in E ′ being an adjacency list where u is in the list of v if and only if two
vertices in the k-segments starting at u and v are incident with the same edge in F .

Note that for each Vi ∈ V , the ordering of the vertices provides a natural bijection
f from the vertices in Vi to the k-segments of vertices in Vi. Namely, Vi[j] maps to
(Vi[j], Vi[j + 1], . . . , Vi[j + k − 1]) where arithmetic is modulo |Vi|. Thus given V and E ′,
MakeGFK can find V (GF,k) = {f(v) : v ∈ V (G)} and E(GF,k) = {f(u)f(v) : uv ∈ E ′} effi-
ciently. All of the above steps can be implemented using adjacency lists in time O(|V (G)|).
Hence MakeGFK returns GF,k in time O(|V (G)|) and we omit further details.

Claim A.5. There is an algorithm Octopus that takes as input an integer p ≥ 2, a cubic
bridgeless graph G with girth g as in Corollary 4.9, a 1-factor F of G, and a 2p-segment h
and returns the unique octopus in G whose head is h. For fixed p, the runtime is O(|V (G)|).

Using the algorithmic definition of an octopus presented in Definition 4.13, it is easy to
construct the octopus with head h if the cyclic order of the vertices in G−F is known for
all cycles in G − F . Thus CyclePartition is a subroutine of Octopus, and the rest of the
steps performed by Octopus consist of adding the appropriate vertices and edges of G to
o based on the level of the octopus. This requires knowing the neighbour of a vertex that
is incident with the same edge of F , which can be found in time O(1) from the adjacency
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list of F . Hence Octopus can be implemented in time O(|V (G)|) (due to the runtime of
CyclePartition), and so we omit the details.

We are now ready to prove Lemma A.6.

Lemma A.6. For fixed p, the algorithm CircularP runs in time polynomial in |V (G)|.

Proof: The steps performed by CircularP are outlined at the start of this section. Also,
recall that the input for CircularP is a cubic bridgeless graph G with girth g ≥ f(p) as in
Corollary 4.9.

CircularP begins by invoking a subroutine that takes as input a cubic bridgeless graph
and returns a 1-factor of that graph. In particular, CircularP may use the algorithm
of Diks and Stanczyk from [29] on input G, which returns a 1-factor F of G in time
O(|V (G)|[log(|V (G)|)]2). Next, CircularP uses CyclePartition to find the desired ordered
lists of vertices V in time O(|V (G)|) (Claim A.3).

To find the desired IT of G′, CircularP must first construct G′. This can be done by first
using MakeGFK to find the graph GF,2p in time O(|V (G)|) (Claim A.4). Then, CircularP
finds the graph H, which is either the (p − 1)th-power or pth-power of GF,2p depending
on the parity of p. By using a breadth first search on the vertices of GF,2p, the graph
H = (GF,2p)

p−1 or H = (GF,2p)
p can be found from GF,2p in time

O(|V (GF,2p)||E(GF,2p)|) = O(|V (G)|2). Next, CircularP finds the subset of V correspond-
ing to cycles of odd length in G− F and stores the lists of these cycle’s 2p-segments in a
new partition V ′. This trivially takes O(|V (G)|) operations to implement. The graph G′ is
then found by looking at the subgraph of H induced by the 2p-segments in the lists in V ′,
which can be determined using O(|V (G)|2) operations. CircularP then uses FindITorBD
(for r = ∆(G′) + 1 and ε = 1

∆(G′)
) on inputs G′ and V ′ (with V ′ interpreted as a vertex

partition) to find an IT M of G′ in time poly(|V (G′)|) (Claim 4.15). As |V (G′)| ≤ |V (G)|,
this is poly(|V (G)|).

CircularP continues by finding and 2-colouring the edges of G∗. Given the set of
2p-segments in M , CircularP finds the set IH of edges in these segments and defines
G∗ = G − (F ∪ IH). This takes time O(|V (G)|) using M and V . CircularP then uses a
subroutine to 2-colour the edges of G∗ using the colours p and 2p. Note that G∗ is bipartite,
so any 2-colouring algorithms for bipartite graphs can be used as this subroutine. We choose
for each list in V , to alternately colour the edges between consecutive vertices in the list p
and 2p (starting with p) and ignoring the edges of IH . This takes time O(|V (G)|).

Next, CircularP finds the set of octopi O whose heads are in M using Octopus. As
|M | < |V (G)|, by Claim A.5 the set of octopi in O can be found in time O(|V (G)|).
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Given these octopi, the colours assigned to the edges of octopi in O can be removed
using O(|V (G)|) operations (since the number of edges in the octopi in O is O(|V (G)|)).
CircularP then uses the colouring of Lemma 4.14 to recolour the edges of the octopi in O,
extending the colouring to the edges of the octopi. This takes time O(|V (G)|). Finally,
all remaining uncoloured edges are assigned the colour 0 and the resulting colouring is
returned. Both of these tasks require O(|V (G)|) operations.

Hence for fixed p, CircularP terminates in time poly(|V (G)|), with the majority of the
runtime being used to find M in G′.

This completes the proof of Corollary 4.9.
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Appendix B

The Runtime of HitCliques

In this appendix, we prove that for fixed ∆ = ∆(G), the algorithm HitCliques runs in time
poly(|V (G)|). We therefore assume that ∆ is fixed. We refer the reader to Section 4.3 for
all definitions and terms used in this appendix.

Recall from Section 4.3 that HitCliques is the following algorithm.

B.0.1 HitCliques

Input: A graph G with ω(G) > 2
3
(∆ + 1).

Output: An independent set M that meets every maximum clique in G.
1: function HitCliques(G)
2: C := MaximumCliques(G)
3: G(C) := MakeCliqueGraph(G, C)
4: V := CliqueIntersect(G,G(C))
5: G′ := MakeG’(G,V)
6: k :=

⌈
∆+1

3

⌉
7: M := FindITorBD(G′;V) for r = k and ε = 1

k−1
.

8: return M

The subroutine MaximumCliques finds the set C of all maximum cliques in G. The sub-
routine MakeCliqueGraph uses G and C to construct the clique graph G(C). CliqueIntersect
is an algorithm that, given a graph G and its clique graph G(C), returns a set V of lists Vi
of vertices of G such that each component i of G(C) has a unique Vi and each Vi contains
all of the vertices that are in every clique C ∈ Ci. Given this vertex partition V and G,
MakeG’ creates the graph G′ induced by the vertices in the union of lists in V . This choice
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of G′ and V satisfy the conditions of Corollary 4.25 with k =
⌈

∆+1
3

⌉
. Thus FindITorBD

for this k returns an independent set M that hits all maximum cliques in G.

In the next few claims, we analyse the runtimes of the subroutines used by HitCliques.
These claims complete the proof of Corollary 4.23. For algorithms whose procedures are
simple routines, we omit detailed proofs of their runtimes. However, we will give a brief
outline of what these procedures entail to give some intuition for the provided runtimes. As
the runtime of FindITorBD will dominate the runtime of all other subroutines of HitCliques,
we make no effort to minimise the runtimes of these other algorithms.

Claim B.1. For fixed ∆, the set C of all maximum cliques in G can be found in time
O(|V (G)|) and |C| = O(|V (G)|).

To find the set of maximum cliques, we first find the set of all maximal cliques in G
and then remove the cliques not of maximum size. We can do so by using an algorithm of
Eppstein, Löffler, and Strash from [31] that finds the set of all maximal cliques in a graph
H of degeneracy d in time O(3d/3d|V (H)|). The degeneracy of a graph H is the smallest
number d such that every subgraph of H contains a vertex of degree at most d. As G
is a graph with maximum degree ∆ and ∆ is a fixed, we clearly have that G is a graph
of degeneracy d ≤ ∆. Hence the algorithm of [31] will find the set of all maximal (and
therefore maximum) cliques in G in time O(3∆/3∆|V (G)|), which is linear in |V (G)| since
∆ is fixed.

Furthermore, Eppstein, Löffler, and Strash [31] showed that in the worst case, there are
at most (|V (H)| − d)3d/3 maximal cliques in graphs H of degeneracy d. Thus the number
of maximal (and therefore maximum) cliques in G is also O(|V (G)|) since d = ∆ is fixed.
Hence removing the maximal cliques that are not maximum cliques takes time O(|V (G)|).

Claim B.2. For fixed ∆, the clique graph G(C) can be constructed from a graph G and its
set C of maximum cliques in time O(|V (G)|3).

Suppose we are given G as an adjacency matrix and C as a |V (G)| × |C| matrix X
such that column i is the characteristic vector of maximum clique Ci ∈ C. We will return
the clique graph G(C) as an adjacency matrix A with the rows and columns indexed by
elements in C. For each entry Aij of A, we define Aij = 1 if i 6= j and Xvi = Xvj = 1
for some v ∈ V (G) and Aij = 0 otherwise, i.e. Aij = 1 if distinct maximum cliques
Ci and Cj intersect in some vertex v ∈ V (G) and Aij = 0 otherwise. There are |C|2
entries of A and each entry requires at most |V (G)| tests, so A can be determined in time
|C|2 · |V (G)| = O(|V (G)|3).
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Claim B.3. For fixed ∆, the sets Vi of vertices of G such that each Vi is the mutual
intersection of the cliques in Ci can be found in time O(|V (G)|3).

Suppose we are given G and G(C) as adjacency matrices and C as a |V (G)|× |C| matrix
X such that column i is the characteristic vector of maximum clique Ci ∈ C. Similar to
CyclePartition in Section 4.2.1.3, we can form lists of cliques by choosing a clique C ∈ C
not already assigned to a list and assigning it to a new list Ui. Then for each clique D such
that vC and vD are adjacent in G(C), add D to Ui. It then repeats this adding operation
for each clique D in Ui until no more cliques can be added. We then start the next list
Ui+1 with some clique C ∈ C not already assigned to a list and continue until every clique
in C appears in some list. This entire process takes time O(|C|). Note that we can store
each list Ui as a |C| × 1 characteristic vector and there are at most |C| lists.

Given these lists Ui, we define the sets Vi as characteristic vectors as follows. For each
C ∈ Ui and each v ∈ V (G), we check if XvC = 1. If so, we set (Vi)v = 1 and set (Vi)v = 0
otherwise. The result is that the vectors Vi indicate the vertices of G that appear in every
maximum clique in Ui. These tests take time |C| ·O(|V (G)| · |C|), so the total time to find
the Vi is O(|C|) +O(|V (G)| · |C|2) = O(|V (G)|3).

Claim B.4. For fixed ∆, the graph G′ = G

[ ⋃
Vi∈V

Vi

]
can be constructed from G and V in

time O(|V (G)|2).

Suppose we are given G as an adjacency matrix and V as a |V (G)| × |V| matrix Y
such that column i is the characteristic vector of Vi ∈ V . Then G′ can be returned as an
adjacency matrix A obtained by taking a copy of G and removing row v and column v
from this copy if Yvi = 0 for every column i in Y . The only rows and columns left are
those of vertices in some Vi ∈ V , and so the resulting matrix A is the adjacency matrix for
G′. Testing each v for Yvi = 0 for all columns i in Y takes time |V (G)| · |V| = O(|V (G)|2)
since |V| ≤ |C|.

By Claims B.1, B.2, B.3, and B.4, the time required to implement all steps of HitCliques
besides FindITorBD is O(|V (G)|3) when ∆ is fixed. Thus for fixed ∆, HitCliques runs in
time poly(|V (G)|), which completes the proof of Theorem 4.23.

149



Appendix C

The Runtime of StrongColour

In this appendix, we prove that fixed ∆ = ∆(G), the the algorithm StrongColour runs in
time poly(|V (G)|). We therefore assume that ∆ is fixed. We refer the reader to Section 4.4
for all definitions and terms used in this appendix.

Recall from Section 4.4 that StrongColour is the following algorithm.

C.0.1 StrongColour

Input: A graph G with maximum degree ∆ and a vertex partition (V1, . . . , Vm) where
|Vi| ≤ 3∆ + 1 for each 1 ≤ i ≤ m.

Output: A strong (3∆ + 1)-colouring of G with respect to (V1, . . . , Vm).
1: function StrongColour(G;V1, . . . , Vm)
2: for all v ∈ V (G) do c(v) := 0

3: while there is a vertex v such that c(v) = 0 do
4: Choose a vertex v such that c(v) = 0.
5: Choose a colour α missing on Vclass(v).
6: (W,V ′1 , . . . , V

′
m) := RemoveColoured(G; c;α;V1, . . . , Vm)

7: V := {V ′i : Vi 6= Vclass(v)}

8: G′ := G

[
{v} ∪

( ⋃
V ′j∈V

V ′j

)]
9: M := FindITorBD(G′; {v},V) for r = ∆ + 1 and ε = 1

∆
.

10: c := ReColour(c;α;M ;W ;V1, . . . , Vm)

11: return c

The subroutine RemoveColoured returns the set W of vertices assigned colour α as well
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as subsets V ′i ⊆ Vi of vertices x ∈ Vi such that c(x) = 0 or c(x) 6= c(y) for all y ∈ N(wi),
where {wi} = W ∩ Vi (if such a wi exists). The subroutine ReColour reassigns c(wi) to be
c(ui) for each wi ∈ W where wi ∈ Vi and {ui} = M ∩ Vi. It then reassigns c(ui) to be α
for each ui ∈M and returns the resulting colouring as c.

In the next few claims, we analyse the runtime of each of the subroutines of StrongColour.
As the procedures are simple, we provide a brief outline of what these procedures entail
but omit detailed proofs of their runtimes. Also, the runtime of FindITorBD will dominate
the runtime of all other subroutines in StrongColour, so we make no effort to minimise the
runtimes of these other algorithms.

Claim C.1. For fixed ∆, finding a missing colour on a vertex class takes time O(|V (G)|).

Given a vertex class Vi as a characteristic vector and c as a |V (G)|×1 vector with entries
in {0, . . . , 3∆ + 1}, checking the entries of c corresponding to the vertices in Vi takes time
|Vi| ≤ |V (G)|. The set C of missing colours on Vi can be returned as a (3∆ + 1) × 1
characteristic vector where Cα = 0 if cv = α for some v ∈ Vi and Cα = 1 otherwise (note C
does not contain an entry for “0” as “0” is not a colour). This clearly takes time O(|V (G)|).
Finding one non-zero entry in C takes time O(∆) = O(1) since ∆ is fixed. Hence finding
a missing colour on Vi takes time O(|V (G)|).

Claim C.2. For fixed ∆, RemoveColoured runs in time O(|V (G)|2).

Suppose G is given as an adjacency matrix, c as a |V (G)| × 1 vector with entries in
{0, . . . , 3∆ + 1}, and V1, . . . , Vm are given as characteristic vectors. Determining the set W
of vertices w such that cw = α requires checking |V (G)| entries of c. We assume W is stored
as a characteristic vector of this set. For each w ∈ W , we do the following. We find the
neighbours of w by checking row w of G, using |V (G)| operations. Next, we determine cu
for each u ∈ N(w), which takes |N(w)| ≤ ∆ operations. For Vi the vertex class containing
w, we define V ′i to be a |V (G)|×1 vector by (V ′i )x = 1 if cx 6= cu for all u ∈ N(w) such that
cu 6= 0 and (V ′i )x = 0 otherwise. This requires another O(|V (G)|) operations. Hence the
vectors W,V1, . . . , Vm are returned in time O(|V (G)|) + |W | ×O(|V (G)|) = O(|V (G)|2).

Claim C.3. ReColour returns the new colouring c in time O(|V (G)|2).

Suppose G is given as an adjacency matrix, c as a |V (G)| × 1 vector with entries in
{0, . . . , 3∆ + 1}, and M , W , V1, . . . Vm are all given as characteristic vectors. For each
w ∈ W , we determine the Vi such that w ∈ Vi and then find the vertex u ∈ M ∩ Vi and
redefine cw = cu. This takes O(|V (G)|) operations. Thus re-colouring the vertices of W
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takes |W | ·O(|V (G)| ≤ O(|V (G)|2) operations. We then define cu = α for all u ∈M , which
takes an additional m ≤ |V (G)| operations. Thus the returned vector c is found in time
O(|V (G)|2) + |V (G)| = O(|V (G)|2).

With these claims, we now prove the remainder of Corollary 4.34.

Lemma C.4. For fixed ∆, StrongColour completes in time poly(|V (G)|).

Proof: Let G be a graph with maximum degree ∆ and vertex partition (V1, . . . , Vm) where
|Vi| ≤ 3∆ + 1 for each i. By adding isolated vertices to G and the vertex classes Vi, we
assume |Vi| = 3∆ + 1 for each i.

Suppose G is given as an adjacency matrix and V1, . . . , Vm are given as characteristic
vectors. Choosing a vertex v and determining Vclass(v) takes time O(|V (G)|). Choosing
α takes time 3∆ + 1 = O(1). By Claims C.1 and C.2, finding the missing colours and the
sets W,V ′1 , . . . , V

′
m can be accomplished in time O(|V (G)|2).

The graph G′, stored as an adjacency matrix A, can be found by taking a copy of
G and performing the following row and column deletions. Find each u 6= v such that
u ∈ Vclass(v), remove the row and column indexed by u from the copy of G, which
takes time O(|V (G)|). Then for each Vi 6= Vclass(v), remove the rows and columns
indexed by w for each vertex w such that (Vi)w 6= (V ′i )w, which takes an additional
m ·O(|V (G)|) = O(|V (G)|2) operations. The resulting matrix A is therefore found in time
O(|V (G)|) +O(|V (G)|2) = O(|V (G)|2).

As FindITorBD is the algorithm that finds the IT in Corollary 4.36 and
|V (G′)| ≤ |V (G)|, M is found in time p(|V (G)|) for some polynomial p since ∆ is fixed.
By Claim C.3, the re-colouring can be implemented in time O(|V (G)|2). Hence each
iteration of the while loop of StrongColour takes time O(|V (G)|2) + p(|V (G)|). As the
number of uncoloured vertices decreases during each iteration, the while loop has at most
|V (G)| iterations. Initialising c takes time |V (G)|, so StrongColour completes in time
|V (G)|+ |V (G)|(O(|V (G)|2) + p(|V (G)|)). Hence StrongColour runs in time poly(|V (G)|)
when ∆ is fixed.
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Appendix D

Runtimes for the Monochromatic
Component Algorithms

In this appendix, we prove that for fixed d ≥ 3 and r ≥ 1, the algorithms SmallComponents,
BoundedVert, and BoundedEdge from Section 4.5 run in time poly(|V (G)|). We do so by
analysing the runtime of SmallComponents in Appendix D.1 the runtime of BoundedVert
in Appendix D.2, and the runtime of BoundedEdge in Appendix D.3. Also, we assume
throughout this appendix that r and d are fixed. We refer the reader to Section 4.5 for all
definitions and terms used in this appendix.

D.1 The Runtime of SmallComponents

In this section, we prove that for fixed d ≥ 3 and r ≥ 1, the algorithm SmallComponents
from Section 4.5 runs in time poly(|V (G)|). Recall from Section 4.5 that SmallComponents
is the algorithm in D.1.1.

We prove that for fixed d and r, SmallComponents runs in time poly(|V (G)|)
(Lemma D.4). To do so, we analyse the runtime of the subroutines of SmallComponents
individually in the next few claims. For procedures that are simple, we provide a brief
outline of what the procedures entail but omit the proofs of their runtimes. Furthermore,
since the runtime of FindITorBD will dominate the runtime of all other subroutines of
SmallComponents, we make no attempt to minimise the runtimes of the other algorithms.

Recall that Order arranges the vertices of Bi of degree 2 in G[Bi] in the order of their
appearance in the path or cycle of G[Bi], returning this set as B′i.
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D.1.1 SmallComponents

Input: A graph G with maximum degree ∆(G) ≤ d, a vertex partition (A,B), and a
partition (B1, . . . , Bm) of B satisfying the conditions of Corollary 4.43 for some d ≥ 3
and r ≥ 1.

Output: A set M ⊆ B such that every component of G[Bi \M ] for each i ∈ {1, . . . ,m}
and every component of G[A ∪M ] has at most (12r + 6)d− (18r + 24) vertices.

1: function SmallComponents(G;A;B;B1, . . . , Bm)
2: K := (12r + 6)d− (18r + 24)
3: k := (2r + 1)d− (3r + 4)
4: for i such that |Bi| > K do
5: B′i := Order(G,Bi)
6: (B′i, B′′i ) := SmallerParts(2k + 1, B′i)

7: V :=
⋃

|B′i|>K
B′′i

8: B′ :=
⋃

|B′i|>K
B′i

9: G′ := MakeG’(V ;G;A;B1, . . . , Bm)
10: M := FindITorBD(G′;B′) for r = k + 1 and ε = 1

k
.

11: return M
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Claim D.1. For fixed d ≥ 3 and r ≥ 1, Order(G,Bi) runs in time O(|V (G)|2).

Suppose G is given as an adjacency matrix and Bi as a characteristic vector. An
ordering of the vertices of degree 2 in G[Bi] that respects the cycle/path order of the
vertices in G[Bi] can be returned as follows. First, for each v ∈ Bi, compute the dot
product of row v of G with Bi. If the dot product is 1, find the neighbour u1 of v in Bi

and add u1 as the first vertex of the list B′i. Find the other neighbour w1 of u1 in Bi and,
if the dot product of row w1 of G with Bi is 2, append w1 to the end of list B′i. Continue
this process with uj+1 = wj until the dot product of row wj of G with Bi is 1. Return the
list B′i (without appending wj to it).

If the dot product of v of G with Bi is 2 for all v ∈ Bi, then choose a vertex v ∈ Bi and
add v as the first vertex of list B′i. Find a neighbour u1 of v in Bi and append u1 to the
end of list B′i. Find the other neighbour w1 of u1 in Bi and append w1 to the end of list
B′i. Continue this process with uj+1 = wj until the “other” neighbour of uj is v. Return
the list B′i (without appending wj = v to it).

Computing the dot product of a row of G and Bi takes O(|V (G)|) operations. Finding
a neighbour w ∈ Bi of a vertex u ∈ Bi can be done by testing for each x ∈ Bi, if
Gux = 1. Hence finding a neighbour takes O(|V (G)|) operations. Since there are |Bi|
dot product operations and |Bi| neighbour-finding loops, the list B′i is returned in time
|Bi| ·O(|V (G)|) + |Bi| ·O(|V (G)|) = O(|V (G)|2).

The next subroutine, called SmallerParts, uses the ordering of B′i (for Bi with |Bi| > K)
to partition B′i into ordered lists B′i,j of size exactly 2k + 1 (which are returned in the set
B′i) and (a possibly empty) list B∗i of size at most 2k (which is not included in B′i). The
union of the elements in the B′i,j is returned as B′′i .

Claim D.2. For fixed d ≥ 3 and r ≥ 1, SmallerParts(2k + 1, B′i) returns a set B′′i ⊆ B′i
of vertices and a partition B′i of B′′i into classes B′i,j such that G[B′i,j] is a path on 2k + 1
vertices for each B′i,j ∈ B′ in time O(|V (G)|).

Recall that the B′i is an ordered list of the vertices of degree 2 in G[Bi] where the
order respects the cycle/path order of G[Bi]. Thus SmallerParts will look at segments
B′i[j(2k+1)+1] . . . B′i[j(2k+1)+2k+1] of length 2k+1 in the list B′i. For each j ≥ 0 such
that j(2k+1) ≤ |B′i|, SmallerParts adds the segment B′i[j(2k+1)+1] . . . B′i[j(2k+1)+2k+1]
as B′i,j to B′i and {B′i[j(2k + 1) + 1], . . . , B′i[j(2k + 1) + 2k + 1]} to the set B′′i . This takes
O(1) operations for each j since k is constant (recall k is defined using d and r which are
fixed constants). Hence the entire SmallerParts takes time O(|V (G)|).

155



The next subroutine, called MakeG’, creates the graph G′ whose vertex set is V and
whose edge set consists only of edges uv such that either u, v ∈ B are neighbours of vertices
in the same component of G[A] or uv ∈ E(G) with Vclass(u) 6= Vclass(v).

Claim D.3. For fixed d ≥ 3 and r ≥ 1, MakeG’(V ;G;A;B1, . . . , Bm) returns the desired
graph G′ in time O(|V (G)|3).

Suppose G is given as an adjacency matrix and the sets V , A, B1, . . . , Bm are all given
as characteristic vectors. MakeG’ will return the graph G′ as a |V | × |V | adjacency matrix
X as follows. The algorithm begins with X as a copy of G. For each v ∈ V , find Vclass(v)
and define the |V (G)| × 1 vector bv by (bv)u = 0 if u ∈ Vclass(v) \ {v} and (bv)u = 1
otherwise. Replace each entry of row v by Xvu · (bv)u. Next, remove all columns and rows
corresponding to vertices u /∈ V . All of these steps can be implemented in time O(|V (G)|2).
The result is |V | × |V | matrix X such that Xuv = 1 if and only if u, v ∈ V , uv ∈ E(G),
and Vclass(u) 6= Vclass(v), which accounts for all edges of type 2. It remains to account
for the edges of type 1.

MakeG’ starts by making another copy of G and removing all rows that do not corre-
spond to a vertex in V and columns that do not correspond to a vertex in A. The resulting
|V | × |A| matrix Y takes O(|V (G)|2) operations to form. Then, for each Xuv = 0 entry of
X, we re-define Xuv for each a ∈ A such that Yva = 1 and b ∈ A such that Yub = 1 to be
Xuv = 1 if either a = b or Gab = 1. Note that by condition (i) of 4.43, each component
of G[A] has at most two vertices and by condition (iv), each x ∈ V has neighbours in
at most r components of G[A]. Hence there are at most 2r choices of a and 2r choices
of b. Thus the testing takes time O(|V (G)|) for each Xuv, so accounting for all edges of
type 1 takes time O(|V (G)|3). Therefore G′ returned as adjacency matrix X takes time
O(|V (G)|2) +O(|V (G)|3) = O(|V (G)|3).

We are now ready to prove Lemma D.4.

Lemma D.4. For fixed d ≥ 3 and r ≥ 1, SmallComponents runs in time poly(|V (G)|).

Proof: As k and K are constants that depend only on d and r, they can be computed in
time O(1). Determining whether |Bi| > K for any class Bi takes O(|V (G)|) calculations
(dot product of the characteristic vector of Bi and the all ones vector). Similarly, Order
and SmallerParts complete in times O(|V (G)|2) and O(|V (G)|) respectively (Claims D.1
and D.2). As there are at most m ≤ |B| ≤ |V (G)| sets Bi such that |Bi| > K, we
have that the for loop in SmallComponents requires a total of O(|V (G)|3) operations to
implement. Defining the sets V and B′ takes time O(|V (G)|). MakeG’ returns the graph
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G′ in time O(|V (G)|3) by Claim D.3. Hence the steps other than FindITorBD take a total
of O(|V (G)|3) operations to implement.

By Corollary 3.2, FindITorBD returns the IT M of G′ in time poly(|V |) (since k is
fixed because d and r are fixed), which is poly(|V (G)|). Let p be this polynomial. Thus
SmallComponents runs in time O(|V (G)|3) + p(|V (G)|), which is poly(|V (G)|).

This completes the proof of Corollary 4.43.

D.2 The Runtime of BoundedVert

In this section, we prove that for fixed ∆(G) = ∆ ≥ 3, the algorithm BoundedVert from
Section 4.5 runs in time poly(|V (G)|). Recall from Section 4.5 that BoundedVert is the
following algorithm.

D.2.1 BoundedVert

Input: A graph G with maximum degree ∆ ≥ 3.
Output: A

⌈
∆+2

3

⌉
-vertex colouring of G such that the monochromatic components have

size at most K = 12∆2 − 36∆ + 12.
1: function BoundedVert(G)
2: h :=

⌈
∆+2

3

⌉
3: (A,B) := DegreePartition(G; 1,∆− 2) for ` = 2.
4: (B1, . . . , Bh−1) := DegreePartition(G[B]; 2, 2, 2, ..., 2) for ` = h− 1.
5: for i = 1, . . . , h− 1 do
6: Ci := Components(G;Bi)

7: C :=
h−1⋃
i=1

Ci
8: M := SmallComponents(G;A;B; C) for d = ∆ and r = ∆− 2.
9: for i = 1, . . . , h− 1 do
10: for all v ∈ Bi \M do
11: c(v) := i

12: for all v ∈ A ∪M do
13: c(v) := h

14: return c

As we saw in the proof of Lemma D.4 Appendix D.1, for fixed d ≥ 3 and r ≥ 1,
SmallComponents takes time poly(|V (G)|) to implement, with the majority of the time be-
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ing used to implement FindITorBD as a subroutine. Thus, the runtime of SmallComponents
dominates the runtime of the other steps in BoundedVert. We therefore make no attempt
to optimise the runtime of the other subroutines of BoundedVert.

We begin analysing the runtime of BoundedVert by analysing the runtime of
DegreePartition. Recall Theorem 4.52 due to Lovász [73], restated below for convenience.

Theorem D.5 ([73]). Let G be a graph and let n1, . . . , n` be nonnegative integers such that
n1 + n2 + · · ·+ n` ≥ ∆(G)− `+ 1. Then V (G) can be partitioned into sets V1, . . . , V` such
that ∆(G[Vi]) ≤ ni for all 1 ≤ i ≤ `.

Proposition D.6 gives the original proof of Theorem 4.52, which shows that the vertex
partition can be found in polynomial time for fixed ∆ and `.

Proposition D.6. Let G be a graph with maximum degree ∆ and let n1, . . . , n` be non-
negative integers such that n1 + n2 + · · ·+ n` ≥ ∆− `+ 1. Then for fixed ∆, V (G) can be
partitioned into (possibly empty) sets V1, . . . , V` such that ∆(G[Vi]) ≤ ni for all 1 ≤ i ≤ `
in time O(|V (G)|3).

Proof: We may assume that ni ≤ ∆ for each 1 ≤ i ≤ ` as ∆(G[Vi]) ≤ ∆ for every
Vi ⊆ V (G). Hence taking Vi = V (G) for an i such that ni > ∆ and Vj = ∅ for all j 6= i
would satisfy the desired conditions. Also, we may assume ` ≤ |V (G)| as we can ignore
the `− |V (G)| sets Vi that are guaranteed to be empty.

Consider the following simple algorithm. Take any vertex partition (V1, . . . , V`) of G.
While there is a vertex x such that degG[Vi]

(x) > ni (where Vi = Vclass(x)), move x to
a vertex class Vj 6= Vi such that degG[Vj ]

(x) ≤ nj. This continues until there is no such
vertex x. The resulting partition then satisfies ∆(G[Vi]) ≤ ni for all 1 ≤ i ≤ `.

Claim D.7. For any vertex x such that degG[Vi]
(x) > ni (where Vi = Vclass(x)), there

exists a vertex class Vj 6= Vi such that degG[Vj ]
(x) ≤ nj.

Proof: Let x ∈ Vi be a vertex such that degG[Vi]
(x) > ni. Suppose degG[Vj ]

(x) > nj for all

j 6= i. Since deg(x) ≥
∑̀
k=1

degG[Vk](x), we have

∆ ≥ deg(x) ≥
∑̀
k=1

degG[Vk](x) ≥
∑̀
k=1

(nk + 1) ≥ `+ (∆− `+ 1) = ∆ + 1,

which is a contradiction. Hence there must be such a vertex class Vj.
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Claim D.8. For fixed ∆, the process completes after at most O(|V (G)|2) iterations of the
while loop that moves vertices.

Proof: Let V be a vertex partition of G. We define a potential function f by

f(V) =
∑̀
i=1

[|E(G[Vi])| − ni|Vi|].

We claim that moving a vertex x such that degG[Vi]
(x) > ni (where Vi = Vclass(x)) from

Vi to Vj decreases the value of f(V). Let V ′i = Vi− x, V ′j = Vj + x, and V ′ be the resulting
vertex partition of G. Then |E(G[V ′i ])| ≤ |E(G[Vi])|−(ni+1), |E(G[V ′j ])| ≤ |E(G[Vj])|+nj,
|V ′i | = |Vi| − 1, and |V ′j | = |Vj|+ 1. Hence,

f(V ′) =
∑̀
k=1

[|E(G[Vk])| − nk|Vk|]

= [|E(G[V ′i ])| − ni|V ′i |] + [|E(G[V ′j ])| − nj|V ′j |] +
∑
k 6=i,j

[|E(G[Vk])| − nk|Vk|]

≤ [|E(G[Vi])| − (ni + 1)− ni(|Vi| − 1)] + [|E(G[Vj])|+ nj − nj(|Vj|+ 1)]

+
∑
k 6=i,j

[|E(G[Vk])| − nk|Vk|]

= −1 +
∑̀
k=1

[|E(G[Vk])| − nk|Vk|]

= f(V)− 1.

Hence the potential function f always decreases when such a vertex x is moved. Clearly

f(V) ≥
∑̀
i=1

(−ni)|Vi| ≥ −|V (G)|
∑̀
i=1

ni,

and,

f(V) ≤
∑̀
i=1

|E(G)| = `|E(G)|.

As ni ≤ ∆ for each 1 ≤ i ≤ `, ` ≤ |V (G)|, and |E(G)| ≤ ∆|V (G)|, we have that the lower
bound on f(V) is −∆|V (G)|2 and the upper bound is ∆|V (G)|2. Hence at most 2∆|V (G)|2
iterations of the while loop that moves vertices can be performed.
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Defining the initial partition can be completed in time O(|V (G)|). Finding the vertex
class Vj of Claim D.8 for each x ∈ V (G) such that degG[Vi]

(x) > ni (where Vi = Vclass(x))
takes time O(|V (G)|) as well. By Claim D.8, the process of moving such an x occurs at
most O(|V (G)|2) times for fixed ∆. Hence the entire algorithm takes time
O(|V (G)|) +O(|V (G)|2) ·O(|V (G)|) = O(|V (G)|3) for fixed ∆.

We now analyse the runtime of Components. Recall that Components takes as input a
graph G and vertex set S and returns the set of all vertex sets of the components of G[S].

Claim D.9. For fixed ∆, Components(G,Bi) runs in time O(|V (G)|2).

Proof: Suppose G is given as an adjacency matrix and Bi as a characteristic vector.
Components will return a set of characteristic vectors of the components of G[Bi] as fol-
lows. Let B′i = Bi and j = −1. For each v ∈ B′i, compute the dot product of row v of
G with B′i. If the dot product is 1, set (B′i)v = 0, j = j + 1, and Bi,j to be a |V (G)| × 1
vector with (Bi,j)v = 1 and (Bi,j)u = 0 for all u 6= v. Then find the neighbour u1 of v in
B′i and set (B′i)u1 = 0 and (Bi,j)u1 = 1. Find the other neighbour w1 of u1 in B′i (recall
∆(G[Bi]) ≤ 2 and so u1 has at most 2 neighbours) and set (B′i)w1 = 0 and (Bi,j)w1 = 1.
Continue this process with uj+1 = wj until uj+1 has no other neighbours in B′i. Add Bi,j

to the set Ci of characteristic vectors of components of G[Bi].

If the dot product of v of G with B′i is 2 for all v ∈ B′i, then choose a vertex v ∈ B′i. Set
(B′i)v = 0, j = j+ 1, and Bi,j to be a |V | × 1 vector with (Bi,j)v = 1 and (Bi,j)u = 0 for all
u 6= v. Find a neighbour u1 of v in B′i and set (B′i)u1 = 0 and (Bi,j)u1 = 1. Find the other
neighbour w1 of u1 in B′i and set (B′i)w1 = 0 and (Bi,j)w1 = 1. Continue this process with
uj+1 = wj until uj+1 has no other neighbours in B′i. Add Bi,j to the set Ci of characteristic
vectors of components of G[Bi].

Computing the dot product of a row of G and B′i takes O(|V (G)|) operations. Finding
a neighbour w ∈ B′i of a vertex u ∈ B′i can be done by testing for each x ∈ B′i, if Gux = 1.
Hence finding a neighbour takes O(|V (G)|) operations. Since there are |Bi| dot product
operations and |Bi| neighbour-finding loops, the set of components Ci of G[Bi] is returned
in time |Bi| ·O(|V (G)|) + |Bi| ·O(|V (G)|) = O(|V (G)|2).

We are now ready to prove that for fixed ∆, BoundedVert runs in time poly(|V (G)|).

Claim D.10. For fixed ∆, BoundedVert runs in time poly(|V (G)|).

Proof: By Proposition D.6, the vertex partitions (A,B) and (B1, . . . , Bh−1) can be found
in time O(|V (G)|3) since ∆ is fixed. By Claim D.9, the set Ci of vertex sets Bi,j of
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the components of G[Bi] can be found in time O(|V (G)|2) for each Bi. As there are
h− 1 = O(∆) classes Bi, the set C of all the Bi,j for all i can be found in time O(|V (G)|2)
(since ∆ is fixed).

By Corollary 4.43, SmallComponents runs in time poly(|V (G)|) since ∆ is fixed. Let p
be this polynomial. As it takes 1 operation to assign the appropriate colour to each vertex
in V (G), colouring the vertices takes |V (G)| operations to implement. Thus, for fixed ∆,
the total runtime of BoundedVert is O(|V (G)|3) + p(|V (G)|), which is poly(|V (G)|).

D.3 The Runtime of BoundedEdge

In this section, we prove that for fixed ∆(G) = ∆ ≥ 3, the algorithm BoundedEdge from
Section 4.5 runs in time poly(|E(G)|). Recall from Section 4.5 that BoundedEdge is the
following algorithm.

D.3.1 BoundedEdge

Input: A loopless graph G with maximum degree ∆ ≥ 3.
Output: A

⌈
∆+1

2

⌉
-edge colouring of G such that the monochromatic components have

size at most K = 60∆− 60.
1: function BoundedEdge(G)
2: h :=

⌈
∆+1

2

⌉
3: (A,B) := TwoPartition(G)
4: (B1, . . . , Bh−1) := TwoFactor(G[B];h− 1)
5: H := LineGraph(G)
6: for i = 1, . . . , h− 1 do
7: Ci := Components(H;Bi)

8: C :=
h−1⋃
i=1

Ci
9: M := SmallComponents(H;A;B; C) for d = 4h− 4 and r = 2.
10: for i = 1, . . . , h− 1 do
11: for all e ∈ Bi \M do
12: c(e) := i

13: for all e ∈ A ∪M do
14: c(e) := h

15: return c

Again, BoundedEdge uses SmallComponents as a subroutine. The runtime of
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SmallComponents dominates the runtime of the other steps in BoundedEdge, so we again
make no attempt to optimise the runtime of the other subroutines of BoundedEdge.

We begin by analysing the runtime of TwoFactor. Recall that TwoFactor is based on
the following lemma from [9] that is a reformulation of a theorem due to Petersen [82].

Lemma D.11 ([9]). Let ` be an integer and G be a loopless graph with ∆(G) ≤ 2`. Then
there exists an edge partition (E1, . . . , E`) such that ∆(G[Ei]) ≤ 2 for all i.

TwoFactor is an algorithm that takes as input a parameter ` and a graph G with
∆(G) ≤ 2` and returns an edge partition (E1, . . . , E`) of G such that ∆(G[Ei]) ≤ 2 for all
1 ≤ i ≤ `. We can find such a partition when ` is fixed in time O(|E(G)|) as follows. For
each v ∈ V (G) with deg(v) < 2`, add loops at v. Let G′1 be the resulting multigraph.

For each i ∈ {1, . . . , `}, we repeat the following. By construction, G′i is 2(` − i + 1)-
regular. Hence there exists an Euler tour in G′i, which we can find in time
O(|E(G′i)|) = O(|E(G)|) using Hierholzer’s algorithm [54]. Let v0e0v1 . . . emv0 be this Euler
tour. For each vj and ej, replace vj by two vertices v+

j and v−j and ej = vjvj+1 by
ej = v+

j v
−
j+1. Let G′′i be the resulting multigraph and note that G′′i is `-regular and

bipartite. Thus we can find a 1-factor Mi of G′′i in time O(`|E(G′′i |) = O(|E(G)|) (see
e.g. [87]). Identify each v+

j with v−j so that Mi becomes a 2-factor in G′i. Let E ′i be this
2-factor and G′i+1 = G′i − E ′i. Set Ei = E ′i ∩ E(G).

Since G′1 is 2`-regular, G′`+1 has no edges. For fixed `, each of the above steps takes
time O(|E(G)|) since ∆(G) ≤ 2`. Thus for fixed `, the final edge partition (E1, . . . , E`)
is returned in time O(|E(G)|). Hence for fixed `, TwoFactor can be implemented in time
O(|E(G)|).

We now analyse the runtime of TwoPartition. Recall that TwoPartition is based on
the following lemma from [9], which can be derived from Lemma 4.55 and is therefore also
a reformulation of a theorem due to Petersen [82].

Lemma D.12 ([9]). Every loopless graph G has a set A ⊆ E(G) such that ∆(G− A) < ∆(G)
and each component of G(A) is a path containing at most two edges.

TwoPartition is an algorithm that takes as input a loopless graph G with ∆(G) = ∆
and returns an edge partition (A,B) of G such that ∆(G − A) < ∆ and the components
of G[A] are paths that contain at most two edges. For fixed ∆, we can find such a set A,
and thus the edge partition (A,B), in time O(|E(G)|) as follows. Let ` =

⌈
∆
2

⌉
. For each

v ∈ V (G) with deg(v) < 2`, add loops at v. Let G′ be the resulting multigraph.
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As G′ is 2`-regular, there exists an Euler tour in G′, which we can find in time
O(|E(G′)|) = O(|E(G)|) using Hierholzer’s algorithm [54]. Let v0e0v1 . . . emv0 be this
Euler tour. For each vj and ej, replace vj by two vertices v+

j and v−j and ej = vjvj+1 by
ej = v+

j v
−
j+1. Let G′′ be the resulting multigraph and note that G′′ is `-regular and bipar-

tite. Thus we can find a 1-factor M of G′′ in time O(`|E(G′′|) = O(|E(G)|) (see e.g. [87]).
Identify each v+

j with v−j so that M becomes a 2-factor in G′. Let E = M ∩ E(G).

For each cycle C in G[E], add every other edge of C to A. Note that if C is an odd
cycle, this will result in the first and final edge added to A sharing a common endpoint.
For each path P in G[E], add every other edge of P to A and, if P has even length, add
the edge incident with the other end of P to A.

By construction, the final set A is spanning and so ∆(G−A) < ∆. Furthermore, each
component of G[A] is a path that contains at most two edges. For fixed ∆, each of the
above steps takes time O(|E(G)|) since ` is a constant defined using ∆. Thus for fixed ∆,
the final edge partition (A,B) satisfying the conditions on A is returned in time O(|E(G)|).
Hence for fixed ∆, TwoPartition can be implemented in time O(|E(G)|).

Before proving Claim D.13, note that the subroutine Components is the same as in the
algorithm BoundedVert. Also, the subroutine LineGraph simply finds the line graph L(G)
of the inputed graph G.

We are now ready to prove that for fixed ∆ ≥ 3, BoundedEdge runs in time poly(|E(G)|).

Claim D.13. For fixed ∆ ≥ 3, BoundedEdge runs in time polynomial in |E(G)|.

Proof: From the discussions above, we know that TwoPartition and TwoFactor can both
be implemented in time O(|E(G)|) since ∆ is fixed (recall h is a constant that depends on
∆). It can be easily seen that the line graph of a graph on n vertices can be determined in
time O(n2). As ∆ is fixed and ∆(G) = ∆, |E(G)| = O(|V (G)|). Hence LineGraph finds
the line graph H of G in time O(|V (G)|2) = O(|E(G)|2).

By Claim D.9, Components can be used to find C in time O(|V (H)|3) = O(|E(G)|3).
Also, by Claim D.4, SmallComponents runs in time p(|V (H)|) = p(|E(G)|) for some poly-
nomial p since ∆ is fixed. Finally, assigning a colour to an edge takes 1 operation, so the
colouring takes exactly |E(G)| operations.

Hence for fixed ∆, BoundedEdge runs in time O(|E(G)|3) + p(|E(G)|), which is
poly(|E(G)|).
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