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Abstract 

 The stress response is a highly conserved signalling cascade that signals between tissues 

to increase energy availability. Changes in glucose regulation are studied extensively due to the 

glucose intolerant phenotype of rainbow trout (Oncorhynchus mykiss). Recent studies have 

started to investigate microRNAs (miRNAs) in this phenotype, and previous work in other 

models has linked microRNAs to stress as well. MiRNAs are small, non-coding RNAs that bind 

to the 3’ UTR of mRNA and act to silence translation or degrade the transcript. These miRNAs 

can also be present in circulation by association with extracellular vesicles (EVs; such as 

exosomes), which have been shown to signal between tissues. Therefore, the primary aim of this 

thesis was to establish the role of miRNAs in the teleost stress response, both within and between 

tissues. The two studies used in vivo and in vitro techniques to determine how stress and the 

hormone cortisol impacts miRNA levels.  

In the first chapter, rainbow trout were exposed to a 3-minute acute air exposure and 

allowed to recover for 1-, 3-, or 24-hours. MiRNA levels in plasma EVs, anterior kidney, and 

liver were measured, and changes linked to pathways that could be impacted using KEGG 

analysis. Overall, miRNAs increased in EVs in circulation. Tissue miRNA abundances either 

remained constant or decreased. KEGG revealed that predominantly metabolic pathways were 

the targets for these miRNAs. Therefore, the circulating miRNAs could be stored in the blood to 

increase the metabolic potential of tissues and then reabsorbed later during recovery. Tissue 

abundances were likely reflecting the increase in circulating glucose observed by allowing for 

increased glycolytic potential.  

In the second chapter, rainbow trout hepatocytes were exposed to increasing 

concentrations of cortisol to determine how the hormone might influence the miRNA associated 
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with glucose metabolism. Hepatocytes were exposed for 2- or 4-hours to 0, 30, 300, or 3000 

ng/mL of cortisol and both cell and supernatant fractions taken. MiRNA predicted to target key 

enzymes involved in gluconeogenesis (fructose-1,6-bisphosphatase and phosphoenolpyruvate 

carboxykinase) and glycolysis (glucokinase and pyruvate kinase) were measured to see how 

cortisol impacted their epigenetic regulation. However, supernatant levels of LDH were found to 

be different between fish, which may indicate necrosis of the cells during the exposure. 

Transcript abundances of glycolytic enzymes and the miRNAs predicted to target them were not 

impacted at any timepoint, but cortisol increased gluconeogenic transcripts and miRNAs. 

Enzyme activities were also not affected by cortisol exposure, but time-dependant decreases in 

glycolytic enzymes could be due to changes in glucose availability during the experiment. 

Although few changes were measured, the miRNA predicted to impact enzymes have been 

implicated in other glucose-intolerant phenotypes.  

The results of these studies indicate that miRNAs can be impacted by stress and could be 

involved in regulating translation during recovery. Future studies should further investigate the 

role of miRNAs in the teleost stress response as the in vivo experiment clearly shows acute 

changes occurring that can influence physiology during recovery. The miRNAs predicted in 

chapter 2 should also be investigated further for their role in glucose metabolism within the 

context of stress.  
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1.0 Introduction  

The stress response is a highly conserved process that allows for organisms to respond to 

changes in their environment. Chronic stressors experienced by organisms often cause 

detrimental effects such as decreased growth rate and inhibition of reproduction, side effects that 

the aquaculture industry would like to reduce (Tort, 2013). However, acute stressors such as 

handling, can be adaptive, as trout are able to respond and recover faster after subsequent 

handling (Tort, 2013). Handling stress is often experienced in aquaculture and angling 

competitions, which accounted for $7.9 billion in revenue in 2015 (Department of Fisheries and 

Oceans, 2019; Twardek et al., 2018). Mitigating these effects is important to maintain healthy 

fish populations. Investigating how stress is communicated between cells and tissues can help 

with development of methods to reduce these effects. Hormone cascades in teleosts are well-

studied and demonstrate how fish overcome a perceived stressor using endocrine signalling 

(Bonga, 1997; Mommsen et al., 1999). My work will add to our knowledge of how stress alters 

microRNA levels both within and between tissues to understand the role of non-coding RNAs 

within the well studied teleost stress response.  

1.1 The Stress Response 

Organisms respond and adapt to changes in their environment using endocrine signalling 

cascades to cause physiological changes in tissues throughout the body. Stress is integrated in the 

hypothalamus and communicated to the anterior pituitary using corticotropic releasing hormone 

(CRH; Bonga, 1997; Mommsen et al., 1999). This causes release of adrenocorticotropic hormone 

(ACTH) into circulation where it induces cortisol production from the interrenal cells of the 

anterior kidney (Fig 1; Bonga, 1997; Mommsen et al., 1999). After an acute stressor, interrenal 

cells respond to ACTH by upregulated expression of melanocortin receptor (MC2R), 
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steroidogenic acute regulatory protein (StAR), cytochrome P450 side chain cleavage (P450scc), 

and 11β-hydroxylase to aid in the production of cortisol (Fierro-Castro et al., 2015). 

Cortisol acts on many tissues to induce major physiological changes associated with the 

stress response. The presence of elevated plasma glucose levels is used to confirm that a fish is in 

a stressed state (Bonga, 1997; Mommsen et al., 1999). Activation of the glucocorticoid receptor 

(GR) in hepatocytes upregulates genes associated with metabolism, as well as endocrine and 

stress related genes (Aluru & Vijayan, 2007). This results in increased gluconeogenesis in the 

liver, or production of glucose from non-carbohydrate-based sources that can then be used as 

fuel for energy demanding tissues (Bamberger et al., 1996; Mommsen et al., 1999; Sathiyaa & 

Vijayan, 2003; Walton & Cowey, 1979; Wiseman et al., 2007). GR activation stimulates 

upregulation of the key gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (Pepck), 

which is involved in catalyzing the production of phosphoenolpyruvate (PEP) from oxaloacetate 

(Aluru & Vijayan, 2007; Mommsen et al., 1999; Sathiyaa & Vijayan, 2003; Vijayan et al., 2003; 

Wiseman et al., 2007). However, glycolytic genes are also induced during stress responses as a 

way of metabolizing excess glucose in fish. Glucokinase, the enzyme responsible for catalyzing 

the production of glucose from glucose-6-phosphate and pyruvate kinase, the enzyme 

responsible for converting PEP into pyruvate, have both been shown to be upregulated during 

recovery from a stress response (Wiseman et al., 2007). Acute stress has also been shown to 

enhance certain immune functions (Dhabhar & McEwen, 1996; Dhabhar et al., 2010; Dhabhar & 

Viswanathan, 2005; Pickford et al., 1971). These benefits come at the repression of other 

pathways such as growth, reproduction, and digestion to conserve energy for escaping/avoiding 

the perceived stressor (Aluru & Vijayan, 2009; Bonga, 1997; Mommsen et al., 1999). Overall, 



4 
 

this shows the important role cortisol has in both modulating energy mobilization while 

inhibiting pathways that are not required when overcoming a stressor.  

Cortisol uses glucocorticoid receptor signalling to activate transcription of stress 

responsive elements (Aluru & Vijayan, 2009; Charmandari et al., 2005). Liver levels of Pepck, a 

protein involved in gluconeogenesis, increases in vitro and in vivo in response to increased 

cortisol levels (Aluru & Vijayan, 2007; Sathiyaa & Vijayan, 2003; Vijayan et al., 2003). 

Transcripts for protein catabolism (cathepsin D and gad65), protein chaperones (hsp90), and 

enzymes involved in contaminant metabolism (metallothionein, cytochrome P450) have been 

shown to be upregulated, while transcripts important for reproduction (estrogen receptor and 

vitellogenin) are downregulated in the liver by cortisol (Aluru & Vijayan, 2007; Lethimonier et 

al., 2000). Previous work in fish has found that cortisol upregulates expression of gr and pepck 

mRNA while downregulating protein levels of both in the liver (Aluru & Vijayan, 2007; 

Sathiyaa & Vijayan, 2003). These results clearly show that transcript levels are regulated by 

hormone signalling, both at the transcriptional and translational level. 

1.2 microRNAs 

MicroRNAs (miRNA) are small, 22 nucleotide-long, non-coding RNA that bind to the 3’ 

untranslated region (UTR) of mRNA transcripts to either target them for degradation or inhibit 

translation (Bartel, 2004; Lee et al., 1993; Wightman et al., 1993). MiRNAs are created through 

initial transcription in the nucleus into pri-miRNA, which often forms into hairpin loops that are 

further processed into shorter pre-miRNAs by Drosha, a type III RNase (Bizuayehu & Babiak, 

2014; Lee et al., 2003).  This pre-miRNA is then transported out of the nuclease where Dicer, 

another type III RNase, produces a 22-nucleotide long RNA duplex which can have one strand 

loaded into Argonaut 2 (Ago2; Krol et al., 2010; Lee et al., 2002; Lee et al., 2003). Ago2 and the 
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bound miRNA are part of the RNA-induced silencing complex (RISC) which can bind to the 

3’UTR and target the transcript for degradation or suppress expression (Bartel, 2004; Brennecke 

et al., 2005; Wightman et al., 1993). Each miRNA can influence the expression of thousands of 

different mRNA transcripts due to the seed pairing only requiring 2-7 nucleotides (Lewis et al., 

2005). In tissues, miRNA transcript abundance changes in response to environmental conditions 

as well as cell signalling events, such as hormones, making them ideal targets for understanding 

the impact of anthropogenic stressors in the environment (Cameron et al., 2015).  

MiRNA expression can be regulated by targeting transcription of the miRNA itself, 

targeting enzymes involved in the production of miRNAs, or targeting the proteins involved in 

the action of the miRNAs (Cameron et al., 2015; Leung & Sharp, 2010). Furthermore, previous 

studies have demonstrated that miRNA levels have been altered by hormonal signalling. 

Estradiol in humans acts on RNA polymerase II to regulate miRNA transcription as well as 

inhibiting Drosha (Cameron et al., 2015; Gupta et al., 2012). Gonadotropins have been shown to 

increase key miRNA transcripts that target luteinizing hormone receptors in the ovaries of rats 

(Kitahara et al., 2013). Knockdown of Dicer in human adrenal cells has been shown to influence 

expression of cytochrome P450 side chain cleavage (p450scc or cyp11a1), 17α-monooxygenase 

(cyp17a1), and 11β-hydroxylase (cyp11c1), key transcripts in the cortisol production pathway 

(Robertson et al., 2013; Robertson et al., 2017). As previously stated, cortisol was shown to 

upregulate GR mRNA levels, but protein levels were found to be downregulated (Aluru & 

Vijayan, 2007; Sathiyaa & Vijayan, 2003). However, in mice, GR levels in adrenal glands have 

been shown to be influenced by miRNAs (Riester et al., 2012). These observations clearly show 

a link between hormones and miRNA, and these changes are likely passed on to the transcripts 

they target as another level of regulation.  
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1.3 Extracellular miRNAs 

Another way that cells respond to stress is by secreting vesicles. Extracellular vesicles 

(EVs) are classified based on their size and release. Exosomes (30-100 nm) are EVs that are 

created by inward budding of multivesicular endosomes, while microvesicles (50-1000 nm) are 

produced by budding of the plasma membrane into extracellular space (Raposo & Stoorvogel, 

2013; van Niel et al., 2018). Apoptotic bodies (1-5 µm) are another class of circulating vesicles 

that are released from cells undergoing programmed cell death (Sohel, 2016; Turiák et al., 2011). 

All contain proteins, mRNA, and miRNAs that can influence function in cells that absorb these 

contents (Pegtel et al., 2010; Raposo & Stoorvogel, 2013; van Niel et al., 2018). EVs have been 

found in biological fluids such as blood, urine, and saliva, making them easily accessible (Caby 

et al., 2005; Ogawa et al., 2011; Pisitkun et al., 2004). EVs provide protection for RNAs and 

proteins from catabolic enzymes in these biological fluids, making them enriched sources for 

information on cell signalling (Cheng et al., 2014).  

MiRNAs are also quite stable in circulation when associated with other complexes such 

as proteins and lipids. As mentioned above, miRNAs associate with Ago2 to form the RISC for 

translational repression (Bartel, 2004; Brennecke et al., 2005; Wightman et al., 1993). Ago2 has 

been found to be stable in circulation and most of the miRNAs found in circulation are thought 

to be associated with such protein complexes (Arroyo et al., 2011; Turchinovich et al., 2011). 

Although currently no studies have found a functional role for these Ago2 associated miRNAs, 

their potential for paracrine action is high considering their importance in RNA silencing. 

Additionally, miRNAs associated with lipoproteins have been shown to be biologically active in 

circulation and can be transported to tissues at a distance (Babin & Gibbons, 2009; Kim et al., 

2007; Lee et al., 2009). High-density-lipoprotein associated miRNAs have been shown to 
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influence expression in cultured hepatocytes as well as functionally impacting endothelial cell 

function (Tabet et al., 2014; Vickers et al., 2011). Together with EVs, these sources of miRNAs 

offer the potential for understanding signalling between tissues, epigenetically, due to their high 

stability.  

1.4 Extracellular vesicles and stress 

Previous work has shown that stress responsive pathways, particularly immune functions, 

are reinforced through exosomal signalling. For example, exosomes contain adhesion molecules 

that allow them to be recruited to immunologically compromised sites (Skokos et al., 2001). In 

mice, exposure to stress showed a decrease in miRNAs within exosomes that target cytokine 

signalling pathways indicating that exosomes are helping to prime the organism for potential 

injury by stimulating the innate immune system (Beninson et al., 2014). Stress-produced 

exosomes also had increased levels of danger associated molecular patterns (DAMPs), which can 

activate leukocytes to support the immune system (Beninson et al., 2014). Previous studies have 

also shown that EV formation is regulated by the cargoes they package (Buschow et al., 2009; 

van Niel et al., 2018). MHC class 2 is a cargo that promotes the formation of EVs and has been 

shown to be upregulated in livers of stressed rainbow trout, indicating that stress could increase 

EV production and aid in transducing this response (Buschow et al., 2009; Wiseman et al., 

2007).  

Few studies have investigated the role of EVs or circulating miRNAs in teleosts. Studies 

in fish immunology have found that anterior kidney leukocytes can be simulated to release 

exosomes enriched with MHC class 2 after being stimulated by DNA un-methylated CpG motifs 

(Iliev et al., 2010). The protein content of circulating EVs from Atlantic salmon was also found 

to be altered by infection to enhance immune function for overcoming the pathogen (Lagos et al., 
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2017).  In rainbow trout, circulating exosomes produced in response to heat stress were shown to 

be enriched in Hsp70, a protein important in the cellular stress response and influenced by 

cortisol (Faught et al., 2017). In vitro, cortisol reduced Hsp70 bound to exosomes produced by 

fish hepatocytes, showing that cortisol influenced exosome content (Faught et al., 2017). 

Although circulating miRNAs have been shown to be enriched within exosomes and provide a 

useful biomarker for cholesterol metabolism, no studies have currently investigated their role in 

communicating the stress response (Sun et al., 2017; Zhu et al., 2018).  

1.5 Study organism 

 For this thesis, rainbow trout (Oncorhynchus mykiss) was used. Its’ large size is 

beneficial in order to provide the blood volume required for the protocols in this study. Rainbow 

trout have been used as a model species for studying stress for the last three decades, making it 

well-documented in literature (Tort, 2013). Sequencing of both the genome and miRNA 

transcriptome in different tissues makes rainbow trout an excellent model organism for miRNA 

studies, especially in combination with stress physiology (Berthelot et al., 2014; Juanchich et al., 

2016).  

1.6 Study objectives 

 The primary aim of this thesis was to expand the current literature on miRNAs within 

teleosts through the stress response and investigate how stress alters miRNAs in tissues and 

circulation. The objectives for these in vivo and in vitro studies were: 

1. Assess the changes to miRNA abundances in circulation and within tissues of rainbow 

trout recovering from an acute air stress to determine if stress is communicated both 

hormonally and epigenetically.  
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2. Determine the liver’s role in contributing to circulating miRNA changes by focusing on 

one of its primary responses to the glucocorticoid cortisol to establish if miRNAs are 

important regulators of glucose production and metabolism during recovery from stress. 

3. Compare the in vivo and in vitro effects to expand our knowledge on how stress in fish is 

transduced both at the tissue level and the entire organismal level.  

1.7 Hypothesis  

 I hypothesize that during the recovery from a stressor, miRNA levels will be altered to 

transduce the stress response between and within tissues. Cortisol will be instrumental in 

influencing these changes as it has a central role in metabolic regulation during the return to 

homeostasis. The liver, in combination with cortisol, will undergo metabolic reprogramming 

during the recovery from stress due to its function as the primary site for gluconeogenesis.  

1.8 General predictions 

 I predict that an acute air handling stressor will induce a stress response in rainbow trout 

and result in elevated plasma cortisol and glucose. This will also induce miRNA changes in the 

anterior kidney and liver due to their importance in hormonal signalling and repartitioning of 

metabolic resources during the recovery period. Stress will result in changes in circulating 

miRNA levels to transduce stress between tissues epigenetically. At the level of the liver, 

miRNA predicted to target key transcripts such as pepck and gk will be altered due to the liver’s 

primary role in liberating glucose under stressful events. These miRNAs will be secreted by 

hepatocytes as a way of paracrine signalling to maintain the metabolic state of the liver during 

this recovery period.  
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Chapter 2 
Impacts of acute air exposure on circulating, liver, and kidney microRNAs in rainbow 

trout (Oncorhynchus mykiss)  
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2.1 Introduction 

 In aquaculture facilities, regular handling is necessary to monitor and maintain fish 

health. However, this can cause a stress response similar to stress responses of fish in the wild 

and fish exposed to handling during angling (Barton & Iwama, 1991; Twardek et al., 2018). The 

HPI axis is the primary driver of the physiological change associated with stress in teleost 

species and uses the hormone cortisol to communicate between tissues. This response begins 

with the  hypothalamus which stimulates the anterior pituitary to secrete adrenocorticotropic 

releasing hormone (ACTH) using corticotropin releasing hormone (CRH; Bonga, 1997; 

Mommsen et al., 1999). In teleosts, ACTH stimulates the interrenal cells in the anterior kidney to 

secrete cortisol, the primary stress hormone responsible for inducing cortisol (Bonga, 1997; 

Mommsen et al., 1999). Cortisol has many functions systemically, but one of its main action in 

the stress response is stimulating the release of glucose from the liver to provide energy in a 

stressed state (Bonga, 1997; Mommsen et al., 1999). Other actions of cortisol include influencing 

osmoregulation, suppression of growth and reproduction, and suppression of the immune system 

under chronic stress conditions (Berg et al., 2004; McCormick et al., 2008; Milla et al., 2009; 

Mommsen et al., 1999; Ramsay et al., 2009) Handling stressors have been shown to increase 

blood concentrations of cortisol and result in the physiological changes described above (Bonga, 

1997; Ramsay et al., 2009; Ritola et al., 1999). Maintaining fish health is important for industries 

such as aquaculture and understanding how handling stressors is communicated can help 

mitigate deleterious effects. 

 MicroRNA (miRNA) are a small, non-coding type of RNA that have been shown to be 

altered by changes in the environment and are important for epigenetic regulation (Cameron et 

al., 2015). miRNA act to silence genes by binding to the 3’ untranslated region of mRNA 
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transcripts and either target them for degradation or prevent translation from occurring (Bartel, 

2004; Lee et al., 1993; Wightman et al., 1993). Since these molecules are short (20-22 bp) and 

only require a seed region of 7-8 bp, they can bind to many different mRNA targets and can 

therefore have powerful repression and silencing effects in different tissues (Lewis et al., 2005). 

MiRNAs are also altered by hormonal signalling, either by having a direct impact on miRNA 

transcript abundance or by altering the proteins associated with miRNA action (Cameron et al., 

2015; Gupta et al., 2012; Kitahara et al., 2013). Cortisol has been shown to modulate miRNAs in 

the same fashion by playing an important role in repression of the immune system in mammals 

(Chen et al., 2016; Clayton et al., 2018; Smith et al., 2010; Smith et al., 2013). In rainbow trout, 

miRNAs have been implicated in the metabolism associated with social hierarchies and the 

chronic stress associated with these hierarchies (Kostyniuk et al., 2018; Kostyniuk et al., 2019). 

Understanding the role that miRNAs play during stress responses will help to mitigate the 

detrimental effects associated with such physiological change.  

 MiRNA are also protected from degradation in circulation through association with 

vesicles, lipids, or proteins (Cheng et al., 2014). Extracellular vesicles (EVs) are released by both 

healthy and perturbed cells and have been found in biological fluids such as blood, urine, and 

saliva (Caby et al., 2005; Ogawa et al., 2011; Pisitkun et al., 2004; Raposo & Stoorvogel, 2013). 

Different EVs are classified based on their size and method of formation. Exosomes are 

produced via inward invagination of multivesicular endosomes, microvesicles are produced by 

outward budding of the plasma membrane, and apoptotic bodies are released by cells undergoing 

programmed cell death (Bartel, 2004; Raposo & Stoorvogel, 2013; Sohel, 2016; Turiák et al., 

2011). The composition of EVs can be influenced in vitro by environmental factors such as heat, 
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hypoxia, irradiation, and the ambient media, showing that they could be used as a method to 

adapt to the environment (Beninson & Fleshner, 2014; Faught et al., 2017). 

 Teleost serum derived EVs have been shown to contain miRNA, making them a good 

vehicle for systemic miRNA transport (Sun et al., 2017). Other studies with fish have outlined 

the immunological role of EVs produced response to infection (Iliev et al., 2010; Lagos et al., 

2017). Exosomes have been shown to be altered during a stress response, but changes in miRNA 

content have not been reported in teleosts (Faught et al., 2017). However, in mammals, the 

exosomal miRNA profile has been shown to alter as a way of supporting the stress response 

(Beninson et al., 2014). Although miRNA have been investigated in humans from a medical 

perspective, there has been little work on how miRNA expression in circulating exosomes is 

influenced by environmental conditions in teleosts.  

 For this study, the model species was rainbow trout (Oncorhynchus mykiss). Its size 

makes it an ideal model for circulating exosome studies due to its larger blood volume. The 

recent mapping of the rainbow trout genome as well as miRNA transcriptome make them an 

excellent model for genetic and epigenetic studies (Berthelot et al., 2014; Juanchich et al., 2016). 

Rainbow trout are important aquaculture and wild fishery species worldwide, making them 

economically relevant and important to study for handling stressor influence (Ellis et al., 2002). 

Rainbow trout are often used in studying the teleost stress response, making them well 

documented in literature (Alderman et al., 2008; Caldwell et al., 1991; Krasnov et al., 2005; 

Vijayan & Moon, 1992). Finally, rainbow trout serum has already been confirmed to contain 

exosomes, making them the ideal model for teleost exosome study (Faught et al., 2017).  

Studying EV trafficking of miRNA has the potential to provide information on how 

stressors can cause epigenetic changes between tissues. EVs can be used as bioindicators of 
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environmental perturbations, which makes studying their production within fish systems highly 

important. It is hypothesized that the EV and tissue miRNA profile will be altered during a stress 

response as a way of epigenetic modification during recovery from stress. MiRNAs measured in 

this study (Table 2.1) were chosen based on their high relative abundance in the tissues essential 

to the stress response (Juanchich et al., 2016). These tissues include the anterior kidney, which  

produces cortisol in response to adrenocorticotropic hormone (ACTH), and the liver which is one 

of the primary targets for cortisol resulting in the liberation of glucose (Mommsen et al., 1999). 

This is the first study to examine the EV miRNA profile of a teleost species exposed to a 

handling stressor.  

Table 2.1: Abundance of miRNAs in key rainbow trout tissues for responding to stress. 
Abundances of miRNAs were determined based on sequencing by Juanchich et al., (2016). 

MiRNAs in italics were not measured in the current study.  
 

miRNA Expression 

Organ Most Expressed 2nd Most Expressed 3rd Most Expressed 

Brain miR-21 miR-143 miR-146 

Pituitary miR-21 let-7a let-7e 

Anterior Kidney miR-21 miR-143 miR-146 

Heart miR-1 miR-499 miR-21 

Liver miR-21 let-7e miR-146 

 

2.2 Materials and Methods 

2.2.1 Study Animals 

Rainbow trout (Oncorhynchus mykiss) were purchased from Lyndon Fish Hatcheries in 

Petersburg, ON and donated for this study by Dr. Brian Dixon (University of Waterloo). Trout of 

mixed sex (average weight 660 ± 33 g) moved to 180-gallon flow through tanks at a density of 6 

fish per tank and allowed to acclimate for 48 hours. During the study, a 12-hour light-dark cycle 

was maintained and temperature, dissolved oxygen, pH, and conductivity monitored. Water 
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quality parameters were constant over the course of the study and fish were fasted 24 hours prior 

to the start of the experiment. Experimental procedures and the use of animals in this study was 

approved by the University of Waterloo Animal Care Committee and within CCAC guidelines 

(AUPP 40315). 

Table 2.2: Acute air exposure rainbow trout information. Rainbow trout were acutely 

exposed to an air stressor for 3 minutes in the case of treatment groups or immediately sampled 

in control. Fish sex was determined using presence of male or female gonads and weight 

determined prior to collecting any tissue.   

Treatment Sex Weight (g) 

Control 

Male 552.50 

Female 587.60 

Male 715.60 

Male 627.11 

Male 557.90 

Male 580.40 

1 hour 

Male 483.70 

Female 794.30 

Female 973.90 

Female 742.42 

Male 402.80 

Female 742.77 

3 hours 

Male 559.50 

Female 939.20 

Male 748.70 

Female 752.70 

Male 650.21 

Male 534.10 

24 hours 

Female 488.36 

Female 621.14 

Male 507.79 

Female 668.02 

Male 540.29 

Female 1060.38 
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2.2.2 Acute Air Handling Stressor Experiment 

 Following 48 hours of acclimation and 24 hours of fasting, fish were either sampled 

(control) or exposed to a handling stressor. For this study the handling stressor was a 3 minute air 

exposure since this has been shown to induce a stress response and imitates a common source of 

stress in the aquaculture industry (Barton, 2000; Ramsay et al., 2009; Skrzynska et al., 2018). 

Fish exposed to the handling stress recovered for 1-, 3-, or 24-hours while control fish were 

immediately euthanized in 0.5 g/L bicarbonate buffered MS-222. Blood was collected via caudal 

puncture, aliquoted into two 2 mL tubes containing 5 µL of 0.5 M EDTA to prevent coagulation 

and kept on ice until further processing. Liver and anterior kidney tissues were collected 

following blood collection and flash frozen using tissue clamps in liquid nitrogen. One blood 

aliquot was centrifuged at 10 000 x g for 3 mins to collect plasma while the other fraction was 

differentially centrifuged to remove cellular material for exosome analysis based on a protocol 

from personal communication with FroggaBio and Kenigsberg (2016). Cellular components 

were removed by centrifuging twice at 4°C, 2500 x g for 15 mins. Plasma supernatant was then 

centrifuged at 300 x g for 10 mins, 2000 x g for 10 mins, and lastly 12 000 x g for 30 mins to 

remove unwanted blood components that could impact the results of downstream analysis. This 

final fraction of plasma was passed through a 0.22 µm filter to clear out larger vesicles and 

cellular debris that might have remained after centrifugation steps. All samples were 

subsequently stored at -80°C until analysis.  

2.2.3 Transmission Electron Microscopy validation of extracellular vesicle extraction 

 One plasma sample from each timepoint was thawed on ice and EVs were extracted using 

a modified protocol for the SeraMir Exosome RNA Amplification kit (System Biosciences; Cat# 

RA800A-1). Plasma samples (300 µL) was incubated with 75 µL of ExoQuick (System 
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Biosciences) for 30 mins at 4°C. Samples were then centrifuged at 1500 x g for 30 mins to 

precipitate the EVs and the supernatant aspirated. Residual ExoQuick was then centrifuged again 

for 1500 x g for 5 mins and all traces removed. This pellet was resuspended in 30 µL of RNase 

free water and stored at -80°C. EVs were then visualized using transmission electron microscopy 

(TEM) by depositing undiluted and diluted (1:5) samples on Formvar/Carbon coated grids. 

These were air dried and stained with a saturated solution of uranyl acetate for 10 mins and 

images obtained using a Phillips CM10 TEM at 60 KV.  

2.2.3 Plasma Glucose and Cortisol determination 

 Plasma samples were thawed on ice and glucose concentrations determined using a 

spectrophotometric assay. Plasma or glucose standard (10 µL) was added to a 96 well plate and 

combined with a 50 mM Hepes reaction buffer (pH 7.4). This buffer contained 10 mM MgCl2, 

100 mM KCl, 1 mM NADP, 1 mM ATP, 1 unit/mL of G6PDH (Sigma-Aldrich) and 1 unit/mL 

hexokinase (Sigma-Aldritch). The change in ratio of NADP to NADPH was measured over the 

course of 20 mins in a SpectraMax 190 Microplate Reader at 340 nm. Concentrations were 

determined by comparing absorbances to a 6-point standard curve.  

 Cortisol concentrations were determined by using a commercially available kit for 

measuring plasma cortisol (Cayman Chemical, Cat# 500360). The protocol was followed based 

on the manufacturer’s guidelines. Plasma samples were diluted 1:100 in MilliQ Ultrapure Water 

to allow for readings to fall within the 8-point standard curve. Concentrations were determined 

after incubating for 90 mins with Ellman’s reagent by using a SpectraMax 190 Microplate 

Reader at 412 nm and comparing to the 4-parameter logistic standard curve.  
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2.2.4 RNA Extractions 

 Exosomal miRNA was extracted using a commercially available SeraMir Exosome RNA 

Amplification kit (System Biosciences; Cat# RA800A-1) that specifically targeted exosomes 

through a proprietary extraction method. The extraction protocol was followed based on the 

manufacturer’s guidelines without deviation. A SeraMir control RNA spike-in (Cat# RA805A-1) 

was added to provide a control for qPCR normalization that was unaffected by the treatment 

conditions. Samples were kept at -80°C until subsequent analysis.  

 Tissue RNA was extracted from liver and kidney tissues using the Qiagen miRNeasy 

Mini Kit (Cat# 217004). Flash frozen organs were ground up in liquid nitrogen using a motor 

and pestle and 25-50 mg of tissue used for RNA extraction. The extraction protocol was 

followed based on the manufacturer’s guidelines without deviation. 30 µL of RNase-free water 

was used to elute RNA and all samples stored at -80°C until subsequent analysis.   

2.2.5 RT-qPCR 

Extracted samples were thawed on ice and RNA concentration determined using a 

SpectraDrop Micro-Volume Microplate (Molecular Devices). Either 50 ng of exosomal RNA or 

1000 ng of tissue RNA was used for cDNA synthesis. Qiagen’s miScript II RT kit (Cat# 218161) 

was used since it was able to generate miRNA specific cDNA. The manufacturer’s protocol was 

followed without deviation. HiSpec buffer was used for exosomal samples while the HiFlex 

buffer was used for tissue samples since both can be used to make cDNA for mature miRNA but 

the HiFlex buffer is more ideal for reverse transcribing mRNA. A pooled sample was also 

reverse transcribed from each tissue in order to generate standard curves.  

Standard curves were run for each target in the exosomal and tissue fractions. Dilutions 

within these curves were 4x, 16x, 64x, 256x, and 1024x and standard curves for each primer was 
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found to be linear after the 16x dilution. Therefore, all samples were diluted 20x to reduce qPCR 

inhibition. Each qPCR reaction contained 1 µL of diluted cDNA (0.125 ng of exosomal cDNA 

and 2.5 ng of tissue cDNA per reaction), 5 µL of Biorad SYBR Green Master Mix (Cat# 

1725272), 0.5 µL of 5 µM forward primer for the target miRNA or mRNA (Sigma-Aldritch), 0.5 

µL of 5 µM Universal Primer for miRNAs (Qiagen, Cat# 218073) or reverse primer for mRNA 

(5 µM) , and 3 µL of water. Samples were run on CFX96 Touch Real-Time PCR Detection 

System (Biorad). Each run consisted of 30 seconds at 95°C initially, followed by 40 repeated 

cycles of 10 seconds at 95°C and 15 seconds at 60°C. All runs finished off with a melt curve to 

make sure that only one qPCR product was generated during the run. Primer sequences can be 

found in Table 2.2. MiRNAs were chosen based on their high relative abundance in the tissues 

important to the stress response or their importance in epigenetic regulation (Juanchich et al., 

2016; Kuc et al., 2017). Relative abundances were calculated by either normalizing to the spike-

in for exosomal samples or to the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) using the standard 2-∆∆Ct equation (Livak & Schmittgen, 2001). 

Table 2.3: Primer sequences for targets of acute air handling stress study. Forward 

sequences for miRNAs were acquired from sequencing data of the miRNA expression in 

rainbow trout tissues while reverse primers were proprietary Qiagen sequences (Juanchich et al., 

2016). Amplicon length was unable to be determined for these sequences.  

Target Forward Primer Sequence Reverse Primer sequence Amplicon length  

omy-miR-21-3p GACAGCTTACAGACCGTTGTCG Qiagen Universal Primer - 

omy-miR-143-3p TGAGATGAAGCACTGTAGCT Qiagen Universal Primer - 

omy-let-7a-5p TGAGGTAGTAGGTTGTATAGTT Qiagen Universal Primer - 

omy-miR-29a-3p TAGCACCATTTGAAATCGGTTA Qiagen Universal Primer - 

SeraMir Spike-in Spike-in Forward primer Qiagen Universal Primer - 

GAPDH CAACGGATTTGGCCGTATTG ATGTACTGCAGGTCGATGAAG 102 
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2.2.6 Bioinformatic Analysis of Targets for miRNAs 

 Since each miRNA can have hundreds of different targets, a Kyoto Encyclopedia of 

Genes and Genomes (KEGG) analysis was carried out to determine what pathways might be 

impacted by any changes observed (Lewis et al., 2005). The MiRanda algorithm was used to find 

all potential targets for the miRNAs using the standard parameters (Enright et al., 2003). miRNA 

sequences were acquired from Juanchich et al. (2016) and searched against the Salmo salar 3’ 

UTRs extracted from RNA from genomic file on NCBI 

(GCF_000233375.1_ICSASG_v2/GCF_000233375.1_ICSASG_v2_rna_from_genomic.fna.gz).  

A cutoff pairing score of > 140 and free-energy score ∆G of < -20 was used to be consistent with 

other studies in rainbow trout that have used MiRanda for predicted targets (Kostyniuk et al., 

2019). Refseq accession numbers were then converted to UniprotKB IDs to be compatible with 

KEGG. The top 10 pathways impacted were graphed in pie charts to show pathways that are 

likely to be impacted. All impacted pathways for each miRNA can be found in Appendix B. 

Uniprot accessions were also run through DAVID Bioinformatics Resource 6.8 to find functional 

enrichment clusters that are likely to be influenced by the miRNA measured (Huang et al., 

2009a, 2009b). Any functional clusters with Enrichment Scores higher than 1.3 were determined 

to be significantly overrepresented in the list of genes (Huang et al., 2007).  

2.2.7 Statistical Analysis 

 Data was analyzed using GraphPad Prism (GraphPad Software, La Jolla CA) and 

presented as the average ± standard error of the mean (SEM). Significant differences between 

relative abundances, cortisol or glucose concentrations were found using one-way analysis of 

variance tests (ANOVA, p<0.05). Normality was determined using a Shapiro-Wilk test and 

when significant differences were found between groups, Tukey’s Post-Hoc Multiple 
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Comparison Test was used to determine where the differences occurred. When results did not 

pass the normality test, a Kruskal-Wallis test was carried out and when significant differences 

were found between groups, Dunn’s multiple comparisons test was used to determine where the 

differences occurred.  
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2.3 Results 

2.3.1 TEM images of trout EVs 

Figure 2.1: Transmission electron microscopy (TEM) of rainbow trout plasma samples 

during recovery from an acute handling stressor. Ctrl and 1-hr images were generated using 

undiluted samples while 3- and 24-hr images were generated using samples diluted 1:5. Scale 

bars in the bottom right of each image are 100 nm in length and arrows are pointing to EVs. 

 

 ExoQuick was able to precipitate rainbow trout EVs based on the images generated via 

TEM (Fig 2.1). Vesicles in the Ctrl and 1-hour timepoint are large (denoted with arrows), 

reaching around 100 nm in diameter. In the images for the 3- and 24-hour timepoints, vesicles 

appear to increase in number and smaller vesicles are observed. These samples have been diluted 

1:5 as undiluted samples were oversaturated and clear boundaries between vesicles were not 

observed.  

Ctrl 1 hr 

3 hr 24 hr 
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2.3.2 Plasma Cortisol and Glucose concentration 

  

Figure 2.2: Plasma cortisol (A) and glucose (B) levels after exposure to an acute handling 

stressor. Plasma hormone and metabolite levels were measured 1-, 3-, or 24-hours by either 

ELISA (Cayman) or metabolite enzymatic assay respectively. Bars that do not share common 

letters were found to be significantly different (One-way ANOVA, p < 0.05, Tukey or Dunnett’s 

Post Hoc, n = 6).

 

Fish exposed to the 3-minute handling stress had significantly elevated cortisol 

concentrations in circulation that returned to control levels within 24 hours. Cortisol levels 

increased 4-fold compared to unstressed control after 1-hour (Dunnett, p = 0.0016) and were still 

elevated by almost 3-fold after 3 hours of recovery (Dunnett, p = 0.0494).  

Fish exposed to the 3-minute handling stress had significantly elevated glucose levels in 

circulation. These circulating values increased to 7.27 mmol/L (±0.26, Tukey, p = 0.0003) 1 hour 
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after the stress and remained elevated after 3 hours (6.96 mmol/L ±0.25, Tukey, p = 0.0013). 

Even after 24 hours, these circulating levels remained significantly elevated compared to 

unstressed fish (6.36 ± 0.38 mmol/L, Tukey, p = 0.024).
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Figure 2.3: miRNA abundances within plasma exosomes (A-D), anterior kidney (E-H), and 

liver (I-L) after exposure to an acute handling stress. Relative abundances were measured 

using RT-qPCR and normalized to a spike in for exosomal abundances or GAPDH for tissue 

samples. Bars that do not share common letters were found to be significantly different while 

graphs with no lettering denote no significant differences between groups (One-way ANOVA, p 

< 0.05, Tukey or Dunnett’s Post Hoc, n = 6). 

 

2.3.3 Plasma exosome miRNA abundances 

 Exosomal abundances of the miRNAs measured tended to increase post-stress at different 

timepoints (Fig 2.3 A-D). MiR-21 was increased 4-fold higher than control only 1 hour after the 

handling stress (Dunnett’s, p = 0.0057) and started returning to normal levels at 3 hours. There 

was no significant change in the Let-7a levels compared to control. However, there was a 

significant difference between stressed groups with the 1-hour (Tukey, p = 0.0235) and 3-hour 

(Tukey, p = 0.0415) timepoints being significantly higher than the 24-hour post stress timepoint. 

MiR-143 had a significant increase in circulating exosomes 3-hours post stress (Tukey, p = 

0.0475), increasing to almost 10 times the control levels. Finally, miR-29a was found to be 

significantly increased in circulation at the 3-hour timepoint relative to both control (Tukey, p = 

0.0072) and 24-hours post-stress (Tukey, p = 0.0081).  

2.3.4 Anterior kidney miRNA abundances 

 MiRNA abundances measured within the anterior kidney tended to decrease after the 

handling stressor (Fig 2.3 E-H). MiR-21 and let-7a had similar trends at the timepoints measured 

but no significant differences were found. However, miR-143 had significantly downregulated 

abundances at all timepoints post stress, with 1-hour decreasing to 15% of control values (Tukey, 
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p = 0.0196) and the 3-hour (Tukey, p = 0.0081) and 24-hour timepoint anterior kidneys (Tukey, 

p = 0.0074) containing less than 5% of control values. A similar trend was seen in miR-29a; 

however, the 1-hour timepoint was not significantly different from control levels. The 3- (Dunn, 

p = 0.0087) and 24-hour timepoints (Dunn, p = 0.0020) had around 5% of the control levels of 

miR-29a.   

2.3.5 Liver miRNA abundances 

 The miRNA levels measured in the liver tended to decrease compared to control and all 

miRNA levels were significantly impacted by the handling stressor (Fig 2.3 I-L). MiR-21 was 

found to be significantly decreased after 24-hours (Dunn, p = 0.033) to around 50% of control 

values. Let-7a relative abundance within the liver was only reduced by 60% at the 3-hr 

timepoint, yet had recovered by 24-hrs (Dunn, p = 0.0225). The liver abundance of miR-143 

followed a similar trend to what was observed in the anterior kidney. The 3-hour post-stress 

group decreased to around 10% of control abundances (Dunn, p = 0.0031) while the 24-hour 

timepoint was around 7.5% (Dunn, p = 0.0023). MiR-29a decreased in abundance at the 3-hour 

timepoint to around 30% of the control values (Dunn, p = 0.0256) while the 24-hour group was 

statistically similar to the control. 
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2.3.6 KEGG and DAVID analysis of miRNA targets 

 

Figure 2.4: Top 10 pathways influenced by targets of miRNAs measured. Targets for miR-

21, let-7a, miR-143, and miR-29a were predicted using MiRanda on Salmo salar 3’ UTRs and 

run through KEGG pathway analysis. Percentages below each target are related to how many 

gene targets within this list are represented by the pathway.  

 

KEGG pathway analysis revealed a total of 151 pathways predicted to be impacted by the 

changes in miRNA measured. The top 10 pathways impacted are shown in Figure 2.4 while the 

complete lists of predicted targets for each miRNA can be found in Appendix B. 627 genes are 
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accounted for in the top 10 pathways and 25% of these genes are grouped under metabolic 

regulation.  

MiR-21 is predicted to inhibit 41 target genes associated with metabolic pathways, 

including methylmalonyl-CoA mutase (mcm; A0A1S3MCC1) and pyruvate dehydrogenase E1 

component subunit alpha (pdh; A0A1S3NHE5) which are involved in carbon metabolism 

(sasa01200). The next highest grouping was Neuroactive ligand-receptor interaction (sasa04080)  

which had 19 target genes, including growth hormone secretagogue receptor 1 (ghs-r; 

A0A1S3MSS9) and gonadotropin subunit beta-2 (gthb2; C0HA57). Insulin signalling was also 

predicted to be impacted with 6 target genes, including phosphatidylinositol 3-kinase regulatory 

subunit gamma (pi3k; A0A1S3MNM5) and RAC-gamma serine/threonine-protein kinase (akt3; 

A0A1S3Q7R0). When the list of targets was run through DAVID to determine functional 

enrichment, no clusters were found to be significant.  

Let-7a is predicted to inhibit 69 target genes associated with metabolic pathways, 

including isocitrate dehydrogenase [NADP] cytoplasmic (idh; A0A1S3NZU3) and citrate 

synthase (CS; A0A1S3P5N2) which are involved in carbon metabolism (sasa01200). Let-7a had 

45 target genes in Neuroactive ligand-receptor interaction (sasa04080), including corticotropin-

releasing factor receptor 1 (crfr; A0A1S3R6V7) and glucocorticoid receptor (gr; 

A0A1S3SWF6). UDP-glucuronosyltransferase 1-2 (ugt; A0A1S3N8T1), involved in steroid 

biosynthesis (sasa00140), was also a target for let-7a. Insulin signalling was also found to be 

impacted, with 13 target genes including phosphatidylinositol 3-kinase regulatory subunit beta 

(pi3k; A0A1S3LWS3). When the list of gene targets was run through DAVID to determine 

functional enrichment, proteins involved in cell differentiation and development (Enrichment 
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Score 2.1), G-protein coupled receptors (Enrichment Score 1.7), and microtubule organization 

(Enrichment Score 1.5) were found to be significantly overrepresented. 

MiR-143 is predicted to inhibit 28 target genes associated with metabolic pathways, 

including acetyl-coenzyme A synthetase, cytoplasmic (acs; A0A1S3LIB5), pyruvate 

dehydrogenase E1 component subunit alpha, mitochondrial (pdh; A0A1S3NHE5), and 

hexokinase-1 (hk1; A0A1S3SXE7) which are involved in glycolysis/gluconeogenesis 

(sasa00010). MiR-143 also had 11 target genes were predicted to be involved in Neuroactive 

ligand-receptor interaction (sasa04080), including corticotropin-releasing factor receptor 1 (crfr; 

A0A1S3R6V7). When the list of gene targets was run through DAVID to determine functional 

enrichment, proteins involved in transmembrane binding (Enrichment Score 4.4) and G-protein 

coupled receptors (Enrichment Score 2.9) were found to be significantly overrepresented.  

MiR-29a is predicted to inhibit 29 target genes associated with metabolic pathways but 

none directly involved in carbon metabolism. However, 15 target genes were predicted to be 

involved in Neuroactive ligand-receptor interaction (sasa04080), including growth hormone 

prepeptide (Q5SDS1). MiRanda also found 9 target genes were predicted to be involved in 

insulin signalling, including phosphatidylinositol 3-kinase regulatory subunit beta (pi3k; 

A0A1S3R0Y4). When the list of gene targets were run through DAVID to determine functional 

enrichment, proteins involved in transmembrane binding (Enrichment Score 2.1) and the 

inflammatory response (Enrichment Score 1.8) were found to be significantly overrepresented. 
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2.4 Discussion 

 This study was aimed at determining the miRNA changes that occur both within and 

between tissues after exposure to a similar acute handling stressor to regular aquaculture practice 

or commercial fishing. Rainbow trout are the ideal model organism to use for this study due to 

their extensively studied stress response and metabolism during such responses  (Aluru & 

Vijayan, 2009; Kostyniuk et al., 2019; López-Patiño et al., 2014; Mommsen et al., 1999).  

2.4.1 Confirmation of EV Extraction 

 The protocol for EV extraction used in this study (ExoQuick) had not been attempted in a 

teleost species. Therefore, EVs were extracted from plasma samples in each treatment group and 

visualized using TEM (Fig 2.1). The vesicles extracted were within the size range expected for 

circulating vesicles as exosomes range in size from 30-100 nm and microvesicles range from 50-

1000 nm in diameter in mammals (Raposo & Stoorvogel, 2013; van Niel et al., 2018). Rainbow 

trout exosomes have been established to be 50 nm in diameter on average and the EVs extracted 

between 50 and 150 nm in diameter, falling within the range expected  (Faught et al., 2017). It 

was also observed that at the 3- and 24-hour timepoints that vesicles decreased in size and 

increased in number since these samples were diluted 1:5 compared to the control and 1-hour 

samples. Few studies have looked at changes in EV size, but it is believed that different 

subpopulations of EVs can be secreted. In human T-lymphocytes, apoptosis and cell activation 

altered both the size and proteins associated with EVs (Tucher et al., 2018). However, only one 

sample was extracted from each group so the differences could be individual variation. Future 

studies should investigate if cortisol stimulation impacts EV size in a similar fashion to T-cell 

activation.   
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2.4.2 Confirmation of Stress axis activation 

 The stress axis is acutely activated in response to changes in the environment or 

chronically when environmental changes persist. In either case, the increase in the stress 

hormone cortisol in circulation is used as an indicator of HPI activation (Mommsen et al., 1999). 

An acute handling stress was used in this study since its been shown to cause physiological stress 

and is relevant to both aquaculture practices and wild populations (Barton & Iwama, 1991; 

Twardek et al., 2018). The fish used were in a state of recovery from stress at the 1- and 3-hour 

timepoints as circulating levels of the hormone were significantly higher than control (Fig 2.2 

A). These circulating cortisol levels agree with literature values, where rainbow trout exposed to 

an acute handling stressor had cortisol levels around 40 ng/mL at 1- and 3-hours post stress 

(Barton, 2000). Cortisol has many physiological functions during these recovery periods, but 

increase in circulating glucose is one of the primary ways to provide energy for highly active 

tissues (Bonga, 1997; Mommsen et al., 1999).  

All groups that had been exposed to handling were found to have significantly elevated 

plasma glucose levels (Fig 2.2 B), supporting the cortisol findings. These values were 

comparable to literature values for circulating glucose levels after an acute handling stress 

(Barton et al., 1987). Plasma glucose levels were still significantly elevated 24-hours after the 

stressor even though cortisol levels had returned to control values. Rainbow trout have a glucose 

intolerant phenotype, experiencing hyperglycemia when fed a carbohydrate enriched meal (Enes 

et al., 2009). Recent studies have attributed this to poor regulation of gluconeogenesis in the liver 

and poor breakdown of glucose by peripheral tissues (Enes et al., 2009; Forbes et al., 2019; 

Kirchner et al., 2003; Moon, 2001). Other studies have found that even 24 hours after handling 

rainbow trout can still have elevated plasma glucose levels, indicating that this is likely due to 
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the poor clearance of the metabolite by this species  (Barton et al., 1987). Therefore, it can be 

confirmed that the handling stressor was sufficient to induce HPI axis activation in the trout 

used. 

2.4.3 MiRNA abundances in EVs 

 The miRNAs measured from extracted exosomes were found to be altered after the 

handling stress in a time dependant manner (Fig 2.3 A-D). MiR-21 increased quickly in 

circulation after 1-hour before returning to normal levels at 3-hours while miR-143 and miR-29a 

were found to be elevated at the 3-hour timepoint. This shows that there can be a time dependant 

effect on the secretion of miRNAs into circulation, similar to what has been found in mammalian 

models (Hergenreider et al., 2012). Let-7a was significantly depleted at the 24-hr timepoint 

compared to the other stressed group, indicating that there is a time dependant depletion in 

circulation for other miRNAs during such recovery periods. Rats exposed to acute stress showed 

depletions of immune-related miRNAs, indicating that miRNAs are regulated in circulation by 

stress (Beninson et al., 2014).  

Figure 2.4 shows the top KEGG pathways impacted by the miRNAs measured. Since the 

general trend in circulation was to increase miRNA abundance (Fig 2.3 A-D), lists were 

combined to compare the increases seen with the decreases observed in tissues (Fig 2.3 E-L). 

Proteins involved in metabolism make up 25% of the top pathway hits and show the importance 

of regulating energy during stressful events. Neuroactive ligand-receptor interactions are the next 

most represented and include hormonal signalling, another important pathway during stress 

responses and the return to homeostasis. The MAPK signalling pathway is an important regulator 

of cell differentiation and proliferation (Seger & Krebs, 1995). Increases in circulating levels of 

these miRNAs could be used as a signalling between tissues to inhibit the pathway at later 



34 
 

timepoints during recovery or could be secreted by tissues to upregulate their own ability to 

respond to signalling.  

 MiR-21-3p is a highly abundant miRNA in rainbow trout and the miR-21 family 

accounts for 33% of all the miRNA expressed in this species, being the most expressed miRNA 

in the brain, anterior pituitary, anterior kidney, and liver (Juanchich et al., 2016). EV associated 

miR-21 has been associated with tumor progression, angiogenesis, and cardiac contractility (Liu 

et al., 2016; Mayourian et al., 2018; Zhou et al., 2018). However, these studies have looked at 

exosomal trafficking in the context of mammalian diseases that might not be transferable to 

teleost models. The KEGG analysis can give insights into how these alterations are important 

physiologically in the current study. MiR-21 is predicted to have two targets associated with 

carbon metabolism, which undergoes drastic changes during stress recovery based on cortisol 

signalling. Methylmalonyl-CoA mutase (Mcm) is a mitochondrial enzyme involved in the 

production of succinyl-CoA from amino acids, odd-chain fatty acids, and cholesterol to feed the 

tricarboxylic acid (TCA) cycle (Takahashi-Iñiguez et al., 2012). Pyruvate dehydrogenase (Pdh) 

is another enzyme involved in feeding the TCA cycle by aiding in the conversion of pyruvate 

into acetyl-CoA (Sharma et al., 2005). These genes would be expected to be inhibited by the 

increase in miR-21 within tissues, so the EV-associated fraction could be acting as a storage to 

prevent inhibition of vital genes. However, they could also be shuttled to tissues for inhibition of 

other genes such as those associated with development and reproduction. Growth hormone 

secretagogue receptor (Ghs-r) have been shown to be inhibited along with its ligand, ghrelin, by 

stress to regulate appetite during stress in teleosts (Conde-Sieira et al., 2018; Janzen et al., 2012; 

Tort, 2013). Gonadotropin subunit beta-2 (Gthb2) is involved in signalling gonads to maintain 

reproductive function, a process which is inhibited by stress and cortisol (Faught & Vijayan, 
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2018). Studies in exosomal trafficking have determined that miRNAs can be transported between 

tissues for intercellular communication (Mittelbrunn et al, 2011). MiR-21 could therefore be 

transported from tissues that are important for metabolic regulation (i.e. liver) and shuttled to 

tissues involved in suppressing feeding and reproduction (i.e. brain). MiRanda analysis also 

displayed targets for miR-21 that were involved insulin signalling. Pi3k and Akt3 are important 

elements in the signalling cascade that lead to upregulation of insulin-responsive functions 

(Forbes et al., 2019). Another function of shuttling this miRNA could be to remove any 

inhibitory effects on key insulin responsive proteins so that plasma glucose can be cleared 

quickly and efficiently. However, without knowing where these miRNAs are coming from or 

going to, there is no way to know which functions they could be carrying out in circulation.  

 Let-7a-5p is part of the highly abundant let-7 family of miRNAs, accounting for 4% of all 

the miRNAs in rainbow trout and the 2nd most expressed miRNA in the anterior pituitary 

(Juanchich et al., 2016). The let-7 family of miRNAs have been found to be enriched in 

exosomes from human cancer cells as they can act as tumor suppressors in tissues (Ohshima et 

al., 2010). The MiRanda predicted targets for this miRNA offer some explanation for the 

decrease seen at 24-hrs in circulation. Idh is a cytoplasmic enzyme involved in the TCA cycle, 

converting isocitrate and NADP+ to 2-ketoglutarate and NADPH (Al-Khallaf, 2017). However, 

this enzyme can also carry out the reverse reaction to help regulate glycolysis in hypoxic 

melanoma cells (Filipp et al., 2012). The other carbon metabolism target was citrate synthase, an 

important enzyme involved in the TCA cyle that produces citrate from oxaloacetate and acetyl-

CoA (Lemos et al., 2003). Circulating glucose levels were still elevated at the 24 hour timepoint 

when the decrease in circulating let-7a was observed.  This miRNA could be taken up by tissues 

to prevent overexpression of these metabolic enzymes once circulating glucose levels return to 
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resting values. Hormone receptors were also among the targets, which could explain the decrease 

observed at 24-hours. Crf receptors respond to secretion from the hypothalamus to cause ACTH 

secretion from the anterior pituitary (Mommsen et al., 1999). Peripheral Crf receptors are 

proposed to be involved in circulating leukocyte activation and regulation of cardiac output 

(Pepels et al., 2004). The depression at 24-hours could be peripheral tissues uptaking let-7a 

containing EVs to inhibit these receptors from being overexpressed. Gr is the primary receptor 

for cortisol that is used by the hormone to activate transcription of stress responsive elements 

(Aluru & Vijayan, 2009; Charmandari et al., 2005). However, cortisol upregulates Gr mRNA 

levels while causing decreases in protein levels in the liver 24 hours after exposure (Aluru & 

Vijayan, 2007; Sathiyaa & Vijayan, 2003). This regulation of protein levels could be aided by 

the reabsorption of let-7a up to 24-hours after after stress to reduce the liver’s response to 

cortisol. Another predicted target for let-7a is Ugt, a protein involved in the degredation of 

steroids (Mackenzie et al., 1992). This could be another sink for the miRNA, as cortisol levels 

had returned to normal so the liver and other organs might be increasing uptake to inhibit 

overexpression of the enzyme. Let-7a, like miR-21, was also predicted to target Pi3k and could 

have an effect on insulin signalling when taken up by tissues. The DAVID analysis of all targets 

showed an overrepresentation of proteins involved in cell differentiation and development, 

GPCRs, and microtubule organization. Cortisol causes proliferation of chloride cells in 

anadromous fish and when combined with insulin can stimulate adipocytes to differentiate 

(Foskett et al., 1983; Mommsen et al., 1999). Microtubules help to transport proteins around 

cells, so the decrease observed at 24-hours could be tissues uptaking the miRNA to reverse 

changes that occurred as a result of the stress and return to homeostasis.  
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 MiR-143-3p is the second most expressed miRNA in the brain and anterior pituitary after 

miR-21 (Juanchich et al., 2016). Exosomally associated miR-143 is involved in signalling 

between arterial smooth muscle and endothelial cells during pulmonary arterial hypertenstion 

(Deng et al., 2015). In rainbow trout, miR-143 has been implicated in the insulin response 

pathway by inhibiting the phosphorylation of Akt (Mennigen et al., 2012). The other miRNAs 

measured also had connections to the insulin response, so the upregulation in circulation could 

be a similar removal from tissues to reduce plasma glucose levels. MiRanda did not predict any 

insulin response targets, but it did find targets involved in glycolysis/gluconeogenesis. Acs 

produces acetyl-CoA to support lipid synthesis rather than the TCA cycle (Castro et al., 2012; 

Ikeda et al., 2001). Chronically stressed rainbow trout have increased lipid synthesis indicating 

that cortisol can play a role in lipid metabolism (Kostyniuk et al., 2018). Therefore, the 

circulating miR-143 could be stored in the blood to increase lipid metabolism in tissues. MiR-

143 and miR-21 were both predicted to inhibit PDH based on MiRanda. Therefore, it could be a 

tissue specific secretion of the miRNA accounting for these differences if feeding into the TCA 

cycle is one of the drivers for the circulating differences. The last glycolytic target for miR-143 

was hexokinase-1 which is a high affinity enzyme that converts glucose into glucose-6-

phosphate (Enes et al., 2009). Hexokinases are present in most tissues and activity of the enzyme 

increases 2-hours after a handling stress (López-Patiño et al., 2014). The acute increase in this 

miRNA in circulation could be allowing peripheral tissues to increase their glycolytic potential 

during the hyperglycemia measured. MiR-143 was also predicted to inhibit Crf receptor similar 

to let-7a. The two types of the receptor have different functions in digestion; type 1 (predicted to 

be inhibited by both let-7a and miR-143) has stimulatory properties in gastric contractions in rats 

while the type 2 receptor modulates type 1 (Nozu et al., 2013). Both chronic and acute stressors 
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cause appetite suppression which can have an effect on growth (Barton et al., 1987). The 

increase at 3-hours of this miRNA could be a return to normal gut function by increasing Crf 

receptor abundance and allowing digestion to continue. The DAVID analysis revealed that many 

of the miR-143 targets were GPCRs and proteins involved in transmembrane binding. GPCRs 

are membrane bound, so the increase in circulating miR-143 could indicate that during recovery 

from a stress response, tissues are trying to upregulate their cell surface receptors to respond to 

further signalling. However, this warrents further investigation.  

 The final miRNA measured was miR-29a-3p which was chosen for its role in regulating 

DNA methylation in rainbow trout (Kuc et al., 2017). Circulating miR-29a has been shown to 

activate toll-like receptors to upregulate inflammation to improve metastasis in cancer (Fabbri et 

al., 2012). None of the predicted targets were classified under carbon metabolism, but Table B.4 

shows that many of the metabolic pathways are involved in the breakdown of amino acids. 

Gluconeogenesis creates glucose for energy from non-carbohydrate sources such as amino acids 

(Walton & Cowey, 1979). Cortisol causes catabolic activity by breaking down proteins to 

provide substrates for gluconeogenesis, and part of the return to homeostasis is re-establishing 

anabolic processes (Mommsen et al., 1999). One explanation for the upregulation of circulating 

miR-29a at 3-hours could be inhibition of amino acid metabolism later in the stress response. 

MiR-29a was also found to target growth hormone, an important regulator of anabolic processes 

in teleost fishes (Gahr et al., 2008). In tilapia, cortisol in combination with growth hormone can 

inhibit some anabolic peptides while upregulating others (Pierce et al., 2011). This miRNA could 

be secreted later during the stress response to allow for anabolic activity to return. MiR-29a was 

also predicted to inhibit Pi3k like miR-21 and let-7a, and miR-143 was found to inhibit 

phosphorylation of Akt. However, since these miRNAs have different trends in circulation, they 



39 
 

could be working in conjunction to increase insulin responses during hyperglycemia. MiRNAs 

can act in conjunction to inhibit translation more efficiently (Hashimoto et al., 2013). The 

changes observed could be a result of the miRNAs sharing the load to increase tissue insulin 

activity so that other targets for each are not overexpressed. DAVID enrichment analysis also 

revealed that transmembrane binding was overrepresented in the list of genes. This miRNA 

could be carrying out a similar role to miR-143. By increasing in circulation later in the stress 

response, it can signal peripheral tissues to upregulate membrane bound proteins for stress 

recovery. Inflammation related proteins were also found to be overrepresented and inflammatory 

reactions are inhibited by cortisol (Mommsen et al., 1999). The increase in circulating miR-29a 

later in the stress response could be to allow tissues to begin returning to homeostasis by 

recovering immunological function.  

2.4.4 MiRNA abundances in tissues 

 Although the role of these miRNAs in circulation is speculative, changes in tissue can be 

easier to asses since the organs collected had specific roles during recovery from stress. The 

tissues collected for this chapter were important regulators of stress in teleosts. The anterior 

kidney contains interrenal cells that respond to ACTH and secrete cortisol into circulation 

(Bonga, 1997; Mommsen et al., 1999). However, this organ is heterogenous, containing mostly 

hematopoietic and immune cells responsible for antigen presentation and cytokine production 

(Geven & Klaren, 2017; Uribe et al., 2011). This suggests that the miRNA changes are likely 

involved in immune regulation rather than steroid production. The liver contains mostly 

hepatocytes which have multiple functions in maintaining homeostasis within teleosts (Andersen 

et al., 1991; Gelboin, 1980; Hagey et al., 2010; Sundling et al., 2014). This integration of 

multiple functions can make it difficult to determine what these miRNA changes are regulating. 
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During stress responses the liver plays a key role in liberating glucose to supply energy for 

overcoming the perceived stress (Mommsen et al., 1999). Therefore, the two tissues collected 

have important roles to play during cortisol stimulation and the miRNA changes observed can be 

explained in these contexts.  

 Overall, the tissue abundances of the miRNAs decreased compared to control. Figure 2.4 

shows that metabolic targets were predicted to be inhibited by the miRNAs measured. It would 

make sense that these miRNAs would decrease in abundance in the liver to allow for 

upregulation of metabolic activities. The time dependant decrease in this tissue would point to 

the specific targets, with miR-21 and miR-143 being downregulated later in the response and let-

7a and miR-29a only being downregulated at 3-hours (Fig 2.3 I-L). The recovery at 24-hours of 

control abundances of let-7a and miR-29a likely show their importance to the tissue’s normal 

function in the absence of cortisol. MiR-21 and miR-143 are likely important for other metabolic 

roles, such as reducing the circulating glucose levels. In the anterior kidney, miR-21 and let-7a 

were unimpacted by stress (Fig 2.3 E-H). However, miR-143 and miR-29a were almost 

completely depleted in the tissue and remained low after 24 hours. Acute stress has been shown 

to enhance antigen presentation and other immune functions, so the sustained decreases could be 

facilitating the anterior kidney’s primary function (Dhabhar & McEwen, 1996; Dhabhar et al., 

2010; Dhabhar & Viswanathan, 2005; Pickford et al., 1971). Genes involved in focal adhesion 

(10%), actin cytoskeleton (8%), and endocytosis (7%) could all be upregulated in this organ to 

enhance antigen presentation of macrophages.  

 Relative abundance of miR-21 in the anterior kidney were unaffected at any timepoint 

after stress (Fig 2.3 E). MiR-21 has important roles in regulating macrophage polarization, so 

maintaining constant levels in this immune organ might be necessary to maintain proper function 
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(Wang et al., 2015). Pi3k/Akt are also important regulators of cytokine and pathogen associated 

molecular patterns (Vergadi et al., 2017). Maintenance of inhibitor miRNAs (as miR-21 is 

predicted to do) is vital to prevent unnecessary immune activation. However, in the liver, miR-21 

levels decrease at the 24-hour timepoint (Fig 2.3 I). Although this could be to enhance metabolic 

function, a more likely explanation is to remove inhibition on the insulin response pathway 

through Pi3k/Akt. On top of being important signalling proteins in the immune response, they 

are also important regulators of insulin signal transduction, so downregulation of regulatory 

miRNA could help metabolize glucose and inhibit gluconeogenic activity. This is supported by 

studies with mice, where miR-21 knockout hepatocytes were more responsive to insulin (Calo et 

al., 2016).  

 The anterior kidney had no change in let-7a levels after stress similarly to miR-21 (Fig 

2.3 F). This miRNA in humans is involved in macrophage activation and interleukin inhibition, 

so maintaining its levels in the anterior kidney is important to maintain homeostasis when 

pathogens are not present (Iliopoulos et al., 2009; Mazumder et al., 2013). Pi3k was a predicted 

target of this miRNA, and as mentioned above, is an important regulator of immune function. 

Therefore, limiting changes in let-7a expression will prevent dysregulation of key signalling 

pathways. In the liver an acute decrease in let-7a was measured at 3-hours post stress. Since this 

is primarily a metabolic organ, increases in Pi3k at this timepoint would contribute to increase 

the potential for the liver to respond to insulin. This acute decrease in let-7a could also allow 

upregulation of Idh and citrate synthase to aid in the clearing of glucose. Decreased citrate 

synthase activity is associated with glucose intolerance, so by upregulating this enzyme 

hepatocytes could be increasing glycolytic potential (Alhindi et al., 2019). Ugt could also be 

upregulated to aid in the degradation of cortisol since the liver is important for steroid 
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metabolism (Mackenzie et al., 1992). The recovery of control let-7a levels could aid in 

preventing overexpression of this enzyme and this recovery could be in part due to uptake of 

circulating let-7a.  

 MiR-143 was found to significantly decrease at all timepoints post stress and almost be 

completely depleted at 3- and 24-hours after stress axis activation in both tissues. The most likely 

reason for this decrease is removal of hexokinase-1 inhibition. Hexokinase-1 is highly expressed 

in the mammalian and teleost kidney and is important for glycolysis (Enes et al., 2009; Soengas 

et al., 2006). Since glucose was still elevated at all timepoints post-stress, hexokinase 

upregulation could aid in clearing the metabolite. Another cell type in the teleost anterior kidney 

are chromaffin cells which are important for catecholamine secretion (Mommsen et al., 1999). 

These cells contain Crf receptor which is important for paracrine effects between the cell types 

(Huising et al., 2007). The receptor could be upregulated by the decrease in miR-143 and allow 

for increased responsivity during the recovery period. MiR-143 also saw significant decreases in 

the liver later in the stress response and remained low even after 24-hours. Hepatic miR-143 in 

rainbow trout is predicted to inhibit Akt phosphorylation by downregulation Orp8 which 

responds to insulin (Jordan et al., 2011; Mennigen et al., 2012). This could partly explain the 

drastic decrease seen in the liver of this miRNA as this would help support the insulin signalling 

cascade. The other metabolic targets for this miRNA could also be benefited by this decrease. 

Increase in hexokinase expression can increase glycolytic potential of the liver. Acs feeds into 

the anabolic lipid synthesis from glycolysis, so upregulation of this enzyme can aid in the 

clearing of plasma glucose (Castro et al., 2012).  

 MiR-29a had a similar trend to miR-143 in the kidney, where 3- and 24-hours were 

significantly depleted (Fig 2.3 H). The likely cause of this decrease in the anterior kidney is to 
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enhance immune function as previously discussed. Acute stressors have been shown to enhance 

antigen presentation, a key role for macrophages (Dhabhar & McEwen, 1996). The KEGG 

results for this miRNA (Table B.4) show cytokine-cytokine receptor interactions as highly 

expressed in the targets. Cytokine levels in the anterior kidney were inhibited 2-hours after 

cortisol exposure in gilthead seabream, but in rainbow trout cortisol enhanced inflammation-

related cytokine action of macrophages after 6-hours (Castillo et al., 2009; Castro et al., 2011). 

The sustained decrease could aid in enhancing immune function during recovery from stressors. 

The hepatic levels of miR-29a were decreased at the 3-hour timepoint and returned to normal 

after 24-hours, like what was measured for let-7a (Fig 2.3 L). This decrease may be attributed to 

the increase in insulin response through Pi3k upregulation to increase glycolytic activities. MiR-

29a inhibition of Pi3k has already been shown in mice, and overexpression of this miRNA 

inhibits insulin signalling (Pandey et al., 2011). However, since it also influences DNA 

methylation, maintaining its levels within tissues is important to return to homeostasis. Previous 

work has shown that this miRNA is a regulator of DNA methylation by targeting DNA 

methyltransferase 3a (Dnmt3a; Kuc et al., 2017). This could cause an upregulation of DNA 

methylation, acting to silence gene transcription. Rainbow trout gluconeogenic genes have DNA 

methylation sites, so by increasing Dnmt3a levels these gluconeogenic transcripts could be 

downregulated later in the stress response (Marandel et al., 2016). No studies have explored the 

effect of cortisol on DNA methylation in the teleost liver, but this could be another mechanism 

of reducing gluconeogenesis during stress recovery. 

2.4.5 Conclusions 

 In conclusion, there are clear time-dependant changes in miRNA levels during recovery 

from acute stress. In plasma EVs, both increases and decreases in circulating levels of these 
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miRNAs were measured. Increases were reverted after cortisol levels had returned to normal, 

linking circulating miRNA levels with the hormone. MiRNA tissue abundances either remained 

constant or decreased during the recovery period; however, not all miRNA abundances were 

recovered after cortisol had returned to normal. Drosha, an important enzyme in miRNA 

biogenesis, has previously been shown to be altered by chronic stress in rainbow trout 

(Kostyniuk et al., 2018). This decrease in the key miRNA-regulating enzyme could explain the 

overall trend but whether Drosha is regulated after acute cortisol exposures is unknown and 

should be investigated in the future. KEGG analysis of the targets for these miRNAs revealed 

that metabolic pathways are likely impacted by the miRNA abundance changes. This agrees with 

the literature where metabolic reprogramming is a primary occurrence during the recovery period 

from stress. However, determining direct relationships for the miRNA changes based on KEGG 

can be difficult due to the high number of pathways that are predicted to be impacted. Even if no 

direct relationships can be confirmed, the changes measured are physiologically relevant and 

provides evidence for the epigenetic regulation that can occur during stress recovery.  
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Chapter 3 
In vitro regulation of microRNA through cortisol stimulation in rainbow trout 

(Oncorhynchus mykiss) hepatocytes 
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3.1 Introduction 

 The liver is a multifunctioning organ that is vital to teleost physiology and studying the 

liver is vital to expanding the knowledge on how fish adapt to their environment. Hepatocytes 

produce bile and store the solution in the attached gall bladder to aid in the digestion of proteins 

and lipids (Hagey et al., 2010; Segner, 1998). The liver is also the primary site of clearing for 

xenobiotic compounds such as pharmaceuticals and other foreign substances (Gelboin, 1980; 

Kuc et al., 2017; Tapper et al., 2018). In breeding females, hepatocytes produce vitellogenin 

which is required for healthy egg formation (Sundling et al., 2014). The liver also carries out 

important roles in regulating metabolism, acting both as a producer and storage of energy, and 

has essential roles in glycogen storage and breakdown following stressful events (Andersen et 

al., 1991; Mommsen et al., 1999; Vijayan et al., 1991), which is a focus of this chapter. 
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Figure 3.1: Important glucose regulating enzymes in the gluconeogenic (production) and 

glycolytic (breakdown) pathways. The transcript names below each enzyme are the paralogs in 

rainbow trout that are differentially expressed. This figure was adapted from Marandel et al., 

(2016).  
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Glycolysis is the breakdown of glucose into pyruvate, which can be used by other 

metabolic pathways such as the Krebs cycle during aerobic respiration (Fig 3.1; Li et al., 2015; 

Polakof et al., 2012). The first enzyme involved in this pathway is hexokinase (Hk) which 

converts glucose into glucose-6-phosphate (Enes et al., 2009; Panserat et al., 2001; Polakof et al., 

2012). This is the rate limiting step of glycolysis and both activity of the enzyme and expression 

can be induced by increases in glucose levels (Enes et al., 2009; Panserat et al., 2001; Polakof et 

al., 2012). Hks have 4 different isozymes that are expressed in different tissues and have 

different affinities for glucose. Hk 1-3 have high affinities for glucose and are expressed in most 

tissues within teleosts to aid in the breakdown of circulating glucose for energy (Enes et al., 

2009). Hk 4 (also called glucokinase; Gk) is mainly present in the liver and has a lower affinity 

for glucose but its activity is unimpacted by higher levels of glucose-6-phosphate (Enes et al., 

2009; Printz et al., 1993). The glucose-6-phosphate produced by this enzyme can then be further 

metabolized, eventually being converted into pyruvate by pyruvate kinase (Pk; Enes et al., 2009). 

Pk activity is regulated by changes in carbohydrate availability in rainbow trout and has lower 

activity in the liver when compared to other tissues such as muscle and brain (Knox et al., 1980; 

Panserat et al., 2001). In rainbow trout, Pk has one gene that encodes the liver and erythrocyte 

version of the enzyme, pklr (Enes et al., 2009; Marandel et al., 2016).  

Unlike glycolysis which is active in most tissues, the primary site for gluconeogenesis is 

the liver (Knox et al., 1980). The rate-limiting enzymes for gluconeogenesis act in direct 

opposition to glycolysis (Fig 3.1; Marandel et al., 2016). This pathway uses non-carbohydrates 

such as amino acids, lactate, and glycerol to produce glucose that can be used by energy 

intensive tissues (Walton & Cowey, 1979). Fructose-1,6-bisphosphatase (Fbpase) acts in 

opposition to phosphofructokinase to convert fructose-1,6-bisphosphate into fructose-6-
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phosphate (Enes et al., 2009; Suarez & Mommsen, 1986). Fbpase is primarily active in the liver 

but has been found in other tissues such as the kidney and muscle (Enes et al., 2009; Knox et al., 

1980). Multiple studies have examined the regulation of Fbpase and found in dietary protein and 

starvation can alter both gene expression and enzymatic activity (Enes et al., 2009; Kirchner et 

al., 2003; Marandel et al., 2015; Morata et al., 1982; Suarez & Mommsen, 1986). Three genes 

encode rainbow trout Fbpase (fbp1a, fbp1b1, and fbp1b2) and are differentially regulated by 

changes in diet and stages of development (Marandel et al., 2016; Song et al., 2018)  However, 

most of the studies on gluconeogenesis investigate phosphoenolpyruvate carboxykinase (Pepck) 

and its regulation under different treatments. Pepck acts opposite to Pk, converting oxaloacetate 

to phosphoenolpyruvate which can then feed into the other gluconeogenic enzymes (Knox et al., 

1980; Suarez & Mommsen, 1986). Pepck has a mitochondrial and cytosolic form while the other 

gluconeogenic enzymes are all cytosolic (Enes et al., 2009; Marandel et al., 2019; Marandel et 

al., 2015; Suarez & Mommsen, 1986). In rainbow trout, the cytosolic (pepck1) and mitochondrial 

(pepck2a and pepck2b) forms are encoded by different genes and are transcriptionally regulated 

by treatments such as cortisol and nutritional changes (Enes et al., 2009; Marandel et al., 2019).  

Rainbow trout metabolism has been extensively studied from the perspective of 

nutritional content due to the glucose intolerant phenotype experienced by the species (Moon, 

2001). Early studies investigated the relationship between glycolytic and gluconeogenic 

activities to try and explain the hyperglycemia present after carbohydrate meals (Panserat et al., 

2001; Panserat et al., 2001; Polakof et al., 2012; Suarez & Mommsen, 1986). Overall, it was 

determined that the likely cause of reduced glucose clearance was due to poor peripheral 

breakdown of the metabolite (Moon, 2001). This was supplemented by more recent findings that 

show lack of regulation of gluconeogenic enzymes by changes in diet that contribute to the 
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excess glucose in circulation (Enes et al., 2009; Kirchner et al., 2003; Panserat et al., 2001; 

Panserat et al., 2001). With the recent sequencing of the rainbow trout genome, multiple gene 

paralogs of rainbow trout gluconeogenic enzymes show how complicated the regulation of this 

pathway has become, which is attributed to subsequent genome duplications events in the teleost 

lineage (Marandel et al., 2016; Marandel et al., 2019; Marandel et al., 2017, 2015; Marandel et 

al., 2016). Therefore, it is necessary that future studies that look to understand glucose regulation 

in rainbow trout explore the differential regulation of these gene paralogs. 

 Cortisol, the primary glucocorticoid, is responsible for regulating glucose levels as a way 

of supporting recovery from a stressor (Bamberger et al., 1996; Mommsen et al., 1999). This 

hormone acts through the glucocorticoid receptor to upregulate genes important for the stress 

response (Aluru & Vijayan, 2009; Charmandari et al., 2005). In addition to impacting growth 

and reproductive pathways, stress and cortisol have been shown to impact glycolysis and 

gluconeogenesis. Gk gene expression increases 24-hours after cortisol exposure in rainbow trout 

hepatocytes while also increasing in activity 2-hours after a handling stressor (López-Patiño et 

al., 2014; Wiseman et al., 2007). Pk expression has been shown to be upregulated 1 hour after 

stress in rainbow trout and Pk activity increased after cortisol exposure in tilapia livers while 

being unimpacted by handling in rainbow trout (Mommsen et al., 1999; Morales et al., 1990; 

Vijayan et al., 1997; Wiseman et al., 2007). High levels of circulating cortisol significantly 

elevated Fbpase activity in carp within 24-hours while rainbow trout exposed to a handling stress 

had Fbpase increase in activity within 6 hours (Dziewulska-Szwajkowska et al., 2003; Morales et 

al., 1990). Pepck has a well established glucocorticoid responsive element upstream of the gene, 

making it a good indicator of cortisol activation (Heinrichs et al., 1994; Mommsen et al., 1999). 

In rainbow trout, pepck expression is upregulated 24-hours after an acute handling stress and at 
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the same timepoint in hepatocytes exposed to the hormone (Aluru & Vijayan, 2007; Sathiyaa & 

Vijayan, 2003; Wiseman et al., 2007). However, activity of the enzyme was decreased at the 

same timepoint, potentially linking this enzyme to other forms of regulation post-

transcriptionally (Sathiyaa & Vijayan, 2003).  

 MicroRNA (miRNA), a post-transcriptional regulator of gene expression, have been 

investigated for their role in metabolic regulation. Multiple miRNAs in rats have been found to 

regulate Gk expression and the potential to target these miRNAs for treatment of diabetes is a 

possibility (Mirra et al., 2018). Most studies investigate these effects in mammals but 

evolutionary conservation of these relationships can be quite low, with less than 10% of 

predicted binding sites being conserved between humans and teleosts (Xu et al., 2013). 

Therefore, recent studies have begun to investigate miRNA regulation of teleost metabolism to 

explain physiological differences between species. Rainbow trout have been one of the models 

for these miRNA studies due to their well studied metabolic physiology. MiR-122 has been 

found to be altered by developmental stage and feeding within the liver to aid in increasing liver 

function at key steps (Mennigen et al., 2013; Mennigen et al., 2012). Chronic social stress in 

rainbow trout has been shown to impact miRNAs associated with lipid and carbohydrate 

metabolism, linking the effects of cortisol on development and growth with epigenetic changes 

(Kostyniuk et al., 2018, 2019).  

 MiRNAs are stable in the extracellular environment by association with vesicles or 

proteins and have been found in biological fluids such as blood, urine, and saliva (Arroyo et al., 

2011; Caby et al., 2005; Kim et al., 2007; Ogawa et al., 2011; Pisitkun et al., 2004; Turchinovich 

et al., 2011; Vickers et al., 2011). Vesicle-enclosed miRNAs have been shown to be biologically 

active paracrine factors by influencing distant tissues within organisms (Pegtel et al., 2010; 
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Raposo & Stoorvogel, 2013; van Niel et al., 2018). However, most of the miRNA in circulation 

are likely associated with Ago2, a protein complex important for repression of mRNA expression 

(Arroyo et al., 2011; Turchinovich et al., 2011). Currently, whether these RISC-associated 

miRNAs are biologically active or just stable in circulation is in question since these Ago2-

associated miRNAs remained constant for two months at room temperature (Turchinovich et al., 

2011). In humans, circulating levels of miR-122 has been correlated with obesity and insulin 

resistance (Wang et al., 2015). Zhu et al., (2018) has demonstrated correlations between 

circulating miRNAs and metabolic changes in trout, indicating that these circulating miRNAs 

could be biomarkers of fish health. These changes in circulating miRNAs could be biological 

indicators of metabolism, but whether the liver is contributing to the alterations and actively 

signalling other tissues is currently unknown. 

 Studying the changes in miRNA in hepatocytes after cortisol exposure can help expand 

our knowledge on the metabolic reprogramming that occurs during recovery from stress. It is 

hypothesized that miRNAs important to gluconeogenesis and glycolysis will be altered within 

hepatocytes after this exposure and reflected in the circulation as a way of communicating 

between cells. The miRNAs chosen for this study were predicted to bind to the 3’ UTRs for gk 

and pk in glycolysis and fbpase and pepck in gluconeogenesis based on the MiRanda targeting 

algorithm. This is the first study to connect changes in enzyme activity with the miRNAs that 

target them in tissue and circulation.  
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3.2 Materials and methods 

3.2.1 Study Animals 

 Rainbow trout (Oncorhynchus mykiss) of mixed sex were purchased from Silver Creek 

Aquaculture Inc in Erin, ON. Trout were held in 450-gallon flow through tanks at a density of 

~35 fish per tank. During the study, a 12-hour light-dark cycle was maintained and temperature, 

dissolved oxygen, pH, and conductivity monitored. Water quality parameters were constant over 

the course of the study. Experimental procedures and the use of animals in this study was 

approved by the University of Waterloo Animal Care Committee and within CCAC guidelines 

(AUPP 40315). 

3.2.2 Hepatocyte collection and culturing 

Unless otherwise indicated, all chemicals were purchased through Sigma-Aldrich 

(Mississauga, ON). Three fish (two male and one female) were collected from the holding tank 

and immediately euthanized in 0.5 g/L bicarbonate buffered MS-222. The protocol for 

hepatocyte isolation follows the procedure used by Craig et al. (2013) and recipes for buffers can 

be found in Appendix A. Fish were opened mid-ventrally to expose the digestive system and the 

hepatic portal vessel cannulated with a Gilson minipuls 3 peristaltic pump (Mandel). Initially, the 

pump was operating slowly by perfusing rinsing solution (Basic Hank’s, 1 mM EGTA, pH 7.63) 

through the liver and speed was increased to 2 mL/min. During this time the bulbous arteriosus 

of the heart was cut to prevent back-pressure and excess solution pooling in the body cavity 

removed with a plastic pipette. The liver was monitored and massaged until all traces of blood 

were removed before transferring pump to perfusing collagenase media (50 mL Basic Hank’s, 

7.5 mg collagenase type IV, pH 7.63) at a rate of 2 mL/min. The collagenase perfusion was 

monitored for 12 mins with periodic massaging of the liver to aid in even distribution of 
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perfusate throughout the tissue. After 12 mins the liver became soft and expanded and the pump 

was turned off. The liver was carefully removed from the peritoneal cavity and the gall bladder 

carefully cut away to prevent contamination of the tissue. Liver tissue was then diced over 

rinsing solution and passed through 250 mm and 75 mm mesh screens to separate cells. This 

suspension of hepatocytes was centrifuged for 2 mins at 800 rpm and 4°C and the supernatant 

decanted to remove excess rinsing solution. Hepatocytes were rinsed three more times, once with 

half volume of rinsing solution and half volume of resuspension media (Basic Hank’s, 3 mM 

CaCl2, 1.5% BSA) and twice with only resuspension media before sitting on ice for 1 hour. Cells 

were then rinsed twice more with Hanks’ Culture Media and then cell viabilities determined 

using a Trypan Blue exclusion assay. Viabilities were all >95%, and therefore hepatocytes were 

plated in sterilized 48-well tissue culture plates (VWR, Cat# 10861-702) at 10 mg per well (stock 

solution concentration 25 mg/mL). Cells were monitored each day for loss of attachment and 

media changed after 24 hours in culture.  

3.2.3 Hepatocyte Cortisol Exposure 

 After 48 hours in culture, cells were exposed to increasing concentrations of cortisol, 

following a similar protocol to Pierce et al. (2012). Hydrocortisone (Sigma-Aldrich, Cat# 

H0888) was dissolved in Hanks’ culture media supplemented with 0.1% ethanol at 

concentrations of 3000 ng/mL, 300 ng/mL, 30 ng/mL, or 0 ng/mL (control). Cells were exposed 

for either 2- or 4-hours and fractions of supernatant and cells were taken to determine miRNA 

differences between the two. Wells were pooled together to get three samples per concentration 

at each timepoint. Hepatocyte yields were lower for the second fish, resulting in only 3 wells 

pooled per sample while the first and third had 4 wells per sample. Supernatant fractions were 

taken first by aliquoting 300 µL of the cortisol or control media while cell fractions were taken 
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by washing wells multiple times with the remaining 100 µL of media to remove adhered 

hepatocytes and combined into pre-weighed tubes. Cells were then centrifuged at 12 000 x g for 

2 mins to remove excess media before being flash frozen in liquid nitrogen. Supernatant was 

differentially centrifuged to remove any cellular material from circulating miRNA based on a 

protocol from personal communication with FroggaBio and Kenigsberg, (2016). Cellular 

components were removed by centrifuging twice at 4°C, 2500 x g for 15 mins. Media 

supernatant was then centrifuged at 300 x g for 10 mins, 2000 x g for 10 mins, and lastly 12 000 

x g for 30 mins to remove other unwanted components. This final fraction was passed through a 

0.22 µm filter to clear out larger vesicles and cellular debris that might have remained after 

centrifugation steps. All samples were subsequently stored at -80°C until analysis. 

3.2.4 RNA Extractions 

 Supernatant RNA was extracted using a commercially available Qiagen miRNeasy 

Serum/Plasma Advanced Kit (Cat# 217204) and followed without deviation. Cell RNA was 

extracted using the Qiagen miRNeasy Mini Kit (Cat#: 217004). Pellets weights were weighed, 

and all fell within the recommended tissue weights for the kit. The extraction protocol was 

followed based on the manufacturer’s guidelines without deviation. RNase-free water (30 µL) 

was used to elute RNA and all samples stored at -80°C until subsequent analysis.   

3.2.5 RT-qPCR 

Extracted samples were thawed on ice and RNA concentration determined using a 

SpectraDrop Micro-Volume Microplate (Molecular Devices). Either 100 ng of supernatant RNA 

or 500 ng of cellular RNA was used for cDNA synthesis. Qiagen’s miScript II RT kit (Cat# 

218161) was used since it was able to generate miRNA specific cDNA. The manufacturer’s 

protocol was followed without deviation. HiSpec buffer was used for supernatant samples while 
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the HiFlex buffer was used for tissue samples since both can be used to make cDNA for mature 

miRNA but the HiFlex buffer is more ideal for reverse transcribing mRNA. A pooled sample 

was also reverse transcribed from each tissue in order to generate standard curves.  

Standard curves were run for each target in the supernatant and cell fractions. Dilutions 

within these curves were 4x, 16x, 64x, 256x, and 1024x and standard curves for each primer was 

found to be linear after the 16x dilution. Therefore, all samples were diluted 20x to reduce qPCR 

inhibition. Each qPCR reaction contained 2 µL of diluted cDNA (0.5 ng of supernatant cDNA or 

2.5 ng of cell cDNA), 5 µL of Biorad SYBR Green Master Mix (Cat# 1725272), 1 µL of 5 µM 

forward primer for the target miRNA or mRNA (Sigma-Aldritch), 1 µL of 5 µM Universal 

Primer for miRNAs (Qiagen, Cat# 218073) or 5 µM reverse primer for mRNA, and 1 µL of 

water. Samples were run on CFX96 Touch Real-Time PCR Detection System (Biorad). Each run 

consisted of 30 seconds at 95°C initially, followed by 45 repeated cycles of 10 seconds at 95°C 

and 15 seconds at 60°C. All runs finished off with a melt curve to make sure that only one qPCR 

product was generated during the run. Primer sequences and amplicon sizes can be found in 

Table 3.1. Primers for mRNA targets were designed using NCBI’s Primer Blast tool. MiRNAs 

were found to be the top targets based on the total score for these mRNAs based on the MiRanda 

algorithm using standard parameters (Enright et al., 2003). Relative abundances were calculated 

by normalizing to the housekeeping gene 18s rRNA using the standard 2-∆∆Ct equation (Livak & 

Schmittgen, 2001). Samples were further normalized to the 2-hour control of the same fish to 

determine relative abundance change due to high variation between fish.  
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Table 3.1: Primer sequences for targets of hepatocyte cortisol exposure study. Forward 

sequences for miRNAs were acquired from miRbase while reverse primers were proprietary 

Qiagen sequences (cite for miRbase). Amplicon length was unable to be determined for these 

sequences due to the proprietary nature of the Qiagen reverse transcription kit. Primers for 

mRNA sequences were designed using the Primer-BLAST tool (Ye et al., 2012).  

Target Forward Primer Sequence Reverse Primer sequence Reference 

number 

Amplicon 

length  

Fructose-1,6-

Bisphosphotase 

CTGTACGAGTGCAACCCCAT GCTGTCTCACATGCGTGTCT XM_021603006.1 186 

Phosphoenolpyruvate 

carboxykinase 

TATGAGAACTGCTGGCTGGC ACCTACTCGTGGAGACGGAA XM_021568440.1 114 

Glucokinase CTGACGCCTCACTGTGACAT TAGGTGGGAGGCTGTTACGA NM_001124249.2 137 

Pyruvate Kinase GGTGACATGGTGATCGTGGT GAGTGTTTAGGGCACGTGGA XM_021622264.1 87 

ssa-miR-21a-5p TAGCTTATCAGACTGGTGTTGACT Qiagen Universal Primer MIMAT0032533 - 

ssa-miR-194a-3p CCAGTGGAGATGCTGTTACCTGC Qiagen Universal Primer MIMAT0032448 - 

ssa-miR-33a-5p GTGCATTGTAGTTGCATTGCA Qiagen Universal Primer MIMAT0032618 - 

ssa-miR-192a-3p CCTGTCAGTTATGTAGGCCACT Qiagen Universal Primer MIMAT0032441 - 

18s rRNA ATGGCCGTTCTTAGTTGGTG CTCAATCTCGTGTGGCTGAA FJ710874.1 145 

 

3.2.6 Enzymatic Activity  

 Buffers for spectrophotometric enzymatic assays can be found in Appendix A. 

Hepatocyte pellets were weighed and sonicated in a 20x dilution of extraction buffer using sonic 

dismembrator model 100 (Fisher). Sonicated hepatocytes were then centrifuged for 10 mins at 12 

000 x g at 4°C and the supernatant used for enzymatic assays. Activities were measured using 

96-well microplates using a SpectraMax 190 Microplate Reader by measuring the change in 

NAD(P) and NAD(P)H at 340 nm over 30 mins at room temperature. Phosphoenolpyruvate 

carboxykinase (Pepck, EC 4.1.1.49) was measured in fresh samples since only the cytosolic 

version of the enzyme was of interest while fructose-1,6-bisphosphatase (Fbpase, EC 3.1.3.11), 

glucokinase (Gk, EC 2.7.1.2), and pyruvate kinase (Pk, EC 2.7.1.40) were measured after being 

stored at -80°C. Fbpase activity was measured as per Tranulis et al., (1996). Lactate 

dehydrogenase (LDH, EC 1.1.1.27) activity was measured in the supernatant to determine 

hepatocyte viability. Enzyme activities were normalized to the protein concentration of the 
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sample measured using a Bicinchoninic acid assay (Sigma-Aldritch) with a 6-point bovine serum 

albumin standard curve. Activities of hepatocyte cell enzymes were further normalized to the 2-

hour control of the same fish to determine relative abundance change due to high variation 

between fish.  

3.2.6 Statistical Analysis 

 Data was analyzed using GraphPad Prism (GraphPad Software, La Jolla CA) and 

presented as the average ± standard error of the mean (SEM). Significant differences between 

relative abundances and enzymatic activities were found using two-way analysis of variance tests 

(ANOVA, p<0.05). Normality was assumed and when significant differences were found, 

Dunnett’s Post-Hoc Multiple Comparison Test was used to determine if the cortisol treated 

hepatocytes differed from their respective time-point control. For LDH activity, Tukey’s Post-

Hoc Multiple Comparison Test was used to determine differences between fish and timepoints.  
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3.3 Results 

3.3.1 LDH leakage assay 

 

Figure 3.2: LDH enzymatic activity in the supernatant of hepatocytes exposed to cortisol. 

Activity was measured after 2- or 4-hours of exposure using a spectrophotometric enzymatic 

assay. Bars that do not share a common letter within the same timepoint were found to be 

significantly different (Two-way ANOVA, p <0.05 Tukey’s Post Hoc, n = 3). 

 

Activity of LDH was measured in supernatant samples to assess the level of cell leakage 

during the exposure. Fish 1 had significantly lower supernatant activity at 4-hours compared to 
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the 2-hour timepoint (Tukey, p = 0.0478). However, fish 1 and 2 had no significant difference in 

their LDH activity. Fish 3 not only had significantly elevated LDH activity compared to the other 

two fish (Tukey, p = <0.0001), but it’s 4-hour timepoint had significantly elevated levels of the 

enzyme compared to it’s 2-hour timepoint (Tukey, p = <0.0001).  

3.3.2 MiRanda miRNA binding prediction 

 MiRNA predicted to target the enzymes of interest in this chapter were found by using 

the standard parameters for the MiRanda algorithm (Enright et al., 2003). A cut-off of 190 for 

the pairing score and free energy score of -40 was used by Mennigen & Zhang (2016) but when 

applied to the 3’ UTRs of interest to this chapter returned no results. Therefore, no cut-off score 

was used and the top target for each mRNA based on the highest total pairing score was chosen 

as the most likely miRNA to influence expression. A summary of the MiRanda output can be 

found in Table 3.2 below.  

 

Table 3.2: Summary of the MiRanda output for miRNA predicted to target key metabolic 

enzymes. Fructose-1,6-bisphosphatase (Fbp1b2) and phosphoenolpyruvate carboxykinase 

(pepck1) are key gluconeogenic enzymes while glucokinase and pyruvate kinase are important 

glycolytic enzymes. Salmo salar miRNAs were used since the sequences were readily available 

on miRbase. The score generated by MiRanda relates to the likelihood of binding and 

influencing expression with a higher score being more likely. A lower free energy score is more 

advantageous for miRNA binding since this relates to the duplex structure formed when a 

miRNA interacts with its mRNA.  

Target miRNA Name Score Free energy (kCal/Mol) 

Fructose-1,6-bisphosphatase ssa-miR-21a-5p 155 -13.53 

Phosphoenolpyruvate 

carboxykinase 

ssa-miR-194a-3p 301 -37.89 

Glucokinase ssa-miR-33a-5p 449 -45.13 

Pyruvate Kinase ssa-miR-192a-3p 160 -22.72 
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 The top binding site for a miRNA within the 3’ UTR of fructose-1,6-bisphosphatase 

(fbp1b2; XM_021603006.1) was for ssa-miR-21a -5p (MIMAT0032533) with a pairing score of 

155 and free energy score of -13.53 kCal/Mol. When the cytosolic form of the enzyme 

phosphoenolpyruvate carboxykinase (pepck1; XM_021568440.1) was ran through the algorithm, 

two binding sites for ssa-miR-194a-3p (MIMAT0032448) were found in the 3’ UTR that 

combined gave a total binding score of 301 and a free energy score of -37.89 kCal/Mol. The 

glucokinase (gcka; NM_001124249.2) 3’ UTR had three predicted ssa-miR-33a-5p 

(MIMAT0032620) binding sites that gave total binding score of 449 and free energy of -45.13 

kCal/Mol. Finally, the pyruvate kinase (pklr; XM_021622264) 3’ UTR was found to have one 

binding site for ssa-miR-192a-3p (MIMAT0032441) that had a binding score of 160 and a free 

energy score of -22.72 kCal/Mol.  
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Figure 3.3: Relative expression of fructose-1,6-bisphosphate and ssa-miR-21a-5p in 

hepatocytes exposed to increasing concentrations of cortisol. mRNA of the fbp1b2 transcript 

was measured in cell lysates (A) while miR-21a was measured in both the cell lysate (B) and the 

cell media supernatant (C) after 2- or 4-hours of exposure. Relative abundances were measured 

using RT-qPCR and normalized to the 18s rRNA expression in both fractions. Relative 

abundances were subsequently normalized to the 2-hour control of the same fish prior to 

analysis. Bars that do not share a common letter within the same timepoint were found to be 

significantly different (Two-way ANOVA, p <0.05 Dunnett’s Post Hoc, n = 3).  

 

3.3.3 Fructose-1,6-bisphosphatase expression 

 The transcript levels for fbp1b2, one of the paralogs for fructose-1,6-bisphosphatase in 

rainbow trout, were not significantly influenced by 2- or 4-hours of cortisol exposure (Fig 3.3 A). 

A similar result was found for ssa-miR-21a which, although being highly likely to influence the 

expression of fbp1b2 according to the MiRanda algorithm, was found to be unaffected at the 

same timepoints (Fig 3.3 B). However, ssa-miR-21a was found to be significantly elevated in the 

media supernatant of cells exposed to 300 ng/mL cortisol after 2-hours (Fig 3.3 C, Dunnett’s 

Post Hoc, p = 0.041). This increased secretion had returned to control values at the 4-hour 

timepoint.  
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Figure 3.4: Relative expression of phosphoenolpyruvate carboxykinase and ssa-miR-194a-

3p in hepatocytes exposed to increasing concentrations of cortisol. mRNA of the pepck1 

transcript was measured in cell lysates (A) while miR-194a was measured in both the cell lysate 

(B) and the cell media supernatant (C) after 2- or 4-hours of exposure. Relative abundances were 

measured using RT-qPCR and normalized to the 18s rRNA expression in both fractions. Relative 

abundances were subsequently normalized to the 2-hour control of the same fish prior to 

analysis. Bars that do not share a common letter within the same timepoint were found to be 

significantly different (Two-way ANOVA, p <0.05 Dunnett’s Post Hoc, n = 3).  

 

3.3.4 Phosphoenolpyruvate carboxykinase expression 

 Transcript levels for pepck1, the cytosolic form of phosphoenolpyruvate carboxykinase, 

were found to be significantly elevated at both timepoints after cortisol exposure in hepatocytes 

(Fig 3.4 A). At the 2-hour timepoint, 30 ng/mL (Dunnett’s Post Hoc, p = 0.0203), 300 ng/mL 

(Dunnett’s Post Hoc, p = 0.0088), and 3000 ng/mL (Dunnett’s Post Hoc, p = 0.0075) 

significantly increased transcript levels. However, at the 4-hour timepoint, cells exposed to 3000 

ng/mL (Dunnett’s Post Hoc, p = 0.070) had returned to control levels while cells exposed to 30 

ng/mL (Dunnett’s Post Hoc, p = 0.0086) and 300 ng/mL (Dunnett’s Post Hoc, p = 0.088) cortisol 

remained significantly elevated. The top miRNA predicted to influence pepck1 expression, ssa-

miR-194a, was not influenced by cortisol exposure in hepatocytes (Fig 3.4 B) or in supernatant 

(Fig 3.4 C). 
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Figure 3.5: Relative expression of glucokinase and ssa-miR-33a-5p in hepatocytes exposed 

to increasing concentrations of cortisol. mRNA of the gck transcript was measured in cell 

lysates (A) while miR-194a was measured in both the cell lysate (B) and the cell media 

supernatant (C) after 2- or 4-hours of exposure. Relative abundances were measured using RT-

qPCR and normalized to the 18s rRNA expression in both fractions. Relative abundances were 

subsequently normalized to the 2-hour control of the same fish prior to analysis. Bars that do not 

share a common letter within the same timepoint were found to be significantly different (Two-

way ANOVA, p <0.05 Dunnett’s Post Hoc, n = 3).  

 

3.3.5 Glucokinase expression 

 Glucokinase transcript levels were found to be unimpacted by cortisol within 

hepatocytes. The top miRNA predicted to impact expression, ssa-miR-33a, was also unimpacted 

both in the cell lysates and in cell media supernatant. However, at 2-hours of 300 ng/mL 

exposure, supernatant levels were found to be increased from 4- to 30-fold times. 
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Figure 3.6: Relative expression of pyruvate kinase and ssa-miR-192a-3p in hepatocytes 

exposed to increasing concentrations of cortisol. mRNA of the pklr transcript was measured in 

cell lysates (A) while miR-194a was measured in both the cell lysate (B) and the cell media 

supernatant (C) after 2- or 4-hours of exposure. Relative abundances were measured using RT-

qPCR and normalized to the 18s rRNA expression in both fractions. Relative abundances were 

subsequently normalized to the 2-hour control of the same fish prior to analysis. Bars that do not 

share a common letter within the same timepoint were found to be significantly different (Two-

way ANOVA, p <0.05 Dunnett’s Post Hoc, n = 3).  

 

3.3.6 Pyruvate kinase expression 

Pyruvate kinase transcript levels were found to be unimpacted by cortisol within 

hepatocytes. The top miRNA predicted to impact expression, ssa-miR-192a, was also 

unimpacted both in the cell lysates and in cell media supernatant. 

 

 

 

 

 

 

 

 



70 
 

 

Figure 3.7: Enzyme activity of key metabolic enzymes in hepatocytes exposed to increasing 

concentrations of cortisol. Activity was measured after 2- or 4-hours of exposure using coupled 

enzyme reactions and normalized to the 2-hour control timepoint in each fish. Bars overtop of 

specific timepoints indicate a significant difference between timepoints (Two-way ANOVA, p < 

0.05, n = 3).  

 

3.3.7 Activities of metabolic enzymes of interest 

 Activities of the enzymes of interest were measured from cell lysates to see how cortisol 

impacted glucose utilization. Both fructose-1,6-bisphosphatase and phosphoenolpyruvate 

carboxykinase activities were not impacted by any concentration of cortisol during the 

timepoints measured. However, hexokinase (Two-way ANOVA, p = 0.0419) and pyruvate 
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kinase (Two-way ANOVA, p =0.0356) had significantly lower activity at the 4-hour timepoint 

for all groups when compared to the 2-hour timepoint.  

 

3.4 Discussion 

This study was aimed at determining the miRNA changes that occur in hepatocytes after 

exposure to cortisol. These miRNAs were predicted to target key metabolic enzymes involved in 

glucose regulation and were measured in hepatocytes and their cell media supernatant. Rainbow 

trout are the ideal model for this study as the glucose metabolism of this species is well studied 

and recent work has started looking into miRNA roles in this phenotype (Mennigen, 2016). 

Studies investigating the effect of cortisol on hepatocyte metabolism have used this same species 

so using rainbow trout hepatocytes can expand the role of miRNAs during stress (Aluru & 

Vijayan, 2009; Wiseman et al., 2007).  

3.4.1 Viability of cultured hepatocyte  

Primary culturing of rainbow trout hepatocytes offers an excellent model for studying 

metabolism in teleosts (Segner, 1998). These cells can still be metabolically active up to 72-

hours if cultured in media supplemented with nutrients (Segner et al., 1994). The hepatocytes in 

this study were maintained at these conditions and exposed within the 72-hours of collection. 

However, to confirm that cells were viable during the experiment, LDH was measured in the 

supernatant. LDH is a cytoplasmic enzyme that is released by cells after damage (Kumar 2018). 

This assay has been used in rainbow trout to confirm consistent cell viability between treatments 

(Craig et al., 2013; Faught et al., 2017). LDH activity in the supernatant of the cultured 

hepatocytes shows clear differences within and between fish (Fig 3.2). Fish 1 had a significant 
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decrease in LDH levels at the 4-hour timepoint while fish 3 had significantly higher LDH 

activity at the 4-hour timepoint. As well, fish 3 had significantly higher LDH activities compared 

to the other two specimens. Likely this implies that cells were undergoing necrosis or had plasma 

membrane leakage. Fish 3 could have been unhealthy, and hepatocytes were unviable at the time 

of the study, although I did not observe any signs of abnormalities or pathologies during 

hepatocyte preparation. However, another explanation could be the treatment conditions used in 

the experiment. In order to expose cells to cortisol, 0.1% ethanol was used to dissolve the 

hormone as it is hydrophobic (Mommsen et al., 1999). This concentration has been used on 

tilapia hepatocytes but the authors did not report the viability of cells after exposure (Pierce et 

al., 2012). Ethanol concentrations up to 1% do not impact viability in mammalian cultures, but 

other rainbow trout exposures use concentrations of 0.01% (Aluru & Vijayan, 2007; Faught et 

al., 2017; Sathiyaa & Vijayan, 2003; Timm et al., 2013). If hepatocytes were not healthy at the 

time of exposure, the higher ethanol concentration could cause excess cell death. Therefore, the 

results from this chapter might not be physiologically relevant.  

3.4.2 Regulation of fructose-1,6-bisphosphatase by cortisol 

 The first enzyme of interest was Fbpase, which catalyzes the production of fructose-6-

phosphate from fructose-1,6-phosphate (Enes et al., 2009; Suarez & Mommsen, 1986). For this 

study the fbp1b2 gene was chosen since fbp1b is expressed in the liver and fbp1b2 was found to 

be influenced by feeding in rainbow trout alevins (Marandel et al., 2015; Marandel et al., 2016). 

Figure 3.3A shows that transcript abundances for this gene were unaffected by cortisol treatment 

in the hepatocytes. Most studies have investigated the role of cortisol on activity rather than gene 

expression after hormonal stimulation, so the enzyme might not be under transcriptional 

regulation (Dziewulska-Szwajkowska et al., 2003; Morales et al., 1990). However, the activity of 
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the enzyme was also unaffected by cortisol (Fig 3.7) even though Fbpase activity was shown to 

be increased 6-hours after handling (Morales et al., 1990). There could be a few reasons for this; 

either the timepoints were too early to increase activity of the enzyme or cortisol by itself is 

unable to influence Fbpase activity. When stress is induced in vivo, other signalling mechanisms 

influence altered physiology, including catecholamines and neuroendocrine peptides (Bonga, 

1997; Mommsen et al., 1999). Any of these other mechanisms could influence Fbpase activity 

and the changes reported by Morales et al (1990) are only present during the full stress 

responses.  

 MiRanda was used to predict miRNA that could influence expression of Fbpase. The top 

predicted miRNA was ssa-miR-21a-5p which is a part of the highly expressed miR-21 family of 

miRNAs in rainbow trout livers (Juanchich et al., 2016). Hepatocyte expression of this miRNA 

was unaffected by cortisol (Fig 3.3 B) but supernatant expression was significantly elevated at 

300 ng/mL cortisol after 2-hours (Fig 3.3 C). This was lost at the 4-hour timepoint where no 

significant differences in the miRNA were found. MiRNAs are stable in solution for up 2 months 

at room temperature so they likely did not degrade (Turchinovich et al., 2011). A plausible 

explanation is that the hepatocytes reabsorbed the miRNA, although no difference in abundance 

of this miRNA was measured at 4-hours in the cells. The miR-21 family is the most highly 

abundant miRNA in the liver (Juanchich et al., 2016). Reuptake of this miRNA might not 

contribute enough to the cellular abundance but then that begs to question: what is the purpose of 

these secreted miRNAs? They could still be influencing protein levels of Fbpase, although this is 

not supported by the lack of change in enzymatic activity. Future work would benefit 

investigating this relationship to see if miR-21a could be impacting Fbpase, through transfection 

studies.  
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3.4.3 Regulation of phosphoenolpyruvate carboxykinase by cortisol 

 Pepck is a well studied enzyme involved in gluconeogenesis that catalyzes the production 

of phosphoenolpyruvate from oxaloacetate (Knox et al., 1980; Suarez & Mommsen, 1986). 

Pepck also has three genes that are expressed in different parts of the cell: pepck1 is cytosolic 

while pepck2a and pepck2b are mitochondrial (Enes et al., 2009; Marandel et al., 2019). The 

cytosolic form has been shown to be transcriptionally altered by cortisol and was therefore 

chosen as the target for this study (Marandel et al., 2019). Figure 3.4A shows that physiological 

levels of cortisol (30 and 300 ng/mL) increased pepck1 expression at 2- and 4-hours while high 

levels of cortisol (3000 ng/mL) was only elevated at 2-hours. Pepck can only be upregulated 

transcriptionally since its activity cannot be modified allosterically (Enes et al., 2009). Other 

studies have found that cortisol upregulates pepck1 transcript abundance 3-fold after 24-hours 

but none have looked at acute upregulation at 2-hours (Aluru & Vijayan, 2007). However, Figure 

3.7 shows that Pepck activity was unimpacted at either of the timepoints. This could be due to 

the method of enzyme isolation. The mitochondrial forms of Pepck have been shown to be 

endogenously expressed and therefore are unimpacted by cortisol signalling (Marandel et al., 

2019). To properly measure only the cytosolic form, differential centrifugation should have been 

performed on homogenates to separate out the different fractions of the enzyme. This could have 

provided more information on whether any post-transcriptional regulation could be occurring 

since activity and gene expression of this enzyme are not always correlated (Sathiyaa & Vijayan, 

2003).  

 The top predicted target for pepck1 was ssa-miR-194a. MiRanda found 2 binding sites in 

the 3’ UTR of this transcript which resulted in a higher total score. MiRNAs can act 

synergistically, and multiple miRNAs binding not only allows for greater repression of 
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translation but allows for more fine tuning of protein expression (Brennecke et al., 2005). This 

means that subtle changes in miRNA expression could have large changes in pepck expression. 

However, miRNA levels were unimpacted by cortisol stimulation. MiRNAs can act as thresholds 

to prevent expression until a certain amount of their target mRNA is expressed, so lack of change 

in transcript abundance does not indicate that pepck is not regulated by miRNAs (Leung & 

Sharp, 2010). Therefore, future studies should use knockdowns, transfections, or luciferase 

binding assays to determine if pepck1 is under miRNA regulation.  

3.4.4 Regulation of glucokinase by cortisol 

 Gk is the liver isozyme of Hk that catalyzes the production of glucose-6-phosphate from 

glucose in glycolysis (Enes et al., 2009; S Panserat et al., 2001; Polakof et al., 2012). Gk has two 

genes in rainbow trout which both increase in expression after carbohydrate loading (Marandel et 

al., 2017, 2015). However, in the present study, there were no changes in gene expression after 

cortisol exposure (Fig 3.5 A). Previous work has found that gk is upregulated at 24-hours post 

cortisol exposure, so the transcript might require more than 4-hours for upregulation (Wiseman 

et al., 2007). Enzyme activity was also unimpacted by cortisol even though stress has been 

shown to increase activity within 2-hours (Fig 3.7; López-Patiño et al., 2014). The increase seen 

in vivo could be regulated by multiple interacting pathways and changes that occur during 

recovery from stress as mentioned above. Figure 3.7 also shows that there was a time-dependant 

effect, where Gk activity was decreased at the 4-hour timepoint compared to the 2-hour 

timepoint. Likely this decrease was due to the change in media increasing glucose concentrations 

for hepatocytes to metabolize. This further points to metabolites such as glucose regulating the 

activity of the enzyme during these times.  
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 MiRanda predicted ssa-miR-33a-5p as the top miRNA to bind since it had 3 different 

miRNA binding sites in the gk 3’ UTR. As mentioned above, multiple miRNA binding sites per 

UTR can act synergistically to fine tune the regulation of the gene (Brennecke et al., 2005). 

However, miR-33a was not altered at any timepoint post cortisol exposure in the hepatocytes or 

the supernatant (Fig 3.5 B & C). Supernatant levels of the miRNA were more variable at 

physiological cortisol concentrations (300 ng/mL) than tissue levels, showing that there might be 

individual-driven differences in secretion that the low sample size might not be able to 

demonstrate. The miR-33 family of miRNAs have been shown to impact metabolism both in 

humans and fish (Kostyniuk et al., 2018; Mennigen, 2016; Mennigen et al., 2012; Mirra et al., 

2018). Although no changes were observed, further investigations should determine if gk could 

be another metabolic target for this miRNA.  

3.4.5 Regulation of pyruvate kinase by cortisol 

 Pk is another important glycolytic enzyme that catalyzes the formation of pyruvate from 

phosphoenolpyruvate, which can then feed into the TCA cycle (Enes et al., 2009). The liver 

version of this enzyme has been shown to be upregulated 1-hour after a handling stress in 

rainbow trout (Wiseman et al., 2007). However, pklr expression in this study was unimpacted by 

cortisol (Fig 3.6A). This shows that cortisol is insufficient to induce a transcriptional response 

and signalling events in vivo after stress are necessary for increasing gene expression. Cortisol 

exposure in Nile tilapia increased Pk enzyme activity; however handling stress of rainbow trout 

did not have the same impact (Morales et al., 1990; Vijayan et al., 1997). Cortisol was also 

insufficient in altering Pk activity at the timepoints measured (Fig 3.7). This could be attributed 

to the difference in timepoints between studies since activity could be controlled in a time 

dependant manner (Laiz-Carrion et al., 2003; Polakof et al., 2008). Similar to Gk activity, there 
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was a significant decrease in Pk activity at the 4-hour timepoint that is likely attributed to the 

change in media. This change could be masking any changes in activity due to cortisol, so future 

studies should investigate reducing or removing glucose from the media to limit any metabolite-

drive effects.  

 Ssa-miR-192a was predicted to be the top miRNA to bind pklr. Although it only had one 

binding site, the score and free energy fell within the range used by other studies as a cut-off for 

predicted targets (Kostyniuk et al., 2019). Figure 3.6 B & C show that this miRNA was 

unimpacted by cortisol at both timepoints in hepatocytes and supernatant. Yet again there is high 

variability at the physiological cortisol levels in the supernatant so different fish could be 

responding to these changes by secreting miRNAs. Of course, this could be due to cell leakage 

(as shown with LDH assay), but further study should see if such changes occur in healthy 

hepatocytes. MiR-192 has been linked to carbohydrate metabolism by increasing in circulation 

of pre-diabetic patients and glucose-intolerant mice (Párrizas et al., 2015). Rainbow trout are a 

model to study glucose intolerance, so this miRNA could have similar responses in circulation.  

3.4.6 Conclusion 

 In conclusion, cortisol has been shown to impact miRNA levels and key genes involved 

in gluconeogenesis in rainbow trout hepatocytes. This hormone upregulates gluconeogenesis, but 

has also been shown to impact glycolysis during recovery from stress (Aluru & Vijayan, 2007; 

Mommsen et al., 1999; Wiseman et al., 2007). In this study enzymatic activities were 

unimpacted by cortisol, but glycolytic activity could have been masked by changes in 

metabolites. Unfortunately, hepatocytes might not have responded in a physiological manner due 

to increased cell leakage. This is especially problematic for a study interested in measuring 

miRNA secretion, so care in the future should be taken to maintain cell viability. The miRNAs 
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predicted to target these carbohydrate regulating enzymes are already associated with 

metabolism, so future studies should investigate if changes in circulation and cell abundances 

could have impacts on the glucose intolerant phenotype of rainbow trout.  
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Chapter 4 
General Conclusion 
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 The primary objective of this study was to examine how miRNAs are altered following a 

stressor in rainbow trout. MiRNAs were of interest since they have been shown to respond to 

environmental change as well as hormonal signalling (Cameron et al., 2015; Craig et al., 2014). 

Understanding the functional roles miRNAs have in regulating gene expression can expand the 

current knowledge on how their dysregulation through environmental contamination or 

pathologies could impact cellular function. Determining the physiological relevance of these 

small, non-coding RNAs can also provide insight into how stress can be mitigated in teleosts 

such as the economically relevant rainbow trout.  

The two studies carried out in this thesis have yielded interesting results on miRNA 

regulation following a stressful event in rainbow trout; however, comparing the results can be 

difficult due to differences in how the studies were conducted. For example, the circulating 

miRNA were extracted using different methods. Chapter 2 miRNAs were associated with EVs 

while the miRNAs in chapter 3 were extracted using a general circulating miRNA protocol. Most 

of the miRNA in circulation have been found to be associated with protein complexes 

independent of vesicles (Arroyo et al., 2011; Turchinovich et al., 2011). The vesicle-associated 

fraction have a different miRNA signature than the general circulating miRNAs, but have been 

shown to biologically active (Pegtel et al., 2010; Turchinovich et al., 2011). Therefore, any 

changes that could be occurring in vesicles in chapter 3 might be masked by the overall 

circulating abundance remaining constant, which was not measured in chapter 2. The timepoints 

are also different between studies, and since the changes in chapter 2 were found to be altered at 

different times for each miRNA, any alteration of chapter 3 miRNAs might have been missed. 

The difference in stressors between the two chapters could also be a source of the differences. 

Responses to handling in vivo will impact whole animal physiology using complicated signalling 
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networks between and within tissues. The in vitro study, while valuable in determining specific 

effects of one aspect of the stress response, is on an isolated cell type in a culture plate which 

might respond differently when in vivo. This all must be considered when comparing the 

findings of this thesis.  

Even so, both chapters stand independently to show that miRNAs can be altered by stress 

and cortisol. In chapter 2, it was found that vesicle-associated miRNAs were altered in a time-

dependant manner depending on the specific miRNA examined. The likely source of these 

miRNAs are tissues with direct contact to blood, which includes liver, gills, kidney, spleen, 

endothelial cells, and even the erythrocytes themselves (Turchinovich et al., 2011). KEGG 

analysis revealed that these altered miRNAs were predicted to inhibit metabolic pathways and 

metabolic changes are vital during stress recovery. When these same miRNAs were measured in 

tissues, different trends were observed that could be supporting the tissue in its role during stress 

recovery. Upon looking at the general trend (Fig 2.3), it was seen that there is an increase in 

miRNA abundance in EVs in the blood, and a decrease in the abundance of miRNA measured in 

the tissue, in a time, and miRNA-specific manner. This may imply that following a stressful 

event, inhibitors are removed from stress responsive tissues to ensure there is an appropriate 

upregulation in specific stress responsive pathways. In the liver, decreases in miRNA 

abundances could be aiding in increasing energy availability to other tissues as this is the 

primary role for the organ during recovery. In the anterior kidney, the miRNAs were either not 

impacted at all or almost completely depleted which could be due to their role as regulators of 

immune function. However, the physiological results of these changes need to be explored 

further to understand how exactly miRNAs support stress recovery in teleosts.  
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In chapter 3, it was found that miRNAs could be altered by cortisol. Tissue miRNA 

abundances were unaltered by cortisol exposure, but it was able to upregulate key genes involved 

in gluconeogenesis. MiRNAs can act as a translational buffer, so although no abundance changes 

were measured, they could still be preventing overexpression of these metabolic genes (Leung & 

Sharp, 2010). Cortisol was also found to have a dose-dependant effect on one miRNA in the 

supernatant, indicating that it can impact miRNA secretion from hepatocytes. However, whether 

the secretion of this miRNA is related to its predicted binding target in this chapter or some other 

target requires further study. This miRNA (ssa-miR-21a-5p) has a similar sequence omy-miR-21 

which was measured in chapter 2. The miR-21 family is highly abundant in the liver of rainbow 

trout (Juanchich et al., 2016). Whether abundance of the miRNA families within a tissue could 

be a factor in their secretion is unknown, but future studies could explore this relationship. 

Finally, although they were found to be unaltered in this experiment, the miRNA predicted to 

inhibit metabolic enzymes have been already associated with dysregulation of metabolism 

(Kostyniuk et al., 2018; Mennigen et al., 2012; Párrizas et al., 2015).  

There are many opportunities for future work that can build on the current findings. 

Chapter 2 shows that there are epigenetic changes occurring during recovery from stress, but it 

does not fully explain what these miRNAs are doing. Future studies can investigate the 

abundance changes in other tissues such as the gills or spleen to see how they could be 

contributing to the circulating complement of miRNAs. Perfusions can also be used as ways of 

determining the functions of these miRNAs; what functional, phenotypic changes occur if the 

liver (or other tissues) are exposed to stress produced EVs? Chapter 3 demonstrates that there 

could be interesting epigenetic changes occurring due to cortisol exposure in hepatocytes, but 

how this contributes to the liver’s role in response stress remains unclear and warrants further 
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investigation. Repeating the experiment using healthy tissue and testing timepoints that align 

with current literature can offer more explanation for the role of miRNAs in recovery from 

stress. Since in vivo effects include many interacting signals, factors such as catecholamines or 

elevated circulating glucose could be accounted for by exposing cells before or after adding 

cortisol to determine their influence on changes. Finally, the miRNA predicted to target these 

enzymes are associated with metabolism. Future work should investigate whether their influence 

on gluconeogenesis/glycolysis plays a role in the glucose intolerance of rainbow trout.  
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Appendix A – Recipes for Solutions 

 

 

Chapter 2 – Handling Stressor Buffers 

Table A.1: Glucose spectrophotometry assay buffer. Buffer was combined with rainbow trout 

plasma to determine glucose levels in circulation. The change in NADP to NADPH was 

measured for 20 mins at 340 nm.  

Chemical Final 

Concentration 

pH 

Hepes Buffer 50 mM 7.4 

MgCl2 10 mM 
 

KCl 100 mM 
 

NADP 1 mM 
 

ATP 1 mM 
 

Glucose-6-Phosphate dehydrogenase 1 unit/mL 
 

Hexokinase 1 unit/mL 
 

 

 

Chapter 3 – Hepatocyte Exposure Buffers 

 

Hepatocyte Isolation  

Table A.2: Hanks’ Salts Solution (5x) 

Chemical Final Concentration (mM) 

Na2HPO4 0.33 

KH2PO4 0.44 

MgSO4 x 

7H2O 

0.8 

NaCl 136.9 

KCl 5.4 

Hepes 5 

Hepes x Na 5 

 

Table A.3: Basic Hanks’ Solution (pH 7.63) 

Chemical Final Concentration 

5x Hanks' salt solution 1x 

H2O 
 

NaHCO3 5 mM 

 



101 
 

Table A.4: Rinsing Solution (pH 7.63) 

Chemical Final Concentration 

Basic Hanks' 

Solution 

 

EGTA 1 mM 

 

Table A.5: Collagenase Media (pH 7.63) 

Chemical Final Concentration 

Basic Hanks' 

Solution 

 

Collagenase Type 

IV 

31.5 units/mL 

 

Table A.6: BSA Hanks’ Resuspension Media (pH 7.63) 

Chemical Final Concentration 

Basic Hanks' Solution 
 

CaCl2 1.5 mM 

Bovine Serum Albumin 1.5% 

 

Table A.7: Hanks’ Culture Media (pH 7.63). Antibiotics were added after filtering media 

through a 0.22 µm bottle filter into an autoclaved bottle.  

Chemical Final Concentration 

Basic Hanks' Solution 
 

100x MEM Non-essential amino acids 1x 

50x MEM Essential amino acids 1x 

CaCl2 1.5 mM 

100x Antibiotics solution 1x 
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Enzyme Assay Reaction Buffers 

 

Table A.8: Enzyme Extraction buffer. Cell pellets were weighed and diluted in 20x buffer 

before sonication.  

Chemical Final Concentration pH 

Hepes Buffer 20 mM 7 

EDTA 1 mM 
 

Triton X-100 0.10% 
 

Protease Inhibitor Cocktail (Roche) 1/10 mL 
 

 

Table A.9: Lactate Dehydrogenase assay. LDH activity was measured in cell media 

supernatants to determine leakage. The reaction buffer was added first to sample, and assay 

started by adding substrate after 1-minute incubation. The change in ratio of NADH to NAD was 

measured spectrophotometrically at 340 nm for 30 mins.  

Chemical Final Concentration pH 

Imidazole Buffer 20 mM 7.4 

NADH 0.15 mM 
 

 

Substrate Final Concentration 

Pyruvate 1 mM 

 

Table A.10: Pyruvate Kinase assay. PK activity was measured in cell lysates to determine how 

cortisol influenced enzymatic activity. The reaction buffer was added first to sample, and assay 

started by adding substrate after 1-minute incubation. The change in ratio of NADH to NAD was 

measured spectrophotometrically at 340 nm for 30 mins. 

Chemical Final Concentration pH 

Imidazole Buffer 50 mM 7.4 

ADP 5 mM 
 

KCl 100 mM 
 

MgCl2 10 mM 
 

NADH 0.15 mM 
 

Fructose-1,6-Bisphosphate 10 mM 
 

Lactate Dehydrogenase 5 units/mL 
 

 

Substrate Final Concentration 

Phosphoenol pyruvate 5 mM 
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Table A.11: Phosphoenolpyruvate carboxykinase assay. Pepck activity was measured in cell 

lysates to determine how cortisol influenced enzymatic activity. The reaction buffer was added 

first to sample, and assay started by adding substrate after 1-minute incubation. The change in 

ratio of NADH to NAD was measured spectrophotometrically at 340 nm for 30 mins. 

Chemical Final Concentration pH 

Tris-HCl Buffer 80 mM 7.4 

KCN 1 mM 
 

MnCl2 1 mM 
 

MgCl2 1 mM 
 

Inosine 5'-diphosphate 1.5 mM 
 

NADH 0.17 mM 
 

Phosphoenol pyruvate 1.1 mM 
 

Malate dehydrogenase 19 units/mL 
 

 

Substrate Final Concentration 

NaHCO3 0.001 mM 

 

Table A.12: Hexokinase assay. HK activity was measured in cell lysates to determine how 

cortisol influenced enzymatic activity. The reaction buffer was added first to sample, and assay 

started by adding substrate after 1-minute incubation. The change in ratio of NADP to NADPH 

was measured spectrophotometrically at 340 nm for 30 mins. 

Chemical Final Concentration pH 

Imidazole Buffer 20 mM 7.4 

MgCl2 5 mM 
 

1,4-Dithioerythritol 5 mM 
 

Glucose 100 mM 
 

NADP+ 0.5 mM 
 

Glucose-6-Phosphate 

Dehydrogenase 

0.5 units/mL 
 

 

Substrate Final Concentration 

ATP 1 mM 
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Table A.13: Fructose-1,6-Bisphosphatase assay. FBPase activity was measured in cell lysates 

to determine how cortisol influenced enzymatic activity. The reaction buffer was added first to 

sample, and assay started by adding substrate after 1-minute incubation. The change in ratio of 

NADP to NADPH was measured spectrophotometrically at 340 nm for 30 mins. 

Chemical Final Concentration pH 

Tris-HCl Buffer 80 mM 8 

EDTA 5 mM 
 

MgSO4 8 mM 
 

KH2PO4 1 mM 
 

NAHCO 2 mM 
 

1,4-Dithioerythritol 2.5 mM 
 

NADP+ 2 mM 
 

Glucose-6-Phosphate 

Dehydrogenase 

65 mUnits/mL 
 

6-Phosphogluconate dehydrogenase 65 mUnits/mL 
 

 

Substrate Final Concentration 

Fructose-1,6-Bisphosphate 2 mM 
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Appendix B – KEGG Pathways 

Table B.1: Pathways impacted by miR-21. Predicted targets for miR-21 were determined by 

searching the miRNA sequence through MiRanda with all Salmo salar 3’ UTRs as the database. 

Targets were then run through KEGG to determine pathways predicted to be impacted.  

KEGG 

Identifier 

Pathway Number of Targets 

sasa01100  Metabolic pathways  41 

sasa04144  Endocytosis  23 

sasa04080  Neuroactive ligand-receptor interaction  19 

sasa05168  Herpes simplex virus 1 infection  14 

sasa04070  Phosphatidylinositol signaling system  13 

sasa04933  AGE-RAGE signaling pathway in diabetic complications  13 

sasa04010  MAPK signaling pathway  13 

sasa04150  mTOR signaling pathway  12 

sasa04371  Apelin signaling pathway  12 

sasa04020  Calcium signaling pathway  12 

sasa04510  Focal adhesion  12 

sasa04140  Autophagy - animal  11 

sasa05132  Salmonella infection  11 

sasa04916  Melanogenesis  10 

sasa04514  Cell adhesion molecules (CAMs) 10 

sasa04310  Wnt signaling pathway  10 

sasa04520  Adherens junction  10 

sasa04210  Apoptosis  10 

sasa04218  Cellular senescence  9 

sasa04810  Regulation of actin cytoskeleton  9 

sasa04068  FoxO signaling pathway  9 

sasa00562  Inositol phosphate metabolism  8 

sasa04261  Adrenergic signaling in cardiomyocytes  8 

sasa04540  Gap junction  8 

sasa04530  Tight junction  8 

sasa04270  Vascular smooth muscle contraction  7 

sasa00230  Purine metabolism  7 

sasa04912  GnRH signaling pathway  7 

sasa04012  ErbB signaling pathway  6 

sasa04621  NOD-like receptor signaling pathway  6 

sasa04217  Necroptosis  6 

sasa04141  Protein processing in endoplasmic reticulum  6 

sasa04145  Phagosome  6 

sasa04910  Insulin signaling pathway  6 

sasa03013  RNA transport  5 

sasa04625  C-type lectin receptor signaling pathway  5 
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sasa04920  Adipocytokine signaling pathway  5 

sasa04142  Lysosome  5 

sasa04370  VEGF signaling pathway  5 

sasa04914  Progesterone-mediated oocyte maturation  4 

sasa04137  Mitophagy - animal  4 

sasa04512  ECM-receptor interaction  4 

sasa04115  p53 signaling pathway  4 

sasa00534  Glycosaminoglycan biosynthesis - heparan sulfate / heparin  4 

sasa03320  PPAR signaling pathway  3 

sasa01212  Fatty acid metabolism  3 

sasa00280  Valine leucine and isoleucine degradation 3 

sasa04744  Phototransduction  3 

sasa00520  Amino sugar and nucleotide sugar metabolism  3 

sasa04060  Cytokine-cytokine receptor interaction  3 

sasa00270  Cysteine and methionine metabolism  3 

sasa04620  Toll-like receptor signaling pathway  3 

sasa04216  Ferroptosis  2 

sasa04622  RIG-I-like receptor signaling pathway  2 

sasa04130  SNARE interactions in vesicular transport  2 

sasa01200  Carbon metabolism  2 

sasa00830  Retinol metabolism  2 

sasa01040  Biosynthesis of unsaturated fatty acids  2 

sasa00601  Glycosphingolipid biosynthesis - lacto and neolacto series  2 

sasa00310  Lysine degradation  2 

sasa04120  Ubiquitin mediated proteolysis  2 

sasa02010  ABC transporters  2 

sasa00561  Glycerolipid metabolism  2 

sasa03015  mRNA surveillance pathway  2 

sasa04350  TGF-beta signaling pathway  2 

sasa00532 

 Glycosaminoglycan biosynthesis - chondroitin sulfate / 

dermatan sulfate  

2 

sasa00510  N-Glycan biosynthesis  2 

sasa00564  Glycerophospholipid metabolism  2 

sasa00600  Sphingolipid metabolism  2 

sasa04136  Autophagy - other  2 

sasa00603  Glycosphingolipid biosynthesis - globo and isoglobo series  2 

sasa04330  Notch signaling pathway  1 

sasa00020  Citrate cycle TCA cycle 1 

sasa00072  Synthesis and degradation of ketone bodies  1 

sasa00604  Glycosphingolipid biosynthesis - ganglio series  1 

sasa00565  Ether lipid metabolism  1 

sasa00970  Aminoacyl-tRNA biosynthesis  1 

sasa03040  Spliceosome  1 
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sasa00770  Pantothenate and CoA biosynthesis  1 

sasa00640  Propanoate metabolism  1 

sasa03010  Ribosome  1 

sasa00010  Glycolysis / Gluconeogenesis  1 

sasa03022  Basal transcription factors  1 

sasa00563  Glycosylphosphatidylinositol (GPI)-anchor biosynthesis  1 

sasa00120  Primary bile acid biosynthesis  1 

sasa04114  Oocyte meiosis  1 

sasa03008  Ribosome biogenesis in eukaryotes  1 

sasa00071  Fatty acid degradation  1 

sasa04340  Hedgehog signaling pathway  1 

sasa00061  Fatty acid biosynthesis  1 

sasa01230  Biosynthesis of amino acids  1 

sasa00511  Other glycan degradation  1 

sasa00062  Fatty acid elongation  1 

sasa00620  Pyruvate metabolism  1 

sasa00260  Glycine serine and threonine metabolism 1 

sasa00051  Fructose and mannose metabolism  1 

sasa04260  Cardiac muscle contraction  1 

sasa03018  RNA degradation  1 

sasa00650  Butanoate metabolism  1 

sasa00760  Nicotinate and nicotinamide metabolism  1 

sasa04146  Peroxisome  1 

sasa00240  Pyrimidine metabolism  1 

sasa00983  Drug metabolism - other enzymes  1 

sasa04110  Cell cycle  1 

sasa03440  Homologous recombination  1 

sasa03060  Protein export  1 

sasa00630  Glyoxylate and dicarboxylate metabolism  1 

sasa00480  Glutathione metabolism  1 

sasa00250  Alanine aspartate and glutamate metabolism 1 

sasa00515  Mannose type O-glycan biosynthesis  1 

sasa00531  Glycosaminoglycan degradation  1 
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Table B.2: Pathways impacted by Let-7a. Predicted targets for let-7a were determined by 

searching the miRNA sequence through MiRanda with all Salmo salar 3’ UTRs as the database. 

Targets were then run through KEGG to determine pathways predicted to be impacted. 

KEGG 

Identifier 

Pathway Number of Targets 

sasa01100  Metabolic pathways  69 

sasa04080  Neuroactive ligand-receptor interaction  45 

sasa04010  MAPK signaling pathway  31 

sasa04510  Focal adhesion  26 

sasa04514  Cell adhesion molecules (CAMs)  25 

sasa04810  Regulation of actin cytoskeleton  25 

sasa04150  mTOR signaling pathway  24 

sasa04310  Wnt signaling pathway  23 

sasa04020  Calcium signaling pathway  23 

sasa04068  FoxO signaling pathway  22 

sasa04916  Melanogenesis  21 

sasa04261  Adrenergic signaling in cardiomyocytes  19 

sasa04530  Tight junction  18 

sasa04141  Protein processing in endoplasmic reticulum  17 

sasa04933  AGE-RAGE signaling pathway in diabetic complications  16 

sasa04914  Progesterone-mediated oocyte maturation  16 

sasa04371  Apelin signaling pathway  15 

sasa04218  Cellular senescence  15 

sasa04144  Endocytosis  15 

sasa04140  Autophagy - animal  14 

sasa04120  Ubiquitin mediated proteolysis  14 

sasa04350  TGF-beta signaling pathway  14 

sasa04910  Insulin signaling pathway  13 

sasa04210  Apoptosis  13 

sasa04625  C-type lectin receptor signaling pathway  13 

sasa04012  ErbB signaling pathway  13 

sasa04512  ECM-receptor interaction  13 

sasa04370  VEGF signaling pathway  12 

sasa04114  Oocyte meiosis  12 

sasa04540  Gap junction  11 

sasa05132  Salmonella infection  11 

sasa04912  GnRH signaling pathway  11 

sasa04620  Toll-like receptor signaling pathway  10 

sasa04060  Cytokine-cytokine receptor interaction  10 

sasa00230  Purine metabolism  10 

sasa04621  NOD-like receptor signaling pathway  10 

sasa04070  Phosphatidylinositol signaling system  10 
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sasa04520  Adherens junction  9 

sasa04260  Cardiac muscle contraction  8 

sasa00565  Ether lipid metabolism  8 

sasa05168  Herpes simplex virus 1 8 

sasa00564  Glycerophospholipid metabolism  7 

sasa04115  p53 signaling pathway  7 

sasa04270  Vascular smooth muscle contraction  7 

sasa00561  Glycerolipid metabolism  6 

sasa04110  Cell cycle  6 

sasa04145  Phagosome  6 

sasa03013  RNA transport  5 

sasa00562  Inositol phosphate metabolism  5 

sasa04622  RIG-I-like receptor signaling pathway  5 

sasa00600  Sphingolipid metabolism  5 

sasa04142  Lysosome  5 

sasa04340  Hedgehog signaling pathway  5 

sasa00510  N-Glycan biosynthesis  4 

sasa04137  Mitophagy - animal  4 

sasa03015  mRNA surveillance pathway  3 

sasa00604  Glycosphingolipid biosynthesis - ganglio series  3 

sasa03040  Spliceosome  3 

sasa03018  RNA degradation  3 

sasa03440  Homologous recombination  3 

sasa00310  Lysine degradation  3 

sasa01210  2-Oxocarboxylic Acid Metabolism 2 

sasa04920  Adipocytokine signaling pathway  2 

sasa03410  Base excision repair  2 

sasa02010  ABC transporters  2 

sasa00515  Mannose type O-glycan biosynthesis  2 

sasa00051  Fructose and mannose metabolism  2 

sasa00120  Primary bile acid biosynthesis  2 

sasa00511  Other glycan degradation  2 

sasa00512  Mucin type O-glycan biosynthesis  2 

sasa00630  Glyoxylate and dicarboxylate metabolism  2 

sasa04330  Notch signaling pathway  2 

sasa00534  Glycosaminoglycan biosynthesis - heparan sulfate / heparin  2 

sasa04130  SNARE interactions in vesicular transport  2 

sasa04146  Peroxisome  2 

sasa04744  Phototransduction  2 

sasa00240  Pyrimidine metabolism  2 

sasa04217  Necroptosis  2 

sasa00020  Citrate cycle (TCA cycle)  2 

sasa00563  Glycosylphosphatidylinositol (GPI)-anchor biosynthesis  2 
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sasa00603  Glycosphingolipid biosynthesis - globo and isoglobo series  2 

sasa00260  Glycine serine and threonine metabolism 2 

sasa00190  Oxidative phosphorylation  2 

sasa00830  Retinol metabolism  2 

sasa00760  Nicotinate and nicotinamide metabolism  2 

sasa00983  Drug metabolism - other enzymes  2 

sasa01230  Biosynthesis of amino acids  2 

sasa01200  Carbon metabolism  2 

sasa00270  Cysteine and methionine metabolism  2 

sasa00514  Other types of O-glycan biosynthesis  1 

sasa03010  Ribosome  1 

sasa00380  Tryptophan metabolism  1 

sasa00440  Phosphonate and phosphinate metabolism  1 

sasa00480  Glutathione metabolism  1 

sasa00052  Galactose metabolism  1 

sasa03430  Mismatch repair  1 

sasa03320  PPAR signaling pathway  1 

sasa00533  Glycosaminoglycan biosynthesis - keratan sulfate  1 

sasa03020  RNA polymerase  1 

sasa00220  Arginine biosynthesis  1 

sasa04216  Ferroptosis  1 

sasa03030  DNA replication  1 

sasa03460  Fanconi anemia pathway  1 

sasa00860  Porphyrin and chlorophyll metabolism  1 

sasa00040  Pentose and glucuronate interconversions  1 

sasa00140  Steroid hormone biosynthesis  1 

sasa00471  D-Glutamine and D-glutamate metabolism  1 

sasa00590  Arachidonic acid metabolism  1 

sasa00360  Phenylalanine metabolism  1 

sasa00910  Nitrogen metabolism  1 

sasa00970  Aminoacyl-tRNA biosynthesis  1 

sasa00601  Glycosphingolipid biosynthesis - lacto and neolacto series  1 

sasa00980  Metabolism of xenobiotics by cytochrome P450 1 

sasa00531  Glycosaminoglycan degradation  1 

sasa00520  Amino sugar and nucleotide sugar metabolism  1 

sasa03420  Nucleotide excision repair  1 

sasa04136  Autophagy - other  1 

sasa00770  Pantothenate and CoA biosynthesis  1 

sasa00650  Butanoate metabolism  1 

sasa00350  Tyrosine metabolism  1 

sasa00250  Alanine aspartate and glutamate metabolism 1 

sasa00053  Ascorbate and aldarate metabolism  1 

sasa00620  Pyruvate metabolism  1 
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sasa03022  Basal transcription factors  1 

sasa00532  Glycosaminoglycan biosynthesis - chondroitin sulfate / 

dermatan sulfate  

1 

sasa00410  beta-Alanine metabolism  1 

sasa00982  Drug metabolism - cytochrome P450 1 

sasa03008  Ribosome biogenesis in eukaryotes  1 

 

Table B.3: Pathways impacted by miR-143. Predicted targets for miR-143 were determined by 

searching the miRNA sequence through MiRanda with all Salmo salar 3’ UTRs as the database. 

Targets were then run through KEGG to determine pathways predicted to be impacted. 

KEGG 

Identifier 

Pathway Number of Targets 

sasa01100  Metabolic pathways  28 

sasa04010  MAPK signaling pathway  12 

sasa04080  Neuroactive ligand-receptor interaction  11 

sasa04810  Regulation of actin cytoskeleton  10 

sasa04510  Focal adhesion  10 

sasa04150  mTOR signaling pathway  9 

sasa04916  Melanogenesis  8 

sasa04514  Cell adhesion molecules (CAMs) 8 

sasa04144  Endocytosis  7 

sasa04530  Tight junction  7 

sasa04310  Wnt signaling pathway  7 

sasa04110  Cell cycle  6 

sasa04020  Calcium signaling pathway  6 

sasa04371  Apelin signaling pathway  6 

sasa00230  Purine metabolism  5 

sasa04140  Autophagy - animal  5 

sasa04910  Insulin signaling pathway  5 

sasa00310  Lysine degradation  4 

sasa04218  Cellular senescence  4 

sasa04114  Oocyte meiosis  4 

sasa01200  Carbon metabolism  4 

sasa04520  Adherens junction  4 

sasa04142  Lysosome  4 

sasa04914  Progesterone-mediated oocyte maturation  4 

sasa00564  Glycerophospholipid metabolism  3 

sasa04012  ErbB signaling pathway  3 

sasa04270  Vascular smooth muscle contraction  3 

sasa04512  ECM-receptor interaction  3 

sasa04540  Gap junction  3 
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sasa00563  Glycosylphosphatidylinositol (GPI)-anchor 

biosynthesis 

3 

sasa00620  Pyruvate metabolism  3 

sasa04912  GnRH signaling pathway  3 

sasa04145  Phagosome  3 

sasa04210  Apoptosis  3 

sasa04120  Ubiquitin mediated proteolysis  3 

sasa00561  Glycerolipid metabolism  3 

sasa00010  Glycolysis / Gluconeogenesis  3 

sasa04137  Mitophagy - animal  3 

sasa04350  TGF-beta signaling pathway  2 

sasa04621  NOD-like receptor signaling pathway  2 

sasa04330  Notch signaling pathway  2 

sasa05132  Salmonella infection  2 

sasa04060  Cytokine-cytokine receptor interaction  2 

sasa00600  Sphingolipid metabolism  2 

sasa04070  Phosphatidylinositol signaling system  2 

sasa04933  AGE-RAGE signaling pathway in diabetic 

complications  

2 

sasa03018  RNA degradation  2 

sasa04115  p53 signaling pathway  2 

sasa03320  PPAR signaling pathway  2 

sasa04625  C-type lectin receptor signaling pathway  2 

sasa04068  FoxO signaling pathway  2 

sasa04261  Adrenergic signaling in cardiomyocytes  2 

sasa00630  Glyoxylate and dicarboxylate metabolism  1 

sasa00524  Neomycin kanamycin and gentamicin biosynthesis 1 

sasa00590  Arachidonic acid metabolism  1 

sasa00512  Mucin type O-glycan biosynthesis  1 

sasa00270  Cysteine and methionine metabolism  1 

sasa00790  Folate biosynthesis  1 

sasa00514  Other types of O-glycan biosynthesis  1 

sasa00052  Galactose metabolism  1 

sasa00020  Citrate cycle (TCA cycle) 1 

sasa00640  Propanoate metabolism  1 

sasa03022  Basal transcription factors  1 

sasa00670  One carbon pool by folate  1 

sasa04130  SNARE interactions in vesicular transport  1 

sasa04370  VEGF signaling pathway  1 

sasa05168  Herpes simplex virus 1 1 

sasa00250  Alanine aspartate and glutamate metabolism 1 

sasa00471  D-Glutamine and D-glutamate metabolism  1 

sasa00520  Amino sugar and nucleotide sugar metabolism  1 
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sasa00450  Selenocompound metabolism  1 

sasa03013  RNA transport  1 

sasa00601  Glycosphingolipid biosynthesis - lacto and 

neolacto series  

1 

sasa00562  Inositol phosphate metabolism  1 

sasa00750  Vitamin B6 1 

sasa03040  Spliceosome  1 

sasa04920  Adipocytokine signaling pathway  1 

sasa00220  Arginine biosynthesis  1 

sasa00511  Other glycan degradation  1 

sasa04622  RIG-I-like receptor signaling pathway  1 

sasa04216  Ferroptosis  1 

sasa04141  Protein processing in endoplasmic reticulum  1 

sasa00260  Glycine serine and threonine metabolism 1 

sasa00500  Starch and sucrose metabolism  1 

sasa04136  Autophagy - other  1 

sasa00051  Fructose and mannose metabolism  1 

sasa00970  Aminoacyl-tRNA biosynthesis  1 

sasa00920  Sulfur metabolism  1 

sasa04260  Cardiac muscle contraction  1 

sasa00480  Glutathione metabolism  1 

 

Table B.4: Pathways impacted by miR-29a. Predicted targets for miR-21 were determined by 

searching the miRNA sequence through MiRanda with all Salmo salar 3’ UTRs as the database. 

Targets were then run through KEGG to determine pathways predicted to be impacted. 

KEGG 

Identifier 

Pathway Number of Targets 

sasa01100  Metabolic pathways  29 

sasa04080  Neuroactive ligand-receptor interaction  15 

sasa04510  Focal adhesion  14 

sasa04060  Cytokine-cytokine receptor interaction  11 

sasa05168  Herpes simplex virus 1 infection  11 

sasa04310  Wnt signaling pathway  10 

sasa04010  MAPK signaling pathway  9 

sasa04810  Regulation of actin cytoskeleton  9 

sasa04514  Cell adhesion molecules (CAMs) 9 

sasa04910  Insulin signaling pathway  9 

sasa04150  mTOR signaling pathway  8 

sasa05132  Salmonella infection  7 

sasa04512  ECM-receptor interaction  7 

sasa04070  Phosphatidylinositol signaling system  7 

sasa04144  Endocytosis  7 
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sasa04530  Tight junction  6 

sasa03015  mRNA surveillance pathway  6 

sasa00562  Inositol phosphate metabolism  5 

sasa04270  Vascular smooth muscle contraction  5 

sasa04068  FoxO signaling pathway  5 

sasa04217  Necroptosis  5 

sasa04350  TGF-beta signaling pathway  5 

sasa04114  Oocyte meiosis  5 

sasa04140  Autophagy - animal  5 

sasa04218  Cellular senescence  5 

sasa03013  RNA transport  5 

sasa04120  Ubiquitin mediated proteolysis  5 

sasa04145  Phagosome  5 

sasa04020  Calcium signaling pathway  4 

sasa04620  Toll-like receptor signaling pathway  4 

sasa04933  AGE-RAGE signaling pathway in diabetic 

complications  

4 

sasa04261  Adrenergic signaling in cardiomyocytes  4 

sasa04621  NOD-like receptor signaling pathway  4 

sasa04916  Melanogenesis  4 

sasa04210  Apoptosis  4 

sasa04340  Hedgehog signaling pathway  4 

sasa04142  Lysosome  4 

sasa00601  Glycosphingolipid biosynthesis - lacto and neolacto 

series  

4 

sasa04146  Peroxisome  3 

sasa04330  Notch signaling pathway  3 

sasa04141  Protein processing in endoplasmic reticulum  3 

sasa00512  Mucin type O-glycan biosynthesis  3 

sasa04110  Cell cycle  3 

sasa04115  p53 signaling pathway  3 

sasa04371  Apelin signaling pathway  3 

sasa04914  Progesterone-mediated oocyte maturation  3 

sasa04012  ErbB signaling pathway  3 

sasa04625  C-type lectin receptor signaling pathway  3 

sasa03460  Fanconi anemia pathway  2 

sasa00603  Glycosphingolipid biosynthesis - globo and isoglobo 

series  

2 

sasa00534  Glycosaminoglycan biosynthesis - heparan sulfate / 

heparin  

2 

sasa00604  Glycosphingolipid biosynthesis - ganglio series  2 

sasa04540  Gap junction  2 

sasa04622  RIG-I-like receptor signaling pathway  2 

sasa04912  GnRH signaling pathway  2 

sasa00240  Pyrimidine metabolism  2 

sasa00072  Synthesis and degradation of ketone bodies  2 
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sasa00650  Butanoate metabolism  2 

sasa00564  Glycerophospholipid metabolism  2 

sasa02010  ABC transporters  2 

sasa00280  Valine leucine and isoleucine degradation 2 

sasa00515  Mannose type O-glycan biosynthesis  2 

sasa03008  Ribosome biogenesis in eukaryotes  1 

sasa04744  Phototransduction  1 

sasa00380  Tryptophan metabolism  1 

sasa00563  Glycosylphosphatidylinositol (GPI)-anchor 

biosynthesis  

1 

sasa00480  Glutathione metabolism  1 

sasa04216  Ferroptosis  1 

sasa00561  Glycerolipid metabolism  1 

sasa00510  N-Glycan biosynthesis  1 

sasa00350  Tyrosine metabolism  1 

sasa00590  Arachidonic acid metabolism  1 

sasa04136  Autophagy - other  1 

sasa00330  Arginine and proline metabolism  1 

sasa03040  Spliceosome  1 

sasa04623  Cytosolic DNA-sensing pathway  1 

sasa00740  Riboflavin metabolism  1 

sasa04672  Intestinal immune network for IgA production  1 

sasa00270  Cysteine and methionine metabolism  1 

sasa03018  RNA degradation  1 

sasa00360  Phenylalanine metabolism  1 

sasa04137  Mitophagy - animal  1 

sasa00790  Folate biosynthesis  1 

sasa00511  Other glycan degradation  1 

sasa00062  Fatty acid elongation  1 

sasa00531  Glycosaminoglycan degradation  1 

sasa00052  Galactose metabolism  1 

sasa03430  Mismatch repair  1 

sasa04370  VEGF signaling pathway  1 

sasa01212  Fatty acid metabolism  1 

sasa00600  Sphingolipid metabolism  1 

sasa04920  Adipocytokine signaling pathway  1 

sasa00900  Terpenoid backbone biosynthesis  1 

sasa03022  Basal transcription factors  1 

sasa04260  Cardiac muscle contraction  1 

 


