
Policy Extraction via Online Q-Value
Distillation

by

Aman Jhunjhunwala

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Aman Jhunjhunwala 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Recently, deep neural networks have been capable of solving complex control tasks in
certain challenging environments. However, these deep learning policies continue to be hard
to interpret, explain and verify which limits their practical applicability. Decision Trees
lend themselves well to explanation and verification tools but are not easy to train especially
in an online fashion. The aim of this thesis is to explore online tree construction algorithms
and demonstrate the technique and effectiveness of distilling reinforcement learning policies
into a Bayesian tree structure.

We introduce Q-BSP Trees and an Ordered Sequential Monte Carlo training algorithm
that helps condense the Q-function from fully trained Deep Q-Networks into the tree struc-
ture. QBSP Forests generate partitioning rules that transparently reconstruct the Value
function for all possible states. It convincingly beats performance benchmarks provided
by earlier policy distillation methods resulting in performance closest to the original Deep
Learning policy.

iii

Acknowledgements

I would like to thank all the people who made this thesis possible. I would begin
by thanking my supervisor Dr. Krzysztof Czarnecki for his extraordinary support and
guidance throughout my time here. Professor Czarnecki gave me the freedom and support
to work on problems I was interested in, for which I am very grateful.

I thank Professor Mark Crowley and Professor Peter van Beek for agreeing to be the
readers of this thesis.

I would also like to thank Sean Sedwards, Jaeyoung Lee, Vahdat Abdelzad, Ashish
Gaurav, Aravind Balakrishnan and all my colleagues at Waterloo Intelligent System En-
gineering Lab (WISELab) for all the discussion and feedback that enriched the project.

I am grateful to Xuhui Fan for his BSP Forest open-source libraries.

Finally, I would like to thank my family for their constant support and encouragement.

iv

Dedication

This thesis is dedicated to everyone who directly or indirectly, made it possible.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

1.3 Thesis Organization . 4

2 Background 5

2.1 Reinforcement Learning . 5

2.1.1 Definitions . 5

2.1.2 Value Function . 6

2.1.3 Q-Function . 7

2.1.4 Bellman Equations . 7

2.1.5 Deep Q Learning . 8

2.2 Bayesian Additive and Regressive Tree Model 10

2.2.1 Sum of Trees model . 10

2.2.2 Regularization Priors . 10

2.2.3 Training BART Models . 12

2.3 Conditional Sequential Monte Carlo Filters 14

vi

2.3.1 Importance Sampling . 14

2.3.2 Sequential Importance Sampling . 15

2.3.3 Particle Filters / Sequential Monte Carlo Models 17

3 The Distillation Process 21

3.1 QBSP Forest . 21

3.1.1 The BSP Tree . 22

3.1.2 Online Expansion of Node Partitions 25

3.2 Training Methodology . 26

3.3 Proof of Consistency . 30

4 Experiments 32

4.1 Environment Description . 32

4.1.1 OpenAI Gym . 32

4.1.2 Cart Pole . 33

4.1.3 Mountain Car . 34

4.2 Training Setup . 35

4.3 Results . 36

4.3.1 Regression Fidelity . 36

4.3.2 Gameplay Performance . 37

4.3.3 Feature Influence . 38

4.3.4 Verification . 39

5 Conclusions 41

5.1 Future Work . 42

References 43

vii

List of Tables

4.1 Cartpole Observation Space . 33

4.2 Cartpole Action Space . 33

4.3 MC Observation Space . 34

4.4 MC Action Space . 34

4.5 Cartpole Regression Fidelity . 37

4.6 Mountain Car Regression Fidelity . 37

4.7 Comparative Game Playing Performance 38

4.8 Feature Influence for Cartpole . 39

4.9 Feature Influence for Mountain Car . 39

viii

List of Figures

1.1 Representative Structural Comparison between a standard decision tree used
by Viper[6] and our Q-BSP Tree for a Cartpole environment with 4 state
dimensions (X1...X4) and 2 actions. Note that in our tree structure, there
are 2 trees, each representing the Q-value for one action. Each node en-
codes more mathematically complex boundary expressions and contains the
boundaries of operation. The output of one action tree is fed into the other.
Just like in a DQN, the argmax over the Q values chooses the action. . . . 3

2.1 Overview of the Reinforcement Learning process 6

ix

2.2 Schematic representation of a generic particle filter (from [37]). At time t, a

set of weighted particles
{
φ

(i)
0:t,W

(i)
t−1

}
representing the prior distribution at

t. In this thesis, each particle represents a tree and the weight describes the
goodness of fit to an input dataset. Each particle φ

(i)
0:t is a multidimensional

variable which represents the whole path of the particle state from time 0 up
to the current time point t. The location of the dots in the graph represent
φ

(i)
t , the value of the state at the current time point. The size of each dot

reflects the weight W
(i)
t−1 (prior at t). In the reweight step, the weights are

updated to W
(i)
t partly as a function of p(yt|φ(i)

t) , the likelihood of observa-

tion yt according to each sampled state value φ
(i)
t (solid line). The resulting

set of weighted particles
{
φ

(i)
0:t,W

(i)
t

}
approximates the posterior distribution

(posterior at t) of the state paths. The resampling step duplicates values

φ
(i)
0:t with higher weights W

(i)
t , and eliminates those with low weights, re-

sulting in the set of uniformly weighted particles
{
φ̃

(i)
0:t, W̃

(i)
t = 1/N

}
which

is approximately distributed according to the posterior (second posterior at

t). In the propagate step, values of states φ
(i)
t+1 at the next time point are

sampled and added to each particle to account for state transitions, form-
ing a prior distribution for time t + 1 (prior at t + 1). Thus, at each new
time point, the particles grow in dimension because the whole path of the
latent state now incorporates the new time point as well. The particles are
then reweighted in response to the likelihood of the new observation yt+1 to
approximate the posterior distribution at t+ 1 (posterior at t+ 1), etc. . . 18

3.1 Architecture of our Distillation Process . 22

3.2 Diagrammatic representation of the cutting process of a BSP tree leaf from
[18, 19]. The root node is represented by a three dimensional unit hypercube
and the leaf partition is shown in red in Step (1). Step (2) shows all the
two dimensional projections, red signifying the projection chosen for split in
Step (3) .The generation of θ and u is shown as Step (3). 24

3.3 Online expansion of a BSP block. Diagram(a) plots the initial boundary of
a BSP block when a new out-of-boundary datapoint appears. Now there are
only two ways in which expansion can work. In (b), we simply extrapolate
the original boundary line to accommodate the new point. In (c), we try
different new boundary partitions and choose the one which minimizes the
given loss metric . 26

x

3.4 Depiction of one branch of a 3-dimensional tree process with total budget
τ . Red denotes the new cutting hyperplane generated at that step. Source
[18] . 27

3.5 Depiction of the portion of trees generated over three stages in a single
training iteration. Yellow represents the root node at stage 0 when we begin
the training process. Violet represents the portion of the tree generated in
stage 1, blue represents stage 2 and finally green represents the third and
last stage . 27

4.1 Screenshot of the Cartpole environment in OpenAI Gym 33

4.2 Screenshot of the Mountain Car environment in OpenAI Gym 34

xi

Chapter 1

Introduction

1.1 Motivation

Deep Reinforcement Learning has excelled at automatically learning human-level [27] poli-
cies for a certain number of control and gaming tasks. Recently these policies exceeded
human capabilities in complex video games like StarCraft or Dota [30]. Inspite of these
impressive gains in learning ability, the policy decisions remain impenetrable and this can
lead to undesirable and even dangerous behaviour [2]. The pace of safety research has
not kept up with the advances in policy design and it keeps getting harder to apply any
oversight to these policies.

For applicability in the real world, we need to be able to satisfy safety characteristics of
these policies which includes providing stability guarantees for the controllers [7], verifying
their correctness [24] and measuring their robustness [5]. Confirming these characteristics
directly for deep reinforcement learning policies is very inefficient and often not possible
at all [17]. This may lead to distrust between the regulators, end users and the policy
designers.

Distillation [22] has been an effective method to train relatively more compressed [12],
interpretable[13], structured [40, 8, 15] or shallower [3] models. Recently, researchers have
applied forms of imitation learning[1] to distill reinforcement learning policies from trained
deep neural networks to tree structure representations in an active-play setting [6, 26]. In
an active play setup, a fully-trained deep reinforcement learning algorithm (eg. DQN [27])
is observed as it performs actions in an environment (eg. Cartpole). All the transitions
executed by the policy are passed through the online distillation algorithm that aims to

1

condense information into our desirable tree structure. Figure 3.1 depicts a summary of
the process.

We aim to improve and extend prior research by proposing a novel tree distillation
method that is self-consistent ,i.e., it can be trained in an online fashion efficiently and
achieves better performance than other online and offline learning methods. This allows
us to distill more complex state spaces in Reinforcement Learning environments than were
previously possible due to memory constraints while also exceeding the regression perfor-
mance and gameplay performance of previous online approaches.

Regressing over the Q-values of the network instead of classifying over actions allows us
to structure the factors that led to a particular action being taken as well as the influences
that impaired other unsuccessful actions.

1.2 Overview

Decision Trees and Random Forests have been introduced decades ago and remain one
of the most popular machine learning algorithms even today. Over the years they have
proved to be scalable, robust and accurate for real-world classification and regression tasks.
However, most of the decision tree and random forest algorithms used today work in an
offline manner. They need the entire view of the data before they build the tree. Attempts
have been made to design decision trees for online data processing but very few have been
as convincing as the Mondrian Tree Process [34] and the BSP Tree Process [18]. Hence we
use the BSP-Tree Process as the base for creating our QBSP Forest algorithm. The visual
differences between a standard decision tree policy and our QBSP Tree policy is shown in
Figure 1.1

2

𝝁, σ

4X1 + 7X2 > 4

9X1 + 5X3 < 1.7

Q1

X1 > 5.9

X3 < 1.7

X2 > 6.2

action-2

𝝁, σ

X1 + 8X2 > 2.1

3X1 + 6X3 < 0.5

Q2

argmaxa(Qa)

action-2

Q1

Q2

X1 = 0.12, X2 = 0.04

X1 = 0.0, X2 = 0.00

X1 = 0.96, X2 = 0.80

X1 = 0.75, X2 = 0.00

X1 = 0.12, X2 = 0.06

X1 = 0.0, X2 = 0.02

X1 = 0.96, X2 = 0.80

X1 = 0.75, X2 = 0.00

Figure 1.1: Representative Structural Comparison between a standard decision tree used
by Viper[6] and our Q-BSP Tree for a Cartpole environment with 4 state dimensions
(X1...X4) and 2 actions. Note that in our tree structure, there are 2 trees, each representing
the Q-value for one action. Each node encodes more mathematically complex boundary
expressions and contains the boundaries of operation. The output of one action tree is fed
into the other. Just like in a DQN, the argmax over the Q values chooses the action.

In this thesis we present :

• A novel data-structure which we call the Q-BSP Tree to learn distilled reinforcement
learning policies. Q-BSP Tree Nodes are strictly more expressive than standard
decision tree nodes and are effective at capturing pair-wise dependencies among input
features.

• A new combined regression and ranking algorithm based on the Particle Gibbs sam-
pler that enables the online distillation of deep reinforcement learning policies into
Q-BSP Trees. This method performs better and is orders of magnitude more scalable
than any previous distillation approach applied to reinforcement learning policies.

• We present and compare our regression and gameplay performance with the current
state of the art methods and show that the policies distilled by the trees closely
resembles the neural network in terms of feature importance. We introduce this as
a new effectiveness metric for distillation. In line with the work done earlier [6], we
easily verify the correctness of our distilled policy trees for the Cartpole environment.

3

1.3 Thesis Organization

The thesis is organized into five distinct chapters.

• Chapter 1 provides the motivation and high-level overview of this thesis.

• Chapter 2 delves into important background concepts that led to the development
of QBSP Distillation Method. We go over the basic concepts associated with Re-
inforcement Learning, Q-Learning and Deep Q-Networks. The Bayesian Additive
and Regressive Trees model (BART) provides fundamental building blocks for un-
derstanding most Bayesian Tree construction algorithms and we formally describe
their form and structure here. Finally we provide a condensed recap of the Particle
Filtering Algorithm which is crucial for the training of QBSP Forests.

• Chapter 3 describes into the architecture of the distillation process and presents
the training process for the QBSP Forests.

• Chapter 4 provides a description of the environments in which the Distillation
process was tested and presents the results for our QBSP Distillation technique.
The regression accuracy and gameplay performance provides empirical performance
statistics. Examples of policies learnt by the trees are presented for each environment
along with the influence transfer metrics. Finally the distilled cartpole policy is
evaluated for correctness using Z3 SMT Solver.

• Chapter 5 concludes the thesis and sums up the results. It also presents possible
future directions to extend this work in the future.

4

Chapter 2

Background

2.1 Reinforcement Learning

2.1.1 Definitions

Reinforcement learning is the problem of getting an agent to act in an environment so as
to maximize its cumulative rewards [39]. An agent performs actions; for example, a car
navigating a street, Super Mario overcoming obstacles in a video game or a robot trying
to stand. An agent chooses an action among a list of possible actions based on a strategy.
The strategy is implemented through a policy π, which is a mapping from state to action :
π(s) = a. At any particular state, Super Mario can choose to move left, right, jump high,
crouch or stand still. The environment in which the agent acts takes the agent’s current
state and action as input and returns the agent’s reward and next state.

The agent and the environment interact through a series of actions and obtained rewards
over timesteps t = 1, 2, · · · , T as shown in Figure 2.1. During the process, the agent gains
some experience acting in the environment. It tries to learn the optimal policy by choosing
the next action in a manner that helps it learn the best policy. At time t, labelling the
current state st, action taken at, and reward rt, the episode or trial is fully described by
the following sequence terminating in st: (s1, a1, r1, s2, a2, · · · , st). A single record of this
trail, from state st to st+1 is often referred to as a transition : (st, at, st+1, rt).

Markov Decision Processes (MDP) formally describe an environment for reinforcement
learning. A Markov decision process is a tuple (S,A, P,R) where S is a finite set of states,
A is a finite set of actions, P (s, s′) is the probability that action a taken in state s at time

5

AGENT

ENVIRONMENT

action
a

t

reward
r

t

state
s

t

s
t+1

r
t+1

Figure 2.1: Overview of the Reinforcement Learning process

t will lead to state s′ at time t + 1 and R(s, a, s′) is the immediate reward (or expected
immediate reward) received after transitioning from state s to state s′ due to action a.

2.1.2 Value Function

Each state is associated with a value function V (s) predicting the expected amount of
future rewards the agent will be able to receive in this state by acting according to the
the same policy. In other words, the value function quantifies how good a state is. The
future return Gt is defined as the total sum of discounted rewards going forward. We can
calculate the return Gt starting from time t:

Gt = rt + γrt+1 + · · · =
∞∑
k=0

γkrt+k (2.1)

where γ ∈ [0, 1] discount rewards into the future.

The Value function V π(s) approximates the expected return if the agent is in state s
at time t and is following policy π into the future :

V π(st) = E[
∞∑
k=0

γkrt+k] (2.2)

6

For deterministic environments, among all the possible value functions, there exists an
optimal value function that has higher value than other functions for all states

V ∗(s) = max
π

V π(s) ∀s ∈ S (2.3)

The optimal policy π∗ is the policy corresponding to the optimal value function

π∗ = argmax
π

V π(s) ∀s ∈ S (2.4)

2.1.3 Q-Function

Q function is a function of a state-action pair and returns a real value Q : S × A → R.
Qπ(s, a) is a measure of the overall expected reward assuming the agent is in state s and
performs action a, and then continues playing until the end of the episode following some
policy π. Since V ∗(s) is the maximum expected total reward when starting from state s,
it will be the maximum of Q∗(s, a) over all possible actions. Thus,

V ∗(s) = max
a
Q∗(s, a) ∀s ∈ S (2.5)

The optimal policy can be formed by choosing the action a that gives the maximum
Q∗(s, a) at every state s:

π∗(s) = argmax
a

Q∗(s, a) ∀s ∈ S (2.6)

2.1.4 Bellman Equations

Bellman Equations use dynamic programming to provide a recursive definition for the opti-
mal Q function. Function Q∗(s, a) is the summation of immediate reward after performing
action a in state s and the discounted expected future reward after transition to the next
state s′

Q∗(s, a) = R(s, a, s′) + γEs′ [V ∗(s′)] (2.7)

7

Q∗(s, a) = R(s, a, s′) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′) (2.8)

Using Equation 2.5,

V ∗(s) = max
a

[
R(s, a, s′) + γ

∑
s′∈S

p(s′|s, a)V ∗(s′)

]
(2.9)

2.1.5 Deep Q Learning

A DQN [27] learns a deep neural network as a Q-function approximator. Q-Learning is
based on the sample principle as Equation 2.9.

Algorithm 1: Basic Q-Learning Algorithm

1 Start with an initial guess Q0(s, a) ∀s ∈ S,∀a ∈ A
2 The agent begins at an initial state s
3 for k = 1, 2, · · · till convergence do
4 Sample action a
5 Perform a to get to next state s′

6 if s′ is terminal then
7 target = R(s, a, s′)
8 Sample new initial state s

9 else
10 target = R(s, a, s′) + γmax

a′
Qk(s

′, a′)

11 Qk+1(s, a) = (1− α)Qk(s, a) + α[target]
12 s = s′

Algorithm 1 however is unable to deal with a large number of states and actions. It
is also extremely memory and computation intensive and hence a deep neural network
is often used to approximate Q(s, a). To train these neural networks and to counter a
potentially non-stationary Q-function target two solutions are often used:

• Experience Replay : A large number of transitions are placed in a buffer B and
minibatches are sampled from this buffer to train the neural network. This makes

8

the input dataset distribution relatively stable for training. Random sampling allows
datapoints closer to i.i.d..

• Target Network : Instead of training one neural network, two neural networks are
used with parameters θ and θ̃. The first network is mostly fixed and used to estimate
Q values while the second is used to perform updates at every training iteration.
After C iterations , θ is copied into θ̃. This prevents the moving target estimation
problem.

The complete DQN algorithm is presented next.

Algorithm 2: Deep Q Learning Algorithm

1 Initialize replay memory B to capacity N
2 Initialize the main Q-function neural network Q with random weights θ

3 Initialize the target Q function neural network Q′ with weight θ̃ = θ
4 for episode = 1, 2, · · · , M do
5 for t = 1, 2, · · · , T do
6 With probability ε select a random action at
7 Else select at = argmax

a
Q(st, a; θ)

8 Execute action at in the environment and observed reward rt and next state
st+1

9 Store transition (st, at, rt, st+1) in B
10 Sample random minibatch of transitions from B as (sj, aj, rj, sj+1)
11 if episode terminates at step j + 1 then
12 set yj = rj

13 else

14 yj = rj + γmax
a′

Q′(sj+1, a
′; θ̃)

15 Perform a gradient descent step on (yj −Q(sj, aj; θ))
2 with respect to

network parameters θ
16 Every C steps reset Q′ = Q

9

2.2 Bayesian Additive and Regressive Tree Model

Primarily the BART model [14] consists of two parts: a sum-of-trees model and a regular-
ization prior on the parameters of that model.

2.2.1 Sum of Trees model

BART Trees consist of interior nodes with decision rules and terminal nodes (leaves) with
a number / parameter value. µ = {µ1, µ2, . . . , µb} represents a set of leaf values associated
with each of the b terminal nodes of a tree T . The decision rules in the nodes are typically
based on the single components of x = (x1, . . . , xp) and are of the form {xi ≤ c} vs
{xi > c} for continuous xi. Every input x value is associated with a single leaf of T by
traversing through decision rules from top to bottom. The µi value associated with the
selected leaf is the predicted output value. For a given T and µ. In the following sections,
we use g(x;T,µ) to denote the function which assigns a µi ∈ µ to x. Hence, assuming
homoschedastic data,

Y = g(x;T,µ) + ε, ε ∼ N (0, σ2) (2.10)

The conditional mean of Y given x, E(Y |x) equals the terminal node parameter µi
assigned by g(x;T,µ). Now the sum-of-trees model can be written as

Y =
m∑
j=1

g(x;Tj,µj) + ε, ε ∼ N (0, σ2), (2.11)

where for each binary regression tree Tj and its associated leaf parameters µj, g(x;Tj,µj)
is the function assigning µij ∈ µj to x.

2.2.2 Regularization Priors

The BART model imposes a prior over all the parameters of the sum-of-trees model, namely
(T1,µ1), · · · , (Tm,µm) and σ. The specifications of prior effectively regularize the fit by
subduing the individual tree effects. Without the regularization, some larger trees could
eclipse the output prediction hindering the advantages of the additive formulation.

10

Prior independence and symmetry

The specification of the regularization prior for BART is immensely unraveled by restricting
attention to priors for which

p((T1,µ1), . . . , (Tm,µm), σ) =

[∏
j

p(Tj,µj)

]
p(σ)

(2.12)

=

[∏
j

p(µj|Tj)p(Tj)
]
p(σ)

and
p(µj|Tj) =

∏
i

p(µij|Tj), (2.13)

where µij ∈ µj. Under such priors, the tree components (Tj,µj) are independent of each
other and of σ, and the leaf parameters of every tree are independent. Equation 2.12
simplifies the prior specification problem to p(Tj), p(µij|Tj) and p(σ).

The Tj prior

The prior p(Tj) is specified by three aspects:

(i) the probability that a node at depth d (= 0, 1, 2, . . .) is non-terminal is given by

α(1 + d)−β, α ∈ (0, 1), β ∈ [0,∞), (2.14)

(ii) the distribution on the splitting variable assignments at each interior node, and

(iii) the distribution on the splitting rule assignment in each interior node, conditional
on the splitting variable.

The default of uniform prior on available variables for (ii) and uniform prior on the
discrete set of available splitting values for (iii) are chosen.

For the a sum-of-trees model, especially with m large, the regularization prior keeps
the individual tree components small, which is desirable. Generally α = 0.95 and β = 2 is
used.

11

The µij|Tj prior

The prior for µij is set to zero µµ = 0 and σµ is chosen such that k
√
mσµ = 0.5 for a

suitable value of k, leading to

µij ∼ N(0, σ2
µ) where σµ = 0.5/k

√
m. (2.15)

This prior shrinks the tree parameters µij toward zero, limiting the effect of the indi-
vidual trees by keeping them small. As k and/or the number of trees m is increased, this
prior will become tighter and apply larger shrinkage to the µij’s. BART researchers found
k between 1 and 3 yielded good results with 2 being the default choice.

The σ prior

A conjugate prior is used for p(σ) : the inverse chi-square distribution σ2 ∼ νλ/χ2
ν . The

hperparameters ν and λ need to assign substantial probability to all the plausible values
of σ while avoiding overconcentration and overdispersion. The prior degree of freedom ν
and scale λ can be approximated using an estimate σ̂ of σ. Two choices for σ̂ are (1) σ̂ can
be computed as the sample standard deviation of Y (2) the “linear model” specification,
in which σ̂ is the residual standard deviation from a least squares linear regression of Y on
the original X’s. Then ν can be sampled between 3 and 10 to get an appropriate shape,
and a value of λ can be sampled so that the qth quantile of the prior on σ is located at
σ̂, that is, P (σ < σ̂) = q. Values of q such as 0.75, 0.90 or 0.99 can be used to center the
distribution below σ̂.

2.2.3 Training BART Models

Given the observed data y, our Bayesian setup induces a posterior distribution

p((T1,µ1), . . . , (Tm,µm), σ|y) (2.16)

on all the unknowns that determine a sum-of-trees model. To sample from this posterior,
BART used something similar to a Gibbs sampler. It took T(j) be the set of all trees in the
sum except Tj. µ(j) is defined similarly. Observe that T(j) is now a set of m− 1 trees. The
Gibbs sampler here entails m successive draws of (Tj,µj) conditional on (T(j),µ(j), σ):

(Tj,µj)|T(j),µ(j), σ, y, (2.17)

12

j = 1, . . . ,m, followed by a draw of σ from the full conditional:

σ|T1, . . . , Tm,µ1, . . . ,µm, y. (2.18)

This algorithm is referred to as Backfitting Makov Chain Monte Carlo and σ in (2.18)
can be drawn from an inverse gamma distribution.

Drawing (Tj,µj) m times in (2.17) can be performed through the following steps. First,
observe that the conditional distribution p(Tj,µj|T(j),µ(j), σ, y) depends on (T(j),µ(j), y)
only through

Rj ≡ y −
∑
k 6=j

g(x;Tk,µk), (2.19)

the n-vector of partial residuals based on a fit that excludes the jth tree. Thus, the m
draws of (Tj,µj) given (T(j),µ(j), σ, y) in (2.17) are equivalent to m draws from

(Tj,µj)|Rj, σ, for j = 1, . . . ,m (2.20)

Equation (2.20) is formally equivalent to the posterior of the single tree model Rj =
g(x;Tj,µj) + ε where Rj plays the role of the target data y. Because a conjugate prior was
used for µj,

p(Tj|Rj, σ) ∝ p(Tj)

∫
p(Rj|µj, Tj, σ)p(µj|Tj, σ) dµj (2.21)

can be obtained in closed form up to a normalizing constant. Each draw from (2.20)
can be carried in two consecutive steps as

Tj|Rj, σ, (2.22)

µj|Tj, Rj, σ. (2.23)

The draw of µj in (2.23) is a set of independent draws of the leaf µij’s from a normal
distribution. The draw of µj enables the calculation of the next residual Rj+1 which is
then used for the next draw of Tj. The chain is initialized with m single node trees, and
then iterations are repeated until it convergences within satisfication.

13

2.3 Conditional Sequential Monte Carlo Filters

Particle Filters or Sequential Monte Carlo Filters (SMC) provides sampling based approx-
imations of a sequence of posterior distributions over parameter vectors which increase in
dimension, and allow fast efficient inference in complex dynamic statistical models. Par-
ticle Filters sample a random set of values (called particles) from a parameter which are
propogated over time to track the posterior distribution of the parameter at each point in
time. Every particle is scored commensurate with its posterior probability and the weights
are used to then resample particles and allow for the final posterior approximation. We now
gradually build up the final algorithm for Particle Filtering from the basics of Importance
Sampling.

2.3.1 Importance Sampling

Importance Sampling is a Monte Carlo intergration technique often used to approximate
expected values of random variables. The expected value of a random variable is generally
computed by averaging over samples drawn from the random variable. Importance Sam-
pling is based on the same idea of but samples are drawn from a distribution different from
the true distribution which is called the importance distribution. If the true distribution
is difficult to sample from, the importance distribution comes in very handy. To correct
for the fact that the samples were drawn from the importance distribution and not the
true distribution, scores or weights are assigned to the sampled values which reflect the
difference between the importance and target distribution. The final estimate is then a
weighted average of those randomly sampled values.

Given a function f of a random variable Y which is distributed according to a proba-
bility distribution p, the expected value of f is defined as:

Ep[f(Y)] =

∫
f(y)p(y)dy (2.24)

If f(y) = y, equation 2.24 results in computing the mean of Y . If the analytical solution
of integral is not tractable, we turn to the Monte Carlo approximation

In Algorithm 3, the samples y(i) are termed as particles. As the number of particles N
approaches infinity, according to the law of large numbers, the Monte Carlo approximation
will converge to the true expected value [32]. If the distribution p (from which the particles
were sampled) in Algorithm 3 is intractable, importance sampling is used to sample from

14

Algorithm 3: Standard Monte Carlo integration for Ep[f(Y)]

1 for i = 1, · · · , N do
2 sample y(i) ∼ p(y) ; // Sample

3 Compute the sample average to obtain Monte Carlo approximation of the expected

value EMC = 1
N

∑N
i=1 f(y(i)) ; // Estimate

an arbitrary distribution q. Importance sampling is based on the basic algebric identity
a = a

b
× b. The fundamental importance sampling identity is derived as

Ep[f(Y)] =

∫
p(y)

q(y)
q(y)f(y)dy = Eq[w(Y)f(Y)] (2.25)

where the importance weight is defined as w(y) = p(y)
q(y)

.

The expected value of f(Y) under the target distribution p is same as the expected value
of w(Y)f(Y) under the importance distribution q. The importance distribution allows for
convenient sampling and more efficient estimation. The importance distribution however
must fulfil the condition that if f(y)p(y) 6= 0 then q(y) > 0 i.e. when p assigns non-zero
probability to a value y, q should also do so; q(y) > 0 when p(y) > 0.

The following algorithm demonstrates the importance sampling method

Algorithm 4: Importance Sampling (IS) for an expected value Ep[f(Y)]

1 for i = 1, · · · , N do
2 sample y(i) ∼ q(y) ; // Sample

3 for i = 1, · · · , N do

4 compute the importance weight w(i) = p(y(i))

q(y(i))
; // Weight

5 Compute a weighted average to obtain the IS estimate EIS = 1
N

∑N
i=1w

(i)f(y(i))

2.3.2 Sequential Importance Sampling

For our online tree model, we need to infer unknown parameters of our statistical model
after each new observation is seen. Given a sequence of observations y1:t = (y1, y2, · · · , yt),
we want to compute a sequence of posterior distributions p(θ|y1), p(θ|y1:2), · · · , p(θ|y1:t). θ

15

denotes a vector of parameters. Approximating the posterior distribution p(θ|y1:t) with im-
portance sampling, requires an importance distribution qt(θ) for sampling with importance

weights w
(i)
t = p(θ(i)|y1:t)

qt(θ(i))
.

Following the algorithm above, at every timestep, we need to generate a new important
sample and browse the entire history of observations to calculate the importance weights.
As more timesteps pass, we would need to sample over the complete trajectory of the state
from t = 1 and the size of the importance samples keeps getting larger.

Sequential importance sampling (SIS) utilizes information from previous observations
and samples to help in incremental importance sampling; requiring only a fixed computa-
tional cost for every new observation(timestep) .

SIS allows importance weights to be calculated incrementally, by multiplying the im-
portance weight at the previous timestep t−1 with an incremental weight update a

(i)
t . We

can rewrite the importance weights as

w
(i)
t =

p(θ(i)|y1:t)qt−1(θ(i))

p(θ(i)|y1:t−1)qt(θ(i))

p(θ(i)|y1:t−1)

qt−1(θ(i))
= a

(i)
t w

(i)
t−1 (2.26)

where the incremental weight update is defined as

a
(i)
t =

p(θ(i)|y1:t)

p(θ(i)|y1:t−1)

qt−1(θ(i))

qt(θ(i))
(2.27)

Now to obtain the final SIS algorithm, our observations are conditionally independent
given the parameters and each of the posteriors can be expressed through Bayes Theorem
as

p(θ|y1:t) =
p(θ)

∏t
i=1 p(yi|θ)

p(y1:t)
(2.28)

Using this, the LHS in equation 2.27 is simplified as

p(θ(i)|y1:t)

p(θ(i)|y1:t−1)
= p(yt|θ(i))p(yt|y1:t−1) (2.29)

Using the same importance distribution over all timesteps qt(θ) = qt−1(θ) = q(θ), the

RHS ratio in 2.27 evaluates to qt−1(θ(i))

qt(θ(i))
= 1. The incremental weight update reduces to

a
(i)
t = p(yt|θ(i))p(yt|y1:t−1).

16

Algorithm 5: Sequential Importance Sampling (SIS) for parameters θ

1 for i = 1, · · · , N do
2 sample θ(i) ∼ q(θ) ; // Initialize

3 compute normalized weights W
(i)
0 ∝

p(θ)
q(θ)

with
∑N

i=1W
(i)
0 = 1

4 for t = 1, · · · , T do
5 for i = 1, · · · , N do

6 compute W
(i)
t ∝ p(yt|θ(i))W

(i)
t−1 with

∑N
i=1W

(i)
t = 1 ; // Reweight

7 compute the self normalized SIS estimate ESIS
t =

∑N
i=1W

(i)
t f(θ(i)) ; // Estimate

If importance weights are self normalized, the term p(yt|y1:t−1) can be ignored resulting
in the final SIS scheme shared below

Sequential importance sampling is computationally efficient since we can approximate
the relevant distributions sequentially without revisiting all previous observations or re-
drawing the entire importance sample. However, the performance of SIS detoriates over
time and after some iterations, only one particle has non-negligible weight.

To counter the “weight degeneracy” problem, particle filtering algorithms have a re-
sampling step, where particles are sampled with replacement from the set of all particles
with the probability of selection being proportional to the importance weights. After re-
sampling, the weights are reset or equalized.

2.3.3 Particle Filters / Sequential Monte Carlo Models

For our distillation problem, we are specifically interested in state space models. State
space models are defined by an observable time series y1:t through a sequence of latent
states φ0:t. The latent states in this thesis refer to our intermediate trees in the process to
the final distilled tree. In state space models, we have primary assumptions. First, it is
assumed that each observation yt depends only on the current state φt and the observations
are conditionally independent given the states φt:

p(y1:T |φ0:T) =
T∏
t=1

p(yt|φt) (2.30)

Secondly it is assumed that hidden states change over time according to the first-order

17

Figure 2.2: Schematic representation of a generic particle filter (from [37]). At time t, a set

of weighted particles
{
φ

(i)
0:t,W

(i)
t−1

}
representing the prior distribution at t. In this thesis,

each particle represents a tree and the weight describes the goodness of fit to an input
dataset. Each particle φ

(i)
0:t is a multidimensional variable which represents the whole path

of the particle state from time 0 up to the current time point t. The location of the dots in
the graph represent φ

(i)
t , the value of the state at the current time point. The size of each dot

reflects the weight W
(i)
t−1 (prior at t). In the reweight step, the weights are updated to W

(i)
t

partly as a function of p(yt|φ(i)
t) , the likelihood of observation yt according to each sampled

state value φ
(i)
t (solid line). The resulting set of weighted particles

{
φ

(i)
0:t,W

(i)
t

}
approximates

the posterior distribution (posterior at t) of the state paths. The resampling step duplicates

values φ
(i)
0:t with higher weights W

(i)
t , and eliminates those with low weights, resulting in the

set of uniformly weighted particles
{
φ̃

(i)
0:t, W̃

(i)
t = 1/N

}
which is approximately distributed

according to the posterior (second posterior at t). In the propagate step, values of states

φ
(i)
t+1 at the next time point are sampled and added to each particle to account for state

transitions, forming a prior distribution for time t+ 1 (prior at t+ 1). Thus, at each new
time point, the particles grow in dimension because the whole path of the latent state now
incorporates the new time point as well. The particles are then reweighted in response
to the likelihood of the new observation yt+1 to approximate the posterior distribution at
t+ 1 (posterior at t+ 1), etc.

18

Markov Process, such that the current state depends only on the state at the immediately
preceding timestep :

p(φ0:T) = p(φ0)
T∏
t=1

p(φt|φt−1) (2.31)

The posterior distribution over the hidden states can now be written with these as-
sumptions as :

p(φ0:T |y1:T) =
p(φ0)

∏T
t=1 p(yt|φt)p(φt|φt−1)

p(y1:T)
(2.32)

Now the posteriors can be recursively calculated as:

p(φ0:t|y1:t) =
p(yt|φt)p(φt|φt−1)

p(yt|y1:t−1)
p(φ0:t−1|y1:t−1) (2.33)

Estimating the hidden states φ0:t can be seen as estimating a vector of parameters θ
whose dimensions increase at each timestep t , such that, at time t, we estimate θ = φ0:t,
and at time t+1 another dimension is added to the parameter vector and now we estimate
θ = φ0:t+1. We could draw a new importance sample {φ(i)

0:t} at each time t using Importance
Sampling. Using Sequential Importance Sampling, the importance sample can be built up
incrementally, starting at time t = 0 with a sample {φ(i)

0 }, then sampling values {φ(i)
1 } at

time 1 conditional on the sample at time 0, then adding sampled values {φ(i)
2 } at time 2

conditional on the sample at time 1, etc. Formally, this means we define the importance
distribution at time t as

qt(φ0:t) = qt(φt|φ0:t−1)qt−1(φ0:t−1) (2.34)

Using this conditional importance distribution, and noting that qt−1(φ0:t) = qt−1(φ0:t−1),
the right-hand ratio in 2.27 simplifies to

qt−1(φ0:t)

qt(φ0:t)
=

1

qt(φt|φ0:t−1)

Combining this with 2.33, we can write the incremental weight update as

a
(i)
t =

p(yt|φ(i)
t)p(φ

(i)
t |φ

(i)
t−1)

p(yt|y1:t−1)qt(φ
(i)
t |φ

(i)
0:t−1)

(2.35)

19

The term p(yt|y1:t−1) can be ignored if normalized importance weights are used. Now
we finally describe the (approximately) constant computational cost algorithm capable
of updating the weights of the particles without revisiting the previous observations and
hidden states

Algorithm 6: Generic Particle Filtering algorithm to approximate a sequence of
posterior distributions p(φ0:1|y1), p(φ0:2|y1:2), · · · , p(φ0:t|y1:t)

1 For i = 1, · · · , N , sample φ̃
(i)
0 ∼ q(φ0) and compute the normalized importance

weights W̃
(i)
0 ∝

p(φ
(i)
0)

q(φ̃
(i)
0)

with
∑N

i=1 W̃
(i)
t = 1.

2 for t = 1, · · · , T do
3 for i = 1, · · · , N do

4 sample φ
(i)
t ∼ qt(φt|φ̃(i)

0:t−1) ; // Propagate

5 add this new dimension to the particles, setting φ
(i)
0:t = (φ̃

(i)
0:t−1, φ

(i)
t)

6 for i = 1, · · · , N do

7 compute normalized weights W
(i)
t ∝

p(yt|φ(i)t)p(φ
(i)
t |φ

(i)
t−1)

qt(φ
(i)
t |φ

(i)
0:t−1)

W̃
(i)
t−1 ; // Reweight

8 with
∑N

i=1W
(i)
t = 1

9 Compute the required estimate Et =
∑N

i=1 f(φ
(i)
0:t)W

(i)
t ; // Estimate

10 If Ne ≤ cN , resample {φ̃(i)
0:t} with replacement from {φ(i)

0:t} using the normalized

weights W
(i)
t and set W̃

(i)
t = 1/N to obtain a set of equally weighted particles

{φ̃(i)
t , W̃

(i) = 1/N} else set {φ̃(i)
0:t, W̃

(i)
t } = {φ(i)

0:t,W
(i)
t } ; // Resample

Conditional Sequential Monte Carlo Algorithm is almost exactly like the particle fil-
tering algorithm; the only difference being that the parent tree or particle (from which all
the particles are sampled) is kept alive throughout the algorithm.

20

Chapter 3

The Distillation Process

We formally describe the architecture of our distillation process in the next section. Here
we give an informal overview of the architecture depicted in Figure 3.1. The Distillation
process can be split into three phases. In the first phase, the deep neural network policy
controls the agent policy and interacts with the environment over multiple rollouts. Once
a fixed size data buffer is filled from the data gathered from those interactions, the data is
sent to the tree process for constructing the tree to fit the given data. In the second phase,
the parent tree and its altered clones try to fit the data to their best capabilities. Each tree
fits the Q-value for a single predetermined action by taking the state of the agent as input
and once the training algorithm alters the forest to fit the data, the buffer is emptied. In
the third and final phase, the tree controls the agent in a number of games to assess the
distilled policy knowledge learnt by the tree. This setup is commonly known as an active
play setup.

3.1 QBSP Forest

To more formally describe our distillation process, consider an environment where we
represent the agent state s at any step by a d-dimensional vector s = (x1, ..., xd) ∈ Rd.
The agent can perform one of m discrete actions a1, ..., am ∈ A. As indicated in Figure
3.1, a Q-value is generated for every action ai ∈ A possible in a given state s denoted as
Q̃(s) = { Q(s, ai) | ∀ai ∈ A}. The action to be performed is selected as

a = argmax
∀ai∈A

Q(s, ai) (3.1)

21

ENVIRONMENT
TRANSITION BUFFER

state (s)

action (a)

(s ,Q)

argmaxi Q

Q = { Q(s, ai=1,..,m) }

DQN

m actions

d-dimensional state

~
~

~

T1

Tm

.
 .

𝜇1
𝜇b𝜇z

Figure 3.1: Architecture of our Distillation Process

The transition between the agent and the environment are recorded as tuples of the form
of (s, Q̃(s)) ∈ Rd × Rm. The supervised regression task is then defined from s→ Q̃(s).

An independent collection of trees T1, .., Tm is created to form the forest. Each tree
Ti is responsible for regressing the Q-value Q(· , ai) of a single fixed action ai ∈ A. A
tree T consists of a set of internal nodes containing decision rules and a set of terminal
nodes (leaves) containing parameter values as shown in Figure 1.1. Let µ = {µ1, µ2, ..., µb}
denote the set of parameter values associated with each of the b leaf nodes. Every input
is associated with a single leaf node z ∈ T by a sequence of decision rules from top to
bottom and is then assigned the value µz corresponding to this leaf node z. The function
g(·) encapsulates this tree traversal.

Q(s, ai) = g(s;Ti,µi) + ε, ε ∼ N (0, σ2) (3.2)

where for each regression tree Ti and its associated leaf node parameters µi, g(s;Ti,µi) is
the function that assigns a leaf node z and its parameter µz ∈ µi to the input s. ε denotes
the observation variance. Once we predict Q-values for all the m actions, we use Equation
3.1 to predict the next action.

3.1.1 The BSP Tree

Decision Trees and Random Forests have a rich volume of past research. Generally a node
in a decision tree is split in two steps. First, the feature to be split is decided and then

22

a location along the chosen feature is finalized for the splitting. The algorithm generally
follows a greedy strategy to optimize for some metric (generally related to information
gain). Binary Decision Trees such as those used by [6], require the entire dataset to be
loaded in memory to compute this gain metric for each and every split. This prevents
distillation in an online fashion.

We quickly recap the Binary Space Partitioning (BSP) Tree as described in [18, 19]. In
the BSP Tree, the levels of the tree are recursively generated through a series of cutting
hyperplanes and each cutting hyperplane is parallel to the d−2 dimensions it does not cut
through. The cutting hyperplanes form a set of partitions in the data space. Each such
partition is typically represented by a convex polytope � ⊂ Rd. For any arbitrary pair of
dimensions (d1, d2) in the d-dimensional input state s, Algorithm 7 presents the selection
and splitting process for a leaf node k∗ ∈ Ti given a dataset (s,Q(s, ai))

1:N of size N .

The algorithm can be summarized in the following steps. First to expand the tree and

generate new leaves, an existing leaf node is sampled in proportion to
{∑

d1,d2
Pk(d1,d2)

}b
k=1

;

where for every pair of dimension (d1, d2) from a total of d-dimensions. Pk(d1,d2) denotes

the perimeter of the projections of the input datapoints on dimensions (d1, d2) for leaf k.
Once the node to split has been decided, a pair of dimensions are sampled (to create a
cutting hyperplane) in proportion to the projection perimeters of the datapoints falling in
that node.

Now that the node to cut and the dimensions of the cutting hyperplane have been
finalized, the direction of the cutting hyperplane is to be decided. Figure 3.2 depicts the
cutting process. An angle is chosen from (0, π] with the probability density function in
proportion to the length of the line segment lll(θ) onto which the hyperplane is projected.
After choosing the angle, a random position u is chosen on the line segment. The cutting
hyperplane is formed as a line passing through u and crossing the selected projection
orthogonal to lll(θ) in the selected dimensions.

The cost to cut a node is sampled from the exponential distribution with the sum of
the projection perimeters for all leaf nodes as its rate. If the cost exceeds a predefined
budget (which we discuss later), the newly formed hyperplane is discarded.

Once the leafs are created with Algorithm 7, we can sample (µleaf , σleaf) for each new

leaf as σ2
leaf =

(
1

σ2
parent

+ n
σ2

)−1

, µleaf = σ2
leaf

(
µparent

σ2
parent

+
∑

i yi
σ2

)
where n denotes the number

of points in the dataset falling in the newly created partition, σ2 refers to the sample
variance of these n datapoints and yi denotes the regression output (Q values in our case)
of the data reaching that leaf.

23

Step (1) Step (2)

θ

l(θ)

u

Step (3) Step (4)

Figure 3.2: Diagrammatic representation of the cutting process of a BSP tree leaf from
[18, 19]. The root node is represented by a three dimensional unit hypercube and the leaf
partition is shown in red in Step (1). Step (2) shows all the two dimensional projections,
red signifying the projection chosen for split in Step (3) .The generation of θ and u is shown
as Step (3).

Algorithm 7: Sampling a leaf node to cut k∗ and generating a cutting hyperplane
to divide the selected leaf H (k∗, (d∗1, d

∗
2), θ,uuu) as proposed in [19]

Input: dataset (s,Q(s, ai))
1:N , leaf index k = {1, · · · , b}

Output: cutting hyperplane H (k∗, (d∗1, d
∗
2), θ,uuu), and cost c

1 for every dim pair (d1, d2) ∈ {(1, 2), · · · (d− 1, d)}, k = 1, · · · , b do
2 project datapoints {s}k ⊂ {s}1:N that reach leaf k onto the (d1, d2) dimensions

to get a projection {xd1 , xd2}k ∈ {s}k;
3 compute the convex hull on {xd1 , xd2}k ∈ {s}k, denoted by Ck

(d1,d2);

4 calculate the perimeter of Ck
(d1,d2), denoted by Pk(d1,d2);

5 sample leaf k∗ to cut proportional to the sum of projection perimeters{∑
d1,d2

Pk(d1,d2)

}b
k=1

;

6 sample dimension pair (d∗1, d
∗
2) in proportion to the perimeters

{
Pk∗(d1,d2)

}
∀(d1,d2)

7 sample a direction θ ∈ (0, π], where the probability density function is proportional
to the length of the line segment lll(θ), onto which Ck∗

(d∗1,d
∗
2) is projected (shown in

Figure 3.2)
8 sample u uniformly on the projection of the convex hull Ck∗

(d∗1,d
∗
2) (shown in Figure

3.2);
9 create proposed cutting hyperplane H (k∗, (d∗1, d

∗
2), θ, u) as the straight line passing

through u and crossing through the projection Ck∗

(d∗1,d
∗
2), orthogonal to lll(θ) creating

two new leaves.
10 sample the cost c ∼ Exp

(∑
k

∑
d1,d2

Pk(d1,d2)

)
; If cost exceeds budget, reject the

proposed cut.

24

3.1.2 Online Expansion of Node Partitions

In Algorithm 7, every node (including the root) is bounded by the convex hull of the
points it has just observed (Figure 3.2).The original BSP Trees were not designed for online
operation and hence did not include any way of expanding the partition boundaries in case
incoming data lied outside root node boundaries. Reinforcement learning environments
usually have a large number of state dimensions or state spaces with large dimension
ranges which can be memory intensive. An effective way to overcome this constraint is to
learn in an online setting where the training examples are presented as a stream of input
data.

We add the flexibility to expand partition (node) boundaries to accommodate new dat-
apoints (that lie outside the current node boundaries) while making sure that the partitions
of their children are adapted consistently to the extended space. Algorithm 8 and Figure
3.3 explains this expansion process.

Algorithm 8: Online Expansion of a BSP Tree T

Input: tree node k, datapoints reaching node k : {s}k
1 find the datapoints {s′}k ⊂ {s}k outside the partition boundaries C of node k
2 for every dim pair (d1, d2) ∈ {(1, 2), · · · , (d− 1, d)} do
3 compute projections {xd1 , xd2}k ∈ {s′}k onto dimensions (d1, d2);
4 compute the new convex hull C∗(d1,d2) on old boundary points and new projection

points
{
C(d1,d2)

⋃
{xd1 , xd2}k

}
;

5 compute the perimeter of C∗(d1,d2) as P∗(d1,d2);

6 extrapolate the line segment lll(θ) to cut the new boundary C∗
7 expand the cutting hyperplane H (k, (d∗1, d

∗
2), θ, u) to mirror the line

8 recompute the cost c∗ ∼ Exp
(∑

k

∑
d1,d2

Pk(d1,d2)

)
;

9 if cost c∗� within budget then
10 recurse over children of k

11 else
12 find new cuts : (θ,uuu) on the newly computed convex hulls C∗

If a new datapoint is observed, for any given tree, only one of the following three things
can occur: (i) an existing leaf node is split to generate two children (ii) existing split
boundaries are expanded to include the new datapoint (iii) a new parent split is generated
above the current split (the split is reset). Cases (ii) and (iii) are depicted pictorially in

25

New
datapoint

(a) (b) (c)

Figure 3.3: Online expansion of a BSP block. Diagram(a) plots the initial boundary of a
BSP block when a new out-of-boundary datapoint appears. Now there are only two ways
in which expansion can work. In (b), we simply extrapolate the original boundary line to
accommodate the new point. In (c), we try different new boundary partitions and choose
the one which minimizes the given loss metric

Figure 3.3. Case (i) was captured by Algorithm 7 earlier but Case (ii) and (iii) are handled
by Algorithm 8.

If a new datapoint is observed that is outside the current boundary of the node, a new
convex hull (boundary) is computed for every dimension-pair projection that includes the
new datapoint. If the dimension-pair includes the cutting hyperplane, the dividing line is
extrapolated with the sample angle θ for l(θ) and the corresponding hyperplane is expanded
back in the original polytope to follow the line. The new cost with the new perimeters
is sampled and if it exceeds the predefined budget, the cutting hyperplane and all the
children of the node are discarded. A new dimension pair, cutting line and hyperplane are
sampled from afresh following Algorithm 7.

3.2 Training Methodology

A fixed interval based approach {(Bi,Bi+1)}Si=0 is implemented for QBSP training. At
every stage i = 0→ S, all the trees T1, ..., Tm are under the same budget constraints (0,Bi]
and there might be zero, one or more cuts at every stage as long as the sum of the costs
(refer Step 10 in Algorithm 7) are within the pre-allocated budget Bi. The cuts generated
at various stages are depicted geometrically in Figure 3.4 on the tree in Figure 3.5.

26

0 τ1 τ2 τ3 τ4 τ

Figure 3.4: Depiction of one branch of a 3-dimensional tree process with total budget τ .
Red denotes the new cutting hyperplane generated at that step. Source [18]

Stage : 0 Stage : 1 Stage : 2 Stage : 3

Figure 3.5: Depiction of the portion of trees generated over three stages in a single training
iteration. Yellow represents the root node at stage 0 when we begin the training process.
Violet represents the portion of the tree generated in stage 1, blue represents stage 2 and
finally green represents the third and last stage

27

When a tree T is initialized, a portion of the tree is generated in every stage. The tree
generated till stage i, denoted by T i, is assigned a numeric value ωi ∈ ω1:S that describes
the goodness of fit of the tree till that stage to incoming data.

To get a complete understanding of the training algorithm, it is essential to study the
Background section in detail. The Sequential Monte Carlo training process, as described
earlier, is exactly like the particle filter method with the tree T being the high-dimensional
variable whose posterior needs to be sampled. SMC differs from particle filter in that the
original tree is kept alive (refer to line 5 of Algorithm 9) and compared to its clones until
the very end, till it is replaced by the best performing mutation.

On an extremely high level, Algorithm 9 can be summarized as follows :

Given the original tree, proceed in a sequential top-down manner. At every given tree
level, create R mutations of the tree. The winner of a particular level is used to create
the R clones at the next level (Step 4). Mutations at every level might include splitting
a leaf into two nodes (Step 7), destroying a node at that level (along with its children)
and recomputing the boundary line or no change at all (Step 9). All the mutations and
the original tree compete to get the highest score on the training dataset. (Step 16)
These scores are used to pick winners at every stage. The score is average of two metrics :
(i) Improvement in Regression Accuracy on the training dataset over the base tree (Step
11) (ii) The relative sorted ordering of the predicted value over all other action-trees (or
forests) (Step 13).

The ordering metric has never been used for any reinforcement learning distillation pro-
cess before and we summarize the motivation for it here. A score composed of regression
accuracy alone leads to great regression performance and optimal MAE and RMSE errors
(defined later). In our experiments, the distilled forest policy inspite of having impressive
and minimal regression losses was unable to get high rewards in our test environments.
This signified an important problem with Q-Value Distillation methods. For some crucial
actions, the difference in Q-values for competing actions is often very minimal and regres-
sion error metrics proved insufficent to force the correct action from being chosen. Picking
the wrong action can often lead to catastrophic failures in the game. Since we only pick
the top action to perform irrespective of the difference in Q-values between the chosen
action and the next best action, the ordering score builds this condition into the posterior

28

sampling problem.

Algorithm 9: The Ordered Sequential Monte Carlo training process for the j-th
QBSP-tree Tj regressing over action aj

Input: batch data D = (s,Q(s, aj))
1:N , no. of particles R, Q-values predicted by

all other trees for dataset D: Q̂D = {Q∗(s, az)}1:N
∀z∈1,..,j−1,j+1,..,m

Output: modified tree T ∗j , µµµ ∈ T ∗j
1 Initialization i = 0, T0 = empty tree(root node), particle array V [1 : R + 1] = T0,

costs ci[1 : R + 1] = 0, leaf params µµµi[1 : R] = 0;
2 Expand parent tree Tj using Algorithm 8 for (s,Q(s, aj))

1:N , if needed
3 for i = 1, · · · , S do
4 V [1 : R] = Ti−1 ; // make R clones of last successful tree

5 V [R + 1] = T ij ; // the state of original tree at stage i

6 for r = 1, · · · , R, if Bi <
∑i−1

i′=0 ci′ [r] < Bi+1 do

7 using Algorithm 7, recursively obtain Hi[r] = {Ĥλ}Λ
λ=1 ∈ V [r], µµµi[r] ∈ V [r],

ci[r] =
∑Λ

λ=1{cλ} until
∑i

i′=0 ci′ [r] > Bi+1; where Λ = total number of cuts
falling in (Bi,Bi+1]

8 if Λ = 0 then
9 set Hi[r] = Hi−1[r], µµµi[r] = µµµi−1[r], ci[r] = 0;

10 for r = 1, · · · , R + 1 do

11 compute likelihood weight, ω[r] :=
prior(µµµi[r])·p(Q(s,aj)|s,H1:i[r],µµµ1:i,σ

2)

posterior(µµµi[r])·p(Q(s,aj)|s,H1:i−1[r],µµµ1:i−1,σ2)
;

12 for r = 1, · · · , R + 1 do

13 compute ranking weight, ϕ[r] = ρρρ(V [r], Q̂D,D), where ρρρ is the ranking loss
function;

14 for r = 1, · · · , R + 1 do

15 normalize weights W [r] := (ω[r]+α.ϕ[r])∑R
r′=1(ω[r′]+α.ϕ[r′])

where α is a mixing parameter;

16 sample one particle r ∝ W [r] as winner, Ti = V [r]

17 T ∗j = TS

Each tree Tj produces the Q-value Q∗(s, aj) for action aj. Collectively all the trees

reconstruct the original Q̃ function and the prediction is denoted by Q̃∗. The ranking
function ρρρ used in Algorithm 9 computes the mean square error between the neural network
ranking and the distillation tree ranking of the Q values in the dataset.

29

Prior Specification As discussed in the Background section, we need to set the prior
distribution for σ2 and {µµµi}mi=1 (leaf parameter array for all m trees). We follow the same
prior and posterior specification as [19] i.e.

σ2 ∼ IGamma(1.5, λ)

, where given an estimate of the sample variance σ̂2, lambda is set to satisfy the equation
F (σ̂2; 1.5, λ) = 0.9 where F represents the Inverse Gamma c.d.f. The leaf parameters µ are
often stamdardized and hence the prior was chosen as

µ ∼ N (0,
1

2
√
m

)

Posterior Specification While the posterior of µ depends on the data (simple pos-
terior mean calculation referred to after Algorithm 7) using conjugacy the full posterior
conditional distribution of σ2 is:

σ2 ∼ IGamma

(
3 +N

2
, λ+

E

2

)

Consistency BSP Trees are unique in the sense that they are self-consistent. Self-
consistency is a property exhibited by a statistical process wherein restricting a process
on a convex polygon � to any sub-region 4 ⊆ �, the resulting partitioning on the sub-
region is distributed as if it is directly generated on 4. Mondrian Forests [34, 25] and
their recent successor Binary Space Partitioning Forests [18, 19] exploit this property to
create the generative process for their respective trees.They are self-consistent online forest
methods that have constantly matched the accuracy of the state-of-the-art offline regression
methods trained on the same dataset. The BSP Process [18] creates space partitions that
are strictly more expressive than decision trees and as a result are generally much smaller
than regular decision trees for the same accuracy. We use them as the base for our QBSP
Forest structure.

3.3 Proof of Consistency

The proof for the consistency for the BSP Tree Process followed by the BSP Forests as
presented in [18, 19].

30

Extension to QBSP Forests Applying Kolmogorov Extension Theorem, the extended
BSP tree Process is self-consistent in d-dimensional (d ≥ 2) space and maintains distribu-
tional invariance when restricting its domain from a convex polyhedron to a sub-domain.

Finally, the hyperplane restricted on the convex hull is distributed the same as if it was
first partitioned on the full polyhedron and then restricted attention to the convex hull
since both the methods have identical equilibrium distribution in the MCMC algorithm.

Adding the ordering weight and online expansion does not change these fundamental
characteristics.

31

Chapter 4

Experiments

4.1 Environment Description

4.1.1 OpenAI Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It
contains a collection of test problems environments that can be to learn reinforcement
learning strategies. These environments have a shared interface, allowing the training of
generalizable algorithms. It makes no assumptions about the structure of the agent, and
is compatible with any numerical computation libraries like Pytorch and Tensorflow.

The gym environment interfaces with the RL algorithm through the step function that
implements the classic agent in the environment loop. At every timestep, the agent chooses
an action from the policy, passes it to the step function and the environment returns the
following information:

• observation (object): an environment-specific object representing the new state of the
environment. For example, pixel data from a camera, joint angles and joint velocities
of a robot, or the board state in a board game.

• reward (float): amount of reward achieved by the previous action.

• done (boolean): if its time to reset the environment again. Most tasks have fixed
termination points, and done being True closes the episode.

• info (dict): diagnostic information useful for debugging

32

4.1.2 Cart Pole

Figure 4.1: Screenshot of the Cartpole environment in OpenAI Gym

In the Cartpole experiment, a pole is attached by an unactuated joint to a cart, which
moves along a frictionless track. The system is controlled by applying a force of +1 or -1
to the cart. The pendulum starts upright, and the goal is to prevent it from falling over.
A reward of +1 is provided for every timestep that the pole remains upright. The episode
ends when the pole is more than 15 degrees from vertical, or the cart moves more than 2.4
units from the center. The environment was first described in [39].

The state of the agent is defined through 4 continuous features and 2 discrete actions.
Reward is +1 for every step survived and an episode terminates if (1) the pole angle is
more than ±12◦ (2) episode length > 200 (3) Cart Position > ±2.4.

Table 4.1: Cartpole Observation Space

Feature Min Max

Cart Position -2.4 2.4
Cart Velocity -Inf Inf
Pole Angle −41.8◦ 41.8◦

Pole Velocity(tip) -Inf Inf

Table 4.2: Cartpole Action Space

Code Action

0 Push Cart to Left
1 Push Cart to Right

33

4.1.3 Mountain Car

Figure 4.2: Screenshot of the Mountain Car environment in OpenAI Gym

A car is on a one-dimensional track, positioned between two ‘mountains’. The goal is to
drive up the mountain on the right; however, the car’s engine is not strong enough to scale
the mountain in a single pass. Therefore, the only way to succeed is to drive back and forth
to build up momentum. The state of the agent is defined through 2 continuous features
and 3 discrete actions. Reward is -1 for every passing timestep until the goal is reached
and the episode terminates on reaching the successful goal or if 200 iterations are reached.
The starting state is a random position between -0.6 to -0.4 with 0 velocity.

This environment has a very tricky and complex solution policy. Training a DQN neural
network as well as the distilled tree proves extremely challenging but doable.

Table 4.3: MC Observation Space

Feature Min Max

Position -1.2 0.6
Velocity -0.07 0.07

Table 4.4: MC Action Space

Code Action

0 Accelerate to Left
1 No acceleration
2 Accelerate to Right

34

4.2 Training Setup

We provide an extensible platform for training neural network policies and then distilling
the trained policies into tree structures followed by evaluation of the derived data structure.
Mountain Car and Cartpole DQN were both trained using the same platform with generic
Experience Replay and a Target Network networks. We use the same network configuration
provided by [27].

For Cartpole, the network consisted of 3 fully connected hidden layers, each with 128
neurons, trained using the Adam optimizer with learning rate of 0.0001. The network was
trained for 800 episodes with an Experience Buffer of size 10,000 and batch size of 20.
Exploration decayed exponentially as epochs proceeded.

For Mountain Car, the network consisted of 2 fully connected hidden layers with sizes
of 24 and 48 neurons, trained using the Adam optimizer with learning rate of 0.001. The
network was trained for 400 episodes with an Experience Buffer of size 20,000 and batch
size of 32. Exploration decayed exponentially as epochs proceeded.

For our distillation process, we provide the following hyperparameters:

• Iterations : Number of times the training loop needs to run. In each iteration, fresh
data is obtained from observing the network perform in the environment.

• Transition Buffer Size (generally fixed at 5000)

• Trees per action : If the output of any action is to be regressed by more than 1 tree
(generally set to 1 for QBSP Tree results below)

• Number of particles in the particle filter (set to 20)

• Number of stages for tree generation

• Games to evaluate performance on (set to 100 for all experiments)

• Total Budget (defined as B in the algorithm) : Decides the permitted cost to cut for
a dividing plane over all stages

35

4.3 Results

The performance of QBSP-Tree and QBSP-Forests is compared to benchmark data from
earlier papers [26] under the same evaluation environments implemented through the Gym
[11] toolkit : Cartpole [4] and Mountain Car [29].

Like LMUT [26], we convincingly outperform all the offline methods including CART
[10] and M5 model trees [31] for Q-value regression. The original BSP Forests [19] out-
performed most online forests including Breimain-Random Forests [9], Bayesian Additive
Regression Tree Forests [14], Extremely Randomized Forests [21] and batched versions of
Mondrian Forests [25].

Fast Incremental Model Trees (FIMT) [23] is another online tree distillation method
that builds a linear model that adapts to evolving data streams. LMUT and FIMT have
been used for distillation of RL policies in the past. We formally present a quantitative
comparison between our performance and theirs. However, note that since the authors
of the works above did not provide any access to their code and implementation we are
forced to use data directly from their papers. We expect to open-source our code on the
publication of this thesis.

4.3.1 Regression Fidelity

Q-BSP Tree and Q-BSP Forests are evaluated based on how close its regression outputs
are to the Q values from the Q-Networks. The standard regression metrics Mean Ab-
solute Error (MAE) and Root Mean Square Error (RMSE) are tabulated for each gym
environment.

Mean Absolute Error can be computed as :

MAE =
1

a× n
∑
∀a∈A

n∑
j=1

|Q(sj, a)−Q∗(sj, a)| (4.1)

Root Mean Square Absolute Error can be computed as :

MAE =

√√√√ 1

a× n
∑
∀a∈A

n∑
j=1

(Q(sj, a)−Q∗(sj, a))2 (4.2)

where Q∗ represents the predicted Q-value and n represents the batch size.

36

Table 4.5: Cartpole Regression Fidelity

Regression Loss

Algorithm MAE RMSE Leaves

FIMT 32.744 62.862 2195
LMUT 14.230 43.847 416
QBSP Tree 2.222 3.700 45

Table 4.6: Mountain Car Regression Fidelity

Regression Loss

Algorithm MAE RMSE Leaves

FIMT 3.735 5.002 1021
LMUT 0.475 1.015 453
QBSP Tree 0.461 0.984 68

In the LMUT tests, the trees are trained over 30,000 consecutive transitions and eval-
uated over another 10,000 transitions. We follow the same baseline dataset. Table 4.5
presents the distillation performance results for the Cartpole environment. Table 4.6 de-
picts the comparative regression accuracy for the Mountain Car environment. QBSP Trees
outperform older methods on all the environments consistently. In Cartpole, the difference
between our approach and the previous state-of-the-art is particularly convincing.

4.3.2 Gameplay Performance

While regression might seem adequate to measure distillation performance, Q-values for
different actions can often be close to each other and excellent regression performance might
not translate to large rewards. Choosing sub optimal actions at certain crucial states can
yield catastrophic results. Gameplay performance offers a more precise look into the ro-
bustness of distilled tree policies. For evaluation, the distilled tree policy controls the agent
through 100 games or episodes. We use the Average Per Episode Reward (APER) metric
to compare performance across various algorithms. Table 4.7 presents the comparative
gameplay results over different distillation methods and it is clearly evident that QBSP
Trees performs the best in both environments. However it beats the Oracle for Cartpole
achieving perfect rewards for over 1000 continuous runs.

37

Table 4.7: Comparative Game Playing Performance

Environment

Model Cart Pole Mountain Car

DQN 193.88 -126.43
FIMT 40.54 -189.29
LMUT 147.91 -149.91
QBSP-Tree 200.00 -141.65

4.3.3 Feature Influence

Decision Trees are amenable to visual inspection and are hence often considered inter-
pretable We p[33, 26]. To further develop our understanding of the distillation efficiency
, we introduce a new metric and compare feature importance of the state inputs derived
from our trained deep learning model and our distillation tree. Recently, Integrated Gra-
dients (IG) [38] have been widely adopted for computing feature importance for neural
networks. In brief, it computes the integral of the gradients obtained from a set of scaled
input features and then takes the element-wise product of those features with the original
input.

For decision trees, there have been two widely accepted feature importance metrics.
Gini Importance (GI) [10] computes the importance of each feature as the weighted sum
over the number of nodes (across all trees) that includes the feature multiplied by the
number of samples that node splits. Mean Decrease in Accuracy(MDA) or Permutation
Importance [20] is a more recent measure that estimates feature importance of an input
dimension by randomly permuting that dimension for the input data and observing the
decrease in accuracy.

We compute the relative importance of each feature by normalizing the feature im-
portance values to sum up to one. The feature importance comparison between the deep
learning policy and distilled tree policy for the Cartpole environment is represented in
Table 4.8 and for the Mountain Car environment in Table 4.9. A rank of 1 indicates the
most important feature and the rank 4 denotes the least important feature.

As is evident from the results, our distillation method transfers the feature importance
from the deep learning policy to the tree to great extent. Most of the features share the
same importance ranking across all the methods.

38

Table 4.8: Feature Influence for Cartpole

Ranking(Relative Importance)

Feature GI MDA IG

Pole Angle 4 (0.106) 4 (0.123) 4 (0.06)
Cart Velocity 3 (0.209) 3 (0.244) 3 (0.17)
Cart Position 2 (0.231) 1 (0.339) 1 (0.49)
Pole Velocity 1 (0.455) 2 (0.295) 2 (0.28)

Table 4.9: Feature Influence for Mountain Car

Ranking(Relative Importance)

Feature GI MDA IG

Velocity 2 (0.216) 2 (0.479) 2 (0.47)
Position 1 (0.784) 1 (0.521) 1 (0.53)

4.3.4 Verification

Bastani et.al [6] recently showed that tree policies can be used for verifying the correctness,
stability and robustness of linear controllers. We repeat the same correctness experiments
for our distilled Cartpole controller with the Z3 SMT Solver [16] under an identical linear
dynamics approximations.

For proving correctness, a four dimensional state is defined (x, v, θ, ω) is defined. x
denotes the cartpole position, v denotes the cart velocity, θ denotes the pole angle and
finally ω signifies the angular velocity of the pole. The policy has to move the cart to the
finish line while keeping the pole in a constant position. The action a provides linear force
in each direction to the cart. The goal is to prove that the pole never falls below a certain
height which is encoded as the formula (taken from [6]):

ψ ≡ s0 ∈ S0 ∧
∞∧
t=0

|φ(st)| ≤ y0 (4.3)

Here , S0 describes the set of initial states. st = f(st−1, at−1) is the state on step t,
φ(s) is the deviation of the pole angle from upright in state s and y0 is the maximum
desirable deviation from the upright position. f is the transition function. We use a linear
approximation for simplifying the dynamics :

39

f(s, a) ≈ As+Ba (4.4)

which is valid for small pole angles. We limit the time horizon to 8 steps in the rollout
due to limited computational resources. If the controller is correct, −ψ is unsatisfiable
with the rules derived from our tree. Z3 was able to verify correctness in approximately
492 seconds.

40

Chapter 5

Conclusions

Through this thesis, we proposed a new approach to learning online decision tree policies.
We explored a few different strategies for building online forests. This thesis was primarily
focused on providing better distillation performance by using more powerful, expressive
and condensed data structures. QBSP Trees outperformed other distillation methods and
achieved performance closest to the Deep Q Network policy.

We also wanted to bring forward and highlight the self-consistency property of these
Bayesian data structures. Self-consistent data structures are tailor-made for distillation
methods and ours achieved impressive regressive and gameplay performance gains in Cart-
pole while consuming only a third of runtime memory needed by VIPER and unlike VIPER,
performed completely online.

QBSP Forests are able to scale better and handle more complex state spaces. In
contrast to LMUT where trees can only expand linearly (only in the downward direction)
in response to new data, every level of the QSP tree is evaluated for an incoming batch
of data. As a result, the trees are of much smaller size and can easily be extended in a
forest configuration. Linear tree structures are also more prone to forgetting earlier states
in large state spaces; a problem mitigated our Ordered Sequential Monte Carlo training
method.

Our proposed distillation method is not limited to DQN Policies and can be easily
adapted to controllers trained using policy gradients (where the Q function is unavailable)
by extracting the Q-values through the maximum entropy formulation of reinforcement
learning [41].

We are the first research publication to pose Integrated Gradients as an “Influence
Transfer Metric” for Distillation. In our tests QBSP Forests and the Deep Neural Network

41

ranked the features in the same order of importance signalling that we might have been
able to capture intrinsic DNN policy knowledge into our distilled tree structure.

5.1 Future Work

Learning interpretable and explainable policies directly from the environment can help
bring verifiable, safe and intelligent controllers into the real world. However, a lot of work
remains to be done in the area. The primary challenge faced by researchers is the lack of
defined gradients within tree structures. Tree Policies also possess a lower learning ceiling
than neural networks due to their piece-wise regressive nature. Larger trees and forests are
often uninterpretable and impair visual inspection of learnt policies. Generating shallow
and expressive data structures remains an active area of research.

Distillation models can adopt techniques wherein specific areas in the state space are
explored based on interchangable policy control between the oracle and the distilled policy.
We term this as “Active Distillation” and hope that this method can drastically increase
the efficiency of distillation for all data structures. The process saves times by not visiting
swaths of feature space where the distilled structure is fairly confident of its abilities.

The Infinite Dirichlet Distribution provides an effective method to scale our QBSP ap-
proach to higher dimensions and state spaces. It allows for infinite clustering of datapoints
around common centers; the processing of each of which is highly parallelizable. Instead
of datapoints, the dimension-pairs can also be set as centers and mixing strategies can be
used for forest growth.

Finally, advancing verification tools to accommodate complex environment and con-
troller constraints can ease the need for simplifying approximations for verification and
provide theoretical guarantees needed for real world applications.

42

References

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the Twenty-first International Conference on Machine
Learning, ICML ’04, pages 1–, New York, NY, USA, 2004. ACM.

[2] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and
Dan Mané. Concrete problems in AI safety. CoRR, abs/1606.06565, 2016.

[3] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 2654–2662. Curran Associates, Inc.,
2014.

[4] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive
elements that can solve difficult learning control problems. IEEE transactions on
systems, man, and cybernetics, (5):834–846, 1983.

[5] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dimitrios Vytiniotis,
Aditya V. Nori, and Antonio Criminisi. Measuring neural net robustness with con-
straints. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, pages 2621–2629, USA, 2016. Curran Associates Inc.

[6] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement
learning via policy extraction. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 2494–2504. Curran Associates, Inc., 2018.

[7] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas Krause. Safe
model-based reinforcement learning with stability guarantees. In Proceedings of the
31st International Conference on Neural Information Processing Systems, NIPS’17,
pages 908–919, USA, 2017. Curran Associates Inc.

43

[8] Olcay Boz. Extracting decision trees from trained neural networks. In Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’02, pages 456–461, New York, NY, USA, 2002. ACM.

[9] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[10] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, 1984.

[11] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[12] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, pages 535–541, New York, NY, USA, 2006.
ACM.

[13] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. Interpretable
deep models for icu outcome prediction. In AMIA Annual Symposium Proceedings,
volume 2016, page 371. American Medical Informatics Association, 2016.

[14] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bart: Bayesian
additive regression trees. Ann. Appl. Stat., 4(1):266–298, 03 2010.

[15] Darren Dancey, Zuhair A Bandar, and David McLean. Logistic model tree extraction
from artificial neural networks. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 37(4):794–802, 2007.

[16] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340, Berlin, Heidelberg, 2008. Springer Berlin
Heidelberg.

[17] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforce-
ment learning. J. Mach. Learn. Res., 6:503–556, December 2005.

[18] Xuhui Fan, Bin Li, and Scott Sisson. The binary space partitioning-tree process.
In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, volume 84 of Pro-
ceedings of Machine Learning Research, pages 1859–1867, Playa Blanca, Lanzarote,
Canary Islands, 09–11 Apr 2018. PMLR.

44

[19] Xuhui Fan, Bin Li, and Scott Anthony Sisson. Binary space partitioning forests. arXiv
preprint arXiv:1903.09348, 2019.

[20] Aaron Fisher, Cynthia Rudin, and Francesca Dominici. All models are wrong but
many are useful: Variable importance for black-box, proprietary, or misspecified pre-
diction models, using model class reliance. arXiv preprint arXiv:1801.01489, 2018.

[21] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees.
Machine learning, 63(1):3–42, 2006.

[22] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural
Network. arXiv e-prints, page arXiv:1503.02531, Mar 2015.

[23] Elena Ikonomovska, João Gama, and Sašo Džeroski. Learning model trees from evolv-
ing data streams. Data mining and knowledge discovery, 23(1):128–168, 2011.

[24] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochender-
fer. Reluplex: An efficient SMT solver for verifying deep neural networks. CoRR,
abs/1702.01135, 2017.

[25] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. Mondrian forests:
Efficient online random forests. In Advances in neural information processing systems,
pages 3140–3148, 2014.

[26] Guiliang Liu, Oliver Schulte, Wang Zhu, and Qingcan Li. Toward interpretable deep
reinforcement learning with linear model u-trees. CoRR, abs/1807.05887, 2018.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518:529–533, 2015.

[28] Christoph Molnar. Interpretable machine learning: A guide for making black box
models explainable. https://christophm.github.io/interpretable-ml-book/

feature-importance.html, 2016.

[29] Andrew William Moore. Efficient memory-based learning for robot control. 1990.

[30] OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

45

https://christophm.github.io/interpretable-ml-book/feature-importance.html
https://christophm.github.io/interpretable-ml-book/feature-importance.html
https://blog.openai.com/openai-five/

[31] J. R. Quinlan. Learning with continuous classes. pages 343–348. World Scientific,
1992.

[32] Christian Robert and George Casella. Monte Carlo statistical methods. Springer
Science & Business Media, 2013.

[33] Ivan Dario Jimenez Rodriguez, Taylor W. Killian, Sung-Hyun Son, and Matthew C.
Gombolay. Interpretable reinforcement learning via differentiable decision trees.
CoRR, abs/1903.09338, 2019.

[34] Daniel M Roy and Yee W. Teh. The mondrian process. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems
21, pages 1377–1384. Curran Associates, Inc., 2009.

[35] Daniel Murphy Roy. Computability, inference and modeling in probabilistic program-
ming. PhD thesis, Massachusetts Institute of Technology, 2011.

[36] D. Sculley. Combined regression and ranking. In KDD, 2010.

[37] Maarten Speekenbrink. A tutorial on particle filters. Journal of Mathematical Psy-
chology, 73:140 – 152, 2016.

[38] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. CoRR, abs/1703.01365, 2017.

[39] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, Cambridge, MA, USA, 1st edition, 1998.

[40] Gilles Vandewiele, Olivier Janssens, Femke Ongenae, Filip De Turck, and Sofie Van
Hoecke. GENESIM: genetic extraction of a single, interpretable model. arXiv e-prints,
page arXiv:1611.05722, Nov 2016.

[41] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum
entropy inverse reinforcement learning. 2008.

46

	List of Tables
	List of Figures
	Introduction
	Motivation
	Overview
	Thesis Organization

	Background
	Reinforcement Learning
	Definitions
	Value Function
	Q-Function
	Bellman Equations
	Deep Q Learning

	Bayesian Additive and Regressive Tree Model
	Sum of Trees model
	Regularization Priors
	Training BART Models

	Conditional Sequential Monte Carlo Filters
	Importance Sampling
	Sequential Importance Sampling
	Particle Filters / Sequential Monte Carlo Models

	The Distillation Process
	QBSP Forest
	The BSP Tree
	Online Expansion of Node Partitions

	Training Methodology
	Proof of Consistency

	Experiments
	Environment Description
	OpenAI Gym
	Cart Pole
	Mountain Car

	Training Setup
	Results
	Regression Fidelity
	Gameplay Performance
	Feature Influence
	Verification

	Conclusions
	Future Work

	References

