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Abstract

Quantum computing is believed to provide many advantages over traditional comput-
ing, particularly considering the speed at which computations can be performed. One of
the challenges that needs to be resolved in order to construct a quantum computer is the
transmission of information from one part of the computer to another. Quantum walks, the
quantum analogues of classical random walks, provide one potential method for resolving
this challenge.

In this thesis, we use techniques from algebraic graph theory and number theory to
analyze the mathematical model for continuous time quantum walks on graphs. For the
continuous time quantum walk model, we define a transition operator, which is a function
of a Hamiltonian. We focus on the cases where the adjacency matrix or the Laplacian of
a graph act as the Hamiltionian. We mainly consider quantum walks on paths as a model
for spin chains, which are the underlying basis of a quantum communication protocol.

For communication to be efficient, we desire states to be transferred with high fidelity,
a measure of the amount of similarity between the transmitted state and the received state.
At the maximum fidelity of 1, we say we have achieved perfect state transfer. Examples
of perfect state transfer are relatively rare, so the concept of pretty good state transfer
was introduced as a natural relaxation, which exists if fidelities arbitrarily close to 1 are
obtained.

Our first main result is to characterize pretty good state transfer on paths. Previously,
pretty good state transfer on paths was considered mainly for the end vertices, though
results for both models indicated that if there was pretty good state transfer between the
end vertices, then there was pretty good state transfer between internal vertices equidistant
from each end. We complete the characterization by demonstrating, for the adjacency
matrix model, a family of paths where pretty good state transfer exists between internal
vertices but not between end vertices, and verifying that no other example exists. For the
Laplacian model, we show that there are no paths with pretty good state transfer between
internal vertices but not between the end vertices.

Our second main result considers initial states involving multiple vertices. Under the
adjacency matrix model, we provide necessary and sufficient conditions for pretty good
state transfer in a particular family of paths in terms of the eigenvalue support of the
initial state. We also discuss recent results on fractional revival, which is another form of
multiple qubit state transfer.
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Chapter 1

Introduction

Interest in quantum computing has grown steadily throughout the last number of years.
The essence behind quantum computing is to take advantage of the laws of quantum
mechanics to perform computations, for example, superposition, which is the ability of
a quantum system to exist in multiple states simultaneously, and entanglement, which
is a potential property of quantum particles that allow them to act as if they are linked,
regardless of how far apart they are. These properties allow a quantum computer to perform
many calculations simultaneously, allowing for solutions to problems to be obtained much
faster.

A key requirement for the construction of a quantum computer is the ability to transmit
information from one part of the computer to another. Because of the laws of quantum
mechanics, and in particular the No-Cloning Theorem, information contained by a quantum
particle cannot be copied, or at least, not without destroying the information contained
by the original in the process. We focus here on the problem of state transfer : setting
up a collection of qubits that allow this information to be transferred from one location
to another, using continuous time quantum walks. Ideally, we would be able to achieve
perfect state transfer, that is, starting from an initial state and allowing the walk to occur
for a specified length of time, finding the same state at a different location. Because the
precise set of conditions required to achieve this phenomenon are relatively rare, we relax
this requirement and set as our goal pretty good state transfer, the ability to find a state
arbitrarily close to the initial state at the desired location.

Our focus is to consider the mathematical model for continuous time quantum walks,
and use techniques from algebraic graph theory and number theory to derive our results.
To this end, we consider continuous time quantum walks as occurring on a graph, where
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the vertices model the qubits and the edges model the interactions between the qubits.
Our primary goal is to provide a complete characterization of pretty good state transfer
on paths and to begin to consider pretty good state transfer of multiple qubit states on
paths. Some of the original contributions of this thesis are also contained in [21, 45].

Our secondary objective to to provide a detailed, self-contained overview of the theory
used to investigate quantum walks and the developments that led to the investigation of
pretty good state transfer on paths. We will first discuss the tools from graph theory,
algebraic graph theory, and number theory used to study continuous time quantum walks.
Then we will examine the properties of continuous time quantum walks and describe results
for perfect and pretty good state transfer.

In this chapter, we provide an overview of the study of continuous time quantum walks
and introduce our main results.

1.1 Model and Applications

Continuous time quantum walks were first investigated by Farhi and Gutmann [26] in 1998.
They were considering decision problems, for example the travelling salesman problem and
the exact cover problem, being modelled by a decision tree. By modelling a decision
problem using a decision tree, determining the answer to the decision problem becomes
equivalent to determining if there are any nodes at the nth level of the decision tree, for
some parameter n. To solve the decision problem, the näıve approach is to systematically
check every path starting from the top of the tree, attempting to find one that reaches the
nth level. An alternative approach is to move through the tree according to a probabilistic
rule, which includes a chance of back-tracking; eventually every node in the tree will be
reached. More formally, a continuous time (classical) random walk is a Markov process. A
family of trees is said to be penetrable if:

There exists A,B ≥ 0 such that for those trees with a node (or nodes) at the
nth level there is a t < nA with the probability of being at the nth level by t
greater than (1/n)B.

Otherwise, the family of trees is said to be impenetrable.

Formally, given a graph X, we can define a continuous random walk on X by a family
of matrices M(t), where M(t)a,b denotes the probability that a “walker” starting on vertex
a is found at vertex b after time t. The matrices M(t) are given by

M(t) := exp(t(A−∆)),
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where A is the adjacency matrix of the graph and ∆ is the degree matrix of the graph.
The continuous random walk is modelled such that in a short time interval δt, the walker
leaves the current vertex and moves to one of the adjacent vertices with equal probability.
One thing worth noting here is that if the graph X is connected, then the matrix M(t)
will converge to a limiting distribution.

Farhi and Gutmann [26] investigated using quantum mechanics to move through deci-
sion trees, modelled by a continuous time quantum walk. We consider a continuous time
quantum walk as a generalization of a continuous random walk. So analogously, we can
define a continuous time quantum walk by defining a transition operator U(t) in terms of
a real symmetric matrix S, called the Hamiltonian of the walk, by

U(t) := exp(itS) =
∑
n≥0

(it)n

n!
Sn.

Comparing to the continuous random walk, the main difference in the set up is the intro-
duction of the complex term i in the exponent, and the freedom to choose other possible
models by varying S compared to the specific example for the continuous random walk. For
a graph X, the most common choices for S are the adjacency matrix A and the Laplacian
L. The model determined by A is often said to be determined by the XY-Hamiltonian,
and the model determined by L is often said to be determined by the XYZ-Hamiltonian
or Heisenberg Hamiltonian.

Farhi and Gutmann [26] set up a continuous time quantum walk using the Laplacian as
the Hamiltonian, and defined quantum penetrable and quantum impenetrable analogously.
They determined that any family of trees that is (classically) penetrable is also quantum
penetrable. Moreover, they gave an example of a family of decision trees that is (classically)
impenetrable but quantum penetrable, based on adding two infinite paths to a decision
tree. In 2002, Childs, Farhi, and Gutmann [14] studied the difference in behaviour of a
classical random walk and quantum walk and provided the family of finite graphs Gn,
defined to be two balanced binary trees of depth n with the nth level vertices pairwise
identified, which are (classically) impenetrable but quantum penetrable. In 2003, Childs
et al. [13] remarked that this search problem can be solved in polynomial time by a classical
algorithm, and modified the graph by joining the two sets of leaves by a cycle to construct
a family of graphs that is quantum penetrable but which no classical algorithm can solve
with high probability in subexponential time.

In 2004, Childs and Goldstone [16] considered the spatial search problem, where the
algorithms are applied to a physical database as opposed to the idealized situation of call-
ing an oracle, though the use of continuous time quantum walks. The use of quantum
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walks is natural to study this problem, as a graph can be used to model the locations
and connections of the physical database. Their approach modifies the Hamiltonian used
by introducing an oracle Hamiltonian, which is assumed to be given and indicates which
state is goal of the search. They also use a uniform superposition as their starting state, in
contrast to the work described previously which begins from a state representing a single
vertex. The authors demonstrated their proposed walk matches the algorithm proposed for
the complete graph by Farhi and Gutmann [25], and consider the results of their algorithm
on the hypercube and the d-dimensional cubic periodic lattice. They were able to demon-
strate quadratic speedups in dimensions greater than four, some speedup at dimension
four, and no substantial speedup in lower dimensions. In a subsequent 2004 paper, Childs
and Goldstone [15] demonstrated that by making use of additional memory, they can ob-
tain quadratic speedup in dimensions greater than two, and some speedup at dimension
two.

In 2002, Moore and Russell [39] studied quantum walks and uniform mixing, the ques-
tion of whether the process reaches a uniform state (up to phase), on the hypercube. They
determined that the n-dimensional hypercube has an instantaneous mixing time at (π/4)n,
compared to a Θ(n log n) mixing time in the classical case. Similarly, they define an av-
erage mixing time, analogous to the definition provided by Aharonov, Ambainis, Kempe,
and Vazirani [1] in the discrete case, as a time at which the average distribution is uniform.
For the hypercube, the limiting distribution is not the uniform distribution, and there is
no average mixing time.

In 2003, Ahmadi, Belk, Tamon, and Wendler [2] further investigated instantaneous
uniform mixing on graphs. One of their results is that on the class of complete and complete
multipartite graphs, only the complete graphs K2, K3, K4 and the compete multipartite
graph K2,2 have instantaneous uniform mixing, in stark contrast to the results for the
classical walk, which never achieves uniform on K2 but converges to uniform on Kn for
all n ≥ 2, and the discrete quantum walk. Moreover, K2 is the only complete graph with
average uniform mixing. The authors conjecture that no cycle on more than four vertices
has instantaneous uniform mixing, and no Cayley graph on the symmetric group Sn with
edges as transpositions with n ≥ 3 has instantaneous uniform mixing. Later that year,
Gerhardt and Watrous [28] demonstrated that Cayley graphs on the symmetric group Sn
do not have instantaneous uniform mixing when the edges are generated by all p-cycles,
for some fixed 2 ≤ p ≤ n; the case p = 2 answers the latter question of Ahmadi, Belk,
Tamon, and Wendler [2]. Additionally, Ahmadi, Belk, Tamon, and Wendler [2] appear to
be the first to comment on the distinction between using the Laplacian and the adjacency
matrix as the Hamiltonian, which on regular graphs simply introduces an irrelevant phase
factor.
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Also in 2003, Bose [6] developed the use of continuous time quantum walks to transmit
quantum states between two locations. Transmission of quantum states is important to
link quantum processes to allow for quantum computing on a larger scale. The two main
methods of transferring quantum states are by doing so directly through such a transmission
channel, or by sharing an entangled state through the transmission channel and later
transferring the state by quantum teleportation. The model proposed is a spin chain, or
in graph theoretic terms, a path, and transmission occurs by initializing the state at one
end and waiting a predetermined amount of time for the state to naturally propagate to
the other end. Such a model has the advantage of not requiring external inputs, such as
turning interactions between parts of the chain on and off, or modulation from an outside
source. These advantages make the model an ideal connector between quantum computers.

One of the major goals of quantum communication on spin chains is to transfer a state
with high fidelity, a measure of the amount of similarity between the transmitted state and
the received state. At the maximum fidelity of 1, the two states are the same (up to the
phase factor, which cannot be determined by measurement), and we say we have achieved
perfect state transfer. Formally, a graph X is said to have perfect state transfer between
vertices a and b if there exist a time τ ∈ R and a complex scalar γ such that

U(τ)ea = γeb,

where ev denotes the vector with a 1 in the row corresponding to vertex v and with all
other entries 0. Bose numerically studied the fidelity of the state transfer and preservation
of entanglement across paths and cycles (at opposite points), and determined that C4

allows transfer with a fidelity of 1. The concept of perfect state transfer was introduced by
Christandl et al. [17, 18] in 2005, who also showed that perfect state transfer on uniformly
coupled spin chains (or in graph theoretic terms, unweighted paths) is only possible for
chains of two or three qubits. We provide a detailed overview of results for perfect state
transfer in Chapter 3.

In 2009, Childs [12] determined that continuous time quantum walks are universal for
quantum computation; that is, any problem that can be solved by a quantum computer can
be solved using a quantum walk. More precisely, quantum gates and quantum circuits can
be simulated by simple quantum walks on sparse graphs (unweighted graphs of bounded
degree), and as it turns out, the same is true in reverse (see [13]). The model presented
uses unweighted graphs with maximum degree 3. This result demonstrates the power of
the continuous time quantum walk model and motivates developing further understanding
of the model.

The lack of examples of perfect state transfer led multiple authors (see Godsil [32], for
example) to introduce the concept of pretty good state transfer as a natural relaxation.
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We discuss previous results for pretty good state transfer on paths in Section 4.2. In the
following sections, we outline the main original contributions of this thesis.

1.2 Pretty Good State Transfer on Paths

Formally, a graph X is said to have pretty good state transfer between vertices a and b
if, there exist sequences of times {τk} of real numbers and {γk} of complex numbers with
|γk| = 1, such that

lim
k→∞
‖U(τk)ea − γkeb‖ = 0,

or equivalently, for every ε > 0, there exist τε ∈ R and γε ∈ C with |γε| = 1, such that

‖U(τε)ea − γεeb‖ < ε.

One of our main results is to complete the characterization of pretty good state transfer
on paths, which was previously only considered between the end vertices of the path. We
let Pn denote a path on n vertices, and assume the vertices are labelled 1 to n such that
vertices with successive labels are adjacent. Godsil et al. [34] provided a characterization
of pretty good state transfer between the end vertices of paths with the adjacency matrix
as the Hamiltonian, showing pretty good state transfer occurs between the end vertices if
and only if the length of the path is one less than either a prime, twice a prime, or a power
of two. Banchi et al. [4] provided the analogous characterization with the Laplacian as the
Hamiltonian, demonstrating pretty good state transfer occurs between the end vertices if
and only if the length of the path is a power of two. In both cases, the authors commented
that if there is pretty good state transfer between the end vertices of Pn (i.e. vertices 1 and
n), then there is also pretty good state transfer between vertices a and n+ 1− a, but did
not consider whether there could be pretty good state transfer between internal vertices of
paths if it was not present between the end vertices. We will present the following results
to complete these characterizations.

4.3.3 Theorem. There is pretty good state transfer on Pn between vertices a and b if and
only if a+ b = n+ 1 and:

a) n = 2t − 1, where t is a positive integer;

b) n = p− 1, where p is an odd prime; or

c) n = 2tp− 1, where t is a positive integer and p is an odd prime, and a is a multiple of
2t−1.
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4.4.3 Theorem. There is pretty good state transfer on Pn between vertices a and b with
respect to the Laplacian if and only if a+ b = n+ 1 and n is a power of 2.

1.3 State Transfer of Multiple Qubit States

Having completed the characterization of pretty good state transfer on paths with respect
to an initial state involving a single qubit, or vertex, we will begin to analyze state transfer
of arbitrary states involving multiple qubits (vertices), restricted to the single excitation
case, that is, a state in the span of the elementary vectors. Hence, we define an initial
state v of a graph X by

v :=
∑

x∈V (X)

βxex,
∑

x∈V (X)

|βx|2 = 1.

To generalize the concept of symmetry exhibited by a path, which motivates our desired
output, a graph X has an automorphism σ if σ is a permutation of V (X) such that vertices
a and b are adjacent if and only if vertices σ(a) and σ(b) are adjacent. Then we define vσ

by

vσ :=
∑

x∈V (X)

βxeσ(x).

Formally, we say a graph X with automorphism σ has perfect state transfer between states
v and vσ if there exist a time τ ∈ R and a complex scalar γ such that

U(τ)v = γvσ,

and X has pretty good state transfer between states v and vσ if there exist a sequences
{τk} of real numbers and complex scalars {γk} such that

lim
k→∞
‖U(τk)v − γkvσ‖ = 0,

or equivalently, for every ε > 0, there exists τ ∈ R and γ ∈ C with |γ| = 1, such that

‖U(τ)v − γvσ‖ < ε.

Our main result in this area is to identify examples of when pretty good state transfer
of states can occur on paths. Sousa and Omar [43] demonstrated that with respect to
the adjacency matrix, there is pretty good state transfer of any state on a path when the
length of the path is one less than either a prime, twice a prime, or a power of two. It is a
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straightforward observation that there is pretty good state transfer in X between a state
v and vσ if there is pretty good state transfer between x and σ(x) for every x ∈ V (X)
such that βx 6= 0. For a path we will assume, without stating it explicitly, that the
automorphism in question is that which takes vertex a to vertex n+ 1− a.

Our main results are for the class of parity states, a subset of the single-excitation states
of paths which we define as follows. If v is such that βy = 0 for all even y, we say that v
is an odd state, and if v is such that βy = 0 for all odd y, we say that v is an even state.
Moreover, we say a state is a parity state if it is an odd state or an even state.

The following results are in terms of the eigenvalues of the path; more precisely, the
eigenvalue support of the state. For a matrix S, we say that λ is an eigenvalue if there
exists a nonzero vector w such that Sw = λw; we call w an eigenvector with eigenvalue λ.
The eigenvalues of Pn with respect to the adjacency matrix are given by

θj := 2 cos

(
πj

n+ 1

)
, 1 ≤ j ≤ n.

The eigenvalue support of a state v, denoted Θv, is the set of eigenvalues λ such that if
Eλ is the orthogonal projection onto the eigenspace of λ, then Eλv 6= 0.

5.1.10 Theorem. Suppose m = 2tps, where p is an odd prime and s, t > 0, and let v be
a parity state of Pm−1. For 1 ≤ c < m/p, let

Sc := {θc+jm/p : 0 ≤ j < p}.

Moreover, let S0 := {θm/2} be given. Then in Pm−1, there is pretty good state transfer
between states v and vσ if and only if there does not exist Sc with c odd and Sc′ with c′

even such that Sc ∪ Sc′ ⊆ Θv.

5.1.11 Theorem. Suppose m = ps, where p is an odd prime and s > 0, and let v be a
parity state of Pm−1. For 1 ≤ c < m/(2p), let

Rc := {θc+jm/p : 0 ≤ j < p} ∪ {θm/p−c+jm/p : 0 ≤ j < p}.

Then in Pm−1, there is pretty good state transfer between states v and vσ if and only if
there does not exist Rc such that Rc ⊆ Θv.
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Chapter 2

Algebra, Graphs, and Number
Theory

In this chapter, we provide an overview of the basic definitions and theory from algebraic
graph theory and number theory that will be used throughout this work. For more details,
or additional background, we refer the reader to Godsil and Royle [35] and Levitan and
Zhikov [38], respectively. For further reading on quantum information and computation,
we refer the reader to Nielsen and Chaung [40].

2.1 Graphs and Matrices

Throughout this work, we adopt the convention that I represents the identity matrix and
J represents the all-ones matrix, each of the appropriate order for the calculation to make
sense.

A graph X is determined by a set of vertices V (X) and a set of edges E(X), where each
edge is a 2-element subset of V (X). If {a, b} is an edge of the graph X, we will usually
use ab as a shorthand notation for the edge, and we say that a and b are adjacent or that
a is a neighbour of b, and denote this concept using a ∼ b. A vertex is incident with an
edge if it is one of the two vertices that forms the edge. We will assume a graph is both
simple, that is, that there is at most one edge between each set of vertices, and every edge
is undirected, and finite, i.e., |V (X)| is finite, unless stated otherwise.

A complete graph is a graph in which every pair of vertices is adjacent. We denote
the complete graph on n vertices by Kn. A complete bipartite graph is a graph in which
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the set of vertices is partitioned into two sets, and two vertices are adjacent if and only
if they are in different sets of the partition. We denote the complete bipartite graph with
sets of vertices of size m and n by Km,n. A cycle on n vertices is a graph in which the
vertices are connected in a single closed chain. We denote the cycle on n vertices by
Cn. A path on n vertices is a graph such that there exists an ordering of the vertex set
a1, a2, . . . , an such that the edge set is given by {{ai, ai+1}, 1 ≤ i < n}. We denote the
path on n vertices by Pn. Unless otherwise stated, we will assume V (Pn) = {1, 2, . . . , n}
and E(Pn) = {{1, 2}, {2, 3}, . . . , {n− 1, n}}.

The adjacency matrix of a graph X, denoted A(X), is the matrix with rows and columns
indexed by the vertices of X, such that the (a, b)-entry of A(X) is equal to 1 if a and b
are adjacent, and 0 otherwise. By definition, A(X) is symmetric. The degree matrix of X,
denoted ∆(X), is the diagonal matrix of the degrees of the vertices of X. The Laplacian
of X, denoted L(X), is given by ∆(X)−A(X). We observe that for a given graph, none of
these matrices are unique, as they depend on the order in which the vertices index the rows
and columns. However, for most practical purposes, the order or labels of the vertices are
not relevant to considering the properties of a graph. Hence, we say that two graphs are
isomorphic if there is a bijection ϕ from V (X) to V (Y ) such that a ∼ b in X if and only if
ϕ(a) ∼ ϕ(b) in Y . We then call ϕ an isomorphism from X to Y . An automorphism is an
isomorphism of a graph onto itself. While isomorphic graphs can have different adjacency
matrices, degree matrices, or Laplacians based on the ordering of the vertices in the matrix,
we can demonstrate a similar equivalence property at the matrix level as follows, expanding
the result in [35], where a permutation matrix is a square 01-matrix that has precisely one
1 in each row and each column.

2.1.1 Lemma. Let X and Y be graphs on the same vertex set. If they are isomorphic, then
there is a permutation matrix P such that P T∆(X)P = ∆(Y ). Moreover, the following
are equivalent:

a) X and Y are isomorphic;

b) There is a permutation matrix P such that P TA(X)P = A(Y ); and

c) There is a permutation matrix P such that P TL(X)P = L(Y ).

Proof. Suppose X and Y are isomorphic graphs on the same vertex set, i.e. we have
V (X) = V (Y ) := V . Then there exists a bijection ϕ : V → V such that (a, b) is an
edge of X if and only if (ϕ(a), ϕ(b)) is an edge of Y . Let P be the matrix with rows and
columns indexed by V such that the (a, b)-entry of P is 1 if ϕ(a) = b and 0 otherwise.

10



Then it is clear that P is a permutation matrix. We show that P TM(X)P = M(Y ), where
M ∈ {A,∆, L}. Consider the (a, b)-entry of M(X). By matrix multiplication, this entry
is the (ϕ(a), ϕ(b)) entry of P TM(X)P , but by definition of isomorphism, this entry is also
the (ϕ(a), ϕ(b)) entry of M(Y ) as desired.

Now suppose there is a permutation matrix P such that P TA(X)P = A(Y ). Let ϕ
be the bijection such that b = ϕ(a) if and only if the (a, b)-entry of P is 1. Now suppose
(a, b) is an edge in X, then the (a, b)-entry of A(X) is 1. Since (ϕ(a), ϕ(b)) has the same
entry in A(Y ), we obtain that (ϕ(a), ϕ(b)) is a directed edge in Y , and conversely. Hence,
it follows that ϕ is an isomorphism.

Finally, suppose there is a permutation matrix P such that P TL(X)P = L(Y ). By
definition of the Laplacian, we have P T∆(X)P − P TA(X)P = ∆(Y ) − A(Y ). Since
P T∆(X)P and ∆(Y ) are diagonal matrices, and P TA(X)P and A(Y ) have zero diagonals,
it follows that P TA(X)P = A(Y ), and it again follows that ϕ is an isomorphism.

We observe that permutation matrices are orthogonal, i.e, their columns (or rows) are
orthogonal unit vectors. Hence it follows that if P is a permutation matrix, then P−1 = P T .
Therefore, if two graphs are isomorphic, then their adjacency matrices are similar matrices.
Given this similarity, it suffices to pick an ordering of the vertices, and refer to the adjacency
matrix, degree matrix, or Laplacian to be the one which corresponds to this ordering.

The characteristic polynomial of a matrix M is the polynomial

φ(M,x) = det(xI −M),

and as a shorthand, we denote the characteristic polynomial of A(X) by φ(X, x). The
spectrum of a matrix is a list of its eigenvalues and their multiplicities; the spectrum of a
graph is the spectrum of its adjacency matrix (and similarly many linear algebra concepts,
such as eigenvalues and eigenvectors, are applied to graphs by applying them to their
adjacency matrices). If X and Y are isomorphic, then φ(X, x) = φ(Y, x), as demonstrated
in the following corollary.

2.1.2 Corollary. [35] Let X and Y be graphs. If X and Y are isomorphic, then

φ(X, x) = φ(Y, x).

Proof. Since X and Y are isomorphic, then by Lemma 2.1.1, there exists a permutation
matrix P such that P TA(X)P = A(Y ). The characteristic polynomial of Y is given by

φ(Y, x) = det(xI − A(Y ))

11



and so we obtain
φ(Y, x) = det(xI − P TA(X)P ).

Since P−1 = P T , we can introduce the factor I = P TP to obtain

φ(Y, x) = det(P TPxIP TP − P TA(X)P ) = det(P T (PxP T − A(X))P ).

Using the determinant properties that det(AB) = det(A) det(B) and det(A−1) = det(A)−1,
we obtain

φ(Y, x) = det(P T ) det(xI − A(X)) det(P ) = det(xI − A(x)) = φ(X, x)

as desired.

Hence, we have observed that the characteristic polynomial, and hence the spectrum,
is an invariant of the isomorphism class of a graph. However, the converse does not hold,
and the spectrum of a graph does not necessarily determine its isomorphism class, as
demonstrated in the following example.

2.1.3 Example. Let us consider the graphs X = K1,4 and Y = K1∪C4. We calculate the
characteristic polynomials of these graphs and obtain

φ(X, x) = det(xI − A(X))

= det


x −1 −1 −1 −1
−1 x 0 0 0
−1 0 x 0 0
−1 0 0 x 0
−1 0 0 0 x



= − det


−1 −1 −1 −1
x 0 0 0
0 x 0 0
0 0 x 0

+ x


x −1 −1 −1
−1 x 0 0
−1 0 x 0
−1 0 0 x



= − det

x 0 0
0 x 0
0 0 x

+ x det

−1 −1 −1
x 0 0
0 x 0

+ x2 det

 x −1 −1
−1 x 0
−1 0 x


= −x3 − x det

(
x 0
0 x

)
− x2 det

(
−1 −1
x 0

)
+ x3 det

(
x −1
−1 x

)
12



= −x3 − x3 − x3 + x4 − x3

= x4 − 4x3,

and

φ(Y, x) = det(xI − A(Y ))

= det


x 0 0 0 0
0 x 1 0 1
0 1 x 1 0
0 0 1 x 1
0 1 0 1 x



= x det


x 1 0 1
1 x 1 0
0 1 x 1
1 0 1 x



= x2 det

x 1 0
1 x 1
0 1 x

− x det

1 1 0
0 x 1
1 1 x

− x det

1 x 1
0 1 x
1 0 1


= x3 det

(
x 1
1 x

)
− x2 det

(
1 1
0 x

)
− x det

(
x 1
1 x

)
+ x det

(
0 1
1 x

)

− x det

(
x 1
1 x

)
− x det

(
1 x
0 1

)
= x4 − x3 − x3 − x3 + x− x− x3 + x− x

= x4 − 4x3.

Hence, we observe that the two graphs are not isomorphic (one is connected and the other
is not), but have the same characteristic polynomial and the same spectrum. ♦

Two graphs with the same spectrum are said to be cospectral. We can observe from
the previous example that the spectrum cannot determine if a graph is connected or the
valencies of the vertices.
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2.2 Spectral Decomposition

The main algebraic graph theory tool we will use in this thesis is the spectral decomposition
of a graph, which will allow us to simplify calculations of functions of the matrices in
our later work. The goal of this section will be to demonstrate the spectral theorem for
Hermitian matrices on Cn, that is, matrices H such that H† = H. (Most of the matrices
we will be considering are real symmetric, but at times we will need the full generality.) As
a consequence, we obtain the spectral decomposition of Hermitian matrices. We begin with
a demonstration of the existence of an orthonormal basis of Cn consisting of eigenvectors
of a Hermitian matrix; it is a natural extension of the presentation of Godsil and Royle [35]
for real symmetric matrices.

2.2.1 Theorem (Spectral Theorem). Let H be a Hermitian n × n matrix. Then Cn has
an orthonormal basis consisting of eigenvectors of H. Moreover, each eigenvalue of H is
real, and if H is real, each eigenvector of H in the orthonormal basis can be chosen to be
real.

Proof. We claim we can find a set of n orthonormal eigenvectors of H, which forms a basis
of Cn. We proceed by induction, and let S be a set of orthonormal eigenvectors of H.
Suppose |S| = k < n, then we demonstrate a set of k + 1 eigenvectors.

Let S = {v1, v2, . . . , vk}, let vi have eigenvalue θi, and let U be the space of linear
combinations of the vectors in S. If u ∈ U , we can write u =

∑k
i=1 civi and obtain

Hu = H
k∑
i=1

civi =
k∑
i=1

ciHvi =
k∑
i=1

ciθivu,

so Hu is a linear combination of the vectors in S and hence is in U . Hence, we see that
for all u ∈ U , Hu ∈ U . Consider the orthogonal subspace U⊥. If v ∈ U⊥ and u ∈ U , then

〈Hv, u〉 = 〈v,Hu〉 = 0,

since Hu ∈ U . Hence, Hv ∈ U⊥, so for all v ∈ U⊥, we have Hv ∈ U⊥.

We now find an eigenvector of H in U⊥. Let R be a matrix whose columns form an
orthonormal basis for U⊥, then R†R = I. For every column ri of R, we have that Hri ∈ U⊥,
so there exists a vector b such that Hri = Rbi. So if B is the square matrix whose columns
are the bi’s we obtain HR = RB, and further

R†HR = R†RB = B,
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demonstrating that H and B are similar matrices, and hence B is Hermitian. By the
Fundamental Theorem of Algebra, B has at least one eigenvalue λ with corresponding
eigenvector x. We see that

HRx = RBx = λRx,

so Rx is an eigenvector of H in U⊥; moreover Rx 6= 0 as x 6= 0 by definition and the columns
of R are linearly independent. Hence, we take vk+1 to be the unit vector corresponding to
Rx, and by construction S ∪ {vk+1} is a set of k + 1 orthonormal eigenvectors. It follows
therefore by induction that Cn has an orthonormal basis consisting of eigenvectors of H.

Moreover, if λ is an eigenvalue of H with eigenvector v, then

λ〈v, v〉 = 〈Av, v〉 = 〈v, Av〉 = λ̄〈v, v〉,

from which it follows that λ = λ̄, i.e. λ is real. If H is real, we consider v = x+ iy, where
x, y ∈ Rn, and obtain

λx+ iλy = λv = Hv = H(x+ iy) = Hx+ iHy.

As at least one of x or y is nonzero, it follows that there is a real eigenvector with eigenvalue
λ, completing the proof.

Let ev(H) denote the set of eigenvalues of H and for each eigenvalue θ of H, let Eθ be
the matrix representing the orthogonal projection onto the eigenspace of θ. The spectral
decomposition of H can now be obtained.

2.2.2 Lemma. For a Hermitian matrix H, we have

H =
∑

θ∈ev(H)

θEθ

Proof. Suppose H is an n × n matrix and let x be an arbitrary vector in Cn. By Theo-
rem 2.2.1, Cn has an orthonormal basis {v1, . . . , vn} consisting of eigenvalues of H, where
θi is the eigenvalue of vi. Then there exist {ci}ni=1 such that x =

∑n
i=1 civi. Now we see

∑
θ∈ev(H)

θEθx =
∑

θ∈ev(H)

θEθ

(
n∑
i=1

civi

)
=

n∑
i=1

ci
∑

θ∈ev(H)

θEθvi.

We observe that if x and y are eigenvalues of H with (real) eigenvalues λ and µ respectively,
and λ 6= µ, then x and y are orthogonal since

λ〈x, y〉 = 〈λx, y〉 = 〈Hx, y〉 = 〈x,Hy〉 = 〈x, µy〉 = µ〈x, y〉,
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and as λ, µ are distinct, we have 〈x, y〉 = 0 as desired. Hence we obtain

∑
θ∈ev(H)

θEθx =
n∑
i=1

ciθivi.

By definition, we have that θivi = Hvi, which gives us

∑
θ∈ev(H)

θEθx =
n∑
i=1

ciHvi = H

n∑
i=1

civi = Hx.

Therefore, for all x ∈ Cn, we have ∑
θ∈ev(H)

θEθ −H

x = 0,

which implies H and
∑

θ∈ev(H) θEθ are equal, completing the proof.

The following more general result follows similarly.

2.2.3 Corollary. For a Hermitian matrix H, and any polynomial p, we have

p(H) =
∑

θ∈ev(H)

p(θ)Eθ.

We demonstrate this tool through the following example.

2.2.4 Example. Let’s find the spectral decomposition of P3. We first calculate its char-
acteristic polynomial:

φ(P3, x) = det(xI − A(P3))

= det

x 1 0
1 x 1
0 1 x


= x det

(
x 1
1 x

)
− det

(
1 1
0 x

)
= x3 − x− x
= x(x2 − 2)
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Hence we see that the eigenvalues of P3 are
√

2, 0, and −
√

2. We next find a normalized
eigenvector associated with each eigenvalue as

1

2

 1√
2

1

 ,
1√
2

 1
0
−1

 ,
1

2

 1

−
√

2
1


and since the eigenvalues are simple, each idempotent is of the form zzT , where z is a
normalized eigenvector. So we obtain the spectral decomposition

√
2× 1

4

 1
√

2 1√
2 2

√
2

1
√

2 1

+ 0× 1

2

 1 0 −1
0 0 0
−1 0 1

+−
√

2× 1

4

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1

 . ♦

2.3 Strongly Cospectral Vertices

In our investigation of quantum walks, the concept of strongly cospectral vertices will be a
key factor in several results. Our treatment follows the work of Godsil and Smith [36]. We
begin this section with the definition of cospectral vertices, first introduced by Schwenk [42].
Given a graph X, two vertices a and b are cospectral if φ(X \ a, x) = φ(X \ b, x); i.e. the
graphs X \ {a} and X \ {b} are cospectral. We introduce the following lemma to derive
further properties of cospectral vertices; the result can be found in [29].

2.3.1 Lemma. [29] Let X be a graph, v a vertex of X, and
∑

θ θEθ be the spectral decom-
position of X. Then we have

φ(X \ v, x)

φ(X, x)
=
∑
θ

(Eθ)v,v
x− θ

.

Proof. Consider the expression (xI − A(X))−1. Using spectral decomposition, we obtain

(xI − A(X))−1 =
∑
θ

1

x− θ
Eθ.

On the other hand, using Cramer’s rule, we obtain

(xI − A(X))−1 =
adj(xI − A(X))

det(xI − A(X))
.

17



So, looking at the (v, v) entry of (xI − A(X))−1 and putting these two facts together, we
obtain

φ(X \ v, x)

φ(X, x)
=

adj(xI − A(X))v,v
det(xI − A(X))

= (xI − A(X))−1
v,v =

∑
θ

1

x− θ
(Eθ)v,v,

as desired.

We now provide an equivalent definition of cospectral vertices through the following
lemma; additional characterizations can be found in [36, Theorem 3.1].

2.3.2 Lemma. [36] Let a and b be vertices in X. Then a and b are cospectral if and only
if for each idempotent Eθ in the spectral decomposition of X, we have (Eθ)a,a = (Eθ)b,b.

Proof. Since a and b are cospectral, we have that φ(X \ a, x) = φ(X \ b, x). It follows from
the previous lemma that∑

θ

1

x− θ
(Eθ)a,a =

φ(X \ a, x)

φ(X, x)
=
φ(X \ b, x)

φ(X, x)
=
∑
θ

1

x− θ
(Eθ)b,b,

from which it is clear that (Eθ)a,a = (Eθ)b,b, and conversely.

As we will observe through the following lemma, it makes sense that strongly cospectral
vertices are cospectral. The additional property that strongly cospectral vertices have that
we will verify is that they are parallel. Two vertices a and b are parallel if for each
eigenvalue θ, the vectors Eθea and Eθeb are parallel, that is, there exists a constant c such
that Eθea = cEθeb. Finally, we say that two vertices a and b are strongly cospectral if for
each eigenvalue θ, we have Eθea = ±Eθeb.

2.3.3 Lemma. [36] Two vertices a and b in X are strongly cospectral if and only if they
are parallel and cospectral.

Proof. Suppose a and b are strongly cospectral. It immediately follows from the definition
that a and b are parallel. We verify that a and b are cospectral by observing

(Er)a,a = (Erea)a = ±(Ereb)a = ±(Er)a,b = ±(Er)b,a = ±(Erea)b = (Ereb)b = (Er)b,b,

using the fact that the idempotents are symmetric.
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Conversely, suppose a and b are parallel and cospectral. It follows that

(Er)a,b = (Er)b,a = (Erea)b = c(Ereb)b = c(Er)b,b = c(Er)a,a = c(Erea)a

= c2(Ereb)a = c2(Er)a,b

again using the fact that idempotents are symmetric. Hence it follows that if (Er)a,b is
nonzero, then c2 = 1, so c = ±1 as required.

Now consider the situation when (Er)a,b = 0. Since a and b are parallel, it follows that
(Er)a,a = (Er)b,b = 0. We then observe that

||Erea||2 = eTaE
T
r Erea = eTaErea = (Er)a,a = 0,

using the fact that Er is symmetric and idempotent. Similarly, ||Ereb||2 = 0. Hence
Erea = Ereb = 0 as required.

2.4 Eigenvalue Support and Covering Radius

An important consideration in our work in using the spectral decomposition is that not
all the eigenvalues affect the calculations at a particular vertex. To this end, we introduce
the notion of the eigenvalue support of a vertex. The results of this section largely follow
the work of Coutinho and Godsil [20] and Godsil [31].

For a graph X, the eigenvalue support of a vertex a is the set of eigenvalues θ such
that Eθea 6= 0, and is denoted by Θa. Equivalently, Θa is the set of eigenvalues θ such that
(Eθ)a,a 6= 0 since

(Eθ)a,a = eTaEθea = eTaE
2
θea = eTaE

T
θ Eθea = ||Eθea||2.

We consider the following facts regarding the eigenvalue support. We begin with the
result that the eigenvalues in the eigenvalue support of a vertex are the poles of the quo-
tient of the characteristic polynomial of the subgraph not containing the vertex and the
characteristic polynomial.

2.4.1 Lemma. [20] The eigenvalue support of a vertex a in X consists of the eigenvalues
θ such that θ is a pole of the rational function φ(X \ a, x)/φ(X, x).

Proof. By Lemma 2.3.1, we have

φ(X \ a, x)

φ(X, x)
=
∑
θ

(Eθ)a,a
x− θ

.

It follows that θ is a pole of the LHS if and only if (Eθ)a,a 6= 0.
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Two complex numbers are said to be algebraic conjugates if they are roots of the
same irreducible monic (minimal) polynomial with integer coefficients. It follows almost
immediately that if an eigenvalue is in the eigenvalue support of a vertex, then so are its
algebraic conjugates.

2.4.2 Corollary. [20] If θ belongs to Θa, then so do all algebraic conjugates of θ.

Proof. If θ is a root of φ(X, x) with greater multiplicity than of φ(X \ a, x), then a greater
power of the minimal polynomial of θ divides φ(X, x) than φ(X \ a, x). The result follows.

We conclude this section by considering a bound on the size of the eigenvalue support
in terms of the following property of a graph. For a graph X, the covering radius of a
vertex a is the smallest integer r such that for every b ∈ V (X), the distance between a
and b is at most r; this terminology is borrowed from coding theory. The following bound
is obtained.

2.4.3 Lemma. [31] For a graph X, if r is the covering radius of a, then r < |Θa|.

Proof. With respect to the adjacency matrix, the vectors vk := (A+ I)kea, for 0 ≤ k ≤ r,
are linearly independent as the size of the support of the vectors increases as k increases.
Applying spectral decomposition, we obtain

vk = (A+ I)kea =

(∑
θ

(θ + 1)Eθ

)k

ea =
∑
θ

(θ + 1)kEθea =
∑
θ∈Θa

(θ + 1)kEθea.

Hence, there must be at least r + 1 eigenvalues in Θa.

With respect to the Laplacian, the vectors vk := (A + ∆I)kea, for 0 ≤ k ≤ r, are
linearly independent, and the result follows similarly.

2.5 Almost Periodic Functions

To define almost periodic functions, we follow the treatment of Levitan and Zhikov [38].
Observe that a function f on R is periodic if there is a period τ such that for all t, we have
that f(t+ τ) = f(t). To generalize this notion to almost periodicity, we first generalize the
notion of a period. We say that τ is an ε-period of a function f on R if for all t, we have
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that |f(t + τ) − f(t)| ≤ ε. Then a function f on R is almost periodic if, for every ε > 0,
there exists an ` ∈ R such that for every t ∈ R, there exists a τ ∈ [t, t + `] such that τ is
an ε-period of f . We call a subset T of R relatively dense if there is an ` > 0 such that
in every interval of length ` there is at least one element of T . Hence, we observe that an
almost periodic function f has a relatively dense set T (f, ε) of ε-periods. We note that
every periodic function is also almost periodic, and moreover the trigonometric polynomial∑

r

ar exp(iθrt),

with ar ∈ C and θr ∈ R is almost periodic. (Verifying that a sum of almost periodic
functions is almost periodic is not trivial and we omit it here; for a proof, see for example
[38, Property 1.6].)

Our later results will make extensive use of Kronecker’s Theorem, which is stated and
proved for completeness. In order to extend results on pretty good state transfer, the
version we require is its more general strong form, which does not require the set of real
numbers θ0, . . . , θd to be linearly independent over the rationals. Earlier works investigating
state transfer have used a weaker version which does have this restriction, which we present
as a corollary.

2.5.1 Theorem (Kronecker, see [38]). Let θ0, . . . , θd and ζ0, . . . , ζd be arbitrary real num-
bers. For an arbitrarily small ε, the system of inequalities

|θry − ζr| < ε (mod 2π), (r = 0, . . . , d),

admits a solution for y if and only if, for integers l0, . . . , ld such that

`0θ0 + · · ·+ `dθd = 0,

then
`0ζ0 + · · ·+ `dζd ≡ 0 (mod 2π).

Proof. Suppose for every ε > 0, there exists a yε such that

|θryε − ζr| < ε (mod 2π), (r = 0, . . . , d).

It follows there exist integers m0, . . . ,md such that

−ε < θryε − ζr − 2πmr < ε (r = 0, . . . , d).
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Now suppose we have a set of integers `0, `1, . . . , `d such that
∑d

r=0 `rθr = 0. Multiplying
the inequality above by each `r and adding them together, we obtain

−ε
d∑
r=0

|`r| < yε

d∑
r=0

`rθr −
d∑
r=0

`rζr − 2π
d∑
r=0

`rmr < ε

d∑
r=0

|`r|,

and simplifying, we see that ∣∣∣∣∣
d∑
r=0

`rζr

∣∣∣∣∣ < ε

d∑
r=0

|`r| (mod 2π),

so since ε can be arbitrarily small, we must have that

d∑
r=0

`rζr ≡ 0 (mod 2π),

as required.

Conversely, suppose for all sets of integers `0, . . . , `d such that

`0θ0 + · · ·+ `dθd = 0,

we have that
`0ζ0 + · · ·+ `dζd ≡ 0 (mod 2π).

We begin by defining the following function

f(y) := 1 +
d∑
r=0

exp[i(θry − ζr)].

By applying the Triangle Inequality, we see that |f(y)| ≤ d+ 2:

|f(y)| ≤

∣∣∣∣∣1 +
d∑
r=0

exp[i(θry − ζr)]

∣∣∣∣∣ ≤ 1 +
d∑
r=0

| exp[i(θry − ζr)]| ≤ d+ 2,

and observe that if sup |f(y)| = d+ 2, then for every ε > 0, the system

|θry − ζr| < ε (mod 2π), (r = 0, . . . , d).

has a solution yε as follows. If sup |f(y)| = d + 2, then for every δ > 0, there exists a yδ
such that |f(yδ)| > d+ 2− δ. Suppose for sake of contradiction that there exists an ε such
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that for every y there exists an s such that |θsy − ζs| > ε (mod 2π). Note we may assume
that 0 < ε < π. Setting δ = 2− 2 cos(ε/2), we obtain

|f(y)| = |1 +
d∑
r=0

exp[i(θry − ζr)]|

≤ |1 + exp[i(θsy − ζs)]|+
d∑
r=0
r 6=s

| exp[i(θsy − ζs)]|

≤
√

(1 + exp[i(θsy − ζs)])(1 + exp[−i(θsy − ζs)]) + d

≤ 2| cos[1/2(θsy − ζs)]|+ d

≤ 2| cos[ε/2]|+ d

≤ d+ 2− ε,

contradicting that sup |f(y)| = d+ 2. Hence the system has a solution as desired.

We now demonstrate that sup |f(y)| = d+ 2. Define the function

F (x0, x1, . . . , xd) := 1 + x0 + x1 + · · ·+ xd.

Notice that when xk = exp[i(θky − ζk)], we have that F (x0, x1, . . . , xd) = f(y). Observe
that for n a positive integer, we have

F n =
∑

m0,m1,...,md,md+1
m0+m1+···+md+md+1=n

(
n

m0 m1 · · · md md+1

)
xm0

0 xm1
1 · · ·x

md
d ,

fn(y) =
∑

m0,m1,...,md,md+1
m0+m1+···+md+md+1=n

(
n

m0 m1 · · · md md+1

) d∏
k=0

exp[mki(θky − ζk)].

Now, let us simplify this expression into the form fn(y) =
∑

ν αν exp(iβνt) by collecting
terms. Then the coefficients are given by

αν =
∑

m0,m1,...,md,md+1
m0+m1+···md+md+1=n
m0θ0+m1θ1+···mdθd=βν

(
n

m0 m1 · · · md md+1

) d∏
k=0

exp(−imkζk)

=
∑

m0,m1,...,md,md+1
m0+m1+···md+md+1=n
m0θ0+m1θ1+···mdθd=βν

(
n

m0 m1 · · · md md+1

)
exp(−iγν)
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We now verify the above expression can be simplified as shown, i.e. that the expressions
m0ζ0 +m1ζ1 + · · ·mdζd evaluate to a constant γν . We see that

βν = m0θ0 + · · ·+mdθd = m′0θ0 + · · ·+m′dθd

=⇒ (m0 −m′0)θ0 + · · ·+ (md −m′d)θd = 0

=⇒ (m0 −m′0)ζ0 + · · ·+ (md −m′d)ζ0 ≡ 0 (mod 2π)

=⇒ m0ζ0 + · · ·+mdζd ≡ m′0ζ0 + · · ·+m′dζd

as desired. Hence, we observe that∑
ν

|αν | =
∑

m0,m1,...,md,md+1
m0+m1+···md+md+1=n
m0θ0+m1θ1+···mdθd=βν

(
n

m0 m1 · · · md md+1

)
= (d+ 2)n.

To complete the proof, we suppose for contradiction that sup |f(y)| = K < d+ 2. Let

M(f) := lim
T→∞

1

T

∫ T

0

f(y)dy.

We observe that M(fn(y) exp(−iβρy)) = αρ:

M(fn(y) exp(−iβνy)) =M

(∑
ν

αν exp(iβνy) exp(−iβρy)

)

=M

(
αρ +

∑
ν 6=ρ

αν exp(i(βν − βρ)y)

)

=M(αρ) +M

(∑
ν 6=ρ

αν exp(i(βν − βρ)y)

)

= αρ,

where the third inequality is given by the linearity ofM(f) and the fourth is given by the
periodicity of the complex exponential function.

Now we have

|αρ| = |M(fn(y) exp(−iβρy))| ≤ M(|(fn(y) exp(−iβρy)|) =M(|fn(y)|) ≤ Kn.
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Next, consider the number of terms in F n(x0, x1, . . . , xd). We claim it is at most
(n + 1)d+1 terms. To see this, we proceed by induction on d. When d = 0, it is clear that
the number of terms is at most n+ 1 as required. Now suppose for all n and a fixed c ≥ 0,
F n(x0, x1, . . . , xc) consists of at most (n+ 1)c+1 terms. Then for d = c+ 1 we have

F n(x0, x1, . . . , xc, xc+1) =
n∑

m=0

(
n

m

)
F n−m(x0, x1, . . . , xc)x

m
c+1

and hence it is clear that the number of terms is bounded by (n+1)(n+1)c+1 = (n+1)c+2,
as desired.

Hence, we have ∑
ν

|αν | ≤ (n+ 1)d+1Kn.

But then we see that

lim
n→∞

(n+ 1)d+1Kn

(d+ 2)n
= lim

n→∞
(n+ 1)d+1

(
K

d+ 2

)n
= 0,

which demonstrates that the two expressions we have found for
∑

ν |αν | cannot simultane-
ously hold, which is the contradiction completing the proof.

We note that the function f(t) in the proof of Kronecker’s Theorem is almost periodic,
which implies that the set of solutions to the system of inequalities is relatively dense. In
particular, there will be arbitrarily large solutions. We conclude this section by observing
the following corollaries.

2.5.2 Corollary. Let θ0, . . . , θd be arbitrary real numbers. For an arbitrarily small ε, the
system of inequalities

|θry| < ε (mod 2π), (r = 0, . . . , d)

admits a solution for y.

2.5.3 Corollary. Let θ0, . . . , θd be linearly independent real numbers over Q, and ζ0, . . . , ζd
be arbitrary real numbers. For an arbitrarily small ε, the system of inequalities

|θry − ζr| < ε (mod 2π), (r = 0, . . . , d),

admits a solution for y.

The latter result is also presented as a form of Kronecker’s Theorem (see Bump [7]).

2.5.4 Theorem (Kronecker, as cited in [7]). Let (t1, . . . , tr) ∈ Rr, and let t be the image of
this point in T = (R/Z)r. Then t is a generator of T if and only if 1, t1, . . . , tr are linearly
independent over Q.
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Chapter 3

Continuous Time Quantum Walks

We review the basic properties of continuous time quantum walks on graphs and then
provide an overview of results for perfect state transfer and periodicity.

3.1 Properties

Recall that a continuous time quantum walk is defined by defining a transition operator
U(t) in terms of a real symmetric matrix S, commonly the adjacency matrix A or Laplacian
L, called the Hamiltonian of the walk, by

U(t) := exp(itS) =
∑
n≥0

(it)n

n!
Sn.

Based on our discussion in Section 2.2, we observe we can also calculate the matrix U(t)
using the spectral decomposition of S to obtain

U(t) =
∑

θ∈ev(S)

eitθEθ.

Further, if we are interested in how the state evolves from starting at a particular vertex
a, then we have

U(t)ea =
∑

θ∈ev(S)

eitθEθea,

and the only terms we need to consider are for the eigenvalues in the eigenvalue support
of a.
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Unlike the case of the continuous random walk (see Section 1.1), the transition matrix
for the continuous quantum walk does not directly give the probability that a walker
starting at a particular vertex is found at a given vertex. For that, we define the mixing
matrix, denoted M(t), to be the matrix obtained by taking as each entry the square of the
absolute value of the corresponding entry of U(t), or equivalently, we write

M(t) = U(t) ◦ U(t)

where U(t) is the matrix obtained from U(t) by replacing every entry with its complex
conjugate, and ◦ is the Schur product, or entry-wise product. Now M(t) has the properties
required to be a probability matrix. Notice that the entries of M(t) are independent of
the phase, or argument, of the value in U(t), which reflects the fact that the phase of a
quantum state is unable to be determined by measurement. We consider a continuous
quantum walk for a small graph in the following example.

3.1.1 Example. Let us consider the example of a continuous quantum walk on K2, the
complete graph on two vertices, under both the adjacency matrix and the Laplacian models.
For the adjacency matrix, we have

A =

(
0 1
1 0

)
and since A2k = I and A2k+1 = A for all k ∈ Z, we have

UA(t) =
∑
n≥0

(it)n

n!
An

=
∑
k≥0

(−1)k(t)2k

(2k)!
I +

∑
k≥0

i(−1)k(t)2k+1

(2k + 1)!
A

= cos(t)I + i sin(t)A

=

(
cos(t) i sin(t)
i sin(t) cos(t)

)
and the resulting mixing matrix is

MA(t) = cos2(t)I + sin2(t)A =

(
cos2(t) sin2(t)
sin2(t) cos2(t)

)
.

For the Laplacian, we have

L =

(
1 −1
−1 1

)
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and since Lk = 2k−1L for all k ∈ Z+, we have

UL(t) =
∑
n≥0

(it)n

n!
Ln =

1

2

(
J +

∑
n≥0

(2it)n

n!
L

)
=

1

2
(J + e2itL) =

1

2

(
1 + e2it 1− e2it

1− e2it 1 + e2it

)
and the resulting mixing matrix is

ML(t) =
1

2
(J + cos(2t)L) =

1

2

(
1 + cos(2t) 1− cos(2t)
1− cos(2t) 1 + cos(2t)

)
=

(
cos2(t) sin2(t)
sin2(t) cos2(t)

)
.

Let us now consider some extreme cases that occur on K2. Consider the following
scenarios:

MA(π/4) = ML(π/4) =
1

2
J

In this case, after time π/4, an initial state is mixed evenly between the vertices, and we
say K2 has uniform mixing at time π/4.

MA(π/2) = ML(π/2) = A

In this case, after time π/2, an initial state at a vertex is now found at the opposite vertex,
and we say K2 has perfect state transfer between its two vertices at time π/2.

MA(π) = ML(π) = I

In this case, after time π, the current state matches the initial state, and we say K2 is
periodic at time π. ♦

Formally, we say a graph X has uniform mixing if there exists a time τ ∈ R such that
M(τ) = |V (X)|−1J , or equivalently, if each entry of U(τ) has norm |V (X)|−1. A graph X
has perfect state transfer between vertices a and b if there exists a time τ ∈ R such that
M(τ)a,b = 1, or equivalently, if there exists a complex number γ with |γ| = 1 such that
U(τ)ea = γeb. A graph X is periodic at a vertex a if there exists a time τ ∈ R such that
M(τ)a,a = 1, or equivalently, if there exists a complex number γ with |γ| = 1 such that
U(τ)ea = γea.

The times at which uniform mixing, perfect state transfer, and periodicity are achieved
do not typically coincide under the two different models. In fact, a graph may have one
of these properties under one model but not another. We observe this phenomenon in the
following example.
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3.1.2 Example. Let us consider the extreme cases that occur on P3. The transition
matrices for the two models are given by

UA(τ) =
1

4
ei
√

2τ

 1
√

2 1√
2 2

√
2

1
√

2 1

+
1

2

 1 0 −1
0 0 0
−1 0 1

+
1

4
e−i
√

2τ

 1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1

 ,

UL(τ) =
1

3

1 1 1
1 1 1
1 1 1

+
1

3
e3iτ

 2 −1 −1
−1 2 −1
−1 −1 2

 .

Then we observe P3 has perfect state transfer with respect to the adjacency matrix at time
π/
√

2, but cannot have perfect state transfer with respect to the Laplacian. On the other
hand, P3 is periodic at time

√
2π with respect to the adjacency matrix and time 2π/3 with

respect to the Laplacian. ♦

We further observe that taking Cartesian products of graphs preserves these properties.
The Cartesian product of X and Y , denoted X�Y , is the graph such that

V (X�Y ) = V (X)× V (Y ),

E(X�Y ) = {(a, b)(c, d) : a = c and bd ∈ E(Y ) or b = d and ac ∈ E(X)}.

The key tool that allows us to study the transition matrices of Cartesian product graphs
is the Kronecker product. The Kronecker product of two matrices M and N , denoted
M ⊗N , is the matrix we obtain by replacing the (i, j) entry of M by Mi,jN . Hence if M is
a k× ` matrix and N is an m×n matrix, then M ⊗N is a km⊗ `n matrix. An important
property of Kronecker products is, if AC and BD are defined, then

(A⊗B)(C ⊗D) = AC ⊗BD.

Using this property, we first provide a proof to verify the following identities (see [35], for
example).

3.1.3 Proposition. [35] Let X and Y be graphs, then

a) A(X�Y ) = A(X)⊗ I + I ⊗ A(Y ),

b) ∆(X�Y ) = ∆(X)⊗ I + I ⊗∆(Y ),

c) L(X�Y ) = L(X)⊗ I + I ⊗ L(Y ).
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Proof. a) Suppose the ((a, b), (c, d)) entry of A(X�Y ) is 1. By definition, either a = c
and bd ∈ E(Y ) or b = d and ac ∈ E(X). In the former case, the ((a, b), (c, d)) entry
of I ⊗ A(Y ) is 1 and the corresponding entry of A(X)⊗ I is 0, and in the latter case,
the (a, b), (c, d) entry of A(X) ⊗ I is 1 and the corresponding entry of I ⊗ A(Y ) is 0.
Conversely, suppose the ((a, b), (c, d)) entry of A(X�Y ) is 0. If ac ∈ E(X), then b 6= d;
if bd ∈ E(Y ), then a 6= c; otherwise ac /∈ E(X) and bd /∈ E(Y ). In all three of these
cases, the ((a, b), (c, d)) entries of A(X)⊗ I and I ⊗ A(Y ) are zero.

b) It is clear that both expressions are diagonal matrices, so consider the ((a, b), (a, b))
entries. The ((a, b), (a, b)) entry of ∆(X)⊗I is the degree of a inX, and the ((a, b), (a, b))
entry of I ⊗∆(Y ) is the degree of b in Y . Since the degree of (a, b) in X�Y is the sum
of these two degrees by definition, the result follows.

c) Follows from the fact that L(X) = ∆(X)− A(X).

Coutinho and Godsil demonstrated the following result relating the transition matrix
of a Cartesian product to the transition matrices of the original graphs; the proof is repro-
duced for completeness.

3.1.4 Lemma. [20] If X and Y are graphs, and U(t) is defined in terms of A or L, then

UX�Y (t) = UX ⊗ UY

Proof. Let S represent the matrix defining U(t). For all choices of S, the previous propo-
sition gives us that S(X�Y ) = S(X)⊗ I + I ⊗ S(Y ). Moreover, S(X)⊗ I and I ⊗ S(Y )
commute, so we obtain

UX�Y (t) = exp(itS(X�Y ))

= exp(it(S(X)⊗ I + I ⊗ S(Y )))

= exp(it(S(X)⊗ I)) exp(it(I ⊗ S(Y ))

= (exp(itS(X))⊗ I)(I ⊗ exp(itS(Y )))

= exp(itS(X))⊗ exp(itS(Y ))

= UX(t)⊗ UY (t).
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It follows from this lemma that if X has uniform mixing at time τ , and Y also has
uniform mixing at time τ , then X�Y has uniform mixing at time τ . Similarly, if X has
perfect state transfer between vertices a and b at time τ , and Y has perfect state transfer
between vertices c and d at time τ , then X�Y has perfect state transfer between vertices
(a, c) and (b, d) at time τ . Finally, if X is periodic at vertex a at time τ , and Y is periodic
at vertex c at time τ , then X�Y is periodic at vertex (a, c) at time τ .

3.2 Perfect State Transfer and Periodicity

A characterization of periodicity at a vertex in terms of the eigenvalue support of that
vertex was given by Godsil [30] in 2011, and used by Godsil [32, 33] to derive results on
perfect state transfer the following year. In this section, we discuss the development of
these results. We begin with the observation that perfect state transfer is symmetric, and
that perfect state transfer implies periodicity; we reproduce the proof for completeness.

3.2.1 Lemma. [32, 33] Let X be a graph and let a, b be vertices in X. If perfect state
transfer from a to b takes place at time τ , then it also takes place from b to a. Further, X
is periodic with period 2τ at both a and b.

Proof. Suppose X has perfect state transfer from vertex a to vertex b at time τ . By
definition, there exists a complex number γ with |γ| = 1 such that U(τ)ea = γeb. It
follows that

γ−1ea = U(−τ)eb

as U(τ)−1 = U(−τ). Taking the complex conjugate of both sides, we obtain U(τ)eb = γea
as desired.

We then obtain periodicity at vertex a since

U(2τ)ea = U(τ)U(τ)ea = U(τ)γeb = γ2ea,

and similarly, we obtain periodicity at vertex b.

This result can be used to demonstrate that if perfect state transfer occurs between
vertices a and b and between vertices a and c, then b = c. The observation is due to
Kay [37]; here we provide some additional details compared to the original proof.

3.2.2 Lemma. [37] Let X be a graph and suppose X has perfect state transfer between
both a and b and a and c. Then b = c.
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Proof. Suppose b 6= c. Let τB be the minimum time at which perfect state transfer occurs
between vertices a and b and let τC be the minimum time at which perfect state transfer
occurs between vertices a and c. Without loss of generality, assume that 0 < τC < τB. By
the previous lemma, we have that X is periodic at a at time 2τC . Consider the situation
at time |τB − 2τC |. We have

U(τB − 2τC)ea = U(τB)U(−2τC)ea = U(τB)γea = γ′eb,

applying the definitions of periodicity and perfect state transfer. Taking the complex
conjugate of both sides, we obtain

U(−(τB − 2τC))ea = (γ′)−1eb.

Hence there is perfect state transfer between vertices a and b at time |τB − 2τC | < τB,
which contradicts the definition of τB. The result follows.

Using the spectral decomposition, further tools can be developed for considering perfect
state transfer. This treatment follows Chapter 9 of [20]. The first consideration is the
following observations; we restate the proof for completeness.

3.2.3 Lemma. [20] If X has spectral decomposition
∑

r θrEr and a, b ∈ V (X), then

|U(t)a,b| ≤
∑
r

|(Er)a,b| (3.1)

≤
∑
r

√
(Er)a,a

√
(Er)b,b (3.2)

≤
√∑

r

(Er)a,a
∑
r

(Er)b,b (3.3)

= 1. (3.4)

Proof. The first inequality is an application of the triangle inequality. The second inequal-
ity is an application of Cauchy-Schwarz, which states that for all vectors u and v, we have
|uTv| ≤ ‖u‖ ‖v‖. Hence, we take u = Erea and v = Ereb. The third inequality is also
an application of Cauchy-Schwarz, where we take u = (

√
(Er)a,a)r and v = (

√
(Er)b,b)r.

Finally, it follows from the spectral decomposition that
∑

r(Er)a,a =
∑

r(Er)b,b = 1.

The next consideration is the cases when the equality holds. Let σr denote the sign of
(Er)a,b. The following result is demonstrated by Coutinho and Godsil [20]; we add a few
details compared to their proof.
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3.2.4 Lemma. [20] The inequality |U(t)a,b| ≤
∑

r |(Er)a,b| holds with equality if and only
if there is a complex number γ such that eitθr = γσr whenever (Er)a,b 6= 0. If equality holds
at time t then U(2t)a,b = 0.

Proof. Since |U(t)a,b| = |
∑

r e
itθrEr|, then equality is achieved in the triangle inequality if

and only if eitθrσr is constant, as desired. Then, we see that

U(2t)a,b =
∑
r

(eitθr)2(Er)a,b =
∑
r

γ2(Er)a,b = γ2
∑
r

(Er)a,b = 0,

by applying the spectral decomposition.

This result shown by Godsil [30] provides the following consequence in terms of the
ratio condition, earlier versions of which are due to Saxena et al. [41] and Christandl et
al. [17]. We say that the ratio condition holds at a vertex a if, for any four eigenvalues
θk, θ`, θr, θs ∈ Θa such that θr 6= θs, we have

θk − θ`
θr − θs

∈ Q.

The result is stated only for the forward direction in [30] and a sketch of the reverse
direction is provided in [20]. We present the full details here.

3.2.5 Corollary. [30] A graph X is periodic at the vertex a if and only if the ratio condition
holds at a.

Proof. By definition, if X is periodic at a at time t, then |U(t)a,a| = 1, and so equality
holds in each of the inequalities in Lemma 3.2.3. Hence, by Lemma 3.2.4, if θr ∈ Θa, then
there is a complex number γ such that eitθr = γ (as (Er)a,a > 0). Hence, we see that

1 =
γ

γ
=

exp(itθk)

exp(itθ`)
= exp(it(θk − θ`)),

which implies that there exists an integer mk,` such that t(θk − θ`) = 2mk,`π. Hence, we
see

θk − θ`
θr − θs

=
t(θk − θ`)
t(θr − θs)

=
2mk,`π

2mr,sπ
=
mk,`

mr,s

∈ Q.

Conversely, if the ratio condition holds at a, fix eigenvalues θ1 and θ2, and consider the
ratios

rk,` =
θk − θ`
θ1 − θ2
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for all θk, θ`. Since X is finite, there exists an integer M such that Mrk,` ∈ Z for all k, `.
Consider τ = 2Mπ

θ1−θ2 . Then we have

τ(θk − θ`) =
2Mπ

θ1 − θ2

(θk − θ`) = 2Mrk,`π,

which by definition of M , is an integer multiple of 2π. Hence, exp(iτ(θk − θ`)) = 1, which
implies there is a constant number γ such that eiτθ = γ. Thus,

U(τ)a,a =
∑
θ

eitθ(Eθ)a,a =
∑
θ

γ(Eθ)a,a = γ
∑
θ

(Eθ)a,a = γ,

which completes the proof.

Analyzing the later inequalities of Lemma 3.2.3, a connection between pretty good state
transfer and strongly cospectral vertices is obtained. The result was originally observed by
Dave Witte Morris (as cited in [32]); we provide the following proof.

3.2.6 Lemma. [32, private communication with Morris] If we have pretty good state trans-
fer from a to b in X, then a and b are strongly cospectral vertices.

Proof. By definition, if we have pretty good state transfer from a to b in X, then there
exists a sequence of times {tk} such that

lim
k→∞
|U(tk)a,b| = 1.

By the first inequality of Lemma 3.2.3, we must have that
∑

r |(Er)a,b| = 1, and so the
second and third inequalities must hold with equality. For the second, this implies that
a and b are parallel, and for the third, this implies that a and b are cospectral. Then by
Lemma 2.3.3, a and b are strongly cospectral.

We have now presented the tools necessary to consider the following characterization
of Godsil [30] of periodicity at a vertex. We provide an alternate presentation of the proof.

3.2.7 Theorem. [30] Suppose X is a graph with at least two vertices. Then X is periodic
at a if and only if either:

a) The eigenvalues in Θa are integers.

b) There is a square-free integer ∆, the eigenvalues in Θa are quadratic integers in Q(
√

∆),
and the difference of any two eigenvalues in Θa is an integer multiple of

√
∆.
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Proof. The sufficiency of either of the two stated conditions is clear from the ratio condition.
It remains to prove their necessity. Assume X is periodic at a. We first assume that there
are at least two eigenvalues in Θa, say θ1 and θ2, that are integers. Then for any other
eigenvalue θ ∈ Θa, we have by the ratio condition that

θ − θ1

θ2 − θ1

∈ Q

from which it follows that θ is an integer, as required.

Now suppose at most one eigenvalue of Θa is an integer. Suppose |Θa| = 2. Then
at least one eigenvalue of Θa = {θ1, θ2}, say θ1, is not an integer (and moreover, is not
rational). Since Θa contains all algebraic conjugates of θ1 (by Corollary 2.4.2), it follows
that θ1 and θ2 are roots of a quadratic polynomial, and hence the second condition is
satisfied.

Now suppose |Θa| ≥ 3. By the ratio condition, we have

θr − θs = qr,s(θ2 − θ1)

and hence ∏
r 6=s

(θr − θs) = (θ2 − θ1)|Θ
2
a|−|Θa|

∏
r 6=s

qr,s.

Thus, we have
(θ2 − θ1)|Θ

2
a|−|Θa| ∈ Q,

since the product on the left hand side of the previous equation is an integer, and the
product of the qr,s’s is rational. Moreover, the above expression is an integer since θ2 − θ1

is an algebraic integer. Now, suppose m is the least positive integer such that (θ2 − θ1)m

is an integer. Then the conjugates of θ2 − θ1 are of the form β exp(2πik/m). Since the
eigenvalues of X are real, we see that x ≤ 2. Hence it follows from the ratio condition that
(θr − θs)2 ∈ Z for all r, s.

Suppose (θ2 − θ1)2 = ∆. Then for each θr ∈ Θa, we have

θr = θr − θ1 + θ1 = qr,1
√

∆ + θ1

and so we obtain
|Θa|θ1 −

√
∆
∑
r

qr,1 =
∑
r

θr ∈ Z,
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from which it follows that θ1 is of the form a + b1

√
∆, where a, b1 ∈ Q. Moreover, θ1 is a

quadratic integer. It follows that

θr = a+ (b1 + qr,1)
√

∆,

which completes the proof.

In the Laplacian case, an even stronger result is obtained, as observed by Coutinho [23]
in 2014 and extended by Countiho and Godsil [20]. We provide an alternative presentation.

3.2.8 Corollary. [23, 20] Suppose X is a connected graph with at least two vertices and
is periodic at a with respect to the Laplacian. Then Θa ⊆ Z.

Proof. Suppose there exists θ ∈ Θa such that θ /∈ Z. By the previous theorem, θ is a
quadratic integer, and so its conjugate θ is also in Θa by Corollary 2.4.2. It is also clear
that 0 ∈ Θa is a simple eigenvector with eigenvector 1. Hence by the ratio condition we
have

θ

θ
=
θ − 0

θ − 0
∈ Q,

which implies that θ = −θ. However, all Laplacian eigenvalues are nonnegative, which
implies θ = 0, contradicting our initial assumption. Hence Θa ⊆ Z as desired.

We now discuss some of the consequences of this result. The first result follows im-
mediately, as observed by Coutinho and Godsil [20], and can be used to show perfect
state transfer is a fairly limited property, as demonstrated by Godsil [33]. We provide an
alternative proof using the covering radius of a graph.

3.2.9 Corollary. [20] If X is periodic at the vertex a then any two distinct elements of
Θa differ by at least 1.

3.2.10 Corollary. [33] There are only finitely many connected graphs with maximum
valency at most k where perfect state transfer relative to the adjacency matrix or Laplacian
occurs.

Proof. Let X be a connected graph with maximum valency at most k and with perfect
state transfer between vertices a and b. By Corollary 3.2.9, we have |Θa| < 2k + 1, as
all eigenvalues are contained in the interval [−k, k]. By Lemma 2.4.3, we have that the
covering radius of a is at most 2k. Hence, the number of vertices in the graph is bounded
above by k(k − 1)2k−1, and the result follows.

In the next section, we discuss applying these results on periodicity to perfect state
transfer on trees.
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3.3 Perfect State Transfer on Trees

Perfect state transfer was characterized with respect to the adjacency matrix for paths by
Christandl et al. [17] in 2005 for the end vertices, and independently by Stevanović [44]
and Godsil [32] in 2011 and 2012 for any pair of vertices. With respect to the Lapclain,
perfect state transfer was characterized for trees by Coutinho and Liu [22] in 2015. The
main focus of this section is a discussion of the development of these results. Our treatment
follows Chapter 12 of [20]. We first introduce several spectral properties of paths that will
be used throughout this work. The first consideration is the characteristic polynomial of
a path; the following straightforward argument is included for completeness.

3.3.1 Theorem. (e.g. [5]) The characteristic polynomial of a path is given by the following
recurrence relation:

φ(Pn, x) = xφ(Pn−1, x)− φ(Pn−2, x), n ≥ 2; φ(P0, x) = 1, φ(P1, x) = x.

Proof. Let An denote the adjacency matrix for Pn. Calculating directly, we see that

φ(Pn, x) = det(xI − An)

= x det(xI − An−1)− det(xI − An−2)

= xφ(Pn−1, x)− φ(Pn−2, x)

as desired. Moreover, we see by direct calculation that φ(P0, x) = 1 and φ(P1, x) = x.

The eigenvalues and eigenvectors of the path can now be calculated. The first step is
to determine an expression for the following generating series. We present an alternate
argument to that of Coutinho and Godsil [20] that does not use matrices.

3.3.2 Lemma. [20]
∑

n≥0 t
nφ(Pn, x) = 1

1−xt−t2 .

Proof. Evaluating this expression, we obtain

I :=
∑
n≥0

tnφ(Pn, x) = 1 + xt+
∑
n≥2

tn(xφ(Pn−1, x)− φ(Pn−2, x))

= 1 + xt+ xt(I − 1)− t2I

and therefore,

I :=
∑
n≥0

tnφ(Pn, x) =
1

1− xt+ t2
,

as desired.
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The output obtained from the characteristic polynomial for an input of a particular
form is demonstrated; we provide additional details compared to the proof outlined by
Countinho and Godsil [20].

3.3.3 Theorem. [20] φ(Pn, 2 cos(ζ)) = sin((n+1)ζ)
sin(ζ)

.

Proof. We use partial fractions to evaluate the characteristic polynomials from the expres-
sion we previously derived. The roots are

α =
1

2

(
2 cos(ζ) +

√
4cos2(ζ)− 4

)
= cos(ζ) + i sin(ζ) = eiζ

β =
1

2

(
2 cos(ζ)−

√
4cos2(ζ)− 4

)
= cos(ζ)− i sin(ζ) = e−iζ

and so we find
1

1− xt+ t2
=

1

α− β

(
α

1− αt
− β

1− βt

)
from which it follows that

φ(Pn, 2 cos(ζ)) =
αn+1 − βn+1

α− β
=
e(n+1)iζ − e−(n+1)iζ

eiζ − e−iζ
=

sin((n+ 1)ζ)

sin(ζ)

as desired.

This result immediately implies the form of the roots of the characteristic polynomial,
and hence the eigenvalues of Pn.

3.3.4 Corollary. [20] The eigenvalues of Pn are

2 cos

(
πk

n+ 1

)
, 1 ≤ k ≤ n.

Proof. It follows that 2 cos(ζ) is a zero of φ(Pn, x) if and only if sin((n+ 1)ζ) = 0. Hence,
the eigenvalues of Pn are

2 cos

(
πk

n+ 1

)
, 1 ≤ k ≤ n,

as desired.

39



Moreover, an eigenvector corresponding to each eigenvalue can be calculated, and there-
fore so can the idempotents of the spectral decomposition of the adjacency matrix of Pn.
We fill in a few details of the argument of Coutinho and Godsil [20].

3.3.5 Lemma. [20] The idempotents E1, . . . , En in the spectral decomposition of Pn are
given by

(Er)j,k =
2

n+ 1
sin

(
jrπ

n+ 1

)
sin

(
krπ

n+ 1

)
.

Proof. We first compute eigenvectors of Pn. For 1 ≤ r ≤ n, let βr = πr/(n + 1) and

z(βr) =
(
sin(βr) sin(2βr) · · · sin(nβr)

)T
. We observe that

A


sin(βr)
sin(2βr)

...
sin(nβr)

 =


sin(2βr)

sin(βr) + sin(3βr)
...

sin((n− 1)βr)

 = 2 cos(βr)


sin(βr)
sin(2βr)

...
sin(nβr)

− sin((n+ 1)βr)en

and so z(βr) is an eigenvector with eigenvalue 2 cos(βr). It follows that each eigenvalue is
simple and so

Er =
1

z(βr)T z(βr)
z(βr)z(βr)

T .

It remains to calculate the inner product z(βr)
T z(βr). We have

z(βr)
T z(βr) =

n∑
m=1

sin2(mβr)

=
n∑

m=0

(
1

2i
(eimβr − e−imβr)

)2

= −1

4

n∑
m=0

e2imβr − 2 + e−2imβr

=
n+ 1

2
− 1

4

(
1− e2i(n+1)βr

1− e2iβr
+

1− e−2i(n+1)βr

1− e−2iβr

)
=
n+ 1

2
,

since 2(n+ 1)β is an even multiple of π.

We next derive the following observation regarding the eigenvalue support of a vertex of
Pn. The result has been observed previously without being explicitly stated. We provided
a proof in our work in [45]; we give a simplified version here using the explicit form of the
idempotents for completeness.
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3.3.6 Lemma. The eigenvalue support of vertex a of the graph Pn is given by

Θa = {θj : n+ 1 - aj}.

Proof. Suppose first that n+ 1 | aj. We consider the (c, a) entry of Ej for each vertex c:

(Ej)(c,a) =
2

n+ 1

(
sin

cjπ

n+ 1

)(
sin

ajπ

n+ 1

)
= 0.

It therefore follows that Ejea = 0, so θj /∈ Θa.

Now suppose that n+ 1 - aj. We consider the (a, a) entry of Ej.

(Ej)(a,a) =
2

n+ 1

(
sin

ajπ

n+ 1

)2

Since sinx = 0 if and only if x is an integer multiple of π and aj/(n+ 1) is not integral, it
follows that (Ej)(a,a) 6= 0, and hence Ejea 6= 0, so θj ∈ Θa.

We further characterize which pairs of vertices of a path are strongly cospectral as a
straightforward consequence; it is typically observed without being explicitly proven. Here
we provide a proof for completeness.

3.3.7 Lemma. For the graph Pn, vertices a and b are strongly cospectral if and only if
a+ b = n+ 1. Moreover, when a and b are strongly cospectral, Erea = (−1)r+1Ereb .

Proof. If a+ b = n+ 1, then by the previous lemma, for c ∈ V (Pn), we have

(Er)a,c =
2

n+ 1
sin

(
arπ

n+ 1

)
sin

(
crπ

n+ 1

)
(Er)b,c =

2

n+ 1
sin

(
(n+ 1− a)rπ

n+ 1

)
sin

(
crπ

n+ 1

)
=

2

n+ 1

(
sin(rπ) cos

(
arπ

n+ 1

)
− cos(rπ) sin

(
arπ

n+ 1

))
sin

(
crπ

n+ 1

)
= (−1)r+1(Er)a,c,

and so Erea = (−1)r+1Ereb as desired.

41



Conversely, suppose a and b are strongly cospectral, then Erea = ±Ereb for all r. Then
for all c ∈ V (Pn), we have we have

(E1)a,c = ±(E1)b,c

2

n+ 1
sin

(
aπ

n+ 1

)
sin

(
cπ

n+ 1

)
= ± 2

n+ 1
sin

(
bπ

n+ 1

)
sin

(
cπ

n+ 1

)
sin

(
aπ

n+ 1

)
= ± sin

(
bπ

n+ 1

)
a = n+ 1− b

as desired.

We now present the characterization of perfect state transfer on paths with respect to
the adjacency matrix. We provide an alternative proof making use of covering radius and
the ratio condition.

3.3.8 Theorem. [44, 32] If n ≥ 4, perfect state transfer does not occur on Pn.

Proof. Suppose perfect state transfer occurs on Pn between vertices a and b. Then Pn is
periodic at a. By Corollary 3.2.9, any two distinct elements of Θa differ by at least 1. By
Corollary 3.3.4, the eigenvalues of Pn are in the interval (−2, 2), and hence there can be at
most four eigenvalues in Θa. By Lemma 2.4.3, the covering radius is at most three. Hence
n ≤ 6, since only one vertex in P7 has covering radius at most three, and every vertex in
a longer path has covering radius at least four.

In P6, the only vertices with covering radius at most three are vertices 3 and 4. So if
there is perfect state transfer between vertices 3 and 4, then we have U(t)e3 = γe4 and
U(t)e4 = γe3 for some time t and complex number γ. So we have

U(t)(e2 + e4) = U(t)Ae3 = AU(t)e3 = γAe4 = γ(e3 + e5),

using the fact that A and U(t) commute. Hence, from the above equation, it follows that
U(t)e2 = γe5, which implies that there is perfect state transfer between vertices 2 and 5,
but these vertices each have covering radius of four, a contradiction.

In P5, the only vertices with covering radius at most three are vertices 2, 3, and 4,
and we can rule out the middle vertex since it is not part of a cospectral pair. So if there
is perfect state transfer between vertices 2 and 4, P5 must be periodic at vertex 2. But
eigenvalues

√
3, 1,−1,−

√
3 are all in the eigenvalue support of vertex 2, and

√
3− (−

√
3)

1− (−1)
=
√

3 /∈ Q,
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which contradicts the ratio condition, and hence we do not have perfect state transfer in
P5.

In P4, all the vertices have covering radius at most three. The eigenvalues of P4 are

θ1 =
1

2
(
√

5 + 1), θ2 =
1

2
(
√

5− 1), θ3 =
1

2
(−
√

5 + 1), θ4 =
1

2
(−
√

5− 1)

and each is in the eigenvalue support of every vertex. Testing the ratio condition, we find

θ1 − θ4

θ2 − θ3

=

√
5 + 1√
5− 1

=
6 + 2

√
5

4
6∈ Q.

Hence we do not have perfect state transfer on P4, which completes the proof.

The question of whether there are additional examples of perfect state transfer on trees
remains open.

We now proceed to the Laplacian case. Even more can be said for this Hamiltonian;
Coutinho and Liu [22] demonstrated that with the exception of P2, we cannot have perfect
state transfer on trees. We outline their approach in what follows. As a first step, the phase
factor required for Laplacian perfect state transfer is stated; the straightforward argument
is included for completeness.

3.3.9 Lemma. [20] If U(t) is the transition matrix relative to the Laplacian of a graph
and we have perfect state transfer between vertices a and b at time τ , then U(τ)ea = eb.

Proof. By definition of perfect state transfer, we have that U(τ)ea = γeb. We observe the
following

γ = γ1Teb = 1TU(τ)ea = 1ea = 1,

using the fact that ea and eb are elementary vectors and that 1 is an eigenvector for U(t)
with eigenvalue 1.

It is next shown that there is an eigenvalue of each sign in the eigenvalue support of
each vertex of a pair of strongly cospectral vertices, and the cases when equality holds
are characterized. Two vertices a and b are said to be twins if either N(a) = N(b) or
N [a] = N [b], i.e. a and b have the same open or closed neighbourhood. We outline the
proof for completeness.

43



3.3.10 Lemma. [22] Suppose a and b are vertices in the connected graph X that are
strongly cospectral, relative to the Laplacian. Then there is at least one eigenvalue θ in Θa

such that σθ = 1 and at least one eigenvalue ρ in Θa such that σρ = −1. If there is only
one such eigenvalue such that σθ = 1, then |V (X)| = 2; if there is only one such eigenvalue
such that σρ = −1, then a and b are twins.

Proof. Consider the vectors

z+ =
∑
θ∈Θa
σθ=1

Eθea, z− =
∑
θ∈Θa
σθ=−1

Eθea.

We see that z+ + z− = ea (by spectral decomposition) and z+ − z− = eb (by strong
cospectrality). Hence we obtain the equivalent expressions

z+ =
1

2
(ea + eb), z− =

1

2
(ea − eb).

Moreover, we know that 1 is an eigenvector with eigenvalue 0, confirming there is at least
one eigenvalue θ ∈ Θa such that σθ = 1. If this is the only such eigenvalue, then ea+eb must
also be an eigenvector with eigenvalue 0, so it follows from the fact that X is connected
that |V (X)| = 2.

Now, as z− 6= 0, it follows that there is at least one eigenvalue θ ∈ Θa such that
σθ = −1. If there is only one such eigenvalue, then z− must be an eigenvector. Hence we
see that if c 6= a, b, then c is adjacent to a if and only if c is adjacent to b, and it follows
that a and b are twins as desired.

Next, the signs of the idempotents required to permit perfect state transfer are deter-
mined. Coutinho and Liu [22] present this result as a well known fact; we provide the
following explicit proof.

3.3.11 Lemma. [22] Suppose we have perfect state transfer between vertices a and b rel-
ative to the Laplacian. Let g be the gcd of the elements in Θa. If λ ∈ Θa, then σλ = 1 if
and only if λ/g is even.

Proof. Since we have perfect state transfer between vertices a and b, then by Lemma 3.2.4,
there is a complex number γ such that eitθ = γσθ for all θ ∈ Θa. As the eigenvalues of Θa

are integers by Corollary 3.2.8, then we have

γσθ = eitθ = (eitg)θ/g
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For θ = 0, we have σ0 = 1, and hence γ = 1. Since by the previous lemma, there is at
least one eigenvalue such that σθ = −1, it follows that eitg = −1, and hence the result
follows.

Now, for trees with an odd number of vertices, Laplacian perfect state transfer can be
ruled out. The result makes use of the Matrix-Tree Theorem (see [35, Theorem 13.2.1]);
the proof is outlined for completeness.

3.3.12 Theorem (Matrix-Tree Theorem). Let X be a graph on n vertices, and u be any
of its vertices. Let L[u] denote the submatrtix of L obtained by deleting the row and column
indexed by u. Then the number of spanning trees of X is equal to detL[u].

3.3.13 Lemma. [22] If X is a graph with an odd number of vertices and an odd number
of spanning trees, then Laplacian perfect state transfer does not occur on X.

Proof. Suppose X has Laplacian perfect state transfer between vertices a and b. By
Lemma 3.3.11, every eigenvalue λ such that σλ = 1 must be even. It is a straightforward
consequence of the Matrix-Tree Theorem that the number of spanning trees of a graph is
the product of the nonzero eigenvalues of the Laplacian. Hence, all non-zero eigenvalues
are odd, so there is only one eigenvalue λ such that σλ = 1. Hence, by Lemma 3.3.10,
|V (X)| = 2, contradicting that X has an odd number of vertices.

Now, trees with an even number of vertices must be considered. Coutinho and Liu [22]
provided the following stronger result; we provide an alternate presentation of their proof.

3.3.14 Theorem. [22] Let X be a connected graph and assume that the number of spanning
trees in X is a power of two. If there is Laplacian perfect state transfer from a to b in X,
then there is precisely one eigenvalue θ in Θa such that σθ = −1.

Proof. Suppose λ is an eigenvalue of X with σλ = −1. Suppose further that p is an odd
prime divisor of λ. Let v be an integral eigenvector of λ such that the gcd of its entries is
1. We observe that

Ly ≡ 0 (mod p).

Moreover, we have that y ≡ k1 for some integer k, as 1 is also in the kernel of L and the
kernel has dimension 1, which follows from the number of spanning trees being a power
of two. Using the fact that σλ = −1, we have that ya = −yb, from which we obtain
0 = ya+yb = 2k (mod p). Thus, we see that k ≡ 0 (mod p), contradicting our choice of y.
It follows that every eigenvalue λ such that σλ = −1 is a power of two, so by Lemma 3.3.11,
there is only one such eigenvalue.
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With the previous results, the proof that there is only one tree with Laplacian perfect
state transfer can be completed; we provide the following more detailed explanation.

3.3.15 Theorem. [22] If T is a tree with more than two vertices, then we cannot have
perfect state transfer on T relative to the Laplacian.

Proof. Suppose T has Laplacian perfect state transfer between vertices a and b. By
Lemma 3.3.13, T has an even number of vertices, and by Theorem 3.3.14, there is precisely
one eigenvalue θ ∈ Θa such that σθ = −1, from which it follows by Lemma 3.3.10 that a
and b are twins. Since T is a tree, it follows that a and b have valency one, and a common
neighbour c. We observe that ea − eb is an eigenvector with eigenvalue 1, and σ1 = −1.

From the proof of Lemma 3.3.10, we saw that∑
θ∈Θa
σθ=1

Eθea =
1

2
(ea + eb)

and so we obtain ∑
θ∈Θa
σθ=1

eTaEθea =
1

2
,

∑
θ∈Θa
σθ=1

eTc Eθea = 0.

We also have that Lea = ea − ec, which gives ec = (I − L)ea. Hence, for each eigenvalue
θ, we obtain

eTc Eθea = eTa (I − L)Eθea = (1− θ)eTaEθea.

Applying the fact that every eigenvalue in Θa \ {0, 1} is at least two, we obtain

0 =
∑
θ∈Θa
σθ=1

eTc Eθea =
∑
θ∈Θa
σθ=1

(1− θ)eTaEθea ≤
∑
θ∈Θa
σθ=1

eTaEθea +
2

n
= −1

2
+

2

n
.

Hence we see that n ≤ 4, so n = 4.

It remains to verify that K1,3 does not have Laplacian perfect state transfer. The
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spectral decomposition of L(K1,3) is given by

E0 =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 ,

E1 =


0 0 0 0
0 2/3 −1/3 −1/3
0 −1/3 2/3 −1/3
0 −1/3 −1/3 2/3

 ,

E4 =


3/4 −1/4 −1/4 −1/4
−1/4 1/12 1/12 1/12
−1/4 1/12 1/12 1/12
−1/4 1/12 1/12 1/12

 ;

from which it is clear that no pair of vertices in K1,3 are strongly cospectral, completing
the proof.

3.4 Future Directions

Perfect state transfer with respect to the adjacency matrix has been characterized for
paths but remains open for trees. On the other hand, perfect state transfer with respect to
the Laplacian has been completely characterized for trees. We are interested in resolving
trees for the adjacency matrix. Fan and Godsil investigated perfect and pretty good state
transfer on double stars, denoted Sk,l, which is formed by joining the non-leaf vertices
of K1,k and K1,` by an edge, and determined that these graphs never have perfect state
transfer.

For both perfect state transfer and pretty good state transfer, the vertices involved are
required to be strongly cospectral. It would be interesting to determine if there is a tree
with a set of three vertices, each pair of which are strongly cospectral. However, we note
by Lemma 3.2.2 that it is not possible to have perfect or pretty good state transfer between
each pair of vertices, so such a tree is unlikely to provide insight to state transfer.
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Chapter 4

Pretty Good State Transfer on Paths

As we have seen, examples of perfect state transfer are relatively rare, and the notion of
pretty good state transfer was isolated by multiple authors (see Godsil [32], for example) as
a relaxation of perfect state transfer. Formally, a graph X is said to have pretty good state
transfer between vertices a and b if, there exist sequences of times {τk} of real numbers
and {γk} of complex numbers with |γk| = 1, such that

lim
k→∞
‖U(τk)ea − γkeb‖ = 0,

or equivalently, for every ε > 0, there exist τε ∈ R and γε ∈ C with |γε| = 1, such that

‖U(τε)ea − γεeb‖ < ε.

This definition is often presented using a fixed γ. We demonstrate that these two definitions
are equivalent.

4.0.1 Proposition. There exist sequences of times {τk} of real numbers and {γk} of com-
plex numbers with |γk| = 1, such that

lim
k→∞
‖U(τk)ea − γkeb‖ = 0, (A)

if and only if there exist a sequence of times {τ`} of real numbers and a complex number γ
with |γ| = 1, such that

lim
k→∞
‖U(τ`)ea − γeb‖ = 0, (B)
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Proof. It is clear that if (B) holds, then (A) also holds taking τk = τ` and γk = γ. It
remains to show that (A) implies (B). Since the set of complex numbers of norm 1 is
bounded, there exists a convergent subsequence {γ`} of γk which converges to some γ with
|γ| = 1. Hence, for every ε > 0, there exists a j ∈ N such that ‖U(τj)ea − γjeb‖ < ε/2 and
|γj − γ| < ε/2. Thus we have

‖U(τj)ea − γeb‖ = ‖U(τj)ea − γjeb + γjeb − γeb‖
≤ ‖U(τj)ea − γjeb‖+ |γj − γ| ‖eb‖
< ε/2 + ε/2

= ε,

so (B) holds as desired.

The focus of this chapter is to fully characterize pretty good state transfer of single
vertices on paths, both for the adjacency matrix model and the Laplacian model. The
results for the adjacency matrix model have been previously published in [21, 45]. We
first examine properties of the transition matrix, and demonstrate that graphs are almost
periodic, which addresses the case of pretty good state transfer when the vertices coincide.

4.1 Almost Periodicity

We say a graph X is almost periodic if there exist sequences of times {τk} of real numbers
and {γk} of complex numbers with |γk| = 1 such that

lim
k→∞
‖U(τk)− γkI‖ = 0,

or equivalently, for every ε > 0, there exist τε ∈ R and γε ∈ C with |γε| = 1 such that

‖U(τε)− γεI‖ < ε.

Using the fact that trigonometric polynomials, i.e. functions of the form∑
r

ar exp(iθrt),

are almost periodic (see Section 2.5), we observe that the entries of a transition matrix
U(t) with any finite Hermitian matrix as the Hamiltonian is almost periodic. Moreover, a
compactness argument yields that U(t) is almost periodic in Cn×n.
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4.1.1 Proposition. Let H be finite and Hermitian, and let U(t) = exp(itH). Then U(t)
is almost periodic.

Proof. As H is finite and Hermitian, we can obtain the spectral decomposition of H as

H =
∑
r

θrEr,

and hence we can write
U(t) =

∑
r

exp(itθr)Er.

Since the entries of U(t) are trigonometric polynomials, they are almost periodic. It follows
by compactness that U(t) is almost periodic, which completes the proof.

It follows immediately that every graph is almost periodic.

4.1.2 Corollary. Every graph X is almost periodic.

Proof. Let U(t) be a transition matrix for X. By Proposition 4.1.1, U(t) is almost periodic.
Hence, by definition, for every ε > 0, there exists a τ such that ‖U(t+ τ)− U(t)‖ ≤ ε.
Since U(0) = I, we have that ‖U(τ)− I‖ ≤ ε, as desired.

Hence, when considering pretty good state transfer between vertices a and b, we need
not consider the case when a = b, as this property trivially holds as demonstrated above.

4.2 Between the End Vertices

We begin our consideration of pretty good state transfer on paths by considering the
following example.

4.2.1 Example. Suppose we wish to verify whether P4 has pretty good state transfer
between its end vertices. By definition, we have

‖U(τ)e1 − γe4‖ < ε

and using spectral decomposition, we obtain∥∥∥∥∥∥
∑
θj∈Θ1

exp(iτθj)(Ej)e1

− γe4

∥∥∥∥∥∥ < ε.
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Applying the observation that Ere1 = Ere4 when r is odd and Ere1 = −Ere4 when r is
even, and letting γ = exp(iδ), we have∥∥∥∥∥∥

∑
θj∈Θ1

(
exp(iτθj)− (−1)j+1 exp (iδ)

)
Eje4

∥∥∥∥∥∥ < ε,

from which it follows that we desire

|τθj − (δ + σrπ)| < ε′ (mod 2π), (r : θr ∈ Θ1), (∗)

where σr is even if r is odd and odd if r is even.

By (∗), it suffices to demonstrate a solution to the following system of inequalities∣∣∣∣∣
√

5 + 1

2
τ − δ

∣∣∣∣∣ < ε (mod 2π),

∣∣∣∣∣
√

5− 1

2
τ − δ + π

∣∣∣∣∣ < ε (mod 2π),

∣∣∣∣∣−
√

5 + 1

2
τ − δ

∣∣∣∣∣ < ε (mod 2π),

∣∣∣∣∣−
√

5− 1

2
τ − δ + π

∣∣∣∣∣ < ε (mod 2π).

By choosing δ = π/2, we observe that the first and last inequalities and second and third
inequalities differ only by a factor of −1. Hence, we have the system∣∣∣∣∣

√
5 + 1

2
τ − π

2

∣∣∣∣∣ < ε (mod 2π),

∣∣∣∣∣
√

5− 1

2
τ +

π

2

∣∣∣∣∣ < ε (mod 2π).

To apply Kronecker’s Theorem, we need to consider all pairs of integers `1, `2 such that

√
5 + 1

2
`1 +

√
5− 1

2
`2 = 0.
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Rearranging, we obtain

−`2

`1

=

√
5 + 1√
5− 1

=
3 +
√

5

2

and observe that the left-most expression is rational, but the right-most expression is
irrational; a contradiction which demonstrates there are no pairs of integers `1, `2 satisfying
the equation. Hence our system of inequalities has a solution by Kronecker’s Theorem
(Theorem 2.5.1), and so P4 has pretty good state transfer between its end vertices. ♦

In 2007, Burgarth [8] studied the problem of pretty good state transfer on paths using
the Laplacian matrix as the Hamiltonian. Unfortunately, as pointed out by Banchi et al. [4],
Burgarth’s claim that pretty good state transfer would occur in all chains of prime length is
false, as the symmetry used to demonstrate the claim was not entirely accurate. Vinet and
Zhedanov [47] studied this problem under the term almost perfect state transfer in 2012.
They established that pretty good state transfer occurred in paths when the eigenvalues of
the Hamiltonian were linearly independent over the rational numbers. Around the same
time, Godsil, Kirkland, Severini, and Smith [34] demonstrated the following result for
pretty good state transfer on paths.

4.2.2 Theorem. [34] There is pretty good state transfer between the end vertices of Pn
with respect to the adjacency matrix if and only if:

a) n = 2t − 1, t ∈ Z+;

b) n = p− 1, p a prime; or

c) n = 2p− 1, p a prime.

Moreover, when pretty good state transfer occurs between the end vertices of Pn, then it
occurs between vertices a and n+ 1− a for all a 6= (n+ 1)/2.

Further, Banchi et al. [4] demonstrated the analogous result for pretty good state
transfer on paths in the Laplacian case in 2017.

4.2.3 Theorem. [4] There is pretty good state transfer between the end vertices of Pn with
respect to the Laplacian if and only if n is a power of 2. Moreover, in these cases, pretty
good state transfer occurs between vertices a and (n+ 1− a) for all j = 1, . . . , n.
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However, neither result considers if pretty good state transfer is possible between inter-
nal vertices of a path when it is not possible between the end vertices. In fact, the former
result is often misrepresented in the literature as completely characterizing pretty good
state transfer on paths. In an earlier draft of their paper, Banchi et al. [4] flagged this
discrepency, and presented as an open problem pretty good state transfer internal vertices
under both models. In the following two sections, we will resolve these questions. The key
observation is that while all eigenvalues are in the eigenvalue supports of the end vertices,
this need not be the case for internal vertices, which reduces the number of inequalities
to consider when applying Kronecker’s Theorem. We will make use of the following result
due to Banchi et al. [4]; we present a more detailed proof verifying this result.

4.2.4 Theorem. [4] Let a and b be vertices of a graph X. Then pretty good state transfer
occurs between a and b if and only if both conditions below are satisfied.

a) Vertices a and b are strongly cospectral, in which case let ζj = (1− σj)/2.

b) If there is a set of integers {`j} such that∑
θj∈Θa

`jθj = 0 and
∑
θj∈Θa

`jζj is odd,

then ∑
θj∈Θa

`j 6= 0.

Proof. First suppose the two conditions are satisfied. We consider the system of inequalities

|θjτ − (δ + ζjπ)| < ε (mod 2π), (θj ∈ Θa).

Let {`j} be a set of integers such that ∑
θj∈Θa

`jθj = 0.

Then we desire ∑
θj∈Θa

`j(δ + ζjπ) ≡ 0 (mod 2π). (†)

We need to show that there exists a δ such that the above equation is true for all sets
{`j}. If

∑
`jζj is even for every set of integers {`j}, then we may choose δ = 0. Otherwise,

suppose for some set of integers {`j} that
∑
`jζj is odd, in which case α :=

∑
`j 6= 0, and
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let δ be such that the above equation is satisfied for this set. Suppose {`′j} is also a set of
integers such that ∑

θj∈Θv

`′jθj = 0.

Define α′ =
∑
`′j, and let 2r be the largest power of 2 that divides α, 2s be the largest

power of 2 that divides α′, and t = min{r, s}. Take δ = π2−r. Then we construct the set
of integers γj = 2−t(α′`j − α`′j). It is a straightforward calculation that

∑
γjθj = 0 and∑

γj = 0. Now consider the expression

∑
θj∈Θv

γjζj =
∑
θj∈Θv

2−t(α′`j − α`′j)ζj =
(
2−tα′

)∑
θj∈Θv

`jζj

− (2−tα)
∑
θj∈Θv

`′jζj

 .

We observe that
∑
γjζj is even, as otherwise we have a contradiction to our hypothesis,∑

`jζj is odd by our assumption, and at least one of 2−tα and 2−tα′ is odd. If 2−tα′ is odd,
then both 2−tα and

∑
`′jζj are odd, so r = s, and (†) is satisfied. Otherwise, 2−tα′ is even,

so s > r, 2−tα is odd and
∑
`′jζj is even; thus (†) is satisfied. Therefore, by Kronecker’s

Theorem, the system of inequalities

|θjτ − (δ + ζjπ)| < ε (mod 2π), (θj ∈ Θa)

admits a solution τ0 for τ . Hence we obtain

U(τ0) =
∑
θj∈Θa

eiτ0θjEj =
∑
θj∈Θa

(1− ε′)eiδσjEj

and so U(τ0)ea ≈ eiδeb, and hence we have pretty good state transfer between vertices a
and b.

Conversely, suppose pretty good state transfer occurs between a and b. By Lemma 3.2.6,
a and b are strongly cospectral. Moreover, for some τ , we see that,

U(τ)ea ≈ eiδeb,

eiθjτEjea ≈ eiδEjeb, (θj ∈ Θa),

eiθjτEjea ≈ (−1)j+1eiδEjeb, (θj ∈ Θv),

θjτ ≈ δ + ζjπ (mod 2π), (θj ∈ Θa).

So by Kronecker’s Theorem, for every set of integers {`j} such that
∑
`jθj = 0, we have∑

θj∈Θa

`j(δ + ζjπ) ≡ 0 (mod 2π).

It follows that if
∑
`jζj is odd, then

∑
`j cannot be zero, or the above condition is not

satisfied, which completes the proof.
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4.3 Adjacency Matrix Model

We begin our investigation of pretty good state transfer of internal vertices of paths under
the adjacency matrix model by demonstrating an infinite family of paths with pretty
good state transfer between internal vertices; the result can be found in the 2017 work
of Coutinho, Guo, and van Bommel [21].

4.3.1 Theorem. Given any odd prime p and positive integer t, there is pretty good state
transfer in P2tp−1 between vertices a and 2t − a, whenever a is a multiple of 2t−1.

Proof. For simplicity, let n = 2tp − 1. For vertices a and (n + 1 − a), condition a) of
Theorem 4.2.4 is satisfied with 2σj = 1 + (−1)j, by Lemma 3.3.7.

The eigenvalues of the path Pn belong to the cyclotomic field Q(ζ2m), where m = n+ 1
and ζ2m is a 2mth primitive root of unity. More precisely, the eigenvalues of Pn are

θj = 2 cos

(
jπ

m

)
= ζj2m + ζ−j2m ∈ Q(ζ2m).

If m = 2tp, then the cyclotomic polynomial is

Φ2m(x) =

p−1∑
i=0

(−1)ix2ki.

We will proceed by showing that condition b) of Theorem 4.2.4 holds. If a is a multiple
of 2t−1, suppose there is a linear combination of the eigenvalues in Θa, satisfying

n∑
j=1

`jθj = 0,

where we make `j = 0 if θj /∈ Θa. By Lemma 3.3.6, θj belongs to Θa if and only if 2p does
not divide j.

We define the polynomial P (x) as follows:

P (x) =
n∑
j=1

`jx
j +

2n+1∑
j=n+2

`2n+2−jx
j

We see that ζ2m is a root of P (x) and, since Φ2m(x) is the minimal polynomial of ζ2m, we
see that Φ2m(x) divides P (x).
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Let Q(x) be the following polynomial:

Q(x) =
2t∑
j=1

`jx
j+

2tp−1∑
j=2t+1

(`j+`j−2t)x
j+`2t(p−1)x

2tp+
2t−1∑
j=1

(`2tp−j+`2t(p−1)+j−`j)x2tp+j. (4.1)

For a polynomial p(x), we denote by [xt]p(x) the coefficient of xt in p(x). Consider
[xk]Φ2m(x)Q(x). It is easy to see that [xk]Φ2m(x)Q(x) = [xk]P (x) for k = 0, . . . , 2t(p+1)−1.
Since the degree of Q(x) is 2t(p+1)−1, we may conclude that Q(x) is the unique polynomial
of degree 2t(p+ 1)− 1 such that

[xk]Φ2m(x)Q(x) = [xk]P (x)

for k = 0, . . . , 2t(p + 1) − 1. In particular, the quotient P (x)/Φ2m(x) is a polynomial of
degree 2t(p+ 1)− 1 such that (4.3) holds, therefore

P (x) = Φ2m(x)Q(x).

From the coefficients of xk for k > 2t(p+1)−1, it follows that, for j = 2, 4, . . . , 2t−1−2,
and i = 1, . . . , (p− 1)/2,

`j − `2tp−j = (−1)i(`i2t±j − `(p−i)2t∓j),

`i2t−1 − `(p−i)2t−1 = 0.

Recall that `2kp = 0 for any integer k.

Given j ∈ {2, 4, . . . , 2t−1 − 2}, note that j 6= 0 (mod p), and since 2t 6= 0 (mod p),
there is i ∈ Zp such that i2t ≡ j (mod p). If 1 ≤ i ≤ (p− 1)/2, then `i2t−j = `(p−i)2t+j = 0,
and if (p− 1)/2 + 1 ≤ i ≤ p− 1, then `i2t+j = `(p−i)2t−j = 0. In either case, it follows that
`j − `2tp−j = 0. Therefore `j = `2tp−j for all even j.

Thus, we see that ∑
θr∈Θa

`jζj =
∑
j even

`r ≡ `2t−1p ≡ 0 (mod 2),

which concludes the proof.

To complete the characterization, which was recently published in [45], it remains to
show that this is the only such family of paths with pretty good state transfer between
internal vertices. We begin by presenting the following identity that will be used to ap-
ply Theorem 4.2.4. Its derivation is a straightforward application of basic trigonometric
identities and is included for completeness.
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4.3.2 Lemma. Let n = km, where k is a positive integer and m > 1 is an odd integer,
and 0 ≤ a < k be an integer. Then

m−1∑
j=0

(−1)j cos

(
(a+ jk)π

n

)
= 0.

Proof. Working from the left hand side, we first use the angle sum identity and simplify
to obtain

cos
(aπ
n

)m−1∑
j=0

(−1)j cos

(
jkπ

n

)
− sin

(aπ
n

)m−1∑
j=0

(−1)j sin

(
jkπ

n

)
.

We then observe that (−1)j cos(jθ) = cos(j(π + θ)) and (−1)j sin(jθ) = sin(j(π + θ)),
hence obtaining

cos
(aπ
n

)m−1∑
j=0

cos

(
j(k + n)π

n

)
− sin

(aπ
n

)m−1∑
j=0

sin

(
j(k + n)π

n

)
.

We can then observe that

m−1∑
j=0

cos

(
j(k + n)π

n

)
+ i

m−1∑
j=0

sin

(
j(k + n)π

n

)
=

m−1∑
j=0

exp

(
ij(k + n)π

n

)

=
exp

(
im(k+n)π

n

)
− 1

exp
(
i(k+n)π

n

)
− 1

= 0,

as m(k + n)/n = m+ 1 is an even integer. Hence, we have

m−1∑
j=0

cos

(
j(k + n)π

n

)
= 0,

m−1∑
j=0

sin

(
j(k + n)π

n

)
= 0,

which completes the proof.

We now have the tools required to complete the characterization.

4.3.3 Theorem. There is pretty good state transfer on Pn between vertices a and b if and
only if a+ b = n+ 1 and:
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a) n = 2t − 1, where t is a positive integer;

b) n = p− 1, where p is an odd prime; or

c) n = 2tp− 1, where t is a positive integer and p is an odd prime, and a is a multiple of
2t−1.

Proof. The sufficiency of the conditions is given by Theorem 4.2.2 and Theorem 4.3.1. It
remains to show that the conditions are necessary. The necessity of the condition that
a+ b = n+ 1 follows from Lemma 3.2.6 and 3.3.7. Henceforth, we need only consider the
possibility of pretty good state transfer between vertices a and n+ 1− a. We note that if
a = (n+ 1)/2, we would instead be considering almost periodicity at a rather than pretty
good state transfer, and hence we will exclude this case in what follows.

Suppose that there is pretty good state transfer on Pn between vertices a and n+1−a.
We first observe that every integer n can be written in the form 2tr − 1, where t is a
nonnegative integer and r is a positive odd integer. We consider multiple cases based on
the values of t and r.

Case 1: t > 0 and r is an odd composite number

First, suppose r has no prime factor p such that p divides 2tr/ gcd(a, 2tr). It follows
that r | a. Moreover, since a and n + 1 − a are distinct vertices, then a 6= 2t−1r.
Hence, we have that t ≥ 2 and 4 divides 2tr/ gcd(a, 2tr), so by Lemma 3.3.6, if k is
not a multiple of 4, then θk ∈ Θa. Now, consider the set of integers {`k} given by

`k =


1, if k ≡ 1, 2t + 2 (mod 2t+1);

−1, if k ≡ 2, 2t + 1 (mod 2t+1);

0, otherwise.

For c ∈ {1, 2}, we have

r−1∑
i=0

(−1)iθc+i2t =
r−1∑
i=0

(−1)i cos

(
(c+ i2t)π

n+ 1

)
= 0
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by Lemma 4.3.2. Hence we see that∑
k

`kθk = 0, (4.2)∑
k

`kζk is odd, (4.3)∑
k

`k = 0, (4.4)

so by Theorem 4.2.4, we cannot have pretty good state transfer between a and n +
1− a.

Therefore, we can now assume r has a prime factor p such that p divides
2tr/ gcd(a, 2tr). By Lemma 3.3.6, if k is not a multiple of p, then θk ∈ Θa. Now,
consider the set of integers {`k} given by

`k =


1, if k ≡ 1, 2tp+ 2 (mod 2t+1p);

−1, if k ≡ 2, 2tp+ 1 (mod 2t+1p);

0, otherwise.

For c ∈ {1, 2}, we have

r/p−1∑
i=0

(−1)iθc+i2tp =

r/p−1∑
i=0

(−1)i cos

(
(c+ i2tp)π

n+ 1

)
= 0

by Lemma 4.3.2. So we see that (4.2), (4.3), and (4.4) again hold, so by Theo-
rem 4.2.4, we cannot have pretty good state transfer between a and n+ 1− a.

Case 2: t = 0 and r is an odd composite number

There exists a prime factor p of r such that p divides r/ gcd(a, r), as otherwise r
divides a, contradicting that a < r = n + 1. By Lemma 3.3.6, if k is not a multiple
of p, then θk ∈ Θa. Now, consider the set of integers {`k} given by

`k =


1, if k ≡ 1, p+ 2 (mod 2p);

−1, if k ≡ 2, p+ 1 (mod 2p);

0, otherwise.

For c ∈ {1, 2}, we have

r/p−1∑
i=0

(−1)iθc+ip =

r/p−1∑
i=0

(−1)i cos

(
(c+ ip)π

n+ 1

)
= 0
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by Lemma 4.3.2. Hence we see that (4.2), (4.3), and (4.4) again hold, so by Theo-
rem 4.2.4, we cannot have pretty good state transfer between a and n+ 1− a.

Case 3: t > 0 and r = p is an odd prime number

Suppose a is not a multiple of 2t−1. Then again by Lemma 3.3.6, if k is not a multiple
of 4, then θk ∈ Θa. It follows as in the first case that we cannot have pretty good
state transfer between a and n+ 1− a.

Hence we have shown the stated conditions are necessary, completing the proof.

4.4 Laplacian Model

We now consider pretty good state transfer between internal vertices of paths with respect
to the Laplacian. The procedure is similar to that for the adjacency matrix. The eigenval-
ues of L(Pn) are θ0 := 0 with the all 1s eigenvector, and θk := 2 + 2 cos(πk/n), 1 ≤ k < n,
with corresponding eigenvector vk given by

vka = (−1)a(sin((a− 1)πk/n) + sin(aπk/n)).

We begin by determining the eigenvalue support of a vertex.

4.4.1 Lemma. The eigenvalue support of vertex a of the graph Pn with respect to the
Laplacian is given by

Θa = {0} ∪ {θk : 2n - (2a− 1)k}.

Proof. We first observe for the path that Ekea = 0 if and only if vka = 0. Let us consider
the value of vka . Using a sum identity, we obtain

vka = 2 sin((2a− 1)πk/2n) cos(πk/2n).

Notice that since 1 ≤ k < n, we have cos(πk/2n) > 0. Hence vka = 0 if and only if
sin((2a− 1)πk/2n) = 0, which is precisely when 2n | (2a− 1)k. The result follows.

We will also make use of the following identity, the derivation of which is a straightfor-
ward application of basic trigonometric identities and geometric series and is included for
completeness.
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4.4.2 Lemma. Let n = 4k + 2, where k is a positive integer. Then

2
k−1∑
j=0

(
2 + 2 cos

(
(2 + 4j)π

n

))
= n.

Proof. We first use the fact that 2 cosx = eix + e−ix to obtain

2
k−1∑
j=0

cos

(
(2 + 4j)π

n

)
=

k−1∑
j=0

(
e
i(2+4j)π

n + e
−i(2+4j)π

n

)
.

Using the formula for geometric series, we then have

2
k−1∑
j=0

cos

(
(2 + 4j)π

n

)
=
(
e

2πi
n

) 1−
(
e

4πi
n

)k
1− e 4πi

n

+
(
e
−2πi
n

) 1−
(
e
−4πi
n

)k
1− e−4πi

n

.

For the last term, we multiply numerator and denominator by e
4πi
n and hence obtain

2
k−1∑
j=0

cos

(
(2 + 4j)π

n

)
=
(
e

2πi
n

) 1−
(
e

4πi
n

)k
1− e 4πi

n

−
(
e

2πi
n

) 1−
(
e
−4πi
n

)k
1− e 4πi

n

.

Simplifying, we obtain

2
k−1∑
j=0

cos

(
(2 + 4j)π

n

)
=
−e

(4k+2)πi
4k+2 + e

−(4k+2)πi
4k+2 e

4πi
n

1− e 4πi
n

=
1− e 4πi

n

1− e 4πi
n

= 1.

Thus, evaluating our original expression, we obtain

2
k−1∑
j=0

(
2 + 2 cos

(
(2 + 4j)π

n

))
= 4k + 2 = n,

as desired.

We now have the tools we need to demonstrate that there are no additional examples of
pretty good state transfer on paths with respect to the Laplacian when considering internal
vertices.
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4.4.3 Theorem. There is pretty good state transfer on Pn between vertices a and b with
respect to the Laplacian if and only if a+ b = n+ 1 and n is a power of 2.

Proof. The sufficiency of the conditions is given by Theorem 4.2.3. It remains to show that
the conditions are necessary. The necessity of the condition that a+ b = n+1 follows from
Lemma 3.2.6 and 3.3.7. Henceforth, we need only consider the possibility of pretty good
state transfer between vertices a and n + 1 − a. We again note that if a = (n + 1)/2, we
would instead be considering almost periodicity at a rather than pretty good state transfer,
and hence we will exclude this case in what follows.

Suppose n is not a power of 2 and that there is pretty good state transfer on Pn between
vertices a and n+ 1− a. We first observe that every integer n can be written in the form
2tr, where t is a nonnegative integer and r is a positive odd integer greater than 1. We
consider multiple cases based on the values of t and r.

Case 1: t > 1

Since 2a−1 is odd, it follows that 4 divides 2t+1r/ gcd(2a−1, 2t+1r). By Lemma 4.4.1,
if k is not a multiple of 4, then θk ∈ Θa. Now consider the set of integers {`k} given
by

`k =


1, if k ≡ 1, 2t + 2 (mod 2t+1);

−1, if k ≡ 2, 2t + 1 (mod 2t+1);

0, otherwise.

For c ∈ {1, 2}, we have

r−1∑
j=0

(−1)jθc+j2t =
r−1∑
i=0

(−1)j(2 + 2 cos

(
(c+ j2t)π

n

)
= 2

by Lemma 4.3.2. So we see that (4.2), (4.3), and (4.4) hold, so by Theorem 4.2.4, we
cannot have pretty good state transfer between a and n+ 1− a.

Case 2: t = 1

Since 2a− 1 is odd, it follows that 4 divides 4r/ gcd(2a− 1, 4r). By Lemma 4.4.1, if
k is not a multiple of 4, then θk ∈ Θa. Now consider the set of integers {`k} given by

`k =


2, if k ≡ 2 (mod 4);

−r, if k = r;

1, if k = 0;

0, otherwise.
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We have

2

r−3
2∑
j=0

(
2 + 2 cos

(
(2 + 4j)π

n

))
= n.

by Lemma 4.4.2 and θr = 2. So we see that (4.2), (4.3), and (4.4) again hold, so by
Theorem 4.2.4, we cannot have pretty good state transfer between a and n+ 1− a.

Case 3: t = 0 and r is an odd composite number

There exists a prime factor p of r such that p divides 2r/ gcd(2a−1, 2r), as otherwise
r divides 2a − 1 which implies a = (r + 1)/2, and as a is the middle vertex of the
path, we do not consider it for pretty good state transfer. By Lemma 4.4.1, if k is
not a multiple of p, then θk ∈ Θa. Now, consider the set of integers {`k} given by

`k =


1, if k ≡ 1, p+ 2 (mod 2p);

−1, if k ≡ 2, p+ 1 (mod 2p);

0, otherwise.

For c ∈ {1, 2}, we have

r/p−1∑
j=0

(−1)jθc+jp =

r/p−1∑
i=0

(−1)j(2 + 2 cos

(
(c+ jp)π

n

)
= 2

by Lemma 4.3.2. So we see that (4.2), (4.3), and (4.4) again hold, so by Theo-
rem 4.2.4, we cannot have pretty good state transfer between a and n+ 1− a.

Case 4: t = 0 and r is an odd prime

If r is an odd prime, then there is no eigenvalue not in the eigenvalue support of a;
such an eigenvalue would require 2r to divide (2a− 1)k. Since r is prime and k < r,
we would need r to divide 2a− 1, and since a ≤ r, it implies a = (r+ 1)/2. But as a
is the middle vertex of the path, we do not consider it for pretty good state transfer.
Hence, every eigenvalue is in the eigenvalue support of a, and so if there is pretty
good state transfer between vertices a and n+ 1− a, then there must also be pretty
good state transfer between vertices 1 and n, but this contradicts Theorem 4.2.3.
Hence, we cannot have pretty good state transfer between a and n+ 1− a.

Hence we have shown the necessity of the stated conditions, completing the proof.
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4.5 Future Directions

One of the major open problems regarding this research stems from the fact that Kro-
necker’s Theorem provides us with a non-constructive proof technique to demonstrate
pretty good state transfer. As such, we are, for the most part, unable to say anything
about the length of time it takes to achieve state transfer with a given precision. Coutinho
and Godsil [20] provide a brief discussion in the case of P4, showing that the approxima-
tion using τ = 305π ≈ 958 is accurate to five decimal places (i.e. 99.999% state transfer),
illustrating that the length of time required is typically very large.

A question that provides further motivation to considering pretty good state transfer on
internal vertices of paths is the minimum number of edges required to achieve pretty good
state transfer of distance d, which would minimize the cost of a quantum communication
channel. Pretty good state transfer on internal vertices of paths provides some bounds
on this question. For example, if we wish to achieve state transfer between vertices at
distance 16, this cannot be achieved on P17, but can be achieved between vertices 2 and
18 of P19, compared to using vertices 3 and 19 of P21 if we only limit ourselves to paths
with pretty good state transfer between the end vertices. The question remains open, as
other graphs may provide pretty good state transfer using fewer edges, i.e. we would still
need to consider whether pretty good state transfer at distance 16 can be achieved with
17 edges.

Therefore, another area of interest would be to expand the graphs considered from paths
to trees to provide additional sparse examples towards settling the question above. Some
results for pretty good state transfer with respect to the adjacency matrix were provided
by Fan and Godsil [24] for the case of double stars.

4.5.1 Theorem. [24] There is pretty good state transfer in the double star Sk,`:

a) For k = 2, ` ≥ 3, between the two leaves incident with the degree three vertex.

b) For k, ` ≥ 3, between the internal vertices if and only if k = ` and 4k + 1 is a perfect
square.
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Chapter 5

State Transfer of Multiple Qubits

Given that the length of time required to achieve pretty good state transfer is typically
very large, if we wish to transfer multiple states, it would be largely impractical to do so
one state at a time. One possible alternative is to set up multiple spin chains and run them
simultaneously, though this may be cost prohibitive depending on the number of qubits
involved. An alternative is to send a state consisting of multiple qubits through the same
channel, which we consider in this chapter. We will discuss two special cases of the general
problem of transferring multi-qubit states: transfer to a symmetric state and fractional
revival.

5.1 Transfer to a Symmetric State

In 2014, Sousa and Omar [43] extended the definition of pretty good state transfer to
arbitrary multi-qubit states. For the single excitation case, they say there is pretty good
state transfer on Pn of the m-qubit state v, given by

α0 +
m∑
j=1

βjej, |α|2 +
m∑
j=1

|βj|2 = 1,

from qubits 1 to m to qubits n −m + 1 to n if for every ε > 0, there exist a time τε ∈ R
and complex numbers (γj)ε, where |(γj)ε| = 1, such that

||U(τε)ej − (γj)εen+1−j|| < ε,
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for 1 ≤ j ≤ m. It follows similarly to the single vertex case (Proposition 4.0.1) that
assuming γj is fixed is equivalent.

The above definition appears to be more strict than required, as a multiple qubit state
need not involve all of the first m qubits of the chain. Additionally, their definition of
pretty good state transfer is restricted to the case when the graph is a path. Hence, we
say a graph X has pretty good state transfer between distinct states v and w if, for every
ε > 0, there exist a time τε ∈ R and a complex number γε, where |γε| = 1, such that

||U(τε)v − γεw|| < ε.

If the above is satisfied for ε = 0, then we say there is perfect state transfer of v. We again
observe following Proposition 4.0.1 that it is equivalent to consider a fixed γ. If we allow
v = w, then we would be considering whether the state v is almost periodic, and would
be interested if there are times τε 6= 0 where the above inequality holds. Corollary 4.1.2
guarantees the existence of such times.

We will restrict our consideration to single-excitation states, that is, we will require v
and w to be in the form ∑

a∈V (X)

βaea,
∑

a∈V (X)

β2
a = 1.

Such a restriction is motivated by our simplification of considering the n× n-dimensional
subspace of states spanned by single vertex states rather than the entire 2n × 2n state
space.

Of course, one could find many instances of perfect state transfer between arbitrary
pairs of states by choosing v at will, choosing an arbitrary τ , and then letting w = U(τ)v.
Hence, motivated by the symmetry exhibited by the path, we are primarily interested in
pretty good state transfer in X between states v and vσ, where σ is an automorphism of
X and vσ is given by

vσ =
∑

x∈V (X)

βxeσ(x), v =
∑

x∈V (X)

βxex.

We will consider this problem in what follows.

Sousa and Omar [43] demonstrated a class of examples exhibiting pretty good state
transfer to a symmetric state by applying the following theorem due to Cameron et al. [9].
We first need to present the following definitions. A square matrix is said to be monomial,
and denoted P̃φ, if it is the product of the permutation matrix Pφ and some complex
diagonal matrix D (which is suppressed in the notation). Then, two Hermitian graphs X
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and Y , that is, graphs whose adjacency matrices are Hermitian, are said to be switching
isomorphic if there is a monomial matrix P̃φ such that A(Y ) = P̃ †φA(X)P̃φ. Notice that if
D = I, then X and Y are isomorphic. The switching automorphism group of a graph X
is defined to be the group of monomial matrices that commute with A(X), and is denoted
SwAut(X).

5.1.1 Theorem. [9] Let X be an n-vertex graph with pretty good state transfer from vertex

a to vertex φ(a), for some switching automorphism P̃φ ∈ SwAut(X). Suppose that A(X)

and P̃φ share a set {z1, . . . , zn} of orthonormal eigenvectors which satisfies eTa zk 6= 0 for
1 ≤ k ≤ n. Then, for each ε > 0, there is a time t ∈ R where

||e−itA(X) − γP̃φ|| ≤ ε,

for some γ ∈ C, |γ| = 1.

5.1.2 Corollary. [43] If the multi-qubit input state v is restricted to the single-excitation
manifold, then there is pretty good state transfer of v on Pn to the mirror image if we have
n = p− 1, 2p− 1, or 2k − 1, where p is a prime and k ∈ N.

Proof. Suppose n = p− 1, 2p− 1, or 2k − 1. Then by Theorem 5.1.1, for each ε > 0, there
is a time t ∈ R where

||U(t)− γP̃φ|| ≤ ε,

for some γ ∈ C, |γ| = 1. Since ||v|| = 1, we have

ε ≥ ||U(t)− γP̃φ|| ||v|| = ||U(t)v − γP̃φv|| = ||U(t)v − γvσ||

as desired.

Sousa and Omar [43] claimed the preceding result gave both necessary and sufficient
conditions, however, they only provide a proof that the conditions on n are sufficient.
Under our more general definition of pretty good state transfer, the conditions are not
necessary, as demonstrated by the following example.

5.1.3 Example. We can verify there is pretty good state transfer on P11 between states
v = 1√

2
(e1 + e3) and vσ = 1√

2
(e11 + e9). We first demonstrate that θ6 = 0 /∈ Θv. We have

that

(E6v)x =
1√
2

((E6)x,1 +(E6)x,3) =
1√
2

(
1

6
sin
(πx

2

)
sin
(π

2

)
+

1

6
sin
(πx

2

)
sin

(
3π

2

))
= 0,
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and so E6v = 0 as claimed.

Now, by definition, we wish to show

‖U(τ)v − γvσ‖ < ε,

which, using spectral decomposition, is equivalent to∥∥∥∥∥∥
∑
θj∈Θv

exp(iτθj)(Ej)v

− γvσ
∥∥∥∥∥∥ < ε.

We observe that Erv = Erv
σ when r is odd and Erv = −Ervσ when r is even (i.e. by

linearity), and letting γ = exp(iδ), we have∥∥∥∥∥∥
∑
θj∈Θv

(exp(iτθj)− (−1)j+1 exp(iδ))Ejv

∥∥∥∥∥∥ < ε,

from which it follows that we desire

|τθj − (δ + σrπ)| < ε′ (mod 2π), (r : θr ∈ Θv),

where σr is even if r is odd and odd if r is even.

If we let δ = 0, then the inequalities corresponding to θj and θ11−j only differ by a
factor of −1, so it suffices to consider the system

∣∣∣∣∣
√

6 +
√

2

2
τ

∣∣∣∣∣ < ε (mod 2π),

∣∣∣√3τ + π
∣∣∣ < ε (mod 2π),

∣∣∣√2τ
∣∣∣ < ε (mod 2π),

|τ + π| < ε (mod 2π),∣∣∣∣∣
√

6−
√

2

2
τ

∣∣∣∣∣ < ε (mod 2π).
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In order to apply Kronecker’s Theorem, we need to show that for every integer solution to
the equation √

6 +
√

2

2
`1 +

√
3`2 +

√
2`3 + `4 +

√
6−
√

2

2
`5 = 0,

we have
0(`1 + `3 + `5) + π(`2 + `4) ≡ 0 (mod 2π).

Since the only integer solutions are of the form `1 = −`3 = −`5, `2 = `4 = 0, the above
equation is satisfied. Hence we can apply Kronecker’s Theorem, which verifies that we
have pretty good state transfer between states v = 1√

2
(e1 + e3) and vσ = 1√

2
(e11 + e9). ♦

In 2018, Vieira and Rigolin [46] summarized the previous work considering quantum
state transmission into three topics: (a) the transfer of a single excitation or an arbitrary
qubit from Alice to Bob, (b) the creation of a highly entangled state between Alice and
Bob, and (c) the transfer of multiple excitations or multiple qubit states from Alice to
Bob. In each of these problems, the main consideration is transfer on a path, so for (a),
the transfer is typically studied between vertices 1 and n; for (b), the transfer is typically
studied between vertices 1 and 2 and 1 and n; and for (c), the transfer is typically studied
between vertices 1 and 2 and n−1 and n. In their paper, the authors focus on the transfer
of maximally entangled two-qubit states, or Bell states, and investigate the transmission
of the pairwise entanglement between Alice’s starting state and Bob’s ending state. They
vary the coupling constants (edge weights) between the vertices and numerically assess
the greatest pairwise entanglement transmission. They also vary the path by adding an
additional leaf at each end, extending slightly beyond the 1-dimensional case. The authors
claim that this modification is crucial to have almost perfect transmission of a Bell state
without modulation or external fields, but this appears to contradict Corollary 5.1.2.

We proceed by examining paths of certain lengths and states of a particular form, and
characterizing pretty good state transfer of multiple qubit states in terms of the eigenvalue
support of the states. Our approach is analogous to the proofs of Theorem 4.3.1 and
Theorem 4.3.3. The eigenvalue support of a state v is the set of eigenvalues θ such that
Eθv 6= 0, and is denoted by Θv. We begin by generalizing the notion of strong cospectrality
to multiple qubit states. We say that two states v and w of X are cospectral if for each
idempotent Er in the spectral decomposition of X, we have v†Erv = w†Erw, parallel if
for each eigenvalue θr, the vectors Erv and Erw are parallel, and strongly cospectral if for
each eigenvalue θr, there exists a γr such that |γr| = 1 and Erv = γrErw (Note that unlike
in the case of a single vertex, we cannot assume the states are real, which allowed us to
simplify γr to ±1.). Recalling Lemma 2.3.3, we verify that these generalizations match our
intuition.
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5.1.4 Lemma. Two states v and w in X are strongly cospectral if and only if they are
parallel and cospectral.

Proof. Suppose states v and w are strongly cospectral. It immediately follows from the
definition that v and w are parallel. We verify that v and w are cospectral by observing

v†Erv = γrv
†Erw = γrγrw

†Erw = w†Erw

using the fact that the idempotents are symmetric.

Conversely, suppose v and w are parallel and cospectral. It follows that

w†Erv = cw†Erw = cv†Erv = ccw†Erv = |c|2w†Erv

again using the fact that idempotents are symmetric. Hence it follows that if v†Erw is
nonzero, then |c|2 = 1, so c = γr, |γr| = 1 as required.

Now consider the situation when v†Erw = 0. Since v and w are parallel, it follows
that v†Erv = w†Erw = 0. We then observe that

‖Erv‖2 = v†E†rErv = v†Erv = 0,

using the fact that Er is symmetric and idempotent. Similarly, ‖Erw‖2 = 0. Hence
Erv = Erw = 0 as required.

We continue by verifying that strong cospectrality is a requirement for pretty good
state transfer in this more general case.

5.1.5 Lemma. Let X be a graph, and let v,w be states of X. If there is pretty good state
transfer from v to w, then v and w are strongly cospectral.

Proof. By definition, if we have pretty good state transfer from v to w in X, then there
exists a sequence of times {tk} such that

lim
k→∞
|w†U(tk)v| = 1.
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We calculate the following:

1 = lim
k→∞
|w†U(tk)v|

≤
∑
θ

|w†Eθv|

≤
∑
θ

√
v†Eθv

√
w†Eθw

≤
√∑

θ

v†Eθv
∑
θ

w†Eθw

= 1.

The first inequality is an application of the triangle inequality. The second and third
inequalities are applications of Cauchy-Schwarz, where we take u = Eθv and v = Eθw and
u = (

√
v†Eθv)θ and v = (

√
w†Eθw)θ respectively. The last inequality follows from the

spectral decomposition and the definition of v,w.

Therefore, all inequalities must hold with equality. In particular, the second inequality
implies v and w are parallel, and the third inequality implies v and w are cospectral,
which completes the proof.

Having defined strong cospectrality for multiple qubit states and demonstrated that
is is a necessary condition for pretty good state transfer in general, we now restrict our
attention to pretty good state transfer on paths between v and vσ. We first verify the
following.

5.1.6 Lemma. Let v be a state of a path Pn. Then v and vσ are strongly cospectral.
Moreover, Erv = (−1)r+1Erv

σ.

Proof. For a given r, we apply Lemma 3.3.7 to obtain

Erv = Er
∑

a∈V (Pn)

βaea

=
∑

a∈V (X)

βaErea

=
∑

a∈V (Pn)

βa(−1)r+1Eren+1−a
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= (−1)r+1Er
∑

a∈V (Pn)

βaen+1−a

= (−1)r+1Erv
σ,

as desired.

We now generalize Theorem 4.2.4 to this case.

5.1.7 Theorem. Let v be a state of a path Pn, and let ζj = (1 + (−1)j)/2. Then there is
pretty good state transfer between states v and vσ if and only if for every set of integers
{`j} such that ∑

θj∈Θv

`jθj = 0 and
∑
θj∈Θv

`jζj is odd,

then ∑
θj∈Θv

`j 6= 0.

Proof. First suppose the condition on the sets of integers {`j} is satisfied. We consider the
system of inequalities

|θjτ − (δ + ζjπ)| < ε (mod 2π), (θj ∈ Θv).

Let {`j} be a set of integers such that ∑
θj∈Θv

`jθj = 0.

Then we desire ∑
θj∈Θv

`j(δ + ζjπ) ≡ 0 (mod 2π). (†)

We need to show that there exists a δ such that the above equation is true for all sets
{`j}. If

∑
`jζj is even for every set of integers {`j}, then we may choose δ = 0. Otherwise,

suppose for some set of integers {`j} that
∑
`jζj is odd, in which case α :=

∑
`j 6= 0, and

let δ be such that the above equation is satisfied for this set. Suppose {`′j} is also a set of
integers such that ∑

θj∈Θv

`′jθj = 0.
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Define α′ =
∑
`′j, and let 2r be the largest power of 2 that divides α, 2s be the largest

power of 2 that divides α′, and t = min{r, s}. Take δ = π2−r. Then we construct the set
of integers γj = 2−t(α′`j − α`′j). It is a straightforward calculation that

∑
γjθj = 0 and∑

γj = 0. Now consider the expression

∑
θj∈Θv

γjζj =
∑
θj∈Θv

2−t(α′`j − α`′j)ζj =
(
2−tα′

)∑
θj∈Θv

`jζj

− (2−tα)
∑
θj∈Θv

`′jζj

 .

We observe that
∑
γjζj is even, as otherwise we have a contradiction to our hypothesis,∑

`jζj is odd by our assumption, and at least one of 2−tα and 2−tα′ is odd. If 2−tα′ is odd,
then both 2−tα and

∑
`′jζj are odd, so r = s, and (†) is satisfied. Otherwise, 2−tα′ is even,

so s > r, 2−tα is odd and
∑
`′jζj is even; thus (†) is satisfied. Therefore, by Kronecker’s

Theorem, the system of inequalities

|θjτ − (δ + ζjπ)| < ε (mod 2π), (θj ∈ Θv).

admits a solution τ0 for τ . Hence we obtain

U(τ0) =
∑
θj∈Θv

eiτ0θjEj =
∑
θj∈Θv

(1− ε′)eiδσjEj

and so U(τ0)v ≈ eiδvσ, and hence we have pretty good state transfer between states v and
vσ.

Conversely, suppose that pretty good state transfer occurs between v and vσ. Applying
Lemma 5.1.6, we see that for some τ , we have

U(τ)v ≈ eiδvσ,

eiθjτEjv ≈ eiδEjv
σ, (θj ∈ Θv),

eiθjτEjv ≈ (−1)j+1eiδEjv, (θj ∈ Θv),

θjτ ≈ δ + ζjπ (mod 2π), (θj ∈ Θv).

So by Kronecker’s Theorem, for every set of integers {`j} such that
∑
`jθj = 0, we have∑

θj∈Θv

`j(δ + ζjπ) ≡ 0 (mod 2π).

It follows that if
∑
`jζj is odd, then

∑
`j cannot be zero, or the above condition is not

satisfied, which completes the proof.
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Next, we provide our key lemma, which uses cyclotomic polynomials to draw conclusions
about the possible linear combinations of eigenvalues that equal zero, which will aid us in
applying Kronecker’s Theorem.

5.1.8 Lemma. Let m be a positive integer of the form 2tps, where p is an odd prime and
s ∈ N, and let θj = 2 cos(jπ/m), 1 ≤ j < m. If there is a linear combination satisfying

m−1∑
j=1

`jθj = 0,

where each `j is an integer, then if 1 ≤ j ≤ m − m/p, and we let j := q(m/p) + r,
0 ≤ r < m/p, we have

`j =

{
`m−j + (−1)q(`m−m/p+r − `m/p−r), r 6= 0;

`m−j, r = 0.

Proof. Notice that each θj is of the form

θj = ζj2m + ζ−j2m,

where ζ2m is a 2m-th primitive root of unity. Hence, every θj belongs to the cyclotomic
field Q(ζ2m). The cyclotomic polynomial is

Φ2m(x) =

p−1∑
k=0

(−1)kxkm/p

and we define the polynomial P (x) as follows:

P (x) =
m−1∑
j=1

`jx
j +

2m−1∑
m+1

`2m−jx
j.

We see that ζ2m is a root of P (x) and, since Φ2m(x) is the minimal polynomial of ζ2m, we
see that Φ2m(x) divides P (x).

Let Q(x) be the following polynomial:

Q(x) =

m/p∑
j=1

`jx
j +

m−1∑
j=m/p+1

(`j + `j−m/p)x
j + `m−m/px

m +

m/p−1∑
j=1

(
`m−j + `m−m/p+j − `j

)
xm+j.
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Now, as the degree of Q(x) is m+m/p− 1, and

[xj]Φ2m(x)Q(x) = [xj]P (x), 0 ≤ j ≤ m+m/p− 1,

we may conclude that Q(x) is the unique polynomial of degree m + m/p − 1 such that
[xj]Φ2m(x)Q(x) = [xj]P (x) for 0 ≤ j ≤ m + m/p − 1. In particular, the quotient
P (x)/Φ2m(x) is a polynomial of degree m + m/p − 1 with this property, and therefore
P (x) = Φ2m(x)Q(x). Hence, from the coefficients of x2m−j for 1 ≤ j ≤ m−m/p, we have

`j =

{
`m−j + (−1)q(`m−m/p+r − `m/p−r), r 6= 0;

`m−j, r = 0.

as desired.

We also show that for states of paths of particular forms, we can draw conclusions
about their eigenvalue supports. Recall we write v =

∑
x∈V (Pn) βxex. If v is such that

βx = 0 for all even x, we say that v is an odd state, and if v is such that βx = 0 for all odd
x, we say that v is an even state. Moreover, we say a state is a parity state if it is an odd
state or an even state.

5.1.9 Lemma. For Pn, let v be a parity state. If θj /∈ Θv, then θn+1−j /∈ Θv.

Proof. Let θ ∈ Θv. Then for each x ∈ V (Pn), we have

(Ejv)x =
2

n+ 1

(
sin

xjπ

n+ 1

) ∑
y∈V (Pn)

βy

(
sin

yjπ

n+ 1

)
= 0.

Thus

(En+1−jv)x =
2

n+ 1

(
sin

x(n+ 1− j)π
n+ 1

) ∑
y∈V (Pn)

βy

(
sin

y(n+ 1− j)π
n+ 1

)

=
2

n+ 1

(
− cos(xπ) sin

xjπ

n+ 1

) ∑
y∈V (Pn)

βy

(
− cos(yπ) sin

yjπ

n+ 1

)

= ± 2

n+ 1

(
sin

xjπ

n+ 1

) ∑
y∈V (Pn)

βy

(
sin

yjπ

n+ 1

)
= 0.

Hence, θn+1−j /∈ Θv as desired.
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We are now able to derive the following results, relating pretty good state transfer of
states of paths to the eigenvalue support of the state.

5.1.10 Theorem. Suppose m = 2tps, where p is an odd prime and s, t ∈ N, and let v be
a parity state of Pm−1. For 1 ≤ c < m/p, let

Sc := {θc+jm/p : 0 ≤ j < p}.

Moreover, let S0 := {θm/2} be given. Then in Pm−1, there is pretty good state transfer
between states v and vσ if and only if there does not exist Sc with c odd and Sc′ with c′

even such that Sc ∪ Sc′ ⊆ Θv.

Proof. First, suppose there exist Sc with c odd and Sc′ with c′ even such that Sc∪Sc′ ⊆ Θv.
Consider the set of integers {`k} given by

`k =



1, if k = m/2 and c = 0;

−1 if k = m/2 and c′ = 0;

1, if k ≡ c (mod 2m/p), c 6= 0;

−1, if k ≡ c+m/p (mod 2m/p), c 6= 0;

1, if k ≡ c′ +m/p (mod 2m/p), c′ 6= 0;

−1, if k ≡ c′ (mod 2m/p), c′ 6= 0;

0. otherwise.

For Sm/2,m, we have that θm/2 = 0. Otherwise, by Lemma 4.3.2, we have that

p−1∑
j=0

(−1)jθc+jm/p =

p−1∑
j=0

(−1)j cos

(
(c+ jm/p)π

m

)
= 0,

and so
∑

k `kθk = 0. Moreover, we can verify that
∑

k `kζk is odd and
∑

k `k = 0. Hence,
by Theorem 5.1.7, we cannot have pretty good state transfer from v.

Now, suppose we do not have Sc with c odd and Sc′ with c′ even such that Sc∪Sc′ ⊆ Θv.
Then Sc * Θv for all odd c or Sc * Θv for all even c. Consider Sc * Θv, c 6= 0. Then there
exists a jc such that θc+jcm/p /∈ Θv, and by Lemma 5.1.9, we have that θm−c−jcm/p /∈ Θv.
So, in any linear combination, we assume `c+jcm/p = `m−c−jcm/p = 0. Therefore, letting
rc ≡ c (mod m/p), 0 ≤ r < m/p, we have by Lemma 5.1.8 that `m/p−rc = `m−m/p+rc , and
hence `j = `m−j for every j ≡ c (mod m/p).
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Now, we first suppose Sc * Θv for all odd c. Then it follows that `j = `m−j for all
odd j. Now suppose there is a set of integers {`j} such that

∑
j `jθj = 0 and

∑
j `jζj is

odd. Then since the sum of the `j’s for j odd is even, it follows that
∑

j `j 6= 0. Hence, by
Theorem 5.1.7, there is pretty good state transfer between v and vσ.

Next, we suppose Sc * Θv for all even c. Then it follows, together with Lemma 5.1.8,
that `j = `m−j for all even j and `m/2 = 0. Hence,

∑
j `jζj is never odd. Hence, by

Theorem 5.1.7, there is pretty good state transfer between v and vσ.

5.1.11 Theorem. Suppose m = ps, where p is an odd prime and s ∈ N, and let v be a
parity state of Pm−1. For 1 ≤ c < m/(2p), let

Rc := {θc+jm/p : 0 ≤ j < p} ∪ {θm/p−c+jm/p : 0 ≤ j < p}.

Then in Pm−1, there is pretty good state transfer between states v and vσ if and only if
there does not exist Rc such that Rc ⊆ Θv.

Proof. First, suppose there exists Rc such that Rc ⊆ Θv. Consider the set of integers {`k}
given by

`k =


1, if k ≡ c (mod 2m/p) or k ≡ 2m/p− c (mod 2m/p);

−1, if k ≡ c+m/p (mod 2m/p) or k ≡ m/p− c (mod 2m/p);

0, otherwise.

By Lemma 4.3.2, we have that

m/p−1∑
j=0

(−1)jθc+jm/p =

m/p−1∑
j=0

cos

(
(c+ jm/p)π

m

)
= 0,

m/d−1∑
j=0

(−1)jθm/p−c+jm/p =

m/p−1∑
j=0

cos

(
(m/p− c+ jm/p)π

m

)
= 0,

and so
∑

k `kθk = 0. Moreover, we can verify that
∑

k `kζk is odd and
∑

k `k = 0. Hence,
by Theorem 5.1.7, we cannot have pretty good state transfer between v and vσ.

Now suppose there does not exist Rc such that Rc ⊆ Θv. Then for each c, there exists
a c′ such that θc′ ∈ Rc \Θv, and by Lemma 5.1.9, we have that θm−c′ ∈ Rc \Θv. So, in any
linear combination, we assume `c′ = `m−c′ = 0. By Lemma 5.1.8, we have that `j = `m−j
for every θk ∈ Rc. It follows, together with Lemma 5.1.8, that `j = `m−j for every j. Now
suppose there is a set of integers {`j} such that

∑
j `jθj = 0 and

∑
j `jζj is odd. Then it

follows
∑

j `j ≡ 2 (mod 4), and in particular, is not zero. Hence, by Theorem 5.1.7, there
is pretty good state transfer between v and vσ.
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As a consequence, we demonstrate pretty good state transfer in the following class.

5.1.12 Corollary. Given any odd prime p and positive integer t ≥ 2, there is pretty good
state transfer in P2tp−1 between states v = 1√

2
(ea + αeb) and vσ = 1√

2
(e2tp−a + αe2tp−b)

whenever a 6= b, α = ±1, and a+ αb ≡ 0 (mod 2t).

Proof. We consider the eigenvalue support of v. In particular, we show that θ2pj /∈ Θv for
1 ≤ j < 2t−1. We have

(E2pjv)x =
1√
2

((E2pj)x,a + α(E2pj)x,b)

=
2

2tp
√

2
sin

(
jxπ

2t−1

)(
sin

(
jaπ

2t−1

)
+ α sin

(
jbπ

2t−1

))
=

4

2tp
√

2
sin

(
jxπ

2t−1

)
sin

(
j(a+ αb)π

2t

)
cos

(
j(a− αb)π

2t

)
= 0,

since a+αb is a multiple of 2t. We observe that 2p generates the subgroup {0, 2, 4, . . . , 2t−2}
of Z2t . Moreover, we have shown that θ2t−1p /∈ Θv. Hence, for every even c, we have that
Sc * Θv, and so by Theorem 5.1.10, there is pretty good state transfer between v and
vσ.

5.2 Fractional Revival

Fractional revival can be viewed as another special case of state transfer on graphs, where
we start with a single vertex state and desire transfer to a subset of the vertices of the
graph, including the initial vertex. Formally, we say a graph X has fractional revival from
vertices a to b at time τ ∈ R if for some α, β ∈ C with |α|2 + |β|2 = 1 and β 6= 0, we have

U(τ)ea = αea + βeb.

We additionally say that X has (α, β)-revival from a to b at time τ . Notice that if we have
β = 0, then such a definition would mean a is periodic, and this case is excluded from
the definition, as otherwise periodicity at a would imply fractional revival between a and
every other vertex. On the other hand, if α = 0, then such a definition would mean there
is perfect state transfer between a and b, and this is allowed to be an example of fractional
revival. Moreover, for a graph X, a vertex a, and a subset of the vertices B 3 a, we say X
has generalized fractional revival from a to B at time τ ∈ R if eTb U(τ)ea 6= 0 if and only if
b ∈ B.

80



Fractional revival in weighted graphs was introduced by Chen, Song, and Sun [11] and
further studied by Banchi, Compagno, and Bose [3], Genest, Vinet, and Zhedanov [27],
and Christandl, Vinet, and Zhedanov [19]. It was considered for the unweighted graph by
Chan et al. [10]. In what follows, we provide a survey of their main results. We begin by
stating a few constructions of fractional revival from perfect state transfer, periodicity, and
uniform mixing.

5.2.1 Theorem. [10] Let X be a graph that is periodic at vertex a at time τ . Let Y be a
graph with instantaneous uniform mixing at time τ . Then, for any vertex u of Y , the graph
X�Y has generalized fractional revival from (a, u) to the vertices {(a, v) : v ∈ V (Y )} at
time τ .

5.2.2 Theorem. [10] Let X be a graph with perfect state transfer between vertices a and b
at time τ , where τ < π/2. Let Y be a graph on the same vertex set as X where (a, b) is an
isolated edge. If the adjacency matrices of X and Y commute, then X ∪ Y has fractional
revival at time τ .

5.2.3 Theorem. [10] Suppose Y has perfect state transfer between vertices a and b at
time π/2. Assume there is an automorphism T of Y with order two which swaps a and b.
Consider the graph Xθ whose adjacency matrix is

A(X0) = I ⊗ A(Y ) + cos(2θ)(σX ⊗ I) + sin(2θ)(σZ ⊗ T ).

(Note: X0 = K2�Y .) Then Xθ has e−iπ/2(sin(2θ), cos(2θ))-revival between (0, a) and (1, b)
at time π/2.

We now present their result demonstrating a sort of symmetry property for fractional
revival from a to b and b to a, albeit with different parameters.

5.2.4 Proposition. [10] If (α, β)-revival occurs from a to b in a graph X then (−αβ

β
, β)-

revival occurs from b to a at the same time.

Similarly to state transfer, they demonstrate that the vertices involved in fractional
revival must be parallel.

5.2.5 Proposition. [10] If there is (α, β)-revival between a and b in a graph X, then these
vertices are parallel.

On the other hand, the vertices involved need not be cospectral. However, if the vertices
involved are also cospectral, more can be said about the eigenvalues of the graph, similarly
to the characterization of periodicity at a vertex (Theorem 3.2.7).
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5.2.6 Theorem. [10] Assume X admits fractional revival between strongly cospectral ver-
tices a and b. Let θ0, . . . , θt be the eigenvalues in their support. Then these are either
integers or quadratic integers. Moreover, there are integers a+, a−, ∆+ (square-free), ∆−

(square-free), and {br}tr=0 such that, for all r = 0, . . . , t,

(a) if σr = 1, then θr = a++br
√

∆+

2
, and

(b) if σr = −1, then θr = a−+br
√

∆−

2
.

Moreover, when the vertices being considered are strongly cospectral, fractional revival
occurs together with perfect state transfer, pretty good state transfer, or periodicity.

5.2.7 Theorem. [10] If fractional revival occurs between two strongly cospectral vertices a
and b in X, then X has perfect state transfer or pretty good state transfer from a to b, or
X is periodic at a and b at the same time.

The next result compares fractional revival in a graph with fractional revival in its
quotient. We define an equitable partition ρ =

⋃
iCi to be a partition of the vertex set of

a graph X such that for every i, j, all vertices in Ci have the same number of neighbours
dij in Cj. Then the quotient graph X/ρ has vertex set ρ and the edge joining Ci and Cj
has weight

√
dijdji.

5.2.8 Theorem. [10] Suppose a graph X has an equitable partition ρ containing singleton
cells {a} and {b}. There is fractional revival between a and b in X if and only if there is
fractional revival between {a} and {b} in the quotient X/ρ.

Next, while strong cospectrality is not a requirement for fractional revivial, a stronger
condition than parallel is needed, as the following proposition shows. We let AutX(a)
denote the group of automorphisms that fix the vertex a.

5.2.9 Proposition. [10] Suppose fractional revival occurs between a and b in a graph X,
then AutX(a) = AutX(b).

For a bipartite graph, stronger conditions are also obtained which depend on whether
the two vertices are in the same colour class.

5.2.10 Theorem. [10] Suppose (α, β)-revival occurs between a and b in a bipartite graph
X at time τ . If a and b belong to different colour classes of X then a and b are strongly
cospectral. If a and b belong to the same colour class then X is periodic at both vertices at
time 2τ .
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Finally, fractional revival is characterized for cycles and paths.

5.2.11 Theorem. [10] Fractional revival occurs in a cycle if and only if it has four or six
vertices.

5.2.12 Theorem. [10] A path Pn admits fractional revival if and only if n ∈ {2, 3, 4}.

5.3 Future Directions

We would like to continue the characterization of pretty good state transfer of multiple
qubit states in terms of the eigenvalue support for cases when the length of the path is not
of the form 2tps − 1 or when the initial state is not a parity state. One of the challenges
with considering other lengths is that the cyclotomic polynomial does not have as elegant
a form as those we considered, and so it seems less likely that removing a small number of
eigenvalues would lead to the same symmetry of coefficients that we obtain in these cases.
For example, the 30th cyclotomic polynomial is

x8 + x7 − x5 − x4 − x3 + x+ 1,

and later polynomials will have coefficients other than 1, 0, and −1. For initial states
which are not parity states, we lose the property that θ is in the eigenvalue support of the
state if and only if −θ is, so we would again need to expand our consideration of what
eigenvalue supports would allow pretty good state transfer.

Additionally, Vieira and Rigolin [46] analyzed numerically the transfer of entanglement
when the path is modified by adding an additional leaf at each end and changing the edge
weights, and considering transfer between the pairs of leaves. We are interested in pursuing
this problem analytically, and to determine if the length of the path has a similar influence
as the single state case. We would also like to compare the performance of pretty good
state transfer in this case, to pretty good state transfer of the first two vertices of the path,
and motivated by our results for parity states, the first and third vertices of a path, to
determine whether modify the path provides any advantage.

Finally, the results for pretty good state transfer of parity states on paths and the
results for fractional revival are both examples of multiple qubit state transfer. We would
like to investigate whether there is a more general class of examples of pretty good state
transfer, particularly for paths, that captures both of these ideas. Such a generalization
may also allow us to expand our results for either of these problems.
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