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Abstract

We review what it means to model a queueing system, and highlight several components of
interest which govern the behaviour of customers, as well as the server(s) who tend to them. Our
primary focus is on polling systems, which involve one or more servers who must serve multiple
queues of customers according to their service policy, which is made up of an overall polling
order, and a service discipline defined at each queue. The most common polling orders and
service disciplines are discussed, and some examples are given to demonstrate their use. Classic
matrix analytic method theory is built up and illustrated on models of increasing complexity, to
provide context for the analyses of later chapters. The original research contained within this
thesis is divided into two halves, finite population maintenance models and infinite population
cyclic polling models.

In the first half, we investigate a 2-class maintenance system with a single server, expressed
as a polling model. In Chapter 2, the model we study considers a total of C machines which are
at risk of failing when working. Depending on the failure that a machine experiences, it is sorted
into either the class-1 or class-2 queue where it awaits service among other machines suffering
from similar failures. The possible service policies that are considered include exhaustive, non-
preemptive priority, and preemptive resume priority. In Chapter 3, this model is generalized
to allow for a maintenance float of f spare machines that can be turned on to replace a failed
machine. Additionally, the possible server behaviours are greatly generalized. In both chapters,
among other topics, we discuss the optimization of server behaviour as well as the limiting
number of working machines as we let C → ∞. As these are systems with a finite population
(for a given C and f), their steady-state distributions can be solved for using the algorithm for
level-dependent quasi-birth-and-death processes without loss of accuracy.

When a class of customers are impatient, the algorithms covered in this thesis require their
queue length to be truncated in order for us to approximate the steady-state distribution for
all but the simplest model. In Chapter 4, we model a 2-queue polling system with impatient
customers and ki-limited service disciplines. Finite buffers are assumed for both queues, such
that if a customer arrives to find their queue full then they are blocked and lost forever. Finite
buffers are a way to interpret a necessary truncation level, since we can simply assume that
it is impossible to observe the removed states. However, if we are interested in approximating
an infinite buffer system, this inconsistency will bias the steady-state probabilities if blocking
probabilities are not negligible. In Chapter 5, we introduce the Unobserved Waiting Customer
approximation as a way to reduce this natural biasing that is incurred when approximating an
infinite buffer system. Among the queues considered within this chapter is a N -queue system
with exhaustive service and customers who may or may not be impatient. In Chapter 6, we
extend this approximation to allow for reneging rates that depend on a customer’s place in their
queue. This is applied to a N -queue polling system which generalizes the model of Chapter 4.
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Chapter 1

Introduction

1.1 What’s in a Queueing Model?

A queueing model describes the process in which customers (or jobs) contend with each other for
a system’s resources in the form of one or more servers. Typically, this involves the customers
present in the system at a given time waiting in one or more lines, or queues, until they are able
to enter service. The design of a queueing model may become very complex depending on the
its features, which may or may not be common in other types of models. At the heart of every
queueing model, however, is some form of a customer-server relationship, and so it is necessary
to be able to describe how they come to find each other, as well as how the server treats the
customer (e.g., if there are multiple levels of priorities, or if the server takes vacations) and how
long it will take to serve them. In this way we must understand what is meant by an arrival or
service process.

The arrival process of a queueing model describes the distribution of the interarrival times
of customers, as well as how many customers arrive simultaneously. Arrivals may be individual
(e.g., Boxma [18]) or in batches (e.g., Boxma and Groenendijk [20]). The most common assumed
arrival process is the Poisson process, in which the interarrival times for individual customers
of a common type, or class, are independent and identically distributed as exponential random
variables with a shared rate. This distributional assumption is often prized for its memoryless
property, among other features, which allow for easier analysis through the use of the PASTA
property (Poisson Arrivals See Time Averages, Wolff [98]). Specifically, PASTA allows one
to equate the steady-state distribution of a model to the distribution of the system at arrival
instants, simplifying waiting time analysis.

The service process of a queueing model constitutes the distribution of a customer’s service
time, as well as the order in which the server(s) attend to customers within their queue, the
order in which the server(s) visit different queues if there are multiple queues (i.e., the polling
order), and how many customers they serve during a visit (i.e., the service discipline). In
many models, there are no restrictions on what a service time distribution may be, other than
it be non-negative with finite moments. In these cases the distribution used in their analysis
is referred to as general. However, in the scope of this document, to enable us the ability
to work within the framework of matrix analytic methods (MAM), we elect to use phase-type
distributions, which shall be introduced in Section 1.2.3.

Some possible choices for the rules governing the service order of customers within the same
queue are first-come, first-served (FCFS, alternatively denoted as FIFO for first-in, first-out),
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last-come, first-served (LCFS), service in random order (SIRO), shortest job first (SJF), or most
profitable job first. While a SJF discipline may be optimal from a total system optimization
standpoint (Schrage [84]), it requires the assumption that the server knows exactly how long
it would take to service each queued customer, which is unrealistic outside of some computer
systems models (where the customers are data to be processed and have a known size). It
therefore should not be surprising to know that FCFS is the typical standard, as it ensures a
level of fairness for all customers. The topic of scheduling visits to multiple queues by a server,
and the decision of how many customers to serve during a visit, are key features of polling
models, especially within the analysis of system optimization. For this reason, we choose to
table this discussion until Section 1.2.7, where we introduce and discuss polling systems in more
detail.

The number of servers, and the number of waiting places within a queue, are also consider-
ations that are addressed in the definition of any queueing model. The choice to have a single
server is common, especially in polling models, though a model may in fact assume up to an
infinite number of servers (i.e., each customer who arrives immediately begins service). A model
with an infinite number of servers may represent, for example, the number of people with the
flu (as everyone has their own immune system), or simply a system with a sufficiently large
number of servers in relation to the arrival rates of customers (such as tourists asking locals on
the street of a large city for directions). A queueing model by default may assume that there
are an infinite number of waiting spaces for arriving customers, which is referred to as having an
infinite buffer capacity. If, on the contrary, there is a cap on the number of customers that may
simultaneously wait in the same queue, it is said to have a finite buffer capacity. Depending on
the model, analysis may require the use of a finite buffer for computational purposes, even if
the real life system it is describing does not have such a restriction. In these cases, an infinite
buffer system may be approximated through the increase of the number of waiting spaces until
the probability of a customer being blocked (i.e., arriving to find their queue full and being
turned away) is sufficiently small.

Some examples of other features that may be present in a queueing model to more accurately
describe a customer’s actions are:

• Balking : When a customer decides to not join a queue after their arrival if the queue
length is too long (e.g., Drekic and Woolford [32]),

• Jockeying : When a customer decides to change which queue they are waiting in (e.g.,
Gertsbakh [37]),

• Reneging : When a customer decides to leave a queue before reaching service due to
impatience (e.g., Section 1.2.5),

• Retrials: When a customer decides to return to a queue after some random delay, having
previously left the queue before receiving service (e.g., Artalejo et al. [5]),

• Routing : When a customer decides to immediately rejoin a queueing system after com-
pleting service (e.g., Towsley [90]).

We would be remiss to not also list some features that can also generalize a server’s behaviour
within the context of a queueing model, such as:

• Switchover Times: When a server is working on a multi-queue system, a switchover time
may be incurred between consecutive visits to two different queues (e.g., Servi [85]),
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• Vacations: When a server takes a break from serving any customers, despite the possible
presence of customers waiting in a queue to be served (e.g., Igaki [46]).

Due to the versatility of what we can define as customers, and the services they receive, queueing
theory as a whole is adaptable to many real world applications. For instance, aside from the
obvious parallels to retail that people experience in their everyday lives, it can be used to
model problems in telecommunications (e.g., Palm [73]), traffic (e.g., Boon [15]), health care
(e.g., Drekic et al. [31]), production (e.g., Koenigsberg and Mamer [56]), and maintenance
(e.g., Mack et al. [66]). Of these, maintenance models are of a particular relevance to the work
within Chapters 2 and 3 of this thesis.

1.2 Using Matrix Analytic Methods

1.2.1 Generating the Generator

The use of MAM combines our knowledge of continuous-time Markov chains (CTMCs) or
discrete-time Markov chains (DTMCs) with our understanding of queueing systems. This
thesis focuses solely on modelling systems in continuous time, so we will therefore begin this
subsection with a brief review of CTMCs (e.g., Ross [82], Chapter 6).

Definition: A stochastic process {X(t), t ≥ 0} is called a continuous-time Markov chain if the
following conditions hold true:

(1) The state space S of {X(t), t ≥ 0} is at most countable (i.e., finite S = {0, 1, . . . , n} or
countable S = {0, 1, . . .}). That is, X(t), t ≥ 0, is a discrete random variable.

(2) (Markov Property) For any s, t ≥ 0, i, j ∈ S,

P (X(t+ s)︸ ︷︷ ︸
future

= j| X(s)︸ ︷︷ ︸
present

= i,X(u) = x(u), 0 ≤ u < s︸ ︷︷ ︸
past

) = P (X(t+ s) = j|X(s) = i),

where x(u) ∈ S represents the (possibly varying) state of the CTMC in the past as a
function of time u. That is, the probabilistic properties of the future development of the
CTMC only depends on the current state and is independent of its past.

A CTMC is referred to as being time-homogeneous if P (X(t+ s) = j|X(s) = i) is independent
of s, in which case we define the transition probability function

Pi,j(t) = P (X(t+ s) = j|X(s) = i) = P (X(t) = j|X(0) = i), t ≥ 0, i, j ∈ S.

We will only be considering CTMCs that are time-homogeneous within this thesis, so this
property will be assumed going forward.

The duration of time that a CTMC spends visiting a state i ∈ S prior to transitioning to
a different state j 6= i is random, having an exponential distribution whose parameter may be
state-dependent. We denote this as a sojourn time at state i, Ti ∼ Exp(vi), such that Ti is
exponentially distributed with rate vi, where vi is the total of all transition rates leaving state i.
If vi = 0, then state i is considered to be an absorbing state whose sojourn time will be infinite
in duration.

3



Supposing that vi > 0, after sojourn time Ti completes, the CTMC will transition to state
j 6= i with probability pi,j ,

∑
j∈S pi,j = 1. If one were to only observe state transitions (but

no sojourn times), then the observed movements of this stochastic process can be modelled by
its embedded DTMC {Xn, n ∈ N} having transition probability matrix (TPM) P = [pi,j ]i,j∈S ,
whose elements are these transition probabilities. A restriction observed in these embedded
DTMCs is that pi,i = 0 for all i ∈ S, so long as vi > 0. If vi = 0, then by convention we set
pi,i = 1 so that state i is absorbing in both the CTMC as well as its embedded DTMC.

Next, define qi,j = vipi,j , j 6= i, as the probability flow or instantaneous rate of transition
from state i to state j. It immediately follows that∑

j∈S
j 6=i

qi,j = vi
∑
j∈S
j 6=i

pi,j = vi, i ∈ S.

These names may be understood as follows. Suppose that the initial distribution of a CTMC is
α0 = (α0,0, α0,1, . . .), where αt,i = P (X(t) = i), i ∈ S, t ≥ 0. If we let h > 0 be a small amount
of time such that

P (≥ 2 transitions in [0, h]|X(0) = i) = o(h), ∀ i ∈ S,

where o(h) denotes a function where

lim
h→0

o(h)

h
= 0,

then applying Taylor series expansion,

P (1 transition in [0, h]|X(0) = i)

= 1− P (0 transitions in [0, h]|X(0) = i)− P (≥ 2 transitions in [0, h]|X(0) = i)

= 1− P (Ti > h)− o(h)

= 1− e−vih + o(h)

= 1−
( ∞∑
n=0

(−vih)n

n!

)
+ o(h)

= vih+ o(h),

and for j 6= i,

Pi,j(h) = P (X(h) = j|X(0) = i, 0 transitions in [0, h])P (0 transitions in [0, h]|X(0) = i)

+ P (X(h) = j|X(0) = i, 1 transition in [0, h])P (1 transition in [0, h]|X(0) = i)

+ P (X(h) = j|X(0) = i,≥ 2 transitions in [0, h])P (≥ 2 transitions in [0, h]|X(0) = i)

= 0 + pi,j(vih+ o(h)) + o(h)

= qi,jh+ o(h). (1.1)

Similarly, we can show that

Pi,i(h) = P (Ti > h) + o(h) = e−vih + o(h) = 1− vih+ o(h). (1.2)
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It now follows that

P (X(h) = j) =
∑
i∈S

P (X(h) = j|X(0) = i)P (X(0) = i)

=
∑
i∈S

α0,iPi,j(h)

=
∑
i∈S
i 6=j

α0,i(qi,jh+ o(h)) + α0,j(1− vjh+ o(h))

= α0,j − α0,jvjh+
∑
i∈S
i 6=j

α0,iqi,jh+ o(h). (1.3)

That is, over a small time interval of length h, we (approximately) observe probability mass
moving (or flowing) from every state i 6= j into state j at a proportional rate equal to qi,j , while
probability mass is leaving state j (and flowing to other states) at a proportional rate equal
to vj =

∑
k 6=j qj,k. For the second name, following steps similar to what we used to obtain

Equation (1.1), it is straightforward to confirm that for j 6= i,

E[Transitions into j in [0, h]|X(0) = i] = qi,jh+ o(h),

and so the (expected) rate of transitions into state j, given that X(0) = i, as h→ 0 is

lim
h→0

E[Transitions into j in [0, h]|X(0) = i]

h
= lim

h→0

qi,jh+ o(h)

h
= qi,j .

Therefore, qi,j can be considered as the instantaneous rate of transition into j from i.

Let us now consider how to solve for the transition probability function matrix (TPFM)
P (t) = [Pi,j(t)]i,j∈S , t ≥ 0. First, note that

Pi,j(0) = P (X(0) = j|X(0) = i) =

{
0 , if i 6= j,

1 , if i = j,

implying that P (0) = I, where I is the identity matrix. From Equations (1.1) and (1.2), we
have

lim
h→0

Pi,j(h)

h
= lim

h→0

qi,jh+ o(h)

h
= qi,j ,

and

lim
h→0

Pi,i(h)− 1

h
= lim

h→0

−vih+ o(h)

h
= −vi.

Applying the Chapman-Kolmogorov equations for CTMCs,

Pi,j(s+ t) =
∑
k∈S

Pi,k(s)Pk,j(t),

or in matrix form, P (s + t) = P (s)P (t), we can obtain the Kolmogorov Backward equations
(KBE)

P ′(t) = lim
h→0

P (t+ h)− P (t)

h
= lim

h→0

(P (h)− P (0))P (t)

h
P (t) = Q · P (t) (1.4)

5



and Kolmogorov Forward equations (KFE)

P ′(t) = lim
h→0

P (t+ h)− P (t)

h
= lim

h→0

P (t)(P (h)− P (0))

h
= P (t) ·Q, (1.5)

where the matrix Q is referred to as the generator (or infinitesimal generator) of {X(t), t ≥ 0},
defined as follows.

Definition: If {X(t), t ≥ 0} is a CTMC with TPFM P (t), matrix Q is the infinitesimal
generator matrix of {X(t), t ≥ 0} if

Q = lim
h→0

P (h)− P (0)

h
=



0 1 2 · · ·
0 −v0 q0,1 q0,2 · · ·
1 q1,0 −v1 q1,2 · · ·
2 q2,0 q2,1 −v2

. . .
...

...
...

. . .
. . .

 . (1.6)

This construction implies that from just knowledge of the generator matrix Q, we know that
a sojourn time at state i is exponentially distributed with rate −Qi,i = vi, and the transition
probability from state i to state j is −Qi,j/Qi,i = qi,j/vi = pi,j . We may also note that all row
sums of Q are zero, since∑

j 6=i
qi,j =

∑
j 6=i

vipi,j = vi
∑
j 6=i

pi,j = vi
∑
j∈S

pi,j = vi.

Remark 1.1. The derivation of the KBE and KFE require the interchanging of a limit and a
matrix product. This is always justifiable for both equations in the case of a finite state space
S, or in the KBE when the state space is countable. Details on how to derive the entry-wise
form of the KBE in the countable state space case are provided in the Appendix.

Equations (1.4) and (1.5) provide differential equations which may be solved to obtain
the TPFM. We can confirm that P (t) = etQ satisfies both, where ‘e’ represents the matrix
exponential function, defined as

etQ = I + tQ+
t2Q2

2
+ · · · =

∞∑
n=0

tn

n!
Qn,

which reduces to the standard Taylor series expansion of an exponential function when Q is
scalar. The marginal distribution of {X(t), t ≥ 0} can now be evaluated as αt = α0P (t), t ≥ 0.

Rather than the marginal distribution of a CTMC, a primary interest within this work is
to obtain the stationary (or steady-state) distribution of a CTMC, and show the connection
between it and the generator Q.

Definition: If {X(t), t ≥ 0} is a CTMC with TPFM P (t), a probability distribution {πi}i∈S ,
πi ≥ 0, ∀ i ∈ S, is called a stationary distribution of {X(t), t ≥ 0} if probability row vector
π = (π0, π1, . . .) satisfies:

(1) (Normalization Condition) π e′ =
∑

i∈S πi = 1,
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(2) (Stationary Condition) π = πP (t), ∀ t ≥ 0,

where e′ is a column vector of ones of appropriate length.

Note that in general, the notation ′ will be used to denote matrix (or vector) transpose, and
so e represents a row vector of ones. This vector of probabilities is called ‘stationary’ because
if we let α0 = π, then

αt = α0P (t) = πP (t) = π.

Additionally, this implies that if at any point in time the marginal distribution of {X(t), t ≥ 0}
is equal to probability vector π, then the CTMC has stabilized, and the marginal distribution
will remain the same forever, so that P (X(t) = i) = πi.

Recalling the definition of Q, we can see that if S has finite-many states, then

π = πP (h),

0 = π(P (h)− I),

0 = lim
h→0

πi
P (h)− P (0)

h
= πQ, (1.7)

where 0 is a row vector of zeroes of appropriate length. This provides us with a much easier way
to solve for π, as we do not need to first solve for its TPFM, making the application of Equation
(1.7) the preferred method for solving for the stationary distribution. For the countable state-
space case, if we assume that π satisfies πQ = 0 and let α0 = π, then applying Equation (1.4)
we observe that

d

dt
αt =

d

dt
α0P (t) = α0P

′(t) = α0QP (t) = πQP (t) = 0P (t) = 0.

That is, due to the KBE, the marginal distribution of {X(t), t ≥ 0} does not change in time,
implying that π is a stationary distribution.

Before ending this subsection, it would benefit us to consider yet another interpretation for
the probability flows qi,j . The following is perhaps more useful when actually constructing the
generator for a given model.

Corollary 1.1. For a CTMC {X(t), t ≥ 0} with infinitesimal generator matrix Q, we may
consider each qi,j as the rate of an independent exponential timer (such that if qi,j = 0, then
the timer takes on a value of infinity with probability 1). When the CTMC begins a sojourn
time at a non-absorbing state i ∈ S, an independent Exp(qi,j) timer is started for all j ∈ S.
After observing the first timer completion, the CTMC ends its visit to state i and transitions
to the shortest timer’s respective state j 6= i, after which this process repeats itself. Therefore,
so long as at least one qi,j > 0, we can effectively ignore timers with qi,j = 0, as they will never
have the shortest duration. If qi,j = 0 for all j ∈ S (i.e., vi = 0), then the visit to state i never
ends as no timer ever finishes, in which case state i is an absorbing state.

This alternative interpretation of the probability flows qi,j result in the exact same proba-
bilistic behaviour for {X(t), t ≥ 0} as outlined above, which follows due to the unique charac-
teristics of independent exponential distributions. The case of an absorbing state with vi = 0 is
clearly in agreement with our understood behaviour of an absorbing state, so let us investigate
the cases of states i ∈ S that are non-absorbing. We can confirm this by checking: (1) the
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distribution of a sojourn time in state i; (2) the transition probabilities out of state i; (3) the
state selection of the transition process out of state i is independent of the length of the sojourn
time in state i. The proofs of these three claims are presented in the Appendix. Given our new
understanding of model parameters qi,j , we are ready for our first example.

1.2.2 Example 1: Analyzing the M/M/1 Queueing Model, a Birth-and-Death
Process

Our first illustration on how to apply MAM within a queueing theory context will examine how
to construct the infinitesimal generator Q for an M/M/1 queue, as well as how to solve for the
steady-state distribution for this given Q using Equation (1.7). The name ‘M/M/1’ informs
us of the queueing model’s main characteristics, and is an example of Kendall’s notation [51].
In general, we may label a queueing system as ‘A/S/m/c/p’, which tells us the interarrival
distribution (A), service distribution (S), number of servers (m), total number of waiting and
service spaces for customers (c), and the size of the customer population (p). If c or p are
omitted, as in the case of this M/M/1 model, we assume that their values are infinity. Here,
the letter ‘M ’ stands for memoryless (or Markovian), and indicates that both the interarrival
and service times follow exponential distributions. We assume by default that the system is
under a FCFS discipline and that the random service and interarrival times are independent.

We denote the rates of the exponentially distributed interarrival and service times by λ and
µ, respectively. They are both assumed to be positive constants that do not vary with the
length of the queue. We let the CTMC {X(t), t ≥ 0} track the number of customers in the
system at time t, such that its state space is S = N. In order to construct the infinitesimal
generator matrix Q for this CTMC, as per Equation (1.6), we need to know the values of vi
and qi,j for i, j ∈ N.

Regardless of queue length, the Poisson process arrival flow of customers always acts upon
the system. Meanwhile, the lone server will always tend to a customer so long as the queue is
not empty, immediately beginning the next service after a service time completion if another
waiting customer is available. As customers arrive and receive service individually, we may only
observe the state of the system increase by 1 or decrease by 1 in a single transition. This makes
the M/M/1 queue an example of a birth-and-death process, with births corresponding to arrivals
and deaths corresponding to departures from a non-empty queue after service completions. This
implies that qi,j = 0, ∀ |i− j| > 1.

When the queue is empty (i.e., X(t) = 0), the only distribution actively acting upon the
system is the Exp(λ) distributed interarrival time of the next customer. After observing the
next arrival (i.e., after this exponential timer completes), the state of the system changes to 1.
By Corollary 1.1, this implies that q0,1 = λ. Since q0,j = 0, ∀ j > 1, it holds that

v0 =
∑
j∈N
j 6=0

q0,j = q0,1 = λ.

That is, the sojourn time spent in state 0 is simply equal in distribution to an interarrival time.

When X(t) = i ∈ Z+, there are active exponential timers for both interarrival and service
times whose completions would change the queue length, and hence, the state of the system. If
an arrival is observed first, the state of the system will increment to i+1, so we have qi,i+1 = λ.
If a service completion is observed first, the state of the system will decrement to i− 1, so we
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have qi,i−1 = µ. It immediately follows that

vi =
∑
j∈N
j 6=i

qi,j = qi,i−1 + qi,i+1 = µ+ λ, i ∈ Z+,

reflecting the fact that the sojourn time spent in state i is the minimum of these two timers.
For this specific model, after observing an exponential timer complete, the slower timer prob-
abilistically restarts by the memoryless property of exponential distributions, while the faster
timer is replaced by an iid timer, with the exception of a service completion that empties the
queue.

We can now construct Q as

Q =



0 1 2 · · ·
0 −λ λ 0 · · ·
1 µ −(λ+ µ) λ · · ·
2 0 µ −(λ+ µ)

. . .
...

...
...

. . .
. . .

.
Applying Equation (1.7), it immediately follows that

0 = −λπ0 + µπ1,

0 = λπi−1 − (λ+ µ)πi + µπi+1, i ∈ Z+.

Note that we can re-express these equations in terms of the probability flow leaving and entering
a particular state, obtaining

λπ0 = µπ1,

(λ+ µ)πi = λπi−1 + µπi+1, i ∈ Z+.

The interpretation for these expressions is as follows. In order for the distribution of X(t)
to be stationary, the probability mass at each state must remain constant in time. We have
previously observed in Equation (1.3) how the probability mass in a given state changes in a
small interval of time h due to the flow of probability leaving and entering that state. If we
suppose that α0 = π0, then Equation (1.3) becomes

P (X(h) = j) = πj − πjvjh+
∑
i∈S
i 6=j

πiqi,jh+ o(h)

=

{
π0 − (λπ0 − µπ1)h+ o(h) , if j = 0,

πj − ((λ+ µ)πj − λπj−1 − µπj+1)h+ o(h) , if j ∈ Z+.

If the balance equations did not hold true, then this would indicate that the probability mass in
a given state j ∈ S is not stable over small time intervals, and hence π would not be stationary.

In order to solve this system of equations, it is easy to show that πi = λ
µπi−1, i ∈ Z+.

Defining ρ = λ/µ as the traffic intensity (or workload) of the queue, we find

πi = ρπi−1 = ρ2πi−2 = · · · = ρiπ0, i ∈ Z+.
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Applying the normalization condition (π e′ = 1), so long as ρ < 1, we have

1 =

∞∑
i=0

πi =

∞∑
i=0

ρiπ0 = π0

∞∑
i=0

ρi =
π0

1− ρ,

implying that π0 = 1− ρ, and in general,

πi = (1− ρ)ρi, i ∈ N.

We recognize this as a geometric distribution with a probability of success equal to 1− ρ.

Note that the steady-state distribution will exist iff ρ = λ/µ < 1. From the theory of Poisson
processes (e.g., Ross [82], Theorem 5.1) , we know that the expected number of customer arrivals
in a single time unit equals λ. As the expected quantity of work that a single customer requires
is equal to 1/µ, we can interpret ρ as the expected amount of work for the server (in time units)
that arrives every time unit. If ρ < 1, then the system is stable since the server will periodically
be able to empty the queue of all customers (and we may prove that the CTMC is positive
recurrent). If ρ > 1, then over time the server will surely fall behind on their work, and the
queue length will grow to infinity (implying that there will be a final visit time for every state
and the system is transient). In the event that ρ = 1, there is no expected drift in queue length
over time (and we may prove that the CTMC is null recurrent).

The parameter ρ may also be understood as the server utilization of the queue. That is, ρ
is the long-run proportion of time that the server is busy. To see why, we require the theory of
alternating renewal processes (e.g., Ross [82], Section 7.5.1). Consider a system which can be
described as being in one of two states at a particular moment, say on or off, and the time it
spends in a state is an iid state-dependent random variable, Yn ∼ Y (for the nth on time) or
Zn ∼ Z (for the nth off time). If we suppose that it is turned on at time zero, then the system
will probabilistically restart itself at every future instance of switching from off to on, and in
the long run it will hold that

P (System is on) =
E[Y ]

E[Y ] + E[Z]
.

In the context of an M/M/1 queue, we let the ‘on’ state represent the server working and the
‘off’ state represent the server being idle. Now, it is clear that the server will only be idle from
the time that the queue empties until the next arrival, and so Z ∼ Exp(λ), with E[Z] = λ−1.
The time from an arrival until a queue is emptied again is referred to as a busy period, which
is a random variable we shall denote by BP . In order to find the expected value of BP , we will
derive its Laplace-Stieltjes transform (LST).

The LST for a random variable X is simply defined as F̃X(s) = E[e−sX ]. One benefit
of deriving the LST is that it can be used to obtain the moments of X. Observe that if we
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differentiate the LST r times with respect to s, we obtain

dr

dsr
F̃X(s) =

dr

dsr
E[e−sX ]

=
dr

dsr
E

[ ∞∑
n=0

(−s)n
n!

Xn

]

=
dr

dsr

∞∑
n=0

(−s)n
n!

E[Xn]

= (−1)r
∞∑
n=r

n · (n− 1) · · · (n− r + 1)

n!
(−s)n−rE[Xn].

If we let s→ 0, all but the first remaining term of the above sum vanishes, leaving (−1)rE[Xr].
Thus, it follows that we may obtain the rth moment from the formula

E[Xr] = (−1)r
dr

dsr
F̃X(s)

∣∣∣
s=0

, r ∈ Z+. (1.8)

Considering now the structure of a busy period, it will be comprised of the service time of
the first arriving customer, as well as all busy periods started by customers who arrive during
this service (which may be none). Letting Ser denote the random service time of the customer
who arrived to find the queue empty, N denote the random number of customers who arrived
during Ser (such that N |(Ser = t) ∼ Poi(λt), i.e., a Poisson distribution with mean λt, by the
theory of Poisson processes), and BPn ∼ BP be the (iid) random busy period started by the
nth customer to arrive during Ser , we have

F̃BP (s) = E[e−sBP ] = E[e−s(Ser+
∑N
n=1 BPn)],

where (by convention) we let
∑0

n=1 BPn = 0. First, note that

E[E[e−s
∑N
n=1 BPn |N,Ser ]|Ser ] = E[F̃BP (s)N |Ser ]

=
∞∑
m=0

F̃BP (s)m · (λSer)m

m!
e−λSer

= e−λSereλSer F̃BP (s).

Applying the law of total expectation, we obtain

F̃BP (s) = E[E[e−s·Sere−s
∑N
n=1 BPn |Ser ]] = E[e−(s+λ−λF̃BP (s))Ser ] = F̃Ser (s+ λ− λF̃BP (s)).

Now, by Equation (1.8) and the fact that for any random variable X, F̃X(0) = E[e0] = 1, it
follows that

E[BP ] = − d

ds
F̃BP (s)

∣∣∣
s=0

= − d

ds
F̃Ser (s+ λ− λF̃BP (s))

∣∣∣
s=0

= −F̃ ′Ser (s+ λ− λF̃BP (s))[1− λF̃ ′BP (s)]
∣∣∣
s=0

= −F̃ ′Ser (0)[1− λF̃ ′BP (0)]

= E[Ser ](1 + λE[BP ]).
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Rearranging for E[BP ], we get

E[BP ] =
E[Ser ]

1− λE[Ser ]
,

which for the M/M/1 queue results in

E[BP ] =
1/µ

1− λ/µ =
1

µ− λ, (1.9)

provided that µ > λ.

Returning to our alternating renewal process, we had E[Z] = λ−1, and now we know that
E[Y ] = E[BP ] = (µ− λ)−1. Thus, in the long run, we have

P (Server is busy) =
(µ− λ)−1

(µ− λ)−1 + λ−1
=

1

1 + µ−λ
λ

=
1

µ/λ
= ρ,

and

P (Server is idle) = 1− P (Server is busy) = 1− ρ = π0,

as required.

Remark 1.2. Given the stationary distribution of a queue, we can work backwards to obtain
the expected busy period from the idle probability, π0. That is, since

π0 =
λ−1

E[BP ] + λ−1
,

it follows that

E[BP ] =
1− π0

λπ0
. (1.10)

This can be very useful when analyzing a queue which has an analytic solution for its steady-
state distribution, but whose busy period is difficult to analyze directly.

1.2.3 Continuous Phase-Type Distributions

Before continuing on to our second example, we introduce the continuous phase-type distribu-
tion, which plays an important role in many models which use MAM for their analysis. Phase-
type distributions were introduced by Neuts in 1975 [69] as a generalization of the exponential
distribution. In this sub-subsection we will define what constitutes a continuous phase-type dis-
tribution and list some of their key properties. For an in-depth look at phase-type distributions,
see for example He, Chapter 1 [43].

A continuous phase-type distribution is defined as the time until absorption in a CTMC
having at least one absorbing state. If a CTMC has multiple absorbing states, for the purposes
of the time until absorption, they may be combined and treated as a single state without
affecting this time (as we do not care what state the CTMC is absorbed into, just when).
Therefore, for the purposes of this sub-subsection, let us assume that a CTMC has exactly
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one absorbing state (labelled as state 0), and M transient states 1, 2, . . . ,M , such that we may
express its infinitesimal generator matrix by

Q =

0 1 2 · · · M


0 0 0 0 · · · 0
1 q1,0 −v1 q1,2 · · · q1,M

2 q2,0 q2,1 −v2
. . . q2,M

...
...

...
. . .

. . .
...

M qM,0 qM,1 qM,2 · · · −vM

=

[
0 0

S′0 S

]
,

where S is a M ×M square matrix corresponding to the transient portion of Q and S′0 = −Se′
is the column vector of absorption rates having length M . We alternatively refer to S as a
subgenerator (or rate matrix ), as it is a component of Q and is not an infinitesimal generator
itself (note that at least one row of S must not have a row sum of zero).

Applying block-wise matrix multiplication, we find that

Qn =

[
0 0

−Sne′ Sn

]
, n ∈ Z+.

This convenient form allows us to easily calculate the TPFM of this CTMC. Recalling that

P (t) = etQ =

∞∑
n=0

tn

n!
Qn, t ≥ 0,

where Q0 = I, it follows that

P (t) = I +
∞∑
n=1

tn

n!

[
0 0

−Sne′ Sn

]
=

[
1 0

(I − eSt)e′ eSt

]
, t ≥ 0.

Let the initial probability vector of the CTMC be

α0 = (α0,0, α0,1, α0,2, . . . , α0,M︸ ︷︷ ︸
α∗0

),

where α0,0 is the probability of beginning in the absorbing state and α∗0 is the transient portion
of α0. The probability that the CTMC has not reached its absorption state by some t ≥ 0
is simply the probability of it being in any one of its M transient states at that time. Thus,
letting T denote the continuous phase-type random variable, since αt = α0P (t), it follows that

P (T > t) = P (X(t) ∈ {1, 2, . . . ,M}) = α∗0e
Ste′, t ≥ 0.

Thus, the cumulative distribution function (CDF) of T is

FT (t) = 1− α∗0eSte′, t ≥ 0, (1.11)

and its probability density function (PDF) on the positive real number line is

fT (t) =
d

dt
FT (t) =

d

dt
(1− α∗0eSte′) = −α∗0

[
d

dt
eSt
]
e′ = −α∗0eStSe′ = α∗0e

StS′0, t > 0, (1.12)
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where we may interchange the order of vector-matrix product and derivative since we are only
considering a finite state space. In summary, we define these distributions as follows:

Definition: The time until absorption in a CTMC, T , having probability mass at zero P (T =
0) = 1− α∗0e′ and PDF

fT (t) = α∗0e
StS′0, t > 0,

is said to follow what is called a continuous phase-type distribution of orderM , which is typically
denoted by

T ∼ PHM (α∗0, S),

where M is the number of transient states (i.e., the dimension of S, the transient part of the
infinitesimal generator matrix), and α∗0 is the part of the initial distribution corresponding to
transient states.

From the above definition, we may find the LST and moments of a continuous phase-type
distribution. However, before deriving the LST of a phase-type distribution, we require the
following properties of matrix exponential functions. First, recall that for scalar exponential
functions, it holds that eaeb = ea+b. If we now suppose that A and B are square matrices of
equal dimension satisfying AB = BA, then we have (applying the binomial expansion)

eA+B =

∞∑
n=0

1

n!
(A+B)n =

∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
AkBn−k =

∞∑
n=0

n∑
k=0

1

k!
Ak · 1

(n− k)!
Bn−k.

Switching the order of summation and letting m = n− k, we find

eA+B =
∞∑
k=0

∞∑
n=k

1

k!
Ak · 1

(n− k)!
Bn−k =

( ∞∑
k=0

1

k!
Ak

)( ∞∑
m=0

1

m!
Bm

)
=

( ∞∑
k=0

1

k!
Ak

)
eB = eAeB.

Thus, under certain restrictions, we have eAeB = eBeA = eA+B = eB+A for the matrix expo-
nential function. Next, consider the product of scalar exponential ea with matrix exponential
eB. Applying the Taylor expansion of the scalar exponential function along with the fact that
In = I for an identity matrix I,

eaeB =

( ∞∑
n=0

an

n!

)
eB =

( ∞∑
n=0

an

n!

)
IeB =

( ∞∑
n=0

an

n!
In

)
eB = eaIeB = eaI+B.

Finally, assume that S is a subgenerator from an absorbing CTMC. It follows that S is an
invertible square matrix (as not all row sums of S equal zero, 0 is not an eigenvalue of S, and
hence S is invertible), the anti-derivative of eSt is∫

eStdt =

∫ ∞∑
n=0

tn

n!
Sndt =

∞∑
n=0

tn+1

(n+ 1)!
Sn(SS−1) =

( ∞∑
m=0

tm

m!
Sm − I

)
S−1 =

(
eSt − I

)
S−1.

Since eSt contains the conditional probabilities of being in transient states at time t, limt→∞ e
St =

0, as the CTMC will eventually end up in its absorbing state with probability 1. Thus,∫ ∞
0

eStdt = lim
t→∞

(
eSt − I

)
S−1 −

(
e0 − I

)
S−1 = −S−1.
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We may now derive the LST of T directly. As T has a mixed distribution, it follows that

F̃T (s) = E[e−sT ] = e−s·0P (T = 0) +

∫ ∞
0

e−stfT (t)dt

= 1 · α0,0 +

∫ ∞
0

e−stα∗0e
StS′0dt

= 1− α∗0e′ + α∗0

(∫ ∞
0

e(S−sI)tdt

)
S′0

= 1− α∗0e′ − α∗0(S − sI)−1S′0

= 1− α∗0e′ + α∗0(sI − S)−1S′0, s ≥ 0, (1.13)

where we recognize that if s ≥ 0, then S−sI is a valid subgenerator for a continuous phase-type
distribution.

To obtain the general formula for the moments of T , we must take derivatives of Equation
(1.13) with respect to s. Note that

d

ds
(sI − S)−1 = − d

ds
(I − sS−1)−1S−1

= − d

ds

( ∞∑
n=0

snS−n

)
S−1

= −
( ∞∑
n=1

nsn−1S−n

)
S−1

= −
( ∞∑
n=0

(n+ 1)snS−(n+1)

)
S−1

= −
(
S−1

∞∑
n=0

snS−n + sS−1
∞∑
n=1

nsn−1S−n

)
S−1

= −(I − sS−1)−1S−2 + sS−1 d

ds
(sI − S)−1

= −(I − sS−1)−2S−2

= −(sI − S)−2.

Applying the product rule, we can prove by induction that

d

ds
(sI − S)−k = −k(sI − S)−(k+1), k ∈ Z+.
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Thus, for r ∈ Z+,

dr

dsr
F̃T (s) =

dr

dsr
(
1− α∗0e′ + α∗0(sI − S)−1S′0

)
=

dr

dsr
α∗0(sI − S)−1S′0

=
dr−1

dsr−1
(−1)α∗0(sI − S)−2S′0

...

=
d

ds
(−1)r−1(r − 1)!α∗0(sI − S)−rS′0

= (−1)rr!α∗0(sI − S)−(r+1)S′0,

and so the rth moment of T is

E[T r] = (−1)r
dr

dsr
F̃T (s)

∣∣∣
s=0

= r!α∗0(−S)−(r+1)S′0 = (−1)rr!α∗0S
−re′, r ∈ Z+, (1.14)

where we applied the equation S′0 = −Se′ in the last equality.

In some queueing models, a distribution (typically service times) may be left unspecified,
with just the assumptions that its first two moments are finite and that it is non-negative. This
is then referred to as a general distribution, denoted by a ‘G’ in Kendall’s notation. The incen-
tive is that one can later select any distribution of interest and make use of the results without
changing any of the analysis. Unfortunately, we are not able to build a general distribution
into a generator to use with MAM, however we do have the following result from Asmussen
([6], Proposition 2):

Proposition: The class PH of phase-type distributions is dense (in the sense of weak con-
vergence) in the class P of all distributions on (0,∞).

This proposition implies that in theory, continuous phase-type distributions can be used
to approximate any non-negative distribution within any desired accuracy. For information on
fitting phase-type distributions to a given distribution or to observed data, see Asmussen et
al. [7]. Correspondingly, we use ‘PH’ in Kendall’s notation for systems assuming phase-type
distributed interarrival or service times. While in practice there are computational limitations
restricting the order (i.e., number of phases) of a phase-type distribution that may be used
in a queueing model, which can reduce how closely you can approximate certain distributions,
this does not negate the value of the theory. With continual advancements in both computer
computation speed and memory, these restrictions loosen over time.

We close this sub-subsection by listing the general representations of some common phase-
type distributions which will appear later in this work.

• (Exp) Exponential distribution: f(x;λ) = λe−λx, x > 0, λ > 0,

X ∼ PH1 (α∗0 = 1, S = −λ) .
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• (Ek) Erlang-k distribution: f(x; k, λ) = λkxk−1e−λx

(k−1)! , x > 0, λ > 0, k ∈ Z+,

X ∼ PHk


α∗0 = (1, 0) , S =



1 2 3 · · · k − 1 k

1 −λ λ 0 · · · 0 0
2 0 −λ λ · · · 0 0

3 0 0 −λ . . . 0 0
...

...
...

. . .
. . .

...
...

k − 1 0 0 0 · · · −λ λ
k 0 0 0 · · · 0 −λ




,

where 0 has a length of k − 1.

• (Hk) Hyperexponential-k distribution: f(x; k, λ1, . . . , λk) =
∑k

i=1 λie
−λixpi, x > 0, λi >

0, k ∈ Z+ where pi are probabilities satisfying
∑k

i=1 pi = 1, pi ≥ 0,

X ∼ PHk


α∗0 = (p1, p2, . . . , pk) , S =


1 2 · · · k

1 −λ1 0 · · · 0

2 0 −λ2
. . . 0

...
...

. . .
. . .

...
k 0 0 · · · −λk




.

Remark 1.3. We may alternatively derive the LST of T through first step analysis, rather
than applying properties of matrix exponential functions. Let

F̃T,i(s) = E[e−sT |X(0) = i], i = 0, 1, . . . ,M,

implying that

F̃T (s) =
M∑
i=0

α0,iF̃T,i(s),

due to the law of total expectation. It is clear that F̃T,0(s) = e−s(0) = 1, so let us consider
the case of an initial state i which is transient. After sojourn time Ti, the CTMC will either
transition to the absorbing state or to a different transient state. We may decompose the
conditional distribution of the time until absorption T into the sum of Ti and T ∗i , where T ∗i
denotes the (independent) remaining time until absorption after the sojourn in state i, having
the following mixture distribution:

T ∗i ∼
{

0 , with probability [S′0]i/vi,

T |(X(0) = j) , with probability qi,j/vi, j 6= i,

where [S′0]i is the absorption rate out of state i (i.e., the ith element of S′0). Thus, by indepen-
dence of Ti and T ∗i ,

F̃T,i(s) = E[e−sT |X(0) = i] = E[e−s(Ti+T
∗
i )] = E[e−sTi ]E[e−sT

∗
i ]. (1.15)
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Since Ti ∼ Exp(vi), we have for s > −vi,

E[e−sTi ] =

∫ ∞
0

e−stvie
−vitdt =

vi
vi + s

∫ ∞
0

(vi + s)e−(vi+s)tdt =
vi

vi + s
, (1.16)

while

E[e−sT
∗
i ] =

[S′0]i
vi

e−s(0) +
M∑
j=1
j 6=i

qi,j
vi
F̃T,j(s). (1.17)

Substituting Equations (1.16) and (1.17) into Equation (1.15), we obtain

(vi + s)F̃T,i(s) = [S′0]i +
M∑
j=1
j 6=i

qi,jF̃T,j(s).

Moving all conditional LST terms to the left side, we have

sF̃T,i(s)−

−viF̃T,i(s) +

M∑
j=1
j 6=i

qi,jF̃T,j(s)

 = [S′0]i, i = 1, 2, . . . ,M,

which in matrix form is

(sI − S)
[
F̃T,1(s) F̃T,2(s) · · · F̃T,M (s)

]′
= S′0.

Thus, the (unconditional) LST of T ∼ PHM (α∗0, S) is

F̃T (s) = α0,0F̃T,0(s) + α∗0
[
F̃T,1(s) F̃T,2(s) · · · F̃T,M (s)

]
= 1− α∗0e′ + α∗0(sI − S)−1S′0,

as required.

1.2.4 Example 2: Analyzing the M/PH/1 Queueing Model, a Level-Independent
QBD

Generalizing on our previous example in Section 1.2.2 concerning the M/M/1 queueing model,
we replace our assumption of exponentially distributed service times with the assumption of
service times that are iid PHk(α

∗
0, S) random variables with the restriction that α∗0e

′ = 1 (i.e.,
they are strictly positive in duration). Here, we elect to denote the order by ‘k’ rather than
‘M ’ to avoid confusion with the notation for our interarrival process. We shall henceforth refer
to this as the M/PH/1 queueing model. As an exponential distribution is an example of a
continuous phase-type of order 1, we did not require the tracking of a service phase. However,
as we now allow phase-types of any order, we must track the current service phase in addition
to the queue length. Accurately tracking the service phase is important, as the remaining time
until the active service completes will depend on the current phase. For example, the residual
service time of a customer whose service requirement follows an Erlang-2 distribution will of
course follow an Erlang-2 distribution if they are observed in their first service phase, but the
residual time will simply follow an exponential distribution if they are observed in their second
phase.
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Therefore, since knowledge of service phases impact future developments of the system,
we must track the current service phase to maintain the Markov property. In addition to
letting X(t) ∈ N represent the number of customers in the system at time t, we now let
Y (t) ∈ {1, 2, . . . , k} indicate the current phase of the service distribution at time t. It is
straightforward to confirm that the pair {(X(t), Y (t)), t ≥ 0} is a CTMC.

From its definition, a phase-type distribution involves a specific CTMC with subgenerator
S. It follows that the times between state changes (i.e., phase changes) in this CTMC follow
independent exponential distributions with rates equal to the negatives of the main-diagonal
elements of S, while S’s off-diagonal elements correspond to rates of competing exponential
timers. This allows S (along with S′0) to be inserted as elements into an infinitesimal generator
matrix.

When modelling this type of system, we consider a generator matrix as a collection of
blocks, or submatrices. Keeping λ as the rate of the exponential interarrival process and letting
0 represent an appropriately dimensioned matrix of zeroes, the generator of {(X(t), Y (t)), t ≥ 0}
is

Q =



0 1 2 3 4 · · ·
0 −λ λα∗0 0 0 0 · · ·
1 S′0 S − λIk λIk 0 0 · · ·
2 0′ S′0 α

∗
0 S − λIk λIk 0 · · ·

3 0′ 0 S′0 α
∗
0 S − λIk λIk

. . .

4 0′ 0 0 S′0 α
∗
0 S − λIk

. . .
...

...
...

...
. . .

. . .
. . .


. (1.18)

Note that the indexing on the rows and columns indicate the value of the queue length, such
that the (i, j)th block of Q (which we may denote by Qi,j) contains all transitions where X(t)
can change from i to j in one step. As the queue length is the outer-most index, we refer to it
as the level of the process. Since customers arrive and receive service individually, the level can
only change by at most 1 in a given transition, and so Qi,j = 0 if |i− j| > 1. For this reason,
we refer to this type of CTMC as a quasi-birth-and-death process (QBD). The state space of
{(X(t), Y (t)), t ≥ 0} is

S = {(0, 0)} ∪ {(X,Y ) : X ∈ Z+, Y ∈ {1, 2, . . . , k}},

where we let Y (t) take a placeholder value of 0 when there is no customer currently undergoing
service (and hence, the service phase has no observable value). Correspondingly, there is only the
single sublevel of 0 in level 0, while each positive level contains k ordered sublevels corresponding
to the value of Y (t). Therefore, Q0,0 is a scalar while Qi,i, i ∈ Z+, are k × k square matrices.

When the CTMC is in level 0, there are no customers in the queue, and so the sojourn time in
state (0, 0) simply follows an Exp(λ) distribution. It then immediately follows that Q0,0 = −λ.
Upon observing a customer arrival to an empty queue, they immediately enter service. However,
unlike the M/M/1 queue, we must initialize the phase of their service according to initial
probability vector α∗0. If we apply the splitting or thinning property of Poisson processes, then
we can separate arriving customers according to their initial service phases which are determined
in an iid manner. Thus, we can consider competing exponential interarrival times with rates
λα0,i, i = 1, 2, . . . , k. If the first interarrival time to complete corresponded to one with rate
λα0,j , then its service initializes in phase j, and so the CTMC must transition to state (1, j).
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We therefore define

Q0,1 = λ
[
α0,1 α0,2 · · · α0,k

]
= λα∗0.

Consider now level 1, and suppose that the CTMC is in state (1, j), j = 1, 2, . . . , k. Arrivals
to a non-empty queue will not affect the current service phase of the lead customer. Therefore,
if the Exp(λ) timer is next to complete, the CTMC will transition from state (1, j) to (2, j),
and so we let Q1,2 = λIk, where Ik is an identity matrix of dimension k × k. While in state
(1, j), there is an exponential timer with rate [S′0]j whose completion indicates that the phase-
type distributed service has completed. As there are no further customers waiting in the queue
(whose initial service phase we would need to determine), this results in a transition to state
(0, 0), and we must have Q1,0 = S′0. All remaining possible transitions are for transitions to
transient phases within the customer’s service time distribution, with the completion of the
Exp(qj,i) timer resulting in a transition from state (1, j) to state (1, i) (these do not change
the level of the CTMC). As the sojourn time in state (1, j) is the minimum of all the timers
we have considered, it must have an Exp(−Sj,j + λ) distribution. Correspondingly, we have
Q1,1 = S − λIk, where the identity matrix allows us to subtract λ from the negative main
diagonal elements of S while leaving the qj,i elements unchanged and in the correct positions.

For higher levels of this CTMC, a single customer’s arrival or service completion does not
result in changing from an empty queue to a non-empty queue (or vice versa), so we have
a consistent relationship between the Qi,i−1, Qi,i, and Qi,i+1 blocks, i = 2, 3, . . . (and hence,
this is in fact a level-independent QBD). In fact, for the same reasons outlined above, we have
Qi,i = Q1,1 and Qi,i+1 = Q1,2, for all i ∈ Z+. Therefore, let us consider being in state (i, j) and
suppose that the next observed event is a customer departure. With probability αj,l, the next
customer in line was an arrival from the thinned Poisson process corresponding to customers
whose initial service phase is l. As their initial service phase is independent of everything else,
the joint probability of a transition representing the service completion of the customer out of
the jth service phase and the next customer starting their service in phase l is

P(i,j),(i−1,l) =
[S′0]j

−Sj,j + λ
α0,l,

which is the one-step transition probability in the embedded DTMC from state (i, j) to state
(i − 1, l). Multiplying P(i,j),(i−1,l) by the exponential rate of the sojourn time distribution in
state (i, j) provides us with our required exponential rate, [S′0]jα0,l, and so in matrix form we
have Qi,i−1 = S′0α

∗
0.

Now that we have our infinitesimal generator matrix, our next goal is to find the steady-state
distribution of this queueing system. Due to the block nature of the generator, it is convenient
to define steady-state probability row vectors πi relating to states within level i, i ∈ N. For this
particular model, level 0 contains a single state, and hence π0 is a scalar. Letting πi,j denote
the steady-state joint probability that the CTMC is in state (i, j), we define

π = (π0, π1, π2, . . .),

where π0 = π0,0 and

πi = (πi,1, πi,2, . . . , πi,k), i ∈ Z+.

Rather than examining the calculations required for this specific M/PH/1 model, we will
illustrate how to obtain π from πQ = 0 (and π e′ = 1) for general level-independent QBDs. We
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consider a generator of the form

Q =



0 1 2 3 4 · · ·
0 B00 B01 0 0 0 · · ·
1 B10 B11 A0 0 0 · · ·
2 0 A2 A1 A0 0

. . .

3 0 0 A2 A1 A0
. . .

...
...

...
...

. . .
. . .

. . .

, (1.19)

where all blocks B and A are constructed legally such that all main diagonal elements of Q
are negative, off-diagonal elements are non-negative, and row sums are zero. Note that there
may be more than one type of sublevel within the system, and that the probability row vectors
πi are constructed in a logical fashion, containing the ordered steady-state probabilities for all
states within level i. Also, we assume that there are finite-many states within each level. From
the relationship πQ = 0 and the constraint that the probabilities must sum to one, we obtain
the series of matrix equations

0 = π0B00 + π1B10, (1.20)

0 = π0B01 + π1B11 + π2A2, (1.21)

0 = πiA0 + πi+1A1 + πi+2A2, i ∈ Z+, (1.22)

1 = π e′.

In the M/M/1 model, we found that the steady-state probabilities expressed a geometric
relationship

πi = ρπi−1 = · · · = ρiπ0, i ∈ Z+,

which followed as a result of consistent tridiagonal elements of Q (for levels 1 and higher).
Here, we have a similar looking generator, with the exception that we have blocks rather than
scalar elements, and the consistency is assumed for levels 2 and higher. We therefore make the
assumption that for some square matrix R, we have the matrix-geometric relationship

πi = πi−1R = · · · = π1R
i−1, i ∈ Z+, (1.23)

where we let R0 = I. Substituting this assumption into Equation (1.22), we have

0 = πiA0 + πi+1A1 + πi+2A2

= π1R
i−1A0 + π1R

iA1 + π1R
i+1A2

= π1R
i−1(A0 +RA1 +R2A2).

For a solution to exist, we cannot have π1 = 0 or R = 0, so it must hold that

A0 +RA1 +R2A2 = 0. (1.24)

Equation (1.24) is referred to as the matrix quadratic equation, and it has been shown that
matrix R is the solution which, entry-wise, has the smallest non-negative elements (e.g., Neuts
[70], Theorem 1.7.1). In general, there is no analytic closed form solution for R (although it
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may be found for some special cases), but it may be found iteratively. Rearranging Equation
(1.24), if we let

R(n) = −A0A
−1
1 −R2(n− 1)A2A

−1
1 , n ∈ Z+, (1.25)

and R(0) = 0, then {R(n)}∞n=1 will entry-wise monotonically converge to the true value of R,
such that the (i, j)th element of R(n) is less than or equal to the (i, j)th element of R. After
calculating R, it can be used to solve Equations (1.20) and (1.21) for π0 and π1, namely[

π0 π1

] [ B00 B01

B10 B11 +RA2

]
= 0. (1.26)

The normalization condition may be represented by

π e′ = π0e
′ +

∞∑
i=1

πi e
′ = π0e

′ + π1

∞∑
i=1

Ri−1e′ = π0e
′ + π1(I −R)−1e′. (1.27)

By combining Equations (1.26) and (1.27), we obtain a system with one more linear equation
than unknown, [

π0 π1

] [ B00 B01 e′

B10 B11 +RA2 (I −R)−1e′

]
=
[

0 1
]
. (1.28)

Hence, if we arbitrarily drop a column (other than the right-most column corresponding to the
normalization condition) such that the resulting square matrix has an inverse, as well as one of
the zeroes from the right-hand vector, the values of π0 and π1 may be found by post-multiplying
both sides by said inverse. The remaining πi’s may then be obtained via Equation (1.23).

While we now know how to solve for the steady-state distribution of a level-independent
QBD, it is important to consider when such a solution exists. For the M/M/1 queue, we simply
require the traffic intensity ρ = λ/µ to be less than 1. However, we no longer have simple scalars
to perfectly describe both the arrival and service processes in a M/PH/1 queue. If we consider
the level-independent QBD process at moderate-to-high queue lengths (if the queue is spending
any long-run fraction of time in boundary states, it follows that it must be stable), then we can
describe the state transitions between its sublevels using the modified infinitesimal generator
matrix A = A0 + A1 + A2. It should be easy to see that generator A maintains the standard
properties of an infinitesimal generator matrix, such that it has row sums of zero, negative main
diagonal elements, and non-negative off-diagonal elements.

If we find the steady-state distribution of a CTMC with generator A, then it will tell us
the fraction of time that our level-independent QBD spends in each of its sublevels (when far
from the boundary level 0, e.g., if the queue length were to go to infinity). Define ν as the
steady-state probability row vector satisfying

0 = νA, (1.29)

1 = ν e′.

After solving for ν, it may be used in conjunction with A0 and A2 to determine the mean
drifts to higher or lower levels of the CTMC when far from level 0. A necessary and sufficient
condition for stability is for the drift to lower levels to be greater than that to higher levels, a
parallel to the condition µ > λ in the M/M/1 model. The drifts are defined as

Drift Up = νA0e
′,
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and
Drift Down = νA2e

′,

so we can determine that the system is stable, and hence π will exist, iff

νA2e
′ > νA0e

′.

We conclude this example by examining the stability condition of the M/PH/1 queueing
model. The service times are distributed as PHk(α

∗
0, S) and by Equation (1.14) have an expected

value of −α∗0S−1e′. Let µ be the rate of service completions (i.e., the inverse of the mean service
time), so that

µ =
−1

α∗0S
−1e′

.

Comparing the generators from Equations (1.18) and (1.19), it is clear that:

B00 = −λ, B01 = λα∗0,

B10 = S′0, B11 = S − λIk, A0 = λIk,

A2 = S′0α
∗
0, A1 = S − λIk.

Therefore, with

A = A0 +A1 +A2 = λIk + (S − λIk) + S′0 α = S + S′0α
∗
0,

the first component of Equation (1.29) becomes

0 = νS + ν S′0 α
∗
0.

Multiplying both sides from the right by S−1e′, we obtain

0 = ν e′ + ν S′0
(
α∗0S

−1e′
)

= 1− (ν S′0)/µ,

implying that ν S′0 = µ. Finally, the drift up is

νA0e
′ = νλIke

′ = λν e′ = λ,

while the drift down is
νA2e

′ = (ν S′0)(α∗0e
′) = µ,

implying that a necessary and sufficient condition for stability is µ > λ, agreeing with the
stability condition for the M/M/1 queue.

Considering the M/M/1 queue, if we let the service times be PH1(α∗0 = 1, S = −µ) (i.e.,
Exp(µ)), then

B00 = −λ, B01 = λ,

B10 = µ, B11 = −(λ+ µ), A0 = λ,

A2 = µ, A1 = −(λ+ µ),

and so Equation (1.25) becomes

R(n) = −A0A
−1
1 −R2(n− 1)A2A

−1
1 =

λ

λ+ µ
+

µ

λ+ µ
R2(n− 1), n ∈ Z+,
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so in the nth iteration, our approximation of R changes by

R(n)−R(n− 1) =
λ

λ+ µ
+

µ

λ+ µ
R2(n− 1)−R(n− 1)

=
1

λ+ µ
(1−R(n− 1))(λ− µR(n− 1)), n ∈ Z+.

Thus, our value of R(n) (which is a scalar) increases with n, so long as R(n−1) < min{1, λ/µ} =
λ/µ, if we assume the stability condition holds. If we suppose that R(k) = λ/µ − ε, k ∈ N,
ε > 0, then

R(k + 1) =
λ

λ+ µ
+

µ

λ+ µ

(
λ

µ
− ε
)2

=
λ

λ+ µ
+

µ

λ+ µ

(
λ2

µ2
− 2ε

λ

µ
+ ε2

)
=
λ

µ
− µ

λ+ µ
ε

(
2
λ

µ
− ε
)
<
λ

µ
,

so long as ε < 2λ/µ. Since R(0) = 0 and R(n)−R(n−1) > 0 for R(n−1) < λ/µ, the maximum
deviation from λ/µ that we can observe is ε = λ/µ < 2λ/µ at n = 0. Therefore,

0 = R(0) < R(1) < R(2) < · · · < λ

µ
,

and so R(n) monotonically converges to

lim
n→∞

R(n) =
λ

µ
= R,

without every exceeding the limiting value, agreeing with our earlier cited theory. Note that we
can alternatively solve for R = λ/µ by replacing R(n) and R(n − 1) by R in Equation (1.25),
and rejecting R = 1 as a possible solution as it would imply that πi = π1, i ∈ Z+.

Now that we have found R, Equation (1.28) becomes

[
0 0 1

]
=
[
π0 π1

] [ −λ λ 1

µ λ− µ+ λ
µµ

(
1− λ

µ

)−1

]

=
[
π0 π1

] [ −λ λ 1
µ −µ µ

µ−λ

]
.

Removing the redundant center column (and its corresponding zero from the left hand side
vector), it follows that

[
π0 π1

]
=
[

0 1
] [ −λ 1

µ µ
µ−λ

]−1

=
[

0 1
] [ − 1

µ
µ−λ
µ2

µ−λ
µ

λ(µ−λ)
µ2

]
=
[

1− λ
µ

(
1− λ

µ

)(
λ
µ

) ]
,

and by Equation (1.23),

πi = π1R
i−1 =

(
1− λ

µ

)(
λ

µ

)(
λ

µ

)i−1

=

(
1− λ

µ

)(
λ

µ

)i
, i ∈ Z+,

recovering the solution from Section 1.2.2.
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1.2.5 Customer Behaviour: Reneging

In the real world, many factors may cause a customer to prematurely leave their queue prior
to receiving service. If the customers in question are perishable goods waiting to be processed,
then it would be reasonable to expect that after some amount of time, they would be at risk
of spoiling. If the customers are people, then the overwhelming cause of a departure prior to
receiving service is caused by impatience. We refer to the event of a customer departure due to
their impatience as reneging.

Palm [73] was the first to investigate the idea of an impatience function, I(t), for customers
waiting in a telecommunications queue. They posited the form of the impatience function for
customers waiting in a system without back signaling (i.e., a customer must wait on the line
until congestion was reduced, resulting in an increase of their rate of impatience over time),
with back signaling (i.e., a customer may hang up after receiving a busy signal and will be
called when the lines become free, resulting in a constant rate of impatience), or with busy
signals (i.e., upon receiving a busy signal, they must hang up and try again later, resulting
in a constant rate of impatience with additional impatience experienced every time they had
to redial). In the case of a system without back signaling, they gave evidence to support a
quadratic relationship between I(t) and t.

In practice, many models simply assume an exponential distribution for their customers’
impatience times, treated as a random exponential clock that begins ticking the moment they
enter a queue. If this time runs out before the customer reaches a server, they leave their queue
and are lost to the system (permanently, or perhaps temporarily in the case of a retrial system),
but the customer is assumed safe once they have reached service and are no longer a threat to
leave.

Shin and Choo [86] considered such a system with customers, while waiting in the queue
to be serviced, are subject to exponentially distributed impatience times. In particular, they
considered an M/M/s queue with customers who are subject to not only reneging, but also
balking and retrials. Whenever a customer would enter the queue, either as an external arrival
or as a retrial from the orbit, they either enter the queue, enter the orbit, or leave the system
entirely, with probabilities that can depend on if there are any free servers or if all servers are
busy and the number of waiting customers are below or over a given threshold. Due to the
possibility of reneging customers entering the orbit, they possess a chance of re-entering the
queue at a later time. In order to solve for the steady-state distribution, strategic truncation
and approximation was necessary in the form of limiting the size of the orbit and assuming that
the total effective reneging rate does not change after a certain queue length.

Drekic et al. [31] also assumed exponential impatience times when studying transplant
waiting lists. In their work which was analyzed using matrix analytic methods, the queue is
divided into two priority classes dependent on the health of the customer, where the most at-risk
customers were placed into the higher priority queue and would receive service (i.e., an organ)
before any low priority customers. The customer/patient interarrival times and service times
(i.e., organ interarrival times) were assumed to follow independent exponential distributions,
with class-dependent parameters. Also, customers in either queue were subject to exponential
reneging clocks, where low priority customers who renege would either enter the high priority
queue (i.e., self-promote) or leave the system all together, while a reneging customer from the
high priority queue was assumed to always be lost. The steady-state probabilities of this system
were found, and different types of waiting times were considered. Model parameter fitting to
real world data was also addressed.
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Altman and Yechiali [4] and Yechiali [100] considered exponential impatience times as well,
within the context of models where the servers may be absent due to a vacation period initiated
by an emptied queue, or a disaster which simultaneously emptied the queue and required a repair
time to be completed before the servers could tend to customers again, respectively. In both
models, customers who arrived to find no working servers were at risk of reneging, but only up
to the time at which the servers were again operational.

Within Chapters 4 - 6 of this thesis, we consider models where a given customer’s exponential
reneging rate is allowed to depend on their class as well as their position within their queue.
The flexibility of MAM allow us to take into consideration the fact that a target customer’s
reneging rate may change over the duration of their time spent waiting in their queue, which
also impacts their probability of reneging as well as their actual waiting time distribution.

Boxma and De Waal [22] and Sakuma and Takine [83] break from this, allowing their cus-
tomers’ impatience times to follow non-exponential distributions. Boxma and De Waal’s model
assumes generally distributed reneging times, Poisson process arrivals, generally distributed
service times, and m servers. Their main statistic of interest was their model’s overflow prob-
ability (i.e., the probability of a customer leaving due to impatience). Exact distributional
results were impossible given the general reneging distribution, but several methods of how to
approximate this probability were discussed. Sakuma and Takine considered a k-class system,
with class-dependent arrival rates, phase-type service time distributions, and deterministic im-
patience times. A virtual waiting time approach was used (i.e., the total workload in a queue
caused by customers who will actually reach the server). The stationary distribution of the
virtual waiting time was found (using a level crossing argument), as well as each classes’ loss
probabilities, actual waiting time distributions (which we consider for one of our models in
Section 4.4), and mean queue lengths.

While the vast majority of work which allows reneging assumes that the abandonment
time instants of each customer are independent, it is possible still to apply the concept in
systems where epochs of abandonment are in fact not independent. For example, Adan et
al. [2] considered a system with Poisson process arrivals, and a server who conducts generally
distributed service times, and who leaves for a generally distributed vacation time when the
queue empties. Within this model, customers who arrive during the vacation were assumed
to observe a unique abandonment epoch at the moment of vacation completion, where every
customer simultaneously (and independently) decides if they will leave the queue with the same
probability, or were assumed to observe multiple abandonment epochs which occur according
to a Poisson process during the vacation period. Due to the simultaneous decisions all using the
same constant reneging probability, the number of customers immediately after an abandonment
epoch was able to be described using a binomial distribution, depending on the total number
of customers in the queue immediately prior to the epoch.

1.2.6 Example 3: Analyzing the M/PH/1 + M Queueing Model, a Level-
Dependent QBD

When constructing the infinitesimal generator matrix of a QBD, it is possible that it will not
exhibit the level-independent form observed in Section 1.2.4. That is, there may not exist a
particular threshold after which transitions within or out of a given level at or beyond that
threshold become independent of the value of that level. For example, if the customers in a
queue are at risk of abandonment through reneging, then the total rate of customer reneging
will be proportional to the queue length (e.g., if every customer has an independent exponential
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impatience timer). Another type of system that could result in level dependency is a closed
queueing system, as examined in Chapters 2 and 3 of this thesis, where the arrival rate of
customers corresponds to the total failure rate of all working machines, which is itself inversely
proportional to the queue length of machines waiting to be repaired.

As an illustration of a level-dependent QBD, we consider a M/PH/1 +M queue, where the
‘+M ’ notation (e.g., Boxma and De Waal [22]) indicates that customers waiting in the queue
(who are not currently being served) have iid exponentially distributed impatience times. We
let the rate of these iid impatience times be γ, and we otherwise keep the same assumptions
and notations as the M/PH/1 queue from Section 1.2.4. Again letting X(t) ∈ Z+ denote the
number of customers in the queue and Y (t) ∈ {1, 2, . . . , k} represent the current phase of service
(defined to be zero if there is no customer in service), the pair {(X(t), Y (t)), t ≥ 0} is again a
CTMC with state space

S = {(0, 0)} ∪ {(X,Y ) : X ∈ Z+, Y ∈ {1, 2, . . . , k}}.

In contrast to the M/PH/1 queue, we must now consider an additional competing expo-
nential timer at every state within levels i = 2, 3, . . . for each waiting customer. As we are
simply tracking the total number of customers in the system, given that a customer reneges
and leaves the queue, we are indifferent to which waiting customer it was. Thus, we consider
the time until the next observed customer departure due to reneging (i.e., the minimum of the
active impatience times), which will have an Exp((i− 1)γ) distribution. As the departure of a
waiting customer has no impact on the active service time’s distribution, this would result in a
transition from state (i, j) to (i− 1, j), i = 2, 3, . . ., j = 1, 2, . . . , k. We incorporate this feature
by adding a (i − 1)γIk term to the relevant Qi,i−1 blocks, while simultaneously subtracting
(i−1)γ from the main diagonals. Updating Equation (1.18), the infinitesimal generator matrix
for the M/PH/1 +M queue is

Q =



0 1 2 3 4 · · ·
0 −λ λα∗0 0 0 0 · · ·
1 S′0 S−λIk λIk 0 0 · · ·
2 0′ S′0 α

∗
0+γIk S−(λ+γ)Ik λIk 0 · · ·

3 0′ 0 S′0 α
∗
0+2γIk S−(λ+2γ)Ik λIk

. . .

4 0′ 0 0 S′0 α
∗
0+3γIk S−(λ+3γ)Ik

. . .
...

...
...

...
. . .

. . .
. . .


. (1.30)

In this model, we see that the total rate of transitions to lower levels increase with the level of
the system (i.e., the length of the queue), while the rate of transitions to higher levels due to
arrivals is constant.

Our goal now becomes to calculate the steady-state distribution of this queueing system,

π = (π0, π1, π2, . . .),

where we let πi contain the ordered steady-state probabilities for states within level i (such
that πi,j is the stationary probability that the CTMC is in state (i, j)), such that π0 = π0,0 and

πi = (πi,1, πi,2, . . . , πi,k), i ∈ Z+.
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Rather than focusing solely on the M/PH/1 +M queue, we will instead illustrate how to solve
for these probabilities for the case of a general level-dependent QBD (based on the procedure
proposed by Gaver et al. [36]).

Suppose that the infinitesimal generator matrix for a CTMC takes the form

Q =



0 1 2 3 4 · · ·
0 Q0,0 Q0,1 0 0 0 · · ·
1 Q1,0 Q1,1 Q1,2 0 0 · · ·
2 0 Q2,1 Q2,2 Q2,3 0

. . .

3 0 0 Q3,2 Q3,3 Q3,4
. . .

...
...

...
...

. . .
. . .

. . .


, (1.31)

such that block Qi,j contain rates corresponding to transitions from states in level i to states
in level j. From Equation (1.31) and πQ = 0, we obtain the system of matrix equations

0 = π0Q0,0 + π1Q1,0, (1.32)

0 = πiQi,i+1 + πi+1Qi+1,i+1 + πi+2Qi+2,i+1, i ∈ N. (1.33)

Generalizing Equation (1.23), we now assume that

πi = π0

i∏
j=1

Rj , i ∈ Z+. (1.34)

Substitution into Equation (1.33) results in

0 = πiQi,i+1 + πi+1Qi+1,i+1 + πi+2Qi+2,i+1

= π0

i∏
j=1

RjQi,i+1 + π0

i+1∏
j=1

RjQi+1,i+1 + π0

i+2∏
j=1

RjQi+2,i+1

= π0

i∏
j=1

Rj (Qi,i+1 +Ri+1Qi+1,i+1 +Ri+1Ri+2Qi+2,i+1) , i ∈ N.

For a solution to exist, we cannot have π0 = 0 or
∏i
j=1Rj = 0, so (shifting indices) it must

hold that

Qi−1,i +RiQi,i +RiRi+1Qi+1,i = 0, i ∈ Z+.

Solving for Ri, we have

Ri = −Qi−1,i (Qi,i +Ri+1Qi+1,i)
−1 , i ∈ Z+. (1.35)

As each Ri references the value of Ri+1, in order to actually calculate the steady-state
probabilities, we must implement a state truncation at some level b by setting Ri = 0 for all
j > b. This is, of course, under the assumption that this does not occur naturally within the
infinitesimal generator. If this was true, then no modifications are required. In either case, we
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will now have πi = 0, i = b+ 1, b+ 2, . . ., so we redefine π = (π0, π1, . . . , πb). Furthermore, we
may restrict the infinitesimal generator matrix to

Q =



0 1 2 · · · b− 2 b− 1 b

0 Q0,0 Q0,1 0 · · · 0 0 0
1 Q1,0 Q1,1 Q1,2 · · · 0 0 0

2 0 Q2,1 Q2,2
. . . 0 0 0

...
...

...
. . .

. . .
...

...
...

b− 2 0 0 0 · · · Qb−2,b−2 Qb−2,b−1 0
b− 1 0 0 0 · · · Qb−1,b−2 Qb−1,b−1 Qb−1,b

b 0 0 0 · · · 0 Qb,b−1 Qb,b


, (1.36)

so Equations (1.32) and (1.32) now become

0 = π0Q0,0 + π1Q1,0, (1.37)

0 = πiQi,i+1 + πi+1Qi+1,i+1 + πi+2Qi+2,i+1, i = 0, 1, . . . , b− 2, (1.38)

0 = πb−1Qb−1,b + πbQb,b. (1.39)

From Equations (1.34) and (1.39), or by substituting Rb+1 = 0 into Equation (1.35) for i = b,
we have

Rb = −Qb−1,b(Qb,b)
−1, (1.40)

which we may calculate (as it is only a function of known Qi,j blocks) and use as an initial
point to calculate Rb−1, Rb−2, . . . , R1 recursively from Equation (1.35).

We can now express all πi’s in terms of Ri matrices that we can calculate as well as π0,
so if we can solve for the latter, then we have found every steady-state probability of the
level-dependent QBD. If we define R0 = Q0,0 +R1Q1,0, then Equation (1.37) can be rewritten
as

π0R0 = 0. (1.41)

Also, the normalization condition becomes

1 = π e′ =

b∑
i=0

πie
′ = π0

I +

b∑
i=1

i∏
j=1

Rj

 e′ = π0u
′, (1.42)

where we assume each e′ has an appropriate length to guarantee that the matrix multiplications
are well defined. Letting

u′ = e′ +
b∑
i=1

i∏
j=1

Rje
′,

and combining Equations (1.41) and (1.42), we obtain

π0

[
R0 u′

]
=
[

0 1
]
.

This linear system has one more equation than the number of elements of π0, so if we drop
a column of R0 (such that the inverse of the remaining columns joined with u′ exists) and
one of the zeroes on the right-hand side, then we may calculate π0, and therefore each πi,
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i = 1, 2, . . . , b. A note that we may make here is that by placing an upper bound on the state
space of the level of the process, if there are finite-many states within each level, then the
steady-state distribution will always exist. Even if the drift upwards was higher than the drift
downwards (as discussed in the context of level-independent QBDs) for all levels, we will be able
to calculate π for a given truncation level b. This is an immediate result of the CTMC describing
the queueing model having finite-many states. Of course, in this case, it should be clear that
the use of the truncated version of that model would be inappropriate as the results would
involve potentially huge negative bias in calculations of key statistics, such as the mean queue
length (which may not even be finite), or mean sojourn time for an arbitrary customer (defined
as their time spent waiting in the queue, plus their time in service). Discussion concerning the
act of truncating infinite buffer queueing systems, as well as a technique to reduce negative bias
in expected queue lengths, may be found in Chapters 5 and 6 of this thesis.

We now consider the above results in the context of the M/PH/1 + M queue. To obtain
the steady-state probabilities for a given truncation level b, the above algorithm can be applied
with

Q0,0 = −λ, Q0,1 = λα∗0,

Q1,0 = S′0, Q1,1 = S − λIk, Q1,2 = λIk,

Qi,i−1 = S′0 α
∗
0 + (i− 1)γIk, Qi,i = S − (λ+ (i− 1)γ)Ik, Qi,i+1 = λIk, i = 1, 2, . . . , b− 1,

Qb,b−1 = b′0 α
∗
0 + (b− 1)γIk, Qb,b = S − (b− 1)γIk,

and

Rb = −λ (S − (b− 1)γIk)
−1 ,

Ri = −λ
(
S − (λ+ (i− 1)γ)Ik +Ri+1(S′0 α

∗
0 + iγIk)

)−1
, i = 1, 2, . . . , b− 1,

R0 = −λ+R1S
′
0.

Assuming that γ > 0, it must hold that limi→∞Ri = 0. Therefore, even without the truncation
the CTMC will always be stable. Note that by truncating at level b, we are in actuality
approximating the M/PH/1 +M queue by a M/PH/1/b+M queue, where the ‘b’ denotes the
number of spaces in the system (also referred to as the buffer of the queue). If we let b →∞,
then this approximation will converge to the true M/PH/1 +M queue.

If we reduce the queueing system to M/M/1 + M by letting the phase-type service distri-
bution be Exp(µ) (i.e., PH1(α∗0 = 1, S = −µ)), the above reduces to

Q0,0 = −λ, Q0,1 = λ,

Q1,0 = µ, Q1,1 = −(λ+ µ), Q1,2 = λ,

Qi,i−1 = µ+ (i− 1)γ, Qi,i = −(λ+ µ+ (i− 1)γ), Qi,i+1 = λ, i = 1, 2, . . . , b− 1,

Qb,b−1 = µ+ (b− 1)γ, Qb,b = −(µ+ (b− 1)γ),

and

Rb = λ(µ+ (b− 1)γ)−1,

Ri = λ(λ+ µ+ (i− 1)γ −Ri+1(µ+ iγ))−1, i = 1, 2, . . . , b− 1,

R0 = −(λ+R1µ).
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Solving for Rb−1, we obtain

Rb−1 = (µ+ (b− 2)γ)(λ+ µ+ (b− 2)γ −Rb(µ+ (b− 1)γ))−1

= λ(λ+ µ+ (b− 2)γ − λ(µ+ (b− 1)γ)−1(µ+ (b− 1)γ)−1

= λ(µ+ (b− 2)γ)−1.

Continuing inductively, we can show that

Ri =
λ

µ+ (i− 1)γ
, i = 1, 2, . . . , b,

and this leads to

πi = π0

i∏
j=1

λ

(j − 1) + µ
= π0

λi∏i
j=1(µ+ (j − 1)γ)

. (1.43)

Applying the normalization condition π e′ =
∑b

i=0 πi = 1, we require

1 = π0 +

b∑
i=1

π0
λi∏i

j=1((j − 1)γ + µ)
,

so it must hold that

π0 =
1

1 +
∑b

i=1
λi∏i

j=1((j−1)γ+µ)

, (1.44)

which we can now use to solve for πi, i = 1, 2, . . . , b using Equation (1.43). If we let γ = µ, then
the queue length distribution of the M/M/1/b+M system is equivalent to that of an M/M/b/b
(or M/M/∞/b) queueing system, where every customer who enters the system immediately
receives service. Letting γ = µ in Equations (1.43) and (1.44), we immediately find the πi’s of
the M/M/b/b model to be

πi =
ρi

i!
∑b

i=0
ρi

i!

, i = 0, 1, . . . , b,

where we let ρ = λ/µ.

Finally, if we let b→∞ in the M/M/b/b queue, we can obtain the steady-state probabilities
for the M/M/∞ queue. Since

lim
b→∞

b∑
i=0

ρi

i!
=
∞∑
i=0

ρi

i!
= eρ,

we have

πi = e−ρ
ρi

i!
, i ∈ N,

indicating that the steady-state distribution for a M/M/∞ queue is a Poisson distribution with
parameter ρ.
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1.2.7 Polling Systems

A more general queueing system may involve N ∈ Z+ queues (indexed as Qi, i = 1, 2, . . . , N),
where each queue may hold potentially differing types (or classes) of customers. If the server(s)
of the system are common to each queue, in that they are responsible for serving customers from
every queue in the system, then the queueing system is referred to as a polling system. Aside
from the distributions and behaviours for each class of customers (e.g., interarrival, service, and
impatience time distributions), the unique features that characterize a polling system are:

• Switchover Times: The duration of time that it takes a server to move from one queue
to another.

• Polling Order: The rules used by a server to determine the order in which they visit
each queue within the system.

• Service Discipline: The rules which determine how many customers in a queue receive
service by a server during a visit to that queue.

The combination of a polling system’s polling order and service discipline is known as its service
policy, which ultimately decides which customer in the system receives service at a given time.

The switchover times for a polling system may be zero or non-zero in duration. When
they are non-zero, they may be deterministic or follow a distribution which can depend on
what queue the server is switching from, as well as what queue the server is switching to. In
our later sections, we consider switchover times having continuous phase-type distributions,
whose subgenerator matrices depend on the queue that the server is switching to. It is for
this reason that we later use the terminology switch-in time, to indicate that the queue the
server is switching into is of the most importance (while the previous location of the server may
influence the initial probability vector of the distribution). Typically, after a server completes
a switchover, if they arrive to an empty queue, then they immediately leave and begin the
next switchover. However, more general models may require a minimum threshold of customers
present in a queue to allow the server to switch to it, even if their current queue is empty (e.g.,
Avrachenkov et al. [8], Avram and Gómez-Corral [9], Perel and Yechiali [74]).

As we must now track N queue lengths (Xi, i = 1, 2, . . . , N), our CTMCs will typically have
dimensions no less than N . Assuming that we can describe a polling system using a QBD (i.e.,
the number of customers in a queue may not change by more than 1 in a single transition),
the infinitesimal generator matrices for these models may be either level-independent or level-
dependent, where it is standard to treat the length of one of the queues as the level of the
process. Even if we are able to make use of a level-independent QBD, as the analysis in Section
1.2.4 requires us to calculate (I − R)−1 for Equation (1.28), it is necessary for the number of
states within any level to be finite. This implies the necessity of finite buffers for all queues
other than the one which we treat as the level of the process.

In the case of a level-dependent model, every queue will be required to have a finite buffer.
This is the main downside of using MAM to approximate infinite buffer polling models, as the
higher dimensionality of tracking multiple queue lengths will further increase the cost of large
buffer sizes in terms of system resources (e.g., computer memory). However, the need of high
buffers is less if, for example, the system has low traffic or if the customers are impatient, as
it becomes increasingly unlikely to observe large queue lengths. Even if this is not the case,
computer technology is becoming ever more powerful which constantly improves the accuracy
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of these models over time, while a method such as the Unobserved Waiting Customer approxi-
mation covered in Chapters 5 and 6 of this thesis may also be applied to reduce bias inherent
from the use of finite buffers. For example, Stern [87] examined the use of a finite buffer ap-
proximation within a M/M/1 model’s transient analysis, and found it accurate at their chosen
buffer for moderate ρ, but less so for high ρ. Of course, this could be remedied by them some-
what by simply choosing a higher buffer. If a queueing model naturally has finite buffers, or
considers a closed queueing system with a finite population of customers who alternate between
requiring and not requiring service (e.g., a closed queueing system describing the maintenance
of an inventory of machines), then these methods can accurately describe the entire system
without losing any states to truncation.

In the review paper of Vishnevskii and Semenova [93], several classic examples of polling
orders and service disciplines are listed. We shall briefly touch on them, providing examples
on how some of their structures may be implemented within a generator to be used within a
matrix analytic framework. They note that a polling order may be static or dynamic in nature,
depending on if the rules governing the server’s movements between queues are consistent at
all times, or if the decision on which queue to visit is made at particular instants of time based
on full or partial information about the polling system, respectively. Some examples of static
polling orders are:

• Cyclic Order: Within a cycle, the server visits each queue in order, exactly once. Specif-
ically, the order of visitations is Q1, Q2, . . . , QN−1, QN , Q1, Q2, . . ., with a new cycle be-
ginning at the start of each visit to Q1.

• Periodic Order: Within a cycle, the server visits queues in a repeating sequence which
may involve multiple visits to one or more queues. Specifically, the order of visitations is
QT (1), QT (2), . . . , QT (M−1), QT (M), QT (1), QT (2), . . ., where indexes {T (1), T (2), . . . , T (M)},
M ≥ N , T (i) ∈ {1, 2, . . . , N}, form a polling table. Under a periodic order, it is possible
to allow multiple visits to one or more queues within a cycle, which repeats after every
M th queue visit.

• Random Order: After serving Qi, the server next visits Qj with probability pi,j , i, j =

1, 2, . . . , N , where
∑N

j=1 pi,j = 1, ∀ i = 1, 2, . . . , N . A simplified version of this polling
order may allow for the selection probabilities to be independent of i.

• Priority Order: Each queue within the system is assigned a priority, and a given queue
may only receive service if all higher priority queues are empty of customers. This may
take the form of a preemptive priority order, where the arrival of a higher priority customer
causes an immediate switch by the server, interrupting their service, or a non-preemptive
priority order, where the server checks for higher priority customers only at service com-
pletion time instants, and a customer’s service will never be interrupted.

A service discipline may indicate that the number of customers that will receive service
during a server’s visit to their queue is deterministic, following a set rule, or random, where
the number of customers served is a discrete random variable. Some examples of deterministic
service disciplines are:

• Exhaustive Service: The server continues to serve a queue until it completely empties.
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• Gated Service: The server only serves the customers who were already in the queue at
the beginning of the server’s visit. If instead the server treats only customers who were
in the queue at the beginning of a cycle, then it is referred to as a globally-gated service
discipline.

• ki-Limited Service: The server will serve up to a maximum of ki ∈ Z+ customers, or
until the queue empties.

• ki-Decrementing Service: The server will serve customers until the queue length de-
creases by ki ∈ Z+ relative to its length at the start of the visit, or until the queue
empties.

• Time Limited Service: The duration of the server’s visit to a queue is limited not by a
number of customers they may serve, but by a maximum amount of time that they may
stay at that queue.

Next, some examples of random service disciplines include:

• Binomial Service: (or Binomial-gated service) The number of customers that will be
served is randomly determined upon the beginning of the server’s visit according to a
binomial distribution. If the number of customers present at the polling instant at Qi
is xi, and 0 < pi ≤ 1 is some probability, then the server will serve n class-i customers
before leaving with probability

P (Serve n class-i customers) =

(
xi
n

)
pxii (1− pi)xi−n, n = 0, 1, . . . , xi.

If pi = 1, then the binomial discipline reduces to the gated discipline.

• Bernoulli Service: After each service completion at Qi, if the queue has not been
emptied, the server will serve another customer from Qi with probability pi. The server
will always serve at least one customer (if available), and the probability of serving up to
a maximum of n class-i customers during a visit is

P (Serve up to n class-i customers) = pn−1
i (1− pi), n ∈ Z+,

which we recognize as a geometric distribution. Such a service policy is convenient as it
is memoryless, and so we are not required to track how many customers have received
service to maintain the Markov property in a CTMC. If pi = 1, then the Bernoulli
discipline reduces to the exhaustive discipline. If pi = 0, then the Bernoulli discipline
reduces to the 1-limited discipline.

Remark 1.4. A strategic choice of pi can allow for the Bernoulli discipline to be com-
parable to the ki-limited discipline, in that its mean maximum number of services can be
set to equal ki. As the mean of a geometric random variable with success parameter 1−p
is 1/(1−p), we can let pi = 1−1/ki to equate the expected maximum number of services.

We close this subsection by considering some examples of queueing systems involving some
of the above policies which will appear later in this thesis within the context of more complicated
models. In all examples, we allow for a lone server, N = 2 queues, and we assume that customers
within the same queue are served in order according to a FCFS discipline. Switchover times
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are assumed to be independent Exp(τi) random variables, where i = 1, 2 is the index of the
queue that the server is switching to. Additionally, we will let class-i interarrival and service
times follow independent Exp(λi) and Exp(µi) distributions, respectively, so that

λx1,x2 =
2∑
i=1

(1− δxi,bi)λi

is the total effective arrival rate when there are xi class-i customers, i = 1, 2, where δi,j is the
standard Kronecker delta function, defined as

δi,j =

{
1 , if i = j,

0 , if i 6= j.

We denote the buffer of Qi by bi, and assume that b1 =∞ and b2 <∞. Letting the length
of Q1 represent the level of the process, we will construct the blocks of Equation (1.19) using
Qi,j notation. Specifically, for m ∈ N, we assume the general structures

Qm,m =



0 1 2 · · · b2 − 1 b2

0 Qm,m,0 (UD)m,0 0 · · · 0 0

1 (LD)m,1 Qm,m,1 (UD)m,1
. . . 0 0

2 0 (LD)m,2 Qm,m,2
. . . 0 0

...
...

. . .
. . .

. . .
...

...
b2 − 1 0 0 0 · · · Qm,m,b2−1 (UD)m,b2−1

b2 0 0 0 · · · (LD)m,b2 Qm,m,b2


, (1.45)

and for n = m− 1,m+ 1, n ≥ 0,

Qm,n =



0 1 · · · b2

0 Qm,n,0 0 · · · 0

1 0 Qm,n,1
. . . 0

...
...

. . .
. . .

...
b2 0 0 · · · Qm,n,b2

. (1.46)

For use in the forthcoming Example 7, let ei (0i) denote a row vector of ones (zeroes) having
length i, and let ei,j denote a row vector of zeroes having length i, with the exception of the

jth element being equal to one.

Example 4:

Service Policy: Cyclic polling order with exhaustive service.

CTMC: {(X1(t), X2(t), L(t)), t ≥ 0}, where Xi(t) denotes the number of customers at Qi,
i = 1, 2, and L(t) is used to track the location of the server at time t, such that L = 2i − 1
represents switching into class i and L = 2i represents serving class i, i = 1, 2.
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State Space:

S = {(X1, X2, L) : X1 ∈ N, X2 ∈ {0, 1, . . . , b2}, L ∈ ΩL(X1, X2)},

where

ΩL(X1, X2) =


{1, 3} , if X1 = 0, X2 = 0,

{1, 3, 4} , if X1 = 0, X2 > 0,

{1, 2, 3} , if X1 > 0, X2 = 0,

{1, 2, 3, 4} , if X1 > 0, X2 > 0.

Ordered Steady-state Probability Row Vectors: π = (π0, π1, . . .), where πm,n,l is the
steady-state probability that the CTMC is in state (m,n, l), and:

πm = (πm,0, πm,1, . . . , πm,b2), m ∈ N,

π0,0 = (π0,0,1, π0,0,3),

π0,n = (π0,n,1, π0,n,3, π0,n,4), n ∈ {1, 2, . . . , b2},

πm,0 = (πm,0,1, πm,0,2, πm,0,3), m ∈ Z+,

πm,n = (πm,n,1, πm,n,2, πm,n,3, πm,n,4), m ∈ Z+, n ∈ {1, 2, . . . , b2}.

Level 0 Generator Components:

Q0,0,0 =

[ 1 3

1 −(λ0,0 + τ1) τ1

3 τ2 −(λ0,0 + τ2)

]
,

Q0,0,n =


1 3 4

1 −(λ0,n + τ1) τ1 0
3 0 −(λ0,n + τ2) τ2

4 0 0 −(λ0,n + µ2)

, n ∈ {1, 2, . . . , b2},

(UD)0,0 =

[ 1 3 4

1 λ2 0 0
3 0 λ2 0

]
, (UD)0,n = λ2I3, n ∈ {1, 2, . . . , b2 − 1},

(LD)0,1 =


1 3

1 0 0
3 0 0
4 µ2 0

, (LD)0,n =


1 3 4

1 0 0 0
3 0 0 0
4 0 0 µ2

, n ∈ {2, 3, . . . , b2},
and

Q0,1,0 =

[ 1 2 3

1 λ1 0 0
3 0 0 λ1

]
, Q0,1,n =


1 2 3 4

1 λ1 0 0 0
3 0 0 λ1 0
4 0 0 0 λ1

, n ∈ {1, 2, . . . , b2}.
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Level m Generator Components: For m ∈ Z+,

Qm,m,0 =


1 2 3

1 −(λm,0 + τ1) τ1 0
2 0 −(λm,0 + µ1) 0
3 τ2 0 −(λm,0 + τ2)

,

Qm,m,n =


1 2 3 4

1 −(λm,n + τ1) τ1 0 0
2 0 −(λm,n + µ1) 0 0
3 0 0 −(λm,n + τ2) τ2

4 0 0 0 −(λm,n + µ2)

, n ∈ {1, 2, . . . , b2},

(UD)m,0 =


1 2 3 4

1 λ2 0 0 0
2 0 λ2 0 0
3 0 0 λ2 0

, (UD)m,n = λ2I4, n ∈ {1, 2, . . . , b2 − 1},

(LD)m,1 =


1 2 3

1 0 0 0
2 0 0 0
3 0 0 0
4 µ2 0 0

, (LD)m,n =


1 2 3 4

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 µ2

, n ∈ {2, 3, . . . , b2},
Qm,m+1,0 = λ1I3, Qm,m+1,n = λ1I4, n ∈ {1, 2, . . . , b2},

Q1,0,0 =


1 3

1 0 0
2 0 µ1

3 0 0

, Q1,0,n =


1 3 4

1 0 0 0
2 0 µ1 0
3 0 0 0
4 0 0 0

, n ∈ {1, 2, . . . , b2},
and for m = 2, 3, . . .,

Qm,m−1,0 =


1 2 3

1 0 0 0
2 0 µ1 0
3 0 0 0

, Qm,m−1,n =


1 2 3 4

1 0 0 0 0
2 0 µ1 0 0
3 0 0 0 0
4 0 0 0 0

, n ∈ {1, 2, . . . , b2}.
Example 5:

Service Policy: Class-1 preemptive priority, where the server will only serve class-2 customers
if X1(t) = 0, and will immediately begin a switchover to Q1 if a class-1 arrival is observed. If the
server arrives to a queue and finds it empty, they immediately leave to switch to the other queue.

CTMC: {(X1(t), X2(t), L(t)), t ≥ 0}, where Xi(t) and L(t) are as defined in Example 4.
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State Space:

S = {(X1, X2, L) : X1 ∈ N, X2 ∈ {0, 1, . . . , b2}, L ∈ ΩL(X1, X2)},

where

ΩL(X1, X2) =


{1, 3} , if X1 = 0, X2 = 0,

{1, 3, 4} , if X1 = 0, X2 > 0,

{1, 2} , if X1 > 0.

Ordered Steady-state Probability Row Vectors: π = (π0, π1, . . .), where πm,n,l is the
steady-state probability that the CTMC is in state (m,n, l), and:

πm = (πm,0, πm,1, . . . , πm,b2), m ∈ N,

π0,0 = (π0,0,1, π0,0,3),

π0,n = (π0,n,1, π0,n,3, π0,n,4), n ∈ {1, 2, . . . , b2},
πm,n = (πm,n,1, πm,n,2), m ∈ Z+, n ∈ {0, 1, . . . , b2}.

Level 0 Generator Components: When X1(t) = 0, this queue behaves identically to the
cyclic exhaustive queue from Example 4, and these components are the same with the exception
of

Q0,1,0 =

[ 1 2

1 λ1 0
3 λ1 0

]
, Q0,1,n =


1 2

1 λ1 0
3 λ1 0
4 λ1 0

, n ∈ {1, 2, . . . , b2}.
Level m Generator Components: For m ∈ Z+,

Qm,m,n =

[ 1 2

1 −(λm,n + τ1) τ1

2 0 −(λm,n + µ1)

]
, n ∈ {0, 1, . . . , b2},

(UD)m,n = λ2I2, n ∈ {0, 1, . . . , b2 − 1},
(LD)m,n = 0, n ∈ {1, 2, . . . , b2},

Qm,m+1,n = λ1I2, n ∈ {0, 1, . . . , b2},

Q1,0,0 =

[ 1 3

1 0 0
2 0 µ1

]
, Q1,0,n =

[ 1 3 4

1 0 0 0
2 0 µ1 0

]
, n ∈ {1, 2, . . . , b2},

and for m = 2, 3, . . .,

Qm,m−1,n =

[ 1 2

1 0 0
2 0 µ1

]
, n ∈ {0, 1, . . . , b2}.

Example 6:

Service Policy: Cyclic polling order with smart Bernoulli service, where after each class-i
service completion, should the other queue be non-empty, the server begins another service at
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Qi with probability pi, or begins a switchover with probability 1−pi. This specific variation on
the normal Bernoulli service discipline prevents the server from leaving customers to go visit a
currently empty queue.

CTMC: {(X1(t), X2(t), L(t)), t ≥ 0}, where Xi(t) and L(t) are as defined in Example 4.

State Space:

S = {(X1, X2, L) : X1 ∈ N, X2 ∈ {0, 1, . . . , b2}, L ∈ ΩL(X1, X2)},

where ΩL(X1, X2) is as defined in Example 4.

Ordered Steady-state Probability Row Vectors: π = (π0, π1, . . .), where πm,n,l is the
steady-state probability that the CTMC is in state (m,n, l), and each πm is as defined in Ex-
ample 4.

Level 0 Generator Components: When either queue is empty, the smart Bernoulli service
discipline acts the same as the exhaustive service discipline, so these components are the same
as those in Example 4.

Level m Generator Components: For m ∈ Z+, all components are the same as those in
Example 4 with the exception of

(LD)m,n =


1 2 3 4

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 (1− p2)µ2 0 0 p2µ2

, n ∈ {2, 3, . . . , b2},
and for m = 2, 3, . . .,

Qm,m−1,0 =


1 2 3

1 0 0 0
2 0 µ1 0
3 0 0 0

, Qm,m−1,n =


1 2 3 4

1 0 0 0 0
2 0 p1µ1 (1− p1)µ1 0
3 0 0 0 0
4 0 0 0 0

, n ∈ {1, 2, . . . , b2}.
If we let pi = 1, i = 1, 2, then these components will also become identical to those from
Example 4, as the smart Bernoulli service policy becomes the exhaustive service policy.

Example 7:

Service Policy: Cyclic polling order with ki-limited service.

CTMC: {(X1(t), X2(t), L(t),K(t)), t ≥ 0}, where Xi(t) and L(t) are as defined in Example 4,
and K(t) = k ∈ Z+ implies that the server is on their kth service within a visit to a queue,
while we let K(t) = 0 when the server is switching between queues.
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State Space:

S = {(X1, X2, L,K) : X1 ∈ N, X2 ∈ {0, 1, . . . , b2}, L ∈ ΩL(X1, X2),K ∈ ΩK(L)},

where ΩL(X1, X2) is as defined in Example 4, and

ΩK(L) =


{0} , if L = 1,

{1, 2, . . . , k1} , if L = 2,

{0} , if L = 3,

{1, 2, . . . , k2} , if L = 4.

Ordered Steady-state Probability Row Vectors: π = (π0, π1, . . .), where πm,n,l,k is the
steady-state probability that the CTMC is in state (m,n, l, k), and:

πm = (πm,0, πm,1, . . . , πm,b2), m ∈ N,

π0,0 = (π0,0,1,0, π0,0,3,0),

π0,n = (π0,n,1,0, π0,n,3,0, π0,n,4,1, π0,n,4,2, . . . , π0,n,4,k2), n ∈ {1, 2, . . . , b2},
πm,0 = (πm,0,1,0, πm,0,2,1, π0,n,2,2, . . . , π0,n,2,k1πm,0,3,0), m ∈ Z+,

πm,n = (πm,n,1,0, πm,n,2,1, πm,n,2,2, . . . , πm,n,2,k1 ,

πm,n,3,0, πm,n,4,1, πm,n,4,2, . . . , πm,n,4,k2), m ∈ Z+, n ∈ {1, 2, . . . , b2}.

Level 0 Generator Components:

Q0,0,0 =

[ 1 3

1 −(λ0,0 + τ1) τ1

3 τ2 −(λ0,0 + τ2)

]
,

Q0,0,n =


1 3 4

1 −(λ0,n + τ1) τ1 0k2
3 0 −(λ0,n + τ2) τ2ek2,1
4 0′k2 0′k2 −(λ0,n + µ2)Ik2

, n ∈ {1, 2, . . . , b2},

(UD)0,0 =

[ 1 3 4

1 λ2 0 0k2
3 0 λ2 0k2

]
, (UD)0,n = λ2I2+k2 , n ∈ {1, 2, . . . , b2 − 1},

(LD)0,1 =


1 3

1 0 0
3 0 0
4 µ2e

′
k2

0′k2

, (LD)0,n =


1 3 4

1 0 0 0k2
3 0 0 0k2
4 µ2e

′
k2,k2

0′k2 D2

, n ∈ {2, 3, . . . , b2},
where for i = 1, 2,

Di =


0 , if ki = 1,[

0′ki−1 µiIki−1

0 0ki−1

]
, if ki > 1,

40



and

Q0,1,0 =

[ 1 2 3

1 λ1 0k1 0
3 0 0k1 λ1

]
, Q0,1,n =


1 2 3 4

1 λ1 0k1 0 0k2
3 0 0k1 λ1 0k2
4 0′k2 0 0′k2 λ1Ik2

, n ∈ {1, 2, . . . , b2}.
Level m Generator Components: For m ∈ Z+,

Qm,m,0 =


1 2 3

1 −(λm,0 + τ1) τ1ek1,1 0
2 0′k1 −(λm,0 + µ1)Ik1 0′k1
3 τ2 0k1 −(λm,0 + τ2)

,

Qm,m,n =


1 2 3 4

1 −(λm,n + τ1) τ1ek1,1 0 0k2
2 0′k1 −(λm,n + µ1)Ik1 0′k1 0
3 0 0 −(λm,n + τ2) τ2ek2,1
4 0′k2 0 0′k2 −(λm,n + µ2)Ik2

, n ∈ {1, 2, . . . , b2},

(UD)m,0 =


1 2 3 4

1 λ2 0k1 0 0k2
2 0′k1 λ2Ik1 0′k1 0
3 0 0k1 λ2 0k2

, (UD)m,n = λ2I2+k1+k2 , n ∈ {1, 2, . . . , b2 − 1},

(LD)m,1 =


1 2 3

1 0 0k1 0
2 0′k1 0 0′k1
3 0 0k1 0
4 µ2e

′
k2

0 0′k2

, (LD)m,n =


1 2 3 4

1 0 0k1 0 0k2
2 0′k1 0 0′k1 0
3 0 0k1 0 0k2
4 µ2e

′
k2,k2

0 0′k2 D2

, n ∈ {2, 3, . . . , b2},
Qm,m+1,0 = λ1I2+k1 , Qm,m+1,n = λ1I2+k1+k2 , n ∈ {1, 2, . . . , b2},

Q1,0,0 =


1 3

1 0 0
2 0′k1 µ1e

′
k1

3 0 0

, Q1,0,n =


1 3 4

1 0 0 0k2
2 0′k1 µ1e

′
k1

0
3 0 0 0k2
4 0′k2 0′k2 0

, n ∈ {1, 2, . . . , b2},
and for m = 2, 3, . . . ,

Qm,m−1,0 =


1 2 3

1 0 0k1 0
2 0′k1 D1 µ1e

′
k1,k1

3 0 0k1 0

, Qm,m−1,n =


1 2 3 4

1 0 0k1 0 0k2
2 0′k1 D1 µ1e

′
k1,k1

0
3 0 0k1 0 0k2
4 0′k2 0 0′k2 0

, n ∈ {1, 2, . . . , b2}.
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1.2.8 Discussion of Polling Model Literature

When modelling polling systems, the inherent complexity of tracking arrival and service pro-
cesses, queue lengths, and the position of server(s) can make exact analysis a tall task. As
will be demonstrated within this thesis, MAM may be used to accurately track many variables
simultaneously, at the cost of increased dimensionality and computation time. One thing that
MAM cannot handle however, is leaving distributions as ‘general’ (although in practice, the
phase-type distributions can be used to approximate a desired non-negative distribution, e.g.,
Section 3.5.3). When working with generally distributed services, decompositions can some-
times be used to express quantities of interest (e.g., the total work in a system) in terms of
easier to analyze models, such as the standard M/G/1 queue.

Kleinrock [55] proved for a general class of M/G/1 polling systems with zero switchover
times, no customer reneging, and no service preemptions (unless the service distributions are
exponential, such that they possess the memoryless property), that the total amount of un-
finished work (in terms of the amount of time it would take the server to serve all currently
queued customers) is independent of the service policy used by the server so long as they cannot
interrupt the service of a customer in such a way that progress is lost. This is directly related
to the number of customers in each queue, and thus through Little’s Law [64], the mean waiting
times of these customers. This result paved the way to then equate the weighted sum of mean
waiting times to a constant (with respect to the choice of service disciplines at each queue).
This result was called the conservation law, as it was predicated on the server always working so
long as there were one or more customers present in the system to be served (not accumulating
work by being idle), or treating the customers in such as way that creates work (in this case,
by not interrupting service when it can cause work to be lost), and hence is ‘work conserving’.
Specifically, this result states that

N∑
n=1

ρiE[Wi] =
ρ/2

1− ρ
N∑
i=1

λiE[Ser2
i ],

where we let Ser i, Wi, λi, and ρi denote class-i service times, waiting times, arrival rates, and
workloads, while ρ =

∑N
i=1 ρi. This result is important as it shows that any change in service

discipline that reduces the waiting time of one class of customer, must come at the cost of
increasing the waiting times of one or more other classes.

However, this result does only apply to polling systems which have zero switchover times,
the existence of which would necessitate breaking the assumption that the server is always
serving a customer when one or more are in the system. In consideration of this, Boxma and
Groenendijk [19] developed a unified pseudo-conservation law for a subset of service disciplines
- namely, exhaustive, gated, 1-limited, and 1-decrementing. They proved that the distribution
for the amount of work in a M/G/1 cyclic polling system with switchover times can be decom-
posed into the amount of work in a corresponding M/G/1 queue without switchover times at
an arbitrary time instant, plus the amount of work in the M/G/1 model with switches during
a switching period, by applying similar arguments as Fuhrmann and Cooper [34] who them-
selves decomposed the distribution of the number of customers at customer departure instants
in a (non-polling) M/G/1 queue with vacations. The work in the M/G/1 polling model with
switchover times (during switching instants) at an arbitrary time instant during a switch (fol-
lowing service at a particular queue) was broken up into the work that arrived to the most
recently visited queue since the server has left, the amount of work in other queues, as well as
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the amount of work left by the server at that queue. The last of these components depends
on the service discipline at a particular queue, and thus must be derived separately for each
discipline considered.

As a companion to this work, Boxma and Groenendijk [20] also proved the equivalent result
for a discrete-time model with bulk arrivals, which was modified through taking limits as the size
of time blocks went to zero and shown to prove the previous continuous-time result, effectively
extending it to allow for bulk arrivals (where customer flow is still dictated by a Poisson process,
but an ‘arrival’ can contain one or more customers, for one or more classes). Boxma [18]
later more formally considered bulk arrivals in continuous time, while also generalizing from
switchover times to more general ‘interruptions’ in service (under constraints), and providing
equations for the mean amount of work left by the server at a queue for more service disciplines,
such as reserved gated, Binomial-gated, Binomial-exhaustive, and Bernoulli service.

Boxma [18] also discussed how to estimate the mean waiting times of individual queues when
arrivals followed a Poisson process and service was FCFS within each queue, by finding linear
relations between these mean waiting times and the residual cycle time for a cycle beginning
with a server’s visit to that queue. By assuming that the residual cycle times are equal for
each queue of origin and substituting these linear equations into the pseudo-conservation law
equations, the mean residual cycle time(s) can be found and then used to recover the mean
waiting times. Fuhrmann and Wang [35] similarly approximated individual mean waiting times
for customers from each queue within a cyclic polling system, after deriving approximate bounds
on the pseudo-conservation law for ki-limited service disciplines. Outside of approximating
individual mean waiting times, the pseudo-conservation law equations are very useful for testing
the accuracy of other approximations, obtaining an understanding on polling model dynamics,
and solving for the exact mean waiting times in symmetric models (such that each queue’s
waiting time distribution is identical).

Of course, conservation and pseudo-conservation laws are far from the only way to analyze a
polling model. More recently, Winands et al. [96] considered the methods of mean value analysis
(MVA) for M/G/1 cyclic polling systems with N queues and positive switchover times, using
exhaustive and/or gated service disciplines. Rather than deriving the steady-state distribution,
their method represents the probability of finding the server at a particular queue or switchover
by the ratio of the expected visit or switchover times and the mean cycle duration. Arguments
can then be made to relate mean waiting times to functions of these ratios, mean queue lengths
(defined for each location of the server, to be solved from a set of N2 linear equations), and
mean residual service or switchover times (only requiring knowledge of the first two moments
of those generally defined distributions). While this method can solve for the individual mean
waiting times for each class of customer given minimal distributional information, it is restricted
by limited choices of service discipline, and like the conservation laws, is unable to provide
information concerning the density functions (PDF or CDF) of these waiting times.

A common analytical technique found in many papers concerned with M/G/1 systems
involves z-transforms (i.e., probability generating functions, or PGFs) of discrete random vari-
ables, such as queue lengths at key time instants, and Laplace-Stieltjes transforms of continuous
random variables (e.g., [2, 4, 5, 24, 33, 34, 36, 49, 52, 59, 60, 72, 74, 75, 78, 85, 94, 95, 97, 99, 100]).
For a random variable X, these are defined respectively as E[zX ] and E[e−sX ], and are valued for
their ease of definition for convolutions of independent random variables, and for the one-to-one
uniqueness between a particular distribution and its transform. Unlike MVA or the conserva-
tion laws, it is possible to invert the LST of a customer’s waiting time or the z-transform of a
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queue length, theoretically or numerically, to recover the steady-state distribution in question.
Boon [15] provides an excellent, in-depth look at the application of LST techniques on polling
models having service disciplines which satisfy the branching property, as examined by Resing
[79]:

Branching Property: If the server arrives at Qi to find ki customers present, then during the
course of the server’s visit, each of these ki customers will effectively be replaced in an iid man-
ner by a random population having PGF hi(z1, . . . , zN ), which can be any N -dimensional PGF.

In particular, Resing proved a relationship between M/G/1 polling models, with either gen-
erally distributed switchover times or no switchover times, and multitype branching processes
with immigration, in order to find an expression for the joint z-transform of all queue lengths at
the beginning of a server’s visit to a particular queue. Several common service disciplines, such
as exhaustive and gated, satisfy this property. However, some disciplines, such as ki-limited
and Bernoulli, violate the condition of all customers present at a server’s time of visit being
replaced (i.e., by those who arrive during the busy period created by their service time in the
case of exhaustive, or solely during their service time in the case of gated) and can not be
analyzed exactly. Therefore, while the LST methods are very informative for the disciplines
they cover, they are not universal.

A niche, but interesting, analytical technique is Blanc’s [10] modification of the standard
balance equation method as discussed in Section 1.2.2. Based on the power-series algorithm
(PSA), Blanc showed how one can estimate the steady-state probabilities for queue length
vector n = (n1, . . . , ns), p(ρ;n), as power-series expansions as functions of ρ in exponential
queueing models that satisfy certain conditions, such as stability, and not allowing all servers
to simultaneously idle when there are one or more customers available to be served. That is,
within the balance equations, they let

p(ρ;n) = ρ|n|
∞∑
k=0

ρku(k;n),

where |n| = n e′ is the total number of customers in the system, and then solve for u(k;n)
using a recursive algorithm for as many k as required to meet a desired accuracy. Blanc also
discussed a transformation of variable that can be used on ρ when the radius of convergence
for the expansions as functions of ρ do not include all ρ such that |ρ − 0.5| ≤ 0.5, and the
calculation of moments was covered. Other than the assumptions required for the power-series
expansion to converge, the main limitations of this method are its the dependency on exponen-
tial distributions (although it can generalize to handle phase-types, like MAM, by increasing
the dimensionality of the model), as well as the reported drastic increase in computation time
as the number of queues in a system are increased. However, it is powerful in the sense that
specific arrival and departure (e.g., service completions) vectors can be defined for each state
to cover unique customer or server behaviours, without worry of needing to find some conve-
nient pattern(s) to help with solving the steady-state probabilities. The method was explicitly
applied to cyclic polling models under a Bernoulli service discipline with negligible (i.e., zero)
switchover times by Blanc in 1990 [11], and with non-negligible (i.e., positive) switchover times
in 1991 [12].

Blanc and van der Mei [14] would go on to apply the PSA method to an optimization problem
concerning a multi-queue M/G/1 polling model with generally distributed switchover times
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and Bernoulli service discipline with class-dependent parameters (where the general service
and switchover time distributions were approximated by Coxian distributions). Their goal was
to minimize a cost function of weighted expected waiting times as a function of the Bernoulli
parameters. In order to reduce the dimensionality of the optimization problem, the cµ rule for
priority systems (Meilijson and Yechiali [68]) was used to make an argument for automatically
setting Bernoulli parameter pi = 1 for one or more queues that have maximal values of ci/(ρi/ρ),
the highest ratio of relative weight (in the cost function, where

∑
i ci = 1) to fraction of total

workload. Their logic was that if it is optimal to never serve another queue over the queue in
question in a corresponding priority queue with no switchovers, then the server should never
want to switch away from serving that queue in this Bernoulli polling model, as long as there
are customers present.

The cµ rule also implies that the server should want to avoid serving the class(es) of cus-
tomer(s) that minimize this value (when other customers are present). However, when the
switchover times are not negligible, the cost of incurring extra idle periods with customers
in the system is shown to make this not always optimal, instead desiring positive parameters
which are less than 1. We apply Blanc and van der Mei’s logic and make similar observations
in Section 3.5.3 when optimizing our smart Bernoulli discipline. The cµ rule was generalized by
van Mieghem [91] who investigated a generalized cµ rule where the cost incurred by a waiting
customer can be a non-decreasing convex function of how long long they have been waiting
(rather than a flat rate per unit time), and Iravani and Kolfal [47] considered a modified cµ
rule for finite-population queueing systems.

Servi [85] also investigated an optimization problem concerning the choice of Bernoulli
parameters in a polling system. They made use of the connection between vacation systems
and polling models to apply their previous work (Keilson and Servi [50]) concerning a GI/G/1
vacation system where the number of services between vacations was determined by a Bernoulli
service discipline, and the polling model with positive switchover times where the server follows a
class-dependent Bernoulli discipline at each queue. From the point of view of any one queue, the
time spent by the server either switching or serving a different queue can be treated as a vacation,
while the visit time to that queue is the busy period between vacation periods. Combining
their GI/G/1 vacation model work with the M/G/1 vacation system decomposition work by
Fuhrmann and Cooper [34], as well as their work with Ramaswamy specifically concerning
the busy period of an M/G/1 vacation model with a Bernoulli service discipline [78], they
found the LST of each queue’s busy period, and used them to numerically approximate the
expected waiting times for each customer class. The choice of Bernoulli parameters allowed
this model a unique ability to optimize the overall expected waiting time, by way of selecting
parameters to give queues relative priorities. Through a numerical example, this was shown to
be very valuable, in that for a two queue system, by giving the class of customer with much
longer service times a parameter of less than one (indicating non-exhaustive service), it helped
insulate the expected waiting time of the class with shorter service times against an increase in
the arrival rate of the class with longer service times.

As seen in Section 1.2.7, there is a connection between Bernoulli and ki-limited service
disciplines, in that for either discipline the corresponding parameters can be selected to result
in the same expected maximum number of customers served in a single visit. As the choice of
ki is something that can be varied, it is something that can be used for optimization. Borst
et al. [17] consider the optimal selection of ki for N classes of customers in a M/G/1 polling
system with general switchover times. Specifically, they aimed to minimize the cost function
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∑N
i=1 ciλiE[Wi] through the selection of vector k = (k1, . . . , kN ), either unconstrained or subject

to
∑N

i=1 γiki ≤ K. By letting γi = 1 for i = 1, . . . , N , this sets an upper bound on the
total number of services in a cycle, while letting γi = E[Ser i] results in a bound on the total
expected service time in a cycle. Due to the complexities of the ki-limited discipline, they
apply four approximations for the individual expected waiting times, including, for example, an
approximation based on a 1-limited polling table involving ki separate visitations to queue i, an
approximation that was the weighted sum of 1-limited and exhaustive approximations, and the
approximation derived from a pseudo-conservation law by Fuhrmann and Wang [35]. To test
the accuracy of their approximations, Blanc’s PSA was used [10, 12, 13]. For the constrained
problem, it was always observed that the optimal ki’s satisfied k e′ = K (with γi = 1), as the
potential benefit of a higher ki for queue i greatly outweighed the cost to the other N − 1
queues. We will make the same observation for our similar model considered in Section 4.5.1,
when minimizing the modified cost function

2∑
i=1

{
ciλiE[W#

i ] + riλiP (Class-i customer reneges before reaching service)
}
,

where W#
i is the time spent waiting in the queue for a class-i customer. For the unconstrained

optimization problem, not unlike how the cµ rule (Meilijson and Yechiali [68]) was applied in
the Bernoulli discipline, Borst et al. [17] showed that the queue(s) with the highest value of
ci/E[Ser i] should be given the top priority, in the form of ki = ∞ (i.e., they should receive
exhaustive service).

Aside from the service discipline, it is also possible to optimize in terms of the polling
order within a service policy. In addition to our consideration of the cµ rule, an example of
optimizing a polling order for a network of queues is the work of Browne and Yechiali [24]. They
investigated the scheduling of visits to N queues within a cycle, with the goal of minimizing
the total duration of a cycle. Both optimization at the start of a cycle, as well as dynamic
optimization in the form of selecting the next queue to visit as the server finishes serving the
current queue were addressed.

For more information on the study of polling models, the interested reader is recommended
to the works of Takagi [89], Levy and Sidi [61], Vishnevskii and Semenova [93], Boon [15] and
Boon et al. [16], as well as the numerous references therein.

1.3 Main Contributions

Within the remainder of this thesis, we will progress the research of polling models. In par-
ticular, we develop several structures, techniques, and approximations that can be used within
a MAM framework. In Chapters 2 and 3, we consider the modelling of a finite population
maintenance model. Some classic service policies are considered in Chapter 2, and we present a
way to model a greatly generalized dynamic server behaviour in Chapter 3 which could be ap-
plied to other polling models. Among these policies is (a, b) threshold, which permits a greater
flexibility than standard threshold policies, and could be of potential interest to examine in
other systems. Within this analysis, in addition to calculating the steady-state distribution, we
explore the intricacies of characterizing the sojourn time distribution of a customer in a finite
population system. This analysis varies depending on the given service policy, and in Chapter
3 we show how it may be obtained when allowing for the generalized server decision process.
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Results concerning the expected number of working machines in this system are derived,
including an upper bound that may be reached as the capacity of the system is increased to
infinity. It is shown that this limit can be attainable for any service policy when the time to
switch between queues is negligible, and we demonstrate how, under the presence of switch-
in times, the amount of incurred switches caused by different service policies can impact a
system’s peak expected performance. This knowledge can be useful for a mechanic responsible
for maintaining a large number of machines when determining how to schedule repairs. For
example, in a server farm, a ‘small’ job may involve power cycling a server, while a ‘large’ job
could represent having to replace a piece of hardware. If the time to move from a large job
to a small job (and back) is very short, then our observations indicate it would be logical to
prioritize completing small jobs and returning them to working order as fast as possible.

In Chapters 4, 5, and 6, we consider polling models whose customer populations are infi-
nite. Due to the limitations of MAM, we are forced to truncate the queue lengths of all but one
class when using a level-independent QBD, or all classes when using a level-dependent QBD.
MAM enables us to easily incorporate customer impatience in our models, and we demonstrate
how customers with reneging rates which depend on their position within their queue may be
handled, both in building the infinitesimal generator matrix as well as deriving the distribu-
tions of their time spent waiting and the actual waiting times experienced by customers who
successfully reach service. Fortunately, the presence of reneging helps keep queue lengths small,
however blocking probabilities can still be an issue when modelling a system which in reality
has no limits on queue lengths. This issue increases dramatically with the number of queues
that we must track at once, which results in very large state spaces. To help illustrate this
fact, we develop new recursive structures in Chapters 5 and 6 which enable us to construct
an infinitesimal generator matrix for a system with a general number of queues which we may
easily adjust. These structures are first considered for a simple exhaustive service policy, but
are later generalized to allow for ki-limited or Bernoulli service policies at each queue.

By truncating the state space, any steady-state probability mass corresponding to states
above the truncation level will be proportionally redistributed to lower states through normal-
ization. This will have a biasing effect on values such as the expected queue lengths, and result
in shorter sojourn times as well. In Chapter 5, we introduce a brand new technique that we call
the Unobserved Waiting Customer (UWC) approximation. The goal of this approximation is to
emulate the presence of customers who may be residing in unobservable positions within their
queue (i.e., in positions beyond the truncation level), when the observable portion of said queue
is full. If an unobserved waiting customer is present, then when the observed queue length
would have decremented due to a customer departure, the unobserved customer would be able
to immediately replace them. Through this approximation, we aim to shift excess steady-state
probability mass from states below the truncation level, with the goal of bringing their approxi-
mate values as close as possible to those of the true infinite buffer model. Logically, this results
in excess mass being stored at the truncation level, which is the best case scenario given that
we are tracking no higher levels at which we could assign it to.

We derive how to optimally apply this technique to several classic models, including the
M/M/1, M/M/1 + M , M/M/∞, and M/PH/1 queues. Additionally, two versions of its
application to the M/PH/1 + M queue are considered and compared, as well as to polling
systems containing multiple queues. In Chapter 6, we further generalize one of these versions
to allow for our earlier considered queue length dependent reneging rates. The benefit of
the UWC approximation is that it can easily be incorporated into any MAM polling model
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to improve the accuracy of calculated results. For example, while an approximation may be
performed to treat a QBD as level-independent beyond some level to allow for infinite buffers
on one queue (albeit with a small amount of error experienced due to the approximation that
decreases with the level which it is made), this method is in fact limited to one of multiple
queues in a polling model. In such a case, UWC may be applied to the other queues within the
polling system at no cost in the form of an increased state space.
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Part I : Finite Population
Maintenance Models
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Chapter 2

A 2-Class Maintenance Model with
a Finite Population and Competing
Exponential Failure Rates

2.1 Discussion of Literature

When one considers modelling maintenance systems, polling model service policies may not be
the first thing to come to mind. However, in the area of maintenance optimization, deciding
what components or systems to repair, and when to repair them, are common queries. In fact,
two of the first papers to model systems that we now identify as polling models were regarded
as maintenance problems! Mack et al. [66] investigated the efficiency of a closed system of
machines, which were serviced by a patrolling repairman who would visit each machine in
a cyclic fashion. Mack [65] would go on to revisit and generalize this model, extending the
constant repair times to discrete random variables.

When we refer to a model as a maintenance system, it is immediately clear that repairs
and/or replacements will be involved. There are, however, very distinct types of models that
can claim this label. This depends on what, exactly, is being maintained over time. For example,
a model may concern itself with the condition of a central machine, rather than being directly
connected to a queueing-related issue. Alfa and Castro [3] derived the steady-state distribution
of a discrete-time model of a system consisting of a single machine that was at risk of failing.
The machine would have a natural lifespan after which it would automatically fail, or it had
the potential to randomly fail after each time increment. A machine could be repaired up to
a selected (finite) maximum number of times, after which it would need to be replaced, while
it was also possible to suffer a large failure requiring a replacement at an earlier incident. The
lifetime of the machine, as well as customer service time distributions, were allowed to depend on
the number of times the machine has been repaired since the last replacement. An optimization
problem was conducted to select the optimal maximum number of repairs permitted, where the
system profited while working, but would incur a loss every time the system was repaired or
replaced. This work was similar to that of Neuts et al. [71], who considered a comparable
continuous-time model where the failures occurred according to a Poisson process. Pérez-Ocón
and Montoro-Cazorla [75] would later expand on the continuous-time model by providing a way
to numerically solve for the transition probability function matrices (as functions of time) for
each operation and repair state, among other contributions.
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When considering maintenance in a queueing system, depending on whether the ‘server(s)’
or the ‘customers’ are the ones receiving repairs, the interpretation and analysis of the model
will vary greatly. In the former case, the machine(s) we repair may provide a function integral
to the service process of customers. When a machine is broken, this imparts costs upon the
system in terms of increased customer waiting times as well as increasing the probability of a
customer abandoning their queue due to impatience. In the latter case, the server may be a
repairman who tends to a closed system of machines or components that ‘arrive’ to the queueing
system by failing, where they will wait to be repaired. This is the type of maintenance system
that we analyze in Chapters 2 and 3 of this thesis.

We make use of MAM to analyze our customer-centric models. MAM is also a convenient
tool for server-centric maintenance models. For instance, Yang et al. [99] used matrix analytic
methods in their investigation of a queueing system where the server would break down over
time according to random shocks modelled by a Poisson process. The magnitude of these
shocks were non-negative discrete random variables, which incremented the state of the server
by the magnitude of the shock. The server’s exponential service rate was inversely related to
its state, and at a certain finite state, the server would completely break down and cease to
work. Similarly, the exponential rates for the repair times also depended on the state of the
server. In the interest of optimization, a lower limit was enforced such that if the state of the
server equaled or exceeded this point, repair was started rather than waiting for the server
to completely break down. A cost function was defined, attributing holding costs over time
to customers waiting in queue, as well as at time instants of repair completion. This model
was further generalized by Chakravarthy [27], who introduced a probability of a shock not
affecting the server if the server was idle at the time, and replaced the assumption of a Poisson
process customer flow by a more flexible Markovian arrival process. Chakravarthy expressed
the distribution of several key system characteristics as phase-type distributions, such as the
effective service time and repair duration. Further examples of other server-centric maintenance
models which do not employ matrix analytic methods include the works of Hsu [45], Perry and
Posner [76], and Peschansky and Kovalenko [77].

Clearly, the patrolling repairman models of Mack et al. [66] and Mack [65] are both exam-
ples of customer-centric maintenance models. Kim and Koenigsberg [54] considered a system
consisting of a server repairing machines on two rotating carousel conveyors. They assumed
that the machines had exponentially distributed failure times, while service times as well as the
time for an adjacent machine on the same carousel to rotate to the server were constant. This
allowed them to apply some of the results from Mack et al. [66]. Both the utilization of the
server and the efficiency of the machines were examined. Another example of a customer-centric
maintenance model is the work of Righter [80] who investigated a closed queueing system that
could function so long as there was at least one working component. Therefore, the system was
only down if every single component was either waiting to be repaired or undergoing repair by
the single server. Clearly, it was optimal to only have a single component working (and hence,
at risk of failing) at a time, but the optimal order (to minimize system downtime) in which
they are turned on, and the order in which they are to be repaired (should more than one be
down at a time), was investigated.

Finally, we cite the closed queueing model of Gross et al. [42], who considered a closed
system of M + y machines, up to M of which could be turned on and working at any time
having competing exponential failure times, which may result in either a minor or major repair
being required. Every failed machine would either be routed to the minor or major repair node,
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and those that receive minor repair may still be routed through the major repair node prior to
being returned to operation. Each repair node was permitted to have multiple servers in parallel,
and the optimal selection of y as well as the number of servers at each queue was investigated.
Every distribution was assumed to be exponential, so that the analysis of their system was in the
style of Gordon and Newell [38] and Buzen [26] for closed queueing networks with exponential
servers. The reason that we single out this paper is that the concept of a closed network of
machines which suffer either minor or major failures according to competing exponential failure
rates is, in a way, analogous to our maintenance models of interest. We divert, however, in that
machines suffering minor failures are never routed through the major failures queue before
becoming operational again, and we only have a single server who alternates serving between
the two queues according to some specified service policy. Moreover, in Chapter 2 we do not
assume the existence of a maintenance float of additional machines that can be functional (but
not turned on), however we will consider this extension in Chapter 3. Madu [67] also considered
a similar model to Gross et al. [42], differing in that only one machine could be turned on at a
time, only a single server was at either repair node, and failed machines always had to initially
go through the minor repair node prior to possibly being routed to the major repair node.
Abboud [1] later developed an efficient iterative method to find the optimal number of servers
and machines for the same model as Gross et al. [42]. We close this subsection by remarking
that a majority of the work within this chapter may be found in Granville and Drekic [40].

2.2 Model Assumptions

We introduce a maintenance system characterized as a polling model with two classes, each
of which represents a different type of failure which may require differently distributed service
times to repair by a lone mechanic. Let C be the total number of machines in the system, which
are all simultaneously subject to exponential failure rates as long as they are working. Define
αi, i = 1, 2, to be the exponential rate for class-i failures, so that each machine has a total
failure rate of α = α1 +α2. Once a machine has failed (or arrived to class i), it waits in the ith

queue to be served on a FCFS basis amongst other machines in that same queue. It is assumed
that only one type of failure can happen to a machine at once, and that the times until failure
of each of the machines are independent. While not represented as being in a queue directly, we
denote working machines as being of class 0. When the system is empty, the server will move to
a location separate from either queue to idle. For notational convenience, we denote the event
of the server being idle as the server visiting class 0. Figure 2.1 depicts our maintenance model,
where solid black circles represent machines, X1 and X2 are the respective lengths of queues 1
and 2, and L represents the location of the server, to be defined in Section 2.3.

The service policy that the mechanic (henceforth referred to as the server) uses to serve
customers from either class may be exhaustive, where the server stays at one location and
serves that class until its queue empties, or priority-based, preferring to serve one class (i.e.,
the high priority class) over the other (i.e., the low priority class). Among the priority policies,
both non-preemptive and preemptive resume are considered. Under non-preemptive priority,
the server immediately switches to serve the high priority class if an arrival is observed while
the server is idle or conducting a switch-in time, or after a service completion of the low priority
class given that there are high priority customers waiting in their queue. Under preemptive
resume priority, the server always switches to serve any high priority customers upon their
arrival to the system. If the server happened to be serving a low priority customer at the time

52



C

...

...

2

1

M
ac

hi
ne

s
In

U
se

α1(C −X1 −X2)

α2(C −X1 −X2)

X1 · · · 2 1

Class-1 Queue

X2 · · · 2 1

Class-2 Queue

PHbi(βi
, Bi)

PHsi(γji
, Si)

L = 2

L = 4

L = 0

Mechanic

Figure 2.1: Depiction of the maintenance model with the server at queue 2.

of switching, the partially rendered service of the interrupted customer is retained when the
server eventually returns after emptying the high priority queue. Let I denote the type of
service policy in place, such that

I =



−2 , if class 2 has non-preemptive priority over class 1,

−1 , if class 1 has non-preemptive priority over class 2,

0 , if the exhaustive service policy is in place,

1 , if class 1 has preemptive resume priority over class 2,

2 , if class 2 has preemptive resume priority over class 1.

For i = 1, 2, class-i service times are assumed to be non-zero in duration, having a (contin-
uous) phase-type distribution with representation Ser i ∼ PHbi(βi, Bi). Note that here we are
using Bi to denote the rate matrix of a phase-type distribution, not a random variable. Service
times are assumed to be independent of each other and of the failure times. Similarly, class-i
switch-in times are assumed to have a phase-type distribution with representation PHsi(γji, Si).

A class-i switch-in time can be understood as the period of time it takes the server to prepare
before beginning work on the class-i queue, after previously attending to something else (e.g.,
serving customers in the queue of the other class or being idle). We allow the initial proba-
bility row vector γ

ji
to depend on the class that the server is switching to (i.e., class i) and

where the server is switching from (i.e., class j). We further assume that switch-in times are
independent of the service and failure times, as well as the assumption that switching from
a switch-in to class j is the same as switching from serving class j. For example, if class 1
has higher priority and the server is currently conducting a switch-in to class 2 when a class-1
failure is observed, the initial probability vector γ

21
is used for the new switch-in to go serve

class 1. In the same way, if the server switches after a class-2 service has completed (as in the
case of class 2 emptying, or under non-preemptive priority), or during a class-2 service (as in
the case of preemptive resume priority), γ

21
is also used. Finally, for the switch-in times, we
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relax the non-zero duration assumption and let γ
[0]
ji = 1−γ

ji
e′ be the probability of a switch-in

time from class j to class i being zero.
We analyze this model using MAM, representing the system as a level-dependent QBD with

the length of the class-1 queue serving as the level of the process. The associated infinitesimal
generator is of the form

Q[C] =



0 1 2 · · · C − 2 C − 1 C

0 Q
[C]
0,0 Q

[C]
0,1 0 · · · 0 0 0

1 Q
[C]
1,0 Q

[C]
1,1 Q

[C]
1,2

. . . 0 0 0

2 0 Q
[C]
2,1 Q

[C]
2,2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
C − 2 0 0 0 · · · Q

[C]
C−2,C−2 Q

[C]
C−2,C−1 0

C − 1 0 0 0 · · · Q
[C]
C−1,C−2 Q

[C]
C−1,C−1 Q

[C]
C−1,C

C 0 0 0 · · · 0 Q
[C]
C,C−1 Q

[C]
C,C


, (2.1)

where we recall that 0 represents an appropriately dimensioned zero matrix. Note that Q[C]

is block-structured, and built in an analogous way to Equation (1.36), in such a way that the

submatrices (or blocks) Q
[C]
i,j contain all transitions where the level changes from i to j. The

particular forms of these blocks will be specified over the next two subsections for each of the
aforementioned service policies. In addition, the superscript [C] of Q[C] (as well as its associated
blocks) corresponds to the number of machines in the system that is being modelled, and this
choice of notation will be helpful in the upcoming sojourn time analysis. The steady-state
distribution for this model may be found using the procedure for level-dependent QBDs as
discussed in Section 1.2.6.

2.3 Exhaustive and Non-preemptive Priority Service Models

In this subsection, we focus solely on exhaustive and non-preemptive priority service policies
(i.e., I ∈ {−2,−1, 0}). As such, we need not consider server movements that interrupt the
service of a customer from either class. We may model the system by the CTMC

{(X1(t), X2(t), L(t), Y (t)), t ≥ 0},

where Xi(t) is the length of the class-i queue, i = 1, 2, L(t) ∈ {0, 1, 2, 3, 4, 5} indicates the
position of the server (0: server is idle; 1: switch-in to class 1; 2: serving class 1; 3: switch-in
to class 2; 4: serving class 2; 5: switch-in to class 0), and Y (t) denotes the phase of the service
or switch-in time which has possible values depending on L(t) in the following way:

Y (t) ∈ ΩY (L(t)) =



{0} , if L(t) = 0,

{1, 2, . . . , s1} , if L(t) = 1,

{1, 2, . . . , b1} , if L(t) = 2,

{1, 2, . . . , s2} , if L(t) = 3,

{1, 2, . . . , b2} , if L(t) = 4,

{1, 2, . . . , s0} , if L(t) = 5.
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Let πm,n,l,y be the steady-state probability of observing the CTMC in state (m,n, l, y), where
0 ≤ m ≤ C, 0 ≤ n ≤ C −m, and l and y take values from the respective supports of L(t) and
Y (t), above. The ordered steady-state probability row vector for level 0 is

π0 = (π0,0,0,0, π0,0,5,1, . . . , π0,0,5,s0 , π0,1, . . . , π0,C),

where

π0,n = (π0,n,3,1, . . . , π0,n,3,s2 , π0,n,4,1, . . . , π0,n,4,b2)

is a row vector of length s2 + b2 for n = 1, 2, . . . , C. For non-zero levels, the mth steady-state
probability row vector is given by

πm = (πm,0, πm,1, . . . , πm,C−m), m = 1, 2, . . . , C,

where

πm,0 = (πm,0,1,1, . . . , πm,0,1,s1 , πm,0,2,1, . . . , πm,0,2,b1),

and for n = 1, 2, . . . , C −m,

πm,n = (πm,n,1,1, . . . , πm,n,1,s1 , πm,n,2,1, . . . , πm,n,2,b1 , πm,n,3,1, . . . , πm,n,3,s2 , πm,n,4,1, . . . , πm,n,4,b2),

which are row vectors of length s1 + b1 and s1 + b1 + s2 + b2, respectively. Clearly, level 0 has
1 + s0 +C(s2 + b2) states, whereas level m ≥ 1 has s1 + b1 + (C −m)(s1 + b1 + s2 + b2) states.

In order to determine π using the QBD procedure described in Section 1.2.6, we need only
specify the blocks of Q[C] defined in Equation (2.1). In what follows, recall that δi,j is the
standard Kronecker delta function which equals 1 if i = j and 0 if i 6= j, and that Ii is an
identity matrix of dimension i × i. Furthermore, let B′0,i = −Bie′ and S′0,i = −Sie′ be the
absorption rate column vectors corresponding to phase-type representations PHbi(βi, Bi) and

PHsi(γji, Si), respectively. The diagonal blocks of Q[C] can be expressed as

Q
[C]
0,0 =



0 1 2 · · · C − 1 C

0 ∆
[C]
0 Cα2e

′
(
γ

02
γ

[0]
02β2

)
0 · · · 0 0

1

[
0′ 0

γ
[0]
20B

′
0,2 B′0,2γ20

]
∆

[C]
1 (C − 1)α2Is2+b2

. . . 0 0

2 0 Γ ∆
[C]
2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C − 1 0 0 0 · · · ∆
[C]
C−1 α2Is2+b2

C 0 0 0 · · · Γ ∆
[C]
C


,

where

∆[C]
n =


−CαI1+s0 +

[
0 0

S′0,0 S0

]
, if n = 0,

−(C − n)αIs2+b2 +

[
S2 S′0,2β2

0 B2

]
, if n = 1, 2, . . . , C,

and

Γ =

[
0 0
0 B′0,2β2

]
,
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while for m = 1, 2, . . . , C,

Q[C]
m,m =



0 1 2 · · · C −m− 1 C −m
0 Q

[C]
m,m,0 (UD)

[C]
m,0 0 · · · 0 0

1 (LD)
[C]
m,1 Q

[C]
m,m,1 (UD)

[C]
m,1

. . . 0 0

2 0 (LD)
[C]
m,2 Q

[C]
m,m,2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C −m− 1 0 0 0 · · · Q
[C]
m,m,C−m−1 (UD)

[C]
m,C−m−1

C −m 0 0 0 · · · (LD)
[C]
m,C−m Q

[C]
m,m,C−m


,

where

Q[C]
m,m,n =



−(C −m)αIs1+b1 +

[
S1 S′0,1β1

0 B1

]
, if n = 0,

−(C −m− n)αIs1+b1+s2+b2 +


S1 S′0,1β1

0 0

0 B1 0 0

0 0 S2 S′0,2β2

0 0 0 B2

 , if n = 1, 2, . . . , C −m,

(UD)
[C]
m,n =


(C −m)α2

[
(1− δI,−2)Is1 0 δI,−2e

′γ
12

δI,−2γ
[0]
12 e
′β

2

0 Ib1 0 0

]
, if n = 0,

(C −m− n)α2Is1+b1+s2+b2 , if n = 1, 2, . . . , C −m− 1,

and

(LD)
[C]
m,n =



[
0 0

B′0,2γ21
γ

[0]
21B

′
0,2β1

]
, if n = 1,

[
0 0 0 0

δI,−1B
′
0,2γ21

δI,−1γ
[0]
21B

′
0,2β1

0 (1− δI,−1)B′0,2β2

]
, if n = 2, 3, . . . , C −m.

With regard to the off-diagonal blocks of Q[C], we first have

Q
[C]
m,m+1 =



0 1 2 · · · C −m− 1

0 (C −m)α1Is1+b1 0 0 · · · 0

1 0 Q
[C]
m,m+1,1 0

. . . 0

2 0 0 Q
[C]
m,m+1,2

. . . 0
...

...
. . .

. . .
. . .

...
C −m− 1 0 0 0 · · · Q

[C]
m,m+1,C−m−1

C −m 0 0 0 · · · 0


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for m = 1, 2, . . . , C − 1, where

Q
[C]
m,m+1,n = (C −m− n)α1Is1+b1+s2+b2 , n = 1, 2, . . . , C −m− 1.

Moreover,

Q
[C]
0,1 =



0 1 2 · · · C − 1

0 Cα1e
′
(
γ

01
γ

[0]
01β1

)
0 0 · · · 0

1 0 Q
[C]
0,1,1 0

. . . 0

2 0 0 Q
[C]
0,1,2

. . . 0
...

...
. . .

. . .
. . .

...
C − 1 0 0 0 · · · Q

[C]
0,1,C−1

C 0 0 0 · · · 0


,

where

Q
[C]
0,1,n = (C − n)α1

[
δI,−1e

′γ
21

δI,−1γ
[0]
21 e
′β

1
(1− δI,−1)Is2 0

0 0 0 Ib2

]
, n = 1, 2, . . . , C − 1,

and

Q
[C]
1,0 =



0 1 2 · · · C − 2 C − 1 C

0

[
0′ 0

γ
[0]
10B

′
0,1 B′0,1γ10

]
0 0 · · · 0 0 0

1 0 Q?1,0 0
. . . 0 0 0

2 0 0 Q?1,0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

C − 2 0 0 0 · · · Q?1,0 0 0
C − 1 0 0 0 · · · 0 Q?1,0 0


,

where

Q?1,0 =

 0 0

B′0,1γ12
γ

[0]
12B

′
0,1β2

0 0

 .
Finally, for m = 2, 3, . . . , C, the remaining blocks of Q[C] are of the form

Q
[C]
m,m−1 =



0 1 2 · · · C−m−1 C−m C−m+1

0 Q
[C]
m,m−1,0 0 0 · · · 0 0 0

1 0 Q
[C]
m,m−1,1 0

. . . 0 0 0

2 0 0 Q
[C]
m,m−1,2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
C−m−1 0 0 0 · · · Q

[C]
m,m−1,C−m−1 0 0

C−m 0 0 0 · · · 0 Q
[C]
m,m−1,C−m 0


,
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where

Q
[C]
m,m−1,n =



[
0 0

0 B′0,1β1

]
, if n = 0,

 0 0 0 0

0 (1− δI,−2)B′0,1β1
δI,−2B

′
0,1γ12

δI,−2γ
[0]
12B

′
0,1β2

0 0 0 0

 , if n = 1, 2, . . . , C −m.

Next, we turn our attention to deriving the class-1 sojourn time distribution of a broken
machine, representing the time between when a machine suffers a class-1 failure and when it is up
and working again. To do so, we require the steady-state distribution of the system immediately
prior to a class-1 failure. Letting C1,h denote the event of observing a single class-1 failure within
the next h time units and Sm,n,l,y denote the event that (X1(t), X2(t), L(t), Y (t)) = (m,n, l, y)
at steady state (such that P (Sm,n,l,y) = πm,n,l,y), it follows that (e.g., Lakatos et al. [58],
Chapter 9)

qm,n,l,y = P ((X1(t), X2(t), L(t), Y (t)) = (m,n, l, y) immediately prior to a class-1 failure)

= lim
h→0

P (Sm,n,l,y|C1,h)

= lim
h→0

P (C1,h|Sm,n,l,y)P (Sm,n,l,y)∑
x1

∑
x2

∑
w

∑
z P (C1,h|Sx1,x2,w,z)P (Sx1,x2,w,z)

= lim
h→0

(α1(C −m− n)h+ o(h))πm,n,l,y∑
x1

∑
x2

∑
w

∑
z(α1(C − x1 − x2)h+ o(h))πx1,x2,w,z

= lim
h→0

α1(C −m− n)πm,n,l,y + o(h)/h∑
x1

∑
x2

∑
w

∑
z α1(C − x1 − x2)πx1,x2,w,z + o(h)/h

=
(C −m− n)πm,n,l,y∑

x1

∑
x2

∑
w

∑
z(C − x1 − x2)πx1,x2,w,z

. (2.2)

Hence, it follows that these probabilities are simply the normalized steady-state class-1 failure
rates. Note that the right-hand side of Equation (2.2) equals zero for all l and y when m+n = C,
as this corresponds to states where every machine has already suffered a failure (and so there
are no working machines available to fail).

We must also consider the impact that the arrival may have on the server, should the arrival
be to an empty class-1 queue. This distinction is important, since as we can see by contrasting

the blocks Q
[C]
0,1 and Q

[C]
i,i+1, only an arrival to an empty queue may trigger the server to move

(causing a change in L(t)), as any additional arrivals to a non-empty queue simply increments
X1(t) by 1. For either possible service policy, if L(t) ∈ {0, 5} (i.e., the server is idle or switching
into the idle state), then the server will immediately begin a switch-in to serve the class-1
arrival. Let

q0,0,•,• = q0,0,0,0 +

s0∑
i=1

q0,0,5,i

be the probability of the system being in any of these states immediately prior to the class-1
arrival. Furthermore, if L(t) = 3 (i.e., the server is conducting a class-2 switch-in), then the
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server will similarly initiate a switch to serve the class-1 arrival only when I = −1. As such,
let

q0,+,3,• = δI,−1

C−1∑
n=1

s2∑
y=1

q0,n,3,y

represent the desired probability that L(t) = 3 immediately before the class-1 arrival.
In order to construct the distribution of the waiting time (to reach service), we consider how

long it takes for the queue in front of the target customer to empty, as well as the duration of
time (if any) required for the server to switch to the target customer once at the head of their
queue. Since we are considering an arrival to the system, the state of the process immediately
prior to the arrival cannot possibly be one with X1(t) + X2(t) = C, as there would have had
to be at least one machine working to fail. Thus, we construct initial probability vectors in the
style of a queue featuring C − 1 total machines.

We begin by considering the system with X1 = 0 prior to the arrival. Let

q
0,n

= ((1− δI,−1)q0,n,3,1, . . . , (1− δI,−1)q0,n,3,s2 , q0,n,4,1, . . . , q0,n,4,b2) (2.3)

be a row vector of length s2 + b2 corresponding to the possible states when X1(t) = 0 and
X2(t) = n, 0 ≤ n ≤ C−1. Since we have extracted the probability q0,+,3,• when I = −1, we must
remove the probabilities of starting in the states where L(t) = 3 (in the class-1 non-preemptive
priority case). When X1(t) = X2(t) = 0, it follows that the only possible states immediately
after the class-1 arrival correspond to a class-1 switch-in, which when finished (if not interrupted
by a class-2 arrival, should I = −2), leads to the completion of the waiting time. The initial
probabilities for these states are contained in the row vector q0,0,•,•γ01

+q0,+,3,•γ21
, which when

combined with q
0,n

in Equation (2.3), allow us to construct the full initial probability vector

when X1(t) = 0, namely

q
0

= (q0,0,•,•γ01
+ q0,+,3,•γ21

, q
0,1
, . . . , q

0,C−1
),

which has length s1 + (C − 1)(s2 + b2).
When X1(t) = m ≥ 1 prior to the arrival, there is no shifting of probability mass required.

We can simply construct q
m

in a way which is analogous to how we originally defined πm
(although under the framework of a system with one less machine). Specifically, we have

q
m

= (q
m,0

, q
m,1

, . . . , q
m,C−1−m),

q
m,0

= (qm,0,1,1, . . . , qm,0,1,s1 , qm,0,2,1, . . . , qm,0,2,b1),

q
m,n

= (qm,n,1,1, . . . , qm,n,1,s1 , qm,n,2,1, . . . , qm,n,2,b1 , qm,n,3,1, . . . , qm,n,3,s2 , qm,n,4,1, . . . , qm,n,4,b2),

q = (q
C−1

, q
C−2

, . . . , q
1
, q

0
).

Note that q is a row vector of length

` = s1+(C−1)(s2+b2)+

C−1∑
m=1

[s1+b1+(C−1−m)(s1+b1+s2+b2)] = s1+
C(C − 1)

2
(s1+b1+s2+b2),

and q e′ = 1− q0,0,•,•γ
[0]
01 − q0,+,3,•γ

[0]
21 , where q0,0,•,•γ

[0]
01 + q0,+,3,•γ

[0]
21 is the probability that the

machine immediately begins service after suffering a class-1 failure.
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If we simply consider how the queue length ahead of the target class-1 customer changes,
we can define, for a system with D total machines,

Q̃[D] =



D D − 1 D − 2 · · · 2 1 0

D Q
[D]
D,D Q

[D]
D,D−1 0 · · · 0 0 0

D − 1 0 Q
[D]
D−1,D−1 Q

[D]
D−1,D−2

. . . 0 0 0

D − 2 0 0 Q
[D]
D−2,D−2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
2 0 0 0 · · · Q

[D]
2,2 Q

[D]
2,1 0

1 0 0 0 · · · 0 Q
[D]
1,1 Q̃

[D]
1,0

0 0 0 0 · · · 0 0 Q̃
[D]
0,0


,

which can serve as the rate matrix for a phase-type representation of the target customer’s
waiting time distribution, where the level of the process decreases until it is eventually absorbed
out of level 1 or level 0. Note that we have retained the contributions from class-1 arrivals on
the main diagonal terms of Q

[D]
m,m and Q̃

[D]
0,0 , as they are ultimately required for the final analysis.

For the immediate discussion, however, we proceed as if these were not included, and hence
would not cause incidental non-zero row sums that would imply positive transition rates to
absorption from unintended states. Moreover, the level of this rate matrix corresponds to the
length of the queue in front of the target customer, which is clearly different than the total
class-1 queue length. To adjust for this change relative to the original QBD process, and to the
fact that the waiting time ends when the target customer is eligible to receive service, we make

use of the modified blocks Q̃
[D]
1,0 and Q̃

[D]
0,0 . Specifically,

Q̃
[D]
0,0 =



0 1 2 · · · D − 1 D

0 −DδI,−2αIs1 + S1 DδI,−2α2e
′
(
γ

12
γ

[0]
12β2

)
0 · · · 0 0

1

[
0

B′0,2γ21

]
∆

[D]
1 (D − 1)α2Is2+b2

. . . 0 0

2 δI,−1

[
0

B′0,2γ21

]
(1− δI,−1)Γ ∆

[D]
2

. . . 0 0

...
...

. . .
. . .

. . .
...

...

D − 1 δI,−1

[
0

B′0,2γ21

]
0 0 · · · ∆

[D]
D−1 α2Is2+b2

D δI,−1

[
0

B′0,2γ21

]
0 0 · · · (1− δI,−1)Γ ∆

[D]
D


is structurally similar toQ

[D]
0,0 , with the idle server state and class-0 switch-in states replaced with

class-1 switch-in states which lead to absorption. Conditional on I = −1, the transitions after
a class-2 service completion are redirected towards these states. To achieve this, we multiply
(1 − δI,−1) into Γ to remove those possible transitions, and redirect the system to X2(t) = 0

with the transitions in column 0 of Q̃
[D]
0,0 . If class 1 has non-preemptive priority, then the server

will switch to serve class 1 after a service completion, and from the target class-1 customer’s
perspective, the class-2 queue length no longer matters. For this reason, we also multiply δI,−2

into the failure rates of other machines, since once they have reached the front of their queue
(and the server is switching to serve them), an arrival can only impact the target customer if
it is a class-2 failure and class 2 has non-preemptive priority. This would result in the server
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leaving the target class-1 customer until the class-2 queue empties again. In addition, if the
system would transition to these states following a class-2 service completion (with probability

γ
[0]
21 ), then the process is directly absorbed without visiting the class-1 switch-in states.

Next, we have

Q̃
[D]
1,0 =



0 1 2 · · · D − 2 D − 1 D

0 0 0 0 · · · 0 0 0

1 0 Q̃?1,0 0
. . . 0 0 0

2 0 0 Q̃?1,0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

D − 2 0 0 0 · · · Q̃?1,0 0 0

D − 1 0 0 0 · · · 0 Q̃?1,0 0


,

where

Q̃?1,0 = δI,−2

 0 0

B′0,1γ12
B′0,1γ

[0]
12β2

0 0

 = δI,−2Q
?
1,0.

The definitions of Q̃
[D]
1,0 and Q

[D]
1,0 are almost identical, except that the block Q̃

[D]
1,0 leads the

process to absorption automatically (instead of visiting level 0 of the process) when X2(t) = 0
or when X2(t) ≥ 1 and I 6= −2, as there are no longer any customers ahead of the target
customer and the server is already at the class-1 queue.

If the assumption that no class-1 customers could arrive behind the target customer held
true, then we could claim that the waiting time is phase-type distributed with representation
PH`(q, Q̃

[C−1]), as there are C − 1 customers in the system which are not the target customer
(and, in theory, could be queued ahead of it), and during this entire waiting time period, the
target customer will never be at risk of failing again. However, this would obviously be an
incorrect assumption to make since if a machine experiences a class-1 failure, while it does not
add to the list of machines obtaining service ahead of the target customer, it does impact the
rate of machines experiencing class-2 failures (due to the finite population assumption) which,
depending on the service policy, may need to be serviced before the target customer. To address
this issue, we propose the rate matrix

R =



C − 1 C − 2 C − 3 · · · 2 1 0

C − 1 Q̃[C−1] Q̃
[C−1]
− 0 · · · 0 0 0

C − 2 0 Q̃[C−2] Q̃
[C−2]
−

. . . 0 0 0

C − 3 0 0 Q̃[C−3] . . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
2 0 0 0 · · · Q̃[2] Q̃

[2]
− 0

1 0 0 0 · · · 0 Q̃[1] Q̃
[1]
−

0 0 0 0 · · · 0 0 Q̃[0]


,
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where

Q̃
[D]
− =



D − 1 D − 2 · · · 2 1 0

D 0 0 · · · 0 0 0

D − 1 Q
[D]
D−1,D 0

. . . 0 0 0

D − 2 0 Q
[D]
D−2,D−1

. . . 0 0 0
...

...
. . .

. . .
...

...
...

2 0 0 · · · Q
[D]
2,3 0 0

1 0 0 · · · 0 Q
[D]
1,2 0

0 0 0 · · · 0 0 Q̃
[D]
0,1


,

Q̃
[D]
0,1 =



0 1 2 · · · D − 1

0 DδI,−2α1Is1 0 0 · · · 0

1 0 Q̃
[D]
0,1,1 0

. . . 0

2 0 0 Q̃
[D]
0,1,2

. . . 0
...

...
. . .

. . .
. . .

...
D − 1 0 0 0 · · · Q̃

[D]
0,1,D−1

D 0 0 0 · · · 0


,

and

Q̃
[D]
0,1,j = (D − j)α1Is2+b2 .

Note that through the use of Q̃
[D]
− , the rate matrix R can reduce the system size by a single

customer whenever a class-1 arrival would be observed. The blocks of Q̃
[D]
− include the same

Q
[D]
i,i+1 blocks defined previously, as well as a modified Q̃

[D]
0,1 . When the queue length ahead of

the target customer is zero, a class-1 arrival no longer increases the range of combinations of
L(t) and Y (t) that the system must track from s2 + b2 to s1 + b2 + s2 + b2.

To pair with the rate matrix R, we define Φ = (q, 0, 0, . . . , 0) to be the corresponding initial
probability vector of length

`∗ = s1 +

C−1∑
i=1

(
s1 +

i(i+ 1)

2
(s1 + b1 + s2 + b2)

)
= Cs1 +

1

2
(s1 + b1 + s2 + b2)

(
C(C − 1)

2
+
C(C − 1)(2(C − 1) + 1)

6

)
= Cs1 +

C(C − 1)

4
(s1 + b1 + s2 + b2)

(
1 +

1

3
(2C − 1)

)
.

The interpretation of Φ is that the arrival of the target customer will always initiate the sys-
tem in consideration of C − 1 total other customers, which is only reduced further by future
class-1 arrivals. As a result, the waiting time of our target class-1 customer is phase-type
distributed with representation PH`∗(Φ,R). Moreover, under exhaustive and non-preemptive
priority service policies, a customer’s service may not be interrupted, implying that the so-
journ time is simply the sum of the waiting time and (independent) service time. Thus, it
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immediately follows that the class-1 sojourn time is phase-type distributed with representation

PH`∗+b1((Φ, (q0,0,•,•γ
[0]
01 + q0,+,3,•γ

[0]
21 )β

1
), T ), where

T =

[ R (−Re′)β
1

0 B1

]
.

Moments of the class-1 sojourn time distribution can easily be computed by applying Equa-
tion (1.14). Finally, we remark that in order to obtain the corresponding sojourn time distri-
bution for a machine that suffers a class-2 failure, one can simply switch all class-1 and class-2
parameters and distributions (the value of I will also need to be adjusted if the non-preemptive
priority service policy is in place), recalculate the steady-state probabilities, and then repeat
the above analysis.

2.4 Preemptive Resume Priority Models

We now turn our attention to the preemptive resume priority service policy. The primary way
that preemptive resume priority differs from non-preemptive priority is that the arrival of a high
priority customer to an empty queue (of their class) will trigger the server to begin a switch-
in, independent of their current location. More precisely, the server is now able to interrupt
the service of a low priority customer, whereas previously the server would only immediately
change location (after observing an arrival) if they were idle or in the midst of a switch-in time.
Eventually, once the high priority queue has been emptied again, the server resumes service
with the interrupted customer in the low priority queue.

Unlike the previous subsection, whether class 1 or class 2 has preemptive resume priority
will greatly impact the derivations needed to characterize the class-1 sojourn time distribution.
As such, we consider each case separately in the following two sub-subsections. In Section
2.4.1, we assume that class 1 has preemptive resume priority over class 2 and we determine the
distribution of the time spent waiting and in service for a target class-1 customer. In Section
2.4.2, however, class 2 is assumed to have preemptive resume priority over class 1, and we seek
to derive the sojourn time distribution of a target class-1 customer.

2.4.1 Case 1: I = 1

To model a system in which class 1 has preemptive resume priority, we use the CTMC

{(X1(t), X2(t), L(t), Y (t), Y2(t)), t ≥ 0},

where X1(t), X2(t), and L(t) are as previously defined in Section 2.3. Moreover, Y (t) denotes
the phase of the service (if serving class 1) or switch-in time with possible values depending on
L(t) as follows:

Y (t) ∈ Ω
[1]
Y (L(t)) =



{0} , if L(t) = 0,

{1, 2 . . . , s1} , if L(t) = 1,

{1, 2 . . . , b1} , if L(t) = 2,

{1, 2 . . . , s2} , if L(t) = 3,

{0} , if L(t) = 4,

{1, 2 . . . , s0} , if L(t) = 5.
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The new variable Y2(t) is intended to keep track of the phase of service of a preempted class-2
customer, taking on values (which depend on X2(t)) according to

Y2(t) ∈ Ω
[1]
Y2

(X2(t)) =

{
{0} , if X2(t) = 0,

{1, 2, . . . , b2} , if X2(t) ≥ 1.

Let π
[1]
m,n,l,y,y2

be the steady-state probability of observing the CTMC in state (m,n, l, y, y2),
where 0 ≤ m ≤ C, 0 ≤ n ≤ C −m, and l, y, and y2 take values from the respective supports
of L(t), Y (t), and Y2(t), above. With X1 as the level of the process, we define

π
[1]
0 = (π

[1]
0,0,0,0,0, π

[1]
0,0,5,1,0, . . . , π

[1]
0,0,5,s0,0

, π
[1]
0,1, . . . , π

[1]
0,C)

to be the ordered steady-state probability row vector for level 0, in which

π
[1]
0,n = (π

[1]
0,n,3,1,1, . . . , π

[1]
0,n,3,1,b2

, π
[1]
0,n,3,2,1, . . . , π

[1]
0,n,3,s2,b2

, π
[1]
0,n,4,0,1, . . . , π

[1]
0,n,4,0,b2

)

is a row vector of length s2b2 + b2 for n = 1, 2, . . . , C. Therefore, level 0 consists of 1 + s0 +
C(s2b2 + b2) total states. For m = 1, 2, . . . , C, the mth steady-state probability row vector is

π[1]
m = (π

[1]
m,0, π

[1]
m,1, . . . , π

[1]
m,C−m),

where

π
[1]
m,0 = (π

[1]
m,0,1,1,0, . . . , π

[1]
m,0,1,s1,0

, π
[1]
m,0,2,1,0, . . . , π

[1]
m,0,2,b1,0

),

and for n = 1, 2, . . . , C −m,

π[1]
m,n = (π

[1]
m,n,1,1,1, . . . , π

[1]
m,n,1,1,b2

, π
[1]
m,n,1,2,1, . . . , π

[1]
m,n,1,s1,b2

,

π
[1]
m,n,2,1,1, . . . , π

[1]
m,n,2,1,b2

, π
[1]
m,n,2,2,1, . . . , π

[1]
m,n,2,b1,b2

),

which have respective lengths of s1 + b1 and (s1 + b1)b2. Clearly, level m possesses s1 +

b1 + (C − m)(s1 + b1)b2 states for m ≥ 1. Let π[1] = (π
[1]
0 , π

[1]
1 , . . . , π

[1]
C ) be the steady-state

probability row vector for the full process. For notational convenience, let Q[C,1] now denote
the corresponding infinitesimal generator for a system with C machines and class-1 preemptive

priority, constructed in the manner of Equation (2.1), but with blocks denoted by Q
[C,1]
i,j rather

than Q
[C]
i,j . Letting ⊗ denote the Kronecker product operator, the diagonal blocks of Q[C,1] can

be expressed as

Q
[C,1]
0,0 =



0 1 2 · · · C − 1 C

0 ∆
[C,1]
0 Cα2e

′
(
γ

02
⊗ β

2
γ

[0]
02β2

)
0 · · · 0 0

1

[
0′ 0

γ
[0]
20B

′
0,2 B′0,2γ20

]
∆

[C,1]
1 (C − 1)α2Is2b2+b2

. . . 0 0

2 0 Γ[1] ∆
[C,1]
2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C − 1 0 0 0 · · · ∆
[C,1]
C−1 α2Is2b2+b2

C 0 0 0 · · · Γ[1] ∆
[C,1]
C


,
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where

∆[C,1]
n =


−CαI1+s0 +

[
0 0

S′0,0 S0

]
, if n = 0,

−(C − n)αIs2b2+b2 +

[
S2 ⊗ Ib2 S′0,2 ⊗ Ib2

0 B2

]
, if n = 1, 2, . . . , C,

and

Γ[1] =

[
0 0
0 B′0,2β2

]
,

while for m = 1, 2, . . . , C,

Q[C,1]
m,m =



0 1 2 · · · C −m− 1 C −m
0 Q

[C,1]
m,m,0 (UD)

[C,1]
m,0 0 · · · 0 0

1 0 Q
[C,1]
m,m,1 (UD)

[C,1]
m,1

. . . 0 0

2 0 0 Q
[C,1]
m,m,2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C −m− 1 0 0 0 · · · Q
[C,1]
m,m,C−m−1 (UD)

[C,1]
m,C−m−1

C −m 0 0 0 · · · 0 Q
[C,1]
m,m,C−m


,

where

Q[C,1]
m,m,n =



−(C −m)αIs1+b1 +

[
S1 S′0,1β1

0 B1

]
, if n = 0,

−(C −m− n)αI(s1+b1)b2 +

[
S1 S′0,1β1

0 B1

]
⊗ Ib2 , if n = 1, 2, . . . , C −m,

and

(UD)[C,1]
m,n =


(C −m)α2I(s1+b1) ⊗ β2

, if n = 0,

(C −m− n)α2I(s1+b1)b2 , if n = 1, 2, . . . , C −m− 1.

Moving to the off-diagonal blocks of Q[C,1], we first have

Q
[C,1]
m,m+1 =



0 1 2 · · · C −m− 1

0 (C −m)α1Is1+b1 0 0 · · · 0

1 0 Q
[C,1]
m,m+1,1 0

. . . 0

2 0 0 Q
[C,1]
m,m+1,2

. . . 0
...

...
. . .

. . .
. . .

...
C −m− 1 0 0 0 · · · Q

[C,1]
m,m+1,C−m−1

C −m 0 0 0 · · · 0


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for m = 1, 2, . . . , C − 1, where

Q
[C,1]
m,m+1,n = (C −m− n)α1I(s1+b1)b2 , n = 1, 2, . . . , C −m− 1.

Furthermore,

Q
[C,1]
0,1 =



0 1 2 · · · C − 1

0 Cα1e
′
(
γ

01
γ

[0]
01β1

)
0 0 · · · 0

1 0 Q
[C,1]
0,1,1 0

. . . 0

2 0 0 Q
[C,1]
0,1,2

. . . 0
...

...
. . .

. . .
. . .

...
C − 1 0 0 0 · · · Q

[C,1]
0,1,C−1

C 0 0 0 · · · 0


,

where

Q
[C,1]
0,1,n = (C − n)α1e

′
(
γ

21
γ

[0]
21β1

)
⊗ Ib2 , n = 1, 2, . . . , C − 1,

and

Q
[C,1]
1,0 =



0 1 2 · · · C − 2 C − 1 C

0

[
0′ 0

γ
[0]
10B

′
0,1 B′0,1γ10

]
0 0 · · · 0 0 0

1 0 Q
?,[1]
1,0 0

. . . 0 0 0

2 0 0 Q
?,[1]
1,0

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
C − 2 0 0 0 · · · Q

?,[1]
1,0 0 0

C − 1 0 0 0 · · · 0 Q
?,[1]
1,0 0


,

where

Q
?,[1]
1,0 =

[
0 0′

B′0,1γ12
γ

[0]
12B

′
0,1

]
⊗ Ib2 .

Finally, for m = 2, 3, . . . , C, the remaining blocks of Q[C,1] are given by

Q
[C,1]
m,m−1 =



0 1 2 · · · C−m−1 C−m C−m+1

0 Q
[C,1]
m,m−1,0 0 0 · · · 0 0 0

1 0 Q
[C,1]
m,m−1,1 0

. . . 0 0 0

2 0 0 Q
[C,1]
m,m−1,2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
C−m−1 0 0 0 · · · Q

[C,1]
m,m−1,C−m−1 0 0

C−m 0 0 0 · · · 0 Q
[C,1]
m,m−1,C−m 0


,
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where

Q
[C,1]
m,m−1,n =



[
0 0

0 B′0,1β1

]
, if n = 0,

[
0 0

0 B′0,1β1

]
⊗ Ib2 , if n = 1, 2, . . . , C −m.

When considering the time a machine spends offline after suffering a class-1 failure, we are
again able to decompose the failed machine’s sojourn time into its waiting time (to reach the
server) and time in service, since a class-1 customer will not experience any service preemptions.
We also note that unlike the exhaustive and non-preemptive priority service policies, when
considering the class-1 waiting time in isolation, we do not need to track the class-2 queue at all.
As a result, we can disregard all arrivals following the target class-1 customer and this greatly
simplifies the subsequent analysis. We begin by modifying Equation (2.2) to determine the
corresponding steady-state distribution of the system immediately prior to a class-1 customer
arrival. Letting Sm,n,l,y,y2 denote the event that (X1(t), X2(t), L(t), Y (t), Y2(t)) = (m,n, l, y, y2)
at steady state, we have

q
[1]
m,n,l,y,y2

= lim
h→0

P (Sm,n,l,y,y2 |C1,h)

=
(C −m− n)π

[1]
m,n,l,y,y2∑

x1

∑
x2

∑
w

∑
z

∑
z2

(C − x1 − x2)π
[1]
x1,x2,w,z,z2

. (2.4)

As before, the right-hand side of Equation (2.4) is equal to zero for all l, y, and y2 when
m+ n = C.

If a class-1 customer arrives to a non-empty queue, then this arrival does not affect the
server and the waiting time is simply the time it takes to empty the queue of class-1 customers
in front of this new arrival. On the other hand, if the target customer arrives to find an empty
class-1 queue, then the corresponding waiting time is simply equal to the switch-in time, which
will lead to an initial probability vector dependent on whether X2(t) = 0 or not. Let

q
[1]
0,0,•,•,• = q

[1]
0,0,0,0,0 +

s0∑
i=1

q
[1]
0,0,5,i,0

be the probability that the server is either idle or conducting a switch-in to the idle state imme-
diately before the target class-1 customer arrives (since both queues were empty). Furthermore,
let

q
[1]
0,+,•,•,• =

C−1∑
n=1

4∑
l=3

∑
y∈Ω

[1]
Y (l)

∑
y2∈Ω

[1]
Y2

(n)

q
[1]
0,n,l,y,y2

be the probability that the target customer arrives to an empty class-1 queue, while X2(t) ≥ 1.
We separate these two events, despite both yielding a waiting time that only consists of a class-
1 switch-in, because the initial probability vector may be different in either case. Taking this
into consideration, we may now construct the initial probability vectors for the waiting time
distribution. Letting the level of the process equal the number of class-1 customers ahead of
the target customer, the initial probability vector corresponding to level 0 is given by

q[1]
0

= q
[1]
0,0,•,•,•γ01

+ q
[1]
0,+,•,•,•γ21

,
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which, as we can see, simply initializes the switch-in time, which has a phase-type distribution.
For non-zero levels, it is possible for the server to be in the midst of a class-1 switch-in or
service time. For each combination of m, l, and y ∈ {1, 2}, we obtain the desired marginal
distributions by summing the probability mass that was spread out over different states that
were used to track X2(t) or Y2(t), namely

q
[1]
m,•,l,y,• = q

[1]
m,0,l,y,0 +

C−m−1∑
n=1

∑
y2∈Ω

[1]
Y2

(n)

q
[1]
m,n,l,y,y2

. (2.5)

Equation (2.5) may then be used to construct the initial probability vector corresponding to
level m, 1 ≤ m ≤ C − 1:

q[1]
m,• = (q

[1]
m,•,1,1,•, . . . , q

[1]
m,•,1,s1,•, q

[1]
m,•,2,1,•, . . . , q

[1]
m,•,2,b1,•).

These vectors may then be collected, including the probability vector for level 0, to construct
the full initial probability vector for the process:

q[1] = (q[1]
C−1,•, q

[1]
C−2,•, . . . , q

[1]
1,•, q

[1]
0

).

Note that q[1] is a row vector of length `[1] = s1 + (C− 1)(s1 + b1) and q[1]e′ = 1− q[1]
0,0,•,•,•γ

[0]
01 −

q
[1]
0,+,•,•,•γ

[0]
21 , where q

[1]
0,0,•,•,•γ

[0]
01 + q

[1]
0,+,•,•,•γ

[0]
21 is the probability that the machine immediately

begins service after suffering a class-1 failure.
We next focus on designing a rate matrix corresponding to this waiting time for a system

that may have up to D customers waiting in front of the target class-1 customer. This ultimately
results in

Q̃[D,1] =



D D − 1 D − 2 · · · 2 1 0

D Q̃
[D,1]
D,D Q̃

[D,1]
D,D−1 0 · · · 0 0 0

D − 1 0 Q̃
[D,1]
D−1,D−1 Q̃

[D,1]
D−1,D−2

. . . 0 0 0

D − 2 0 0 Q̃
[D,1]
D−2,D−2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
2 0 0 0 · · · Q̃

[D,1]
2,2 Q̃

[D,1]
2,1 0

1 0 0 0 · · · 0 Q̃
[D,1]
1,1 Q̃

[D,1]
1,0

0 0 0 0 · · · 0 0 Q̃
[D,1]
0,0


,

where
Q̃

[D,1]
0,0 = S1

is the class-1 switch-in time rate matrix,

Q̃
[D,1]
1,0 = 0

is a zero matrix on account of the service completion of the lone customer queueing ahead of
the target customer leading to absorption,

Q̃[D,1]
m,m =

[
S1 S′0,1β1
0 B1

]
, m = 1, 2, . . . , D,
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can track the s1 switch-in time phases, of which a completion leads to the start of a class-1
service, and

Q̃
[D,1]
m,m−1 =

[
0 0
0 B′0,1β1

]
, m = 2, 3, . . . , D,

since a class-1 service completion leads directly into the start of another class-1 service. As
previously stated, we do not need to consider any arrivals following that of the target customer,
since they do not impact the waiting time. Therefore, the rate matrix corresponding to the
waiting time for a class-1 customer in a system with C total customers is simply R[1] = Q̃[C−1,1],
and it subsequently follows that the waiting time of our target class-1 customer is phase-type
distributed with representation PH`[1](q

[1],R[1]). Finally, the class-1 sojourn time distribution
of a broken machine, consisting of its waiting time plus an independent service time, can readily

be represented as PH`[1]+b1
((q[1], (q

[1]
0,0,•,•,•γ

[0]
01 + q0,+,•,•,•γ

[0]
21 )β

1
), T [1]), where

T [1] =

[ R[1] (−R[1]e′)β
1

0 B1

]
.

2.4.2 Case 2: I = 2

We now consider the situation in which class 2 has preemptive resume priority over class 1. We
remark that while we can use the results for I = 1, by swapping the relevant parameters and
distributions, to solve for the steady-state probabilities of the process, as well as the time until
repair for a machine that suffers a class-2 failure, we would be unable to characterize the sojourn
time distribution for a class-1 failed machine. As such, the purpose of this sub-subsection is to
act as a compliment to the analysis of the previous sub-subsection, so that the sojourn time
distribution for the lower priority class of machine failures may be found when the server is
employing a preemptive resume priority service policy.

First of all, the construction of the infinitesimal generator will involve many of the same
techniques used previously, however this time tracking the service phase of the next class-1
customer in line (if any). Moreover, due to the preemptive priority of class-2 customers, the
process does not need to consider states where the server is conducting a class-1 switch-in or
service time whenever there are class-2 customers in the system. Thus, we model the system
by the CTMC

{(X1(t), X2(t), L(t), Y (t), Y1(t)), t ≥ 0},
where X1(t), X2(t), and L(t) are as previously defined, while Y (t) denotes the phase of the
service (if serving class 2) or switch-in time with values depending on L(t) in the following way:

Y (t) ∈ Ω
[2]
Y (L(t)) =



{0} , if L(t) = 0,

{1, 2, . . . , s1} , if L(t) = 1,

{0} , if L(t) = 2,

{1, 2, . . . , s2} , if L(t) = 3,

{1, 2, . . . , b2} , if L(t) = 4,

{1, 2, . . . , s0} , if L(t) = 5.

The variable Y1(t) is used to track the phase of service of a class-1 customer and is determined at
the arrival instant of a class-1 customer to an empty queue, as well as upon a service completion
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of a class-1 customer that segues into the next class-1 service time. Thus, the possible values
of Y1 are

Y1(t) ∈ Ω
[2]
Y1

(X1(t)) =

{
{0} , if X1(t) = 0,

{1, 2, . . . , b1} , if X1(t) ≥ 1.

We define π
[2]
m,n,l,y,y1

to be the steady-state probability of observing the CTMC in state
(m,n, l, y, y1), where 0 ≤ m ≤ C, 0 ≤ n ≤ C − m, and l, y, and y1 take values from the
respective supports of L(t), Y (t), and Y1(t), above. Corresponding to the 0th level of the
process, let

π
[2]
0 = (π

[2]
0,0,0,0,0, π

[2]
0,0,5,1,0, . . . , π

[2]
0,0,5,s0,0

, π
[2]
0,1, . . . , π

[2]
0,C),

where
π

[2]
0,n = (π

[2]
0,n,3,1,0, . . . , π

[2]
0,n,3,s2,0

, π
[2]
0,n,4,1,0, . . . , π

[2]
0,n,4,b2,0

)

is a row vector of length s2 + b2 for n = 1, 2, . . . , C, so that level 0 has 1+s0 +C(s2 + b2) states.
For level m = 1, 2, . . . , C, we define

π[2]
m = (π

[2]
m,0, π

[2]
m,1, . . . , π

[2]
m,C−m),

where

π
[2]
m,0 = (π

[2]
m,0,1,1,1, . . . , π

[2]
m,0,1,1,b1

, π
[2]
m,0,1,2,1, . . . , π

[2]
m,0,1,s1,b1

, π
[2]
m,0,2,0,1, . . . , π

[2]
m,0,2,0,b1

),

and for n = 1, 2, . . . , C −m,

π[2]
m,n = (π

[2]
m,n,3,1,1, . . . , π

[2]
m,n,3,1,b1

, π
[2]
m,n,3,2,1, . . . , π

[2]
m,n,3,s2,b1

,

π
[2]
m,n,4,1,1, . . . , π

[2]
m,n,4,1,b1

, π
[2]
m,n,4,2,1, . . . , π

[2]
m,n,4,b2,b1

),

which are row vectors of length s1b1 + b1 and (s2 + b2)b1, respectively. In keeping with the
same notational convention we adopted in Section 2.4.1, we denote the steady-state probability

vector for the overall process by π[2] = (π
[2]
0 , π

[2]
1 , . . . , π

[2]
C ), which may be obtained via the level-

dependent QBD procedure outlined in Section 1.2.6 (in which Q[C,2] denotes the infinitesimal
generator for a system with C machines and class-2 preemptive resume priority, structured in

the style of Equation (2.1), but with blocks Q
[C,2]
i,j ). When considering the blocks of Q[C,2], we

first remark that Q
[C,2]
0,0 is actually identical to Q

[C]
0,0 from the exhaustive and non-preemptive

priority service models. This is because unlike when I = 1, we must now track phases of class-1
service with our fifth state variable Y1(t), not class-2 service phases. Since X1(t) = 0 in this
block, there are no class-1 service phases to keep track of (i.e., Y1(t) = 0 for all states within
this block), and the state space of the level 0 block reduces to that of the aforementioned service
models. For m = 1, 2, . . . , C, the other diagonal blocks can be expressed as

Q[C,2]
m,m =



0 1 2 · · · C −m− 1 C −m
0 Q

[C,2]
m,m,0 (UD)

[C,2]
m,0 0 · · · 0 0

1 (LD)
[C,2]
m,1 Q

[C,2]
m,m,1 (UD)

[C,2]
m,1

. . . 0 0

2 0 (LD)
[C,2]
m,2 Q

[C,2]
m,m,2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C −m− 1 0 0 0 · · · Q
[C,2]
m,m,C−m−1 (UD)

[C,2]
m,C−m−1

C −m 0 0 0 · · · (LD)
[C,2]
m,C−m Q

[C,2]
m,m,C−m


,
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where

Q[C,2]
m,m,n =



−(C −m)αIs1b1+b1 +

[
S1 ⊗ Ib1 S′0,1 ⊗ Ib1

0 B1

]
, if n = 0,

−(C −m− n)αI(s2+b2)b1 +

[
S2 S′0,2β2

0 B2

]
⊗ Ib1 , if n = 1, 2, . . . , C −m,

(UD)[C,2]
m,n =


(C −m)α2e

′
(
γ

12
γ

[0]
12β2

)
⊗ Ib1 , if n = 0,

(C −m− n)α2I(s2+b2)b1 , if n = 1, 2, . . . , C −m− 1,

and

(LD)[C,2]
m,n =



[
0 0

B′0,2γ21
⊗ Ib1 γ

[0]
21B

′
0,2 ⊗ Ib1

]
, if n = 1,

[
0 0

0 B′0,2β2

]
⊗ Ib1 , if n = 2, 3, . . . , C −m.

As for the off-diagonal blocks, we first have

Q
[C,2]
m,m+1 =



0 1 2 · · · C −m− 1

0 (C −m)α1Is1b1+b1 0 0 · · · 0

1 0 Q
[C,2]
m,m+1,1 0

. . . 0

2 0 0 Q
[C,2]
m,m+1,2

. . . 0
...

...
. . .

. . .
. . .

...
C −m− 1 0 0 0 · · · Q

[C,2]
m,m+1,C−m−1

C −m 0 0 0 · · · 0


for m = 1, 2, . . . , C − 1, where

Q
[C,2]
m,m+1,n = (C −m− n)α1I(s2+b2)b1 , n = 1, 2, . . . , C −m− 1.

In addition,

Q
[C,2]
0,1 =



0 1 2 · · · C − 1

0 Cα1e
′
(
γ

01
⊗ β

1
γ

[0]
01β1

)
0 0 · · · 0

1 0 Q
[C,2]
0,1,1 0

. . . 0

2 0 0 Q
[C,2]
0,1,2

. . . 0
...

...
. . .

. . .
. . .

...
C − 1 0 0 0 · · · Q

[C,2]
0,1,C−1

C 0 0 0 · · · 0


,

where
Q

[C,2]
0,1,n = (C − n)α1Is2+b2 ⊗ β1

, n = 1, 2, . . . , C − 1,
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and

Q
[C,2]
1,0 =



0 1 2 · · · C − 2 C − 1 C

0

[
0′ 0

γ
[0]
10B

′
0,1 B′0,1γ10

]
0 0 · · · 0 0 0

1 0 0 0
. . . 0 0 0

2 0 0 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

C − 2 0 0 0 · · · 0 0 0
C − 1 0 0 0 · · · 0 0 0


.

Finally, for m = 2, 3, . . . , C, the remaining blocks of Q[C,2] are given by

Q
[C,2]
m,m−1 =



0 1 2 · · · C −m− 1 C −m C −m+ 1

0

[
0 0
0 B′0,1β1

]
0 0 · · · 0 0 0

1 0 0 0
. . . 0 0 0

2 0 0 0
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

C −m− 1 0 0 0 · · · 0 0 0
C −m 0 0 0 · · · 0 0 0


.

When considering the time between when a machine suffers a class-1 failure and when it is
up and working again in this particular model, we come to realize that, for the first time, we
are unable to uncouple the time spent waiting from the time spent in service. This is due to the
unique situation that this service policy presents, in that the target customer’s service time can
potentially be interrupted due to the arrival of a high priority customer. Therefore, instead of
only being concerned about the queue in front of the target class-1 customer emptying, we will
model the total time it takes for those in front of the target customer, and the target customer
itself, to complete service and leave the system.

Analogous to Equation (2.4), we find that the steady-state probabilities of the system im-
mediately prior to a class-1 arrival can be obtained via

q
[2]
m,n,l,y,y1

=
(C −m− n)π

[2]
m,n,l,y,y1∑

x1

∑
x2

∑
w

∑
z

∑
z1

(C − x1 − x2)π
[2]
x1,x2,w,z,z1

,

which also yields a value of zero for all l, y, and y1 when m + n = C. In anticipation of
constructing the various probability vectors involved in characterizing the class-1 sojourn time
distribution, we first define

q
[2]
0,0,•,•,• = q

[2]
0,0,0,0,0 +

s0∑
i=1

q
[2]
0,0,5,i,0 (2.6)

to be the probability that a class-1 arrival finds the server idle or switching into the idle state. In
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addition, we group the other class-1 arrival instant probabilities into the following row vectors:

q[2]
0,n

= (q
[2]
0,n,3,1,0, . . . , q

[2]
0,n,3,s2,0

, q
[2]
0,n,4,1,0, . . . , q

[2]
0,n,4,b2,0

),

q[2]
m,0

= (q
[2]
m,0,1,1,1, . . . , q

[2]
m,0,1,1,b1

, q
[2]
m,0,1,2,1, . . . , q

[2]
m,0,1,s1,b1

, q
[2]
m,0,2,0,1, . . . , q

[2]
m,0,2,0,b1

),

q[2]
m,n

= (q
[2]
m,n,3,1,1, . . . , q

[2]
m,n,3,1,b1

, q
[2]
m,n,3,2,1, . . . , q

[2]
m,n,3,s2,b1

,

q
[2]
m,n,4,1,1, . . . , q

[2]
m,n,4,1,b1

, q
[2]
m,n,4,2,1, . . . , q

[2]
m,n,4,b2,b1

).

We note that if the target class-1 customer does not arrive to find an empty class-1 queue,
then this arrival has no impact on any of the variables other than X1(t). Therefore, letting
p
m,n

contain the ordered initial probability masses for states where X1(t) = m and X2(t) = n,

we have
p
m+1,n

= q[2]
m,n

, m = 1, 2, . . . , C − 1.

However, if the target class-1 customer does arrive to find no other class-1 customers present
(but with X2(t) ≥ 1), the characterization is not as straightforward. Even though the server
will not be prompted to move, the first arrival of a class-1 customer requires that the system
now track their eventual service phase. Therefore, we let

p
1,n

= q[2]
0,n
⊗ β

1
, n ≥ 1.

The last possibility for the arriving target customer involves finding the system empty of cus-

tomers of either class requiring service, which occurs with probability q
[2]
0,0,•,•,• given by Equation

(2.6). This sees the server begin either a class-1 switch-in time (while the system determines the
initial service phase of the target customer), or an immediate class-1 service with probability

γ
[0]
0,1. Therefore, we define

p
1,0

= (q
[2]
0,0,•,•,•γ01

⊗ β
1
, q

[2]
0,0,•,•,•γ

[0]
01β1

).

With these pieces in place, we can now define the initial probability vector for the mth level,
m = 1, 2, . . . , C, as p

m
= (p

m,0
, p
m,1

, . . . , p
m,C−m), from which we can construct the overall

initial probability vector
p = (p

C
, p
C−1

, . . . , p
1
).

We note that the levels of this modified process span from 1 to C. This is a result of the actual
system immediately prior to the arrival requiring 0 ≤ X1(t) ≤ C−1 in order for a class-1 arrival
to be observed, and due to the inclusion of the target customer, the level is incremented by 1.
We have no interest in a level 0, since the emptying of the class-1 queue signifies the departure
of the target customer, and as we will see below, leads to absorption in a particular CTMC.
Incidentally, the row vector p has length

C∑
m=1

[s1b1 + b1 + (C −m)(s2 + b2)s1] = C(s1b1 + b1) +
C(C − 1)

2
(s2 + b2)s1,

and satisfies p e′ = 1 (since sojourn times are certain to be positive).
As was the case for the exhaustive and non-preemptive priority service models, we must

consider future class-1 arrivals behind the target class-1 customer since they will affect the future
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arrival rates of class-2 customers, who must all finish service before any class-1 customers may
be served. For a model with D total machines, in which there were no class-1 arrivals after the
target customer, we would simply have the rate matrix

Q̃[D,2] =



D D − 1 D − 2 · · · 2 1

D Q
[D,2]
D,D Q

[D,2]
D,D−1 0 · · · 0 0

D − 1 0 Q
[D,2]
D−1,D−1 Q

[D,2]
D−1,D−2

. . . 0 0

D − 2 0 0 Q
[D,2]
D−2,D−2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

2 0 0 0 · · · Q
[D,2]
2,2 Q

[D,2]
2,1

1 0 0 0 · · · 0 Q
[D,2]
1,1


.

In this case, the process is absorbed with rates equal to the service completion rates from Q
[D,2]
1,0

when residing in class-1 service states in level 1. This, of course, cannot accurately describe the
entire process. We gather the blocks of Q[D,2] which contain transition rates corresponding to
increments of X1(t) and construct

Q̃
[D,2]
− =



D − 1 D − 2 D − 3 · · · 2 1

D 0 0 0 · · · 0 0

D − 1 Q
[D,2]
D−1,D 0 0

. . . 0 0

D − 2 0 Q
[D,2]
D−2,D−1 0

. . . 0 0
...

...
. . .

. . .
. . .

...
...

3 0 0 0 · · · 0 0
2 0 0 0 · · · Q

[D,2]
2,3 0

1 0 0 0 · · · 0 Q
[D,2]
1,2


.

Together, these matrices allow us to fully describe the process via the rate matrix

R[2] =



C C − 1 C − 2 · · · 2 1

C Q̃[C,2] Q̃
[C,2]
− 0 · · · 0 0

C − 1 0 Q̃[C−1,2] Q̃
[C−1,2]
−

. . . 0 0

C − 2 0 0 Q̃[C−2,2] . . . 0 0
...

...
. . .

. . .
. . .

...
...

2 0 0 0 · · · Q̃[2,2] Q̃
[2,2]
−

1 0 0 0 · · · 0 Q̃[1,2]


,

in combination with the (further) modified initial probability vector Φ[2] = (p, 0, 0, . . . , 0) of
length

`[2] =

C∑
i=1

(
i(s1b1 + b1) +

i(i− 1)

2
(s2 + b2)s1

)
=
C(C + 1)

2
(s1b1 + b1) +

C(C − 1)

4
(s2 + b2)s1

(
1 +

1

3
(2C − 1)

)
,
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constructed as such since the system will always start in consideration of the full inventory
of machines. In conclusion, we deduce that the class-1 sojourn time distribution of a broken
machine can be represented as PH`[2](Φ

[2],R[2]).

2.5 Numerical Examples

2.5.1 Setup

In this section, we investigate the effect that switch-in times have on the optimality of the
different service policies, and the sensitivity of the mean number of working machines on various
factors, including the total number of machines as well as the choice of phase-type service time
distributions. If we let Si ∼ PH(Φi,Ri) denote the random sojourn time of a machine that
experiences a class-i failure, i = 1, 2, where we suppress each class’ dependency on the I, and let
S be the sojourn time of an arbitrary failed machine, then since each failure will independently
be a class-i failure with probability αi/α, i = 1, 2, it follows that the PDF of S is

fS(t) =
α1

α
Φ1 exp{R1t}R′0,1 +

α2

α
Φ2 exp{R2t}R′0,2, t > 0,

where R′0,i = −Rie′ is the column vector of absorption rates for the class-i sojourn time

distribution. Applying Equation (1.14), the rth moment for S has formula

E[Sr] = (−1)rr!
(α1

α
Φ1R−r1 e′ +

α2

α
Φ2R−r2 e′

)
. (2.7)

In particular, this implies that when r = 1, the expected sojourn time satisfies

E[S] =
α1

α
E[S1] +

α2

α
E[S2]. (2.8)

Throughout this section, we will assume that α1/α = 0.9 and α2/α = 0.1, so that the majority
of jobs will belong to class 1.

Let NW denote the number of working machines. It immediately follows that

E[NW] =


C −∑m

∑
n

∑
l

∑
y(m+ n)πm,n,l,y , if I ∈ {−2,−1, 0},

C −∑m

∑
n

∑
l

∑
y

∑
y2

(m+ n)π
[1]
m,n,l,y,y2

, if I = 1,

C −∑m

∑
n

∑
l

∑
y

∑
y1

(m+ n)π
[2]
m,n,l,y,y1

, if I = 2.

(2.9)

In order to gain efficiency from the priority service policies, we assume that the stratification
of jobs into two classes is done in a logical manner such that ‘small’ jobs and ‘large’ jobs are
not grouped together. Without loss of generality, we allow class-1 customers to have smaller
service requirements. The biggest disadvantage to using priority service policies is that they
result in more frequent switching between queues by the server. When these switches require
non-insignificant amounts of time to complete, the additional time spent not serving customers
may reduce the overall system efficiency. Therefore, we begin by considering the effect of

p>0 = 1− γ[0]
ji , the probability of a switch-in time from queue j to queue i being non-zero.

Let the corresponding initial probability vectors and rate matrices for the phase-type switch-
in time distributions be given by

γ
10

= (p>0, 0), γ
20

= (0, p>0),

γ
01

= (0, p>0, 0), γ
21

= (p>0, 0, 0),

γ
02

= (0, p>0, 0), γ
12

= (p>0, 0, 0),

75



and

S0 =
1

MS

[
−2 0

0 −1

]
, S1 =

1

MS

 −1 1 0
0 −2 2
0 0 −2

 , S2 =
1

MS

 −2 2 0
0 −1 1
0 0 −1

 ,
where MS is a constant that allows us to scale the expected switch-in times. We may interpret
the above as class-dependent Erlang-2 (E2) set-up and exponential take-down times, with both
being faster for class 1. If the server moves to class 0 instead of the opposite queue (due to it
being empty), they may complete the take-down for their previous queue and only require a
set-up following the next arrival.

For the service times, we consider hyperexponential-2 (H2) distributions, with initial prob-
ability vectors and rate matrices given by

β
1

= β
2

= (0.9, 0.1), B1 = 2

[
−1 0

0 − 1
11

]
, and B2 =

1

10MB

[
−1 0

0 − 1
11

]
,

as well as Erlang-3 (E3) distributions with phase-type components

β
1

= β
2

= (1, 0, 0), B1 =

 −3 3 0
0 −3 3
0 0 −3

 , and B2 =
1

20MB

 −3 3 0
0 −3 3
0 0 −3

 ,
where, in a similar fashion, MB is a constant for scaling the mean class-2 service time. The
mean class-1 service time is set equal to 1, whereas the mean class-2 service time is set equal
to 20 (when MB = 1).

Through the use of the H2 distributions, we are, in effect, considering the mixtures of two
exponential distributions, representing the grouping of more than one type of failure within each
class. The E3 distributions enable us to represent the possibility of having a partially completed
service to return to (since we allow preemptive resume). While both sets of distributions result
in equal means for a given MB, the E3 distributions have smaller variances.

2.5.2 Simultaneous Optimization of E[NW] and E[S]
Figure 2.2 contains plots of both E[S] and E[NW] using H2 service with MB = 1, C = 10,
α = 0.075 (i.e., α1 = 0.0675 and α2 = 0.0075), and MS = 1, while varying p>0 ∈ [0, 1].
Rounding to five decimal places, we observe that for 0 ≤ p>0 < 0.13351, class-1 preemptive
priority (i.e., I = 1) is optimal in terms of minimizing the mean sojourn time and maximizing
the mean number of working machines, whereas class-1 non-preemptive priority (i.e., I = −1) is
optimal for 0.13351 ≤ p>0 < 0.68277, and exhaustive (i.e., I = 0) is optimal otherwise. Based
on our earlier intuition concerning switch-in times and priority service policies, this makes
sense. It is optimal for the server to switch upon every class-1 failure when the probability
of experiencing a non-zero switch-in time is minimal, but as this probability increases, it no
longer becomes optimal to interrupt a class-2 service, eventually reaching the point where the
server wishes to eliminate any unnecessary switches. An important observation here is that the
optimality of I changes simultaneously for both the mean sojourn time and mean number of
working machines.

We are able to make similar conclusions between the effect of switch-in times and priority
service policy optimality from Figure 2.3, by setting p>0 = 1 and letting MS range between 0
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Figure 2.2: Plots of E[S] and E[NW] versus p>0 (along with vertical lines indicating values of
p>0 where the optimal choice of I changes), with C = 10, α = 0.075, MS = 1, and H2 service
with MB = 1.

and 2. Even with a guaranteed positive switch-in time, class-1 preemptive priority is optimal
for the smallest mean values. This is followed by a small range where class-1 non-preemptive
priority is optimal, followed by exhaustive, which continues to be the best choice as MS becomes
large. In both Figures 2.2 and 2.3, we remark at how fast class-1 preemptive priority switches
from being the best choice to being the worst, as the cost of the extra incurred switch-in times
becomes too large. In these examples, class-1 non-preemptive priority at its worst is not too
far from the class-2 priority models in Figure 2.2, but as the mean switch-in times themselves
are increasing in Figure 2.3, the total amount of idle time we are ‘risking’ is increasing and the
higher rate of class-1 failures makes class-1 non-preemptive priority vastly under-perform the
class-2 priority service policies at large values of MS.
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Figure 2.3: Plots of E[S] and E[NW] versus MS, with C = 10, α = 0.075, p>0 = 1, and H2

service with MB = 1.
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These observations are not coincidences, as they hold by the following theorem.

Theorem 2.1. For a maintenance system with C machines and a given failure rate α, E[NW]
will simultaneously be maximized while E[S] is minimized.

Proof. Little’s Law [64] states that the expected number of customers present in a system is
equal to the expected amount of time a customer spends in a system, multiplied by the average
arrival rate. For many models, said arrival rate is constant, and corresponds to one or more
Poisson processes that are independent of the rest of the system. However, within this model,
customers ‘arrive’ as machines fail at a rate directly proportional to the number of working
machines. In that way, the average arrival rate satisfies ᾱ = αE[NW]. Treating the length of
the class-i queue as a subsystem, the mean arrival rate to that subsystem is the mean class-i
failure rate, ᾱi = αiE[NW], and the time spent in the subsystem by a target machine is of
course distributed as a class-i sojourn time. Thus, applying Little’s Law, we obtain

E[Xi] = αiE[NW]E[Si], i = 1, 2. (2.10)

Summing Equation (2.10) for i = 1, 2 and applying Equation (2.8), we observe that

E[X1] + E[X2] = α1E[NW]E[S1] + α2E[NW]E[S2]

= αE[NW]
(α1

α
E[S1] +

α2

α
E[S2]

)
= αE[NW]E[S], (2.11)

which can also be obtained through Little’s Law by treating the total collection of failed ma-
chines as a single subsystem.

We may re-express Equation (2.9) as E[NW] = C − E[X1]− E[X2]. Subtracting both sides
of Equation (2.11) from C, using this expression, and isolating for E[NW], we find that

E[NW] =
C

1 + αE[S]
.

While this is not a linear relationship, it is clear that the selection of a service policy that
maximizes E[NW] for a given C and α must simultaneously minimize E[S].

�

2.5.3 Limiting Behaviour

Figures 2.4 and 2.5 plot E[NW] versus C ∈ {2, 3, . . . , 18} using E3 service with different com-
binations of p>0 ∈ {0, 0.5, 1}, α ∈ {0.05, 0.1}, MB ∈ {0.5, 1}, and MS ∈ {1, 2}. We observe
that as we increase C, E[NW] converges to some constant value that depends on I when p>0

is positive. This is a consequence of the following theorem, where we let N
[C]
W represent the

number of working machines’ dependency on C. The corresponding limits or upper bounds
from Theorem 2.2 are presented within these figures by light grey horizontal lines.

Theorem 2.2. For any service policy, the limit of the number of working machines satisfies

E[N
[∞]
W ] = lim

C→∞
E[N

[C]
W ] ≤ −1

α1β1
B−1

1 e′ + α2β2
B−1

2 e′
. (2.12)
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Additionally, if switch-in times between the class-1 and class-2 queues are identically zero (i.e.,

γ
[0]
ji = 1 ∀ i, j ∈ {1, 2}), then the upper bound will surely be reached, i.e.,

E[N
[∞]
W ] =

−1

α1β1
B−1

1 e′ + α2β2
B−1

2 e′
. (2.13)

Proof. This is a special case of Theorem 3.2, which is proven in the Appendix.

�

For the examples we are considering, this upper bound or limit equals

−1

α1β1
B−1

1 e′ + α2β2
B−1

2 e′
=

1/α

(0.9)(1) + (0.1)(20MB)
. (2.14)

The presence of a limit of E[NW] as we increase C is a result of the existence of a tipping
point where the server’s rate of fixing machines balances out with the rate of machine failures.
Any further machines introduced into the system after this limit is reached will effectively
increase the average number of broken machines by 1. For more details, refer to Remark 3.2.

When p>0 = 0, the additional switches that a server experiences from a priority service
policy do not result in any idle time, and so each policy converges to the same value of E[NW],
albeit at different rates. When p>0 = 0.5, we observe that each service policy now converges
to a different value of E[NW]. This is due to the fact that different priority service policies
introduce different amounts of extra switches, which result in different percentages of time that
the server is idle. The higher percentage of time that the server is idle, the smaller the net rate
of repaired machines per unit time. As the probability of a failure coming from class 1 is much
higher than that of class 2, class-1 preemptive priority results in the highest amount of extra
switch-ins due to the long class-2 service times, followed by class-1 non-preemptive priority.
The class-2 priority policies introduce similar amounts of extra switch-ins due to a combination
of the lower frequency of class-2 failures and the faster class-1 service times. At p>0 = 1, this
difference is further amplified and we see an increased amount of separation. A consequence
of this is that the exhaustive service policy always converges to the highest value of E[NW] as
C → ∞, as it experiences the minimum number of switches, but as it does not necessarily do
so at the fastest rate and other policies may yield a higher E[NW] at a particular value of C.

We observe Equation (2.14)’s dependency on α by comparing Figures 2.4 (a), (c), and (e),
against Figures 2.4 (b), (d), and (f). Clearly, the higher rate of failure causes a reduction in all
converged values, given that the server’s rate of repair is unchanged. Additionally, increasing
α results in a faster rate of occurrence for both failure classes, and the spread of converged
values of E[NW] for each service policy is wider as the extra amount of idle time is increased.
Moreover, this increases the rate of convergence to their limits, as each additional working
machine contributes a larger amount to the total rate of failure.

We next compare Figures 2.4 (a), (c), and (e), against Figures 2.5 (a), (c), and (e), to
ascertain the impact of increasing MS. Similar to increasing p>0, at positive values of p>0,
we remark that this penalizes the priority service policies proportional to their amount of
extra incurred switch-ins. As the exhaustive service policy has minimal incurred switch-ins, its
converged E[NW] values are impacted the least.

Finally, observing Figures 2.4 (a), (c), and (e), and Figures 2.5 (b), (d), and (f), we note
that the ratio of mean service times between the two classes is affected. In Figures 2.5 (b),
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Figure 2.4: Plots of E[NW] versus C under E3 service and fixed MS = 1 and MB = 1, for
varying p>0 and α.
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Figure 2.5: Plots of E[NW] versus C under E3 service and fixed α = 0.05, for varying p>0, MS,
and MB.
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(d), and (f), we have MB = 0.5, which halves the mean class-2 service time while leaving
the class-1 service time distribution unchanged. This increases the rate at which the server
repairs machines, and so the rates of convergence are slower to higher final values, as observed
in Equation (2.14). The quicker class-2 service times reduce the effectiveness of the class-1
priority policies (while marginally improving the class-2 priority policies), so this narrows the
differences in E[NW] between the priority service policies and the exhaustive service policy.

2.5.4 Optimization Problem

If additional machines were cost-free, then a factory could achieve a maximum expected rate of
output production by selecting an exhaustive service policy and increasing C to an arbitrarily
large value. However, in the real world, there are in fact restrictions on how many machines
can be purchased, either due to capital or space restrictions. Due to the existence of costs,
the correct decision may be to use a priority service policy at a value of C that results in a
higher value of E[NW] than the exhaustive service policy. To approximate this, we introduce
the objective function E[NW] − rC, where r is the cost of possession for each machine in the
system. This constant r can be interpreted as the cost per unit time as a fraction of the profit
per unit time that a single working machine produces. In this case, the optimal choice of C
and I will maximize our expected profit per unit time. Alternatively, r may be treated as the
tolerance that we select to determine if E[NW] has converged, such that the objective function
will be locally maximized for a given I at the highest value of C before every additional machine
added to the system results in an increase in E[NW] of less than r units. Global maximization
in this case tells us which service policy converges within the tolerance to the highest value, the
fastest.

In Tables 2.1 and 2.2, we provide the optimal C and I under the H2 and E3 service time
distributions, respectively, over our previously considered values of MB, MS, α, and p>0. Addi-
tionally, we consider values of the cost parameter r ∈ {0.05, 0.1, 0.25}. Comparing these tables,
it is clear that the smaller service time variance of the E3 distributions causes the objective
function to converge to higher values, often at smaller values of C. Here, a smaller service
time variance reduces the probability of the server being stuck on one job for an unusually long
period of time, resulting in machines being repaired at a more consistent rate. However, we
do not observe a large impact on the optimal choices of I, outside of the case when MB = 0.5
and MS = 2, where the optimal C values for the E3 distributions are higher. Here, we see that
exhaustive service is preferred over class-1 non-preemptive priority, which we would expect to
observe at higher values of C.

When p>0 = 0, all service policies converge to the same value of E[NW] (all else being
equal), but the class-1 preemptive priority policy is universally preferred as it converges at the
fastest rate. For moderate values of p>0, either class-1 non-preemptive priority or exhaustive
service is optimal, largely conditional on r, MB, and MS. For larger r, the cost per machine is
higher, so that the objective function will maximize at a lower value of C. As the exhaustive
service policy is best for large C, but not necessarily small C, it is possible for the optimal
C to end up in the range where class-1 non-preemptive priority results in a higher value of
E[NW]. Reducing the mean class-2 service time, as observed in Figures 2.4 and 2.5, causes
the objective function to maximize at higher values of C, to a larger expected profit per unit
time. For moderate values of p>0, this may result in exhaustive service being preferred over
class-1 non-preemptive priority. Finally, as MS increases, the additional switch-in times that
the non-preemptive priority service policy causes reduces the region where I = −1 outperforms
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Table 2.1: Optimal combinations of C and I under H2 service.

p>0

r = 0.05 0 0.5 1

MB MS α C I E[NW] C I E[NW] C I E[NW]

1 1 0.05 15 1 6.8352 18 0 6.4476 18 0 6.3070
0.075 11 1 4.5423 15 0 4.3593 15 0 4.2557
0.10 9 1 3.4025 12 0 3.2409 12 0 3.1517

2 0.05 15 1 6.8352 18 0 6.2903 18 0 6.0387
0.075 11 1 4.5423 16 0 4.2961 17 0 4.1733
0.10 9 1 3.4025 12 0 3.1421 13 0 3.0430

0.5 1 0.05 18 1 10.2860 18 0 9.2835 18 0 9.0040
0.075 15 1 6.9608 18 0 6.6601 18 0 6.4709
0.10 12 1 5.2079 16 0 5.0348 17 0 4.9405

2 0.05 18 1 10.2860 18 0 8.9543 18 0 8.4692
0.075 15 1 6.9608 18 0 6.4526 18 0 6.1226
0.10 12 1 5.2079 17 0 4.9323 18 0 4.7578

r = 0.1

1 1 0.05 13 1 6.6948 15 -1 6.2379 17 0 6.2189
0.075 10 1 4.4827 11 -1 4.1039 12 0 4.0405
0.10 8 1 3.3439 9 -1 3.0572 9 0 2.9313

2 0.05 13 1 6.6948 17 0 6.2002 17 0 5.9419
0.075 10 1 4.4827 12 0 4.0240 12 0 3.8182
0.10 8 1 3.3439 9 0 2.9156 9 0 2.7410

0.5 1 0.05 18 1 10.2860 18 0 9.2835 18 0 9.0040
0.075 13 1 6.8193 16 0 6.4965 16 0 6.2871
0.10 11 1 5.1484 13 0 4.8391 13 0 4.6614

2 0.05 18 1 10.2860 18 0 8.9543 18 0 8.4692
0.075 13 1 6.8193 17 0 6.3640 18 0 6.1226
0.10 11 1 5.1484 13 0 4.6380 14 0 4.4440

r = 0.25

1 1 0.05 10 1 6.1367 11 -1 5.5854 10 0 5.0791
0.075 7 1 3.9922 7 -1 3.4423 7 0 3.2798
0.10 6 1 3.0645 5 -1 2.4134 5 0 2.2979

2 0.05 10 1 6.1367 10 -1 5.1427 10 0 4.8054
0.075 7 1 3.9922 7 -1 3.3006 6 0 2.8259
0.10 6 1 3.0645 5 -1 2.3031 4 0 1.8741

0.5 1 0.05 15 1 9.7449 15 -1 8.6819 16 0 8.5677
0.075 11 1 6.4953 10 -1 5.4877 10 0 5.2170
0.10 8 1 4.6639 8 -1 4.0735 8 0 3.8568

2 0.05 15 1 9.7449 16 0 8.5116 16 0 8.0301
0.075 11 1 6.4953 10 -1 5.1787 10 0 4.8051
0.10 8 1 4.6639 7 -1 3.5766 7 0 3.2658
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Table 2.2: Optimal combinations of C and I under E3 service.

p>0

r = 0.05 0 0.5 1

MB MS α C I E[NW] C I E[NW] C I E[NW]

1 1 0.05 12 1 6.8660 18 0 6.6507 18 0 6.5040
0.075 9 1 4.5771 13 0 4.3870 14 0 4.3240
0.10 7 1 3.4162 11 0 3.2938 11 0 3.1979

2 0.05 12 1 6.8660 18 0 6.4986 18 0 6.2331
0.075 9 1 4.5771 14 0 4.3204 16 0 4.2377
0.10 7 1 3.4162 11 0 3.1941 13 0 3.1412

0.5 1 0.05 16 1 10.4744 18 0 9.8396 18 0 9.5066
0.075 12 1 6.9922 16 0 6.7514 18 0 6.6736
0.10 9 1 5.2021 13 0 5.0391 15 0 4.9872

2 0.05 16 1 10.4744 18 0 9.4846 18 0 8.9179
0.075 12 1 6.9922 18 0 6.6718 18 0 6.3756
0.10 9 1 5.2021 15 0 4.9859 17 0 4.8770

r = 0.1

1 1 0.05 11 1 6.7993 13 -1 6.2868 15 0 6.2558
0.075 8 1 4.5144 9 -1 4.0746 11 0 4.1050
0.10 6 1 3.3179 8 -1 3.0924 9 0 3.0543

2 0.05 11 1 6.7993 16 0 6.3466 16 0 6.0524
0.075 8 1 4.5144 11 0 4.0958 12 0 3.9632
0.10 6 1 3.3179 9 0 3.0464 9 0 2.8522

0.5 1 0.05 15 1 10.3849 18 0 9.8396 18 0 9.5066
0.075 11 1 6.9260 14 0 6.5952 15 0 6.4593
0.10 9 1 5.2021 11 0 4.8806 12 0 4.7810

2 0.05 15 1 10.3849 18 0 9.4846 18 0 8.9179
0.075 11 1 6.9260 15 0 6.4505 17 0 6.2854
0.10 9 1 5.2021 12 0 4.7729 14 0 4.6623

r = 0.25

1 1 0.05 10 1 6.6494 10 -1 5.7733 10 0 5.3707
0.075 7 1 4.3540 7 -1 3.6871 7 0 3.4490
0.10 5 1 3.0849 5 -1 2.5601 5 0 2.4048

2 0.05 10 1 6.6494 10 -1 5.4871 10 0 5.0456
0.075 7 1 4.3540 7 -1 3.4972 7 0 3.2007
0.10 5 1 3.0849 5 -1 2.4237 5 0 2.2077

0.5 1 0.05 14 1 10.2076 14 -1 9.0266 15 0 8.8760
0.075 10 1 6.7681 10 -1 5.9058 11 0 5.8309
0.10 8 1 5.0649 8 -1 4.3761 8 0 4.1177

2 0.05 14 1 10.2076 16 0 9.0887 16 0 8.4950
0.075 10 1 6.7681 11 0 5.8022 11 0 5.3443
0.10 8 1 5.0649 8 0 4.0903 8 0 3.7190
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I = 0 to potentially no values of C, so that exhaustive service becomes the best choice. Not
surprisingly, exhaustive service performs the best over these ranges when p>0 = 1.
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Chapter 3

A 2-Class Maintenance Model with
Dynamic Server Behaviour

3.1 Discussion of Literature

In Chapter 2, we investigated a closed queueing network tracking a finite population of machines
which alternated between being functional or broken. Broken machines were assigned into one
of two classes, and a single mechanic tended to the two queues as if in a polling system under
either an exhaustive, non-preemptive priority, or preemptive resume priority service policy.
Among the literature discussed in Section 2.1 were the works of Gross et al. [42] and Madu
[67], who considered closed queueing networks of machines that can suffer two levels of failures
having different service requirements. Both of these models allowed for an inventory of spares,
which is often referred to as a maintenance float. In a system with a float, any excess functional
machines when the system is at full capacity are turned off, and not at risk of failure, but are
able to replace working machines that suffer failures. Spare machines incur their own costs of
acquisition and upkeep, however they can be used to improve the average performance of the
system as a whole. Taking inspiration from these works, within this chapter we extend the
previous model to allow the existence of a maintenance float. We demonstrate within Section
3.5.1 a situation where it is optimal to use a float when spare machines come at a lower cost
than increasing the maximum capacity of working machines.

Of course, there are other examples in the literature concerning maintenance float and
inventory problems. For example, Lin et al. [63] studied a closed queueing maintenance network
of N machines across M stations where each station was either a work or repair station, and
each machine belonged to a specific work station (where it had to return, following its repair).
Their interest was in finding the expected number of machines at each station, so as to select
an optimal maintenance float. Liang et al. [62] investigated a system of r fleets of machines,
with the ith fleet having a capacity of Ni working machines and a float of Si machines, and
they assumed exponential failure rates for their machines depending on their respective fleets.
Two versions of their model were considered, where every fleet had their own single mechanic,
or where there existed a centralized repair shop with a single mechanic (who had a higher rate
of repair) that was responsible for all fleets. In the latter case, they compared FCFS service,
preemptive resume priority, and their own Myopic(R) policy (which looked at a future time
point and compared differences in cost given different present decisions on what machine to
serve) against the optimal policy determined through the use of a Markov decision process, and
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found their Myopic(R) policy comparable to the optimal policy.

Buyukkramikli et al. [25] also considered a maintenance system using an inventory of
spare machines. In their model, the maintenance service provider was responsible for their
operating costs as well as the costs of lost business for their client when the system was down.
By holding an inventory of spare parts, they were able to immediately replace broken parts
while they were undergoing repairs. Two versions of the model were considered, one with a
permanent service capacity (i.e., service rate) and one with a two-level service capacity. At
periodic intervals in the two-level case, the decision was made to invest (i.e., pay a higher cost
per unit time) in the higher service capacity if the number of broken parts waiting to be repaired
was beyond a selected threshold. The options to not require as high of an inventory of spare
parts (allowing lower holding costs), and to have a lower base service capacity available in the
two-level service capacity model, proved very effective in their numerical studies at lowering the
optimal (minimum) costs incurred by the maintenance service provider. Kim and Dshalalow
[53] studied the maintenance of machines within a production system with inventories of reserve
and super reserve machines. The reserve machines were used to take the place of the working
machines as they failed, until the time when all standard and reserve machines were working.
At this point, the reserve machines were blocked and the super reserve machines took over,
while the server went on vacation until a sufficient number of failures were observed to reduce
the number of working machines without having a super reserve machine available to take its
place. A cost function was put forth to be used to select optimal values for the maximum
number of simultaneously working machines, the number of reserve machines, and the number
of super reserve machines.

In addition to the inclusion of a maintenance float, this chapter expands that of Chapter 2
by generalizing the server’s allowed behaviours. In particular, we allow for the probability of the
server switching to the opposite queue at decision epochs after repair completions or machine
failure instants to depend on both queue lengths, similar to Iravani et al. [48] and Liang et al.
[62] within the context of using Markov decision processes to find the optimal server behaviour.
This dynamic behaviour contains as special cases the exhaustive, preemptive resume priority,
and non-preemptive priority service policies, as well as the (a, b) threshold and smart Bernoulli
policies which we introduce in detail in Section 3.3.2.

A threshold policy may be used in place of a preemptive or non-preemptive priority policy
as a more tunable way to optimize a polling model by assigning priority to one queue over
another. For instance, a threshold may be used by a server to meet a required level of service
to higher priority real-time customers while minimizing the hindrance to their ability to serve
non-real-time data. Lee and Sungupta [60] analyzed a 2-queue M/G/1 polling model where the
server follows a 1-limited service discipline at both queues unless the queue length of the class-1
queue exceeds its threshold (at which point it is granted non-preemptive priority). Their model
was work conserving in that a queue is served exhaustively if the other is empty. Boxma et al.
[21] and Avram and Gómez-Corral [9] both researched 2-queue M/M/1 polling models, with
the former allowing preemptive or non-preemptive priority to class 1 if its length reached its
threshold, and the latter allowing only preemptive priority in the same situation.

A different take on threshold models can allow for a threshold to be set on both queues, so
that the server knows to change their position if the opposite queue length gets too long while
their current queue is below its corresponding threshold. Avrachenkov et al. [8] and Perel
and Yechiali [74] both consider versions of a 2-queue M/M/1 polling model with this type
of threshold policy for switching. In both works, work conserving and non-work conserving
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variants are proposed which determine the behaviour of the server after emptying their current
queue. In the work conserving version, the server will switch to serve the opposite queue even
if its length does not meet its threshold, while in the non-work conserving version they will
idle until the opposite queue reaches its threshold or until another arrival is observed at their
current queue.

Of course, a Bernoulli service policy (first introduced in the context of a GI/G/1 vacation
model by Keilson and Servi [50]), which generalizes the exhaustive and 1-limited service policies,
can also be used to optimize a polling model (e.g., Blanc and van der Mei [14]). Specifically,
a server following a Bernoulli policy serves at least one customer per visit to a queue and
assigns varying importance to each queue by way of a class-dependent probability (which may
be varied) of the server initiating another service after a completion (should their queue be
non-empty) rather than switching away. In Section 3.5.3, we argue for the optimality of setting
one of our smart Bernoulli probabilities to 1 as in Blanc and van der Mei [14], reducing to a
2-queue polling model with exhaustive service at one queue and smart Bernoulli at the other.
For an example of a 2-class polling model with exhaustive and the standard Bernoulli policy,
one can refer to Weststrate and van der Mei [95]. For examples of Bernoulli service in a polling
model with a general number of queues, with or without switchover times, see Blanc [11, 12].
Some other examples of papers which consider Bernoulli service disciplines are Boxma [18],
Ramaswamy and Servi [78], Resing [79], and Servi [85]. We close this subsection by remarking
that a majority of the work within this chapter may be found in Granville and Drekic [41].

3.2 Model Assumptions

We consider a maintenance system of C + f identical machines, where C ∈ Z+ is the system’s
capacity, or the cap on how many machines may be in use at once (and hence at risk of failure),
and f ∈ N denotes the number of machines in the maintenance float. The float provides an
extra inventory of functional machines that replace machines that are taken down for repair
after suffering a failure. It is assumed that a machine is not at risk of failure while turned
off and stored in the float, and that they can instantaneously be put to use and turned on
when needed. Following a machine repair, it is instantly turned on if the number of working
machines immediately prior to the repair completion was less than C; otherwise, it is stored in
the maintenance float.

The system is modelled as a 2-class polling model attended to by a lone mechanic (or
server), where each class represents a grouping of one or more types of failure, and the service
time distributions for each type of failure are allowed to be different. Let αi, i = 1, 2, be the
total exponential class-i failure rate, such that each machine, when turned on, has an effective
failure rate of α = α1 + α2. It is assumed that the failure times of machines are independent,
machines fail individually, and a machine may only suffer one type of failure at a time. This last
assumption may be worked around if the types of failure are within the same class by defining
a combination of failures as a new type of failure (to be included in the same class).

Upon experiencing a class-i failure (and being labelled as a class-i machine until it is
repaired), a class-i machine waits in the ith queue to receive service on a FCFS basis with
respect to other class-i machines in the same queue. To contrast the two classes of failures, we
denote functional machines (either in use or stored in the float) as being of class 0. When every
machine is class 0, rather than waiting at class 1 or class 2, the mechanic moves to a neutral
third location, similarly named class 0.
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It is assumed that class-i service times are strictly positive and follow a continuous phase-
type distribution with representation Ser i ∼ PHbi(βi, Bi). This is inherently a more restrictive
assumption than generally distributed service times, although it is possible to approximate a
(non-negative) non-phase-type distribution by fitting a phase-type one (most notably, via the
classic EM Algorithm outlined by Asmussen et al. [7]). However, phase-types have a difficult
time approximating some distributions well (particularly heavy-tailed ones), and increasing the
number of phases to improve the fit can introduce computational issues due to the impact on
the size of the state space of the model. We will apply the algorithm of Asmussen et al. [7] to
approximate a heavy-tailed log-normal distribution to be used within the example in Section
3.5.3.

Fortunately, phase-type distributions do have many appealing features. Since phase-type
distributions are closed under finite mixtures, it is straightforward to construct the underlying
class-i service time distribution from the individual continuous phase-type distributions corre-
sponding to each type of failure within the same class. Depending on the assigned behaviour
of the mechanic, it may be possible for a service time to be interrupted. In these cases, the
service progress is not lost as the service phase is tracked to allow the mechanic to resume
service where it left off, after eventually returning to that queue. Each service time is assumed
to be independent of other services, as well as machine failure times.

Similarly, the time it takes the mechanic to ‘switch’ from class j to class i (referred to as a
class-i switch-in) is assumed to follow a continuous phase-type distribution with representation
PHsi(γji, Si), where the rate matrix Si depends only on the destination class, while the initial

probability row vector γ
ji

may also depend on the departure class. Switch-ins are also assumed

to be independent of other switch-ins, as well as machine service and failure times. A switch-in
having positive duration may, for example, represent any combination of the times necessary for
the mechanic to change their instruments, retrieve spare parts, or physically relocate themselves
to a different queue. If the time required to complete these tasks not directly related to serving
an individual machine are insignificant, then it may make sense to allow the switch-in times to

be identically zero. We let γ
[0]
ji = 1 − γ

ji
e′ denote the probability of a class-i switch-in (from

class j) being equal to zero in duration.

As the mechanic may be allowed to preempt a switch-in within this system (if, say, one
class has higher priority over the other at a given combination of queue lengths), we make the
assumption that switching out of a class-i switch-in is the same as beginning a switch-in after
the completion (or preemption) of a class-i service time. That is, for example, if class 1 has a
higher priority than class 2 and the mechanic observes a class-1 failure while conducting a switch
from class 0 to class 2, then they will start a new class-1 switch-in with initial probability vector
γ

21
. We remark that a class-0 switch-in will always be interrupted if the mechanic observes a

machine failure from either class.

We provide a depiction of the maintenance system as described above in Figure 3.1. Note
that the notation X1, X2, and L are as they will be defined in Section 3.3.1, representing
the first and second queue lengths, and the position of the server, respectively. Machines are
represented by solid black circles, while slots that machines may take within class 0 (whether
to be put in use or in the maintenance float) are represented by empty circles. Similarly,
the larger solid grey circle and dashed empty circles represent current and potential locations
where the server either works or idles, with the grey circle in this example implying that
the mechanic is currently serving class-2 machines. As defined above, the distribution of the
time between service completions is PHbi(βi, Bi) (in this example, we would have i = 2),
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Figure 3.1: Depiction of the maintenance system with a maintenance float and the server at
queue 2.

and if the server switches between the three locations, the time to complete the switch has a
PHsi(γji, Si) distribution. Repaired machines are brought to the maintenance float, where they

will automatically be put to use if there are any open slots for functional machines. Figure 3.1
does assume that a float exists (i.e., f ≥ 1), but we do in fact allow the choice of f = 0. In the
f = 0 case, the diagram would change by way of having no float, and repaired machines would
automatically be put to use.

A defining feature of polling models is the chosen service policy which dictates the server’s
behaviour. In this model, we allow our mechanic be dynamic, whose decision to start a switch-
in (i.e., the probability of deciding to switch) may depend on both queue lengths as well as
what type of event is causing the server to make a decision, namely after a service completion
(when the other queue has a positive length), or after observing an arrival to the opposite queue
during a switch-in or a service. As these decision probabilities are state-dependent, we must
first define the state space of the Markov chain describing this system before constructing the
decision probability matrices.
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3.3 Model Construction and Analysis

3.3.1 State Space and State-Dependent Decision Probabilities

In order to model this maintenance system without restricting the server’s behaviour, we must
track six variables within our state space, using the CTMC

{(X1(t), X2(t), L(t), Y (t), Y1(t), Y2(t)), t ≥ 0}.

As customers from either class may, in general, experience service interruptions, this is similar
to a combination of the preemptive priority models considered in Sections 2.4.1 and 2.4.2.
Here, X1(t) ∈ {0, 1, . . . , C + f} is the length of the class-1 queue and is treated as the level
of the process. Next, X2(t) ∈ {0, 1, . . . , C + f − X1(t)} is the length of the class-2 queue.
L(t) ∈ {0, 1, 2, 3, 4, 5} denotes the location of the server (0: idle at class 0; 1: switching into
class 1; 2: serving class 1; 3: switching into class 2; 4: serving class 2; 5: switching into class
0). Y (t) denotes the phase of a switch-in time or takes the value of 0 when the mechanic is
either idle or repairing a machine, i.e.,

Y (t) ∈ ΩY (L(t)) =



{0} , if L(t) = 0,

{1, 2, . . . , s1} , if L(t) = 1,

{0} , if L(t) = 2,

{1, 2, . . . , s2} , if L(t) = 3,

{0} , if L(t) = 4,

{1, 2, . . . , s0} , if L(t) = 5.

Lastly, Y1(t) and Y2(t) are the current phases of service of the class-1 and class-2 machines
leading their respective queues. Yi(t) takes on a value of zero if the ith queue is empty, so that

Yi(t) ∈ ΩYi(Xi(t)) =

{
{0} , if Xi(t) = 0,

{1, 2, . . . , bi} , if Xi(t) ≥ 1.

Note that this variable is initialized as soon as Xi(t) changes from 0 to 1 (after observing a
class-i failure), i = 1, 2, which is in general not the same time as when the customer’s service
actually begins.

With the above notation in place, we can now define the decision probability matrices.
As mentioned previously, we categorize decision epochs into one of three types, with the first
type occurring after a service completion. Define P1S

m,n as the probability of initiating a class-1
switch-in (from class 2) immediately after a class-2 service completion that reduces X2(t) from
n+ 1 to n, when X1(t) = m. For ease of presentation (and storage), we let

P1S =



1 2 3 · · · C+f−3 C+f−2

1 P1S
1,1 P1S

1,2 P1S
1,3 · · · P1S

1,C+f−3 P1S
1,C+f−2

2 P1S
2,1 P1S

2,2 P1S
2,3 · · · P1S

2,C+f−3 0

3 P1S
3,1 P1S

3,2 P1S
3,3 · · · 0 0

...
...

...
...

...
...

C+f−3 P1S
C+f−3,1 P1S

C+f−3,2 0 · · · 0 0

C+f−2 P1S
C+f−2,1 0 0 · · · 0 0


.
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Note that we do not need to define probabilities where X1(t) +X2(t) = m+ n = C + f , since
there must be at least one functional machine after a service completion, and we do not consider
probabilities for m = 0 or n = 0, as we make the assumption that the mechanic will always
choose to serve the class having a non-zero queue length should the other queue be empty. A
corresponding matrix P2S is also constructed in the same way, such that P2S

m,n is the probability
of switching to serve class 2 after a class-1 service completion which reduces X1(t) from m+ 1
to m, when X2(t) = n.

Next, we define P1P
m,n (P2P

m,n) and P1N
m,n (P2N

m,n) to be the probabilities of the server ini-
tiating a class-1 (class-2) switch-in after observing a class-1 (class-2) failure that results in
(X1(t), X2(t)) = (m,n) after said failure when L(t) = 4 (L(t) = 2) or L(t) = 3 (L(t) = 1) im-
mediately prior to the failure epoch, respectively. We distinguish these probabilities with a P or
N to denote the fact that they represent switch-ins that are either preemptive or non-preemptive
in nature, with respect to service times of the opposite class. We now let

P1P =



1 2 3 · · · C+f−3 C+f−2 C+f−1

1 P1P
1,1 P1P

1,2 P1P
1,3 · · · P1P

1,C+f−3 P1P
1,C+f−2 P1P

1,C+f−1

2 P1P
2,1 P1P

2,2 P1P
2,3 · · · P1P

2,C+f−3 P1P
2,C+f−2 0

3 P1P
3,1 P1P

3,2 P1P
3,3 · · · P1P

3,C+f−3 0 0
...

...
...

...
...

...
...

C+f−3 P1P
C+f−3,1 P1P

C+f−3,2 P1P
C+f−3,3 · · · 0 0 0

C+f−2 P1P
C+f−2,1 P1P

C+f−2,2 0 · · · 0 0 0

C+f−1 P1P
C+f−1,1 0 0 · · · 0 0 0


,

and similarly define P1N , P2P , and P2N , containing the same ranges of indexed probabilities.
In contrast to P1S and P2S , we now must consider cases with m+n = C+f , since it is possible
for there to be no functional machines after a failure. We still do not need to consider cases
with either m = 0 or n = 0, since the event of observing an arrival to one queue (in the form of
a machine failure) while switching into or serving at the other implies that both queue lengths
are positive after the failure.

Finally, we define the class-1 adjusted decision probabilities

d
[D,g]
i (m,n) = P iSm+(C+f)−(D+g),n, i = 1, 2, (3.1)

a
[D,g]
i,p (m,n) = P iPm+(C+f)−(D+g),n, i = 1, 2, (3.2)

and
a

[D,g]
i (m,n) = P iNm+(C+f)−(D+g),n, i = 1, 2, (3.3)

such that, for example, d
[C−l,0]
2 (m,n) = P2S

m+l+f,n and a
[C,f ]
1 (m,n) = P1N

m,n. Note that the
inclusion of ‘(C + f)’ in the subscripts above is treated as a constant (i.e., independent of
the superscript of generator blocks to be defined in Section 3.3.3), allowing us to accurately
determine the length of the class-1 queue as we reduce the effective number of machines from
[C, f ] to [D, g] in the system as part of the sojourn time analysis in Section 3.3.4.

3.3.2 Select Service Policies and Their Decision Probability Matrices

Within the numerical examples in Sections 3.4 and 3.5, we examine several service policies
of interest which we are able to construct from specific combinations of decision probabilities.
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Before specifying these cases, we defineA as the matrix P1P if we let P1P
m,n = 1, m = 1, 2, . . . , C+

f − 1, n = 1, 2, . . . , C + f −m. That is, A has the same dimension and structure as the four
failure instant decision probability matrices, but with each probability set equal to 1. Similarly,
define D as the matrix P1S with P1S

m,n = 1, m = 1, 2, . . . , C+ f − 2, n = 1, 2, . . . , C+ f −m− 1.
Finally, for j ∈ Z+ and i = 1, 2, . . . , j + 1, let

T [j]
i =



1 2 · · · j − i j + 1− i j + 2− i · · · j − 1 j

1 0 0 · · · 0 0 0 · · · 0 0
2 0 0 · · · 0 0 0 · · · 0 0
...

...
...

...
...

...
...

...
i− 1 0 0 · · · 0 0 0 · · · 0 0
i 1 1 · · · 1 1 0 · · · 0 0
i+ 1 1 1 · · · 1 0 0 · · · 0 0
...

...
...

...
...

...
...

...
j − 1 1 1 · · · 0 0 0 · · · 0 0
j 1 0 · · · 0 0 0 · · · 0 0


,

such that in its boundary cases,

T [j]
i =


A , if i = 1, j = C + f − 1,

D , if i = 1, j = C + f − 2,

0 , if i > j,

(3.4)

where 0 denotes an appropriately dimensioned matrix of zeroes, which in this case has dimension
j × j.

We now discuss our service policies of interest, whose switch-in decision probability matrices
are specified in Table 3.1. The first service policy we consider is the classic exhaustive service
policy, where the server remains at a particular queue until it empties, at which time a switch
to the other queue is made, or for our model specifically, to class 0 if X1(t) = X2(t) = 0 at
this time. Since the server will never leave a queue while it has a positive length, all decision
probabilities must be zero.

Next, we have a pair of priority policies wherein the mechanic prefers to serve one class of
failures before the other. We present the class-1 priority policies here, while the class-2 priority
policies may be obtained by simply interchanging the class-1 and class-2 decision probabilities.
For class-1 non-preemptive priority, the server will always immediately begin a class-1 switch-in
upon observing a class-1 failure to an empty queue (note that the server is only allowed to leave
queue 1 once X1(t) = 0) so long as they do not have to interrupt, or preempt, a class-2 service
time. Thus, the decision probabilities when conducting a class-2 switch-in, or after completing
a class-2 service, are all one, whereas the decision probabilities during a class-2 service time are
zero. In contrast, the preemptive resume priority policy gives the server permission to interrupt
a service time, which will later be resumed with no work lost, so the decision probabilities during
a class-2 service time are also set equal to one. We remark that we chose to let P1S = D in the
preemptive case, even though it is not possible to observe a class-2 service completion when
X1(t) > 0 (and hence, in practice, these probabilities will never be checked by the CTMC).

A threshold policy is a modification of standard priority policies, in that a class’s higher
priority is conditional on it having a queue length equaling or exceeding a particular class-
dependent threshold. As we are already considering priority policies that are both preemptive
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Table 3.1: Switch-in decision probability matrices for select service policies.

Service Policy P1S P1P P1N P2S P2P P2N

Exhaustive 0 0 0 0 0 0
Class-1 Non-preemptive Priority D 0 A 0 0 0
Class-1 Preemptive Resume Priority D A A 0 0 0

Class-1 (a, b) Threshold T [C+f−2]
a T [C+f−1]

b T [C+f−1]
a 0 0 0

(pSB
1 , pSB

2 ) Smart Bernoulli (1− pSB
2 )D 0 0 (1− pSB

1 )D 0 0

and non-preemptive in nature, we elect to use a variant of the threshold policy which can assign
non-preemptive priority to a class after reaching a threshold (a), and then preemptive resume
priority to a class after reaching another threshold (b) that is equal to or greater than the
non-preemptive threshold. That is, if X1(t) < a, then the server acts as if under an exhaustive
policy, if a ≤ X1(t) < b, the server acts as if under a class-1 non-preemptive policy, and if
b ≤ X1(t), the server acts as if under a class-1 preemptive resume priority policy. We refer to
this variant as an (a, b) threshold policy.

In order to handle the activation of priority, we make use of the above T [j]
i matrices which

change from having decision probabilities of zero to probabilities of one once X1(t) ≥ i (i.e.,
for row i and below). If we instead wanted to use a class-2 threshold policy, we would use

transposes of these matrices,
(
T [j]
i

)′
, so that the policy would adjust after observing X2(t) ≥ i

(i.e., for column i and to the right). As implied by Equation (3.4) and Table 3.1, an (a, b)
threshold policy can recover the exhaustive or priority policies. In fact, it can also represent a
non-preemptive threshold policy if we let b = C + f , or a preemptive resume threshold policy
if we let b = a.

Lastly, we consider a modification of the Bernoulli service discipline introduced by Keilson
and Servi [50]. In the original discipline, after every service completion, the server would either
switch away or go on vacation (in the case of a single queue system) depending on the result
of an independent Bernoulli trial having a fixed class-dependent probability. In our model, we
are assuming that the mechanic has full information concerning queue lengths, and as such
would not be inclined to switch away from a queue without emptying it if the opposite queue
has no machines waiting to be serviced. Therefore, we implement a modified policy that we
refer to as (pSB

1 , pSB
2 ) smart Bernoulli, or simply smart Bernoulli, which only conducts a class-

dependent Bernoulli trial having probability pSB
i of starting another class-i service, i = 1, 2,

rather than switching away to the opposite queue, if the opposite queue has a positive length.
Hence, under this policy, the only decisions the server has to make are at service completions,
and these decisions always have the same class-dependent probability for each combination of
queue lengths. Finally, we remark that if we let pSB

1 = pSB
2 = 1, then the server never leaves a

queue until it is empty and we recover the exhaustive service policy.

3.3.3 Steady-State Probabilities

We are able to solve for the steady-state probabilities by representing the system as a level-
dependent QBD process, taking the length of the class-1 queue, X1, as the level of the process.
First of all, let πm,n,l,y,y1,y2 be the steady-state probability of observing the CTMC in state
(X1(t), X2(t), L(t), Y (t), Y1(t), Y2(t)) = (m,n, l, y, y1, y2), where the variables take on values
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from their supports defined in Section 3.3.1. Next, we order the steady-state probabilities into
the row vector

π = (π0, π1, . . . , πC+f ), (3.5)

where

πm = (πm,0, πm,1, . . . , πm,C+f−m)

contains the ordered steady-state probabilities for level m, m = 0, 1, . . . , C + f . For level 0,

π0,0 = (π0,0,0,0,0,0, π0,0,5,1,0,0, . . . , π0,0,5,s0,0,0)

has length 1 + s0, and

π0,n = (π0,n,3,1,0,1, . . . , π0,n,3,1,0,b2 , π0,n,3,2,0,1, . . . , π0,n,3,s2,0,b2 ,

π0,n,4,0,0,1, . . . , π0,n,4,0,0,b2)

has length (s2 + 1)b2 for n = 1, 2, . . . , C + f , resulting in 1 + s0 + (C + f)(s2 + 1)b2 total states.
For level m = 1, 2, . . . , C + f ,

πm,0 = (πm,0,1,1,1,0, . . . , πm,0,1,1,b1,0, πm,0,1,2,1,0, . . . , πm,0,1,s1,b1,0,

πm,0,2,0,1,0, . . . , πm,0,2,0,b1,0)

has length (s1 + 1)b1, and for m = 1, 2, . . . , C + f − 1 and n = 1, 2, . . . , C + f −m,

πm,n = (πm,n,1,1,1,1, . . . , πm,n,1,1,1,b2 , πm,n,1,1,2,1, . . . , πm,n,1,1,b1,b2 , πm,n,1,2,1,1, . . . ,

πm,n,1,s1,b1,b2 , πm,n,2,0,1,1, . . . , πm,n,2,0,1,b2 , πm,n,2,0,2,1, . . . , πm,n,2,0,b1,b2 ,

πm,n,3,1,1,1, . . . , πm,n,3,1,1,b2 , πm,n,3,1,2,1, . . . , πm,0,3,1,b1,b2 , πm,n,3,2,1,1, . . . ,

πm,n,3,s2,b1,b2 , πm,n,4,0,1,1, . . . , πm,n,4,0,1,b2 , πm,n,4,0,2,1, . . . , πm,n,4,0,b1,b2)

has length (s1 + s2 + 2)b1b2, resulting in (s1 + 1)b1 + (C + f −m)(s1 + s2 + 2)b1b2 total states.

The corresponding infinitesimal generator Q[C,f ] for this QBD process takes on the form

Q[C,f ] =



0 1 2 · · · C+f−2 C+f−1 C+f

0 Q
[C,f ]
0,0 Q

[C,f ]
0,1 0 · · · 0 0 0

1 Q
[C,f ]
1,0 Q

[C,f ]
1,1 Q

[C,f ]
1,2

. . . 0 0 0

2 0 Q
[C,f ]
2,1 Q

[C,f ]
2,2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
C+f−2 0 0 0 · · · Q

[C,f ]
C+f−2,C+f−2 Q

[C,f ]
C+f−2,C+f−1 0

C+f−1 0 0 0 · · · Q
[C,f ]
C+f−1,C+f−2 Q

[C,f ]
C+f−1,C+f−1 Q

[C,f ]
C+f−1,C+f

C+f 0 0 0 · · · 0 Q
[C,f ]
C+f,C+f−1 Q

[C,f ]
C+f,C+f


, (3.6)

where each submatrix (or block) Q
[C,f ]
i,j contains all rates corresponding to state transitions

where the level changes from i to j. Here, we use superscript ‘[C, f ]’ to denote the sizes of
the system’s capacity (C) and maintenance float (f), in contrast to earlier where we allowed
the second number in the superscript to denote the service discipline. We will make use of
this version of our superscript notation in the sojourn time analysis of Section 3.3.4. As in
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our previous considered maintenance model, the steady-state probability row vector π can be
solved by applying the level-dependent QBD algorithm from Section 1.2.6.

We conclude this subsection by specifying the constructed blocks of Q[C,f ]. To this end,
we recall the following notation. We let ⊗ represent the standard Kronecker product operator,
let Ii be an i × i identity matrix, and let ei be a row vector of ones having length i. In
addition, we define B′0,i = −Bie′ and S′0,i = −Sie′ as the column vectors of absorption rates for
the PHbi(βi, Bi) distributed class-i service times and PHsi(γji, Si) distributed class-i switch-in

times, respectively, and let γ
[+0]
ji = (γ

ji
, γ

[0]
ji ) be the concatenated probability vector joining the

initial distribution of a class j to class i switch-in with the probability of the switch-in being

zero in duration. Finally, let ∆
[C,f ]
m,n = min{C,C + f −m − n} denote the number of working

machines when X1(t) = m and X2(t) = n.
For levels m = 0, 1, . . . , C + f , the main diagonal blocks of Q[C,f ] are given by

Q
[C,f ]
m,m =



0 1 2 · · · C+f−m−1 C+f−m
0 Q

[C,f ]
m,m,0 (UD)

[C,f ]
m,0 0 · · · 0 0

1 (LD)
[C,f ]
m,1 Q

[C,f ]
m,m,1 (UD)

[C,f ]
m,1

. . . 0 0

2 0 (LD)
[C,f ]
m,2 Q

[C,f ]
m,m,2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C+f−m−1 0 0 0 · · · Q
[C,f ]
m,m,C+f−m−1 (UD)

[C,f ]
m,C+f−m−1

C+f−m 0 0 0 · · · (LD)
[C,f ]
m,C+f−m Q

[C,f ]
m,m,C+f−m


,

where for m = 0

Q
[C,f ]
0,0,0 = −CαI1+s0 +

[
0 0s0
S′0,0 S0

]
,

Q
[C,f ]
0,0,n = −∆

[C,f ]
0,n αI(s2+1)b2 +

[
S2 ⊗ Ib2 S′0,2 ⊗ Ib2

0 B2

]
, n = 1, 2, . . . , C + f,

(UD)
[C,f ]
0,0 = Cα2e

′
1+s0γ

[+0]
02
⊗ β

2
,

(UD)
[C,f ]
0,n = ∆

[C,f ]
0,n α2I(s2+1)b2 , n = 1, 2, . . . , C + f − 1,

(LD)
[C,f ]
0,1 =

[
0′s2b2 0

γ
[0]
20B

′
0,2 B′0,2γ20

]
,

and

(LD)
[C,f ]
0,n =

[
0′s2b20s2b2 0

0 B′0,2β2

]
, n = 2, 3, . . . , C + f,

while for m = 1, 2, . . . , C + f ,

Q
[C,f ]
m,m,0 = −∆

[C,f ]
m,0 αI(s1+1)b1 +

[
S1 ⊗ Ib1 S′0,1 ⊗ Ib1

0 B1

]
,

and

Q[C,f ]
m,m,n = −∆[C,f ]

m,n αI(s1+s2+2)b1b2 +


S1 ⊗ Ib1b2 S′0,1 ⊗ Ib1b2 0 0

0 B1 ⊗ Ib2 0 0
0 0 S2 ⊗ Ib1b2 S′0,2 ⊗ Ib1b2
0 0 0 Ib1 ⊗B2


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for n = 1, 2, . . . , C + f −m,

(UD)
[C,f ]
m,0 = ∆

[C,f ]
m,0 α2

[
(1−a[C,f ]

2 (m, 1))Is1b1 ⊗ β2
0 a

[C,f ]
2 (m, 1)e′s1γ

[+0]
12 ⊗ Ib1 ⊗ β2

0 (1−a[C,f ]
2,p (m, 1))Ib1 ⊗ β2

a
[C,f ]
2,p (m, 1)γ

[+0]
12 ⊗ Ib1 ⊗ β2

]
,

and

(UD)
[C,f ]
m,n = ∆

[C,f ]
m,n α2

 (1−a[C,f ]
2 (m,n+1))Is1b1b2 0 a

[C,f ]
2 (m,n+1)e′s1γ

[+0]
12 ⊗ Ib1b2

0 (1−a[C,f ]
2,p (m,n+1))Ib1b2 a

[C,f ]
2,p (m,n+1)γ

[+0]
12 ⊗ Ib1b2

0 0 I(s2+1)b1b2


for n = 1, 2, . . . , C + f −m− 1, and

(LD)
[C,f ]
m,1 =

[
0′(s1+s2+1)b1b2

0(s1+1)b1

γ
[+0]
21 ⊗ Ib1 ⊗B′0,2

]
,

and

(LD)
[C,f ]
m,n =

[
0′(s1+s2+1)b1b2

0(s1+1)b1b2 0′(s1+s2+1)b1b2
0s2b1b2 0′(s1+s2+1)b1b2

0b1b2

d
[C,f ]
1 (m,n−1)γ

[+0]
21 ⊗ Ib1 ⊗B′0,2β2

0 (1−d[C,f ]
1 (m,n−1))Ib1 ⊗B′0,2β2

]

for n = 2, 3, . . . , C + f −m.
Next, for levels m = 0, 1, . . . , C + f − 1, the upper diagonal blocks of Q[C,f ] have the form

Q
[C,f ]
m,m+1 =



0 1 2 · · · C+f−m−1

0 Q
[C,f ]
m,m+1,0 0 0 · · · 0

1 0 Q
[C,f ]
m,m+1,1 0

. . . 0

2 0 0 Q
[C,f ]
m,m+1,2

. . . 0
...

...
. . .

. . .
. . .

...
C+f−m−1 0 0 0 · · · Q

[C,f ]
m,m+1,C+f−m−1

C+f−m 0 0 0 · · · 0


,

where for m = 0,

Q
[C,f ]
0,1,0 = Cα1e

′
1+s0γ

[+0]
01
⊗ β

1
,

and

Q
[C,f ]
0,1,n = ∆

[C,f ]
0,n α1

[
a

[C,f ]
1 (1, n)e′s2γ

[+0]
21 ⊗ β1

⊗ Ib2 (1−a[C,f ]
1 (1, n))Is2 ⊗ β1

⊗ Ib2 0

a
[C,f ]
1,p (1, n)γ

[+0]
21 ⊗ β1

⊗ Ib2 0 (1−a[C,f ]
1,p (1, n))β

1
⊗ Ib2

]

for n = 1, 2, . . . , C + f − 1, while for m = 1, 2, . . . , C + f − 1,

Q
[C,f ]
m,m+1,0 = ∆

[C,f ]
m,0 α1I(s1+1)b1 ,

and

Q
[C,f ]
m,m+1,n = ∆

[C,f ]
m,n α1

 I(s1+1)b1b2 0 0

a
[C,f ]
1 (m+1, n)e′s2γ

[+0]
21 ⊗ Ib1b2 (1−a[C,f ]

1 (m+1, n))Is2b1b2 0

a
[C,f ]
1,p (m+1, n)γ

[+0]
21 ⊗ Ib1b2 0 (1−a[C,f ]

1,p (m+1, n))Ib1b2


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for n = 1, 2, . . . , C + f −m− 1.
Lastly, for levels m = 1, 2, . . . , C + f , the lower diagonal blocks of Q[C,f ] are given by

Q
[C,f ]
m,m−1 =



0 1 2 · · · C+f−m−1 C+f−m C+f−m+1

0 Q
[C,f ]
m,m−1,0 0 0 · · · 0 0 0

1 0 Q
[C,f ]
m,m−1,1 0

. . . 0 0 0

2 0 0 Q
[C,f ]
m,m−1,2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
C+f−m−1 0 0 0 · · · Q

[C,f ]
m,m−1,C+f−m−1 0 0

C+f−m 0 0 0 · · · 0 Q
[C,f ]
m,m−1,C+f−m 0


,

where for m = 0

Q
[C,f ]
1,0,0 =

[
0′s1b1 0

γ
[0]
10B

′
0,1 B′0,1γ10

]
,

and

Q
[C,f ]
1,0,n =

 0′s1b1b20(s2+1)b2

γ
[+0]
12 ⊗B′0,1 ⊗ Ib2

0′(s2+1)b1b2
0(s2+1)b2

 , n = 1, 2, . . . , C + f − 1,

while for m = 2, 3, . . . , C + f ,

Q
[C,f ]
m,m−1,0 =

[
0′s1b10s1b1 0

0 B′0,1β1

]
,

and

Q
[C,f ]
m,m−1,n =

 0′s1b1b20s1b1b2 0 0

0 (1−d[C,f ]
2 (m−1, n))B′0,1β1

⊗ Ib2 d
[C,f ]
2 (m−1, n)γ

[+0]
12 ⊗B′0,1β1

⊗ Ib2
0′(s2+1)b1b2

0s1b1b2 0 0


for n = 1, 2, . . . , C + f −m.

3.3.4 Sojourn Time Distribution

In this subsection, we derive the continuous phase-type representation for the sojourn time (i.e.,
the time between a machine’s failure and when its repairs are complete) distribution of a target
machine that suffers a class-1 failure, S1. Our analysis considers the system at steady state, and
hence we require the steady-state probabilities of the maintenance system immediately prior to
a class-1 failure. Analogous to Equation (2.2), we have

qm,n,l,y,y1,y2 =
min{C,C + f −m− n}πm,n,l,y,y1,y2∑

x1,x2,w,z,z1,z2
min{C,C + f − x1 − x2}πx1,x2,w,z,z1,z2

. (3.7)

That is, the probability that the system was in state (m,n, l, y, y1, y2) immediately prior to a
class-1 failure is the ratio of the steady-state class-1 failure rate from state (m,n, l, y, y1, y2)
and the total steady-state class-1 failure rate over all states.

Now that we have the distribution of the system before the failure, we must consider how the
failure causes the state of the system to change. If the mechanic was previously conducting a
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switch-in and this failure causes a class-1 switch-in to begin, then the switch-in phase occupied
prior to the failure has no bearing on the future development of the system since we track
interrupted service times, but not interrupted switch-in times. Thus, let

qm,n,3,•,y1,y2 =

s2∑
y=1

qm,n,3,y,y1,y2

be the total probability that the server was conducting a class-2 switch-in, and define

q
0,n,3,• = (q0,n,3,•,0,1, q0,n,3,•,0,2, . . . , q0,n,3,•,0,b2)

and
q
m,n,3,• = (qm,n,3,•,1,1, qm,n,3,•,1,2, . . . , qm,n,3,•,1,b2 , qm,n,3,•,2,1, . . . , qm,n,3,•,b1,b2).

Similarly, for the case of the queue being empty prior to the failure, let

q0,0,•,•,•,• = q0,0,0,0,0,0 +

s0∑
y=1

q0,0,5,y,0,0.

We otherwise group the pre-failure probabilities into the following row vectors. For level m =
1, 2, . . . , C + f − 1, let

q
m,0

= (qm,0,1,1,1,0, . . . , qm,0,1,1,b1,0, qm,0,1,2,1,0, . . . , qm,0,1,s1,b1,0,

qm,0,2,0,1,0, . . . , qm,0,2,0,b1,0),

and for n = 1, 2, . . . , C + f −m,

q
m,n,1

= (qm,n,1,1,1,1, . . . , qm,n,1,1,1,b2 , qm,n,1,1,2,1, . . . , qm,n,1,1,b1,b2 ,

qm,n,1,2,1,1, . . . , qm,n,1,s1,b1,b2),

q
m,n,2

= (qm,n,2,0,1,1, . . . , qm,n,2,0,1,b2 , qm,n,2,0,2,1, . . . , qm,n,2,0,b1,b2),

q
m,n,3

= (qm,n,3,1,1,1, . . . , qm,n,3,1,1,b2 , qm,n,3,1,2,1, . . . , qm,0,3,1,b1,b2 ,

qm,n,3,2,1,1, . . . , qm,n,3,s2,b1,b2),

q
m,n,4

= (qm,n,4,0,1,1, . . . , qm,n,4,0,1,b2 , qm,n,4,0,2,1, . . . , qm,n,4,0,b1,b2).

Also, for level 0 and n = 1, 2, . . . , C + f − 1, let

q
0,n,3,y

= (q0,n,3,y,0,1, . . . , q0,n,3,y,0,b2), y = 1, 2, . . . , s2,

and
q

0,n,4
= (q0,n,4,0,0,1, . . . , q0,n,4,0,0,b2).

Now, for level m, m = 0, 1, . . . , C + f − 1, define the probability row vector

p
m+1

= (p
m+1,0

, p
m+1,1

, . . . , p
m+1,C+f−m−1

).

For m > 0, p
m+1,0

= q
m,0

and

p
m+1,n

= (p
m+1,n,1

, p
m+1,n,2

, p
m+1,n,3

, p
m+1,n,4

), n = 1, 2, . . . , C + f −m− 1,
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where

p
m+1,n,1

= q
m,n,1

+ a
[C,f ]
1 (m+ 1, n)γ

21
⊗ q

m,n,3,• + a
[C,f ]
1,p (m+ 1, n)γ

21
⊗ q

m,n,4
,

p
m+1,n,2

= q
m,n,2

+ a
[C,f ]
1 (m+ 1, n)γ

[0]
21 qm,n,3,• + a

[C,f ]
1,p (m+ 1, n)γ

[0]
21 qm,n,4,

p
m+1,n,3

=
(

1− a[C,f ]
1 (m+ 1, n)

)
q
m,n,3

,

p
m+1,n,4

=
(

1− a[C,f ]
1,p (m+ 1, n)

)
q
m,n,4

.

Here, we observe that the initial ‘level’ of the sojourn time distribution will be increased by the
new class-1 machine’s presence, which is why the first index of the p’s are one larger than their
component q’s. Additionally, if the mechanic was already at queue 1 or conducting a class-1
switch-in, then the new failure will not require them to make a decision. However, if a class-2
switch-in or service time was underway, then the failure would cause the mechanic to begin

a class-1 switch-in with probability a
[C,f ]
1 (m + 1, n) or a

[C,f ]
1,p (m + 1, n), respectively (and this

switch-in will have a duration of zero with probability γ
[0]
21 ). Note as well that since there was

already at least one class-1 machine at queue 1, the service phase of the lead class-1 machine
was already determined.

For m = 0, in addition to the probability of the failure inducing server movements, we need
to initialize the lead class-1 machine’s service phase according to the probability vector β

1
since

there was an empty queue previous to this failure. Hence, we have

p
1,0

= (q0,0,•,•,•,•γ01
⊗ β

1
, q0,0,•,•,•,•γ

[0]
01β1

)

and
p

1,n
= (p

1,n,1
, p

1,n,2
, p

1,n,3
, p

1,n,4
), n = 1, 2, . . . , C + f − 1,

where

p
1,n,1

= a
[C,f ]
1 (1, n)γ

21
⊗ β

1
⊗ q

0,n,3,• + a
[C,f ]
1,p (1, n)γ

21
⊗ β

1
⊗ q

0,n,4
,

p
1,n,2

= a
[C,f ]
1 (1, n)γ

[0]
21β1

⊗ q
0,n,3,• + a

[C,f ]
1,p (1, n)γ

[0]
21β1

⊗ q
0,n,4

,

p
1,n,3

=
(

1− a[C,f ]
1 (1, n)

)
(β

1
⊗ q

0,n,3,1
, β

1
⊗ q

0,n,3,2
, . . . , β

1
⊗ q

0,n,3,s2
),

p
1,n,4

=
(

1− a[C,f ]
1,p (1, n)

)
β

1
⊗ q

0,n,4
.

We can now construct the complete steady-state probability row vector of length

(C + f)

(
(s1 + 1)b1 + (s1 + s2 + 2)b1b2

C + f − 1

2

)
describing the state of the system immediately after a class-1 failure, namely

p = (p
C+f

, p
C+f−1

, . . . , p
1
), (3.8)

which satisfies p e′ = 1. Before constructing the rate matrix for the machine’s sojourn time
distribution, we make the following observation. Since we are assuming a FCFS order within
each queue, no matter the service policy, a target class-1 machine will never have to wait for the
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service time of any machines that suffer class-1 failures after their own. However, subsequent
class-1 failures may still have an impact on the target machine’s sojourn time. The reason for
this is twofold. A machine that fails after the target and enters behind them in their queue is a
machine that cannot be at risk of entering the opposite queue and potentially receiving service
before the target. Also, further class-1 machine failures behind the target may yet influence the
mechanic, as the switch-in decision probabilities can be unique for every combination of both
(positive) queue lengths.

It then follows that to model the sojourn time, we must track both the position of the
target class-1 machine within their queue, as well as the total length of their queue. We achieve
this by effectively reducing the number of machines that the system needs to track after every
class-1 failure following that of the target, such that the number of reductions is the excess
queue length behind the target. This is where we make use of the QBD block superscripts,
[C, f ], as it allows us to construct our generator blocks as functions of C and f , which otherwise
would have simply been treated as constants. Note that by reducing the number of considered
machines, we are not necessarily reducing the maximum that may be in use at a given time.
Therefore, it is important to reduce f to zero before reducing C. Combined with this use of
notation, the application of Equations (3.1)-(3.3) ensure that the true queue lengths are used
when referencing the switch-in decision probabilities.

The sojourn time’s rate matrix can thus be constructed as follows:

R1 =



[C, f ] [C, f − 1] [C, f − 2] · · · [C, 1] [C, 0] [C − 1, 0] · · · [2, 0] [1, 0]

[C, f ] Q̃[C,f ] Q̃
[C,f ]
− 0 · · · 0 0 0 · · · 0 0

[C, f − 1] 0 Q̃[C,f−1] Q̃
[C,f−1]
−

. . . 0 0 0
. . . 0 0

[C, f − 2] 0 0 Q̃[C,f−2] . . . 0 0 0
. . . 0 0

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

[C, 1] 0 0 0
. . . Q̃[C,1] Q̃

[C,1]
− 0

. . . 0 0

[C, 0] 0 0 0
. . . 0 Q̃[C,0] Q̃

[C,0]
−

. . . 0 0

[C − 1, 0] 0 0 0
. . . 0 0 Q̃[C−1,0] . . . 0 0

...
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

[2, 0] 0 0 0
. . . 0 0 0

. . . Q̃[2,0] Q̃
[2,0]
−

[1, 0] 0 0 0 · · · 0 0 0 · · · 0 Q̃[1,0]



,

where

Q̃[D,g] =



D+g D+g−1 D+g−2 · · · 2 1

D+g Q
[D,g]
D+g,D+g Q

[D,g]
D+g,D+g−1 0 · · · 0 0

D+g−1 0 Q
[D,g]
D+g−1,D+g−1 Q

[D,g]
D+g−1,D+g−2

. . . 0 0

D+g−2 0 0 Q
[D,g]
D+g−2,D+g−2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

2 0 0 0 · · · Q
[D,g]
2,2 Q

[D,g]
2,1

1 0 0 0 · · · 0 Q
[D,g]
1,1


,
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and

Q̃
[D,g]
− =



D+g−1 D+g−2 · · · 2 1

D+g 0 0 · · · 0 0

D+g−1 Q
[D,g]
D+g−1,D+g 0 · · · 0 0

D+g−2 0 Q
[D,g]
D+g−2,D+g−1

. . . 0 0
...

...
. . .

. . .
...

...
2 0 0 · · · Q

[D,g]
2,3 0

1 0 0 · · · 0 Q
[D,g]
1,2


,

such that R1 is a square matrix of dimension

`1 =
(C + f)(C + f + 1)

2

(
(s1 + 1)b1 + (s1 + s2 + 2)b1b2

C + f − 1

3

)
.

If f = 0, thenR1 is the bottom right quadrant starting with level [C, 0] and top-left block Q̃[C,0].

From the above, the absorption rates are contributed from Q
[i,j]
1,0 subblocks, corresponding to

possible transitions which would result in the lead machine (in this case, the target) receiving
service and exiting the queue.

With the rate matrix in hand, we return to the initial probability row vector, p. This
vector contains probabilities for the system immediately after the target machine’s failure,
which considers all C + f machines, as only one machine can fail at a time. This of course
implies that at the time instant when the target machine enters its queue, there cannot be
any other machines queued behind it. Thus, the initial probability vector corresponding to
the phase-type distribution having rate matrix R1 is Φ1 = (p, 0, 0, . . . , 0), and so it holds that
S1 ∼ PH`1(Φ1,R1).

We conclude this subsection with the following comment. We have so far considered only
the sojourn time distribution of a class-1 machine. If we want the distribution of S2 for a
machine that suffers a class-2 failure, the distribution can be obtained via the interchange of
exponential failure rates, service and switch-in time distributions, and transposes of switch-in
decision probability matrices (e.g., replace P1S by

(
P2S

)′
and P2S by

(
P1S

)′
). Following this,

the class-2 sojourn time distribution can be obtained by simply repeating the analysis contained
within this section, treating it as the new class 1 (and hence class 1 as the new class 2), and
calculating the equivalent Φ2 and R2.

3.4 Results Concerning the Expected Number of Working Ma-
chines

3.4.1 Limit Theorems

In this subsection, we investigate some behaviours of the expected number of working machines
at steady state, defined as

E[NW] = E[min{C,C + f −X1 −X2}]
=
∑
m

∑
n

∑
l

∑
y

∑
y1

∑
y2

min{C,C + f −m− n}πm,n,l,y,y1,y2 . (3.9)
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Specifically, we are interested in the impact of C and f on E[NW], so for the sake of clar-

ity within the theorems of this subsection, we adjust our notation slightly so that N
[C,f ]
W =

min{C,C + f −X [C,f ]
1 −X [C,f ]

2 } and π
[C,f ]
m,n,l,y,y1,y2

denote the number of working machines and
steady-state probabilities, respectively, as functions of C and f .

Our first theorem demonstrates the effect of reducing the maximum number of working
machines by one to begin a maintenance float.

Theorem 3.1. For a system at steady state with k = 2, 3, . . . total machines, E[N
[k,0]
W ] >

E[N
[k−1,1]
W ].

Proof. Refer to the Appendix.

Remark 3.1. At the end of the proof of Theorem 3.1, we show that E[N
[k,0]
W ] = ckE[N

[k−1,1]
W ]

where 1 < ck < k
k−1 , k = 2, 3, . . ., so it follows that the negative impact of reducing the

maximum number of working machines to begin a maintenance float goes to 0 as k → ∞.
Therefore, we observe that

lim
k→∞

E[N
[k,0]
W ] = lim

k→∞
E[N

[k−1,1]
W ] = lim

k→∞
E[N

[k,1]
W ],

implying that the act of including a maintenance float of size f = 1 does not impact the limit
of the expected number of working machines in comparison to not using a maintenance float.

To get an idea if this also holds true for larger maintenance floats, in Figure 3.2 we have
plotted E[NW] against the total number of machines k (minimum 2), for the cases [k − f, f ],
f = 0, 1, . . . , 10. In this plot, we have used an exhaustive service policy with exponentially
distributed service times (Exp) having means 1 and 20 for classes 1 and 2, respectively. Switch-
in times between classes are also exponentially distributed with means 1, 0.5, and 1 for classes
0, 1, and 2, respectively. The total failure rate was α = 0.05, with α1 = 0.9α and α2 = 0.1α,
so that most jobs were ‘small’. This 90:10 split will be used throughout this chapter unless
otherwise specified.

From Figure 3.2, we observe that independent of how many machines we divert to the float,

as the total number of machines k is increased, all of the E[N
[k−f,f ]
W ] values converge to a single

limit as the distance between vertically adjacent points goes to 0. Additionally, we can see that
increasing f for a fixed C increases E[NW], but of course cannot increase it past the value of C
based on the definition in Equation (3.9). This limit result is not a coincidence, nor unique to
the exhaustive service policy, as we state in our next theorem.

Theorem 3.2. For any service policy and fixed maintenance float size of f = 0, 1, 2, . . . ma-
chines, the limit of the number of working machines satisfies

E[N
[∞]
W ] = lim

C→∞
E[N

[C,f ]
W ] ≤ −1

α1β1
B−1

1 e′ + α2β2
B−1

2 e′
. (3.10)

Additionally, if switch-in times between the class-1 and class-2 queues are identically zero (i.e.,

γ
[0]
ji = 1 ∀ i, j ∈ {1, 2}), then the upper bound will surely be reached, i.e.,

E[N
[∞]
W ] =

−1

α1β1
B−1

1 e′ + α2β2
B−1

2 e′
. (3.11)
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Figure 3.2: Plot of the expected number of working machines E[NW] against the total number
of machines k for maintenance floats f = 0, 1, . . . , 10, under an exhaustive service policy.

Proof. Refer to the Appendix.

Remark 3.2. We can re-express Equation (3.11) as

αE[N
[∞]
W ] = E[ZM]−1,

where αE[N
[∞]
W ] is the average rate of machine failures as C →∞ and E[ZM]−1 is the average

rate of machine repairs when the fraction of time that the mechanic is servicing machines goes to

1. Therefore, we can interpret E[N
[∞]
W ] as the expected queue length that reaches an equilibrium

which balances the rate of failures with the server’s fastest possible rate of repairs. If there
are no switch-in times, then any policy can reach this repair rate. However, if switch-ins are
possibly incurred when transiting between the class-1 and class-2 queues, then the quantity of
these switch-ins (dependent on the service policy) will cause the server to spend a larger fraction

of their time idle, lowering their peak repair rate and hence lowering the value of E[N
[∞]
W ] that

a policy can reach.

Remark 3.3. For a given service policy, if the expected time servicing machines between

renewals as defined in the proof of Theorem 3.2, E[BP
[C,f ]
ser ], increases faster than the expected

time switching between queues, E[BP
[C,f ]
swi ], then by Equation (A.13), the aggregate rate of

machine repairs, λ
[C,f ]
r , and hence the expected number of working machines, E[N

[C,f ]
W ], are

monotonically increasing in C for a given f .
From our numerical analysis, this appears to be normal behaviour, but we were able to repli-

cate a non-monotonic or monotonic decreasing relationship between E[NW] and C. For example,
we observed this in some cases using an unreasonable service policy that sets every decision
epoch probability to 1 for both queues (i.e., the mechanic would always switch after observing
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Figure 3.3: Plots of the expected number of working machines E[NW] against the capacity C
for f = 0, α1 = α2 = 0.05, and exponentially distributed services and switch-in times having
means 2 or MS, respectively, under a service policy that maximizes the number of switches.

any arrival to the opposite queue, and after service completions if the opposite queue had a posi-
tive length), with the aim of maximizing the number of switches. In Figure 3.3, under this policy,
we plot E[NW] against C with f = 0, symmetric classes having failure rates α1 = α2 = 0.05 and
exponentially distributed service times with mean 2, and exponentially distributed switch-in
times for the three classes having equal means of MS ∈ {0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50}. It is
clear that a slight non-monotonic relationship is visible in the MS = 0.5 case which becomes
more pronounced as MS increases, eventually turning into a monotonic decreasing relationship
in C. Omitted from these plots, we also considered the impact of f , which had no bearing on

the limiting value of E[N
[∞]
W ].

To accompany Theorem 3.2, Table 3.2 presents E[N
[C,f ]
W ] obtained using the methods in

Section 3.3, λ
[C,f ]
r = E[N

[C,f ]
W ]/E[W [C,f ]] = αE[N

[C,f ]
W ], simulated values of Ẽ[BP

[C,f ]
ser ] and

Ẽ[BP
[C,f ]
swi ] obtained from 500,000 simulated renewal cycles as defined in the proof, as well

as the corresponding simulated value

λ̃[C,f ]
r =

Ẽ[BP
[C,f ]
ser ]/E[ZM]

1
Cα + Ẽ[BP

[C,f ]
ser ] + Ẽ[BP

[C,f ]
swi ]

.

Select values of C and f are considered, along with several service policies (exhaustive, pre-
emptive resume priority (P), non-preemptive priority (NP), smart Bernoulli (SB), and class-1
(a, b) threshold priority (Thr)). Note that we suppress the superscripts for space considera-
tions. In all cases, the total failure rate was set to α = 0.05, and the service times followed
hyperexponential-2 (H2) distributions with initial probability vectors

β
1

= β
2

= (0.9, 0.1) (3.12)

and rate matrices

B1 = 2

(
−1 0
0 − 1

11

)
, B2 =

1

10MB

(
−1 0
0 − 1

11

)
, (3.13)
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resulting in means of 1 and 20MB for classes 1 and 2, respectively, such that MB can be used
as a scaling factor to adjust the expected size of class-2 jobs, with MB set to 1 by default. For
the switch-in time distributions, we used initial probability vectors

γ
10

= (p>0, 0), γ
20

= (0, p>0), γ
0i

= (0, p>0, 0), i = 1, 2, (3.14)

and

γ
ji

= (p>0, 0, 0), i, j ∈ {1, 2}, i 6= j, (3.15)

where p>0 = 1− γ[0]
ji is the probability of a switch-in time being positive in duration, and rate

matrices

S1 =
1

MS

 −1 1 0
0 −2 2
0 0 −2

 , S2 =
1

MS

 −2 2 0
0 −1 1
0 0 −1

 , (3.16)

and

S0 =
1

MS

(
−2 0
0 −1

)
, (3.17)

where MS is a scaling factor for all mean switch-in times that is set to 1 by default. These
rate matrices imply class-dependent Erlang-2 (E2) distributed setup times before beginning
service, and exponentially distributed take-down times before leaving either class 1 or 2. If the
opposite queue is empty and the mechanic would switch to class 0, then they will complete the
take-down and only be required to perform a setup after the next failure. As class 1 is being
used to denote the smaller jobs, we let these times for class 1 be faster than those for class 2.

For these cases, note that E[BP
[C,f ]
swi ] = 0 when p>0 = 0, so we omit the corresponding

column. In all cases, based on the results of Theorem 3.2, it follows that E[N
[∞]
W ] ≤ 6.896552

and λ
[∞]
r ≤ 0.3448276. Comparing the p>0 = 0 and p>0 = 1 cases, it is clear that the presence

of switch-in times reduces the rate at which machines are repaired, as is evident in the values

of λ
[C,f ]
r .

In the absence of switch-in times, the class-1 preemptive resume priority policy outperforms
the others as it prioritizes increasing the expected number of working machines (at the cost of
longer class-2 sojourn times) by always choosing to repair small class-1 failures as they occur,
to get those machines up and working again as soon as possible. As repaired machines that are
put to work are again at risk of failure, a machine that would have otherwise had to wait for
a class-2 machine service time to complete could be repaired multiple times during this time
span (if it suffers another class-1 failure), effectively increasing the aggregate rate of machine
failures.

However, when switch-ins are present, every time a class-1 failure causes the mechanic to
leave the class-2 queue, an extra idle period is incurred which reduces the mechanic’s efficiency

at a noticeable cost to λ
[C,f ]
r . In contrast to all other policies, the ratio of Ẽ[BP

[C,f ]
swi ] to Ẽ[BP

[C,f ]
ser ]

is by far the highest. The magnitudes of these values for class-1 preemptive priority is due to
the fact that the preemptive nature with switch-ins requires a long period of time to actually
empty the class-2 queue. With switch-ins, we see the (5, 5) threshold, (6, 7) threshold, and (9, 9)

threshold policies maximize E[N
[C,f ]
W ] for the [8, 2], [8, 6], and [14, 0] cases, respectively. In fact,

these are the optimal choices of a and b for (a, b) threshold policies in these positive switch-in
cases, as we will demonstrate in Section 3.4.2 for the [8, 6] and [14, 0] cases.
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Table 3.2: E[N
[C,f ]
W ], λ

[C,f ]
r , and simulated values of E[BP

[C,f ]
ser ] and E[BP

[C,f ]
swi ] for select C,

f , and p>0 and various service policies, with α = 0.05, H2 service, and MB = MS = 1.

E[N
[∞]
W ] ≤ 6.896552 and λ

[∞]
r ≤ 0.3448276.

p>0

[C, f ] = [8, 2] 0 1

Service Policy E[NW] λr Ẽ[BP ser] λ̃r E[NW] λr Ẽ[BP ser] Ẽ[BP swi] λ̃r

Exhaustive 5.0419 0.2521 6.8018 0.2521 4.8525 0.2426 10.2967 1.8395 0.2426
Class-1 P 5.8966 0.2948 14.6109 0.2944 4.0018 0.2001 206.5702 147.1180 0.2000
Class-1 NP 5.1829 0.2591 7.5561 0.2591 4.9006 0.2450 17.6155 4.7238 0.2445
Class-2 P 4.9782 0.2489 6.4578 0.2486 4.7242 0.2362 9.4712 1.8473 0.2363
Class-2 NP 4.9927 0.2496 6.5196 0.2492 4.7503 0.2375 9.5967 1.8281 0.2376
(1,0.2) SB 5.1544 0.2577 7.3341 0.2572 4.9016 0.2451 12.2305 2.4778 0.2451
(1,0.8) SB 5.0689 0.2534 6.9446 0.2536 4.8657 0.2433 10.6010 1.9495 0.2429
(5,5) Thr 5.5130 0.2756 9.9895 0.2758 5.0858 0.2543 17.6209 3.7948 0.2541
(6,7) Thr 5.3217 0.2661 8.4661 0.2662 5.0288 0.2514 13.5382 2.5496 0.2512
(9,9) Thr 5.1035 0.2552 7.1373 0.2554 4.8971 0.2449 10.9218 1.9408 0.2451

[C, f ] = [8, 6]

Exhaustive 5.3341 0.2667 8.4668 0.2662 5.1970 0.2599 13.7285 1.9851 0.2599
Class-1 P 6.3007 0.3150 26.0904 0.3147 4.0234 0.2012 5186.4519 3701.8065 0.2012
Class-1 NP 5.5949 0.2797 10.7111 0.2796 5.3015 0.2651 39.8718 9.5118 0.2650
Class-2 P 5.2502 0.2625 8.0464 0.2631 5.0338 0.2517 12.1819 2.0277 0.2514
Class-2 NP 5.2616 0.2631 8.0887 0.2634 5.0591 0.2530 12.3493 1.9994 0.2527
(1,0.2) SB 5.5457 0.2773 10.2455 0.2772 5.3380 0.2669 20.2300 3.4138 0.2668
(1,0.8) SB 5.3846 0.2692 8.8813 0.2691 5.2331 0.2617 14.7609 2.1864 0.2617
(5,5) Thr 6.1168 0.3058 19.3409 0.3054 5.5402 0.2770 51.5775 10.1664 0.2768
(6,7) Thr 5.9823 0.2991 16.5053 0.2995 5.5911 0.2796 33.4503 5.3725 0.2791
(9,9) Thr 5.7850 0.2892 13.0782 0.2895 5.5203 0.2760 23.1265 3.3062 0.2756

[C, f ] = [14, 0]

Exhaustive 6.1840 0.3092 12.3103 0.3090 5.8612 0.2931 22.7827 2.5702 0.2933
Class-1 P 6.7814 0.3391 83.5556 0.3390 4.0222 0.2011 71885.4765 51371.5087 0.2011
Class-1 NP 6.3934 0.3197 18.0328 0.3195 5.4919 0.2746 216.4525 53.9657 0.2746
Class-2 P 6.0973 0.3049 10.9145 0.3049 5.6571 0.2829 18.4622 2.6176 0.2828
Class-2 NP 6.1098 0.3055 11.0118 0.3052 5.6904 0.2845 18.7949 2.5705 0.2843
(1,0.2) SB 6.3526 0.3176 16.6906 0.3176 5.8373 0.2919 41.9483 6.1635 0.2920
(1,0.8) SB 6.2231 0.3112 13.2559 0.3113 5.8672 0.2934 25.2003 2.9786 0.2935
(5,5) Thr 6.6466 0.3323 38.3886 0.3325 5.7470 0.2874 142.2960 27.0132 0.2874
(6,7) Thr 6.5632 0.3282 28.2071 0.3282 5.9142 0.2957 73.7993 10.8060 0.2958
(9,9) Thr 6.4484 0.3224 20.5086 0.3224 5.9709 0.2985 43.3606 5.3009 0.2985

In Figure 3.2, we observed in the case of the exhaustive service policy that E[NW] converged
to a limit as we increased the number of machines in the system, a result supported by Theorem

3.2. We now aim to expand on this in Figures 3.4 and 3.5 by plotting E[N
[C,f ]
W ] for exhaustive,

class-i preemptive resume and non-preemptive priority, i = 1, 2, as well as (1, 0.2) and (1, 0.8)
smart Bernoulli service policies against C for f = 0 or f = 4. We used the same phase-type
service and switch-in distributions used for Table 3.2. As Theorem 3.2 states, the presence of

switch-ins will affect the limit of E[N
[C,f ]
W ], so we consider p>0 = 0 in Figure 3.4 and p>0 = 1 in
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Figure 3.4: Plots of E[N
[C,f ]
W ] against C for f = 0, 4 and select service policies with H2 service,

p>0 = 0, MB = 1, MS = 1, and α = 0.05, where E[N
[∞]
W ] = 6.896552.

Figure 3.5. In Figure 3.4, we focus on the MB = MS = 1 and α = 0.05 case, while in Figure 3.5
we also allow α = 0.1 and MB = 0.5. Note that due to space constraints, the legend provided
in Figure 3.4 is representative of itself as well as Figure 3.5. In all plots, the horizontal grey
line is the corresponding limit or upper bound from Equations (3.10) and (3.11).

In Figure 3.4, we confirm that in the absence of switch-in times, this range of service policies
all eventually reach the same limiting expected number of working machines, with or without
a maintenance float. Unlike Figure 3.2, we are specifically plotting against C, and hence the
systems plotted in Figure 3.4 (b) have 4 more total machines for a given C. An increase
in E[NW] is observed from the presence of a maintenance float, which increases the speed at

which each policy approaches E[N
[∞]
W ]. Consistent with Table 3.2, with p>0 = 0 the preemptive

resume priority policy converges to E[N
[∞]
W ] at the highest rate, followed by the other policies

in an order depending on their preference to serve class-1 machines (the small jobs) over class-2
machines (the large jobs), with class-2 priority policies performing the worst. Not surprisingly,
(1, 0.2) smart Bernoulli is comparable to class-1 non-preemptive priority (which is equivalent
to a (1, 0) smart Bernoulli policy), and (1, 0.8) smart Bernoulli is comparable to exhaustive
(which is equivalent to a (1, 1) smart Bernoulli policy). There appears to be very little difference
between class-2 preemptive resume and non-preemptive priorities, resulting from a combination
of low class-2 failure rates relative to class 1 as well as small class-1 service times.

In Figure 3.5, we overlay both the f = 0 and f = 4 cases on the same plots. In every plot,

we observe the same order of service policies in terms of magnitude of E[N
[∞]
W ], with exhaustive

having the highest limit (as it incurs the fewest switch-ins) followed by the other policies in
reverse order depending on their relative fraction of times spent in a switch-in during a busy
period as defined in the proof of Theorem 3.2, i.e., relative to each policy’s value of

lim
C→∞

E[BP
[C,f ]
swi ]

E[BP
[C,f ]
ser ]

.

Comparing Figure 5 (a) and (c) to (b) and (d), doubling α approximately halves E[N
[∞]
W ].

Comparing the Figure 5 (a) and (b) to (c) and (d), decreasing MB and hence reducing the
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size of large jobs increases E[ZM]−1, increasing the mechanic’s peak rate of repair and hence

E[N
[∞]
W ]. It is also intuitive to observe that the number of machines required to converge to a

policy’s limiting expected number of working machines depends on the magnitude of E[N
[∞]
W ],

and by including a maintenance float without reducing C, this limit is reached at a lower value

of C. For all the plots in Figures 3.4 and 3.5, the convergence to a policy’s E[N
[∞]
W ] is monotonic,

demonstrating that they satisfy the condition described in Remark 3.3.
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Figure 3.5: Plots of E[N
[C,f ]
W ] against C for f = 0, 4 and select service policies with H2 service,

p>0 = 1, MB = 0.5, 1, MS = 1, and α = 0.05, 0.1.

3.4.2 Connection to Mean Sojourn Times

In Section 3.3.4, we showed that the amount of time between a class-1 machine failure and when
it is repaired (i.e., its sojourn time) has a PH`1(Φ1,R1) distribution, and noted that an equiv-
alent PH`2(Φ2,R2) distribution can be derived for class-2 machines by using the same method
after interchanging the class-1 and class-2 failure rates, service and switch-in distributions, and
transposes of switch-in decision probability matrices. It then follows that the sojourn time for
an arbitrary failed machine, S, is the mixture of S1 and S2 having mixing weights equal to the

109



probability of a given failure being of either class.
This is analogous to the simpler model considered in Chapter 2 of this thesis, from which

we recall the following results. The PDF of S is

fS(t) =
α1

α
Φ1 exp{R1t}R′0,1 +

α2

α
Φ2 exp{R2t}R′0,2, t > 0,

where R′0,i = −Rie′ is the column vector of absorption rates for the class-i sojourn time

distribution, and the rth moment for S has formula

E[Sr] = (−1)rr!
(α1

α
Φ1R−r1 e′ +

α2

α
Φ2R−r2 e′

)
,

implying that E[S] = α1
α E[S1] + α2

α E[S2]. Applying Little’s Law [64], we are able to recover the
formulas

E[Xi] = αiE[NW]E[Si], i = 1, 2,

and
E[X1] + E[X2] = αE[NW]E[S]. (3.18)

The advantage of these formulas is that it produces a quicker way to calculate the expected
sojourn times, as the expected queue lengths and E[NW] only require calculation of the steady-
state probabilities and avoids inverting the large rate matrices R1 and R2. Equation (3.18)
leads us to our third theorem.

Theorem 3.3. For a maintenance system with [C, f ] machines and a given failure rate α,
E[NW] will simultaneously be maximized while E[S] is minimized if f = 0.

Proof. Recall Equation (3.9), which when f = 0 simplifies to

E[NW] = E[C −X1 −X2] = C − E[X1]− E[X2]. (3.19)

From here, the proof is identical to that of Theorem 2.1, and we recover the non-linear rela-
tionship

E[NW] =
C

1 + αE[S]
. (3.20)

It is clear that the selection of a service policy that maximizes E[NW] for a given C and α must
simultaneously minimize E[S].

�

Remark 3.4. Equations (3.20) and (A.7) provide an alternate formula for the aggregate rate
at which machines fail and are repaired when f = 0, namely

λ[C,0]
r =

C
1
α + E[S [C,0]]

. (3.21)

The denominator is equal to the sum of the mean time it takes a working machine to fail and the
expected time until it is working again after suffering an arbitrary failure (in a [C, 0] system),
and hence is equivalent to the expected time between repairs for a given machine (since there is
no maintenance float, a repaired machine is put back to work immediately after it is repaired).
The inverse of the time between repairs is the rate of repairs for a single machine, which when
multiplied by C, results in the aggregate rate of repairs for the entire system.
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Remark 3.5. If f ≥ 1, we can obtain an alternative relationship than Equation (3.20) between
E[NW] and E[S]. Subtracting Equation (3.18) from 2C + f and applying the fact that for any
two random variables X and Y , E[min{X,Y }] + E[max{X,Y }] = E[X] + E[Y ], we obtain

2C + f − αE[NW]E[S] = 2C + f − E[X1]− E[X2]

= E[NW] + E[max{C,C + f −X1 −X2}],

which if we rearrange for E[NW],

E[NW] =
2C + f − E[max{C,C + f −X1 −X2}]

1 + αE[S]

=
C + f − E[max{0, f −X1 −X2}]

1 + αE[S]
, (3.22)

where E[max{0, f−X1−X2}] is the expected number of functional machines in the maintenance
float. Unlike in Equation (3.20) where E[NW] and E[S] were the only ‘variable’ components
such that one must be maximized when the other is minimized, E[max{0, f −X1 −X2}] will
also change if we adjust model parameters or service policies and as such, the simultaneous
optimization of E[NW] and E[S] is not guaranteed.

Remark 3.6. From Equations (3.22) and (A.7), we find an alternate equation for the aggregate
rate at which machines fail and are repaired to be

λ[C,f ]
r =

C + f − E[max{0, f −X [C,f ]
1 −X [C,f ]

2 }]
1
α + E[S [C,f ]]

, (3.23)

where the numerator is the expected number of machines in the maintenance system that are
in the process of failing (i.e., in use) or the process of being repaired (i.e., are receiving service
or are waiting in a queue), and the denominator is the expected amount of time for a machine

to fail and then be repaired, agreeing with the intended interpretation of λ
[C,f ]
r . Unsurprisingly,

Equation (3.23) reduces to Equation (3.21) if we let f = 0.

We demonstrate the simultaneous and non-simultaneous optimizations of E[NW] and E[S]
by plotting them over all possible (a, b) threshold policies for the [8, 6] and [14, 0] systems (with
switch-ins) considered in Table 3.2. For both figures, grey dashed vertical lines are presented to
visually separate the (a, b) threshold policies according to values of a. All (a, b) threshold policies
are plotted as grey dots by default, while we reuse the symbols from Figures 3.4 and 3.5 for the
cases that replicate exhaustive (i.e., (14, 14) threshold) or standard class-1 priority policies (i.e.,
(1, 1) and (1, 14) threshold). Additionally, the (a, b) threshold policies that maximizes E[NW]
and/or minimize E[S] are plotted as black dots. Finally, black dashed lines are provided for
the optimal policies on their corresponding optimal plots for even further visual contrast and
to point to their policy on the horizontal axis.

In Figure 3.6, we examine the case of [C, f ] = [8, 6], and begin by also plotting the class-1
and class-2 mean sojourn times, E[S1] and E[S2]. We observe that the two class-i expected
sojourn times have opposite relationships with a and b. By increasing the value of a and/or b,
the strength of the server’s preference to serve class 1 before class 2 decreases, as the threshold
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Figure 3.6: Plots of E[S1], E[S2], E[S], and E[NW] for all possible class-1 (a, b) threshold policies
with [C, f ] = [8, 6], α = 0.05, H2 service, p>0 = 1, and MB = MS = 1.

priorities need larger class-1 queue lengths to activate. Therefore, it follows that increasing a
and/or b increases (decreases) E[S1] (E[S2]).

As the class-2 expected sojourn times are much larger than the class-1 expected sojourn
times, it is not surprising to see in both figures that the overall mean sojourn times are largely
decreasing with a and b, despite the low 10% mixing weight for class-2 failures, although it
begins to increase as a function of a and b for large values of a as the benefit to class 2 for
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Figure 3.7: Plots of E[S] and E[NW] for all possible class-1 (a, b) threshold policies with [C, f ] =
[14, 0], α = 0.05, H2 service, p>0 = 1, and MB = MS = 1.

further increasing the thresholds diminishes. In some cases not presented here, it is also possible
to see a pronounced concave relationship between E[S] and b for small a when there are fewer
total machines in the system, but the relation ‘flattens’ for the higher b values as the number
of machines (and hence the expected number of working machines) are increased.

The relationship between E[NW] and the threshold boundaries is also clearly non-monotonic,
as we observe a convex function of b in Figure 3.6 for low values of a before becoming a decreasing
function of b for larger a’s. This convex relation is ‘flattened’ for high b in Figure 3.7 (similar to
the expected sojourn times as mentioned above) as we increase C at the cost of f which results

in a net increase in E[NW]. As these are cases with switch-ins, E[N
[∞]
W ] is increasing in a and b

since increasing the thresholds reduces extra switch-ins. Therefore, the decreasing relationship
between E[NW] and the thresholds for certain ranges of a and b is much less prominent in Figure
3.7 than Figure 3.6, as purely having working machines with no float results in the [14, 0] cases
being closer to their limit. In fact, this relationship should approach monotonic increasing in
a and b as C → ∞, and the exhaustive policy becomes optimal having the fewest possible

switch-ins and hence the highest E[N
[∞]
W ].

Finally, agreeing with the result of Theorem 3.3, we observe simultaneous optimization in
the [14, 0] case at (a, b) = (9, 9), resulting in E[NW] = 5.9709 and E[S] = 26.8941. Also, the
[8, 6] case demonstrates Remark 3.5, where E[NW] is maximized at (a, b) = (6, 7) resulting in
E[NW] = 5.5911 and E[S] = 25.9373, and E[S] is minimized at (9, 9) where E[NW] = 5.5203
and E[S] = 25.4357.
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3.5 Numerical Examples

3.5.1 (a, b) Threshold Optimization

We now imagine a factory setting where an array of identical machines represent an important
component of their production process. To avoid creating a production bottleneck at this step,
it is of interest to maximize the average rate at which work is processed by maximizing the
expected number of working machines. From Theorem 3.2, we know that there exists a limit

E[N
[∞]
W ] dependent on the failure rates and mean service times, which can only be reached if

there are no switch-in times. If cost was no object, then this limit could be reached using any
service policy given an arbitrarily large C if there were no switch-in times (in fact, it would be

advantageous to use class-1 preemptive resume priority which we have seen will reach E[N
[∞]
W ]

at the smallest value of C). If there are switch-in times corresponding to set-up times for one
or both classes, then the exhaustive service policy will have the highest peak service rate and

hence the maximum E[N
[∞]
W ].

Unfortunately, increasing your number of machines would have a real cost related to initial
investment (e.g., purchase price), recurring costs (e.g., fuel, replacement parts, operational
staff), space constraints (e.g., storage space for spares, space on the factory floor for operational
machines), and so on. Due to these costs, it may be optimal to invest in a C and f which do not
reach the highest possible rate of output. If this is the case, a different policy than exhaustive
may be optimal as they have different rates of convergence to the server’s peak repair rate and

hence could have a higher E[N
[C,f ]
W ] at a given C and f as seen in Figures 3.6 and 3.7.

With this motivation in mind, we introduce a basic cost function E[N
[C,f ]
W ]−rCC−rff , where

rC is the cost to purchase a machine and to increase the maximum capacity of working machines
by one and rf is the cost per additional machine purchased as a spare and the corresponding
cost of storage. Here, we assume that rC and rf are normalized with respect to the profit per
unit time that a working machine produces, so that maximizing the cost function maximizes
the average profit per unit time. We aim to optimize with respect to C, f , and all possible
class-1 (a, b) threshold policies for a given number of machines (i.e., 1 ≤ a ≤ b ≤ C + f).

For the purposes of our example, we consider a factory with space for a total of C + f = 14
machines. We allow α ∈ {0.05, 0.075, 0.10}, MB ∈ {0.5, 1}, MS ∈ {1, 2}, and p>0 ∈ {0, 0.5, 1},
while we assume that the switch-in distributions are of the kind defined in Equations (3.14)-
(3.17) in Section 3.4.1. Along with the H2 service time distributions outlined in Equations
(3.12) and (3.13), we also consider Erlang-3 (E3) distributions having initial probability row
vectors

β
1

= β
2

= (1, 0, 0), (3.24)

and rate matrices

B1 =

 −3 3 0
0 −3 3
0 0 −3

 , B2 =
1

20MB

 −3 3 0
0 −3 3
0 0 −3

 , (3.25)

resulting in the same means as the H2 service time distributions and maintaining the same
interpretation of MB. The E3 distributions act as good examples of distributions which may
be preempted and have a residual service time after the server’s return that is less than if they
had to restart their work.
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Table 3.3: Optimal C, f , a, and b, under H2 and E3 service for equal machine costs, (rC , rf ) =
(0.10, 0.10).

p>0

H2 service 0 0.5 1

MB MS α [C, f ] (a, b) E[NW] [C, f ] (a, b) E[NW] [C, f ] (a, b) E[NW]

1 1 0.05 [13, 0] (1, 1) 6.6948 [14, 0] (7, 7) 6.2251 [14, 0] (9, 9) 5.9709
0.075 [10, 0] (1, 1) 4.4827 [11, 0] (6, 7) 4.1487 [11, 0] (8, 8) 3.9681
0.10 [8, 0] (1, 1) 3.3439 [8, 0] (5, 5) 2.9854 [9, 0] (8, 8) 2.9386

2 0.05 [13, 0] (1, 1) 6.6948 [14, 0] (9, 9) 5.9549 [14, 0] (11, 11) 5.5953
0.075 [10, 0] (1, 1) 4.4827 [11, 0] (8, 8) 3.9548 [12, 0] (11, 12) 3.8182
0.10 [8, 0] (1, 1) 3.3439 [9, 0] (7, 7) 2.9251 [9, 0] (8, 9) 2.7411

0.5 1 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (5, 6) 8.5465 [14, 0] (8, 8) 8.1463
0.075 [13, 0] (1, 1) 6.8193 [14, 0] (9, 9) 6.3171 [14, 0] (11, 11) 6.0460
0.10 [11, 0] (1, 1) 5.1484 [12, 0] (9, 9) 4.7611 [13, 0] (12, 12) 4.6616

2 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (8, 8) 8.0974 [14, 0] (11, 11) 7.5325
0.075 [13, 0] (1, 1) 6.8193 [14, 0] (11, 11) 6.0146 [14, 0] (13, 14) 5.6166
0.10 [11, 0] (1, 1) 5.1484 [13, 0] (12, 12) 4.6391 [14, 0] (13, 14) 4.4440

E3 service

1 1 0.05 [11, 0] (1, 1) 6.7993 [13, 0] (7, 8) 6.3602 [14, 0] (10, 11) 6.1970
0.075 [8, 0] (1, 1) 4.5144 [10, 0] (7, 7) 4.2129 [11, 0] (9, 10) 4.1143
0.10 [6, 0] (1, 1) 3.3179 [8, 0] (5, 6) 3.1112 [9, 0] (8, 9) 3.0543

2 0.05 [11, 0] (1, 1) 6.7993 [14, 0] (10, 10) 6.1884 [14, 0] (12, 14) 5.8122
0.075 [8, 0] (1, 1) 4.5144 [11, 0] (9, 10) 4.1065 [12, 0] (11, 12) 3.9632
0.10 [6, 0] (1, 1) 3.3179 [9, 0] (8, 9) 3.0466 [9, 0] (8, 9) 2.8523

0.5 1 0.05 [14, 0] (1, 1) 10.2076 [14, 0] (5, 7) 9.0983 [14, 0] (8, 10) 8.6314
0.075 [11, 0] (1, 1) 6.9260 [14, 0] (11, 14) 6.6001 [14, 0] (13, 14) 6.3492
0.10 [9, 0] (1, 1) 5.2021 [11, 0] (9, 11) 4.8821 [12, 0] (11, 12) 4.7810

2 0.05 [14, 0] (1, 1) 10.2076 [14, 0] (7, 11) 8.5985 [14, 0] (12, 14) 7.9602
0.075 [11, 0] (1, 1) 6.9260 [14, 0] (13, 14) 6.3362 [14, 0] (13, 14) 5.9164
0.10 [9, 0] (1, 1) 5.2021 [12, 0] (11, 12) 4.7730 [14, 0] (13, 14) 4.6623

We begin by considering optimization when rC = rf (i.e., when every machine costs the
same whether it will increase the system’s capacity or act as a spare in the maintenance float).

Table 3.3 contains the optimal [C, f ], (a, b), and E[N
[C,f ]
W ] (with suppressed superscripts) at

rC = rf = 0.10 over the combinations of parameters and service time distributions outlined
above. The first observation that stands out is that in no cases is it optimal to have f ≥ 1, even
when C < 14 allows for more additional machines before hitting the cap. Recalling Theorem

3.1, we have that E[N
[k,0]
W ] > E[N

[k−1,1]
W ]. We have also seen that for the exhaustive service

policy example in Figure 3.2, E[N
[k−f,f ]
W ] is a decreasing function of f (although E[N

[C,f ]
W ] is

typically an increasing function of f). Therefore, it makes sense in this case to never invest in

a maintenance float if putting all machines towards C maximizes E[N
[C,f ]
W ] for a given C + f ,

when rC = rf reduces the cost function to E[N
[C,f ]
W ] − rC(C + f). Thus, it is only ever of

financial interest to invest in a maintenance float if it is cheaper to add a spare machine to the
system than it is to increase C (i.e., rC > rf ). This brings us to our next result.
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Theorem 3.4 Under cost function E[NW] − rCC − rff , if rC > rf , then for a system with k
total machines, k = 2, 3, . . ., it will be suboptimal to not use a maintenance float if

E[N
[k,0]
W ] < k(rC − rf ). (3.26)

Proof. Recall from the proof of Theorem 3.1 that E[N
[k,0]
W ] = ckE[N

[k−1,1]
W ], where 1 < ck <

k
k−1 ,

k = 2, 3, . . .. It will be suboptimal to select f = 0 in a system having k total machines if

E[N
[k−1,1]
W ]− (k − 1)rC − rf > E[N

[k,0]
W ]− krC ,

or equivalently,

E[N
[k,0]
W ]− E[N

[k−1,1]
W ] < rC − rf .

We observe that

E[N
[k,0]
W ]− E[N

[k−1,1]
W ] = E[N

[k,0]
W ](1− c−1

k ) < E[N
[k,0]
W ]

(
1− k − 1

k

)
=

1

k
E[N

[k,0]
W ].

Thus, if Equation (3.26) holds, then

rC − rf >
1

k
E[N

[k,0]
W ] > E[N

[k,0]
W ]− E[N

[k−1,1]
W ],

and so it would be suboptimal to select f = 0 under the given cost function.

�

Note that it may be optimal to use a float when the inequality of Theorem 3.4 does not hold
(i.e., for small k), so long as rC > rf is still true. Theorem 3.4 simply provides an inequality
that, if it holds, guarantees that f = 0 is not optimal at k total machines. By Theorem 3.2,

we know that limC→∞ E[N
[C,0]
W ] has a finite upper bound, which implies that there must exist

a k ∈ Z+ such that Equation (3.26) is satisfied if rC > rf . Additionally, this implies that if we
increase rC for a given k ≥ 2 and rf , we will eventually reach a point for sure where it becomes
optimal to use a maintenance float.

Other conclusions also follow from Table 3.3. In particular, when p>0 = 0, it is optimal

to use class-1 preemptive resume priority, as it reaches its E[N
[∞]
W ] at the smallest value of

C out of the considered policies, and this limit is not penalized by its additional switches
due to identically zero switch-in times. We observe that some optimal C are less than 14,

corresponding to situations where there is no (a, b) which would result in E[N
[C+1,0]
W ] that is

at least rC = 0.10 greater than the optimal E[N
[C,0]
W ]. In fact, the E3 distributions in contrast

to H2 often results in a smaller optimal C while simultaneously allowing a larger E[N
[C,0]
W ], an

advantage of having a lower service time variance and a type of partitioned sequential work
which benefits more from the nature of the preemptive resume priorities (whereas H2 simply
remembers which exponential distribution from the mixture the job belonged to).

Decreasing MB results in faster class-2 services, thereby increasing E[ZM]−1 (and hence

E[N
[∞]
W ]). The higher limit requires more total machines to reach it, and hence increments in

optimal E[N
[C,0]
W ] (i.e., at optimal (a, b) threshold cases for given C) will outweigh the cost of
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an additional machine until larger values of C. This results in larger optimal C and E[N
[C,0]
W ].

Increasing α has the opposite effect on E[N
[∞]
W ], resulting in a lower limit and hence lower

optimal C values. Increasing MS for a given positive p>0 or increasing p>0 for a given MS

(or increasing both) causes switch-ins to be more costly, penalizing a priority policy inversely

proportional to a and b, while lowering E[N
[∞]
W ]. This has the effect of increasing optimal

threshold limits while lowering the optimal E[N
[C,0]
W ].

Next, we allow increasing the number of float machines to cost half as much as increasing
the system capacity (i.e., rf = rC/2) and consider a range of costs rC ∈ {0.05, 0.10, 0.25} for H2

service in Table 3.4 and E3 service in Table 3.5. Comparing the rC = 0.10 cases from these two
tables to Table 3.3, it is possible (for the cases that did not already select C = 14) to increase
the maintenance float by 2 machines for the cost of 1 capacity slot, which allows those cases to
‘afford’ to increase the total number of machines. While a single increase in C is worth more
than a single increase in f , the benefit of multiple spares can outweigh that of a single capacity

machine when C is already larger than E[N
[∞]
W ]. This follows since the fraction of time that

the system spends near capacity decreases as C becomes large and so the marginal benefit of
increasing C over f will reduce, and increasing f multiple times can outweigh a unit increase

of C when it is larger than E[N
[∞]
W ] (recall that increasing f cannot result in NW surpassing C,

and so the benefit of increasing C over f is much larger for C < E[N
[∞]
W ]). We also observe some

cases where C = 14 in Table 3.3 but some capacity is diverted to the float, slightly decreasing

E[N
[C,f ]
W ] but saving much more in costs.
Our earlier observations concerning parameters MB, MS, α, and p>0 clearly still hold true

in Tables 3.4 and 3.5. Also, we still observe E3 service achieving higher E[N
[C,f ]
W ] while typically

selecting optimal C that are no larger than those selected for H2 service, with the exception

of the rC = 0.25, MB = 0.5, MS = 2, α = 0.10 case where the faster rate at which E[N
[C,f ]
W ]

approaches its limit for E3 allows it to ‘afford’ to increase C longer than H2 service. Finally,
we observe that by increasing the cost per machine, the system will want to optimize at fewer

machines as the incremental costs will begin to outpace the increases in E[N
[C,f ]
W ] at fewer

machines. When optimizing the (a, b) threshold at fewer machines, the decreases in peak repair
rate caused by extra incurred switch-ins are smaller due to fewer observed failures, and so the
optimal a and b are non-increasing in rC (and rf ).

3.5.2 Class-1 Sojourn Time Densities for (a, a) Threshold Policies

In Section 3.3.4, we derived the distribution for a class-1 machine’s sojourn time, S1, to be
PH`1(Φ1,R1), resulting in the PDF

fS1(t) = Φ1 exp{R1t}R′0,1. (3.27)

As an illustration, we plot some of these densities for a family of service policies. For the sake
of brevity, we constrain ourselves to the set of (a, a) threshold policies (i.e., preemptive resume
threshold policies), which exhibited notable sensitivities to the selection of threshold parameter
a, much more so than the (a,C+f) threshold policies (i.e., non-preemptive threshold policies) in
the numerical cases we considered. As computing the matrix exponential function in Equation
(3.27) can be quite time consuming for systems with large state spaces, we consider only Exp
service time distributions within this example (having the typical means of 1 and 20MB for
class 1 and class 2, respectively), along with the modest number of machines C = 8 and f = 2.
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Table 3.4: Optimal C, f , a, and b, under H2 service and cheaper reserve machines (rf = rC/2).

p>0

r = (0.05, 0.025) 0 0.5 1

MB MS α [C, f ] (a, b) E[NW] [C, f ] (a, b) E[NW] [C, f ] (a, b) E[NW]

1 1 0.05 [12, 2] (1, 1) 6.7511 [13, 1] (7, 7) 6.2110 [13, 1] (9, 9) 5.9579
0.075 [9, 3] (1, 1) 4.5526 [9, 5] (8, 8) 4.2851 [10, 4] (11, 11) 4.1606
0.10 [7, 3] (1, 1) 3.4093 [7, 7] (9, 9) 3.2572 [8, 6] (11, 12) 3.1780

2 0.05 [12, 2] (1, 1) 6.7511 [13, 1] (9, 9) 5.9411 [13, 1] (11, 11) 5.5850
0.075 [9, 3] (1, 1) 4.5526 [10, 4] (10, 11) 4.1517 [11, 3] (13, 14) 3.9622
0.10 [7, 3] (1, 1) 3.4093 [8, 6] (11, 11) 3.1728 [9, 5] (13, 14) 3.0523

0.5 1 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (5, 6) 8.5465 [14, 0] (8, 8) 8.1463
0.075 [12, 2] (1, 1) 6.8780 [13, 1] (9, 9) 6.3040 [12, 2] (11, 11) 6.0114
0.10 [9, 4] (1, 1) 5.1964 [11, 3] (11, 11) 4.8967 [11, 3] (13, 13) 4.7217

2 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (8, 8) 8.0974 [14, 0] (11, 11) 7.5325
0.075 [12, 2] (1, 1) 6.8780 [13, 1] (11, 11) 6.0035 [12, 2] (13, 14) 5.5904
0.10 [9, 4] (1, 1) 5.1964 [11, 3] (13, 13) 4.7008 [11, 3] (13, 14) 4.4221

r = (0.10, 0.05)

1 1 0.05 [11, 3] (1, 1) 6.7098 [11, 3] (6, 6) 6.1403 [11, 3] (8, 8) 5.8850
0.075 [8, 3] (1, 1) 4.4901 [8, 5] (7, 7) 4.2039 [8, 6] (9, 9) 4.0882
0.10 [6, 3] (1, 1) 3.3414 [6, 5] (6, 6) 3.1177 [6, 5] (8, 8) 2.9792

2 0.05 [11, 3] (1, 1) 6.7098 [11, 3] (8, 8) 5.8708 [11, 3] (11, 11) 5.5148
0.075 [8, 3] (1, 1) 4.4901 [8, 6] (9, 9) 4.0810 [9, 5] (12, 12) 3.8996
0.10 [6, 3] (1, 1) 3.3414 [6, 5] (7, 8) 2.9720 [7, 5] (11, 11) 2.8933

0.5 1 0.05 [14, 0] (1, 1) 9.4562 [14, 0] (5, 6) 8.5465 [13, 1] (8, 8) 8.1062
0.075 [11, 3] (1, 1) 6.8373 [11, 3] (8, 8) 6.2307 [11, 3] (11, 11) 5.9649
0.10 [9, 3] (1, 1) 5.1613 [9, 5] (9, 9) 4.8288 [9, 5] (12, 12) 4.6434

2 0.05 [14, 0] (1, 1) 9.4562 [13, 1] (7, 8) 8.0555 [13, 1] (11, 11) 7.5060
0.075 [11, 3] (1, 1) 6.8373 [11, 3] (10, 10) 5.9331 [11, 3] (13, 13) 5.5533
0.10 [9, 3] (1, 1) 5.1613 [9, 5] (11, 11) 4.6228 [9, 5] (13, 14) 4.3509

r = (0.25, 0.125)

1 1 0.05 [9, 2] (1, 1) 6.2249 [9, 3] (3, 5) 5.7651 [9, 3] (6, 6) 5.4992
0.075 [6, 2] (1, 1) 4.0503 [6, 2] (1, 4) 3.6371 [6, 2] (5, 5) 3.4244
0.10 [5, 1] (1, 1) 2.9977 [4, 2] (1, 3) 2.5299 [4, 2] (3, 4) 2.3718

2 0.05 [9, 2] (1, 1) 6.2249 [8, 4] (4, 6) 5.3665 [8, 4] (7, 8) 5.0121
0.075 [6, 2] (1, 1) 4.0503 [6, 2] (1, 5) 3.4294 [5, 3] (5, 6) 3.0341
0.10 [5, 1] (1, 1) 2.9977 [4, 2] (1, 4) 2.3846 [4, 1] (4, 5) 2.0562

0.5 1 0.05 [13, 1] (1, 1) 9.3829 [12, 2] (3, 6) 8.3904 [12, 2] (8, 8) 8.0157
0.075 [10, 2] (1, 1) 6.5878 [9, 3] (4, 6) 5.8294 [9, 4] (8, 9) 5.6796
0.10 [7, 2] (1, 1) 4.7393 [7, 2] (2, 5) 4.2149 [7, 3] (7, 7) 4.1154

2 0.05 [13, 1] (1, 1) 9.3829 [12, 2] (5, 8) 7.9720 [11, 3] (10, 10) 7.3296
0.075 [10, 2] (1, 1) 6.5878 [9, 4] (6, 9) 5.6500 [9, 4] (11, 11) 5.2731
0.10 [7, 2] (1, 1) 4.7393 [6, 3] (3, 6) 3.8452 [6, 3] (8, 8) 3.5430
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Table 3.5: Optimal C, f , a, and b, under E3 service and cheaper reserve machines (rf = rC/2).

p>0

r = (0.05, 0.025) 0 0.5 1

MB MS α [C, f ] (a, b) E[NW] [C, f ] (a, b) E[NW] [C, f ] (a, b) E[NW]

1 1 0.05 [9, 4] (1, 1) 6.8564 [11, 3] (8, 8) 6.4220 [12, 2] (10, 10) 6.1761
0.075 [7, 2] (1, 1) 4.5630 [8, 6] (10, 10) 4.3862 [9, 5] (11, 12) 4.2653
0.10 [5, 3] (1, 1) 3.4224 [6, 6] (9, 9) 3.2713 [7, 7] (12, 13) 3.2401

2 0.05 [9, 4] (1, 1) 6.8564 [12, 2] (10, 10) 6.1678 [12, 2] (11, 13) 5.7829
0.075 [7, 2] (1, 1) 4.5630 [9, 5] (11, 12) 4.2624 [10, 4] (13, 14) 4.0810
0.10 [5, 3] (1, 1) 3.4224 [8, 6] (12, 13) 3.2635 [9, 5] (13, 14) 3.1579

0.5 1 0.05 [13, 1] (1, 1) 10.1838 [14, 0] (5, 7) 9.0983 [14, 0] (8, 10) 8.6314
0.075 [9, 4] (1, 1) 6.9852 [12, 2] (10, 13) 6.5812 [12, 2] (13, 14) 6.3296
0.10 [7, 4] (1, 1) 5.2438 [10, 4] (13, 14) 5.0609 [10, 4] (13, 14) 4.9010

2 0.05 [13, 1] (1, 1) 10.1838 [14, 0] (7, 11) 8.5985 [13, 1] (12, 14) 7.9388
0.075 [9, 4] (1, 1) 6.9852 [12, 2] (13, 14) 6.3152 [12, 2] (13, 14) 5.9028
0.10 [7, 4] (1, 1) 5.2438 [10, 4] (13, 14) 4.9054 [10, 4] (13, 14) 4.6350

r = (0.10, 0.05)

1 1 0.05 [9, 3] (1, 1) 6.8209 [9, 5] (7, 7) 6.3457 [10, 4] (9, 9) 6.1118
0.075 [6, 3] (1, 1) 4.5221 [6, 6] (7, 7) 4.2330 [7, 6] (9, 10) 4.1480
0.10 [5, 2] (1, 1) 3.3846 [5, 5] (6, 6) 3.1620 [6, 5] (9, 9) 3.1047

2 0.05 [9, 3] (1, 1) 6.8209 [10, 4] (9, 9) 6.1043 [11, 3] (11, 12) 5.7471
0.075 [6, 3] (1, 1) 4.5221 [7, 6] (9, 10) 4.1440 [8, 6] (12, 13) 3.9933
0.10 [5, 2] (1, 1) 3.3846 [6, 5] (8, 9) 3.1012 [7, 4] (10, 11) 2.9589

0.5 1 0.05 [13, 1] (1, 1) 10.1838 [13, 1] (5, 7) 9.0686 [13, 1] (7, 10) 8.6039
0.075 [9, 3] (1, 1) 6.9509 [10, 4] (9, 10) 6.5099 [11, 3] (12, 14) 6.2959
0.10 [7, 3] (1, 1) 5.2185 [8, 5] (9, 11) 4.9492 [9, 5] (13, 14) 4.8775

2 0.05 [13, 1] (1, 1) 10.1838 [13, 1] (7, 10) 8.5707 [13, 1] (12, 14) 7.9388
0.075 [9, 3] (1, 1) 6.9509 [11, 3] (12, 14) 6.2804 [11, 3] (13, 14) 5.8745
0.10 [7, 3] (1, 1) 5.2185 [9, 5] (13, 14) 4.8714 [9, 5] (13, 14) 4.5977

r = (0.25, 0.125)

1 1 0.05 [8, 3] (1, 1) 6.6525 [8, 4] (5, 5) 6.0695 [8, 5] (7, 7) 5.8679
0.075 [6, 2] (1, 1) 4.4527 [5, 4] (4, 4) 3.8974 [5, 4] (5, 5) 3.6552
0.10 [4, 2] (1, 1) 3.1785 [4, 2] (1, 3) 2.7359 [4, 2] (4, 4) 2.5211

2 0.05 [8, 3] (1, 1) 6.6525 [8, 5] (7, 7) 5.8587 [8, 5] (9, 9) 5.4209
0.075 [6, 2] (1, 1) 4.4527 [5, 3] (1, 5) 3.5254 [5, 4] (6, 7) 3.3174
0.10 [4, 2] (1, 1) 3.1785 [4, 2] (1, 4) 2.5387 [4, 2] (5, 6) 2.2780

0.5 1 0.05 [12, 2] (1, 1) 10.1016 [11, 3] (4, 6) 8.8776 [11, 3] (6, 8) 8.4141
0.075 [8, 3] (1, 1) 6.7758 [8, 4] (6, 6) 6.1325 [8, 5] (8, 9) 5.9258
0.10 [6, 2] (1, 1) 4.9274 [6, 3] (4, 5) 4.4154 [7, 3] (7, 10) 4.3951

2 0.05 [12, 2] (1, 1) 10.1016 [11, 3] (5, 9) 8.3872 [11, 3] (10, 14) 7.7659
0.075 [8, 3] (1, 1) 6.7758 [8, 5] (7, 9) 5.9073 [9, 4] (12, 13) 5.5994
0.10 [6, 2] (1, 1) 4.9274 [6, 4] (5, 8) 4.2553 [7, 3] (9, 10) 4.0371
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Figure 3.8: Plots of class-1 sojourn time densities for (a, a) threshold policies, a = 1, 2, . . . , 10,
with Exp service, MB = MS = 1, p>0 = 0, 1, C = 8, f = 2, and α = 0.05.

We still elect to use the switch-in time distributions defined in Equations (3.14)-(3.17), as the
size of the state space is less sensitive to the number of switching phases, as they are not always
tracked like service phases are by Y1 and Y2.

In Figure 3.8, we plot fS1(t) for t ∈ [0, 15] and a = 1, 2, . . . , 10, letting α = 0.05 and
MB = MS = 1. We consider both p>0 = 0 and p>0 = 1 to visualize the impact of switch-in
times. Upon first inspection, it is clearly evident that the densities differ greatly for low values of
a, when class 1’s relative priority to class 2 is at its highest, while its shape is more consistent
at higher values of a, requiring larger queue lengths (which are rarer to observe) and hence
reducing the threshold’s impact. Unsurprisingly, as we are considering class-1 sojourn times,
the lower threshold policies result in more density towards small sojourn times and have lighter
tails. Letting p>0 = 0, sojourn times for a class-1 machine will be shortened on average due
to not having to potentially wait for the server to switch depending on the state of the system
at the failure epoch, as well as having fewer class-1 machines queued ahead of it caused by the

system’s higher rate at which machines are repaired, λ
[C,f ]
r , as a consequence of the server never

being idle when there are still broken machines to repair (as observed in Table 3.2 for a range
of policies).

Of these plots, the (4, 4) threshold policy stands out as having a particularly interesting
density, exhibiting a bimodal structure in the p>0 = 1 case as it has two local maxima. A sojourn
time of a machine will depend greatly on the initial state of the system immediately after its
failure epoch, particularly on the location of the server, so we decompose the density fS1(t) into
components fS1,LI (t) where LI ∈ {1, 2, 3, 4} are the possible server locations after observing the
failure. We achieve this decomposition by considering each case separately, modifying Equation
(3.8) (and hence Φ1) by setting any element pm,n,l,y,y1,y2 of the probability vector with l 6= LI
equal to zero. If we re-normalized the modified Φ1’s, then this would alternatively result in the
conditional distributions of a class-1 sojourn time given different initial server locations.

Due to the nature of our considered preemptive resume threshold policies, sojourn times
when LI = 3 (class-2 switch-in) or LI = 4 (class-2 service) will be comparable in the majority
of cases due to a class-2 switch-in time being small relative to a service time and the threshold
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Figure 3.9: Plots of class-1 sojourn time densities and their component densities fS1,LI for (a, a)
threshold policies, a = 3, 4, 5, with Exp service, MB = MS = 1, p>0 = 1, C = 8, f = 2, and
α = 0.05.

being commonly triggered prior to the next class-2 service completion. Thus, we keep these
two cases grouped together, leaving us with LI = 1, LI = 2, and LI ∈ {3, 4}, so that

fS1(t) = fS1,1(t) + fS1,2(t) + fS1,{3,4}(t), t > 0.

In Figure 3.9, we plot the densities and their three components for a = 3, 4, 5. We observe
that the components fS1,2(t) are very comparable, whereas fS1,{3,4}(t) has its density allocated
to larger sojourn times as a increases, representing the requirement of more total class-1 machine
failures to trigger the higher thresholds (which also increases the probability of needing to wait
for one or more class-2 repairs to complete prior to receiving service). Note that fS1,{3,4}(t)
appears to be solely responsible for the remaining tails of these distributions, as the machine
will almost surely be repaired within 15 time units if the server is either already serving class
1 or is switching to class 1 after the target machine fails.

It is in fS1,1(t) that we observe great variability between the adjacent thresholds, including
the bimodal structure observed in the (4, 4) threshold policy. We note that this second local
maxima is near 5 time units. If the target machine triggered the threshold, then it would take on
average 2 time units for the class-1 switch-in time and 4 time units to repair the target machine
and the three machines queued ahead of it, for a total of 6 time units. In fact, plotting the
density of the sojourn time in this specific case (which we omit here) results in a right-skewed
density possessing a single maxima just after t = 5. We therefore suspect a large portion of
initial states to be of this type, causing the observed second maxima.

Letting pm,•,1,•,•,• =
∑

n,y,y1,y2
pm,n,1,y,y1,y2 denote the marginal probability of the server

conducting a class-1 switch-in immediately after a class-1 machine failure fills the mth slot in
queue 1, we compare these probabilities for m = 1, 2, . . . , 8 and a = 3, 4, 5 in Table 3.6. It
would seem that in the LI = 1 cases, there is indeed a large jump in initial probability for cases
where the target machine is indeed the threshold trigger. The other most likely cases denote a
failure to an empty system (i.e., m = 1) which is more likely the higher the threshold (as it lets
the class 2 queue empty faster) and at m = a + 1 indicating cases where the target machine
failed during a switch-in time in progress which was triggered by the preceding class-1 machine
failure. Other choices of m have much less probability as they require there to be multiple
failures during the short switch-in time.
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Table 3.6: Marginal LI = 1 class-1 sojourn time distribution initial probabilities, pm,•,1,•,•,•, for
the (a, a) threshold service policy with a = 3, 4, 5, Exp service, MB = MS = 1, p>0 = 1, C = 8,
f = 2, and α = 0.05.

m
(a, b) 1 2 3 4 5 6 7 8

(3, 3) 0.0395 0.0127 0.2181 0.0597 0.0106 0.0014 0.0001 < 0.0001
(4, 4) 0.0688 0.0213 0.0074 0.1512 0.0376 0.0058 0.0006 < 0.0001
(5, 5) 0.0992 0.0300 0.0095 0.0049 0.1076 0.0228 0.0028 0.0002

We therefore conclude that the jumps in pm,•,1,•,•,• near m = 1 and m = a are responsible for
the shapes of density components fS1,1(t) (as they of course represent mixtures of distributions),
namely the bimodal structure of the (4, 4) threshold policy as well as the flat region in the (5, 5)
threshold policy. For the (3, 3) threshold policy, p3,•,1,•,•,• is much larger than p1,•,1,•,•,•, which
hides this obvious mixture appearance.

3.5.3 Smart Bernoulli Optimization

Among other service policies, we considered (1, 0.2) and (1, 0.8) smart Bernoulli in Table 3.2
and Figures 3.4 and 3.5. It was evident that due to (1, 0.2) smart Bernoulli’s higher preference

for serving class-1 machines (causing additional switch-ins), it both converged to E[N
[∞]
W ] at

fewer total machines when switch-in times were identically zero in duration, and to a lower limit
when switch-in time durations had positive expected values, relative to (1, 0.8) smart Bernoulli.

In Table 3.2, (1, 0.2) had a larger E[N
[C,f ]
W ] in every considered case except when p>0 = 1

and [C, f ] = [14, 0]. In this subsection, we will investigate some new examples to observe the
impact of switch-ins and the number of machines on the optimal selection of smart Bernoulli

probabilities that maximizes E[N
[C,f ]
W ].

First of all, we justify the choice of pSB
1 = 1. The cµ rule (Meilijson and Yechiali [68], van

Mieghem [91]) states that in a priority queue, if class-i customers have a holding cost of ci per
time unit and an expected service time of 1/µi, then the classes should be served in decreasing
order of ciµi, independent of arrival rate. For finite-population systems, this is not necessarily
true, as the presence of a broken machine waiting to be serviced reduces the number of machines
that can fail of that type (i.e., despite a potentially fast service time, if each class of machines
comes from its own independent population and the time to failure for class-i machines is small,
then it may not be optimal to give them higher service priority). A modified cµλ rule (Iravani
and Kolfal [47]) was investigated for a fully exponential model of this type (an example of the
machine-repairman problem). Based on certain assumptions and conditions, it was concluded
that priority may be given to class j with positive queue length if

cjµj
λj
≥ ckµk

λk
∀ k 6= j, such

that there is at least one class-k machine waiting to be repaired.

In our model, since both classes of failure come from the same pool of machines, we can
effectively ignore the fact that we are using a finite-population system since no matter which
machine type is repaired, the time until it fails again has an identical distribution. Thus, we
can consider the standard cµ rule. For our model under the case of zero duration switch-in
times, we would assign priority to the class with the highest value of ciµi, and as such always
prefer to serve it over the other class. In our investigation, we simply want to maximize the
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Table 3.7: Expected values and variances for service time distributions Exp, H2, and E3, along
with the LN distributions of interest and their EM algorithm fits using continuous phase-type
distributions of order 5.

Class 1 Class 2
Service Expectation Variance Expectation Variance

H2 1 5.5 20 2200
Exp 1 1 20 400
E3 1 1/3 20 400/3
LN 1 4 20 2000
LN (fit) 0.99998 3.80365 19.97997 1227.85435

expected number of working machines, so we would select equal holding costs (e.g., c1 = c2 = 1),
as a broken machine of either type equally lowers the expected number of working machines.
Therefore, by the cµ rule, the class with the highest µi (i.e., shortest expected service time)
should have priority, corresponding to class 1 in our numerical examples.

Now, if in this zero switch-in case we would never want to switch away from class 1 (to
go serve class 2), then in the cases with positive switch-in times, it follows that it would still
never be optimal to switch away from class 1 since not only would the mechanic switch to
serving the less efficient-to-serve class, they must incur a period of idleness during the switch-in
which reduces their average rate of repair. Thus, similar to the arguments of Blanc and van der
Mei [14], we can conclude that in the smart Bernoulli framework, class 1 (having the smallest
average repair times) should receive a probability of pSB

1 = 1 to continue repairs (and hence,
not switching) after each service completion, should its queue not be empty.

It is not as clear for the lower priority class 2. If there were no switch-in times, then it
would be optimal to switch after every service completion and have a probability of starting
another service of pSB

2 = 0. However, as each positive duration switch-in time incurs idleness,
in reality there may be an optimal pSB

2 that is positive. This probability is what we must find to
optimize the use of smart Bernoulli in our model. To do this, we find the approximate p̂SB

2 that
maximizes E[NW] using the algorithm outlined in the Appendix. For all approximated optimal
p̂SB

2 in this subsection, we set precision = 4 (i.e., we approximate to four decimal places).

We now investigate the impacts of reducing pSB
1 from 1 (considering pSB

1 ∈ {0.9, 0.95, 1}) and
varying the expected switch-in time durations in Figure 3.10, where we plot the optimal pSB

2

against p>0 (with MS = 1) or MS (with p>0 = 1), so that the mean switch-in time durations are
equal and hence comparable. The corresponding values of E[NW] calculated using the optimal
values of pSB

2 for the α = 0.10 cases are plotted in Figure 3.11. We set MB = 1 and allow both
class’ service time distributions to be Exp, H2, or E3, to observe the effect of service variance,
while letting α ∈ {0.075, 0.10}, C = 8, and f = 2. Additionally, we approximate the impact of
heavy-tailed service time distributions by applying the EM algorithm (Asmussen et al. [7]) to
fit log-normal (LN) distributions to continuous phase-type distributions of order 5. A summary
of the service time distributions’ expectations and variances are provided in Table 3.7. Log-
normal parameters were selected to match mean repair time values, while being slightly less
variable than the H2 distributions. While the approximations of these LN distributions provide
very close fits for the expected values, the difficulty of accurately fitting heavy tails is evident
by their smaller variances.
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In Figure 3.10, we can see that for very small switch-in times it is optimal to maintain
pSB

2 = 0 and act as a class-1 non-preemptive priority policy (or similar to one if pSB
1 < 1), but

by increasing the mean switch-in times we make additional switches (relative to the exhaustive
service policy) more costly and it becomes optimal for pSB

2 to become positive, eventually
reaching pSB

2 = 1 in order to minimize the number of switch-ins (note that in the pSB
1 = 1 and

α = 0.075 case, if we continue to increase MS beyond 1, then these curves will also hit pSB
2 = 1).

By decreasing pSB
1 , it becomes possible to switch away from class 1 before its queue empties

and it is not hard to see that this will have the effect of increasing the fraction of time that
the mechanic is idle. This has the effect of increasing the slopes of the curves in Figure 3.10,
indicating that the behaviour dictating how the mechanic treats class 2 is more sensitive to the
expected switch-in time durations and will opt to treat class 2 in an exhaustive manner sooner,
even if they are not allowed to do the same for class 1, in order to compensate for the additional
class-2 switch-ins out of class 1.

By decreasing α, there are fewer failures resulting in shorter queue lengths and less oppor-
tunities for the smart Bernoulli policy to cause the server to leave before emptying a queue.
Therefore, increasing pSB

2 has a smaller impact on reducing the number of extra switch-ins and
the mean switch-in durations need to be larger before it becomes optimal to use a positive pSB

2 .

Comparing the four sets of service time distributions, they transition from pSB
2 = 0 to

pSB
2 = 1 at comparable rates, but the more variable distributions require more incentive in the

form of higher costs from switch-in times to increase pSB
2 from 0. This follows since the more

class-2 services that are completed before returning to the class-1 queue, the more opportunities
there are for the server to be stuck in a particularly long service time (e.g., the 10% case in the
class-2 H2 distribution having mean 110) which will have a large effect on the sojourn times
of class-1 machines that are waiting to be serviced. As service variance is reduced, there is
less uncertainty accepted from additional class-2 service times and the mechanic is willing to
begin increasing pSB

2 at smaller mean switch-in times. We observe that the H2 and LN service
time distributions result in very close optimal values of pSB

2 . As H2 is more variable, this would
indicate that optimality must be less sensitive to changes in variance when it is already large.

In Figure 3.11, we confirm that reducing pSB
1 lowers the maximum E[NW] possible at the

corresponding optimal pSB
2 probabilities. The differences between the plots may not be large,

but note that these are not for fixed pSB
2 , but rather the optimal pSB

2 ’s at each p>0 or MS

given the different values of pSB
1 . Additionally, we observe that increasing service variance has

a negative effect on the mean number of working machines (e.g., H2 has lower values than
LN, despite similar optimal pSB

2 probabilities), but the relationship between E[NW] and switch-
in times is primarily dependent on the first moments. Interestingly, these relationships are
approximately linear between E[NW] and the mean switch-in times in ranges where the optimal
pSB

2 are unchanged, either at 0 or 1.

In Figure 3.12, we plot optimal pSB
2 against C = 3, 4, . . . , 25 for f = 0, 2, 4, pSB

1 = 1,
MB = MS = 1, p>0 = 0.5, and α ∈ {0.05, 0.075, 0.10}. We observe that increasing C results in
more failures, longer queue lengths, and more opportunities for a smart Bernoulli policy to cause
a switch from a queue before it is emptied. Therefore, as C becomes large, with the exception
of the fitted LN distributions, the server eventually increases pSB

2 until class 2 is treated in an
exhaustive manner. Increasing f has a similar effect, and as the total number of machines are
greater for a given C, the mechanic begins the transition from class-1 non-preemptive priority
to an exhaustive policy at fewer C, acting largely as a horizontal shift with minimal effect on the
rate of increase in pSB

2 . By increasing α, the sensitivity of the optimal pSB
2 on C is heightened as
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every increment of C has a larger impact on the average failure rate, causing pSB
2 to transition

from 0 to 1 at fewer total machines and at a faster rate. Finally, in comparing the Exp, H2,
and E3 service time distributions, we observe results consistent with those from Figure 3.10, in
that it becomes optimal to increase pSB

2 earlier (i.e., for smaller C) for service time distributions
having smaller variances.

While the fitted LN distributions acted very similarly to the H2 distributions in Figure 3.10,
they display a unique behaviour in Figure 3.12. In Figure 3.12, rather than converging to an
exhaustive discipline as C increases, the optimal pSB

2 peaks before decreasing to some positive
limit. This peak seems highest for the cases with f = 0, falling just short of 1 in Figure 3.12
(d). In part (f), all three plots hit pSB

2 = 1 before moving away from the exhaustive policy at
20 total machines. As this behaviour is not shared with the other pair of highly variable service
time distributions, this seems to suggest that it must be due to the more general structure
of the fitted continuous phase-type distributions. As these are intended to behave similarly
to heavy-tailed distributions, it would be of great interest to revisit this problem using a like
model within a semi-Markov framework. This would allow the usage of general distributions for
service and switch-in times, and hence, enable us to investigate the true impact of heavy-tailed
distributions.
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Figure 3.10: Plots of optimal class-2 smart Bernoulli probability pSB
2 against p>0 (with MS = 1)

or MS (with p>0 = 1) for α = 0.075, 0.1 and pSB
1 = 0.9, 0.95, 1.
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Figure 3.11: Plots of E[NW] at optimal class-2 smart Bernoulli probabilities against p>0 (with
MS = 1) or MS (with p>0 = 1) for α = 0.10 and pSB

1 = 0.9, 0.95, 1.
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Figure 3.12: Plots of optimal class-2 smart Bernoulli probability pSB
2 against C for f = 0, 2, 4,

α = 0.05, 0.075, 0.10, p>0 = 0.5, pSB
1 = 1, and MB = MS = 1.
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Chapter 4

A 2-Class Polling Model with
Class-Dependent Reneging,
Switchover Times, and Phase-Type
Service

4.1 Discussion of Literature

In Chapters 2 and 3 of this thesis, we considered a range of service disciplines including exhaus-
tive, preemptive and non-preemptive priority, threshold, and (smart) Bernoulli. Within this
chapter, we specifically consider an application of the ki-limited discipline introduced in Section
1.2.7, where we demonstrated some related structures in Example 7. Similar to threshold and
Bernoulli disciplines, a ki-limited service discipline allows us to assign a form of relative priority
to a queue. This makes it attractive from the vantage of system optimization.

Unfortunately, as mentioned in Section 1.2.8, the ki-limited discipline does not satisfy the
branching property. This has the result of making it much more difficult, if not impossible, to
analyze exactly in complicated models. When exact analysis of a polling model with ki-limited
service is conducted, it is typically in the case of a 2-queue system. Even then, restrictions
are required. Chang and Down [28] considered a 2-queue polling system with ki-limited service
disciplines at both queues. However, they required the restrictive assumption that the service
times for both classes are exponentially distributed with the same rate. They did allow the
Poisson process arrival rates and selected ki values to differ. The derived exact asymptotic
probabilities for the event of there being l total customers in the system. Two cases were
considered, where the event of the system holding a large number of customers is primarily
caused by a single class, or both classes together.

A more common case permitting exact analysis assumes that service at one queue is exhaus-
tive, while the other has the ki-limited discipline. This restriction is in fact not unreasonable if
the 2-queue system allows the exhaustive queue to represent higher priority customers or jobs,
as this would agree with Boxma et al. [17] in terms of optimal server resources. Similarly, this
is in agreement with what we observed for our smart Bernoulli optimization in Section 3.5.3.

The following three papers all allowed for a 2-queue system of this type, with Poisson process
arrivals and general service. Ozawa [72] solved for the mean waiting times of customers by using
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a piecewise Markov process to model the number of customers in the ki-limited queue, resulting
in the derivation of the PGF of the number of class-2 customers in their queue at arbitrary
times. The waiting time of the exhaustive queue was found from the fact that the model was
work conserving, and the mean waiting times for the other class of customers was known. Lee
[59] went a bit further, deriving the PGFs of the number of customers at departure instants
for both classes. From these PGFs, the LSTs of customer sojourn times for both classes were
obtained. Winands et al. [97] solved for the marginal PGFs of queue lengths at steady state
for both queues in the same kind of model, however they assumed the presence of generally
distributed setup times which were absent from these other two models. Interestingly, they
allowed the setup times to only be conducted if that queue at the polling instant had a positive
length, which is a more realistic assumption for a real world production system.

When considering a polling system that uses this discipline while having a general number
of queues, approximations may be substituted in place of exact analysis. Borst et al. [17], as
previously discussed in Section 1.2.8, derived four approximations for how to calculate mean
waiting times in a system with ki-limited service, a general number of queues, Poisson process
arrivals, and generally distributed service and switchover times. Such a model was also con-
sidered by van Vuuren and Winands [92], who had an interest in the marginal queue length
distributions. They made use of an iterative approximation which decomposed the queue into
single queue systems with vacations (a similar idea as Servi [85], who considered Bernoulli
disciplines). In this way, any time spent away from a class’s queue was treated as a generally
distributed vacation from the perspective of that class. In order to improve the accuracy of
their approximations, the distributions of vacations from each class were allowed to depend on
the number of services (up to ki) that were completed during the most recent visit, and they
showed that considerable relative accuracy gains were obtained by taking such correlations into
account.

If we forgo the possibility of generally distributed service and switchover times, numerical
methods can be used to obtain very accurate approximations. For example, Blanc [13] demon-
strated how to apply their power-series algorithm to calculate the steady-state distribution of
a cyclic polling model having a general number of queues and ki-limited service under the as-
sumption of Poisson process arrivals and exponentially distributed service times. Of course,
another option for such an analysis is MAM, which we will now demonstrate in action for a
2-queue system in this chapter, and in a N -queue system in Chapter 6. We close this subsection
by remarking that a majority of the work within this chapter may be found in Granville and
Drekic [39].

4.2 Model Assumptions

We consider a polling model in which a single server provides service to two distinct classes of
customers, each having its own respective queue. Customers are served on a FCFS basis within
their own queue. Let Ci < ∞ be the class-i buffer size, i = 1, 2. Customers of classes 1 and 2
arrive to the system according to independent Poisson processes with rates λ1 and λ2, respec-
tively. Service times for class-i customers, i = 1, 2, are assumed to have a continuous phase-type
distribution with representation Ser i ∼ PHbi(βi, Bi), and we assume that a customer’s service
time is independent of all other service times as well as the arrival processes. For i = 1, 2, let
µi denote the mean class-i service time.

Service is administered according to the ki-limited service discipline, in which the server
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λ1
C1 · · · X1 · · · 2 1

α1,1α1,2α1,X1

Class-1 Queue

λ2

Class-2 Queue

C2 · · · X2 · · · 2 1

α2,1α2,X2−1 PHbi(βi
, Bi)

L = 2

L = 4

PHsj (γj
, Sj)

Server

Figure 4.1: Depiction of the polling model during a sojourn of the server at queue 2.

serves up to ki customers of class i, switching over to the other class once the class-i queue
empties or the maximum number of services has been reached. Note that by letting ki →∞ for
i = 1, 2, it is possible to model a 2-class polling model with exhaustive service. Moreover, we
can capture the class-1 (class-2) non-preemptive priority service discipline by letting k1 → ∞
and k2 = 1 (k1 = 1 and k2 →∞). Once the decision to switch out of class i has been made, the
server initiates a class-j switch-in time, j 6= i, which has a continuous phase-type distribution
with representation PHsj (γj , Sj), which we assume to be strictly positive in duration. Switch-

in times are independent of each other, as well as service times and the arrival processes.
Furthermore, we assume that the server is unable to determine whether the other class is
empty before initiating a switch, so it is possible for multiple switches to take place before the
server finally encounters a customer waiting to be served. As a result, the server is never truly
idle in the system, even when both queues are empty.

We also incorporate the notion of class-dependent reneging and assume that when an arriv-
ing class-i customer enters the system, it leaves the system following an (independent) expo-
nentially distributed amount of time with a rate that can change along with their position in
their queue, αi,n. A customer who reneges from the system is considered lost. Here, the ‘n’ in
αi,n indicates that they have n− 1 other class-i customers waiting for service in front of them.
Once a customer does reach the server, however, we assume that customer is no longer subject

to reneging. For notational convenience, we define α
[j]
i =

∑j
n=1 αi,n to be the total force of

reneging for j waiting class-i customers (and use the convention α
[0]
i = 0).

A graphical illustration of the polling model during a visit by the server to the class-2 queue
is given in Figure 4.1. Customers present in the system are represented by solid black circles and
empty circles with solid black outlines represent open slots in either queue available to future
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arriving customers, while the solid grey circle and dashed empty circle represent the current
and potential locations that the server can work, with locations denoted by L which will be
defined in Section 4.3. Note that unlike the previously considered maintenance models, there
is no location for the server to idle in this polling model. In this example, the leading class-2
customer will depart after a random PHb2(β

2
, B2) amount of time, while every other customer

who is waiting has an active impatience timer whose exponential rate depends on their position
in their respective queue.

4.3 Determination of the Steady-State Probabilities

We model this polling model using CTMC

{(X1(t), X2(t), L(t),K(t), Y (t)), t ≥ 0},

where Xi(t) represents the number of class-i customers present in the system, i = 1, 2, such
that Xi(t) ∈ {0, 1, . . . , Ci}. We again let L(t) ∈ {1, 2, 3, 4} denote the location of the server,
where L(t) = 2i − 1 represents switching into class i and L(t) = 2i represents serving class i,
i = 1, 2. The possible values of L that the CTMC can take depends on both queue lengths,
such that

L(t) ∈ ΩL(X1(t), X2(t)) =


{1, 3} , if X1(t) = 0, X2(t) = 0,

{1, 2, 3} , if X1(t) > 0, X2(t) = 0,

{1, 3, 4} , if X1(t) = 0, X2(t) > 0,

{1, 2, 3, 4} , if X1(t) > 0, X2(t) > 0.

(4.1)

To enable our ki-limited service discipline, K(t) represents the server being on their kth service
within a visit to a queue (where we let K = 0 if the server is undergoing a switch-in time),
where

K(t) ∈ ΩK(L(t)) =


{0} , if L(t) = 1,

{1, 2, . . . , k1} , if L(t) = 2,

{0} , if L(t) = 3,

{1, 2, . . . , k2} , if L(t) = 4.

(4.2)

Lastly, Y (t) denotes the current phase of a service or switch-in time, similarly depending on
L(t) such that

Y (t) ∈ ΩY (L(t)) =


{1, 2, . . . , s1} , if L(t) = 1,

{1, 2, . . . , b1} , if L(t) = 2,

{1, 2, . . . , s2} , if L(t) = 3,

{1, 2, . . . , b2} , if L(t) = 4.

(4.3)

Our first objective is to determine Pm,n, the steady-state joint probability that X1(t) = m
and X2(t) = n for m = 0, 1, . . . , C1 and n = 0, 1, . . . , C2. Let πm,n,l,k,y represent the steady-
state joint probability of observing the CTMC in state (m,n, l, k, y). Note that by Equation
(4.1), when X1(t) = X2(t) = 0 (i.e., both queues are empty), it is only possible to observe the
server conducting a switch from one queue to the other (as there are no customers to server in
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either queue), and so

P0,0 =
2∑
i=1

si∑
y=1

π0,0,2i−1,0,y.

Furthermore, it is an immediate consequence that

P0,n =
2∑
i=1

si∑
y=1

π0,n,2i−1,0,y +

k2∑
k=1

b2∑
y=1

π0,n,4,k,y, n ≥ 1,

Pm,0 =
2∑
i=1

si∑
y=1

πm,0,2i−1,0,y +

k1∑
k=1

b1∑
y=1

πm,0,2,k,y, m ≥ 1,

and

Pm,n =

2∑
i=1

 si∑
y=1

πm,n,2i−1,0,y +

ki∑
k=1

bi∑
y=1

πm,n,2i,k,y

 , m, n ≥ 1.

With X1(t) as the level of the process, we define the 0th steady-state probability row vector to
be

π0 = (π0,0, π0,1, . . . , π0,C2
),

where

π0,0 = (π0,0,1,0,1, . . . , π0,0,1,0,s1 , π0,0,3,0,1, . . . , π0,0,3,0,s2)

is a row vector of size s = s1 + s2 and

π0,n = (π0,n,1,0,1, . . . , π0,n,1,0,s1 , π0,n,3,0,1, . . . , π0,n,3,0,s2 ,

π0,n,4,1,1, . . . , π0,n,4,1,b2 , π0,n,4,2,1, . . . , π0,n,4,k2,b2)

is a row vector of size z1 = s + k2b2 for n = 1, 2, . . . , C2. For m = 1, 2, . . . , C1, the mth

steady-state probability row vector is defined as

πm = (πm,0, πm,1, . . . , πm,C2
),

where

πm,0 = (πm,0,1,0,1, . . . , πm,0,1,0,s1 , πm,0,2,1,1, . . . , πm,0,2,1,b1 ,

πm,0,2,2,1, . . . , πm,0,2,k1,b1 , πm,0,3,0,1, . . . , πm,0,3,0,s2)

is a row vector of size s+ k1b1 and

πm,n = (πm,n,1,0,1, . . . , πm,n,1,0,s1 , πm,n,2,1,1, . . . , πm,n,2,1,b1 ,

πm,n,2,2,1, . . . , πm,n,2,k1,b1 , πm,n,3,0,1, . . . , πm,n,3,0,s2 ,

πm,n,4,1,1, . . . , πm,n,4,1,b2 , πm,n,4,2,1, . . . , πm,n,4,k2,b2)

is a row vector of size z2 = s + k1b1 + k2b2 for n = 1, 2, . . . , C2. We remark that level 0 is
comprised of n1 = s + C2z1 states, whereas each non-zero level consists of a total of n2 =
s+ k1b1 + C2z2 states.
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Let π = (π0, π1, . . . , πC1
) be the concatenated steady-state probability row vector having a

total of C1 +1 levels. To determine πm, m = 0, 1, . . . , C1, we can apply the algorithm covered in
Section 1.2.6 since as a consequence of having reneging in this model, the infinitesimal generator
matrix Q takes on the form of a level-dependent QBD,

Q =



0 1 2 · · · C1 − 2 C1 − 1 C1

0 Q0,0 Q0,1 0 · · · 0 0 0

1 Q1,0 Q1,1 Q1,2
. . . 0 0 0

2 0 Q2,1 Q2,2
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

C1 − 2 0 0 0 · · · QC1−2,C1−2 QC1−2,C1−1 0
C1 − 1 0 0 0 · · · QC1−1,C1−2 QC1−1,C1−1 QC1−1,C1

C1 0 0 0 · · · 0 QC1,C1−1 QC1,C1


, (4.4)

where blocks Qi,j contain all transitions where X1(t) changes from level i to level j and 0
denotes an appropriately dimensioned zero matrix. The overall dimension of Q is n1 + C1n2,
as Q0,0 is an n1 × n1 sub-matrix, Q0,1 is an n1 × n2 sub-matrix, Q1,0 is an n2 × n1 sub-matrix,
and all remaining sub-matrices are of size n2 × n2.

We first observe that Q1,2 = Q2,3 = · · · = QC1−1,C1 = λ1In2 . In what follows, recall that
⊗ denotes the Kronecker product operator and δi,j is the Kronecker delta function. Also, ei,j
is a row vector of length i with 1 as the jth entry and zeros everywhere else, and ei is a row
vector of i ones. In addition, we again let B′0,i = −Bie′ and S′0,i = −Sie′. Finally, for further
notational convenience, define λm,n = (1− δm,C1)λ1 + (1− δn,C2)λ2,

ζm,n,l =



−
(
λm,n + α

[m]
1 + α

[n]
2

)
Is1 + S1 , if l = 1,

−
(
λm,n + α

[m−1]
1 + α

[n]
2

)
Ik1b1 + Ik1 ⊗B1 , if l = 2,

−
(
λm,n + α

[m]
1 + α

[n]
2

)
Is2 + S2 , if l = 3,

−
(
λm,n + α

[m]
1 + α

[n−1]
2

)
Ik2b2 + Ik2 ⊗B2 , if l = 4,

and

Ui =


0 , if ki = 1,

[
0′ki−1 Iki−1

0 0ki−1

]
⊗B′0,iβi , if ki ≥ 2.

Based on this notation, the diagonal components of Q can be expressed as
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Qm,m =



0 1 2 . . . C2 − 1 C2

0 Qm,m,0 (UD)m,0 0 . . . 0 0

1 (LD)m,1 Qm,m,1 (UD)m,1
. . . 0 0

2 0 (LD)m,2 Qm,m,2
. . . 0 0

...
...

. . .
. . .

. . .
...

...
C2 − 1 0 0 0 . . . Qm,m,C2−1 (UD)m,C2−1

C2 0 0 0 . . . (LD)m,C2 Qm,m,C2


,

where for m = 0

Q0,0,0 = −λ0,0Is +

[
S1 S′0,1γ2

S′0,2γ1
S2

]
,

and

Q0,0,n =

 ζ0,n,1 S′0,1γ2
0

0 ζ0,n,3 ek2,1 ⊗
(
S′0,2β2

)
0 0 ζ0,n,4

 , n = 1, 2, . . . , C2,

(UD)0,0 =
[
λ2Is 0′s0k2b2

]
,

(UD)0,n = λ2Iz1 , n = 1, 2, . . . , C2 − 1,

(LD)0,1 =


α

[1]
2 Is1 0

0 α
[1]
2 Is2

e′k2 ⊗
(
B′0,2γ1

)
0

 ,
and

(LD)0,n =


α

[n]
2 Is1 0 0

0 α
[n]
2 Is2 0

e′k2,k2 ⊗
(
B′0,2γ1

)
0 α

[n−1]
2 Ik2b2 + U2

 , n = 2, 3, . . . , C2.

For levels m = 1, 2, . . . , C1,

Qm,m,0 =

 ζm,0,1 ek1,1 ⊗
(
S′0,1β1

)
0

0 ζm,0,2 0
S′0,2γ1

0 ζm,0,3

 ,
and

Qm,m,n =


ζm,n,1 ek1,1 ⊗

(
S′0,1β1

)
0 0

0 ζm,n,2 0 0

0 0 ζm,n,3 ek2,1 ⊗
(
S′0,2β2

)
0 0 0 ζm,n,4

 , n = 1, 2, . . . , C2,

while
(UD)m,0 =

[
λ2Is+k1b1 0′s+k1b10k2b2

]
,
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(UD)m,n = λ2Iz2 , n = 1, 2, . . . , C2 − 1,

(LD)m,1 =


α

[1]
2 Is1 0 0

0 α
[1]
2 Ik1b1 0

0 0 α
[1]
2 Is2

e′k2 ⊗
(
B′0,2γ1

)
0 0

 ,
and

(LD)m,n =


α

[n]
2 Is1 0 0 0

0 α
[n]
2 Ik1b1 0 0

0 0 α
[n]
2 Is2 0

e′k2,k2 ⊗
(
B′0,2γ1

)
0 0 α

[n−1]
2 Ik2b2 + U2

 , n = 2, 3, . . . , C2.

The lower diagonal blocks of Q have the form

Qm,m−1 =



0 1 2 · · · C2 − 1 C2

0 Qm,m−1,0 0 0 · · · 0 0

1 0 Qm,m−1,1 0
. . . 0 0

2 0 0 Qm,m−1,2
. . . 0 0

...
...

...
. . .

. . .
...

...
C2 − 1 0 0 0 · · · Qm,m−1,C2−1 0
C2 0 0 0 · · · 0 Qm,m−1,C2


,

where for m = 1

Q1,0,0 =


α

[1]
1 Is1 0

0 e′k1 ⊗
(
B′0,1γ2

)
0 α

[1]
1 Is2

 ,
and

Q1,0,n =


α

[1]
1 Is1 0 0

0 e′k1 ⊗
(
B′0,1γ2

)
0

0 α
[1]
1 Is2 0

0 0 α
[1]
1 Ik2b2

 , n = 1, 2, . . . , C2,

while for m = 2, 3, . . . , C1,

Qm,m−1,0 =


α

[m]
1 Is1 0 0

0 α
[m−1]
1 Ik1b1 + U1 e′k1,k1 ⊗

(
B′0,1γ2

)
0 0 α

[m]
1 Is2

 ,
and

Qm,m−1,n =


α

[m]
1 Is1 0 0 0

0 α
[m−1]
1 Ik1b1 + U1 e′k1,k1 ⊗

(
B′0,1γ2

)
0

0 0 α
[m]
1 Is2 0

0 0 0 α
[m]
1 Ik2b2

 , n = 1, 2, . . . , C2.
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Finally, the only remaining block to define is

Q0,1 =



0 1 2 . . . C2

0 Q0,1,0 0 0 . . . 0
1 0 Q0,1,1 0 . . . 0

2 0 0 Q0,1,2
. . . 0

...
...

...
. . .

. . .
...

C2 0 0 0 . . . Q0,1,C2

,

where

Q0,1,0 =

[
λ1Is1 0′s10k1b1 0

0 0′s20k1b1 λ1Is2

]
,

and

Q0,1,n =

[
λ1Is1 0′s10k1b1 0

0 0′s2+k2b2
0k1b1 λ1Is2+k2b2

]
, n = 1, 2, . . . , C2.

With the determination of these steady-state probabilities, we introduce two important
quantities of interest associated with this particular queueing system. First of all, PC1,• =∑C2

j=0 PC1,j represents the probability that an arbitrarily arriving class-1 customer is turned
away at entry (and subsequently lost) due to the class-1 queue being full, and is referred
to as the class-1 blocking probability. Likewise, the class-2 blocking probability is given by
P•,C2 =

∑C1
m=0 Pm,C2 , and it represents the probability that an arbitrarily arriving class-2

customer is denied entry to the system due to the class-2 queue being full. We remark that
PC1,• and P•,C2 are particularly useful in helping choose values of C1 and C2 so as to ensure
negligible blocking probabilities are obtained for both queues (should one want to use this model
to approximate an infinite buffer system).

4.4 Determination of the Waiting Time Distribution

We derive the steady-state distribution of the random variable Wi, i = 1, 2, representing the
duration of time from the (successful) arrival of an arbitrary class-i customer to the system
until the server is reached. For reasons that will become evident shortly, we refer to Wi as the
nominal class-i waiting time. Without loss of generality, we focus our analysis only on W1 as
the characteristics of the two queues are essentially indifferent. In other words, the approach we
develop below to obtain the distribution of W1 can readily be adapted (via a simple relabeling
of classes 1 and 2) to obtain the distribution of W2.

First, recall that in a standard finite-buffer system, if a customer arrives to find their
queue full, they are turned away and lost. Therefore, any potential arrivals when X1(t) =
C1 are not observed. As in Equation (2.2), if we let C1,h denote the event of observing
a class-1 customer arrival within the next h time units and Sm,n,l,k,y denote the event that
(X1(t), X2(t), L(t),K(t), Y (t)) = (m,n, l, k, y) at steady state (such that P (Sm,n,l,k,y) = πm,n,l,k,y),
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then for m < C1,

qm,n,l,k,y = P ((X1(t), X2(t), L(t),K(t), Y (t)) = (m,n, l, k, y) immediately prior to a class-1 arrival)

= lim
h→0

P (Sm,n,l,k,y|C1,h)

= lim
h→0

P (C1,h|Sm,n,l,k,y)P (Sm,n,l,k,y)∑
x1

∑
x2

∑
i

∑
j

∑
w P (C1,h|Sx1,x2,i,j,w)P (Sx1,x2,i,j,w)

= lim
h→0

(λ1 + o(h))πm,n,l,k,y∑
x1 6=C1

∑
x2

∑
i

∑
j

∑
w(λ1 + o(h))πx1,x2,i,j,w

= lim
h→0

λ1πm,n,l,k,y + o(h)/h

λ1(1− PC1,•) + o(h)/h

=
πm,n,l,k,y
1− PC1,•

,

where in the fourth equality we remove the summation index of x1 = C1 since P (C1,h|SC1,x2,i,j,w) =
0, for all x2, i, j, w. Hence, these are simply the steady-state probabilities, re-normalized by the
fact that an observed class-1 arrival can not have been blocked. Correspondingly, define the
re-normalized probability row vectors

φ
m

=
πm

1− PC1,•
, m = 0, 1, 2, . . . , C1 − 1.

If we now construct

Φ = (φ
C1−1

, φ
C1−2

, . . . , φ
1
, φ

0
) (4.5)

to be the concatenated row vector of dimension

` = (C1 − 1)n2 + n1, (4.6)

then Φ e′ = 1 due to our earlier observation that, even when both queues are empty, the server
is still busy in the midst of completing a switchover (and thus the wait time will be non-zero).

For the moment, we assume that our target class-1 customer is not subject to reneging (later
on, we will incorporate the reneging behaviour of this specific customer back into the problem).
While waiting in the class-1 queue, the number of customers in the class-2 queue potentially
changes, not to mention the service indicator component used to identify how many customers
have completed service within the active serving cycle. On the other hand, as the number of
customers in the class-1 queue changes, the ones arriving later have no impact on the waiting
time of the target class-1 customer. Therefore, if we effectively think of the arrival rate for the
class-1 queue to be equal to 0, the distribution of W1 can in fact be modelled as the distribution
of the time to absorption in a Markov chain with infinitesimal generator of the form

[
R R′0
0` 0

]
,
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where

R =



C1 − 1 C1 − 2 C1 − 3 · · · 2 1 0

C1 − 1 Q̃C1−1,C1−1 QC1−1,C1−2 0 · · · 0 0 0

C1 − 2 0 Q̃C1−2,C1−2 QC1−2,C1−3
. . . 0 0 0

C1 − 3 0 0 Q̃C1−3,C1−3
. . . 0 0 0

...
...

. . .
. . .

. . .
...

...
...

2 0 0 0 · · · Q̃2,2 Q2,1 0

1 0 0 0 · · · 0 Q̃1,1 Q̃1,0

0 0 0 0 · · · 0 0 Q̃0,0


(4.7)

and R′0 = −Re′. In Equation (4.7), the sub-matrices Q2,1, Q3,2, . . . , QC1−1,C1−2 are identical

to those defined in Section 4.3 and Q̃m,m = Qm,m + λ1In2 ,m = 1, 2, . . . , C1 − 1. Moreover, the
levels 0, 1, . . . , C1 − 1 of R represent how many possible customers are in the class-1 queue in
front of our target customer upon arrival. Using the same notation from Section 4.3 whenever
possible, it readily follows that

Q̃1,0 =



0 1 2 . . . C2

0 Q̃1,0,0 0 0 . . . 0
1 0 Q̃1,0,1 0 . . . 0
2 0 0 Q̃1,0,2 . . . 0
...

...
...

. . .
. . .

...
C2 0 0 0 . . . Q̃1,0,C2

,
where

Q̃1,0,0 =


α

[1]
1 Is1 0

0 e′k1,k1 ⊗
(
B′0,1γ2

)
0 α

[1]
1 Is2

 ,
and

Q̃1,0,n =


α

[1]
1 Is1 0 0

0 e′k1,k1 ⊗
(
B′0,1γ2

)
0

0 α
[1]
1 Is2 0

0 0 α
[1]
1 Ik2b2

 , n = 1, 2, . . . , C2,

and

Q̃0,0 =



0 1 2 . . . C2 − 1 C2

0 Q̃0,0,0 (UD)0,0 0 . . . 0 0

1 (LD)0,1 Q̃0,0,1 (UD)0,1
. . . 0 0

2 0 (LD)0,2 Q̃0,0,2
. . . 0 0

...
...

. . .
. . .

. . .
...

...
C2 − 1 0 0 0 . . . Q̃0,0,C2−1 (UD)0,C2−1

C2 0 0 0 . . . (LD)0,C2 Q̃0,0,C2


,
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where

Q̃0,0,0 = −λ2Is +

[
S1 0

S′0,2γ1
S2

]
,

and

Q̃0,0,n =

 ζ0,n,1 + λ1Is1 0 0

0 ζ0,n,3 + λ1Is2 ek2,1 ⊗
(
S′0,2β2

)
0 0 ζ0,n,4 + λ1Ik2b2

 , n = 1, 2, . . . , C2,

for n = 1, 2, . . . , C2, and (UD)0,n and (LD)0,n are as previously defined.
According to the structure of the rate matrix R, once our target customer enters the class-1

queue, the Markov chain will progressively make transitions from higher levels to lower ones,
indicating the fact that the number of customers in front of the target customer reduces over
time. The time to absorption is phase-type distributed with representation PH`(Φ,R), and so
by Equation (1.11) we know that the distribution function of W1, denoted by F1(ω), is given
by

F1(ω) = 1− Φ exp {Rω}e′, ω ≥ 0,

If we now proceed to include the reneging behaviour of our target class-1 customer by
defining W ∗1 to be the actual class-1 waiting time (i.e., the arriving class-1 customer’s total
time spent in system prior to successfully entering service), then it clearly follows that

G1(ω) = P (W ∗1 < ω)

= 1− P (W ∗1 > ω)

= 1− P (W#
1 > ω|Reach Service)

= 1− P (W#
1 > ω,Reach Service)

P (Reach Service)
,

where W#
1 is defined as the time that a class-1 customer spends in the system. We note that

the reneging rate of the target customer depends on their position within the class-1 queue as
well as the position of the server. Define the ordered vector α1 to hold the target customer’s
individual reneging rate over all possible states of R,

α1 = (α1,C1es1 , α1,C1−1ek1b1 , α1,C1es2 , rep{(α1,C1es1 , α1,C1−1ek1b1 , α1,C1es2+k2b2), C2},
α1,C1−1es1 , α1,C1−2ek1b1 , α1,C1−1es2 , rep{(α1,C1−1es1 , α1,C1−2ek1b1 , α1,C1−1es2+k2b2), C2}, . . . ,
α1,2es1 , α1,1ek1b1 , α1,2es2 , rep{(α1,2es1 , α1,1ek1b1 , α1,2es2+k2b2), C2}, α1,1en1

),

and let A1 = diag(α1) be the matrix with this vector as its main diagonal and zeroes everywhere

else. It immediately follows that since W#
1 is the minimum of a customer’s nominal waiting

time and impatience time, we must have W#
1 ∼ PH`(Φ,R − A1). We begin by deriving

the probability of the target customer reaching service. If we consider a CTMC tracking the
customer’s progress through the system, with ‘reneging’ and ‘reaching service’ as two competing
absorption states, the infinitesimal generator matrix for this process is R−A1 R′0 α′1

0` 0 0
0` 0 0

 , (4.8)
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with corresponding initial probability vector (Φ, 0, 0). Therefore, absorption into the right-
most state corresponds to the target reneging from the system, while absorption into the other
absorbing state corresponds to reaching service. To determine the absorption probabilities for
these two states, we apply Equation (A.17) from the Appendix. It is straightforward to confirm
that

P (Reach Service) = Φ(A1 −R)−1R′0, (4.9)

and
P (Renege) = Φ(A1 −R)−1α′1. (4.10)

Next, letting Aω denote the event that “the CTMC is in one of the ` transient states at time
ω”, it follows that

P (W#
1 > ω,Reach Service)

= P (Aω)P (CTMC is eventually absorbed into the service state|Aω)

= Φ exp{(R−A1)ω} × (A1 −R)−1R′0
= Φ(A1 −R)−1 exp{(R−A1)ω}R′0, ω ≥ 0.

Thus, it is easy to see that

G1(ω) = 1− Φ(A1 −R)−1 exp{(R−A1)ω}R′0
Φ(A1 −R)−1R′0

, ω ≥ 0, (4.11)

and so

g1(ω) =
∂

∂ω
G1(ω)

=
∂

∂ω

(
1− Φ(A1 −R)−1 exp{(R−A1)ω}R′0

Φ(A1 −R1)−1R′0

)
= −Φ(A1 −R)−1(R−A1) exp{(R−A1)ω}R′0

Φ(A1 −R)−1R′0
=

Φ exp{(R−A1)ω}R′0
Φ(A1 −R)−1R′0

, ω > 0. (4.12)

From the PDF g1(ω), we can directly derive the rth moment of the actual waiting time,

E[W ∗r1 ] =

∫ ∞
0

xr
Φ exp{(R−A1)x}R′0

Φ(A1 −R)−1R′0
dx

=

∫ ∞
0

xr
Φ exp{(R−A1)x}(R1 −A1)(R−A1)−1(−Re′)

Φ(A1 −R)−1R′0
dx

=

(
Φ

Φ(A1 −R)−1R′0

)(
−
∫ ∞

0
xr exp{(R−A1)x}(R−A1)dx

)(
(R−A1)−1Re′

)
=

(
Φ

Φ(A1 −R)−1R′0

)(
(−1)rr!(R−A1)−r

) (
(R−A1)−1Re′

)
=

(
Φ

Φ(A1 −R)−1R′0

)
r!(A1 −R)−(r+1)(−Re′)

=
r!Φ(A1 −R)−(r+1)R′0

Φ(A1 −R)−1R′0
, r = 1, 2, . . . , (4.13)
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where we may pass the integration through the matrix products due to there being finite-many
states. Note that the identity used in the fourth equality holds by Equation (1.14), since we
know that for a PHM (α∗0, S) random variable X,

E[Xr] = (−1)rr!α∗0S
−re′ = α∗0

(
(−1)rr!S−r

)
e′,

which we can alternately express as

E[Xr] =

∫ ∞
0

xrα∗0 exp{Sx}S′0dx = α∗0

(
−
∫ ∞

0
xr exp{Sx}Sdx

)
e′.

Equating the two equations and replacing S by R−A1 results in the required identity. Finally,
we end with a reminder that the corresponding results for W ∗2 can be obtained in a completely
analogous fashion.

Remark 4.1. If we had the case that α1,n = α1, n = 1, 2, . . . , C1, then α1 = α1e` and
A1 = α1I`. This implies that A1R = RA1 and so exp{(R−A1)ω} = exp{Rω} exp{−A1ω}, as
previously proven in Section 1.2.6. Next, it follows that

exp{−A1ω} =
∞∑
n=0

(−ω)n

n!
An1 =

∞∑
n=0

(−α1ω)n

n!
In = e−α1ωI`,

and substitution into Equation (4.11) yields

G1(ω) = 1− Φ(α1I` −R)−1 exp{Rω}e−α1ω(−Re′)
Φ(α1I` −R)−1R′0

= 1− Φ(α1I` −R)−1(−R) exp{Rω}e−α1ωe′

Φ(α1I` −R)−1R′0
= 1− Φ(α1I` −R)−1(−R)

Φ(α1I` −R)−1(−Re′) exp{(R− α1I`)ω}e′, ω ≥ 0,

which we can recognize as the CDF of a continuous phase-type distribution, and so

W ∗1 ∼ PH`

(
Φ(α1I` −R)−1(−R)

Φ(α1I` −R)−1(−R)e′
,R− α1I`

)
.

From the theory of phase-type distributions, this immediately tells us that

g1(ω) =
Φ(α1I` −R)−1(−R)

Φ(α1I` −R)−1(−R)e′
exp{(R− α1I`)ω}(−(R− α1I`)e

′)

=
Φ(α1I` −R)−1(−(R− α1I`))

Φ(α1I` −R)−1(−R)e′
exp{(R− α1I`)ω}(−Re′)

=
Φ exp{(R− α1I`)ω}R′0

Φ(α1I` −R)−1R′0
, ω > 0,

agreeing with Equation (4.12), where the second equality holds sinceR(R−α1I`) = (R−α1I`)R,
and

E[W ∗r1 ] = (−1)rr!
Φ(α1I` −R)−1(−R)

Φ(α1I` −R)−1(−R)e′
(R− α1I`)

−re′

=
(−1)rr!Φ(α1I` −R)−1(R− α1I`)

−r(−Re′)
Φ(α1I` −R)−1(−Re′)

=
r!Φ(α1I` −R)−(r+1)R′0

Φ(α1I` −R)−1R′0
, r = 1, 2, . . . , (4.14)
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agreeing with Equation (4.13).

Remark 4.2. The analysis within this subsection assumes that we are treating the system as
having an actual finite buffer, rather than trying to approximate an infinite buffer model as
accurately as possible. If we wanted the latter, then we could improve the accuracy by allowing
the target class-1 customer to stay in the system if they observe X1 = C1. In practice, this
can be accomplished by not re-normalizing the steady-state probabilities, letting the initial
probability row vector be

Φ = (πC1
, πC1−1, . . . , π1, π0),

which would now have length C1n2+n1 (while still satisfying Φ e′C1n2+n1
= 1), and appropriately

adjusting Equation (4.7) to include a row and column of blocks for level C1.

4.5 Numerical Examples

4.5.1 A Cost Optimization Problem Concerning Expected Time Spent Wait-
ing in System

In this subsection, we investigate the selection of service discipline parameters k1 and k2 in order
to optimize the system by way of minimizing a particular cost function. This cost function is
from the system’s point-of-view, and so we are concerned with the time a customer spends
in the system, W#

i , rather than their actual or nominal waiting times. Recall that W#
i ∼

PH`i(Φi,Ri −Ai), so we know that

E[W#
i ] = Φi(Ai −Ri)−1e′, i = 1, 2,

where Φ1, `1, and R1 are given by Equations (4.5), (4.6), and (4.7), respectively, and A2, Φ2,
`2, and R2 are similarly determined.

In what follows, we consider the cost function given by

Cost = Cost1 + Cost2,

where
Costi = ciλiE[W#

i ] + riλiPr(Class-i customer reneges), i = 1, 2,

and ci and ri are assumed to be non-negative constants representing the waiting cost parameter
associated with class i and the penalty cost parameter associated with a class-i customer who
reneges, respectively. From Equation (4.10), the probability of a class-i customer reneging is
Φi(Ai−Ri)−1α′i. Therefore, we can ultimately show that the cost function for class-i takes the
form

Costi = λiciΦi(Ai −Ri)−1e′ + λiriΦi(Ai −Ri)−1α′i

= λiΦi(Ai −Ri)−1(cie
′ + riα

′
i). (4.15)

For the remainder of this chapter, we consider the simplified version of the model where
αi,n = αi, and so the individual reneging rates of each customer simply depends on their class,
and nothing else. We will briefly visualize the impact of level-dependent reneging in Section
6.6.1, within the context of a further generalized model. In this simplified case, Equation (4.15)
reduces to

Costi = λi(ci + riαi)Φi(αiI`i −Ri)−1e′. (4.16)
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We remark that this choice of cost function is inspired by the work of Borst et al. [17], in
which the authors studied a cyclic polling model with infinite buffers (but no reneging), and
sought to determine optimal ki values so as to minimize the mean waiting cost of customers,
subject to a constraint limiting the number of services per cycle. In particular, by setting the
reneging rates α1 and α2 both equal to zero, our cost function reduces to their waiting cost
function. Moreover, as a means of testing the accuracy of our results, we were able to replicate
the choices of optimal (k1, k2) in Table I.a, p. 607, of Borst et al. [17] by setting α1 = α2 = 0,
choosing C1 = 29 and C2 = 48, and calculating the cost function for all k1 = 1, 2, . . . , 11,
k2 = 1, . . . , 12−k1. These buffer sizes yielded blocking probabilities no larger than 0.002295 for
class 1 and 0.023388 for class 2, which occurred in the most extreme combinations of (k1, k2) –
namely, (1, 11) or (11, 1).

Similar to the study conducted by Borst et al. [17], we investigate the behaviour of our
proposed cost function and how optimal (k1, k2) combinations might change in the presence of
reneging and varying service time distributions, subject to the constraint k1 + k2 ≤ K which
limits the number of services per cycle. As a point of comparison, we consider two specific
parametric cases which are both drawn from Section IV of Borst et al. [17] with K = 12. In
Case 1, we assume equal arrival rates λ1 = λ2 = 0.75, exponentially distributed switch-in times
with equal rates S1 = S2 = −1/0.1, and mean service times of µ1 = 0.9 and µ2 = 0.1. In
Case 2, we assume µ1 = µ2 = 1, along with differing arrival rates λ1 = 0.5 and λ2 = 0.25, and
exponentially distributed switch-in times with S1 = −1/0.2 and S2 = −1/0.1. In both cases,
we consider reneging rates α1 and α2 chosen from the set {0.025, 0.05, 0.25}. Furthermore, the
distribution of class-i service times could be one of the following:

• (Exp) Exponential: E[Ser i] = µi and Var(Ser i) = µ2
i :

Ser i ∼ PH1

(
β
i

= 1, Bi = −1/µi

)
.

• (H2) Hyperexponential-2: E[Ser i] = µi and Var(Ser i) = 1000µ2
i :

Ser i ∼ PH2

β
i

= (0.001, 0.999), Bi =

 −( 1
µi

)( √
2√

2+999

)
0

0 −
(

1
µi

)( √
2√

2−1

)  .

• (E3) Erlang-3: E[Ser i] = µi and Var(Ser i) = µ2
i /3:

Ser i ∼ PH3

β
i

= (1, 0, 0), Bi =

 −3/µi 3/µi 0
0 −3/µi 3/µi
0 0 −3/µi

 .

The various parameter combinations resulted in a range of observed blocking probabilities,
and the maximum blocking probability per class (over the different possible pairs of k1 and k2)
for each combination of reneging rate and service time distribution was compared. Of these
local maxima, class-1 blocking probabilities under Case 1 (Case 2) had a median of 8.431×10−6

(1.741 × 10−6) and a global maximum of 0.1312 (0.0577). With respect to class 2, the local
maxima under Case 1 (Case 2) possessed a median of 2.518 × 10−4 (2.772 × 10−10) and a
global maximum of 0.1242 (0.00075). Although our model, with buffer sizes of C1 = C2 = 20
used throughout, falls short at emulating (with high accuracy) the corresponding infinite buffer
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Figure 4.2: Plots of k1 versus c1 under both Cases 1 and 2 with Exp service times, c2 = 2,
r1 = r2 = 1, and four combinations of reneging rates.

system for a few combinations of ki, αi, and service time distribution (particularly in situations
involving the variance-inflated H2 service time distributions and low reneging rates), it does
a more than adequate job when using only Exp or E3 service, or when reneging rates are
high. If the goal is to precisely emulate an infinite buffer system under those aforementioned
conditions (e.g., extremely large service time variance), we would recommend increasing C1

and C2, computational resources permitting, to achieve more tolerable blocking probabilities
across all ki combinations. In an effort to keep computation times manageable, however, we
elected to accept these blocking probabilities and use buffer sizes of 20 apiece over all parameter
combinations.

Tables 4.1 and 4.2 display the optimal (k1, k2) pairs, along with their corresponding cost
values, for each combination of reneging rate and service time distribution under Cases 1 and
2, respectively. In each table, we present results corresponding to c1 = 2, c2 = 1, r1 = 1, and
r2 = 0.5, as well as results for select combinations of service time distribution when r1 = r2 = 40.
In looking at the optimal values of k1 and k2 under Case 1 over a range of cost parameters,
we observed that the limit of the optimal choice of (k1, k2) is (11, 1) as c1 or r1 approaches
∞, or (1, 11) as c2 or r2 approaches ∞. An example of this convergence is illustrated in Fig.
4.2, where we plotted the optimal values of k1 against c1 (with c2, r1, and r2 held constant).
The rates of convergence (to k1 = 11) appear to be largely dependent on the relative values of
α1 and α2. Note that k1 converges faster when class-2 customers are more impatient, causing
fewer of them to reach service and resulting in relatively longer class-1 queues. This causes
class 1 to dominate the expected time waiting in system portion of the cost function, whereas
class-2 customers dominate the probability of reneging portion. Since we are plotting against
the class-1 waiting cost parameter (while keeping reneging costs constant), it is easy to see why
the (0.025, 0.25) combination converges the fastest and (0.25, 0.025) the slowest, whereas equal
reneging rate combinations tend to be comparable to one another. This result is consistent
between Cases 1 and 2. In addition, note that the class-1 arrival rate is twice that of class 2
in Case 2, which results in costs associated with class 1 dominating the cost function sooner.
As a result, we observed that Case 2’s system converges to (11, 1) faster and (1, 11) slower in
comparison to Case 1’s system.

145



Table 4.1: Optimal (k1, k2) and minimum cost values for Case 1 with c1 = 2, c2 = 1, and r1 = 1,
r2 = 0.5 or r1 = r2 = 40.

Reneging Service Time Distributions
Rates (Exp, Exp) (Exp, H2) (Exp, E3) (Exp, Exp)

α1 α2 (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost

0.025 0.025 (3, 9) 4.3398 (3, 9) 6.2866 (3, 9) 4.3281 (3, 9) 6.9361
0.05 (4, 8) 4.2581 (3, 9) 5.9977 (4, 8) 4.2468 (2, 10) 7.7429
0.25 (7, 5) 3.7352 (9, 3) 4.8325 (7, 5) 3.7269 (2, 10) 11.9875

0.05 0.025 (3, 9) 3.6482 (3, 9) 5.2460 (3, 9) 3.6386 (3, 9) 7.1422
0.05 (3, 9) 3.5947 (3, 9) 4.9824 (3, 9) 3.5855 (2, 10) 7.8847
0.25 (6, 6) 3.2543 (6, 6) 4.0882 (6, 6) 3.2470 (1, 11) 11.9519

0.25 0.025 (2, 10) 2.1520 (2, 10) 3.0167 (2, 10) 2.1464 (3, 9) 9.0264
0.05 (2, 10) 2.1334 (2, 10) 2.8169 (2, 10) 2.1279 (3, 9) 9.7272
0.25 (2, 10) 2.0230 (2, 10) 2.2667 (2, 10) 2.0183 (1, 11) 13.3357

(H2, Exp) (H2, H2) (H2, E3) (H2, H2)

α1 α2 (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost

0.025 0.025 (4, 8) 20.3486 (3, 9) 21.7547 (4, 8) 20.3441 (3, 9) 35.8657
0.05 (5, 7) 18.2711 (4, 8) 19.5065 (5, 7) 18.2666 (3, 9) 36.3322
0.25 (8, 4) 14.6158 (9, 3) 15.5758 (8, 4) 14.6114 (2, 10) 33.8738

0.05 0.025 (3, 9) 16.4205 (2, 10) 17.4343 (3, 9) 16.4171 (2, 10) 34.1935
0.05 (4, 8) 14.3710 (3, 9) 15.2235 (4, 8) 14.3676 (3, 9) 34.6786
0.25 (7, 5) 10.7526 (8, 4) 11.3615 (7, 5) 10.7490 (2, 10) 32.2619

0.25 0.025 (1, 11) 8.8681 (1, 11) 9.4376 (1, 11) 8.8681 (3, 9) 27.1216
0.05 (1, 11) 6.9769 (1, 11) 7.3890 (1, 11) 6.9756 (3, 9) 27.6632
0.25 (6, 6) 3.5293 (5, 7) 3.7245 (6, 6) 3.5263 (2, 10) 25.4136

(E3, Exp) (E3, H2) (E3, E3) (E3, E3)

α1 α2 (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost

0.025 0.025 (4, 8) 3.4530 (3, 9) 5.5164 (4, 8) 3.4401 (3, 9) 5.5277
0.05 (4, 8) 3.3965 (4, 8) 5.2494 (4, 8) 3.3839 (3, 9) 6.2533
0.25 (7, 5) 3.0303 (8, 4) 4.2083 (7, 5) 3.0210 (2, 10) 10.1034

0.05 0.025 (3, 9) 2.9907 (3, 9) 4.6552 (3, 9) 2.9800 (3, 9) 5.8344
0.05 (3, 9) 2.9587 (3, 9) 4.4143 (3, 9) 2.9483 (2, 10) 6.5219
0.25 (5, 7) 2.7179 (6, 6) 3.6040 (5, 7) 2.7096 (1, 11) 10.1745

0.25 0.025 (2, 10) 1.8771 (2, 10) 2.7582 (2, 10) 1.8710 (4, 8) 7.8647
0.05 (2, 10) 1.8677 (2, 10) 2.5692 (2, 10) 1.8618 (3, 9) 8.4997
0.25 (2, 10) 1.8065 (2, 10) 2.0618 (2, 10) 1.8013 (1, 11) 11.8951

(r1, r2) (1, 0.5) (1, 0.5) (1, 0.5) (40, 40)

146



Table 4.2: Optimal (k1, k2) and minimum cost values for Case 2 with c1 = 2, c2 = 1, and r1 = 1,
r2 = 0.5 or r1 = r2 = 40.

Reneging Service Time Distributions
Rates (Exp, Exp) (Exp, H2) (Exp, E3) (Exp, Exp)

α1 α2 (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost

0.025 0.025 (10, 2) 2.6649 (10, 2) 7.8090 (10, 2) 2.4761 (10, 2) 4.3972
0.05 (11, 1) 2.4083 (11, 1) 6.8184 (11, 1) 2.2577 (9, 3) 4.6890
0.25 (11, 1) 1.8357 (11, 1) 5.1854 (11, 1) 1.7432 (8, 4) 5.9054

0.05 0.025 (10, 2) 2.3812 (9, 3) 5.6575 (10, 2) 2.2247 (10, 2) 4.6660
0.05 (10, 2) 2.2030 (10, 2) 4.8100 (10, 2) 2.0669 (10, 2) 4.9625
0.25 (11, 1) 1.6934 (11, 1) 3.5890 (11, 1) 1.6127 (8, 4) 6.1953

0.25 0.025 (6, 6) 1.5047 (5, 7) 2.9877 (6, 6) 1.4353 (11, 1) 6.4562
0.05 (7, 5) 1.4550 (6, 6) 2.2615 (7, 5) 1.3907 (10, 2) 6.7245
0.25 (11, 1) 1.2323 (10, 2) 1.5454 (11, 1) 1.1879 (8, 4) 7.8861

(H2, Exp) (H2, H2) (H2, E3) (H2, H2)

α1 α2 (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost

0.025 0.025 (11, 1) 11.9085 (10, 2) 15.6149 (11, 1) 11.8306 (10, 2) 24.8349
0.05 (11, 1) 10.6576 (11, 1) 13.9119 (11, 1) 10.5843 (10, 2) 23.2350
0.25 (11, 1) 9.5631 (11, 1) 12.3096 (11, 1) 9.5085 (9, 3) 21.9772

0.05 0.025 (10, 2) 8.2620 (9, 3) 10.5575 (10, 2) 8.1927 (9, 3) 20.6821
0.05 (11, 1) 7.0367 (10, 2) 8.9056 (11, 1) 6.9730 (9, 3) 19.1262
0.25 (11, 1) 5.9644 (11, 1) 7.4260 (11, 1) 5.9166 (8, 4) 17.9732

0.25 0.025 (4, 8) 3.9129 (4, 8) 5.0239 (4, 8) 3.8846 (8, 4) 15.7298
0.05 (9, 3) 2.8207 (6, 6) 3.4547 (9, 3) 2.7818 (8, 4) 14.2528
0.25 (11, 1) 1.8533 (9, 3) 2.1237 (11, 1) 1.8198 (7, 5) 13.2301

(E3, Exp) (E3, H2) (E3, E3) (E3, E3)

α1 α2 (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost (k1, k2) Cost

0.025 0.025 (10, 2) 2.2940 (10, 2) 7.5463 (10, 2) 2.0953 (10, 2) 3.4708
0.05 (11, 1) 2.0828 (11, 1) 6.5993 (11, 1) 1.9246 (9, 3) 3.7560
0.25 (11, 1) 1.5665 (11, 1) 5.0376 (11, 1) 1.4696 (7, 5) 5.0495

0.05 0.025 (10, 2) 2.0877 (9, 3) 5.4309 (10, 2) 1.9226 (10, 2) 3.7678
0.05 (10, 2) 1.9375 (10, 2) 4.6075 (10, 2) 1.7938 (9, 3) 4.0603
0.25 (11, 1) 1.4762 (11, 1) 3.4371 (11, 1) 1.3913 (7, 5) 5.3424

0.25 0.025 (6, 6) 1.3829 (5, 7) 2.8826 (6, 6) 1.3106 (11, 1) 5.6070
0.05 (7, 5) 1.3415 (7, 5) 2.1606 (7, 5) 1.2744 (10, 2) 5.8895
0.25 (11, 1) 1.1422 (10, 2) 1.4620 (11, 1) 1.0960 (8, 4) 7.0570

(r1, r2) (1, 0.5) (1, 0.5) (1, 0.5) (40, 40)
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Figure 4.3: Plots of Gi(ω) versus ω for both classes under Case 1 with α1 = 0.025, α2 = 0.25,
either Exp or H2 service times, and optimal (k1, k2) from Table 4.1.

Tables 4.1 and 4.2 also suggest that when the waiting and reneging cost parameters are of
a comparable size (or the waiting cost parameters are much larger), the size of ki is inversely
proportional to αi (while keeping the other class’s reneging rate constant). When the reneging
cost parameters are much larger than the waiting cost parameters, such as in the r1 = r2 = 40
examples, this relationship may invert, as serving fewer class-i customers per cycle, in combi-
nation with a larger αi which increases the probability of a class-i customer reneging before
service becomes available, becomes more costly. In general, the system appears to be more
sensitive to smaller changes in the waiting cost parameters. This is an intuitive result, as ri is
multiplied by αi in the cost function in Equation (4.16), which may be very small. Depending
on the choice of reneging rates, this may lead to the cost contributed by reneging being much
smaller than the cost due to customers waiting in the system.

For a given pair of α1 and α2, we observe that changing the service time distribution can
impact the optimal choice of k1 and k2. Our results in Tables 4.1 and 4.2 indicate that it is
possible to vary the optimal (k1, k2) values by switching only one (or both) of the service time
distributions. The larger the difference in variance between two service time distributions, the
more likely we are to observe changes in the optimal (k1, k2) values. In many situations, there
are no discernible differences when comparing Exp and E3 service, other than a decrease in the
optimal cost under E3 service. However, when comparing either Exp or E3 against H2 service,
it is common to find different optimal (k1, k2) pairs and we always observe an increase in the
optimal cost.

Although there exists some evidence to suggest that the optimal (k1, k2) values are, more
or less, insensitive to the second moment of Ser i in our model (and this is consistent with
the remarks in Borst et al. [17]), we did capture varying results by inflating the differences
in variance between the two service time distributions to a large enough degree. One may
be inclined to attribute the presence of these observed changes in our optimal results to only
the occasional high blocking probability, rather than the service time distribution, but we
must emphasize that some of these variations were still present in instances with negligible
blocking probabilities (e.g., when α1 = α2 = 0.25 and H2 service times are used for both
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Figure 4.4: Plots of Gi(ω) versus ω for both classes under Case 2 with α1 = 0.025, α2 = 0.25,
either Exp or H2 service times, and optimal (k1, k2) from Table 4.2.

classes). So, while blocking probabilities can contribute to the variability in the optimal (k1, k2)
combinations, we cannot conclude that the selection is completely insensitive as differences may
exist even when variances are similar (e.g., (Exp, Exp) versus (E3, Exp) services in Table 4.1).
Furthermore, based on the form of Equation (4.16), another conclusion may be made. By
selecting a larger arrival rate for a class, the expected time waiting in the system will increase,
as well as the probability of reneging, while simultaneously raising that class’s weight in the
cost function. This will heighten the system’s sensitivities to the service time distribution of
that class, and can lead to more variation in the selection of optimal (k1, k2) when comparing
combinations of service time distribution for that class with smaller differences in variance.

4.5.2 Examining Actual Waiting Times and the Reduction Effect

Figures 4.3 and 4.4 present plots of Gi(ω), the distribution function of the actual waiting time
random variable W ∗i , as defined in Section 4.4. These functions were evaluated via Equation
(4.11) for both classes under a particular pair of reneging rates (namely, α1 = 0.025 and
α2 = 0.25) and four combinations of Exp and H2 service, with Cases 1 and 2 presented in
Figures 4.3 and 4.4, respectively. For each combination of service time distribution, the optimal
values of k1 and k2 were selected for use from Tables 4.1 and 4.2. It is interesting to note
that H2 service in these cases typically yielded shorter actual waiting times than Exp service.
This is due to the fact that the actual waiting time distribution is conditional on the customer
reaching service before reneging. In order to have the same expected value as Exp service (while
inflating the variance), the selected H2 service is constructed as a mixture of two exponential
distributions, one with a higher rate and a great likelihood of occurrence (namely, 99.9%) and
the other with a very low rate and a rare chance of occurrence (namely, 0.1%). The conditional
nature of W ∗i results in an exponentially distributed upper bound on the total time for the
preceding customers’ service and reneging times, implying that if the reneging rate of the
target customer is high enough (so that the bound on the total time to reach service is short
enough), we realistically can only observe services which follow the more common higher rate.
This essentially reduces H2 service to an exponential distribution with faster service times (and

149



hence shorter actual waiting times).

Overall, we observe that the mean actual waiting times in Case 1 are primarily dependent
on the class-1 service time distribution due to its larger mean service time (i.e., µ1 = 0.9 versus
µ2 = 0.1). Combined with the fact that a high reneging rate for a particular class reduces the
influence of that class’s service time distribution, we witness the rather extreme situation seen in
Figure 4.3, where the distribution is almost entirely dependent on class 1 (since α1 = 0.025 and
α2 = 0.25). While the assumption of equal mean service times helped balance the dependence
between classes in Case 2, the fact that the class-1 arrival rate is twice that of class 2 still
resulted in a larger influence from class 1, as seen in Figure 4.4.

In order to better understand the behaviour of the actual waiting time distribution, we also
calculated E[W ∗i ] via Equation (4.14) for a variety of cases. In Figures 4.5 and 4.6, the expected
actual waiting times for both classes are plotted against k1 = 1, 2, . . . , 11 (letting k2 = 12− k1)
for Case 1 and Case 2, respectively. Combinations of low (0.025) and high (0.25) reneging rates
are considered, as well as combinations of Exp and H2 service.

In Figure 4.5, since µ1 = 0.9 = 9µ2, changing the distribution of class-1 services from Exp
to H2 has the largest impact for the mean actual waiting times of either class. For class 1,
changing the class-1 service distribution while keeping the class-2 service distribution the same
causes a decrease in expected actual waiting time, as anticipated, given the previous discussion
concerning the CDFs. This is observed for class 2 as well for larger k1’s when α2 = 0.025,
i.e., when the bound is weaker and it is possible that more class-1 services must be completed
before the server can visit the class-2 queue, or for all k1 when α2 = 0.25. When k1 is small
and the probabilistic bound is weak, there is less of a ‘reducing’ effect felt by the class-1 H2

services, and so rather than acting as faster exponential distributions, their increased service
variance causes increases in the class-2 actual waiting times (a similar situation is present for
small k2 in the bottom right of Figures 4.5 (a) and (c), where class-2 H2 service results in
slightly larger values). The effect’s dependency on k1 was not present for class 1 as a target
class-1 customer must wait for all customers queued ahead of them to leave the system prior
to reaching the server, themselves. Similarly, when αi = 0.025, changing class-2 services from
Exp to H2 increases E[W ∗i ], i = 1, 2. In this case, the smaller expected service times prevent
the reducing effect, rather than a small k1. When αi = 0.25, the effect is present again and
switching to class-2 H2 service results in smaller expected actual waiting times.

It can also be noted that for both classes and either small or large reneging rates, E[W ∗i ] is
generally more sensitive to changes in k1 when Ser1 is Exp, rather than H2 (where the lines are
generally flat for middle k1 values). This may be another result of the H2 distributions acting
as faster exponential distributions (also having smaller variances as a consequence), and hence
the duration of a visit by the server to the class-1 queue will have smaller means and variances.
As the server can empty the queue possessing larger jobs faster and more consistently, this
will reduce the duration of said visits, simultaneously reducing the expected number of class-2
customers that will arrive between visits to their queue. This will lower the expected number of
customers belonging to either class in the queue. If these lower queue lengths reduce occurrences
of the server hitting their ki limit and having to switch prior to emptying a queue, then this
will greatly lower the sensitivity of expected actual waiting times on a change of k1, other than
when a class’s ki is very small (e.g., changed from 1 to 2), where the impact of this change is
still likely to be felt.

In Figure 4.6, we now consider Case 2 where µ1 = µ2 = 1, meaning that a change in either
class’ service distribution will be significant. Since λ1 = 0.5 = 2λ2, class-1 will get on average
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twice as many customers, and hence the impact of the reducing effect will be felt by both
classes more when applied to the service times of class-1 customers. Unlike before, changing
class-2 services from Exp to H2 will result in smaller expected actual waiting times for class 1
when α1 = 0.025 (since µ2 is much larger). The interaction of small α2 (α1) and small k1 (k2)
where H2 service is worse than Exp, as well as decreased sensitivity to k1 under H2 service, are
similarly both present in this figure. Of course, class-2 H2 service has more of an impact on
reducing sensitivity than it did in Figure 4.5, albeit still smaller than that of class 1’s service
distribution.

151



2 4 6 8 10

1.
5

2.
0

2.
5

3.
0

(0.025,0.025)

Figure 4.5 (a)
k1

E
[W

1* ]
●

●
● ● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●

(Exp, Exp)
(Exp, H2)
  (H2, Exp)
  (H2, H2)

2 4 6 8 10

1
2

3
4

5

(0.025,0.025)

Figure 4.5 (b)
k1

E
[W

2* ]

● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ●
●

2 4 6 8 10

1.
5

2.
0

2.
5

3.
0

(0.025,0.25)

Figure 4.5 (c)
k1

E
[W

1* ]

●

●
● ● ● ● ● ● ●

●

●

●

●
● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

1.
2

(0.025,0.25)

Figure 4.5 (d)
k1

E
[W

2* ]

●
● ● ● ● ● ● ● ●

●

●

● ● ● ● ● ● ● ● ● ●

●

2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(0.25,0.025)

Figure 4.5 (e)
k1

E
[W

1* ] ●

●

● ● ● ● ● ● ●
●

●

●

●
● ● ● ● ● ● ● ● ●

2 4 6 8 10

1.
0

1.
5

2.
0

2.
5

(0.25,0.025)

Figure 4.5 (f)
k1

E
[W

2* ]

●
● ● ● ● ● ● ●

●
●

●

●
● ● ● ● ● ● ● ● ●

●

2 4 6 8 10

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

(0.25,0.25)

Figure 4.5 (g)
k1

E
[W

1* ]

●

●

● ● ● ● ● ● ●
●

●

●

●
● ● ● ● ● ● ● ● ●

2 4 6 8 10

0.
4

0.
6

0.
8

1.
0

(0.25,0.25)

Figure 4.5 (h)
k1

E
[W

2* ]

●
● ● ● ● ● ● ● ●

●

●

●
● ● ● ● ● ● ● ● ●

●

Figure 4.5: Plots of E[W ∗i ] versus k1 for both classes and various (α1, α2) under Case 1 and
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Figure 4.6: Plots of E[W ∗i ] versus k1 for both classes and various (α1, α2) under Case 2 and
either Exp or H2 service times.
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Chapter 5

The Unobserved Waiting Customer
Approximation

5.1 Discussion of Literature and Introduction to UWC

As we have seen through our preceding analyses, MAM allows for many flexibilities when mod-
elling a queueing system or network. However, it does come with its share of limitations and
restrictions. Within this chapter, we introduce the Unobserved Waiting Customer approxima-
tion which aims to improve the performance of MAM in a situation where it may struggle.
Specifically, it aims to reduce the natural biases incurred from the required use of state trun-
cation on a system that should in reality have infinite buffers. In the following sections, let
IB denote the true infinite buffer model of interest, let FB denote the finite buffer model ob-
tained through simple truncation, and let UWC denote the truncated model making use of the
Unobserved Waiting Customer approximation.

For simple queues, such as level-independent QBDs, we may conduct an exact accurate
analysis that considers all possible queue lengths (e.g., Section 1.2.4). However, to analyze
more complicated queueing systems involving multiple queues and/or level-dependent QBD
structures (e.g., due to reneging), we may be required to truncate the state space. If we say,
remove all states beyond a threshold representing a queue length of C customers, then it is
typical to interpret the removal of these states as the enforcement of a finite buffer which is
not present in the real world system we are trying to model. This inaccuracy will result in
the steady-state probabilities of the removed states being redistributed proportionally to states
belonging to lower queue lengths.

This was observed by Bright and Taylor [23] within their work considering how to nu-
merically solve for the steady-state probabilities of a level-dependent QBD. They stated that
element-wise, if the CTMC is positive recurrent, the steady-state probability for a state at a
given truncation level is greater than or equal to the true value (which we may recover by letting
the truncation level go to infinity). They discussed how to select the truncation level to ensure
that the steady-state probability of the QBD being in a state at or above this level is negligible.
One method is simply to iteratively increase the level until the sum of steady-state probabilities
of all states at the truncation level is below a desired tolerance. This is similar to the approach
used by Gertsbakh [37] when modelling a 2-queue system where an arriving customer joins the
shortest queue. The level of their process was set to be the length of the shorter queue, while
the longer queue is truncated to never be n customers longer than the shorter queue. If the
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difference in queue length reached n, then it was assumed that a customer would immediately
jockey to the shorter queue. In their numerical investigation, they selected a value of n such
that the steady-state probabilities for all states below the truncation level would change by less
than 10−6 when further increasing the threshold level by 1.

Alternatively, Bright and Taylor [23] also investigated how to construct a dominating process
which can be used to find an analytic upper bound on the tail probability, making use of normal
birth-and-death process results. By ensuring that the upper bound of the tail probability is
below a threshold, the true tail probability must also be acceptable. An example of applying
this methodology of Bright and Taylor is the work of Krishnamoorthy et al. [57], in the context
of a queue with self-promoting customers (which resulted in a level-dependent QBD). Rather
than simply considering the tail probability, Kim and Kim [52] derived an upper bound for the
truncation error in their M/PH/1 retrial queue with no waiting room, such that an arriving
customer who did not find the server free immediately entered an orbit. Truncation error was
defined as the sum of absolute-value differences in the steady-state probabilities for all states
between their truncated model and the true IB model. They similarly used this upper bound
to select a level at which to truncate their customer orbit such that the truncation error was
below a specified tolerance.

Unfortunately, it is not always computationally feasible to use a truncation level of C that
is large enough to ensure that the tail probability or truncation error is below a small tolerance,
especially if we are modelling a network of multiple queues all suffering from this issue simul-
taneously. It then benefits us to consider alternative modifications to a CTMC that give rise
to results that outperform a simple FB model. For example, Diamond and Alfa [30] analyzed
a retrial queue which tracked both the number of customers in the queue as well as in the
retrial orbit. Similar to a 2-queue polling system, it is impossible to let both the queue and
orbit have infinite buffers when using MAM. They elected to put a finite buffer on the queue,
taking the number of customers in the orbit as the level of their QBD. They modified their
CTMC so that after a certain level, if their queue is not full, then a customer will immediately
enter it from the orbit. This approximation is fairly reasonable since as the level increases, the
time between retrial attempts will go to zero. This leads to a level-independent QBD structure
beyond this level, resulting in more accurate steady-state probabilities than simple truncation,
and the level was selected at the point where the tail probability was below a given tolerance.
Shin and Choo [86] used a similar approximation in that for part of their analysis of a M/M/s
retrial queue with customer balking and reneging, in order to enable the use of approximate
analytical results, they assumed that the total effective reneging rate of customers in queue did
not change beyond a certain level.

Differing from these adjustments, we propose the use of our UWC approximation to improve
the overall numerical accuracy when approximating an infinite buffer system when we are unable
to use a large enough C. Our ultimate goal is to reduce the negative bias in the expected value
of queue lengths at steady state that results from state truncation. As we wish to apply this to
polling models with potentially very large state spaces, we will do so without requiring the model
to track additional states. Also, rather than altering the behaviour of customers in the system
to create a level-independent structure, we will be approximating events that are unobservable
by the model. Suppose that in a given queue we truncate at level C, such that we remove all
states corresponding to queue lengths greater than C. Rather than assuming the presence of a
finite buffer, we assume that customers may be present in positions C + 1, C + 2, . . ., but are
unobservable. If the observed portion of the queue is full, then following an observed customer
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departure, an unobserved waiting customer may immediately fill the available observed position.

The goal of the UWC approximation is to aggregate probability mass from the tail to
the truncation level, resulting in steady-state probabilities at states below the buffer that are
either unbiased or less biased than those in a standard FB model. While not designed for
level-dependent QBDs, ETAQA (an acronym for “an Efficient Technique for the Analysis of
QBD-processes by Aggregation”) is an example of an aggregation method for level-independent
QBDs. ETAQA was introduced by Ciardo and Smirni [29] for level-independent QBDs satisfying
the restriction that all transitions which reduce the level of the QBD transition into the same
sublevel, and was extended to M/G/1-type CTMCs by Riska and Smirni [81]. Specifically,
their ETAQA method calculated steady-state probability vectors π0, π1, and π∗ =

∑∞
i=2 πi,

where π0 and π1 are unbiased and in the latter vector, all sublevels across higher levels are
grouped into individual states (i.e., π∗j =

∑∞
i=2 πi,j). Heindl [44] would later show that ETAQA

for level-independent QBDs could actually use any level for state aggregation, not just level 2.

Differing from ETAQA, an advantage to UWC is that it may be used to improve accuracy
in more general cases where it does not yield exact results. The ability to apply UWC to level-
dependent QBDs is also of more use in general than being limited to level-independent QBDs
(we note, however, that the goal of ETAQA is not to circumvent truncation limitations, but
rather to provide a quicker alternative to solve for things such as linear combinations of queue
length moments).

5.2 M/M/1 Queue

We begin by considering the classic M/M/1 queue we previously examined in Section 1.2.2. In
this queue, customer arrivals are governed by a Poisson process with intensity λ and customers
are served individually by a single server according to independent and identically distributed
(iid) service times with distribution Ser ∼ Exp(µ). Let πi be the steady-state probability of
observing i customers in the IB model, i ∈ N. The balance equations for the IB model may be
expressed as

λπi = µπi+1, i ∈ N,

which in combination with the normalization condition, 1 =
∑∞

i=0 πi, we have seen satisfy

πi = ρi(1− ρ), i ∈ N,

provided that ρ = λ/µ < 1. Letting XIB denote the IB model queue length at steady state, it
follows that

E[XIB] =
ρ

1− ρ.

Considering now the simple truncation case, we let πFB
i be the steady-state probability of

observing i customers in the FB model, i = 0, 1, . . . , C. The corresponding modified balance
equations are

λπFB
i = µπFB

i+1, i = 0, 1, . . . , C − 1,

which in combination with the normalization condition, 1 =
∑C

i=0 π
FB
i , results in

πFB
i =

ρi(1− ρ)

1− ρC+1
=

πi
1− ρC+1

, i = 0, 1, . . . , C,
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which are equal to the first C + 1 steady-state probabilities from the IB model, re-normalized.
That is, all probability mass above state C is proportionally redistributed across the lower
states. If we similarly let XFB denote the FB model queue length at steady state, then we can
show that

E[XFB] =
ρ

1− ρ −
(C + 1)ρC+1

1− ρC+1
,

which clearly demonstrates a negatively biased mean queue length, relative to the IB model.

We will now introduce our UWC approximation to adjust the system so that this negative
bias will be reduced. In the FB model, the implication of the buffer is that a customer who
observes a queue length of C at their arrival instant will be blocked and be lost. Instead,
we suppose that these customers can still wait in the queue, however they are unobserved by
the system. As they are not tracked, we must instead approximate their presence. We do so
by introducing a probability p∗C of there being one or more unobserved customers present in
the queue at an observed customer’s departure epoch. In this way, with probability p∗C , there
will be a customer present who will immediately fill the vacant observable position within the
queue following the departure, and hence the observed queue length does not decrement from
our perspective.

As we are not introducing any new states and must preserve the Markov property within
our analytical framework, this probability is a constant and cannot depend on how many times
unobserved customers have entered into the observable portion of the queue in this way. There-
fore, the distribution of how many observed customer departures are required to decrement the
queue length below the buffer is geometric with success probability 1− p∗C . It follows that the
effective amount of time spent in state C in the UWC model has an Exp((1 − p∗C)µ) distri-
bution. Letting πUWC

i be the steady-state probability of observing i customers in the UWC
model, i = 0, 1, . . . , C, the balance equations are

λπUWC
i = µπUWC

i+1 , i = 0, 1, . . . , C − 2, (5.1)

λπUWC
C−1 = (1− p∗C)µπUWC

C . (5.2)

We must now determine an appropriate choice for p∗C . We elect to choose a p∗C which requires
the same expected number of observed customer departures (in this case, solely from service
completions) in the UWC model to transition from state C to C − 1 (namely, (1− p∗C)−1), as
in the IB model between a visitation instant to state C until it returns to state C − 1 for the
first time (we will henceforth refer to this type of time interval as a level-C busy period). As
the M/M/1 queue has level-independent service rates, the distribution of a level-i busy period
is independent of i. That is, it has an identical distribution to a standard busy period.

From Equation (1.9), we know that the expected value of a busy period in an M/M/1 queue
is E[BP ] = (µ − λ)−1. The entire busy period consists of some random number of sequential
service times, with no server idling (and no setup time prior to the first service). Therefore,
the expected number of service completions during a busy period is simply E[BP ]/E[Ser ], and
so we set

1

1− p∗C
=

E[BP ]

E[Ser ]
=

µ

µ− λ =
1

1− ρ,

implying that p∗C = ρ. Substituting this value into Equations (5.1) and (5.2) and solving with
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the normalization condition 1 =
∑C

i=0 π
UWC
i , we find

πUWC
0 =

(
C−1∑
i=0

ρi +
ρC

1− ρ

)−1

=

(
1− ρC
1− ρ +

ρC

1− ρ

)−1

= 1− ρ = π0,

πUWC
i = ρiπUWC

0 = ρi(1− ρ) = πi, i = 1, 2, . . . , C − 1,

and

πUWC
C =

ρC

1− ρπ
UWC
0 = ρC =

∞∑
i=C

ρi(1− ρ) =
∞∑
i=C

πi.

In contrast to the FB model, the UWC model has unbiased steady-state probabilities for states
i = 0, 1, . . . , C − 1, while allocating all excess probability mass for states at or above the buffer
C into πUWC

C . Letting XUWC denote the UWC model queue length at steady state, we can
confirm that

E[XUWC] =
ρ

1− ρ −
ρC+1

1− ρ,

which is strictly between the mean queue lengths of the FB and IB models, and so this achieves
our goal of reducing the negative bias inherent to truncation.

5.3 M/M/1 +M Queue

We next consider the M/M/1 queue as outlined in Section 5.2, while further supposing that
any customers who are not actively being served are at risk of reneging from the queue due to
their own iid Exp(α) impatience timers. The balance equations for the IB model of this queue
are

λπi = (µ+ iα)πi+1, i ∈ N.

Under the normalization condition 1 =
∑∞

i=0 πi, we obtain the solution

πi =

λi

(
i−1∏
j=0

(µ+ jα)

)−1

1 +
∞∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1 , i ∈ N, (5.3)

where we use the convention
∏0−1
j=0(µ+ jα) = 1.

Unlike in the M/M/1 queue, the choice of our UWC probability will now depend on C.
This is true under the assumption that α > 0, since a level-C busy period in either model will
be shorter due to the larger total effective rate of customer departures as a result of reneging
from queue positions 2 through C. The modified balance equations for the UWC model are

λπUWC
i = (µ+ iα)πUWC

i+1 , i = 0, 1, . . . , C − 2,

λπUWC
C−1 = (1− p∗C)(µ+ (C − 1)α)πUWC

C ,

which, when solved along with the normalization condition 1 =
∑C

i=0 π
UWC
i , yields the solution

πUWC
0 =

(
1 +

C−1∑
k=1

λi∏i−1
j=0(µ+ jα)

+
1

1− p∗C
· λC∏C−1

j=0 (µ+ jα)

)−1

, (5.4)
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πUWC
i =

λi∏i−1
j=0(µ+ jα)

πUWC
0 =

λi∏i−1
j=0(µ+jα)

1 +
∑C−1

k=1
λi∏i−1

j=0(µ+jα)
+ 1

1−p∗C
· λC∏C−1

j=0 (µ+jα)

, (5.5)

for i = 1, 2, . . . , C − 1, and

πUWC
C = 1

1−p∗C
· λC∏C−1

j=0 (µ+jα)
πUWC

0 =

1
1−p∗

C
· λC∏C−1

j=0
(µ+jα)

1+
∑C−1
k=1

λi∏i−1
j=0

(µ+jα)
+ 1

1−p∗
C
· λC∏C−1

j=0
(µ+jα)

. (5.6)

We can obtain πFB
i , i = 0, 1, . . . , C, by simply setting p∗C = 0 in Equations (5.4)-(5.6), resulting

in

πFB
i = πi ·

1 +
∞∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1

1 +
C∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1 > πi, i = 0, 1, . . . , C.

We will now select p∗C in a similar manner as before, equating the expected number of
observed customer departures (either from service completions or reneging from the first C
queue positions) during a level-C busy period in the UWC and IB models. The distribution of
a level-C busy period in the IB model will be identically distributed as a standard busy period
of a M/M/1 +M queue with service rate µ+ (C − 1)α and individual customer reneging rate
α. That is, we group the reneging of all customers at or before the truncation level with the
service rate of the leading customer to get an effective overall service rate, since we only care
about departures and do not distinguish between ways that customers may leave the system.
Let this effective service time be represented by the random variable SerC ∼ Exp(µ+(C−1)α).

In order to solve for the mean busy period of a M/M/1 + M queueing system, we make
use of Equation (1.10) from Remark 1.2, which allows us to express it in terms of the server’s
idle probability. Letting i = 0 and replacing µ by µ + (C − 1)α in Equation (5.3), we apply
Equation (1.10) to ultimately obtain

E[BPC ] =
∞∑
k=1

λk−1

k−1∏
j=0

(µ+ (C − 1 + j)α)

−1

,

where we let BPC denote the IB model level-C busy period. Finally, we set

1

1− p∗C
=

E[BPC ]

E[SerC ]
=

∞∑
k=1

λk−1(µ+ (C − 1)α)∏k−1
j=0(µ+ (C − 1 + j)α)

, (5.7)

implying that

p∗C = 1−
( ∞∑
k=1

λk−1(µ+ (C − 1)α)∏k−1
j=0(µ+ (C − 1 + j)α)

)−1

. (5.8)
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Observe that

1

1− p∗C
· λC∏C−1

j=0 (µ+ jα)
=

( ∞∑
k=1

λk−1(µ+ (C − 1)α)∏k−1
j=0(µ+ (C − 1 + j)α)

)
λC∏C−1

j=0 (µ+ jα)

=
∞∑
i=C

λi∏i−1
j=0(µ+ jα)

.

If we substitute Equation (5.7) into Equations (5.4)-(5.6), we can recover πUWC
i = πi, i =

0, 1, . . . , C − 1, and

πUWC
C =

∞∑
i=C

λi

(
i−1∏
j=0

(µ+ jα)

)−1

1 +
∞∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1 =

∞∑
i=C

πi.

As in the M/M/1 system, the UWC model accurately calculates the steady-state probabilities
below the truncation level with no bias, while collecting all excess probability mass into πUWC

C .
Note that if we set α = 0, Equation (5.8) simplifies to give

p∗C = 1−
( ∞∑
k=1

λk−1

µk−1

)−1

= 1−
(

1

1− ρ

)−1

= ρ,

recovering p∗C from the the M/M/1 model, as required.

5.4 M/M/∞ Queue

By letting α = µ in our results from Section 5.3, we immediately recover the analysis for a
M/M/∞ queue where every customer immediately begins an iid Exp(µ) service time upon
entering the system. In summary,

πi =
ρi

i!
e−ρ, i ∈ N,

πFB
i = πi ·

eρ∑C
k=0 ρ

k/k!
> πi, i = 0, 1, . . . , C,

p∗C = 1− ρC

C!

(
eρ −

C−1∑
k=0

ρk

k!

)−1

, (5.9)

and it remains that πUWC
i = πi, i = 0, 1, . . . , C − 1, and πUWC

C =
∑∞

i=C πi.

5.5 M/PH/1 Queue

We now consider an analogous model to the M/M/1 queue, however we generalize the customer
service time distribution from Ser ∼ Exp(µ) to Ser ∼ PHb(β,B). That is, service times are
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iid continuous phase-type random variables of order b, and we assume that βe′ =
∑b

i=1 βi = 1,
indicating that service times must be strictly positive in duration. We assume that λE[Ser ] < 1
to guarantee stability in the model.

We have previously considered the analysis of a M/PH/1 queue as a level-independent QBD
in Section 1.2.4 as a way to introduce the matrix geometric solution. We now demonstrate the
analytic solution of this queue before approaching the application of UWC. The M/PH/1
queue is modelled using a CTMC denoted by {(X(t), Y (t)), t ≥ 0}, where X(t) is the number
of customers in the system and Y (t) is the current service phase at time t, which has possible
values depending on X(t):

Y (t) ∈ ΩY (X(t)) =

{
{0} , if X(t) = 0,

{1, 2, . . . , b} , if X(t) ∈ Z+.

Letting X(t) denote the level of the process and allowing Qi,j to contain the rates corresponding
to transitions where X(t) would change from i to j, the infinitesimal generator matrix for this
queue takes on a QBD form

Q =



0 1 2 · · · C − 1 C C + 1 · · ·
0 Q0,0 Q0,1 0 · · · 0 0 0 · · ·
1 Q1,0 Q1,1 Q1,2

. . . 0 0 0 · · ·
2 0 Q2,1 Q2,2

. . .
. . . 0 0 · · ·

...
...

. . .
. . .

. . .
. . .

. . .
... · · ·

C − 1 0 0
. . .

. . . QC−1,C−1 QC−1,C 0 · · ·
C 0 0 0

. . . QC,C−1 QC,C QC,C+1
. . .

C + 1 0 0 0 · · · 0 QC+1,C QC+1,C+1
. . .

...
...

...
...

...
...

. . .
. . .

. . .


, (5.10)

Defining I as an appropriately dimensioned identity matrix and B′0 = −Be′ as the column
vector of absorption rates for rate matrix B, the generator blocks for the M/PH/1 queue are

Q0,0 = −λ, Q0,1 = λβ,

Q1,0 = B′0, Q1,1 = B − λI, Q1,2 = λI,
Qi,i−1 = B′0β, Qi,i = B − λI, Qi,i+1 = λI, i = 2, 3, . . . .

(5.11)

As Qi,j , j = i− 1, i, i+ 1, do not change with i, i ≥ 2, this is a level-independent QBD. Letting
πi,j be the steady-state probability of observing the CTMC in state (i, j) and partitioning the
steady-state distribution as π = (π0, π1, π2, . . .), where π0 = π0,0 and πi = (πi,1, πi,2, . . . , πi,b),
i ∈ Z+, we obtain from Equations (5.10) and (5.11)

0 = π0,0(−λ) + π1B
′
0, (5.12)

0 = π0,0(λβ) + π1(B − λI) + π2B
′
0β, (5.13)

0 = πi(λI) + πi+1(B − λI) + πi+2B
′
0β, i ∈ Z+. (5.14)

From Equation (5.12), it immediately follows that

λπ0,0 = π1B
′
0. (5.15)
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After post-multiplying Equations (5.13) and (5.14) by e′ and performing some elementary sub-
stitutions, we can similarly obtain

λπie
′ = πi+1B

′
0, i ∈ Z+. (5.16)

Substituting Equation (5.16) for i = 1 into Equation (5.13) and solving for π1, we find

π1 = π0,0βλ(λI − λe′β −B)−1, (5.17)

and from Equations (5.14), (5.16), and (5.17),

πi = πi−1λ(λI − λe′β −B)−1 = π0,0βλ
i(λI − λe′β −B)−i, i ∈ Z+. (5.18)

Letting R = λ(λI − λe′β − B)−1, we obtain the matrix geometric solution πi = π1R
i−1,

i ∈ Z+. Finally, the normalization condition is

1 = π e′ = π0,0 +

∞∑
i=1

πie
′ = π0,0 + π1(I −R)−1e′ = π0,0

(
1 + βR(I −R)−1e′

)
. (5.19)

We can confirm that

R(I −R)−1e′ = λ(1− λE[Ser ])−1(−B−1e′), (5.20)

where E[Ser ] = −βB−1e′. Substituting Equation (5.20) into Equation (5.19) and solving for
π0,0, we obtain

π0,0 =

(
1 +

λE[Ser ]

1− λE[Ser ]

)−1

= 1− λE[Ser ].

Therefore, by Equation (5.18), the remaining steady-state probabilities for the M/PH/1 IB
model are

πi = (1− λE[Ser ])βλi(λI − λe′β −B)−i, i ∈ Z+. (5.21)

We now consider the UWC model, and confirm that we can recover unbiased steady-state
probabilities for levels 0, 1, . . . , C − 1. Define the partitioned row vector of steady-state proba-
bilities for the truncated CTMC applying the UWC approximation by

πUWC = (πUWC
0,0 , πUWC

1 , . . . , πUWC
C ).

The generator blocks QUWC
i,j are only adjusted for i ≥ C, such that the blocks which do not

contain only zeroes are:

QUWC
0,0 = −λ, QUWC

0,1 = λβ,

QUWC
1,0 = B′0, QUWC

1,1 = B − λI, QUWC
1,2 = λI,

QUWC
i,i−1 = B′0β, QUWC

i,i = B − λI, QUWC
i,i+1 = λI, i = 2, 3, . . . , C − 1,

QUWC
C,C−1 = (1− p∗C)B′0β, QUWC

C,C = B + p∗CB
′
0β,

(5.22)

Here, we no longer observe arrivals at level C, and with probability p∗C , there is at least one
unobserved customer ready to enter the observed states at the time of a service completion,
so we have QUWC

C,C = QC,C + λI + p∗CQC,C−1, while we also set QUWC
C,C−1 = (1 − p∗C)QC,C−1 and

QC,C+1 = 0.
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From Equations (5.10) and (5.22), we have

0 = πUWC
0,0 (−λ) + πUWC

1 B′0,

0 = πUWC
0,0 (λβ) + πUWC

1 (B − λI) + πUWC
2 B′0β,

0 = πUWC
i (λI) + πUWC

i+1 (B − λI) + πUWC
i+2 B′0β, i = 1, 2, . . . , C − 3,

0 = πUWC
C−2 (λI) + πUWC

C−1 (B − λI) + πUWC
C (1− p∗C)B′0β, (5.23)

0 = πUWC
C−1 (λI) + πUWC

C (B + p∗CB
′
0β),

from which we can obtain

λπUWC
0,0 = πUWC

1 B′0, (5.24)

λπUWC
i e′ = πi+1B

′
0, i = 1, 2, . . . , C − 2, (5.25)

λπUWC
C−1 e

′ = πC(1− p∗C)B′0.

Since Equations (5.24) and (5.25) have the same form as Equations (5.15) and (5.16), we
similarly find that

πUWC
i = πUWC

0,0 βλi(λI − λe′β −B)−i, i = 1, 2, . . . , C − 1. (5.26)

However, substituting Equation (5.25) for i = C−2 into Equation (5.23) and solving for πUWC
C ,

we have

πUWC
C = πUWC

C−1 λ(−(B + p∗CB
′
0β)−1)

= πUWC
0,0 βλC(λI − λe′β −B)−(C−1)(−(B + p∗CB

′
0β)−1).

The normalization condition for the UWC model becomes

1 = πUWCe′ = πUWC
0,0 +

C∑
i=1

πUWC
i e′

= πUWC
0,0

(
1 +

C−1∑
i=1

βRie′ + βRC−1λ(−(B + p∗CB
′
0β)−1e′)

)
. (5.27)

Note that we can alternately express Equation (5.19) as

1 = π0,0

(
1 +

C−1∑
i=1

βRie′ +

∞∑
i=C

βRie′

)
= π0,0

(
1 +

C−1∑
i=1

βRie′ + βRC(I −R)−1e′

)
,

so if p∗C satisfies
βRC−1λ(−(B + p∗CB

′
0β)−1)e′ = βRC(I −R)−1e′, (5.28)

then πUWC
0,0 = π0,0, and by Equation (5.26), πUWC

i = πi, i = 1, 2, . . . , C − 1.
We must now select a value of p∗C . As before, we aim to equate the expected number of

observed customer departures during level-C busy periods in the IB and UWC models. Note,
however, that unlike the exponential service case, we must now consider the service phase that
is underway at the beginning of a level-C busy period, BPC . Similar to Equation (3.7), we
define qx,y as the steady-state probability of the IB model being in state (x, y) immediately
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prior to a customer arrival that initiates a level-C busy period (i.e., an arrival that increases
X(t) from C − 1 to C). It follows that at steady-state,

qC−1,y = lim
h→0

P ((X(t), Y (t)) = (C − 1, y)|X(t+ h) = C)

= lim
h→0

P (X(t+ h) = C|(X(t), Y (t)) = (C − 1, y))P ((X(t), Y (t)) = (C − 1, y))∑
m,n P (X(t+ h) = C|(X(t), Y (t)) = (m,n))P ((X(t), Y (t)) = (m,n))

= lim
h→0

(λh+ o(h))πC−1,y∑
n(λh+ o(h))πC−1,n

= lim
h→0

λπC−1,y + o(h)/h∑
n λπC−1,n + o(h)/h

=
πC−1,y

πC−1e
′ . (5.29)

Applying Equations (5.21) and (5.29), we define the modified initial probability row vector

β∗
C

= (qC−1,1, qC−1,2, . . . , qC−1,b) =
πC−1

πC−1e
′ =

β(λI − λe′β −B)−(C−1)

β(λI − λe′β −B)−(C−1)e′
. (5.30)

It now follows that BPC will be identical in distribution to a busy period of a modified IB
M/PH/1 queue where the first customer of a busy period has a service time with distribution
Ser∗C ∼ PHb(β

∗
C
, B), but all future service times within the same busy period will be iid

with the original PHb(β,B) distribution. We can calculate E[BPC ] by setting Q0,1 = λβ∗
C

in
Equation (5.11) and solving for the modified steady-state distribution which we will define as
π∗C = (π∗C0,0, π

∗C
1 , π∗C2 , . . .). By Equation (1.10), it readily follows that

E[BPC ] =
1− π∗C0,0

λπ∗C0,0

. (5.31)

Following similar steps to the original analysis for the IB model, we can show that

π∗Ci = π∗C0,0β
∗
C
λi(λI − λe′β −B)−i, i ∈ Z+.

Using Equation (5.20), we can now solve for π∗C0,0 through the normalization condition,

1 = π∗Ce′ = π∗C0,0 + π∗C1 (I −R)−1e′

= π∗C0,0

(
1 + β∗

C
R(I −R)−1e′

)
= π∗C0,0

(
1 +

λ(−β∗
C
B−1e′)

1− λE[Ser ]

)

= π∗C0,0

(
1 +

λE[Ser∗C ]

1− λE[Ser ]

)
,

resulting in

π∗C0,0 =
1− λE[Ser ]

1 + λE[Ser∗C ]− λE[Ser ]
,
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and by substituting into Equation (5.31), it is straightforward to show that

E[BP∗C ] =
E[Ser∗C ]

1− λE[Ser ]
. (5.32)

We now recall the left-hand side of Equation (5.28), which we can rewrite via Equation
(5.30) as

βRC−1λ(−(B + p∗CB
′
0β)−1)e′ = λC(β(λI − λe′β −B)−(C−1)e′)(−β∗

C
(B + p∗CB

′
0β)−1e′). (5.33)

Note that the term −β∗
C

(B+p∗CB
′
0β)−1e′ is simply the expected value of a PHb(β

∗
C
, B+p∗CB

′
0β)

random variable. This corresponds to a phase-type distribution with initial probability row
vector β∗

C
and rate matrix B that restarts with initial probability row vector β every time it

would reach absorption with probability p∗C . Note that we can express

BPC = Ser∗C +

N∗C∑
j=1

Ser j , (5.34)

where {Ser j}∞j=1 are the iid service times having distribution Ser ∼ PHb(β,B) within a busy
period after the first service Ser∗C ∼ PHb(β

∗
C
, B), and N∗C is some discrete random variable

depending on λ, C, and the random service times. If we approximate N∗C by an independent
geometric distribution having probability mass function (PMF) P (N = n) = (p∗C)n(1−p∗C), n ∈
N, then this would be distributionally equivalent to PHb(β

∗
C
, B+p∗CB

′
0β) (using the convention∑0

j=1 Ser j = 0).
Taking the expectation of Equation (5.34) under this approximation, we have

E[BPC ] = E[Ser∗C ] +
p∗C

1− p∗C
E[Ser ]. (5.35)

Equating Equations (5.32) and (5.35) and solving for p∗C , we set

p∗C =
λE[Ser∗C ]

1 + λE[Ser∗C ]− λE[Ser ]
. (5.36)

Therefore, if we use this choice of p∗C , Equation (5.33) becomes

βRC−1λ(−(B + p∗CB
′
0β)−1)e′ = λC(β(λI − λe′β −B)−(C−1)e′)E[BPC ]

=
λC

1− λE[Ser ]
(β(λI − λe′β −B)−(C−1)e′)E[Ser∗C ]

=
λC

1− λE[Ser ]
(β(λI − λe′β −B)−(C−1)e′)(−β∗

C
B−1e′)

=
λC

1− λE[Ser ]
β(λI − λe′β −B)−(C−1)(−B−1e′).

Substituting Equation (5.20) into the right-hand side of Equation (5.28), it becomes

βRC(I −R)−1e′ =
λC

1− λE[Ser ]
β(λI − λe′βe′ −B)−(C−1)(−B−1e′). (5.37)
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Thus, we have shown that the choice of p∗C in Equation (5.36) satisfies Equation (5.20), and it
will hold that

πUWC
0,0 = 1− λE[Ser ] = π0,0,

πUWC
i = (1− λE[Ser ])βλi(λI − λe′β −B)−i = πi, i = 1, 2, . . . , C − 1,

and
πUWC
C = (1− λE[Ser ])βλC(λI − λe′β −B)−(C−1)(−(B + p∗CB

′
0β)−1), (5.38)

which must satisfy πUWC
C e′ =

∑∞
i=C πie

′.
We close this subsection by confirming that we recover the results of Section 5.2 if we let

β = 1 and B = −µ (i.e., if Ser ∼ Exp(µ)). First of all, Equation (5.30) clearly simplifies to
β∗
C

= 1 = β. Therefore, Ser∗C and Ser have identical distributions, implying that E[Ser∗C ] =
E[Ser ] and Equation (5.36) simplifies to p∗C = λE[Ser ] = λ/µ = ρ. Thus, Equation (5.38)
reduces to

πUWC
C = (1− ρ)λC(λ− λ− (−µ))−(C−1)(−(−µ+ ρ(µ))−1)

= (1− ρ)ρC−1 λ

µ− λ = ρC ,

as required.

Remark 5.1. We can obtain the corresponding M/PH/1 FB model results by setting p∗C = 0
in the above analysis. From Equations (5.28) and (5.37), since

βRC−1λ(−B−1e′) = λCβ(λI − λe′β −B)−(C−1)(−B−1e′)

= (1− λE[Ser ])βRC(I −R)−1e′

< βRC(I −R)−1e′,

it follows that πFB
0,0 > π0,0, and hence by Equation (5.26),

πFB
i = πFB

0,0βλ
i(λI − λe′β −B)−i =

πFB
0,0

π0,0
· πi > πi, i = 1, 2, . . . , C − 1. (5.39)

Interestingly, since Equation (5.39) confirms that πFB
C−1 is proportional to πC−1, this implies

that we can express Equation (5.30) in terms of the FB steady-state probabilities to obtain

β∗
C

=
πC−1

πC−1e
′ =

πFB
C−1

πFB
C−1e

′ .

5.6 M/PH/1 +M Queue

Suppose now that individual customers not currently receiving service in the M/PH/1 queue
from Section 5.5 are at risk of reneging according to iid Exp(α) impatience timers (as in Section
1.2.6). This too may be modelled by a CTMC {(X(t), Y (t)), t ≥ 0} with the same interpreta-
tions as previously described. This CTMC is still a QBD whose infinitesimal generator takes
the form of Equation (5.10), with non-zero matrix blocks of the form

Q0,0 = −λ, Q0,1 = λβ,

Q1,0 = B′0, Q1,1 = B − λI, Q1,2 = λI,
Qi,i−1 = B′0β + (i− 1)αI, Qi,i = B − (λ+ (i− 1)α)I, Qi,i+1 = λI, i = 2, 3, . . . .
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As Qi,j now depend on i for j = i − 1, i, this is a level-dependent QBD, which requires the
analytical approach covered in Section 1.2.6 to solve for the steady-state probabilities. Recall
that this numerical algorithm in fact calculates the steady-state distribution of the FB model
approximation for a given truncation level C, and will converge to that of the IB model as
C →∞.

For the UWC model where we truncate at level C, we must modify our approach due to
the presence of reneging. In the M/PH/1 queue, the only way a customer could depart the
system was through the completion of a service, after which the time until the next observed
departure would have an iid distribution (i.e., a new service phase is always selected according
to the probability vector β). In the M/PH/1+M queue, while we reinitialize the service phase
after service completions, the current service phase is unchanged if we observe a departure due
to impatience. Therefore, the random time intervals between observed departures are no longer
iid and we cannot make a similar breakdown of a level-C busy period as in Equation (5.34).
That is, we are unable to directly obtain the expected number of observed departures from the
expected duration of a level-C busy period. Recall that in the M/M/1 + M queue, however,
this was not a concern due to the existence of only a single service phase.

5.6.1 M/PH/1 +M Queue: UWC Version 1

C−2, 1 C−1, 1 C, 1· · ·

· · ·

[(C−1)α+B1,0β1]

×(1−p∗C,1)

λ

(C−2)α+B1,0β1

λ

C−2, 2 C−1, 2 C, 2[(C−1)α+B2,0β2]

×(1−p∗C,2)

λ

(C−2)α+B2,0β2

λ

B2,1+

B2,0β1

×p∗C,2

B1,2+

B1,0β2

×p∗C,1

B2,1 B1,2B2,1 B1,2

B
2,0 β

1

×
(1−

p ∗
C
,2 )

B
1,
0
β 2

×(1
−
p
∗
C
,1
)

B
2,0 β

1

B
1,
0
β 2

[(C − 1)α

+B1,0β1]

×p∗C,1

[(C − 1)α

+B2,0β2]

×p∗C,2

Figure 5.1: State transition diagram near truncation level C for a UWC model of a M/PH/1+
M queue with two service phases.

We now propose two versions of the UWC approximation to tackle this harder problem.
For UWC version 1, we obtain an analytic approximation that is comparable in computational
complexity to our previous results, in that it does not require substantial additional compu-
tations relative to analyzing the FB model. To illustrate, we consider the UWC model of a
M/PH/1 + M queue having two service phases. We visualize the state transition diagram of
this model for states near level C in Figure 5.1, where we denote the absorption rate out of the
jth phase of Ser by Bj,0 = (B′0)j . While in state (C, 1), an observed departure will decrease the
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queue length with probability 1− p∗C,1, the CTMC will remain in state (C, 1) with probability

(C − 1)α+B1,0β1

(C − 1)α+B1,0
· p∗C,1,

while the CTMC will transition to state (C, 2) with probability

B1,0β2

(C − 1)α+B1,0
· p∗C,1.

That is, the UWC approximation will respond to departures in the same way in this model as
in a M/M/1 +M model with service rate B1,0, with the exception of service completions that
reinitialize the service phase in a different phase.

As C → ∞, the process of observed customer departures while at level C will become
dominated by reneging, reducing the probability of an observed departure that would change
the service phase but not decrement the queue length. Thus, in terms of the UWC behaviour,
we approximate being in state (C, j) as if in state C of a M/M/1 +M model with service rate
µ equal to Bj,0. In the M/M/1 + M queue, the probability p∗C in Equation (5.8) was optimal
for estimating the probability of requiring at least one more observed departure to lower the
level of the CTMC to C − 1. Therefore, upon observing a departure while in state (C, j), we
elect to let

p∗C,j = 1−
( ∞∑
k=1

λk−1(Bj,0 + (C − 1)α)∏k−1
n=0(Bj,0 + (C − 1 + n)α)

)−1

, j = 1, 2, . . . , b, (5.40)

be the probability of having one or more unobserved customers present in the system.
In addition to service completions that result in a change of service phase but not a reduction

in the number of observed customers, there is an independent competing Exp(B1,2) timer whose
completion would result in a transition to state (C, 2). When transitioning to (C, 2) in either
case, transitioning from (C, 1) is treated in an identical fashion as transitioning from (C−1, 2),
and the model is now subject to UWC probability p∗C,2. Thus, any information concerning how
long the system has remained in level C is effectively lost. We may interpret this as removing
any unseen waiting customers present in the system at that point and starting a new level-C
busy period in an M/M/1+M queue with service rate B2,0. This intuition generalizes logically
to any number of service phases, b. Therefore, while p∗C,1, p

∗
C,2, . . . , p

∗
C,b will shift some steady-

state probability mass to the truncation level C, they will underestimate the true expected
number of required customer departures to transition to level C − 1 due to the removal of
unseen waiting customers when the service phase (but not the number of observed customers)
changes. While the gain in accuracy is not as great as in the simpler models, it will still
outperform the standard FB model.

Additionally, unlike in Section 5.5, the equations for πUWC
i will recursively depend on the

form of QUWC
C,C through

RC = −QC−1,C(QC,C)−1,

and
Rj = −Qj−1,j(Qj,j +Rj+1Qj+1,j)

−1, j ∈ Z+,

whereas previously they only depended on the value of πUWC
C e′ through the normalization

condition in Equation (5.27) used to obtain πUWC
0,0 . Therefore, as we will see in Tables 5.1
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and 5.2, the less precise UWC approximation used in QUWC
C,C and QUWC

C,C−1 may cause slight
irregularities in levels near the buffer, where the dependency on RC is largest. However, these
irregularities within a given level vanish as we increase C and the distance between that level
and the truncation level grows.

However, note that if B0,1 = B0,2 = · · · = B0,b, then p∗C,1 = p∗C,2 = · · · = p∗C,b and no
accuracy in the UWC approximation is lost. These choices of p∗C,j will also reduce to the p∗C of
the M/M/1+M UWC model if we assume exponentially distributed service times, as required.
Moreover, as the proportion of departures due to reneging will increase and fewer instances of
lost unobserved customers will occur as we increase C, the accuracy of the UWC approximation
itself will also improve with larger C. Thus, like the other UWC models, the UWC steady-state
distribution will converge to the IB steady-state distribution as C →∞.

5.6.2 M/PH/1 +M Queue: UWC Version 2

We consider a second version of UWC for this particular model. Rather than applying results
from a simpler model, we apply phase-type theory to calculate the PMF of N∗C directly, from
which we can obtain its expected value directly and use it to set a single UWC probability p∗C .
As in the analysis of Section 5.5, the initial service phase of the level-C busy period matters,
and like Equation (5.30) we would find that

β∗
C

=
πC−1

πC−1e
′ .

Unfortunately, we do not have a precise analytic solution of πC−1 from the IB model. We
did, however, remark that for the M/PH/1 model, these IB steady-state probabilities may be
replaced by those from the FB model with no loss of accuracy. While this is not the case for
the M/PH/1 + M model, we still propose to use πFB

C−1 in place of πC−1, and let us denote

this approximated initial probability row vector by β̂
∗
. As we will see in Tables 5.1 and 5.2,

while we do not end up obtaining exact steady-state probabilities for levels below C, this
approximation works very well. Note that this does imply that we must calculate the steady-
state probabilities of the FB model prior to those of this version of the UWC model, effectively
doubling our computational requirement (but still not requiring us to expand the considered
state space).

Reusing D to denote the level of truncation for a FB model approximation, we may model
the number of customers beyond level C (up until the next observed departure) by an absorbing
CTMC having infinitesimal generator matrix

Q =

[
QTT QTA

0 I

]
,

where we let ∆ = B − (λ+ (C − 1)α)Ib, ∆A = B′0β + (C − 1)αIb,

QTT =



0 1 2 · · · D − 1 D

0 ∆ λIb 0 · · · 0 0

1 αIb ∆− αIb λIb
. . . 0 0

2 0 2αIb ∆− 2αIb
. . . 0 0

...
...

. . .
. . .

. . .
...

...
D − 1 0 0 0 · · · ∆− (D − 1)αIb λIb
D 0 0 0 · · · DαIb ∆− (Dα− λ)Ib


,

169



and

QTA =



0∗ 1∗ · · · (D − 2)∗ (D − 1)∗ −1∗

0 0 0 · · · 0 0 ∆Ae
′

1 ∆A 0 · · · 0 0 0′b

2 0 ∆A
. . . 0 0 0′b

...
...

. . .
. . .

...
...

...
D − 1 0 0 · · · ∆A 0 0′b
D 0 0 · · · 0 ∆A 0′b


.

This CTMC applies a FB approximation to the unobserved portion of the queue (considering
an effective total queue length C +D). If it is absorbed into state (i∗, j), i ∈ {0, 1, . . . , D− 1},
j ∈ {1, 2, . . . , b}, then the queue length does not decrease after the next observed departure.
After an unobserved customer immediately joins the observed portion of the queue, there are
i unobserved customers in the system, and the next service time begins in phase j. If it is
absorbed into state −1∗, then there were no unobserved customers and the observed queue
length will decrement.

Given the initial probability row vector β̂
∗
, if we let D∗ be a set of dummy absorption states

(which cannot actually be observed) and define

Q∗TA =



0∗ 1∗ · · · (D − 2)∗ (D − 1)∗ D∗

0 0 0 · · · 0 0 0′b0b
1 ∆A 0 · · · 0 0 0

2 0 ∆A
. . . 0 0 0

...
...

. . .
. . .

...
...

...
D − 1 0 0 · · · ∆A 0 0
D 0 0 · · · 0 ∆A 0


,

while we let the right-most column of QTA be denoted by

Q′−1∗
=

[
∆Ae

′

0′

]
,

then applying the absorbing CTMC theory from the Appendix, we know that by Equation
(A.17), the probability that the queue length will not decrement after the first observed depar-
ture is

P (N∗C ≥ 1) =
[
β̂
∗

0
]

(−Q−1
TT )Q∗TAe

′,

and the probability that the length will decrement is

P (N∗C = 0) =
[
β̂
∗

0
]

(−Q−1
TT )Q′−1∗

.

In fact, we can use the knowledge of the absorption state to initialize the time until the next
observed departure without losing track of the number of unobserved customers. That is,

P (N∗C = n) =
[
β̂
∗

0
] [

(−Q−1
TT )Q∗TA

]n
(−Q−1

TT )Q′−1∗
, n ∈ N.

From here, we evaluate E[N∗C ] and select a UWC probability that equates

E[N∗C ] =
p∗C

1− p∗C
,
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or equivalently,

p∗C,j = p∗C =
E[N∗C ]

1 + E[N∗C ]
, j = 1, 2, . . . , b.

Note that this is an approximation for a given choice of D ∈ Z+. As such, a large enough D
should be selected such that this FB approximation approaches that of the true IB model. For
the calculations within this subsection, we used D = 40.

5.6.3 M/PH/1 +M Queue: Comparing UWC Versions

Defining p∗
C

= (p∗C,1, p
∗
C,2, . . . , p

∗
C,b) and letting D = C in the level-dependent QBD algorithm,

we let the non-zero QBD blocks of the UWC model be given by QUWC
i,j = Qi,j , i = 0, 1, . . . , C−1,

j = 0, 1, . . . , C,

QUWC
C,C−1 = (I − diag(p∗

C
))QC,C−1

= (I − diag(p∗
C

))(B′0β + (C − 1)αI), (5.41)

and

QUWC
C,C = QC,C + λI + diag(p∗

C
)QC,C−1

= B + diag(p∗
C

)B′0β − (I − diag(p∗
C

))(C − 1)αI. (5.42)

In Tables 5.1 and 5.2, we illustrate the relative efficiency gains of both versions of this UWC
model over the FB model. We apply the level-dependent QBD algorithm to approximate the
IB model steady-state distribution π using a truncation level of 1000, as well as to calculate
πUWC and πFB for C = 3, 7. We let λ = 0.9, α = 0.1, and consider the following service time
distributions:

• (E2) Erlang-2 with E[Ser ] = 1 and Var(Ser) = 0.5:

Ser ∼ PH2

(
β = (1, 0), B =

[
−2 2
0 −2

])
.

• (Ef2) Erlang-2 with feedback with E[Ser ] = 1 and Var(Ser) = 0.75:

Ser ∼ PH2

(
β = (1, 0), B =

[
−4 4
2 −4

])
.

• (Cf
2) Coxian-2 with feedback with E[Ser ] = 1, Var(Ser) = 1.5:

Ser ∼ PH2

(
β = (0.5, 0.5), B =

[
−
(

8+4
√

3
7+4
√

3

)
4+2
√

3
7+4
√

3

4 + 2
√

3 −(8 + 4
√

3)

])
.

• (H2) Hyperexponential-2 with E[Ser ] = 1 and Var(Ser) = 2:

Ser ∼ PH2

(
β = (0.5, 0.5), B =

[
−(2 +

√
2) 0

0 −(2−
√

2)

])
.
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While it is clear that we do not recover πUWC
i = πi, i = 0, 1, . . . , C − 1, UWC version 2

results in approximations that are very close and note that (for a given C) UWC version 1 still
gives a better overall fit of the true steady-state distribution than the FB model at these levels.
Letting E[X] denote the expected queue length at steady state for a given model, UWC version
2 provides the best estimates at all values of C followed by version 1 and then the FB model
(note that they will all converge to E[XIB] as C → ∞). The UWC probability vectors p∗

C
are

also provided. Note that these probabilities are identical for version 1 under E2 and Ef2 service
time distributions, since they have equal column vectors of absorption rates.

For UWC version 1, if we compare the four service time distributions and use the ap-
proximated IB model empty queue probabilities π0 as a benchmark, this UWC approximation
appears to work the best for H2. Despite having the largest π0, its πUWC

0 s have the smallest
amount of error. This is intuitive, as H2 does not permit service phase transitions without
service completions (and hence, it acts most similar to the exponential distribution out of those
considered). In contrast, the E2 distribution will always observe one such transition, while the

Cf
2 and Ef2 distributions will have an expected value of two and four phase transitions between

service completions, respectively.
The error observed in πUWC

0 for the other three distributions when C = 7 is comparable.

For smaller C, Cf
2 has the smallest error and the largest π0 of the remaining three service

time distributions, despite the fact that it observes twice as many phase transitions on average,
relative to E2. Therefore, the presence of absorbing rates equalling zero (e.g., B1,0 = 0) also
appears to have a slight negative impact on the efficacy of UWC. Finally, since E[XUWC] at

C = 3 for E2 is larger than that for Ef2 , despite Ef2 having the larger E[XIB], we can conclude

that the E2 has a slight edge in UWC performance over Ef2 due to the latter’s larger number
of expected phase transitions.

We must also point out that it is possible to observe πUWC
i,j < πi,j . For example, at i = 6,

j = 2, C = 7, and H2 service, we have πUWC
4,2 = 0.0408 while π4,2 = 0.0419. Being only one

level below the truncation level, this is an illustration of the possible irregularities mentioned
previously. However, as if we further increase C, the distance between level 6 and the truncation
increases and we observe πUWC

4,2 = 0.0418 for C = 8 and πUWC
4,2 = 0.0419 for C = 9. In either of

these cases, UWC version 1 provides a closer estimate than FB, so despite not being perfect, it
would clearly be preferable to use over FB for any of these service time distributions at a given
C.

For UWC version 2, the performance for either distribution is notably better than that of
version 1. Interestingly, its worst performance appears to be for the H2 distribution, in contrast
to version 1. It is also possible to observe underestimation of the true steady-state probabilities
(e.g., i = 0, C = 3, H2 service). If one can afford the extra computation time, it is clearly
preferable to use version 2. However, note that its gains relative to version 1 are much smaller
for the larger value of C, where a larger proportion of observed departures during a level-C
busy period are caused by reneging. Note also that in the case of exponential service, both
versions of UWC will in fact result in the same optimal p∗C , and so the analytic formula should
be used.
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5.7 N-Queue M/PH/1 +M Exhaustive Polling System

5.7.1 Model Assumptions

We consider a system of N queues, Q1, Q2, . . . , QN , which are visited in a cyclic order by a
lone server. The server follows an exhaustive service discipline such that once the server visits
a queue, they do not leave until it has emptied. If the server arrives to a queue and finds it
to be empty, they immediately move on to the next queue. Let a class-i switch-in time denote
the amount of time that it takes the server to switch from Qi−1 to Qi (where Q0 represents
QN ). We assume that switch-in times are independent, and class-i switch-in times follow a
PHsi(γi, Si) distribution with column vector of absorption rates S0,i = −Sie′, i = 1, 2, . . . , N .
Furthermore, we assume that switch-in times are strictly positive in duration (i.e., γ

i
e′ = 1).

Each Qi has its own class of customers who arrive according to independent Poisson pro-
cesses with parameters λi, i = 1, 2, . . . , N . Class-i customers are served according to a FCFS
order within their queue, having independent service time requirements Ser i ∼ PHbi(βi, Bi)
with column vector of absorption rates B0,i = −Bie′. Additionally, class-i customers are as-
sumed to have independent Exp(αi) impatience timers, and are at risk of reneging up until they
reach the server. We may set αi to be zero, in which case class-i customers are patient and are
not at risk of reneging.

We let the truncation of Qi be at queue length Ci <∞. Define p∗i,j as the UWC probability
applied to class i (at queue length Ci) when the server is at Qi and is currently in phase j of
a customer’s service time distribution, j = 1, 2, . . . , bi. Here, for ease of notation, we suppress
the dependency of p∗i,j on Ci. When the server is not currently visiting Qi and there are Ci
observed class-i customers in Qi, we use UWC probability p∗i,0.

For now, suppose that αi > 0, i = 1, 2, . . . , N . If the server is not at Qi, then Qi acts as an
M/M/∞ queue with Ser ∼ Exp(αi). It is therefore a logical choice to apply Equation (5.9),
and set

p∗i,0 = 1− (λi/αi)
Ci

Ci!

(
eλi/αi −

Ci−1∑
k=0

(λi/αi)
k

k!

)−1

.

For p∗i,j , j = 1, 2, . . . , bi, we elect to use analogues of UWC versions 1 and 2 from Section 5.6.
When applying version 1, we use Equation (5.40) and set

p∗i,j = 1−
( ∞∑
k=1

λk−1(Bj,0,i + (Ci − 1)αi)∏k−1
n=0(Bj,0,i + (Ci − 1 + n)αi)

)−1

, j = 1, 2, . . . , bi, (5.43)

where Bj,0,i = (B0,i)j .
In order to apply version 2, we require an initial probability vector for the first service in the

level-C busy period for every class i = 1, 2, . . . , N . Following a similar logic to what was used
to derive Equation (5.29), the steady-state probability of the IB model initializing a level-Ci
busy period in service phase y, y = 1, 2, . . . , bi, is∑

n1,...,ni−1,ni+1,...,nN
(λiπ

IB
n1,...,ni−1,Ci−1,ni+1,...,nN ,2i,y

+πIB
n1,...,ni−1,Ci,ni+1,...,nN ,2i−1S

′
0,iβi,y)∑

n1,...,ni−1,ni+1,...,nN
(λiπIB

n1,...,ni−1,Ci−1,ni+1,...,nN ,2i
e′+πIB

n1,...,ni−1,Ci,ni+1,...,nN ,2i−1S
′
0,i)

,

where βi,y = (β
i
)y. We now define the corresponding modified phase-type initial probability

row vector

β∗
i

=

∑
n1,...,ni−1,ni+1,...,nN

(λiπ
IB
n1,...,ni−1,Ci−1,ni+1,...,nN ,2i

+πIB
n1,...,ni−1,Ci,ni+1,...,nN ,2i−1S

′
0,iβi)∑

n1,...,ni−1,ni+1,...,nN
(λiπIB

n1,...,ni−1,Ci−1,ni+1,...,nN ,2i
e′+πIB

n1,...,ni−1,Ci,ni+1,...,nN ,2i−1S
′
0,i)

. (5.44)
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As we do not in general know the true IB steady-state probabilities, we again approximate this
by using FB model steady-state probabilities and refer to the approximated vector as β̂

∗
i
. Given

these probability vectors, we repeat the numerical procedure for UWC version 2 for every class
to obtain UWC probabilities p∗i , and then let each p∗i,j = p∗i , j = 1, 2, . . . , bi, i = 1, 2, . . . , N .
We will consider the possibility of one or more queues having patient customers (i.e., αi = 0)
in Section 5.7.4.

5.7.2 State Space and Steady-State Probabilities

This N -queue system may be modelled by the CTMC

{(X1(t), X2(t), . . . , XN (t), L(t), Y (t)), t ≥ 0},

where Xi(t) ∈ {0, 1, . . . , Ci} is the number of class-i customers in the system, i = 1, 2, . . . , N ,
L(t) ∈ {1, 2, . . . , 2N−1, 2N} denotes the location of the server, where L(t) = 2i−1 if the server
is conducting a class-i switch-in or L(t) = 2i if they are serving class i, such that

L(t) ∈ ΩL(X1(t), X2(t), . . . , XN (t)) =

N⋃
i=1

ΩL(Xi(t)),

where we define for i = 1, 2, . . . , N ,

ΩL(Xi(t)) =

{
{2i− 1} , if Xi(t) = 0,

{2i− 1, 2i} , if Xi(t) > 0,

and Y (t) tracks the current service or switch-in phase, taking possible values depending on L(t)
as follows:

Y (t) ∈ ΩY (L(t)) =



{1, 2, . . . , s1} , if L(t) = 1,

{1, 2, . . . , b1} , if L(t) = 2,
...

{1, 2, . . . , si} , if L(t) = 2i− 1,

{1, 2, . . . , bi} , if L(t) = 2i,
...

{1, 2, . . . , sN} , if L(t) = 2N − 1,

{1, 2, . . . , bN} , if L(t) = 2N.

Letting s =
∑N

i=1 si, this CTMC has

s

N∏
i=1

(Ci + 1) +

N∑
j=1

bj

N∏
i=1

(Ci + 1− δi,j) (5.45)

total states.

Let πn1,n2,...,nN ,l,y be the steady-state probability of observing the CTMC in state (n1, n2, . . . , nN , l, y).
As we are truncating Qi at Ci, i = 1, 2, . . . , N , these are not IB model probabilities, but rather
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UWC model probabilities by default, or FB model probabilities if we let every p∗i,j = 0. For
i = 1, 2, . . . , N , we organize them into ordered row vectors as follows:

πn1,n2,...,nN ,l
=

{
(πn1,n2,...,nN ,l,1, πn1,n2,...,nN ,l,2, . . . , πn1,n2,...,nN ,l,si) , if l = 2i− 1,

(πn1,n2,...,nN ,l,1, πn1,n2,...,nN ,l,2, . . . , πn1,n2,...,nN ,l,bi) , if l = 2i, ni ≥ 1.

Next, these vectors are further sorted into

πn1,n2,...,nN
= (π[1]

n1,n2,...,nN
, π[2]

n1,n2,...,nN
, . . . , π[N ]

n1,n2,...,nN
),

where

π[i]
n1,n2,...,nN

=

{
πn1,n2,...,nN ,2i−1 , if ni = 0,

(πn1,n2,...,nN ,2i−1, πn1,n2,...,nN ,2i
) , if ni > 0.

We finally group these vectors into probability row vectors

πn1
= (πn1,0, πn1,1, . . . , πn1,C2

),

πn1,n2
= (πn1,n2,0, πn1,n2,1, . . . , πn1,n2,C3

),

...

πn1,n2,...,ni = (πn1,n2,...,ni,0, πn1,n2,...,ni,1, . . . , πn1,n2,...,ni,Ci+1
), i = 1, 2, . . . , N − 1,

such that π = (π0, π1, . . . , πC1
) is the combined probability row vector having C1 + 1 levels.

We can solve for these probabilities using the QBD specified in Section 5.7.3, applying the
algorithm outlined in Section 1.2.6.

5.7.3 Infinitesimal Generator Matrix

Letting the value of X1(t) denote the level of the process, we now construct the generator
blocks, Qi,j , which contain all transition probabilities that result in the level changing from i
to j. To begin, we define

λn1,...,nN =

N∑
i=1

λi(1− δni,Ci),

a[m,n]
n1,...,nN

=

n∑
i=m

(si + (1− δni,0)bi), 1 ≤ m ≤ n ≤ N,

p∗
i

= (p∗i,1, p
∗
i,2, . . . , p

∗
i,bi

),

p∗i,ni,l,y =


p∗i,0 , if ni = Ci, l 6= 2i,

p∗i,y , if ni = Ci, l = 2i,

0 , otherwise,

αn1,...,nN ,l,y =

N∑
i=1

αi(ni − δl,2i)(1− p∗i,ni,l,y),

αn1,...,nN ,l
=

{
(αn1,...,nN ,l,1, αn1,...,nN ,l,2, . . . , αn1,...,nN ,l,si) , if l = 2i− 1,

(αn1,...,nN ,l,1, αn1,...,nN ,l,2, . . . , αn1,...,nN ,l,bi) , if l = 2i,
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and
B∗i,ni = Bi + δni,Cidiag(p∗

i
)B′0,iβi, i = 1, 2, . . . , N.

We first construct blocks to track movements in XN (t), after which we will recursively build
outwards to track all queue lengths. We achieve this by modelling changes of Xj(t) for given
values of X1(t), X2(t), . . . , Xj−1(t) using a QBD structure. These will be nested within each
other, with the innermost QBDs describing XN (t). For ni = 0, 1, . . . , Ci, i = 1, 2, . . . , N − 1,
we define

Q
[N ]
n1,...,nN−1 =



0 1 2 · · · CN−1 CN

0 ∆n1,...,nN−1,0 (UD)
[N ]
n1,...,nN−1,0

0 · · · 0 0

1 (LD)
[N ]
n1,...,nN−1,1

∆n1,...,nN−1,1 (UD)
[N ]
n1,...,nN−1,1

. . . 0 0

2 0 (LD)
[N ]
n1,...,nN−1,2

∆n1,...,nN−1,2
. . . 0 0

...
...

. . .
. . .

. . .
...

...
CN−1 0 0 0 · · · ∆n1,...,nN−1,cN−1 (UD)

[N ]
n1,...,nN−1,cN−1

CN 0 0 0 · · · (LD)
[N ]
n1,...,nN−1,cN ∆n1,...,nN−1,cN


.

Letting

ζn1,...,nN ,l =

{
Sj − λn1,...,nN Isj − diag(αn1,...,nN ,2j−1) , if l = 2j − 1,

B∗j,nj − λn1,...,nN Ibj − diag(αn1,...,nN ,2j
) , if l = 2j,

the main diagonal blocks of Q
[N ]
n1,...,nN−1 are

∆n1,...,nN−1,nN =


∆

[1]
n1,...,nN

∆
[2]
n1,...,nN

...

∆
[N ]
n1,...,nN

 ,
where

∆[1]
n1,...,nN

=



[
ζn1,...,nN ,1 S′0,1γ2

0′s10
a
[2,N ]
n1,...,nN

−s2

]
, if n1 = 0,

 ζn1,...,nN ,1 S′0,1β1
0′s10

a
[2,N ]
n1,...,nN

0′b10s1 ζn1,...,nN ,2 0′b10
a
[2,N ]
n1,...,nN

 , if n1 = 1, 2, . . . , C1,

while for j = 2, 3 . . . , N − 1,

∆
[j]
n1,...,nN =



[
0′sj0a[1,j−1]

n1,...,nN

ζn1,...,nN ,2j−1 S′0,jγj+1
0′sj0a[j+1,N ]

n1,...,nN
−sj+1

]
, if nj = 0,

 0′sj0a[1,j−1]
n1,...,nN

ζn1,...,nN ,2j−1 S′0,jβj 0′sj0a[j+1,N ]
n1,...,nN

0′bj0a[1,j−1]
n1,...,nN

0′bj0sj ζn1,...,nN ,2j 0′bj0a[j+1,N ]
n1,...,nN

 , if nj = 1, 2, . . . , Cj ,

and

∆[N ]
n1,...,nN

=



[
S′0,Nγ1

0′sN 0
a
[1,N−1]
n1,...,nN

−s1
ζn1,...,nN ,2N−1

]
, if nN = 0,

 0′sN 0
a
[1,N−1]
n1,...,nN

ζn1,...,nN ,2N−1 S′0,NβN

0′bN 0
a
[1,N−1]
n1,...,nN

0′bN 0sN ζn1,...,nN ,2N

 , if nN = 1, 2, . . . , CN .
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The upper diagonal blocks of Q
[N ]
n1,...,nN−1 are

(UD)[N ]
n1,...,nN−1,nN

=
[
λNIa[1,N−1]

n1,...,nN
+sN

0′
a
[1,N−1]
n1,...,nN

+sN
0bN

]
for nN = 0 and

(UD)[N ]
n1,...,nN−1,nN

= λNIa[1,N ]
n1,...,nN

for nN = 1, 2, . . . , CN − 1, and the lower diagonal blocks are

(LD)
[N ]
n1,...,nN−1,nN =


αN (1−δnN ,CNp∗N,0)Is1 0′s10

a
[1,N−1]
n1,...,nN

+sN−s1
0′
a
[1,N−1]
n1,...,nN

+sN−s1
0s1 αN (1−δnN ,CNp∗N,0)I

a
[1,N−1]
n1,...,nN

+sN−s1
(IbN−δnN ,CNdiag(p∗

N
))B′0,Nγ1

0′bN 0
a
[1,N−1]
n1,...,nN

+sN−s1


for nN = 1 and

(LD)
[N ]
n1,...,nN−1,nN =

 nNαN (1−δnN ,CNp∗N,0)I
a
[1,N−1]
n1,...,nN

+sN
0′
a
[1,N−1]
n1,...,nN

+sN
0bN

0′bN 0
a
[1,N−1]
n1,...,nN

+sN
(IbN−δnN ,cNdiag(p∗

N
))((nN−1)αNIbN +B′0,NβN )


for nN = 2, 3, . . . , CN .

We now build the QBD structured blocks that are needed to track changes in Xj(t), j =
2, 3, . . . , N − 1. For ni = 0, 1, . . . , Ci, i = 1, 2, . . . , j − 1, we define

Q
[j]
n1,...,nj−1 =



0 1 2 · · · Cj − 1 Cj

0 Q
[j+1]
n1,...,nj−1,0

(UD)
[j]
n1,...,nj−1,0

0 · · · 0 0

1 (LD)
[j]
n1,...,nj−1,1

Q
[j+1]
n1,...,nj−1,1

(UD)
[j]
n1,...,nj−1,1

. . . 0 0

2 0 (LD)
[j]
n1,...,nj−1,2

Q
[j+1]
n1,...,nj−1,2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

Cj − 1 0 0 0 · · · Q
[j+1]
n1,...,nj−1,cj−1 (UD)

[j]
n1,...,nj−1,cj−1

Cj 0 0 0 · · · (LD)
[j]
n1,...,nj−1,cj Q

[j+1]
n1,...,nj−1,cj


.

Note how the main diagonal blocks of Q
[j]
n1,...,nj−1 are simply Q

[j+1]
n1,...,nj−1,nj , implying that these

must be constructed recursively, starting with our original Q
[N ]
n1,...,nN−1 blocks. The upper and

lower diagonal blocks make use of a similar recursion in their definitions. The upper diagonal

blocks are (UD)
[j]
n1,...,nj−1,nj , where

(UD)
[j]
n1,...,nj+k−1,nj+k =


(UD)

[j]
n1,...,nj+k,0

0 · · · 0

0 (UD)
[j]
n1,...,nj+k,1

. . . 0
...

. . .
. . .

...

0 0 · · · (UD)
[j]
n1,...,nj+k,Cj+k+1

 (5.46)

for k = 0, 1, . . . , N − j − 1, with

(UD)[j]
n1,...,nN−1,nN

=

 λjIa[1,j−1]
n1,...,nN

+sj
0′
a
[1,j−1]
n1,...,nN

+sj
0bj 0′

a
[1,j−1]
n1,...,nN

+sj
0
a
[j+1,N ]
n1,...,nN

0′
a
[j+1,N ]
n1,...,nN

0
a
[1,j−1]
n1,...,nN

+sj
0′
a
[j+1,N ]
n1,...,nN

0bj λjIa[j+1,N ]
n1,...,nN


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for nj = 0 and

(UD)[j]
n1,...,nN−1,nN

= λjIa[1,N ]
n1,...,nN

for nj = 1, 2, . . . , Cj − 1. Similarly, the lower diagonal blocks are (LD)
[j]
n1,...,nj−1,nj , where

(LD)
[j]
n1,...,nj+k−1,nj+k =


(LD)

[j]
n1,...,nj+k,0

0 · · · 0

0 (LD)
[j]
n1,...,nj+k,1

. . . 0
...

. . .
. . .

...

0 0 · · · (LD)
[j]
n1,...,nj+k,Cj+k+1

 (5.47)

for k = 0, 1, . . . , N − j − 1, with

(LD)
[j]
n1,...,nN−1,nN =


αj(1−δnj ,Cjp∗j,0)I

a
[1,j−1]
n1,...,nN

+sj
0′
a
[1,j−1]
n1,...,nN

+sj
0sj+1

0′
a
[1,j−1]
n1,...,nN

+sj
0
a
[j+1,N ]
n1,...,nN

−sj+1

0′bj0a[1,j−1]
n1,...,nN

+sj
(Ibj−δnj ,Cjdiag(p∗

j
))B′0,jγj+1

0′bj0a[j+1,N ]
n1,...,nN

−sj+1

0′sj+1
0
a
[1,j−1]
n1,...,nN

+sj
αj(1−δnj ,Cjp∗j,0)Isj+1 0′sj+1

0
a
[j+1,N ]
n1,...,nN

−sj+1

0′
a
[j+1,N ]
n1,...,nN

−sj+1

0
a
[1,j−1]
n1,...,nN

+sj
0′
a
[j+1,N ]
n1,...,nN

−sj+1

0sj+1
αj(1−δnj ,Cjp∗j,0)I

a
[j+1,N ]
n1,...,nN

−sj+1


for nj = 1 and

(LD)
[j]
n1,...,nN−1,nN =

njαj(1−δnj ,Cjp∗j,0)I
a
[1,j−1]
n1,...,nN

+sj
0′
a
[1,j−1]
n1,...,nN

+sj
0bj 0′

a
[1,j−1]
n1,...,nN

+sj
0
a
[j+1,N ]
n1,...,nN

0′bj0a[1,j−1]
n1,...,nN

+sj
(Ibj−δnj ,Cjdiag(p∗

j
))((nj−1)αjIbj+B

′
0,jβj) 0′bj0a[j+1,N ]

n1,...,nN

0′
a
[j+1,N ]
n1,...,nN

0
a
[1,j−1]
n1,...,nN

+sj
0′
a
[j+1,N ]
n1,...,nN

0bj njαj(1−δnj ,Cjp∗j,0)I
a
[j+1,N ]
n1,...,nN


for nj = 2, 3, . . . , Cj .

Finally, the complete infinitesimal generator is simply the QBD modelling changes in X1(t),
namely

Q =



0 1 2 · · · C1−1 C1

0 Q
[2]
0 (UD)

[1]
0 0 · · · 0 0

1 (LD)
[1]
1 Q

[2]
1 (UD)

[1]
1

. . . 0 0

2 0 (LD)
[1]
2 Q

[2]
2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C1−1 0 0 0 · · · Q
[2]
C1−1 (UD)

[1]
C1−1

C1 0 0 0 · · · (LD)
[1]
C1

Q
[2]
C1


,

where we again use Equations (5.46) and (5.47), with

(UD)[1]
n1,...,nN−1,nN

=

 λ1Is1 0′s10b1 0′s10
a
[2,N ]
n1,...,nN

0′
a
[2,N ]
n1,...,nN

0s1 0′
a
[2,N ]
n1,...,nN

0b1 λ1Ia[2,N ]
n1,...,nN


for n1 = 0 and

(UD)[1]
n1,...,nN−1,nN

= λ1Ia[1,N ]
n1,...,nN
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for n1 = 1, 2, . . . , C1 − 1, and

(LD)
[1]
n1,...,nN−1,nN =


α1(1−δn1,C1p

∗
1,0)Is1 0′s10s2 0′s10

a
[2,N ]
n1,...,nN

−s2
0′b10s1 (Ib1−δn1,C1diag(p∗

1
))B′0,1γ2

0′b10
a
[2,N ]
n1,...,nN

−s2
0′s20s1 α1(1−δn1,C1p

∗
1,0)Is2 0′s20

a
[2,N ]
n1,...,nN

−s2
0′
a
[2,N ]
n1,...,nN

−s2
0s1 0′

a
[2,N ]
n1,...,nN

−s2
0s2 α1(1−δn1,C1p

∗
1,0)I

a
[2,N ]
n1,...,nN

−s2


for n1 = 1 and

(LD)
[1]
n1,...,nN−1,nN =

n1α1(1−δn1,C1p
∗
1,0)Is1 0′s10b1 0′s10

a
[2,N ]
n1,...,nN

0′b10s1 (Ib1−δn1,C1diag(p∗
1
))((n1−1)α1Ib1 +B′0,1β1

) 0′b10
a
[2,N ]
n1,...,nN

0′
a
[2,N ]
n1,...,nN

0s1 0′
a
[2,N ]
n1,...,nN

0b1 n1α1(1−δn1,C1p
∗
1,0)I

a
[2,N ]
n1,...,nN


for n1 = 2, 3, . . . , C1.

5.7.4 Model with Patient Customers

If we suppose there is at least one class of patient customers (i.e., αi = 0 for at least one
i = 1, 2, . . . , N), then without loss of generality we can label this class as class 1 and shift the
indices of all other queues to maintain the same cyclic polling order. By selecting the queue
length of this class to represent the level of the process, the QBD in Section 5.7.3 becomes
level independent. This allows us to set C1 = ∞ and have an infinite buffer for just that
class, resulting in a vector of steady-state probabilities π = (π0, π1, . . .) where the πi’s are as
previously defined.

Suppose now that we have one or more classes with patient customers other than class
1. When a class has patient customers, this should impact the choice of UWC probabilities.
Firstly, as departures from such a class are impossible to observe when the server is not at
their queue, the value of p∗i,0 does not matter so we simply set p∗i,0 = 0. For when the server
is at Qi, we again consider two different versions of UWC. The first version simply lets αi = 0
in Equation (5.43), which will provide a safe choice of p∗i,j , j = 1, 2, . . . , bi, but it may not be
optimal. As we observed in Section 5.3, this simplifies to

p∗i,j = 1−
(

1

1− λi/Bj,0,i

)−1

=
λi

Bj,0,i
, j = 1, 2, . . . , bi.

Note that this is only defined for j where Bj,0,i > 0 (i.e., when it is possible to observe a service
completion from phase j). If Bj,0,i = 0, we can simply let p∗i,j = 1 by convention, as it will be
impossible to observe class-i customer departures (and hence, queue length decrements) from
states where this UWC probability is relevant.

For our second version of UWC for patient customers, we aim to approximate the UWC
probability from Section 5.5 where we remarked that

β∗
C

=
πC−1

πC−1e
′ =

πFB
C−1

πFB
C−1e

′ .
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As in Section 5.7.1, we use the FB model steady-state probabilities to calculate β̂
∗
i

by replacing
the IB model probabilities in Equation (5.44). Applying Equation (5.36), our second version of
UWC probabilities for class i when αi = 0 is

p∗i,j =
−λiβ̂

∗
i
B−1
i e′

1− λi(β̂
∗
i
− β

i
)B−1

i e′
, j = 1, 2, . . . , bi.

Note that since we are letting C1 =∞, we do not require UWC probabilities p∗1,j . Additionally,

if a class i of patient customers require exponentially distributed services, then β∗
i

= β̂
∗
i

= β
i

= 1
and both versions will result in the same p∗i,1 = λ/B1,0,i probability. Correspondingly, if every
patient class required exponential service, then the two versions of UWC result in identical
probabilities and there is no need to undergo the additional computations necessary to analyze
the FB model, as we may simply apply the first version.

Making use of either version of UWC probabilities as well as generator blocks previously
constructed in Section 5.7.3, the infinitesimal generator for this CTMC is

Q =



0 1 2 3 · · ·
0 Q

[2]
0 (UD)

[1]
0 0 0 · · ·

1 (LD)
[1]
1 Q

[2]
1 (UD)

[1]
1 0 · · ·

2 0 (LD)
[1]
2 Q

[2]
1 (UD)

[1]
1

. . .

3 0 0 (LD)
[1]
2 Q

[2]
1

. . .
...

...
...

. . .
. . .

. . .


.

This results in the system of matrix equations

0 = π0Q
[2]
0 + π1(LD)

[1]
1 , (5.48)

0 = π0(UD)
[1]
0 + π1Q

[2]
1 + π2(LD)

[1]
2 , (5.49)

0 = πi(UD)
[1]
1 + πi+1Q

[2]
1 + πi+2(LD)

[1]
2 , i ∈ Z+. (5.50)

As this is a level independent QBD, we have a solution satisfying the matrix geometric form,
πi = π1R

i−1, i ∈ Z+, and we may apply the algorithm covered in Section 1.2.4 to solve for R
followed by the steady-state probabilities.

5.8 Numerical Examples

5.8.1 Comparing Choices of UWC Probabilities for Patient Customers

To compare the two versions of UWC for patient customers in a N -queue polling system, we
investigate the following example. We let the polling system have N = 4 queues with αi = 0
for i = 1, 2, 3, 4. The following three possible pairs of service time distributions are considered,
where each pair contains one distribution with mean time 1 and one distribution with mean 2:

• (Exp) Exponential:

– E[Ser ] = 1 and Var(Ser) = 1:

Ser ∼ PH1(β = 1, B = −1).
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– E[Ser ] = 2 and Var(Ser) = 4:

Ser ∼ PH1(β = 1, B = −1/2).

• (H2) Hyperexponential-2:

– E[Ser ] = 1 and Var(Ser) = 2:

Ser ∼ PH2

(
β = (0.5, 0.5), B =

[
−(2 +

√
2) 0

0 −(2−
√

2)

])
.

– E[Ser ] = 2 and Var(Ser) = 8:

Ser ∼ PH2

(
β = (0.5, 0.5), B =

[
−(1 +

√
1/2) 0

0 −(1−
√

1/2)

])
.

• (Ef2) Erlang-2 with feedback:

– E[Ser ] = 1 and Var(Ser) = 0.75:

Ser ∼ PH2

(
β = (1, 0), B =

[
−4 4
2 −4

])
.

– E[Ser ] = 2 and Var(Ser) = 3:

Ser ∼ PH2

(
β = (1, 0), B =

[
−2 2
1 −2

])
.

Note that the ratios of means and variances are the same for each pair of distributions. Queues
1 and 3 (2 and 4) are assigned the service time distributions with the smaller (larger) means.

We set the arrival rates to be λ1 = λ4 = 8/45 and λ2 = λ3 = 4/45, which results in a
workload of

ρ =
4∑
i=1

ρi =
4∑
i=1

λiE[Ser i] = 0.8.

We selected this ordering for the combination of service time distributions and arrival rates as
it results in class 1 having the longest expected queue length, which is assigned the infinite
buffer C1 =∞. For simplicity, we let all switch-in times be iid Exp(1).

For the above three cases of service time distributions, we let C2 = C3 = C4 = C, and
consider C = 2, 3, . . . , 10. The steady-state probabilities are calculated using both versions of
UWC as well as for the FB model, and E[Xi], i = 1, 2, 3, 4, is plotted against C in Figure 5.2.
In each plot, a light grey horizontal line is included at the corresponding expected queue length
from the IB model, which were calculated using the results in Boon [15], Section 2.2.6.

In all cases, the use of either version of UWC provides a benefit over FB, which shrinks
as the expected queue lengths approach their limits (i.e., E[XIB

i ]). Under exponential service,
the two versions of UWC are identical, as previously discussed. Although not exactly the same
under H2 service, there is minimal difference between them, and so version 1 should be selected
as it does not require the increased computation time. However, version 2 greatly outperforms
version 1 under Ef2 service.
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Figure 5.2: Plots of expected marginal queue lengths at steady state in a 4-queue system versus
buffers C2 = C3 = C4 = C for UWC version 1, UWC version 2, and FB models, under Exp,
H2, or Ef2 service.
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In Section 5.6, we previously discussed why the UWC probabilities that we are calling version
1 underperform for distributions that involve service phase transitions that do not result in
observed customer departures. As the process of customer departures is more similar between
a M/PH/1 +M model and a M/M/1 +M model than it is between a M/PH/1 model and a
M/M/1 model (i.e., after we remove the reneging when the phase-type service time distribution
behaves sufficiently different than an exponential distribution), it is not surprising to observe

small gains here in the Ef2 case for version 2 which is based on what was optimal for a M/PH/1
queue.

UWC probabilities are only checked when observing a service completion out of phase 2, and
those probabilities are identical to what would have been optimal for exponential distributions
possessing means that are only half as large. These correspond to shorter level-C busy peri-
ods and fewer required observed customer departures to successfully reduce the queue length.
Therefore, less time is spent before reducing a queue length below its buffer and less steady-
state probability mass is being shifted. In contrast, the H2 distributions are similar enough
to exponential distributions, in that possible service phase transitions are only observed after
service completions, resulting in an acceptable performance by version 1.

As version 2 is based on the UWC probabilities that are optimal in a M/PH/1 queue, we
would not expect a negative impact on their performance due to a specific phase-type structure.
We observe this in Figure 5.2, with the version 2 expected queue lengths receiving comparable
gains in accuracy for all considered distributions. Thus, when applying this in practice, it
would be safest to go with version 2, however if the corresponding phase-type distributions
are exponential or similar to these H2 distributions, version 1 may be applied, granting similar
gains in accuracy without the time cost of additional computations (relative to standard analysis
using a FB model).

5.8.2 The Impact of Service Phase Transitions in the Presence of Reneging

Continuing from our earlier discussion of the potential impact on the effectiveness of UWC
by the switching of service phases without observing customer departures, we compare mean
queue lengths between our two UWC models as well as the FB model in a 2-queue system with
arrival rates λ1 = λ2 = 8/15, reneging rates α1 = α2 = 0.05, and iid Exp(1) switch-in times.
To easily scale the number of service phases while controlling for the expected values, we select
Erlang-k (Ek) service time distributions with means of 1 (for class 1) and 2 (for class 2). Note
that when there is only one service phase (i.e., k = 1), these are simply Exp(1) and Exp(1/2)
distributions, respectively.

In Figure 5.3, we plot E[Xi] for both classes for the corresponding UWC and FB models. As
an impatient customer example, we treat this as a level-dependent QBD and let C1 = C2 = C,
C = 2, 3, . . . , 20. The number of service phases are similarly kept constant between the classes,
and we present the cases for k = 1, 2, 5, 10. Within these plots, the light grey horizontal lines
are approximated E[XIB

i ] values, obtained via calculating the mean queue lengths for the FB
model with C = 40. As we would expect, we would rank UWC version 2 above version 1, with
both outperforming the FB model in all cases. When k = 1, both UWC versions are identical
due to the presence of only a single service phase. Performance is comparable for UWC version
2 across all cases, while version 1 has the widest margins between itself and the FB model in
the k = 1 case, which we know enables the best performance by this version of UWC. We
also observe in all cases that the difference in effectiveness between the UWC versions decrease
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Table 5.3: UWC version 1 and UWC version 2 model steady-state expected marginal queue
length convergence percentages (E[XUWC

i ]/E[XIB
i ], i = 1, 2) at various buffers C1 = C2 = C

under Ek service, k = 1, 2, 5, 10.

Class 1, UWC ver. 1 C
k 2 3 4 5 6 7 8 9 10

1 0.2788 0.4036 0.5172 0.6193 0.7090 0.7852 0.8473 0.8957 0.9315
2 0.2464 0.3693 0.4864 0.5944 0.6905 0.7725 0.8391 0.8906 0.9285
5 0.2294 0.3532 0.4728 0.5835 0.6822 0.7664 0.8348 0.8877 0.9266
10 0.2245 0.3490 0.4694 0.5808 0.6800 0.7647 0.8335 0.8868 0.9260

Class 1, UWC ver. 2 C
k 2 3 4 5 6 7 8 9 10

1 0.2788 0.4036 0.5172 0.6193 0.7090 0.7852 0.8473 0.8957 0.9315
2 0.2762 0.3998 0.5129 0.6150 0.7050 0.7819 0.8447 0.8937 0.9302
5 0.2740 0.3967 0.5094 0.6115 0.7018 0.7790 0.8424 0.8920 0.9289
10 0.2730 0.3955 0.5080 0.6101 0.7004 0.7778 0.8414 0.8912 0.9283

Class 2, UWC ver. 1 C
k 2 3 4 5 6 7 8 9 10

1 0.3810 0.5351 0.6615 0.7616 0.8380 0.8940 0.9333 0.9597 0.9766
2 0.3478 0.4964 0.6249 0.7317 0.8163 0.8800 0.9251 0.9553 0.9744
5 0.3283 0.4758 0.6069 0.7176 0.8063 0.8733 0.9211 0.9530 0.9731
10 0.3220 0.4697 0.6020 0.7140 0.8038 0.8717 0.9200 0.9523 0.9727

Class 2, UWC ver. 2 C
k 2 3 4 5 6 7 8 9 10

1 0.3810 0.5351 0.6615 0.7616 0.8380 0.8940 0.9333 0.9597 0.9766
2 0.3949 0.5506 0.6762 0.7738 0.8471 0.9002 0.9373 0.9620 0.9779
5 0.4056 0.5624 0.6869 0.7823 0.8531 0.9041 0.9395 0.9632 0.9784
10 0.4097 0.5670 0.6910 0.7854 0.8552 0.9053 0.9401 0.9635 0.9785

as C is increased, corresponding to customer departures due to reneging making up larger
proportions of observed departures during a level-C busy period.

This combination of parameters resulted in values of E[XIB
i ] between 6.0212 (k = 1) and

6.3087 (k = 10) for class 1, and 4.3682 (k = 1) and 4.1088 (k = 10) for class 2. Due to the
narrow range of limiting values, this allows us to more accurately compare rates of convergence.
In Table 5.3, we present E[XUWC

i ]/E[XIB
i ] for C = 2, 3, . . . , 10 for both versions of UWC.

As previously observed, the convergence percentages for the k = 1 cases of UWC version
1 are noticeably higher than those for k ≥ 2. In fact, the difference in percentage for a given
C between k = 1 and k = 2 is larger than that between k = 2 and k = 10! In contrast, the
percentages for UWC version 2 are not very sensitive to changes in k, and even increase for
class 2 (due to the fact that E[XIB

2 ] is decreasing in k). Therefore, in the absence of exponential
service time distributions or moderate to large C (alternatively, large reneging rates), UWC
version 2 should be used for service time distributions involving multiple phase transitions.
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Figure 5.3: Plots of expected marginal queue lengths at steady state in a 2-queue system versus
buffers C1 = C2 = C for UWC version 1, UWC version 2, and FB models, under Ek service,
k = 1, 2, 5, 10.
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5.8.3 Examining Marginal Queue Length Probabilities

In Section 5.6, we considered a numerical example which compared the steady-state probabil-
ities of the UWC version 1 and 2 models of a M/PH/1 + M queue against those of the FB
model. Since expanding our scope to a N -queue system, we have only considered expected
queue lengths, so it is of value to examine a similar example. For the benefit of simplified
(and condensed) presentation of data, we consider steady-state probabilities for marginal queue
lengths (rather than for individual states), and we limit ourselves to a 2-queue system. We

allow the service time distributions for classes 1 and 2 to be the Ef2 distributions considered in
Section 5.8.1, with class 1 taking the distribution with the smaller mean. Additionally, as in
Section 5.8.2, we let λ1 = λ2 = 8/15 and α1 = α2 = 0.05, while switch-in times are assumed to
be iid Exp(1) random variables.

In Figures 5.4 and 5.5, we present barplots of the marginal queue length probabilities for
classes 1 and 2, respectively, for both versions of UWC as well as FB models at even buffer
sizes C1 = C2 = C, C = 2, 4, . . . , 16. Plotted along with these values are those from the
corresponding IB model, approximated via a FB model with C = 40, which are unchanged
between plots within a figure.

Unlike the simple single queue case, version 2 does not immediately result in near exact
steady-state probabilities for levels below C. While there is still some error present as a re-
sult of using the FB probabilities, we more importantly do not separate the cases (in terms of
UWC probability) where the server begins a level-C busy period due to an arrival versus after
a switch-in time. If the busy period begins after a switch, then like in our earlier discussion
of the original M/PH/1 + M queue UWC version 1 approximation, any cases where possible
unobserved customers could be in the system at this instant are treated as if there are exactly
zero unobserved customers. Unsurprisingly, this results in a failure to capture all excess proba-
bility mass at level C. However, for both classes, we are in fact observing the intended effect of
probability mass being shifted to the truncation level C, resulting in better approximations at
lower levels. The relative difference in gains by the two versions over the FB model are larger
for small C and decrease as C is increased, consistent with what we have seen previously.

For moderate values of C, we again observe instances of underestimating the IB model
steady-state probabilities at queue lengths near the truncation level. While more common
for UWC, it is also observed for FB (e.g., case C = 10 in Figure 5.5). Fortunately, even
if the steady-state probabilities are slightly underestimated by UWC, they are still generally
closer to the target probabilities than those of the FB model at the same value of C, and the
underestimation vanishes as C is increased. These results indicate that the either version of
the UWC model would indeed be preferable to the FB model at any given C. This experiment
was also replicated in a more optimal case using exponentially distributed service times (the
results of which we omit), which led to the same conclusions while observing higher relative
accuracy gains by UWC (with the largest relative gains at small C). Overall, we maintain the
same conclusion that version 2 is preferable although version 1 is comparable at moderate to
high C.

5.8.4 The Impact of Reneging on Relative Accuracy Gains of UWC Version
1 for Exp or Ef

2 Service Times

Up to now, we have observed that UWC version 1 provides the largest gains in accuracy (in
direct comparison to the FB model) when service times are exponentially distributed. The
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Figure 5.4: Barplots of class-1 marginal queue length probabilities at steady state in a 2-queue
system versus buffers C1 = C2 = C for UWC version 1, UWC version 2, FB, and IB models,
under Ef2 service.
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Figure 5.5: Barplots of class-2 marginal queue length probabilities at steady state in a 2-queue
system versus buffers C1 = C2 = C for UWC version 1, UWC version 2, FB, and IB models,
under Ef2 service.
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Table 5.4: Approximated E[XIB
i ] values for Exp and Ef2 service.

Exp Ef2
α E[XIB

1 ] E[XIB
2 ] E[XIB

3 ] E[XIB
1 ] E[XIB

2 ] E[XIB
3 ]

0.05 5.6104 3.0509 3.3623 5.5874 3.0365 3.3672
0.075 4.0731 2.2651 2.3665 4.0526 2.2533 2.3679
0.1 3.2794 1.8533 1.8623 3.2617 1.8438 1.8624

primary cause of the reduction in UWC’s effectiveness is service phase transitions to phases
with different absorption rates. While this may be a transition not corresponding to a service
completion, it is also possible to observe a service completion out of one phase and then initialize
the next service time in a different phase (which will be relevant to UWC’s effectiveness assuming
the observed queue length does not decrement with this departure).

When modelling a system with impatient customers, it is possible that potential queue
decrements are triggered by reneging and will not result in a change of service phase. We have
seen that as C is increased, the effectiveness of version 1 approaches that of version 2. It should
also follow that if customers’ reneging rates are larger for a given C, then it is likely that we
would observe fewer phase transitions in a level-C busy period. It would then follow that the
relatively higher gains made by UWC version 1 when service times are exponential (versus Ef2)
should be smaller in a system with higher reneging rates.

To this end, we consider a 3-queue system with λ1 = 16/25, λ2 = λ3 = 8/25, and α1 = α2 =

α3 = α ∈ {0.05, 0.075, 0.1}. Service time distributions are either the Exp or Ef2 distributions
used for classes 1, 2, and 3 in Section 5.8.1 (with means of 1, 2, and 1, respectively), while
we let all switch-in times be iid Exp(1). Similar to Table 5.3, we will be calculating the
convergence percentages of expected marginal queue lengths for both UWC and FB models,
while approximating E[XIB

i ] via a corresponding FB model with C1 = C2 = C3 = C = 25.
The approximated IB model values are presented in Table 5.4. As the change in service time
distribution has minimal effect on these mean queue lengths, this provides an ideal opportunity
to directly compare rates of convergence.

Mean queue lengths are calculated for UWC and FB models at C1 = C2 = C3 = C,
C = 2, 3, . . . , 15, and the mean queue lengths from Table 5.4 are used to approximate the
convergence percentages. Our interest is in the difference in accuracy gained by the use of
UWC version 1 between the two sets of service time distributions, where for example we let the
accuracy gain by the UWC model using Exp service times equal

E[XUWC,Exp
i,C ]− E[XFB,Exp

i,C ]

E[XIB,Exp
i ]

,

where E[XUWC,Exp
i,C ] denotes the steady-state expected marginal class-i queue length of the

UWC model having buffer C. Considering the difference in these calculated for Exp and Ef2
service times (for a given class i), as C → ∞, both UWC and FB means will converge to the
same value, and hence the difference must trend to zero.

We plot the gains in accuracy as well as their differences in Figure 5.6. The gains are
concave, increasing up until the buffer surpasses E[XIB

i ]. After this point, the impact of further
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Figure 5.6: Plots of difference in accuracy gained by the use of UWC version 1 in a 3-queue
system between models having Exp or Ef2 service versus buffers C1 = C2 = C3 = C for
α1 = α2 = α3 = α ∈ {0.05, 0.075, 0.1}.

increases in C are lessened as the amount of shifted probability mass becomes less drastic. As
C →∞, the UWC and FB means converge and these gains go to zero (resulting in the difference
in gains also going to zero).

For the considered cases, the difference in accuracy gains are no larger than approximately
3.5%. The UWC approximation has larger gains for Exp service at smaller values of C where
there is more probability mass at the buffer (implying that the CTMC consults the UWC
probabilities more frequently). Additionally, this relative impact is widened when E[XIB

i ] is
smaller, allowing the initial E[XUWC

i,C ] (which must be strictly between 0 and C) to be closer to
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its target value. However, we note that these differences are not solely dependent on the mean
IB model marginal queue lengths, as E[XIB

1 ] at α = 0.1 is less than E[XIB
3 ] at α = 0.05, yet the

former has smaller differences.
There is little change in the difference in gains when varying α at C = 2, as the total

force of reneging at the buffer will still be small relative to the service distribution absorption
rates. However, as we increase C, the different α cases split, demonstrating smaller differences
between the gains of UWC for the two sets of service time distributions for larger reneging
rates, confirming our suspicions.
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Chapter 6

An Application of UWC on a
N-Class Polling Model with
ki-Limited or Bernoulli Service

6.1 Model Assumptions

In Chapter 4 we considered a 2-queue system having level-dependent reneging and ki-limited
service, while in Chapter 5 we introduced the UWC approximation and applied it to a N -queue
system with constant class-dependent reneging rates and a simple exhaustive service discipline.
We will now simultaneously generalize both models of these preceding chapters and update our
UWC version 2 calculations to accommodate level-dependent reneging.

We again consider a cyclic polling system consisting of N queues, Q1, Q2, . . . , QN , which
is attended to by a lone server. Customers within a given queue receive service according
to a FCFS policy, and the service discipline for the server at each queue may vary, taking
on a class-dependent ki-limited or Bernoulli service policy. Recalling from Section 1.2.7, in
the former case, the server will switch away from Qi after serving ki ∈ Z+ class-i customers,
or after the queue empties, whichever happens first. In the latter case, if the server finds a
positive queue length at their visitation epoch then they will accept a customer into service.
After that service completion (and every other within the same visit to Qi), they will accept
another class-i customer into service with probability pB

i should Qi not be empty, and depart
the queue otherwise. The Bernoulli service discipline reduces to the exhaustive service discipline
considered in Chapter 5 if we let pB

i = 1. For convenience in the following model construction,
we let ki = −1 if Qi has Bernoulli (or exhaustive) service.

For i = 1, 2, . . . , N , we assume that class-i service times are iid PHbi(βi, Bi) random variables
while the time for the server to switch into Qi from Qi−1 (letting Q0 represent QN ) are iid
PHsi(γi, Si). Additionally, we suppose that all of these times are strictly positive, such that
βe′ = γe′ = 1. We denote the column vectors of absorption rates by B′0,i = −Bie′ and
S′0,i = Sie

′.

Any customer who is not currently receiving service is at risk of reneging from the system
due to impatience. Let αi,n denote the current exponential reneging rate of a class-i customer
having n − 1 other class-i customers waiting ahead of them in their queue. Additionally, we

define the combined reneging rate of j waiting class-i customers as α
[j]
i =

∑j
n=1 αi,n, and by
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convention let α
[0]
i = 0. As we are only considering impatient customers, our model will take the

form of a level-dependent QBD and we must truncate the queue length of all classes. Denote
the finite buffer of Qi by Ci < ∞. The calculation of UWC probabilities p∗i,j will be discussed
in Section 6.4 after model construction.

6.2 State Space and Steady-State Probabilities

The queueing network is modelled by the CTMC

{(X1(t), X2(t), . . . , XN (t), L(t),K(t), Y (t)), t ≥ 0},
where Xi(t) ∈ {0, 1, . . . , Ci} is the number of class-i customers, i = 1, 2, . . . , N , L(t) ∈
{1, 2, . . . , 2N − 1, 2N} represents the location of the server, with L(t) = 2i − 1 if the server is
switching into class i, or L(t) = 2i if the server is serving a class-i customer, K(t) ∈ {1, . . . , |ki|}
counts what number service the server is on during a visit to Qi if using ki-limited service (or
simply takes a dummy value of 1 if class i has Bernoulli service) and will be set to 0 during
a switch, and Y (t) tracks the phase of the current service or switch-in time. The observable
values of L(t) depend on the queue lengths, such that

L(t) ∈ ΩL(X1(t), X2(t), . . . , XN (t)) =
N⋃
i=1

ΩL(Xi(t)),

where

ΩL(Xi(t)) =

{
{2i− 1} , if Xi(t) = 0,

{2i− 1, 2i} , if Xi(t) > 0.

Additionally, the values of K(t) and Y (t) depend on the server’s position, with

K(t) ∈ ΩK(L(t)) =



{0} , if L(t) = 1,

{1, . . . , |k1|} , if L(t) = 2,
...

{0} , if L(t) = 2i− 1,

{1, . . . , |ki|} , if L(t) = 2i,
...

{0} , if L(t) = 2N − 1,

{1, . . . , |kN |} , if L(t) = 2N,

and

Y (t) ∈ ΩY (L(t)) =



{1, 2, . . . , s1} , if L(t) = 1,

{1, 2, . . . , b1} , if L(t) = 2,
...

{1, 2, . . . , si} , if L(t) = 2i− 1,

{1, 2, . . . , bi} , if L(t) = 2i,
...

{1, 2, . . . , sN} , if L(t) = 2N − 1,

{1, 2, . . . , bN} , if L(t) = 2N.
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In contrast to the state space of the N -queue exhaustive polling system, the only change
is now we must track how many customers of a particular class we have sequentially served
(assuming ki ≥ 1) while currently serving that class. Letting s =

∑N
i=1 si, it is clear that we

can simply extend Equation (5.45) as follows to obtain the total number of states:

` = s

N∏
i=1

(Ci + 1) +

N∑
j=1

bj |kj |
N∏
i=1

(Ci + 1− δi,j). (6.1)

Let πn1,n2,...,l,k,y be the steady-state probability of the truncated CTMC being in state
(n1, n2, . . . , nN , l, k, y). These probabilities are sorted into ordered row vectors in the following
manner. For i = 1, 2, . . . , N , we let

πn1,n2,...,nN ,l,k
=

{
(πn1,n2,...,nN ,l,k,1, πn1,n2,...,nN ,l,k,2, . . . , πn1,n2,...,nN ,l,k,si) , if l = 2i− 1,

(πn1,n2,...,nN ,l,k,1, πn1,n2,...,nN ,l,k,2, . . . , πn1,n2,...,nN ,l,k,bi) , if l = 2i,

from which we obtain

π[i]
n1,n2,...,nN

=

{
πn1,n2,...,nN ,2i−1,0 , if ni = 0,

(πn1,n2,...,nN ,2i−1,0, πn1,n2,...,nN ,2i,1
, . . . , πn1,n2,...,nN ,2i,|ki|) , if ni > 0,

and
πn1,n2,...,nN

= (π[1]
n1,n2,...,nN

, π[2]
n1,n2,...,nN

, . . . , π[N ]
n1,n2,...,nN

).

Finally, the C1+1 component vectors πn1
of the combined probability row vector π = (π0, π1, . . . , πC1

)
are constructed as

πn1
= (πn1,0, πn1,1, . . . , πn1,C2

), 0 ≤ n1 ≤ C1,

πn1,n2
= (πn1,n2,0, πn1,n2,1, . . . , πn1,n2,C3

), 0 ≤ n2 ≤ C2,

...

πn1,n2,...,ni = (πn1,n2,...,ni,0, πn1,n2,...,ni,1, . . . , πn1,n2,...,ni,Ci+1
), 0 ≤ ni ≤ Ci, i = 1, 2, . . . , N − 1.

6.3 Infinitesimal Generator Matrix

The recursive structure of our generator matrix construction is analogous to that of Section
5.7.3. First, we require the following definitions:

λn1,...,nN =
N∑
i=1

λi(1− δni,Ci),

a[m,n]
n1,...,nN

=
n∑

i=m

(si + δ̄ni,0bi|ki|), 1 ≤ m ≤ n ≤ N,

p∗
i

= (p∗i,1, p
∗
i,2, . . . , p

∗
i,bi

),

p∗i,ni,l,y =


p∗i,0 , if ni = Ci, l 6= 2i,

p∗i,y , if ni = Ci, l = 2i,

0 , otherwise,
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αn1,...,nN ,l,y =

N∑
i=1

α
[ni−δl,2i]
i (1− p∗i,ni,l,y),

αn1,...,nN ,l
=

{
(αn1,...,nN ,l,1, αn1,...,nN ,l,2, . . . , αn1,...,nN ,l,si) , if l = 2i− 1,

(αn1,...,nN ,l,1, αn1,...,nN ,l,2, . . . , αn1,...,nN ,l,bi) , if l = 2i,

and for j = 1, 2, . . . , N ,

ζn1,...,nN ,l =

{
Sj − λn1,...,nN Isj − diag(αn1,...,nN ,2j−1) , if l = 2j − 1,

B∗j,nj − I|kj | ⊗ (λn1,...,nN Ibj + diag(αn1,...,nN ,2j
)) , if l = 2j,

and

ζ∗n1,...,nN ,2j
=

{
δnj ,Cj (1− pB

j )diag(p∗
j
)B′0,jγj+1

, if kj = −1,

δnj ,Cje
′
kj ,kj

⊗ diag(p∗
j
)B′0,jγj+1

, if kj ≥ 1,

where we let sN+1 = s1, γ
N+1

= γ
1
, and

B∗j,nj =


Bj + δnj ,Cjp

B
j diag(p∗

j
)B′0,jβj , if kj = −1,

Bj , if kj = 1,

Ikj ⊗Bj +

[
0′kj−1 Ikj−1

0 0kj−1

]
⊗ δnj ,Cjdiag(p∗

j
)B′0,jβj , if kj ≥ 2.

Note that in the above, we defined p∗
i

as a vector which may contain varying UWC probabilities
for each service phase. As we will primarily consider UWC version 2 in this chapter, this is
unnecessary for most of our calculations. However, it is left in this generalized form in case
one were to consider a model without level-dependent reneging and wished to apply the earlier
UWC version 1 results, such as in the example considered in Section 6.6.2.

We begin by considering blocks to track changes in XN (t). For ni = 0, 1, . . . , Ci, i =
1, 2, . . . , N − 1, we define

Q
[N ]
n1,...,nN−1 =



0 1 2 · · · CN−1 CN

0 ∆n1,...,nN−1,0 (UD)
[N ]
n1,...,nN−1,0

0 · · · 0 0

1 (LD)
[N ]
n1,...,nN−1,1

∆n1,...,nN−1,1 (UD)
[N ]
n1,...,nN−1,1

. . . 0 0

2 0 (LD)
[N ]
n1,...,nN−1,2

∆n1,...,nN−1,2
. . . 0 0

...
...

. . .
. . .

. . .
...

...
CN−1 0 0 0 · · · ∆n1,...,nN−1,cN−1 (UD)

[N ]
n1,...,nN−1,cN−1

CN 0 0 0 · · · (LD)
[N ]
n1,...,nN−1,cN ∆n1,...,nN−1,cN


.

The main diagonal blocks of Q
[N ]
n1,...,nN−1 are

∆n1,...,nN−1,nN =


∆

[1]
n1,...,nN

∆
[2]
n1,...,nN

...

∆
[N ]
n1,...,nN

 ,
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where

∆
[1]
n1,...,nN =



[
ζn1,...,nN ,1 S′0,1γ2

0′s10
a
[2,N ]
n1,...,nN

−s2

]
, if n1 = 0,

 ζn1,...,nN ,1 e|k1|,1 ⊗ S′0,1β1
0′s10s2 0′s10

a
[2,N ]
n1,...,nN

−s2
0′b1|k1|0s1 ζn1,...,nN ,2 ζ∗n1,...,nN ,2

0′b1|k1|0a[2,N ]
n1,...,nN

−s2

 , if n1 = 1, 2, . . . , C1,

while for j = 2, 3 . . . , N − 1,

∆
[j]
n1,...,nN =



[
0′sj0a[1,j−1]

n1,...,nN

ζn1,...,nN ,2j−1 S′0,jγj+1
0′sj0a[j+1,N ]

n1,...,nN
−sj+1

]
, if nj = 0,

 0′sj0a[1,j−1]
n1,...,nN

ζn1,...,nN ,2j−1 e|kj |,1 ⊗ S′0,jβj 0′sj0sj+1
0′sj0a[j+1,N ]

n1,...,nN
−sj+1

0′bj |kj |0a[1,j−1]
n1,...,nN

0′bj |kj |0sj ζn1,...,nN ,2j ζ∗n1,...,nN ,2j
0′bj |kj |0a[j+1,N ]

n1,...,nN
−sj+1

 , if nj = 1, 2, . . . , Cj ,

and

∆
[N ]
n1,...,nN =



[
S′0,Nγ1

0′sN 0
a
[1,N−1]
n1,...,nN

−s1
ζn1,...,nN ,2N−1

]
, if nN = 0,

 0′sN 0s1 0′sN 0
a
[1,N−1]
n1,...,nN

−s1
ζn1,...,nN ,2N−1 e|kN |,1 ⊗ S′0,NβN

ζ∗n1,...,nN ,2N
0′bN |kN |0a[1,N−1]

n1,...,nN
−s1

0′bN |kN |0sN ζn1,...,nN ,2N

 , if nN = 1, 2, . . . , CN .

The upper diagonal blocks of Q
[N ]
n1,...,nN−1 are

(UD)[N ]
n1,...,nN−1,nN

=


[
λNIa[1,N−1]

n1,...,nN
+sN

0′
a
[1,N−1]
n1,...,nN

+sN
0bN |kN |

]
, if nN = 0,

λNIa[1,N ]
n1,...,nN

, if nN = 1, 2, . . . , CN − 1,

and the lower diagonal blocks are

(LD)
[N ]
n1,...,nN−1,nN =


α

[1]
N (1− δnN ,CNp∗N,0)Is1 0′s10

a
[1,N−1]
n1,...,nN

+sN−s1

0′
a
[1,N−1]
n1,...,nN

+sN−s1
0s1 α

[1]
N (1− δnN ,CNp∗N,0)I

a
[1,N−1]
n1,...,nN

+sN−s1
e′|kN | ⊗ (IbN − δnN ,CNdiag(p∗

N
))B′0,Nγ1

0′bN |kN |0a[1,N−1]
n1,...,nN

+sN−s1


for nN = 1 and

(LD)
[N ]
n1,...,nN−1,nN =

α
[nN ]
N (1−δnN ,CNp∗N,0)Is1 0′s10

a
[1,N−1]
n1,...,nN

+sN−s1
0′s10bN |kN |

0′
a
[1,N−1]
n1,...,nN

+sN−s1
0s1 α

[nN ]
N (1−δnN ,CNp∗N,0)I

a
[1,N−1]
n1,...,nN

+sN−s1
0′
a
[1,N−1]
n1,...,nN

+sN−s1
0bN |kN |

U∗N,nN 0′bN |kN |0a[1,N−1]
n1,...,nN

+sN−s1
α

[nN−1]
N I|kN | ⊗ (IbN−δnN ,CNdiag(p∗

i
)) + UN,nN


for nN = 2, 3, . . . , CN , where for i = 1, 2, . . . , N ,

Ui,ni =



pB
i (Ibi − δni,Cidiag(p∗

i
))B′0,iβi , if ki = −1,

0′bi0bi , if ki = 1,

[
0′ki−1 Iki−1

0 0ki−1

]
⊗ (Ibi − δni,Cidiag(p∗

i
))B′0,iβi , if ki ≥ 2,
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and

U∗i,ni =


(1− pB

i )(Ibi − δni,Cidiag(p∗
i
))B′0,iγi+1

, if ki = −1,

e′ki,ki ⊗ (Ibi − δni,Cidiag(p∗
i
))B′0,iγi+1

, if ki ≥ 1.

Our recursive portion of the generator construction is now defined as follows. For ni ∈
{0, 1, . . . , Ci}, i = 1, 2, . . . , j − 1, we define

Q
[j]
n1,...,nj−1 =



0 1 2 · · · Cj − 1 Cj

0 Q
[j+1]
n1,...,nj−1,0

(UD)
[j]
n1,...,nj−1,0

0 · · · 0 0

1 (LD)
[j]
n1,...,nj−1,1

Q
[j+1]
n1,...,nj−1,1

(UD)
[j]
n1,...,nj−1,1

. . . 0 0

2 0 (LD)
[j]
n1,...,nj−1,2

Q
[j+1]
n1,...,nj−1,2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

Cj − 1 0 0 0 · · · Q
[j+1]
n1,...,nj−1,cj−1 (UD)

[j]
n1,...,nj−1,cj−1

Cj 0 0 0 · · · (LD)
[j]
n1,...,nj−1,cj Q

[j+1]
n1,...,nj−1,cj


.

The upper diagonal blocks (UD)
[j]
n1,n2,...,nj−1,nj take the form of Equation (5.46) (with k = 0),

where

(UD)[j]
n1,...,nN−1,nN

=

 λjIa[1,j−1]
n1,...,nN

+sj
0′
a
[1,j−1]
n1,...,nN

+sj
0bj |kj | 0′

a
[1,j−1]
n1,...,nN

+sj
0
a
[j+1,N ]
n1,...,nN

0′
a
[j+1,N ]
n1,...,nN

0
a
[1,j−1]
n1,...,nN

+sj
0′
a
[j+1,N ]
n1,...,nN

0bj |kj | λjIa[j+1,N ]
n1,...,nN


for nj = 0 and

(UD)[j]
n1,...,nN−1,nN

= λjIa[1,N ]
n1,...,nN

for nj = 1, 2, . . . , Cj−1. Similarly, the lower diagonal blocks (LD)
[j]
n1,n2,...,nj−1,nj satisfy Equation

(5.47) (with k = 0), where

(LD)
[j]
n1,...,nN−1,nN =


α

[1]
j (1−δnj ,Cjp∗j,0)I

a
[1,j−1]
n1,...,nN

+sj
0′
a
[1,j−1]
n1,...,nN

+sj
0sj+1

0′
a
[1,j−1]
n1,...,nN

+sj
0
a
[j+1,N ]
n1,...,nN

−sj+1

0′bj |kj |0a[1,j−1]
n1,...,nN

+sj
e′|kj | ⊗ (Ibj−δnj ,Cjdiag(p∗

j
))B′0,jγj+1

0′bj |kj |0a[j+1,N ]
n1,...,nN

−sj+1

0′sj+1
0
a
[1,j−1]
n1,...,nN

+sj
α

[1]
j (1−δnj ,Cjp∗j,0)Isj+1 0′sj+1

0
a
[j+1,N ]
n1,...,nN

−sj+1

0′
a
[j+1,N ]
n1,...,nN

−sj+1

0
a
[1,j−1]
n1,...,nN

+sj
0′
a
[j+1,N ]
n1,...,nN

−sj+1

0sj+1
α

[1]
j (1−δnj ,Cjp∗j,0)I

a
[j+1,N ]
n1,...,nN

−sj+1



for nj = 1 and

(LD)
[j]
n1,...,nN−1,nN =

α
[nj ]
j (1−δnj ,Cjp∗j,0)I

a
[1,j−1]
n1,...,nN

+sj
0′
a
[1,j−1]
n1,...,nN

+sj
0bj |kj | 0′

a
[1,j−1]
n1,...,nN

+sj
0sj+1

0′
a
[1,j−1]
n1,...,nN

+sj
0
a
[j+1,N ]
n1,...,nN

−sj+1

0′bj |kj |0a[1,j−1]
n1,...,nN

+sj
α

[nj−1]
j I|kj | ⊗ (Ibj−δnj ,Cjdiag(p∗

j
))+Uj,nj U∗j,nj 0′bj |kj |0a[j+1,N ]

n1,...,nN
−sj+1

0′sj+1
0
a
[1,j−1]
n1,...,nN

+sj
0′sj+1

0bj |kj | α
[nj ]
j (1−δnj ,Cjp∗j,0)Isj+1 0′sj+1

0
a
[j+1,N ]
n1,...,nN

−sj+1

0′
a
[j+1,N ]
n1,...,nN

−sj+1

0
a
[1,j−1]
n1,...,nN

+sj
0′
a
[j+1,N ]
n1,...,nN

−sj+1

0bj |kj | 0′
a
[j+1,N ]
n1,...,nN

−sj+1

0sj+1
α

[nj ]
j (1−δnj ,Cjp∗j,0)I

a
[j+1,N ]
n1,...,nN

−sj+1



for nj = 2, 3, . . . , Cj .
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Lastly, the complete infinitesimal generator matrix Q is the QBD describing changes in the
level of the process, X1(t), taking the form

Q =



0 1 2 · · · C1−1 C1

0 Q
[2]
0 (UD)

[1]
0 0 · · · 0 0

1 (LD)
[1]
1 Q

[2]
1 (UD)

[1]
1

. . . 0 0

2 0 (LD)
[1]
2 Q

[2]
2

. . . 0 0
...

...
. . .

. . .
. . .

...
...

C1−1 0 0 0 · · · Q
[2]
C1−1 (UD)

[1]
C1−1

C1 0 0 0 · · · (LD)
[1]
C1

Q
[2]
C1


,

where we let

(UD)[1]
n1,...,nN−1,nN

=

 λ1Is1 0′s10b1|k1| 0′s10
a
[2,N ]
n1,...,nN

0′
a
[2,N ]
n1,...,nN

0s1 0′
a
[2,N ]
n1,...,nN

0b1|k1| λ1Ia[2,N ]
n1,...,nN


for n1 = 0 and

(UD)[1]
n1,...,nN−1,nN

= λ1Ia[1,N ]
n1,...,nN

for n1 = 1, 2, . . . , C1 − 1, and

(LD)
[1]
n1,...,nN−1,nN =


α

[1]
1 (1−δn1,C1p

∗
1,0)Is1 0′s10s2 0′s10

a
[2,N ]
n1,...,nN

−s2
0′b1|k1|0s1 e′|k1| ⊗ (Ib1−δn1,C1diag(p∗

1
))B′0,1γ2

0′b1|k1|0a[2,N ]
n1,...,nN

−s2

0′s20s1 α
[1]
1 (1−δn1,C1p

∗
1,0)Is2 0′s20

a
[2,N ]
n1,...,nN

−s2

0′
a
[2,N ]
n1,...,nN

−s2
0s1 0′

a
[2,N ]
n1,...,nN

−s2
0s2 α

[1]
1 (1−δn1,C1p

∗
1,0)I

a
[2,N ]
n1,...,nN

−s2


for n1 = 1 and

(LD)
[1]
n1,...,nN−1,nN =

α
[n1]
1 (1−δn1,C1p

∗
1,0)Is1 0′s10b1|k1| 0′s10s2 0′s10

a
[2,N ]
n1,...,nN

−s2

0′b1|k1|0s1 α
[n1−1]
1 I|k1|(Ib1−δn1,C1diag(p∗

1
))+U1,n1 U∗1,n1

0′b1|k1|0a[2,N ]
n1,...,nN

−s2

0′s20s1 0′s20b1|k1| α
[n1]
1 (1−δn1,C1p

∗
1,0)Is2 0′s20

a
[2,N ]
n1,...,nN

−s2

0′
a
[2,N ]
n1,...,nN

−s2
0s1 0′

a
[2,N ]
n1,...,nN

−s2
0b1|k1| 0′

a
[2,N ]
n1,...,nN

−s2
0s2 α

[n1]
1 (1−δn1,C1p

∗
1,0)I

a
[2,N ]
n1,...,nN

−s2


for n1 = 2, 3, . . . , C1.

6.4 Calculation of UWC Probabilities

6.4.1 When the Server is Away

When the server is away from Qi, either conducting a switch or serving a different queue, Xi(t)
in the IB model will develop in time as a normal birth-and-death process having constant birth

rate λi and a death rate of α
[j]
i when Xi(t) = j, j ∈ Z+. Thus, the balance equations of this

birth-and-death model are simply

λiπj = α
[j+1]
i πj+1, j ∈ N.
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The duration of a level-C busy period in this CTMC is identical in distribution to that of a
standard busy period in a birth-and-death process having the indices of its birth and death
rates shifted by C − 1. That is, the busy period of a CTMC having balance equations

λiπj = α
[C+j]
i πj+1, j ∈ N.

If we make the reasonable assumption that that there exists an n ∈ Z+ such that α
[j]
i > λi,

∀ j ≥ n, then this CTMC is ergodic and has steady-state distribution (e.g., Ross [82], p. 376)

πj =
λji

(∏j−1
k=0 α

[C+k]
i

)−1

1 +
∑∞

n=1 λ
n
i

(∏n−1
k=0 α

[C+k]
i

)−1 , j ∈ N,

where we let
∏0−1
k=0 α

[C+k] = 1. It follows by Equation (1.10) that for the shifted process, we
have

E[BP ] =
1− π0

λiπ0

=

1− 1

1 +
∑∞

n=1 λ
n
i

(∏n−1
k=0 α

[C+k]
i

)−1


 λi

1 +
∑∞

n=1 λ
n
i

(∏n−1
k=0 α

[C+k]
i

)−1


−1

=
∞∑
n=1

λn−1
i

(
n−1∏
k=0

α
[C+k]
i

)−1

.

The distribution of a ‘service time’ of the shifted CTMC is Exp(α
[C]
i ) (where we may at-

tribute any excess in death rate at higher queue lengths to reneging), and thus has an expected

value of (α
[C]
i )−1. Therefore, for class i we set

1

1− p∗i,0
=

∑∞
n=1 λ

n−1
i

(∏n−1
k=0 α

[C+k]
i

)−1

(α
[C]
i )−1

=

∞∑
n=1

λn−1
i α

[C]
i∏n−1

k=0 α
[C+k]
i

,

implying that

p∗i,0 = 1−
( ∞∑
n=1

λn−1
i α

[C]
i∏n−1

k=0 α
[C+k]
i

)−1

, i = 1, 2, . . . , N.

6.4.2 When the Server is Visiting

To handle the UWC approximation in a queue during a server’s visit, we simply generalize the
analysis of Sections 5.6.2 and 5.7.1 to handle level-dependent reneging. No adjustment needs
to be made for the change in service discipline, as the distribution of the required number of
observed departures to decrease the observed queue length does not change if the server stops
serving prior to this time. As we are not adding any states to indicate how long the queue has
been at observable capacity (e.g., reaching it during a visit or while the server is away), any
excess waiting customers are effectively ‘lost’ when the UWC probability at a queue is changed,
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and so the discipline should not impact the probability of an unobserved waiting customer being
present after an observed departure.

For a given truncation D on the number of modelled unobserved waiting customers beyond
queue position C, as well as probability row vector β∗

C
for the initial service phase at the

start of the level-C busy period, the (approximate) PMF of the number of unobserved waiting
customers that immediately replace observed departures in a level-C busy period again takes
the form

P (N∗C = n) =
[
β∗
C

0
] [

(−Q−1
TT )Q∗TA

]n
(−Q−1

TT )Q′−1
, n ∈ N,

where we now let for a given i = 1, 2, . . . , N (which we suppress), ∆j = B − (λ + α[C−1+j])Ib,
j = 0, 1, . . . , D, ∆A = B′0β + α[C−1]Ib, α

[C−1,j] = α[C−1+j] − α[C−1], j = 1, 2, . . . , D,

QTT =



0 1 2 · · · D − 1 D

0 ∆0 λIb 0 · · · 0 0

1 α[C−1,1]Ib ∆1 λIb
. . . 0 0

2 0 α[C−1,2]Ib ∆2
. . . 0 0

...
...

. . .
. . .

. . .
...

...
D − 1 0 0 0 · · · ∆D−1 λIb
D 0 0 0 · · · α[C−1,D]Ib ∆D + λIb


,

Q∗TA =



0′ 1′ · · · (D − 2)′ (D − 1)′ D′

0 0 0 · · · 0 0 0′b0b
1 ∆A 0 · · · 0 0 0

2 0 ∆A
. . . 0 0 0

...
...

. . .
. . .

...
...

...
D − 1 0 0 · · · ∆A 0 0
D 0 0 · · · 0 ∆A 0


,

and

Q′−1
=

[
∆Ae

′

0′

]
.

From the PMF of N∗C , we calculate E[N∗C ] and set

E[N∗C ] =
p∗C

1− p∗C
,

or

p∗i,j =
E[N∗C,i]

1 + E[N∗C,i]
, j = 1, 2, . . . , bi,

where we let E[N∗C,i] represent the expected number of unobserved waiting customers that

immediately replace observed departures in a class-i level-C busy period using β∗
C

= β̂
∗
i
, which

is calculated using FB model probabilities in place of IB model probabilities in Equation (5.44),
extended logically to handle the summation over state index k.
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6.5 Nominal Waiting Time, Time Spent Waiting, and the Prob-
ability of Reneging

We are interested in the distribution of the waiting time of a class-1 customer as well as the
probability of them reaching service. Equivalent results for other classes may be obtained
by shifting class indices, such that a class of interest is treated as class 1, while maintaining
the appropriate relative cyclic polling order. In Remark 4.2, it was stated that if we do not
treat a truncated system as having a finite buffer, then it is more accurate to allow a class-1
customer to stay in the system even if they observe X1(t) = C1 at their arrival instant. In this
case, we assume that they are waiting in position C1 + 1 as we are not modelling the exact
number of unobserved waiting customers. While not without some degree of inaccuracy when
approximating the true IB model waiting time distribution, it is more appropriate than using
the waiting time distribution of a customer conditional on them arriving into an observable
queue position.

If we suppose that the target class-1 customer is patient, then their nominal waiting time
until reaching service can be modelled by the absorbing CTMC[

R R′0
0` 0

]
,

where ` is the total number of states in Equation (6.1) since we are not removing level C1, and
R′0 = −Re′. Here, we are letting

R =



C1 C1 − 1 C1 − 2 · · · 2 1 0

C1 Q̃
[2]
C1

(LD)
[1]
C1

0 · · · 0 0 0

C1 − 1 0 Q̃
[2]
C1−1 (LD)

[1]
C1−1

. . . 0 0 0

C1 − 2 0 0 Q̃
[2]
C1−2

. . . 0 0 0
...

...
. . .

. . .
. . .

...
...

...
2 0 0 0 · · · Q̃

[2]
2 (LD)

[1]
2 0

1 0 0 0 · · · 0 Q̃
[2]
1 (L̃D)

[1]
1

0 0 0 0 · · · 0 0 Q̃
[2]
0


,

where the level now represents the number of class-1 customers ahead of our target customer
(in service or waiting).

As further class-1 arrivals will not impact the waiting time of a class-1 customer already

in the system, we turn off the flow of class-1 arrivals and let Q̃
[2]
m = Q

[2]
m + λ1(1 − δm,C1)I,

m = 1, 2, . . . , C1. Next, to account for the possibility of the target customer entering service
after the customer immediately preceding them completes service, we have a modified block

(L̃D)
[1]
1 which is constructed as per Equation (5.47) but using

(L̃D)
[1]
n1=1,...,nN−1,nN

=


α

[1]
1 (1−δn1,C1p

∗
1,0)Is1 0′s10s2 0′s10

a
[2,N ]
n1,...,nN

−s2
0′b1|k1|0s1 U∗1,n1

0′b1|k1|0a[2,N ]
n1,...,nN

−s2

0′s20s1 α
[1]
1 (1−δn1,C1p

∗
1,0)Is2 0′s20

a
[2,N ]
n1,...,nN

−s2

0′
a
[2,N ]
n1,...,nN

−s2
0s1 0′

a
[2,N ]
n1,...,nN

−s2
0s2 α

[1]
1 (1−δn1,C1p

∗
1,0)I

a
[2,N ]
n1,...,nN

−s2

 .
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Finally, we must also make an adjustment to account for the fact that in level 0, after observing
a class-1 switch-in time completion, the target customer enters service rather than the server

immediately beginning a class-2 switch-in. To this end, we use the modified block Q̃
[2]
0 which

is calculated as Q
[2]
0 + λ1I, but we replace ∆

[1]
n1=0,...,nN

by

∆̃
[1]
n1=0,...,nN

=
[
ζn1,...,nN ,1 0′s10s2 0′s10

a
[2,N ]
n1,...,nN

−s2

]
.

It then follows that the nominal waiting time W ∗1 is phase-type with representation PH`(Φ,R),
using initial probability row vector

Φ = (πC1
, πC1−1, . . . , π1, π0).

We now incorporate the target customer’s reneging to obtain the time spent waiting in the
system from what we have already constructed for the nominal waiting time. Treating ‘reaching
service’ and ‘reneging’ as separate absorbing states, their time spent waiting in the system is
equal in distribution to the time until absorption for a CTMC with infinitesimal generator
matrix  R−A[1] R′0 α′1

0` 0 0
0` 0 0

 ,
and initial probability vector (Φ, 0, 0). Here, we are letting α′1 = A[1]e′ be the ordered column
vector of the target class-1 customer’s reneging rates and A[1] is a square matrix which places
these ordered rates on the main diagonal. A[1] is constructed as

A[1] =


A[1]
C1

0 · · · 0

0 A[1]
C1−1

. . . 0
...

. . .
. . .

...

0 0 · · · A[1]
0

 ,

whose blocks we obtain recursively from the following, such that A[1]
n1,...,n1+0 = A[1]

n1 :

A[1]
n1,...,n1+k

=


A[1]
n1,...,n1+k,0

0 · · · 0

0 A[1]
n1,...,n1+k,1

. . . 0
...

. . .
. . .

...

0 0 · · · A[1]
n1,...,n1+k,C1+k+1

 , k = 0, 1, . . . , N − 2.

The block components of the above are

A[1]
n1,...,nN

=

 α1,n1+1Is1 0 0
0 α1,n1I|k1|b1 0

0 0 α1,n1+1Ia[2,N ]
n1,...,nN


for n1 = 1, 2, . . . , C1 − 1, and

A[1]
n1,...,nN

= α1,1Ia[1,N ]
n1,...,nN
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for n1 = 0. It then follows that the customer’s time spent waiting in the system W#
1 follows a

PH`(Φ,R−A[1]) distribution and has expected value

E[W#
i ] = Φ(A[1] −R)−1e′.

Lastly, as in Equation (4.9), it follows that

P (Reach Service) = Φ(A[1] −R)−1R′0

and

P (Renege) = Φ(A[1] −R)−1α′1.

6.6 Numerical Examples

6.6.1 Waiting Time Densities

We examine densities of both class-1 nominal waiting time and time spent waiting for FB and
UWC models at increasing values of C. A value of D = 50 was used to calculate the UWC
probabilities, as outlined in Section 6.4.2. We consider a 2-queue system with arrival rates
λ1 = λ2 = 0.75, Exp(10) switch-in times for both classes, and exponentially distributed service
times with means of 1 and 0.5 for classes 1 and 2, respectively. Additionally, we suppose that
there is a Bernoulli service discipline at each queue, with pB

1 = 0.25 and pB
2 = 1, such that class

2 is served exhaustively.

For C1 = C2 = C, C = 2, 3, . . . , 25, we plot the densities of both the nominal waiting time
as well as time spent waiting distributions outlined in Section 6.5. In Figure 6.1, we assume
simple level-independent reneging rates

αi,n = 0.025, i = 1, 2,

while in Figure 6.2, we allow the reneging rates to scale linearly with queue position,

αi,n = 0.01 + 0.005n, i = 1, 2.

Along with the densities for both FB and UWC models, we plot the waiting times’ expected
values and variances for given C values. Note that the horizontal grey lines in Figures 6.1 and
6.2, (e) and (f), are approximations of the limiting IB model expected values and variances
approximated using the corresponding FB models with C = 40.

Recall that the time spent waiting in queue is in effect, the minimum of the customer’s
nominal waiting time and their impatience time. As such, it should be no greater than the
nominal waiting time. Comparing the nominal waiting time and time spent waiting densities
at C = 25 in either figure, we observe this through a significant increase in density at smaller
values of t. In particular, this is more noticeable in Figure 6.2 where reneging rates are larger for
customers having 3 or more customers waiting ahead of them in their queue. Interestingly, this
also results in the level-independent reneging model having smaller average time spent waiting
than the level-dependent reneging model for C ≤ 5 in the UWC model and C ≤ 6 in the FB
model.

In both figures, it is clear that the FB and UWC models converge to the same densities
as we increase C. At small C the densities differ greatly, with the UWC curves being quicker
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to lower the density at the smallest values of t. Also, for example, we observe at C = 2
that the densities flatten out near 0 at slightly higher values of t, indicating larger waiting
times. Through parts (e) and (f) of either figure, we demonstrate that the expected values
and variances of the UWC models are strictly larger than those of the FB models at a given
C, while monotonically converging to the same IB model limit. This stands as evidence that
the UWC models provide better approximations of the true densities than the FB models at a
given truncation level C.

6.6.2 Revisiting a Cost Optimization Problem

Within this example, we investigate the impact of UWC on the selection of optimal (k1, k2)
pairs as considered in Section 4.5.1. As we previously found optimality along the boundary
k1 + k2 = 12, we will now only consider this subset of possible pairs. In particular, we consider
the parameters of Case 1 such that in our 2-queue system we have arrival rates λ1 = λ2 = 0.75,
Exp(10) switch-in time distributions, and mean service times of µ1 = 0.9 and µ2 = 0.1 for
classes 1 and 2, respectively. As we are interested in the impact of UWC, we select the H2

service time distributions, having variances of 1000µ2
i :

Ser i ∼ PH2

β
i

= (0.001, 0.999), Bi =

 −( 1
µi

)( √
2√

2+999

)
0

0 −
(

1
µi

)( √
2√

2−1

)  , i = 1, 2.

As this example considered level-independent reneging rates, we may apply UWC version 1 as
covered in Chapter 5, in addition to UWC version 2. A value of D = 50 was used in the UWC
version 2 calculations.

In Figure 6.3, we plot optimal k1 (such that k2 = 12−k1, k1 = 1, 2, . . . , 11) for FB and both
UWC models, letting α1 = α2 = α ∈ {0.025, 0.05, 0.25} and C1 = C2 = C, C = 2, 3, . . . , 20.
To aid in visualization, as we are plotting discrete values on our vertical axis, we make use of
a small vertical displacement on the FB and UWC version 2 values so that the data points do
not overlap. Here, optimal k1 are defined as those satisfying our restrictions that minimize the
cost function

Cost = Cost1 + Cost2,

where
Costi = ciλiE[W#

i ] + riλiPr(Class-i customer reneges), i = 1, 2,

and ci and ri, i = 1, 2, are assumed to be non-negative constants, which for the purposes of
this example are set equal to c1 = 2, c2 = 1, r1 = 1, and r2 = 0.5.

Figure 6.3 provides us with an idea on how fast (in terms of C) each model arrives upon
the correct optimal k1 values, as well as the volatility of these values. In Figure 6.3 (a), we see
that all three models arrive on k1 = 3 at C = 8, however UWC version 2 diverts to k1 = 4 for
a period before eventually returning. At smaller C, FB overshoots the optimal k1 and arrives
on k1 = 5. In Figure 6.3 (b), the models all hit k1 = 3 at C = 8 again. While UWC version 2
does not divert from this value, we again observe the FB model reach k1 = 5 at small C while
neither UWC model exceeds k1 = 4. Lastly, in Figure 6.3 (c), UWC version 1 begins in the
correct optimal k1 and never leaves, while version 2 is the next to arrive from below, followed
by FB from above. Overall, within these three cases, we observe UWC version 1 to be the most
reliable, reaching the final optimal k1 values no slower than the other models, while having
minimal volatility.
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Figure 6.1: Plots of FB and UWC waiting time densities, expected values, and variances, for
C = 2, 3, . . . , 25, and αi,n = 0.025, i = 1, 2.
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Figure 6.2: Plots of FB and UWC waiting time densities, expected values, and variances, for
C = 2, 3, . . . , 25, and αi,n = 0.01 + 0.005n, i = 1, 2.
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Figure 6.3: Plots of optimal k1 at C = 2, 3, . . . , 20 for FB, UWC version 1, and UWC version
2 models.
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Figure 6.4: Plots of the cost function at C = 2, 3, . . . , 20 and k1 = 1, 2, . . . , 11, for UWC version
1 and 2 models at α = 0.025.

Previously, we have observed UWC version 2 outperform UWC version 1. To see why this
is not the case in this particular example, we plot the cost functions for α = 0.025 at each
k1 = 1, 2, . . . , 11 in Figure 6.4 for both UWC versions. Within this figure, we alter the colour of
the data points corresponding to minimum costs at a given C to black to clearly indicate which
ki they belong to. Surprisingly, we observe drastically different relationships between the costs
and C. For UWC version 1 we observe a monotonic increasing relationship (similar to FB,
which is omitted), while UWC version 2 experiences a large spike before eventually decreasing
to the same limiting values.

After investigating the components of the UWC version 2 cost functions, this was found
to be largely driven by the expected time waiting in system from both classes, which we plot
in Figure 6.5. The reasoning behind this is as follows. For C = 2, the probability of being in
the first service phase when the server initiates a level-C busy period is small, but increases
greatly with C. That is, the queue length is unlikely to increase to large numbers unless the
server is stuck in an exceptionally long service time. Given such a β̂

∗
i
, we expect a large value
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Figure 6.5: Plots of E[W#
i ], i = 1, 2, at C = 2, 3, . . . , 20 and k1 = 1, 2, . . . , 11, for the UWC

version 2 model at α = 0.025

of N∗C,i due to the excess of customers who arrive during this service, resulting in a larger UWC
probability. However, this same probability is used after every observed departure, no matter
if the current service time is quick or slow. Since a given service time has a 99.9% chance to
be quicker, it will not in fact take very long to clear the queue after the long service completes.
Therefore, the use of a larger UWC probability on subsequent services results in a much larger
level-C busy period than intended.

This increase in the mean level-C busy period simultaneously shifts more probability mass
to the buffer while making the server take longer to stop serving the class opposite the target
class-i customer. We then observe the mean time spent waiting in the queues overshoot the true
values, rather than gradually converge to it from below like the FB model. As C is increased
further, less probability mass is available to be shifted to level C, so CTMC interactions with
the UWC probabilities are less frequent and hence the inaccurate delays are experienced less
often. Additionally, the total force of reneging by observed waiting customers is larger for a
larger C, resulting in smaller UWC probabilities, naturally reducing this effect.

In contrast, we have seen UWC version 1 perform relatively well for H2 distributions, where
service phase transitions are rare. For these particular distributions with mixing weights of
99.9% and 0.1%, they are even more so (after the initial long service time which often initiates
a level-C busy period). The use of phase-dependent UWC probabilities avoids the error resulting
in extended level-C busy periods, and so it behaves as we would expect the UWC approximation
to. That is, the expected values of the time spent waiting converge to their true IB model values
faster, and hence stabilize at smaller C. This reduces the value of C after which we would no
longer expect to observe more fluctuations in optimal k1, as we observed in Figure 6.3. We
therefore advise discretion on which UWC version to apply based on the special structures of
selected service time distributions, as it is clear that UWC version 2 is not in fact strictly better
than version 1.
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Appendix A

A.1 Derivation of the Kolmogorov Backward Equations

We will derive the Kolmogorov Backward equations for a CTMC whose state space S may have
countable-many states. We begin by considering how to calculate the transition probability
function, Pi,j(t). Considering if the CTMC has left state i by time t, from the law of total
probability we obtain

P (X(t) = j|X(0) = i) = P (X(t) = j, Ti > t|X(0) = i) + P (X(t) = j, Ti ≤ t|X(0) = i).

Clearly, if Ti > t, then the CTMC may be in state j iff j = i, and so

P (X(t) = j, Ti > t|X(0) = i) = P (X(t) = j|Ti > t,X(0) = i)P (Ti > t|X(0) = i) = δi,je
−vit.

If we now assume that Ti ≤ t, then considering what state k 6= i the CTMC transitions to at
Ti, we get

P (X(t) = j, Ti ≤ t|X(0) = i) =
∑
k∈S
k 6=i

P (X(t) = j, Ti ≤ t,X(Ti) = k|X(0) = i).

Conditioning on the value of Ti,

P (X(t) = j, Ti ≤ t,X(Ti) = k|X(0) = i)

=

∫ ∞
0

P (X(t) = j, Ti ≤ t,X(Ti) = k|X(0) = i, Ti = s)fTi(s)ds

=

∫ t

0
P (X(t) = j, Ti ≤ t,X(Ti) = k|X(0) = i, Ti = s)fTi(s)ds.

From the definition of conditional probability, it holds that

P (X(t) = j, Ti ≤ t,X(Ti) = k|X(0) = i, Ti = s)

= P (X(t) = j|X(s) = k,X(u) = i, 0 ≤ u < s)P (X(s) = k|X(0) = i, Ti = s),

where we can note that P (X(s) = k|X(0) = i, Ti = s) = pi,k = qi,k/vi. Thus, by the Markov
property and the stationary assumption of CTMCs,

P (X(t) = j, Ti ≤ t|X(0) = i) =
∑
k∈S
k 6=i

∫ t

0
P (X(t) = j|X(s) = k)

qi,k
vi
vie
−visds

=
∑
k∈S
k 6=i

∫ t

0
qi,ke

−visPk,j(t− s)ds.
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Now, note that since qi,k, e
−vis, and Pk,j(t − s) are non-negative for all k ∈ S, k 6= i, as a

consequence of the monotone convergence theorem we may interchange the order of summation
and integration and obtain

∑
k∈S
k 6=i

∫ t

0
qi,ke

−visPk,j(t− s)ds =

∫ t

0

∑
k∈S
k 6=i

qi,ke
−visPk,j(t− s)ds.

Thus,

Pi,j(t) = P (X(t) = j, Ti > t|X(0) = i) + P (X(t) = j, Ti ≤ t|X(0) = i)

= δi,je
−vit +

∫ t

0

∑
k∈S
k 6=i

qi,ke
−visPk,j(t− s)ds,

and after multiplying both sides by evit, we obtain

evitPi,j(t) = δi,j +

∫ t

0

∑
k∈S
k 6=i

qi,ke
vi(t−s)Pk,j(t− s)ds = δi,j +

∫ t

0

∑
k∈S
k 6=i

qi,ke
viuPk,j(u)du.

Taking the derivative with respect to t and applying the Leibniz integral rule to evaluate
the derivative of the right-hand side, we get

vie
vitPi,j(t) + evitP ′i,j(t) =

∑
k∈S
k 6=i

qi,ke
vitPk,j(t).

Finally, after multiplying both sides by e−vit, we are able to recover the Kolmogorov Backward
equations:

P ′i,j(t) =
∑
k∈S
k 6=i

qi,kPk,j(t)− viPi,j(t).

�

A.2 Proof of Corollary 1.1

We will now prove the three necessary claims required for Corollary 1.1 to hold true. Recall
that we need only consider non-absorbing states i ∈ S, where vi > 0 and there exists at least
one j ∈ S such that qi,j > 0. First, let us consider the distribution of a sojourn time in state i.
Let Yi,j ∼ Exp(qi,j), j 6= i, j ∈ S, be independent exponentially distributed random variables
such that if qi,j = 0 then we let Yi,j =∞ with probability 1.

As we have claimed that the CTMC will leave state i after observing the first timer com-
pletion, a sojourn time Ti is simply equal in distribution to the minimum of Yi,j , j 6= i, j ∈ S.
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Therefore, for any t > 0,

P (Ti > t) = P (min{Yi,j , j 6= i} > t)

= P (Yi,j > t, j 6= i)

=
∏
j 6=i

P (Yi,j > t) Independence

=
∏
j 6=i

e−qi,jt

= e−(
∑
j 6=i qi,j)t

= e−vit,

implying that Ti ∼ Exp(vi), as required. Note that in the above, if qi,j = 0, then P (Yi,j > t) =
e0 = 1.

Next, we consider the probability that when the CTMC leaves state i, it transitions to state
j 6= i, pi,j . If qi,j = 0, then it is trivial to confirm that pi,j = 0 (since Yi,j = ∞), so let us
suppose that qi,j > 0. We will observe the CTMC transition to j iff Yi,j = min{Yi,k, k 6= i}, or
equivalently, Yi,j < min{Yi,k, k 6= i, k 6= j}. If we let Y ∗i,j = min{Yi,k, k 6= i, j}, by the above, it

follows that Y ∗i,j ∼ Exp
(∑

k 6=i,j qi,k = vi − qi,j
)

.

If vi = qi,j , then Y ∗i,j =∞ with probability 1, and

P (Yi,j < Y ∗i,j) = P (Yi,j <∞) = 1 = pi,j ,

as required. Suppose now that vi > qi,j . Recalling that qi,j = vipi,j , it follows that

P (Yi,j < Y ∗i,j) =

∫ ∞
0

P (Yi,j < Y ∗i,j |Yi,j = y)fYi,j (y)dy

=

∫ ∞
0

P (Y ∗i,j > y)fYi,j (y)dy Independence

=

∫ ∞
0

e−(vi−qi,j)yqi,je
−qi,jydy

= pi,j

∫ ∞
0

vie
−viydy = pi,j ,

as required.

Let Ai,j = {Yi,j < Y ∗i,j} denote the event that after a visit to state i, the CTMC next
transitions to state j 6= i (such that P (Ai,j) = pi,j). Supposing that qi,j > 0 (i.e., pi,j > 0) and
applying the definition of conditional probability, we have

P (Ti > t,Ai,j) = P (Ti > t|Ai,j)P (Ai,j),
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and

P (Ti > t|Ai,j) = P (Yi,j > t|Yi,j < Y ∗i,j)

=
P (Yi,j > t, Yi,j < Y ∗i,j)

P (Yi,j < Y ∗i,j)

=
1

pi,j

∫ ∞
0

P (Yi,j > t, Yi,j < Y ∗i,j |Yi,j = y)fYi,j (y)dy

=
1

pi,j

∫ ∞
t

P (Y ∗i,j > y)fYi,j (y)dy Independence

=
1

pi,j

∫ ∞
t

e−(vi−qi,j)yqi,je
−qi,jydy

=

∫ ∞
t

vie
−viydy

= P (Ti > t),

so

P (Ti > t,Ai,j) = P (Ti > t)P (Ai,j).

Lastly, if qi,j = 0, then P (Ti > t,Ai,j) = 0 and P (Ai,j) = pi,j = 0, so the above equality still
holds true. Thus, we have proven that Ti and Ai,j are independent for all j ∈ S, and have now
confirmed that the claim in Corollary 1.1 is true.

�

A.3 Proof of Theorem 3.1

We begin by remarking that the infinitesimal generator subblocks Q
[C,f ]
0,1,0 and (UD)

[C,f ]
0,0 both

comprise 1 + s0 identical rows equal to Cα1γ
[+0]
01 ⊗ β

1
and Cα2γ

[+0]
02 ⊗ β

2
, respectively. This

implies that given a machine failure has occurred, the CTMC transitions away from any of the
empty queue states {(0, 0, 0, 0, 0, 0)} ∪ {(0, 0, 5, y, 0, 0), y = 1, 2, . . . , s0} in an identical fashion.
This observation immediately follows from our assumption that interrupting and switching away
from a class-i switch-in is treated the same as the server switching away from class i itself.

We now consider the differences between a system containing k machines where [C, f ] = [k, 0]
or [C, f ] = [k − 1, 1]. The two systems will act identically, in terms of infinitesimal generator
construction, with the exception of the rows for states where all k machines are functional (the
first system puts the kth machine to use, while the second stores it in the maintenance float). In
either case, the total time spent visiting any combination of the empty queue states between the
previous service completion and the next observed failure will have an exponential distribution
with rate Cα (i.e., Exp(Cα)). Hence, we may adjust the CTMCs and consolidate the empty

queue states into a single state (0, 0) with steady-state probability π
[C,f ]
0,0 = π

[C,f ]
0,0 e′1+s0

, such
that we do not track the potential phase-type class-0 switch-in time and the sojourn time in
this state is simply the time until the next machine failure. Note that this consolidation will

not affect the other steady-state probabilities due to the identical rows of Q
[C,f ]
0,1,0 and (UD)

[C,f ]
0,0

which each are now just present once, corresponding to transitions out of state (0, 0). Thus, we
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have at steady state

E[N
[C,f ]
W ] = E[min{C,C + f −X [C,f ]

1 −X [C,f ]
2 }]

=
∑

m,n,l,y,y1,y2

min{C,C + f −m− n}π[C,f ]
m,n,l,y,y1,y2

= C

π[C,f ]
0,0,0,0,0,0 +

s0∑
y=1

π
[C,f ]
0,0,5,y,0,0


+

∑
m+n6=0

∑
l,y,y1,y2

min{C,C + f −m− n}π[C,f ]
m,n,l,y,y1,y2

= Cπ
[C,f ]
0,0 +

∑
m+n 6=0

∑
l,y,y1,y2

min{C,C + f −m− n}π[C,f ]
m,n,l,y,y1,y2

. (A.1)

That is, the expected number of working machines will be the same in the original CTMCs and
the corresponding adjusted CTMCs with the consolidated empty queue state.

Let ψ
[C,f ]
0,0 and ψ

[C,f ]
m,n,l,y,y1,y2

denote the steady-state probabilities of the embedded DTMC
(e.g., Syski [88], p. 14), describing an adjusted CTMC with a given [C, f ]. As the generators
for [k, 0] and [k− 1, 1] are now identical outside of the first rows for state (0, 0), which for [k, 0]
is [

−kα kα2γ
[+0]
02 ⊗ β2

0 · · · 0 kα1γ
[+0]
01 ⊗ β1

0 · · · 0
]

and for [k − 1, 1] is[
−(k − 1)α (k − 1)α2γ

[+0]
02 ⊗ β2

0 · · · 0 (k − 1)α1γ
[+0]
01 ⊗ β1

0 · · · 0
]
,

it is clear that while the steady-state probabilities for the CTMCs differ, it holds that ψ
[k,0]
0,0 =

ψ
[k−1,1]
0,0 and ψ

[k,0]
m,n,l,y,y1,y2

= ψ
[k−1,1]
m,n,l,y,y1,y2

.

It is known from the theory of semi-Markov processes (e.g., Ross [82], p. 445) that if the
long-run proportion of transitions by a semi-Markov process into state i is πi (i.e., the steady-
state probability of the embedded DTMC being in state i) and the amount of time spent in
state i before transitioning away has mean µi, then the long-run proportion of time that the
semi-Markov process is in state i is

πiµi∑N
j=1 πjµj

, (A.2)

where N is the total number of states. Since we are considering CTMCs, the time spent in a
state is exponentially distributed with a mean equal to the negative inverse of that state’s

corresponding main diagonal element from the infinitesimal generator. Let µ
[k,0]
m,n,l,y,y1,y2

=

µ
[k−1,1]
m,n,l,y,y1,y2

denote the mean time spent in a visit to state (m,n, l, y, y1, y2), and µ
[k,0]
0,0 = 1

kα and

µ
[k−1,1]
0,0 = 1

(k−1)α be the mean times spent in visits to the empty queue state in either adjusted
CTMC. We then have

π
[C,f ]
m,n,l,y,y1,y2

=
ψ

[C,f ]
m,n,l,y,y1,y2

µ
[C,f ]
m,n,l,y,y1,y2

ψ
[C,f ]
0,0 µ

[C,f ]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

ψ
[C,f ]
x1,x2,w,z,z1,z2µ

[C,f ]
x1,x2,w,z,z1,z2
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and

π
[C,f ]
0,0 =

ψ
[C,f ]
0,0 µ

[C,f ]
0,0

ψ
[C,f ]
0,0 µ

[C,f ]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

ψ
[C,f ]
x1,x2,w,z,z1,z2µ

[C,f ]
x1,x2,w,z,z1,z2

.

Let

D[C,f ] =
∑

x1+x2 6=0

∑
w,z,z1,z2

ψ[C,f ]
x1,x2,w,z,z1,z2µ

[C,f ]
x1,x2,w,z,z1,z2 ,

which we know satisfies D[k,0] = D[k−1,1]. It now follows that

π
[k,0]
m,n,l,y,y1,y2

=
ψ

[k,0]
m,n,l,y,y1,y2

µ
[k,0]
m,n,l,y,y1,y2

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

=
ψ

[k−1,1]
m,n,l,y,y1,y2

µ
[k−1,1]
m,n,l,y,y1,y2

ψ
[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

×
ψ

[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

= π
[k−1,1]
m,n,l,y,y1,y2

ck, (A.3)

where

ck =
ψ

[k−1,0]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

=

1
(k−1)αψ

[k,0]
0,0 +D[k,0]

1
kαψ

[k,0]
0,0 +D[k,0]

> 1. (A.4)

Similarly,

π
[k,0]
0,0 =

ψ
[k,0]
0,0 µ

[k,0]
0,0

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

=
ψ

[k−1,1]
0,0 µ

[k−1,1]
0,0

(
k−1
k

)
ψ

[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

×
ψ

[k−1,1]
0,0 µ

[k−1,1]
0,0 +D[k−1,1]

ψ
[k,0]
0,0 µ

[k,0]
0,0 +D[k,0]

= π
[k−1,1]
0,0

(
k − 1

k

)
ck. (A.5)

Note that we can find an upper bound on ck. As the steady-state probabilities for both cases
must respectively sum to 1, using Equations (A.3) and (A.5), it must simultaneously hold that

1 = π
[k,0]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

π[C,f ]
x1,x2,w,z,z1,z2

= π
[k−1,1]
0,0

(
k − 1

k

)
ck + ck

∑
x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2

and

1 = π
[k−1,1]
0,0 +

∑
x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2

.

Clearly, as every probability is non-negative, by Equation (A.4),

ck
∑

x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2

>
∑

x1+x2 6=0

∑
w,z,z1,z2

π
[k−1,1]
m,n,l,y,y1,y2
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implying that we must have

π
[k−1,1]
0,0

(
k − 1

k

)
ck < π

[k−1,1]
0,0 ,

or equivalently,

1 < ck <
k

k − 1
.

Finally, using Equations (A.1) - (A.5),

E[N
[k,0]
W ]

= kπ
[k,0]
0,0 +

∑
m+n6=0

∑
l,y,y1,y2

min{k, k + 0−m− n}π[k,0]
m,n,l,y,y1,y2

= kπ
[k,0]
0,0 +

∑
m+n6=0

∑
l,y,y1,y2

(k −m− n)π
[k,0]
m,n,l,y,y1,y2

= kπ
[k−1,1]
0,0

(
k − 1

k

)
ck +

∑
m+n6=0

∑
l,y,y1,y2

(k −m− n)π
[k−1,1]
m,n,l,y,y1,y2

ck

= ck

(k − 1)π
[k−1,1]
0,0 +

∑
m+n6=0

∑
l,y,y1,y2

min{k−1, k−1+1−m−n}π[k−1,1]
m,n,l,y,y1,y2


= ckE[N

[k−1,1]
W ]

> E[N
[k−1,1]
W ].

�

A.4 Proof of Theorem 3.2

In order to consider the limit of the expected number of working machines, we need to first

find an expression for E[N
[C,f ]
W ]. Similar to Abboud [1], we consider the number of working

machines as a subsystem and apply the result of Little [64]. Recall that Little’s Law states that
the expected number of ‘customers’ in a system (E[L]) is equal to the product of their average
arrival rate (λ) and the expected amount of time that a customer spends in the system (E[W ]).

As we are treating the number of working machines as the subsystem, not the number of
functional machines, it is clear that W is simply the time until a working machine fails. Thus,
we have W ∼ Exp(α), and so

E[W ] =
1

α
, (A.6)

which is independent of C, f , and the service policy. Next, we require the limiting aggregate

rate that machines fail and are repaired, which we define as λ
[C,f ]
r , which is the effective average

‘arrival rate’ of repaired machines satisfying

E[N
[C,f ]
W ] = λ[C,f ]

r E[W ] =
λ

[C,f ]
r

α
. (A.7)

We cite a result from the theory of renewal reward processes (e.g., Ross [82], p. 427), describing
a system which earns a reward Rn after the nth renewal of a renewal process {N(t), t ≥ 0} with
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interarrival times Xn, n ∈ Z+, where the Rn’s are iid, but may depend on Xn. The total
amount of rewards that have accumulated by time t ≥ 0 is

R(t) =

N(t)∑
n=1

Rn,

and it is known that the long run rate at which rewards are earned is

lim
t→∞

R(t)

t
=

E[R]

E[X]
. (A.8)

We now define a renewal process based on our adjusted model from the proof of Theorem 3.1
with [C, f ] machines, such that a renewal occurs whenever the adjusted CTMC enters the empty
queue state (0, 0) (i.e., at time instants immediately after a repair which leaves all machines
functional). At the end of each renewal, we receive a reward of 1 unit per observed service
completion during that cycle. Applying Equation (A.8) to this renewal process will result in
the aggregate rate at which machines are repaired. That is, if we let E[BP [C,f ]] denote the
mean duration of a busy period (i.e., the time between a failure to an empty system and when
the system is empty again), then

λ[C,f ]
r =

E[Number of repairs in BP [C,f ]]

E[Time until first failure at full capacity] + E[BP [C,f ]]
. (A.9)

Let BP
[C,f ]
ser and BP

[C,f ]
swi denote the time spent serving or switching during a busy period,

respectively, such that BP [C,f ] = BP
[C,f ]
ser + BP

[C,f ]
swi . Note that regardless of order caused by a

particular service policy, every machine that fails during (or initiating) the busy period must
eventually be served. Since we assume that any preempted services are resumed when the server
returns, no work is lost due to switch-ins. Therefore, if for example a class-2 repair time has
the potential to be interrupted until some number of class-1 repairs are completed, the total
expected time to repair that class-2 machine is still −β

2
B−1

2 e′. Thus, if we let NBP be the

number of repairs in BP [C,f ], then BP
[C,f ]
ser can be represented as the sum of all total service

times observed during the busy period

BP [C,f ]
ser =

NBP∑
n=1

ZM
n ,

where ZM
n , n = 1, 2, . . ., are iid random service times which are mixtures of PHbi(βi, Bi) distri-

butions, i = 1, 2, with weights α1/α and α2/α, having mean

E[ZM] = −
(α1

α

)
β

1
B−1

1 e′ −
(α2

α

)
β

2
B−1

2 e′.

Therefore, it follows that for large C,

E[BP [C,f ]
ser ] = E[Number of repairs in BP [C,f ]]E[ZM],

where we remark that as C → ∞, the duration of a busy period (and hence the number of
machines serviced during a busy period) will only have a very weak dependence on an individual
service time. Therefore, for large C, Equation (A.9) becomes

λ[C,f ]
r =

E[BP
[C,f ]
ser ]/E[ZM]

1
Cα + E[BP

[C,f ]
ser ] + E[BP

[C,f ]
swi ]

. (A.10)
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It should be noted that the distributions of NBP , BP
[C,f ]
ser , and BP

[C,f ]
swi (and hence BP [C,f ])

depend not only on C and f , but also on the switch-in decision probabilities. For example, a
class-1 preemptive resume priority discipline will always choose to clear out the small jobs as
they arrive, which will result in those machines being able to fail again sooner than if the class-2
queue had to be emptied first, hence making it more likely that the server will need to repair
more total machines during that busy period in comparison to other policies. We note however
that the sole act of serving more machines during a busy period, and hence between renewals,

does not necessarily mean that its resulting λ
[C,f ]
f will be smaller or larger, as it very much also

depends on whether these extra switches (relative to other disciplines) cause idle periods due
to non-zero switch-in times.

We now consider the first of three cases, where γ
[0]
ji = 1 ∀ i, j ∈ {0, 1, 2}, i 6= j. Clearly, this

implies that E[BP
[C,f ]
swi ] = 0, and Equation (A.10) simplifies to

λ[C,f ]
r =

E[BP
[C,f ]
ser ]/E[ZM]

1
Cα + E[BP

[C,f ]
ser ]

. (A.11)

Since E[BP
[C,f ]
ser ] ≥ E[ZM] > 0 ∀ C = 1, 2, . . . and E[BP

[C,f ]
ser ] is an increasing function in C (as

we will discuss shortly), by taking the limit of Equation (A.11), we observe that

λ[∞]
r = lim

C→∞
λ[C,f ]
r

= lim
C→∞

E[BP
[C,f ]
ser ]/E[ZM]

1
Cα + E[BP

[C,f ]
ser ]

= lim
C→∞

 1
1

CαE[BP
[C,f ]
ser ]

+ 1

 1

E[ZM]

=
−α

α1β1
B−1

1 e′ + α2β2
B−1

2 e′
. (A.12)

Therefore, Equation (3.11) follows immediately from Little’s Law and Equations (A.6) and
(A.12).

Next, suppose that only switches out of or into class 0 can have positive durations. It then

follows that E[BP
[C,f ]
swi ] is a constant with respect to C, and so it still holds that

λ[∞]
r = lim

C→∞

 1

(Cα)−1+E[BP
[C,f ]
swi ]

E[BP
[C,f ]
ser ]

+ 1

 1

E[ZM]
=

−α
α1β1

B−1
1 e′ + α2β2

B−1
2 e′

,

resulting in the statement of Equation (3.11).

Finally, we consider the cases where positive switch-in times are observable in at least

one direction between the class-1 and class-2 queues (i.e., γ
[0]
12 and/or γ

[0]
21 are less than 1).

We now make the seemingly obvious claim that both E[BP
[C,f ]
ser ] and E[BP

[C,f ]
swi ] are increasing

functions in C. This is intuitive, as increasing C increases the probability flow, and hence the
transition probabilities, for a given state to states within the CTMC corresponding to longer
queue lengths. Also, increasing C increases the maximum total queue lengths that if visited,
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represent more potential total work that must be completed before the end of the busy period
than a corresponding ‘full queue’ state (i.e., X1(t) + X2(t) = C + f) in a maintenance system
with a smaller C. Thus, the expected number of machine failures within a renewal period must

increase with C, implying that E[BP
[C,f ]
ser ] is an increasing function in C.

If machine failures are more frequent, then it also follows that the probability of observing no
arrivals to the opposite queue while emptying their current queue goes to zero as C →∞. To see
this, consider the system at the start of a class-i service while Xi(t) = 1 and Xj(t) = 0, j 6= i. If
we assume that f ≥ 1 and let WC ∼ Exp(Cα) and Ser i ∼ PHbi(βi, Bi) be independent random
variables, then the probability of having no failures during this class-i service is P (WC > Ser i),
where

P (WC > Ser i) =

∫ ∞
0

e−Cαtβ
i
exp{Bit}e′dt = E[e−CαSer i ] = S̃er i(Cα)

is the Laplace transform of Ser i at Cα. If instead we had f = 0, then C would be replaced
by C − 1 in the above equation. Applying the dominated convergence theorem, it is easy to
confirm that

lim
C→∞

P (WC > Ser i) = lim
C→∞

S̃er i(Cα) = 0.

Thus, as we increase C, it becomes more likely that there is a combination of class-1 and/or
class-2 arrivals by the end of the service. If at least one failure was from class j, j 6= i,
then the server will have to undergo a class-j switch-in after eventually emptying the class-i
queue. If every failure was class i, then the server will have at least one more independent
and probabilistically identical opportunity to observe class-j failures before either switching to
class j or to class 0 (and ending the busy period). Thus, the expected number of transitions
between queues after emptying a queue increases with C, which are present for every service
policy. Similarly, the number of switches from positive queue lengths will be non-decreasing
in C due to the CTMC spending more time at higher queue lengths, as discussed previously.

Therefore, we can conclude that E[BP
[C,f ]
swi ] is also an increasing function in C.

Now, we rewrite Equation (A.10) as

λ[C,f ]
r =

(
1 +

1

CαE[BP
[C,f ]
ser ]

+
E[BP

[C,f ]
swi ]

E[BP
[C,f ]
ser ]

)−1
1

E[ZM]
. (A.13)

Clearly,

lim
C→∞

1

CαE[BP
[C,f ]
ser ]

= 0,

and so the limit of λ
[C,f ]
r depends on the rates at which E[BP

[C,f ]
swi ] and E[BP

[C,f ]
ser ] increase with

C. If they increase at a comparable rate, i.e.,

lim
C→∞

E[BP
[C,f ]
swi ]

E[BP
[C,f ]
ser ]

= d > 0,

then

λ[∞]
r =

(
1

1 + d

)
1

E[ZM]
<

1

E[ZM]
,

implying a strict inequality in Equation (3.10) after applying Little’s Law and Equation (A.6).
It also follows that if

lim
C→∞

E[BP
[C,f ]
swi ]

E[BP
[C,f ]
ser ]

= 0,
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then Equation (3.10) is an equality.

�

A.5 Algorithm for Section 3.5.3: Smart Bernoulli Optimization

Letting precision ∈ Z+ denote the number of decimal places we are interested in approximating
to and E[NW](pSB

2 ) represent the expected number of working machines as a function of pSB
2 ,

we apply:

start = 0

size = 0.1

steps = 11

For i = 1, 2, . . . ,precision:

For j = 1, 2, . . . , steps:

pSB
2,j = start + (j − 1)× size

Ej = E[NW](pSB
2,j)

jm = {j ∈ {1, 2, . . . , steps} : Ej = maxk{Ek}}
if(pSB

2,jm
> 0)

start = pSB
2,jm
− size

if(pSB
2,jm

< 1) steps = 21

size = size/10

p̂SB
2 = pSB

2,jm

What this algorithm does in iteration i ∈ {1, 2, . . . ,precision} is divide an interval of proba-
bilities into increments of width 10−i, solve for E[NW] at each pSB

2 which separate the increments
and determine which of these resulted in the maximum value, then restart the loop for the next
i investigating an interval with length 2 × 10−i centered around that probability, or if it is a
boundary value of 0 or 1, an interval of length 10−i including the said boundary. The above is
a condensed version of the algorithm for readability and space considerations, which may have
its efficiency improved slightly by being altered to not re-calculate E[NW] at any previously
considered pSB

2 ’s. We do not propose this algorithm for its speed, but rather for its accuracy
to a given decimal place without the need of derivatives, and the fact that it is able to return
a probability of exactly 0 or 1.

A.6 Derivation of Absorption Probabilities

We will consider the derivation of the absorption probabilities for absorbing Markov chains
in discrete and continuous time. To begin, consider a reducible DTMC {Xn, n ∈ N} having
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transient states 0, 1, . . . ,M − 1 and absorbing states M,M + 1, . . . , N . We can write the TPM
of such a DTMC in terms of four blocks, i.e.,

P =

0 1 · · · M − 1 M M + 1 · · · N



0

Q R1
...

M − 1
M

0 IM + 1
...
N

.

Here, Q contains the one-step transition probabilities between transient states, R contains one-
step transition probabilities from transient states into absorbing states, 0 is a matrix of zeroes,
and I is an identity matrix (such that the transition probability from an absorbing state back
to itself equals 1).

Let T denote the random time of absorption, such that

T = min{n ∈ N : Xn ∈ {M,M + 1, . . . , N}}.

Additionally, let Ti, i = 0, 1, . . . ,M − 1, denote the remaining number of transitions until
absorption given that the DTMC is in state i. If we let i and k both denote transient states,
then it is clear that by definition

T |(X0 = i) ∼ Ti,
while we also have

T |(X1 = k,X0 = i) ∼ 1 + Tk,

which follows from the Markov property and stationary assumption of DTMCs.
Now, let us define Ui,j as the probability that the DTMC will be absorbed into state j ∈

{M,M+1, . . . , N} given that it is currently in transient state i ∈ {0, 1, . . . ,M−1}. Conditioning
on the first transition of the DTMC,

Ui,j = P (XT = j|X0 = i) =
n∑
k=0

P (XT = j|X1 = k,X0 = i)P (X1 = k|X0 = i). (A.14)

Note that for k ∈ {M,M + 1, . . . , N},

P (XT = j|X1 = k,X0 = i) = δk,j ,

while for k ∈ {0, 1, . . . ,M},

P (XT = j|X1 = k,X0 = i) = P (X1+Tk = j|X1 = k,X0 = i)

= P (X1+Tk = j|X1 = k)

= P (XTk = j|X0 = k)

= P (XT = j|X0 = k) = Uk,j .
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Thus, Equation (A.14) simplifies to

Ui,j =
M−1∑
k=0

Pi,kUk,j + Pi,j =
M−1∑
k=0

Qi,kUk,j +Ri,j , (A.15)

which in matrix form is equivalent to

U = QU +R,

implying that
U = (I −Q)−1R, (A.16)

where U is the M × (N −M + 1) matrix whose (i, j)th element is Ui,j .
Now suppose that we have a CTMC {X(t), t ≥ 0} with the same breakdown of transient

and absorbing states, having infinitesimal generator matrix

Q =

0 1 · · · M − 1 M M + 1 · · · N



0

S S0
1
...

M − 1
M

0 0M + 1
...
N

.

The key to this analysis is that a CTMC will be absorbed into the same state as its embedded
DTMC. Converting the infinitesimal generator matrix of a CTMC into the TPM of its embedded
DTMC is easier if vi = v for all i ∈ S. However, in general, a CTMC will have varying sojourn
rates vi in each transient state.

To account for this, we may apply uniformization (e.g., Ross [82], Section 6.8) to modify
the stochastic process by including the possibility to transition from a state back to itself. This
is achieved by the addition of an extra exponential timer to each state i with rate v − vi, v ≥
max{vi, i ∈ S}, bringing the total exponential rate for the time between (potential) transitions
to v for every state. The TPM for the modified process’s embedded DTMC is

P ∗ = I +
1

v
Q =

[
I + 1

vS
1
vS0

0 I

]
,

which is itself an absorbing DTMC. Applying Equation (A.16), the matrix of absorption prob-
abilities is

U∗ =

(
I −

(
I +

1

v
S

))−1 1

v
S0 = −S−1S0. (A.17)

Relative to the embedded DTMC of {X(t), t ≥ 0}, we have simply added the possibility of
transitioning from transient states to themselves. Since the process changes state in a given
transition, the probability that it transitions from i to j can easily be shown to equal Pi,j from
the original embedded DTMCs TPM. Therefore, while it may require more transitions to reach
an absorbing state, its absorption probabilities will be identical. Thus, Equation (A.17) must
also represent the matrix of absorption probabilities for {X(t), t ≥ 0}.
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