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Abstract

This thesis explores one of the differences between the visual cortex and deep convolu-
tional neural networks, namely, correlated fluctuations of neuron response strength. First,
we describe the similarities and differences between biological and artificial neural networks
and provide motivation for bridging the gap between the two, with a focus on correlated
variability.

Next, we present a regularisation method for convolutional neural networks using cor-
related noise. The structure of the correlations are inspired from biological observations
using two factors: spatial extent and tuning similarity of neurons. We provide empirical
results on improved robust image classification in the setting of occluded and corrupted
images.

We then move on to studying the connection between popular dataset augmentation
techniques and correlated variability. We compute a smooth estimate of the correlations
of neural network activity as a function of distance and kernel similarity, and show the
similarity to biological correlations.

Finally, we introduce a structured form of Dropout for convolutional neural networks,
taking into account spatial and kernel correlations. We show improvement in image clas-
sification for the VGG architecture on the CIFAR-10 dataset.
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Chapter 1

Introduction

The past decade has witnessed deep neural networks dominate multiple domains of machine
learning. While neural networks were originally inspired from biology, there is much left
to be said about its reconciliation with biological brains. In this thesis we develop an
understanding of one difference between the two: correlated neuronal variability and how
it inspires training strategies for artificial neural networks.

We begin with the first chapter on regularization in convolutional networks using corre-
lated noise models inspired from the brain. Then, we move on to analysing current dataset
augmentation techniques for deep learning, connecting it to the structure of biological cor-
relations. We end with the last chapter on a new regularization technique for convolutional
networks called CorrDrop.

In the following sections, we describe the connections between biological and artificial
neural networks.

1.1 The Intersection of Deep Learning and Computa-

tional Neuroscience

Neural networks are a powerful class of algorithms essential to solving many difficult prob-
lems in machine learning. Over the past few years, there has been tremendous development
in model architectures, hardware, and training procedures that have constantly improved
task-related performance. The resurgence of deep learning accelerated with the pioneering
work of Alex Krizhevsky, Ilya Sustkever, and Geoffrey Hinton in building AlexNet [22], a
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deep convolutional network that outperformed other image recognition algorithms on the
challenging ImageNet dataset [4]. Since then, neural networks have greatly improved in
object recognition tasks such as localization [11, 38] and classification [12, 33]. However,
compared to humans, neural networks are fragile. For example, they misclassify adversar-
ial examples: inputs with imperceptible perturbations [10] that are designed to change a
network’s response.

Modern neural networks are loosely inspired from neuroscience, capturing some fea-
tures of biological networks. The basic unit of computation in a neural network is a linear
combination of the responses of multiple other units which pass through non-linear func-
tions such as a rectified linear unit (sets negative values to zero). Convolutional neural
networks process images in a fashion similar to the visual stream in the brain. The in-
puts pass through a hierarchical sequence of retinotopic representations where each unit
only processes local information from the feature map produced from the previous layer.
Along this sequence, the inputs pass through a series of non-linear functions and produce
receptive fields of increasing size and invariance. At the same time, convolutional neural
networks are also different from biological neural networks. They do not include lateral
connections and operate with continuous outputs versus spikes, among other differences.
Despite these differences, deep convolutional networks trained on image recognition predict
neuron responses in the visual cortex with high accuracy. For example, early layers show
Gabor-like receptive fields similar to V1 [46], late layers that are highly predictive of V4
[44], and inferotemporal cortex (IT) responses [45]. These results indicate that convolu-
tional neural networks produce intermediate representations similar to the primate brain
to solve the task of object recognition.

While the connections between biological and deep learning are informal, brain-inspired
neural networks are revolutionising artificial intelligence. There is rich potential in research
of bridging the gap between the two systems.

1.2 Correlated Variability in the Brain

Neural coding is concerned with characterising the relationship between input stimuli and
individual or ensemble neuronal responses. In population coding, the joint activities of
multiple neurons encode the value of a quantity. For example, as with the control of eye
[24] and arm [7] movements, visual discrimination in the primary visual cortex (V1) is
much more accurate than would be predicted from the responses from individual neurons
[28]. However, neurons are noisy and trial-to-trial fluctuations in response strength make it
difficult to discern the relationship between stimuli and neural activity. If the fluctuations
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of neuron responses are not correlated with other neuron responses, this problem may
be reduced by averaging. The effectiveness of the averaging depends on the pattern of
correlations, if any. Unfortunately, noise in the brain is correlated [48, 20, 34] on a range
of time scales. The correlations arise from shared input but the involved circuitry relaying
this information is unclear [34, 20]. While the information increases linearly with the
number of neurons in the case of uncorrelated response variability [26], the impact of
correlated variability on stimulus information can be detrimental or beneficial depending
on its properties [2] and the decoding method [40]. The majority of previous work on the
effect of correlations has studied impact on stimulus information, but stimulus information
doesn’t fully describe brain function, because information is probably thrown away as
behaviorally relevant distinctions are made. The authors in [27] have developed a theory
which predicts that perceptual uncertainty is directly encoded by the variability. Our goal
is to understand if correlated variability has benefits that can be realized in artificial neural
networks by studying its influence on certain tasks.

1.3 Summary of Contributions

The theme of this thesis is understanding the role of correlations (artificially induced or
naturally occurring) in convolutional neural networks.

• In chapter 2, we show how convolutional networks can be trained with high-dimensional
correlated noise.

– We introduce convolutional networks, current regularisation methods, back-
propagation with stochastic units, and the motivation for robust image clas-
sification in section 2.1.

– In section 2.2, we present four different noise distributions and how sampling
can be accomplished while letting the back-propagation algorithm proceed.

– Inspired from the cortex, we induce a correlation structure that depends on
spatial distance between units and their tuning similarity. This is described in
section 2.3.

– The empirical results from image classification experiments on occluded and
corrupted images is presented in section 2.4.

• In chapter 3, we explore the connections between the correlations induced by current
dataset augmentation techniques and biological correlations.

3



– We discuss two forms of dataset augmentation, both in input and latent space
for neural networks in section 3.1. The motivation for connecting it to biological
correlations is also discussed.

– In section 3.2, we explain how to compute the activations for determining the
correlations. We also show how to make a smooth estimator of correlations as
a function of distance and tuning similarity. Finally, we compare the induced
correlations across different training paradigms and biological correlations.

• In chapter 4, we introduce a modified version of Dropout [36] for convolutional net-
works.

– We explain the motivation for structural forms of Dropout for convolutional
neural networks in section 4.1. Two successful methods, SpatialDropout [39]
and DropBlock [8], that use spatially structured Dropout are described.

– Two modifications to SpatialDropout and DropBlock using both spatial and
kernel similarity are described and evaluated on image classification using con-
volutional networks in section 4.2.
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Chapter 2

Regularisation using Correlated
Noise

We focus on the problem of regularization of artificial neural networks: the process of
modifying the learning algorithm to reduce the generalisation error but not the training
error. A common approach to regularise deep learning models is to inject noise during
training. For example, this can be accomplished by adding or multiplying noise to the
hidden units of the model. Most solutions include additive or multiplicative noise because
of its simplicity and effectiveness. In this chapter, we show the impact of noise with a
correlation structure inspired from biological observations.

One major concern with stochasticity in neural networks is the tendency to break
differentiability, which prevents gradient computation via back-propagation. Depending
on the noise distribution, one may ignore the stochasticity in back-propagation (e.g. the
straight-through estimator in the case of binary stochastic neurons [3]), or one may apply
computationally convenient estimators for non-differentiable functions. We show how to
sample from correlated multivariate Gaussian and Poisson distributions while keeping the
procedure differentiable, so that back-propagation can proceed as usual.

2.1 Introduction

While the field of deep learning is broad and extensive [9], we have described in the following
sections the topics which we believe are relevant to the understanding of our contributions
in regularisation using correlated noise.
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2.1.1 Convolutional Neural Networks

The goal of a neural network is to approximate some function f ∗. For example, an image
classifier, y = f(x), maps an input x to a category y. Neural networks process inputs
by composing together many different functions. Each function is typically a linear trans-
formation followed by a non-linearity. By composing several functions, the ‘depth’ of the
model is increased, giving rise to the name ‘deep’ learning.

Convolutional networks, or CNNs, are a type of neural network which uses the con-
volution operation. The convolution is a special kind of linear operation. In this thesis,
we will focus on convolutions applied to 2D images. In this context, the convolution op-
eration applies a two-dimensional kernel at different image locations. We can define the
convolution for a two-dimensional image I using a two-dimensional kernel K as:

C[i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[m,n]K[i−m, j − n], (2.1)

where m and n are the dimensions of the image.

The sparse connectivity and weight sharing properties of a convolutional neural net-
work make them more efficient than the fully connected neural network counterparts. By
enforcing local computations using the same weights, meaningful features about the input
can be calculated while reducing memory requirements. This makes CNNs especially suit-
able for image processing. The learning algorithm that guides parameter updates is the
same as in any deep neural network: gradient descent. It employs the backpropagation
algorithm to efficiently compute gradients with respect to the parameters [32].

2.1.2 Regularisation using Uncorrelated Noise

The analysis of noise in deep networks has focused on models that use uncorrelated noise
to perturb the activations of neurons. For example, Dropout [36] is an effective method to
regularize neural networks where each unit is independently dropped with a fixed probabil-
ity. Uncorrelated Gaussian noise has also been extensively explored in [31], where noise is
added to the input, or before or after the non-linearity in other layers. The authors connect
different forms of independent noise injection to certain forms of optimization penalties in
a special form of a denoising autoencoder. One connection shown is zero-mean additive
Gaussian noise with variance equal to the unit activation (Fano factor of 1) relates to a
penalty that encourages sparsity on hidden unit activations. This is interesting because
the time intervals between spikes in a cortical neuron are irregular and can be modeled
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using a Poisson process, such that the variance of the spike count in a small time interval
is equal to the mean spike count. This motivates us to investigate whether we can model
artificial neurons as samples from a Poisson distribution. The work done in [31] focused on
unsupervised learning in autoencoders and used the learned hidden representations as in-
puts to a classifier. Our approach differs in the fact that we are directly using a supervised
classifier (CNN) to analyze the injection of noise.

2.1.3 Back-Propagation Through Stochastic Nodes

Gradient-based learning which leverages back-propagation in neural networks requires that
all operations that depend on the trainable parameters be differentiable. Stochastic neural
networks usually involve samples from a distribution on the forward pass. However, the
difficulty is that we cannot back-propagate through the sampling operation. It is shown in
[3] that in the case of injection of additive or multiplicative noise in a computational graph,
gradients can be computed as usual. The concept of a straight-through estimator is also
introduced in [3], where a copy of the gradient with respect to the stochastic output is used
directly as an estimator of the gradient with respect to the non-linear operator. The work in
[25, 18] allows for back-propagation through samples from discrete categorical distributions.
While we do not use this technique in our work, it is possible to choose an upper bound
K to convert a Poisson distribution to a categorical distribution of size K. The sample
from the distribution would be the expected value of this estimated categorical distribution
and back-propagation can proceed since the entire process is made differentiable. This is
explained in further detail in subsection 2.2.3.

2.1.4 Robust Image Classification

Robust image classifiers possess the desirable ability to remain resilient even in the face of
corruption, adversarial examples, or abstract changes in structure and style. This requires
the ability to robustly model invariance to certain transformations of the input. The pri-
mary method of gaining invariance to transformations is data driven, either by attempting
to collect instances of the object under a wide variety of conditions, or augmenting the
existing dataset via synthetic transformations. The authors in [43] suggest that the right
way to learn invariance is not by adding data, as corruptions, perturbations, and occlu-
sions follow a long-tail distribution which cannot be covered, even by large-scale efforts in
collecting data. This motivates the need to modify the structure of the network to learn
invariance. This serves as motivation to see if correlated variability in convolutional neural
networks has benefits in robust image classification.
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2.1.5 Connections to Data Augmentation

Dataset augmentation is a cheap and effective way to generate more training data with
variability that is expected at inference time. Recently, some works have considered aug-
mentation techniques, such as the addition of noise, as well as interpolation and extrap-
olation from pairs of examples, not in input space, but in a learned feature space [5].
However, they show that simple noise models (e.g. Gaussian) do not work effectively when
compared to extrapolation. We are motivated by the fact that more sophisticated noise
models (e.g. correlated) could be useful for feature space-based augmentation. The con-
nections between input space data augmentation [47] and latent space data augmentation
[41] with correlated activations in CNNs is explained in more detail in chapter 3.

2.2 High Dimensional Noise in Deep Neural Networks

We consider noise sampled from two distributions: Gaussian and Poisson. In this section,
we demonstrate sampling from these distributions (uncorrelated and correlated) while al-
lowing gradient computation to proceed as usual to enable back-propagation.

2.2.1 Uncorrelated Gaussian Noise

We consider hi to be the output of a stochastic neuron. The output is a deterministic
function of a differentiable transformation ai and a noise source zi, as considered in [3]. ai
is typically a transformation of its inputs (vector output of other neurons) and trainable
parameters (weights and biases of a network). The output of the stochastic neuron is:

hi = f(ai, zi). (2.2)

As long as hi is differentiable with respect to ai and has a non-zero gradient, we can
train the network with back-propagation. In this section, one form of noise we consider is
additive independent Gaussian noise with zero mean and σ2 variance, where:

f(ai, zi) = ai + zi, (2.3)

zi ∼ N (0, σ2). (2.4)

At test time, we can compute the expectation of the noisy activations by sampling
from the distribution N (ai, σ

2); however, this can be computationally expensive for large
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datasets. Instead, we can approximate the expectation by scaling the units by their ex-
pectation, as in Dropout [36]. Since we are using zero mean additive noise, no scaling is
required, as the expectation does not change.

A special case of Equation 2.4 is when σ2 = ai. The distribution of activations for
a specific stimulus will follow N (ai, ai), which has a Fano factor of 1. This is similar to
biological neurons, which exhibit Poisson-like statistics with a Fano factor of approximately
1. It also means that zi is now a function of ai and the gradient of zi with respect to ai
exists through re-parameterization. A sample from a normal distribution N (µ, σ2) can be
constructed as:

xi ∼ N (0, 1),

zi = µ+ σxi.
(2.5)

In the case when σ2 = ai and µ = 0, zi =
√
aixi. In practice, the gradients can be

unstable for the square-root function for small values. To solve this problem, we add a
small value of ε = 1e− 6 to the argument of the square-root function.

2.2.2 Correlated Gaussian Noise

We consider h ∈ IRn to be a vector of outputs of n stochastic neurons. h is a sum of a
noise vector z ∈ IRn and a vector output a ∈ IRn, which is a differentiable transformation
of its inputs and trainable parameters. The vector output is:

h = z + a, (2.6)

z ∼ N (0,Σ). (2.7)

Given a desired mean µ and correlation matrix Σ, z ∈ IRn is sampled as follows:

• Sample X ∼ N (0, In)

• Compute the Cholesky decomposition: Σ = LL∗, where L∗ is the conjugate transpose
of L.

• z = µ+ LX
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• If σ ∈ IRn is the desired standard deviation, then

z = diag(σ)(µ+ LX), (2.8)

where diag(σ) ∈ IRn×n is a matrix with the standard deviations on the diagonal and
zeros elsewhere.

2.2.3 Uncorrelated Poisson Noise

We consider hi to be the output of a stochastic neuron. The definition of ai is the same as
in Section 2.2.1. In the case of independent Poisson noise, the output of the neuron is:

hi ∼ Poisson(λ = ai), (2.9)

where the mean is given by ai. This poses a problem in back-propagation, as there is no
gradient of hi with respect to the parameter λ = ai. The re-parameterization trick in [19]
cannot be applied in this case because the Poisson distribution is discrete. To avoid this
problem, we set the output of the unit to its mean value during the backward pass, which
is ai. We still propagate the sample from the distribution on the forward pass. This is
similar to the straight-through estimator for back-propagation through stochastic binary
neurons [3].

Continuous Relaxation for Sampling from Poisson Distributions

The Gumbel-softmax method [25, 18] can be used here if the Poisson distribution is con-
verted to a categorical distribution using an upper threshold K. While we do not use this
technique in our work, it might be of interest to the reader. The procedure is:

1. Given a rate λ ∈ IR of a Poisson distribution, the K-categorical distribution is
constructed as:

z = [π1 = P (X = 0;λ), π2 = P (X = 1;λ), ..., πk = P (X = K;λ)] ∈ IRk. (2.10)

This is an approximation as we are using the probability mass function of the Poisson
distribution of rate λ to determine the individual probabilities of a K-categorical
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distribution. The ideal method would be to determine the pmf of the truncated
Poisson distribution [P (X = 0|X ≤ K;λ), P (X = 1|X ≤ K;λ), ..., P (X = K|X ≤
K;λ)]. If we choose K to be much larger than λ, the subsequent probabilities P (X =
K + 1;λ), P (X = K + 2;λ), . . . , P (X = K +N ;λ) will be small.

2. Using the Gumbel-Softmax distribution and a temperature parameter τ , a one-hot
sample y ∈ IRK from the categorical distribution z can be generated using the softmax
function:

yi =
exp ((log (πi) + gi) /τ)∑k
j=1 exp ((log (πj) + gj) /τ)

for i = 1, . . . , K, (2.11)

where g1, . . . , gk are samples drawn from Gumbel(0,1). The Gumbel(0,1) distribution
can be sampled by drawing u ∼ Uniform(0,1), and computing g = − log (− log(u)).

3. We discretize y on the forward pass using arg max, but use the continuous approxi-
mation (using the softmax) on the backward pass. The approximate sample p ∈ IR
from the Poisson distribution is:

p = arg maxi{y} (2.12)

Depending on the rate λ of the target Poisson distribution, the threshold K for the
categorical distribution has to be chosen carefully. If it is too small, it will not capture the
distribution well. The dependence on K is shown in Figure 2.1.

2.2.4 Correlated Poisson Noise

Similar to subsection 2.2.2, h ∈ IRn is a vector of outputs of n stochastic neurons. h is a
sample from a correlated Poisson distribution of mean λ and correlation matrix Σ,

h ∼ Poisson(λ,Σ). (2.13)

We draw approximate samples from this distribution in the following way. Given a
desired mean λ ∈ IRn and correlation matrix Σ ∈ IRn×n:

• Sample X ∼ N (µ,Σ), where µ is chosen arbitrarily.
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Figure 2.1: Histogram of 10000 samples from the Poisson with λ = 2 and the approximate
Poisson samples of Gumbel-Softmax distribution for different values of K. When K is
small, the approximation is poor. As the value of K increases, the approximation quality
increases.
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Figure 2.2: The correlations between samples from the normal distribution and transformed
Poisson variables. The correlations are quite similar after the transformation. However,
the correlations will not be exact because any transformation from the original will reduce
the correlations between the variables.

• Apply the univariate normal cumulative distribution function (CDF): Y = Fx(X;µ =
0, σ = 1).

• Apply the quantile (inverse CDF) of the Poisson distribution: z ∼ F−1z (Y ;λ).

This sampling procedure is non-differentiable for a correlated Poisson. We estimate the
gradient using the mean λ on the backward pass, similar to the straight through estimator
in [3]. The actual correlations between Poisson variables depend on the rates λ and are
smaller than the desired correlation matrix Σ as shown in Figure 2.2.

2.3 Correlations Inspired from the Visual Cortex

We discuss how the correlation matrix Σ is constructed, which is used in subsection 2.2.2
and subsection 2.2.4. Note that the neuron equivalent in a CNN is a unit in the output
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feature map of a given layer.

Neurons in the cortex are correlated in their stochasticity. This correlation is a function
of the spatial spread and tuning similarity [34]. In the visual cortex, correlations have been
studied between neurons in the same visual area. Analogously, we consider correlations
between units in the same layer of a CNN. The details of spatial similarity and tuning
similarity are described in subsection 2.3.1 and subsection 2.3.2. For a given layer in a
convolutional network, if the width and height of the feature maps, as well as the number
of feature maps are defined as w, h, and k, respectively, then the dimension d of the
correlated distribution we draw samples from is d = whk and the correlation matrix is
Σ ∈ IRwhk×whk.

Similar to a relationship suggested in [34], the correlation between two neurons, x1 and
x2, is determined as:

f(x1, x2) = [a− b(d(x1, x2))]
+ · e

k(x1,x2)−1
τ + c, (2.14)

where [·]+ is max(·, 0), d(·, ·) is a function that returns the scaled Euclidean distance
between two neurons, k(·, ·) is a function that returns the tuning similarity between two
neurons (bounded in [−1, 1]), and a, b, c, and τ are hyper- parameters. The correlation is
summarized in Figure 2.3 for specific values of a, b, c, and τ . To summarize, within a layer
of a CNN, every neuron is correlated to every other neuron in the same layer by a value
determined by how far apart they are and their tuning similarity.

2.3.1 Spatial Similarity

The spatial similarity between two units in any output feature map within a layer is
determined by the Euclidean distance between the coordinates of the neurons within their
respective feature maps. The spatial distance between two neurons that are a part of the
ith and jth feature maps, respectively, with coordinates p = (xi, yi) and q = (xj, yj) is:

d(p, q) =
√

(xi − xj)2 + (yi − yj)2, (2.15)

Since the dimensions of the feature map do not change as training progresses, we can
pre-compute the spatial correlations for all pairs of neurons before training begins.
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Figure 2.3: Correlation dependence on distance and tuning similarity for a = 0.225, b =
0.0043, c = 0.09 and τ = 1.87. The correlation value of the color plot is indicated by the
bar on the right.

2.3.2 Tuning Similarity

The tuning similarity between two units in any output feature maps within a layer is
determined by the cosine similarity of the normalized weight matrices that produced them.
Consider a weight tensor (kernel in a convolutional network) of dimension d = k×k×m×n,
where k is the kernel size, m is the number of input channels from the previous layer, and
n is the number of kernels. The ith kernel wi is of dimension d = kkm × 1. The tuning
similarity between two neurons that are a part of the ith and jth feature maps, respectively,
with coordinates p = (xi, yi) and q = (xj, yj) is:
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k(p, q) =

(
wi

‖wi‖

)T
· wj

‖wj‖
, (2.16)

since we are calculating the cosine similarity, k(·, ·) ∈ [−1, 1]. Note that the tuning simi-
larity solely depends on the feature maps that the output units are a part of.

2.3.3 Nearest Positive Definite Correlation Matrix

A valid correlation matrix is a symmetric matrix with a unit diagonal and non-negative
eigenvalues. Following the procedure in Equation 2.14, the computed correlation matrix
may not be valid due to the possibility of negative eigenvalues. In this scenario, we are
interested in finding the nearest correlation matrix in Frobenius norm to the computed
correlation matrix.

Let Σ be the invalid target matrix computed as per section 2.3. If B is the valid
correlation matrix we need to find, we require the eigenvalues of B to be positive. We can
formulate this as a convex optimisation problem to solve for the closest possible B to Σ
shown in Equation 2.17.

minimize ‖Σ−B‖F
subject to B � 0

(2.17)

We use the CVXPY [6] software package to solve this optimisation problem. It should
be noted that CVXPY relaxes the condition for B to be positive semi-definite. In practice,
the method has converged to solutions which are positive-definite but in some cases the
optimum may end up being positive semi-definite.

2.4 Image Classification Experiments

We first describe the experimental setup including the dataset, model architecture, and
robustness evaluation criteria. Then, the quantitative results are discussed in the following
sections.
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Model name abbreviation
AllConvNet baseline Baseline

AllConvNet uncorrelated Gaussian σ = ai UG
AllConvNet correlated Gaussian CG
AllConvNet uncorrelated Poisson UP
AllConvNet correlated Poisson CP

Table 2.1: Different AllConvNet models evaluated as part of layer 1 tests.

2.4.1 Model Architecture

We performed preliminary experiments with the noise models described in section 2.2
using an architecture equivalent to the AllConvnet network [35] (specifically the All-CNN-
C architecture) with one exception: the first layer contains 10 feature maps instead of 96,
as shown in Table 2.2. This was done for computational tractability, as the correlation
matrix grows as (whk)2, where w and h are the width and height of a feature map, and
k is the number of feature maps in a layer. As a result, the sampling procedure from a
correlated distribution can slow training by a large amount. For example, typical deep
convolutional networks have feature maps whose number varies in the range [256,1024]. In
the early layers where feature maps are larger in size, the correlation matrix would be of
size (32× 32× 256)2 = 2621442.

2.4.2 Dataset

The CIFAR-10 dataset [21] is used for the experiments in this section. It consists of 60000
32 × 32 colour images in 10 classes, with over 6000 images per class. There are 50000
training images and 10000 test images. Neither the training set nor the test set contains
any occlusions or corruptions. While we do not aim for state-of-the-art results, our goal
is to obtain a model that achieves respectable performance on CIFAR-10 and analyze the
effect of adding various kinds of noise. The model with the best validation set (10000
images randomly picked from the training set) accuracy is saved for evaluation on the
occlusions and common corruptions dataset.
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Input: 32 × 32 RGB image
Layer 1: 3 × 3 conv. 10 filters, ReLU
Layer 2: 3 × 3 conv. 96 filters, ReLU

Layer 3: 3 × 3 conv. 96 filters, stride = 2, ReLU
Layer 4: 3 × 3 conv. 192 filters, ReLU
Layer 5: 3 × 3 conv. 192 filters, ReLU

Layer 6: 3 × 3 conv. 192 filters, stride = 2, ReLU
Layer 7: 3 × 3 conv. 192 filters, ReLU
Layer 8: 1 × 1 conv. 192 filters, ReLU
Layer 9: 1 × 1 conv. 10 filters, ReLU

Layer 10: global averaging over 6 × 6 spatial dimensions
10-way softmax

Table 2.2: Modified version of AllConvnet (ALL-CNN-C) architecture with 10 filters in
layer 1 used in experiments with CIFAR-10.

2.4.3 Occlusions

The first set of robustness experiments involves evaluating the model on occluded images
from the test set. These occlusions may not fully depict real world scenarios, but serve as a
good preliminary tests for classifier robustness. The different types of occlusions are listed
in Figure 2.4. Each of the six types of occlusions is applied to every test image, giving us
a new test set of 60000 images.

We first experiment by incremental addition of the stochastic behaviour to understand
its effect. The baseline model is described in Table 2.2. First, we add noise in layer 1
of the AllConvNet architecture. The different noise architectures for layer 1 are shown in
Table 2.1.

We then analyze whether the benefits of noise can be realized in the presence of another
regularizer by evaluating the effect of noise in the presence of Dropout. In this case, the
baseline model shown in Table 2.2 is trained with Dropout in specific layers. As before,
we add different types of noise to layer 1 in order to understand its impact.

The experiments in this section were implemented in TensorFlow [1]. The optimization
algorithm used for parameter updates is stochastic gradient descent with Nesterov momen-
tum [30, 37]. The models are trained for 350 epochs with a learning rate of 0.01, decaying
at steps 200, 250, and 300 by a factor of 0.1 each time. An L2 weight decay factor of 1e−3
is also used as part of the objective function.
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Checkerboard Central Occlusion Horizontal Half

Horizontal Bars Vertical Bars Vertical Half

Figure 2.4: Different types of occlusions used to evaluate recognition performance. Images
shown are taken from CIFAR-10.

Absence of Dropout

The classification performance of the models that do not incorporate Dropout are sum-
marized in Table 2.3. The models are abbreviated, as shown in Table 2.1. All models are
evaluated against the baseline.

Uncorrelated Gaussian noise with zero mean and standard deviation equal to the activa-
tion values and uncorrelated Poisson noise, individually, improve classification performance
on two out of the six occlusion tests, while having worse test set performance.

Correlated Gaussian noise improves classification performance in three out of the six

19



occlusion tests but also has comparable performance in the remaining occlusion tests and
the test set. This is encouraging because the model achieves better performance on a held
out transformed dataset without sacrificing the original test set accuracy.

Correlated Poisson noise also improves classification performance in three out of the six
occlusion tests but has worse performance in the remaining tests. The weak performance
of the Poisson models (both correlated and uncorrelated) may stem from the fact that
the mean value is used during back-propagation instead of the actual sample value which
might affect learning.

In the case of models trained without additional regularisation (Dropout), in five out
of the six occlusion tests, the best performing models involved correlated noise.

Baseline UG UP CG CP

mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%)
Test Set 83.6 0.7 80.7 0.5 81.1 1.5 82.5 1.7 75.8 0.0

Central Occlusion 64.0 0.7 63.1 0.2 63.6 0.4 65.0 1.2 61.0 0.0
Checker Board 54.1 1.7 69.7 1.8 72.5 1.7 75.7 2.4 73.4 0.0
Horizontal Bars 23.2 1.3 26.4 1.5 27.4 1.5 28.5 1.7 30.6 0.0

Vertical Bars 20.9 1.7 20.8 1.2 20.6 1.0 21.8 0.8 23.1 0.0
Horizontal Half 49.2 1.8 42.5 1.3 44.9 1.7 48.9 1.7 43.5 0.0

Vertical Half 40.3 1.2 35.7 1.8 38.9 1.1 45.0 0.7 35.0 0.0

Table 2.3: Image classification performance of AllConvNet without any additional regu-
larization on occlusions averaged over 5 runs.

Presence of Dropout

Dropout was applied to the input image, as well as after each of the layers that has a stride
of 2 (simply a convolutional layer that replaces pooling [35], specifically layer 3 and 6).
The Dropout probability at the input was 20% and was 50% otherwise.

The classification performance of the models that incorporate Dropout are summarized
in Table 2.4, with the model abbreviations shown in Table 2.1.

Adding Dropout to the baseline model improves the test set accuracy by 0.7% from the
model trained without any Dropout. It improves the accuracy on three occlusion tests but
also reduces accuracy on the other three occlusions. This suggests that Dropout may not
be the best regularisation method for robust image classification.

Uncorrelated Gaussian noise paired with Dropout improves accuracy on four out of
the six occlusion tests, but with lower test set accuracy. This suggests that uncorrelated
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Gaussian noise by itself may not be a good technique for robust image classification, but
when paired with Dropout, it has desirable results. Uncorrelated Poisson noise also has
the same behaviour as uncorrelated Gaussian noise.

Correlated Gaussian noise paired with Dropout improves classification performance for
five out of six occlusion tests while having comparable accuracy on the test set. Correlated
Poisson noise has significantly weaker test set accuracy, but still improves accuracy on two
out of six occlusion tests.

In the case of models trained with additional regularisation (Dropout), in five out of
the six occlusion tests, the best performing models involved correlated noise.

Baseline UG UP CG CP

mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%)
Test Set 84.3 0.6 83.1 0.2 83.1 0.1 84.1 0.1 76.3 0.0

Central Occlusion 65.1 1.4 67.0 0.5 67.1 0.3 65.9 0.1 70.9 0.0
Checker Board 73.2 1.5 68.6 1.2 69.8 0.7 78.0 1.3 70.9 0.0
Horizontal Bars 21.7 0.5 25.7 1.7 25.5 1.4 25.7 1.5 32.9 0.0

Vertical Bars 22.9 1.3 24.1 1.1 23.6 0.9 24.1 1.3 22.1 0.0
Horizontal Half 41.2 1.0 38.6 1.4 39.8 0.7 38.5 1.5 40.3 0.0

Vertical Half 34.9 1.2 37.6 1.0 38.6 1.8 40.4 0.0 25.2 0.0

Table 2.4: Image classification performance of AllConvNet with additional regularization
(Dropout) on occlusions averaged over 5 runs.

2.4.4 Common Corruptions

The authors in [13] have created a dataset called CIFAR-10-C, a set of 95 common visual
corruptions applied to the CIFAR-10 test set. This new dataset serves as a strong bench-
mark to evaluate performance on image corruptions. The 15 main corruptions are shown
in Figure 2.5 with 4 additional types shown in Figure 2.6. Each corruption has 5 levels of
varying severity creating a new test set of 950000 images.

The experiments in this section are run using PyTorch [29]. The models are trained
for 350 epochs with a learning rate of 0.01, decaying at steps 200, 250, and 300 by a factor
of 0.1 each time. An L2 weight decay factor of 1e− 3 is also used as part of the objective
function.
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Figure 2.5: CIFAR-10-C dataset consists of 15 main types of corruptions spanning var-
ious categories. Each category has 5 levels of varying severity resulting in 75 distinct
corruptions. This image is taken from ImageNet-C as a representative example [13].

Absence of Dropout

The classification performance of the models that do not incorporate Dropout are summa-
rized in Table 2.5. The models are abbreviated, as shown in Table 2.1.

The baseline model has the best image classification accuracy for two out of the nine-
teen corruptions. Uncorrelated Gaussian models do increase performance on certain cor-
ruptions, but has worse test set accuracy. Uncorrelated Poisson models have the best
accuracy across all models on five corruptions, with much lower test set accuracy.

Correlated Gaussian noise has the best accuracy on fourteen out of nineteen corruptions
while having comparable test set accuracy to the baseline. In fact, the improvement from
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Figure 2.6: The extra 4 corruptions types for CIFAR-10-C. With 5 varying levels of severity,
this gives 20 additional distinct corruptions. This image is taken from ImageNet-C as a
representative example [13].

the baseline is on seventeen out of nineteen corruptions. This suggests that test set clas-
sification and robust image classification are not necessarily competing objectives. While
correlated Poisson noise has significantly worse test set accuracy compared to the baseline,
it still improves accuracy on seven corruption tests.

In the case of models trained without additional regularisation (Dropout), in fifteen out
of the nineteen corruptions tests, the best performing models involved correlated noise.

Presence of Dropout

Dropout was applied to the input image, as well as after each of the layers that has a stride
of 2 (simply a convolutional layer that replaces pooling [35], specifically layer 3 and 6).
The Dropout probability at the input was 20% and was 50% otherwise.

The classification performance of the models that incorporate Dropout are summarized
in Table 2.6, with the model abbreviations shown in Table 2.1.

Introducing Dropout into the baseline model provides mixed benefits for classification of
the corrupted images: in some cases it performs better and in others, it does not. However,
Dropout does seem to stabilise the training of these networks and reduce the variance in
the performance across runs, which is important.

Correlated Gaussian noise has the best accuracy across fourteen corruption tests while
having comparable test set accuracy and on the remaining corruption tests. The other
models do not seem to provide any significant benefits in test set or the corruptions set.
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Baseline UG UP CG CP

mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%)
Test Set 83.6 0.7 80.7 0.5 81.1 1.5 82.5 1.7 75.7 1.2

Brightness 81.9 0.7 78.1 1.1 78.5 1.0 81.4 1.2 70.8 1.2
Contrast 58.6 2.0 55.0 0.2 56.0 0.5 63.4 0.7 52.2 0.6

Defocus Blur 73.4 1.3 74.2 0.2 75.5 0.9 76.6 0.7 71.1 1.1
Elastic 72.7 0.8 72.0 0.1 73.0 0.6 73.9 1.0 67.8 0.8

Fog 72.4 1.7 67.7 0.6 68.3 0.2 73.5 1.9 59.5 2.1
Frost 73.0 1.6 72.6 0.9 73.0 1.2 75.5 1.3 64.6 1.7

Gaussian Blur 68.1 1.6 71.1 0.5 72.8 1.4 73.8 0.6 69.3 1.8
Gaussian Noise 67.8 2.5 75.6 0.6 76.4 0.9 76.1 0.4 74.4 0.4

Glass Blur 58.5 2.4 68.5 1.1 70.0 1.5 68.1 1.7 69.6 1.9
Impulse Noise 63.4 2.2 70.1 1.3 71.9 1.6 71.0 1.5 72.0 2.3

JPEG Compression 78.6 1.0 78.9 0.1 79.4 0.6 80.5 1.2 74.2 1.2
Motion Blur 64.6 1.3 66.6 0.9 68.0 1.8 69.2 0.8 66.0 1.4

Pixelate 75.0 1.0 78.0 0.2 78.7 0.5 79.4 1.0 73.8 0.4
Saturate 80.0 0.5 76.5 0.5 77.2 0.6 79.2 2.0 69.9 0.8

Shot Noise 71.5 2.1 77.0 0.2 77.7 0.6 77.8 0.3 74.8 1.1
Snow 71.2 1.6 71.4 0.3 72.2 0.7 73.4 1.3 69.2 1.3

Spatter 75.3 1.1 74.2 0.3 74.7 0.4 75.6 1.0 72.0 1.3
Speckle Noise 71.1 2.0 76.8 0.4 77.4 0.4 77.5 0.2 74.6 0.6

Zoom Blur 68.8 1.1 71.5 0.2 73.0 1.2 74.0 0.5 68.3 1.2

Table 2.5: Image classification performance of AllConvNet with no additional regulariza-
tion on the test set and common corruptions averaged over 5 runs.

In the case of models trained with additional regularisation (Dropout), in fourteen out
of the nineteen corruptions tests, the best performing models involved correlated noise.

2.5 Summary

• We propose a model of regularisation where correlations are induced between neural
network activations based on the spatial distance and selectivity of the neurons. This
structure is inspired from biological correlations observed in the brain.

• We use the above computed correlations to sample noise from different multivariate
noise distributions (Gaussian, Poisson). This noise is used additively as a regulariser
in convolutional neural networks.

• We show how samples can be constructed in a differentiable manner for both dis-
tributions so that back-propagation may proceed as normal. In the case of the
Poisson distribution, we relied on an estimate of the gradient. We also show how a
continuous-relaxation to the Poisson distribution can be constructed so that gradient
computation can be carried out.
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Baseline UG UP CG CP

mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%) mean (%) std (%)
Test Set 84.3 0.6 83.1 0.1 83.1 0.1 84.1 0.1 76.2 0.2

Brightness 80.0 0.3 78.0 0.2 77.9 0.4 79.1 0.5 70.0 0.6
Contrast 47.9 2.0 46.9 0.7 47.1 0.6 53.0 1.2 41.4 1.4

Defocus Blur 74.8 1.6 75.6 0.1 75.8 0.2 77.8 0.1 70.4 0.9
Elastic 73.9 1.5 74.1 0.1 74.2 0.1 76.0 0.1 68.4 0.4

Fog 62.9 1.6 61.6 0.4 62.4 0.5 68.0 0.4 57.8 0.8
Frost 72.7 0.2 71.2 0.1 70.7 0.6 72.5 1.1 61.1 1.2

Gaussian Blur 70.7 1.9 72.2 0.2 72.6 0.3 75.1 0.2 68.4 1.3
Gaussian Noise 82.7 0.5 82.3 0.1 82.3 0.3 83.1 0.2 76.4 1.4

Glass Blur 75.3 1.0 75.5 0.1 75.6 0.1 76.8 0.2 70.7 1.6
Impulse Noise 80.6 1.2 81.1 0.1 81.0 0.3 81.5 0.4 76.2 0.8

JPEG Compression 82.1 0.6 81.2 0.1 81.7 0.1 82.4 0.2 74.7 1.2
Motion Blur 66.4 1.5 68.5 0.2 68.6 0.4 71.2 0.4 64.6 1.3

Pixelate 81.3 0.8 80.6 0.1 80.4 0.1 81.6 0.2 74.0 0.9
Saturate 78.6 0.4 76.4 0.3 76.4 0.2 77.8 0.4 69.5 0.2

Shot Noise 83.1 0.6 82.5 0.1 82.4 0.2 83.3 0.2 76.2 0.6
Snow 77.4 0.5 76.4 0.1 76.4 0.4 77.0 0.5 70.5 0.5

Spatter 80.2 0.6 79.8 0.1 79.8 0.2 80.1 0.1 74.4 0.1
Speckle Noise 83.1 0.5 82.7 0.1 82.5 0.3 83.4 0.2 76.3 0.1

Zoom Blur 71.1 1.2 72.6 0.2 72.8 0.2 75.7 0.1 68.0 0.8

Table 2.6: Image classification performance of AllConvNet with additional regularization
(Dropout) on the test set and common corruptions averaged over 5 runs.

• We evaluate trained networks on occluded images as well as images subject to com-
mon corruptions. Preliminary results show that correlated variability added to a
single layer performs better than other noise models. In thirty-nine out of fifty tests
we studied (ten out of twelve for occlusions, twenty-nine out of thirty-eight for cor-
ruptions), with and without additional regularisation, our best performing models
had correlated noise.
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Chapter 3

Dataset Augmentation and
Correlated Activations

Interesting methods of dataset augmentation have been developed in recent years. These
have helped deep neural networks to achieve better performance across a wide variety of
domains. Dataset augmentation can be done in numerous ways, including transforma-
tions in input space and the latent space of the network. In this chapter, we explore the
connections between popular dataset augmentation techniques and correlations observed
in the brain. Specifically, we show that the pattern of correlations induced by networks
trained with these augmentation techniques is quite similar to the structure of biological
correlations.

3.1 Introduction

One of the reasons for the success of deep learning is the availability of large datasets. In
the case of supervised learning, a large scale effort is required to label the data. This can be
done in many ways. An inefficient and cumbersome method is to manually annotate each
data point, requiring investment of human effort. Another variant is to create synthetic
data from computer simulations. However, if the simulator is not depictive of the real
world, the generated data is not useful. Another option is to use dataset augmentation,
where existing data is transformed to create new points that (hopefully) reflect the same
training data distribution. Depending on the task at hand, this requires specific knowledge
of realistic types of transformations. For example, in image classification, it is common to
create image reflections, rotations, and mild scaling to augment existing data.
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Recent work [47, 41] considers domain-agnostic data augmentation techniques used in
training neural networks. We describe these methods briefly in the following subsections.

3.1.1 Mixup: Input Space Data Augmentation

The work in [47] introduces a simple and data-agnostic data augmentation routine, termed
mixup. The goal is to create virtual training examples using the method shown in Equa-
tion 3.1.

x̃ = λxi + (1− λ)xj, where xi, xj are raw input vectors
ỹ = λyi + (1− λ)yj, where yi, yj are one-hot label encodings

(3.1)

(xi, yi) and (xj, yj) are two examples drawn from the training set and λ ∈ [0, 1]. This
method incorporates the prior knowledge that convex combinations of inputs should be
associated with convex combinations of the corresponding targets.

This technique brings better image classification performance than previous methods
on CIFAR-10 [21], CIFAR-100 [21], and ImageNet [4]. It also improves robustness of
neural networks to adversarial examples and can be used to stabilise training of generative
adversarial networks.

3.1.2 Manifold Mixup: Latent Space Data Augmentation

Manifold mixup is a method to train neural networks on linear combinations of hidden
representations of training examples shown in [41]. This method applies the mixup tech-
nique to hidden layers in a neural network. To be specific, consider a deep neural network
f(x) = fk(gk(x)), where gk denotes the part of the neural network mapping the input data
to the hidden representation at layer k, and fk denotes the part mapping such hidden
representation to the output f(x). The procedure is shown below.

• Select a random layer k in the network. Compute the forward pass of two minibatches
of data (x, y) and (x′, y′) until layer k. Let the activations of the two minibatches be
gk(x) and gk(x

′).

• The two minibatch intermediate activations are linearly combined as per Equa-
tion 3.1, using the layer k activations as x. This produces the mixed minibatch
(g̃k, ỹ) := (Mixλ (gk(x), gk (x′)) ,Mixλ (y, y′)).
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• The forward pass is continued using the mixed batch activations.

• This output is used to compute the loss and gradients that update the parameters
of the neural network.

This method of augmentation in latent space demonstrates benefits in generalization,
log-likelihood on test samples, and classification of images on CIFAR-100 subject to minor
deformations.

3.1.3 Connecting Correlations to Augmentation

In chapter 2, we implemented a regulariser based on correlated noise. The noise was added
to intermediate layers of a neural network and improved classification performance under
certain types of image transformations. By adding noise to the units in a layer, the network
was trained on activation values that were correlated by design. To understand the role
of this regularisation, an interesting experiment would be to find the inputs that produce
the correlated activations on the forward pass of the network. However, this is difficult
to implement because the traditional intermediate functions used in neural networks are
non-invertible. There is recent work in designing invertible convolutional neural networks,
but we did not work with these models [17].

We wish to compare noise correlations in the brain to correlations in neural networks.
To make a suitable comparison, when computing correlations, we interpret one image to be
the input and mixing a secondary batch of data using the mixup technique as the source of
variability. This setup will be most similar to the setting of noise correlations in the brain.
Sorting out the similarities and differences between the structures will give us insight into
the functional roles of different types of regularisers.

3.2 Correlations of Neural Network Activity

We describe the method of computing and plotting the correlations as a function of distance
between units and their tuning similarity. The resulting structures are compared against
the correlations implemented in chapter 2.
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3.2.1 Gathering Neural Network Activations

To compute the correlations between units of a layer in a neural network, we need the
activation values over a series of observations. Let N = H ×W ×C represent the number
of units in a layer K of a convolutional neural network, where H is the height of the
feature map, W is the width of the feature map, and C is the number of feature maps.
Thus, the correlation matrix Σ ∈ IRN×N. Let S be the number of fixed input images under
consideration. In our experiments, we set S = 100. The entire procedure is described
below.

• Train a convolutional neural network on image classification. After training is com-
plete, pick S random images from the test set.

• For each image, pick a random mini-batch of size B from the test set. Apply the
input mixup method using the chosen image and the random mini-batch for B λ
values interpolated between [0, 1].

• Using this mixed data, compute the forward pass activations until layer K. Calculate
the Pearson product-moment correlation on the N random variables (unit activations
of the layer K) using the B observations. Let this be Σi, the computed correlation
on example i.

• After processing the S inputs, calculate the average correlation element-wise,

Σ′ =
1

S

S∑
i=1

Σi (3.2)

3.2.2 Estimating the Correlation as a Function of Distance and
Tuning using Kernel Smoothing

The computed correlation Σ′ represents the linear relationship between the activity values
of units within a specific layer of the convolutional network. This is shown in Figure 3.1.
We are interested in understanding the relationship between Σ′ and two variables: the
distance between two units in a feature map and the tuning similarity of the two units. In
Equation 2.14, we pre-computed this function to be the product of a linear function of the
distance and an exponential function of the tuning similarity and induced the corresponding
correlations as regularisation.
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Σ'4,16
Σ'0,1

Σ'9,15

Σ'12,28

Figure 3.1: For a sample Σ′ ∈ IR32×32 in a layer with 2 feature maps of size 4 × 4, this
figure shows which units each entry in Σ′ is related to.

Given Σ′i,j ∈ IRN×N, we can compute which two units in the layer this refers to. Specif-
ically, let N = H ×W × C represent the number of units in a layer K of a convolutional
neural network, where H is the height of the feature map, W is the width of the feature
map, and C is the number of feature maps. Given a linear index i ∈ [0, N), it refers to
the unit at coordinates (x, y) at the zth feature map. x, y, and z are calculated as per
Equation 3.3. Let this function be f(i), where it is given a scalar input i and it returns a
3-tuple (x, y, z). Note // refers to floor division and % refers to the modulo operator.

z = i // (H ×W )

x =
[
i % (H ×W )

]
// W

y =
[
i % (H ×W )

]
% W

(3.3)

Since Σ′ ∈ IRN×N is a symmetric matrix, we have N(N−1)
2

possible data points from
which to get a smooth estimate of the correlation function. We describe the procedure to
create the dataset from which we will compute a smooth estimator.
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• Let A = (i, j)N,Ni=0,j=i be the sequence of indices of the entries sampled from Σ′.

• Let (XAk , YAk)
|A|
k=0 be the dataset we are creating:

XAk = X(i,j) =
[
d (f(i), f(j)) , k (f(i), f(j))

]
∈ IR2 (3.4)

YAk = Yi,j = Σ′i,j, (3.5)

where d(·, ·) and k(·, ·) are given by Equation 2.15 and Equation 2.16.

We use kernel smoothing to estimate the real valued function g : R2 → R as a weighted

average of the neighbouring observed data. Formally, let K (X0, X) = exp
(
−‖X−X0‖

2b2

)
be

a Gaussian kernel, where X,X0 ∈ R2, ‖ · ‖ is the Euclidean norm, and b is the length
scale for the input space. For each X0 ∈ R2, the kernel-weighted average (smooth g(X)
estimation) is defined by

g (X0) =

∑N
i=1K (X0, Xi)Y (Xi)∑N

i=1K (X0, Xi)
, (3.6)

where N is the number of observed points and in our case N = |A|.

3.2.3 Model Architecture and Dataset

We use the VGG-11 architecture [33] trained on the CIFAR-10 [21] dataset. The archi-
tecture is shown in Table 3.1. The network is trained using stochastic gradient descent
with momentum = 0.9 and a weight decay of 0.0001. The networks are trained until the
test set accuracy of image classification is ∼ 80%. We are looking for a network that has
decent test set accuracy for our correlation estimation. The experiments in this section are
implemented in PyTorch [29].

3.2.4 Analysis

In this section, we compare the estimated correlation function with Figure 2.3, both visually
and quantitatively. We train three networks: VGG-11 with input mixup, VGG-11 with
manifold mixup, and vanilla VGG-11 without any augmentation for comparison. For each
network, we compute the estimate of the correlation function for layers 3, 5, 6, 8, and 9.
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Input: 32 × 32 RGB image
Layer 1: 3 × 3 conv. 64 filters, BatchNorm, ReLU

Layer 2: 2 × 2 Max-Pooling, stride = 2
Layer 3: 3 × 3 conv. 128 filters, BatchNorm, ReLU

Layer 4: 2 × 2 Max-Pooling, stride = 2
Layer 5: 3 × 3 conv. 256 filters, BatchNorm, ReLU
Layer 6: 3 × 3 conv. 256 filters, BatchNorm, ReLU

Layer 7: 2 × 2 Max-Pooling, stride = 2
Layer 8: 3 × 3 conv. 512 filters, BatchNorm, ReLU
Layer 9: 3 × 3 conv. 512 filters, BatchNorm, ReLU

Layer 10: 2 × 2 Max-Pooling, stride = 2
Layer 11: 3 × 3 conv. 512 filters, BatchNorm, ReLU
Layer 12: 3 × 3 conv. 512 filters, BatchNorm, ReLU

Layer 13: 2 × 2 Max-Pooling, stride = 2
Layer 14: 512 × 10 Fully-connected Layer

10-way softmax

Table 3.1: VGG-11 Architecture used for training on CIFAR-10.

The contour plots for each layer can be seen in Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.5,
and Figure 3.6. We also record the maximum, minimum, average, and standard deviation
of the sampled correlation values from Σ′ for quantitative comparison shown in Table 3.2.

The first observation that stands out when viewing the estimated correlation function
for all layers is the dependence on distance and kernel similarity. The correlation tends
to decrease as distance between units increase and the correlation also decreases when the
cosine similarity between two kernels decreases. This is in agreement with the biological
structure discussed earlier. However, this may not be a surprising finding. By nature of
the convolution operation, we expect nearby units to be correlated because of the same
kernel being convolved over the feature map. This would be more pronounced in earlier
layers (layers close to the inputs) because the inputs are natural images which tend to be
smooth with nearby pixels being correlated. This is reinforced by the peak and average
correlations in layer 3 of VGG-11 shown in Table 3.2 in comparison to the other layers.
This accounts for the spatial dependence. As for the kernel dependence, since all kernels
in a convolutional layer are computing the same operation, it is natural for similar kernels
to produce similar outputs, hence increasing the correlation.

Another observation is the dependence on distance decays faster as the inputs pass
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Vanilla Input Mixup Manifold Mixup Linear Exponential

Layer 3 Max. 0.43 0.49 0.58 0.27
Min. -0.05 -0.07 -0.07 0.09
Mean 0.10 0.12 0.10 0.14
Std. 0.06 0.11 0.09 0.04

Layer 5 Max. 0.23 0.41 0.33 0.27
Min. 0.02 0.03 0.04 0.14
Mean 0.10 0.13 0.11 0.19
Std. 0.05 0.06 0.04 0.03

Layer 6 Max. 0.22 0.22 0.22 0.27
Min. 0.03 0.04 0.03 0.14
Mean 0.06 0.11 0.07 0.19
Std. 0.02 0.02 0.01 0.03

Layer 8 Max. 0.24 0.30 0.38 0.27
Min. 0.00 0.00 -0.03 0.14
Mean 0.03 0.07 0.07 0.19
Std. 0.02 0.06 0.10 0.03

Layer 9 Max. 0.23 0.46 0.46 0.27
Min. 0.00 -0.02 -0.01 0.14
Mean 0.03 0.13 0.13 0.19
Std. 0.02 0.13 0.06 0.03

Table 3.2: Minimum, maximum, average, and standard deviation of sampled correlations
from Σ′ for a VGG-11 without data augmentation, with mixup, and manifold mixup. The
linear exponential refers to the pre-computed induced correlations discussed in chapter 2.

through the network. In the early layers, the correlations die out after a distance of 5 units
while in the intermediate layers they die out after 1.5 units. This can be seen in Figure 3.2,
Figure 3.3, Figure 3.4, Figure 3.5, and Figure 3.6.

We also see mixup and manifold mixup increases the peak and average correlations
in the early and later layers. For visual comparison, this is shown in 3.7 for layer 9
units in VGG-11. Since mixup and manifold mixup provide better test performance, it
suggests inducing correlations might be a good idea. This is also in line with results from
chapter 2 where correlations induced in early layers as regularisers improved robust image
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classification.

3.3 Summary

• We demonstrated how we can compute an estimate of the correlations between units
in a layer of a convolutional neural network using kernel smoothing.

• We compared this estimate across different training paradigms: vanilla convolutional
networks, networks trained with input mixup, and networks trained with manifold
mixup. We see input and manifold mixup tend to induce higher correlations in early
and late layers in VGG-11.

• We also show the unsurprising similarity to biological correlations. This makes sense
because of the nature of the convolution operation and the smoothness of natural
images.
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Figure 3.2: Estimation of smooth correlation function on layer 3 for three VGG-11 networks
trained under different paradigms.
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Figure 3.3: Estimation of smooth correlation function on layer 5 for three VGG-11 networks
trained under different paradigms.
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Figure 3.4: Estimation of smooth correlation function on layer 6 for three VGG-11 networks
trained under different paradigms.
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Figure 3.5: Estimation of smooth correlation function on layer 8 for three VGG-11 networks
trained under different paradigms.

38



1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Euclidean coordinate distance

0.2

0.0

0.2

0.4

0.6

ke
rn

el
 si

m
ila

rit
y

0.00

0.05

0.10

0.15

0.20

(a) Vanilla VGG-11

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Euclidean coordinate distance

0.2

0.0

0.2

0.4

0.6

0.8

ke
rn

el
 si

m
ila

rit
y

0.0

0.1

0.2

0.3

0.4

(b) Input Mixup

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40
Euclidean coordinate distance

0.2

0.0

0.2

0.4

0.6

0.8

ke
rn

el
 si

m
ila

rit
y

0.0

0.1

0.2

0.3

0.4

0.5

(c) Manifold Mixup

Figure 3.6: Estimation of smooth correlation function on layer 9 for three VGG-11 networks
trained under different paradigms.
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Figure 3.7: Estimation of smooth correlation function on layer 9 for three VGG-11 networks
trained under different paradigms. In this figure, since the same colour bars are used across
the sub-plots, it is clear that input mixup and manifold mixup increase the correlations
across units in layer 9 of VGG-11.
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Chapter 4

Dropping Correlated Units in
Convolutional Layers

Deep neural networks are over-parameterised models trained with extensive amounts of
regularisation, such as weight decay and dropout [36], to prevent overfitting to the training
data. With the introduction of batch normalisation [16], weight decay is not as popular
anymore, but is still used in some neural networks. In the seminal work of training AlexNet
[22], Dropout was used at the fully-connected layers and not at the convolutional layers.
Even in current deep learning systems, it is rare to see Dropout used in convolutional layers
of a neural network. One hypothesis is Dropout is less suitable for convolutional layers
because it drops features randomly. In convolutional layers, units tend to be correlated
spatially by nature of the convolution operation and the input data, which are mostly
natural images. Recent work [8, 39, 42, 23] has experimented with spatially structured
forms of Dropout. Keeping up with the theme of this thesis, we extend spatially structured
Dropout to involve correlations across feature maps. We show improvements in image
classification on CIFAR-10 using the VGG-11 architecture.

4.1 Introduction

Overfitting in neural networks can be reduced using Dropout to prevent complex co-
adaptations on the training data [14]. In the forward pass of the network, each unit has a
probability p of being zeroed out, preventing units on depending on the presence of other
hidden units. Dropout is an efficient way to perform an average consensus of all possible
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sub-networks, weighting each sub-network by its likelihood. The standard way to achieve
this ensemble is to train separate models and then average their results at inference time.
However, this is computationally expensive and inefficient. Dropout provides a method to
train an exponential number of models which share the same parameters. At test time,
the units’ activations are averaged, but scaled down by the probability p to compensate
for the fact that 1

p
neurons are active.

In convolutional neural networks, units tend to be correlated spatially. As shown in
chapter 3, units in convolutional layers are correlated spatially as well as across feature
maps. Since the initial goal of Dropout is to prevent co-adaptation between units, it makes
intuitive sense to drop these correlated units. This has motivated spatially structured
Dropout in convolutional networks [15, 39, 8, 49].

We focus on dropping correlated units based on tuning/kernel similarity in addition to
spatial correlation. We use the definition of tuning similarity as in Equation 2.16 shown in
chapter 2. The following sections will describe closely related work to our contributions.

4.1.1 Structured Forms of Dropout for Convolutional Networks

The contributions in this chapter are most similar to SpatialDropout [39] and DropBlock
[8]. We describe these two methods first.

Spatial Dropout

The authors in [39] introduce SpatialDropout, a specific method of Dropout where entire
feature maps are dropped during training instead of randomly picking units to zero out.
This method is more suitable for convolutional networks due to spatial correlation between
units in feature maps.

DropBlock

DropBlock is a method similar to Dropout and SpatialDropout. It is similar to Dropout
because it drops units during training but different because it drops contiguous regions in
feature maps instead of random units. It resembles SpatialDropout but does not drop out
the entire feature map. It creates contiguous regions controlled by two hyperparameters:
block size and γ. block size is the size of the block to be dropped and γ controls how many
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activation units to drop. This is elucidated in Algorithm 1 and Figure 4.1. This work has
shown best results with a shared mask across all feature maps.

Input output activations of a layer (A), block size, γ,mode;
if mode == Inference then;

return A;
end if ;
Randomly sample mask M : Mi,j ∼ Bernoulli(γ);
For each zero position Mi,j, create a spatial square mask with the center being Mi,j,
the width, height being block size and set all the values of M in the square to be
zero;

Apply the mask: A = A×M ;
Normalise the features: A = A× count(M)/count ones(M)

Algorithm 1: DropBlock.

Figure 4.1: Mask sampling in DropBlock. On every feature map, sample a mask M . Every
zero entry in M is expanded to block size×block size zero block. The green region indicates
the valid region from which each sample entry can be expanded to a mask fully contained
in the feature map. Image is taken from [8].

The value of γ is computed based on the dropout probability set by the user. It is
approximated by Equation 4.1, where feat size is the size of the feature map. Every zero
entry in the mask will be expanded by block size2. The size of the valid seed region is
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feat size − block size + 1. The equation below is only an approximation because there
will be some overlap in the dropped blocks.

γ =
drop prob

block size2
feat size

(feat size− block size + 1)2
(4.1)

In addition, the authors found DropBlock with a fixed drop prob does not work well.
Instead, they gradually increase the drop prob from 0 to 0.5 as training progresses using a
linear scheduling rate.

4.2 Dropping Feature Maps using Kernel Similarity

We experiment with two Dropout variants: one based on SpatialDropout and one based
on DropBlock. Both modifications involve calculating the kernel similarity as described
in Equation 2.16. In the ideal situation, we would use Equation 2.14 to determine the
correlated units and drop them. However, we found this to be computationally expensive
to run during training. Since we already know the spatial correlations exist between nearby
units in a convolutional layer, we can just incorporate the kernel similarity and extend
SpatialDropout and DropBlock.

In the first modification, we change SpatialDropout to drop a specific set of feature
maps versus random selection of feature maps. For every example, we randomly choose
one feature map and drop the top pth percentile of similar feature maps during training.
The features are then normalised by 1

1−p which is the same as in SpatialDropout. By using
this method, correlated feature maps will be dropped during training. This method is a
simple extension and does not require any changes to the hyperparameters.

We also propose a second modification involving DropBlock. Instead of sharing the
mask across all feature maps, we pick a random feature map per example, find the top
50% of similar feature maps and apply the corresponding mask to the selected maps. Since
the mask does not drop an entire feature map, the value of drop prob needs to be multiplied
by 2 at each step during the scheduling to keep a similar effective drop out probability to
DropBlock. We call this method CorrDrop. To ensure this results from this method are
effective, we also use this modification: instead of finding the most similar feature maps for
every example, we choose 50% of the number of feature maps at random during training.
This will tell us if the kernel similarity plays a role in the dropping of units.
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4.2.1 Model Architecture & Dataset

We use the VGG-11 architecture [33] trained on the CIFAR-10 [21] dataset. The architec-
ture is shown in Table 3.1. The network is trained using stochastic gradient descent with
momentum = 0.9 and a weight decay of 0.001. The networks are trained for 50 epochs
and the model with the best validation accuracy is saved for evaluation. The experiments
in this section are implemented in PyTorch [29].

4.2.2 Results

We evaluate the test set accuracy as well as the accuracy on the common corruptions
dataset on CIFAR-10 [13] across the methods described above implemented at different
layers in the network. The results are listed in Table 4.1.

In our modifications to SpatialDropout (SpatialDropoutMod), we see no improvements
when compared to SpatialDropout on test set accuracy. We believe this might be because
by choosing feature maps randomly, the number of possible combinations of zeroed out
maps is

(
n
n
2

)
, where n is the number of feature maps and the dropout probability is 50%.

With our modification, the number of possible combinations will be lower. For example,
kernels may not change as frequently at each optimisation step, and thus the same groups
of feature maps will be dropped leading to fewer possible combinations of dropped feature
maps. This also suggests kernel similarity may have no role to play in SpatialDropout in
improving test set accuracy. On the common corruptions dataset, it improves performance
in 8/19 cases in layer 1, 6/19 cases in layer 3, 10/19 cases in layer 5, 14/19 cases in
layer 6, and 15/19 cases in layer 8. The performance improvements are significant in later
layers and indicates that SpatialDropoutMod is more robust to corrupted images than
SpatialDropout.

In our second modification to DropBlock, we see improvements in both CorrDrop and
DropBlockRandom. This suggests applying the same mask to all feature maps may not
be the ideal technique of DropBlock. However, it is still unclear whether the feature maps
to which the mask is applied should be chosen at random (DropBlockRandom) or chosen
based on kernel similarity (CorrDrop) to improve test set performance. This is because
the improvements are split between the two methods when evaluated across layers with
low differences in test set accuracy. On the common corruptions dataset, DropBlockRan-
dom improves classification accuracy in 19/19 cases in layer 1, 19/19 cases in layer 3,
19/19 cases in layer 5, 18/19 cases in layer 6, and 18/19 cases in layer 8 over DropBlock.
This suggests DropBlockRandom is a better technique for robust image classification than
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SpatialDropout SpatialDropoutMod DropBlock DropBlockRandom CorrDrop
Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%)

Test Set 80.37 0.22 79.90 0.51 81.24 0.49 84.64 0.17 84.40 0.24
Brightness 78.54 0.31 78.28 0.45 78.38 0.43 82.82 0.21 82.34 0.39
Contrast 58.59 0.75 61.05 0.88 46.31 1.04 55.27 0.24 54.32 1.31

Defocus blur 74.32 0.32 76.01 0.14 67.67 0.67 75.79 0.28 74.43 1.02
Elastic transform 71.95 0.17 73.89 0.35 67.92 0.63 74.97 0.06 74.08 0.67

Fog 67.99 0.61 70.96 0.10 60.89 0.71 70.55 0.51 69.12 1.25
Frost 74.42 0.18 73.46 0.18 62.14 0.76 76.72 0.33 74.36 0.83

Gaussian blur 71.75 0.56 73.90 0.13 61.97 0.71 71.73 0.30 69.88 1.47
Gaussian noise 73.62 0.35 68.43 0.88 46.87 1.83 68.82 0.18 65.73 1.51

Glass blur 71.92 0.29 69.23 0.28 44.38 1.12 67.09 0.79 63.50 0.73
Impulse noise 65.20 0.08 59.22 0.90 44.00 2.07 61.63 0.40 60.35 1.77

Jpeg compression 78.12 0.24 78.13 0.48 74.50 0.91 80.81 0.18 80.01 0.33
Motion blur 69.79 0.57 71.76 0.25 60.26 0.79 70.97 0.37 68.72 1.26

Pixelate 78.99 0.20 78.41 0.26 75.54 0.51 81.92 0.22 81.27 0.36
Saturate 76.57 0.18 74.05 0.51 76.95 0.50 80.67 0.17 80.58 0.27

Shot noise 75.25 0.21 71.93 0.77 54.33 1.40 73.13 0.34 70.56 1.20
Snow 73.40 0.21 72.14 0.47 64.15 0.33 75.86 0.52 74.38 0.61

Spatter 72.05 0.39 69.60 0.54 68.41 0.32 76.00 0.12 75.77 0.50
Speckle noise 74.75 0.16 71.96 0.59 54.69 1.49 72.94 0.45 70.46 1.24

Zoom blur 70.43 0.32 73.63 0.10 61.35 0.93 71.06 0.30 69.50 1.35

Table 4.1: Test set accuracy and Corruption set accuracy on CIFAR-10 across all methods
of structured dropout on layer 1 of VGG-11. SpatialDropoutMod refers to our modification
to SpatialDropout and DropBlockRandom is only applying the selected mask to randomly
selected feature maps. The results are averaged over 5 runs.

DropBlock. Between DropBlockRandom and CorrDrop, the performance is slightly better
for DropBlockRandom but still comparable on the common corruptions dataset.

4.3 Summary

• We propose modifications to existing forms of spatially structured Dropout and eval-
uated them on the test set of CIFAR-10.

• The first modification involves using kernel similarity to target certain feature maps to
be completely dropped in SpatialDropout. However, this does not yield any benefits
over SpatialDropout on the test set. When applied to later layers, it yields benefits
in image classification of commonly corrupted images.

• The second modification uses kernel similarity to apply the mask to only certain
feature maps versus all of them as implemented in DropBlock. We also choose feature
maps at random to apply the mask and leave the remaining as is. In both cases, the
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SpatialDropout SpatialDropoutMod DropBlock DropBlockRandom CorrDrop
Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%)

Test Set 81.69 0.16 80.34 0.48 84.12 0.06 84.53 0.27 84.78 0.06
Brightness 79.79 0.06 78.81 0.43 81.65 0.12 82.79 0.31 82.93 0.14
Contrast 56.59 0.43 60.43 0.60 52.28 0.33 57.05 0.66 55.68 0.40

Defocus blur 73.69 0.13 72.14 0.44 71.90 0.17 75.54 0.54 75.28 0.12
Elastic transform 72.46 0.23 71.53 0.55 72.27 0.13 74.87 0.47 74.60 0.15

Fog 69.01 0.11 70.64 0.68 67.85 0.05 71.14 0.50 70.97 0.12
Frost 71.92 0.35 74.04 0.49 69.68 0.44 73.63 0.20 74.15 0.24

Gaussian blur 70.28 0.10 68.72 0.55 66.93 0.32 71.23 0.66 70.98 0.14
Gaussian noise 65.01 0.77 66.32 1.52 60.62 0.32 66.40 0.96 66.57 1.06

Glass blur 58.43 0.86 62.96 0.79 51.62 0.33 57.99 0.42 57.94 0.75
Impulse noise 57.54 0.73 55.98 2.51 55.73 1.42 59.01 1.19 59.92 1.03

Jpeg compression 77.91 0.12 77.05 0.36 78.95 0.14 80.15 0.11 79.94 0.13
Motion blur 68.81 0.18 68.61 0.31 64.43 0.38 69.45 0.94 69.11 0.18

Pixelate 77.70 0.25 74.00 1.02 76.86 0.28 79.52 0.15 78.88 0.22
Saturate 78.31 0.20 74.84 0.87 80.32 0.13 80.88 0.23 81.25 0.09

Shot noise 68.91 0.73 71.04 1.21 65.98 0.45 71.08 0.83 71.16 0.59
Snow 71.50 0.22 71.08 0.42 70.45 0.24 74.13 0.55 73.83 0.36

Spatter 72.41 0.26 68.81 0.99 74.30 0.21 74.56 0.29 75.24 0.39
Speckle noise 68.39 0.87 71.30 1.12 65.81 0.47 70.71 1.03 70.70 0.34

Zoom blur 69.14 0.22 68.48 0.61 65.92 0.08 70.64 0.53 69.83 0.32

Table 4.2: Test set accuracy and Corruption set accuracy on CIFAR-10 across all methods
of structured dropout on layer 3 of VGG-11. SpatialDropoutMod refers to our modification
to SpatialDropout and DropBlockRandom is only applying the selected mask to randomly
selected feature maps. The results are averaged over 5 runs.
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SpatialDropout SpatialDropoutMod DropBlock DropBlockRandom CorrDrop
Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%)

Test Set 83.18 0.16 82.29 0.24 84.47 0.27 85.15 0.23 85.02 0.05
Brightness 81.43 0.17 80.69 0.12 82.12 0.57 83.12 0.12 82.94 0.02
Contrast 59.83 0.91 55.44 0.42 53.79 1.45 59.62 0.67 59.96 0.64

Defocus blur 75.98 0.93 72.42 0.60 75.70 1.01 77.11 0.17 77.52 0.14
Elastic transform 74.96 0.69 72.02 0.23 75.47 0.62 76.32 0.05 76.62 0.25

Fog 72.74 0.88 68.49 0.33 69.03 1.11 73.09 0.32 73.21 0.55
Frost 72.28 0.57 73.57 0.80 68.23 1.70 73.95 0.32 73.53 0.42

Gaussian blur 72.41 1.15 67.89 0.76 71.39 1.25 73.35 0.46 73.83 0.26
Gaussian noise 61.97 1.01 65.84 2.72 57.40 0.88 65.44 0.91 65.20 1.03

Glass blur 56.10 0.97 63.21 1.58 51.84 2.81 58.98 0.89 59.44 1.67
Impulse noise 55.02 1.02 60.72 2.12 56.42 0.98 58.26 0.40 59.20 0.38

Jpeg compression 78.65 0.25 79.33 0.11 78.47 0.83 80.58 0.06 80.14 0.16
Motion blur 71.81 0.88 65.58 0.37 70.35 0.58 72.42 0.48 72.50 0.52

Pixelate 76.10 0.65 78.11 0.64 75.06 0.64 78.97 0.28 79.03 0.58
Saturate 79.36 0.10 77.25 0.54 80.25 0.38 81.10 0.09 81.25 0.03

Shot noise 67.81 0.63 70.12 2.02 63.61 0.98 70.65 0.77 70.22 0.90
Snow 71.05 0.63 74.19 0.48 69.70 1.42 74.06 0.04 73.82 0.19

Spatter 71.92 0.20 73.86 0.23 73.74 0.73 74.77 0.12 74.63 0.22
Speckle noise 67.94 0.58 69.97 1.80 64.06 0.96 70.61 0.84 70.19 0.99

Zoom blur 71.71 1.12 67.05 0.90 71.57 1.08 73.12 0.05 73.23 0.07

Table 4.3: Test set accuracy and Corruption set accuracy on CIFAR-10 across all methods
of structured dropout on layer 5 of VGG-11. SpatialDropoutMod refers to our modification
to SpatialDropout and DropBlockRandom is only applying the selected mask to randomly
selected feature maps. The results are averaged over 5 runs.
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SpatialDropout SpatialDropoutMod DropBlock DropBlockRandom CorrDrop
Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%)

Test Set 85.19 0.01 83.53 0.44 86.16 0.09 85.87 0.14 86.21 0.15
Brightness 82.55 0.41 81.73 0.38 83.87 0.07 83.92 0.09 84.14 0.09
Contrast 56.50 0.40 62.88 0.31 59.12 0.62 60.80 0.72 59.72 0.96

Defocus blur 74.93 0.35 75.48 0.85 76.85 0.51 77.58 0.35 77.73 0.39
Elastic transform 74.95 0.30 75.16 0.57 77.19 0.47 77.24 0.11 77.62 0.17

Fog 71.04 0.48 74.79 0.23 73.65 0.59 73.85 0.24 74.02 0.22
Frost 71.00 0.56 75.70 0.37 73.14 0.48 74.21 0.33 74.64 0.47

Gaussian blur 70.13 0.55 71.94 0.79 72.52 0.73 73.54 0.46 73.63 0.57
Gaussian noise 58.57 1.38 67.20 0.86 63.34 1.33 65.32 0.32 65.88 0.68

Glass blur 55.74 1.31 64.57 0.91 59.74 1.12 59.81 0.49 61.61 0.89
Impulse noise 57.69 1.49 54.32 2.05 60.46 1.53 61.12 0.77 62.39 0.55

Jpeg compression 79.78 0.19 79.88 0.39 81.23 0.11 81.17 0.08 81.43 0.19
Motion blur 69.27 0.45 71.94 0.93 71.47 0.92 72.48 0.49 72.54 0.43

Pixelate 78.19 0.12 75.48 0.32 79.26 0.21 80.48 0.31 80.20 0.49
Saturate 80.20 0.30 77.52 0.39 80.87 0.13 81.43 0.07 81.65 0.14

Shot noise 65.59 1.18 71.91 0.90 69.04 1.17 70.37 0.31 70.71 0.43
Snow 72.48 0.43 74.11 0.39 74.56 0.26 75.28 0.21 75.78 0.27

Spatter 75.84 0.45 71.63 0.69 76.10 0.42 76.10 0.19 76.82 0.26
Speckle noise 66.18 1.28 71.79 0.77 69.35 1.33 70.18 0.41 70.71 0.25

Zoom blur 70.06 0.36 72.07 1.23 72.79 0.82 73.54 0.31 73.72 0.19

Table 4.4: Test set accuracy and Corruption set accuracy on CIFAR-10 across all methods
of structured dropout on layer 6 of VGG-11. SpatialDropoutMod refers to our modification
to SpatialDropout and DropBlockRandom is only applying the selected mask to randomly
selected feature maps. The results are averaged over 5 runs.
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SpatialDropout SpatialDropoutMod DropBlock DropBlockRandom CorrDrop
Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%) Mean (%) std (%)

Test Set 83.70 0.15 82.88 0.33 84.99 0.03 85.27 0.14 85.45 0.05
Brightness 80.96 0.16 81.30 0.38 82.32 0.30 83.07 0.10 83.23 0.08
Contrast 54.71 0.31 61.65 0.21 58.78 0.84 58.77 0.11 60.24 0.43

Defocus blur 74.19 0.15 75.52 0.34 75.26 0.27 76.53 0.42 76.67 0.14
Elastic transform 73.68 0.10 75.08 0.25 75.13 0.17 75.96 0.12 76.09 0.05

Fog 69.98 0.34 73.63 0.35 72.16 0.80 72.50 0.07 73.43 0.50
Frost 70.25 0.60 73.68 0.39 72.08 0.56 74.69 0.62 74.65 0.21

Gaussian blur 69.90 0.21 72.13 0.55 70.85 0.45 72.49 0.54 72.62 0.21
Gaussian noise 60.22 1.77 64.35 0.78 61.84 1.81 67.19 1.46 65.58 1.44

Glass blur 56.99 0.85 61.40 0.84 58.59 0.90 61.30 1.46 60.21 0.61
Impulse noise 57.68 0.75 56.86 1.25 59.13 1.81 61.05 1.16 60.69 0.88

Jpeg compression 78.36 0.21 78.84 0.20 79.48 0.30 80.30 0.15 80.31 0.20
Motion blur 68.41 0.27 71.08 0.92 70.37 0.30 71.32 0.06 71.92 0.27

Pixelate 76.96 0.25 75.86 0.25 77.60 0.36 79.98 0.37 79.76 0.06
Saturate 78.38 0.12 77.18 0.47 79.32 0.04 80.72 0.06 80.62 0.16

Shot noise 65.99 1.35 69.03 0.54 67.26 1.41 71.62 1.16 70.38 1.11
Snow 71.81 0.24 73.73 0.22 73.26 0.08 74.81 0.50 74.90 0.14

Spatter 73.50 0.31 71.80 0.21 74.66 0.54 75.04 0.48 74.76 0.29
Speckle noise 66.36 1.08 68.95 0.43 67.67 1.42 71.44 1.26 70.42 1.10

Zoom blur 69.60 0.47 72.56 0.48 71.47 0.24 72.46 0.14 72.68 0.27

Table 4.5: Test set accuracy and Corruption set accuracy on CIFAR-10 across all methods
of structured dropout on layer 8 of VGG-11. SpatialDropoutMod refers to our modification
to SpatialDropout and DropBlockRandom is only applying the selected mask to randomly
selected feature maps. The results are averaged over 5 runs.
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test set accuracy and corrupted image classification accuracy improves but it remains
to be explored which modification works better in practice.
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Chapter 5

Conclusions & Future Directions

In this thesis, we have introduced new training strategies for convolutional neural networks.
These strategies revolve around one of the differences between convolutional networks and
the brain, namely, correlated variability. We have shown how convolutional networks
can be trained with correlated noise (inspired from biological observations) and its role
in improvement in robust image classification. In an effort to understand the role of
correlated noise in input space, we compared correlations of activations of neural networks
trained with dataset augmentations against biological correlations. Our results show the
similarity, both quantitatively and qualitatively. We also presented two variants of Dropout
suited for convolutional networks based on SpatialDropout and DropBlock. Our results
show improvement only on the DropBlock variant in image classification on CIFAR-10.
In the following, we provide future research directions to pursue in the area of correlated
variability in convolutional networks.

• Correlated Noise

– While our experiments were implemented on a modified version of AllConvNet
for computational tractability, it would be interesting to implement this on
popular architectures such as ResNets [12] trained on ImageNet [4]. This would
involve developing an efficient method for sampling from very high-dimensional
multivariate distributions.

– The hyper-parameters for the correlation structure can be varied to control the
dependence on distance and tuning. This may have an appreciable effect on
image classification depending on which layer the noise is added to.
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– Poisson noise had worse image classification accuracy than all other models. We
believe this might be due to the noisy straight-through estimator of the gradient
of Poisson samples. Using the Gumbel-softmax relaxation, this problem may
be alleviated. Neural networks with activations from a Poisson distribution are
interesting because the inter-arrival times of spikes of cortical neurons follows a
Poisson process.

• CorrDrop:

– The next step to take is to implement CorrDrop, a variant of DropBlock using
kernel correlations, on ResNets trained on ImageNet. Since CorrDrop involves
minimal additional computation, it can scale to the ImageNet dataset and be
used in larger neural network architectures.

53



References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} Symposium on Oper-
ating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.

[2] Larry F Abbott and Peter Dayan. The effect of correlated variability on the accuracy
of a population code. Neural computation, 11(1):91–101, 1999.
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