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Abstract 

Tunable filters are promising for reducing the size of communication systems by replacing switch 

filter bank, also they are gaining more attention for satellite applications which will need to change 

the frequency bands. One of the main requirements for tunable filters is to maintain low passband 

insertion loss and high stopband rejection over the tuning range. The key to achieving this goal is 

using high quality factor (high-Q) resonators such as three-dimensional (3D) structure resonators 

(dielectric resonators, coaxial resonators, waveguide resonators, etc.).  For high-Q tunable filters, not 

only do the resonators need to have high unloaded Q, the tuning elements also need to have low loss. 

Over the past years, various tuning techniques have been employed to realize tunable filters, 

including solid-state tuning, mechanical tuning, piezoelectric tuning, magnetic tuning, and MEMS 

tuning. All of these techniques have both advantages and drawbacks in terms of insertion loss, DC 

power consumption, tuning speed, non-linearity, and reliability.   

The objective of the research presented in this thesis is to investigate the feasibility of using metal-

insulating transition (MIT) material and phase-change material (PCM) to realize high-Q tunable/ 

reconfigurable filters for base station in communication and satellite applications. Fabrication 

methods of MIT material VO2 (Vanadium Dioxide) and PCM GeTe (Germanium Telluride) are first 

investigated to obtain optimal MIT/PCM materials with high resistivity ratio between different states. 

RF switches based on both VO2 and GeTe integrated with micro-heaters are then developed. VO2-

based variable attenuators are realized at both X-band and Ka-band. A switch capacitor bank is also 

designed and fabricated, integrating GeTe RF switches and MIM (metal-insulator-metal) capacitors in 

a six-layer microfabrication process.  

A novel structure for wideband dielectric substrate-based filters is developed. The cavity of the 

filter is separated into two thin dielectric substrates (DSs), a metal frame for holding the dielectric 

substrates, and two metal covers.  The filter is compact in size and ideal for integration with antennas 

because of its relatively thin profile. Since it uses separated DSs attached to the two sides of the metal 

frame, the input/output probe can be placed at the middle of the cavity, leading to a significant 

increase in the input/output coupling compared to conventional dielectric resonator filters.  
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Additionally, the filter structure lends itself to realizing relatively large values of inter-resonator 

coupling. A five-pole Chebyshev filter with a fractional bandwidth of 9.6%, a four-pole filter having 

two transmission zeros with a fractional bandwidth of 9%, and a three-pole filter with a fractional 

bandwidth of 13% are designed, fabricated and tested. The filter structure promises to be useful in 

sub-6 GHz 5G base station applications that require the use of low-cost, miniature, high-Q wideband 

filters with a thin profile. 

Furthermore, a novel tuning structure with multiple strip lines is developed in this work. The tuning 

structure is designed to employ RF switches to tune 3D filters, eliminating the need to use variable 

capacitor loading, which is known to degrade the filter’s loaded Q over the tuning range. Two- and 

three-pole filters with combline configuration are designed, fabricated and measured with wire 

bonding, MEMS switches, and VO2 switches. With wire bonding, all of the tuning states demonstrate 

measured Q higher than 2000, whereas with the fabricated VO2 switches, the measured Q was lower. 

The test data confirm however the tunability and feasibility of using the proposed tuning scheme to 

realize a reasonable high-Q tunable filters that maintain Q values over the tuning range. A DS-loaded 

three-pole tunable filter is designed, fabricated, and measured. The results show the potential of 

realizing a tunable dielectric filter with a low loss VO2-based switch. 
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Chapter 1 

Introduction 

1.1 Motivation 

High-Q tunable filters are particularly promising components for the base station of modern 

multiband wireless communication systems and satellite applications. The need for tunability and 

reconfigurability in wireless communication systems is due to the vast numbers of bands that are 

packed in each system, resulting in a significant increase in the number of filters required. 

However, the availability and implementation of tunable filters may significantly reduce how 

many filters are needed, thus resulting in significant size and cost reductions in certain wireless 

communication systems. 

Tunable filters can also reduce costs for the network operator in the following way. Consider a 

remote radio units (RRU) installed on top of standard 15-storey communication towers. After 

serving only a few years, the frequency or bandwidth of the wireless system needs to be changed. 

With tunable/reconfigurable hardware, the change can be done remotely without reinstalling the 

RRU. Reduction in mass is especially important for decreasing launching costs for satellite 
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applications. Tunable/reconfigurable filters can help simplify satellite systems by reducing mass 

and size while still meeting the necessary requirements.  

The main critical requirements for tunable filters are high-Q, out-of-band rejection, tuning 

range, size, power handling, linearity, and tuning speed. In order to achieve a high-Q tunable 

filter, the resonators need to be high-Q and the tuning element must be relatively low loss. 

Over the years, various tuning techniques have been applied to tunable filters, including 

mechanical tuning, magnetic tuning, piezoelectric tuning, and MEMS tuning. Mechanical tuning 

can realize high-Q and is easy to implement, but it is a bulky approach and results in low tuning 

speeds. Ferrite-based magnetic tuning offers a fast switching speed and can handle high power, 

but it is also a bulky approach and suffers from high DC power consumption. Piezoelectric 

tuning possesses the advantages of mechanical tuning and a relatively small size, but it offers 

only a limited tuning range [2]. On the other hand, MEMS tuning is known to have low loss, high 

power handling, and high linearity. However, reliability is still an problem with RF MEMS 

devices.  

To address this challenge, metal-insulating transition (MIT) material such as VO2 and phase-

change material (PCM) such as GeTe will be investigated as tuning elements. MIT/PCM-based 

tuning elements offer low loss, fast tuning speed, low power consumption, and high reliability. In 

addition, they are easily amenable of monolithic integration with a wide range of tunable RF 

devices such as tunable filters, phase shifters, impedance tuners and variable attenuators. 

1.2 Objectives 

The objective of the research presented in this thesis is to investigate the feasibility of using 

metal-insulating transition (MIT) material and phase-change material (PCM) to realize high-Q 

tunable or reconfigurable filters. The ultimate objective is to realize high-Q tunable filters 

through the integration of high-Q 3D resonators with MIT/PCM-based tuning elements. 

The research is divided into several main tasks, as follows:  
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• Development of VO2 and GeTe RF switches  

This task includes the development of a fabrication process of VO2 and GeTe films at the 

University of Waterloo. It involves investigating the development and optimization of a 

fabrication process for the realization of low loss, high isolation MIT/PCM-based switches. 

• Development and demonstration of MIT/PCM tunable devices such as integrated switch 

capacitor bank and variable attenuators 

The research in this task includes design and development of fabrication processes for 

realizing tunable passive devices integrated with MIT/PCM switches.  

• Development of 3D filters that are easily amenable to integrating with VO2/GeTe-based 

tuning elements for the realization of MIT/PCM-based tunable filters. 

This task involves the design and development of tuning structures that employ MIT/PCM 

switches for tuning 3D filters such as 3D combline filters and dielectric resonator filters. 

1.3 Thesis Outline 

Following the motivation and objectives presented here in Chapter 1, Chapter 2 provides an 

overview of the properties, fabrication processes, and applications of metal-insulator-transition 

material VO2 and phase-change material GeTe. It also summarizes the work reported in the 

literature on tunable filters. In Chapter 3, a VO2 deposition method with RF sputtering is 

discussed, along with RF switches and variable attenuators realized with thin-film VO2. This is 

followed by an overview of GeTe-based RF switches and capacitor banks. Chapter 4 presents a 

wideband dielectric substrate-based filter. The design, fabrication, and measurement results for 

three-pole, five-pole, and four-pole filters are presented and discussed, followed by the 

presentation of a new assembly structure to improve the Q of the filter. Tunable filters employing 

VO2 switches are introduced in Chapter 5. Two-pole and three-pole tunable combline filters are 

designed, fabricated, and measured with both commercial RF MEMS switches and VO2 switches 

for comparison. A dielectric substrate-based tunable filter employing VO2 switches is then 

presented. Finally, a brief summary of the contributions of the thesis with proposed future work 

is given in Chapter 6.  
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Chapter 2 

Literature Survey 

Metal-insulator transition (MIT) materials such as VO2 and phase-change materials (PCM) 

such as GeTe are capable of switching between a metal state and an insulator state when 

subjected to external excitation [3-4]. Both MIT and PCM have gained increasing attention in RF 

and microwave applications due to their ability to build high-performance RF switches [5-13] 

and tunable or reconfigurable devices [14-20]. 

MIT materials have been of interest for more than half a century, when Morin reported the 

phase transitions in binary transition-metal oxides [22]. Morin concluded that transition-metal 

oxides such as VO₂, V₂O₂, VO and Ti₂O₃ exhibit increases in resistivity by several orders of 

magnitude when their temperature drops from high to low across their transmission temperature 

[23]. Figure 2-1 shows the metal-insulator-transition temperature (TMIT) of some transition-metal 

oxides. Among these materials, the TMIT of VO₂ (68℃) is near room temperature, which makes it 

the most-studied strongly correlated MIT material [22]. 
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Figure 2-1. Metal-insulator-transition temperature (TMIT) of selected oxides (bulk crystals) [23]. 

2.1 Properties and Fabrication Methods of VO₂ 

2.1.1 VO₂ Properties 

Vanadium oxide (VO₂) is gaining interest among MIT materials due to the significant change 

in its resistance during the metal-insulator transition near room temperature (around 68 ℃). A 

five-order change in resistivity of VO₂ over 0.1 K during MIT was reported by Kucharczyk in 

1979 [21]. Figure 2-2 (a) shows the resistivity of a VO₂ film deposited by pulse laser deposition 

(PLD) when the temperature changes from 25 ℃ to 102 ℃. As can be seen, the resistivity 

changes from 0.5 Ω•cm to 5×10-5 Ω•cm (four orders of magnitude change) [9]. Figure 2-2 (b) 

shows the sheet resistance of 600-nm-thick VO₂ deposited by RF sputtering when the 

temperature changes from 20 ℃ to 85 ℃. The sheet resistance undergoes a nearly five-order of 

magnitude change [11].  The mechanisms of such a transition will be discussed in a later section. 
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(a) 

 

(b) 

Figure 2-2.  a) Resistivity vs. temperature for a VO2 film deposited by PLD [9]; b) sheet resistance vs. 

temperature for a 600-nm-thick VO2 deposited by RF sputtering [11]. 
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The structural transformation of a crystal lattice from a monoclinic (M1) phase in a low 

temperature insulator to a tetragonal/rutile (R) phase in a high temperature metal has also been 

reported during the metal-insulator-transition of VO₂ [24]Error! Reference source not found.. 

The structures of the two states are shown in Figure 2-3.   Figure 2-3 (a) shows the R phase of 

VO2. In this phase, all the V atoms are equally spaced along a linear chain of VO6 octahedrals 

parallel to the crystallographic c-axis (cR), with V-V distances of 2.86 Å.  During the MIT from 

the metallic R phase to an insulating M1 phase, two distinctive sets of V-V distances (2.65 and 

3.12 Å) will form due to the pairing and tilting of VO6 octahedrals, as shown in Figure 2-3 (b). 

       

                                                  (a)                                                                                (b) 

Figure 2-3. Crystallographic structures of VO₂: (a) metallic (rutile) structure above TMIT; (b) insulated 

(monoclinic) structure below TMIT. Large and small spheres denote vanadium (V) and oxygen (O) atoms, 

respectively Error! Reference source not found.. 

2.1.2 VO2 Phase Transition Mechanism 

There are basically four types of insulators: Bloch-Wilson insulators, Mott-Hubbard insulators, 

Peierls insulators, and Anderson insulators [21]. Except for Bloch-Wilson insulators, the other 

three types are all able to perform a metal-insulator transition (MIT). The MIT of Mott-Hubbard 
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insulators occurs due to electron-electron interactions [26], whereas the MIT of the Peierls 

insulators is due to electron-phonon interactions [28] and the MIT of Anderson insulators caused 

by disorder-induced localization [29]. The MIT mechanism of VO2 is still under debate between 

Mott-Hubbard-type insulators and a Peierls-type insulators, but recent experimental [30][31] and 

theoretical [32] research shows that we need to move beyond standard single-band Mott and 

Peierls transition models.  

2.1.2.1 Optical excitation 

By using optical excitation, many researchers have reported ultra-fast insulator-to-metal 

transition at the scale of picoseconds or faster.  Becker, et al., realized a 5-ps transition time of 

sputtered VO2 thin film using optical pump-probe methods with 780-nm Ti: sapphire laser as a 

pump source [33]. Cavalleri and colleagues obtained a 100 fs to 50 ps transition time using the 

same method with 800-nm 50-fs optical pulse as the pump source [34]. Employing a terahertz 

pump-probe method, Kubler, et al., achieved 130 fs and about 10 ps by using the temporal delay 

time of the first cycle of electronic conductivity change and the saturation of conductivity change 

as the criteria for determining the phase transition [35].  Kim, et al., reported a 300-fs transition 

time by using a time-resolved X-ray diffraction method with a 780-nm 20-fs optical pulse as the 

pump source [36]. A four-dimensional ultrafast electron microscopy was utilized by Lobastov 

and his colleagues with a 770-nm femtosecond laser pulse, from which they achieved a 3.1±0.1 

ps transition time [37]. 

In light of these reported results, VO2 emerges as a possible material to realize ultrafast optical 

switches. However, most of the results showed an insulator-to-metal transition, while few reports 

studied the time scales of transition from the metallic state to the insulator state. More 

investigations on this form of transition need to be done [38]. If such an ultrafast switch were to 

be electrically excited, it would be able to compete with the current silicon-based logic devices 

[21]. 



 

 9 

2.1.2.2 Thermal excitation 

Thermal excitation is very straight-forward: simply by heating VO2 to above 68 ℃, the 

resistivity drops up to five orders according to the quality of the VO2 film. The transition 

temperature (TMIT) can be different due to different substrate and deposition conditions. It can 

also be changed by doping. As shown in Figure 2-2 (a), when the temperature exceeds 62 ℃, 

resistivity drops significantly as the temperature increases; after 75 ℃, it becomes almost 

constant. Hysteresis affects the resistivity of heating and cooling the VO2 thin film. The 

temperature span of hysteresis can vary from 0.1 ℃ to 10 ℃ along different substrate 

orientations [21], [39].  

2.1.2.3 Electrical excitation 

The electrical field control of VO2 metal-insulator transition is desirable for fast and reliable 

electronic devices. Some experiments are done for electrical excitation and to specify whether 

VO2 is a Mott-type insulator or a Peierls-type one. Stefanovich et al. demonstrated an experiment 

to trigger VO2 metal-insulator transition with an electrical field at room temperature. Their 

results suggest that the metal-insulator transition in VO2 is purely an electronic (Mott-Hubbard) 

transition. They also claimed that the Mott transition in VO2 should be considered as a “trigger 

mechanism” that initiates a structural Peierls-like transition, accompanied by a symmetry change 

from monoclinic to tetragonal [40]. Furthermore, Sieu Ha et al. demonstrated an abrupt drop in 

insertion loss using both DC voltage and RF power [41]. 

2.1.3 VO2 Deposition Techniques 

The vanadium oxide system is a large and complex family. Figure 2-4 shows the phase 

diagram of the vanadium oxide system. In addition to VO2, there are around 20 different 

vanadium oxide components, some of which (e.g., V2O3 and V2O5) also have metal-insulator 

transition abilities. The transition temperatures for V2O3 and V2O5 are around -123 ℃ [42] and 

280 ℃ [43], respectively. However, most of the vanadium oxide does not have phase-transition 

ability. 
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Several vanadium oxides, such as V2O3, V6O11, V6O13, V7O13, and V2O5, have a V/O ratio 

close to VO2, which makes it difficult to deposit high quality (i.e., high purity) VO2. Oxygen 

partial pressure and temperature are two key factors in the VO2 deposition process. Figure 2-5 

shows the effect on performance of different oxygen flow rates, while Figure 2-6 illustrates the 

effect on resistivity ratio due to different substrate temperatures during deposition. Only a well-

optimized depositing process can achieve more than three orders of magnitude in resistance 

change. In order to obtain high quality thin-film VO2, various technique have been used, such as 

sputtering [3][10][11][48], pulse laser deposition (PLD) [12][14][15][41], chemical vapor 

deposition [47], sol-gel coating [49], epitaxial growth [50], and electron beam evaporation [51]. 

Two of the most popular VO2 depositions techniques in recent times are sputtering and PLD, 

which will be reviewed in a later section.   

 

 

Figure 2-4. Phase diagram of vanadium oxide system [44]. 
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Figure 2-5. Effect of different oxygen flow rates on performance [45]. 

 

Figure 2-6. Effect on resistivity ratio caused by different substrate temperatures during deposition [46]. 

2.1.3.1 Sputtering 

Sputtering is one of the most commonly used physical vapor deposition (PVD) processes [52]. 

Figure 2-7 shows three of the more popular methods used for sputtering: DC, RF, and magnetron 

sputtering. As shown in Figure 2-7, DC sputtering utilizes a DC discharge, and RF sputtering 

uses a capacitor to set the DC bias and an impedance-matching network coupling to the reactive 

load. Compared to DC sputtering, RF sputtering can operate at a lower sputtering gas pressure 
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and lower voltage while producing a higher deposition rate. Magnetron sputtering can use either 

DC or RF sputtering plus a planar magnetron, which helps both types of sputtering to obtain a 

higher deposition rate [53].  

 

 

Figure 2-7. (a) DC sputtering apparatus; (b) RF sputtering apparatus; (c) magnetron sputtering apparatus 

[53][54]. 

2.1.3.2 Pulsed laser deposition 

Pulsed laser deposition (PLD) is a relatively new deposition technique used for oxide growth. 

A typical experimental arrangement for PLD is shown in Figure 2-8. A high-powered pulsed 

laser beam is used in PLD, focusing on the target inside a vacuum chamber. The target then 

vaporizes and a thin film is deposited on the substrate. In recent years, PLD has become the most 

popular technique for VO2 thin-film fabrication because it shows a highly oriented crystalline 
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structure even without any post-annealing [38]. High quality thin-films VO2 have been 

successfully deposited on both (0001) and (1010) sapphire substrates with PLD [41]. 

 

Figure 2-8. Typical experimental arrangement for PLD [53]. 

2.2 Properties and Fabrication Methods of GeTe 

2.2.1 Properties of GeTe 

The two stable phases of GeTe are a highly resistive amorphous phase and a highly conductive 

crystalline one. Switching between the two phases can be realized by different temperature pulses. 

A diagram of the heat profiles used to switch between amorphous and crystalline phases is shown 

in Figure 2-9. According to Khoo, sputtered GeTe is usually in an amorphous state [55]. A lower 

temperature (Tc about 190 ℃) and a longer timeframe are needed to transfer GeTe to a crystalline 

phase. Moreover, in order to reverse-transfer it back to the amorphous phase, a short and high 

temperature (Tm about 750 ℃) pulse needs to be applied, since a melt-quench process is required 

to take GeTe to the melting point and then rapidly cool it to create amorphous glass.  

Figure 2-10 shows a five-order-of-resistance change in GeTe thin film, which is realized by 

using a micro-heater to apply a heat pulse [4]. It also shows that different pulse widths (heating 

times) can be applied to trigger the transition with different temperatures, making it more flexible 

for different applications. 
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Figure 2-9. Diagram showing heat profiles used to switch between two phases [4]. 

 

                                                            (a)                                                                 (b) 

Figure 2-10. Measurement results of:  a) pulse voltage to amorphized; b) pulse voltage to crystallize [4]. 

2.2.2 Deposition Methods of GeTe 

Several processes have been applied to deposit GeTe thin film. Khoo et al. used RF-magnetron 

sputtering from stoichiometric targets and fabricated GeTe with different substrate temperatures. 

Amorphous GeTe is realized for all films with different temperatures [55]. Gwin also used RF 

magnetron sputtering and obtained GeTe film with five orders of resistance change [56]. Plasma-

enhanced chemical vapor deposition of conformal GeTe was deposited by Gourvest et al. [57]. 

Pulsed laser deposition was used to fabricate GeTe-rich GeTe-Sb2Te3, and more than five orders 

of sheet resistance change were realized by Bouska et al. [58].  Meanwhile, Jung used a vapor-

liquid-solid method to deposit GeTe nanowires [58]. 
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2.3 Applications of VO2 and GeTe 

VO2 is already being used for numerous applications, including smart thermochromic windows 

[60], microbolometers [61], spatial light modulators [62], optical switching [63] – [64], and 

electrical switching [49]. More applications can be seen in Figure 2-11 from Zheng Yang’s 

summary [23]. In recent years, some studies about the potential application of VO2 and GeTe in 

millimeter waves and RF microwave fields have been reported [5-17]. In the rest of this section, 

we will discuss some of the RF and microwave applications of VO2/GeTe.  

2.3.1 VO2/GeTe-based RF Switches 

Table 2-1 lists four papers for RF switches based on VO2. All of them show good RF 

performance, especially [13], whose results show an ON-state insertion loss of <1 dB and an 

OFF-state isolation of >12 dB up to 220 GHz. This is promising for millimeter wave applications.  

Table 2-2 lists four RF switches based on GeTe. As can be seen, the power consumption in [7] 

is only 82 mW in one switching cycle, which is very important for portable applications. 

Table 2-1. VO2-based RF switches 

Reference Order of 

Resistivity 

Change of VO2 

ON-state Insertion 

Loss 

OFF-state  

Isolation 

Switching Time  

[9] 

Crunteanu et al. 

3      3 dB @ 30 GHz >21 up to  

35 GHz 

Several hundred 

nanoseconds 

[11] 

Hillman et al. 

 

4 <0.2 dB up to 50 

GHz 

>21.5 dB up to 50 

GHz 

N/A 

[12] 

Pan et al. 

5 <5 dB up to 20 

GHz 

>30 dB up to  

20 GHz 

N/A 

[13] 

Hillman et al. 

N/A <1 dB up to 220 

GHz 

>12 dB up to 220 

GHz 

N/A 

 

Table 2-2. GeTe-based RF switches 
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Reference ON-state DC 

Resistance 

Insertion Loss Cut-off 

Frequency 

Switching Time Power 

Consumption 

[6] 

Wang et al. 

 

5 Ω 0.6 dB till 20 

GHz 

3.7 THz 600.5 µs per 

cycle 

92 mW in one 

switching cycle 

[7] 

Wang et al. 

3.9 Ω 0.5 dB till 20 

GHz 

~4 THz 404 µs per 

cycle 

82 mW in one 

switching cycle 

[8] 

Shim et al. 

N/A 0.63 dB @ 25 

GHz 

N/A 0.5-20 µs 

tuning speed 

N/A 

[9] 

El-Hinnawy 

1.2 Ω 0.3 dB @ 

20 GHz 

7.3 THz N/A 0.5 W to switch 

between states 

 

 

 

Figure 2-11. Potential applications of VO2 [23]. 
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2.3.2 VO2 and GeTe-based RF Tunable Filters 

Several attempts have been made to realize tunable or reconfigurable filters using VO2 

switches. Julien Givernaud and colleagues designed a “switchable stop band filter” with a 

switchable (ON or OFF) rejection band and a “discrete tunable stop-band filter” with a stop 

bandwidth and a tunable position based on VO2 [14]. David Bouyge and colleagues designed two 

reconfigurable bandpass filters based on split-ring resonators and VO2 switches [15][16]. The 

first designs they made are shown in Figure 2-12. As can be seen in the figure, the filter consists 

of two split-ring resonators and eight VO2 switches on two sides of the resonators. The VO2 

switches are actuated by directly applying DC bias voltage on the VO2 materials, which 

eliminates the use of micro-heaters to actuate the transition. The drawback is that high voltage is 

needed to obtain low resistance of the VO2 switch due to the high resistance of the bias lines for 

DC supplies. The simulation and measurement results are shown in Figure 2-13 [15]. A tuning 

range close to 10% of the center frequency is realized, while the insertion loss is quite large due 

to the low-Q planar resonators themselves, along with the relatively high resistance of the VO2 

material. The second design is a tunable filter whose resonators can be switched ON and OFF to 

determine the tunable filter passband [16].  

 

               

                                             (a)                                                                                 (b) 

Figure 2-12. (a) Layout of fabricated tunable bandpass filter; (b) overscale view of one tunable element [15]. 
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(a) 

 

(b) 

Figure 2-13. Simulated (dotted lines) and measured (solid lines) insertion (a) and return losses (b) of tunable 

filter [15]. 

 

A tunable bandstop filter (22.5-19.8 GHz) is realized using a VO2-based tunable capacitor by 

Vitale and colleagues [17]. This design uses the metal and insulator states of VO2 to control the 

gap of a horizontal metal-air-metal (MIM) capacitor. In so doing, it realizes a tunable capacitor 
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and uses the tunable capacitor to realize a tunable filter. A bandstop filter with a tunability of 12% 

in the center frequency from 22.5 GHz to 19.8 GHz is realized.  

          

        (a) 

 

     (b) 

Figure 2-14. Tunable band stop filter: (a) optical image of the band stop filter; (b) measured S21 versus 

simulated S21 [17]. 

 

A Ku-band high-Q tunable resonator and tunable two-pole filter with VO2 are realized [65]. 

The designed configuration and measurement results of the two-pole filter are shown in Figure 

2-15. The tuning range is from 13.68 GHz to 14.7 GHz. 
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(a) 

 

(b) 

Figure 2-15. Tunable cavity filter with VO2: (a) design configuration of a resonator; (b) measured results for a 

two pole filter [65]. 

GeTe-based tunable filters have also been investigated recently. An X-band reconfigurable 

bandpass filter was designed by Wang et al. [66], based on a GeTe RF switch and microstrip line 

resonators. Figure 2-16 shows the image of the reconfigurable tunable filter based on a GeTe 

switch and its measurement and simulation results. About 600 MHz of frequency tuning is 

realized with less than 3.2 dB insertion loss. An unloaded quality factor (Qu) of 59-73 is realized 
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by this work, which is good compared to its peers. However, since it is a microstrip resonator-

based filter, the Qu is limited by the resonator itself and cannot be high-Q.  Kodama and Coutu Jr. 

reported THz tunable split-ring resonators based on GeTe. The resonance frequency can be tuned 

from 0.8 THz to 2.2 THz. 

 

(a) 

 

(b) 

Figure 2-16. (a) Image of bandpass filter; (b) measurement and simulation results [66]. 

A tunable bandpass filter with GeTe was presented by Ghalem et al. in [67]. The device is a 

microstrip line filter integrated with GeTe at the end of the lines which uses short laser pulses to 

change the GeTe properties.  
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                            (a)                                                                                                 (b) 

Figure 2-17. Tunable microstrip line bandpass filter with GeTe: (a) image of fabricated filter; (b) measured 

results [67]. 

2.3.3 Other Reconfigurable Applications 

Yanhan Zhu and colleagues designed a tunable dual-band terahertz bandpass filter based on 

VO2, which realized ~32% of resonance frequency at around 0.5 THz [18]. A tunable MEMS 

resonator is realized by a VO2-coated silicon dioxide bridges with a 20% change in resonant 

frequency [19].  Meanwhile, James and colleagues reported some tunable plasmonic antennas 

based on VO2 [20]. 

2.3.4 Comparing MEMS and MIT/PCM Switches 

RF MEMS switches have been of increasing interest to researchers over the past few decades 

due to their advantages of low loss, low power consumption, high isolation and high linearity 

[68]. However, the reliability and costs of RF MEMS switches continue to hinder the widespread 

use of the technology.  In contrast, MIT/PCM-based RF switches show comparable performance 

to RF MEMS switches with promising ability to realize better reliability. 
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The cut-off frequency of an RF switch is given by fT = 1/ (2Ron•Coff), which is an important 

indicator of an RF switch’s insertion loss and isolation performance. Figure 2-18 shows some RF 

switches fabricated using various techniques. Among these, MEMS-based switches exhibit the 

highest cut-off frequencies in the range of 10 THz to 70 THz, and VO2-based RF switches have 

cut-off frequencies comparable to MEMS switches. A VO2-based RF switch with a cut-off 

frequency of 40 THz and an ON-state resistance of 1 Ω was realized by Hillman et al. [11], while 

Madan et al. obtained a cut-off frequency of 26.5 THz for an RF switch based on VO2 [69]. 

GeTe-based RF switches have relatively lower cut-off frequencies but offer low DC power 

consumption due to their latching capabilities. Cut-off frequencies of 3.7 THz, 4 THz, and 7.3 

THz were obtained for GeTe switches in [6], [7] and [9], respectively, as listed in Table 2-2. A 

comparison of other operating performances among MEMS switches, VO2 switches, and GeTe 

switches is given in Table 2-3. 

 

 

Figure 2-18. ON-state resistance and cut-off frequencies for RF switches using different techniques [69]. 
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Table 2-3 Operating parameter comparison among MEMS, VO2 and GeTe [69]. 

Parameters MEMS VO2 GeTe 

Insertion Loss Low Low Low 

Return Loss Good Good Good 

Reliability Fair Good Fair 

Switching Speed in ms in µs in ns 

Power Handling High Relatively low Relatively High 

[70] 

Steady-state Power 

Consumption 

Series switch (1mW 

scale) 

Parallel switch 

(0mW) 

DC voltage switch (<1mW [10]) 

Thermal actuate (10mW to 100mW 

scale [13]) 

0 mW 

 

2.4 High-Q Tunable Filters 

   High-Q tunable filters are mainly realized with 3-D structure resonator configurations, since 

planner structures are usually relatively lossy in room temperature. Different tuning methods 

have been used in the past for realizing high-Q tunable filters, such as motor tuning, MEMS 

tuning, piezoelectric tuning and magnetic tuning.  

    

     

                            (a)                                                                                                      (b) 
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(c) 

Figure 2-19. Tunable combline filter: (a) configuration of resonator; (b) picture of two-pole tunable filter; (c) 

measured results for two-pole tunable filter [71]. 

  

In [71], a combline tunable bandpass filter with center frequency of 2.5 GHz and bandwidth of 

22 MHz is presented by S. Fouladi et al.  As is shown in Figure 2-19, RF MEMS switches are 

used in conjunction with a lumped element capacitor to form a capacitor bank for tuning the 

combline filter. A quality factor ranging from 1300 to 374 over a tuning range of 110 MHz is 

realized [71]. 

  In [72], an evanescent-mode tunable cavity filter is presented. The filter is manufactured 

using silicon-micromachining techniques with a microcorrugated diaphragm (MCD) tuner, as 

shown in Figure 2-20 and Figure 2-21. In the study, a tuning range from 20 GHz to 40 GHz with 

insertion loss between 3.1 and 1.1 dB is realized, exhibiting unloaded Q from 264 to 540. 
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(a) 

 

(b) 

Figure 2-20. (a) Conceptual drawing of all-silicon evanescent-mode cavity filter with tunable center frequency; 

(b) cross-sectional view of packaged device [72]. 

 

 
                                                                     (a)                                            (d)           



 

 27 

 

(e) 

Figure 2-21. (a) RF characterization set-up of two-resonator all-silicon BPF; (b) front view of manufactured die 

of diaphragm; (c) front view of manufactured die of cavity; (d) side view of manufactured die of DC biasing 

electrode; (e) measured results [72]. 

   

(a)                                                                                      (b)        

Figure 2-22. (a) Half side of tunable two-pole evanescent-mode cavity filter; (b) fabricated picture of tunable 

evanescent-mode cavity filter with RF-MEMS cantilever-switch capacitance network chip [73]. 
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In [73], a high-Q miniaturized tunable cavity filter is realized using planar capacitive RF MEMS 

switch networks. Figure 2-22 shows the configuration and fabricated image of the tunable filter, 

MEMS circuits are fabricated on quartz substrate and then mounted inside the metal cavity. 

Figure 2-23 illustrates the measurement results of the tunable filter. This work realized a 

frequency coverage of 4.07-5.58 GHz, with an unloaded Q of 300-500. 

 

 

Figure 2-23. Measured and fitted S-parameters for three filter responses [73]. 
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Chapter 3 

MIT/PCM-based RF Switches and 

Reconfigurable RF Passive Devices 

3.1 VO2-based Series and Parallel RF Switches  

3.1.1 Introduction 

Over the past few decades, metal-insulator transition material has been widely used in optical 

and other engineering applications. The phenomenon of phase transitions in binary transition-

metal oxides was first reported in [75] by Morin, who concluded that transition-metal oxides such 

as VO2, V2O3, VO and Ti2O3 would exhibit increases in resistivity by several orders of 

magnitude when their temperature dropped below their transmission temperature [22]. VO2 is 

one of the best-known metal-insulator transition materials due to its near-room-temperature 

transition temperature of approximately 68 °C. The resistivity of VO2 drops dramatically when it 
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is heated past its transition temperature, which has been found to be consistently repeatable in 

[76]. 

In recent years, VO2 has gained increasing attention in RF and microwave applications, as it 

offers an appealing avenue for constructing high performance RF microwave switches and 

tunable devices [17][69][76][77]. VO2-based switches with small insertion loss were realized in 

millimeter-wave frequency in [76], however, these series switches have very high dimensional 

constraints and require a complex and costly fabrication process, which prevents them from 

being widely accepted in field applications. Although the work presented in [69][77] proposed 

simpler fabrication processes for fabricating VO2-based RF switches, the RF performance of the 

switches still has a large room for improvement. 

This chapter proposes two heater-integrated VO2-based RF switches fabricated with a simple 

four-mask copper-base process on an alumina substrate. The combined use of a copper 

conductive layer and the low-loss alumina substrate paves the way for low-cost, high-

performance VO2 RF switches.  

3.1.2 VO2 Deposition and Characterization 

Figure 3-1 shows the RF sputtering system used for the VO2 deposition in the Quantum Nano 

Centre (QNC) of University of Waterloo. The parameters for depositing the thin-film VO2 with 

the reactive RF sputtering system are summarized in Table 3-1. The vanadium target used in the 

deposition has a diameter of 2 inches and a thickness of 0.25 inches. 

Figure 3-2 depicts the XRD pattern for two thin-film VOx with different O2 ratios during 

reactive RF sputtering. When the O2 ratio is 10%, the XRD pattern matches the VO2 model well, 

but when the O2 ratio is 12.5%, it matches the V2O5 model instead. The AFM scanning results 

are shown in Figure 3-3. As can be seen, the highest VO2 hill in Fig. 3-3 (a) is 140 nm, while the 

highest V2O5 hill in Fig. 3-3 (b) is 206 nm. Furthermore, the VO2 film is much smoother than the 

V2O5 film. Both tests were used to determine proper sputtering conditions and optimize film 

quality.  
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Figure 3-1. QNC lab AJA sputtering system for RF reactive sputter. 

 
(a) 
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(b) 

 
(c)  

Figure 3-2. X-ray diffraction (XRD) pattern for thin-film VOx: (a) thin-film V2O3; (b) thin-film VO2; (c) thin-

film V2O5 [74]. 

Table 3-1. VO2 deposition parameters 

Parameter Value 

RF power 200 Watts 

Chamber base pressure 2 μTorr 

Deposition pressure 3 mTorr 

Substrate temperature 500 oC 

O2 ratio 10.00% 
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                        (a)                                                                           (b) 

     
                                                                      (c)  

Figure 3-3. AFM scanning pictures: (a) thin-film V2O3; (b) thin-film VO2; (c) thin-film V2O5. 

 

Figure 3-4. Sheet resistance of VO2 thin-film versus voltage applied to micro-heater. 

Figure 3-4 shows the hysteresis curve of the sheet resistance of the sputtered VO2 film versus 

the voltage applied to the micro-heater. The sheet resistance ranges from 48 Ω/□ to 47 kΩ/□. The 
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measurement set-up is shown at the top right corner of Figure 3-4, in which one pair of DC 

probes is used to apply voltages for heater control, while the other pair is used to measure the 

VO2 resistance. 

3.1.3 Design and Fabrication 

The basic geometries of the series and the parallel VO2-based RF switches are presented in 

Figure 3-5. The 3D exploded illustration of the two designs is presented in Figure 3-6, showing 

all layers and their materials. The CPW line of both the series switch and the parallel switch is 

designed with a signal line width of 24 µm, a gap of 10 µm, and a length of 600 µm.  

  The micro-heater designed in the series switch has a width of 15 µm and a length of 200 µm, 

whereas the micro-heater in the parallel switch consists of two separate U-shape heater coils. The 

heater line for the parallel switch is carefully routed to avoid overlap with the signal CPW line, 

thereby helping to reduce the parasitic capacitance and improving the insertion loss performance 

for the switch.  Figure 3-7 shows the copper-based VO2 fabrication process used for realizing the 

two switch designs. As can be seen, a 500-nm SiO2 layer is first deposited on an alumina (Al2O3) 

substrate as a thermal isolation layer with a plasma-enhanced chemical vapor deposition 

(PECVD) system. Then, a 60-nm chromium (Cr) layer is deposited with e-beam evaporation, 

followed by patterning for micro-heaters and bias pads. 

 

(a) 
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(b) 

Figure 3-5.  Design structure of VO2-based switches: (a) series switch; (b) parallel switch. 

         

                              (a)                                                                                   (b) 

Figure 3-6. 3D view of each layer of the designed VO2-based switches: (a) series switch; (b) parallel switch. 

The sheet resistance of the 60-nm Cr thin-film is measured to be 50 Ω/□. Next, a 500-nm SiNx 

layer is deposited with PECVD as the barrier layer between the patterned Cr layer and the 
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upcoming VO2 layer. A 250-nm VO2 is then deposited with RF-reactive sputtering and patterned 

along with the underlying SiNx layer to allow the required conductive contacts between the Cr 

resistive lines and the upcoming copper layer. Finally, a 1-µm copper layer is deposited with e-

beam evaporation, patterned for the transmission line portions of the RF switches. 

The parameters for depositing the thin-film VO2 with the reactive RF sputtering system are 

summarized in Table 3-1. The Vanadium target used in the deposition has a diameter of 2 inches 

and a thickness of 0.25 inches. Photographs of the two fabricated switches are shown in Figure 

3-8. 

         

                                       (a)                                                                                      (b) 

         

                                       (c)                                                                                      (d) 

        

                                       (e)                                                                                      (f) 

Figure 3-7. Copper-based insulator-on-alumina VO2 fabrication process. 
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                                                                                 (a) 

 

                                                                                 (b)                 

Figure 3-8. Fabricated VO2-based switches: (a) series switch; (b) parallel switch. 
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3.1.4 Simulation and Measurement Results 

The HFSS EM simulation results for the series switch and parallel switches are shown in 

Figure 3-9. Both simulations used VO2 sheet resistance of 47 kΩ/□ for the high resistivity state, 

and 48 Ω/□ for the low resistivity state. The simulation results for the series switch show an 

insertion loss <1 dB from DC to 75 GHz when the switch is in the ON state, and an isolation of 

30 dB from DC to 75 GHz when it is in the OFF state. For the parallel switch, the insertion loss 

from DC to 75 GHz is less than 1.4 dB in the ON state, while the isolation is larger than 25 dB in 

the OFF state. 

             

                                   (a)                                                                                            (b) 

Figure 3-9. EM simulation results: (a) series switch; (b) parallel switch. 

       

                                   (a)                                                                                            (b) 

Figure 3-10. Measurement results of series switch: (a) switch ON, (b) switch OFF. 
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Figure 3-10 shows the measurement results of the series switch from DC to 20 GHz. The 

insertion loss of the series switch is less than 0.46 dB in the ON state, and the isolation is from 28 

dB to 32 dB in the OFF state. Figure 3-11 shows the measurement results of the parallel switch. 

An insertion loss of less than 0.4 dB was achieved from DC to 20 GHz, along with an isolation 

ranging from 25 to 28 dB from DC to 20 GHz. Based on these measurement results, the parallel 

switch demonstrates slightly better insertion loss, especially at low frequency, while the series 

switch demonstrates better isolation. 

               

                                   (a)                                                                                            (b) 

Figure 3-11. Measurement results of parallel switch: (a) switch ON; (b) switch OFF. 

                  

                                   (a)                                                                                            (b) 

Figure 3-12. Measurement and simulation comparison for ON-state insertion loss (S21 ON) and OFF-state 

isolation (S21 OFF): (a) series switch; (b) parallel switch. 
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A comparison between measurement and simulation results is given in Figure 3-12. As shown 

in the figure, the measurement and simulation results match quite well for both series and parallel 

switches with ON-state insertion loss (S21 ON) and OFF-state isolation (S21 OFF). 

3.1.5 Summary 

In this section, two VO2-based RF switches were fabricated with a simple copper-based 

fabrication process on an alumina substrate. The simulation results show the potential for these 

switches to operate up to 75 GHz. The RF measurement results from DC to 20 GHz match the 

simulation, demonstrating excellent RF performance. The proposed fabrication process allows 

monolithic integration of VO2-based switches with a wide range of RF circuits.   

3.2 VO2-based Variable Attenuator 

3.2.1 Introduction 

A variable attenuator is a crucial device that can control signal level adaptively. It can also be 

employed to help in matching source and load impedances for active devices in order to achieve 

maximum power transfer or better matching. It is especially useful in various wireless 

communication applications such as radar systems and control gain for specific receiver input 

[79]. In addition to  FET-based attenuators [80], PIN diodes are commonly employed in the 

design of variable attenuators [81]. However, the performance of semiconductor-based 

attenuators degrades considerably when operating at millimeter-wave frequencies. More recently, 

graphene was proposed in [82]-[83] to realize variable attenuators, but the measured insertion 

loss was relatively high. 

For the first time, a thin-film VO2 is employed here to realize a millimeter-wave variable 

attenuator. The thin-film VO2 is monolithically integrated with a 0-dB coupler and bias heater 

circuit on a single chip.  Although our focus is to demonstrate the feasibility of realizing a 30-

GHz attenuator, VO2 films are capable of operating at much higher frequencies, as shown in [13] 

and [18], [84]. The attenuator concept presented in this study can be employed to realize a small-
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size variable attenuator with low insertion loss and broad attenuation range for a wide range of 

microwave and millimeter-wave applications. 

3.2.2 Design and Fabrication 

The schematic of the variable attenuator is shown in Figure 3-13. It consists of a 0-dB branch-

line coupler integrated with three tunable resistors. Figure 3-14 shows a 3D structure of the 

variable attenuator. The 0-dB coupler, the VO2 films, and the heater are all integrated 

monolithically on an alumina substrate. Conventional attenuators that use diodes as variable 

resistors require DC blocks and bias circuits for operation. In [81], the attenuator was designed to 

operate at 2 GHz. At millimeter-wave frequencies, the size of the bias circuit of the diode is 

comparable or even larger than the coupler itself. A thin-film VO2 offers better linearity 

performance than do diodes and can serve as a tunable resistor at millimeter-wave frequencies. 

 

 

Figure 3-13. Schematic of variable attenuator. 
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Figure 3-14. 3D view of each layer of variable attenuator structure. 

 

      

Figure 3-15. Image of fabricated variable attenuator showing dimensions for 30 GHz variable attenuator [85]. 
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The variable attenuators are fabricated with the same fabrication process discussed in section 

3.1.3. Figure 3-15 shows an image of the fabricated variable attenuator. The overall size is 3.2 

mm × 2.3 mm for the 30 GHz variable attenuator and 8.4 mm × 6 mm for the 10 GHz attenuator.  

Micro-heaters are inserted under the gap of the signal line and the ground of the coplanar 

waveguide (CPW) line so that there is no overlap between the micro-heater and the signal line. 

This can significantly reduce the parasitic capacitance from the signal line to ground, which will 

then lower the insertion loss of the attenuator. 

3.2.3 Simulation and Measurement Results 

The sheet resistance of the thin-film VO2 is determined by the thickness and the quality of the 

film in the fabrication process. Hence, a characterization of the VO2 sheet resistance is performed 

with a simple structure, as shown in Figure 3-16 (a). The measurement is done with four DC 

probes. The top two pads are connected to the VO2 film for measuring the sheet resistance, while 

the bottom two pads are for DC bias. Figure 3-16 (b) shows the sheet resistance of the sputtered 

thin-film VO2 versus the voltage applied to the micro-heater. When the applied voltage is from 8 

V to 14 V, a change of sheet resistance is observed from 48 Ω/□ to 47 kΩ/□. A difference of 

three orders of magnitude is realized for the change of sheet resistance.  

 

 

(a) 
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(b) 

Figure 3-16. Graph depicting (a) test structure and (b) sheet resistance (in logarithmic scale) of the VO2 thin-

film versus voltage applied to the micro-heater. 

 

   The simulation results of the 10 GHz variable attenuator are shown in Figure 3-17 (a) and 

(b). An attenuation of 2.5 dB to 23 dB is obtained as the sheet resistance of the thin-film VO2 is 

varied from 48 Ω/□ to 47 kΩ/□. The measured results given are shown in Figure 3-18 (a) and (b). 

The measurement is done while Port 2 and Port 4 of the 0-dB coupler are terminated with 50 Ω 

loads.  The device exhibits a variable attenuation range of 9 dB with a return loss of 10 dB from 

9.5 to 11.5 GHz.  

The simulation results for the 30 GHz variable attenuator are shown in Figure 3-19 (a) and (b). 

An attenuation of 3.1 dB to 17 dB is obtained as the sheet resistance of the thin-film VO2 is 

varied from 48 Ω/□ to 47 kΩ/□. The measured results are given in Figure 3-20 (a) and (b). The 

measurement is done while Port 2 and Port 4 of the 0-dB coupler are terminated with 50 Ω loads.  

The device exhibits a variable attenuation range of 13 dB with a return loss of 15 dB from 27 to 

33 GHz. 
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(a) 

 

(b) 

Figure 3-17. EM simulation results for 10 GHz variable attenuator: (a) insertion loss; (b) return loss. 
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(a) 

 

(b) 

Figure 3-18. Measurement results for 10 GHz variable attenuator: (a) insertion loss; (b) return loss. 
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(a) 

 

(b) 

Figure 3-19.  EM simulation results for 30 GHz variable attenuator: (a) insertion loss; (b) return loss. 
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(a) 

 

(b) 

Figure 3-20. Measurement results for 30 GHz variable attenuator: (a) insertion loss; (b) return loss. 
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It should be mentioned that heater size in the test structure in Figure 3-16 (a) differs from that 

used in the attenuator given in Figure 3-15. However, both the test structure and the attenuator 

are fabricated in the same wafer. In the measurement, we used the same bias voltage for all 

resistors, which in turn varied the resistors by the same amount. Better return loss performance 

can be achieved by using non-synchronous tuning, where the resistors are biased differently. The 

measured insertion loss is slightly larger than that obtained by simulation due to radiation loss, 

since the device was tested without cavity housing. The performance can be further improved 

through increased optimization of the attenuator fabrication process and better quality VO2 film. 

3.2.4 Summary 

In this section, 10 GHz and 30 GHz variable attenuators were designed, fabricated, and 

measured. A monolithic fabrication process for the VO2-based attenuator on a single chip was 

described in detail. Micro-heaters using Cr were fabricated on the same chip for thermally 

actuating the thin-film VO2. This variable attenuator promises to be useful in a wide range of 

millimeter wave applications. 

3.3 GeTe-based RF Switches  

3.3.1 Design and Fabrication  

The basic geometries of the series GeTe-based RF switches are presented in Figure 3-22. The 

3D exploded illustration of the designs is presented in Figure 3-22 (a), showing all layers and 

their materials. Figure 3-2 depicts an image of the fabricated switch. The CPW line of the switch 

is designed with a signal line width of 24 µm, a gap of 10 µm, and a length of 600 µm. The 

micro-heater is designed with a length of 200 µm and a width of 4 µm and 15 µm. An outline of 

the fabrication process is given in Figure 3-23. 

In this process, a 2.5-inch by 2.5-inch alumina substrate with a thickness of 25 mil is used. A 

100-nm thin-film tungsten (W) layer is first deposited and patterned for the micro-heater. The 

100-nm W layer is deposited with DC sputtering and patterned with RIE. Next, a 60-nm SiNx 



 

 50 

layer is deposited by PECVD to form a barrier layer between the patterned W layer and the 

upcoming GeTe and Au layers. A 150-nm thin-film GeTe is then deposited with DC sputtering 

and patterned with lift-off, after which a 350-nm gold layer is deposited with e-beam evaporation 

and patterned with lift-off. Following the gold layer, a 50-nm SiO2 passivation layer is deposited 

with DC sputtering and patterned with lift-off.  

 

Figure 3-21. 3D view for each layer of designed GeTe-based series switch. 

 

Gold 350 nm 

GeTe 150 nm 

SiN
x
 60 nm 

W 100 nm 

Alumina 635 µm 

SiO
2
 50 nm 
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Figure 3-22. Image of fabricated GeTe series switch. 

 

 

(a) 

 

(b) 
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                                                                                         (c) 

                                      

(d) 

                                   
(e) 

Figure 3-23. Fabrication process for GeTe-based series switch.  

3.3.2 Simulation and Measurement Results  

   GeTe-based series switches with the above-mentioned fabrication process are design and 

fabricated. Since the SiNx layer between the heater and the GeTe layer is only 100 nm, the switch 

performance is significantly influenced by the width of the heater. The simulated and measured 

results for two series switches with a heater width of 4 µm and 15 μm are compared. 
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Electromagnetic (EM) simulations of the switches are performed using ANSYS Electronics 

desktop. Figure 3-24 illustrates the simulated S parameters for the series switch with a heater 

width (W_heater) of 4 μm. The isolation is larger than 21 dB with a return loss smaller than 0.12 

dB for the OFFstate from DC to 25 GHz. The insertion loss is smaller than 0.2 dB when the 

return loss is from DC to 30 GHz.  

The simulation results for the W_heater of 15 µm is illustrated in Figure 3-25. The isolation is 

larger than 12 dB with a return loss smaller than 0.5 dB for the OFF state from DC to 25 GHz. 

The insertion loss is smaller than 0.55 dB when the return loss > 14 dB from DC to 25 GHz.  

The RF performance of the switches is measured with two-port on-wafer measurements using 

a vector network analyzer up to 25 GHz. The measured S parameter for the series switch with a 

W_heater of 4 µm is illustrated in Figure 3-26. At the OFF state, the switch shows an isolation of 

> 26 dB, while the return loss is < 0.45 dB from DC to 25 GHz. At the ON state, an insertion loss 

of < 0.9 dB and a return loss of > 15 dB from DC to 25 GHz are realized. 

Figure 3-27 illustrates the measured S parameter for the series switch with a W_heater of 15 

µm. In the OFF state, the switch shows an isolation of > 12 dB, while the return loss is < 1 dB 

from DC to 25 GHz. In the ON state, an insertion loss of < 1.9 dB and a return loss of > 8 dB 

from DC to 25 GHz are realized. 

 

                                         (a)                                                                                            (b) 

Figure 3-24. Simulation results for W_heater = 4 µm: (a) switch OFF; (b) switch ON. 
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                                         (a)                                                                                            (b) 

Figure 3-25. Simulation results for W_heater=15 µm: (a) switch OFF; (b) switch ON. 

 

 

                                         (a)                                                                                            (b) 

Figure 3-26. Measurement results for W_heater=4 µm: (a) switch OFF; (b) switch ON. 
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                                          (a)                                                                                         (b) 

Figure 3-27. Measurement results for W_heater=15 µm: (a) switch OFF; (b) switch ON. 

3.3.3 Summary 

Microfabrication processes for GeTe-based RF switches were developed and two series 

switches with different heater width were designed, fabricated, and measured. The performance 

of the two switches show that with this process, the heater width for the RF switch is very 

important for realizing low insertion loss and good isolation.  

3.4 GeTe-based 4-Bit Capacitor Bank 

3.4.1 Introduction 

Switched capacitor banks are key components in reconfigurable RF devices such as tunable 

filters [71] and impedance tuners [84]. The semiconductor capacitor banks in [87] and the MEMS 

switch-based capacitor banks in [88] are commercialized capacitor banks with performances 

suitable for lower frequency applications. A MEMS-based switch capacitor bank was recently 

published in [89] with an operational frequency range of 3-10 GHz. However, the capacitance 

range achieved was only 0.15-1.2 pF and was realized using a standard CMOS process, which is 

difficult to integrate monolithically with high-Q passive circuits.    
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The integration of commercial capacitor banks with tunable filters or impedance tuners usually 

requires the use of flip-chip technology or wire-bonding. This in turn adds additional losses and 

reduces the self-resonance frequency of the capacitor bank. The advantage of using Phase 

Change Material (PCM) technology is that its fabrication process is compatible with thin-film 

technology, making it easy to monolithically integrate the PCM capacitor bank with passive 

planar circuits for the realization of tunable filters and impedance tuners.   

Metal-insulator-transition (MIT) material such as vanadium oxide (VO2) and PCM such as 

germanium telluride (GeTe) have recently been researched for RF applications. VO2-based series 

and parallel RF switches are presented in [74][76]. GeTe-based RF switches are reported with an 

excellent figure-of-merit in [90]-[92], while a GeTe-based RF switch integrated with a planar 

tunable filter has been reported in [90]. The MIT and PCM technologies have the potential to be 

used in monolithic realizations of a wide range of reconfigurable devices. 

   In the present study, a capacitor bank utilizing a GeTe-based RF switch is presented for the 

first time with a very compact size and demonstrating a large capacitance range from 0.48 pF to 

4.53 pF. The capacitor bank is realized with a 6-layer micro-fabrication process based on a glass 

substrate with low thermal conductivity. The capacitor bank is formed by integrating four PCM 

switches with metal-insulator-metal (MIM) capacitors integrated on a single chip. 

3.4.2 Design and Fabrication 

The schematic of the proposed 4-bit capacitor bank is illustrated in Figure 3-28, showing 

GeTe-based RF switches (S1 to S4) connected in series with capacitors (C1 to C4). The 

capacitance values are chosen to be 0.25 pF, 0.5 pF, 1 pF and 2 pF at 5 GHz, and the parasitic 

capacitor is presented as Cp in the figure. Cp represents the minimum capacitance value, or State 

1, of the possible 16 states of the capacitor bank, with all switches OFF. 

The 3D EM simulation model of the 4-bit capacitor bank is shown in Figure 3-30, illustrating 

the four MIM capacitors and the four GeTe-based RF series-switches. The capacitors are built 

using gold for the top and bottom metal layers, and SiO2 for the insulator layer. The switches are 

realized with phase-changing material GeTe and a Cr-W-Cr sandwiched micro-heater. The GeTe 
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switches have a width of 40 µm and a gap of 2 μm, while the micro-heaters have a width of 15 

µm and a length of 60 µm. A barrier layer of SiNx is used between the heater and the GeTe layer, 

due to its relatively high thermal conductivity.  

   An outline of the fabrication process is given in Figure 3-29. A 3-inch glass substrate is used 

in this fabrication process due to the much better thermal isolation it can offer in comparison with 

silicon or alumina wafers. In this process, a Cr-W-Cr sandwiched layer was first deposited and 

patterned for the micro-heater. The top and bottom Cr layers are both 30-nm deposited with e-

beam evaporation; the bottom Cr is used as an adhesion layer, while the top Cr layer is used for 

protecting the W when etching the SiNx layer. The 120-nm W layer was deposited with DC 

sputtering, and the Cr-W-Cr layer is patterned with RIE. Next, a 100-nm SiNx layer is deposited 

by PECVD as the barrier layer between the patterned Cr-W-Cr layer and the upcoming GeTe and 

Au-1 layer. A 140-nm thin-film GeTe is then deposited with DC sputtering and patterned with 

lift-off, after which a 300-nm gold layer (Au-1) is deposited with e-beam evaporation and 

patterned with lift-off. A 220-nm SiO2 layer is deposited next, with DC sputtering and patterned 

with lift-off. Lastly, a 500-nm gold layer is deposited with e-beam evaporation and patterned 

with lift-off. 

    

 

Figure 3-28. Schematic of 4-bit capacitor bank. 
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Figure 3-29. Fabrication process for Ge-Te-based switched capacitor bank [93]. 
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Figure 3-30. Simulation model for 4-bit capacitor bank. 

 

Fig. 3-31. Image of fabricated 4-bit capacitor bank.  

The parameters for depositing the thin-film W and GeTe with DC sputtering system are 

summarized in Table 3-2.  Both W and GeTe sputtering targets have a diameter of 2 inches and a 
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thickness of 0.25 inches. Photographs of the 4-bit capacitor bank are shown in Fig. 3-31. The 

total size of the capacitor bank is 0.9 mm × 0.6 mm, including the CPW port and DC pad for 

measurement. In real applications, when the capacitor bank is integrated monolithically with 

other circuits on the same substrate, the size of the capacitor bank can be potentially reduced to 

0.5 mm × 0.4 mm. 

 

Table 3-2. Summary of W and GeTe deposition parameters 

Material Parameter Value 

 

 

W 

DC Power  80 Watts 

Chamber Base Pressure 2 μTorr 

Deposition Pressure 3 mTorr 

Substrate Temperature 500° C 

Deposition Rate 16 nm/min 

 

 

GeTe 

DC Power  60 Watts 

Chamber Base Pressure 2 μTorr 

Deposition Pressure 2.5 mTorr 

Substrate Temperature Room Temperature 

Deposition Rate 28 nm/min 

3.4.3 Simulation and Measurement Results 

The 4-bit capacitor bank is simulated using HFSS for the 3D model shown in Figure 3-30. 

Figure 3-32 illustrates the EM simulation results for the 16 states. The results show a 0.1 pF 

parasitic capacitance at state 1 when all the GeTe switches are OFF. At 1 GHz, the capacitor 

tuning range is from 0.1 pF to 3.1 pF, while at 6 GHz, the tuning range is from 0.1 pF to 4.4 pF.  

The simulation results for all states show no self-resonance up to 9 GHz. 

Figure 3-33 shows the circuit model of the presented 4-bit capacitor bank. Each of the MIM 

capacitors can be modeled with a capacitance Cn, a parallel resistance Rpn, a series inductance 

Lsn, and a series resistance Rsn. The values of these elements are extracted from the EM 

simulation results of the individual MIM capacitors. The PCM switches are simply modeled as 
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resistors in the ON state. Lp and Cp are the parasitic inductance and capacitance of the circuit, 

respectively, mainly due to the CPW port, connection lines, and micro-heater. The series 

resistances Rsn of the capacitors were found to be 2.39 Ω, 1.93 Ω, 1.33 Ω and 1.04 Ω, 

respectively. These are the dominant parameters that affect the Q value of the capacitor bank. It 

should be noted, however, that a much better Q can be achieved with the use of larger dimensions 

for the MIM capacitors and a thicker SiO2 layer. Thus, one has to compromise between the 

overall chip size and the achievable Q value.  

Figure 3-34 illustrates the measurement results of the 4-bit capacitor bank, indicating a 

capacitor tuning range of 0.45 pF to 2.84 pF at 1 GHz, and 0.48 pF to 4.53 pF at 6 GHz. Hence, it 

almost has a capacitor ratio of 10:1 at 6 GHz, which is a very large tuning range. Figure 3-35 

shows states 1, 8 and 16 of the 4-bit capacitor bank on the Smith chart. As can be seen from the 

chart, the capacitor bank does not exhibit self-resonance up to 8 GHz, which makes it suitable for 

reconfigurable/tunable RF passive device applications over a frequency band of 1 GHz to 6 GHz. 

 

Figure 3-32. Simulation results for 4-bit capacitor bank. 
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Figure 3-33. Circuit model for 4-bit capacitor bank.  

 

 

Figure 3-34. Measurement results for 4-bit capacitor bank. 
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Figure 3-35. Measurement results plotted on a Smith chart. 

3.4.4 Summary 

In this section, a 4-bit GeTe-based capacitor bank was designed, fabricated and measured. As 

well, a monolithic fabrication process for the GeTe-based capacitor bank on glass substrate was 

presented in detail. Gold-based MIM capacitors were fabricated and integrated with GeTe-based 

RF switches, and Cr-W-Cr sandwiched structures were utilized for realizing good adhesion and a 

low sheet resistance resistor layer for micro-heaters. The presented capacitor bank is highly 

compact in size, offering a wide tuning range and the convenience of monolithic integration with 

other RF components. 
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Chapter 4 

Wideband Dielectric Substrate-based 

Cavity Filter 

4.1 Introduction 

Filters are essential components in wireless communication and radar systems. Three-

dimensional (3D) filters such as VO2 waveguide [94] – [95], dielectric resonators [96] – [97], 

substrate integrated waveguides [98] and combline structures [99] are widely used in these 

systems due to their high quality (Q) factor. The use of dielectric resonators (DR) can 

significantly reduce filter size while achieving high Q values and excellent thermal stability, even 

with cavity enclosures made of aluminum [100]. Traditionally, dielectric resonators are mounted 

inside a cavity metal enclosure, either sitting on a support made of low dielectric constant such as 

Teflon [100] – [101] or directly on the cavity walls [102] – [103]. However, these types of filter 
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structures are limited to fractional bandwidth designs of less than 5%, and assembly and 

integration is considered a major production cost factor. 

      An alternative approach was developed in [104] that uses a single piece of high-K ceramic 

substrate, which promises to produce low profile designs and reduce the cost of assembly and 

integration. However, the structure proposed in [104] is applicable to narrow bandwidth 

applications. This is attributed to the nature of the dielectric resonator mode used in [104], which 

is a variation of TEH modes. More recently, miniature dielectric resonator filter designs with the 

capability of realizing relatively wide bandwidth (3.2%) have been proposed in [105] – [106].  

However, such structures require extensive machining of the dielectric resonators. Not only does 

this add to the cost and design complexity, but the spurious mode is close to the passband. A 

dual-mode compact dielectric resonator filter is reported in [107], which realized a fractional 

bandwidth of 10.5%. However, only a two-pole filter is reported with a single cavity, no results 

were reported in [107] that demonstrate the feasibility of achieving large inter-resonator coupling 

values that are needed to realize wideband highorder filters.  

    In view of the typical filter requirements for sub-6 GHz 5G systems, there is a need for 

filters which are wideband (around 10%), low loss, compact in size, and have a thin profile. 

    This study proposes a dielectric substrate (DS)-based filter, constructed using two metal 

covers and a metal frame holding two thin high dielectric constant substrates (r = 41.5). The 

frame is assembled with the two metal covers to form the filter, as shown in Figure 4-1. 

     The main features of the proposed filter structure are as follows:  

(1) The structure makes it possible to realize relatively high-Q wideband dielectric filters. 

(2) The structure is easy to assemble due to the unique design of attaching the DS to the metal 

frame. The dielectric substrates are implemented by dicing a larger size substrate, which 

can also help to reduce cost, particularly when dealing with filters in large orders. 

(3) The filter is compact in size and has a relatively thin profile, which makes it amenable to 

ease of integration with antennas.  

(4) Since the thickness of the DS is suitable for microfabrication, it offers the potential of ease 

of realizing tunable dielectric filters with tuning elements directly deposited on the DSs. 
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4.2 Proposed Compact DS-loaded Cavity Resonator 

The 3D view of the proposed structure for the DS-loaded cavity resonator is shown in Figure 

4-1. The cavity consists of a metal frame, two DSs, and two covers. The two metal covers and the 

frame, after mounting the DSs, are bolted together using screws. Figure 4-2 shows the dielectric 

substrates used in this study, the original DSs as ordered are shown in (a) and the diced DSs are 

shown in (b). 

The electric field (E-field) of the resonator obtained with eigenmode simulation is shown in 

Figure 4-3. In Figure 4-3 (b), the E-field is relatively large between the two dielectric substrates, 

which makes it possible to insert a probe in between that helps to realize a relatively large 

input/output coupling.   

For conventional DR-loaded cavity mode resonators [96], it is not easy to realize strong input 

and output coupling. This is attributable to the fact that for conventional DR-loaded cavities 

operating in the fundamental TEH mode, the electric field is concentrated inside the DR at its 

center, not on the resonator top and bottom surfaces. This, in turn, makes it challenging to 

achieve strong input/output couplings. 

 

 

Figure 4-1 3D diagram of proposed DR-loaded cavity resonator. 
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                                                  (a)                                                                       (b) 

Figure 4-2 Image of the dielectric substrate. (a) DSs not diced; (b) DSs diced.  

 

                     

                                               (a)                                                                        (b) 

Figure 4-3 Diagram (a) and electrical field of the used resonance mode (b) of the proposed DR loaded cavity 

resonator. 

4.2.1 Comparing Proposed Structure with Other DS-loaded Cavity Resonator Structures 

Figure 4-4 shows different configurations of DS-loaded cavity resonators, with all the cavities 

the same size. In (a), a DS with a thickness of 3 mm is floating in the middle of the cavity. It 

should be mentioned that in the actual design, the DS would be supported by a dielectric material 

with low dielectric constant, such as Teflon.  In (b), two thinner DSs, each with a thickness of 1.5 
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mm, are separated at a distance of 1.6 mm. The DSs in this figure are also floating in the middle 

of the cavity. In (c), the same DS as in (a) is used, with the DS touching the bottom of the cavity. 

In (d), two thin DSs identical to those shown in (b) are used, with the DSs touching the bottom of 

the cavity.  The DSs in (e) and (f) are the same as those in (c) and (d), respectively, with the DSs 

touching both the top and bottom surfaces. The proposed cavity structure with the two DSs 

attached to the metal frame is shown in proposed design (g). All the cavity structures shown in 

Fig. 3 have the same cavity dimensions of 9 mm × 8.5 mm × 8.5 mm. A thickness of 3 mm is 

used when there is a single DS and a thickness of 1.5 mm is used when there are two DSs.  

    Table 4-1 shows the eigenmode simulation results of the seven resonator configurations. All 

simulation models in Figure 4-4 use DS with a dielectric constant of 41.5 and a loss tangent of 

0.00012 at 5 GHz.  The input group delay is simulated with the input port, as shown in Figure 4-5. 

The input probe has a diameter of 1.3 mm and a length of 6 mm. The distance between the probe 

and the DSs (0.18 mm) is kept the same for the cavity resonators.   

    From the comparison given in Table 4-1, we can see that configurations (e), (f) and our 

proposed design (g) offer the lowest fundamental mode frequencies among the seven designs (i.e., 

they have the potential to provide a miniature filter design). The input group delay for 

configuration (e) is 5.01ns, which is 4.4 times larger than that of the proposed structure (g). The 

high value of the input group delay for (e) translates to a lower input coupling value, indicating 

that much wider bandwidths can be realized by design (g). Note that resonators (e) and (f) have a 

Q value that is almost 50% that of our proposed design (g).  

Since the main objective is to design a miniature wideband filter, proposed design (g) seems to 

be the optimum configuration among the seven cavity configurations illustrated in Fig. 3. As we 

will show later, the use of the proposed resonator (g) also makes it possible to realize large inter-

resonator coupling values.   
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Figure 4-4 Several structures for DS-loaded cavity resonators. (a)-(g) is a side view of the resonators and (a’)-

(g’) is the 3D view of the resonators. 

 

(a)                                                                               
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                                             (b)                                                                                    (c) 

Figure 4-5 Input group delay of structure (e), (f), and (g) in Figure 4-4 with one port EM simulation. 

Table 4-1 EM simulation results of different structures 

Structures 
Mode 1 

f0 

(GHz) 

Mode 2 

f0 

(GHz) 

Spurious free 

window 

(GHz) 

Quality 

factor 

Input group delay for 

Mode 1 (ns) 

Ease of 

assembly 

(a) 7.68 8.57 0.89 4870 8.68 Easy 

(b) 8.82 9.33 0.51 4850 5.33 Easy 

(c) 6.47 7.17 0.70 3000 2.87 Easy 

(d) 7.35 7.83 0.48 3070 6.37 Easy 

(e) 4.51 6.10 1.61 900 5.01 Not easy 

(f) 5.14 6.93 1.79 870 1.14 Not easy 

Proposed 

(g) 

4.99 7.62 2.63 1880 1.15 Easy 

Note: 1. Input groups are simulated with the same input port as shown in Figure 4-5. The input probe is 1.3 mm    

             in diameter and 6 mm in length.  

      2. The distance between the probe and the DRs is 0.18mm. For (a), (b), (c) and (d), the location of the  

         strongest electrical field is not at the center. The probe is placed at the location of the strongest  

         electrical field, but not at the center, which can give maximum coupling.     

     3. For the electrical field shape of TEH mode, please see page 574 of reference [15]. 
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4.2.2    Choosing DS Thickness 

Figure 4-6 shows the impact of resonator thickness on resonant frequency, Q and spurious free 

window, if the thickness of the DS increases from 1 mm to 2 mm.  Figure 4-6 (a), (b) and (c) 

show, respectively, that the resonance frequency drops from 5.55 GHz to 4.72 GHz, the Q drops 

from 2020 to 1820, and the spurious-free range decreases from 2.96 GHz to 2.4 GHz. Thus, when 

considering obtaining both a higher Q and larger spurious free range, a thinner DS is preferable. 

While not having a very high resonant frequency, a DS thickness of 1.5 mm was selected for our 

designs.  

 

 

(a) 

 

(b) 
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                                                                                             (c) 

Figure 4-6 Change of parameters versus different thicknesses of DS: (a) change of resonance frequency; (b) 

change of Q; (c) change of spurious free window. 

4.2.3 Inter-resonator Coupling 

For the proposed DS-loaded cavity resonator, there are two different coupling approaches that 

are capable of realizing strong inter-resonator couplings. Figure 4-7 shows the electrical field of 

the first coupling type when the adjacent resonators are next to each other along the z direction 

(same axis as shown in Figure 4-3 (b)). We can see that the first mode in Figure 4-7 (a) is 

forming a magnetic wall between the resonators, while the second mode in Figure 4-7 (b) is 

forming an electrical wall between the resonators. The inter-resonator coupling M is thus [1]: 

                            𝑀 =
𝑓0

𝐵𝑊

𝑓𝑒
2−𝑓𝑚

2

𝑓𝑒
2+𝑓𝑚

2                                                                   (1)                                      

where f0 is the center frequency of the filter, fe is the resonance frequency of the resonance 

mode with an electrical wall between the two resonators, and fm is the resonance frequency of the 

resonance mode with a magnetic wall between the two resonators. 

Figure 4-8 shows the electrical field of the second coupling type when the adjacent resonators 

are next to each other along the x direction (same axis as shown in Figure 4-3 (b)). Both 

couplings are needed when realizing folded filter structures, as described earlier. Folding the 

filter makes it easy to realize transmission zeros.             
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(a) 

                              
  (a)                                                                        (b) 

Figure 4-7 Electrical field of the coupled resonator in vertical coupling, (a) 3D view of the arrangement of the 

coupling resonators; (b) first mode; (c) second mode. 

 

                                                                                         (a) 

                               

                                                             (b)                                                     (c) 

 

Figure 4-8 Electrical field of coupled resonator in vertical coupling: (a) 3D view of coupling resonator 

arrangement; (b) first mode; (c) second mode. 
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4.2.4 Advantages of Assembly for the Proposed Structure 

Figure 4-9 shows the metal frame of a single resonator with the DSs assembled. The size of the 

DSs are designed to be slightly smaller so that they will not entirely fill the positioning grooves. 

The gap shown in Figure 4-9 is designed to be 0.2 mm.  A slight shift of the DSs due to 

misalignment during assembly will not cause a significant shift of the resonant frequency.  

Figure 4-10 shows the frequency shift versus misalignment of the DSs in both the y and z 

directions. This indicates that, with the positioning groove, the resonance frequency shift is small 

enough to be compensated by tuning. It should be mentioned that such levels of frequency shift 

due to assembly misalignment are also observed when dealing with conventional dielectric 

resonator filters.   

 

Figure 4-9 Side view of the metal frame when the DS is mounted. 

     
              (a)                                                                  (b) 

Figure 4-10 Eigenmode simulation for resonance frequency: (a) resonance frequency versus DS misalignment 

along y axis (Shift_y); (b) resonance frequency versus DS misalignment along z axis (Shift_z). 
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4.3 Two-pole Filter with Vertical Coupling 

 

The 3D diagram for the disassembled two-pole filter is shown in Figure 4-11. The filter has 

two covers, four diced DSs, and one metal frame for holding the DSs. Figure 4-12 shows the 

fabricated pictures of the two-pole filter). The size of the filter is 24 mm × 17 mm × 14.8 mm 

excluding the input and output connectors. The DSs are diced from a two-inch square dielectric 

substrate with thickness of 1.5 mm using a conventional dicing saw as shown in  Figure 4-2. 

The EM simulation model for the two-pole filter is shown in  Figure 4-13. We assign the 

boundary condition of the air-box to be copper. Figure 4-14 shows the measured results versus 

EM simulation results Measurement results show the center frequency of the filter is 5.3 GHz 

with insertion loss of 0.22 dB and bandwidth of 190 MHz at 25 dB return loss. This give a 

quality factor of 445 for the two-pole filter. 

  

Figure 4-11 3D diagram of the two-pole filter. 

 

(a) 
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(b) 

Figure 4-12 Picture of the fabricated two-pole filter, (a) disassembled filter; (b) assembled filter. 

 

Figure 4-13 EM simulation model for the two-pole filter. 

  

Figure 4-14 Simulation and measurement results of two-pole filter with larger span. 
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4.4 Five-pole Filter with Parallel Coupling 

A 3D diagram of a five-pole filter is shown in Figure 4-15. The filter consists of two covers, 

ten diced DSs, and one metal frame for holding the DSs. Coupling irises are designed on the 

covers for controlling the inter-resonator couplings. Although all DSs have the same width, the 

heights are slightly changed to account for iris loading. 

Figure 4-16 shows the fabricated pictures of the five-pole filter. The size of the filter is 53 mm 

× 17 mm × 14 mm, excluding the input and output ports.  

The EM simulation model for the five-pole filter is illustrated in Figure 4-17, while Figure 

4-18 depicts the EM simulation results and measurement results for the filter. The measurement 

results indicate that the center frequency of the filter is 5 GHz, with an insertion loss of 0.6 dB 

and a bandwidth of 480 MHz at a 20-dB return loss. This give a Q-factor of 449 for the five-pole 

filter. 

 

Figure 4-15 3D diagram of five-pole filter. 
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(a) 

 

     

                                                                                             (b) 

Figure 4-16 Picture of fabricated five-pole filter: (a) disassembled filter and (b) assembled filter (total size 17 

mm × 14 mm × 53 mm). 

 
Figure 4-17  EM simulation model for five-pole filter. 
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Figure 4-18   Simulation and measurement results of five-pole filter with larger span. 

4.5 Four-pole Filter with Transmission Zeros 

A 3D diagram of a four-pole filter is shown in Figure 4-19. The filter uses eight diced DSs and 

two Teflon blocks with copper rods to provide negative coupling. Coupling irises are designed on 

both the cover and the metal frame for controlling inter-resonator coupling. The rods for realizing 

negative coupling are first inserted into the Teflon blocks and then placed in the grooves on the 

covers. 

Figure 4-20 shows the pictures of the fabricated four-pole filter disassembled in (a) and 

assembled in (b). The size of the filter is 26 mm × 28 mm × 15 mm, excluding the input and 

output connectors. 

The EM simulation model for the four-pole filter is shown in Figure 4-21, while Figure 4-22 

illustrates the EM simulation and measurement results for the filter. The measurement results 

show that the center frequency of the filter is 5 GHz, with an insertion loss of 0.63 dB and a 
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bandwidth of 450MHz at a 20-dB return loss. The extracted Q for the measured results is 310 for 

this prototype filter unit.  

 

Figure 4-19   3D diagram of four-pole filter. 

 

        

                                      (a)                                                                                       (b) 

Figure 4-20   Picture of the fabricated four-pole filter, (a) disassembled filter; (b) assembled filter. 
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Figure 4-21   EM simulation model for four-pole filter. 

 

 

Figure 4-22   Simulation and measurement results of four-pole filter. 



 

 82 

4.6 Q Improvement with Teflon Holding Structure 

4.6.1 Possible Factors that Decreased the Q Factor 

Silver paste is used in all the above-tested filters to assemble the DSs to the metal frame, which 

introduces loss to the filter. From Figure 4-3, we can see that the E-field at the interface of the 

DSs and the metal frame is at the maximum of the resonator. This makes the loss due to the silver 

paste more significant. We conducted an HFSS simulation, taking the thickness of the silver 

paste layer between the DSs and the metal frame into consideration. The HFSS model is shown 

in Figure 4-23.  The silver pastes we use are from SPI supplies and have specified conductivity, 

which may vary from about 400,000 S/m to 3,000,000 S/m [108]. 

Figure 4-24 shows the simulation results of Q with different thicknesses of the silver paste 

layer. In the simulation, we chose four conductivities between the lowest and highest. From the 

simulation results, it can be seen that the Q of the resonator is above 1000, with the conductivity 

of the paste higher than 1,500,000 S/m over a paste thickness range of 15 μm to 30 μm. However, 

when the conductivity of the paste is lower than 750,000 S/m, the simulated Q is below 1000 

over a paste thickness range of 15 μm to 30 μm. It can also be seen that as the thickness of the 

paste increases, the Q decreases. Approximately 10% of the Q decrease is shown in the simulated 

results when the thickness of the paste increases from 15 μm to 30 μm. Since it is difficult to 

control the amount of adhesive during assembly, an alternative mounting structure is proposed.  

                            

                                                   (a)                                                                                                 (b) 

Figure 4-23   EM simulation model with silver paste, (a) 3D view; (b) front view. 
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Figure 4-24.   Q versus thickness of silver paste layer with EM simulation. 

4.6.2 Teflon Holding Structure for Resonator and a Three-pole Filter 

A Teflon holding structure is designed for improving the Q by avoiding the use of paste for 

mounting the DSs on the middle frame. Figure 4-25 is the simulation model of a resonator with 

the new assembly structure. Figure 4-26 shows the image of the fabricated resonator. As can be 

seen, the DSs are mounted on the middle frame with Teflon holder pieces designed with grooves 

to hold the DSs. These are attached to the metal frame with Teflon screws. 

Figure 4-27 illustrates the simulated return loss for the resonator with the Teflon holding 

structure in Figure 4-25. The extracted unloaded Q from the simulation for the resonator is 2300. 

Figure 4-28 shows that the measured results for the extracted unloaded Q is 1760. This indicates 

that a significant Q improvement is achieved by using the Teflon holding structure for the 

proposed resonator. It should be mentioned that deviation from theoretical results in the unloaded 

Q value could be attributed to the dielectric loss tangent of 0.00012 which is assumed in the 
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simulation. Such loss tangent was based on supplier data and has not been verified 

experimentally.        

 

Figure 4-25.    EM simulation model for a resonator. 

 

(a) 

                                     

                                                (b)                                                                   (c) 

Figure 4-26. Image of the resonator with the Teflon support. (a)the Teflon support; (b) DS mounted on middle 

frame with Teflon holding structure and Teflon screw; (c) disassembled resonator. 
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Figure 4-27  Simulated return loss for the resonator. 

 
 

Figure 4-28 Measured results for the resonator: (with Teflon holding structures. 

A three-pole filter with a Teflon holding structure is designed and fabricated. The DSs used for 

this design have the dimension of 8.4 mm × 6.8 mm × 1.5 mm. These resonators are slightly 

larger than those used for designing the 5 GHz filters in Figure 4-15 and Figure 4-19.   

Figure 5-28 (a) illustrates the EM simulation model for the three-pole filter, while Figure 4-29 

(b) shows the fabricated filter. The filter contains six DSs, which are assembled using Teflon 

holders and screws. The two covers and the middle frame are then bolted together. 
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Figure 4-30 illustrates the EM simulation and measurement results of the three-pole filter with 

Teflon holding structure. The measurement results show that the filter exhibits an insertion loss 

of 0.14 dB and a bandwidth of 560 MHz at 20 dB return loss. The extracted loaded Q of this 

filter is 810. For comparison purposes, Figure 4-31 illustrates the measured results for a three-

pole filter with DSs assembled using silver paste. The center frequency is 3.9 GHz, the insertion 

loss is 0.39 dB, and the Q is 230. As can be clearly seen, the Q has been significantly improved 

with the use of a Teflon support rather than silver paste. 

 

(a) 

 

                                                                                       (b) 

Figure 4-29    Three-pole filter: (a) EM simulation Model, (b) fabricated filter. 
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Figure 4-30 Simulation and measurement results of the three-pole filter with Teflon holding structure. 

 

Figure 4-31 Measurement results of the three-pole filter with silver paste. 
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4.7 Discussion 

Table 4-2 shows a comparison of our proposed filters with some compact DR/DS-loaded filters 

reported in the literature. Reference [96], [102], and [103] use cylinder dielectric-loaded 

resonators with TM mode. Although these resonators are compact in size, they can only realize 

small fractional bandwidth. Reference [105] employs triple-mode to realize compact filter with a 

machined cylinder dielectric resonator, resulting in a relatively higher fractional bandwidth of 

3.2%. However, it requires extensive machining of the dielectric resonators, which adds to cost. 

In [109], DR TM mode is used to realize a larger fractional bandwidth of 4.95%.  However, the 

dielectric material used in the filter has a complex shape and requires additive manufacturing 

technology (stereolithography). Furthermore, all the above-mentioned references utilize bulky 

high-K dielectric material, which is hard to realize in low-profile filters. 

    In [104], the researchers employed a dielectric substrate, but it uses the TEH mode of 

dielectric resonator mode and is only feasible for narrow bandwidth applications. Also, the size is 

quite large compared to the proposed design.  

Our proposed filter structure employs dielectric substrates that are thin, giving the advantage of 

realizing low profile filters. The fractional bandwidth of larger than 10% can be easily realized. 

Also, these dielectric substrates can be easily diced from a larger size substrate using 

conventional dicing saws or water jet machining.   

Table 4-2 VO2-based RF switches 

Ref. f0 (GHz) Filter Order DR/DS type FBW (%) IL (dB) 

[96] 2.6 4 Cylinder 1.92 0.35 

[102] 4.2 3 Cylinder 1.5 1.3 

[103] 1.598 4 cylinder 1.25 0.85 

[106] 2.5 6 Machined cylinder 3.2 0.17 

[104] 4 4 DS 1.0 0.4 

[109] 4.05 4 3D printed cylinder 4.94 0.3 

 This work 5.0 5 DS 9.6 0.62 

This work 5.0 4 DS 9.0 0.63 

This work 3.9 3 DS 13 0.14 
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4.8 Summary 

This chapter has presented a novel configuration of dielectric substrate-based cavity filter. The 

proposed filter structure offers ease of assembly while capable of realizing large bandwidth and 

exhibits a relatively thin profile. Five-, four- and three-pole prototype DS-loaded filters using the 

proposed structure were designed, fabricated, and measured. The fractional bandwidth of the 

five-pole filter is 9.6%, with a spurious located at roughly 1.5 f0. The three-pole filter realized a 

fractional bandwidth of 13%. A Teflon-based mounting structure is proposed to improve the Q-

factor of these types of filter structures. The measurement results of the prototype filter unit 

presented show a loaded Q of 810. The simulation results promise an unloaded Q-factor above 

1800 at 4 GHz, making it useful in sub-6 GHz miniature, low-cost, wideband applications. 
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Chapter 5 

VO2-based Tunable Filters 

5.1 Introduction 

Tunable filters are required in multiband systems and in applications where there are demands 

to continuously change the filter center frequency to adapt to communication traffic conditions 

and changes in system environment. One of the main needs of tunable filters is maintaining low 

insertion loss over the tuning range. The key to achieving this goal is using high-Q resonators, 

such as three-dimensional (3D) structure resonators (e.g., metallic post-resonators [71], dielectric 

resonators [110] or cavity resonators [111]). For tunable filters, not only should the resonators 

have high unloaded Q, but the tuning elements should also have low loss.  

Various tuning techniques have been employed to realize tunable filters, including mechanical 

tuning, piezoelectric tuning, magnetic tuning, and MEMS tuning. Mechanical tuning is usually 

bulky and slow, while magnetic tuning requires high power consumption. In typical MEMS 

switch based-tuning, the MEMS switches are integrated with lumped element capacitors to vary 
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the capacitive loading on the combline resonator and hence change its resonance frequency 

[110]. However, such lumped element capacitors are known to degrade the unloaded Q of the 

resonator. Fouladi et al. reported a combline tunable bandpass filter with a center frequency of 

2.5 GHz, a bandwidth of 22 MHz, and a quality factor ranging from 1300 to 374 over 110 MHz 

of tuning range [71]. Park et al. designed a high-Q tunable evanescent-mode cavity filter with RF 

MEMS switch networks featuring a tuning range of 4.07-5.58 GHz. The unloaded Q of this filter 

is 300-500 over the tuning range [111]. A high-Q tunable waveguide filter with RF MEMS 

switched capacitors was realized by Stefanini et al., with an unloaded Q factor of 620 to 250 and 

tuning from 5.2 GHz to 4.4 GHz [112]. Note that all of the above tunable filters employ high-Q 

resonators, and that the bottleneck to realizing a high-Q value in these filters is the tuning 

element. 

5.2 Tunable Combline Filters 

5.2.1 Design and Simulation Results of Tunable Combline Filters 

A tunable structure based on RF switches is proposed to realize multi-state tunable filters. The 

configuration of the design is shown in Figure 5-1. The tuning structures consist of multiple strip 

lines integrated with RF switches. This allows the metal strip lines inside the cavity to be either 

connected or not connected to the ground, which changes the field distribution inside the cavity. 

As a result, the resonators would see a significant shift in resonant frequencies, while their high-

Q performance is preserved. This approach can be further expanded by including more strip lines 

and corresponding switches to achieve a larger number of tuning states.  

  A two-pole tunable combline filter employing the proposed tuning structure is shown in 

Figure 5-2. The tunable filter consists of: a) a combline filter, and b) a tuning circuit fabricated on 

Rogers 5880 PCB integrated with RF switches.  

The combline filter consists of two parts: the cover with the resonator posts attached, as shown 

in Figure 5-2 (a), and the housing in which the tuning structures and SMA probes are installed, as 
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shown in Figure 5-2 (b). The filter is assembled by flipping the housing over and screwing it to 

the cover with the resonator posts, thus forming the completed filter structure, as shown in Figure 

5-1.  

 

Figure 5-1 Proposed structure for tunable combline filter. 

         
                                      (a)                                                                         (b) 
Figure 5-2 Image of tunable combline filter.  

The combline resonators operate in the TEM mode, which has strong electric fields towards 

the top edge of the resonator, as can be seen in Figure 5-3. Therefore, the opening between 

resonators for the coupling located at the bottom of the resonator posts depicted in Figure 5-1 

would see minimal coupling changes as the resonators are tuned. The HFSS EM simulations 

show an unloaded Q higher than 2500 for all tuning states when a wire bond is used to emulate 

the switches in the ON-state and a Q larger than 1000 when using a RF switch with a switch 
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resistance of 1.5 Ohm.  Details of 2-bit and 4-bit tuning circuits are shown in Figure 5-4. The 

long strip lines (denoted by Sline 1, 2, 3, and 4) can be connected to ground (ON-state) or 

disconnected (OFF-state, floating) through either wire bond (for testing purposes) or the use of 

RF switch connections. As a result, each of the strip lines in the tuning circuit represents two 

tuning states. A four-strip (4-bit) tuning structure can obtain sixteen discrete states. Ultimately, a 

close to continuous tuning can be possibly achieved with a sufficiently large number of tuning 

strip lines. 

                               

                                         (a)                                                                                 (b) 

Figure 5-3. Electrical field of resonator for different states: (a) state 1 with both strip lines not connected to the 

ground, (b) state 3 with both strip lines connected to the ground with wire bond. 

       
                                     (a)                                                                                        (b) 

Figure 5-4 Tuning structure configuration: (a) 2-bit tuning structure (b) 4-bit tuning structure. 
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A picture of the fabricated PCB for the 4-bit tuning structure is shown in Figure 5-5. Omron 

MEMS switches are used to connect/disconnect the strip lines to ground. The Omron switches 

used are SPDT switches, making it possible to control four strip lines with two Omron switches. 

Figure 5-6 shows the EM simulation results of a 2-bit structure with wire bond connections 

emulating ideal MEMS switches. For the three states shown in Figure 5-6, the center frequencies 

are 7 GHz, 7.14 GHz and 7.23 GHz, respectively, achieving a tuning range of 230 MHz. The 

corresponding bandwidths recorded at a 10-dB return loss are 97 MHz, 96 MHz and 90 MHz, 

respectively.  

Figure 5-7 shows the EM simulation results of the tunable filter employing a 4-bit tuning 

structure. The s2p data of the MEMS switches is included in the simulation.  For the six states 

shown in Figure 5-7, the center frequencies are 6.71 GHz, 6.79 GHz, 6.87 GHz, 7.07 GHz, 7.13 

GHz and 7.24 GHz, respectively, resulting in a tuning range of 530 MHz. The corresponding 

bandwidths for each state are 86 MHz, 92 MHz, 96 MHz, 120 MHz, 119 MHz and 118 MHz, 

respectively. Roger 5880 substrate with a dielectric constant of 2.2 and a loss tangent of 0.0009 is 

used in order to minimize the adverse effect of the substrate on the loaded Q factor. 

                              

Figure 5-5 PCB of 4-bit tuning structure with Omron MEMS switches, 18mm x 18mm in size. 
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Figure 5-6 Simulation results for 2-bit tuning structure with wire bond connection. 

 

                                                                                  (a) 

 

                                                                                (b) 

Figure 5-7 EM simulation results for 4-bit tuning structure with MEMS switches. 
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Figure 5-8  EM simulation model for three-pole tunable filter. 

A three-pole tunable combline filter is designed. The configuration of the design is shown in 

Figure 5-8. Whereas Figure 5-9 shows the image of the fabricated filter.  

 

Figure 5-9  Image of three-pole combline filter. 

Figure 5-10 shows the simulated results for the three-pole filter. The center frequency, 

insertion loss, and bandwidth are listed in Table 5-1. The simulated results show a tuning range 

of 240 MHz from 4.78 GHz to 5.02 GHz. The filter demonstrates almost a constant bandwidth 

from 46 MHz to 47 MHz at a 20-dB return loss, with the insertion loss varying from 1.390 dB to 

1.412 dB.   
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Figure 5-10  Simulation results for three-pole filter with wire bond connection. 

Table 5-1 Simulation results for three-pole combline filter  

(with R_s assigned to 1 Ω ON-state and 20 kΩ OFF-state)  

State Frequency (GHz) Bandwidth Insertion Loss (dB) 

1 6.95 46 MHz @ 20 dB return loss 1.390 

2 7.09 46 MHz @ 20 dB return loss 1.392 

3 7.21 47 MHz @ 20 dB return loss 1.412 

5.2.2 Measurement Results with Wire Bonding 

Figure 5-11 shows the measurement results for a 2-bit tuning structure utilizing wire bond 

connections in order to determine the achievable insertion loss if an ideal switch is used. The 

center frequency, insertion loss, and bandwidth at 15 dB return loss are listed in Table 5-2. The 

measured results are in close agreement with the simulation, with a slightly smaller bandwidth. 

The bandwidth remains approximately constant throughout the tuning range of 160 MHz. The 

unloaded Q measured is higher than 2000 for all three states.  
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Figure 5-11  Measured results for 2-bit tuning structure with wire bond connections. 

 

Table 5-2 Measurement results for 2-Bit tuning structure 

 

The measured S parameters of the three-pole combline filter with wire bond connections are 

shown in Figure 5-12. The center frequency, insertion loss, and bandwidth at 20 dB return loss 

are listed in Table 5-3. The bandwidth is between 50 MHz and 55 MHz, while the unloaded Q 

measurements vary from 1300 to 1700. 

Figure 5-13 illustrates the measured results of the three-pole tunable filter with a large 

frequency span. It demonstrates a 1.8-GHz spurious free window for state 1 and a 2-GHz 

spurious free window for the other two states. 

 

State f0 (GHz) Insertion loss (dB) BW @ 15dB return loss (MHz) Unloaded Q 

1 6.933 0.24 66 3850 

2 7.094 0.44 62 2320 

3 7.195 0.32 63 3160 
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Figure 5-12 Measured results with wire bonding. 

 

Figure 5-13  Measured results with wire bonding large span. 

Table 5-3 Measurement results for three-pole combline filter with wire-bonding 

State Frequency (GHz) Bandwidth Insertion loss (dB) Quality factor 

1. No wire 6.88 50 MHz @ 20 dB 

return loss 

0.94 1700 

2. Wire for 

narrow beam ON 

7.075 55 MHz @ 20 dB 

return loss 

1.16 1300 

3. Both wires ON 7.150 55 MHz @ 20 dB 

return loss 

0.98 1500 
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5.2.3 Measurement Results with MEMS Switches 

The measurement results for the 4-bit tuning structure with Omron RF MEMS switches are 

shown in Figure 5-14 and Figure 5-15. The insertion loss is relatively high due to the loss of the 

MEMS switch and other imperfections in the filter assembly. The contact resistance of the 

Omron MEMS switch is assumed to be 1.5 Ω in the simulation, while in measurement the 

contact resistance of the integrated OMRON switch appears to be much larger than 1.5 Ω. In 

addition, the package of the MEMS switch is of size 2 mm x 5 mm, which introduces additional 

loadings and losses to the resonators. In order to improve the loss performance, RF MEMS 

switches with a much smaller package size need to be used.  

 

Figure 5-14 Measured insertion loss for 4-bit tuning structure using MEMS switches. 

 

Figure 5-15  Measured return loss for 4-bit tuning structure using MEMS switches. 
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5.2.4 Measurement Results with VO2 Switches 

A six-layer micro-fabrication process is particularly developed to allow ease of integration 

with the tuning PCB circuit. Figure 5-16 shows the gold-based six-layer VO2 fabrication process 

used for realizing the switches. A 200-nm thin-fim VO2 is first deposited with RF reactive 

sputtering and patterned with wet etch. A 350-nm gold layer is then deposited with E-beam 

evaporation and patterned with lift-off. Next, a 500-nm SiNx layer is deposited with PECVD and 

patterned with RIE. After that, a 100-nm Cr layer is deposited with E-beam evaporation and 

patterned with lift-off. A 200-nm SiO2 layer is then deposited with PECVD and patterned with 

RIE. Lastly, a 2-um gold two layer is realized with electro-plating and lift-off. 

    

                                    (a)                                                                            (b) 

    

                                   (c)                                                                             (d) 

      

                                  (e)                                                                       (f) 

Figure 5-16 Six-layer fabrication process for VO2.  
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Figure 5-17 shows the mask of the six-layer fabrication process, while Figure 5-18 shows the 

fabricated switch for the tunable filters. The switch consists of two RF pads and two DC pads. 

The RF_out pad in Figure 5-18 will be connected to the RF ground of the tunable filter that will 

be presented in later sections. The two DC pads are used for applying a DC bias on the micro-

heater, which is realized with the Cr layer.  

As can be seen from the fabricated picture, the micro-heater is not designed on top of the gap, 

which differentiates it from the series switches designed in Chapter 3. In the new six-layer 

process presented in this chapter, the VO2 layer is deposited as the first layer. The advantage of 

this approach is that it will be much easier to realize thin-film VO2 with a good ON-to-OFF-state 

resistivity ratio, due to the grid shape of the alumina being similar to that of thin-film VO2. The 

disadvantage is that if the micro-heater is designed over the gap, there will be a step coverage 

problem with the thin heater layer. With the heater on one side of the switch, the problem of step 

coverage is solved; it will also reduce the OFF-state capacitor Coff. Figure 5-19 shows the 

hysteresis curve of the sputtered thin-film VO2. The sheet resistance of the thin-film VO2 is from 

22.5 kΩ/□ to 14 Ω/□, which represents a resistivity ratio of greater than three orders of 

magnitude.  

 

Figure 5-17  Mask of six-layer process. 
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Figure 5-18 Picture of fabricated VO2 switch for tunable filters. 

 

Figure 5-19    Hysteresis curve of thin-film VO2. 

Figure 5-20 shows the assembly of the VO2-based switched two-pole tunable combline filter. 

The VO2 switches are first mounted on the PCB with silver epoxy, after which the RF and DC 

pads on the VO2 Switches are connected to the PCB with wire-bonding. Then the PCB with VO2 

switches are assembled on the housing cavity.  
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                                                   (a)                                                                                        (b) 

Figure 5-20 Image of two-pole tunable filter assembled with VO2 switches. 

Figure 5-21 shows the measurement results for a two-pole tunable filter utilizing VO2 switches. 

The center frequency, insertion loss, bandwidth at 15 dB return loss, and quality factor are listed 

in Table 5-4. At state 1, when all switches are OFF, the filter has a center frequency of 6.935 

GHz and a quality factor of nearly 500. When all the switches are ON, the center frequency tunes 

to 7.150 GHz and the Q is 600. The tuning range is 215 MHz. 

Figure 5-22 illustrates the measured results of the two-pole tunable filter with VO2 switches in 

a large span. It demonstrates a 1.9-GHz spurious free window for state 1 and > 2 GHz spurious 

free window for the other two states. 

 

Figure 5-21  Measured results for two-pole combline filter with VO2 switches.  
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Figure 5-22  Measured results for two-pole combline filter with VO2 switches with large span. 

Table 5-4 Measurement results for two-pole combline filter with VO2 switches 

State Center frequency (GHz) BW @ 15dB return 

loss (MHz) 

Insertion loss (dB) 

All switches OFF 6.935 62 1.252 

All switches ON 7.150 50 1.117 

5.2.5 Insertion Loss Discussion 

Insertion losses for the designed combline filters are highly related to the series resistance (R_s) 

of the VO2 switch at both the ON and OFF states. EM simulations are done using the model 

shown in Figure 5-1, assigning R_s from 1 Ω to 10 kΩ for switches used in the two-pole filter. 

Figure 5-24 illustrates the simulated insertion loss, while Figure 5-24 shows the simulated return 

loss. From the results, we can see that when R_s is smaller than 100 Ω, the filters stay in a high 

frequency state with a slight frequency shift down and a significantly higher insertion loss as R_s 

decreases. However, when R_s is larger than 500 Ω, the filter center frequency shifts to a low 

frequency state with a slight frequency shift down and a lower insertion loss as the R_s decreases. 

The insertion loss remains low when R_s is smaller than 50 Ω for high-frequency states and 

larger than 2 kΩ for low-frequency states.  
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Figure 5-23  Insertion loss when assigning different R_s. 

 

Figure 5-24  Simulation results when assigning different R_s. 

Figure 5-25 shows the simulated results with R_s assigned to 2 Ω, 10 Ω, and 50 Ω. 

Measurement results with different DC voltages applied to the micro-heater of the VO2 switches 

are shown in Figure 5-26. The voltages applied to the micro-heater are 5 V, 4.5 V, and 4.2 V, 

which makes the R_s of the VO2 switch comparable to 2 Ω, 10 Ω, and 50 Ω. The insertion loss of 

the measured results matches well the simulated results.  
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In order to obtain a lower insertion loss for both states, a smaller ON state resistance and a 

larger OFF state resistance (i.e. a larger ON and OFF resistance ratio) are required for the VO2 

switches, which is determined by the purity of thin-film VO2 that can be obtained. 

 

Figure 5-25  Simulated results with R_s assigned to 2 Ω, 10 Ω, and 50 Ω. 

 

Figure 5-26  Measured results with voltage across micro-heater at 5V, 4.5V and 4.2V. 
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5.2.6 Power Handling Discussion 

It is important to analyze the power handling of the combline filter limited by the power 

handling of the VO2 switches. Because these VO2-based switches can be actuated with high RF 

power, their OFF-state power handling is mainly related to the RF-self-actuating effect. RF self-

actuating signatures were discussed in [41], [84], and [113]. Additionally, [114] reported that 

when the RF power is high enough in ON-state power handling for VO2 switches, the thin-film 

VO2 shows fracturing, which leads to failure of the switch. 

To conduct our analysis, a six-port simulation is done using HFSS. The simulation model is the 

same as the structure shown in Figure 5-1, but replacing the RF switches with lumped ports, as 

illustrated in Figure 5-27. The simulated results are then imported into an S6P module in ADS 

for circuit simulation. Figure 5-28 shows the circuit simulation model. As can be seen, ports 1 

and 2 of the S6P module are connected to two 50 Ω terms, while ports 3-6 are connected to an 

equivalent circuit of the VO2 switch. Note that the series resistance (R_s) of the equivalent circuit 

is replaced by a term with a characteristic impedance of R_s. 

 

 

Figure 5-27  Simulation model showing port locations. 
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Figure 5-28  Simulation schematic with 6 ports. 

Figure 5-30 depicts the simulated results with R_s assigned to 1 Ω, 4 Ω, 7 Ω and 10 Ω. The 

results show that the RF energy decreased by > 20 dB from port 1 (input port) to ports 3-6 (the 

ports where the VO2 switches will be assembled) for R_s = 1 Ω. In other words, if the VO2 

switch has power handling of 30 dBm in the ON-state, the filter power handling limited by the 

VO2 switch will be more than 50 dBm. 
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Figure 5-29  Top view of the simulation port setup for the two-pole filter. 

      

                                                (a)                                                                                    (b) 

   

                                               (c)                                                                                   (d)     

Figure 5-30  Simulated results with R_s assigned to 1 Ω, 4 Ω, 7 Ω and 10 Ω. 
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The simulated results with R_s assigned to 1 kΩ, 10 kΩ, 100 kΩ and 1 MΩ are shown in 

Figure 5-31. As can be seen, the RF energy from port 1 (input port) to ports 3-6 (the ports where 

the VO2 switches will be assembled) is > 20 dB for R_s > 100 k Ω. It should be mentioned that 

the OFF-state power handling of the VO2 switch is related to the OFF-state R_s, because as the 

R_s increases, the power handling increases, which in turn increases the power handling of the 

filter. With a high ON- and OFF-state resistance ratio (five orders of difference) for VO2 film, the 

VO2 switch can have an ON-state R_s of 1 Ω and an OFF-state R_s of 100 kΩ, which makes the 

filter power limitation of the filter due to the VO2 switch more than 50 dBm. In this case, the 

limitation could be the cavity combline filter itself, based on the size and design parameters of 

the cavity. 

   

                                                (a)                                                                                    (b) 

  
                                               (c)                                                                                   (d)     

Figure 5-31 Simulated results with R_s assigned to 1 kΩ, 10 kΩ, 100 kΩ and 1 MΩ. 
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5.3 Tunable Dielectric Substrate-based Filter 

In this section, a dielectric substrate-based tunable filter using VO2 switches is presented. The 

dielectric substrates shown in Figure 5-32 are 2 inches × 2 inches × 1.5 mm, have a dielectric 

constant of 38, and a Q × f > 235,000 [115], i.e., a Q > 47,500 at 5 GHz. These dielectric 

substrates can be accurately diced into small pieces with designed sizes using a dicing blade. 

Figure 5-33 shows a sample of the diced dielectric substrate. With a thickness of 1.5 mm, these 

dielectric substrates are thin enough to be used as a substrate for microfabrication. Since the 

roughness of the DSs is about 1 µm, however, additional polishing or process needs to be 

conducted before microfabrication can be done directly on these substrates. 

 

 

 Figure 5-32 Dielectric substrates as ordered. 

 

 

Figure 5-33 Diced dielectric substrates. 
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5.3.1 Design and Simulation Results 

A dielectric filter design similar to that designed in Chapter 4 is employed to realize tunable 

dielectric filters. The 3D diagram of the three-pole tunable filter is shown in Figure 5-34. The 

filter contains two covers, input and output probes, six diced DSs, and a PCB with a tuning 

structure for holding the DSs. Coupling irises are designed on the covers for controlling the inter-

resonator coupling. The DSs have a width of wDS and a height of hDS. All DSs are with the same 

height, while the width of the DSs is varied to adjust the resonance frequency of each resonator 

to account for iris loading. 

The EM simulation model for the three-pole tunable filter is shown in Figure 5-35. The 

boundary of the airbox is assigned to aluminum. Figure 5-36 illustrates the simulated S-

parameters of the filter. The simulated results are shown in Table 5-5. As can be seen, the filter 

demonstrates a tuning range of 240 MHz. The insertion loss varies from 0.121 dB to 0.131 dB, 

while the designed bandwidth is from 310 to 330 MHz, at a 20-dB return loss. The achievable Q 

is more than 1430 for all three states. A constant absolute bandwidth has been achieved (less than 

5% over the tuning range). 

 

Figure 5-34  3D diagram of three-pole tunable filter. 
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Figure 5-35 EM simulation model of three-pole tunable filter. 

 

Figure 5-36 Simulation results for three-pole tunable filter. 

Table 5-5 Simulation results for three-pole tunable filter 

State Frequency (GHz) Bandwidth Insertion Loss (dB) Quality Factor 

1. All tuning beams not 

connected to the ground 

4.98 310 MHz @20dB 

return loss 

0.131 1480 

2. Half of the tuning beams 

connected to the ground 

4.84 330 MHz @20dB 

return loss 

0.125 1430 

3. All tuning beams floating 4.74 330 MHz @20dB 

return loss 

0.121 1440 
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5.3.2 Measurement Results with Wire Bonding 

Figure 5-37 shows the images of the fabricated tunable filter. The VO2 switches and DSs are 

first assembled on PCB with silver epoxy, as shown in Figure 5-37 (a) and (b). The DC bias 

wires are then soldered on PCB, as shown in Figure 5-37 (b).  Figure 5-37 (c) illustrates how the 

PCB lies on one of the covers, while Figure 5-37 (d) depicts the assembled filter after assembling 

the covers and the PCB board. 

The measurement results for the three-pole tunable filter with wire bonding to emulate the case 

of an ideal low loss switch are shown in Figure 5-38. The center frequency, insertion loss, and 

bandwidth are listed in Table 5-6. The measured results show that the filter can be tuned from 

4.87 GHz to 5.16 GHz, with the insertion loss changing from 0.82 dB to 0.84 dB. The bandwidth 

at a 15-dB return loss varies from 284 MHz to 298 MHz. Figure 5-39 illustrates the measurement 

results for the three-pole tunable filter over a large span. The spurious free window is larger than 

1.8 GHz. 

                               

                                               (a)                                                                        (b)     

                   

                                               (c)                                                                             (d)     

Figure 5-37  Image of fabricated three-pole tunable filter: (a) VO₂ switch on PCB; (b) full image of DSs and 

VO₂ switch assembled on PCB; (c) PCB on a cover; (d) assembled filter 
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Figure 5-38  Measured results with wire bonding. 

 

Figure 5-39  Measured results with wire bonding. 

Table 5-6 Measured results for three-pole tunable filter with wire bonding 

State Center Frequency (GHz) Bandwidth Insertion Loss (dB) 

1. All wires connected 4.87 284 MHz @15dB return loss 0.84 

2. One wire connected 5.01 298 MHz @15dB return loss 0.82 

3. No wires connected 5.16 296 MHz @15dB return loss 0.84 
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5.3.3 Measurement Results with VO₂ Switches 

Figure 5-40 illustrates the measured results for the tunable filter with VO₂ switches. The 

bandwidth varies from 292 MHz to 330 MHz at a 10-dB return loss, the insertion loss varies 

from 4.34 dB to 5.36 dB. A tuning range of 240 MHz from 4.78 GHz to 5.02 GHz is 

demonstrated. The loss is mainly due to the adhesive used for assembling the DSs onto the PCB 

tuning circuit as well as the thin-film VO2 not having high enough ON to OFF resistivity ratio. In 

order to improve the loss of the filter, low loss adhesive needs to be used. Also, the sputtering 

recipe for depositing thin-film VO2 needs to be tuned for realizing high performance VO2 

switches. 

 

                                                    (a)                                                                                  (b) 

Figure 5-40  Measured results with VO₂ switch: (a) insertion loss; (b) return loss. 

5.4 Summary 

In this chapter, a tuning structure with multiple strip lines is proposed. The proposed tuning 

concept eliminates the need to use variable capacitor loading, which is known to degrade the 

filter’s loaded Q over the tuning range. Two- and three-pole combline filters are designed, 

fabricated and measured with wire bonding, MEMS switches, and VO₂ switches. With wire 

bonding, all states demonstrate measured Q higher than 2000, while with VO₂ switches, the Q 
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varies from 500 to 680. The test data confirms the tunability and feasibility of using the proposed 

tuning scheme to realize high-Q tunable filters that maintain their Q value over the tuning range. 

A DS-loaded three-pole tunable filter is designed, fabricated, and measured. The results show the 

potential of realizing a tunable filter with relatively high Q with a very low-loss VO₂-based 

switch. A much better insertion loss can be potentially achieved with use of VO2 switches with a 

low ON state resistance and a larger OFF state resistance. A better epoxy also needs to be used to 

assemble the DSs and VO2 switch chips on the PCB tuning circuits. 
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Chapter 6 

Conclusion 

The main focus of this thesis has been on the research and development of MIT/PCM RF 

switches and their integration with RF passive devices, particularly high-Q three dimensional 

filters. The major contributions of the work are summarized below, followed by some of the 

unsolved research problems for future work. 

6.1 Contributions of the Thesis 

The major contributions of this thesis are as follows: 

• Development of a fabrication process for VO2/GeTe switches  

VO2/GeTe-based RF switches have been fabricated using a microfabrication process 

developed on an alumina substrate. The simulation results show the potential for these 

switches to operate up to 75 GHz. The proposed fabrication process allows monolithic 

integration of VO2/GeTe-based switches with a wide range of RF circuits.   
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• Development of reconfigurable RF passive devices integrating VO2/GeTe switches   

VO2-based variable attenuators operating over X-band and Ka-band have been designed, 

fabricated, and measured. A monolithic fabrication process for the VO2-based attenuator on 

a single chip is described in detail. Micro-heaters using Cr are fabricated on the same chip 

for thermally actuating the thin-film VO2. This variable attenuator promises to be useful in a 

wide range of millimeter wave applications. A 4-bit GeTe-based capacitor bank has also 

been designed, fabricated and measured. A monolithic fabrication process for the GeTe-

based capacitor bank on glass substrate has been presented in detail, with the switchable 

capacitor integrated monolithically with GeTe switches. The presented capacitor bank is 

highly compact in size and offers a wide tuning range and the convenience of monolithic 

integration with other RF components. 

 

• Development of a dielectric resonator filter employing dielectric substrates 

A novel configuration of a dielectric substrate-based cavity filter has been presented. The 

structure of the filter offers ease of assembly capable of realizing large bandwidth and 

exhibits a relatively thin profile. Five-, four-, and three-pole prototype filter DS-loaded 

filters using the proposed structure have been designed, fabricated, and measured. The 

fractional bandwidth of the five-pole filter is 9.6%, with a spurious located at roughly 1.5 f0. 

The three-pole filter realized a fractional bandwidth of 13%. A Teflon-based mounting 

structure is proposed to improve the Q factor of this type of filter structure. The theoretical 

results promise a quality factor above 1800. The filter promises to be useful in low-cost, 

wideband applications, and amenable to integrating with MIT/PCM switches. 

• Development of VO2-based 3D tunable filters 

A tuning structure with multiple strip lines is proposed. The proposed tuning concept 

eliminates the need to use lumped element capacitors which are known to degrade the filter’s 

loaded Q over the tuning range. Two- and three-pole filters with combline configurations are 

designed, fabricated and measured with wire bonding, MEMS switches, and VO2 switches. 

A DS-loaded three-pole tunable filter is also designed, fabricated, and measured. The test 
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data confirm the tunability and potential integrating VO2 switches with three dimensional 

high-Q filters. 

6.2 Future Work 

As discussed in Chapter 5, the performance (e.g., insertion loss, power handling, etc.) of 

tunable filters relies on the ON-state and OFF-state resistivity ratio of thin-film VO₂. In this 

work, we have used RF sputtering to deposit the thin-film VO₂, achieving a reasonably good 

resistivity ratio between the ON-state and OFF-state. In order to further improve the resistivity 

ratio, PLD may need to be used for obtaining thin-film VO₂ with a higher purity. 

Integrating VO₂/GeTe switches and tuning structures directly on a dielectric substrate with 

micro-fabrication would be a compelling future research endeavor. This approach would require 

the dielectric substrates to have a roughness of preferably < 100 nm. Presently, however, the best 

dielectric substrates provided by vendors have a roughness greater than 1µm. Therefore, a 

process needs to be developed either to polish these substrates or to coat them with a buffer layer, 

such as SiO2, that can be polished to achieve a roughness of less than 100 nm. 
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