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Dissolved organic matter (DOM) is a ubiquitous component of aquatic and terrestrial systems and 

an important constituent that can influence aquatic health and drinking water quality.  For 

instance, DOM can act as an important nutrient for microbes or react with chlorine during 

treatment of drinking water supplies to form harmful disinfection by-products.  As DOM is 

comprised of thousands of different organic molecules, the degree that DOM reacts with its 

surroundings depends not only on the amount of carbon, but also on its composition.  A changing 

climate can influence DOM concentration and composition in a number of ways, such as by altering 

the residence time within the watershed or changing rates of DOM processing through warming 

temperatures.  Recently, changes to DOM quality and quantity have been observed across surface 

waters in the northern hemisphere, which can complicate future drinking water treatment options.  

Organic-rich areas underlain with permafrost are found across the circumpolar north, leading to 

uncertainty over the effects of permafrost degradation on carbon release and fate, particularly upon 

downstream ecosystems and drinking water resources.  Better prediction as to how DOM will 

respond under a warming climate requires an understanding of the variability in the amount and 

composition of DOM, as well as the drivers of DOM reactivity.  However, the few arctic or sub-

arctic locations with comprehensive DOM datasets can be difficult to compare due to the use of 

various DOM characterization techniques.  Further, data are lacking, or entirely missing, in many 

areas of Canada’s western sub-arctic.  The overall goal of this thesis is to use field and laboratory 

measurements to quantify the heterogeneity encountered in DOM concentration and composition 

from a variety of hydrologic environments in three Canadian sub-arctic and arctic ecoregions, and 

to link this variability to DOM lability. 

Statistical analyses of long-term monitoring of river hydrology and water quality provides a 

quantitative measure to the response of a watershed to a warming climate.  Northern areas are 

quickly responding to a warming climate, yet few long-term monitoring records exist and most 

focus on large rivers draining directly into the Arctic Ocean.  The Government of Northwest 

Territories have been collecting monthly river water quality parameters for the past 30+ years, 

providing a comprehensive dataset to quantify changes occurring to the Northwest Territories (NT) 

and define baseline conditions to help assess future change.  Trend analysis was applied to mean 

annual and monthly air temperature, total precipitation, discharge, concentration, and load for 



 

vi 

rivers draining the taiga shield (Yellowknife and Cameron Rivers) and taiga plains (Marian River) 

during the past 30 years.  Mean annual air temperatures have significantly increased during the 

past 80 years (3.2 x 10-2 ºC/yr), with significant increased winter monthly average temperatures 

(January to April).  Large inter-annual variability was found in monthly average discharge for the 

Yellowknife and Cameron rivers, yet no significant change was found to the mean annual discharge 

during the past 80 years (the Marian River is ungauged).  Winter flows have also increased over 

time within the Yellowknife River.  Significant increases to mean monthly cation and anion 

concentrations occurred within the Yellowknife and Cameron rivers, but they did not result in 

significant changes to the annual loads.  Baseline conditions can be easily determined for the 

Marian and Cameron rivers due the unchanging hydrologic and geochemical record.  However, the 

Yellowknife River exhibits a uni-directional change in water quality, indicative of enhanced 

subsurface flow pathways even with no significant change to its discharge.  These results indicate 

that annual variability in river discharge is important for determining differences in geochemical 

fluxes with a warming climate.   

DOM composition can be quantified using a wide range of analytical techniques that vary in 

information obtained, cost, and analytical complexity.  The overall objective was to use a readily 

available suite of DOM characterization techniques from surface and subsurface environments to 

determine which simple parameters explain the most variability within our DOM dataset, and use 

these parameters to create a simple, effective way to compare compositional differences in DOM.  

Samples were collected from surface and subsurface waters across northern freshwaters in Canada.  

DOM composition was quantified via absorbance, elemental ratios, and size-exclusion 

chromatography.  Overall, DOM concentrations ranged from 0.5 mg C/L in surface water at high 

arctic sites to 273 mg C/L in NT subsurface environments.  Composition measures that best 

explained DOM variability and were most unrelated in approach were specific absorbance at 255 

nm (SUVA), ratio of dissolved organic carbon to dissolved organic nitrogen (DOC:DON), slope of 

absorbance between 275 to 295 nm (S275-295), and humic substances fraction (HSF).  Application of 

principal component analyses (PCA) quantified these independent measures of composition to 

explain up to 61% of the variability within the first three PCA axes.  These four measures were used 

to create a ‘Composition Wheel’ to facilitate comparison of DOM across samples.  A wide range in 

SUVA, S275-295, DOC:DON, and HSF values were observed across DOM concentrations and spatial 

scales.  Overall, subsurface DOM composition was similar across all locations, defined by high 
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amounts of humics, DOC:DON, and SUVA, and low S275-295, while surface water DOM contained a 

variety of compositions across sites.  Composition Wheels provide a simple way to visualize and 

compare DOM composition and quality, as well as efficiently communicate differences in DOM 

composition to a variety of scientific and interested audiences. 

Microbial degradation is often the most important driver of DOM fate within aquatic systems.  

However, few measures of DOM microbial degradation rates are found among sub-arctic and arctic 

freshwater studies.  The overall objective was to use a 30-day incubation experiment to determine 

how DOM composition influences microbial DOM degradation, and quantify microbial degradation 

rates for various surface and subsurface waters in the taiga shield (Yellowknife, NT), southern arctic 

(Daring Lake, NT), and northern arctic (Lake Hazen Watershed, NU).  Proportion of DOM loss 

ranged from 1 to 27% across all samples with no clear association to initial DOM composition or 

hydrologic site.  First-order degradation rates ranged from 0.4 to 11.2 x10-3 d-1, and were highest 

from DOM in the taiga shield subsurface and a southern arctic pond.  Samples from the northern 

arctic contained the lowest rates and DOM loss, suggesting high arctic DOM may have undergone 

processing prior to the incubation experiment to more southern locations or no processing if the 

inoculum contained no viable microbes.  Metrics of DOM composition responded differently to 

microbial degradation across all samples.  Absorbance based measures (S275-295, and SAC420) have 

poor relationships to the proportion of DOM loss and 1st-order microbial degradation rates, whereas 

molecular size-based groupings were stronger predictors of degradation rate and proportion of 

DOM loss.  Further, SUVA was a sensitive indicator of the microbial-induced change in DOM, and 

not a good predictor of biodegradability.  DOM from all three northern ecoregions contained some 

degree of microbial-labile components that may not be well reflected using most measures of the 

initial DOM composition. Hence, the amount of DOM lost, degradation rate, and the uniqueness in 

the response of DOM at each location indicates a location-specific definition of DOM lability.   

Photolysis is an important degradation pathway for DOM in northern systems due to the prolific 

number of shallow, exposed surface waters characteristic of many arctic landscapes.  However, few 

DOM photodegradation rates have been published from Canadian arctic freshwaters.  The objective 

of this data chapter was to determine how differences in DOM composition influence photo-lability 

and photodegradation rate from arctic and sub-arctic surface and subsurface waters in Canada.  

Degradation rates, calculated from the total DOM loss, were highest in subsurface samples (linear: 2 

to 25 x 10-3 m2/E; 1st-order: 4.1 to 17 x10-4 m2/E).  Degradation rates were used to calculate total 
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DOM loss after 500 E/m2 of photosynthetic active radiation (PAR) across all samples, equivalent to 

18 and 13 days of sunlight in the high arctic and subarctic, respectively.  Southern arctic subsurface 

and creek lost the highest amount of DOM (58 and 38%, respectively) while most other samples lost 

between 13 to 19%.  The lowest proportion of DOM loss was observed from a taiga shield river (4%) 

likely due to pre-exposure among the landscape.  No significant correlations were found between 

initial DOM composition and photolytic degradation rate.  Alternatively, initial measures of SUVA 

and SAC420 predicted the proportion of photolytic DOM loss.  Photolytic-induced changes to DOM 

were similar across all samples: decreased values of SUVA, DOC:DON, and SAC420, and increased 

values of S275-295.  Hence, photolysis uniformly altered DOM regardless of initial composition or 

sample location.  Specific measures of DOM composition, such as SUVA and SAC420, provide 

sensitive indicators of photolytic processes and can be used to estimate the degradation rate and 

proportion of DOM loss. 

Chlorine reacts with DOM to form harmful disinfection by products (DBP), yet the extent DOM 

forms DBP may depend upon the amount and composition of DOM.  The objective of this data 

chapter was to determine how differences in DOM composition from sub-arctic freshwaters 

influences DBP formation.  Samples were collected from Yellowknife, Wekweètì, and Daring Lake, 

NT, and a microbial and photolytic degradation experiment to understand how drivers of DOM fate 

influence DBP formation.  Further, public water quality data records were used to determine the 

prevalence of DOM and DBP across NT water treatment records.  DOM composition was 

characterized using overall concentration, SUVA, S275-295, DOC:DON, and size-exclusion 

chromatography determined fractions of humic substances (HSF).  Concentrations of 

trihalomethanes (THM) and haloacetic acids (HAA) were measured with equivalent chlorine 

residuals 24 hours after chlorine addition.  Public water quality records indicate both DBP and DOM 

were ubiquitous in NT water sources and generally below health guidelines.  DOM composition 

plays an important role for disinfection demand as no strong relationship was found between 

chlorine demand and DOM concentration.  Simple measures of DOM composition, such as SUVA 

and S275-295, resulted in stronger correlations with DBP concentration than overall DOM 

concentration.  In particular, high molecular weight and aromatic humics, representative of 

terrestrial-like DOM sources, formed higher DBP concentrations.  Microbial degradation led to 

higher DBP yields normalized to DOM mass while photolysis had little effect.  We show various 
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compositions of DOM from across the NT lead to different but predictable differences in DBP 

concentration. 

Data and interpretations from all chapters were brought together to form a conceptual diagram 

of DOM evolution in the NT.  Different DOM compositions and changes related to microbial and 

photolytic degradation aided with categorization of different samples along a tri-axis plot of 

compositional end members: terrestrial, photolytic, and autochthonous.  Not all DOM composition 

metrics respond the same way during degradation.  Specific indicators of processes were identified 

from the degradation experiments: SUVA and SAC420 both responded oppositely to microbial and 

photolytic degradation, while S275-295 only increased for photolysis.  Although these processes 

appeared to align with the variation observed among high arctic DOM composition and sources, 

notable differences in high arctic DOM composition demonstrate the need for revision to 

incorporate other high arctic sites to the current DOM conceptual diagram.  The conceptual 

diagram identified zones of ‘labile’ DOM composition, as well as zones of ‘high-risk’ DOM that 

have the potential to form high concentrations of DBP.  The conceptual diagram provides a 

framework to focus and continue developing the impact of various drivers on DOM quantity and 

quality under different climate scenarios. 
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The arctic is an important part of Canadian identity with its three northern territories 

encompassing almost 40% of Canada’s total land area.  Defined as the area north of the Arctic Circle 

(66.5° N), the arctic is an environment of extremes and generally represented by long, cold winters 

and short, cool summers.  Freeze-thaw cycles control many physical and geological processes, while 

moisture is generally stored during the winter as snow and released during the spring freshet1.  

These systems are uniquely defined by the abundance of small ponds and lakes due to the presence 

of permafrost2–4.  Permafrost, defined as the subsurface where the mean annual temperature is 

below 0°C for two years, can range from discontinuous and sporadic in the south to continuous in 

the north5.  The climate and physical features are unique and set these systems apart from anything 

else observed across the globe. 

The Quaternary (~2.6 mya) period represents a time of planetary cooling with alternating glacial 

and interglacial periods.  The northern Canadian physical landscape seen today is a result from 

processes during the deglaciation of ice sheets and glaciers that covered Canada approximately 

13,000 to 6,000 years before present1.  Retreating glaciers scoured and exposed Precambrian bedrock 

across much of the Northwest Territories, leaving behind rolling topography and post-glacial 

deposits6, while sedimentary bedrock was exposed in the high arctic7,8.  Areas in the high arctic are 

defined as a polar desert due to the lack of moisture.  Here, vegetation is sparse and growth is 

limited as plant life adapts to low-nutrient and low solar radiation conditions with a tolerance 

towards desiccation, snow, and frost1.  In contrast, lower arctic areas can contain trees and shrub 

vegetation, especially in areas where the southern-most limits encounter the boreal ecotone9.  

These unique features of the arctic govern much of the distribution and functioning of surface 

water systems found today.  

Climate change occurs globally yet northern systems are the most sensitive to a warming north, 

exhibiting clear and rapid changes due to anthropogenic influences10,11.  Specifically, certain areas 

are undergoing permafrost degradation, shifts in vegetation, increased mean annual air and 
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subsurface temperatures, changes to lake ice thickness and duration, and changes to the timing and 

form of precipitation, all of which can alter hydrologic flow pathways, aquatic health, and 

elemental cycling12–21.  Further, the everyday lives of northern community members are directly 

affected, whether it be changes to safe passageway to hunting areas, continual road maintenance 

from permafrost degradation, increased occurrence and severity of fires, or changes to drinking 

water quality22.  Ultimately, the uncertainty towards the future environmental responses to a 

warming climate greatly influences environmental, social, and economic sectors in the North. 

 

The release of carbon currently frozen and ‘immobilized’ within the subsurface due to permafrost 

degradation will significantly alter the global carbon cycle23.  Permafrost areas are predicted to 

become a net carbon source to the atmosphere by 210024 with current estimates of 1700 Pg of 

carbon currently stored within permafrost across the circumpolar north25,26.  Carbon can be released 

in particulate form, dissolved phase, or as a greenhouse gas (namely carbon dioxide or methane 

from surface waters and vegetation)15,18,27–35.  Attempts have been made to predict the vulnerability 

of stored carbon, such as through use of C:N36.  Shallow ponds and lakes across the arctic landscape 

are know to be biogeochemical hotspots3,37–39 and can determine whether carbon is released to the 

atmosphere or sequestered into the sediments.  Changes to the carbon cycle have been quantified 

through the release of greenhouse gases from either permafrost thaw23,37,40–43 or increased 

terrestrial and aquatic productivity44–46.  Recent work encompassed the lateral transfer of carbon 

across terrestrial-aquatic linkages18,47.  Further, the use of stable and radioactive isotopes have been 

incorporated to better understand the portioning of old, permafrost derived carbon versus recent 

carbon48.  Hence, rapid changes to climate have the potential to greatly influence the global carbon 

cycle by altering the amount, form, and rate of carbon transferred between northern terrestrial and 

aquatic ecosystems. 

 

 

Dissolved organic matter (DOM) is a ubiquitous component found among terrestrial and aquatic 

environments.  Although DOM is comprised of thousands of different molecules with varying 

structural and chemical properties, the overall amount can be quantified by the concentration of 
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dissolved organic carbon that passes through an operational filter size (commonly ranges between 

0.2 to 0.7 μm).  Sources of DOM within a system are categorized as being formed in situ (termed 

autochthonous) or transported into the system from the surrounding environment (termed 

allochthonous; Figure 1.1).  Differences in DOM source and processing, whether it be physical, 

chemical, or biological, within the watershed dictates the amount and form of DOM available for 

further reactions49–51. 

Dissolved organic matter plays a number of important roles within the environment.  Within 

aquatic systems, DOM transports carbon between aquatic and terrestrial systems18, regulates pH52, 

absorbs solar radiation53,54, impacts visibility and thermal regimes within surface waters55,56, acts as 

an important energy source for microbes57, and influences redox conditions and biogeochemical 

reactions58.  Drinking water quality is affected by the amount and form of DOM.  There are no 

Federal Canadian water quality guidelines for a maximum acceptable concentration for DOM, but 

provincial governments have set an aesthetic objective value, between 2 to 5 mg C/L, to reduce 

colour, odour, taste, and microbial regrowth within water distribution infrastructure59.  Metals can 

complex with and be transported by DOM60–62 while differences in DOM concentration and 

composition influences mercury bioaccumulation in invertebrates and fish63.  The single-largest 

determinant of water treatment cost is the removal of organics as filtration, coagulation, 

flocculation, or ultra-violet light are required to lower the amount of organic matter within water 

supplies64–66.  Further, during the disinfectant stage of water treatment, DOM can react with 

chlorine to produce various carcinogenic disinfection by-products (DBP; Krasner et al. 2006).  

However, the amount of DBP formed, and its toxicity, depend upon the concentration and 

composition of DOM68.  Hence, both the amount and composition of DOM are important 

parameters that dictate aquatic ecosystem health and drinking water quality. 

 

The reactivity of DOM to the surrounding environment depends upon the amount and specific 

mixture of organic molecules present.  The term ‘DOM quality’ is often used to describe different 

mixtures of DOM, but the term is ambiguous as it can refer to a number of different characteristics 

depending upon the parameter and role under question.  For instance, DOM quality as defined by 

its ability to absorb ultraviolet and visible light could be completely different from DOM quality as 

defined by its ability to complex and mobilize trace metals.  Hence, different roles of DOM within 
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the environment result in different qualities of DOM.  This confusion can be simplified by referring 

to variations in DOM composition, rather than quality, which will be used for this thesis. 

Differences in DOM composition are commonly characterized by the light-absorbing 

components (chromophoric DOM), specifically by quantifying ultraviolet and visible light 

absorption or fluorescence-emission excitation69–73.  However, these techniques only provide 

information on the chromophoric components, and could also include interference from the matrix 

solution (such as iron; Poulin et al. 2014).  Regardless, absorbance and fluorescence metrics provide 

an economic and relatively simple method to characterize DOM.  Other methods include the use of 

molecular groupings75,76, elemental ratios77,78, or specific molecular structures via mass 

spectrometry79,80.  These techniques can be used to quantify differences in DOM composition, each 

with their own advantages and disadvantages.  However, differences in absorbance wavelengths or 

methodology used across published studies make it difficult to holistically compare DOM across 

studies. 

Degradation of DOM is dependent upon its concentration and composition.  Ultimately, the 

persistence of DOM within the environment is controlled by DOM intrinsic properties, such as 

specific molecular groups or characteristics81.  Changes to DOM as a result of processing can be 

quantified using laboratory experiments that determine the amount of DOM loss over time using 

biotic82–85 and abiotic processes (in particular solar radiation86,87). However, differences in 

experiment duration, filter sizes, or addition of nutrients make it difficult to compare the percentage 

of microbial or photolytic labile DOM across sites.  Regardless, these examinations quantify the rate 

of DOM change, indicate how DOM composition is affected, and provide tools to predict the 

responses of DOM under different climate change scenarios.  

 

The responses of DOM to a warming climate have global implications for water quality, carbon 

cycling, and climate feedback systems.  For instance, warmer temperatures could increase the 

export of DOM among major northern river systems draining into the Arctic Ocean88, enhancing 

the transfer of carbon from freshwater terrestrial systems into the marine environment.  Increased 

amounts of DOM, particularly terrestrial-derived DOM, have been observed across the northern 

hemisphere55,89 and resulted in changes to water transparency.  Further, differences in aquatic-

terrestrial linkages could increase the variability in DOM composition found in surface waters as 
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observed across Finnish thaw ponds90. The darkening of surface water colour in the northern 

hemisphere, a phenomena termed ‘brownification’, results from changes in DOM and iron export 

from the surrounding catchment and can influence thermal regimes, water clarity, and drinking 

water treatment options34,55,91,92.  Hence, the connection between a changing terrestrial 

environment upon surrounding aquatic systems in terms of subsurface processing and hydrologic 

flow paths has important consequences upon water quality.   

Degrading permafrost among organic-rich substrates can contribute very old, low molecular 

weight, low aromatic, and microbially-labile DOM to nearby surface waters32,93–98.  Although 

photolysis accounts for 70 to 95% of DOM processed in shallow Alaskan surface waters99, 

permafrost-derived DOM seems to be unaffected by photolysis100.  Further, DOM change via photo-

oxidation and photochemical transformation is found to be more common than complete 

mineralization of DOM into carbon dioxide99,101.  Differences in the processing and transport of 

DOM can alter subarctic pond bacterial communities 90, influence future drinking water 

treatability66,102, and promote acidification of the East Arctic Shelf103.  The response of the carbon 

cycle to a changing climate will directly influence DOM in northern waters, thus understanding the 

role DOM composition plays in dictating its fate will aid in predicting how DOM affects various 

aquatic ecosystem functions and drinking water quality. 

 

Studies on climate change in the Arctic come from a select few sites that have been extensively 

studied104, likely due to the high costs of arctic field work105.  Many northern-based DOM studies 

are found in Siberia15,28,29,32,46,96,106–108, Alaska82,99,109–116, and Nordic countries90,98,117–120.  In Canada, 

the main sites include the Yukon River Basin30,121–126, Mackenzie Delta127–132, and select high arctic 

sites (Bylot Island101,133 and Cape Bounty134–138, Nunavut).  However, few data are found from large 

areas of Canada’s arctic and sub-arctic that describe ice-poor, subarctic shield sites139,140, let alone 

published rates of DOM degradation via biotic or photolytic pathways.  There is a need in the 

scientific community to pursue how process-based knowledge of the landscape can be used to 

understand controls of DOM fate that help to link climate-driven changes with the impact on DOM 

composition141.  Although much information can be found over freshwater northern carbon cycling 

under a changing climate, there are still large geographic areas of Canada lacking important 

information. 
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The overall goal of this Ph.D thesis is to determine how DOM amount and composition differs 

between different arctic and sub-arctic environments, and understand how these differences in 

DOM composition affect aquatic ecosystem health, drinking water quality, and the ultimate 

environmental fate of DOM.  This goal will be accomplished by combining field data with 

laboratory experiments to answer three specific objectives: 1) how does DOM composition vary? 2) 

how does DOM composition influence microbial and photolytic degradation rates? and 3) how does 

DOM composition relate to drinking water quality and aquatic ecosystem health (Figure 1.2). 

This thesis is organized into five data chapters, followed by one chapter that synthesizes the 

results into a conceptual model of DOM composition in the environment and tests that model on 

DOM from the high arctic, and a final chapter that summarizes the key original findings in this 

thesis.  In the first data chapter, long-term river water quality data records will be used to 

determine how rivers near Yellowknife, Northwest Territories (NT), have changed during the past 

30 years, and whether baseline conditions can be defined (Chapter 2).  A suite of simple DOM 

characterization methods from samples spanning a large range of Canadian ecoregions (from 

Southern Ontario to the NT) will be used to determine which measures of DOM composition best 

represent differences in DOM (Chapter 3).  These select compositional measures will be used to 

determine how DOM composition influences microbial (Chapter 4) and photolytic (Chapter 5) 

degradation.  The influence of DOM composition on drinking water quality will be assessed by 

comparing differences in DOM with the formation of disinfection by-products (Chapter 6).  Finally, 

results from the previous chapters will be combined to form a conceptual diagram of DOM 

evolution in the NT (Chapter 7), which will be used to compare with changes to DOM along well-

defined high arctic flow path to assess whether similar processes and drivers dictate DOM fate. 
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Figure 1.1: A general schematic to illustrate the definitions for dissolved organic matter (DOM) source as it is 
converted between inorganic carbon dioxide (CO2) to DOM and transferred across systems. 

 

 

Figure 1.2: Simplified outline of this thesis, combining long-term environmental records in the Northwest 
Territories (NT; left side) with field and laboratory analyses of dissolved organic matter (DOM; right side). 
These two aspects are combined to create a synthesis of DOM evolution, which will also be compared to 
DOM collected from a high arctic location. 
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Long-term monitoring of river water quality provides hydrologic and geochemical insight of the 

surrounding watershed. Statistical analyses of discharge and chemical fluxes can identify 

environmental responses to climate or anthropogenic drivers142,143.  Significant changes in nutrient 

exports have been linked to combinations of anthropogenic and climate influences144,145.  For 

instance, increased summer temperatures and changes to land management in the United Kingdom 

led to the enhanced release of dissolved organic carbon (DOC) from upland peat catchments146.  

Determining drivers of change within watersheds, and how different watersheds respond to such 

changes, can be addressed by the analysis of long-term monitoring records of water quantity and 

quality. 

The Northwest Territories (NT) is an area of Canada that is most sensitive to a warming climate. 

Air temperatures in the arctic have increased in recent decades, concurrent with decreases to 

annual snow depth13,147.  A shift in precipitation from snow to rain has been observed in the sub-

arctic and is expected to continue with a changing climate17,148, ultimately affecting the seasonal 

hydrological balance of many northern systems.  Understanding how arctic and sub-arctic 

ecosystems respond to a warming climate on a watershed scale is difficult due to high costs 

associated with routine field work and a lack of technical infrastructure.  In terms of natural 

resource extraction in the NT, degrading permafrost allows for new subsurface connections to 

nearby surface waters that can complicate industrial waste disposal107.  Drinking water 

sustainability can also be altered as many NT communities solely rely on rivers as sources of 

drinking water, which are already affected by high turbidity, colour, and particulate trace metals149.  

Understanding how arctic rivers respond to a warming climate is important for predicting effects 

on future aquatic and community health. 

Northern systems are already responding to a changing climate. Discharge in Eurasian rivers has 

significantly increased and contributed the highest combined average discharge of all circumpolar 
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rivers to the Arctic Ocean between 1964 to 2000150.  Annual discharge from 42 northern Canadian 

rivers has increased by 18% between 1989 and 2013 and at a rate greater than that of northern 

Eurasian rivers151.  Increasing temperatures and changes to precipitation are the main drivers of 

change to river discharge151.  Further, increased flows within the Mackenzie River Basin have been 

correlated with long-term atmospheric processes, such as the Pacific Decadal Oscillation152, 

signifying a response of these watersheds to climatic drivers at longer time scales. 

Permafrost thaw can influence watershed processes and nutrient export.  Permafrost degradation 

is linked with increased winter base flow due to enhanced subsurface water capacity14.  However, 

recent studies find enhanced late fall storage, rather than increased groundwater contribution, may 

be responsible for increased winter base flow within sub-arctic creeks153.  Increasing active-layer 

thicknesses, thermokarst processes, and degrading permafrost can enhance weathering and 

mobilization of previously-frozen solutes and nutrients within permafrost, including carbon, 

inorganic nitrogen, and phosphorus116,122,132,154,155.  Further, mineralization incubation experiments 

on thawing Swedish peatlands found significant releases of nitrogen with warming temperatures156. 

Such changes have the potential to alter in-river and downstream productivity of many arctic 

systems157.  Concentrations of major ions are predicted to increase with permafrost degradation as 

flow paths become less confined to upper, organic rich layers and move into deeper, mineral-rich 

subsurface material158–160. The Arctic may change from a surface to subsurface dominated system161, 

affecting geochemistry of waters that eventually discharge to surface water systems. 

Of further concern are the large stores of carbon found within permafrost162.  However, there is 

uncertainty in how degrading permafrost influences DOC concentrations in arctic rivers.  Some 

studies expect DOC to decrease with permafrost degradation due the exposure of mineral soils and 

increased adsorption158,160 or from increased subsurface transit times and microbial 

mineralization163.  Further, increased subsurface contributions resulting from permafrost thaw in 

the Yukon and Alaska decreased DOC export, as well as altered DOC quality121,123.  Alternatively, 

DOC loading has increased with time in circumpolar rivers draining into the Arctic Ocean due to 

climate change164.  Large amounts of carbon within permafrost may be released with permafrost 

thaw, as observed in Siberia15,28,29.  Within the Mackenzie watershed, NT, thawing permafrost has 

led to increased DOC export over time132, while monthly summer DOC fluxes have increased in the 

Yukon River Basin122. There is much uncertainty over the response of permafrost to a warming 

climate and the role that DOC plays. 
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Many studies have focused on the export of nutrients from large rivers into the Arctic Ocean, 

generally in areas draining an ice-rich subsurface where slumping and thermokarst processes may 

be responsible for increased nutrients within rivers.  The overall objective of this study is to provide 

a better understanding of how three rivers near Yellowknife, NT, are responding geochemically and 

hydrologically to a changing climate, as well as determine local baseline conditions and natural 

variability.  This will be accomplished with two specific objectives: 1) determine if there are 

significant changes to hydrologic discharge, solute concentrations, and geochemical fluxes over 

time in three rivers near Yellowknife, NT, and 2) quantify changes to local climate and whether 

these changes are reflected in the geochemical record in these rivers. 

 

The Yellowknife, Cameron, and Marian Rivers all drain into the northern end of Great Slave Lake, 

NT (Figure 2.1).  These rivers were chosen for this study as they have long-term records of water 

quality and discharge that represent two prominent ecozones in the NT.  In addition, the 

Yellowknife and Cameron rivers drain a similar ecozone but differ in watershed area, providing a 

scale-component to this study.  The Yellowknife and Cameron rivers drain the Taiga Shield ecozone 

(basin area: 19,353 km2 and 3,630 km2, respectively), while the Marian River flows between the 

Taiga Shield and Taiga Plains ecozones (basin area: 23,608 km2).  The Taiga Shield is underlain with 

Precambrian bedrock, till deposits, eskers, and peat plateaux165 while the Taiga Plains is comprised 

of extensive peatlands and till plains166.  Both are below the treeline.  In the NT, permafrost extent 

ranges from sporadic and discontinuous in the south, to continuous in the north5,167.  Extensive 

discontinuous permafrost is found around Yellowknife in areas with forested systems, whereas 

increased bedrock exposure results in sporadic discontinuous areas168.  Hydrologic flow in the Taiga 

Shield follows a subarctic nival flow regime, characterized by highest flows during spring due to 

snowmelt, followed by a gradual decline to baseflow during the winter169.  The area around 

Yellowknife is hydrologically characterized by a series of lakes connected by wetlands and streams, 

where flow through the system can be defined as a ‘fill-and-spill’ system170. 
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Historical daily climate data were retrieved online from Environment Canada 

(http://www.climate.weather.gc.ca).  Mean daily temperature (°C) and total daily precipitation (mm) 

were taken from the Yellowknife Airport Station #1706 (from 1942 to 2013) and Station #51058 

(from 2013 to 2016).  Daily data were aggregated into monthly and yearly averages.  Hydrological 

data were taken from the WaterOffice Government of Canada (http://wateroffice.ec.gc.ca), for the 

Yellowknife and Cameron rivers.  Currently, there is no gauging of the Marian River. 

Water samples were collected once a month between 1985 and 2013 by the Northwest Territories 

Water Resources Division, Environment Natural Resources, Government of Northwest Territories. 

Depending on season, water was collected from shore in open water, or from an auger hole in the 

middle of the river during winter.  Collection from the Marian River began in September 1997.  In-

field parameters include pH and specific conductivity.  The sample was kept in a cooler until same-

day filtering was completed at the Taiga Environmental Laboratory, Yellowknife, NT.  Field and 

travel blanks were included. 

All samples were run by the Taiga Environmental Laboratory where data were quality-checked 

as received.  Samples were run for cations (potassium, K+; sodium, Na+; calcium, Ca2+; magnesium, 

Mg2+), anions (chloride, Cl-; sulphate, SO4
2-; alkalinity), nutrients (ammonia, NH3; nitrate plus 

nitrite, NO3
-+NO2

-; total phosphorus, TP; DOC), and other parameters (total dissolved solids, TDS). 

It is estimated that quality assurance/quality control samples accounted for ~20% of all samples 

submitted (Robin Staples, GNWT; pers. comm.).  Any field or travel blank parameter that measured 

above detection limits were flagged, reviewed, and re-analyzed with samples from the same batch. 

Values under analytical detection limits were kept in the dataset at the concentration of the 

detection limit (Appendix A).  Any parameters that measured replicates greater than 15% of each 

other were flagged and reviewed.  Re-run values replaced original values.  Finally, outliers were 

flagged if any of the above occurred, or if the value was outside of 1.5x the interquartile ranges. 

Professional judgement was used to remove outliers if numerous validation tests had failed, or 

significant field sampling events occurred (i.e: no gloves, high wind). 
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Mean annual fluxes for cations, anions, nutrients, and TDS were calculated for the Yellowknife and 

Cameron Rivers by combining geochemical and hydrological datasets.  Fluxes could not be 

calculated for the Marian River as hydrological data for this river does not exist.  All monthly and 

annual fluxes were calculated using LOADEST 171 via LoadRunner172.  Briefly, LOADEST runs a 

number of predefined models to find the best fit for flow and concentration data, then uses that 

model to calculate the load171.  To minimize the influence of the linear time functions within 

LOADEST, monthly concentration data and monthly-averaged discharge data were run using a 

series of 5-year increments as done by other time-trend analysis of northern rivers122,132. 

 

Significance of annual and seasonal trends were calculated using the non-parametric Mann-Kendall 

test for temperature and precipitation averages, seasonal averages in concentration, annual 

geochemical flux, and hydrologic discharge.  Annual concentration data were averaged by season 

and compared over time.  Data were first ‘pre-whitened’ to remove autocorrelation based on the 

serial correlation within a time series using the R package ‘zyp’, then statistically analyzed for 

significance173.  Monthly and annual z-scores were also calculated for temperature and precipitation 

data (Appendix A). 

 

 

Mean annual air temperatures near Yellowknife significantly increased during the past 80 years 

(Sen’s slope: 3.2 x 10-2 ºC/yr, p<0.05; Figure 2.2a), while total annual precipitation increased but not 

significantly (Figure 2.2b).  Monthly average temperatures significantly warmed over the years in 

the months of January to April, June, and July (Figure 2.3a).  Most significant increases were found 

during winter months (December to April; Sen’s slope: 5.0 x 10-2 ºC/yr, p<0.05), June (3.5 x 10-2 

ºC/yr, p<0.05), and July (2.6 x 10-2 ºC/yr, p<0.05).  The largest range in average monthly 

temperatures per month were found during winter (November to May), while summers (June to 

October) exhibited a narrow range in temperatures across years.  Total monthly precipitation was 
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consistent across most months, except for increased values in January (Figure 2.3b).  Most 

precipitation fell from July to September, with lower values from October to June. 

 

The Cameron River has a lower discharge than the Yellowknife River (Figure 2.4) but contains 

similar yields when normalized for watershed area (Appendix A).  Large variability in the average 

monthly discharge between May and August is observed over the three decades, with a greater 

variability (up to ~5x) in the Cameron River than the Yellowknife River.  Average monthly 

discharge for the Cameron River did not significantly change over the three decades other than a 

decrease in August (Figure 2.4a).  The Yellowknife River increased in average monthly discharge 

over time for the months of January to May (Figure 2.4b).  No significant change to mean annual 

discharge was found for either the Yellowknife or Cameron River (Figure 2.5).  Distinct seasonal 

patterns were identified in daily discharge data, illustrated by the timing of peak and low flow 

periods. Lowest flows from the Yellowknife and Cameron Rivers occurred during winter months 

(December to April), followed by a rise in the annual hydrograph during spring melt (termed 

‘freshet’; May to June), peak flow during the summer (July to August), and a gradual decline in 

discharge during the fall (September to November; Figure 2.6). 

 

 

The Cameron, Yellowknife, and Marian rivers contained similar concentrations of K+ and Na+ 

Figure 2.7a).  The Marian River had higher concentrations of Ca2+ and Mg2+ than either the 

Cameron or Yellowknife rivers.  Lowest concentrations of K+ and Na+ in the Yellowknife and 

Cameron rivers occurred around 1995, followed by an increasing trend annually across all seasons. 

In the Yellowknife River, significant increases in Ca2+ and Mg2+ concentrations occurred across all 

seasons, but only in spring for K+ and both spring and summer for Na+ (Table 2.1; Figure 2.7a).  All 

cation concentrations significantly increased across all seasons within the Cameron River.  A 

significant decrease in K+ occurred in the Marian River during spring. 

 

On average, Cameron River Cl- concentrations were higher than either the Yellowknife or Marian 

rivers.  The Cameron and Yellowknife rivers contained similar SO4
2- concentrations, while 
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alkalinity was higher in the Cameron than the Yellowknife River.  The Marian River had higher 

concentrations of both SO4
2- and alkalinity compared to all other rivers in the study (Figure 2.7b).  

Anion concentrations in the Yellowknife River increased significantly during the spring and 

summer.  Alkalinity increased significantly across years in all seasons in both the Yellowknife and 

Cameron rivers (Figure 2.7b).  Chloride concentrations in the Cameron River increased significantly 

across years for each season, while SO4
2- increased significantly during the fall and winter.  Spring 

Cl- concentrations in the Marian River decreased significantly in spring, while SO4
2- significantly 

decreased in fall.  Alkalinity increased significantly during summer. 

 

All three rivers had similar nutrient concentrations (Figure 2.7c).  Overall, average inorganic 

nitrogen species were slightly higher in the Marian River than either the Cameron or Yellowknife 

rivers.  Lowest DOC concentrations were found in the Yellowknife River compared to either the 

Cameron or Marian river.  Concentrations of TP in the Yellowknife and Cameron rivers were lower 

than in the Marian River. 

All rivers exhibited seasonality in NO3
-+NO2

- and TP concentrations, with high concentrations in 

the fall and winter, and lower concentrations during the spring and summer.  Concentrations of 

NH3 decreased across all rivers and seasons with time.  However, summer NH3 concentrations in 

the Marian River increased between 2005 and 2010 (Figure 2.7c). Concentrations of NO3
-+NO2

-

increased across all seasons in the last ten years among all three rivers.  Concentrations of NO3
-

+NO2
- significantly increased during the fall within the Cameron River, and significantly increased 

during winter and fall in the Marian River.  DOC concentration increased across all seasons within 

the Yellowknife and Marian rivers, while the Cameron River exhibited no change in concentration 

with time.  Total phosphorus concentrations within the Yellowknife River significantly increased in 

spring, while winter TP concentrations significantly declined in the Marian River. 

 

Concentrations of TDS were highest in the Marian River, followed by the Cameron River and 

Yellowknife River (Figure 2.7d).  Specific conductivity was highest in the Marian River, followed by 

the Cameron and Yellowknife river.  
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Concentrations of TDS significantly increased during the spring in the Yellowknife River and 

during the fall in the Cameron River (Figure 2.7d).  Measurements of specific conductivity 

significantly increased across all seasons for both the Yellowknife and Cameron rivers.  All rivers 

were neutral to slightly basic.  Significant increases to pH were only observed during summer in 

the Marian River, and in all seasons but winter in the Cameron River. 

 

The Yellowknife River had higher cation and anion loads than the Cameron River (Table 2.2).  Both 

rivers exported higher loads of Ca2+ than the other cations.  Although cation loads in the 

Yellowknife River increased between 1985 and 2013, annual cation and anion loads from the 

Cameron and Yellowknife rivers did not significantly change over the time period (Figure 2.8a). 

 

Inorganic nitrogen loads were an order of magnitude higher in the Yellowknife River than the 

Cameron River (Table 2.2; Figure 2.8c).  The Yellowknife River exported higher DOC and TP loads 

than the Cameron River.  NH3 loads did not change over time in the Cameron River, but 

significantly decreased in the Yellowknife River (Figure 2.8c).  NO3
-+NO2

- loads in both rivers show 

no change over time.  DOC loads increased over time in the Yellowknife River, but significantly 

decreased in the Cameron River.  TP load in the Yellowknife River have increased with time, but 

exhibited a decreasing trend since 2005.  TP load within the Cameron River gradually decreased 

over time. 

Higher TDS loads are found in the Yellowknife River than the Cameron River (Table 2.2; Figure 

2.8d).  Annual loads of TDS within the Yellowknife and Cameron rivers increased over time (Figure 

2.8d).  However, from 2000 onward, annual loads of TDS decreased in the Cameron River. 

 

 

Climate can be an important driver of change to arctic rivers, influencing watershed processes and 

flow pathways151,152,174.  For instance, warming air temperatures in Sweden led to increased active-

layer thicknesses and permafrost degradation175,176.  Warming temperatures in Yellowknife could 

influence subsurface contribution to surface water quantity and quality, especially in areas where 
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discontinuous permafrost continues to degrade.  Permafrost degradation has already been found to 

occur in the area168, potentially influencing flow pathways; however, insulating peat layers, 

commonly found around Yellowknife, can limit effects of increased air temperatures upon 

subsurface processes168,177.  Annual discharge has not changed in the Yellowknife or Cameron rivers 

(Figure 2.5), suggesting no clear response between permafrost degradation and discharge in these 

systems.  This may be in part due to the lack of significant increase to total precipitation in the area 

(Figure 2.3b), potentially coupled with estimated increased evapotranspiration rates across the 

circumpolar north164,178.  Rivers in this study drain smaller watersheds and may not be as responsive 

to a warming climate compared to the previously-studied, larger systems132,150,151.  Further, the 

presence of large lakes can attenuate streamflow to reflect a prolacustrine regime148, which could 

minimize or dampen the effects of hydrologic changes associated with permafrost degradation. 

Although temperatures are warming in the area, there appears to be no significant change to the 

amount of water draining these systems over the time record. 

Changes to temperature and precipitation around Yellowknife during the past seven decades did 

not occur uniformly over the yearly cycle (Figure 2.2).  Increased winter temperatures and increased 

precipitation around the late summer and fall are similar to studies predicting a seasonal regime 

shift in the area148,153.  This shift can enhance winter streamflow by increasing late-season 

hydrologic storage by soils and lakes, and is observed in the significant increase in average monthly 

winter discharge within the Yellowknife River (Figure 2.4b).  Annual discharge of the Cameron 

River showed no significant change during the past seven decades and contradicts previous findings 

of significant increases to both winter base flow and mean annual flow14.  These increases were 

linked to enhanced permafrost degradation in the watershed that resulted in increased subsurface 

capacity during winter.  The discrepancy between trends in this study and the work of St. Jacques 

and Sauchyn14 lies in the time periods being considered, as the previous dataset ended in 2007 

during an upward trend in discharge.  More recent measurements of discharge (2008 to 2014) show 

an annual decline.  Results from this study provide evidence of enhanced base flow during winter 

months within the Yellowknife River, but also highlight the importance of long-term monitoring to 

acknowledge influences of cyclic processes on flow in northern watersheds. 
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Geochemical differences between rivers can be attributed to underlying geology and watershed 

characteristics.  The Yellowknife and Cameron rivers drain the Taiga Shield, which consist of 

shallow glacial tills and Precambrian bedrock 165,179, while the Marian River flows between the 

Taiga Shield and Taiga Plains.  The Taiga Plains are comprised of deeper glacial tills and calcareous 

soils166 and are relatively easier to erode than the Precambrian igneous bedrock, resulting in higher 

concentrations of dissolved Ca2+, Mg2+, SO4
2-, alkalinity, and TDS in the Marian River.  Similarity 

among trends in cation and anion concentrations between the Yellowknife and Cameron rivers, 

compared to the Marian River, reflect the role watershed characteristics have upon water quality. 

With no change to annual discharge in the Yellowknife River, positive Sen-Thiel slopes in loads, 

although not statistically significant, for most constituents indicate increased export of solutes from 

the watershed.  Increases to solute fluxes were observed in the Yukon River Basin and Mackenzie 

River and linked with increased active-layer thicknesses and enhanced weathering122,132.  Similar 

patterns are seen in the Yellowknife River; however, not at the significance found in these larger 

systems.  Watersheds underlain with ice-rich permafrost are susceptible to thermokarst processes 

that can release large amounts of particulate and dissolved materials to surface waters154,180,181, 

which may result in a more pronounced response than in rivers draining ice-poor areas.  

Regardless, results of increased solute fluxes are similar to other studies that have identified the 

influence of permafrost degradation on river geochemistry161,182. 

Increased active-layer thicknesses and permafrost degradation can result in two water quality 

scenarios: 1) flow pathways deepen into mineral layers and enhance the export of inorganic solutes 

while decreasing DOC concentrations183, or 2) organic-rich layers become unfrozen and increase 

the release of organic carbon and nutrients184.  Although data in this study cannot identify a 

singular factor like permafrost degradation, increasing trends in solute concentrations and 

increasing NO3
-+NO2

- loads are evidence of changing water quality.  The lack of change in DOC 

concentration concurrent with increases to inorganic solutes corroborates the idea that flow 

pathways are deepening into mineral-rich layers. Further, as there are no significant increases to 

total precipitation, changes in concentrations and fluxes would be more representative of 

subsurface flow pathways responding to warming air temperatures on the Taiga Shield. 
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Changing flow pathways in the sub-arctic can alter seasonal water chemistry.  Increased winter 

baseflow and solute concentration within the Yellowknife River could result from enhanced soil and 

lake storage before freeze-up.  This has been found to be responsible for fueling increased winter 

streamflow and solute, nutrient, and DOC export in the area140,153.  Buildup of inorganic nitrogen 

during the winter within subarctic lakes may provide a source for increased annual nitrate and 

nitrite fluxes while annual discharge remains static.  Further, recent (>2010) increases to NO2
-+NO3

- 

concentrations during the fall and winter, concurrent with stable TP concentrations and decreased 

TP loads (Figure 2.7c, Figure 2.8c) suggest there is no increase in river productivity to take up extra 

nitrogen.  The fall and winter represent seasons of decreased productivity due to colder 

temperatures and less light, thus enhanced contributions of inorganic nitrogen may accumulate.  

Nutrient limitation and changes to food webs can result from permafrost-thaw induced changes to 

nutrients and DOC within Alaskan thaw lakes182.  These rivers exhibit similar changes and indicate 

that they may not be able to compensate for higher nutrients, especially as TP loads, an important 

nutrient that can limit microbial activity, have decreased since 2005 (Figure 2.8c).  Hence, 

productivity within these rivers may not be able to reduce future increases to inorganic-nitrogen. 

Sporadic and sudden environmental events can impact water quality.  Wildfires occurring in the 

boreal forest, especially the NT, have increased in severity and occurrence185,186.  Wildfires result in 

increased exports of nutrients and major ions from a boreal and mixed-conifer watershed187,188 and 

can decrease DOC loading among arctic rivers164.  Large fires have occurred in the Yellowknife and 

Cameron watersheds in 1998 and 2014, while the Marian River watershed experienced fires in 2008 

and 2014189.  Although the scope of this paper was not to identify wildfire effects upon water 

quality, long-term datasets may reflect these effects via higher summer concentrations of inorganic 

nitrogen and DOC after wildfires (Figure 2.7). 

 

In terms of the global carbon cycle, much uncertainty surrounds the response of carbon stocks as 

northern watersheds begin to warm and expose previously-frozen carbon within permafrost. In 

watersheds underlain by carbon-rich permafrost, DOC export during spring contained higher 

contributions of recently-fixed carbon, whereas late summer to winter flows contained a greater 

amount of old carbon derived from a deepened active-layer and permafrost degradation30,96,125,190. 

DOC concentrations found in this study are comparable to DOC concentrations in other 
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permafrost-affected streams191 but no significant change in concentration is found in any river over 

time (Figure 2.7c). Increased concentrations and fluxes of major cations and anions suggest that if 

permafrost degradation in the area is leading to enhanced subsurface flow, these flow pathways 

may be travelling through inorganic, till layers, rather than mobilizing permafrost-derived DOC. 

High DOC concentrations in streams and rivers have been correlated to a higher percentage of 

wetlands or peatlands in a watershed192,193.  However, the presence of permafrost in the northern 

half of West Siberia reduced the export of high DOC concentrations from high-organic 

environments28.  Further, it was determined that a mean annual air temperature above -2°C 

represents a threshold where higher DOC concentrations are exported from peat-derived 

watersheds.  Within the NT, mean air temperatures exceeded this threshold in 1998, and have been 

close-to or surpassed this limit during the past decade (Figure 2.2a).  A large area of the NT contains 

organic-rich permafrost194 that may export higher DOC loads as temperatures continue to meet or 

exceed this threshold.  Further, climate driven changes to hydrologic flow pathways have the 

potential to connect previously-isolated bogs174, further enhancing the susceptibility of high-

organic areas around Yellowknife to increase DOC export.  Hence, the increasing trend in mean 

annual air temperatures around Yellowknife signifies the potential for increasing DOC loads from 

these areas. 

 

Long-term records of water quality and discharge can be used to define ‘baseline’ conditions for the 

area.  Baseline conditions of river concentrations and export for the whole NT cannot be completely 

defined using only three rivers presented here; however, relative changes in water quality over time 

provide an opportunity to assess how local and similar sub-arctic rivers may respond.  Although 

not significant, the steady increase to the load of major cations, anions, and all nutrients (except 

NH3) within the Yellowknife River suggests that annual baseline conditions may be beginning to 

change. Importantly, increasing winter temperatures and increasing average winter discharge result 

in a dynamic baseline for the Yellowknife River.  Based on concentration data for the Marian River, 

increases to alkalinity, and more recently nutrients, suggest enhanced weathering in the watershed, 

similar to other Mackenzie Basin systems132,195.  The baseline for the Cameron River is more easily 

defined due to relatively unchanging annual discharge and solute fluxes.  Analyses of these three 
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rivers shows the importance of year-long monitoring to compare how different rivers in ice-poor 

systems respond to a warming climate. 

 

Long-term meteorological and water quality records of three rivers around Yellowknife indicate a 

geochemical response to a warming climate.  Temperatures have significantly increased during the 

past 80 years, while average annual discharge for the Yellowknife and Cameron rivers show no 

significant change.  Instead, the magnitude of solute and nutrient export into Great Slave Lake are 

determined by variations in the monthly average discharge, more-so than the uni-directional 

change over time.  Hence, changes to discharge will dictate the load of dissolved constituents into 

Great Slave Lake rather than slight changes to concentration.  Combined results of increasing solute 

concentrations, increasing cation fluxes, and stable DOC concentrations suggest an increasing 

contribution from mineral-rich subsurface flow pathways, altering water quality over time.  Results 

show how increased inorganic nitrogen export during the winter, previously observed within 

smaller catchments153, can be observed in larger systems.  However, the lack of increasing river 

productivity may result in the continual increase in nutrients.  Geochemical and hydrological 

analyses of the Yellowknife, Cameron, and Marian rivers find the importance of annual variability 

and enhanced subsurface flow pathways play an important part dictating water quality in the NT. 

Defining baseline conditions in these rivers allows for a determination of impacts upon water 

quality and quantity resulting from future resource development or a warming climate.  Static 

baseline conditions are difficult to define in the Yellowknife River due to increasing cation 

concentrations and increasing winter discharge.  Cameron and Marian River geochemical and 

hydrological baselines were more simple to define due to the relatively unchanging annual 

discharge and geochemical flux within the Cameron River, and lack of geochemical trends in the 

Marian River. 

Northern rivers will continue to change given future climate scenarios of increased temperatures 

and changes to precipitation regimes196,197.  Future work could focus on specific years that reflect 

future conditions (i.e. dry summers or wet falls) to understand the geochemical response within 

these three rivers.  Further, discharge-solute relationships (Appendix A) could be further explored 

to create discharge-solute relationships to predict exports of certain constituents into Great Slave 

Lake.  In terms of environmental consequences to a changing climate, subsurface warming could 
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result in increased risk of contaminating freshwater sources from anthropogenic activities as 

municipal and industrial waste can be mobilized into sources via permafrost degradation107,198. 

Enhanced export of nutrients due to permafrost thaw could have similar results to thaw-induced 

slumping in small lakes, such as increasing biological productivity127.  Increased temperatures may 

also enhance peatland carbon decomposition, enhancing the export of DOC and nutrients into 

Great Slave Lake.  The rate and magnitude of these processes are still uncertain; however, changes 

to water quality observed in these three rivers over the past three decades suggest a variable but 

uni-directional geochemical response to a warming climate. 
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Table 2.1: Summary of the Mann-Kendall statistical analyses on concentrations of various water quality 
parameters over time for different seasons in the Yellowknife (YK), Cameron (CAM), and Marian (MAR) 
rivers. Shapes represent the river, size of symbol represents the significance, and colour represents the 
direction of the trend. 

 

 

Table 2.2: Average annual loads for various chemical parameters for the Yellowknife and Cameron rivers, 
Northwest Territories, Canada. Included are 1-standard deviation (σ) and total number of values (n). 
Alkalinity is measured as total concentration as CaCO3. 

  Yellowknife Cameron 
Parameter Avg (Gg/yr) σ (Gg/yr) n Avg (Gg/yr) σ (Gg/yr) n 
K+ 1.2 0.5 27 0.2 0.1 29 
Na+ 2.2 1.1 27 0.5 0.2 29 
Ca2+ 6.6 3.0 27 1.8 0.9 29 
Mg2+ 2.4 1.1 27 0.5 0.3 29 
Cl- 2.2 0.9 27 0.5 0.3 29 
SO4

2- 4.2 1.7 27 0.9 0.5 29 
Alkalinity 23 10 26 5.7 2.8 29 
N-NH3 1.6E-02 1.1E-02 24 2.0E-03 9.2E-04 22 
N-NO3

-+NO2
- 4.5E-02 1.9E-02 24 5.2E-03 3.2E-03 19 

TP 1.5E-02 9.1E-03 24 2.7E-03 2.3E-03 19 
DOC 6.5 2.8 27 1.6 0.7 19 
TDS 40 17 27 9.9 5.4 22 
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Figure 2.1: Sampling locations for the three rivers and their geographical location. Different ecozones are 
shaded (green: Taiga Plains; orange: Taiga Shield). 

 

 

Figure 2.2: Average annual air temperature (A) and total annual precipitation (B) for the city of Yellowknife, 
NT. Included are linear regressions through the entire time period, as well as the beginning of water sampling 
(blue vertical line). Significance in the trend is determined using a Mann-Kendall test. 
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Figure 2.3: Average monthly temperature (A) and total monthly precipitation (B) per year for the city of Yellowknife, NT. Lines represent significant 
monotonic changes (Mann-Kendall) over the time period. 

 
Figure 2.4: Average monthly discharge for the Cameron (A) and Yellowknife (B) rivers over time. Lines represent significant monotonic changes (Mann-
Kendall) over the time period. 
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Figure 2.5: Average annual discharge for the Cameron (top panel) and Yellowknife (bottom panel) rivers. 

 

 

Figure 2.6: Daily average discharge for the Cameron (A) and Yellowknife (B) rivers. Light grey points indicate 
individual data points for different years, while solid coloured lines represent averages on each day. Included 
are divisions for each season based on the hydrograph. 
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Figure 2.7: Season-averaged concentration for cations (A), anions (B), nutrients (C), and other parameters (D) for the Yellowknife (red square), Cameron 
(purple circle), and Marian (green triangle) rivers over time. Each data point is an average for the months included in that season for that year. Lines represent 
significant trends over the time period (Mann Kendall).
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Figure 2.8: Calculated annual loads for cations (A), anions (B), nutrients (C), and total dissolved solids (D) in 
the Yellowknife and Cameron rivers. Hollow symbols represent years that were missing three or more 
months of data. Lines represent significant trends over the time period (Mann Kendall). 
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Dissolved organic matter (DOM) is a ubiquitous component of terrestrial and aquatic environments 

and an important determinant of overall water quality.  For example, DOM dictates thermal and pH 

regimes within lakes55, complexes with and mobilizes metals61, and acts as an important redox 

constituent for biogeochemical reactions58.  Further, DOM affects drinking water quality through 

taste, odour, and colour65, and reacts with chlorine during drinking water treatment processes to 

form carcinogenic disinfection by-products67.  The overall reactivity of DOM is determined by its 

mixture of thousands of organic molecules with differing structural and chemical characteristics. 

Increased DOM concentrations in surface waters have been observed across the United Kingdom, 

Europe, and North America55,89 and have been linked with declines to water transparency55,92.  

These changes can have significant effects upon future drinking water treatment options66,102, yet 

little information is found on how DOM composition changes141.  Hence, quantifying changes to the 

amount and composition of DOM across temporal and spatial scales allows for a better 

understanding of future changes to DOM and its influence upon water quality. 

Measures of DOM concentration and composition are used to identify source, quality, and fate of 

DOM within the environment.  The overall DOM concentration is operationally defined as the 

concentration of carbon molecules passing through variable filter sizes (generally between 0.2 and 

0.7 μm).  Compositional measures commonly used include ultraviolet or visible light 

absorbance71,73,199, fluorescence70,72, elemental ratios77, molecular weight and size75, and mass 

spectrometry79,80.  Differences in DOM composition have been used to quantify hydrologic mixing 

and changes to redox potential200.  Differences in DOM absorbance parameters have been useful for 

tracking changes to DOM composition within riverine systems73 and coastal wetlands200, but can be 

susceptible to interference from other molecules within the sample, such as nitrate or iron71,74. 

Corrections for such interference are dependent upon DOM quality, so there is circularity if 

corrected and subsequently used to infer quality201.  Thus, use of various characterization 

techniques can provide an holistic representation of the components that comprise DOM. 
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Dissolved organic matter is the net representation of varying sources and degrees of processing 

at that point within the watershed.  Climate, hydrology, land cover, and nutrients have all been 

found to influence lake DOM composition49–51,202.  Quantifying changes to DOM composition along 

a hydrologic continuum can provide information on dominant sources or processes that influence 

DOM evolution203.  Laboratory experiments have been used to isolate specific DOM compositional 

changes resulting from either microbial or photolytic degradation83,204.  Catchment-scale 

observations of DOM composition have identified a gradient along the aquatic continuum where 

soil-derived aliphatic components of DOM are preferentially lost as water moves from subsurface to 

surface waters.  Here, aromatic, high-nominal oxidation state DOM becomes further degraded along 

the fluvial network to more aliphatic, low nominal oxidation state DOM79,81.  Increased degradation 

and processing of DOM along a system reduces its chemodiversity, with persistence of specific 

components linked to the original DOM composition50,81,205.  Hence, compositional measures 

provide quantitative information along the aquatic continuum that could be used to trace the 

evolution or reactivity of DOM. 

Recent progress in the understanding of DOM and carbon cycling has led to a change in the 

importance of characterizing DOM composition.  Specifically, the conceptualization of the genesis 

of soil organic matter (SOM) is undergoing a paradigm shift.  Previously, it was thought that SOM 

within subsurface environments would continually evolve towards recalcitrant forms that were 

resistant to further degradation.  Recent findings view organic matter as a continuum of 

decomposed and re-generated components that can be protected from further alteration by the 

surrounding soil and mineral matrix206–208.  Further processing enhances the solubility of SOM, 

transporting large volumes of labile, microbial-derived carbon into aquatic systems.  Once in the 

aquatic system, differences in DOM properties and composition, or intrinsic controls, are thought to 

dictate DOM fate more-so than extrinsic controls such as temperature, nutrients, sunlight 

exposure81.  Modelling of the rates at which microbes process DOM in surface waters have included 

approaches that treat DOM as a heterogeneous mixture of compounds with varying decay rates, 

rather than a 0- or 1-order rate209–211, allowing for specific DOM components to dictate overall 

degradation kinetics.  Hence, understanding kinetics and fate of DOM is closely linked to 

quantifying and comparing compositional changes over spatial and temporal scales.  

Comparison of different DOM measures have generally focussed on single hydrological 

environments (i.e. solely lakes) or one or two measures across spatial scales and varying 
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environments.  More recent studies have looked to pair optical properties with advanced 

compositional methods79,80.  The use of various and complimentary measures of DOM composition 

can provide a better characterization of DOM among samples.  There are various options to 

characterize DOM within the environment, but many are expensive, require complicated analysis, 

or are not accessible.  For instance, Fourier-transform infrared spectroscopy (FTIR) analyses 

provides insightful and novel information on DOM composition79,80 but is not readily available.  

Although fluorescence and subsequent parallel factor analyses (PARAFAC) are commonly used to 

characterize DOM, we chose to focus on a variety of available UV-visible light absorbance 

parameters.  The objective of this study is to use a relatively simple suite of DOM characterization 

techniques from surface and subsurface environments to determine which parameters explain the 

most variability within a DOM dataset from various ecoregions across Canada, and use these 

parameters to create a simple, effective tool to compare compositional differences in DOM. This 

will be accomplished in three parts: 1) determine which measures of DOM composition explain the 

most variability, 2) identify how these measures relate to DOM quantity and site, and 3) create a 

new visualization tool to easily compare different DOM samples based upon these composition 

measures. 

 

 

Locations were selected where DOM was expected to differ due to differences in surrounding 

watershed characteristics (e.g. land use, climate, and vegetation).  Surface and subsurface samples 

were collected from the Northwest Territories (Yellowknife, Wekweètì, Daring Lake), Nunavut 

(Lake Hazen Watershed), and Ontario (IISD-Experimental Lakes Area) (Figure 3.1; Appendix B). 

Surface water samples included lakes, rivers, creeks, and ponds, and were collected 0.25 m below 

the surface.  Subsurface samples from northern locations (Yellowknife, Wekweètì, Daring Lake, 

Lake Hazen) were collected from the deepest extent of the active-layer, just above the permafrost 

boundary (0.1 to 0.5 m below surface).  Additional samples were collected at Turkey Lakes 

Watershed (ON), Nottawasaga Valley (ON), Grand River (ON), Mackenzie River (NT), and Black 

Brook Watershed (NB), but were only measured for overall DOM concentration and select 

composition measures. 
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Surface water samples were collected using a 60 mL syringe and filtered using 0.45 μm syringe-

tip filter (Whatman GD/X 45mm) into 40 mL pre-washed glass vials.  Subsurface samples were 

collected using a peristaltic pump with an attached 0.45 μm syringe-tip filter.  Vials and filters were 

pre-rinsed with filtered sample water before collection.  Samples were kept cool (<4ºC) and in the 

dark until analysis within three weeks of collection. 

 

Dissolved organic carbon and total nitrogen concentrations were measured using the Shimadzu 

Total Organic Carbon (TOC-L) Combustion Analyzer with TNM-1 module.  Dissolved organic 

nitrogen (DON) was calculated as the difference between total dissolved nitrogen concentration and 

sum of the inorganic nitrogen species (nitrate, nitrite, and ammonium).  Inorganic nitrogen species 

were measured using SmartChem 200 Automated Chemistry Analyzer (Unity Scientific, MA United 

States). 

Absorbance was measured using a Cary 100 UV-VIS Spectrophotometer (Agilent, CA United 

States) at 5 nm increments from 200 to 800 nm.  Deionized water was used to zero the machine, and 

was run intermittently during analyses to correct for baseline drift.  The Naperian absorption 

coefficient (a; m-1) was calculated using: 

𝑎𝜆 =
𝑙𝑛(10) × 𝐴𝜆

𝐿
 

where A is the baseline-corrected absorbance at wavelength λ and L is the cell length (m).  A suite 

of absorbance characteristics were then calculated (Table 3.1). 

DOM composition was determined using a size exclusion chromatography technique (Liquid 

Chromatography – Organic Carbon Detection, LC-OCD75), at the University of Waterloo.  Briefly, 

the sample was diluted to within 1 – 5 mg C/L and injected through a size-exclusion column (SEC; 

Toyopearl HW-50S, Tosoh Bioscience) that separated DOM based on hydrodynamic radii into five 

hydrophilic fractions (from largest to smallest): biopolymers (BP; polysaccharides or proteins), 

humic substances fraction (HSF; humic and fulvic acids), building blocks (BB; lower weight humic 

substances), low molecular weight neutrals (LMWN; aldehydes, small organic materials), and LMW-

acids (LMWA; saturated mono-protic acids).  Based on elution time, a number average molecular 

weight was derived only for the HSF.  Duplicates run at six concentrations yield a precision for the 

LC-OCD of less than ±0.09 mg C/L for all fractions.  Concentrations of each fraction were calculated 
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using specialized software (ChromCALC, DOC-Labor, Germany) that integrated chromatograms 

from the LC-OCD. 

 

Data were analysed using unconstrained ordination analysis via principal components analysis 

(PCA) on a subset of samples that contained all composition measures (n=130).  Data were scaled 

before PCA, and analysed using R Statistical Software212.  

A Composition Wheel (CW) is a representation of various composition measures using a 

polygon.  Differences in shape can be easily used to compare different DOM compositions. 

Composition Wheel parameters were chosen based on the highest contribution of variables 

explaining the first two principal component axes (Appendix B).  Further, independent measures of 

DOM composition were chosen to minimize overlap in information between similar techniques.  

Each Composition Wheel axis corresponds to a specific parameter.  For each axis, the individual 

value for each sample is normalized as a value between the maximum and minimum encountered 

for that parameter in the dataset. 

 

 

DOM concentrations ranged from 0.1 to 273 mg C/L, with highest mean values in subsurface, pond, 

and creek samples (Appendix B).  Highest DOM concentrations were found from subsurface 

environments in Yellowknife, while the lowest concentrations were found in high arctic 

environments (Figure 3.2).  High arctic seeps, rivers, and lakes contained the lowest average 

DOC:DON values, but higher average specific ultra-violet absorbance at 255 nm (SUVA) and HSF 

values than other locations.  SUVA values ranged from 1.1 to 21 L/(mg·m) and were similar between 

ponds, lakes, and rivers.  Highest SUVA values were found from the bottom of a boreal lake and 

high arctic subsurface.  Spectral slope values ranged from 0.005 to 0.032 nm-1, and were highest in 

high arctic surface waters.  Values of DOC:DON ranged between 9 to 124, and were lowest in rivers 

and samples from high arctic sites.  Proportion of humics (HSF) ranged from 14% to 85%, and on 

average were lowest in lakes.  Overall, subsurface samples contained the highest SUVA and 

DOC:DON values, and lowest S275-295 and HSF values.  Hence, DOM concentration and composition 

vary across geographic scales and hydrological environments. 
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The first three principal component axes explained 61% of the variance in the dataset, with PC1 

and PC2 accounting for 51% of the variability.  Comparison of the first two principal components 

yield four distinct groupings of strongly-contributing measures: I) SUVA, SAC420, SAC350; II) HSF, 

HS MW; III) S275-295, E2:E3, and SR; and IV) BB, LMWN, and BP.  Groups I and II were negatively 

associated to groups III and IV.  Highest contributions to PC1 and PC2 axes were HSF, SAC350, S275-

295, and SUVA. Variables with contribution to PC1 and PC2 lower than 2% were E4:E6, DOC:DON, 

S350-400, and LMWA (Appendix B).  Absorbance parameters normalized to DOM concentrations 

(SAC350, SAC420, and SUVA) all plotted closely to each other and trended positively with measures 

of HSF, HSF molecular weight, and DOC:DON.  Absorbance techniques plotted perpendicular to 

LC-OCD measures (Figure 3.3).  Thus, based on contribution and characterization technique, this 

study focussed on four independent measures to define DOM composition that include three high-

contributing variables to PC1 and PC2 axes (SUVA, S275-295, and proportion of HSF) and DOC:DON. 

 

Four DOM composition measures that explained the most variability within the dataset were used 

to compare DOM across a larger dataset.  Composition Wheel axes were defined using absorbance 

measures (SUVA, S275-295), HSF, and DOC:DON.  Although two absorbance measures are used, they 

represent independent measures of DOM composition as one characterizes the amount of UV-

absorbing components normalized to DOM concentration (SUVA) and the other is correlated with 

DOM molecular weight (S275-295).  Shapes varied across hydrologic and geographic settings, with 

larger shapes corresponding to samples with higher values of compositional measures.  Ponds and 

lakes tended to have lower values of SUVA and DOC:DON while subsurface DOM contained higher 

HSF and SUVA values (Figure 3.4:).  Representation of different measures using these four axes 

allows for a facile comparison of DOM composition among samples. 

 

 

Collection of samples from various locations and hydrological environments resulted in a wide 

range in values for each composition metric within the dataset.  Four distinct PCA clusters 

contained characterization methods that responded to different components of DOM (i.e: 
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independent measure of either size-based grouping, absorbance, or elemental ratio).  Further, 

chromophoric (CDOM) and non-chromophoric components of DOM were well represented within 

the dataset as absorbance measures plotted perpendicular to elemental and size-based fractionation 

methods (Figure 3.3).  Similar studies using PCA to assess relationships across various DOM 

characterization techniques have found higher explained variability in the first two principal 

component axes than this study83,213.  However, those studies used only absorbance parameters to 

describe DOM composition from leachates and surface waters in a subtropical coastal wetland.  

Representing a single location or source likely results in a higher explained variance than studies 

using a suite of DOM characterization techniques202 due to the simplification of quantitative DOM 

information214.  Further, data from this study represent various sites along the aquatic continuum. 

Although the dataset contains a wide range of values in all characterization methods, statistical 

analyses indicates that DOM composition could be easily represented by certain measures across 

spatial scales. 

Of all compositional measures used in this study, simple absorbance parameters that are 

normalized to the concentration of DOM explained the highest variability within the dataset.  This 

suggests there are a wide range to the CDOM components encountered across various 

environments.  Although various wavelengths could be selected, an excellent correlation was found 

when predicting the absorbance of a sample at a specific wavelength using different wavelengths 

across the absorbance spectra203.  Absorbance at different wavelengths within a sample are closely 

related and should provide similar interpretations of DOM composition, and is further supported by 

the grouping of specific absorption coefficients within the PCA (Figure 3.3).  Although absorbance 

parameters are easily measured and helpful in comparing different DOM compositions, they do not 

accurately reflect non-CDOM components that could be important for overall DOM composition. 

The difficulty with characterizing DOM composition is that there are a number of parameters that 

could be used to represent specific components of a whole.  These results illustrate how relatively 

simple measures of absorbance provide a limited, but quantifiable, component that represents DOM. 

Intrinsic DOM properties can be assessed through positive associations between different 

measures, allowing for a detailed interpretation of the overall DOM composition.  For instance, the 

similar direction of both HSF and DOC:DON PCA vectors indicate that humic-like molecules within 

DOM likely contain the minority of nitrogen moieties.  A similar interpretation of DOM was 

observed in Swedish lakes202 and northern German streams215.  Further, positive associations 
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between concentration-normalized absorbance parameters to other forms of characterization (such 

as size-based groupings or DOC:DON) indicate that CDOM may be primarily associated with high 

molecular weight, low-N containing humic-like components.  Slope ratio (SR) is inversely-related to 

overall molecular weight199, further supporting these findings by plotting oppositely of HSF but 

similarly to degraded components of HSF (such as BB216).  Similar associations between DOM 

characterization techniques are found in other studies using different DOM sources217.  Comparison 

with highly detailed characterization of DOM using FTIR shows agreement with certain LC-OCD 

fractions and fluorescence components79.  Associations between different characterization 

techniques not only help determine measures most useful to describe DOM composition, but also 

avoid overlap of information. 

In contradiction, we find both high-molecular weight (BP) and low-molecular weight (LMWN) 

variables plotting closely on the PCA (Figure 3.3).  LC-OCD quantifies different size-based DOM 

groupings as a proportion, removing the influence of overall concentration when comparing LC-

OCD groupings across samples.  However, the HSF generally comprises the dominant fraction of 

DOM75 and could lead to a negative correlation to other components (i.e: higher HSF inherently 

leads to lower proportions of BP and LMWN).  Hence, when humics do not comprise the majority 

of DOM, the dominant molecular-size fraction shifts to either larger (BP) or smaller (LMWN) 

components for either surface or ground waters, respectively (Appendix B).  Differences in the 

proportions of either high or low molecular weight components do not influence most absorbance-

based parameters as they plot perpendicular to the LC-OCD vectors, further supporting the concept 

that these independent measures of composition can be used together to gain a better 

understanding of absorbing and non-absorbing components of DOM. 

 

This large dataset incorporating both DOM quantity and composition provides an opportunity to 

compare the two.  While some studies find correlations between the amount of DOM and its quality 

across continental USA (lakes, streams, and estuaries218) others do not (boreal streams79 and north 

temperate lakes in Wisconsin219).  In this study, DOM concentrations from high arctic creeks were 

orders of magnitude different than subsurface DOM at Yellowknife, yet contained similar SUVA 

values (Figure 3.2a).  Although DOM concentration is not adequate to determine its composition, 
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concentrations of DOM are necessary for calculating mass balances, fluxes, biogeochemical rates, or 

observing net effects of mixing and should be measured concomitantly with compositional metrics. 

The general perception is that watershed vegetation governs the type of DOM.  However, CWs 

suggest this is not the case.  Similar DOM compositions are observed regardless of the range of 

vegetation types and sites that span areas of peat palsas (taiga shield), boreal shield watersheds, 

tundra heath ecosystems (Southern Arctic), and the high xeric arctic with relatively productive 

wetlands (Figure 3.4).  Instead, differences in DOM composition are more apparent between 

subsurface and surface water DOM than between sites; all subsurface DOM samples exhibit a high 

proportion of large, humic, UV-absorbing components.  The various sampling locations are very 

different in terms of vegetation and hence terrestrial sources of DOM, yet CWs indicate similarities 

across different ecoregions. 

The range in values found across the four compositional measures also compared well with DOM 

from other studies, indicating that DOM composition may not be unique to its locale. 

Concentrations of DOM and SUVA values from rivers in this study compared well to the 

comprehensive study of United States rivers73 and Canadian boreal lakes49.  Across lakes, streams, 

and estuaries in the United States, similar ranges in DOM concentration, SUVA, and DOC:DON 

were found218.  However, much higher SUVA values were found in non-riverine environments, 

particularly in subsurface samples from organic-rich wetlands.  Hence, DOM from northern regions 

contain similar compositions as DOM from areas with different climate and vegetation 

characteristics.  

Commonalities in DOM composition across concentrations and spatial gradients could identify 

similarities in DOM sources or processing, or reflect the presence of common molecular moieties 

that persist within the environment.  In a 120-lake survey of boreal lakes in Sweden, 95% of all 

unique molecular DOM compounds within the dataset were identified after only 45 lakes50, 

indicating a commonality in DOM composition transcending spatial scales and environmental 

gradients.  The similarity in varying compositional measures across different studies indicates DOM 

composition is not vastly different across environmental or latitudinal gradients, and differences in 

certain measures could be easily used to observe the evolution of DOM composition across the 

aquatic continuum. 
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Expressing DOM composition with only four concentration-independent parameters excludes 

advantages of other techniques not used in this study.  However, there is agreement between 

multiple parameters that allow for the use of surrogates in the CW.  LC-OCD is not widely available 

but many studies have traditionally used resins73,220,221 or other size-exclusion columns214,222 to 

characterize DOM.  Further, LC-OCD fractions of humics have been well correlated to measures of 
13C-NMR and more accessible fluorescence measures such as HIX79,215,223.  Although fluorescence 

was not used in this study, strong associations between certain fluorescence parameters and 

absorbance or molecular-weight groupings could be used to replace LC-OCD defined fractions, such 

as using PARAFAC modelling to discern components most similar to HSF79,215 (Appendix B). These 

fluorescence parameters are also independent measures of DOM composition and could be readily 

substituted into the CW.  Elemental ratios of DOC:DON were positively correlated with humic-like 

fluorescence and negatively correlated to protein-like components202.  Slope ratio and E2:E3 (see 

Table 3.1 for description) are potential surrogates for S275-295 (Figure 3.2).  Measurements of SUVA 

could be substituted with SAC420, SAC350, or E4:E6, as well as HIX if not used for HSF81,202. Although 

SUVA has been correlated to fluorescence component C3 81,202, the opposite has also been found215.  

Associations between different characterization techniques allow for mixing and comparison of 

different variables, indicating a wide-range of applicability of CW for use within environmental 

sciences. 

Clear communication of science and its relevance to society is becoming increasingly important 

for informing public and supporting evidence-based policy decisions.  This visualization method 

provides an efficient communication tool not only among scientists, but also between scientists and 

other parties concerned with water quality, ranging from stakeholders to community members. It is 

clear how DOM composition differs due to the variations in shape, whereas changes in the 

numerical value of metrics are better understood by those with adequate background who are 

familiar with the methods.  Further, changes to composition resulting from DOM degradation could 

be used to trace DOM evolution, while different shapes of DOM could be associated with certain 

parameters of interest (i.e. disinfection demand, metal mobility).  By reducing the complexity of 

independent DOM measures and creating an easily comparable shape, differences in DOM 

composition can be easily compared and communicated to larger audiences. 
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Table 3.1: Dissolved organic matter composition as described by chemical, absorbance, and molecular-size 
based measures. 

Parameter Equation Unit Characteristic Reference 
Chemical 

DOC:DON 𝑀𝐶 ÷𝑀𝑁 -  77 
Absorbance 

E2:E3 𝐴255 ÷ 𝐴365 - 
Inversely related to 

molecular size 
69 

E4:E6 𝐴465 ÷ 𝐴665 - 
Humic molecular weight 

and size 
224 

SAC350 
𝑙𝑛(10) × 𝐴420 𝐿⁄

[DOC]
 

cm2

mg-C
÷ 1000 Specific colour 225 

SAC420 
𝑙𝑛(10) × 𝐴420 𝐿⁄

[DOC]
 

L

mg × m
   

SUVA 
𝑙𝑛(10) × 𝐴255 𝐿⁄

[DOC]
 

L

mg × m
 

Correlated to degree of 
aromaticity 

71 

S275-295 𝑎𝜆 = 𝑎𝜆275𝑒
−𝑆(𝜆−275) nm-1 Inversely related to MW 199 

S350-400 𝑎𝜆 = 𝑎𝜆350𝑒
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Low-molecular weight 
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75 

Low-molecular weight 
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- % of DOM Saturated mono-protic acids 75 
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Figure 3.1: Locations of sampling sites and ecoregion. River locations (Grand River, ON; Mackenzie River, 
NT) labelled at the mouth of the river. 
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Figure 3.2: Compositional measures versus overall DOM concentration (mg C/L). Measures include A) 
specific ultraviolet absorbance at 255 nm, B) slope between 275 to 295nm, C) DOC:DON, and D) proportion of 
humic substances. Colours represent geographical sampling locations (HZ: Lake Hazen Watershed, NU; DL: 
Daring Lake, NT; WK: Wekweètì, NT; YK: Yellowknife, NT; MR: Mackenzie River, NT; ELA: IISD-
Experimental Lakes Area, ON; TLW: Turkey Lakes Watershed, ON; NW: Nottawasaga Valley, ON; GR: Grand 
River, ON; LP: Long Point, ON; BBK: Black Brook Watershed, ON) while shapes represent hydrologic 
environments. Light grey circles represent two other DOM characterization studies conducted at similar 
scales. 
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Figure 3.3: Principal component analysis for samples that contained measures of absorbance (red), elemental 
ratios (green), and LC-OCD (purple) (n=143). Grey dots represent individual samples. 
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Figure 3.4: Composition Wheels for different hydrological environments at different locations. Axes 
represent the normalized value for each parameter (parameter axis in bottom left). Different samples from the 
same hydrological and geographic setting are plotted within the same wheel. 
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Northern environments are some of the most sensitive to a warming climate and are experiencing 

rapid changes that affect carbon cycling, aquatic ecosystem health, and drinking water quality.  

Across the circumpolar north, large reserves of carbon are frozen within organic-rich 

permafrost162,194 but changes to temperature and hydrology have led to the mobilization of this 

carbon15,18,30,33.  In particular, release of carbon as dissolved organic matter (DOM) can transfer 

carbon between aquatic and terrestrial systems.  The overall amount of DOM in a sample is 

quantified by the concentration of dissolved organic carbon that passes through variable filter sizes.  

However, DOM is comprised of thousands of organic molecules with varying structural and 

chemical properties that can influence the reactivity of DOM with its surroundings.  For instance, 

depending upon its composition, DOM can influence water transparency and thermal regimes 

within lakes55, provide an important energy source for aquatic food webs3, influence subarctic lakes 

and pond bacterial community composition and diversity90, or act as an important biogeochemical 

constituent in redox reactions58.  In terms of drinking water resources, DOM affects water colour, 

taste, and odour, and reacts to form carcinogenic disinfection by-products during water 

treatment65–67.  Increases to surface water DOM concentrations have been observed, most notably 

among northern environments, and can complicate future drinking water treatment options89,92,102.  

Determining what drives differences in DOM concentration and composition in northern 

environments would better allow for predictions to the impact of changing DOM upon aquatic 

health and drinking water resources. 

Recent studies have focussed on the effects of permafrost degradation and subsequent carbon 

release on the overall carbon cycle and aquatic ecosystem.  Carbon from thawing permafrost is old 

and can be easily utilized by microbes96,134,226 in comparison to active-layer DOM which has been 
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subjected to substantial degradation before reaching surface waters98.  In northern environments, 

subsurface DOM characteristics are becoming increasingly dominant within surface water DOM34 

and could lead to enhanced bacterial production within peatland lakes227.  Further, thaw ponds with 

high DOM and nutrients in the eastern Canadian Arctic have higher microbial activity and higher 

water methylmercury concentrations228.  In ice-rich areas, warming of the subsurface results in 

active-layer detachments and thermokarst that leads to sudden influxes of permafrost carbon and 

nutrients into surface waters128,136,229.  Hence, the responses of northern areas to a warming climate 

have direct implications on the carbon cycle and aquatic ecosystem health as there is the potential 

for large amounts of previously immobilized carbon to enter aquatic systems. 

Biodegradation is an important driver of DOM concentration and composition in the 

environment. The intrinsic (compositional) properties of organic matter can dictate how easily 

DOM can persist or degrade, termed lability, within the environment81,230,231.  Optical properties of 

DOM, such as fluorescence and ultraviolet (UV)-visible absorbance, have been used as qualitative 

indicators of biodegradation82,83.  Generally, DOM transported into surface waters from terrestrial 

environments (allochthonous DOM) is typically considered more difficult to biodegrade, or 

recalcitrant, compared to DOM produced in situ (autochthonous DOM).  However, recent studies 

have found otherwise209,232,233.  Similarly, the traditional approach to the labile-recalcitrant 

categorization was based on a size-reactivity continuum, where high molecular weight DOM was 

more labile than low molecular weight components234.  Recent findings suggest that bioavailable 

DOM components are influenced by the diversity of the DOM mixture in the system84,85, thus it is 

possible for labile components to be molecules of either low molecular weight (LMW)211 or high 

molecular weight (HMW)108.  Characterizing DOM composition provides a way to quantify how 

biological processing alters DOM concentration and composition. 

Northern surface waters act as biogeochemical hotspots for carbon and nutrient cycling3,37, thus 

better predictions of carbon cycling and carbon fate in northern systems can be achieved by 

quantifying the rates and processes that dictate DOM evolution.  Most biodegradation studies have 

been conducted in Siberia, Alaska, and Sweden, while Canadian experiments have focused on 

northern Quebec235,236 or the Mackenzie Delta129,229.  There is a wide range in the fraction of DOM 

that is biodegradable (BDOM) among these systems. For instance, within thaw slump only 

incubations, BDOM ranged from >40% in Siberia32,96 to between 1 and 12% in the NT129.  Large 

differences in the proportion of BDOM are found, yet few estimates of BDOM exist, let alone 
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microbial degradation rates with paired measures of DOM composition for wide areas of northern 

Canada.  Degradation rates provides a quantifiable value to predict and model the response in DOM 

concentration to a changing climate based on known parameters, such as changes to nutrient levels, 

water residence times, or temperatures. 

  The overall objective of this study is to quantify the range of BDOM and microbial degradation 

rates of DOM across various hydrologic sites from the western sub-arctic and high arctic in Canada. 

This will be accomplished using three specific objectives: 1) quantify the concentration of BDOM 

and microbial degradation rate for each site, 2) determine how microbial degradation changes 

measures of DOM composition from different northern sites, and 3) determine whether initial DOM 

composition can be used to predict microbial degradation rate.  Various hydrologic sampling sites 

along a latitudinal gradient will be used to provide a range in DOM compositions that span 

differences in watershed characteristics, sources, and processes. 

 

 

Bulk water was collected from creeks, lakes, ponds, and subsurface sites across the Northwest 

Territories (late July; Yellowknife (YK), Daring Lake(DL)) and the Lake Hazen Watershed, NU (HZ; 

early July; Figure 4.1). Subsurface water was collected from the deepest extent of the active-layer. 

An aliquot of each sample was taken as the ‘inoculum’ and filtered only to 1.2 μm to remove large 

particulates and allow for the ambient microbial consortium to pass through.  The remaining water 

was filtered in the field to 0.45 μm.  It should be noted that filtering to 0.45 μm does not eliminate all 

microbes and render the solution sterile, but was chosen to be consistent with previous 

characterization of DOM samples (i.e. Chapter 3).  Both filtered water and inoculum were kept cool 

(<4ºC) and in the dark until experiments were conducted (within 2 weeks) at the University of 

Waterloo. For logistical reasons, Lake Hazen experiments were conducted on site. 

 

Similar to the majority of reported microbial incubation studies, the concentration of BDOM was 

defined as the loss in DOM concentration during the duration of the experiment (Table 4.1) and 

calculated as: 
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BDOM=DOC0 − DOC30

where DOC0
 represents the initial concentration of dissolved organic carbon and DOC30 represents 

the final concentration.  Percentage of BDOM was calculated by dividing the BDOM concentration 

by DOC0.  Use of this common methodology to calculate BDOM allowed for the comparison of 

results from this study to other reported values across the circumpolar north.  It should be noted 

that this definition of BDOM assumes DOM loss results only from mineralization into CO2 or 

incorporation into biomass.  Very few studies include ‘control’ treatments to assess changes in 

DOM without inoculum (Table 4.1).  Over time, DOM can be lost to flocculation processes or adhere 

to container walls during storage in the absence of microbial activity.  Thus, reported estimates of 

BDOM include these dark abiotic losses.  Controls were included in this experiment in order to 

calculate the minimum proportion of DOM loss due to microbial degradation.  Total DOM loss, 

which may include abiotic losses, was used to calculate degradation rates and compare proportions 

of BDOM using consistent BDOM definitions encountered in the published literature. 

Microbial degradation experiments were conducted using duplicate sacrificial bottles at the 

following time points: 0, 4, 7, 14, and 30 days.  These sampling times capture the majority of DOM 

change and provide high-resolution sampling during initial rapid degradation.  Half of the filtered 

water was mixed with inoculum (10% by volume), well stirred, and poured into a series of either 250 

mL acid-rinsed glass bottles (YK and DL) or 5 L Tedlar bags (HZ). The remaining sample was used 

as a Control treatment to compare loss of DOM without inoculum.  Control treatments were not 

prepared for Lake Hazen.  Containers had sufficient air in the headspace to avoid oxygen limitation 

during DOM decomposition.  Bottles and Tedlar bags were gently agitated daily to ensure the water 

did not become anoxic.  Experiments were conducted in the dark and at room temperature. 

 

Samples were re-filtered to 0.45 μm at each sacrificial time point and run for subsequent 

geochemical analyses.  Samples were quantified for concentrations of dissolved organic carbon 

(DOC; mg C/L) and total nitrogen (TDN; mg N/L) using a Shimadzu Total Organic Carbon (TOC-L) 

Combustion Analyzer with TNM-1 module (precision of ±0.3 mg C/L; ±0.3 mg N/L).  Inorganic 

nitrogen species (NO2
-, NO3

-, NH4
+) were analysed using SmartChem 200 Automated Chemistry 

Analyzer (NO2
- and NH4

+ precision of ±0.1 mg N/L, precision NO3
- of ±0.15 mg N/L; Unity Scientific, 

MA United States).   
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DOM was characterized primarily using UV and visible absorbance and DOC:DON ratios. 

Absorbance was measured using a Cary 100 UV-VIS Spectrophotometer (Agilent, CA United States) 

at 5 nm increments from 200 to 800 nm. Deionized water was used to zero the machine, and run 

intermittently during analyses to correct for baseline drift. The Naperian absorption coefficient (a; 

m-1) was calculated using:  

𝑎𝜆 =
𝑙𝑛(10) × 𝐴𝜆

𝐿
 

where A is the baseline-corrected absorbance at wavelength λ and L is the cell length (m). The 

specific UV-absorbance at 255 nm (SUVA) and visible absorbance at 420 nm (SAC420) were 

calculated by dividing the Naperian absorption coefficient by the overall DOM concentration. The 

spectral slope between 275 and 295 nm was also calculated199. 

Initial DOM composition was further characterized using molecular size-based groupings 

determined by liquid-chromatography organic carbon detection (LC-OCD).  Detailed methodology 

can be found elsewhere75.  Briefly, the sample passed through a size-exclusion column (SEC; 

Toyopearl HW-50S, Tosoh Bioscience) that separated DOM based on hydrodynamic radii into five 

hydrophilic fractions (from largest to smallest): biopolymers (BP; polysaccharides or proteins), 

humic substances fraction (HSF; humic and fulvic acids), building blocks (BB; lower weight humic 

substances), low molecular weight neutrals (LMWN; aldehydes, small organic materials), and LMW-

acids (LMWA; saturated mono-protic acids).  Duplicates run at six concentrations yield a precision 

for the LC-OCD of less than ±0.09 mg C/L for all fractions.  For this study we focussed on BP, HSF, 

and LMWN as they provide information on three different size-groupings and have been 

determined to be most useful to differentiating different DOM compositions (Chapter 3). 

Composition wheels (CW) were used to visually compare differences in DOM composition 

between initial and final samples (Chapter 3). Composition Wheels use a polygon to represent 

different metrics of DOM composition that best explain the variability in DOM encountered across 

a variety of environments.  Independent measures were chosen to provide an encompassing 

representation of various DOM characteristics and include: SUVA (measure of UV-absorbing 

capability), spectral slope (S275-295; inversely related to overall molecular weight of UV-absorbing 

components), DOC:DON (indication of source and nitrogen content), and SAC420  (measure of water 

colour and humic material).  Values were normalized as a proportion of the maximum and 

minimum value encountered from a larger dataset of various ecoregions across Canada. 
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The correlation between DOM composition and BDOM measurements were calculated using the 

non-parametric Pearson coefficient correlation.  Linear and 1st-order degradation rates were 

calculated in R212.  The Reactivity-Continuum (RC) Model, derived from marine environments, has 

been applied to model the rate of degradation of DOM in freshwater systems209,211,236.  This 

approach treats DOM as a distribution of labile and recalcitrant components that change over time, 

based on changing 1st-order degradation rates237.  The change in DOM over time was calculated as: 

𝐷𝑂𝐶𝑡
𝐷𝑂𝐶0

= (
𝛼

𝛼 + 𝑡
)
𝑣

 

where α is the average life-time of more reactive components, v relates to the quantity of 

recalcitrant components, and t is age (days)209. The initial 1st-order decay rate constant (k) can be 

calculated as v/α (d-1) and represents the expected value from the initial gamma distribution of 

reactive and recalcitrant DOM components210.  These measures not only provide degradation rates, 

but also provide information on differences in DOM lability. 

 

 

A range in DOM concentration and composition were measured across various hydrologic 

environments in different ecoregions.  Samples from YK contained the highest DOM concentrations 

(16 to 84 mg C/L) while HZ samples contained the lowest (2.5 to 6.2 mg C/L; Table 4.2).  Subsurface 

sites contained higher DOM concentrations than surface waters for all locations but HZ (Figure 4.2). 

Differences between surface and subsurface water DOM composition were more apparent than 

differences in composition across a latitudinal gradient.  Initial measures of SUVA ranged from 4.0 

to 9.1 L/(mg·m) with lowest SUVA values from YK and DL creeks and highest values from YK and 

DL subsurface DOM (Table 4.3).  Similar spectral slope values were found for most samples across 

sites, ranging between 1.3x10-2 to 1.7x10-2 nm-1.  Across all sites, surface waters contained higher 

spectral slope values than subsurface DOM with the highest slopes found from DOM in a YK creek 

and HZ lake (Table 4.3).  DOC:DON of initial samples were highest at YK (31 to 56) compared to 

either DL (21 to 42) or HZ (13 to 28).  Subsurface DOM contained the highest DOC:DON from YK 

and DL samples (56 and 42, respectively).  Measures of SAC420 ranged from 0.19 to 0.75 L/mg·m, 

with lowest values from surface water DOM (HZ lake, DL creek, and YK creek).  Similar DOM CW 
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were found in YK and DL subsurface, YK pond, and DL creek (DAR 8; Figure 4.3).  Use of a suite of 

compositional metrics indicated that subsurface DOM is compositionally different than surface 

water DOM due to differences in UV-absorbing capabilities and DOC:DON. 

 

The proportion of BDOM after 30 days varied across all sites.  Degradation experiments quantified a 

total loss in DOM that ranged from 1 to 27% of the initial concentration, with an average loss of 11% 

(n=9) over 30 days (Table 4.2).  The majority of DOM loss occurred within 14 days (Figure 4.2).  The 

total loss of DOM was higher in samples with high initial DOM concentrations.  In particular, YK 

samples had higher initial DOM concentrations and a greater DOM loss over 30 days than either DL 

or HZ samples.  DOM loss in Control treatments ranged from 4 to 14% and resulted in minimum 

microbial loss proportions from 1 to 13% (Table 4.2).  The average difference in proportion of 

BDOM and minimum microbial loss was 8%.  Thus, DOM at all these sites is biolabile.  Although the 

total DOM loss was greater in samples with added inoculum, the addition of Control treatments 

provide an estimate to the minimum microbial contribution.  

A range of microbial degradation rates were quantified from different initial DOM compositions.  

Different models were used to account for limited data availability (linear model), comparison to 

traditional methods (first-order), and use of newer approaches (RC Model).  Similar patterns in the 

relative magnitude of linear and 1st-order derived degradation rates were observed among different 

samples; however, unlike other models the RC model predicted a higher initial degradation rate 

from YK pond than YK subsurface (Table 4.4). The highest linear and 1st-order degradation rate was 

found from a DL creek (DAR10) and YK subsurface, while the lowest rate was from HZ subsurface 

(Table 4.4).  Degradation rates in all surface waters were comparable.  Predicted initial RC Model 

degradation rates were highest from DL creek, YK subsurface, and YK pond, and much lower for the 

remaining samples (Table 4.4).  Hence, 1st-order and linear rates were similar in relative magnitude 

across different locations and identify DOM samples that are more easily degraded than others.   

RC modelling rates were calculated for all but three samples (where the model was unable to 

converge).  The highest initial rates were determined for YK samples (9 to 34 x10-3 d-1) and a DL 

creek (99 x10-3 d-1) and lowest from LH (1 to 3 x10-3 d-1).  Similar α values from YK subsurface, YK 

creek, and DL subsurface samples indicate higher average lifetimes of the more reactive 

components (11, 14, 9 d, respectively) compared to other samples. Use of the RC Model resulted in 
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similar trends in the relative magnitude of degradation rates compared to the other two models, and 

provided a method to quantify the relative abundance of labile and recalcitrant DOM components. 

 

The DOM composition of most samples changed in response to the loss in DOM concentration 

(Figure 4.3).  Only DL subsurface and DL creek had little compositional change, even after a 5 and 

11% total loss in DOM concentration (Table 4.2).  SUVA values increased after 30 days of microbial 

degradation for all sites except DL subsurface and LH subsurface, with the largest increases found 

in YK subsurface, DL creek, and HZ seep. Measures of SAC420 increased for most samples except in 

DOM from DL subsurface, DL creek, and HZ subsurface.  Overall, various metrics of DOM 

composition did not respond uniformly when compared across different samples with changes 

being unique to each sample.    

Absorbance-based measures of initial DOM composition were not good a priori predictors for 1st-

order degradation rates, 30-day concentration of BDOM, or proportion of BDOM (Figure 4.4).  

Conversely, initial proportions of different molecular-based size DOM groupings were significantly 

correlated to the proportion of BDOM and 1st-order degradation rate (Table 4.5).  The majority of 

DOM was comprised of high molecular weight components (total of BP and HS proportions: 73 to 

80%) and a smaller contribution of LMWN (3 to 12%; Figure 4.5).  Subsurface samples contained the 

highest proportions of HS (71 to 78%), while creeks contained the highest amount of BP and 

LMWN.  Hence, characterization of DOM based on size-based groupings may provide better 

predictive capability to the susceptibility of DOM to microbial degradation than absorbance based 

measures. 

The magnitude of change in some parameters can be used as a surrogate for predicting the 

proportion of BDOM.  Little change was observed in S275-295 (between -3 to 5% after 30 days) while 

large changes were observed in SUVA, DOC:DON, and SAC420 (Table 4.2; Figure 4.6).  The change 

in SUVA was significantly correlated to the proportion of BDOM over the 30-day microbial 

experiment (r: 0.92, p<0.05; Figure 4.6). 
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Comparison of laboratory biodegradation results can be difficult because measured BDOM values 

are influenced by differences in temperatures, inoculum filter sizes, incubation durations, and 

nutrient additions238.  However, use of different methodology during soil DOM biodegradation 

experiments resulted in comparable final BDOM values, supporting comparison across different 

studies regardless of experimental design239.  Our laboratory experiments were set up to quantify 

BDOM amount and degradation rate based on previous BDOM definitions using the host microbial 

consortia and ambient nutrient levels at each site.  Although this limits our ability to compare rates 

with other studies using different filter sizes or nutrient additions, it quantifies a representative 

proportion of BDOM for each of our studied systems.   

Even within a site a whole range of factors including nutrient availability, in situ temperature, 

and microbial community, to name a few, can result in different rates of degradation.  Transport 

and mixing along hydrologic flow paths can change the conditions and thereby increase or decrease 

degradation rates.  Similarly, hydrologic residence time can affect the actual amount of degradation 

at each site as longer residence times allow for more processing within the environment.  Another 

important consideration is the time it takes for microbial populations to establish within the 

containers.  All efforts were made to minimize the effect of transit time (kept cold and quick setup 

of the incubations) but this may have affected the microbial consortium added to the samples. Thus, 

both environmental and experimental design features are important to understand when comparing 

differences in BDOM and degradation rates. 

Quantifying the explicit contribution between biotic and abiotic DOM loss during incubation 

experiments is difficult.  During the incubation, DOM loss can result from microbial mineralization 

into carbon dioxide, formation of biomass, or from altered DOM solubility, sorption to biomass, and 

flocculation as particulate organic matter.  The inclusion of Controls shows that DOM loss occurs 

even without inoculum addition (Table 4.2). Approximately 95% of bacteria can still pass through a 

0.3 μm filter size240 likely contributing to DOM degradation within Control samples. Further, one 

study was able to culture bacterial communities that passed through 0.1, 0.45, and 0.7 μm filter pore 

sizes241, signifying that Control samples still include some of the native microbial consortia.  

Alternatively, abiotic microparticle formation occurs within filtered samples242.  Re-filtration of 
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samples before analyses would encompass DOM loss from both biomass growth and abiotic 

flocculation, as well as microbial respiration.  Few studies report changes to dissolved inorganic 

carbon (DIC) when assessing microbial degradation of DOM, but those that have observe increased 

DIC concentrations over the duration of the experiment93,94,243.  Select YK samples analyzed for DIC 

indicated little change to DIC concentration over the incubation (Appendix C) suggesting some 

DOM loss may be attributed to biomass growth or flocculation rather than mineralization into 

inorganic carbon.  Samples with high proportions of minimum microbial contributions showed 

large changes to DOM composition (Figure 4.3; Table 4.2).  The lack of including and reporting 

Control results (Table 4.1) indicates that caution should be taken when referring to DOM loss as 

BDOM as filtration to 0.45 μm may allow a sufficient population of microbes through that continues 

DOM degradation at slower rates.  Hence, the loss of DOM within this study is due to both biotic 

and abiotic processes over the 30 day incubation. 

 

As discussed in Chapter 3, differences in DOM composition were more apparent between 

subsurface and surface water samples than samples across a latitudinal gradient.  There is similarity 

in the composition of subsurface DOM in this study to terrestrial-like DOM observed across other 

northern systems34,244,245.  Further, characteristics of surface water DOM, such as higher BP and S275-

295, reflect either photodegradation or biotic in situ DOM contributions90,130,199.  Hence, differences 

in DOM composition likely span a gradient of sources and amounts of previous processing.  This 

provided a comprehensive dataset to relate differences in DOM composition to microbial 

degradation rates and BDOM amounts. 

The proportion of DOM lost from samples in this dataset are well within the range of BDOM 

reported across the circumpolar North for similar incubation lengths.  DOM from the sub-arctic 

contains greater BDOM proportions and degradation rates compared to high arctic DOM (Table 

4.2).  Further, samples in this study had the highest DOM loss reported in the NT when compared to 

one other similar experimental setup (Table 4.1).  However, BDOM proportion in this study was 

lower when compared to studies conducted in Siberia and Alaska (>40% 96,108 ; Table 4.1).  Linear 

degradation rates are similar to values found from freshwaters in Russia and Alaska, and initial 1st-

order decay rates determined from the RC Model were higher in this study than reported from 

either Swedish lakes or Canadian boreal streams209,236.  Thus, northern ecoregions sampled in this 
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study all contained DOM with some degree of microbial-labile components with comparable 

degradation rates to areas with different climate and vegetation; however, the sites in this study 

contained a lower proportion of BDOM compared to other circumpolar areas. 

 

Previous studies of surface water DOM in northern regions found biolabile DOM to consist of LMW 

and low-aromaticity components96,108,129.  With this definition, both YK creek and HZ lake DOM 

have high proportions of biolabile components but neither had the highest degradation rates 

(Figure 4.4).  Strong correlations between the proportion of BDOM to both large and LMW 

groupings suggest biolability may not be simply defined by different molecular-sizes of DOM as 

suggested by others234.  Rather, the definition of biolabile DOM components may differ across 

various systems depending upon the preferences of the ambient microbial community84,85.  

Essentially, the DOM components that are microbially labile may differ across sites. 

Certain measures of DOM composition are not good a priori predictors of microbial DOM quality.  

For instance, unlike in this study, measures of initial spectral slope and elemental ratio have been 

shown to correlate to microbial DOM quality in soil, lakes, and rivers108,209,239,243.  In general, high 

SUVA has been associated with lower BDOM proportions32,111,115,129 (Figure 4.7), attributed to the 

preferential microbial degradation of non-UV or visible light absorbing LMW DOM93.  However, 

some studies find no relation between BDOM and initial SUVA246,247, as was the case with this 

dataset. 

Measures of DOM composition do not always respond to microbial degradation, as seen from DL 

subsurface and creek DOM.  Similar results were observed during a 3.5 year dark incubation as 

fluorescence indices did not change even though DOM decreased by 40% 247.  Further, measures of 

SUVA and fluorescence did not change during a boreal lake water DOM incubation246.  Hence, use 

of absorbance-based measures of initial DOM composition are not always effective to predict 

microbial DOM lability. 

The magnitude of change in SUVA is a better indicator to the proportion of BDOM than the 

initial SUVA value as an a priori indicator.  Changes to DOM composition are unique for different 

samples and few composition measures were able to predict the microbial lability of DOM.  Thus, 

measures of SUVA may be better suited to determine changes to DOM during microbial 

degradation rather than predict its initial microbial quality. 
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The unique response of each sample to microbial degradation and range in DOM degradation 

rates encountered suggest that sample location is more important for microbial degradation than 

initial DOM composition.  Differences in climate, microbial consortia, and nutrients may control 

degradation rates.  Regardless, certain measures of DOM composition provide an excellent indicator 

to the influence of microbial degradation upon DOM composition, with some measures that are 

more sensitive to microbial degradation than others.  In particular, the preferential loss of non-UV 

and visible light absorbing components are easily captured with increased SUVA and SAC420 values.  

This is further supported by the significant positive relation between BDOM and the non-UV 

absorbing BP fraction75 (Figure 4.6) suggesting that changes to SUVA and SAC420 act as indicators of 

microbial processing. Hence, measures of DOM composition are useful to track changes to DOM 

but the overall proportion of DOM loss and rate of microbial degradation are location dependent. 

 

The distribution of sites across a latitudinal gradient provides a simplistic comparison of different 

physical controls on DOM composition and lability.  From south to north, the landscape generally 

becomes colder, drier, and soils contain lower soil organic content, all of which are important 

factors that regulate biodegradation rates82.  Low microbial degradation rates in high arctic sites 

(Table 4.4) indicate that DOM has either been heavily processed in the terrestrial environment, or 

the microbial community does not process the DOM as extensively as other sites.  Conversely, sub-

arctic sites contain DOM that is readily lost over 30 days, indicating that microbial DOM quality 

differs widely across the latitudinal gradient.  Degradation constants need to be quantified for 

specific locations as 1st-order degradation rate constants could differ by up to 10x across all samples.  

Doing so will help constrain the rate at which carbon may be cycled through the system due to 

microbial degradation.  Although the proportion of BDOM and degradation rate constants all differ, 

every location contained some component of BDOM that could act as an energy source for 

downstream biogeochemical reactions. 

Subsurface processing can alter the form and amount of DOM exported to surrounding surface 

waters.  Changing hydrologic flow pathways due to deepening active-layer thicknesses, increasing 

subsurface temperatures, and changes to the timing and amount of precipitation17,132,148 could all 

affect subsurface residence times and carbon processing.  However, permafrost and active-layer 

leachates in Finland were found to be of low quality as only 3% was mineralized after a week98.  
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Scaling of laboratory to field studies is difficult to extrapolate as thawed cores or leachates 

represent the immediate lability of leached DOM and not necessarily what will be transported into 

surface water systems.  Further, the variability in subsurface DOM degradation rate constants 

among different ecoregions (up to 7x difference) indicates that changes to the subsurface residence 

time and thawing of permafrost could alter the amount of DOM processed within the terrestrial 

landscape. 

Nutrient deficiency within oligotrophic systems can hinder DOM degradation.  The release of 

dissolved inorganic and organic nitrogen resulting from permafrost thaw could accelerate microbial 

processing of subsurface DOM82,116,156.  Both inorganic and organic forms of nitrogen can be utilized 

by bacteria for cell growth depending on the availability of other nutrients, such as phosphorus.  

DOM can act as an important source of nitrogen as bacteria can grow more efficiently on DOM 

with low DOC:DON78,230,248,249.  In Greenland arctic lakes, DOM was a readily-available source of N 

for microbial nutrient demands250.  Inorganic nitrogen, phosphorus, and DON did not hinder DOM 

processing among thermokarst slumps and water tracks in Alaska111 while a meta-analysis of 

northern DOM incubation studies found inorganic nutrient addition to have little influence on 

BDOM238.  DOC:DON decreased in most samples during the experiment suggesting the loss of N-

poor components or the production of N-rich dissolved organic products (Figure 4.3).  We did not 

find any correlation between initial DOC:DON and either degradation rate or proportion of BDOM 

(Table 4.5) indicating the microbial community are not utilizing DOM as a source of nitrogen.  

Although DOM may supply a source of nitrogen to these systems, the lack of correlation between 

initial DOC:DON and proportion of BDOM indicates differences in DOC:DON is not a sensitive 

indicator of DOM lability at any of our sites. 

 

A series of incubation experiments were conducted to quantify the importance of initial DOM 

composition in terms DOM loss and degradation rate.  Differences in the amount and composition 

of DOM across hydrologic and geographic sites that included rivers, creeks, pond, and subsurface 

waters were greatest between subsurface and surface waters, rather than across locations.  

Although we report the highest BDOM proportions in the NT, overall BDOM proportion was 

generally lower than incubations conducted at other circumpolar areas.  However, 1st-order and RC 

Model microbial degradation rates were relatively similar to other studies.  Differences in microbial 
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DOM qualities across three Canadian arctic ecoregions are evident and result in a range of 1st-order 

degradation rate constants (up to 10x among all samples).  The highest BDOM proportions, or most 

labile DOM, was found in low arctic subsurface waters and creeks.  Not all metrics respond the 

same to microbial degradation.  Changes to DOM composition were not uniform across sites and 

resulted in a unique final composition for each sample.  Size-based groupings of DOM and the 

increases to SUVA and SAC420 were found to be strong predictors of BDOM proportion.  Hence, the 

unique response of each sample, the wide variation in degradation rate constants, and the lack of 

relationship between initial DOM composition and BDOM proportion, all indicate that location may 

be more important for determining DOM lability than initial DOM characteristics.  This outlines the 

importance of conducting microbial incubation experiments to obtain relevant and applicable 

BDOM amounts and degradation rates for specific environments. 
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Table 4.1: Summary of microbial degradation experiments for arctic and sub-arctic environments.  Included are site characteristics (area and sample), 
definition of biodegradable dissolved organic matter (BDOM), duration of experiment, whether nutrients were added (Nutri.), incubation temperature (Temp.), 
inclusion of a control or Control, and the microbial degradation model used to calculate rates. A linear degradation rate was calculated from studies that did 
not include rates in the dataset (termed ‘calc. here’). 

SITE  MICROBIAL INCUBATION SETUP BDOM RESULTS  

Area Sample BDOM 
Definition 

Duration 
(d) Nutri. Temp. 

(ºC) Inoculum Control? 
Initial 
DOM 

(mg C/L) 

BDOM 
(%) 

Degrad. 
Model 
Used 

Degrad. 
Rate (d-1) Reference 

Russia Yedoma thaw 

Difference in 
DOC before and 

after 28d 
28 No 20 Filtered to 

0.7um None 

131 47.2 

Linear 
(calc. here) 

0.017 

32 

Russia Erosion streams 30 17.5 0.006 
Russia Streams 20 13.3 0.005 
Russia Minor tribs 9.2 21 0.008 
Russia Major tribs 6.1 12.2 0.004 
Russia Kolyma River 5.1 14.6 0.005 

             
Russia Kolyma River - Average 

Difference in 
DOC before and 

after 28 days 
28 No 20 Filtered to 

0.7um None 

9.6 8.8 

Linear 
(calc. here) 

0.003 

108 Russia 
Kolyma River - 
Minimum BDOC 2.7 0.1 0.000 

Russia 
Kolyma River - 
Maximum BDOC 13.2 20.4 0.007 

             

Russia Yedoma thaw streams 
DOC loss after 

28 days 28 No 20 Filtered to 
0.7um 

Unfiltered 
river water 155 41 

Linear 
(calc. here) 0.015 96 

             
Russia Soil pore waters 5-day biological 

oxygen demand 
difference 

5 No 15 Filtered to 
0.7um None 

43 3.9 
Linear 

(calc. here) 

0.008 

251 Russia Streams 12 3.2 0.006 
Russia Rivers 4.9 6.2 0.012 
Russia Kolyma mainstem 3.6 4.5 0.009 

             

Russia 
Kolyma River main 
stem Percent loss 

over incubation 
time 

28 No 20 Filtered to 
0.7um None 

5.5 6.6 Exp. Decay 
(3 

parameter) 

0.09 

226 Russia 
Permafrost thaw stream 
A 152.4 52.2 0.12 

Russia 
Permafrost thaw stream 
B 165.8 61.9 0.19 

             

AK, USA 
Soil leachate (Nonacidic 
tundra) Difference in 

DOC over 
incubation 

14 No 4 

Inoculum 
prepared 

from 
unfiltered 
leachate  

Blank of 
inoculum 
added to 
deionized 

water 

117 46 Linear 
(calc. here) 

0.033 

252 AK, USA Soil leachate (Acidic-1) 113 34 0.024 

AK, USA Soil leachate (Acidic-2) 117 36 0.026 
             

AK, USA Permafrost soil leachate 
DOC loss 

entirely due to 
microbial uptake 

8.3 Yes 20 1.6um inoc 
added None 18 53.5 Linear 

(calc. here) 0.064 93 

             

AK, USA 
Kuparuk River (May to 
July average) Difference in 

DOC over 
incubation 

30 No 20 
Filtered to 

GF/F 
(0.7um) 

None 
10 11.3 Linear 

(calc. here) 

0.004 
114 

AK, USA 
Upper Kuparuk River 
(May to July average) 5.6 8.3 0.003 
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AK, USA 
Colville River (May to 
July average) 6.5 13.5 0.004 

AK, USA 
Sagavanirktok River 
(May to July average) 4.0 6.9 0.002 

             
AK, USA Bog leachate 

Difference in 
DOC before and 

after 30d 
30 No 25 

Common 
inoculum 

added 
None 

27.1 27 

Linear 
(calc. here) 

0.009 

78 AK, USA 
Forested Wetland 
leachate 32.1 23 0.008 

AK, USA Fen leachate 14.6 42 0.014 
AK, USA Upland Forest leachate 9.2 29 0.010 

             
AK, USA Bog stream 

Difference in 
DOC before and 

after 30d 
30 No 25 

Common 
inoculum 

added 
None 

17.5 17.5 

Linear 
(calc. here) 

0.006 

253 

AK, USA 
Forested wetland 
stream 18.7 12.6 0.004 

AK, USA Upland forest stream 5.5 22.9 0.008 

AK, USA 
Main-stem stream 
(Peterson Creek) 8.4 16.1 0.005 

AK, USA 
Main-stem stream 
(McGinnis Creek) 1.4 30.1 0.010 

AK, USA 
Main-stem stream (Fish 
Creek) 5.0 19.8 0.007 

             
AK, USA Feniak streams Percent DOC 

loss over time 40 Yes 20 Inoculated None 
3.7 38.1 Linear 

(calc. here) 

0.010 
115 AK, USA Toolik streams 3.1 18.5 0.005 

AK, USA Anaktuvuk streams 13 9.6 0.002 
             

AK, USA 
Outflow - No thermo-
degradation 

DOC drawdown 
after 10 and 40 

days 
40 Yes 20 

Common 
inoculum 

added 
None 

8.7 12.8 

Linear 
(calc. here) 

0.003 

111 
AK, USA 

Outflow - Active 
thermo-degradation 27 40.9 0.010 

AK, USA 
Outflow - Moderate 
thermo-degradation 34 31.8 0.008 

AK, USA 

Outflow - 
Stabilized/limited 
thermo-degradation 

13 
20.6 

0.005 

             
AK, USA C2 Stream 

Loss of DOC 
after incubation 

time 

40 
 No 25 

Glass fibre 
filter added 
to promote 

natural 
assemblage 
of microbes 

None 

3 15.3 

Linear 
(calc. here) 

0.004 

112 

AK, USA C4 Stream 2.9 35.6 0.009 
AK, USA C3 Stream 6.2 4.4 0.001 
AK, USA S-C3a Spring 15 15 0.004 
AK, USA S-C3b Spring 1 46.9 0.012 
AK, USA S-C4a Spring 1.7 35.2 0.009 
AK, USA K1 Thermokarst 37 8.9 0.002 
AK, USA K2 Thermokarst 31 6.8   

             
NT, Canada Upstream Thaw Slump 

Percent loss 
over incubation 

time 
28 No 20 

Filt. To 
0.7um with 
1.2um inoc 
(Upstream) 

None 

11 1.6 
Linear 

(calc. here) 

0.001 

129 NT, Canada Within Thaw Slump 9.0 11.8 0.004 

NT, Canada 
Downstream Thaw 
Slump 12 8.3 0.003 
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Sweden Lake Cumulative 
DOC loss per 
unit time step 

12 No 3.5 
Lake 

Filtered to 
0.7um 

None 

5.82 16.3 

Linear 

0.015 

118 Sweden Fen leachate 8.91 56 0.055 
Sweden Active Layer leachate 11.29 32.5 0.034 
Sweden Permafrost leachate 19.78 21.7 0.023 
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Table 4.2: Initial and final dissolved organic matter (DOM) concentrations for all samples in a 30-day 
microbial incubation experiment.  The biodegradable DOM (BDOM) is calculated as the amount of DOM lost 
during the experiment. Included are the final concentrations of ‘Control’ samples (non-inoculated water) and 
calculation of the minimum microbial contribution to the BDOM value (calculated as the percentage control 
loss subtracted from the percentage total loss).  No control samples were done at Lake Hazen. 

  
Initial 
DOM 

Final 
DOM 

Total Loss 
(BDOM) 

Final - 
Control Control Loss Min. Microbial 

 Hydro. Env. (mg C/L) (mg C/L) (mg C/L) (%) (mg C/L) (%) (%) 
Yellowknife Subsurface 84.2 69.7 14.4 17.1 78.2 7.1 10.0 

 Pond 36.0 32.7 3.3 9.2 33.9 5.9 3.3 
 Creek 15.9 13.9 2.0 12.7 14.7 8.0 4.7 

Daring Lake Subsurface 29.9 28.5 1.5 4.9 28.9 3.7 1.3 
 Creek (DAR 10) 5.1 3.8 1.4 26.5 4.4 13.9 12.7 
 Creek (DAR 8) 7.7 6.8 0.8 11.0 6.9 10.3 0.7 

Lake Hazen Subsurface 5.2 5.2 0.0 0.6 - - - 
 Lake 6.2 5.9 0.3 4.7 - - - 
 Seep 2.5 2.2 0.3 10.8 - - - 

 

Table 4.3: The proportion of total dissolved organic matter (DOM) loss and corresponding initial and percent 
change in DOM composition over the 30-day microbial incubation experiment.  DOM composition measures 
include specific UV-absorbance at 255 nm (SUVA), spectral slope between 275 and 295nm (S275-295), dissolved 
organic carbon to dissolved organic nitrogen molar ratio (DOC:DON), and specific absorption coefficient at 
420 nm (SAC420). 

  DOM Loss SUVA  S275-295  DOC:DON  SAC420  

 Hydro. Env. 
% Initial 

Change 
(%) 

Initial 
Change 

(%) 
Initial 

Change 
(%) 

Initial 
Change 

(%) 
Yellowknife Subsurface 17 7.7 13 1.3E-02 -1.6 56 -57 0.46 78 

 Pond 9.2 7.7 4.5 1.6E-02 1.0 44 -26 0.57 3.9 
 Creek 13 3.9 1.4 2.1E-02 4.2 31 -30 0.24 -9.9 

Daring Lake Subsurface 4.9 9.4 -3.1 1.3E-02 0.7 42 12 0.75 -5.0 
 Creek (DAR 10) 27 4.3 20 1.7E-02 -1.7 21 -21 0.31 34 
 Creek (DAR 8) 11 8.0 2.8 1.4E-02 1.1 29 -5.4 0.67 -3.6 

Lake Hazen Subsurface 0.6 6.7 -5.4 1.5E-02 4.6 28 -31 0.59 -23 
 Lake 4.7 4.3 1.4 2.5E-02 -2.2 28 -20 0.19 46 
 Seep 11 7.2 -1.2 1.6E-02 -3.0 13 0.2 0.58 13 

 

Table 4.4: Calculated linear, 1st-order, and Reactivity-Continuum (RC) model rates (k) with standard error 
(SE). Linear regression and Spearman rank correlations were used to determine the goodness of fit between 
the data and degradation models. RC Model parameters could not be computed for DAR8, Lake Hazen lake, 
and Lake Hazen seep. 

  Linear k 1st-order k Reactivity Continuum Model 

 Hydro. Env. 10-3 (d-1) SE (±) R2 10-3 (d-1) SE (±) R2 α (d) SE (±) v SE (±) Fit Initial k 10-3 (d-1) 

Yellowknife 
Subsurface 6.7 1.3 0.76 7.3 1.4 0.87 11.1 27.0 0.157 0.237 0.92 14.1 
Pond 3.7 0.8 0.58 3.9 0.8 0.87 0.8 0.2 0.026 0.002 1.00 33.9 
Creek 5.0 1.2 0.67 2.5 0.5 0.86 14.0 50.5 0.133 0.313 0.86 9.4 

Daring 
Lake 

Subsurface 1.8 0.3 0.74 1.9 0.3 0.87 9.3 17.1 0.035 0.039 0.91 3.8 
Creek (DAR 10) 9.9 2.3 0.34 11.2 2.5 0.80 0.7 1.4 0.072 0.045 0.93 99.0 
Creek (DAR 8) 3.4 1.1 0.44 3.6 1.2 0.68 -  -  - - 

Lake Hazen 
Subsurface 0.3 0.2 0.07 0.3 0.2 0.39 1.5 9.4 0.003 0.007 0.55 2.0 
Lake 1.3 0.3 0.72 1.3 0.4 0.91 -  -  - - 
Seep 3.4 0.8 0.57 3.6 0.8 0.79 -  -  - - 
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Table 4.5: Matrix of Pearson moment correlation coefficients for dissolved organic matter (DOM), molar 
dissolved organic carbon to dissolved organic nitrogen ratio (DOC:DON), specific ultraviolet absorbance at 
255 nm (SUVA), spectral slope between 275 and 295nm (S275-295), proportion of biopolymers (BP), 
proportion of humic substances (HS), proportion of low-molecular weight neutrals (LMWN), biodegradable 
dissolved organic matter (BDOM), Reactivity-continuum model degradation rate (k – RC), linear degradation 
rate (k – linear), and 1st-order degradation rate (k – first order). Highlighted cells represent significant 
correlations (p<0.05). 

 
DOM 

(mg C/L) DOC:DON SUVA S275.295 SAC420 BP 
(%) 

HS 
(%) 

LMWN 
(%) 

BDOM 
(%) 

BDOM 
(mg C/L) 

k - 
RC 

k - 
linear 

k - first 
order 

DOM (mg 
C/L) 1             

DOC:DON 0.91 1            

SUVA 0.40 0.43 1           

S275.295 -0.42 -0.35 -0.82 1          

SAC420 0.11 0.18 0.94 -0.83 1         

BP (%) -0.09 -0.16 -0.77 0.41 -0.76 1        

HS (%) 0.22 0.25 0.81 -0.48 0.77 -0.98 1       

LMWN (%) -0.11 -0.21 -0.67 0.31 -0.64 0.74 -0.77 1      

BDOM (%) 0.22 -0.02 -0.31 -0.12 -0.36 0.77 -0.70 0.69 1     

BDOM (mg 
C/L) 0.96 0.78 0.23 -0.37 -0.04 0.06 0.06 0.11 0.38 1    

k - RC -0.06 -0.14 -0.37 -0.01 -0.31 0.72 -0.65 0.61 0.78 0.02 1   

k - linear 0.27 0.05 -0.32 -0.13 -0.37 0.78 -0.70 0.67 0.99 0.41 0.81 1  

k - first order 0.27 0.05 -0.19 -0.23 -0.24 0.67 -0.57 0.63 0.95 0.41 0.85 0.96 1 
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Figure 4.1: Locations of sampling sites and corresponding ecoregions in the Northwest Territories, Canada. 
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Figure 4.2: Changes to the overall concentration of dissolved organic matter (DOM; top panel) and 
proportion (bottom panel) over time for different sites. 
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Figure 4.3: Composition wheels for initial (thick line) and final (thin line) dissolved organic matter for 
different samples. Shaded red area means a loss in parameter over the experiment, whereas green represents 
an increase in parameter. Value in the bottom right represents the 1st-order degradation rate constant. 
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Figure 4.4: Degradation rate (top row), biodegradable dissolved organic carbon (BDOC; middle row), and 
proportion of BDOC (bottom row) for different DOM compositional measures: specific UV-absorbance at 255 
nm (SUVA), spectral slope ratio between 275 and 295 nm (S275-295), molar ratio of dissolved organic carbon 
to dissolved organic nitrogen (DOC:DON), and specific absorption coefficient at 420nm (SAC420). Symbols 
represent different hydrological environments while colour represent geographic location. 
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Figure 4.5: Degradation rate (top row), biodegradable dissolved organic carbon (BDOC; middle row), and 
proportion of BDOC (bottom row) for different LC-OCD groups: biopolymers (BP), humic substances (HS), 
and low molecular weight neutrals (LMWN). Symbols represent different hydrological environments while 
colour represent geographic location. 

 

 

Figure 4.6: Percentage of biodegradable dissolved organic matter (BDOM) versus change in different 
compositional parameters after 30-day incubation: specific UV-absorbance at 255 nm (SUVA), spectral slope 
ratio between 275 and 295 nm (S275-295), molar ratio of dissolved organic carbon to dissolved organic 
nitrogen (DOC:DON), and specific absorption coefficient at 420nm (SAC420). 
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Figure 4.7: Percentage of biodegradable dissolved organic matter (BDOM) versus the initial specific ultra-
violet absorbance at 255 nm (SUVA; left) and the overall change in SUVA during an incubation experiment 
(right) for data in this study (coloured) and across literature (grey dots). The literature data does not include 
specific hydrologic categorization (i.e. dot does not represent a creek). 
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Dissolved organic matter (DOM) is an important constituent regulating aquatic health and quality 

of drinking water resources.  For instance, DOM is known to absorb sunlight and regulate thermal 

regimes in surface waters, as well as act as an important microbial nutrient source55,57.  In terms of 

carbon cycling, DOM is an important intermediary in the transfer of terrestrial carbon to the 

atmosphere as a greenhouse gas.  The extent DOM reacts with its surroundings depends upon its 

concentration and composition.  Various organic carbon sources and processes encountered within 

a watershed can influence the mixture of organic molecules that comprise DOM49–51.  Increasing 

surface water DOM concentrations have been observed across the northern hemisphere 89,92 and are 

a concern for treatment of future water supplies102.  However, there is much less information on 

how DOM composition is changing under a warming climate141.  Hence, DOM concentration and 

composition are both important aspects of DOM that influence water quality. 

Northern environments are undergoing vast changes in response to a warming climate that 

directly influences ecosystem function and carbon cycling.  Permafrost degradation, increased mean 

annual air and subsurface temperatures, changes to lake ice, and changes to the timing and form of 

precipitation can alter carbon sources, rates of cycling, residences times, and flow pathways13,15,17–19.  

In particular, large reserves of carbon are currently immobilized within permafrost162,194, yet a 

warming climate, and the resulting environmental consequences, have the potential to release this 

carbon into surrounding surface water systems18,28,29,32.  This is of particular concern for many 

northern communities that rely on surface waters for fish and drinking water supplies as changes 

to the amount and form of DOM impacts ecosystem health and drinking water quality.  Quantifying 

the effects and rates of DOM degradation allow for a better estimation on how quickly these 

changes affect DOM reactivity. 
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Exposure to sunlight drives changes to DOM concentration and composition.  Photo-oxidation of 

DOM results in the production of different, lower molecular weight components or carbon dioxide 

(CO2)87,192,254.  Like any light-absorbing component, DOM absorbs among three spectral bands: 

ultraviolet (UV)-A (315-400 nm), UV-B (280-315 nm) and photosynthetic active radiation (PAR; 400-

700 nm).  Rapid attenuation of UV-radiation within the water column is due to both UV and PAR 

absorbing components255.  Differences in DOM composition result in different amounts of UV 

attenuation within surface waters131 and seasonal changes to DOM composition result in changes to 

DOM photoreactivity256.  For instance, DOM formed from in situ processes (autochthonous) are less 

susceptible to photolysis than terrestrial-derived DOM (allochthonous)84,254.  Aromatic components 

within DOM are the primary absorber of light in surface waters and have traditionally been thought 

to control the susceptibility of DOM to photolytic degradation100,257.  However, recent studies have 

determined that aromatic components control the rate of light absorption rather than predict the 

degree DOM will photo-oxidize when exposed to solar irradiation87,258.  Rates of DOM 

photodegradation are calculated using either 1st-order decay rates236,259 or apparent quantum yields 

that focus on the photoreactions and products formed per absorbed photon87,260.  Further, photolytic 

degradation rates are dependent upon the total amount of irradiation energy received rather than 

the instantaneous intensity 259.  Hence, monitoring DOM composition is important when 

quantifying the susceptibility of DOM to photo-degradation. 

  The degradation of DOM by sunlight is an important driver of DOM fate in northern surface 

waters.  Arctic environments are characterized by large numbers of shallow ponds and lakes that 

act as biogeochemical hotspots3,37,38 and provide ideal settings for photolytic DOM transformation.  

Chromophoric DOM (CDOM), defined as the part of DOM responsible for absorbing UV and PAR 

wavelengths, is more susceptible to photolytic degradation within northern freshwaters due to low 

bacterial respiration rates and the presence of shallow and unshaded surface waters99,113.  For 

instance, photochemical oxidation of DOM accounted for 70 to 95% of DOM processing within 

arctic freshwaters and was much higher than bacterial respiration99.  Although important for 

northern waters, photolysis is less important than microbial degradation on a global scale as a 

driver of CO2 emissions from lakes261.  Photolytic experiments have generally focussed on the 

mineralization of DOM into CO2; however, intermediate, photochemical-transformed products are 

also important as they may act, depending on the microbial community, as labile substrates for 
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microbial mineralization85,99,101.  Hence, surface waters in northern systems are important 

regulators of carbon cycling and drivers of DOM reactivity among these systems. 

A number of studies have quantified the importance of photolysis as a driver of DOM quality and 

fate within changing arctic systems.  Active-layer detachments into surface waters on Melville 

Island, Canada, resulted in DOM with enhanced biological and photolytic lability136.  Further, 

permafrost-leached DOM from Alaska was found to be more susceptible to photo-oxidation than 

DOM leached from the active-layer87.  Conversely, ancient permafrost-derived DOM in Siberian 

streams was not photolabile100.  Photolytic changes to DOM can also influence aquatic health.  

Enhanced photoproduction within high-DOM thaw ponds on Bylot Island, Canada, increased the 

ponds susceptibility to methylmercury photodemethylation262.  Most northern photolytic studies 

have focussed on Siberia100,108, Alaska85,87,99, Sweden261,263,264, and Quebec235,236, with few studies 

focussed on Canada’s vast arctic101,136.  Further, there is a need for temporal studies on DOM 

transformation to better understand the relative importance of different drivers of DOM fate264.  

The importance of photolysis in regulating the fate of northern DOM relies on differences in 

DOM composition.  Northern environments have the added complexity of a rapidly warming 

environment and an abundance of shallow surface waters. Understanding the rate of 

photodegradation would help quantify how quickly DOM changes with photolysis; however, few 

rates have been published especially for much of Canada’s sub-arctic and arctic. The objective of 

this paper was to quantify the rate and change in DOM due to photolysis across different 

hydrologic sites and ecoregions in Canada’s North. This was accomplished through three parts: 1) 

quantify photolytic degradation rates from different sites, 2) determine how photolytic degradation 

influences DOM concentration and composition, and 3) determine whether DOM composition 

influences overall DOM degradation rate. 

 

 

Samples were collected between June and July across three different arctic ecoregions: taiga shield 

(Yellowknife, NT), southern arctic (Daring Lake, NT), and northern high arctic (Lake Hazen 

Watershed, NU; Figure 5.1; Table 5.1).  From each location, bulk surface water was collected from 

the surface (<0.25 m) of creeks, lakes, and ponds, while subsurface water was collected from 
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previously installed PVC piezometers (Yellowknife, YK) or drive-point piezometers (Daring Lake, 

DL, and Lake Hazen, HZ) at the deepest extent of the active-layer (~0.5 m below surface).  Samples 

were filtered in-field to 0.45μm (Whatman GD/X 45mm), kept cool (<4ºC) and dark until the 

experiment could be conducted at the University of Waterloo.  For logistical reasons, Lake Hazen 

experiments were conducted at the field camp. 

Filtered water was placed inside of 3 or 5 L Tedlar bags (SKC Inc., USA) using a 1:1 ratio of water 

to air to ensure enough oxygen was available for DOM oxidation by photolysis.  All bags were 

placed in low-lipped white containers in full sunlight and surrounded, but not submerged, by water 

to minimize temperature fluctuations during the experiment.  ‘Light’ treatments were exposed to 

full sunlight while ‘Dark’ treatments were covered with aluminum foil to observe the final loss of 

DOM over the course of the experiment without sunlight exposure.  Bags were gently agitated each 

day to avoid anoxia and maintain a mixed sample. Samples were either taken before and after the 

experiment (YK) or every few days (DL and HZ), at which point the known volume of removed 

water was replaced with an equal volume of ambient air as to not create any pressure differences 

between air and water.  The amount of visible light over the duration of the experiment was 

quantified using a PAR sensor (HOBO, Hoskin Scientific) logging PAR measurements every 1-5 

minutes.  Cumulative PAR was calculated by averaging the PAR measurements over the logging 

interval, multiplying it by the time step, and adding it to the previous cumulative PAR value. 

Although PAR measurements were taken outside the bag, attenuation of UV-A and PAR by Tedlar 

bags has been shown to be minimal265. 

 

All samples were run for concentrations of dissolved organic carbon (DOC) and total dissolved 

nitrogen (TN) using a Shimadzu Total Organic Carbon (TOC-L) Combustion Analyzer with TNM-1 

module (precision of ±0.3 mg C/L; ±0.3 mg N/L). Dissolved organic nitrogen (DON) was calculated 

as the difference between TN concentration and sum of the inorganic-nitrogen species (nitrate, 

nitrite, and ammonium). Inorganic nitrogen species were measured using a SmartChem 200 

Automated Chemistry Analyzer (NO2
- and NH4

+ precision of ±0.1 mg N/L; NO3
- precision of ±0.15 

mg N/L; Unity Scientific, MA United States). 

Absorbance of DOM was measured using a Cary 100 UV-VIS Spectrophotometer (Agilent, CA 

United States) at 5 nm increments from 200 to 800 nm. Deionized water was used to zero the 
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machine, and run intermittently during analyses to correct for baseline drift. The Naperian 

absorption coefficient (a; m-1) was calculated using:  

𝑎𝜆 =
𝑙𝑛(10) × 𝐴𝜆

𝐿
 

where A is the baseline-corrected absorbance at wavelength λ and L is the cell length (m). Specific 

absorption coefficients at 255 nm (SUVA), 350 nm (SAC350) and 420 nm (SAC420) were calculated by 

dividing aλ by the overall DOM concentration. 

Initial DOM composition was further characterized using liquid chromatography organic carbon 

detection (LC-OCD)75.  Briefly, the sample passed through a size-exclusion column (SEC; Toyopearl 

HW-50S, Tosoh Bioscience) and was separated based on hydrodynamic radii into five hydrophilic 

fractions defined by Huber et al. (2011)75.  Here we compare the proportions high molecular weight 

components (HMW; the humic substances fraction and ‘Building Blocks’) and low-molecular 

weight neutrals (LMWN). The precision for the LC-OCD is less than ±0.09 mg C/L for all fractions.  

Composition Wheels (CW) were used to compare differences in DOM composition over the 

course of the experiment (Chapter 3).  This method creates a polygon from four measures that 

relate to different DOM characteristics.  Values for each parameter were normalized to the 

maximum and minimum values encountered from a larger DOM dataset that encompassed various 

ecoregions across Canada.  The selected measures were DOC:DON (measure of DOM source and 

lability78), S275-295 (molecular size199), SUVA (UV-absorbing components71), and SAC420 (visible 

absorbing components and humics92). These specific measures provide information on different 

aspects of DOM composition, are easily measured, and are commonly used in other studies. 

 

Among northern-based photolytic experiments, the total loss in DOM concentration with 

cumulative irradiation has been used to represent the proportion of photolabile DOM and 

determine photodegradation rates100,101,236. One study defined photolabile DOM to be the difference 

between light and dark treatments, but did not calculate rates108.  Here the proportion of photolabile 

DOM is calculated as the amount of DOM lost within the Light treatment subtracted from DOM lost 

within the Dark treatment.  However, for comparative reasons, rate calculations are determined 

from total DOM loss in Light treatments only.  First-order degradation rates are quantified using 

DOM concentrations from the Light treatments with more than two time points using: 
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𝐷𝑂𝑀

𝐷𝑂𝑀0
= 𝑒−𝑘∙𝑃𝐴𝑅 

where DOM represents the concentration of DOM of a sample (mg C/L), DOM0 is the initial DOM 

concentration, k is the first-order degradation rate constant (m2/E), and PAR is the cumulative PAR 

at that time (E/m2). A 0-order equation was used for samples with only two time points (initial and 

final): 

𝐷𝑂𝑀 = −𝑘 ∙ 𝑃𝐴𝑅 + 𝐷𝑂𝑀0 

The concentration of DOM lost after 500 E/m2 was calculated using the previously calculated linear 

or 1st-order degradation rate constants. This PAR value represented an average amount of solar 

radiation that all samples were exposed and allowed for the comparison of DOM lost to different 

locations with different cumulative PAR exposures. 

Statistical correlations between degradation rates and DOM composition measures were 

calculated using a Spearman rank correlation to better account for outliers and non-linear 

relationships.  All analyses were conducted in  R212. 

 

 

Initial DOM concentrations were highest from subsurface sites at YK and DL and lowest from YK 

and DL creeks and a HZ seep (Table 5.2).  Overall, YK contained higher DOM concentrations than 

either DL or HZ.  The range in DOM concentrations encountered were low at HZ (from 2.3 to 6.1 

mg C/L) compared to either DL or YK.  DOM concentrations at DL and YK were notably higher 

among subsurface sites than any of the surface water sites (Table 5.2).  Differences in DOM 

concentration reflect both a latitudinal gradient, with lower concentrations observed at northern 

sites, and between subsurface and surface water DOM. 

DOM composition varied among and across all three sampling locations (Figure 5.2). YK 

subsurface and pond samples were characterized by high DOC:DON, SUVA, and SAC420, and low 

S275-295.  Creek and river DOM at YK differed from subsurface DOM by having lower SUVA and 

SAC420 and higher S275-295.  Similar compositions between the DL subsurface and creek (DAR8) 

samples were identified by high SUVA and SAC420 compared to the other creek sample (DAR10).  
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DL samples contained lower DOC:DON than YK.  Similar to YK and DL subsurface samples, HZ 

subsurface contained higher SAC420 and SUVA than HZ lake.  HZ lake contained higher S275-295 than 

other HZ DOM, while DOC:DON values were similar across HZ samples.  Seep DOM from HZ 

closely resembled HZ subsurface except for the higher SUVA in seep DOM.  Surface water DOM 

composition varied across all three locations, yet subsurface DOM composition was similar across 

the three locations. 

 

Exposure to sunlight resulted in decreases to DOM concentration across most sites (Figure 5.3).  

Different total cumulative PAR amounts ranged between 290 to 1030 E/m2 as a result of conducting 

experiments in the natural environment rather than a solar simulator.  The highest proportion of 

total DOM loss across all sites was observed in subsurface samples (Figure 5.4).  The proportion of 

total photo-labile DOM ranged from 20-35% in subsurface samples to negligible loss in surface 

waters (Table 5.2).  Little difference in concentration between Light and Dark treatments were 

observed for YK river and all HZ samples, while DL creek (DAR10) concentration did not change.  

Although DOM decreased in the Dark treatments, for most sites photolysis in Light treatments 

generally lead to a greater loss of DOM.  Further, a subset of samples analysed for dissolved 

inorganic carbon (DIC) concentrations indicated higher DIC in the photolysed sample than either 

the original or dark (Appendix C).  Hence, changes to DOM concentration and composition are 

related to the influence of photolysis. 

Across all sites, subsurface samples contained higher 1st-order photolytic degradation rates than 

surface waters. Although all samples could be compared using linear degradation rates, with 

highest rates found from subsurface DOM (Table 5.3), photolysis is best represented using a 1st-

order rate equation.  Linear rates would over-calculate DOM loss at higher cumulative PAR values.  

Highest 1st-order DOM degradation rate constants were observed from DL subsurface (1.7 x10-3 

m2/E) and creek (9.6 x10-4 m2/E) and lowest from HZ surface waters (Table 5.3; Figure 5.4).  Similar 

photolytic degradation rates were found between YK and HZ subsurface samples. Comparing 1st-

order degradation to initial DOM composition identified strong relationships but no statistical 

significance with any compositional metric (Figure 5.5).  High 1st-order rates were observed from 

DOM with high values of SUVA and SAC420 or low S275-295.  Across all sites, subsurface DOM 

characteristics resulted in higher 1st-order photolytic degradation rates.  
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The amount of cumulative irradiation was normalized to compare the amount of DOM lost 

during photodegradation across sites.  The proportion of DOM lost after 500 E/m2 ranged between 

3.7 to 19% for most samples, except for DL samples that contained the highest proportions 

(subsurface: 58%; DAR8: 38%).  Higher DOM amounts were lost from sub-arctic subsurface DOM 

after 500 E/m2 (between 11.5 and 17.7 mg C/L; Table 5.3) while lower concentrations were lost from 

a YK river (0.2 mg C/L) and both HZ surface waters (lake: 0.5 mg C/L ; seep: 0.3 mg C/L).  

Comparison of initial DOM composition with proportion of DOM loss found strong, statistically 

significant correlations with S275-295 (ρ: -0.618, p=0.05), SUVA (ρ: 0.664, p<0.05) and SAC420 (ρ: 0.645, 

p<0.05), but no correlation with DOC:DON (Figure 5.6).  Size-based chromatography did not result 

in significant relationships between proportion loss and either HMW or LMW components, but a 

greater proportion loss was found from samples with high HMW DOM (Figure 5.7).  A similar 

result was observed between 1st-order rates and HMW and LMWN proportions, with higher rates 

associated to DOM with higher HMW proportions.  Thus, initial DOM composition can be used to 

predict the proportion and rate of DOM lost to photolysis. 

Photolysis resulted in similar changes to the overall composition of DOM across all sites.  Dark 

treatment samples contained compositions more similar to the original composition than the Light 

treatment, indicating changes to DOM due to photolytic degradation.  Final compositions had lower 

DOC:DON, SUVA, and SAC420, and higher S275-295 than initial compositions (Figure 5.8).  Similarities 

in the final DOM composition were observed among HZ samples, DL creek (DAR10), YK creek, and 

YK river.  These samples had high S275-295 and low SUVA and SAC420.  The effect of photolysis was 

similar across a variety of DOM compositions from different sites.  In some cases, photodegradation 

resulted in similar final DOM compositions regardless of initial DOM amount or composition. 

 

 

A number of samples with different DOM compositions all responded similarly to photolysis.  For 

instance, a suite of complementary measures simultaneously shifted towards a unique composition: 

increased spectral slope indicating loss of large, UV-absorbing components with a decrease to 

DOC:DON ratios (Figure 5.8).  Similarly, photolytic incubations of DOM from Southern Ontario 

surface waters266, boreal forest267, tundra thaw ponds101, and a Siberian river underlain by 
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continuous permafrost108 resulted in a decrease to terrestrial-derived humics, aromatics, and CDOM 

components, and an increase in protein-like fluorescence and LMW components.  Data from this 

study illustrates how photolysis results in predictable changes to DOM composition, regardless of 

initial composition, that results in a reduction to both the amount and heterogeneity of DOM 

within the environment. 

Sampling along a latitudinal gradient encompassed sites that were quite different in terms of 

vegetation and terrestrial sources of DOM.  However, as discussed earlier in Chapter 3, DOM 

composition is not that different across locations (i.e. subsurface looks like subsurface; Figure 5.2).  

In particular, subsurface sites contained a unique compositional signature across all locations, 

identified by higher compositional metrics than surrounding surface water DOM, and contained the 

most photo-labile components.  These environments form humic and aromatic terrestrial 

components that are light-sensitive84,136,254 contributing to higher concentrations of photo-labile 

DOM when exposed to light.  Although the high photolability of subsurface or terrestrial DOM has 

been observed in other northern systems136,209,263, we further show how surface water DOM with 

terrestrial-like signatures result in higher rates and proportions than other surface waters. For 

instance, YK pond, DL creek (DAR8), and HZ seep are similar to their respective subsurface DOM 

and were more photolytically labile than nearby surface water DOM (Figure 5.8).  Thus, we are able 

to characterize specific compositional metrics that relate to the degree of DOM photo-lability 

observed among different environments. 

 

A number of cumulative factors affect the overall rate of photolytic degradation within surface 

water systems.  Hydrology (such as mixing, surface water depth, and residence time), irradiation 

intensity (clouds and latitude), other suspended or dissolved constituents influencing attenuation 

coefficients (such as particulate matter or iron), and the amount and form of CDOM can all affect 

DOM photodegradation84,113.  Hence, experimentally derived rates of DOM decomposition may 

differ than what is actually found within the environment.  Although these factors were not in the 

scope of this study, our objective was to quantify the rate and interaction between photolysis and 

DOM composition, assessing how intrinsic properties regulate or alter photolability across northern 

sites. 
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Quantifying degradation rate and proportion of photo-labile DOM in this study provided data for 

an area of the circumpolar north underrepresented in the literature.  Photolytic degradation rates 

are important to determine as they can be used to better predict the response of DOM and refine 

carbon flux estimates under various future climate scenarios.  The variability among subsurface and 

surface water 1st-order degradation rate constants (4x and 6x, respectively) provide a possible range 

of values to be used to model photolytic degradation in these systems.  Comparison of our results 

with reported values elsewhere are difficult due to differences in experimental design, such as use 

of natural sunlight versus solar simulators, or the amount of total irradiation.  Calculation of a 

photo-labile yield (the concentration of photo-labile DOM divided by the cumulative irradiation) 

across studies indicate lower yields from samples in this study compared to others (Table 5.4).  

Thus, DOM from these sites contain lower proportions of photo-labile components compared to 

other northern sites, but still exhibit some degree of photolability with degradation constants 

within a relatively constrained range. 

Photolysis can alter the composition of DOM with little influence on the overall DOM 

concentration, as was observed in DOM from HZ and a DL creek (Table 5.2; Figure 5.3).  For 

instance, DAR10 had little decrease in DOM concentration but its final composition reflected photo-

processing through increased spectral slope and decreased DOC:DON and SUVA values (Figure 5.8). 

Similarly, significant losses to UV-absorbing components with no change in fulvic and humic 

concentrations were observed during photolytic degradation of Alaskan stream and lake DOM268, 

while changes to CDOM were greater than changes in overall DOM concentration within Canadian 

thaw ponds101.  Further, photochemical processes were unimportant in terms of DOM cycling 

within an estuary along the Texas coast due to the lack of absorbing components and greater 

importance of biological processes within the system269.  Such changes are thought to result from 

photolytic changes to larger molecules without fully mineralizing these products into CO2
209.  

Stubbins et al.100 found photo-modification of permafrost DOM to occur with little loss to DOM 

concentration, suggesting photo-induced cleaving of aromatics into non-coloured, non-aromatic 

DOM.  Changes to DOM composition that occur independently of its overall concentration 

highlight the importance of monitoring DOM characteristics that directly influence DOM quality 

and reactivity across the aquatic continuum. 
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Rates of photolytic degradation can be compared to microbial rates from Chapter 4 to elucidate the 

relative importance of these two drivers of DOM fate.  Although the rate constants contain different 

units, the proportion of DOM remaining after photolytic or microbial degradation can be compared 

after 30 days (Table 5.5).  Average daily PAR values for YK and DL were assumed to be 39.5 E/(m2·d) 

(eight year average from May to August at Daring Lake270) and 28 E/(m2·d) for HZ (ocean near 

south-eastern Ellesmere Island271).  Over the month, photolysis plays a greater role degrading and 

altering DOM composition.  However, attenuation of UV and PAR within the water column could 

alter the amount of processing within coloured or deep surface waters, altering the amount of DOM 

available for photolysis.  These experiments provide a way to quantify the impact of each 

degradation pathway separately, but in reality there is likely interplay between the two.  For 

instance, photolysis produces more labile components that would enhance microbial 

degradation85,101.  Regardless, these rates allow for the comparison of different drivers of DOM fate 

across a variety of DOM compositions. 

Although location was more important for microbial degradation than initial DOM composition 

(Chapter 4), we find DOM composition to be important for photolytic lability.  Similar changes in 

DOM composition were observed across locations and the proportion of DOM loss was predicted by 

initial SUVA or SAC420 values (Figure 5.6).  Further, not all metrics respond the same way and 

specific indicators of processing can be identified based on differences to the change in DOM 

composition.  Decreases to SUVA and SAC420 during photolysis are opposite to microbial-induced 

changes to DOM composition.  Further, S275-295 only responded to photolytic degradation, indicating 

that these measures are useful indicators of processes.  These results highlight the use of certain 

DOM composition metrics to discern processing history. 

DOM concentrations represent the largest difference among sites and can be important when 

considering carbon export.  The circumpolar north contributes large amounts of organic carbon to 

the Arctic Ocean relative to all other basins272.  Hence, the degree of processing among the 

terrestrial landscape will dictate organic carbon fate and reactivity in the ocean.  Our results found 

similar losses in the amount of DOM (after 500 E/m2) between hydrologic sites across geographic 

locations (Table 5.3); however, this loss comprised much more of a significant proportion of DL 

subsurface DOM than at YK.  The high arctic subsurface had comparable 1st-order degradation rates 

as YK subsurface DOM, yet the low overall loss in DOM concentration (between 0.4 and 1.1 mg C/L) 
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may make it a minor influence for downstream systems.  In terms of carbon export and cycling, 

subarctic and low arctic sites contain higher proportions of photo-labile carbon than the high arctic. 

The impact of changing DOM sources or solar UV radiation upon the environment are complex 

and can have significant and uncertain effects upon the fate of DOM in northern systems33,273.  

Coloured DOM has been observed to preferentially degrade in sunlight225,274; however, this is not 

always the case and may depend upon whether the system is dominated by ‘brown water’ or ‘clear 

water’ regimes264.  Dark water colour among certain Swedish lakes were found to be consistent 

across a seven-year record as CDOM-removing processes were too slow to result in measurable 

declines in water colour, suggesting some regimes may remain ‘brown’.  Alternatively, clear-water 

regimes were found in lakes where photochemical processing led to significant decreases in DOM 

and CDOM264.  The ability to predict how drivers of degradation alter DOM composition becomes 

increasingly important to quantify as the subsequent impact upon water transparency negatively 

affects fish, thermal regimes, and other important ecosystem processes that impact aquatic 

health55,56,275. 

A similar hypothesis proposed by Cory et al.113 focussed on ‘process’ rather than ‘regime’, finding 

photolytic loss of DOM to reflect either light-limited systems (high CDOM concentrations or low 

light exposure) or substrate-limited systems (high photolability or low CDOM concentrations).  Our 

results support this hypothesis as high concentrations and little change to the overall molecular 

weight of UV-absorbing constituents, as defined by S275-295, suggested YK and DL subsurface DOM 

may represent light-limited systems with high CDOM concentrations (Figure 5.8).  Conversely, YK 

creek, river and all HZ samples support substrate-limited systems due to large changes to DOM 

composition and low initial water colour.  Linking DOM composition with ecosystem functioning 

provides information on how these systems will respond to changing landscape drivers141.  Hence, 

characterizing DOM composition can help predict the susceptibility of a watershed to a changing 

climate in terms of DOM evolution and water clarity. 

 

A uniform response in DOM composition to photolysis was observed across all sites and was 

comparable to photolytic-induced changes to DOM reported in literature elsewhere.  In general, 

reductions in DOM concentration due to photolysis resulted in decreases to the molecular weight of 

UV-absorbing components, regardless of differences in initial DOM composition and concentration.  
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First-order photolytic degradation rates ranged from 1.6x10-4 m2/E in DOM from a high arctic lake 

to 1.7x10-3 m2/E in DOM from the tundra subsurface.  Initial DOM composition is an important 

determinant for the proportion of DOM loss due to photolysis.  Not all metrics respond the same 

way, with decreases to SUVA and SAC420 representing sensitive indicators of photolysis. However, 

compositional measures could not provide statistically-significant relationships to 1st-order 

degradation rate constants.  These results highlight how DOM with different compositions respond 

to photolytic degradation across a variety of ecoregions.  Differences in the magnitude of change 

among samples support the occurrence of light or substrate based systems that identify the 

dominant drivers of DOM fate within northern surface waters.  Quantifying the range in 

photodegradation rates with a suite of DOM characterization methods evidences the similarity in 

DOM response to photolytic degradation across different ecoregions in Canada’s arctic and the use 

of specific measures, such as SUVA, S275-295, and SAC420, to discern between different degradation 

processes. 
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Table 5.1: Site descriptions for each sample used in the photolytic experiment. 

Location Site Characteristics Sample Info 

Yellowknife 

62° 27’ 14”N, 114° 22’ 18”W; Taiga Shield High 
Boreal, landscape characterized by Precambrain 

bedrock outcrops, glaciolacustrine sediments, and 
peat plateaux; mean annual precipitation between 
280-360 mm; mean annual temperature between -3 

to -6C; trees consist of jack pine and aspen; 
underlain by sporadic discontinuous permafrost 

Subsurface 1 
(P2) 

~0.89 m.b.g.s; located ~40m away from 
Pond 

Subsurface 2 
(P5) 

~0.27 m.b.g.s; located ~40m away from 
Pond 

Pond 10300m2; surrounded by peat plateaux 

Creek 
Baker Creek, drains series of lakes on 
Taiga Shield 

River Yellowknife River, drains chain of 
lakes on Taiga Shield 

    

Daring 
Lake 

64° 31’ 29”N, 111° 40’ 24”W; Tundra Shield Low 
Arctic; mean annual precipitation 201-300mm; 
mean annual temperature -9 to -12C; fractured 

Precambrian granite and sedimentary bedrock with 
small eskers and erratics; above treeline, mesic 

heath upland to moist shrub lowland, underlain by 
continuous permafrost 

Subsurface Esker Lakes Basin 

Creek 1 
(DAR8) 

Peregrine Basin inflow to Daring Lake, 
longer lower section of lateral flow 
through shrub/meadow adjacent areas 

Creek 2 
(DAR10) 

Raven Basin inflow to Daring Lake, 
upland and topography, less organic 
plateaus and more exposure/retention 
in lakes 

    

Lake Hazen 

81° 49’ 30”N, 71° 19’ 26”W; Polar desert; bedrock 
consists of calcareous and dolomitic sandstone with 

igneous intrusions within the Grant Land 
Mountains; mean annual precipitation of <150mm; 
mean annual temperature -20ºC; heavily glaciated 

dominated landscape that also contains small, 
productive subcatchments in a thermal oasis; 

continuous permafrost 

Subsurface 
~0.25 m.b.g.s; productive meadow, 
underlain by mineral-rich sediment, 
next to 'Lake' 

Lake 14,400 m2 and 4.5m maximum depth; 
samples taken near shore 

Seep 
Seasonal spring at relatively high 
elevation; flows out from rock talus 
slope 

 

  



 

82 

Table 5.2: Changes in dissolved organic matter (DOM) concentration for the samples exposed to light (‘Final-
Photo’) and those that were not (‘Final-Dark’).  Calculation of photolabile DOM included the difference 
between light and dark treatments.  Included are the amount of cumulative photosynthetic active radiation 
(PAR) for each sample. 

  
DOM Total Loss Photolabile Cumulative 

PAR 
Location Sample Initial Final - Photo Final - Dark Prop. of DOM Prop. of DOM E/m2 

Yellowknife 

Subsurface 1 (P2) 83.6 58.3 75.2 30% 20% 1030 
Subsurface 2 (P5) 72.6 59.6 74.9 18% 21% 1030 
Pond 36.8 31.2 - 15% - 514 
Creek 15.6 12.8 - 18% - 514 
River 5.03 4.65 4.81 8% 3% 1030 

Daring 
Lake 

Subsurface 30.4 18.5 29.1 39% 35% 290 
Creek 1 (DAR8) 7.61 5.76 7.82 24% 27% 290 
Creek 2 (DAR10) 4.80 4.98 5.02 -4% 1% 290 

Lake Hazen 
Subsurface 5.28 4.17 4.39 21% 4% 619 
Lake 6.05 5.44 5.41 10% -1% 619 
Seep 2.29 1.93 2.06 16% 6% 619 

 

Table 5.3: Calculated linear and 1st-order degradation rates with standard error (SE) and model fit results. 
The loss in dissolved organic matter (DOM) after 500 E/m2 of irradiation is based on previously calculated 
degradation rates. Linear rates are used to calculate the loss after 500 E/m2 for those samples without 1st-order 
rates. 

  Linear k 1st-order k Loss after 500 E/m2 

Location Sample m2/E SE (±) R2 m2/E SE (±) Fit 
mg 
C/L Prop. of DOM 

Yellowknife 

Subsurface 1 (P2) 3.0E-02 3.0E-03 0.95 4.2E-04 3.3E-05 0.97 15.8 19% 
Subsurface 2 (P5) 1.3E-02 - - - - - 6.31 8.7% 
Pond 1.1E-02 - - - - - 5.45 15% 
Creek 5.5E-03 - - - - - 2.73 17% 
River 3.7E-04 - - - - - 0.18 3.7% 

Daring 
Lake 

Subsurface 4.3E-02 2.9E-03 0.98 1.7E-03 5.6E-05 0.99 17.7 58% 
Creek 1 (DAR8) 6.4E-03 1.0E-04 0.99 9.6E-04 6.4E-06 0.99 2.89 38% 
Creek 2 (DAR10) -4.3E-04 4.2E-04 0.53 - - - -0.21 -4.4% 

Lake Hazen 
Subsurface 2.0E-03 1.5E-04 0.94 4.2E-04 3.4E-05 0.97 1.00 19% 
Lake 9.4E-04 3.2E-05 0.99 1.6E-04 6.1E-06 0.99 0.47 7.8% 
Seep 6.1E-04 3.8E-05 0.97 2.9E-04 1.9E-05 0.98 0.31 13% 

 

  



83 

Table 5.4: Percentages of total dissolved organic matter (DOM) from this study (Yellowknife (YK), Daring Lake (DL), Lake Hazen (HZ)) compared to published 
values in other northern environments.  Photolabile concentrations were included in brackets (calculated as loss of DOM in dark subtracted from the light 
treatment and divided by the initial DOM concentration). Only Mann et al. (2012) calculated photolabile DOM in a similar manner. Included are the methods 
of photolytic degradation, total amount of irradiation the sample received, and photolabile yield (the concentration of DOM lost divided by the total amount of 
irradiation).  Yields were not calculated for Mann et al. (2012) and Vachon et al. (2017) due to insufficient information. 

Location Hydro 
Initial DOM 

(mg C/L) 
DOM Loss 

(%) 
Photolysis 

Method 
Amount of 
Irradiation Units 

Photolabile 
Yield Reference 

YK 

Subsurface 1 (P2) 83.6 30 (20) Natural sunlight 1030 E/m2 1.6E-02 

This Study 

Subsurface 2 (P5) 72.6 18 (21) Natural sunlight 1030 E/m2 1.5E-02 
Pond 36.8 15 Natural sunlight 514 E/m2 - 
Creek 15.6 18 Natural sunlight 514 E/m2 - 
River 5.0 8 (3) Natural sunlight 1030 E/m2 1.5E-04 

DL 
Subsurface 30.4 39 (35) Natural sunlight 290 E/m2 3.7E-02 
Creek 1 (DAR8) 7.6 24 (27) Natural sunlight 290 E/m2 7.1E-03 
Creek 2 (DAR10) 4.8 -4 (1) Natural sunlight 290 E/m2 1.4E-04 

HZ 
Subsurface 5.3 21 (4) Natural sunlight 619 E/m2 3.5E-04 
Lake 6.1 10 (-1) Natural sunlight 619 E/m2 -5.7E-05 
Seep 2.3 16 (6) Natural sunlight 619 E/m2 2.1E-04 

Siberia 

Permafrost Thaw Stream 3 -3 Solar Simulator 6 E/m2 -1.6E-02 

100 
Stream (Y3) 24.4 40 Solar Simulator 6 E/m2 1.7E+00 
Stream (Y4) 21.4 28 Solar Simulator 6 E/m2 1.0E+00 
Pantileikha River 12.1 31 Solar Simulator 6 E/m2 6.6E-01 
Kolyma River Mainstem 4.8 26 Solar Simulator 6 E/m2 2.2E-01 

Kolyma River Main 8.6 to 13.9 12.2 to 29.9* Natural sunlight 14 days - 108 

Quebec 
Lac Simoncouche 6.3 12 Solar Simulator 1000 KJ/m2 - 

236 Chicoutimi 8.2 30 Solar Simulator 1500 KJ/m2 - 
Abitibi 11.1 21 Solar Simulator 2550 KJ/m2 - 

Bylot 
Island 

BYL1 8.5 3 Natural sunlight 0.119 E/m2 2.1E+00 101 BYL38 13.1 -4 Natural sunlight 0.119 E/m2 -4.4E+00 
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Table 5.5: Comparison of photolytic degradation rates with microbial degradation rates calculated in Chapter 
4 and the proportion of DOM remaining after 30 days of photolytic or microbial degradation. Average daily 
photosynthetic active radiation (PAR) values for Yellowknife and Daring Lake were assumed to be 39.5 E/(m2 
d) (eight year average from May to August at Daring Lake270) and 28 E/(m2 d) for HZ (ocean on south-eastern 
Ellesmere Island271). 

  Photolysis  Microbial  PHOTOLYSIS MICROBIAL 

Location Sample 
Linear 
(m2/E) 

1st Order 
(m2/E) 

 Linear (d-1) 
1st Order 

(d-1) 
 Prop. After 30d Prop after 30d 

Yellowknife 

Subsurface 1 
(P2) 3.0E-02 4.2E-04 

 6.7E-03 7.3E-03  0.61 0.80 
Subsurface 2 
(P5) 1.3E-02 -  - -  0.79* - 
Pond 1.1E-02 -  3.7E-03 3.9E-03  0.65* 0.89 
Creek 5.5E-03 -  5.0E-03 2.5E-03  0.59* 0.93 
River 3.7E-04 -  - -  0.91* - 

Daring 
Lake 

Subsurface 4.3E-02 1.7E-03  1.8E-03 1.9E-03  0.13 0.95 
Creek 1 
(DAR8) 6.4E-03 9.6E-04  3.4E-03 3.6E-03  0.32 0.90 
Creek 2 
(DAR10) -4.3E-04 -  9.9E-03 1.1E-02  1.11* 0.72 

Lake Hazen 
Subsurface 2.0E-03 4.2E-04  3.4E-04 3.5E-04  0.70 0.99 
Lake 9.4E-04 1.6E-04  1.3E-03 1.3E-03  0.87 0.96 
Seep 6.1E-04 2.9E-04  3.4E-03 3.6E-03  0.79 0.90 

*Linear photolytic degradation rate used 
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Figure 5.1: Locations of sampling sites and respective ecoregion 276 

 

 

Figure 5.2: Initial dissolved organic matter (DOM) Composition Wheel for all samples. Each axis is 
normalized for the maximum and minimum value for each parameter: molar DOC:DON, slope from 275 to 
295nm (S275), specific UV-absorbance at 255nm (SUVA), and specific absorption coefficient at 420nm 
(SAC420). Colours represent different hydrological environments. 

 

 



 

86 

 

Figure 5.3: The change in dissolved organic matter concentration (mg C/L) over cumulative photosynthetic 
active radiation (PAR; E/m2) for each site. 

 

 

Figure 5.4: The proportion of dissolved organic matter remaining with increasing cumulative photosynthetic 
active radiation (PAR) for each site. 
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Figure 5.5: Comparison of samples with 1st-order degradation rates to different measures of dissolved organic 
matter composition: a) molar DOC:DON, b) specific UV-absorbance at 255nm (SUVA), c) spectral slope 
between 275 and 295nm (S275), and d) specific absorption coefficient at 420nm (SAC420). Different shapes 
correspond to different hydrological environments, while different colours refer to geographic location. 
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Figure 5.6: Comparison of the proportion of dissolved organic matter (DOM) loss after a set irradiation 
amount (500 E/m2) with initial DOM composition: a) molar DOC:DON, b) specific UV-absorbance at 255nm 
(SUVA), c) spectral slope between 275 and 295nm (S275), and d) specific absorption coefficient at 420nm 
(SAC420). Different shapes correspond to different hydrological environments, while different colours refer to 
geographic location. 
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Figure 5.7: Comparison of the proportion of DOM loss after 500 E/m2 (top graph) and 1st-order degradation 
rate (lower graph) for size-exclusion chromatography determined proportion of high molecular weight 
(HMW) and low-molecular weight (LMWN) components of dissolved organic matter. Different shapes 
correspond to different hydrological environments, while different colours refer to geographic location. 
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Figure 5.8: Composition Wheels for each sample representing the initial composition (black), light treatment 
(orange) and dark treatment (blue). Dissolved organic matter composition is represented by molar DOC:DON, 
slope from 275 to 295nm (S275), specific UV-absorbance at 255nm (SUVA), and specific absorption coefficient 
at 420nm (SAC420). Each axis is normalized for the maximum and minimum value for each parameter. 
Yellowknife subsurface 1, pond, and creek did not contain ‘Dark’ treatments.  
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Dissolved organic matter (DOM) is a ubiquitous component across aquatic systems and an 

important factor influencing drinking water treatment and quality.  For instance, DOM influences 

drinking water taste, colour, and odour, and can stimulate microbial growth within water 

infrastructure65.  DOM is comprised of thousands of different organic molecules with differing 

structural and chemical characteristics that determine its overall reactivity.  Differences in organic 

source, residence time, and environmental processing can alter DOM reactivity along the aquatic 

continuum38,80,202, which can have an effect on drinking water treatment options, cost, and overall 

water quality.  Although Canadian guidelines do not state a maximum acceptable concentration for 

DOM, provincial governments have set specific concentrations for aesthetic values (between 2 to 5 

mg C/L) to maintain water colour, taste, and odour59,277.  However, DOM can react with other 

substances to form more toxic and problematic compounds. 

Organic matter can react with chlorine, a common disinfectant used in water treatment, to form 

various carcinogenic disinfection by-products (DBP)278,279.  DBP are commonly found within water 

treatment plants, with new and more toxic DBP being discovered as technology advances and 

detection limits improve280–284. Disinfection by-products encompass thousands of different 

compounds, some more carcinogenic than others, making it difficult to measure and regulate every 

known compound.  Thus, DBP are generally quantified and regulated using concentrations of the 

two most common groups: trihalomethanes (THM) and haloacetic acids (HAA).   

In terms of water treatment, DOM concentration has previously been used to predict DBP 

formation and chlorine addition285.  However, the reactivity between DOM and chlorine depends 

upon both the concentration and composition of DOM.  Seasonal changes to DOM composition 

result in varying THM concentrations286, while differences in DOM composition influence DBP 

formation rates287,288.  Quantifying variations in DOM composition found within the environment 
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could help identify waters susceptible to forming higher DBP concentrations.  Complex models 

have incorporated various components of DOM (UV-absorbance, fluorescence, and apparent 

molecular weight) to identify DOM precursors of THM formation68.  Low molecular weight (LMW) 

and UV-absorbing components of DOM can both be important for DBP formation287,289–292.  

Although UV-absorbing methods are popular, they do not account for DBP precursors with low-UV 

absorbing properties that can also be important predictors of DBP formation71,293.  Hence, DOM 

composition and the processes that alter DOM play an important role regulating DBP formation 

within water supplies. 

Shallow surface waters are a characteristic feature of arctic environments and act as important 

drinking water resources for many northern communities.  In particular, communities across the 

Northwest Territories (NT), Canada, rely primarily upon surface waters for drinking water sources.  

Three of thirty water treatment plants use only chlorination as their primary treatment option, 

while the majority of water treatment systems are Class I and II, and seven communities relying on 

Small Systems294.  Some communities rely on the use of water trucks to transport chlorinated water 

into large storage tanks within personal residences.  Although residual chlorine within treated 

water is required to ensure safe drinking water standards, there is a preference for non-chlorinated 

water in many northern communities, which in itself carries a risk of gastrointestinal illness295,296.  

Water treatment and storage within the NT involves various environmental, economical, and 

societal influences that may be exacerbated by a changing climate.     

Changes to hydrological processes and carbon cycling can alter DOM concentration and 

composition among northern surface waters.  Within the NT there is the potential for increasing 

active-layer thickness and permafrost thaw to mobilize large stores of previously-frozen carbon, 

solutes, and nutrients into surrounding surface waters132.  Increased surface water DOM 

concentrations have been observed across the northern hemisphere and are linked with increased 

terrestrial contributions34,297,298.  There is concern regarding changes to the amount and form of 

DOM within drinking water sources and its impact upon future water treatability102,298, especially in 

northern communities299–301.  Enhanced terrestrial DOM in surface waters could alter the amount of 

humics or UV-absorbing components, both thought to result in higher DBP formation.  As various 

drivers of DOM fate can have different influences on DBP formation302, it is important to better 

understand the relationship between DOM and DBP formation, providing better predictive abilities 

for northern water security. 
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The relationships between DOM composition, disinfection demand, and DBP formation are 

important when considering drinking water treatment options.  As a warming arctic may rapidly 

alter DOM sources and fate, simple characterization techniques that are able to predict DOM-DBP 

reactivity becomes increasingly important for monitoring changes to DOM within remote 

communities.  The overall objective of this study was to quantify how DOM composition relates to 

DBP formation across various hydrological sites in the NT.  This was accomplished with two 

specific objectives: 1) use NT water treatment plant records to assess the prevalence and range of 

DOM and DBP across NT communities, and 2) determine how differences in DOM compositional 

measures relate to concentrations of DBP (both THM and HAA).  Further, the impact of DOM fate 

and DBP formation was assessed using 30-day microbial and 12-day photolytic degradation 

experiments. 

 

 

Public water quality records for NT water treatment plants were obtained from online records 

found from the Government of Northwest Territories Water Quality Database 

(www.nwtdrinkingwater.ca/operations/water/water_raw.asp).  Samples were collected from various 

locations, including water treatment plants, water trucks, and local water taps (i.e., schools, hamlet 

offices, hotels; Appendix D).  Measures compiled were True Colour, DOM concentration, and THM 

concentration.  As no consistent data were available for the individual THM species concentration 

to convert to mg-C/L, the summation of THM species are in μg/L.  Data were sporadic but spanned 

from 1994 to 2015 for 31 water treatment systems.  Values outside of 1.5x the interquartile range for 

THM and DOM data were removed from the original dataset as major outliers were observed when 

compiling the data (i.e., THM of 60 mg/L). 

 

Samples were collected between July and October 2013 to 2016 from surface and subsurface waters 

across three locations in the NT: Yellowknife (YK), Wekweètì (WK), and Daring Lake (DL) (Figure 

6.1; Appendix D).  Yellowknife and Wekweètì are situated on taiga shield and are found in 

discontinuous and sporadic continuous permafrost zones, respectively.  Daring Lake is situated 

above the treeline in the southern arctic ecoregion, underlain by continuous permafrost.  Surface 

http://www.nwtdrinkingwater.ca/operations/water/water_raw.asp
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water samples were collected ~0.25 m from the surface and filtered in the field.  All subsurface 

samples were collected from the deepest extent of the active layer above the permafrost boundary 

using either pre-installed PVC piezometers 0.50 m below surface (YK) or drive-point piezometers 

installed 0.25 to 0.50 m below surface (WK and DL).  Piezometers were purged by three pore 

volumes prior to sampling and water collected using a peristaltic pump.  All samples were filtered 

to 0.45 μm into pre-rinsed, acid-washed glass vials and kept cool (<4ºC) and dark until further 

analyses. 

 

 

Concentrations of DOM (as dissolved organic carbon) and total nitrogen (TN) were measured using 

a Shimadzu Total Organic Carbon (TOC-L) Combustion Analyzer with TNM-1 module (precision of 

±0.3 mg C/L; ±0.3 mg N/L). Inorganic nitrogen species (nitrite, nitrate, and ammonium) were 

analyzed using a SmartChem 200 Automated Chemistry Analyzer (NO2
- and NH4

+ precision of ±0.1 

mg N/L, precision NO3
- of ±0.15 mg N/L; Unity Scientific, MA United States).  Dissolved organic 

nitrogen was calculated as the difference between TN and the sum of inorganic nitrogen species 

and used to calculate molar DOC:DON.  DOM absorbance was measured using a Cary 100 UV-VIS 

Spectrophotometer (Agilent, CA, United States) at 5 nm increments between 200 to 800 nm. 

Deionized water was used to zero the machine, and run intermittently during analyses to correct 

for baseline drift. The Naperian absorption coefficient (a; m-1) was calculated using:  

𝑎𝜆 =
𝑙𝑛(10) × 𝐴𝜆

𝐿
 

where A is the baseline-corrected absorbance at wavelength λ and L is the cell length (m). Specific 

absorbance at 255 nm (SUVA) was calculated by dividing the absorption coefficient at 255 nm by 

the overall DOM concentration.  The slope (S275-295) of the log-transformed absorption coefficients 

was measured between 275 and 295 nm and is inversely related to molecular weight199.  DOM 

composition was also characterized using size exclusion chromatography (Liquid Chromatography 

– Organic Carbon Detection, LC-OCD75) run in the Department of Civil and Environmental 

Engineering, University of Waterloo. Briefly, the sample was diluted to within 1 to 5 mg C/L and 

injected through a size-exclusion column (SEC; Toyopearl HW-50S, Tosoh Bioscience) that 

separated DOM based on hydrodynamic radii into five hydrophilic fractions (from largest to 
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smallest): biopolymers (BP; polysaccharides or proteins), humic-substances like fraction (HSF; 

humic and fulvic acids), building blocks (BB; lower weight humic substances), low molecular weight 

neutrals (LMWN; aldehydes, small organic materials), and LMW-acids (LMWA; saturated mono-

protic acids).  Composition Wheels (CW) were used to compare differences in DOM composition, 

which uses four independent measures of composition (Chapter 3).  Each scale represented a 

measure of composition and normalized based on the maximum and minimum values encountered 

from a larger dataset encompassing various ecoregions across Canada. 

 

All disinfection by-product analyses were conducted at the Clean Water Laboratory, Civil and 

Resource Engineering, at Dalhousie University using Standard Methods for the Examination of 

Wastewater Method 5710 and HACH Method 8021.  Samples were first diluted to a range between 1 

to 10 mg C/L to obtain acceptable levels of chlorine addition and DBP formation.  Briefly, sodium 

hypochlorite was added to the samples until a chlorine residual of 1 ±0.4 mg/L at pH 8 remained 

after 24 h at 20ºC. At this point, the maximum amount of DBP have been formed.  Concentrations 

of THM and HAA were analysed using a Varian CP-3800 Gas Chromatograph equipped with a CP-

8400 Autosampler.  Total THM concentration (mg C/L) were calculated as the sum of 

bromodichloromethane, bromoform, chloroform, and dibromochloromethane concentrations in mg 

C/L.  Total HAA concentration (HAA; mg C/L) were calculated as the sum of chloroacetic acid, 

bromoacetic acid, dichloroacetic acid, trichloroacetic acid, bromochloracetic acid, dibromoacetic 

acid, bromodichloroacetic acid, chlorodibromoacetic acid, and tribromoacetic acid concentrations in 

mg C/L. 

 

Select samples were subjected to microbial (5 samples) and photolytic (3 samples) treatments.  

Microbial treatments were conducted by adding 120 mL of 0.45 μm-filtered sample to a series of 

acid-rinsed 220 mL glass bottles.  An inoculant (same sample but filtered to 1.7μm) was added (10% 

by volume) and bottles were gently mixed and left lightly capped to allow for oxygen exchange.  

Photolytic treatments were setup by filtering 2.5 L of sample to 0.45 μm, transferred into 5 L Tedlar 

bags (SKC Inc., USA), injected with 2.5 L of air, and exposed to 12 days of sunlight on the roof at the 

University of Waterloo.  Samples were then re-filtered to 0.45 μm and analysed for DOM 

characteristics and DBP concentrations at the beginning and end of both treatments. 
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Significance of correlation between variables was calculated using Spearman’s rank correlation 

using non-linear least squares (‘nls’ package) in R212.  Reported are both the correlation (ρ) and the 

p-value between the data and the non-linear least squares model. 

 

 

The presence of DBP and DOM were ubiquitous within NT water treatment systems regardless of 

water source or type of water treatment (Figure 6.2).  Measures of True Colour were, on average, 

similar across water sources and communities, while raw samples contained the highest values of 

True Colour (Figure 6.2a; Table 6.1).  DOM concentration among natural and treated waters ranged 

from 0.01 to 22 mg C /L with highest DOM concentrations found from lake sources (7.2 ±5.4 mg 

C/L; Figure 6.2b).  Lower DOM concentrations were found from communities using either rivers 

(4.3 ±2.6 mg C/L) or groundwater (5.7 ±3.3 mg C/L) as a water source.  The majority of water 

sources remained below the Canadian federal maximum acceptable concentration (MAC) for THM 

(0.1 mg/L; Figure 6.2c) and only 56 of 520 records exceeded this limit.  Large ranges between 

maximum and minimum THM concentrations were observed across all sites, with a range of up to 

0.15 mg/L at some communities.  No relationship between DBP and True Colour was observed 

(Appendix D); however, higher DOM concentrations generally had higher True Colour values 

(Appendix D).  Ratios of THM:DOM varied across communities with no apparent trend with water 

source or type of water treatment (Figure 6.2d).  Hence, treated water within the NT communities 

contained low but measurable concentrations of DBP and DOM at the sampling location, which 

varies from taps to plants at different communities. 

 

Samples from a variety of hydrological environments had a large range in both DOM (2.3 to 87 mg 

C/L) and DBP concentrations (5 to 317 μg C/L).  The amount of chlorine added to maintain a 

residual after 24 h varied with DOM concentration (Figure 6.3).  The lack of linear relationship 

between these variables indicates the specific chlorine demand (SCD; chlorine demand per unit of 

DOM) varied across samples.  DBP yields, the amount of DBP formed normalized to DOM 

concentration on a weight carbon basis (mg C-DBP : mg C-DOM), varied across various hydrologic 
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and geographic sites (Figure 6.4).  The largest range in THM yield was found from subsurface DOM 

(2 to 106 x10-4) while surface water DOM ranged between 5 to 77 x10-4.  Similar trends were found 

in HAA yields as subsurface DOM had the largest range (3 to 104 x10-4) while surface waters had 

yields between 11 to 91 x10-4 (Figure 6.4b).  Similar yields between THM and HAA were found for 

most samples except for higher HAA yields found from creeks, and lakes from DL and WK.  

Differences in DBP:DOM indicate that not all DOM produces the same amount of DBP.  Further, a 

significant relationship was observed between DOM concentration and C-THM (ρ=0.57, p<0.05) but 

not for C-HAA (ρ=0.46, p>0.05) concentrations (Appendix D).  The amount of chlorine added did 

not result in the same amount of DBP formed as DBP:Chlorine values varied across hydrologic sites 

(Figure 6.4c,d).  Although THM and HAA produce similar yields, a large range of values were 

observed across hydrological sites.  Subsurface and lake DOM contained the largest range in 

THM:Chlorine (Figure 6.4c).  Differences in DBP:Chlorine values indicate the amount of chlorine 

added is not a good predictor of overall DBP concentration. 

Measures of DOM composition were significantly correlated to the concentration of DBP formed.  

SUVA values covered a wide range from 2.4 to 10.3 L/(mg·m) with high-SUVA samples forming 

high DBP concentrations (Figure 6.5a).  Spectral slopes ranged from 1.20x10-3 to 2.48x10-3 nm-1 and 

were highest in a YK river and lakes from WK and DL (Figure 6.5b).  The HSF comprised the 

majority of DOM for most samples with highest proportion found from YK and WK samples (Figure 

6.5c).  Across all sites, subsurface DOM contained the highest HSF proportion.  Measures of 

DOC:DON ranged from 23 to 62 and were not correlated with DBP concentration (Figure 6.5d).  A 

significant positive correlation was found between DBP concentrations and SUVA, while a 

significant negative correlation was found for S275-295.  Both THM and HAA had similar trends 

across most measures of DOM composition.  Concentrations of HAA were more strongly correlated 

with measures of SUVA and S275-295 than THM.  Although some measures were auto-correlated 

(namely S275-295 and SUVA; Appendix D), DOM compositional measures provided better predictive 

capabilities of DBP formation than DOM concentration. 

Composition Wheels provide an efficient tool to integrate various measures and visualize 

differences in DOM composition (Figure 6.6).  Highest DOM and DBP concentrations were observed 

from WK subsurface and YK pond DOM, characterized by high SUVA and HSF.  Alternatively, 

Composition Wheels with low SUVA, HSF, and high S275-295 resulted in the lowest DBP 

concentrations, as seen by YK River, DL creek (DAR11), and WK lake (WK6).  Comparison of 
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various DOM samples by similar hydrological environment found similarities in subsurface DOM 

composition across locations.  Lake DOM composition differed between WK and DL as WK lakes 

plotted more closely with subsurface samples.  WK and DL lakes with similar Composition Wheels 

to subsurface samples also contained higher DBP concentrations.  Assessing DOM composition 

using a suite of quasi-independent types of measures identified DOM composition that had a higher 

propensity to form higher DBP concentrations. 

 

Degradation experiments were used to quantify how DBP formation was influenced by changes to 

DOM concentration and composition. DOM loss in a 30-day incubation experiment resulted in a 5 

to 22% decrease in DOM concentration while photolysis resulted in a 8 to 30% decrease (Table 6.2).  

All five microbial treatments increased THM:DOM ratios after 30 days.  Conversely, THM:DOM 

ratios had either no change or a slightly decreased during photolysis (Figure 6.7).  Microbial 

degradation decreased the amount of chlorine needed per molecule DOM for all samples except the 

two subsurface sites.  Photolysis decreased the amount of chlorine needed per molecule DOM for 

the single river sample but increased the ratio for both subsurface samples (Table 6.2).  DOM loss in 

both experiments was accompanied by a compositional change of DOM. Microbial degradation 

resulted in increasing SUVA values and altered DOC:DON, but had little change to other DOM 

compositional measures (Figure 6.8).  LC-OCD analyses were not completed on two samples and 

thus HSF data were not included.  Photolysis greatly altered subsurface composition, as seen by 

decreased SUVA, proportion of HSF, and DOC:DON, and increased S275-295.  However, little 

compositional change was observed from photolysis of YK River DOM.  Subsurface DOM 

composition wheels subjected to photolysis appeared similar to the Composition Wheel of YK 

River.  Microbial and photolysis degradation had different effects upon DOM composition and 

DBP:DOM yields. 

 

 

Low concentrations of DBP in treated water indicate that although these constituents are present in 

most systems they pose little concern for human consumption at point of testing.  Differences in 

handling and methodology, such as storage times, point of sampling, different analytical 
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laboratories, and time left to react, can all influence the amount of DBP formed making 

comparisons among sites difficult.  For instance, DOM and DBP can differ within a community 

depending upon where the sample was taken (Appendix D).  Comparison with other reported 

values provide an indication of how concentrations of DBP and DOM within NT water systems 

relate to other water treatment systems.  Alaskan water treatment plants had similar DOM 

concentrations but higher True Colour and DBP concentrations compared to NT systems282.  Water 

treatment systems in the NT contained the lowest DBP yields across various published laboratory 

values and water treatment plants in Scotland and Alaska282,290 but were relatively similar to 

treatment plants in North Carolina280.  The variability and low DBP concentration among NT data 

could result from post-treatment handling, making it difficult to directly compare results to other 

studies.  Regardless, municipal water quality data indicates DBP and DOM to be variable but 

ubiquitous across the NT. 

The discrepancy in DBP concentrations between field data and the NT water quality database 

likely reflects the analysis of post-treated samples among the NT water quality database.  Although 

field samples contained DBP concentrations significantly above the MAC, they represent untreated 

samples directly from the environment and not drinking water from the tap.  Pre-treatment of 

drinking water, such as by ozone or chlorine dioxide, is known to lower both DOM and THM 

concentrations287.  NT communities rely on filtration or conventional (coagulation, flocculation, 

sedimentation, and filtration) steps to treat water294.  Although concentrations are different, 

relationships found between DOM and DBP based on field samples provide field-based relationships 

to identify DOM susceptible to higher DBP formation in similar waters.  Further, field samples are 

needed to supplement the NT water quality database by providing true chlorine consumption and 

DBP formation as there are no data on the amount of chlorine needed to form the residual. 

Chlorine consumption results from both organic and, to a lesser extent, inorganic constituents 

such as ammonia, halides, iron, manganese, and sulphur303 but DBP production can only result from 

the interaction with organic matter.  For northern communities, chlorine consumption directly 

affects cost due to the amount of chlorine required to produce safe drinking water.  The range 

encountered in SCD and DBP:Chlorine across sites indicate there are factors that control chlorine 

consumption but do not produce DBP (Figure 6.3, Figure 6.4).  The range in DBP:DOM (Figure 

6.4a,b) illustrate that different mixtures of DOM influence the formation of DBP, as well as the 

consumption of chlorine.  No relationship was observed between DBP production and DOM 
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concentration within Alaskan treatment plants282, yet our results did find a correlation with DBP 

concentration on a per-carbon basis, rather than by summation of individual weights of THM 

species (Appendix D).  Long-term records of NT water sources illustrate the presence of DBP and 

DOM within treated northern water supplies, but these measures may not be effective to properly 

predict or monitor changes to chlorine consumption and DBP formation in the north.  Thus, 

measures of DOM composition, which are not reflected by the overall DOM concentration, are 

required to accurately forecast changes to future water treatability.   

Differences in concentrations of DOM, DBP, and True Colour across NT water treatment plants 

suggest not all DOM is the same among water sources.  DOM can be a major contributor to overall 

water colour as True Colour of lake water has been found to be a good predictor of long-term DOM 

concentration among boreal lakes304.  This attribute reflects differences in the type, or composition, 

of DOM.  The lack of relationship within the water quality records between DOM concentration 

and DBP (Appendix D), as well as the lack of linear relationship between DOM and chlorine (Figure 

6.3), reflect the importance of quantifying differences in both the amount and composition of DOM.  

Both field and community water quality data show a good relationship between DOM and colour 

(Appendix D), indicating the importance of DOM composition.  Hence, DOM composition must also 

be important for chlorine consumption and DBP formation when considering a variety of water 

sources with different amounts and forms of DOM. 

 

Watershed characteristics can dictate the composition of DOM due to various DOM sources and 

processing mechanisms72,236,305.  Unique DOM compositions or ‘signatures’ can be used to predict 

the susceptibility of drinking water to DBP formation by identifying components susceptible to 

DBP formation288.  Further, understanding how composition changes temporally or spatially would 

allow for a better prediction to future DBP formation.  Certain Composition Wheels of samples 

were representative of a terrestrial-like DOM signature observed across arctic systems: higher 

humic and SUVA values and lower S275-295 34,80,81,244,245 (Figure 6.6)  These samples also contained 

high concentrations of DBP.  Conversely, lakes with aquatic or photobleached signatures (lower 

DOC:DON, high S275-295, low SUVA) contained the lowest DBP concentrations.  Humics have been 

associated with high DBP formation68,278, yet all DOM contains some proportion of humic 

substances (Figure 6.6) thus a single measure is not sufficient to predict DBP formation.  Our results 
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indicate that surface or subsurface DOM defined by low S275-295, high HSF, and high SUVA, 

characteristic of terrestrial-like DOM, are susceptible to forming high DBP concentrations. 

Differences in DBP concentrations are influenced by variations in both UV and non-UV 

absorbing components of DOM.  Strong correlations previously observed between DBP 

concentration and UV-absorbance components282,289 were also observed here (Figure 6.5).  Similarly, 

the proportion of HSF were positively correlated to THM concentrations (ρ=0.47, p=0.07) indicating 

HSF or UV-absorbing measures would provide similar estimates of DBP concentration.  Positive and 

similar correlation coefficients between DBP concentration and either simple or complex DOM 

characterization techniques were observed in DOM among Scottish water treatment plants290.  This 

is also found in this study as more complex methods, such as LC-OCD (Figure 6.5), also provide 

similar information to more simple UV-absorbing techniques.  Further, UV-absorbing techniques 

may better predict HAA than THM formation (Figure 6.5). Thus, the use of relatively simple DOM 

composition measures are better to use as a simple tool to monitor changes in DOM composition, 

ultimately providing an indication of the effect upon DBP formation within NT water sources. 

Processing of DOM within the landscape will influence the ability of DOM to consume chlorine 

and produce DBP.  Microbial and photolytic degradation experiments provided DOM degradation 

compositions representative of enhanced processing and its ability to further form DBP.  Photolytic 

formation of  LMW compounds have been reported to increase chlorine demand and DBP 

formation on a weight basis of DOM287,292.  However, in our experiments, although there was a shift 

towards LMW UV-absorbing components as seen by the increase in S275-295, the DBP:DOM 

remained relatively constant (Table 6.2; Figure 6.7).  Further, photolytic degradation had different 

effects on DBP based on the original DOM composition (Table 6.2).  Although a loss in overall DOM 

concentration was observed, changes to DOM composition resulted in differences in DBP:DOM, 

implying photolytic degradation does not necessarily relate to decreased DBP formation.  

Conversely, microbial degradation resulted in higher THM:DOM values.  This is similar to a study 

into the biodegradation of plant leachates that resulted in higher DBP-forming components 

remaining in recalcitrant DOM components306,307.  Hence, the continual evolution of DOM that 

result in changes to DBP:DOM along the aquatic continuum has important implications for 

drinking water treatability across northern systems. 
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In terms of treatment options, our results indicate higher DBP concentrations were formed from 

HMW and aromatic DOM, which are characteristics of DOM that is easily removed via coagulation 

and flocculation64.  Water treatment plants in the NT are being upgraded to avoid chlorine-only 

systems, introducing more filtration and coagulation294.  However, increases to both DOM and 

coagulant would generate more waste that would need to properly disposed of65.  Although changes 

to DOM concentration and composition can complicate its removal, these results suggest that 

surface water sources from similar environments in the NT may be easily treated by conventional 

methods, helping to reduce DBP formation within drinking water sources. 

Our results indicate that biodegradation can result in higher DBP formed per carbon molecule in 

DOM, which can influence water quality within both drinking water sources and infrastructure.  

Laboratory studies have identified organic matter produced from algal exudates to produce 

significant levels of DBP308.  Expected increases to mean annual air and subsurface temperatures, 

enhanced mobilization of solutes and nutrients from degrading permafrost, and longer ice-off 

periods, could promote the eutrophication of shallow ponds and lakes34,116,132,155,309,310 and lead to 

increased autochthonous DOM production.  Both photolysis and microbial degradation are the 

main drivers of DOM fate, with photolysis being important for shallow lakes99.  The importance of 

the balance between these two drivers can have significant effects upon DBP formed from the 

resulting DOM, as photolysis resulted in lower production of THM per amount of DOM than 

microbial degradation (Table 6.2). Quantifying the role and relative importance of biodegradation 

on DOM in northern surface waters will be an important component of northern water security in 

terms of DOM and DBP formation.  

Storage and transportation of treated water in northern communities can have implications for 

DBP within drinking water sources.  Long storage times and trucking of chlorinated water may lead 

to the degassing of THM311,312.  The more carcinogenic HAA may have the potential to remain in 

solution due to its high polarity and low volatility.  Further, storage of drinking water in large 

containers within houses and lack of routine cleaning can lead to the growth of biofilms and other 

contaminants301,313.  The growth of biofilm within water infrastructure can lead to both the 

consumption of DOM and production of microbially-derived DOM, which can contribute to 

chlorine consumption and DBP formation outside of the water treatment plant314.  The communities 

of Rigolet and Nain in Nunatsiavut, Labrador, Canada, consistently found low levels of free-chlorine 
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within drinking water sources300, hence there is the potential for DOM produced from biofilm to 

react with the residual chlorine within water supplies and form additional DBP.  

Different climate scenarios projected for a warming Arctic can lead to various responses in terms 

of DOM fate and export.  In particular, DOM concentration and composition would be influenced 

by changes to hydrologic pathways and residence times within the watershed15,18,28,29,80 ultimately 

affecting the propensity of DOM to form DBP.  For instance, higher concentrations of terrestrial-

derived DOM from permafrost thaw into surface waters34 would result in the need for higher 

chlorine additions and higher DBP concentrations in systems with minimal pre-treatment.  Longer 

transit times in organic-rich subsurface environments could enhance microbial degradation of 

organic matter and result in DOM with higher DBP yields.  Alternatively, longer ice-off periods in 

shallow northern ponds and lakes could enhance photolytic degradation of DOM as sunlight in 

shallow northern water systems can process the majority of DOM99.  Photolysis may provide 

‘natural remediation’ in terms of DBP formation as irradiation would lower DOM concentrations 

and break down terrestrial components into lower molecular weight molecules or CO2 
87,101,199.  

These results highlight the importance of the relationship between DOM and both chlorine 

consumption and production of DBP when considering projections of future drinking water 

supplies and treatment options in the NT. 

 

Low concentrations of DBP are ubiquitous across various water treatment plants in the NT.  DOM 

composition from three different locations in the NT indicate not all DOM is the same and certain 

measures of composition reflect DBP formation better than overall DOM concentration.  DBP 

concentration was not easily predicted by either the amount of DOM or amount of chlorine added.  

We find high molecular weight, aromatic, humic-like DOM to produce higher DBP concentrations.  

Use of Composition Wheels with DBP formation provided a tool to identify aquatic environments 

susceptible to forming higher DBP concentrations.  Hence, DOM from subsurface environments, or 

terrestrial-like DOM in surface waters, are at a higher risk to form high DBP concentrations within 

chlorinated water sources without any pre-treatment.  Although impossible to predict the response 

of northern systems to a warming climate, our results highlight the importance of DOM 

composition and use of simple UV-absorbing parameters to monitor relevant changes to DOM 

composition.  Changes to DOM composition due to biodegradation are of great concern as higher 
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DOM:DBP yields were found, while photolytic degradation of DOM could help reduce the amount 

of chlorine needed to treat water sources.  Impacts of DBP, DOM, and future water treatment are 

not only approached with technical or engineered solutions, but are also greatly influenced by 

cultural and socio-economic factors of northern communities.  The evolution of DOM composition 

through out the aquatic continuum presents itself as a dynamic determinant of drinking water 

quality in northern systems. 
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Table 6.1: Summary of True Colour, concentration of dissolved organic matter (DOM), and total 
trihalomethane (THM) concentration compiled from public drinking water quality records for communities of 
the Northwest Territories for both treated and raw waters separated by source water.  Parameters include 
number of samples (n), maximum, minimum, average, and standard deviation for each parameter per 
hydrological environment. 

  True Colour (TCU)   DOM (mg C/L)   Total THM (mg/L) 
TREATED n Max Min Avg SD  n Max Min Avg SD  n Max Min Avg SD 
Groundwater 57 20 2 7 4  22 14.0 0.5 5.7 3.3  44 0.150 0.002 0.030 0.036 
Lake 169 457 0 13 38  101 22.0 0.2 7.2 5.4  273 0.159 0.000 0.051 0.042 
Reservoir             1 0.040 0.040 0.040 NA 
River 74 70 2 16 15  67 11.2 0.0 4.3 2.6  142 0.140 0.001 0.039 0.029 
                  

RAW                  
Groundwater 29 35 2 16 10  4 8.6 5.0 7.4 1.6  8 0.110 0.001 0.020 0.038 
Lake 111 111 1 19 23  76 22.0 1.6 10.2 5.3  28 0.085 0.000 0.032 0.024 
Reservoir 5 12 3 7 4  5 7.6 5.0 6.5 1.0  1 0.005 0.005 0.005 NA 
River 123 864 2 14 78   34 18.9 0.6 5.4 4.3   24 0.075 0.001 0.010 0.020 

 

Table 6.2: Changes to dissolved organic matter (DOM) concentration, trihalomethane (THM) yield 
(THM/DOM), THM concentration, and ratio of chlorine demand to DOM from microbial and photolytic 
degradation experiments. 

 DOM (mg C/L)  THM/DOM  THM (mg C/L)  Chlorine / DOM 
Sample Initial Final % Change  Initial Final  Initial Final % Change  Initial Final 
MICROBIAL              
YK Subsurface 86.7 69.7 -20%  0.00612 0.00739  0.53 0.51 -3%  1.04 0.80 
YK Pond 36.8 32.7 -11%  0.00662 0.00886  0.24 0.29 19%  0.48 0.58 
YK Creek 17.8 13.8 -22%  0.00079 0.00447  0.01 0.06 339%  0.41 0.38 
DL Subsurface 29.9 28.5 -5%  0.01059 0.01087  0.32 0.31 -2%  0.64 0.26 
DL Creek 7.7 6.8 -11%  0.00306 0.01078  0.02 0.07 213%  0.34 0.50 

              
PHOTOLYSIS        
YK Subsurface 8.4 5.8 -30%  0.00369 0.00372  0.031 0.022 -30%  2.17 3.50 
YK Subsurface 2 7.0 6.0 -15%  0.00723 0.00596  0.051 0.036 -30%  2.07 2.18 
YK River 5.0 4.7 -8%  0.00305 0.00273  0.015 0.013 -17%  2.14 1.37 
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Figure 6.1: Field sampling locations for Yellowknife, Wekweètì, and Daring Lake in the Northwest 
Territories, Canada. Highlighted areas represent the various ecoregions. 
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Figure 6.2: Public water quality records for various communities across the Northwest Territories for treated 
(solid circles) and raw (open circles) for different water sources (lakes, streams, groundwater, reservoir) 
represented by different colours.  Sampled parameters include: True Colour (True Colour Units), dissolved 
organic matter (DOM; mg C/L) concentration, total trihalomethane concentration (THM), and THM yield. 
Description of water treatment plants are included and represented by a colour bar on the x-axis. The line on 
the plot of THM is the Maximum Acceptable Concentration for Canadian drinking waters. 
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Figure 6.3: Concentration of chlorine added to create a potential residual concentration after 24h versus 
dissolved organic matter concentration (DOM). Solid dots represent samples that achieved the residual 
whereas hollow dots did not. Different colours represent hydrological environments sampled. 
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Figure 6.4: Ratio of formed trihalomethane (a) and haloacetic acid (b) concentration per dissolved organic 
matter (DOM) concentration, and ratio of trihalomethane (c) and haloacetic acid (d) to added chlorine for 
different hydrologic environments.  Colours represent the different sites (Yellowknife (YK), Wekweètì (WK), 
and Daring Lake (DL)) and may include similar locations sampled at different times. 
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Figure 6.5: Disinfection by-product (DBP) concentration versus various measures of dissolved organic matter 
(DOM) composition that include specific UV-absorbance at 255nm (SUVA; a), slope between 275 and 295nm 
(S275-295; b), proportion of humic substances fraction (HSF; c), and ratio of dissolved organic carbon to 
dissolved organic nitrogen (DOC:DON; d). Shapes represent various hydrologic environments while colours 
represent different geographic locations.  Grey lines illustrate the line of best fit with the degree of correlation 
using Spearman Rank correlation (ρ) and associated p-value between the model and actual data. 
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Figure 6.6: Various Composition Wheels with associated overall dissolved organic matter concentration (DOM; mg C/L), amount of chlorine added (mg/L), 
concentration of trihalomethanes (THM; mg C/L) and concentration of haloacetic acids (HAA9; mg C/L).  Different axes represent normalized values for 
DOC:DON (top left), S275-295 (top right), SUVA (bottom right), and proportion HSF (bottom left). Groupings are based on hydrological environment and 
location: subsurface samples (a), YK surface waters (b), WK surface waters (c), and DL surface waters (d). 
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Figure 6.7: Ratio of trihalomethane (THM) to dissolved organic matter (DOM) concentration for microbial 
(left panel) and photolytic (right panel) degradation. 

 

 

Figure 6.8: Composition Wheels illustrating the difference between original (dark line) and final samples for 
microbial (green) and photolytic (orange) degradation experiments.  Different axes represent normalized 
values for DOC:DON (top left), S275-295 (top right), SUVA (bottom right), and proportion HSF (bottom left). 
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This thesis illustrates how dissolved organic matter (DOM) from the taiga shield to northern arctic 

differs across surface and subsurface systems in terms of DOM composition and response to 

microbial and photolytic processing.  Integrating the results from Chapters 3, 4, and 5 provides a 

basis to categorize similarities in DOM composition, using Composition Wheels (CW), based on 

location and processing characteristics.  The objective of this brief synthesis is to combine 

information generated across the previous chapters to form a conceptual diagram depicting the 

evolution of DOM composition along a flow path in the Northwest Territories (NT).  The formation 

of this simplistic conceptual diagram of DOM evolution in the NT uses the idea that DOM 

composition reflects dominant source and processing characteristics, similarly to studies that have 

found DOM intrinsic properties to dictate DOM persistence in the environment81. In addition, 

process-based changes to DOM composition (Chapters 4 and 5) can be used to predict the evolution 

of DOM concentration and composition among different hydrological sites. 

In this synthesis, the overall amounts of DOM are compared across the aquatic continuum to 

understand how DOM quantity evolves across the landscape.  Then, DOM composition and lability, 

based on laboratory experiments, are compared to discern similarities and differences across 

different DOM samples.  Differences in DOM concentration and composition will be used to form a 

conceptual diagram and compared to a well-defined flow path in the northern arctic to test the 

applicability of the framework to a system with greatly different climate and vegetation. 

 

Flow along the aquatic continuum originates from the subsurface and flows out of the watershed 

via creek or river.  Differences in the overall amount of DOM are found along this flow path.  High-

organic peat plateaux samples in Yellowknife (YK) had the highest DOM concentrations (up to 273 

mg C/L) while Daring Lake (DL) lakes (6.1±2.8 mg C/L, n=7) have the lowest average concentration 
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(Figure 7.1).  DOM concentrations are highest from subsurface sites across all ecoregions, and 

decline along the aquatic continuum (Figure 7.1).  Subsurface DOM concentrations from continuous 

permafrost (Wekweètì (WK) and DL) have lower concentrations than YK, but are higher than 

surrounding surface waters at each location.  The highest surface water DOM concentrations are 

observed in YK ponds (34.0±2.4 mg C/L, n=2), while the lowest is from a DL creek (2.1 mg C/L).  YK 

has higher surface water DOM concentrations than either WK and DL.  Hence, a wide range of 

DOM concentrations are encountered not only across a latitudinal gradient in the NT, but also 

across a relatively small spatial scale within each ecoregion. 

Photolytic and microbial degradation experiments were used to quantify the magnitude of 

change across different measures of composition (Chapters 4 and 5).  Although initial DOM 

composition are not strong predictors of microbial degradation rate, changes to composition can be 

used to quantify the effect of both microbial and photolytic degradation.  The amount of DOM lost 

and changes to composition resulting from photolysis are consistent across different sites with 

different DOM; however, microbial degradation is more dependent upon location characteristics 

and may differ depending upon host microbial consortia or availability of nutrients. For this reason, 

the average percent change between the final and initial SUVA, S275-295, SAC420, and DOC:DON 

across all samples are plotted, along with the largest percent increase and decrease observed (Figure 

7.2), providing a range of DOM change that is expected for DOM in similar environments.  In 

particular, degradation Composition Wheels show that the loss of non UV-visible absorbing 

components and decrease to DOC:DON would be the most notable changes resulting from 

microbial degradation.  Conversely, photolysis results in a notable increase to S275-295 and a net 

decrease in all other composition measures.  Changes to DOM composition differ between 

photolytic and microbial degradation in ways that allow for the identification of DOM that has been 

previously altered due to photolysis. 

 

Three distinct end-member groups can be defined based on similarities in DOM compositional 

metrics to literature, hydrologic sources, and degradation experiments.  First, DOM compositions 

were grouped into three sections based on how similar each CW was and whether they contained 

characteristics similar to the final degradation DOM CW.  This divided the composition into 

terrestrial, intermediate, or photolytic groups (Figure 7.3).  The mixture of molecules that comprise 
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DOM at the point of sampling is dependent upon its source, degree of processing, and hydrologic 

mixing.  For this reason, a plot that allows various combinations of sources and characteristics is 

used to portray variations in DOM composition.  This approach is not able to determine the exact 

source or amount of processing required to produce each individual DOM sample; rather, this 

dataset provides the first step to understand whether DOM differs across landscapes and whether 

these differences can be used to understand DOM evolution along the aquatic continuum. 

Categorization of CW into these three groups was used to help constrain the end-members found 

on the DOM conceptual diagram. 

 

Subsurface sites are important sources of organic matter within the NT as they contain much 

higher DOM concentrations than downstream surface water systems.  Further, the unique signature 

of subsurface CWs are easily identified by the presence of large, humic, aromatic components. 

These characteristics have been used to define terrestrial DOM in other environments34,80,81,244,245.  

This signature is not only unique to the subsurface.  Surface water DOM can be highly influenced 

by surrounding soil properties4 resulting in identical subsurface and surface water CWs in areas 

with strong terrestrial-aquatic linkages.  As subsurface sites generally contain higher DOM 

concentrations than surface waters (Figure 7.1), only a small contribution of subsurface DOM would 

be required to imprint a terrestrial signature within surface waters.  Hence, subsurface 

environments are included as an end-member within the conceptual diagram and represent an 

important component dictating DOM composition in the NT. 

 

Photolytic degradation of DOM imprints a clear signature on various DOM compositions.  Changes 

to DOM composition during photolysis (Figure 7.2) are consistent with other studies199.  Samples 

with a unique photolytic signature are identified by an abundance of low molecular weight 

components (high S275-295), and a low proportion of both aromatic (low SUVA) and humic 

components (either as HSF, or SAC420 as a proxy; Figure 7.3).  The prominent effect of photolysis 

upon DOM composition results in unique and consistent changes to DOM composition regardless 

of source. 
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Autochthonous DOM is another important source of DOM within the aquatic environment.  

Shallow, hydrologically isolated ponds in the subarctic contain an important input of 

autochthonous DOM from macrophytes and benthic production that can be internally recycled on 

long timescales4,90,130,315,316.  Autochthonous DOM is characterized by a low amount of UV-visible 

absorbing components, high protein and nitrogen content, and overall low molecular weight34,244,317.  

However, such characteristics of DOM are also representative of photolytically-degraded DOM.  

The importance of the autochthonous contribution to northern DOM is addressed in the conceptual 

diagram by defining this as an end-member that describes DOM with low DOC:DON and high S275-

295. 

Variations in DOM sources, hydrologic mixing, or DOM degradation processes not accounted for 

in this thesis can result in CWs that are difficult to categorize.  In particular, river DOM samples 

identified by high humic and low-molecular weight UV-components (high S275-295) were found at 

both Yellowknife and Daring Lake; however, high S275-295 that is indicative of extensive photolysis 

should also result in a low proportion of humics (Figure 7.3).  These river samples may represent a 

mixture of DOM photolysed in upstream lakes, in-river production or mineralization of DOM, or a 

contribution of downstream terrestrial sources that may not have been fully processed.  The 

conceptual diagram proposed here is not all encompassing, but does provide a basis to simplify, 

characterize, and eventually predict DOM evolution across hydrologic systems in the NT. 

 

The three end-members represent a framework from which to compare differences in DOM 

composition (Figure 7.4).  For instance, photolytic degradation acts universally across all sample 

types and will generally conform DOM to be more similar to the ‘Photolysis’ end member.  Mixing 

of different DOM sources can also alter DOM composition, but the extent of change would depend 

upon a number of factors, such as the relative amount of mixing or the compositions being mixed.  

DOM composition can dictate different microbial or photolytic regimes within headwaters264 or 

determine whether the system may be light (lacking solar energy to conform DOM) or substrate 

(lacking UV-absorbing components) limited in terms of photolytic degradation113.  The conceptual 

diagram can be used to trace changes to DOM composition in response to a changing climate. 
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The conceptual diagram presented here, and data found in this thesis, support several conceptual 

hypotheses recently outlined by Creed et al.141 that focusses on the response of northern DOM 

composition to global change.  For instance, it was hypothesized that global change will introduce 

higher contributions of allochthonous DOM into lakes, altering water processes and influencing 

internal food webs.  The focus on a shift towards greater allochthonous contributions among 

northern surface waters suggests the ‘Autochthonous’ end member in this model may be under-

represented with a warming climate.  However, our model supports this hypothesis as we find 

certain surface water DOM to have similar DOM compositions as the surrounding subsurface, 

suggesting DOM composition can be used to identify areas susceptible to enhanced allochthonous 

supply.  Further, certain metrics of DOM composition differ in their response to different drivers of 

DOM fate.  Overall, the conceptual model presented here aligns closely with previous hypotheses 

outlined by Creed et al.141 that quantify the effects of certain landscape controls (photolysis and 

microbial degradation) on DOM composition and fate. 

 

The DOM conceptual diagram provides a framework to track changes to DOM in response to a 

changing climate.  The NT is projected to become warmer and drier318, which can lead to increased 

water residence times in surface and subsurface systems and a lack of terrestrial-surface water 

connections319.  In turn, mobilization of terrestrial DOM sources into surface waters may rely on 

infrequent rainfall events.  Identifying how DOM composition influences drinking water 

treatability and how a warming climate may alter surface water characteristics via changes to 

transport pathways may be helpful for water managers.  Results from this thesis found that 

microbial degradation of DOM, as well as high subsurface DOM concentrations, result in increased 

DBP formation on a carbon basis, while the opposite was observed from photolytic degradation.  

Mapping ‘high-risk’ DOM compositions on the conceptual diagram is possible by incorporating 

known relationships between DOM composition and certain water quality parameters, such as DBP 

(Figure 7.5).  Further, incorporation with DOM loss rates will allow for a determination to the net 

effect of changing DOM composition on drinking water (i.e. DOM may become more terrestrial but 

enhanced retention time in reservoirs may reduce the amount and form of DOM entering the water 

treatment facility).  This creates a tool that can be used to track the potential impact of DOM 

evolution in both concentration and composition under different climate scenarios. 
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The DOM conceptual diagram is based on samples from the NT.  Northern arctic samples from the 

high arctic (Lake Hazen Watershed, NU) have DOM from very different sources, surrounding 

vegetation, and climate.  In comparison to the NT, the Lake Hazen Watershed is colder, remains 

frozen for longer periods of time, receives much less precipitation, and generally contains sparse 

vegetation except for a few productive meadows45.  The DOM conceptual diagram is used to trace 

DOM along a flow path through a representative sub-catchment near Lake Hazen.  Flow begins 

from a talus seep, into a wetland, through a series of lakes and ponds, and eventually discharges via 

a creek into the larger Lake Hazen320.  This flow-path provides a simple and constrained continuum 

to evaluate whether the DOM conceptual diagram can be easily adapted to represent different high 

arctic systems. 

DOM concentrations increase along the continuum, beginning around 1.0 to 3.3 mg C/L at the 

seep, and increasing to 8.3 mg C/L in the subsurface and 6.3 mg C/L within a small lake. Glacial 

creeks contain the lowest concentrations (0.3 to 0.7 mg C/L; Figure 7.6).  DOM compositions differ 

at each hydrologic site. Seep DOM is characterized by high HSF, moderate SUVA, and low 

DOC:DON and S275-295, while subsurface DOM is characterized by high SUVA and low values for all 

other parameters (Figure 7.6). Pond and lake DOM contain high S275-295, moderate HSF, and low 

DOC:DON and SUVA values. Glacial creeks have a variety of DOM compositions but generally 

contain lower measured values for all metrics compared to other sites.  First-order microbial and 

photolytic degradation rates are much lower compared to NT, with photolysis resulting in higher 

DOM loss than microbial degradation (Chapter 4; Chapter 5).  Microbial rates varied by 10x and was 

highest from seep DOM, while photolytic rates ranged by 1.5x and highest from subsurface DOM. 

The lack of specific UV and visible absorbing components in northern arctic surface and 

subsurface DOM resulted in a position near the ‘substrate limited’ and ‘clear water’ regimes on the 

conceptual diagram.  Further, all DOM samples from the Lake Hazen Watershed responded 

similarly in terms of DOM metrics to photolysis (Chapter 5), characteristic of other clear-water 

regime systems.  These samples also plot closely to NT DOM with strong photolytic characteristics 

(Figure 7.7).  Grouping of DOM compositions in the NT DOM conceptual diagram may also be 

applicable to other locations.  These groupings provide information on processes that drive DOM 

composition across these systems. 
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The NT DOM conceptual diagram may not accurately incorporate the diversity of high arctic 

DOM composition. Creek DOM did not contain comparable compositions to any of the end 

members (Figure 7.7).  Further, lower proportions of humics in high arctic subsurface DOM result in 

a very different subsurface composition than what is found in the NT.  Hence, there is some 

applicability of the processes that govern DOM, yet compiling DOM compositions between the 

high-arctic and NT indicate modifications would need to be made to the conceptual diagram to 

encompass more arctic sites. 

 

A conceptual diagram of the evolution in DOM composition is presented for different surface and 

subsurface DOM in the NT. Although data represents a select few sites in the NT, this conceptual 

diagram offers an initial characterization that can be easily adapted to incorporate DOM from other 

ecoregions in the NT.  Further, the similarity in DOM composition observed from Yellowknife to 

Daring Lake suggests that DOM may not be all that different, especially across subsurface sites.  

However, some differences in high artic DOM are not encapsulated in the model that fits the low 

arctic and taiga shield.  By acknowledging how DOM composition varies across the landscape, and 

different sources and processes may alter this composition, we can better estimate how DOM will 

respond changes in processes that drive DOM fate across the NT. 
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Figure 7.1: Dissolved organic matter concentration (DOM; logarithmic scale) for different subsurface (‘Sub’) 
and surface water sites at Daring Lake, Wekweètì, and Yellowknife. Numerous samples collected at the same 
site are represented by a single averaged point. Random scatter is incorporated into the x-axis to clearly show 
different data points. 

 

 

Figure 7.2: Summary of the relative effect of microbial (green; left) and photolytic (yellow; right) 
decomposition upon dissolved organic matter (DOM) composition measures using a hypothetical initial (dark 
line) and final (dotted line) DOM composition.  The arrows represent the average change in each 
compositional metric using all samples, while the shaded box represents the greatest increase and decrease 
quantified from the experimental incubations (see Chapters 4 and 5). The shape of the initial composition is 
irrelevant as the percent change from each parameter is plotted.  The Composition Wheel is defined by 
dissolved organic carbon to organic nitrogen ratio (DOC:DON), slope from 275 to 295nm (S275), spectral 
absorption coefficient at 420 nm (SAC420), and specific UV-absorbance at 255nm (SUVA).  Microbial 
degradation represents the change determined over 30 days for all samples, whereas photolytic degradation 
represents the loss after 500 E/m2 for all samples (corresponds to 13 and 18 days of continual sunlight in the 
low and high arctic, respectively). 
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Figure 7.3: Dissolved organic matter (DOM) composition wheels for different hydrological sites from 
Yellowknife (YK), Wekweètì (WK), and Daring Lake (DL), Northwest Territories. DOM was categorized as 
either having terrestrial, photolytic, or intermediate characteristics based on sampling location and 
similarities to observed effects of degradation experiments on DOM metrics. Composition Wheels were 
represented by dissolved organic carbon to organic nitrogen ratio (DOC:DON), slope from 275 to 295nm 
(S275), proportion of the humic substances fraction (HSF), and specific UV-absorbance at 255nm (SUVA). 
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Figure 7.4: Conceptual diagram of dissolved organic matter (DOM) in the Northwest Territories based on 
microbial and photolytic degradation experiments and on the initial DOM present in the dataset. End-member 
(Terrestrial, Photolysis, Autochthonous) represent important source or processing characteristics, while 
arrows within the triangle represent how different processes ‘move’ DOM across the conceptual diagram. 
Greyed arrows on the side represent similar DOM evolution hypotheses113,264. The question mark indicates 
where data is lacking for a clear autochthonous-sourced DOM sample. 
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Figure 7.5: Example of using the dissolved organic matter (DOM) conceptual diagram to either trace DOM 
evolution in the environment (NT samples taken from Figure 7.3; left) or use to identify DOM  compositions 
that are easily degraded (dots: microbially labile; triangles: photolytically labile) or easily form disinfection 
by-product (DBP; red-shading: darker means higher propensity to form DBP). 

 

 

 

Figure 7.6: Dissolved organic matter concentration (DOM mg C/L; upper panel) and composition wheel 
(lower panel) for different hydrologic sites from the Lake Hazen Watershed, Nunavut. Composition wheels 
were based on dissolved organic carbon to organic nitrogen ratio (DOC:DON), slope from 275 to 295nm 
(S275), proportion of the humic substances fraction (HSF), and specific UV-absorbance at 255nm (SUVA). 
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Figure 7.7: Application of the NT DOM conceptual diagram (hollow shapes) for high arctic DOM samples 
(solid shapes). Composition Wheels on the right side not in the triangle represent DOM from a glacial creek 
that were not similar to any of the defined end-members.  Subsurface DOM, although different than all other 
subsurface samples, was plotted by ‘terrestrial’ as it was collected directly from the subsurface. 
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The overall goal of this PhD thesis is to quantify differences in DOM concentration and 

composition across three northern ecoregions in Canada and to determine how DOM composition 

influences photolytic and microbial degradation rates.  Summarized below are the major findings 

from each chapter. 

The Northwest Territories (NT) represents an area of Canada rapidly undergoing change in 

response to a warming climate10,11,147.  The objective of the first data chapter was to quantify the 

geochemical response to a warming climate from systems draining the taiga shield (Yellowknife 

and Cameron River) and taiga plains (Marian River) near Yellowknife, NT.  Statistical analysis of 

long-term climatic parameters from the area and hydrologic variables from these rivers was used to 

investigate the magnitude of change in mean annual air temperature, total precipitation, monthly 

and annual discharge, and various geochemical parameter concentrations and fluxes (Chapter 2).  

Mean monthly air temperatures near Yellowknife significantly increased in winter (January to 

April), June, and July, with an annual increase in 3.2 x 10-2 ºC/yr over the 80-year timeframe.  No 

significant changes to the annual discharge of the Yellowknife or Cameron rivers occurred; 

however, increased average monthly discharge during the winter months was observed in the 

Yellowknife River over the 35-year dataset.  Mean annual solute concentrations significantly 

increased within the Yellowknife and Cameron rivers over the 30-year time period, which in the 

absence of a change in discharge, indicated a shift towards deeper, potentially mineral-rich, 

subsurface flow pathways.  Although concentrations of DOM did not change over time in any of 

the rivers, warming mean annual air temperatures in the area are nearing a threshold of -2°C, found 

to enhance DOM mobility in discontinuous permafrost areas28.  Baseline conditions were easily 

defined for the Cameron River due to unchanging monthly and annual discharge, as well as for the 

Marian River, exhibiting strong seasonality in geochemistry but no trend with time.  Conversely, 

changes to river discharge and water quality in the Yellowknife River suggest a dynamic and 

unidirectional trend, likely representative of increasing subsurface flow pathways.  Hence, long-

term records of climate, hydrology, and discharge indicate differences in the response from three 
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rivers near Yellowknife, and provide evidence on how these systems may continue to respond to a 

warming climate. 

A variety of metrics can be used to characterize differences in DOM composition among surface 

and subsurface waters.  The objective of the second data chapter was to determine which simple 

measures of DOM composition best explain the variability in DOM encountered across a variety of 

Canadian ecoregions (Chapter 3).  Different DOM compositional measures included ultra-violet 

(UV) and visible absorbance, elemental ratios, and size-exclusion chromatography.  Principal 

components analysis was applied to the DOM dataset and compositional measures with the highest 

contributions to the first and second principal component axes were determined to best represent 

variations in DOM composition.  These measures included specific UV-absorbance at 255nm 

(SUVA), spectral slope between 275 and 295 nm (S275-295), elemental ratios (DOC:DON), and the 

proportion of humic-substances fraction (HSF).  Composition Wheels, a novel tool to visualize 

differences in DOM composition, were assembled using these four measures and used to quantify 

how different aspects of DOM change along the aquatic continuum.  Overall, subsurface DOM, 

easily identified by high values of HSF and SUVA and low S275-295, was similar across all sampling 

location compared to surface water DOM.  More variability in composition was encountered among 

surface water DOM, likely reflecting differences in water residence time, exposure to photolysis, or 

in situ production of DOM.  Hence, differences in DOM composition can be easily utilized to 

compare or trace the evolution of DOM composition across the aquatic continuum. 

Processing of DOM can alter the amount, form, and reactivity of DOM exported from a 

watershed.  Microbial processing is often the most important driver of DOM transformation and 

loss, yet few loss rates are found from sites in the Canadian subarctic and high arctic.  The objective 

of the third data chapter was to quantify the range in the proportion of DOM lost during an 

incubation experiment, as well as quantify dark DOM loss rates from different hydrologic sites in 

three ecoregions: the taiga shield (Yellowknife, NT), southern arctic (Daring Lake, NT), and 

northern arctic (Lake Hazen, NU; Chapter 4).  Results from a 30-day microbial incubation 

experiment commonly used to define biodegradable DOM (BDOM) show a total decrease between 1 

to 27% from the original DOM concentration.  Northern arctic DOM contained the lowest initial 

DOM concentrations and proportion of BDOM (1 to 11%), indicating that DOM is persistent within 

these systems.  The highest BDOM proportions were observed in DOM in a southern arctic creek 

(27%) and taiga shield subsurface (17%).  At similar incubation durations, proportions of BDOM 
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from this study are higher than other studies conducted in the NT, but overall lower when 

compared to other circumpolar areas such as Siberia or Alaska.  Highest 1st-order degradation rate 

constants were observed from DOM in the taiga shield subsurface (7.3 x10-3 d-1) and a southern 

arctic pond (11.2 x10-3 d-1), while the remaining ten samples had a narrow range between 1.4 to 4.0 

x10-3 d-1.  Changes to DOM composition due to microbial degradation were generally unique to a 

specific sample.  Further, traditional measures of DOM composition, such as spectral absorbance at 

255 nm (SUVA) or spectral slope, were not good a priori predictors of BDOM proportion or 

degradation rate.  However, the change in SUVA or SAC420 were better suited to quantify changes 

to DOM composition during microbial degradation as they showed the largest changes.  Hence, 

location is more important for determining microbial lability than DOM composition and decreases 

to SUVA and SAC420 provide sensitive indicators of microbial degradation. 

Photolytic degradation is an important driver of DOM fate in sub-arctic and arctic systems, 

particularly in shallow surface waters.  The overall objective of the fourth data chapter was to 

determine the influence of DOM composition on photolytic DOM loss and quantify 

photodegradation rates (Chapter 5).  The percentage loss in DOM was similar across locations 

(between 13 to 19% after 500 E/m2, which corresponds to roughly 13 and 18 days of constant 

sunlight in the southern and northern arctic, respectively) even though initial DOM characteristics 

were different.  However, photolytic yield (total amount of DOM lost divided by total irradiation) 

suggest DOM from these sites contain lower amounts of photolabile DOM than studies conducted 

in elsewhere.  DOM composition is important for photolysis as DOM composition responded in a 

predictable manner across all sites: loss of humic, UV-visible light absorbing components, and the 

production of smaller, low-molecular weight DOM components.  Photolysis of DOM followed a 1st-

order rate equation with highest rates from southern arctic subsurface DOM (17 x10-4 m2/E) and 

lowest from northern arctic DOM (1.6 to 4.2 x10-4 m2/E) and taiga shield subsurface (4.1 x10-4 m2/E).  

Linear degradation rates, used to compare all photolysed samples and literature values, ranged 

between 0.4 to 30 x 10-3 m2/E and were lower by one to two orders of magnitude than similar 

experiments conducted in Siberia, Russia, and Bylot Island, Canada.  Further, unlike microbial 

degradation, photolytic degradation rates could be predicted using initial SUVA, SAC420, and S275-295 

metrics.  The importance of characterizing DOM composition to predict DOM lability is 

demonstrated by quantifying the contrasting influences of microbial and photolytic degradation on 

DOM compositional metrics. Thus, the sub-arctic and arctic locations sampled in this study are a 
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unique region onto itself with lower photolytic and microbial lability than other locations (i.e. 

eastern Boreal Canada, Alaska, or Siberia). 

Dissolved organic matter adversely impacts drinking water quality via the formation of 

disinfection by-products (DBP) during the chlorination of drinking water supplies.  The objective of 

the fifth data chapter was to quantify the relationship between DOM composition and DBP 

formation across various subsurface and surface water DOM encountered in the NT (Chapter 6).  

This objective was completed using two approaches: 1) assessing the occurrence of DOM and DBP 

within NT community drinking water supplies as reported, and 2) determining how differences in 

DOM composition relate to DBP formation.  Public water quality records of 33 communities, 

obtained from the Government of Northwest Territories Municipal and Community Affairs website, 

showed that DOM and DBP were prevalent across the NT.  Only 11% of all records (n= 520) 

contained values above the Canadian Council of Ministers of the Environment (CCME) maximum 

acceptable concentration.  However, differences in storage times, point of sampling, different 

analytical laboratories, and time left to react, can all influence the amount of DBP formed making 

comparisons among sites difficult.  Chlorination and DBP formation was measured in DOM samples 

collected from various surface and subsurface sites from the taiga shield (Yellowknife and 

Wekweètì, NT), southern arctic (Daring Lake, NT) ecoregions.  Differences in the disinfection 

demand (DD; amount of chlorine added to obtain a chlorine residual) versus DOM concentration, as 

well as DBP:DOM, across samples indicated that DOM concentration alone was not a good 

predictor of DBP formation or DD.  In both surface and subsurface environments, high DBP 

concentrations were formed from DOM with a terrestrial-like signature.  Further, simple UV-

absorbance measures provided useful information to predict DBP formation.  Degradation 

experiments show that photolysis decreased the formation of DBP per carbon atom, yet microbial 

degradation increased the amount of DBP formed per DOM carbon atom.  Hence, DOM 

concentration and composition were both important when considering drinking water treatability, 

especially in the NT where permafrost degradation, changing precipitation regimes, and warming 

temperatures may result in higher loadings of terrestrial DOM into surface waters used as drinking 

water resources. 

A conceptual model to the evolution of DOM in the NT was created based on data and 

interpretations from the previous chapters.  A three end-member model (Terrestrial, Photolytic, and 

Autochthonous) was determined based on similarities in DOM composition among sites, similarities 
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to DOM characteristics observed in literature, and results from the previous incubation experiments 

that identified specific indicators of microbial or photolytic processes on DOM composition.  The 

conceptual model can be used to identify how different drivers influence DOM composition.  

Further, processing of DOM results in similar metrics regardless of initial composition.  However, 

the conceptual model does not encapsulate some of the DOM compositions observed in the high 

arctic.  This conceptual model provides a tool to link changes in DOM composition with effects 

upon DBP formation or ecosystem processes.   

 

The dataset presented in this thesis finds DOM composition can differ across relatively small spatial 

scales.  Although this thesis was able to capture the heterogeneity in DOM composition, the data 

does not represent an instrumented flow path.  Further, effective use of these degradation rates 

requires an accurate estimate of the time DOM may spend within a body of water or subsurface.  

Quantifying hydrologic flow paths, contributing areas, and both surface and subsurface water 

residence times would help constrain potential rates of degradation (i.e., exposure to sunlight, 

degradation in subsurface, time spent within a watershed) and improve estimates of DOM 

processing within these systems.  Although the presence of permafrost can complicate hydrologic 

modelling and transport in the subsurface, there is a need to constrain and understand the quantity 

and timing of flows that transport DOM between terrestrial and aquatic systems.   

Source characteristics of DOM need to be better quantified to trace DOM evolution within these 

systems.  To enhance our understanding of DOM among different environments, more information 

is needed on the characterization of autochthonous DOM sources in NT surface waters and the 

impact of in situ DOM on local carbon cycling.  Data from this thesis can strongly identify 

terrestrial sources of DOM or the influence of photolysis; however research is lacking in the 

connection between DOM composition and its impact on ecosystem functioning141.  Autochthonous 

DOM comprised a biologically-available form of carbon within the Mackenzie Delta130 but more 

data are needed to better constrain characteristics and rates of internal DOM production from 

different sub-arctic and arctic areas.  Recent work in the Yukon River Basin, Alaska, highlighted the 

importance of internally derived carbon fixed from atmospheric carbon dioxide, rather than from 

terrestrial sources such as soils or degrading permafrost316.  Determining the presence, composition, 

and fate of permafrost-derived carbon would be beneficial to help identify and predict the specific 
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response of permafrost-mobilized DOM on the carbon cycle under various climate change 

scenarios.  Research from Siberia and Alaska have found ancient permafrost to be easily degraded 

and rapidly assimilated into biomass rather than mineralized into carbon dioxide85,96,100.  The use of 

both stable and radioactive carbon isotopes offers a useful tool that would aid in constraining 

different terrestrial and aquatic DOM sources and processing, as well as identifying the presence of 

permafrost carbon.  Quantifying the importance of in situ and permafrost-derived DOM using a 

suite of isotopic and geochemical measures would help delineate and constrain various sources that 

influence DOM reactivity. 

Changes to the diversity and functioning of terrestrial and aquatic microbial communities can 

influence the fate of northern carbon.  Incubation experiments rely on the microbial consortia 

during time of sampling, without any characterization or identification of key communities that 

may influence degradation rates.  Recent work has shown how permafrost degradation results in 

rapid shifts to microbial community assemblages that directly impact the biogeochemical 

functioning of thaw ponds, as well as rates of carbon and nitrogen cycling within these 

systems227,321–325.  The basic use of the term ‘inoculum’ greatly generalizes a breadth of microbial 

information that can be better utilized to constrain future predictions of carbon lability and cycling.  

Quantifying the influence of the microbial community upon DOM cycling is an important avenue 

to continue research as differences in community assemblages and functioning will alter DOM fate 

with a warming climate. 

Further research is needed to enhance our understanding of how differences in DOM 

composition impact drinking water parameters, such as the association between DOM and trace 

metal mobility or toxicity.  One avenue is explored in this thesis (production of DBP); however, 

there are a number of DOM-related water quality concerns that can be addressed.  For instance, use 

of Proton Binding Index60 could identify how differences in DOM composition affect the ability of 

DOM to interact with metals.  Further, differences in the amount and source of freshwater organic 

matter have been found to influence mercury methylation rates and photodemethylation within the 

water column and lake or pond sediments228,326–328.  The DOM database collected from this thesis 

could be used to further the understanding of the relationship between DOM lability, DOM 

composition, metal complexation, and mercury methylation rates, providing informative 

relationships in terms of aquatic health and drinking water quality. 
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Appendix A 

Chapter 2 – Supplementary Figures 

Table A: Annual (bold) and monthly (regular) cation and anion concentrations for the entire time period for the Yellowknife (YK; 1988 to 2012), Cameron 
(CAM; 1988 to 2012), and Marian (MAR; 2000 to 2012) rivers in the Northwest Territories, Canada. Average values are given with 1-standard devation (σ) and 
number of samples (n). Alkalinity is measured as the total concentration of CaCO3. 

RIVER 
CATIONS ANIONS 

K+ (mg/L) Na+ (mg/L) Ca2+ (mg/L) Mg2+ (mg/L) Cl- (mg/L) SO42- (mg/L) Alkalinity (mg/L) 
Avg σ n Avg σ n Avg σ n Avg σ n Avg σ n Avg σ n Avg σ n 

YK 0.96 0.14 255 1.74 0.43 253 5.31 1.31 257 1.92 0.43 255 1.76 0.25 255 3.45 0.99 249 18.6 2.9 243 
Jan 0.99 0.15 21 1.74 0.36 21 4.85 0.99 22 1.75 0.40 22 1.74 0.15 20 3.18 0.48 21 18.4 2.9 21 
Feb 1.01 0.14 18 1.85 0.38 18 5.61 2.24 19 1.91 0.52 19 1.79 0.31 19 3.98 1.92 19 19.2 3.0 17 
Mar 0.99 0.12 22 1.80 0.40 23 4.97 1.14 23 1.90 0.56 23 1.82 0.28 23 3.35 0.58 22 18.8 2.9 19 
Apr 1.03 0.13 20 1.87 0.46 19 5.58 1.35 20 2.11 0.42 19 1.83 0.32 17 3.90 1.05 20 18.6 2.9 20 
May 0.96 0.16 25 1.72 0.38 25 5.06 1.13 25 1.88 0.50 25 1.76 0.21 26 3.61 1.01 25 18.3 3.0 23 
Jun 0.94 0.12 26 1.73 0.38 26 5.31 1.07 26 1.94 0.32 26 1.76 0.20 27 3.25 0.80 24 18.6 2.6 23 
Jul 0.94 0.13 22 1.69 0.46 22 5.61 1.20 22 2.03 0.41 22 1.71 0.21 23 3.53 1.28 22 19.2 2.6 21 

Aug 0.91 0.12 23 1.70 0.41 22 5.37 1.33 23 1.95 0.42 22 1.75 0.37 22 3.17 0.65 21 18.5 3.3 24 
Sep 0.92 0.15 24 1.63 0.48 23 5.61 1.62 24 1.97 0.45 24 1.71 0.22 24 3.44 0.85 23 18.1 3.4 22 
Oct 0.91 0.14 20 1.73 0.41 20 5.15 0.99 20 1.86 0.41 20 1.68 0.26 20 3.47 1.04 19 18.7 2.6 20 

Nov 0.95 0.18 16 1.75 0.59 16 5.37 1.27 15 1.85 0.34 15 1.78 0.24 16 3.27 0.37 15 18.6 3.0 15 
Dec 1.00 0.15 18 1.76 0.46 18 5.35 1.11 18 1.87 0.37 18 1.79 0.25 18 3.30 0.65 18 18.8 2.7 18 
                      

CAM 1.14 0.16 229 2.20 0.36 230 8.50 1.74 232 2.48 0.47 231 2.33 0.48 224 4.24 1.21 227 28.0 4.2 231 
Jan 1.21 0.14 20 2.30 0.27 20 8.58 1.33 21 2.52 0.37 21 2.23 0.50 19 4.58 1.07 21 29.8 3.4 21 
Feb 1.29 0.16 14 2.52 0.32 14 9.72 2.12 15 2.72 0.66 15 2.60 0.48 15 4.72 1.07 13 32.5 2.8 15 
Mar 1.29 0.16 15 2.64 0.28 15 9.72 1.60 15 2.83 0.52 15 2.91 0.68 15 4.45 0.89 15 32.8 2.7 15 
Apr 1.28 0.12 23 2.51 0.33 23 9.41 1.71 23 2.82 0.53 23 2.52 0.57 21 4.62 1.27 23 30.9 3.4 23 
May 1.15 0.16 19 2.15 0.33 20 8.15 1.72 20 2.48 0.40 19 2.46 0.29 18 3.93 1.10 20 26.6 4.0 20 
Jun 1.06 0.10 21 1.96 0.30 21 7.63 1.53 21 2.28 0.37 21 2.25 0.39 21 3.83 0.62 20 25.3 3.2 20 
Jul 1.07 0.11 22 2.07 0.32 22 8.19 1.45 22 2.37 0.41 22 2.22 0.40 21 4.31 1.23 22 25.5 3.2 22 

Aug 1.05 0.09 26 1.98 0.20 26 7.57 1.44 26 2.24 0.37 26 2.23 0.30 25 3.91 0.99 25 25.7 3.3 26 
Sep 1.08 0.10 20 2.06 0.24 20 8.52 1.86 20 2.48 0.39 20 2.12 0.36 20 4.28 1.98 20 26.3 3.2 20 
Oct 1.02 0.15 22 2.04 0.30 22 8.04 1.44 22 2.34 0.33 22 2.01 0.35 22 4.39 1.66 21 26.1 2.9 22 



 

132 

Nov 1.08 0.14 14 2.11 0.28 14 8.45 1.88 14 2.38 0.47 14 2.23 0.38 14 3.76 0.67 14 27.4 4.5 14 
Dec 1.24 0.15 13 2.36 0.28 13 9.15 1.55 13 2.54 0.52 13 2.42 0.37 13 4.08 0.44 13 30.7 3.3 13 
                      

MAR 1.13 0.22 166 2.09 0.37 166 18.4 6.86 166 7.91 3.00 168 1.48 0.28 159 15.7 8.04 163 59.1 23.8 165 
Jan 1.11 0.31 13 2.23 0.25 12 20.4 4.27 13 9.14 2.11 13 1.53 0.15 11 15.7 4.42 13 71.2 21.2 13 
Feb 1.17 0.16 11 2.21 0.27 11 19.7 4.08 12 8.88 2.43 12 1.42 0.22 12 12.2 3.24 12 70.6 23.0 12 
Mar 1.16 0.13 15 2.22 0.17 15 20.1 3.14 15 9.56 1.80 15 1.57 0.25 15 11.6 2.65 15 74.9 19.3 15 
Apr 1.17 0.12 14 2.17 0.17 14 21.0 2.81 14 9.99 1.64 14 1.46 0.19 12 13.1 3.53 14 72.1 18.7 14 
May 1.00 0.30 16 1.77 0.36 16 15.1 6.90 16 6.17 3.00 16 1.24 0.27 14 13.5 9.80 16 47.5 20.5 16 
Jun 1.09 0.18 15 1.77 0.28 15 12.4 4.69 15 4.77 1.75 15 1.36 0.32 15 13.1 8.69 15 36.4 12.8 15 
Jul 1.22 0.26 15 2.03 0.37 15 15.5 6.39 15 6.85 3.27 15 1.44 0.24 15 13.7 6.43 15 45.6 28.2 15 

Aug 1.10 0.20 17 2.04 0.38 17 15.9 7.58 17 7.45 3.71 17 1.41 0.23 17 14.3 5.74 16 57.3 25.8 16 
Sep 1.13 0.28 13 2.06 0.38 14 18.0 6.26 14 7.78 3.19 14 1.51 0.30 14 19.0 9.02 14 52.7 21.7 14 
Oct 1.09 0.22 15 2.16 0.44 15 22.5 10.6 15 8.37 2.56 15 1.54 0.28 15 21.4 10.3 12 57.0 19.4 14 

Nov 1.15 0.21 11 2.32 0.42 11 21.0 7.72 10 7.78 3.18 11 1.76 0.22 9 26.9 9.24 10 64.4 17.2 10 
Dec 1.19 0.17 11 2.37 0.35 11 22.4 6.23 10 9.17 2.55 11 1.68 0.32 10 19.3 7.71 11 69.1 20.0 11 
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Table A2: Annual (bold) and monthly (regular) nutrient and field parameters for the entire time period for the Yellowknife (YK; 1988 to 2012), Cameron 
(CAM; 1988 to 2012), and Marian (MAR; 2000 to 2012) rivers in the Northwest Territories, Canada. Average values are given with 1-standard devation (σ) and 
number of samples (n). 

RIVER 

OTHER Nutrients 
Tot. Diss. Solids 

(mg/L) 
pH 

Spec. Cond. 
(uS/cm) 

NH3 
(mg N/L) 

NO3-+NO2- 
(mg N/L) 

TP 
(mg/L) 

DOC 
(mg/L) 

Avg σ n Avg n Avg σ n Avg σ n Avg σ n Avg σ n Avg σ n 
YK 32.6 12.4 258 7.37 261 53.2 6.6 264 0.013 0.015 213 0.042 0.041 238 0.015 0.028 261 5.06 0.72 245 

Jan 34.8 16.5 23 7.22 23 51.5 5.5 23 0.014 0.010 19 0.055 0.025 22 0.010 0.006 22 4.92 0.56 20 
Feb 28.5 9.2 20 7.24 20 53.3 7.5 20 0.010 0.014 15 0.054 0.020 17 0.023 0.057 20 4.99 0.72 17 
Mar 28.4 12.6 23 7.17 23 52.7 5.5 23 0.019 0.026 20 0.060 0.027 20 0.013 0.019 23 4.96 0.43 22 
Apr 34.6 7.8 17 7.32 18 55.2 6.8 20 0.012 0.015 16 0.058 0.039 19 0.010 0.005 18 4.87 0.80 19 
May 33.3 12.8 26 7.39 26 52.1 5.6 27 0.009 0.006 22 0.038 0.037 26 0.011 0.008 27 5.21 0.74 27 
Jun 36.5 14.0 26 7.43 27 53.0 4.5 27 0.011 0.011 21 0.030 0.050 24 0.011 0.009 27 5.00 0.59 25 
Jul 33.7 12.9 23 7.51 23 54.3 6.1 23 0.013 0.014 19 0.041 0.067 19 0.012 0.007 23 5.31 0.53 23 

Aug 34.6 9.3 23 7.53 23 52.8 6.7 24 0.010 0.008 18 0.027 0.053 22 0.010 0.004 23 5.16 0.61 20 
Sep 33.0 16.4 24 7.46 24 51.6 7.9 24 0.009 0.004 20 0.029 0.045 21 0.027 0.056 24 5.43 1.27 22 
Oct 29.2 8.5 20 7.41 20 54.8 8.9 20 0.012 0.018 16 0.030 0.032 17 0.019 0.036 20 5.01 0.73 19 

Nov 28.4 11.0 15 7.40 16 54.0 8.6 15 0.017 0.020 13 0.039 0.025 15 0.012 0.017 16 4.65 0.37 15 
Dec 33.7 9.3 18 7.30 18 54.5 6.2 18 0.016 0.022 14 0.053 0.017 16 0.023 0.036 18 5.00 0.68 16 
                     

CAM 48.9 13.2 188 7.48 230 74.3 9.6 231 0.011 0.009 189 0.032 0.030 165 0.014 0.015 193 6.95 0.72 181 
Jan 50.9 7.7 16 7.46 20 78.4 7.5 21 0.029 0.010 17 0.033 0.023 15 0.011 0.006 15 6.85 0.54 15 
Feb 52.6 9.0 14 7.37 15 83.2 7.6 14 0.013 0.007 13 0.060 0.031 13 0.013 0.011 14 6.99 0.41 12 
Mar 50.6 16.1 14 7.44 14 87.5 6.0 15 0.009 0.004 14 0.067 0.040 12 0.015 0.017 14 6.77 0.52 13 
Apr 57.6 12.4 17 7.32 23 83.5 6.5 23 0.007 0.003 18 0.056 0.028 16 0.010 0.004 18 6.82 0.62 18 
May 50.9 9.2 16 7.38 20 71.1 9.7 20 0.008 0.006 16 0.027 0.021 13 0.014 0.015 17 7.08 0.88 16 
Jun 48.8 6.5 18 7.55 21 67.8 5.8 21 0.008 0.005 17 0.016 0.018 14 0.009 0.003 18 7.18 0.79 16 
Jul 47.5 14.6 17 7.60 22 68.4 6.3 22 0.008 0.006 17 0.018 0.015 13 0.011 0.006 18 7.27 0.80 18 

Aug 47.7 12.7 19 7.59 26 68.8 7.0 26 0.008 0.004 20 0.014 0.011 16 0.013 0.006 21 7.28 0.90 19 
Sep 43.0 14.1 15 7.59 20 70.5 6.7 20 0.009 0.006 16 0.016 0.020 14 0.019 0.021 16 6.91 0.67 17 
Oct 43.6 15.4 20 7.48 22 69.4 6.6 22 0.009 0.008 20 0.025 0.032 18 0.013 0.014 18 6.69 0.64 14 

Nov 38.8 17.0 11 7.51 14 72.0 9.0 14 0.009 0.003 10 0.027 0.022 11 0.025 0.039 12 6.59 0.61 12 
Dec 54.5 14.1 11 7.44 13 80.0 6.5 13 0.019 0.005 11 0.026 0.020 10 0.020 0.020 12 6.72 0.77 11 
                     

MAR 105.0 34.3 165 7.75 167 159 51.6 168 0.015 0.012 162 0.061 0.058 149 0.037 0.030 160 6.85 1.11 141 
Jan 114.9 29.4 13 7.60 13 182 31.8 13 0.014 0.005 13 0.084 0.043 12 0.015 0.005 13 6.98 0.58 11 
Feb 95.8 18.2 12 7.59 12 170 28.0 12 0.012 0.013 12 0.101 0.039 11 0.014 0.012 11 6.78 0.55 11 
Mar 106 16.3 14 7.64 14 181 21.8 15 0.012 0.007 14 0.092 0.052 12 0.016 0.014 14 6.86 0.86 12 
Apr 109 17.9 14 7.70 14 178 15.9 14 0.010 0.008 14 0.085 0.055 14 0.030 0.046 13 6.18 0.56 12 
May 78.6 41.2 16 7.82 16 132 51.3 16 0.012 0.009 16 0.038 0.050 15 0.021 0.009 16 6.68 1.36 14 
Jun 86.0 26.0 15 7.70 15 106 35.5 15 0.015 0.011 15 0.050 0.075 12 0.048 0.019 15 6.50 1.17 13 
Jul 101 47.7 15 7.82 15 135 55.5 15 0.021 0.020 14 0.060 0.091 12 0.045 0.022 14 6.79 0.92 13 
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Aug 113 42.1 16 7.84 17 149 58.8 17 0.019 0.012 17 0.040 0.061 15 0.048 0.019 16 6.84 1.11 13 
Sep 116 32.7 14 7.92 14 157 43.4 14 0.018 0.016 13 0.037 0.035 13 0.070 0.047 13 6.93 1.57 14 
Oct 122 41.2 14 7.88 15 184 71.7 15 0.015 0.013 14 0.050 0.050 13 0.059 0.024 13 7.08 1.09 13 

Nov 105 22.6 11 7.73 11 168 63.0 11 0.018 0.009 9 0.043 0.038 11 0.037 0.019 11 7.29 0.77 8 
Dec 118 30.2 11 7.64 11 187 43.6 11 0.020 0.007 11 0.065 0.044 9 0.033 0.029 11 7.81 1.98 7 
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Table A3: Detection limits for all geochemical analyses on the Yellowknife, Cameron, and Marian rivers. 
Some parameters did not include samples that were below the detection limit (BDL). Multiple detection limits 
represent the range of limits encountered over the entire geochemical record. 

Parameter Detection Limit 
K+ (mg/L) No samples BDL 
Na+ (mg/L) No samples BDL 
Ca2+ (mg/L) No samples BDL 
Mg2+ (mg/L) No samples BDL 
Cl- (mg/L) No samples BDL 
SO4

2- (mg/L) <3 
Alkalinity  (total as CaCO3 mg/L) No samples BDL 
NH3 (mg N/L) <0.005, <0.01 
NO2

-+NO3
- (mg N/L) <0.005, <0.010, <0.008 

DOC (mg/L) No samples BDL 
TP (mg/L) <0.006, <0.004, <0.01, <0.003 

 

Z-scores were calculated for average annual temperatures and for total annual precipitation around 

Yellowknife, NT (Fig A1). Average values were calculated using values from 1951 to 1980, as done 

by Serreze et al. (2000). Increasing trends are observed for both average annual air temperature and 

total annual precipitation, indicating changes to climate over time. 
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Figure A1: Calculated z-score values for average annual temperature (A) and total annual precipitation (B) 
for the city of Yellowknife, NT. Included are linear regression lines. 

 

Figure A2: Daily measurements of discharge for the Cameron (top) and Yellowknife (bottom) rivers with 
time. Seasonality is easily seen by high flow during the spring and low flow during winter months. 
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Figure A3: Average monthly discharge normalized to watershed area for the Yellowknife and Cameron Rivers. 
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A range of cation concentrations were found at various discharge measurements (Figure A4). No 

clear pattern or trend exists between concentration and discharge. A positive relationship between 

Na+ concentration and discharge was observed in the Yellowknife river while a negative 

relationship with discharge was observed in the Cameron River. The Cameron River contains 

higher cation concentrations during lower discharge in the winter season than the Yellowknife 

River (Figure A4). 

Chloride and sulphate concentrations were not well correlated with discharge in either the 

Yellowknife or Cameron rivers (Figure A5). However, a positive relationship between alkalinity and 

discharge is found in the Yellowknife River. An inverse relationship between alkalinity and 

discharge is found in the Cameron River. Lowest concentrations of alkalinity were observed during 

high flow in spring and summer months. Within the Yellowknife River, alkalinity appeared to be 

divided into a higher and lower group of values. Seasonality did not help predict anion 

concentrations and discharge in the Yellowknife River. Higher concentrations with lower flow 

during winter seasons are found in the Cameron River for both chloride and alkalinity, but not 

sulphate. 

For both rivers, concentrations of inorganic nitrogen species (NH3 and NO3
-+NO2

-) decreased with 

increased flow (Figure A6), while DOC concentrations increase with higher flows. There was no 

relationship between TP concentration and overall discharge for either river. For both rivers, lower 

flows in winter had the higher concentrations of nutrients, whereas highest flows in spring and 

summer had the lowest concentrations (Figure A6). 

No clear relationship between measurements of discharge with either TDS, pH, or specific 

conductivity were found in the Yellowknife River (Figure A7), while no relationship between 

discharge and either TDS or pH was found in the Cameron River. However, an inverse relationship 

between discharge and specific conductivity was observed in the Cameron River. Further, low flows 
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during the winter had high values of TDS, pH and specific conductivity, whereas high flows during 

the spring and summer contained lower values (Figure A7), suggesting a dilution response to spring 

snowmelt. 

 

 

Figure A4: Concentration of cations versus discharge (logarithmic scale) for the Yellowknife (A) and 
Cameron (B) rivers for winter (purple circles), spring (green triangles), summer (pink squares), and fall 
(orange triangles). 
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Figure A5: Concentration of anions versus discharge (logarithmic scale) for the Yellowknife (A) and Cameron 
(B) rivers for winter (purple circles), spring (green triangles), summer (pink squares), and fall (orange 
triangles). 
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Figure A6: Concentration of nutrients versus discharge (logarithmic scale) for the Yellowknife (A) and 
Cameron (B) rivers for winter (purple circles), spring (green triangles), summer (pink squares), and fall 
(orange triangles). 
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Figure A7: Total dissolved solids (TDS), pH, and specific conductivity versus discharge (logarithmic scale) for 
the Yellowknife (A) and Cameron (B) rivers for winter (purple circles), spring (green triangles), summer (pink 
squares), and fall (orange triangles). 
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Appendix B 

Chapter 3 – Supplementary Figures 

Table B1: Environmental description for all sampling sites, with the number of total samples taken for DOM 
concentration and at least one compositional measure (nDOC), and number of samples used from that site in 
PCA analysis (nPCA). 

SURFACE WATERS 
Name Location nDOC nPCA Description 

IISD-Experimental 
Lakes Area, ON (ELA) 49° 39’ 40”N,  

93° 43’ 48”W 
Ontario, Canada 

74 45 Boreal forest, underlain by Precambrian 
bedrock with discontinuous surficial layer of 
sandy-gravel till. Sampled from 2010 to 2016. 

Lakes 49 36 
Creeks 25 9 

          

Grand River, ON (GR) 
43° 30’ 41”N,  
80° 29’ 43”W 

Ontario, Canada 
39 - 

Surrounding land predominately agricultural 
and flows past six wastewater treatment 

plants. Sampled from 6 consecutive locations 
along a 90km stretch every two months from 

2011 to 2012. 
          

Yellowknife, NT (YK) 
62° 27’ 14”N,  

114° 22’ 18”W 
Northwest 
Territories, 

Canada 

23 20 Samples from the Taiga Shield underlain by 
discontinuous permafrost. Surface waters are 

surrounded by bedrock and peat pleataux 
around Yellowknife. Sampled in July or 

October between 2013 and 2017.  

Lakes 2 2 
Ponds 8 7 

Rivers 10 9 

Creek 3 2  
     

Mackenzie River, NT 
(MK) 

63° 14’ 17”N,  
123° 34’ 0”W 
Northwest 
Territories, 

Canada 

13 - Samples taken by the Community Based 
Monitoring network along the Mackenzie 
River in July and August of 2015. Samples 

ranged from WHERE to Inuvik. River flows 
through Taiga Shield and Taiga Plains. 

Rivers 13 - 

     

Wekweeti, NT (WK) 64° 11’ 24”N,  
114° 11’ 10”W 

Northwest 
Territories, 

Canada 

11 11 
Situated in the Taiga Shield, below treeline, 

continuous permafrost. Samples taken in 
Octber of 2015 and 2016. 

Lakes 9 9 

Creeks 2 2 

     

Daring Lake, NT (DL) 64° 31’ 29”N,  
111° 40’ 24”W 

Northwest 
Territories, 

Canada 

19 19 

Found in the Southern Arctic above treeline, 
continuous permafrost.  

Lakes 7 7 
Ponds 1 1 

Creeks 11 11 
     

Lake Hazen, NU (LH) 

81° 49’ 30”N,  
71° 19’ 26”W 

Nunavut, Canada 

160 12 

Tundra located in the high arctic; Lake Hazen 
Watershed is considered a local polar oasis.  

Lakes 38 2 
Ponds 18 4 
Creeks 41 1 
Rivers 32 0 
Seeps 31 5 

          
GROUND WATERS 
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Name Location n nPCA Description 

Turkey Lakes 
Watershed, ON (TLW) 

47° 2’ 54”N, 
84° 24’ 25”W 

Ontario, Canada 
16 - 

Relatively un-impacted watershed in the Great 
Lakes-St. Lawrence forest region. Area consists 

of Precambrian bedrock and surficial glacial 
deposits of glaciofluvial outwash. Samples 

collected from depths ranging between 0.90 - 
6.89m below surface. 

          

IISD-Experimental 
Lakes Area, ON (ELA) 

49° 39’ 40”N, 
93° 43’ 48”W 

Ontario, Canada 
17 - 

Piezometers constructed in transect along a 
wetland, ranging from 0.70 - 3.85m below 

surface. 
          

Nottawasaga Aquifer, 
ON (NW) 

44° 7’ 26”N,  
79° 49’ 12”W 

Ontario, Canada 
6 - 

Surficial deposits of glaciolacustrine deposits 
in an agriculturally-impacted aquifer. Samples 
collected from single multi-level piezometer 

within an unconfined surficial sand aquifer at 
depths of 4.35m, 5.13m, 6.68m, 9.90m, and 

11.3m below surface. 
          

Black Brook Watershed, 
NB (BBK) 

47° 6’ 11”N, 
67° 45’ 40”W 

New Brunswick, 
Canada 

15 - 

Site is an agriculturally-impacted aquifer. 
Surficial deposits of till and small deposits of 
glacial outwash. Samples taken from twelve 

domestic wells and three multi-level 
piezometers (6.1 - 30m below surface). 

     

Long Point, ON (LP) 
42° 34’ 46”N,  
80° 22’ 57”W 

Ontario, Canada 
23 - 

Unconfined sand aquifer atop of a clay 
aquitard. Piezometers range from 1 to 4m 
below surface. Sampling of groundwater 

containing a septic plume.  
          

Yellowknife, NT (YK) 

62° 27’ 14”N, 
114° 22’ 18”W 

Northwest 
Territories, 

Canada 

33 16 

Peat plateau sites underlain by sporadic 
discontinuous permafrost. Piezometers are 
above the permafrost boundary and depths 

range from 0.10 - 0.50m below surface. 
     

Wekweeti, NT (WK) 

64° 11’ 24”N,  
114° 11’ 10”W 

Northwest 
Territories, 

Canada 

1 1 
Piezometers installed at deepest extent of 

active-layer (~0.5m below surface). Sampled 1-
2 m away from lake shore in organic-rich peat. 

     

Daring Lake, NT (DL) 

64° 31’ 29”N,  
111° 40’ 24”W 

Northwest 
Territories, 

Canada 

4 4 ?? 

     

Lake Hazen, NU (LH) 
81° 49’ 30”N,  
71° 19’ 26”W 
Nunavut, Canada 

17 2 

Samples taken from piezometer installed at 
deepest extent of active-layer (~0.25m). 

Location was in a subcatchment containing 
organic-rich soil. Flow direction was through 
wetland into nearby lake. Organic-rich layer 

underlain by silt or clay material. 
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Table B2: Summary data of all samples for DOM concentration (mg C/L), SUVA, slope between 275-295nm, DOC:DON, and proportion of humic substances.  
    DOC (mg/L)   SUVA (L / (mg m))  S275-295 (nm-1)   DOC:DON    Prop. Humic Substances 

    Mean 
σ 

(±) 
Min Max n Mean 

σ 
(±) 

Min Max n Mean σ (±) Min Max n Mean 
σ 

(±) 
Min Max n Mean 

σ 
(±) 

Min Max n 

Lake Hazen    
 

    
 

    
 

    
 

    
 

 Seep 1.4 1.1 0.3 3.9 31 6.2 2.9 1.1 12.0 26 0.0141 0.0015 0.0110 0.0174 26 21 17 4 74 19 0.76 0.06 0.65 0.80 5 
 Sub 6.7 3.7 2.4 15.7 17 8.8 4.0 2.1 18.6 15 0.0108 0.0035 0.0050 0.0163 15 19 16 5 76 17 0.44 0.34 0.21 0.68 2 
 Pond 12.1 7.8 3.7 24.0 18 4.5 1.3 2.7 7.6 18 0.0237 0.0051 0.0154 0.0321 18 21 8 11 45 18 0.60 0.05 0.56 0.68 4 
 Lake 2.7 3.0 0.1 6.9 38 4.0 0.8 1.9 4.7 18 0.0229 0.0029 0.0170 0.0257 18 15 4 9 21 10 0.57 0.05 0.50 0.61 5 
 Creek 1.2 2.0 0.1 8.0 41 4.1 2.1 1.5 10.0 25 0.0154 0.0035 0.0079 0.0217 25 16 10 2 34 9 0.49 0.15 0.21 0.63 6 
 River 0.5 0.4 0.1 1.4 32 4.2 1.9 1.5 7.7 22 0.0154 0.0046 0.0101 0.0264 23 - - - - - 0.43 0.15 0.22 0.68 10 

Daring Lake                         

 Sub 21.0 9.3 9.6 30.0 4 9.4 0.6 8.7 10.2 4 0.0128 0.0008 0.0116 0.0134 4 43 5 37 50 4 0.73 0.05 0.68 0.78 4 
 Pond 4.0 - 4.0 4.0 1 3.8 - 3.8 3.8 1 0.0199 - 0.0199 0.0199 1 28 - 28 28 1 0.40 NA 0.40 0.40 1 
 Lake 6.1 2.8 2.3 9.5 7 6.3 3.1 2.2 9.1 7 0.0179 0.0050 0.0127 0.0253 7 26 8 15 36 7 0.57 0.16 0.30 0.74 7 
 Creek 7.4 3.7 2.1 14.1 11 6.6 2.2 2.6 8.9 11 0.0157 0.0036 0.0133 0.0254 11 27 5 20 35 11 0.59 0.10 0.41 0.75 11 

Wekweètì                         

 Sub 10.2 - 10.2 10.2 1 10.3 - 10.3 10.3 1 0.0120 - 0.0120 0.0120 1 39 - 39 39 1 0.70 NA 0.70 0.70 1 
 Lake 10.8 5.35 4.5 18.3 9 6.7 2.2 4.3 10.2 9 0.0175 0.0032 0.0127 0.0222 9 36 13 20 62 9 0.61 0.11 0.50 0.81 9 
 Creek 6.2 0.4 6.0 6.5 2 4.8 0.0 4.8 4.8 2 0.0205 0.0001 0.0204 0.0206 2 25 10 18 32 2 0.57 0.08 0.51 0.62 2 

Yellowknife                        

 Sub 113 56.0 34.2 273 33 7.3 1.4 5.0 9.6 17 0.0136 0.0024 0.0100 0.0178 17 47 22 9 124 32 0.77 0.05 0.63 0.83 29 
 Pond 34.4 2.9 29.5 36.9 8 5.8 1.2 3.9 6.9 7 0.0180 0.0012 0.0164 0.0200 7 32 6 20 40 8 0.70 0.05 0.65 0.77 8 
 Lake 29.7 1.9 28.3 31.0 2 3.1 1.8 1.8 4.4 2 0.0246 0.0077 0.0192 0.0300 2 27 5 23 30 2 0.53 0.12 0.44 0.61 2 
 Creek 15.6 4.6 10.3 18.7 3 4.2 1.0 3.5 5.6 4 0.0195 0.0021 0.0170 0.0221 4 25 16 5 45 4 0.55 0.00 0.55 0.55 2 
 River 5.9 1.6 3.8 8.92 10 3.4 0.6 2.3 4.2 10 0.0226 0.0021 0.0200 0.0258 10 29 14 15 52 10 0.59 0.03 0.56 0.63 9 

Mackenzie River                        

 River 4.7 0.7 3.7 5.9 13 6.9 0.8 5.3 7.8 13 0.0172 0.0019 0.0149 0.0205 13 26 3 20 30 13 - - - - - 
IISD-ELA                         

 Sub 47.8 22.3 18.0 86.1 17 - - - - - - - - - 0 - - - - - 0.37 0.14 0.14 0.62 17 
 Lake 7.5 2.7 2.8 14. 6 49 6.4 4.6 1.4 21.2 32 0.0178 0.0042 0.0092 0.0308 32 30 14 19 105 41 0.50 0.09 0.32 0.75 56 
 Creek 23.4 11.9 10.3 63.6 25 8.4 1.9 5.3 11.1 22 0.0137 0.0013 0.0118 0.0160 22 48 11 34 82 22 0.81 0.02 0.74 0.85 17 

Turkey Lakes Watershed  
    

 
    

           

 Sub 2.87 3.8 0.9 16.7 16 - - - - - - - - - - - - - - - 0.50 0.17 0.18 0.77 16 
Nottawasaga    

    
 

    
           

 Sub 2.1 0.5 1.5 3.0 6 - - - - - - - - - - - - - - - 0.55 0.08 0.48 0.70 6 
Grand River     

    
 

    
           

 River 6.1 1.0 4.0 8.0 39 - - - - - - - - - - 10 7 3 34 39 0.66 0.05 0.51 0.75 39 
Long Point     

    
 

    
           

 Sub 3.3 1.5 1.7 8.0 23 - - - - - - - - - - - - - - - 0.62 0.08 0.49 0.76 23 
Black Brook Watershed  

    
 

    
           

  Sub 0.7 0.5 0.2 2.1 15 - - - - - - - - - - - - - - - 0.54 0.10 0.41 0.69 15 
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Figure B1: Contribution of each variable within the PCA to dimensions 1 and 2 (top graph), dimensions 1 and 
3 (middle graph), and dimensions 1, 2 and 3 (bottom graph). 
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Figure B2: Proportion of low-molecular weight neutrals versus proportion of biopolymers for DOM from 
subsurface (pink circles) and surface water (lavender triangles) sites. 
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Figure B3: Surrogate parameters for each axis of the Composition Wheel. 
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Appendix C 

Chapter 4 & 5 – Dissolved Inorganic Carbon 

Concentrations of DIC were calculated from initial and final samples from Yellowknife and Daring 

Lake (Table C1). DIC was not calculated from Lake Hazen sites due to minimal change in overall 

dissolved organic matter (DOM; mg C/L) concentration and high background DIC. 

Samples for DIC were collected in pre-weighed 12 mL Labco Exetainer vials and capped with no 

headspace using baked septa caps.  Analysis involved withdrawing 6 mL of sample while 

simultaneously injecting 6 mL of helium and transferring the sample to another Exetainer filled 

with helium. Both exetainers were acidified using 0.05 mL of H2SO4 and another 6mL was added to 

the initial exetainer, resulting in both vials containing 12 mL of helium and 6 mL of sample. Vials 

were then placed on a shaker for 2 hours to allow for equilibration between liquid and gas phases. 

The concentration of headspace carbon dioxide (CO2) was measured for each exetainer using a 

Varian CP-3800 Gas Chromatograph and dissolved concentrations of CO2 were calculated according 

to Henry’s Law. 

Table C1: Subset of Yellowknife incubation samples to compare the loss of dissolved organic matter (DOM) 
with the pH, concentration of dissolved inorganic carbon (DIC), and total change in DIC. 

 DOM Loss pH DIC (mg C/L) ΔDIC (mg C/L) 

 mg C/L Initial Final Initial Final mg C/L 

Subsurface 14.4 5.5 5.6 30.9 29.1 -1.8 

Pond 3.3 5.3 5.5 8.8 8.2 -0.6 

Creek 2.0 5.8 5.6 13.8 12.5 -1.3 

Table C2: Dissolved inorganic carbon and headspace carbon dioxide concentrations for 2014 photolysis 
samples for three treatments: original (t=0), ‘Photo’ (photolysed sample), and ‘Dark’. 

Sample 
DIC (mg/L) CO2 (ppm) 

Original Photo Dark Original Photo 

Subsurface 1 (P2) 29 25 32 353 4480 

Subsurface 2 (P5) 5.0 13 6.0 353 3765 

River 5.6 6.1 6.0 353 1328 
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Appendix D 

Chapter 6 – DBP Supplementary Information 

 

Figure D1: Water quality data of dissolved organic matter (DOM mg C/L; top) and total trihalomethane (THM mg/L; bottom) concentration for different 
sample locations in each community. Solid dots represent treated samples, whereas hollow dots are raw samples. Different colours represent the different 
water sources. 
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Figure D2: Water quality data of trihalomethane concentration (THM, mg/L) versus True Colour (TCU) for 
raw (left panel) and treated (right panel) samples compiled from the public database. Different colours 
represent different water treatment plant types, while different shapes represent the water source. 

 

 

Figure D3: True colour versus dissolved organic matter (DOM, mg C/L) concentration for water quality 
database (top) and field data (bottom). 
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Figure D4: Overall trihalomethane (THM; left panel) and haloacetic acid (HAA9; right panel) concentration 
versus dissolved organic matter concentration (DOM) for all field samples. 

 

 

Figure D5: Correlation matrix for different dissolved organic matter (DOM) metrics: concentration (mg C/L); 
specific ultraviolet absorbance at 255 nm (SUVA, L/(mg·m)), proportion of humic substances fraction (HSF), 
slope ratio between 275 to 295 nm (S275-295, nm-1), and molar dissolved organic carbon to dissolved organic 
nitrogen ratio (DOC:DON). 
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Appendix E 

Field Photos 

Yellowknife, NT: 

 
Photo of the ‘Airport Site’ that contains the pond with floating bog around it. Dead trees are called 

‘drunken trees’ due to the degradation of underlying permafrost and subsequent flooding of roots. 

 
Typical view of lakes near Yellowknife with sedges and black spruce. 
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Wekweètì, NT: 

 
Landscape outside of Wekweètì (trees are more sparse than Yellowknife, continuous permafrost 

underneath).  
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Lake Hazen, NU: 

 
Panorama of the Lake Hazen Watershed from atop a northern mountain slope looking southward towards 

Lake Hazen.  The general lack of vegetation and moisture characteristic of the watershed is in stark contrast 
be a few small, productive areas as seen on the left hand side of the photo. 

 
Looking at Lake Hazen (ice covered), the camp (directly at the crack in ice between the island and 

nearshore), and the smaller Skeleton Lake sub-catchment (productive green landscape with a series of lakes). 

 
Looking out from Lake Hazen. Note the clarity of the lake (able to see rocks submerged beneath the 

surface). 



156 

References 

(1)  French, H. M.; Slaymaker, O. Changing Cold Environments: A Canadian Perspective; French, 
H. M., Slaymaker, O., Eds.; Wiley-Blackwell, 2011. 

(2)  Downing, J. A.; Prairie, Y. T.; Cole, J. J.; Duarte, C. M.; Tranvik, L. J.; Striegl, R. G.; McDowell, 
W. H.; Kortelainen, P.; Caraco, N. F.; Melack, J. M.; et al. The Global Abundance and Size 
Distribution of Lakes, Ponds, and Impoundments. Limnol. Oceanogr. 2006, 51 (5), 2388–2397. 
https://doi.org/10.4319/lo.2006.51.5.2388. 

(3)  Tranvik, L. J.; Downing, J. A.; Cotner, J. B.; Loiselle, S. A.; Striegl, R. G.; Ballatore, T. J.; 
Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L. B.; et al. Lakes and Reservoirs as Regulators of 
Carbon Cycling and Climate. Limnol. Oceanogr. 2009, 54 (1), 17. 
https://doi.org/10.4319/lo.2009.54.6_part_2.2298. 

(4)  Rautio, M.; Dufresne, F.; Laurion, I.; Bonilla, S.; Vincent, W. F.; Christoffersen, K. S. Shallow 
Freshwater Ecosystems of the Circumpolar Arctic. Écoscience 2011, 18 (3), 204–222. 
https://doi.org/10.2980/18-3-3463. 

(5)  Heginbottom, J. A.; Dubreuil, M. A.; Harker, P. A. Canada - Permafrost. In National Atlas of 
Canada; National Atlas Information Service, Natural Resources Canada: Ottawa, ON, 
Canada, 1995. 

(6)  Spence, C.; Woo, M. K. Hydrology of the Northwestern Subarctic Canadian Shield. In Cold 
Region Atmospheric and Hydrologic Studies; Woo, M., Ed.; Springer-Verlag: Berlin, 
Heidelberg, 2008; pp 235–256. 

(7)  Bednarski, J. M. Surficial Geology, Lady Franklin Bay Area, Nunavut, NTS 120-C and Part of 
NTS 120-D; 2015. https://doi.org/10.4095/296212. 

(8)  Smith, I. R. Late Quaternary Glacial History of Lake Hazen Basin and Eastern Hazen Plateau, 
Northern Ellesmere Island, Nunavut, Canada. Can. J. Earth Sci. 1999, 36 (9), 1547–1565. 
https://doi.org/10.1139/e99-046. 

(9)  Serreze, M. C.; Barry, R. G. The Arctic Climate System; Cambridge University Press: 
Cambridge, 2014. https://doi.org/10.1017/CBO9781139583817. 

(10)  Schindler, D. W.; Smol, J. P. Cumulative Effects of Climate Warming and Other Human 
Activities on Freshwaters of Arctic and Subarctic North America. Ambio 2006, 35 (4), 160–
168. 

(11)  Serreze, M. C.; Barry, R. G. Processes and Impacts of Arctic Amplification: A Research 
Synthesis. Glob. Planet. Change 2011, 77 (1–2), 85–96. 
https://doi.org/10.1016/j.gloplacha.2011.03.004. 

(12)  Burn, C. R.; Kokelj, S. V. The Environment and Permafrost of the Mackenzie Delta Area. 
Permafr. Periglac. Process. 2009, 20 (2), 83–105. https://doi.org/10.1002/ppp.655. 

(13)  Serreze, M. C.; Walsh, J. E.; Osterkamp, T.; Dyurgerov, M.; Romanovsky, V.; Oechel, W. C.; 
Morison, J.; Zhang, T.; Barry, R. G. Observational Evidence of Recent Change in the 
Northern High-Latitude Environment. Clim. Change 2000, 46, 159–207. 

(14)  St. Jacques, J. M.; Sauchyn, D. J. Increasing Winter Baseflow and Mean Annual Streamflow 
from Possible Permafrost Thawing in the Northwest Territories, Canada. Geophys. Res. Lett. 
2009, 36 (1), 1–6. https://doi.org/10.1029/2008GL035822. 



 

157 

(15)  Gustafsson, Ö.; Van Dongen, B. E.; Vonk, J. E.; Dudarev, O. V.; Semiletov, I. P. Widespread 
Release of Old Carbon across the Siberian Arctic Echoed by Its Large Rivers. Biogeosciences 
2011, 8, 1737–1743. https://doi.org/10.5194/bg-8-1737-2011. 

(16)  Notz, D.; Stroeve, J. Observed Arctic Sea-Ice Loss Directly Follows Anthropogenic CO2 
Emission. Science (80-. ). 2016, 354 (6313), 1–9. https://doi.org/10.1126/science.aag2345. 

(17)  Bintanja, R.; Andry, O. Towards a Rain-Dominated Arctic. Nat. Clim. Chang. 2017, 7 
(March), 263–268. https://doi.org/10.1038/nclimate3240. 

(18)  Tank, S. E.; Fellman, J. B.; Hood, E.; Kritzberg, E. S. Beyond Respiration: Controls on Lateral 
Carbon Fluxes across the Terrestrial-Aquatic Interface. Limnol. Oceanogr. Lett. 2018. 
https://doi.org/10.1002/lol2.10065. 

(19)  Sharma, S.; Blagrave, K.; Magnuson, J. J.; O’Reilly, C. M.; Oliver, S.; Batt, R. D.; Magee, M. R.; 
Straile, D.; Weyhenmeyer, G. A.; Winslow, L.; et al. Widespread Loss of Lake Ice around the 
Northern Hemisphere in a Warming World. Nat. Clim. Chang. 2019, 9 (3), 227–231. 
https://doi.org/10.1038/s41558-018-0393-5. 

(20)  Lehnherr, I.; St Louis, V. L.; Sharp, M.; Gardner, A. S.; Smol, J. P.; Schiff, S. L.; Muir, D. C. G.; 
Mortimer, C. A.; Michelutti, N.; Tarnocai, C.; et al. The World’s Largest High Arctic Lake 
Responds Rapidly to Climate Warming. Nat. Commun. 2018, 9 (1), 1–9. 
https://doi.org/10.1038/s41467-018-03685-z. 

(21)  Van Der Kolk, H. J.; Heijmans, M. M. P. D.; Van Huissteden, J.; Pullens, J. W. M.; Berendse, F. 
Potential Arctic Tundra Vegetation Shifts in Response to Changing Temperature, 
Precipitation and Permafrost Thaw. Biogeosciences 2016, 13 (22), 6229–6245. 
https://doi.org/10.5194/bg-13-6229-2016. 

(22)  Warren, F. J.; Lemmen, D. S. Canada in a Changing Climate: Sector Perspectives on Impacts 
and Adaptation; Ottawa, ON, 2014. 

(23)  McGuire, D. A.; Anderson, L. G.; Christensen, T. R.; Dallimore, S.; Guo, L.; Hayes, D. J.; 
Heimann, M.; Lorenson, T. D.; MacDonald, R. W.; Roulet, N. Sensitivity of the Carbon Cycle 
in the Arctic to Climate Change. Ecol. Monogr. 2009, 79 (4), 523–555. 

(24)  Abbott, B. W.; Jones, J. B.; Schuur, E. A. G.; Chapin III, F. S.; Bowden, W. B.; Bret-Harte, M. 
S.; Epstein, H. E.; Flannigan, M. D.; Harms, T. K.; Hollingsworth, T. N.; et al. Biomass Offsets 
Little or None of Permafrost Carbon Release from Soils, Streams, and Wildfire: An Expert 
Assessment. Environ. Res. Lett. 2016, 11 (3), 034014. https://doi.org/10.1088/1748-
9326/11/3/034014. 

(25)  Kuhry, P.; Grosse, G.; Harden, J. W.; Hugelius, G.; Koven, C. D.; Ping, C.-L.; Schirrmeister, L.; 
Tarnocai, C. Characterisation of the Permafrost Carbon Pool. Permafr. Periglac. Process. 2013, 
24 (2), 146–155. https://doi.org/10.1002/ppp.1782. 

(26)  Schuur, E. A. G.; Abbott, B. W.; Bowden, W. B.; Brovkin, V.; Camill, P.; Canadell, J. G.; 
Chanton, J. P.; Chapin, F. S.; Christensen, T. R.; Ciais, P.; et al. Expert Assessment of 
Vulnerability of Permafrost Carbon to Climate Change. Clim. Change 2013, 119 (2), 359–374. 
https://doi.org/10.1007/s10584-013-0730-7. 

(27)  McClelland, J. W. W.; Holmes, R. M.; Peterson, B. J.; Raymond, P. A.; Striegl, R. G.; Zimov, S. 
A.; Zimov, N. S.; Tank, S. E.; Spencer, R. G. M.; Staples, R.; et al. Particulate Organic Carbon 



 

158 

and Nitrogen Export from Major Arctic Rivers. Global Biogeochem. Cycles 2016, 30 (0428), 1–
19. https://doi.org/10.1002/2015GB005351. 

(28)  Frey, K. E.; Smith, L. C. Amplified Carbon Release from Vast West Siberian Peatlands by 
2100. Geophys. Res. Lett. 2005, 32 (9), L09401. https://doi.org/10.1029/2004GL022025. 

(29)  Dutta, K.; Schuur, E. A. G.; Neff, J. C.; Zimov, S. A. Potential Carbon Release from Permafrost 
Soils of Northeastern Siberia. Glob. Chang. Biol. 2006, 12, 2336–2351. 
https://doi.org/10.1111/j.1365-2486.2006.01259.x. 

(30)  O’Donnell, J. A.; Aiken, G. R.; Walvoord, M. A.; Raymond, P. A.; Butler, K. D.; Dornblaser, M. 
M.; Heckman, K. Using Dissolved Organic Matter Age and Composition to Detect Permafrost 
Thaw in Boreal Watersheds of Interior Alaska. J. Geophys. Res. Biogeosciences 2014, 119 (11), 
2155–2170. https://doi.org/10.1002/2014JG002695. 

(31)  Hilton, R. G.; Galy, V.; Gaillardet, J.; Dellinger, M.; Bryant, C.; O’Regan, M.; Gröcke, D. R.; 
Coxall, H.; Bouchez, J.; Calmels, D. Erosion of Organic Carbon in the Arctic as a Geological 
Carbon Dioxide Sink. Nature 2015, 524 (7563), 84–87. https://doi.org/10.1038/nature14653. 

(32)  Mann, P. J.; Eglinton, T. I.; McIntyre, C. P.; Zimov, N. S.; Davydova, A.; Vonk, J. E.; Holmes, 
R. M.; Spencer, R. G. M. Utilization of Ancient Permafrost Carbon in Headwaters of Arctic 
Fluvial Networks. Nat. Commun. 2015, 6 (1), 7856. https://doi.org/10.1038/ncomms8856. 

(33)  Sulzberger, B.; Arey, J. S. Impacts of Polar Changes on the UV-Induced Mineralization of 
Terrigenous Dissolved Organic Matter. Environ. Sci. Technol. 2016, 50 (13), 6621–6631. 
https://doi.org/10.1021/acs.est.5b05994. 

(34)  Wauthy, M.; Rautio, M.; Christoffersen, K. S.; Forsström, L.; Laurion, I.; Mariash, H. L.; Peura, 
S.; Vincent, W. F. Increasing Dominance of Terrigenous Organic Matter in Circumpolar 
Freshwaters Due to Permafrost Thaw. Limnol. Oceanogr. Lett. 2018. 
https://doi.org/10.1002/lol2.10063. 

(35)  Fritz, M.; Opel, T.; Tanski, G.; Herzschuh, U.; Meyer, H.; Eulenburg, A.; Lantuit, H. Dissolved 
Organic Carbon (DOC) in Arctic Ground Ice. Cryosphere 2015, 9 (2), 737–752. 
https://doi.org/10.5194/tc-9-737-2015. 

(36)  Schädel, C.; Schuur, E. A. G.; Bracho, R.; Elberling, B.; Knoblauch, C.; Lee, H.; Luo, Y.; Shaver, 
G. R.; Turetsky, M. R. Circumpolar Assessment of Permafrost C Quality and Its Vulnerability 
over Time Using Long-Term Incubation Data. Glob. Chang. Biol. 2014, 20 (2), 641–652. 
https://doi.org/10.1111/gcb.12417. 

(37)  Laurion, I.; Vincent, W. F.; MacIntyre, S.; Retamal, L.; Dupont, C.; Francus, P.; Pienitz, R. 
Variability in Greenhouse Gas Emissions from Permafrost Thaw Ponds. Limnol. Oceanogr. 
2010, 55 (1), 115–133. https://doi.org/10.4319/lo.2010.55.1.0115. 

(38)  Evans, C. D.; Futter, M. N.; Moldan, F.; Valinia, S.; Frogbrook, Z.; Kothawala, D. N. Variability 
in Organic Carbon Reactivity across Lake Residence Time and Trophic Gradients. Nat. 
Geosci. 2017, 10 (11), 832–835. https://doi.org/10.1038/NGEO3051. 

(39)  Myers-Pigg, A. N.; Louchouarn, P.; Amon, R. M. W.; Prokushkin, A.; Pierce, K.; Rubtsov, A. 
Labile Pyrogenic Dissolved Organic Carbon in Major Siberian Arctic Rivers: Implications for 
Wildfire-Stream Metabolic Linkages. 2015, 1–9. 
https://doi.org/10.1002/2014GL062762.Received. 



 

159 

(40)  Lupascu, M.; Wadham, J. L.; Hornibrook, E. R. C.; Pancost, R. D. Temperature Sensitivity of 
Methane Production in the Permafrost Active Layer at Stordalen, Sweden: A Comparison 
with Non-Permafrost Northern Wetlands. Arctic, Antarct. Alp. Res. 2012, 44 (4), 469–482. 
https://doi.org/10.1657/1938-4246-44.4.469. 

(41)  Elberling, B.; Michelsen, A.; Schädel, C.; Schuur, E. A. G.; Christiansen, H. H.; Berg, L.; 
Tamstorf, M. P.; Sigsgaard, C. Long-Term CO2 Production Following Permafrost Thaw. Nat. 
Clim. Chang. 2013, 3 (October), 890–894. https://doi.org/10.1038/nclimate1955. 

(42)  Schuur, E. a. G.; McGuire,  a. D.; Schädel, C.; Grosse, G.; Harden, J. W.; Hayes, D. J.; Hugelius, 
G.; Koven, C. D.; Kuhry, P.; Lawrence, D. M.; et al. Climate Change and the Permafrost 
Carbon Feedback. Nature 2015, 520 (7546), 171–179. https://doi.org/10.1038/nature14338. 

(43)  Wik, M.; Varner, R. K.; Anthony, K. W.; MacIntyre, S.; Bastviken, D. Climate-Sensitive 
Northern Lakes and Ponds Are Critical Components of Methane Release. Nat. Geosci. 2016, 
No. January. https://doi.org/10.1038/ngeo2578. 

(44)  Mack, M. C.; Schuur, E. A. G.; Bret-Harte, M. S.; Shaver, G. R.; Chapin, F. S. Ecosystem 
Carbon Storage in Arctic Tundra Reduced by Long-Term Nutrient Fertilization. Nature 2004, 
431 (7007), 440–443. https://doi.org/10.1038/nature02887. 

(45)  Emmerton, C. A.; Louis, V. L. S.; Lehnherr, I.; Graydon, J. A.; Kirk, J. L.; Rondeau, K. J. The 
Importance of Freshwater Systems to the Net Atmospheric Exchange of Carbon Dioxide and 
Methane with a Rapidly Changing High Arctic Watershed. Biogeosciences 2016, 13 (20), 
5849–5863. https://doi.org/10.5194/bg-13-5849-2016. 

(46)  Wild, B.; Gentsch, N.; Čapek, P.; Diáková, K.; Alves, R. J. E.; Bárta, J.; Gittel, A.; Hugelius, G.; 
Knoltsch, A.; Kuhry, P.; et al. Plant-Derived Compounds Stimulate the Decomposition of 
Organic Matter in Arctic Permafrost Soils. Sci. Rep. 2016, 6 (April), 25607. 
https://doi.org/10.1038/srep25607. 

(47)  Vonk, J. E.; Gustafsson, Ö. Permafrost-Carbon Complexities. Nat. Geosci. 2013, 6 (9), 675–
676. https://doi.org/10.1038/ngeo1937. 

(48)  Cooper, M. D. A.; Estop-Aragonés, C.; Fisher, J. P.; Thierry, A.; Garnett, M. H.; Charman, D. 
J.; Murton, J. B.; Phoenix, G. K.; Treharne, R.; Kokelj, S. V.; et al. Limited Contribution of 
Permafrost Carbon to Methane Release from Thawing Peatlands. Nat. Clim. Chang. 2017, 7 
(June), 507–511. https://doi.org/10.1038/NCLIMATE3328. 

(49)  Mueller, K. K.; Fortin, C.; Campbell, P. G. C. Spatial Variation in the Optical Properties of 
Dissolved Organic Matter (DOM) in Lakes on the Canadian Precambrian Shield and Links to 
Watershed Characteristics. Aquat. Geochemistry 2012, 18 (1), 21–44. 
https://doi.org/10.1007/s10498-011-9147-y. 

(50)  Kellerman, A. M.; Dittmar, T.; Kothawala, D. N.; Tranvik, L. J. Chemodiversity of Dissolved 
Organic Matter in Lakes Driven by Climate and Hydrology. Nat. Commun. 2014, 5 (MAY), 
1–8. https://doi.org/10.1038/ncomms4804. 

(51)  Larson, J. H.; Frost, P. C.; Xenopoulos, M. A.; Williams, C. J.; Morales-Williams, A. M.; 
Vallazza, J. M.; Nelson, J. C.; Richardson, W. B. Relationships Between Land Cover and 
Dissolved Organic Matter Change Along the River to Lake Transition. Ecosystems 2014, 17 
(8), 1413–1425. https://doi.org/10.1007/s10021-014-9804-2. 



 

160 

(52)  Dawson, J. J. C.; Billett, M. F.; Hope, D.; Palmer, S. M.; Claire, M.; Deacon, C. M. Sources and 
Sinks of Aquatic Carbon in a Peatland Stream Continuum. Biogeochemistry 2004, 70, 71–92. 

(53)  Schindler, D. W.; Curtis, P. J.; Parker, B. R.; Stainton, M. P. Consequences of Climate 
Warming and Lake Acidification for UV-B Penetration in North American Boreal Lakes. 
Nature 1996, 379 (22), 705–708. 

(54)  Williamson, C. E.; Morris, D. P.; Pace, M. L.; Olson, O. G. Dissolved Organic Carbon and 
Nutrients as Regulators of Lake Ecosystems : Resurrection of a More Integrated Paradigm. 
Limnol. Oceanogr. 1999, 44 (3), 795–803. 

(55)  Strock, K. E.; Theodore, N.; Gawley, W. G.; Ellsworth, A. C.; Saros, J. E. Increasing Dissolved 
Organic Carbon Concentrations in Northern Boreal Lakes: Implications for Lake Water 
Transparency and Thermal Structure. J. Geophys. Res. Biogeosciences 2017, 122 (5), 1022–
1035. https://doi.org/10.1002/2017JG003767. 

(56)  Pilla, R. M.; Williamson, C. E.; Zhang, J.; Smyth, R. L.; Lenters, J. D.; Brentrup, J. A.; Knoll, L. 
B.; Fisher, T. J. Browning-Related Decreases in Water Transparency Lead to Long-Term 
Increases in Surface Water Temperature and Thermal Stratification in Two Small Lakes. J. 
Geophys. Res. Biogeosciences 2018. https://doi.org/10.1029/2017JG004321. 

(57)  Biddanda, B. A.; Cotner, J. B. Love Handles in Aquatic Ecosystems: The Role of Dissolved 
Organic Carbon Drawdown, Resuspended Sediments, and Terrigenous Inputs in the Carbon 
Balance of Lake Michigan. Ecosystems 2002, 5 (5), 431–445. https://doi.org/10.1007/s10021-
002-0163-z. 

(58)  Bauer, M.; Heitmann, T.; Macalady, D. L.; Blodau, C. Electron Transfer Capacities and 
Reaction Kinetics of Peat Dissolved Organic Matter. Environ. Sci. Technol. 2007, 41 (1), 139–
145. https://doi.org/10.1021/es061323j. 

(59)  Moore, D. R. J. Water Quality Ambient Water Quality Criteria for Organic Carbon in British 
Columbia; 1998. 

(60)  Al-Reasi, H. a; Wood, C. M.; Smith, D. S. Characterization of Freshwater Natural Dissolved 
Organic Matter (DOM): Mechanistic Explanations for Protective Effects against Metal 
Toxicity and Direct Effects on Organisms. Environ. Int. 2013, 59, 201–207. 
https://doi.org/10.1016/j.envint.2013.06.005. 

(61)  Baken, S.; Degryse, F.; Verheyen, L.; Merckx, R.; Smolders, E. Metal Complexation Properties 
of Freshwater Dissolved Organic Matter Are Explained by Its Aromaticity and by 
Anthropogenic Ligands. Environ. Sci. Technol. 2011, 45 (7), 2584–2590. 
https://doi.org/10.1021/es103532a. 

(62)  French, T. D.; Houben, A. J.; Desforges, J.-P. W.; Kimpe, L. E.; Kokelj, S. V.; Poulain, A. J.; 
Smol, J. P.; Wang, X.; Blais, J. M. Dissolved Organic Carbon Thresholds Affect Mercury 
Bioaccumulation in Arctic Lakes. Environ. Sci. Technol. 2014, 48 (6), 3162–3168. 
https://doi.org/10.1021/es403849d. 

(63)  Lescord, G. L.; Emilson, E. J. S.; Johnston, T. A.; Branfireun, B. A.; Gunn, J. M. Optical 
Properties of Dissolved Organic Matter and Their Relation to Mercury Concentrations in 
Water and Biota Across a Remote Freshwater Drainage Basin. Environ. Sci. Technol. 2018, 52 
(6), 3344–3353. https://doi.org/10.1021/acs.est.7b05348. 



 

161 

(64)  Matilainen, A.; Vepsäläinen, M.; Sillanpää, M. Natural Organic Matter Removal by 
Coagulation during Drinking Water Treatment: A Review. Adv. Colloid Interface Sci. 2010, 
159 (2), 189–197. https://doi.org/10.1016/j.cis.2010.06.007. 

(65)  Matilainen, A.; Gjessing, E. T.; Lahtinen, T.; Hed, L.; Bhatnagar, A.; Sillanpää, M. An 
Overview of the Methods Used in the Characterisation of Natural Organic Matter (NOM) in 
Relation to Drinking Water Treatment. Chemosphere 2011, 83 (11), 1431–1442. 
https://doi.org/10.1016/j.chemosphere.2011.01.018. 

(66)  Worrall, F.; Burt, T. P. Changes in DOC Treatability: Indications of Compositional Changes 
in DOC Trends. J. Hydrol. 2009, 366 (1–4), 1–8. https://doi.org/10.1016/j.jhydrol.2008.11.044. 

(67)  Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; 
Onstad, G. D.; Thruston, A. D. Occurrence of a New Generation of Disinfection Byproducts. 
Environ. Sci. Technol. 2006, 40 (23), 7175–7185. https://doi.org/10.1021/es060353j. 

(68)  Awad, J.; van Leeuwen, J.; Chow, C.; Drikas, M.; Smernik, R. J.; Chittleborough, D. J.; 
Bestland, E. Characterization of Dissolved Organic Matter for Prediction of Trihalomethane 
Formation Potential in Surface and Sub-Surface Waters. J. Hazard. Mater. 2016, 308, 430–439. 
https://doi.org/10.1016/j.jhazmat.2016.01.030. 

(69)  Dahlén, J.; Bertilsson, S.; Pettersson, C. Effects of UV-A Radiation on Dissolved Organic 
Matter in Humic Surface Waters. Environ. Int. 1996, 22 (5), 501–506. 

(70)  Stedmon, C. a; Markager, S.; Bro, R. Tracing Dissolved Organic Matter in Aquatic 
Environments Using a New Approach to Fluorescence Spectroscopy. Mar. Chem. 2003, 82 
(3–4), 239–254. https://doi.org/10.1016/S0304-4203(03)00072-0. 

(71)  Weishaar, J. L.; Aiken, G. R.; Bergamaschi, B. A.; Fram, M. S.; Fujii, R.; Mopper, K. Evaluation 
of Specific Ultraviolet Absorbance as an Indicator of the Chemical Composition and 
Reactivity of Dissolved Organic Carbon. Environ. Sci. Technol. 2003, 37 (20), 4702–4708. 
https://doi.org/10.1021/es030360x. 

(72)  Jaffé, R.; Yamashita, Y.; Maie, N.; Cooper, W. T.; Dittmar, T.; Dodds, W. K.; Jones, J. B.; 
Myoshi, T.; Ortiz-Zayas, J. R.; Podgorski, D. C.; et al. Dissolved Organic Matter in Headwater 
Streams: Compositional Variability across Climatic Regions of North America. Geochim. 
Cosmochim. Acta 2012, 94, 95–108. https://doi.org/10.1016/j.gca.2012.06.031. 

(73)  Spencer, R. G. M.; Butler, K. D.; Aiken, G. R. Dissolved Organic Carbon and Chromophoric 
Dissolved Organic Matter Properties of Rivers in the USA. J. Geophys. Res. Biogeosciences 
2012, 117 (3). https://doi.org/10.1029/2011JG001928. 

(74)  Poulin, B. a; Ryan, J. N.; Aiken, G. R. Effects of Iron on Optical Properties of Dissolved 
Organic Matter. Environ. Sci. Technol. 2014, No. Iii, 1–20. https://doi.org/10.1021/es502670r. 

(75)  Huber, S. A.; Balz, A.; Abert, M.; Pronk, W. Characterisation of Aquatic Humic and Non-
Humic Matter with Size-Exclusion Chromatography – Organic Carbon Detection – Organic 
Nitrogen Detection (LC-OCD-OND). Water Res. 2011, 45 (2), 879–885. 
https://doi.org/10.1016/j.watres.2010.09.023. 

(76)  Perminova, I. V; Dubinenkov, I. V; Kononikhin, A. S.; Konstantinov, A. I.; Zherebker, A. Y.; 
Andzhushev, M. a; Lebedev, V. a; Bulygina, E.; Holmes, R. M.; Kostyukevich, Y. I.; et al. 
Molecular Mapping of Sorbent Selectivities with Respect to Isolation of Arctic Dissolved 



 

162 

Organic Matter as Measured by Fourier Transform Mass Spectrometry. Environ. Sci. Technol. 
2014, 48 (13), 7461–7468. https://doi.org/10.1021/es5015423. 

(77)  Hunt, A. P.; Parry, J. D.; Hamilton-Taylor, J. Further Evidence of Elemental Composition as 
an Indicator of the Bioavailability of Humic Substances to Bacteria. Limnol. Oceanogr. 2000, 
45 (1), 237–241. 

(78)  Fellman, J. B.; D’Amore, D. V.; Hood, E.; Boone, R. D. Fluorescence Characteristics and 
Biodegradability of Dissolved Organic Matter in Forest and Wetland Soils from Coastal 
Temperate Watersheds in Southeast Alaska. Biogeochemistry 2008, 88 (2), 169–184. 
https://doi.org/10.1007/s10533-008-9203-x. 

(79)  Hutchins, R. H. S.; Aukes, P. J. K.; Schiff, S. L.; Dittmar, T.; Prairie, Y. T.; del Giorgio, P. A. 
The Optical, Chemical, and Molecular Dissolved Organic Matter Succession Along a Boreal 
Soil-Stream-River Continuum. J. Geophys. Res. Biogeosciences 2017, 122 (11), 2892–2908. 
https://doi.org/10.1002/2017JG004094. 

(80)  Kellerman, A. M.; Guillemette, F.; Podgorski, D. C.; Aiken, G. R.; Butler, K. D.; Spencer, R. G. 
M. Unifying Concepts Linking Dissolved Organic Matter Composition to Persistence in 
Aquatic Ecosystems. Environ. Sci. Technol. 2018, 52 (5), 2538–2548. 
https://doi.org/10.1021/acs.est.7b05513. 

(81)  Kellerman, A. M.; Kothawala, D. N.; Dittmar, T.; Tranvik, L. J. Persistence of Dissolved 
Organic Matter in Lakes Related to Its Molecular Characteristics. Nat. Geosci. 2015, 8 (May). 
https://doi.org/10.1038/ngeo2440. 

(82)  Wickland, K. P.; Aiken, G. R.; Butler, K. D.; Dornblaser, M. M.; Spencer, R. G. M.; Striegl, R. 
G. Biodegradability of Dissolved Organic Carbon in the Yukon River and Its Tributaries: 
Seasonality and Importance of Inorganic Nitrogen. Global Biogeochem. Cycles 2012, 26 (3), 1–
14. https://doi.org/10.1029/2012GB004342. 

(83)  Hansen, A. M.; Kraus, T. E. C.; Pellerin, B. A.; Fleck, J. A.; Downing, B. D.; Bergamaschi, B. A. 
Optical Properties of Dissolved Organic Matter (DOM): Effects of Biological and Photolytic 
Degradation. Limnol. Oceanogr. 2016, 61 (3), 1015–1032. https://doi.org/10.1002/lno.10270. 

(84)  Sulzberger, B.; Durisch-Kaiser, E. Chemical Characterization of Dissolved Organic Matter 
(DOM): A Prerequisite for Understanding UV-Induced Changes of DOM Absorption 
Properties and Bioavailability. Aquat. Sci. 2009, 71 (2), 104–126. 
https://doi.org/10.1007/s00027-008-8082-5. 

(85)  Ward, C. P.; Nalven, S. G.; Crump, B. C.; Kling, G. W.; Cory, R. M. Photochemical Alteration 
of Organic Carbon Draining Permafrost Soils Shifts Microbial Metabolic Pathways and 
Stimulates Respiration. Nat. Commun. 2017, 1–8. https://doi.org/10.1038/s41467-017-00759-2. 

(86)  Molot, L. A.; Dillon, P. J. Photolytic Regulation of Dissolved Organic Carbon in Northern 
Lakes. Global Biogeochem. Cycles 1997, 11 (3), 357–365. https://doi.org/10.1029/97GB01198. 

(87)  Ward, C. P.; Cory, R. M. Complete and Partial Photo-Oxidation of Dissolved Organic Matter 
Draining Permafrost Soils. Environ. Sci. Technol. 2016, 50 (7), 3545–3553. 
https://doi.org/10.1021/acs.est.5b05354. 

(88)  Amon, R. M. W.; Rinehart, A. J.; Duan, S.; Louchouarn, P.; Prokushkin, A.; Guggenberger, G.; 
Bauch, D.; Stedmon, C.; Raymond, P. a.; Holmes, R. M.; et al. Dissolved Organic Matter 



 

163 

Sources in Large Arctic Rivers. Geochim. Cosmochim. Acta 2012, 94, 217–237. 
https://doi.org/10.1016/j.gca.2012.07.015. 

(89)  Evans, C. D.; Monteith, D. T.; Cooper, D. M. Long-Term Increases in Surface Water 
Dissolved Organic Carbon: Observations, Possible Causes and Environmental Impacts. 
Environ. Pollut. 2005, 137 (1), 55–71. https://doi.org/10.1016/j.envpol.2004.12.031. 

(90)  Roiha, T.; Peura, S.; Cusson, M.; Rautio, M. Allochthonous Carbon Is a Major Regulator to 
Bacterial Growth and Community Composition in Subarctic Freshwaters. Sci. Rep. 2016, 6 
(May), 34456. https://doi.org/10.1038/srep34456. 

(91)  Kritzberg, E. S.; Ekström, S. M. Increasing Iron Concentrations in Surface Waters - A Factor 
behind Brownification? Biogeosciences 2012, 9, 1465–1478. https://doi.org/10.5194/bg-9-1465-
2012. 

(92)  Weyhenmeyer, G. A.; Prairie, Y. T.; Tranvik, L. J. Browning of Boreal Freshwaters Coupled 
to Carbon-Iron Interactions along the Aquatic Continuum. PLoS One 2014, 9 (2), e88104. 
https://doi.org/10.1371/journal.pone.0088104. 

(93)  Drake, T. W.; Wickland, K. P.; Spencer, R. G. M.; McKnight, D. M.; Striegl, R. G. Ancient 
Low–Molecular-Weight Organic Acids in Permafrost Fuel Rapid Carbon Dioxide Production 
upon Thaw. Proc. Natl. Acad. Sci. 2015, 112 (45), 13946–13951. 
https://doi.org/10.1073/pnas.1511705112. 

(94)  Drake, T. W.; Guillemette, F.; Hemingway, J. D.; Chanton, J. P.; Podgorski, D. C.; Zimov, N. 
S.; Spencer, R. G. M. The Ephemeral Signature of Permafrost Carbon in an Arctic Fluvial 
Network. J. Geophys. Res. Biogeosciences 2018, No. 2015. 
https://doi.org/10.1029/2017JG004311. 

(95)  O’Donnell, J. a.; Aiken, G. R.; Walvoord, M. a.; Butler, K. D. Dissolved Organic Matter 
Composition of Winter Flow in the Yukon River Basin: Implications of Permafrost Thaw and 
Increased Groundwater Discharge. Global Biogeochem. Cycles 2012, 26 (4), n/a-n/a. 
https://doi.org/10.1029/2012GB004341. 

(96)  Vonk, J. E.; Mann, P. J.; Davydov, S.; Davydova, A.; Spencer, R. G. M.; Schade, J.; Sobczak, W. 
V.; Zimov, N. S.; Zimov, S. A.; Bulygina, E.; et al. High Biolability of Ancient Permafrost 
Carbon upon Thaw. Geophys. Res. Lett. 2013, 40 (11), 2689–2693. 
https://doi.org/10.1002/grl.50348. 

(97)  Wang, Y.; Xu, Y.; Spencer, R. G. M.; Zito, P.; Kellerman, A. M.; Podgorski, D.; Xiao, W.; Wei, 
D.; Rashid, H.; Yang, Y. Selective Leaching of Dissolved Organic Matter from Alpine 
Permafrost Soils on the Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosciences 2018. 
https://doi.org/10.1002/2017JG004343. 

(98)  Panneer Selvam, B.; Lapierre, J.-F.; Guillemette, F.; Voigt, C.; Lamprecht, R. E.; Biasi, C.; 
Christensen, T. R.; Martikainen, P. J.; Berggren, M. Degradation Potentials of Dissolved 
Organic Carbon (DOC) from Thawed Permafrost Peat. Sci. Rep. 2017, 7, 45811. 
https://doi.org/10.1038/srep45811. 

(99)  Cory, R. M.; Ward, C. P.; Crump, B. C.; Kling, G. W. Sunlight Controls Water Column 
Processing of Carbon in Arctic Fresh Waters. Science (80-. ). 2014, 345 (6199), 925–928. 
https://doi.org/10.1126/science.1253119. 



 

164 

(100)  Stubbins, A.; Mann, P. J.; Powers, L.; Bittar, T. B.; Dittmar, T.; McIntyre, C. P.; Eglinton, T. I.; 
Zimov, N. S.; Spencer, R. G. M. Low Photolability of Yedoma Permafrost Dissolved Organic 
Carbon. J. Geophys. Res. Biogeosciences 2017, 122 (1), 200–211. 
https://doi.org/10.1002/2016JG003688. 

(101)  Laurion, I.; Mladenov, N. Dissolved Organic Matter Photolysis in Canadian Arctic Thaw 
Ponds. Environ. Res. Lett. 2013, 8 (3), 035026. https://doi.org/10.1088/1748-9326/8/3/035026. 

(102)  Ritson, J. P.; Graham, N. J. D.; Templeton, M. R.; Clark, J. M.; Gough, R.; Freeman, C. The 
Impact of Climate Change on the Treatability of Dissolved Organic Matter (DOM) in Upland 
Water Supplies: A UK Perspective. Sci. Total Environ. 2014, 473–474, 714–730. 
https://doi.org/10.1016/j.scitotenv.2013.12.095. 

(103)  Semiletov, I.; Pipko, I.; Gustafsson, Ö.; Anderson, L. G.; Sergienko, V.; Pugach, S.; Dudarev, 
O.; Charkin, A.; Gukov, A.; Bröder, L.; et al. Acidification of East Siberian Arctic Shelf 
Waters through Addition of Freshwater and Terrestrial Carbon. Nat. Geosci. 2016, No. April. 
https://doi.org/10.1038/NEGO2695. 

(104)  Metcalfe, D. B.; Hermans, T. D. G.; Ahlstrand, J.; Becker, M.; Berggren, M.; Björk, R. G.; 
Björkman, M. P.; Blok, D.; Chaudhary, N.; Chisholm, C.; et al. Patchy Field Sampling Biases 
Understanding of Climate Change Impacts across the Arctic. Nat. Ecol. Evol. 2018, 2 (9), 
1443–1448. https://doi.org/10.1038/s41559-018-0612-5. 

(105)  Mallory, M. L.; Gilchrist, H. G.; Janssen, M.; Major, H. L.; Merkel, F.; Provencher, J. F.; Strøm, 
H. Financial Costs of Conducting Science in the Arctic: Examples from Seabird Research. 
Arct. Sci. 2018, 4 (4), 624–633. https://doi.org/10.1139/as-2017-0019. 

(106)  Amon, R. M. W.; Meon, B. The Biogeochemistry of Dissolved Organic Matter and Nutrients 
in Two Large Arctic Estuaries and Potential Implications for Our Understanding of the 
Arctic Ocean System. Mar. Chem. 2004, 92 (1–4), 311–330. 
https://doi.org/10.1016/j.marchem.2004.06.034. 

(107)  Frey, K. E.; Siegel, D. I.; Smith, L. C. Geochemistry of West Siberian Streams and Their 
Potential Response to Permafrost Degradation. Water Resour. Res. 2007, 43 (August 2006). 
https://doi.org/10.1029/2006WR004902. 

(108)  Mann, P. J.; Davydova,  a.; Zimov, N. S.; Spencer, R. G. M.; Davydov, S.; Bulygina, E.; Zimov, 
S. A.; Holmes, R. M. Controls on the Composition and Lability of Dissolved Organic Matter 
in Siberia’s Kolyma River Basin. J. Geophys. Res. 2012, 117 (G1), G01028. 
https://doi.org/10.1029/2011JG001798. 

(109)  Wickland, K. P.; Neff, J. C.; Aiken, G. R. Dissolved Organic Carbon in Alaskan Boreal Forest: 
Sources, Chemical Characteristics, and Biodegradability. Ecosystems 2007, 10 (8), 1323–1340. 
https://doi.org/10.1007/s10021-007-9101-4. 

(110)  Ward, C. P.; Cory, R. M. Chemical Composition of Dissolved Organic Matter Draining 
Permafrost Soils. Geochim. Cosmochim. Acta 2015, 167, 63–79. 
https://doi.org/10.1016/j.gca.2015.07.001. 

(111)  Abbott, B. W.; Larouche, J. R.; Jones, J. B.; Bowden, W. B.; Balser,  a. W. Elevated Dissolved 
Organic Carbon Biodegradability from Thawing and Collapsing Permafrost. J. Geophys. Res. 
2014, 119, 2049–2063. https://doi.org/10.1002/2014JG002678.Received. 



 

165 

(112)  Balcarczyk, K. L.; Jones, J. B.; Jaffé, R.; Maie, N. Stream Dissolved Organic Matter 
Bioavailability and Composition in Watersheds Underlain with Discontinuous Permafrost. 
Biogeochemistry 2009, 94 (3), 255–270. https://doi.org/10.1007/s10533-009-9324-x. 

(113)  Cory, R. M.; Harrold, K. H.; Neilson, B. T.; Kling, G. W. Controls on Dissolved Organic 
Matter (DOM) Degradation in a Headwater Stream: The Influence of Photochemical and 
Hydrological Conditions in Determining Light-Limitation or Substrate-Limitation of Photo-
Degradation. Biogeosciences Discuss. 2015, 12 (13), 9793–9838. https://doi.org/10.5194/bgd-12-
9793-2015. 

(114)  Holmes, R. M.; McClelland, J. W.; Raymond, P. a.; Frazer, B. B.; Peterson, B. J.; Stieglitz, M. 
Lability of DOC Transported by Alaskan Rivers to the Arctic Ocean. Geophys. Res. Lett. 2008, 
35 (3), L03402. https://doi.org/10.1029/2007GL032837. 

(115)  Larouche, J. R.; Abbott, B. W.; Bowden, W. B.; Jones, J. B. The Role of Watershed 
Characteristics, Permafrost Thaw, and Wildfire on Dissolved Organic Carbon 
Biodegradability and Water Chemistry in Arctic Headwater Streams. Biogeosciences 2015, 12 
(14), 4221–4233. https://doi.org/10.5194/bg-12-4221-2015. 

(116)  Reyes, F. R.; Lougheed, V. L. Rapid Nutrient Release from Permafrost Thaw in Arctic Aquatic 
Ecosystems. Arctic, Antarct. Alp. Res. 2015, 47 (1), 35–48. https://doi.org/10.1657/AAAR0013-
099. 

(117)  Thompson, M. S.; Giesler, R.; Karlsson, J.; Klaminder, J. Size and Characteristics of the DOC 
Pool in Near-Surface Subarctic Mire Permafrost as a Potential Source for Nearby 
Freshwaters. Arctic, Antarct. Alp. Res. 2015, 47 (1), 49–58. 

(118)  Roehm, C. L.; Giesler, R.; Karlsson, J. Bioavailability of Terrestrial Organic Carbon to Lake 
Bacteria: The Case of a Degrading Subarctic Permafrost Mire Complex. J. Geophys. Res. 
Biogeosciences 2009, 114 (3), 1–10. https://doi.org/10.1029/2008JG000863. 

(119)  Kokfelt, U.; Rosén, P.; Schoning, K.; Christensen, T. R.; Förster, J.; Karlsson, J.; Reuss, N.; 
Rundgren, M.; Callaghan, T. V.; Jonasson, C.; et al. Ecosystem Responses to Increased 
Precipitation and Permafrost Decay in Subarctic Sweden Inferred from Peat and Lake 
Sediments. Glob. Chang. Biol. 2009, 15 (7), 1652–1663. https://doi.org/10.1111/j.1365-
2486.2009.01880.x. 

(120)  Jonasson, C.; Sonesson, M.; Christensen, T. R.; Callaghan, T. V. Environmental Monitoring 
and Research in the Abisko Area-an Overview. Ambio 2012, 41 Suppl 3 (Supplement 3), 178–
186. https://doi.org/10.1007/s13280-012-0301-6. 

(121)  Walvoord, M. A.; Striegl, R. G. Increased Groundwater to Stream Discharge from Permafrost 
Thawing in the Yukon River Basin: Potential Impacts on Lateral Export of Carbon and 
Nitrogen. Geophys. Res. Lett. 2007, 34 (12). https://doi.org/10.1029/2007GL030216. 

(122)  Toohey, R. C.; Herman-Mercer, N. M.; Schuster, P. F.; Mutter, E. A.; Koch, J. C. Multidecadal 
Increases in the Yukon River Basin of Chemical Fluxes as Indicators of Changing Flowpaths, 
Groundwater, and Permafrost. Geophys. Res. Lett. 2016, 43 (23), 12,120-12,130. 
https://doi.org/10.1002/2016GL070817. 

(123)  O’Donnell, J. A.; Aiken, G. R.; Kane, E. S.; Jones, J. B. Source Water Controls on the 
Character and Origin of Dissolved Organic Matter in Streams of the Yukon River Basin, 
Alaska. J. Geophys. Res. 2010, 115 (G3), G03025. https://doi.org/10.1029/2009JG001153. 



 

166 

(124)  Harms, T. K.; Edmonds, J. W.; Genet, H.; Creed, I. F.; Aldred, D.; Balser, A.; Jones, J. B. 
Catchment Influence on Nitrate and Dissolved Organic Matter in Alaskan Streams across a 
Latitudinal Gradient. J. Geophys. Res. G Biogeosciences 2016, 121 (2), 350–369. 
https://doi.org/10.1002/2015JG003201. 

(125)  Aiken, G. R.; Spencer, R. G. M.; Striegl, R. G.; Schuster, P. F.; Raymond, P. A. Influences of 
Glacier Melt and Permafrost Thaw on the Age of Dissolved Organic Carbon in the Yukon 
River Basin. Global Biogeochem. Cycles 2014, 28, 525–537. 
https://doi.org/10.1002/2013GB004764. 

(126)  Lessels, J. S.; Tetzlaff, D.; Carey, S. K.; Smith, P.; Soulsby, C. A Coupled Hydrology-
Biogeochemistry Model to Simulate Dissolved Organic Carbon Exports from a Permafrost 
Influenced Catchment. Hydrol. Process. 2015, 44 (0), n/a-n/a. 
https://doi.org/10.1002/hyp.10566. 

(127)  Thompson, M. S.; Wrona, F. J.; Prowse, T. D. Shifts in Plankton, Nutrient and Light 
Relationships in Small Tundra Lakes Caused by Localized Permafrost Thaw. Arctic 2012, 65 
(4), 367–376. 

(128)  Littlefair, C. A.; Tank, S. E.; Kokelj, S. V. Retrogressive Thaw Slumps Temper Dissolved 
Organic Carbon Delivery to Streams of the Peel Plateau, NWT, Canada. Biogeosciences 2017, 
14 (23), 5487–5505. https://doi.org/10.5194/bg-14-5487-2017. 

(129)  Littlefair, C. A.; Tank, S. E. Biodegradability of Thermokarst Carbon in a Till-Associated, 
Glacial Margin Landscape: The Case of the Peel Plateau, NWT, Canada. J. Geophys. Res. 
Biogeosciences 2018, 123 (10), 3293–3307. https://doi.org/10.1029/2018JG004461. 

(130)  Tank, S. E.; Lesack, L. F. W.; Gareis, J. a. L.; Osburn, C. L.; Hesslein, R. H. Multiple Tracers 
Demonstrate Distinct Sources of Dissolved Organic Matter to Lakes of the Mackenzie Delta, 
Western Canadian Arctic. Limnol. Oceanogr. 2011, 56 (4), 1297–1309. 
https://doi.org/10.4319/lo.2011.56.4.1297. 

(131)  Gareis, J. a. L.; Lesack, L. F. W.; Bothwell, M. L. Attenuation of in Situ UV Radiation in 
Mackenzie Delta Lakes with Varying Dissolved Organic Matter Compositions. Water Resour. 
Res. 2010, 46 (9), n/a-n/a. https://doi.org/10.1029/2009WR008747. 

(132)  Tank, S. E.; Striegl, R. G.; Mcclelland, J. W.; Kokelj, S. V. Multi-Decadal Increases in 
Dissolved Organic Carbon and Alkalinity Flux from the Mackenzie Drainage Basin to the 
Arctic Ocean. Environ. Res. Lett. 2016, 11 (5), 54015. https://doi.org/10.1088/1748-
9326/11/5/054015. 

(133)  Negandhi, K.; Laurion, I.; Whiticar, M. J.; Galand, P. E.; Xu, X.; Lovejoy, C. Small Thaw 
Ponds: An Unaccounted Source of Methane in the Canadian High Arctic. PLoS One 2013, 8 
(11). https://doi.org/10.1371/journal.pone.0078204. 

(134)  Wang, J.; Lafrenière, M. J.; Lamoureux, S. F.; Simpson, A. J.; Gélinas, Y.; Simpson, M. J. 
Differences in Riverine and Pond Water Dissolved Organic Matter Composition and Sources 
in Canadian High Arctic Watersheds Affected by Active Layer Detachments. Environ. Sci. 
Technol. 2018, 52 (3), 1062–1071. https://doi.org/10.1021/acs.est.7b05506. 

(135)  Pautler, B. G.; Simpson, A. J.; McNally, D. J.; Lamoureux, S. F.; Simpson, M. J. Arctic 
Permafrost Active Layer Detachments Stimulate Microbial Activity and Degradation of Soil 
Organic Matter. Environ. Sci. Technol. 2010, 44 (11), 4076–4082. 



 

167 

https://doi.org/10.1021/es903685j. 

(136)  Woods, G. C.; Simpson, M. J.; Pautler, B. G.; Lamoureux, S. F.; Lafrenière, M. J.; Simpson, A. J. 
Evidence for the Enhanced Lability of Dissolved Organic Matter Following Permafrost Slope 
Disturbance in the Canadian High Arctic. Geochim. Cosmochim. Acta 2011, 75 (22), 7226–
7241. https://doi.org/10.1016/j.gca.2011.08.013. 

(137)  Lamoureux, S. F.; Lafrenière, M. J. Seasonal Fluxes and Age of Particulate Organic Carbon 
Exported from Arctic Catchments Impacted by Localized Permafrost Slope Disturbances. 
Environ. Res. Lett. 2014, 9 (4), 045002. https://doi.org/10.1088/1748-9326/9/4/045002. 

(138)  Fouché, J.; Lafrenière, M. J.; Rutherford, K.; Lamoureux, S. F. Seasonal Hydrology and 
Permafrost Disturbance Impacts on Dissolved Organic Matter Composition in High Arctic 
Headwater Catchments. Arct. Sci. 2017, 0 (January), 1–28. https://doi.org/10.1139/AS-2016-
0031. 

(139)  Olefeldt, D.; Roulet, N. T. Permafrost Conditions in Peatlands Regulate Magnitude, Timing and 
Chemical Composition of Catchment Dissolved Organic Carbon Export.; 2014. 
https://doi.org/10.1111/gcb.12607. 

(140)  Spence, C.; Kokelj, S. V.; Kokelj, S. A.; McCluskie, M.; Hedstrom, N. Evidence of a Change in 
Water Chemistry in Canada’s Subarctic Associated with Enhanced Winter Streamflow. J. 
Geophys. Res. Biogeosciences 2015, 120 (1), 113–127. https://doi.org/10.1002/2014JG002809. 

(141)  Creed, I. F.; Bergström, A. K.; Trick, C. G.; Grimm, N. B.; Hessen, D. O.; Karlsson, J.; Kidd, K. 
A.; Kritzberg, E.; McKnight, D. M.; Freeman, E. C.; et al. Global Change-Driven Effects on 
Dissolved Organic Matter Composition: Implications for Food Webs of Northern Lakes. Glob. 
Chang. Biol. 2018, 24 (8), 3692–3714. https://doi.org/10.1111/gcb.14129. 

(142)  Hirsch, R. M.; Slack, J. R.; Smith, R. A. Techniques of Trend Analysis for Monthly Water 
Quality Data. Water Resour. Res. 1982, 18 (1), 107–121. 

(143)  Hirsch, R. M.; Alexander, R. B.; Smith, R. A. Selection of Methods for the Detection and 
Estimation of Trends in Water Quality. Water Resour. Res. 1991, 27 (5), 803–813. 

(144)  Billen, G.; Garnier, J.; Ficht, A.; Cun, C. Modeling the Response of Water Quality in the Seine 
River Estuary to Human Activity in Its Watershed over the Last 50 Years. Estuaries 2001, 24 
(6B), 977–993. https://doi.org/10.2307/1353011. 

(145)  Interlandi, S. J.; Crockett, C. S. Recent Water Quality Trends in the Schuylkill River, 
Pennsylvania, USA: A Preliminary Assessment of the Relative Influences of Climate, River 
Discharge and Suburban Development. Water Res. 2003, 37 (8), 1737–1748. 
https://doi.org/10.1016/S0043-1354(02)00574-2. 

(146)  Worrall, F.; Burt, T. P.; Shedden, R. Long Term Trends of Riverine Dissolved Organic Matter. 
Biogeochemistry 2003, 64 (2), 13. https://doi.org/10.1023/A:1024924216148. 

(147)  Coleman, K. A.; Palmer, M. J.; Korosi, J. B.; Kokelj, S. V.; Jackson, K.; Hargan, K. E.; Courtney 
Mustaphi, C. J.; Thienpont, J. R.; Kimpe, L. E.; Blais, J. M.; et al. Tracking the Impacts of 
Recent Warming and Thaw of Permafrost Peatlands on Aquatic Ecosystems: A Multi-Proxy 
Approach Using Remote Sensing and Lake Sediments. Boreal Environ. Res. 2015, 20 (3), 363–
377. 

(148)  Spence, C.; Kokelj, S. V.; Ehsanzadeh, E. Precipitation Trends Contribute to Streamflow 



 

168 

Regime Shifts in Northern Canada. In Cold Region Hydrology in a Changing Climate; 2011; pp 
3–8. 

(149)  Lumb, A.; Halliwell, D.; Sharma, T. Application of CCME Water Quality Index to Monitor 
Water Quality: A Case Study of the Mackenzie River Basin, Canada. Environ. Monit. Assess. 
2006, 113 (1–3), 411–429. https://doi.org/10.1007/s10661-005-9092-6. 

(150)  McClelland, J. W.; Déry, S. J.; Peterson, B. J.; Holmes, R. M.; Wood, E. F. A Pan-Arctic 
Evaluation of Changes in River Discharge during the Latter Half of the 20th Century. 
Geophys. Res. Lett. 2006, 33 (6), 2–5. https://doi.org/10.1029/2006GL025753. 

(151)  Déry, S. J.; Stadnyk, T. A.; MacDonald, M. K.; Gauli-Sharma, B. Recent Trends and Variability 
in River Discharge across Northern Canada. Hydrol. Earth Syst. Sci. 2016, 20 (12), 4801–4818. 
https://doi.org/10.5194/hess-20-4801-2016. 

(152)  Rood, S. B.; Kaluthota, S.; Philipsen, L. J.; Rood, N. J.; Zanewich, K. P. Increasing Discharge 
from the Mackenzie River System to the Arctic Ocean. Hydrol. Process. 2016, 160 (August 
2016), 150–160. https://doi.org/10.1002/hyp.10986. 

(153)  Spence, C.; Kokelj, S. A.; Kokelj, S. V.; Hedstrom, N. The Process of Winter Streamflow 
Generation in a Subarctic Precambrian Shield Catchment. Hydrol. Process. 2014, 28 (14), 
4179–4190. https://doi.org/10.1002/hyp.10119. 

(154)  Kokelj, S. V.; Lacelle, D.; Lantz, T. C.; Tunnicliffe, J.; Malone, L.; Clark, I. D.; Chin, K. S. 
Thawing of Massive Ground Ice in Mega Slumps Drives Increases in Stream Sediment and 
Solute Flux across a Range of Watershed Scales. J. Geophys. Res. Earth Surf. 2013, 118 (2), 
681–692. https://doi.org/10.1002/jgrf.20063. 

(155)  Salmon, V. G.; Soucy, P.; Mauritz, M.; Celis, G.; Natali, S. M.; Mack, M. C.; Schuur, E. A. G. 
Nitrogen Availability Increases in a Tundra Ecosystem during Five Years of Experimental 
Permafrost Thaw. Glob. Chang. Biol. 2016, 22 (5), 1927–1941. 
https://doi.org/10.1111/gcb.13204. 

(156)  Keuper, F.; Bodegom, P. M.; Dorrepaal, E.; Weedon, J. T.; Hal, J.; Logtestijn, R. S. P.; Aerts, R. 
A Frozen Feast: Thawing Permafrost Increases Plant-Available Nitrogen in Subarctic 
Peatlands. Glob. Chang. Biol. 2012, 18 (6), 1998–2007. https://doi.org/10.1111/j.1365-
2486.2012.02663.x. 

(157)  Wrona, F. J.; Johansson, M.; Culp, J. M.; Jenkins, A.; Mård, J.; Myers-Smith, I. H.; Prowse, T. 
D.; Vincent, W. F.; Wookey; A., P.; et al. Transitions in Arctic Ecosystems: Ecological 
Implications of a Changing Hydrological Regime. J. Geophys. Res. Biogeosciences 2016, 650–
674. https://doi.org/10.1002/2015JG003133.Received. 

(158)  MacLean, R.; Oswood, M.; Irons III, J.; McDowell, W. H. The Effect of Permafrost on Stream 
Biogeochemistry : A Case Study of Two Streams in the Alaskan (U.S.A.) Taiga. 
Biogeochemistry 1999, 47, 239–267. 

(159)  Keller, K.; Blum, J. D.; Kling, G. W. Geochemistry of Soils and Streams on Surfaces of 
Varying Ages in Arctic Alaska. Arctic, Antarct. Alp. Res. 2007, 39 (1), 84–98. 
https://doi.org/10.1657/1523-0430(2007)39[84:GOSASO]2.0.CO;2. 

(160)  Petrone, K. C.; Jones, J. B.; Hinzman, L. D.; Boone, R. D. Seasonal Export of Carbon, Nitrogen, 
and Major Solutes from Alaskan Catchments with Discontinuous Permafrost. J. Geophys. 



 

169 

Res. 2006, 111 (G2), G02020. https://doi.org/10.1029/2005JG000055. 

(161)  Frey, K. E.; McClelland, J. W. Impacts of Permafrost Degradation on Arctic River 
Biogeochemistry. Hydrol. Process. 2009, 23, 169–182. https://doi.org/10.1002/hyp. 

(162)  Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Canadell, J.; Chhabra, A.; DeFries, R.; 
Galloway, J.; Heimann, M.; et al. Carbon and Other Biogeochemical Cycles. In Climate 
Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth 
Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T. F., Qin, D., 
Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. 
M., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, 2013; 
pp 465–570. https://doi.org/10.1017/CBO9781107415324.015. 

(163)  Striegl, R. G.; Aiken, G. R.; Dornblaser, M. M.; Raymond, P. A.; Wickland, K. P. A Decrease in 
Discharge-Normalized DOC Export by the Yukon River during Summer through Autumn. 
Geophys. Res. Lett. 2005, 32 (21), 3–6. https://doi.org/10.1029/2005GL024413. 

(164)  Kicklighter, D. W.; Hayes, D. J.; McClelland, J. W.; Peterson, B. J.; McGuire, A. D.; Melillo, J. 
M. Insights and Issues with Simulating Terrestrial DOC Loading of Arctic River Networks. 
Ecol. Appl. 2013, 23 (8), 1817–1836. https://doi.org/10.1890/11-1050.1. 

(165)  Ecosystem Classification Group. Ecological Regions of the Northwest Territories - Taiga Shield; 
Yellowknife, NT, Canada, 2008. 

(166)  Ecosystem Classification Group. Ecological Regions of the Northwest Territories - Taiga Plains; 
Yellowknife, NT, Canada, 2009. 

(167)  Smith, S. L.; Romanovsky, V. E.; Lewkowicz, A. G.; Burn, C. R.; Allard, M.; Clow, G. D.; 
Yoshikawa, K.; Throop, J. Thermal State of Permafrost in North America: A Contribution to 
the International Polar Year. Permafr. Periglac. Process. 2010, 21 (2), 117–135. 
https://doi.org/10.1002/ppp.690. 

(168)  Morse, P. D.; Wolfe, S. A.; Kokelj, S. V.; Gaanderse, A. J. R. The Occurrence and Thermal 
Disequilibrium State of Permafrost in Forest Ecotopes of the Great Slave Region, Northwest 
Territories, Canada. Permafr. Periglac. Process. 2015, 27 (2), 145–162. 
https://doi.org/10.1002/ppp.1858. 

(169)  Kokelj, S. A. Hydrologic Overview of the North and South Slave Regions; Yellowknife, NT, 
Canada, 2003. 

(170)  Woo, M. K.; Mielko, C. Flow Connectivity of a Lake-Stream System in a Semi-Arid 
Precambrian Shield Environment. In Cold Region Atmospheric and Hydrologic Studies. The 
Mackenzie GEWEX Experience; Woo, M., Ed.; Springer-Verlag: Berlin, Heidelberg, 2008; Vol. 
2, pp 221–233. https://doi.org/10.1007/978-3-540-75136-6_12. 

(171)  Runkel, R. L.; Crawford, C. G.; Cohn, T. A. Load Estimator (LOADEST): A FORTRAN Program 
for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and 
Methods Book 4; U.S. Geological Survey, 2004. 

(172)  Booth, G.; Raymond, P.; Oh, N.-H. LoadRunner 
<http://Environment.Yale.Edu/Raymond/Loadrunner/>. Yale University: New Haven, CT 
2007. 

(173)  Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The Influence of Autocorrelation on the Ability to 



 

170 

Detect Trend in Hydrological Series. Hydrol. Process. 2002, 16 (9), 1807–1829. 
https://doi.org/10.1002/hyp.1095. 

(174)  Connon, R. F.; Quinton, W. L.; Craig, J. R.; Hayashi, M. Changing Hydrologic Connectivity 
Due to Permafrost Thaw in the Lower Liard River Valley, NWT, Canada. Hydrol. Process. 
2014, 28 (14), 4163–4178. https://doi.org/10.1002/hyp.10206. 

(175)  Åkerman, H. J.; Johansson, M. Thawing Permafrost and Thicker Active Layers in Sub-Arctic 
Sweden. Permafr. Periglac. Process. 2008, 19, 279–292. https://doi.org/10.1002/ppp.626. 

(176)  Lyon, S. W.; Destouni, G.; Giesler, R.; Humborg, C.; Mörth, M.; Seibert, J.; Karlsson, J.; Troch, 
P. A. Estimation of Permafrost Thawing Rates in a Sub-Arctic Catchment Using Recession 
Flow Analysis. Hydrol. Earth Syst. Sci. Discuss. 2009, 13 (1), 595–604. 
https://doi.org/10.5194/hessd-6-63-2009. 

(177)  Yi, S.; Woo, M. K.; Arain, M. A. Impacts of Peat and Vegetation on Permafrost Degradation 
under Climate Warming. Geophys. Res. Lett. 2007, 34 (16), 1–5. 
https://doi.org/10.1029/2007GL030550. 

(178)  Vihma, T.; Screen, J.; Tjernström, M.; Newton, B.; Zhang, X.; Popova, V.; Deser, C.; Holland, 
M.; Prowse, T. The Atmospheric Role in the Arctic Water Cycle: A Review on Processes, Past 
and Future Changes, and Their Impacts. J. Geophys. Res. Biogeosciences 2016, 121 (3), 586–
620. https://doi.org/10.1002/2015JG003132. 

(179)  Wolfe, S. A.; Kerr, D. E. Surficial Geology, Yellowknife Area, Northwest Territories, Parts of 
NTS85-J/7, NTS 85-J/8, NTS 85-J/9, and NTS 85-J/10. Geological Survey of Canada 2014, p 
Canadian Geoscience Map 183 (preliminary). https://doi.org/10.4095/293725. 

(180)  Lantz, T. C.; Kokelj, S. V. Increasing Rates of Retrogressive Thaw Slump Activity in the 
Mackenzie Delta Region, N.W.T., Canada. Geophys. Res. Lett. 2008, 35 (6), 1–5. 
https://doi.org/10.1029/2007GL032433. 

(181)  Malone, L.; Lacelle, D.; Kokelj, S. V.; Clark, I. D. Impacts of Hillslope Thaw Slumps on the 
Geochemistry of Permafrost Catchments (Stony Creek Watershed, NWT, Canada). Chem. 
Geol. 2013, 356, 38–49. https://doi.org/10.1016/j.chemgeo.2013.07.010. 

(182)  Kendrick, M. R.; Huryn, A. D.; Bowden, W. B.; Deegan, L. A.; Findlay, R. H.; Hershey, A. E.; 
Peterson, B. J.; Beneš, J. P.; Schuett, E. B. Linking Permafrost Thaw to Shifting 
Biogeochemistry and Food Web Resources in an Arctic River. Glob. Chang. Biol. 2018, 24 
(12), 5738–5750. https://doi.org/10.1111/gcb.14448. 

(183)  Walvoord, M. A.; Voss, C. I.; Wellman, T. P. Influence of Permafrost Distribution on 
Groundwater Flow in the Context of Climate-Driven Permafrost Thaw: Example from Yukon 
Flats Basin, Alaska, United States. Water Resour. Res. 2012, 48 (7), 1–17. 
https://doi.org/10.1029/2011WR011595. 

(184)  Neff, J. C.; Finlay, J. C.; Zimov, S. A.; Davydov, S. P.; Carrasco, J. J.; Schuur, E. A. G.; 
Davydova, A. I. Seasonal Changes in the Age and Structure of Dissolved Organic Carbon in 
Siberian Rivers and Streams. Geophys. Res. Lett. 2006, 33 (23), L23401. 
https://doi.org/10.1029/2006GL028222. 

(185)  Kasischke, E. S.; Turetsky, M. R. Recent Changes in the Fire Regime across the North 
American Boreal Region - Spatial and Temporal Patterns of Burning across Canada and 



 

171 

Alaska. Geophys. Res. Lett. 2006, 33 (9). https://doi.org/10.1029/2006GL025677. 

(186)  Veraverbeke, S.; Rogers, B. M.; Goulden, M. L.; Jandt, R. R.; Miller, C. E.; Wiggins, E. B.; 
Randerson, J. T. Lightning as a Major Driver of Recent Large Fire Years in North American 
Boreal Forests. Nat. Clim. Chang. 2017, 7 (7), 529–534. https://doi.org/10.1038/nclimate3329. 

(187)  Bayley, S. E.; Schindler, D. W.; Beaty, K. G.; Parker, B. R.; Stainton, M. P. Effects of Multiple 
Fires on Nutrient Yields from Streams Draining Boreal Forest and Fen Watersheds: Nitrogen 
and Phosphorus. Can. J. Fish. Aquat. Sci. 1992, 49 (3), 584–596. https://doi.org/10.1139/f92-
068. 

(188)  Chorover, J.; Vitousek, P. M.; Everson, D. A.; Esperanza, A. M.; Turner, D. Solution 
Chemistry Profiles of Mixed-Conifer Forests before and after Fire. Biogeochemistry 1994, 26 
(2), 115–144. https://doi.org/10.1007/BF02182882. 

(189)  Government of the Northwest Territories; NWT Centre for Geomatics. Inventory of 
Landscape Change http://apps.geomatics.gov.nt.ca (accessed Jul 27, 2017). 

(190)  Benner, R.; Benitez-Nelson, B.; Kaiser, K.; Amon, R. M. W. Export of Young Terrigenous 
Dissolved Organic Carbon from Rivers to the Arctic Ocean. Geophys. Res. Lett. 2004, 31 (5). 
https://doi.org/10.1029/2003GL019251. 

(191)  Giesler, R.; Lyon, S. W.; Mörth, C. M.; Karlsson, J.; Karlsson, E. M.; Jantze, E. J.; Destouni, G.; 
Humborg, C. Catchment-Scale Dissolved Carbon Concentrations and Export Estimates 
across Six Subarctic Streams in Northern Sweden. Biogeosciences 2014, 11 (2), 525–537. 
https://doi.org/10.5194/bg-11-525-2014. 

(192)  Dillon, P. J.; Molot, L. A. Effect of Landscape Form on Export of Dissolved Organic Carbon, 
Iron, and Phosphorus from Forested Stream Catchments. Water Resour. Res. 1997, 33 (11), 
2591–2600. https://doi.org/10.1029/97WR01921. 

(193)  Andersson, J. O.; Nyberg, L. Spatial Variation of Wetlands and Flux of Dissolved Organic 
Carbon in Boreal Headwater Streams. Hydrol. Process. 2008, 22 (12), 1965–1975. 
https://doi.org/10.1002/hyp.6779. 

(194)  Tarnocai, C.; Kettles, I. M.; Lacelle, B. Soil Organic Content of Canadian Peatlands. 
Geological Survey of Canada 2011, p Open File 6561. 

(195)  Tank, S. E.; Frey, K. E.; Striegl, R. G.; Raymond, P. A.; Holmes, R. M.; McClelland, J. W.; 
Peterson, B. J. Landscape-Level Controls on Dissolved Carbon Flux from Diverse Catchments 
of the Circumboreal. Global Biogeochem. Cycles 2012, 26 (3), 1–15. 
https://doi.org/10.1029/2012GB004299. 

(196)  Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; 
Gutowski, W. J.; Johns, T.; Krinner, G.; et al. Long-Term Climate Change: Projections, 
Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel 
on Climate Change; Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, 
J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M., Eds.; Cambridge University Press: Cambridge, 
United Kingdom and New York, NY, 2013; pp 1029–1136. 

(197)  Bring, A.; Fedorova, I.; Dibike, Y.; Hinzman, L.; Mård, J.; Mernild, S. H.; Prowse, T.; 
Semenova, O.; Stuefer, S. L. L.; Woo, M. K. Arctic Terrestrial Hydrology: A Synthesis of 



 

172 

Processes, Regional Effects and Research Challenges. J. Geophys. Res. Biogeosciences 2016, 
121 (3), 621–649. https://doi.org/10.1002/2015JG003131. 

(198)  Instanes, A.; Kokorev, V.; Janowicz, R.; Bruland, O.; Sand, K.; Prowse, T. Changes to 
Freshwater Systems Affecting Arctic Infrastructure and Natural Resources. J. Geophys. Res. G 
Biogeosciences 2016, 121 (3), 567–585. https://doi.org/10.1002/2015JG003125. 

(199)  Helms, J. R.; Stubbins, A.; Ritchie, J. D.; Minor, E. C.; Kieber, D. J.; Mopper, K. Absorption 
Spectral Slopes and Slope Ratios as Indicators of Molecular Weight, Source, and 
Photobleaching of Chromophoric Dissolved Organic Matter. Limnol. Oceanogr. 2008, 53 (3), 
955–969. https://doi.org/10.4319/lo.2008.53.3.0955. 

(200)  Larsen, L. G.; Aiken, G. R.; Harvey, J. W.; Noe, G. B.; Crimaldi, J. P. Using Fluorescence 
Spectroscopy to Trace Seasonal DOM Dynamics, Disturbance Effects, and Hydrologic 
Transport in the Florida Everglades. J. Geophys. Res. 2010, 115, 1–14. 
https://doi.org/10.1029/2009JG001140. 

(201)  Mead, J. The Control of Fe and PH on the Photodegradation and Characterization of 
Dissolved Organic Matter in Small, Oligotrophic Canadian Shield Freshwaters, University of 
Waterloo, 2017. 

(202)  Kothawala, D. N.; Stedmon, C. A.; Müller, R. A.; Weyhenmeyer, G. A.; Köhler, S. J.; Tranvik, 
L. J. Controls of Dissolved Organic Matter Quality: Evidence from a Large-Scale Boreal Lake 
Survey. Glob. Chang. Biol. 2014, 20, 1101–1114. https://doi.org/10.1111/gcb.12488. 

(203)  Massicotte, P.; Asmala, E.; Stedmon, C.; Markager, S. Global Distribution of Dissolved 
Organic Matter along the Aquatic Continuum: Across Rivers, Lakes and Oceans. Sci. Total 
Environ. 2017, 609, 180–191. https://doi.org/10.1016/j.scitotenv.2017.07.076. 

(204)  Hur, J.; Park, M.-H.; Schlautman, M. a. Microbial Transformation of Dissolved Leaf Litter 
Organic Matter and Its Effects on Selected Organic Matter Operational Descriptors. Environ. 
Sci. Technol. 2009, 43 (7), 2315–2321. https://doi.org/10.1021/es802773b. 

(205)  Creed, I. F.; Mcknight, D. M.; Pellerin, B. A.; Green, M. B.; Bergamaschi, B. A.; Aiken, G. R.; 
Burns, D. A.; Findlay, S. E. G.; Shanley, J. B.; Striegl, R. G.; et al. The River as a Chemostat : 
Fresh Perspectives on Dissolved Organic Matter Flowing down the River Continuum. Can. J. 
Fish. Aquat. Sci. 2015, 14 (April), 1–14. 

(206)  Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 
60–68. https://doi.org/10.1038/nature16069. 

(207)  Schmidt, M. W. I.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I. a; 
Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D. a C.; et al. Persistence of Soil 
Organic Matter as an Ecosystem Property. Nature 2011, 478 (7367), 49–56. 
https://doi.org/10.1038/nature10386. 

(208)  Marín-Spiotta, E.; Gruley, K. E.; Crawford, J.; Atkinson, E. E.; Miesel, J. R.; Greene, S.; 
Cardona-Correa, C.; Spencer, R. G. M. Paradigm Shifts in Soil Organic Matter Research 
Affect Interpretations of Aquatic Carbon Cycling: Transcending Disciplinary and Ecosystem 
Boundaries. Biogeochemistry 2014, 117 (2–3), 279–297. https://doi.org/10.1007/s10533-013-
9949-7. 

(209)  Koehler, B.; Von Wachenfeldt, E.; Kothawala, D. N.; Tranvik, L. J. Reactivity Continuum of 



 

173 

Dissolved Organic Carbon Decomposition in Lake Water. J. Geophys. Res. Biogeosciences 
2012, 117 (1), 1–14. https://doi.org/10.1029/2011JG001793. 

(210)  Koehler, B.; Tranvik, L. J. Reactivity Continuum Modeling of Leaf, Root, and Wood 
Decomposition across Biomes. J. Geophys. Res. G Biogeosciences 2015, 120 (7), 1196–1214. 
https://doi.org/10.1002/2015JG002908. 

(211)  Catalán, N.; Casas-Ruiz, J. P.; von Schiller, D.; Proia, L.; Obrador, B.; Zwirnmann, E.; Marce, 
R. Biodegradation Kinetics of Dissolved Organic Matter Chromatographic Fractions in an 
Intermittent River. J. Geophys. Res. Biogeosciences 2017, 131–144. 
https://doi.org/10.1002/2016JG003512. 

(212)  R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for 
Statistical Computing: Vienna, Austria 2016. 

(213)  Chen, M.; Maie, N.; Parish, K.; Jaffé, R. Spatial and Temporal Variability of Dissolved Organic 
Matter Quantity and Composition in an Oligotrophic Subtropical Coastal Wetland. 
Biogeochemistry 2013, 115 (1–3), 167–183. https://doi.org/10.1007/s10533-013-9826-4. 

(214)  Her, N.; Amy, G. L.; Foss, D.; Cho, J.; Yoon, Y.; Kosenka, P. Optimization of Method for 
Detecting and Characterizing NOM by HPLC-Size Exclusion Chromatography with UV and 
on-Line DOC Detection. Environ. Sci. Technol. 2002, 36 (5), 1069–1076. 

(215)  Bodmer, P.; Heinz, M.; Pusch, M.; Singer, G. A.; Premke, K. Carbon Dynamics and Their Link 
to Dissolved Organic Matter Quality across Contrasting Stream Ecosystems. Sci. Total 
Environ. 2016, 553, 574–586. https://doi.org/10.1016/j.scitotenv.2016.02.095. 

(216)  Tercero Espinoza, L. A.; ter Haseborg, E.; Weber, M.; Frimmel, F. H. Investigation of the 
Photocatalytic Degradation of Brown Water Natural Organic Matter by Size Exclusion 
Chromatography. Appl. Catal. B Environ. 2009, 87 (1–2), 56–62. 
https://doi.org/10.1016/j.apcatb.2008.08.013. 

(217)  Fichot, C. G.; Benner, R. The Spectral Slope Coefficient of Chromophoric Dissolved Organic 
Matter ( S 275-295 ) as a Tracer of Terrigenous Dissolved Organic Carbon in River-Influenced 
Ocean Margins. Limnol. Oceanogr. 2012, 57 (5), 1453–1466. 
https://doi.org/10.4319/lo.2012.57.5.1453. 

(218)  Jaffé, R.; McKnight, D.; Maie, N.; Cory, R. M.; McDowell, W. H.; Campbell, J. L. Spatial and 
Temporal Variations in DOM Composition in Ecosystems: The Importance of Long-Term 
Monitoring of Optical Properties. J. Geophys. Res. 2008, 113 (G4), 1–15. 
https://doi.org/10.1029/2008JG000683. 

(219)  Jane, S. F.; Winslow, L. A.; Remucal, C. K.; Rose, K. C. Long-Term Trends and Synchrony in 
Dissolved Organic Matter Characteristics in Wisconsin, USA, Lakes: Quality, Not Quantity, 
Is Highly Sensitive to Climate. J. Geophys. Res. Biogeosciences 2017, 122 (3), 546–561. 
https://doi.org/10.1002/2016JG003630. 

(220)  Cleveland, C. C.; Neff, J. C.; Townsend, A. R.; Hood, E. Composition, Dynamics, and Fate of 
Leached Dissolved Organic Matter in Terrestrial Ecosystems: Results from a Decomposition 
Experiment. Ecosystems 2004, 7 (3), 275–285. https://doi.org/10.1007/s10021-003-0236-7. 

(221)  Bourbonniere, R. Distribution Patterns of Dissolved Organic Matter Fractions in Natural 
Waters from Eastern Canada. Org. Geochem. 1989, 14 (1), 97–107. 



 

174 

https://doi.org/10.1016/0146-6380(89)90023-5. 

(222)  Kawasaki, N.; Matsushige, K.; Komatsu, K.; Kohzu, A.; Nara, F. W.; Ogishi, F.; Yahata, M.; 
Mikami, H.; Goto, T.; Imai, A. Fast and Precise Method for HPLC-Size Exclusion 
Chromatography with UV and TOC (NDIR) Detection: Importance of Multiple Detectors to 
Evaluate the Characteristics of Dissolved Organic Matter. Water Res. 2011, 45 (18), 6240–
6248. https://doi.org/10.1016/j.watres.2011.09.021. 

(223)  Romera-Castillo, C.; Chen, M.; Yamashita, Y.; Jaffé, R. Fluorescence Characteristics of Size-
Fractionated Dissolved Organic Matter: Implications for a Molecular Assembly Based 
Structure? Water Res. 2014, 55C, 40–51. https://doi.org/10.1016/j.watres.2014.02.017. 

(224)  Chin, Y.-P.; Aiken, G. R.; O’Loughlin, E. Molecular Weight, Polydispersity, and Spectroscopic 
Properties of Aquatic Humic Substances. Environ. Sci. Technol. 1994, 28 (11), 1853–1858. 
https://doi.org/10.1021/es00060a015. 

(225)  Curtis, P. J.; Schindler, D. W. Hydrologic Control of Dissolved Organic Matter in Low-Order 
Precambrian Shield Lakes. Biogeochemistry 1997, 36 (1), 125–138. 
https://doi.org/10.1023/A:1005787913638. 

(226)  Spencer, R. G. M.; Mann, P. J.; Dittmar, T.; Eglinton, T. I.; Mcintyre, C.; Holmes, R. M.; 
Zimov, N. S.; Stubbins, A. Detecting the Signature of Permafrost Thaw in Arctic Rivers. 
Geophys. Res. Lett. 2015, 1–6. https://doi.org/10.1002/2015GL063498. 

(227)  Deshpande, B. N.; Crevecoeur, S.; Matveev, A.; Vincent, W. F. Bacterial Production in 
Subarctic Peatland Lakes Enriched by Thawing Permafrost. Biogeosciences 2016, 13 (15), 
4411–4427. https://doi.org/10.5194/bg-13-4411-2016. 

(228)  MacMillan, G. A.; Girard, C.; Chételat, J.; Laurion, I.; Amyot, M. High Methylmercury in 
Arctic and Subarctic Ponds Is Related to Nutrient Levels in the Warming Eastern Canadian 
Arctic. Environ. Sci. Technol. 2015, 49 (13), 7743–7753. https://doi.org/10.1021/acs.est.5b00763. 

(229)  Tank, S. E.; Lesack, L. F. W.; Hesslein, R. H. Northern Delta Lakes as Summertime CO2 
Absorbers within the Arctic Landscape. Ecosystems 2009, 12 (1), 144–157. 
https://doi.org/10.1007/s10021-008-9213-5. 

(230)  Guillemette, F.; del Giorgio, P. A. Reconstructing the Various Facets of Dissolved Organic 
Carbon Bioavailability in Freshwater Ecosystems. Limnol. Oceanogr. 2011, 56 (2), 734–748. 
https://doi.org/10.4319/lo.2011.56.2.0734. 

(231)  Mostovaya, A.; Koehler, B.; Guillemette, F.; Brunberg, A. K.; Tranvik, L. J. Effects of 
Compositional Changes on Reactivity Continuum and Decomposition Kinetics of Lake 
Dissolved Organic Matter. J. Geophys. Res. Biogeosciences 2016, 121 (7), 1733–1746. 
https://doi.org/10.1002/2016JG003359. 

(232)  Berggren, M.; Laudon, H.; Jansson, M. Aging of Allochthonous Organic Carbon Regulates 
Bacterial Production in Unproductive Boreal Lakes. Limnol. Oceanogr. 2009, 54 (4), 1333–
1342. https://doi.org/10.4319/lo.2009.54.4.1333. 

(233)  Guillemette, F.; McCallister, S. L.; Del Giorgio, P. A. Differentiating the Degradation 
Dynamics of Algal and Terrestrial Carbon within Complex Natural Dissolved Organic 
Carbon in Temperate Lakes. J. Geophys. Res. Biogeosciences 2013, 118 (3), 963–973. 
https://doi.org/10.1002/jgrg.20077. 



 

175 

(234)  Amon, R. M. W.; Benner, R. Bacterial Utilization of Different Size Classes of Dissolved 
Organic Matter. Limnol. Oceanogr. 1996, 41 (1), 41–51. 

(235)  Lapierre, J. F.; del Giorgio, P. A. Partial Coupling and Differential Regulation of Biologically 
and Photochemically Labile Dissolved Organic Carbon across Boreal Aquatic Networks. 
Biogeosciences 2014, 11 (20), 5969–5985. https://doi.org/10.5194/bg-11-5969-2014. 

(236)  Vachon, D.; Prairie, Y. T.; Guillemette, F.; del Giorgio, P. A. Modeling Allochthonous 
Dissolved Organic Carbon Mineralization Under Variable Hydrologic Regimes in Boreal 
Lakes. Ecosystems 2017, 20 (4), 781–795. https://doi.org/10.1007/s10021-016-0057-0. 

(237)  Boudreau, B. P.; Ruddick, B. R. On a Reactive Continuum Representation of Organic Matter 
Diagenesis. American Journal of Science. 1991, pp 507–538. 
https://doi.org/10.2475/ajs.291.5.507. 

(238)  Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, 
M.; Billett, M. F.; Canário, J.; Cory, R. M.; et al. Reviews and Syntheses: Effects of Permafrost 
Thaw on Arctic Aquatic Ecosystems. Biogeosciences 2015, 12 (23), 7129–7167. 
https://doi.org/10.5194/bg-12-7129-2015. 

(239)  McDowell, W. H.; Zsolnay, A.; Aitkenhead-Peterson, J.; Gregorich, E. G.; Jones, D. L.; 
Jödemann, D.; Kalbitz, K.; Marschner, B.; Schwesig, D. A Comparison of Methods to 
Determine the Biodegradable Dissolved Organic Carbon from Different Terrestrial Sources. 
Soil Biol. Biochem. 2006, 38 (7), 1933–1942. https://doi.org/10.1016/j.soilbio.2005.12.018. 

(240)  Sleighter, R. L.; Cory, R. M.; Kaplan, L. a.; Abdulla, H. A. N.; Hatcher, P. G. A Coupled 
Geochemical and Biogeochemical Approach to Characterize the Bioreactivity of Dissolved 
Organic Matter from a Headwater Stream. J. Geophys. Res. Biogeosciences 2014, 119 (8), 1520–
1537. https://doi.org/10.1002/2013JG002600. 

(241)  Wang, Y.; Hammes, F.; Boon, N.; Egli, T. Quantification of the Filterability of Freshwater 
Bacteria through 0.45, 0.22, and 0.1 Μm Pore Size Filters and Shape-Dependent Enrichment 
of Filterable Bacterial Communities. Environ. Sci. Technol. 2007, 41 (20), 7080–7086. 
https://doi.org/10.1021/es0707198. 

(242)  Kerner, M.; Hohenberg, H.; Ertl, S.; Reckermann, M.; Spitzy, A. Self-Organization of 
Dissolved Organic Matter to Micelle-like Microparticles in River Water. Nature 2003, 422 
(6928), 150–154. https://doi.org/10.1038/nature01469. 

(243)  Kalbitz, K.; Schwesig, D.; Schmerwitz, J.; Kaiser, K.; Haumaier, L.; Glaser, B.; Ellerbrock, R.; 
Leinweber, P. Changes in Properties of Soil-Derived Dissolved Organic Matter Induced by 
Biodegradation. Soil Biol. Biochem. 2003, 35 (8), 1129–1142. https://doi.org/10.1016/S0038-
0717(03)00165-2. 

(244)  Hood, E.; Williams, M. W.; Mcknight, D. M. Sources of Dissolved Organic Matter (DOM) in a 
Rocky Mountain Stream Using Chemical Fractionation and Stable Isotopes. Biogeochemistry 
2005, 74, 231–255. https://doi.org/10.1007/s10533-004-4322-5. 

(245)  Roiha, T.; Laurion, I.; Rautio, M. Carbon Dynamics in Highly Heterotrophic Subarctic Thaw 
Ponds. Biogeosciences 2015, 12 (23), 7223–7237. https://doi.org/10.5194/bg-12-7223-2015. 

(246)  Attermeyer, K.; Catalán, N.; Einarsdottir, K.; Freixa, A.; Groeneveld, M.; Hawkes, J. A.; 
Bergquist, J.; Tranvik, L. J. Organic Carbon Processing During Transport Through Boreal 



 

176 

Inland Waters: Particles as Important Sites. J. Geophys. Res. Biogeosciences 2018, 123 (8), 
2412–2428. https://doi.org/10.1029/2018JG004500. 

(247)  Kothawala, D. N.; von Wachenfeldt, E.; Koehler, B.; Tranvik, L. J. Selective Loss and 
Preservation of Lake Water Dissolved Organic Matter Fluorescence during Long-Term Dark 
Incubations. Sci. Total Environ. 2012, 433, 238–246. 
https://doi.org/10.1016/j.scitotenv.2012.06.029. 

(248)  Wiegner, T. N.; Seitzinger, S. P. Seasonal Bioavailability of Dissolved Organic Carbon and 
Nitrogen from Pristine and Polluted Freshwater Wetlands. Limnol. Oceanogr. 2004, 49 (5), 
1703–1712. https://doi.org/10.4319/lo.2004.49.5.1703. 

(249)  del Giorgio, P. A.; Cole, J. J. Bacterial Growth Efficiency in Natural Aquatic Systems. Annu. 
Rev. Ecol. Syst. 1998, 29 (1), 503–541. https://doi.org/10.1146/annurev.ecolsys.29.1.503. 

(250)  Burpee, B.; Saros, J. E.; Northington, R. M.; Simon, K. S. Microbial Nutrient Limitation in 
Arctic Lakes in a Permafrost Landscape of Southwest Greenland. Biogeosciences Discuss. 
2015, 12 (14), 11863–11890. https://doi.org/10.5194/bgd-12-11863-2015. 

(251)  Frey, K. E.; Sobczak, W. V.; Mann, P. J.; Holmes, R. M. Optical Properties and Bioavailability 
of Dissolved Organic Matter along a Flow-Path Continuum from Soil Pore Waters to the 
Kolyma River, Siberia. Biogeosciences Discuss. 2015, 12 (15), 12321–12347. 
https://doi.org/10.5194/bgd-12-12321-2015. 

(252)  Michaelson, G. J.; Ping, C. L.; Kling, G. W.; Hobbie, J. E. The Character and Bioactivity of 
Dissolved Organic Matter at Thaw and in the Spring Runoff Waters of the Arctic Tundra 
North Slope, Alaska. J. Geophys. Res. 1998, 103 (D22), 28939. 
https://doi.org/10.1029/98JD02650. 

(253)  Fellman, J. B.; Hood, E.; D’Amore, D. V.; Edwards, R. T.; White, D. Seasonal Changes in the 
Chemical Quality and Biodegradability of Dissolved Organic Matter Exported from Soils to 
Streams in Coastal Temperate Rainforest Watersheds. Biogeochemistry 2009, 95 (2), 277–293. 
https://doi.org/10.1007/s10533-009-9336-6. 

(254)  Obernosterer, I.; Benner, R. Competition between Biological and Photochemical Processes in 
the Mineralization of Dissolved Organic Carbon. Limnol. Oceanogr. 2004, 49 (1), 117–124. 
https://doi.org/10.4319/lo.2004.49.1.0117. 

(255)  Reche, I.; Pace, M. L.; Cole, J. J. Modeled Effects of Dissolved Organic Carbon and Solar 
Spectra on Photobleaching in Lake Ecosystems. Ecosystems 2000, 3, 419–432. 
https://doi.org/10.1007/s100210000038. 

(256)  Brisco, S.; Ziegler, S. Effects of Solar Radiation on the Utilization of Dissolved Organic 
Matter DOM) from Two Headwater Streams. Aquat. Microb. Ecol. 2004, 37, 197–208. 

(257)  Stubbins, A.; Spencer, R. G. M.; Chen, H.; Hatcher, P. G.; Mopper, K.; Hernes, P. J.; Mwamba, 
V. L.; Mangangu, A. M.; Wabakanghanzi, J. N.; Six, J. Illuminated Darkness: Molecular 
Signatures of Congo River Dissolved Organic Matter and Its Photochemical Alteration as 
Revealed by Ultrahigh Precision Mass Spectrometry. Limnol. Oceanogr. 2010, 55 (4), 1467–
1477. https://doi.org/10.4319/lo.2010.55.4.1467. 

(258)  Cory, R. M.; Crump, B. C.; Dobkowski, J. a; Kling, G. W. Surface Exposure to Sunlight 
Stimulates CO2 Release from Permafrost Soil Carbon in the Arctic. Proc. Natl. Acad. Sci. U. S. 



 

177 

A. 2013, 110 (9), 3429–3434. https://doi.org/10.1073/pnas.1214104110. 

(259)  Porcal, P.; Dillon, P. J.; Molot, L. A. Seasonal Changes in Photochemical Properties of 
Dissolved Organic Matter in Small Boreal Streams. Biogeosciences 2013, 10, 553–5543. 
https://doi.org/10.5194/bg-10-5533-2013. 

(260)  Vähätalo, A. V.; Salkinoja-Salonen, M.; Taalas, P.; Salonen, K. Spectrum of the Quantum 
Yield for Photochemical Mineralization of Dissolved Organic Carbon in a Humic Lake. 
Limnol. Oceanogr. 2000, 45 (3), 664–676. https://doi.org/10.4319/lo.2000.45.3.0664. 

(261)  Koehler, B.; Landelius, T.; Weyhenmeyer, G. A.; Machida, N.; Tranvik, L. J. Sunlight-Induced 
Carbon Dioxide Emissions from Inland Waters. Global Biogeochem. Cycles 2014, 28 (7), 696–
711. https://doi.org/10.1002/2014GB004850. 

(262)  Girard, C.; Leclerc, M.; Amyot, M. Photodemethylation of Methylmercury in Eastern 
Canadian Arctic Thaw Pond and Lake Ecosystems. Environ. Sci. Technol. 2016, 50 (7), 3511–
3520. https://doi.org/10.1021/acs.est.5b04921. 

(263)  Köhler, S.; Buffam, I.; Jonsson, A.; Bishop, K. H. Photochemical and Microbial Processing of 
Stream and Soil Water Dissolved Organic Matter in a Boreal Forested Catchment in 
Northern Sweden. Aquat. Sci. 2002, 64, 269–281. 

(264)  Berggren, M.; Klaus, M.; Panneer Selvam, B.; Ström, L.; Laudon, H.; Jansson, M.; Karlsson, J. 
Quality Transformation of Dissolved Organic Carbon during Water Transit through Lakes: 
Contrasting Controls by Photochemical and Biological Processes. Biogeosciences Discuss. 
2017, 15 (2), 1–22. https://doi.org/10.5194/bg-2017-279. 

(265)  Twardowski, M. S.; Donaghay, P. L. Photobleaching of Aquatic Dissolved Materials: 
Absorption Removal, Spectral Alteration, and Their Interrelationship. J. Geophys. Res. 2002, 
107 (C8), 3091. https://doi.org/10.1029/1999JC000281. 

(266)  Winter, A. R.; Fish, T. A. E.; Playle, R. C.; Smith, D. S.; Curtis, P. J. Photodegradation of 
Natural Organic Matter from Diverse Freshwater Sources. Aquat. Toxicol. 2007, 84, 215–222. 
https://doi.org/10.1016/j.aquatox.2007.04.014. 

(267)  Franke, D.; Hamilton, M. W.; Ziegler, S. E. Variation in the Photochemical Lability of 
Dissolved Organic Matter in a Large Boreal Watershed. Aquat. Sci. 2012, 74, 751–768. 
https://doi.org/10.1007/s00027-012-0258-3. 

(268)  Cory, R. M.; McKnight, D. M.; Chin, Y.-P.; Miller, P.; Jaros, C. L. Chemical Characteristics of 
Fulvic Acids from Arctic Surface Waters: Microbial Contributions and Photochemical 
Transformations. J. Geophys. Res. Biogeosciences 2007, 112 (G4), n/a-n/a. 
https://doi.org/10.1029/2006JG000343. 

(269)  Ziegler, S.; Benner, R. Effects of Solar Radiation on Dissolved Organic Matter Cycling in a 
Subtropical Seagrass Meadow. Limnol. Oceanogr. 2000, 45 (2), 257–266. 

(270)  Lafleur, P. M.; Humphreys, E. R. Spring Warming and Carbon Dioxide Exchange over Low 
Arctic Tundra in Central Canada. Glob. Chang. Biol. 2008, 14 (4), 740–756. 
https://doi.org/10.1111/j.1365-2486.2007.01529.x. 

(271)  Laliberté, J.; Bélanger, S.; Frouin, R. Evaluation of Satellite-Based Algorithms to Estimate 
Photosynthetically Available Radiation (PAR) Reaching the Ocean Surface at High Northern 
Latitudes. Remote Sens. Environ. 2016, 184, 199–211. https://doi.org/10.1016/j.rse.2016.06.014. 



 

178 

(272)  Opsahl, S.; Benner, R.; Amon, R. M. W.; Dec, N. Major Flux of Terrigenous Dissolved Organic 
Matter Through the Arctic Ocean Major Flux of Terrigenous Dissolved Organic Matter 
through the Arctic Ocean. Limnology 2007, 44 (8), 2017–2023. 

(273)  Williamson, C. E.; Zepp, R. G.; Lucas, R. M.; Madronich, S.; Austin, A. T.; Ballaré, C. L.; 
Norval, M.; Sulzberger, B.; Bais, A. F.; McKenzie, R. L.; et al. Solar Ultraviolet Radiation in a 
Changing Climate. Nat. Clim. Chang. 2014, 4 (6), 434–441. 
https://doi.org/10.1038/nclimate2225. 

(274)  Weyhenmeyer, G. A.; Fröberg, M.; Karltun, E.; Khalili, M.; Kothawala, D. N.; Temnerud, J.; 
Tranvik, L. J. Selective Decay of Terrestrial Organic Carbon during Transport from Land to 
Sea. Glob. Chang. Biol. 2012, 18 (1), 349–355. https://doi.org/10.1111/j.1365-2486.2011.02544.x. 

(275)  Finstad, A. G.; Helland, I. P.; Ugedal, O.; Hesthagen, T.; Hessen, D. O. Unimodal Response of 
Fish Yield to Dissolved Organic Carbon. Ecol. Lett. 2014, 17 (1), 36–43. 
https://doi.org/10.1111/ele.12201. 

(276)  Marshall, I. B.; Schut, P. H.; Ballard, M. A National Ecological Framework for Canada: 
Attribute Data; Ecosystem Stratification Working Group, Agriculture and Agri-Food Canada 
& Environment Canada: Ottawa, ON, Canada, 1999. 

(277)  Ministry of the Environment. Technical Support Document for Ontario Drinking Water 
Standards, Objectives and Guidelines; 2003. 

(278)  Rook, J. J. Chlorination Reactions of Fulvic Acids in Natural-Waters. Environ. Sci. Technol. 
1977, 11 (5), 478–482. 

(279)  Trussell, R. R.; Umphres, M. D. The Formation of Trihalomethanes. J. Am. Water Work. 
Assoc. 1978, 70, 604–612. 

(280)  Singer, P. C.; Obolensky, A.; Greiner, A. DBPs in Chlorinated North Carolina Drinking 
Waters. J. Am. Water Work. Assoc. 1995, 87 (10), 83–92. 

(281)  Roberts, M. G.; Singer, P. C.; Obolensky, A. Comparing Total HAA and Total THM 
Concentrations Using ICR Data. J. / Am. Water Work. Assoc. 2002, 94 (3), 103–114. 

(282)  White, D. M.; Garland, D. S.; Narr, J.; Woolard, C. R. Natural Organic Matter and DBP 
Formation Potential in Alaskan Water Supplies. Water Res. 2003, 37 (4), 939–947. 
https://doi.org/10.1016/S0043-1354(02)00425-6. 

(283)  Richardson, S. D.; Plewa, M. J.; Wagner, E. D.; Schoeny, R.; DeMarini, D. M. Occurrence, 
Genotoxicity, and Carcinogenicity of Regulated and Emerging Disinfection by-Products in 
Drinking Water: A Review and Roadmap for Research. Mutat. Res. - Rev. Mutat. Res. 2007, 
636 (1–3), 178–242. https://doi.org/10.1016/j.mrrev.2007.09.001. 

(284)  Lavonen, E. E.; Gonsior, M.; Tranvik, L. J.; Schmitt-kopplin, P.; Kohler, S. J. Selective 
Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection 
Byproducts. Environ. Sci. Technol. 2013, 47, 2264–2271. 

(285)  Singer, P. C. DBPs in Drinking Water: Additional Scientific and Policy Considrerations for 
Public Health Protection. J. Am. Water Work. Assoc. 2006, 98 (10), 73–80. 

(286)  Roe, J.; Baker, A.; Bridgeman, J. Relating Organic Matter Character to Trihalomethanes 
Formation Potential: A Data Mining Approach. Water Sci. Technol. Water Supply 2008, 8 (6), 
717–723. https://doi.org/10.2166/ws.2008.150. 



 

179 

(287)  Gallard, H.; von Gunten, U. Chlorination of Natural Organic Matter: Kinetics of Chlorination 
and of THM Formation. Water Res. 2002, 36 (1), 65–74. https://doi.org/10.1016/S0043-
1354(01)00187-7. 

(288)  Zeng, T.; Arnold, W. A. Clustering Chlorine Reactivity of Haloacetic Acid Precursors in 
Inland Lakes. Environ. Sci. Technol. 2014, 48 (1), 139–148. https://doi.org/10.1021/es403766n. 

(289)  Hua, G.; Reckhow, D. A.; Abusallout, I. Correlation between SUVA and DBP Formation 
during Chlorination and Chloramination of NOM Fractions from Different Sources. 
Chemosphere 2015, 130, 82–89. https://doi.org/10.1016/j.chemosphere.2015.03.039. 

(290)  Golea, D. M.; Upton, A.; Jarvis, P.; Moore, G.; Sutherland, S.; Parsons, S. A.; Judd, S. J. THM 
and HAA Formation from NOM in Raw and Treated Surface Waters. Water Res. 2017, 112, 
226–235. https://doi.org/10.1016/j.watres.2017.01.051. 

(291)  Li, C. W.; Korshin, G. V; Benjamin, M. M. Monitoring DBP Formation with Differential UV 
Spectroscopy. J. Am. Water Work. Assoc. 1998, 90 (8), 88–100. https://doi.org/10.1002/j.1551-
8833.1998.tb08488.x. 

(292)  Chang, E. E.; Chiang, P. C.; Ko, Y. W.; Lan, W. H. Characteristics of Organic Precursors and 
Their Relationship with Disinfection By-Products. Chemosphere 2001, 44 (5), 1231–1236. 
https://doi.org/10.1016/S0045-6535(00)00499-9. 

(293)  Ates, N.; Kitis, M.; Yetis, U. Formation of Chlorination By-Products in Waters with Low 
SUVA-Correlations with SUVA and Differential UV Spectroscopy. Water Res. 2007, 41 (18), 
4139–4148. https://doi.org/10.1016/j.watres.2007.05.042. 

(294)  Department of Municipal and Community Affairs. Report on Drinking Water 2016; 2016. 

(295)  Pardhan-Ali, A.; Wilson, J.; Edge, V. L.; Furgal, C.; Reid-Smith, R.; Santos, M.; McEwen, S. A. 
A Descriptive Analysis of Notifiable Gastrointestinal Illness in the Northwest Territories, 
Canada, 1991-2008. BMJ Open 2012, 2 (4), 1–10. https://doi.org/10.1136/bmjopen-2011-
000732. 

(296)  Goldhar, C.; Bell, T.; Wolf, J. Vulnerability to Freshwater Changes in the Inuit Settlement 
Region of Nunatsiavut, Labrador: A Case Study from Rigolet. Arctic 2014, 67 (1), 71–83. 
https://doi.org/10.14430/arctic4365. 

(297)  Monteith, D. T.; Stoddard, J. L.; Evans, C. D.; de Wit, H. A.; Forsius, M.; Høgåsen, T.; 
Wilander, A.; Skjelkvåle, B. L.; Jeffries, D. S.; Vuorenmaa, J.; et al. Dissolved Organic Carbon 
Trends Resulting from Changes in Atmospheric Deposition Chemistry. Nature 2007, 450 
(7169), 537–540. https://doi.org/10.1038/nature06316. 

(298)  Solomon, C. T.; Jones, S. E.; Weidel, B. C.; Buffam, I.; Fork, M. L.; Karlsson, J.; Larsen, S.; 
Lennon, J. T.; Read, J. S.; Sadro, S.; et al. Ecosystem Consequences of Changing Inputs of 
Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge and Future Challenges. 
Ecosystems 2015, No. January. https://doi.org/10.1007/s10021-015-9848-y. 

(299)  Martin, D.; Bélanger, D.; Gosselin, P.; Brazeau, J.; Furgal, C.; Déry, S. Drinking Water and 
Potential Threats to Human Health in Nunavik: Adaptation Strategies under Climate Change 
Conditions. Arctic 2007, 60 (2), 195–202. 

(300)  Harper, S. L.; Edge, V. L.; Schuster-Wallace, C. J.; Berke, O.; McEwen, S. A. Weather, Water 
Quality and Infectious Gastrointestinal Illness in Two Inuit Communities in Nunatsiavut, 



 

180 

Canada: Potential Implications for Climate Change. Ecohealth 2011, 8 (1), 93–108. 
https://doi.org/10.1007/s10393-011-0690-1. 

(301)  Wright, C. J.; Sargeant, J. M.; Edge, V. L.; Ford, J. D.; Farahbakhsh, K.; Shiwak, I.; Flowers, C.; 
Harper, S. L. Water Quality and Health in Northern Canada: Stored Drinking Water and 
Acute Gastrointestinal Illness in Labrador Inuit. Environ. Sci. Pollut. Res. 2017, 1–13. 
https://doi.org/10.1007/s11356-017-9695-9. 

(302)  Chow, A. T.; Díaz, F. J.; Wong, K.-H.; O’Geen, A. T.; Dahlgren, R. a; Wong, P.-K. 
Photochemical and Bacterial Transformations of Disinfection By-Product Precursors in 
Water. J. Environ. Qual. 2013, 42 (5), 1589–1595. https://doi.org/10.2134/jeq2013.01.0022. 

(303)  Deborde, M.; von Gunten, U. Reactions of Chlorine with Inorganic and Organic Compounds 
during Water Treatment-Kinetics and Mechanisms: A Critical Review. Water Res. 2008, 42 
(1–2), 13–51. https://doi.org/10.1016/j.watres.2007.07.025. 

(304)  Molot, L. A.; Dillon, P. J. Colour - Mass Balances and Colour - Dissolved Organic Carbon 
Relationships in Lakes and Streams in Central Ontario. Can. J. Fish. Aquat. Sci. 1997, 54 (12), 
2789–2795. https://doi.org/10.1139/cjfas-54-12-2789. 

(305)  Baker, A.; Spencer, R. G. M. Characterization of Dissolved Organic Matter from Source to 
Sea Using Fluorescence and Absorbance Spectroscopy. Sci. Total Environ. 2004, 333 (1–3), 
217–232. https://doi.org/10.1016/j.scitotenv.2004.04.013. 

(306)  Reckhow, D. A.; Rees, P. L. S.; Bryan, D. Watershed Sources of Disinfection Byproduct 
Precursors. Water Sci. Technol. Water Supply 2004, 4 (4), 61–69. 

(307)  Pellerin, B. A.; Hernes, P. J.; Saraceno, J.; Spencer, R. G. M.; Bergamaschi, B. A. Microbial 
Degradation of Plant Leachate Alters Lignin Phenols and Trihalomethane Precursors. J. 
Environ. Qual. 2010, 39 (3), 946. https://doi.org/10.2134/jeq2009.0487. 

(308)  Yang, X.; Guo, W.; Shen, Q. Formation of Disinfection Byproducts from Chlor(Am)Ination of 
Algal Organic Matter. J. Hazard. Mater. 2011, 197, 378–388. 
https://doi.org/10.1016/j.jhazmat.2011.09.098. 

(309)  Clark, G. F.; Stark, J. S.; Johnston, E. L.; Runcie, J. W.; Goldsworthy, P. M.; Raymond, B.; 
Riddle, M. J. Light-Driven Tipping Points in Polar Ecosystems. Glob. Chang. Biol. 2013, 19 
(12), 3749–3761. https://doi.org/10.1111/gcb.12337. 

(310)  Nevalainen, L.; Luoto, T. P.; Rantala, M. V.; Galkin, A.; Rautio, M. Role of Terrestrial Carbon 
in Aquatic UV Exposure and Photoprotective Pigmentation of Meiofauna in Subarctic Lakes. 
Freshw. Biol. 2015, 60 (11), 2435–2444. https://doi.org/10.1111/fwb.12670. 

(311)  Dilling, W. L.; Tefertiller, N. B.; Kallos, G. J. Evaporation Rates and Reactivities of Methylene 
Chloride, Chloroform, 1,1,1 -Trichloroethane, Trichloroethylene, Tetrachloroethylene, and 
Other Chlorinated Compounds in Dilute Aqueous Solutions. Environ. Sci. Technol. 1975, 9 
(9), 833–838. https://doi.org/10.1021/es60107a008. 

(312)  Weaver, W. A.; Li, J.; Wen, Y.; Johnston, J.; Blatchley, M. R.; Blatchley, E. R. Volatile 
Disinfection By-Product Analysis from Chlorinated Indoor Swimming Pools. Water Res. 
2009, 43 (13), 3308–3318. https://doi.org/10.1016/j.watres.2009.04.035. 

(313)  Jagals, P.; Jagals, C.; Bokako, T. C. The Effect of Container-Biofilm on the Microbiological 
Quality of Water Used from Plastic Household Containers. J. Water Health 2003, 1 (3), 101–



 

181 

108. 

(314)  Xu, J.; Huang, C.; Shi, X.; Dong, S.; Yuan, B.; Nguyen, T. H. Role of Drinking Water Biofilms 
on Residual Chlorine Decay and Trihalomethane Formation: An Experimental and Modeling 
Study. Sci. Total Environ. 2018, 642, 516–525. https://doi.org/10.1016/j.scitotenv.2018.05.363. 

(315)  Bertilsson, S.; Jones, J. B. Supply of Dissolved Organic Matter to Aquatic Ecosystems: 
Autochthonous Sources. In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter; 
Findlay, S. E. G., Sinsabaugh, R. L., Eds.; Academic Press, 2003; p 512. 

(316)  Bogard, M. J.; Kuhn, C. D.; Johnston, S. E.; Striegl, R. G.; Holtgrieve, G. W.; Dornblaser, M. 
M.; Spencer, R. G. M.; Wickland, K. P.; Butman, D. E. Negligible Cycling of Terrestrial 
Carbon in Many Lakes of the Arid Circumpolar Landscape. Nat. Geosci. 2019. 
https://doi.org/10.1038/s41561-019-0299-5. 

(317)  McKnight, D. M.; Andrews, E. D.; Spaulding, S. A.; Aiken, G. R. Aquatic Fulvic Acids in 
Algal‐rich Antarctic Ponds. Limnol. Oceanogr. 1994, 39 (8), 1972–1979. 
https://doi.org/10.4319/lo.1994.39.8.1972. 

(318)  Climate Change 2013 - The Physical Science Basis; Intergovernmental Panel on Climate 
Change, Ed.; Cambridge University Press: Cambridge, 2014. 
https://doi.org/10.1017/CBO9781107415324. 

(319)  Szkokan-Emilson, E. J.; Kielstra, B. W.; Arnott, S. E.; Watmough, S. A.; Gunn, J. M.; 
Tanentzap, A. J. Dry Conditions Disrupt Terrestrial–Aquatic Linkages in Northern 
Catchments. Glob. Chang. Biol. 2017, 23 (1), 117–126. https://doi.org/10.1111/gcb.13361. 

(320)  Emmerton, C. A.; St Louis, V. L.; Lehnherr, I.; Humphreys, E. R.; Rydz, E.; Kosolofski, H. R. 
The Net Exchange of Methane with High Arctic Landscapes during the Summer Growing 
Season. Biogeosciences Discuss 2014, 11, 1673–1706. https://doi.org/10.5194/bgd-11-1673-2014. 

(321)  Comte, J.; Lovejoy, C.; Crevecoeur, S.; Vincent, W. F. Co-Occurrence Patterns in Aquatic 
Bacterial Communities across Changing Permafrost Landscapes. Biogeosciences 2016, 13 (12), 
175–190. https://doi.org/10.5194/bg-13-175-2016. 

(322)  Comte, J.; Monier, A.; Crevecoeur, S.; Lovejoy, C.; Vincent, W. F. Microbial Biogeography of 
Permafrost Thaw Ponds across the Changing Northern Landscape. Ecography (Cop.). 2015, 
No. July, n/a-n/a. https://doi.org/10.1111/ecog.01667. 

(323)  Kaiser, K.; Canedo-Oropeza, M.; McMahon, R.; Amon, R. M. W. Origins and Transformations 
of Dissolved Organic Matter in Large Arctic Rivers. Sci. Rep. 2017, 7 (1), 1–11. 
https://doi.org/10.1038/s41598-017-12729-1. 

(324)  Mackelprang, R.; Waldrop, M. P.; DeAngelis, K. M.; David, M. M.; Chavarria, K. L.; Blazewicz, 
S. J.; Rubin, E. M.; Jansson, J. K. Metagenomic Analysis of a Permafrost Microbial 
Community Reveals a Rapid Response to Thaw. Nature 2011, 480 (7377), 368–371. 
https://doi.org/10.1038/nature10576. 

(325)  Negandhi, K.; Laurion, I.; Lovejoy, C. Bacterial Communities and Greenhouse Gas Emissions 
of Shallow Ponds in the High Arctic. Polar Biol. 2014, 37, 1669–1683. 
https://doi.org/10.1007/s00300-014-1555-1. 

(326)  Herrero Ortega, S.; Catalán, N.; Björn, E.; Gröntoft, H.; Hilmarsson, T. G.; Bertilsson, S.; Wu, 
P.; Bishop, K. H.; Levanoni, O.; Bravo, A. G. High Methylmercury Formation in Ponds Fueled 



 

182 

by Fresh Humic and Algal Derived Organic Matter. Limnol. Oceanogr. 2017. 
https://doi.org/10.1002/lno.10722. 

(327)  Bravo, A. G.; Bouchet, S.; Tolu, J.; Björn, E.; Mateos-Rivera, A.; Bertilsson, S. Molecular 
Composition of Organic Matter Controls Methylmercury Formation in Lakes. Nat. Commun. 
2017, 1–9. https://doi.org/10.1038/ncomms14255. 

(328)  Lehnherr, I.; St Louis, V. L. Importance of Ultraviolet Radiation in the Photodemethylation of 
Methylmercury in Freshwater Ecosystems. Environ. Sci. Technol. 2009, 43 (15), 5692–5698. 
https://doi.org/10.1021/es9002923. 

 


	Chapter 1  Dissolved Organic Matter in Canada’s North under a Changing Climate
	1.1 Canada’s Arctic Landscape
	1.2 Carbon in a Warming North
	1.3 Importance of Dissolved Organic Matter
	1.3.1 Role of DOM in the Natural Environment
	1.3.2 DOM Quantity versus Quality

	1.4 The Role of DOM in a Changing North
	1.5 Thesis Rationale and Objectives

	Chapter 2  Trends in Water Quality from Three Rivers near Yellowknife, Northwest Territories
	2.1 Introduction
	2.2 Site Descriptions
	2.3 Methods
	2.3.1 Data Collection
	2.3.2 Statistical Analyses
	2.3.2.1 Calculation of Fluxes
	2.3.2.2 Significant Trends


	2.4 Results
	2.4.1 Climate Data
	2.4.2 Hydrological Data
	2.4.3 Geochemical Concentrations and Loads
	2.4.3.1 Cation Concentrations
	2.4.3.2 Anion Concentrations
	2.4.3.3 Nutrient Concentrations
	2.4.3.4 Other Parameters
	2.4.3.5 Annual Cation & Anion Loads
	2.4.3.6 Annual Nutrient & TDS Loads


	2.5 Discussion
	2.5.1 Changes to Climate & River Flow in the Northwest Territories
	2.5.2 Geochemical Response in the Yellowknife, Cameron, and Marian rivers
	2.5.3 DOC in the Northwest Territories
	2.5.4 Baseline Conditions

	2.6 Conclusions & Future Trends

	Chapter 3  Visualizing Dissolved Organic Matter Using Common Composition Metrics across a Variety of Canadian Ecoregions
	3.1 Introduction
	3.2 Methods
	3.2.1 Sites & Sampling
	3.2.2 DOM Quantity & Composition Analyses
	3.2.3 Statistical Analyses & Composition Wheel Design

	3.3 Results
	3.3.1 DOM Concentration & Composition
	3.3.2 PCA on DOM Composition
	3.3.3 Composition Wheel Axes

	3.4 Discussion
	3.4.1 Comparison of DOM Composition Measures
	3.4.2 How Compositional Measures Relate to DOM Concentration or Site
	3.4.3 Visualizing Differences in DOM Composition


	Chapter 4  How Dissolved Organic Matter Composition from Freshwaters in the Western Canadian Sub-Arctic to High Arctic Influences Loss and Degradation Rate during a Microbial Degradation Experiment
	4.1 Introduction
	4.2 Methods
	4.2.1 Sample Collection
	4.2.2 Microbial Degradation Experiment Setup
	4.2.3 Laboratory Analyses
	4.2.4 Statistical Analyses

	4.3 Results
	4.3.1 DOM Concentration and Composition
	4.3.2 BDOM and Degradation Rates
	4.3.3 Microbial Degradation and the Influence of DOM Composition

	4.4 Discussion
	4.4.1 Experimental Influences on BDOM Determination
	4.4.2 Comparison of DOM Composition and BDOM Proportion with Other Circumpolar Studies
	4.4.3 Different DOM Samples Respond Uniquely to Microbial Degradation
	4.4.4 Microbial Degradation and DOM Fate in a Changing Climate

	4.5 Conclusion

	Chapter 5  Dissolved Organic Matter Composition is Important for Photolysis among Surface and Subsurface Freshwaters in the Canadian Sub-Arctic and Arctic
	5.1 Introduction
	5.2 Methods
	5.2.1 Experimental Setup
	5.2.2 Laboratory Analyses
	5.2.3 Calculation of Photolabile DOM & Photolytic Rates

	5.3 Results
	5.3.1 Initial DOM Characteristics
	5.3.2 Photolytic Degradation – DOM Concentration & Composition

	5.4 Discussion
	5.4.1 Similarity in the Response of DOM to Photolytic Degradation
	5.4.2 Quality over Quantity: DOM Composition Influences Photolytic Degradation
	5.4.3 Importance of Photolysis in Relation to Ecosystem Processes

	5.5 Conclusion

	Chapter 6  Quality over Quantity: Characterizing Dissolved Organic Matter and Formation of Disinfection By-Products at Three Locations in the Northwest Territories, Canada
	6.1 Introduction
	6.2 Methods
	6.2.1 Public Water Quality Records
	6.2.2 Field Collection
	6.2.3 Laboratory Analyses
	6.2.3.1 Geochemistry & DOM Characterization
	6.2.3.2 Disinfection By-Product Determination
	6.2.3.3 Microbial & Photolytic Treatments
	6.2.3.4 Statistical Calculations


	6.3 Results
	6.3.1 Government of Northwest Territories Water Quality Records
	6.3.2 DOM Concentration, Composition, and DBP
	6.3.3 Effects of Microbial & Photolytic Degradation on DBP

	6.4 Discussion
	6.4.1 DBP in the Northwest Territories as Observed from Community Water Records
	6.4.2 DBP and DOM Concentration & Composition
	6.4.3 Implications for Northern Drinking Water Quality

	6.5 Conclusion

	Chapter 7  Synthesis of Thesis: Conceptual Diagram of Dissolved Organic Matter Evolution in the Northwest Territories
	7.1 Creating a Conceptual Diagram
	7.2 Setting the Conceptual Framework – DOM Source & Processing
	7.2.1 End-members of the DOM Conceptual Diagram
	7.2.1.1 Terrestrial End Member
	7.2.1.2 Photolysis End Member
	7.2.1.3 Autochthonous End Member and Other Samples

	7.2.2 The DOM Conceptual Diagram

	7.3 DOM Conceptual Diagram as a Predictive Tool
	7.4 Comparison to the High Arctic
	7.5 Conclusion

	Chapter 8  Summary & Future Research
	8.1 Original Scientific Contributions
	8.2 Future DOM Research in Sub-Arctic and Arctic Environments
	Summary of Concentration and Flux Chemistry
	Detection Limits
	Climate Analysis
	Yellowknife & Cameron River Discharge
	Discharge-Concentration Relationships
	Cations
	Anions
	Nutrients
	Other Parameters

	Microbial Degradation DIC
	Photolytic Degradation DIC


