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Abstract

A number of researchers have recently questioned the necessity of increasingly complex
neural network (NN) architectures. In particular, several recent papers have shown that sim-
pler, properly tuned models are at least competitive across several natural language processing
tasks. In this thesis, we show that this is also the case for text generation from structured and
unstructured data. Specifically, we consider neural table-to-text generation and neural question
generation (NQG) tasks for text generation from structured and unstructured data respectively.
Table-to-text generation aims to generate a description based on a given table, and NQG is the
task of generating a question from a given passage where the generated question can be answered
by a certain sub-span of the passage using NN models. Experiments demonstrate that a basic
attention-based sequence-to-sequence model trained with exponential moving average technique
achieves state of the art in both tasks. We further investigate using reinforcement learning with
different reward functions to refine our pre-trained model for both tasks.
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Chapter 1

Introduction

Recent natural language processing (NLP) literature can be characterized as increasingly com-
plex neural network architectures that eke out progressively smaller gains over previous models.
Following a previous line of research [1, 46, 48], we investigate the necessity of such compli-
cated neural architectures. In this thesis, our focus is on text generation from structured and
unstructured data by considering description generation from a given table (table-to-text) and
question generation from a given passage and target answer (text-to-text).

More specifically, the goal in the neural table-to-text generation task is to generate biogra-
phies based on Wikipedia infoboxes (structured data). An infobox is a factual table with a number
of fields (e.g., name, nationality, and occupation) describing a person. For this task, we use the
WIKIBIO dataset [37] as the benchmark dataset. Figure 1.1 shows an example of a biographic
infobox form this dataset.

Automatic question generation aims to generate a syntactically correct, semantically mean-
ingful and relevant question from a natural language text and a target answer within it (unstruc-
tured data). This is a crucial yet challenging task in NLP which has received growing attention
due to its applications in improving question answering systems [15, 65, 66], providing material
for educational purposes [23], and helping conversational systems to start and continue a conver-
sation [49]. We adopt the widely used SQuAD dataset [55] for this task. Table 1.1 illustrates one
instance of (passage, answer, question) triplets in this dataset.

Prior works have made remarkable progress on both of these tasks. However, the proposed
models utilize complex neural architectures to capture the necessary information of the input(s).
In this work, we question the need for such sophisticated NN models for text generation from
inputs with structured and unstructured data.
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Figure 1.1: An example infobox from the WIKIBIO dataset. The corresponding description for
this infobox is “Sir Bernard Augustus Keen FRS (5 September 1890 – 5 August 1981) was a
British soil scientist and Fellow of University College London.”.

Passage: Hydrogen is commonly used in power sta-
tions as a coolant in generators due to a number of fa-
vorable properties that are a direct result of its light di-
atomic molecules.
Answer: as a coolant in generators
Question: How is hydrogen used at power stations?

Table 1.1: A sample (passage, answer, question) triplet from the SQuAD dataset.

Particularly, we adopt a bi-directional, attention-based sequence-to-sequence (seq2seq) model
[62] equipped with copy mechanism [19] for both tasks. We demonstrate that this model together
with exponential moving average (EMA) technique achieves state of the art in both neural table-
to-text generation and NQG. Interestingly, our model is able to achieve this result without even
using any linguistic features.

1.1 Task Definition

Let us formally denote the input sequence of length N as X = (x1, x2, . . . , xN) and the output
sequence of length M as Y = (y1, y2, . . . , yM). Generally, text generation from input X is defined
to find Y * such that:

Y * = argmax
Y

M∏
t=1

P (yt|y1:t−1, X; θ) (1.1)
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Here, θ is the model parameters, X is the field-value records (i.e. content and field represen-
tation) for neural table-to-text generation, and the passage and the target answer for NQG. Note
that a passage can be the whole paragraph or the sentence(s) containing the target answer. In this
work, we use the latter as the input of our encoder.

In summary, the goal in table-to-text generation is to generate the most likely biography
description given the corresponding infobox. Additionally, NQG aims at generating the most
likely question for a given passage and an answer within the passage.

1.2 Contributions

Our contributions are three-fold: (1) We propose a unified NN model for text generation from
structured and unstructured data built on an attention-based seq2seq model equipped with copy
mechanism. We show that training this model with the EMA technique leads to the state of
the art in neural table-to-text generation as well as NQG. (2) Because our model is in essence
the main building block of previous models, our results show that some previous works espouse
needless complexity, and that gains from previously-proposed complex neural architectures are
quite modest. In other words, state of the art is achieved by careful tuning of simple and well-
engineered models, not necessarily by adding more complexity to the model [39]. To provide a
solid foundation for future efforts, all code for this work will be released under an open-source
license. (3) We investigate the performance of our model after using reinforcement learning (RL)
with different reward functions (e.g., BLEU, GLEU, and ROUGE score) as a way to refine our
pre-trained model for both tasks.

1.3 Thesis Organization

In Chapter 2, we discuss related work for neural table-to-text generation and NQG and use their
results to compare against ours in the rest of the thesis. Chapter 3 introduces a simple yet effective
model for both tasks. We further discuss training this model with maximum likelihood estimation
(MLE) and refining it with reinforcement learning. Chapter 4 presents how we conduct our
experiments and shows experimental results on the WIKIBIO and SQuAD datasets. In Chapter
5, we provide a conclusion and summary for the thesis and discuss some potential research
directions for the future.
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Chapter 2

Background and Related Work

NLP tasks can be divided into four main categories based on the input and output types: sentence
classification (e.g., sentiment analysis), sentence pair classification (e.g., sentence similarity and
paraphrase identification), sequence labeling (e.g., named entity recognition and part of speech
tagging), and sequence-to-sequence generation (e.g., translation, text summarization, and dia-
logue generation). In this thesis, our focus is on sequence-to-sequence generation. Particularly,
we consider table-to-text generation and text-to-text generation as two sub-problems of this cat-
egory and investigate using a simple yet effective sequence-to-sequence model for both tasks.
In what follows, we would first discuss sequence-to-sequence learning and reinforcement learn-
ing, then we specifically talk about the previously-proposed models in the literature for neural
table-to-text generation and NQG.

2.1 Sequence-to-sequence Learning

Sequence-to-sequence learning [4, 10, 18, 67, 71] is a challenging task in artificial intelligence
which has attracted much attention in recent years due to its application in neural machine trans-
lation (NMT) [3, 4, 10, 18, 35, 36, 67, 71], text summarization [18, 64], question answering [73],
and conversational response generation [59, 68].

A major approach for sequence-to-sequence learning is the encoder-decoder framework: As
depicted in figure 2.1, the encoder takes the source sequence X = (x1, x2, . . . , xN) as input and
generates a set of representations; the decoder uses the source representations and the preceding
tokens to generate the target sequence Y = (y1, y2, . . . , yM) one at a time by estimating the con-
ditional probability of the current target token P (yt|y1:t−1, X; θ). Here, θ is the model parameters
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Figure 2.1: A sequence to sequence model.

and is usually learned by using log likelihood as the objective function:

L(θ) =
∑

(X,Y )∈(X ,Y)

logP (Y |X; θ) (2.1)

where (X ,Y) are source and target pairs from the dataset. The conditional probability P (Y |X; θ)
can be further factorized according to the chain rule:

P (Y |X; θ) =
M∏
t=1

P (yt|y1:t−1, X; θ) (2.2)

where y1:t−1 is the preceding tokens before position t. Moreover, Bahdanau et al. [4] introduce
attention mechanism between the encoder and decoder to find which source representation to
focus on when predicting the current token according to its relevance to different parts of the
source sequence. Note that the attention weights are learned during training.

LSTM units [25] are typically used in the seq2seq models. The following equations summa-
rize mathematical operations inside an LSTM unit:itft

ot

 = σ(

Wi

Wf

Wo

 [ht−1, xt]) (2.3)

c̃t = tanh(Wc · [ht−1, xt]) (2.4)

ct = ft × ct−1 + it × c̃t (2.5)

ht = ot × tanh(ct) (2.6)

where it, ft, and ot are input gate, forget gate, and output gate respectively. Hidden state and
cell state at time step t are indicated by ht and ct, and σ is the sigmoid non-linearity. Note that
Wi,Wf ,Wo,Wc are all weight matrices.
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2.2 Reinforcement Learning

In this section, we briefly explain the relevant concepts and algorithms in reinforcement learning
that we are going to use:

Markov Decision Process

Initially, we define a Markov decision process (MDP). An MDP provides a mathematical
framework for modeling sequential decision making and formally describes a fully observable
environment for reinforcement learning. MDPs are essentially a tuple < S,A,P ,R, γ >, where
S and A are a finite set of states and actions respectively. In our setting, actions (choosing
words from the vocabulary) are discreet, but they can be continuous in general. In addition,
P : A × S × S → [0, 1] is a state transition probability function, R : A × S → R is a reward
function, and γ ∈ [0, 1) is a discount factor.

Reinforcement Learning

The goal of reinforcement learning is to find the best policy such that the agent would max-
imize its sum of discounted rewards, G = Σ∞t=0γ

trt+1, by following this policy. A policy π is a
probability distribution over actions conditioned on states, π : A× S → [0, 1], and fully defines
the behaviour of an agent. The state-value function V and the action-value functionQ of a policy
π are defined as:

Vπ(s) = Eπ[Gt|st = s] (2.7)

Qπ(s, a) = Eπ[Gt|st = s, at = a] (2.8)

where Gt = Σ∞k=0γ
krt+k+1. They can also be expressed by the following expressions (a.k.a

Bellman Expectation Equation):

Vπ(s) = Eπ[rt+1 + γVπ(st+1)|st = s] =
∑
a∈A

π(a|s)
∑
s′∈S

Pass′ [Ra
ss′ + γVπ(s′)] (2.9)

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1, at+1)|st = s, at = a]

=
∑
s′∈S

Pass′ [Ra
ss′ + γ

∑
a′∈A

π(a′|s′)Qπ(s′, a′)] (2.10)
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where Pass′ = P (st+1 = s′|st = s, at = a) and Ra
ss′ = E[rt+1|st = s, st+1 = s′, at = a].

That being said, in reinforcement learning, we wish to find the optimal policy π∗ in an unknown
environment (i.e., with an unknown MDP). This policy corresponds to V∗ = max

π
Vπ and Q∗ =

max
π

Qπ value functions.

Policy Gradient

In policy gradient methods [63], the policy π(a|s; θ) is parameterized by θ which is updated
by optimizing the objective function J(θ) = Eπθ [Σ∞t=0γ

trt+1] using gradient ascent.

Monte Carlo policy gradient

Williams [70] proposes the Monte Carlo policy gradient algorithm (a.k.a REINFORCE) to
compute the derivative of the objective function J(θ) by using the likelihood ratio method ac-
cording to the following expression:

∇θJ(θ) = Eπθ [∇θ log πθ(at|st) Gt] (2.11)

We can also reduce the variance by subtracting a baseline function b(st) from Gt,

∇θJ(θ) = Eπθ [∇θ log πθ(at|st) (Gt − b(st))]. (2.12)

We further approximate the above expectation by an unbiased sample and update the weights
using the following formula:

∆θt ≈ α∇θ log πθ(at|st) (Gt − b(st)) (2.13)

where α is the learning rate.

Actor-Critic Policy Gradient

Monte Carlo policy gradient still has high variance. To reduce the variance, Konda and
Tsitsiklis [32] propose a critic Qw(s, a) ≈ Qπθ(s, a) instead of Gt, and use Vv(s) ≈ Vπθ(s)
as the baseline. Here, w and v are the parameters of the action-value and state-value function
approximators respectively, and they are updated during the training procedure. We define the
advantage function as A(st, at) = Qw(st, at) − Vv(st) and update the weights of the policy
according to the following expression:

∆θt ≈ α∇θ log πθ(at|st) A(st, at) (2.14)
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In practice, we use temporal difference error as an unbiased estimate of the advantage func-
tion to reduce the number of required parameters. Therefore, the updates are actually performed
based on what follows:

∆θt ≈ α∇θ log πθ(at|st) (rt + γVv(st+1)− Vv(st)) (2.15)

2.3 Neural Table-to-text Generation Models

Traditionally, most table-to-text generation systems have been separated into individual modules:
(1) a module was responsible to select a subset of relevant information in the input data (content
selection), (2) another module was used to generate natural language descriptions based on the
output of the first module (surface realization). To learn the first module, Barzilay and Lapata
[6], and Duboue and McKeown [16] propose a content selection model which aligns records
and sentences. Liang et al. [38] propose a hierarchical hidden semi-Markov model which first
chooses relevant information and then generates a description based on the chosen facts. Later
works [2, 28, 33] suggest combining these modules together.

More recently, Mei et al. [45] use an encoder-decoder style NN model for selective generation
on the WEATHERGOV and ROBOCUP datasets. While these datasets contain only a few tens of
thousands of records, Lebret et al. [37] introduce WIKIBIO dataset that contains over 700k
biographies from Wikipedia. They also propose an n-gram statistical language model with local
and global conditioning which considers both the content and the structure of the table. Since
an n-gram language model makes an order n Markov assumption, Equation 2.2 changes to what
follows:

P (Y |X; θ) =
M∏
t=1

P (yt|yt−(n−1):t−1, X; θ) (2.16)

whereX contains both local information (i.e., information about the occurrence of the previously-
generated words in the table) and global information (i.e., information about all tokens and fields
of the table regardless whether they have appeared in the previously-generated words or not).
Their neural language model (NLM) considers both the content and the structure of the table
by using field and position embeddings. However, NLM only uses local conditioning without
copying actions (i.e. with fixed vocabulary). They also introduce the following baselines for
comparison:

• The Kneser-Ney (KN) model is a language model proposed by Heafield et al. [21].
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Figure 2.2: The overall architecture of the structure-aware seq2seq model. The figure is copied
from Liu et al. [43].

• Template KN learns a KN language model over templates by replacing the words occurring
in both the table and the training sentences with a special token.

The most competitive statistical language model proposed by Lebret et al. [37] (Table NLM)
incorporates both local and global conditioning and also employs copy mechanism. However,
even their ultimate model is not effective enough to capture long-range contextual dependencies
while generating descriptions.

To deal with this issue, Liu et al. [43] suggest a structure-aware seq2seq (Struct-aware)
architecture with specific methods to effectively conduct local and global addressing on the table.
While local addressing is realized by content encoding of the model’s encoder and word level
attention, global addressing is realized by field encoding of the field-gating LSTM variation and
field level attention.

More specifically, in the encoding phase, field gating mechanism is introduced to consider
field information while updating the cell memory of the LSTM units. That being said, Equation
2.5 changes according to the following expressions:

lt = σ(Wl × zt) (2.17)

ẑt = tanh(Wz × zt) (2.18)

9



Figure 2.3: The overall architecture of the seq2seq model with hierarchical encoder and auxiliary
supervision. The figure is adopted from Liu et al. [42].

ct = ft × ct−1 + it × c̃t + lt × ẑt (2.19)

where zt is the field embedding of the current token, and Wl and Wz are trainable model parame-
ters. Furthermore, in the decoding phase, they use dual attention mechanism which incorporates
both word level and field level attention to better capture the semantic relevance between the
generated description and the table information. Figure 2.2 illustrates the architecture of this
model more concisely.

Bao et al. [5] propose Table2Seq which is a seq2seq model equipped with a specifically de-
signed copy mechanism that selectively replicates contents from the table to the output sequence.
Their model takes a row from the table and generates a natural language sentence describing that
row by leveraging the semantics of the table. Furthermore, Sha et al. [58] argue that when a
human writes a description based on a given table, he or she would probably consider the con-
tent order before wording. They propose an order-planning text generation model that is able to
better capture the structural information of the table to make the generated text more fluent and
smooth.

To model the field-value structure of a tables, Liu et al. [42] propose a two-level hierarchical
encoder with coarse-to-fine attention as shown in Figure 2.3. They also propose three joint
tasks (auxiliary sequence labeling task, text autoencoder, and multi-labeling classification) as
auxiliary supervision to capture the accurate semantic representation of the tables. The auxiliary
sequence labeling task predicts the field names based on the hidden states of the field-level LSTM
to enforce the encoder to remember the structure of the table. The text autoencoder uses the
internal representation of an auto-encoder trained to reconstruct the descriptions to supervise
that of the hierarchical encoder by minimizing their distance. Multi-labeling classification aims
to predict all the field names which appear in the table as the target using the input representation
constructed by the hierarchical encoder.

10



In this thesis, we study the necessity of such sophisticated NN models. Particularly, similar to
Lebret et al. [37], we use both content and field information to represent a table by concatenating
field and position embeddings to the word embedding at each time step. Unlike Liu et al. [43], we
don’t separate local and global addressing by adopting specific modules for each, but rather adopt
the EMA technique and let the bi-directional model to do it implicitly using natural advantages
of the model.

2.4 Neural Question Generation Models

Previous NQG models can be classified into two main categories: rule-based approaches and
neural-network-based approaches. Rule-based methods [47, 57] make use of manually designed
rules and templates which are extremely costly to collect and can not generalize well to unseen
instances. For instance, PCFG-Trans proposed by Heilman [22] is a rule-based system that can
generate question based on a given word span.

On the other hand, Du et al. [14] propose using a seq2seq model for question generation
called s2s-ans and achieves better results than rule-based systems. Their model only encodes the
passage and doesn’t take the target answer into account. In contrast, Zhou et al. [76] concatenate
answer position indicator with the word embedding to make the model aware of the target answer.
Additionally, they use lexical features (e.g., POS and NER tags) to enrich their model’s encoder.
They also deploy a copy mechanism to enable their model to copy input words to the output.
Their ultimate model is indicated by NQG++ in the following sections.

However, Song et al. [60] argue that adopting a single bit to indicate answer position is
not sufficient to capture the context information. They suggest using multi-perspective context
matching algorithm [69] on top of BiLSTM outputs to leverage the information from explicit
interaction between the passage and the target answer. Their goal is to figure out whether each
passage word belongs to the relevant context of the target answer. Towards this, they adopt
three different strategies to match the passage with the target answer. Each strategy constructs a
matching vector by using a different representation for the target answer listed below:

• Full-matching considers the last hidden state of the answer encoder which takes words
order into account.

• Attentive-matching uses a weighted sum of all answer states without considering words
order as the answer representation.

11



Figure 2.4: The overall architecture of the answer-focused and position-aware NQG model. The
figure is adopted from Sun et al. [61].

• Max-attentive-matching constructs the answer representation by taking the maximum ele-
ment on each dimension of answer states. This strategy considers the most relevant answer
state to the passage state.

For all strategies, each dimension of the matching vector is computed by multiplying both
input vectors (i.e., answer representation and passage state) by some tunable weights and cal-
culating their cosine similarity. The final matching vector is the concatenation of the matching
results of all three strategies. They also employ another BiLSTM layer over the matching vectors
and concatenate its hidden states with the hidden states of the passage encoder to be used in the
attention mechanism. Their proposed model is called MPQG.

In addition, Sun et al. [61] propose an answer-focused and position-aware model (AnsPos-
aware). Their model incorporates the answer embedding to avoid generating question words that
do not match the answer type (answer-focused). They also deploy relative distance between the
context words and the target answer to ensure that the model does not copy the context words
that are far from and irrelevant to the target answer (position-aware). Their model is depicted in
Figure 2.4.
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Figure 2.5: The overall architecture of the the paragraph-level NQG model with maxout pointer
and gated self-attention. The figure is adopted from Zhao et al. [75].

Most NQG models only use one or two sentences of the input paragraph that include the
target answer as the input passage. Zhao et al. [75] state that using the whole paragraph as context
enables the model to generate high quality questions. However, performance drops when using
the whole paragraph as the input in a naive way. This is mainly because of the various challenges
that long text poses for seq2seq models in question generation. Hence, the authors propose a
maxout pointer mechanism with gated self-attention encoder (s2s-a-at-mp-gsa) to address the
challenges of processing long text inputs for question generation. Maxout pointer is an extension
of existing copy mechanisms that prevents repetitions in the output sequence by limiting the
probability of copying repeated words to their maximum value. Moreover, gated self-attention
encoder is designed to effectively utilize relevant information at paragraph-level. Figure 2.5
provides an overview of their model in more detail.

More recently, Kim et al. [29] observe that a significant portion of the generated questions
include words from the target answer and use answer-separated seq2seq (ASs2s) which replaces
the target answer in the passage with a special token to avoid using the answer words in the
generated question. They also utilize keyword-net to extract key information from the target
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Figure 2.6: The overall architecture of the answer-separated seq2seq model. The figure is
adopted from Kim et al. [29].

answer. Figure 2.6 illustrates each component of their model.

Similarly, Liu et al. [41] propose Guided Copy Network for Question Generation (CGC-QG).
They use a clue word predictor by adopting graph convolution networks which have been used in
different NLP tasks [12, 31, 40, 44, 74] to highlight the imperative aspects of the input passage.
Namely, they deploy graph convolutional networks on dependency tree of each passage to find
clue words in the input. The prediction made by the clue word predictor is given as a feature to
the passage encoder to help identify whether each word in the input passage is a potential clue to
be copied into the question or not. Figure 2.7 illustrates the architecture of their model.

A number of previous works [26, 34] use reinforcement learning to directly optimize task-
specific scores including evaluation metrics such as BLEU and ROUGE for NQG. For instance,
Kumar et al. [34] adopt deep reinforcement learning framework to refine a pre-trained model.
Their best model is denoted by RLROUGE which uses ROUGE score as the reward function.

Finally, it is worth mentioning other interesting research directions for this task in the lit-
erature. Tang et al. [65], Tang et al. [66], and Duan et al. [15] model question answering
and question generation as dual tasks and use question generation to improve the performance
of question answering system. Gao et al. [17] take difficulty into consideration and generate
questions under the control of specified difficulty levels. Yao et al. [72] propose s2s+z+c+GAN
which employs GAN framework to capture the variability in questions using a latent variable and
generate certain types of questions by introducing an additional observed variable. Furthermore,
Zhou et al. [77] suggest SeqCopyNet for question generation, a method for seq2seq models to
copy a sequence of words rather than a single word.

Our model is architecturally more similar to Zhou et al. [76] with the following distinctions:
(1) we do not use lexical features (i.e. POS tag, NER tag, and word case feature), (2) we utilize
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Figure 2.7: The overall architecture of the CGC-QG. The figure is adopted from Liu et al. [41].

EMA technique while training and use the averaged weights for evaluation, (3) we do not make
use of the introduced maxout hidden layer, (4) we adopt LSTM units instead of GRU units. As
shown in section 4.4, these distinctions along with some hyperparameter differences, notably the
optimizer and learning rate, have had a huge impact on the experimental results.
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Chapter 3

Proposed Model

In this chapter, we introduce a simple, unified, attention-based seq2seq model for both neural
table-to-text generation and NQG. Figure 3.1 illustrates an overview of our model.

3.1 Encoder

The encoder is a bi-directional LSTM (BiLSTM) whose input xt at time step t is the concatena-
tion of the current word embedding et with some additional task-specific features. For instance,
in Figure 1.1, we flatten the table and treat it as a plain sequence (“Bernard”, “Keen”, “Septem-
ber”, “5”, “1890”, “August”, “5”, “1981”, ...). Thus, e1 is the embedding of “Bernard”, e2 is
the embedding of “Keen”, and so on. Similarly, in Table 1.1, the sequence is (“Hydrogen”, “is”,
“commonly”, “used”, “in”, “power”, “stations”, ...). Therefore, e1 is the embedding of “Hydro-
gen”, e2 is the embedding of “is”, and so on.

For table-to-text generation, additional features are field name ft and position information pt
following Lebert et al. [37]. The position information itself is the concatenation of p+t which is
the position of the current word in its field when counting from left and p−t when counting from
right. Considering the word University in Figure 1.1 as an example, it is the first word from left
and the third word from right in the Institutions field. Hence, the structural information of this
word would be {Institutions,1,3}. That being said, the input to the encoder at time step t for this
task is:

xt = [et; ft; p
+
t ; p−t ] (3.1)

We hypothesize that our model is able to utilize the information in p+t and p−t more effectively
as a result of deploying a bi-directional encoder. For NQG, similar to Zhou et al. [76], we use a
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Figure 3.1: An overview of our model.

single bit bt indicating whether the tth word in the passage belongs to the target answer or not as
an additional feature. Hence, the input at time step t is:

xt = [et; bt] (3.2)

Remarkably, unlike previous works [29, 60], we do not use a separate encoder for the tar-
get answer to have a unified model for both tasks. Each hidden state ht of the encoder is the
concatenation of a forward hidden state

−→
ht and a backward hidden state

←−
ht :

−→
ht =

−−−−→
LSTM(

−−→
ht−1, xt) (3.3)

←−
ht =

←−−−−
LSTM(

←−−
ht+1, xt) (3.4)

ht = [
−→
ht ;
←−
ht ] (3.5)

Eventually, We initialize our decoder according to the following equation:

s0 = tanh(Winit[
←−
h0;
−→
hN ]) (3.6)

where Winit is a weight matrix, and N is the number of input words.
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3.2 Attention-based Decoder

Decoder is an attentional LSTM model [4]. The following equations summarize our decoder’s
operations:

st = LSTM([yt−1; ct−1], st−1) (3.7)

et,i = v> tanh(Wsst +Whhi + batt) (3.8)

at,i =
exp(et,i)∑N
j=0 exp(et,j)

(3.9)

ct =
N∑
i=0

at,ihi (3.10)

P t
vocab = softmax(Wo[st; ct] + bo) (3.11)

where st, yt, ct, and P t
vocab are hidden state of the decoder, output word, context vector, and

vocabulary distribution respectively all at time step t. v, Ws, Wh, batt, Wo, and bo are trainable
parameters of the model.

Due to the considerable overlap between input and output words, we use a copy mechanism
which integrates the attention distribution over the input words with the vocabulary distribution:

P t
final = (1− pgen)P t

att + pgenP
t
vocab (3.12)

where pgen ∈ [0, 1] is a gate which determines whether to generate a word from the vocabulary or
to copy it directly from the input text, and P t

att is the current attention distribution. Particularly,
pgen can be expressed as

pgen = σ(wTc ct + wTs st + wTy yt−1 + bcopy), (3.13)

where the vectors wc, ws, wy, and the scalar bcopy are model parameters to be learned. While
decoding, a special token <sos> is used to begin the process. We terminate decoding whenever
we get a special end of sentence token <eos>.

3.3 Exponential Moving Average

Training of NN models, especially RNNs, is a challenging task as it requires solving a high-
dimensional non-convex optimization problem. This means that the final weights at the end of
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training are not necessarily the best ones to use. One approach to address this problem is to use an
average of the models observed towards the end of training by using a linearly or exponentially
weighted average of the model weights, which is generally referred to as temporal averaging.

This technique has been initially introduced to be used in optimization algorithms for better
generalization and reducing noise from stochastic approximation in recent parameter estimates.
In particular, Moulines et al. [50] initially show that Polyak-Ruppert averaging [53, 56] improves
the convergence of standard SGD. Alternatively, Kingma et al. [30] introduce an exponential
moving average over the parameters, giving more weight to recent parameter values.

Similarly, we maintain two sets of parameters: (1) training parameters θ which are trained
as usual, (2) evaluation parameters θ that are exponentially weighted moving average of training
parameters. The moving average is calculated using the following expression:

θ ←− β × θ + (1− β)× θ (3.14)

where β is the decay rate value. Evaluations that use the averaged parameters often produce more
stable and accurate results than the final trained values. This is mainly because averaging the
weights has the effect of stabilizing the optimization process that may be noisy due to the choice
of hyperparameters (e.g., learning rate and optimizer) or the shape of the mapping function that
is being learned. Obviously, the downside of this technique is that it requires keeping an extra
copy of all trainable variables which could be expensive especially for large models. This simple
training technique has had a huge effect in improving the performance of our model in both tasks
(see Section 4.4).

3.4 Training Criteria

Given a dataset containing N input-output sequence pairs, denoted by D ≡ {(X(i), Y ∗(i))}Ni=1,
standard maximum likelihood training intends to maximize the sum of log probabilities of the
ground-truth outputs given the corresponding inputs,

OML(θ) =
N∑
i=1

logP (Y ∗(i)|X(i), θ). (3.15)

When using the above maximum likelihood objective for training sequence generation mod-
els, a commonly used strategy is to use the ground-truth word at the previous time step as the
input of the current time step rather than using the previous output of the model. This approach
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which is called teacher forcing simplifies training the NN model to a one-step-ahead prediction
task and improves convergence.

However, Bengio et al. [7] mention that teacher forcing causes a discrepancy between the
training and inference stage, so-called exposure bias, in auto-regressive models. While, in train-
ing stage, the model predicts the current token according to the ground-truth information from
the dataset, in inference stage, it has to predict the current token based on its own previous
prediction. To alleviate this, the authors propose a training strategy called scheduled sampling,
where the generative model is partially fed with its own predicted tokens rather than the ground-
truth tokens during the training stage. Nonetheless, Huszar [27] show that this is an inconsistent
training strategy and fails to address the problem fundamentally.

Another potential solution to address the above issue is to build the loss function on the
entire generated sequence instead of each transition through reinforce learning. Furthermore, the
ML objective (Equation 3.15) does not reflect task-specific scores such as BLEU and ROUGE.
Several recent papers [34, 51, 71] have considered different ways of incorporating the task-
specific score of a complete sequence generated without teacher forcing into the optimization of
seq2seq models. In this work, we make use of the REINFORCE algorithm discussed in Section
2.2 and consider task-specific scores as the reward function. The following expression defines
the expected reward objective:

ORL(θ) =
N∑
i=1

∑
Y ∈Y

P (Y |X(i), θ) r(Y, Y ∗(i)) (3.16)

where, r(Y, Y ∗(i)) is the reward for the output sequence Y based on the ground-truth sequence
Y ∗(i), and we are computing an expectation over all of the output sequences Y in the space of
all candidate sequences Y . As Y is a exponentially large space, it is impossible to compute the
expectation exactly. Thus, we consider two strategies for sampling Y from Y . The first strategy
is greedy search in which we select the word with the highest probability at each time step. The
second one is multinomial sampling [8]; in this strategy, we choose each word using multino-
mial sampling over the model’s output distribution. The choice of different strategies reflects the
exploration-exploitation dilemma in reinforcement learning. While greedy search strategy gen-
erates more accurate Y by exploiting the learned policy, multinomial sampling favours exploring
more diverse candidates.

Note that it is a common practice in reinforcement learning to subtract a baseline (in our case
the mean of rewards acquired till now) from r(Y, Y ∗(i)) to reduce variance and increase stability
(see Equation 2.12). Inspired from Wu et al. [71], to further stabilize training, we consider a
linear combination of ML objective (Equation 3.15) and RL objective (Equation 3.16) according
to what follows:
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Figure 3.2: RL-refinement for both neural table-to-text generation and NQG with BLEU, GLEU,
and ROUGE as the reward function.

OMixed(θ) = α×OML(θ) +ORL(θ) (3.17)

where α is a hyperparameter controlling the trade-off between ML and RL objectives.1 In our
setup, we first train a model using the ML objective until convergence. The results in Table 4.3
and 4.4 are obtained using the model that is only trained with the ML objective. Then, we use
the mixed objective (Equation 3.17) to refine the pre-trained model. In Section 4.4, we compare
the results from the pre-trained model with the results from the refined model.

3.5 Reward Functions

In this section, we discuss using reinforcement for refining our pre-trained model in both neu-
ral table-to-text generation and NQG, and experiment with several reward functions – BLEU,
GLEU, and ROUGE – as a way to measure the quality of the generated sequence. Figure 3.2
illustrates the refinement procedure. As GLEU is not discussed in Section 4.2 as an evaluation
metric, we explain it here.

GLEU is a score specifically designed to be used as reward in reinforcement learning frame-
work by Wu et al. [71]. They mention that BLEU score has some undesirable properties when
used for single sentences, as it was designed to be a corpus measure. Thus, they come up with
a slightly different score for their RL experiments called GLEU. To calculate the GLEU score,
they first record all 1, 2, 3 and 4-gram tokens in output and target sequences, and then they com-
pute recall and precision. Recall is the ratio of the number of matching n-grams to the number

1We set α to 0.017 in our experiments.
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Figure 3.3: RL-refinement for NQG with BERT’s F1 score as the reward function.

of total n-grams in the ground-truth sequence. Precision is the ratio of the number of matching
n-grams to the number of total n-grams in the generated output sequence. Finally, GLEU score is
defined as the minimum of recall and precision. The range of this score is always between 0 (no
matches) and 1 (all match), and it is symmetrical when switching output and target sequences.
Wu et al. [71] show that GLEU score correlates quite well with the BLEU score on a corpus
level but does not have its drawbacks as a per sentence reward function.

Furthermore, for NQG, another approach to measure the quality of a generated question is
to see whether it can be answered correctly by a question-answering (QA) system. We therefore
feed the generated question together with its corresponding passage into a pre-trained QA system
and use that system’s F1 score as the reward. F1 score is a token-based measure proposed by
Rajpurkar et al. [55] and accounts for partial word matches.

We use BERT (Bidirectional Encoder Representations from Transformers) [13] as our refer-
ence QA system. Broadly, it makes use of Transformer [67] and an attention mechanism that
learns contextual relations between words. In contrast with directional models, which read the
text input sequentially (left-to-right or right-to-left), BERT’s encoder reads the entire sequence of
words at once, and hence it is considered bi-directional. As a result, BERT model has been able
to obtain state of the art results across a wide range of NLP tasks including question answering.
Hence, we define the reward function according to the following expression:

r(Y, Y ∗) = F1(A,A∗) (3.18)

where A = BERT(X, Y ) and A∗ is the ground-truth answer. Figure 3.3 depicts the setup for this
experiment more concisely.
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Chapter 4

Experimental Results

In this chapter, we first introduce the datasets, evaluation metrics, and implementation details.
Then we present our experimental results and sample outputs for both neural table-to-text gener-
ation and NQG.

4.1 Datasets

We use the WIKIBIO dataset [37] for neural table-to-text generation. This dataset contains
728,321 articles from English Wikipedia, and uses the first sentence of each article as the ground-
truth description of the corresponding infobox. The dataset has been divided into training (80%),
test (10%), and validation (10%) sets. Table 4.1 summarizes the statistics of this dataset.

Avg. # tokens per sentence 26.1
Avg. # tokens per table 53.1
Avg. # table tokens per sentence 9.5
Avg. # fields per table 19.7

Table 4.1: WIKIBIO dataset statistics.

For NQG, the SQuAD dataset is used as the benchmark dataset. It contains 23,215 paragraphs
from 536 articles with over 100k questions and their answers. The original dataset is divided into
train and validation sets (the test split is held by the organizer for fair evaluation). That being
said, Du et al. [14] and Zhou et al. [76] re-allocate it into train, validation, and test set which we
will call split-1 and split-2 respectively. Data split-1 and split-2 contain 70,484/10,570/11,877
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and 86,635/8,965/8,964 (train/validation/test) triplets respectively. In Table 4.4, we report exper-
imental results on both data splits. Table 4.2 provides some statistics for this dataset.

Avg. # tokens per passage 32.7
Avg. # tokens per question 11.3
Avg. # tokens per answer 3.2

Table 4.2: SQuAD dataset statistics. Numbers are based on data split-2.

4.2 Evaluation Metrics

Following previous works, we compare the performance of neural table-to-text generation with
BLEU-4 and ROUGE-4, and NQG with BLEU-4, METEOR, and ROUGE-L which are standard
evaluation metrics for machine translation and text summarization.

• BLEU-4: BLEU-4 measures precision by counting the number of matching 4-grams in
the candidate and the reference text.

• METEOR: METEOR is based on the harmonic mean of unigram precision and recall and
considers exact, stem, synonym, and paraphrase matches.

• ROUGE-4: ROUGE-4 is a recall-oriented metric which measures the number of overlap-
ping 4-grams between the candidate and the reference text.

• ROUGE-L: ROUGE-L compares the candidate and the reference text based on longest
common sub-sequence shared between them.

To be consistent with previous works on each task, for neural table-to-text generation, we use
NIST mteval-v13a.pl and rouge-1.5.5 to calculate BLEU and ROUGE respectively. With respect
to NQG, we use the evaluation package released by Chen et al. [9] which was originally used to
score image captions.

Furthermore, we report the mean and standard deviation (Mean ± Std) of each metric across
multiple seeds to ensure robustness against potentially spurious conclusions [11].
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4.3 Implementation Details

For the sake of reproducibility, we discuss the implementation details for achieving the results
shown in Section 4.4. In Table 4.3 and 4.4, we train the model using cross-entropy loss, and
keep the model which works best on the validation set during training for both tasks. We replace
unknown tokens with a word from the input having the highest attention score at,i according to
Equation 3.9. In addition, a decay rate of 0.9999 is used for the exponential moving average in
both tasks. In what follows, we first describe the hyperparameters used for the neural table-to-text
generation task, and then the NQG task.

4.3.1 Hyperparameters for Neural Table-to-text Generation

For the neural table-to-text generation task, we train the model up to 10 epochs with batch size
of 32. We use a single-layer BiLSTM for the encoder and a single-layer LSTM for the decoder
and set the dimension of the LSTM hidden states to 500. Optimization is performed using Adam
optimizer with a learning rate of 0.0005 and gradient clipping when its norm exceeds 5. The
dimension of the word, field and position embeddings are set to 400, 50, and 5 respectively.
Besides, the maximum position number is set to 30. Hence, any word in higher position number
is considered to be at position 30. The most frequent 20k words and 1,480 fields in the training
set are selected as word and field vocabulary respectively for both the encoder and the decoder.

4.3.2 Hyperparameters for Neural Question Generation

For the NQG task, we use a two-layer BiLSTM for the encoder and a single-layer LSTM for
the decoder. We set the dimension of the LSTM hidden states to 350 and 512 for split-1 and
split-2 respectively. Optimization is performed using AdaGrad optimizer with a learning rate of
0.3 and gradient clipping when its norm exceeds 5. The word embeddings are initialized with
pre-trained 300-dimensional GloVe [52] which is freezed during training. We train the model up
to 20 epochs with batch size of 50 and employ dropout with probability 0.1 and 0.3 for split-1
and split-2 respectively. Moreover, we use the vocabulary set released by Song et al. [60] for
both the encoder and the decoder. During decoding, we perform beam search with beam size of
20 and length penalty weight of 1.75.
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Models BLEU-4 ROUGE-4
KN 2.21 0.38
Template KN 19.80 10.70
NLM [37] 4.17 ± 0.54 1.48 ± 0.23
Table NLM [37] 34.70 ± 0.36 25.80 ± 0.36
Table2Seq [5] 40.26 -
Order-planning [58] 43.91 37.15
Struct-aware Orig. [43] 44.89 ± 0.33 41.21 ± 0.25
Struct-aware Repl. [43] 44.45 ± 0.11 39.65 ± 0.10
Hierarchical Encoder + Auxiliary Supervision [42] 45.14 ± 0.34 41.26 ± 0.37
Our Model 46.07 ± 0.17 41.53 ± 0.30
+ EMA 46.76 ± 0.03 43.54 ± 0.07

Table 4.3: Experimental results for the neural table-to-text generation task on the test set. KN
and Template KN are described in Section 2.3.

Models Split-1 Split-2
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

PCFG-Trans [22] - - - 9.47 31.68 18.97
s2s-ans [14] 12.28 16.62 39.75 - - -
SeqCopyNet [77] - - - 13.02 - 44.0
NQG++ [76] - - - 13.29 - -
s2s+z+c+GAN [72] - - - 13.36 17.70 40.42
MPQG [60] 13.98 18.77 42.72 13.91 - -
s2s-a-at-mp-gsa [75] 15.32 19.29 43.91 15.82 19.67 44.24
AnsPos-aware [61] - - - 15.64 - -
RLROUGE [34] 16.17 19.85 43.90 - - -
ASs2s [29] 16.20 ± 0.32 19.92 ± 0.20 43.96 ± 0.25 16.17 ± 0.35 - -
CGC-QG [41] - - - 17.55 21.24 44.53
Our Model 14.81 ± 0.47 19.69 ± 0.24 43.01 ± 0.28 16.14 ± 0.25 20.44 ± 0.20 43.95 ± 0.26
+ EMA 16.29 ± 0.04 20.70 ± 0.08 44.18 ± 0.15 17.47 ± 0.10 21.37 ± 0.06 45.18 ± 0.22

Table 4.4: Experimental results for the NQG task on the test set.

4.4 Results

In what follows, we first present experimental results after training our model with MLE and
then discuss the performance of the RL-refined model.
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4.4.1 Evaluation after Maximum Likelihood Training

In Table 4.3 and 4.4, experimental results for neural table-to-text generation and NQG after
training with MLE are listed. We conduct our experiments with three and five random seeds for
neural table-to-text generation and NQG respectively, and report the mean and standard deviation
of each evaluation metric. All results are copied from the original papers except for Struct-aware
[43], in Table 4.3, for which Repl. refers to the scores from experiments that we conducted using
the source code released by the authors, and Orig. refers to the scores taken from the paper.
Additionally, we faced reproducibility issues for ASs2s when using the codebase released by the
authors. Thus, we copied the results from the original paper. Moreover, s2s-a-at-mp-gsa has
both paragraph-level and sentence-level versions. To ensure a fair comparison, we report their
sentence-level results.

It is noteworthy that a similar version of our model has served as baseline in previous works
[29, 41, 43]. However, the distinctions discussed in Section 2.3 and 2.4, especially adopting the
EMA technique, enable our model to achieve state of the art in all cases except BLEU-4 on data
split-2 of the SQuAD dataset for NQG in which the score is very competitive considering that
Liu et al. [41] report a point estimate. This indicates two crucial facts. Firstly, a basic seq2seq
model is able to effectively learn the underlying distribution of both datasets. Secondly, some
previous works exhibit avoidable complexity in their models.

4.4.2 Evaluation after RL-refinement

In Table 4.5 and 4.6, we describe the results obtained from the model refined with the mixed
objective (Equation 3.17) after 5000 iterations for neural table-to-text generation and NQG re-
spectively. We repeat each experiment with three random seeds and report the mean and standard
deviation of evaluation metrics for both tasks. In these experiments, we use BLEU, GLEU, and
ROUGE as the reward function, and the mean of previous rewards as baseline (Equation 2.12).

Particularly, in Table 4.5, we observe that adding baseline almost always leads to better results
when we use greedy search for generating Y sequences (see Equation 3.16). However, when we
use multinomial sampling it results in better BLEU score but worse ROUGE score. In addition,
for the case that we do not adopt baseline, multinomial sampling achieves much better results
than greedy search. But, if we use baseline, greedy search slightly outperforms multinomial
sampling.

Moreover, Table 4.6 shows that adding baseline when we use greedy search for generating
output sequences leads to much better results for the case that ROUGE score is used as the
reward function, but worse results for the case that either BLEU or GLEU score is used as the
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Models BLEU-4 ROUGE-4
Pre-trained model 46.78 43.47
+ RLBLEU, w/ greedy search, w/o baseline 43.62 ± 0.13 43.45 ± 0.15
+ RLGLEU, w/ greedy search, w/o baseline 43.30 ± 0.14 43.38 ± 0.35
+ RLROUGE, w/ greedy search, w/o baseline 41.70 ± 0.37 42.97 ± 0.07
+ RLBLEU, w/ greedy search, w/ baseline 45.82 ± 0.07 43.26 ± 0.06
+ RLGLEU, w/ greedy search, w/ baseline 45.65 ± 0.05 43.43 ± 0.09
+ RLROUGE, w/ greedy search, w/ baseline 45.61 ± 0.06 43.54 ± 0.04
+ RLBLEU, w/ multinomial sampling, w/o baseline 45.78 ± 0.11 43.69 ± 0.06
+ RLGLEU, w/ multinomial sampling, w/o baseline 45.40 ± 0.01 43.84 ± 0.01
+ RLROUGE, w/ multinomial sampling, w/o baseline 45.25 ± 0.09 43.56 ± 0.02
+ RLBLEU, w/ multinomial sampling, w/ baseline 45.81 ± 0.13 42.95 ± 0.22
+ RLGLEU, w/ multinomial sampling, w/ baseline 45.64 ± 0.23 43.20 ± 0.11
+ RLROUGE, w/ multinomial sampling, w/ baseline 45.48 ± 0.19 43.04 ± 0.22

Table 4.5: Experimental results after refining the model using RL with BLEU, GLEU, and
ROUGE as the reward function for neural table-to-text generation.

reward function. Furthermore, incorporating baseline when we use multinomial sampling leads
to better results specially when we use ROUGE and GLEU as the reward function. We also
empirically observe that multinomial sampling achieves significantly better results than greedy
search in NQG. We conjecture that this is mainly because using multinomial sampling results in
better approximation of Equation 3.16.

Regarding NQG, we also use the F1 score of the BERT model for the generated questions
as reward. Towards this, we first fine-tune the pre-trained BERT model on the training portion
of data split-1 of the SQuAD dataset (see Section 4.1). We then utilize the F1 score of the fine-
tuned BERT model to refine our pre-trained model for 2500 iterations. In Table 4.7, the obtained
results for this experiment are reported. Inspired from Guo et al. [20], we also rescale the
reward as we are not directly assessing the output of the generative model and to avoid vanishing
gradient problem which is due to the small values of the reward function. The rescaling function
is expressed below:

Ri = σ(δ · (0.5− rank(i)

B
)) (4.1)

where rank(i) denotes the reward of the i-th element in the batch after sorting it from high to low,
B is the batch size, δ is a hyperparameter that controls the smoothness of the rescale (set to 12),
and σ is the sigmoid activation. This transformation ensures that the expectation and variance of
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Models BLEU-4 METEOR ROUGE-L
Pre-trained model 16.29 20.76 44.12
+ RLBLEU, w/ greedy search, w/o baseline 15.61 ± 0.10 20.51 ± 0.06 44.36 ± 0.07
+ RLGLEU, w/ greedy search, w/o baseline 15.41 ± 0.09 20.45 ± 0.06 44.16 ± 0.08
+ RLROUGE, w/ greedy search, w/o baseline 14.00 ± 0.23 19.17 ± 0.26 43.12 ± 0.29
+ RLBLEU, w/ greedy search, w/ baseline 15.15 ± 0.46 19.94 ± 0.33 43.16 ±0.6
+ RLGLEU, w/ greedy search, w/ baseline 15.44 ± 0.31 20.13 ± 0.21 43.73 ±0.39
+ RLROUGE, w/ greedy search, w/ baseline 15.62 ± 0.08 20.26 ± 0.13 43.92 ± 0.33
+ RLBLEU, w/ multinomial sampling, w/o baseline 16.43 ± 0.02 20.74 ± 0.05 44.67 ± 0.01
+ RLGLEU, w/ multinomial sampling, w/o baseline 16.31 ± 0.07 20.72 ± 0.05 44.66 ± 0.06
+ RLROUGE, w/ multinomial sampling, w/o baseline 15.85 ± 0.13 20.50 ± 0.17 44.58 ± 0.07
+ RLBLEU, w/ multinomial sampling, w/ baseline 16.45 ± 0.02 20.77 ± 0.02 44.69 ± 0.02
+ RLGLEU, w/ multinomial sampling, w/ baseline 16.48 ± 0.03 20.81 ± 0.01 44.76 ± 0.01
+ RLROUGE, w/ multinomial sampling, w/ baseline 16.27 ± 0.04 20.72± 0.04 44.91 ± 0.07

Table 4.6: Experimental results after refining the model using RL with BLEU, GLEU, and
ROUGE as the reward function on data split-1 of the SQuAD dataset for NQG task.

Models BLEU-4 METEOR ROUGE-L
Pre-trained model 16.29 20.76 44.12
+ RLBERT, w/ greedy search 15.47 ± 0.18 20.48 ± 0.43 43.99 ± 0.17
+ RLBERT, w/ multinomial sampling 15.49 ± 0.17 20.47 ± 0.12 43.99 ± 0.07
+ RLBERTrescaled , w/ greedy search 16.38 ± 0.02 20.75 ± 0.01 44.30 ± 0.01
+ RLBERTrescaled , w/ multinomial sampling 16.37 ± 0.03 20.78 ± 0.01 44.27 ± 0.02

Table 4.7: Experimental results after refining the model using RL with F1 score of BERT’s output
as the reward function on data split-1 of the SQuAD dataset for NQG task.

the reward in each batch are constant which is helpful to stabilize algorithms that are sensitive
to numerical variance. As it is shown in Table 4.7, rescaling the reward has had a positive
impact on the experimental results in comparison to the case that we directly use BERT’s score
without rescaling, for both greedy search and multinomial sampling. Besides, greedy search and
multinomial sampling perform almost the same when we do not adopt rescaling.
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4.5 Sample Outputs

Table 4.8 and 4.9 present several sample outputs for neural table-to-text generation and NQG
respectively. In the second example of Table 4.8, birth date is mistakenly recorded on the birth
place field in the dataset. Despite this error, our model is able to effectively use the date in
the generated description. Interestingly, the model successfully converts the month number 8 to
August, as in most ground-truth descriptions of the WIKIBIO dataset, the month is recorded by
the name rather than the number.

Input table:
name dillon sheppard
full name dillon douglas sheppard
height 1.80 m ftin 0 on
birth date 27 february 1979
birth place durban, south africa
current club bidvest wits
club number 29
position left-winger
youth clubs school of excellence
years 1999–2004 2004 2005 2006 2006–2009 2009–2011 2011–2013 2013–

2014 2014–
clubs school of excellence ajax cape town dynamo moscow panionios

mamelodi sundowns platinum stars golden arrows maritzburg united
caps 24 105 4 10 37 39 33 14 0
goals 1 15 0 0 1 3 4 0 0
national years 1996 1997–1999 2000–2002 2000–2007
national team south africa u-17 south africa u-20 south africa u-23 south africa
national caps 1 9 9 18
national goals 0 0 0 0
pcup date 23 august 2014
ntup date 2 june 2012
article title dillon sheppard
Description:
Ground-truth dillon sheppard ( born 27 february 1979 ) is a south african football (

soccer ) left-winger who plays for premier soccer league club bidvest
wits and south africa .
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Our model dillon sheppard ( born 27 february 1979 in durban , natal ) is a south
african football ( soccer ) midfielder who plays for bidvest wits in the
premier soccer league .

Our model + RLBLEU dillon douglas sheppard ( born 27 february 1979 in durban , south africa )
is a south african footballer who plays as a left-winger for bidvest united
f.c. in the premier soccer league .

Struct-aware dillon sheppard ( born 27 february 1979 in durban , kwazulu-natal ) is a
south african football ( soccer ) player who plays for bidvest wits .

Input table:
name narden jaime espinosa
order member of the puerto rico house of representatives from the 35th district
term start january 2 , 2009
predecessor joel rosario hernández
birth place 1971 8 6
birth name humacao , puerto rico
alma mater university of turabo ( b.a. )
children 2
party popular democratic party ( ppd )
article title narden jaime espinosa
Description:
Ground-truth narden jaime espinosa ( born august 6 , 1971 ) is a puerto rican politician

affiliated with the popular democratic party ( ppd ) .
Our model narden jaime espinosa ( born august 6 , 1971 ) is a puerto rican politician

affiliated with the popular democratic party ( ppd ) .
Our model + RLBLEU narden jaime espinosa ( born march 6 , 1971 ) is a puerto rican politician

affiliated with the popular democratic party ( ppd ) .
Struct-aware narden , jaime espinosa is a puerto rican politician affiliated with the

popular democratic party ( ppd ) .
Input table:
name kenny forssi
image kenforssi.jpg
caption ken forssi in 1980 in tampa , florida .
background non vocal instrumentalist
birth name kenneth raymond forssi
birth date march 30 , 1943
birth place cleveland , ohio , us
death date 5 january 1998
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death place tallahassee , florida
instrument bass guitar
occupation musician
years active 35
labels elektra records , decca records
associated acts love the surfaris
article title ken forssi
Description:
Ground-truth kenneth raymond “ ken ” forssi ( march 30 , 1943 – january 5 , 1998 ) ,

was an american musician , best known for being the original bass player
in the band love .

Our model kenneth raymond “ kenny ” forssi ( march 30 , 1943 – january 5 , 1998
) was an american musician , best known as the bassist for the band love
the surfaris .

Our model + RLBLEU kenneth raymond “ kenny ” forssi ( march 30 , 1943 – january 5 , 1998 )
was an american bass guitarist .

Struct-aware kenneth raymond “ ken ” forssi ( march 30 , 1943 – january 5 , 1998 )
was an american musician and composer .

Table 4.8: Sample outputs for neural table-to-text generation.

In the second example of Table 4.9, the question that is generated by MPQG model is basi-
cally addressing another answer “there out of five” which is mentioned before the actual answer
“one out of four”. This could be due to the fact that MPQG does not employ answer position
indicator and uses multi-perspective context matching algorithm [69] to match the passage and
the target answer instead.

Passage: the metropolitan area is also home to 20 % of the nation ’s indian amer-
icans and at least 20 little india enclaves , as well as 15 % of all korean
americans and four koreatowns ; the largest asian indian population in the
western hemisphere ; the largest russian american , italian american , and
african american populations ; the largest dominican american , puerto
rican american , and south american and second - largest overall hispanic
population in the united states , numbering 4.8 million ; and includes at
least 6 established chinatowns within new york city alone , with the ur-
ban agglomeration comprising a population of 779,269 overseas chinese
as of 2013 census estimates , the largest outside of asia .
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Answer: 6
Question:
Ground-truth approximately how many chinatowns exist in new york city ?
Our model how many established chinatowns are there in new york city ?
Our model + RLBLEU how many established chinatowns are within new york city alone ?
MPQG how many chinatowns are there ?
Passage: in 2005 , three out of five manhattan residents were college graduates ,

and one out of four had a postgraduate degree , forming one of the highest
concentrations of highly educated people in any american city .

Answer: one out of four
Question:
Ground-truth what fraction of manhattan residents have graduate degrees ?
Our model how many manhattan residents had a postgraduate degree in 2005 ?
Our model + RLBLEU how many manhattan residents had a postgraduate degree in 2005 ?
MPQG how many manhattan residents were college graduates in 2005 ?
Passage: the largest reservoir in the state is fort peck reservoir on the missouri

river , which is contained by the second largest earthen dam and largest
hydraulically filled dam in the world .

Answer: fort peck reservoir
Question:
Ground-truth what is the name of the largest reservoir in the state ?
Our model what is the largest reservoir in the state ?
Our model + RLBLEU what is the largest reservoir in the state ?
MPQG what is the largest reservoir in the missouri river ?

Table 4.9: Sample outputs for NQG.
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Chapter 5

Conclusions and Future Work

In this thesis, we question the necessity of the existing complexity in NN architectures for text
generation from structured (neural table-to-text generation task) and unstructured data (NQG
task) and propose a simple, unified seq2seq model trained with EMA technique for both tasks.
We use the WIKIBIO dataset for neural table-to-text generation and the SQuAD dataset for NQG.
Empirically, our model is able to achieve state of the art in both tasks without using any linguistic
features. This highlights the importance of exploring simple models before introducing novel,
sophisticated neural architectures. We also investigate refining our model using reinforcement
learning with different reward functions such as BLEU, GLEU, and ROUGE. Experimental re-
sults demonstrate that RL-refinement with these rewards barely improves the performance of our
model. This could be because the model is well-trained after using the EMA technique during
the maximum likelihood training phase. An interesting line of research for future work could
be investigating the same scenario for transformers [67] by employing EMA technique in their
training. Another potential direction for future work is distilling the knowledge [24] in recent
large text generation models such as GPT-2 [54] into simple NN models.
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