
Powers and Anti-Powers in Binary
Words

by

Samin Riasat

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2019

c© Samin Riasat 2019

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Fici et al. recently introduced the notion of anti-powers in the context of combinatorics
on words. A power (also called tandem repeat) is a sequence of consecutive identical
blocks. An anti-power is a sequence of consecutive distinct blocks of the same length. Fici
et al. showed that the existence of powers or anti-powers is an unavoidable regularity for
sufficiently long words. In this thesis we explore this notion further in the context of binary
words and obtain new results.

iii

Acknowledgements

I would like to thank my supervisor Jeffrey Shallit for supervising this thesis and for
giving me many interesting problems to think about. I would also like to thank Dan Brown
and Lila Kari for serving as readers for this thesis. Finally, I would like to thank my family
and friends without whose constant support this thesis would not have been possible.

iv

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Ramsey Theory and Combinatorics on Words 1

1.2 Avoiding Anti-Powers . 3

1.3 Abelian Anti-Powers . 4

2 Preliminaries 5

2.1 Notions and Notations . 5

2.2 A Classical Result on Words with Borders 6

2.3 Parikh Vectors . 7

2.4 Previous Work on Anti-Powers . 7

3 A Study in N(k, r) 9

3.1 Existence . 9

3.2 Asymptotic Behaviour . 10

3.2.1 Upper Bound . 10

3.2.2 Lower Bound . 11

3.3 The Case r = 3 . 12

3.4 The Case r > 3 . 13

v

4 Words Avoiding Anti-Powers 15

4.1 Classifying All Words Avoiding 3-Anti-Powers 15

4.2 The Characteristic Sequence of Powers of 4 20

4.3 The Cantor Word . 22

4.4 Remarks . 24

5 Abelian Powers and Abelian Anti-Powers 26

5.1 The Proof of Theorem 1.4 . 26

6 Open Problems 28

6.1 Computing N(k, r) . 28

6.2 Classifying Words with No Anti-Powers . 29

6.3 Computing A(k, r) . 29

References 30

APPENDICES 32

A Table of Values of N(k, r) 33

B C++ Program to Compute N(k, r) 34

vi

List of Tables

A.1 Values of N(k, r) . 33

vii

List of Figures

3.1 The Proof of Theorem 1.2 . 10

3.2 The Proof of Eq. (3.3) . 11

3.3 The Proof of Lemma 3.2 . 14

4.1 Automaton Generating c4 . 20

4.2 Automaton Generating s . 22

viii

Chapter 1

Introduction

1.1 Ramsey Theory and Combinatorics on Words

Ramsey theory may be considered as the branch of combinatorics that studies unavoidable
regularities in large combinatorial objects. A classical example is the unavoidability of a
monochromatic triangle when the edges of a complete graph on 6 vertices are coloured
using two colours. In the early 70s Erdős, Simonovits and Sós initiated the study of anti-
Ramsey theory, which is the study of regularities concerning all-distinct objects [6]. A
much-studied regularity in the context of combinatorics on words is a power.

Definition 1.1. A k-power is a word of the form wk for some non-empty word w.

For example, murmur is a 2-power over the English alphabet.

To contrast the notion of a power, Fici et al. [6] recently introduced the notion of an
anti-power.

Definition 1.2. An r-anti-power is a word of the form w1 · · ·wr, where the wi are words
such that |wi| = |wj| and wi 6= wj for every pair (i, j) with i 6= j.

For example, mormon is a 2-anti-power over the English alphabet.

With these two definitions at hand one can talk about anti-Ramsey theory in the context
of words. To set the ground, let us recall a version of Ramsey’s celebrated theorem. Here
Kn denotes a complete graph on n vertices.

1

Theorem 1.1 (Ramsey [12], 1930). Given integers k > 1 and r > 1 there exists an integer
R = R(k, r) such that every red-blue edge-colouring of a KR contains a red Kk or a blue
Kr.

Examples of these numbers (now known as Ramsey numbers) are R(k, 2) = k and
R(3, 3) = 6. These are not hard to verify.

Fici et al. [6] proved an analogous result for powers and anti-powers.

Theorem 1.2 (Fici et al. [6], 2018). Given integers k > 1 and r > 1 there exists an
integer N = N(k, r) such that every binary word of length N contains a k-power or an
r-anti-power.

Analogous examples of these numbers are N(k, 2) = k and N(3, 3) = 9. These are
again not hard to verify.

Fici et al. [6] also showed for k > 2 that

k2 − 1 ≤ N(k, k) ≤ k3

(
k

2

)
.

In a recent preprint Burcroff [3] improved the above bounds to

2k2 − 2k ≤ N(k, k) ≤ (k3 − k2 + k)

(
k

2

)
for k > 3.

It seems that almost nothing else is known about the numbers N(k, r) apart from a
few values [6, 13]. This is perhaps not surprising, since numbers produced by Ramsey-
type results generally tend to be difficult to compute. For instance, very few Ramsey
numbers are known to this day [11]. Nevertheless, we computed a list of values of N(k, r)
(see Appendix A) using a C++ program (see Appendix B). The following patterns were
observed by J. Shallit by means of a similar computation.

Conjecture 1.1 (Shallit, unpublished). The following relations hold.

1. N(k, 3) = 2k for k ≥ 7.

2. N(k, 4) = 4k for k ≥ 11.

3. N(k, 5) = 6k + 4 for k ≥ 10.

2

In general, for fixed r > 2, N(k, r) = (2r − 4)k +O(1).

In this thesis we show that Part 1 of Conjecture 1.1 is true and that Part 3 is false, while
Part 2 remains unresolved. That Part 3 is false follows from N(15, 5) = 95 and N(25, 5) =
155 with corresponding examples 04(01)1402(01)1402(01)1402 and 04(01)2402(01)2402(01)2402

of longest binary words avoiding k-powers and r-anti-powers. See Appendices A and B for
details.

More specifically, we prove the following theorem in Chapter 3.

Theorem 1.3. The following relations hold.

1. For r ≥ 2,

(a) N(k, r) ≤ r(kr − k + r)
(
r
2

)
.

(b) N(k, r) ≥ (r − 1)k for k > r − 2.

In particular, for fixed r ≥ 2, N(k, r) = Θ(k).

2. N(k, 3) = 2k for k ≥ 7.

1.2 Avoiding Anti-Powers

In Chapter 4 we take a deeper look into words avoiding r-anti-powers for some small
values of r. In Section 4.1 we classify all finite and infinite binary words avoiding 3-
anti-powers. Such a classification seems difficult for r ≥ 4. Nevertheless, one can give
interesting examples of infinite binary words avoiding r-anti-powers for specific values of
r. For instance, the characteristic sequence of the powers of 4 is

c4 = 0100100000000000100 · · · .

That is, c4[n] = 1 if n is a power of 4, and c4[n] = 0 otherwise. We show in Section 4.2 that
c4 does not contain 4-anti-powers using the automatic theorem-proving software Walnut

[10].

In a follow-up paper Fici et al. [5] showed that the Cantor word (also known as the
Sierpiǹski word) does not contain 11-anti-powers. The Cantor word s is the limit as n→∞
of the sequence (sn)n≥0 of words defined by s0 = 0 and sn+1 = sn13nsn. So

s = 0101301019010130101270 · · · .

J. Shallit observed empirically that 11 can be improved to 10. We show using Walnut that
this is indeed the case in Section 4.3.

3

1.3 Abelian Anti-Powers

The last part of this thesis briefly concerns abelian anti-powers. Fici, Postic and Silva [5]
extended the notion of anti-powers to the abelian setting as follows. Let P (w) denote the
Parikh vector of the word w. (See Section 2.3 for details.)

Definition 1.3. An abelian k-power is a word of the form w1 · · ·wk, where the wi are
words such that |w1| = · · · = |wk| and P (w1) = · · · = P (wk).

Definition 1.4. An abelian r-anti-power is a word of the form w1 · · ·wr, where the wi are
words such that |wi| = |wj| and P (wi) 6= P (wj) for every pair (i, j) with i 6= j.

Let A = A(k, r) denote the least positive integer such that every binary word of length
A contains an abelian k-power or an abelian r-anti-power. It is not known whether A(k, r)
is finite or even exists [5]. Assuming existence, since any word avoiding abelian k-powers
and abelian r-anti-powers must also avoid k-powers and r-anti-powers, one obtains the
trivial lower bound A(k, r) ≥ N(k, r), whence A(k, r) ≥ (r− 1)k for k > r− 2 by Theorem
1.3.

In fact, computation suggests that A(k, 3) = k2. We show in Chapter 5 that this is
indeed a lower bound.

Theorem 1.4. A(k, 3) ≥ k2 for k ≥ 1, assuming that A(k, 3) exists.

4

Chapter 2

Preliminaries

2.1 Notions and Notations

A semigroup is a set S equipped with a binary operation, expressed here as concatenation,
satisfying the following two properties.

• a, b ∈ S =⇒ ab ∈ S.

• a, b, c ∈ S =⇒ abc = a(bc) = (ab)c.

If, in addition, S contains an element e such that ea = ae = a for all a ∈ S, then S
is called a monoid with identity e. Any subset of S that is also a semigroup is called a
subsemigroup of S.

Given a set Σ we can construct a semigroup Σ∗ as follows. For a non-negative integer
n and elements a1, . . . , an ∈ Σ, let w = a1 · · · an ∈ Σ∗.

• We call Σ the alphabet and w a word over Σ.

• We write w[i] = ai and call w[i] a letter of w.

• We write w[i..j] = ai · · · aj for 1 ≤ i ≤ j ≤ n and call w[i..j] a subword (or factor or
substring) of w.

• If v is a subword of w, we say w contains v.

5

• If Σ = {0, 1}, we call w a binary word.

• If n = 0, we write w = ε and call ε the empty word. Observe that Σ∗ is a monoid
with identity ε.

• The length of w, denoted |w|, is n.

• For a ∈ Σ we denote by |w|a the size of the set {i : ai = a}, i.e., the number of
occurrences of the letter a in w. Observe that

|w| =
∑
a∈Σ

|w|a.

• The set of all non-empty words over Σ is denoted Σ+. That is, Σ+ = Σ∗ \ {ε}.
Observe that Σ+ is a subsemigroup of Σ∗.

• A word u ∈ Σ∗ is a prefix (resp. suffix) of w if w = uv (resp. w = vu) for some
v ∈ Σ∗. Observe that ε is a prefix and a suffix of w.

• A word is a border of w if it is both a prefix and a suffix of w.

Likewise, we can construct the set Σω of all (right-)infinite words on Σ by letting
a0a1 · · · ∈ Σω for any infinite sequence of elements a0, a1, . . . ∈ Σ. The relevant definitions
from the above list also apply to Σω. In addition, we write wω for the infinite word ww · · · .

2.2 A Classical Result on Words with Borders

The following result may be viewed as a division algorithm for words.

Theorem 2.1 (Lyndon and Schützenberger [9], 1962). Let x, y, z ∈ Σ+. Then xy = yz if
and only if there exist u ∈ Σ+, v ∈ Σ∗ and an integer t ≥ 0 such that x = uv, z = vu and
y = (uv)tu = u(vu)t.

Proof. The non-trivial direction is only if.

• If |x| > |y|, then y is a prefix of x and a suffix of z. Writing x = yv and z = wy for
some v, w ∈ Σ∗ gives xy = yvy and yz = ywy. Then xy = yz gives w = v. Taking
u = y gives x = uv and z = vu for u ∈ Σ+ and v ∈ Σ∗.

6

• If |x| ≤ |y|, then x is a prefix of y, so we may write y = xw for some w ∈ Σ∗. Then
xxw = xwz, i.e., xw = wz, which is equivalent to the original equation, but with
|w| = |y| − |x|. Repeating this process finitely many times we can therefore write
y = xtu and xu = uz for some integer t > 0 and word u ∈ Σ∗ with |u| < |x|. If
u = ε, then x = z and y = xt. Otherwise, by the previous case, x = uv and z = vu
for u ∈ Σ+ and v ∈ Σ∗.

Thus x = uv, z = vu and y = (uv)tu = u(vu)t for some words u ∈ Σ+, v ∈ Σ∗ and
integer t ≥ 0, as desired.

Corollary 2.1. Let x, y ∈ Σ+. Then xy = yx if and only if there exist z ∈ Σ+ and positive
integers k, ` such that x = zk and y = z`.

Proof. We proceed by induction on |xy|. If |xy| = 2, then x, y ∈ Σ. Then xy = yx if and
only if x = y, as desired.

Assume now that |xy| > 2. By Theorem 2.1, there exist u ∈ Σ+, v ∈ Σ∗ and an integer
t ≥ 0 such that x = uv = vu and y = (uv)tu = u(vu)t. If v = ε then we are done.
Otherwise, since |uv| = |x| < |xy|, there exist z ∈ Σ+ and positive integers k, ` such that
u = zk and v = z` by the inductive hypothesis. Then x = zk+` and y = zt(k+`)+k, as
desired.

2.3 Parikh Vectors

Sometimes we may want to impose an order on the alphabet Σ. (For us this will always
be the natural order on Σ.) In such cases we call Σ an ordered alphabet.

Definition 2.1. For an ordered alphabet Σ = {a1, . . . , an}, the Parikh vector of w is

P (w) = (|w|a1 , . . . , |w|an).

2.4 Previous Work on Anti-Powers

Since the conception of the notion there has been a surge of activities regarding anti-powers
in words. Other than those already mentioned in the introduction, Defant [4] and Gaetz
[7] studied anti-power prefixes and subwords of the Thue-Morse word.

7

An infinite word w is aperiodic if it is not eventually periodic, and it is recurrent if
every finite factor of w occurs infinitely often in w. Fici et al. [6] asked for the maximum
k such that every aperiodic recurrent word must contain a k-anti-power, and they proved
that this maximum must be 3, 4 or 5. Berger and Defant [2] resolved this question by
demonstrating that the maximum is 5.

Badkobeh et al. [1] and Kociumaka et al. [8] studied algorithms for computing anti-
powers in words. Badkobeh et al. gave the first algorithm to find all k-anti-powers in a
word of length n, which runs in O(n2/k) time and O(n) space. Following this, Kociumaka
et al. gave an algorithm that computes the number C of k-anti-power factors of a word
of length n in O(nk log k) time and reports all of them in O(nk log k + C) time. They
also gave the construction in O(n2/r) time of a data structure of size O(n2/r), for any
r ∈ {1, . . . , n}, which answers anti-power queries in O(r) time.

8

Chapter 3

A Study in N(k, r)

3.1 Existence

In this section we give a proof of Theorem 1.2 based on ideas by Fici et al. [6]. The
argument is independent of the underlying alphabet. We shall use the following lemma of
Fici et al. [6] for which we give a new proof.

Lemma 3.1. Let v be a border of a word w, and let w = uv. If n is an integer such that
|w| ≥ n|u|, then un is a prefix of w.

Proof. Write w = uv = vu′. By Theorem 2.1, u = u1v1 and v = (u1v1)tu1 for some
u1 ∈ Σ+, v1 ∈ Σ∗ and integer t ≥ 0. Thus w = (u1v1)t+1u1 = ut+1u1 and the result
follows.

Let x be a sufficiently long word avoiding r-anti-powers, whose length will be specified
in Section 3.2.1. Let

M = (r − 1)

(
r

2

)
, m = (k + 1)M. (3.1)

Consider Uj,` = x[j` + 1..(j + 1)`] for 0 ≤ j ≤ r − 1. Observe that Uj,` is a block of size
`. Since U0,` · · ·Ur−1,` is not an r-anti-power, there exist i and j with 0 ≤ i < j ≤ r − 1
such that Ui,` = Uj,`. Consider the pairs (i, j) associated with ` for m ≤ ` ≤ m +

(
r
2

)
. By

the pigeonhole principle, two of the pairs must coincide. Hence there exist i, j, `1, `2 with
m ≤ `1 < `2 ≤ m+

(
r
2

)
and 0 ≤ i < j ≤ r − 1 such that Ui,`1 = Uj,`1 and Ui,`2 = Uj,`2 .

9

· · · Ui,`1 · · · Uj,`1 · · ·

`1 `1

· · · Ui,`2 · · · Uj,`2 · · ·

`2 `2

Figure 3.1: The Proof of Theorem 1.2

Using Eq. (3.1) we therefore obtain (i + 1)`1 > i`2 + 1 and (j + 1)`1 > j`2 + 1. Let
w = x[i`2 + 1..(i+ 1)`1] and v = x[j`2 + 1..(j + 1)`1]. Observe that

|v| = (j + 1)`1 − j`2 < (i+ 1)`1 − i`2 = |w|.

Since v is a prefix of Uj,`2 = Ui,`2 and a suffix of Uj,`1 = Ui,`1 , it follows that v is a border
of w. Writing w = uv we have

1 ≤ |u| = |w| − |v| = `1 − i(`2 − `1)− `1 + j(`2 − `1)

= (j − i)(`2 − `1) ≤ (r − 1)

(
r

2

)
= M

so that

|w| > |v| = `1 − j(`2 − `1) ≥ m− (r − 1)

(
r

2

)
= m−M = kM ≥ k|u|.

Thus, by Lemma 3.1, uk is a prefix of w, i.e., a factor of x, as desired.

3.2 Asymptotic Behaviour

In this section we prove the first part of Theorem 1.3.

3.2.1 Upper Bound

The argument given in Section 3.1 works when

|x| ≥ r

(
m+

(
r

2

))
= r

(
(k + 1)(r − 1)

(
r

2

)
+

(
r

2

))
= r(kr − k + r)

(
r

2

)
.

10

Therefore

N(k, r) ≤ r(kr − k + r)

(
r

2

)
. (3.2)

3.2.2 Lower Bound

Here we show that

N(k, r) ≥ (r − 1)k (3.3)

for k > r − 2 ≥ 0.

We use the greedy algorithm to construct the word v = (0k−11)r−20k−1. Observe that

|v| = (r − 1)k − 1.

We claim that v contains neither a k-power nor an r-anti-power. This will give the desired
bound.

0 · · · 01 0 · · · 01 · · · 0 · · · 01 0 · · · 0

k k k k − 1

r − 1 blocks

Figure 3.2: The Proof of Eq. (3.3)

• If v contains an r-anti-power u1 · · ·ur, then at most r− 2 of u1, . . . , ur can contain a
1. But then at least two of u1, . . . , ur must be equal, a contradiction.

• If v contains a k-power wk, then w cannot contain a 1 since the number of 1s in v is
r−2 < k. Thus wk must consist entirely of 0s. But there is no block of k consecutive
0s in v.

This completes the proof.

11

3.3 The Case r = 3

In this section we prove the second part of Theorem 1.3, namely

N(k, 3) = 2k

for k ≥ 7.

Using Eq. (3.3) it suffices to show that any word of length 2k contains a k-power or a
3-anti-power. We proceed by induction on k. For the base case we need to show that any
binary word of length 14 contains a 7-power or a 3-anti-power. This follows from Table
A.1 and may be verified by brute force, possibly using a computer search. So assume that
the result holds for some k ≥ 7.

Consider a binary word y = xab of length 2k + 2 for a, b ∈ Σ = {0, 1}. Without
loss of generally, y begins with a 0. By the inductive hypothesis, x contains either a 3-
anti-power—in which case we are done—or wk, where w ∈ {0, 1, 00, 01}. We assume the
latter.

If w = 00, then y contains 0k+1 so we are done.

If w = 01 then y = (01)k−40(101)(010)(1ab). If y does not contain a 3-anti-power, then
we must have 1ab = 101. But then y = (01)k+1 which contains a (k + 1)-power.

Otherwise x = uwkv for u, v ∈ Σ∗ and w = c ∈ Σ, so y = uckvab. Note that if u ends
in a c or vab begins with a c then y contains ck+1 and we are done. So we may assume
otherwise.

Case 1: u = ε. Assume that v = c̄v′. Then y = ckc̄v′ab = c2y′, where y′ = ck−2c̄v′ab. By
the inductive hypothesis, y′ contains either a 3-anti-power—in which case we are done—or
a k-power. Then c̄v′ = c̄k or v′a = ak or v′ab = dak for some d ∈ Σ. Then y = ckc̄kab or
ckc̄akb or ckc̄dak. If a = c̄ in the first two cases, or a = d in the last case, then y contains
ak+1 and we are done. So we may assume that y = ckc̄kcb or ckc̄ckb or ckc̄2ck or ckc̄cc̄k.

• If y = ckc̄kcb then y contains the 3-anti-power cj c̄kcb, where j ∈ {1, 2, 3} such that
j + k + 2 ≡ 0 (mod 3).

• If y = ckc̄ckb then either b = c or b = c̄. If b = c then y contains ck+1. Otherwise y
contains the 3-anti-power cj c̄ckc̄, where j ∈ {0, 1, 2} such that j+k+2 ≡ 0 (mod 3).

• If y = ckc̄2ck then y contains the 3-anti-power cccc̄c̄c.

• If y = ckc̄cc̄k then y contains the 3-anti-power ccc̄cc̄c̄.

12

Case 2: u 6= ε. Then u = u′c̄ and vab = c̄v′, so y = u′c̄ckc̄v′. Consider a suffix u′′ of u′c̄
and a prefix v′′ of v′ such that ` = |u′′v′′| ∈ {0, 1, 2} and k + ` + 2 ≡ 0 (mod 3). Then y
contains the 3-anti-power u′′c̄ckc̄v′′.

This completes the proof.

3.4 The Case r > 3

As per the proof in Section 3.3 one might expect that a similar argument be carried out for
any r ≥ 3. However, the number of cases to deal with grows rapidly with r. As a result,
this method soon becomes impractical. Nevertheless, one could try to deal with the cases
by other means. For instance, with w as in Section 3.3 the following lemma shows that it
suffices to consider only |w| < r.

Lemma 3.2. Let w be a non-empty binary word of length ` ≥ 2, and let k > `. Then wk

contains a 2(k − 1)-power or an `-anti-power.

Proof. Let w = w[1..`] and vi = w[i..`]w[1..i] for i = 1, . . . , `. If vi = vj for some 1 ≤
i < j ≤ `, then xy = yx, where x = w[i..j − 1] and y = w[j..`]w[1..i − 1]. Hence, there
exist a non-empty binary word z and integers p, q > 0 such that x = zp and y = zq by the
corollary to Theorem 2.1. Then

wk = w[1..i− 1](w[i..`]w[1..i− 1])kw[i..`]

= w[1..i− 1](xy)k−1w[i..`]

= w[1..i− 1]z(p+q)(k−1)w[i..`],

which contains z2(k−1).

If the vi are all distinct, then wk contains w`+1 = v1 · · · v`, which is an `-anti-power.
This completes the proof.

13

w w · · · w w

` ` ` `

`+ 1 blocks

v1 v2 · · · v`

`+ 1 `+ 1 `+ 1

` blocks

Figure 3.3: The Proof of Lemma 3.2

14

Chapter 4

Words Avoiding Anti-Powers

Throughout this chapter a will denote an arbitrary element in Σ = {0, 1}. The binary
complement of a is denoted ā, so ā = 1− a.

As mentioned in the introduction, it is not difficult to see that N(k, 2) = k, since the
only binary words avoiding 2-anti-powers are of the form ai. From this observation it also
follows that the only infinite binary words avoiding 2-anti-powers are of the form aω. So
we consider r ≥ 3 below.

4.1 Classifying All Words Avoiding 3-Anti-Powers

Using arguments similar to those in Section 3.3 we can prove the following result, which
was first observed by J. Shallit.

Theorem 4.1. Let n ≥ 12 be an integer such that n ≡ 0 (mod 3). Then there are exactly
2n+ 12 binary words of length n avoiding 3-anti-powers, given by the following list.

1. an

2. aiāan−1−i for 1 ≤ i < n

3. an−2ā2

4. an−3āaā

5. a2ān−2

15

6. (aā)n/2 if n is even, (aā)(n−1)/2a if n is odd

7. aāaān−3

8. aān−1

Proof. We proceed by induction on n. The base case n = 12 may be verified by brute
force, so assume that the result holds for some n ≥ 12 with n ≡ 0 (mod 3).

Consider a binary word wu of length n+ 3, where w avoids 3-anti-powers and |w| = n.
Then

u ∈ {a3, a2ā, aāa, aā2, āa2, āaā, ā2a, ā3}.

By the inductive hypothesis, w belongs to the list in the statement of the theorem. We
now observe the following.

• If w = an, then wu does not contain a 3-anti-power if and only if u 6∈ {ā2a, ā3}.

• If w = aiāan−1−i with 1 ≤ i < n, then wu does not contain a 3-anti-power if and
only if u = a3.

• If w = an−2ā2, then wu contains a 3-anti-power for every choice of u.

• If w = an−3āaā, then wu contains a 3-anti-power for every choice of u.

• If w = a2ān−2, then wu does not contain a 3-anti-power if and only if u = ā3.

• If n is even and w = (aā)n/2, then wu does not contain a 3-anti-power if and only if
u = aāa.

• If n is odd and w = (aā)(n−1)/2a, then wu does not contain a 3-anti-power if and only
if u = āaā.

• If w = aāaān−3, then wu does not contain a 3-anti-power if and only if u = ā3.

• If w = aān−1, then wu does not contain a 3-anti-power if and only if u = ā3.

In every case, wu belongs to the list in question. Therefore we are done.

Consequently, we can obtain similar lists for n ≡ 1 (mod 3) and n ≡ 2 (mod 3).

16

Theorem 4.2. Let n ≥ 12 be an integer such that n ≡ 1 (mod 3). Then there are exactly
2n+ 14 binary words of length n avoiding 3-anti-powers, given by the following list.

1. an

2. aiāan−1−i for 1 ≤ i < n

3. an−2ā2

4. an−3āaā

5. a2ān−2

6. (aā)n/2 if n is even, (aā)(n−1)/2a if n is odd

7. aāaān−3

8. aān−2a

9. aān−1

Proof. Such a word must be of the form wa or wā, where w is a word of length n− 1 given
by Theorem 4.1. So it must belong to the following list.

wa wā
an an−1ā
aiāan−1−i (1 ≤ i < n− 1) aiāan−2−iā (1 ≤ i < n− 1)
an−3ā2a an−3ā3

an−4āaāa an−4āaāā
a2ān−3a a2ān−2

(aā)(n−1)/2a (n odd), (aā)n/2a2 (n even) (aā)(n−1)/2ā (n odd), (aā)n/2 (n even)
aāaān−4a aāaān−3

aān−2a aān−1

• If n = 3j + 1, then aiāan−2−iā = aiāa3j−1−iā, which contains the 3-anti-power
ai−1āa3j−1−iā, for 1 ≤ i < n− 3.

• an−3ā2a contains the 3-anti-power (aa)(aā)(āa).

• an−3ā3 contains the 3-anti-power (aa)(aā)(āā).

17

• an−4āaāa contains the 3-anti-power (aaa)(aaā)(aāa).

• an−4āaāā contains the 3-anti-power (aa)(āa)(āā).

• a2ān−3a contains the 3-anti-power aān−3a.

• (aā)n/2a2 (n even) contains the 3-anti-power (āaā)(aāa)(āaa).

• (aā)(n−1)/2ā (n odd) contains the 3-anti-power (aāa)(āaā)(aāā).

• aāaān−4a contains the 3-anti-power (āaā(n−7)/3)(ā(n−1)/3)(ā(n−4)/3a).

The rest of the possibilities can be easily seen to avoid 3-anti-powers. This concludes
the proof.

Theorem 4.3. Let n ≥ 12 be an integer such that n ≡ 2 (mod 3). Then there are exactly
2n+ 22 binary words of length n avoiding 3-anti-powers, given by the following list.

1. an

2. aiāan−1−i for 1 ≤ i < n

3. an−2ā2

4. an−3āaā

5. a2ān−3a

6. a2ān−2

7. aāan−3ā

8. (aā)n/2 if n is even, (aā)(n−1)/2a if n is odd

9. aāaān−3

10. aān−3a2

11. aān−3aā

12. aān−2a

13. aān−1

18

Proof. Such a word must be of the form wa or wā, where w is a word of length n− 1 given
by Theorem 4.2. So it must belong to the following list.

wa wā
an an−1ā
aiāan−1−i (1 ≤ i < n− 1) aiāan−2−iā (1 ≤ i < n− 1)
an−3ā2a an−3ā3

an−4āaāa an−4āaāā
a2ān−3a a2ān−2

(aā)(n−1)/2a (n odd), (aā)n/2a2 (n even) (aā)(n−1)/2ā (n odd), (aā)n/2 (n even)
aāaān−4a aāaān−3

aān−3a2 aān−3aā
aān−2a aān−1

• If n = 3j+2, then aiāan−2−iā = aiāa3j−iā, which contains the 3-anti-power ai−2āa3j−iā,
for 2 ≤ i < n− 3.

• an−3ā2a contains the 3-anti-power (aa)(aā)(āa).

• an−3ā3 contains the 3-anti-power (aa)(aā)(āā).

• an−4āaāa contains the 3-anti-power (aaa)(aaā)(aāa).

• an−4āaāā contains the 3-anti-power (aa)(āa)(āā).

• (aā)n/2a2 (n even) contains the 3-anti-power (āaā)(aāa)(āaa).

• (aā)(n−1)/2ā (n odd) contains the 3-anti-power (aāa)(āaā)(aāā).

• aāaān−4a contains the 3-anti-power (aā(n−5)/3)(ā(n−2)/3)(ā(n−5)/3a).

The rest of the possibilities can be easily seen to avoid 3-anti-powers. This concludes
the proof.

As an immediate corollary of these results we obtain the following classification of
infinite binary words avoiding 3-anti-powers.

Theorem 4.4. The only infinite binary words avoiding 3-anti-powers are given by the
following list.

19

1. aω

2. aiāaω for 1 ≤ i

3. a2āω

4. (aā)ω

5. aāaāω

6. aāω

4.2 The Characteristic Sequence of Powers of 4

In this section we show that c4 avoids 4-anti-powers.

It is not difficult to see that c4 is generated by the automaton in Figure 4.1 below,
which reads the base-4 representation of n from left to right and produces c4[n] based on
the state reached.

0

start

1

0

0
1

2, 3

0

1, 2, 3

1, 2, 3

Figure 4.1: Automaton Generating c4

We encode this automaton in the file Walnut/Word Automata Library/POW4.txt as
follows.

20

msd_4

0 0

0 -> 0

1 -> 1

2 -> 2

3 -> 2

1 1

0 -> 1

1 -> 2

2 -> 2

3 -> 2

2 0

0 -> 2

1 -> 2

2 -> 2

3 -> 2

To check whether c4 contains 4-anti-powers we now enter the following command in
Walnut.

eval POW4_has_no_4_anti_power "?msd_4 Ai,n ((i>=0) & (n>=1)) => (

(At (t<n) => POW4[i+0*n+t] = POW4[i+1*n+t]) |

(At (t<n) => POW4[i+0*n+t] = POW4[i+2*n+t]) |

(At (t<n) => POW4[i+0*n+t] = POW4[i+3*n+t]) |

(At (t<n) => POW4[i+1*n+t] = POW4[i+2*n+t]) |

(At (t<n) => POW4[i+1*n+t] = POW4[i+3*n+t]) |

(At (t<n) => POW4[i+2*n+t] = POW4[i+3*n+t]))":

This generates the output string true in the following file.

Walnut/Result/POW4_has_no_4_anti_power.txt

Therefore c4 does not contain 4-anti-powers, as desired.

21

4.3 The Cantor Word

In this section we show that s avoids 10-anti-powers.

It is well-known that s is generated by the automaton in Figure 4.2 below, which reads
the base-3 representation of n from left to right and produces s[n] based on the state
reached.

0

start

10, 2
1

0, 1, 2

Figure 4.2: Automaton Generating s

We encode this automaton in the file Walnut/Word Automata Library/Cantor.txt

as follows.

msd_3

0 0

0 -> 0

1 -> 1

2 -> 0

1 1

0 -> 1

1 -> 1

2 -> 1

To check whether s contains 10-anti-powers we now enter the following command in
Walnut.

eval cantor_has_no_10_anti_power "?msd_3 Ai,n ((i>=0) & (n>=1)) => (

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+1*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+2*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+3*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+4*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+6*n+t]) |

22

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+2*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+3*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+4*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+6*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+1*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+3*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+4*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+6*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+4*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+6*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+6*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+5*n+t] = Cantor[i+6*n+t]) |

(At (t<n) => Cantor[i+5*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+5*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+5*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+6*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+6*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+6*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+7*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+7*n+t] = Cantor[i+9*n+t]) |

23

(At (t<n) => Cantor[i+8*n+t] = Cantor[i+9*n+t]))":

This generates the output string true in the following file.

Walnut/Result/cantor_has_no_10_anti_power.txt

Therefore s does not contain 10-anti-powers, as desired.

4.4 Remarks

1. Using a similar Walnut program it can be shown that s does contain 9-anti-powers.
So 10 is optimal.

2. J. Shallit observed that the following Walnut program also produced true.

eval cantor_has_no_10_anti_power "?msd_3 Ai,n ((i>=0) & (n>=1)) => (

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+5*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+4*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+8*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+6*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+9*n+t]) |

(At (t<n) => Cantor[i+3*n+t] = Cantor[i+7*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+1*n+t]) |

(At (t<n) => Cantor[i+7*n+t] = Cantor[i+8*n+t]) |

(At (t<n) => Cantor[i+5*n+t] = Cantor[i+6*n+t]) |

(At (t<n) => Cantor[i+2*n+t] = Cantor[i+3*n+t]) |

(At (t<n) => Cantor[i+0*n+t] = Cantor[i+5*n+t]) |

(At (t<n) => Cantor[i+4*n+t] = Cantor[i+9*n+t]))":

This means that a slightly stronger result is true: for every subword w0 · · ·w9 of s
with |w0| = · · · = |w9|, there is a pair (i, j) given by the above list such that wi = wj.

3. Similarly, we observed for c4 that the following Walnut program also produced true.

24

eval POW4_has_no_4_anti_power "?msd_4 Ai,n ((i>=0) & (n>=1)) => (

(At (t<n) => POW4[i+0*n+t] = POW4[i+1*n+t]) |

(At (t<n) => POW4[i+1*n+t] = POW4[i+2*n+t]) |

(At (t<n) => POW4[i+1*n+t] = POW4[i+3*n+t]) |

(At (t<n) => POW4[i+2*n+t] = POW4[i+3*n+t]))":

In other words, for every subword w0w1w2w3 of c4 with |w0| = |w1| = |w2| = |w3|,
either w0 = w1 or w1 = w2 or w1 = w3 or w2 = w3.

25

Chapter 5

Abelian Powers and Abelian
Anti-Powers

Recall that an abelian k-power (resp. abelian k-anti-power) is a word of the form w1 · · ·wk,
where the wi are words such that |w1| = · · · = |wk| and the Parikh vectors P (w1), . . . , P (wk)
are equal (resp. distinct). Our goal in this chapter is to give a proof of Theorem 1.4 by
showing that there is a binary word of length k2−1 avoiding abelian k-powers and abelian
3-anti-powers.

5.1 The Proof of Theorem 1.4

Computation suggests that the word

w = (0k−11)k−10k−1

with |w| = k2 − 1 is a longest binary word avoiding abelian k-powers and abelian 3-anti-
powers. We show below that w avoids abelian k-powers and abelian 3-anti-powers.

If w contains an abelian k-power w1 · · ·wk, then no wi can contain a 1 since otherwise
k − 1 = |w|1 ≥ k|w1|1, which is impossible. Hence the wis must consist entirely of 0s. But
there is no block of k consecutive 0s in w.

To see that w does not contain an abelian 3-anti-power, consider any subword

v = w[a..a+ d− 1]w[a+ d..a+ 2d− 1]w[a+ 2d..a+ 3d− 1]

26

where 1 ≤ a < a+ 3d < k2. Observe that

w[i] = 1 ⇐⇒ i ≡ 0 (mod k)

for 1 ≤ i < k2. We claim that two of the sets

A1 = {a, . . . , a+ d− 1}, A2 = {a+ d, . . . , a+ 2d− 1}, A3 = {a+ 2d, . . . , a+ 3d− 1}

contain the same number of multiples of k. To see this, note that the number of multiples
of k in Ai is given by

∆(i) =

⌊
a+ id− 1

k

⌋
−
⌊
a+ (i− 1)d− 1

k

⌋
=
d

k
−
{
a+ id− 1

k

}
+

{
a+ (i− 1)d− 1

k

}
∈
(
d

k
− 1,

d

k
+ 1

)
for each i, where bxc and {x} respectively denote the integer and fractional parts of the real
number x. Hence two of ∆(1), ∆(2) and ∆(3) must be equal by the pigeonhole principle.
Thus v cannot be an abelian 3-anti-power, as desired.

27

Chapter 6

Open Problems

We conclude this thesis with the following list of unresolved problems that could serve as
pointers to possible future research in the area.

6.1 Computing N(k, r)

We believe that Part 2 of Conjecture 1.1 can be resolved using an approach similar to the
one in Section 3.3, but will require a deeper case analysis. We leave it as an open problem
in the hope of a more novel approach.

Conjecture 6.1. N(k, 4) = 4k for k ≥ 11.

We also propose the following modified version of Part 3 of Conjecture 1.1.

Conjecture 6.2. Let k ≥ 10. Then

N(k, 5) =

{
6k + 4, k 6≡ 5 (mod 10)

6k + 5, k ≡ 5 (mod 10).

Furthermore, if k ≡ 5 (mod 10), then 04(01)k−102(01)k−102(01)k−102 is the lexicographi-
cally least longest binary word avoiding k-powers and 5-anti-powers.

We leave the general version of Conjecture 1.1 as an open problem.

Conjecture 6.3. N(k, r) = (2r − 4)k +O(1) for fixed r > 2.

28

Lastly, it would be interesting to compute or estimate N(k, r) for other values of k and
r. There is a noticeable gap between the upper and lower bounds given by Theorem 1.3.

Open Problem 6.1. Compute new classes of values of N(k, r).

Open Problem 6.2. Find better estimates for N(k, r).

6.2 Classifying Words with No Anti-Powers

In Section 4.1 we classified all finite and infinite binary words avoiding 3-anti-powers. Such
a classification seems difficult for r ≥ 4. We leave it as an open problem.

Open Problem 6.3. Classify all finite and infinite binary words avoiding r-anti-powers for
r ≥ 4.

6.3 Computing A(k, r)

As mentioned in the introduction, it is not known whether A(k, r) exists or is finite.

Conjecture 6.4. A(k, r) exists and is finite for all k, r ≥ 1.

Assuming existence, in Chapter 5 we showed that A(k, 3) ≥ k2. We conjecture that
this is in fact an equality.

Conjecture 6.5. A(k, 3) ≤ k2 for k ≥ 1.

In general, the following seems to hold.

Conjecture 6.6. A(k, r) = Θ(kr−1) for fixed r ≥ 2.

It would also be interesting to compute or estimate A(k, r) for r > 3.

Open Problem 6.4. Compute or estimate A(k, r) for r > 3.

29

References

[1] G. Badkobeh, G. Fici, and S. J. Puglisi. Algorithms for Anti-Powers in Strings. Inform.
Process. Lett., 137:57–60, 2018.

[2] A. Berger and C. Defant. On Anti-Powers in Aperiodic Recurrent Words. arXiv
Preprint, 2019. https://arxiv.org/abs/1902.01291.

[3] A. Burcroff. (k, λ)-Anti-Powers and Other Patterns in Words. arXiv Preprint, 2018.
https://arxiv.org/abs/1807.07945.

[4] C. Defant. Anti-Power Prefixes of the Thue-Morse Word. Electron. J. Combin., 24(1),
2017.

[5] G. Fici, M. Postic, and M. Silva. Abelian Anti-Powers in Infinite Words. Adv. Appl.
Math., 108:67–78, 2019.

[6] G. Fici, A. Restivo, M. Silva, and L. Zamboni. Anti-Powers in Infinite Words. J.
Combin. Theory Ser. A, 157:109–119, 2018.

[7] M. Gaetz. Anti-Power j-fixes of the Thue-Morse Word. arXiv Preprint, 2019. https:
//arxiv.org/abs/1808.01528.

[8] T. Kociumaka, J. Radoszewski, T. Waleń, and W. Zuba. Efficient Representation
and Counting of Antipower Factors in Words. In C. Martin-Vide, A. Okhotin, and
D. Shapira, editors, Language and Automata Theory and Applications. LATA 2019.
Lecture Notes in Computer Science, volume 11417. Springer, Cham, 2019.

[9] R. C. Lyndon and M.-P. Schützenberger. The Equation aM = bNcP in a Free Group.
Michigan Math. J., 9(4):289–298, 1962.

[10] H. Mousavi. Automatic Theorem Proving in Walnut. arXiv Preprint, 2016. https:

//arxiv.org/abs/1603.06017.

30

https://arxiv.org/abs/1902.01291
https://arxiv.org/abs/1807.07945
https://arxiv.org/abs/1808.01528
https://arxiv.org/abs/1808.01528
https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017

[11] S. P. Radziszowski. Small Ramsey Numbers. Electron. J. Combin., 1, 2017. https:

//www.combinatorics.org/ojs/index.php/eljc/article/view/DS1.

[12] F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math. Soc., 30:264–286,
1930.

[13] J. Shallit. Sequence A274543. The On-Line Encyclopedia of Integer Sequences, 2016.
https://oeis.org/A274543.

31

https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1
https://www.combinatorics.org/ojs/index.php/eljc/article/view/DS1
https://oeis.org/A274543

APPENDICES

32

Appendix A

Table of Values of N(k, r)

Table A.1: Values of N(k, r)

k
r

1 2 3 4 5 6 7
k

r
1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 16 1 16 32 64 100
2 1 2 4 4 4 4 4 17 1 17 34 68 106
3 1 3 9 19 41 58 86 18 1 18 36 72 112
4 1 4 12 24 48 79 19 1 19 38 76 118
5 1 5 12 26 55 84 20 1 20 40 80 124
6 1 6 12 31 56 21 1 21 42 84 130
7 1 7 14 33 58 22 1 22 44 88 136
8 1 8 16 33 58 23 1 23 46 92 142
9 1 9 18 36 62 24 1 24 48 96 148
10 1 10 20 42 64 25 1 25 50 100 155
11 1 11 22 44 70 26 1 26 52 104 160
12 1 12 24 48 76 27 1 27 54 108 166
13 1 13 26 52 82 28 1 28 56 112 172
14 1 14 28 56 88 29 1 29 58 116 178
15 1 15 30 60 95 30 1 30 60 120 184

33

Appendix B

C++ Program to Compute N(k, r)

Instructions:

• Place the following files in an empty directory.

• Run make in that directory.

• Now running ./main k r 0 1 from that directory for any k and r will output the
lexicographically least longest binary word avoiding k-powers and r-anti-powers.

Makefile

1 CXX = g++

2 CXXFLAGS = -std=c++11

3

4 main: krfree.cc

krfree.h

1 #ifndef KRFREE_H

2 #define KRFREE_H

3 #include <string>

4

5 bool k_free_tail(std::string &w, int k);

6 bool r_free_tail(std::string &w, int r);

7

8 #endif /* KRFREE_H */

34

krfree.cc

1 #include "krfree.h"

2 #include <set>

3

4 bool k_free_tail(std::string &w, int k) {

5 for (int block_size = 1; k*block_size <= w.size(); block_size++) {

6 std::set<std::string> tails;

7 for (int j = 1; j <= k; j++) {

8 std::string subtail = w.substr(w.size()-j*block_size, block_size);

9 tails.insert(subtail);

10 }

11 if (tails.size() == 1) { // found a k-power

12 return false;

13 }

14 }

15

16 return true;

17 }

18

19 bool r_free_tail(std::string &w, int r) {

20 for (int block_size = 1; r*block_size <= w.size(); block_size++) {

21 std::set<std::string> tails;

22 for (int j = 1; j <= r; j++) {

23 std::string subtail = w.substr(w.size()-j*block_size, block_size);

24 tails.insert(subtail);

25 }

26 if (tails.size() == r) { // found an r-anti-power

27 return false;

28 }

29 }

30

31 return true;

32 }

main.cc

1 #include <iostream>

2 #include <set>

3 #include "krfree.h"

4 #include <ctime>

35

5

6 std::string max_word;

7

8 static bool generate(std::string &start, int k, int r, std::set<std::string>

&alphabet) {

9 if (start.size() > max_word.size()) {

10 max_word = start;

11 }

12

13 for (auto &digit : alphabet) {

14 start += digit;

15 if (k_free_tail(start, k) && r_free_tail(start, r) && generate(start,

k, r, alphabet)) {

16 return true;

17 } else {

18 start.pop_back();

19 }

20 }

21

22 return false;

23 }

24

25 int main(int argc, char **argv) {

26 int begin = clock();

27 int k = atoi(argv[1]);

28 int r = atoi(argv[2]);

29

30 std::string start;

31

32 std::set<std::string> alphabet(argv+3, argv+argc);

33

34 if (!generate(start, k, r, alphabet)) {

35 std::cout << max_word << std::endl;

36 std::cout << "length: " << max_word.size() << std::endl;

37 }

38

39 std::cout << "time: " << (double)(clock()-begin)/CLOCKS_PER_SEC << ’s’ <<

std::endl;

40 }

36

	List of Tables
	List of Figures
	Introduction
	Ramsey Theory and Combinatorics on Words
	Avoiding Anti-Powers
	Abelian Anti-Powers

	Preliminaries
	Notions and Notations
	A Classical Result on Words with Borders
	Parikh Vectors
	Previous Work on Anti-Powers

	A Study in N(k,r)
	Existence
	Asymptotic Behaviour
	Upper Bound
	Lower Bound

	The Case r = 3
	The Case r>3

	Words Avoiding Anti-Powers
	Classifying All Words Avoiding 3-Anti-Powers
	The Characteristic Sequence of Powers of 4
	The Cantor Word
	Remarks

	Abelian Powers and Abelian Anti-Powers
	The Proof of Theorem 1.4

	Open Problems
	Computing N(k,r)
	Classifying Words with No Anti-Powers
	Computing A(k,r)

	References
	APPENDICES
	Table of Values of N(k,r)
	C++ Program to Compute N(k,r)

