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Abstract

Nano-scale devices continue to challenge the theoretical understanding of microscopic sys-
tems. Of particular interest is the characterization of the interface electrochemistry of
sensors, which operate as field effect transistors with graphene in contact with the solu-
tion. While plenty of experimental research has been conducted in regard to the viabil-
ity and sensitivity of graphene-based devices, the understanding of the microscopic and
macroscopic physics of these sensors has lagged, unlike any other areas of applications for
graphene. Although some successful models of these sensors have been developed, relatively
little theoretical work to account for the vast extent of experimental work.

Typically operated in a regime of high ion concentration and high surface charge density,
dielectric saturation, dielectric decrement, and ion crowding become non-negligible at the
interface, complicating continuum treatments based upon the Poisson-Boltzmann equation.
Modifications to the standard Poisson-Boltzmann theory are explored, with modifications
due to dielectric saturation and dielectric decrement considered in tandem with a Bikerman-
Friese model to account for the steric effects of ions. In the case of dielectric saturation,
a model proposed by Booth is used to characterize the diffuse layer capacitance for both
metallic and graphene electrodes immersed in an electrolyte. The dependence of the diffuse
layer capacitance on the surface charge density of the electrode exhibits two peaks, in
contrast to the experimental results. For dielectric decrement, a dielectric permittivity
dependent on the concentration of positive and negative ions is used to determine the
diffuse layer capacitance for both metallic and graphene electrodes. The diffuse layer
capacitance shows a strong interplay between ion polarizability and steric effects, while
exhibiting a single peak. A self-consistent and parameter-free method for the inclusion
of a Stern layer is used in both cases, which eliminates the spurious secondary peak in
the case of dielectric saturation and reduces the overall magnitude of the capacitance of
the diffuse layer in both dielectric saturation and dielectric decrement. When a graphene
electrode is used, the total capacitance in all modifications is dominated by V-shaped
quantum capacitance of graphene at low potentials, which is a manifestation of the Dirac
cone structure of the graphene m-electron bands. A broad peak develops in the total
capacitance at high potentials, which is sensitive to the ion size at dielectric saturation,
but is stable with dielectric decrement.

In addition to the interactions of graphene with an electrolyte, considerable interest
has recently been shown in studying the electric double layer that arises at the interface of
doped graphene and a class of electrolytes known as ionic liquids. Ionic liquids are a class
of molten ionic salts at room temperature that have low volatility and high ionic concentra-
tion, and are characterized by the overscreening and overcrowding effects in their electric
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double layer. A mean field model for ionic liquids is presented, which takes into account
both the ion correlation and the finite ion size effects, in order to calculate the differential
capacitance of the ionic liquid interface with single-layer graphene. Besides choosing ion
packing fractions that give rise to the camel-shaped and bell-shaped capacitances of the
diffuse layer in ionic liquids, the regimes of “dilute electrolytes” and asymmetric ionic lig-
uids are considered. As in the case of electrolytes, the main effect of a graphene electrode
arises due to its V-shaped quantum capacitance. As a result, the total capacitance of a
graphene—ionic liquid interface exhibits a camel-shaped dependence on the total applied
potential, even for large ion packing fractions and finite ion correlation lengths. While the
minimum at the neutrality point in the total capacitance is“inherited” from the quantum
capacitance of graphene, the two peaks that occur at applied potentials of ~ +1 V are
sensitive to the presence of the ion correlation and a Stern layer, which both tend to re-
duce the height and flatten the peaks in the camel-shaped total capacitance. It is also
determined that the largest fraction of the applied potential goes to charging the graphene
electrode.

When considering the sensitivity of graphene-based sensors to ion concentration and/or
pH of the surrounding environment, a site binding model which allows hydrogen and hy-
droxyl groups to adsorb onto the surface of the device is proposed. Both a regime in which
bare graphene is exposed to the electrolyte and a regime where a functionalized oxide,
which contains a density of charged impurities to facilitate ion binding, is situated between
graphene and the electrolyte are proposed. With regard to the dependence on ion con-
centration, comparisons between the model and experimental data show good agreement
when the finite size of ions is included in the electrolyte. In the case of pH dependence,
comparisons between the model and experimental data show excellent agreement, partic-
ularly when steric effects are included in the electrolyte. The favourable comparisons here
are the first steps in developing a comprehensive model of graphene based biological and
chemical sensors.
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Chapter 1

Introduction

1.1 Motivation

The miniaturization of technology has given rise to the need for more compact, highly
efficient materials. Initial efforts to scale down electrical devices saw highly doped silicon as
a preferred and promising material [1]. However, as the interest in applications to medicine
and biology grew, it became evident that doped silicon would not be a viable material due
to its chemical instability and reactivity with some electrolytic solutions [1, 2, 3]. In
an effort to bridge the gap between nanoscale sensors and their potential biological and
chemical applications, new materials were sought out which would be chemically stable
and not corrode or react with the local environment.

One such material which shows great promise is the 2-dimensional material of graphene.
Graphene is a single layer lattice of hexagonally bonded carbon atoms, and therefore, the
thinnest material in existence [4, 5]. Its unique band and crystal structure give it some
distinctive characteristics. Graphene has a high charge carrier density and high thermal
and electrical conductivity. Coupled with its thinness and flexibility, this makes it an
ideal material for nanoscale electronic devices such as solar cells, light emitting diodes, and
wearable technology where graphene is intertwined with fabric [1, 4, 5, 6, 7, 8, 9]. Due to its
strong non-linear optical conductance, graphene is also a popular material in the fabrication
of terahertz detectors and emitters in defence telecommunications and technology [10, 11].

A significant technological and manufacturing issue with silicon-based electronic devices
is their chemical instability in some environments, as well as their lack of flexibility [1].
Unlike many metallic electrodes, graphene is a chemically inert, flexible material [1, 5, 6].



Therefore, in recent years, graphene has risen to be one of the key materials of interest in
the development of nanoscale biological and chemical sensors [12, 13, 14, 15]. Graphene-
based sensors show great promise in their ability to accurately detect changes to their
environment, such as specific concentrations of molecules of interest or to acidity [16, 17,
18, 19, 20, 21], which makes them ideal for future applications in medicine, chemistry, and
biology.

Perhaps the application of most interest is as a biomedical sensor, where graphene acts
as the conducting channel in a field-effect-transistor (FET), in contact with an aqueous
solution containing mobile charged ions [1, 22]. A transistor is an electronic device that
utilizes the unique properties of semiconductors to amplify or switch electrical power or
signals. Transistors are three-terminal devices, having a source, drain and back gate ter-
minal, where the current between the source and drain can be controlled by small changes
in the voltage of the back gate [23]. A special type of transistor which uses electrons and
holes for conduction is referred to as an FET, which is voltage-controlled and has a high
input impedance, so that it uses a relatively small amount of current [24].

Electrolyte
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BN
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® - > ©® > ® > ® > © > ® P e
SiO9
Back Gate

Figure 1.1: Model of a graphene electrolyte FET. Adapted from [22, 25].

In a graphene FET (Figure 1.1), a single layer of graphene is placed on top of an
insulator, in this case silicon dioxide (SiO3), and a source is connected to one end and a
drain to the other. A back gate is also placed on the other side of the insulator. This
silicon dioxide layer makes the input impedance of the FET much higher than a normal
FET [24]. When a potential difference is applied, graphene acts as a conducting channel
between the source and drain, due to the high mobility of its 7 electrons [26].

Graphene-based FETs have been shown to be more efficiently controlled by an elec-
trochemical gate immersed in a solution than by a typical metal back gate through an



insulating oxide layer (e.g. SiOs) [19, 27]. Ohno et al. showed experimentally that the
gate voltage necessary for electrolytically gating graphene-based FETs was on the order of
—0.5 to 0.5 V, whereas their back gating counterparts required —40 to 40 V to produce a
full conductance curve (Figure 1.2). When the gate voltage is applied, an electric double
layer (EDL) forms at the graphene-solution interface due to the presence of ions [28]. This
EDL can vary in thickness due to the concentration of electrolyte, and may only be a few
nanometers thick. Nevertheless, it can still shield the graphene channel and may result
in the capacitance of the EDL being larger than that of the back gate [28]. Therefore,
electrochemical gating gives more control over the graphene surface potential [19]. The
applied voltage results in a shift in the minimum of the graphene conductance, due to a
change in its chemical potential. It is this shift in the conductance that is used to measure
the ion concentration or pH of the solution [1, 12, 19, 21, 22].
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Figure 1.2: Comparison of the electrolytic and back gating of a graphene-based sensor.
Experiments confirm that electrolyically gating graphene FETSs is more efficient than the
typical back gating. Adapted from [27].

When a graphene FET is operated in capacitance mode, experiments show the device is
more sensitive to changes in ion concentration and/or the pH of the surrounding solution

3



[29]. This is attributed to the fact that the so-called quantum capacitance of graphene
(defined in Chapter 2) is much smaller than the capacitance of the electrolyte, and there-
fore dominates the system [28; 30] unlike its metallic electrode counterpart. Thus, the
capacitance mode of a graphene-based FETs has become the focus of experimental work.

Experimental work measuring the dependence of the capacitance on pH has shown
conflicting results (Figure 1.3). Some groups claim that graphene is highly sensitive to
pH, with a sensitivity of approximately 100 meV /pH [27, 31], which is almost twice the
Nernstian maximum allowed shift of 59 meV/pH (Figure 1.4). Other groups claim that
the behaviour of clean, defect-free graphene is insensitive to pH, and that atomic defects
or impurities in graphene give rise to the observed effects [21, 32, 33]. Therefore a func-
tionalized layer or aromatic molecules may be used to help enhance the dependance on pH
[32]. In either case, the sensitivity of the configuration is driven by the binding of protons
(H™) to the surface of either graphene or a functionalized graphene [34, 35, 36] and results
in an adsorption layer on the interface, which can affect the surface potential depending
on the extent of adsorption [34, 35, 36].
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Figure 1.3: Shift in the conductivity minimum due to increasing pH at three different
concentration settings. Here, solutions of sodium hydroxide (NaOH), hydrochloric acid
(HCl), and potassium hydroxide (KOH) were used to tune the pH in the experiment.
Adapted from [20].

When measuring the ion concentration (Figure 1.4), experimental work has shown that
the conductivity and capacitance of graphene are dependent on the ion concentration of the
electrolyte [37]. As the concentration is increased, the shift from a gate voltage of zero is
reduced [17, 38]. Experimental work has also suggested that sensitivity to ion concentration



may be dependent on the type of liquid gate electrode used. Some electrodes exhibit little
to no sensitivity, while others are much more sensitive [20], see Figure 1.4 b).
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(b) Left: shift in the conductivity when an Ag/AgCl gate is used. Right: Shift in the conductivity
when a Gold gate is used. Note how the sensitivity is dependent on the type of gate used, where
a gold gate yields relatively no shift in the minimum. Adapted from [38].

Figure 1.4: The shifts in conductivity and capacitance for increasing concentrations of
sodium fluoride, NaF, and potassium chloride, KCI, for two experimental groups.

While the interest in of experimental research on the viability and sensitivity of graphene-



based devices has surged, relatively little theoretical work on the microscopic and macro-
scopic physics of these sensors has been reported, which is unlike any other areas of ap-
plications for graphene [12, 13, 14]. While some successful models have been reported
[25, 39, 40, 41], much of the experimental work has yet to be theoretically modelled.
Without a full theoretical understanding of the role graphene plays in these sensors, the
development and implementation of these devices has been delayed.

In addition to promising biomedical application, graphene-based devices have been
contacted with room temperature ionic liquids [37]. Ionic liquids are chemically stable,
chemically inert, and have a Debye screening length of approximately zero [37]. They
show great promise in solar cells [42], supercapacitors [43, 44, 45, 46], and gates [47].
Experimental work shows that the capacitance of these devices has a similar shape to
those found when immersed in aqueous solutions [30, 37]. Also, the minimum in the
capacitance shifts with increasing ion concentration [37]. The EDL that arises in an ionic
liquid has shown effects of ion crowding and overscreening [48, 49]. Models of the EDL that
account for ion crowding and overscreening have been reported [48, 49], but the interactions
between an ionic liquid and graphene have yet to be described.

One possibility for the lag in theoretical understanding could be due to the interdisci-
plinary nature of the problem. A successful theoretical model must tie together concepts
from chemistry, electrochemistry, engineering, solid state physics, and quantum mechanics,
as well as the mathematical analysis tools to bridge the fields. In an effort to understand
how these areas contribute to the overall theoretical modelling, it is useful to note some
preliminary topics which will be the basis for discussion in later chapters.

1.2 Electrolytic Solutions

In the configuration of electrochemical sensors, the conducting channel (or graphene) is
directly in contact with a solution which contains mobile ions (or charges). A build of
up ions at the solution-graphene interface, which is referred to as the electric double layer
(EDL), occurs when an applied potential is passed through the FET due to charge attrac-
tions/repulsions (Figure 1.5). Some models to describe the structure of the EDL will be
briefly explored below [28]. It is worthwhile to note that it is necessary to have a reference
electrode for electrochemical experiments, which has a known potential, in order to be
able to experimentally measure quantities in the system (e.g. overall potential) [28], and
therefore, many experimental results are reported with respect to some reference electrode.

Perhaps the first formal attempt at modelling the EDL was made by Helmholtz [50].
He proposed that that counter-charge species in the solution also exist at the interface of



the electrode, forming two oppositely charged layers separated by a small distance, called
the EDL. This configuration is similar to that of a parallel-plate capacitor, with a charge
density of the EDL: 0 = <2V, where V' is the voltage drop between the charged surfaces, €
is the dielectric constant of the medium between the charged surfaces, ¢ is the permittivity
of free space, and d is the spacing between the charged surfaces. The Helmholtz model
unfortunately predicts a constant differential capacitance, Cy = g—“’; = <. For real systems,
it has been shown that the differential capacitance varies with potential and concentration
changes [28].

One of the modifications to the model proposed by Helmholtz was the inclusion of a
diffuse layer proposed by Gouy and Chapman [51, 52]. In this diffuse layer, the greatest
concentration of excess charge would be at the electrode and the concentration of excess
charge would decay as the distance away from the electrode increases. Thus, a model would
need to include an average distance of separation, which would be dependent on potential
and electrolyte concentration (since an increase in electrolyte concentration and a more
highly charged electrode would cause the diffuse layer to decrease in size). This model
is more successful than the Helmholtz model at predicting the differential capacitance of
the system as it predicts the correct shape of the capacitance; however, experimental mea-
surements show that the capacitance is usually much lower than the capacitance predicted
by the Gouy-Chapmann model. Furthermore, as the concentration of the electrolyte is
increased, the predicted behaviour deviates greatly from that of the actual behaviour [28].

A flaw in the model proposed by Gouy and Chapman is that the ions in the solution
are treated as point charges that are able to be arbitrarily close to the surface. As a result
of this assumption, it is possible for the distance between the ions and the electrode surface
to go to zero at high polarizations. Stern noted that ions have finite (non-zero) size and
thus are not able to approach the electrode surface arbitrarily closely [53]. The closest
distance between any ion and the surface is its ionic radius, with the closest distance of
adsorbed ions being the inner Helmholtz plane and the closest distance of solvated ions
called the outer Helmholtz plane (Figure 1.5) [28]. These two planes form an inner layer,
which is referred to as the Stern layer. For systems at low electrolyte concentrations, this
restriction would have little effect since the thickness of the diffuse layer is much larger
than that of the Stern layer. However, for systems with high electrolyte concentrations,
the charges become more tightly compressed at the Stern layer and the system begins to
resemble the Helmholtz model [28].

While each improvement to the Helmholtz model has had some success in reproducing
experimental results of electrolytic solutions, the models are rather empirical in nature,
with the governing equations being designed from electrochemical phenomena rather than
from fundamental principles. A more fundamental approach to modelling these electrolytic
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Figure 1.5: Schematic diagram of the electric double layer, where ITHP denotes the inner
Helmholtz plane at a distance x; from the electrode surface and OHP denotes the outer
Helmholtz plane at a distance x5 from the electrode surface. Adapted from [28].

solutions in contact with an electrode will become one of the foci of the work discussed in
later chapters.

1.3 Ionic Liquids

While electrolytes have a long and well-documented history in experimental and theoret-
ical electrochemistry, a new class of compounds has recently become of interest for its
applications in miniaturized electronics, that is, ionic liquids [54, 55]. Tonic liquids are
salts which have a melting point below 100°C, in contrast to molten salts which have a
melting point above 100°C [55]. The key difference here is the presence of the solvent.
In an electrolytic solution, water or other polar liquids play the role of the solvent which
helps to break apart the salt into its respective ions whereas an ionic liquid is devoid of
any solvent and the ions exists in a spatial ‘matrix’ where they are free to move about or
form ion pairs [28, 54, 55| (Figure 1.6). Due to the fact that ionic liquids are comprised
entirely of positive and negative ions, these solutions often have a high conductivity [56]



and are less volatile and more stable than standard electrolytes [54, 56].

Figure 1.6: Schematic diagram of an idealized ionic liquid lattice matrix, where each
ion occupies a ‘lattice box’. The purple spheres represent negatively charged ions and the
magenta spheres represent positively charged ions. In some cases, the positive and negative
ions can form neutral ion pairs [57, 58].

One of the first recorded experiments of a room temperature ionic liquid was by Paul
Walden in 1914, who found the melting point of ethylammonium nitrate ([CoH;NH;3][NO3))
to be 12°C [59]. In the 1970s and 1980s, significant experiments advancing the understand-
ing of ionic liquids were published, with particular interest in applications to batteries
[60, 61]. More recently, ionic liquids have been investigated for their applications in super-
capacitors [43, 44, 45] or pseudocapacitors (materials which form a supercapacitor when
in combination with an EDL) [62]. Some groups have also experimented with mesoporous
electrodes which allow ions to adsorb into the electrode, which allows for improved pseu-
docapacitance of those electrodes [63]. On the other hand, nanoporous carbon electrodes
were found to be ionophobic when immersed in ionic liquids, meaning that the electrode
repels ions and can lead to a boost in the energy storage of such supercapacitors [64].

Often, the charged ions will form ion pairs in the liquid lattice, which are neutral
aggregates, and therefore do not contribute charge effects to the system [57, 58]. Due
to this phenomenon, an on-going debate in the literature concerns whether or not ionic
liquids can be modelled as a “dilute electrolyte”, because the presence of ion pairs of the
ionic liquid may be considered as a background dielectric constant and the unpaired ions
to some concentration of charge [57, 58]. While this theory has yet to be confirmed or
debunked with computational and experimental results, the idea of modelling ionic liquids
in a similar fashion to electrolytes has gained traction.

In 2007, Kornyshev published an analysis of the capacitance of the EDL in ionic liquids
by following a similar approach to modelling of an electrolytic EDL by adjusting for the lack



of solvent in the ionic liquid. He utilized a mean-field theory that takes into account the
short-ranged correlations and finite ion size near the electrified interface of the electrode and
the ionic liquid [65]. Kornyshev’s analysis has sparked further studies of an ionic liquid in
contact with a charged surface in the last decade. All of these approaches apply mean-field
theory to analyze the differential capacitance of an ionic liquid in contact with a charged
surface [49, 57, 66, 67, 68, 69, 70, 71, 72]. The predictions from these mean-field theory
models have also been verified through computational studies of the EDL capacitance of
ionic liquids [56, 66, 73].

Many of the recently published studies have only considered an ionic liquid in contact
with a metallic electrode. Graphene exhibits a unique band structure which allows for a
clear minimum in both the capacitance and conductivity of such electronic devices [28,
17]. Theoretical modelling of an ionic liquid with a graphene electrode is of interest for
understanding the capabilities of such electronic devices. Therefore, it is important to
develop a full theory and understanding of the mechanisms of an ionic liquid in contact
with a graphene electrode.

1.4 Ion Adsorption and Sensing Applications

In the 1970s, Piet Bergveld introduced the idea of an ion sensitive FET (ISFET), which
allowed for accurate measurements of ion activities in an electrochemical and biologi-
cal environments [74]. Bergveld’s configuration combined the well known metal-oxide-
semiconductor FET with a glass electrode and exposed the oxide to the surrounding envi-
ronment [74]. This configuration has sparked numerous improvements and modifications
over the years, and ultimately, miniaturization of the device to allow for micro- and nano-
sensing devices [1, 14, 17, 21, 30, 75]. Regardless of the setting and configuration, all these
sensors detect changes via the same mechanism: ions adsorbing onto the electrode, which
could be protons (H"), hydroxide (OH™), cations (e.g. Na™, K*), and/or anions (e.g. Cl,
F~) [21, 75, 76] (Figure 1.7). For illustrative purposes, an electrolyte solution of NaCl
(table salt) dissolved in water will be considered [77].

Two general approaches for modelling such systems have followed: use of an adsorption
isotherm approximation or use of site-binding theory. Adsorption isotherms are normally
empirical in nature and describe the variations of the surface charge density with con-
centration of the solution at constant temperature to obtain a relation between the two
quantities [78]. Many well-known isotherms such as the Langmuir and Frumkin isotherms
have been developed; however, the favoured isotherm in the literature for ion sensing device
configurations is the Langmuir-Freundlich isotherm [75, 78, 79]. Although some success
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Figure 1.7: Possible structure of the electrode-electrolyte interface with adsorbed ions Na™
and C1~ and where A represents the atoms of the electrode. Note that the bonding distance
for the Nat and CI~ are different than that of OH, O™, and OH; . The formation of
complexes AO™ - Na™ and AOH; - CI™ on the surface of the electrode affect the original
equilibrium due to a build-up of localized charge near the electrode and the removal of
charge from the bulk solution. Adapted from [77].

has been achieved in utilizing isotherms to reproduce experimental results due to their
empirical nature, many groups favour site binding theory as the appropriate method for
modelling surface interactions as it comes from the fundamental idea of chemical reactions.

Site binding theory is based on surface sites acting as sites where surface chemical
reactions can occur [35]. Each binding site is considered to be either neutral, an H* donor
(acidic reactions) or an HT acceptor (basic reactions) [34, 35, 80]. Since ‘free’ hydrogen
plays a key role in the pH of the overall system, the surface charge density of bound protons
is determined by the pH of the bulk solution [2, 34, 35, 78]. Since the pH of the system is
of interest for sensors, it is common to view OH groups as ‘neutral’ binding sites [34, 35]
and that ions prefer to bind to sites of opposite charge, since this is energetically favoured
[79].

An attraction, mediated by both electrostatic and Van der Waals forces, between the
ions and substrate must be present for ion specific effects to occur, e.g. surface reactions
to occur. This attraction will lead to an equilibrium of the adsorbed ions and the solution
ions [81]. Often in sensor devices, a thin oxide layer or polymer layer is added on top
of the electrodes (or conducting channel) to help promote the adsorption of ions to the
surface [21, 75]. This is called a functionalized layer. For graphene-based devices, this has
become a necessary component of engineering design to help improve the overall sensitivity
of devices [21, 75, 82]. The oxide or polymer layer is typically only a few nanometers in
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thickness. Most experimental groups have found layers that are between 2 — 10 nm thick
are the optimal in sensing devices [21, 75, 82].

In the case of a graphene electrode, this oxide layer helps to promote the binding of
these ionic species [75], while making the surface hydrophilic. Typical functional layers for
graphene devices are aluminium oxide (Al,O3) and tantalum pentaoxide (TasOs), which
have been quite successful in boosting the adsorption of ions to the electrode surface and
ultimately, increasing the sensitivity of the device [21, 82]. These oxides are chosen for
their chemical inertness, insolubility in most solutions (notably water), high dielectric
constants which inhibit electron leakage from the conducting channel, ability to be easily
manufactured and interfaced with graphene, and most importantly, their ability to bind
to graphene to preserve its unique properties [7, 83, 84].

While numerous experimental studies on sensitivity measurements of graphene-based
nano-sensors have been reported, very little theoretical modelling to support the exper-
imental results has been done [1, 21, 76, 82]. For further advancement in nano-scale
graphene sensors to be achieved, it is necessary to develop a full working model of the
relevant mechanisms.

1.5 Outline of Thesis

This thesis is divided as follows: In Chapter 2, a brief overview of the electrical and
structural properties of the graphene—electrolyte interface is provided. In Chapter 3, several
modifications to the Poisson-Boltzmann equation are analyzed, including modifications
due to finite ion size, dielectric saturation, and dielectric decrement in the electrolyte.
Numerical solutions for the dependence of ionic concentration profiles on the distance from
the electrode surface are also presented. Chapter 4 details the numerical method used in
this research and results for the case of an ionic liquid configuration. In Chapter 5, a model
for the dependence of graphene-based devices on pH and/or ion concentration is derived.
Finally, in Chapter 6, a summary of results is presented, along with some future avenues
for modelling of graphene-based FETs.

Unless otherwise stated, Gaussian electrostatic units, where 4meg = 1 and ¢ is the
dielectric permittivity of a vacuum, will be used throughout this thesis.
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Chapter 2

Theoretical Background

2.1 Graphene

Carbon is one of the most abundant materials on earth and is one of the building blocks
for all organic compounds. When carbon atoms bond to each other, they can form various
structures such as diamonds, carbon nanotubes, buckyballs, and graphite. Graphite con-
sists of 2-dimensional sheets of hexagonally bonded carbon atoms, which are arranged in
a honeycomb lattice, stacked on top of each other [85]. In 1947, Peter Wallace published
work in which a tight binding approximation was applied to the band theory of solids in
an effort to investigate the electronic properties of graphite and provided the underlying
theory for graphene [86]. In 2004, Andre Geim and Konstantin Novoselov utilized the
‘scotch tape’ method, whereby adhesive tape is placed on top of graphite and lifted off
to remove a single sheet of graphene, and were able to prove that it is possible to isolate
incredibly thin 2-dimensional materials [87, 88, 89]. For their work, they were awarded the
Nobel Prize in Physics in 2010, and ultimately sparked a fast-growing interest in graphene
and its potential in electronics.

Since Geim and Novoselov’s development of the ‘scotch tape’ method in 2004, many
new techniques have been developed to reliably isolate pristine, single sheets of graphene. A
popular technique is to use chemical vapour deposition (CVD) wherein silicon carbide (SiC)
is heated to upwards of 1100°C under low pressure to reduce the compound to graphene
[1, 7, 90]. A variant of the CVD method involves depositing graphene onto another metal
(e.g. copper foil), which is then dissolved after the graphene sheet has formed. While this
method is generally successful at producing pristine sheets of graphene, it can be quite
expensive [1, 7, 90]. Another more direct technique to obtain graphene is exfoliation of

13



graphite sheets. This is done by intercalating the graphite sheets with large molecules and
separating the sheets via a surfactant, sonification (use of sound waves to break apart the
layers), or electrochemical solution [7, 27, 32, 76]. Recently, the use of microwave ovens to
produce sheets of graphene, has shown promise for low-cost and precise manufacturing [91].
The technique utilizes microwave radiation to ionize silicon dioxide (SiO5) and dissociate
methane (CHy) to form graphene and molecular hydrogen. This process is referred to as
‘snowing’ as it yields high-quality graphene flakes which ‘snow’ down on to any substrate
[91].

While experimentalists work to perfect a low-cost method of graphene isolation, theo-
retical groups have been working to unlock the physics behind the numerous properties of
graphene. To date, many of these properties have been well documented, such as metal-like
conductance, zero-energy band gap, and linear energy dispersion for electrons and holes
[26]. These properties make graphene ideal for use in electronic devices since a minimal
applied voltage will be required to excite the electrons into the conduction band [85]. Cou-
pling the theoretical modelling of graphene with low-cost manufacturing techniques give
graphene a significant edge in the nanoelectronic industry.

2.2 Structure of Graphene

To understand the unique properties that graphene brings to sensor applications, a discus-
sion of its structure is detailed below.

2.2.1 Crystal Structure of Graphene

Many of the unique features of graphene are derived from its hexagonal lattice. Unlike
many other materials, graphene has two carbon atoms per primitive cell, which are repeated
periodically throughout the lattice (Figure 2.1). These two carbon atoms are labelled A
and B, and separated by a distance between of approximately a ~ 1.42 A[8]. The Bravais
lattice of graphene is formed via the two vectors
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and the following translational vectors

(1,v3), (2.3)
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Figure 2.1: Left: Schematic of the crystal structure of graphene. The Bravais lattice can
be formed from a7 and a, and the nearest carbon atom nelghbours from tl,tQ, and t3
Right: Schematic of the first Brillouin zone of graphene. Here, b, and by are the vectors
which form the reciprocal lattice. [8]

In the lattice, each A atom is surrounded by 3 B atoms and vice versa. The translational
vectors define the crystal structure of graphene. From here, it can be shown that the
reciprocal lattice is given by

by = 2—7;(1,\/3), (2.6)
by = 2—7T(1,—\/§), (2.7)

and can be utilized to construct the first Brillouin zone of graphene. Two important points
in the reciprocal lattice are:

K =2T(1,v3) (2.8)

K' = 2—”(1,—\/5). (2.9)



2.2.2 Energy Band Structure of Graphene

The band structure is derived via a tight binding approximation, with a detailed derivation
provided by Wallace [86]. Each carbon atom consists of six electrons, two of which lie in
the 1s orbital and are tightly bound to the carbon atom. Since these two electrons have
very limited mobility in the graphene lattice, they do not play a role in the electrical
properties. The remaining four electrons are distributed in the n = 2 electron shell, and
can be found in either the 2s or 2p orbitals. Since the electrons have similar energies, their
orbitals become hybridized, whereby the s orbital combines with two p orbitals (i.e. the p,
and p, orbitals) to form the hybridized sp? orbitals in the x — y plane. This hybridization
gives rise to strong covalent bonds between the carbon atoms, namely ¢ bonds, and is
responsible for the mechanical strength and viability of graphene. In the first Brillouin
zone, 6 og-bonds form: 3 in the valence band and 3 in the conduction band, and the Fermi
energy lies between these two bands in neutral graphene [92] (Figure 2.2).

plane of delocalized
p-orbital sp*-orbitals n-electrons

Figure 2.2: Orbital structure of graphene, where a o-bond occurs between carbon atoms
and m-bonds occur in the valence and conduction bands. Adapted from [93].

The third p, orbital remains well separated, both spatially and energetically, from the
hybridized sp? orbital, and forms valence and conduction 7-bonding bands in graphene. It
is these two m-bonds that are responsible for the unique electronic features of graphene.
Graphene has 6 valence electrons: the 1s orbital containing 2 electrons, the hybridized sp?
orbitals containing 3 electrons, and the p, orbital containing 1 electron.

The points K and K’ denote the points in the lattice where the conduction band and
the valence band meet leaving a zero-energy band gap. These points are known as Dirac
points since the energy dispersion for the 7 electrons in this region can be described by two
conic surfaces, enabling low-energy excitations of 7 electrons akin to the massless Dirac
fermions in 2-dimensions [8] (Figure 2.3). While a full derivation of the band structure is
not provided here, full details can be found in [94, 92].
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Allowed
Energies

Figure 2.3: Band structure of 7 electrons of graphene showing points where the conduction
band and the valence band meet at the Dirac points. Adapted from [§].

2.2.3 Charge Carriers in Graphene

One of the useful quantities for any semiconductor is the density of states as it gives a direct
link to the number density of charge carriers in a system (i.e. the number of electrons or
holes in the valence/conduction band) [85]. The density of states is a measure of the
number of accessible energy states for electrons at any given energy level. For graphene,
the density of states is given by [8, 95]:

D(e) :// #5(6—5(/2))%, (2.10)

-

where BZ denotes the Brillouin zone, g is a degeneracy factor and (k) is the band energy
of the 7 electrons in graphene. In the case of graphene, g = 4 since there are two spin
states (spin up and spin down) for the electrons and since there are two complete Dirac
cones in a hexagon of the graphene lattice. Using the Dirac cone approximation, the band
energy of the m electrons is e(k) = +hvpk, where vy = 305 (where c is the speed of light) is
the Fermi speed and A is the reduced Planck’s constant. Interestingly, the band energy for

graphene is independent of the electron mass [8]. Then, the density of states for graphene
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is given as [8, 95]:

. g 2T [e'e] . .
D)~ /0 dé /0 kS(c + hupk)dk (2.11)
2|e
- (2.12)

which is a linear function of energy ¢ and symmetric about the Dirac point energy, ¢ = 0.
Note that the reference level, ep, for the above density of state is the Dirac point energy.
For convenience, define ep with respect to the local vacuum level, and thus the electron
energy can be expressed as ' = ¢ —ep. If the Fermi level, ep, is also defined with respect
to the vacuum level, then the density of states can be used to calculate the equilibrium
number density of charge carriers in doped graphene as follows [25, 39]:

n(u):/mD(e)[ ! . (2.13)

e 1+ eBE—n) 14 ePe &
where § = kBLT and u = ep — €p is the chemical potential of graphene with respect to
its intrinsic (neutral) state [25, 39]. When p > 0, graphene becomes doped with excess
electrons and thus the number of charge carriers is n > 0 (graphene is negatively charged),
whereas when p < 0, graphene becomes doped with excess holes and the number of charge
carriers is n < 0 (graphene is positively charged).

For low doping levels, that is when || < 1 eV, the linear approximation for the density
of states, Equation (2.12), may be used. Using the approximation in Equation (2.13) gives
the number density as

n(p) = ——{ dilo e Py — dilo ePr )
() )’ (dl g(1+ ) — dilog(1 + )), (2.14)

0 In(1—2’) dx'.

!

where dilog is the standard dilogarithm function [25, 39], given by dilog(z) = [ ==
Then the surface charge density of graphene is given by [25, 39]:

Og

2e
- - ; —Bry _ 13 B
pTARIE <d110g(1 + e ") —dilog(1 + e )) (2.15)

This density of states is directly linked to the charge carrier density in graphene-based
electronic and electrochemical systems.
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2.3 Poisson-Boltzmann Equation

When a salt is dissolved in the solvent to create the electrolyte, the dissolved ions become
surrounded by a layer of solvent molecules (Figure 1.6). These solvated ions exist in the
diffuse layer of the system, where they are free to move. Due to the charged electrode
immersed in the electrolyte, solvated salt ions of opposite charge will be attracted to the
surface and ions of similar charge will be repelled. As discussed earlier, this attraction of
oppositely charged ions to the surface creates an electric double layer (EDL) that contains
a distribution of charges that is determined through the equilibrium positions of the mobile
charged ions. To take into account the bulky size of the hydrated ions and any specifically
adsorbed species, a modification to the structure of the diffuse layer is proposed where a
Stern layer is introduced adjacent to the electrode [53]. The Stern layer is considered to
be charge-free and its thickness is set to be the radius of the solvated ions. The simplest
models of the diffuse layer give rise to unreasonable ion concentrations at the interface of
the charged electrode and the addition of a Stern layer helps to lower the concentrations
by accounting for the effect of ion crowding at the electrode [53]. While many models have
been proposed with varying degrees of success, a more fundamental approach to modelling
the diffuse layer is presented here.

To be able to accurately describe and account for all the mechanisms in complex elec-
trochemical systems, models with a foundation derived from fundamental principles is nec-
essary. For a self-consistent model of electrochemical sensors, an approach from thermody-
namics is proposed, beginning with the Helmholtz free energy of the system: FF =U — TS
[51, 52, 96]. In the simplest setting, by treating mobile ions in the electrolyte as point
charges, the internal energy of the system is:

U= /// [— ;—;’;(V@Q + (zyecy — 266)(4 d°7, (2.16)

where €, is the dielectric permittivity of the solvent (in this case water), ¢ is the electro-
static potential, z;e the charge on the i" ionic species, and ¢, and c_ are the concentrations
of positive and negative ions, respectively. Using an entropy of an ideal gas of point-like
ions [97], the entropic contribution is:

TS = %/// [c+ In (%) te ln (ST.O) ey — C_} &7, (2.17)

where ¢, is the bulk concentration of each ionic species and g = kBLT with kg being the
Boltzmann constant and 1" the temperature. Note that the integrand of the free energy is
a Lagrangian, which is obtained as the negative of the functional U (Appendix D).
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Minimizing the free energy with respect to concentrations ¢, and c_ gives:

(5—F = /// [iziegqukBTln (C—i)} vd*F =0
dcy Coo

— Cy = CooeTEPY (2.18)

which is the well-known Boltzmann distribution of ions. Here, v is a function that belongs
to the set of all admissible variations of the free energy; see Appendix A for the full details
of finding the stationary points of the free energy. Similarly, minimizing the free energy
with respect to potential ¢ gives Poisson’s equation:

oF 2e _, 3.
%—/// [e(z+c+—z_c_)+87rv plvd’T=0
— V%9 = —4dmp, (2.19)

where p = z,cy — z_c_. Since the concentrations are given by the Boltzmann distribution
(Equation 2.18), Equation 2.19 is known as the Poisson-Boltzmann equation in the diffuse
layer of the EDL.

For a symmetric electrolyte solution (zy = z_ = z), with ¢, = ¢_ = ¢ in the bulk,
the system described by the Poisson-Boltzmann equation is [48],

eV2p = —4mze(c, — c_) = 8mzecy sinh(zefe). (2.20)

This Poisson-Boltzmann equation has an analytic solution for the potential ¢ as a function
of z for 1D Cartesian geometry, given by

N _ , (2.21)
e 41— (e e _ 1) e p'@

where ¢ is the potential at the surface (z = 0) and A" = 4/ % is the Debye length

(derived below). Using the solution for the Poisson-Boltzmann equation, the surface charge
in the diffuse layer is then given as

de

Atopp = €wr . (2.22)
2€w . Zeﬁ%
= — h 2.2
zeBAp S ( 2 ) ’ (223)
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where €, is the dielectric permittivity of water. Equation (2.23) is known the Grahame
equation [98]. The differential capacitance of the diffuse layer using the Poisson-Boltzmann
model is then

dopp
Cpp = — 2.24
PB o (2.24)
€ zefoq
= o cosh < 5 ) . (2.25)

Debye-Hiickel Limit

By assuming that the variation in the potential is small and/or the temperature is high,
|zef¢| < 1, the ion concentration can be linearized to ¢;(¢) & co(1—zeB¢). This yields the
Debye-Hiickel approximation or linearized Poisson-Boltzmann equation. Further assuming
that the dielectric permittivity of the solvent is independent of position gives the Helmholtz
equation [28, 48]

V2 = A0, (2.26)

where \p is the Debye screening length defined as

2,2
AL =[BT (2.27)

€w

The Debye screening length gives the measure of the depth of penetration of the elec-
trostatic effect. For every Debye screening length, the electric potential drops off by a
factor of 1/e [28, 48]. Solving Equation (2.26) for ¢(x) with the boundary condition that
¢(x — 00) = 0 gives:

$(x) = doe 1, (2.28)
where ¢y = ¢(0) is the potential at x = 0. Here, the other mathematically possible solution
e’ is discarded as it is unphysical for the potential to increase exponentially in the bulk
with increasing distance away from the electrode. From Gauss’ Law, the surface charge
of the diffuse layer in the Debye-Hiickel limit, o2 can be related to the potential at the
electrode-electrolyte interface by:

DH do

Aoy = € . (2.29)

e, (—f—;) , (2.30)
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upon substitution of Equation (2.28). Then, using the definition of differential capacitance,
the Debye-Hiickel diffuse layer capacitance in given by:

dO'DH
CPH — _——d 2.31
d don (2.31)
ew
— 2.32

upon substitution of Equation (2.30).

The Poisson-Boltzmann equation was one of the first ‘successful” attempts at modelling
electrochemical systems. While this model is too primitive to be able to fully describe all
the nuances of a graphene-based system, it is the basis from which more accurate models
are derived, particularly in the case of graphene-based sensors.

2.4 Graphene-Based Field-Effect Transistors

A more recent configuration of a graphene FET includes a top gate in the bulk of the liquid
electrolyte, which is of interest to biomedical applications (Figure 1.1) [22]. When the gate
voltage is applied through the electrolyte, a redistribution of the ions occurs and an EDL
forms at the graphene-electrolyte interface [28]. This EDL can vary in thickness depending
on the ion concentration, and has a the capacitance that is higher than the capacitance due
to the back gate [99]. As a consequence, the surface potential on the graphene layer can be
controlled more effectively, while requiring a lower operating voltage than currently used
with back-gated graphene FETs [99]. By applying a voltage, the conductance of graphene
changes due to the variation in the chemical potential, which can be used to sense the ion
concentration and pH of the solution [27, 32, 85].

A cross-sectional view of the EDL at the interface with an infinite planar graphene
electrode immersed in electrolyte is shown in Figure 2.4. Several useful equations are
identified using Gaussian pillboxes for the electric field:

—en By = 4oy (2.33)
esby = 4moy, (2.34)

and the continuity condition for dielectric displacement e,£, = €,E,. Adding (2.33) and
(2.34) results in the charge neutrality condition for the system:

04(Vy) +0a(Va) =0, (2.35)
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Figure 2.4: Schematic representation of the layered system with labelled surface charges,
potentials, electric fields, and dielectric constants. Also shown are the potential differences
that occur across the Stern layer, Vs = ¢, — ¢4, and across the diffuse layer, V; = ¢oo — 05 =
—¢, due to ¢ = 0, as well as the total applied potential, V,, =V, + V, + V.

where V, is the potential drop across graphene and Vj is the potential drop across the
diffuse layer.

Furthermore, using Equation (2.33) and the continuity condition gives:
CS‘/S = 04, (236)

where Cy = €,/(4mh) is the Stern layer capacitance, with h being the Stern layer thickness,
and the surface charge in the diffuse layer o4 is given by Equation (2.23) in the case of
point charges. The following chapters will mostly consider modifications of the Poisson-
Boltzmann equation, taking into account effects of finite ion sizes, or steric effects in
the Boltzmann distribution, as well as generalizations that go beyond the assumption of
constant dielectric permittivity in the electrolyte.

When the Stern layer is discarded, h — 0 so that the diffuse layer becomes adjacent to
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the electrode. When the graphene electrode is replaced with a metallic electrode, V, = 0
so that o, = 0 (comes from Equation (2.15)).

2.4.1 Total Capacitance

To understand the electrochemical charging of a graphene FET through the EDL, the
electrostatic capacitance becomes an important quantity. Experimentally, the capacitance
is determined as the differential capacitance per unit area (normally in microFarads per
square centimetre, uF/cm?), and theoretically, is the rate of change in the surface charge
density through the respective region. The capacitance in a graphene FET has two ori-
gins: the classical electrostatic capacitance where the double layer is treated as a planar
capacitor and the quantum capacitance in graphene. The double layer capacitance arises
from the Coulomb repulsion of electrons, which gives a non-zero potential drop across the
diffuse layer and is associated with the charging of the graphene electrode. The quantum
capacitance arises from forcing electrons to occupy all energy levels up to the Fermi level
by the Pauli exclusion principle.

The inverse of the total differential capacitance of the electrolytically gated graphene
is given by

ol = _ __2hd  %Fs i’} (2.37)

dsq

S . (2.38)
Cd(vd) Cs Cq(vg) ’ ‘

where the charge neutrality condition, Equation (2.35), has been used to obtain the quan-
tum capacitance term and V, = V, + V; + V; is the total applied potential, with Vj; the
potential drop across the diffuse layer, V, the potential drop across the Stern layer, and

V, the potential drop across graphene, see Figure 2.4. Here, Cy = —g% is the diffuse layer
capacitance, Cs = fl%fi is the Stern layer capacitance, and C, = —g% is the quantum capac-
S g9

itance of graphene. This total capacitance corresponds to a series connection of the diffuse
layer capacitance, Stern layer capacitance and graphene quantum capacitance. It should
be stressed that the values of the diffuse layer potential V; and the graphene potential Vj,
which are used in the calculations of the capacitances of graphene, C;, and the diffuse layer,
Cy, are determined self-consistently by solving the charge neutrality condition, Equation
(2.35), of the structure. The expression for o,(V,) is given in Equation (2.15), whereas
04(Vy) can be related to the values of the dielectric permittivity of the diffuse layer and
the Stern layer by Gauss’ law, ¢, F), = —47o, in a manner that depends on the model used

24



for modifying the Poisson-Boltzmann equation. In the case of point charges in the diffuse
layer, 04(Vy) is given by Equation (2.23).

To discard the Stern layer, let h — 0 so that Cs; — oo in Equation (2.38), giving the
total capacitance as a series connection of the diffuse layer capacitance and the graphene
quantum capacitance. Similarly, replacing graphene by a metallic electrode with its surface
at z = 0 would have V, = 0 giving C;, — oo in Equation (2.38), so that the total capacitance
of the electric double layer is a series connection of the diffuse layer capacitance and the
Stern layer capacitance. This is corroborated by the fact that ideal metallic electrodes
have a high density of charge carriers at their Fermi energy, so adding or removing charge
on the metal electrode does not shift that energy. Hence, the capacitance of an ideal
metallic electrode is mathematically infinite and plays no role in any parallel connection
of capacitors involving other systems.

2.4.2 Quantum Capacitance and Conductivity

Capacitance in the graphene layer arises from the Pauli exclusion principle which forces
electrons to occupy all the energy levels up to the Fermi level and causes an increase in
graphene internal electrical potential V; = £. This is known as the quantum capacitance,
which can be calculated as the rate of change in the surface charge density on graphene,
o4 (Equation (2.15)), [25, 39],

_ odn(p)

=e T (2.40)
L 1 BeV,

= GQ;W In (2 cosh < 5 )), (241)

upon substitution of Equation (2.14) into Equation (2.40). Note that this expression for
quantum capacitance is valid for || <1 eV.

Similarly, the electrical conductivity for graphene may be derived using Boltzmann
transport theory [8, 95]. The capacitance and conductivity are the main observables in
experimental work, and are also used to show the sensitivity of the electrolytically gated
graphene FET (Figure 1.1) to ion concentration and pH. For sensor applications, this
quantum capacitance is generally much smaller than the capacitance of the other layers and
dominates in the system [28, 30], making graphene an ideal electrode for these electronic
configurations.
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Chapter 3

Modifications of the
Poisson-Boltzmann Equation in
Electrolyte

3.1 Theory

The standard Poisson-Boltzmann equation assumes that the ions are point-like charges
and that the dielectric permittivity of solvent is constant, as on Page 19 in Section 2.3.
This assumption allows unrealistically large ion concentrations at the electrode—electrolyte
interface. Bare ions are typically on the order of 0.6—2 A and hydrated ions on the order of
2 —4 Ain radius, which are much larger than the point-charge assumption [78]. At high ion
concentrations and/or high electric fields in particular, the finite (non-zero) size of the ions
must be taken into account as only a finite number of ions, either bare or hydrated, can pack
at the electrode—electrolyte interface. In addition, at such high concentrations and fields,
the electrolyte also contributes because the dielectric permittivity can become influenced by
the alignment of the water dipoles with the electric field and/or with the charged solvated
ions in the solution. In this chapter, modifications to take into account the finite ion size
and the effects on the dielectric permittivity are considered. The results shown in this
chapter have been published in Journal of Chemical Physics [40] and Chemical Physical
Letters [41].
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3.2 Steric Effects

While it is recognized that Stern [53] was the first to introduce the idea of the finite size of
ions into the model of the double layer, the first complete model including the finite size of
ions in the context of the Poisson-Boltzmann equation was proposed by Bikerman in 1942
[96]. Bikerman applied a continuum volume constraint to the existing Poisson-Boltzmann
theory, in order to arrive at a model which included ion size. Bikerman’s model is based
on the entropic contribution to the free energy of the system, where the lattice gas is
occupied by three types of quantities: positive ions, negative ions, and water molecules
[96]. This modification from Bikerman and Freise [48, 96, 97, 100, 101] is necessary in dense
electrolytes and /or when a large voltage (potential drop) is applied which results in a highly
charged electrode that is able to attract more oppositely charged ions to the interface, giving
rise to ion crowding at the electrode [48]. The Bikerman-Freise model contains a Fermi-like
modification to the Boltzmann distribution of the ions in the electrolyte and introduces
an effective ion size parameter to the standard Poisson-Boltzmann theory [40, 48, 96, 100].
This inclusion of finite ion size in the electrolyte is called steric effects.

To calculate the entropic contribution, the lattice (see Appendix B) consists of cells
with size a. Note that the entropy S is kg > p;Inp;, where p; is the probability that

species i occupies the lattice site where p; = a®c; and subject to the constraint that

ac_+adcy +adc, = 1, where ¢, is the concentration of water molecules. For simplicity, it
is assumed that the size of the positive and negative ions, as well as the water molecules,
are the same and equal to a. Then the entropic term, —7'S, is [97]

— TS = kB3T /// [a?)c_ In(a®c_) + a’cy In(a’cy)
a

+ (1 —d’c. —a*cy)In(1 —a’c_ —a’cy)|d*7. (3.1)

The 3 terms on the right hand side of Equation (3.1) correspond to the contributions of
the negative ions, positive ions, and solvent molecules, respectively [97]. Note that the
free energy of the standard Poisson-Boltzmann model can be recovered by taking the limit
a — 0, and that the free energy now is a function of potential ¢ and concentrations c...

Finite ion size is only one modification in the electrolyte. The electric field induces ad-
ditional structure on the orientation of molecules, resulting in a deviation of the apparent
dielectric permittivity from its bulk value (e, ~ 80). In subsequent sections, two contri-
butions to the shift in apparent dielectric permittivity, dielectric saturation and dielectric
decrement, will be investigated, while being coupled with the finite size of ions.
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3.3 Modifications for Dielectric Permittivity

The Bikerman-Freise modification to the Poisson-Boltzmann equation has had some suc-
cess in reproducing experimental results, in particular, that the potential remains finite
(particularly when close to the electrode interface). However, further improvements and
additional effects can be considered. In particular, the inclusion of a finite ion size in the
electrolyte made modifications to the entropic term of the free energy, while the internal
energy portion of the free energy is unaltered.

Electric Field, F

©et
é_)@@@@@%@
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T

Hydration Shell

L4

Figure 3.1: Schematic diagram showing water molecules near a cation X in the presence
of an electric field E. Water molecules (blue circles) close to the ion form a hydration shell
and have their dipoles (represented by the arrows inside the water molecules) oriented along
the local electric field generated by that positive ion. The farther away water molecules
are from this hydration shell, the less they are affected by the cation, and their dipoles
align with the direction of the external electric field. Adapted from [102].

In the unmodified Poisson-Boltzmann model, the solvent is represented as a pure ma-
terial with a constant dielectric permittivity. Under the application of an electric field,
the electric field and the structure of the dissolved ions forces solvent dipoles into spe-
cific orientations, resulting in the solvent having less freedom (Figure 3.1). The solvent is
not able to act as an unconstrained, uniform material, and modifications to the dielectric
permittivity are introduced to take into account the deviations from the dielectric permit-
tivity of pure solvent. These modifications are introduced through the internal energy of
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the system where the dielectric permittivity implicitly dependents on position through its
explicit dependence on the electric field and ion concentrations.

The electrostatic energy, U, can then be expressed as [97]

=[] [—we<||v¢|r,c+,c>+ze<c+—c>¢—u+c+—uc FE(32)

The first term, w(||V ||, ¢4, c_), is the self-energy of the electric field (i.e. the electrostatic
potential energy), which, in general, is a function of the electric field (||V¢||) and, possibly,
of the ion concentration (¢, and c¢_). The next term, ze(c; — c_)¢ , is the electrostatic
energies of the positive and negative ions. The last two terms, picy, are the constraints
for the conservation of the number of ions, where ;4 is the chemical potential of the bulk
electrolyte and act as Lagrange multipliers to ensure that the ions in the electrolyte are
coupled to the bulk ionic solution [97]. Note that the integrand of the free energy plays the
role of a Lagrangian, which is obtained as the negative of the functional U (Appendix D). In
the following sections, two modifications to the dielectric permittivity in the electrolyte will
be analyzed, where exact forms of w, will be given. Since no reliable models are available
to describe the joint dependence of dielectric permittivity of the solvent, w.(||Vo||,c_, cy),
on the local electric field, ||V¢||, and on the local ion concentrations, ¢; and c_, the cases of
dielectric saturation, where w, only depends on the electric field, and dielectric decrement,
where w, only depends on the ion concentrations shall be considered separately.

3.3.1 Dielectric Saturation

At the electrolyte—electrode interface, the potential drops over a short distance due to
ion screening, and hence, a strong electric field develops [48]. In the diffuse layer, this
corresponds to a reduction in the local dielectric permittivity due to the strong electric
fields and high ion concentrations [25, 39, 48, 98, 103]. This strong electric field causes the
dipoles of the solvent (water) molecules to align in the direction of that field, which results
in a field dependent self-energy, i.e. w.(||V¢||) in Equation (3.2) (see Figure 3.1).

Sandberg and Edholm [104] pointed out that the energy density of the electric field,
W, = SiﬂHngﬁHz, which holds for a system with a field-independent dielectric permittiv-
ity, should be replaced in the regime of non-constant dielectric response by an integral

expression:
Vel

wlIVol) = 4 [ «B)EdE, 33)
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where €(F) is the dielectric permittivity expressed as a function of the local electric field E.
Combining Equations (3.1), (3.2), and (3.3) yields a fully modified free energy functional.
The thermodynamic equilibrium state can then be found by minimizing the above free
energy functional. Using the variation of the free energy with respect to c., a generalized

Boltzmann distribution of ions in the presence of a non-constant electrical potential ¢ may
be found from [101, 102, 105, 106]

5 /// t+ze¢ — py + kpTIn(a’cy) — kpTIn(1 — a’c_ — a’cy)| vd’F=0, (3.4)
Ct

where v is a function that belongs to the set of all admissible variations of the Helmholtz free
energy, which follows a similar method to that outlined in Appendix A. The size-modified
chemical potentials at equilibrium in the bulk electrolyte are then

1 a’cs

which comes from solving Equation (3.4) for py in the bulk electrolyte (i.e. ¢+ — ¢o and
¢(x — 00) = 0) and defining the bulk concentration as c.,. Then, the ion concentrations
are given by:

Cooeﬂerﬂcb
1 — v+ vcosh(zefo)

Defining the bulk volume fraction of ions as v = 2ac., gives the expression for the
equilibrium charge density in the electrolyte, p = ze(cy — c¢_) as [48, 96, 100]:

(3.6)

C4 =

—2zecy, sinh(fzeq)
P = s 1.2/ zeBhN T (37)
1 + 2vsinh*(%52)

Note that the standard Poisson equation (Equation 2.19 on Page 20) is obtained in the
limit ¥ — 0, whereas for densely packed ionic structures one expects v < 1 [56]. For
sufficiently large potentials when v is finite, i.e. exp (zef3|¢|) > 2/v, the charge density
in Equation (3.7) approaches a constant value, p — —z€Cpaxsign(¢), where cpax = 1/a® is
the maximum concentration of ions of either kind (i.e. cations or anions).

Minimizing the free energy with respect to the potential ¢ yields

///[ [ Hw”)nwn] zeley _C>] vl =0, (3.8)

where w’( ||ng||) is the derivative of the self-energy with respect to ||V¢|| and v is a function
belonging to the set of all admissible variations of the Helmholtz free energy (Appendix
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A). Setting the charge density p = ze(cy — ¢_) and substituting Equation (3.3) for the self
energy, w,, gives an expression which is similar to that of the original expression for the
Poisson-Boltzmann equation:

V- lea(l[VOl) Vo] = —4mp, (3.9)

where €.4:(||V@]|]) is the electric field dependent dielectric permittivity. If the effects of
the electric field are ignored, the dielectric permittivity will revert back to a constant, i.e.
€sat(||V@||) — €. In this case, the original expression for the Poisson-Boltzmann equation
(Equation (2.19) on Page 20) is recovered.

Other groups have proposed an alternative derivation based upon a free energy min-
imization [107, 108]. Instead of utilizing the expression for the self-energy as given in
Equation (3.3), those authors used w.(||Val||) = €(|[V9|)|[|V¢||?/ (87), which is only valid
when the dielectric permittivity of solvent € does not depend on the electric field, i.e., in
the regime of linear dielectric response. The Poisson-Boltzmann equation obtained from
this approach is essentially equivalent to Equation (3.9), where the dielectric permittiv-
ity €(||[V@ll) is replaced by (Vo) + £[|Vo[ €([[V@])). Here, €(||Ve|) denotes the first
derivative of the function €(||V¢||). It is worthwhile to note that while this approach yields
a similar result to that discussed above, this approach is inconsistent for the regime of
non-linear dielectric response, i.e. when €(||V¢||) is a function of the magnitude of the
electric field [104], and hence, many other groups [25, 109, 110, 111, 112] have utilized the
approach taken above.

Booth Model

The effect of dielectric saturation of solvents in the presence of high electric fields near a
charged surface may be described by a model due to Booth. In this model, the dielectric
permittivity of solvent is given as a non-linear function of the magnitude of the local electric
field [113]. Booth’s model has shown very good agreement with the molecular dynamics
simulations of the dielectric constant of water at high electric fields [114, 115], as well
as with a lattice Monte-Carlo simulation of dielectric saturation in ion-containing liquids
[116].

While the Booth model is derived by considering the microscopic orientational degrees
of freedom of the solvent dipole molecules [105, 113], a phenomenological model for di-
electric saturation in diffuse layers was developed by Grahame [98], which is sometimes
used in conjunction with a Stern layer [117, 118] or with the Bikerman-Freise model [48].
Macdonald, for example, used a combined Grahame-Stern model to fit a series of experi-
mental data for the differential capacitance of metallic electrodes in aqueous solutions as
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a function of the applied potential, which typically exhibit strong asymmetry with respect
to the neutrality point [117, 118].

The Booth model for dielectric saturation results in a diffuse layer dielectric permittivity
given by [113]:

1
coth (Ysat ) —

€ooth(E) = n? + (n? — €, ,
b th( ) ( )fysatE VsatE

(3.10)
where n /= 1.33 is the refractive index of water, ¢,, = 80 is the bulk dielectric permittivity of
water, and 5o = qfig is the parameter that defines a critical electric field Fgyy = 1/7sat
for which the dielectric saturation occurs with 8 = 1/(kgT). Here, ag = v/73 (n* 4 2) /6 ~
5.4 and pgy is the effective dipole moment of water molecules. Adopting the value uy =~
2 Debye at room temperature, gives vs; ~ 9 nm/V [105, 109, 110, 111, 112, 113, 114].
Note that €poorn(E) in Equation (3.10) is an even function of £ = —Z—i. The Booth model
shows that the dielectric permittivity of water is greatly reduced by increasing electric
field (Figure 3.2). Sine the field magnitudes for which the reduction occurs are well within
the range for the graphene-based FET considered in this work, inclusion of the saturation
effect into the Poisson-Boltzmann model is necessary. A full derivation of the Booth model
is presented in Appendix C.

3.3.2 Dielectric Decrement

The strong electric field not only affects the solvent molecules at zero ion concentration,
but also the solute (salt) ions. The electrolytic solution contains dissociated ions and
normally has a smaller dielectric constant than the solvent (in this case water). When
the ions dissolve, they create dielectric “holes” in the solution, which result in an overall
decrease in the dielectric permittivity [120]. Because the ions also have charge, they create
a local electric field. The dipole moment of the water molecule now not only orients with
the macroscopic electric field, but it will also tend to reorient due to local charged ions
giving rise to the excess polarizabilities vy for positive solvated ions and a_ for negative
solvated ions (Figure 3.1). As a result, fewer solvent molecules are available to provide
dielectric screening of the macroscopic electric fields in the solution with increasing ion
concentration. This effect is known as dielectric decrement in the solvent and is especially
prevalent in concentrated electrolytes, where crowding at the charged electrode interface
occurs [102, 103, 108, 120, 121, 122, 123].
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Figure 3.2: Comparison of the relative dielectric permittivity of water. Solid line shows
the prediction from the Booth model, Equation (3.10) and the dots show the predictions
from molecular dynamics simulations. The dipole moment for water was taken to be 1.85
Debye. Adapted from [119].

Again, following the work by Sandberg [104], the self-energy of the electric field is:

Vel

1
we(||V¢||,c+,c_):E / €(cy,c)EdE (3.11)
0

_ €dec(Cr, )V
8T ’

(3.12)

where in contrast to Equation (3.3) above, the dielectric decrement effect results in an ion
concentration dependent dielectric permittivity. Cations and anions are assumed to be the
same size, ay = a_ = a, and the excess polarizabilities of positive and negative ions are
assumed to be the same, a, = a_ = a > 0, so that the linearized model for dielectric
decrement may be written as [103, 120, 121, 122, 124]

€dec(Co, ) = €y —a(cy + ). (3.13)
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Figure 3.3: Comparison between the predicted dielectric permittivity and the experimen-
tally measured dielectric permittivity as a function of ion concentration. The thin dotted
line shows the linear approximation for dielectric decrement given by Equation (3.13). The
data shown here is for an electrolytic solution of sodium chloride, NaCl. Adapted from
[108].

Figure 3.3 shows the comparison between the linear approximation for dielectric decrement
and experimental data for the dielectric decrement. Note that the linear approximation
shows good agreement for concentrations up to 2 M, and that the dielectric permittivity
becomes greatly reduced with increasing ion concentration.

Typical ion polarization values a are given in Table 3.1. The majority of the experi-
mental data for aqueous electrolytes [16, 18, 99, 125] are obtained at ionic concentrations
below 2 M, where a linearized decrement model is valid [124]. Under these conditions, an
analytic solution for the capacitance is possible[41]. It is interesting to note that some
work to utilize a non-linearized model for dielectric decrement was done by Nakayama et.
al [121].

Minimizing the free energy, Equations (3.1) and (3.2), with respect to ion concentra-
tions yields a generalized Boltzmann distribution of ions in the presence of a non-constant
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Cation | 47y (M™1) | Anion | 4ray (M™1)
H* 17 F~ )
Lit 11 Cl- 3
Na* 8 I~ 7
K+ 8 OH~ 13

Table 3.1: Measured values of ion polarization for cations and anions that are common in
experiments [102, 124].

electrical potential ¢ may be found from [101, 102, 105, 106]

oF _ 8we(||V¢||,c+,c_) -
i [T

+kgTln(a’cy) — kT In(1 — a’c_ — a’cy) |vd*F =0, (3.14)

with v belonging to the set of all admissible variations of the Helmholtz free energy (Ap-
pendix A). Substitution of the concentration modified self-energy (Equation (3.12)) and
the concentration dependent dielectric permittivity (Equation (3.13)) into Equation (3.14)
gives modified ion concentrations of

C4 = (315)

1 vt ve SIVel cosh(zeB¢)
and charge density of

—2zecoe~ 5% IV sinh (zefo)
p = e :
1 — v+ veselIVolP cosh(zef o)
Note that the unmodified Boltzmann distribution for point ions with zero excess polariz-

ability (Equation 2.18 on Page 20) is obtained by v — 0, where the ions become point
charges, and o — 0, where the effects of dielectric decrement are removed.

(3.16)

The generalized Poisson-Boltzmann equation in the presence of dielectric decrement
and steric effects is obtained by minimizing the free energy, Equations (3.1) and (3.2),
with respect to potential ¢,

V - [€qec(Cy, - )V o] = —4mp, (3.17)

where the volume charge density, p = ze(c; — c¢_), is expressed using Equation (3.15).
If €gec is constant, i.e. a = 0, then Equation (3.17) is reduced to the modified Poisson-
Boltzmann model with ion steric effects described by the Bikerman-Freise model [65, 126],
given by Equation 2.19 on Page 20.
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3.4 Analytic Solution to the First Integral

A key quantity of interest in experiments is the differential capacitance, as it is and plays a
key role in supercapacitor applications. In order to obtain expressions for the capacitance
of the diffuse layer, it is necessary to have a relation between the potential ¢ and the
electric field, || V||, which can be readily linked to the charge density via Gauss’ law. As
a consequence, the first integral of the modified Poisson-Boltzmann equations is necessary.
Due to the large area of the electrode with planar surface relative to the overall size of
the system, the expressions for the modified Poisson-Boltzmann equations may be reduced
from 3D partial differential equations to 1D ordinary differential equations. From now
on, the substitution |V¢|| = |E| and % = —FE will be made for the electric field, as the
derivative of the potential is only with respect to the distance from the electrode—electrolyte
interface x.

Solving the generalized Poisson-Boltzmann equation in Equations (3.9) and (3.17) in
one dimension (1D) for diffuse layer (i.e. the region = € [0,00)), requires two boundary
conditions for the potential ¢(x): one at the interface with the electrode (graphene) at
x = 0, where the potential is the value at the interface, i.e. ¢(0) = ¢y, and one in the bulk
of the electrolyte where the potential goes to zero, ¢(z) — 0 (Figure 3.4).

For details on the derivation of the Euler-Lagrange equations from the free-energy
Lagrangian, see Appendix D. Owing to the fact that the free energy functional (Equations
(3.1) and (3.2)) is not explicitly dependent on the position of the ions, x, the first integral
is obtained from the Euler-Lagrange equations via Beltrami’s identity. To arrive at an
analytic solution for the first integral, the alternate form of the Euler-Lagrange equation

may be used:
of d of \
dr  dx (f — e ayz> =0 (318)

where f is a known function of y(z), y,(z), and z. If the Lagrangian is independent of
the position variable, z, and x is explicitly absent, the Euler-Lagrange equation further
simplifies to the Beltrami Identity:

af

where C' is a constant determined by the boundary conditions. In this work, the function
f will be the integrand in the free energy of the system, y(z) = ¢(x), and y, = d(Z(;) . To
keep the notation compact, the explicit position-dependence in the potential ¢(x) and the

concentrations c4 (z) will be suppressed in what follows.
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Figure 3.4: Schematic diagram showing the electrostatic potential ¢(z) (red curve) as a
function of distance x in an electrolytically top-gated graphene, along with electron energies
at: the Fermi level e in graphene, the Dirac point ep = —ep(0) = —egy, the Stern plane
—ep(h) = —egy, and deep in the bulk electrolyte —ep(00) = —ep, taken to be zero. Also
shown are the potential differences that occur: inside graphene at x = 0 giving rise to
its doping, V, = ¢o + €r/e, across the Stern layer, Vi = ¢ — ¢ for 0 < 2z < h, and
across the diffuse layer, V, = —¢;, for > h, so that the total applied top gate potential is
Vo, =¢ep/e=Vy+ Vi +V,. Here, e > 0 is the proton charge.

Dielectric Saturation

In the case of dielectric saturation, the Beltrami identity gives:

[— w(|E]) + ze(es — e )6 — ppes — pc_

+ 53 {a3c+ In(a’cy) +a’c_In(a’c_) + (1 — a’cy. — a’c_) In(1 — a’cy —a’c.)

+E {Ei’”th E] —C. (3.20)

™
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By imposing the boundary condition ¢ = 0 at z — oo, substituting in Equations (3.5),
and (3.6), and rearranging, the final expression is:

— drw.(|E|) + epon 2 = 8;(;“ In (1 + 2vsinh? <¢>) (3.21)

By applying the Booth model for dielectric saturation for €g,., and the equation for the
self energy (Equation (3.3)), the left hand side becomes:

3(ew — 1?) {m (Sinh(%atE)

2 E 2
statE

2 f)/sat

) - ’}/satE COth (,}/SatE) - 1:| ) (322)

which is consistent with [40] where separation of variables was used to compute the first
integral. Making the substitution for the potential drop across the diffuse layer V; =
Goo — O = —¢p (due to ¢oe = 0), Equations (3.21) and (3.22) can be solved for V, in the
case of dielectric saturation (DS) as

1 v
VdDS = 2arcsinh [\/2— (692 GBR) _ 1>] , (3.23)
v

where g = vat/(efAp) = 0.7\/c, Ej, is the electric field at x = h, and

I)/sat VsatEh

Note that the potential drop across the diffuse layer due to dielectric saturation, V%, is
now a function of the electric field E; evaluated at the interface of that layer with the
Stern layer, or with the electrode in the case h = 0. Using Gauss’ law, Ej, can be related
to the total charge density per unit area in the diffuse layer, oq4.

1 2 2

G(Er) = 5 (Yo En) ("— +6 (1 - ”—) (coth (Yot En) —

€w €w

Dielectric Decrement

In the case of dielectric decrement, the Beltrami identity gives:

€ ec
;T E* + ze(cy — )¢ — pycy — pic_
kT
+ s
E[ €acE E? <4acoo(a’8)egwE2 cosh(zefB¢)(1 — ’/))E}
Ar 87 (1—v+ve e cosh(zef¢))?

(a’cyIn(a’cy) + a’c_In(a’c ) + (1 — a’cy — a’c_) In(1 — a’cy — a’c_))

—C. (3.25)
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Applying the same boundary conditions as in the saturation case (i.e. ¢ =0 at z — o)
and rearranging gives the final expression as:

E? 2 o

- [€w — 2ap4] = % In [1 — vt ve cosh(ze&ﬁ)] , (3.26)
where

Py =Cy + (3.27)

B 2csce” 57 E° cosh(zeB¢) (3.28)
1— v+ ve 2B cosh(zeﬁgﬁ)' |

Making the substitution for the potential drop across the diffuse layer V; = ¢oo — pp, = —p,
(due to ¢oo = 0), Equation (3.26) can be solved for V; in the case of dielectric decrement

(DD) as
) , (3.29)

where L(E) = W(ZdE2(1 - V)e(%‘*%)EQ), with W being the Lambert-W function. Here,

auxiliary dimensionless variables & = acy, /€, and E =E, /E., where E, = \/87Tcs./ (Péw)
comes from normalizing the potential by ¢. = zef and distance from the electrode interface,
x, by the Debye length, i.e. x. = Ap = \/ew/SWBzZezcoo (the distance into the electrolyte
for which a charge carrier is felt).

262
—1+ =
L(E)

1 1—-v .z
| e — arccosh( Y ab?
zef v

3.5 Diffuse Layer Capacitance

The differential capacitance of the diffuse layer per unit area is defined to be C; = (Ciliv“j,

where o4 is the total charge density per unit area in diffuse layer and V; = —¢;, is the
potential drop across that layer [40]. Using Gauss’ law, the charge density in the diffuse
layer is 04 = —e€, E)/ (47), where Ej is the value of the electric field E in the diffuse layer
evaluated at = h™, the interface between diffuse layer and the Stern layer, €, is the
dielectric permittivity at the interface, set to €poon(z = h) when considering dielectric
saturation alone, and €4..(x = h) when considering dielectric decrement alone. In the case
of a vanishing Stern layer, h = 0 so that Fy and e(x = 0) then refer to values evaluated at
the interface between the diffuse layer and electrode (graphene).

Bazant et al. [48] showed that the diffuse layer capacitance may be generally expressed
as Cy = —pn/Ep, where p, = ze (cy(Ey) — c_(E})) is the volume charge density in the
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electrolyte evaluated at the interface x = 0. The form comes from exploiting the definition

of the surface charge density of the diffuse layer, o4 = [ p(¢, E)dz, and making a change
0

of variables from position x to potential ¢. Equations (3.21) and (3.26) can then be solved
numerically for Fj, in terms of ¢; and then used in the expressions for ion concentrations
at x = h to evaluate the diffuse layer capacitance Cy for any given value of the potential,

¢n = —Vy. Then, the diffuse layer capacitances are written as
C inh vbs
cps—=2_ 1 (2eV, ") — (3.30)
E 1 —v+ vcosh(zepV,P%)
DD _ Cpb e~ sinh(zefV,PP) (3.31)

B 1— v+ veaf? cosh(zeVPP)’

where Cp = €,/ (4m\p) is the Debye capacitance. In the limit of large diffuse layer po-
tential, the capacitance for all cases exhibit a universal square root dependence on the po-
tential. This limit can be found by replacing cosh(ze3V,) by e*#IVal /2 and sinh(ze3V}) by
e*#IVal /2 and neglecting the terms which are not exponentially large [48, 65, 102]. For the
case of steric effects, the large potential limit is C;j ~ 1/+/ze8|Vy| 4+ In(v/2), for dielectric
saturation and steric effects, the large potential limit is CP5* ~ 1/4/2zeBv|Vy|, and for di-

electric decrement and steric effects, the large potential limit is CPP* ~ 1/1/ze]Vy| + In(2a)
[41, 48, 65]. Interestingly, the high potential limits for steric effect and for dielectric decre-
ment are quite similar.

Results & Discussion

In Figures 3.5, 3.6, and 3.7, the diffuse layer capacitance, Cy is explored for several model
combinations. Physically, Cy is the differential capacitance of the interface of the diffuse
layer and an ideal metallic electrode without a Stern layer between them. When expressing
the bulk concentration of ions, ¢4, molar units are used, where M=mole/litre, and denote
the numerical value of the concentration by c. Similarly, ion polarizability « is expressed
in units of M.

Figure 3.5 shows the Poisson-Boltzmann capacitance given by Equation (2.25) on Page
21 and the capacitance in the case of steric effects, which is given by Equation (3.30) with
the corresponding potential V, for steric effects. The Poisson-Boltzmann equation gives
capacitances which are “U”-shaped at both large and small concentrations. When the ions
are considered to have a finite size, i.e. in the case of steric effects, the capacitance exhibits
a maximum value, and gives rise to either camel-shaped or bell-shaped capacitances. In the
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Figure 3.5: Comparisons of the diffuse layer capacitance for the case of the Poisson-
Boltzmann model, where ions are treated as point charges, and the case of steric effects,
where the finite size of ions is considered. The thin lines show a concentration of ¢ = 1073 M
and the thick lines a concentration of ¢ = 1 M. Panel (a) shows the results for when the
ion size is @ = 2 A and panel (b) shows the results for when the ion size is a = 7.1 A.

case of smaller ions, “camel” shaped capacitances occur, with maxima much larger than the
corresponding maxima in the case of large ions. In the case of large ion size, panel (b), the
maximum in the capacitance occurs at the minimum of the “U”-shaped capacitance of the
Poisson-Boltzmann model, yielding a transition from a local minimum in the capacitance
to a local maximum for large ion concentrations. In the case of lower concentrations,
“camel”-shaped capacitance occur with the maxima shifted to slightly lower potentials for
larger ion sizes.

In panel (a) of Figure 3.6, the case of dielectric saturation without steric effects is shown
(B curve), along with the Poisson-Boltzmann (PB curve) capacitance. The Booth model
only gives an offset to the U-shaped capacitance of the Poisson-Boltzmann model in the
form of a closely-spaced local peak-and-valley pair. In panels (b) and (c), finite ion size is
introduced into the dielectric saturation model (B+S curves) for two ion sizes: a = 2 A in
panel (b) and @ = 7.1 A in panel (c). The capacitance in these panels becomes “camel”-
shaped, except in the case of large concentration, ¢ = 1 M, and large ion size, a = 7.1 A,
where the capacitance is bell-shaped and forms a local maximum at V; = 0. Note how for
small ions, two peaks occur in the capacitance: one primary peak, evident in all panels,
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Figure 3.6: Comparisons between the Poisson-Boltzmann (PB) capacitance and the ca-
pacitance arising from the case of dielectric saturation via the Booth model (B). Panel (a)
shows the case for point ions, where only the Booth model is considered in the case of
dielectric saturation. Panels (b) and (c) show the case of dielectric saturation with steric
effects (B+S) for two ion sizes: a small ion size of a = 2 A and a large ion of a = 7 A. The
thin lines indicate a small ion concentration of ¢ = 1072 M and the think lines indicate a
large ion concentration of ¢ =1 M.

due to the dielectric saturation effects, and a secondary peak due to steric effects in the
diffuse layer [40]. In the case of larger ions, the secondary peak is removed, suggesting that
for high enough potentials and small enough ion sizes, a secondary peak is possible. While
currently no experimental evidence for a secondary peak has been reported, a set of data
for a sodium fluoride, NaF, aqueous solutions showed “camel-shaped” capacitance, which
is converted to a “bell-shaped” capacitance with increasing ion concentration, with a clear
upturn of the capacitance for large values of the potential [117, 118]. In contrast, a set of
data for a potassium hexafluorophosphate (KPFg) aqueous solution only showed a “camel-
shaped” capacitance with no upturn for large potentials [127]. If the upturn for the NaF
data is considered to be an onset of the secondary peak, which is not fully resolved because
of a limited range of the applied potential in the experiment [117, 118], then the size of
hydrated ions in the NaF solution maybe small enough to be comparable to the critical
ion size [40], whereas the size of hydrated ions in the KPFg solution is sufficiently larger
than the critical a and hence no upturn is observed [127]. While this seems like a plausible
hypothesis, it should be mentioned that all the attempts at modelling these experiments
included some form of a Stern layer, either in combination with the Grahame model for
dielectric saturation, [117, 118] or in combination with the Bikerman-Freise model for steric
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effects [48, 103, 122].
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Figure 3.7: Comparisons between the Poisson-Boltzmann (PB) capacitance and the capaci-
tance arising from the case of dielectric decrement (D) for two ion polarizations: @ = 3 M~*
(black dashed lines) and o = 12 M~ (black solid lines). Panel (a) shows the case for point
ions, where only the Booth model is considered in the case of dielectric saturation. Panels
(b) and (c) show the case of dielectric decrement with steric effects (D+S) for two ion sizes:
a small ion size of a = 2 A and a large ion of @ = 7 A. The thin lines indicate a small
ion concentration of ¢ = 1073 M and the thick lines indicate a large ion concentration of
c=1DM.

Figure 3.7 shows a comparison between the Poisson-Boltzmann capacitance and the
case of dielectric decrement (D) without steric effects for a low polarizability of o = 3 M ™!
(black dashed lines) and high polarizability of a = 12 M~! (black solid lines). In all
panels, the dielectric decrement gives rise to camel-shaped capacitances, with increasing
polarizability giving peaks which are smaller in magnitude. Increasing the ion size from
panel (b) to panel (c) shows that for lower polarizations, the peak in the capacitance sees
a larger reduction in magnitude, showing that for lower polarizations (black dashed lines),
a strong interplay between the dielectric decrement and steric effects occurs. For larger
polarizations (solid black lines), panels (b) and (c) show little difference in capacitance
magnitude, suggesting that the dielectric decrement effect prevails over ionic steric effects.
The characteristic“U”-shaped capacitance of the Poisson-Boltzmann model is changed to
a camel-shaped capacitance at low ion concentrations, ¢ = 10~2 M, and for low ion polariz-
abilities when the ion size is small enough. At large concentrations and high polarizabilities,
the capacitance is bell-shaped, with a local maximum at potential V; = 0.
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To explore the behaviour of the transition between the camel- to bell-shaped capacitance
in the case of dielectric saturation, the differential capacitance CP9 Equation (3.30) is
expanded for small potential V;, Equation (3.23), and then the second derivative is taken
to find the criteria for the transition from a local minimum to a local maximum. This gives
a generalized condition of:

167cy

56E2

sat

v —1+ (e, —n? > 0, (3.32)
where Fgy = 1/9sa¢ ~ 1 V/nm is the critical electric field at which dielectric satura-
tion occurs within the Booth model [113], which is valid for small diffuse layer potentials
|V.P%| < 1 V. For an ion size of @ = 7.1 A, the critical ion concentration for the cross-over
from camel- to bell-shaped capacitance occurs at ¢ > 0.66 M. In the case of steric effects
alone, i.e. v — 0 the condition for the cross-over becomes v > 1/3, confirming the result
derived by Kornyshev [65]. For this case, when a = 7.1 A, the critical concentration is
¢ > 0.77 M, which is slightly higher than the critical concentration for dielectric saturation
and steric effects. This critical concentration is confirmed in Figure 3.8, where the critical
concentration falls between the dashed green and dashed black lines in both panels.

Using the parametric representation of the relation between the dielectric decrement
capacitance CP? in Equation (3.31) and the diffuse layer potential V.P? in Equation (3.29),
a generalized condition for the transition from camel- to bell-shaped capacitance for di-
electric decrement can be expressed as

48va* — 406* — 24va + 16a + 3v — 1 > 0, (3.33)

where & = ac/e,, and is valid for small potential |V?P| < 1 V. This cross-over criterion
is found in the same way as the dielectric saturation criteria, where Equations (3.29) and
(3.31) are expanded for small potential V;;, and then the second derivative is taken to find
the critical point. Using an ion size of @ = 7.1 A, the critical ion concentrations for the
“camel” to “bell” transition is ¢ > 0.61 M for « =3 M~ and ¢ > 0.34 M for o = 12 M~ 1.
These critical concentration values are corroborated by the curves in Figure 3.8, where for
small polarizations, the transition occurs between the solid green and solid black lines in
panel (a) and for high polarizations, the transition occurs between the solid blue and solid
green lines in panel (b).

Figures 3.5, 3.6, 3.7, and 3.8 showcase that the effects added to the Poisson-Boltzmann
model, cause a transition in the diffuse layer capacitance C,; from a “U”-shaped dependence
to either a camel-shaped or bell-shaped capacitance. The latter arises only for large ion
concentrations and large ion sizes, where a maximum is obtained at V; = 0. In the case of
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Figure 3.8: A comparison of the diffuse layer capacitance for dielectric saturation, and the
diffuse layer capacitance for dielectric decrement. Dashed lines show the capacitance for
the case of dielectric saturation, CP9  and solid lines show the capacitance for dielectric
decrement, CPP. Panel (a) shows the results for a polarization of « = 3 M~! and panel
(b) shows the results for polarization a = 12 M~1. Curves are shown for concentrations

¢=0.1M to ¢ =1 M, and for ion size a = 7.1 A.
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dielectric saturation (Figure 3.6) a dramatic effect is observed, where a sharp lowering of
the diffuse layer capacitance Cy for large V; occurs after the peak positions, whereas the
lowering is more broad in the case of steric effects (Figure 3.5) and dielectric decrement
(Figure 3.7). This effect can be seen from the large potential limits of the diffuse layer
capacitances, where the capacitance for dielectric saturation decays as ~ 1//2zefv|Vy|,
where as both steric effects and dielectric decrement decay as ~ 1/+/zeB|Vy| + In(v/2) and
~ 1/y/zeB|V4| + In(2a), respectively. In the cases where only dielectric saturation and
dielectric decrement are considered, i.e. panels (a) in Figures 3.6 and 3.7, the capacitance
arising from the Booth model in the case of dielectric saturation increases without bound
for increasing potential V; in a manner that parallels the increase in the Poisson-Boltzmann
model, unlike the capacitance arising from dielectric decrement which decays following the
inverse square root asymptotics given above. Note how in the case of dielectric saturation
(Figure 3.6), the addition of steric effects bring the high potential end of the curve back
down to more physical values of capacitance, whereas in the case of dielectric decrement
(Figure 3.7), the addition of steric effects has minimal impact on the curves, but does result
in a minor reduction in magnitude of the capacitance. In the case of dielectric decrement,
the effect of including steric effects is minimal for small ions, which could be due to the
fact that the magnitude of the ion polarizability partially accounts for the size of ions.

3.6 Inclusion of a Stern Layer

In this section, a structure consisting of an ideal metallic electrode, a Stern layer, and
a diffuse layer in the electrolyte is considered. In addition to the modifications to the
dielectric permittivity and finite ion size effect, a Stern layer will be considered in tandem
with the already established effects. The Stern layer is considered to be a uniform, charge-
free compact layer of thickness h positioned between the diffuse layer and charged electrode
[66]. While the Stern layer is itself a form of steric effect, unlike the addition of steric
effects in the electrolyte, the Stern layer introduces the finite size of ions at the interface
(boundary) between the electrode and the electrolyte. This layer is characterized by its
dielectric permittivity, €,, which is assumed to be constant, and gives rise to a constant
electric field in the layer. Hence, the electric field in the Stern layer is also constant and is
given by Es = (¢pg — ¢p) /h, where ¢g = ¢(0) is the surface potential and ¢y, = ¢(h) is the
potential at the boundary = = h between the Stern and diffuse layers (Figure 3.4).

Besides imposing continuity of the electric potential, the electrostatic jump conditions
for the electric field E(z) = —%ﬁf) must be satisfied at z = 0 and = h. Assuming a zero
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electric field in the region x < 0, the electric field at x = 0% can be written as
esEs = 4Anoy,, (3.34)

where o, is the surface charge density on the ideal metallic electrode, while the jump
condition for the electric field at x = h is

en By, = €,E,, (3.35)

with €, as the dielectric permittivity at x = h and the electric field E;, = —% ont
evaluated at the inner edge of the diffuse layer.

To specify the parameters which characterize the Stern layer, it is reasonable to choose
its thickness to be h = a/2, asserting that ions cannot approach graphene at distances
shorter than their radius [111, 112]. By choosing h = a/2, the Stern layer is consistent
with the physical meaning of the parameter a in the Bikerman-Freise model for steric
effects. Generally, the dielectric permittivity of water in the Stern layer, €, is considered
to be reduced with respect to its value in the diffuse layer, although no consensus exists
as to how ¢, can be determined. It has been speculated that a finite jump in the solvent
dielectric permittivity occurs as the boundary between the Stern layer and the diffuse
layer is crossed [128, 129, 130]. In the absence of specific ion adsorption at the boundary
between the Stern and diffuse layers or when accumulation of the polarization charge is
ignored, it is plausible to suggest that the electric field is continuous at the Stern plane
r = h, ie. E; = E, [111, 112]. The jump condition in Equation (3.35) requires that
€s = €Booth (Fn) for dielectric saturation, allowing the overall dielectric permittivity in the
electrolyte to be a continuous function for all z > 0, while maintaining consistency with the
modified Poisson-Boltzmann equations. Similar reasoning leading to continuous dielectric
permittivity at the interface with Stern layer can also be applied for dielectric decrement.

From Figure 3.4, the potential drop across the diffuse layer is V; = ¢oo — g = — ¢ for
x > h and the potential drop across the Stern layer is Vi = ¢, — ¢ for 0 < x < h, allowing
the total applied gate potential to be V, = ¢, + /e = ep/e, which may be decomposed
as

V, = Vi+ Vi, (3.36)

and the differential capacitance per unit area is
chl=c'+ 0, (3.37)

using the fact that CiVy; = o4 (from Equation (2.36) on Page 23). Note here that Cj is
either CP% in the case of dielectric saturation (Equation 3.30) and CPP in the case of
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dielectric decrement (Equation (3.31)), and that setting C, — oo in Equation (3.44), i.e.
allowing for a metallic electrode, returns the result in Equation (3.37). Interestingly, the
connection between the Stern layer and the diffuse layer is a series connection of capacitors.
Finally, note that with the above definition of the Stern layer, no new free parameters are
introduced into the models, and the model must continuously adjust to changes of the
electric field due to the changing surface charge density on the electrode.

Results & Discussion

Figure 3.9 shows the total capacitance of the diffuse layer modelled with a Stern layer
placed adjacent the metallic electrode in the electrolyte. Both the cases of the typical
Poisson-Boltzmann capacitance with a Stern layer (PB) and dielectric saturation via the
Booth model with Stern layer (B+S) are shown. In the case of the Poisson-Boltzmann
model, decreasing the thickness of the Stern layer allows the capacitance Cys to increase
without bound. In the case of dielectric saturation, the Stern layer eliminates the secondary
peak seen in Figure 3.6, leaving a typical “camel”-shaped capacitance, and also eliminates
the increasing capacitance without bound for high potentials in panels (a) and (b) of
Figure 3.6. Increasing the ion size from ¢ = 2 A in Panel (a) to a = 7.1 A in Panel (b)
causes a large drop in the magnitude in the capacitance, as well as a broadening of the
peak. Comparing Figure 3.9 to Figure 3.6, a slight shift in the maxima location to higher
potentials is observed when a Stern layer is included.

For the dielectric decrement case, the results for the diffuse layer capacitance when a
Stern layer is included adjacent to the metallic electrode are shown in Figure 3.10. In
both cases of polarizability, i.e. « =3 M~ and a = 12 M~!, the peaks in the capacitance
are significantly lowered from their counterparts in Figure 3.7 where no Stern layer is
included. The peaks also become broadened and shift to slightly higher potentials, similar
to the effect seen in the case of dielectric saturation with a Stern layer in Figure 3.9.

In both Figures 3.9 and 3.10, the Stern layer acts to decrease the magnitude of the
diffuse layer capacitance, Cy,, and broaden the peaks, particularly in the case of large
ions (a = 7.1 A), where the effect of the Stern layer is stronger. The typical “camel”-
shaped capacitances are observed at both high and low concentrations when the ion size
is small, shown in Panel (a); when the ion size is increased, at high concentrations a bell-
shaped capacitance is formed, with a maximum at V; = 0. In defining the Stern layer,
the parameters are chosen specifically to make them consistent with both the Bikerman-
Freise and Booth models, so that no new free parameters are introduced other than the ion
diameter a. By varying the value of a, results from the combined Bikerman-Freise-Booth-
Stern and the dielectric decrement models can be brought to a qualitative agreement with
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Figure 3.9: Comparisons between the Poisson-Boltzmann (PB) capacitance and the capac-
itance arising from the double layer consisting of a Stern layer and dielectric saturation in
the electrolyte via the Booth model (B+S). The case of dielectric saturation with steric
effects (B+S) is shown for two ion sizes: a small ion size of a = 2 A shown in Panel
(a) and a large ion size of @ = 7 A shown in Panel (b). The thin lines indicate a small
ion concentration of ¢ = 1072 M and the think lines indicate a large ion concentration of
c=1M.

an array of experimental observations for differential capacitance in aqueous solutions with
metallic electrode [117, 127].

3.7 Modifications for a Graphene Electrode

In this section, a structure consisting of an interface of a graphene electrode and the diffuse
layer in the electrolyte. Unlike metallic electrodes, graphene exhibits strong effects due to
the smallness of its quantum capacitance near the Dirac point (or point of zero charge),
which is a consequence of the low-energy properties of the electronic band structure in
carbon-based materials. To change from a metallic electrode to a graphene electrode, a
single sheet of large area graphene is placed at * = 0. Then the surface potential on
graphene ¢, defines the Dirac point of its 7 electron bands as ep = —e¢q, as shown in
Figure 3.4. Note that the charge density in graphene in Equation (2.14) on Page 18 and
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Figure 3.10: Comparisons between the Poisson-Boltzmann (PB) capacitance and the ca-
pacitance arising from the double layer consisting of a Stern layer and dielectric decrement
(D+S) in the electrolyte for two ion polarizations: a = 3 M~! (black dashed lines) and
a =12 M~ (black solid lines). The case of dielectric decrement with steric effects (D+S)
for two ion sizes: a small ion size of @ = 2 A shown in Panel (a) and a large ion size of
a = 7 A shown in Panel (b). The thin lines indicate a small ion concentration of ¢ = 1073 M
and the think lines indicate a large ion concentration of ¢ =1 M.

its quantum capacitance in Equation (2.41) on Page 25 are determined by the potential
difference V, = (er —ep) /e = ¢po+cr/e. When fe|V,| > 1 it follows from Equation (2.14)
on Page 18 that C, ~ e*D(e|V,]), whereas for |V,| < 1 V one can invoke the linearized

density of states given by D(e) ~ W(?LE)Z,

where vp ~ 10% m/s is the Fermi speed of
graphene [8].

For the doping densities of interest in sensor applications, it suffices to use the linearized
approximation for the density of states. The quantum capacitance attains a minimum value
of C7"" = 4e*In(2)/ [ f(hvp)?] = 0.8 uF /em?® for V; = 0 at room temperature and exhibits
a linear increase with the potential according to C,, =~ fBe|V,|Cy/ In(4) for fe|V,| 2 1, which
is a signature of the Dirac cone, or the massless Dirac fermions approximation for the m
electron bands in graphene [8, 95].

From Figure 3.4 (omitting the Stern layer by setting the thickness h — 0), the potential
drop across the diffuse layer is V; = ¢oo — ¢g = —¢o for > h and the potential drop
across the graphene layer is V; = ¢y +cp/e, allowing the total applied gate potential to be
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Vi = ¢ + €r/e = er/e, which may be decomposed as
Vo= Vit V. (3.38)

and the differential capacitance per unit area is given by

o, dV,
Col = Do (3.39)
dvy dv,
_ aVa  dVy 4
dO’d + dO’d (3 0)
1 1
— + : 3.41
CalVa) T Gy (341)

where the charge neutrality condition, o4(Vy) + 04(V,;) = 0, has been used, Cy is the
capacitance of the diffuse layer, and C; is the quantum capacitance of graphene. This
series connection of the diffuse layer and the graphene electrode is the same result obtained
via setting Cy — oo in Equation (2.38) on Page 24, i.e. removing the Stern layer from the
electrolyte.

Results & Discussion

In Figure 3.11, the cases for the Poisson-Boltzmann model, where ions are treated as point
charges and as having finite ion sizes are considered when a graphene electrode is used. At
both 107 M and 1 M, the quasi-linear dependence of the total potential Cy, on the total
applied potential V, comes from the characteristic V-shaped dependence of the quantum
capacitance C, of graphene on its doping potential V. It should be mentioned that, owing
to the smallness of the quantum capacitance C;, with respect to the diffuse layer capacitance
Cq4, a much larger fraction of the total applied potential, V, =V, + V;;, goes to doping the
graphene, i.e., V, =V, >V, [40, 41].

Probably the most dramatic effect of reducing the ion size is observed when the total
capacitance Cg, is only modelled by including the ion steric effects via the Bikerman-
Friese model. The broad peak at V, ~ 2 V at finite ion sizes, (S curve), in panel (b)
completely disappears at the smaller ion size in panel (a). Moreover, at smaller ion sizes, the
capacitances accounting for steric effects practically coincide with the Poisson-Boltzmann
capacitance of point ions (a = 0). This is consistent with the observation made by Bazant
et al. [48] in studying the Bikerman-Friese model, where unreasonably large ion sizes had
to be used to give rise to “camel-shaped” capacitance for metallic electrodes in aqueous
solutions.
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Figure 3.11: Comparisons of the total capacitance of a series connection between the
capacitance arising from a graphene electrode and the diffuse layer capacitance. Two
situations are included for the diffuse layer: the Poisson-Boltzmann (PB) model where
ions are treated as point charges and the steric (S) model where ions have finite sizes.
The thin lines show a concentration of ¢ = 10~ M and the thick lines a concentration of

¢ =1 M. Panel (a) shows the results for when the finite ion size is a = 2 A and panel (b)
shows the results for when the finite ion size is a = 7.1 A.
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Figure 3.12 shows the results for the Poisson-Boltzmann model (PB) and the dielectric
saturation model (B) when a graphene electrode is used. Only a relatively small change
in the shape of the total capacitance Cy, is observed when the ion concentration changes
from ¢ =1 M (thick lines) to ¢ = 107 M (thin lines). In Panels (a) and (b), a small and
shallow minimum occurs in the case of dielectric saturation, which is a remnant from the
secondary peak observed in the diffuse layer (see Figure 3.6, panels (a) and (b)). In panels
(b) and (c), a maximum in the total capacitance Cy, occurs at approximately ~ 1.5 V for
small ion sizes, a = 2 A, and at approximately ~ 1 V for large ion sizes, a = 7.1 A. With
increasing ion size, this peak becomes sharper, as well as smaller in magnitude. When
compared to their metallic electrode counterparts in Figure 3.6. the peaks are smaller in
magnitude and shift to higher potentials, owing to the fact that the quantum capacitance
of graphene () is much smaller than that of the diffuse layer Cy, and therefore dominates
the total capacitance.
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Figure 3.12: Comparisons of the total capacitance for a series connection between the
capacitance arising from a graphene electrode and the diffuse layer capacitance. In the
diffuse layer, the Poisson-Boltzmann (PB) capacitance and the capacitance arising from
the case of dielectric saturation via the Booth model (B) are used. Panel (a) shows the case
for point ions, where only the Booth model is considered in the case of dielectric saturation.
Panels (b) and (c) show the case of dielectric saturation with steric effects (B+S) for two
ion sizes: a = 2 A and a = 7 A. The thin lines indicate an ion concentration of ¢ = 1073 M
and the thick lines indicate a large ion concentration of ¢ =1 M.

In Figure 3.13, the total capacitance according to the Poisson-Boltzmann (PB) and the
dielectric decrement (D) models are shown for a graphene electrode. When compared to
their metallic electrode counterparts in Figure 3.7, the same features are evident. Increasing
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the ion size from point ions to small ions, and then to large ions reveals a strong interplay
between the steric effects and the dielectric decrement effect at low polarizations. For
large polarizations, very little difference between the capacitance curves is observed, again,
suggesting that the effect of dielectric decrement prevails over the finite size of ions in
this case. Similar to Figures 3.11 and 3.12, the peaks in the capacitance are lower in
magnitude and shifted to higher potentials, when compared to a metallic electrode (Figure
3.7) showcasing again the smallness of the quantum capacitance of graphene, C,.
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Figure 3.13: Comparisons of the total capacitance for a series connection between the
capacitance arising from a graphene electrode and the diffuse layer capacitance. In the
diffuse layer, the Poisson-Boltzmann (PB) capacitance and the capacitance arising from
the case of dielectric decrement (D) for two ion polarizations: o = 3 M~! (black dashed
lines) and v = 12 M~ (black solid lines) are used. Panel (a) shows the case for point ions,
where only the Booth model is considered in the case of dielectric saturation. Panels (b)
and (c) show the case of dielectric decrement with steric effects (D+S) for two ion sizes:
a=2A and a = 7 A. The thin lines correspond to ionic concentrations of ¢ = 1072 M and
the thick lines to a concentration of ¢ =1 M.

The curves for the dielectric decrement and steric effects (D+S) case in panels (b)
and (c) of Figure 3.13 exhibit a broad peak at the potentials 1 < V, < 2.5 V, which
persists even in the limit of point ions (panel (a)). Given the uncertainty regarding the
appropriate choice for ion sizes [48], it seems that only a combination of the ion steric
effects with dielectric decrement is capable of giving rise to a stable, broad peak in the
total capacitance Cy, at applied potentials V,, 2 1 V. While conclusive evidence for such
“camel-shaped” capacitance of electrolytically gated graphene is still missing, the data
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reported by Du et al. [131] does show some asymmetrically positioned, broad peaks in the
total capacitance at relatively large applied potentials.

3.8 Total Capacitance

A structure consisting of a graphene electrode, Stern layer, and diffuse layer in the elec-
trolyte (Figure 3.4) is considered here. From Figure 3.4, the potential drops (or voltages)
across graphene are V, = ¢ +¢ep/e, Vi = ¢, — ¢ for 0 < = < h across the Stern layer,
and Vj = ¢oo — ¢ = —¢p, for x > h across the diffuse layer. Thus, the total applied gate
potential, V, = ¢ + er/e = er/e, may be decomposed as

Vo=Va+Vs+ Vg (3.42)

The inverse of the total differential capacitance of electrolytically gated graphene is given
by

cl = Vo (3.43)

= o,
1 1 1
— + =t —, 3.44
GV @ Ty (3.44)

corresponding to a series connection of the diffuse layer capacitance, Stern layer capacitance
and the graphene quantum capacitance (Figure 3.4).

It should be stressed that the values of the graphene potential V, and the diffuse layer
potential Vj, which are used in the calculations of the quantum capacitance C; and the
diffuse layer capacitance Cy are determined self-consistently by solving the equation

og(Vy) +0a(Va) =0, (3.45)

which expresses the charge neutrality of the structure. The expression for the surface
charge density of graphene o,(V;) is given in Equation (2.15) on Page 18, whereas the
surface charge density of the diffuse layer o,4(V;) can be related to the values of the dielectric
permittivity and the electric field at the interface of the diffuse layer and the Stern layer
by Gauss’ law, ¢, By, = —47mo,; in a manner that depends on the model used for modifying
the Poisson-Boltzmann equation. Here ¢ is the dielectric permittivity at x = h and E}, is
the electric field at = = h.

To discard the Stern layer, the Stern layer potential Vj is set to zero in Equation (3.42)
and the thickness h — 0 so that the Stern layer capacitance C; — oo in Equation (3.44).
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The total capacitance then becomes a series connection of the diffuse layer capacitance
and the graphene quantum capacitance as given in Equation (3.41). Similarly, replacing
graphene by a metallic electrode with its surface at x = 0 would have the potential of
graphene V;, = 0 giving quantum capacitance C, — oo in Equation (3.44), so that the
total capacitance of the electric double layer is a series connection of the diffuse layer
capacitance and the Stern layer capacitance as given in Equation (3.37) with the total
applied gate potential given by V, = V; + V.

Results & Discussion

In Figure 3.14, the total capacitance is shown for a graphene electrode system, where a
Stern layer is included. Result from the model for both the Poisson-Boltzmann case (PB)
and the dielectric saturation with steric effects case (B+S) are included. Likewise with
their metallic electrode counterparts in Figure 3.9, the Stern layer results in a lowering
of the magnitude and broadening of the peak in the case of dielectric saturation. The
peaks in the case without Stern layer (Figure 3.12), show that the peaks for smaller ions,
a=2A, are reduced in magnitude, and that the peaks in both cases of finite ion sizes are
broadened. The Stern layer also completely eliminates the remnants of the secondary peak
from the diffuse layer, as is the case when a metallic electrode is considered (Figure 3.9).
Although no significant shift in the position of the primary peak in the total capacitance
Clasq 1s evident, it should be emphasized that the peak broadening due to the Stern layer
also affects the region of potentials V,, below that peak, where the quantum capacitance of
graphene dominates the total capacitance Cys,. This finding points to the importance of
using a Stern layer in modeling the capacitance of electrolytically-gated graphene [40)].

Figure 3.15 shows the total capacitance for the Poisson-Boltzmann model (PB) and
the dielectric decrement with steric effects model (D+S). As with the results of dielectric
saturation above, the Stern layer reduces the magnitude of the peaks in the dielectric decre-
ment curves (black lines) and slightly broadens the peaks, compared to their counterparts
without a Stern layer in Figure 3.13. When comparing the capacitances to their metallic
electrode counterparts in Figure 3.10, it is clear that the quantum capacitance of graphene
C, dominates the total capacitance.
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Figure 3.14: Comparisons of the total capacitance for a series connection between the
capacitance arising from a graphene electrode, the capacitance of the Stern layer, and the
diffuse layer capacitance. In the diffuse layer, the Poisson-Boltzmann (PB) capacitance
and the capacitance arising from the case of dielectric saturation via the Booth model (B)
are used. Panel (a) shows the case for point ions, where only the Booth model is considered
in the case of dielectric saturation. Panel (b) shows the case of dielectric saturation with
steric effects (B+S) for two ion sizes: a =2 A and @ = 7 A. The thin lines indicate an ion
concentration of ¢ = 1073 M and the thick lines an ion concentration of ¢ =1 M.

3.9 Numerical Solutions to the Modified Poisson-
Boltzmann Equation

While the differential capacitance is an analytic quantity accessible through the first inte-
gral of Equation (3.9) and Equation (3.17), solutions of the Poisson-Boltzmann equation
for the potential ¢ as a function of position (in this case, distance x away from the elec-
trode) are generally not analytic due to the nonlinearity of the problem. Thus the modified
Poisson-Boltzmann equation must be solved numerically.
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Figure 3.15: Comparisons of the total capacitance for a series connection between the
capacitance arising from a graphene electrode, the capacitance of the Stern layer, and the
diffuse layer capacitance. In the diffuse layer, the Poisson-Boltzmann (PB) capacitance and
the capacitance arising from the case of dielectric decrement (D) for two ion polarizations:
a =3 M™! (black dashed lines) and o = 12 M~ (black solid lines) are used. Panel (a)
shows the case for point ions, where only the Booth model is considered in the case of
dielectric saturation. Panel (b) shows the case of dielectric decrement with steric effects
(D+S) for two ion sizes: @ = 2 A and a = 7 A. The thin lines indicate an ion concentration
of ¢ = 1073 M and the thick lines an ion concentration of ¢ =1 M.

3.9.1 Collocation Method

A well established method for solving ordinary differential equations, partial differential
equations, and integral equations is the method of collocation. The method requires a
finite set of candidate or test solutions, which are typically polynomials, and a set of
collocation points at specific location the domain of the problem. To solve the differential
equations, the method then selects the candidate solution which satisfies the problem at
the collocation points while also minimizing the residual [132].

As this is a well documented method for numerical computation, many packages that
implement the collocation method are available. For this work, the solve_bvp function
from the scipy.integrate package in python will be used [132]. The solver requires two
boundary conditions, which are chosen to be ¢(0) = V, and ¢(z)|z_,00 = 0. Here T = /A p,
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o(z) = zPep(x), A\p is the Debye length, and p = 34—, where 2ec is a measure of the
total amount of charges (either positive or negative) in the bulk electrolyte.

Expressions for Second Derivative

To implement this method to find solutions in terms of position for the charge densities,
Equations (3.9) and (3.17) must be expressed in the form ¢"” = f(¢(x), ¢'(z)).

For the case of dielectric saturation, the dielectric permittivity is given by the Booth
model in Equation (3.10), and the second derivative can be expressed by:
—DS ,_ T
2 o 5T (@) \ do(@)’ )
dz €Booth (dqcblg‘c)> + 6/Booth (ddc)l(f)> d(z()i(f)

where 7(¢(T)) is the normalized charge density derived from Equation (3.7). In the case
of dielectric decrement, the dielectric permittivity is given Equation (3.13) and the second
derivative can be expressed by:

250) P8 + e (32,7 () (B2

aw T (% 7= F 7)) (@) (3.47)
Edec(¢(x)> ¢ (il?)) + 6dec,2(¢<x)7 ¢ (37)) < dz )
where edec,l(a(f)aq_b/(f)) - %@ﬁ@))u 6dec,2($(f)7$/(f)) - %@?(E))J and ﬁdec is the

normalized charge density arising from Equation (3.16).

Since the overall effect of a Stern layer is to simply lower the magnitude of parameters in
the system, to help elucidate the effects of steric effects, dielectric saturation, and dielectric
decrement on the charge density of the system, the presence of Stern layer will be omitted.

Graphene Electrode

When a graphene electrode is considered, the total applied potential becomes V, = V,+V,,
and the charge neutrality condition becomes o,(V;,) + 04(Vz) = 0. Unlike the metallic
electrode case, this requires an additional step in computation before the collocation can
be used. Due to the surface charge on graphene o4, the boundary condition at T = 0
applied to the electric field at the interface is Fy = 4mApA pog/e. Because o, is dependent
on V,, an extra step to solve for the portion of the total applied potential V, that is diverted
to graphene is required since only the total applied potential V, is specified in the system
experimentally.
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3.9.2 Charge Density solutions

In Figure 3.16, the numerical solution for the positive ion charge density is plotted as
a function of distance, with £ = 0 being the electrode-electrolyte interface for electrode
charge Fy = 1 and ion size @ = 0.71 nm. Here, the positive ion charge densities are
plotted rather than the overall charge densities so that comparisons can be made with
previous literature results, particularly in the case of dielectric decrement. The solid lines
indicate the solution for a regular metallic electrode and dashed lines show the solution for
a graphene electrode. The panels consider three cases: steric effects alone (green lines),
dielectric saturation and steric effects (red lines) and dielectric decrement (black lines) for
¢ = 1073 M in panels (a) and (b), and ¢ = 1 M in panels (¢) and (d). In the case of
dielectric decrement, the solution for & = 3 M~ is shown in panels (a) and (c), while the
solution for @ = 12 M~! is shown in panels (b) and (d).

A common pattern to the charge density profiles is evident: as one moves closer to the
electrode interface, the concentration of ions builds up. At higher ion concentrations, the
saturation effect drops off faster than that of the millimole case, with the latter tailing off
to the bulk concentration more gradually. When additional effects, dielectric saturation
and dielectric decrement, are included with the steric effect, the magnitude and thickness
of the saturated layer decrease, owing to the fact that effects in the bulk electrolyte hinder
the mobility of the ions. For the case of dielectric saturation, not only does the magnitude
of this saturated layer decrease, but the thickness in both the low voltage cases and high
voltage case is reduced, unlike the cases of dielectric decrement with steric effect and only
steric effects. This may be due to the reduced mobility of the large water molecules when
they align with the electric field and are less able to inhibit the movement of other ions in
the electrolyte. So while a saturated layer is able to form, it could be difficult for other
ions to move toward the electrode interface due to the decrease in the mobility. For the
case of dielectric decrement, the increase in « corresponds to a lowering of the magnitude
and the thickness of the saturated layer, owing to the fact that ions cannot as easily move
towards the electrode, unlike the dielectric saturation and steric cases. In Section 3.4, the
case of dielectric decrement was found to be very similar to the effect of steric effects in the
electrolyte, where the dielectric decrement caused for a slightly larger overall reduction in
the magnitude of the capacitance. Likewise with this result, the overall effect of dielectric
decrement is quite similar in shape to that of the steric effect, particularly when the ion
polarization is low.

In Figure 3.17, the numerical solution for the positive ion charge density is plotted as
a function of distance, with z = 0 being the electrode-electrolyte interface for electrode
charge £y = 5 and ion size a = 0.71 nm, and for the same cases as Figure 3.16. As
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Figure 3.16: Results for the charge density of positing ions as a function of distance = from
the electrode surface for £y = 1. Panels (a) and (b) show results for ¢ = 10=% M, with
the insets showing a reduced axis view. Panels (¢) and (d) show results for ¢ = 1 M. Each
panel shows models for the steric effect (S), dielectric saturation via the Booth model and
steric effects (B+S), and dielectric decrement and steric effects (D+S). Solid lines indicate
results for a metallic electrode and dashed lines indicate results for a graphene electrode
(denoted +G in the legend).

the applied potential to the electrode is increased, the thickness of the saturated layer
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increases, which is comparable to the results found by Hatlo et al, in the case of dielectric
decrement and steric effects [103]. With the increase in the electrode charge, the overall
applied potential of the system is increased, which in turn gives larger potentials in both
the diffuse layer V; and graphene V in the case of the dashed lines. Since the potential
has increased, it would be expected that this saturated layering effect would increase in
thickness and magnitude [103]. As with the results in Figure 3.16, the dielectric saturation
effect causes a thin saturated layer near the electrode interface, which decreases in both
magnitude and thickness much more quickly than the steric effect and dielectric decrement
with steric effect cases. Likewise with Figure 3.16, increasing the magnitude of the dielectric
decrement, «, yields a drop in the magnitude and thickness of the saturated layer. Again,
this effect is similar to the effect of steric effects on the charge density.

In both Figure 3.16 and Figure 3.17, the change from a metallic electrode to a graphene
electrode, i.e. solid lines to dashed lines, has a remarkably universal effect. The use of a
graphene electrode decreases the thickness of the saturated layer, and in the case of small
ion concentrations, decreases the magnitude of the local concentration at the electrolyte
interface. Owing to the high charge carrier density of graphene, the bulk of the applied
potential, V,, goes to charging the graphene electrode, and a small fraction of the potential
goes into the diffuse layer V,;. This phenomenon is discussed in more detail in Chapter 4.

3.10 Concluding Remarks

This chapter provides an analysis of the roles of dielectric saturation and dielectric decre-
ment in combination with finite ion size effects for the differential capacitance of electrolyt-
ically gated graphene using a mean-field theory based variational approach. Comparisons
of the capacitances were made between the two models for these effects in the electrolytic
solution, as well as when in a series connection with a metallic electrode and a graphene
electrode. Much of the analysis is aided by the fact that expressions for the capacitance
are obtained in analytic form. A thorough discussion of the diffuse layer capacitance in
the cases of steric effects, dielectric saturation, dielectric saturation and steric effects, di-
electric decrement, and dielectric decrement with steric effect is presented. The diffuse
layer capacitances exhibited camel-shaped and bell-shaped behaviour, and criteria for the
transition from one to the other was derived for both cases of dielectric saturation with
steric effects and dielectric decrement with steric effects.

Emphasis was placed on the role of a charge-free Stern layer. A simple capacitor model
for the Stern layer is considered with its thickness chosen in accord with the Bikerman-
Freise model for ion steric effects and with the dielectric permittivity in the Stern layer
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Figure 3.17: Results for the charge density of positive ions as a function of distance x from
the electrode surface for By = 5. Panels (a) and (b) show results for ¢ = 107® M, with
the insets showing a reduced axis view. Panels (¢) and (d) show results for ¢ = 1 M. Each
panel shows models for the steric effect (S), dielectric saturation via the Booth model and
steric effects (B+S), and dielectric decrement and steric effects (D+S). Solid lines indicate
results for a metallic electrode and dashed lines indicate results for a graphene electrode
(denoted +G in the legend).

that changes continuously across the boundary between the Stern and diffuse layers. In

63



this way, no new free parameters are introduced in the combined Bikerman-Freise-Booth-
Stern model besides the ion diameter. The inclusion of the Stern layer broadens, shifts,
and reduces the overall magnitude of the primary peak with increasing ion size in a series
connection of the diffuse layer capacitance and the Stern layer capacitance, Cy,. In the
case of dielectric saturation, the Stern layer also removes the secondary peak in Cy for
ion sizes a > 1 A and introduces a shallow minimum beyond the primary peak, followed
by a long plateau at larger potentials for the ion size a ~ 1 A. By varying the value of a,
results for Cy, from the combined Bikerman-Freise-Booth-Stern model can be brought to
a qualitative agreement with experimental observations in aqueous solutions with metallic
electrodes, which exhibit different behaviors of capacitance at large potentials depending
of the size of ions [117, 118, 127].

Utilizing a series connection of the quantum capacitance in graphene electrode and
the diffuse layer capacitance in the electrolyte the total capacitance is dominated by the
quantum capacitance of graphene at applied potential < 1 V, as expected. At higher
potential values, a peak develops in the total capacitance, which can be quite sensitive
to the ion size in the presence of dielectric saturation. On the other hand, combining the
finite ion size effect with dielectric decrement yields a rather stable, broad peak in the total
capacitance of electrolytically gated graphene at the applied potential values 2 1 V, which
persists even in the limit of point ions.

Including a Stern layer between graphene and the diffuse layer removes secondary peak
in the capacitance Cy, in the case of dielectric saturation, leaving only the main peak in
Casq at about 1 V, which is largely independent of the ion concentration and the value
of a. The main peak in both the case of dielectric saturation and dielectric decrement is
significantly broadened by the presence of the Stern layer, thereby affecting the region of
low potentials where the quantum capacitance of graphene dominates. Although dielectric
saturation or dielectric decrement and finite ion sizes are responsible for the appearance
of a main peak at ~ 1 V in the capacitance of electrolytically gated graphene, the Stern
layer plays important roles in both shaping that peak and controlling the behaviour of the
capacitance at larger potentials for small ion sizes.

For the charge densities, a largely universal behaviour is exhibited, with larger applied
potentials yielding a saturated layer that is larger in magnitude and thicker. The addi-
tional effects of dielectric saturation and dielectric decrement both lower the thickness and
magnitude of this saturation layer, due to their impact on the mobility of ions toward
the electrode surface. As expected in the case of a graphene electrode, the thickness of
this layer is greatly reduced, due to the ability of graphene to take a larger portion of the
applied potential than that of the diffuse layer.
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The above discussion is important for future studies of modelling electrolytically gated
graphene because typically quite large surface charge densities can be achieved in doped
graphene, which may cause extensive ion crowding and high electric fields near graphene
that may require taking into account the effects of dielectric decrement and dielectric
saturation in the adjacent solution, respectively.
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Chapter 4

Interface of Graphene and Room
Temperature lonic Liquid

Ionic liquids are considered to be molten salts composed of relatively large ions, which
exist in a liquid state at room temperature and are more inert electrochemically than
standard electrolytes [56]. As opposed to the ordinary diluted electrolytes, pure ionic
liquids are characterized by high ion concentration and lack of solvent. Because of such
unique properties, along with their low volatility, room temperature ionic liquids have been
recently studied in the context of several applications [133, 134], including novel methods
of synthesis at the nanoscale [135, 136, 137], solar cells [42], supercapacitors [43, 44, 45, 46],
and efficient gating materials [47]. Due to the fact that the capacitance in ionic liquids is
expected to be smaller than that of electrolytes, it is necessary to investigate the effect of
the quantum capacitance of graphene on the total capacitance of the graphene—ionic liquid
interface [138, 139, 140].

Modelling of ionic liquids typically follows that of electrolytic solutions, with some ad-
justments to the dielectric permittivity in the internal energy and the lattice-gas model for
the entropy of the system. In particular, recent progress in understanding the capacitance
of the electric double layer (EDL) in ionic liquids has benefitted from a landmark analysis
by Kornyshev [65], which paved the way for studying ionic liquids near electrified interfaces
at the level of mean-field theory by taking into account short-range correlations and finite
sizes of the constituent ions. As a result, a number of publications appeared in recent years
using various versions of such mean-field theories to study the differential capacitance of
ionic liquids in the presence of a charged surface represented by an idealized metallic elec-
trode [49, 57, 66, 67, 68, 69, 70, 71, 72, 141]. Many predictions of such theories were verified
by computational studies of the capacitance of EDLs in ionic liquids [56, 66, 73, 142, 143].
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One of the most remarkable properties of the EDL capacitance is a transition of its de-
pendence on the potential from a camel shape to a bell shape with increasing ion packing
fraction v in ionic liquids [65], which has been corroborated in experiments [144], and is
similar to the camel-to-bell shaped transition observed in electrolytic solutions. Results
presented in this chapter are published in Electrochimica Acta [145].

4.1 Theory

Ionic liquids are known for their strong ion correlations, which could be tackled within
mean-field theory by introducing non-local modifications into dielectric permittivity of
ionic liquids, for example. The surface charge on the electrode can become overscreened
by a monolayer of oppositely charged ions, which is then corrected by a second monolayer
of ions that have opposite charge to the first monolayer of ions. To extend the previ-
ously used mean-field theory of ionic liquids and electrolytes, the next allowable potential
gradient term is added to the dielectric permittivity of ionic liquids, which contains an elec-
trostatic correlation length. The correlation term is negative to describe the overscreening
effect in strongly correlated liquids, which is an electrostatic correlation [49, 67]. Due to
Coulomb interactions, the dielectric permittivity can be expressed, in operator form, as
¢ = e (1 — (2V?), where /, is an effective length scale over which ion correlation effects are
important [67]. The effective length ¢, is attributed to the overscreening effect in the ionic
liquid [146, 67]. It should be noted that the value of /. is not precisely known in ionic
liquids, although, approximate bounds can be deduced: a lower bound of the ion size, a,
and an upper bound of the Bjerrum length Ap, where the electrostatic Coulomb energy
becomes comparable to the thermal energy kg1 [49, 67].

Following the work of Bazant et al. [49], a free energy model of the diffuse layer in ionic
liquid results in a Landau-Ginzburg-like functional given by

F:///[—we—l—pd)—TS] d°F. (4.1)

Here, w, is the self energy of the ionic liquid, p = e(z cy — z_c_) is the charge density
in the ionic liquid, c4 is the concentration of the positive/negative ions, z1 is the charge
of the positive/negative ions, € is the dielectric constant of the ionic liquid, and ¢ is the
electrostatic potential. To model the electric field within the ionic liquid, the dielectric
function is assumed to be the sum of a constant, ¢, and a non-local contribution arising
from the ion-ion correlations. The self-energy is given by [49]

we =g [IVoI + 2(V*)7]. (42)
™
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and the free energy for the ionic liquid is then

F= [ [] - (9l + &) + po ~ 1] 7 (43)

For simplicity, ions are considered to have equal charges, z, = z_ = 2, and positive and
negative ions have the same size, ay = a_ = a. Likewise with Chapter 3, a lattice-gas
model for the entropic contribution is used and is given by

_TS = kj_g /// [agc In(a’c_)+a*c, In(a’cy)+(1—a’c_—a’cy) ln(l—a36—a3c+)1 d°7,

(4.4)
where the first term indicates corresponds to sites occupied by negative ions, the second
term represents lattice sites occupied by positive ions, and the last term represents holes
in the lattice where neither positive nor negative ions are found (Figure 4.1) [49, 97].

Figure 4.1: Molecular dynamics simulation of the ionic liquid 1-n-butyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide ([Bmim|[TFSI]). Here, the cations
are represented by the colour red and the anions by the colour blue. Note that voids in

the lattice exist, which is due to the unequal packing of cations and anions into the lattice
cube. Adapted from [147].

No modifications made to the free energy affect the concentration, so the minimization
with respect to concentrations yields ion concentrations given by Equation (3.6) on Page
30. Note that to be consistent with the notation used in the literature on ionic liquids, the
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substitution v = v is made in Equation (3.6) on Page 30 [65, 148]. The minimization with
respect to the potential ¢ gives a modified Poisson-Fermi equation [49],

(1= 62V*)V2¢p = —dmp, (4.5)

where §. = ¢./Ap is a dimensionless correlation length and A\p = 87;]?33; — s the Debye
length in the ionic liquid. Using Equation (3.6) on Page 30 yields the charge density in
the diffuse layer, p(¢;~y), with the steric effects controlled by a single parameter « in the

case of a symmetric ionic liquid.

Equation (4.5) is fourth-order and solved for ¢(z) in the diffuse layer that occupies
the region = € (0,00). Two standard boundary conditions from electrostatics are used:
zero potential in the electroneutral bulk, i.e ¢(z — oo0) = 0, and a prescribed potential
at the interface ¢(0) = ¢, where ¢q is the potential at x = 0. For the remaining two
conditions, it will be assumed that ¢ (0) = 0 and ¢"'(z — oo) = 0 so that the charge
density is “flat” at the boundary (i.e. p'(c+) = 0 for x = 0 and * — oo, coming from
replacing Poisson’s equation, ¢€V?¢ = —p, into the new boundary condition). It should
also be noted that these two boundary conditions which were chosen by Bazant et al. may
be considered an approximation of boundary conditions which balance the Maxwell-stress
tensor at the interface given by 6.¢”(0) = ¢”(0) and §2¢”(0) — ¢/(0) = oy, where oy is the
charge on the electrode [49, 67, 149]. Here, the boundary conditions used in this work can
be recovered by setting ¢”(0) = 0 and using the fact that ¢’(0) = oo which is equivalent
to ¢(0) = ¢p. These boundary conditions are consistent with the standard electrostatic
boundary conditions and are consistent with a continuum model of finite ion size where
correlation effects disappear at the interface.

Likewise with the discussion in Chapter 3, a uniform, charge-free Stern layer with
thickness § will be introduced between the diffuse layer and the electrode so that no new
parameters are introduced [66]. Because the Stern layer is characterized by a constant
dielectric permittivity, €, it has a constant electric field. By assuming that a metallic
electrode is charged by applying the potential V, in the bulk ionic liquid, the decomposition
of the potential is

Vo= Va+ Vs, (4.6)

where Vj is the potential drop across the diffuse layer and Vj is the potential drop across

the Stern layer, and the total capacitance for the combined diffuse and Stern layers is given
by
1 1 1
= + —,
Ods Od(‘/d) Cs

(4.7)

69



where Cy is the capacitance of the diffuse layer and Cj is the capacitance of the Stern
layer. As expected, the capacitance is a series connection between the diffuse layer and
the Stern layer, similar to the situation in Chapter 3 (Equation (3.37) on Page 47). In
addition, a graphene electrode will also be considered in place of the standard metallic
electrode. Following the discussion in Chapter 3, Equation (3.42) on Page 55 for the total
applied potential of the system and the total capacitance (2.38) on Page 24 will be used
when considering the effects of a graphene electrode in contact with an ionic liquid.

When the Stern layer is discarded and graphene is used as an electrode in an ionic
liquid, the total applied potential may be written as V, = Vg + Vj, where a relationship
between the potential drop across graphene V, and the potential drop in the diffuse layer
Vy can be found for given V,, by using the charge neutrality condition, o4(Vy) 4+ 0,(V,) =0
[40, 41]. Here, the surface charge density in the diffuse layer is o4(V;) and the surface
charge on graphene is o4(V}). The total capacitance of this structure, Cqy = —do,/dV,, is
therefore given by a series connection of the quantum capacitance of graphene C, and the
diffuse layer capacitance Cy [25, 40],

Cag = [Ca(Va) ™ + Cy(Vy) ] (4.8)

This expression can be used to discuss the relative roles of the quantum capacitance and
the diffuse layer capacitance in the regime of large applied potentials.

As is the case in Chapter 3, due to the large area of the planar electrode relative to
the overall size of the system, the expressions for the Poisson-Fermi equation (Equation
(4.5)) may be reduced from a 3D partial differential equation to a 1D ordinary differential
equation. It is also convenient to normalize the parameters of the system: T = z/\p,
where \p is the Debye screening length in the ionic liquid, ¢ = zBe¢, and 7 = p/ (2zecs),
giving the normalized Poisson-Fermi equation

&N\ o

4.1.1 Low Voltage Solution

While the full form of the the Poisson-Fermi Equation (Equation (4.9)) coupled with the
expression for the ion concentrations (Equation (3.6) on Page 30) is highly nonlinear,
analytic solutions can be obtained in the low-potential limit, when the voltage is relatively
small compared to the thermal voltage, |V;| < kgT'/e. This allows for a simplification
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to be made in the ion concentrations, by taking the Taylor series expansion about the
potential ¢ = 0,

_ sinh (g_b)
=z 7 + 7 cosh(¢) (4.10)
~¢asp—0, (4.11)

where v = 2a3c,, accounts for the finite size of ions. The Poisson-Fermi equation in the
low potential limit then becomes:
2\ o -
(1 _ 52_) e _3 (4.12)

which can be solved analytically [67]. Given the form of Equation (4.12), the solution is
dependent on the value of d., which is considered below.

“Weak” Correlation Effects

When 6. < 1/2, the ion correlations vanish well inside the diffuse layer and become sub-
dominant to the Debye correlations. For the low potential limit, the solution is given by

[67):

() — 5(02% (e_m _ % e-m) | (4.13)

1—+/1-442 144/1-452 . . .
where k; = {/ —5=— and ky = \/ —5z—. The diffuse layer capacitance in the weak

correlation limit can then be expressed as

s
o__c_ 1 dop (4.14)
Am ¢(0) dT |,
k3
—=C b (1 B 4.15
=Cp——3 (4.15)
S

where Cp = €/4mAp is the Debye capacitance in the ionic liquid. When the effects of
correlation are removed altogether, i.e. §. — 0, then k; — 1 and ky — 0o, and the solution
for the potential (Equation (4.13)) becomes ¢(z) = ¢(0)e™®, which is the solution from the
Debye-Hiickel model when §. = 0 [67].
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“Strong” Correlation Effects

When §, > 1/2, the ion correlation effects become more dominant than the effects of the
Debye effects. The low potential limit solution is given by [67]:

O(T) = ¢(0)e ™" (cos(ksT) — Asin(kyT)), (4.16)

V2541 V7 V20 F1(5—1) . . .
25 k= Y55—, and A = VBTG In the regime of strong inter-ionic

correlations and negligible steric effects in ionic liquids, the definition in Equation (4.14)
then gives for the diffuse layer capacitance [49, 66, 67]

V20, +1
(0. + 1)

where k3 =

CY=0Cp (4.17)

4.1.2 High-Potential Analysis with Graphene Electrode

At sufficiently high potentials, |V;| > kgT'/e, when the ion steric effects dominate and the
inter-ionic correlations may be neglected [49, 56, 69], the diffuse layer capacitance exhibits
a dependence on the potential given by

CF ~ eze/ (8ma3|Vy), as [Vy| — oo (4.18)

which comes from replacing cosh(zeBV;) by e*#IVel /2 and sinh(zeBV}) by e*#1Vel /2, and
neglecting the terms which are not exponentially large [48, 65, 102] in Equation (3.30)
on Page 40 and taking a first order asymptotic series expansion. The high potential
limit of the diffuse layer capacitance is independent of both the temperature and the ion
concentration in the ionic liquid [40, 49, 56, 65, 69]. When a graphene electrode is included
and large chemical potentials apply, but still remaining within conditions for the Dirac
cone approximation for D(FE), i.e., kgT < |p.| < 2 eV, Equation (2.41) on Page 25 implies
that the quantum capacitance exhibits linear dependence on the charging potential, given
by

2
2Oéﬁne

g~ Vl, as [Vy| — oo, (4.19)

e

where agn. = €2/ (hwp) & 2.2 is the effective fine structure constant or the dimensionless
coupling strength of electrons in free-standing graphene. It should be noted that the
large potential |V,| behaviour of the quantum capacitance in graphene is independent of
temperature, similar to that observed for the diffuse layer capacitance in ionic liquids at
large |Vy| values. Therefore, a transition from the linear regime to the inverse square
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root dependence of Cy, with increasing applied potential |V,| may give rise to a camel-
like dependence with peaks at relatively large potentials that are independent of both the
temperature and ion concentration in the ionic liquid, to the leading order.

Because this transition in the capacitance of the graphene—ionic liquid interface should
be experimentally verifiable, it is worthwhile exploring its quantitative aspects on the basis
of Equation (3.41) on Page 51 with Cy; and C, replaced by their large-potential limiting
forms, C7°(Vy) (Equation(4.18)) and C°(Vy) (Equation (4.19)), respectively. Therefore,

the large-potential forms of the corresponding charge densities are 03° = \/eze|V,|/ (2ma3) sign(Vy)

and 0,° = —% sign(V,), which come from taking the first order asymptotic expansion
of the surface charge densities for the diffuse layer and for graphene, respectively. Then,
by combining the charge neutrality, o4(Vy) + 04(V,) = 0, with the decomposition of the
applied potential, V, = V; + V,, the capacitance in Equation (3.41) on Page 51 can be
shown to reach peak values given by

2 (eza2, \*
Chr == fine 4.20
w3 <27T2a3 ) ’ (4.20)
for the applied potential
Ve 9e [ mez \* (4.21)
¢ 16 \af a? ’ '

with the potential splitting ratio at the peak given by V*/V; = 8.

4.2 Details of Computation

Unlike the case of electrolytes in Chapter 3, analytic expressions for the capacitance of
the diffuse layer of the modified Poisson-Fermi equation (Equation (4.9)) are not attain-
able under general conditions. To obtain solutions for the differential capacitance in the
ionic liquid, a numerical solver must be utilized. After computing the results, the capaci-
tances will be further normalized by the Debye capacitance in the ionic liquid, Cp, so that
comparisons can be made with previous literature on ionic liquids [49, 66, 67].

The normalization of the surface charge densities, 7¢ = 0¢/ (en.) (where £ = d, g), are
achieved by using the characteristic number density of ions in the diffuse layer defined by
Ne = (47r)\D)\B)_1, where A\g = 3¢?/¢ is the Bjerrum length in the ionic liquid. The surface
charge density on graphene based on the Dirac cone approximation is

o,=R [dilog (1 + e79> — dilog (1 + e‘v9>] : (4.22)
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where R = n,/n. is a dimensionless ratio, which plays an important role in the modelling as
it quantifies the relation between two subsystems: the ions in the diffuse layer in the ionic

2
liquid and the charge carriers in graphene. Here, n, = %(:{Qﬁ—g)ez ~ 9.2 x 107* nm~2 is the
characteristic density of graphene at room temperature. The total normalized capacitance,

for capacitors in series is Equation (2.38) on Page 24,
= —-1  —=-1  —=-1,_
Casg = (Cq +C, + Oq ) (4.23)

where Cy = Cy/Cp is the normalized diffuse layer capacitance, Cy = C,/Cp is the normal-
ized Stern layer capacitance, and Uq = (,/Cp is the quantum capacitance of graphene.
The quantum capacitance C, is given by Equation (2.41) on Page 25, and once normalized
by the Debye capacitance is:

Cy,=2RIn [2cosh (V,/2)], (4.24)

where V, is the normalized charging potential inside. Interestingly, Equation (4.22) and
Equation (4.24) feature the same ratio R. Note that the total capacitance can be modified to
exclude different layers by taking that capacitance to be infinitely large (e.g. to remove the
Stern layer capacitance, take Cy — oo in Equation (4.23), which results in the capacitance
without Stern layer given by Equation (3.41) on Page 51).

It should be clear that the first integral of Equation (4.5) is not tractable, and hence,
analytic solutions for the surface charges and capacitances are difficult to obtain, if at all,
as in the previous chapter [40, 41]. Therefore, to obtain solutions for the total capacitances
the following numerical approach is used:

1. Solve the modified Poisson-Fermi equation (Equation (4.9)) over a range of surface
potentials ¢g.

2. For each surface potential ¢, find the corresponding charge density p(¢(x)).

3. Numerically integrate the charge density p(¢(x)), Equation (4.10) to obtain the sur-
face charge in the diffuse layer, oq4(¢o) = [ p(¢(z))dz, for each surface potential

%o-

4. Define the potential drop across the diffuse layer as V; = —¢y. Then interpolate the
set of diffuse layer potential drops V; and diffuse layer surface charge density o4 values
using a cubic spline method to obtain a function that is a numerical approximation
for the diffuse layer surface charge density o4(Vy).
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5. Impose the charge neutrality condition o4(Vy) + 0,(V,) = 0, where o, is given by
Equation (4.22), and solve for the diffuse layer potential V;(V,) and the graphene
potential V,(V,), using the total potential V, = V; + V; + V,, where V; = 04(Vy)/C;
is the Stern layer potential.

6. Find the quantum capacitance of graphene Cy(V,) = —% and the diffuse layer
capacitance Cy(Vy) = —%, using their capacitance definitions.

4.3 lIonic Liquid Capacitances

In this section, a structure consisting of either a metallic or graphene electrode, and a
diffuse layer in the ionic liquid which may contain a Stern layer is considered. The total
capacitance of the system is computed using the algorithm discussed above. The two
main parameters in the computations are the ion packing fraction v and the normalized
correlation length 6,. Because the finite ion size is fixed to @ = 1 A, changes in ion
concentration, ¢, correspond to changes in v = 2a®c,, , and hence, the value of v will
be varied in the computation. In addition to adopting two values typical for ionic liquids,
v =0.1and v = 0.5, v = 0.0001 is also considered in view of the current debate on whether
ionic liquids could be envisioned as “dilute electrolytes” [57, 58]. The value of « here refers
to the fraction of “participation ions”, whereas the fraction of the “non-participation ions”
remains large in the bulk [57]. The “non-participation ions” belong to neutral ion pair
aggregates and do not contribute to ion crowding, but their presence takes up a significant
fraction of cells in the lattice-gas model. As a consequence, the definition of the Debye
length would need to be modified to take into account the dependence of an effective
dielectric permittivity on the fraction of ion pairs, which can be readily performed as the
Debye capacitance Cp o /€ and the Debye screening length Ap o< y/e. In this work, a
fixed value e = 10 is used in all cases, and hence, the results shown for v = 0.0001 should
only be considered as qualitative.

In order to illustrate the effects of ion correlations, . = 10 is chosen as a represen-
tative value for ionic liquid, and is compared to the case of . = 0 (no ion correlations).
Furthermore, the ionic liquid is assumed to be monovalent (z = 1) and its (relative) di-
electric permittivity is given the value ¢ = 10. In the cases where Stern layer is included
in computations, €, = ¢ = 10 and its thickness is set to h = a/2 = 0.5 nm [66] (as per the
discussion in Chapter 3 on the Stern layer).

At room temperature (kg7 = 0.025 eV), the Debye capacitance in ionic liquids studied
here may be written as Cp = C/7 with C}, = \/e?Be/ (4ma®) ~ 75.3 uF cm™?, whereas

75



the Debye length becomes A\p = Ap/ /7 with A}, = y/ea3/ (4mBe?) ~ 0.12 nm (giving
Ap =~ 0.12/,/7 nm). Likewise, the ratio R that relates the graphene and the ionic liquid

3/2
subsystems takes the form R = A0y ( g ) ~ 0.0078/,/7.

Te \ e2B

4.3.1 Metallic Electrode

For a metallic electrode in contact with the ionic liquid, Equation (4.5) is solved numerically
for the potential E(E) in the diffuse layer, subject to boundary conditions with several
values of the potential at the interface with the electrode, ¢, = 1,5,10,20, for §. = 0
and 0. = 10. In Figure 4.2, curves are shown for the normalized charge density in the
diffuse layer p(¢(T)), for several different  values. The results shown in Figure 4.2 (c) are
consistent with those found in Figure 2 (a) in the paper by Bazant et al. [49]. For the
cases of v = 0.1 and v = 0.5, in Figures 4.2 (b) and (c) the effects of both overscreening
and crowding in the curves with é. = 10 are shown, whereas the curves with 6. = 0 only
exhibit the ion crowding effect due to steric effects [48, 65, 148]. It is interesting that the
curves for v = 0.0001 with 6, = 10 also show overscreening for larger ¢, values. These
overscreening effects are rather long ranged, given that the Debye length in Figure 4.2 (a)
is Ap = 11.7 nm, which is typical for an ordinary dilute electrolyte with ion concentration
in the millimole range.

In Figure 4.3, the normalized total surface charge density in the diffuse layer is plotted,
Gg4, as a function of the normalized interface potential ¢,. Increases in v and d, values
give rise to a significant reduction of the charge accumulated in the diffuse layer, especially
when compared to the case of the smallest ion fraction, v = 0.0001, without ion correlation,
0. = 0, i.e. the case of a dilute electrolyte in the ordinary Poisson-Boltzmann limit. In
Figure 4.3, the effects of increasing v and J. are shown to be comparable. For example, the
curve corresponding to v = 0.5 with &, = 0 gives comparable charge densities for |¢,| ~ 30
as the curve corresponding to v = 0.1 with 9. = 10.

In Figures 4.4 (a) and (b), the normalized diffuse layer capacitance, Cy, is plotted as a
function of the normalized potential drop through that layer, defined as V4 = —¢,, for the
same set of parameters v and d. as in Figure 4.3. Note that the same curves are shown in
panels (a) and (b) of Figure 4.4, but with different scales on the vertical axes. In Figure
4.4 (a), the curves for both v = 0.0001 and v = 0.1 describe camel-shaped capacitance,
while the curves for v = 0.5 describe bell-shaped capacitance, for both . = 0 and 4. = 10.
This shape independence of d. indicates that conditions for the transition from a camel-
to bell-shaped diffuse layer capacitance may be independent of the ion correlation effects.
This notion has been verified numerically and confirmed that the transition indeed occurs
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Figure 4.2: The normalized charge density, p = ﬁ, versus the normalized distance,
T = %, for varying ion packing fraction +, for the ion correlation length (normalized to
the Debye length) d. = 0 (thin lines) and . = 10 (thick lines) and for several values of the
normalized interface potential ¢,: ¢, = 1 (black solid lines), ¢, = 5 (blue dotted lines),
¢, = 10 (red dashed lines) and ¢, = 20 (green dot-dash lines). Panel (a) shows the results
for v = 0.0001, with the inset showing log (1 + |p|) sign (p) versus Z. Panels (b) and (c)
show v = 0.1 and v = 0.5 respectively.

for v = 1/3 irrespective of the value used for ¢., thus corroborating similar observations
[65, 69].

The reduced range of the Oy values in Figure 4.4 (b) emphasizes that, for the case
v = 0.0001, C'y(V ) exhibits a U-shaped dependence, typical of an ordinary electrolyte.
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Figure 4.3: The normalized surface charge density in the diffuse layer, o, = ;‘—;c, for a

metallic electrode versus the normalized potential at the interface, ¢, for the ion packing
fraction values of 7 = 0.0001 (dilute electrolyte limit; black solid lines), v = 0.1 (blue
dotted lines), and v = 0.5 (red dashed lines), and for the normalized ion correlation length
d. = 0 (thin lines) and . = 10 (thick lines).

Also, an overall reduction of C}; is observed in the presence of ion correlation effects with
0. = 10 compared to the case with . = 0. This is a major improvement over the mean-
field theory of ionic liquids where only steric effects are taken into account [56, 66]. In
particular, a reduction factor of v/21/11 ~ 0.42 (comes from Equation (4.17)) in Cy can
be seen at the potential V4 = 0, which is independent of the + values, as expected [49].
Moreover, in Figure 4.4 (b), for large |V ,| values, an inverse square root dependence of
C, on the potential emerges in a manner that becomes increasingly independent of 6, for
large . This seems to corroborate the observation by Goodwin et al. [69] of a universal
dependence of the capacitance on the potential in the diffuse layer that is independent of
the ion correlation effects in ionic liquids for sufficiently large [V 4| values. In Figure 4.4 (c),
the same set of results for Cy are shown as in Figure 4.4 (b) as functions of arcsinh (V ),
which provides higher magnification to emphasize the behaviour close to the neutrality
point.

In panel (d) of Figure 4.4, _the effects of including the Stern layer are shown, where
the normalized capacitance of C's ~ 0.235/,/7 is chosen as the relevant fixed parameters.

78



3

Diffuse capacitance, C'y

—10 0 10__ 20 30 40 —40 -30 20 10 0 10 20 30 40
Diffuse potential, V4 Diffuse potential, V4

— 5= 00001 — 5= 00001
=01 : 5 =0.1
5 =05 ===y =05

Diffuse capacitance, Cy

—4 -2 0 2 1 —40 =30 —20 =10 0

0 2 10__ 2 30 10
Diffuse potential, arcsinh(V 4) Applied potential, V,

<l

Figure 4.4: Panels (a), (b) and (c¢): The normalized capacitance of the diffuse layer,
Cy= g—g, for a metallic electrode versus the normalized diffuse potential, V4 = —¢,, for the
ion packing fraction values of v = 0.0001 (black solid lines), v = 0.1 (blue dotted lines), and
v = 0.5 (red dashed lines), and for the normalized ion correlation length 6. = 0 (thin lines)
and &, = 10 (thick lines). Panel (a) shows the full range of Cy, panel (b) shows a reduced
capacitance range to showcase the structure of the capacitance near the neutrality point,
while the panel (c) shows the curves from panel (b) as functions of arcsinh (V). Panel
(d): The total capacitance of the diffuse layer and the included Stern layer, Cy, = 66; i%,
for a metallic electrode, versus the normalized applied potential, V,, for the ion packing
fraction values of v = 0.0001 (black solid lines), v = 0.1 (blue dotted lines), and v = 0.5
(red dashed lines), and for the normalized ion correlation length 6. = 0 (thin lines) and
d. = 10 (thick lines).
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The total capacitance of the ionic liquid, Cys = %, is plotted as a function of the total
applied potential, V, = V; + V,, for the same set of parameters and the same ranges as
in Figure 4.4 (b). No noticeable effect of the Stern layer is observed for v = 0.0001, as
expected due to the relatively large C, in this case. Going from Figure 4.4 (b) to Figure
4.4 (d), the Stern layer is able to decrease the magnitude of the capacitance and broaden
the peaks in the curves for v = 0.1 and v = 0.5. It was pointed out by Fedorov and
Kornyshev [66] that results for the diffuse layer capacitance based on a model, which only
takes into account steric effects in an ionic liquid, can be brought to a closer agreement with
the results of their computer simulations by inclusion of a Stern layer. Accordingly, the
inclusion of Stern layer could also mimic the effects of ion correlation on the magnitude of
the diffuse layer capacitance for v = 0.1 and v = 0.5. This is confirmed by the magnitude
of Cys near the neutrality point for v = 0.1 with . = 0 in Figure 4.4 (d) being close to the
magnitude of Cy near the neutrality point for v = 0.1 with J, = 10 in Figure 4.4 (b). In
addition, the corresponding peak structure for the capacitance dependence on the potential
appears to be generally broader in C4,(V,) than in Cy4(V4) owing to the fact that only one
part of the applied potential V, goes into charging the diffuse layer with V4, whereas the
remaining part V= ad(Vd) /65 constitutes the potential drop across the Stern layer.

Although the choice of parameters in this computation is not aimed at reproducing
experimental data on the capacitance of ionic liquids, a few comments are in order re-
garding the relevance of the capacitance values shown in the panels (b) and (d) of Figure
4.4. Lockett et al [44] and Islam et al. [144] observed both the camel- and bell-shaped
capacitances near the measured neutrality point over a broad range from ~ 10 to ~ 20 uF
cm ™2, whereas Jitvisate et al [46] measured neutrality point values at 6 — 7 uF cm™2. On
the other hand, the curves for . = 10 in Figure 4.4 (b) give the neutrality point values
for the capacitance without a Stern layer as C;; ~ 10 and Cy ~ 22 uF cm™2 for v = 0.1
and v = 0.5, respectively, whereas the corresponding values with o, = 10 including a Stern
layer are found in Figure 4.4 (d) to be Cys &~ 6.3 and Cys =~ 9.7 uF cm™2 for v = 0.1 and
~v = 0.5, respectively. All these values of the capacitance at the neutrality point are in
semi-quantitative agreement with experiments [44, 46, 144].

4.3.2 Graphene Electrode

Now, consider a graphene electrode in place of the metallic electrode. In Figure 4.5, the
fraction of the total applied potential V, that is diverted to the diffuse layer V4 is shown
for the same combinations of the v and J. values as in the case of ideal metallic electrode
studied in the preceding section. The cases without (V, = V4 + V) and with Stern layer
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(Va=V4+V,+V,) are depicted in the panels (a) and (b) of Figure 4.5, respectively. In
general, V; constitutes only a smaller fraction of V,; most of the applied potential goes
to Vg, which is responsible for charging the graphene electrode. This is also true in the
presence of the Stern layer, which mostly acts to further reduce the potential drop Vg
in the diffuse layer, as seen in Figure 4.5 (b). Specifically, in Figure 4.5, |V 4| is reduced
by increasing v and by lowering .. Large differences between the curves for §. = 0 and
5. = 10 are observed in the case of a dilute electrolyte, v = 0.0001, for potentials |V,| > 10.
Furthermore, the curves for v = 0.1 and v = 0.5 are relatively narrowly distributed for all
potentials, which is especially true when . = 0, but not so much when 6. = 10. Thus,
it appears that the redistribution of the potential at the interface of graphene and ionic
liquids with different + values is increased by the presence of ion correlation effects.
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Figure 4.5: The normalized diffuse potential V4 of a graphene electrode versus the nor-
malized applied potential V, for the ion packing fraction values of 4 = 0.0001 (black solid
lines), v = 0.1 (blue dotted lines), and v = 0.5 (red dashed lines), and for the normalized
ion correlation length §. = 0 (thin lines) and §. = 10 (thick lines). Panel (a) shows the
results without a Stern layer and panel (b) shows the results when a Stern layer is added.

In Figure 4.6, the total capacitance, édg = %,
q

(_without Stern layer) is shown as function of the total applied poten_tial,_va_: Va+
V4, along with the components of that capacitance, Cy (Vd(Va)) and C, (Vg(Va)). TEe
cases for v = 0.0001 are shown in Figure 4.6 (a), where, near the neutrality point, Cy
is comparable with C, when 6. = 0, but is smaller than C; when . = 10, owing to the

reduction factor ~ 0.42 due to ion correlation, discussed in Figure 4.4. As a result, the

of the graphene-ionic liquid interface
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curves for édg in Figure 4.6 (a) with §. = 0 and 0. = 10 are relatively close to each other
for the potential values [V,| < 10. At the same time, these same two curves exhibit large
differences at the potential values |V,| > 10 in Figure 4.6 (a), echoing the conclusion from
Figure 4.5 regarding the role of the ion correlation effects in a dilute electrolyte for large

potential values.
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Figure 4.6: The normalized capacitance in the diffuse layer, C'y (black lines), the normalized

quantum capacitance of the graphene electrode, Uq (blue lines), and the normalized total
capacitance, Udg = % (red lines), for a graphene electrode versus the applied voltage
_ q

V4, and for the normalized ion correlation length §. = 0 (thin lines) and 6, = 10 (thick
lines). Panel (a) shows the results for v = 0.0001 on an extended capacitance range, panels

(b) and (c) show the results for v = 0.1 as functions of V, and arcsinh (V,), respectively,
while panel (d) shows the results for v = 0.5 as as functions of V.

In the panels (b) and (d) of Figure 4.6 the cases with v = 0.1 and v = 0.5, where
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the diffuse layer capacitance exhibits camel-shaped and bell-shaped dependencies on the
potential, respectively, regardless of the §. values are shown. As a consequence of the
smallness of the quantum capacitance of graphene ﬁq near the neutrality point, the total
capacitance aig exhibits camel-like dependence on V, for both v = 0.1 and v = 0.5. This
is considered to be one of the most important manifestations of the quantum capacitance
of graphene at the interface with ionic liquids. While the shape of Cy,(V,) closely follows
the shape of C, (V4(V,)) for |[V,| < 10, in Figures 4.6 (b) and (d) it is shown that the
ion correlation effects begin to cause some qualitative and quantitative differences in the
shapes of the ﬁdg(va) curves. As a result of the significant lowering of the Cy values for
0. = 10 in comparison with those for §. = 0, the peaks in the 6d9(va) curves with . = 10
are much broader than the peaks in the corresponding 5dg (Va) curves with d, = 0. In fact,
the édg (V) curves with §, = 10 appear to be almost flat for the potential values [V ,| > 20
in Figures 4.6 (b) and (d). Note that the widths of the local minima in the camel-shaped
Cy curves in Figure 4.6 (b) and the local maxima in the bell-shaped C, curves in Figure 4.6
(d) are larger than the widths in their counterparts in Figures 4.4 (b) and (d), respectively.
Referring to Figure 4.5 (a), this can be explained by the fact that only a fraction of the
applied potential V, goes to the diffuse layer potential V4. In order to further elucidate
the behaviour of the capacitances in Figure 4.6 (b) close to the neutrality point, the curves
are shown as functions of arcsinh (Va) in Figure 4.6 (c).

The peaks in Figures 4.6 (b) and (d) occur when the potential and the capacitance
take the following values: |V,| ~ 33.9 and Cy, ~ 0.41 for v = 0.1 and |V,| ~ 31.6 and
@g ~ 0.19 for v = 0.5. These values may be reasonably well reproduced by using the
expressions quoted in the preceding section for the quantum capacitance C’go(Vg) and the
diffuse layer capacitance C3°(V;) which are valid in the regime of large potentials, where
those capacitances exhibit universal temperature-independence. The values of the potential
drop in the diffuse layer, which correspond to the peaks in the Cy,(V,) curves with J. = 0
in Figures 4.6 (b) and (d), are found from Figure 4.5 (a) to be: [V 4| ~ 7.0 and [V 4| ~ 5.1,
respectively. Those values satisfy the condition [V4] > 1 only marginally, so an improved
asymptotic form for the diffuse layer capacitance is used, i.e.,

O = \feze/ [8mv ([Val = V)], as|Va] = oo (4.25)

which is valid for [V4| > V,, where V, = 22L1n (%) [40]. With this definition of V,,, the
model for C7° is no longer temperature- and concentration-independent, but it helps bring
the estimates for the peaks in Cy,(V,) closer to those observed in Figures 4.6 (b) and (d)
for §, = 0. Referring to Equations (4.21) and (4.20) for V, and Uzg, their (normalized)
values, |V,| ~ 31.5 and Cy, ~ 0.42 for v = 0.1 and |V,| ~ 29.9 and Cy, ~ 0.19 for
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v = 0.5, indeed closely reproduce the peaks in Cy,(V,) observed in Figures 4.6 (c) and (d)
for ¢, = 0.

In Figure 4.7, the results for the inclusion of a Stern layer between the graphene elec-
trode and the diffuse layer in the ionic liquid are shown, with a comparison of the re-
sulting total capacitance Udsg and the capacitance Udg without the Stern layer, discussed
in Figure 4.6. Note that, in Figure 4.7, Udsg is shown as a function of the applied po-
tential V, = Vy+ V, + Vg, whereas Udg is shown as a function of the applied potential
Ve=Va+ Vg. With the range of values adopted for the capacitances on the vertical axis
in Figure 4.7, the case of v = 0.0001 can only be observed for é. = 10, showing negligible
effects of the Stern layer, as expected for a dilute electrolyte. Furthermore, the cases of
v = 0.1 and v = 0.5 show that both C4s,(V,) and Cy,(V,) are dominated near the neu-
trality point by a local minimum in the quantum capacitance of graphene for both 6. =0
and §, = 10. However, the interval of the potential values V, near the neutrality point
where this minimum dominates is somewhat narrower in Udsg (V,) than in Udg (Va).
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Figure 4.7: The normalized total capacitance without a Stern layer, Cy, (solid lines), and
the normalized total capacitance with the inclusion of a Stern layer, 6dsg (dotted lines),
for a graphene electrode versus the normalized applied potential, V,, for the ion packing
fraction values of v = 0.0001 (black lines), v = 0.1 (blue lines), and v = 0.5 (red lines),
and for the normalized ion correlation length d. = 0 (thin lines) and 6. = 10 (thick lines).
Results are shown for a Stern layer thickness A = 0.5 nm and permittivity e, = 10, and for
a diffuse layer consisting of a permittivity of ¢ = 10 and the lattice size of ¢ = 1 nm.
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For larger applied potentials, e.g. |V,| = 10, all curves with v = 0.1 and v = 0.5 exhibit
more or less broad peaks, giving rise to camel-shaped dependence of both édsg and Udg on
V. As expected from Figures 4.6 (c) and (d), the inclusion of ion correlation effects with
Se = 10 reduces the magnitude of Cy,(V,) and broadens/flattens its peaks, when compared
to the case with §, = 0. As expected from Figure 4.4 (c), the inclusion of a Stern layer also
reduces the magnitude of Cys(V,) for v = 0.1 and v = 0.5 and also broadens/flattens its
peaks, when compared to Cy(V,) in Figure 4.4 (b). When both the ion correlation and the
Stern layer effects are included, the Udsg(va) curves for v = 0.1 and v = 0.5 with §. = 10
in Figure 4.7 appear to almost level off at constant values for sufficiently large potentials,
say, | V4| = 30. These values are on the order of (using physical units) Cy,, = 4.7 uF cm™2,
occurring in a broad range of the applied potentials near |V,| =1 V for both v = 0.1 and
v = 0.5, while the minima in the Cy,(V,) curves that occur at the neutrality point are
Cusg ~ 0.8 pF cm™2 for both v = 0.1 and v = 0.5, coinciding with the minimum in the
quantum capacitance of graphene.

4.4 Asymmetric Ionic Liquids

In the case of an asymmetric ionic liquid, the volumes occupied by positive and negative
ions are not equal (ay # a_), and hence, the entropic term of the free energy (Equation
(4.4)) is modified to take into account the unequal packing of ions [68, 72, 150, 151].
Following the work of Gupta et al., only the entropic term in Equation (4.5) requires a
modification due to the unequal packing of ions. The asymmetric concentration relations
are derived in the same way as outlined in Chapter 3 via minimizing the free energy
functional with respect to concentration. Han et al. derived a generalized form for the
entropic term under the assumption that positive ions are larger than negative ions, i.e.
ay > a_, and obtained expressions for ion concentrations, which are quoted below using
the form given by Gupta et al. [72]:

—
cp = C°°eg(—¢)’ (4.26)
c. = cm%, (4.27)
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where

a3

—+_1
263 cop (eze'% — 1) al
=11 — 4.28
7(0) (+ e , (428)
9(9) = [(9) + za.coo [e7*? = [(9)] + 202 coc f(9)(€*7? = 1). (4.29)
When ion sizes are equal, a; = a_ = a, the symmetric case for ion concentrations, Equation

(3.6), is recovered. It should also be noted that due to the unequal volumes of the ions,
packing fractions of ionic species will be unequal due to the competition of ions, and
therefore, two values of v are required: ~, for positive ions and v_ for negative ions. Here,
the ion concentrations are replaced by Equations (4.26) and (4.27) in Equation (4.5), and
the computation carried out as outlined in the previous sections. In the calculation, the
values v, = 0.5 for cations and y_ = 0.1 for anions are assigned, while keeping all other
parameters the same as in the preceding discussion. The results for the asymmetric ionic
liquid are normalized by using the definitions for the Debye length, A\p, and the Debye
capacitance, C'p, with fixed ion fraction of v = v, = 0.5.

In Figure 4.8, the normalized charge density, p (E(T)), is shown for both positive and
negative values of the potential ¢, at the interface of the diffuse layer in an ionic liquid and
a metallic electrode. Owing to ion crowding effects close to the interface, for large positive
¢, values in Figure 4.8 (a), the charge density saturates at the value p = —1/y_ = —10,
whereas for large negative @, values in Figure 4.8 (b), the density saturates at p = 1/, = 2.
In both panels, strong overscreening occurs at large |¢,| values. The curve for ¢, = 20
in Figure 4.8 (a) exhibits a second layer that is occupied by cations, where the charge
density is bounded above by p = 1/, = 2. This shows that, for sufficiently large electrode
potentials, there may be strong interplay of ion crowding and overscreening effects, which
extends farther out into the ionic liquid, beyond the first ion layer, so that overcrowding
may affect higher-order ion layers.

C4C4

Cat+Cq’
of the interface of an asymmetric ionic liquid and a graphene electrode (without Stern layer)
as function of the total applied potential, V, = V4+V,, along with the components of that
capacitance, C (Vd(Va)) and C, (Vg (Va)). Note that C'y exhibits asymmetric structure,
which is similar in shape to the capacitances observed in recent experiments with pure ionic
liquids and metal electrode [46]. Also the amplitude of Cy in Figure 4.9 is much higher
than those reported by Jitvisate et al. [46], but it could possibly be brought down by
increasing the ion correlation parameter 0. or by inclusion of a Stern layer, as discussed in
Figure 4.4 (d). Figure 4.9 focuses on the effects of a graphene electrode, which is again seen

Similar to Figures 4.6 (b) and (d), Figure 4.9 shows the total capacitance, C4, =
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Figure 4.8: Panel (a): The normalized charge density p versus the normalized distance 7,
for an asymmetric ionic liquid with ion packing fraction values of v, = 0.5 and y_ = 0.1,
and for the normalized ion correlation length §. = 0 (thin lines) and 6. = 10 (thick lines),
and for several values of the normalized initial potential ¢,: ¢, = 1 (black solid lines),
¢y = 5 (blue dotted lines), ¢, = 10 (red dashed lines) and ¢, = 20 (green dot-dash lines).
Panel (b): same as (a), but for ¢,: ¢, = —1 (black solid lines), ¢, = —5 (blue dotted
lines), ¢, = —10 (red dashed lines) and ¢, = —20 (green dot-dash lines).

to dominate the capacitance over the range of applied potentials [V,| < 10, giving rise to
a rather symmetric, V-shaped minimum in 5(19 at the neutrality point. Outside this range
of the applied potential, two somewhat broad peaks give rise to an overall asymmetric
camel-shaped capacitance Udg, with a higher peak at negative V, (and hence negative V,
corresponding to a positive ¢, = —V ), reflecting the fact that the smaller sized anions are
crowded to a larger extent near the positively charged graphene.

Near the neutrality point in Figure 4.9, Cy, =~ 0.8 uF cm™2, as was the case in Figures

4.6 (b) and (d), and in Figure 4.7 in the presence of a Stern layer. This value corresponds
to the minimum in the quantum capacitance of graphene at room temperature, which is
expected since C; < Cy and hence Cy;, =~ C, near the neutrality point. Experimental
data from OIll et al. [152] also exhibits a V-shaped minimum in the capacitance of a
graphene-ionic liquid interface, which takes the value ~ 1.7 uF cm™2 at the Dirac point,
consistent with the measurements on single-layer graphene by Uesugi et al. [138]. The
almost doubled value of the experimental capacitance at the neutrality point compared to
the theoretical value of ~ 0.8 uF cm™2 may be explained by the effect of fluctuations in
the potential values across a nominally neutral graphene surface [92], which result from a
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Figure 4.9: The normalized diffuse capacitance, Cy (blue dotted lines), the normalized
quantum capacitance of the graphene electrode C, (black dashed lines), and the total
capacitance, 6(19 (red solid lines), for a graphene electrode versus the normalized applied
potential, V,, for an asymmetric ionic liquid with ion packing fraction values of v, = 0.5
and v_ = 0.1. Results for . = 0 are shown as thin lines while results for §. = 10 are shown
as thick lines.

random distribution of charged impurities in the insulating substrate underneath graphene
[153]. Those fluctuations are quite capable of doubling the effective minimum value in
the quantum capacitance of a graphene sheet lying on an oxide layer [92], and hence the
experimental value can be larger in magnitude than the predicted theoretical value.

4.5 Concluding Remarks

The modified Poisson-Fermi equation (Equation (4.5)) was used to study the effects of
ion correlations and finite ion sizes on the differential capacitance of the interface of a
pure ionic liquid and a charged planar electrode [49]. Emphasis was put on the effects of
the quantum capacitance of graphene in comparison to the standard metallic electrode.
Effects of a Stern layer between the ionic liquid and the electrode as well as the effects of
different ion sizes in the ionic liquid were explored. Two typical ion packing fractions in
the ionic liquid were utilized, v = 0.1 and v = 0.5, which give rise to a camel-shaped and
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a bell-shaped diffuse layer capacitance, Cy, respectively.

In the presence of a metallic electrode, the inclusion of both the ion correlation effects
and the Stern layer in the ionic liquid reduces the magnitude of its diffuse layer capacitance
Cy4, while the Stern layer further broadens any peak structures in the C; dependence on
the potential drop V; in that layer. In the case of a dilute electrolyte, the Stern layer has
little influence on the diffuse layer capacitance C,, while the ion correlation effects persist,
giving rise to long-ranged overscreening effects, accompanied by a reduction of the diffuse
layer capacitance Cy.

In the case of a graphene electrode, the largest fraction of the total applied potential
V, goes to shifting the chemical potential in graphene, which controls its charge density
via the potential of graphene V;, whereas the potential drop in the diffuse layer remains
bounded by |V;| < 1 V. The quantum capacitance of graphene, C,, is so small near the
potential of zero charge that it dominates the total capacitance at the interface with the
ionic liquid Cyy = Ccd‘fc‘iq over a range of applied potential values, |V,| < 0.2—0.3 V, giving
rise to a camel-shaped function of the total capacitance Cgy,(V,) for both v = 0.1 and
~v = 0.5. This is true regardless of the effects due to ion correlation or the Stern layer in
symmetric ionic liquid as long as the ion packing fraction is not too small. When these two
effects are included, the peaks in the total capacitance of the interface become very broad,
with Cyy(V,) showing a tendency to level off for very large applied potentials, |V,| 2 1 V.

At the interface of graphene with an asymmetric ionic liquid, having different packing
fractions for cations and anions, an asymmetric camel-shaped total capacitance Cgy,(V,),
with a local minimum at the potential of zero charge governed by the minimum in the
quantum capacitance of graphene is observed.

In the regime of a dilute electrolyte with very small ion packing fraction, the role of
quantum capacitance in the total capacitance is not as prominent as for large packing
fractions. However, it would be interesting to explore issues related to the long ranged
screening in ionic liquids by means of surface force measurements when graphene is used
as a charged electrode [57, 58].

Finally, it would be worthwhile to explore generalizing the modified Poisson-Fermi
equation for asymmetric ionic liquids to include the effects of different ion correlation
lengths for cations and anions [49, 68]. Additionally, the model developed by Goodwin
et al. [69] showed strong promise for describing the experimental measurements of the
capacitance in ionic liquids [46], so it would be interesting to generalize it by inclusion of
a graphene electrode in a manner similar to the discussion provided here.
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Chapter 5

Sensitivity to pH and Ion
Concentration

Sensors are continually being developed for more applications and utility in electronic
devices. They are widely used in automobiles, airplanes, telephones, radios, industrial
plants, and, more recently, in biological sensors which can be implanted in the human body
[154]. When integrating sensors, the miniaturization of these devices, cost, performance,
and toxicity are important manufacturing factors. Due to its thinness, flexibility, and
unique band structure, which gives rise to clear minima in its conductivity and capacitance,
graphene has risen to be a key material in nanoscale biological and chemical sensors [1,
5, 6]. Because graphene is chemically inert, the addition of an oxide layer or non-covalent
functional coating between graphene and the electrolytic environment helps to increase
the adsorption, and consequently, the sensing capabilities of graphene-based devices [5, 21,
82]. This functionalization enables chemical bonding of ion species from the electrolyte
on the oxide surface which changes the charge balance of the system, and ultimately,
affects the conductivity and capacitance of graphene, resulting in a shift of the minimum
from its neutral position. This shift in the minimum is then plotted as either the ion
concentration/pH against the potential where the minimum occurs [19, 21, 27, 30, 31,
33, 76, 82]. The sensitivity of the devices is then determined via the slope of the line
which connects the minima, and is reported as volts per molar concentration or volts
per pH, depending on the configuration of the experiment. Of particular interest in the
development and experimental testing of graphene-based biochemical sensors is methods
for increasing their sensitivity to changes in environmental ion concentration and/or pH
[19, 21, 27, 30, 31, 33, 76, 82]. Importantly, when a functionalized layer is included, these
graphene-based devices can give rise to high sensitivities, allowing the sensor to be able
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to distinguish between minute changes in their environment. While many experimental
studies on the sensitivity of graphene-based FETs have been reported, the modelling of
such systems has lagged behind. It is imperative to theoretically understand the role of
graphene in sensors so that advancements can be made in nano-scale sensing devices.

As discussed in the Introduction, the sensing function of graphene can be achieved by
either measuring the electrical conductivity of graphene in an electrolytically gated FET
configuration, or measuring the capacitance of a graphene interface with electrolyte. In
the former case, a minimum conductivity is achieved at the point where graphene is nom-
inally neutral, characterized by the Fermi energy level being pinned to the Dirac point in
graphene. This causes a depletion of conducting charges in graphene and results in a pro-
nounced minimum in its conductivity as a function of the applied potential. In the case of
the capacitance measurements, it is the smallness of the quantum capacitance of graphene
at the neutrality point that causes a pronounced minimum in the total capacitance of the
interface as a function of the applied gate potential through the electrolyte. The minimum
in the conductance or the minimum in the capacitance is sensitive to the charge balance
in the structures near graphene. Thus, measurement of the applied potential near these
minima (the so-called potential of zero charge) as a function of the ion concentration or
the pH in the solution gives sensitivity curves, of great value for sensing applications of
graphene. Therefore, in the regime at the potential of zero charge characterized by the
vanishing surface charge density on graphene, or neutrality point, o, = 0, is of particular
interest for modelling.

The inclusion of ion adsorption at the interface between the sensor and the bulk
electrolytes in the modelling of this layered structure allows for a direct link with the
experimental data reported. Here, direct comparisons between the reported conductiv-
ity /capacitance minima and the minima obtained from modelling are made with remarkable
agreement, in both the case of sensitivity to ion concentration and pH. This experimental
validation of the mathematical model provides direct insight into the physical systems at
play in graphene-based sensors; in particular, the inclusion of a finite ion size in the diffuse
layer and a functionalized oxide layer between graphene and the electrolyte yield potential
minima which directly match those obtained from experiments.

5.1 Theory

In Chapters 3 and 4, only an electric double layer forms at the interface of the electrode
and the electrolyte/ionic liquid. In this regime, the adsorption of ions onto the surface
of the electrode was not considered (see Figure 1.5 on Page 8). This scenario gives a
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description of the electrostatic interactions between the electrolyte and bulk solution, but
without any chemical interactions. Chemical reactions on the surface of the interface may
give rise to a net charge. The adsorption of ionic species onto the electrode results in
either ions being “removed” from the bulk solution as they are no longer mobile or ions
being “added” to the bulk solution when they become desorbed from the surface. This
adsorption/desorption of species, particularly HT is responsible for the observed changes
in either pH or ion concentration in the bulk solution [28]. The inclusion of this adsorbed
layer into the previously established models will be the focus this chapter.

Graphene Oxide Diffuse layer

2REOOE

g

Figure 5.1: Schematic representation of the layered system, consisting of a graphene elec-
trode, oxide layer, which promotes binding, and a diffuse layer. An adsorbed layer, con-
sisting of protons and hydroxyl groups, forms at the oxide—diffuse layer interface.

Similar to the discussion in Chapters 3 and 4, a layered composed of a graphene sheet,
an oxide layer, and the diffuse layer in the electrolyte is considered (Figure 5.1). In view
of the current debate in the literature as to whether or not bare graphene is sensitive,
graphene is functionalized by placing an oxide layer between graphene and the diffuse
layer. The oxide surface is characterized by a high density of defect sites where ions from
the electrolyte can absorb and desorb at certain rates. The inclusion of the oxide layer is
mathematically similar to the inclusion of the Stern layer described in Chapter 3, with an
important difference being the existence of an atomically thin layer of adsorbed ions at the
oxide—electrolye interface, giving rise to an average equilibrium surface charge density o,,.

The electrostatic forces described in Chapters 3 and 4 act over long ranges unlike
chemical interactions which are short reange. Because hydrated salt ions are large in size,
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they do not adsorb onto the surface and so the protons and hydroxyl groups are the only
binding groups considered. The bound groups form an adsorbed layer that exists within
the diffuse layer and account for the net charge arising from chemical reactions at the
oxide surface. The adsorbed ions are removed from the bulk diffuse layer, and hence, the
adsorbed layer can be considered a subsystem of the diffuse layer as a whole. The adsorbed
layer occurs at the inner Helmholtz plane (IHP) in the electric double layer (EDL), and
hence, occurs within the Stern layer (Figure 1.5 on Page 8). In principle, a charge-free
Stern layer between the adsorbed layer and the diffuse layer can be included (i.e. between
the IHP and OHP in Figure 1.5 on Page 8) but, for the sake of simplicity, such refinement
is disregarded in the present model. For the same reason, the dielectric permittivity of
solvent (water) €, is assumed constant throughout the diffuse layer.

Graphene %9 Oxide %a Diffuse layer
0d

| B I E

= e

> t » -

h €ox - Ew -

Vo Va
K
0 |
og Oq

Figure 5.2: Schematic representation of the layered system with a graphene sheet with
charge density o, and potential ¢,, a functionalized oxide layer with thickness ¢ and di-
electric permittivity of €,,, and the diffuse layer with dielectric permittivity €, and charge
density o4, which includes an adsorbed layer with charge density o,. The Gaussian pill-
boxes are also shown at each layer with dashed lines.

A planar structure, consisting of a graphene electrode and oxide layer with large areas is

considered, so that the electrostatics of the problem depend only on the x coordinate, with
the outermost graphene surface located at x = 0. The system has the following boundary
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conditions, which come from analyzing the Gaussian pillboxes in Figure 5.2:

ewlo — €0x By = 4mo, (5.1)
€onlly = 4mo, (5.2)
—ewl, = 4moy. (5.3)

Here, €,, is the dielectric constant of the oxide (occupying the region 0 < = < t), while g,
and o4 are the surface charge densities on graphene and in the diffuse layer, respectively.
The (constant) electric field in the oxide is E,, whereas E, is the electric field in the diffuse
layer evaluated at 2z = ¢*, i.e., at the diffuse layer-oxide interface. Adding Equation (5.1)
and Equation (5.2) gives €, E, = 4n(0,+0,), and further combination with Equation (5.3)
gives the charge neutrality condition for the system:

04+ 04+ 04=0. (5.4)

As mentioned above, this condition is a key step in modelling the sensitivity of graphene
near the neutrality point, where setting the surface charge density of graphene o, = 0
corresponds to a regime that yields a minimum in the conductivity or a minimum in the
capacitance of electrolytically gated graphene. The potential drop inside the graphene
sheet, which is responsible for charging the graphene, is V, = ep/e + ¢,, where ep is the
Fermi energy. The potential across the oxide layer is V,, = ¢, — ¢4 and Vy = ¢poo — 0 = — 4
(as ¢ = 0) across the diffuse layer. Then, the total potential drop across the system is
Vo =er/e = Vy;+ V,p + V4. Here, e is the elementary charge. Then, the surface charge
density on graphene, o,, is given by (see Equation (2.15) on Page 18)

o, =eN, (dilog(l + e7*PV9) — dilog(1 + ezeﬂVq)), (5.5)

with N, = W ~ 9.2 x 107*nm~2. At the neutrality point, the potential V, = 0
and hence the surface charge density o, = 0. On the other hand, the surface charge
density of the diffuse layer is usually modeled in the literature [48] by using the simple

Poisson-Boltzmann model, i.e.,

(5.6)

v
04 = 404, sinh (zeg d) ,

where o, = e/(4mA\pAp) =~ 0.36y/c e/um?, with ¢ being the numerical value of the bulk
ion concentration, ¢, expressed in the units of M=mole/litre, whereas A\p = | / —%5—

87r5,;2we2coo
is the Debye length and A\p = B¢?/¢, is the Bjerrum length.
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5.1.1 Inclusion of Steric Effects

One of the modifications made to the Poisson Boltzmann formulation in Chapters 3 and
4 was the addition of finite ion size effects in the diffuse layer. Likewise with the case of
adsorption, the finite size of ions in the diffuse layer will also be considered. The surface
charge density in the diffuse layer follows from [48]

2
oq = sign (V3) 2zecoo>\D\/— In (1 + 2vsinh? <@>> (5.7)
v

A recent study by Parizi et al. [155] demonstrated that the inclusion of finite ion size
in the adsorbed layer provides better comparisons with experimental results. Their model
only assumes that protons adsorb and desorb from the interface of the electrode, creating
a layer of positive charge next to the electrode surface, which results in an accumulation
of oppositely charged groups, e.g. salt ions or hydroxyl groups, next to the adsorbed layer.
While their model dis able to reproduce the shape of experimental results, their simula-
tions produce capacitance curves which are higher than those observed in experiments. In
addition, the model by Parizi et al. [155] only includes one type of binding on the surface
(protons), unlike the site model where both protons and hydroxyl groups are allowed to
adsorb onto the surface. By allowing different types of groups to adsorb onto the surface,
the charge density is likely to be more uniform in nature, as energetically it would be
favoured for oppositely charged groups to bind next to each other rather than two groups
of the same charge (as the like charges would have a repulsion between them). The in-
clusion of steric effects in the diffuse layer (Equation (5.7)) allows for the salt ions in the
bulk electrolyte to have size, which accounts for any size effects of the opposite charge in
the diffuse layer, and therefore, the effects of finite ion size in the adsorbed layer will be
ignored.

5.1.2 Adsorbed Layer

To derive an expression for the charge density of the adsorbed ions, a site binding model
will be used [34, 35]. This model utilizes the surface reactions to describe the adsorp-
tion/desorption of species. For now, only the case where H* is adsorbed/desorbed from
the interface will be considered. The reactions at the surface are then (see Figure 1.7 on
Page 11):
AOH} = AOH + H™
AOH = AO~ +H™.
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From here, the equilibrium dissociation constants, which gives the extent to which a com-
pound will dissolve in a solvent, are defined:

[AOH] [HJr]surface

Ky = AOH] (5.10)
Ka — [AO_[KgH]]surface (511)

Here, the square brackets denote the concentration of the species, A represents the atoms
in the oxide, AOH, AO~, and AOH™ represent the surface complexes which are formed
by adsorption, and [HJF]SMfaCe represents the surface concentration of protons, given in the
units of M = moles/litre. A relation between the surface concentration of H" and the bulk
concentration is given via the Boltzmann distribution [34, 35]:

eda

[H+]surface = [H—i_]bulkei kBT, (512)

Here, ¢, is the value of the electrostatic potential at the oxide surface where adsorption
takes place relative to the potential in the bulk of the electrolyte, taken to be ¢, = 0.
Finally, the total number of binding sites on the oxide surface is fixed

N, = [AOH] + [AOH]] + [AO7]. (5.13)

Then the surface charge on the adsorbed layer is given by:
o, = e([AOHS] — [AO7]) (5.14)
[AOHJ] — [AO7]
[AOH] + [AOH;] + [AO™]
Using Equations (5.10), (5.11), and (5.12) gives a final form of [34, 35]:
26 sinh (Be(éx — da))

(5.15)

=eN,

a — s s 1
a = €09 + 2§ cosh (Be(pn — ¢a)) (5.16)
where § = = and ¢y is the Nernst potential, given by
kgT [H Jpuic
= 1 5.17
1 1074
= % 111 ((10—pr10—pKa)l/2) (518)
1 pEy + pK,
=—1Inl0 |———— —pH 1
5omo | PPy (5.19)
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with pKy = —log,, Ky and pK, = —log,, K,. Note the pH in the bulk of the elec-
trolyte enters in the definition of the Nernst potential. Recall that pH is defined as

+
pH = —log, (%), where v+ is a dimensionless activity coefficient that takes

into account deviations from ideal behaviour of the concentration, [HJ{ . is the concen-
tration of protons in the bulk solution, and ¢° is the standard concentration of 1 M. If
the non-ideal terms are neglected, i.e. g+ — 1, then the pH can be approximated as

H +
pH ~ —log,, Hc% = —logy [H]l;rulk'

Total Capacitance

The total capacitance of the system is derived as was done in Chapter 3 on Page 51 and
Chapter 4 on Page 74, to give:

dv,
== 2
¢ doyg (5.20)
d d d
- o (5.21)
doy, do, doy
— _ d‘/d dO’d
=Cy + 0 — == 22
Co" + Co dog doy (5.22)
_ _ _ do, dVy
— 1 1 1 1 a @V .
Cl+ - ( W ddg) (5.23)
=)'+ 0+ 0+ (-C vt + ). (5.24)
Rearranging, gives:
CH1+C'Co) = (C, +CH(A+C'Co) + CF (5.25)
— C ' =0+ 0+ (Ca+Co) ™. (5.26)

Here, C, is the quantum capacitance of graphene, C,, = {2 is the capacitance of the
functional oxide layer, C, is the capacitance of the diffuse layer, and C|, is the capacitance
of the adsorbed layer. To discard the oxide layer, let ¢t = 0 so that C,,, — oo, and C_;} — 0,

and, similarly, to consider a metallic electrode, let Cy — oo so that C L o0.

Equation (5.26) indicates a parallel capacitor connection between the adsorbed layer
and the diffuse layer, and then a series connection of the graphene layer, oxide layer,
and parallel connection. If the adsorbed layer were to be discarded, C; ' — 0, the series
connection of layers from the previous chapters is recovered. Because the adsorbed layer
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can be considered a subsystem of the whole diffuse layer, where the total charge in the
electrolyte is the combined surface charge density on the adsorbed layer o, and the surface
charge density in the diffuse layer o4 a parallel connection between the adsorbed layer and
the diffuse layer is not unexpected (Figure 5.2). Equation (5.26) also indicates that if the
oxide capacitance is not too small and if the ion concentration is not too low in the diffuse
layer, the total capacitance C' will be dominated by the quantum capacitance of graphene
near the neutrality point. This confirms that using the dependence of the minimum in
C on the applied potential V, for sensing measurements corresponds to the regime where
charge density on graphene vanishes o, = 0 in Equation (5.5) and, accordingly, V, = 0.

5.2 Inclusion of Trapped Charges in the Oxide Layer

When considering the case of a functionalized graphene, a thin layer of oxide will be placed
between graphene and the diffuse layer (see Figure 5.2). The oxide layer helps to increase
the adsorption capabilities of graphene and normally comes in the form of an oxide that
will provide a non-covalent functionalization of graphene [21, 82]. It is necessary for this
bonding between the oxide and graphene to provide this non-covalent functionalization so
that the unique electronic band structure of graphene remains unmodified [156]. Typical
oxides used in experiments are tantalum pentoxide (TayOs), aluminum oxide (Al,O3), and
silicon dioxide (SiO2), due to their use in ISFETs and well understood surface chemistry
[21, 82, 156, 157, 158]. More recently, hafnium dioxide (HfO;), has also been of interest as
a functional layer, and has shown some promising results [159]. The relevant experimental
parameters of these oxides can be found in Table 5.1. The main focus of the discussion
here will be on tantalum pentoxide (TayOs5) and aluminum oxide (AlyO3), as these oxides
appear to be most popular in sensor design.

Oxide | pK, | pKp | €0e | Ns (nm™) )
TayOs5 4 2 22 10 1071

Al,O3 | 10 | 6 | 14 8 10~2
HfO, | 7 | 7 |25 4 1
Si0, | 6 | =2 3.9 5 10~

Table 5.1: Experimental values for typical oxides used as functional layers [160].
An important design feature of oxides is the existence of charged impurities or charged
traps within the bulk of the oxide or at its interface with graphene [8, 161]. These im-

purities (or atomic defects) can trap and de-trap charge carriers from graphene, and may
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cause degradation of the conductivity due to fluctuations in the available density for elec-
trical conduction and due to Coulomb scattering [162, 163]. Because these impurities also
contribute a net charge to the system, an additional surface charge density is included,
o, = Nyt, to account for these oxide traps, where N; is the effective volume density of
trapped impurities and ¢ is the oxide thickness.

To include the addition of oxide layer trapped charges between graphene and the diffuse
layer, there is an additional boundary condition arising from the Gaussian pillbox on the
graphene—oxide interface (see Figure 5.2), giving

—€op (¢a ; %) = 4mo, + 4oy (1 — %Z) (5.27)

d
CogVoyw = —04 — 0y (1 - ?) , (5.28)

where C,, = {2, is the capacitance of the oxide layer of thickness ¢, o; is the volume
density of charged impurities in the oxide layer, and 0 < d < t is the average distance in
the oxide where the impurities are located. The charge neutrality condition when charged

impurities are included is generalized to
og+ 0t +0,+04=0, (5.29)

which comes from replacing the right hand side of Equation (5.27) into Equation (5.2). To
discard the traps in the oxide layer, set o, = 0 in Equation (5.29) and Equation (5.4) is
recovered.

At the neutrality point or the point of zero charge, the Fermi level is equal to the Dirac
point energy level, i.e. ep = ep (see Figure 3.4 on Page 37), so that V, = 0 at this point.
Under this condition, the surface charge density vanishes, o, = 0 as a consequence (comes
from Equation (5.5)). Therefore, Equation (5.28) becomes

d
Oow‘/oz = —0¢ (1 - ?) ; (530)

and the total applied potential V, is the sum of the diffuse layer potential V; and the oxide
potential V,,. Interestingly, the choice to use graphene as an electrode does not play a
key role in the sensitivity of the device, but does allow for clear minima to form in the
conductivity or capacitance, which provide precise measurements of the sensitivity [8].

Because both the surface charge density of the adsorbed layer o, and the surface charge
density of the diffuse layer o, are functions of the diffuse layer potential V;, the following
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substitution is made:

Va=Va— Vo (5.31)
o (1-3)
=Vo+ —2 5.32
+ o (5.32)
2
v, + TN (5.33)
= Vy=Va+ LNt (5.34)

upon substitution of Equation (5.28), and where V; = zefVy and V, = zeBV, are the
normalized potentials of the diffuse layer and total applied potential respectively, and
low = 2me? g 36LIL Here, d = t/2 is fixed, which describes the case of a uniform

€oxkpT €ox

distribution of charged impurities throughout the oxide layer.

5.3 Sensitivity Relations from the Charge Neutrality
Condition

The sensitivity of graphene-based sensors is accessed by plotting the potential at which
either the capacitance or conductivity is a minimum against the ion concentration or the
pH when the measurement was taken. At the potential minimum, the Fermi energy ep in
graphene coincides with the Dirac point energy p and hence, the potential drop across
graphene is V;, = 0 and the surface charge density on graphene is o, = 0 (Equation (5.5).
Therefore, the only contribution to the potential at the minimum in the conductivity
or capacitance is from the oxide (V,,) and the diffuse layer (V;) and so the total applied
potential becomes V, = V,,.+V,;. At the same time, the overall charge neutrality condition,
Equation (5.29) must be satisfied, and hence, the potential at the minimum is numerically
accessible by inverting the system of equations.

To obtain solutions for the potential at the neutrality point, the system of equations
given by Equations (5.7), (5.16), (5.30), and (5.34) is solved subject to the neutrality
constraint given by Equation (5.29). Comparisons will be made between the potential
minima obtained from the proposed model above and experimental data from two groups:
a group of Heller [76] at the University of Twente where the minima in the graphene
conductivity are plotted against ion concentration and a group led by Szkopek [82] at
McGill University where the minima are plotted against pH.
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Constant pH Regime

In the case of the Heller group [76], the graphene sheet is in direct contact with the
electrolyte solutions composed of lithium chloride (LiCl) and potassium chloride (KCI) and
phosphate buffer (PB) is added to keep the pH of the system constant over the electrolyte
concentration range. They utilize graphene-based FETs, which have an underlying oxide
layer of silicon dioxide. The experimental data presented by Heller et al. is averaged over
13 graphene devices [76], and their measurements in both electrolytic solutions, LiCl and
KCl, show that they have identical sensitivities (slopes), with only a small vertical offset
between salts. Because the experiment does not make use of a functional layer, the density
of oxide traps N; = 0 , the charge density o, = 0, and the potential drop across the oxide is
Vo = 0. The neutrality condition is then simply o,(Vy) 4+ 04(Vy) = 0. Both surface charge
densities are only functions of the diffuse layer potential, which allows the calculation to
reduce down to numerically inverting the charge neutrality condition for V.

The experiment considers two different pH levels: pH = 3 and pH= 7, with the exper-
imental parameters reported by the group given in Table 5.2. Heller et al. assumes that

Parameter Value
N, 0.5 nm~—?
pK, 4.5
pH 3 (black lines) and 7 (blue lines)
ON In(10)(4.5 — pH)

Table 5.2: Experimental values from Heller et al., where the graphene sheet is in direct
contact with the electrolytic solution [76]. Here, it is assumed that the binding occurs
directly on the surface of graphene, and the underlying oxide layer has no effects.

binding proceeds as in the site binding model with binding sites being deprotonated from
neutral to a —1 charge (H' being given to the electrolyte), remaining neutral, or being
protonated from neutral to a +1 charge (H' removed from the electrolyte) [76].

In Figure 5.3, the neutrality point, or potential of zero charge, V,,. is plotted verses
concentration of LiCl. The solid line correspond to the solution obtained by considering
the mobile ions in the electrolyte as point charges, i.e. with diffuse layer surface charge o,
given by the Poisson-Boltzmann expression in Equation (5.6). While the overall shape of
the solution is in good agreement with the shape of the experimental points, the magnitude
of the potential is not in agreement. The dashed line shows the solution obtained by adding

101



the effects of finite size in the diffuse layer, i.e. replacing Equation (5.6) with Equation
(5.7). The addition of steric effects appears to decrease the slope of the neutrality point
potential in both cases, but does not bring the model results into better agreement with
experimental data.

0.1004
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Figure 5.3: Results for the Heller et al. experiment of the potential at the neutrality point,
or point of zero charge (V,,.), plotted verses LiCl concentration. Experimental data are
shown as points and are taken from Figure 2 d) in [76], the model with no steric effects in
the diffuse layer is shown as the solid lines, and the model with steric effects is shown as
the dashed line. In an effort to bring the minima from the model in closer agreement with
the experimentally observed potential values, variations in the number of binding sites, /N,
are made: N, = 0.2 nm~? for pH= 7 (blue dotted lines) and N, = 0.9 nm~2 for pH= 3
(black dotted lines).

Interestingly, adjusting the number of binding sites N allows the solution for the neu-
trality point potential V. to agree very well with the observed experimental values. For
the case of pH= 3 (black lines), increasing the number of binding sites N to 0.9 nm~2,
brings the model into good agreement with the observed potential minima, which is plotted
as the black dotted line in Figure 5.3. For the case of pH= 7 (blue lines), decreasing the
number of binding sites N, to 0.2 nm~2, brings the model down to better agreement with
the measured experimental values. Due to the chemical inertness of graphene, it is expected
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that the adsorption of ions on the surface would only occur at defects in the hexagonal
lattice. Therefore, charged impurities in the silicon dioxide substrate could promote ad-
sorption due to the thinness of graphene [5], which provide some functionalization through
charged impurities. This could be attracted electrostatically to protons or hydroxyl groups
to bind to the graphene—electrolyte interface, and hence, the number of binding sites of a
bare graphene may deviate from the quoted value of Ny = 0.5 nm~2. This could be tested
experimentally by varying the density of traps in the underlying oxide from a low (or zero)
density to a high density to observe the change in the potential minima. Alternatively,
since bare graphene is known to be chemically inert, adding a functional layer to graphene
would remove any effects of the oxide substrate, and likely lead to more accurate modelling
of the sensitivity to ion concentration, as is the case in the constant concentration regime
below. It would also be worthwhile to apply a coating, e.g. parylene, to the graphene
surface in either the bare graphene case or functionalized graphene case to prevent degra-
dation of the surface over multiple experiments, as in the case of the work of Szkopek et
al. [21, 82], discussed in more detail below.

Sensitivity to Ion Concentration

Using a least-squares method to calculate the line of best fit for the solutions found in
Figure 5.3 gives sensitivities of approximately 23 mV/M for pH= 3 and 34 mV/M for
pH= 7 for the dotted lines (with adjusted number of binding sites). Similar slopes are
obtained when the number of binding sites is Ny, = 0.5 nm~2. These slopes show that the
sensitivity to ion concentration is a median value to those quoted by other experimental
groups, who measured the sensitivity of a graphene-based sensor to be approximately
6 mV /M [38] in one set and approximately 55 mV/M [30] in another. These groups also
utilized a graphene-based FET, in which the graphene sheet was in direct contact with the
electrolyte. However, they simply diluted their solutions without using a buffer to maintain
a constant pH [30, 38].

The sensitivity in these cases is highly dependent on the quality of the graphene used,
as defects in the lattice structure give rise to binding sites N, for protons and hydroxyl
groups. If the sheet of graphene has more defects, it would be expected to have a higher
sensitivity to adsorption than that of a pristine sheet of graphene that is chemically inert
[5]. Hence, discrepancies in the uniformity of the graphene sheets used by each group could
give rise to different sensitivities.
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Constant concentration regime

In the case Szkopek et al. [82], two different oxide layers, 5 nm of tantalum pentoxide
(TagOs) and 3 nm of aluminum dioxide (Al;O3), are deposited on top of graphene to help
promote adsorption of ions to the surface. In addition, the layer of graphene is wrapped
with a layer of parylene, which is a polymer that helps to prevent the degradation of the
graphene surface during multiple experiments and provides a non-covalent functionalization
so that the unique band structure of graphene remains intact [164, 165]. The experimental
measurements were done with an electrolytic buffer, sodium phosphate (NagPOy), at a
concentration of 20 mM. The relevant experimental values can be found in Table 5.3 [82].
Note that the experimental section of their work does not quote a density of charged
impurities in each oxide. Consequently, typical values in the 102 — 10*® cm~2 range are
considered [161], and the best fit values for the density of impurities are provided in Table
5.3.

Oxide: Al,Os3 Value
c 0.02 M
ON In(10)(8 — pH)
Ny —0.032 nm—?
t 3 nm
o —0.096 e¢/nm?
) 1072
Oxide: TayOs5 Value
c 0.02 M
o | (0)(3 —pH)
Ny —0.01 nm~3
t 5 nm
o —0.05 e/nm?
) 1071

Table 5.3: Experimental values from the Szkopek et al. group, where there is an oxide
layer placed between graphene and the electrolytic solution [82].

In Figure 5.4, the neutrality point potential V. is plotted verses pH. The solid lines
indicate the solutions obtained when considering the mobile ions in the electrolyte as
point charges, i.e., with o4 given by the Possion-Boltzmann expression in Equation (5.6).
Likewise with Figure 5.3, the overall trend of the solutions for both oxides is in good
agreement with the shape of the experimental points. When the mobile ions are considered
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to have finite size, i.e., when Equation (5.6) is replaced with Equation (5.7) for o4, the
dashed lines in Figure 5.4 are obtained. The addition of steric effects into the model
brings the solutions into excellent agreement with the observed experimental values. In
the standard Poisson-Boltzmann model for the surface charge density o4 (Equation (5.6)),
all ions are treated as point charges, and therefore, have equal ability to move in the bulk
electrolyte and adsorb on the oxide surface. However, the diffuse layer contains hydrated
salt ions, which are much larger than point charges and the protons and hydroxyl groups
responsible for binding. The large size of the hydrate ions inhibits the movement of the
smaller protons and hydroxyl groups, and hence a smaller proportion of these groups can
engage in binding at the oxide—electrolyte interface. This dependence on the inclusion
of finite ion size effects in the diffuse layer could be experimentally confirmed by taking
potential minima measurements with electrolytic solutions of varying ion sizes to identify
the effects of ion size on the minima. The inclusion of finite ion size in the diffuse layer,
the dotted lines in Figure 5.4, suggest that steric effects diffuse layer exist, and are an
important phenomena in the modelling of experimental data.

04
—Ta, O,
—AL O, .
0.3 y
>
02
g
>
.
5 0.1
2
[= 9

0.0+

-0.1

Figure 5.4: Results reported by Szkopek et al. on the dependence of the neutrality point
potential V,,,. on pH. Experimental data are shown as points and are taken from Figure 3
¢) in [82]; the model with no steric effects in the diffuse layer is shown as the solid lines,
and the model with steric effects is shown as the dotted lines.
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The site binding model and steric effects in the diffuse layer provide a direct link
between the modelling of graphene-based sensors and the experimental data for these
sensors. The agreement between the data and the model is impressive, and provide insight
into the important physical systems in graphene sensors: the inclusion of an oxide layer
that promotes binding at the oxide—electrolyte interface, the inclusion of an adsorbed layer,
which allows for protons and hydroxyl groups to bind, and the inclusion of steric effects in
the diffuse layer. This experimental validation of the site binding model is encouraging for
advancing the understanding and theoretical modelling of graphene-based sensors.

Sensitivity to pH

Similar to the sensitivity to ion concentration, a least-squares method to calculate the line
of best fit for the solutions in Figure 5.4 gives sensitivities of approximately 44 mV /pH for
Al O3 and 53 mV /pH for TagsOs. These slopes compare favourably with those reported
by other groups, who find the sensitivity for functionalized graphene FETs to be in the
range of 30 — 60 mV /pH [32, 33]. To identify experimental parameters which affect the
sensitivity of the device, Figure 5.5 shows variations of the neutrality point V,,. with pH
for different parameter values. The oxide used in all cases is 5 nm of TayO5, and unless
specified, the experimental values are consistent with those in Tables 5.1 and 5.3.

Ka
Ky
constant number of binding sites (N, = 10 nm~?) oxide thickness (5nm), and concentration
(c = 0.1 M). The range of ¢ is chosen so that it is consistent with the typical values for
oxides. When ¢ > 1, the minima become independent of pH values. The sensitivities for
increasing 6 are: 4 mV/pH, 18 mV /pH, 42 mV /pH, and 56 mV /pH (in the case of § = 1
and § = 2), showing that increasing § corresponds to a direct increase in the sensitivity.
A larger dissociation constant for the reaction AOH = AO~ + H*, which breaks up the
hydroxyl group and allows for more free protons to be given to the system, yields a more

In panel a) of Figure 5.5, the ratio of the dissociation constants § = is varied for

sensitive response.

Panel b) of Figure 5.5 shows the results when the number of binding sites N, is varied
at constant oxide thickness, concentration, and d set to 1. The sensitivities at increasing N,
are: 25 mV/pH, 30 mV/pH, 37 mV /pH, and 42 mV /pH, indicating that an increase in the
number of binding sites also yields a direct increase in the sensitivity. An increase in the
number of binding sites allows for more interactions to take place at the oxide—electrolyte
interface.

In panel ¢) of Figure 5.5, the results of varying the concentration with constant oxide
thickness, the ratio of dissociation constants ¢, and binding sites Ny is shown. For increasing
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for different thicknesses of oxides. For all panels, unless otherwise stated, parameters are

consistent with those for the oxide tantalum pentoxide found in Tables 5.1 and 5.3.
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concentrations, the sensitivities are: 57 mV/pH, 54 mV /pH, 44 mV /pH, and 33 mV /pH,
which show that for increasing concentrations, the sensitivity decreases. Due to the site
binding model only taking into account the adsorption of protons and hydroxyl groups,
it may be that with increasing electrolyte concentration, that there is some competition
between the different ions (protons, hydroxide, and salt ions) during the adsorption process,
and so for large concentrations, the protons and hydroxyl groups are inhibited from binding
on the surface.

Panel d) of Figure 5.5 plots the results for increasing oxide thickness at constant con-
centration ¢, 9, and number of binding sites N5. For this configuration, the sensitivity is
constant at approximately 44 mV /pH, and increasing the oxide thickness only shifts V.
upward.

Given Figure 5.5, it is the ratio of dissociation constants, ¢, the number of binding sites
N, and the concentrations that can alter sensitivity. The case of the latter is an easily
controllable external parameter; however,  and N, are material dependent and are not
easily adjusted. To adjust these two parameters, fabrication processes would need to be
altered to obtain the desired number of binding sites /N, and ratio of dissociation constants

J.

5.4 Concluding Remarks

Site binding theory is used to study the effect of ion adsorption on the neutrality point
potential in a graphene-based sensor. Two configurations of sensors are considered: one
where graphene is in direct contact with the electrolyte and one where a thin layer of oxide
is placed between graphene and the electrolyte. The sensitivity of the neutrality point to
changes in ion concentration and pH were considered, and comparisons were made between
the model solution and experimental data. In addition, the inclusion of finite ion size in
the diffuse layer of the electrolyte was also considered.

Because the adsorbed layer is a subsystem of the overall diffuse layer, its capacitance
comes in a parallel connection with the diffuse layer capacitance. This combined adsorbed
layer and diffuse layer capacitance then comes as a series connection with the oxide layer
and graphene electrode, which is consistent with previous modelling with and without an
adsorbed layer.

In the case of sensitivity to ion concentration, the site binding model does yield results
which are in fair agreement with experimental data. The inclusion of finite ion size in the
diffuse layer does not affect the neutrality point potential drastically, but slightly reduces
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the slope of the lines. By allowing for adjustments in the number of binding sites, N,
the neutrality point potentials are brought into excellent agreement with the experimental
data when steric effects are included.

For the regime of constant concentration where sensitivity to pH is measured, the site
binding model performs well compared to the experimental data. When steric effects are
included in the diffuse layer so that a finite amount of charge is able to approach the
electrode, the model yields results which are almost identical to the experimental data,
with no adjustments needed to experimentally documented values. The sensitivities of

both oxides considered were relatively high, but within the normally observed range of
30 — 60 mV /pH [21, 30, 38, 82].

To be able to control the sensitivity of the graphene-based FET, adjustments to the
concentration, pH, ratio of dissociation constants ¢ and the number of available binding
sites N, play an important role in the site binding model. Changes in these parameters
result in a direct to changes in the predicted sensitivity. Although this model of site-
binding only considers the adsorption of protons and hydroxl groups to the surface, it
would be interesting to allow for the adsorption of salt ions. It could then be investigated
to determine if the competition between these different ionic species affects their ability
to adsorb onto the surface and the corresponding change in the neutrality point of the
system.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This research focused on various aspects of modelling a graphene-based biochemical sensor
in the configuration of a field effect transistor. These sensors have a sheet of graphene in
contact with either an electrolytic solution or ionic liquid. The quantum capacitance of
graphene is much smaller than the capacitance of the diffuse layer, and hence, dominates in
the system near the point of zero charge. The smallness of the quantum capacitance gives
rise to more sensitive devices when the field effect transistor is operated in capacitor mode,
which makes modelling of the differential capacitance of such sensors a primary interest.

In Chapter 3, the interactions of a metallic and graphene electrode with a liquid elec-
trolyte are considered. A free energy functional is used to derive self consistent equations
for the concentration of ions and a modified Poisson-Boltzmann equation. This modified
Poisson-Boltzmann equation includes the effects of finite ion size in the diffuse layer cou-
pled with two different effects in the dielectric permittivity of the electrolyte: dielectric
saturation and dielectric decrement. In the case of dielectric saturation, the Booth model
is used to modify the dielectric permittivity of the diffuse layer to be dependent on the
magnitude of the electric field. In the case of dielectric decrement, a linearized model that
is dependent on the concentration of mobile ions is used to account for the so-called ex-
cess ion polarizability effect in the diffuse layer. Because the modified Poisson-Boltzmann
equation is not dependent on the position variable (distance x into the electrolyte from the
electrode surface), the Beltrami identity is used to obtain analytic functions for the first
integral of this equation, which can then be used to obtain analytic functions for the capac-
itance of the diffuse layer. For both regimes of modifications to the dielectric permittivity,

110



a charge-free Stern layer is considered between the electrode and the diffuse layer, as well
as the effects of both a metallic and graphene electrode. The capacitances in the diffuse
layer exhibit both camel- and bell-shaped dependence on the potential drop across that
layer for certain combinations of experimental parameters. The Stern layer acts to broaden
the peaks in the capacitance and to reduce the magnitude of the capacitance to bring them
into closer agreement with experimentally observed capacitances. Near the point of zero
charge, as expected, the total capacitance is dominated by the quantum capacitance of
graphene in both regimes of dielectric modification and finite ion size effects.

The interactions and capacitance of graphene in contact with an ionic liquid were dis-
cussed in Chapter 4. Due to ionic liquids being devoid of solvent molecules, the Coulomb
correlations between charged mobile ions become non-negligible and therefore a modifi-
cation to the dielectric permittivity is required. This results in a fourth-order modified
Poisson-Fermi equation, which does not have a general analytic solution. A numerical
computation is used to obtain results for both a metallic electrode and a graphene elec-
trode, as well as the cases when a Stern layer is added between the electrode and the diffuse
layer and when asymmetric ion sizes are considered. Likewise with the solutions for elec-
trolytes, both camel- and bell-shaped capacitances are observed in the diffuse layer, and
the inclusion of a Stern layer lowers the magnitude and broadens the peaks of the capaci-
tance. In the presence of a graphene electrode, the quantum capacitance again dominates
near the point of zero charge and only camel-shaped capacitances are observed.

In Chapter 5, the sensitivity of graphene-based sensors is explored. A site binding
model is used to allow for ion adsorption onto the surface of the graphene sensor. Both the
case of bare graphene and a functionalized graphene, where a thin layer of oxide is placed
on top of the graphene sheet, are considered. Solutions of the charge neutrality condition
are obtained for both sensitivity to ion concentration (constant pH) and sensitivity to pH
(constant ion concentration) and compared to experimental data. In both cases, the site
binding model reproduces the experimental data quite well, particularly in the case when
the sensitivity to pH is considered. Although graphene does not have a direct impact on
the neutrality point and sensitivity, it is vital to the accuracy of devices as clear minima
are observed in the conductivity and capacitance.

6.2 Future Work

In Chapter 3, the effects of dielectric saturation and dielectric decrement were considered
as separate manifestations in the electrolyte. Future work should consider both effects in
tandem in the electrolyte, and to analyze the interplay of these two effects. The conditions
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where one effect dominates or where both effects become comparable should be analyzed
to obtain a fully modified model of the diffuse layer.

A more careful analysis of the boundary conditions for Poisson-Fermi equation in Chap-
ter 4 was performed recently by Pedro et al. [149], and a set of new conditions was derived
enforcing the continuity of the Maxwell stress at a charged interface, which upholds the
contact theorem for dilute primitive-model electrolytes. The solutions obtained for ionic
liquids will change under these new boundary conditions, and implementation of the new
conditions should be performed to analyze the similarities and differences of the boundary
conditions.

In the case of adsorption, the model presented here assumes that only protons and
hydroxyl groups were able to bind to the surface. Further work should allow for multiple
layers of adsorption and the adsorption of the salt ions to make further refinements to the
model, particularly in the case of constant pH where the sensitivity is with respect to the
ion concentration. At large ion concentrations, the competition between the different sized
ion groups to adsorb onto the surface may play a significant role in the neutrality point
potential. Furthermore, a recent paper by Parizi et al. [155] allowed for the inclusion of
steric effects in the adsorbed layer. A careful analysis of this result and their methodology
for including finite ion size in this regime is also necessary.

In addition, combining the work in Chapter 3 with Chapter 5 so that the adsorption
model includes the effects of dielectric saturation and dielectric decrement in the diffuse
layer would be a next step for modelling. This would yield a fully modified model for
graphene-based biochemical sensors, which would be interesting to analyze for the interplay
of the effects in the diffuse layer with the effects of adsorption.

The work in this thesis assumes that the applied potential comes from a direct current,
i.e. the electric field does not depend on time. It would be interesting to consider that
the electric field is time-dependent, e.g. in the case of alternating current. With every
switch of direction in the electric field, ions would be redistributed in the diffuse layer as
oppositely charged ions move either to or from the electrode surface.
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Appendix A

Stationary Points of Free Energy
Functional

In this appendix, a derivation of the Poisson-Boltzmann equation using calculus of varia-
tions is presented.

The free energy of the system is given by F' = U — T'S, where U is the internal energy
of the system, T is the temperature (in Kelvin), and S in the entropy of the system
[51, 52, 96]. By treating mobile ions in a Z : Z symmetric electrolyte as point charges, the
internal energy of the system is given by the functional

U= /// {— é(w)? + Ze(cy — c_)gb] &7 + // Godod? T, (A1)
Q oN

where (2 is the volume occupied by the electrolyte, € is the dielectric permittivity of the
solvent (assumed constant), ¢ is the electrostatic potential, Ze the charge on the ionic
species, ¢, and c_ are the local concentrations of positive and negative ions respectively,
og is the surface density of free charges on the boundary 02, and ¢q is the surface value
of the potential ¢. Using an entropy of an ideal gas of point-like ions [97], the entropic
contribution is given by the functional

— TS = %/Q// [c+ In (%) te In (%‘O) —cy— c_} &7, (A.2)

where ¢, is the bulk concentration of each ionic species and § = ,CBLT with kg being the
Boltzmann constant and 7" the temperature.

128



Minimization with respect to potential, ¢

Set ¢ = u + Av, where u and v are permissible functions in €2. To find a function u such
that the functional F' has a stationary value, set the derivative with respect to A to zero:

d
- /// IV AV + Zele, — ) (ut M) d'F
Q

+ // oo (ug + Mvg) d*7
pYy)

A=0

Applying the derivative gives

/// [—fVu Vv + Ze(cy — cf)v] &7+ // aov d*7 = 0. (A.4)
m
2 o9

Next, integrate the first term in the integral by parts to convert Vo to v:

J[fvosim fffwuere ffunsurn s
Q Q o0

where n is the outward unit normal vector to the boundary 0€). The final form of the
variation, when set to zero to find the stationary points, is then:

€ o2 _ 3= _ € 22
///v [47TV u+ Ze(cy c_)} d T+//UO ( s Vu000> d°r = 0. (A.6)
Q 00

Because Equation (A.6) is true for all variations v and vy, it then follows that the resulting
Euler-Lagrange equation for u yields the well-known Poisson equation

€
— V% =—Ze(c, —c_), A7
V=~ Ze(cy —c) (A7)
and the stationary condition for ug gives the Neumann boundary condition

en- Vo = 4rmoy. (A.8)

z=0
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Minimization with respect to concentrations, c.

Set ¢, = uy + Avy, where u, and v, are permissible functions in €2. To determine a
stationary value of the functional F', set the derivative with respect to A to zero:

% /// [Zed (uy + Avy)] d°F
5///{u++m+ )In (“++AU+) _(u++M+)} .

Applying the derivative gives:

[[[ st [ffon(=) ers

The final form of the variation, when set to zero to find the stationary points, is

/// [Ze(b + %111 <ZT:>} v d°F = 0. (A.11)

Similarly, by setting ¢ = u_ + Av_, where u_ and v_ are permissible functions in €2, the
variation with respect to concentrations c_ gives

[[f [F2eos 3 (1)) -0 a1

Because Equations (A.11) and (A.12) are valid for all variations v, and v_, it then follows
that

+ Zeg+ %ln (%) = 0. (A.13)

Rearranging Equation (A.13), and reverting back to the original symbol for concentrations
Cc4+ gives
Cy = Cooe T2l (A.14)

which is the well-known Boltzmann distribution of ions. Substituting Equation (A.14) into
Equation (A.7) gives the Poisson-Boltzmann equation.
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Appendix B

Lattice Entropy

B.1 Entropic Contribution of Cations and Anions

The entropy of a solution containing cations and anions is calculated using a lattice model.
Here, the system is divided into cells of equal size, with lattice spacing of the size of ion
diameter a.

Figure B.1: Schematic representation of the lattice model with both cations and anions.

The total number of spatial arrangements of the cations and anions in a cell with N
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lattice sites is

N(N —1)(N=2)...(N = (C—1))

Q= o] (B.1)
!
- c+!c!g>7\} — ) (B.2)
where C' = ¢, + c¢_, ¢y is the number of cations, and c_ is the number anions.
The total entropy of the system is then given by the Boltzmann formula:
S =kplnQ. (B.3)

By using Stirling’s approximation for large C; i.e, InC; ~ C;InC; — C;, i = {+, —}, the
total entropy for the given system is:

mQ=NImnN-N-C,InCy, +C, —C_InC_+C_—(N-C)In(N-C)+ (N -C)

(B.4)

:NlnN—C+1nC+—C_lnC’_+(N—C)ln(%(1—%)) (B.5)

—an(@)-cn(§)o-on(i(-8)

Here, the first term gives the entropic contribution of the cations, the second term gives the
entropic contribution of the anions, and the last term represents the empty lattice spaces.
In the case where the solution also contains water molecules, the last term is the entropic
contribution of the water. For this case, note that in Figure B.1, the empty lattice spaces
would represent the water molecules.
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Appendix C

Derivation of the Booth Model

C.1 Spherical Cavity in Dielectric

Suppose a spherical cavity of radius a exists in an otherwise homogeneous material of
dielectric constant €, and a point dipole is located at the centre of the cavity is a point
dipole m, see figure C.1. Let the potential in the absence of the cavity be given by
¢o = —Ercosf, where 6 indicates the direction of the polar axis, which is oriented along
the externally applied constant electric field E. By introducing the cavity into the system,
the potential inside the cavity is ¢; and outside the cavity is ¢y + ¢,, where ¢, is the
perturbation to the potential by introducing the cavity. Note that ¢, must decrease at

large distances away from the cavity, at least as fast as %

Now both the potential inside and outside the cavity must satisfy Laplace’s equation:

V(6 + ) = 0
v2¢i = 07

with boundary conditions

Go + Op = O (r=a)

0 B 0¢; B
Ga—r(% + ¢p) = o (r=a).

Given the form of ¢y and the boundary conditions, try a solution of the form:

¢; = —Brcosf
A
Op = 2 cos 6,
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Figure C.1: Schematic showing the spherical cavity of radius a. For the first case, the
dipole moment, m, is zero.

where the coefficients A and B follow from the boundary conditions as

_e—1 4
A= e 1 E (C.7)
3e
— E. .
B 2e+1 (C8)

The field inside the cavity is then given by

- 0
S C.9
G 87’ (¢) cos =1 ( )
3 =
T 2 +1 (€.10)

Here, G is called the cavity field and is caused by and acts in the same direction as the
applied field E

C.2 Spherical Cavity with Point-Dipole in Dielectric

Suppose a spherical cavity of radius a exists in an otherwise homogeneous material of
dielectric constant €, and at the centre of the cavity is a point dipole m (Figure C.1), with
m directed along the polar axis. Let the potential inside the cavity be given by ¢o + ¢,,
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where by ¢g = 73 cosf is the potential that describes the field of a dipole in free space,
with 6 defining its direction with respect to the polar axis. Let the potential outside the
cavity be given by ¢,.

The boundary conditions are:

b0 + Op = 0 (r=oa) (C.11)
0 0po
E(% +dp) =e ;; (r=a). (C.12)

Since the form of ¢ is known and the potential of the dipole is expected to decrease
proportionally to the distance from the cavity as %2, try a solution of the form:

¢p, = —Arcosb (C.13)
B
Go = — 5 cos 9, (C.14)

where the coefficients A and B follow form the boundary conditions as

2(e—1)m
= — — C.15
2¢+1 a? ( )
3€
B = . 1
2e+1 " (C.16)
Then the field inside the cavity in the direction of the polar axis (cosf = 1) is
0 2m  2(e—1)m
- — = — — C.17
ar (¢0 + ¢p) 7'3 26 _|_ 1 0/3’ ( )

cos =1

where the second term is defined as the reaction field, ﬁ, and tends to increase the dipole
moment inside the cavity and acts in the same direction as the dipole.

C.3 Booth Dielectric Constant for Water using
Onsager’s Method

Now consider a polar molecule in a liquid, which is at the centre of a spherical cavity
[166]. This molecule will become polarized under the influence of the reaction field, R, and
the cavity field, GG, so that the effective dipole moment of the molecule m, which is not
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permanent, is given by m = ui + a(C_j - ﬁ), where # is the unit vector in the direction of
permanent dipole of the molecule, i, and « is its polarizability. This relation is equivalent

to:
3¢ = 2€e—1)m
N = Lol E — C.18
" ”O“+(26+1 et a3)a’ (C-18)

where 19 is the permanent electric moment of the molecule. Solving this equation for 1 and
substituting the polarizability o with the refractive index n given via the Clausius-Mossotti

relation Zi;; = %’N a (N is the number density of molecules), gives

(n?*+2)(2e+1) _  €en*+2)

E C.19
32 +n2) YT er )™ (C-19)

m =

using the fact that 4%a‘r”]\f — 1. The torque acting on the dipole is T' = (ﬁ—i— é) X m. Since
the reaction field is parallel to the dipole moment, Rxm= 0, the torque is

T=G xni (C.20)
. 2 2 ~

263j - ((” 3—(#;)4(_2;2—;— 1),“017 %QE) (C.21)

- 6221+n§)“05 X (C.22)

- eéZ:+n§‘) o sin 0 (C.23)

= pu Esinbp, (C.24)

where p'is the unit vector defining the axis about which the dipole rotates and

e(n? +2)
e C.25
2€ + n? Ho ( )

*_

Then, the work done by the torque to reorient the dipole is found by solving the equation
%—Z’ =T p, so that w = —p*F cosf.

The component of m in the direction of the applied electric field is then given by

(n? +2)(2¢ + 1) e(n? +2)
= —=akl. C.26
mg 302+ 2) fto cos 0 + (26+n2)a ( )

To determine the average value of mg, the average value of cosf is obtained using the
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Boltzmann distribution of rotational energies of the dipole.

2w ™
/ / e *sT cos @ sin 0dOdyp
cosf) = HL—0 — (C.27)
/ / e 5T sin Odbdy
o Jo
1
= coth(z) — —, (C.28)
x
where r = ;:B—? From the definition of polarization density,
P=Nmg (C.29)
(n?+2)(2¢ + 1) 1 e(n? 4+ 2) .
=N th(z) — — ——akl C.30
( 3(2e + n?) Ho| coth(z) x + 2€ + n? az)e ( )

where €= E /E is the unit vector pointing in the direction of the electric field. Using the
electrostatic formula (¢ — 1)E = 47 P,

(e—1)E = 47rN(<n 3—2_23)_'(_2;;; 1),uo(coth(x) - é) + %a)é (C.31)

Finally, rearranging and simplifying gives Booth’s model for the dielectric permittivity:

2 4N (n? + 2) o
3B

c—n coth(z) — 1). (C.32)

T
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Appendix D

Euler-Lagrange Formulation

In Lagrangian mechanics, the formulation comes from the principle of least action. To
derive the Euler-Lagrange equation from Lagrangian mechanics, consider the Lagrangian
functional, L(q, %, t), and find a condition such that the action S becomes either maximal
or minimal. This is done by considering small variation 7(¢), with boundary conditions
n(t1) = n(ts) = 0. For simplicity, denote ¢’ = %. Then, the action S is

S = /t2 L(g+en(t),qd +en'(t),t)dt, (D.1)

t1

with extrema given by taking the derivative with respect to € and setting the result equal
to 0 [106].
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d%: / 2 L(g+en(t),d +en(t),t)dt = /: (%L(q +en(t), g +en'(8),) 6(g + en(t))

t1

+ 2Lt en(t),d +enf (9,0 5(d +en/ ()

oq’
B,
+ L Lt enfn).f (), t>) i (D2)
2 /OL OL )
= —n(t) + =—n'(t) ) dt D.3
| (Gt + oo (D.3)
2oL d oL
oL d oL

which is the well-known Euler-Lagrange equation.

D.1 Hamiltonian Mechanics

For a mechanical system, a Lagrangian, L(q, ¢, t) can be constructed to describe the differ-
ence between the total kinetic energy and the potential energy. The generalized momentum
for such systems is defend as

oL
= D.6
P= 5y (D.6)
which allows for the system to be solved for the generalized momentum. This connection

is made through the Legendre transformation, H = ¢ g—; — L, and provides a connection

to Hamiltonian mechanics. The Legendre transform allows for a self-consistency check of
each modification to the dielectric permittivity’s first integral formulation.

The total derivative is of Legendre transformation is:

oL oL
dH = pdq + ¢’ dp — —dg’ — p' dg — == dt D.7
pdq + ¢ dp o 14—V d1— 5 (D.7)
, , oL
———)>dH:qdp—pdq—adt7 (D.8)
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which must be equivalent to dH = %—ZI dq + %—IZ dp + %—Ij dt. Matching the terms yields:

oH ,

8_]9 =49 (D.9)
oOH ,

oH oL

o T (D-11)

In the context of the work here, the analogy comes from the 1D nature of the problem,
with the spatial variable, x, taking the role of time, ¢, the potential ¢ taking the role of
the generalized coordinate, ¢, and the conjugate momentum p being replaced by ﬁ, where
D is the dielectric displacement. Here, the standard relation of electromagnetism between
dielectric displacement and electric field, D = e.gF, is used, where €.g = €pootn in the case
of dielectric saturation and €. = €qec in the case of dielectric decrement. The Lagrangian
is obtained as the negative of the functional U used in Chapter 3 to derive modifications to
the Poisson-Boltzmann equation. By replacing the expressions for the ion concentrations
into L = —U, the Lagrangian becomes now a function of ¢(z) and D(z), and the Hamilton
equations are:

0OH
OH

Note that since the “time” variable x is missing in the free energy functionals used in this
work, the “conservation of energy” comes in the form H(D, ¢) = const, with the constant
determined by the bulk values in the electrolyte. This conservation relation is equivalent
to the first integrals obtained using Beltrami identity in Chapter 3 and expresses the fact
that the osmotic pressure in the electrolyte is independent from the position z. In the
following subsections, the Hamiltonian formulations will be derived for each modification
to the Poisson-Boltzmann equation.
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Dielectric Saturation

For the case of dielectric saturation, the Hamiltonian is obtained using the Legendre trans-
formation to the Lagrangian L = —U as,

H=— l — drw,(|E|) + eBooth(E)Eﬂ - 82(;“ In <1 + 2vsinh? <@b>) (D.14)

E b
= | [epoo(B) + Eeya )] B~ 1 [ p(6) (0.15)

using Equation (3.3). Equation (D.15) is written in integral form by replacing the expres-
sion in the second term with the expression for the charge density p (Equation (3.7)).

Utilizing the fact that £ = GBD - and considering D to be a function of £ and ¢, the
Hamilton’s equations yield:

H OH

Z—D = §:§ (by chain rule and implicit differentiation) (D.16)
—(€Bootn(E) + Eep o (E))E . :
= o0 via Equation (D.15 D.17
oot )+ By (B) 1 Faration (D19) - (17
- —F, (D.18)
H

and aﬁ_gzﬁ = —4mp, (via Equation (D.15)) (D.19)

as desired. Rewriting the equations of motion (D.9) and (D.10) as % = —Fand 2 = —4mp
proves that the Hamilton’s formalism yields the modified Poisson-Boltzmann equation for
the case of dielectric saturation. Accordingly, the conservation principle H(D, ¢) = const
with H given in Equation (D.14) is indeed equivalent to the first integral in Equation (3.21)
on Page 38 that was derived by the Beltrami’s identity.

Dielectric Decrement

In the case of dielectric decrement, the Hamiltonian is

(€w — 2ap ) E?  2coo(4m)

H—
2 1512

In(l —v+ e~ $7E° cosh(zef9)). (D.20)
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Again, utilizing the fact that £ = -£-, where D is now a function of E and ¢, Hamilton’s

€dec

equations give:

0H 5%
—— = 92 (by chain rule and implicit differentiation)
oD <=

—F (€ — 2 + E2a92t
= — (6w = 20p4) 5 “or (from Equation (D.20))
€w+ apy + FE

= —F, (from Equation (3.28) on Page 39)
g 01 _ 010 o
dp  OE dp  0¢
= —4rp, (from Equation (D.20))

(D.21)

(D.22)

(D.23)
(D.24)

(D.25)

as desired. The conservation relation H(D, ¢) = const with H given in Equation (D.20)
is indeed equivalent to the first integral in Equation (3.26) on Page 39 for the case of

dielectric decrement.
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